1 /*
   2  * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "ci/ciReplay.hpp"
  29 #include "classfile/javaClasses.hpp"
  30 #include "code/exceptionHandlerTable.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "compiler/compilationFailureInfo.hpp"
  33 #include "compiler/compilationMemoryStatistic.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/compileLog.hpp"
  36 #include "compiler/compilerOracle.hpp"
  37 #include "compiler/compiler_globals.hpp"
  38 #include "compiler/disassembler.hpp"
  39 #include "compiler/oopMap.hpp"
  40 #include "gc/shared/barrierSet.hpp"
  41 #include "gc/shared/c2/barrierSetC2.hpp"
  42 #include "jfr/jfrEvents.hpp"
  43 #include "jvm_io.h"
  44 #include "memory/allocation.hpp"
  45 #include "memory/resourceArea.hpp"
  46 #include "opto/addnode.hpp"
  47 #include "opto/block.hpp"
  48 #include "opto/c2compiler.hpp"
  49 #include "opto/callGenerator.hpp"
  50 #include "opto/callnode.hpp"
  51 #include "opto/castnode.hpp"
  52 #include "opto/cfgnode.hpp"
  53 #include "opto/chaitin.hpp"
  54 #include "opto/compile.hpp"
  55 #include "opto/connode.hpp"
  56 #include "opto/convertnode.hpp"
  57 #include "opto/divnode.hpp"
  58 #include "opto/escape.hpp"
  59 #include "opto/idealGraphPrinter.hpp"
  60 #include "opto/locknode.hpp"
  61 #include "opto/loopnode.hpp"
  62 #include "opto/machnode.hpp"
  63 #include "opto/macro.hpp"
  64 #include "opto/matcher.hpp"
  65 #include "opto/mathexactnode.hpp"
  66 #include "opto/memnode.hpp"
  67 #include "opto/mulnode.hpp"
  68 #include "opto/narrowptrnode.hpp"
  69 #include "opto/node.hpp"
  70 #include "opto/opcodes.hpp"
  71 #include "opto/output.hpp"
  72 #include "opto/parse.hpp"
  73 #include "opto/phaseX.hpp"
  74 #include "opto/rootnode.hpp"
  75 #include "opto/runtime.hpp"
  76 #include "opto/stringopts.hpp"
  77 #include "opto/type.hpp"
  78 #include "opto/vector.hpp"
  79 #include "opto/vectornode.hpp"
  80 #include "runtime/globals_extension.hpp"
  81 #include "runtime/sharedRuntime.hpp"
  82 #include "runtime/signature.hpp"
  83 #include "runtime/stubRoutines.hpp"
  84 #include "runtime/timer.hpp"
  85 #include "utilities/align.hpp"
  86 #include "utilities/copy.hpp"
  87 #include "utilities/macros.hpp"
  88 #include "utilities/resourceHash.hpp"
  89 
  90 // -------------------- Compile::mach_constant_base_node -----------------------
  91 // Constant table base node singleton.
  92 MachConstantBaseNode* Compile::mach_constant_base_node() {
  93   if (_mach_constant_base_node == nullptr) {
  94     _mach_constant_base_node = new MachConstantBaseNode();
  95     _mach_constant_base_node->add_req(C->root());
  96   }
  97   return _mach_constant_base_node;
  98 }
  99 
 100 
 101 /// Support for intrinsics.
 102 
 103 // Return the index at which m must be inserted (or already exists).
 104 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
 105 class IntrinsicDescPair {
 106  private:
 107   ciMethod* _m;
 108   bool _is_virtual;
 109  public:
 110   IntrinsicDescPair(ciMethod* m, bool is_virtual) : _m(m), _is_virtual(is_virtual) {}
 111   static int compare(IntrinsicDescPair* const& key, CallGenerator* const& elt) {
 112     ciMethod* m= elt->method();
 113     ciMethod* key_m = key->_m;
 114     if (key_m < m)      return -1;
 115     else if (key_m > m) return 1;
 116     else {
 117       bool is_virtual = elt->is_virtual();
 118       bool key_virtual = key->_is_virtual;
 119       if (key_virtual < is_virtual)      return -1;
 120       else if (key_virtual > is_virtual) return 1;
 121       else                               return 0;
 122     }
 123   }
 124 };
 125 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found) {
 126 #ifdef ASSERT
 127   for (int i = 1; i < _intrinsics.length(); i++) {
 128     CallGenerator* cg1 = _intrinsics.at(i-1);
 129     CallGenerator* cg2 = _intrinsics.at(i);
 130     assert(cg1->method() != cg2->method()
 131            ? cg1->method()     < cg2->method()
 132            : cg1->is_virtual() < cg2->is_virtual(),
 133            "compiler intrinsics list must stay sorted");
 134   }
 135 #endif
 136   IntrinsicDescPair pair(m, is_virtual);
 137   return _intrinsics.find_sorted<IntrinsicDescPair*, IntrinsicDescPair::compare>(&pair, found);
 138 }
 139 
 140 void Compile::register_intrinsic(CallGenerator* cg) {
 141   bool found = false;
 142   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual(), found);
 143   assert(!found, "registering twice");
 144   _intrinsics.insert_before(index, cg);
 145   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
 146 }
 147 
 148 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
 149   assert(m->is_loaded(), "don't try this on unloaded methods");
 150   if (_intrinsics.length() > 0) {
 151     bool found = false;
 152     int index = intrinsic_insertion_index(m, is_virtual, found);
 153      if (found) {
 154       return _intrinsics.at(index);
 155     }
 156   }
 157   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
 158   if (m->intrinsic_id() != vmIntrinsics::_none &&
 159       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
 160     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
 161     if (cg != nullptr) {
 162       // Save it for next time:
 163       register_intrinsic(cg);
 164       return cg;
 165     } else {
 166       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
 167     }
 168   }
 169   return nullptr;
 170 }
 171 
 172 // Compile::make_vm_intrinsic is defined in library_call.cpp.
 173 
 174 #ifndef PRODUCT
 175 // statistics gathering...
 176 
 177 juint  Compile::_intrinsic_hist_count[vmIntrinsics::number_of_intrinsics()] = {0};
 178 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::number_of_intrinsics()] = {0};
 179 
 180 inline int as_int(vmIntrinsics::ID id) {
 181   return vmIntrinsics::as_int(id);
 182 }
 183 
 184 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
 185   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
 186   int oflags = _intrinsic_hist_flags[as_int(id)];
 187   assert(flags != 0, "what happened?");
 188   if (is_virtual) {
 189     flags |= _intrinsic_virtual;
 190   }
 191   bool changed = (flags != oflags);
 192   if ((flags & _intrinsic_worked) != 0) {
 193     juint count = (_intrinsic_hist_count[as_int(id)] += 1);
 194     if (count == 1) {
 195       changed = true;           // first time
 196     }
 197     // increment the overall count also:
 198     _intrinsic_hist_count[as_int(vmIntrinsics::_none)] += 1;
 199   }
 200   if (changed) {
 201     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
 202       // Something changed about the intrinsic's virtuality.
 203       if ((flags & _intrinsic_virtual) != 0) {
 204         // This is the first use of this intrinsic as a virtual call.
 205         if (oflags != 0) {
 206           // We already saw it as a non-virtual, so note both cases.
 207           flags |= _intrinsic_both;
 208         }
 209       } else if ((oflags & _intrinsic_both) == 0) {
 210         // This is the first use of this intrinsic as a non-virtual
 211         flags |= _intrinsic_both;
 212       }
 213     }
 214     _intrinsic_hist_flags[as_int(id)] = (jubyte) (oflags | flags);
 215   }
 216   // update the overall flags also:
 217   _intrinsic_hist_flags[as_int(vmIntrinsics::_none)] |= (jubyte) flags;
 218   return changed;
 219 }
 220 
 221 static char* format_flags(int flags, char* buf) {
 222   buf[0] = 0;
 223   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
 224   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
 225   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
 226   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
 227   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
 228   if (buf[0] == 0)  strcat(buf, ",");
 229   assert(buf[0] == ',', "must be");
 230   return &buf[1];
 231 }
 232 
 233 void Compile::print_intrinsic_statistics() {
 234   char flagsbuf[100];
 235   ttyLocker ttyl;
 236   if (xtty != nullptr)  xtty->head("statistics type='intrinsic'");
 237   tty->print_cr("Compiler intrinsic usage:");
 238   juint total = _intrinsic_hist_count[as_int(vmIntrinsics::_none)];
 239   if (total == 0)  total = 1;  // avoid div0 in case of no successes
 240   #define PRINT_STAT_LINE(name, c, f) \
 241     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
 242   for (auto id : EnumRange<vmIntrinsicID>{}) {
 243     int   flags = _intrinsic_hist_flags[as_int(id)];
 244     juint count = _intrinsic_hist_count[as_int(id)];
 245     if ((flags | count) != 0) {
 246       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
 247     }
 248   }
 249   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[as_int(vmIntrinsics::_none)], flagsbuf));
 250   if (xtty != nullptr)  xtty->tail("statistics");
 251 }
 252 
 253 void Compile::print_statistics() {
 254   { ttyLocker ttyl;
 255     if (xtty != nullptr)  xtty->head("statistics type='opto'");
 256     Parse::print_statistics();
 257     PhaseStringOpts::print_statistics();
 258     PhaseCCP::print_statistics();
 259     PhaseRegAlloc::print_statistics();
 260     PhaseOutput::print_statistics();
 261     PhasePeephole::print_statistics();
 262     PhaseIdealLoop::print_statistics();
 263     ConnectionGraph::print_statistics();
 264     PhaseMacroExpand::print_statistics();
 265     if (xtty != nullptr)  xtty->tail("statistics");
 266   }
 267   if (_intrinsic_hist_flags[as_int(vmIntrinsics::_none)] != 0) {
 268     // put this under its own <statistics> element.
 269     print_intrinsic_statistics();
 270   }
 271 }
 272 #endif //PRODUCT
 273 
 274 void Compile::gvn_replace_by(Node* n, Node* nn) {
 275   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
 276     Node* use = n->last_out(i);
 277     bool is_in_table = initial_gvn()->hash_delete(use);
 278     uint uses_found = 0;
 279     for (uint j = 0; j < use->len(); j++) {
 280       if (use->in(j) == n) {
 281         if (j < use->req())
 282           use->set_req(j, nn);
 283         else
 284           use->set_prec(j, nn);
 285         uses_found++;
 286       }
 287     }
 288     if (is_in_table) {
 289       // reinsert into table
 290       initial_gvn()->hash_find_insert(use);
 291     }
 292     record_for_igvn(use);
 293     PhaseIterGVN::add_users_of_use_to_worklist(nn, use, *_igvn_worklist);
 294     i -= uses_found;    // we deleted 1 or more copies of this edge
 295   }
 296 }
 297 
 298 
 299 // Identify all nodes that are reachable from below, useful.
 300 // Use breadth-first pass that records state in a Unique_Node_List,
 301 // recursive traversal is slower.
 302 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
 303   int estimated_worklist_size = live_nodes();
 304   useful.map( estimated_worklist_size, nullptr );  // preallocate space
 305 
 306   // Initialize worklist
 307   if (root() != nullptr)  { useful.push(root()); }
 308   // If 'top' is cached, declare it useful to preserve cached node
 309   if (cached_top_node())  { useful.push(cached_top_node()); }
 310 
 311   // Push all useful nodes onto the list, breadthfirst
 312   for( uint next = 0; next < useful.size(); ++next ) {
 313     assert( next < unique(), "Unique useful nodes < total nodes");
 314     Node *n  = useful.at(next);
 315     uint max = n->len();
 316     for( uint i = 0; i < max; ++i ) {
 317       Node *m = n->in(i);
 318       if (not_a_node(m))  continue;
 319       useful.push(m);
 320     }
 321   }
 322 }
 323 
 324 // Update dead_node_list with any missing dead nodes using useful
 325 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
 326 void Compile::update_dead_node_list(Unique_Node_List &useful) {
 327   uint max_idx = unique();
 328   VectorSet& useful_node_set = useful.member_set();
 329 
 330   for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
 331     // If node with index node_idx is not in useful set,
 332     // mark it as dead in dead node list.
 333     if (!useful_node_set.test(node_idx)) {
 334       record_dead_node(node_idx);
 335     }
 336   }
 337 }
 338 
 339 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
 340   int shift = 0;
 341   for (int i = 0; i < inlines->length(); i++) {
 342     CallGenerator* cg = inlines->at(i);
 343     if (useful.member(cg->call_node())) {
 344       if (shift > 0) {
 345         inlines->at_put(i - shift, cg);
 346       }
 347     } else {
 348       shift++; // skip over the dead element
 349     }
 350   }
 351   if (shift > 0) {
 352     inlines->trunc_to(inlines->length() - shift); // remove last elements from compacted array
 353   }
 354 }
 355 
 356 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Node* dead) {
 357   assert(dead != nullptr && dead->is_Call(), "sanity");
 358   int found = 0;
 359   for (int i = 0; i < inlines->length(); i++) {
 360     if (inlines->at(i)->call_node() == dead) {
 361       inlines->remove_at(i);
 362       found++;
 363       NOT_DEBUG( break; ) // elements are unique, so exit early
 364     }
 365   }
 366   assert(found <= 1, "not unique");
 367 }
 368 
 369 template<typename N, ENABLE_IF_SDEFN(std::is_base_of<Node, N>::value)>
 370 void Compile::remove_useless_nodes(GrowableArray<N*>& node_list, Unique_Node_List& useful) {
 371   for (int i = node_list.length() - 1; i >= 0; i--) {
 372     N* node = node_list.at(i);
 373     if (!useful.member(node)) {
 374       node_list.delete_at(i); // replaces i-th with last element which is known to be useful (already processed)
 375     }
 376   }
 377 }
 378 
 379 void Compile::remove_useless_node(Node* dead) {
 380   remove_modified_node(dead);
 381 
 382   // Constant node that has no out-edges and has only one in-edge from
 383   // root is usually dead. However, sometimes reshaping walk makes
 384   // it reachable by adding use edges. So, we will NOT count Con nodes
 385   // as dead to be conservative about the dead node count at any
 386   // given time.
 387   if (!dead->is_Con()) {
 388     record_dead_node(dead->_idx);
 389   }
 390   if (dead->is_macro()) {
 391     remove_macro_node(dead);
 392   }
 393   if (dead->is_expensive()) {
 394     remove_expensive_node(dead);
 395   }
 396   if (dead->is_OpaqueTemplateAssertionPredicate()) {
 397     remove_template_assertion_predicate_opaq(dead);
 398   }
 399   if (dead->is_ParsePredicate()) {
 400     remove_parse_predicate(dead->as_ParsePredicate());
 401   }
 402   if (dead->for_post_loop_opts_igvn()) {
 403     remove_from_post_loop_opts_igvn(dead);
 404   }
 405   if (dead->is_Call()) {
 406     remove_useless_late_inlines(                &_late_inlines, dead);
 407     remove_useless_late_inlines(         &_string_late_inlines, dead);
 408     remove_useless_late_inlines(         &_boxing_late_inlines, dead);
 409     remove_useless_late_inlines(&_vector_reboxing_late_inlines, dead);
 410 
 411     if (dead->is_CallStaticJava()) {
 412       remove_unstable_if_trap(dead->as_CallStaticJava(), false);
 413     }
 414   }
 415   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 416   bs->unregister_potential_barrier_node(dead);
 417 }
 418 
 419 // Disconnect all useless nodes by disconnecting those at the boundary.
 420 void Compile::disconnect_useless_nodes(Unique_Node_List& useful, Unique_Node_List& worklist) {
 421   uint next = 0;
 422   while (next < useful.size()) {
 423     Node *n = useful.at(next++);
 424     if (n->is_SafePoint()) {
 425       // We're done with a parsing phase. Replaced nodes are not valid
 426       // beyond that point.
 427       n->as_SafePoint()->delete_replaced_nodes();
 428     }
 429     // Use raw traversal of out edges since this code removes out edges
 430     int max = n->outcnt();
 431     for (int j = 0; j < max; ++j) {
 432       Node* child = n->raw_out(j);
 433       if (!useful.member(child)) {
 434         assert(!child->is_top() || child != top(),
 435                "If top is cached in Compile object it is in useful list");
 436         // Only need to remove this out-edge to the useless node
 437         n->raw_del_out(j);
 438         --j;
 439         --max;
 440       }
 441     }
 442     if (n->outcnt() == 1 && n->has_special_unique_user()) {
 443       assert(useful.member(n->unique_out()), "do not push a useless node");
 444       worklist.push(n->unique_out());
 445     }
 446   }
 447 
 448   remove_useless_nodes(_macro_nodes,        useful); // remove useless macro nodes
 449   remove_useless_nodes(_parse_predicates,   useful); // remove useless Parse Predicate nodes
 450   remove_useless_nodes(_template_assertion_predicate_opaqs, useful); // remove useless Assertion Predicate opaque nodes
 451   remove_useless_nodes(_expensive_nodes,    useful); // remove useless expensive nodes
 452   remove_useless_nodes(_for_post_loop_igvn, useful); // remove useless node recorded for post loop opts IGVN pass
 453   remove_useless_unstable_if_traps(useful);          // remove useless unstable_if traps
 454   remove_useless_coarsened_locks(useful);            // remove useless coarsened locks nodes
 455 #ifdef ASSERT
 456   if (_modified_nodes != nullptr) {
 457     _modified_nodes->remove_useless_nodes(useful.member_set());
 458   }
 459 #endif
 460 
 461   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 462   bs->eliminate_useless_gc_barriers(useful, this);
 463   // clean up the late inline lists
 464   remove_useless_late_inlines(                &_late_inlines, useful);
 465   remove_useless_late_inlines(         &_string_late_inlines, useful);
 466   remove_useless_late_inlines(         &_boxing_late_inlines, useful);
 467   remove_useless_late_inlines(&_vector_reboxing_late_inlines, useful);
 468   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
 469 }
 470 
 471 // ============================================================================
 472 //------------------------------CompileWrapper---------------------------------
 473 class CompileWrapper : public StackObj {
 474   Compile *const _compile;
 475  public:
 476   CompileWrapper(Compile* compile);
 477 
 478   ~CompileWrapper();
 479 };
 480 
 481 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
 482   // the Compile* pointer is stored in the current ciEnv:
 483   ciEnv* env = compile->env();
 484   assert(env == ciEnv::current(), "must already be a ciEnv active");
 485   assert(env->compiler_data() == nullptr, "compile already active?");
 486   env->set_compiler_data(compile);
 487   assert(compile == Compile::current(), "sanity");
 488 
 489   compile->set_type_dict(nullptr);
 490   compile->set_clone_map(new Dict(cmpkey, hashkey, _compile->comp_arena()));
 491   compile->clone_map().set_clone_idx(0);
 492   compile->set_type_last_size(0);
 493   compile->set_last_tf(nullptr, nullptr);
 494   compile->set_indexSet_arena(nullptr);
 495   compile->set_indexSet_free_block_list(nullptr);
 496   compile->init_type_arena();
 497   Type::Initialize(compile);
 498   _compile->begin_method();
 499   _compile->clone_map().set_debug(_compile->has_method() && _compile->directive()->CloneMapDebugOption);
 500 }
 501 CompileWrapper::~CompileWrapper() {
 502   // simulate crash during compilation
 503   assert(CICrashAt < 0 || _compile->compile_id() != CICrashAt, "just as planned");
 504 
 505   _compile->end_method();
 506   _compile->env()->set_compiler_data(nullptr);
 507 }
 508 
 509 
 510 //----------------------------print_compile_messages---------------------------
 511 void Compile::print_compile_messages() {
 512 #ifndef PRODUCT
 513   // Check if recompiling
 514   if (!subsume_loads() && PrintOpto) {
 515     // Recompiling without allowing machine instructions to subsume loads
 516     tty->print_cr("*********************************************************");
 517     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
 518     tty->print_cr("*********************************************************");
 519   }
 520   if ((do_escape_analysis() != DoEscapeAnalysis) && PrintOpto) {
 521     // Recompiling without escape analysis
 522     tty->print_cr("*********************************************************");
 523     tty->print_cr("** Bailout: Recompile without escape analysis          **");
 524     tty->print_cr("*********************************************************");
 525   }
 526   if (do_iterative_escape_analysis() != DoEscapeAnalysis && PrintOpto) {
 527     // Recompiling without iterative escape analysis
 528     tty->print_cr("*********************************************************");
 529     tty->print_cr("** Bailout: Recompile without iterative escape analysis**");
 530     tty->print_cr("*********************************************************");
 531   }
 532   if (do_reduce_allocation_merges() != ReduceAllocationMerges && PrintOpto) {
 533     // Recompiling without reducing allocation merges
 534     tty->print_cr("*********************************************************");
 535     tty->print_cr("** Bailout: Recompile without reduce allocation merges **");
 536     tty->print_cr("*********************************************************");
 537   }
 538   if ((eliminate_boxing() != EliminateAutoBox) && PrintOpto) {
 539     // Recompiling without boxing elimination
 540     tty->print_cr("*********************************************************");
 541     tty->print_cr("** Bailout: Recompile without boxing elimination       **");
 542     tty->print_cr("*********************************************************");
 543   }
 544   if ((do_locks_coarsening() != EliminateLocks) && PrintOpto) {
 545     // Recompiling without locks coarsening
 546     tty->print_cr("*********************************************************");
 547     tty->print_cr("** Bailout: Recompile without locks coarsening         **");
 548     tty->print_cr("*********************************************************");
 549   }
 550   if (env()->break_at_compile()) {
 551     // Open the debugger when compiling this method.
 552     tty->print("### Breaking when compiling: ");
 553     method()->print_short_name();
 554     tty->cr();
 555     BREAKPOINT;
 556   }
 557 
 558   if( PrintOpto ) {
 559     if (is_osr_compilation()) {
 560       tty->print("[OSR]%3d", _compile_id);
 561     } else {
 562       tty->print("%3d", _compile_id);
 563     }
 564   }
 565 #endif
 566 }
 567 
 568 #ifndef PRODUCT
 569 void Compile::print_ideal_ir(const char* phase_name) {
 570   // keep the following output all in one block
 571   // This output goes directly to the tty, not the compiler log.
 572   // To enable tools to match it up with the compilation activity,
 573   // be sure to tag this tty output with the compile ID.
 574 
 575   // Node dumping can cause a safepoint, which can break the tty lock.
 576   // Buffer all node dumps, so that all safepoints happen before we lock.
 577   ResourceMark rm;
 578   stringStream ss;
 579 
 580   if (_output == nullptr) {
 581     ss.print_cr("AFTER: %s", phase_name);
 582     // Print out all nodes in ascending order of index.
 583     root()->dump_bfs(MaxNodeLimit, nullptr, "+S$", &ss);
 584   } else {
 585     // Dump the node blockwise if we have a scheduling
 586     _output->print_scheduling(&ss);
 587   }
 588 
 589   // Check that the lock is not broken by a safepoint.
 590   NoSafepointVerifier nsv;
 591   ttyLocker ttyl;
 592   if (xtty != nullptr) {
 593     xtty->head("ideal compile_id='%d'%s compile_phase='%s'",
 594                compile_id(),
 595                is_osr_compilation() ? " compile_kind='osr'" : "",
 596                phase_name);
 597   }
 598 
 599   tty->print("%s", ss.as_string());
 600 
 601   if (xtty != nullptr) {
 602     xtty->tail("ideal");
 603   }
 604 }
 605 #endif
 606 
 607 // ============================================================================
 608 //------------------------------Compile standard-------------------------------
 609 
 610 // Compile a method.  entry_bci is -1 for normal compilations and indicates
 611 // the continuation bci for on stack replacement.
 612 
 613 
 614 Compile::Compile( ciEnv* ci_env, ciMethod* target, int osr_bci,
 615                   Options options, DirectiveSet* directive)
 616                 : Phase(Compiler),
 617                   _compile_id(ci_env->compile_id()),
 618                   _options(options),
 619                   _method(target),
 620                   _entry_bci(osr_bci),
 621                   _ilt(nullptr),
 622                   _stub_function(nullptr),
 623                   _stub_name(nullptr),
 624                   _stub_entry_point(nullptr),
 625                   _max_node_limit(MaxNodeLimit),
 626                   _post_loop_opts_phase(false),
 627                   _allow_macro_nodes(true),
 628                   _inlining_progress(false),
 629                   _inlining_incrementally(false),
 630                   _do_cleanup(false),
 631                   _has_reserved_stack_access(target->has_reserved_stack_access()),
 632 #ifndef PRODUCT
 633                   _igv_idx(0),
 634                   _trace_opto_output(directive->TraceOptoOutputOption),
 635 #endif
 636                   _has_method_handle_invokes(false),
 637                   _clinit_barrier_on_entry(false),
 638                   _stress_seed(0),
 639                   _comp_arena(mtCompiler),
 640                   _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())),
 641                   _env(ci_env),
 642                   _directive(directive),
 643                   _log(ci_env->log()),
 644                   _first_failure_details(nullptr),
 645                   _intrinsics        (comp_arena(), 0, 0, nullptr),
 646                   _macro_nodes       (comp_arena(), 8, 0, nullptr),
 647                   _parse_predicates  (comp_arena(), 8, 0, nullptr),
 648                   _template_assertion_predicate_opaqs (comp_arena(), 8, 0, nullptr),
 649                   _expensive_nodes   (comp_arena(), 8, 0, nullptr),
 650                   _for_post_loop_igvn(comp_arena(), 8, 0, nullptr),
 651                   _unstable_if_traps (comp_arena(), 8, 0, nullptr),
 652                   _coarsened_locks   (comp_arena(), 8, 0, nullptr),
 653                   _congraph(nullptr),
 654                   NOT_PRODUCT(_igv_printer(nullptr) COMMA)
 655                   _unique(0),
 656                   _dead_node_count(0),
 657                   _dead_node_list(comp_arena()),
 658                   _node_arena_one(mtCompiler, Arena::Tag::tag_node),
 659                   _node_arena_two(mtCompiler, Arena::Tag::tag_node),
 660                   _node_arena(&_node_arena_one),
 661                   _mach_constant_base_node(nullptr),
 662                   _Compile_types(mtCompiler),
 663                   _initial_gvn(nullptr),
 664                   _igvn_worklist(nullptr),
 665                   _types(nullptr),
 666                   _node_hash(nullptr),
 667                   _late_inlines(comp_arena(), 2, 0, nullptr),
 668                   _string_late_inlines(comp_arena(), 2, 0, nullptr),
 669                   _boxing_late_inlines(comp_arena(), 2, 0, nullptr),
 670                   _vector_reboxing_late_inlines(comp_arena(), 2, 0, nullptr),
 671                   _late_inlines_pos(0),
 672                   _number_of_mh_late_inlines(0),
 673                   _oom(false),
 674                   _print_inlining_stream(new (mtCompiler) stringStream()),
 675                   _print_inlining_list(nullptr),
 676                   _print_inlining_idx(0),
 677                   _print_inlining_output(nullptr),
 678                   _replay_inline_data(nullptr),
 679                   _java_calls(0),
 680                   _inner_loops(0),
 681                   _interpreter_frame_size(0),
 682                   _output(nullptr)
 683 #ifndef PRODUCT
 684                   , _in_dump_cnt(0)
 685 #endif
 686 {
 687   C = this;
 688   CompileWrapper cw(this);
 689 
 690   TraceTime t1("Total compilation time", &_t_totalCompilation, CITime, CITimeVerbose);
 691   TraceTime t2(nullptr, &_t_methodCompilation, CITime, false);
 692 
 693 #if defined(SUPPORT_ASSEMBLY) || defined(SUPPORT_ABSTRACT_ASSEMBLY)
 694   bool print_opto_assembly = directive->PrintOptoAssemblyOption;
 695   // We can always print a disassembly, either abstract (hex dump) or
 696   // with the help of a suitable hsdis library. Thus, we should not
 697   // couple print_assembly and print_opto_assembly controls.
 698   // But: always print opto and regular assembly on compile command 'print'.
 699   bool print_assembly = directive->PrintAssemblyOption;
 700   set_print_assembly(print_opto_assembly || print_assembly);
 701 #else
 702   set_print_assembly(false); // must initialize.
 703 #endif
 704 
 705 #ifndef PRODUCT
 706   set_parsed_irreducible_loop(false);
 707 #endif
 708 
 709   if (directive->ReplayInlineOption) {
 710     _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level());
 711   }
 712   set_print_inlining(directive->PrintInliningOption || PrintOptoInlining);
 713   set_print_intrinsics(directive->PrintIntrinsicsOption);
 714   set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it
 715 
 716   if (ProfileTraps) {
 717     // Make sure the method being compiled gets its own MDO,
 718     // so we can at least track the decompile_count().
 719     method()->ensure_method_data();
 720   }
 721 
 722   if (StressLCM || StressGCM || StressIGVN || StressCCP ||
 723       StressIncrementalInlining || StressMacroExpansion || StressUnstableIfTraps || StressBailout) {
 724     initialize_stress_seed(directive);
 725   }
 726 
 727   Init(/*do_aliasing=*/ true);
 728 
 729   print_compile_messages();
 730 
 731   _ilt = InlineTree::build_inline_tree_root();
 732 
 733   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
 734   assert(num_alias_types() >= AliasIdxRaw, "");
 735 
 736 #define MINIMUM_NODE_HASH  1023
 737 
 738   // GVN that will be run immediately on new nodes
 739   uint estimated_size = method()->code_size()*4+64;
 740   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
 741   _igvn_worklist = new (comp_arena()) Unique_Node_List(comp_arena());
 742   _types = new (comp_arena()) Type_Array(comp_arena());
 743   _node_hash = new (comp_arena()) NodeHash(comp_arena(), estimated_size);
 744   PhaseGVN gvn;
 745   set_initial_gvn(&gvn);
 746 
 747   print_inlining_init();
 748   { // Scope for timing the parser
 749     TracePhase tp(_t_parser);
 750 
 751     // Put top into the hash table ASAP.
 752     initial_gvn()->transform(top());
 753 
 754     // Set up tf(), start(), and find a CallGenerator.
 755     CallGenerator* cg = nullptr;
 756     if (is_osr_compilation()) {
 757       const TypeTuple *domain = StartOSRNode::osr_domain();
 758       const TypeTuple *range = TypeTuple::make_range(method()->signature());
 759       init_tf(TypeFunc::make(domain, range));
 760       StartNode* s = new StartOSRNode(root(), domain);
 761       initial_gvn()->set_type_bottom(s);
 762       verify_start(s);
 763       cg = CallGenerator::for_osr(method(), entry_bci());
 764     } else {
 765       // Normal case.
 766       init_tf(TypeFunc::make(method()));
 767       StartNode* s = new StartNode(root(), tf()->domain());
 768       initial_gvn()->set_type_bottom(s);
 769       verify_start(s);
 770       if (method()->intrinsic_id() == vmIntrinsics::_Reference_get) {
 771         // With java.lang.ref.reference.get() we must go through the
 772         // intrinsic - even when get() is the root
 773         // method of the compile - so that, if necessary, the value in
 774         // the referent field of the reference object gets recorded by
 775         // the pre-barrier code.
 776         cg = find_intrinsic(method(), false);
 777       }
 778       if (cg == nullptr) {
 779         float past_uses = method()->interpreter_invocation_count();
 780         float expected_uses = past_uses;
 781         cg = CallGenerator::for_inline(method(), expected_uses);
 782       }
 783     }
 784     if (failing())  return;
 785     if (cg == nullptr) {
 786       const char* reason = InlineTree::check_can_parse(method());
 787       assert(reason != nullptr, "expect reason for parse failure");
 788       stringStream ss;
 789       ss.print("cannot parse method: %s", reason);
 790       record_method_not_compilable(ss.as_string());
 791       return;
 792     }
 793 
 794     gvn.set_type(root(), root()->bottom_type());
 795 
 796     JVMState* jvms = build_start_state(start(), tf());
 797     if ((jvms = cg->generate(jvms)) == nullptr) {
 798       assert(failure_reason() != nullptr, "expect reason for parse failure");
 799       stringStream ss;
 800       ss.print("method parse failed: %s", failure_reason());
 801       record_method_not_compilable(ss.as_string() DEBUG_ONLY(COMMA true));
 802       return;
 803     }
 804     GraphKit kit(jvms);
 805 
 806     if (!kit.stopped()) {
 807       // Accept return values, and transfer control we know not where.
 808       // This is done by a special, unique ReturnNode bound to root.
 809       return_values(kit.jvms());
 810     }
 811 
 812     if (kit.has_exceptions()) {
 813       // Any exceptions that escape from this call must be rethrown
 814       // to whatever caller is dynamically above us on the stack.
 815       // This is done by a special, unique RethrowNode bound to root.
 816       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
 817     }
 818 
 819     assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
 820 
 821     if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
 822       inline_string_calls(true);
 823     }
 824 
 825     if (failing())  return;
 826 
 827     // Remove clutter produced by parsing.
 828     if (!failing()) {
 829       ResourceMark rm;
 830       PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist());
 831     }
 832   }
 833 
 834   // Note:  Large methods are capped off in do_one_bytecode().
 835   if (failing())  return;
 836 
 837   // After parsing, node notes are no longer automagic.
 838   // They must be propagated by register_new_node_with_optimizer(),
 839   // clone(), or the like.
 840   set_default_node_notes(nullptr);
 841 
 842 #ifndef PRODUCT
 843   if (should_print_igv(1)) {
 844     _igv_printer->print_inlining();
 845   }
 846 #endif
 847 
 848   if (failing())  return;
 849   NOT_PRODUCT( verify_graph_edges(); )
 850 
 851   // Now optimize
 852   Optimize();
 853   if (failing())  return;
 854   NOT_PRODUCT( verify_graph_edges(); )
 855 
 856 #ifndef PRODUCT
 857   if (should_print_ideal()) {
 858     print_ideal_ir("print_ideal");
 859   }
 860 #endif
 861 
 862 #ifdef ASSERT
 863   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 864   bs->verify_gc_barriers(this, BarrierSetC2::BeforeCodeGen);
 865 #endif
 866 
 867   // Dump compilation data to replay it.
 868   if (directive->DumpReplayOption) {
 869     env()->dump_replay_data(_compile_id);
 870   }
 871   if (directive->DumpInlineOption && (ilt() != nullptr)) {
 872     env()->dump_inline_data(_compile_id);
 873   }
 874 
 875   // Now that we know the size of all the monitors we can add a fixed slot
 876   // for the original deopt pc.
 877   int next_slot = fixed_slots() + (sizeof(address) / VMRegImpl::stack_slot_size);
 878   set_fixed_slots(next_slot);
 879 
 880   // Compute when to use implicit null checks. Used by matching trap based
 881   // nodes and NullCheck optimization.
 882   set_allowed_deopt_reasons();
 883 
 884   // Now generate code
 885   Code_Gen();
 886 }
 887 
 888 //------------------------------Compile----------------------------------------
 889 // Compile a runtime stub
 890 Compile::Compile( ciEnv* ci_env,
 891                   TypeFunc_generator generator,
 892                   address stub_function,
 893                   const char *stub_name,
 894                   int is_fancy_jump,
 895                   bool pass_tls,
 896                   bool return_pc,
 897                   DirectiveSet* directive)
 898   : Phase(Compiler),
 899     _compile_id(0),
 900     _options(Options::for_runtime_stub()),
 901     _method(nullptr),
 902     _entry_bci(InvocationEntryBci),
 903     _stub_function(stub_function),
 904     _stub_name(stub_name),
 905     _stub_entry_point(nullptr),
 906     _max_node_limit(MaxNodeLimit),
 907     _post_loop_opts_phase(false),
 908     _allow_macro_nodes(true),
 909     _inlining_progress(false),
 910     _inlining_incrementally(false),
 911     _has_reserved_stack_access(false),
 912 #ifndef PRODUCT
 913     _igv_idx(0),
 914     _trace_opto_output(directive->TraceOptoOutputOption),
 915 #endif
 916     _has_method_handle_invokes(false),
 917     _clinit_barrier_on_entry(false),
 918     _stress_seed(0),
 919     _comp_arena(mtCompiler),
 920     _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())),
 921     _env(ci_env),
 922     _directive(directive),
 923     _log(ci_env->log()),
 924     _first_failure_details(nullptr),
 925     _for_post_loop_igvn(comp_arena(), 8, 0, nullptr),
 926     _congraph(nullptr),
 927     NOT_PRODUCT(_igv_printer(nullptr) COMMA)
 928     _unique(0),
 929     _dead_node_count(0),
 930     _dead_node_list(comp_arena()),
 931     _node_arena_one(mtCompiler),
 932     _node_arena_two(mtCompiler),
 933     _node_arena(&_node_arena_one),
 934     _mach_constant_base_node(nullptr),
 935     _Compile_types(mtCompiler),
 936     _initial_gvn(nullptr),
 937     _igvn_worklist(nullptr),
 938     _types(nullptr),
 939     _node_hash(nullptr),
 940     _number_of_mh_late_inlines(0),
 941     _oom(false),
 942     _print_inlining_stream(new (mtCompiler) stringStream()),
 943     _print_inlining_list(nullptr),
 944     _print_inlining_idx(0),
 945     _print_inlining_output(nullptr),
 946     _replay_inline_data(nullptr),
 947     _java_calls(0),
 948     _inner_loops(0),
 949     _interpreter_frame_size(0),
 950     _output(nullptr),
 951 #ifndef PRODUCT
 952     _in_dump_cnt(0),
 953 #endif
 954     _allowed_reasons(0) {
 955   C = this;
 956 
 957   TraceTime t1(nullptr, &_t_totalCompilation, CITime, false);
 958   TraceTime t2(nullptr, &_t_stubCompilation, CITime, false);
 959 
 960 #ifndef PRODUCT
 961   set_print_assembly(PrintFrameConverterAssembly);
 962   set_parsed_irreducible_loop(false);
 963 #else
 964   set_print_assembly(false); // Must initialize.
 965 #endif
 966   set_has_irreducible_loop(false); // no loops
 967 
 968   CompileWrapper cw(this);
 969   Init(/*do_aliasing=*/ false);
 970   init_tf((*generator)());
 971 
 972   _igvn_worklist = new (comp_arena()) Unique_Node_List(comp_arena());
 973   _types = new (comp_arena()) Type_Array(comp_arena());
 974   _node_hash = new (comp_arena()) NodeHash(comp_arena(), 255);
 975 
 976   if (StressLCM || StressGCM || StressBailout) {
 977     initialize_stress_seed(directive);
 978   }
 979 
 980   {
 981     PhaseGVN gvn;
 982     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
 983     gvn.transform(top());
 984 
 985     GraphKit kit;
 986     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
 987   }
 988 
 989   NOT_PRODUCT( verify_graph_edges(); )
 990 
 991   Code_Gen();
 992 }
 993 
 994 Compile::~Compile() {
 995   delete _print_inlining_stream;
 996   delete _first_failure_details;
 997 };
 998 
 999 //------------------------------Init-------------------------------------------
1000 // Prepare for a single compilation
1001 void Compile::Init(bool aliasing) {
1002   _do_aliasing = aliasing;
1003   _unique  = 0;
1004   _regalloc = nullptr;
1005 
1006   _tf      = nullptr;  // filled in later
1007   _top     = nullptr;  // cached later
1008   _matcher = nullptr;  // filled in later
1009   _cfg     = nullptr;  // filled in later
1010 
1011   IA32_ONLY( set_24_bit_selection_and_mode(true, false); )
1012 
1013   _node_note_array = nullptr;
1014   _default_node_notes = nullptr;
1015   DEBUG_ONLY( _modified_nodes = nullptr; ) // Used in Optimize()
1016 
1017   _immutable_memory = nullptr; // filled in at first inquiry
1018 
1019 #ifdef ASSERT
1020   _phase_optimize_finished = false;
1021   _phase_verify_ideal_loop = false;
1022   _exception_backedge = false;
1023   _type_verify = nullptr;
1024 #endif
1025 
1026   // Globally visible Nodes
1027   // First set TOP to null to give safe behavior during creation of RootNode
1028   set_cached_top_node(nullptr);
1029   set_root(new RootNode());
1030   // Now that you have a Root to point to, create the real TOP
1031   set_cached_top_node( new ConNode(Type::TOP) );
1032   set_recent_alloc(nullptr, nullptr);
1033 
1034   // Create Debug Information Recorder to record scopes, oopmaps, etc.
1035   env()->set_oop_recorder(new OopRecorder(env()->arena()));
1036   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
1037   env()->set_dependencies(new Dependencies(env()));
1038 
1039   _fixed_slots = 0;
1040   set_has_split_ifs(false);
1041   set_has_loops(false); // first approximation
1042   set_has_stringbuilder(false);
1043   set_has_boxed_value(false);
1044   _trap_can_recompile = false;  // no traps emitted yet
1045   _major_progress = true; // start out assuming good things will happen
1046   set_has_unsafe_access(false);
1047   set_max_vector_size(0);
1048   set_clear_upper_avx(false);  //false as default for clear upper bits of ymm registers
1049   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
1050   set_decompile_count(0);
1051 
1052 #ifndef PRODUCT
1053   Copy::zero_to_bytes(_igv_phase_iter, sizeof(_igv_phase_iter));
1054 #endif
1055 
1056   set_do_freq_based_layout(_directive->BlockLayoutByFrequencyOption);
1057   _loop_opts_cnt = LoopOptsCount;
1058   set_do_inlining(Inline);
1059   set_max_inline_size(MaxInlineSize);
1060   set_freq_inline_size(FreqInlineSize);
1061   set_do_scheduling(OptoScheduling);
1062 
1063   set_do_vector_loop(false);
1064   set_has_monitors(false);
1065   set_has_scoped_access(false);
1066 
1067   if (AllowVectorizeOnDemand) {
1068     if (has_method() && _directive->VectorizeOption) {
1069       set_do_vector_loop(true);
1070       NOT_PRODUCT(if (do_vector_loop() && Verbose) {tty->print("Compile::Init: do vectorized loops (SIMD like) for method %s\n",  method()->name()->as_quoted_ascii());})
1071     } else if (has_method() && method()->name() != nullptr &&
1072                method()->intrinsic_id() == vmIntrinsics::_forEachRemaining) {
1073       set_do_vector_loop(true);
1074     }
1075   }
1076   set_use_cmove(UseCMoveUnconditionally /* || do_vector_loop()*/); //TODO: consider do_vector_loop() mandate use_cmove unconditionally
1077   NOT_PRODUCT(if (use_cmove() && Verbose && has_method()) {tty->print("Compile::Init: use CMove without profitability tests for method %s\n",  method()->name()->as_quoted_ascii());})
1078 
1079   _max_node_limit = _directive->MaxNodeLimitOption;
1080 
1081   if (VM_Version::supports_fast_class_init_checks() && has_method() && !is_osr_compilation() && method()->needs_clinit_barrier()) {
1082     set_clinit_barrier_on_entry(true);
1083   }
1084   if (debug_info()->recording_non_safepoints()) {
1085     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
1086                         (comp_arena(), 8, 0, nullptr));
1087     set_default_node_notes(Node_Notes::make(this));
1088   }
1089 
1090   const int grow_ats = 16;
1091   _max_alias_types = grow_ats;
1092   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
1093   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
1094   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
1095   {
1096     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
1097   }
1098   // Initialize the first few types.
1099   _alias_types[AliasIdxTop]->Init(AliasIdxTop, nullptr);
1100   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
1101   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
1102   _num_alias_types = AliasIdxRaw+1;
1103   // Zero out the alias type cache.
1104   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
1105   // A null adr_type hits in the cache right away.  Preload the right answer.
1106   probe_alias_cache(nullptr)->_index = AliasIdxTop;
1107 }
1108 
1109 #ifdef ASSERT
1110 // Verify that the current StartNode is valid.
1111 void Compile::verify_start(StartNode* s) const {
1112   assert(failing_internal() || s == start(), "should be StartNode");
1113 }
1114 #endif
1115 
1116 /**
1117  * Return the 'StartNode'. We must not have a pending failure, since the ideal graph
1118  * can be in an inconsistent state, i.e., we can get segmentation faults when traversing
1119  * the ideal graph.
1120  */
1121 StartNode* Compile::start() const {
1122   assert (!failing_internal() || C->failure_is_artificial(), "Must not have pending failure. Reason is: %s", failure_reason());
1123   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
1124     Node* start = root()->fast_out(i);
1125     if (start->is_Start()) {
1126       return start->as_Start();
1127     }
1128   }
1129   fatal("Did not find Start node!");
1130   return nullptr;
1131 }
1132 
1133 //-------------------------------immutable_memory-------------------------------------
1134 // Access immutable memory
1135 Node* Compile::immutable_memory() {
1136   if (_immutable_memory != nullptr) {
1137     return _immutable_memory;
1138   }
1139   StartNode* s = start();
1140   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
1141     Node *p = s->fast_out(i);
1142     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
1143       _immutable_memory = p;
1144       return _immutable_memory;
1145     }
1146   }
1147   ShouldNotReachHere();
1148   return nullptr;
1149 }
1150 
1151 //----------------------set_cached_top_node------------------------------------
1152 // Install the cached top node, and make sure Node::is_top works correctly.
1153 void Compile::set_cached_top_node(Node* tn) {
1154   if (tn != nullptr)  verify_top(tn);
1155   Node* old_top = _top;
1156   _top = tn;
1157   // Calling Node::setup_is_top allows the nodes the chance to adjust
1158   // their _out arrays.
1159   if (_top != nullptr)     _top->setup_is_top();
1160   if (old_top != nullptr)  old_top->setup_is_top();
1161   assert(_top == nullptr || top()->is_top(), "");
1162 }
1163 
1164 #ifdef ASSERT
1165 uint Compile::count_live_nodes_by_graph_walk() {
1166   Unique_Node_List useful(comp_arena());
1167   // Get useful node list by walking the graph.
1168   identify_useful_nodes(useful);
1169   return useful.size();
1170 }
1171 
1172 void Compile::print_missing_nodes() {
1173 
1174   // Return if CompileLog is null and PrintIdealNodeCount is false.
1175   if ((_log == nullptr) && (! PrintIdealNodeCount)) {
1176     return;
1177   }
1178 
1179   // This is an expensive function. It is executed only when the user
1180   // specifies VerifyIdealNodeCount option or otherwise knows the
1181   // additional work that needs to be done to identify reachable nodes
1182   // by walking the flow graph and find the missing ones using
1183   // _dead_node_list.
1184 
1185   Unique_Node_List useful(comp_arena());
1186   // Get useful node list by walking the graph.
1187   identify_useful_nodes(useful);
1188 
1189   uint l_nodes = C->live_nodes();
1190   uint l_nodes_by_walk = useful.size();
1191 
1192   if (l_nodes != l_nodes_by_walk) {
1193     if (_log != nullptr) {
1194       _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
1195       _log->stamp();
1196       _log->end_head();
1197     }
1198     VectorSet& useful_member_set = useful.member_set();
1199     int last_idx = l_nodes_by_walk;
1200     for (int i = 0; i < last_idx; i++) {
1201       if (useful_member_set.test(i)) {
1202         if (_dead_node_list.test(i)) {
1203           if (_log != nullptr) {
1204             _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
1205           }
1206           if (PrintIdealNodeCount) {
1207             // Print the log message to tty
1208               tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
1209               useful.at(i)->dump();
1210           }
1211         }
1212       }
1213       else if (! _dead_node_list.test(i)) {
1214         if (_log != nullptr) {
1215           _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
1216         }
1217         if (PrintIdealNodeCount) {
1218           // Print the log message to tty
1219           tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
1220         }
1221       }
1222     }
1223     if (_log != nullptr) {
1224       _log->tail("mismatched_nodes");
1225     }
1226   }
1227 }
1228 void Compile::record_modified_node(Node* n) {
1229   if (_modified_nodes != nullptr && !_inlining_incrementally && !n->is_Con()) {
1230     _modified_nodes->push(n);
1231   }
1232 }
1233 
1234 void Compile::remove_modified_node(Node* n) {
1235   if (_modified_nodes != nullptr) {
1236     _modified_nodes->remove(n);
1237   }
1238 }
1239 #endif
1240 
1241 #ifndef PRODUCT
1242 void Compile::verify_top(Node* tn) const {
1243   if (tn != nullptr) {
1244     assert(tn->is_Con(), "top node must be a constant");
1245     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
1246     assert(tn->in(0) != nullptr, "must have live top node");
1247   }
1248 }
1249 #endif
1250 
1251 
1252 ///-------------------Managing Per-Node Debug & Profile Info-------------------
1253 
1254 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1255   guarantee(arr != nullptr, "");
1256   int num_blocks = arr->length();
1257   if (grow_by < num_blocks)  grow_by = num_blocks;
1258   int num_notes = grow_by * _node_notes_block_size;
1259   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1260   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1261   while (num_notes > 0) {
1262     arr->append(notes);
1263     notes     += _node_notes_block_size;
1264     num_notes -= _node_notes_block_size;
1265   }
1266   assert(num_notes == 0, "exact multiple, please");
1267 }
1268 
1269 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1270   if (source == nullptr || dest == nullptr)  return false;
1271 
1272   if (dest->is_Con())
1273     return false;               // Do not push debug info onto constants.
1274 
1275 #ifdef ASSERT
1276   // Leave a bread crumb trail pointing to the original node:
1277   if (dest != nullptr && dest != source && dest->debug_orig() == nullptr) {
1278     dest->set_debug_orig(source);
1279   }
1280 #endif
1281 
1282   if (node_note_array() == nullptr)
1283     return false;               // Not collecting any notes now.
1284 
1285   // This is a copy onto a pre-existing node, which may already have notes.
1286   // If both nodes have notes, do not overwrite any pre-existing notes.
1287   Node_Notes* source_notes = node_notes_at(source->_idx);
1288   if (source_notes == nullptr || source_notes->is_clear())  return false;
1289   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
1290   if (dest_notes == nullptr || dest_notes->is_clear()) {
1291     return set_node_notes_at(dest->_idx, source_notes);
1292   }
1293 
1294   Node_Notes merged_notes = (*source_notes);
1295   // The order of operations here ensures that dest notes will win...
1296   merged_notes.update_from(dest_notes);
1297   return set_node_notes_at(dest->_idx, &merged_notes);
1298 }
1299 
1300 
1301 //--------------------------allow_range_check_smearing-------------------------
1302 // Gating condition for coalescing similar range checks.
1303 // Sometimes we try 'speculatively' replacing a series of a range checks by a
1304 // single covering check that is at least as strong as any of them.
1305 // If the optimization succeeds, the simplified (strengthened) range check
1306 // will always succeed.  If it fails, we will deopt, and then give up
1307 // on the optimization.
1308 bool Compile::allow_range_check_smearing() const {
1309   // If this method has already thrown a range-check,
1310   // assume it was because we already tried range smearing
1311   // and it failed.
1312   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1313   return !already_trapped;
1314 }
1315 
1316 
1317 //------------------------------flatten_alias_type-----------------------------
1318 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1319   assert(do_aliasing(), "Aliasing should be enabled");
1320   int offset = tj->offset();
1321   TypePtr::PTR ptr = tj->ptr();
1322 
1323   // Known instance (scalarizable allocation) alias only with itself.
1324   bool is_known_inst = tj->isa_oopptr() != nullptr &&
1325                        tj->is_oopptr()->is_known_instance();
1326 
1327   // Process weird unsafe references.
1328   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1329     assert(InlineUnsafeOps || StressReflectiveCode, "indeterminate pointers come only from unsafe ops");
1330     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1331     tj = TypeOopPtr::BOTTOM;
1332     ptr = tj->ptr();
1333     offset = tj->offset();
1334   }
1335 
1336   // Array pointers need some flattening
1337   const TypeAryPtr* ta = tj->isa_aryptr();
1338   if (ta && ta->is_stable()) {
1339     // Erase stability property for alias analysis.
1340     tj = ta = ta->cast_to_stable(false);
1341   }
1342   if( ta && is_known_inst ) {
1343     if ( offset != Type::OffsetBot &&
1344          offset > arrayOopDesc::length_offset_in_bytes() ) {
1345       offset = Type::OffsetBot; // Flatten constant access into array body only
1346       tj = ta = ta->
1347               remove_speculative()->
1348               cast_to_ptr_type(ptr)->
1349               with_offset(offset);
1350     }
1351   } else if (ta) {
1352     // For arrays indexed by constant indices, we flatten the alias
1353     // space to include all of the array body.  Only the header, klass
1354     // and array length can be accessed un-aliased.
1355     if( offset != Type::OffsetBot ) {
1356       if( ta->const_oop() ) { // MethodData* or Method*
1357         offset = Type::OffsetBot;   // Flatten constant access into array body
1358         tj = ta = ta->
1359                 remove_speculative()->
1360                 cast_to_ptr_type(ptr)->
1361                 cast_to_exactness(false)->
1362                 with_offset(offset);
1363       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1364         // range is OK as-is.
1365         tj = ta = TypeAryPtr::RANGE;
1366       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1367         tj = TypeInstPtr::KLASS; // all klass loads look alike
1368         ta = TypeAryPtr::RANGE; // generic ignored junk
1369         ptr = TypePtr::BotPTR;
1370       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1371         tj = TypeInstPtr::MARK;
1372         ta = TypeAryPtr::RANGE; // generic ignored junk
1373         ptr = TypePtr::BotPTR;
1374       } else {                  // Random constant offset into array body
1375         offset = Type::OffsetBot;   // Flatten constant access into array body
1376         tj = ta = ta->
1377                 remove_speculative()->
1378                 cast_to_ptr_type(ptr)->
1379                 cast_to_exactness(false)->
1380                 with_offset(offset);
1381       }
1382     }
1383     // Arrays of fixed size alias with arrays of unknown size.
1384     if (ta->size() != TypeInt::POS) {
1385       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1386       tj = ta = ta->
1387               remove_speculative()->
1388               cast_to_ptr_type(ptr)->
1389               with_ary(tary)->
1390               cast_to_exactness(false);
1391     }
1392     // Arrays of known objects become arrays of unknown objects.
1393     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1394       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1395       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,nullptr,false,offset);
1396     }
1397     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1398       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1399       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,nullptr,false,offset);
1400     }
1401     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1402     // cannot be distinguished by bytecode alone.
1403     if (ta->elem() == TypeInt::BOOL) {
1404       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1405       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1406       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
1407     }
1408     // During the 2nd round of IterGVN, NotNull castings are removed.
1409     // Make sure the Bottom and NotNull variants alias the same.
1410     // Also, make sure exact and non-exact variants alias the same.
1411     if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != nullptr) {
1412       tj = ta = ta->
1413               remove_speculative()->
1414               cast_to_ptr_type(TypePtr::BotPTR)->
1415               cast_to_exactness(false)->
1416               with_offset(offset);
1417     }
1418   }
1419 
1420   // Oop pointers need some flattening
1421   const TypeInstPtr *to = tj->isa_instptr();
1422   if (to && to != TypeOopPtr::BOTTOM) {
1423     ciInstanceKlass* ik = to->instance_klass();
1424     if( ptr == TypePtr::Constant ) {
1425       if (ik != ciEnv::current()->Class_klass() ||
1426           offset < ik->layout_helper_size_in_bytes()) {
1427         // No constant oop pointers (such as Strings); they alias with
1428         // unknown strings.
1429         assert(!is_known_inst, "not scalarizable allocation");
1430         tj = to = to->
1431                 cast_to_instance_id(TypeOopPtr::InstanceBot)->
1432                 remove_speculative()->
1433                 cast_to_ptr_type(TypePtr::BotPTR)->
1434                 cast_to_exactness(false);
1435       }
1436     } else if( is_known_inst ) {
1437       tj = to; // Keep NotNull and klass_is_exact for instance type
1438     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1439       // During the 2nd round of IterGVN, NotNull castings are removed.
1440       // Make sure the Bottom and NotNull variants alias the same.
1441       // Also, make sure exact and non-exact variants alias the same.
1442       tj = to = to->
1443               remove_speculative()->
1444               cast_to_instance_id(TypeOopPtr::InstanceBot)->
1445               cast_to_ptr_type(TypePtr::BotPTR)->
1446               cast_to_exactness(false);
1447     }
1448     if (to->speculative() != nullptr) {
1449       tj = to = to->remove_speculative();
1450     }
1451     // Canonicalize the holder of this field
1452     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1453       // First handle header references such as a LoadKlassNode, even if the
1454       // object's klass is unloaded at compile time (4965979).
1455       if (!is_known_inst) { // Do it only for non-instance types
1456         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, nullptr, offset);
1457       }
1458     } else if (offset < 0 || offset >= ik->layout_helper_size_in_bytes()) {
1459       // Static fields are in the space above the normal instance
1460       // fields in the java.lang.Class instance.
1461       if (ik != ciEnv::current()->Class_klass()) {
1462         to = nullptr;
1463         tj = TypeOopPtr::BOTTOM;
1464         offset = tj->offset();
1465       }
1466     } else {
1467       ciInstanceKlass *canonical_holder = ik->get_canonical_holder(offset);
1468       assert(offset < canonical_holder->layout_helper_size_in_bytes(), "");
1469       assert(tj->offset() == offset, "no change to offset expected");
1470       bool xk = to->klass_is_exact();
1471       int instance_id = to->instance_id();
1472 
1473       // If the input type's class is the holder: if exact, the type only includes interfaces implemented by the holder
1474       // but if not exact, it may include extra interfaces: build new type from the holder class to make sure only
1475       // its interfaces are included.
1476       if (xk && ik->equals(canonical_holder)) {
1477         assert(tj == TypeInstPtr::make(to->ptr(), canonical_holder, is_known_inst, nullptr, offset, instance_id), "exact type should be canonical type");
1478       } else {
1479         assert(xk || !is_known_inst, "Known instance should be exact type");
1480         tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, is_known_inst, nullptr, offset, instance_id);
1481       }
1482     }
1483   }
1484 
1485   // Klass pointers to object array klasses need some flattening
1486   const TypeKlassPtr *tk = tj->isa_klassptr();
1487   if( tk ) {
1488     // If we are referencing a field within a Klass, we need
1489     // to assume the worst case of an Object.  Both exact and
1490     // inexact types must flatten to the same alias class so
1491     // use NotNull as the PTR.
1492     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1493       tj = tk = TypeInstKlassPtr::make(TypePtr::NotNull,
1494                                        env()->Object_klass(),
1495                                        offset);
1496     }
1497 
1498     if (tk->isa_aryklassptr() && tk->is_aryklassptr()->elem()->isa_klassptr()) {
1499       ciKlass* k = ciObjArrayKlass::make(env()->Object_klass());
1500       if (!k || !k->is_loaded()) {                  // Only fails for some -Xcomp runs
1501         tj = tk = TypeInstKlassPtr::make(TypePtr::NotNull, env()->Object_klass(), offset);
1502       } else {
1503         tj = tk = TypeAryKlassPtr::make(TypePtr::NotNull, tk->is_aryklassptr()->elem(), k, offset);
1504       }
1505     }
1506 
1507     // Check for precise loads from the primary supertype array and force them
1508     // to the supertype cache alias index.  Check for generic array loads from
1509     // the primary supertype array and also force them to the supertype cache
1510     // alias index.  Since the same load can reach both, we need to merge
1511     // these 2 disparate memories into the same alias class.  Since the
1512     // primary supertype array is read-only, there's no chance of confusion
1513     // where we bypass an array load and an array store.
1514     int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
1515     if (offset == Type::OffsetBot ||
1516         (offset >= primary_supers_offset &&
1517          offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
1518         offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
1519       offset = in_bytes(Klass::secondary_super_cache_offset());
1520       tj = tk = tk->with_offset(offset);
1521     }
1522   }
1523 
1524   // Flatten all Raw pointers together.
1525   if (tj->base() == Type::RawPtr)
1526     tj = TypeRawPtr::BOTTOM;
1527 
1528   if (tj->base() == Type::AnyPtr)
1529     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1530 
1531   offset = tj->offset();
1532   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1533 
1534   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1535           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1536           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1537           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1538           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1539           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1540           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr),
1541           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1542   assert( tj->ptr() != TypePtr::TopPTR &&
1543           tj->ptr() != TypePtr::AnyNull &&
1544           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1545 //    assert( tj->ptr() != TypePtr::Constant ||
1546 //            tj->base() == Type::RawPtr ||
1547 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1548 
1549   return tj;
1550 }
1551 
1552 void Compile::AliasType::Init(int i, const TypePtr* at) {
1553   assert(AliasIdxTop <= i && i < Compile::current()->_max_alias_types, "Invalid alias index");
1554   _index = i;
1555   _adr_type = at;
1556   _field = nullptr;
1557   _element = nullptr;
1558   _is_rewritable = true; // default
1559   const TypeOopPtr *atoop = (at != nullptr) ? at->isa_oopptr() : nullptr;
1560   if (atoop != nullptr && atoop->is_known_instance()) {
1561     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1562     _general_index = Compile::current()->get_alias_index(gt);
1563   } else {
1564     _general_index = 0;
1565   }
1566 }
1567 
1568 BasicType Compile::AliasType::basic_type() const {
1569   if (element() != nullptr) {
1570     const Type* element = adr_type()->is_aryptr()->elem();
1571     return element->isa_narrowoop() ? T_OBJECT : element->array_element_basic_type();
1572   } if (field() != nullptr) {
1573     return field()->layout_type();
1574   } else {
1575     return T_ILLEGAL; // unknown
1576   }
1577 }
1578 
1579 //---------------------------------print_on------------------------------------
1580 #ifndef PRODUCT
1581 void Compile::AliasType::print_on(outputStream* st) {
1582   if (index() < 10)
1583         st->print("@ <%d> ", index());
1584   else  st->print("@ <%d>",  index());
1585   st->print(is_rewritable() ? "   " : " RO");
1586   int offset = adr_type()->offset();
1587   if (offset == Type::OffsetBot)
1588         st->print(" +any");
1589   else  st->print(" +%-3d", offset);
1590   st->print(" in ");
1591   adr_type()->dump_on(st);
1592   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1593   if (field() != nullptr && tjp) {
1594     if (tjp->is_instptr()->instance_klass()  != field()->holder() ||
1595         tjp->offset() != field()->offset_in_bytes()) {
1596       st->print(" != ");
1597       field()->print();
1598       st->print(" ***");
1599     }
1600   }
1601 }
1602 
1603 void print_alias_types() {
1604   Compile* C = Compile::current();
1605   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1606   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1607     C->alias_type(idx)->print_on(tty);
1608     tty->cr();
1609   }
1610 }
1611 #endif
1612 
1613 
1614 //----------------------------probe_alias_cache--------------------------------
1615 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1616   intptr_t key = (intptr_t) adr_type;
1617   key ^= key >> logAliasCacheSize;
1618   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1619 }
1620 
1621 
1622 //-----------------------------grow_alias_types--------------------------------
1623 void Compile::grow_alias_types() {
1624   const int old_ats  = _max_alias_types; // how many before?
1625   const int new_ats  = old_ats;          // how many more?
1626   const int grow_ats = old_ats+new_ats;  // how many now?
1627   _max_alias_types = grow_ats;
1628   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1629   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1630   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1631   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1632 }
1633 
1634 
1635 //--------------------------------find_alias_type------------------------------
1636 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
1637   if (!do_aliasing()) {
1638     return alias_type(AliasIdxBot);
1639   }
1640 
1641   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1642   if (ace->_adr_type == adr_type) {
1643     return alias_type(ace->_index);
1644   }
1645 
1646   // Handle special cases.
1647   if (adr_type == nullptr)          return alias_type(AliasIdxTop);
1648   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1649 
1650   // Do it the slow way.
1651   const TypePtr* flat = flatten_alias_type(adr_type);
1652 
1653 #ifdef ASSERT
1654   {
1655     ResourceMark rm;
1656     assert(flat == flatten_alias_type(flat), "not idempotent: adr_type = %s; flat = %s => %s",
1657            Type::str(adr_type), Type::str(flat), Type::str(flatten_alias_type(flat)));
1658     assert(flat != TypePtr::BOTTOM, "cannot alias-analyze an untyped ptr: adr_type = %s",
1659            Type::str(adr_type));
1660     if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1661       const TypeOopPtr* foop = flat->is_oopptr();
1662       // Scalarizable allocations have exact klass always.
1663       bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1664       const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1665       assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type: foop = %s; xoop = %s",
1666              Type::str(foop), Type::str(xoop));
1667     }
1668   }
1669 #endif
1670 
1671   int idx = AliasIdxTop;
1672   for (int i = 0; i < num_alias_types(); i++) {
1673     if (alias_type(i)->adr_type() == flat) {
1674       idx = i;
1675       break;
1676     }
1677   }
1678 
1679   if (idx == AliasIdxTop) {
1680     if (no_create)  return nullptr;
1681     // Grow the array if necessary.
1682     if (_num_alias_types == _max_alias_types)  grow_alias_types();
1683     // Add a new alias type.
1684     idx = _num_alias_types++;
1685     _alias_types[idx]->Init(idx, flat);
1686     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1687     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1688     if (flat->isa_instptr()) {
1689       if (flat->offset() == java_lang_Class::klass_offset()
1690           && flat->is_instptr()->instance_klass() == env()->Class_klass())
1691         alias_type(idx)->set_rewritable(false);
1692     }
1693     if (flat->isa_aryptr()) {
1694 #ifdef ASSERT
1695       const int header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1696       // (T_BYTE has the weakest alignment and size restrictions...)
1697       assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
1698 #endif
1699       if (flat->offset() == TypePtr::OffsetBot) {
1700         alias_type(idx)->set_element(flat->is_aryptr()->elem());
1701       }
1702     }
1703     if (flat->isa_klassptr()) {
1704       if (UseCompactObjectHeaders) {
1705         if (flat->offset() == in_bytes(Klass::prototype_header_offset()))
1706           alias_type(idx)->set_rewritable(false);
1707       }
1708       if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
1709         alias_type(idx)->set_rewritable(false);
1710       if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
1711         alias_type(idx)->set_rewritable(false);
1712       if (flat->offset() == in_bytes(Klass::access_flags_offset()))
1713         alias_type(idx)->set_rewritable(false);
1714       if (flat->offset() == in_bytes(Klass::misc_flags_offset()))
1715         alias_type(idx)->set_rewritable(false);
1716       if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
1717         alias_type(idx)->set_rewritable(false);
1718       if (flat->offset() == in_bytes(Klass::secondary_super_cache_offset()))
1719         alias_type(idx)->set_rewritable(false);
1720     }
1721     // %%% (We would like to finalize JavaThread::threadObj_offset(),
1722     // but the base pointer type is not distinctive enough to identify
1723     // references into JavaThread.)
1724 
1725     // Check for final fields.
1726     const TypeInstPtr* tinst = flat->isa_instptr();
1727     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1728       ciField* field;
1729       if (tinst->const_oop() != nullptr &&
1730           tinst->instance_klass() == ciEnv::current()->Class_klass() &&
1731           tinst->offset() >= (tinst->instance_klass()->layout_helper_size_in_bytes())) {
1732         // static field
1733         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1734         field = k->get_field_by_offset(tinst->offset(), true);
1735       } else {
1736         ciInstanceKlass *k = tinst->instance_klass();
1737         field = k->get_field_by_offset(tinst->offset(), false);
1738       }
1739       assert(field == nullptr ||
1740              original_field == nullptr ||
1741              (field->holder() == original_field->holder() &&
1742               field->offset_in_bytes() == original_field->offset_in_bytes() &&
1743               field->is_static() == original_field->is_static()), "wrong field?");
1744       // Set field() and is_rewritable() attributes.
1745       if (field != nullptr)  alias_type(idx)->set_field(field);
1746     }
1747   }
1748 
1749   // Fill the cache for next time.
1750   ace->_adr_type = adr_type;
1751   ace->_index    = idx;
1752   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1753 
1754   // Might as well try to fill the cache for the flattened version, too.
1755   AliasCacheEntry* face = probe_alias_cache(flat);
1756   if (face->_adr_type == nullptr) {
1757     face->_adr_type = flat;
1758     face->_index    = idx;
1759     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1760   }
1761 
1762   return alias_type(idx);
1763 }
1764 
1765 
1766 Compile::AliasType* Compile::alias_type(ciField* field) {
1767   const TypeOopPtr* t;
1768   if (field->is_static())
1769     t = TypeInstPtr::make(field->holder()->java_mirror());
1770   else
1771     t = TypeOopPtr::make_from_klass_raw(field->holder());
1772   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1773   assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
1774   return atp;
1775 }
1776 
1777 
1778 //------------------------------have_alias_type--------------------------------
1779 bool Compile::have_alias_type(const TypePtr* adr_type) {
1780   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1781   if (ace->_adr_type == adr_type) {
1782     return true;
1783   }
1784 
1785   // Handle special cases.
1786   if (adr_type == nullptr)             return true;
1787   if (adr_type == TypePtr::BOTTOM)  return true;
1788 
1789   return find_alias_type(adr_type, true, nullptr) != nullptr;
1790 }
1791 
1792 //-----------------------------must_alias--------------------------------------
1793 // True if all values of the given address type are in the given alias category.
1794 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1795   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1796   if (adr_type == nullptr)              return true;  // null serves as TypePtr::TOP
1797   if (alias_idx == AliasIdxTop)         return false; // the empty category
1798   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1799 
1800   // the only remaining possible overlap is identity
1801   int adr_idx = get_alias_index(adr_type);
1802   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1803   assert(adr_idx == alias_idx ||
1804          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1805           && adr_type                       != TypeOopPtr::BOTTOM),
1806          "should not be testing for overlap with an unsafe pointer");
1807   return adr_idx == alias_idx;
1808 }
1809 
1810 //------------------------------can_alias--------------------------------------
1811 // True if any values of the given address type are in the given alias category.
1812 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1813   if (alias_idx == AliasIdxTop)         return false; // the empty category
1814   if (adr_type == nullptr)              return false; // null serves as TypePtr::TOP
1815   // Known instance doesn't alias with bottom memory
1816   if (alias_idx == AliasIdxBot)         return !adr_type->is_known_instance();                   // the universal category
1817   if (adr_type->base() == Type::AnyPtr) return !C->get_adr_type(alias_idx)->is_known_instance(); // TypePtr::BOTTOM or its twins
1818 
1819   // the only remaining possible overlap is identity
1820   int adr_idx = get_alias_index(adr_type);
1821   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1822   return adr_idx == alias_idx;
1823 }
1824 
1825 // Mark all ParsePredicateNodes as useless. They will later be removed from the graph in IGVN together with their
1826 // uncommon traps if no Runtime Predicates were created from the Parse Predicates.
1827 void Compile::mark_parse_predicate_nodes_useless(PhaseIterGVN& igvn) {
1828   if (parse_predicate_count() == 0) {
1829     return;
1830   }
1831   for (int i = 0; i < parse_predicate_count(); i++) {
1832     ParsePredicateNode* parse_predicate = _parse_predicates.at(i);
1833     parse_predicate->mark_useless();
1834     igvn._worklist.push(parse_predicate);
1835   }
1836   _parse_predicates.clear();
1837 }
1838 
1839 void Compile::record_for_post_loop_opts_igvn(Node* n) {
1840   if (!n->for_post_loop_opts_igvn()) {
1841     assert(!_for_post_loop_igvn.contains(n), "duplicate");
1842     n->add_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn);
1843     _for_post_loop_igvn.append(n);
1844   }
1845 }
1846 
1847 void Compile::remove_from_post_loop_opts_igvn(Node* n) {
1848   n->remove_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn);
1849   _for_post_loop_igvn.remove(n);
1850 }
1851 
1852 void Compile::process_for_post_loop_opts_igvn(PhaseIterGVN& igvn) {
1853   // Verify that all previous optimizations produced a valid graph
1854   // at least to this point, even if no loop optimizations were done.
1855   PhaseIdealLoop::verify(igvn);
1856 
1857   C->set_post_loop_opts_phase(); // no more loop opts allowed
1858 
1859   assert(!C->major_progress(), "not cleared");
1860 
1861   if (_for_post_loop_igvn.length() > 0) {
1862     while (_for_post_loop_igvn.length() > 0) {
1863       Node* n = _for_post_loop_igvn.pop();
1864       n->remove_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn);
1865       igvn._worklist.push(n);
1866     }
1867     igvn.optimize();
1868     if (failing()) return;
1869     assert(_for_post_loop_igvn.length() == 0, "no more delayed nodes allowed");
1870     assert(C->parse_predicate_count() == 0, "all parse predicates should have been removed now");
1871 
1872     // Sometimes IGVN sets major progress (e.g., when processing loop nodes).
1873     if (C->major_progress()) {
1874       C->clear_major_progress(); // ensure that major progress is now clear
1875     }
1876   }
1877 }
1878 
1879 void Compile::record_unstable_if_trap(UnstableIfTrap* trap) {
1880   if (OptimizeUnstableIf) {
1881     _unstable_if_traps.append(trap);
1882   }
1883 }
1884 
1885 void Compile::remove_useless_unstable_if_traps(Unique_Node_List& useful) {
1886   for (int i = _unstable_if_traps.length() - 1; i >= 0; i--) {
1887     UnstableIfTrap* trap = _unstable_if_traps.at(i);
1888     Node* n = trap->uncommon_trap();
1889     if (!useful.member(n)) {
1890       _unstable_if_traps.delete_at(i); // replaces i-th with last element which is known to be useful (already processed)
1891     }
1892   }
1893 }
1894 
1895 // Remove the unstable if trap associated with 'unc' from candidates. It is either dead
1896 // or fold-compares case. Return true if succeed or not found.
1897 //
1898 // In rare cases, the found trap has been processed. It is too late to delete it. Return
1899 // false and ask fold-compares to yield.
1900 //
1901 // 'fold-compares' may use the uncommon_trap of the dominating IfNode to cover the fused
1902 // IfNode. This breaks the unstable_if trap invariant: control takes the unstable path
1903 // when deoptimization does happen.
1904 bool Compile::remove_unstable_if_trap(CallStaticJavaNode* unc, bool yield) {
1905   for (int i = 0; i < _unstable_if_traps.length(); ++i) {
1906     UnstableIfTrap* trap = _unstable_if_traps.at(i);
1907     if (trap->uncommon_trap() == unc) {
1908       if (yield && trap->modified()) {
1909         return false;
1910       }
1911       _unstable_if_traps.delete_at(i);
1912       break;
1913     }
1914   }
1915   return true;
1916 }
1917 
1918 // Re-calculate unstable_if traps with the liveness of next_bci, which points to the unlikely path.
1919 // It needs to be done after igvn because fold-compares may fuse uncommon_traps and before renumbering.
1920 void Compile::process_for_unstable_if_traps(PhaseIterGVN& igvn) {
1921   for (int i = _unstable_if_traps.length() - 1; i >= 0; --i) {
1922     UnstableIfTrap* trap = _unstable_if_traps.at(i);
1923     CallStaticJavaNode* unc = trap->uncommon_trap();
1924     int next_bci = trap->next_bci();
1925     bool modified = trap->modified();
1926 
1927     if (next_bci != -1 && !modified) {
1928       assert(!_dead_node_list.test(unc->_idx), "changing a dead node!");
1929       JVMState* jvms = unc->jvms();
1930       ciMethod* method = jvms->method();
1931       ciBytecodeStream iter(method);
1932 
1933       iter.force_bci(jvms->bci());
1934       assert(next_bci == iter.next_bci() || next_bci == iter.get_dest(), "wrong next_bci at unstable_if");
1935       Bytecodes::Code c = iter.cur_bc();
1936       Node* lhs = nullptr;
1937       Node* rhs = nullptr;
1938       if (c == Bytecodes::_if_acmpeq || c == Bytecodes::_if_acmpne) {
1939         lhs = unc->peek_operand(0);
1940         rhs = unc->peek_operand(1);
1941       } else if (c == Bytecodes::_ifnull || c == Bytecodes::_ifnonnull) {
1942         lhs = unc->peek_operand(0);
1943       }
1944 
1945       ResourceMark rm;
1946       const MethodLivenessResult& live_locals = method->liveness_at_bci(next_bci);
1947       assert(live_locals.is_valid(), "broken liveness info");
1948       int len = (int)live_locals.size();
1949 
1950       for (int i = 0; i < len; i++) {
1951         Node* local = unc->local(jvms, i);
1952         // kill local using the liveness of next_bci.
1953         // give up when the local looks like an operand to secure reexecution.
1954         if (!live_locals.at(i) && !local->is_top() && local != lhs && local!= rhs) {
1955           uint idx = jvms->locoff() + i;
1956 #ifdef ASSERT
1957           if (PrintOpto && Verbose) {
1958             tty->print("[unstable_if] kill local#%d: ", idx);
1959             local->dump();
1960             tty->cr();
1961           }
1962 #endif
1963           igvn.replace_input_of(unc, idx, top());
1964           modified = true;
1965         }
1966       }
1967     }
1968 
1969     // keep the mondified trap for late query
1970     if (modified) {
1971       trap->set_modified();
1972     } else {
1973       _unstable_if_traps.delete_at(i);
1974     }
1975   }
1976   igvn.optimize();
1977 }
1978 
1979 // StringOpts and late inlining of string methods
1980 void Compile::inline_string_calls(bool parse_time) {
1981   {
1982     // remove useless nodes to make the usage analysis simpler
1983     ResourceMark rm;
1984     PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist());
1985   }
1986 
1987   {
1988     ResourceMark rm;
1989     print_method(PHASE_BEFORE_STRINGOPTS, 3);
1990     PhaseStringOpts pso(initial_gvn());
1991     print_method(PHASE_AFTER_STRINGOPTS, 3);
1992   }
1993 
1994   // now inline anything that we skipped the first time around
1995   if (!parse_time) {
1996     _late_inlines_pos = _late_inlines.length();
1997   }
1998 
1999   while (_string_late_inlines.length() > 0) {
2000     CallGenerator* cg = _string_late_inlines.pop();
2001     cg->do_late_inline();
2002     if (failing())  return;
2003   }
2004   _string_late_inlines.trunc_to(0);
2005 }
2006 
2007 // Late inlining of boxing methods
2008 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
2009   if (_boxing_late_inlines.length() > 0) {
2010     assert(has_boxed_value(), "inconsistent");
2011 
2012     set_inlining_incrementally(true);
2013 
2014     igvn_worklist()->ensure_empty(); // should be done with igvn
2015 
2016     _late_inlines_pos = _late_inlines.length();
2017 
2018     while (_boxing_late_inlines.length() > 0) {
2019       CallGenerator* cg = _boxing_late_inlines.pop();
2020       cg->do_late_inline();
2021       if (failing())  return;
2022     }
2023     _boxing_late_inlines.trunc_to(0);
2024 
2025     inline_incrementally_cleanup(igvn);
2026 
2027     set_inlining_incrementally(false);
2028   }
2029 }
2030 
2031 bool Compile::inline_incrementally_one() {
2032   assert(IncrementalInline, "incremental inlining should be on");
2033 
2034   TracePhase tp(_t_incrInline_inline);
2035 
2036   set_inlining_progress(false);
2037   set_do_cleanup(false);
2038 
2039   for (int i = 0; i < _late_inlines.length(); i++) {
2040     _late_inlines_pos = i+1;
2041     CallGenerator* cg = _late_inlines.at(i);
2042     bool does_dispatch = cg->is_virtual_late_inline() || cg->is_mh_late_inline();
2043     if (inlining_incrementally() || does_dispatch) { // a call can be either inlined or strength-reduced to a direct call
2044       cg->do_late_inline();
2045       assert(_late_inlines.at(i) == cg, "no insertions before current position allowed");
2046       if (failing()) {
2047         return false;
2048       } else if (inlining_progress()) {
2049         _late_inlines_pos = i+1; // restore the position in case new elements were inserted
2050         print_method(PHASE_INCREMENTAL_INLINE_STEP, 3, cg->call_node());
2051         break; // process one call site at a time
2052       }
2053     } else {
2054       // Ignore late inline direct calls when inlining is not allowed.
2055       // They are left in the late inline list when node budget is exhausted until the list is fully drained.
2056     }
2057   }
2058   // Remove processed elements.
2059   _late_inlines.remove_till(_late_inlines_pos);
2060   _late_inlines_pos = 0;
2061 
2062   assert(inlining_progress() || _late_inlines.length() == 0, "no progress");
2063 
2064   bool needs_cleanup = do_cleanup() || over_inlining_cutoff();
2065 
2066   set_inlining_progress(false);
2067   set_do_cleanup(false);
2068 
2069   bool force_cleanup = directive()->IncrementalInlineForceCleanupOption;
2070   return (_late_inlines.length() > 0) && !needs_cleanup && !force_cleanup;
2071 }
2072 
2073 void Compile::inline_incrementally_cleanup(PhaseIterGVN& igvn) {
2074   {
2075     TracePhase tp(_t_incrInline_pru);
2076     ResourceMark rm;
2077     PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist());
2078   }
2079   {
2080     TracePhase tp(_t_incrInline_igvn);
2081     igvn.reset_from_gvn(initial_gvn());
2082     igvn.optimize();
2083     if (failing()) return;
2084   }
2085   print_method(PHASE_INCREMENTAL_INLINE_CLEANUP, 3);
2086 }
2087 
2088 // Perform incremental inlining until bound on number of live nodes is reached
2089 void Compile::inline_incrementally(PhaseIterGVN& igvn) {
2090   TracePhase tp(_t_incrInline);
2091 
2092   set_inlining_incrementally(true);
2093   uint low_live_nodes = 0;
2094 
2095   while (_late_inlines.length() > 0) {
2096     if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2097       if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
2098         TracePhase tp(_t_incrInline_ideal);
2099         // PhaseIdealLoop is expensive so we only try it once we are
2100         // out of live nodes and we only try it again if the previous
2101         // helped got the number of nodes down significantly
2102         PhaseIdealLoop::optimize(igvn, LoopOptsNone);
2103         if (failing())  return;
2104         low_live_nodes = live_nodes();
2105         _major_progress = true;
2106       }
2107 
2108       if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2109         bool do_print_inlining = print_inlining() || print_intrinsics();
2110         if (do_print_inlining || log() != nullptr) {
2111           // Print inlining message for candidates that we couldn't inline for lack of space.
2112           for (int i = 0; i < _late_inlines.length(); i++) {
2113             CallGenerator* cg = _late_inlines.at(i);
2114             const char* msg = "live nodes > LiveNodeCountInliningCutoff";
2115             if (do_print_inlining) {
2116               cg->print_inlining_late(InliningResult::FAILURE, msg);
2117             }
2118             log_late_inline_failure(cg, msg);
2119           }
2120         }
2121         break; // finish
2122       }
2123     }
2124 
2125     igvn_worklist()->ensure_empty(); // should be done with igvn
2126 
2127     while (inline_incrementally_one()) {
2128       assert(!failing_internal() || failure_is_artificial(), "inconsistent");
2129     }
2130     if (failing())  return;
2131 
2132     inline_incrementally_cleanup(igvn);
2133 
2134     print_method(PHASE_INCREMENTAL_INLINE_STEP, 3);
2135 
2136     if (failing())  return;
2137 
2138     if (_late_inlines.length() == 0) {
2139       break; // no more progress
2140     }
2141   }
2142 
2143   igvn_worklist()->ensure_empty(); // should be done with igvn
2144 
2145   if (_string_late_inlines.length() > 0) {
2146     assert(has_stringbuilder(), "inconsistent");
2147 
2148     inline_string_calls(false);
2149 
2150     if (failing())  return;
2151 
2152     inline_incrementally_cleanup(igvn);
2153   }
2154 
2155   set_inlining_incrementally(false);
2156 }
2157 
2158 void Compile::process_late_inline_calls_no_inline(PhaseIterGVN& igvn) {
2159   // "inlining_incrementally() == false" is used to signal that no inlining is allowed
2160   // (see LateInlineVirtualCallGenerator::do_late_inline_check() for details).
2161   // Tracking and verification of modified nodes is disabled by setting "_modified_nodes == nullptr"
2162   // as if "inlining_incrementally() == true" were set.
2163   assert(inlining_incrementally() == false, "not allowed");
2164   assert(_modified_nodes == nullptr, "not allowed");
2165   assert(_late_inlines.length() > 0, "sanity");
2166 
2167   while (_late_inlines.length() > 0) {
2168     igvn_worklist()->ensure_empty(); // should be done with igvn
2169 
2170     while (inline_incrementally_one()) {
2171       assert(!failing_internal() || failure_is_artificial(), "inconsistent");
2172     }
2173     if (failing())  return;
2174 
2175     inline_incrementally_cleanup(igvn);
2176   }
2177 }
2178 
2179 bool Compile::optimize_loops(PhaseIterGVN& igvn, LoopOptsMode mode) {
2180   if (_loop_opts_cnt > 0) {
2181     while (major_progress() && (_loop_opts_cnt > 0)) {
2182       TracePhase tp(_t_idealLoop);
2183       PhaseIdealLoop::optimize(igvn, mode);
2184       _loop_opts_cnt--;
2185       if (failing())  return false;
2186       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
2187     }
2188   }
2189   return true;
2190 }
2191 
2192 // Remove edges from "root" to each SafePoint at a backward branch.
2193 // They were inserted during parsing (see add_safepoint()) to make
2194 // infinite loops without calls or exceptions visible to root, i.e.,
2195 // useful.
2196 void Compile::remove_root_to_sfpts_edges(PhaseIterGVN& igvn) {
2197   Node *r = root();
2198   if (r != nullptr) {
2199     for (uint i = r->req(); i < r->len(); ++i) {
2200       Node *n = r->in(i);
2201       if (n != nullptr && n->is_SafePoint()) {
2202         r->rm_prec(i);
2203         if (n->outcnt() == 0) {
2204           igvn.remove_dead_node(n);
2205         }
2206         --i;
2207       }
2208     }
2209     // Parsing may have added top inputs to the root node (Path
2210     // leading to the Halt node proven dead). Make sure we get a
2211     // chance to clean them up.
2212     igvn._worklist.push(r);
2213     igvn.optimize();
2214   }
2215 }
2216 
2217 //------------------------------Optimize---------------------------------------
2218 // Given a graph, optimize it.
2219 void Compile::Optimize() {
2220   TracePhase tp(_t_optimizer);
2221 
2222 #ifndef PRODUCT
2223   if (env()->break_at_compile()) {
2224     BREAKPOINT;
2225   }
2226 
2227 #endif
2228 
2229   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2230 #ifdef ASSERT
2231   bs->verify_gc_barriers(this, BarrierSetC2::BeforeOptimize);
2232 #endif
2233 
2234   ResourceMark rm;
2235 
2236   print_inlining_reinit();
2237 
2238   NOT_PRODUCT( verify_graph_edges(); )
2239 
2240   print_method(PHASE_AFTER_PARSING, 1);
2241 
2242  {
2243   // Iterative Global Value Numbering, including ideal transforms
2244   // Initialize IterGVN with types and values from parse-time GVN
2245   PhaseIterGVN igvn(initial_gvn());
2246 #ifdef ASSERT
2247   _modified_nodes = new (comp_arena()) Unique_Node_List(comp_arena());
2248 #endif
2249   {
2250     TracePhase tp(_t_iterGVN);
2251     igvn.optimize();
2252   }
2253 
2254   if (failing())  return;
2255 
2256   print_method(PHASE_ITER_GVN1, 2);
2257 
2258   process_for_unstable_if_traps(igvn);
2259 
2260   if (failing())  return;
2261 
2262   inline_incrementally(igvn);
2263 
2264   print_method(PHASE_INCREMENTAL_INLINE, 2);
2265 
2266   if (failing())  return;
2267 
2268   if (eliminate_boxing()) {
2269     // Inline valueOf() methods now.
2270     inline_boxing_calls(igvn);
2271 
2272     if (failing())  return;
2273 
2274     if (AlwaysIncrementalInline || StressIncrementalInlining) {
2275       inline_incrementally(igvn);
2276     }
2277 
2278     print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
2279 
2280     if (failing())  return;
2281   }
2282 
2283   // Remove the speculative part of types and clean up the graph from
2284   // the extra CastPP nodes whose only purpose is to carry them. Do
2285   // that early so that optimizations are not disrupted by the extra
2286   // CastPP nodes.
2287   remove_speculative_types(igvn);
2288 
2289   if (failing())  return;
2290 
2291   // No more new expensive nodes will be added to the list from here
2292   // so keep only the actual candidates for optimizations.
2293   cleanup_expensive_nodes(igvn);
2294 
2295   if (failing())  return;
2296 
2297   assert(EnableVectorSupport || !has_vbox_nodes(), "sanity");
2298   if (EnableVectorSupport && has_vbox_nodes()) {
2299     TracePhase tp(_t_vector);
2300     PhaseVector pv(igvn);
2301     pv.optimize_vector_boxes();
2302     if (failing())  return;
2303     print_method(PHASE_ITER_GVN_AFTER_VECTOR, 2);
2304   }
2305   assert(!has_vbox_nodes(), "sanity");
2306 
2307   if (!failing() && RenumberLiveNodes && live_nodes() + NodeLimitFudgeFactor < unique()) {
2308     Compile::TracePhase tp(_t_renumberLive);
2309     igvn_worklist()->ensure_empty(); // should be done with igvn
2310     {
2311       ResourceMark rm;
2312       PhaseRenumberLive prl(initial_gvn(), *igvn_worklist());
2313     }
2314     igvn.reset_from_gvn(initial_gvn());
2315     igvn.optimize();
2316     if (failing()) return;
2317   }
2318 
2319   // Now that all inlining is over and no PhaseRemoveUseless will run, cut edge from root to loop
2320   // safepoints
2321   remove_root_to_sfpts_edges(igvn);
2322 
2323   if (failing())  return;
2324 
2325   // Perform escape analysis
2326   if (do_escape_analysis() && ConnectionGraph::has_candidates(this)) {
2327     if (has_loops()) {
2328       // Cleanup graph (remove dead nodes).
2329       TracePhase tp(_t_idealLoop);
2330       PhaseIdealLoop::optimize(igvn, LoopOptsMaxUnroll);
2331       if (failing())  return;
2332     }
2333     bool progress;
2334     print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
2335     do {
2336       ConnectionGraph::do_analysis(this, &igvn);
2337 
2338       if (failing())  return;
2339 
2340       int mcount = macro_count(); // Record number of allocations and locks before IGVN
2341 
2342       // Optimize out fields loads from scalar replaceable allocations.
2343       igvn.optimize();
2344       print_method(PHASE_ITER_GVN_AFTER_EA, 2);
2345 
2346       if (failing()) return;
2347 
2348       if (congraph() != nullptr && macro_count() > 0) {
2349         TracePhase tp(_t_macroEliminate);
2350         PhaseMacroExpand mexp(igvn);
2351         mexp.eliminate_macro_nodes();
2352         if (failing()) return;
2353 
2354         igvn.set_delay_transform(false);
2355         igvn.optimize();
2356         if (failing()) return;
2357 
2358         print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
2359       }
2360 
2361       ConnectionGraph::verify_ram_nodes(this, root());
2362       if (failing())  return;
2363 
2364       progress = do_iterative_escape_analysis() &&
2365                  (macro_count() < mcount) &&
2366                  ConnectionGraph::has_candidates(this);
2367       // Try again if candidates exist and made progress
2368       // by removing some allocations and/or locks.
2369     } while (progress);
2370   }
2371 
2372   // Loop transforms on the ideal graph.  Range Check Elimination,
2373   // peeling, unrolling, etc.
2374 
2375   // Set loop opts counter
2376   if((_loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
2377     {
2378       TracePhase tp(_t_idealLoop);
2379       PhaseIdealLoop::optimize(igvn, LoopOptsDefault);
2380       _loop_opts_cnt--;
2381       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
2382       if (failing())  return;
2383     }
2384     // Loop opts pass if partial peeling occurred in previous pass
2385     if(PartialPeelLoop && major_progress() && (_loop_opts_cnt > 0)) {
2386       TracePhase tp(_t_idealLoop);
2387       PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf);
2388       _loop_opts_cnt--;
2389       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
2390       if (failing())  return;
2391     }
2392     // Loop opts pass for loop-unrolling before CCP
2393     if(major_progress() && (_loop_opts_cnt > 0)) {
2394       TracePhase tp(_t_idealLoop);
2395       PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf);
2396       _loop_opts_cnt--;
2397       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
2398     }
2399     if (!failing()) {
2400       // Verify that last round of loop opts produced a valid graph
2401       PhaseIdealLoop::verify(igvn);
2402     }
2403   }
2404   if (failing())  return;
2405 
2406   // Conditional Constant Propagation;
2407   print_method(PHASE_BEFORE_CCP1, 2);
2408   PhaseCCP ccp( &igvn );
2409   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
2410   {
2411     TracePhase tp(_t_ccp);
2412     ccp.do_transform();
2413   }
2414   print_method(PHASE_CCP1, 2);
2415 
2416   assert( true, "Break here to ccp.dump_old2new_map()");
2417 
2418   // Iterative Global Value Numbering, including ideal transforms
2419   {
2420     TracePhase tp(_t_iterGVN2);
2421     igvn.reset_from_igvn(&ccp);
2422     igvn.optimize();
2423   }
2424   print_method(PHASE_ITER_GVN2, 2);
2425 
2426   if (failing())  return;
2427 
2428   // Loop transforms on the ideal graph.  Range Check Elimination,
2429   // peeling, unrolling, etc.
2430   if (!optimize_loops(igvn, LoopOptsDefault)) {
2431     return;
2432   }
2433 
2434   if (failing())  return;
2435 
2436   C->clear_major_progress(); // ensure that major progress is now clear
2437 
2438   process_for_post_loop_opts_igvn(igvn);
2439 
2440   if (failing())  return;
2441 
2442 #ifdef ASSERT
2443   bs->verify_gc_barriers(this, BarrierSetC2::BeforeMacroExpand);
2444 #endif
2445 
2446   {
2447     TracePhase tp(_t_macroExpand);
2448     print_method(PHASE_BEFORE_MACRO_EXPANSION, 3);
2449     PhaseMacroExpand  mex(igvn);
2450     if (mex.expand_macro_nodes()) {
2451       assert(failing(), "must bail out w/ explicit message");
2452       return;
2453     }
2454     print_method(PHASE_AFTER_MACRO_EXPANSION, 2);
2455   }
2456 
2457   {
2458     TracePhase tp(_t_barrierExpand);
2459     if (bs->expand_barriers(this, igvn)) {
2460       assert(failing(), "must bail out w/ explicit message");
2461       return;
2462     }
2463     print_method(PHASE_BARRIER_EXPANSION, 2);
2464   }
2465 
2466   if (C->max_vector_size() > 0) {
2467     C->optimize_logic_cones(igvn);
2468     igvn.optimize();
2469     if (failing()) return;
2470   }
2471 
2472   DEBUG_ONLY( _modified_nodes = nullptr; )
2473 
2474   assert(igvn._worklist.size() == 0, "not empty");
2475 
2476   assert(_late_inlines.length() == 0 || IncrementalInlineMH || IncrementalInlineVirtual, "not empty");
2477 
2478   if (_late_inlines.length() > 0) {
2479     // More opportunities to optimize virtual and MH calls.
2480     // Though it's maybe too late to perform inlining, strength-reducing them to direct calls is still an option.
2481     process_late_inline_calls_no_inline(igvn);
2482     if (failing())  return;
2483   }
2484  } // (End scope of igvn; run destructor if necessary for asserts.)
2485 
2486  check_no_dead_use();
2487 
2488  process_print_inlining();
2489 
2490  // We will never use the NodeHash table any more. Clear it so that final_graph_reshaping does not have
2491  // to remove hashes to unlock nodes for modifications.
2492  C->node_hash()->clear();
2493 
2494  // A method with only infinite loops has no edges entering loops from root
2495  {
2496    TracePhase tp(_t_graphReshaping);
2497    if (final_graph_reshaping()) {
2498      assert(failing(), "must bail out w/ explicit message");
2499      return;
2500    }
2501  }
2502 
2503  print_method(PHASE_OPTIMIZE_FINISHED, 2);
2504  DEBUG_ONLY(set_phase_optimize_finished();)
2505 }
2506 
2507 #ifdef ASSERT
2508 void Compile::check_no_dead_use() const {
2509   ResourceMark rm;
2510   Unique_Node_List wq;
2511   wq.push(root());
2512   for (uint i = 0; i < wq.size(); ++i) {
2513     Node* n = wq.at(i);
2514     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
2515       Node* u = n->fast_out(j);
2516       if (u->outcnt() == 0 && !u->is_Con()) {
2517         u->dump();
2518         fatal("no reachable node should have no use");
2519       }
2520       wq.push(u);
2521     }
2522   }
2523 }
2524 #endif
2525 
2526 void Compile::inline_vector_reboxing_calls() {
2527   if (C->_vector_reboxing_late_inlines.length() > 0) {
2528     _late_inlines_pos = C->_late_inlines.length();
2529     while (_vector_reboxing_late_inlines.length() > 0) {
2530       CallGenerator* cg = _vector_reboxing_late_inlines.pop();
2531       cg->do_late_inline();
2532       if (failing())  return;
2533       print_method(PHASE_INLINE_VECTOR_REBOX, 3, cg->call_node());
2534     }
2535     _vector_reboxing_late_inlines.trunc_to(0);
2536   }
2537 }
2538 
2539 bool Compile::has_vbox_nodes() {
2540   if (C->_vector_reboxing_late_inlines.length() > 0) {
2541     return true;
2542   }
2543   for (int macro_idx = C->macro_count() - 1; macro_idx >= 0; macro_idx--) {
2544     Node * n = C->macro_node(macro_idx);
2545     assert(n->is_macro(), "only macro nodes expected here");
2546     if (n->Opcode() == Op_VectorUnbox || n->Opcode() == Op_VectorBox || n->Opcode() == Op_VectorBoxAllocate) {
2547       return true;
2548     }
2549   }
2550   return false;
2551 }
2552 
2553 //---------------------------- Bitwise operation packing optimization ---------------------------
2554 
2555 static bool is_vector_unary_bitwise_op(Node* n) {
2556   return n->Opcode() == Op_XorV &&
2557          VectorNode::is_vector_bitwise_not_pattern(n);
2558 }
2559 
2560 static bool is_vector_binary_bitwise_op(Node* n) {
2561   switch (n->Opcode()) {
2562     case Op_AndV:
2563     case Op_OrV:
2564       return true;
2565 
2566     case Op_XorV:
2567       return !is_vector_unary_bitwise_op(n);
2568 
2569     default:
2570       return false;
2571   }
2572 }
2573 
2574 static bool is_vector_ternary_bitwise_op(Node* n) {
2575   return n->Opcode() == Op_MacroLogicV;
2576 }
2577 
2578 static bool is_vector_bitwise_op(Node* n) {
2579   return is_vector_unary_bitwise_op(n)  ||
2580          is_vector_binary_bitwise_op(n) ||
2581          is_vector_ternary_bitwise_op(n);
2582 }
2583 
2584 static bool is_vector_bitwise_cone_root(Node* n) {
2585   if (n->bottom_type()->isa_vectmask() || !is_vector_bitwise_op(n)) {
2586     return false;
2587   }
2588   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2589     if (is_vector_bitwise_op(n->fast_out(i))) {
2590       return false;
2591     }
2592   }
2593   return true;
2594 }
2595 
2596 static uint collect_unique_inputs(Node* n, Unique_Node_List& inputs) {
2597   uint cnt = 0;
2598   if (is_vector_bitwise_op(n)) {
2599     uint inp_cnt = n->is_predicated_vector() ? n->req()-1 : n->req();
2600     if (VectorNode::is_vector_bitwise_not_pattern(n)) {
2601       for (uint i = 1; i < inp_cnt; i++) {
2602         Node* in = n->in(i);
2603         bool skip = VectorNode::is_all_ones_vector(in);
2604         if (!skip && !inputs.member(in)) {
2605           inputs.push(in);
2606           cnt++;
2607         }
2608       }
2609       assert(cnt <= 1, "not unary");
2610     } else {
2611       uint last_req = inp_cnt;
2612       if (is_vector_ternary_bitwise_op(n)) {
2613         last_req = inp_cnt - 1; // skip last input
2614       }
2615       for (uint i = 1; i < last_req; i++) {
2616         Node* def = n->in(i);
2617         if (!inputs.member(def)) {
2618           inputs.push(def);
2619           cnt++;
2620         }
2621       }
2622     }
2623   } else { // not a bitwise operations
2624     if (!inputs.member(n)) {
2625       inputs.push(n);
2626       cnt++;
2627     }
2628   }
2629   return cnt;
2630 }
2631 
2632 void Compile::collect_logic_cone_roots(Unique_Node_List& list) {
2633   Unique_Node_List useful_nodes;
2634   C->identify_useful_nodes(useful_nodes);
2635 
2636   for (uint i = 0; i < useful_nodes.size(); i++) {
2637     Node* n = useful_nodes.at(i);
2638     if (is_vector_bitwise_cone_root(n)) {
2639       list.push(n);
2640     }
2641   }
2642 }
2643 
2644 Node* Compile::xform_to_MacroLogicV(PhaseIterGVN& igvn,
2645                                     const TypeVect* vt,
2646                                     Unique_Node_List& partition,
2647                                     Unique_Node_List& inputs) {
2648   assert(partition.size() == 2 || partition.size() == 3, "not supported");
2649   assert(inputs.size()    == 2 || inputs.size()    == 3, "not supported");
2650   assert(Matcher::match_rule_supported_vector(Op_MacroLogicV, vt->length(), vt->element_basic_type()), "not supported");
2651 
2652   Node* in1 = inputs.at(0);
2653   Node* in2 = inputs.at(1);
2654   Node* in3 = (inputs.size() == 3 ? inputs.at(2) : in2);
2655 
2656   uint func = compute_truth_table(partition, inputs);
2657 
2658   Node* pn = partition.at(partition.size() - 1);
2659   Node* mask = pn->is_predicated_vector() ? pn->in(pn->req()-1) : nullptr;
2660   return igvn.transform(MacroLogicVNode::make(igvn, in1, in2, in3, mask, func, vt));
2661 }
2662 
2663 static uint extract_bit(uint func, uint pos) {
2664   return (func & (1 << pos)) >> pos;
2665 }
2666 
2667 //
2668 //  A macro logic node represents a truth table. It has 4 inputs,
2669 //  First three inputs corresponds to 3 columns of a truth table
2670 //  and fourth input captures the logic function.
2671 //
2672 //  eg.  fn = (in1 AND in2) OR in3;
2673 //
2674 //      MacroNode(in1,in2,in3,fn)
2675 //
2676 //  -----------------
2677 //  in1 in2 in3  fn
2678 //  -----------------
2679 //  0    0   0    0
2680 //  0    0   1    1
2681 //  0    1   0    0
2682 //  0    1   1    1
2683 //  1    0   0    0
2684 //  1    0   1    1
2685 //  1    1   0    1
2686 //  1    1   1    1
2687 //
2688 
2689 uint Compile::eval_macro_logic_op(uint func, uint in1 , uint in2, uint in3) {
2690   int res = 0;
2691   for (int i = 0; i < 8; i++) {
2692     int bit1 = extract_bit(in1, i);
2693     int bit2 = extract_bit(in2, i);
2694     int bit3 = extract_bit(in3, i);
2695 
2696     int func_bit_pos = (bit1 << 2 | bit2 << 1 | bit3);
2697     int func_bit = extract_bit(func, func_bit_pos);
2698 
2699     res |= func_bit << i;
2700   }
2701   return res;
2702 }
2703 
2704 static uint eval_operand(Node* n, ResourceHashtable<Node*,uint>& eval_map) {
2705   assert(n != nullptr, "");
2706   assert(eval_map.contains(n), "absent");
2707   return *(eval_map.get(n));
2708 }
2709 
2710 static void eval_operands(Node* n,
2711                           uint& func1, uint& func2, uint& func3,
2712                           ResourceHashtable<Node*,uint>& eval_map) {
2713   assert(is_vector_bitwise_op(n), "");
2714 
2715   if (is_vector_unary_bitwise_op(n)) {
2716     Node* opnd = n->in(1);
2717     if (VectorNode::is_vector_bitwise_not_pattern(n) && VectorNode::is_all_ones_vector(opnd)) {
2718       opnd = n->in(2);
2719     }
2720     func1 = eval_operand(opnd, eval_map);
2721   } else if (is_vector_binary_bitwise_op(n)) {
2722     func1 = eval_operand(n->in(1), eval_map);
2723     func2 = eval_operand(n->in(2), eval_map);
2724   } else {
2725     assert(is_vector_ternary_bitwise_op(n), "unknown operation");
2726     func1 = eval_operand(n->in(1), eval_map);
2727     func2 = eval_operand(n->in(2), eval_map);
2728     func3 = eval_operand(n->in(3), eval_map);
2729   }
2730 }
2731 
2732 uint Compile::compute_truth_table(Unique_Node_List& partition, Unique_Node_List& inputs) {
2733   assert(inputs.size() <= 3, "sanity");
2734   ResourceMark rm;
2735   uint res = 0;
2736   ResourceHashtable<Node*,uint> eval_map;
2737 
2738   // Populate precomputed functions for inputs.
2739   // Each input corresponds to one column of 3 input truth-table.
2740   uint input_funcs[] = { 0xAA,   // (_, _, c) -> c
2741                          0xCC,   // (_, b, _) -> b
2742                          0xF0 }; // (a, _, _) -> a
2743   for (uint i = 0; i < inputs.size(); i++) {
2744     eval_map.put(inputs.at(i), input_funcs[2-i]);
2745   }
2746 
2747   for (uint i = 0; i < partition.size(); i++) {
2748     Node* n = partition.at(i);
2749 
2750     uint func1 = 0, func2 = 0, func3 = 0;
2751     eval_operands(n, func1, func2, func3, eval_map);
2752 
2753     switch (n->Opcode()) {
2754       case Op_OrV:
2755         assert(func3 == 0, "not binary");
2756         res = func1 | func2;
2757         break;
2758       case Op_AndV:
2759         assert(func3 == 0, "not binary");
2760         res = func1 & func2;
2761         break;
2762       case Op_XorV:
2763         if (VectorNode::is_vector_bitwise_not_pattern(n)) {
2764           assert(func2 == 0 && func3 == 0, "not unary");
2765           res = (~func1) & 0xFF;
2766         } else {
2767           assert(func3 == 0, "not binary");
2768           res = func1 ^ func2;
2769         }
2770         break;
2771       case Op_MacroLogicV:
2772         // Ordering of inputs may change during evaluation of sub-tree
2773         // containing MacroLogic node as a child node, thus a re-evaluation
2774         // makes sure that function is evaluated in context of current
2775         // inputs.
2776         res = eval_macro_logic_op(n->in(4)->get_int(), func1, func2, func3);
2777         break;
2778 
2779       default: assert(false, "not supported: %s", n->Name());
2780     }
2781     assert(res <= 0xFF, "invalid");
2782     eval_map.put(n, res);
2783   }
2784   return res;
2785 }
2786 
2787 // Criteria under which nodes gets packed into a macro logic node:-
2788 //  1) Parent and both child nodes are all unmasked or masked with
2789 //     same predicates.
2790 //  2) Masked parent can be packed with left child if it is predicated
2791 //     and both have same predicates.
2792 //  3) Masked parent can be packed with right child if its un-predicated
2793 //     or has matching predication condition.
2794 //  4) An unmasked parent can be packed with an unmasked child.
2795 bool Compile::compute_logic_cone(Node* n, Unique_Node_List& partition, Unique_Node_List& inputs) {
2796   assert(partition.size() == 0, "not empty");
2797   assert(inputs.size() == 0, "not empty");
2798   if (is_vector_ternary_bitwise_op(n)) {
2799     return false;
2800   }
2801 
2802   bool is_unary_op = is_vector_unary_bitwise_op(n);
2803   if (is_unary_op) {
2804     assert(collect_unique_inputs(n, inputs) == 1, "not unary");
2805     return false; // too few inputs
2806   }
2807 
2808   bool pack_left_child = true;
2809   bool pack_right_child = true;
2810 
2811   bool left_child_LOP = is_vector_bitwise_op(n->in(1));
2812   bool right_child_LOP = is_vector_bitwise_op(n->in(2));
2813 
2814   int left_child_input_cnt = 0;
2815   int right_child_input_cnt = 0;
2816 
2817   bool parent_is_predicated = n->is_predicated_vector();
2818   bool left_child_predicated = n->in(1)->is_predicated_vector();
2819   bool right_child_predicated = n->in(2)->is_predicated_vector();
2820 
2821   Node* parent_pred = parent_is_predicated ? n->in(n->req()-1) : nullptr;
2822   Node* left_child_pred = left_child_predicated ? n->in(1)->in(n->in(1)->req()-1) : nullptr;
2823   Node* right_child_pred = right_child_predicated ? n->in(1)->in(n->in(1)->req()-1) : nullptr;
2824 
2825   do {
2826     if (pack_left_child && left_child_LOP &&
2827         ((!parent_is_predicated && !left_child_predicated) ||
2828         ((parent_is_predicated && left_child_predicated &&
2829           parent_pred == left_child_pred)))) {
2830        partition.push(n->in(1));
2831        left_child_input_cnt = collect_unique_inputs(n->in(1), inputs);
2832     } else {
2833        inputs.push(n->in(1));
2834        left_child_input_cnt = 1;
2835     }
2836 
2837     if (pack_right_child && right_child_LOP &&
2838         (!right_child_predicated ||
2839          (right_child_predicated && parent_is_predicated &&
2840           parent_pred == right_child_pred))) {
2841        partition.push(n->in(2));
2842        right_child_input_cnt = collect_unique_inputs(n->in(2), inputs);
2843     } else {
2844        inputs.push(n->in(2));
2845        right_child_input_cnt = 1;
2846     }
2847 
2848     if (inputs.size() > 3) {
2849       assert(partition.size() > 0, "");
2850       inputs.clear();
2851       partition.clear();
2852       if (left_child_input_cnt > right_child_input_cnt) {
2853         pack_left_child = false;
2854       } else {
2855         pack_right_child = false;
2856       }
2857     } else {
2858       break;
2859     }
2860   } while(true);
2861 
2862   if(partition.size()) {
2863     partition.push(n);
2864   }
2865 
2866   return (partition.size() == 2 || partition.size() == 3) &&
2867          (inputs.size()    == 2 || inputs.size()    == 3);
2868 }
2869 
2870 void Compile::process_logic_cone_root(PhaseIterGVN &igvn, Node *n, VectorSet &visited) {
2871   assert(is_vector_bitwise_op(n), "not a root");
2872 
2873   visited.set(n->_idx);
2874 
2875   // 1) Do a DFS walk over the logic cone.
2876   for (uint i = 1; i < n->req(); i++) {
2877     Node* in = n->in(i);
2878     if (!visited.test(in->_idx) && is_vector_bitwise_op(in)) {
2879       process_logic_cone_root(igvn, in, visited);
2880     }
2881   }
2882 
2883   // 2) Bottom up traversal: Merge node[s] with
2884   // the parent to form macro logic node.
2885   Unique_Node_List partition;
2886   Unique_Node_List inputs;
2887   if (compute_logic_cone(n, partition, inputs)) {
2888     const TypeVect* vt = n->bottom_type()->is_vect();
2889     Node* pn = partition.at(partition.size() - 1);
2890     Node* mask = pn->is_predicated_vector() ? pn->in(pn->req()-1) : nullptr;
2891     if (mask == nullptr ||
2892         Matcher::match_rule_supported_vector_masked(Op_MacroLogicV, vt->length(), vt->element_basic_type())) {
2893       Node* macro_logic = xform_to_MacroLogicV(igvn, vt, partition, inputs);
2894       VectorNode::trace_new_vector(macro_logic, "MacroLogic");
2895       igvn.replace_node(n, macro_logic);
2896     }
2897   }
2898 }
2899 
2900 void Compile::optimize_logic_cones(PhaseIterGVN &igvn) {
2901   ResourceMark rm;
2902   if (Matcher::match_rule_supported(Op_MacroLogicV)) {
2903     Unique_Node_List list;
2904     collect_logic_cone_roots(list);
2905 
2906     while (list.size() > 0) {
2907       Node* n = list.pop();
2908       const TypeVect* vt = n->bottom_type()->is_vect();
2909       bool supported = Matcher::match_rule_supported_vector(Op_MacroLogicV, vt->length(), vt->element_basic_type());
2910       if (supported) {
2911         VectorSet visited(comp_arena());
2912         process_logic_cone_root(igvn, n, visited);
2913       }
2914     }
2915   }
2916 }
2917 
2918 //------------------------------Code_Gen---------------------------------------
2919 // Given a graph, generate code for it
2920 void Compile::Code_Gen() {
2921   if (failing()) {
2922     return;
2923   }
2924 
2925   // Perform instruction selection.  You might think we could reclaim Matcher
2926   // memory PDQ, but actually the Matcher is used in generating spill code.
2927   // Internals of the Matcher (including some VectorSets) must remain live
2928   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
2929   // set a bit in reclaimed memory.
2930 
2931   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2932   // nodes.  Mapping is only valid at the root of each matched subtree.
2933   NOT_PRODUCT( verify_graph_edges(); )
2934 
2935   Matcher matcher;
2936   _matcher = &matcher;
2937   {
2938     TracePhase tp(_t_matcher);
2939     matcher.match();
2940     if (failing()) {
2941       return;
2942     }
2943   }
2944   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2945   // nodes.  Mapping is only valid at the root of each matched subtree.
2946   NOT_PRODUCT( verify_graph_edges(); )
2947 
2948   // If you have too many nodes, or if matching has failed, bail out
2949   check_node_count(0, "out of nodes matching instructions");
2950   if (failing()) {
2951     return;
2952   }
2953 
2954   print_method(PHASE_MATCHING, 2);
2955 
2956   // Build a proper-looking CFG
2957   PhaseCFG cfg(node_arena(), root(), matcher);
2958   if (failing()) {
2959     return;
2960   }
2961   _cfg = &cfg;
2962   {
2963     TracePhase tp(_t_scheduler);
2964     bool success = cfg.do_global_code_motion();
2965     if (!success) {
2966       return;
2967     }
2968 
2969     print_method(PHASE_GLOBAL_CODE_MOTION, 2);
2970     NOT_PRODUCT( verify_graph_edges(); )
2971     cfg.verify();
2972     if (failing()) {
2973       return;
2974     }
2975   }
2976 
2977   PhaseChaitin regalloc(unique(), cfg, matcher, false);
2978   _regalloc = &regalloc;
2979   {
2980     TracePhase tp(_t_registerAllocation);
2981     // Perform register allocation.  After Chaitin, use-def chains are
2982     // no longer accurate (at spill code) and so must be ignored.
2983     // Node->LRG->reg mappings are still accurate.
2984     _regalloc->Register_Allocate();
2985 
2986     // Bail out if the allocator builds too many nodes
2987     if (failing()) {
2988       return;
2989     }
2990 
2991     print_method(PHASE_REGISTER_ALLOCATION, 2);
2992   }
2993 
2994   // Prior to register allocation we kept empty basic blocks in case the
2995   // the allocator needed a place to spill.  After register allocation we
2996   // are not adding any new instructions.  If any basic block is empty, we
2997   // can now safely remove it.
2998   {
2999     TracePhase tp(_t_blockOrdering);
3000     cfg.remove_empty_blocks();
3001     if (do_freq_based_layout()) {
3002       PhaseBlockLayout layout(cfg);
3003     } else {
3004       cfg.set_loop_alignment();
3005     }
3006     cfg.fixup_flow();
3007     cfg.remove_unreachable_blocks();
3008     cfg.verify_dominator_tree();
3009     print_method(PHASE_BLOCK_ORDERING, 3);
3010   }
3011 
3012   // Apply peephole optimizations
3013   if( OptoPeephole ) {
3014     TracePhase tp(_t_peephole);
3015     PhasePeephole peep( _regalloc, cfg);
3016     peep.do_transform();
3017     print_method(PHASE_PEEPHOLE, 3);
3018   }
3019 
3020   // Do late expand if CPU requires this.
3021   if (Matcher::require_postalloc_expand) {
3022     TracePhase tp(_t_postalloc_expand);
3023     cfg.postalloc_expand(_regalloc);
3024     print_method(PHASE_POSTALLOC_EXPAND, 3);
3025   }
3026 
3027   // Convert Nodes to instruction bits in a buffer
3028   {
3029     TracePhase tp(_t_output);
3030     PhaseOutput output;
3031     output.Output();
3032     if (failing())  return;
3033     output.install();
3034     print_method(PHASE_FINAL_CODE, 1); // Compile::_output is not null here
3035   }
3036 
3037   // He's dead, Jim.
3038   _cfg     = (PhaseCFG*)((intptr_t)0xdeadbeef);
3039   _regalloc = (PhaseChaitin*)((intptr_t)0xdeadbeef);
3040 }
3041 
3042 //------------------------------Final_Reshape_Counts---------------------------
3043 // This class defines counters to help identify when a method
3044 // may/must be executed using hardware with only 24-bit precision.
3045 struct Final_Reshape_Counts : public StackObj {
3046   int  _call_count;             // count non-inlined 'common' calls
3047   int  _float_count;            // count float ops requiring 24-bit precision
3048   int  _double_count;           // count double ops requiring more precision
3049   int  _java_call_count;        // count non-inlined 'java' calls
3050   int  _inner_loop_count;       // count loops which need alignment
3051   VectorSet _visited;           // Visitation flags
3052   Node_List _tests;             // Set of IfNodes & PCTableNodes
3053 
3054   Final_Reshape_Counts() :
3055     _call_count(0), _float_count(0), _double_count(0),
3056     _java_call_count(0), _inner_loop_count(0) { }
3057 
3058   void inc_call_count  () { _call_count  ++; }
3059   void inc_float_count () { _float_count ++; }
3060   void inc_double_count() { _double_count++; }
3061   void inc_java_call_count() { _java_call_count++; }
3062   void inc_inner_loop_count() { _inner_loop_count++; }
3063 
3064   int  get_call_count  () const { return _call_count  ; }
3065   int  get_float_count () const { return _float_count ; }
3066   int  get_double_count() const { return _double_count; }
3067   int  get_java_call_count() const { return _java_call_count; }
3068   int  get_inner_loop_count() const { return _inner_loop_count; }
3069 };
3070 
3071 //------------------------------final_graph_reshaping_impl----------------------
3072 // Implement items 1-5 from final_graph_reshaping below.
3073 void Compile::final_graph_reshaping_impl(Node *n, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes) {
3074 
3075   if ( n->outcnt() == 0 ) return; // dead node
3076   uint nop = n->Opcode();
3077 
3078   // Check for 2-input instruction with "last use" on right input.
3079   // Swap to left input.  Implements item (2).
3080   if( n->req() == 3 &&          // two-input instruction
3081       n->in(1)->outcnt() > 1 && // left use is NOT a last use
3082       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
3083       n->in(2)->outcnt() == 1 &&// right use IS a last use
3084       !n->in(2)->is_Con() ) {   // right use is not a constant
3085     // Check for commutative opcode
3086     switch( nop ) {
3087     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
3088     case Op_MaxI:  case Op_MaxL:  case Op_MaxF:  case Op_MaxD:
3089     case Op_MinI:  case Op_MinL:  case Op_MinF:  case Op_MinD:
3090     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
3091     case Op_AndL:  case Op_XorL:  case Op_OrL:
3092     case Op_AndI:  case Op_XorI:  case Op_OrI: {
3093       // Move "last use" input to left by swapping inputs
3094       n->swap_edges(1, 2);
3095       break;
3096     }
3097     default:
3098       break;
3099     }
3100   }
3101 
3102 #ifdef ASSERT
3103   if( n->is_Mem() ) {
3104     int alias_idx = get_alias_index(n->as_Mem()->adr_type());
3105     assert( n->in(0) != nullptr || alias_idx != Compile::AliasIdxRaw ||
3106             // oop will be recorded in oop map if load crosses safepoint
3107             (n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
3108                               LoadNode::is_immutable_value(n->in(MemNode::Address)))),
3109             "raw memory operations should have control edge");
3110   }
3111   if (n->is_MemBar()) {
3112     MemBarNode* mb = n->as_MemBar();
3113     if (mb->trailing_store() || mb->trailing_load_store()) {
3114       assert(mb->leading_membar()->trailing_membar() == mb, "bad membar pair");
3115       Node* mem = BarrierSet::barrier_set()->barrier_set_c2()->step_over_gc_barrier(mb->in(MemBarNode::Precedent));
3116       assert((mb->trailing_store() && mem->is_Store() && mem->as_Store()->is_release()) ||
3117              (mb->trailing_load_store() && mem->is_LoadStore()), "missing mem op");
3118     } else if (mb->leading()) {
3119       assert(mb->trailing_membar()->leading_membar() == mb, "bad membar pair");
3120     }
3121   }
3122 #endif
3123   // Count FPU ops and common calls, implements item (3)
3124   bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->final_graph_reshaping(this, n, nop, dead_nodes);
3125   if (!gc_handled) {
3126     final_graph_reshaping_main_switch(n, frc, nop, dead_nodes);
3127   }
3128 
3129   // Collect CFG split points
3130   if (n->is_MultiBranch() && !n->is_RangeCheck()) {
3131     frc._tests.push(n);
3132   }
3133 }
3134 
3135 void Compile::handle_div_mod_op(Node* n, BasicType bt, bool is_unsigned) {
3136   if (!UseDivMod) {
3137     return;
3138   }
3139 
3140   // Check if "a % b" and "a / b" both exist
3141   Node* d = n->find_similar(Op_DivIL(bt, is_unsigned));
3142   if (d == nullptr) {
3143     return;
3144   }
3145 
3146   // Replace them with a fused divmod if supported
3147   if (Matcher::has_match_rule(Op_DivModIL(bt, is_unsigned))) {
3148     DivModNode* divmod = DivModNode::make(n, bt, is_unsigned);
3149     // If the divisor input for a Div (or Mod etc.) is not zero, then the control input of the Div is set to zero.
3150     // It could be that the divisor input is found not zero because its type is narrowed down by a CastII in the
3151     // subgraph for that input. Range check CastIIs are removed during final graph reshape. To preserve the dependency
3152     // carried by a CastII, precedence edges are added to the Div node. We need to transfer the precedence edges to the
3153     // DivMod node so the dependency is not lost.
3154     divmod->add_prec_from(n);
3155     divmod->add_prec_from(d);
3156     d->subsume_by(divmod->div_proj(), this);
3157     n->subsume_by(divmod->mod_proj(), this);
3158   } else {
3159     // Replace "a % b" with "a - ((a / b) * b)"
3160     Node* mult = MulNode::make(d, d->in(2), bt);
3161     Node* sub = SubNode::make(d->in(1), mult, bt);
3162     n->subsume_by(sub, this);
3163   }
3164 }
3165 
3166 void Compile::final_graph_reshaping_main_switch(Node* n, Final_Reshape_Counts& frc, uint nop, Unique_Node_List& dead_nodes) {
3167   switch( nop ) {
3168   // Count all float operations that may use FPU
3169   case Op_AddF:
3170   case Op_SubF:
3171   case Op_MulF:
3172   case Op_DivF:
3173   case Op_NegF:
3174   case Op_ModF:
3175   case Op_ConvI2F:
3176   case Op_ConF:
3177   case Op_CmpF:
3178   case Op_CmpF3:
3179   case Op_StoreF:
3180   case Op_LoadF:
3181   // case Op_ConvL2F: // longs are split into 32-bit halves
3182     frc.inc_float_count();
3183     break;
3184 
3185   case Op_ConvF2D:
3186   case Op_ConvD2F:
3187     frc.inc_float_count();
3188     frc.inc_double_count();
3189     break;
3190 
3191   // Count all double operations that may use FPU
3192   case Op_AddD:
3193   case Op_SubD:
3194   case Op_MulD:
3195   case Op_DivD:
3196   case Op_NegD:
3197   case Op_ModD:
3198   case Op_ConvI2D:
3199   case Op_ConvD2I:
3200   // case Op_ConvL2D: // handled by leaf call
3201   // case Op_ConvD2L: // handled by leaf call
3202   case Op_ConD:
3203   case Op_CmpD:
3204   case Op_CmpD3:
3205   case Op_StoreD:
3206   case Op_LoadD:
3207   case Op_LoadD_unaligned:
3208     frc.inc_double_count();
3209     break;
3210   case Op_Opaque1:              // Remove Opaque Nodes before matching
3211     n->subsume_by(n->in(1), this);
3212     break;
3213   case Op_CallStaticJava:
3214   case Op_CallJava:
3215   case Op_CallDynamicJava:
3216     frc.inc_java_call_count(); // Count java call site;
3217   case Op_CallRuntime:
3218   case Op_CallLeaf:
3219   case Op_CallLeafVector:
3220   case Op_CallLeafNoFP: {
3221     assert (n->is_Call(), "");
3222     CallNode *call = n->as_Call();
3223     // Count call sites where the FP mode bit would have to be flipped.
3224     // Do not count uncommon runtime calls:
3225     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
3226     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
3227     if (!call->is_CallStaticJava() || !call->as_CallStaticJava()->_name) {
3228       frc.inc_call_count();   // Count the call site
3229     } else {                  // See if uncommon argument is shared
3230       Node *n = call->in(TypeFunc::Parms);
3231       int nop = n->Opcode();
3232       // Clone shared simple arguments to uncommon calls, item (1).
3233       if (n->outcnt() > 1 &&
3234           !n->is_Proj() &&
3235           nop != Op_CreateEx &&
3236           nop != Op_CheckCastPP &&
3237           nop != Op_DecodeN &&
3238           nop != Op_DecodeNKlass &&
3239           !n->is_Mem() &&
3240           !n->is_Phi()) {
3241         Node *x = n->clone();
3242         call->set_req(TypeFunc::Parms, x);
3243       }
3244     }
3245     break;
3246   }
3247   case Op_StoreB:
3248   case Op_StoreC:
3249   case Op_StoreI:
3250   case Op_StoreL:
3251   case Op_CompareAndSwapB:
3252   case Op_CompareAndSwapS:
3253   case Op_CompareAndSwapI:
3254   case Op_CompareAndSwapL:
3255   case Op_CompareAndSwapP:
3256   case Op_CompareAndSwapN:
3257   case Op_WeakCompareAndSwapB:
3258   case Op_WeakCompareAndSwapS:
3259   case Op_WeakCompareAndSwapI:
3260   case Op_WeakCompareAndSwapL:
3261   case Op_WeakCompareAndSwapP:
3262   case Op_WeakCompareAndSwapN:
3263   case Op_CompareAndExchangeB:
3264   case Op_CompareAndExchangeS:
3265   case Op_CompareAndExchangeI:
3266   case Op_CompareAndExchangeL:
3267   case Op_CompareAndExchangeP:
3268   case Op_CompareAndExchangeN:
3269   case Op_GetAndAddS:
3270   case Op_GetAndAddB:
3271   case Op_GetAndAddI:
3272   case Op_GetAndAddL:
3273   case Op_GetAndSetS:
3274   case Op_GetAndSetB:
3275   case Op_GetAndSetI:
3276   case Op_GetAndSetL:
3277   case Op_GetAndSetP:
3278   case Op_GetAndSetN:
3279   case Op_StoreP:
3280   case Op_StoreN:
3281   case Op_StoreNKlass:
3282   case Op_LoadB:
3283   case Op_LoadUB:
3284   case Op_LoadUS:
3285   case Op_LoadI:
3286   case Op_LoadKlass:
3287   case Op_LoadNKlass:
3288   case Op_LoadL:
3289   case Op_LoadL_unaligned:
3290   case Op_LoadP:
3291   case Op_LoadN:
3292   case Op_LoadRange:
3293   case Op_LoadS:
3294     break;
3295 
3296   case Op_AddP: {               // Assert sane base pointers
3297     Node *addp = n->in(AddPNode::Address);
3298     assert( !addp->is_AddP() ||
3299             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
3300             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
3301             "Base pointers must match (addp %u)", addp->_idx );
3302 #ifdef _LP64
3303     if ((UseCompressedOops || UseCompressedClassPointers) &&
3304         addp->Opcode() == Op_ConP &&
3305         addp == n->in(AddPNode::Base) &&
3306         n->in(AddPNode::Offset)->is_Con()) {
3307       // If the transformation of ConP to ConN+DecodeN is beneficial depends
3308       // on the platform and on the compressed oops mode.
3309       // Use addressing with narrow klass to load with offset on x86.
3310       // Some platforms can use the constant pool to load ConP.
3311       // Do this transformation here since IGVN will convert ConN back to ConP.
3312       const Type* t = addp->bottom_type();
3313       bool is_oop   = t->isa_oopptr() != nullptr;
3314       bool is_klass = t->isa_klassptr() != nullptr;
3315 
3316       if ((is_oop   && UseCompressedOops          && Matcher::const_oop_prefer_decode()  ) ||
3317           (is_klass && UseCompressedClassPointers && Matcher::const_klass_prefer_decode() &&
3318            t->isa_klassptr()->exact_klass()->is_in_encoding_range())) {
3319         Node* nn = nullptr;
3320 
3321         int op = is_oop ? Op_ConN : Op_ConNKlass;
3322 
3323         // Look for existing ConN node of the same exact type.
3324         Node* r  = root();
3325         uint cnt = r->outcnt();
3326         for (uint i = 0; i < cnt; i++) {
3327           Node* m = r->raw_out(i);
3328           if (m!= nullptr && m->Opcode() == op &&
3329               m->bottom_type()->make_ptr() == t) {
3330             nn = m;
3331             break;
3332           }
3333         }
3334         if (nn != nullptr) {
3335           // Decode a narrow oop to match address
3336           // [R12 + narrow_oop_reg<<3 + offset]
3337           if (is_oop) {
3338             nn = new DecodeNNode(nn, t);
3339           } else {
3340             nn = new DecodeNKlassNode(nn, t);
3341           }
3342           // Check for succeeding AddP which uses the same Base.
3343           // Otherwise we will run into the assertion above when visiting that guy.
3344           for (uint i = 0; i < n->outcnt(); ++i) {
3345             Node *out_i = n->raw_out(i);
3346             if (out_i && out_i->is_AddP() && out_i->in(AddPNode::Base) == addp) {
3347               out_i->set_req(AddPNode::Base, nn);
3348 #ifdef ASSERT
3349               for (uint j = 0; j < out_i->outcnt(); ++j) {
3350                 Node *out_j = out_i->raw_out(j);
3351                 assert(out_j == nullptr || !out_j->is_AddP() || out_j->in(AddPNode::Base) != addp,
3352                        "more than 2 AddP nodes in a chain (out_j %u)", out_j->_idx);
3353               }
3354 #endif
3355             }
3356           }
3357           n->set_req(AddPNode::Base, nn);
3358           n->set_req(AddPNode::Address, nn);
3359           if (addp->outcnt() == 0) {
3360             addp->disconnect_inputs(this);
3361           }
3362         }
3363       }
3364     }
3365 #endif
3366     break;
3367   }
3368 
3369   case Op_CastPP: {
3370     // Remove CastPP nodes to gain more freedom during scheduling but
3371     // keep the dependency they encode as control or precedence edges
3372     // (if control is set already) on memory operations. Some CastPP
3373     // nodes don't have a control (don't carry a dependency): skip
3374     // those.
3375     if (n->in(0) != nullptr) {
3376       ResourceMark rm;
3377       Unique_Node_List wq;
3378       wq.push(n);
3379       for (uint next = 0; next < wq.size(); ++next) {
3380         Node *m = wq.at(next);
3381         for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) {
3382           Node* use = m->fast_out(i);
3383           if (use->is_Mem() || use->is_EncodeNarrowPtr()) {
3384             use->ensure_control_or_add_prec(n->in(0));
3385           } else {
3386             switch(use->Opcode()) {
3387             case Op_AddP:
3388             case Op_DecodeN:
3389             case Op_DecodeNKlass:
3390             case Op_CheckCastPP:
3391             case Op_CastPP:
3392               wq.push(use);
3393               break;
3394             }
3395           }
3396         }
3397       }
3398     }
3399     const bool is_LP64 = LP64_ONLY(true) NOT_LP64(false);
3400     if (is_LP64 && n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
3401       Node* in1 = n->in(1);
3402       const Type* t = n->bottom_type();
3403       Node* new_in1 = in1->clone();
3404       new_in1->as_DecodeN()->set_type(t);
3405 
3406       if (!Matcher::narrow_oop_use_complex_address()) {
3407         //
3408         // x86, ARM and friends can handle 2 adds in addressing mode
3409         // and Matcher can fold a DecodeN node into address by using
3410         // a narrow oop directly and do implicit null check in address:
3411         //
3412         // [R12 + narrow_oop_reg<<3 + offset]
3413         // NullCheck narrow_oop_reg
3414         //
3415         // On other platforms (Sparc) we have to keep new DecodeN node and
3416         // use it to do implicit null check in address:
3417         //
3418         // decode_not_null narrow_oop_reg, base_reg
3419         // [base_reg + offset]
3420         // NullCheck base_reg
3421         //
3422         // Pin the new DecodeN node to non-null path on these platform (Sparc)
3423         // to keep the information to which null check the new DecodeN node
3424         // corresponds to use it as value in implicit_null_check().
3425         //
3426         new_in1->set_req(0, n->in(0));
3427       }
3428 
3429       n->subsume_by(new_in1, this);
3430       if (in1->outcnt() == 0) {
3431         in1->disconnect_inputs(this);
3432       }
3433     } else {
3434       n->subsume_by(n->in(1), this);
3435       if (n->outcnt() == 0) {
3436         n->disconnect_inputs(this);
3437       }
3438     }
3439     break;
3440   }
3441   case Op_CastII: {
3442     n->as_CastII()->remove_range_check_cast(this);
3443     break;
3444   }
3445 #ifdef _LP64
3446   case Op_CmpP:
3447     // Do this transformation here to preserve CmpPNode::sub() and
3448     // other TypePtr related Ideal optimizations (for example, ptr nullness).
3449     if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
3450       Node* in1 = n->in(1);
3451       Node* in2 = n->in(2);
3452       if (!in1->is_DecodeNarrowPtr()) {
3453         in2 = in1;
3454         in1 = n->in(2);
3455       }
3456       assert(in1->is_DecodeNarrowPtr(), "sanity");
3457 
3458       Node* new_in2 = nullptr;
3459       if (in2->is_DecodeNarrowPtr()) {
3460         assert(in2->Opcode() == in1->Opcode(), "must be same node type");
3461         new_in2 = in2->in(1);
3462       } else if (in2->Opcode() == Op_ConP) {
3463         const Type* t = in2->bottom_type();
3464         if (t == TypePtr::NULL_PTR) {
3465           assert(in1->is_DecodeN(), "compare klass to null?");
3466           // Don't convert CmpP null check into CmpN if compressed
3467           // oops implicit null check is not generated.
3468           // This will allow to generate normal oop implicit null check.
3469           if (Matcher::gen_narrow_oop_implicit_null_checks())
3470             new_in2 = ConNode::make(TypeNarrowOop::NULL_PTR);
3471           //
3472           // This transformation together with CastPP transformation above
3473           // will generated code for implicit null checks for compressed oops.
3474           //
3475           // The original code after Optimize()
3476           //
3477           //    LoadN memory, narrow_oop_reg
3478           //    decode narrow_oop_reg, base_reg
3479           //    CmpP base_reg, nullptr
3480           //    CastPP base_reg // NotNull
3481           //    Load [base_reg + offset], val_reg
3482           //
3483           // after these transformations will be
3484           //
3485           //    LoadN memory, narrow_oop_reg
3486           //    CmpN narrow_oop_reg, nullptr
3487           //    decode_not_null narrow_oop_reg, base_reg
3488           //    Load [base_reg + offset], val_reg
3489           //
3490           // and the uncommon path (== nullptr) will use narrow_oop_reg directly
3491           // since narrow oops can be used in debug info now (see the code in
3492           // final_graph_reshaping_walk()).
3493           //
3494           // At the end the code will be matched to
3495           // on x86:
3496           //
3497           //    Load_narrow_oop memory, narrow_oop_reg
3498           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
3499           //    NullCheck narrow_oop_reg
3500           //
3501           // and on sparc:
3502           //
3503           //    Load_narrow_oop memory, narrow_oop_reg
3504           //    decode_not_null narrow_oop_reg, base_reg
3505           //    Load [base_reg + offset], val_reg
3506           //    NullCheck base_reg
3507           //
3508         } else if (t->isa_oopptr()) {
3509           new_in2 = ConNode::make(t->make_narrowoop());
3510         } else if (t->isa_klassptr()) {
3511           new_in2 = ConNode::make(t->make_narrowklass());
3512         }
3513       }
3514       if (new_in2 != nullptr) {
3515         Node* cmpN = new CmpNNode(in1->in(1), new_in2);
3516         n->subsume_by(cmpN, this);
3517         if (in1->outcnt() == 0) {
3518           in1->disconnect_inputs(this);
3519         }
3520         if (in2->outcnt() == 0) {
3521           in2->disconnect_inputs(this);
3522         }
3523       }
3524     }
3525     break;
3526 
3527   case Op_DecodeN:
3528   case Op_DecodeNKlass:
3529     assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
3530     // DecodeN could be pinned when it can't be fold into
3531     // an address expression, see the code for Op_CastPP above.
3532     assert(n->in(0) == nullptr || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
3533     break;
3534 
3535   case Op_EncodeP:
3536   case Op_EncodePKlass: {
3537     Node* in1 = n->in(1);
3538     if (in1->is_DecodeNarrowPtr()) {
3539       n->subsume_by(in1->in(1), this);
3540     } else if (in1->Opcode() == Op_ConP) {
3541       const Type* t = in1->bottom_type();
3542       if (t == TypePtr::NULL_PTR) {
3543         assert(t->isa_oopptr(), "null klass?");
3544         n->subsume_by(ConNode::make(TypeNarrowOop::NULL_PTR), this);
3545       } else if (t->isa_oopptr()) {
3546         n->subsume_by(ConNode::make(t->make_narrowoop()), this);
3547       } else if (t->isa_klassptr()) {
3548         n->subsume_by(ConNode::make(t->make_narrowklass()), this);
3549       }
3550     }
3551     if (in1->outcnt() == 0) {
3552       in1->disconnect_inputs(this);
3553     }
3554     break;
3555   }
3556 
3557   case Op_Proj: {
3558     if (OptimizeStringConcat || IncrementalInline) {
3559       ProjNode* proj = n->as_Proj();
3560       if (proj->_is_io_use) {
3561         assert(proj->_con == TypeFunc::I_O || proj->_con == TypeFunc::Memory, "");
3562         // Separate projections were used for the exception path which
3563         // are normally removed by a late inline.  If it wasn't inlined
3564         // then they will hang around and should just be replaced with
3565         // the original one. Merge them.
3566         Node* non_io_proj = proj->in(0)->as_Multi()->proj_out_or_null(proj->_con, false /*is_io_use*/);
3567         if (non_io_proj  != nullptr) {
3568           proj->subsume_by(non_io_proj , this);
3569         }
3570       }
3571     }
3572     break;
3573   }
3574 
3575   case Op_Phi:
3576     if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
3577       // The EncodeP optimization may create Phi with the same edges
3578       // for all paths. It is not handled well by Register Allocator.
3579       Node* unique_in = n->in(1);
3580       assert(unique_in != nullptr, "");
3581       uint cnt = n->req();
3582       for (uint i = 2; i < cnt; i++) {
3583         Node* m = n->in(i);
3584         assert(m != nullptr, "");
3585         if (unique_in != m)
3586           unique_in = nullptr;
3587       }
3588       if (unique_in != nullptr) {
3589         n->subsume_by(unique_in, this);
3590       }
3591     }
3592     break;
3593 
3594 #endif
3595 
3596   case Op_ModI:
3597     handle_div_mod_op(n, T_INT, false);
3598     break;
3599 
3600   case Op_ModL:
3601     handle_div_mod_op(n, T_LONG, false);
3602     break;
3603 
3604   case Op_UModI:
3605     handle_div_mod_op(n, T_INT, true);
3606     break;
3607 
3608   case Op_UModL:
3609     handle_div_mod_op(n, T_LONG, true);
3610     break;
3611 
3612   case Op_LoadVector:
3613   case Op_StoreVector:
3614 #ifdef ASSERT
3615     // Add VerifyVectorAlignment node between adr and load / store.
3616     if (VerifyAlignVector && Matcher::has_match_rule(Op_VerifyVectorAlignment)) {
3617       bool must_verify_alignment = n->is_LoadVector() ? n->as_LoadVector()->must_verify_alignment() :
3618                                                         n->as_StoreVector()->must_verify_alignment();
3619       if (must_verify_alignment) {
3620         jlong vector_width = n->is_LoadVector() ? n->as_LoadVector()->memory_size() :
3621                                                   n->as_StoreVector()->memory_size();
3622         // The memory access should be aligned to the vector width in bytes.
3623         // However, the underlying array is possibly less well aligned, but at least
3624         // to ObjectAlignmentInBytes. Hence, even if multiple arrays are accessed in
3625         // a loop we can expect at least the following alignment:
3626         jlong guaranteed_alignment = MIN2(vector_width, (jlong)ObjectAlignmentInBytes);
3627         assert(2 <= guaranteed_alignment && guaranteed_alignment <= 64, "alignment must be in range");
3628         assert(is_power_of_2(guaranteed_alignment), "alignment must be power of 2");
3629         // Create mask from alignment. e.g. 0b1000 -> 0b0111
3630         jlong mask = guaranteed_alignment - 1;
3631         Node* mask_con = ConLNode::make(mask);
3632         VerifyVectorAlignmentNode* va = new VerifyVectorAlignmentNode(n->in(MemNode::Address), mask_con);
3633         n->set_req(MemNode::Address, va);
3634       }
3635     }
3636 #endif
3637     break;
3638 
3639   case Op_LoadVectorGather:
3640   case Op_StoreVectorScatter:
3641   case Op_LoadVectorGatherMasked:
3642   case Op_StoreVectorScatterMasked:
3643   case Op_VectorCmpMasked:
3644   case Op_VectorMaskGen:
3645   case Op_LoadVectorMasked:
3646   case Op_StoreVectorMasked:
3647     break;
3648 
3649   case Op_AddReductionVI:
3650   case Op_AddReductionVL:
3651   case Op_AddReductionVF:
3652   case Op_AddReductionVD:
3653   case Op_MulReductionVI:
3654   case Op_MulReductionVL:
3655   case Op_MulReductionVF:
3656   case Op_MulReductionVD:
3657   case Op_MinReductionV:
3658   case Op_MaxReductionV:
3659   case Op_AndReductionV:
3660   case Op_OrReductionV:
3661   case Op_XorReductionV:
3662     break;
3663 
3664   case Op_PackB:
3665   case Op_PackS:
3666   case Op_PackI:
3667   case Op_PackF:
3668   case Op_PackL:
3669   case Op_PackD:
3670     if (n->req()-1 > 2) {
3671       // Replace many operand PackNodes with a binary tree for matching
3672       PackNode* p = (PackNode*) n;
3673       Node* btp = p->binary_tree_pack(1, n->req());
3674       n->subsume_by(btp, this);
3675     }
3676     break;
3677   case Op_Loop:
3678     assert(!n->as_Loop()->is_loop_nest_inner_loop() || _loop_opts_cnt == 0, "should have been turned into a counted loop");
3679   case Op_CountedLoop:
3680   case Op_LongCountedLoop:
3681   case Op_OuterStripMinedLoop:
3682     if (n->as_Loop()->is_inner_loop()) {
3683       frc.inc_inner_loop_count();
3684     }
3685     n->as_Loop()->verify_strip_mined(0);
3686     break;
3687   case Op_LShiftI:
3688   case Op_RShiftI:
3689   case Op_URShiftI:
3690   case Op_LShiftL:
3691   case Op_RShiftL:
3692   case Op_URShiftL:
3693     if (Matcher::need_masked_shift_count) {
3694       // The cpu's shift instructions don't restrict the count to the
3695       // lower 5/6 bits. We need to do the masking ourselves.
3696       Node* in2 = n->in(2);
3697       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
3698       const TypeInt* t = in2->find_int_type();
3699       if (t != nullptr && t->is_con()) {
3700         juint shift = t->get_con();
3701         if (shift > mask) { // Unsigned cmp
3702           n->set_req(2, ConNode::make(TypeInt::make(shift & mask)));
3703         }
3704       } else {
3705         if (t == nullptr || t->_lo < 0 || t->_hi > (int)mask) {
3706           Node* shift = new AndINode(in2, ConNode::make(TypeInt::make(mask)));
3707           n->set_req(2, shift);
3708         }
3709       }
3710       if (in2->outcnt() == 0) { // Remove dead node
3711         in2->disconnect_inputs(this);
3712       }
3713     }
3714     break;
3715   case Op_MemBarStoreStore:
3716   case Op_MemBarRelease:
3717     // Break the link with AllocateNode: it is no longer useful and
3718     // confuses register allocation.
3719     if (n->req() > MemBarNode::Precedent) {
3720       n->set_req(MemBarNode::Precedent, top());
3721     }
3722     break;
3723   case Op_MemBarAcquire: {
3724     if (n->as_MemBar()->trailing_load() && n->req() > MemBarNode::Precedent) {
3725       // At parse time, the trailing MemBarAcquire for a volatile load
3726       // is created with an edge to the load. After optimizations,
3727       // that input may be a chain of Phis. If those phis have no
3728       // other use, then the MemBarAcquire keeps them alive and
3729       // register allocation can be confused.
3730       dead_nodes.push(n->in(MemBarNode::Precedent));
3731       n->set_req(MemBarNode::Precedent, top());
3732     }
3733     break;
3734   }
3735   case Op_Blackhole:
3736     break;
3737   case Op_RangeCheck: {
3738     RangeCheckNode* rc = n->as_RangeCheck();
3739     Node* iff = new IfNode(rc->in(0), rc->in(1), rc->_prob, rc->_fcnt);
3740     n->subsume_by(iff, this);
3741     frc._tests.push(iff);
3742     break;
3743   }
3744   case Op_ConvI2L: {
3745     if (!Matcher::convi2l_type_required) {
3746       // Code generation on some platforms doesn't need accurate
3747       // ConvI2L types. Widening the type can help remove redundant
3748       // address computations.
3749       n->as_Type()->set_type(TypeLong::INT);
3750       ResourceMark rm;
3751       Unique_Node_List wq;
3752       wq.push(n);
3753       for (uint next = 0; next < wq.size(); next++) {
3754         Node *m = wq.at(next);
3755 
3756         for(;;) {
3757           // Loop over all nodes with identical inputs edges as m
3758           Node* k = m->find_similar(m->Opcode());
3759           if (k == nullptr) {
3760             break;
3761           }
3762           // Push their uses so we get a chance to remove node made
3763           // redundant
3764           for (DUIterator_Fast imax, i = k->fast_outs(imax); i < imax; i++) {
3765             Node* u = k->fast_out(i);
3766             if (u->Opcode() == Op_LShiftL ||
3767                 u->Opcode() == Op_AddL ||
3768                 u->Opcode() == Op_SubL ||
3769                 u->Opcode() == Op_AddP) {
3770               wq.push(u);
3771             }
3772           }
3773           // Replace all nodes with identical edges as m with m
3774           k->subsume_by(m, this);
3775         }
3776       }
3777     }
3778     break;
3779   }
3780   case Op_CmpUL: {
3781     if (!Matcher::has_match_rule(Op_CmpUL)) {
3782       // No support for unsigned long comparisons
3783       ConINode* sign_pos = new ConINode(TypeInt::make(BitsPerLong - 1));
3784       Node* sign_bit_mask = new RShiftLNode(n->in(1), sign_pos);
3785       Node* orl = new OrLNode(n->in(1), sign_bit_mask);
3786       ConLNode* remove_sign_mask = new ConLNode(TypeLong::make(max_jlong));
3787       Node* andl = new AndLNode(orl, remove_sign_mask);
3788       Node* cmp = new CmpLNode(andl, n->in(2));
3789       n->subsume_by(cmp, this);
3790     }
3791     break;
3792   }
3793 #ifdef ASSERT
3794   case Op_ConNKlass: {
3795     const TypePtr* tp = n->as_Type()->type()->make_ptr();
3796     ciKlass* klass = tp->is_klassptr()->exact_klass();
3797     assert(klass->is_in_encoding_range(), "klass cannot be compressed");
3798     break;
3799   }
3800 #endif
3801   default:
3802     assert(!n->is_Call(), "");
3803     assert(!n->is_Mem(), "");
3804     assert(nop != Op_ProfileBoolean, "should be eliminated during IGVN");
3805     break;
3806   }
3807 }
3808 
3809 //------------------------------final_graph_reshaping_walk---------------------
3810 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
3811 // requires that the walk visits a node's inputs before visiting the node.
3812 void Compile::final_graph_reshaping_walk(Node_Stack& nstack, Node* root, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes) {
3813   Unique_Node_List sfpt;
3814 
3815   frc._visited.set(root->_idx); // first, mark node as visited
3816   uint cnt = root->req();
3817   Node *n = root;
3818   uint  i = 0;
3819   while (true) {
3820     if (i < cnt) {
3821       // Place all non-visited non-null inputs onto stack
3822       Node* m = n->in(i);
3823       ++i;
3824       if (m != nullptr && !frc._visited.test_set(m->_idx)) {
3825         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != nullptr) {
3826           // compute worst case interpreter size in case of a deoptimization
3827           update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size());
3828 
3829           sfpt.push(m);
3830         }
3831         cnt = m->req();
3832         nstack.push(n, i); // put on stack parent and next input's index
3833         n = m;
3834         i = 0;
3835       }
3836     } else {
3837       // Now do post-visit work
3838       final_graph_reshaping_impl(n, frc, dead_nodes);
3839       if (nstack.is_empty())
3840         break;             // finished
3841       n = nstack.node();   // Get node from stack
3842       cnt = n->req();
3843       i = nstack.index();
3844       nstack.pop();        // Shift to the next node on stack
3845     }
3846   }
3847 
3848   // Skip next transformation if compressed oops are not used.
3849   if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
3850       (!UseCompressedOops && !UseCompressedClassPointers))
3851     return;
3852 
3853   // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
3854   // It could be done for an uncommon traps or any safepoints/calls
3855   // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
3856   while (sfpt.size() > 0) {
3857     n = sfpt.pop();
3858     JVMState *jvms = n->as_SafePoint()->jvms();
3859     assert(jvms != nullptr, "sanity");
3860     int start = jvms->debug_start();
3861     int end   = n->req();
3862     bool is_uncommon = (n->is_CallStaticJava() &&
3863                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
3864     for (int j = start; j < end; j++) {
3865       Node* in = n->in(j);
3866       if (in->is_DecodeNarrowPtr()) {
3867         bool safe_to_skip = true;
3868         if (!is_uncommon ) {
3869           // Is it safe to skip?
3870           for (uint i = 0; i < in->outcnt(); i++) {
3871             Node* u = in->raw_out(i);
3872             if (!u->is_SafePoint() ||
3873                 (u->is_Call() && u->as_Call()->has_non_debug_use(n))) {
3874               safe_to_skip = false;
3875             }
3876           }
3877         }
3878         if (safe_to_skip) {
3879           n->set_req(j, in->in(1));
3880         }
3881         if (in->outcnt() == 0) {
3882           in->disconnect_inputs(this);
3883         }
3884       }
3885     }
3886   }
3887 }
3888 
3889 //------------------------------final_graph_reshaping--------------------------
3890 // Final Graph Reshaping.
3891 //
3892 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
3893 //     and not commoned up and forced early.  Must come after regular
3894 //     optimizations to avoid GVN undoing the cloning.  Clone constant
3895 //     inputs to Loop Phis; these will be split by the allocator anyways.
3896 //     Remove Opaque nodes.
3897 // (2) Move last-uses by commutative operations to the left input to encourage
3898 //     Intel update-in-place two-address operations and better register usage
3899 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
3900 //     calls canonicalizing them back.
3901 // (3) Count the number of double-precision FP ops, single-precision FP ops
3902 //     and call sites.  On Intel, we can get correct rounding either by
3903 //     forcing singles to memory (requires extra stores and loads after each
3904 //     FP bytecode) or we can set a rounding mode bit (requires setting and
3905 //     clearing the mode bit around call sites).  The mode bit is only used
3906 //     if the relative frequency of single FP ops to calls is low enough.
3907 //     This is a key transform for SPEC mpeg_audio.
3908 // (4) Detect infinite loops; blobs of code reachable from above but not
3909 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
3910 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
3911 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
3912 //     Detection is by looking for IfNodes where only 1 projection is
3913 //     reachable from below or CatchNodes missing some targets.
3914 // (5) Assert for insane oop offsets in debug mode.
3915 
3916 bool Compile::final_graph_reshaping() {
3917   // an infinite loop may have been eliminated by the optimizer,
3918   // in which case the graph will be empty.
3919   if (root()->req() == 1) {
3920     // Do not compile method that is only a trivial infinite loop,
3921     // since the content of the loop may have been eliminated.
3922     record_method_not_compilable("trivial infinite loop");
3923     return true;
3924   }
3925 
3926   // Expensive nodes have their control input set to prevent the GVN
3927   // from freely commoning them. There's no GVN beyond this point so
3928   // no need to keep the control input. We want the expensive nodes to
3929   // be freely moved to the least frequent code path by gcm.
3930   assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
3931   for (int i = 0; i < expensive_count(); i++) {
3932     _expensive_nodes.at(i)->set_req(0, nullptr);
3933   }
3934 
3935   Final_Reshape_Counts frc;
3936 
3937   // Visit everybody reachable!
3938   // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc
3939   Node_Stack nstack(live_nodes() >> 1);
3940   Unique_Node_List dead_nodes;
3941   final_graph_reshaping_walk(nstack, root(), frc, dead_nodes);
3942 
3943   // Check for unreachable (from below) code (i.e., infinite loops).
3944   for( uint i = 0; i < frc._tests.size(); i++ ) {
3945     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
3946     // Get number of CFG targets.
3947     // Note that PCTables include exception targets after calls.
3948     uint required_outcnt = n->required_outcnt();
3949     if (n->outcnt() != required_outcnt) {
3950       // Check for a few special cases.  Rethrow Nodes never take the
3951       // 'fall-thru' path, so expected kids is 1 less.
3952       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
3953         if (n->in(0)->in(0)->is_Call()) {
3954           CallNode* call = n->in(0)->in(0)->as_Call();
3955           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
3956             required_outcnt--;      // Rethrow always has 1 less kid
3957           } else if (call->req() > TypeFunc::Parms &&
3958                      call->is_CallDynamicJava()) {
3959             // Check for null receiver. In such case, the optimizer has
3960             // detected that the virtual call will always result in a null
3961             // pointer exception. The fall-through projection of this CatchNode
3962             // will not be populated.
3963             Node* arg0 = call->in(TypeFunc::Parms);
3964             if (arg0->is_Type() &&
3965                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
3966               required_outcnt--;
3967             }
3968           } else if (call->entry_point() == OptoRuntime::new_array_Java() ||
3969                      call->entry_point() == OptoRuntime::new_array_nozero_Java()) {
3970             // Check for illegal array length. In such case, the optimizer has
3971             // detected that the allocation attempt will always result in an
3972             // exception. There is no fall-through projection of this CatchNode .
3973             assert(call->is_CallStaticJava(), "static call expected");
3974             assert(call->req() == call->jvms()->endoff() + 1, "missing extra input");
3975             uint valid_length_test_input = call->req() - 1;
3976             Node* valid_length_test = call->in(valid_length_test_input);
3977             call->del_req(valid_length_test_input);
3978             if (valid_length_test->find_int_con(1) == 0) {
3979               required_outcnt--;
3980             }
3981             dead_nodes.push(valid_length_test);
3982             assert(n->outcnt() == required_outcnt, "malformed control flow");
3983             continue;
3984           }
3985         }
3986       }
3987 
3988       // Recheck with a better notion of 'required_outcnt'
3989       if (n->outcnt() != required_outcnt) {
3990         record_method_not_compilable("malformed control flow");
3991         return true;            // Not all targets reachable!
3992       }
3993     } else if (n->is_PCTable() && n->in(0) && n->in(0)->in(0) && n->in(0)->in(0)->is_Call()) {
3994       CallNode* call = n->in(0)->in(0)->as_Call();
3995       if (call->entry_point() == OptoRuntime::new_array_Java() ||
3996           call->entry_point() == OptoRuntime::new_array_nozero_Java()) {
3997         assert(call->is_CallStaticJava(), "static call expected");
3998         assert(call->req() == call->jvms()->endoff() + 1, "missing extra input");
3999         uint valid_length_test_input = call->req() - 1;
4000         dead_nodes.push(call->in(valid_length_test_input));
4001         call->del_req(valid_length_test_input); // valid length test useless now
4002       }
4003     }
4004     // Check that I actually visited all kids.  Unreached kids
4005     // must be infinite loops.
4006     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
4007       if (!frc._visited.test(n->fast_out(j)->_idx)) {
4008         record_method_not_compilable("infinite loop");
4009         return true;            // Found unvisited kid; must be unreach
4010       }
4011 
4012     // Here so verification code in final_graph_reshaping_walk()
4013     // always see an OuterStripMinedLoopEnd
4014     if (n->is_OuterStripMinedLoopEnd() || n->is_LongCountedLoopEnd()) {
4015       IfNode* init_iff = n->as_If();
4016       Node* iff = new IfNode(init_iff->in(0), init_iff->in(1), init_iff->_prob, init_iff->_fcnt);
4017       n->subsume_by(iff, this);
4018     }
4019   }
4020 
4021   while (dead_nodes.size() > 0) {
4022     Node* m = dead_nodes.pop();
4023     if (m->outcnt() == 0 && m != top()) {
4024       for (uint j = 0; j < m->req(); j++) {
4025         Node* in = m->in(j);
4026         if (in != nullptr) {
4027           dead_nodes.push(in);
4028         }
4029       }
4030       m->disconnect_inputs(this);
4031     }
4032   }
4033 
4034 #ifdef IA32
4035   // If original bytecodes contained a mixture of floats and doubles
4036   // check if the optimizer has made it homogeneous, item (3).
4037   if (UseSSE == 0 &&
4038       frc.get_float_count() > 32 &&
4039       frc.get_double_count() == 0 &&
4040       (10 * frc.get_call_count() < frc.get_float_count()) ) {
4041     set_24_bit_selection_and_mode(false, true);
4042   }
4043 #endif // IA32
4044 
4045   set_java_calls(frc.get_java_call_count());
4046   set_inner_loops(frc.get_inner_loop_count());
4047 
4048   // No infinite loops, no reason to bail out.
4049   return false;
4050 }
4051 
4052 //-----------------------------too_many_traps----------------------------------
4053 // Report if there are too many traps at the current method and bci.
4054 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
4055 bool Compile::too_many_traps(ciMethod* method,
4056                              int bci,
4057                              Deoptimization::DeoptReason reason) {
4058   ciMethodData* md = method->method_data();
4059   if (md->is_empty()) {
4060     // Assume the trap has not occurred, or that it occurred only
4061     // because of a transient condition during start-up in the interpreter.
4062     return false;
4063   }
4064   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : nullptr;
4065   if (md->has_trap_at(bci, m, reason) != 0) {
4066     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
4067     // Also, if there are multiple reasons, or if there is no per-BCI record,
4068     // assume the worst.
4069     if (log())
4070       log()->elem("observe trap='%s' count='%d'",
4071                   Deoptimization::trap_reason_name(reason),
4072                   md->trap_count(reason));
4073     return true;
4074   } else {
4075     // Ignore method/bci and see if there have been too many globally.
4076     return too_many_traps(reason, md);
4077   }
4078 }
4079 
4080 // Less-accurate variant which does not require a method and bci.
4081 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
4082                              ciMethodData* logmd) {
4083   if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) {
4084     // Too many traps globally.
4085     // Note that we use cumulative trap_count, not just md->trap_count.
4086     if (log()) {
4087       int mcount = (logmd == nullptr)? -1: (int)logmd->trap_count(reason);
4088       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
4089                   Deoptimization::trap_reason_name(reason),
4090                   mcount, trap_count(reason));
4091     }
4092     return true;
4093   } else {
4094     // The coast is clear.
4095     return false;
4096   }
4097 }
4098 
4099 //--------------------------too_many_recompiles--------------------------------
4100 // Report if there are too many recompiles at the current method and bci.
4101 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
4102 // Is not eager to return true, since this will cause the compiler to use
4103 // Action_none for a trap point, to avoid too many recompilations.
4104 bool Compile::too_many_recompiles(ciMethod* method,
4105                                   int bci,
4106                                   Deoptimization::DeoptReason reason) {
4107   ciMethodData* md = method->method_data();
4108   if (md->is_empty()) {
4109     // Assume the trap has not occurred, or that it occurred only
4110     // because of a transient condition during start-up in the interpreter.
4111     return false;
4112   }
4113   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
4114   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
4115   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
4116   Deoptimization::DeoptReason per_bc_reason
4117     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
4118   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : nullptr;
4119   if ((per_bc_reason == Deoptimization::Reason_none
4120        || md->has_trap_at(bci, m, reason) != 0)
4121       // The trap frequency measure we care about is the recompile count:
4122       && md->trap_recompiled_at(bci, m)
4123       && md->overflow_recompile_count() >= bc_cutoff) {
4124     // Do not emit a trap here if it has already caused recompilations.
4125     // Also, if there are multiple reasons, or if there is no per-BCI record,
4126     // assume the worst.
4127     if (log())
4128       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
4129                   Deoptimization::trap_reason_name(reason),
4130                   md->trap_count(reason),
4131                   md->overflow_recompile_count());
4132     return true;
4133   } else if (trap_count(reason) != 0
4134              && decompile_count() >= m_cutoff) {
4135     // Too many recompiles globally, and we have seen this sort of trap.
4136     // Use cumulative decompile_count, not just md->decompile_count.
4137     if (log())
4138       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
4139                   Deoptimization::trap_reason_name(reason),
4140                   md->trap_count(reason), trap_count(reason),
4141                   md->decompile_count(), decompile_count());
4142     return true;
4143   } else {
4144     // The coast is clear.
4145     return false;
4146   }
4147 }
4148 
4149 // Compute when not to trap. Used by matching trap based nodes and
4150 // NullCheck optimization.
4151 void Compile::set_allowed_deopt_reasons() {
4152   _allowed_reasons = 0;
4153   if (is_method_compilation()) {
4154     for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) {
4155       assert(rs < BitsPerInt, "recode bit map");
4156       if (!too_many_traps((Deoptimization::DeoptReason) rs)) {
4157         _allowed_reasons |= nth_bit(rs);
4158       }
4159     }
4160   }
4161 }
4162 
4163 bool Compile::needs_clinit_barrier(ciMethod* method, ciMethod* accessing_method) {
4164   return method->is_static() && needs_clinit_barrier(method->holder(), accessing_method);
4165 }
4166 
4167 bool Compile::needs_clinit_barrier(ciField* field, ciMethod* accessing_method) {
4168   return field->is_static() && needs_clinit_barrier(field->holder(), accessing_method);
4169 }
4170 
4171 bool Compile::needs_clinit_barrier(ciInstanceKlass* holder, ciMethod* accessing_method) {
4172   if (holder->is_initialized()) {
4173     return false;
4174   }
4175   if (holder->is_being_initialized()) {
4176     if (accessing_method->holder() == holder) {
4177       // Access inside a class. The barrier can be elided when access happens in <clinit>,
4178       // <init>, or a static method. In all those cases, there was an initialization
4179       // barrier on the holder klass passed.
4180       if (accessing_method->is_static_initializer() ||
4181           accessing_method->is_object_initializer() ||
4182           accessing_method->is_static()) {
4183         return false;
4184       }
4185     } else if (accessing_method->holder()->is_subclass_of(holder)) {
4186       // Access from a subclass. The barrier can be elided only when access happens in <clinit>.
4187       // In case of <init> or a static method, the barrier is on the subclass is not enough:
4188       // child class can become fully initialized while its parent class is still being initialized.
4189       if (accessing_method->is_static_initializer()) {
4190         return false;
4191       }
4192     }
4193     ciMethod* root = method(); // the root method of compilation
4194     if (root != accessing_method) {
4195       return needs_clinit_barrier(holder, root); // check access in the context of compilation root
4196     }
4197   }
4198   return true;
4199 }
4200 
4201 #ifndef PRODUCT
4202 //------------------------------verify_bidirectional_edges---------------------
4203 // For each input edge to a node (ie - for each Use-Def edge), verify that
4204 // there is a corresponding Def-Use edge.
4205 void Compile::verify_bidirectional_edges(Unique_Node_List &visited) {
4206   // Allocate stack of size C->live_nodes()/16 to avoid frequent realloc
4207   uint stack_size = live_nodes() >> 4;
4208   Node_List nstack(MAX2(stack_size, (uint)OptoNodeListSize));
4209   nstack.push(_root);
4210 
4211   while (nstack.size() > 0) {
4212     Node* n = nstack.pop();
4213     if (visited.member(n)) {
4214       continue;
4215     }
4216     visited.push(n);
4217 
4218     // Walk over all input edges, checking for correspondence
4219     uint length = n->len();
4220     for (uint i = 0; i < length; i++) {
4221       Node* in = n->in(i);
4222       if (in != nullptr && !visited.member(in)) {
4223         nstack.push(in); // Put it on stack
4224       }
4225       if (in != nullptr && !in->is_top()) {
4226         // Count instances of `next`
4227         int cnt = 0;
4228         for (uint idx = 0; idx < in->_outcnt; idx++) {
4229           if (in->_out[idx] == n) {
4230             cnt++;
4231           }
4232         }
4233         assert(cnt > 0, "Failed to find Def-Use edge.");
4234         // Check for duplicate edges
4235         // walk the input array downcounting the input edges to n
4236         for (uint j = 0; j < length; j++) {
4237           if (n->in(j) == in) {
4238             cnt--;
4239           }
4240         }
4241         assert(cnt == 0, "Mismatched edge count.");
4242       } else if (in == nullptr) {
4243         assert(i == 0 || i >= n->req() ||
4244                n->is_Region() || n->is_Phi() || n->is_ArrayCopy() ||
4245                (n->is_Unlock() && i == (n->req() - 1)) ||
4246                (n->is_MemBar() && i == 5), // the precedence edge to a membar can be removed during macro node expansion
4247               "only region, phi, arraycopy, unlock or membar nodes have null data edges");
4248       } else {
4249         assert(in->is_top(), "sanity");
4250         // Nothing to check.
4251       }
4252     }
4253   }
4254 }
4255 
4256 //------------------------------verify_graph_edges---------------------------
4257 // Walk the Graph and verify that there is a one-to-one correspondence
4258 // between Use-Def edges and Def-Use edges in the graph.
4259 void Compile::verify_graph_edges(bool no_dead_code) {
4260   if (VerifyGraphEdges) {
4261     Unique_Node_List visited;
4262 
4263     // Call graph walk to check edges
4264     verify_bidirectional_edges(visited);
4265     if (no_dead_code) {
4266       // Now make sure that no visited node is used by an unvisited node.
4267       bool dead_nodes = false;
4268       Unique_Node_List checked;
4269       while (visited.size() > 0) {
4270         Node* n = visited.pop();
4271         checked.push(n);
4272         for (uint i = 0; i < n->outcnt(); i++) {
4273           Node* use = n->raw_out(i);
4274           if (checked.member(use))  continue;  // already checked
4275           if (visited.member(use))  continue;  // already in the graph
4276           if (use->is_Con())        continue;  // a dead ConNode is OK
4277           // At this point, we have found a dead node which is DU-reachable.
4278           if (!dead_nodes) {
4279             tty->print_cr("*** Dead nodes reachable via DU edges:");
4280             dead_nodes = true;
4281           }
4282           use->dump(2);
4283           tty->print_cr("---");
4284           checked.push(use);  // No repeats; pretend it is now checked.
4285         }
4286       }
4287       assert(!dead_nodes, "using nodes must be reachable from root");
4288     }
4289   }
4290 }
4291 #endif
4292 
4293 // The Compile object keeps track of failure reasons separately from the ciEnv.
4294 // This is required because there is not quite a 1-1 relation between the
4295 // ciEnv and its compilation task and the Compile object.  Note that one
4296 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
4297 // to backtrack and retry without subsuming loads.  Other than this backtracking
4298 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
4299 // by the logic in C2Compiler.
4300 void Compile::record_failure(const char* reason DEBUG_ONLY(COMMA bool allow_multiple_failures)) {
4301   if (log() != nullptr) {
4302     log()->elem("failure reason='%s' phase='compile'", reason);
4303   }
4304   if (_failure_reason.get() == nullptr) {
4305     // Record the first failure reason.
4306     _failure_reason.set(reason);
4307     if (CaptureBailoutInformation) {
4308       _first_failure_details = new CompilationFailureInfo(reason);
4309     }
4310   } else {
4311     assert(!StressBailout || allow_multiple_failures, "should have handled previous failure.");
4312   }
4313 
4314   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
4315     C->print_method(PHASE_FAILURE, 1);
4316   }
4317   _root = nullptr;  // flush the graph, too
4318 }
4319 
4320 Compile::TracePhase::TracePhase(const char* name, PhaseTraceId id)
4321   : TraceTime(name, &Phase::timers[id], CITime, CITimeVerbose),
4322     _compile(Compile::current()),
4323     _log(nullptr),
4324     _dolog(CITimeVerbose)
4325 {
4326   assert(_compile != nullptr, "sanity check");
4327   if (_dolog) {
4328     _log = _compile->log();
4329   }
4330   if (_log != nullptr) {
4331     _log->begin_head("phase name='%s' nodes='%d' live='%d'", phase_name(), _compile->unique(), _compile->live_nodes());
4332     _log->stamp();
4333     _log->end_head();
4334   }
4335 }
4336 
4337 Compile::TracePhase::TracePhase(PhaseTraceId id)
4338   : TracePhase(Phase::get_phase_trace_id_text(id), id) {}
4339 
4340 Compile::TracePhase::~TracePhase() {
4341   if (_compile->failing_internal()) {
4342     if (_log != nullptr) {
4343       _log->done("phase");
4344     }
4345     return; // timing code, not stressing bailouts.
4346   }
4347 #ifdef ASSERT
4348   if (PrintIdealNodeCount) {
4349     tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
4350                   phase_name(), _compile->unique(), _compile->live_nodes(), _compile->count_live_nodes_by_graph_walk());
4351   }
4352 
4353   if (VerifyIdealNodeCount) {
4354     _compile->print_missing_nodes();
4355   }
4356 #endif
4357 
4358   if (_log != nullptr) {
4359     _log->done("phase name='%s' nodes='%d' live='%d'", phase_name(), _compile->unique(), _compile->live_nodes());
4360   }
4361 }
4362 
4363 //----------------------------static_subtype_check-----------------------------
4364 // Shortcut important common cases when superklass is exact:
4365 // (0) superklass is java.lang.Object (can occur in reflective code)
4366 // (1) subklass is already limited to a subtype of superklass => always ok
4367 // (2) subklass does not overlap with superklass => always fail
4368 // (3) superklass has NO subtypes and we can check with a simple compare.
4369 Compile::SubTypeCheckResult Compile::static_subtype_check(const TypeKlassPtr* superk, const TypeKlassPtr* subk, bool skip) {
4370   if (skip) {
4371     return SSC_full_test;       // Let caller generate the general case.
4372   }
4373 
4374   if (subk->is_java_subtype_of(superk)) {
4375     return SSC_always_true; // (0) and (1)  this test cannot fail
4376   }
4377 
4378   if (!subk->maybe_java_subtype_of(superk)) {
4379     return SSC_always_false; // (2) true path dead; no dynamic test needed
4380   }
4381 
4382   const Type* superelem = superk;
4383   if (superk->isa_aryklassptr()) {
4384     int ignored;
4385     superelem = superk->is_aryklassptr()->base_element_type(ignored);
4386   }
4387 
4388   if (superelem->isa_instklassptr()) {
4389     ciInstanceKlass* ik = superelem->is_instklassptr()->instance_klass();
4390     if (!ik->has_subklass()) {
4391       if (!ik->is_final()) {
4392         // Add a dependency if there is a chance of a later subclass.
4393         dependencies()->assert_leaf_type(ik);
4394       }
4395       if (!superk->maybe_java_subtype_of(subk)) {
4396         return SSC_always_false;
4397       }
4398       return SSC_easy_test;     // (3) caller can do a simple ptr comparison
4399     }
4400   } else {
4401     // A primitive array type has no subtypes.
4402     return SSC_easy_test;       // (3) caller can do a simple ptr comparison
4403   }
4404 
4405   return SSC_full_test;
4406 }
4407 
4408 Node* Compile::conv_I2X_index(PhaseGVN* phase, Node* idx, const TypeInt* sizetype, Node* ctrl) {
4409 #ifdef _LP64
4410   // The scaled index operand to AddP must be a clean 64-bit value.
4411   // Java allows a 32-bit int to be incremented to a negative
4412   // value, which appears in a 64-bit register as a large
4413   // positive number.  Using that large positive number as an
4414   // operand in pointer arithmetic has bad consequences.
4415   // On the other hand, 32-bit overflow is rare, and the possibility
4416   // can often be excluded, if we annotate the ConvI2L node with
4417   // a type assertion that its value is known to be a small positive
4418   // number.  (The prior range check has ensured this.)
4419   // This assertion is used by ConvI2LNode::Ideal.
4420   int index_max = max_jint - 1;  // array size is max_jint, index is one less
4421   if (sizetype != nullptr) index_max = sizetype->_hi - 1;
4422   const TypeInt* iidxtype = TypeInt::make(0, index_max, Type::WidenMax);
4423   idx = constrained_convI2L(phase, idx, iidxtype, ctrl);
4424 #endif
4425   return idx;
4426 }
4427 
4428 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check)
4429 Node* Compile::constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl, bool carry_dependency) {
4430   if (ctrl != nullptr) {
4431     // Express control dependency by a CastII node with a narrow type.
4432     // Make the CastII node dependent on the control input to prevent the narrowed ConvI2L
4433     // node from floating above the range check during loop optimizations. Otherwise, the
4434     // ConvI2L node may be eliminated independently of the range check, causing the data path
4435     // to become TOP while the control path is still there (although it's unreachable).
4436     value = new CastIINode(ctrl, value, itype, carry_dependency ? ConstraintCastNode::StrongDependency : ConstraintCastNode::RegularDependency, true /* range check dependency */);
4437     value = phase->transform(value);
4438   }
4439   const TypeLong* ltype = TypeLong::make(itype->_lo, itype->_hi, itype->_widen);
4440   return phase->transform(new ConvI2LNode(value, ltype));
4441 }
4442 
4443 // The message about the current inlining is accumulated in
4444 // _print_inlining_stream and transferred into the _print_inlining_list
4445 // once we know whether inlining succeeds or not. For regular
4446 // inlining, messages are appended to the buffer pointed by
4447 // _print_inlining_idx in the _print_inlining_list. For late inlining,
4448 // a new buffer is added after _print_inlining_idx in the list. This
4449 // way we can update the inlining message for late inlining call site
4450 // when the inlining is attempted again.
4451 void Compile::print_inlining_init() {
4452   if (print_inlining() || print_intrinsics()) {
4453     // print_inlining_init is actually called several times.
4454     print_inlining_reset();
4455     _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer*>(comp_arena(), 1, 1, new PrintInliningBuffer());
4456   }
4457 }
4458 
4459 void Compile::print_inlining_reinit() {
4460   if (print_inlining() || print_intrinsics()) {
4461     print_inlining_reset();
4462   }
4463 }
4464 
4465 void Compile::print_inlining_reset() {
4466   _print_inlining_stream->reset();
4467 }
4468 
4469 void Compile::print_inlining_commit() {
4470   assert(print_inlining() || print_intrinsics(), "PrintInlining off?");
4471   // Transfer the message from _print_inlining_stream to the current
4472   // _print_inlining_list buffer and clear _print_inlining_stream.
4473   _print_inlining_list->at(_print_inlining_idx)->ss()->write(_print_inlining_stream->base(), _print_inlining_stream->size());
4474   print_inlining_reset();
4475 }
4476 
4477 void Compile::print_inlining_push() {
4478   // Add new buffer to the _print_inlining_list at current position
4479   _print_inlining_idx++;
4480   _print_inlining_list->insert_before(_print_inlining_idx, new PrintInliningBuffer());
4481 }
4482 
4483 Compile::PrintInliningBuffer* Compile::print_inlining_current() {
4484   return _print_inlining_list->at(_print_inlining_idx);
4485 }
4486 
4487 void Compile::print_inlining_update(CallGenerator* cg) {
4488   if (print_inlining() || print_intrinsics()) {
4489     if (cg->is_late_inline()) {
4490       if (print_inlining_current()->cg() != cg &&
4491           (print_inlining_current()->cg() != nullptr ||
4492            print_inlining_current()->ss()->size() != 0)) {
4493         print_inlining_push();
4494       }
4495       print_inlining_commit();
4496       print_inlining_current()->set_cg(cg);
4497     } else {
4498       if (print_inlining_current()->cg() != nullptr) {
4499         print_inlining_push();
4500       }
4501       print_inlining_commit();
4502     }
4503   }
4504 }
4505 
4506 void Compile::print_inlining_move_to(CallGenerator* cg) {
4507   // We resume inlining at a late inlining call site. Locate the
4508   // corresponding inlining buffer so that we can update it.
4509   if (print_inlining() || print_intrinsics()) {
4510     for (int i = 0; i < _print_inlining_list->length(); i++) {
4511       if (_print_inlining_list->at(i)->cg() == cg) {
4512         _print_inlining_idx = i;
4513         return;
4514       }
4515     }
4516     ShouldNotReachHere();
4517   }
4518 }
4519 
4520 void Compile::print_inlining_update_delayed(CallGenerator* cg) {
4521   if (print_inlining() || print_intrinsics()) {
4522     assert(_print_inlining_stream->size() > 0, "missing inlining msg");
4523     assert(print_inlining_current()->cg() == cg, "wrong entry");
4524     // replace message with new message
4525     _print_inlining_list->at_put(_print_inlining_idx, new PrintInliningBuffer());
4526     print_inlining_commit();
4527     print_inlining_current()->set_cg(cg);
4528   }
4529 }
4530 
4531 void Compile::print_inlining_assert_ready() {
4532   assert(!_print_inlining || _print_inlining_stream->size() == 0, "losing data");
4533 }
4534 
4535 void Compile::process_print_inlining() {
4536   assert(_late_inlines.length() == 0, "not drained yet");
4537   if (print_inlining() || print_intrinsics()) {
4538     ResourceMark rm;
4539     stringStream ss;
4540     assert(_print_inlining_list != nullptr, "process_print_inlining should be called only once.");
4541     for (int i = 0; i < _print_inlining_list->length(); i++) {
4542       PrintInliningBuffer* pib = _print_inlining_list->at(i);
4543       ss.print("%s", pib->ss()->freeze());
4544       delete pib;
4545       DEBUG_ONLY(_print_inlining_list->at_put(i, nullptr));
4546     }
4547     // Reset _print_inlining_list, it only contains destructed objects.
4548     // It is on the arena, so it will be freed when the arena is reset.
4549     _print_inlining_list = nullptr;
4550     // _print_inlining_stream won't be used anymore, either.
4551     print_inlining_reset();
4552     size_t end = ss.size();
4553     _print_inlining_output = NEW_ARENA_ARRAY(comp_arena(), char, end+1);
4554     strncpy(_print_inlining_output, ss.freeze(), end+1);
4555     _print_inlining_output[end] = 0;
4556   }
4557 }
4558 
4559 void Compile::dump_print_inlining() {
4560   if (_print_inlining_output != nullptr) {
4561     tty->print_raw(_print_inlining_output);
4562   }
4563 }
4564 
4565 void Compile::log_late_inline(CallGenerator* cg) {
4566   if (log() != nullptr) {
4567     log()->head("late_inline method='%d'  inline_id='" JLONG_FORMAT "'", log()->identify(cg->method()),
4568                 cg->unique_id());
4569     JVMState* p = cg->call_node()->jvms();
4570     while (p != nullptr) {
4571       log()->elem("jvms bci='%d' method='%d'", p->bci(), log()->identify(p->method()));
4572       p = p->caller();
4573     }
4574     log()->tail("late_inline");
4575   }
4576 }
4577 
4578 void Compile::log_late_inline_failure(CallGenerator* cg, const char* msg) {
4579   log_late_inline(cg);
4580   if (log() != nullptr) {
4581     log()->inline_fail(msg);
4582   }
4583 }
4584 
4585 void Compile::log_inline_id(CallGenerator* cg) {
4586   if (log() != nullptr) {
4587     // The LogCompilation tool needs a unique way to identify late
4588     // inline call sites. This id must be unique for this call site in
4589     // this compilation. Try to have it unique across compilations as
4590     // well because it can be convenient when grepping through the log
4591     // file.
4592     // Distinguish OSR compilations from others in case CICountOSR is
4593     // on.
4594     jlong id = ((jlong)unique()) + (((jlong)compile_id()) << 33) + (CICountOSR && is_osr_compilation() ? ((jlong)1) << 32 : 0);
4595     cg->set_unique_id(id);
4596     log()->elem("inline_id id='" JLONG_FORMAT "'", id);
4597   }
4598 }
4599 
4600 void Compile::log_inline_failure(const char* msg) {
4601   if (C->log() != nullptr) {
4602     C->log()->inline_fail(msg);
4603   }
4604 }
4605 
4606 
4607 // Dump inlining replay data to the stream.
4608 // Don't change thread state and acquire any locks.
4609 void Compile::dump_inline_data(outputStream* out) {
4610   InlineTree* inl_tree = ilt();
4611   if (inl_tree != nullptr) {
4612     out->print(" inline %d", inl_tree->count());
4613     inl_tree->dump_replay_data(out);
4614   }
4615 }
4616 
4617 void Compile::dump_inline_data_reduced(outputStream* out) {
4618   assert(ReplayReduce, "");
4619 
4620   InlineTree* inl_tree = ilt();
4621   if (inl_tree == nullptr) {
4622     return;
4623   }
4624   // Enable iterative replay file reduction
4625   // Output "compile" lines for depth 1 subtrees,
4626   // simulating that those trees were compiled
4627   // instead of inlined.
4628   for (int i = 0; i < inl_tree->subtrees().length(); ++i) {
4629     InlineTree* sub = inl_tree->subtrees().at(i);
4630     if (sub->inline_level() != 1) {
4631       continue;
4632     }
4633 
4634     ciMethod* method = sub->method();
4635     int entry_bci = -1;
4636     int comp_level = env()->task()->comp_level();
4637     out->print("compile ");
4638     method->dump_name_as_ascii(out);
4639     out->print(" %d %d", entry_bci, comp_level);
4640     out->print(" inline %d", sub->count());
4641     sub->dump_replay_data(out, -1);
4642     out->cr();
4643   }
4644 }
4645 
4646 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
4647   if (n1->Opcode() < n2->Opcode())      return -1;
4648   else if (n1->Opcode() > n2->Opcode()) return 1;
4649 
4650   assert(n1->req() == n2->req(), "can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req());
4651   for (uint i = 1; i < n1->req(); i++) {
4652     if (n1->in(i) < n2->in(i))      return -1;
4653     else if (n1->in(i) > n2->in(i)) return 1;
4654   }
4655 
4656   return 0;
4657 }
4658 
4659 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
4660   Node* n1 = *n1p;
4661   Node* n2 = *n2p;
4662 
4663   return cmp_expensive_nodes(n1, n2);
4664 }
4665 
4666 void Compile::sort_expensive_nodes() {
4667   if (!expensive_nodes_sorted()) {
4668     _expensive_nodes.sort(cmp_expensive_nodes);
4669   }
4670 }
4671 
4672 bool Compile::expensive_nodes_sorted() const {
4673   for (int i = 1; i < _expensive_nodes.length(); i++) {
4674     if (cmp_expensive_nodes(_expensive_nodes.adr_at(i), _expensive_nodes.adr_at(i-1)) < 0) {
4675       return false;
4676     }
4677   }
4678   return true;
4679 }
4680 
4681 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
4682   if (_expensive_nodes.length() == 0) {
4683     return false;
4684   }
4685 
4686   assert(OptimizeExpensiveOps, "optimization off?");
4687 
4688   // Take this opportunity to remove dead nodes from the list
4689   int j = 0;
4690   for (int i = 0; i < _expensive_nodes.length(); i++) {
4691     Node* n = _expensive_nodes.at(i);
4692     if (!n->is_unreachable(igvn)) {
4693       assert(n->is_expensive(), "should be expensive");
4694       _expensive_nodes.at_put(j, n);
4695       j++;
4696     }
4697   }
4698   _expensive_nodes.trunc_to(j);
4699 
4700   // Then sort the list so that similar nodes are next to each other
4701   // and check for at least two nodes of identical kind with same data
4702   // inputs.
4703   sort_expensive_nodes();
4704 
4705   for (int i = 0; i < _expensive_nodes.length()-1; i++) {
4706     if (cmp_expensive_nodes(_expensive_nodes.adr_at(i), _expensive_nodes.adr_at(i+1)) == 0) {
4707       return true;
4708     }
4709   }
4710 
4711   return false;
4712 }
4713 
4714 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
4715   if (_expensive_nodes.length() == 0) {
4716     return;
4717   }
4718 
4719   assert(OptimizeExpensiveOps, "optimization off?");
4720 
4721   // Sort to bring similar nodes next to each other and clear the
4722   // control input of nodes for which there's only a single copy.
4723   sort_expensive_nodes();
4724 
4725   int j = 0;
4726   int identical = 0;
4727   int i = 0;
4728   bool modified = false;
4729   for (; i < _expensive_nodes.length()-1; i++) {
4730     assert(j <= i, "can't write beyond current index");
4731     if (_expensive_nodes.at(i)->Opcode() == _expensive_nodes.at(i+1)->Opcode()) {
4732       identical++;
4733       _expensive_nodes.at_put(j++, _expensive_nodes.at(i));
4734       continue;
4735     }
4736     if (identical > 0) {
4737       _expensive_nodes.at_put(j++, _expensive_nodes.at(i));
4738       identical = 0;
4739     } else {
4740       Node* n = _expensive_nodes.at(i);
4741       igvn.replace_input_of(n, 0, nullptr);
4742       igvn.hash_insert(n);
4743       modified = true;
4744     }
4745   }
4746   if (identical > 0) {
4747     _expensive_nodes.at_put(j++, _expensive_nodes.at(i));
4748   } else if (_expensive_nodes.length() >= 1) {
4749     Node* n = _expensive_nodes.at(i);
4750     igvn.replace_input_of(n, 0, nullptr);
4751     igvn.hash_insert(n);
4752     modified = true;
4753   }
4754   _expensive_nodes.trunc_to(j);
4755   if (modified) {
4756     igvn.optimize();
4757   }
4758 }
4759 
4760 void Compile::add_expensive_node(Node * n) {
4761   assert(!_expensive_nodes.contains(n), "duplicate entry in expensive list");
4762   assert(n->is_expensive(), "expensive nodes with non-null control here only");
4763   assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
4764   if (OptimizeExpensiveOps) {
4765     _expensive_nodes.append(n);
4766   } else {
4767     // Clear control input and let IGVN optimize expensive nodes if
4768     // OptimizeExpensiveOps is off.
4769     n->set_req(0, nullptr);
4770   }
4771 }
4772 
4773 /**
4774  * Track coarsened Lock and Unlock nodes.
4775  */
4776 
4777 class Lock_List : public Node_List {
4778   uint _origin_cnt;
4779 public:
4780   Lock_List(Arena *a, uint cnt) : Node_List(a), _origin_cnt(cnt) {}
4781   uint origin_cnt() const { return _origin_cnt; }
4782 };
4783 
4784 void Compile::add_coarsened_locks(GrowableArray<AbstractLockNode*>& locks) {
4785   int length = locks.length();
4786   if (length > 0) {
4787     // Have to keep this list until locks elimination during Macro nodes elimination.
4788     Lock_List* locks_list = new (comp_arena()) Lock_List(comp_arena(), length);
4789     AbstractLockNode* alock = locks.at(0);
4790     BoxLockNode* box = alock->box_node()->as_BoxLock();
4791     for (int i = 0; i < length; i++) {
4792       AbstractLockNode* lock = locks.at(i);
4793       assert(lock->is_coarsened(), "expecting only coarsened AbstractLock nodes, but got '%s'[%d] node", lock->Name(), lock->_idx);
4794       locks_list->push(lock);
4795       BoxLockNode* this_box = lock->box_node()->as_BoxLock();
4796       if (this_box != box) {
4797         // Locking regions (BoxLock) could be Unbalanced here:
4798         //  - its coarsened locks were eliminated in earlier
4799         //    macro nodes elimination followed by loop unroll
4800         //  - it is OSR locking region (no Lock node)
4801         // Preserve Unbalanced status in such cases.
4802         if (!this_box->is_unbalanced()) {
4803           this_box->set_coarsened();
4804         }
4805         if (!box->is_unbalanced()) {
4806           box->set_coarsened();
4807         }
4808       }
4809     }
4810     _coarsened_locks.append(locks_list);
4811   }
4812 }
4813 
4814 void Compile::remove_useless_coarsened_locks(Unique_Node_List& useful) {
4815   int count = coarsened_count();
4816   for (int i = 0; i < count; i++) {
4817     Node_List* locks_list = _coarsened_locks.at(i);
4818     for (uint j = 0; j < locks_list->size(); j++) {
4819       Node* lock = locks_list->at(j);
4820       assert(lock->is_AbstractLock(), "sanity");
4821       if (!useful.member(lock)) {
4822         locks_list->yank(lock);
4823       }
4824     }
4825   }
4826 }
4827 
4828 void Compile::remove_coarsened_lock(Node* n) {
4829   if (n->is_AbstractLock()) {
4830     int count = coarsened_count();
4831     for (int i = 0; i < count; i++) {
4832       Node_List* locks_list = _coarsened_locks.at(i);
4833       locks_list->yank(n);
4834     }
4835   }
4836 }
4837 
4838 bool Compile::coarsened_locks_consistent() {
4839   int count = coarsened_count();
4840   for (int i = 0; i < count; i++) {
4841     bool unbalanced = false;
4842     bool modified = false; // track locks kind modifications
4843     Lock_List* locks_list = (Lock_List*)_coarsened_locks.at(i);
4844     uint size = locks_list->size();
4845     if (size == 0) {
4846       unbalanced = false; // All locks were eliminated - good
4847     } else if (size != locks_list->origin_cnt()) {
4848       unbalanced = true; // Some locks were removed from list
4849     } else {
4850       for (uint j = 0; j < size; j++) {
4851         Node* lock = locks_list->at(j);
4852         // All nodes in group should have the same state (modified or not)
4853         if (!lock->as_AbstractLock()->is_coarsened()) {
4854           if (j == 0) {
4855             // first on list was modified, the rest should be too for consistency
4856             modified = true;
4857           } else if (!modified) {
4858             // this lock was modified but previous locks on the list were not
4859             unbalanced = true;
4860             break;
4861           }
4862         } else if (modified) {
4863           // previous locks on list were modified but not this lock
4864           unbalanced = true;
4865           break;
4866         }
4867       }
4868     }
4869     if (unbalanced) {
4870       // unbalanced monitor enter/exit - only some [un]lock nodes were removed or modified
4871 #ifdef ASSERT
4872       if (PrintEliminateLocks) {
4873         tty->print_cr("=== unbalanced coarsened locks ===");
4874         for (uint l = 0; l < size; l++) {
4875           locks_list->at(l)->dump();
4876         }
4877       }
4878 #endif
4879       record_failure(C2Compiler::retry_no_locks_coarsening());
4880       return false;
4881     }
4882   }
4883   return true;
4884 }
4885 
4886 // Mark locking regions (identified by BoxLockNode) as unbalanced if
4887 // locks coarsening optimization removed Lock/Unlock nodes from them.
4888 // Such regions become unbalanced because coarsening only removes part
4889 // of Lock/Unlock nodes in region. As result we can't execute other
4890 // locks elimination optimizations which assume all code paths have
4891 // corresponding pair of Lock/Unlock nodes - they are balanced.
4892 void Compile::mark_unbalanced_boxes() const {
4893   int count = coarsened_count();
4894   for (int i = 0; i < count; i++) {
4895     Node_List* locks_list = _coarsened_locks.at(i);
4896     uint size = locks_list->size();
4897     if (size > 0) {
4898       AbstractLockNode* alock = locks_list->at(0)->as_AbstractLock();
4899       BoxLockNode* box = alock->box_node()->as_BoxLock();
4900       if (alock->is_coarsened()) {
4901         // coarsened_locks_consistent(), which is called before this method, verifies
4902         // that the rest of Lock/Unlock nodes on locks_list are also coarsened.
4903         assert(!box->is_eliminated(), "regions with coarsened locks should not be marked as eliminated");
4904         for (uint j = 1; j < size; j++) {
4905           assert(locks_list->at(j)->as_AbstractLock()->is_coarsened(), "only coarsened locks are expected here");
4906           BoxLockNode* this_box = locks_list->at(j)->as_AbstractLock()->box_node()->as_BoxLock();
4907           if (box != this_box) {
4908             assert(!this_box->is_eliminated(), "regions with coarsened locks should not be marked as eliminated");
4909             box->set_unbalanced();
4910             this_box->set_unbalanced();
4911           }
4912         }
4913       }
4914     }
4915   }
4916 }
4917 
4918 /**
4919  * Remove the speculative part of types and clean up the graph
4920  */
4921 void Compile::remove_speculative_types(PhaseIterGVN &igvn) {
4922   if (UseTypeSpeculation) {
4923     Unique_Node_List worklist;
4924     worklist.push(root());
4925     int modified = 0;
4926     // Go over all type nodes that carry a speculative type, drop the
4927     // speculative part of the type and enqueue the node for an igvn
4928     // which may optimize it out.
4929     for (uint next = 0; next < worklist.size(); ++next) {
4930       Node *n  = worklist.at(next);
4931       if (n->is_Type()) {
4932         TypeNode* tn = n->as_Type();
4933         const Type* t = tn->type();
4934         const Type* t_no_spec = t->remove_speculative();
4935         if (t_no_spec != t) {
4936           bool in_hash = igvn.hash_delete(n);
4937           assert(in_hash || n->hash() == Node::NO_HASH, "node should be in igvn hash table");
4938           tn->set_type(t_no_spec);
4939           igvn.hash_insert(n);
4940           igvn._worklist.push(n); // give it a chance to go away
4941           modified++;
4942         }
4943       }
4944       // Iterate over outs - endless loops is unreachable from below
4945       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
4946         Node *m = n->fast_out(i);
4947         if (not_a_node(m)) {
4948           continue;
4949         }
4950         worklist.push(m);
4951       }
4952     }
4953     // Drop the speculative part of all types in the igvn's type table
4954     igvn.remove_speculative_types();
4955     if (modified > 0) {
4956       igvn.optimize();
4957       if (failing())  return;
4958     }
4959 #ifdef ASSERT
4960     // Verify that after the IGVN is over no speculative type has resurfaced
4961     worklist.clear();
4962     worklist.push(root());
4963     for (uint next = 0; next < worklist.size(); ++next) {
4964       Node *n  = worklist.at(next);
4965       const Type* t = igvn.type_or_null(n);
4966       assert((t == nullptr) || (t == t->remove_speculative()), "no more speculative types");
4967       if (n->is_Type()) {
4968         t = n->as_Type()->type();
4969         assert(t == t->remove_speculative(), "no more speculative types");
4970       }
4971       // Iterate over outs - endless loops is unreachable from below
4972       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
4973         Node *m = n->fast_out(i);
4974         if (not_a_node(m)) {
4975           continue;
4976         }
4977         worklist.push(m);
4978       }
4979     }
4980     igvn.check_no_speculative_types();
4981 #endif
4982   }
4983 }
4984 
4985 // Auxiliary methods to support randomized stressing/fuzzing.
4986 
4987 void Compile::initialize_stress_seed(const DirectiveSet* directive) {
4988   if (FLAG_IS_DEFAULT(StressSeed) || (FLAG_IS_ERGO(StressSeed) && directive->RepeatCompilationOption)) {
4989     _stress_seed = static_cast<uint>(Ticks::now().nanoseconds());
4990     FLAG_SET_ERGO(StressSeed, _stress_seed);
4991   } else {
4992     _stress_seed = StressSeed;
4993   }
4994   if (_log != nullptr) {
4995     _log->elem("stress_test seed='%u'", _stress_seed);
4996   }
4997 }
4998 
4999 int Compile::random() {
5000   _stress_seed = os::next_random(_stress_seed);
5001   return static_cast<int>(_stress_seed);
5002 }
5003 
5004 // This method can be called the arbitrary number of times, with current count
5005 // as the argument. The logic allows selecting a single candidate from the
5006 // running list of candidates as follows:
5007 //    int count = 0;
5008 //    Cand* selected = null;
5009 //    while(cand = cand->next()) {
5010 //      if (randomized_select(++count)) {
5011 //        selected = cand;
5012 //      }
5013 //    }
5014 //
5015 // Including count equalizes the chances any candidate is "selected".
5016 // This is useful when we don't have the complete list of candidates to choose
5017 // from uniformly. In this case, we need to adjust the randomicity of the
5018 // selection, or else we will end up biasing the selection towards the latter
5019 // candidates.
5020 //
5021 // Quick back-envelope calculation shows that for the list of n candidates
5022 // the equal probability for the candidate to persist as "best" can be
5023 // achieved by replacing it with "next" k-th candidate with the probability
5024 // of 1/k. It can be easily shown that by the end of the run, the
5025 // probability for any candidate is converged to 1/n, thus giving the
5026 // uniform distribution among all the candidates.
5027 //
5028 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
5029 #define RANDOMIZED_DOMAIN_POW 29
5030 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
5031 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
5032 bool Compile::randomized_select(int count) {
5033   assert(count > 0, "only positive");
5034   return (random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);
5035 }
5036 
5037 #ifdef ASSERT
5038 // Failures are geometrically distributed with probability 1/StressBailoutMean.
5039 bool Compile::fail_randomly() {
5040   if ((random() % StressBailoutMean) != 0) {
5041     return false;
5042   }
5043   record_failure("StressBailout");
5044   return true;
5045 }
5046 
5047 bool Compile::failure_is_artificial() {
5048   return C->failure_reason_is("StressBailout");
5049 }
5050 #endif
5051 
5052 CloneMap&     Compile::clone_map()                 { return _clone_map; }
5053 void          Compile::set_clone_map(Dict* d)      { _clone_map._dict = d; }
5054 
5055 void NodeCloneInfo::dump_on(outputStream* st) const {
5056   st->print(" {%d:%d} ", idx(), gen());
5057 }
5058 
5059 void CloneMap::clone(Node* old, Node* nnn, int gen) {
5060   uint64_t val = value(old->_idx);
5061   NodeCloneInfo cio(val);
5062   assert(val != 0, "old node should be in the map");
5063   NodeCloneInfo cin(cio.idx(), gen + cio.gen());
5064   insert(nnn->_idx, cin.get());
5065 #ifndef PRODUCT
5066   if (is_debug()) {
5067     tty->print_cr("CloneMap::clone inserted node %d info {%d:%d} into CloneMap", nnn->_idx, cin.idx(), cin.gen());
5068   }
5069 #endif
5070 }
5071 
5072 void CloneMap::verify_insert_and_clone(Node* old, Node* nnn, int gen) {
5073   NodeCloneInfo cio(value(old->_idx));
5074   if (cio.get() == 0) {
5075     cio.set(old->_idx, 0);
5076     insert(old->_idx, cio.get());
5077 #ifndef PRODUCT
5078     if (is_debug()) {
5079       tty->print_cr("CloneMap::verify_insert_and_clone inserted node %d info {%d:%d} into CloneMap", old->_idx, cio.idx(), cio.gen());
5080     }
5081 #endif
5082   }
5083   clone(old, nnn, gen);
5084 }
5085 
5086 int CloneMap::max_gen() const {
5087   int g = 0;
5088   DictI di(_dict);
5089   for(; di.test(); ++di) {
5090     int t = gen(di._key);
5091     if (g < t) {
5092       g = t;
5093 #ifndef PRODUCT
5094       if (is_debug()) {
5095         tty->print_cr("CloneMap::max_gen() update max=%d from %d", g, _2_node_idx_t(di._key));
5096       }
5097 #endif
5098     }
5099   }
5100   return g;
5101 }
5102 
5103 void CloneMap::dump(node_idx_t key, outputStream* st) const {
5104   uint64_t val = value(key);
5105   if (val != 0) {
5106     NodeCloneInfo ni(val);
5107     ni.dump_on(st);
5108   }
5109 }
5110 
5111 void Compile::shuffle_macro_nodes() {
5112   if (_macro_nodes.length() < 2) {
5113     return;
5114   }
5115   for (uint i = _macro_nodes.length() - 1; i >= 1; i--) {
5116     uint j = C->random() % (i + 1);
5117     swap(_macro_nodes.at(i), _macro_nodes.at(j));
5118   }
5119 }
5120 
5121 // Move Allocate nodes to the start of the list
5122 void Compile::sort_macro_nodes() {
5123   int count = macro_count();
5124   int allocates = 0;
5125   for (int i = 0; i < count; i++) {
5126     Node* n = macro_node(i);
5127     if (n->is_Allocate()) {
5128       if (i != allocates) {
5129         Node* tmp = macro_node(allocates);
5130         _macro_nodes.at_put(allocates, n);
5131         _macro_nodes.at_put(i, tmp);
5132       }
5133       allocates++;
5134     }
5135   }
5136 }
5137 
5138 void Compile::print_method(CompilerPhaseType cpt, int level, Node* n) {
5139   if (failing_internal()) { return; } // failing_internal to not stress bailouts from printing code.
5140   EventCompilerPhase event(UNTIMED);
5141   if (event.should_commit()) {
5142     CompilerEvent::PhaseEvent::post(event, C->_latest_stage_start_counter, cpt, C->_compile_id, level);
5143   }
5144 #ifndef PRODUCT
5145   ResourceMark rm;
5146   stringStream ss;
5147   ss.print_raw(CompilerPhaseTypeHelper::to_description(cpt));
5148   int iter = ++_igv_phase_iter[cpt];
5149   if (iter > 1) {
5150     ss.print(" %d", iter);
5151   }
5152   if (n != nullptr) {
5153     ss.print(": %d %s", n->_idx, NodeClassNames[n->Opcode()]);
5154     if (n->is_Call()) {
5155       CallNode* call = n->as_Call();
5156       if (call->_name != nullptr) {
5157         // E.g. uncommon traps etc.
5158         ss.print(" - %s", call->_name);
5159       } else if (call->is_CallJava()) {
5160         CallJavaNode* call_java = call->as_CallJava();
5161         if (call_java->method() != nullptr) {
5162           ss.print(" -");
5163           call_java->method()->print_short_name(&ss);
5164         }
5165       }
5166     }
5167   }
5168 
5169   const char* name = ss.as_string();
5170   if (should_print_igv(level)) {
5171     _igv_printer->print_graph(name);
5172   }
5173   if (should_print_phase(cpt)) {
5174     print_ideal_ir(CompilerPhaseTypeHelper::to_name(cpt));
5175   }
5176 #endif
5177   C->_latest_stage_start_counter.stamp();
5178 }
5179 
5180 // Only used from CompileWrapper
5181 void Compile::begin_method() {
5182 #ifndef PRODUCT
5183   if (_method != nullptr && should_print_igv(1)) {
5184     _igv_printer->begin_method();
5185   }
5186 #endif
5187   C->_latest_stage_start_counter.stamp();
5188 }
5189 
5190 // Only used from CompileWrapper
5191 void Compile::end_method() {
5192   EventCompilerPhase event(UNTIMED);
5193   if (event.should_commit()) {
5194     CompilerEvent::PhaseEvent::post(event, C->_latest_stage_start_counter, PHASE_END, C->_compile_id, 1);
5195   }
5196 
5197 #ifndef PRODUCT
5198   if (_method != nullptr && should_print_igv(1)) {
5199     _igv_printer->end_method();
5200   }
5201 #endif
5202 }
5203 
5204 bool Compile::should_print_phase(CompilerPhaseType cpt) {
5205 #ifndef PRODUCT
5206   if (_directive->should_print_phase(cpt)) {
5207     return true;
5208   }
5209 #endif
5210   return false;
5211 }
5212 
5213 #ifndef PRODUCT
5214 void Compile::init_igv() {
5215   if (_igv_printer == nullptr) {
5216     _igv_printer = IdealGraphPrinter::printer();
5217     _igv_printer->set_compile(this);
5218   }
5219 }
5220 #endif
5221 
5222 bool Compile::should_print_igv(const int level) {
5223 #ifndef PRODUCT
5224   if (PrintIdealGraphLevel < 0) { // disabled by the user
5225     return false;
5226   }
5227 
5228   bool need = directive()->IGVPrintLevelOption >= level;
5229   if (need) {
5230     Compile::init_igv();
5231   }
5232   return need;
5233 #else
5234   return false;
5235 #endif
5236 }
5237 
5238 #ifndef PRODUCT
5239 IdealGraphPrinter* Compile::_debug_file_printer = nullptr;
5240 IdealGraphPrinter* Compile::_debug_network_printer = nullptr;
5241 
5242 // Called from debugger. Prints method to the default file with the default phase name.
5243 // This works regardless of any Ideal Graph Visualizer flags set or not.
5244 void igv_print() {
5245   Compile::current()->igv_print_method_to_file();
5246 }
5247 
5248 // Same as igv_print() above but with a specified phase name.
5249 void igv_print(const char* phase_name) {
5250   Compile::current()->igv_print_method_to_file(phase_name);
5251 }
5252 
5253 // Called from debugger. Prints method with the default phase name to the default network or the one specified with
5254 // the network flags for the Ideal Graph Visualizer, or to the default file depending on the 'network' argument.
5255 // This works regardless of any Ideal Graph Visualizer flags set or not.
5256 void igv_print(bool network) {
5257   if (network) {
5258     Compile::current()->igv_print_method_to_network();
5259   } else {
5260     Compile::current()->igv_print_method_to_file();
5261   }
5262 }
5263 
5264 // Same as igv_print(bool network) above but with a specified phase name.
5265 void igv_print(bool network, const char* phase_name) {
5266   if (network) {
5267     Compile::current()->igv_print_method_to_network(phase_name);
5268   } else {
5269     Compile::current()->igv_print_method_to_file(phase_name);
5270   }
5271 }
5272 
5273 // Called from debugger. Normal write to the default _printer. Only works if Ideal Graph Visualizer printing flags are set.
5274 void igv_print_default() {
5275   Compile::current()->print_method(PHASE_DEBUG, 0);
5276 }
5277 
5278 // Called from debugger, especially when replaying a trace in which the program state cannot be altered like with rr replay.
5279 // A method is appended to an existing default file with the default phase name. This means that igv_append() must follow
5280 // an earlier igv_print(*) call which sets up the file. This works regardless of any Ideal Graph Visualizer flags set or not.
5281 void igv_append() {
5282   Compile::current()->igv_print_method_to_file("Debug", true);
5283 }
5284 
5285 // Same as igv_append() above but with a specified phase name.
5286 void igv_append(const char* phase_name) {
5287   Compile::current()->igv_print_method_to_file(phase_name, true);
5288 }
5289 
5290 void Compile::igv_print_method_to_file(const char* phase_name, bool append) {
5291   const char* file_name = "custom_debug.xml";
5292   if (_debug_file_printer == nullptr) {
5293     _debug_file_printer = new IdealGraphPrinter(C, file_name, append);
5294   } else {
5295     _debug_file_printer->update_compiled_method(C->method());
5296   }
5297   tty->print_cr("Method %s to %s", append ? "appended" : "printed", file_name);
5298   _debug_file_printer->print_graph(phase_name);
5299 }
5300 
5301 void Compile::igv_print_method_to_network(const char* phase_name) {
5302   ResourceMark rm;
5303   GrowableArray<const Node*> empty_list;
5304   igv_print_graph_to_network(phase_name, (Node*) C->root(), empty_list);
5305 }
5306 
5307 void Compile::igv_print_graph_to_network(const char* name, Node* node, GrowableArray<const Node*>& visible_nodes) {
5308   if (_debug_network_printer == nullptr) {
5309     _debug_network_printer = new IdealGraphPrinter(C);
5310   } else {
5311     _debug_network_printer->update_compiled_method(C->method());
5312   }
5313   tty->print_cr("Method printed over network stream to IGV");
5314   _debug_network_printer->print(name, C->root(), visible_nodes);
5315 }
5316 #endif
5317 
5318 Node* Compile::narrow_value(BasicType bt, Node* value, const Type* type, PhaseGVN* phase, bool transform_res) {
5319   if (type != nullptr && phase->type(value)->higher_equal(type)) {
5320     return value;
5321   }
5322   Node* result = nullptr;
5323   if (bt == T_BYTE) {
5324     result = phase->transform(new LShiftINode(value, phase->intcon(24)));
5325     result = new RShiftINode(result, phase->intcon(24));
5326   } else if (bt == T_BOOLEAN) {
5327     result = new AndINode(value, phase->intcon(0xFF));
5328   } else if (bt == T_CHAR) {
5329     result = new AndINode(value,phase->intcon(0xFFFF));
5330   } else {
5331     assert(bt == T_SHORT, "unexpected narrow type");
5332     result = phase->transform(new LShiftINode(value, phase->intcon(16)));
5333     result = new RShiftINode(result, phase->intcon(16));
5334   }
5335   if (transform_res) {
5336     result = phase->transform(result);
5337   }
5338   return result;
5339 }
5340 
5341 void Compile::record_method_not_compilable_oom() {
5342   record_method_not_compilable(CompilationMemoryStatistic::failure_reason_memlimit());
5343 }