1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "asm/macroAssembler.hpp" 26 #include "asm/macroAssembler.inline.hpp" 27 #include "ci/ciReplay.hpp" 28 #include "classfile/javaClasses.hpp" 29 #include "code/exceptionHandlerTable.hpp" 30 #include "code/nmethod.hpp" 31 #include "compiler/compilationFailureInfo.hpp" 32 #include "compiler/compilationMemoryStatistic.hpp" 33 #include "compiler/compileBroker.hpp" 34 #include "compiler/compileLog.hpp" 35 #include "compiler/compilerOracle.hpp" 36 #include "compiler/compiler_globals.hpp" 37 #include "compiler/disassembler.hpp" 38 #include "compiler/oopMap.hpp" 39 #include "gc/shared/barrierSet.hpp" 40 #include "gc/shared/c2/barrierSetC2.hpp" 41 #include "jfr/jfrEvents.hpp" 42 #include "jvm_io.h" 43 #include "memory/allocation.hpp" 44 #include "memory/resourceArea.hpp" 45 #include "opto/addnode.hpp" 46 #include "opto/block.hpp" 47 #include "opto/c2compiler.hpp" 48 #include "opto/callGenerator.hpp" 49 #include "opto/callnode.hpp" 50 #include "opto/castnode.hpp" 51 #include "opto/cfgnode.hpp" 52 #include "opto/chaitin.hpp" 53 #include "opto/compile.hpp" 54 #include "opto/connode.hpp" 55 #include "opto/convertnode.hpp" 56 #include "opto/divnode.hpp" 57 #include "opto/escape.hpp" 58 #include "opto/idealGraphPrinter.hpp" 59 #include "opto/locknode.hpp" 60 #include "opto/loopnode.hpp" 61 #include "opto/machnode.hpp" 62 #include "opto/macro.hpp" 63 #include "opto/matcher.hpp" 64 #include "opto/mathexactnode.hpp" 65 #include "opto/memnode.hpp" 66 #include "opto/mulnode.hpp" 67 #include "opto/narrowptrnode.hpp" 68 #include "opto/node.hpp" 69 #include "opto/opcodes.hpp" 70 #include "opto/output.hpp" 71 #include "opto/parse.hpp" 72 #include "opto/phaseX.hpp" 73 #include "opto/rootnode.hpp" 74 #include "opto/runtime.hpp" 75 #include "opto/stringopts.hpp" 76 #include "opto/type.hpp" 77 #include "opto/vector.hpp" 78 #include "opto/vectornode.hpp" 79 #include "runtime/globals_extension.hpp" 80 #include "runtime/sharedRuntime.hpp" 81 #include "runtime/signature.hpp" 82 #include "runtime/stubRoutines.hpp" 83 #include "runtime/timer.hpp" 84 #include "utilities/align.hpp" 85 #include "utilities/copy.hpp" 86 #include "utilities/macros.hpp" 87 #include "utilities/resourceHash.hpp" 88 89 // -------------------- Compile::mach_constant_base_node ----------------------- 90 // Constant table base node singleton. 91 MachConstantBaseNode* Compile::mach_constant_base_node() { 92 if (_mach_constant_base_node == nullptr) { 93 _mach_constant_base_node = new MachConstantBaseNode(); 94 _mach_constant_base_node->add_req(C->root()); 95 } 96 return _mach_constant_base_node; 97 } 98 99 100 /// Support for intrinsics. 101 102 // Return the index at which m must be inserted (or already exists). 103 // The sort order is by the address of the ciMethod, with is_virtual as minor key. 104 class IntrinsicDescPair { 105 private: 106 ciMethod* _m; 107 bool _is_virtual; 108 public: 109 IntrinsicDescPair(ciMethod* m, bool is_virtual) : _m(m), _is_virtual(is_virtual) {} 110 static int compare(IntrinsicDescPair* const& key, CallGenerator* const& elt) { 111 ciMethod* m= elt->method(); 112 ciMethod* key_m = key->_m; 113 if (key_m < m) return -1; 114 else if (key_m > m) return 1; 115 else { 116 bool is_virtual = elt->is_virtual(); 117 bool key_virtual = key->_is_virtual; 118 if (key_virtual < is_virtual) return -1; 119 else if (key_virtual > is_virtual) return 1; 120 else return 0; 121 } 122 } 123 }; 124 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found) { 125 #ifdef ASSERT 126 for (int i = 1; i < _intrinsics.length(); i++) { 127 CallGenerator* cg1 = _intrinsics.at(i-1); 128 CallGenerator* cg2 = _intrinsics.at(i); 129 assert(cg1->method() != cg2->method() 130 ? cg1->method() < cg2->method() 131 : cg1->is_virtual() < cg2->is_virtual(), 132 "compiler intrinsics list must stay sorted"); 133 } 134 #endif 135 IntrinsicDescPair pair(m, is_virtual); 136 return _intrinsics.find_sorted<IntrinsicDescPair*, IntrinsicDescPair::compare>(&pair, found); 137 } 138 139 void Compile::register_intrinsic(CallGenerator* cg) { 140 bool found = false; 141 int index = intrinsic_insertion_index(cg->method(), cg->is_virtual(), found); 142 assert(!found, "registering twice"); 143 _intrinsics.insert_before(index, cg); 144 assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked"); 145 } 146 147 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) { 148 assert(m->is_loaded(), "don't try this on unloaded methods"); 149 if (_intrinsics.length() > 0) { 150 bool found = false; 151 int index = intrinsic_insertion_index(m, is_virtual, found); 152 if (found) { 153 return _intrinsics.at(index); 154 } 155 } 156 // Lazily create intrinsics for intrinsic IDs well-known in the runtime. 157 if (m->intrinsic_id() != vmIntrinsics::_none && 158 m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) { 159 CallGenerator* cg = make_vm_intrinsic(m, is_virtual); 160 if (cg != nullptr) { 161 // Save it for next time: 162 register_intrinsic(cg); 163 return cg; 164 } else { 165 gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled); 166 } 167 } 168 return nullptr; 169 } 170 171 // Compile::make_vm_intrinsic is defined in library_call.cpp. 172 173 #ifndef PRODUCT 174 // statistics gathering... 175 176 juint Compile::_intrinsic_hist_count[vmIntrinsics::number_of_intrinsics()] = {0}; 177 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::number_of_intrinsics()] = {0}; 178 179 inline int as_int(vmIntrinsics::ID id) { 180 return vmIntrinsics::as_int(id); 181 } 182 183 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) { 184 assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob"); 185 int oflags = _intrinsic_hist_flags[as_int(id)]; 186 assert(flags != 0, "what happened?"); 187 if (is_virtual) { 188 flags |= _intrinsic_virtual; 189 } 190 bool changed = (flags != oflags); 191 if ((flags & _intrinsic_worked) != 0) { 192 juint count = (_intrinsic_hist_count[as_int(id)] += 1); 193 if (count == 1) { 194 changed = true; // first time 195 } 196 // increment the overall count also: 197 _intrinsic_hist_count[as_int(vmIntrinsics::_none)] += 1; 198 } 199 if (changed) { 200 if (((oflags ^ flags) & _intrinsic_virtual) != 0) { 201 // Something changed about the intrinsic's virtuality. 202 if ((flags & _intrinsic_virtual) != 0) { 203 // This is the first use of this intrinsic as a virtual call. 204 if (oflags != 0) { 205 // We already saw it as a non-virtual, so note both cases. 206 flags |= _intrinsic_both; 207 } 208 } else if ((oflags & _intrinsic_both) == 0) { 209 // This is the first use of this intrinsic as a non-virtual 210 flags |= _intrinsic_both; 211 } 212 } 213 _intrinsic_hist_flags[as_int(id)] = (jubyte) (oflags | flags); 214 } 215 // update the overall flags also: 216 _intrinsic_hist_flags[as_int(vmIntrinsics::_none)] |= (jubyte) flags; 217 return changed; 218 } 219 220 static char* format_flags(int flags, char* buf) { 221 buf[0] = 0; 222 if ((flags & Compile::_intrinsic_worked) != 0) strcat(buf, ",worked"); 223 if ((flags & Compile::_intrinsic_failed) != 0) strcat(buf, ",failed"); 224 if ((flags & Compile::_intrinsic_disabled) != 0) strcat(buf, ",disabled"); 225 if ((flags & Compile::_intrinsic_virtual) != 0) strcat(buf, ",virtual"); 226 if ((flags & Compile::_intrinsic_both) != 0) strcat(buf, ",nonvirtual"); 227 if (buf[0] == 0) strcat(buf, ","); 228 assert(buf[0] == ',', "must be"); 229 return &buf[1]; 230 } 231 232 void Compile::print_intrinsic_statistics() { 233 char flagsbuf[100]; 234 ttyLocker ttyl; 235 if (xtty != nullptr) xtty->head("statistics type='intrinsic'"); 236 tty->print_cr("Compiler intrinsic usage:"); 237 juint total = _intrinsic_hist_count[as_int(vmIntrinsics::_none)]; 238 if (total == 0) total = 1; // avoid div0 in case of no successes 239 #define PRINT_STAT_LINE(name, c, f) \ 240 tty->print_cr(" %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f); 241 for (auto id : EnumRange<vmIntrinsicID>{}) { 242 int flags = _intrinsic_hist_flags[as_int(id)]; 243 juint count = _intrinsic_hist_count[as_int(id)]; 244 if ((flags | count) != 0) { 245 PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf)); 246 } 247 } 248 PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[as_int(vmIntrinsics::_none)], flagsbuf)); 249 if (xtty != nullptr) xtty->tail("statistics"); 250 } 251 252 void Compile::print_statistics() { 253 { ttyLocker ttyl; 254 if (xtty != nullptr) xtty->head("statistics type='opto'"); 255 Parse::print_statistics(); 256 PhaseStringOpts::print_statistics(); 257 PhaseCCP::print_statistics(); 258 PhaseRegAlloc::print_statistics(); 259 PhaseOutput::print_statistics(); 260 PhasePeephole::print_statistics(); 261 PhaseIdealLoop::print_statistics(); 262 ConnectionGraph::print_statistics(); 263 PhaseMacroExpand::print_statistics(); 264 if (xtty != nullptr) xtty->tail("statistics"); 265 } 266 if (_intrinsic_hist_flags[as_int(vmIntrinsics::_none)] != 0) { 267 // put this under its own <statistics> element. 268 print_intrinsic_statistics(); 269 } 270 } 271 #endif //PRODUCT 272 273 void Compile::gvn_replace_by(Node* n, Node* nn) { 274 for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) { 275 Node* use = n->last_out(i); 276 bool is_in_table = initial_gvn()->hash_delete(use); 277 uint uses_found = 0; 278 for (uint j = 0; j < use->len(); j++) { 279 if (use->in(j) == n) { 280 if (j < use->req()) 281 use->set_req(j, nn); 282 else 283 use->set_prec(j, nn); 284 uses_found++; 285 } 286 } 287 if (is_in_table) { 288 // reinsert into table 289 initial_gvn()->hash_find_insert(use); 290 } 291 record_for_igvn(use); 292 PhaseIterGVN::add_users_of_use_to_worklist(nn, use, *_igvn_worklist); 293 i -= uses_found; // we deleted 1 or more copies of this edge 294 } 295 } 296 297 298 // Identify all nodes that are reachable from below, useful. 299 // Use breadth-first pass that records state in a Unique_Node_List, 300 // recursive traversal is slower. 301 void Compile::identify_useful_nodes(Unique_Node_List &useful) { 302 int estimated_worklist_size = live_nodes(); 303 useful.map( estimated_worklist_size, nullptr ); // preallocate space 304 305 // Initialize worklist 306 if (root() != nullptr) { useful.push(root()); } 307 // If 'top' is cached, declare it useful to preserve cached node 308 if (cached_top_node()) { useful.push(cached_top_node()); } 309 310 // Push all useful nodes onto the list, breadthfirst 311 for( uint next = 0; next < useful.size(); ++next ) { 312 assert( next < unique(), "Unique useful nodes < total nodes"); 313 Node *n = useful.at(next); 314 uint max = n->len(); 315 for( uint i = 0; i < max; ++i ) { 316 Node *m = n->in(i); 317 if (not_a_node(m)) continue; 318 useful.push(m); 319 } 320 } 321 } 322 323 // Update dead_node_list with any missing dead nodes using useful 324 // list. Consider all non-useful nodes to be useless i.e., dead nodes. 325 void Compile::update_dead_node_list(Unique_Node_List &useful) { 326 uint max_idx = unique(); 327 VectorSet& useful_node_set = useful.member_set(); 328 329 for (uint node_idx = 0; node_idx < max_idx; node_idx++) { 330 // If node with index node_idx is not in useful set, 331 // mark it as dead in dead node list. 332 if (!useful_node_set.test(node_idx)) { 333 record_dead_node(node_idx); 334 } 335 } 336 } 337 338 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) { 339 int shift = 0; 340 for (int i = 0; i < inlines->length(); i++) { 341 CallGenerator* cg = inlines->at(i); 342 if (useful.member(cg->call_node())) { 343 if (shift > 0) { 344 inlines->at_put(i - shift, cg); 345 } 346 } else { 347 shift++; // skip over the dead element 348 } 349 } 350 if (shift > 0) { 351 inlines->trunc_to(inlines->length() - shift); // remove last elements from compacted array 352 } 353 } 354 355 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Node* dead) { 356 assert(dead != nullptr && dead->is_Call(), "sanity"); 357 int found = 0; 358 for (int i = 0; i < inlines->length(); i++) { 359 if (inlines->at(i)->call_node() == dead) { 360 inlines->remove_at(i); 361 found++; 362 NOT_DEBUG( break; ) // elements are unique, so exit early 363 } 364 } 365 assert(found <= 1, "not unique"); 366 } 367 368 template<typename N, ENABLE_IF_SDEFN(std::is_base_of<Node, N>::value)> 369 void Compile::remove_useless_nodes(GrowableArray<N*>& node_list, Unique_Node_List& useful) { 370 for (int i = node_list.length() - 1; i >= 0; i--) { 371 N* node = node_list.at(i); 372 if (!useful.member(node)) { 373 node_list.delete_at(i); // replaces i-th with last element which is known to be useful (already processed) 374 } 375 } 376 } 377 378 void Compile::remove_useless_node(Node* dead) { 379 remove_modified_node(dead); 380 381 // Constant node that has no out-edges and has only one in-edge from 382 // root is usually dead. However, sometimes reshaping walk makes 383 // it reachable by adding use edges. So, we will NOT count Con nodes 384 // as dead to be conservative about the dead node count at any 385 // given time. 386 if (!dead->is_Con()) { 387 record_dead_node(dead->_idx); 388 } 389 if (dead->is_macro()) { 390 remove_macro_node(dead); 391 } 392 if (dead->is_expensive()) { 393 remove_expensive_node(dead); 394 } 395 if (dead->is_OpaqueTemplateAssertionPredicate()) { 396 remove_template_assertion_predicate_opaq(dead); 397 } 398 if (dead->is_ParsePredicate()) { 399 remove_parse_predicate(dead->as_ParsePredicate()); 400 } 401 if (dead->for_post_loop_opts_igvn()) { 402 remove_from_post_loop_opts_igvn(dead); 403 } 404 if (dead->is_Call()) { 405 remove_useless_late_inlines( &_late_inlines, dead); 406 remove_useless_late_inlines( &_string_late_inlines, dead); 407 remove_useless_late_inlines( &_boxing_late_inlines, dead); 408 remove_useless_late_inlines(&_vector_reboxing_late_inlines, dead); 409 410 if (dead->is_CallStaticJava()) { 411 remove_unstable_if_trap(dead->as_CallStaticJava(), false); 412 } 413 } 414 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 415 bs->unregister_potential_barrier_node(dead); 416 } 417 418 // Disconnect all useless nodes by disconnecting those at the boundary. 419 void Compile::disconnect_useless_nodes(Unique_Node_List& useful, Unique_Node_List& worklist) { 420 uint next = 0; 421 while (next < useful.size()) { 422 Node *n = useful.at(next++); 423 if (n->is_SafePoint()) { 424 // We're done with a parsing phase. Replaced nodes are not valid 425 // beyond that point. 426 n->as_SafePoint()->delete_replaced_nodes(); 427 } 428 // Use raw traversal of out edges since this code removes out edges 429 int max = n->outcnt(); 430 for (int j = 0; j < max; ++j) { 431 Node* child = n->raw_out(j); 432 if (!useful.member(child)) { 433 assert(!child->is_top() || child != top(), 434 "If top is cached in Compile object it is in useful list"); 435 // Only need to remove this out-edge to the useless node 436 n->raw_del_out(j); 437 --j; 438 --max; 439 } 440 } 441 if (n->outcnt() == 1 && n->has_special_unique_user()) { 442 assert(useful.member(n->unique_out()), "do not push a useless node"); 443 worklist.push(n->unique_out()); 444 } 445 } 446 447 remove_useless_nodes(_macro_nodes, useful); // remove useless macro nodes 448 remove_useless_nodes(_parse_predicates, useful); // remove useless Parse Predicate nodes 449 remove_useless_nodes(_template_assertion_predicate_opaqs, useful); // remove useless Assertion Predicate opaque nodes 450 remove_useless_nodes(_expensive_nodes, useful); // remove useless expensive nodes 451 remove_useless_nodes(_for_post_loop_igvn, useful); // remove useless node recorded for post loop opts IGVN pass 452 remove_useless_unstable_if_traps(useful); // remove useless unstable_if traps 453 remove_useless_coarsened_locks(useful); // remove useless coarsened locks nodes 454 #ifdef ASSERT 455 if (_modified_nodes != nullptr) { 456 _modified_nodes->remove_useless_nodes(useful.member_set()); 457 } 458 #endif 459 460 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 461 bs->eliminate_useless_gc_barriers(useful, this); 462 // clean up the late inline lists 463 remove_useless_late_inlines( &_late_inlines, useful); 464 remove_useless_late_inlines( &_string_late_inlines, useful); 465 remove_useless_late_inlines( &_boxing_late_inlines, useful); 466 remove_useless_late_inlines(&_vector_reboxing_late_inlines, useful); 467 debug_only(verify_graph_edges(true/*check for no_dead_code*/);) 468 } 469 470 // ============================================================================ 471 //------------------------------CompileWrapper--------------------------------- 472 class CompileWrapper : public StackObj { 473 Compile *const _compile; 474 public: 475 CompileWrapper(Compile* compile); 476 477 ~CompileWrapper(); 478 }; 479 480 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) { 481 // the Compile* pointer is stored in the current ciEnv: 482 ciEnv* env = compile->env(); 483 assert(env == ciEnv::current(), "must already be a ciEnv active"); 484 assert(env->compiler_data() == nullptr, "compile already active?"); 485 env->set_compiler_data(compile); 486 assert(compile == Compile::current(), "sanity"); 487 488 compile->set_type_dict(nullptr); 489 compile->set_clone_map(new Dict(cmpkey, hashkey, _compile->comp_arena())); 490 compile->clone_map().set_clone_idx(0); 491 compile->set_type_last_size(0); 492 compile->set_last_tf(nullptr, nullptr); 493 compile->set_indexSet_arena(nullptr); 494 compile->set_indexSet_free_block_list(nullptr); 495 compile->init_type_arena(); 496 Type::Initialize(compile); 497 _compile->begin_method(); 498 _compile->clone_map().set_debug(_compile->has_method() && _compile->directive()->CloneMapDebugOption); 499 } 500 CompileWrapper::~CompileWrapper() { 501 // simulate crash during compilation 502 assert(CICrashAt < 0 || _compile->compile_id() != CICrashAt, "just as planned"); 503 504 _compile->end_method(); 505 _compile->env()->set_compiler_data(nullptr); 506 } 507 508 509 //----------------------------print_compile_messages--------------------------- 510 void Compile::print_compile_messages() { 511 #ifndef PRODUCT 512 // Check if recompiling 513 if (!subsume_loads() && PrintOpto) { 514 // Recompiling without allowing machine instructions to subsume loads 515 tty->print_cr("*********************************************************"); 516 tty->print_cr("** Bailout: Recompile without subsuming loads **"); 517 tty->print_cr("*********************************************************"); 518 } 519 if ((do_escape_analysis() != DoEscapeAnalysis) && PrintOpto) { 520 // Recompiling without escape analysis 521 tty->print_cr("*********************************************************"); 522 tty->print_cr("** Bailout: Recompile without escape analysis **"); 523 tty->print_cr("*********************************************************"); 524 } 525 if (do_iterative_escape_analysis() != DoEscapeAnalysis && PrintOpto) { 526 // Recompiling without iterative escape analysis 527 tty->print_cr("*********************************************************"); 528 tty->print_cr("** Bailout: Recompile without iterative escape analysis**"); 529 tty->print_cr("*********************************************************"); 530 } 531 if (do_reduce_allocation_merges() != ReduceAllocationMerges && PrintOpto) { 532 // Recompiling without reducing allocation merges 533 tty->print_cr("*********************************************************"); 534 tty->print_cr("** Bailout: Recompile without reduce allocation merges **"); 535 tty->print_cr("*********************************************************"); 536 } 537 if ((eliminate_boxing() != EliminateAutoBox) && PrintOpto) { 538 // Recompiling without boxing elimination 539 tty->print_cr("*********************************************************"); 540 tty->print_cr("** Bailout: Recompile without boxing elimination **"); 541 tty->print_cr("*********************************************************"); 542 } 543 if ((do_locks_coarsening() != EliminateLocks) && PrintOpto) { 544 // Recompiling without locks coarsening 545 tty->print_cr("*********************************************************"); 546 tty->print_cr("** Bailout: Recompile without locks coarsening **"); 547 tty->print_cr("*********************************************************"); 548 } 549 if (env()->break_at_compile()) { 550 // Open the debugger when compiling this method. 551 tty->print("### Breaking when compiling: "); 552 method()->print_short_name(); 553 tty->cr(); 554 BREAKPOINT; 555 } 556 557 if( PrintOpto ) { 558 if (is_osr_compilation()) { 559 tty->print("[OSR]%3d", _compile_id); 560 } else { 561 tty->print("%3d", _compile_id); 562 } 563 } 564 #endif 565 } 566 567 #ifndef PRODUCT 568 void Compile::print_ideal_ir(const char* phase_name) { 569 // keep the following output all in one block 570 // This output goes directly to the tty, not the compiler log. 571 // To enable tools to match it up with the compilation activity, 572 // be sure to tag this tty output with the compile ID. 573 574 // Node dumping can cause a safepoint, which can break the tty lock. 575 // Buffer all node dumps, so that all safepoints happen before we lock. 576 ResourceMark rm; 577 stringStream ss; 578 579 if (_output == nullptr) { 580 ss.print_cr("AFTER: %s", phase_name); 581 // Print out all nodes in ascending order of index. 582 root()->dump_bfs(MaxNodeLimit, nullptr, "+S$", &ss); 583 } else { 584 // Dump the node blockwise if we have a scheduling 585 _output->print_scheduling(&ss); 586 } 587 588 // Check that the lock is not broken by a safepoint. 589 NoSafepointVerifier nsv; 590 ttyLocker ttyl; 591 if (xtty != nullptr) { 592 xtty->head("ideal compile_id='%d'%s compile_phase='%s'", 593 compile_id(), 594 is_osr_compilation() ? " compile_kind='osr'" : "", 595 phase_name); 596 } 597 598 tty->print("%s", ss.as_string()); 599 600 if (xtty != nullptr) { 601 xtty->tail("ideal"); 602 } 603 } 604 #endif 605 606 // ============================================================================ 607 //------------------------------Compile standard------------------------------- 608 609 // Compile a method. entry_bci is -1 for normal compilations and indicates 610 // the continuation bci for on stack replacement. 611 612 613 Compile::Compile(ciEnv* ci_env, ciMethod* target, int osr_bci, 614 Options options, DirectiveSet* directive) 615 : Phase(Compiler), 616 _compile_id(ci_env->compile_id()), 617 _options(options), 618 _method(target), 619 _entry_bci(osr_bci), 620 _ilt(nullptr), 621 _stub_function(nullptr), 622 _stub_name(nullptr), 623 _stub_entry_point(nullptr), 624 _max_node_limit(MaxNodeLimit), 625 _post_loop_opts_phase(false), 626 _allow_macro_nodes(true), 627 _inlining_progress(false), 628 _inlining_incrementally(false), 629 _do_cleanup(false), 630 _has_reserved_stack_access(target->has_reserved_stack_access()), 631 #ifndef PRODUCT 632 _igv_idx(0), 633 _trace_opto_output(directive->TraceOptoOutputOption), 634 #endif 635 _has_method_handle_invokes(false), 636 _clinit_barrier_on_entry(false), 637 _stress_seed(0), 638 _comp_arena(mtCompiler), 639 _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())), 640 _env(ci_env), 641 _directive(directive), 642 _log(ci_env->log()), 643 _first_failure_details(nullptr), 644 _intrinsics(comp_arena(), 0, 0, nullptr), 645 _macro_nodes(comp_arena(), 8, 0, nullptr), 646 _parse_predicates(comp_arena(), 8, 0, nullptr), 647 _template_assertion_predicate_opaqs(comp_arena(), 8, 0, nullptr), 648 _expensive_nodes(comp_arena(), 8, 0, nullptr), 649 _for_post_loop_igvn(comp_arena(), 8, 0, nullptr), 650 _unstable_if_traps(comp_arena(), 8, 0, nullptr), 651 _coarsened_locks(comp_arena(), 8, 0, nullptr), 652 _congraph(nullptr), 653 NOT_PRODUCT(_igv_printer(nullptr) COMMA) 654 _unique(0), 655 _dead_node_count(0), 656 _dead_node_list(comp_arena()), 657 _node_arena_one(mtCompiler, Arena::Tag::tag_node), 658 _node_arena_two(mtCompiler, Arena::Tag::tag_node), 659 _node_arena(&_node_arena_one), 660 _mach_constant_base_node(nullptr), 661 _Compile_types(mtCompiler), 662 _initial_gvn(nullptr), 663 _igvn_worklist(nullptr), 664 _types(nullptr), 665 _node_hash(nullptr), 666 _late_inlines(comp_arena(), 2, 0, nullptr), 667 _string_late_inlines(comp_arena(), 2, 0, nullptr), 668 _boxing_late_inlines(comp_arena(), 2, 0, nullptr), 669 _vector_reboxing_late_inlines(comp_arena(), 2, 0, nullptr), 670 _late_inlines_pos(0), 671 _number_of_mh_late_inlines(0), 672 _oom(false), 673 _replay_inline_data(nullptr), 674 _inline_printer(this), 675 _java_calls(0), 676 _inner_loops(0), 677 _interpreter_frame_size(0), 678 _output(nullptr) 679 #ifndef PRODUCT 680 , 681 _in_dump_cnt(0) 682 #endif 683 { 684 C = this; 685 CompileWrapper cw(this); 686 687 TraceTime t1("Total compilation time", &_t_totalCompilation, CITime, CITimeVerbose); 688 TraceTime t2(nullptr, &_t_methodCompilation, CITime, false); 689 690 #if defined(SUPPORT_ASSEMBLY) || defined(SUPPORT_ABSTRACT_ASSEMBLY) 691 bool print_opto_assembly = directive->PrintOptoAssemblyOption; 692 // We can always print a disassembly, either abstract (hex dump) or 693 // with the help of a suitable hsdis library. Thus, we should not 694 // couple print_assembly and print_opto_assembly controls. 695 // But: always print opto and regular assembly on compile command 'print'. 696 bool print_assembly = directive->PrintAssemblyOption; 697 set_print_assembly(print_opto_assembly || print_assembly); 698 #else 699 set_print_assembly(false); // must initialize. 700 #endif 701 702 #ifndef PRODUCT 703 set_parsed_irreducible_loop(false); 704 #endif 705 706 if (directive->ReplayInlineOption) { 707 _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level()); 708 } 709 set_print_inlining(directive->PrintInliningOption || PrintOptoInlining); 710 set_print_intrinsics(directive->PrintIntrinsicsOption); 711 set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it 712 713 if (ProfileTraps) { 714 // Make sure the method being compiled gets its own MDO, 715 // so we can at least track the decompile_count(). 716 method()->ensure_method_data(); 717 } 718 719 if (StressLCM || StressGCM || StressIGVN || StressCCP || 720 StressIncrementalInlining || StressMacroExpansion || StressUnstableIfTraps || StressBailout) { 721 initialize_stress_seed(directive); 722 } 723 724 Init(/*do_aliasing=*/ true); 725 726 print_compile_messages(); 727 728 _ilt = InlineTree::build_inline_tree_root(); 729 730 // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice 731 assert(num_alias_types() >= AliasIdxRaw, ""); 732 733 #define MINIMUM_NODE_HASH 1023 734 735 // GVN that will be run immediately on new nodes 736 uint estimated_size = method()->code_size()*4+64; 737 estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size); 738 _igvn_worklist = new (comp_arena()) Unique_Node_List(comp_arena()); 739 _types = new (comp_arena()) Type_Array(comp_arena()); 740 _node_hash = new (comp_arena()) NodeHash(comp_arena(), estimated_size); 741 PhaseGVN gvn; 742 set_initial_gvn(&gvn); 743 744 { // Scope for timing the parser 745 TracePhase tp(_t_parser); 746 747 // Put top into the hash table ASAP. 748 initial_gvn()->transform(top()); 749 750 // Set up tf(), start(), and find a CallGenerator. 751 CallGenerator* cg = nullptr; 752 if (is_osr_compilation()) { 753 const TypeTuple *domain = StartOSRNode::osr_domain(); 754 const TypeTuple *range = TypeTuple::make_range(method()->signature()); 755 init_tf(TypeFunc::make(domain, range)); 756 StartNode* s = new StartOSRNode(root(), domain); 757 initial_gvn()->set_type_bottom(s); 758 verify_start(s); 759 cg = CallGenerator::for_osr(method(), entry_bci()); 760 } else { 761 // Normal case. 762 init_tf(TypeFunc::make(method())); 763 StartNode* s = new StartNode(root(), tf()->domain()); 764 initial_gvn()->set_type_bottom(s); 765 verify_start(s); 766 if (method()->intrinsic_id() == vmIntrinsics::_Reference_get) { 767 // With java.lang.ref.reference.get() we must go through the 768 // intrinsic - even when get() is the root 769 // method of the compile - so that, if necessary, the value in 770 // the referent field of the reference object gets recorded by 771 // the pre-barrier code. 772 cg = find_intrinsic(method(), false); 773 } 774 if (cg == nullptr) { 775 float past_uses = method()->interpreter_invocation_count(); 776 float expected_uses = past_uses; 777 cg = CallGenerator::for_inline(method(), expected_uses); 778 } 779 } 780 if (failing()) return; 781 if (cg == nullptr) { 782 const char* reason = InlineTree::check_can_parse(method()); 783 assert(reason != nullptr, "expect reason for parse failure"); 784 stringStream ss; 785 ss.print("cannot parse method: %s", reason); 786 record_method_not_compilable(ss.as_string()); 787 return; 788 } 789 790 gvn.set_type(root(), root()->bottom_type()); 791 792 JVMState* jvms = build_start_state(start(), tf()); 793 if ((jvms = cg->generate(jvms)) == nullptr) { 794 assert(failure_reason() != nullptr, "expect reason for parse failure"); 795 stringStream ss; 796 ss.print("method parse failed: %s", failure_reason()); 797 record_method_not_compilable(ss.as_string() DEBUG_ONLY(COMMA true)); 798 return; 799 } 800 GraphKit kit(jvms); 801 802 if (!kit.stopped()) { 803 // Accept return values, and transfer control we know not where. 804 // This is done by a special, unique ReturnNode bound to root. 805 return_values(kit.jvms()); 806 } 807 808 if (kit.has_exceptions()) { 809 // Any exceptions that escape from this call must be rethrown 810 // to whatever caller is dynamically above us on the stack. 811 // This is done by a special, unique RethrowNode bound to root. 812 rethrow_exceptions(kit.transfer_exceptions_into_jvms()); 813 } 814 815 assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off"); 816 817 if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) { 818 inline_string_calls(true); 819 } 820 821 if (failing()) return; 822 823 // Remove clutter produced by parsing. 824 if (!failing()) { 825 ResourceMark rm; 826 PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist()); 827 } 828 } 829 830 // Note: Large methods are capped off in do_one_bytecode(). 831 if (failing()) return; 832 833 // After parsing, node notes are no longer automagic. 834 // They must be propagated by register_new_node_with_optimizer(), 835 // clone(), or the like. 836 set_default_node_notes(nullptr); 837 838 #ifndef PRODUCT 839 if (should_print_igv(1)) { 840 _igv_printer->print_inlining(); 841 } 842 #endif 843 844 if (failing()) return; 845 NOT_PRODUCT( verify_graph_edges(); ) 846 847 // Now optimize 848 Optimize(); 849 if (failing()) return; 850 NOT_PRODUCT( verify_graph_edges(); ) 851 852 #ifndef PRODUCT 853 if (should_print_ideal()) { 854 print_ideal_ir("print_ideal"); 855 } 856 #endif 857 858 #ifdef ASSERT 859 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 860 bs->verify_gc_barriers(this, BarrierSetC2::BeforeCodeGen); 861 #endif 862 863 // Dump compilation data to replay it. 864 if (directive->DumpReplayOption) { 865 env()->dump_replay_data(_compile_id); 866 } 867 if (directive->DumpInlineOption && (ilt() != nullptr)) { 868 env()->dump_inline_data(_compile_id); 869 } 870 871 // Now that we know the size of all the monitors we can add a fixed slot 872 // for the original deopt pc. 873 int next_slot = fixed_slots() + (sizeof(address) / VMRegImpl::stack_slot_size); 874 set_fixed_slots(next_slot); 875 876 // Compute when to use implicit null checks. Used by matching trap based 877 // nodes and NullCheck optimization. 878 set_allowed_deopt_reasons(); 879 880 // Now generate code 881 Code_Gen(); 882 } 883 884 //------------------------------Compile---------------------------------------- 885 // Compile a runtime stub 886 Compile::Compile(ciEnv* ci_env, 887 TypeFunc_generator generator, 888 address stub_function, 889 const char* stub_name, 890 int is_fancy_jump, 891 bool pass_tls, 892 bool return_pc, 893 DirectiveSet* directive) 894 : Phase(Compiler), 895 _compile_id(0), 896 _options(Options::for_runtime_stub()), 897 _method(nullptr), 898 _entry_bci(InvocationEntryBci), 899 _stub_function(stub_function), 900 _stub_name(stub_name), 901 _stub_entry_point(nullptr), 902 _max_node_limit(MaxNodeLimit), 903 _post_loop_opts_phase(false), 904 _allow_macro_nodes(true), 905 _inlining_progress(false), 906 _inlining_incrementally(false), 907 _has_reserved_stack_access(false), 908 #ifndef PRODUCT 909 _igv_idx(0), 910 _trace_opto_output(directive->TraceOptoOutputOption), 911 #endif 912 _has_method_handle_invokes(false), 913 _clinit_barrier_on_entry(false), 914 _stress_seed(0), 915 _comp_arena(mtCompiler), 916 _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())), 917 _env(ci_env), 918 _directive(directive), 919 _log(ci_env->log()), 920 _first_failure_details(nullptr), 921 _for_post_loop_igvn(comp_arena(), 8, 0, nullptr), 922 _congraph(nullptr), 923 NOT_PRODUCT(_igv_printer(nullptr) COMMA) 924 _unique(0), 925 _dead_node_count(0), 926 _dead_node_list(comp_arena()), 927 _node_arena_one(mtCompiler), 928 _node_arena_two(mtCompiler), 929 _node_arena(&_node_arena_one), 930 _mach_constant_base_node(nullptr), 931 _Compile_types(mtCompiler), 932 _initial_gvn(nullptr), 933 _igvn_worklist(nullptr), 934 _types(nullptr), 935 _node_hash(nullptr), 936 _number_of_mh_late_inlines(0), 937 _oom(false), 938 _replay_inline_data(nullptr), 939 _inline_printer(this), 940 _java_calls(0), 941 _inner_loops(0), 942 _interpreter_frame_size(0), 943 _output(nullptr), 944 #ifndef PRODUCT 945 _in_dump_cnt(0), 946 #endif 947 _allowed_reasons(0) { 948 C = this; 949 950 TraceTime t1(nullptr, &_t_totalCompilation, CITime, false); 951 TraceTime t2(nullptr, &_t_stubCompilation, CITime, false); 952 953 #ifndef PRODUCT 954 set_print_assembly(PrintFrameConverterAssembly); 955 set_parsed_irreducible_loop(false); 956 #else 957 set_print_assembly(false); // Must initialize. 958 #endif 959 set_has_irreducible_loop(false); // no loops 960 961 CompileWrapper cw(this); 962 Init(/*do_aliasing=*/ false); 963 init_tf((*generator)()); 964 965 _igvn_worklist = new (comp_arena()) Unique_Node_List(comp_arena()); 966 _types = new (comp_arena()) Type_Array(comp_arena()); 967 _node_hash = new (comp_arena()) NodeHash(comp_arena(), 255); 968 969 if (StressLCM || StressGCM || StressBailout) { 970 initialize_stress_seed(directive); 971 } 972 973 { 974 PhaseGVN gvn; 975 set_initial_gvn(&gvn); // not significant, but GraphKit guys use it pervasively 976 gvn.transform(top()); 977 978 GraphKit kit; 979 kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc); 980 } 981 982 NOT_PRODUCT( verify_graph_edges(); ) 983 984 Code_Gen(); 985 } 986 987 Compile::~Compile() { 988 delete _first_failure_details; 989 }; 990 991 //------------------------------Init------------------------------------------- 992 // Prepare for a single compilation 993 void Compile::Init(bool aliasing) { 994 _do_aliasing = aliasing; 995 _unique = 0; 996 _regalloc = nullptr; 997 998 _tf = nullptr; // filled in later 999 _top = nullptr; // cached later 1000 _matcher = nullptr; // filled in later 1001 _cfg = nullptr; // filled in later 1002 1003 IA32_ONLY( set_24_bit_selection_and_mode(true, false); ) 1004 1005 _node_note_array = nullptr; 1006 _default_node_notes = nullptr; 1007 DEBUG_ONLY( _modified_nodes = nullptr; ) // Used in Optimize() 1008 1009 _immutable_memory = nullptr; // filled in at first inquiry 1010 1011 #ifdef ASSERT 1012 _phase_optimize_finished = false; 1013 _phase_verify_ideal_loop = false; 1014 _exception_backedge = false; 1015 _type_verify = nullptr; 1016 #endif 1017 1018 // Globally visible Nodes 1019 // First set TOP to null to give safe behavior during creation of RootNode 1020 set_cached_top_node(nullptr); 1021 set_root(new RootNode()); 1022 // Now that you have a Root to point to, create the real TOP 1023 set_cached_top_node( new ConNode(Type::TOP) ); 1024 set_recent_alloc(nullptr, nullptr); 1025 1026 // Create Debug Information Recorder to record scopes, oopmaps, etc. 1027 env()->set_oop_recorder(new OopRecorder(env()->arena())); 1028 env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder())); 1029 env()->set_dependencies(new Dependencies(env())); 1030 1031 _fixed_slots = 0; 1032 set_has_split_ifs(false); 1033 set_has_loops(false); // first approximation 1034 set_has_stringbuilder(false); 1035 set_has_boxed_value(false); 1036 _trap_can_recompile = false; // no traps emitted yet 1037 _major_progress = true; // start out assuming good things will happen 1038 set_has_unsafe_access(false); 1039 set_max_vector_size(0); 1040 set_clear_upper_avx(false); //false as default for clear upper bits of ymm registers 1041 Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist)); 1042 set_decompile_count(0); 1043 1044 #ifndef PRODUCT 1045 Copy::zero_to_bytes(_igv_phase_iter, sizeof(_igv_phase_iter)); 1046 #endif 1047 1048 set_do_freq_based_layout(_directive->BlockLayoutByFrequencyOption); 1049 _loop_opts_cnt = LoopOptsCount; 1050 set_do_inlining(Inline); 1051 set_max_inline_size(MaxInlineSize); 1052 set_freq_inline_size(FreqInlineSize); 1053 set_do_scheduling(OptoScheduling); 1054 1055 set_do_vector_loop(false); 1056 set_has_monitors(false); 1057 set_has_scoped_access(false); 1058 1059 if (AllowVectorizeOnDemand) { 1060 if (has_method() && _directive->VectorizeOption) { 1061 set_do_vector_loop(true); 1062 NOT_PRODUCT(if (do_vector_loop() && Verbose) {tty->print("Compile::Init: do vectorized loops (SIMD like) for method %s\n", method()->name()->as_quoted_ascii());}) 1063 } else if (has_method() && method()->name() != nullptr && 1064 method()->intrinsic_id() == vmIntrinsics::_forEachRemaining) { 1065 set_do_vector_loop(true); 1066 } 1067 } 1068 set_use_cmove(UseCMoveUnconditionally /* || do_vector_loop()*/); //TODO: consider do_vector_loop() mandate use_cmove unconditionally 1069 NOT_PRODUCT(if (use_cmove() && Verbose && has_method()) {tty->print("Compile::Init: use CMove without profitability tests for method %s\n", method()->name()->as_quoted_ascii());}) 1070 1071 _max_node_limit = _directive->MaxNodeLimitOption; 1072 1073 if (VM_Version::supports_fast_class_init_checks() && has_method() && !is_osr_compilation() && method()->needs_clinit_barrier()) { 1074 set_clinit_barrier_on_entry(true); 1075 } 1076 if (debug_info()->recording_non_safepoints()) { 1077 set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*> 1078 (comp_arena(), 8, 0, nullptr)); 1079 set_default_node_notes(Node_Notes::make(this)); 1080 } 1081 1082 const int grow_ats = 16; 1083 _max_alias_types = grow_ats; 1084 _alias_types = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats); 1085 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, grow_ats); 1086 Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats); 1087 { 1088 for (int i = 0; i < grow_ats; i++) _alias_types[i] = &ats[i]; 1089 } 1090 // Initialize the first few types. 1091 _alias_types[AliasIdxTop]->Init(AliasIdxTop, nullptr); 1092 _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM); 1093 _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM); 1094 _num_alias_types = AliasIdxRaw+1; 1095 // Zero out the alias type cache. 1096 Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache)); 1097 // A null adr_type hits in the cache right away. Preload the right answer. 1098 probe_alias_cache(nullptr)->_index = AliasIdxTop; 1099 } 1100 1101 #ifdef ASSERT 1102 // Verify that the current StartNode is valid. 1103 void Compile::verify_start(StartNode* s) const { 1104 assert(failing_internal() || s == start(), "should be StartNode"); 1105 } 1106 #endif 1107 1108 /** 1109 * Return the 'StartNode'. We must not have a pending failure, since the ideal graph 1110 * can be in an inconsistent state, i.e., we can get segmentation faults when traversing 1111 * the ideal graph. 1112 */ 1113 StartNode* Compile::start() const { 1114 assert (!failing_internal() || C->failure_is_artificial(), "Must not have pending failure. Reason is: %s", failure_reason()); 1115 for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) { 1116 Node* start = root()->fast_out(i); 1117 if (start->is_Start()) { 1118 return start->as_Start(); 1119 } 1120 } 1121 fatal("Did not find Start node!"); 1122 return nullptr; 1123 } 1124 1125 //-------------------------------immutable_memory------------------------------------- 1126 // Access immutable memory 1127 Node* Compile::immutable_memory() { 1128 if (_immutable_memory != nullptr) { 1129 return _immutable_memory; 1130 } 1131 StartNode* s = start(); 1132 for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) { 1133 Node *p = s->fast_out(i); 1134 if (p != s && p->as_Proj()->_con == TypeFunc::Memory) { 1135 _immutable_memory = p; 1136 return _immutable_memory; 1137 } 1138 } 1139 ShouldNotReachHere(); 1140 return nullptr; 1141 } 1142 1143 //----------------------set_cached_top_node------------------------------------ 1144 // Install the cached top node, and make sure Node::is_top works correctly. 1145 void Compile::set_cached_top_node(Node* tn) { 1146 if (tn != nullptr) verify_top(tn); 1147 Node* old_top = _top; 1148 _top = tn; 1149 // Calling Node::setup_is_top allows the nodes the chance to adjust 1150 // their _out arrays. 1151 if (_top != nullptr) _top->setup_is_top(); 1152 if (old_top != nullptr) old_top->setup_is_top(); 1153 assert(_top == nullptr || top()->is_top(), ""); 1154 } 1155 1156 #ifdef ASSERT 1157 uint Compile::count_live_nodes_by_graph_walk() { 1158 Unique_Node_List useful(comp_arena()); 1159 // Get useful node list by walking the graph. 1160 identify_useful_nodes(useful); 1161 return useful.size(); 1162 } 1163 1164 void Compile::print_missing_nodes() { 1165 1166 // Return if CompileLog is null and PrintIdealNodeCount is false. 1167 if ((_log == nullptr) && (! PrintIdealNodeCount)) { 1168 return; 1169 } 1170 1171 // This is an expensive function. It is executed only when the user 1172 // specifies VerifyIdealNodeCount option or otherwise knows the 1173 // additional work that needs to be done to identify reachable nodes 1174 // by walking the flow graph and find the missing ones using 1175 // _dead_node_list. 1176 1177 Unique_Node_List useful(comp_arena()); 1178 // Get useful node list by walking the graph. 1179 identify_useful_nodes(useful); 1180 1181 uint l_nodes = C->live_nodes(); 1182 uint l_nodes_by_walk = useful.size(); 1183 1184 if (l_nodes != l_nodes_by_walk) { 1185 if (_log != nullptr) { 1186 _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk))); 1187 _log->stamp(); 1188 _log->end_head(); 1189 } 1190 VectorSet& useful_member_set = useful.member_set(); 1191 int last_idx = l_nodes_by_walk; 1192 for (int i = 0; i < last_idx; i++) { 1193 if (useful_member_set.test(i)) { 1194 if (_dead_node_list.test(i)) { 1195 if (_log != nullptr) { 1196 _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i); 1197 } 1198 if (PrintIdealNodeCount) { 1199 // Print the log message to tty 1200 tty->print_cr("mismatched_node idx='%d' both live and dead'", i); 1201 useful.at(i)->dump(); 1202 } 1203 } 1204 } 1205 else if (! _dead_node_list.test(i)) { 1206 if (_log != nullptr) { 1207 _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i); 1208 } 1209 if (PrintIdealNodeCount) { 1210 // Print the log message to tty 1211 tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i); 1212 } 1213 } 1214 } 1215 if (_log != nullptr) { 1216 _log->tail("mismatched_nodes"); 1217 } 1218 } 1219 } 1220 void Compile::record_modified_node(Node* n) { 1221 if (_modified_nodes != nullptr && !_inlining_incrementally && !n->is_Con()) { 1222 _modified_nodes->push(n); 1223 } 1224 } 1225 1226 void Compile::remove_modified_node(Node* n) { 1227 if (_modified_nodes != nullptr) { 1228 _modified_nodes->remove(n); 1229 } 1230 } 1231 #endif 1232 1233 #ifndef PRODUCT 1234 void Compile::verify_top(Node* tn) const { 1235 if (tn != nullptr) { 1236 assert(tn->is_Con(), "top node must be a constant"); 1237 assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type"); 1238 assert(tn->in(0) != nullptr, "must have live top node"); 1239 } 1240 } 1241 #endif 1242 1243 1244 ///-------------------Managing Per-Node Debug & Profile Info------------------- 1245 1246 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) { 1247 guarantee(arr != nullptr, ""); 1248 int num_blocks = arr->length(); 1249 if (grow_by < num_blocks) grow_by = num_blocks; 1250 int num_notes = grow_by * _node_notes_block_size; 1251 Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes); 1252 Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes)); 1253 while (num_notes > 0) { 1254 arr->append(notes); 1255 notes += _node_notes_block_size; 1256 num_notes -= _node_notes_block_size; 1257 } 1258 assert(num_notes == 0, "exact multiple, please"); 1259 } 1260 1261 bool Compile::copy_node_notes_to(Node* dest, Node* source) { 1262 if (source == nullptr || dest == nullptr) return false; 1263 1264 if (dest->is_Con()) 1265 return false; // Do not push debug info onto constants. 1266 1267 #ifdef ASSERT 1268 // Leave a bread crumb trail pointing to the original node: 1269 if (dest != nullptr && dest != source && dest->debug_orig() == nullptr) { 1270 dest->set_debug_orig(source); 1271 } 1272 #endif 1273 1274 if (node_note_array() == nullptr) 1275 return false; // Not collecting any notes now. 1276 1277 // This is a copy onto a pre-existing node, which may already have notes. 1278 // If both nodes have notes, do not overwrite any pre-existing notes. 1279 Node_Notes* source_notes = node_notes_at(source->_idx); 1280 if (source_notes == nullptr || source_notes->is_clear()) return false; 1281 Node_Notes* dest_notes = node_notes_at(dest->_idx); 1282 if (dest_notes == nullptr || dest_notes->is_clear()) { 1283 return set_node_notes_at(dest->_idx, source_notes); 1284 } 1285 1286 Node_Notes merged_notes = (*source_notes); 1287 // The order of operations here ensures that dest notes will win... 1288 merged_notes.update_from(dest_notes); 1289 return set_node_notes_at(dest->_idx, &merged_notes); 1290 } 1291 1292 1293 //--------------------------allow_range_check_smearing------------------------- 1294 // Gating condition for coalescing similar range checks. 1295 // Sometimes we try 'speculatively' replacing a series of a range checks by a 1296 // single covering check that is at least as strong as any of them. 1297 // If the optimization succeeds, the simplified (strengthened) range check 1298 // will always succeed. If it fails, we will deopt, and then give up 1299 // on the optimization. 1300 bool Compile::allow_range_check_smearing() const { 1301 // If this method has already thrown a range-check, 1302 // assume it was because we already tried range smearing 1303 // and it failed. 1304 uint already_trapped = trap_count(Deoptimization::Reason_range_check); 1305 return !already_trapped; 1306 } 1307 1308 1309 //------------------------------flatten_alias_type----------------------------- 1310 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const { 1311 assert(do_aliasing(), "Aliasing should be enabled"); 1312 int offset = tj->offset(); 1313 TypePtr::PTR ptr = tj->ptr(); 1314 1315 // Known instance (scalarizable allocation) alias only with itself. 1316 bool is_known_inst = tj->isa_oopptr() != nullptr && 1317 tj->is_oopptr()->is_known_instance(); 1318 1319 // Process weird unsafe references. 1320 if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) { 1321 assert(InlineUnsafeOps || StressReflectiveCode, "indeterminate pointers come only from unsafe ops"); 1322 assert(!is_known_inst, "scalarizable allocation should not have unsafe references"); 1323 tj = TypeOopPtr::BOTTOM; 1324 ptr = tj->ptr(); 1325 offset = tj->offset(); 1326 } 1327 1328 // Array pointers need some flattening 1329 const TypeAryPtr* ta = tj->isa_aryptr(); 1330 if (ta && ta->is_stable()) { 1331 // Erase stability property for alias analysis. 1332 tj = ta = ta->cast_to_stable(false); 1333 } 1334 if( ta && is_known_inst ) { 1335 if ( offset != Type::OffsetBot && 1336 offset > arrayOopDesc::length_offset_in_bytes() ) { 1337 offset = Type::OffsetBot; // Flatten constant access into array body only 1338 tj = ta = ta-> 1339 remove_speculative()-> 1340 cast_to_ptr_type(ptr)-> 1341 with_offset(offset); 1342 } 1343 } else if (ta) { 1344 // For arrays indexed by constant indices, we flatten the alias 1345 // space to include all of the array body. Only the header, klass 1346 // and array length can be accessed un-aliased. 1347 if( offset != Type::OffsetBot ) { 1348 if( ta->const_oop() ) { // MethodData* or Method* 1349 offset = Type::OffsetBot; // Flatten constant access into array body 1350 tj = ta = ta-> 1351 remove_speculative()-> 1352 cast_to_ptr_type(ptr)-> 1353 cast_to_exactness(false)-> 1354 with_offset(offset); 1355 } else if( offset == arrayOopDesc::length_offset_in_bytes() ) { 1356 // range is OK as-is. 1357 tj = ta = TypeAryPtr::RANGE; 1358 } else if( offset == oopDesc::klass_offset_in_bytes() ) { 1359 tj = TypeInstPtr::KLASS; // all klass loads look alike 1360 ta = TypeAryPtr::RANGE; // generic ignored junk 1361 ptr = TypePtr::BotPTR; 1362 } else if( offset == oopDesc::mark_offset_in_bytes() ) { 1363 tj = TypeInstPtr::MARK; 1364 ta = TypeAryPtr::RANGE; // generic ignored junk 1365 ptr = TypePtr::BotPTR; 1366 } else { // Random constant offset into array body 1367 offset = Type::OffsetBot; // Flatten constant access into array body 1368 tj = ta = ta-> 1369 remove_speculative()-> 1370 cast_to_ptr_type(ptr)-> 1371 cast_to_exactness(false)-> 1372 with_offset(offset); 1373 } 1374 } 1375 // Arrays of fixed size alias with arrays of unknown size. 1376 if (ta->size() != TypeInt::POS) { 1377 const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS); 1378 tj = ta = ta-> 1379 remove_speculative()-> 1380 cast_to_ptr_type(ptr)-> 1381 with_ary(tary)-> 1382 cast_to_exactness(false); 1383 } 1384 // Arrays of known objects become arrays of unknown objects. 1385 if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) { 1386 const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size()); 1387 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,nullptr,false,offset); 1388 } 1389 if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) { 1390 const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size()); 1391 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,nullptr,false,offset); 1392 } 1393 // Arrays of bytes and of booleans both use 'bastore' and 'baload' so 1394 // cannot be distinguished by bytecode alone. 1395 if (ta->elem() == TypeInt::BOOL) { 1396 const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size()); 1397 ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE); 1398 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset); 1399 } 1400 // During the 2nd round of IterGVN, NotNull castings are removed. 1401 // Make sure the Bottom and NotNull variants alias the same. 1402 // Also, make sure exact and non-exact variants alias the same. 1403 if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != nullptr) { 1404 tj = ta = ta-> 1405 remove_speculative()-> 1406 cast_to_ptr_type(TypePtr::BotPTR)-> 1407 cast_to_exactness(false)-> 1408 with_offset(offset); 1409 } 1410 } 1411 1412 // Oop pointers need some flattening 1413 const TypeInstPtr *to = tj->isa_instptr(); 1414 if (to && to != TypeOopPtr::BOTTOM) { 1415 ciInstanceKlass* ik = to->instance_klass(); 1416 if( ptr == TypePtr::Constant ) { 1417 if (ik != ciEnv::current()->Class_klass() || 1418 offset < ik->layout_helper_size_in_bytes()) { 1419 // No constant oop pointers (such as Strings); they alias with 1420 // unknown strings. 1421 assert(!is_known_inst, "not scalarizable allocation"); 1422 tj = to = to-> 1423 cast_to_instance_id(TypeOopPtr::InstanceBot)-> 1424 remove_speculative()-> 1425 cast_to_ptr_type(TypePtr::BotPTR)-> 1426 cast_to_exactness(false); 1427 } 1428 } else if( is_known_inst ) { 1429 tj = to; // Keep NotNull and klass_is_exact for instance type 1430 } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) { 1431 // During the 2nd round of IterGVN, NotNull castings are removed. 1432 // Make sure the Bottom and NotNull variants alias the same. 1433 // Also, make sure exact and non-exact variants alias the same. 1434 tj = to = to-> 1435 remove_speculative()-> 1436 cast_to_instance_id(TypeOopPtr::InstanceBot)-> 1437 cast_to_ptr_type(TypePtr::BotPTR)-> 1438 cast_to_exactness(false); 1439 } 1440 if (to->speculative() != nullptr) { 1441 tj = to = to->remove_speculative(); 1442 } 1443 // Canonicalize the holder of this field 1444 if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) { 1445 // First handle header references such as a LoadKlassNode, even if the 1446 // object's klass is unloaded at compile time (4965979). 1447 if (!is_known_inst) { // Do it only for non-instance types 1448 tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, nullptr, offset); 1449 } 1450 } else if (offset < 0 || offset >= ik->layout_helper_size_in_bytes()) { 1451 // Static fields are in the space above the normal instance 1452 // fields in the java.lang.Class instance. 1453 if (ik != ciEnv::current()->Class_klass()) { 1454 to = nullptr; 1455 tj = TypeOopPtr::BOTTOM; 1456 offset = tj->offset(); 1457 } 1458 } else { 1459 ciInstanceKlass *canonical_holder = ik->get_canonical_holder(offset); 1460 assert(offset < canonical_holder->layout_helper_size_in_bytes(), ""); 1461 assert(tj->offset() == offset, "no change to offset expected"); 1462 bool xk = to->klass_is_exact(); 1463 int instance_id = to->instance_id(); 1464 1465 // If the input type's class is the holder: if exact, the type only includes interfaces implemented by the holder 1466 // but if not exact, it may include extra interfaces: build new type from the holder class to make sure only 1467 // its interfaces are included. 1468 if (xk && ik->equals(canonical_holder)) { 1469 assert(tj == TypeInstPtr::make(to->ptr(), canonical_holder, is_known_inst, nullptr, offset, instance_id), "exact type should be canonical type"); 1470 } else { 1471 assert(xk || !is_known_inst, "Known instance should be exact type"); 1472 tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, is_known_inst, nullptr, offset, instance_id); 1473 } 1474 } 1475 } 1476 1477 // Klass pointers to object array klasses need some flattening 1478 const TypeKlassPtr *tk = tj->isa_klassptr(); 1479 if( tk ) { 1480 // If we are referencing a field within a Klass, we need 1481 // to assume the worst case of an Object. Both exact and 1482 // inexact types must flatten to the same alias class so 1483 // use NotNull as the PTR. 1484 if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) { 1485 tj = tk = TypeInstKlassPtr::make(TypePtr::NotNull, 1486 env()->Object_klass(), 1487 offset); 1488 } 1489 1490 if (tk->isa_aryklassptr() && tk->is_aryklassptr()->elem()->isa_klassptr()) { 1491 ciKlass* k = ciObjArrayKlass::make(env()->Object_klass()); 1492 if (!k || !k->is_loaded()) { // Only fails for some -Xcomp runs 1493 tj = tk = TypeInstKlassPtr::make(TypePtr::NotNull, env()->Object_klass(), offset); 1494 } else { 1495 tj = tk = TypeAryKlassPtr::make(TypePtr::NotNull, tk->is_aryklassptr()->elem(), k, offset); 1496 } 1497 } 1498 1499 // Check for precise loads from the primary supertype array and force them 1500 // to the supertype cache alias index. Check for generic array loads from 1501 // the primary supertype array and also force them to the supertype cache 1502 // alias index. Since the same load can reach both, we need to merge 1503 // these 2 disparate memories into the same alias class. Since the 1504 // primary supertype array is read-only, there's no chance of confusion 1505 // where we bypass an array load and an array store. 1506 int primary_supers_offset = in_bytes(Klass::primary_supers_offset()); 1507 if (offset == Type::OffsetBot || 1508 (offset >= primary_supers_offset && 1509 offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) || 1510 offset == (int)in_bytes(Klass::secondary_super_cache_offset())) { 1511 offset = in_bytes(Klass::secondary_super_cache_offset()); 1512 tj = tk = tk->with_offset(offset); 1513 } 1514 } 1515 1516 // Flatten all Raw pointers together. 1517 if (tj->base() == Type::RawPtr) 1518 tj = TypeRawPtr::BOTTOM; 1519 1520 if (tj->base() == Type::AnyPtr) 1521 tj = TypePtr::BOTTOM; // An error, which the caller must check for. 1522 1523 offset = tj->offset(); 1524 assert( offset != Type::OffsetTop, "Offset has fallen from constant" ); 1525 1526 assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) || 1527 (offset == Type::OffsetBot && tj->base() == Type::AryPtr) || 1528 (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) || 1529 (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) || 1530 (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) || 1531 (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) || 1532 (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr), 1533 "For oops, klasses, raw offset must be constant; for arrays the offset is never known" ); 1534 assert( tj->ptr() != TypePtr::TopPTR && 1535 tj->ptr() != TypePtr::AnyNull && 1536 tj->ptr() != TypePtr::Null, "No imprecise addresses" ); 1537 // assert( tj->ptr() != TypePtr::Constant || 1538 // tj->base() == Type::RawPtr || 1539 // tj->base() == Type::KlassPtr, "No constant oop addresses" ); 1540 1541 return tj; 1542 } 1543 1544 void Compile::AliasType::Init(int i, const TypePtr* at) { 1545 assert(AliasIdxTop <= i && i < Compile::current()->_max_alias_types, "Invalid alias index"); 1546 _index = i; 1547 _adr_type = at; 1548 _field = nullptr; 1549 _element = nullptr; 1550 _is_rewritable = true; // default 1551 const TypeOopPtr *atoop = (at != nullptr) ? at->isa_oopptr() : nullptr; 1552 if (atoop != nullptr && atoop->is_known_instance()) { 1553 const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot); 1554 _general_index = Compile::current()->get_alias_index(gt); 1555 } else { 1556 _general_index = 0; 1557 } 1558 } 1559 1560 BasicType Compile::AliasType::basic_type() const { 1561 if (element() != nullptr) { 1562 const Type* element = adr_type()->is_aryptr()->elem(); 1563 return element->isa_narrowoop() ? T_OBJECT : element->array_element_basic_type(); 1564 } if (field() != nullptr) { 1565 return field()->layout_type(); 1566 } else { 1567 return T_ILLEGAL; // unknown 1568 } 1569 } 1570 1571 //---------------------------------print_on------------------------------------ 1572 #ifndef PRODUCT 1573 void Compile::AliasType::print_on(outputStream* st) { 1574 if (index() < 10) 1575 st->print("@ <%d> ", index()); 1576 else st->print("@ <%d>", index()); 1577 st->print(is_rewritable() ? " " : " RO"); 1578 int offset = adr_type()->offset(); 1579 if (offset == Type::OffsetBot) 1580 st->print(" +any"); 1581 else st->print(" +%-3d", offset); 1582 st->print(" in "); 1583 adr_type()->dump_on(st); 1584 const TypeOopPtr* tjp = adr_type()->isa_oopptr(); 1585 if (field() != nullptr && tjp) { 1586 if (tjp->is_instptr()->instance_klass() != field()->holder() || 1587 tjp->offset() != field()->offset_in_bytes()) { 1588 st->print(" != "); 1589 field()->print(); 1590 st->print(" ***"); 1591 } 1592 } 1593 } 1594 1595 void print_alias_types() { 1596 Compile* C = Compile::current(); 1597 tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1); 1598 for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) { 1599 C->alias_type(idx)->print_on(tty); 1600 tty->cr(); 1601 } 1602 } 1603 #endif 1604 1605 1606 //----------------------------probe_alias_cache-------------------------------- 1607 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) { 1608 intptr_t key = (intptr_t) adr_type; 1609 key ^= key >> logAliasCacheSize; 1610 return &_alias_cache[key & right_n_bits(logAliasCacheSize)]; 1611 } 1612 1613 1614 //-----------------------------grow_alias_types-------------------------------- 1615 void Compile::grow_alias_types() { 1616 const int old_ats = _max_alias_types; // how many before? 1617 const int new_ats = old_ats; // how many more? 1618 const int grow_ats = old_ats+new_ats; // how many now? 1619 _max_alias_types = grow_ats; 1620 _alias_types = REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats); 1621 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats); 1622 Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats); 1623 for (int i = 0; i < new_ats; i++) _alias_types[old_ats+i] = &ats[i]; 1624 } 1625 1626 1627 //--------------------------------find_alias_type------------------------------ 1628 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) { 1629 if (!do_aliasing()) { 1630 return alias_type(AliasIdxBot); 1631 } 1632 1633 AliasCacheEntry* ace = probe_alias_cache(adr_type); 1634 if (ace->_adr_type == adr_type) { 1635 return alias_type(ace->_index); 1636 } 1637 1638 // Handle special cases. 1639 if (adr_type == nullptr) return alias_type(AliasIdxTop); 1640 if (adr_type == TypePtr::BOTTOM) return alias_type(AliasIdxBot); 1641 1642 // Do it the slow way. 1643 const TypePtr* flat = flatten_alias_type(adr_type); 1644 1645 #ifdef ASSERT 1646 { 1647 ResourceMark rm; 1648 assert(flat == flatten_alias_type(flat), "not idempotent: adr_type = %s; flat = %s => %s", 1649 Type::str(adr_type), Type::str(flat), Type::str(flatten_alias_type(flat))); 1650 assert(flat != TypePtr::BOTTOM, "cannot alias-analyze an untyped ptr: adr_type = %s", 1651 Type::str(adr_type)); 1652 if (flat->isa_oopptr() && !flat->isa_klassptr()) { 1653 const TypeOopPtr* foop = flat->is_oopptr(); 1654 // Scalarizable allocations have exact klass always. 1655 bool exact = !foop->klass_is_exact() || foop->is_known_instance(); 1656 const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr(); 1657 assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type: foop = %s; xoop = %s", 1658 Type::str(foop), Type::str(xoop)); 1659 } 1660 } 1661 #endif 1662 1663 int idx = AliasIdxTop; 1664 for (int i = 0; i < num_alias_types(); i++) { 1665 if (alias_type(i)->adr_type() == flat) { 1666 idx = i; 1667 break; 1668 } 1669 } 1670 1671 if (idx == AliasIdxTop) { 1672 if (no_create) return nullptr; 1673 // Grow the array if necessary. 1674 if (_num_alias_types == _max_alias_types) grow_alias_types(); 1675 // Add a new alias type. 1676 idx = _num_alias_types++; 1677 _alias_types[idx]->Init(idx, flat); 1678 if (flat == TypeInstPtr::KLASS) alias_type(idx)->set_rewritable(false); 1679 if (flat == TypeAryPtr::RANGE) alias_type(idx)->set_rewritable(false); 1680 if (flat->isa_instptr()) { 1681 if (flat->offset() == java_lang_Class::klass_offset() 1682 && flat->is_instptr()->instance_klass() == env()->Class_klass()) 1683 alias_type(idx)->set_rewritable(false); 1684 } 1685 if (flat->isa_aryptr()) { 1686 #ifdef ASSERT 1687 const int header_size_min = arrayOopDesc::base_offset_in_bytes(T_BYTE); 1688 // (T_BYTE has the weakest alignment and size restrictions...) 1689 assert(flat->offset() < header_size_min, "array body reference must be OffsetBot"); 1690 #endif 1691 if (flat->offset() == TypePtr::OffsetBot) { 1692 alias_type(idx)->set_element(flat->is_aryptr()->elem()); 1693 } 1694 } 1695 if (flat->isa_klassptr()) { 1696 if (UseCompactObjectHeaders) { 1697 if (flat->offset() == in_bytes(Klass::prototype_header_offset())) 1698 alias_type(idx)->set_rewritable(false); 1699 } 1700 if (flat->offset() == in_bytes(Klass::super_check_offset_offset())) 1701 alias_type(idx)->set_rewritable(false); 1702 if (flat->offset() == in_bytes(Klass::modifier_flags_offset())) 1703 alias_type(idx)->set_rewritable(false); 1704 if (flat->offset() == in_bytes(Klass::access_flags_offset())) 1705 alias_type(idx)->set_rewritable(false); 1706 if (flat->offset() == in_bytes(Klass::misc_flags_offset())) 1707 alias_type(idx)->set_rewritable(false); 1708 if (flat->offset() == in_bytes(Klass::java_mirror_offset())) 1709 alias_type(idx)->set_rewritable(false); 1710 if (flat->offset() == in_bytes(Klass::secondary_super_cache_offset())) 1711 alias_type(idx)->set_rewritable(false); 1712 } 1713 // %%% (We would like to finalize JavaThread::threadObj_offset(), 1714 // but the base pointer type is not distinctive enough to identify 1715 // references into JavaThread.) 1716 1717 // Check for final fields. 1718 const TypeInstPtr* tinst = flat->isa_instptr(); 1719 if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) { 1720 ciField* field; 1721 if (tinst->const_oop() != nullptr && 1722 tinst->instance_klass() == ciEnv::current()->Class_klass() && 1723 tinst->offset() >= (tinst->instance_klass()->layout_helper_size_in_bytes())) { 1724 // static field 1725 ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass(); 1726 field = k->get_field_by_offset(tinst->offset(), true); 1727 } else { 1728 ciInstanceKlass *k = tinst->instance_klass(); 1729 field = k->get_field_by_offset(tinst->offset(), false); 1730 } 1731 assert(field == nullptr || 1732 original_field == nullptr || 1733 (field->holder() == original_field->holder() && 1734 field->offset_in_bytes() == original_field->offset_in_bytes() && 1735 field->is_static() == original_field->is_static()), "wrong field?"); 1736 // Set field() and is_rewritable() attributes. 1737 if (field != nullptr) alias_type(idx)->set_field(field); 1738 } 1739 } 1740 1741 // Fill the cache for next time. 1742 ace->_adr_type = adr_type; 1743 ace->_index = idx; 1744 assert(alias_type(adr_type) == alias_type(idx), "type must be installed"); 1745 1746 // Might as well try to fill the cache for the flattened version, too. 1747 AliasCacheEntry* face = probe_alias_cache(flat); 1748 if (face->_adr_type == nullptr) { 1749 face->_adr_type = flat; 1750 face->_index = idx; 1751 assert(alias_type(flat) == alias_type(idx), "flat type must work too"); 1752 } 1753 1754 return alias_type(idx); 1755 } 1756 1757 1758 Compile::AliasType* Compile::alias_type(ciField* field) { 1759 const TypeOopPtr* t; 1760 if (field->is_static()) 1761 t = TypeInstPtr::make(field->holder()->java_mirror()); 1762 else 1763 t = TypeOopPtr::make_from_klass_raw(field->holder()); 1764 AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field); 1765 assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct"); 1766 return atp; 1767 } 1768 1769 1770 //------------------------------have_alias_type-------------------------------- 1771 bool Compile::have_alias_type(const TypePtr* adr_type) { 1772 AliasCacheEntry* ace = probe_alias_cache(adr_type); 1773 if (ace->_adr_type == adr_type) { 1774 return true; 1775 } 1776 1777 // Handle special cases. 1778 if (adr_type == nullptr) return true; 1779 if (adr_type == TypePtr::BOTTOM) return true; 1780 1781 return find_alias_type(adr_type, true, nullptr) != nullptr; 1782 } 1783 1784 //-----------------------------must_alias-------------------------------------- 1785 // True if all values of the given address type are in the given alias category. 1786 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) { 1787 if (alias_idx == AliasIdxBot) return true; // the universal category 1788 if (adr_type == nullptr) return true; // null serves as TypePtr::TOP 1789 if (alias_idx == AliasIdxTop) return false; // the empty category 1790 if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins 1791 1792 // the only remaining possible overlap is identity 1793 int adr_idx = get_alias_index(adr_type); 1794 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, ""); 1795 assert(adr_idx == alias_idx || 1796 (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM 1797 && adr_type != TypeOopPtr::BOTTOM), 1798 "should not be testing for overlap with an unsafe pointer"); 1799 return adr_idx == alias_idx; 1800 } 1801 1802 //------------------------------can_alias-------------------------------------- 1803 // True if any values of the given address type are in the given alias category. 1804 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) { 1805 if (alias_idx == AliasIdxTop) return false; // the empty category 1806 if (adr_type == nullptr) return false; // null serves as TypePtr::TOP 1807 // Known instance doesn't alias with bottom memory 1808 if (alias_idx == AliasIdxBot) return !adr_type->is_known_instance(); // the universal category 1809 if (adr_type->base() == Type::AnyPtr) return !C->get_adr_type(alias_idx)->is_known_instance(); // TypePtr::BOTTOM or its twins 1810 1811 // the only remaining possible overlap is identity 1812 int adr_idx = get_alias_index(adr_type); 1813 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, ""); 1814 return adr_idx == alias_idx; 1815 } 1816 1817 // Mark all ParsePredicateNodes as useless. They will later be removed from the graph in IGVN together with their 1818 // uncommon traps if no Runtime Predicates were created from the Parse Predicates. 1819 void Compile::mark_parse_predicate_nodes_useless(PhaseIterGVN& igvn) { 1820 if (parse_predicate_count() == 0) { 1821 return; 1822 } 1823 for (int i = 0; i < parse_predicate_count(); i++) { 1824 ParsePredicateNode* parse_predicate = _parse_predicates.at(i); 1825 parse_predicate->mark_useless(); 1826 igvn._worklist.push(parse_predicate); 1827 } 1828 _parse_predicates.clear(); 1829 } 1830 1831 void Compile::record_for_post_loop_opts_igvn(Node* n) { 1832 if (!n->for_post_loop_opts_igvn()) { 1833 assert(!_for_post_loop_igvn.contains(n), "duplicate"); 1834 n->add_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn); 1835 _for_post_loop_igvn.append(n); 1836 } 1837 } 1838 1839 void Compile::remove_from_post_loop_opts_igvn(Node* n) { 1840 n->remove_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn); 1841 _for_post_loop_igvn.remove(n); 1842 } 1843 1844 void Compile::process_for_post_loop_opts_igvn(PhaseIterGVN& igvn) { 1845 // Verify that all previous optimizations produced a valid graph 1846 // at least to this point, even if no loop optimizations were done. 1847 PhaseIdealLoop::verify(igvn); 1848 1849 C->set_post_loop_opts_phase(); // no more loop opts allowed 1850 1851 assert(!C->major_progress(), "not cleared"); 1852 1853 if (_for_post_loop_igvn.length() > 0) { 1854 while (_for_post_loop_igvn.length() > 0) { 1855 Node* n = _for_post_loop_igvn.pop(); 1856 n->remove_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn); 1857 igvn._worklist.push(n); 1858 } 1859 igvn.optimize(); 1860 if (failing()) return; 1861 assert(_for_post_loop_igvn.length() == 0, "no more delayed nodes allowed"); 1862 assert(C->parse_predicate_count() == 0, "all parse predicates should have been removed now"); 1863 1864 // Sometimes IGVN sets major progress (e.g., when processing loop nodes). 1865 if (C->major_progress()) { 1866 C->clear_major_progress(); // ensure that major progress is now clear 1867 } 1868 } 1869 } 1870 1871 void Compile::record_unstable_if_trap(UnstableIfTrap* trap) { 1872 if (OptimizeUnstableIf) { 1873 _unstable_if_traps.append(trap); 1874 } 1875 } 1876 1877 void Compile::remove_useless_unstable_if_traps(Unique_Node_List& useful) { 1878 for (int i = _unstable_if_traps.length() - 1; i >= 0; i--) { 1879 UnstableIfTrap* trap = _unstable_if_traps.at(i); 1880 Node* n = trap->uncommon_trap(); 1881 if (!useful.member(n)) { 1882 _unstable_if_traps.delete_at(i); // replaces i-th with last element which is known to be useful (already processed) 1883 } 1884 } 1885 } 1886 1887 // Remove the unstable if trap associated with 'unc' from candidates. It is either dead 1888 // or fold-compares case. Return true if succeed or not found. 1889 // 1890 // In rare cases, the found trap has been processed. It is too late to delete it. Return 1891 // false and ask fold-compares to yield. 1892 // 1893 // 'fold-compares' may use the uncommon_trap of the dominating IfNode to cover the fused 1894 // IfNode. This breaks the unstable_if trap invariant: control takes the unstable path 1895 // when deoptimization does happen. 1896 bool Compile::remove_unstable_if_trap(CallStaticJavaNode* unc, bool yield) { 1897 for (int i = 0; i < _unstable_if_traps.length(); ++i) { 1898 UnstableIfTrap* trap = _unstable_if_traps.at(i); 1899 if (trap->uncommon_trap() == unc) { 1900 if (yield && trap->modified()) { 1901 return false; 1902 } 1903 _unstable_if_traps.delete_at(i); 1904 break; 1905 } 1906 } 1907 return true; 1908 } 1909 1910 // Re-calculate unstable_if traps with the liveness of next_bci, which points to the unlikely path. 1911 // It needs to be done after igvn because fold-compares may fuse uncommon_traps and before renumbering. 1912 void Compile::process_for_unstable_if_traps(PhaseIterGVN& igvn) { 1913 for (int i = _unstable_if_traps.length() - 1; i >= 0; --i) { 1914 UnstableIfTrap* trap = _unstable_if_traps.at(i); 1915 CallStaticJavaNode* unc = trap->uncommon_trap(); 1916 int next_bci = trap->next_bci(); 1917 bool modified = trap->modified(); 1918 1919 if (next_bci != -1 && !modified) { 1920 assert(!_dead_node_list.test(unc->_idx), "changing a dead node!"); 1921 JVMState* jvms = unc->jvms(); 1922 ciMethod* method = jvms->method(); 1923 ciBytecodeStream iter(method); 1924 1925 iter.force_bci(jvms->bci()); 1926 assert(next_bci == iter.next_bci() || next_bci == iter.get_dest(), "wrong next_bci at unstable_if"); 1927 Bytecodes::Code c = iter.cur_bc(); 1928 Node* lhs = nullptr; 1929 Node* rhs = nullptr; 1930 if (c == Bytecodes::_if_acmpeq || c == Bytecodes::_if_acmpne) { 1931 lhs = unc->peek_operand(0); 1932 rhs = unc->peek_operand(1); 1933 } else if (c == Bytecodes::_ifnull || c == Bytecodes::_ifnonnull) { 1934 lhs = unc->peek_operand(0); 1935 } 1936 1937 ResourceMark rm; 1938 const MethodLivenessResult& live_locals = method->liveness_at_bci(next_bci); 1939 assert(live_locals.is_valid(), "broken liveness info"); 1940 int len = (int)live_locals.size(); 1941 1942 for (int i = 0; i < len; i++) { 1943 Node* local = unc->local(jvms, i); 1944 // kill local using the liveness of next_bci. 1945 // give up when the local looks like an operand to secure reexecution. 1946 if (!live_locals.at(i) && !local->is_top() && local != lhs && local!= rhs) { 1947 uint idx = jvms->locoff() + i; 1948 #ifdef ASSERT 1949 if (PrintOpto && Verbose) { 1950 tty->print("[unstable_if] kill local#%d: ", idx); 1951 local->dump(); 1952 tty->cr(); 1953 } 1954 #endif 1955 igvn.replace_input_of(unc, idx, top()); 1956 modified = true; 1957 } 1958 } 1959 } 1960 1961 // keep the mondified trap for late query 1962 if (modified) { 1963 trap->set_modified(); 1964 } else { 1965 _unstable_if_traps.delete_at(i); 1966 } 1967 } 1968 igvn.optimize(); 1969 } 1970 1971 // StringOpts and late inlining of string methods 1972 void Compile::inline_string_calls(bool parse_time) { 1973 { 1974 // remove useless nodes to make the usage analysis simpler 1975 ResourceMark rm; 1976 PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist()); 1977 } 1978 1979 { 1980 ResourceMark rm; 1981 print_method(PHASE_BEFORE_STRINGOPTS, 3); 1982 PhaseStringOpts pso(initial_gvn()); 1983 print_method(PHASE_AFTER_STRINGOPTS, 3); 1984 } 1985 1986 // now inline anything that we skipped the first time around 1987 if (!parse_time) { 1988 _late_inlines_pos = _late_inlines.length(); 1989 } 1990 1991 while (_string_late_inlines.length() > 0) { 1992 CallGenerator* cg = _string_late_inlines.pop(); 1993 cg->do_late_inline(); 1994 if (failing()) return; 1995 } 1996 _string_late_inlines.trunc_to(0); 1997 } 1998 1999 // Late inlining of boxing methods 2000 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) { 2001 if (_boxing_late_inlines.length() > 0) { 2002 assert(has_boxed_value(), "inconsistent"); 2003 2004 set_inlining_incrementally(true); 2005 2006 igvn_worklist()->ensure_empty(); // should be done with igvn 2007 2008 _late_inlines_pos = _late_inlines.length(); 2009 2010 while (_boxing_late_inlines.length() > 0) { 2011 CallGenerator* cg = _boxing_late_inlines.pop(); 2012 cg->do_late_inline(); 2013 if (failing()) return; 2014 } 2015 _boxing_late_inlines.trunc_to(0); 2016 2017 inline_incrementally_cleanup(igvn); 2018 2019 set_inlining_incrementally(false); 2020 } 2021 } 2022 2023 bool Compile::inline_incrementally_one() { 2024 assert(IncrementalInline, "incremental inlining should be on"); 2025 2026 TracePhase tp(_t_incrInline_inline); 2027 2028 set_inlining_progress(false); 2029 set_do_cleanup(false); 2030 2031 for (int i = 0; i < _late_inlines.length(); i++) { 2032 _late_inlines_pos = i+1; 2033 CallGenerator* cg = _late_inlines.at(i); 2034 bool does_dispatch = cg->is_virtual_late_inline() || cg->is_mh_late_inline(); 2035 if (inlining_incrementally() || does_dispatch) { // a call can be either inlined or strength-reduced to a direct call 2036 cg->do_late_inline(); 2037 assert(_late_inlines.at(i) == cg, "no insertions before current position allowed"); 2038 if (failing()) { 2039 return false; 2040 } else if (inlining_progress()) { 2041 _late_inlines_pos = i+1; // restore the position in case new elements were inserted 2042 print_method(PHASE_INCREMENTAL_INLINE_STEP, 3, cg->call_node()); 2043 break; // process one call site at a time 2044 } 2045 } else { 2046 // Ignore late inline direct calls when inlining is not allowed. 2047 // They are left in the late inline list when node budget is exhausted until the list is fully drained. 2048 } 2049 } 2050 // Remove processed elements. 2051 _late_inlines.remove_till(_late_inlines_pos); 2052 _late_inlines_pos = 0; 2053 2054 assert(inlining_progress() || _late_inlines.length() == 0, "no progress"); 2055 2056 bool needs_cleanup = do_cleanup() || over_inlining_cutoff(); 2057 2058 set_inlining_progress(false); 2059 set_do_cleanup(false); 2060 2061 bool force_cleanup = directive()->IncrementalInlineForceCleanupOption; 2062 return (_late_inlines.length() > 0) && !needs_cleanup && !force_cleanup; 2063 } 2064 2065 void Compile::inline_incrementally_cleanup(PhaseIterGVN& igvn) { 2066 { 2067 TracePhase tp(_t_incrInline_pru); 2068 ResourceMark rm; 2069 PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist()); 2070 } 2071 { 2072 TracePhase tp(_t_incrInline_igvn); 2073 igvn.reset_from_gvn(initial_gvn()); 2074 igvn.optimize(); 2075 if (failing()) return; 2076 } 2077 print_method(PHASE_INCREMENTAL_INLINE_CLEANUP, 3); 2078 } 2079 2080 // Perform incremental inlining until bound on number of live nodes is reached 2081 void Compile::inline_incrementally(PhaseIterGVN& igvn) { 2082 TracePhase tp(_t_incrInline); 2083 2084 set_inlining_incrementally(true); 2085 uint low_live_nodes = 0; 2086 2087 while (_late_inlines.length() > 0) { 2088 if (live_nodes() > (uint)LiveNodeCountInliningCutoff) { 2089 if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) { 2090 TracePhase tp(_t_incrInline_ideal); 2091 // PhaseIdealLoop is expensive so we only try it once we are 2092 // out of live nodes and we only try it again if the previous 2093 // helped got the number of nodes down significantly 2094 PhaseIdealLoop::optimize(igvn, LoopOptsNone); 2095 if (failing()) return; 2096 low_live_nodes = live_nodes(); 2097 _major_progress = true; 2098 } 2099 2100 if (live_nodes() > (uint)LiveNodeCountInliningCutoff) { 2101 bool do_print_inlining = print_inlining() || print_intrinsics(); 2102 if (do_print_inlining || log() != nullptr) { 2103 // Print inlining message for candidates that we couldn't inline for lack of space. 2104 for (int i = 0; i < _late_inlines.length(); i++) { 2105 CallGenerator* cg = _late_inlines.at(i); 2106 const char* msg = "live nodes > LiveNodeCountInliningCutoff"; 2107 if (do_print_inlining) { 2108 inline_printer()->record(cg->method(), cg->call_node()->jvms(), InliningResult::FAILURE, msg); 2109 } 2110 log_late_inline_failure(cg, msg); 2111 } 2112 } 2113 break; // finish 2114 } 2115 } 2116 2117 igvn_worklist()->ensure_empty(); // should be done with igvn 2118 2119 while (inline_incrementally_one()) { 2120 assert(!failing_internal() || failure_is_artificial(), "inconsistent"); 2121 } 2122 if (failing()) return; 2123 2124 inline_incrementally_cleanup(igvn); 2125 2126 print_method(PHASE_INCREMENTAL_INLINE_STEP, 3); 2127 2128 if (failing()) return; 2129 2130 if (_late_inlines.length() == 0) { 2131 break; // no more progress 2132 } 2133 } 2134 2135 igvn_worklist()->ensure_empty(); // should be done with igvn 2136 2137 if (_string_late_inlines.length() > 0) { 2138 assert(has_stringbuilder(), "inconsistent"); 2139 2140 inline_string_calls(false); 2141 2142 if (failing()) return; 2143 2144 inline_incrementally_cleanup(igvn); 2145 } 2146 2147 set_inlining_incrementally(false); 2148 } 2149 2150 void Compile::process_late_inline_calls_no_inline(PhaseIterGVN& igvn) { 2151 // "inlining_incrementally() == false" is used to signal that no inlining is allowed 2152 // (see LateInlineVirtualCallGenerator::do_late_inline_check() for details). 2153 // Tracking and verification of modified nodes is disabled by setting "_modified_nodes == nullptr" 2154 // as if "inlining_incrementally() == true" were set. 2155 assert(inlining_incrementally() == false, "not allowed"); 2156 assert(_modified_nodes == nullptr, "not allowed"); 2157 assert(_late_inlines.length() > 0, "sanity"); 2158 2159 while (_late_inlines.length() > 0) { 2160 igvn_worklist()->ensure_empty(); // should be done with igvn 2161 2162 while (inline_incrementally_one()) { 2163 assert(!failing_internal() || failure_is_artificial(), "inconsistent"); 2164 } 2165 if (failing()) return; 2166 2167 inline_incrementally_cleanup(igvn); 2168 } 2169 } 2170 2171 bool Compile::optimize_loops(PhaseIterGVN& igvn, LoopOptsMode mode) { 2172 if (_loop_opts_cnt > 0) { 2173 while (major_progress() && (_loop_opts_cnt > 0)) { 2174 TracePhase tp(_t_idealLoop); 2175 PhaseIdealLoop::optimize(igvn, mode); 2176 _loop_opts_cnt--; 2177 if (failing()) return false; 2178 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2); 2179 } 2180 } 2181 return true; 2182 } 2183 2184 // Remove edges from "root" to each SafePoint at a backward branch. 2185 // They were inserted during parsing (see add_safepoint()) to make 2186 // infinite loops without calls or exceptions visible to root, i.e., 2187 // useful. 2188 void Compile::remove_root_to_sfpts_edges(PhaseIterGVN& igvn) { 2189 Node *r = root(); 2190 if (r != nullptr) { 2191 for (uint i = r->req(); i < r->len(); ++i) { 2192 Node *n = r->in(i); 2193 if (n != nullptr && n->is_SafePoint()) { 2194 r->rm_prec(i); 2195 if (n->outcnt() == 0) { 2196 igvn.remove_dead_node(n); 2197 } 2198 --i; 2199 } 2200 } 2201 // Parsing may have added top inputs to the root node (Path 2202 // leading to the Halt node proven dead). Make sure we get a 2203 // chance to clean them up. 2204 igvn._worklist.push(r); 2205 igvn.optimize(); 2206 } 2207 } 2208 2209 //------------------------------Optimize--------------------------------------- 2210 // Given a graph, optimize it. 2211 void Compile::Optimize() { 2212 TracePhase tp(_t_optimizer); 2213 2214 #ifndef PRODUCT 2215 if (env()->break_at_compile()) { 2216 BREAKPOINT; 2217 } 2218 2219 #endif 2220 2221 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 2222 #ifdef ASSERT 2223 bs->verify_gc_barriers(this, BarrierSetC2::BeforeOptimize); 2224 #endif 2225 2226 ResourceMark rm; 2227 2228 NOT_PRODUCT( verify_graph_edges(); ) 2229 2230 print_method(PHASE_AFTER_PARSING, 1); 2231 2232 { 2233 // Iterative Global Value Numbering, including ideal transforms 2234 // Initialize IterGVN with types and values from parse-time GVN 2235 PhaseIterGVN igvn(initial_gvn()); 2236 #ifdef ASSERT 2237 _modified_nodes = new (comp_arena()) Unique_Node_List(comp_arena()); 2238 #endif 2239 { 2240 TracePhase tp(_t_iterGVN); 2241 igvn.optimize(); 2242 } 2243 2244 if (failing()) return; 2245 2246 print_method(PHASE_ITER_GVN1, 2); 2247 2248 process_for_unstable_if_traps(igvn); 2249 2250 if (failing()) return; 2251 2252 inline_incrementally(igvn); 2253 2254 print_method(PHASE_INCREMENTAL_INLINE, 2); 2255 2256 if (failing()) return; 2257 2258 if (eliminate_boxing()) { 2259 // Inline valueOf() methods now. 2260 inline_boxing_calls(igvn); 2261 2262 if (failing()) return; 2263 2264 if (AlwaysIncrementalInline || StressIncrementalInlining) { 2265 inline_incrementally(igvn); 2266 } 2267 2268 print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2); 2269 2270 if (failing()) return; 2271 } 2272 2273 // Remove the speculative part of types and clean up the graph from 2274 // the extra CastPP nodes whose only purpose is to carry them. Do 2275 // that early so that optimizations are not disrupted by the extra 2276 // CastPP nodes. 2277 remove_speculative_types(igvn); 2278 2279 if (failing()) return; 2280 2281 // No more new expensive nodes will be added to the list from here 2282 // so keep only the actual candidates for optimizations. 2283 cleanup_expensive_nodes(igvn); 2284 2285 if (failing()) return; 2286 2287 assert(EnableVectorSupport || !has_vbox_nodes(), "sanity"); 2288 if (EnableVectorSupport && has_vbox_nodes()) { 2289 TracePhase tp(_t_vector); 2290 PhaseVector pv(igvn); 2291 pv.optimize_vector_boxes(); 2292 if (failing()) return; 2293 print_method(PHASE_ITER_GVN_AFTER_VECTOR, 2); 2294 } 2295 assert(!has_vbox_nodes(), "sanity"); 2296 2297 if (!failing() && RenumberLiveNodes && live_nodes() + NodeLimitFudgeFactor < unique()) { 2298 Compile::TracePhase tp(_t_renumberLive); 2299 igvn_worklist()->ensure_empty(); // should be done with igvn 2300 { 2301 ResourceMark rm; 2302 PhaseRenumberLive prl(initial_gvn(), *igvn_worklist()); 2303 } 2304 igvn.reset_from_gvn(initial_gvn()); 2305 igvn.optimize(); 2306 if (failing()) return; 2307 } 2308 2309 // Now that all inlining is over and no PhaseRemoveUseless will run, cut edge from root to loop 2310 // safepoints 2311 remove_root_to_sfpts_edges(igvn); 2312 2313 if (failing()) return; 2314 2315 // Perform escape analysis 2316 if (do_escape_analysis() && ConnectionGraph::has_candidates(this)) { 2317 if (has_loops()) { 2318 // Cleanup graph (remove dead nodes). 2319 TracePhase tp(_t_idealLoop); 2320 PhaseIdealLoop::optimize(igvn, LoopOptsMaxUnroll); 2321 if (failing()) return; 2322 } 2323 bool progress; 2324 print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2); 2325 do { 2326 ConnectionGraph::do_analysis(this, &igvn); 2327 2328 if (failing()) return; 2329 2330 int mcount = macro_count(); // Record number of allocations and locks before IGVN 2331 2332 // Optimize out fields loads from scalar replaceable allocations. 2333 igvn.optimize(); 2334 print_method(PHASE_ITER_GVN_AFTER_EA, 2); 2335 2336 if (failing()) return; 2337 2338 if (congraph() != nullptr && macro_count() > 0) { 2339 TracePhase tp(_t_macroEliminate); 2340 PhaseMacroExpand mexp(igvn); 2341 mexp.eliminate_macro_nodes(); 2342 if (failing()) return; 2343 2344 igvn.set_delay_transform(false); 2345 igvn.optimize(); 2346 if (failing()) return; 2347 2348 print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2); 2349 } 2350 2351 ConnectionGraph::verify_ram_nodes(this, root()); 2352 if (failing()) return; 2353 2354 progress = do_iterative_escape_analysis() && 2355 (macro_count() < mcount) && 2356 ConnectionGraph::has_candidates(this); 2357 // Try again if candidates exist and made progress 2358 // by removing some allocations and/or locks. 2359 } while (progress); 2360 } 2361 2362 // Loop transforms on the ideal graph. Range Check Elimination, 2363 // peeling, unrolling, etc. 2364 2365 // Set loop opts counter 2366 if((_loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) { 2367 { 2368 TracePhase tp(_t_idealLoop); 2369 PhaseIdealLoop::optimize(igvn, LoopOptsDefault); 2370 _loop_opts_cnt--; 2371 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2); 2372 if (failing()) return; 2373 } 2374 // Loop opts pass if partial peeling occurred in previous pass 2375 if(PartialPeelLoop && major_progress() && (_loop_opts_cnt > 0)) { 2376 TracePhase tp(_t_idealLoop); 2377 PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf); 2378 _loop_opts_cnt--; 2379 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2); 2380 if (failing()) return; 2381 } 2382 // Loop opts pass for loop-unrolling before CCP 2383 if(major_progress() && (_loop_opts_cnt > 0)) { 2384 TracePhase tp(_t_idealLoop); 2385 PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf); 2386 _loop_opts_cnt--; 2387 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2); 2388 } 2389 if (!failing()) { 2390 // Verify that last round of loop opts produced a valid graph 2391 PhaseIdealLoop::verify(igvn); 2392 } 2393 } 2394 if (failing()) return; 2395 2396 // Conditional Constant Propagation; 2397 print_method(PHASE_BEFORE_CCP1, 2); 2398 PhaseCCP ccp( &igvn ); 2399 assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)"); 2400 { 2401 TracePhase tp(_t_ccp); 2402 ccp.do_transform(); 2403 } 2404 print_method(PHASE_CCP1, 2); 2405 2406 assert( true, "Break here to ccp.dump_old2new_map()"); 2407 2408 // Iterative Global Value Numbering, including ideal transforms 2409 { 2410 TracePhase tp(_t_iterGVN2); 2411 igvn.reset_from_igvn(&ccp); 2412 igvn.optimize(); 2413 } 2414 print_method(PHASE_ITER_GVN2, 2); 2415 2416 if (failing()) return; 2417 2418 // Loop transforms on the ideal graph. Range Check Elimination, 2419 // peeling, unrolling, etc. 2420 if (!optimize_loops(igvn, LoopOptsDefault)) { 2421 return; 2422 } 2423 2424 if (failing()) return; 2425 2426 C->clear_major_progress(); // ensure that major progress is now clear 2427 2428 process_for_post_loop_opts_igvn(igvn); 2429 2430 if (failing()) return; 2431 2432 #ifdef ASSERT 2433 bs->verify_gc_barriers(this, BarrierSetC2::BeforeMacroExpand); 2434 #endif 2435 2436 { 2437 TracePhase tp(_t_macroExpand); 2438 print_method(PHASE_BEFORE_MACRO_EXPANSION, 3); 2439 PhaseMacroExpand mex(igvn); 2440 if (mex.expand_macro_nodes()) { 2441 assert(failing(), "must bail out w/ explicit message"); 2442 return; 2443 } 2444 print_method(PHASE_AFTER_MACRO_EXPANSION, 2); 2445 } 2446 2447 { 2448 TracePhase tp(_t_barrierExpand); 2449 if (bs->expand_barriers(this, igvn)) { 2450 assert(failing(), "must bail out w/ explicit message"); 2451 return; 2452 } 2453 print_method(PHASE_BARRIER_EXPANSION, 2); 2454 } 2455 2456 if (C->max_vector_size() > 0) { 2457 C->optimize_logic_cones(igvn); 2458 igvn.optimize(); 2459 if (failing()) return; 2460 } 2461 2462 DEBUG_ONLY( _modified_nodes = nullptr; ) 2463 2464 assert(igvn._worklist.size() == 0, "not empty"); 2465 2466 assert(_late_inlines.length() == 0 || IncrementalInlineMH || IncrementalInlineVirtual, "not empty"); 2467 2468 if (_late_inlines.length() > 0) { 2469 // More opportunities to optimize virtual and MH calls. 2470 // Though it's maybe too late to perform inlining, strength-reducing them to direct calls is still an option. 2471 process_late_inline_calls_no_inline(igvn); 2472 if (failing()) return; 2473 } 2474 } // (End scope of igvn; run destructor if necessary for asserts.) 2475 2476 check_no_dead_use(); 2477 2478 // We will never use the NodeHash table any more. Clear it so that final_graph_reshaping does not have 2479 // to remove hashes to unlock nodes for modifications. 2480 C->node_hash()->clear(); 2481 2482 // A method with only infinite loops has no edges entering loops from root 2483 { 2484 TracePhase tp(_t_graphReshaping); 2485 if (final_graph_reshaping()) { 2486 assert(failing(), "must bail out w/ explicit message"); 2487 return; 2488 } 2489 } 2490 2491 print_method(PHASE_OPTIMIZE_FINISHED, 2); 2492 DEBUG_ONLY(set_phase_optimize_finished();) 2493 } 2494 2495 #ifdef ASSERT 2496 void Compile::check_no_dead_use() const { 2497 ResourceMark rm; 2498 Unique_Node_List wq; 2499 wq.push(root()); 2500 for (uint i = 0; i < wq.size(); ++i) { 2501 Node* n = wq.at(i); 2502 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) { 2503 Node* u = n->fast_out(j); 2504 if (u->outcnt() == 0 && !u->is_Con()) { 2505 u->dump(); 2506 fatal("no reachable node should have no use"); 2507 } 2508 wq.push(u); 2509 } 2510 } 2511 } 2512 #endif 2513 2514 void Compile::inline_vector_reboxing_calls() { 2515 if (C->_vector_reboxing_late_inlines.length() > 0) { 2516 _late_inlines_pos = C->_late_inlines.length(); 2517 while (_vector_reboxing_late_inlines.length() > 0) { 2518 CallGenerator* cg = _vector_reboxing_late_inlines.pop(); 2519 cg->do_late_inline(); 2520 if (failing()) return; 2521 print_method(PHASE_INLINE_VECTOR_REBOX, 3, cg->call_node()); 2522 } 2523 _vector_reboxing_late_inlines.trunc_to(0); 2524 } 2525 } 2526 2527 bool Compile::has_vbox_nodes() { 2528 if (C->_vector_reboxing_late_inlines.length() > 0) { 2529 return true; 2530 } 2531 for (int macro_idx = C->macro_count() - 1; macro_idx >= 0; macro_idx--) { 2532 Node * n = C->macro_node(macro_idx); 2533 assert(n->is_macro(), "only macro nodes expected here"); 2534 if (n->Opcode() == Op_VectorUnbox || n->Opcode() == Op_VectorBox || n->Opcode() == Op_VectorBoxAllocate) { 2535 return true; 2536 } 2537 } 2538 return false; 2539 } 2540 2541 //---------------------------- Bitwise operation packing optimization --------------------------- 2542 2543 static bool is_vector_unary_bitwise_op(Node* n) { 2544 return n->Opcode() == Op_XorV && 2545 VectorNode::is_vector_bitwise_not_pattern(n); 2546 } 2547 2548 static bool is_vector_binary_bitwise_op(Node* n) { 2549 switch (n->Opcode()) { 2550 case Op_AndV: 2551 case Op_OrV: 2552 return true; 2553 2554 case Op_XorV: 2555 return !is_vector_unary_bitwise_op(n); 2556 2557 default: 2558 return false; 2559 } 2560 } 2561 2562 static bool is_vector_ternary_bitwise_op(Node* n) { 2563 return n->Opcode() == Op_MacroLogicV; 2564 } 2565 2566 static bool is_vector_bitwise_op(Node* n) { 2567 return is_vector_unary_bitwise_op(n) || 2568 is_vector_binary_bitwise_op(n) || 2569 is_vector_ternary_bitwise_op(n); 2570 } 2571 2572 static bool is_vector_bitwise_cone_root(Node* n) { 2573 if (n->bottom_type()->isa_vectmask() || !is_vector_bitwise_op(n)) { 2574 return false; 2575 } 2576 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 2577 if (is_vector_bitwise_op(n->fast_out(i))) { 2578 return false; 2579 } 2580 } 2581 return true; 2582 } 2583 2584 static uint collect_unique_inputs(Node* n, Unique_Node_List& inputs) { 2585 uint cnt = 0; 2586 if (is_vector_bitwise_op(n)) { 2587 uint inp_cnt = n->is_predicated_vector() ? n->req()-1 : n->req(); 2588 if (VectorNode::is_vector_bitwise_not_pattern(n)) { 2589 for (uint i = 1; i < inp_cnt; i++) { 2590 Node* in = n->in(i); 2591 bool skip = VectorNode::is_all_ones_vector(in); 2592 if (!skip && !inputs.member(in)) { 2593 inputs.push(in); 2594 cnt++; 2595 } 2596 } 2597 assert(cnt <= 1, "not unary"); 2598 } else { 2599 uint last_req = inp_cnt; 2600 if (is_vector_ternary_bitwise_op(n)) { 2601 last_req = inp_cnt - 1; // skip last input 2602 } 2603 for (uint i = 1; i < last_req; i++) { 2604 Node* def = n->in(i); 2605 if (!inputs.member(def)) { 2606 inputs.push(def); 2607 cnt++; 2608 } 2609 } 2610 } 2611 } else { // not a bitwise operations 2612 if (!inputs.member(n)) { 2613 inputs.push(n); 2614 cnt++; 2615 } 2616 } 2617 return cnt; 2618 } 2619 2620 void Compile::collect_logic_cone_roots(Unique_Node_List& list) { 2621 Unique_Node_List useful_nodes; 2622 C->identify_useful_nodes(useful_nodes); 2623 2624 for (uint i = 0; i < useful_nodes.size(); i++) { 2625 Node* n = useful_nodes.at(i); 2626 if (is_vector_bitwise_cone_root(n)) { 2627 list.push(n); 2628 } 2629 } 2630 } 2631 2632 Node* Compile::xform_to_MacroLogicV(PhaseIterGVN& igvn, 2633 const TypeVect* vt, 2634 Unique_Node_List& partition, 2635 Unique_Node_List& inputs) { 2636 assert(partition.size() == 2 || partition.size() == 3, "not supported"); 2637 assert(inputs.size() == 2 || inputs.size() == 3, "not supported"); 2638 assert(Matcher::match_rule_supported_vector(Op_MacroLogicV, vt->length(), vt->element_basic_type()), "not supported"); 2639 2640 Node* in1 = inputs.at(0); 2641 Node* in2 = inputs.at(1); 2642 Node* in3 = (inputs.size() == 3 ? inputs.at(2) : in2); 2643 2644 uint func = compute_truth_table(partition, inputs); 2645 2646 Node* pn = partition.at(partition.size() - 1); 2647 Node* mask = pn->is_predicated_vector() ? pn->in(pn->req()-1) : nullptr; 2648 return igvn.transform(MacroLogicVNode::make(igvn, in1, in2, in3, mask, func, vt)); 2649 } 2650 2651 static uint extract_bit(uint func, uint pos) { 2652 return (func & (1 << pos)) >> pos; 2653 } 2654 2655 // 2656 // A macro logic node represents a truth table. It has 4 inputs, 2657 // First three inputs corresponds to 3 columns of a truth table 2658 // and fourth input captures the logic function. 2659 // 2660 // eg. fn = (in1 AND in2) OR in3; 2661 // 2662 // MacroNode(in1,in2,in3,fn) 2663 // 2664 // ----------------- 2665 // in1 in2 in3 fn 2666 // ----------------- 2667 // 0 0 0 0 2668 // 0 0 1 1 2669 // 0 1 0 0 2670 // 0 1 1 1 2671 // 1 0 0 0 2672 // 1 0 1 1 2673 // 1 1 0 1 2674 // 1 1 1 1 2675 // 2676 2677 uint Compile::eval_macro_logic_op(uint func, uint in1 , uint in2, uint in3) { 2678 int res = 0; 2679 for (int i = 0; i < 8; i++) { 2680 int bit1 = extract_bit(in1, i); 2681 int bit2 = extract_bit(in2, i); 2682 int bit3 = extract_bit(in3, i); 2683 2684 int func_bit_pos = (bit1 << 2 | bit2 << 1 | bit3); 2685 int func_bit = extract_bit(func, func_bit_pos); 2686 2687 res |= func_bit << i; 2688 } 2689 return res; 2690 } 2691 2692 static uint eval_operand(Node* n, ResourceHashtable<Node*,uint>& eval_map) { 2693 assert(n != nullptr, ""); 2694 assert(eval_map.contains(n), "absent"); 2695 return *(eval_map.get(n)); 2696 } 2697 2698 static void eval_operands(Node* n, 2699 uint& func1, uint& func2, uint& func3, 2700 ResourceHashtable<Node*,uint>& eval_map) { 2701 assert(is_vector_bitwise_op(n), ""); 2702 2703 if (is_vector_unary_bitwise_op(n)) { 2704 Node* opnd = n->in(1); 2705 if (VectorNode::is_vector_bitwise_not_pattern(n) && VectorNode::is_all_ones_vector(opnd)) { 2706 opnd = n->in(2); 2707 } 2708 func1 = eval_operand(opnd, eval_map); 2709 } else if (is_vector_binary_bitwise_op(n)) { 2710 func1 = eval_operand(n->in(1), eval_map); 2711 func2 = eval_operand(n->in(2), eval_map); 2712 } else { 2713 assert(is_vector_ternary_bitwise_op(n), "unknown operation"); 2714 func1 = eval_operand(n->in(1), eval_map); 2715 func2 = eval_operand(n->in(2), eval_map); 2716 func3 = eval_operand(n->in(3), eval_map); 2717 } 2718 } 2719 2720 uint Compile::compute_truth_table(Unique_Node_List& partition, Unique_Node_List& inputs) { 2721 assert(inputs.size() <= 3, "sanity"); 2722 ResourceMark rm; 2723 uint res = 0; 2724 ResourceHashtable<Node*,uint> eval_map; 2725 2726 // Populate precomputed functions for inputs. 2727 // Each input corresponds to one column of 3 input truth-table. 2728 uint input_funcs[] = { 0xAA, // (_, _, c) -> c 2729 0xCC, // (_, b, _) -> b 2730 0xF0 }; // (a, _, _) -> a 2731 for (uint i = 0; i < inputs.size(); i++) { 2732 eval_map.put(inputs.at(i), input_funcs[2-i]); 2733 } 2734 2735 for (uint i = 0; i < partition.size(); i++) { 2736 Node* n = partition.at(i); 2737 2738 uint func1 = 0, func2 = 0, func3 = 0; 2739 eval_operands(n, func1, func2, func3, eval_map); 2740 2741 switch (n->Opcode()) { 2742 case Op_OrV: 2743 assert(func3 == 0, "not binary"); 2744 res = func1 | func2; 2745 break; 2746 case Op_AndV: 2747 assert(func3 == 0, "not binary"); 2748 res = func1 & func2; 2749 break; 2750 case Op_XorV: 2751 if (VectorNode::is_vector_bitwise_not_pattern(n)) { 2752 assert(func2 == 0 && func3 == 0, "not unary"); 2753 res = (~func1) & 0xFF; 2754 } else { 2755 assert(func3 == 0, "not binary"); 2756 res = func1 ^ func2; 2757 } 2758 break; 2759 case Op_MacroLogicV: 2760 // Ordering of inputs may change during evaluation of sub-tree 2761 // containing MacroLogic node as a child node, thus a re-evaluation 2762 // makes sure that function is evaluated in context of current 2763 // inputs. 2764 res = eval_macro_logic_op(n->in(4)->get_int(), func1, func2, func3); 2765 break; 2766 2767 default: assert(false, "not supported: %s", n->Name()); 2768 } 2769 assert(res <= 0xFF, "invalid"); 2770 eval_map.put(n, res); 2771 } 2772 return res; 2773 } 2774 2775 // Criteria under which nodes gets packed into a macro logic node:- 2776 // 1) Parent and both child nodes are all unmasked or masked with 2777 // same predicates. 2778 // 2) Masked parent can be packed with left child if it is predicated 2779 // and both have same predicates. 2780 // 3) Masked parent can be packed with right child if its un-predicated 2781 // or has matching predication condition. 2782 // 4) An unmasked parent can be packed with an unmasked child. 2783 bool Compile::compute_logic_cone(Node* n, Unique_Node_List& partition, Unique_Node_List& inputs) { 2784 assert(partition.size() == 0, "not empty"); 2785 assert(inputs.size() == 0, "not empty"); 2786 if (is_vector_ternary_bitwise_op(n)) { 2787 return false; 2788 } 2789 2790 bool is_unary_op = is_vector_unary_bitwise_op(n); 2791 if (is_unary_op) { 2792 assert(collect_unique_inputs(n, inputs) == 1, "not unary"); 2793 return false; // too few inputs 2794 } 2795 2796 bool pack_left_child = true; 2797 bool pack_right_child = true; 2798 2799 bool left_child_LOP = is_vector_bitwise_op(n->in(1)); 2800 bool right_child_LOP = is_vector_bitwise_op(n->in(2)); 2801 2802 int left_child_input_cnt = 0; 2803 int right_child_input_cnt = 0; 2804 2805 bool parent_is_predicated = n->is_predicated_vector(); 2806 bool left_child_predicated = n->in(1)->is_predicated_vector(); 2807 bool right_child_predicated = n->in(2)->is_predicated_vector(); 2808 2809 Node* parent_pred = parent_is_predicated ? n->in(n->req()-1) : nullptr; 2810 Node* left_child_pred = left_child_predicated ? n->in(1)->in(n->in(1)->req()-1) : nullptr; 2811 Node* right_child_pred = right_child_predicated ? n->in(1)->in(n->in(1)->req()-1) : nullptr; 2812 2813 do { 2814 if (pack_left_child && left_child_LOP && 2815 ((!parent_is_predicated && !left_child_predicated) || 2816 ((parent_is_predicated && left_child_predicated && 2817 parent_pred == left_child_pred)))) { 2818 partition.push(n->in(1)); 2819 left_child_input_cnt = collect_unique_inputs(n->in(1), inputs); 2820 } else { 2821 inputs.push(n->in(1)); 2822 left_child_input_cnt = 1; 2823 } 2824 2825 if (pack_right_child && right_child_LOP && 2826 (!right_child_predicated || 2827 (right_child_predicated && parent_is_predicated && 2828 parent_pred == right_child_pred))) { 2829 partition.push(n->in(2)); 2830 right_child_input_cnt = collect_unique_inputs(n->in(2), inputs); 2831 } else { 2832 inputs.push(n->in(2)); 2833 right_child_input_cnt = 1; 2834 } 2835 2836 if (inputs.size() > 3) { 2837 assert(partition.size() > 0, ""); 2838 inputs.clear(); 2839 partition.clear(); 2840 if (left_child_input_cnt > right_child_input_cnt) { 2841 pack_left_child = false; 2842 } else { 2843 pack_right_child = false; 2844 } 2845 } else { 2846 break; 2847 } 2848 } while(true); 2849 2850 if(partition.size()) { 2851 partition.push(n); 2852 } 2853 2854 return (partition.size() == 2 || partition.size() == 3) && 2855 (inputs.size() == 2 || inputs.size() == 3); 2856 } 2857 2858 void Compile::process_logic_cone_root(PhaseIterGVN &igvn, Node *n, VectorSet &visited) { 2859 assert(is_vector_bitwise_op(n), "not a root"); 2860 2861 visited.set(n->_idx); 2862 2863 // 1) Do a DFS walk over the logic cone. 2864 for (uint i = 1; i < n->req(); i++) { 2865 Node* in = n->in(i); 2866 if (!visited.test(in->_idx) && is_vector_bitwise_op(in)) { 2867 process_logic_cone_root(igvn, in, visited); 2868 } 2869 } 2870 2871 // 2) Bottom up traversal: Merge node[s] with 2872 // the parent to form macro logic node. 2873 Unique_Node_List partition; 2874 Unique_Node_List inputs; 2875 if (compute_logic_cone(n, partition, inputs)) { 2876 const TypeVect* vt = n->bottom_type()->is_vect(); 2877 Node* pn = partition.at(partition.size() - 1); 2878 Node* mask = pn->is_predicated_vector() ? pn->in(pn->req()-1) : nullptr; 2879 if (mask == nullptr || 2880 Matcher::match_rule_supported_vector_masked(Op_MacroLogicV, vt->length(), vt->element_basic_type())) { 2881 Node* macro_logic = xform_to_MacroLogicV(igvn, vt, partition, inputs); 2882 VectorNode::trace_new_vector(macro_logic, "MacroLogic"); 2883 igvn.replace_node(n, macro_logic); 2884 } 2885 } 2886 } 2887 2888 void Compile::optimize_logic_cones(PhaseIterGVN &igvn) { 2889 ResourceMark rm; 2890 if (Matcher::match_rule_supported(Op_MacroLogicV)) { 2891 Unique_Node_List list; 2892 collect_logic_cone_roots(list); 2893 2894 while (list.size() > 0) { 2895 Node* n = list.pop(); 2896 const TypeVect* vt = n->bottom_type()->is_vect(); 2897 bool supported = Matcher::match_rule_supported_vector(Op_MacroLogicV, vt->length(), vt->element_basic_type()); 2898 if (supported) { 2899 VectorSet visited(comp_arena()); 2900 process_logic_cone_root(igvn, n, visited); 2901 } 2902 } 2903 } 2904 } 2905 2906 //------------------------------Code_Gen--------------------------------------- 2907 // Given a graph, generate code for it 2908 void Compile::Code_Gen() { 2909 if (failing()) { 2910 return; 2911 } 2912 2913 // Perform instruction selection. You might think we could reclaim Matcher 2914 // memory PDQ, but actually the Matcher is used in generating spill code. 2915 // Internals of the Matcher (including some VectorSets) must remain live 2916 // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage 2917 // set a bit in reclaimed memory. 2918 2919 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine 2920 // nodes. Mapping is only valid at the root of each matched subtree. 2921 NOT_PRODUCT( verify_graph_edges(); ) 2922 2923 Matcher matcher; 2924 _matcher = &matcher; 2925 { 2926 TracePhase tp(_t_matcher); 2927 matcher.match(); 2928 if (failing()) { 2929 return; 2930 } 2931 } 2932 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine 2933 // nodes. Mapping is only valid at the root of each matched subtree. 2934 NOT_PRODUCT( verify_graph_edges(); ) 2935 2936 // If you have too many nodes, or if matching has failed, bail out 2937 check_node_count(0, "out of nodes matching instructions"); 2938 if (failing()) { 2939 return; 2940 } 2941 2942 print_method(PHASE_MATCHING, 2); 2943 2944 // Build a proper-looking CFG 2945 PhaseCFG cfg(node_arena(), root(), matcher); 2946 if (failing()) { 2947 return; 2948 } 2949 _cfg = &cfg; 2950 { 2951 TracePhase tp(_t_scheduler); 2952 bool success = cfg.do_global_code_motion(); 2953 if (!success) { 2954 return; 2955 } 2956 2957 print_method(PHASE_GLOBAL_CODE_MOTION, 2); 2958 NOT_PRODUCT( verify_graph_edges(); ) 2959 cfg.verify(); 2960 if (failing()) { 2961 return; 2962 } 2963 } 2964 2965 PhaseChaitin regalloc(unique(), cfg, matcher, false); 2966 _regalloc = ®alloc; 2967 { 2968 TracePhase tp(_t_registerAllocation); 2969 // Perform register allocation. After Chaitin, use-def chains are 2970 // no longer accurate (at spill code) and so must be ignored. 2971 // Node->LRG->reg mappings are still accurate. 2972 _regalloc->Register_Allocate(); 2973 2974 // Bail out if the allocator builds too many nodes 2975 if (failing()) { 2976 return; 2977 } 2978 2979 print_method(PHASE_REGISTER_ALLOCATION, 2); 2980 } 2981 2982 // Prior to register allocation we kept empty basic blocks in case the 2983 // the allocator needed a place to spill. After register allocation we 2984 // are not adding any new instructions. If any basic block is empty, we 2985 // can now safely remove it. 2986 { 2987 TracePhase tp(_t_blockOrdering); 2988 cfg.remove_empty_blocks(); 2989 if (do_freq_based_layout()) { 2990 PhaseBlockLayout layout(cfg); 2991 } else { 2992 cfg.set_loop_alignment(); 2993 } 2994 cfg.fixup_flow(); 2995 cfg.remove_unreachable_blocks(); 2996 cfg.verify_dominator_tree(); 2997 print_method(PHASE_BLOCK_ORDERING, 3); 2998 } 2999 3000 // Apply peephole optimizations 3001 if( OptoPeephole ) { 3002 TracePhase tp(_t_peephole); 3003 PhasePeephole peep( _regalloc, cfg); 3004 peep.do_transform(); 3005 print_method(PHASE_PEEPHOLE, 3); 3006 } 3007 3008 // Do late expand if CPU requires this. 3009 if (Matcher::require_postalloc_expand) { 3010 TracePhase tp(_t_postalloc_expand); 3011 cfg.postalloc_expand(_regalloc); 3012 print_method(PHASE_POSTALLOC_EXPAND, 3); 3013 } 3014 3015 // Convert Nodes to instruction bits in a buffer 3016 { 3017 TracePhase tp(_t_output); 3018 PhaseOutput output; 3019 output.Output(); 3020 if (failing()) return; 3021 output.install(); 3022 print_method(PHASE_FINAL_CODE, 1); // Compile::_output is not null here 3023 } 3024 3025 // He's dead, Jim. 3026 _cfg = (PhaseCFG*)((intptr_t)0xdeadbeef); 3027 _regalloc = (PhaseChaitin*)((intptr_t)0xdeadbeef); 3028 } 3029 3030 //------------------------------Final_Reshape_Counts--------------------------- 3031 // This class defines counters to help identify when a method 3032 // may/must be executed using hardware with only 24-bit precision. 3033 struct Final_Reshape_Counts : public StackObj { 3034 int _call_count; // count non-inlined 'common' calls 3035 int _float_count; // count float ops requiring 24-bit precision 3036 int _double_count; // count double ops requiring more precision 3037 int _java_call_count; // count non-inlined 'java' calls 3038 int _inner_loop_count; // count loops which need alignment 3039 VectorSet _visited; // Visitation flags 3040 Node_List _tests; // Set of IfNodes & PCTableNodes 3041 3042 Final_Reshape_Counts() : 3043 _call_count(0), _float_count(0), _double_count(0), 3044 _java_call_count(0), _inner_loop_count(0) { } 3045 3046 void inc_call_count () { _call_count ++; } 3047 void inc_float_count () { _float_count ++; } 3048 void inc_double_count() { _double_count++; } 3049 void inc_java_call_count() { _java_call_count++; } 3050 void inc_inner_loop_count() { _inner_loop_count++; } 3051 3052 int get_call_count () const { return _call_count ; } 3053 int get_float_count () const { return _float_count ; } 3054 int get_double_count() const { return _double_count; } 3055 int get_java_call_count() const { return _java_call_count; } 3056 int get_inner_loop_count() const { return _inner_loop_count; } 3057 }; 3058 3059 //------------------------------final_graph_reshaping_impl---------------------- 3060 // Implement items 1-5 from final_graph_reshaping below. 3061 void Compile::final_graph_reshaping_impl(Node *n, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes) { 3062 3063 if ( n->outcnt() == 0 ) return; // dead node 3064 uint nop = n->Opcode(); 3065 3066 // Check for 2-input instruction with "last use" on right input. 3067 // Swap to left input. Implements item (2). 3068 if( n->req() == 3 && // two-input instruction 3069 n->in(1)->outcnt() > 1 && // left use is NOT a last use 3070 (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop 3071 n->in(2)->outcnt() == 1 &&// right use IS a last use 3072 !n->in(2)->is_Con() ) { // right use is not a constant 3073 // Check for commutative opcode 3074 switch( nop ) { 3075 case Op_AddI: case Op_AddF: case Op_AddD: case Op_AddL: 3076 case Op_MaxI: case Op_MaxL: case Op_MaxF: case Op_MaxD: 3077 case Op_MinI: case Op_MinL: case Op_MinF: case Op_MinD: 3078 case Op_MulI: case Op_MulF: case Op_MulD: case Op_MulL: 3079 case Op_AndL: case Op_XorL: case Op_OrL: 3080 case Op_AndI: case Op_XorI: case Op_OrI: { 3081 // Move "last use" input to left by swapping inputs 3082 n->swap_edges(1, 2); 3083 break; 3084 } 3085 default: 3086 break; 3087 } 3088 } 3089 3090 #ifdef ASSERT 3091 if( n->is_Mem() ) { 3092 int alias_idx = get_alias_index(n->as_Mem()->adr_type()); 3093 assert( n->in(0) != nullptr || alias_idx != Compile::AliasIdxRaw || 3094 // oop will be recorded in oop map if load crosses safepoint 3095 (n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() || 3096 LoadNode::is_immutable_value(n->in(MemNode::Address)))), 3097 "raw memory operations should have control edge"); 3098 } 3099 if (n->is_MemBar()) { 3100 MemBarNode* mb = n->as_MemBar(); 3101 if (mb->trailing_store() || mb->trailing_load_store()) { 3102 assert(mb->leading_membar()->trailing_membar() == mb, "bad membar pair"); 3103 Node* mem = BarrierSet::barrier_set()->barrier_set_c2()->step_over_gc_barrier(mb->in(MemBarNode::Precedent)); 3104 assert((mb->trailing_store() && mem->is_Store() && mem->as_Store()->is_release()) || 3105 (mb->trailing_load_store() && mem->is_LoadStore()), "missing mem op"); 3106 } else if (mb->leading()) { 3107 assert(mb->trailing_membar()->leading_membar() == mb, "bad membar pair"); 3108 } 3109 } 3110 #endif 3111 // Count FPU ops and common calls, implements item (3) 3112 bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->final_graph_reshaping(this, n, nop, dead_nodes); 3113 if (!gc_handled) { 3114 final_graph_reshaping_main_switch(n, frc, nop, dead_nodes); 3115 } 3116 3117 // Collect CFG split points 3118 if (n->is_MultiBranch() && !n->is_RangeCheck()) { 3119 frc._tests.push(n); 3120 } 3121 } 3122 3123 void Compile::handle_div_mod_op(Node* n, BasicType bt, bool is_unsigned) { 3124 if (!UseDivMod) { 3125 return; 3126 } 3127 3128 // Check if "a % b" and "a / b" both exist 3129 Node* d = n->find_similar(Op_DivIL(bt, is_unsigned)); 3130 if (d == nullptr) { 3131 return; 3132 } 3133 3134 // Replace them with a fused divmod if supported 3135 if (Matcher::has_match_rule(Op_DivModIL(bt, is_unsigned))) { 3136 DivModNode* divmod = DivModNode::make(n, bt, is_unsigned); 3137 // If the divisor input for a Div (or Mod etc.) is not zero, then the control input of the Div is set to zero. 3138 // It could be that the divisor input is found not zero because its type is narrowed down by a CastII in the 3139 // subgraph for that input. Range check CastIIs are removed during final graph reshape. To preserve the dependency 3140 // carried by a CastII, precedence edges are added to the Div node. We need to transfer the precedence edges to the 3141 // DivMod node so the dependency is not lost. 3142 divmod->add_prec_from(n); 3143 divmod->add_prec_from(d); 3144 d->subsume_by(divmod->div_proj(), this); 3145 n->subsume_by(divmod->mod_proj(), this); 3146 } else { 3147 // Replace "a % b" with "a - ((a / b) * b)" 3148 Node* mult = MulNode::make(d, d->in(2), bt); 3149 Node* sub = SubNode::make(d->in(1), mult, bt); 3150 n->subsume_by(sub, this); 3151 } 3152 } 3153 3154 void Compile::final_graph_reshaping_main_switch(Node* n, Final_Reshape_Counts& frc, uint nop, Unique_Node_List& dead_nodes) { 3155 switch( nop ) { 3156 // Count all float operations that may use FPU 3157 case Op_AddF: 3158 case Op_SubF: 3159 case Op_MulF: 3160 case Op_DivF: 3161 case Op_NegF: 3162 case Op_ModF: 3163 case Op_ConvI2F: 3164 case Op_ConF: 3165 case Op_CmpF: 3166 case Op_CmpF3: 3167 case Op_StoreF: 3168 case Op_LoadF: 3169 // case Op_ConvL2F: // longs are split into 32-bit halves 3170 frc.inc_float_count(); 3171 break; 3172 3173 case Op_ConvF2D: 3174 case Op_ConvD2F: 3175 frc.inc_float_count(); 3176 frc.inc_double_count(); 3177 break; 3178 3179 // Count all double operations that may use FPU 3180 case Op_AddD: 3181 case Op_SubD: 3182 case Op_MulD: 3183 case Op_DivD: 3184 case Op_NegD: 3185 case Op_ModD: 3186 case Op_ConvI2D: 3187 case Op_ConvD2I: 3188 // case Op_ConvL2D: // handled by leaf call 3189 // case Op_ConvD2L: // handled by leaf call 3190 case Op_ConD: 3191 case Op_CmpD: 3192 case Op_CmpD3: 3193 case Op_StoreD: 3194 case Op_LoadD: 3195 case Op_LoadD_unaligned: 3196 frc.inc_double_count(); 3197 break; 3198 case Op_Opaque1: // Remove Opaque Nodes before matching 3199 n->subsume_by(n->in(1), this); 3200 break; 3201 case Op_CallStaticJava: 3202 case Op_CallJava: 3203 case Op_CallDynamicJava: 3204 frc.inc_java_call_count(); // Count java call site; 3205 case Op_CallRuntime: 3206 case Op_CallLeaf: 3207 case Op_CallLeafVector: 3208 case Op_CallLeafNoFP: { 3209 assert (n->is_Call(), ""); 3210 CallNode *call = n->as_Call(); 3211 // Count call sites where the FP mode bit would have to be flipped. 3212 // Do not count uncommon runtime calls: 3213 // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking, 3214 // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ... 3215 if (!call->is_CallStaticJava() || !call->as_CallStaticJava()->_name) { 3216 frc.inc_call_count(); // Count the call site 3217 } else { // See if uncommon argument is shared 3218 Node *n = call->in(TypeFunc::Parms); 3219 int nop = n->Opcode(); 3220 // Clone shared simple arguments to uncommon calls, item (1). 3221 if (n->outcnt() > 1 && 3222 !n->is_Proj() && 3223 nop != Op_CreateEx && 3224 nop != Op_CheckCastPP && 3225 nop != Op_DecodeN && 3226 nop != Op_DecodeNKlass && 3227 !n->is_Mem() && 3228 !n->is_Phi()) { 3229 Node *x = n->clone(); 3230 call->set_req(TypeFunc::Parms, x); 3231 } 3232 } 3233 break; 3234 } 3235 case Op_StoreB: 3236 case Op_StoreC: 3237 case Op_StoreI: 3238 case Op_StoreL: 3239 case Op_CompareAndSwapB: 3240 case Op_CompareAndSwapS: 3241 case Op_CompareAndSwapI: 3242 case Op_CompareAndSwapL: 3243 case Op_CompareAndSwapP: 3244 case Op_CompareAndSwapN: 3245 case Op_WeakCompareAndSwapB: 3246 case Op_WeakCompareAndSwapS: 3247 case Op_WeakCompareAndSwapI: 3248 case Op_WeakCompareAndSwapL: 3249 case Op_WeakCompareAndSwapP: 3250 case Op_WeakCompareAndSwapN: 3251 case Op_CompareAndExchangeB: 3252 case Op_CompareAndExchangeS: 3253 case Op_CompareAndExchangeI: 3254 case Op_CompareAndExchangeL: 3255 case Op_CompareAndExchangeP: 3256 case Op_CompareAndExchangeN: 3257 case Op_GetAndAddS: 3258 case Op_GetAndAddB: 3259 case Op_GetAndAddI: 3260 case Op_GetAndAddL: 3261 case Op_GetAndSetS: 3262 case Op_GetAndSetB: 3263 case Op_GetAndSetI: 3264 case Op_GetAndSetL: 3265 case Op_GetAndSetP: 3266 case Op_GetAndSetN: 3267 case Op_StoreP: 3268 case Op_StoreN: 3269 case Op_StoreNKlass: 3270 case Op_LoadB: 3271 case Op_LoadUB: 3272 case Op_LoadUS: 3273 case Op_LoadI: 3274 case Op_LoadKlass: 3275 case Op_LoadNKlass: 3276 case Op_LoadL: 3277 case Op_LoadL_unaligned: 3278 case Op_LoadP: 3279 case Op_LoadN: 3280 case Op_LoadRange: 3281 case Op_LoadS: 3282 break; 3283 3284 case Op_AddP: { // Assert sane base pointers 3285 Node *addp = n->in(AddPNode::Address); 3286 assert( !addp->is_AddP() || 3287 addp->in(AddPNode::Base)->is_top() || // Top OK for allocation 3288 addp->in(AddPNode::Base) == n->in(AddPNode::Base), 3289 "Base pointers must match (addp %u)", addp->_idx ); 3290 #ifdef _LP64 3291 if ((UseCompressedOops || UseCompressedClassPointers) && 3292 addp->Opcode() == Op_ConP && 3293 addp == n->in(AddPNode::Base) && 3294 n->in(AddPNode::Offset)->is_Con()) { 3295 // If the transformation of ConP to ConN+DecodeN is beneficial depends 3296 // on the platform and on the compressed oops mode. 3297 // Use addressing with narrow klass to load with offset on x86. 3298 // Some platforms can use the constant pool to load ConP. 3299 // Do this transformation here since IGVN will convert ConN back to ConP. 3300 const Type* t = addp->bottom_type(); 3301 bool is_oop = t->isa_oopptr() != nullptr; 3302 bool is_klass = t->isa_klassptr() != nullptr; 3303 3304 if ((is_oop && UseCompressedOops && Matcher::const_oop_prefer_decode() ) || 3305 (is_klass && UseCompressedClassPointers && Matcher::const_klass_prefer_decode() && 3306 t->isa_klassptr()->exact_klass()->is_in_encoding_range())) { 3307 Node* nn = nullptr; 3308 3309 int op = is_oop ? Op_ConN : Op_ConNKlass; 3310 3311 // Look for existing ConN node of the same exact type. 3312 Node* r = root(); 3313 uint cnt = r->outcnt(); 3314 for (uint i = 0; i < cnt; i++) { 3315 Node* m = r->raw_out(i); 3316 if (m!= nullptr && m->Opcode() == op && 3317 m->bottom_type()->make_ptr() == t) { 3318 nn = m; 3319 break; 3320 } 3321 } 3322 if (nn != nullptr) { 3323 // Decode a narrow oop to match address 3324 // [R12 + narrow_oop_reg<<3 + offset] 3325 if (is_oop) { 3326 nn = new DecodeNNode(nn, t); 3327 } else { 3328 nn = new DecodeNKlassNode(nn, t); 3329 } 3330 // Check for succeeding AddP which uses the same Base. 3331 // Otherwise we will run into the assertion above when visiting that guy. 3332 for (uint i = 0; i < n->outcnt(); ++i) { 3333 Node *out_i = n->raw_out(i); 3334 if (out_i && out_i->is_AddP() && out_i->in(AddPNode::Base) == addp) { 3335 out_i->set_req(AddPNode::Base, nn); 3336 #ifdef ASSERT 3337 for (uint j = 0; j < out_i->outcnt(); ++j) { 3338 Node *out_j = out_i->raw_out(j); 3339 assert(out_j == nullptr || !out_j->is_AddP() || out_j->in(AddPNode::Base) != addp, 3340 "more than 2 AddP nodes in a chain (out_j %u)", out_j->_idx); 3341 } 3342 #endif 3343 } 3344 } 3345 n->set_req(AddPNode::Base, nn); 3346 n->set_req(AddPNode::Address, nn); 3347 if (addp->outcnt() == 0) { 3348 addp->disconnect_inputs(this); 3349 } 3350 } 3351 } 3352 } 3353 #endif 3354 break; 3355 } 3356 3357 case Op_CastPP: { 3358 // Remove CastPP nodes to gain more freedom during scheduling but 3359 // keep the dependency they encode as control or precedence edges 3360 // (if control is set already) on memory operations. Some CastPP 3361 // nodes don't have a control (don't carry a dependency): skip 3362 // those. 3363 if (n->in(0) != nullptr) { 3364 ResourceMark rm; 3365 Unique_Node_List wq; 3366 wq.push(n); 3367 for (uint next = 0; next < wq.size(); ++next) { 3368 Node *m = wq.at(next); 3369 for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) { 3370 Node* use = m->fast_out(i); 3371 if (use->is_Mem() || use->is_EncodeNarrowPtr()) { 3372 use->ensure_control_or_add_prec(n->in(0)); 3373 } else { 3374 switch(use->Opcode()) { 3375 case Op_AddP: 3376 case Op_DecodeN: 3377 case Op_DecodeNKlass: 3378 case Op_CheckCastPP: 3379 case Op_CastPP: 3380 wq.push(use); 3381 break; 3382 } 3383 } 3384 } 3385 } 3386 } 3387 const bool is_LP64 = LP64_ONLY(true) NOT_LP64(false); 3388 if (is_LP64 && n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) { 3389 Node* in1 = n->in(1); 3390 const Type* t = n->bottom_type(); 3391 Node* new_in1 = in1->clone(); 3392 new_in1->as_DecodeN()->set_type(t); 3393 3394 if (!Matcher::narrow_oop_use_complex_address()) { 3395 // 3396 // x86, ARM and friends can handle 2 adds in addressing mode 3397 // and Matcher can fold a DecodeN node into address by using 3398 // a narrow oop directly and do implicit null check in address: 3399 // 3400 // [R12 + narrow_oop_reg<<3 + offset] 3401 // NullCheck narrow_oop_reg 3402 // 3403 // On other platforms (Sparc) we have to keep new DecodeN node and 3404 // use it to do implicit null check in address: 3405 // 3406 // decode_not_null narrow_oop_reg, base_reg 3407 // [base_reg + offset] 3408 // NullCheck base_reg 3409 // 3410 // Pin the new DecodeN node to non-null path on these platform (Sparc) 3411 // to keep the information to which null check the new DecodeN node 3412 // corresponds to use it as value in implicit_null_check(). 3413 // 3414 new_in1->set_req(0, n->in(0)); 3415 } 3416 3417 n->subsume_by(new_in1, this); 3418 if (in1->outcnt() == 0) { 3419 in1->disconnect_inputs(this); 3420 } 3421 } else { 3422 n->subsume_by(n->in(1), this); 3423 if (n->outcnt() == 0) { 3424 n->disconnect_inputs(this); 3425 } 3426 } 3427 break; 3428 } 3429 case Op_CastII: { 3430 n->as_CastII()->remove_range_check_cast(this); 3431 break; 3432 } 3433 #ifdef _LP64 3434 case Op_CmpP: 3435 // Do this transformation here to preserve CmpPNode::sub() and 3436 // other TypePtr related Ideal optimizations (for example, ptr nullness). 3437 if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) { 3438 Node* in1 = n->in(1); 3439 Node* in2 = n->in(2); 3440 if (!in1->is_DecodeNarrowPtr()) { 3441 in2 = in1; 3442 in1 = n->in(2); 3443 } 3444 assert(in1->is_DecodeNarrowPtr(), "sanity"); 3445 3446 Node* new_in2 = nullptr; 3447 if (in2->is_DecodeNarrowPtr()) { 3448 assert(in2->Opcode() == in1->Opcode(), "must be same node type"); 3449 new_in2 = in2->in(1); 3450 } else if (in2->Opcode() == Op_ConP) { 3451 const Type* t = in2->bottom_type(); 3452 if (t == TypePtr::NULL_PTR) { 3453 assert(in1->is_DecodeN(), "compare klass to null?"); 3454 // Don't convert CmpP null check into CmpN if compressed 3455 // oops implicit null check is not generated. 3456 // This will allow to generate normal oop implicit null check. 3457 if (Matcher::gen_narrow_oop_implicit_null_checks()) 3458 new_in2 = ConNode::make(TypeNarrowOop::NULL_PTR); 3459 // 3460 // This transformation together with CastPP transformation above 3461 // will generated code for implicit null checks for compressed oops. 3462 // 3463 // The original code after Optimize() 3464 // 3465 // LoadN memory, narrow_oop_reg 3466 // decode narrow_oop_reg, base_reg 3467 // CmpP base_reg, nullptr 3468 // CastPP base_reg // NotNull 3469 // Load [base_reg + offset], val_reg 3470 // 3471 // after these transformations will be 3472 // 3473 // LoadN memory, narrow_oop_reg 3474 // CmpN narrow_oop_reg, nullptr 3475 // decode_not_null narrow_oop_reg, base_reg 3476 // Load [base_reg + offset], val_reg 3477 // 3478 // and the uncommon path (== nullptr) will use narrow_oop_reg directly 3479 // since narrow oops can be used in debug info now (see the code in 3480 // final_graph_reshaping_walk()). 3481 // 3482 // At the end the code will be matched to 3483 // on x86: 3484 // 3485 // Load_narrow_oop memory, narrow_oop_reg 3486 // Load [R12 + narrow_oop_reg<<3 + offset], val_reg 3487 // NullCheck narrow_oop_reg 3488 // 3489 // and on sparc: 3490 // 3491 // Load_narrow_oop memory, narrow_oop_reg 3492 // decode_not_null narrow_oop_reg, base_reg 3493 // Load [base_reg + offset], val_reg 3494 // NullCheck base_reg 3495 // 3496 } else if (t->isa_oopptr()) { 3497 new_in2 = ConNode::make(t->make_narrowoop()); 3498 } else if (t->isa_klassptr()) { 3499 new_in2 = ConNode::make(t->make_narrowklass()); 3500 } 3501 } 3502 if (new_in2 != nullptr) { 3503 Node* cmpN = new CmpNNode(in1->in(1), new_in2); 3504 n->subsume_by(cmpN, this); 3505 if (in1->outcnt() == 0) { 3506 in1->disconnect_inputs(this); 3507 } 3508 if (in2->outcnt() == 0) { 3509 in2->disconnect_inputs(this); 3510 } 3511 } 3512 } 3513 break; 3514 3515 case Op_DecodeN: 3516 case Op_DecodeNKlass: 3517 assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out"); 3518 // DecodeN could be pinned when it can't be fold into 3519 // an address expression, see the code for Op_CastPP above. 3520 assert(n->in(0) == nullptr || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control"); 3521 break; 3522 3523 case Op_EncodeP: 3524 case Op_EncodePKlass: { 3525 Node* in1 = n->in(1); 3526 if (in1->is_DecodeNarrowPtr()) { 3527 n->subsume_by(in1->in(1), this); 3528 } else if (in1->Opcode() == Op_ConP) { 3529 const Type* t = in1->bottom_type(); 3530 if (t == TypePtr::NULL_PTR) { 3531 assert(t->isa_oopptr(), "null klass?"); 3532 n->subsume_by(ConNode::make(TypeNarrowOop::NULL_PTR), this); 3533 } else if (t->isa_oopptr()) { 3534 n->subsume_by(ConNode::make(t->make_narrowoop()), this); 3535 } else if (t->isa_klassptr()) { 3536 n->subsume_by(ConNode::make(t->make_narrowklass()), this); 3537 } 3538 } 3539 if (in1->outcnt() == 0) { 3540 in1->disconnect_inputs(this); 3541 } 3542 break; 3543 } 3544 3545 case Op_Proj: { 3546 if (OptimizeStringConcat || IncrementalInline) { 3547 ProjNode* proj = n->as_Proj(); 3548 if (proj->_is_io_use) { 3549 assert(proj->_con == TypeFunc::I_O || proj->_con == TypeFunc::Memory, ""); 3550 // Separate projections were used for the exception path which 3551 // are normally removed by a late inline. If it wasn't inlined 3552 // then they will hang around and should just be replaced with 3553 // the original one. Merge them. 3554 Node* non_io_proj = proj->in(0)->as_Multi()->proj_out_or_null(proj->_con, false /*is_io_use*/); 3555 if (non_io_proj != nullptr) { 3556 proj->subsume_by(non_io_proj , this); 3557 } 3558 } 3559 } 3560 break; 3561 } 3562 3563 case Op_Phi: 3564 if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) { 3565 // The EncodeP optimization may create Phi with the same edges 3566 // for all paths. It is not handled well by Register Allocator. 3567 Node* unique_in = n->in(1); 3568 assert(unique_in != nullptr, ""); 3569 uint cnt = n->req(); 3570 for (uint i = 2; i < cnt; i++) { 3571 Node* m = n->in(i); 3572 assert(m != nullptr, ""); 3573 if (unique_in != m) 3574 unique_in = nullptr; 3575 } 3576 if (unique_in != nullptr) { 3577 n->subsume_by(unique_in, this); 3578 } 3579 } 3580 break; 3581 3582 #endif 3583 3584 case Op_ModI: 3585 handle_div_mod_op(n, T_INT, false); 3586 break; 3587 3588 case Op_ModL: 3589 handle_div_mod_op(n, T_LONG, false); 3590 break; 3591 3592 case Op_UModI: 3593 handle_div_mod_op(n, T_INT, true); 3594 break; 3595 3596 case Op_UModL: 3597 handle_div_mod_op(n, T_LONG, true); 3598 break; 3599 3600 case Op_LoadVector: 3601 case Op_StoreVector: 3602 #ifdef ASSERT 3603 // Add VerifyVectorAlignment node between adr and load / store. 3604 if (VerifyAlignVector && Matcher::has_match_rule(Op_VerifyVectorAlignment)) { 3605 bool must_verify_alignment = n->is_LoadVector() ? n->as_LoadVector()->must_verify_alignment() : 3606 n->as_StoreVector()->must_verify_alignment(); 3607 if (must_verify_alignment) { 3608 jlong vector_width = n->is_LoadVector() ? n->as_LoadVector()->memory_size() : 3609 n->as_StoreVector()->memory_size(); 3610 // The memory access should be aligned to the vector width in bytes. 3611 // However, the underlying array is possibly less well aligned, but at least 3612 // to ObjectAlignmentInBytes. Hence, even if multiple arrays are accessed in 3613 // a loop we can expect at least the following alignment: 3614 jlong guaranteed_alignment = MIN2(vector_width, (jlong)ObjectAlignmentInBytes); 3615 assert(2 <= guaranteed_alignment && guaranteed_alignment <= 64, "alignment must be in range"); 3616 assert(is_power_of_2(guaranteed_alignment), "alignment must be power of 2"); 3617 // Create mask from alignment. e.g. 0b1000 -> 0b0111 3618 jlong mask = guaranteed_alignment - 1; 3619 Node* mask_con = ConLNode::make(mask); 3620 VerifyVectorAlignmentNode* va = new VerifyVectorAlignmentNode(n->in(MemNode::Address), mask_con); 3621 n->set_req(MemNode::Address, va); 3622 } 3623 } 3624 #endif 3625 break; 3626 3627 case Op_LoadVectorGather: 3628 case Op_StoreVectorScatter: 3629 case Op_LoadVectorGatherMasked: 3630 case Op_StoreVectorScatterMasked: 3631 case Op_VectorCmpMasked: 3632 case Op_VectorMaskGen: 3633 case Op_LoadVectorMasked: 3634 case Op_StoreVectorMasked: 3635 break; 3636 3637 case Op_AddReductionVI: 3638 case Op_AddReductionVL: 3639 case Op_AddReductionVF: 3640 case Op_AddReductionVD: 3641 case Op_MulReductionVI: 3642 case Op_MulReductionVL: 3643 case Op_MulReductionVF: 3644 case Op_MulReductionVD: 3645 case Op_MinReductionV: 3646 case Op_MaxReductionV: 3647 case Op_AndReductionV: 3648 case Op_OrReductionV: 3649 case Op_XorReductionV: 3650 break; 3651 3652 case Op_PackB: 3653 case Op_PackS: 3654 case Op_PackI: 3655 case Op_PackF: 3656 case Op_PackL: 3657 case Op_PackD: 3658 if (n->req()-1 > 2) { 3659 // Replace many operand PackNodes with a binary tree for matching 3660 PackNode* p = (PackNode*) n; 3661 Node* btp = p->binary_tree_pack(1, n->req()); 3662 n->subsume_by(btp, this); 3663 } 3664 break; 3665 case Op_Loop: 3666 assert(!n->as_Loop()->is_loop_nest_inner_loop() || _loop_opts_cnt == 0, "should have been turned into a counted loop"); 3667 case Op_CountedLoop: 3668 case Op_LongCountedLoop: 3669 case Op_OuterStripMinedLoop: 3670 if (n->as_Loop()->is_inner_loop()) { 3671 frc.inc_inner_loop_count(); 3672 } 3673 n->as_Loop()->verify_strip_mined(0); 3674 break; 3675 case Op_LShiftI: 3676 case Op_RShiftI: 3677 case Op_URShiftI: 3678 case Op_LShiftL: 3679 case Op_RShiftL: 3680 case Op_URShiftL: 3681 if (Matcher::need_masked_shift_count) { 3682 // The cpu's shift instructions don't restrict the count to the 3683 // lower 5/6 bits. We need to do the masking ourselves. 3684 Node* in2 = n->in(2); 3685 juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1); 3686 const TypeInt* t = in2->find_int_type(); 3687 if (t != nullptr && t->is_con()) { 3688 juint shift = t->get_con(); 3689 if (shift > mask) { // Unsigned cmp 3690 n->set_req(2, ConNode::make(TypeInt::make(shift & mask))); 3691 } 3692 } else { 3693 if (t == nullptr || t->_lo < 0 || t->_hi > (int)mask) { 3694 Node* shift = new AndINode(in2, ConNode::make(TypeInt::make(mask))); 3695 n->set_req(2, shift); 3696 } 3697 } 3698 if (in2->outcnt() == 0) { // Remove dead node 3699 in2->disconnect_inputs(this); 3700 } 3701 } 3702 break; 3703 case Op_MemBarStoreStore: 3704 case Op_MemBarRelease: 3705 // Break the link with AllocateNode: it is no longer useful and 3706 // confuses register allocation. 3707 if (n->req() > MemBarNode::Precedent) { 3708 n->set_req(MemBarNode::Precedent, top()); 3709 } 3710 break; 3711 case Op_MemBarAcquire: { 3712 if (n->as_MemBar()->trailing_load() && n->req() > MemBarNode::Precedent) { 3713 // At parse time, the trailing MemBarAcquire for a volatile load 3714 // is created with an edge to the load. After optimizations, 3715 // that input may be a chain of Phis. If those phis have no 3716 // other use, then the MemBarAcquire keeps them alive and 3717 // register allocation can be confused. 3718 dead_nodes.push(n->in(MemBarNode::Precedent)); 3719 n->set_req(MemBarNode::Precedent, top()); 3720 } 3721 break; 3722 } 3723 case Op_Blackhole: 3724 break; 3725 case Op_RangeCheck: { 3726 RangeCheckNode* rc = n->as_RangeCheck(); 3727 Node* iff = new IfNode(rc->in(0), rc->in(1), rc->_prob, rc->_fcnt); 3728 n->subsume_by(iff, this); 3729 frc._tests.push(iff); 3730 break; 3731 } 3732 case Op_ConvI2L: { 3733 if (!Matcher::convi2l_type_required) { 3734 // Code generation on some platforms doesn't need accurate 3735 // ConvI2L types. Widening the type can help remove redundant 3736 // address computations. 3737 n->as_Type()->set_type(TypeLong::INT); 3738 ResourceMark rm; 3739 Unique_Node_List wq; 3740 wq.push(n); 3741 for (uint next = 0; next < wq.size(); next++) { 3742 Node *m = wq.at(next); 3743 3744 for(;;) { 3745 // Loop over all nodes with identical inputs edges as m 3746 Node* k = m->find_similar(m->Opcode()); 3747 if (k == nullptr) { 3748 break; 3749 } 3750 // Push their uses so we get a chance to remove node made 3751 // redundant 3752 for (DUIterator_Fast imax, i = k->fast_outs(imax); i < imax; i++) { 3753 Node* u = k->fast_out(i); 3754 if (u->Opcode() == Op_LShiftL || 3755 u->Opcode() == Op_AddL || 3756 u->Opcode() == Op_SubL || 3757 u->Opcode() == Op_AddP) { 3758 wq.push(u); 3759 } 3760 } 3761 // Replace all nodes with identical edges as m with m 3762 k->subsume_by(m, this); 3763 } 3764 } 3765 } 3766 break; 3767 } 3768 case Op_CmpUL: { 3769 if (!Matcher::has_match_rule(Op_CmpUL)) { 3770 // No support for unsigned long comparisons 3771 ConINode* sign_pos = new ConINode(TypeInt::make(BitsPerLong - 1)); 3772 Node* sign_bit_mask = new RShiftLNode(n->in(1), sign_pos); 3773 Node* orl = new OrLNode(n->in(1), sign_bit_mask); 3774 ConLNode* remove_sign_mask = new ConLNode(TypeLong::make(max_jlong)); 3775 Node* andl = new AndLNode(orl, remove_sign_mask); 3776 Node* cmp = new CmpLNode(andl, n->in(2)); 3777 n->subsume_by(cmp, this); 3778 } 3779 break; 3780 } 3781 #ifdef ASSERT 3782 case Op_ConNKlass: { 3783 const TypePtr* tp = n->as_Type()->type()->make_ptr(); 3784 ciKlass* klass = tp->is_klassptr()->exact_klass(); 3785 assert(klass->is_in_encoding_range(), "klass cannot be compressed"); 3786 break; 3787 } 3788 #endif 3789 default: 3790 assert(!n->is_Call(), ""); 3791 assert(!n->is_Mem(), ""); 3792 assert(nop != Op_ProfileBoolean, "should be eliminated during IGVN"); 3793 break; 3794 } 3795 } 3796 3797 //------------------------------final_graph_reshaping_walk--------------------- 3798 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(), 3799 // requires that the walk visits a node's inputs before visiting the node. 3800 void Compile::final_graph_reshaping_walk(Node_Stack& nstack, Node* root, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes) { 3801 Unique_Node_List sfpt; 3802 3803 frc._visited.set(root->_idx); // first, mark node as visited 3804 uint cnt = root->req(); 3805 Node *n = root; 3806 uint i = 0; 3807 while (true) { 3808 if (i < cnt) { 3809 // Place all non-visited non-null inputs onto stack 3810 Node* m = n->in(i); 3811 ++i; 3812 if (m != nullptr && !frc._visited.test_set(m->_idx)) { 3813 if (m->is_SafePoint() && m->as_SafePoint()->jvms() != nullptr) { 3814 // compute worst case interpreter size in case of a deoptimization 3815 update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size()); 3816 3817 sfpt.push(m); 3818 } 3819 cnt = m->req(); 3820 nstack.push(n, i); // put on stack parent and next input's index 3821 n = m; 3822 i = 0; 3823 } 3824 } else { 3825 // Now do post-visit work 3826 final_graph_reshaping_impl(n, frc, dead_nodes); 3827 if (nstack.is_empty()) 3828 break; // finished 3829 n = nstack.node(); // Get node from stack 3830 cnt = n->req(); 3831 i = nstack.index(); 3832 nstack.pop(); // Shift to the next node on stack 3833 } 3834 } 3835 3836 // Skip next transformation if compressed oops are not used. 3837 if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) || 3838 (!UseCompressedOops && !UseCompressedClassPointers)) 3839 return; 3840 3841 // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges. 3842 // It could be done for an uncommon traps or any safepoints/calls 3843 // if the DecodeN/DecodeNKlass node is referenced only in a debug info. 3844 while (sfpt.size() > 0) { 3845 n = sfpt.pop(); 3846 JVMState *jvms = n->as_SafePoint()->jvms(); 3847 assert(jvms != nullptr, "sanity"); 3848 int start = jvms->debug_start(); 3849 int end = n->req(); 3850 bool is_uncommon = (n->is_CallStaticJava() && 3851 n->as_CallStaticJava()->uncommon_trap_request() != 0); 3852 for (int j = start; j < end; j++) { 3853 Node* in = n->in(j); 3854 if (in->is_DecodeNarrowPtr()) { 3855 bool safe_to_skip = true; 3856 if (!is_uncommon ) { 3857 // Is it safe to skip? 3858 for (uint i = 0; i < in->outcnt(); i++) { 3859 Node* u = in->raw_out(i); 3860 if (!u->is_SafePoint() || 3861 (u->is_Call() && u->as_Call()->has_non_debug_use(n))) { 3862 safe_to_skip = false; 3863 } 3864 } 3865 } 3866 if (safe_to_skip) { 3867 n->set_req(j, in->in(1)); 3868 } 3869 if (in->outcnt() == 0) { 3870 in->disconnect_inputs(this); 3871 } 3872 } 3873 } 3874 } 3875 } 3876 3877 //------------------------------final_graph_reshaping-------------------------- 3878 // Final Graph Reshaping. 3879 // 3880 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late 3881 // and not commoned up and forced early. Must come after regular 3882 // optimizations to avoid GVN undoing the cloning. Clone constant 3883 // inputs to Loop Phis; these will be split by the allocator anyways. 3884 // Remove Opaque nodes. 3885 // (2) Move last-uses by commutative operations to the left input to encourage 3886 // Intel update-in-place two-address operations and better register usage 3887 // on RISCs. Must come after regular optimizations to avoid GVN Ideal 3888 // calls canonicalizing them back. 3889 // (3) Count the number of double-precision FP ops, single-precision FP ops 3890 // and call sites. On Intel, we can get correct rounding either by 3891 // forcing singles to memory (requires extra stores and loads after each 3892 // FP bytecode) or we can set a rounding mode bit (requires setting and 3893 // clearing the mode bit around call sites). The mode bit is only used 3894 // if the relative frequency of single FP ops to calls is low enough. 3895 // This is a key transform for SPEC mpeg_audio. 3896 // (4) Detect infinite loops; blobs of code reachable from above but not 3897 // below. Several of the Code_Gen algorithms fail on such code shapes, 3898 // so we simply bail out. Happens a lot in ZKM.jar, but also happens 3899 // from time to time in other codes (such as -Xcomp finalizer loops, etc). 3900 // Detection is by looking for IfNodes where only 1 projection is 3901 // reachable from below or CatchNodes missing some targets. 3902 // (5) Assert for insane oop offsets in debug mode. 3903 3904 bool Compile::final_graph_reshaping() { 3905 // an infinite loop may have been eliminated by the optimizer, 3906 // in which case the graph will be empty. 3907 if (root()->req() == 1) { 3908 // Do not compile method that is only a trivial infinite loop, 3909 // since the content of the loop may have been eliminated. 3910 record_method_not_compilable("trivial infinite loop"); 3911 return true; 3912 } 3913 3914 // Expensive nodes have their control input set to prevent the GVN 3915 // from freely commoning them. There's no GVN beyond this point so 3916 // no need to keep the control input. We want the expensive nodes to 3917 // be freely moved to the least frequent code path by gcm. 3918 assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?"); 3919 for (int i = 0; i < expensive_count(); i++) { 3920 _expensive_nodes.at(i)->set_req(0, nullptr); 3921 } 3922 3923 Final_Reshape_Counts frc; 3924 3925 // Visit everybody reachable! 3926 // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc 3927 Node_Stack nstack(live_nodes() >> 1); 3928 Unique_Node_List dead_nodes; 3929 final_graph_reshaping_walk(nstack, root(), frc, dead_nodes); 3930 3931 // Check for unreachable (from below) code (i.e., infinite loops). 3932 for( uint i = 0; i < frc._tests.size(); i++ ) { 3933 MultiBranchNode *n = frc._tests[i]->as_MultiBranch(); 3934 // Get number of CFG targets. 3935 // Note that PCTables include exception targets after calls. 3936 uint required_outcnt = n->required_outcnt(); 3937 if (n->outcnt() != required_outcnt) { 3938 // Check for a few special cases. Rethrow Nodes never take the 3939 // 'fall-thru' path, so expected kids is 1 less. 3940 if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) { 3941 if (n->in(0)->in(0)->is_Call()) { 3942 CallNode* call = n->in(0)->in(0)->as_Call(); 3943 if (call->entry_point() == OptoRuntime::rethrow_stub()) { 3944 required_outcnt--; // Rethrow always has 1 less kid 3945 } else if (call->req() > TypeFunc::Parms && 3946 call->is_CallDynamicJava()) { 3947 // Check for null receiver. In such case, the optimizer has 3948 // detected that the virtual call will always result in a null 3949 // pointer exception. The fall-through projection of this CatchNode 3950 // will not be populated. 3951 Node* arg0 = call->in(TypeFunc::Parms); 3952 if (arg0->is_Type() && 3953 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) { 3954 required_outcnt--; 3955 } 3956 } else if (call->entry_point() == OptoRuntime::new_array_Java() || 3957 call->entry_point() == OptoRuntime::new_array_nozero_Java()) { 3958 // Check for illegal array length. In such case, the optimizer has 3959 // detected that the allocation attempt will always result in an 3960 // exception. There is no fall-through projection of this CatchNode . 3961 assert(call->is_CallStaticJava(), "static call expected"); 3962 assert(call->req() == call->jvms()->endoff() + 1, "missing extra input"); 3963 uint valid_length_test_input = call->req() - 1; 3964 Node* valid_length_test = call->in(valid_length_test_input); 3965 call->del_req(valid_length_test_input); 3966 if (valid_length_test->find_int_con(1) == 0) { 3967 required_outcnt--; 3968 } 3969 dead_nodes.push(valid_length_test); 3970 assert(n->outcnt() == required_outcnt, "malformed control flow"); 3971 continue; 3972 } 3973 } 3974 } 3975 3976 // Recheck with a better notion of 'required_outcnt' 3977 if (n->outcnt() != required_outcnt) { 3978 record_method_not_compilable("malformed control flow"); 3979 return true; // Not all targets reachable! 3980 } 3981 } else if (n->is_PCTable() && n->in(0) && n->in(0)->in(0) && n->in(0)->in(0)->is_Call()) { 3982 CallNode* call = n->in(0)->in(0)->as_Call(); 3983 if (call->entry_point() == OptoRuntime::new_array_Java() || 3984 call->entry_point() == OptoRuntime::new_array_nozero_Java()) { 3985 assert(call->is_CallStaticJava(), "static call expected"); 3986 assert(call->req() == call->jvms()->endoff() + 1, "missing extra input"); 3987 uint valid_length_test_input = call->req() - 1; 3988 dead_nodes.push(call->in(valid_length_test_input)); 3989 call->del_req(valid_length_test_input); // valid length test useless now 3990 } 3991 } 3992 // Check that I actually visited all kids. Unreached kids 3993 // must be infinite loops. 3994 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) 3995 if (!frc._visited.test(n->fast_out(j)->_idx)) { 3996 record_method_not_compilable("infinite loop"); 3997 return true; // Found unvisited kid; must be unreach 3998 } 3999 4000 // Here so verification code in final_graph_reshaping_walk() 4001 // always see an OuterStripMinedLoopEnd 4002 if (n->is_OuterStripMinedLoopEnd() || n->is_LongCountedLoopEnd()) { 4003 IfNode* init_iff = n->as_If(); 4004 Node* iff = new IfNode(init_iff->in(0), init_iff->in(1), init_iff->_prob, init_iff->_fcnt); 4005 n->subsume_by(iff, this); 4006 } 4007 } 4008 4009 while (dead_nodes.size() > 0) { 4010 Node* m = dead_nodes.pop(); 4011 if (m->outcnt() == 0 && m != top()) { 4012 for (uint j = 0; j < m->req(); j++) { 4013 Node* in = m->in(j); 4014 if (in != nullptr) { 4015 dead_nodes.push(in); 4016 } 4017 } 4018 m->disconnect_inputs(this); 4019 } 4020 } 4021 4022 #ifdef IA32 4023 // If original bytecodes contained a mixture of floats and doubles 4024 // check if the optimizer has made it homogeneous, item (3). 4025 if (UseSSE == 0 && 4026 frc.get_float_count() > 32 && 4027 frc.get_double_count() == 0 && 4028 (10 * frc.get_call_count() < frc.get_float_count()) ) { 4029 set_24_bit_selection_and_mode(false, true); 4030 } 4031 #endif // IA32 4032 4033 set_java_calls(frc.get_java_call_count()); 4034 set_inner_loops(frc.get_inner_loop_count()); 4035 4036 // No infinite loops, no reason to bail out. 4037 return false; 4038 } 4039 4040 //-----------------------------too_many_traps---------------------------------- 4041 // Report if there are too many traps at the current method and bci. 4042 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded. 4043 bool Compile::too_many_traps(ciMethod* method, 4044 int bci, 4045 Deoptimization::DeoptReason reason) { 4046 ciMethodData* md = method->method_data(); 4047 if (md->is_empty()) { 4048 // Assume the trap has not occurred, or that it occurred only 4049 // because of a transient condition during start-up in the interpreter. 4050 return false; 4051 } 4052 ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : nullptr; 4053 if (md->has_trap_at(bci, m, reason) != 0) { 4054 // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic. 4055 // Also, if there are multiple reasons, or if there is no per-BCI record, 4056 // assume the worst. 4057 if (log()) 4058 log()->elem("observe trap='%s' count='%d'", 4059 Deoptimization::trap_reason_name(reason), 4060 md->trap_count(reason)); 4061 return true; 4062 } else { 4063 // Ignore method/bci and see if there have been too many globally. 4064 return too_many_traps(reason, md); 4065 } 4066 } 4067 4068 // Less-accurate variant which does not require a method and bci. 4069 bool Compile::too_many_traps(Deoptimization::DeoptReason reason, 4070 ciMethodData* logmd) { 4071 if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) { 4072 // Too many traps globally. 4073 // Note that we use cumulative trap_count, not just md->trap_count. 4074 if (log()) { 4075 int mcount = (logmd == nullptr)? -1: (int)logmd->trap_count(reason); 4076 log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'", 4077 Deoptimization::trap_reason_name(reason), 4078 mcount, trap_count(reason)); 4079 } 4080 return true; 4081 } else { 4082 // The coast is clear. 4083 return false; 4084 } 4085 } 4086 4087 //--------------------------too_many_recompiles-------------------------------- 4088 // Report if there are too many recompiles at the current method and bci. 4089 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff. 4090 // Is not eager to return true, since this will cause the compiler to use 4091 // Action_none for a trap point, to avoid too many recompilations. 4092 bool Compile::too_many_recompiles(ciMethod* method, 4093 int bci, 4094 Deoptimization::DeoptReason reason) { 4095 ciMethodData* md = method->method_data(); 4096 if (md->is_empty()) { 4097 // Assume the trap has not occurred, or that it occurred only 4098 // because of a transient condition during start-up in the interpreter. 4099 return false; 4100 } 4101 // Pick a cutoff point well within PerBytecodeRecompilationCutoff. 4102 uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8; 4103 uint m_cutoff = (uint) PerMethodRecompilationCutoff / 2 + 1; // not zero 4104 Deoptimization::DeoptReason per_bc_reason 4105 = Deoptimization::reason_recorded_per_bytecode_if_any(reason); 4106 ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : nullptr; 4107 if ((per_bc_reason == Deoptimization::Reason_none 4108 || md->has_trap_at(bci, m, reason) != 0) 4109 // The trap frequency measure we care about is the recompile count: 4110 && md->trap_recompiled_at(bci, m) 4111 && md->overflow_recompile_count() >= bc_cutoff) { 4112 // Do not emit a trap here if it has already caused recompilations. 4113 // Also, if there are multiple reasons, or if there is no per-BCI record, 4114 // assume the worst. 4115 if (log()) 4116 log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'", 4117 Deoptimization::trap_reason_name(reason), 4118 md->trap_count(reason), 4119 md->overflow_recompile_count()); 4120 return true; 4121 } else if (trap_count(reason) != 0 4122 && decompile_count() >= m_cutoff) { 4123 // Too many recompiles globally, and we have seen this sort of trap. 4124 // Use cumulative decompile_count, not just md->decompile_count. 4125 if (log()) 4126 log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'", 4127 Deoptimization::trap_reason_name(reason), 4128 md->trap_count(reason), trap_count(reason), 4129 md->decompile_count(), decompile_count()); 4130 return true; 4131 } else { 4132 // The coast is clear. 4133 return false; 4134 } 4135 } 4136 4137 // Compute when not to trap. Used by matching trap based nodes and 4138 // NullCheck optimization. 4139 void Compile::set_allowed_deopt_reasons() { 4140 _allowed_reasons = 0; 4141 if (is_method_compilation()) { 4142 for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) { 4143 assert(rs < BitsPerInt, "recode bit map"); 4144 if (!too_many_traps((Deoptimization::DeoptReason) rs)) { 4145 _allowed_reasons |= nth_bit(rs); 4146 } 4147 } 4148 } 4149 } 4150 4151 bool Compile::needs_clinit_barrier(ciMethod* method, ciMethod* accessing_method) { 4152 return method->is_static() && needs_clinit_barrier(method->holder(), accessing_method); 4153 } 4154 4155 bool Compile::needs_clinit_barrier(ciField* field, ciMethod* accessing_method) { 4156 return field->is_static() && needs_clinit_barrier(field->holder(), accessing_method); 4157 } 4158 4159 bool Compile::needs_clinit_barrier(ciInstanceKlass* holder, ciMethod* accessing_method) { 4160 if (holder->is_initialized()) { 4161 return false; 4162 } 4163 if (holder->is_being_initialized()) { 4164 if (accessing_method->holder() == holder) { 4165 // Access inside a class. The barrier can be elided when access happens in <clinit>, 4166 // <init>, or a static method. In all those cases, there was an initialization 4167 // barrier on the holder klass passed. 4168 if (accessing_method->is_static_initializer() || 4169 accessing_method->is_object_initializer() || 4170 accessing_method->is_static()) { 4171 return false; 4172 } 4173 } else if (accessing_method->holder()->is_subclass_of(holder)) { 4174 // Access from a subclass. The barrier can be elided only when access happens in <clinit>. 4175 // In case of <init> or a static method, the barrier is on the subclass is not enough: 4176 // child class can become fully initialized while its parent class is still being initialized. 4177 if (accessing_method->is_static_initializer()) { 4178 return false; 4179 } 4180 } 4181 ciMethod* root = method(); // the root method of compilation 4182 if (root != accessing_method) { 4183 return needs_clinit_barrier(holder, root); // check access in the context of compilation root 4184 } 4185 } 4186 return true; 4187 } 4188 4189 #ifndef PRODUCT 4190 //------------------------------verify_bidirectional_edges--------------------- 4191 // For each input edge to a node (ie - for each Use-Def edge), verify that 4192 // there is a corresponding Def-Use edge. 4193 void Compile::verify_bidirectional_edges(Unique_Node_List &visited) { 4194 // Allocate stack of size C->live_nodes()/16 to avoid frequent realloc 4195 uint stack_size = live_nodes() >> 4; 4196 Node_List nstack(MAX2(stack_size, (uint)OptoNodeListSize)); 4197 nstack.push(_root); 4198 4199 while (nstack.size() > 0) { 4200 Node* n = nstack.pop(); 4201 if (visited.member(n)) { 4202 continue; 4203 } 4204 visited.push(n); 4205 4206 // Walk over all input edges, checking for correspondence 4207 uint length = n->len(); 4208 for (uint i = 0; i < length; i++) { 4209 Node* in = n->in(i); 4210 if (in != nullptr && !visited.member(in)) { 4211 nstack.push(in); // Put it on stack 4212 } 4213 if (in != nullptr && !in->is_top()) { 4214 // Count instances of `next` 4215 int cnt = 0; 4216 for (uint idx = 0; idx < in->_outcnt; idx++) { 4217 if (in->_out[idx] == n) { 4218 cnt++; 4219 } 4220 } 4221 assert(cnt > 0, "Failed to find Def-Use edge."); 4222 // Check for duplicate edges 4223 // walk the input array downcounting the input edges to n 4224 for (uint j = 0; j < length; j++) { 4225 if (n->in(j) == in) { 4226 cnt--; 4227 } 4228 } 4229 assert(cnt == 0, "Mismatched edge count."); 4230 } else if (in == nullptr) { 4231 assert(i == 0 || i >= n->req() || 4232 n->is_Region() || n->is_Phi() || n->is_ArrayCopy() || 4233 (n->is_Unlock() && i == (n->req() - 1)) || 4234 (n->is_MemBar() && i == 5), // the precedence edge to a membar can be removed during macro node expansion 4235 "only region, phi, arraycopy, unlock or membar nodes have null data edges"); 4236 } else { 4237 assert(in->is_top(), "sanity"); 4238 // Nothing to check. 4239 } 4240 } 4241 } 4242 } 4243 4244 //------------------------------verify_graph_edges--------------------------- 4245 // Walk the Graph and verify that there is a one-to-one correspondence 4246 // between Use-Def edges and Def-Use edges in the graph. 4247 void Compile::verify_graph_edges(bool no_dead_code) { 4248 if (VerifyGraphEdges) { 4249 Unique_Node_List visited; 4250 4251 // Call graph walk to check edges 4252 verify_bidirectional_edges(visited); 4253 if (no_dead_code) { 4254 // Now make sure that no visited node is used by an unvisited node. 4255 bool dead_nodes = false; 4256 Unique_Node_List checked; 4257 while (visited.size() > 0) { 4258 Node* n = visited.pop(); 4259 checked.push(n); 4260 for (uint i = 0; i < n->outcnt(); i++) { 4261 Node* use = n->raw_out(i); 4262 if (checked.member(use)) continue; // already checked 4263 if (visited.member(use)) continue; // already in the graph 4264 if (use->is_Con()) continue; // a dead ConNode is OK 4265 // At this point, we have found a dead node which is DU-reachable. 4266 if (!dead_nodes) { 4267 tty->print_cr("*** Dead nodes reachable via DU edges:"); 4268 dead_nodes = true; 4269 } 4270 use->dump(2); 4271 tty->print_cr("---"); 4272 checked.push(use); // No repeats; pretend it is now checked. 4273 } 4274 } 4275 assert(!dead_nodes, "using nodes must be reachable from root"); 4276 } 4277 } 4278 } 4279 #endif 4280 4281 // The Compile object keeps track of failure reasons separately from the ciEnv. 4282 // This is required because there is not quite a 1-1 relation between the 4283 // ciEnv and its compilation task and the Compile object. Note that one 4284 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides 4285 // to backtrack and retry without subsuming loads. Other than this backtracking 4286 // behavior, the Compile's failure reason is quietly copied up to the ciEnv 4287 // by the logic in C2Compiler. 4288 void Compile::record_failure(const char* reason DEBUG_ONLY(COMMA bool allow_multiple_failures)) { 4289 if (log() != nullptr) { 4290 log()->elem("failure reason='%s' phase='compile'", reason); 4291 } 4292 if (_failure_reason.get() == nullptr) { 4293 // Record the first failure reason. 4294 _failure_reason.set(reason); 4295 if (CaptureBailoutInformation) { 4296 _first_failure_details = new CompilationFailureInfo(reason); 4297 } 4298 } else { 4299 assert(!StressBailout || allow_multiple_failures, "should have handled previous failure."); 4300 } 4301 4302 if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) { 4303 C->print_method(PHASE_FAILURE, 1); 4304 } 4305 _root = nullptr; // flush the graph, too 4306 } 4307 4308 Compile::TracePhase::TracePhase(const char* name, PhaseTraceId id) 4309 : TraceTime(name, &Phase::timers[id], CITime, CITimeVerbose), 4310 _compile(Compile::current()), 4311 _log(nullptr), 4312 _dolog(CITimeVerbose) 4313 { 4314 assert(_compile != nullptr, "sanity check"); 4315 if (_dolog) { 4316 _log = _compile->log(); 4317 } 4318 if (_log != nullptr) { 4319 _log->begin_head("phase name='%s' nodes='%d' live='%d'", phase_name(), _compile->unique(), _compile->live_nodes()); 4320 _log->stamp(); 4321 _log->end_head(); 4322 } 4323 } 4324 4325 Compile::TracePhase::TracePhase(PhaseTraceId id) 4326 : TracePhase(Phase::get_phase_trace_id_text(id), id) {} 4327 4328 Compile::TracePhase::~TracePhase() { 4329 if (_compile->failing_internal()) { 4330 if (_log != nullptr) { 4331 _log->done("phase"); 4332 } 4333 return; // timing code, not stressing bailouts. 4334 } 4335 #ifdef ASSERT 4336 if (PrintIdealNodeCount) { 4337 tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'", 4338 phase_name(), _compile->unique(), _compile->live_nodes(), _compile->count_live_nodes_by_graph_walk()); 4339 } 4340 4341 if (VerifyIdealNodeCount) { 4342 _compile->print_missing_nodes(); 4343 } 4344 #endif 4345 4346 if (_log != nullptr) { 4347 _log->done("phase name='%s' nodes='%d' live='%d'", phase_name(), _compile->unique(), _compile->live_nodes()); 4348 } 4349 } 4350 4351 //----------------------------static_subtype_check----------------------------- 4352 // Shortcut important common cases when superklass is exact: 4353 // (0) superklass is java.lang.Object (can occur in reflective code) 4354 // (1) subklass is already limited to a subtype of superklass => always ok 4355 // (2) subklass does not overlap with superklass => always fail 4356 // (3) superklass has NO subtypes and we can check with a simple compare. 4357 Compile::SubTypeCheckResult Compile::static_subtype_check(const TypeKlassPtr* superk, const TypeKlassPtr* subk, bool skip) { 4358 if (skip) { 4359 return SSC_full_test; // Let caller generate the general case. 4360 } 4361 4362 if (subk->is_java_subtype_of(superk)) { 4363 return SSC_always_true; // (0) and (1) this test cannot fail 4364 } 4365 4366 if (!subk->maybe_java_subtype_of(superk)) { 4367 return SSC_always_false; // (2) true path dead; no dynamic test needed 4368 } 4369 4370 const Type* superelem = superk; 4371 if (superk->isa_aryklassptr()) { 4372 int ignored; 4373 superelem = superk->is_aryklassptr()->base_element_type(ignored); 4374 } 4375 4376 if (superelem->isa_instklassptr()) { 4377 ciInstanceKlass* ik = superelem->is_instklassptr()->instance_klass(); 4378 if (!ik->has_subklass()) { 4379 if (!ik->is_final()) { 4380 // Add a dependency if there is a chance of a later subclass. 4381 dependencies()->assert_leaf_type(ik); 4382 } 4383 if (!superk->maybe_java_subtype_of(subk)) { 4384 return SSC_always_false; 4385 } 4386 return SSC_easy_test; // (3) caller can do a simple ptr comparison 4387 } 4388 } else { 4389 // A primitive array type has no subtypes. 4390 return SSC_easy_test; // (3) caller can do a simple ptr comparison 4391 } 4392 4393 return SSC_full_test; 4394 } 4395 4396 Node* Compile::conv_I2X_index(PhaseGVN* phase, Node* idx, const TypeInt* sizetype, Node* ctrl) { 4397 #ifdef _LP64 4398 // The scaled index operand to AddP must be a clean 64-bit value. 4399 // Java allows a 32-bit int to be incremented to a negative 4400 // value, which appears in a 64-bit register as a large 4401 // positive number. Using that large positive number as an 4402 // operand in pointer arithmetic has bad consequences. 4403 // On the other hand, 32-bit overflow is rare, and the possibility 4404 // can often be excluded, if we annotate the ConvI2L node with 4405 // a type assertion that its value is known to be a small positive 4406 // number. (The prior range check has ensured this.) 4407 // This assertion is used by ConvI2LNode::Ideal. 4408 int index_max = max_jint - 1; // array size is max_jint, index is one less 4409 if (sizetype != nullptr) index_max = sizetype->_hi - 1; 4410 const TypeInt* iidxtype = TypeInt::make(0, index_max, Type::WidenMax); 4411 idx = constrained_convI2L(phase, idx, iidxtype, ctrl); 4412 #endif 4413 return idx; 4414 } 4415 4416 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check) 4417 Node* Compile::constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl, bool carry_dependency) { 4418 if (ctrl != nullptr) { 4419 // Express control dependency by a CastII node with a narrow type. 4420 // Make the CastII node dependent on the control input to prevent the narrowed ConvI2L 4421 // node from floating above the range check during loop optimizations. Otherwise, the 4422 // ConvI2L node may be eliminated independently of the range check, causing the data path 4423 // to become TOP while the control path is still there (although it's unreachable). 4424 value = new CastIINode(ctrl, value, itype, carry_dependency ? ConstraintCastNode::StrongDependency : ConstraintCastNode::RegularDependency, true /* range check dependency */); 4425 value = phase->transform(value); 4426 } 4427 const TypeLong* ltype = TypeLong::make(itype->_lo, itype->_hi, itype->_widen); 4428 return phase->transform(new ConvI2LNode(value, ltype)); 4429 } 4430 4431 void Compile::dump_print_inlining() { 4432 inline_printer()->print_on(tty); 4433 } 4434 4435 void Compile::log_late_inline(CallGenerator* cg) { 4436 if (log() != nullptr) { 4437 log()->head("late_inline method='%d' inline_id='" JLONG_FORMAT "'", log()->identify(cg->method()), 4438 cg->unique_id()); 4439 JVMState* p = cg->call_node()->jvms(); 4440 while (p != nullptr) { 4441 log()->elem("jvms bci='%d' method='%d'", p->bci(), log()->identify(p->method())); 4442 p = p->caller(); 4443 } 4444 log()->tail("late_inline"); 4445 } 4446 } 4447 4448 void Compile::log_late_inline_failure(CallGenerator* cg, const char* msg) { 4449 log_late_inline(cg); 4450 if (log() != nullptr) { 4451 log()->inline_fail(msg); 4452 } 4453 } 4454 4455 void Compile::log_inline_id(CallGenerator* cg) { 4456 if (log() != nullptr) { 4457 // The LogCompilation tool needs a unique way to identify late 4458 // inline call sites. This id must be unique for this call site in 4459 // this compilation. Try to have it unique across compilations as 4460 // well because it can be convenient when grepping through the log 4461 // file. 4462 // Distinguish OSR compilations from others in case CICountOSR is 4463 // on. 4464 jlong id = ((jlong)unique()) + (((jlong)compile_id()) << 33) + (CICountOSR && is_osr_compilation() ? ((jlong)1) << 32 : 0); 4465 cg->set_unique_id(id); 4466 log()->elem("inline_id id='" JLONG_FORMAT "'", id); 4467 } 4468 } 4469 4470 void Compile::log_inline_failure(const char* msg) { 4471 if (C->log() != nullptr) { 4472 C->log()->inline_fail(msg); 4473 } 4474 } 4475 4476 4477 // Dump inlining replay data to the stream. 4478 // Don't change thread state and acquire any locks. 4479 void Compile::dump_inline_data(outputStream* out) { 4480 InlineTree* inl_tree = ilt(); 4481 if (inl_tree != nullptr) { 4482 out->print(" inline %d", inl_tree->count()); 4483 inl_tree->dump_replay_data(out); 4484 } 4485 } 4486 4487 void Compile::dump_inline_data_reduced(outputStream* out) { 4488 assert(ReplayReduce, ""); 4489 4490 InlineTree* inl_tree = ilt(); 4491 if (inl_tree == nullptr) { 4492 return; 4493 } 4494 // Enable iterative replay file reduction 4495 // Output "compile" lines for depth 1 subtrees, 4496 // simulating that those trees were compiled 4497 // instead of inlined. 4498 for (int i = 0; i < inl_tree->subtrees().length(); ++i) { 4499 InlineTree* sub = inl_tree->subtrees().at(i); 4500 if (sub->inline_level() != 1) { 4501 continue; 4502 } 4503 4504 ciMethod* method = sub->method(); 4505 int entry_bci = -1; 4506 int comp_level = env()->task()->comp_level(); 4507 out->print("compile "); 4508 method->dump_name_as_ascii(out); 4509 out->print(" %d %d", entry_bci, comp_level); 4510 out->print(" inline %d", sub->count()); 4511 sub->dump_replay_data(out, -1); 4512 out->cr(); 4513 } 4514 } 4515 4516 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) { 4517 if (n1->Opcode() < n2->Opcode()) return -1; 4518 else if (n1->Opcode() > n2->Opcode()) return 1; 4519 4520 assert(n1->req() == n2->req(), "can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req()); 4521 for (uint i = 1; i < n1->req(); i++) { 4522 if (n1->in(i) < n2->in(i)) return -1; 4523 else if (n1->in(i) > n2->in(i)) return 1; 4524 } 4525 4526 return 0; 4527 } 4528 4529 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) { 4530 Node* n1 = *n1p; 4531 Node* n2 = *n2p; 4532 4533 return cmp_expensive_nodes(n1, n2); 4534 } 4535 4536 void Compile::sort_expensive_nodes() { 4537 if (!expensive_nodes_sorted()) { 4538 _expensive_nodes.sort(cmp_expensive_nodes); 4539 } 4540 } 4541 4542 bool Compile::expensive_nodes_sorted() const { 4543 for (int i = 1; i < _expensive_nodes.length(); i++) { 4544 if (cmp_expensive_nodes(_expensive_nodes.adr_at(i), _expensive_nodes.adr_at(i-1)) < 0) { 4545 return false; 4546 } 4547 } 4548 return true; 4549 } 4550 4551 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) { 4552 if (_expensive_nodes.length() == 0) { 4553 return false; 4554 } 4555 4556 assert(OptimizeExpensiveOps, "optimization off?"); 4557 4558 // Take this opportunity to remove dead nodes from the list 4559 int j = 0; 4560 for (int i = 0; i < _expensive_nodes.length(); i++) { 4561 Node* n = _expensive_nodes.at(i); 4562 if (!n->is_unreachable(igvn)) { 4563 assert(n->is_expensive(), "should be expensive"); 4564 _expensive_nodes.at_put(j, n); 4565 j++; 4566 } 4567 } 4568 _expensive_nodes.trunc_to(j); 4569 4570 // Then sort the list so that similar nodes are next to each other 4571 // and check for at least two nodes of identical kind with same data 4572 // inputs. 4573 sort_expensive_nodes(); 4574 4575 for (int i = 0; i < _expensive_nodes.length()-1; i++) { 4576 if (cmp_expensive_nodes(_expensive_nodes.adr_at(i), _expensive_nodes.adr_at(i+1)) == 0) { 4577 return true; 4578 } 4579 } 4580 4581 return false; 4582 } 4583 4584 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) { 4585 if (_expensive_nodes.length() == 0) { 4586 return; 4587 } 4588 4589 assert(OptimizeExpensiveOps, "optimization off?"); 4590 4591 // Sort to bring similar nodes next to each other and clear the 4592 // control input of nodes for which there's only a single copy. 4593 sort_expensive_nodes(); 4594 4595 int j = 0; 4596 int identical = 0; 4597 int i = 0; 4598 bool modified = false; 4599 for (; i < _expensive_nodes.length()-1; i++) { 4600 assert(j <= i, "can't write beyond current index"); 4601 if (_expensive_nodes.at(i)->Opcode() == _expensive_nodes.at(i+1)->Opcode()) { 4602 identical++; 4603 _expensive_nodes.at_put(j++, _expensive_nodes.at(i)); 4604 continue; 4605 } 4606 if (identical > 0) { 4607 _expensive_nodes.at_put(j++, _expensive_nodes.at(i)); 4608 identical = 0; 4609 } else { 4610 Node* n = _expensive_nodes.at(i); 4611 igvn.replace_input_of(n, 0, nullptr); 4612 igvn.hash_insert(n); 4613 modified = true; 4614 } 4615 } 4616 if (identical > 0) { 4617 _expensive_nodes.at_put(j++, _expensive_nodes.at(i)); 4618 } else if (_expensive_nodes.length() >= 1) { 4619 Node* n = _expensive_nodes.at(i); 4620 igvn.replace_input_of(n, 0, nullptr); 4621 igvn.hash_insert(n); 4622 modified = true; 4623 } 4624 _expensive_nodes.trunc_to(j); 4625 if (modified) { 4626 igvn.optimize(); 4627 } 4628 } 4629 4630 void Compile::add_expensive_node(Node * n) { 4631 assert(!_expensive_nodes.contains(n), "duplicate entry in expensive list"); 4632 assert(n->is_expensive(), "expensive nodes with non-null control here only"); 4633 assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here"); 4634 if (OptimizeExpensiveOps) { 4635 _expensive_nodes.append(n); 4636 } else { 4637 // Clear control input and let IGVN optimize expensive nodes if 4638 // OptimizeExpensiveOps is off. 4639 n->set_req(0, nullptr); 4640 } 4641 } 4642 4643 /** 4644 * Track coarsened Lock and Unlock nodes. 4645 */ 4646 4647 class Lock_List : public Node_List { 4648 uint _origin_cnt; 4649 public: 4650 Lock_List(Arena *a, uint cnt) : Node_List(a), _origin_cnt(cnt) {} 4651 uint origin_cnt() const { return _origin_cnt; } 4652 }; 4653 4654 void Compile::add_coarsened_locks(GrowableArray<AbstractLockNode*>& locks) { 4655 int length = locks.length(); 4656 if (length > 0) { 4657 // Have to keep this list until locks elimination during Macro nodes elimination. 4658 Lock_List* locks_list = new (comp_arena()) Lock_List(comp_arena(), length); 4659 AbstractLockNode* alock = locks.at(0); 4660 BoxLockNode* box = alock->box_node()->as_BoxLock(); 4661 for (int i = 0; i < length; i++) { 4662 AbstractLockNode* lock = locks.at(i); 4663 assert(lock->is_coarsened(), "expecting only coarsened AbstractLock nodes, but got '%s'[%d] node", lock->Name(), lock->_idx); 4664 locks_list->push(lock); 4665 BoxLockNode* this_box = lock->box_node()->as_BoxLock(); 4666 if (this_box != box) { 4667 // Locking regions (BoxLock) could be Unbalanced here: 4668 // - its coarsened locks were eliminated in earlier 4669 // macro nodes elimination followed by loop unroll 4670 // - it is OSR locking region (no Lock node) 4671 // Preserve Unbalanced status in such cases. 4672 if (!this_box->is_unbalanced()) { 4673 this_box->set_coarsened(); 4674 } 4675 if (!box->is_unbalanced()) { 4676 box->set_coarsened(); 4677 } 4678 } 4679 } 4680 _coarsened_locks.append(locks_list); 4681 } 4682 } 4683 4684 void Compile::remove_useless_coarsened_locks(Unique_Node_List& useful) { 4685 int count = coarsened_count(); 4686 for (int i = 0; i < count; i++) { 4687 Node_List* locks_list = _coarsened_locks.at(i); 4688 for (uint j = 0; j < locks_list->size(); j++) { 4689 Node* lock = locks_list->at(j); 4690 assert(lock->is_AbstractLock(), "sanity"); 4691 if (!useful.member(lock)) { 4692 locks_list->yank(lock); 4693 } 4694 } 4695 } 4696 } 4697 4698 void Compile::remove_coarsened_lock(Node* n) { 4699 if (n->is_AbstractLock()) { 4700 int count = coarsened_count(); 4701 for (int i = 0; i < count; i++) { 4702 Node_List* locks_list = _coarsened_locks.at(i); 4703 locks_list->yank(n); 4704 } 4705 } 4706 } 4707 4708 bool Compile::coarsened_locks_consistent() { 4709 int count = coarsened_count(); 4710 for (int i = 0; i < count; i++) { 4711 bool unbalanced = false; 4712 bool modified = false; // track locks kind modifications 4713 Lock_List* locks_list = (Lock_List*)_coarsened_locks.at(i); 4714 uint size = locks_list->size(); 4715 if (size == 0) { 4716 unbalanced = false; // All locks were eliminated - good 4717 } else if (size != locks_list->origin_cnt()) { 4718 unbalanced = true; // Some locks were removed from list 4719 } else { 4720 for (uint j = 0; j < size; j++) { 4721 Node* lock = locks_list->at(j); 4722 // All nodes in group should have the same state (modified or not) 4723 if (!lock->as_AbstractLock()->is_coarsened()) { 4724 if (j == 0) { 4725 // first on list was modified, the rest should be too for consistency 4726 modified = true; 4727 } else if (!modified) { 4728 // this lock was modified but previous locks on the list were not 4729 unbalanced = true; 4730 break; 4731 } 4732 } else if (modified) { 4733 // previous locks on list were modified but not this lock 4734 unbalanced = true; 4735 break; 4736 } 4737 } 4738 } 4739 if (unbalanced) { 4740 // unbalanced monitor enter/exit - only some [un]lock nodes were removed or modified 4741 #ifdef ASSERT 4742 if (PrintEliminateLocks) { 4743 tty->print_cr("=== unbalanced coarsened locks ==="); 4744 for (uint l = 0; l < size; l++) { 4745 locks_list->at(l)->dump(); 4746 } 4747 } 4748 #endif 4749 record_failure(C2Compiler::retry_no_locks_coarsening()); 4750 return false; 4751 } 4752 } 4753 return true; 4754 } 4755 4756 // Mark locking regions (identified by BoxLockNode) as unbalanced if 4757 // locks coarsening optimization removed Lock/Unlock nodes from them. 4758 // Such regions become unbalanced because coarsening only removes part 4759 // of Lock/Unlock nodes in region. As result we can't execute other 4760 // locks elimination optimizations which assume all code paths have 4761 // corresponding pair of Lock/Unlock nodes - they are balanced. 4762 void Compile::mark_unbalanced_boxes() const { 4763 int count = coarsened_count(); 4764 for (int i = 0; i < count; i++) { 4765 Node_List* locks_list = _coarsened_locks.at(i); 4766 uint size = locks_list->size(); 4767 if (size > 0) { 4768 AbstractLockNode* alock = locks_list->at(0)->as_AbstractLock(); 4769 BoxLockNode* box = alock->box_node()->as_BoxLock(); 4770 if (alock->is_coarsened()) { 4771 // coarsened_locks_consistent(), which is called before this method, verifies 4772 // that the rest of Lock/Unlock nodes on locks_list are also coarsened. 4773 assert(!box->is_eliminated(), "regions with coarsened locks should not be marked as eliminated"); 4774 for (uint j = 1; j < size; j++) { 4775 assert(locks_list->at(j)->as_AbstractLock()->is_coarsened(), "only coarsened locks are expected here"); 4776 BoxLockNode* this_box = locks_list->at(j)->as_AbstractLock()->box_node()->as_BoxLock(); 4777 if (box != this_box) { 4778 assert(!this_box->is_eliminated(), "regions with coarsened locks should not be marked as eliminated"); 4779 box->set_unbalanced(); 4780 this_box->set_unbalanced(); 4781 } 4782 } 4783 } 4784 } 4785 } 4786 } 4787 4788 /** 4789 * Remove the speculative part of types and clean up the graph 4790 */ 4791 void Compile::remove_speculative_types(PhaseIterGVN &igvn) { 4792 if (UseTypeSpeculation) { 4793 Unique_Node_List worklist; 4794 worklist.push(root()); 4795 int modified = 0; 4796 // Go over all type nodes that carry a speculative type, drop the 4797 // speculative part of the type and enqueue the node for an igvn 4798 // which may optimize it out. 4799 for (uint next = 0; next < worklist.size(); ++next) { 4800 Node *n = worklist.at(next); 4801 if (n->is_Type()) { 4802 TypeNode* tn = n->as_Type(); 4803 const Type* t = tn->type(); 4804 const Type* t_no_spec = t->remove_speculative(); 4805 if (t_no_spec != t) { 4806 bool in_hash = igvn.hash_delete(n); 4807 assert(in_hash || n->hash() == Node::NO_HASH, "node should be in igvn hash table"); 4808 tn->set_type(t_no_spec); 4809 igvn.hash_insert(n); 4810 igvn._worklist.push(n); // give it a chance to go away 4811 modified++; 4812 } 4813 } 4814 // Iterate over outs - endless loops is unreachable from below 4815 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 4816 Node *m = n->fast_out(i); 4817 if (not_a_node(m)) { 4818 continue; 4819 } 4820 worklist.push(m); 4821 } 4822 } 4823 // Drop the speculative part of all types in the igvn's type table 4824 igvn.remove_speculative_types(); 4825 if (modified > 0) { 4826 igvn.optimize(); 4827 if (failing()) return; 4828 } 4829 #ifdef ASSERT 4830 // Verify that after the IGVN is over no speculative type has resurfaced 4831 worklist.clear(); 4832 worklist.push(root()); 4833 for (uint next = 0; next < worklist.size(); ++next) { 4834 Node *n = worklist.at(next); 4835 const Type* t = igvn.type_or_null(n); 4836 assert((t == nullptr) || (t == t->remove_speculative()), "no more speculative types"); 4837 if (n->is_Type()) { 4838 t = n->as_Type()->type(); 4839 assert(t == t->remove_speculative(), "no more speculative types"); 4840 } 4841 // Iterate over outs - endless loops is unreachable from below 4842 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 4843 Node *m = n->fast_out(i); 4844 if (not_a_node(m)) { 4845 continue; 4846 } 4847 worklist.push(m); 4848 } 4849 } 4850 igvn.check_no_speculative_types(); 4851 #endif 4852 } 4853 } 4854 4855 // Auxiliary methods to support randomized stressing/fuzzing. 4856 4857 void Compile::initialize_stress_seed(const DirectiveSet* directive) { 4858 if (FLAG_IS_DEFAULT(StressSeed) || (FLAG_IS_ERGO(StressSeed) && directive->RepeatCompilationOption)) { 4859 _stress_seed = static_cast<uint>(Ticks::now().nanoseconds()); 4860 FLAG_SET_ERGO(StressSeed, _stress_seed); 4861 } else { 4862 _stress_seed = StressSeed; 4863 } 4864 if (_log != nullptr) { 4865 _log->elem("stress_test seed='%u'", _stress_seed); 4866 } 4867 } 4868 4869 int Compile::random() { 4870 _stress_seed = os::next_random(_stress_seed); 4871 return static_cast<int>(_stress_seed); 4872 } 4873 4874 // This method can be called the arbitrary number of times, with current count 4875 // as the argument. The logic allows selecting a single candidate from the 4876 // running list of candidates as follows: 4877 // int count = 0; 4878 // Cand* selected = null; 4879 // while(cand = cand->next()) { 4880 // if (randomized_select(++count)) { 4881 // selected = cand; 4882 // } 4883 // } 4884 // 4885 // Including count equalizes the chances any candidate is "selected". 4886 // This is useful when we don't have the complete list of candidates to choose 4887 // from uniformly. In this case, we need to adjust the randomicity of the 4888 // selection, or else we will end up biasing the selection towards the latter 4889 // candidates. 4890 // 4891 // Quick back-envelope calculation shows that for the list of n candidates 4892 // the equal probability for the candidate to persist as "best" can be 4893 // achieved by replacing it with "next" k-th candidate with the probability 4894 // of 1/k. It can be easily shown that by the end of the run, the 4895 // probability for any candidate is converged to 1/n, thus giving the 4896 // uniform distribution among all the candidates. 4897 // 4898 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large. 4899 #define RANDOMIZED_DOMAIN_POW 29 4900 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW) 4901 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1) 4902 bool Compile::randomized_select(int count) { 4903 assert(count > 0, "only positive"); 4904 return (random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count); 4905 } 4906 4907 #ifdef ASSERT 4908 // Failures are geometrically distributed with probability 1/StressBailoutMean. 4909 bool Compile::fail_randomly() { 4910 if ((random() % StressBailoutMean) != 0) { 4911 return false; 4912 } 4913 record_failure("StressBailout"); 4914 return true; 4915 } 4916 4917 bool Compile::failure_is_artificial() { 4918 return C->failure_reason_is("StressBailout"); 4919 } 4920 #endif 4921 4922 CloneMap& Compile::clone_map() { return _clone_map; } 4923 void Compile::set_clone_map(Dict* d) { _clone_map._dict = d; } 4924 4925 void NodeCloneInfo::dump_on(outputStream* st) const { 4926 st->print(" {%d:%d} ", idx(), gen()); 4927 } 4928 4929 void CloneMap::clone(Node* old, Node* nnn, int gen) { 4930 uint64_t val = value(old->_idx); 4931 NodeCloneInfo cio(val); 4932 assert(val != 0, "old node should be in the map"); 4933 NodeCloneInfo cin(cio.idx(), gen + cio.gen()); 4934 insert(nnn->_idx, cin.get()); 4935 #ifndef PRODUCT 4936 if (is_debug()) { 4937 tty->print_cr("CloneMap::clone inserted node %d info {%d:%d} into CloneMap", nnn->_idx, cin.idx(), cin.gen()); 4938 } 4939 #endif 4940 } 4941 4942 void CloneMap::verify_insert_and_clone(Node* old, Node* nnn, int gen) { 4943 NodeCloneInfo cio(value(old->_idx)); 4944 if (cio.get() == 0) { 4945 cio.set(old->_idx, 0); 4946 insert(old->_idx, cio.get()); 4947 #ifndef PRODUCT 4948 if (is_debug()) { 4949 tty->print_cr("CloneMap::verify_insert_and_clone inserted node %d info {%d:%d} into CloneMap", old->_idx, cio.idx(), cio.gen()); 4950 } 4951 #endif 4952 } 4953 clone(old, nnn, gen); 4954 } 4955 4956 int CloneMap::max_gen() const { 4957 int g = 0; 4958 DictI di(_dict); 4959 for(; di.test(); ++di) { 4960 int t = gen(di._key); 4961 if (g < t) { 4962 g = t; 4963 #ifndef PRODUCT 4964 if (is_debug()) { 4965 tty->print_cr("CloneMap::max_gen() update max=%d from %d", g, _2_node_idx_t(di._key)); 4966 } 4967 #endif 4968 } 4969 } 4970 return g; 4971 } 4972 4973 void CloneMap::dump(node_idx_t key, outputStream* st) const { 4974 uint64_t val = value(key); 4975 if (val != 0) { 4976 NodeCloneInfo ni(val); 4977 ni.dump_on(st); 4978 } 4979 } 4980 4981 void Compile::shuffle_macro_nodes() { 4982 if (_macro_nodes.length() < 2) { 4983 return; 4984 } 4985 for (uint i = _macro_nodes.length() - 1; i >= 1; i--) { 4986 uint j = C->random() % (i + 1); 4987 swap(_macro_nodes.at(i), _macro_nodes.at(j)); 4988 } 4989 } 4990 4991 // Move Allocate nodes to the start of the list 4992 void Compile::sort_macro_nodes() { 4993 int count = macro_count(); 4994 int allocates = 0; 4995 for (int i = 0; i < count; i++) { 4996 Node* n = macro_node(i); 4997 if (n->is_Allocate()) { 4998 if (i != allocates) { 4999 Node* tmp = macro_node(allocates); 5000 _macro_nodes.at_put(allocates, n); 5001 _macro_nodes.at_put(i, tmp); 5002 } 5003 allocates++; 5004 } 5005 } 5006 } 5007 5008 void Compile::print_method(CompilerPhaseType cpt, int level, Node* n) { 5009 if (failing_internal()) { return; } // failing_internal to not stress bailouts from printing code. 5010 EventCompilerPhase event(UNTIMED); 5011 if (event.should_commit()) { 5012 CompilerEvent::PhaseEvent::post(event, C->_latest_stage_start_counter, cpt, C->_compile_id, level); 5013 } 5014 #ifndef PRODUCT 5015 ResourceMark rm; 5016 stringStream ss; 5017 ss.print_raw(CompilerPhaseTypeHelper::to_description(cpt)); 5018 int iter = ++_igv_phase_iter[cpt]; 5019 if (iter > 1) { 5020 ss.print(" %d", iter); 5021 } 5022 if (n != nullptr) { 5023 ss.print(": %d %s", n->_idx, NodeClassNames[n->Opcode()]); 5024 if (n->is_Call()) { 5025 CallNode* call = n->as_Call(); 5026 if (call->_name != nullptr) { 5027 // E.g. uncommon traps etc. 5028 ss.print(" - %s", call->_name); 5029 } else if (call->is_CallJava()) { 5030 CallJavaNode* call_java = call->as_CallJava(); 5031 if (call_java->method() != nullptr) { 5032 ss.print(" -"); 5033 call_java->method()->print_short_name(&ss); 5034 } 5035 } 5036 } 5037 } 5038 5039 const char* name = ss.as_string(); 5040 if (should_print_igv(level)) { 5041 _igv_printer->print_graph(name); 5042 } 5043 if (should_print_phase(cpt)) { 5044 print_ideal_ir(CompilerPhaseTypeHelper::to_name(cpt)); 5045 } 5046 #endif 5047 C->_latest_stage_start_counter.stamp(); 5048 } 5049 5050 // Only used from CompileWrapper 5051 void Compile::begin_method() { 5052 #ifndef PRODUCT 5053 if (_method != nullptr && should_print_igv(1)) { 5054 _igv_printer->begin_method(); 5055 } 5056 #endif 5057 C->_latest_stage_start_counter.stamp(); 5058 } 5059 5060 // Only used from CompileWrapper 5061 void Compile::end_method() { 5062 EventCompilerPhase event(UNTIMED); 5063 if (event.should_commit()) { 5064 CompilerEvent::PhaseEvent::post(event, C->_latest_stage_start_counter, PHASE_END, C->_compile_id, 1); 5065 } 5066 5067 #ifndef PRODUCT 5068 if (_method != nullptr && should_print_igv(1)) { 5069 _igv_printer->end_method(); 5070 } 5071 #endif 5072 } 5073 5074 bool Compile::should_print_phase(CompilerPhaseType cpt) { 5075 #ifndef PRODUCT 5076 if (_directive->should_print_phase(cpt)) { 5077 return true; 5078 } 5079 #endif 5080 return false; 5081 } 5082 5083 #ifndef PRODUCT 5084 void Compile::init_igv() { 5085 if (_igv_printer == nullptr) { 5086 _igv_printer = IdealGraphPrinter::printer(); 5087 _igv_printer->set_compile(this); 5088 } 5089 } 5090 #endif 5091 5092 bool Compile::should_print_igv(const int level) { 5093 #ifndef PRODUCT 5094 if (PrintIdealGraphLevel < 0) { // disabled by the user 5095 return false; 5096 } 5097 5098 bool need = directive()->IGVPrintLevelOption >= level; 5099 if (need) { 5100 Compile::init_igv(); 5101 } 5102 return need; 5103 #else 5104 return false; 5105 #endif 5106 } 5107 5108 #ifndef PRODUCT 5109 IdealGraphPrinter* Compile::_debug_file_printer = nullptr; 5110 IdealGraphPrinter* Compile::_debug_network_printer = nullptr; 5111 5112 // Called from debugger. Prints method to the default file with the default phase name. 5113 // This works regardless of any Ideal Graph Visualizer flags set or not. 5114 void igv_print() { 5115 Compile::current()->igv_print_method_to_file(); 5116 } 5117 5118 // Same as igv_print() above but with a specified phase name. 5119 void igv_print(const char* phase_name) { 5120 Compile::current()->igv_print_method_to_file(phase_name); 5121 } 5122 5123 // Called from debugger. Prints method with the default phase name to the default network or the one specified with 5124 // the network flags for the Ideal Graph Visualizer, or to the default file depending on the 'network' argument. 5125 // This works regardless of any Ideal Graph Visualizer flags set or not. 5126 void igv_print(bool network) { 5127 if (network) { 5128 Compile::current()->igv_print_method_to_network(); 5129 } else { 5130 Compile::current()->igv_print_method_to_file(); 5131 } 5132 } 5133 5134 // Same as igv_print(bool network) above but with a specified phase name. 5135 void igv_print(bool network, const char* phase_name) { 5136 if (network) { 5137 Compile::current()->igv_print_method_to_network(phase_name); 5138 } else { 5139 Compile::current()->igv_print_method_to_file(phase_name); 5140 } 5141 } 5142 5143 // Called from debugger. Normal write to the default _printer. Only works if Ideal Graph Visualizer printing flags are set. 5144 void igv_print_default() { 5145 Compile::current()->print_method(PHASE_DEBUG, 0); 5146 } 5147 5148 // Called from debugger, especially when replaying a trace in which the program state cannot be altered like with rr replay. 5149 // A method is appended to an existing default file with the default phase name. This means that igv_append() must follow 5150 // an earlier igv_print(*) call which sets up the file. This works regardless of any Ideal Graph Visualizer flags set or not. 5151 void igv_append() { 5152 Compile::current()->igv_print_method_to_file("Debug", true); 5153 } 5154 5155 // Same as igv_append() above but with a specified phase name. 5156 void igv_append(const char* phase_name) { 5157 Compile::current()->igv_print_method_to_file(phase_name, true); 5158 } 5159 5160 void Compile::igv_print_method_to_file(const char* phase_name, bool append) { 5161 const char* file_name = "custom_debug.xml"; 5162 if (_debug_file_printer == nullptr) { 5163 _debug_file_printer = new IdealGraphPrinter(C, file_name, append); 5164 } else { 5165 _debug_file_printer->update_compiled_method(C->method()); 5166 } 5167 tty->print_cr("Method %s to %s", append ? "appended" : "printed", file_name); 5168 _debug_file_printer->print_graph(phase_name); 5169 } 5170 5171 void Compile::igv_print_method_to_network(const char* phase_name) { 5172 ResourceMark rm; 5173 GrowableArray<const Node*> empty_list; 5174 igv_print_graph_to_network(phase_name, (Node*) C->root(), empty_list); 5175 } 5176 5177 void Compile::igv_print_graph_to_network(const char* name, Node* node, GrowableArray<const Node*>& visible_nodes) { 5178 if (_debug_network_printer == nullptr) { 5179 _debug_network_printer = new IdealGraphPrinter(C); 5180 } else { 5181 _debug_network_printer->update_compiled_method(C->method()); 5182 } 5183 tty->print_cr("Method printed over network stream to IGV"); 5184 _debug_network_printer->print(name, C->root(), visible_nodes); 5185 } 5186 #endif 5187 5188 Node* Compile::narrow_value(BasicType bt, Node* value, const Type* type, PhaseGVN* phase, bool transform_res) { 5189 if (type != nullptr && phase->type(value)->higher_equal(type)) { 5190 return value; 5191 } 5192 Node* result = nullptr; 5193 if (bt == T_BYTE) { 5194 result = phase->transform(new LShiftINode(value, phase->intcon(24))); 5195 result = new RShiftINode(result, phase->intcon(24)); 5196 } else if (bt == T_BOOLEAN) { 5197 result = new AndINode(value, phase->intcon(0xFF)); 5198 } else if (bt == T_CHAR) { 5199 result = new AndINode(value,phase->intcon(0xFFFF)); 5200 } else { 5201 assert(bt == T_SHORT, "unexpected narrow type"); 5202 result = phase->transform(new LShiftINode(value, phase->intcon(16))); 5203 result = new RShiftINode(result, phase->intcon(16)); 5204 } 5205 if (transform_res) { 5206 result = phase->transform(result); 5207 } 5208 return result; 5209 } 5210 5211 void Compile::record_method_not_compilable_oom() { 5212 record_method_not_compilable(CompilationMemoryStatistic::failure_reason_memlimit()); 5213 }