1 /*
   2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "asm/macroAssembler.hpp"
  26 #include "asm/macroAssembler.inline.hpp"
  27 #include "ci/ciReplay.hpp"
  28 #include "classfile/javaClasses.hpp"
  29 #include "code/aotCodeCache.hpp"
  30 #include "code/exceptionHandlerTable.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "compiler/compilationFailureInfo.hpp"
  33 #include "compiler/compilationMemoryStatistic.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/compileLog.hpp"
  36 #include "compiler/compilerDefinitions.hpp"
  37 #include "compiler/compilerOracle.hpp"
  38 #include "compiler/compiler_globals.hpp"
  39 #include "compiler/disassembler.hpp"
  40 #include "compiler/oopMap.hpp"
  41 #include "gc/shared/barrierSet.hpp"
  42 #include "gc/shared/c2/barrierSetC2.hpp"
  43 #include "jfr/jfrEvents.hpp"
  44 #include "jvm_io.h"
  45 #include "memory/allocation.hpp"
  46 #include "memory/arena.hpp"
  47 #include "memory/resourceArea.hpp"
  48 #include "opto/addnode.hpp"
  49 #include "opto/block.hpp"
  50 #include "opto/c2compiler.hpp"
  51 #include "opto/callGenerator.hpp"
  52 #include "opto/callnode.hpp"
  53 #include "opto/castnode.hpp"
  54 #include "opto/cfgnode.hpp"
  55 #include "opto/chaitin.hpp"
  56 #include "opto/compile.hpp"
  57 #include "opto/connode.hpp"
  58 #include "opto/convertnode.hpp"
  59 #include "opto/divnode.hpp"
  60 #include "opto/escape.hpp"
  61 #include "opto/idealGraphPrinter.hpp"
  62 #include "opto/locknode.hpp"
  63 #include "opto/loopnode.hpp"
  64 #include "opto/machnode.hpp"
  65 #include "opto/macro.hpp"
  66 #include "opto/matcher.hpp"
  67 #include "opto/mathexactnode.hpp"
  68 #include "opto/memnode.hpp"
  69 #include "opto/mulnode.hpp"
  70 #include "opto/narrowptrnode.hpp"
  71 #include "opto/node.hpp"
  72 #include "opto/opaquenode.hpp"
  73 #include "opto/opcodes.hpp"
  74 #include "opto/output.hpp"
  75 #include "opto/parse.hpp"
  76 #include "opto/phaseX.hpp"
  77 #include "opto/rootnode.hpp"
  78 #include "opto/runtime.hpp"
  79 #include "opto/stringopts.hpp"
  80 #include "opto/type.hpp"
  81 #include "opto/vector.hpp"
  82 #include "opto/vectornode.hpp"
  83 #include "runtime/globals_extension.hpp"
  84 #include "runtime/sharedRuntime.hpp"
  85 #include "runtime/signature.hpp"
  86 #include "runtime/stubRoutines.hpp"
  87 #include "runtime/timer.hpp"
  88 #include "utilities/align.hpp"
  89 #include "utilities/copy.hpp"
  90 #include "utilities/macros.hpp"
  91 #include "utilities/resourceHash.hpp"
  92 
  93 // -------------------- Compile::mach_constant_base_node -----------------------
  94 // Constant table base node singleton.
  95 MachConstantBaseNode* Compile::mach_constant_base_node() {
  96   if (_mach_constant_base_node == nullptr) {
  97     _mach_constant_base_node = new MachConstantBaseNode();
  98     _mach_constant_base_node->add_req(C->root());
  99   }
 100   return _mach_constant_base_node;
 101 }
 102 
 103 
 104 /// Support for intrinsics.
 105 
 106 // Return the index at which m must be inserted (or already exists).
 107 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
 108 class IntrinsicDescPair {
 109  private:
 110   ciMethod* _m;
 111   bool _is_virtual;
 112  public:
 113   IntrinsicDescPair(ciMethod* m, bool is_virtual) : _m(m), _is_virtual(is_virtual) {}
 114   static int compare(IntrinsicDescPair* const& key, CallGenerator* const& elt) {
 115     ciMethod* m= elt->method();
 116     ciMethod* key_m = key->_m;
 117     if (key_m < m)      return -1;
 118     else if (key_m > m) return 1;
 119     else {
 120       bool is_virtual = elt->is_virtual();
 121       bool key_virtual = key->_is_virtual;
 122       if (key_virtual < is_virtual)      return -1;
 123       else if (key_virtual > is_virtual) return 1;
 124       else                               return 0;
 125     }
 126   }
 127 };
 128 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found) {
 129 #ifdef ASSERT
 130   for (int i = 1; i < _intrinsics.length(); i++) {
 131     CallGenerator* cg1 = _intrinsics.at(i-1);
 132     CallGenerator* cg2 = _intrinsics.at(i);
 133     assert(cg1->method() != cg2->method()
 134            ? cg1->method()     < cg2->method()
 135            : cg1->is_virtual() < cg2->is_virtual(),
 136            "compiler intrinsics list must stay sorted");
 137   }
 138 #endif
 139   IntrinsicDescPair pair(m, is_virtual);
 140   return _intrinsics.find_sorted<IntrinsicDescPair*, IntrinsicDescPair::compare>(&pair, found);
 141 }
 142 
 143 void Compile::register_intrinsic(CallGenerator* cg) {
 144   bool found = false;
 145   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual(), found);
 146   assert(!found, "registering twice");
 147   _intrinsics.insert_before(index, cg);
 148   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
 149 }
 150 
 151 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
 152   assert(m->is_loaded(), "don't try this on unloaded methods");
 153   if (_intrinsics.length() > 0) {
 154     bool found = false;
 155     int index = intrinsic_insertion_index(m, is_virtual, found);
 156      if (found) {
 157       return _intrinsics.at(index);
 158     }
 159   }
 160   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
 161   if (m->intrinsic_id() != vmIntrinsics::_none &&
 162       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
 163     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
 164     if (cg != nullptr) {
 165       // Save it for next time:
 166       register_intrinsic(cg);
 167       return cg;
 168     } else {
 169       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
 170     }
 171   }
 172   return nullptr;
 173 }
 174 
 175 // Compile::make_vm_intrinsic is defined in library_call.cpp.
 176 
 177 #ifndef PRODUCT
 178 // statistics gathering...
 179 
 180 juint  Compile::_intrinsic_hist_count[vmIntrinsics::number_of_intrinsics()] = {0};
 181 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::number_of_intrinsics()] = {0};
 182 
 183 inline int as_int(vmIntrinsics::ID id) {
 184   return vmIntrinsics::as_int(id);
 185 }
 186 
 187 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
 188   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
 189   int oflags = _intrinsic_hist_flags[as_int(id)];
 190   assert(flags != 0, "what happened?");
 191   if (is_virtual) {
 192     flags |= _intrinsic_virtual;
 193   }
 194   bool changed = (flags != oflags);
 195   if ((flags & _intrinsic_worked) != 0) {
 196     juint count = (_intrinsic_hist_count[as_int(id)] += 1);
 197     if (count == 1) {
 198       changed = true;           // first time
 199     }
 200     // increment the overall count also:
 201     _intrinsic_hist_count[as_int(vmIntrinsics::_none)] += 1;
 202   }
 203   if (changed) {
 204     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
 205       // Something changed about the intrinsic's virtuality.
 206       if ((flags & _intrinsic_virtual) != 0) {
 207         // This is the first use of this intrinsic as a virtual call.
 208         if (oflags != 0) {
 209           // We already saw it as a non-virtual, so note both cases.
 210           flags |= _intrinsic_both;
 211         }
 212       } else if ((oflags & _intrinsic_both) == 0) {
 213         // This is the first use of this intrinsic as a non-virtual
 214         flags |= _intrinsic_both;
 215       }
 216     }
 217     _intrinsic_hist_flags[as_int(id)] = (jubyte) (oflags | flags);
 218   }
 219   // update the overall flags also:
 220   _intrinsic_hist_flags[as_int(vmIntrinsics::_none)] |= (jubyte) flags;
 221   return changed;
 222 }
 223 
 224 static char* format_flags(int flags, char* buf) {
 225   buf[0] = 0;
 226   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
 227   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
 228   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
 229   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
 230   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
 231   if (buf[0] == 0)  strcat(buf, ",");
 232   assert(buf[0] == ',', "must be");
 233   return &buf[1];
 234 }
 235 
 236 void Compile::print_intrinsic_statistics() {
 237   char flagsbuf[100];
 238   ttyLocker ttyl;
 239   if (xtty != nullptr)  xtty->head("statistics type='intrinsic'");
 240   tty->print_cr("Compiler intrinsic usage:");
 241   juint total = _intrinsic_hist_count[as_int(vmIntrinsics::_none)];
 242   if (total == 0)  total = 1;  // avoid div0 in case of no successes
 243   #define PRINT_STAT_LINE(name, c, f) \
 244     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
 245   for (auto id : EnumRange<vmIntrinsicID>{}) {
 246     int   flags = _intrinsic_hist_flags[as_int(id)];
 247     juint count = _intrinsic_hist_count[as_int(id)];
 248     if ((flags | count) != 0) {
 249       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
 250     }
 251   }
 252   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[as_int(vmIntrinsics::_none)], flagsbuf));
 253   if (xtty != nullptr)  xtty->tail("statistics");
 254 }
 255 
 256 void Compile::print_statistics() {
 257   { ttyLocker ttyl;
 258     if (xtty != nullptr)  xtty->head("statistics type='opto'");
 259     Parse::print_statistics();
 260     PhaseStringOpts::print_statistics();
 261     PhaseCCP::print_statistics();
 262     PhaseRegAlloc::print_statistics();
 263     PhaseOutput::print_statistics();
 264     PhasePeephole::print_statistics();
 265     PhaseIdealLoop::print_statistics();
 266     ConnectionGraph::print_statistics();
 267     PhaseMacroExpand::print_statistics();
 268     if (xtty != nullptr)  xtty->tail("statistics");
 269   }
 270   if (_intrinsic_hist_flags[as_int(vmIntrinsics::_none)] != 0) {
 271     // put this under its own <statistics> element.
 272     print_intrinsic_statistics();
 273   }
 274 }
 275 #endif //PRODUCT
 276 
 277 void Compile::gvn_replace_by(Node* n, Node* nn) {
 278   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
 279     Node* use = n->last_out(i);
 280     bool is_in_table = initial_gvn()->hash_delete(use);
 281     uint uses_found = 0;
 282     for (uint j = 0; j < use->len(); j++) {
 283       if (use->in(j) == n) {
 284         if (j < use->req())
 285           use->set_req(j, nn);
 286         else
 287           use->set_prec(j, nn);
 288         uses_found++;
 289       }
 290     }
 291     if (is_in_table) {
 292       // reinsert into table
 293       initial_gvn()->hash_find_insert(use);
 294     }
 295     record_for_igvn(use);
 296     PhaseIterGVN::add_users_of_use_to_worklist(nn, use, *_igvn_worklist);
 297     i -= uses_found;    // we deleted 1 or more copies of this edge
 298   }
 299 }
 300 
 301 
 302 // Identify all nodes that are reachable from below, useful.
 303 // Use breadth-first pass that records state in a Unique_Node_List,
 304 // recursive traversal is slower.
 305 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
 306   int estimated_worklist_size = live_nodes();
 307   useful.map( estimated_worklist_size, nullptr );  // preallocate space
 308 
 309   // Initialize worklist
 310   if (root() != nullptr)  { useful.push(root()); }
 311   // If 'top' is cached, declare it useful to preserve cached node
 312   if (cached_top_node())  { useful.push(cached_top_node()); }
 313 
 314   // Push all useful nodes onto the list, breadthfirst
 315   for( uint next = 0; next < useful.size(); ++next ) {
 316     assert( next < unique(), "Unique useful nodes < total nodes");
 317     Node *n  = useful.at(next);
 318     uint max = n->len();
 319     for( uint i = 0; i < max; ++i ) {
 320       Node *m = n->in(i);
 321       if (not_a_node(m))  continue;
 322       useful.push(m);
 323     }
 324   }
 325 }
 326 
 327 // Update dead_node_list with any missing dead nodes using useful
 328 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
 329 void Compile::update_dead_node_list(Unique_Node_List &useful) {
 330   uint max_idx = unique();
 331   VectorSet& useful_node_set = useful.member_set();
 332 
 333   for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
 334     // If node with index node_idx is not in useful set,
 335     // mark it as dead in dead node list.
 336     if (!useful_node_set.test(node_idx)) {
 337       record_dead_node(node_idx);
 338     }
 339   }
 340 }
 341 
 342 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
 343   int shift = 0;
 344   for (int i = 0; i < inlines->length(); i++) {
 345     CallGenerator* cg = inlines->at(i);
 346     if (useful.member(cg->call_node())) {
 347       if (shift > 0) {
 348         inlines->at_put(i - shift, cg);
 349       }
 350     } else {
 351       shift++; // skip over the dead element
 352     }
 353   }
 354   if (shift > 0) {
 355     inlines->trunc_to(inlines->length() - shift); // remove last elements from compacted array
 356   }
 357 }
 358 
 359 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Node* dead) {
 360   assert(dead != nullptr && dead->is_Call(), "sanity");
 361   int found = 0;
 362   for (int i = 0; i < inlines->length(); i++) {
 363     if (inlines->at(i)->call_node() == dead) {
 364       inlines->remove_at(i);
 365       found++;
 366       NOT_DEBUG( break; ) // elements are unique, so exit early
 367     }
 368   }
 369   assert(found <= 1, "not unique");
 370 }
 371 
 372 template<typename N, ENABLE_IF_SDEFN(std::is_base_of<Node, N>::value)>
 373 void Compile::remove_useless_nodes(GrowableArray<N*>& node_list, Unique_Node_List& useful) {
 374   for (int i = node_list.length() - 1; i >= 0; i--) {
 375     N* node = node_list.at(i);
 376     if (!useful.member(node)) {
 377       node_list.delete_at(i); // replaces i-th with last element which is known to be useful (already processed)
 378     }
 379   }
 380 }
 381 
 382 void Compile::remove_useless_node(Node* dead) {
 383   remove_modified_node(dead);
 384 
 385   // Constant node that has no out-edges and has only one in-edge from
 386   // root is usually dead. However, sometimes reshaping walk makes
 387   // it reachable by adding use edges. So, we will NOT count Con nodes
 388   // as dead to be conservative about the dead node count at any
 389   // given time.
 390   if (!dead->is_Con()) {
 391     record_dead_node(dead->_idx);
 392   }
 393   if (dead->is_macro()) {
 394     remove_macro_node(dead);
 395   }
 396   if (dead->is_expensive()) {
 397     remove_expensive_node(dead);
 398   }
 399   if (dead->is_OpaqueTemplateAssertionPredicate()) {
 400     remove_template_assertion_predicate_opaque(dead->as_OpaqueTemplateAssertionPredicate());
 401   }
 402   if (dead->is_ParsePredicate()) {
 403     remove_parse_predicate(dead->as_ParsePredicate());
 404   }
 405   if (dead->for_post_loop_opts_igvn()) {
 406     remove_from_post_loop_opts_igvn(dead);
 407   }
 408   if (dead->for_merge_stores_igvn()) {
 409     remove_from_merge_stores_igvn(dead);
 410   }
 411   if (dead->is_Call()) {
 412     remove_useless_late_inlines(                &_late_inlines, dead);
 413     remove_useless_late_inlines(         &_string_late_inlines, dead);
 414     remove_useless_late_inlines(         &_boxing_late_inlines, dead);
 415     remove_useless_late_inlines(&_vector_reboxing_late_inlines, dead);
 416 
 417     if (dead->is_CallStaticJava()) {
 418       remove_unstable_if_trap(dead->as_CallStaticJava(), false);
 419     }
 420   }
 421   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 422   bs->unregister_potential_barrier_node(dead);
 423 }
 424 
 425 // Disconnect all useless nodes by disconnecting those at the boundary.
 426 void Compile::disconnect_useless_nodes(Unique_Node_List& useful, Unique_Node_List& worklist, const Unique_Node_List* root_and_safepoints) {
 427   uint next = 0;
 428   while (next < useful.size()) {
 429     Node *n = useful.at(next++);
 430     if (n->is_SafePoint()) {
 431       // We're done with a parsing phase. Replaced nodes are not valid
 432       // beyond that point.
 433       n->as_SafePoint()->delete_replaced_nodes();
 434     }
 435     // Use raw traversal of out edges since this code removes out edges
 436     int max = n->outcnt();
 437     for (int j = 0; j < max; ++j) {
 438       Node* child = n->raw_out(j);
 439       if (!useful.member(child)) {
 440         assert(!child->is_top() || child != top(),
 441                "If top is cached in Compile object it is in useful list");
 442         // Only need to remove this out-edge to the useless node
 443         n->raw_del_out(j);
 444         --j;
 445         --max;
 446         if (child->is_data_proj_of_pure_function(n)) {
 447           worklist.push(n);
 448         }
 449       }
 450     }
 451     if (n->outcnt() == 1 && n->has_special_unique_user()) {
 452       assert(useful.member(n->unique_out()), "do not push a useless node");
 453       worklist.push(n->unique_out());
 454     }
 455   }
 456 
 457   remove_useless_nodes(_macro_nodes,        useful); // remove useless macro nodes
 458   remove_useless_nodes(_parse_predicates,   useful); // remove useless Parse Predicate nodes
 459   // Remove useless Template Assertion Predicate opaque nodes
 460   remove_useless_nodes(_template_assertion_predicate_opaques, useful);
 461   remove_useless_nodes(_expensive_nodes,    useful); // remove useless expensive nodes
 462   remove_useless_nodes(_for_post_loop_igvn, useful); // remove useless node recorded for post loop opts IGVN pass
 463   remove_useless_nodes(_for_merge_stores_igvn, useful); // remove useless node recorded for merge stores IGVN pass
 464   remove_useless_unstable_if_traps(useful);          // remove useless unstable_if traps
 465   remove_useless_coarsened_locks(useful);            // remove useless coarsened locks nodes
 466 #ifdef ASSERT
 467   if (_modified_nodes != nullptr) {
 468     _modified_nodes->remove_useless_nodes(useful.member_set());
 469   }
 470 #endif
 471 
 472   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 473   bs->eliminate_useless_gc_barriers(useful, this);
 474   // clean up the late inline lists
 475   remove_useless_late_inlines(                &_late_inlines, useful);
 476   remove_useless_late_inlines(         &_string_late_inlines, useful);
 477   remove_useless_late_inlines(         &_boxing_late_inlines, useful);
 478   remove_useless_late_inlines(&_vector_reboxing_late_inlines, useful);
 479   DEBUG_ONLY(verify_graph_edges(true /*check for no_dead_code*/, root_and_safepoints);)
 480 }
 481 
 482 // ============================================================================
 483 //------------------------------CompileWrapper---------------------------------
 484 class CompileWrapper : public StackObj {
 485   Compile *const _compile;
 486  public:
 487   CompileWrapper(Compile* compile);
 488 
 489   ~CompileWrapper();
 490 };
 491 
 492 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
 493   // the Compile* pointer is stored in the current ciEnv:
 494   ciEnv* env = compile->env();
 495   assert(env == ciEnv::current(), "must already be a ciEnv active");
 496   assert(env->compiler_data() == nullptr, "compile already active?");
 497   env->set_compiler_data(compile);
 498   assert(compile == Compile::current(), "sanity");
 499 
 500   compile->set_type_dict(nullptr);
 501   compile->set_clone_map(new Dict(cmpkey, hashkey, _compile->comp_arena()));
 502   compile->clone_map().set_clone_idx(0);
 503   compile->set_type_last_size(0);
 504   compile->set_last_tf(nullptr, nullptr);
 505   compile->set_indexSet_arena(nullptr);
 506   compile->set_indexSet_free_block_list(nullptr);
 507   compile->init_type_arena();
 508   Type::Initialize(compile);
 509   _compile->begin_method();
 510   _compile->clone_map().set_debug(_compile->has_method() && _compile->directive()->CloneMapDebugOption);
 511 }
 512 CompileWrapper::~CompileWrapper() {
 513   // simulate crash during compilation
 514   assert(CICrashAt < 0 || _compile->compile_id() != CICrashAt, "just as planned");
 515 
 516   _compile->end_method();
 517   _compile->env()->set_compiler_data(nullptr);
 518 }
 519 
 520 
 521 //----------------------------print_compile_messages---------------------------
 522 void Compile::print_compile_messages() {
 523 #ifndef PRODUCT
 524   // Check if recompiling
 525   if (!subsume_loads() && PrintOpto) {
 526     // Recompiling without allowing machine instructions to subsume loads
 527     tty->print_cr("*********************************************************");
 528     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
 529     tty->print_cr("*********************************************************");
 530   }
 531   if ((do_escape_analysis() != DoEscapeAnalysis) && PrintOpto) {
 532     // Recompiling without escape analysis
 533     tty->print_cr("*********************************************************");
 534     tty->print_cr("** Bailout: Recompile without escape analysis          **");
 535     tty->print_cr("*********************************************************");
 536   }
 537   if (do_iterative_escape_analysis() != DoEscapeAnalysis && PrintOpto) {
 538     // Recompiling without iterative escape analysis
 539     tty->print_cr("*********************************************************");
 540     tty->print_cr("** Bailout: Recompile without iterative escape analysis**");
 541     tty->print_cr("*********************************************************");
 542   }
 543   if (do_reduce_allocation_merges() != ReduceAllocationMerges && PrintOpto) {
 544     // Recompiling without reducing allocation merges
 545     tty->print_cr("*********************************************************");
 546     tty->print_cr("** Bailout: Recompile without reduce allocation merges **");
 547     tty->print_cr("*********************************************************");
 548   }
 549   if ((eliminate_boxing() != EliminateAutoBox) && PrintOpto) {
 550     // Recompiling without boxing elimination
 551     tty->print_cr("*********************************************************");
 552     tty->print_cr("** Bailout: Recompile without boxing elimination       **");
 553     tty->print_cr("*********************************************************");
 554   }
 555   if ((do_locks_coarsening() != EliminateLocks) && PrintOpto) {
 556     // Recompiling without locks coarsening
 557     tty->print_cr("*********************************************************");
 558     tty->print_cr("** Bailout: Recompile without locks coarsening         **");
 559     tty->print_cr("*********************************************************");
 560   }
 561   if (env()->break_at_compile()) {
 562     // Open the debugger when compiling this method.
 563     tty->print("### Breaking when compiling: ");
 564     method()->print_short_name();
 565     tty->cr();
 566     BREAKPOINT;
 567   }
 568 
 569   if( PrintOpto ) {
 570     if (is_osr_compilation()) {
 571       tty->print("[OSR]%3d", _compile_id);
 572     } else {
 573       tty->print("%3d", _compile_id);
 574     }
 575   }
 576 #endif
 577 }
 578 
 579 #ifndef PRODUCT
 580 void Compile::print_phase(const char* phase_name) {
 581   tty->print_cr("%u.\t%s", ++_phase_counter, phase_name);
 582 }
 583 
 584 void Compile::print_ideal_ir(const char* phase_name) {
 585   // keep the following output all in one block
 586   // This output goes directly to the tty, not the compiler log.
 587   // To enable tools to match it up with the compilation activity,
 588   // be sure to tag this tty output with the compile ID.
 589 
 590   // Node dumping can cause a safepoint, which can break the tty lock.
 591   // Buffer all node dumps, so that all safepoints happen before we lock.
 592   ResourceMark rm;
 593   stringStream ss;
 594 
 595   if (_output == nullptr) {
 596     ss.print_cr("AFTER: %s", phase_name);
 597     // Print out all nodes in ascending order of index.
 598     root()->dump_bfs(MaxNodeLimit, nullptr, "+S$", &ss);
 599   } else {
 600     // Dump the node blockwise if we have a scheduling
 601     _output->print_scheduling(&ss);
 602   }
 603 
 604   // Check that the lock is not broken by a safepoint.
 605   NoSafepointVerifier nsv;
 606   ttyLocker ttyl;
 607   if (xtty != nullptr) {
 608     xtty->head("ideal compile_id='%d'%s compile_phase='%s'",
 609                compile_id(),
 610                is_osr_compilation() ? " compile_kind='osr'" : "",
 611                phase_name);
 612   }
 613 
 614   tty->print("%s", ss.as_string());
 615 
 616   if (xtty != nullptr) {
 617     xtty->tail("ideal");
 618   }
 619 }
 620 #endif
 621 
 622 // ============================================================================
 623 //------------------------------Compile standard-------------------------------
 624 
 625 // Compile a method.  entry_bci is -1 for normal compilations and indicates
 626 // the continuation bci for on stack replacement.
 627 
 628 
 629 Compile::Compile(ciEnv* ci_env, ciMethod* target, int osr_bci,
 630                  Options options, DirectiveSet* directive)
 631     : Phase(Compiler),
 632       _compile_id(ci_env->compile_id()),
 633       _options(options),
 634       _method(target),
 635       _entry_bci(osr_bci),
 636       _ilt(nullptr),
 637       _stub_function(nullptr),
 638       _stub_name(nullptr),
 639       _stub_id(-1),
 640       _stub_entry_point(nullptr),
 641       _max_node_limit(MaxNodeLimit),
 642       _post_loop_opts_phase(false),
 643       _merge_stores_phase(false),
 644       _allow_macro_nodes(true),
 645       _inlining_progress(false),
 646       _inlining_incrementally(false),
 647       _do_cleanup(false),
 648       _has_reserved_stack_access(target->has_reserved_stack_access()),
 649 #ifndef PRODUCT
 650       _igv_idx(0),
 651       _trace_opto_output(directive->TraceOptoOutputOption),
 652 #endif
 653       _has_method_handle_invokes(false),
 654       _clinit_barrier_on_entry(false),
 655       _stress_seed(0),
 656       _comp_arena(mtCompiler, Arena::Tag::tag_comp),
 657       _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())),
 658       _env(ci_env),
 659       _directive(directive),
 660       _log(ci_env->log()),
 661       _first_failure_details(nullptr),
 662       _intrinsics(comp_arena(), 0, 0, nullptr),
 663       _macro_nodes(comp_arena(), 8, 0, nullptr),
 664       _parse_predicates(comp_arena(), 8, 0, nullptr),
 665       _template_assertion_predicate_opaques(comp_arena(), 8, 0, nullptr),
 666       _expensive_nodes(comp_arena(), 8, 0, nullptr),
 667       _for_post_loop_igvn(comp_arena(), 8, 0, nullptr),
 668       _for_merge_stores_igvn(comp_arena(), 8, 0, nullptr),
 669       _unstable_if_traps(comp_arena(), 8, 0, nullptr),
 670       _coarsened_locks(comp_arena(), 8, 0, nullptr),
 671       _congraph(nullptr),
 672       NOT_PRODUCT(_igv_printer(nullptr) COMMA)
 673           _unique(0),
 674       _dead_node_count(0),
 675       _dead_node_list(comp_arena()),
 676       _node_arena_one(mtCompiler, Arena::Tag::tag_node),
 677       _node_arena_two(mtCompiler, Arena::Tag::tag_node),
 678       _node_arena(&_node_arena_one),
 679       _mach_constant_base_node(nullptr),
 680       _Compile_types(mtCompiler, Arena::Tag::tag_type),
 681       _initial_gvn(nullptr),
 682       _igvn_worklist(nullptr),
 683       _types(nullptr),
 684       _node_hash(nullptr),
 685       _late_inlines(comp_arena(), 2, 0, nullptr),
 686       _string_late_inlines(comp_arena(), 2, 0, nullptr),
 687       _boxing_late_inlines(comp_arena(), 2, 0, nullptr),
 688       _vector_reboxing_late_inlines(comp_arena(), 2, 0, nullptr),
 689       _late_inlines_pos(0),
 690       _number_of_mh_late_inlines(0),
 691       _oom(false),
 692       _replay_inline_data(nullptr),
 693       _inline_printer(this),
 694       _java_calls(0),
 695       _inner_loops(0),
 696       _interpreter_frame_size(0),
 697       _output(nullptr)
 698 #ifndef PRODUCT
 699       ,
 700       _in_dump_cnt(0)
 701 #endif
 702 {
 703   C = this;
 704   CompileWrapper cw(this);
 705 
 706   TraceTime t1("Total compilation time", &_t_totalCompilation, CITime, CITimeVerbose);
 707   TraceTime t2(nullptr, &_t_methodCompilation, CITime, false);
 708 
 709 #if defined(SUPPORT_ASSEMBLY) || defined(SUPPORT_ABSTRACT_ASSEMBLY)
 710   bool print_opto_assembly = directive->PrintOptoAssemblyOption;
 711   // We can always print a disassembly, either abstract (hex dump) or
 712   // with the help of a suitable hsdis library. Thus, we should not
 713   // couple print_assembly and print_opto_assembly controls.
 714   // But: always print opto and regular assembly on compile command 'print'.
 715   bool print_assembly = directive->PrintAssemblyOption;
 716   set_print_assembly(print_opto_assembly || print_assembly);
 717 #else
 718   set_print_assembly(false); // must initialize.
 719 #endif
 720 
 721 #ifndef PRODUCT
 722   set_parsed_irreducible_loop(false);
 723 #endif
 724 
 725   if (directive->ReplayInlineOption) {
 726     _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level());
 727   }
 728   set_print_inlining(directive->PrintInliningOption || PrintOptoInlining);
 729   set_print_intrinsics(directive->PrintIntrinsicsOption);
 730   set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it
 731 
 732   if (ProfileTraps) {
 733     // Make sure the method being compiled gets its own MDO,
 734     // so we can at least track the decompile_count().
 735     method()->ensure_method_data();
 736   }
 737 
 738   if (StressLCM || StressGCM || StressIGVN || StressCCP ||
 739       StressIncrementalInlining || StressMacroExpansion || StressUnstableIfTraps || StressBailout ||
 740       StressLoopPeeling) {
 741     initialize_stress_seed(directive);
 742   }
 743 
 744   Init(/*do_aliasing=*/ true);
 745 
 746   print_compile_messages();
 747 
 748   _ilt = InlineTree::build_inline_tree_root();
 749 
 750   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
 751   assert(num_alias_types() >= AliasIdxRaw, "");
 752 
 753 #define MINIMUM_NODE_HASH  1023
 754 
 755   // GVN that will be run immediately on new nodes
 756   uint estimated_size = method()->code_size()*4+64;
 757   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
 758   _igvn_worklist = new (comp_arena()) Unique_Node_List(comp_arena());
 759   _types = new (comp_arena()) Type_Array(comp_arena());
 760   _node_hash = new (comp_arena()) NodeHash(comp_arena(), estimated_size);
 761   PhaseGVN gvn;
 762   set_initial_gvn(&gvn);
 763 
 764   { // Scope for timing the parser
 765     TracePhase tp(_t_parser);
 766 
 767     // Put top into the hash table ASAP.
 768     initial_gvn()->transform(top());
 769 
 770     // Set up tf(), start(), and find a CallGenerator.
 771     CallGenerator* cg = nullptr;
 772     if (is_osr_compilation()) {
 773       const TypeTuple *domain = StartOSRNode::osr_domain();
 774       const TypeTuple *range = TypeTuple::make_range(method()->signature());
 775       init_tf(TypeFunc::make(domain, range));
 776       StartNode* s = new StartOSRNode(root(), domain);
 777       initial_gvn()->set_type_bottom(s);
 778       verify_start(s);
 779       cg = CallGenerator::for_osr(method(), entry_bci());
 780     } else {
 781       // Normal case.
 782       init_tf(TypeFunc::make(method()));
 783       StartNode* s = new StartNode(root(), tf()->domain());
 784       initial_gvn()->set_type_bottom(s);
 785       verify_start(s);
 786       if (method()->intrinsic_id() == vmIntrinsics::_Reference_get) {
 787         // With java.lang.ref.reference.get() we must go through the
 788         // intrinsic - even when get() is the root
 789         // method of the compile - so that, if necessary, the value in
 790         // the referent field of the reference object gets recorded by
 791         // the pre-barrier code.
 792         cg = find_intrinsic(method(), false);
 793       }
 794       if (cg == nullptr) {
 795         float past_uses = method()->interpreter_invocation_count();
 796         float expected_uses = past_uses;
 797         cg = CallGenerator::for_inline(method(), expected_uses);
 798       }
 799     }
 800     if (failing())  return;
 801     if (cg == nullptr) {
 802       const char* reason = InlineTree::check_can_parse(method());
 803       assert(reason != nullptr, "expect reason for parse failure");
 804       stringStream ss;
 805       ss.print("cannot parse method: %s", reason);
 806       record_method_not_compilable(ss.as_string());
 807       return;
 808     }
 809 
 810     gvn.set_type(root(), root()->bottom_type());
 811 
 812     JVMState* jvms = build_start_state(start(), tf());
 813     if ((jvms = cg->generate(jvms)) == nullptr) {
 814       assert(failure_reason() != nullptr, "expect reason for parse failure");
 815       stringStream ss;
 816       ss.print("method parse failed: %s", failure_reason());
 817       record_method_not_compilable(ss.as_string() DEBUG_ONLY(COMMA true));
 818       return;
 819     }
 820     GraphKit kit(jvms);
 821 
 822     if (!kit.stopped()) {
 823       // Accept return values, and transfer control we know not where.
 824       // This is done by a special, unique ReturnNode bound to root.
 825       return_values(kit.jvms());
 826     }
 827 
 828     if (kit.has_exceptions()) {
 829       // Any exceptions that escape from this call must be rethrown
 830       // to whatever caller is dynamically above us on the stack.
 831       // This is done by a special, unique RethrowNode bound to root.
 832       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
 833     }
 834 
 835     assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
 836 
 837     if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
 838       inline_string_calls(true);
 839     }
 840 
 841     if (failing())  return;
 842 
 843     // Remove clutter produced by parsing.
 844     if (!failing()) {
 845       ResourceMark rm;
 846       PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist());
 847     }
 848   }
 849 
 850   // Note:  Large methods are capped off in do_one_bytecode().
 851   if (failing())  return;
 852 
 853   // After parsing, node notes are no longer automagic.
 854   // They must be propagated by register_new_node_with_optimizer(),
 855   // clone(), or the like.
 856   set_default_node_notes(nullptr);
 857 
 858 #ifndef PRODUCT
 859   if (should_print_igv(1)) {
 860     _igv_printer->print_inlining();
 861   }
 862 #endif
 863 
 864   if (failing())  return;
 865   NOT_PRODUCT( verify_graph_edges(); )
 866 
 867   // Now optimize
 868   Optimize();
 869   if (failing())  return;
 870   NOT_PRODUCT( verify_graph_edges(); )
 871 
 872 #ifndef PRODUCT
 873   if (should_print_ideal()) {
 874     print_ideal_ir("print_ideal");
 875   }
 876 #endif
 877 
 878 #ifdef ASSERT
 879   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 880   bs->verify_gc_barriers(this, BarrierSetC2::BeforeCodeGen);
 881 #endif
 882 
 883   // Dump compilation data to replay it.
 884   if (directive->DumpReplayOption) {
 885     env()->dump_replay_data(_compile_id);
 886   }
 887   if (directive->DumpInlineOption && (ilt() != nullptr)) {
 888     env()->dump_inline_data(_compile_id);
 889   }
 890 
 891   // Now that we know the size of all the monitors we can add a fixed slot
 892   // for the original deopt pc.
 893   int next_slot = fixed_slots() + (sizeof(address) / VMRegImpl::stack_slot_size);
 894   set_fixed_slots(next_slot);
 895 
 896   // Compute when to use implicit null checks. Used by matching trap based
 897   // nodes and NullCheck optimization.
 898   set_allowed_deopt_reasons();
 899 
 900   // Now generate code
 901   Code_Gen();
 902 }
 903 
 904 //------------------------------Compile----------------------------------------
 905 // Compile a runtime stub
 906 Compile::Compile(ciEnv* ci_env,
 907                  TypeFunc_generator generator,
 908                  address stub_function,
 909                  const char* stub_name,
 910                  int stub_id,
 911                  int is_fancy_jump,
 912                  bool pass_tls,
 913                  bool return_pc,
 914                  DirectiveSet* directive)
 915     : Phase(Compiler),
 916       _compile_id(0),
 917       _options(Options::for_runtime_stub()),
 918       _method(nullptr),
 919       _entry_bci(InvocationEntryBci),
 920       _stub_function(stub_function),
 921       _stub_name(stub_name),
 922       _stub_id(stub_id),
 923       _stub_entry_point(nullptr),
 924       _max_node_limit(MaxNodeLimit),
 925       _post_loop_opts_phase(false),
 926       _merge_stores_phase(false),
 927       _allow_macro_nodes(true),
 928       _inlining_progress(false),
 929       _inlining_incrementally(false),
 930       _has_reserved_stack_access(false),
 931 #ifndef PRODUCT
 932       _igv_idx(0),
 933       _trace_opto_output(directive->TraceOptoOutputOption),
 934 #endif
 935       _has_method_handle_invokes(false),
 936       _clinit_barrier_on_entry(false),
 937       _stress_seed(0),
 938       _comp_arena(mtCompiler, Arena::Tag::tag_comp),
 939       _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())),
 940       _env(ci_env),
 941       _directive(directive),
 942       _log(ci_env->log()),
 943       _first_failure_details(nullptr),
 944       _for_post_loop_igvn(comp_arena(), 8, 0, nullptr),
 945       _for_merge_stores_igvn(comp_arena(), 8, 0, nullptr),
 946       _congraph(nullptr),
 947       NOT_PRODUCT(_igv_printer(nullptr) COMMA)
 948           _unique(0),
 949       _dead_node_count(0),
 950       _dead_node_list(comp_arena()),
 951       _node_arena_one(mtCompiler, Arena::Tag::tag_node),
 952       _node_arena_two(mtCompiler, Arena::Tag::tag_node),
 953       _node_arena(&_node_arena_one),
 954       _mach_constant_base_node(nullptr),
 955       _Compile_types(mtCompiler, Arena::Tag::tag_type),
 956       _initial_gvn(nullptr),
 957       _igvn_worklist(nullptr),
 958       _types(nullptr),
 959       _node_hash(nullptr),
 960       _number_of_mh_late_inlines(0),
 961       _oom(false),
 962       _replay_inline_data(nullptr),
 963       _inline_printer(this),
 964       _java_calls(0),
 965       _inner_loops(0),
 966       _interpreter_frame_size(0),
 967       _output(nullptr),
 968 #ifndef PRODUCT
 969       _in_dump_cnt(0),
 970 #endif
 971       _allowed_reasons(0) {
 972   C = this;
 973 
 974   // try to reuse an existing stub
 975   {
 976     CodeBlob* blob = AOTCodeCache::load_code_blob(AOTCodeEntry::C2Blob, _stub_id, stub_name);
 977     if (blob != nullptr) {
 978       RuntimeStub* rs = blob->as_runtime_stub();
 979       _stub_entry_point = rs->entry_point();
 980       return;
 981     }
 982   }
 983 
 984   TraceTime t1(nullptr, &_t_totalCompilation, CITime, false);
 985   TraceTime t2(nullptr, &_t_stubCompilation, CITime, false);
 986 
 987 #ifndef PRODUCT
 988   set_print_assembly(PrintFrameConverterAssembly);
 989   set_parsed_irreducible_loop(false);
 990 #else
 991   set_print_assembly(false); // Must initialize.
 992 #endif
 993   set_has_irreducible_loop(false); // no loops
 994 
 995   CompileWrapper cw(this);
 996   Init(/*do_aliasing=*/ false);
 997   init_tf((*generator)());
 998 
 999   _igvn_worklist = new (comp_arena()) Unique_Node_List(comp_arena());
1000   _types = new (comp_arena()) Type_Array(comp_arena());
1001   _node_hash = new (comp_arena()) NodeHash(comp_arena(), 255);
1002 
1003   if (StressLCM || StressGCM || StressBailout) {
1004     initialize_stress_seed(directive);
1005   }
1006 
1007   {
1008     PhaseGVN gvn;
1009     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
1010     gvn.transform(top());
1011 
1012     GraphKit kit;
1013     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
1014   }
1015 
1016   NOT_PRODUCT( verify_graph_edges(); )
1017 
1018   Code_Gen();
1019 }
1020 
1021 Compile::~Compile() {
1022   delete _first_failure_details;
1023 };
1024 
1025 //------------------------------Init-------------------------------------------
1026 // Prepare for a single compilation
1027 void Compile::Init(bool aliasing) {
1028   _do_aliasing = aliasing;
1029   _unique  = 0;
1030   _regalloc = nullptr;
1031 
1032   _tf      = nullptr;  // filled in later
1033   _top     = nullptr;  // cached later
1034   _matcher = nullptr;  // filled in later
1035   _cfg     = nullptr;  // filled in later
1036 
1037   _node_note_array = nullptr;
1038   _default_node_notes = nullptr;
1039   DEBUG_ONLY( _modified_nodes = nullptr; ) // Used in Optimize()
1040 
1041   _immutable_memory = nullptr; // filled in at first inquiry
1042 
1043 #ifdef ASSERT
1044   _phase_optimize_finished = false;
1045   _phase_verify_ideal_loop = false;
1046   _exception_backedge = false;
1047   _type_verify = nullptr;
1048 #endif
1049 
1050   // Globally visible Nodes
1051   // First set TOP to null to give safe behavior during creation of RootNode
1052   set_cached_top_node(nullptr);
1053   set_root(new RootNode());
1054   // Now that you have a Root to point to, create the real TOP
1055   set_cached_top_node( new ConNode(Type::TOP) );
1056   set_recent_alloc(nullptr, nullptr);
1057 
1058   // Create Debug Information Recorder to record scopes, oopmaps, etc.
1059   env()->set_oop_recorder(new OopRecorder(env()->arena()));
1060   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
1061   env()->set_dependencies(new Dependencies(env()));
1062 
1063   _fixed_slots = 0;
1064   set_has_split_ifs(false);
1065   set_has_loops(false); // first approximation
1066   set_has_stringbuilder(false);
1067   set_has_boxed_value(false);
1068   _trap_can_recompile = false;  // no traps emitted yet
1069   _major_progress = true; // start out assuming good things will happen
1070   set_has_unsafe_access(false);
1071   set_max_vector_size(0);
1072   set_clear_upper_avx(false);  //false as default for clear upper bits of ymm registers
1073   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
1074   set_decompile_count(0);
1075 
1076 #ifndef PRODUCT
1077   _phase_counter = 0;
1078   Copy::zero_to_bytes(_igv_phase_iter, sizeof(_igv_phase_iter));
1079 #endif
1080 
1081   set_do_freq_based_layout(_directive->BlockLayoutByFrequencyOption);
1082   _loop_opts_cnt = LoopOptsCount;
1083   set_do_inlining(Inline);
1084   set_max_inline_size(MaxInlineSize);
1085   set_freq_inline_size(FreqInlineSize);
1086   set_do_scheduling(OptoScheduling);
1087 
1088   set_do_vector_loop(false);
1089   set_has_monitors(false);
1090   set_has_scoped_access(false);
1091 
1092   if (AllowVectorizeOnDemand) {
1093     if (has_method() && _directive->VectorizeOption) {
1094       set_do_vector_loop(true);
1095       NOT_PRODUCT(if (do_vector_loop() && Verbose) {tty->print("Compile::Init: do vectorized loops (SIMD like) for method %s\n",  method()->name()->as_quoted_ascii());})
1096     } else if (has_method() && method()->name() != nullptr &&
1097                method()->intrinsic_id() == vmIntrinsics::_forEachRemaining) {
1098       set_do_vector_loop(true);
1099     }
1100   }
1101   set_use_cmove(UseCMoveUnconditionally /* || do_vector_loop()*/); //TODO: consider do_vector_loop() mandate use_cmove unconditionally
1102   NOT_PRODUCT(if (use_cmove() && Verbose && has_method()) {tty->print("Compile::Init: use CMove without profitability tests for method %s\n",  method()->name()->as_quoted_ascii());})
1103 
1104   _max_node_limit = _directive->MaxNodeLimitOption;
1105 
1106   if (VM_Version::supports_fast_class_init_checks() && has_method() && !is_osr_compilation() && method()->needs_clinit_barrier()) {
1107     set_clinit_barrier_on_entry(true);
1108   }
1109   if (debug_info()->recording_non_safepoints()) {
1110     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
1111                         (comp_arena(), 8, 0, nullptr));
1112     set_default_node_notes(Node_Notes::make(this));
1113   }
1114 
1115   const int grow_ats = 16;
1116   _max_alias_types = grow_ats;
1117   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
1118   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
1119   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
1120   {
1121     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
1122   }
1123   // Initialize the first few types.
1124   _alias_types[AliasIdxTop]->Init(AliasIdxTop, nullptr);
1125   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
1126   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
1127   _num_alias_types = AliasIdxRaw+1;
1128   // Zero out the alias type cache.
1129   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
1130   // A null adr_type hits in the cache right away.  Preload the right answer.
1131   probe_alias_cache(nullptr)->_index = AliasIdxTop;
1132 }
1133 
1134 #ifdef ASSERT
1135 // Verify that the current StartNode is valid.
1136 void Compile::verify_start(StartNode* s) const {
1137   assert(failing_internal() || s == start(), "should be StartNode");
1138 }
1139 #endif
1140 
1141 /**
1142  * Return the 'StartNode'. We must not have a pending failure, since the ideal graph
1143  * can be in an inconsistent state, i.e., we can get segmentation faults when traversing
1144  * the ideal graph.
1145  */
1146 StartNode* Compile::start() const {
1147   assert (!failing_internal() || C->failure_is_artificial(), "Must not have pending failure. Reason is: %s", failure_reason());
1148   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
1149     Node* start = root()->fast_out(i);
1150     if (start->is_Start()) {
1151       return start->as_Start();
1152     }
1153   }
1154   fatal("Did not find Start node!");
1155   return nullptr;
1156 }
1157 
1158 //-------------------------------immutable_memory-------------------------------------
1159 // Access immutable memory
1160 Node* Compile::immutable_memory() {
1161   if (_immutable_memory != nullptr) {
1162     return _immutable_memory;
1163   }
1164   StartNode* s = start();
1165   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
1166     Node *p = s->fast_out(i);
1167     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
1168       _immutable_memory = p;
1169       return _immutable_memory;
1170     }
1171   }
1172   ShouldNotReachHere();
1173   return nullptr;
1174 }
1175 
1176 //----------------------set_cached_top_node------------------------------------
1177 // Install the cached top node, and make sure Node::is_top works correctly.
1178 void Compile::set_cached_top_node(Node* tn) {
1179   if (tn != nullptr)  verify_top(tn);
1180   Node* old_top = _top;
1181   _top = tn;
1182   // Calling Node::setup_is_top allows the nodes the chance to adjust
1183   // their _out arrays.
1184   if (_top != nullptr)     _top->setup_is_top();
1185   if (old_top != nullptr)  old_top->setup_is_top();
1186   assert(_top == nullptr || top()->is_top(), "");
1187 }
1188 
1189 #ifdef ASSERT
1190 uint Compile::count_live_nodes_by_graph_walk() {
1191   Unique_Node_List useful(comp_arena());
1192   // Get useful node list by walking the graph.
1193   identify_useful_nodes(useful);
1194   return useful.size();
1195 }
1196 
1197 void Compile::print_missing_nodes() {
1198 
1199   // Return if CompileLog is null and PrintIdealNodeCount is false.
1200   if ((_log == nullptr) && (! PrintIdealNodeCount)) {
1201     return;
1202   }
1203 
1204   // This is an expensive function. It is executed only when the user
1205   // specifies VerifyIdealNodeCount option or otherwise knows the
1206   // additional work that needs to be done to identify reachable nodes
1207   // by walking the flow graph and find the missing ones using
1208   // _dead_node_list.
1209 
1210   Unique_Node_List useful(comp_arena());
1211   // Get useful node list by walking the graph.
1212   identify_useful_nodes(useful);
1213 
1214   uint l_nodes = C->live_nodes();
1215   uint l_nodes_by_walk = useful.size();
1216 
1217   if (l_nodes != l_nodes_by_walk) {
1218     if (_log != nullptr) {
1219       _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
1220       _log->stamp();
1221       _log->end_head();
1222     }
1223     VectorSet& useful_member_set = useful.member_set();
1224     int last_idx = l_nodes_by_walk;
1225     for (int i = 0; i < last_idx; i++) {
1226       if (useful_member_set.test(i)) {
1227         if (_dead_node_list.test(i)) {
1228           if (_log != nullptr) {
1229             _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
1230           }
1231           if (PrintIdealNodeCount) {
1232             // Print the log message to tty
1233               tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
1234               useful.at(i)->dump();
1235           }
1236         }
1237       }
1238       else if (! _dead_node_list.test(i)) {
1239         if (_log != nullptr) {
1240           _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
1241         }
1242         if (PrintIdealNodeCount) {
1243           // Print the log message to tty
1244           tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
1245         }
1246       }
1247     }
1248     if (_log != nullptr) {
1249       _log->tail("mismatched_nodes");
1250     }
1251   }
1252 }
1253 void Compile::record_modified_node(Node* n) {
1254   if (_modified_nodes != nullptr && !_inlining_incrementally && !n->is_Con()) {
1255     _modified_nodes->push(n);
1256   }
1257 }
1258 
1259 void Compile::remove_modified_node(Node* n) {
1260   if (_modified_nodes != nullptr) {
1261     _modified_nodes->remove(n);
1262   }
1263 }
1264 #endif
1265 
1266 #ifndef PRODUCT
1267 void Compile::verify_top(Node* tn) const {
1268   if (tn != nullptr) {
1269     assert(tn->is_Con(), "top node must be a constant");
1270     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
1271     assert(tn->in(0) != nullptr, "must have live top node");
1272   }
1273 }
1274 #endif
1275 
1276 
1277 ///-------------------Managing Per-Node Debug & Profile Info-------------------
1278 
1279 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1280   guarantee(arr != nullptr, "");
1281   int num_blocks = arr->length();
1282   if (grow_by < num_blocks)  grow_by = num_blocks;
1283   int num_notes = grow_by * _node_notes_block_size;
1284   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1285   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1286   while (num_notes > 0) {
1287     arr->append(notes);
1288     notes     += _node_notes_block_size;
1289     num_notes -= _node_notes_block_size;
1290   }
1291   assert(num_notes == 0, "exact multiple, please");
1292 }
1293 
1294 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1295   if (source == nullptr || dest == nullptr)  return false;
1296 
1297   if (dest->is_Con())
1298     return false;               // Do not push debug info onto constants.
1299 
1300 #ifdef ASSERT
1301   // Leave a bread crumb trail pointing to the original node:
1302   if (dest != nullptr && dest != source && dest->debug_orig() == nullptr) {
1303     dest->set_debug_orig(source);
1304   }
1305 #endif
1306 
1307   if (node_note_array() == nullptr)
1308     return false;               // Not collecting any notes now.
1309 
1310   // This is a copy onto a pre-existing node, which may already have notes.
1311   // If both nodes have notes, do not overwrite any pre-existing notes.
1312   Node_Notes* source_notes = node_notes_at(source->_idx);
1313   if (source_notes == nullptr || source_notes->is_clear())  return false;
1314   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
1315   if (dest_notes == nullptr || dest_notes->is_clear()) {
1316     return set_node_notes_at(dest->_idx, source_notes);
1317   }
1318 
1319   Node_Notes merged_notes = (*source_notes);
1320   // The order of operations here ensures that dest notes will win...
1321   merged_notes.update_from(dest_notes);
1322   return set_node_notes_at(dest->_idx, &merged_notes);
1323 }
1324 
1325 
1326 //--------------------------allow_range_check_smearing-------------------------
1327 // Gating condition for coalescing similar range checks.
1328 // Sometimes we try 'speculatively' replacing a series of a range checks by a
1329 // single covering check that is at least as strong as any of them.
1330 // If the optimization succeeds, the simplified (strengthened) range check
1331 // will always succeed.  If it fails, we will deopt, and then give up
1332 // on the optimization.
1333 bool Compile::allow_range_check_smearing() const {
1334   // If this method has already thrown a range-check,
1335   // assume it was because we already tried range smearing
1336   // and it failed.
1337   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1338   return !already_trapped;
1339 }
1340 
1341 
1342 //------------------------------flatten_alias_type-----------------------------
1343 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1344   assert(do_aliasing(), "Aliasing should be enabled");
1345   int offset = tj->offset();
1346   TypePtr::PTR ptr = tj->ptr();
1347 
1348   // Known instance (scalarizable allocation) alias only with itself.
1349   bool is_known_inst = tj->isa_oopptr() != nullptr &&
1350                        tj->is_oopptr()->is_known_instance();
1351 
1352   // Process weird unsafe references.
1353   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1354     assert(InlineUnsafeOps || StressReflectiveCode, "indeterminate pointers come only from unsafe ops");
1355     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1356     tj = TypeOopPtr::BOTTOM;
1357     ptr = tj->ptr();
1358     offset = tj->offset();
1359   }
1360 
1361   // Array pointers need some flattening
1362   const TypeAryPtr* ta = tj->isa_aryptr();
1363   if (ta && ta->is_stable()) {
1364     // Erase stability property for alias analysis.
1365     tj = ta = ta->cast_to_stable(false);
1366   }
1367   if( ta && is_known_inst ) {
1368     if ( offset != Type::OffsetBot &&
1369          offset > arrayOopDesc::length_offset_in_bytes() ) {
1370       offset = Type::OffsetBot; // Flatten constant access into array body only
1371       tj = ta = ta->
1372               remove_speculative()->
1373               cast_to_ptr_type(ptr)->
1374               with_offset(offset);
1375     }
1376   } else if (ta) {
1377     // For arrays indexed by constant indices, we flatten the alias
1378     // space to include all of the array body.  Only the header, klass
1379     // and array length can be accessed un-aliased.
1380     if( offset != Type::OffsetBot ) {
1381       if( ta->const_oop() ) { // MethodData* or Method*
1382         offset = Type::OffsetBot;   // Flatten constant access into array body
1383         tj = ta = ta->
1384                 remove_speculative()->
1385                 cast_to_ptr_type(ptr)->
1386                 cast_to_exactness(false)->
1387                 with_offset(offset);
1388       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1389         // range is OK as-is.
1390         tj = ta = TypeAryPtr::RANGE;
1391       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1392         tj = TypeInstPtr::KLASS; // all klass loads look alike
1393         ta = TypeAryPtr::RANGE; // generic ignored junk
1394         ptr = TypePtr::BotPTR;
1395       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1396         tj = TypeInstPtr::MARK;
1397         ta = TypeAryPtr::RANGE; // generic ignored junk
1398         ptr = TypePtr::BotPTR;
1399       } else {                  // Random constant offset into array body
1400         offset = Type::OffsetBot;   // Flatten constant access into array body
1401         tj = ta = ta->
1402                 remove_speculative()->
1403                 cast_to_ptr_type(ptr)->
1404                 cast_to_exactness(false)->
1405                 with_offset(offset);
1406       }
1407     }
1408     // Arrays of fixed size alias with arrays of unknown size.
1409     if (ta->size() != TypeInt::POS) {
1410       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1411       tj = ta = ta->
1412               remove_speculative()->
1413               cast_to_ptr_type(ptr)->
1414               with_ary(tary)->
1415               cast_to_exactness(false);
1416     }
1417     // Arrays of known objects become arrays of unknown objects.
1418     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1419       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1420       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,nullptr,false,offset);
1421     }
1422     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1423       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1424       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,nullptr,false,offset);
1425     }
1426     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1427     // cannot be distinguished by bytecode alone.
1428     if (ta->elem() == TypeInt::BOOL) {
1429       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1430       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1431       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
1432     }
1433     // During the 2nd round of IterGVN, NotNull castings are removed.
1434     // Make sure the Bottom and NotNull variants alias the same.
1435     // Also, make sure exact and non-exact variants alias the same.
1436     if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != nullptr) {
1437       tj = ta = ta->
1438               remove_speculative()->
1439               cast_to_ptr_type(TypePtr::BotPTR)->
1440               cast_to_exactness(false)->
1441               with_offset(offset);
1442     }
1443   }
1444 
1445   // Oop pointers need some flattening
1446   const TypeInstPtr *to = tj->isa_instptr();
1447   if (to && to != TypeOopPtr::BOTTOM) {
1448     ciInstanceKlass* ik = to->instance_klass();
1449     if( ptr == TypePtr::Constant ) {
1450       if (ik != ciEnv::current()->Class_klass() ||
1451           offset < ik->layout_helper_size_in_bytes()) {
1452         // No constant oop pointers (such as Strings); they alias with
1453         // unknown strings.
1454         assert(!is_known_inst, "not scalarizable allocation");
1455         tj = to = to->
1456                 cast_to_instance_id(TypeOopPtr::InstanceBot)->
1457                 remove_speculative()->
1458                 cast_to_ptr_type(TypePtr::BotPTR)->
1459                 cast_to_exactness(false);
1460       }
1461     } else if( is_known_inst ) {
1462       tj = to; // Keep NotNull and klass_is_exact for instance type
1463     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1464       // During the 2nd round of IterGVN, NotNull castings are removed.
1465       // Make sure the Bottom and NotNull variants alias the same.
1466       // Also, make sure exact and non-exact variants alias the same.
1467       tj = to = to->
1468               remove_speculative()->
1469               cast_to_instance_id(TypeOopPtr::InstanceBot)->
1470               cast_to_ptr_type(TypePtr::BotPTR)->
1471               cast_to_exactness(false);
1472     }
1473     if (to->speculative() != nullptr) {
1474       tj = to = to->remove_speculative();
1475     }
1476     // Canonicalize the holder of this field
1477     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1478       // First handle header references such as a LoadKlassNode, even if the
1479       // object's klass is unloaded at compile time (4965979).
1480       if (!is_known_inst) { // Do it only for non-instance types
1481         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, nullptr, offset);
1482       }
1483     } else if (offset < 0 || offset >= ik->layout_helper_size_in_bytes()) {
1484       // Static fields are in the space above the normal instance
1485       // fields in the java.lang.Class instance.
1486       if (ik != ciEnv::current()->Class_klass()) {
1487         to = nullptr;
1488         tj = TypeOopPtr::BOTTOM;
1489         offset = tj->offset();
1490       }
1491     } else {
1492       ciInstanceKlass *canonical_holder = ik->get_canonical_holder(offset);
1493       assert(offset < canonical_holder->layout_helper_size_in_bytes(), "");
1494       assert(tj->offset() == offset, "no change to offset expected");
1495       bool xk = to->klass_is_exact();
1496       int instance_id = to->instance_id();
1497 
1498       // If the input type's class is the holder: if exact, the type only includes interfaces implemented by the holder
1499       // but if not exact, it may include extra interfaces: build new type from the holder class to make sure only
1500       // its interfaces are included.
1501       if (xk && ik->equals(canonical_holder)) {
1502         assert(tj == TypeInstPtr::make(to->ptr(), canonical_holder, is_known_inst, nullptr, offset, instance_id), "exact type should be canonical type");
1503       } else {
1504         assert(xk || !is_known_inst, "Known instance should be exact type");
1505         tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, is_known_inst, nullptr, offset, instance_id);
1506       }
1507     }
1508   }
1509 
1510   // Klass pointers to object array klasses need some flattening
1511   const TypeKlassPtr *tk = tj->isa_klassptr();
1512   if( tk ) {
1513     // If we are referencing a field within a Klass, we need
1514     // to assume the worst case of an Object.  Both exact and
1515     // inexact types must flatten to the same alias class so
1516     // use NotNull as the PTR.
1517     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1518       tj = tk = TypeInstKlassPtr::make(TypePtr::NotNull,
1519                                        env()->Object_klass(),
1520                                        offset);
1521     }
1522 
1523     if (tk->isa_aryklassptr() && tk->is_aryklassptr()->elem()->isa_klassptr()) {
1524       ciKlass* k = ciObjArrayKlass::make(env()->Object_klass());
1525       if (!k || !k->is_loaded()) {                  // Only fails for some -Xcomp runs
1526         tj = tk = TypeInstKlassPtr::make(TypePtr::NotNull, env()->Object_klass(), offset);
1527       } else {
1528         tj = tk = TypeAryKlassPtr::make(TypePtr::NotNull, tk->is_aryklassptr()->elem(), k, offset);
1529       }
1530     }
1531 
1532     // Check for precise loads from the primary supertype array and force them
1533     // to the supertype cache alias index.  Check for generic array loads from
1534     // the primary supertype array and also force them to the supertype cache
1535     // alias index.  Since the same load can reach both, we need to merge
1536     // these 2 disparate memories into the same alias class.  Since the
1537     // primary supertype array is read-only, there's no chance of confusion
1538     // where we bypass an array load and an array store.
1539     int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
1540     if (offset == Type::OffsetBot ||
1541         (offset >= primary_supers_offset &&
1542          offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
1543         offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
1544       offset = in_bytes(Klass::secondary_super_cache_offset());
1545       tj = tk = tk->with_offset(offset);
1546     }
1547   }
1548 
1549   // Flatten all Raw pointers together.
1550   if (tj->base() == Type::RawPtr)
1551     tj = TypeRawPtr::BOTTOM;
1552 
1553   if (tj->base() == Type::AnyPtr)
1554     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1555 
1556   offset = tj->offset();
1557   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1558 
1559   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1560           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1561           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1562           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1563           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1564           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1565           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr),
1566           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1567   assert( tj->ptr() != TypePtr::TopPTR &&
1568           tj->ptr() != TypePtr::AnyNull &&
1569           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1570 //    assert( tj->ptr() != TypePtr::Constant ||
1571 //            tj->base() == Type::RawPtr ||
1572 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1573 
1574   return tj;
1575 }
1576 
1577 void Compile::AliasType::Init(int i, const TypePtr* at) {
1578   assert(AliasIdxTop <= i && i < Compile::current()->_max_alias_types, "Invalid alias index");
1579   _index = i;
1580   _adr_type = at;
1581   _field = nullptr;
1582   _element = nullptr;
1583   _is_rewritable = true; // default
1584   const TypeOopPtr *atoop = (at != nullptr) ? at->isa_oopptr() : nullptr;
1585   if (atoop != nullptr && atoop->is_known_instance()) {
1586     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1587     _general_index = Compile::current()->get_alias_index(gt);
1588   } else {
1589     _general_index = 0;
1590   }
1591 }
1592 
1593 BasicType Compile::AliasType::basic_type() const {
1594   if (element() != nullptr) {
1595     const Type* element = adr_type()->is_aryptr()->elem();
1596     return element->isa_narrowoop() ? T_OBJECT : element->array_element_basic_type();
1597   } if (field() != nullptr) {
1598     return field()->layout_type();
1599   } else {
1600     return T_ILLEGAL; // unknown
1601   }
1602 }
1603 
1604 //---------------------------------print_on------------------------------------
1605 #ifndef PRODUCT
1606 void Compile::AliasType::print_on(outputStream* st) {
1607   if (index() < 10)
1608         st->print("@ <%d> ", index());
1609   else  st->print("@ <%d>",  index());
1610   st->print(is_rewritable() ? "   " : " RO");
1611   int offset = adr_type()->offset();
1612   if (offset == Type::OffsetBot)
1613         st->print(" +any");
1614   else  st->print(" +%-3d", offset);
1615   st->print(" in ");
1616   adr_type()->dump_on(st);
1617   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1618   if (field() != nullptr && tjp) {
1619     if (tjp->is_instptr()->instance_klass()  != field()->holder() ||
1620         tjp->offset() != field()->offset_in_bytes()) {
1621       st->print(" != ");
1622       field()->print();
1623       st->print(" ***");
1624     }
1625   }
1626 }
1627 
1628 void print_alias_types() {
1629   Compile* C = Compile::current();
1630   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1631   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1632     C->alias_type(idx)->print_on(tty);
1633     tty->cr();
1634   }
1635 }
1636 #endif
1637 
1638 
1639 //----------------------------probe_alias_cache--------------------------------
1640 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1641   intptr_t key = (intptr_t) adr_type;
1642   key ^= key >> logAliasCacheSize;
1643   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1644 }
1645 
1646 
1647 //-----------------------------grow_alias_types--------------------------------
1648 void Compile::grow_alias_types() {
1649   const int old_ats  = _max_alias_types; // how many before?
1650   const int new_ats  = old_ats;          // how many more?
1651   const int grow_ats = old_ats+new_ats;  // how many now?
1652   _max_alias_types = grow_ats;
1653   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1654   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1655   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1656   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1657 }
1658 
1659 
1660 //--------------------------------find_alias_type------------------------------
1661 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
1662   if (!do_aliasing()) {
1663     return alias_type(AliasIdxBot);
1664   }
1665 
1666   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1667   if (ace->_adr_type == adr_type) {
1668     return alias_type(ace->_index);
1669   }
1670 
1671   // Handle special cases.
1672   if (adr_type == nullptr)          return alias_type(AliasIdxTop);
1673   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1674 
1675   // Do it the slow way.
1676   const TypePtr* flat = flatten_alias_type(adr_type);
1677 
1678 #ifdef ASSERT
1679   {
1680     ResourceMark rm;
1681     assert(flat == flatten_alias_type(flat), "not idempotent: adr_type = %s; flat = %s => %s",
1682            Type::str(adr_type), Type::str(flat), Type::str(flatten_alias_type(flat)));
1683     assert(flat != TypePtr::BOTTOM, "cannot alias-analyze an untyped ptr: adr_type = %s",
1684            Type::str(adr_type));
1685     if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1686       const TypeOopPtr* foop = flat->is_oopptr();
1687       // Scalarizable allocations have exact klass always.
1688       bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1689       const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1690       assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type: foop = %s; xoop = %s",
1691              Type::str(foop), Type::str(xoop));
1692     }
1693   }
1694 #endif
1695 
1696   int idx = AliasIdxTop;
1697   for (int i = 0; i < num_alias_types(); i++) {
1698     if (alias_type(i)->adr_type() == flat) {
1699       idx = i;
1700       break;
1701     }
1702   }
1703 
1704   if (idx == AliasIdxTop) {
1705     if (no_create)  return nullptr;
1706     // Grow the array if necessary.
1707     if (_num_alias_types == _max_alias_types)  grow_alias_types();
1708     // Add a new alias type.
1709     idx = _num_alias_types++;
1710     _alias_types[idx]->Init(idx, flat);
1711     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1712     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1713     if (flat->isa_instptr()) {
1714       if (flat->offset() == java_lang_Class::klass_offset()
1715           && flat->is_instptr()->instance_klass() == env()->Class_klass())
1716         alias_type(idx)->set_rewritable(false);
1717     }
1718     if (flat->isa_aryptr()) {
1719 #ifdef ASSERT
1720       const int header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1721       // (T_BYTE has the weakest alignment and size restrictions...)
1722       assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
1723 #endif
1724       if (flat->offset() == TypePtr::OffsetBot) {
1725         alias_type(idx)->set_element(flat->is_aryptr()->elem());
1726       }
1727     }
1728     if (flat->isa_klassptr()) {
1729       if (UseCompactObjectHeaders) {
1730         if (flat->offset() == in_bytes(Klass::prototype_header_offset()))
1731           alias_type(idx)->set_rewritable(false);
1732       }
1733       if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
1734         alias_type(idx)->set_rewritable(false);
1735       if (flat->offset() == in_bytes(Klass::access_flags_offset()))
1736         alias_type(idx)->set_rewritable(false);
1737       if (flat->offset() == in_bytes(Klass::misc_flags_offset()))
1738         alias_type(idx)->set_rewritable(false);
1739       if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
1740         alias_type(idx)->set_rewritable(false);
1741       if (flat->offset() == in_bytes(Klass::secondary_super_cache_offset()))
1742         alias_type(idx)->set_rewritable(false);
1743     }
1744     // %%% (We would like to finalize JavaThread::threadObj_offset(),
1745     // but the base pointer type is not distinctive enough to identify
1746     // references into JavaThread.)
1747 
1748     // Check for final fields.
1749     const TypeInstPtr* tinst = flat->isa_instptr();
1750     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1751       ciField* field;
1752       if (tinst->const_oop() != nullptr &&
1753           tinst->instance_klass() == ciEnv::current()->Class_klass() &&
1754           tinst->offset() >= (tinst->instance_klass()->layout_helper_size_in_bytes())) {
1755         // static field
1756         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1757         field = k->get_field_by_offset(tinst->offset(), true);
1758       } else {
1759         ciInstanceKlass *k = tinst->instance_klass();
1760         field = k->get_field_by_offset(tinst->offset(), false);
1761       }
1762       assert(field == nullptr ||
1763              original_field == nullptr ||
1764              (field->holder() == original_field->holder() &&
1765               field->offset_in_bytes() == original_field->offset_in_bytes() &&
1766               field->is_static() == original_field->is_static()), "wrong field?");
1767       // Set field() and is_rewritable() attributes.
1768       if (field != nullptr)  alias_type(idx)->set_field(field);
1769     }
1770   }
1771 
1772   // Fill the cache for next time.
1773   ace->_adr_type = adr_type;
1774   ace->_index    = idx;
1775   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1776 
1777   // Might as well try to fill the cache for the flattened version, too.
1778   AliasCacheEntry* face = probe_alias_cache(flat);
1779   if (face->_adr_type == nullptr) {
1780     face->_adr_type = flat;
1781     face->_index    = idx;
1782     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1783   }
1784 
1785   return alias_type(idx);
1786 }
1787 
1788 
1789 Compile::AliasType* Compile::alias_type(ciField* field) {
1790   const TypeOopPtr* t;
1791   if (field->is_static())
1792     t = TypeInstPtr::make(field->holder()->java_mirror());
1793   else
1794     t = TypeOopPtr::make_from_klass_raw(field->holder());
1795   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1796   assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
1797   return atp;
1798 }
1799 
1800 
1801 //------------------------------have_alias_type--------------------------------
1802 bool Compile::have_alias_type(const TypePtr* adr_type) {
1803   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1804   if (ace->_adr_type == adr_type) {
1805     return true;
1806   }
1807 
1808   // Handle special cases.
1809   if (adr_type == nullptr)             return true;
1810   if (adr_type == TypePtr::BOTTOM)  return true;
1811 
1812   return find_alias_type(adr_type, true, nullptr) != nullptr;
1813 }
1814 
1815 //-----------------------------must_alias--------------------------------------
1816 // True if all values of the given address type are in the given alias category.
1817 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1818   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1819   if (adr_type == nullptr)              return true;  // null serves as TypePtr::TOP
1820   if (alias_idx == AliasIdxTop)         return false; // the empty category
1821   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1822 
1823   // the only remaining possible overlap is identity
1824   int adr_idx = get_alias_index(adr_type);
1825   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1826   assert(adr_idx == alias_idx ||
1827          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1828           && adr_type                       != TypeOopPtr::BOTTOM),
1829          "should not be testing for overlap with an unsafe pointer");
1830   return adr_idx == alias_idx;
1831 }
1832 
1833 //------------------------------can_alias--------------------------------------
1834 // True if any values of the given address type are in the given alias category.
1835 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1836   if (alias_idx == AliasIdxTop)         return false; // the empty category
1837   if (adr_type == nullptr)              return false; // null serves as TypePtr::TOP
1838   // Known instance doesn't alias with bottom memory
1839   if (alias_idx == AliasIdxBot)         return !adr_type->is_known_instance();                   // the universal category
1840   if (adr_type->base() == Type::AnyPtr) return !C->get_adr_type(alias_idx)->is_known_instance(); // TypePtr::BOTTOM or its twins
1841 
1842   // the only remaining possible overlap is identity
1843   int adr_idx = get_alias_index(adr_type);
1844   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1845   return adr_idx == alias_idx;
1846 }
1847 
1848 // Mark all ParsePredicateNodes as useless. They will later be removed from the graph in IGVN together with their
1849 // uncommon traps if no Runtime Predicates were created from the Parse Predicates.
1850 void Compile::mark_parse_predicate_nodes_useless(PhaseIterGVN& igvn) {
1851   if (parse_predicate_count() == 0) {
1852     return;
1853   }
1854   for (int i = 0; i < parse_predicate_count(); i++) {
1855     ParsePredicateNode* parse_predicate = _parse_predicates.at(i);
1856     parse_predicate->mark_useless(igvn);
1857   }
1858   _parse_predicates.clear();
1859 }
1860 
1861 void Compile::record_for_post_loop_opts_igvn(Node* n) {
1862   if (!n->for_post_loop_opts_igvn()) {
1863     assert(!_for_post_loop_igvn.contains(n), "duplicate");
1864     n->add_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn);
1865     _for_post_loop_igvn.append(n);
1866   }
1867 }
1868 
1869 void Compile::remove_from_post_loop_opts_igvn(Node* n) {
1870   n->remove_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn);
1871   _for_post_loop_igvn.remove(n);
1872 }
1873 
1874 void Compile::process_for_post_loop_opts_igvn(PhaseIterGVN& igvn) {
1875   // Verify that all previous optimizations produced a valid graph
1876   // at least to this point, even if no loop optimizations were done.
1877   PhaseIdealLoop::verify(igvn);
1878 
1879   if (has_loops() || _loop_opts_cnt > 0) {
1880     print_method(PHASE_AFTER_LOOP_OPTS, 2);
1881   }
1882   C->set_post_loop_opts_phase(); // no more loop opts allowed
1883 
1884   assert(!C->major_progress(), "not cleared");
1885 
1886   if (_for_post_loop_igvn.length() > 0) {
1887     while (_for_post_loop_igvn.length() > 0) {
1888       Node* n = _for_post_loop_igvn.pop();
1889       n->remove_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn);
1890       igvn._worklist.push(n);
1891     }
1892     igvn.optimize();
1893     if (failing()) return;
1894     assert(_for_post_loop_igvn.length() == 0, "no more delayed nodes allowed");
1895     assert(C->parse_predicate_count() == 0, "all parse predicates should have been removed now");
1896 
1897     // Sometimes IGVN sets major progress (e.g., when processing loop nodes).
1898     if (C->major_progress()) {
1899       C->clear_major_progress(); // ensure that major progress is now clear
1900     }
1901   }
1902 }
1903 
1904 void Compile::record_for_merge_stores_igvn(Node* n) {
1905   if (!n->for_merge_stores_igvn()) {
1906     assert(!_for_merge_stores_igvn.contains(n), "duplicate");
1907     n->add_flag(Node::NodeFlags::Flag_for_merge_stores_igvn);
1908     _for_merge_stores_igvn.append(n);
1909   }
1910 }
1911 
1912 void Compile::remove_from_merge_stores_igvn(Node* n) {
1913   n->remove_flag(Node::NodeFlags::Flag_for_merge_stores_igvn);
1914   _for_merge_stores_igvn.remove(n);
1915 }
1916 
1917 // We need to wait with merging stores until RangeCheck smearing has removed the RangeChecks during
1918 // the post loops IGVN phase. If we do it earlier, then there may still be some RangeChecks between
1919 // the stores, and we merge the wrong sequence of stores.
1920 // Example:
1921 //   StoreI RangeCheck StoreI StoreI RangeCheck StoreI
1922 // Apply MergeStores:
1923 //   StoreI RangeCheck [   StoreL  ] RangeCheck StoreI
1924 // Remove more RangeChecks:
1925 //   StoreI            [   StoreL  ]            StoreI
1926 // But now it would have been better to do this instead:
1927 //   [         StoreL       ] [       StoreL         ]
1928 //
1929 // Note: we allow stores to merge in this dedicated IGVN round, and any later IGVN round,
1930 //       since we never unset _merge_stores_phase.
1931 void Compile::process_for_merge_stores_igvn(PhaseIterGVN& igvn) {
1932   C->set_merge_stores_phase();
1933 
1934   if (_for_merge_stores_igvn.length() > 0) {
1935     while (_for_merge_stores_igvn.length() > 0) {
1936       Node* n = _for_merge_stores_igvn.pop();
1937       n->remove_flag(Node::NodeFlags::Flag_for_merge_stores_igvn);
1938       igvn._worklist.push(n);
1939     }
1940     igvn.optimize();
1941     if (failing()) return;
1942     assert(_for_merge_stores_igvn.length() == 0, "no more delayed nodes allowed");
1943     print_method(PHASE_AFTER_MERGE_STORES, 3);
1944   }
1945 }
1946 
1947 void Compile::record_unstable_if_trap(UnstableIfTrap* trap) {
1948   if (OptimizeUnstableIf) {
1949     _unstable_if_traps.append(trap);
1950   }
1951 }
1952 
1953 void Compile::remove_useless_unstable_if_traps(Unique_Node_List& useful) {
1954   for (int i = _unstable_if_traps.length() - 1; i >= 0; i--) {
1955     UnstableIfTrap* trap = _unstable_if_traps.at(i);
1956     Node* n = trap->uncommon_trap();
1957     if (!useful.member(n)) {
1958       _unstable_if_traps.delete_at(i); // replaces i-th with last element which is known to be useful (already processed)
1959     }
1960   }
1961 }
1962 
1963 // Remove the unstable if trap associated with 'unc' from candidates. It is either dead
1964 // or fold-compares case. Return true if succeed or not found.
1965 //
1966 // In rare cases, the found trap has been processed. It is too late to delete it. Return
1967 // false and ask fold-compares to yield.
1968 //
1969 // 'fold-compares' may use the uncommon_trap of the dominating IfNode to cover the fused
1970 // IfNode. This breaks the unstable_if trap invariant: control takes the unstable path
1971 // when deoptimization does happen.
1972 bool Compile::remove_unstable_if_trap(CallStaticJavaNode* unc, bool yield) {
1973   for (int i = 0; i < _unstable_if_traps.length(); ++i) {
1974     UnstableIfTrap* trap = _unstable_if_traps.at(i);
1975     if (trap->uncommon_trap() == unc) {
1976       if (yield && trap->modified()) {
1977         return false;
1978       }
1979       _unstable_if_traps.delete_at(i);
1980       break;
1981     }
1982   }
1983   return true;
1984 }
1985 
1986 // Re-calculate unstable_if traps with the liveness of next_bci, which points to the unlikely path.
1987 // It needs to be done after igvn because fold-compares may fuse uncommon_traps and before renumbering.
1988 void Compile::process_for_unstable_if_traps(PhaseIterGVN& igvn) {
1989   for (int i = _unstable_if_traps.length() - 1; i >= 0; --i) {
1990     UnstableIfTrap* trap = _unstable_if_traps.at(i);
1991     CallStaticJavaNode* unc = trap->uncommon_trap();
1992     int next_bci = trap->next_bci();
1993     bool modified = trap->modified();
1994 
1995     if (next_bci != -1 && !modified) {
1996       assert(!_dead_node_list.test(unc->_idx), "changing a dead node!");
1997       JVMState* jvms = unc->jvms();
1998       ciMethod* method = jvms->method();
1999       ciBytecodeStream iter(method);
2000 
2001       iter.force_bci(jvms->bci());
2002       assert(next_bci == iter.next_bci() || next_bci == iter.get_dest(), "wrong next_bci at unstable_if");
2003       Bytecodes::Code c = iter.cur_bc();
2004       Node* lhs = nullptr;
2005       Node* rhs = nullptr;
2006       if (c == Bytecodes::_if_acmpeq || c == Bytecodes::_if_acmpne) {
2007         lhs = unc->peek_operand(0);
2008         rhs = unc->peek_operand(1);
2009       } else if (c == Bytecodes::_ifnull || c == Bytecodes::_ifnonnull) {
2010         lhs = unc->peek_operand(0);
2011       }
2012 
2013       ResourceMark rm;
2014       const MethodLivenessResult& live_locals = method->liveness_at_bci(next_bci);
2015       assert(live_locals.is_valid(), "broken liveness info");
2016       int len = (int)live_locals.size();
2017 
2018       for (int i = 0; i < len; i++) {
2019         Node* local = unc->local(jvms, i);
2020         // kill local using the liveness of next_bci.
2021         // give up when the local looks like an operand to secure reexecution.
2022         if (!live_locals.at(i) && !local->is_top() && local != lhs && local!= rhs) {
2023           uint idx = jvms->locoff() + i;
2024 #ifdef ASSERT
2025           if (PrintOpto && Verbose) {
2026             tty->print("[unstable_if] kill local#%d: ", idx);
2027             local->dump();
2028             tty->cr();
2029           }
2030 #endif
2031           igvn.replace_input_of(unc, idx, top());
2032           modified = true;
2033         }
2034       }
2035     }
2036 
2037     // keep the mondified trap for late query
2038     if (modified) {
2039       trap->set_modified();
2040     } else {
2041       _unstable_if_traps.delete_at(i);
2042     }
2043   }
2044   igvn.optimize();
2045 }
2046 
2047 // StringOpts and late inlining of string methods
2048 void Compile::inline_string_calls(bool parse_time) {
2049   {
2050     // remove useless nodes to make the usage analysis simpler
2051     ResourceMark rm;
2052     PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist());
2053   }
2054 
2055   {
2056     ResourceMark rm;
2057     print_method(PHASE_BEFORE_STRINGOPTS, 3);
2058     PhaseStringOpts pso(initial_gvn());
2059     print_method(PHASE_AFTER_STRINGOPTS, 3);
2060   }
2061 
2062   // now inline anything that we skipped the first time around
2063   if (!parse_time) {
2064     _late_inlines_pos = _late_inlines.length();
2065   }
2066 
2067   while (_string_late_inlines.length() > 0) {
2068     CallGenerator* cg = _string_late_inlines.pop();
2069     cg->do_late_inline();
2070     if (failing())  return;
2071   }
2072   _string_late_inlines.trunc_to(0);
2073 }
2074 
2075 // Late inlining of boxing methods
2076 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
2077   if (_boxing_late_inlines.length() > 0) {
2078     assert(has_boxed_value(), "inconsistent");
2079 
2080     set_inlining_incrementally(true);
2081 
2082     igvn_worklist()->ensure_empty(); // should be done with igvn
2083 
2084     _late_inlines_pos = _late_inlines.length();
2085 
2086     while (_boxing_late_inlines.length() > 0) {
2087       CallGenerator* cg = _boxing_late_inlines.pop();
2088       cg->do_late_inline();
2089       if (failing())  return;
2090     }
2091     _boxing_late_inlines.trunc_to(0);
2092 
2093     inline_incrementally_cleanup(igvn);
2094 
2095     set_inlining_incrementally(false);
2096   }
2097 }
2098 
2099 bool Compile::inline_incrementally_one() {
2100   assert(IncrementalInline, "incremental inlining should be on");
2101 
2102   TracePhase tp(_t_incrInline_inline);
2103 
2104   set_inlining_progress(false);
2105   set_do_cleanup(false);
2106 
2107   for (int i = 0; i < _late_inlines.length(); i++) {
2108     _late_inlines_pos = i+1;
2109     CallGenerator* cg = _late_inlines.at(i);
2110     bool is_scheduled_for_igvn_before = C->igvn_worklist()->member(cg->call_node());
2111     bool does_dispatch = cg->is_virtual_late_inline() || cg->is_mh_late_inline();
2112     if (inlining_incrementally() || does_dispatch) { // a call can be either inlined or strength-reduced to a direct call
2113       cg->do_late_inline();
2114       assert(_late_inlines.at(i) == cg, "no insertions before current position allowed");
2115       if (failing()) {
2116         return false;
2117       } else if (inlining_progress()) {
2118         _late_inlines_pos = i+1; // restore the position in case new elements were inserted
2119         print_method(PHASE_INCREMENTAL_INLINE_STEP, 3, cg->call_node());
2120         break; // process one call site at a time
2121       } else {
2122         bool is_scheduled_for_igvn_after = C->igvn_worklist()->member(cg->call_node());
2123         if (!is_scheduled_for_igvn_before && is_scheduled_for_igvn_after) {
2124           // Avoid potential infinite loop if node already in the IGVN list
2125           assert(false, "scheduled for IGVN during inlining attempt");
2126         } else {
2127           // Ensure call node has not disappeared from IGVN worklist during a failed inlining attempt
2128           assert(!is_scheduled_for_igvn_before || is_scheduled_for_igvn_after, "call node removed from IGVN list during inlining pass");
2129           cg->call_node()->set_generator(cg);
2130         }
2131       }
2132     } else {
2133       // Ignore late inline direct calls when inlining is not allowed.
2134       // They are left in the late inline list when node budget is exhausted until the list is fully drained.
2135     }
2136   }
2137   // Remove processed elements.
2138   _late_inlines.remove_till(_late_inlines_pos);
2139   _late_inlines_pos = 0;
2140 
2141   assert(inlining_progress() || _late_inlines.length() == 0, "no progress");
2142 
2143   bool needs_cleanup = do_cleanup() || over_inlining_cutoff();
2144 
2145   set_inlining_progress(false);
2146   set_do_cleanup(false);
2147 
2148   bool force_cleanup = directive()->IncrementalInlineForceCleanupOption;
2149   return (_late_inlines.length() > 0) && !needs_cleanup && !force_cleanup;
2150 }
2151 
2152 void Compile::inline_incrementally_cleanup(PhaseIterGVN& igvn) {
2153   {
2154     TracePhase tp(_t_incrInline_pru);
2155     ResourceMark rm;
2156     PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist());
2157   }
2158   {
2159     TracePhase tp(_t_incrInline_igvn);
2160     igvn.reset_from_gvn(initial_gvn());
2161     igvn.optimize();
2162     if (failing()) return;
2163   }
2164   print_method(PHASE_INCREMENTAL_INLINE_CLEANUP, 3);
2165 }
2166 
2167 // Perform incremental inlining until bound on number of live nodes is reached
2168 void Compile::inline_incrementally(PhaseIterGVN& igvn) {
2169   TracePhase tp(_t_incrInline);
2170 
2171   set_inlining_incrementally(true);
2172   uint low_live_nodes = 0;
2173 
2174   while (_late_inlines.length() > 0) {
2175     if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2176       if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
2177         TracePhase tp(_t_incrInline_ideal);
2178         // PhaseIdealLoop is expensive so we only try it once we are
2179         // out of live nodes and we only try it again if the previous
2180         // helped got the number of nodes down significantly
2181         PhaseIdealLoop::optimize(igvn, LoopOptsNone);
2182         if (failing())  return;
2183         low_live_nodes = live_nodes();
2184         _major_progress = true;
2185       }
2186 
2187       if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2188         bool do_print_inlining = print_inlining() || print_intrinsics();
2189         if (do_print_inlining || log() != nullptr) {
2190           // Print inlining message for candidates that we couldn't inline for lack of space.
2191           for (int i = 0; i < _late_inlines.length(); i++) {
2192             CallGenerator* cg = _late_inlines.at(i);
2193             const char* msg = "live nodes > LiveNodeCountInliningCutoff";
2194             if (do_print_inlining) {
2195               inline_printer()->record(cg->method(), cg->call_node()->jvms(), InliningResult::FAILURE, msg);
2196             }
2197             log_late_inline_failure(cg, msg);
2198           }
2199         }
2200         break; // finish
2201       }
2202     }
2203 
2204     igvn_worklist()->ensure_empty(); // should be done with igvn
2205 
2206     while (inline_incrementally_one()) {
2207       assert(!failing_internal() || failure_is_artificial(), "inconsistent");
2208     }
2209     if (failing())  return;
2210 
2211     inline_incrementally_cleanup(igvn);
2212 
2213     print_method(PHASE_INCREMENTAL_INLINE_STEP, 3);
2214 
2215     if (failing())  return;
2216 
2217     if (_late_inlines.length() == 0) {
2218       break; // no more progress
2219     }
2220   }
2221 
2222   igvn_worklist()->ensure_empty(); // should be done with igvn
2223 
2224   if (_string_late_inlines.length() > 0) {
2225     assert(has_stringbuilder(), "inconsistent");
2226 
2227     inline_string_calls(false);
2228 
2229     if (failing())  return;
2230 
2231     inline_incrementally_cleanup(igvn);
2232   }
2233 
2234   set_inlining_incrementally(false);
2235 }
2236 
2237 void Compile::process_late_inline_calls_no_inline(PhaseIterGVN& igvn) {
2238   // "inlining_incrementally() == false" is used to signal that no inlining is allowed
2239   // (see LateInlineVirtualCallGenerator::do_late_inline_check() for details).
2240   // Tracking and verification of modified nodes is disabled by setting "_modified_nodes == nullptr"
2241   // as if "inlining_incrementally() == true" were set.
2242   assert(inlining_incrementally() == false, "not allowed");
2243   assert(_modified_nodes == nullptr, "not allowed");
2244   assert(_late_inlines.length() > 0, "sanity");
2245 
2246   while (_late_inlines.length() > 0) {
2247     igvn_worklist()->ensure_empty(); // should be done with igvn
2248 
2249     while (inline_incrementally_one()) {
2250       assert(!failing_internal() || failure_is_artificial(), "inconsistent");
2251     }
2252     if (failing())  return;
2253 
2254     inline_incrementally_cleanup(igvn);
2255   }
2256 }
2257 
2258 bool Compile::optimize_loops(PhaseIterGVN& igvn, LoopOptsMode mode) {
2259   if (_loop_opts_cnt > 0) {
2260     while (major_progress() && (_loop_opts_cnt > 0)) {
2261       TracePhase tp(_t_idealLoop);
2262       PhaseIdealLoop::optimize(igvn, mode);
2263       _loop_opts_cnt--;
2264       if (failing())  return false;
2265       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
2266     }
2267   }
2268   return true;
2269 }
2270 
2271 // Remove edges from "root" to each SafePoint at a backward branch.
2272 // They were inserted during parsing (see add_safepoint()) to make
2273 // infinite loops without calls or exceptions visible to root, i.e.,
2274 // useful.
2275 void Compile::remove_root_to_sfpts_edges(PhaseIterGVN& igvn) {
2276   Node *r = root();
2277   if (r != nullptr) {
2278     for (uint i = r->req(); i < r->len(); ++i) {
2279       Node *n = r->in(i);
2280       if (n != nullptr && n->is_SafePoint()) {
2281         r->rm_prec(i);
2282         if (n->outcnt() == 0) {
2283           igvn.remove_dead_node(n);
2284         }
2285         --i;
2286       }
2287     }
2288     // Parsing may have added top inputs to the root node (Path
2289     // leading to the Halt node proven dead). Make sure we get a
2290     // chance to clean them up.
2291     igvn._worklist.push(r);
2292     igvn.optimize();
2293   }
2294 }
2295 
2296 //------------------------------Optimize---------------------------------------
2297 // Given a graph, optimize it.
2298 void Compile::Optimize() {
2299   TracePhase tp(_t_optimizer);
2300 
2301 #ifndef PRODUCT
2302   if (env()->break_at_compile()) {
2303     BREAKPOINT;
2304   }
2305 
2306 #endif
2307 
2308   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2309 #ifdef ASSERT
2310   bs->verify_gc_barriers(this, BarrierSetC2::BeforeOptimize);
2311 #endif
2312 
2313   ResourceMark rm;
2314 
2315   NOT_PRODUCT( verify_graph_edges(); )
2316 
2317   print_method(PHASE_AFTER_PARSING, 1);
2318 
2319  {
2320   // Iterative Global Value Numbering, including ideal transforms
2321   // Initialize IterGVN with types and values from parse-time GVN
2322   PhaseIterGVN igvn(initial_gvn());
2323 #ifdef ASSERT
2324   _modified_nodes = new (comp_arena()) Unique_Node_List(comp_arena());
2325 #endif
2326   {
2327     TracePhase tp(_t_iterGVN);
2328     igvn.optimize();
2329   }
2330 
2331   if (failing())  return;
2332 
2333   print_method(PHASE_ITER_GVN1, 2);
2334 
2335   process_for_unstable_if_traps(igvn);
2336 
2337   if (failing())  return;
2338 
2339   inline_incrementally(igvn);
2340 
2341   print_method(PHASE_INCREMENTAL_INLINE, 2);
2342 
2343   if (failing())  return;
2344 
2345   if (eliminate_boxing()) {
2346     // Inline valueOf() methods now.
2347     inline_boxing_calls(igvn);
2348 
2349     if (failing())  return;
2350 
2351     if (AlwaysIncrementalInline || StressIncrementalInlining) {
2352       inline_incrementally(igvn);
2353     }
2354 
2355     print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
2356 
2357     if (failing())  return;
2358   }
2359 
2360   // Remove the speculative part of types and clean up the graph from
2361   // the extra CastPP nodes whose only purpose is to carry them. Do
2362   // that early so that optimizations are not disrupted by the extra
2363   // CastPP nodes.
2364   remove_speculative_types(igvn);
2365 
2366   if (failing())  return;
2367 
2368   // No more new expensive nodes will be added to the list from here
2369   // so keep only the actual candidates for optimizations.
2370   cleanup_expensive_nodes(igvn);
2371 
2372   if (failing())  return;
2373 
2374   assert(EnableVectorSupport || !has_vbox_nodes(), "sanity");
2375   if (EnableVectorSupport && has_vbox_nodes()) {
2376     TracePhase tp(_t_vector);
2377     PhaseVector pv(igvn);
2378     pv.optimize_vector_boxes();
2379     if (failing())  return;
2380     print_method(PHASE_ITER_GVN_AFTER_VECTOR, 2);
2381   }
2382   assert(!has_vbox_nodes(), "sanity");
2383 
2384   if (!failing() && RenumberLiveNodes && live_nodes() + NodeLimitFudgeFactor < unique()) {
2385     Compile::TracePhase tp(_t_renumberLive);
2386     igvn_worklist()->ensure_empty(); // should be done with igvn
2387     {
2388       ResourceMark rm;
2389       PhaseRenumberLive prl(initial_gvn(), *igvn_worklist());
2390     }
2391     igvn.reset_from_gvn(initial_gvn());
2392     igvn.optimize();
2393     if (failing()) return;
2394   }
2395 
2396   // Now that all inlining is over and no PhaseRemoveUseless will run, cut edge from root to loop
2397   // safepoints
2398   remove_root_to_sfpts_edges(igvn);
2399 
2400   if (failing())  return;
2401 
2402   if (has_loops()) {
2403     print_method(PHASE_BEFORE_LOOP_OPTS, 2);
2404   }
2405 
2406   // Perform escape analysis
2407   if (do_escape_analysis() && ConnectionGraph::has_candidates(this)) {
2408     if (has_loops()) {
2409       // Cleanup graph (remove dead nodes).
2410       TracePhase tp(_t_idealLoop);
2411       PhaseIdealLoop::optimize(igvn, LoopOptsMaxUnroll);
2412       if (failing())  return;
2413     }
2414     bool progress;
2415     print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
2416     do {
2417       ConnectionGraph::do_analysis(this, &igvn);
2418 
2419       if (failing())  return;
2420 
2421       int mcount = macro_count(); // Record number of allocations and locks before IGVN
2422 
2423       // Optimize out fields loads from scalar replaceable allocations.
2424       igvn.optimize();
2425       print_method(PHASE_ITER_GVN_AFTER_EA, 2);
2426 
2427       if (failing()) return;
2428 
2429       if (congraph() != nullptr && macro_count() > 0) {
2430         TracePhase tp(_t_macroEliminate);
2431         PhaseMacroExpand mexp(igvn);
2432         mexp.eliminate_macro_nodes();
2433         if (failing()) return;
2434 
2435         igvn.set_delay_transform(false);
2436         igvn.optimize();
2437         if (failing()) return;
2438 
2439         print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
2440       }
2441 
2442       ConnectionGraph::verify_ram_nodes(this, root());
2443       if (failing())  return;
2444 
2445       progress = do_iterative_escape_analysis() &&
2446                  (macro_count() < mcount) &&
2447                  ConnectionGraph::has_candidates(this);
2448       // Try again if candidates exist and made progress
2449       // by removing some allocations and/or locks.
2450     } while (progress);
2451   }
2452 
2453   // Loop transforms on the ideal graph.  Range Check Elimination,
2454   // peeling, unrolling, etc.
2455 
2456   // Set loop opts counter
2457   if((_loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
2458     {
2459       TracePhase tp(_t_idealLoop);
2460       PhaseIdealLoop::optimize(igvn, LoopOptsDefault);
2461       _loop_opts_cnt--;
2462       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
2463       if (failing())  return;
2464     }
2465     // Loop opts pass if partial peeling occurred in previous pass
2466     if(PartialPeelLoop && major_progress() && (_loop_opts_cnt > 0)) {
2467       TracePhase tp(_t_idealLoop);
2468       PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf);
2469       _loop_opts_cnt--;
2470       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
2471       if (failing())  return;
2472     }
2473     // Loop opts pass for loop-unrolling before CCP
2474     if(major_progress() && (_loop_opts_cnt > 0)) {
2475       TracePhase tp(_t_idealLoop);
2476       PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf);
2477       _loop_opts_cnt--;
2478       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
2479     }
2480     if (!failing()) {
2481       // Verify that last round of loop opts produced a valid graph
2482       PhaseIdealLoop::verify(igvn);
2483     }
2484   }
2485   if (failing())  return;
2486 
2487   // Conditional Constant Propagation;
2488   print_method(PHASE_BEFORE_CCP1, 2);
2489   PhaseCCP ccp( &igvn );
2490   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
2491   {
2492     TracePhase tp(_t_ccp);
2493     ccp.do_transform();
2494   }
2495   print_method(PHASE_CCP1, 2);
2496 
2497   assert( true, "Break here to ccp.dump_old2new_map()");
2498 
2499   // Iterative Global Value Numbering, including ideal transforms
2500   {
2501     TracePhase tp(_t_iterGVN2);
2502     igvn.reset_from_igvn(&ccp);
2503     igvn.optimize();
2504   }
2505   print_method(PHASE_ITER_GVN2, 2);
2506 
2507   if (failing())  return;
2508 
2509   // Loop transforms on the ideal graph.  Range Check Elimination,
2510   // peeling, unrolling, etc.
2511   if (!optimize_loops(igvn, LoopOptsDefault)) {
2512     return;
2513   }
2514 
2515   if (failing())  return;
2516 
2517   C->clear_major_progress(); // ensure that major progress is now clear
2518 
2519   process_for_post_loop_opts_igvn(igvn);
2520 
2521   process_for_merge_stores_igvn(igvn);
2522 
2523   if (failing())  return;
2524 
2525 #ifdef ASSERT
2526   bs->verify_gc_barriers(this, BarrierSetC2::BeforeMacroExpand);
2527 #endif
2528 
2529   {
2530     TracePhase tp(_t_macroExpand);
2531     print_method(PHASE_BEFORE_MACRO_EXPANSION, 3);
2532     PhaseMacroExpand  mex(igvn);
2533     if (mex.expand_macro_nodes()) {
2534       assert(failing(), "must bail out w/ explicit message");
2535       return;
2536     }
2537     print_method(PHASE_AFTER_MACRO_EXPANSION, 2);
2538   }
2539 
2540   {
2541     TracePhase tp(_t_barrierExpand);
2542     if (bs->expand_barriers(this, igvn)) {
2543       assert(failing(), "must bail out w/ explicit message");
2544       return;
2545     }
2546     print_method(PHASE_BARRIER_EXPANSION, 2);
2547   }
2548 
2549   if (C->max_vector_size() > 0) {
2550     C->optimize_logic_cones(igvn);
2551     igvn.optimize();
2552     if (failing()) return;
2553   }
2554 
2555   DEBUG_ONLY( _modified_nodes = nullptr; )
2556 
2557   assert(igvn._worklist.size() == 0, "not empty");
2558 
2559   assert(_late_inlines.length() == 0 || IncrementalInlineMH || IncrementalInlineVirtual, "not empty");
2560 
2561   if (_late_inlines.length() > 0) {
2562     // More opportunities to optimize virtual and MH calls.
2563     // Though it's maybe too late to perform inlining, strength-reducing them to direct calls is still an option.
2564     process_late_inline_calls_no_inline(igvn);
2565     if (failing())  return;
2566   }
2567  } // (End scope of igvn; run destructor if necessary for asserts.)
2568 
2569  check_no_dead_use();
2570 
2571  // We will never use the NodeHash table any more. Clear it so that final_graph_reshaping does not have
2572  // to remove hashes to unlock nodes for modifications.
2573  C->node_hash()->clear();
2574 
2575  // A method with only infinite loops has no edges entering loops from root
2576  {
2577    TracePhase tp(_t_graphReshaping);
2578    if (final_graph_reshaping()) {
2579      assert(failing(), "must bail out w/ explicit message");
2580      return;
2581    }
2582  }
2583 
2584  print_method(PHASE_OPTIMIZE_FINISHED, 2);
2585  DEBUG_ONLY(set_phase_optimize_finished();)
2586 }
2587 
2588 #ifdef ASSERT
2589 void Compile::check_no_dead_use() const {
2590   ResourceMark rm;
2591   Unique_Node_List wq;
2592   wq.push(root());
2593   for (uint i = 0; i < wq.size(); ++i) {
2594     Node* n = wq.at(i);
2595     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
2596       Node* u = n->fast_out(j);
2597       if (u->outcnt() == 0 && !u->is_Con()) {
2598         u->dump();
2599         fatal("no reachable node should have no use");
2600       }
2601       wq.push(u);
2602     }
2603   }
2604 }
2605 #endif
2606 
2607 void Compile::inline_vector_reboxing_calls() {
2608   if (C->_vector_reboxing_late_inlines.length() > 0) {
2609     _late_inlines_pos = C->_late_inlines.length();
2610     while (_vector_reboxing_late_inlines.length() > 0) {
2611       CallGenerator* cg = _vector_reboxing_late_inlines.pop();
2612       cg->do_late_inline();
2613       if (failing())  return;
2614       print_method(PHASE_INLINE_VECTOR_REBOX, 3, cg->call_node());
2615     }
2616     _vector_reboxing_late_inlines.trunc_to(0);
2617   }
2618 }
2619 
2620 bool Compile::has_vbox_nodes() {
2621   if (C->_vector_reboxing_late_inlines.length() > 0) {
2622     return true;
2623   }
2624   for (int macro_idx = C->macro_count() - 1; macro_idx >= 0; macro_idx--) {
2625     Node * n = C->macro_node(macro_idx);
2626     assert(n->is_macro(), "only macro nodes expected here");
2627     if (n->Opcode() == Op_VectorUnbox || n->Opcode() == Op_VectorBox || n->Opcode() == Op_VectorBoxAllocate) {
2628       return true;
2629     }
2630   }
2631   return false;
2632 }
2633 
2634 //---------------------------- Bitwise operation packing optimization ---------------------------
2635 
2636 static bool is_vector_unary_bitwise_op(Node* n) {
2637   return n->Opcode() == Op_XorV &&
2638          VectorNode::is_vector_bitwise_not_pattern(n);
2639 }
2640 
2641 static bool is_vector_binary_bitwise_op(Node* n) {
2642   switch (n->Opcode()) {
2643     case Op_AndV:
2644     case Op_OrV:
2645       return true;
2646 
2647     case Op_XorV:
2648       return !is_vector_unary_bitwise_op(n);
2649 
2650     default:
2651       return false;
2652   }
2653 }
2654 
2655 static bool is_vector_ternary_bitwise_op(Node* n) {
2656   return n->Opcode() == Op_MacroLogicV;
2657 }
2658 
2659 static bool is_vector_bitwise_op(Node* n) {
2660   return is_vector_unary_bitwise_op(n)  ||
2661          is_vector_binary_bitwise_op(n) ||
2662          is_vector_ternary_bitwise_op(n);
2663 }
2664 
2665 static bool is_vector_bitwise_cone_root(Node* n) {
2666   if (n->bottom_type()->isa_vectmask() || !is_vector_bitwise_op(n)) {
2667     return false;
2668   }
2669   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2670     if (is_vector_bitwise_op(n->fast_out(i))) {
2671       return false;
2672     }
2673   }
2674   return true;
2675 }
2676 
2677 static uint collect_unique_inputs(Node* n, Unique_Node_List& inputs) {
2678   uint cnt = 0;
2679   if (is_vector_bitwise_op(n)) {
2680     uint inp_cnt = n->is_predicated_vector() ? n->req()-1 : n->req();
2681     if (VectorNode::is_vector_bitwise_not_pattern(n)) {
2682       for (uint i = 1; i < inp_cnt; i++) {
2683         Node* in = n->in(i);
2684         bool skip = VectorNode::is_all_ones_vector(in);
2685         if (!skip && !inputs.member(in)) {
2686           inputs.push(in);
2687           cnt++;
2688         }
2689       }
2690       assert(cnt <= 1, "not unary");
2691     } else {
2692       uint last_req = inp_cnt;
2693       if (is_vector_ternary_bitwise_op(n)) {
2694         last_req = inp_cnt - 1; // skip last input
2695       }
2696       for (uint i = 1; i < last_req; i++) {
2697         Node* def = n->in(i);
2698         if (!inputs.member(def)) {
2699           inputs.push(def);
2700           cnt++;
2701         }
2702       }
2703     }
2704   } else { // not a bitwise operations
2705     if (!inputs.member(n)) {
2706       inputs.push(n);
2707       cnt++;
2708     }
2709   }
2710   return cnt;
2711 }
2712 
2713 void Compile::collect_logic_cone_roots(Unique_Node_List& list) {
2714   Unique_Node_List useful_nodes;
2715   C->identify_useful_nodes(useful_nodes);
2716 
2717   for (uint i = 0; i < useful_nodes.size(); i++) {
2718     Node* n = useful_nodes.at(i);
2719     if (is_vector_bitwise_cone_root(n)) {
2720       list.push(n);
2721     }
2722   }
2723 }
2724 
2725 Node* Compile::xform_to_MacroLogicV(PhaseIterGVN& igvn,
2726                                     const TypeVect* vt,
2727                                     Unique_Node_List& partition,
2728                                     Unique_Node_List& inputs) {
2729   assert(partition.size() == 2 || partition.size() == 3, "not supported");
2730   assert(inputs.size()    == 2 || inputs.size()    == 3, "not supported");
2731   assert(Matcher::match_rule_supported_vector(Op_MacroLogicV, vt->length(), vt->element_basic_type()), "not supported");
2732 
2733   Node* in1 = inputs.at(0);
2734   Node* in2 = inputs.at(1);
2735   Node* in3 = (inputs.size() == 3 ? inputs.at(2) : in2);
2736 
2737   uint func = compute_truth_table(partition, inputs);
2738 
2739   Node* pn = partition.at(partition.size() - 1);
2740   Node* mask = pn->is_predicated_vector() ? pn->in(pn->req()-1) : nullptr;
2741   return igvn.transform(MacroLogicVNode::make(igvn, in1, in2, in3, mask, func, vt));
2742 }
2743 
2744 static uint extract_bit(uint func, uint pos) {
2745   return (func & (1 << pos)) >> pos;
2746 }
2747 
2748 //
2749 //  A macro logic node represents a truth table. It has 4 inputs,
2750 //  First three inputs corresponds to 3 columns of a truth table
2751 //  and fourth input captures the logic function.
2752 //
2753 //  eg.  fn = (in1 AND in2) OR in3;
2754 //
2755 //      MacroNode(in1,in2,in3,fn)
2756 //
2757 //  -----------------
2758 //  in1 in2 in3  fn
2759 //  -----------------
2760 //  0    0   0    0
2761 //  0    0   1    1
2762 //  0    1   0    0
2763 //  0    1   1    1
2764 //  1    0   0    0
2765 //  1    0   1    1
2766 //  1    1   0    1
2767 //  1    1   1    1
2768 //
2769 
2770 uint Compile::eval_macro_logic_op(uint func, uint in1 , uint in2, uint in3) {
2771   int res = 0;
2772   for (int i = 0; i < 8; i++) {
2773     int bit1 = extract_bit(in1, i);
2774     int bit2 = extract_bit(in2, i);
2775     int bit3 = extract_bit(in3, i);
2776 
2777     int func_bit_pos = (bit1 << 2 | bit2 << 1 | bit3);
2778     int func_bit = extract_bit(func, func_bit_pos);
2779 
2780     res |= func_bit << i;
2781   }
2782   return res;
2783 }
2784 
2785 static uint eval_operand(Node* n, ResourceHashtable<Node*,uint>& eval_map) {
2786   assert(n != nullptr, "");
2787   assert(eval_map.contains(n), "absent");
2788   return *(eval_map.get(n));
2789 }
2790 
2791 static void eval_operands(Node* n,
2792                           uint& func1, uint& func2, uint& func3,
2793                           ResourceHashtable<Node*,uint>& eval_map) {
2794   assert(is_vector_bitwise_op(n), "");
2795 
2796   if (is_vector_unary_bitwise_op(n)) {
2797     Node* opnd = n->in(1);
2798     if (VectorNode::is_vector_bitwise_not_pattern(n) && VectorNode::is_all_ones_vector(opnd)) {
2799       opnd = n->in(2);
2800     }
2801     func1 = eval_operand(opnd, eval_map);
2802   } else if (is_vector_binary_bitwise_op(n)) {
2803     func1 = eval_operand(n->in(1), eval_map);
2804     func2 = eval_operand(n->in(2), eval_map);
2805   } else {
2806     assert(is_vector_ternary_bitwise_op(n), "unknown operation");
2807     func1 = eval_operand(n->in(1), eval_map);
2808     func2 = eval_operand(n->in(2), eval_map);
2809     func3 = eval_operand(n->in(3), eval_map);
2810   }
2811 }
2812 
2813 uint Compile::compute_truth_table(Unique_Node_List& partition, Unique_Node_List& inputs) {
2814   assert(inputs.size() <= 3, "sanity");
2815   ResourceMark rm;
2816   uint res = 0;
2817   ResourceHashtable<Node*,uint> eval_map;
2818 
2819   // Populate precomputed functions for inputs.
2820   // Each input corresponds to one column of 3 input truth-table.
2821   uint input_funcs[] = { 0xAA,   // (_, _, c) -> c
2822                          0xCC,   // (_, b, _) -> b
2823                          0xF0 }; // (a, _, _) -> a
2824   for (uint i = 0; i < inputs.size(); i++) {
2825     eval_map.put(inputs.at(i), input_funcs[2-i]);
2826   }
2827 
2828   for (uint i = 0; i < partition.size(); i++) {
2829     Node* n = partition.at(i);
2830 
2831     uint func1 = 0, func2 = 0, func3 = 0;
2832     eval_operands(n, func1, func2, func3, eval_map);
2833 
2834     switch (n->Opcode()) {
2835       case Op_OrV:
2836         assert(func3 == 0, "not binary");
2837         res = func1 | func2;
2838         break;
2839       case Op_AndV:
2840         assert(func3 == 0, "not binary");
2841         res = func1 & func2;
2842         break;
2843       case Op_XorV:
2844         if (VectorNode::is_vector_bitwise_not_pattern(n)) {
2845           assert(func2 == 0 && func3 == 0, "not unary");
2846           res = (~func1) & 0xFF;
2847         } else {
2848           assert(func3 == 0, "not binary");
2849           res = func1 ^ func2;
2850         }
2851         break;
2852       case Op_MacroLogicV:
2853         // Ordering of inputs may change during evaluation of sub-tree
2854         // containing MacroLogic node as a child node, thus a re-evaluation
2855         // makes sure that function is evaluated in context of current
2856         // inputs.
2857         res = eval_macro_logic_op(n->in(4)->get_int(), func1, func2, func3);
2858         break;
2859 
2860       default: assert(false, "not supported: %s", n->Name());
2861     }
2862     assert(res <= 0xFF, "invalid");
2863     eval_map.put(n, res);
2864   }
2865   return res;
2866 }
2867 
2868 // Criteria under which nodes gets packed into a macro logic node:-
2869 //  1) Parent and both child nodes are all unmasked or masked with
2870 //     same predicates.
2871 //  2) Masked parent can be packed with left child if it is predicated
2872 //     and both have same predicates.
2873 //  3) Masked parent can be packed with right child if its un-predicated
2874 //     or has matching predication condition.
2875 //  4) An unmasked parent can be packed with an unmasked child.
2876 bool Compile::compute_logic_cone(Node* n, Unique_Node_List& partition, Unique_Node_List& inputs) {
2877   assert(partition.size() == 0, "not empty");
2878   assert(inputs.size() == 0, "not empty");
2879   if (is_vector_ternary_bitwise_op(n)) {
2880     return false;
2881   }
2882 
2883   bool is_unary_op = is_vector_unary_bitwise_op(n);
2884   if (is_unary_op) {
2885     assert(collect_unique_inputs(n, inputs) == 1, "not unary");
2886     return false; // too few inputs
2887   }
2888 
2889   bool pack_left_child = true;
2890   bool pack_right_child = true;
2891 
2892   bool left_child_LOP = is_vector_bitwise_op(n->in(1));
2893   bool right_child_LOP = is_vector_bitwise_op(n->in(2));
2894 
2895   int left_child_input_cnt = 0;
2896   int right_child_input_cnt = 0;
2897 
2898   bool parent_is_predicated = n->is_predicated_vector();
2899   bool left_child_predicated = n->in(1)->is_predicated_vector();
2900   bool right_child_predicated = n->in(2)->is_predicated_vector();
2901 
2902   Node* parent_pred = parent_is_predicated ? n->in(n->req()-1) : nullptr;
2903   Node* left_child_pred = left_child_predicated ? n->in(1)->in(n->in(1)->req()-1) : nullptr;
2904   Node* right_child_pred = right_child_predicated ? n->in(1)->in(n->in(1)->req()-1) : nullptr;
2905 
2906   do {
2907     if (pack_left_child && left_child_LOP &&
2908         ((!parent_is_predicated && !left_child_predicated) ||
2909         ((parent_is_predicated && left_child_predicated &&
2910           parent_pred == left_child_pred)))) {
2911        partition.push(n->in(1));
2912        left_child_input_cnt = collect_unique_inputs(n->in(1), inputs);
2913     } else {
2914        inputs.push(n->in(1));
2915        left_child_input_cnt = 1;
2916     }
2917 
2918     if (pack_right_child && right_child_LOP &&
2919         (!right_child_predicated ||
2920          (right_child_predicated && parent_is_predicated &&
2921           parent_pred == right_child_pred))) {
2922        partition.push(n->in(2));
2923        right_child_input_cnt = collect_unique_inputs(n->in(2), inputs);
2924     } else {
2925        inputs.push(n->in(2));
2926        right_child_input_cnt = 1;
2927     }
2928 
2929     if (inputs.size() > 3) {
2930       assert(partition.size() > 0, "");
2931       inputs.clear();
2932       partition.clear();
2933       if (left_child_input_cnt > right_child_input_cnt) {
2934         pack_left_child = false;
2935       } else {
2936         pack_right_child = false;
2937       }
2938     } else {
2939       break;
2940     }
2941   } while(true);
2942 
2943   if(partition.size()) {
2944     partition.push(n);
2945   }
2946 
2947   return (partition.size() == 2 || partition.size() == 3) &&
2948          (inputs.size()    == 2 || inputs.size()    == 3);
2949 }
2950 
2951 void Compile::process_logic_cone_root(PhaseIterGVN &igvn, Node *n, VectorSet &visited) {
2952   assert(is_vector_bitwise_op(n), "not a root");
2953 
2954   visited.set(n->_idx);
2955 
2956   // 1) Do a DFS walk over the logic cone.
2957   for (uint i = 1; i < n->req(); i++) {
2958     Node* in = n->in(i);
2959     if (!visited.test(in->_idx) && is_vector_bitwise_op(in)) {
2960       process_logic_cone_root(igvn, in, visited);
2961     }
2962   }
2963 
2964   // 2) Bottom up traversal: Merge node[s] with
2965   // the parent to form macro logic node.
2966   Unique_Node_List partition;
2967   Unique_Node_List inputs;
2968   if (compute_logic_cone(n, partition, inputs)) {
2969     const TypeVect* vt = n->bottom_type()->is_vect();
2970     Node* pn = partition.at(partition.size() - 1);
2971     Node* mask = pn->is_predicated_vector() ? pn->in(pn->req()-1) : nullptr;
2972     if (mask == nullptr ||
2973         Matcher::match_rule_supported_vector_masked(Op_MacroLogicV, vt->length(), vt->element_basic_type())) {
2974       Node* macro_logic = xform_to_MacroLogicV(igvn, vt, partition, inputs);
2975       VectorNode::trace_new_vector(macro_logic, "MacroLogic");
2976       igvn.replace_node(n, macro_logic);
2977     }
2978   }
2979 }
2980 
2981 void Compile::optimize_logic_cones(PhaseIterGVN &igvn) {
2982   ResourceMark rm;
2983   if (Matcher::match_rule_supported(Op_MacroLogicV)) {
2984     Unique_Node_List list;
2985     collect_logic_cone_roots(list);
2986 
2987     while (list.size() > 0) {
2988       Node* n = list.pop();
2989       const TypeVect* vt = n->bottom_type()->is_vect();
2990       bool supported = Matcher::match_rule_supported_vector(Op_MacroLogicV, vt->length(), vt->element_basic_type());
2991       if (supported) {
2992         VectorSet visited(comp_arena());
2993         process_logic_cone_root(igvn, n, visited);
2994       }
2995     }
2996   }
2997 }
2998 
2999 //------------------------------Code_Gen---------------------------------------
3000 // Given a graph, generate code for it
3001 void Compile::Code_Gen() {
3002   if (failing()) {
3003     return;
3004   }
3005 
3006   // Perform instruction selection.  You might think we could reclaim Matcher
3007   // memory PDQ, but actually the Matcher is used in generating spill code.
3008   // Internals of the Matcher (including some VectorSets) must remain live
3009   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
3010   // set a bit in reclaimed memory.
3011 
3012   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
3013   // nodes.  Mapping is only valid at the root of each matched subtree.
3014   NOT_PRODUCT( verify_graph_edges(); )
3015 
3016   Matcher matcher;
3017   _matcher = &matcher;
3018   {
3019     TracePhase tp(_t_matcher);
3020     matcher.match();
3021     if (failing()) {
3022       return;
3023     }
3024   }
3025   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
3026   // nodes.  Mapping is only valid at the root of each matched subtree.
3027   NOT_PRODUCT( verify_graph_edges(); )
3028 
3029   // If you have too many nodes, or if matching has failed, bail out
3030   check_node_count(0, "out of nodes matching instructions");
3031   if (failing()) {
3032     return;
3033   }
3034 
3035   print_method(PHASE_MATCHING, 2);
3036 
3037   // Build a proper-looking CFG
3038   PhaseCFG cfg(node_arena(), root(), matcher);
3039   if (failing()) {
3040     return;
3041   }
3042   _cfg = &cfg;
3043   {
3044     TracePhase tp(_t_scheduler);
3045     bool success = cfg.do_global_code_motion();
3046     if (!success) {
3047       return;
3048     }
3049 
3050     print_method(PHASE_GLOBAL_CODE_MOTION, 2);
3051     NOT_PRODUCT( verify_graph_edges(); )
3052     cfg.verify();
3053     if (failing()) {
3054       return;
3055     }
3056   }
3057 
3058   PhaseChaitin regalloc(unique(), cfg, matcher, false);
3059   _regalloc = &regalloc;
3060   {
3061     TracePhase tp(_t_registerAllocation);
3062     // Perform register allocation.  After Chaitin, use-def chains are
3063     // no longer accurate (at spill code) and so must be ignored.
3064     // Node->LRG->reg mappings are still accurate.
3065     _regalloc->Register_Allocate();
3066 
3067     // Bail out if the allocator builds too many nodes
3068     if (failing()) {
3069       return;
3070     }
3071 
3072     print_method(PHASE_REGISTER_ALLOCATION, 2);
3073   }
3074 
3075   // Prior to register allocation we kept empty basic blocks in case the
3076   // the allocator needed a place to spill.  After register allocation we
3077   // are not adding any new instructions.  If any basic block is empty, we
3078   // can now safely remove it.
3079   {
3080     TracePhase tp(_t_blockOrdering);
3081     cfg.remove_empty_blocks();
3082     if (do_freq_based_layout()) {
3083       PhaseBlockLayout layout(cfg);
3084     } else {
3085       cfg.set_loop_alignment();
3086     }
3087     cfg.fixup_flow();
3088     cfg.remove_unreachable_blocks();
3089     cfg.verify_dominator_tree();
3090     print_method(PHASE_BLOCK_ORDERING, 3);
3091   }
3092 
3093   // Apply peephole optimizations
3094   if( OptoPeephole ) {
3095     TracePhase tp(_t_peephole);
3096     PhasePeephole peep( _regalloc, cfg);
3097     peep.do_transform();
3098     print_method(PHASE_PEEPHOLE, 3);
3099   }
3100 
3101   // Do late expand if CPU requires this.
3102   if (Matcher::require_postalloc_expand) {
3103     TracePhase tp(_t_postalloc_expand);
3104     cfg.postalloc_expand(_regalloc);
3105     print_method(PHASE_POSTALLOC_EXPAND, 3);
3106   }
3107 
3108 #ifdef ASSERT
3109   {
3110     CompilationMemoryStatistic::do_test_allocations();
3111     if (failing()) return;
3112   }
3113 #endif
3114 
3115   // Convert Nodes to instruction bits in a buffer
3116   {
3117     TracePhase tp(_t_output);
3118     PhaseOutput output;
3119     output.Output();
3120     if (failing())  return;
3121     output.install();
3122     print_method(PHASE_FINAL_CODE, 1); // Compile::_output is not null here
3123   }
3124 
3125   // He's dead, Jim.
3126   _cfg     = (PhaseCFG*)((intptr_t)0xdeadbeef);
3127   _regalloc = (PhaseChaitin*)((intptr_t)0xdeadbeef);
3128 }
3129 
3130 //------------------------------Final_Reshape_Counts---------------------------
3131 // This class defines counters to help identify when a method
3132 // may/must be executed using hardware with only 24-bit precision.
3133 struct Final_Reshape_Counts : public StackObj {
3134   int  _call_count;             // count non-inlined 'common' calls
3135   int  _float_count;            // count float ops requiring 24-bit precision
3136   int  _double_count;           // count double ops requiring more precision
3137   int  _java_call_count;        // count non-inlined 'java' calls
3138   int  _inner_loop_count;       // count loops which need alignment
3139   VectorSet _visited;           // Visitation flags
3140   Node_List _tests;             // Set of IfNodes & PCTableNodes
3141 
3142   Final_Reshape_Counts() :
3143     _call_count(0), _float_count(0), _double_count(0),
3144     _java_call_count(0), _inner_loop_count(0) { }
3145 
3146   void inc_call_count  () { _call_count  ++; }
3147   void inc_float_count () { _float_count ++; }
3148   void inc_double_count() { _double_count++; }
3149   void inc_java_call_count() { _java_call_count++; }
3150   void inc_inner_loop_count() { _inner_loop_count++; }
3151 
3152   int  get_call_count  () const { return _call_count  ; }
3153   int  get_float_count () const { return _float_count ; }
3154   int  get_double_count() const { return _double_count; }
3155   int  get_java_call_count() const { return _java_call_count; }
3156   int  get_inner_loop_count() const { return _inner_loop_count; }
3157 };
3158 
3159 //------------------------------final_graph_reshaping_impl----------------------
3160 // Implement items 1-5 from final_graph_reshaping below.
3161 void Compile::final_graph_reshaping_impl(Node *n, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes) {
3162 
3163   if ( n->outcnt() == 0 ) return; // dead node
3164   uint nop = n->Opcode();
3165 
3166   // Check for 2-input instruction with "last use" on right input.
3167   // Swap to left input.  Implements item (2).
3168   if( n->req() == 3 &&          // two-input instruction
3169       n->in(1)->outcnt() > 1 && // left use is NOT a last use
3170       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
3171       n->in(2)->outcnt() == 1 &&// right use IS a last use
3172       !n->in(2)->is_Con() ) {   // right use is not a constant
3173     // Check for commutative opcode
3174     switch( nop ) {
3175     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
3176     case Op_MaxI:  case Op_MaxL:  case Op_MaxF:  case Op_MaxD:
3177     case Op_MinI:  case Op_MinL:  case Op_MinF:  case Op_MinD:
3178     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
3179     case Op_AndL:  case Op_XorL:  case Op_OrL:
3180     case Op_AndI:  case Op_XorI:  case Op_OrI: {
3181       // Move "last use" input to left by swapping inputs
3182       n->swap_edges(1, 2);
3183       break;
3184     }
3185     default:
3186       break;
3187     }
3188   }
3189 
3190 #ifdef ASSERT
3191   if( n->is_Mem() ) {
3192     int alias_idx = get_alias_index(n->as_Mem()->adr_type());
3193     assert( n->in(0) != nullptr || alias_idx != Compile::AliasIdxRaw ||
3194             // oop will be recorded in oop map if load crosses safepoint
3195             (n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
3196                               LoadNode::is_immutable_value(n->in(MemNode::Address)))),
3197             "raw memory operations should have control edge");
3198   }
3199   if (n->is_MemBar()) {
3200     MemBarNode* mb = n->as_MemBar();
3201     if (mb->trailing_store() || mb->trailing_load_store()) {
3202       assert(mb->leading_membar()->trailing_membar() == mb, "bad membar pair");
3203       Node* mem = BarrierSet::barrier_set()->barrier_set_c2()->step_over_gc_barrier(mb->in(MemBarNode::Precedent));
3204       assert((mb->trailing_store() && mem->is_Store() && mem->as_Store()->is_release()) ||
3205              (mb->trailing_load_store() && mem->is_LoadStore()), "missing mem op");
3206     } else if (mb->leading()) {
3207       assert(mb->trailing_membar()->leading_membar() == mb, "bad membar pair");
3208     }
3209   }
3210 #endif
3211   // Count FPU ops and common calls, implements item (3)
3212   bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->final_graph_reshaping(this, n, nop, dead_nodes);
3213   if (!gc_handled) {
3214     final_graph_reshaping_main_switch(n, frc, nop, dead_nodes);
3215   }
3216 
3217   // Collect CFG split points
3218   if (n->is_MultiBranch() && !n->is_RangeCheck()) {
3219     frc._tests.push(n);
3220   }
3221 }
3222 
3223 void Compile::handle_div_mod_op(Node* n, BasicType bt, bool is_unsigned) {
3224   if (!UseDivMod) {
3225     return;
3226   }
3227 
3228   // Check if "a % b" and "a / b" both exist
3229   Node* d = n->find_similar(Op_DivIL(bt, is_unsigned));
3230   if (d == nullptr) {
3231     return;
3232   }
3233 
3234   // Replace them with a fused divmod if supported
3235   if (Matcher::has_match_rule(Op_DivModIL(bt, is_unsigned))) {
3236     DivModNode* divmod = DivModNode::make(n, bt, is_unsigned);
3237     // If the divisor input for a Div (or Mod etc.) is not zero, then the control input of the Div is set to zero.
3238     // It could be that the divisor input is found not zero because its type is narrowed down by a CastII in the
3239     // subgraph for that input. Range check CastIIs are removed during final graph reshape. To preserve the dependency
3240     // carried by a CastII, precedence edges are added to the Div node. We need to transfer the precedence edges to the
3241     // DivMod node so the dependency is not lost.
3242     divmod->add_prec_from(n);
3243     divmod->add_prec_from(d);
3244     d->subsume_by(divmod->div_proj(), this);
3245     n->subsume_by(divmod->mod_proj(), this);
3246   } else {
3247     // Replace "a % b" with "a - ((a / b) * b)"
3248     Node* mult = MulNode::make(d, d->in(2), bt);
3249     Node* sub = SubNode::make(d->in(1), mult, bt);
3250     n->subsume_by(sub, this);
3251   }
3252 }
3253 
3254 void Compile::final_graph_reshaping_main_switch(Node* n, Final_Reshape_Counts& frc, uint nop, Unique_Node_List& dead_nodes) {
3255   switch( nop ) {
3256   // Count all float operations that may use FPU
3257   case Op_AddF:
3258   case Op_SubF:
3259   case Op_MulF:
3260   case Op_DivF:
3261   case Op_NegF:
3262   case Op_ModF:
3263   case Op_ConvI2F:
3264   case Op_ConF:
3265   case Op_CmpF:
3266   case Op_CmpF3:
3267   case Op_StoreF:
3268   case Op_LoadF:
3269   // case Op_ConvL2F: // longs are split into 32-bit halves
3270     frc.inc_float_count();
3271     break;
3272 
3273   case Op_ConvF2D:
3274   case Op_ConvD2F:
3275     frc.inc_float_count();
3276     frc.inc_double_count();
3277     break;
3278 
3279   // Count all double operations that may use FPU
3280   case Op_AddD:
3281   case Op_SubD:
3282   case Op_MulD:
3283   case Op_DivD:
3284   case Op_NegD:
3285   case Op_ModD:
3286   case Op_ConvI2D:
3287   case Op_ConvD2I:
3288   // case Op_ConvL2D: // handled by leaf call
3289   // case Op_ConvD2L: // handled by leaf call
3290   case Op_ConD:
3291   case Op_CmpD:
3292   case Op_CmpD3:
3293   case Op_StoreD:
3294   case Op_LoadD:
3295   case Op_LoadD_unaligned:
3296     frc.inc_double_count();
3297     break;
3298   case Op_Opaque1:              // Remove Opaque Nodes before matching
3299     n->subsume_by(n->in(1), this);
3300     break;
3301   case Op_CallStaticJava:
3302   case Op_CallJava:
3303   case Op_CallDynamicJava:
3304     frc.inc_java_call_count(); // Count java call site;
3305   case Op_CallRuntime:
3306   case Op_CallLeaf:
3307   case Op_CallLeafVector:
3308   case Op_CallLeafNoFP: {
3309     assert (n->is_Call(), "");
3310     CallNode *call = n->as_Call();
3311     // Count call sites where the FP mode bit would have to be flipped.
3312     // Do not count uncommon runtime calls:
3313     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
3314     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
3315     if (!call->is_CallStaticJava() || !call->as_CallStaticJava()->_name) {
3316       frc.inc_call_count();   // Count the call site
3317     } else {                  // See if uncommon argument is shared
3318       Node *n = call->in(TypeFunc::Parms);
3319       int nop = n->Opcode();
3320       // Clone shared simple arguments to uncommon calls, item (1).
3321       if (n->outcnt() > 1 &&
3322           !n->is_Proj() &&
3323           nop != Op_CreateEx &&
3324           nop != Op_CheckCastPP &&
3325           nop != Op_DecodeN &&
3326           nop != Op_DecodeNKlass &&
3327           !n->is_Mem() &&
3328           !n->is_Phi()) {
3329         Node *x = n->clone();
3330         call->set_req(TypeFunc::Parms, x);
3331       }
3332     }
3333     break;
3334   }
3335   case Op_StoreB:
3336   case Op_StoreC:
3337   case Op_StoreI:
3338   case Op_StoreL:
3339   case Op_CompareAndSwapB:
3340   case Op_CompareAndSwapS:
3341   case Op_CompareAndSwapI:
3342   case Op_CompareAndSwapL:
3343   case Op_CompareAndSwapP:
3344   case Op_CompareAndSwapN:
3345   case Op_WeakCompareAndSwapB:
3346   case Op_WeakCompareAndSwapS:
3347   case Op_WeakCompareAndSwapI:
3348   case Op_WeakCompareAndSwapL:
3349   case Op_WeakCompareAndSwapP:
3350   case Op_WeakCompareAndSwapN:
3351   case Op_CompareAndExchangeB:
3352   case Op_CompareAndExchangeS:
3353   case Op_CompareAndExchangeI:
3354   case Op_CompareAndExchangeL:
3355   case Op_CompareAndExchangeP:
3356   case Op_CompareAndExchangeN:
3357   case Op_GetAndAddS:
3358   case Op_GetAndAddB:
3359   case Op_GetAndAddI:
3360   case Op_GetAndAddL:
3361   case Op_GetAndSetS:
3362   case Op_GetAndSetB:
3363   case Op_GetAndSetI:
3364   case Op_GetAndSetL:
3365   case Op_GetAndSetP:
3366   case Op_GetAndSetN:
3367   case Op_StoreP:
3368   case Op_StoreN:
3369   case Op_StoreNKlass:
3370   case Op_LoadB:
3371   case Op_LoadUB:
3372   case Op_LoadUS:
3373   case Op_LoadI:
3374   case Op_LoadKlass:
3375   case Op_LoadNKlass:
3376   case Op_LoadL:
3377   case Op_LoadL_unaligned:
3378   case Op_LoadP:
3379   case Op_LoadN:
3380   case Op_LoadRange:
3381   case Op_LoadS:
3382     break;
3383 
3384   case Op_AddP: {               // Assert sane base pointers
3385     Node *addp = n->in(AddPNode::Address);
3386     assert( !addp->is_AddP() ||
3387             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
3388             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
3389             "Base pointers must match (addp %u)", addp->_idx );
3390 #ifdef _LP64
3391     if ((UseCompressedOops || UseCompressedClassPointers) &&
3392         addp->Opcode() == Op_ConP &&
3393         addp == n->in(AddPNode::Base) &&
3394         n->in(AddPNode::Offset)->is_Con()) {
3395       // If the transformation of ConP to ConN+DecodeN is beneficial depends
3396       // on the platform and on the compressed oops mode.
3397       // Use addressing with narrow klass to load with offset on x86.
3398       // Some platforms can use the constant pool to load ConP.
3399       // Do this transformation here since IGVN will convert ConN back to ConP.
3400       const Type* t = addp->bottom_type();
3401       bool is_oop   = t->isa_oopptr() != nullptr;
3402       bool is_klass = t->isa_klassptr() != nullptr;
3403 
3404       if ((is_oop   && UseCompressedOops          && Matcher::const_oop_prefer_decode()  ) ||
3405           (is_klass && UseCompressedClassPointers && Matcher::const_klass_prefer_decode() &&
3406            t->isa_klassptr()->exact_klass()->is_in_encoding_range())) {
3407         Node* nn = nullptr;
3408 
3409         int op = is_oop ? Op_ConN : Op_ConNKlass;
3410 
3411         // Look for existing ConN node of the same exact type.
3412         Node* r  = root();
3413         uint cnt = r->outcnt();
3414         for (uint i = 0; i < cnt; i++) {
3415           Node* m = r->raw_out(i);
3416           if (m!= nullptr && m->Opcode() == op &&
3417               m->bottom_type()->make_ptr() == t) {
3418             nn = m;
3419             break;
3420           }
3421         }
3422         if (nn != nullptr) {
3423           // Decode a narrow oop to match address
3424           // [R12 + narrow_oop_reg<<3 + offset]
3425           if (is_oop) {
3426             nn = new DecodeNNode(nn, t);
3427           } else {
3428             nn = new DecodeNKlassNode(nn, t);
3429           }
3430           // Check for succeeding AddP which uses the same Base.
3431           // Otherwise we will run into the assertion above when visiting that guy.
3432           for (uint i = 0; i < n->outcnt(); ++i) {
3433             Node *out_i = n->raw_out(i);
3434             if (out_i && out_i->is_AddP() && out_i->in(AddPNode::Base) == addp) {
3435               out_i->set_req(AddPNode::Base, nn);
3436 #ifdef ASSERT
3437               for (uint j = 0; j < out_i->outcnt(); ++j) {
3438                 Node *out_j = out_i->raw_out(j);
3439                 assert(out_j == nullptr || !out_j->is_AddP() || out_j->in(AddPNode::Base) != addp,
3440                        "more than 2 AddP nodes in a chain (out_j %u)", out_j->_idx);
3441               }
3442 #endif
3443             }
3444           }
3445           n->set_req(AddPNode::Base, nn);
3446           n->set_req(AddPNode::Address, nn);
3447           if (addp->outcnt() == 0) {
3448             addp->disconnect_inputs(this);
3449           }
3450         }
3451       }
3452     }
3453 #endif
3454     break;
3455   }
3456 
3457   case Op_CastPP: {
3458     // Remove CastPP nodes to gain more freedom during scheduling but
3459     // keep the dependency they encode as control or precedence edges
3460     // (if control is set already) on memory operations. Some CastPP
3461     // nodes don't have a control (don't carry a dependency): skip
3462     // those.
3463     if (n->in(0) != nullptr) {
3464       ResourceMark rm;
3465       Unique_Node_List wq;
3466       wq.push(n);
3467       for (uint next = 0; next < wq.size(); ++next) {
3468         Node *m = wq.at(next);
3469         for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) {
3470           Node* use = m->fast_out(i);
3471           if (use->is_Mem() || use->is_EncodeNarrowPtr()) {
3472             use->ensure_control_or_add_prec(n->in(0));
3473           } else {
3474             switch(use->Opcode()) {
3475             case Op_AddP:
3476             case Op_DecodeN:
3477             case Op_DecodeNKlass:
3478             case Op_CheckCastPP:
3479             case Op_CastPP:
3480               wq.push(use);
3481               break;
3482             }
3483           }
3484         }
3485       }
3486     }
3487     const bool is_LP64 = LP64_ONLY(true) NOT_LP64(false);
3488     if (is_LP64 && n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
3489       Node* in1 = n->in(1);
3490       const Type* t = n->bottom_type();
3491       Node* new_in1 = in1->clone();
3492       new_in1->as_DecodeN()->set_type(t);
3493 
3494       if (!Matcher::narrow_oop_use_complex_address()) {
3495         //
3496         // x86, ARM and friends can handle 2 adds in addressing mode
3497         // and Matcher can fold a DecodeN node into address by using
3498         // a narrow oop directly and do implicit null check in address:
3499         //
3500         // [R12 + narrow_oop_reg<<3 + offset]
3501         // NullCheck narrow_oop_reg
3502         //
3503         // On other platforms (Sparc) we have to keep new DecodeN node and
3504         // use it to do implicit null check in address:
3505         //
3506         // decode_not_null narrow_oop_reg, base_reg
3507         // [base_reg + offset]
3508         // NullCheck base_reg
3509         //
3510         // Pin the new DecodeN node to non-null path on these platform (Sparc)
3511         // to keep the information to which null check the new DecodeN node
3512         // corresponds to use it as value in implicit_null_check().
3513         //
3514         new_in1->set_req(0, n->in(0));
3515       }
3516 
3517       n->subsume_by(new_in1, this);
3518       if (in1->outcnt() == 0) {
3519         in1->disconnect_inputs(this);
3520       }
3521     } else {
3522       n->subsume_by(n->in(1), this);
3523       if (n->outcnt() == 0) {
3524         n->disconnect_inputs(this);
3525       }
3526     }
3527     break;
3528   }
3529   case Op_CastII: {
3530     n->as_CastII()->remove_range_check_cast(this);
3531     break;
3532   }
3533 #ifdef _LP64
3534   case Op_CmpP:
3535     // Do this transformation here to preserve CmpPNode::sub() and
3536     // other TypePtr related Ideal optimizations (for example, ptr nullness).
3537     if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
3538       Node* in1 = n->in(1);
3539       Node* in2 = n->in(2);
3540       if (!in1->is_DecodeNarrowPtr()) {
3541         in2 = in1;
3542         in1 = n->in(2);
3543       }
3544       assert(in1->is_DecodeNarrowPtr(), "sanity");
3545 
3546       Node* new_in2 = nullptr;
3547       if (in2->is_DecodeNarrowPtr()) {
3548         assert(in2->Opcode() == in1->Opcode(), "must be same node type");
3549         new_in2 = in2->in(1);
3550       } else if (in2->Opcode() == Op_ConP) {
3551         const Type* t = in2->bottom_type();
3552         if (t == TypePtr::NULL_PTR) {
3553           assert(in1->is_DecodeN(), "compare klass to null?");
3554           // Don't convert CmpP null check into CmpN if compressed
3555           // oops implicit null check is not generated.
3556           // This will allow to generate normal oop implicit null check.
3557           if (Matcher::gen_narrow_oop_implicit_null_checks())
3558             new_in2 = ConNode::make(TypeNarrowOop::NULL_PTR);
3559           //
3560           // This transformation together with CastPP transformation above
3561           // will generated code for implicit null checks for compressed oops.
3562           //
3563           // The original code after Optimize()
3564           //
3565           //    LoadN memory, narrow_oop_reg
3566           //    decode narrow_oop_reg, base_reg
3567           //    CmpP base_reg, nullptr
3568           //    CastPP base_reg // NotNull
3569           //    Load [base_reg + offset], val_reg
3570           //
3571           // after these transformations will be
3572           //
3573           //    LoadN memory, narrow_oop_reg
3574           //    CmpN narrow_oop_reg, nullptr
3575           //    decode_not_null narrow_oop_reg, base_reg
3576           //    Load [base_reg + offset], val_reg
3577           //
3578           // and the uncommon path (== nullptr) will use narrow_oop_reg directly
3579           // since narrow oops can be used in debug info now (see the code in
3580           // final_graph_reshaping_walk()).
3581           //
3582           // At the end the code will be matched to
3583           // on x86:
3584           //
3585           //    Load_narrow_oop memory, narrow_oop_reg
3586           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
3587           //    NullCheck narrow_oop_reg
3588           //
3589           // and on sparc:
3590           //
3591           //    Load_narrow_oop memory, narrow_oop_reg
3592           //    decode_not_null narrow_oop_reg, base_reg
3593           //    Load [base_reg + offset], val_reg
3594           //    NullCheck base_reg
3595           //
3596         } else if (t->isa_oopptr()) {
3597           new_in2 = ConNode::make(t->make_narrowoop());
3598         } else if (t->isa_klassptr()) {
3599           new_in2 = ConNode::make(t->make_narrowklass());
3600         }
3601       }
3602       if (new_in2 != nullptr) {
3603         Node* cmpN = new CmpNNode(in1->in(1), new_in2);
3604         n->subsume_by(cmpN, this);
3605         if (in1->outcnt() == 0) {
3606           in1->disconnect_inputs(this);
3607         }
3608         if (in2->outcnt() == 0) {
3609           in2->disconnect_inputs(this);
3610         }
3611       }
3612     }
3613     break;
3614 
3615   case Op_DecodeN:
3616   case Op_DecodeNKlass:
3617     assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
3618     // DecodeN could be pinned when it can't be fold into
3619     // an address expression, see the code for Op_CastPP above.
3620     assert(n->in(0) == nullptr || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
3621     break;
3622 
3623   case Op_EncodeP:
3624   case Op_EncodePKlass: {
3625     Node* in1 = n->in(1);
3626     if (in1->is_DecodeNarrowPtr()) {
3627       n->subsume_by(in1->in(1), this);
3628     } else if (in1->Opcode() == Op_ConP) {
3629       const Type* t = in1->bottom_type();
3630       if (t == TypePtr::NULL_PTR) {
3631         assert(t->isa_oopptr(), "null klass?");
3632         n->subsume_by(ConNode::make(TypeNarrowOop::NULL_PTR), this);
3633       } else if (t->isa_oopptr()) {
3634         n->subsume_by(ConNode::make(t->make_narrowoop()), this);
3635       } else if (t->isa_klassptr()) {
3636         n->subsume_by(ConNode::make(t->make_narrowklass()), this);
3637       }
3638     }
3639     if (in1->outcnt() == 0) {
3640       in1->disconnect_inputs(this);
3641     }
3642     break;
3643   }
3644 
3645   case Op_Proj: {
3646     if (OptimizeStringConcat || IncrementalInline) {
3647       ProjNode* proj = n->as_Proj();
3648       if (proj->_is_io_use) {
3649         assert(proj->_con == TypeFunc::I_O || proj->_con == TypeFunc::Memory, "");
3650         // Separate projections were used for the exception path which
3651         // are normally removed by a late inline.  If it wasn't inlined
3652         // then they will hang around and should just be replaced with
3653         // the original one. Merge them.
3654         Node* non_io_proj = proj->in(0)->as_Multi()->proj_out_or_null(proj->_con, false /*is_io_use*/);
3655         if (non_io_proj  != nullptr) {
3656           proj->subsume_by(non_io_proj , this);
3657         }
3658       }
3659     }
3660     break;
3661   }
3662 
3663   case Op_Phi:
3664     if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
3665       // The EncodeP optimization may create Phi with the same edges
3666       // for all paths. It is not handled well by Register Allocator.
3667       Node* unique_in = n->in(1);
3668       assert(unique_in != nullptr, "");
3669       uint cnt = n->req();
3670       for (uint i = 2; i < cnt; i++) {
3671         Node* m = n->in(i);
3672         assert(m != nullptr, "");
3673         if (unique_in != m)
3674           unique_in = nullptr;
3675       }
3676       if (unique_in != nullptr) {
3677         n->subsume_by(unique_in, this);
3678       }
3679     }
3680     break;
3681 
3682 #endif
3683 
3684   case Op_ModI:
3685     handle_div_mod_op(n, T_INT, false);
3686     break;
3687 
3688   case Op_ModL:
3689     handle_div_mod_op(n, T_LONG, false);
3690     break;
3691 
3692   case Op_UModI:
3693     handle_div_mod_op(n, T_INT, true);
3694     break;
3695 
3696   case Op_UModL:
3697     handle_div_mod_op(n, T_LONG, true);
3698     break;
3699 
3700   case Op_LoadVector:
3701   case Op_StoreVector:
3702 #ifdef ASSERT
3703     // Add VerifyVectorAlignment node between adr and load / store.
3704     if (VerifyAlignVector && Matcher::has_match_rule(Op_VerifyVectorAlignment)) {
3705       bool must_verify_alignment = n->is_LoadVector() ? n->as_LoadVector()->must_verify_alignment() :
3706                                                         n->as_StoreVector()->must_verify_alignment();
3707       if (must_verify_alignment) {
3708         jlong vector_width = n->is_LoadVector() ? n->as_LoadVector()->memory_size() :
3709                                                   n->as_StoreVector()->memory_size();
3710         // The memory access should be aligned to the vector width in bytes.
3711         // However, the underlying array is possibly less well aligned, but at least
3712         // to ObjectAlignmentInBytes. Hence, even if multiple arrays are accessed in
3713         // a loop we can expect at least the following alignment:
3714         jlong guaranteed_alignment = MIN2(vector_width, (jlong)ObjectAlignmentInBytes);
3715         assert(2 <= guaranteed_alignment && guaranteed_alignment <= 64, "alignment must be in range");
3716         assert(is_power_of_2(guaranteed_alignment), "alignment must be power of 2");
3717         // Create mask from alignment. e.g. 0b1000 -> 0b0111
3718         jlong mask = guaranteed_alignment - 1;
3719         Node* mask_con = ConLNode::make(mask);
3720         VerifyVectorAlignmentNode* va = new VerifyVectorAlignmentNode(n->in(MemNode::Address), mask_con);
3721         n->set_req(MemNode::Address, va);
3722       }
3723     }
3724 #endif
3725     break;
3726 
3727   case Op_LoadVectorGather:
3728   case Op_StoreVectorScatter:
3729   case Op_LoadVectorGatherMasked:
3730   case Op_StoreVectorScatterMasked:
3731   case Op_VectorCmpMasked:
3732   case Op_VectorMaskGen:
3733   case Op_LoadVectorMasked:
3734   case Op_StoreVectorMasked:
3735     break;
3736 
3737   case Op_AddReductionVI:
3738   case Op_AddReductionVL:
3739   case Op_AddReductionVF:
3740   case Op_AddReductionVD:
3741   case Op_MulReductionVI:
3742   case Op_MulReductionVL:
3743   case Op_MulReductionVF:
3744   case Op_MulReductionVD:
3745   case Op_MinReductionV:
3746   case Op_MaxReductionV:
3747   case Op_AndReductionV:
3748   case Op_OrReductionV:
3749   case Op_XorReductionV:
3750     break;
3751 
3752   case Op_PackB:
3753   case Op_PackS:
3754   case Op_PackI:
3755   case Op_PackF:
3756   case Op_PackL:
3757   case Op_PackD:
3758     if (n->req()-1 > 2) {
3759       // Replace many operand PackNodes with a binary tree for matching
3760       PackNode* p = (PackNode*) n;
3761       Node* btp = p->binary_tree_pack(1, n->req());
3762       n->subsume_by(btp, this);
3763     }
3764     break;
3765   case Op_Loop:
3766     assert(!n->as_Loop()->is_loop_nest_inner_loop() || _loop_opts_cnt == 0, "should have been turned into a counted loop");
3767   case Op_CountedLoop:
3768   case Op_LongCountedLoop:
3769   case Op_OuterStripMinedLoop:
3770     if (n->as_Loop()->is_inner_loop()) {
3771       frc.inc_inner_loop_count();
3772     }
3773     n->as_Loop()->verify_strip_mined(0);
3774     break;
3775   case Op_LShiftI:
3776   case Op_RShiftI:
3777   case Op_URShiftI:
3778   case Op_LShiftL:
3779   case Op_RShiftL:
3780   case Op_URShiftL:
3781     if (Matcher::need_masked_shift_count) {
3782       // The cpu's shift instructions don't restrict the count to the
3783       // lower 5/6 bits. We need to do the masking ourselves.
3784       Node* in2 = n->in(2);
3785       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
3786       const TypeInt* t = in2->find_int_type();
3787       if (t != nullptr && t->is_con()) {
3788         juint shift = t->get_con();
3789         if (shift > mask) { // Unsigned cmp
3790           n->set_req(2, ConNode::make(TypeInt::make(shift & mask)));
3791         }
3792       } else {
3793         if (t == nullptr || t->_lo < 0 || t->_hi > (int)mask) {
3794           Node* shift = new AndINode(in2, ConNode::make(TypeInt::make(mask)));
3795           n->set_req(2, shift);
3796         }
3797       }
3798       if (in2->outcnt() == 0) { // Remove dead node
3799         in2->disconnect_inputs(this);
3800       }
3801     }
3802     break;
3803   case Op_MemBarStoreStore:
3804   case Op_MemBarRelease:
3805     // Break the link with AllocateNode: it is no longer useful and
3806     // confuses register allocation.
3807     if (n->req() > MemBarNode::Precedent) {
3808       n->set_req(MemBarNode::Precedent, top());
3809     }
3810     break;
3811   case Op_MemBarAcquire: {
3812     if (n->as_MemBar()->trailing_load() && n->req() > MemBarNode::Precedent) {
3813       // At parse time, the trailing MemBarAcquire for a volatile load
3814       // is created with an edge to the load. After optimizations,
3815       // that input may be a chain of Phis. If those phis have no
3816       // other use, then the MemBarAcquire keeps them alive and
3817       // register allocation can be confused.
3818       dead_nodes.push(n->in(MemBarNode::Precedent));
3819       n->set_req(MemBarNode::Precedent, top());
3820     }
3821     break;
3822   }
3823   case Op_Blackhole:
3824     break;
3825   case Op_RangeCheck: {
3826     RangeCheckNode* rc = n->as_RangeCheck();
3827     Node* iff = new IfNode(rc->in(0), rc->in(1), rc->_prob, rc->_fcnt);
3828     n->subsume_by(iff, this);
3829     frc._tests.push(iff);
3830     break;
3831   }
3832   case Op_ConvI2L: {
3833     if (!Matcher::convi2l_type_required) {
3834       // Code generation on some platforms doesn't need accurate
3835       // ConvI2L types. Widening the type can help remove redundant
3836       // address computations.
3837       n->as_Type()->set_type(TypeLong::INT);
3838       ResourceMark rm;
3839       Unique_Node_List wq;
3840       wq.push(n);
3841       for (uint next = 0; next < wq.size(); next++) {
3842         Node *m = wq.at(next);
3843 
3844         for(;;) {
3845           // Loop over all nodes with identical inputs edges as m
3846           Node* k = m->find_similar(m->Opcode());
3847           if (k == nullptr) {
3848             break;
3849           }
3850           // Push their uses so we get a chance to remove node made
3851           // redundant
3852           for (DUIterator_Fast imax, i = k->fast_outs(imax); i < imax; i++) {
3853             Node* u = k->fast_out(i);
3854             if (u->Opcode() == Op_LShiftL ||
3855                 u->Opcode() == Op_AddL ||
3856                 u->Opcode() == Op_SubL ||
3857                 u->Opcode() == Op_AddP) {
3858               wq.push(u);
3859             }
3860           }
3861           // Replace all nodes with identical edges as m with m
3862           k->subsume_by(m, this);
3863         }
3864       }
3865     }
3866     break;
3867   }
3868   case Op_CmpUL: {
3869     if (!Matcher::has_match_rule(Op_CmpUL)) {
3870       // No support for unsigned long comparisons
3871       ConINode* sign_pos = new ConINode(TypeInt::make(BitsPerLong - 1));
3872       Node* sign_bit_mask = new RShiftLNode(n->in(1), sign_pos);
3873       Node* orl = new OrLNode(n->in(1), sign_bit_mask);
3874       ConLNode* remove_sign_mask = new ConLNode(TypeLong::make(max_jlong));
3875       Node* andl = new AndLNode(orl, remove_sign_mask);
3876       Node* cmp = new CmpLNode(andl, n->in(2));
3877       n->subsume_by(cmp, this);
3878     }
3879     break;
3880   }
3881 #ifdef ASSERT
3882   case Op_ConNKlass: {
3883     const TypePtr* tp = n->as_Type()->type()->make_ptr();
3884     ciKlass* klass = tp->is_klassptr()->exact_klass();
3885     assert(klass->is_in_encoding_range(), "klass cannot be compressed");
3886     break;
3887   }
3888 #endif
3889   default:
3890     assert(!n->is_Call(), "");
3891     assert(!n->is_Mem(), "");
3892     assert(nop != Op_ProfileBoolean, "should be eliminated during IGVN");
3893     break;
3894   }
3895 }
3896 
3897 //------------------------------final_graph_reshaping_walk---------------------
3898 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
3899 // requires that the walk visits a node's inputs before visiting the node.
3900 void Compile::final_graph_reshaping_walk(Node_Stack& nstack, Node* root, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes) {
3901   Unique_Node_List sfpt;
3902 
3903   frc._visited.set(root->_idx); // first, mark node as visited
3904   uint cnt = root->req();
3905   Node *n = root;
3906   uint  i = 0;
3907   while (true) {
3908     if (i < cnt) {
3909       // Place all non-visited non-null inputs onto stack
3910       Node* m = n->in(i);
3911       ++i;
3912       if (m != nullptr && !frc._visited.test_set(m->_idx)) {
3913         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != nullptr) {
3914           // compute worst case interpreter size in case of a deoptimization
3915           update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size());
3916 
3917           sfpt.push(m);
3918         }
3919         cnt = m->req();
3920         nstack.push(n, i); // put on stack parent and next input's index
3921         n = m;
3922         i = 0;
3923       }
3924     } else {
3925       // Now do post-visit work
3926       final_graph_reshaping_impl(n, frc, dead_nodes);
3927       if (nstack.is_empty())
3928         break;             // finished
3929       n = nstack.node();   // Get node from stack
3930       cnt = n->req();
3931       i = nstack.index();
3932       nstack.pop();        // Shift to the next node on stack
3933     }
3934   }
3935 
3936   // Skip next transformation if compressed oops are not used.
3937   if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
3938       (!UseCompressedOops && !UseCompressedClassPointers))
3939     return;
3940 
3941   // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
3942   // It could be done for an uncommon traps or any safepoints/calls
3943   // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
3944   while (sfpt.size() > 0) {
3945     n = sfpt.pop();
3946     JVMState *jvms = n->as_SafePoint()->jvms();
3947     assert(jvms != nullptr, "sanity");
3948     int start = jvms->debug_start();
3949     int end   = n->req();
3950     bool is_uncommon = (n->is_CallStaticJava() &&
3951                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
3952     for (int j = start; j < end; j++) {
3953       Node* in = n->in(j);
3954       if (in->is_DecodeNarrowPtr()) {
3955         bool safe_to_skip = true;
3956         if (!is_uncommon ) {
3957           // Is it safe to skip?
3958           for (uint i = 0; i < in->outcnt(); i++) {
3959             Node* u = in->raw_out(i);
3960             if (!u->is_SafePoint() ||
3961                 (u->is_Call() && u->as_Call()->has_non_debug_use(n))) {
3962               safe_to_skip = false;
3963             }
3964           }
3965         }
3966         if (safe_to_skip) {
3967           n->set_req(j, in->in(1));
3968         }
3969         if (in->outcnt() == 0) {
3970           in->disconnect_inputs(this);
3971         }
3972       }
3973     }
3974   }
3975 }
3976 
3977 //------------------------------final_graph_reshaping--------------------------
3978 // Final Graph Reshaping.
3979 //
3980 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
3981 //     and not commoned up and forced early.  Must come after regular
3982 //     optimizations to avoid GVN undoing the cloning.  Clone constant
3983 //     inputs to Loop Phis; these will be split by the allocator anyways.
3984 //     Remove Opaque nodes.
3985 // (2) Move last-uses by commutative operations to the left input to encourage
3986 //     Intel update-in-place two-address operations and better register usage
3987 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
3988 //     calls canonicalizing them back.
3989 // (3) Count the number of double-precision FP ops, single-precision FP ops
3990 //     and call sites.  On Intel, we can get correct rounding either by
3991 //     forcing singles to memory (requires extra stores and loads after each
3992 //     FP bytecode) or we can set a rounding mode bit (requires setting and
3993 //     clearing the mode bit around call sites).  The mode bit is only used
3994 //     if the relative frequency of single FP ops to calls is low enough.
3995 //     This is a key transform for SPEC mpeg_audio.
3996 // (4) Detect infinite loops; blobs of code reachable from above but not
3997 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
3998 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
3999 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
4000 //     Detection is by looking for IfNodes where only 1 projection is
4001 //     reachable from below or CatchNodes missing some targets.
4002 // (5) Assert for insane oop offsets in debug mode.
4003 
4004 bool Compile::final_graph_reshaping() {
4005   // an infinite loop may have been eliminated by the optimizer,
4006   // in which case the graph will be empty.
4007   if (root()->req() == 1) {
4008     // Do not compile method that is only a trivial infinite loop,
4009     // since the content of the loop may have been eliminated.
4010     record_method_not_compilable("trivial infinite loop");
4011     return true;
4012   }
4013 
4014   // Expensive nodes have their control input set to prevent the GVN
4015   // from freely commoning them. There's no GVN beyond this point so
4016   // no need to keep the control input. We want the expensive nodes to
4017   // be freely moved to the least frequent code path by gcm.
4018   assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
4019   for (int i = 0; i < expensive_count(); i++) {
4020     _expensive_nodes.at(i)->set_req(0, nullptr);
4021   }
4022 
4023   Final_Reshape_Counts frc;
4024 
4025   // Visit everybody reachable!
4026   // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc
4027   Node_Stack nstack(live_nodes() >> 1);
4028   Unique_Node_List dead_nodes;
4029   final_graph_reshaping_walk(nstack, root(), frc, dead_nodes);
4030 
4031   // Check for unreachable (from below) code (i.e., infinite loops).
4032   for( uint i = 0; i < frc._tests.size(); i++ ) {
4033     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
4034     // Get number of CFG targets.
4035     // Note that PCTables include exception targets after calls.
4036     uint required_outcnt = n->required_outcnt();
4037     if (n->outcnt() != required_outcnt) {
4038       // Check for a few special cases.  Rethrow Nodes never take the
4039       // 'fall-thru' path, so expected kids is 1 less.
4040       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
4041         if (n->in(0)->in(0)->is_Call()) {
4042           CallNode* call = n->in(0)->in(0)->as_Call();
4043           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
4044             required_outcnt--;      // Rethrow always has 1 less kid
4045           } else if (call->req() > TypeFunc::Parms &&
4046                      call->is_CallDynamicJava()) {
4047             // Check for null receiver. In such case, the optimizer has
4048             // detected that the virtual call will always result in a null
4049             // pointer exception. The fall-through projection of this CatchNode
4050             // will not be populated.
4051             Node* arg0 = call->in(TypeFunc::Parms);
4052             if (arg0->is_Type() &&
4053                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
4054               required_outcnt--;
4055             }
4056           } else if (call->entry_point() == OptoRuntime::new_array_Java() ||
4057                      call->entry_point() == OptoRuntime::new_array_nozero_Java()) {
4058             // Check for illegal array length. In such case, the optimizer has
4059             // detected that the allocation attempt will always result in an
4060             // exception. There is no fall-through projection of this CatchNode .
4061             assert(call->is_CallStaticJava(), "static call expected");
4062             assert(call->req() == call->jvms()->endoff() + 1, "missing extra input");
4063             uint valid_length_test_input = call->req() - 1;
4064             Node* valid_length_test = call->in(valid_length_test_input);
4065             call->del_req(valid_length_test_input);
4066             if (valid_length_test->find_int_con(1) == 0) {
4067               required_outcnt--;
4068             }
4069             dead_nodes.push(valid_length_test);
4070             assert(n->outcnt() == required_outcnt, "malformed control flow");
4071             continue;
4072           }
4073         }
4074       }
4075 
4076       // Recheck with a better notion of 'required_outcnt'
4077       if (n->outcnt() != required_outcnt) {
4078         record_method_not_compilable("malformed control flow");
4079         return true;            // Not all targets reachable!
4080       }
4081     } else if (n->is_PCTable() && n->in(0) && n->in(0)->in(0) && n->in(0)->in(0)->is_Call()) {
4082       CallNode* call = n->in(0)->in(0)->as_Call();
4083       if (call->entry_point() == OptoRuntime::new_array_Java() ||
4084           call->entry_point() == OptoRuntime::new_array_nozero_Java()) {
4085         assert(call->is_CallStaticJava(), "static call expected");
4086         assert(call->req() == call->jvms()->endoff() + 1, "missing extra input");
4087         uint valid_length_test_input = call->req() - 1;
4088         dead_nodes.push(call->in(valid_length_test_input));
4089         call->del_req(valid_length_test_input); // valid length test useless now
4090       }
4091     }
4092     // Check that I actually visited all kids.  Unreached kids
4093     // must be infinite loops.
4094     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
4095       if (!frc._visited.test(n->fast_out(j)->_idx)) {
4096         record_method_not_compilable("infinite loop");
4097         return true;            // Found unvisited kid; must be unreach
4098       }
4099 
4100     // Here so verification code in final_graph_reshaping_walk()
4101     // always see an OuterStripMinedLoopEnd
4102     if (n->is_OuterStripMinedLoopEnd() || n->is_LongCountedLoopEnd()) {
4103       IfNode* init_iff = n->as_If();
4104       Node* iff = new IfNode(init_iff->in(0), init_iff->in(1), init_iff->_prob, init_iff->_fcnt);
4105       n->subsume_by(iff, this);
4106     }
4107   }
4108 
4109   while (dead_nodes.size() > 0) {
4110     Node* m = dead_nodes.pop();
4111     if (m->outcnt() == 0 && m != top()) {
4112       for (uint j = 0; j < m->req(); j++) {
4113         Node* in = m->in(j);
4114         if (in != nullptr) {
4115           dead_nodes.push(in);
4116         }
4117       }
4118       m->disconnect_inputs(this);
4119     }
4120   }
4121 
4122   set_java_calls(frc.get_java_call_count());
4123   set_inner_loops(frc.get_inner_loop_count());
4124 
4125   // No infinite loops, no reason to bail out.
4126   return false;
4127 }
4128 
4129 //-----------------------------too_many_traps----------------------------------
4130 // Report if there are too many traps at the current method and bci.
4131 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
4132 bool Compile::too_many_traps(ciMethod* method,
4133                              int bci,
4134                              Deoptimization::DeoptReason reason) {
4135   ciMethodData* md = method->method_data();
4136   if (md->is_empty()) {
4137     // Assume the trap has not occurred, or that it occurred only
4138     // because of a transient condition during start-up in the interpreter.
4139     return false;
4140   }
4141   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : nullptr;
4142   if (md->has_trap_at(bci, m, reason) != 0) {
4143     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
4144     // Also, if there are multiple reasons, or if there is no per-BCI record,
4145     // assume the worst.
4146     if (log())
4147       log()->elem("observe trap='%s' count='%d'",
4148                   Deoptimization::trap_reason_name(reason),
4149                   md->trap_count(reason));
4150     return true;
4151   } else {
4152     // Ignore method/bci and see if there have been too many globally.
4153     return too_many_traps(reason, md);
4154   }
4155 }
4156 
4157 // Less-accurate variant which does not require a method and bci.
4158 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
4159                              ciMethodData* logmd) {
4160   if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) {
4161     // Too many traps globally.
4162     // Note that we use cumulative trap_count, not just md->trap_count.
4163     if (log()) {
4164       int mcount = (logmd == nullptr)? -1: (int)logmd->trap_count(reason);
4165       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
4166                   Deoptimization::trap_reason_name(reason),
4167                   mcount, trap_count(reason));
4168     }
4169     return true;
4170   } else {
4171     // The coast is clear.
4172     return false;
4173   }
4174 }
4175 
4176 //--------------------------too_many_recompiles--------------------------------
4177 // Report if there are too many recompiles at the current method and bci.
4178 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
4179 // Is not eager to return true, since this will cause the compiler to use
4180 // Action_none for a trap point, to avoid too many recompilations.
4181 bool Compile::too_many_recompiles(ciMethod* method,
4182                                   int bci,
4183                                   Deoptimization::DeoptReason reason) {
4184   ciMethodData* md = method->method_data();
4185   if (md->is_empty()) {
4186     // Assume the trap has not occurred, or that it occurred only
4187     // because of a transient condition during start-up in the interpreter.
4188     return false;
4189   }
4190   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
4191   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
4192   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
4193   Deoptimization::DeoptReason per_bc_reason
4194     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
4195   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : nullptr;
4196   if ((per_bc_reason == Deoptimization::Reason_none
4197        || md->has_trap_at(bci, m, reason) != 0)
4198       // The trap frequency measure we care about is the recompile count:
4199       && md->trap_recompiled_at(bci, m)
4200       && md->overflow_recompile_count() >= bc_cutoff) {
4201     // Do not emit a trap here if it has already caused recompilations.
4202     // Also, if there are multiple reasons, or if there is no per-BCI record,
4203     // assume the worst.
4204     if (log())
4205       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
4206                   Deoptimization::trap_reason_name(reason),
4207                   md->trap_count(reason),
4208                   md->overflow_recompile_count());
4209     return true;
4210   } else if (trap_count(reason) != 0
4211              && decompile_count() >= m_cutoff) {
4212     // Too many recompiles globally, and we have seen this sort of trap.
4213     // Use cumulative decompile_count, not just md->decompile_count.
4214     if (log())
4215       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
4216                   Deoptimization::trap_reason_name(reason),
4217                   md->trap_count(reason), trap_count(reason),
4218                   md->decompile_count(), decompile_count());
4219     return true;
4220   } else {
4221     // The coast is clear.
4222     return false;
4223   }
4224 }
4225 
4226 // Compute when not to trap. Used by matching trap based nodes and
4227 // NullCheck optimization.
4228 void Compile::set_allowed_deopt_reasons() {
4229   _allowed_reasons = 0;
4230   if (is_method_compilation()) {
4231     for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) {
4232       assert(rs < BitsPerInt, "recode bit map");
4233       if (!too_many_traps((Deoptimization::DeoptReason) rs)) {
4234         _allowed_reasons |= nth_bit(rs);
4235       }
4236     }
4237   }
4238 }
4239 
4240 bool Compile::needs_clinit_barrier(ciMethod* method, ciMethod* accessing_method) {
4241   return method->is_static() && needs_clinit_barrier(method->holder(), accessing_method);
4242 }
4243 
4244 bool Compile::needs_clinit_barrier(ciField* field, ciMethod* accessing_method) {
4245   return field->is_static() && needs_clinit_barrier(field->holder(), accessing_method);
4246 }
4247 
4248 bool Compile::needs_clinit_barrier(ciInstanceKlass* holder, ciMethod* accessing_method) {
4249   if (holder->is_initialized()) {
4250     return false;
4251   }
4252   if (holder->is_being_initialized()) {
4253     if (accessing_method->holder() == holder) {
4254       // Access inside a class. The barrier can be elided when access happens in <clinit>,
4255       // <init>, or a static method. In all those cases, there was an initialization
4256       // barrier on the holder klass passed.
4257       if (accessing_method->is_static_initializer() ||
4258           accessing_method->is_object_initializer() ||
4259           accessing_method->is_static()) {
4260         return false;
4261       }
4262     } else if (accessing_method->holder()->is_subclass_of(holder)) {
4263       // Access from a subclass. The barrier can be elided only when access happens in <clinit>.
4264       // In case of <init> or a static method, the barrier is on the subclass is not enough:
4265       // child class can become fully initialized while its parent class is still being initialized.
4266       if (accessing_method->is_static_initializer()) {
4267         return false;
4268       }
4269     }
4270     ciMethod* root = method(); // the root method of compilation
4271     if (root != accessing_method) {
4272       return needs_clinit_barrier(holder, root); // check access in the context of compilation root
4273     }
4274   }
4275   return true;
4276 }
4277 
4278 #ifndef PRODUCT
4279 //------------------------------verify_bidirectional_edges---------------------
4280 // For each input edge to a node (ie - for each Use-Def edge), verify that
4281 // there is a corresponding Def-Use edge.
4282 void Compile::verify_bidirectional_edges(Unique_Node_List& visited, const Unique_Node_List* root_and_safepoints) const {
4283   // Allocate stack of size C->live_nodes()/16 to avoid frequent realloc
4284   uint stack_size = live_nodes() >> 4;
4285   Node_List nstack(MAX2(stack_size, (uint) OptoNodeListSize));
4286   if (root_and_safepoints != nullptr) {
4287     assert(root_and_safepoints->member(_root), "root is not in root_and_safepoints");
4288     for (uint i = 0, limit = root_and_safepoints->size(); i < limit; i++) {
4289       Node* root_or_safepoint = root_and_safepoints->at(i);
4290       // If the node is a safepoint, let's check if it still has a control input
4291       // Lack of control input signifies that this node was killed by CCP or
4292       // recursively by remove_globally_dead_node and it shouldn't be a starting
4293       // point.
4294       if (!root_or_safepoint->is_SafePoint() || root_or_safepoint->in(0) != nullptr) {
4295         nstack.push(root_or_safepoint);
4296       }
4297     }
4298   } else {
4299     nstack.push(_root);
4300   }
4301 
4302   while (nstack.size() > 0) {
4303     Node* n = nstack.pop();
4304     if (visited.member(n)) {
4305       continue;
4306     }
4307     visited.push(n);
4308 
4309     // Walk over all input edges, checking for correspondence
4310     uint length = n->len();
4311     for (uint i = 0; i < length; i++) {
4312       Node* in = n->in(i);
4313       if (in != nullptr && !visited.member(in)) {
4314         nstack.push(in); // Put it on stack
4315       }
4316       if (in != nullptr && !in->is_top()) {
4317         // Count instances of `next`
4318         int cnt = 0;
4319         for (uint idx = 0; idx < in->_outcnt; idx++) {
4320           if (in->_out[idx] == n) {
4321             cnt++;
4322           }
4323         }
4324         assert(cnt > 0, "Failed to find Def-Use edge.");
4325         // Check for duplicate edges
4326         // walk the input array downcounting the input edges to n
4327         for (uint j = 0; j < length; j++) {
4328           if (n->in(j) == in) {
4329             cnt--;
4330           }
4331         }
4332         assert(cnt == 0, "Mismatched edge count.");
4333       } else if (in == nullptr) {
4334         assert(i == 0 || i >= n->req() ||
4335                n->is_Region() || n->is_Phi() || n->is_ArrayCopy() ||
4336                (n->is_Unlock() && i == (n->req() - 1)) ||
4337                (n->is_MemBar() && i == 5), // the precedence edge to a membar can be removed during macro node expansion
4338               "only region, phi, arraycopy, unlock or membar nodes have null data edges");
4339       } else {
4340         assert(in->is_top(), "sanity");
4341         // Nothing to check.
4342       }
4343     }
4344   }
4345 }
4346 
4347 //------------------------------verify_graph_edges---------------------------
4348 // Walk the Graph and verify that there is a one-to-one correspondence
4349 // between Use-Def edges and Def-Use edges in the graph.
4350 void Compile::verify_graph_edges(bool no_dead_code, const Unique_Node_List* root_and_safepoints) const {
4351   if (VerifyGraphEdges) {
4352     Unique_Node_List visited;
4353 
4354     // Call graph walk to check edges
4355     verify_bidirectional_edges(visited, root_and_safepoints);
4356     if (no_dead_code) {
4357       // Now make sure that no visited node is used by an unvisited node.
4358       bool dead_nodes = false;
4359       Unique_Node_List checked;
4360       while (visited.size() > 0) {
4361         Node* n = visited.pop();
4362         checked.push(n);
4363         for (uint i = 0; i < n->outcnt(); i++) {
4364           Node* use = n->raw_out(i);
4365           if (checked.member(use))  continue;  // already checked
4366           if (visited.member(use))  continue;  // already in the graph
4367           if (use->is_Con())        continue;  // a dead ConNode is OK
4368           // At this point, we have found a dead node which is DU-reachable.
4369           if (!dead_nodes) {
4370             tty->print_cr("*** Dead nodes reachable via DU edges:");
4371             dead_nodes = true;
4372           }
4373           use->dump(2);
4374           tty->print_cr("---");
4375           checked.push(use);  // No repeats; pretend it is now checked.
4376         }
4377       }
4378       assert(!dead_nodes, "using nodes must be reachable from root");
4379     }
4380   }
4381 }
4382 #endif
4383 
4384 // The Compile object keeps track of failure reasons separately from the ciEnv.
4385 // This is required because there is not quite a 1-1 relation between the
4386 // ciEnv and its compilation task and the Compile object.  Note that one
4387 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
4388 // to backtrack and retry without subsuming loads.  Other than this backtracking
4389 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
4390 // by the logic in C2Compiler.
4391 void Compile::record_failure(const char* reason DEBUG_ONLY(COMMA bool allow_multiple_failures)) {
4392   if (log() != nullptr) {
4393     log()->elem("failure reason='%s' phase='compile'", reason);
4394   }
4395   if (_failure_reason.get() == nullptr) {
4396     // Record the first failure reason.
4397     _failure_reason.set(reason);
4398     if (CaptureBailoutInformation) {
4399       _first_failure_details = new CompilationFailureInfo(reason);
4400     }
4401   } else {
4402     assert(!StressBailout || allow_multiple_failures, "should have handled previous failure.");
4403   }
4404 
4405   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
4406     C->print_method(PHASE_FAILURE, 1);
4407   }
4408   _root = nullptr;  // flush the graph, too
4409 }
4410 
4411 Compile::TracePhase::TracePhase(const char* name, PhaseTraceId id)
4412   : TraceTime(name, &Phase::timers[id], CITime, CITimeVerbose),
4413     _compile(Compile::current()),
4414     _log(nullptr),
4415     _dolog(CITimeVerbose)
4416 {
4417   assert(_compile != nullptr, "sanity check");
4418   assert(id != PhaseTraceId::_t_none, "Don't use none");
4419   if (_dolog) {
4420     _log = _compile->log();
4421   }
4422   if (_log != nullptr) {
4423     _log->begin_head("phase name='%s' nodes='%d' live='%d'", phase_name(), _compile->unique(), _compile->live_nodes());
4424     _log->stamp();
4425     _log->end_head();
4426   }
4427 
4428   // Inform memory statistic, if enabled
4429   if (CompilationMemoryStatistic::enabled()) {
4430     CompilationMemoryStatistic::on_phase_start((int)id, name);
4431   }
4432 }
4433 
4434 Compile::TracePhase::TracePhase(PhaseTraceId id)
4435   : TracePhase(Phase::get_phase_trace_id_text(id), id) {}
4436 
4437 Compile::TracePhase::~TracePhase() {
4438 
4439   // Inform memory statistic, if enabled
4440   if (CompilationMemoryStatistic::enabled()) {
4441     CompilationMemoryStatistic::on_phase_end();
4442   }
4443 
4444   if (_compile->failing_internal()) {
4445     if (_log != nullptr) {
4446       _log->done("phase");
4447     }
4448     return; // timing code, not stressing bailouts.
4449   }
4450 #ifdef ASSERT
4451   if (PrintIdealNodeCount) {
4452     tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
4453                   phase_name(), _compile->unique(), _compile->live_nodes(), _compile->count_live_nodes_by_graph_walk());
4454   }
4455 
4456   if (VerifyIdealNodeCount) {
4457     _compile->print_missing_nodes();
4458   }
4459 #endif
4460 
4461   if (_log != nullptr) {
4462     _log->done("phase name='%s' nodes='%d' live='%d'", phase_name(), _compile->unique(), _compile->live_nodes());
4463   }
4464 }
4465 
4466 //----------------------------static_subtype_check-----------------------------
4467 // Shortcut important common cases when superklass is exact:
4468 // (0) superklass is java.lang.Object (can occur in reflective code)
4469 // (1) subklass is already limited to a subtype of superklass => always ok
4470 // (2) subklass does not overlap with superklass => always fail
4471 // (3) superklass has NO subtypes and we can check with a simple compare.
4472 Compile::SubTypeCheckResult Compile::static_subtype_check(const TypeKlassPtr* superk, const TypeKlassPtr* subk, bool skip) {
4473   if (skip) {
4474     return SSC_full_test;       // Let caller generate the general case.
4475   }
4476 
4477   if (subk->is_java_subtype_of(superk)) {
4478     return SSC_always_true; // (0) and (1)  this test cannot fail
4479   }
4480 
4481   if (!subk->maybe_java_subtype_of(superk)) {
4482     return SSC_always_false; // (2) true path dead; no dynamic test needed
4483   }
4484 
4485   const Type* superelem = superk;
4486   if (superk->isa_aryklassptr()) {
4487     int ignored;
4488     superelem = superk->is_aryklassptr()->base_element_type(ignored);
4489   }
4490 
4491   if (superelem->isa_instklassptr()) {
4492     ciInstanceKlass* ik = superelem->is_instklassptr()->instance_klass();
4493     if (!ik->has_subklass()) {
4494       if (!ik->is_final()) {
4495         // Add a dependency if there is a chance of a later subclass.
4496         dependencies()->assert_leaf_type(ik);
4497       }
4498       if (!superk->maybe_java_subtype_of(subk)) {
4499         return SSC_always_false;
4500       }
4501       return SSC_easy_test;     // (3) caller can do a simple ptr comparison
4502     }
4503   } else {
4504     // A primitive array type has no subtypes.
4505     return SSC_easy_test;       // (3) caller can do a simple ptr comparison
4506   }
4507 
4508   return SSC_full_test;
4509 }
4510 
4511 Node* Compile::conv_I2X_index(PhaseGVN* phase, Node* idx, const TypeInt* sizetype, Node* ctrl) {
4512 #ifdef _LP64
4513   // The scaled index operand to AddP must be a clean 64-bit value.
4514   // Java allows a 32-bit int to be incremented to a negative
4515   // value, which appears in a 64-bit register as a large
4516   // positive number.  Using that large positive number as an
4517   // operand in pointer arithmetic has bad consequences.
4518   // On the other hand, 32-bit overflow is rare, and the possibility
4519   // can often be excluded, if we annotate the ConvI2L node with
4520   // a type assertion that its value is known to be a small positive
4521   // number.  (The prior range check has ensured this.)
4522   // This assertion is used by ConvI2LNode::Ideal.
4523   int index_max = max_jint - 1;  // array size is max_jint, index is one less
4524   if (sizetype != nullptr) index_max = sizetype->_hi - 1;
4525   const TypeInt* iidxtype = TypeInt::make(0, index_max, Type::WidenMax);
4526   idx = constrained_convI2L(phase, idx, iidxtype, ctrl);
4527 #endif
4528   return idx;
4529 }
4530 
4531 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check)
4532 Node* Compile::constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl, bool carry_dependency) {
4533   if (ctrl != nullptr) {
4534     // Express control dependency by a CastII node with a narrow type.
4535     // Make the CastII node dependent on the control input to prevent the narrowed ConvI2L
4536     // node from floating above the range check during loop optimizations. Otherwise, the
4537     // ConvI2L node may be eliminated independently of the range check, causing the data path
4538     // to become TOP while the control path is still there (although it's unreachable).
4539     value = new CastIINode(ctrl, value, itype, carry_dependency ? ConstraintCastNode::StrongDependency : ConstraintCastNode::RegularDependency, true /* range check dependency */);
4540     value = phase->transform(value);
4541   }
4542   const TypeLong* ltype = TypeLong::make(itype->_lo, itype->_hi, itype->_widen);
4543   return phase->transform(new ConvI2LNode(value, ltype));
4544 }
4545 
4546 void Compile::dump_print_inlining() {
4547   inline_printer()->print_on(tty);
4548 }
4549 
4550 void Compile::log_late_inline(CallGenerator* cg) {
4551   if (log() != nullptr) {
4552     log()->head("late_inline method='%d'  inline_id='" JLONG_FORMAT "'", log()->identify(cg->method()),
4553                 cg->unique_id());
4554     JVMState* p = cg->call_node()->jvms();
4555     while (p != nullptr) {
4556       log()->elem("jvms bci='%d' method='%d'", p->bci(), log()->identify(p->method()));
4557       p = p->caller();
4558     }
4559     log()->tail("late_inline");
4560   }
4561 }
4562 
4563 void Compile::log_late_inline_failure(CallGenerator* cg, const char* msg) {
4564   log_late_inline(cg);
4565   if (log() != nullptr) {
4566     log()->inline_fail(msg);
4567   }
4568 }
4569 
4570 void Compile::log_inline_id(CallGenerator* cg) {
4571   if (log() != nullptr) {
4572     // The LogCompilation tool needs a unique way to identify late
4573     // inline call sites. This id must be unique for this call site in
4574     // this compilation. Try to have it unique across compilations as
4575     // well because it can be convenient when grepping through the log
4576     // file.
4577     // Distinguish OSR compilations from others in case CICountOSR is
4578     // on.
4579     jlong id = ((jlong)unique()) + (((jlong)compile_id()) << 33) + (CICountOSR && is_osr_compilation() ? ((jlong)1) << 32 : 0);
4580     cg->set_unique_id(id);
4581     log()->elem("inline_id id='" JLONG_FORMAT "'", id);
4582   }
4583 }
4584 
4585 void Compile::log_inline_failure(const char* msg) {
4586   if (C->log() != nullptr) {
4587     C->log()->inline_fail(msg);
4588   }
4589 }
4590 
4591 
4592 // Dump inlining replay data to the stream.
4593 // Don't change thread state and acquire any locks.
4594 void Compile::dump_inline_data(outputStream* out) {
4595   InlineTree* inl_tree = ilt();
4596   if (inl_tree != nullptr) {
4597     out->print(" inline %d", inl_tree->count());
4598     inl_tree->dump_replay_data(out);
4599   }
4600 }
4601 
4602 void Compile::dump_inline_data_reduced(outputStream* out) {
4603   assert(ReplayReduce, "");
4604 
4605   InlineTree* inl_tree = ilt();
4606   if (inl_tree == nullptr) {
4607     return;
4608   }
4609   // Enable iterative replay file reduction
4610   // Output "compile" lines for depth 1 subtrees,
4611   // simulating that those trees were compiled
4612   // instead of inlined.
4613   for (int i = 0; i < inl_tree->subtrees().length(); ++i) {
4614     InlineTree* sub = inl_tree->subtrees().at(i);
4615     if (sub->inline_level() != 1) {
4616       continue;
4617     }
4618 
4619     ciMethod* method = sub->method();
4620     int entry_bci = -1;
4621     int comp_level = env()->task()->comp_level();
4622     out->print("compile ");
4623     method->dump_name_as_ascii(out);
4624     out->print(" %d %d", entry_bci, comp_level);
4625     out->print(" inline %d", sub->count());
4626     sub->dump_replay_data(out, -1);
4627     out->cr();
4628   }
4629 }
4630 
4631 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
4632   if (n1->Opcode() < n2->Opcode())      return -1;
4633   else if (n1->Opcode() > n2->Opcode()) return 1;
4634 
4635   assert(n1->req() == n2->req(), "can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req());
4636   for (uint i = 1; i < n1->req(); i++) {
4637     if (n1->in(i) < n2->in(i))      return -1;
4638     else if (n1->in(i) > n2->in(i)) return 1;
4639   }
4640 
4641   return 0;
4642 }
4643 
4644 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
4645   Node* n1 = *n1p;
4646   Node* n2 = *n2p;
4647 
4648   return cmp_expensive_nodes(n1, n2);
4649 }
4650 
4651 void Compile::sort_expensive_nodes() {
4652   if (!expensive_nodes_sorted()) {
4653     _expensive_nodes.sort(cmp_expensive_nodes);
4654   }
4655 }
4656 
4657 bool Compile::expensive_nodes_sorted() const {
4658   for (int i = 1; i < _expensive_nodes.length(); i++) {
4659     if (cmp_expensive_nodes(_expensive_nodes.adr_at(i), _expensive_nodes.adr_at(i-1)) < 0) {
4660       return false;
4661     }
4662   }
4663   return true;
4664 }
4665 
4666 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
4667   if (_expensive_nodes.length() == 0) {
4668     return false;
4669   }
4670 
4671   assert(OptimizeExpensiveOps, "optimization off?");
4672 
4673   // Take this opportunity to remove dead nodes from the list
4674   int j = 0;
4675   for (int i = 0; i < _expensive_nodes.length(); i++) {
4676     Node* n = _expensive_nodes.at(i);
4677     if (!n->is_unreachable(igvn)) {
4678       assert(n->is_expensive(), "should be expensive");
4679       _expensive_nodes.at_put(j, n);
4680       j++;
4681     }
4682   }
4683   _expensive_nodes.trunc_to(j);
4684 
4685   // Then sort the list so that similar nodes are next to each other
4686   // and check for at least two nodes of identical kind with same data
4687   // inputs.
4688   sort_expensive_nodes();
4689 
4690   for (int i = 0; i < _expensive_nodes.length()-1; i++) {
4691     if (cmp_expensive_nodes(_expensive_nodes.adr_at(i), _expensive_nodes.adr_at(i+1)) == 0) {
4692       return true;
4693     }
4694   }
4695 
4696   return false;
4697 }
4698 
4699 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
4700   if (_expensive_nodes.length() == 0) {
4701     return;
4702   }
4703 
4704   assert(OptimizeExpensiveOps, "optimization off?");
4705 
4706   // Sort to bring similar nodes next to each other and clear the
4707   // control input of nodes for which there's only a single copy.
4708   sort_expensive_nodes();
4709 
4710   int j = 0;
4711   int identical = 0;
4712   int i = 0;
4713   bool modified = false;
4714   for (; i < _expensive_nodes.length()-1; i++) {
4715     assert(j <= i, "can't write beyond current index");
4716     if (_expensive_nodes.at(i)->Opcode() == _expensive_nodes.at(i+1)->Opcode()) {
4717       identical++;
4718       _expensive_nodes.at_put(j++, _expensive_nodes.at(i));
4719       continue;
4720     }
4721     if (identical > 0) {
4722       _expensive_nodes.at_put(j++, _expensive_nodes.at(i));
4723       identical = 0;
4724     } else {
4725       Node* n = _expensive_nodes.at(i);
4726       igvn.replace_input_of(n, 0, nullptr);
4727       igvn.hash_insert(n);
4728       modified = true;
4729     }
4730   }
4731   if (identical > 0) {
4732     _expensive_nodes.at_put(j++, _expensive_nodes.at(i));
4733   } else if (_expensive_nodes.length() >= 1) {
4734     Node* n = _expensive_nodes.at(i);
4735     igvn.replace_input_of(n, 0, nullptr);
4736     igvn.hash_insert(n);
4737     modified = true;
4738   }
4739   _expensive_nodes.trunc_to(j);
4740   if (modified) {
4741     igvn.optimize();
4742   }
4743 }
4744 
4745 void Compile::add_expensive_node(Node * n) {
4746   assert(!_expensive_nodes.contains(n), "duplicate entry in expensive list");
4747   assert(n->is_expensive(), "expensive nodes with non-null control here only");
4748   assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
4749   if (OptimizeExpensiveOps) {
4750     _expensive_nodes.append(n);
4751   } else {
4752     // Clear control input and let IGVN optimize expensive nodes if
4753     // OptimizeExpensiveOps is off.
4754     n->set_req(0, nullptr);
4755   }
4756 }
4757 
4758 /**
4759  * Track coarsened Lock and Unlock nodes.
4760  */
4761 
4762 class Lock_List : public Node_List {
4763   uint _origin_cnt;
4764 public:
4765   Lock_List(Arena *a, uint cnt) : Node_List(a), _origin_cnt(cnt) {}
4766   uint origin_cnt() const { return _origin_cnt; }
4767 };
4768 
4769 void Compile::add_coarsened_locks(GrowableArray<AbstractLockNode*>& locks) {
4770   int length = locks.length();
4771   if (length > 0) {
4772     // Have to keep this list until locks elimination during Macro nodes elimination.
4773     Lock_List* locks_list = new (comp_arena()) Lock_List(comp_arena(), length);
4774     AbstractLockNode* alock = locks.at(0);
4775     BoxLockNode* box = alock->box_node()->as_BoxLock();
4776     for (int i = 0; i < length; i++) {
4777       AbstractLockNode* lock = locks.at(i);
4778       assert(lock->is_coarsened(), "expecting only coarsened AbstractLock nodes, but got '%s'[%d] node", lock->Name(), lock->_idx);
4779       locks_list->push(lock);
4780       BoxLockNode* this_box = lock->box_node()->as_BoxLock();
4781       if (this_box != box) {
4782         // Locking regions (BoxLock) could be Unbalanced here:
4783         //  - its coarsened locks were eliminated in earlier
4784         //    macro nodes elimination followed by loop unroll
4785         //  - it is OSR locking region (no Lock node)
4786         // Preserve Unbalanced status in such cases.
4787         if (!this_box->is_unbalanced()) {
4788           this_box->set_coarsened();
4789         }
4790         if (!box->is_unbalanced()) {
4791           box->set_coarsened();
4792         }
4793       }
4794     }
4795     _coarsened_locks.append(locks_list);
4796   }
4797 }
4798 
4799 void Compile::remove_useless_coarsened_locks(Unique_Node_List& useful) {
4800   int count = coarsened_count();
4801   for (int i = 0; i < count; i++) {
4802     Node_List* locks_list = _coarsened_locks.at(i);
4803     for (uint j = 0; j < locks_list->size(); j++) {
4804       Node* lock = locks_list->at(j);
4805       assert(lock->is_AbstractLock(), "sanity");
4806       if (!useful.member(lock)) {
4807         locks_list->yank(lock);
4808       }
4809     }
4810   }
4811 }
4812 
4813 void Compile::remove_coarsened_lock(Node* n) {
4814   if (n->is_AbstractLock()) {
4815     int count = coarsened_count();
4816     for (int i = 0; i < count; i++) {
4817       Node_List* locks_list = _coarsened_locks.at(i);
4818       locks_list->yank(n);
4819     }
4820   }
4821 }
4822 
4823 bool Compile::coarsened_locks_consistent() {
4824   int count = coarsened_count();
4825   for (int i = 0; i < count; i++) {
4826     bool unbalanced = false;
4827     bool modified = false; // track locks kind modifications
4828     Lock_List* locks_list = (Lock_List*)_coarsened_locks.at(i);
4829     uint size = locks_list->size();
4830     if (size == 0) {
4831       unbalanced = false; // All locks were eliminated - good
4832     } else if (size != locks_list->origin_cnt()) {
4833       unbalanced = true; // Some locks were removed from list
4834     } else {
4835       for (uint j = 0; j < size; j++) {
4836         Node* lock = locks_list->at(j);
4837         // All nodes in group should have the same state (modified or not)
4838         if (!lock->as_AbstractLock()->is_coarsened()) {
4839           if (j == 0) {
4840             // first on list was modified, the rest should be too for consistency
4841             modified = true;
4842           } else if (!modified) {
4843             // this lock was modified but previous locks on the list were not
4844             unbalanced = true;
4845             break;
4846           }
4847         } else if (modified) {
4848           // previous locks on list were modified but not this lock
4849           unbalanced = true;
4850           break;
4851         }
4852       }
4853     }
4854     if (unbalanced) {
4855       // unbalanced monitor enter/exit - only some [un]lock nodes were removed or modified
4856 #ifdef ASSERT
4857       if (PrintEliminateLocks) {
4858         tty->print_cr("=== unbalanced coarsened locks ===");
4859         for (uint l = 0; l < size; l++) {
4860           locks_list->at(l)->dump();
4861         }
4862       }
4863 #endif
4864       record_failure(C2Compiler::retry_no_locks_coarsening());
4865       return false;
4866     }
4867   }
4868   return true;
4869 }
4870 
4871 // Mark locking regions (identified by BoxLockNode) as unbalanced if
4872 // locks coarsening optimization removed Lock/Unlock nodes from them.
4873 // Such regions become unbalanced because coarsening only removes part
4874 // of Lock/Unlock nodes in region. As result we can't execute other
4875 // locks elimination optimizations which assume all code paths have
4876 // corresponding pair of Lock/Unlock nodes - they are balanced.
4877 void Compile::mark_unbalanced_boxes() const {
4878   int count = coarsened_count();
4879   for (int i = 0; i < count; i++) {
4880     Node_List* locks_list = _coarsened_locks.at(i);
4881     uint size = locks_list->size();
4882     if (size > 0) {
4883       AbstractLockNode* alock = locks_list->at(0)->as_AbstractLock();
4884       BoxLockNode* box = alock->box_node()->as_BoxLock();
4885       if (alock->is_coarsened()) {
4886         // coarsened_locks_consistent(), which is called before this method, verifies
4887         // that the rest of Lock/Unlock nodes on locks_list are also coarsened.
4888         assert(!box->is_eliminated(), "regions with coarsened locks should not be marked as eliminated");
4889         for (uint j = 1; j < size; j++) {
4890           assert(locks_list->at(j)->as_AbstractLock()->is_coarsened(), "only coarsened locks are expected here");
4891           BoxLockNode* this_box = locks_list->at(j)->as_AbstractLock()->box_node()->as_BoxLock();
4892           if (box != this_box) {
4893             assert(!this_box->is_eliminated(), "regions with coarsened locks should not be marked as eliminated");
4894             box->set_unbalanced();
4895             this_box->set_unbalanced();
4896           }
4897         }
4898       }
4899     }
4900   }
4901 }
4902 
4903 /**
4904  * Remove the speculative part of types and clean up the graph
4905  */
4906 void Compile::remove_speculative_types(PhaseIterGVN &igvn) {
4907   if (UseTypeSpeculation) {
4908     Unique_Node_List worklist;
4909     worklist.push(root());
4910     int modified = 0;
4911     // Go over all type nodes that carry a speculative type, drop the
4912     // speculative part of the type and enqueue the node for an igvn
4913     // which may optimize it out.
4914     for (uint next = 0; next < worklist.size(); ++next) {
4915       Node *n  = worklist.at(next);
4916       if (n->is_Type()) {
4917         TypeNode* tn = n->as_Type();
4918         const Type* t = tn->type();
4919         const Type* t_no_spec = t->remove_speculative();
4920         if (t_no_spec != t) {
4921           bool in_hash = igvn.hash_delete(n);
4922           assert(in_hash || n->hash() == Node::NO_HASH, "node should be in igvn hash table");
4923           tn->set_type(t_no_spec);
4924           igvn.hash_insert(n);
4925           igvn._worklist.push(n); // give it a chance to go away
4926           modified++;
4927         }
4928       }
4929       // Iterate over outs - endless loops is unreachable from below
4930       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
4931         Node *m = n->fast_out(i);
4932         if (not_a_node(m)) {
4933           continue;
4934         }
4935         worklist.push(m);
4936       }
4937     }
4938     // Drop the speculative part of all types in the igvn's type table
4939     igvn.remove_speculative_types();
4940     if (modified > 0) {
4941       igvn.optimize();
4942       if (failing())  return;
4943     }
4944 #ifdef ASSERT
4945     // Verify that after the IGVN is over no speculative type has resurfaced
4946     worklist.clear();
4947     worklist.push(root());
4948     for (uint next = 0; next < worklist.size(); ++next) {
4949       Node *n  = worklist.at(next);
4950       const Type* t = igvn.type_or_null(n);
4951       assert((t == nullptr) || (t == t->remove_speculative()), "no more speculative types");
4952       if (n->is_Type()) {
4953         t = n->as_Type()->type();
4954         assert(t == t->remove_speculative(), "no more speculative types");
4955       }
4956       // Iterate over outs - endless loops is unreachable from below
4957       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
4958         Node *m = n->fast_out(i);
4959         if (not_a_node(m)) {
4960           continue;
4961         }
4962         worklist.push(m);
4963       }
4964     }
4965     igvn.check_no_speculative_types();
4966 #endif
4967   }
4968 }
4969 
4970 // Auxiliary methods to support randomized stressing/fuzzing.
4971 
4972 void Compile::initialize_stress_seed(const DirectiveSet* directive) {
4973   if (FLAG_IS_DEFAULT(StressSeed) || (FLAG_IS_ERGO(StressSeed) && directive->RepeatCompilationOption)) {
4974     _stress_seed = static_cast<uint>(Ticks::now().nanoseconds());
4975     FLAG_SET_ERGO(StressSeed, _stress_seed);
4976   } else {
4977     _stress_seed = StressSeed;
4978   }
4979   if (_log != nullptr) {
4980     _log->elem("stress_test seed='%u'", _stress_seed);
4981   }
4982 }
4983 
4984 int Compile::random() {
4985   _stress_seed = os::next_random(_stress_seed);
4986   return static_cast<int>(_stress_seed);
4987 }
4988 
4989 // This method can be called the arbitrary number of times, with current count
4990 // as the argument. The logic allows selecting a single candidate from the
4991 // running list of candidates as follows:
4992 //    int count = 0;
4993 //    Cand* selected = null;
4994 //    while(cand = cand->next()) {
4995 //      if (randomized_select(++count)) {
4996 //        selected = cand;
4997 //      }
4998 //    }
4999 //
5000 // Including count equalizes the chances any candidate is "selected".
5001 // This is useful when we don't have the complete list of candidates to choose
5002 // from uniformly. In this case, we need to adjust the randomicity of the
5003 // selection, or else we will end up biasing the selection towards the latter
5004 // candidates.
5005 //
5006 // Quick back-envelope calculation shows that for the list of n candidates
5007 // the equal probability for the candidate to persist as "best" can be
5008 // achieved by replacing it with "next" k-th candidate with the probability
5009 // of 1/k. It can be easily shown that by the end of the run, the
5010 // probability for any candidate is converged to 1/n, thus giving the
5011 // uniform distribution among all the candidates.
5012 //
5013 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
5014 #define RANDOMIZED_DOMAIN_POW 29
5015 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
5016 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
5017 bool Compile::randomized_select(int count) {
5018   assert(count > 0, "only positive");
5019   return (random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);
5020 }
5021 
5022 #ifdef ASSERT
5023 // Failures are geometrically distributed with probability 1/StressBailoutMean.
5024 bool Compile::fail_randomly() {
5025   if ((random() % StressBailoutMean) != 0) {
5026     return false;
5027   }
5028   record_failure("StressBailout");
5029   return true;
5030 }
5031 
5032 bool Compile::failure_is_artificial() {
5033   return C->failure_reason_is("StressBailout");
5034 }
5035 #endif
5036 
5037 CloneMap&     Compile::clone_map()                 { return _clone_map; }
5038 void          Compile::set_clone_map(Dict* d)      { _clone_map._dict = d; }
5039 
5040 void NodeCloneInfo::dump_on(outputStream* st) const {
5041   st->print(" {%d:%d} ", idx(), gen());
5042 }
5043 
5044 void CloneMap::clone(Node* old, Node* nnn, int gen) {
5045   uint64_t val = value(old->_idx);
5046   NodeCloneInfo cio(val);
5047   assert(val != 0, "old node should be in the map");
5048   NodeCloneInfo cin(cio.idx(), gen + cio.gen());
5049   insert(nnn->_idx, cin.get());
5050 #ifndef PRODUCT
5051   if (is_debug()) {
5052     tty->print_cr("CloneMap::clone inserted node %d info {%d:%d} into CloneMap", nnn->_idx, cin.idx(), cin.gen());
5053   }
5054 #endif
5055 }
5056 
5057 void CloneMap::verify_insert_and_clone(Node* old, Node* nnn, int gen) {
5058   NodeCloneInfo cio(value(old->_idx));
5059   if (cio.get() == 0) {
5060     cio.set(old->_idx, 0);
5061     insert(old->_idx, cio.get());
5062 #ifndef PRODUCT
5063     if (is_debug()) {
5064       tty->print_cr("CloneMap::verify_insert_and_clone inserted node %d info {%d:%d} into CloneMap", old->_idx, cio.idx(), cio.gen());
5065     }
5066 #endif
5067   }
5068   clone(old, nnn, gen);
5069 }
5070 
5071 int CloneMap::max_gen() const {
5072   int g = 0;
5073   DictI di(_dict);
5074   for(; di.test(); ++di) {
5075     int t = gen(di._key);
5076     if (g < t) {
5077       g = t;
5078 #ifndef PRODUCT
5079       if (is_debug()) {
5080         tty->print_cr("CloneMap::max_gen() update max=%d from %d", g, _2_node_idx_t(di._key));
5081       }
5082 #endif
5083     }
5084   }
5085   return g;
5086 }
5087 
5088 void CloneMap::dump(node_idx_t key, outputStream* st) const {
5089   uint64_t val = value(key);
5090   if (val != 0) {
5091     NodeCloneInfo ni(val);
5092     ni.dump_on(st);
5093   }
5094 }
5095 
5096 void Compile::shuffle_macro_nodes() {
5097   if (_macro_nodes.length() < 2) {
5098     return;
5099   }
5100   for (uint i = _macro_nodes.length() - 1; i >= 1; i--) {
5101     uint j = C->random() % (i + 1);
5102     swap(_macro_nodes.at(i), _macro_nodes.at(j));
5103   }
5104 }
5105 
5106 // Move Allocate nodes to the start of the list
5107 void Compile::sort_macro_nodes() {
5108   int count = macro_count();
5109   int allocates = 0;
5110   for (int i = 0; i < count; i++) {
5111     Node* n = macro_node(i);
5112     if (n->is_Allocate()) {
5113       if (i != allocates) {
5114         Node* tmp = macro_node(allocates);
5115         _macro_nodes.at_put(allocates, n);
5116         _macro_nodes.at_put(i, tmp);
5117       }
5118       allocates++;
5119     }
5120   }
5121 }
5122 
5123 void Compile::print_method(CompilerPhaseType cpt, int level, Node* n) {
5124   if (failing_internal()) { return; } // failing_internal to not stress bailouts from printing code.
5125   EventCompilerPhase event(UNTIMED);
5126   if (event.should_commit()) {
5127     CompilerEvent::PhaseEvent::post(event, C->_latest_stage_start_counter, cpt, C->_compile_id, level);
5128   }
5129 #ifndef PRODUCT
5130   ResourceMark rm;
5131   stringStream ss;
5132   ss.print_raw(CompilerPhaseTypeHelper::to_description(cpt));
5133   int iter = ++_igv_phase_iter[cpt];
5134   if (iter > 1) {
5135     ss.print(" %d", iter);
5136   }
5137   if (n != nullptr) {
5138     ss.print(": %d %s", n->_idx, NodeClassNames[n->Opcode()]);
5139     if (n->is_Call()) {
5140       CallNode* call = n->as_Call();
5141       if (call->_name != nullptr) {
5142         // E.g. uncommon traps etc.
5143         ss.print(" - %s", call->_name);
5144       } else if (call->is_CallJava()) {
5145         CallJavaNode* call_java = call->as_CallJava();
5146         if (call_java->method() != nullptr) {
5147           ss.print(" -");
5148           call_java->method()->print_short_name(&ss);
5149         }
5150       }
5151     }
5152   }
5153 
5154   const char* name = ss.as_string();
5155   if (should_print_igv(level)) {
5156     _igv_printer->print_graph(name);
5157   }
5158   if (should_print_phase(level)) {
5159     print_phase(name);
5160   }
5161   if (should_print_ideal_phase(cpt)) {
5162     print_ideal_ir(CompilerPhaseTypeHelper::to_name(cpt));
5163   }
5164 #endif
5165   C->_latest_stage_start_counter.stamp();
5166 }
5167 
5168 // Only used from CompileWrapper
5169 void Compile::begin_method() {
5170 #ifndef PRODUCT
5171   if (_method != nullptr && should_print_igv(1)) {
5172     _igv_printer->begin_method();
5173   }
5174 #endif
5175   C->_latest_stage_start_counter.stamp();
5176 }
5177 
5178 // Only used from CompileWrapper
5179 void Compile::end_method() {
5180   EventCompilerPhase event(UNTIMED);
5181   if (event.should_commit()) {
5182     CompilerEvent::PhaseEvent::post(event, C->_latest_stage_start_counter, PHASE_END, C->_compile_id, 1);
5183   }
5184 
5185 #ifndef PRODUCT
5186   if (_method != nullptr && should_print_igv(1)) {
5187     _igv_printer->end_method();
5188   }
5189 #endif
5190 }
5191 
5192 #ifndef PRODUCT
5193 bool Compile::should_print_phase(const int level) const {
5194   return PrintPhaseLevel > 0 && directive()->PhasePrintLevelOption >= level &&
5195          _method != nullptr; // Do not print phases for stubs.
5196 }
5197 
5198 bool Compile::should_print_ideal_phase(CompilerPhaseType cpt) const {
5199   return _directive->should_print_ideal_phase(cpt);
5200 }
5201 
5202 void Compile::init_igv() {
5203   if (_igv_printer == nullptr) {
5204     _igv_printer = IdealGraphPrinter::printer();
5205     _igv_printer->set_compile(this);
5206   }
5207 }
5208 
5209 bool Compile::should_print_igv(const int level) {
5210   PRODUCT_RETURN_(return false;);
5211 
5212   if (PrintIdealGraphLevel < 0) { // disabled by the user
5213     return false;
5214   }
5215 
5216   bool need = directive()->IGVPrintLevelOption >= level;
5217   if (need) {
5218     Compile::init_igv();
5219   }
5220   return need;
5221 }
5222 
5223 IdealGraphPrinter* Compile::_debug_file_printer = nullptr;
5224 IdealGraphPrinter* Compile::_debug_network_printer = nullptr;
5225 
5226 // Called from debugger. Prints method to the default file with the default phase name.
5227 // This works regardless of any Ideal Graph Visualizer flags set or not.
5228 // Use in debugger (gdb/rr): p igv_print($sp, $fp, $pc).
5229 void igv_print(void* sp, void* fp, void* pc) {
5230   frame fr(sp, fp, pc);
5231   Compile::current()->igv_print_method_to_file(nullptr, false, &fr);
5232 }
5233 
5234 // Same as igv_print() above but with a specified phase name.
5235 void igv_print(const char* phase_name, void* sp, void* fp, void* pc) {
5236   frame fr(sp, fp, pc);
5237   Compile::current()->igv_print_method_to_file(phase_name, false, &fr);
5238 }
5239 
5240 // Called from debugger. Prints method with the default phase name to the default network or the one specified with
5241 // the network flags for the Ideal Graph Visualizer, or to the default file depending on the 'network' argument.
5242 // This works regardless of any Ideal Graph Visualizer flags set or not.
5243 // Use in debugger (gdb/rr): p igv_print(true, $sp, $fp, $pc).
5244 void igv_print(bool network, void* sp, void* fp, void* pc) {
5245   frame fr(sp, fp, pc);
5246   if (network) {
5247     Compile::current()->igv_print_method_to_network(nullptr, &fr);
5248   } else {
5249     Compile::current()->igv_print_method_to_file(nullptr, false, &fr);
5250   }
5251 }
5252 
5253 // Same as igv_print(bool network, ...) above but with a specified phase name.
5254 // Use in debugger (gdb/rr): p igv_print(true, "MyPhase", $sp, $fp, $pc).
5255 void igv_print(bool network, const char* phase_name, void* sp, void* fp, void* pc) {
5256   frame fr(sp, fp, pc);
5257   if (network) {
5258     Compile::current()->igv_print_method_to_network(phase_name, &fr);
5259   } else {
5260     Compile::current()->igv_print_method_to_file(phase_name, false, &fr);
5261   }
5262 }
5263 
5264 // Called from debugger. Normal write to the default _printer. Only works if Ideal Graph Visualizer printing flags are set.
5265 void igv_print_default() {
5266   Compile::current()->print_method(PHASE_DEBUG, 0);
5267 }
5268 
5269 // Called from debugger, especially when replaying a trace in which the program state cannot be altered like with rr replay.
5270 // A method is appended to an existing default file with the default phase name. This means that igv_append() must follow
5271 // an earlier igv_print(*) call which sets up the file. This works regardless of any Ideal Graph Visualizer flags set or not.
5272 // Use in debugger (gdb/rr): p igv_append($sp, $fp, $pc).
5273 void igv_append(void* sp, void* fp, void* pc) {
5274   frame fr(sp, fp, pc);
5275   Compile::current()->igv_print_method_to_file(nullptr, true, &fr);
5276 }
5277 
5278 // Same as igv_append(...) above but with a specified phase name.
5279 // Use in debugger (gdb/rr): p igv_append("MyPhase", $sp, $fp, $pc).
5280 void igv_append(const char* phase_name, void* sp, void* fp, void* pc) {
5281   frame fr(sp, fp, pc);
5282   Compile::current()->igv_print_method_to_file(phase_name, true, &fr);
5283 }
5284 
5285 void Compile::igv_print_method_to_file(const char* phase_name, bool append, const frame* fr) {
5286   const char* file_name = "custom_debug.xml";
5287   if (_debug_file_printer == nullptr) {
5288     _debug_file_printer = new IdealGraphPrinter(C, file_name, append);
5289   } else {
5290     _debug_file_printer->update_compiled_method(C->method());
5291   }
5292   tty->print_cr("Method %s to %s", append ? "appended" : "printed", file_name);
5293   _debug_file_printer->print_graph(phase_name, fr);
5294 }
5295 
5296 void Compile::igv_print_method_to_network(const char* phase_name, const frame* fr) {
5297   ResourceMark rm;
5298   GrowableArray<const Node*> empty_list;
5299   igv_print_graph_to_network(phase_name, empty_list, fr);
5300 }
5301 
5302 void Compile::igv_print_graph_to_network(const char* name, GrowableArray<const Node*>& visible_nodes, const frame* fr) {
5303   if (_debug_network_printer == nullptr) {
5304     _debug_network_printer = new IdealGraphPrinter(C);
5305   } else {
5306     _debug_network_printer->update_compiled_method(C->method());
5307   }
5308   tty->print_cr("Method printed over network stream to IGV");
5309   _debug_network_printer->print(name, C->root(), visible_nodes, fr);
5310 }
5311 #endif // !PRODUCT
5312 
5313 Node* Compile::narrow_value(BasicType bt, Node* value, const Type* type, PhaseGVN* phase, bool transform_res) {
5314   if (type != nullptr && phase->type(value)->higher_equal(type)) {
5315     return value;
5316   }
5317   Node* result = nullptr;
5318   if (bt == T_BYTE) {
5319     result = phase->transform(new LShiftINode(value, phase->intcon(24)));
5320     result = new RShiftINode(result, phase->intcon(24));
5321   } else if (bt == T_BOOLEAN) {
5322     result = new AndINode(value, phase->intcon(0xFF));
5323   } else if (bt == T_CHAR) {
5324     result = new AndINode(value,phase->intcon(0xFFFF));
5325   } else {
5326     assert(bt == T_SHORT, "unexpected narrow type");
5327     result = phase->transform(new LShiftINode(value, phase->intcon(16)));
5328     result = new RShiftINode(result, phase->intcon(16));
5329   }
5330   if (transform_res) {
5331     result = phase->transform(result);
5332   }
5333   return result;
5334 }
5335 
5336 void Compile::record_method_not_compilable_oom() {
5337   record_method_not_compilable(CompilationMemoryStatistic::failure_reason_memlimit());
5338 }