1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "asm/macroAssembler.hpp" 26 #include "asm/macroAssembler.inline.hpp" 27 #include "ci/ciReplay.hpp" 28 #include "classfile/javaClasses.hpp" 29 #include "code/exceptionHandlerTable.hpp" 30 #include "code/nmethod.hpp" 31 #include "compiler/compilationFailureInfo.hpp" 32 #include "compiler/compilationMemoryStatistic.hpp" 33 #include "compiler/compileBroker.hpp" 34 #include "compiler/compileLog.hpp" 35 #include "compiler/compilerOracle.hpp" 36 #include "compiler/compiler_globals.hpp" 37 #include "compiler/disassembler.hpp" 38 #include "compiler/oopMap.hpp" 39 #include "gc/shared/barrierSet.hpp" 40 #include "gc/shared/c2/barrierSetC2.hpp" 41 #include "jfr/jfrEvents.hpp" 42 #include "jvm_io.h" 43 #include "memory/allocation.hpp" 44 #include "memory/arena.hpp" 45 #include "memory/resourceArea.hpp" 46 #include "opto/addnode.hpp" 47 #include "opto/block.hpp" 48 #include "opto/c2compiler.hpp" 49 #include "opto/callGenerator.hpp" 50 #include "opto/callnode.hpp" 51 #include "opto/castnode.hpp" 52 #include "opto/cfgnode.hpp" 53 #include "opto/chaitin.hpp" 54 #include "opto/compile.hpp" 55 #include "opto/connode.hpp" 56 #include "opto/convertnode.hpp" 57 #include "opto/divnode.hpp" 58 #include "opto/escape.hpp" 59 #include "opto/idealGraphPrinter.hpp" 60 #include "opto/locknode.hpp" 61 #include "opto/loopnode.hpp" 62 #include "opto/machnode.hpp" 63 #include "opto/macro.hpp" 64 #include "opto/matcher.hpp" 65 #include "opto/mathexactnode.hpp" 66 #include "opto/memnode.hpp" 67 #include "opto/mulnode.hpp" 68 #include "opto/narrowptrnode.hpp" 69 #include "opto/node.hpp" 70 #include "opto/opaquenode.hpp" 71 #include "opto/opcodes.hpp" 72 #include "opto/output.hpp" 73 #include "opto/parse.hpp" 74 #include "opto/phaseX.hpp" 75 #include "opto/rootnode.hpp" 76 #include "opto/runtime.hpp" 77 #include "opto/stringopts.hpp" 78 #include "opto/type.hpp" 79 #include "opto/vector.hpp" 80 #include "opto/vectornode.hpp" 81 #include "runtime/globals_extension.hpp" 82 #include "runtime/sharedRuntime.hpp" 83 #include "runtime/signature.hpp" 84 #include "runtime/stubRoutines.hpp" 85 #include "runtime/timer.hpp" 86 #include "utilities/align.hpp" 87 #include "utilities/copy.hpp" 88 #include "utilities/macros.hpp" 89 #include "utilities/resourceHash.hpp" 90 91 // -------------------- Compile::mach_constant_base_node ----------------------- 92 // Constant table base node singleton. 93 MachConstantBaseNode* Compile::mach_constant_base_node() { 94 if (_mach_constant_base_node == nullptr) { 95 _mach_constant_base_node = new MachConstantBaseNode(); 96 _mach_constant_base_node->add_req(C->root()); 97 } 98 return _mach_constant_base_node; 99 } 100 101 102 /// Support for intrinsics. 103 104 // Return the index at which m must be inserted (or already exists). 105 // The sort order is by the address of the ciMethod, with is_virtual as minor key. 106 class IntrinsicDescPair { 107 private: 108 ciMethod* _m; 109 bool _is_virtual; 110 public: 111 IntrinsicDescPair(ciMethod* m, bool is_virtual) : _m(m), _is_virtual(is_virtual) {} 112 static int compare(IntrinsicDescPair* const& key, CallGenerator* const& elt) { 113 ciMethod* m= elt->method(); 114 ciMethod* key_m = key->_m; 115 if (key_m < m) return -1; 116 else if (key_m > m) return 1; 117 else { 118 bool is_virtual = elt->is_virtual(); 119 bool key_virtual = key->_is_virtual; 120 if (key_virtual < is_virtual) return -1; 121 else if (key_virtual > is_virtual) return 1; 122 else return 0; 123 } 124 } 125 }; 126 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found) { 127 #ifdef ASSERT 128 for (int i = 1; i < _intrinsics.length(); i++) { 129 CallGenerator* cg1 = _intrinsics.at(i-1); 130 CallGenerator* cg2 = _intrinsics.at(i); 131 assert(cg1->method() != cg2->method() 132 ? cg1->method() < cg2->method() 133 : cg1->is_virtual() < cg2->is_virtual(), 134 "compiler intrinsics list must stay sorted"); 135 } 136 #endif 137 IntrinsicDescPair pair(m, is_virtual); 138 return _intrinsics.find_sorted<IntrinsicDescPair*, IntrinsicDescPair::compare>(&pair, found); 139 } 140 141 void Compile::register_intrinsic(CallGenerator* cg) { 142 bool found = false; 143 int index = intrinsic_insertion_index(cg->method(), cg->is_virtual(), found); 144 assert(!found, "registering twice"); 145 _intrinsics.insert_before(index, cg); 146 assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked"); 147 } 148 149 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) { 150 assert(m->is_loaded(), "don't try this on unloaded methods"); 151 if (_intrinsics.length() > 0) { 152 bool found = false; 153 int index = intrinsic_insertion_index(m, is_virtual, found); 154 if (found) { 155 return _intrinsics.at(index); 156 } 157 } 158 // Lazily create intrinsics for intrinsic IDs well-known in the runtime. 159 if (m->intrinsic_id() != vmIntrinsics::_none && 160 m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) { 161 CallGenerator* cg = make_vm_intrinsic(m, is_virtual); 162 if (cg != nullptr) { 163 // Save it for next time: 164 register_intrinsic(cg); 165 return cg; 166 } else { 167 gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled); 168 } 169 } 170 return nullptr; 171 } 172 173 // Compile::make_vm_intrinsic is defined in library_call.cpp. 174 175 #ifndef PRODUCT 176 // statistics gathering... 177 178 juint Compile::_intrinsic_hist_count[vmIntrinsics::number_of_intrinsics()] = {0}; 179 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::number_of_intrinsics()] = {0}; 180 181 inline int as_int(vmIntrinsics::ID id) { 182 return vmIntrinsics::as_int(id); 183 } 184 185 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) { 186 assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob"); 187 int oflags = _intrinsic_hist_flags[as_int(id)]; 188 assert(flags != 0, "what happened?"); 189 if (is_virtual) { 190 flags |= _intrinsic_virtual; 191 } 192 bool changed = (flags != oflags); 193 if ((flags & _intrinsic_worked) != 0) { 194 juint count = (_intrinsic_hist_count[as_int(id)] += 1); 195 if (count == 1) { 196 changed = true; // first time 197 } 198 // increment the overall count also: 199 _intrinsic_hist_count[as_int(vmIntrinsics::_none)] += 1; 200 } 201 if (changed) { 202 if (((oflags ^ flags) & _intrinsic_virtual) != 0) { 203 // Something changed about the intrinsic's virtuality. 204 if ((flags & _intrinsic_virtual) != 0) { 205 // This is the first use of this intrinsic as a virtual call. 206 if (oflags != 0) { 207 // We already saw it as a non-virtual, so note both cases. 208 flags |= _intrinsic_both; 209 } 210 } else if ((oflags & _intrinsic_both) == 0) { 211 // This is the first use of this intrinsic as a non-virtual 212 flags |= _intrinsic_both; 213 } 214 } 215 _intrinsic_hist_flags[as_int(id)] = (jubyte) (oflags | flags); 216 } 217 // update the overall flags also: 218 _intrinsic_hist_flags[as_int(vmIntrinsics::_none)] |= (jubyte) flags; 219 return changed; 220 } 221 222 static char* format_flags(int flags, char* buf) { 223 buf[0] = 0; 224 if ((flags & Compile::_intrinsic_worked) != 0) strcat(buf, ",worked"); 225 if ((flags & Compile::_intrinsic_failed) != 0) strcat(buf, ",failed"); 226 if ((flags & Compile::_intrinsic_disabled) != 0) strcat(buf, ",disabled"); 227 if ((flags & Compile::_intrinsic_virtual) != 0) strcat(buf, ",virtual"); 228 if ((flags & Compile::_intrinsic_both) != 0) strcat(buf, ",nonvirtual"); 229 if (buf[0] == 0) strcat(buf, ","); 230 assert(buf[0] == ',', "must be"); 231 return &buf[1]; 232 } 233 234 void Compile::print_intrinsic_statistics() { 235 char flagsbuf[100]; 236 ttyLocker ttyl; 237 if (xtty != nullptr) xtty->head("statistics type='intrinsic'"); 238 tty->print_cr("Compiler intrinsic usage:"); 239 juint total = _intrinsic_hist_count[as_int(vmIntrinsics::_none)]; 240 if (total == 0) total = 1; // avoid div0 in case of no successes 241 #define PRINT_STAT_LINE(name, c, f) \ 242 tty->print_cr(" %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f); 243 for (auto id : EnumRange<vmIntrinsicID>{}) { 244 int flags = _intrinsic_hist_flags[as_int(id)]; 245 juint count = _intrinsic_hist_count[as_int(id)]; 246 if ((flags | count) != 0) { 247 PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf)); 248 } 249 } 250 PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[as_int(vmIntrinsics::_none)], flagsbuf)); 251 if (xtty != nullptr) xtty->tail("statistics"); 252 } 253 254 void Compile::print_statistics() { 255 { ttyLocker ttyl; 256 if (xtty != nullptr) xtty->head("statistics type='opto'"); 257 Parse::print_statistics(); 258 PhaseStringOpts::print_statistics(); 259 PhaseCCP::print_statistics(); 260 PhaseRegAlloc::print_statistics(); 261 PhaseOutput::print_statistics(); 262 PhasePeephole::print_statistics(); 263 PhaseIdealLoop::print_statistics(); 264 ConnectionGraph::print_statistics(); 265 PhaseMacroExpand::print_statistics(); 266 if (xtty != nullptr) xtty->tail("statistics"); 267 } 268 if (_intrinsic_hist_flags[as_int(vmIntrinsics::_none)] != 0) { 269 // put this under its own <statistics> element. 270 print_intrinsic_statistics(); 271 } 272 } 273 #endif //PRODUCT 274 275 void Compile::gvn_replace_by(Node* n, Node* nn) { 276 for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) { 277 Node* use = n->last_out(i); 278 bool is_in_table = initial_gvn()->hash_delete(use); 279 uint uses_found = 0; 280 for (uint j = 0; j < use->len(); j++) { 281 if (use->in(j) == n) { 282 if (j < use->req()) 283 use->set_req(j, nn); 284 else 285 use->set_prec(j, nn); 286 uses_found++; 287 } 288 } 289 if (is_in_table) { 290 // reinsert into table 291 initial_gvn()->hash_find_insert(use); 292 } 293 record_for_igvn(use); 294 PhaseIterGVN::add_users_of_use_to_worklist(nn, use, *_igvn_worklist); 295 i -= uses_found; // we deleted 1 or more copies of this edge 296 } 297 } 298 299 300 // Identify all nodes that are reachable from below, useful. 301 // Use breadth-first pass that records state in a Unique_Node_List, 302 // recursive traversal is slower. 303 void Compile::identify_useful_nodes(Unique_Node_List &useful) { 304 int estimated_worklist_size = live_nodes(); 305 useful.map( estimated_worklist_size, nullptr ); // preallocate space 306 307 // Initialize worklist 308 if (root() != nullptr) { useful.push(root()); } 309 // If 'top' is cached, declare it useful to preserve cached node 310 if (cached_top_node()) { useful.push(cached_top_node()); } 311 312 // Push all useful nodes onto the list, breadthfirst 313 for( uint next = 0; next < useful.size(); ++next ) { 314 assert( next < unique(), "Unique useful nodes < total nodes"); 315 Node *n = useful.at(next); 316 uint max = n->len(); 317 for( uint i = 0; i < max; ++i ) { 318 Node *m = n->in(i); 319 if (not_a_node(m)) continue; 320 useful.push(m); 321 } 322 } 323 } 324 325 // Update dead_node_list with any missing dead nodes using useful 326 // list. Consider all non-useful nodes to be useless i.e., dead nodes. 327 void Compile::update_dead_node_list(Unique_Node_List &useful) { 328 uint max_idx = unique(); 329 VectorSet& useful_node_set = useful.member_set(); 330 331 for (uint node_idx = 0; node_idx < max_idx; node_idx++) { 332 // If node with index node_idx is not in useful set, 333 // mark it as dead in dead node list. 334 if (!useful_node_set.test(node_idx)) { 335 record_dead_node(node_idx); 336 } 337 } 338 } 339 340 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) { 341 int shift = 0; 342 for (int i = 0; i < inlines->length(); i++) { 343 CallGenerator* cg = inlines->at(i); 344 if (useful.member(cg->call_node())) { 345 if (shift > 0) { 346 inlines->at_put(i - shift, cg); 347 } 348 } else { 349 shift++; // skip over the dead element 350 } 351 } 352 if (shift > 0) { 353 inlines->trunc_to(inlines->length() - shift); // remove last elements from compacted array 354 } 355 } 356 357 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Node* dead) { 358 assert(dead != nullptr && dead->is_Call(), "sanity"); 359 int found = 0; 360 for (int i = 0; i < inlines->length(); i++) { 361 if (inlines->at(i)->call_node() == dead) { 362 inlines->remove_at(i); 363 found++; 364 NOT_DEBUG( break; ) // elements are unique, so exit early 365 } 366 } 367 assert(found <= 1, "not unique"); 368 } 369 370 template<typename N, ENABLE_IF_SDEFN(std::is_base_of<Node, N>::value)> 371 void Compile::remove_useless_nodes(GrowableArray<N*>& node_list, Unique_Node_List& useful) { 372 for (int i = node_list.length() - 1; i >= 0; i--) { 373 N* node = node_list.at(i); 374 if (!useful.member(node)) { 375 node_list.delete_at(i); // replaces i-th with last element which is known to be useful (already processed) 376 } 377 } 378 } 379 380 void Compile::remove_useless_node(Node* dead) { 381 remove_modified_node(dead); 382 383 // Constant node that has no out-edges and has only one in-edge from 384 // root is usually dead. However, sometimes reshaping walk makes 385 // it reachable by adding use edges. So, we will NOT count Con nodes 386 // as dead to be conservative about the dead node count at any 387 // given time. 388 if (!dead->is_Con()) { 389 record_dead_node(dead->_idx); 390 } 391 if (dead->is_macro()) { 392 remove_macro_node(dead); 393 } 394 if (dead->is_expensive()) { 395 remove_expensive_node(dead); 396 } 397 if (dead->is_OpaqueTemplateAssertionPredicate()) { 398 remove_template_assertion_predicate_opaque(dead->as_OpaqueTemplateAssertionPredicate()); 399 } 400 if (dead->is_ParsePredicate()) { 401 remove_parse_predicate(dead->as_ParsePredicate()); 402 } 403 if (dead->for_post_loop_opts_igvn()) { 404 remove_from_post_loop_opts_igvn(dead); 405 } 406 if (dead->for_merge_stores_igvn()) { 407 remove_from_merge_stores_igvn(dead); 408 } 409 if (dead->is_Call()) { 410 remove_useless_late_inlines( &_late_inlines, dead); 411 remove_useless_late_inlines( &_string_late_inlines, dead); 412 remove_useless_late_inlines( &_boxing_late_inlines, dead); 413 remove_useless_late_inlines(&_vector_reboxing_late_inlines, dead); 414 415 if (dead->is_CallStaticJava()) { 416 remove_unstable_if_trap(dead->as_CallStaticJava(), false); 417 } 418 } 419 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 420 bs->unregister_potential_barrier_node(dead); 421 } 422 423 // Disconnect all useless nodes by disconnecting those at the boundary. 424 void Compile::disconnect_useless_nodes(Unique_Node_List& useful, Unique_Node_List& worklist, const Unique_Node_List* root_and_safepoints) { 425 uint next = 0; 426 while (next < useful.size()) { 427 Node *n = useful.at(next++); 428 if (n->is_SafePoint()) { 429 // We're done with a parsing phase. Replaced nodes are not valid 430 // beyond that point. 431 n->as_SafePoint()->delete_replaced_nodes(); 432 } 433 // Use raw traversal of out edges since this code removes out edges 434 int max = n->outcnt(); 435 for (int j = 0; j < max; ++j) { 436 Node* child = n->raw_out(j); 437 if (!useful.member(child)) { 438 assert(!child->is_top() || child != top(), 439 "If top is cached in Compile object it is in useful list"); 440 // Only need to remove this out-edge to the useless node 441 n->raw_del_out(j); 442 --j; 443 --max; 444 if (child->is_data_proj_of_pure_function(n)) { 445 worklist.push(n); 446 } 447 } 448 } 449 if (n->outcnt() == 1 && n->has_special_unique_user()) { 450 assert(useful.member(n->unique_out()), "do not push a useless node"); 451 worklist.push(n->unique_out()); 452 } 453 } 454 455 remove_useless_nodes(_macro_nodes, useful); // remove useless macro nodes 456 remove_useless_nodes(_parse_predicates, useful); // remove useless Parse Predicate nodes 457 // Remove useless Template Assertion Predicate opaque nodes 458 remove_useless_nodes(_template_assertion_predicate_opaques, useful); 459 remove_useless_nodes(_expensive_nodes, useful); // remove useless expensive nodes 460 remove_useless_nodes(_for_post_loop_igvn, useful); // remove useless node recorded for post loop opts IGVN pass 461 remove_useless_nodes(_for_merge_stores_igvn, useful); // remove useless node recorded for merge stores IGVN pass 462 remove_useless_unstable_if_traps(useful); // remove useless unstable_if traps 463 remove_useless_coarsened_locks(useful); // remove useless coarsened locks nodes 464 #ifdef ASSERT 465 if (_modified_nodes != nullptr) { 466 _modified_nodes->remove_useless_nodes(useful.member_set()); 467 } 468 #endif 469 470 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 471 bs->eliminate_useless_gc_barriers(useful, this); 472 // clean up the late inline lists 473 remove_useless_late_inlines( &_late_inlines, useful); 474 remove_useless_late_inlines( &_string_late_inlines, useful); 475 remove_useless_late_inlines( &_boxing_late_inlines, useful); 476 remove_useless_late_inlines(&_vector_reboxing_late_inlines, useful); 477 debug_only(verify_graph_edges(true /*check for no_dead_code*/, root_and_safepoints);) 478 } 479 480 // ============================================================================ 481 //------------------------------CompileWrapper--------------------------------- 482 class CompileWrapper : public StackObj { 483 Compile *const _compile; 484 public: 485 CompileWrapper(Compile* compile); 486 487 ~CompileWrapper(); 488 }; 489 490 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) { 491 // the Compile* pointer is stored in the current ciEnv: 492 ciEnv* env = compile->env(); 493 assert(env == ciEnv::current(), "must already be a ciEnv active"); 494 assert(env->compiler_data() == nullptr, "compile already active?"); 495 env->set_compiler_data(compile); 496 assert(compile == Compile::current(), "sanity"); 497 498 compile->set_type_dict(nullptr); 499 compile->set_clone_map(new Dict(cmpkey, hashkey, _compile->comp_arena())); 500 compile->clone_map().set_clone_idx(0); 501 compile->set_type_last_size(0); 502 compile->set_last_tf(nullptr, nullptr); 503 compile->set_indexSet_arena(nullptr); 504 compile->set_indexSet_free_block_list(nullptr); 505 compile->init_type_arena(); 506 Type::Initialize(compile); 507 _compile->begin_method(); 508 _compile->clone_map().set_debug(_compile->has_method() && _compile->directive()->CloneMapDebugOption); 509 } 510 CompileWrapper::~CompileWrapper() { 511 // simulate crash during compilation 512 assert(CICrashAt < 0 || _compile->compile_id() != CICrashAt, "just as planned"); 513 514 _compile->end_method(); 515 _compile->env()->set_compiler_data(nullptr); 516 } 517 518 519 //----------------------------print_compile_messages--------------------------- 520 void Compile::print_compile_messages() { 521 #ifndef PRODUCT 522 // Check if recompiling 523 if (!subsume_loads() && PrintOpto) { 524 // Recompiling without allowing machine instructions to subsume loads 525 tty->print_cr("*********************************************************"); 526 tty->print_cr("** Bailout: Recompile without subsuming loads **"); 527 tty->print_cr("*********************************************************"); 528 } 529 if ((do_escape_analysis() != DoEscapeAnalysis) && PrintOpto) { 530 // Recompiling without escape analysis 531 tty->print_cr("*********************************************************"); 532 tty->print_cr("** Bailout: Recompile without escape analysis **"); 533 tty->print_cr("*********************************************************"); 534 } 535 if (do_iterative_escape_analysis() != DoEscapeAnalysis && PrintOpto) { 536 // Recompiling without iterative escape analysis 537 tty->print_cr("*********************************************************"); 538 tty->print_cr("** Bailout: Recompile without iterative escape analysis**"); 539 tty->print_cr("*********************************************************"); 540 } 541 if (do_reduce_allocation_merges() != ReduceAllocationMerges && PrintOpto) { 542 // Recompiling without reducing allocation merges 543 tty->print_cr("*********************************************************"); 544 tty->print_cr("** Bailout: Recompile without reduce allocation merges **"); 545 tty->print_cr("*********************************************************"); 546 } 547 if ((eliminate_boxing() != EliminateAutoBox) && PrintOpto) { 548 // Recompiling without boxing elimination 549 tty->print_cr("*********************************************************"); 550 tty->print_cr("** Bailout: Recompile without boxing elimination **"); 551 tty->print_cr("*********************************************************"); 552 } 553 if ((do_locks_coarsening() != EliminateLocks) && PrintOpto) { 554 // Recompiling without locks coarsening 555 tty->print_cr("*********************************************************"); 556 tty->print_cr("** Bailout: Recompile without locks coarsening **"); 557 tty->print_cr("*********************************************************"); 558 } 559 if (env()->break_at_compile()) { 560 // Open the debugger when compiling this method. 561 tty->print("### Breaking when compiling: "); 562 method()->print_short_name(); 563 tty->cr(); 564 BREAKPOINT; 565 } 566 567 if( PrintOpto ) { 568 if (is_osr_compilation()) { 569 tty->print("[OSR]%3d", _compile_id); 570 } else { 571 tty->print("%3d", _compile_id); 572 } 573 } 574 #endif 575 } 576 577 #ifndef PRODUCT 578 void Compile::print_ideal_ir(const char* phase_name) { 579 // keep the following output all in one block 580 // This output goes directly to the tty, not the compiler log. 581 // To enable tools to match it up with the compilation activity, 582 // be sure to tag this tty output with the compile ID. 583 584 // Node dumping can cause a safepoint, which can break the tty lock. 585 // Buffer all node dumps, so that all safepoints happen before we lock. 586 ResourceMark rm; 587 stringStream ss; 588 589 if (_output == nullptr) { 590 ss.print_cr("AFTER: %s", phase_name); 591 // Print out all nodes in ascending order of index. 592 root()->dump_bfs(MaxNodeLimit, nullptr, "+S$", &ss); 593 } else { 594 // Dump the node blockwise if we have a scheduling 595 _output->print_scheduling(&ss); 596 } 597 598 // Check that the lock is not broken by a safepoint. 599 NoSafepointVerifier nsv; 600 ttyLocker ttyl; 601 if (xtty != nullptr) { 602 xtty->head("ideal compile_id='%d'%s compile_phase='%s'", 603 compile_id(), 604 is_osr_compilation() ? " compile_kind='osr'" : "", 605 phase_name); 606 } 607 608 tty->print("%s", ss.as_string()); 609 610 if (xtty != nullptr) { 611 xtty->tail("ideal"); 612 } 613 } 614 #endif 615 616 // ============================================================================ 617 //------------------------------Compile standard------------------------------- 618 619 // Compile a method. entry_bci is -1 for normal compilations and indicates 620 // the continuation bci for on stack replacement. 621 622 623 Compile::Compile(ciEnv* ci_env, ciMethod* target, int osr_bci, 624 Options options, DirectiveSet* directive) 625 : Phase(Compiler), 626 _compile_id(ci_env->compile_id()), 627 _options(options), 628 _method(target), 629 _entry_bci(osr_bci), 630 _ilt(nullptr), 631 _stub_function(nullptr), 632 _stub_name(nullptr), 633 _stub_entry_point(nullptr), 634 _max_node_limit(MaxNodeLimit), 635 _post_loop_opts_phase(false), 636 _merge_stores_phase(false), 637 _allow_macro_nodes(true), 638 _inlining_progress(false), 639 _inlining_incrementally(false), 640 _do_cleanup(false), 641 _has_reserved_stack_access(target->has_reserved_stack_access()), 642 #ifndef PRODUCT 643 _igv_idx(0), 644 _trace_opto_output(directive->TraceOptoOutputOption), 645 #endif 646 _has_method_handle_invokes(false), 647 _clinit_barrier_on_entry(false), 648 _stress_seed(0), 649 _comp_arena(mtCompiler, Arena::Tag::tag_comp), 650 _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())), 651 _env(ci_env), 652 _directive(directive), 653 _log(ci_env->log()), 654 _first_failure_details(nullptr), 655 _intrinsics(comp_arena(), 0, 0, nullptr), 656 _macro_nodes(comp_arena(), 8, 0, nullptr), 657 _parse_predicates(comp_arena(), 8, 0, nullptr), 658 _template_assertion_predicate_opaques(comp_arena(), 8, 0, nullptr), 659 _expensive_nodes(comp_arena(), 8, 0, nullptr), 660 _for_post_loop_igvn(comp_arena(), 8, 0, nullptr), 661 _for_merge_stores_igvn(comp_arena(), 8, 0, nullptr), 662 _unstable_if_traps(comp_arena(), 8, 0, nullptr), 663 _coarsened_locks(comp_arena(), 8, 0, nullptr), 664 _congraph(nullptr), 665 NOT_PRODUCT(_igv_printer(nullptr) COMMA) 666 _unique(0), 667 _dead_node_count(0), 668 _dead_node_list(comp_arena()), 669 _node_arena_one(mtCompiler, Arena::Tag::tag_node), 670 _node_arena_two(mtCompiler, Arena::Tag::tag_node), 671 _node_arena(&_node_arena_one), 672 _mach_constant_base_node(nullptr), 673 _Compile_types(mtCompiler, Arena::Tag::tag_type), 674 _initial_gvn(nullptr), 675 _igvn_worklist(nullptr), 676 _types(nullptr), 677 _node_hash(nullptr), 678 _late_inlines(comp_arena(), 2, 0, nullptr), 679 _string_late_inlines(comp_arena(), 2, 0, nullptr), 680 _boxing_late_inlines(comp_arena(), 2, 0, nullptr), 681 _vector_reboxing_late_inlines(comp_arena(), 2, 0, nullptr), 682 _late_inlines_pos(0), 683 _number_of_mh_late_inlines(0), 684 _oom(false), 685 _replay_inline_data(nullptr), 686 _inline_printer(this), 687 _java_calls(0), 688 _inner_loops(0), 689 _interpreter_frame_size(0), 690 _output(nullptr) 691 #ifndef PRODUCT 692 , 693 _in_dump_cnt(0) 694 #endif 695 { 696 C = this; 697 CompileWrapper cw(this); 698 699 TraceTime t1("Total compilation time", &_t_totalCompilation, CITime, CITimeVerbose); 700 TraceTime t2(nullptr, &_t_methodCompilation, CITime, false); 701 702 #if defined(SUPPORT_ASSEMBLY) || defined(SUPPORT_ABSTRACT_ASSEMBLY) 703 bool print_opto_assembly = directive->PrintOptoAssemblyOption; 704 // We can always print a disassembly, either abstract (hex dump) or 705 // with the help of a suitable hsdis library. Thus, we should not 706 // couple print_assembly and print_opto_assembly controls. 707 // But: always print opto and regular assembly on compile command 'print'. 708 bool print_assembly = directive->PrintAssemblyOption; 709 set_print_assembly(print_opto_assembly || print_assembly); 710 #else 711 set_print_assembly(false); // must initialize. 712 #endif 713 714 #ifndef PRODUCT 715 set_parsed_irreducible_loop(false); 716 #endif 717 718 if (directive->ReplayInlineOption) { 719 _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level()); 720 } 721 set_print_inlining(directive->PrintInliningOption || PrintOptoInlining); 722 set_print_intrinsics(directive->PrintIntrinsicsOption); 723 set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it 724 725 if (ProfileTraps) { 726 // Make sure the method being compiled gets its own MDO, 727 // so we can at least track the decompile_count(). 728 method()->ensure_method_data(); 729 } 730 731 if (StressLCM || StressGCM || StressIGVN || StressCCP || 732 StressIncrementalInlining || StressMacroExpansion || StressUnstableIfTraps || StressBailout) { 733 initialize_stress_seed(directive); 734 } 735 736 Init(/*do_aliasing=*/ true); 737 738 print_compile_messages(); 739 740 _ilt = InlineTree::build_inline_tree_root(); 741 742 // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice 743 assert(num_alias_types() >= AliasIdxRaw, ""); 744 745 #define MINIMUM_NODE_HASH 1023 746 747 // GVN that will be run immediately on new nodes 748 uint estimated_size = method()->code_size()*4+64; 749 estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size); 750 _igvn_worklist = new (comp_arena()) Unique_Node_List(comp_arena()); 751 _types = new (comp_arena()) Type_Array(comp_arena()); 752 _node_hash = new (comp_arena()) NodeHash(comp_arena(), estimated_size); 753 PhaseGVN gvn; 754 set_initial_gvn(&gvn); 755 756 { // Scope for timing the parser 757 TracePhase tp(_t_parser); 758 759 // Put top into the hash table ASAP. 760 initial_gvn()->transform(top()); 761 762 // Set up tf(), start(), and find a CallGenerator. 763 CallGenerator* cg = nullptr; 764 if (is_osr_compilation()) { 765 const TypeTuple *domain = StartOSRNode::osr_domain(); 766 const TypeTuple *range = TypeTuple::make_range(method()->signature()); 767 init_tf(TypeFunc::make(domain, range)); 768 StartNode* s = new StartOSRNode(root(), domain); 769 initial_gvn()->set_type_bottom(s); 770 verify_start(s); 771 cg = CallGenerator::for_osr(method(), entry_bci()); 772 } else { 773 // Normal case. 774 init_tf(TypeFunc::make(method())); 775 StartNode* s = new StartNode(root(), tf()->domain()); 776 initial_gvn()->set_type_bottom(s); 777 verify_start(s); 778 if (method()->intrinsic_id() == vmIntrinsics::_Reference_get) { 779 // With java.lang.ref.reference.get() we must go through the 780 // intrinsic - even when get() is the root 781 // method of the compile - so that, if necessary, the value in 782 // the referent field of the reference object gets recorded by 783 // the pre-barrier code. 784 cg = find_intrinsic(method(), false); 785 } 786 if (cg == nullptr) { 787 float past_uses = method()->interpreter_invocation_count(); 788 float expected_uses = past_uses; 789 cg = CallGenerator::for_inline(method(), expected_uses); 790 } 791 } 792 if (failing()) return; 793 if (cg == nullptr) { 794 const char* reason = InlineTree::check_can_parse(method()); 795 assert(reason != nullptr, "expect reason for parse failure"); 796 stringStream ss; 797 ss.print("cannot parse method: %s", reason); 798 record_method_not_compilable(ss.as_string()); 799 return; 800 } 801 802 gvn.set_type(root(), root()->bottom_type()); 803 804 JVMState* jvms = build_start_state(start(), tf()); 805 if ((jvms = cg->generate(jvms)) == nullptr) { 806 assert(failure_reason() != nullptr, "expect reason for parse failure"); 807 stringStream ss; 808 ss.print("method parse failed: %s", failure_reason()); 809 record_method_not_compilable(ss.as_string() DEBUG_ONLY(COMMA true)); 810 return; 811 } 812 GraphKit kit(jvms); 813 814 if (!kit.stopped()) { 815 // Accept return values, and transfer control we know not where. 816 // This is done by a special, unique ReturnNode bound to root. 817 return_values(kit.jvms()); 818 } 819 820 if (kit.has_exceptions()) { 821 // Any exceptions that escape from this call must be rethrown 822 // to whatever caller is dynamically above us on the stack. 823 // This is done by a special, unique RethrowNode bound to root. 824 rethrow_exceptions(kit.transfer_exceptions_into_jvms()); 825 } 826 827 assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off"); 828 829 if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) { 830 inline_string_calls(true); 831 } 832 833 if (failing()) return; 834 835 // Remove clutter produced by parsing. 836 if (!failing()) { 837 ResourceMark rm; 838 PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist()); 839 } 840 } 841 842 // Note: Large methods are capped off in do_one_bytecode(). 843 if (failing()) return; 844 845 // After parsing, node notes are no longer automagic. 846 // They must be propagated by register_new_node_with_optimizer(), 847 // clone(), or the like. 848 set_default_node_notes(nullptr); 849 850 #ifndef PRODUCT 851 if (should_print_igv(1)) { 852 _igv_printer->print_inlining(); 853 } 854 #endif 855 856 if (failing()) return; 857 NOT_PRODUCT( verify_graph_edges(); ) 858 859 // Now optimize 860 Optimize(); 861 if (failing()) return; 862 NOT_PRODUCT( verify_graph_edges(); ) 863 864 #ifndef PRODUCT 865 if (should_print_ideal()) { 866 print_ideal_ir("print_ideal"); 867 } 868 #endif 869 870 #ifdef ASSERT 871 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 872 bs->verify_gc_barriers(this, BarrierSetC2::BeforeCodeGen); 873 #endif 874 875 // Dump compilation data to replay it. 876 if (directive->DumpReplayOption) { 877 env()->dump_replay_data(_compile_id); 878 } 879 if (directive->DumpInlineOption && (ilt() != nullptr)) { 880 env()->dump_inline_data(_compile_id); 881 } 882 883 // Now that we know the size of all the monitors we can add a fixed slot 884 // for the original deopt pc. 885 int next_slot = fixed_slots() + (sizeof(address) / VMRegImpl::stack_slot_size); 886 set_fixed_slots(next_slot); 887 888 // Compute when to use implicit null checks. Used by matching trap based 889 // nodes and NullCheck optimization. 890 set_allowed_deopt_reasons(); 891 892 // Now generate code 893 Code_Gen(); 894 } 895 896 //------------------------------Compile---------------------------------------- 897 // Compile a runtime stub 898 Compile::Compile(ciEnv* ci_env, 899 TypeFunc_generator generator, 900 address stub_function, 901 const char* stub_name, 902 int is_fancy_jump, 903 bool pass_tls, 904 bool return_pc, 905 DirectiveSet* directive) 906 : Phase(Compiler), 907 _compile_id(0), 908 _options(Options::for_runtime_stub()), 909 _method(nullptr), 910 _entry_bci(InvocationEntryBci), 911 _stub_function(stub_function), 912 _stub_name(stub_name), 913 _stub_entry_point(nullptr), 914 _max_node_limit(MaxNodeLimit), 915 _post_loop_opts_phase(false), 916 _merge_stores_phase(false), 917 _allow_macro_nodes(true), 918 _inlining_progress(false), 919 _inlining_incrementally(false), 920 _has_reserved_stack_access(false), 921 #ifndef PRODUCT 922 _igv_idx(0), 923 _trace_opto_output(directive->TraceOptoOutputOption), 924 #endif 925 _has_method_handle_invokes(false), 926 _clinit_barrier_on_entry(false), 927 _stress_seed(0), 928 _comp_arena(mtCompiler, Arena::Tag::tag_comp), 929 _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())), 930 _env(ci_env), 931 _directive(directive), 932 _log(ci_env->log()), 933 _first_failure_details(nullptr), 934 _for_post_loop_igvn(comp_arena(), 8, 0, nullptr), 935 _for_merge_stores_igvn(comp_arena(), 8, 0, nullptr), 936 _congraph(nullptr), 937 NOT_PRODUCT(_igv_printer(nullptr) COMMA) 938 _unique(0), 939 _dead_node_count(0), 940 _dead_node_list(comp_arena()), 941 _node_arena_one(mtCompiler, Arena::Tag::tag_node), 942 _node_arena_two(mtCompiler, Arena::Tag::tag_node), 943 _node_arena(&_node_arena_one), 944 _mach_constant_base_node(nullptr), 945 _Compile_types(mtCompiler, Arena::Tag::tag_type), 946 _initial_gvn(nullptr), 947 _igvn_worklist(nullptr), 948 _types(nullptr), 949 _node_hash(nullptr), 950 _number_of_mh_late_inlines(0), 951 _oom(false), 952 _replay_inline_data(nullptr), 953 _inline_printer(this), 954 _java_calls(0), 955 _inner_loops(0), 956 _interpreter_frame_size(0), 957 _output(nullptr), 958 #ifndef PRODUCT 959 _in_dump_cnt(0), 960 #endif 961 _allowed_reasons(0) { 962 C = this; 963 964 TraceTime t1(nullptr, &_t_totalCompilation, CITime, false); 965 TraceTime t2(nullptr, &_t_stubCompilation, CITime, false); 966 967 #ifndef PRODUCT 968 set_print_assembly(PrintFrameConverterAssembly); 969 set_parsed_irreducible_loop(false); 970 #else 971 set_print_assembly(false); // Must initialize. 972 #endif 973 set_has_irreducible_loop(false); // no loops 974 975 CompileWrapper cw(this); 976 Init(/*do_aliasing=*/ false); 977 init_tf((*generator)()); 978 979 _igvn_worklist = new (comp_arena()) Unique_Node_List(comp_arena()); 980 _types = new (comp_arena()) Type_Array(comp_arena()); 981 _node_hash = new (comp_arena()) NodeHash(comp_arena(), 255); 982 983 if (StressLCM || StressGCM || StressBailout) { 984 initialize_stress_seed(directive); 985 } 986 987 { 988 PhaseGVN gvn; 989 set_initial_gvn(&gvn); // not significant, but GraphKit guys use it pervasively 990 gvn.transform(top()); 991 992 GraphKit kit; 993 kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc); 994 } 995 996 NOT_PRODUCT( verify_graph_edges(); ) 997 998 Code_Gen(); 999 } 1000 1001 Compile::~Compile() { 1002 delete _first_failure_details; 1003 }; 1004 1005 //------------------------------Init------------------------------------------- 1006 // Prepare for a single compilation 1007 void Compile::Init(bool aliasing) { 1008 _do_aliasing = aliasing; 1009 _unique = 0; 1010 _regalloc = nullptr; 1011 1012 _tf = nullptr; // filled in later 1013 _top = nullptr; // cached later 1014 _matcher = nullptr; // filled in later 1015 _cfg = nullptr; // filled in later 1016 1017 IA32_ONLY( set_24_bit_selection_and_mode(true, false); ) 1018 1019 _node_note_array = nullptr; 1020 _default_node_notes = nullptr; 1021 DEBUG_ONLY( _modified_nodes = nullptr; ) // Used in Optimize() 1022 1023 _immutable_memory = nullptr; // filled in at first inquiry 1024 1025 #ifdef ASSERT 1026 _phase_optimize_finished = false; 1027 _phase_verify_ideal_loop = false; 1028 _exception_backedge = false; 1029 _type_verify = nullptr; 1030 #endif 1031 1032 // Globally visible Nodes 1033 // First set TOP to null to give safe behavior during creation of RootNode 1034 set_cached_top_node(nullptr); 1035 set_root(new RootNode()); 1036 // Now that you have a Root to point to, create the real TOP 1037 set_cached_top_node( new ConNode(Type::TOP) ); 1038 set_recent_alloc(nullptr, nullptr); 1039 1040 // Create Debug Information Recorder to record scopes, oopmaps, etc. 1041 env()->set_oop_recorder(new OopRecorder(env()->arena())); 1042 env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder())); 1043 env()->set_dependencies(new Dependencies(env())); 1044 1045 _fixed_slots = 0; 1046 set_has_split_ifs(false); 1047 set_has_loops(false); // first approximation 1048 set_has_stringbuilder(false); 1049 set_has_boxed_value(false); 1050 _trap_can_recompile = false; // no traps emitted yet 1051 _major_progress = true; // start out assuming good things will happen 1052 set_has_unsafe_access(false); 1053 set_max_vector_size(0); 1054 set_clear_upper_avx(false); //false as default for clear upper bits of ymm registers 1055 Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist)); 1056 set_decompile_count(0); 1057 1058 #ifndef PRODUCT 1059 Copy::zero_to_bytes(_igv_phase_iter, sizeof(_igv_phase_iter)); 1060 #endif 1061 1062 set_do_freq_based_layout(_directive->BlockLayoutByFrequencyOption); 1063 _loop_opts_cnt = LoopOptsCount; 1064 set_do_inlining(Inline); 1065 set_max_inline_size(MaxInlineSize); 1066 set_freq_inline_size(FreqInlineSize); 1067 set_do_scheduling(OptoScheduling); 1068 1069 set_do_vector_loop(false); 1070 set_has_monitors(false); 1071 set_has_scoped_access(false); 1072 1073 if (AllowVectorizeOnDemand) { 1074 if (has_method() && _directive->VectorizeOption) { 1075 set_do_vector_loop(true); 1076 NOT_PRODUCT(if (do_vector_loop() && Verbose) {tty->print("Compile::Init: do vectorized loops (SIMD like) for method %s\n", method()->name()->as_quoted_ascii());}) 1077 } else if (has_method() && method()->name() != nullptr && 1078 method()->intrinsic_id() == vmIntrinsics::_forEachRemaining) { 1079 set_do_vector_loop(true); 1080 } 1081 } 1082 set_use_cmove(UseCMoveUnconditionally /* || do_vector_loop()*/); //TODO: consider do_vector_loop() mandate use_cmove unconditionally 1083 NOT_PRODUCT(if (use_cmove() && Verbose && has_method()) {tty->print("Compile::Init: use CMove without profitability tests for method %s\n", method()->name()->as_quoted_ascii());}) 1084 1085 _max_node_limit = _directive->MaxNodeLimitOption; 1086 1087 if (VM_Version::supports_fast_class_init_checks() && has_method() && !is_osr_compilation() && method()->needs_clinit_barrier()) { 1088 set_clinit_barrier_on_entry(true); 1089 } 1090 if (debug_info()->recording_non_safepoints()) { 1091 set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*> 1092 (comp_arena(), 8, 0, nullptr)); 1093 set_default_node_notes(Node_Notes::make(this)); 1094 } 1095 1096 const int grow_ats = 16; 1097 _max_alias_types = grow_ats; 1098 _alias_types = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats); 1099 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, grow_ats); 1100 Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats); 1101 { 1102 for (int i = 0; i < grow_ats; i++) _alias_types[i] = &ats[i]; 1103 } 1104 // Initialize the first few types. 1105 _alias_types[AliasIdxTop]->Init(AliasIdxTop, nullptr); 1106 _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM); 1107 _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM); 1108 _num_alias_types = AliasIdxRaw+1; 1109 // Zero out the alias type cache. 1110 Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache)); 1111 // A null adr_type hits in the cache right away. Preload the right answer. 1112 probe_alias_cache(nullptr)->_index = AliasIdxTop; 1113 } 1114 1115 #ifdef ASSERT 1116 // Verify that the current StartNode is valid. 1117 void Compile::verify_start(StartNode* s) const { 1118 assert(failing_internal() || s == start(), "should be StartNode"); 1119 } 1120 #endif 1121 1122 /** 1123 * Return the 'StartNode'. We must not have a pending failure, since the ideal graph 1124 * can be in an inconsistent state, i.e., we can get segmentation faults when traversing 1125 * the ideal graph. 1126 */ 1127 StartNode* Compile::start() const { 1128 assert (!failing_internal() || C->failure_is_artificial(), "Must not have pending failure. Reason is: %s", failure_reason()); 1129 for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) { 1130 Node* start = root()->fast_out(i); 1131 if (start->is_Start()) { 1132 return start->as_Start(); 1133 } 1134 } 1135 fatal("Did not find Start node!"); 1136 return nullptr; 1137 } 1138 1139 //-------------------------------immutable_memory------------------------------------- 1140 // Access immutable memory 1141 Node* Compile::immutable_memory() { 1142 if (_immutable_memory != nullptr) { 1143 return _immutable_memory; 1144 } 1145 StartNode* s = start(); 1146 for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) { 1147 Node *p = s->fast_out(i); 1148 if (p != s && p->as_Proj()->_con == TypeFunc::Memory) { 1149 _immutable_memory = p; 1150 return _immutable_memory; 1151 } 1152 } 1153 ShouldNotReachHere(); 1154 return nullptr; 1155 } 1156 1157 //----------------------set_cached_top_node------------------------------------ 1158 // Install the cached top node, and make sure Node::is_top works correctly. 1159 void Compile::set_cached_top_node(Node* tn) { 1160 if (tn != nullptr) verify_top(tn); 1161 Node* old_top = _top; 1162 _top = tn; 1163 // Calling Node::setup_is_top allows the nodes the chance to adjust 1164 // their _out arrays. 1165 if (_top != nullptr) _top->setup_is_top(); 1166 if (old_top != nullptr) old_top->setup_is_top(); 1167 assert(_top == nullptr || top()->is_top(), ""); 1168 } 1169 1170 #ifdef ASSERT 1171 uint Compile::count_live_nodes_by_graph_walk() { 1172 Unique_Node_List useful(comp_arena()); 1173 // Get useful node list by walking the graph. 1174 identify_useful_nodes(useful); 1175 return useful.size(); 1176 } 1177 1178 void Compile::print_missing_nodes() { 1179 1180 // Return if CompileLog is null and PrintIdealNodeCount is false. 1181 if ((_log == nullptr) && (! PrintIdealNodeCount)) { 1182 return; 1183 } 1184 1185 // This is an expensive function. It is executed only when the user 1186 // specifies VerifyIdealNodeCount option or otherwise knows the 1187 // additional work that needs to be done to identify reachable nodes 1188 // by walking the flow graph and find the missing ones using 1189 // _dead_node_list. 1190 1191 Unique_Node_List useful(comp_arena()); 1192 // Get useful node list by walking the graph. 1193 identify_useful_nodes(useful); 1194 1195 uint l_nodes = C->live_nodes(); 1196 uint l_nodes_by_walk = useful.size(); 1197 1198 if (l_nodes != l_nodes_by_walk) { 1199 if (_log != nullptr) { 1200 _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk))); 1201 _log->stamp(); 1202 _log->end_head(); 1203 } 1204 VectorSet& useful_member_set = useful.member_set(); 1205 int last_idx = l_nodes_by_walk; 1206 for (int i = 0; i < last_idx; i++) { 1207 if (useful_member_set.test(i)) { 1208 if (_dead_node_list.test(i)) { 1209 if (_log != nullptr) { 1210 _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i); 1211 } 1212 if (PrintIdealNodeCount) { 1213 // Print the log message to tty 1214 tty->print_cr("mismatched_node idx='%d' both live and dead'", i); 1215 useful.at(i)->dump(); 1216 } 1217 } 1218 } 1219 else if (! _dead_node_list.test(i)) { 1220 if (_log != nullptr) { 1221 _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i); 1222 } 1223 if (PrintIdealNodeCount) { 1224 // Print the log message to tty 1225 tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i); 1226 } 1227 } 1228 } 1229 if (_log != nullptr) { 1230 _log->tail("mismatched_nodes"); 1231 } 1232 } 1233 } 1234 void Compile::record_modified_node(Node* n) { 1235 if (_modified_nodes != nullptr && !_inlining_incrementally && !n->is_Con()) { 1236 _modified_nodes->push(n); 1237 } 1238 } 1239 1240 void Compile::remove_modified_node(Node* n) { 1241 if (_modified_nodes != nullptr) { 1242 _modified_nodes->remove(n); 1243 } 1244 } 1245 #endif 1246 1247 #ifndef PRODUCT 1248 void Compile::verify_top(Node* tn) const { 1249 if (tn != nullptr) { 1250 assert(tn->is_Con(), "top node must be a constant"); 1251 assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type"); 1252 assert(tn->in(0) != nullptr, "must have live top node"); 1253 } 1254 } 1255 #endif 1256 1257 1258 ///-------------------Managing Per-Node Debug & Profile Info------------------- 1259 1260 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) { 1261 guarantee(arr != nullptr, ""); 1262 int num_blocks = arr->length(); 1263 if (grow_by < num_blocks) grow_by = num_blocks; 1264 int num_notes = grow_by * _node_notes_block_size; 1265 Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes); 1266 Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes)); 1267 while (num_notes > 0) { 1268 arr->append(notes); 1269 notes += _node_notes_block_size; 1270 num_notes -= _node_notes_block_size; 1271 } 1272 assert(num_notes == 0, "exact multiple, please"); 1273 } 1274 1275 bool Compile::copy_node_notes_to(Node* dest, Node* source) { 1276 if (source == nullptr || dest == nullptr) return false; 1277 1278 if (dest->is_Con()) 1279 return false; // Do not push debug info onto constants. 1280 1281 #ifdef ASSERT 1282 // Leave a bread crumb trail pointing to the original node: 1283 if (dest != nullptr && dest != source && dest->debug_orig() == nullptr) { 1284 dest->set_debug_orig(source); 1285 } 1286 #endif 1287 1288 if (node_note_array() == nullptr) 1289 return false; // Not collecting any notes now. 1290 1291 // This is a copy onto a pre-existing node, which may already have notes. 1292 // If both nodes have notes, do not overwrite any pre-existing notes. 1293 Node_Notes* source_notes = node_notes_at(source->_idx); 1294 if (source_notes == nullptr || source_notes->is_clear()) return false; 1295 Node_Notes* dest_notes = node_notes_at(dest->_idx); 1296 if (dest_notes == nullptr || dest_notes->is_clear()) { 1297 return set_node_notes_at(dest->_idx, source_notes); 1298 } 1299 1300 Node_Notes merged_notes = (*source_notes); 1301 // The order of operations here ensures that dest notes will win... 1302 merged_notes.update_from(dest_notes); 1303 return set_node_notes_at(dest->_idx, &merged_notes); 1304 } 1305 1306 1307 //--------------------------allow_range_check_smearing------------------------- 1308 // Gating condition for coalescing similar range checks. 1309 // Sometimes we try 'speculatively' replacing a series of a range checks by a 1310 // single covering check that is at least as strong as any of them. 1311 // If the optimization succeeds, the simplified (strengthened) range check 1312 // will always succeed. If it fails, we will deopt, and then give up 1313 // on the optimization. 1314 bool Compile::allow_range_check_smearing() const { 1315 // If this method has already thrown a range-check, 1316 // assume it was because we already tried range smearing 1317 // and it failed. 1318 uint already_trapped = trap_count(Deoptimization::Reason_range_check); 1319 return !already_trapped; 1320 } 1321 1322 1323 //------------------------------flatten_alias_type----------------------------- 1324 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const { 1325 assert(do_aliasing(), "Aliasing should be enabled"); 1326 int offset = tj->offset(); 1327 TypePtr::PTR ptr = tj->ptr(); 1328 1329 // Known instance (scalarizable allocation) alias only with itself. 1330 bool is_known_inst = tj->isa_oopptr() != nullptr && 1331 tj->is_oopptr()->is_known_instance(); 1332 1333 // Process weird unsafe references. 1334 if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) { 1335 assert(InlineUnsafeOps || StressReflectiveCode, "indeterminate pointers come only from unsafe ops"); 1336 assert(!is_known_inst, "scalarizable allocation should not have unsafe references"); 1337 tj = TypeOopPtr::BOTTOM; 1338 ptr = tj->ptr(); 1339 offset = tj->offset(); 1340 } 1341 1342 // Array pointers need some flattening 1343 const TypeAryPtr* ta = tj->isa_aryptr(); 1344 if (ta && ta->is_stable()) { 1345 // Erase stability property for alias analysis. 1346 tj = ta = ta->cast_to_stable(false); 1347 } 1348 if( ta && is_known_inst ) { 1349 if ( offset != Type::OffsetBot && 1350 offset > arrayOopDesc::length_offset_in_bytes() ) { 1351 offset = Type::OffsetBot; // Flatten constant access into array body only 1352 tj = ta = ta-> 1353 remove_speculative()-> 1354 cast_to_ptr_type(ptr)-> 1355 with_offset(offset); 1356 } 1357 } else if (ta) { 1358 // For arrays indexed by constant indices, we flatten the alias 1359 // space to include all of the array body. Only the header, klass 1360 // and array length can be accessed un-aliased. 1361 if( offset != Type::OffsetBot ) { 1362 if( ta->const_oop() ) { // MethodData* or Method* 1363 offset = Type::OffsetBot; // Flatten constant access into array body 1364 tj = ta = ta-> 1365 remove_speculative()-> 1366 cast_to_ptr_type(ptr)-> 1367 cast_to_exactness(false)-> 1368 with_offset(offset); 1369 } else if( offset == arrayOopDesc::length_offset_in_bytes() ) { 1370 // range is OK as-is. 1371 tj = ta = TypeAryPtr::RANGE; 1372 } else if( offset == oopDesc::klass_offset_in_bytes() ) { 1373 tj = TypeInstPtr::KLASS; // all klass loads look alike 1374 ta = TypeAryPtr::RANGE; // generic ignored junk 1375 ptr = TypePtr::BotPTR; 1376 } else if( offset == oopDesc::mark_offset_in_bytes() ) { 1377 tj = TypeInstPtr::MARK; 1378 ta = TypeAryPtr::RANGE; // generic ignored junk 1379 ptr = TypePtr::BotPTR; 1380 } else { // Random constant offset into array body 1381 offset = Type::OffsetBot; // Flatten constant access into array body 1382 tj = ta = ta-> 1383 remove_speculative()-> 1384 cast_to_ptr_type(ptr)-> 1385 cast_to_exactness(false)-> 1386 with_offset(offset); 1387 } 1388 } 1389 // Arrays of fixed size alias with arrays of unknown size. 1390 if (ta->size() != TypeInt::POS) { 1391 const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS); 1392 tj = ta = ta-> 1393 remove_speculative()-> 1394 cast_to_ptr_type(ptr)-> 1395 with_ary(tary)-> 1396 cast_to_exactness(false); 1397 } 1398 // Arrays of known objects become arrays of unknown objects. 1399 if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) { 1400 const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size()); 1401 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,nullptr,false,offset); 1402 } 1403 if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) { 1404 const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size()); 1405 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,nullptr,false,offset); 1406 } 1407 // Arrays of bytes and of booleans both use 'bastore' and 'baload' so 1408 // cannot be distinguished by bytecode alone. 1409 if (ta->elem() == TypeInt::BOOL) { 1410 const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size()); 1411 ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE); 1412 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset); 1413 } 1414 // During the 2nd round of IterGVN, NotNull castings are removed. 1415 // Make sure the Bottom and NotNull variants alias the same. 1416 // Also, make sure exact and non-exact variants alias the same. 1417 if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != nullptr) { 1418 tj = ta = ta-> 1419 remove_speculative()-> 1420 cast_to_ptr_type(TypePtr::BotPTR)-> 1421 cast_to_exactness(false)-> 1422 with_offset(offset); 1423 } 1424 } 1425 1426 // Oop pointers need some flattening 1427 const TypeInstPtr *to = tj->isa_instptr(); 1428 if (to && to != TypeOopPtr::BOTTOM) { 1429 ciInstanceKlass* ik = to->instance_klass(); 1430 if( ptr == TypePtr::Constant ) { 1431 if (ik != ciEnv::current()->Class_klass() || 1432 offset < ik->layout_helper_size_in_bytes()) { 1433 // No constant oop pointers (such as Strings); they alias with 1434 // unknown strings. 1435 assert(!is_known_inst, "not scalarizable allocation"); 1436 tj = to = to-> 1437 cast_to_instance_id(TypeOopPtr::InstanceBot)-> 1438 remove_speculative()-> 1439 cast_to_ptr_type(TypePtr::BotPTR)-> 1440 cast_to_exactness(false); 1441 } 1442 } else if( is_known_inst ) { 1443 tj = to; // Keep NotNull and klass_is_exact for instance type 1444 } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) { 1445 // During the 2nd round of IterGVN, NotNull castings are removed. 1446 // Make sure the Bottom and NotNull variants alias the same. 1447 // Also, make sure exact and non-exact variants alias the same. 1448 tj = to = to-> 1449 remove_speculative()-> 1450 cast_to_instance_id(TypeOopPtr::InstanceBot)-> 1451 cast_to_ptr_type(TypePtr::BotPTR)-> 1452 cast_to_exactness(false); 1453 } 1454 if (to->speculative() != nullptr) { 1455 tj = to = to->remove_speculative(); 1456 } 1457 // Canonicalize the holder of this field 1458 if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) { 1459 // First handle header references such as a LoadKlassNode, even if the 1460 // object's klass is unloaded at compile time (4965979). 1461 if (!is_known_inst) { // Do it only for non-instance types 1462 tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, nullptr, offset); 1463 } 1464 } else if (offset < 0 || offset >= ik->layout_helper_size_in_bytes()) { 1465 // Static fields are in the space above the normal instance 1466 // fields in the java.lang.Class instance. 1467 if (ik != ciEnv::current()->Class_klass()) { 1468 to = nullptr; 1469 tj = TypeOopPtr::BOTTOM; 1470 offset = tj->offset(); 1471 } 1472 } else { 1473 ciInstanceKlass *canonical_holder = ik->get_canonical_holder(offset); 1474 assert(offset < canonical_holder->layout_helper_size_in_bytes(), ""); 1475 assert(tj->offset() == offset, "no change to offset expected"); 1476 bool xk = to->klass_is_exact(); 1477 int instance_id = to->instance_id(); 1478 1479 // If the input type's class is the holder: if exact, the type only includes interfaces implemented by the holder 1480 // but if not exact, it may include extra interfaces: build new type from the holder class to make sure only 1481 // its interfaces are included. 1482 if (xk && ik->equals(canonical_holder)) { 1483 assert(tj == TypeInstPtr::make(to->ptr(), canonical_holder, is_known_inst, nullptr, offset, instance_id), "exact type should be canonical type"); 1484 } else { 1485 assert(xk || !is_known_inst, "Known instance should be exact type"); 1486 tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, is_known_inst, nullptr, offset, instance_id); 1487 } 1488 } 1489 } 1490 1491 // Klass pointers to object array klasses need some flattening 1492 const TypeKlassPtr *tk = tj->isa_klassptr(); 1493 if( tk ) { 1494 // If we are referencing a field within a Klass, we need 1495 // to assume the worst case of an Object. Both exact and 1496 // inexact types must flatten to the same alias class so 1497 // use NotNull as the PTR. 1498 if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) { 1499 tj = tk = TypeInstKlassPtr::make(TypePtr::NotNull, 1500 env()->Object_klass(), 1501 offset); 1502 } 1503 1504 if (tk->isa_aryklassptr() && tk->is_aryklassptr()->elem()->isa_klassptr()) { 1505 ciKlass* k = ciObjArrayKlass::make(env()->Object_klass()); 1506 if (!k || !k->is_loaded()) { // Only fails for some -Xcomp runs 1507 tj = tk = TypeInstKlassPtr::make(TypePtr::NotNull, env()->Object_klass(), offset); 1508 } else { 1509 tj = tk = TypeAryKlassPtr::make(TypePtr::NotNull, tk->is_aryklassptr()->elem(), k, offset); 1510 } 1511 } 1512 1513 // Check for precise loads from the primary supertype array and force them 1514 // to the supertype cache alias index. Check for generic array loads from 1515 // the primary supertype array and also force them to the supertype cache 1516 // alias index. Since the same load can reach both, we need to merge 1517 // these 2 disparate memories into the same alias class. Since the 1518 // primary supertype array is read-only, there's no chance of confusion 1519 // where we bypass an array load and an array store. 1520 int primary_supers_offset = in_bytes(Klass::primary_supers_offset()); 1521 if (offset == Type::OffsetBot || 1522 (offset >= primary_supers_offset && 1523 offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) || 1524 offset == (int)in_bytes(Klass::secondary_super_cache_offset())) { 1525 offset = in_bytes(Klass::secondary_super_cache_offset()); 1526 tj = tk = tk->with_offset(offset); 1527 } 1528 } 1529 1530 // Flatten all Raw pointers together. 1531 if (tj->base() == Type::RawPtr) 1532 tj = TypeRawPtr::BOTTOM; 1533 1534 if (tj->base() == Type::AnyPtr) 1535 tj = TypePtr::BOTTOM; // An error, which the caller must check for. 1536 1537 offset = tj->offset(); 1538 assert( offset != Type::OffsetTop, "Offset has fallen from constant" ); 1539 1540 assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) || 1541 (offset == Type::OffsetBot && tj->base() == Type::AryPtr) || 1542 (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) || 1543 (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) || 1544 (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) || 1545 (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) || 1546 (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr), 1547 "For oops, klasses, raw offset must be constant; for arrays the offset is never known" ); 1548 assert( tj->ptr() != TypePtr::TopPTR && 1549 tj->ptr() != TypePtr::AnyNull && 1550 tj->ptr() != TypePtr::Null, "No imprecise addresses" ); 1551 // assert( tj->ptr() != TypePtr::Constant || 1552 // tj->base() == Type::RawPtr || 1553 // tj->base() == Type::KlassPtr, "No constant oop addresses" ); 1554 1555 return tj; 1556 } 1557 1558 void Compile::AliasType::Init(int i, const TypePtr* at) { 1559 assert(AliasIdxTop <= i && i < Compile::current()->_max_alias_types, "Invalid alias index"); 1560 _index = i; 1561 _adr_type = at; 1562 _field = nullptr; 1563 _element = nullptr; 1564 _is_rewritable = true; // default 1565 const TypeOopPtr *atoop = (at != nullptr) ? at->isa_oopptr() : nullptr; 1566 if (atoop != nullptr && atoop->is_known_instance()) { 1567 const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot); 1568 _general_index = Compile::current()->get_alias_index(gt); 1569 } else { 1570 _general_index = 0; 1571 } 1572 } 1573 1574 BasicType Compile::AliasType::basic_type() const { 1575 if (element() != nullptr) { 1576 const Type* element = adr_type()->is_aryptr()->elem(); 1577 return element->isa_narrowoop() ? T_OBJECT : element->array_element_basic_type(); 1578 } if (field() != nullptr) { 1579 return field()->layout_type(); 1580 } else { 1581 return T_ILLEGAL; // unknown 1582 } 1583 } 1584 1585 //---------------------------------print_on------------------------------------ 1586 #ifndef PRODUCT 1587 void Compile::AliasType::print_on(outputStream* st) { 1588 if (index() < 10) 1589 st->print("@ <%d> ", index()); 1590 else st->print("@ <%d>", index()); 1591 st->print(is_rewritable() ? " " : " RO"); 1592 int offset = adr_type()->offset(); 1593 if (offset == Type::OffsetBot) 1594 st->print(" +any"); 1595 else st->print(" +%-3d", offset); 1596 st->print(" in "); 1597 adr_type()->dump_on(st); 1598 const TypeOopPtr* tjp = adr_type()->isa_oopptr(); 1599 if (field() != nullptr && tjp) { 1600 if (tjp->is_instptr()->instance_klass() != field()->holder() || 1601 tjp->offset() != field()->offset_in_bytes()) { 1602 st->print(" != "); 1603 field()->print(); 1604 st->print(" ***"); 1605 } 1606 } 1607 } 1608 1609 void print_alias_types() { 1610 Compile* C = Compile::current(); 1611 tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1); 1612 for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) { 1613 C->alias_type(idx)->print_on(tty); 1614 tty->cr(); 1615 } 1616 } 1617 #endif 1618 1619 1620 //----------------------------probe_alias_cache-------------------------------- 1621 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) { 1622 intptr_t key = (intptr_t) adr_type; 1623 key ^= key >> logAliasCacheSize; 1624 return &_alias_cache[key & right_n_bits(logAliasCacheSize)]; 1625 } 1626 1627 1628 //-----------------------------grow_alias_types-------------------------------- 1629 void Compile::grow_alias_types() { 1630 const int old_ats = _max_alias_types; // how many before? 1631 const int new_ats = old_ats; // how many more? 1632 const int grow_ats = old_ats+new_ats; // how many now? 1633 _max_alias_types = grow_ats; 1634 _alias_types = REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats); 1635 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats); 1636 Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats); 1637 for (int i = 0; i < new_ats; i++) _alias_types[old_ats+i] = &ats[i]; 1638 } 1639 1640 1641 //--------------------------------find_alias_type------------------------------ 1642 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) { 1643 if (!do_aliasing()) { 1644 return alias_type(AliasIdxBot); 1645 } 1646 1647 AliasCacheEntry* ace = probe_alias_cache(adr_type); 1648 if (ace->_adr_type == adr_type) { 1649 return alias_type(ace->_index); 1650 } 1651 1652 // Handle special cases. 1653 if (adr_type == nullptr) return alias_type(AliasIdxTop); 1654 if (adr_type == TypePtr::BOTTOM) return alias_type(AliasIdxBot); 1655 1656 // Do it the slow way. 1657 const TypePtr* flat = flatten_alias_type(adr_type); 1658 1659 #ifdef ASSERT 1660 { 1661 ResourceMark rm; 1662 assert(flat == flatten_alias_type(flat), "not idempotent: adr_type = %s; flat = %s => %s", 1663 Type::str(adr_type), Type::str(flat), Type::str(flatten_alias_type(flat))); 1664 assert(flat != TypePtr::BOTTOM, "cannot alias-analyze an untyped ptr: adr_type = %s", 1665 Type::str(adr_type)); 1666 if (flat->isa_oopptr() && !flat->isa_klassptr()) { 1667 const TypeOopPtr* foop = flat->is_oopptr(); 1668 // Scalarizable allocations have exact klass always. 1669 bool exact = !foop->klass_is_exact() || foop->is_known_instance(); 1670 const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr(); 1671 assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type: foop = %s; xoop = %s", 1672 Type::str(foop), Type::str(xoop)); 1673 } 1674 } 1675 #endif 1676 1677 int idx = AliasIdxTop; 1678 for (int i = 0; i < num_alias_types(); i++) { 1679 if (alias_type(i)->adr_type() == flat) { 1680 idx = i; 1681 break; 1682 } 1683 } 1684 1685 if (idx == AliasIdxTop) { 1686 if (no_create) return nullptr; 1687 // Grow the array if necessary. 1688 if (_num_alias_types == _max_alias_types) grow_alias_types(); 1689 // Add a new alias type. 1690 idx = _num_alias_types++; 1691 _alias_types[idx]->Init(idx, flat); 1692 if (flat == TypeInstPtr::KLASS) alias_type(idx)->set_rewritable(false); 1693 if (flat == TypeAryPtr::RANGE) alias_type(idx)->set_rewritable(false); 1694 if (flat->isa_instptr()) { 1695 if (flat->offset() == java_lang_Class::klass_offset() 1696 && flat->is_instptr()->instance_klass() == env()->Class_klass()) 1697 alias_type(idx)->set_rewritable(false); 1698 } 1699 if (flat->isa_aryptr()) { 1700 #ifdef ASSERT 1701 const int header_size_min = arrayOopDesc::base_offset_in_bytes(T_BYTE); 1702 // (T_BYTE has the weakest alignment and size restrictions...) 1703 assert(flat->offset() < header_size_min, "array body reference must be OffsetBot"); 1704 #endif 1705 if (flat->offset() == TypePtr::OffsetBot) { 1706 alias_type(idx)->set_element(flat->is_aryptr()->elem()); 1707 } 1708 } 1709 if (flat->isa_klassptr()) { 1710 if (UseCompactObjectHeaders) { 1711 if (flat->offset() == in_bytes(Klass::prototype_header_offset())) 1712 alias_type(idx)->set_rewritable(false); 1713 } 1714 if (flat->offset() == in_bytes(Klass::super_check_offset_offset())) 1715 alias_type(idx)->set_rewritable(false); 1716 if (flat->offset() == in_bytes(Klass::access_flags_offset())) 1717 alias_type(idx)->set_rewritable(false); 1718 if (flat->offset() == in_bytes(Klass::misc_flags_offset())) 1719 alias_type(idx)->set_rewritable(false); 1720 if (flat->offset() == in_bytes(Klass::java_mirror_offset())) 1721 alias_type(idx)->set_rewritable(false); 1722 if (flat->offset() == in_bytes(Klass::secondary_super_cache_offset())) 1723 alias_type(idx)->set_rewritable(false); 1724 } 1725 // %%% (We would like to finalize JavaThread::threadObj_offset(), 1726 // but the base pointer type is not distinctive enough to identify 1727 // references into JavaThread.) 1728 1729 // Check for final fields. 1730 const TypeInstPtr* tinst = flat->isa_instptr(); 1731 if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) { 1732 ciField* field; 1733 if (tinst->const_oop() != nullptr && 1734 tinst->instance_klass() == ciEnv::current()->Class_klass() && 1735 tinst->offset() >= (tinst->instance_klass()->layout_helper_size_in_bytes())) { 1736 // static field 1737 ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass(); 1738 field = k->get_field_by_offset(tinst->offset(), true); 1739 } else { 1740 ciInstanceKlass *k = tinst->instance_klass(); 1741 field = k->get_field_by_offset(tinst->offset(), false); 1742 } 1743 assert(field == nullptr || 1744 original_field == nullptr || 1745 (field->holder() == original_field->holder() && 1746 field->offset_in_bytes() == original_field->offset_in_bytes() && 1747 field->is_static() == original_field->is_static()), "wrong field?"); 1748 // Set field() and is_rewritable() attributes. 1749 if (field != nullptr) alias_type(idx)->set_field(field); 1750 } 1751 } 1752 1753 // Fill the cache for next time. 1754 ace->_adr_type = adr_type; 1755 ace->_index = idx; 1756 assert(alias_type(adr_type) == alias_type(idx), "type must be installed"); 1757 1758 // Might as well try to fill the cache for the flattened version, too. 1759 AliasCacheEntry* face = probe_alias_cache(flat); 1760 if (face->_adr_type == nullptr) { 1761 face->_adr_type = flat; 1762 face->_index = idx; 1763 assert(alias_type(flat) == alias_type(idx), "flat type must work too"); 1764 } 1765 1766 return alias_type(idx); 1767 } 1768 1769 1770 Compile::AliasType* Compile::alias_type(ciField* field) { 1771 const TypeOopPtr* t; 1772 if (field->is_static()) 1773 t = TypeInstPtr::make(field->holder()->java_mirror()); 1774 else 1775 t = TypeOopPtr::make_from_klass_raw(field->holder()); 1776 AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field); 1777 assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct"); 1778 return atp; 1779 } 1780 1781 1782 //------------------------------have_alias_type-------------------------------- 1783 bool Compile::have_alias_type(const TypePtr* adr_type) { 1784 AliasCacheEntry* ace = probe_alias_cache(adr_type); 1785 if (ace->_adr_type == adr_type) { 1786 return true; 1787 } 1788 1789 // Handle special cases. 1790 if (adr_type == nullptr) return true; 1791 if (adr_type == TypePtr::BOTTOM) return true; 1792 1793 return find_alias_type(adr_type, true, nullptr) != nullptr; 1794 } 1795 1796 //-----------------------------must_alias-------------------------------------- 1797 // True if all values of the given address type are in the given alias category. 1798 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) { 1799 if (alias_idx == AliasIdxBot) return true; // the universal category 1800 if (adr_type == nullptr) return true; // null serves as TypePtr::TOP 1801 if (alias_idx == AliasIdxTop) return false; // the empty category 1802 if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins 1803 1804 // the only remaining possible overlap is identity 1805 int adr_idx = get_alias_index(adr_type); 1806 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, ""); 1807 assert(adr_idx == alias_idx || 1808 (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM 1809 && adr_type != TypeOopPtr::BOTTOM), 1810 "should not be testing for overlap with an unsafe pointer"); 1811 return adr_idx == alias_idx; 1812 } 1813 1814 //------------------------------can_alias-------------------------------------- 1815 // True if any values of the given address type are in the given alias category. 1816 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) { 1817 if (alias_idx == AliasIdxTop) return false; // the empty category 1818 if (adr_type == nullptr) return false; // null serves as TypePtr::TOP 1819 // Known instance doesn't alias with bottom memory 1820 if (alias_idx == AliasIdxBot) return !adr_type->is_known_instance(); // the universal category 1821 if (adr_type->base() == Type::AnyPtr) return !C->get_adr_type(alias_idx)->is_known_instance(); // TypePtr::BOTTOM or its twins 1822 1823 // the only remaining possible overlap is identity 1824 int adr_idx = get_alias_index(adr_type); 1825 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, ""); 1826 return adr_idx == alias_idx; 1827 } 1828 1829 // Mark all ParsePredicateNodes as useless. They will later be removed from the graph in IGVN together with their 1830 // uncommon traps if no Runtime Predicates were created from the Parse Predicates. 1831 void Compile::mark_parse_predicate_nodes_useless(PhaseIterGVN& igvn) { 1832 if (parse_predicate_count() == 0) { 1833 return; 1834 } 1835 for (int i = 0; i < parse_predicate_count(); i++) { 1836 ParsePredicateNode* parse_predicate = _parse_predicates.at(i); 1837 parse_predicate->mark_useless(igvn); 1838 } 1839 _parse_predicates.clear(); 1840 } 1841 1842 void Compile::record_for_post_loop_opts_igvn(Node* n) { 1843 if (!n->for_post_loop_opts_igvn()) { 1844 assert(!_for_post_loop_igvn.contains(n), "duplicate"); 1845 n->add_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn); 1846 _for_post_loop_igvn.append(n); 1847 } 1848 } 1849 1850 void Compile::remove_from_post_loop_opts_igvn(Node* n) { 1851 n->remove_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn); 1852 _for_post_loop_igvn.remove(n); 1853 } 1854 1855 void Compile::process_for_post_loop_opts_igvn(PhaseIterGVN& igvn) { 1856 // Verify that all previous optimizations produced a valid graph 1857 // at least to this point, even if no loop optimizations were done. 1858 PhaseIdealLoop::verify(igvn); 1859 1860 C->set_post_loop_opts_phase(); // no more loop opts allowed 1861 1862 assert(!C->major_progress(), "not cleared"); 1863 1864 if (_for_post_loop_igvn.length() > 0) { 1865 while (_for_post_loop_igvn.length() > 0) { 1866 Node* n = _for_post_loop_igvn.pop(); 1867 n->remove_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn); 1868 igvn._worklist.push(n); 1869 } 1870 igvn.optimize(); 1871 if (failing()) return; 1872 assert(_for_post_loop_igvn.length() == 0, "no more delayed nodes allowed"); 1873 assert(C->parse_predicate_count() == 0, "all parse predicates should have been removed now"); 1874 1875 // Sometimes IGVN sets major progress (e.g., when processing loop nodes). 1876 if (C->major_progress()) { 1877 C->clear_major_progress(); // ensure that major progress is now clear 1878 } 1879 } 1880 } 1881 1882 void Compile::record_for_merge_stores_igvn(Node* n) { 1883 if (!n->for_merge_stores_igvn()) { 1884 assert(!_for_merge_stores_igvn.contains(n), "duplicate"); 1885 n->add_flag(Node::NodeFlags::Flag_for_merge_stores_igvn); 1886 _for_merge_stores_igvn.append(n); 1887 } 1888 } 1889 1890 void Compile::remove_from_merge_stores_igvn(Node* n) { 1891 n->remove_flag(Node::NodeFlags::Flag_for_merge_stores_igvn); 1892 _for_merge_stores_igvn.remove(n); 1893 } 1894 1895 // We need to wait with merging stores until RangeCheck smearing has removed the RangeChecks during 1896 // the post loops IGVN phase. If we do it earlier, then there may still be some RangeChecks between 1897 // the stores, and we merge the wrong sequence of stores. 1898 // Example: 1899 // StoreI RangeCheck StoreI StoreI RangeCheck StoreI 1900 // Apply MergeStores: 1901 // StoreI RangeCheck [ StoreL ] RangeCheck StoreI 1902 // Remove more RangeChecks: 1903 // StoreI [ StoreL ] StoreI 1904 // But now it would have been better to do this instead: 1905 // [ StoreL ] [ StoreL ] 1906 // 1907 // Note: we allow stores to merge in this dedicated IGVN round, and any later IGVN round, 1908 // since we never unset _merge_stores_phase. 1909 void Compile::process_for_merge_stores_igvn(PhaseIterGVN& igvn) { 1910 C->set_merge_stores_phase(); 1911 1912 if (_for_merge_stores_igvn.length() > 0) { 1913 while (_for_merge_stores_igvn.length() > 0) { 1914 Node* n = _for_merge_stores_igvn.pop(); 1915 n->remove_flag(Node::NodeFlags::Flag_for_merge_stores_igvn); 1916 igvn._worklist.push(n); 1917 } 1918 igvn.optimize(); 1919 if (failing()) return; 1920 assert(_for_merge_stores_igvn.length() == 0, "no more delayed nodes allowed"); 1921 print_method(PHASE_AFTER_MERGE_STORES, 3); 1922 } 1923 } 1924 1925 void Compile::record_unstable_if_trap(UnstableIfTrap* trap) { 1926 if (OptimizeUnstableIf) { 1927 _unstable_if_traps.append(trap); 1928 } 1929 } 1930 1931 void Compile::remove_useless_unstable_if_traps(Unique_Node_List& useful) { 1932 for (int i = _unstable_if_traps.length() - 1; i >= 0; i--) { 1933 UnstableIfTrap* trap = _unstable_if_traps.at(i); 1934 Node* n = trap->uncommon_trap(); 1935 if (!useful.member(n)) { 1936 _unstable_if_traps.delete_at(i); // replaces i-th with last element which is known to be useful (already processed) 1937 } 1938 } 1939 } 1940 1941 // Remove the unstable if trap associated with 'unc' from candidates. It is either dead 1942 // or fold-compares case. Return true if succeed or not found. 1943 // 1944 // In rare cases, the found trap has been processed. It is too late to delete it. Return 1945 // false and ask fold-compares to yield. 1946 // 1947 // 'fold-compares' may use the uncommon_trap of the dominating IfNode to cover the fused 1948 // IfNode. This breaks the unstable_if trap invariant: control takes the unstable path 1949 // when deoptimization does happen. 1950 bool Compile::remove_unstable_if_trap(CallStaticJavaNode* unc, bool yield) { 1951 for (int i = 0; i < _unstable_if_traps.length(); ++i) { 1952 UnstableIfTrap* trap = _unstable_if_traps.at(i); 1953 if (trap->uncommon_trap() == unc) { 1954 if (yield && trap->modified()) { 1955 return false; 1956 } 1957 _unstable_if_traps.delete_at(i); 1958 break; 1959 } 1960 } 1961 return true; 1962 } 1963 1964 // Re-calculate unstable_if traps with the liveness of next_bci, which points to the unlikely path. 1965 // It needs to be done after igvn because fold-compares may fuse uncommon_traps and before renumbering. 1966 void Compile::process_for_unstable_if_traps(PhaseIterGVN& igvn) { 1967 for (int i = _unstable_if_traps.length() - 1; i >= 0; --i) { 1968 UnstableIfTrap* trap = _unstable_if_traps.at(i); 1969 CallStaticJavaNode* unc = trap->uncommon_trap(); 1970 int next_bci = trap->next_bci(); 1971 bool modified = trap->modified(); 1972 1973 if (next_bci != -1 && !modified) { 1974 assert(!_dead_node_list.test(unc->_idx), "changing a dead node!"); 1975 JVMState* jvms = unc->jvms(); 1976 ciMethod* method = jvms->method(); 1977 ciBytecodeStream iter(method); 1978 1979 iter.force_bci(jvms->bci()); 1980 assert(next_bci == iter.next_bci() || next_bci == iter.get_dest(), "wrong next_bci at unstable_if"); 1981 Bytecodes::Code c = iter.cur_bc(); 1982 Node* lhs = nullptr; 1983 Node* rhs = nullptr; 1984 if (c == Bytecodes::_if_acmpeq || c == Bytecodes::_if_acmpne) { 1985 lhs = unc->peek_operand(0); 1986 rhs = unc->peek_operand(1); 1987 } else if (c == Bytecodes::_ifnull || c == Bytecodes::_ifnonnull) { 1988 lhs = unc->peek_operand(0); 1989 } 1990 1991 ResourceMark rm; 1992 const MethodLivenessResult& live_locals = method->liveness_at_bci(next_bci); 1993 assert(live_locals.is_valid(), "broken liveness info"); 1994 int len = (int)live_locals.size(); 1995 1996 for (int i = 0; i < len; i++) { 1997 Node* local = unc->local(jvms, i); 1998 // kill local using the liveness of next_bci. 1999 // give up when the local looks like an operand to secure reexecution. 2000 if (!live_locals.at(i) && !local->is_top() && local != lhs && local!= rhs) { 2001 uint idx = jvms->locoff() + i; 2002 #ifdef ASSERT 2003 if (PrintOpto && Verbose) { 2004 tty->print("[unstable_if] kill local#%d: ", idx); 2005 local->dump(); 2006 tty->cr(); 2007 } 2008 #endif 2009 igvn.replace_input_of(unc, idx, top()); 2010 modified = true; 2011 } 2012 } 2013 } 2014 2015 // keep the mondified trap for late query 2016 if (modified) { 2017 trap->set_modified(); 2018 } else { 2019 _unstable_if_traps.delete_at(i); 2020 } 2021 } 2022 igvn.optimize(); 2023 } 2024 2025 // StringOpts and late inlining of string methods 2026 void Compile::inline_string_calls(bool parse_time) { 2027 { 2028 // remove useless nodes to make the usage analysis simpler 2029 ResourceMark rm; 2030 PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist()); 2031 } 2032 2033 { 2034 ResourceMark rm; 2035 print_method(PHASE_BEFORE_STRINGOPTS, 3); 2036 PhaseStringOpts pso(initial_gvn()); 2037 print_method(PHASE_AFTER_STRINGOPTS, 3); 2038 } 2039 2040 // now inline anything that we skipped the first time around 2041 if (!parse_time) { 2042 _late_inlines_pos = _late_inlines.length(); 2043 } 2044 2045 while (_string_late_inlines.length() > 0) { 2046 CallGenerator* cg = _string_late_inlines.pop(); 2047 cg->do_late_inline(); 2048 if (failing()) return; 2049 } 2050 _string_late_inlines.trunc_to(0); 2051 } 2052 2053 // Late inlining of boxing methods 2054 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) { 2055 if (_boxing_late_inlines.length() > 0) { 2056 assert(has_boxed_value(), "inconsistent"); 2057 2058 set_inlining_incrementally(true); 2059 2060 igvn_worklist()->ensure_empty(); // should be done with igvn 2061 2062 _late_inlines_pos = _late_inlines.length(); 2063 2064 while (_boxing_late_inlines.length() > 0) { 2065 CallGenerator* cg = _boxing_late_inlines.pop(); 2066 cg->do_late_inline(); 2067 if (failing()) return; 2068 } 2069 _boxing_late_inlines.trunc_to(0); 2070 2071 inline_incrementally_cleanup(igvn); 2072 2073 set_inlining_incrementally(false); 2074 } 2075 } 2076 2077 bool Compile::inline_incrementally_one() { 2078 assert(IncrementalInline, "incremental inlining should be on"); 2079 2080 TracePhase tp(_t_incrInline_inline); 2081 2082 set_inlining_progress(false); 2083 set_do_cleanup(false); 2084 2085 for (int i = 0; i < _late_inlines.length(); i++) { 2086 _late_inlines_pos = i+1; 2087 CallGenerator* cg = _late_inlines.at(i); 2088 bool is_scheduled_for_igvn_before = C->igvn_worklist()->member(cg->call_node()); 2089 bool does_dispatch = cg->is_virtual_late_inline() || cg->is_mh_late_inline(); 2090 if (inlining_incrementally() || does_dispatch) { // a call can be either inlined or strength-reduced to a direct call 2091 cg->do_late_inline(); 2092 assert(_late_inlines.at(i) == cg, "no insertions before current position allowed"); 2093 if (failing()) { 2094 return false; 2095 } else if (inlining_progress()) { 2096 _late_inlines_pos = i+1; // restore the position in case new elements were inserted 2097 print_method(PHASE_INCREMENTAL_INLINE_STEP, 3, cg->call_node()); 2098 break; // process one call site at a time 2099 } else { 2100 bool is_scheduled_for_igvn_after = C->igvn_worklist()->member(cg->call_node()); 2101 if (!is_scheduled_for_igvn_before && is_scheduled_for_igvn_after) { 2102 // Avoid potential infinite loop if node already in the IGVN list 2103 assert(false, "scheduled for IGVN during inlining attempt"); 2104 } else { 2105 // Ensure call node has not disappeared from IGVN worklist during a failed inlining attempt 2106 assert(!is_scheduled_for_igvn_before || is_scheduled_for_igvn_after, "call node removed from IGVN list during inlining pass"); 2107 cg->call_node()->set_generator(cg); 2108 } 2109 } 2110 } else { 2111 // Ignore late inline direct calls when inlining is not allowed. 2112 // They are left in the late inline list when node budget is exhausted until the list is fully drained. 2113 } 2114 } 2115 // Remove processed elements. 2116 _late_inlines.remove_till(_late_inlines_pos); 2117 _late_inlines_pos = 0; 2118 2119 assert(inlining_progress() || _late_inlines.length() == 0, "no progress"); 2120 2121 bool needs_cleanup = do_cleanup() || over_inlining_cutoff(); 2122 2123 set_inlining_progress(false); 2124 set_do_cleanup(false); 2125 2126 bool force_cleanup = directive()->IncrementalInlineForceCleanupOption; 2127 return (_late_inlines.length() > 0) && !needs_cleanup && !force_cleanup; 2128 } 2129 2130 void Compile::inline_incrementally_cleanup(PhaseIterGVN& igvn) { 2131 { 2132 TracePhase tp(_t_incrInline_pru); 2133 ResourceMark rm; 2134 PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist()); 2135 } 2136 { 2137 TracePhase tp(_t_incrInline_igvn); 2138 igvn.reset_from_gvn(initial_gvn()); 2139 igvn.optimize(); 2140 if (failing()) return; 2141 } 2142 print_method(PHASE_INCREMENTAL_INLINE_CLEANUP, 3); 2143 } 2144 2145 // Perform incremental inlining until bound on number of live nodes is reached 2146 void Compile::inline_incrementally(PhaseIterGVN& igvn) { 2147 TracePhase tp(_t_incrInline); 2148 2149 set_inlining_incrementally(true); 2150 uint low_live_nodes = 0; 2151 2152 while (_late_inlines.length() > 0) { 2153 if (live_nodes() > (uint)LiveNodeCountInliningCutoff) { 2154 if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) { 2155 TracePhase tp(_t_incrInline_ideal); 2156 // PhaseIdealLoop is expensive so we only try it once we are 2157 // out of live nodes and we only try it again if the previous 2158 // helped got the number of nodes down significantly 2159 PhaseIdealLoop::optimize(igvn, LoopOptsNone); 2160 if (failing()) return; 2161 low_live_nodes = live_nodes(); 2162 _major_progress = true; 2163 } 2164 2165 if (live_nodes() > (uint)LiveNodeCountInliningCutoff) { 2166 bool do_print_inlining = print_inlining() || print_intrinsics(); 2167 if (do_print_inlining || log() != nullptr) { 2168 // Print inlining message for candidates that we couldn't inline for lack of space. 2169 for (int i = 0; i < _late_inlines.length(); i++) { 2170 CallGenerator* cg = _late_inlines.at(i); 2171 const char* msg = "live nodes > LiveNodeCountInliningCutoff"; 2172 if (do_print_inlining) { 2173 inline_printer()->record(cg->method(), cg->call_node()->jvms(), InliningResult::FAILURE, msg); 2174 } 2175 log_late_inline_failure(cg, msg); 2176 } 2177 } 2178 break; // finish 2179 } 2180 } 2181 2182 igvn_worklist()->ensure_empty(); // should be done with igvn 2183 2184 while (inline_incrementally_one()) { 2185 assert(!failing_internal() || failure_is_artificial(), "inconsistent"); 2186 } 2187 if (failing()) return; 2188 2189 inline_incrementally_cleanup(igvn); 2190 2191 print_method(PHASE_INCREMENTAL_INLINE_STEP, 3); 2192 2193 if (failing()) return; 2194 2195 if (_late_inlines.length() == 0) { 2196 break; // no more progress 2197 } 2198 } 2199 2200 igvn_worklist()->ensure_empty(); // should be done with igvn 2201 2202 if (_string_late_inlines.length() > 0) { 2203 assert(has_stringbuilder(), "inconsistent"); 2204 2205 inline_string_calls(false); 2206 2207 if (failing()) return; 2208 2209 inline_incrementally_cleanup(igvn); 2210 } 2211 2212 set_inlining_incrementally(false); 2213 } 2214 2215 void Compile::process_late_inline_calls_no_inline(PhaseIterGVN& igvn) { 2216 // "inlining_incrementally() == false" is used to signal that no inlining is allowed 2217 // (see LateInlineVirtualCallGenerator::do_late_inline_check() for details). 2218 // Tracking and verification of modified nodes is disabled by setting "_modified_nodes == nullptr" 2219 // as if "inlining_incrementally() == true" were set. 2220 assert(inlining_incrementally() == false, "not allowed"); 2221 assert(_modified_nodes == nullptr, "not allowed"); 2222 assert(_late_inlines.length() > 0, "sanity"); 2223 2224 while (_late_inlines.length() > 0) { 2225 igvn_worklist()->ensure_empty(); // should be done with igvn 2226 2227 while (inline_incrementally_one()) { 2228 assert(!failing_internal() || failure_is_artificial(), "inconsistent"); 2229 } 2230 if (failing()) return; 2231 2232 inline_incrementally_cleanup(igvn); 2233 } 2234 } 2235 2236 bool Compile::optimize_loops(PhaseIterGVN& igvn, LoopOptsMode mode) { 2237 if (_loop_opts_cnt > 0) { 2238 while (major_progress() && (_loop_opts_cnt > 0)) { 2239 TracePhase tp(_t_idealLoop); 2240 PhaseIdealLoop::optimize(igvn, mode); 2241 _loop_opts_cnt--; 2242 if (failing()) return false; 2243 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2); 2244 } 2245 } 2246 return true; 2247 } 2248 2249 // Remove edges from "root" to each SafePoint at a backward branch. 2250 // They were inserted during parsing (see add_safepoint()) to make 2251 // infinite loops without calls or exceptions visible to root, i.e., 2252 // useful. 2253 void Compile::remove_root_to_sfpts_edges(PhaseIterGVN& igvn) { 2254 Node *r = root(); 2255 if (r != nullptr) { 2256 for (uint i = r->req(); i < r->len(); ++i) { 2257 Node *n = r->in(i); 2258 if (n != nullptr && n->is_SafePoint()) { 2259 r->rm_prec(i); 2260 if (n->outcnt() == 0) { 2261 igvn.remove_dead_node(n); 2262 } 2263 --i; 2264 } 2265 } 2266 // Parsing may have added top inputs to the root node (Path 2267 // leading to the Halt node proven dead). Make sure we get a 2268 // chance to clean them up. 2269 igvn._worklist.push(r); 2270 igvn.optimize(); 2271 } 2272 } 2273 2274 //------------------------------Optimize--------------------------------------- 2275 // Given a graph, optimize it. 2276 void Compile::Optimize() { 2277 TracePhase tp(_t_optimizer); 2278 2279 #ifndef PRODUCT 2280 if (env()->break_at_compile()) { 2281 BREAKPOINT; 2282 } 2283 2284 #endif 2285 2286 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 2287 #ifdef ASSERT 2288 bs->verify_gc_barriers(this, BarrierSetC2::BeforeOptimize); 2289 #endif 2290 2291 ResourceMark rm; 2292 2293 NOT_PRODUCT( verify_graph_edges(); ) 2294 2295 print_method(PHASE_AFTER_PARSING, 1); 2296 2297 { 2298 // Iterative Global Value Numbering, including ideal transforms 2299 // Initialize IterGVN with types and values from parse-time GVN 2300 PhaseIterGVN igvn(initial_gvn()); 2301 #ifdef ASSERT 2302 _modified_nodes = new (comp_arena()) Unique_Node_List(comp_arena()); 2303 #endif 2304 { 2305 TracePhase tp(_t_iterGVN); 2306 igvn.optimize(); 2307 } 2308 2309 if (failing()) return; 2310 2311 print_method(PHASE_ITER_GVN1, 2); 2312 2313 process_for_unstable_if_traps(igvn); 2314 2315 if (failing()) return; 2316 2317 inline_incrementally(igvn); 2318 2319 print_method(PHASE_INCREMENTAL_INLINE, 2); 2320 2321 if (failing()) return; 2322 2323 if (eliminate_boxing()) { 2324 // Inline valueOf() methods now. 2325 inline_boxing_calls(igvn); 2326 2327 if (failing()) return; 2328 2329 if (AlwaysIncrementalInline || StressIncrementalInlining) { 2330 inline_incrementally(igvn); 2331 } 2332 2333 print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2); 2334 2335 if (failing()) return; 2336 } 2337 2338 // Remove the speculative part of types and clean up the graph from 2339 // the extra CastPP nodes whose only purpose is to carry them. Do 2340 // that early so that optimizations are not disrupted by the extra 2341 // CastPP nodes. 2342 remove_speculative_types(igvn); 2343 2344 if (failing()) return; 2345 2346 // No more new expensive nodes will be added to the list from here 2347 // so keep only the actual candidates for optimizations. 2348 cleanup_expensive_nodes(igvn); 2349 2350 if (failing()) return; 2351 2352 assert(EnableVectorSupport || !has_vbox_nodes(), "sanity"); 2353 if (EnableVectorSupport && has_vbox_nodes()) { 2354 TracePhase tp(_t_vector); 2355 PhaseVector pv(igvn); 2356 pv.optimize_vector_boxes(); 2357 if (failing()) return; 2358 print_method(PHASE_ITER_GVN_AFTER_VECTOR, 2); 2359 } 2360 assert(!has_vbox_nodes(), "sanity"); 2361 2362 if (!failing() && RenumberLiveNodes && live_nodes() + NodeLimitFudgeFactor < unique()) { 2363 Compile::TracePhase tp(_t_renumberLive); 2364 igvn_worklist()->ensure_empty(); // should be done with igvn 2365 { 2366 ResourceMark rm; 2367 PhaseRenumberLive prl(initial_gvn(), *igvn_worklist()); 2368 } 2369 igvn.reset_from_gvn(initial_gvn()); 2370 igvn.optimize(); 2371 if (failing()) return; 2372 } 2373 2374 // Now that all inlining is over and no PhaseRemoveUseless will run, cut edge from root to loop 2375 // safepoints 2376 remove_root_to_sfpts_edges(igvn); 2377 2378 if (failing()) return; 2379 2380 // Perform escape analysis 2381 if (do_escape_analysis() && ConnectionGraph::has_candidates(this)) { 2382 if (has_loops()) { 2383 // Cleanup graph (remove dead nodes). 2384 TracePhase tp(_t_idealLoop); 2385 PhaseIdealLoop::optimize(igvn, LoopOptsMaxUnroll); 2386 if (failing()) return; 2387 } 2388 bool progress; 2389 print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2); 2390 do { 2391 ConnectionGraph::do_analysis(this, &igvn); 2392 2393 if (failing()) return; 2394 2395 int mcount = macro_count(); // Record number of allocations and locks before IGVN 2396 2397 // Optimize out fields loads from scalar replaceable allocations. 2398 igvn.optimize(); 2399 print_method(PHASE_ITER_GVN_AFTER_EA, 2); 2400 2401 if (failing()) return; 2402 2403 if (congraph() != nullptr && macro_count() > 0) { 2404 TracePhase tp(_t_macroEliminate); 2405 PhaseMacroExpand mexp(igvn); 2406 mexp.eliminate_macro_nodes(); 2407 if (failing()) return; 2408 2409 igvn.set_delay_transform(false); 2410 igvn.optimize(); 2411 if (failing()) return; 2412 2413 print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2); 2414 } 2415 2416 ConnectionGraph::verify_ram_nodes(this, root()); 2417 if (failing()) return; 2418 2419 progress = do_iterative_escape_analysis() && 2420 (macro_count() < mcount) && 2421 ConnectionGraph::has_candidates(this); 2422 // Try again if candidates exist and made progress 2423 // by removing some allocations and/or locks. 2424 } while (progress); 2425 } 2426 2427 // Loop transforms on the ideal graph. Range Check Elimination, 2428 // peeling, unrolling, etc. 2429 2430 // Set loop opts counter 2431 if((_loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) { 2432 { 2433 TracePhase tp(_t_idealLoop); 2434 PhaseIdealLoop::optimize(igvn, LoopOptsDefault); 2435 _loop_opts_cnt--; 2436 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2); 2437 if (failing()) return; 2438 } 2439 // Loop opts pass if partial peeling occurred in previous pass 2440 if(PartialPeelLoop && major_progress() && (_loop_opts_cnt > 0)) { 2441 TracePhase tp(_t_idealLoop); 2442 PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf); 2443 _loop_opts_cnt--; 2444 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2); 2445 if (failing()) return; 2446 } 2447 // Loop opts pass for loop-unrolling before CCP 2448 if(major_progress() && (_loop_opts_cnt > 0)) { 2449 TracePhase tp(_t_idealLoop); 2450 PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf); 2451 _loop_opts_cnt--; 2452 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2); 2453 } 2454 if (!failing()) { 2455 // Verify that last round of loop opts produced a valid graph 2456 PhaseIdealLoop::verify(igvn); 2457 } 2458 } 2459 if (failing()) return; 2460 2461 // Conditional Constant Propagation; 2462 print_method(PHASE_BEFORE_CCP1, 2); 2463 PhaseCCP ccp( &igvn ); 2464 assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)"); 2465 { 2466 TracePhase tp(_t_ccp); 2467 ccp.do_transform(); 2468 } 2469 print_method(PHASE_CCP1, 2); 2470 2471 assert( true, "Break here to ccp.dump_old2new_map()"); 2472 2473 // Iterative Global Value Numbering, including ideal transforms 2474 { 2475 TracePhase tp(_t_iterGVN2); 2476 igvn.reset_from_igvn(&ccp); 2477 igvn.optimize(); 2478 } 2479 print_method(PHASE_ITER_GVN2, 2); 2480 2481 if (failing()) return; 2482 2483 // Loop transforms on the ideal graph. Range Check Elimination, 2484 // peeling, unrolling, etc. 2485 if (!optimize_loops(igvn, LoopOptsDefault)) { 2486 return; 2487 } 2488 2489 if (failing()) return; 2490 2491 C->clear_major_progress(); // ensure that major progress is now clear 2492 2493 process_for_post_loop_opts_igvn(igvn); 2494 2495 process_for_merge_stores_igvn(igvn); 2496 2497 if (failing()) return; 2498 2499 #ifdef ASSERT 2500 bs->verify_gc_barriers(this, BarrierSetC2::BeforeMacroExpand); 2501 #endif 2502 2503 { 2504 TracePhase tp(_t_macroExpand); 2505 print_method(PHASE_BEFORE_MACRO_EXPANSION, 3); 2506 PhaseMacroExpand mex(igvn); 2507 if (mex.expand_macro_nodes()) { 2508 assert(failing(), "must bail out w/ explicit message"); 2509 return; 2510 } 2511 print_method(PHASE_AFTER_MACRO_EXPANSION, 2); 2512 } 2513 2514 { 2515 TracePhase tp(_t_barrierExpand); 2516 if (bs->expand_barriers(this, igvn)) { 2517 assert(failing(), "must bail out w/ explicit message"); 2518 return; 2519 } 2520 print_method(PHASE_BARRIER_EXPANSION, 2); 2521 } 2522 2523 if (C->max_vector_size() > 0) { 2524 C->optimize_logic_cones(igvn); 2525 igvn.optimize(); 2526 if (failing()) return; 2527 } 2528 2529 DEBUG_ONLY( _modified_nodes = nullptr; ) 2530 2531 assert(igvn._worklist.size() == 0, "not empty"); 2532 2533 assert(_late_inlines.length() == 0 || IncrementalInlineMH || IncrementalInlineVirtual, "not empty"); 2534 2535 if (_late_inlines.length() > 0) { 2536 // More opportunities to optimize virtual and MH calls. 2537 // Though it's maybe too late to perform inlining, strength-reducing them to direct calls is still an option. 2538 process_late_inline_calls_no_inline(igvn); 2539 if (failing()) return; 2540 } 2541 } // (End scope of igvn; run destructor if necessary for asserts.) 2542 2543 check_no_dead_use(); 2544 2545 // We will never use the NodeHash table any more. Clear it so that final_graph_reshaping does not have 2546 // to remove hashes to unlock nodes for modifications. 2547 C->node_hash()->clear(); 2548 2549 // A method with only infinite loops has no edges entering loops from root 2550 { 2551 TracePhase tp(_t_graphReshaping); 2552 if (final_graph_reshaping()) { 2553 assert(failing(), "must bail out w/ explicit message"); 2554 return; 2555 } 2556 } 2557 2558 print_method(PHASE_OPTIMIZE_FINISHED, 2); 2559 DEBUG_ONLY(set_phase_optimize_finished();) 2560 } 2561 2562 #ifdef ASSERT 2563 void Compile::check_no_dead_use() const { 2564 ResourceMark rm; 2565 Unique_Node_List wq; 2566 wq.push(root()); 2567 for (uint i = 0; i < wq.size(); ++i) { 2568 Node* n = wq.at(i); 2569 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) { 2570 Node* u = n->fast_out(j); 2571 if (u->outcnt() == 0 && !u->is_Con()) { 2572 u->dump(); 2573 fatal("no reachable node should have no use"); 2574 } 2575 wq.push(u); 2576 } 2577 } 2578 } 2579 #endif 2580 2581 void Compile::inline_vector_reboxing_calls() { 2582 if (C->_vector_reboxing_late_inlines.length() > 0) { 2583 _late_inlines_pos = C->_late_inlines.length(); 2584 while (_vector_reboxing_late_inlines.length() > 0) { 2585 CallGenerator* cg = _vector_reboxing_late_inlines.pop(); 2586 cg->do_late_inline(); 2587 if (failing()) return; 2588 print_method(PHASE_INLINE_VECTOR_REBOX, 3, cg->call_node()); 2589 } 2590 _vector_reboxing_late_inlines.trunc_to(0); 2591 } 2592 } 2593 2594 bool Compile::has_vbox_nodes() { 2595 if (C->_vector_reboxing_late_inlines.length() > 0) { 2596 return true; 2597 } 2598 for (int macro_idx = C->macro_count() - 1; macro_idx >= 0; macro_idx--) { 2599 Node * n = C->macro_node(macro_idx); 2600 assert(n->is_macro(), "only macro nodes expected here"); 2601 if (n->Opcode() == Op_VectorUnbox || n->Opcode() == Op_VectorBox || n->Opcode() == Op_VectorBoxAllocate) { 2602 return true; 2603 } 2604 } 2605 return false; 2606 } 2607 2608 //---------------------------- Bitwise operation packing optimization --------------------------- 2609 2610 static bool is_vector_unary_bitwise_op(Node* n) { 2611 return n->Opcode() == Op_XorV && 2612 VectorNode::is_vector_bitwise_not_pattern(n); 2613 } 2614 2615 static bool is_vector_binary_bitwise_op(Node* n) { 2616 switch (n->Opcode()) { 2617 case Op_AndV: 2618 case Op_OrV: 2619 return true; 2620 2621 case Op_XorV: 2622 return !is_vector_unary_bitwise_op(n); 2623 2624 default: 2625 return false; 2626 } 2627 } 2628 2629 static bool is_vector_ternary_bitwise_op(Node* n) { 2630 return n->Opcode() == Op_MacroLogicV; 2631 } 2632 2633 static bool is_vector_bitwise_op(Node* n) { 2634 return is_vector_unary_bitwise_op(n) || 2635 is_vector_binary_bitwise_op(n) || 2636 is_vector_ternary_bitwise_op(n); 2637 } 2638 2639 static bool is_vector_bitwise_cone_root(Node* n) { 2640 if (n->bottom_type()->isa_vectmask() || !is_vector_bitwise_op(n)) { 2641 return false; 2642 } 2643 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 2644 if (is_vector_bitwise_op(n->fast_out(i))) { 2645 return false; 2646 } 2647 } 2648 return true; 2649 } 2650 2651 static uint collect_unique_inputs(Node* n, Unique_Node_List& inputs) { 2652 uint cnt = 0; 2653 if (is_vector_bitwise_op(n)) { 2654 uint inp_cnt = n->is_predicated_vector() ? n->req()-1 : n->req(); 2655 if (VectorNode::is_vector_bitwise_not_pattern(n)) { 2656 for (uint i = 1; i < inp_cnt; i++) { 2657 Node* in = n->in(i); 2658 bool skip = VectorNode::is_all_ones_vector(in); 2659 if (!skip && !inputs.member(in)) { 2660 inputs.push(in); 2661 cnt++; 2662 } 2663 } 2664 assert(cnt <= 1, "not unary"); 2665 } else { 2666 uint last_req = inp_cnt; 2667 if (is_vector_ternary_bitwise_op(n)) { 2668 last_req = inp_cnt - 1; // skip last input 2669 } 2670 for (uint i = 1; i < last_req; i++) { 2671 Node* def = n->in(i); 2672 if (!inputs.member(def)) { 2673 inputs.push(def); 2674 cnt++; 2675 } 2676 } 2677 } 2678 } else { // not a bitwise operations 2679 if (!inputs.member(n)) { 2680 inputs.push(n); 2681 cnt++; 2682 } 2683 } 2684 return cnt; 2685 } 2686 2687 void Compile::collect_logic_cone_roots(Unique_Node_List& list) { 2688 Unique_Node_List useful_nodes; 2689 C->identify_useful_nodes(useful_nodes); 2690 2691 for (uint i = 0; i < useful_nodes.size(); i++) { 2692 Node* n = useful_nodes.at(i); 2693 if (is_vector_bitwise_cone_root(n)) { 2694 list.push(n); 2695 } 2696 } 2697 } 2698 2699 Node* Compile::xform_to_MacroLogicV(PhaseIterGVN& igvn, 2700 const TypeVect* vt, 2701 Unique_Node_List& partition, 2702 Unique_Node_List& inputs) { 2703 assert(partition.size() == 2 || partition.size() == 3, "not supported"); 2704 assert(inputs.size() == 2 || inputs.size() == 3, "not supported"); 2705 assert(Matcher::match_rule_supported_vector(Op_MacroLogicV, vt->length(), vt->element_basic_type()), "not supported"); 2706 2707 Node* in1 = inputs.at(0); 2708 Node* in2 = inputs.at(1); 2709 Node* in3 = (inputs.size() == 3 ? inputs.at(2) : in2); 2710 2711 uint func = compute_truth_table(partition, inputs); 2712 2713 Node* pn = partition.at(partition.size() - 1); 2714 Node* mask = pn->is_predicated_vector() ? pn->in(pn->req()-1) : nullptr; 2715 return igvn.transform(MacroLogicVNode::make(igvn, in1, in2, in3, mask, func, vt)); 2716 } 2717 2718 static uint extract_bit(uint func, uint pos) { 2719 return (func & (1 << pos)) >> pos; 2720 } 2721 2722 // 2723 // A macro logic node represents a truth table. It has 4 inputs, 2724 // First three inputs corresponds to 3 columns of a truth table 2725 // and fourth input captures the logic function. 2726 // 2727 // eg. fn = (in1 AND in2) OR in3; 2728 // 2729 // MacroNode(in1,in2,in3,fn) 2730 // 2731 // ----------------- 2732 // in1 in2 in3 fn 2733 // ----------------- 2734 // 0 0 0 0 2735 // 0 0 1 1 2736 // 0 1 0 0 2737 // 0 1 1 1 2738 // 1 0 0 0 2739 // 1 0 1 1 2740 // 1 1 0 1 2741 // 1 1 1 1 2742 // 2743 2744 uint Compile::eval_macro_logic_op(uint func, uint in1 , uint in2, uint in3) { 2745 int res = 0; 2746 for (int i = 0; i < 8; i++) { 2747 int bit1 = extract_bit(in1, i); 2748 int bit2 = extract_bit(in2, i); 2749 int bit3 = extract_bit(in3, i); 2750 2751 int func_bit_pos = (bit1 << 2 | bit2 << 1 | bit3); 2752 int func_bit = extract_bit(func, func_bit_pos); 2753 2754 res |= func_bit << i; 2755 } 2756 return res; 2757 } 2758 2759 static uint eval_operand(Node* n, ResourceHashtable<Node*,uint>& eval_map) { 2760 assert(n != nullptr, ""); 2761 assert(eval_map.contains(n), "absent"); 2762 return *(eval_map.get(n)); 2763 } 2764 2765 static void eval_operands(Node* n, 2766 uint& func1, uint& func2, uint& func3, 2767 ResourceHashtable<Node*,uint>& eval_map) { 2768 assert(is_vector_bitwise_op(n), ""); 2769 2770 if (is_vector_unary_bitwise_op(n)) { 2771 Node* opnd = n->in(1); 2772 if (VectorNode::is_vector_bitwise_not_pattern(n) && VectorNode::is_all_ones_vector(opnd)) { 2773 opnd = n->in(2); 2774 } 2775 func1 = eval_operand(opnd, eval_map); 2776 } else if (is_vector_binary_bitwise_op(n)) { 2777 func1 = eval_operand(n->in(1), eval_map); 2778 func2 = eval_operand(n->in(2), eval_map); 2779 } else { 2780 assert(is_vector_ternary_bitwise_op(n), "unknown operation"); 2781 func1 = eval_operand(n->in(1), eval_map); 2782 func2 = eval_operand(n->in(2), eval_map); 2783 func3 = eval_operand(n->in(3), eval_map); 2784 } 2785 } 2786 2787 uint Compile::compute_truth_table(Unique_Node_List& partition, Unique_Node_List& inputs) { 2788 assert(inputs.size() <= 3, "sanity"); 2789 ResourceMark rm; 2790 uint res = 0; 2791 ResourceHashtable<Node*,uint> eval_map; 2792 2793 // Populate precomputed functions for inputs. 2794 // Each input corresponds to one column of 3 input truth-table. 2795 uint input_funcs[] = { 0xAA, // (_, _, c) -> c 2796 0xCC, // (_, b, _) -> b 2797 0xF0 }; // (a, _, _) -> a 2798 for (uint i = 0; i < inputs.size(); i++) { 2799 eval_map.put(inputs.at(i), input_funcs[2-i]); 2800 } 2801 2802 for (uint i = 0; i < partition.size(); i++) { 2803 Node* n = partition.at(i); 2804 2805 uint func1 = 0, func2 = 0, func3 = 0; 2806 eval_operands(n, func1, func2, func3, eval_map); 2807 2808 switch (n->Opcode()) { 2809 case Op_OrV: 2810 assert(func3 == 0, "not binary"); 2811 res = func1 | func2; 2812 break; 2813 case Op_AndV: 2814 assert(func3 == 0, "not binary"); 2815 res = func1 & func2; 2816 break; 2817 case Op_XorV: 2818 if (VectorNode::is_vector_bitwise_not_pattern(n)) { 2819 assert(func2 == 0 && func3 == 0, "not unary"); 2820 res = (~func1) & 0xFF; 2821 } else { 2822 assert(func3 == 0, "not binary"); 2823 res = func1 ^ func2; 2824 } 2825 break; 2826 case Op_MacroLogicV: 2827 // Ordering of inputs may change during evaluation of sub-tree 2828 // containing MacroLogic node as a child node, thus a re-evaluation 2829 // makes sure that function is evaluated in context of current 2830 // inputs. 2831 res = eval_macro_logic_op(n->in(4)->get_int(), func1, func2, func3); 2832 break; 2833 2834 default: assert(false, "not supported: %s", n->Name()); 2835 } 2836 assert(res <= 0xFF, "invalid"); 2837 eval_map.put(n, res); 2838 } 2839 return res; 2840 } 2841 2842 // Criteria under which nodes gets packed into a macro logic node:- 2843 // 1) Parent and both child nodes are all unmasked or masked with 2844 // same predicates. 2845 // 2) Masked parent can be packed with left child if it is predicated 2846 // and both have same predicates. 2847 // 3) Masked parent can be packed with right child if its un-predicated 2848 // or has matching predication condition. 2849 // 4) An unmasked parent can be packed with an unmasked child. 2850 bool Compile::compute_logic_cone(Node* n, Unique_Node_List& partition, Unique_Node_List& inputs) { 2851 assert(partition.size() == 0, "not empty"); 2852 assert(inputs.size() == 0, "not empty"); 2853 if (is_vector_ternary_bitwise_op(n)) { 2854 return false; 2855 } 2856 2857 bool is_unary_op = is_vector_unary_bitwise_op(n); 2858 if (is_unary_op) { 2859 assert(collect_unique_inputs(n, inputs) == 1, "not unary"); 2860 return false; // too few inputs 2861 } 2862 2863 bool pack_left_child = true; 2864 bool pack_right_child = true; 2865 2866 bool left_child_LOP = is_vector_bitwise_op(n->in(1)); 2867 bool right_child_LOP = is_vector_bitwise_op(n->in(2)); 2868 2869 int left_child_input_cnt = 0; 2870 int right_child_input_cnt = 0; 2871 2872 bool parent_is_predicated = n->is_predicated_vector(); 2873 bool left_child_predicated = n->in(1)->is_predicated_vector(); 2874 bool right_child_predicated = n->in(2)->is_predicated_vector(); 2875 2876 Node* parent_pred = parent_is_predicated ? n->in(n->req()-1) : nullptr; 2877 Node* left_child_pred = left_child_predicated ? n->in(1)->in(n->in(1)->req()-1) : nullptr; 2878 Node* right_child_pred = right_child_predicated ? n->in(1)->in(n->in(1)->req()-1) : nullptr; 2879 2880 do { 2881 if (pack_left_child && left_child_LOP && 2882 ((!parent_is_predicated && !left_child_predicated) || 2883 ((parent_is_predicated && left_child_predicated && 2884 parent_pred == left_child_pred)))) { 2885 partition.push(n->in(1)); 2886 left_child_input_cnt = collect_unique_inputs(n->in(1), inputs); 2887 } else { 2888 inputs.push(n->in(1)); 2889 left_child_input_cnt = 1; 2890 } 2891 2892 if (pack_right_child && right_child_LOP && 2893 (!right_child_predicated || 2894 (right_child_predicated && parent_is_predicated && 2895 parent_pred == right_child_pred))) { 2896 partition.push(n->in(2)); 2897 right_child_input_cnt = collect_unique_inputs(n->in(2), inputs); 2898 } else { 2899 inputs.push(n->in(2)); 2900 right_child_input_cnt = 1; 2901 } 2902 2903 if (inputs.size() > 3) { 2904 assert(partition.size() > 0, ""); 2905 inputs.clear(); 2906 partition.clear(); 2907 if (left_child_input_cnt > right_child_input_cnt) { 2908 pack_left_child = false; 2909 } else { 2910 pack_right_child = false; 2911 } 2912 } else { 2913 break; 2914 } 2915 } while(true); 2916 2917 if(partition.size()) { 2918 partition.push(n); 2919 } 2920 2921 return (partition.size() == 2 || partition.size() == 3) && 2922 (inputs.size() == 2 || inputs.size() == 3); 2923 } 2924 2925 void Compile::process_logic_cone_root(PhaseIterGVN &igvn, Node *n, VectorSet &visited) { 2926 assert(is_vector_bitwise_op(n), "not a root"); 2927 2928 visited.set(n->_idx); 2929 2930 // 1) Do a DFS walk over the logic cone. 2931 for (uint i = 1; i < n->req(); i++) { 2932 Node* in = n->in(i); 2933 if (!visited.test(in->_idx) && is_vector_bitwise_op(in)) { 2934 process_logic_cone_root(igvn, in, visited); 2935 } 2936 } 2937 2938 // 2) Bottom up traversal: Merge node[s] with 2939 // the parent to form macro logic node. 2940 Unique_Node_List partition; 2941 Unique_Node_List inputs; 2942 if (compute_logic_cone(n, partition, inputs)) { 2943 const TypeVect* vt = n->bottom_type()->is_vect(); 2944 Node* pn = partition.at(partition.size() - 1); 2945 Node* mask = pn->is_predicated_vector() ? pn->in(pn->req()-1) : nullptr; 2946 if (mask == nullptr || 2947 Matcher::match_rule_supported_vector_masked(Op_MacroLogicV, vt->length(), vt->element_basic_type())) { 2948 Node* macro_logic = xform_to_MacroLogicV(igvn, vt, partition, inputs); 2949 VectorNode::trace_new_vector(macro_logic, "MacroLogic"); 2950 igvn.replace_node(n, macro_logic); 2951 } 2952 } 2953 } 2954 2955 void Compile::optimize_logic_cones(PhaseIterGVN &igvn) { 2956 ResourceMark rm; 2957 if (Matcher::match_rule_supported(Op_MacroLogicV)) { 2958 Unique_Node_List list; 2959 collect_logic_cone_roots(list); 2960 2961 while (list.size() > 0) { 2962 Node* n = list.pop(); 2963 const TypeVect* vt = n->bottom_type()->is_vect(); 2964 bool supported = Matcher::match_rule_supported_vector(Op_MacroLogicV, vt->length(), vt->element_basic_type()); 2965 if (supported) { 2966 VectorSet visited(comp_arena()); 2967 process_logic_cone_root(igvn, n, visited); 2968 } 2969 } 2970 } 2971 } 2972 2973 //------------------------------Code_Gen--------------------------------------- 2974 // Given a graph, generate code for it 2975 void Compile::Code_Gen() { 2976 if (failing()) { 2977 return; 2978 } 2979 2980 // Perform instruction selection. You might think we could reclaim Matcher 2981 // memory PDQ, but actually the Matcher is used in generating spill code. 2982 // Internals of the Matcher (including some VectorSets) must remain live 2983 // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage 2984 // set a bit in reclaimed memory. 2985 2986 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine 2987 // nodes. Mapping is only valid at the root of each matched subtree. 2988 NOT_PRODUCT( verify_graph_edges(); ) 2989 2990 Matcher matcher; 2991 _matcher = &matcher; 2992 { 2993 TracePhase tp(_t_matcher); 2994 matcher.match(); 2995 if (failing()) { 2996 return; 2997 } 2998 } 2999 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine 3000 // nodes. Mapping is only valid at the root of each matched subtree. 3001 NOT_PRODUCT( verify_graph_edges(); ) 3002 3003 // If you have too many nodes, or if matching has failed, bail out 3004 check_node_count(0, "out of nodes matching instructions"); 3005 if (failing()) { 3006 return; 3007 } 3008 3009 print_method(PHASE_MATCHING, 2); 3010 3011 // Build a proper-looking CFG 3012 PhaseCFG cfg(node_arena(), root(), matcher); 3013 if (failing()) { 3014 return; 3015 } 3016 _cfg = &cfg; 3017 { 3018 TracePhase tp(_t_scheduler); 3019 bool success = cfg.do_global_code_motion(); 3020 if (!success) { 3021 return; 3022 } 3023 3024 print_method(PHASE_GLOBAL_CODE_MOTION, 2); 3025 NOT_PRODUCT( verify_graph_edges(); ) 3026 cfg.verify(); 3027 if (failing()) { 3028 return; 3029 } 3030 } 3031 3032 PhaseChaitin regalloc(unique(), cfg, matcher, false); 3033 _regalloc = ®alloc; 3034 { 3035 TracePhase tp(_t_registerAllocation); 3036 // Perform register allocation. After Chaitin, use-def chains are 3037 // no longer accurate (at spill code) and so must be ignored. 3038 // Node->LRG->reg mappings are still accurate. 3039 _regalloc->Register_Allocate(); 3040 3041 // Bail out if the allocator builds too many nodes 3042 if (failing()) { 3043 return; 3044 } 3045 3046 print_method(PHASE_REGISTER_ALLOCATION, 2); 3047 } 3048 3049 // Prior to register allocation we kept empty basic blocks in case the 3050 // the allocator needed a place to spill. After register allocation we 3051 // are not adding any new instructions. If any basic block is empty, we 3052 // can now safely remove it. 3053 { 3054 TracePhase tp(_t_blockOrdering); 3055 cfg.remove_empty_blocks(); 3056 if (do_freq_based_layout()) { 3057 PhaseBlockLayout layout(cfg); 3058 } else { 3059 cfg.set_loop_alignment(); 3060 } 3061 cfg.fixup_flow(); 3062 cfg.remove_unreachable_blocks(); 3063 cfg.verify_dominator_tree(); 3064 print_method(PHASE_BLOCK_ORDERING, 3); 3065 } 3066 3067 // Apply peephole optimizations 3068 if( OptoPeephole ) { 3069 TracePhase tp(_t_peephole); 3070 PhasePeephole peep( _regalloc, cfg); 3071 peep.do_transform(); 3072 print_method(PHASE_PEEPHOLE, 3); 3073 } 3074 3075 // Do late expand if CPU requires this. 3076 if (Matcher::require_postalloc_expand) { 3077 TracePhase tp(_t_postalloc_expand); 3078 cfg.postalloc_expand(_regalloc); 3079 print_method(PHASE_POSTALLOC_EXPAND, 3); 3080 } 3081 3082 #ifdef ASSERT 3083 { 3084 CompilationMemoryStatistic::do_test_allocations(); 3085 if (failing()) return; 3086 } 3087 #endif 3088 3089 // Convert Nodes to instruction bits in a buffer 3090 { 3091 TracePhase tp(_t_output); 3092 PhaseOutput output; 3093 output.Output(); 3094 if (failing()) return; 3095 output.install(); 3096 print_method(PHASE_FINAL_CODE, 1); // Compile::_output is not null here 3097 } 3098 3099 // He's dead, Jim. 3100 _cfg = (PhaseCFG*)((intptr_t)0xdeadbeef); 3101 _regalloc = (PhaseChaitin*)((intptr_t)0xdeadbeef); 3102 } 3103 3104 //------------------------------Final_Reshape_Counts--------------------------- 3105 // This class defines counters to help identify when a method 3106 // may/must be executed using hardware with only 24-bit precision. 3107 struct Final_Reshape_Counts : public StackObj { 3108 int _call_count; // count non-inlined 'common' calls 3109 int _float_count; // count float ops requiring 24-bit precision 3110 int _double_count; // count double ops requiring more precision 3111 int _java_call_count; // count non-inlined 'java' calls 3112 int _inner_loop_count; // count loops which need alignment 3113 VectorSet _visited; // Visitation flags 3114 Node_List _tests; // Set of IfNodes & PCTableNodes 3115 3116 Final_Reshape_Counts() : 3117 _call_count(0), _float_count(0), _double_count(0), 3118 _java_call_count(0), _inner_loop_count(0) { } 3119 3120 void inc_call_count () { _call_count ++; } 3121 void inc_float_count () { _float_count ++; } 3122 void inc_double_count() { _double_count++; } 3123 void inc_java_call_count() { _java_call_count++; } 3124 void inc_inner_loop_count() { _inner_loop_count++; } 3125 3126 int get_call_count () const { return _call_count ; } 3127 int get_float_count () const { return _float_count ; } 3128 int get_double_count() const { return _double_count; } 3129 int get_java_call_count() const { return _java_call_count; } 3130 int get_inner_loop_count() const { return _inner_loop_count; } 3131 }; 3132 3133 //------------------------------final_graph_reshaping_impl---------------------- 3134 // Implement items 1-5 from final_graph_reshaping below. 3135 void Compile::final_graph_reshaping_impl(Node *n, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes) { 3136 3137 if ( n->outcnt() == 0 ) return; // dead node 3138 uint nop = n->Opcode(); 3139 3140 // Check for 2-input instruction with "last use" on right input. 3141 // Swap to left input. Implements item (2). 3142 if( n->req() == 3 && // two-input instruction 3143 n->in(1)->outcnt() > 1 && // left use is NOT a last use 3144 (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop 3145 n->in(2)->outcnt() == 1 &&// right use IS a last use 3146 !n->in(2)->is_Con() ) { // right use is not a constant 3147 // Check for commutative opcode 3148 switch( nop ) { 3149 case Op_AddI: case Op_AddF: case Op_AddD: case Op_AddL: 3150 case Op_MaxI: case Op_MaxL: case Op_MaxF: case Op_MaxD: 3151 case Op_MinI: case Op_MinL: case Op_MinF: case Op_MinD: 3152 case Op_MulI: case Op_MulF: case Op_MulD: case Op_MulL: 3153 case Op_AndL: case Op_XorL: case Op_OrL: 3154 case Op_AndI: case Op_XorI: case Op_OrI: { 3155 // Move "last use" input to left by swapping inputs 3156 n->swap_edges(1, 2); 3157 break; 3158 } 3159 default: 3160 break; 3161 } 3162 } 3163 3164 #ifdef ASSERT 3165 if( n->is_Mem() ) { 3166 int alias_idx = get_alias_index(n->as_Mem()->adr_type()); 3167 assert( n->in(0) != nullptr || alias_idx != Compile::AliasIdxRaw || 3168 // oop will be recorded in oop map if load crosses safepoint 3169 (n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() || 3170 LoadNode::is_immutable_value(n->in(MemNode::Address)))), 3171 "raw memory operations should have control edge"); 3172 } 3173 if (n->is_MemBar()) { 3174 MemBarNode* mb = n->as_MemBar(); 3175 if (mb->trailing_store() || mb->trailing_load_store()) { 3176 assert(mb->leading_membar()->trailing_membar() == mb, "bad membar pair"); 3177 Node* mem = BarrierSet::barrier_set()->barrier_set_c2()->step_over_gc_barrier(mb->in(MemBarNode::Precedent)); 3178 assert((mb->trailing_store() && mem->is_Store() && mem->as_Store()->is_release()) || 3179 (mb->trailing_load_store() && mem->is_LoadStore()), "missing mem op"); 3180 } else if (mb->leading()) { 3181 assert(mb->trailing_membar()->leading_membar() == mb, "bad membar pair"); 3182 } 3183 } 3184 #endif 3185 // Count FPU ops and common calls, implements item (3) 3186 bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->final_graph_reshaping(this, n, nop, dead_nodes); 3187 if (!gc_handled) { 3188 final_graph_reshaping_main_switch(n, frc, nop, dead_nodes); 3189 } 3190 3191 // Collect CFG split points 3192 if (n->is_MultiBranch() && !n->is_RangeCheck()) { 3193 frc._tests.push(n); 3194 } 3195 } 3196 3197 void Compile::handle_div_mod_op(Node* n, BasicType bt, bool is_unsigned) { 3198 if (!UseDivMod) { 3199 return; 3200 } 3201 3202 // Check if "a % b" and "a / b" both exist 3203 Node* d = n->find_similar(Op_DivIL(bt, is_unsigned)); 3204 if (d == nullptr) { 3205 return; 3206 } 3207 3208 // Replace them with a fused divmod if supported 3209 if (Matcher::has_match_rule(Op_DivModIL(bt, is_unsigned))) { 3210 DivModNode* divmod = DivModNode::make(n, bt, is_unsigned); 3211 // If the divisor input for a Div (or Mod etc.) is not zero, then the control input of the Div is set to zero. 3212 // It could be that the divisor input is found not zero because its type is narrowed down by a CastII in the 3213 // subgraph for that input. Range check CastIIs are removed during final graph reshape. To preserve the dependency 3214 // carried by a CastII, precedence edges are added to the Div node. We need to transfer the precedence edges to the 3215 // DivMod node so the dependency is not lost. 3216 divmod->add_prec_from(n); 3217 divmod->add_prec_from(d); 3218 d->subsume_by(divmod->div_proj(), this); 3219 n->subsume_by(divmod->mod_proj(), this); 3220 } else { 3221 // Replace "a % b" with "a - ((a / b) * b)" 3222 Node* mult = MulNode::make(d, d->in(2), bt); 3223 Node* sub = SubNode::make(d->in(1), mult, bt); 3224 n->subsume_by(sub, this); 3225 } 3226 } 3227 3228 void Compile::final_graph_reshaping_main_switch(Node* n, Final_Reshape_Counts& frc, uint nop, Unique_Node_List& dead_nodes) { 3229 switch( nop ) { 3230 // Count all float operations that may use FPU 3231 case Op_AddF: 3232 case Op_SubF: 3233 case Op_MulF: 3234 case Op_DivF: 3235 case Op_NegF: 3236 case Op_ModF: 3237 case Op_ConvI2F: 3238 case Op_ConF: 3239 case Op_CmpF: 3240 case Op_CmpF3: 3241 case Op_StoreF: 3242 case Op_LoadF: 3243 // case Op_ConvL2F: // longs are split into 32-bit halves 3244 frc.inc_float_count(); 3245 break; 3246 3247 case Op_ConvF2D: 3248 case Op_ConvD2F: 3249 frc.inc_float_count(); 3250 frc.inc_double_count(); 3251 break; 3252 3253 // Count all double operations that may use FPU 3254 case Op_AddD: 3255 case Op_SubD: 3256 case Op_MulD: 3257 case Op_DivD: 3258 case Op_NegD: 3259 case Op_ModD: 3260 case Op_ConvI2D: 3261 case Op_ConvD2I: 3262 // case Op_ConvL2D: // handled by leaf call 3263 // case Op_ConvD2L: // handled by leaf call 3264 case Op_ConD: 3265 case Op_CmpD: 3266 case Op_CmpD3: 3267 case Op_StoreD: 3268 case Op_LoadD: 3269 case Op_LoadD_unaligned: 3270 frc.inc_double_count(); 3271 break; 3272 case Op_Opaque1: // Remove Opaque Nodes before matching 3273 n->subsume_by(n->in(1), this); 3274 break; 3275 case Op_CallStaticJava: 3276 case Op_CallJava: 3277 case Op_CallDynamicJava: 3278 frc.inc_java_call_count(); // Count java call site; 3279 case Op_CallRuntime: 3280 case Op_CallLeaf: 3281 case Op_CallLeafVector: 3282 case Op_CallLeafNoFP: { 3283 assert (n->is_Call(), ""); 3284 CallNode *call = n->as_Call(); 3285 // Count call sites where the FP mode bit would have to be flipped. 3286 // Do not count uncommon runtime calls: 3287 // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking, 3288 // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ... 3289 if (!call->is_CallStaticJava() || !call->as_CallStaticJava()->_name) { 3290 frc.inc_call_count(); // Count the call site 3291 } else { // See if uncommon argument is shared 3292 Node *n = call->in(TypeFunc::Parms); 3293 int nop = n->Opcode(); 3294 // Clone shared simple arguments to uncommon calls, item (1). 3295 if (n->outcnt() > 1 && 3296 !n->is_Proj() && 3297 nop != Op_CreateEx && 3298 nop != Op_CheckCastPP && 3299 nop != Op_DecodeN && 3300 nop != Op_DecodeNKlass && 3301 !n->is_Mem() && 3302 !n->is_Phi()) { 3303 Node *x = n->clone(); 3304 call->set_req(TypeFunc::Parms, x); 3305 } 3306 } 3307 break; 3308 } 3309 case Op_StoreB: 3310 case Op_StoreC: 3311 case Op_StoreI: 3312 case Op_StoreL: 3313 case Op_CompareAndSwapB: 3314 case Op_CompareAndSwapS: 3315 case Op_CompareAndSwapI: 3316 case Op_CompareAndSwapL: 3317 case Op_CompareAndSwapP: 3318 case Op_CompareAndSwapN: 3319 case Op_WeakCompareAndSwapB: 3320 case Op_WeakCompareAndSwapS: 3321 case Op_WeakCompareAndSwapI: 3322 case Op_WeakCompareAndSwapL: 3323 case Op_WeakCompareAndSwapP: 3324 case Op_WeakCompareAndSwapN: 3325 case Op_CompareAndExchangeB: 3326 case Op_CompareAndExchangeS: 3327 case Op_CompareAndExchangeI: 3328 case Op_CompareAndExchangeL: 3329 case Op_CompareAndExchangeP: 3330 case Op_CompareAndExchangeN: 3331 case Op_GetAndAddS: 3332 case Op_GetAndAddB: 3333 case Op_GetAndAddI: 3334 case Op_GetAndAddL: 3335 case Op_GetAndSetS: 3336 case Op_GetAndSetB: 3337 case Op_GetAndSetI: 3338 case Op_GetAndSetL: 3339 case Op_GetAndSetP: 3340 case Op_GetAndSetN: 3341 case Op_StoreP: 3342 case Op_StoreN: 3343 case Op_StoreNKlass: 3344 case Op_LoadB: 3345 case Op_LoadUB: 3346 case Op_LoadUS: 3347 case Op_LoadI: 3348 case Op_LoadKlass: 3349 case Op_LoadNKlass: 3350 case Op_LoadL: 3351 case Op_LoadL_unaligned: 3352 case Op_LoadP: 3353 case Op_LoadN: 3354 case Op_LoadRange: 3355 case Op_LoadS: 3356 break; 3357 3358 case Op_AddP: { // Assert sane base pointers 3359 Node *addp = n->in(AddPNode::Address); 3360 assert( !addp->is_AddP() || 3361 addp->in(AddPNode::Base)->is_top() || // Top OK for allocation 3362 addp->in(AddPNode::Base) == n->in(AddPNode::Base), 3363 "Base pointers must match (addp %u)", addp->_idx ); 3364 #ifdef _LP64 3365 if ((UseCompressedOops || UseCompressedClassPointers) && 3366 addp->Opcode() == Op_ConP && 3367 addp == n->in(AddPNode::Base) && 3368 n->in(AddPNode::Offset)->is_Con()) { 3369 // If the transformation of ConP to ConN+DecodeN is beneficial depends 3370 // on the platform and on the compressed oops mode. 3371 // Use addressing with narrow klass to load with offset on x86. 3372 // Some platforms can use the constant pool to load ConP. 3373 // Do this transformation here since IGVN will convert ConN back to ConP. 3374 const Type* t = addp->bottom_type(); 3375 bool is_oop = t->isa_oopptr() != nullptr; 3376 bool is_klass = t->isa_klassptr() != nullptr; 3377 3378 if ((is_oop && UseCompressedOops && Matcher::const_oop_prefer_decode() ) || 3379 (is_klass && UseCompressedClassPointers && Matcher::const_klass_prefer_decode() && 3380 t->isa_klassptr()->exact_klass()->is_in_encoding_range())) { 3381 Node* nn = nullptr; 3382 3383 int op = is_oop ? Op_ConN : Op_ConNKlass; 3384 3385 // Look for existing ConN node of the same exact type. 3386 Node* r = root(); 3387 uint cnt = r->outcnt(); 3388 for (uint i = 0; i < cnt; i++) { 3389 Node* m = r->raw_out(i); 3390 if (m!= nullptr && m->Opcode() == op && 3391 m->bottom_type()->make_ptr() == t) { 3392 nn = m; 3393 break; 3394 } 3395 } 3396 if (nn != nullptr) { 3397 // Decode a narrow oop to match address 3398 // [R12 + narrow_oop_reg<<3 + offset] 3399 if (is_oop) { 3400 nn = new DecodeNNode(nn, t); 3401 } else { 3402 nn = new DecodeNKlassNode(nn, t); 3403 } 3404 // Check for succeeding AddP which uses the same Base. 3405 // Otherwise we will run into the assertion above when visiting that guy. 3406 for (uint i = 0; i < n->outcnt(); ++i) { 3407 Node *out_i = n->raw_out(i); 3408 if (out_i && out_i->is_AddP() && out_i->in(AddPNode::Base) == addp) { 3409 out_i->set_req(AddPNode::Base, nn); 3410 #ifdef ASSERT 3411 for (uint j = 0; j < out_i->outcnt(); ++j) { 3412 Node *out_j = out_i->raw_out(j); 3413 assert(out_j == nullptr || !out_j->is_AddP() || out_j->in(AddPNode::Base) != addp, 3414 "more than 2 AddP nodes in a chain (out_j %u)", out_j->_idx); 3415 } 3416 #endif 3417 } 3418 } 3419 n->set_req(AddPNode::Base, nn); 3420 n->set_req(AddPNode::Address, nn); 3421 if (addp->outcnt() == 0) { 3422 addp->disconnect_inputs(this); 3423 } 3424 } 3425 } 3426 } 3427 #endif 3428 break; 3429 } 3430 3431 case Op_CastPP: { 3432 // Remove CastPP nodes to gain more freedom during scheduling but 3433 // keep the dependency they encode as control or precedence edges 3434 // (if control is set already) on memory operations. Some CastPP 3435 // nodes don't have a control (don't carry a dependency): skip 3436 // those. 3437 if (n->in(0) != nullptr) { 3438 ResourceMark rm; 3439 Unique_Node_List wq; 3440 wq.push(n); 3441 for (uint next = 0; next < wq.size(); ++next) { 3442 Node *m = wq.at(next); 3443 for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) { 3444 Node* use = m->fast_out(i); 3445 if (use->is_Mem() || use->is_EncodeNarrowPtr()) { 3446 use->ensure_control_or_add_prec(n->in(0)); 3447 } else { 3448 switch(use->Opcode()) { 3449 case Op_AddP: 3450 case Op_DecodeN: 3451 case Op_DecodeNKlass: 3452 case Op_CheckCastPP: 3453 case Op_CastPP: 3454 wq.push(use); 3455 break; 3456 } 3457 } 3458 } 3459 } 3460 } 3461 const bool is_LP64 = LP64_ONLY(true) NOT_LP64(false); 3462 if (is_LP64 && n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) { 3463 Node* in1 = n->in(1); 3464 const Type* t = n->bottom_type(); 3465 Node* new_in1 = in1->clone(); 3466 new_in1->as_DecodeN()->set_type(t); 3467 3468 if (!Matcher::narrow_oop_use_complex_address()) { 3469 // 3470 // x86, ARM and friends can handle 2 adds in addressing mode 3471 // and Matcher can fold a DecodeN node into address by using 3472 // a narrow oop directly and do implicit null check in address: 3473 // 3474 // [R12 + narrow_oop_reg<<3 + offset] 3475 // NullCheck narrow_oop_reg 3476 // 3477 // On other platforms (Sparc) we have to keep new DecodeN node and 3478 // use it to do implicit null check in address: 3479 // 3480 // decode_not_null narrow_oop_reg, base_reg 3481 // [base_reg + offset] 3482 // NullCheck base_reg 3483 // 3484 // Pin the new DecodeN node to non-null path on these platform (Sparc) 3485 // to keep the information to which null check the new DecodeN node 3486 // corresponds to use it as value in implicit_null_check(). 3487 // 3488 new_in1->set_req(0, n->in(0)); 3489 } 3490 3491 n->subsume_by(new_in1, this); 3492 if (in1->outcnt() == 0) { 3493 in1->disconnect_inputs(this); 3494 } 3495 } else { 3496 n->subsume_by(n->in(1), this); 3497 if (n->outcnt() == 0) { 3498 n->disconnect_inputs(this); 3499 } 3500 } 3501 break; 3502 } 3503 case Op_CastII: { 3504 n->as_CastII()->remove_range_check_cast(this); 3505 break; 3506 } 3507 #ifdef _LP64 3508 case Op_CmpP: 3509 // Do this transformation here to preserve CmpPNode::sub() and 3510 // other TypePtr related Ideal optimizations (for example, ptr nullness). 3511 if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) { 3512 Node* in1 = n->in(1); 3513 Node* in2 = n->in(2); 3514 if (!in1->is_DecodeNarrowPtr()) { 3515 in2 = in1; 3516 in1 = n->in(2); 3517 } 3518 assert(in1->is_DecodeNarrowPtr(), "sanity"); 3519 3520 Node* new_in2 = nullptr; 3521 if (in2->is_DecodeNarrowPtr()) { 3522 assert(in2->Opcode() == in1->Opcode(), "must be same node type"); 3523 new_in2 = in2->in(1); 3524 } else if (in2->Opcode() == Op_ConP) { 3525 const Type* t = in2->bottom_type(); 3526 if (t == TypePtr::NULL_PTR) { 3527 assert(in1->is_DecodeN(), "compare klass to null?"); 3528 // Don't convert CmpP null check into CmpN if compressed 3529 // oops implicit null check is not generated. 3530 // This will allow to generate normal oop implicit null check. 3531 if (Matcher::gen_narrow_oop_implicit_null_checks()) 3532 new_in2 = ConNode::make(TypeNarrowOop::NULL_PTR); 3533 // 3534 // This transformation together with CastPP transformation above 3535 // will generated code for implicit null checks for compressed oops. 3536 // 3537 // The original code after Optimize() 3538 // 3539 // LoadN memory, narrow_oop_reg 3540 // decode narrow_oop_reg, base_reg 3541 // CmpP base_reg, nullptr 3542 // CastPP base_reg // NotNull 3543 // Load [base_reg + offset], val_reg 3544 // 3545 // after these transformations will be 3546 // 3547 // LoadN memory, narrow_oop_reg 3548 // CmpN narrow_oop_reg, nullptr 3549 // decode_not_null narrow_oop_reg, base_reg 3550 // Load [base_reg + offset], val_reg 3551 // 3552 // and the uncommon path (== nullptr) will use narrow_oop_reg directly 3553 // since narrow oops can be used in debug info now (see the code in 3554 // final_graph_reshaping_walk()). 3555 // 3556 // At the end the code will be matched to 3557 // on x86: 3558 // 3559 // Load_narrow_oop memory, narrow_oop_reg 3560 // Load [R12 + narrow_oop_reg<<3 + offset], val_reg 3561 // NullCheck narrow_oop_reg 3562 // 3563 // and on sparc: 3564 // 3565 // Load_narrow_oop memory, narrow_oop_reg 3566 // decode_not_null narrow_oop_reg, base_reg 3567 // Load [base_reg + offset], val_reg 3568 // NullCheck base_reg 3569 // 3570 } else if (t->isa_oopptr()) { 3571 new_in2 = ConNode::make(t->make_narrowoop()); 3572 } else if (t->isa_klassptr()) { 3573 new_in2 = ConNode::make(t->make_narrowklass()); 3574 } 3575 } 3576 if (new_in2 != nullptr) { 3577 Node* cmpN = new CmpNNode(in1->in(1), new_in2); 3578 n->subsume_by(cmpN, this); 3579 if (in1->outcnt() == 0) { 3580 in1->disconnect_inputs(this); 3581 } 3582 if (in2->outcnt() == 0) { 3583 in2->disconnect_inputs(this); 3584 } 3585 } 3586 } 3587 break; 3588 3589 case Op_DecodeN: 3590 case Op_DecodeNKlass: 3591 assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out"); 3592 // DecodeN could be pinned when it can't be fold into 3593 // an address expression, see the code for Op_CastPP above. 3594 assert(n->in(0) == nullptr || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control"); 3595 break; 3596 3597 case Op_EncodeP: 3598 case Op_EncodePKlass: { 3599 Node* in1 = n->in(1); 3600 if (in1->is_DecodeNarrowPtr()) { 3601 n->subsume_by(in1->in(1), this); 3602 } else if (in1->Opcode() == Op_ConP) { 3603 const Type* t = in1->bottom_type(); 3604 if (t == TypePtr::NULL_PTR) { 3605 assert(t->isa_oopptr(), "null klass?"); 3606 n->subsume_by(ConNode::make(TypeNarrowOop::NULL_PTR), this); 3607 } else if (t->isa_oopptr()) { 3608 n->subsume_by(ConNode::make(t->make_narrowoop()), this); 3609 } else if (t->isa_klassptr()) { 3610 n->subsume_by(ConNode::make(t->make_narrowklass()), this); 3611 } 3612 } 3613 if (in1->outcnt() == 0) { 3614 in1->disconnect_inputs(this); 3615 } 3616 break; 3617 } 3618 3619 case Op_Proj: { 3620 if (OptimizeStringConcat || IncrementalInline) { 3621 ProjNode* proj = n->as_Proj(); 3622 if (proj->_is_io_use) { 3623 assert(proj->_con == TypeFunc::I_O || proj->_con == TypeFunc::Memory, ""); 3624 // Separate projections were used for the exception path which 3625 // are normally removed by a late inline. If it wasn't inlined 3626 // then they will hang around and should just be replaced with 3627 // the original one. Merge them. 3628 Node* non_io_proj = proj->in(0)->as_Multi()->proj_out_or_null(proj->_con, false /*is_io_use*/); 3629 if (non_io_proj != nullptr) { 3630 proj->subsume_by(non_io_proj , this); 3631 } 3632 } 3633 } 3634 break; 3635 } 3636 3637 case Op_Phi: 3638 if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) { 3639 // The EncodeP optimization may create Phi with the same edges 3640 // for all paths. It is not handled well by Register Allocator. 3641 Node* unique_in = n->in(1); 3642 assert(unique_in != nullptr, ""); 3643 uint cnt = n->req(); 3644 for (uint i = 2; i < cnt; i++) { 3645 Node* m = n->in(i); 3646 assert(m != nullptr, ""); 3647 if (unique_in != m) 3648 unique_in = nullptr; 3649 } 3650 if (unique_in != nullptr) { 3651 n->subsume_by(unique_in, this); 3652 } 3653 } 3654 break; 3655 3656 #endif 3657 3658 case Op_ModI: 3659 handle_div_mod_op(n, T_INT, false); 3660 break; 3661 3662 case Op_ModL: 3663 handle_div_mod_op(n, T_LONG, false); 3664 break; 3665 3666 case Op_UModI: 3667 handle_div_mod_op(n, T_INT, true); 3668 break; 3669 3670 case Op_UModL: 3671 handle_div_mod_op(n, T_LONG, true); 3672 break; 3673 3674 case Op_LoadVector: 3675 case Op_StoreVector: 3676 #ifdef ASSERT 3677 // Add VerifyVectorAlignment node between adr and load / store. 3678 if (VerifyAlignVector && Matcher::has_match_rule(Op_VerifyVectorAlignment)) { 3679 bool must_verify_alignment = n->is_LoadVector() ? n->as_LoadVector()->must_verify_alignment() : 3680 n->as_StoreVector()->must_verify_alignment(); 3681 if (must_verify_alignment) { 3682 jlong vector_width = n->is_LoadVector() ? n->as_LoadVector()->memory_size() : 3683 n->as_StoreVector()->memory_size(); 3684 // The memory access should be aligned to the vector width in bytes. 3685 // However, the underlying array is possibly less well aligned, but at least 3686 // to ObjectAlignmentInBytes. Hence, even if multiple arrays are accessed in 3687 // a loop we can expect at least the following alignment: 3688 jlong guaranteed_alignment = MIN2(vector_width, (jlong)ObjectAlignmentInBytes); 3689 assert(2 <= guaranteed_alignment && guaranteed_alignment <= 64, "alignment must be in range"); 3690 assert(is_power_of_2(guaranteed_alignment), "alignment must be power of 2"); 3691 // Create mask from alignment. e.g. 0b1000 -> 0b0111 3692 jlong mask = guaranteed_alignment - 1; 3693 Node* mask_con = ConLNode::make(mask); 3694 VerifyVectorAlignmentNode* va = new VerifyVectorAlignmentNode(n->in(MemNode::Address), mask_con); 3695 n->set_req(MemNode::Address, va); 3696 } 3697 } 3698 #endif 3699 break; 3700 3701 case Op_LoadVectorGather: 3702 case Op_StoreVectorScatter: 3703 case Op_LoadVectorGatherMasked: 3704 case Op_StoreVectorScatterMasked: 3705 case Op_VectorCmpMasked: 3706 case Op_VectorMaskGen: 3707 case Op_LoadVectorMasked: 3708 case Op_StoreVectorMasked: 3709 break; 3710 3711 case Op_AddReductionVI: 3712 case Op_AddReductionVL: 3713 case Op_AddReductionVF: 3714 case Op_AddReductionVD: 3715 case Op_MulReductionVI: 3716 case Op_MulReductionVL: 3717 case Op_MulReductionVF: 3718 case Op_MulReductionVD: 3719 case Op_MinReductionV: 3720 case Op_MaxReductionV: 3721 case Op_AndReductionV: 3722 case Op_OrReductionV: 3723 case Op_XorReductionV: 3724 break; 3725 3726 case Op_PackB: 3727 case Op_PackS: 3728 case Op_PackI: 3729 case Op_PackF: 3730 case Op_PackL: 3731 case Op_PackD: 3732 if (n->req()-1 > 2) { 3733 // Replace many operand PackNodes with a binary tree for matching 3734 PackNode* p = (PackNode*) n; 3735 Node* btp = p->binary_tree_pack(1, n->req()); 3736 n->subsume_by(btp, this); 3737 } 3738 break; 3739 case Op_Loop: 3740 assert(!n->as_Loop()->is_loop_nest_inner_loop() || _loop_opts_cnt == 0, "should have been turned into a counted loop"); 3741 case Op_CountedLoop: 3742 case Op_LongCountedLoop: 3743 case Op_OuterStripMinedLoop: 3744 if (n->as_Loop()->is_inner_loop()) { 3745 frc.inc_inner_loop_count(); 3746 } 3747 n->as_Loop()->verify_strip_mined(0); 3748 break; 3749 case Op_LShiftI: 3750 case Op_RShiftI: 3751 case Op_URShiftI: 3752 case Op_LShiftL: 3753 case Op_RShiftL: 3754 case Op_URShiftL: 3755 if (Matcher::need_masked_shift_count) { 3756 // The cpu's shift instructions don't restrict the count to the 3757 // lower 5/6 bits. We need to do the masking ourselves. 3758 Node* in2 = n->in(2); 3759 juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1); 3760 const TypeInt* t = in2->find_int_type(); 3761 if (t != nullptr && t->is_con()) { 3762 juint shift = t->get_con(); 3763 if (shift > mask) { // Unsigned cmp 3764 n->set_req(2, ConNode::make(TypeInt::make(shift & mask))); 3765 } 3766 } else { 3767 if (t == nullptr || t->_lo < 0 || t->_hi > (int)mask) { 3768 Node* shift = new AndINode(in2, ConNode::make(TypeInt::make(mask))); 3769 n->set_req(2, shift); 3770 } 3771 } 3772 if (in2->outcnt() == 0) { // Remove dead node 3773 in2->disconnect_inputs(this); 3774 } 3775 } 3776 break; 3777 case Op_MemBarStoreStore: 3778 case Op_MemBarRelease: 3779 // Break the link with AllocateNode: it is no longer useful and 3780 // confuses register allocation. 3781 if (n->req() > MemBarNode::Precedent) { 3782 n->set_req(MemBarNode::Precedent, top()); 3783 } 3784 break; 3785 case Op_MemBarAcquire: { 3786 if (n->as_MemBar()->trailing_load() && n->req() > MemBarNode::Precedent) { 3787 // At parse time, the trailing MemBarAcquire for a volatile load 3788 // is created with an edge to the load. After optimizations, 3789 // that input may be a chain of Phis. If those phis have no 3790 // other use, then the MemBarAcquire keeps them alive and 3791 // register allocation can be confused. 3792 dead_nodes.push(n->in(MemBarNode::Precedent)); 3793 n->set_req(MemBarNode::Precedent, top()); 3794 } 3795 break; 3796 } 3797 case Op_Blackhole: 3798 break; 3799 case Op_RangeCheck: { 3800 RangeCheckNode* rc = n->as_RangeCheck(); 3801 Node* iff = new IfNode(rc->in(0), rc->in(1), rc->_prob, rc->_fcnt); 3802 n->subsume_by(iff, this); 3803 frc._tests.push(iff); 3804 break; 3805 } 3806 case Op_ConvI2L: { 3807 if (!Matcher::convi2l_type_required) { 3808 // Code generation on some platforms doesn't need accurate 3809 // ConvI2L types. Widening the type can help remove redundant 3810 // address computations. 3811 n->as_Type()->set_type(TypeLong::INT); 3812 ResourceMark rm; 3813 Unique_Node_List wq; 3814 wq.push(n); 3815 for (uint next = 0; next < wq.size(); next++) { 3816 Node *m = wq.at(next); 3817 3818 for(;;) { 3819 // Loop over all nodes with identical inputs edges as m 3820 Node* k = m->find_similar(m->Opcode()); 3821 if (k == nullptr) { 3822 break; 3823 } 3824 // Push their uses so we get a chance to remove node made 3825 // redundant 3826 for (DUIterator_Fast imax, i = k->fast_outs(imax); i < imax; i++) { 3827 Node* u = k->fast_out(i); 3828 if (u->Opcode() == Op_LShiftL || 3829 u->Opcode() == Op_AddL || 3830 u->Opcode() == Op_SubL || 3831 u->Opcode() == Op_AddP) { 3832 wq.push(u); 3833 } 3834 } 3835 // Replace all nodes with identical edges as m with m 3836 k->subsume_by(m, this); 3837 } 3838 } 3839 } 3840 break; 3841 } 3842 case Op_CmpUL: { 3843 if (!Matcher::has_match_rule(Op_CmpUL)) { 3844 // No support for unsigned long comparisons 3845 ConINode* sign_pos = new ConINode(TypeInt::make(BitsPerLong - 1)); 3846 Node* sign_bit_mask = new RShiftLNode(n->in(1), sign_pos); 3847 Node* orl = new OrLNode(n->in(1), sign_bit_mask); 3848 ConLNode* remove_sign_mask = new ConLNode(TypeLong::make(max_jlong)); 3849 Node* andl = new AndLNode(orl, remove_sign_mask); 3850 Node* cmp = new CmpLNode(andl, n->in(2)); 3851 n->subsume_by(cmp, this); 3852 } 3853 break; 3854 } 3855 #ifdef ASSERT 3856 case Op_ConNKlass: { 3857 const TypePtr* tp = n->as_Type()->type()->make_ptr(); 3858 ciKlass* klass = tp->is_klassptr()->exact_klass(); 3859 assert(klass->is_in_encoding_range(), "klass cannot be compressed"); 3860 break; 3861 } 3862 #endif 3863 default: 3864 assert(!n->is_Call(), ""); 3865 assert(!n->is_Mem(), ""); 3866 assert(nop != Op_ProfileBoolean, "should be eliminated during IGVN"); 3867 break; 3868 } 3869 } 3870 3871 //------------------------------final_graph_reshaping_walk--------------------- 3872 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(), 3873 // requires that the walk visits a node's inputs before visiting the node. 3874 void Compile::final_graph_reshaping_walk(Node_Stack& nstack, Node* root, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes) { 3875 Unique_Node_List sfpt; 3876 3877 frc._visited.set(root->_idx); // first, mark node as visited 3878 uint cnt = root->req(); 3879 Node *n = root; 3880 uint i = 0; 3881 while (true) { 3882 if (i < cnt) { 3883 // Place all non-visited non-null inputs onto stack 3884 Node* m = n->in(i); 3885 ++i; 3886 if (m != nullptr && !frc._visited.test_set(m->_idx)) { 3887 if (m->is_SafePoint() && m->as_SafePoint()->jvms() != nullptr) { 3888 // compute worst case interpreter size in case of a deoptimization 3889 update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size()); 3890 3891 sfpt.push(m); 3892 } 3893 cnt = m->req(); 3894 nstack.push(n, i); // put on stack parent and next input's index 3895 n = m; 3896 i = 0; 3897 } 3898 } else { 3899 // Now do post-visit work 3900 final_graph_reshaping_impl(n, frc, dead_nodes); 3901 if (nstack.is_empty()) 3902 break; // finished 3903 n = nstack.node(); // Get node from stack 3904 cnt = n->req(); 3905 i = nstack.index(); 3906 nstack.pop(); // Shift to the next node on stack 3907 } 3908 } 3909 3910 // Skip next transformation if compressed oops are not used. 3911 if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) || 3912 (!UseCompressedOops && !UseCompressedClassPointers)) 3913 return; 3914 3915 // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges. 3916 // It could be done for an uncommon traps or any safepoints/calls 3917 // if the DecodeN/DecodeNKlass node is referenced only in a debug info. 3918 while (sfpt.size() > 0) { 3919 n = sfpt.pop(); 3920 JVMState *jvms = n->as_SafePoint()->jvms(); 3921 assert(jvms != nullptr, "sanity"); 3922 int start = jvms->debug_start(); 3923 int end = n->req(); 3924 bool is_uncommon = (n->is_CallStaticJava() && 3925 n->as_CallStaticJava()->uncommon_trap_request() != 0); 3926 for (int j = start; j < end; j++) { 3927 Node* in = n->in(j); 3928 if (in->is_DecodeNarrowPtr()) { 3929 bool safe_to_skip = true; 3930 if (!is_uncommon ) { 3931 // Is it safe to skip? 3932 for (uint i = 0; i < in->outcnt(); i++) { 3933 Node* u = in->raw_out(i); 3934 if (!u->is_SafePoint() || 3935 (u->is_Call() && u->as_Call()->has_non_debug_use(n))) { 3936 safe_to_skip = false; 3937 } 3938 } 3939 } 3940 if (safe_to_skip) { 3941 n->set_req(j, in->in(1)); 3942 } 3943 if (in->outcnt() == 0) { 3944 in->disconnect_inputs(this); 3945 } 3946 } 3947 } 3948 } 3949 } 3950 3951 //------------------------------final_graph_reshaping-------------------------- 3952 // Final Graph Reshaping. 3953 // 3954 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late 3955 // and not commoned up and forced early. Must come after regular 3956 // optimizations to avoid GVN undoing the cloning. Clone constant 3957 // inputs to Loop Phis; these will be split by the allocator anyways. 3958 // Remove Opaque nodes. 3959 // (2) Move last-uses by commutative operations to the left input to encourage 3960 // Intel update-in-place two-address operations and better register usage 3961 // on RISCs. Must come after regular optimizations to avoid GVN Ideal 3962 // calls canonicalizing them back. 3963 // (3) Count the number of double-precision FP ops, single-precision FP ops 3964 // and call sites. On Intel, we can get correct rounding either by 3965 // forcing singles to memory (requires extra stores and loads after each 3966 // FP bytecode) or we can set a rounding mode bit (requires setting and 3967 // clearing the mode bit around call sites). The mode bit is only used 3968 // if the relative frequency of single FP ops to calls is low enough. 3969 // This is a key transform for SPEC mpeg_audio. 3970 // (4) Detect infinite loops; blobs of code reachable from above but not 3971 // below. Several of the Code_Gen algorithms fail on such code shapes, 3972 // so we simply bail out. Happens a lot in ZKM.jar, but also happens 3973 // from time to time in other codes (such as -Xcomp finalizer loops, etc). 3974 // Detection is by looking for IfNodes where only 1 projection is 3975 // reachable from below or CatchNodes missing some targets. 3976 // (5) Assert for insane oop offsets in debug mode. 3977 3978 bool Compile::final_graph_reshaping() { 3979 // an infinite loop may have been eliminated by the optimizer, 3980 // in which case the graph will be empty. 3981 if (root()->req() == 1) { 3982 // Do not compile method that is only a trivial infinite loop, 3983 // since the content of the loop may have been eliminated. 3984 record_method_not_compilable("trivial infinite loop"); 3985 return true; 3986 } 3987 3988 // Expensive nodes have their control input set to prevent the GVN 3989 // from freely commoning them. There's no GVN beyond this point so 3990 // no need to keep the control input. We want the expensive nodes to 3991 // be freely moved to the least frequent code path by gcm. 3992 assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?"); 3993 for (int i = 0; i < expensive_count(); i++) { 3994 _expensive_nodes.at(i)->set_req(0, nullptr); 3995 } 3996 3997 Final_Reshape_Counts frc; 3998 3999 // Visit everybody reachable! 4000 // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc 4001 Node_Stack nstack(live_nodes() >> 1); 4002 Unique_Node_List dead_nodes; 4003 final_graph_reshaping_walk(nstack, root(), frc, dead_nodes); 4004 4005 // Check for unreachable (from below) code (i.e., infinite loops). 4006 for( uint i = 0; i < frc._tests.size(); i++ ) { 4007 MultiBranchNode *n = frc._tests[i]->as_MultiBranch(); 4008 // Get number of CFG targets. 4009 // Note that PCTables include exception targets after calls. 4010 uint required_outcnt = n->required_outcnt(); 4011 if (n->outcnt() != required_outcnt) { 4012 // Check for a few special cases. Rethrow Nodes never take the 4013 // 'fall-thru' path, so expected kids is 1 less. 4014 if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) { 4015 if (n->in(0)->in(0)->is_Call()) { 4016 CallNode* call = n->in(0)->in(0)->as_Call(); 4017 if (call->entry_point() == OptoRuntime::rethrow_stub()) { 4018 required_outcnt--; // Rethrow always has 1 less kid 4019 } else if (call->req() > TypeFunc::Parms && 4020 call->is_CallDynamicJava()) { 4021 // Check for null receiver. In such case, the optimizer has 4022 // detected that the virtual call will always result in a null 4023 // pointer exception. The fall-through projection of this CatchNode 4024 // will not be populated. 4025 Node* arg0 = call->in(TypeFunc::Parms); 4026 if (arg0->is_Type() && 4027 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) { 4028 required_outcnt--; 4029 } 4030 } else if (call->entry_point() == OptoRuntime::new_array_Java() || 4031 call->entry_point() == OptoRuntime::new_array_nozero_Java()) { 4032 // Check for illegal array length. In such case, the optimizer has 4033 // detected that the allocation attempt will always result in an 4034 // exception. There is no fall-through projection of this CatchNode . 4035 assert(call->is_CallStaticJava(), "static call expected"); 4036 assert(call->req() == call->jvms()->endoff() + 1, "missing extra input"); 4037 uint valid_length_test_input = call->req() - 1; 4038 Node* valid_length_test = call->in(valid_length_test_input); 4039 call->del_req(valid_length_test_input); 4040 if (valid_length_test->find_int_con(1) == 0) { 4041 required_outcnt--; 4042 } 4043 dead_nodes.push(valid_length_test); 4044 assert(n->outcnt() == required_outcnt, "malformed control flow"); 4045 continue; 4046 } 4047 } 4048 } 4049 4050 // Recheck with a better notion of 'required_outcnt' 4051 if (n->outcnt() != required_outcnt) { 4052 record_method_not_compilable("malformed control flow"); 4053 return true; // Not all targets reachable! 4054 } 4055 } else if (n->is_PCTable() && n->in(0) && n->in(0)->in(0) && n->in(0)->in(0)->is_Call()) { 4056 CallNode* call = n->in(0)->in(0)->as_Call(); 4057 if (call->entry_point() == OptoRuntime::new_array_Java() || 4058 call->entry_point() == OptoRuntime::new_array_nozero_Java()) { 4059 assert(call->is_CallStaticJava(), "static call expected"); 4060 assert(call->req() == call->jvms()->endoff() + 1, "missing extra input"); 4061 uint valid_length_test_input = call->req() - 1; 4062 dead_nodes.push(call->in(valid_length_test_input)); 4063 call->del_req(valid_length_test_input); // valid length test useless now 4064 } 4065 } 4066 // Check that I actually visited all kids. Unreached kids 4067 // must be infinite loops. 4068 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) 4069 if (!frc._visited.test(n->fast_out(j)->_idx)) { 4070 record_method_not_compilable("infinite loop"); 4071 return true; // Found unvisited kid; must be unreach 4072 } 4073 4074 // Here so verification code in final_graph_reshaping_walk() 4075 // always see an OuterStripMinedLoopEnd 4076 if (n->is_OuterStripMinedLoopEnd() || n->is_LongCountedLoopEnd()) { 4077 IfNode* init_iff = n->as_If(); 4078 Node* iff = new IfNode(init_iff->in(0), init_iff->in(1), init_iff->_prob, init_iff->_fcnt); 4079 n->subsume_by(iff, this); 4080 } 4081 } 4082 4083 while (dead_nodes.size() > 0) { 4084 Node* m = dead_nodes.pop(); 4085 if (m->outcnt() == 0 && m != top()) { 4086 for (uint j = 0; j < m->req(); j++) { 4087 Node* in = m->in(j); 4088 if (in != nullptr) { 4089 dead_nodes.push(in); 4090 } 4091 } 4092 m->disconnect_inputs(this); 4093 } 4094 } 4095 4096 #ifdef IA32 4097 // If original bytecodes contained a mixture of floats and doubles 4098 // check if the optimizer has made it homogeneous, item (3). 4099 if (UseSSE == 0 && 4100 frc.get_float_count() > 32 && 4101 frc.get_double_count() == 0 && 4102 (10 * frc.get_call_count() < frc.get_float_count()) ) { 4103 set_24_bit_selection_and_mode(false, true); 4104 } 4105 #endif // IA32 4106 4107 set_java_calls(frc.get_java_call_count()); 4108 set_inner_loops(frc.get_inner_loop_count()); 4109 4110 // No infinite loops, no reason to bail out. 4111 return false; 4112 } 4113 4114 //-----------------------------too_many_traps---------------------------------- 4115 // Report if there are too many traps at the current method and bci. 4116 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded. 4117 bool Compile::too_many_traps(ciMethod* method, 4118 int bci, 4119 Deoptimization::DeoptReason reason) { 4120 ciMethodData* md = method->method_data(); 4121 if (md->is_empty()) { 4122 // Assume the trap has not occurred, or that it occurred only 4123 // because of a transient condition during start-up in the interpreter. 4124 return false; 4125 } 4126 ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : nullptr; 4127 if (md->has_trap_at(bci, m, reason) != 0) { 4128 // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic. 4129 // Also, if there are multiple reasons, or if there is no per-BCI record, 4130 // assume the worst. 4131 if (log()) 4132 log()->elem("observe trap='%s' count='%d'", 4133 Deoptimization::trap_reason_name(reason), 4134 md->trap_count(reason)); 4135 return true; 4136 } else { 4137 // Ignore method/bci and see if there have been too many globally. 4138 return too_many_traps(reason, md); 4139 } 4140 } 4141 4142 // Less-accurate variant which does not require a method and bci. 4143 bool Compile::too_many_traps(Deoptimization::DeoptReason reason, 4144 ciMethodData* logmd) { 4145 if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) { 4146 // Too many traps globally. 4147 // Note that we use cumulative trap_count, not just md->trap_count. 4148 if (log()) { 4149 int mcount = (logmd == nullptr)? -1: (int)logmd->trap_count(reason); 4150 log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'", 4151 Deoptimization::trap_reason_name(reason), 4152 mcount, trap_count(reason)); 4153 } 4154 return true; 4155 } else { 4156 // The coast is clear. 4157 return false; 4158 } 4159 } 4160 4161 //--------------------------too_many_recompiles-------------------------------- 4162 // Report if there are too many recompiles at the current method and bci. 4163 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff. 4164 // Is not eager to return true, since this will cause the compiler to use 4165 // Action_none for a trap point, to avoid too many recompilations. 4166 bool Compile::too_many_recompiles(ciMethod* method, 4167 int bci, 4168 Deoptimization::DeoptReason reason) { 4169 ciMethodData* md = method->method_data(); 4170 if (md->is_empty()) { 4171 // Assume the trap has not occurred, or that it occurred only 4172 // because of a transient condition during start-up in the interpreter. 4173 return false; 4174 } 4175 // Pick a cutoff point well within PerBytecodeRecompilationCutoff. 4176 uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8; 4177 uint m_cutoff = (uint) PerMethodRecompilationCutoff / 2 + 1; // not zero 4178 Deoptimization::DeoptReason per_bc_reason 4179 = Deoptimization::reason_recorded_per_bytecode_if_any(reason); 4180 ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : nullptr; 4181 if ((per_bc_reason == Deoptimization::Reason_none 4182 || md->has_trap_at(bci, m, reason) != 0) 4183 // The trap frequency measure we care about is the recompile count: 4184 && md->trap_recompiled_at(bci, m) 4185 && md->overflow_recompile_count() >= bc_cutoff) { 4186 // Do not emit a trap here if it has already caused recompilations. 4187 // Also, if there are multiple reasons, or if there is no per-BCI record, 4188 // assume the worst. 4189 if (log()) 4190 log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'", 4191 Deoptimization::trap_reason_name(reason), 4192 md->trap_count(reason), 4193 md->overflow_recompile_count()); 4194 return true; 4195 } else if (trap_count(reason) != 0 4196 && decompile_count() >= m_cutoff) { 4197 // Too many recompiles globally, and we have seen this sort of trap. 4198 // Use cumulative decompile_count, not just md->decompile_count. 4199 if (log()) 4200 log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'", 4201 Deoptimization::trap_reason_name(reason), 4202 md->trap_count(reason), trap_count(reason), 4203 md->decompile_count(), decompile_count()); 4204 return true; 4205 } else { 4206 // The coast is clear. 4207 return false; 4208 } 4209 } 4210 4211 // Compute when not to trap. Used by matching trap based nodes and 4212 // NullCheck optimization. 4213 void Compile::set_allowed_deopt_reasons() { 4214 _allowed_reasons = 0; 4215 if (is_method_compilation()) { 4216 for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) { 4217 assert(rs < BitsPerInt, "recode bit map"); 4218 if (!too_many_traps((Deoptimization::DeoptReason) rs)) { 4219 _allowed_reasons |= nth_bit(rs); 4220 } 4221 } 4222 } 4223 } 4224 4225 bool Compile::needs_clinit_barrier(ciMethod* method, ciMethod* accessing_method) { 4226 return method->is_static() && needs_clinit_barrier(method->holder(), accessing_method); 4227 } 4228 4229 bool Compile::needs_clinit_barrier(ciField* field, ciMethod* accessing_method) { 4230 return field->is_static() && needs_clinit_barrier(field->holder(), accessing_method); 4231 } 4232 4233 bool Compile::needs_clinit_barrier(ciInstanceKlass* holder, ciMethod* accessing_method) { 4234 if (holder->is_initialized()) { 4235 return false; 4236 } 4237 if (holder->is_being_initialized()) { 4238 if (accessing_method->holder() == holder) { 4239 // Access inside a class. The barrier can be elided when access happens in <clinit>, 4240 // <init>, or a static method. In all those cases, there was an initialization 4241 // barrier on the holder klass passed. 4242 if (accessing_method->is_static_initializer() || 4243 accessing_method->is_object_initializer() || 4244 accessing_method->is_static()) { 4245 return false; 4246 } 4247 } else if (accessing_method->holder()->is_subclass_of(holder)) { 4248 // Access from a subclass. The barrier can be elided only when access happens in <clinit>. 4249 // In case of <init> or a static method, the barrier is on the subclass is not enough: 4250 // child class can become fully initialized while its parent class is still being initialized. 4251 if (accessing_method->is_static_initializer()) { 4252 return false; 4253 } 4254 } 4255 ciMethod* root = method(); // the root method of compilation 4256 if (root != accessing_method) { 4257 return needs_clinit_barrier(holder, root); // check access in the context of compilation root 4258 } 4259 } 4260 return true; 4261 } 4262 4263 #ifndef PRODUCT 4264 //------------------------------verify_bidirectional_edges--------------------- 4265 // For each input edge to a node (ie - for each Use-Def edge), verify that 4266 // there is a corresponding Def-Use edge. 4267 void Compile::verify_bidirectional_edges(Unique_Node_List& visited, const Unique_Node_List* root_and_safepoints) const { 4268 // Allocate stack of size C->live_nodes()/16 to avoid frequent realloc 4269 uint stack_size = live_nodes() >> 4; 4270 Node_List nstack(MAX2(stack_size, (uint) OptoNodeListSize)); 4271 if (root_and_safepoints != nullptr) { 4272 assert(root_and_safepoints->member(_root), "root is not in root_and_safepoints"); 4273 for (uint i = 0, limit = root_and_safepoints->size(); i < limit; i++) { 4274 Node* root_or_safepoint = root_and_safepoints->at(i); 4275 // If the node is a safepoint, let's check if it still has a control input 4276 // Lack of control input signifies that this node was killed by CCP or 4277 // recursively by remove_globally_dead_node and it shouldn't be a starting 4278 // point. 4279 if (!root_or_safepoint->is_SafePoint() || root_or_safepoint->in(0) != nullptr) { 4280 nstack.push(root_or_safepoint); 4281 } 4282 } 4283 } else { 4284 nstack.push(_root); 4285 } 4286 4287 while (nstack.size() > 0) { 4288 Node* n = nstack.pop(); 4289 if (visited.member(n)) { 4290 continue; 4291 } 4292 visited.push(n); 4293 4294 // Walk over all input edges, checking for correspondence 4295 uint length = n->len(); 4296 for (uint i = 0; i < length; i++) { 4297 Node* in = n->in(i); 4298 if (in != nullptr && !visited.member(in)) { 4299 nstack.push(in); // Put it on stack 4300 } 4301 if (in != nullptr && !in->is_top()) { 4302 // Count instances of `next` 4303 int cnt = 0; 4304 for (uint idx = 0; idx < in->_outcnt; idx++) { 4305 if (in->_out[idx] == n) { 4306 cnt++; 4307 } 4308 } 4309 assert(cnt > 0, "Failed to find Def-Use edge."); 4310 // Check for duplicate edges 4311 // walk the input array downcounting the input edges to n 4312 for (uint j = 0; j < length; j++) { 4313 if (n->in(j) == in) { 4314 cnt--; 4315 } 4316 } 4317 assert(cnt == 0, "Mismatched edge count."); 4318 } else if (in == nullptr) { 4319 assert(i == 0 || i >= n->req() || 4320 n->is_Region() || n->is_Phi() || n->is_ArrayCopy() || 4321 (n->is_Unlock() && i == (n->req() - 1)) || 4322 (n->is_MemBar() && i == 5), // the precedence edge to a membar can be removed during macro node expansion 4323 "only region, phi, arraycopy, unlock or membar nodes have null data edges"); 4324 } else { 4325 assert(in->is_top(), "sanity"); 4326 // Nothing to check. 4327 } 4328 } 4329 } 4330 } 4331 4332 //------------------------------verify_graph_edges--------------------------- 4333 // Walk the Graph and verify that there is a one-to-one correspondence 4334 // between Use-Def edges and Def-Use edges in the graph. 4335 void Compile::verify_graph_edges(bool no_dead_code, const Unique_Node_List* root_and_safepoints) const { 4336 if (VerifyGraphEdges) { 4337 Unique_Node_List visited; 4338 4339 // Call graph walk to check edges 4340 verify_bidirectional_edges(visited, root_and_safepoints); 4341 if (no_dead_code) { 4342 // Now make sure that no visited node is used by an unvisited node. 4343 bool dead_nodes = false; 4344 Unique_Node_List checked; 4345 while (visited.size() > 0) { 4346 Node* n = visited.pop(); 4347 checked.push(n); 4348 for (uint i = 0; i < n->outcnt(); i++) { 4349 Node* use = n->raw_out(i); 4350 if (checked.member(use)) continue; // already checked 4351 if (visited.member(use)) continue; // already in the graph 4352 if (use->is_Con()) continue; // a dead ConNode is OK 4353 // At this point, we have found a dead node which is DU-reachable. 4354 if (!dead_nodes) { 4355 tty->print_cr("*** Dead nodes reachable via DU edges:"); 4356 dead_nodes = true; 4357 } 4358 use->dump(2); 4359 tty->print_cr("---"); 4360 checked.push(use); // No repeats; pretend it is now checked. 4361 } 4362 } 4363 assert(!dead_nodes, "using nodes must be reachable from root"); 4364 } 4365 } 4366 } 4367 #endif 4368 4369 // The Compile object keeps track of failure reasons separately from the ciEnv. 4370 // This is required because there is not quite a 1-1 relation between the 4371 // ciEnv and its compilation task and the Compile object. Note that one 4372 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides 4373 // to backtrack and retry without subsuming loads. Other than this backtracking 4374 // behavior, the Compile's failure reason is quietly copied up to the ciEnv 4375 // by the logic in C2Compiler. 4376 void Compile::record_failure(const char* reason DEBUG_ONLY(COMMA bool allow_multiple_failures)) { 4377 if (log() != nullptr) { 4378 log()->elem("failure reason='%s' phase='compile'", reason); 4379 } 4380 if (_failure_reason.get() == nullptr) { 4381 // Record the first failure reason. 4382 _failure_reason.set(reason); 4383 if (CaptureBailoutInformation) { 4384 _first_failure_details = new CompilationFailureInfo(reason); 4385 } 4386 } else { 4387 assert(!StressBailout || allow_multiple_failures, "should have handled previous failure."); 4388 } 4389 4390 if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) { 4391 C->print_method(PHASE_FAILURE, 1); 4392 } 4393 _root = nullptr; // flush the graph, too 4394 } 4395 4396 Compile::TracePhase::TracePhase(const char* name, PhaseTraceId id) 4397 : TraceTime(name, &Phase::timers[id], CITime, CITimeVerbose), 4398 _compile(Compile::current()), 4399 _log(nullptr), 4400 _dolog(CITimeVerbose) 4401 { 4402 assert(_compile != nullptr, "sanity check"); 4403 assert(id != PhaseTraceId::_t_none, "Don't use none"); 4404 if (_dolog) { 4405 _log = _compile->log(); 4406 } 4407 if (_log != nullptr) { 4408 _log->begin_head("phase name='%s' nodes='%d' live='%d'", phase_name(), _compile->unique(), _compile->live_nodes()); 4409 _log->stamp(); 4410 _log->end_head(); 4411 } 4412 4413 // Inform memory statistic, if enabled 4414 if (CompilationMemoryStatistic::enabled()) { 4415 CompilationMemoryStatistic::on_phase_start((int)id, name); 4416 } 4417 } 4418 4419 Compile::TracePhase::TracePhase(PhaseTraceId id) 4420 : TracePhase(Phase::get_phase_trace_id_text(id), id) {} 4421 4422 Compile::TracePhase::~TracePhase() { 4423 4424 // Inform memory statistic, if enabled 4425 if (CompilationMemoryStatistic::enabled()) { 4426 CompilationMemoryStatistic::on_phase_end(); 4427 } 4428 4429 if (_compile->failing_internal()) { 4430 if (_log != nullptr) { 4431 _log->done("phase"); 4432 } 4433 return; // timing code, not stressing bailouts. 4434 } 4435 #ifdef ASSERT 4436 if (PrintIdealNodeCount) { 4437 tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'", 4438 phase_name(), _compile->unique(), _compile->live_nodes(), _compile->count_live_nodes_by_graph_walk()); 4439 } 4440 4441 if (VerifyIdealNodeCount) { 4442 _compile->print_missing_nodes(); 4443 } 4444 #endif 4445 4446 if (_log != nullptr) { 4447 _log->done("phase name='%s' nodes='%d' live='%d'", phase_name(), _compile->unique(), _compile->live_nodes()); 4448 } 4449 } 4450 4451 //----------------------------static_subtype_check----------------------------- 4452 // Shortcut important common cases when superklass is exact: 4453 // (0) superklass is java.lang.Object (can occur in reflective code) 4454 // (1) subklass is already limited to a subtype of superklass => always ok 4455 // (2) subklass does not overlap with superklass => always fail 4456 // (3) superklass has NO subtypes and we can check with a simple compare. 4457 Compile::SubTypeCheckResult Compile::static_subtype_check(const TypeKlassPtr* superk, const TypeKlassPtr* subk, bool skip) { 4458 if (skip) { 4459 return SSC_full_test; // Let caller generate the general case. 4460 } 4461 4462 if (subk->is_java_subtype_of(superk)) { 4463 return SSC_always_true; // (0) and (1) this test cannot fail 4464 } 4465 4466 if (!subk->maybe_java_subtype_of(superk)) { 4467 return SSC_always_false; // (2) true path dead; no dynamic test needed 4468 } 4469 4470 const Type* superelem = superk; 4471 if (superk->isa_aryklassptr()) { 4472 int ignored; 4473 superelem = superk->is_aryklassptr()->base_element_type(ignored); 4474 } 4475 4476 if (superelem->isa_instklassptr()) { 4477 ciInstanceKlass* ik = superelem->is_instklassptr()->instance_klass(); 4478 if (!ik->has_subklass()) { 4479 if (!ik->is_final()) { 4480 // Add a dependency if there is a chance of a later subclass. 4481 dependencies()->assert_leaf_type(ik); 4482 } 4483 if (!superk->maybe_java_subtype_of(subk)) { 4484 return SSC_always_false; 4485 } 4486 return SSC_easy_test; // (3) caller can do a simple ptr comparison 4487 } 4488 } else { 4489 // A primitive array type has no subtypes. 4490 return SSC_easy_test; // (3) caller can do a simple ptr comparison 4491 } 4492 4493 return SSC_full_test; 4494 } 4495 4496 Node* Compile::conv_I2X_index(PhaseGVN* phase, Node* idx, const TypeInt* sizetype, Node* ctrl) { 4497 #ifdef _LP64 4498 // The scaled index operand to AddP must be a clean 64-bit value. 4499 // Java allows a 32-bit int to be incremented to a negative 4500 // value, which appears in a 64-bit register as a large 4501 // positive number. Using that large positive number as an 4502 // operand in pointer arithmetic has bad consequences. 4503 // On the other hand, 32-bit overflow is rare, and the possibility 4504 // can often be excluded, if we annotate the ConvI2L node with 4505 // a type assertion that its value is known to be a small positive 4506 // number. (The prior range check has ensured this.) 4507 // This assertion is used by ConvI2LNode::Ideal. 4508 int index_max = max_jint - 1; // array size is max_jint, index is one less 4509 if (sizetype != nullptr) index_max = sizetype->_hi - 1; 4510 const TypeInt* iidxtype = TypeInt::make(0, index_max, Type::WidenMax); 4511 idx = constrained_convI2L(phase, idx, iidxtype, ctrl); 4512 #endif 4513 return idx; 4514 } 4515 4516 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check) 4517 Node* Compile::constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl, bool carry_dependency) { 4518 if (ctrl != nullptr) { 4519 // Express control dependency by a CastII node with a narrow type. 4520 // Make the CastII node dependent on the control input to prevent the narrowed ConvI2L 4521 // node from floating above the range check during loop optimizations. Otherwise, the 4522 // ConvI2L node may be eliminated independently of the range check, causing the data path 4523 // to become TOP while the control path is still there (although it's unreachable). 4524 value = new CastIINode(ctrl, value, itype, carry_dependency ? ConstraintCastNode::StrongDependency : ConstraintCastNode::RegularDependency, true /* range check dependency */); 4525 value = phase->transform(value); 4526 } 4527 const TypeLong* ltype = TypeLong::make(itype->_lo, itype->_hi, itype->_widen); 4528 return phase->transform(new ConvI2LNode(value, ltype)); 4529 } 4530 4531 void Compile::dump_print_inlining() { 4532 inline_printer()->print_on(tty); 4533 } 4534 4535 void Compile::log_late_inline(CallGenerator* cg) { 4536 if (log() != nullptr) { 4537 log()->head("late_inline method='%d' inline_id='" JLONG_FORMAT "'", log()->identify(cg->method()), 4538 cg->unique_id()); 4539 JVMState* p = cg->call_node()->jvms(); 4540 while (p != nullptr) { 4541 log()->elem("jvms bci='%d' method='%d'", p->bci(), log()->identify(p->method())); 4542 p = p->caller(); 4543 } 4544 log()->tail("late_inline"); 4545 } 4546 } 4547 4548 void Compile::log_late_inline_failure(CallGenerator* cg, const char* msg) { 4549 log_late_inline(cg); 4550 if (log() != nullptr) { 4551 log()->inline_fail(msg); 4552 } 4553 } 4554 4555 void Compile::log_inline_id(CallGenerator* cg) { 4556 if (log() != nullptr) { 4557 // The LogCompilation tool needs a unique way to identify late 4558 // inline call sites. This id must be unique for this call site in 4559 // this compilation. Try to have it unique across compilations as 4560 // well because it can be convenient when grepping through the log 4561 // file. 4562 // Distinguish OSR compilations from others in case CICountOSR is 4563 // on. 4564 jlong id = ((jlong)unique()) + (((jlong)compile_id()) << 33) + (CICountOSR && is_osr_compilation() ? ((jlong)1) << 32 : 0); 4565 cg->set_unique_id(id); 4566 log()->elem("inline_id id='" JLONG_FORMAT "'", id); 4567 } 4568 } 4569 4570 void Compile::log_inline_failure(const char* msg) { 4571 if (C->log() != nullptr) { 4572 C->log()->inline_fail(msg); 4573 } 4574 } 4575 4576 4577 // Dump inlining replay data to the stream. 4578 // Don't change thread state and acquire any locks. 4579 void Compile::dump_inline_data(outputStream* out) { 4580 InlineTree* inl_tree = ilt(); 4581 if (inl_tree != nullptr) { 4582 out->print(" inline %d", inl_tree->count()); 4583 inl_tree->dump_replay_data(out); 4584 } 4585 } 4586 4587 void Compile::dump_inline_data_reduced(outputStream* out) { 4588 assert(ReplayReduce, ""); 4589 4590 InlineTree* inl_tree = ilt(); 4591 if (inl_tree == nullptr) { 4592 return; 4593 } 4594 // Enable iterative replay file reduction 4595 // Output "compile" lines for depth 1 subtrees, 4596 // simulating that those trees were compiled 4597 // instead of inlined. 4598 for (int i = 0; i < inl_tree->subtrees().length(); ++i) { 4599 InlineTree* sub = inl_tree->subtrees().at(i); 4600 if (sub->inline_level() != 1) { 4601 continue; 4602 } 4603 4604 ciMethod* method = sub->method(); 4605 int entry_bci = -1; 4606 int comp_level = env()->task()->comp_level(); 4607 out->print("compile "); 4608 method->dump_name_as_ascii(out); 4609 out->print(" %d %d", entry_bci, comp_level); 4610 out->print(" inline %d", sub->count()); 4611 sub->dump_replay_data(out, -1); 4612 out->cr(); 4613 } 4614 } 4615 4616 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) { 4617 if (n1->Opcode() < n2->Opcode()) return -1; 4618 else if (n1->Opcode() > n2->Opcode()) return 1; 4619 4620 assert(n1->req() == n2->req(), "can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req()); 4621 for (uint i = 1; i < n1->req(); i++) { 4622 if (n1->in(i) < n2->in(i)) return -1; 4623 else if (n1->in(i) > n2->in(i)) return 1; 4624 } 4625 4626 return 0; 4627 } 4628 4629 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) { 4630 Node* n1 = *n1p; 4631 Node* n2 = *n2p; 4632 4633 return cmp_expensive_nodes(n1, n2); 4634 } 4635 4636 void Compile::sort_expensive_nodes() { 4637 if (!expensive_nodes_sorted()) { 4638 _expensive_nodes.sort(cmp_expensive_nodes); 4639 } 4640 } 4641 4642 bool Compile::expensive_nodes_sorted() const { 4643 for (int i = 1; i < _expensive_nodes.length(); i++) { 4644 if (cmp_expensive_nodes(_expensive_nodes.adr_at(i), _expensive_nodes.adr_at(i-1)) < 0) { 4645 return false; 4646 } 4647 } 4648 return true; 4649 } 4650 4651 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) { 4652 if (_expensive_nodes.length() == 0) { 4653 return false; 4654 } 4655 4656 assert(OptimizeExpensiveOps, "optimization off?"); 4657 4658 // Take this opportunity to remove dead nodes from the list 4659 int j = 0; 4660 for (int i = 0; i < _expensive_nodes.length(); i++) { 4661 Node* n = _expensive_nodes.at(i); 4662 if (!n->is_unreachable(igvn)) { 4663 assert(n->is_expensive(), "should be expensive"); 4664 _expensive_nodes.at_put(j, n); 4665 j++; 4666 } 4667 } 4668 _expensive_nodes.trunc_to(j); 4669 4670 // Then sort the list so that similar nodes are next to each other 4671 // and check for at least two nodes of identical kind with same data 4672 // inputs. 4673 sort_expensive_nodes(); 4674 4675 for (int i = 0; i < _expensive_nodes.length()-1; i++) { 4676 if (cmp_expensive_nodes(_expensive_nodes.adr_at(i), _expensive_nodes.adr_at(i+1)) == 0) { 4677 return true; 4678 } 4679 } 4680 4681 return false; 4682 } 4683 4684 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) { 4685 if (_expensive_nodes.length() == 0) { 4686 return; 4687 } 4688 4689 assert(OptimizeExpensiveOps, "optimization off?"); 4690 4691 // Sort to bring similar nodes next to each other and clear the 4692 // control input of nodes for which there's only a single copy. 4693 sort_expensive_nodes(); 4694 4695 int j = 0; 4696 int identical = 0; 4697 int i = 0; 4698 bool modified = false; 4699 for (; i < _expensive_nodes.length()-1; i++) { 4700 assert(j <= i, "can't write beyond current index"); 4701 if (_expensive_nodes.at(i)->Opcode() == _expensive_nodes.at(i+1)->Opcode()) { 4702 identical++; 4703 _expensive_nodes.at_put(j++, _expensive_nodes.at(i)); 4704 continue; 4705 } 4706 if (identical > 0) { 4707 _expensive_nodes.at_put(j++, _expensive_nodes.at(i)); 4708 identical = 0; 4709 } else { 4710 Node* n = _expensive_nodes.at(i); 4711 igvn.replace_input_of(n, 0, nullptr); 4712 igvn.hash_insert(n); 4713 modified = true; 4714 } 4715 } 4716 if (identical > 0) { 4717 _expensive_nodes.at_put(j++, _expensive_nodes.at(i)); 4718 } else if (_expensive_nodes.length() >= 1) { 4719 Node* n = _expensive_nodes.at(i); 4720 igvn.replace_input_of(n, 0, nullptr); 4721 igvn.hash_insert(n); 4722 modified = true; 4723 } 4724 _expensive_nodes.trunc_to(j); 4725 if (modified) { 4726 igvn.optimize(); 4727 } 4728 } 4729 4730 void Compile::add_expensive_node(Node * n) { 4731 assert(!_expensive_nodes.contains(n), "duplicate entry in expensive list"); 4732 assert(n->is_expensive(), "expensive nodes with non-null control here only"); 4733 assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here"); 4734 if (OptimizeExpensiveOps) { 4735 _expensive_nodes.append(n); 4736 } else { 4737 // Clear control input and let IGVN optimize expensive nodes if 4738 // OptimizeExpensiveOps is off. 4739 n->set_req(0, nullptr); 4740 } 4741 } 4742 4743 /** 4744 * Track coarsened Lock and Unlock nodes. 4745 */ 4746 4747 class Lock_List : public Node_List { 4748 uint _origin_cnt; 4749 public: 4750 Lock_List(Arena *a, uint cnt) : Node_List(a), _origin_cnt(cnt) {} 4751 uint origin_cnt() const { return _origin_cnt; } 4752 }; 4753 4754 void Compile::add_coarsened_locks(GrowableArray<AbstractLockNode*>& locks) { 4755 int length = locks.length(); 4756 if (length > 0) { 4757 // Have to keep this list until locks elimination during Macro nodes elimination. 4758 Lock_List* locks_list = new (comp_arena()) Lock_List(comp_arena(), length); 4759 AbstractLockNode* alock = locks.at(0); 4760 BoxLockNode* box = alock->box_node()->as_BoxLock(); 4761 for (int i = 0; i < length; i++) { 4762 AbstractLockNode* lock = locks.at(i); 4763 assert(lock->is_coarsened(), "expecting only coarsened AbstractLock nodes, but got '%s'[%d] node", lock->Name(), lock->_idx); 4764 locks_list->push(lock); 4765 BoxLockNode* this_box = lock->box_node()->as_BoxLock(); 4766 if (this_box != box) { 4767 // Locking regions (BoxLock) could be Unbalanced here: 4768 // - its coarsened locks were eliminated in earlier 4769 // macro nodes elimination followed by loop unroll 4770 // - it is OSR locking region (no Lock node) 4771 // Preserve Unbalanced status in such cases. 4772 if (!this_box->is_unbalanced()) { 4773 this_box->set_coarsened(); 4774 } 4775 if (!box->is_unbalanced()) { 4776 box->set_coarsened(); 4777 } 4778 } 4779 } 4780 _coarsened_locks.append(locks_list); 4781 } 4782 } 4783 4784 void Compile::remove_useless_coarsened_locks(Unique_Node_List& useful) { 4785 int count = coarsened_count(); 4786 for (int i = 0; i < count; i++) { 4787 Node_List* locks_list = _coarsened_locks.at(i); 4788 for (uint j = 0; j < locks_list->size(); j++) { 4789 Node* lock = locks_list->at(j); 4790 assert(lock->is_AbstractLock(), "sanity"); 4791 if (!useful.member(lock)) { 4792 locks_list->yank(lock); 4793 } 4794 } 4795 } 4796 } 4797 4798 void Compile::remove_coarsened_lock(Node* n) { 4799 if (n->is_AbstractLock()) { 4800 int count = coarsened_count(); 4801 for (int i = 0; i < count; i++) { 4802 Node_List* locks_list = _coarsened_locks.at(i); 4803 locks_list->yank(n); 4804 } 4805 } 4806 } 4807 4808 bool Compile::coarsened_locks_consistent() { 4809 int count = coarsened_count(); 4810 for (int i = 0; i < count; i++) { 4811 bool unbalanced = false; 4812 bool modified = false; // track locks kind modifications 4813 Lock_List* locks_list = (Lock_List*)_coarsened_locks.at(i); 4814 uint size = locks_list->size(); 4815 if (size == 0) { 4816 unbalanced = false; // All locks were eliminated - good 4817 } else if (size != locks_list->origin_cnt()) { 4818 unbalanced = true; // Some locks were removed from list 4819 } else { 4820 for (uint j = 0; j < size; j++) { 4821 Node* lock = locks_list->at(j); 4822 // All nodes in group should have the same state (modified or not) 4823 if (!lock->as_AbstractLock()->is_coarsened()) { 4824 if (j == 0) { 4825 // first on list was modified, the rest should be too for consistency 4826 modified = true; 4827 } else if (!modified) { 4828 // this lock was modified but previous locks on the list were not 4829 unbalanced = true; 4830 break; 4831 } 4832 } else if (modified) { 4833 // previous locks on list were modified but not this lock 4834 unbalanced = true; 4835 break; 4836 } 4837 } 4838 } 4839 if (unbalanced) { 4840 // unbalanced monitor enter/exit - only some [un]lock nodes were removed or modified 4841 #ifdef ASSERT 4842 if (PrintEliminateLocks) { 4843 tty->print_cr("=== unbalanced coarsened locks ==="); 4844 for (uint l = 0; l < size; l++) { 4845 locks_list->at(l)->dump(); 4846 } 4847 } 4848 #endif 4849 record_failure(C2Compiler::retry_no_locks_coarsening()); 4850 return false; 4851 } 4852 } 4853 return true; 4854 } 4855 4856 // Mark locking regions (identified by BoxLockNode) as unbalanced if 4857 // locks coarsening optimization removed Lock/Unlock nodes from them. 4858 // Such regions become unbalanced because coarsening only removes part 4859 // of Lock/Unlock nodes in region. As result we can't execute other 4860 // locks elimination optimizations which assume all code paths have 4861 // corresponding pair of Lock/Unlock nodes - they are balanced. 4862 void Compile::mark_unbalanced_boxes() const { 4863 int count = coarsened_count(); 4864 for (int i = 0; i < count; i++) { 4865 Node_List* locks_list = _coarsened_locks.at(i); 4866 uint size = locks_list->size(); 4867 if (size > 0) { 4868 AbstractLockNode* alock = locks_list->at(0)->as_AbstractLock(); 4869 BoxLockNode* box = alock->box_node()->as_BoxLock(); 4870 if (alock->is_coarsened()) { 4871 // coarsened_locks_consistent(), which is called before this method, verifies 4872 // that the rest of Lock/Unlock nodes on locks_list are also coarsened. 4873 assert(!box->is_eliminated(), "regions with coarsened locks should not be marked as eliminated"); 4874 for (uint j = 1; j < size; j++) { 4875 assert(locks_list->at(j)->as_AbstractLock()->is_coarsened(), "only coarsened locks are expected here"); 4876 BoxLockNode* this_box = locks_list->at(j)->as_AbstractLock()->box_node()->as_BoxLock(); 4877 if (box != this_box) { 4878 assert(!this_box->is_eliminated(), "regions with coarsened locks should not be marked as eliminated"); 4879 box->set_unbalanced(); 4880 this_box->set_unbalanced(); 4881 } 4882 } 4883 } 4884 } 4885 } 4886 } 4887 4888 /** 4889 * Remove the speculative part of types and clean up the graph 4890 */ 4891 void Compile::remove_speculative_types(PhaseIterGVN &igvn) { 4892 if (UseTypeSpeculation) { 4893 Unique_Node_List worklist; 4894 worklist.push(root()); 4895 int modified = 0; 4896 // Go over all type nodes that carry a speculative type, drop the 4897 // speculative part of the type and enqueue the node for an igvn 4898 // which may optimize it out. 4899 for (uint next = 0; next < worklist.size(); ++next) { 4900 Node *n = worklist.at(next); 4901 if (n->is_Type()) { 4902 TypeNode* tn = n->as_Type(); 4903 const Type* t = tn->type(); 4904 const Type* t_no_spec = t->remove_speculative(); 4905 if (t_no_spec != t) { 4906 bool in_hash = igvn.hash_delete(n); 4907 assert(in_hash || n->hash() == Node::NO_HASH, "node should be in igvn hash table"); 4908 tn->set_type(t_no_spec); 4909 igvn.hash_insert(n); 4910 igvn._worklist.push(n); // give it a chance to go away 4911 modified++; 4912 } 4913 } 4914 // Iterate over outs - endless loops is unreachable from below 4915 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 4916 Node *m = n->fast_out(i); 4917 if (not_a_node(m)) { 4918 continue; 4919 } 4920 worklist.push(m); 4921 } 4922 } 4923 // Drop the speculative part of all types in the igvn's type table 4924 igvn.remove_speculative_types(); 4925 if (modified > 0) { 4926 igvn.optimize(); 4927 if (failing()) return; 4928 } 4929 #ifdef ASSERT 4930 // Verify that after the IGVN is over no speculative type has resurfaced 4931 worklist.clear(); 4932 worklist.push(root()); 4933 for (uint next = 0; next < worklist.size(); ++next) { 4934 Node *n = worklist.at(next); 4935 const Type* t = igvn.type_or_null(n); 4936 assert((t == nullptr) || (t == t->remove_speculative()), "no more speculative types"); 4937 if (n->is_Type()) { 4938 t = n->as_Type()->type(); 4939 assert(t == t->remove_speculative(), "no more speculative types"); 4940 } 4941 // Iterate over outs - endless loops is unreachable from below 4942 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 4943 Node *m = n->fast_out(i); 4944 if (not_a_node(m)) { 4945 continue; 4946 } 4947 worklist.push(m); 4948 } 4949 } 4950 igvn.check_no_speculative_types(); 4951 #endif 4952 } 4953 } 4954 4955 // Auxiliary methods to support randomized stressing/fuzzing. 4956 4957 void Compile::initialize_stress_seed(const DirectiveSet* directive) { 4958 if (FLAG_IS_DEFAULT(StressSeed) || (FLAG_IS_ERGO(StressSeed) && directive->RepeatCompilationOption)) { 4959 _stress_seed = static_cast<uint>(Ticks::now().nanoseconds()); 4960 FLAG_SET_ERGO(StressSeed, _stress_seed); 4961 } else { 4962 _stress_seed = StressSeed; 4963 } 4964 if (_log != nullptr) { 4965 _log->elem("stress_test seed='%u'", _stress_seed); 4966 } 4967 } 4968 4969 int Compile::random() { 4970 _stress_seed = os::next_random(_stress_seed); 4971 return static_cast<int>(_stress_seed); 4972 } 4973 4974 // This method can be called the arbitrary number of times, with current count 4975 // as the argument. The logic allows selecting a single candidate from the 4976 // running list of candidates as follows: 4977 // int count = 0; 4978 // Cand* selected = null; 4979 // while(cand = cand->next()) { 4980 // if (randomized_select(++count)) { 4981 // selected = cand; 4982 // } 4983 // } 4984 // 4985 // Including count equalizes the chances any candidate is "selected". 4986 // This is useful when we don't have the complete list of candidates to choose 4987 // from uniformly. In this case, we need to adjust the randomicity of the 4988 // selection, or else we will end up biasing the selection towards the latter 4989 // candidates. 4990 // 4991 // Quick back-envelope calculation shows that for the list of n candidates 4992 // the equal probability for the candidate to persist as "best" can be 4993 // achieved by replacing it with "next" k-th candidate with the probability 4994 // of 1/k. It can be easily shown that by the end of the run, the 4995 // probability for any candidate is converged to 1/n, thus giving the 4996 // uniform distribution among all the candidates. 4997 // 4998 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large. 4999 #define RANDOMIZED_DOMAIN_POW 29 5000 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW) 5001 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1) 5002 bool Compile::randomized_select(int count) { 5003 assert(count > 0, "only positive"); 5004 return (random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count); 5005 } 5006 5007 #ifdef ASSERT 5008 // Failures are geometrically distributed with probability 1/StressBailoutMean. 5009 bool Compile::fail_randomly() { 5010 if ((random() % StressBailoutMean) != 0) { 5011 return false; 5012 } 5013 record_failure("StressBailout"); 5014 return true; 5015 } 5016 5017 bool Compile::failure_is_artificial() { 5018 return C->failure_reason_is("StressBailout"); 5019 } 5020 #endif 5021 5022 CloneMap& Compile::clone_map() { return _clone_map; } 5023 void Compile::set_clone_map(Dict* d) { _clone_map._dict = d; } 5024 5025 void NodeCloneInfo::dump_on(outputStream* st) const { 5026 st->print(" {%d:%d} ", idx(), gen()); 5027 } 5028 5029 void CloneMap::clone(Node* old, Node* nnn, int gen) { 5030 uint64_t val = value(old->_idx); 5031 NodeCloneInfo cio(val); 5032 assert(val != 0, "old node should be in the map"); 5033 NodeCloneInfo cin(cio.idx(), gen + cio.gen()); 5034 insert(nnn->_idx, cin.get()); 5035 #ifndef PRODUCT 5036 if (is_debug()) { 5037 tty->print_cr("CloneMap::clone inserted node %d info {%d:%d} into CloneMap", nnn->_idx, cin.idx(), cin.gen()); 5038 } 5039 #endif 5040 } 5041 5042 void CloneMap::verify_insert_and_clone(Node* old, Node* nnn, int gen) { 5043 NodeCloneInfo cio(value(old->_idx)); 5044 if (cio.get() == 0) { 5045 cio.set(old->_idx, 0); 5046 insert(old->_idx, cio.get()); 5047 #ifndef PRODUCT 5048 if (is_debug()) { 5049 tty->print_cr("CloneMap::verify_insert_and_clone inserted node %d info {%d:%d} into CloneMap", old->_idx, cio.idx(), cio.gen()); 5050 } 5051 #endif 5052 } 5053 clone(old, nnn, gen); 5054 } 5055 5056 int CloneMap::max_gen() const { 5057 int g = 0; 5058 DictI di(_dict); 5059 for(; di.test(); ++di) { 5060 int t = gen(di._key); 5061 if (g < t) { 5062 g = t; 5063 #ifndef PRODUCT 5064 if (is_debug()) { 5065 tty->print_cr("CloneMap::max_gen() update max=%d from %d", g, _2_node_idx_t(di._key)); 5066 } 5067 #endif 5068 } 5069 } 5070 return g; 5071 } 5072 5073 void CloneMap::dump(node_idx_t key, outputStream* st) const { 5074 uint64_t val = value(key); 5075 if (val != 0) { 5076 NodeCloneInfo ni(val); 5077 ni.dump_on(st); 5078 } 5079 } 5080 5081 void Compile::shuffle_macro_nodes() { 5082 if (_macro_nodes.length() < 2) { 5083 return; 5084 } 5085 for (uint i = _macro_nodes.length() - 1; i >= 1; i--) { 5086 uint j = C->random() % (i + 1); 5087 swap(_macro_nodes.at(i), _macro_nodes.at(j)); 5088 } 5089 } 5090 5091 // Move Allocate nodes to the start of the list 5092 void Compile::sort_macro_nodes() { 5093 int count = macro_count(); 5094 int allocates = 0; 5095 for (int i = 0; i < count; i++) { 5096 Node* n = macro_node(i); 5097 if (n->is_Allocate()) { 5098 if (i != allocates) { 5099 Node* tmp = macro_node(allocates); 5100 _macro_nodes.at_put(allocates, n); 5101 _macro_nodes.at_put(i, tmp); 5102 } 5103 allocates++; 5104 } 5105 } 5106 } 5107 5108 void Compile::print_method(CompilerPhaseType cpt, int level, Node* n) { 5109 if (failing_internal()) { return; } // failing_internal to not stress bailouts from printing code. 5110 EventCompilerPhase event(UNTIMED); 5111 if (event.should_commit()) { 5112 CompilerEvent::PhaseEvent::post(event, C->_latest_stage_start_counter, cpt, C->_compile_id, level); 5113 } 5114 #ifndef PRODUCT 5115 ResourceMark rm; 5116 stringStream ss; 5117 ss.print_raw(CompilerPhaseTypeHelper::to_description(cpt)); 5118 int iter = ++_igv_phase_iter[cpt]; 5119 if (iter > 1) { 5120 ss.print(" %d", iter); 5121 } 5122 if (n != nullptr) { 5123 ss.print(": %d %s", n->_idx, NodeClassNames[n->Opcode()]); 5124 if (n->is_Call()) { 5125 CallNode* call = n->as_Call(); 5126 if (call->_name != nullptr) { 5127 // E.g. uncommon traps etc. 5128 ss.print(" - %s", call->_name); 5129 } else if (call->is_CallJava()) { 5130 CallJavaNode* call_java = call->as_CallJava(); 5131 if (call_java->method() != nullptr) { 5132 ss.print(" -"); 5133 call_java->method()->print_short_name(&ss); 5134 } 5135 } 5136 } 5137 } 5138 5139 const char* name = ss.as_string(); 5140 if (should_print_igv(level)) { 5141 _igv_printer->print_graph(name); 5142 } 5143 if (should_print_phase(cpt)) { 5144 print_ideal_ir(CompilerPhaseTypeHelper::to_name(cpt)); 5145 } 5146 #endif 5147 C->_latest_stage_start_counter.stamp(); 5148 } 5149 5150 // Only used from CompileWrapper 5151 void Compile::begin_method() { 5152 #ifndef PRODUCT 5153 if (_method != nullptr && should_print_igv(1)) { 5154 _igv_printer->begin_method(); 5155 } 5156 #endif 5157 C->_latest_stage_start_counter.stamp(); 5158 } 5159 5160 // Only used from CompileWrapper 5161 void Compile::end_method() { 5162 EventCompilerPhase event(UNTIMED); 5163 if (event.should_commit()) { 5164 CompilerEvent::PhaseEvent::post(event, C->_latest_stage_start_counter, PHASE_END, C->_compile_id, 1); 5165 } 5166 5167 #ifndef PRODUCT 5168 if (_method != nullptr && should_print_igv(1)) { 5169 _igv_printer->end_method(); 5170 } 5171 #endif 5172 } 5173 5174 bool Compile::should_print_phase(CompilerPhaseType cpt) { 5175 #ifndef PRODUCT 5176 if (_directive->should_print_phase(cpt)) { 5177 return true; 5178 } 5179 #endif 5180 return false; 5181 } 5182 5183 #ifndef PRODUCT 5184 void Compile::init_igv() { 5185 if (_igv_printer == nullptr) { 5186 _igv_printer = IdealGraphPrinter::printer(); 5187 _igv_printer->set_compile(this); 5188 } 5189 } 5190 #endif 5191 5192 bool Compile::should_print_igv(const int level) { 5193 #ifndef PRODUCT 5194 if (PrintIdealGraphLevel < 0) { // disabled by the user 5195 return false; 5196 } 5197 5198 bool need = directive()->IGVPrintLevelOption >= level; 5199 if (need) { 5200 Compile::init_igv(); 5201 } 5202 return need; 5203 #else 5204 return false; 5205 #endif 5206 } 5207 5208 #ifndef PRODUCT 5209 IdealGraphPrinter* Compile::_debug_file_printer = nullptr; 5210 IdealGraphPrinter* Compile::_debug_network_printer = nullptr; 5211 5212 // Called from debugger. Prints method to the default file with the default phase name. 5213 // This works regardless of any Ideal Graph Visualizer flags set or not. 5214 void igv_print() { 5215 Compile::current()->igv_print_method_to_file(); 5216 } 5217 5218 // Same as igv_print() above but with a specified phase name. 5219 void igv_print(const char* phase_name) { 5220 Compile::current()->igv_print_method_to_file(phase_name); 5221 } 5222 5223 // Called from debugger. Prints method with the default phase name to the default network or the one specified with 5224 // the network flags for the Ideal Graph Visualizer, or to the default file depending on the 'network' argument. 5225 // This works regardless of any Ideal Graph Visualizer flags set or not. 5226 void igv_print(bool network) { 5227 if (network) { 5228 Compile::current()->igv_print_method_to_network(); 5229 } else { 5230 Compile::current()->igv_print_method_to_file(); 5231 } 5232 } 5233 5234 // Same as igv_print(bool network) above but with a specified phase name. 5235 void igv_print(bool network, const char* phase_name) { 5236 if (network) { 5237 Compile::current()->igv_print_method_to_network(phase_name); 5238 } else { 5239 Compile::current()->igv_print_method_to_file(phase_name); 5240 } 5241 } 5242 5243 // Called from debugger. Normal write to the default _printer. Only works if Ideal Graph Visualizer printing flags are set. 5244 void igv_print_default() { 5245 Compile::current()->print_method(PHASE_DEBUG, 0); 5246 } 5247 5248 // Called from debugger, especially when replaying a trace in which the program state cannot be altered like with rr replay. 5249 // A method is appended to an existing default file with the default phase name. This means that igv_append() must follow 5250 // an earlier igv_print(*) call which sets up the file. This works regardless of any Ideal Graph Visualizer flags set or not. 5251 void igv_append() { 5252 Compile::current()->igv_print_method_to_file("Debug", true); 5253 } 5254 5255 // Same as igv_append() above but with a specified phase name. 5256 void igv_append(const char* phase_name) { 5257 Compile::current()->igv_print_method_to_file(phase_name, true); 5258 } 5259 5260 void Compile::igv_print_method_to_file(const char* phase_name, bool append) { 5261 const char* file_name = "custom_debug.xml"; 5262 if (_debug_file_printer == nullptr) { 5263 _debug_file_printer = new IdealGraphPrinter(C, file_name, append); 5264 } else { 5265 _debug_file_printer->update_compiled_method(C->method()); 5266 } 5267 tty->print_cr("Method %s to %s", append ? "appended" : "printed", file_name); 5268 _debug_file_printer->print_graph(phase_name); 5269 } 5270 5271 void Compile::igv_print_method_to_network(const char* phase_name) { 5272 ResourceMark rm; 5273 GrowableArray<const Node*> empty_list; 5274 igv_print_graph_to_network(phase_name, (Node*) C->root(), empty_list); 5275 } 5276 5277 void Compile::igv_print_graph_to_network(const char* name, Node* node, GrowableArray<const Node*>& visible_nodes) { 5278 if (_debug_network_printer == nullptr) { 5279 _debug_network_printer = new IdealGraphPrinter(C); 5280 } else { 5281 _debug_network_printer->update_compiled_method(C->method()); 5282 } 5283 tty->print_cr("Method printed over network stream to IGV"); 5284 _debug_network_printer->print(name, C->root(), visible_nodes); 5285 } 5286 #endif 5287 5288 Node* Compile::narrow_value(BasicType bt, Node* value, const Type* type, PhaseGVN* phase, bool transform_res) { 5289 if (type != nullptr && phase->type(value)->higher_equal(type)) { 5290 return value; 5291 } 5292 Node* result = nullptr; 5293 if (bt == T_BYTE) { 5294 result = phase->transform(new LShiftINode(value, phase->intcon(24))); 5295 result = new RShiftINode(result, phase->intcon(24)); 5296 } else if (bt == T_BOOLEAN) { 5297 result = new AndINode(value, phase->intcon(0xFF)); 5298 } else if (bt == T_CHAR) { 5299 result = new AndINode(value,phase->intcon(0xFFFF)); 5300 } else { 5301 assert(bt == T_SHORT, "unexpected narrow type"); 5302 result = phase->transform(new LShiftINode(value, phase->intcon(16))); 5303 result = new RShiftINode(result, phase->intcon(16)); 5304 } 5305 if (transform_res) { 5306 result = phase->transform(result); 5307 } 5308 return result; 5309 } 5310 5311 void Compile::record_method_not_compilable_oom() { 5312 record_method_not_compilable(CompilationMemoryStatistic::failure_reason_memlimit()); 5313 }