1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "asm/macroAssembler.hpp" 26 #include "asm/macroAssembler.inline.hpp" 27 #include "ci/ciReplay.hpp" 28 #include "classfile/javaClasses.hpp" 29 #include "code/aotCodeCache.hpp" 30 #include "code/exceptionHandlerTable.hpp" 31 #include "code/nmethod.hpp" 32 #include "compiler/compilationFailureInfo.hpp" 33 #include "compiler/compilationMemoryStatistic.hpp" 34 #include "compiler/compileBroker.hpp" 35 #include "compiler/compileLog.hpp" 36 #include "compiler/compilerDefinitions.hpp" 37 #include "compiler/compilerOracle.hpp" 38 #include "compiler/compiler_globals.hpp" 39 #include "compiler/disassembler.hpp" 40 #include "compiler/oopMap.hpp" 41 #include "gc/shared/barrierSet.hpp" 42 #include "gc/shared/c2/barrierSetC2.hpp" 43 #include "jfr/jfrEvents.hpp" 44 #include "jvm_io.h" 45 #include "memory/allocation.hpp" 46 #include "memory/arena.hpp" 47 #include "memory/resourceArea.hpp" 48 #include "opto/addnode.hpp" 49 #include "opto/block.hpp" 50 #include "opto/c2compiler.hpp" 51 #include "opto/callGenerator.hpp" 52 #include "opto/callnode.hpp" 53 #include "opto/castnode.hpp" 54 #include "opto/cfgnode.hpp" 55 #include "opto/chaitin.hpp" 56 #include "opto/compile.hpp" 57 #include "opto/connode.hpp" 58 #include "opto/convertnode.hpp" 59 #include "opto/divnode.hpp" 60 #include "opto/escape.hpp" 61 #include "opto/idealGraphPrinter.hpp" 62 #include "opto/locknode.hpp" 63 #include "opto/loopnode.hpp" 64 #include "opto/machnode.hpp" 65 #include "opto/macro.hpp" 66 #include "opto/matcher.hpp" 67 #include "opto/mathexactnode.hpp" 68 #include "opto/memnode.hpp" 69 #include "opto/mulnode.hpp" 70 #include "opto/narrowptrnode.hpp" 71 #include "opto/node.hpp" 72 #include "opto/opaquenode.hpp" 73 #include "opto/opcodes.hpp" 74 #include "opto/output.hpp" 75 #include "opto/parse.hpp" 76 #include "opto/phaseX.hpp" 77 #include "opto/rootnode.hpp" 78 #include "opto/runtime.hpp" 79 #include "opto/stringopts.hpp" 80 #include "opto/type.hpp" 81 #include "opto/vector.hpp" 82 #include "opto/vectornode.hpp" 83 #include "runtime/globals_extension.hpp" 84 #include "runtime/sharedRuntime.hpp" 85 #include "runtime/signature.hpp" 86 #include "runtime/stubRoutines.hpp" 87 #include "runtime/timer.hpp" 88 #include "utilities/align.hpp" 89 #include "utilities/copy.hpp" 90 #include "utilities/macros.hpp" 91 #include "utilities/resourceHash.hpp" 92 93 // -------------------- Compile::mach_constant_base_node ----------------------- 94 // Constant table base node singleton. 95 MachConstantBaseNode* Compile::mach_constant_base_node() { 96 if (_mach_constant_base_node == nullptr) { 97 _mach_constant_base_node = new MachConstantBaseNode(); 98 _mach_constant_base_node->add_req(C->root()); 99 } 100 return _mach_constant_base_node; 101 } 102 103 104 /// Support for intrinsics. 105 106 // Return the index at which m must be inserted (or already exists). 107 // The sort order is by the address of the ciMethod, with is_virtual as minor key. 108 class IntrinsicDescPair { 109 private: 110 ciMethod* _m; 111 bool _is_virtual; 112 public: 113 IntrinsicDescPair(ciMethod* m, bool is_virtual) : _m(m), _is_virtual(is_virtual) {} 114 static int compare(IntrinsicDescPair* const& key, CallGenerator* const& elt) { 115 ciMethod* m= elt->method(); 116 ciMethod* key_m = key->_m; 117 if (key_m < m) return -1; 118 else if (key_m > m) return 1; 119 else { 120 bool is_virtual = elt->is_virtual(); 121 bool key_virtual = key->_is_virtual; 122 if (key_virtual < is_virtual) return -1; 123 else if (key_virtual > is_virtual) return 1; 124 else return 0; 125 } 126 } 127 }; 128 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found) { 129 #ifdef ASSERT 130 for (int i = 1; i < _intrinsics.length(); i++) { 131 CallGenerator* cg1 = _intrinsics.at(i-1); 132 CallGenerator* cg2 = _intrinsics.at(i); 133 assert(cg1->method() != cg2->method() 134 ? cg1->method() < cg2->method() 135 : cg1->is_virtual() < cg2->is_virtual(), 136 "compiler intrinsics list must stay sorted"); 137 } 138 #endif 139 IntrinsicDescPair pair(m, is_virtual); 140 return _intrinsics.find_sorted<IntrinsicDescPair*, IntrinsicDescPair::compare>(&pair, found); 141 } 142 143 void Compile::register_intrinsic(CallGenerator* cg) { 144 bool found = false; 145 int index = intrinsic_insertion_index(cg->method(), cg->is_virtual(), found); 146 assert(!found, "registering twice"); 147 _intrinsics.insert_before(index, cg); 148 assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked"); 149 } 150 151 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) { 152 assert(m->is_loaded(), "don't try this on unloaded methods"); 153 if (_intrinsics.length() > 0) { 154 bool found = false; 155 int index = intrinsic_insertion_index(m, is_virtual, found); 156 if (found) { 157 return _intrinsics.at(index); 158 } 159 } 160 // Lazily create intrinsics for intrinsic IDs well-known in the runtime. 161 if (m->intrinsic_id() != vmIntrinsics::_none && 162 m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) { 163 CallGenerator* cg = make_vm_intrinsic(m, is_virtual); 164 if (cg != nullptr) { 165 // Save it for next time: 166 register_intrinsic(cg); 167 return cg; 168 } else { 169 gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled); 170 } 171 } 172 return nullptr; 173 } 174 175 // Compile::make_vm_intrinsic is defined in library_call.cpp. 176 177 #ifndef PRODUCT 178 // statistics gathering... 179 180 juint Compile::_intrinsic_hist_count[vmIntrinsics::number_of_intrinsics()] = {0}; 181 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::number_of_intrinsics()] = {0}; 182 183 inline int as_int(vmIntrinsics::ID id) { 184 return vmIntrinsics::as_int(id); 185 } 186 187 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) { 188 assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob"); 189 int oflags = _intrinsic_hist_flags[as_int(id)]; 190 assert(flags != 0, "what happened?"); 191 if (is_virtual) { 192 flags |= _intrinsic_virtual; 193 } 194 bool changed = (flags != oflags); 195 if ((flags & _intrinsic_worked) != 0) { 196 juint count = (_intrinsic_hist_count[as_int(id)] += 1); 197 if (count == 1) { 198 changed = true; // first time 199 } 200 // increment the overall count also: 201 _intrinsic_hist_count[as_int(vmIntrinsics::_none)] += 1; 202 } 203 if (changed) { 204 if (((oflags ^ flags) & _intrinsic_virtual) != 0) { 205 // Something changed about the intrinsic's virtuality. 206 if ((flags & _intrinsic_virtual) != 0) { 207 // This is the first use of this intrinsic as a virtual call. 208 if (oflags != 0) { 209 // We already saw it as a non-virtual, so note both cases. 210 flags |= _intrinsic_both; 211 } 212 } else if ((oflags & _intrinsic_both) == 0) { 213 // This is the first use of this intrinsic as a non-virtual 214 flags |= _intrinsic_both; 215 } 216 } 217 _intrinsic_hist_flags[as_int(id)] = (jubyte) (oflags | flags); 218 } 219 // update the overall flags also: 220 _intrinsic_hist_flags[as_int(vmIntrinsics::_none)] |= (jubyte) flags; 221 return changed; 222 } 223 224 static char* format_flags(int flags, char* buf) { 225 buf[0] = 0; 226 if ((flags & Compile::_intrinsic_worked) != 0) strcat(buf, ",worked"); 227 if ((flags & Compile::_intrinsic_failed) != 0) strcat(buf, ",failed"); 228 if ((flags & Compile::_intrinsic_disabled) != 0) strcat(buf, ",disabled"); 229 if ((flags & Compile::_intrinsic_virtual) != 0) strcat(buf, ",virtual"); 230 if ((flags & Compile::_intrinsic_both) != 0) strcat(buf, ",nonvirtual"); 231 if (buf[0] == 0) strcat(buf, ","); 232 assert(buf[0] == ',', "must be"); 233 return &buf[1]; 234 } 235 236 void Compile::print_intrinsic_statistics() { 237 char flagsbuf[100]; 238 ttyLocker ttyl; 239 if (xtty != nullptr) xtty->head("statistics type='intrinsic'"); 240 tty->print_cr("Compiler intrinsic usage:"); 241 juint total = _intrinsic_hist_count[as_int(vmIntrinsics::_none)]; 242 if (total == 0) total = 1; // avoid div0 in case of no successes 243 #define PRINT_STAT_LINE(name, c, f) \ 244 tty->print_cr(" %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f); 245 for (auto id : EnumRange<vmIntrinsicID>{}) { 246 int flags = _intrinsic_hist_flags[as_int(id)]; 247 juint count = _intrinsic_hist_count[as_int(id)]; 248 if ((flags | count) != 0) { 249 PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf)); 250 } 251 } 252 PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[as_int(vmIntrinsics::_none)], flagsbuf)); 253 if (xtty != nullptr) xtty->tail("statistics"); 254 } 255 256 void Compile::print_statistics() { 257 { ttyLocker ttyl; 258 if (xtty != nullptr) xtty->head("statistics type='opto'"); 259 Parse::print_statistics(); 260 PhaseStringOpts::print_statistics(); 261 PhaseCCP::print_statistics(); 262 PhaseRegAlloc::print_statistics(); 263 PhaseOutput::print_statistics(); 264 PhasePeephole::print_statistics(); 265 PhaseIdealLoop::print_statistics(); 266 ConnectionGraph::print_statistics(); 267 PhaseMacroExpand::print_statistics(); 268 if (xtty != nullptr) xtty->tail("statistics"); 269 } 270 if (_intrinsic_hist_flags[as_int(vmIntrinsics::_none)] != 0) { 271 // put this under its own <statistics> element. 272 print_intrinsic_statistics(); 273 } 274 } 275 #endif //PRODUCT 276 277 void Compile::gvn_replace_by(Node* n, Node* nn) { 278 for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) { 279 Node* use = n->last_out(i); 280 bool is_in_table = initial_gvn()->hash_delete(use); 281 uint uses_found = 0; 282 for (uint j = 0; j < use->len(); j++) { 283 if (use->in(j) == n) { 284 if (j < use->req()) 285 use->set_req(j, nn); 286 else 287 use->set_prec(j, nn); 288 uses_found++; 289 } 290 } 291 if (is_in_table) { 292 // reinsert into table 293 initial_gvn()->hash_find_insert(use); 294 } 295 record_for_igvn(use); 296 PhaseIterGVN::add_users_of_use_to_worklist(nn, use, *_igvn_worklist); 297 i -= uses_found; // we deleted 1 or more copies of this edge 298 } 299 } 300 301 302 // Identify all nodes that are reachable from below, useful. 303 // Use breadth-first pass that records state in a Unique_Node_List, 304 // recursive traversal is slower. 305 void Compile::identify_useful_nodes(Unique_Node_List &useful) { 306 int estimated_worklist_size = live_nodes(); 307 useful.map( estimated_worklist_size, nullptr ); // preallocate space 308 309 // Initialize worklist 310 if (root() != nullptr) { useful.push(root()); } 311 // If 'top' is cached, declare it useful to preserve cached node 312 if (cached_top_node()) { useful.push(cached_top_node()); } 313 314 // Push all useful nodes onto the list, breadthfirst 315 for( uint next = 0; next < useful.size(); ++next ) { 316 assert( next < unique(), "Unique useful nodes < total nodes"); 317 Node *n = useful.at(next); 318 uint max = n->len(); 319 for( uint i = 0; i < max; ++i ) { 320 Node *m = n->in(i); 321 if (not_a_node(m)) continue; 322 useful.push(m); 323 } 324 } 325 } 326 327 // Update dead_node_list with any missing dead nodes using useful 328 // list. Consider all non-useful nodes to be useless i.e., dead nodes. 329 void Compile::update_dead_node_list(Unique_Node_List &useful) { 330 uint max_idx = unique(); 331 VectorSet& useful_node_set = useful.member_set(); 332 333 for (uint node_idx = 0; node_idx < max_idx; node_idx++) { 334 // If node with index node_idx is not in useful set, 335 // mark it as dead in dead node list. 336 if (!useful_node_set.test(node_idx)) { 337 record_dead_node(node_idx); 338 } 339 } 340 } 341 342 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) { 343 int shift = 0; 344 for (int i = 0; i < inlines->length(); i++) { 345 CallGenerator* cg = inlines->at(i); 346 if (useful.member(cg->call_node())) { 347 if (shift > 0) { 348 inlines->at_put(i - shift, cg); 349 } 350 } else { 351 shift++; // skip over the dead element 352 } 353 } 354 if (shift > 0) { 355 inlines->trunc_to(inlines->length() - shift); // remove last elements from compacted array 356 } 357 } 358 359 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Node* dead) { 360 assert(dead != nullptr && dead->is_Call(), "sanity"); 361 int found = 0; 362 for (int i = 0; i < inlines->length(); i++) { 363 if (inlines->at(i)->call_node() == dead) { 364 inlines->remove_at(i); 365 found++; 366 NOT_DEBUG( break; ) // elements are unique, so exit early 367 } 368 } 369 assert(found <= 1, "not unique"); 370 } 371 372 template<typename N, ENABLE_IF_SDEFN(std::is_base_of<Node, N>::value)> 373 void Compile::remove_useless_nodes(GrowableArray<N*>& node_list, Unique_Node_List& useful) { 374 for (int i = node_list.length() - 1; i >= 0; i--) { 375 N* node = node_list.at(i); 376 if (!useful.member(node)) { 377 node_list.delete_at(i); // replaces i-th with last element which is known to be useful (already processed) 378 } 379 } 380 } 381 382 void Compile::remove_useless_node(Node* dead) { 383 remove_modified_node(dead); 384 385 // Constant node that has no out-edges and has only one in-edge from 386 // root is usually dead. However, sometimes reshaping walk makes 387 // it reachable by adding use edges. So, we will NOT count Con nodes 388 // as dead to be conservative about the dead node count at any 389 // given time. 390 if (!dead->is_Con()) { 391 record_dead_node(dead->_idx); 392 } 393 if (dead->is_macro()) { 394 remove_macro_node(dead); 395 } 396 if (dead->is_expensive()) { 397 remove_expensive_node(dead); 398 } 399 if (dead->is_OpaqueTemplateAssertionPredicate()) { 400 remove_template_assertion_predicate_opaque(dead->as_OpaqueTemplateAssertionPredicate()); 401 } 402 if (dead->is_ParsePredicate()) { 403 remove_parse_predicate(dead->as_ParsePredicate()); 404 } 405 if (dead->for_post_loop_opts_igvn()) { 406 remove_from_post_loop_opts_igvn(dead); 407 } 408 if (dead->for_merge_stores_igvn()) { 409 remove_from_merge_stores_igvn(dead); 410 } 411 if (dead->is_Call()) { 412 remove_useless_late_inlines( &_late_inlines, dead); 413 remove_useless_late_inlines( &_string_late_inlines, dead); 414 remove_useless_late_inlines( &_boxing_late_inlines, dead); 415 remove_useless_late_inlines(&_vector_reboxing_late_inlines, dead); 416 417 if (dead->is_CallStaticJava()) { 418 remove_unstable_if_trap(dead->as_CallStaticJava(), false); 419 } 420 } 421 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 422 bs->unregister_potential_barrier_node(dead); 423 } 424 425 // Disconnect all useless nodes by disconnecting those at the boundary. 426 void Compile::disconnect_useless_nodes(Unique_Node_List& useful, Unique_Node_List& worklist, const Unique_Node_List* root_and_safepoints) { 427 uint next = 0; 428 while (next < useful.size()) { 429 Node *n = useful.at(next++); 430 if (n->is_SafePoint()) { 431 // We're done with a parsing phase. Replaced nodes are not valid 432 // beyond that point. 433 n->as_SafePoint()->delete_replaced_nodes(); 434 } 435 // Use raw traversal of out edges since this code removes out edges 436 int max = n->outcnt(); 437 for (int j = 0; j < max; ++j) { 438 Node* child = n->raw_out(j); 439 if (!useful.member(child)) { 440 assert(!child->is_top() || child != top(), 441 "If top is cached in Compile object it is in useful list"); 442 // Only need to remove this out-edge to the useless node 443 n->raw_del_out(j); 444 --j; 445 --max; 446 if (child->is_data_proj_of_pure_function(n)) { 447 worklist.push(n); 448 } 449 } 450 } 451 if (n->outcnt() == 1 && n->has_special_unique_user()) { 452 assert(useful.member(n->unique_out()), "do not push a useless node"); 453 worklist.push(n->unique_out()); 454 } 455 } 456 457 remove_useless_nodes(_macro_nodes, useful); // remove useless macro nodes 458 remove_useless_nodes(_parse_predicates, useful); // remove useless Parse Predicate nodes 459 // Remove useless Template Assertion Predicate opaque nodes 460 remove_useless_nodes(_template_assertion_predicate_opaques, useful); 461 remove_useless_nodes(_expensive_nodes, useful); // remove useless expensive nodes 462 remove_useless_nodes(_for_post_loop_igvn, useful); // remove useless node recorded for post loop opts IGVN pass 463 remove_useless_nodes(_for_merge_stores_igvn, useful); // remove useless node recorded for merge stores IGVN pass 464 remove_useless_unstable_if_traps(useful); // remove useless unstable_if traps 465 remove_useless_coarsened_locks(useful); // remove useless coarsened locks nodes 466 #ifdef ASSERT 467 if (_modified_nodes != nullptr) { 468 _modified_nodes->remove_useless_nodes(useful.member_set()); 469 } 470 #endif 471 472 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 473 bs->eliminate_useless_gc_barriers(useful, this); 474 // clean up the late inline lists 475 remove_useless_late_inlines( &_late_inlines, useful); 476 remove_useless_late_inlines( &_string_late_inlines, useful); 477 remove_useless_late_inlines( &_boxing_late_inlines, useful); 478 remove_useless_late_inlines(&_vector_reboxing_late_inlines, useful); 479 DEBUG_ONLY(verify_graph_edges(true /*check for no_dead_code*/, root_and_safepoints);) 480 } 481 482 // ============================================================================ 483 //------------------------------CompileWrapper--------------------------------- 484 class CompileWrapper : public StackObj { 485 Compile *const _compile; 486 public: 487 CompileWrapper(Compile* compile); 488 489 ~CompileWrapper(); 490 }; 491 492 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) { 493 // the Compile* pointer is stored in the current ciEnv: 494 ciEnv* env = compile->env(); 495 assert(env == ciEnv::current(), "must already be a ciEnv active"); 496 assert(env->compiler_data() == nullptr, "compile already active?"); 497 env->set_compiler_data(compile); 498 assert(compile == Compile::current(), "sanity"); 499 500 compile->set_type_dict(nullptr); 501 compile->set_clone_map(new Dict(cmpkey, hashkey, _compile->comp_arena())); 502 compile->clone_map().set_clone_idx(0); 503 compile->set_type_last_size(0); 504 compile->set_last_tf(nullptr, nullptr); 505 compile->set_indexSet_arena(nullptr); 506 compile->set_indexSet_free_block_list(nullptr); 507 compile->init_type_arena(); 508 Type::Initialize(compile); 509 _compile->begin_method(); 510 _compile->clone_map().set_debug(_compile->has_method() && _compile->directive()->CloneMapDebugOption); 511 } 512 CompileWrapper::~CompileWrapper() { 513 // simulate crash during compilation 514 assert(CICrashAt < 0 || _compile->compile_id() != CICrashAt, "just as planned"); 515 516 _compile->end_method(); 517 _compile->env()->set_compiler_data(nullptr); 518 } 519 520 521 //----------------------------print_compile_messages--------------------------- 522 void Compile::print_compile_messages() { 523 #ifndef PRODUCT 524 // Check if recompiling 525 if (!subsume_loads() && PrintOpto) { 526 // Recompiling without allowing machine instructions to subsume loads 527 tty->print_cr("*********************************************************"); 528 tty->print_cr("** Bailout: Recompile without subsuming loads **"); 529 tty->print_cr("*********************************************************"); 530 } 531 if ((do_escape_analysis() != DoEscapeAnalysis) && PrintOpto) { 532 // Recompiling without escape analysis 533 tty->print_cr("*********************************************************"); 534 tty->print_cr("** Bailout: Recompile without escape analysis **"); 535 tty->print_cr("*********************************************************"); 536 } 537 if (do_iterative_escape_analysis() != DoEscapeAnalysis && PrintOpto) { 538 // Recompiling without iterative escape analysis 539 tty->print_cr("*********************************************************"); 540 tty->print_cr("** Bailout: Recompile without iterative escape analysis**"); 541 tty->print_cr("*********************************************************"); 542 } 543 if (do_reduce_allocation_merges() != ReduceAllocationMerges && PrintOpto) { 544 // Recompiling without reducing allocation merges 545 tty->print_cr("*********************************************************"); 546 tty->print_cr("** Bailout: Recompile without reduce allocation merges **"); 547 tty->print_cr("*********************************************************"); 548 } 549 if ((eliminate_boxing() != EliminateAutoBox) && PrintOpto) { 550 // Recompiling without boxing elimination 551 tty->print_cr("*********************************************************"); 552 tty->print_cr("** Bailout: Recompile without boxing elimination **"); 553 tty->print_cr("*********************************************************"); 554 } 555 if ((do_locks_coarsening() != EliminateLocks) && PrintOpto) { 556 // Recompiling without locks coarsening 557 tty->print_cr("*********************************************************"); 558 tty->print_cr("** Bailout: Recompile without locks coarsening **"); 559 tty->print_cr("*********************************************************"); 560 } 561 if (env()->break_at_compile()) { 562 // Open the debugger when compiling this method. 563 tty->print("### Breaking when compiling: "); 564 method()->print_short_name(); 565 tty->cr(); 566 BREAKPOINT; 567 } 568 569 if( PrintOpto ) { 570 if (is_osr_compilation()) { 571 tty->print("[OSR]%3d", _compile_id); 572 } else { 573 tty->print("%3d", _compile_id); 574 } 575 } 576 #endif 577 } 578 579 #ifndef PRODUCT 580 void Compile::print_phase(const char* phase_name) { 581 tty->print_cr("%u.\t%s", ++_phase_counter, phase_name); 582 } 583 584 void Compile::print_ideal_ir(const char* phase_name) { 585 // keep the following output all in one block 586 // This output goes directly to the tty, not the compiler log. 587 // To enable tools to match it up with the compilation activity, 588 // be sure to tag this tty output with the compile ID. 589 590 // Node dumping can cause a safepoint, which can break the tty lock. 591 // Buffer all node dumps, so that all safepoints happen before we lock. 592 ResourceMark rm; 593 stringStream ss; 594 595 if (_output == nullptr) { 596 ss.print_cr("AFTER: %s", phase_name); 597 // Print out all nodes in ascending order of index. 598 root()->dump_bfs(MaxNodeLimit, nullptr, "+S$", &ss); 599 } else { 600 // Dump the node blockwise if we have a scheduling 601 _output->print_scheduling(&ss); 602 } 603 604 // Check that the lock is not broken by a safepoint. 605 NoSafepointVerifier nsv; 606 ttyLocker ttyl; 607 if (xtty != nullptr) { 608 xtty->head("ideal compile_id='%d'%s compile_phase='%s'", 609 compile_id(), 610 is_osr_compilation() ? " compile_kind='osr'" : "", 611 phase_name); 612 } 613 614 tty->print("%s", ss.as_string()); 615 616 if (xtty != nullptr) { 617 xtty->tail("ideal"); 618 } 619 } 620 #endif 621 622 // ============================================================================ 623 //------------------------------Compile standard------------------------------- 624 625 // Compile a method. entry_bci is -1 for normal compilations and indicates 626 // the continuation bci for on stack replacement. 627 628 629 Compile::Compile(ciEnv* ci_env, ciMethod* target, int osr_bci, 630 Options options, DirectiveSet* directive) 631 : Phase(Compiler), 632 _compile_id(ci_env->compile_id()), 633 _options(options), 634 _method(target), 635 _entry_bci(osr_bci), 636 _ilt(nullptr), 637 _stub_function(nullptr), 638 _stub_name(nullptr), 639 _stub_id(-1), 640 _stub_entry_point(nullptr), 641 _max_node_limit(MaxNodeLimit), 642 _post_loop_opts_phase(false), 643 _merge_stores_phase(false), 644 _allow_macro_nodes(true), 645 _inlining_progress(false), 646 _inlining_incrementally(false), 647 _do_cleanup(false), 648 _has_reserved_stack_access(target->has_reserved_stack_access()), 649 #ifndef PRODUCT 650 _igv_idx(0), 651 _trace_opto_output(directive->TraceOptoOutputOption), 652 #endif 653 _has_method_handle_invokes(false), 654 _clinit_barrier_on_entry(false), 655 _stress_seed(0), 656 _comp_arena(mtCompiler, Arena::Tag::tag_comp), 657 _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())), 658 _env(ci_env), 659 _directive(directive), 660 _log(ci_env->log()), 661 _first_failure_details(nullptr), 662 _intrinsics(comp_arena(), 0, 0, nullptr), 663 _macro_nodes(comp_arena(), 8, 0, nullptr), 664 _parse_predicates(comp_arena(), 8, 0, nullptr), 665 _template_assertion_predicate_opaques(comp_arena(), 8, 0, nullptr), 666 _expensive_nodes(comp_arena(), 8, 0, nullptr), 667 _for_post_loop_igvn(comp_arena(), 8, 0, nullptr), 668 _for_merge_stores_igvn(comp_arena(), 8, 0, nullptr), 669 _unstable_if_traps(comp_arena(), 8, 0, nullptr), 670 _coarsened_locks(comp_arena(), 8, 0, nullptr), 671 _congraph(nullptr), 672 NOT_PRODUCT(_igv_printer(nullptr) COMMA) 673 _unique(0), 674 _dead_node_count(0), 675 _dead_node_list(comp_arena()), 676 _node_arena_one(mtCompiler, Arena::Tag::tag_node), 677 _node_arena_two(mtCompiler, Arena::Tag::tag_node), 678 _node_arena(&_node_arena_one), 679 _mach_constant_base_node(nullptr), 680 _Compile_types(mtCompiler, Arena::Tag::tag_type), 681 _initial_gvn(nullptr), 682 _igvn_worklist(nullptr), 683 _types(nullptr), 684 _node_hash(nullptr), 685 _late_inlines(comp_arena(), 2, 0, nullptr), 686 _string_late_inlines(comp_arena(), 2, 0, nullptr), 687 _boxing_late_inlines(comp_arena(), 2, 0, nullptr), 688 _vector_reboxing_late_inlines(comp_arena(), 2, 0, nullptr), 689 _late_inlines_pos(0), 690 _number_of_mh_late_inlines(0), 691 _oom(false), 692 _replay_inline_data(nullptr), 693 _inline_printer(this), 694 _java_calls(0), 695 _inner_loops(0), 696 _interpreter_frame_size(0), 697 _output(nullptr) 698 #ifndef PRODUCT 699 , 700 _in_dump_cnt(0) 701 #endif 702 { 703 C = this; 704 CompileWrapper cw(this); 705 706 TraceTime t1("Total compilation time", &_t_totalCompilation, CITime, CITimeVerbose); 707 TraceTime t2(nullptr, &_t_methodCompilation, CITime, false); 708 709 #if defined(SUPPORT_ASSEMBLY) || defined(SUPPORT_ABSTRACT_ASSEMBLY) 710 bool print_opto_assembly = directive->PrintOptoAssemblyOption; 711 // We can always print a disassembly, either abstract (hex dump) or 712 // with the help of a suitable hsdis library. Thus, we should not 713 // couple print_assembly and print_opto_assembly controls. 714 // But: always print opto and regular assembly on compile command 'print'. 715 bool print_assembly = directive->PrintAssemblyOption; 716 set_print_assembly(print_opto_assembly || print_assembly); 717 #else 718 set_print_assembly(false); // must initialize. 719 #endif 720 721 #ifndef PRODUCT 722 set_parsed_irreducible_loop(false); 723 #endif 724 725 if (directive->ReplayInlineOption) { 726 _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level()); 727 } 728 set_print_inlining(directive->PrintInliningOption || PrintOptoInlining); 729 set_print_intrinsics(directive->PrintIntrinsicsOption); 730 set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it 731 732 if (ProfileTraps) { 733 // Make sure the method being compiled gets its own MDO, 734 // so we can at least track the decompile_count(). 735 method()->ensure_method_data(); 736 } 737 738 if (StressLCM || StressGCM || StressIGVN || StressCCP || 739 StressIncrementalInlining || StressMacroExpansion || StressUnstableIfTraps || StressBailout || 740 StressLoopPeeling) { 741 initialize_stress_seed(directive); 742 } 743 744 Init(/*do_aliasing=*/ true); 745 746 print_compile_messages(); 747 748 _ilt = InlineTree::build_inline_tree_root(); 749 750 // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice 751 assert(num_alias_types() >= AliasIdxRaw, ""); 752 753 #define MINIMUM_NODE_HASH 1023 754 755 // GVN that will be run immediately on new nodes 756 uint estimated_size = method()->code_size()*4+64; 757 estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size); 758 _igvn_worklist = new (comp_arena()) Unique_Node_List(comp_arena()); 759 _types = new (comp_arena()) Type_Array(comp_arena()); 760 _node_hash = new (comp_arena()) NodeHash(comp_arena(), estimated_size); 761 PhaseGVN gvn; 762 set_initial_gvn(&gvn); 763 764 { // Scope for timing the parser 765 TracePhase tp(_t_parser); 766 767 // Put top into the hash table ASAP. 768 initial_gvn()->transform(top()); 769 770 // Set up tf(), start(), and find a CallGenerator. 771 CallGenerator* cg = nullptr; 772 if (is_osr_compilation()) { 773 const TypeTuple *domain = StartOSRNode::osr_domain(); 774 const TypeTuple *range = TypeTuple::make_range(method()->signature()); 775 init_tf(TypeFunc::make(domain, range)); 776 StartNode* s = new StartOSRNode(root(), domain); 777 initial_gvn()->set_type_bottom(s); 778 verify_start(s); 779 cg = CallGenerator::for_osr(method(), entry_bci()); 780 } else { 781 // Normal case. 782 init_tf(TypeFunc::make(method())); 783 StartNode* s = new StartNode(root(), tf()->domain()); 784 initial_gvn()->set_type_bottom(s); 785 verify_start(s); 786 if (method()->intrinsic_id() == vmIntrinsics::_Reference_get) { 787 // With java.lang.ref.reference.get() we must go through the 788 // intrinsic - even when get() is the root 789 // method of the compile - so that, if necessary, the value in 790 // the referent field of the reference object gets recorded by 791 // the pre-barrier code. 792 cg = find_intrinsic(method(), false); 793 } 794 if (cg == nullptr) { 795 float past_uses = method()->interpreter_invocation_count(); 796 float expected_uses = past_uses; 797 cg = CallGenerator::for_inline(method(), expected_uses); 798 } 799 } 800 if (failing()) return; 801 if (cg == nullptr) { 802 const char* reason = InlineTree::check_can_parse(method()); 803 assert(reason != nullptr, "expect reason for parse failure"); 804 stringStream ss; 805 ss.print("cannot parse method: %s", reason); 806 record_method_not_compilable(ss.as_string()); 807 return; 808 } 809 810 gvn.set_type(root(), root()->bottom_type()); 811 812 JVMState* jvms = build_start_state(start(), tf()); 813 if ((jvms = cg->generate(jvms)) == nullptr) { 814 assert(failure_reason() != nullptr, "expect reason for parse failure"); 815 stringStream ss; 816 ss.print("method parse failed: %s", failure_reason()); 817 record_method_not_compilable(ss.as_string() DEBUG_ONLY(COMMA true)); 818 return; 819 } 820 GraphKit kit(jvms); 821 822 if (!kit.stopped()) { 823 // Accept return values, and transfer control we know not where. 824 // This is done by a special, unique ReturnNode bound to root. 825 return_values(kit.jvms()); 826 } 827 828 if (kit.has_exceptions()) { 829 // Any exceptions that escape from this call must be rethrown 830 // to whatever caller is dynamically above us on the stack. 831 // This is done by a special, unique RethrowNode bound to root. 832 rethrow_exceptions(kit.transfer_exceptions_into_jvms()); 833 } 834 835 assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off"); 836 837 if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) { 838 inline_string_calls(true); 839 } 840 841 if (failing()) return; 842 843 // Remove clutter produced by parsing. 844 if (!failing()) { 845 ResourceMark rm; 846 PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist()); 847 } 848 } 849 850 // Note: Large methods are capped off in do_one_bytecode(). 851 if (failing()) return; 852 853 // After parsing, node notes are no longer automagic. 854 // They must be propagated by register_new_node_with_optimizer(), 855 // clone(), or the like. 856 set_default_node_notes(nullptr); 857 858 #ifndef PRODUCT 859 if (should_print_igv(1)) { 860 _igv_printer->print_inlining(); 861 } 862 #endif 863 864 if (failing()) return; 865 NOT_PRODUCT( verify_graph_edges(); ) 866 867 // Now optimize 868 Optimize(); 869 if (failing()) return; 870 NOT_PRODUCT( verify_graph_edges(); ) 871 872 #ifndef PRODUCT 873 if (should_print_ideal()) { 874 print_ideal_ir("print_ideal"); 875 } 876 #endif 877 878 #ifdef ASSERT 879 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 880 bs->verify_gc_barriers(this, BarrierSetC2::BeforeCodeGen); 881 #endif 882 883 // Dump compilation data to replay it. 884 if (directive->DumpReplayOption) { 885 env()->dump_replay_data(_compile_id); 886 } 887 if (directive->DumpInlineOption && (ilt() != nullptr)) { 888 env()->dump_inline_data(_compile_id); 889 } 890 891 // Now that we know the size of all the monitors we can add a fixed slot 892 // for the original deopt pc. 893 int next_slot = fixed_slots() + (sizeof(address) / VMRegImpl::stack_slot_size); 894 set_fixed_slots(next_slot); 895 896 // Compute when to use implicit null checks. Used by matching trap based 897 // nodes and NullCheck optimization. 898 set_allowed_deopt_reasons(); 899 900 // Now generate code 901 Code_Gen(); 902 } 903 904 //------------------------------Compile---------------------------------------- 905 // Compile a runtime stub 906 Compile::Compile(ciEnv* ci_env, 907 TypeFunc_generator generator, 908 address stub_function, 909 const char* stub_name, 910 int stub_id, 911 int is_fancy_jump, 912 bool pass_tls, 913 bool return_pc, 914 DirectiveSet* directive) 915 : Phase(Compiler), 916 _compile_id(0), 917 _options(Options::for_runtime_stub()), 918 _method(nullptr), 919 _entry_bci(InvocationEntryBci), 920 _stub_function(stub_function), 921 _stub_name(stub_name), 922 _stub_id(stub_id), 923 _stub_entry_point(nullptr), 924 _max_node_limit(MaxNodeLimit), 925 _post_loop_opts_phase(false), 926 _merge_stores_phase(false), 927 _allow_macro_nodes(true), 928 _inlining_progress(false), 929 _inlining_incrementally(false), 930 _has_reserved_stack_access(false), 931 #ifndef PRODUCT 932 _igv_idx(0), 933 _trace_opto_output(directive->TraceOptoOutputOption), 934 #endif 935 _has_method_handle_invokes(false), 936 _clinit_barrier_on_entry(false), 937 _stress_seed(0), 938 _comp_arena(mtCompiler, Arena::Tag::tag_comp), 939 _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())), 940 _env(ci_env), 941 _directive(directive), 942 _log(ci_env->log()), 943 _first_failure_details(nullptr), 944 _for_post_loop_igvn(comp_arena(), 8, 0, nullptr), 945 _for_merge_stores_igvn(comp_arena(), 8, 0, nullptr), 946 _congraph(nullptr), 947 NOT_PRODUCT(_igv_printer(nullptr) COMMA) 948 _unique(0), 949 _dead_node_count(0), 950 _dead_node_list(comp_arena()), 951 _node_arena_one(mtCompiler, Arena::Tag::tag_node), 952 _node_arena_two(mtCompiler, Arena::Tag::tag_node), 953 _node_arena(&_node_arena_one), 954 _mach_constant_base_node(nullptr), 955 _Compile_types(mtCompiler, Arena::Tag::tag_type), 956 _initial_gvn(nullptr), 957 _igvn_worklist(nullptr), 958 _types(nullptr), 959 _node_hash(nullptr), 960 _number_of_mh_late_inlines(0), 961 _oom(false), 962 _replay_inline_data(nullptr), 963 _inline_printer(this), 964 _java_calls(0), 965 _inner_loops(0), 966 _interpreter_frame_size(0), 967 _output(nullptr), 968 #ifndef PRODUCT 969 _in_dump_cnt(0), 970 #endif 971 _allowed_reasons(0) { 972 C = this; 973 974 // try to reuse an existing stub 975 { 976 CodeBlob* blob = AOTCodeCache::load_code_blob(AOTCodeEntry::C2Blob, _stub_id, stub_name); 977 if (blob != nullptr) { 978 RuntimeStub* rs = blob->as_runtime_stub(); 979 _stub_entry_point = rs->entry_point(); 980 return; 981 } 982 } 983 984 TraceTime t1(nullptr, &_t_totalCompilation, CITime, false); 985 TraceTime t2(nullptr, &_t_stubCompilation, CITime, false); 986 987 #ifndef PRODUCT 988 set_print_assembly(PrintFrameConverterAssembly); 989 set_parsed_irreducible_loop(false); 990 #else 991 set_print_assembly(false); // Must initialize. 992 #endif 993 set_has_irreducible_loop(false); // no loops 994 995 CompileWrapper cw(this); 996 Init(/*do_aliasing=*/ false); 997 init_tf((*generator)()); 998 999 _igvn_worklist = new (comp_arena()) Unique_Node_List(comp_arena()); 1000 _types = new (comp_arena()) Type_Array(comp_arena()); 1001 _node_hash = new (comp_arena()) NodeHash(comp_arena(), 255); 1002 1003 if (StressLCM || StressGCM || StressBailout) { 1004 initialize_stress_seed(directive); 1005 } 1006 1007 { 1008 PhaseGVN gvn; 1009 set_initial_gvn(&gvn); // not significant, but GraphKit guys use it pervasively 1010 gvn.transform(top()); 1011 1012 GraphKit kit; 1013 kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc); 1014 } 1015 1016 NOT_PRODUCT( verify_graph_edges(); ) 1017 1018 Code_Gen(); 1019 } 1020 1021 Compile::~Compile() { 1022 delete _first_failure_details; 1023 }; 1024 1025 //------------------------------Init------------------------------------------- 1026 // Prepare for a single compilation 1027 void Compile::Init(bool aliasing) { 1028 _do_aliasing = aliasing; 1029 _unique = 0; 1030 _regalloc = nullptr; 1031 1032 _tf = nullptr; // filled in later 1033 _top = nullptr; // cached later 1034 _matcher = nullptr; // filled in later 1035 _cfg = nullptr; // filled in later 1036 1037 _node_note_array = nullptr; 1038 _default_node_notes = nullptr; 1039 DEBUG_ONLY( _modified_nodes = nullptr; ) // Used in Optimize() 1040 1041 _immutable_memory = nullptr; // filled in at first inquiry 1042 1043 #ifdef ASSERT 1044 _phase_optimize_finished = false; 1045 _phase_verify_ideal_loop = false; 1046 _exception_backedge = false; 1047 _type_verify = nullptr; 1048 #endif 1049 1050 // Globally visible Nodes 1051 // First set TOP to null to give safe behavior during creation of RootNode 1052 set_cached_top_node(nullptr); 1053 set_root(new RootNode()); 1054 // Now that you have a Root to point to, create the real TOP 1055 set_cached_top_node( new ConNode(Type::TOP) ); 1056 set_recent_alloc(nullptr, nullptr); 1057 1058 // Create Debug Information Recorder to record scopes, oopmaps, etc. 1059 env()->set_oop_recorder(new OopRecorder(env()->arena())); 1060 env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder())); 1061 env()->set_dependencies(new Dependencies(env())); 1062 1063 _fixed_slots = 0; 1064 set_has_split_ifs(false); 1065 set_has_loops(false); // first approximation 1066 set_has_stringbuilder(false); 1067 set_has_boxed_value(false); 1068 _trap_can_recompile = false; // no traps emitted yet 1069 _major_progress = true; // start out assuming good things will happen 1070 set_has_unsafe_access(false); 1071 set_max_vector_size(0); 1072 set_clear_upper_avx(false); //false as default for clear upper bits of ymm registers 1073 Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist)); 1074 set_decompile_count(0); 1075 1076 #ifndef PRODUCT 1077 _phase_counter = 0; 1078 Copy::zero_to_bytes(_igv_phase_iter, sizeof(_igv_phase_iter)); 1079 #endif 1080 1081 set_do_freq_based_layout(_directive->BlockLayoutByFrequencyOption); 1082 _loop_opts_cnt = LoopOptsCount; 1083 set_do_inlining(Inline); 1084 set_max_inline_size(MaxInlineSize); 1085 set_freq_inline_size(FreqInlineSize); 1086 set_do_scheduling(OptoScheduling); 1087 1088 set_do_vector_loop(false); 1089 set_has_monitors(false); 1090 set_has_scoped_access(false); 1091 1092 if (AllowVectorizeOnDemand) { 1093 if (has_method() && _directive->VectorizeOption) { 1094 set_do_vector_loop(true); 1095 NOT_PRODUCT(if (do_vector_loop() && Verbose) {tty->print("Compile::Init: do vectorized loops (SIMD like) for method %s\n", method()->name()->as_quoted_ascii());}) 1096 } else if (has_method() && method()->name() != nullptr && 1097 method()->intrinsic_id() == vmIntrinsics::_forEachRemaining) { 1098 set_do_vector_loop(true); 1099 } 1100 } 1101 set_use_cmove(UseCMoveUnconditionally /* || do_vector_loop()*/); //TODO: consider do_vector_loop() mandate use_cmove unconditionally 1102 NOT_PRODUCT(if (use_cmove() && Verbose && has_method()) {tty->print("Compile::Init: use CMove without profitability tests for method %s\n", method()->name()->as_quoted_ascii());}) 1103 1104 _max_node_limit = _directive->MaxNodeLimitOption; 1105 1106 if (VM_Version::supports_fast_class_init_checks() && has_method() && !is_osr_compilation() && method()->needs_clinit_barrier()) { 1107 set_clinit_barrier_on_entry(true); 1108 } 1109 if (debug_info()->recording_non_safepoints()) { 1110 set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*> 1111 (comp_arena(), 8, 0, nullptr)); 1112 set_default_node_notes(Node_Notes::make(this)); 1113 } 1114 1115 const int grow_ats = 16; 1116 _max_alias_types = grow_ats; 1117 _alias_types = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats); 1118 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, grow_ats); 1119 Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats); 1120 { 1121 for (int i = 0; i < grow_ats; i++) _alias_types[i] = &ats[i]; 1122 } 1123 // Initialize the first few types. 1124 _alias_types[AliasIdxTop]->Init(AliasIdxTop, nullptr); 1125 _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM); 1126 _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM); 1127 _num_alias_types = AliasIdxRaw+1; 1128 // Zero out the alias type cache. 1129 Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache)); 1130 // A null adr_type hits in the cache right away. Preload the right answer. 1131 probe_alias_cache(nullptr)->_index = AliasIdxTop; 1132 } 1133 1134 #ifdef ASSERT 1135 // Verify that the current StartNode is valid. 1136 void Compile::verify_start(StartNode* s) const { 1137 assert(failing_internal() || s == start(), "should be StartNode"); 1138 } 1139 #endif 1140 1141 /** 1142 * Return the 'StartNode'. We must not have a pending failure, since the ideal graph 1143 * can be in an inconsistent state, i.e., we can get segmentation faults when traversing 1144 * the ideal graph. 1145 */ 1146 StartNode* Compile::start() const { 1147 assert (!failing_internal() || C->failure_is_artificial(), "Must not have pending failure. Reason is: %s", failure_reason()); 1148 for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) { 1149 Node* start = root()->fast_out(i); 1150 if (start->is_Start()) { 1151 return start->as_Start(); 1152 } 1153 } 1154 fatal("Did not find Start node!"); 1155 return nullptr; 1156 } 1157 1158 //-------------------------------immutable_memory------------------------------------- 1159 // Access immutable memory 1160 Node* Compile::immutable_memory() { 1161 if (_immutable_memory != nullptr) { 1162 return _immutable_memory; 1163 } 1164 StartNode* s = start(); 1165 for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) { 1166 Node *p = s->fast_out(i); 1167 if (p != s && p->as_Proj()->_con == TypeFunc::Memory) { 1168 _immutable_memory = p; 1169 return _immutable_memory; 1170 } 1171 } 1172 ShouldNotReachHere(); 1173 return nullptr; 1174 } 1175 1176 //----------------------set_cached_top_node------------------------------------ 1177 // Install the cached top node, and make sure Node::is_top works correctly. 1178 void Compile::set_cached_top_node(Node* tn) { 1179 if (tn != nullptr) verify_top(tn); 1180 Node* old_top = _top; 1181 _top = tn; 1182 // Calling Node::setup_is_top allows the nodes the chance to adjust 1183 // their _out arrays. 1184 if (_top != nullptr) _top->setup_is_top(); 1185 if (old_top != nullptr) old_top->setup_is_top(); 1186 assert(_top == nullptr || top()->is_top(), ""); 1187 } 1188 1189 #ifdef ASSERT 1190 uint Compile::count_live_nodes_by_graph_walk() { 1191 Unique_Node_List useful(comp_arena()); 1192 // Get useful node list by walking the graph. 1193 identify_useful_nodes(useful); 1194 return useful.size(); 1195 } 1196 1197 void Compile::print_missing_nodes() { 1198 1199 // Return if CompileLog is null and PrintIdealNodeCount is false. 1200 if ((_log == nullptr) && (! PrintIdealNodeCount)) { 1201 return; 1202 } 1203 1204 // This is an expensive function. It is executed only when the user 1205 // specifies VerifyIdealNodeCount option or otherwise knows the 1206 // additional work that needs to be done to identify reachable nodes 1207 // by walking the flow graph and find the missing ones using 1208 // _dead_node_list. 1209 1210 Unique_Node_List useful(comp_arena()); 1211 // Get useful node list by walking the graph. 1212 identify_useful_nodes(useful); 1213 1214 uint l_nodes = C->live_nodes(); 1215 uint l_nodes_by_walk = useful.size(); 1216 1217 if (l_nodes != l_nodes_by_walk) { 1218 if (_log != nullptr) { 1219 _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk))); 1220 _log->stamp(); 1221 _log->end_head(); 1222 } 1223 VectorSet& useful_member_set = useful.member_set(); 1224 int last_idx = l_nodes_by_walk; 1225 for (int i = 0; i < last_idx; i++) { 1226 if (useful_member_set.test(i)) { 1227 if (_dead_node_list.test(i)) { 1228 if (_log != nullptr) { 1229 _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i); 1230 } 1231 if (PrintIdealNodeCount) { 1232 // Print the log message to tty 1233 tty->print_cr("mismatched_node idx='%d' both live and dead'", i); 1234 useful.at(i)->dump(); 1235 } 1236 } 1237 } 1238 else if (! _dead_node_list.test(i)) { 1239 if (_log != nullptr) { 1240 _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i); 1241 } 1242 if (PrintIdealNodeCount) { 1243 // Print the log message to tty 1244 tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i); 1245 } 1246 } 1247 } 1248 if (_log != nullptr) { 1249 _log->tail("mismatched_nodes"); 1250 } 1251 } 1252 } 1253 void Compile::record_modified_node(Node* n) { 1254 if (_modified_nodes != nullptr && !_inlining_incrementally && !n->is_Con()) { 1255 _modified_nodes->push(n); 1256 } 1257 } 1258 1259 void Compile::remove_modified_node(Node* n) { 1260 if (_modified_nodes != nullptr) { 1261 _modified_nodes->remove(n); 1262 } 1263 } 1264 #endif 1265 1266 #ifndef PRODUCT 1267 void Compile::verify_top(Node* tn) const { 1268 if (tn != nullptr) { 1269 assert(tn->is_Con(), "top node must be a constant"); 1270 assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type"); 1271 assert(tn->in(0) != nullptr, "must have live top node"); 1272 } 1273 } 1274 #endif 1275 1276 1277 ///-------------------Managing Per-Node Debug & Profile Info------------------- 1278 1279 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) { 1280 guarantee(arr != nullptr, ""); 1281 int num_blocks = arr->length(); 1282 if (grow_by < num_blocks) grow_by = num_blocks; 1283 int num_notes = grow_by * _node_notes_block_size; 1284 Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes); 1285 Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes)); 1286 while (num_notes > 0) { 1287 arr->append(notes); 1288 notes += _node_notes_block_size; 1289 num_notes -= _node_notes_block_size; 1290 } 1291 assert(num_notes == 0, "exact multiple, please"); 1292 } 1293 1294 bool Compile::copy_node_notes_to(Node* dest, Node* source) { 1295 if (source == nullptr || dest == nullptr) return false; 1296 1297 if (dest->is_Con()) 1298 return false; // Do not push debug info onto constants. 1299 1300 #ifdef ASSERT 1301 // Leave a bread crumb trail pointing to the original node: 1302 if (dest != nullptr && dest != source && dest->debug_orig() == nullptr) { 1303 dest->set_debug_orig(source); 1304 } 1305 #endif 1306 1307 if (node_note_array() == nullptr) 1308 return false; // Not collecting any notes now. 1309 1310 // This is a copy onto a pre-existing node, which may already have notes. 1311 // If both nodes have notes, do not overwrite any pre-existing notes. 1312 Node_Notes* source_notes = node_notes_at(source->_idx); 1313 if (source_notes == nullptr || source_notes->is_clear()) return false; 1314 Node_Notes* dest_notes = node_notes_at(dest->_idx); 1315 if (dest_notes == nullptr || dest_notes->is_clear()) { 1316 return set_node_notes_at(dest->_idx, source_notes); 1317 } 1318 1319 Node_Notes merged_notes = (*source_notes); 1320 // The order of operations here ensures that dest notes will win... 1321 merged_notes.update_from(dest_notes); 1322 return set_node_notes_at(dest->_idx, &merged_notes); 1323 } 1324 1325 1326 //--------------------------allow_range_check_smearing------------------------- 1327 // Gating condition for coalescing similar range checks. 1328 // Sometimes we try 'speculatively' replacing a series of a range checks by a 1329 // single covering check that is at least as strong as any of them. 1330 // If the optimization succeeds, the simplified (strengthened) range check 1331 // will always succeed. If it fails, we will deopt, and then give up 1332 // on the optimization. 1333 bool Compile::allow_range_check_smearing() const { 1334 // If this method has already thrown a range-check, 1335 // assume it was because we already tried range smearing 1336 // and it failed. 1337 uint already_trapped = trap_count(Deoptimization::Reason_range_check); 1338 return !already_trapped; 1339 } 1340 1341 1342 //------------------------------flatten_alias_type----------------------------- 1343 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const { 1344 assert(do_aliasing(), "Aliasing should be enabled"); 1345 int offset = tj->offset(); 1346 TypePtr::PTR ptr = tj->ptr(); 1347 1348 // Known instance (scalarizable allocation) alias only with itself. 1349 bool is_known_inst = tj->isa_oopptr() != nullptr && 1350 tj->is_oopptr()->is_known_instance(); 1351 1352 // Process weird unsafe references. 1353 if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) { 1354 assert(InlineUnsafeOps || StressReflectiveCode, "indeterminate pointers come only from unsafe ops"); 1355 assert(!is_known_inst, "scalarizable allocation should not have unsafe references"); 1356 tj = TypeOopPtr::BOTTOM; 1357 ptr = tj->ptr(); 1358 offset = tj->offset(); 1359 } 1360 1361 // Array pointers need some flattening 1362 const TypeAryPtr* ta = tj->isa_aryptr(); 1363 if (ta && ta->is_stable()) { 1364 // Erase stability property for alias analysis. 1365 tj = ta = ta->cast_to_stable(false); 1366 } 1367 if( ta && is_known_inst ) { 1368 if ( offset != Type::OffsetBot && 1369 offset > arrayOopDesc::length_offset_in_bytes() ) { 1370 offset = Type::OffsetBot; // Flatten constant access into array body only 1371 tj = ta = ta-> 1372 remove_speculative()-> 1373 cast_to_ptr_type(ptr)-> 1374 with_offset(offset); 1375 } 1376 } else if (ta) { 1377 // For arrays indexed by constant indices, we flatten the alias 1378 // space to include all of the array body. Only the header, klass 1379 // and array length can be accessed un-aliased. 1380 if( offset != Type::OffsetBot ) { 1381 if( ta->const_oop() ) { // MethodData* or Method* 1382 offset = Type::OffsetBot; // Flatten constant access into array body 1383 tj = ta = ta-> 1384 remove_speculative()-> 1385 cast_to_ptr_type(ptr)-> 1386 cast_to_exactness(false)-> 1387 with_offset(offset); 1388 } else if( offset == arrayOopDesc::length_offset_in_bytes() ) { 1389 // range is OK as-is. 1390 tj = ta = TypeAryPtr::RANGE; 1391 } else if( offset == oopDesc::klass_offset_in_bytes() ) { 1392 tj = TypeInstPtr::KLASS; // all klass loads look alike 1393 ta = TypeAryPtr::RANGE; // generic ignored junk 1394 ptr = TypePtr::BotPTR; 1395 } else if( offset == oopDesc::mark_offset_in_bytes() ) { 1396 tj = TypeInstPtr::MARK; 1397 ta = TypeAryPtr::RANGE; // generic ignored junk 1398 ptr = TypePtr::BotPTR; 1399 } else { // Random constant offset into array body 1400 offset = Type::OffsetBot; // Flatten constant access into array body 1401 tj = ta = ta-> 1402 remove_speculative()-> 1403 cast_to_ptr_type(ptr)-> 1404 cast_to_exactness(false)-> 1405 with_offset(offset); 1406 } 1407 } 1408 // Arrays of fixed size alias with arrays of unknown size. 1409 if (ta->size() != TypeInt::POS) { 1410 const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS); 1411 tj = ta = ta-> 1412 remove_speculative()-> 1413 cast_to_ptr_type(ptr)-> 1414 with_ary(tary)-> 1415 cast_to_exactness(false); 1416 } 1417 // Arrays of known objects become arrays of unknown objects. 1418 if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) { 1419 const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size()); 1420 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,nullptr,false,offset); 1421 } 1422 if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) { 1423 const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size()); 1424 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,nullptr,false,offset); 1425 } 1426 // Arrays of bytes and of booleans both use 'bastore' and 'baload' so 1427 // cannot be distinguished by bytecode alone. 1428 if (ta->elem() == TypeInt::BOOL) { 1429 const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size()); 1430 ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE); 1431 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset); 1432 } 1433 // During the 2nd round of IterGVN, NotNull castings are removed. 1434 // Make sure the Bottom and NotNull variants alias the same. 1435 // Also, make sure exact and non-exact variants alias the same. 1436 if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != nullptr) { 1437 tj = ta = ta-> 1438 remove_speculative()-> 1439 cast_to_ptr_type(TypePtr::BotPTR)-> 1440 cast_to_exactness(false)-> 1441 with_offset(offset); 1442 } 1443 } 1444 1445 // Oop pointers need some flattening 1446 const TypeInstPtr *to = tj->isa_instptr(); 1447 if (to && to != TypeOopPtr::BOTTOM) { 1448 ciInstanceKlass* ik = to->instance_klass(); 1449 if( ptr == TypePtr::Constant ) { 1450 if (ik != ciEnv::current()->Class_klass() || 1451 offset < ik->layout_helper_size_in_bytes()) { 1452 // No constant oop pointers (such as Strings); they alias with 1453 // unknown strings. 1454 assert(!is_known_inst, "not scalarizable allocation"); 1455 tj = to = to-> 1456 cast_to_instance_id(TypeOopPtr::InstanceBot)-> 1457 remove_speculative()-> 1458 cast_to_ptr_type(TypePtr::BotPTR)-> 1459 cast_to_exactness(false); 1460 } 1461 } else if( is_known_inst ) { 1462 tj = to; // Keep NotNull and klass_is_exact for instance type 1463 } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) { 1464 // During the 2nd round of IterGVN, NotNull castings are removed. 1465 // Make sure the Bottom and NotNull variants alias the same. 1466 // Also, make sure exact and non-exact variants alias the same. 1467 tj = to = to-> 1468 remove_speculative()-> 1469 cast_to_instance_id(TypeOopPtr::InstanceBot)-> 1470 cast_to_ptr_type(TypePtr::BotPTR)-> 1471 cast_to_exactness(false); 1472 } 1473 if (to->speculative() != nullptr) { 1474 tj = to = to->remove_speculative(); 1475 } 1476 // Canonicalize the holder of this field 1477 if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) { 1478 // First handle header references such as a LoadKlassNode, even if the 1479 // object's klass is unloaded at compile time (4965979). 1480 if (!is_known_inst) { // Do it only for non-instance types 1481 tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, nullptr, offset); 1482 } 1483 } else if (offset < 0 || offset >= ik->layout_helper_size_in_bytes()) { 1484 // Static fields are in the space above the normal instance 1485 // fields in the java.lang.Class instance. 1486 if (ik != ciEnv::current()->Class_klass()) { 1487 to = nullptr; 1488 tj = TypeOopPtr::BOTTOM; 1489 offset = tj->offset(); 1490 } 1491 } else { 1492 ciInstanceKlass *canonical_holder = ik->get_canonical_holder(offset); 1493 assert(offset < canonical_holder->layout_helper_size_in_bytes(), ""); 1494 assert(tj->offset() == offset, "no change to offset expected"); 1495 bool xk = to->klass_is_exact(); 1496 int instance_id = to->instance_id(); 1497 1498 // If the input type's class is the holder: if exact, the type only includes interfaces implemented by the holder 1499 // but if not exact, it may include extra interfaces: build new type from the holder class to make sure only 1500 // its interfaces are included. 1501 if (xk && ik->equals(canonical_holder)) { 1502 assert(tj == TypeInstPtr::make(to->ptr(), canonical_holder, is_known_inst, nullptr, offset, instance_id), "exact type should be canonical type"); 1503 } else { 1504 assert(xk || !is_known_inst, "Known instance should be exact type"); 1505 tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, is_known_inst, nullptr, offset, instance_id); 1506 } 1507 } 1508 } 1509 1510 // Klass pointers to object array klasses need some flattening 1511 const TypeKlassPtr *tk = tj->isa_klassptr(); 1512 if( tk ) { 1513 // If we are referencing a field within a Klass, we need 1514 // to assume the worst case of an Object. Both exact and 1515 // inexact types must flatten to the same alias class so 1516 // use NotNull as the PTR. 1517 if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) { 1518 tj = tk = TypeInstKlassPtr::make(TypePtr::NotNull, 1519 env()->Object_klass(), 1520 offset); 1521 } 1522 1523 if (tk->isa_aryklassptr() && tk->is_aryklassptr()->elem()->isa_klassptr()) { 1524 ciKlass* k = ciObjArrayKlass::make(env()->Object_klass()); 1525 if (!k || !k->is_loaded()) { // Only fails for some -Xcomp runs 1526 tj = tk = TypeInstKlassPtr::make(TypePtr::NotNull, env()->Object_klass(), offset); 1527 } else { 1528 tj = tk = TypeAryKlassPtr::make(TypePtr::NotNull, tk->is_aryklassptr()->elem(), k, offset); 1529 } 1530 } 1531 1532 // Check for precise loads from the primary supertype array and force them 1533 // to the supertype cache alias index. Check for generic array loads from 1534 // the primary supertype array and also force them to the supertype cache 1535 // alias index. Since the same load can reach both, we need to merge 1536 // these 2 disparate memories into the same alias class. Since the 1537 // primary supertype array is read-only, there's no chance of confusion 1538 // where we bypass an array load and an array store. 1539 int primary_supers_offset = in_bytes(Klass::primary_supers_offset()); 1540 if (offset == Type::OffsetBot || 1541 (offset >= primary_supers_offset && 1542 offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) || 1543 offset == (int)in_bytes(Klass::secondary_super_cache_offset())) { 1544 offset = in_bytes(Klass::secondary_super_cache_offset()); 1545 tj = tk = tk->with_offset(offset); 1546 } 1547 } 1548 1549 // Flatten all Raw pointers together. 1550 if (tj->base() == Type::RawPtr) 1551 tj = TypeRawPtr::BOTTOM; 1552 1553 if (tj->base() == Type::AnyPtr) 1554 tj = TypePtr::BOTTOM; // An error, which the caller must check for. 1555 1556 offset = tj->offset(); 1557 assert( offset != Type::OffsetTop, "Offset has fallen from constant" ); 1558 1559 assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) || 1560 (offset == Type::OffsetBot && tj->base() == Type::AryPtr) || 1561 (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) || 1562 (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) || 1563 (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) || 1564 (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) || 1565 (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr), 1566 "For oops, klasses, raw offset must be constant; for arrays the offset is never known" ); 1567 assert( tj->ptr() != TypePtr::TopPTR && 1568 tj->ptr() != TypePtr::AnyNull && 1569 tj->ptr() != TypePtr::Null, "No imprecise addresses" ); 1570 // assert( tj->ptr() != TypePtr::Constant || 1571 // tj->base() == Type::RawPtr || 1572 // tj->base() == Type::KlassPtr, "No constant oop addresses" ); 1573 1574 return tj; 1575 } 1576 1577 void Compile::AliasType::Init(int i, const TypePtr* at) { 1578 assert(AliasIdxTop <= i && i < Compile::current()->_max_alias_types, "Invalid alias index"); 1579 _index = i; 1580 _adr_type = at; 1581 _field = nullptr; 1582 _element = nullptr; 1583 _is_rewritable = true; // default 1584 const TypeOopPtr *atoop = (at != nullptr) ? at->isa_oopptr() : nullptr; 1585 if (atoop != nullptr && atoop->is_known_instance()) { 1586 const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot); 1587 _general_index = Compile::current()->get_alias_index(gt); 1588 } else { 1589 _general_index = 0; 1590 } 1591 } 1592 1593 BasicType Compile::AliasType::basic_type() const { 1594 if (element() != nullptr) { 1595 const Type* element = adr_type()->is_aryptr()->elem(); 1596 return element->isa_narrowoop() ? T_OBJECT : element->array_element_basic_type(); 1597 } if (field() != nullptr) { 1598 return field()->layout_type(); 1599 } else { 1600 return T_ILLEGAL; // unknown 1601 } 1602 } 1603 1604 //---------------------------------print_on------------------------------------ 1605 #ifndef PRODUCT 1606 void Compile::AliasType::print_on(outputStream* st) { 1607 if (index() < 10) 1608 st->print("@ <%d> ", index()); 1609 else st->print("@ <%d>", index()); 1610 st->print(is_rewritable() ? " " : " RO"); 1611 int offset = adr_type()->offset(); 1612 if (offset == Type::OffsetBot) 1613 st->print(" +any"); 1614 else st->print(" +%-3d", offset); 1615 st->print(" in "); 1616 adr_type()->dump_on(st); 1617 const TypeOopPtr* tjp = adr_type()->isa_oopptr(); 1618 if (field() != nullptr && tjp) { 1619 if (tjp->is_instptr()->instance_klass() != field()->holder() || 1620 tjp->offset() != field()->offset_in_bytes()) { 1621 st->print(" != "); 1622 field()->print(); 1623 st->print(" ***"); 1624 } 1625 } 1626 } 1627 1628 void print_alias_types() { 1629 Compile* C = Compile::current(); 1630 tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1); 1631 for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) { 1632 C->alias_type(idx)->print_on(tty); 1633 tty->cr(); 1634 } 1635 } 1636 #endif 1637 1638 1639 //----------------------------probe_alias_cache-------------------------------- 1640 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) { 1641 intptr_t key = (intptr_t) adr_type; 1642 key ^= key >> logAliasCacheSize; 1643 return &_alias_cache[key & right_n_bits(logAliasCacheSize)]; 1644 } 1645 1646 1647 //-----------------------------grow_alias_types-------------------------------- 1648 void Compile::grow_alias_types() { 1649 const int old_ats = _max_alias_types; // how many before? 1650 const int new_ats = old_ats; // how many more? 1651 const int grow_ats = old_ats+new_ats; // how many now? 1652 _max_alias_types = grow_ats; 1653 _alias_types = REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats); 1654 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats); 1655 Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats); 1656 for (int i = 0; i < new_ats; i++) _alias_types[old_ats+i] = &ats[i]; 1657 } 1658 1659 1660 //--------------------------------find_alias_type------------------------------ 1661 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) { 1662 if (!do_aliasing()) { 1663 return alias_type(AliasIdxBot); 1664 } 1665 1666 AliasCacheEntry* ace = probe_alias_cache(adr_type); 1667 if (ace->_adr_type == adr_type) { 1668 return alias_type(ace->_index); 1669 } 1670 1671 // Handle special cases. 1672 if (adr_type == nullptr) return alias_type(AliasIdxTop); 1673 if (adr_type == TypePtr::BOTTOM) return alias_type(AliasIdxBot); 1674 1675 // Do it the slow way. 1676 const TypePtr* flat = flatten_alias_type(adr_type); 1677 1678 #ifdef ASSERT 1679 { 1680 ResourceMark rm; 1681 assert(flat == flatten_alias_type(flat), "not idempotent: adr_type = %s; flat = %s => %s", 1682 Type::str(adr_type), Type::str(flat), Type::str(flatten_alias_type(flat))); 1683 assert(flat != TypePtr::BOTTOM, "cannot alias-analyze an untyped ptr: adr_type = %s", 1684 Type::str(adr_type)); 1685 if (flat->isa_oopptr() && !flat->isa_klassptr()) { 1686 const TypeOopPtr* foop = flat->is_oopptr(); 1687 // Scalarizable allocations have exact klass always. 1688 bool exact = !foop->klass_is_exact() || foop->is_known_instance(); 1689 const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr(); 1690 assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type: foop = %s; xoop = %s", 1691 Type::str(foop), Type::str(xoop)); 1692 } 1693 } 1694 #endif 1695 1696 int idx = AliasIdxTop; 1697 for (int i = 0; i < num_alias_types(); i++) { 1698 if (alias_type(i)->adr_type() == flat) { 1699 idx = i; 1700 break; 1701 } 1702 } 1703 1704 if (idx == AliasIdxTop) { 1705 if (no_create) return nullptr; 1706 // Grow the array if necessary. 1707 if (_num_alias_types == _max_alias_types) grow_alias_types(); 1708 // Add a new alias type. 1709 idx = _num_alias_types++; 1710 _alias_types[idx]->Init(idx, flat); 1711 if (flat == TypeInstPtr::KLASS) alias_type(idx)->set_rewritable(false); 1712 if (flat == TypeAryPtr::RANGE) alias_type(idx)->set_rewritable(false); 1713 if (flat->isa_instptr()) { 1714 if (flat->offset() == java_lang_Class::klass_offset() 1715 && flat->is_instptr()->instance_klass() == env()->Class_klass()) 1716 alias_type(idx)->set_rewritable(false); 1717 } 1718 if (flat->isa_aryptr()) { 1719 #ifdef ASSERT 1720 const int header_size_min = arrayOopDesc::base_offset_in_bytes(T_BYTE); 1721 // (T_BYTE has the weakest alignment and size restrictions...) 1722 assert(flat->offset() < header_size_min, "array body reference must be OffsetBot"); 1723 #endif 1724 if (flat->offset() == TypePtr::OffsetBot) { 1725 alias_type(idx)->set_element(flat->is_aryptr()->elem()); 1726 } 1727 } 1728 if (flat->isa_klassptr()) { 1729 if (UseCompactObjectHeaders) { 1730 if (flat->offset() == in_bytes(Klass::prototype_header_offset())) 1731 alias_type(idx)->set_rewritable(false); 1732 } 1733 if (flat->offset() == in_bytes(Klass::super_check_offset_offset())) 1734 alias_type(idx)->set_rewritable(false); 1735 if (flat->offset() == in_bytes(Klass::access_flags_offset())) 1736 alias_type(idx)->set_rewritable(false); 1737 if (flat->offset() == in_bytes(Klass::misc_flags_offset())) 1738 alias_type(idx)->set_rewritable(false); 1739 if (flat->offset() == in_bytes(Klass::java_mirror_offset())) 1740 alias_type(idx)->set_rewritable(false); 1741 if (flat->offset() == in_bytes(Klass::secondary_super_cache_offset())) 1742 alias_type(idx)->set_rewritable(false); 1743 } 1744 // %%% (We would like to finalize JavaThread::threadObj_offset(), 1745 // but the base pointer type is not distinctive enough to identify 1746 // references into JavaThread.) 1747 1748 // Check for final fields. 1749 const TypeInstPtr* tinst = flat->isa_instptr(); 1750 if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) { 1751 ciField* field; 1752 if (tinst->const_oop() != nullptr && 1753 tinst->instance_klass() == ciEnv::current()->Class_klass() && 1754 tinst->offset() >= (tinst->instance_klass()->layout_helper_size_in_bytes())) { 1755 // static field 1756 ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass(); 1757 field = k->get_field_by_offset(tinst->offset(), true); 1758 } else { 1759 ciInstanceKlass *k = tinst->instance_klass(); 1760 field = k->get_field_by_offset(tinst->offset(), false); 1761 } 1762 assert(field == nullptr || 1763 original_field == nullptr || 1764 (field->holder() == original_field->holder() && 1765 field->offset_in_bytes() == original_field->offset_in_bytes() && 1766 field->is_static() == original_field->is_static()), "wrong field?"); 1767 // Set field() and is_rewritable() attributes. 1768 if (field != nullptr) alias_type(idx)->set_field(field); 1769 } 1770 } 1771 1772 // Fill the cache for next time. 1773 ace->_adr_type = adr_type; 1774 ace->_index = idx; 1775 assert(alias_type(adr_type) == alias_type(idx), "type must be installed"); 1776 1777 // Might as well try to fill the cache for the flattened version, too. 1778 AliasCacheEntry* face = probe_alias_cache(flat); 1779 if (face->_adr_type == nullptr) { 1780 face->_adr_type = flat; 1781 face->_index = idx; 1782 assert(alias_type(flat) == alias_type(idx), "flat type must work too"); 1783 } 1784 1785 return alias_type(idx); 1786 } 1787 1788 1789 Compile::AliasType* Compile::alias_type(ciField* field) { 1790 const TypeOopPtr* t; 1791 if (field->is_static()) 1792 t = TypeInstPtr::make(field->holder()->java_mirror()); 1793 else 1794 t = TypeOopPtr::make_from_klass_raw(field->holder()); 1795 AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field); 1796 assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct"); 1797 return atp; 1798 } 1799 1800 1801 //------------------------------have_alias_type-------------------------------- 1802 bool Compile::have_alias_type(const TypePtr* adr_type) { 1803 AliasCacheEntry* ace = probe_alias_cache(adr_type); 1804 if (ace->_adr_type == adr_type) { 1805 return true; 1806 } 1807 1808 // Handle special cases. 1809 if (adr_type == nullptr) return true; 1810 if (adr_type == TypePtr::BOTTOM) return true; 1811 1812 return find_alias_type(adr_type, true, nullptr) != nullptr; 1813 } 1814 1815 //-----------------------------must_alias-------------------------------------- 1816 // True if all values of the given address type are in the given alias category. 1817 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) { 1818 if (alias_idx == AliasIdxBot) return true; // the universal category 1819 if (adr_type == nullptr) return true; // null serves as TypePtr::TOP 1820 if (alias_idx == AliasIdxTop) return false; // the empty category 1821 if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins 1822 1823 // the only remaining possible overlap is identity 1824 int adr_idx = get_alias_index(adr_type); 1825 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, ""); 1826 assert(adr_idx == alias_idx || 1827 (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM 1828 && adr_type != TypeOopPtr::BOTTOM), 1829 "should not be testing for overlap with an unsafe pointer"); 1830 return adr_idx == alias_idx; 1831 } 1832 1833 //------------------------------can_alias-------------------------------------- 1834 // True if any values of the given address type are in the given alias category. 1835 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) { 1836 if (alias_idx == AliasIdxTop) return false; // the empty category 1837 if (adr_type == nullptr) return false; // null serves as TypePtr::TOP 1838 // Known instance doesn't alias with bottom memory 1839 if (alias_idx == AliasIdxBot) return !adr_type->is_known_instance(); // the universal category 1840 if (adr_type->base() == Type::AnyPtr) return !C->get_adr_type(alias_idx)->is_known_instance(); // TypePtr::BOTTOM or its twins 1841 1842 // the only remaining possible overlap is identity 1843 int adr_idx = get_alias_index(adr_type); 1844 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, ""); 1845 return adr_idx == alias_idx; 1846 } 1847 1848 // Mark all ParsePredicateNodes as useless. They will later be removed from the graph in IGVN together with their 1849 // uncommon traps if no Runtime Predicates were created from the Parse Predicates. 1850 void Compile::mark_parse_predicate_nodes_useless(PhaseIterGVN& igvn) { 1851 if (parse_predicate_count() == 0) { 1852 return; 1853 } 1854 for (int i = 0; i < parse_predicate_count(); i++) { 1855 ParsePredicateNode* parse_predicate = _parse_predicates.at(i); 1856 parse_predicate->mark_useless(igvn); 1857 } 1858 _parse_predicates.clear(); 1859 } 1860 1861 void Compile::record_for_post_loop_opts_igvn(Node* n) { 1862 if (!n->for_post_loop_opts_igvn()) { 1863 assert(!_for_post_loop_igvn.contains(n), "duplicate"); 1864 n->add_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn); 1865 _for_post_loop_igvn.append(n); 1866 } 1867 } 1868 1869 void Compile::remove_from_post_loop_opts_igvn(Node* n) { 1870 n->remove_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn); 1871 _for_post_loop_igvn.remove(n); 1872 } 1873 1874 void Compile::process_for_post_loop_opts_igvn(PhaseIterGVN& igvn) { 1875 // Verify that all previous optimizations produced a valid graph 1876 // at least to this point, even if no loop optimizations were done. 1877 PhaseIdealLoop::verify(igvn); 1878 1879 if (has_loops() || _loop_opts_cnt > 0) { 1880 print_method(PHASE_AFTER_LOOP_OPTS, 2); 1881 } 1882 C->set_post_loop_opts_phase(); // no more loop opts allowed 1883 1884 assert(!C->major_progress(), "not cleared"); 1885 1886 if (_for_post_loop_igvn.length() > 0) { 1887 while (_for_post_loop_igvn.length() > 0) { 1888 Node* n = _for_post_loop_igvn.pop(); 1889 n->remove_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn); 1890 igvn._worklist.push(n); 1891 } 1892 igvn.optimize(); 1893 if (failing()) return; 1894 assert(_for_post_loop_igvn.length() == 0, "no more delayed nodes allowed"); 1895 assert(C->parse_predicate_count() == 0, "all parse predicates should have been removed now"); 1896 1897 // Sometimes IGVN sets major progress (e.g., when processing loop nodes). 1898 if (C->major_progress()) { 1899 C->clear_major_progress(); // ensure that major progress is now clear 1900 } 1901 } 1902 } 1903 1904 void Compile::record_for_merge_stores_igvn(Node* n) { 1905 if (!n->for_merge_stores_igvn()) { 1906 assert(!_for_merge_stores_igvn.contains(n), "duplicate"); 1907 n->add_flag(Node::NodeFlags::Flag_for_merge_stores_igvn); 1908 _for_merge_stores_igvn.append(n); 1909 } 1910 } 1911 1912 void Compile::remove_from_merge_stores_igvn(Node* n) { 1913 n->remove_flag(Node::NodeFlags::Flag_for_merge_stores_igvn); 1914 _for_merge_stores_igvn.remove(n); 1915 } 1916 1917 // We need to wait with merging stores until RangeCheck smearing has removed the RangeChecks during 1918 // the post loops IGVN phase. If we do it earlier, then there may still be some RangeChecks between 1919 // the stores, and we merge the wrong sequence of stores. 1920 // Example: 1921 // StoreI RangeCheck StoreI StoreI RangeCheck StoreI 1922 // Apply MergeStores: 1923 // StoreI RangeCheck [ StoreL ] RangeCheck StoreI 1924 // Remove more RangeChecks: 1925 // StoreI [ StoreL ] StoreI 1926 // But now it would have been better to do this instead: 1927 // [ StoreL ] [ StoreL ] 1928 // 1929 // Note: we allow stores to merge in this dedicated IGVN round, and any later IGVN round, 1930 // since we never unset _merge_stores_phase. 1931 void Compile::process_for_merge_stores_igvn(PhaseIterGVN& igvn) { 1932 C->set_merge_stores_phase(); 1933 1934 if (_for_merge_stores_igvn.length() > 0) { 1935 while (_for_merge_stores_igvn.length() > 0) { 1936 Node* n = _for_merge_stores_igvn.pop(); 1937 n->remove_flag(Node::NodeFlags::Flag_for_merge_stores_igvn); 1938 igvn._worklist.push(n); 1939 } 1940 igvn.optimize(); 1941 if (failing()) return; 1942 assert(_for_merge_stores_igvn.length() == 0, "no more delayed nodes allowed"); 1943 print_method(PHASE_AFTER_MERGE_STORES, 3); 1944 } 1945 } 1946 1947 void Compile::record_unstable_if_trap(UnstableIfTrap* trap) { 1948 if (OptimizeUnstableIf) { 1949 _unstable_if_traps.append(trap); 1950 } 1951 } 1952 1953 void Compile::remove_useless_unstable_if_traps(Unique_Node_List& useful) { 1954 for (int i = _unstable_if_traps.length() - 1; i >= 0; i--) { 1955 UnstableIfTrap* trap = _unstable_if_traps.at(i); 1956 Node* n = trap->uncommon_trap(); 1957 if (!useful.member(n)) { 1958 _unstable_if_traps.delete_at(i); // replaces i-th with last element which is known to be useful (already processed) 1959 } 1960 } 1961 } 1962 1963 // Remove the unstable if trap associated with 'unc' from candidates. It is either dead 1964 // or fold-compares case. Return true if succeed or not found. 1965 // 1966 // In rare cases, the found trap has been processed. It is too late to delete it. Return 1967 // false and ask fold-compares to yield. 1968 // 1969 // 'fold-compares' may use the uncommon_trap of the dominating IfNode to cover the fused 1970 // IfNode. This breaks the unstable_if trap invariant: control takes the unstable path 1971 // when deoptimization does happen. 1972 bool Compile::remove_unstable_if_trap(CallStaticJavaNode* unc, bool yield) { 1973 for (int i = 0; i < _unstable_if_traps.length(); ++i) { 1974 UnstableIfTrap* trap = _unstable_if_traps.at(i); 1975 if (trap->uncommon_trap() == unc) { 1976 if (yield && trap->modified()) { 1977 return false; 1978 } 1979 _unstable_if_traps.delete_at(i); 1980 break; 1981 } 1982 } 1983 return true; 1984 } 1985 1986 // Re-calculate unstable_if traps with the liveness of next_bci, which points to the unlikely path. 1987 // It needs to be done after igvn because fold-compares may fuse uncommon_traps and before renumbering. 1988 void Compile::process_for_unstable_if_traps(PhaseIterGVN& igvn) { 1989 for (int i = _unstable_if_traps.length() - 1; i >= 0; --i) { 1990 UnstableIfTrap* trap = _unstable_if_traps.at(i); 1991 CallStaticJavaNode* unc = trap->uncommon_trap(); 1992 int next_bci = trap->next_bci(); 1993 bool modified = trap->modified(); 1994 1995 if (next_bci != -1 && !modified) { 1996 assert(!_dead_node_list.test(unc->_idx), "changing a dead node!"); 1997 JVMState* jvms = unc->jvms(); 1998 ciMethod* method = jvms->method(); 1999 ciBytecodeStream iter(method); 2000 2001 iter.force_bci(jvms->bci()); 2002 assert(next_bci == iter.next_bci() || next_bci == iter.get_dest(), "wrong next_bci at unstable_if"); 2003 Bytecodes::Code c = iter.cur_bc(); 2004 Node* lhs = nullptr; 2005 Node* rhs = nullptr; 2006 if (c == Bytecodes::_if_acmpeq || c == Bytecodes::_if_acmpne) { 2007 lhs = unc->peek_operand(0); 2008 rhs = unc->peek_operand(1); 2009 } else if (c == Bytecodes::_ifnull || c == Bytecodes::_ifnonnull) { 2010 lhs = unc->peek_operand(0); 2011 } 2012 2013 ResourceMark rm; 2014 const MethodLivenessResult& live_locals = method->liveness_at_bci(next_bci); 2015 assert(live_locals.is_valid(), "broken liveness info"); 2016 int len = (int)live_locals.size(); 2017 2018 for (int i = 0; i < len; i++) { 2019 Node* local = unc->local(jvms, i); 2020 // kill local using the liveness of next_bci. 2021 // give up when the local looks like an operand to secure reexecution. 2022 if (!live_locals.at(i) && !local->is_top() && local != lhs && local!= rhs) { 2023 uint idx = jvms->locoff() + i; 2024 #ifdef ASSERT 2025 if (PrintOpto && Verbose) { 2026 tty->print("[unstable_if] kill local#%d: ", idx); 2027 local->dump(); 2028 tty->cr(); 2029 } 2030 #endif 2031 igvn.replace_input_of(unc, idx, top()); 2032 modified = true; 2033 } 2034 } 2035 } 2036 2037 // keep the mondified trap for late query 2038 if (modified) { 2039 trap->set_modified(); 2040 } else { 2041 _unstable_if_traps.delete_at(i); 2042 } 2043 } 2044 igvn.optimize(); 2045 } 2046 2047 // StringOpts and late inlining of string methods 2048 void Compile::inline_string_calls(bool parse_time) { 2049 { 2050 // remove useless nodes to make the usage analysis simpler 2051 ResourceMark rm; 2052 PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist()); 2053 } 2054 2055 { 2056 ResourceMark rm; 2057 print_method(PHASE_BEFORE_STRINGOPTS, 3); 2058 PhaseStringOpts pso(initial_gvn()); 2059 print_method(PHASE_AFTER_STRINGOPTS, 3); 2060 } 2061 2062 // now inline anything that we skipped the first time around 2063 if (!parse_time) { 2064 _late_inlines_pos = _late_inlines.length(); 2065 } 2066 2067 while (_string_late_inlines.length() > 0) { 2068 CallGenerator* cg = _string_late_inlines.pop(); 2069 cg->do_late_inline(); 2070 if (failing()) return; 2071 } 2072 _string_late_inlines.trunc_to(0); 2073 } 2074 2075 // Late inlining of boxing methods 2076 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) { 2077 if (_boxing_late_inlines.length() > 0) { 2078 assert(has_boxed_value(), "inconsistent"); 2079 2080 set_inlining_incrementally(true); 2081 2082 igvn_worklist()->ensure_empty(); // should be done with igvn 2083 2084 _late_inlines_pos = _late_inlines.length(); 2085 2086 while (_boxing_late_inlines.length() > 0) { 2087 CallGenerator* cg = _boxing_late_inlines.pop(); 2088 cg->do_late_inline(); 2089 if (failing()) return; 2090 } 2091 _boxing_late_inlines.trunc_to(0); 2092 2093 inline_incrementally_cleanup(igvn); 2094 2095 set_inlining_incrementally(false); 2096 } 2097 } 2098 2099 bool Compile::inline_incrementally_one() { 2100 assert(IncrementalInline, "incremental inlining should be on"); 2101 2102 TracePhase tp(_t_incrInline_inline); 2103 2104 set_inlining_progress(false); 2105 set_do_cleanup(false); 2106 2107 for (int i = 0; i < _late_inlines.length(); i++) { 2108 _late_inlines_pos = i+1; 2109 CallGenerator* cg = _late_inlines.at(i); 2110 bool is_scheduled_for_igvn_before = C->igvn_worklist()->member(cg->call_node()); 2111 bool does_dispatch = cg->is_virtual_late_inline() || cg->is_mh_late_inline(); 2112 if (inlining_incrementally() || does_dispatch) { // a call can be either inlined or strength-reduced to a direct call 2113 cg->do_late_inline(); 2114 assert(_late_inlines.at(i) == cg, "no insertions before current position allowed"); 2115 if (failing()) { 2116 return false; 2117 } else if (inlining_progress()) { 2118 _late_inlines_pos = i+1; // restore the position in case new elements were inserted 2119 print_method(PHASE_INCREMENTAL_INLINE_STEP, 3, cg->call_node()); 2120 break; // process one call site at a time 2121 } else { 2122 bool is_scheduled_for_igvn_after = C->igvn_worklist()->member(cg->call_node()); 2123 if (!is_scheduled_for_igvn_before && is_scheduled_for_igvn_after) { 2124 // Avoid potential infinite loop if node already in the IGVN list 2125 assert(false, "scheduled for IGVN during inlining attempt"); 2126 } else { 2127 // Ensure call node has not disappeared from IGVN worklist during a failed inlining attempt 2128 assert(!is_scheduled_for_igvn_before || is_scheduled_for_igvn_after, "call node removed from IGVN list during inlining pass"); 2129 cg->call_node()->set_generator(cg); 2130 } 2131 } 2132 } else { 2133 // Ignore late inline direct calls when inlining is not allowed. 2134 // They are left in the late inline list when node budget is exhausted until the list is fully drained. 2135 } 2136 } 2137 // Remove processed elements. 2138 _late_inlines.remove_till(_late_inlines_pos); 2139 _late_inlines_pos = 0; 2140 2141 assert(inlining_progress() || _late_inlines.length() == 0, "no progress"); 2142 2143 bool needs_cleanup = do_cleanup() || over_inlining_cutoff(); 2144 2145 set_inlining_progress(false); 2146 set_do_cleanup(false); 2147 2148 bool force_cleanup = directive()->IncrementalInlineForceCleanupOption; 2149 return (_late_inlines.length() > 0) && !needs_cleanup && !force_cleanup; 2150 } 2151 2152 void Compile::inline_incrementally_cleanup(PhaseIterGVN& igvn) { 2153 { 2154 TracePhase tp(_t_incrInline_pru); 2155 ResourceMark rm; 2156 PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist()); 2157 } 2158 { 2159 TracePhase tp(_t_incrInline_igvn); 2160 igvn.reset_from_gvn(initial_gvn()); 2161 igvn.optimize(); 2162 if (failing()) return; 2163 } 2164 print_method(PHASE_INCREMENTAL_INLINE_CLEANUP, 3); 2165 } 2166 2167 // Perform incremental inlining until bound on number of live nodes is reached 2168 void Compile::inline_incrementally(PhaseIterGVN& igvn) { 2169 TracePhase tp(_t_incrInline); 2170 2171 set_inlining_incrementally(true); 2172 uint low_live_nodes = 0; 2173 2174 while (_late_inlines.length() > 0) { 2175 if (live_nodes() > (uint)LiveNodeCountInliningCutoff) { 2176 if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) { 2177 TracePhase tp(_t_incrInline_ideal); 2178 // PhaseIdealLoop is expensive so we only try it once we are 2179 // out of live nodes and we only try it again if the previous 2180 // helped got the number of nodes down significantly 2181 PhaseIdealLoop::optimize(igvn, LoopOptsNone); 2182 if (failing()) return; 2183 low_live_nodes = live_nodes(); 2184 _major_progress = true; 2185 } 2186 2187 if (live_nodes() > (uint)LiveNodeCountInliningCutoff) { 2188 bool do_print_inlining = print_inlining() || print_intrinsics(); 2189 if (do_print_inlining || log() != nullptr) { 2190 // Print inlining message for candidates that we couldn't inline for lack of space. 2191 for (int i = 0; i < _late_inlines.length(); i++) { 2192 CallGenerator* cg = _late_inlines.at(i); 2193 const char* msg = "live nodes > LiveNodeCountInliningCutoff"; 2194 if (do_print_inlining) { 2195 inline_printer()->record(cg->method(), cg->call_node()->jvms(), InliningResult::FAILURE, msg); 2196 } 2197 log_late_inline_failure(cg, msg); 2198 } 2199 } 2200 break; // finish 2201 } 2202 } 2203 2204 igvn_worklist()->ensure_empty(); // should be done with igvn 2205 2206 while (inline_incrementally_one()) { 2207 assert(!failing_internal() || failure_is_artificial(), "inconsistent"); 2208 } 2209 if (failing()) return; 2210 2211 inline_incrementally_cleanup(igvn); 2212 2213 print_method(PHASE_INCREMENTAL_INLINE_STEP, 3); 2214 2215 if (failing()) return; 2216 2217 if (_late_inlines.length() == 0) { 2218 break; // no more progress 2219 } 2220 } 2221 2222 igvn_worklist()->ensure_empty(); // should be done with igvn 2223 2224 if (_string_late_inlines.length() > 0) { 2225 assert(has_stringbuilder(), "inconsistent"); 2226 2227 inline_string_calls(false); 2228 2229 if (failing()) return; 2230 2231 inline_incrementally_cleanup(igvn); 2232 } 2233 2234 set_inlining_incrementally(false); 2235 } 2236 2237 void Compile::process_late_inline_calls_no_inline(PhaseIterGVN& igvn) { 2238 // "inlining_incrementally() == false" is used to signal that no inlining is allowed 2239 // (see LateInlineVirtualCallGenerator::do_late_inline_check() for details). 2240 // Tracking and verification of modified nodes is disabled by setting "_modified_nodes == nullptr" 2241 // as if "inlining_incrementally() == true" were set. 2242 assert(inlining_incrementally() == false, "not allowed"); 2243 assert(_modified_nodes == nullptr, "not allowed"); 2244 assert(_late_inlines.length() > 0, "sanity"); 2245 2246 while (_late_inlines.length() > 0) { 2247 igvn_worklist()->ensure_empty(); // should be done with igvn 2248 2249 while (inline_incrementally_one()) { 2250 assert(!failing_internal() || failure_is_artificial(), "inconsistent"); 2251 } 2252 if (failing()) return; 2253 2254 inline_incrementally_cleanup(igvn); 2255 } 2256 } 2257 2258 bool Compile::optimize_loops(PhaseIterGVN& igvn, LoopOptsMode mode) { 2259 if (_loop_opts_cnt > 0) { 2260 while (major_progress() && (_loop_opts_cnt > 0)) { 2261 TracePhase tp(_t_idealLoop); 2262 PhaseIdealLoop::optimize(igvn, mode); 2263 _loop_opts_cnt--; 2264 if (failing()) return false; 2265 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2); 2266 } 2267 } 2268 return true; 2269 } 2270 2271 // Remove edges from "root" to each SafePoint at a backward branch. 2272 // They were inserted during parsing (see add_safepoint()) to make 2273 // infinite loops without calls or exceptions visible to root, i.e., 2274 // useful. 2275 void Compile::remove_root_to_sfpts_edges(PhaseIterGVN& igvn) { 2276 Node *r = root(); 2277 if (r != nullptr) { 2278 for (uint i = r->req(); i < r->len(); ++i) { 2279 Node *n = r->in(i); 2280 if (n != nullptr && n->is_SafePoint()) { 2281 r->rm_prec(i); 2282 if (n->outcnt() == 0) { 2283 igvn.remove_dead_node(n); 2284 } 2285 --i; 2286 } 2287 } 2288 // Parsing may have added top inputs to the root node (Path 2289 // leading to the Halt node proven dead). Make sure we get a 2290 // chance to clean them up. 2291 igvn._worklist.push(r); 2292 igvn.optimize(); 2293 } 2294 } 2295 2296 //------------------------------Optimize--------------------------------------- 2297 // Given a graph, optimize it. 2298 void Compile::Optimize() { 2299 TracePhase tp(_t_optimizer); 2300 2301 #ifndef PRODUCT 2302 if (env()->break_at_compile()) { 2303 BREAKPOINT; 2304 } 2305 2306 #endif 2307 2308 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 2309 #ifdef ASSERT 2310 bs->verify_gc_barriers(this, BarrierSetC2::BeforeOptimize); 2311 #endif 2312 2313 ResourceMark rm; 2314 2315 NOT_PRODUCT( verify_graph_edges(); ) 2316 2317 print_method(PHASE_AFTER_PARSING, 1); 2318 2319 { 2320 // Iterative Global Value Numbering, including ideal transforms 2321 // Initialize IterGVN with types and values from parse-time GVN 2322 PhaseIterGVN igvn(initial_gvn()); 2323 #ifdef ASSERT 2324 _modified_nodes = new (comp_arena()) Unique_Node_List(comp_arena()); 2325 #endif 2326 { 2327 TracePhase tp(_t_iterGVN); 2328 igvn.optimize(); 2329 } 2330 2331 if (failing()) return; 2332 2333 print_method(PHASE_ITER_GVN1, 2); 2334 2335 process_for_unstable_if_traps(igvn); 2336 2337 if (failing()) return; 2338 2339 inline_incrementally(igvn); 2340 2341 print_method(PHASE_INCREMENTAL_INLINE, 2); 2342 2343 if (failing()) return; 2344 2345 if (eliminate_boxing()) { 2346 // Inline valueOf() methods now. 2347 inline_boxing_calls(igvn); 2348 2349 if (failing()) return; 2350 2351 if (AlwaysIncrementalInline || StressIncrementalInlining) { 2352 inline_incrementally(igvn); 2353 } 2354 2355 print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2); 2356 2357 if (failing()) return; 2358 } 2359 2360 // Remove the speculative part of types and clean up the graph from 2361 // the extra CastPP nodes whose only purpose is to carry them. Do 2362 // that early so that optimizations are not disrupted by the extra 2363 // CastPP nodes. 2364 remove_speculative_types(igvn); 2365 2366 if (failing()) return; 2367 2368 // No more new expensive nodes will be added to the list from here 2369 // so keep only the actual candidates for optimizations. 2370 cleanup_expensive_nodes(igvn); 2371 2372 if (failing()) return; 2373 2374 assert(EnableVectorSupport || !has_vbox_nodes(), "sanity"); 2375 if (EnableVectorSupport && has_vbox_nodes()) { 2376 TracePhase tp(_t_vector); 2377 PhaseVector pv(igvn); 2378 pv.optimize_vector_boxes(); 2379 if (failing()) return; 2380 print_method(PHASE_ITER_GVN_AFTER_VECTOR, 2); 2381 } 2382 assert(!has_vbox_nodes(), "sanity"); 2383 2384 if (!failing() && RenumberLiveNodes && live_nodes() + NodeLimitFudgeFactor < unique()) { 2385 Compile::TracePhase tp(_t_renumberLive); 2386 igvn_worklist()->ensure_empty(); // should be done with igvn 2387 { 2388 ResourceMark rm; 2389 PhaseRenumberLive prl(initial_gvn(), *igvn_worklist()); 2390 } 2391 igvn.reset_from_gvn(initial_gvn()); 2392 igvn.optimize(); 2393 if (failing()) return; 2394 } 2395 2396 // Now that all inlining is over and no PhaseRemoveUseless will run, cut edge from root to loop 2397 // safepoints 2398 remove_root_to_sfpts_edges(igvn); 2399 2400 if (failing()) return; 2401 2402 if (has_loops()) { 2403 print_method(PHASE_BEFORE_LOOP_OPTS, 2); 2404 } 2405 2406 // Perform escape analysis 2407 if (do_escape_analysis() && ConnectionGraph::has_candidates(this)) { 2408 if (has_loops()) { 2409 // Cleanup graph (remove dead nodes). 2410 TracePhase tp(_t_idealLoop); 2411 PhaseIdealLoop::optimize(igvn, LoopOptsMaxUnroll); 2412 if (failing()) return; 2413 } 2414 bool progress; 2415 print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2); 2416 do { 2417 ConnectionGraph::do_analysis(this, &igvn); 2418 2419 if (failing()) return; 2420 2421 int mcount = macro_count(); // Record number of allocations and locks before IGVN 2422 2423 // Optimize out fields loads from scalar replaceable allocations. 2424 igvn.optimize(); 2425 print_method(PHASE_ITER_GVN_AFTER_EA, 2); 2426 2427 if (failing()) return; 2428 2429 if (congraph() != nullptr && macro_count() > 0) { 2430 TracePhase tp(_t_macroEliminate); 2431 PhaseMacroExpand mexp(igvn); 2432 mexp.eliminate_macro_nodes(); 2433 if (failing()) return; 2434 2435 igvn.set_delay_transform(false); 2436 igvn.optimize(); 2437 if (failing()) return; 2438 2439 print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2); 2440 } 2441 2442 ConnectionGraph::verify_ram_nodes(this, root()); 2443 if (failing()) return; 2444 2445 progress = do_iterative_escape_analysis() && 2446 (macro_count() < mcount) && 2447 ConnectionGraph::has_candidates(this); 2448 // Try again if candidates exist and made progress 2449 // by removing some allocations and/or locks. 2450 } while (progress); 2451 } 2452 2453 // Loop transforms on the ideal graph. Range Check Elimination, 2454 // peeling, unrolling, etc. 2455 2456 // Set loop opts counter 2457 if((_loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) { 2458 { 2459 TracePhase tp(_t_idealLoop); 2460 PhaseIdealLoop::optimize(igvn, LoopOptsDefault); 2461 _loop_opts_cnt--; 2462 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2); 2463 if (failing()) return; 2464 } 2465 // Loop opts pass if partial peeling occurred in previous pass 2466 if(PartialPeelLoop && major_progress() && (_loop_opts_cnt > 0)) { 2467 TracePhase tp(_t_idealLoop); 2468 PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf); 2469 _loop_opts_cnt--; 2470 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2); 2471 if (failing()) return; 2472 } 2473 // Loop opts pass for loop-unrolling before CCP 2474 if(major_progress() && (_loop_opts_cnt > 0)) { 2475 TracePhase tp(_t_idealLoop); 2476 PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf); 2477 _loop_opts_cnt--; 2478 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2); 2479 } 2480 if (!failing()) { 2481 // Verify that last round of loop opts produced a valid graph 2482 PhaseIdealLoop::verify(igvn); 2483 } 2484 } 2485 if (failing()) return; 2486 2487 // Conditional Constant Propagation; 2488 print_method(PHASE_BEFORE_CCP1, 2); 2489 PhaseCCP ccp( &igvn ); 2490 assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)"); 2491 { 2492 TracePhase tp(_t_ccp); 2493 ccp.do_transform(); 2494 } 2495 print_method(PHASE_CCP1, 2); 2496 2497 assert( true, "Break here to ccp.dump_old2new_map()"); 2498 2499 // Iterative Global Value Numbering, including ideal transforms 2500 { 2501 TracePhase tp(_t_iterGVN2); 2502 igvn.reset_from_igvn(&ccp); 2503 igvn.optimize(); 2504 } 2505 print_method(PHASE_ITER_GVN2, 2); 2506 2507 if (failing()) return; 2508 2509 // Loop transforms on the ideal graph. Range Check Elimination, 2510 // peeling, unrolling, etc. 2511 if (!optimize_loops(igvn, LoopOptsDefault)) { 2512 return; 2513 } 2514 2515 if (failing()) return; 2516 2517 C->clear_major_progress(); // ensure that major progress is now clear 2518 2519 process_for_post_loop_opts_igvn(igvn); 2520 2521 process_for_merge_stores_igvn(igvn); 2522 2523 if (failing()) return; 2524 2525 #ifdef ASSERT 2526 bs->verify_gc_barriers(this, BarrierSetC2::BeforeMacroExpand); 2527 #endif 2528 2529 { 2530 TracePhase tp(_t_macroExpand); 2531 print_method(PHASE_BEFORE_MACRO_EXPANSION, 3); 2532 PhaseMacroExpand mex(igvn); 2533 if (mex.expand_macro_nodes()) { 2534 assert(failing(), "must bail out w/ explicit message"); 2535 return; 2536 } 2537 print_method(PHASE_AFTER_MACRO_EXPANSION, 2); 2538 } 2539 2540 { 2541 TracePhase tp(_t_barrierExpand); 2542 if (bs->expand_barriers(this, igvn)) { 2543 assert(failing(), "must bail out w/ explicit message"); 2544 return; 2545 } 2546 print_method(PHASE_BARRIER_EXPANSION, 2); 2547 } 2548 2549 if (C->max_vector_size() > 0) { 2550 C->optimize_logic_cones(igvn); 2551 igvn.optimize(); 2552 if (failing()) return; 2553 } 2554 2555 DEBUG_ONLY( _modified_nodes = nullptr; ) 2556 2557 assert(igvn._worklist.size() == 0, "not empty"); 2558 2559 assert(_late_inlines.length() == 0 || IncrementalInlineMH || IncrementalInlineVirtual, "not empty"); 2560 2561 if (_late_inlines.length() > 0) { 2562 // More opportunities to optimize virtual and MH calls. 2563 // Though it's maybe too late to perform inlining, strength-reducing them to direct calls is still an option. 2564 process_late_inline_calls_no_inline(igvn); 2565 if (failing()) return; 2566 } 2567 } // (End scope of igvn; run destructor if necessary for asserts.) 2568 2569 check_no_dead_use(); 2570 2571 // We will never use the NodeHash table any more. Clear it so that final_graph_reshaping does not have 2572 // to remove hashes to unlock nodes for modifications. 2573 C->node_hash()->clear(); 2574 2575 // A method with only infinite loops has no edges entering loops from root 2576 { 2577 TracePhase tp(_t_graphReshaping); 2578 if (final_graph_reshaping()) { 2579 assert(failing(), "must bail out w/ explicit message"); 2580 return; 2581 } 2582 } 2583 2584 print_method(PHASE_OPTIMIZE_FINISHED, 2); 2585 DEBUG_ONLY(set_phase_optimize_finished();) 2586 } 2587 2588 #ifdef ASSERT 2589 void Compile::check_no_dead_use() const { 2590 ResourceMark rm; 2591 Unique_Node_List wq; 2592 wq.push(root()); 2593 for (uint i = 0; i < wq.size(); ++i) { 2594 Node* n = wq.at(i); 2595 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) { 2596 Node* u = n->fast_out(j); 2597 if (u->outcnt() == 0 && !u->is_Con()) { 2598 u->dump(); 2599 fatal("no reachable node should have no use"); 2600 } 2601 wq.push(u); 2602 } 2603 } 2604 } 2605 #endif 2606 2607 void Compile::inline_vector_reboxing_calls() { 2608 if (C->_vector_reboxing_late_inlines.length() > 0) { 2609 _late_inlines_pos = C->_late_inlines.length(); 2610 while (_vector_reboxing_late_inlines.length() > 0) { 2611 CallGenerator* cg = _vector_reboxing_late_inlines.pop(); 2612 cg->do_late_inline(); 2613 if (failing()) return; 2614 print_method(PHASE_INLINE_VECTOR_REBOX, 3, cg->call_node()); 2615 } 2616 _vector_reboxing_late_inlines.trunc_to(0); 2617 } 2618 } 2619 2620 bool Compile::has_vbox_nodes() { 2621 if (C->_vector_reboxing_late_inlines.length() > 0) { 2622 return true; 2623 } 2624 for (int macro_idx = C->macro_count() - 1; macro_idx >= 0; macro_idx--) { 2625 Node * n = C->macro_node(macro_idx); 2626 assert(n->is_macro(), "only macro nodes expected here"); 2627 if (n->Opcode() == Op_VectorUnbox || n->Opcode() == Op_VectorBox || n->Opcode() == Op_VectorBoxAllocate) { 2628 return true; 2629 } 2630 } 2631 return false; 2632 } 2633 2634 //---------------------------- Bitwise operation packing optimization --------------------------- 2635 2636 static bool is_vector_unary_bitwise_op(Node* n) { 2637 return n->Opcode() == Op_XorV && 2638 VectorNode::is_vector_bitwise_not_pattern(n); 2639 } 2640 2641 static bool is_vector_binary_bitwise_op(Node* n) { 2642 switch (n->Opcode()) { 2643 case Op_AndV: 2644 case Op_OrV: 2645 return true; 2646 2647 case Op_XorV: 2648 return !is_vector_unary_bitwise_op(n); 2649 2650 default: 2651 return false; 2652 } 2653 } 2654 2655 static bool is_vector_ternary_bitwise_op(Node* n) { 2656 return n->Opcode() == Op_MacroLogicV; 2657 } 2658 2659 static bool is_vector_bitwise_op(Node* n) { 2660 return is_vector_unary_bitwise_op(n) || 2661 is_vector_binary_bitwise_op(n) || 2662 is_vector_ternary_bitwise_op(n); 2663 } 2664 2665 static bool is_vector_bitwise_cone_root(Node* n) { 2666 if (n->bottom_type()->isa_vectmask() || !is_vector_bitwise_op(n)) { 2667 return false; 2668 } 2669 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 2670 if (is_vector_bitwise_op(n->fast_out(i))) { 2671 return false; 2672 } 2673 } 2674 return true; 2675 } 2676 2677 static uint collect_unique_inputs(Node* n, Unique_Node_List& inputs) { 2678 uint cnt = 0; 2679 if (is_vector_bitwise_op(n)) { 2680 uint inp_cnt = n->is_predicated_vector() ? n->req()-1 : n->req(); 2681 if (VectorNode::is_vector_bitwise_not_pattern(n)) { 2682 for (uint i = 1; i < inp_cnt; i++) { 2683 Node* in = n->in(i); 2684 bool skip = VectorNode::is_all_ones_vector(in); 2685 if (!skip && !inputs.member(in)) { 2686 inputs.push(in); 2687 cnt++; 2688 } 2689 } 2690 assert(cnt <= 1, "not unary"); 2691 } else { 2692 uint last_req = inp_cnt; 2693 if (is_vector_ternary_bitwise_op(n)) { 2694 last_req = inp_cnt - 1; // skip last input 2695 } 2696 for (uint i = 1; i < last_req; i++) { 2697 Node* def = n->in(i); 2698 if (!inputs.member(def)) { 2699 inputs.push(def); 2700 cnt++; 2701 } 2702 } 2703 } 2704 } else { // not a bitwise operations 2705 if (!inputs.member(n)) { 2706 inputs.push(n); 2707 cnt++; 2708 } 2709 } 2710 return cnt; 2711 } 2712 2713 void Compile::collect_logic_cone_roots(Unique_Node_List& list) { 2714 Unique_Node_List useful_nodes; 2715 C->identify_useful_nodes(useful_nodes); 2716 2717 for (uint i = 0; i < useful_nodes.size(); i++) { 2718 Node* n = useful_nodes.at(i); 2719 if (is_vector_bitwise_cone_root(n)) { 2720 list.push(n); 2721 } 2722 } 2723 } 2724 2725 Node* Compile::xform_to_MacroLogicV(PhaseIterGVN& igvn, 2726 const TypeVect* vt, 2727 Unique_Node_List& partition, 2728 Unique_Node_List& inputs) { 2729 assert(partition.size() == 2 || partition.size() == 3, "not supported"); 2730 assert(inputs.size() == 2 || inputs.size() == 3, "not supported"); 2731 assert(Matcher::match_rule_supported_vector(Op_MacroLogicV, vt->length(), vt->element_basic_type()), "not supported"); 2732 2733 Node* in1 = inputs.at(0); 2734 Node* in2 = inputs.at(1); 2735 Node* in3 = (inputs.size() == 3 ? inputs.at(2) : in2); 2736 2737 uint func = compute_truth_table(partition, inputs); 2738 2739 Node* pn = partition.at(partition.size() - 1); 2740 Node* mask = pn->is_predicated_vector() ? pn->in(pn->req()-1) : nullptr; 2741 return igvn.transform(MacroLogicVNode::make(igvn, in1, in2, in3, mask, func, vt)); 2742 } 2743 2744 static uint extract_bit(uint func, uint pos) { 2745 return (func & (1 << pos)) >> pos; 2746 } 2747 2748 // 2749 // A macro logic node represents a truth table. It has 4 inputs, 2750 // First three inputs corresponds to 3 columns of a truth table 2751 // and fourth input captures the logic function. 2752 // 2753 // eg. fn = (in1 AND in2) OR in3; 2754 // 2755 // MacroNode(in1,in2,in3,fn) 2756 // 2757 // ----------------- 2758 // in1 in2 in3 fn 2759 // ----------------- 2760 // 0 0 0 0 2761 // 0 0 1 1 2762 // 0 1 0 0 2763 // 0 1 1 1 2764 // 1 0 0 0 2765 // 1 0 1 1 2766 // 1 1 0 1 2767 // 1 1 1 1 2768 // 2769 2770 uint Compile::eval_macro_logic_op(uint func, uint in1 , uint in2, uint in3) { 2771 int res = 0; 2772 for (int i = 0; i < 8; i++) { 2773 int bit1 = extract_bit(in1, i); 2774 int bit2 = extract_bit(in2, i); 2775 int bit3 = extract_bit(in3, i); 2776 2777 int func_bit_pos = (bit1 << 2 | bit2 << 1 | bit3); 2778 int func_bit = extract_bit(func, func_bit_pos); 2779 2780 res |= func_bit << i; 2781 } 2782 return res; 2783 } 2784 2785 static uint eval_operand(Node* n, ResourceHashtable<Node*,uint>& eval_map) { 2786 assert(n != nullptr, ""); 2787 assert(eval_map.contains(n), "absent"); 2788 return *(eval_map.get(n)); 2789 } 2790 2791 static void eval_operands(Node* n, 2792 uint& func1, uint& func2, uint& func3, 2793 ResourceHashtable<Node*,uint>& eval_map) { 2794 assert(is_vector_bitwise_op(n), ""); 2795 2796 if (is_vector_unary_bitwise_op(n)) { 2797 Node* opnd = n->in(1); 2798 if (VectorNode::is_vector_bitwise_not_pattern(n) && VectorNode::is_all_ones_vector(opnd)) { 2799 opnd = n->in(2); 2800 } 2801 func1 = eval_operand(opnd, eval_map); 2802 } else if (is_vector_binary_bitwise_op(n)) { 2803 func1 = eval_operand(n->in(1), eval_map); 2804 func2 = eval_operand(n->in(2), eval_map); 2805 } else { 2806 assert(is_vector_ternary_bitwise_op(n), "unknown operation"); 2807 func1 = eval_operand(n->in(1), eval_map); 2808 func2 = eval_operand(n->in(2), eval_map); 2809 func3 = eval_operand(n->in(3), eval_map); 2810 } 2811 } 2812 2813 uint Compile::compute_truth_table(Unique_Node_List& partition, Unique_Node_List& inputs) { 2814 assert(inputs.size() <= 3, "sanity"); 2815 ResourceMark rm; 2816 uint res = 0; 2817 ResourceHashtable<Node*,uint> eval_map; 2818 2819 // Populate precomputed functions for inputs. 2820 // Each input corresponds to one column of 3 input truth-table. 2821 uint input_funcs[] = { 0xAA, // (_, _, c) -> c 2822 0xCC, // (_, b, _) -> b 2823 0xF0 }; // (a, _, _) -> a 2824 for (uint i = 0; i < inputs.size(); i++) { 2825 eval_map.put(inputs.at(i), input_funcs[2-i]); 2826 } 2827 2828 for (uint i = 0; i < partition.size(); i++) { 2829 Node* n = partition.at(i); 2830 2831 uint func1 = 0, func2 = 0, func3 = 0; 2832 eval_operands(n, func1, func2, func3, eval_map); 2833 2834 switch (n->Opcode()) { 2835 case Op_OrV: 2836 assert(func3 == 0, "not binary"); 2837 res = func1 | func2; 2838 break; 2839 case Op_AndV: 2840 assert(func3 == 0, "not binary"); 2841 res = func1 & func2; 2842 break; 2843 case Op_XorV: 2844 if (VectorNode::is_vector_bitwise_not_pattern(n)) { 2845 assert(func2 == 0 && func3 == 0, "not unary"); 2846 res = (~func1) & 0xFF; 2847 } else { 2848 assert(func3 == 0, "not binary"); 2849 res = func1 ^ func2; 2850 } 2851 break; 2852 case Op_MacroLogicV: 2853 // Ordering of inputs may change during evaluation of sub-tree 2854 // containing MacroLogic node as a child node, thus a re-evaluation 2855 // makes sure that function is evaluated in context of current 2856 // inputs. 2857 res = eval_macro_logic_op(n->in(4)->get_int(), func1, func2, func3); 2858 break; 2859 2860 default: assert(false, "not supported: %s", n->Name()); 2861 } 2862 assert(res <= 0xFF, "invalid"); 2863 eval_map.put(n, res); 2864 } 2865 return res; 2866 } 2867 2868 // Criteria under which nodes gets packed into a macro logic node:- 2869 // 1) Parent and both child nodes are all unmasked or masked with 2870 // same predicates. 2871 // 2) Masked parent can be packed with left child if it is predicated 2872 // and both have same predicates. 2873 // 3) Masked parent can be packed with right child if its un-predicated 2874 // or has matching predication condition. 2875 // 4) An unmasked parent can be packed with an unmasked child. 2876 bool Compile::compute_logic_cone(Node* n, Unique_Node_List& partition, Unique_Node_List& inputs) { 2877 assert(partition.size() == 0, "not empty"); 2878 assert(inputs.size() == 0, "not empty"); 2879 if (is_vector_ternary_bitwise_op(n)) { 2880 return false; 2881 } 2882 2883 bool is_unary_op = is_vector_unary_bitwise_op(n); 2884 if (is_unary_op) { 2885 assert(collect_unique_inputs(n, inputs) == 1, "not unary"); 2886 return false; // too few inputs 2887 } 2888 2889 bool pack_left_child = true; 2890 bool pack_right_child = true; 2891 2892 bool left_child_LOP = is_vector_bitwise_op(n->in(1)); 2893 bool right_child_LOP = is_vector_bitwise_op(n->in(2)); 2894 2895 int left_child_input_cnt = 0; 2896 int right_child_input_cnt = 0; 2897 2898 bool parent_is_predicated = n->is_predicated_vector(); 2899 bool left_child_predicated = n->in(1)->is_predicated_vector(); 2900 bool right_child_predicated = n->in(2)->is_predicated_vector(); 2901 2902 Node* parent_pred = parent_is_predicated ? n->in(n->req()-1) : nullptr; 2903 Node* left_child_pred = left_child_predicated ? n->in(1)->in(n->in(1)->req()-1) : nullptr; 2904 Node* right_child_pred = right_child_predicated ? n->in(1)->in(n->in(1)->req()-1) : nullptr; 2905 2906 do { 2907 if (pack_left_child && left_child_LOP && 2908 ((!parent_is_predicated && !left_child_predicated) || 2909 ((parent_is_predicated && left_child_predicated && 2910 parent_pred == left_child_pred)))) { 2911 partition.push(n->in(1)); 2912 left_child_input_cnt = collect_unique_inputs(n->in(1), inputs); 2913 } else { 2914 inputs.push(n->in(1)); 2915 left_child_input_cnt = 1; 2916 } 2917 2918 if (pack_right_child && right_child_LOP && 2919 (!right_child_predicated || 2920 (right_child_predicated && parent_is_predicated && 2921 parent_pred == right_child_pred))) { 2922 partition.push(n->in(2)); 2923 right_child_input_cnt = collect_unique_inputs(n->in(2), inputs); 2924 } else { 2925 inputs.push(n->in(2)); 2926 right_child_input_cnt = 1; 2927 } 2928 2929 if (inputs.size() > 3) { 2930 assert(partition.size() > 0, ""); 2931 inputs.clear(); 2932 partition.clear(); 2933 if (left_child_input_cnt > right_child_input_cnt) { 2934 pack_left_child = false; 2935 } else { 2936 pack_right_child = false; 2937 } 2938 } else { 2939 break; 2940 } 2941 } while(true); 2942 2943 if(partition.size()) { 2944 partition.push(n); 2945 } 2946 2947 return (partition.size() == 2 || partition.size() == 3) && 2948 (inputs.size() == 2 || inputs.size() == 3); 2949 } 2950 2951 void Compile::process_logic_cone_root(PhaseIterGVN &igvn, Node *n, VectorSet &visited) { 2952 assert(is_vector_bitwise_op(n), "not a root"); 2953 2954 visited.set(n->_idx); 2955 2956 // 1) Do a DFS walk over the logic cone. 2957 for (uint i = 1; i < n->req(); i++) { 2958 Node* in = n->in(i); 2959 if (!visited.test(in->_idx) && is_vector_bitwise_op(in)) { 2960 process_logic_cone_root(igvn, in, visited); 2961 } 2962 } 2963 2964 // 2) Bottom up traversal: Merge node[s] with 2965 // the parent to form macro logic node. 2966 Unique_Node_List partition; 2967 Unique_Node_List inputs; 2968 if (compute_logic_cone(n, partition, inputs)) { 2969 const TypeVect* vt = n->bottom_type()->is_vect(); 2970 Node* pn = partition.at(partition.size() - 1); 2971 Node* mask = pn->is_predicated_vector() ? pn->in(pn->req()-1) : nullptr; 2972 if (mask == nullptr || 2973 Matcher::match_rule_supported_vector_masked(Op_MacroLogicV, vt->length(), vt->element_basic_type())) { 2974 Node* macro_logic = xform_to_MacroLogicV(igvn, vt, partition, inputs); 2975 VectorNode::trace_new_vector(macro_logic, "MacroLogic"); 2976 igvn.replace_node(n, macro_logic); 2977 } 2978 } 2979 } 2980 2981 void Compile::optimize_logic_cones(PhaseIterGVN &igvn) { 2982 ResourceMark rm; 2983 if (Matcher::match_rule_supported(Op_MacroLogicV)) { 2984 Unique_Node_List list; 2985 collect_logic_cone_roots(list); 2986 2987 while (list.size() > 0) { 2988 Node* n = list.pop(); 2989 const TypeVect* vt = n->bottom_type()->is_vect(); 2990 bool supported = Matcher::match_rule_supported_vector(Op_MacroLogicV, vt->length(), vt->element_basic_type()); 2991 if (supported) { 2992 VectorSet visited(comp_arena()); 2993 process_logic_cone_root(igvn, n, visited); 2994 } 2995 } 2996 } 2997 } 2998 2999 //------------------------------Code_Gen--------------------------------------- 3000 // Given a graph, generate code for it 3001 void Compile::Code_Gen() { 3002 if (failing()) { 3003 return; 3004 } 3005 3006 // Perform instruction selection. You might think we could reclaim Matcher 3007 // memory PDQ, but actually the Matcher is used in generating spill code. 3008 // Internals of the Matcher (including some VectorSets) must remain live 3009 // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage 3010 // set a bit in reclaimed memory. 3011 3012 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine 3013 // nodes. Mapping is only valid at the root of each matched subtree. 3014 NOT_PRODUCT( verify_graph_edges(); ) 3015 3016 Matcher matcher; 3017 _matcher = &matcher; 3018 { 3019 TracePhase tp(_t_matcher); 3020 matcher.match(); 3021 if (failing()) { 3022 return; 3023 } 3024 } 3025 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine 3026 // nodes. Mapping is only valid at the root of each matched subtree. 3027 NOT_PRODUCT( verify_graph_edges(); ) 3028 3029 // If you have too many nodes, or if matching has failed, bail out 3030 check_node_count(0, "out of nodes matching instructions"); 3031 if (failing()) { 3032 return; 3033 } 3034 3035 print_method(PHASE_MATCHING, 2); 3036 3037 // Build a proper-looking CFG 3038 PhaseCFG cfg(node_arena(), root(), matcher); 3039 if (failing()) { 3040 return; 3041 } 3042 _cfg = &cfg; 3043 { 3044 TracePhase tp(_t_scheduler); 3045 bool success = cfg.do_global_code_motion(); 3046 if (!success) { 3047 return; 3048 } 3049 3050 print_method(PHASE_GLOBAL_CODE_MOTION, 2); 3051 NOT_PRODUCT( verify_graph_edges(); ) 3052 cfg.verify(); 3053 if (failing()) { 3054 return; 3055 } 3056 } 3057 3058 PhaseChaitin regalloc(unique(), cfg, matcher, false); 3059 _regalloc = ®alloc; 3060 { 3061 TracePhase tp(_t_registerAllocation); 3062 // Perform register allocation. After Chaitin, use-def chains are 3063 // no longer accurate (at spill code) and so must be ignored. 3064 // Node->LRG->reg mappings are still accurate. 3065 _regalloc->Register_Allocate(); 3066 3067 // Bail out if the allocator builds too many nodes 3068 if (failing()) { 3069 return; 3070 } 3071 3072 print_method(PHASE_REGISTER_ALLOCATION, 2); 3073 } 3074 3075 // Prior to register allocation we kept empty basic blocks in case the 3076 // the allocator needed a place to spill. After register allocation we 3077 // are not adding any new instructions. If any basic block is empty, we 3078 // can now safely remove it. 3079 { 3080 TracePhase tp(_t_blockOrdering); 3081 cfg.remove_empty_blocks(); 3082 if (do_freq_based_layout()) { 3083 PhaseBlockLayout layout(cfg); 3084 } else { 3085 cfg.set_loop_alignment(); 3086 } 3087 cfg.fixup_flow(); 3088 cfg.remove_unreachable_blocks(); 3089 cfg.verify_dominator_tree(); 3090 print_method(PHASE_BLOCK_ORDERING, 3); 3091 } 3092 3093 // Apply peephole optimizations 3094 if( OptoPeephole ) { 3095 TracePhase tp(_t_peephole); 3096 PhasePeephole peep( _regalloc, cfg); 3097 peep.do_transform(); 3098 print_method(PHASE_PEEPHOLE, 3); 3099 } 3100 3101 // Do late expand if CPU requires this. 3102 if (Matcher::require_postalloc_expand) { 3103 TracePhase tp(_t_postalloc_expand); 3104 cfg.postalloc_expand(_regalloc); 3105 print_method(PHASE_POSTALLOC_EXPAND, 3); 3106 } 3107 3108 #ifdef ASSERT 3109 { 3110 CompilationMemoryStatistic::do_test_allocations(); 3111 if (failing()) return; 3112 } 3113 #endif 3114 3115 // Convert Nodes to instruction bits in a buffer 3116 { 3117 TracePhase tp(_t_output); 3118 PhaseOutput output; 3119 output.Output(); 3120 if (failing()) return; 3121 output.install(); 3122 print_method(PHASE_FINAL_CODE, 1); // Compile::_output is not null here 3123 } 3124 3125 // He's dead, Jim. 3126 _cfg = (PhaseCFG*)((intptr_t)0xdeadbeef); 3127 _regalloc = (PhaseChaitin*)((intptr_t)0xdeadbeef); 3128 } 3129 3130 //------------------------------Final_Reshape_Counts--------------------------- 3131 // This class defines counters to help identify when a method 3132 // may/must be executed using hardware with only 24-bit precision. 3133 struct Final_Reshape_Counts : public StackObj { 3134 int _call_count; // count non-inlined 'common' calls 3135 int _float_count; // count float ops requiring 24-bit precision 3136 int _double_count; // count double ops requiring more precision 3137 int _java_call_count; // count non-inlined 'java' calls 3138 int _inner_loop_count; // count loops which need alignment 3139 VectorSet _visited; // Visitation flags 3140 Node_List _tests; // Set of IfNodes & PCTableNodes 3141 3142 Final_Reshape_Counts() : 3143 _call_count(0), _float_count(0), _double_count(0), 3144 _java_call_count(0), _inner_loop_count(0) { } 3145 3146 void inc_call_count () { _call_count ++; } 3147 void inc_float_count () { _float_count ++; } 3148 void inc_double_count() { _double_count++; } 3149 void inc_java_call_count() { _java_call_count++; } 3150 void inc_inner_loop_count() { _inner_loop_count++; } 3151 3152 int get_call_count () const { return _call_count ; } 3153 int get_float_count () const { return _float_count ; } 3154 int get_double_count() const { return _double_count; } 3155 int get_java_call_count() const { return _java_call_count; } 3156 int get_inner_loop_count() const { return _inner_loop_count; } 3157 }; 3158 3159 //------------------------------final_graph_reshaping_impl---------------------- 3160 // Implement items 1-5 from final_graph_reshaping below. 3161 void Compile::final_graph_reshaping_impl(Node *n, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes) { 3162 3163 if ( n->outcnt() == 0 ) return; // dead node 3164 uint nop = n->Opcode(); 3165 3166 // Check for 2-input instruction with "last use" on right input. 3167 // Swap to left input. Implements item (2). 3168 if( n->req() == 3 && // two-input instruction 3169 n->in(1)->outcnt() > 1 && // left use is NOT a last use 3170 (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop 3171 n->in(2)->outcnt() == 1 &&// right use IS a last use 3172 !n->in(2)->is_Con() ) { // right use is not a constant 3173 // Check for commutative opcode 3174 switch( nop ) { 3175 case Op_AddI: case Op_AddF: case Op_AddD: case Op_AddL: 3176 case Op_MaxI: case Op_MaxL: case Op_MaxF: case Op_MaxD: 3177 case Op_MinI: case Op_MinL: case Op_MinF: case Op_MinD: 3178 case Op_MulI: case Op_MulF: case Op_MulD: case Op_MulL: 3179 case Op_AndL: case Op_XorL: case Op_OrL: 3180 case Op_AndI: case Op_XorI: case Op_OrI: { 3181 // Move "last use" input to left by swapping inputs 3182 n->swap_edges(1, 2); 3183 break; 3184 } 3185 default: 3186 break; 3187 } 3188 } 3189 3190 #ifdef ASSERT 3191 if( n->is_Mem() ) { 3192 int alias_idx = get_alias_index(n->as_Mem()->adr_type()); 3193 assert( n->in(0) != nullptr || alias_idx != Compile::AliasIdxRaw || 3194 // oop will be recorded in oop map if load crosses safepoint 3195 (n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() || 3196 LoadNode::is_immutable_value(n->in(MemNode::Address)))), 3197 "raw memory operations should have control edge"); 3198 } 3199 if (n->is_MemBar()) { 3200 MemBarNode* mb = n->as_MemBar(); 3201 if (mb->trailing_store() || mb->trailing_load_store()) { 3202 assert(mb->leading_membar()->trailing_membar() == mb, "bad membar pair"); 3203 Node* mem = BarrierSet::barrier_set()->barrier_set_c2()->step_over_gc_barrier(mb->in(MemBarNode::Precedent)); 3204 assert((mb->trailing_store() && mem->is_Store() && mem->as_Store()->is_release()) || 3205 (mb->trailing_load_store() && mem->is_LoadStore()), "missing mem op"); 3206 } else if (mb->leading()) { 3207 assert(mb->trailing_membar()->leading_membar() == mb, "bad membar pair"); 3208 } 3209 } 3210 #endif 3211 // Count FPU ops and common calls, implements item (3) 3212 bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->final_graph_reshaping(this, n, nop, dead_nodes); 3213 if (!gc_handled) { 3214 final_graph_reshaping_main_switch(n, frc, nop, dead_nodes); 3215 } 3216 3217 // Collect CFG split points 3218 if (n->is_MultiBranch() && !n->is_RangeCheck()) { 3219 frc._tests.push(n); 3220 } 3221 } 3222 3223 void Compile::handle_div_mod_op(Node* n, BasicType bt, bool is_unsigned) { 3224 if (!UseDivMod) { 3225 return; 3226 } 3227 3228 // Check if "a % b" and "a / b" both exist 3229 Node* d = n->find_similar(Op_DivIL(bt, is_unsigned)); 3230 if (d == nullptr) { 3231 return; 3232 } 3233 3234 // Replace them with a fused divmod if supported 3235 if (Matcher::has_match_rule(Op_DivModIL(bt, is_unsigned))) { 3236 DivModNode* divmod = DivModNode::make(n, bt, is_unsigned); 3237 // If the divisor input for a Div (or Mod etc.) is not zero, then the control input of the Div is set to zero. 3238 // It could be that the divisor input is found not zero because its type is narrowed down by a CastII in the 3239 // subgraph for that input. Range check CastIIs are removed during final graph reshape. To preserve the dependency 3240 // carried by a CastII, precedence edges are added to the Div node. We need to transfer the precedence edges to the 3241 // DivMod node so the dependency is not lost. 3242 divmod->add_prec_from(n); 3243 divmod->add_prec_from(d); 3244 d->subsume_by(divmod->div_proj(), this); 3245 n->subsume_by(divmod->mod_proj(), this); 3246 } else { 3247 // Replace "a % b" with "a - ((a / b) * b)" 3248 Node* mult = MulNode::make(d, d->in(2), bt); 3249 Node* sub = SubNode::make(d->in(1), mult, bt); 3250 n->subsume_by(sub, this); 3251 } 3252 } 3253 3254 void Compile::final_graph_reshaping_main_switch(Node* n, Final_Reshape_Counts& frc, uint nop, Unique_Node_List& dead_nodes) { 3255 switch( nop ) { 3256 // Count all float operations that may use FPU 3257 case Op_AddF: 3258 case Op_SubF: 3259 case Op_MulF: 3260 case Op_DivF: 3261 case Op_NegF: 3262 case Op_ModF: 3263 case Op_ConvI2F: 3264 case Op_ConF: 3265 case Op_CmpF: 3266 case Op_CmpF3: 3267 case Op_StoreF: 3268 case Op_LoadF: 3269 // case Op_ConvL2F: // longs are split into 32-bit halves 3270 frc.inc_float_count(); 3271 break; 3272 3273 case Op_ConvF2D: 3274 case Op_ConvD2F: 3275 frc.inc_float_count(); 3276 frc.inc_double_count(); 3277 break; 3278 3279 // Count all double operations that may use FPU 3280 case Op_AddD: 3281 case Op_SubD: 3282 case Op_MulD: 3283 case Op_DivD: 3284 case Op_NegD: 3285 case Op_ModD: 3286 case Op_ConvI2D: 3287 case Op_ConvD2I: 3288 // case Op_ConvL2D: // handled by leaf call 3289 // case Op_ConvD2L: // handled by leaf call 3290 case Op_ConD: 3291 case Op_CmpD: 3292 case Op_CmpD3: 3293 case Op_StoreD: 3294 case Op_LoadD: 3295 case Op_LoadD_unaligned: 3296 frc.inc_double_count(); 3297 break; 3298 case Op_Opaque1: // Remove Opaque Nodes before matching 3299 n->subsume_by(n->in(1), this); 3300 break; 3301 case Op_CallStaticJava: 3302 case Op_CallJava: 3303 case Op_CallDynamicJava: 3304 frc.inc_java_call_count(); // Count java call site; 3305 case Op_CallRuntime: 3306 case Op_CallLeaf: 3307 case Op_CallLeafVector: 3308 case Op_CallLeafNoFP: { 3309 assert (n->is_Call(), ""); 3310 CallNode *call = n->as_Call(); 3311 // Count call sites where the FP mode bit would have to be flipped. 3312 // Do not count uncommon runtime calls: 3313 // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking, 3314 // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ... 3315 if (!call->is_CallStaticJava() || !call->as_CallStaticJava()->_name) { 3316 frc.inc_call_count(); // Count the call site 3317 } else { // See if uncommon argument is shared 3318 Node *n = call->in(TypeFunc::Parms); 3319 int nop = n->Opcode(); 3320 // Clone shared simple arguments to uncommon calls, item (1). 3321 if (n->outcnt() > 1 && 3322 !n->is_Proj() && 3323 nop != Op_CreateEx && 3324 nop != Op_CheckCastPP && 3325 nop != Op_DecodeN && 3326 nop != Op_DecodeNKlass && 3327 !n->is_Mem() && 3328 !n->is_Phi()) { 3329 Node *x = n->clone(); 3330 call->set_req(TypeFunc::Parms, x); 3331 } 3332 } 3333 break; 3334 } 3335 case Op_StoreB: 3336 case Op_StoreC: 3337 case Op_StoreI: 3338 case Op_StoreL: 3339 case Op_CompareAndSwapB: 3340 case Op_CompareAndSwapS: 3341 case Op_CompareAndSwapI: 3342 case Op_CompareAndSwapL: 3343 case Op_CompareAndSwapP: 3344 case Op_CompareAndSwapN: 3345 case Op_WeakCompareAndSwapB: 3346 case Op_WeakCompareAndSwapS: 3347 case Op_WeakCompareAndSwapI: 3348 case Op_WeakCompareAndSwapL: 3349 case Op_WeakCompareAndSwapP: 3350 case Op_WeakCompareAndSwapN: 3351 case Op_CompareAndExchangeB: 3352 case Op_CompareAndExchangeS: 3353 case Op_CompareAndExchangeI: 3354 case Op_CompareAndExchangeL: 3355 case Op_CompareAndExchangeP: 3356 case Op_CompareAndExchangeN: 3357 case Op_GetAndAddS: 3358 case Op_GetAndAddB: 3359 case Op_GetAndAddI: 3360 case Op_GetAndAddL: 3361 case Op_GetAndSetS: 3362 case Op_GetAndSetB: 3363 case Op_GetAndSetI: 3364 case Op_GetAndSetL: 3365 case Op_GetAndSetP: 3366 case Op_GetAndSetN: 3367 case Op_StoreP: 3368 case Op_StoreN: 3369 case Op_StoreNKlass: 3370 case Op_LoadB: 3371 case Op_LoadUB: 3372 case Op_LoadUS: 3373 case Op_LoadI: 3374 case Op_LoadKlass: 3375 case Op_LoadNKlass: 3376 case Op_LoadL: 3377 case Op_LoadL_unaligned: 3378 case Op_LoadP: 3379 case Op_LoadN: 3380 case Op_LoadRange: 3381 case Op_LoadS: 3382 break; 3383 3384 case Op_AddP: { // Assert sane base pointers 3385 Node *addp = n->in(AddPNode::Address); 3386 assert( !addp->is_AddP() || 3387 addp->in(AddPNode::Base)->is_top() || // Top OK for allocation 3388 addp->in(AddPNode::Base) == n->in(AddPNode::Base), 3389 "Base pointers must match (addp %u)", addp->_idx ); 3390 #ifdef _LP64 3391 if ((UseCompressedOops || UseCompressedClassPointers) && 3392 addp->Opcode() == Op_ConP && 3393 addp == n->in(AddPNode::Base) && 3394 n->in(AddPNode::Offset)->is_Con()) { 3395 // If the transformation of ConP to ConN+DecodeN is beneficial depends 3396 // on the platform and on the compressed oops mode. 3397 // Use addressing with narrow klass to load with offset on x86. 3398 // Some platforms can use the constant pool to load ConP. 3399 // Do this transformation here since IGVN will convert ConN back to ConP. 3400 const Type* t = addp->bottom_type(); 3401 bool is_oop = t->isa_oopptr() != nullptr; 3402 bool is_klass = t->isa_klassptr() != nullptr; 3403 3404 if ((is_oop && UseCompressedOops && Matcher::const_oop_prefer_decode() ) || 3405 (is_klass && UseCompressedClassPointers && Matcher::const_klass_prefer_decode() && 3406 t->isa_klassptr()->exact_klass()->is_in_encoding_range())) { 3407 Node* nn = nullptr; 3408 3409 int op = is_oop ? Op_ConN : Op_ConNKlass; 3410 3411 // Look for existing ConN node of the same exact type. 3412 Node* r = root(); 3413 uint cnt = r->outcnt(); 3414 for (uint i = 0; i < cnt; i++) { 3415 Node* m = r->raw_out(i); 3416 if (m!= nullptr && m->Opcode() == op && 3417 m->bottom_type()->make_ptr() == t) { 3418 nn = m; 3419 break; 3420 } 3421 } 3422 if (nn != nullptr) { 3423 // Decode a narrow oop to match address 3424 // [R12 + narrow_oop_reg<<3 + offset] 3425 if (is_oop) { 3426 nn = new DecodeNNode(nn, t); 3427 } else { 3428 nn = new DecodeNKlassNode(nn, t); 3429 } 3430 // Check for succeeding AddP which uses the same Base. 3431 // Otherwise we will run into the assertion above when visiting that guy. 3432 for (uint i = 0; i < n->outcnt(); ++i) { 3433 Node *out_i = n->raw_out(i); 3434 if (out_i && out_i->is_AddP() && out_i->in(AddPNode::Base) == addp) { 3435 out_i->set_req(AddPNode::Base, nn); 3436 #ifdef ASSERT 3437 for (uint j = 0; j < out_i->outcnt(); ++j) { 3438 Node *out_j = out_i->raw_out(j); 3439 assert(out_j == nullptr || !out_j->is_AddP() || out_j->in(AddPNode::Base) != addp, 3440 "more than 2 AddP nodes in a chain (out_j %u)", out_j->_idx); 3441 } 3442 #endif 3443 } 3444 } 3445 n->set_req(AddPNode::Base, nn); 3446 n->set_req(AddPNode::Address, nn); 3447 if (addp->outcnt() == 0) { 3448 addp->disconnect_inputs(this); 3449 } 3450 } 3451 } 3452 } 3453 #endif 3454 break; 3455 } 3456 3457 case Op_CastPP: { 3458 // Remove CastPP nodes to gain more freedom during scheduling but 3459 // keep the dependency they encode as control or precedence edges 3460 // (if control is set already) on memory operations. Some CastPP 3461 // nodes don't have a control (don't carry a dependency): skip 3462 // those. 3463 if (n->in(0) != nullptr) { 3464 ResourceMark rm; 3465 Unique_Node_List wq; 3466 wq.push(n); 3467 for (uint next = 0; next < wq.size(); ++next) { 3468 Node *m = wq.at(next); 3469 for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) { 3470 Node* use = m->fast_out(i); 3471 if (use->is_Mem() || use->is_EncodeNarrowPtr()) { 3472 use->ensure_control_or_add_prec(n->in(0)); 3473 } else { 3474 switch(use->Opcode()) { 3475 case Op_AddP: 3476 case Op_DecodeN: 3477 case Op_DecodeNKlass: 3478 case Op_CheckCastPP: 3479 case Op_CastPP: 3480 wq.push(use); 3481 break; 3482 } 3483 } 3484 } 3485 } 3486 } 3487 const bool is_LP64 = LP64_ONLY(true) NOT_LP64(false); 3488 if (is_LP64 && n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) { 3489 Node* in1 = n->in(1); 3490 const Type* t = n->bottom_type(); 3491 Node* new_in1 = in1->clone(); 3492 new_in1->as_DecodeN()->set_type(t); 3493 3494 if (!Matcher::narrow_oop_use_complex_address()) { 3495 // 3496 // x86, ARM and friends can handle 2 adds in addressing mode 3497 // and Matcher can fold a DecodeN node into address by using 3498 // a narrow oop directly and do implicit null check in address: 3499 // 3500 // [R12 + narrow_oop_reg<<3 + offset] 3501 // NullCheck narrow_oop_reg 3502 // 3503 // On other platforms (Sparc) we have to keep new DecodeN node and 3504 // use it to do implicit null check in address: 3505 // 3506 // decode_not_null narrow_oop_reg, base_reg 3507 // [base_reg + offset] 3508 // NullCheck base_reg 3509 // 3510 // Pin the new DecodeN node to non-null path on these platform (Sparc) 3511 // to keep the information to which null check the new DecodeN node 3512 // corresponds to use it as value in implicit_null_check(). 3513 // 3514 new_in1->set_req(0, n->in(0)); 3515 } 3516 3517 n->subsume_by(new_in1, this); 3518 if (in1->outcnt() == 0) { 3519 in1->disconnect_inputs(this); 3520 } 3521 } else { 3522 n->subsume_by(n->in(1), this); 3523 if (n->outcnt() == 0) { 3524 n->disconnect_inputs(this); 3525 } 3526 } 3527 break; 3528 } 3529 case Op_CastII: { 3530 n->as_CastII()->remove_range_check_cast(this); 3531 break; 3532 } 3533 #ifdef _LP64 3534 case Op_CmpP: 3535 // Do this transformation here to preserve CmpPNode::sub() and 3536 // other TypePtr related Ideal optimizations (for example, ptr nullness). 3537 if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) { 3538 Node* in1 = n->in(1); 3539 Node* in2 = n->in(2); 3540 if (!in1->is_DecodeNarrowPtr()) { 3541 in2 = in1; 3542 in1 = n->in(2); 3543 } 3544 assert(in1->is_DecodeNarrowPtr(), "sanity"); 3545 3546 Node* new_in2 = nullptr; 3547 if (in2->is_DecodeNarrowPtr()) { 3548 assert(in2->Opcode() == in1->Opcode(), "must be same node type"); 3549 new_in2 = in2->in(1); 3550 } else if (in2->Opcode() == Op_ConP) { 3551 const Type* t = in2->bottom_type(); 3552 if (t == TypePtr::NULL_PTR) { 3553 assert(in1->is_DecodeN(), "compare klass to null?"); 3554 // Don't convert CmpP null check into CmpN if compressed 3555 // oops implicit null check is not generated. 3556 // This will allow to generate normal oop implicit null check. 3557 if (Matcher::gen_narrow_oop_implicit_null_checks()) 3558 new_in2 = ConNode::make(TypeNarrowOop::NULL_PTR); 3559 // 3560 // This transformation together with CastPP transformation above 3561 // will generated code for implicit null checks for compressed oops. 3562 // 3563 // The original code after Optimize() 3564 // 3565 // LoadN memory, narrow_oop_reg 3566 // decode narrow_oop_reg, base_reg 3567 // CmpP base_reg, nullptr 3568 // CastPP base_reg // NotNull 3569 // Load [base_reg + offset], val_reg 3570 // 3571 // after these transformations will be 3572 // 3573 // LoadN memory, narrow_oop_reg 3574 // CmpN narrow_oop_reg, nullptr 3575 // decode_not_null narrow_oop_reg, base_reg 3576 // Load [base_reg + offset], val_reg 3577 // 3578 // and the uncommon path (== nullptr) will use narrow_oop_reg directly 3579 // since narrow oops can be used in debug info now (see the code in 3580 // final_graph_reshaping_walk()). 3581 // 3582 // At the end the code will be matched to 3583 // on x86: 3584 // 3585 // Load_narrow_oop memory, narrow_oop_reg 3586 // Load [R12 + narrow_oop_reg<<3 + offset], val_reg 3587 // NullCheck narrow_oop_reg 3588 // 3589 // and on sparc: 3590 // 3591 // Load_narrow_oop memory, narrow_oop_reg 3592 // decode_not_null narrow_oop_reg, base_reg 3593 // Load [base_reg + offset], val_reg 3594 // NullCheck base_reg 3595 // 3596 } else if (t->isa_oopptr()) { 3597 new_in2 = ConNode::make(t->make_narrowoop()); 3598 } else if (t->isa_klassptr()) { 3599 new_in2 = ConNode::make(t->make_narrowklass()); 3600 } 3601 } 3602 if (new_in2 != nullptr) { 3603 Node* cmpN = new CmpNNode(in1->in(1), new_in2); 3604 n->subsume_by(cmpN, this); 3605 if (in1->outcnt() == 0) { 3606 in1->disconnect_inputs(this); 3607 } 3608 if (in2->outcnt() == 0) { 3609 in2->disconnect_inputs(this); 3610 } 3611 } 3612 } 3613 break; 3614 3615 case Op_DecodeN: 3616 case Op_DecodeNKlass: 3617 assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out"); 3618 // DecodeN could be pinned when it can't be fold into 3619 // an address expression, see the code for Op_CastPP above. 3620 assert(n->in(0) == nullptr || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control"); 3621 break; 3622 3623 case Op_EncodeP: 3624 case Op_EncodePKlass: { 3625 Node* in1 = n->in(1); 3626 if (in1->is_DecodeNarrowPtr()) { 3627 n->subsume_by(in1->in(1), this); 3628 } else if (in1->Opcode() == Op_ConP) { 3629 const Type* t = in1->bottom_type(); 3630 if (t == TypePtr::NULL_PTR) { 3631 assert(t->isa_oopptr(), "null klass?"); 3632 n->subsume_by(ConNode::make(TypeNarrowOop::NULL_PTR), this); 3633 } else if (t->isa_oopptr()) { 3634 n->subsume_by(ConNode::make(t->make_narrowoop()), this); 3635 } else if (t->isa_klassptr()) { 3636 n->subsume_by(ConNode::make(t->make_narrowklass()), this); 3637 } 3638 } 3639 if (in1->outcnt() == 0) { 3640 in1->disconnect_inputs(this); 3641 } 3642 break; 3643 } 3644 3645 case Op_Proj: { 3646 if (OptimizeStringConcat || IncrementalInline) { 3647 ProjNode* proj = n->as_Proj(); 3648 if (proj->_is_io_use) { 3649 assert(proj->_con == TypeFunc::I_O || proj->_con == TypeFunc::Memory, ""); 3650 // Separate projections were used for the exception path which 3651 // are normally removed by a late inline. If it wasn't inlined 3652 // then they will hang around and should just be replaced with 3653 // the original one. Merge them. 3654 Node* non_io_proj = proj->in(0)->as_Multi()->proj_out_or_null(proj->_con, false /*is_io_use*/); 3655 if (non_io_proj != nullptr) { 3656 proj->subsume_by(non_io_proj , this); 3657 } 3658 } 3659 } 3660 break; 3661 } 3662 3663 case Op_Phi: 3664 if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) { 3665 // The EncodeP optimization may create Phi with the same edges 3666 // for all paths. It is not handled well by Register Allocator. 3667 Node* unique_in = n->in(1); 3668 assert(unique_in != nullptr, ""); 3669 uint cnt = n->req(); 3670 for (uint i = 2; i < cnt; i++) { 3671 Node* m = n->in(i); 3672 assert(m != nullptr, ""); 3673 if (unique_in != m) 3674 unique_in = nullptr; 3675 } 3676 if (unique_in != nullptr) { 3677 n->subsume_by(unique_in, this); 3678 } 3679 } 3680 break; 3681 3682 #endif 3683 3684 case Op_ModI: 3685 handle_div_mod_op(n, T_INT, false); 3686 break; 3687 3688 case Op_ModL: 3689 handle_div_mod_op(n, T_LONG, false); 3690 break; 3691 3692 case Op_UModI: 3693 handle_div_mod_op(n, T_INT, true); 3694 break; 3695 3696 case Op_UModL: 3697 handle_div_mod_op(n, T_LONG, true); 3698 break; 3699 3700 case Op_LoadVector: 3701 case Op_StoreVector: 3702 #ifdef ASSERT 3703 // Add VerifyVectorAlignment node between adr and load / store. 3704 if (VerifyAlignVector && Matcher::has_match_rule(Op_VerifyVectorAlignment)) { 3705 bool must_verify_alignment = n->is_LoadVector() ? n->as_LoadVector()->must_verify_alignment() : 3706 n->as_StoreVector()->must_verify_alignment(); 3707 if (must_verify_alignment) { 3708 jlong vector_width = n->is_LoadVector() ? n->as_LoadVector()->memory_size() : 3709 n->as_StoreVector()->memory_size(); 3710 // The memory access should be aligned to the vector width in bytes. 3711 // However, the underlying array is possibly less well aligned, but at least 3712 // to ObjectAlignmentInBytes. Hence, even if multiple arrays are accessed in 3713 // a loop we can expect at least the following alignment: 3714 jlong guaranteed_alignment = MIN2(vector_width, (jlong)ObjectAlignmentInBytes); 3715 assert(2 <= guaranteed_alignment && guaranteed_alignment <= 64, "alignment must be in range"); 3716 assert(is_power_of_2(guaranteed_alignment), "alignment must be power of 2"); 3717 // Create mask from alignment. e.g. 0b1000 -> 0b0111 3718 jlong mask = guaranteed_alignment - 1; 3719 Node* mask_con = ConLNode::make(mask); 3720 VerifyVectorAlignmentNode* va = new VerifyVectorAlignmentNode(n->in(MemNode::Address), mask_con); 3721 n->set_req(MemNode::Address, va); 3722 } 3723 } 3724 #endif 3725 break; 3726 3727 case Op_LoadVectorGather: 3728 case Op_StoreVectorScatter: 3729 case Op_LoadVectorGatherMasked: 3730 case Op_StoreVectorScatterMasked: 3731 case Op_VectorCmpMasked: 3732 case Op_VectorMaskGen: 3733 case Op_LoadVectorMasked: 3734 case Op_StoreVectorMasked: 3735 break; 3736 3737 case Op_AddReductionVI: 3738 case Op_AddReductionVL: 3739 case Op_AddReductionVF: 3740 case Op_AddReductionVD: 3741 case Op_MulReductionVI: 3742 case Op_MulReductionVL: 3743 case Op_MulReductionVF: 3744 case Op_MulReductionVD: 3745 case Op_MinReductionV: 3746 case Op_MaxReductionV: 3747 case Op_AndReductionV: 3748 case Op_OrReductionV: 3749 case Op_XorReductionV: 3750 break; 3751 3752 case Op_PackB: 3753 case Op_PackS: 3754 case Op_PackI: 3755 case Op_PackF: 3756 case Op_PackL: 3757 case Op_PackD: 3758 if (n->req()-1 > 2) { 3759 // Replace many operand PackNodes with a binary tree for matching 3760 PackNode* p = (PackNode*) n; 3761 Node* btp = p->binary_tree_pack(1, n->req()); 3762 n->subsume_by(btp, this); 3763 } 3764 break; 3765 case Op_Loop: 3766 assert(!n->as_Loop()->is_loop_nest_inner_loop() || _loop_opts_cnt == 0, "should have been turned into a counted loop"); 3767 case Op_CountedLoop: 3768 case Op_LongCountedLoop: 3769 case Op_OuterStripMinedLoop: 3770 if (n->as_Loop()->is_inner_loop()) { 3771 frc.inc_inner_loop_count(); 3772 } 3773 n->as_Loop()->verify_strip_mined(0); 3774 break; 3775 case Op_LShiftI: 3776 case Op_RShiftI: 3777 case Op_URShiftI: 3778 case Op_LShiftL: 3779 case Op_RShiftL: 3780 case Op_URShiftL: 3781 if (Matcher::need_masked_shift_count) { 3782 // The cpu's shift instructions don't restrict the count to the 3783 // lower 5/6 bits. We need to do the masking ourselves. 3784 Node* in2 = n->in(2); 3785 juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1); 3786 const TypeInt* t = in2->find_int_type(); 3787 if (t != nullptr && t->is_con()) { 3788 juint shift = t->get_con(); 3789 if (shift > mask) { // Unsigned cmp 3790 n->set_req(2, ConNode::make(TypeInt::make(shift & mask))); 3791 } 3792 } else { 3793 if (t == nullptr || t->_lo < 0 || t->_hi > (int)mask) { 3794 Node* shift = new AndINode(in2, ConNode::make(TypeInt::make(mask))); 3795 n->set_req(2, shift); 3796 } 3797 } 3798 if (in2->outcnt() == 0) { // Remove dead node 3799 in2->disconnect_inputs(this); 3800 } 3801 } 3802 break; 3803 case Op_MemBarStoreStore: 3804 case Op_MemBarRelease: 3805 // Break the link with AllocateNode: it is no longer useful and 3806 // confuses register allocation. 3807 if (n->req() > MemBarNode::Precedent) { 3808 n->set_req(MemBarNode::Precedent, top()); 3809 } 3810 break; 3811 case Op_MemBarAcquire: { 3812 if (n->as_MemBar()->trailing_load() && n->req() > MemBarNode::Precedent) { 3813 // At parse time, the trailing MemBarAcquire for a volatile load 3814 // is created with an edge to the load. After optimizations, 3815 // that input may be a chain of Phis. If those phis have no 3816 // other use, then the MemBarAcquire keeps them alive and 3817 // register allocation can be confused. 3818 dead_nodes.push(n->in(MemBarNode::Precedent)); 3819 n->set_req(MemBarNode::Precedent, top()); 3820 } 3821 break; 3822 } 3823 case Op_Blackhole: 3824 break; 3825 case Op_RangeCheck: { 3826 RangeCheckNode* rc = n->as_RangeCheck(); 3827 Node* iff = new IfNode(rc->in(0), rc->in(1), rc->_prob, rc->_fcnt); 3828 n->subsume_by(iff, this); 3829 frc._tests.push(iff); 3830 break; 3831 } 3832 case Op_ConvI2L: { 3833 if (!Matcher::convi2l_type_required) { 3834 // Code generation on some platforms doesn't need accurate 3835 // ConvI2L types. Widening the type can help remove redundant 3836 // address computations. 3837 n->as_Type()->set_type(TypeLong::INT); 3838 ResourceMark rm; 3839 Unique_Node_List wq; 3840 wq.push(n); 3841 for (uint next = 0; next < wq.size(); next++) { 3842 Node *m = wq.at(next); 3843 3844 for(;;) { 3845 // Loop over all nodes with identical inputs edges as m 3846 Node* k = m->find_similar(m->Opcode()); 3847 if (k == nullptr) { 3848 break; 3849 } 3850 // Push their uses so we get a chance to remove node made 3851 // redundant 3852 for (DUIterator_Fast imax, i = k->fast_outs(imax); i < imax; i++) { 3853 Node* u = k->fast_out(i); 3854 if (u->Opcode() == Op_LShiftL || 3855 u->Opcode() == Op_AddL || 3856 u->Opcode() == Op_SubL || 3857 u->Opcode() == Op_AddP) { 3858 wq.push(u); 3859 } 3860 } 3861 // Replace all nodes with identical edges as m with m 3862 k->subsume_by(m, this); 3863 } 3864 } 3865 } 3866 break; 3867 } 3868 case Op_CmpUL: { 3869 if (!Matcher::has_match_rule(Op_CmpUL)) { 3870 // No support for unsigned long comparisons 3871 ConINode* sign_pos = new ConINode(TypeInt::make(BitsPerLong - 1)); 3872 Node* sign_bit_mask = new RShiftLNode(n->in(1), sign_pos); 3873 Node* orl = new OrLNode(n->in(1), sign_bit_mask); 3874 ConLNode* remove_sign_mask = new ConLNode(TypeLong::make(max_jlong)); 3875 Node* andl = new AndLNode(orl, remove_sign_mask); 3876 Node* cmp = new CmpLNode(andl, n->in(2)); 3877 n->subsume_by(cmp, this); 3878 } 3879 break; 3880 } 3881 #ifdef ASSERT 3882 case Op_ConNKlass: { 3883 const TypePtr* tp = n->as_Type()->type()->make_ptr(); 3884 ciKlass* klass = tp->is_klassptr()->exact_klass(); 3885 assert(klass->is_in_encoding_range(), "klass cannot be compressed"); 3886 break; 3887 } 3888 #endif 3889 default: 3890 assert(!n->is_Call(), ""); 3891 assert(!n->is_Mem(), ""); 3892 assert(nop != Op_ProfileBoolean, "should be eliminated during IGVN"); 3893 break; 3894 } 3895 } 3896 3897 //------------------------------final_graph_reshaping_walk--------------------- 3898 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(), 3899 // requires that the walk visits a node's inputs before visiting the node. 3900 void Compile::final_graph_reshaping_walk(Node_Stack& nstack, Node* root, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes) { 3901 Unique_Node_List sfpt; 3902 3903 frc._visited.set(root->_idx); // first, mark node as visited 3904 uint cnt = root->req(); 3905 Node *n = root; 3906 uint i = 0; 3907 while (true) { 3908 if (i < cnt) { 3909 // Place all non-visited non-null inputs onto stack 3910 Node* m = n->in(i); 3911 ++i; 3912 if (m != nullptr && !frc._visited.test_set(m->_idx)) { 3913 if (m->is_SafePoint() && m->as_SafePoint()->jvms() != nullptr) { 3914 // compute worst case interpreter size in case of a deoptimization 3915 update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size()); 3916 3917 sfpt.push(m); 3918 } 3919 cnt = m->req(); 3920 nstack.push(n, i); // put on stack parent and next input's index 3921 n = m; 3922 i = 0; 3923 } 3924 } else { 3925 // Now do post-visit work 3926 final_graph_reshaping_impl(n, frc, dead_nodes); 3927 if (nstack.is_empty()) 3928 break; // finished 3929 n = nstack.node(); // Get node from stack 3930 cnt = n->req(); 3931 i = nstack.index(); 3932 nstack.pop(); // Shift to the next node on stack 3933 } 3934 } 3935 3936 // Skip next transformation if compressed oops are not used. 3937 if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) || 3938 (!UseCompressedOops && !UseCompressedClassPointers)) 3939 return; 3940 3941 // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges. 3942 // It could be done for an uncommon traps or any safepoints/calls 3943 // if the DecodeN/DecodeNKlass node is referenced only in a debug info. 3944 while (sfpt.size() > 0) { 3945 n = sfpt.pop(); 3946 JVMState *jvms = n->as_SafePoint()->jvms(); 3947 assert(jvms != nullptr, "sanity"); 3948 int start = jvms->debug_start(); 3949 int end = n->req(); 3950 bool is_uncommon = (n->is_CallStaticJava() && 3951 n->as_CallStaticJava()->uncommon_trap_request() != 0); 3952 for (int j = start; j < end; j++) { 3953 Node* in = n->in(j); 3954 if (in->is_DecodeNarrowPtr()) { 3955 bool safe_to_skip = true; 3956 if (!is_uncommon ) { 3957 // Is it safe to skip? 3958 for (uint i = 0; i < in->outcnt(); i++) { 3959 Node* u = in->raw_out(i); 3960 if (!u->is_SafePoint() || 3961 (u->is_Call() && u->as_Call()->has_non_debug_use(n))) { 3962 safe_to_skip = false; 3963 } 3964 } 3965 } 3966 if (safe_to_skip) { 3967 n->set_req(j, in->in(1)); 3968 } 3969 if (in->outcnt() == 0) { 3970 in->disconnect_inputs(this); 3971 } 3972 } 3973 } 3974 } 3975 } 3976 3977 //------------------------------final_graph_reshaping-------------------------- 3978 // Final Graph Reshaping. 3979 // 3980 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late 3981 // and not commoned up and forced early. Must come after regular 3982 // optimizations to avoid GVN undoing the cloning. Clone constant 3983 // inputs to Loop Phis; these will be split by the allocator anyways. 3984 // Remove Opaque nodes. 3985 // (2) Move last-uses by commutative operations to the left input to encourage 3986 // Intel update-in-place two-address operations and better register usage 3987 // on RISCs. Must come after regular optimizations to avoid GVN Ideal 3988 // calls canonicalizing them back. 3989 // (3) Count the number of double-precision FP ops, single-precision FP ops 3990 // and call sites. On Intel, we can get correct rounding either by 3991 // forcing singles to memory (requires extra stores and loads after each 3992 // FP bytecode) or we can set a rounding mode bit (requires setting and 3993 // clearing the mode bit around call sites). The mode bit is only used 3994 // if the relative frequency of single FP ops to calls is low enough. 3995 // This is a key transform for SPEC mpeg_audio. 3996 // (4) Detect infinite loops; blobs of code reachable from above but not 3997 // below. Several of the Code_Gen algorithms fail on such code shapes, 3998 // so we simply bail out. Happens a lot in ZKM.jar, but also happens 3999 // from time to time in other codes (such as -Xcomp finalizer loops, etc). 4000 // Detection is by looking for IfNodes where only 1 projection is 4001 // reachable from below or CatchNodes missing some targets. 4002 // (5) Assert for insane oop offsets in debug mode. 4003 4004 bool Compile::final_graph_reshaping() { 4005 // an infinite loop may have been eliminated by the optimizer, 4006 // in which case the graph will be empty. 4007 if (root()->req() == 1) { 4008 // Do not compile method that is only a trivial infinite loop, 4009 // since the content of the loop may have been eliminated. 4010 record_method_not_compilable("trivial infinite loop"); 4011 return true; 4012 } 4013 4014 // Expensive nodes have their control input set to prevent the GVN 4015 // from freely commoning them. There's no GVN beyond this point so 4016 // no need to keep the control input. We want the expensive nodes to 4017 // be freely moved to the least frequent code path by gcm. 4018 assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?"); 4019 for (int i = 0; i < expensive_count(); i++) { 4020 _expensive_nodes.at(i)->set_req(0, nullptr); 4021 } 4022 4023 Final_Reshape_Counts frc; 4024 4025 // Visit everybody reachable! 4026 // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc 4027 Node_Stack nstack(live_nodes() >> 1); 4028 Unique_Node_List dead_nodes; 4029 final_graph_reshaping_walk(nstack, root(), frc, dead_nodes); 4030 4031 // Check for unreachable (from below) code (i.e., infinite loops). 4032 for( uint i = 0; i < frc._tests.size(); i++ ) { 4033 MultiBranchNode *n = frc._tests[i]->as_MultiBranch(); 4034 // Get number of CFG targets. 4035 // Note that PCTables include exception targets after calls. 4036 uint required_outcnt = n->required_outcnt(); 4037 if (n->outcnt() != required_outcnt) { 4038 // Check for a few special cases. Rethrow Nodes never take the 4039 // 'fall-thru' path, so expected kids is 1 less. 4040 if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) { 4041 if (n->in(0)->in(0)->is_Call()) { 4042 CallNode* call = n->in(0)->in(0)->as_Call(); 4043 if (call->entry_point() == OptoRuntime::rethrow_stub()) { 4044 required_outcnt--; // Rethrow always has 1 less kid 4045 } else if (call->req() > TypeFunc::Parms && 4046 call->is_CallDynamicJava()) { 4047 // Check for null receiver. In such case, the optimizer has 4048 // detected that the virtual call will always result in a null 4049 // pointer exception. The fall-through projection of this CatchNode 4050 // will not be populated. 4051 Node* arg0 = call->in(TypeFunc::Parms); 4052 if (arg0->is_Type() && 4053 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) { 4054 required_outcnt--; 4055 } 4056 } else if (call->entry_point() == OptoRuntime::new_array_Java() || 4057 call->entry_point() == OptoRuntime::new_array_nozero_Java()) { 4058 // Check for illegal array length. In such case, the optimizer has 4059 // detected that the allocation attempt will always result in an 4060 // exception. There is no fall-through projection of this CatchNode . 4061 assert(call->is_CallStaticJava(), "static call expected"); 4062 assert(call->req() == call->jvms()->endoff() + 1, "missing extra input"); 4063 uint valid_length_test_input = call->req() - 1; 4064 Node* valid_length_test = call->in(valid_length_test_input); 4065 call->del_req(valid_length_test_input); 4066 if (valid_length_test->find_int_con(1) == 0) { 4067 required_outcnt--; 4068 } 4069 dead_nodes.push(valid_length_test); 4070 assert(n->outcnt() == required_outcnt, "malformed control flow"); 4071 continue; 4072 } 4073 } 4074 } 4075 4076 // Recheck with a better notion of 'required_outcnt' 4077 if (n->outcnt() != required_outcnt) { 4078 record_method_not_compilable("malformed control flow"); 4079 return true; // Not all targets reachable! 4080 } 4081 } else if (n->is_PCTable() && n->in(0) && n->in(0)->in(0) && n->in(0)->in(0)->is_Call()) { 4082 CallNode* call = n->in(0)->in(0)->as_Call(); 4083 if (call->entry_point() == OptoRuntime::new_array_Java() || 4084 call->entry_point() == OptoRuntime::new_array_nozero_Java()) { 4085 assert(call->is_CallStaticJava(), "static call expected"); 4086 assert(call->req() == call->jvms()->endoff() + 1, "missing extra input"); 4087 uint valid_length_test_input = call->req() - 1; 4088 dead_nodes.push(call->in(valid_length_test_input)); 4089 call->del_req(valid_length_test_input); // valid length test useless now 4090 } 4091 } 4092 // Check that I actually visited all kids. Unreached kids 4093 // must be infinite loops. 4094 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) 4095 if (!frc._visited.test(n->fast_out(j)->_idx)) { 4096 record_method_not_compilable("infinite loop"); 4097 return true; // Found unvisited kid; must be unreach 4098 } 4099 4100 // Here so verification code in final_graph_reshaping_walk() 4101 // always see an OuterStripMinedLoopEnd 4102 if (n->is_OuterStripMinedLoopEnd() || n->is_LongCountedLoopEnd()) { 4103 IfNode* init_iff = n->as_If(); 4104 Node* iff = new IfNode(init_iff->in(0), init_iff->in(1), init_iff->_prob, init_iff->_fcnt); 4105 n->subsume_by(iff, this); 4106 } 4107 } 4108 4109 while (dead_nodes.size() > 0) { 4110 Node* m = dead_nodes.pop(); 4111 if (m->outcnt() == 0 && m != top()) { 4112 for (uint j = 0; j < m->req(); j++) { 4113 Node* in = m->in(j); 4114 if (in != nullptr) { 4115 dead_nodes.push(in); 4116 } 4117 } 4118 m->disconnect_inputs(this); 4119 } 4120 } 4121 4122 set_java_calls(frc.get_java_call_count()); 4123 set_inner_loops(frc.get_inner_loop_count()); 4124 4125 // No infinite loops, no reason to bail out. 4126 return false; 4127 } 4128 4129 //-----------------------------too_many_traps---------------------------------- 4130 // Report if there are too many traps at the current method and bci. 4131 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded. 4132 bool Compile::too_many_traps(ciMethod* method, 4133 int bci, 4134 Deoptimization::DeoptReason reason) { 4135 ciMethodData* md = method->method_data(); 4136 if (md->is_empty()) { 4137 // Assume the trap has not occurred, or that it occurred only 4138 // because of a transient condition during start-up in the interpreter. 4139 return false; 4140 } 4141 ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : nullptr; 4142 if (md->has_trap_at(bci, m, reason) != 0) { 4143 // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic. 4144 // Also, if there are multiple reasons, or if there is no per-BCI record, 4145 // assume the worst. 4146 if (log()) 4147 log()->elem("observe trap='%s' count='%d'", 4148 Deoptimization::trap_reason_name(reason), 4149 md->trap_count(reason)); 4150 return true; 4151 } else { 4152 // Ignore method/bci and see if there have been too many globally. 4153 return too_many_traps(reason, md); 4154 } 4155 } 4156 4157 // Less-accurate variant which does not require a method and bci. 4158 bool Compile::too_many_traps(Deoptimization::DeoptReason reason, 4159 ciMethodData* logmd) { 4160 if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) { 4161 // Too many traps globally. 4162 // Note that we use cumulative trap_count, not just md->trap_count. 4163 if (log()) { 4164 int mcount = (logmd == nullptr)? -1: (int)logmd->trap_count(reason); 4165 log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'", 4166 Deoptimization::trap_reason_name(reason), 4167 mcount, trap_count(reason)); 4168 } 4169 return true; 4170 } else { 4171 // The coast is clear. 4172 return false; 4173 } 4174 } 4175 4176 //--------------------------too_many_recompiles-------------------------------- 4177 // Report if there are too many recompiles at the current method and bci. 4178 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff. 4179 // Is not eager to return true, since this will cause the compiler to use 4180 // Action_none for a trap point, to avoid too many recompilations. 4181 bool Compile::too_many_recompiles(ciMethod* method, 4182 int bci, 4183 Deoptimization::DeoptReason reason) { 4184 ciMethodData* md = method->method_data(); 4185 if (md->is_empty()) { 4186 // Assume the trap has not occurred, or that it occurred only 4187 // because of a transient condition during start-up in the interpreter. 4188 return false; 4189 } 4190 // Pick a cutoff point well within PerBytecodeRecompilationCutoff. 4191 uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8; 4192 uint m_cutoff = (uint) PerMethodRecompilationCutoff / 2 + 1; // not zero 4193 Deoptimization::DeoptReason per_bc_reason 4194 = Deoptimization::reason_recorded_per_bytecode_if_any(reason); 4195 ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : nullptr; 4196 if ((per_bc_reason == Deoptimization::Reason_none 4197 || md->has_trap_at(bci, m, reason) != 0) 4198 // The trap frequency measure we care about is the recompile count: 4199 && md->trap_recompiled_at(bci, m) 4200 && md->overflow_recompile_count() >= bc_cutoff) { 4201 // Do not emit a trap here if it has already caused recompilations. 4202 // Also, if there are multiple reasons, or if there is no per-BCI record, 4203 // assume the worst. 4204 if (log()) 4205 log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'", 4206 Deoptimization::trap_reason_name(reason), 4207 md->trap_count(reason), 4208 md->overflow_recompile_count()); 4209 return true; 4210 } else if (trap_count(reason) != 0 4211 && decompile_count() >= m_cutoff) { 4212 // Too many recompiles globally, and we have seen this sort of trap. 4213 // Use cumulative decompile_count, not just md->decompile_count. 4214 if (log()) 4215 log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'", 4216 Deoptimization::trap_reason_name(reason), 4217 md->trap_count(reason), trap_count(reason), 4218 md->decompile_count(), decompile_count()); 4219 return true; 4220 } else { 4221 // The coast is clear. 4222 return false; 4223 } 4224 } 4225 4226 // Compute when not to trap. Used by matching trap based nodes and 4227 // NullCheck optimization. 4228 void Compile::set_allowed_deopt_reasons() { 4229 _allowed_reasons = 0; 4230 if (is_method_compilation()) { 4231 for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) { 4232 assert(rs < BitsPerInt, "recode bit map"); 4233 if (!too_many_traps((Deoptimization::DeoptReason) rs)) { 4234 _allowed_reasons |= nth_bit(rs); 4235 } 4236 } 4237 } 4238 } 4239 4240 bool Compile::needs_clinit_barrier(ciMethod* method, ciMethod* accessing_method) { 4241 return method->is_static() && needs_clinit_barrier(method->holder(), accessing_method); 4242 } 4243 4244 bool Compile::needs_clinit_barrier(ciField* field, ciMethod* accessing_method) { 4245 return field->is_static() && needs_clinit_barrier(field->holder(), accessing_method); 4246 } 4247 4248 bool Compile::needs_clinit_barrier(ciInstanceKlass* holder, ciMethod* accessing_method) { 4249 if (holder->is_initialized()) { 4250 return false; 4251 } 4252 if (holder->is_being_initialized()) { 4253 if (accessing_method->holder() == holder) { 4254 // Access inside a class. The barrier can be elided when access happens in <clinit>, 4255 // <init>, or a static method. In all those cases, there was an initialization 4256 // barrier on the holder klass passed. 4257 if (accessing_method->is_static_initializer() || 4258 accessing_method->is_object_initializer() || 4259 accessing_method->is_static()) { 4260 return false; 4261 } 4262 } else if (accessing_method->holder()->is_subclass_of(holder)) { 4263 // Access from a subclass. The barrier can be elided only when access happens in <clinit>. 4264 // In case of <init> or a static method, the barrier is on the subclass is not enough: 4265 // child class can become fully initialized while its parent class is still being initialized. 4266 if (accessing_method->is_static_initializer()) { 4267 return false; 4268 } 4269 } 4270 ciMethod* root = method(); // the root method of compilation 4271 if (root != accessing_method) { 4272 return needs_clinit_barrier(holder, root); // check access in the context of compilation root 4273 } 4274 } 4275 return true; 4276 } 4277 4278 #ifndef PRODUCT 4279 //------------------------------verify_bidirectional_edges--------------------- 4280 // For each input edge to a node (ie - for each Use-Def edge), verify that 4281 // there is a corresponding Def-Use edge. 4282 void Compile::verify_bidirectional_edges(Unique_Node_List& visited, const Unique_Node_List* root_and_safepoints) const { 4283 // Allocate stack of size C->live_nodes()/16 to avoid frequent realloc 4284 uint stack_size = live_nodes() >> 4; 4285 Node_List nstack(MAX2(stack_size, (uint) OptoNodeListSize)); 4286 if (root_and_safepoints != nullptr) { 4287 assert(root_and_safepoints->member(_root), "root is not in root_and_safepoints"); 4288 for (uint i = 0, limit = root_and_safepoints->size(); i < limit; i++) { 4289 Node* root_or_safepoint = root_and_safepoints->at(i); 4290 // If the node is a safepoint, let's check if it still has a control input 4291 // Lack of control input signifies that this node was killed by CCP or 4292 // recursively by remove_globally_dead_node and it shouldn't be a starting 4293 // point. 4294 if (!root_or_safepoint->is_SafePoint() || root_or_safepoint->in(0) != nullptr) { 4295 nstack.push(root_or_safepoint); 4296 } 4297 } 4298 } else { 4299 nstack.push(_root); 4300 } 4301 4302 while (nstack.size() > 0) { 4303 Node* n = nstack.pop(); 4304 if (visited.member(n)) { 4305 continue; 4306 } 4307 visited.push(n); 4308 4309 // Walk over all input edges, checking for correspondence 4310 uint length = n->len(); 4311 for (uint i = 0; i < length; i++) { 4312 Node* in = n->in(i); 4313 if (in != nullptr && !visited.member(in)) { 4314 nstack.push(in); // Put it on stack 4315 } 4316 if (in != nullptr && !in->is_top()) { 4317 // Count instances of `next` 4318 int cnt = 0; 4319 for (uint idx = 0; idx < in->_outcnt; idx++) { 4320 if (in->_out[idx] == n) { 4321 cnt++; 4322 } 4323 } 4324 assert(cnt > 0, "Failed to find Def-Use edge."); 4325 // Check for duplicate edges 4326 // walk the input array downcounting the input edges to n 4327 for (uint j = 0; j < length; j++) { 4328 if (n->in(j) == in) { 4329 cnt--; 4330 } 4331 } 4332 assert(cnt == 0, "Mismatched edge count."); 4333 } else if (in == nullptr) { 4334 assert(i == 0 || i >= n->req() || 4335 n->is_Region() || n->is_Phi() || n->is_ArrayCopy() || 4336 (n->is_Unlock() && i == (n->req() - 1)) || 4337 (n->is_MemBar() && i == 5), // the precedence edge to a membar can be removed during macro node expansion 4338 "only region, phi, arraycopy, unlock or membar nodes have null data edges"); 4339 } else { 4340 assert(in->is_top(), "sanity"); 4341 // Nothing to check. 4342 } 4343 } 4344 } 4345 } 4346 4347 //------------------------------verify_graph_edges--------------------------- 4348 // Walk the Graph and verify that there is a one-to-one correspondence 4349 // between Use-Def edges and Def-Use edges in the graph. 4350 void Compile::verify_graph_edges(bool no_dead_code, const Unique_Node_List* root_and_safepoints) const { 4351 if (VerifyGraphEdges) { 4352 Unique_Node_List visited; 4353 4354 // Call graph walk to check edges 4355 verify_bidirectional_edges(visited, root_and_safepoints); 4356 if (no_dead_code) { 4357 // Now make sure that no visited node is used by an unvisited node. 4358 bool dead_nodes = false; 4359 Unique_Node_List checked; 4360 while (visited.size() > 0) { 4361 Node* n = visited.pop(); 4362 checked.push(n); 4363 for (uint i = 0; i < n->outcnt(); i++) { 4364 Node* use = n->raw_out(i); 4365 if (checked.member(use)) continue; // already checked 4366 if (visited.member(use)) continue; // already in the graph 4367 if (use->is_Con()) continue; // a dead ConNode is OK 4368 // At this point, we have found a dead node which is DU-reachable. 4369 if (!dead_nodes) { 4370 tty->print_cr("*** Dead nodes reachable via DU edges:"); 4371 dead_nodes = true; 4372 } 4373 use->dump(2); 4374 tty->print_cr("---"); 4375 checked.push(use); // No repeats; pretend it is now checked. 4376 } 4377 } 4378 assert(!dead_nodes, "using nodes must be reachable from root"); 4379 } 4380 } 4381 } 4382 #endif 4383 4384 // The Compile object keeps track of failure reasons separately from the ciEnv. 4385 // This is required because there is not quite a 1-1 relation between the 4386 // ciEnv and its compilation task and the Compile object. Note that one 4387 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides 4388 // to backtrack and retry without subsuming loads. Other than this backtracking 4389 // behavior, the Compile's failure reason is quietly copied up to the ciEnv 4390 // by the logic in C2Compiler. 4391 void Compile::record_failure(const char* reason DEBUG_ONLY(COMMA bool allow_multiple_failures)) { 4392 if (log() != nullptr) { 4393 log()->elem("failure reason='%s' phase='compile'", reason); 4394 } 4395 if (_failure_reason.get() == nullptr) { 4396 // Record the first failure reason. 4397 _failure_reason.set(reason); 4398 if (CaptureBailoutInformation) { 4399 _first_failure_details = new CompilationFailureInfo(reason); 4400 } 4401 } else { 4402 assert(!StressBailout || allow_multiple_failures, "should have handled previous failure."); 4403 } 4404 4405 if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) { 4406 C->print_method(PHASE_FAILURE, 1); 4407 } 4408 _root = nullptr; // flush the graph, too 4409 } 4410 4411 Compile::TracePhase::TracePhase(const char* name, PhaseTraceId id) 4412 : TraceTime(name, &Phase::timers[id], CITime, CITimeVerbose), 4413 _compile(Compile::current()), 4414 _log(nullptr), 4415 _dolog(CITimeVerbose) 4416 { 4417 assert(_compile != nullptr, "sanity check"); 4418 assert(id != PhaseTraceId::_t_none, "Don't use none"); 4419 if (_dolog) { 4420 _log = _compile->log(); 4421 } 4422 if (_log != nullptr) { 4423 _log->begin_head("phase name='%s' nodes='%d' live='%d'", phase_name(), _compile->unique(), _compile->live_nodes()); 4424 _log->stamp(); 4425 _log->end_head(); 4426 } 4427 4428 // Inform memory statistic, if enabled 4429 if (CompilationMemoryStatistic::enabled()) { 4430 CompilationMemoryStatistic::on_phase_start((int)id, name); 4431 } 4432 } 4433 4434 Compile::TracePhase::TracePhase(PhaseTraceId id) 4435 : TracePhase(Phase::get_phase_trace_id_text(id), id) {} 4436 4437 Compile::TracePhase::~TracePhase() { 4438 4439 // Inform memory statistic, if enabled 4440 if (CompilationMemoryStatistic::enabled()) { 4441 CompilationMemoryStatistic::on_phase_end(); 4442 } 4443 4444 if (_compile->failing_internal()) { 4445 if (_log != nullptr) { 4446 _log->done("phase"); 4447 } 4448 return; // timing code, not stressing bailouts. 4449 } 4450 #ifdef ASSERT 4451 if (PrintIdealNodeCount) { 4452 tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'", 4453 phase_name(), _compile->unique(), _compile->live_nodes(), _compile->count_live_nodes_by_graph_walk()); 4454 } 4455 4456 if (VerifyIdealNodeCount) { 4457 _compile->print_missing_nodes(); 4458 } 4459 #endif 4460 4461 if (_log != nullptr) { 4462 _log->done("phase name='%s' nodes='%d' live='%d'", phase_name(), _compile->unique(), _compile->live_nodes()); 4463 } 4464 } 4465 4466 //----------------------------static_subtype_check----------------------------- 4467 // Shortcut important common cases when superklass is exact: 4468 // (0) superklass is java.lang.Object (can occur in reflective code) 4469 // (1) subklass is already limited to a subtype of superklass => always ok 4470 // (2) subklass does not overlap with superklass => always fail 4471 // (3) superklass has NO subtypes and we can check with a simple compare. 4472 Compile::SubTypeCheckResult Compile::static_subtype_check(const TypeKlassPtr* superk, const TypeKlassPtr* subk, bool skip) { 4473 if (skip) { 4474 return SSC_full_test; // Let caller generate the general case. 4475 } 4476 4477 if (subk->is_java_subtype_of(superk)) { 4478 return SSC_always_true; // (0) and (1) this test cannot fail 4479 } 4480 4481 if (!subk->maybe_java_subtype_of(superk)) { 4482 return SSC_always_false; // (2) true path dead; no dynamic test needed 4483 } 4484 4485 const Type* superelem = superk; 4486 if (superk->isa_aryklassptr()) { 4487 int ignored; 4488 superelem = superk->is_aryklassptr()->base_element_type(ignored); 4489 } 4490 4491 if (superelem->isa_instklassptr()) { 4492 ciInstanceKlass* ik = superelem->is_instklassptr()->instance_klass(); 4493 if (!ik->has_subklass()) { 4494 if (!ik->is_final()) { 4495 // Add a dependency if there is a chance of a later subclass. 4496 dependencies()->assert_leaf_type(ik); 4497 } 4498 if (!superk->maybe_java_subtype_of(subk)) { 4499 return SSC_always_false; 4500 } 4501 return SSC_easy_test; // (3) caller can do a simple ptr comparison 4502 } 4503 } else { 4504 // A primitive array type has no subtypes. 4505 return SSC_easy_test; // (3) caller can do a simple ptr comparison 4506 } 4507 4508 return SSC_full_test; 4509 } 4510 4511 Node* Compile::conv_I2X_index(PhaseGVN* phase, Node* idx, const TypeInt* sizetype, Node* ctrl) { 4512 #ifdef _LP64 4513 // The scaled index operand to AddP must be a clean 64-bit value. 4514 // Java allows a 32-bit int to be incremented to a negative 4515 // value, which appears in a 64-bit register as a large 4516 // positive number. Using that large positive number as an 4517 // operand in pointer arithmetic has bad consequences. 4518 // On the other hand, 32-bit overflow is rare, and the possibility 4519 // can often be excluded, if we annotate the ConvI2L node with 4520 // a type assertion that its value is known to be a small positive 4521 // number. (The prior range check has ensured this.) 4522 // This assertion is used by ConvI2LNode::Ideal. 4523 int index_max = max_jint - 1; // array size is max_jint, index is one less 4524 if (sizetype != nullptr) index_max = sizetype->_hi - 1; 4525 const TypeInt* iidxtype = TypeInt::make(0, index_max, Type::WidenMax); 4526 idx = constrained_convI2L(phase, idx, iidxtype, ctrl); 4527 #endif 4528 return idx; 4529 } 4530 4531 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check) 4532 Node* Compile::constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl, bool carry_dependency) { 4533 if (ctrl != nullptr) { 4534 // Express control dependency by a CastII node with a narrow type. 4535 // Make the CastII node dependent on the control input to prevent the narrowed ConvI2L 4536 // node from floating above the range check during loop optimizations. Otherwise, the 4537 // ConvI2L node may be eliminated independently of the range check, causing the data path 4538 // to become TOP while the control path is still there (although it's unreachable). 4539 value = new CastIINode(ctrl, value, itype, carry_dependency ? ConstraintCastNode::StrongDependency : ConstraintCastNode::RegularDependency, true /* range check dependency */); 4540 value = phase->transform(value); 4541 } 4542 const TypeLong* ltype = TypeLong::make(itype->_lo, itype->_hi, itype->_widen); 4543 return phase->transform(new ConvI2LNode(value, ltype)); 4544 } 4545 4546 void Compile::dump_print_inlining() { 4547 inline_printer()->print_on(tty); 4548 } 4549 4550 void Compile::log_late_inline(CallGenerator* cg) { 4551 if (log() != nullptr) { 4552 log()->head("late_inline method='%d' inline_id='" JLONG_FORMAT "'", log()->identify(cg->method()), 4553 cg->unique_id()); 4554 JVMState* p = cg->call_node()->jvms(); 4555 while (p != nullptr) { 4556 log()->elem("jvms bci='%d' method='%d'", p->bci(), log()->identify(p->method())); 4557 p = p->caller(); 4558 } 4559 log()->tail("late_inline"); 4560 } 4561 } 4562 4563 void Compile::log_late_inline_failure(CallGenerator* cg, const char* msg) { 4564 log_late_inline(cg); 4565 if (log() != nullptr) { 4566 log()->inline_fail(msg); 4567 } 4568 } 4569 4570 void Compile::log_inline_id(CallGenerator* cg) { 4571 if (log() != nullptr) { 4572 // The LogCompilation tool needs a unique way to identify late 4573 // inline call sites. This id must be unique for this call site in 4574 // this compilation. Try to have it unique across compilations as 4575 // well because it can be convenient when grepping through the log 4576 // file. 4577 // Distinguish OSR compilations from others in case CICountOSR is 4578 // on. 4579 jlong id = ((jlong)unique()) + (((jlong)compile_id()) << 33) + (CICountOSR && is_osr_compilation() ? ((jlong)1) << 32 : 0); 4580 cg->set_unique_id(id); 4581 log()->elem("inline_id id='" JLONG_FORMAT "'", id); 4582 } 4583 } 4584 4585 void Compile::log_inline_failure(const char* msg) { 4586 if (C->log() != nullptr) { 4587 C->log()->inline_fail(msg); 4588 } 4589 } 4590 4591 4592 // Dump inlining replay data to the stream. 4593 // Don't change thread state and acquire any locks. 4594 void Compile::dump_inline_data(outputStream* out) { 4595 InlineTree* inl_tree = ilt(); 4596 if (inl_tree != nullptr) { 4597 out->print(" inline %d", inl_tree->count()); 4598 inl_tree->dump_replay_data(out); 4599 } 4600 } 4601 4602 void Compile::dump_inline_data_reduced(outputStream* out) { 4603 assert(ReplayReduce, ""); 4604 4605 InlineTree* inl_tree = ilt(); 4606 if (inl_tree == nullptr) { 4607 return; 4608 } 4609 // Enable iterative replay file reduction 4610 // Output "compile" lines for depth 1 subtrees, 4611 // simulating that those trees were compiled 4612 // instead of inlined. 4613 for (int i = 0; i < inl_tree->subtrees().length(); ++i) { 4614 InlineTree* sub = inl_tree->subtrees().at(i); 4615 if (sub->inline_level() != 1) { 4616 continue; 4617 } 4618 4619 ciMethod* method = sub->method(); 4620 int entry_bci = -1; 4621 int comp_level = env()->task()->comp_level(); 4622 out->print("compile "); 4623 method->dump_name_as_ascii(out); 4624 out->print(" %d %d", entry_bci, comp_level); 4625 out->print(" inline %d", sub->count()); 4626 sub->dump_replay_data(out, -1); 4627 out->cr(); 4628 } 4629 } 4630 4631 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) { 4632 if (n1->Opcode() < n2->Opcode()) return -1; 4633 else if (n1->Opcode() > n2->Opcode()) return 1; 4634 4635 assert(n1->req() == n2->req(), "can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req()); 4636 for (uint i = 1; i < n1->req(); i++) { 4637 if (n1->in(i) < n2->in(i)) return -1; 4638 else if (n1->in(i) > n2->in(i)) return 1; 4639 } 4640 4641 return 0; 4642 } 4643 4644 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) { 4645 Node* n1 = *n1p; 4646 Node* n2 = *n2p; 4647 4648 return cmp_expensive_nodes(n1, n2); 4649 } 4650 4651 void Compile::sort_expensive_nodes() { 4652 if (!expensive_nodes_sorted()) { 4653 _expensive_nodes.sort(cmp_expensive_nodes); 4654 } 4655 } 4656 4657 bool Compile::expensive_nodes_sorted() const { 4658 for (int i = 1; i < _expensive_nodes.length(); i++) { 4659 if (cmp_expensive_nodes(_expensive_nodes.adr_at(i), _expensive_nodes.adr_at(i-1)) < 0) { 4660 return false; 4661 } 4662 } 4663 return true; 4664 } 4665 4666 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) { 4667 if (_expensive_nodes.length() == 0) { 4668 return false; 4669 } 4670 4671 assert(OptimizeExpensiveOps, "optimization off?"); 4672 4673 // Take this opportunity to remove dead nodes from the list 4674 int j = 0; 4675 for (int i = 0; i < _expensive_nodes.length(); i++) { 4676 Node* n = _expensive_nodes.at(i); 4677 if (!n->is_unreachable(igvn)) { 4678 assert(n->is_expensive(), "should be expensive"); 4679 _expensive_nodes.at_put(j, n); 4680 j++; 4681 } 4682 } 4683 _expensive_nodes.trunc_to(j); 4684 4685 // Then sort the list so that similar nodes are next to each other 4686 // and check for at least two nodes of identical kind with same data 4687 // inputs. 4688 sort_expensive_nodes(); 4689 4690 for (int i = 0; i < _expensive_nodes.length()-1; i++) { 4691 if (cmp_expensive_nodes(_expensive_nodes.adr_at(i), _expensive_nodes.adr_at(i+1)) == 0) { 4692 return true; 4693 } 4694 } 4695 4696 return false; 4697 } 4698 4699 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) { 4700 if (_expensive_nodes.length() == 0) { 4701 return; 4702 } 4703 4704 assert(OptimizeExpensiveOps, "optimization off?"); 4705 4706 // Sort to bring similar nodes next to each other and clear the 4707 // control input of nodes for which there's only a single copy. 4708 sort_expensive_nodes(); 4709 4710 int j = 0; 4711 int identical = 0; 4712 int i = 0; 4713 bool modified = false; 4714 for (; i < _expensive_nodes.length()-1; i++) { 4715 assert(j <= i, "can't write beyond current index"); 4716 if (_expensive_nodes.at(i)->Opcode() == _expensive_nodes.at(i+1)->Opcode()) { 4717 identical++; 4718 _expensive_nodes.at_put(j++, _expensive_nodes.at(i)); 4719 continue; 4720 } 4721 if (identical > 0) { 4722 _expensive_nodes.at_put(j++, _expensive_nodes.at(i)); 4723 identical = 0; 4724 } else { 4725 Node* n = _expensive_nodes.at(i); 4726 igvn.replace_input_of(n, 0, nullptr); 4727 igvn.hash_insert(n); 4728 modified = true; 4729 } 4730 } 4731 if (identical > 0) { 4732 _expensive_nodes.at_put(j++, _expensive_nodes.at(i)); 4733 } else if (_expensive_nodes.length() >= 1) { 4734 Node* n = _expensive_nodes.at(i); 4735 igvn.replace_input_of(n, 0, nullptr); 4736 igvn.hash_insert(n); 4737 modified = true; 4738 } 4739 _expensive_nodes.trunc_to(j); 4740 if (modified) { 4741 igvn.optimize(); 4742 } 4743 } 4744 4745 void Compile::add_expensive_node(Node * n) { 4746 assert(!_expensive_nodes.contains(n), "duplicate entry in expensive list"); 4747 assert(n->is_expensive(), "expensive nodes with non-null control here only"); 4748 assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here"); 4749 if (OptimizeExpensiveOps) { 4750 _expensive_nodes.append(n); 4751 } else { 4752 // Clear control input and let IGVN optimize expensive nodes if 4753 // OptimizeExpensiveOps is off. 4754 n->set_req(0, nullptr); 4755 } 4756 } 4757 4758 /** 4759 * Track coarsened Lock and Unlock nodes. 4760 */ 4761 4762 class Lock_List : public Node_List { 4763 uint _origin_cnt; 4764 public: 4765 Lock_List(Arena *a, uint cnt) : Node_List(a), _origin_cnt(cnt) {} 4766 uint origin_cnt() const { return _origin_cnt; } 4767 }; 4768 4769 void Compile::add_coarsened_locks(GrowableArray<AbstractLockNode*>& locks) { 4770 int length = locks.length(); 4771 if (length > 0) { 4772 // Have to keep this list until locks elimination during Macro nodes elimination. 4773 Lock_List* locks_list = new (comp_arena()) Lock_List(comp_arena(), length); 4774 AbstractLockNode* alock = locks.at(0); 4775 BoxLockNode* box = alock->box_node()->as_BoxLock(); 4776 for (int i = 0; i < length; i++) { 4777 AbstractLockNode* lock = locks.at(i); 4778 assert(lock->is_coarsened(), "expecting only coarsened AbstractLock nodes, but got '%s'[%d] node", lock->Name(), lock->_idx); 4779 locks_list->push(lock); 4780 BoxLockNode* this_box = lock->box_node()->as_BoxLock(); 4781 if (this_box != box) { 4782 // Locking regions (BoxLock) could be Unbalanced here: 4783 // - its coarsened locks were eliminated in earlier 4784 // macro nodes elimination followed by loop unroll 4785 // - it is OSR locking region (no Lock node) 4786 // Preserve Unbalanced status in such cases. 4787 if (!this_box->is_unbalanced()) { 4788 this_box->set_coarsened(); 4789 } 4790 if (!box->is_unbalanced()) { 4791 box->set_coarsened(); 4792 } 4793 } 4794 } 4795 _coarsened_locks.append(locks_list); 4796 } 4797 } 4798 4799 void Compile::remove_useless_coarsened_locks(Unique_Node_List& useful) { 4800 int count = coarsened_count(); 4801 for (int i = 0; i < count; i++) { 4802 Node_List* locks_list = _coarsened_locks.at(i); 4803 for (uint j = 0; j < locks_list->size(); j++) { 4804 Node* lock = locks_list->at(j); 4805 assert(lock->is_AbstractLock(), "sanity"); 4806 if (!useful.member(lock)) { 4807 locks_list->yank(lock); 4808 } 4809 } 4810 } 4811 } 4812 4813 void Compile::remove_coarsened_lock(Node* n) { 4814 if (n->is_AbstractLock()) { 4815 int count = coarsened_count(); 4816 for (int i = 0; i < count; i++) { 4817 Node_List* locks_list = _coarsened_locks.at(i); 4818 locks_list->yank(n); 4819 } 4820 } 4821 } 4822 4823 bool Compile::coarsened_locks_consistent() { 4824 int count = coarsened_count(); 4825 for (int i = 0; i < count; i++) { 4826 bool unbalanced = false; 4827 bool modified = false; // track locks kind modifications 4828 Lock_List* locks_list = (Lock_List*)_coarsened_locks.at(i); 4829 uint size = locks_list->size(); 4830 if (size == 0) { 4831 unbalanced = false; // All locks were eliminated - good 4832 } else if (size != locks_list->origin_cnt()) { 4833 unbalanced = true; // Some locks were removed from list 4834 } else { 4835 for (uint j = 0; j < size; j++) { 4836 Node* lock = locks_list->at(j); 4837 // All nodes in group should have the same state (modified or not) 4838 if (!lock->as_AbstractLock()->is_coarsened()) { 4839 if (j == 0) { 4840 // first on list was modified, the rest should be too for consistency 4841 modified = true; 4842 } else if (!modified) { 4843 // this lock was modified but previous locks on the list were not 4844 unbalanced = true; 4845 break; 4846 } 4847 } else if (modified) { 4848 // previous locks on list were modified but not this lock 4849 unbalanced = true; 4850 break; 4851 } 4852 } 4853 } 4854 if (unbalanced) { 4855 // unbalanced monitor enter/exit - only some [un]lock nodes were removed or modified 4856 #ifdef ASSERT 4857 if (PrintEliminateLocks) { 4858 tty->print_cr("=== unbalanced coarsened locks ==="); 4859 for (uint l = 0; l < size; l++) { 4860 locks_list->at(l)->dump(); 4861 } 4862 } 4863 #endif 4864 record_failure(C2Compiler::retry_no_locks_coarsening()); 4865 return false; 4866 } 4867 } 4868 return true; 4869 } 4870 4871 // Mark locking regions (identified by BoxLockNode) as unbalanced if 4872 // locks coarsening optimization removed Lock/Unlock nodes from them. 4873 // Such regions become unbalanced because coarsening only removes part 4874 // of Lock/Unlock nodes in region. As result we can't execute other 4875 // locks elimination optimizations which assume all code paths have 4876 // corresponding pair of Lock/Unlock nodes - they are balanced. 4877 void Compile::mark_unbalanced_boxes() const { 4878 int count = coarsened_count(); 4879 for (int i = 0; i < count; i++) { 4880 Node_List* locks_list = _coarsened_locks.at(i); 4881 uint size = locks_list->size(); 4882 if (size > 0) { 4883 AbstractLockNode* alock = locks_list->at(0)->as_AbstractLock(); 4884 BoxLockNode* box = alock->box_node()->as_BoxLock(); 4885 if (alock->is_coarsened()) { 4886 // coarsened_locks_consistent(), which is called before this method, verifies 4887 // that the rest of Lock/Unlock nodes on locks_list are also coarsened. 4888 assert(!box->is_eliminated(), "regions with coarsened locks should not be marked as eliminated"); 4889 for (uint j = 1; j < size; j++) { 4890 assert(locks_list->at(j)->as_AbstractLock()->is_coarsened(), "only coarsened locks are expected here"); 4891 BoxLockNode* this_box = locks_list->at(j)->as_AbstractLock()->box_node()->as_BoxLock(); 4892 if (box != this_box) { 4893 assert(!this_box->is_eliminated(), "regions with coarsened locks should not be marked as eliminated"); 4894 box->set_unbalanced(); 4895 this_box->set_unbalanced(); 4896 } 4897 } 4898 } 4899 } 4900 } 4901 } 4902 4903 /** 4904 * Remove the speculative part of types and clean up the graph 4905 */ 4906 void Compile::remove_speculative_types(PhaseIterGVN &igvn) { 4907 if (UseTypeSpeculation) { 4908 Unique_Node_List worklist; 4909 worklist.push(root()); 4910 int modified = 0; 4911 // Go over all type nodes that carry a speculative type, drop the 4912 // speculative part of the type and enqueue the node for an igvn 4913 // which may optimize it out. 4914 for (uint next = 0; next < worklist.size(); ++next) { 4915 Node *n = worklist.at(next); 4916 if (n->is_Type()) { 4917 TypeNode* tn = n->as_Type(); 4918 const Type* t = tn->type(); 4919 const Type* t_no_spec = t->remove_speculative(); 4920 if (t_no_spec != t) { 4921 bool in_hash = igvn.hash_delete(n); 4922 assert(in_hash || n->hash() == Node::NO_HASH, "node should be in igvn hash table"); 4923 tn->set_type(t_no_spec); 4924 igvn.hash_insert(n); 4925 igvn._worklist.push(n); // give it a chance to go away 4926 modified++; 4927 } 4928 } 4929 // Iterate over outs - endless loops is unreachable from below 4930 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 4931 Node *m = n->fast_out(i); 4932 if (not_a_node(m)) { 4933 continue; 4934 } 4935 worklist.push(m); 4936 } 4937 } 4938 // Drop the speculative part of all types in the igvn's type table 4939 igvn.remove_speculative_types(); 4940 if (modified > 0) { 4941 igvn.optimize(); 4942 if (failing()) return; 4943 } 4944 #ifdef ASSERT 4945 // Verify that after the IGVN is over no speculative type has resurfaced 4946 worklist.clear(); 4947 worklist.push(root()); 4948 for (uint next = 0; next < worklist.size(); ++next) { 4949 Node *n = worklist.at(next); 4950 const Type* t = igvn.type_or_null(n); 4951 assert((t == nullptr) || (t == t->remove_speculative()), "no more speculative types"); 4952 if (n->is_Type()) { 4953 t = n->as_Type()->type(); 4954 assert(t == t->remove_speculative(), "no more speculative types"); 4955 } 4956 // Iterate over outs - endless loops is unreachable from below 4957 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 4958 Node *m = n->fast_out(i); 4959 if (not_a_node(m)) { 4960 continue; 4961 } 4962 worklist.push(m); 4963 } 4964 } 4965 igvn.check_no_speculative_types(); 4966 #endif 4967 } 4968 } 4969 4970 // Auxiliary methods to support randomized stressing/fuzzing. 4971 4972 void Compile::initialize_stress_seed(const DirectiveSet* directive) { 4973 if (FLAG_IS_DEFAULT(StressSeed) || (FLAG_IS_ERGO(StressSeed) && directive->RepeatCompilationOption)) { 4974 _stress_seed = static_cast<uint>(Ticks::now().nanoseconds()); 4975 FLAG_SET_ERGO(StressSeed, _stress_seed); 4976 } else { 4977 _stress_seed = StressSeed; 4978 } 4979 if (_log != nullptr) { 4980 _log->elem("stress_test seed='%u'", _stress_seed); 4981 } 4982 } 4983 4984 int Compile::random() { 4985 _stress_seed = os::next_random(_stress_seed); 4986 return static_cast<int>(_stress_seed); 4987 } 4988 4989 // This method can be called the arbitrary number of times, with current count 4990 // as the argument. The logic allows selecting a single candidate from the 4991 // running list of candidates as follows: 4992 // int count = 0; 4993 // Cand* selected = null; 4994 // while(cand = cand->next()) { 4995 // if (randomized_select(++count)) { 4996 // selected = cand; 4997 // } 4998 // } 4999 // 5000 // Including count equalizes the chances any candidate is "selected". 5001 // This is useful when we don't have the complete list of candidates to choose 5002 // from uniformly. In this case, we need to adjust the randomicity of the 5003 // selection, or else we will end up biasing the selection towards the latter 5004 // candidates. 5005 // 5006 // Quick back-envelope calculation shows that for the list of n candidates 5007 // the equal probability for the candidate to persist as "best" can be 5008 // achieved by replacing it with "next" k-th candidate with the probability 5009 // of 1/k. It can be easily shown that by the end of the run, the 5010 // probability for any candidate is converged to 1/n, thus giving the 5011 // uniform distribution among all the candidates. 5012 // 5013 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large. 5014 #define RANDOMIZED_DOMAIN_POW 29 5015 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW) 5016 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1) 5017 bool Compile::randomized_select(int count) { 5018 assert(count > 0, "only positive"); 5019 return (random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count); 5020 } 5021 5022 #ifdef ASSERT 5023 // Failures are geometrically distributed with probability 1/StressBailoutMean. 5024 bool Compile::fail_randomly() { 5025 if ((random() % StressBailoutMean) != 0) { 5026 return false; 5027 } 5028 record_failure("StressBailout"); 5029 return true; 5030 } 5031 5032 bool Compile::failure_is_artificial() { 5033 return C->failure_reason_is("StressBailout"); 5034 } 5035 #endif 5036 5037 CloneMap& Compile::clone_map() { return _clone_map; } 5038 void Compile::set_clone_map(Dict* d) { _clone_map._dict = d; } 5039 5040 void NodeCloneInfo::dump_on(outputStream* st) const { 5041 st->print(" {%d:%d} ", idx(), gen()); 5042 } 5043 5044 void CloneMap::clone(Node* old, Node* nnn, int gen) { 5045 uint64_t val = value(old->_idx); 5046 NodeCloneInfo cio(val); 5047 assert(val != 0, "old node should be in the map"); 5048 NodeCloneInfo cin(cio.idx(), gen + cio.gen()); 5049 insert(nnn->_idx, cin.get()); 5050 #ifndef PRODUCT 5051 if (is_debug()) { 5052 tty->print_cr("CloneMap::clone inserted node %d info {%d:%d} into CloneMap", nnn->_idx, cin.idx(), cin.gen()); 5053 } 5054 #endif 5055 } 5056 5057 void CloneMap::verify_insert_and_clone(Node* old, Node* nnn, int gen) { 5058 NodeCloneInfo cio(value(old->_idx)); 5059 if (cio.get() == 0) { 5060 cio.set(old->_idx, 0); 5061 insert(old->_idx, cio.get()); 5062 #ifndef PRODUCT 5063 if (is_debug()) { 5064 tty->print_cr("CloneMap::verify_insert_and_clone inserted node %d info {%d:%d} into CloneMap", old->_idx, cio.idx(), cio.gen()); 5065 } 5066 #endif 5067 } 5068 clone(old, nnn, gen); 5069 } 5070 5071 int CloneMap::max_gen() const { 5072 int g = 0; 5073 DictI di(_dict); 5074 for(; di.test(); ++di) { 5075 int t = gen(di._key); 5076 if (g < t) { 5077 g = t; 5078 #ifndef PRODUCT 5079 if (is_debug()) { 5080 tty->print_cr("CloneMap::max_gen() update max=%d from %d", g, _2_node_idx_t(di._key)); 5081 } 5082 #endif 5083 } 5084 } 5085 return g; 5086 } 5087 5088 void CloneMap::dump(node_idx_t key, outputStream* st) const { 5089 uint64_t val = value(key); 5090 if (val != 0) { 5091 NodeCloneInfo ni(val); 5092 ni.dump_on(st); 5093 } 5094 } 5095 5096 void Compile::shuffle_macro_nodes() { 5097 if (_macro_nodes.length() < 2) { 5098 return; 5099 } 5100 for (uint i = _macro_nodes.length() - 1; i >= 1; i--) { 5101 uint j = C->random() % (i + 1); 5102 swap(_macro_nodes.at(i), _macro_nodes.at(j)); 5103 } 5104 } 5105 5106 // Move Allocate nodes to the start of the list 5107 void Compile::sort_macro_nodes() { 5108 int count = macro_count(); 5109 int allocates = 0; 5110 for (int i = 0; i < count; i++) { 5111 Node* n = macro_node(i); 5112 if (n->is_Allocate()) { 5113 if (i != allocates) { 5114 Node* tmp = macro_node(allocates); 5115 _macro_nodes.at_put(allocates, n); 5116 _macro_nodes.at_put(i, tmp); 5117 } 5118 allocates++; 5119 } 5120 } 5121 } 5122 5123 void Compile::print_method(CompilerPhaseType cpt, int level, Node* n) { 5124 if (failing_internal()) { return; } // failing_internal to not stress bailouts from printing code. 5125 EventCompilerPhase event(UNTIMED); 5126 if (event.should_commit()) { 5127 CompilerEvent::PhaseEvent::post(event, C->_latest_stage_start_counter, cpt, C->_compile_id, level); 5128 } 5129 #ifndef PRODUCT 5130 ResourceMark rm; 5131 stringStream ss; 5132 ss.print_raw(CompilerPhaseTypeHelper::to_description(cpt)); 5133 int iter = ++_igv_phase_iter[cpt]; 5134 if (iter > 1) { 5135 ss.print(" %d", iter); 5136 } 5137 if (n != nullptr) { 5138 ss.print(": %d %s", n->_idx, NodeClassNames[n->Opcode()]); 5139 if (n->is_Call()) { 5140 CallNode* call = n->as_Call(); 5141 if (call->_name != nullptr) { 5142 // E.g. uncommon traps etc. 5143 ss.print(" - %s", call->_name); 5144 } else if (call->is_CallJava()) { 5145 CallJavaNode* call_java = call->as_CallJava(); 5146 if (call_java->method() != nullptr) { 5147 ss.print(" -"); 5148 call_java->method()->print_short_name(&ss); 5149 } 5150 } 5151 } 5152 } 5153 5154 const char* name = ss.as_string(); 5155 if (should_print_igv(level)) { 5156 _igv_printer->print_graph(name); 5157 } 5158 if (should_print_phase(level)) { 5159 print_phase(name); 5160 } 5161 if (should_print_ideal_phase(cpt)) { 5162 print_ideal_ir(CompilerPhaseTypeHelper::to_name(cpt)); 5163 } 5164 #endif 5165 C->_latest_stage_start_counter.stamp(); 5166 } 5167 5168 // Only used from CompileWrapper 5169 void Compile::begin_method() { 5170 #ifndef PRODUCT 5171 if (_method != nullptr && should_print_igv(1)) { 5172 _igv_printer->begin_method(); 5173 } 5174 #endif 5175 C->_latest_stage_start_counter.stamp(); 5176 } 5177 5178 // Only used from CompileWrapper 5179 void Compile::end_method() { 5180 EventCompilerPhase event(UNTIMED); 5181 if (event.should_commit()) { 5182 CompilerEvent::PhaseEvent::post(event, C->_latest_stage_start_counter, PHASE_END, C->_compile_id, 1); 5183 } 5184 5185 #ifndef PRODUCT 5186 if (_method != nullptr && should_print_igv(1)) { 5187 _igv_printer->end_method(); 5188 } 5189 #endif 5190 } 5191 5192 #ifndef PRODUCT 5193 bool Compile::should_print_phase(const int level) const { 5194 return PrintPhaseLevel > 0 && directive()->PhasePrintLevelOption >= level && 5195 _method != nullptr; // Do not print phases for stubs. 5196 } 5197 5198 bool Compile::should_print_ideal_phase(CompilerPhaseType cpt) const { 5199 return _directive->should_print_ideal_phase(cpt); 5200 } 5201 5202 void Compile::init_igv() { 5203 if (_igv_printer == nullptr) { 5204 _igv_printer = IdealGraphPrinter::printer(); 5205 _igv_printer->set_compile(this); 5206 } 5207 } 5208 5209 bool Compile::should_print_igv(const int level) { 5210 PRODUCT_RETURN_(return false;); 5211 5212 if (PrintIdealGraphLevel < 0) { // disabled by the user 5213 return false; 5214 } 5215 5216 bool need = directive()->IGVPrintLevelOption >= level; 5217 if (need) { 5218 Compile::init_igv(); 5219 } 5220 return need; 5221 } 5222 5223 IdealGraphPrinter* Compile::_debug_file_printer = nullptr; 5224 IdealGraphPrinter* Compile::_debug_network_printer = nullptr; 5225 5226 // Called from debugger. Prints method to the default file with the default phase name. 5227 // This works regardless of any Ideal Graph Visualizer flags set or not. 5228 // Use in debugger (gdb/rr): p igv_print($sp, $fp, $pc). 5229 void igv_print(void* sp, void* fp, void* pc) { 5230 frame fr(sp, fp, pc); 5231 Compile::current()->igv_print_method_to_file(nullptr, false, &fr); 5232 } 5233 5234 // Same as igv_print() above but with a specified phase name. 5235 void igv_print(const char* phase_name, void* sp, void* fp, void* pc) { 5236 frame fr(sp, fp, pc); 5237 Compile::current()->igv_print_method_to_file(phase_name, false, &fr); 5238 } 5239 5240 // Called from debugger. Prints method with the default phase name to the default network or the one specified with 5241 // the network flags for the Ideal Graph Visualizer, or to the default file depending on the 'network' argument. 5242 // This works regardless of any Ideal Graph Visualizer flags set or not. 5243 // Use in debugger (gdb/rr): p igv_print(true, $sp, $fp, $pc). 5244 void igv_print(bool network, void* sp, void* fp, void* pc) { 5245 frame fr(sp, fp, pc); 5246 if (network) { 5247 Compile::current()->igv_print_method_to_network(nullptr, &fr); 5248 } else { 5249 Compile::current()->igv_print_method_to_file(nullptr, false, &fr); 5250 } 5251 } 5252 5253 // Same as igv_print(bool network, ...) above but with a specified phase name. 5254 // Use in debugger (gdb/rr): p igv_print(true, "MyPhase", $sp, $fp, $pc). 5255 void igv_print(bool network, const char* phase_name, void* sp, void* fp, void* pc) { 5256 frame fr(sp, fp, pc); 5257 if (network) { 5258 Compile::current()->igv_print_method_to_network(phase_name, &fr); 5259 } else { 5260 Compile::current()->igv_print_method_to_file(phase_name, false, &fr); 5261 } 5262 } 5263 5264 // Called from debugger. Normal write to the default _printer. Only works if Ideal Graph Visualizer printing flags are set. 5265 void igv_print_default() { 5266 Compile::current()->print_method(PHASE_DEBUG, 0); 5267 } 5268 5269 // Called from debugger, especially when replaying a trace in which the program state cannot be altered like with rr replay. 5270 // A method is appended to an existing default file with the default phase name. This means that igv_append() must follow 5271 // an earlier igv_print(*) call which sets up the file. This works regardless of any Ideal Graph Visualizer flags set or not. 5272 // Use in debugger (gdb/rr): p igv_append($sp, $fp, $pc). 5273 void igv_append(void* sp, void* fp, void* pc) { 5274 frame fr(sp, fp, pc); 5275 Compile::current()->igv_print_method_to_file(nullptr, true, &fr); 5276 } 5277 5278 // Same as igv_append(...) above but with a specified phase name. 5279 // Use in debugger (gdb/rr): p igv_append("MyPhase", $sp, $fp, $pc). 5280 void igv_append(const char* phase_name, void* sp, void* fp, void* pc) { 5281 frame fr(sp, fp, pc); 5282 Compile::current()->igv_print_method_to_file(phase_name, true, &fr); 5283 } 5284 5285 void Compile::igv_print_method_to_file(const char* phase_name, bool append, const frame* fr) { 5286 const char* file_name = "custom_debug.xml"; 5287 if (_debug_file_printer == nullptr) { 5288 _debug_file_printer = new IdealGraphPrinter(C, file_name, append); 5289 } else { 5290 _debug_file_printer->update_compiled_method(C->method()); 5291 } 5292 tty->print_cr("Method %s to %s", append ? "appended" : "printed", file_name); 5293 _debug_file_printer->print_graph(phase_name, fr); 5294 } 5295 5296 void Compile::igv_print_method_to_network(const char* phase_name, const frame* fr) { 5297 ResourceMark rm; 5298 GrowableArray<const Node*> empty_list; 5299 igv_print_graph_to_network(phase_name, empty_list, fr); 5300 } 5301 5302 void Compile::igv_print_graph_to_network(const char* name, GrowableArray<const Node*>& visible_nodes, const frame* fr) { 5303 if (_debug_network_printer == nullptr) { 5304 _debug_network_printer = new IdealGraphPrinter(C); 5305 } else { 5306 _debug_network_printer->update_compiled_method(C->method()); 5307 } 5308 tty->print_cr("Method printed over network stream to IGV"); 5309 _debug_network_printer->print(name, C->root(), visible_nodes, fr); 5310 } 5311 #endif // !PRODUCT 5312 5313 Node* Compile::narrow_value(BasicType bt, Node* value, const Type* type, PhaseGVN* phase, bool transform_res) { 5314 if (type != nullptr && phase->type(value)->higher_equal(type)) { 5315 return value; 5316 } 5317 Node* result = nullptr; 5318 if (bt == T_BYTE) { 5319 result = phase->transform(new LShiftINode(value, phase->intcon(24))); 5320 result = new RShiftINode(result, phase->intcon(24)); 5321 } else if (bt == T_BOOLEAN) { 5322 result = new AndINode(value, phase->intcon(0xFF)); 5323 } else if (bt == T_CHAR) { 5324 result = new AndINode(value,phase->intcon(0xFFFF)); 5325 } else { 5326 assert(bt == T_SHORT, "unexpected narrow type"); 5327 result = phase->transform(new LShiftINode(value, phase->intcon(16))); 5328 result = new RShiftINode(result, phase->intcon(16)); 5329 } 5330 if (transform_res) { 5331 result = phase->transform(result); 5332 } 5333 return result; 5334 } 5335 5336 void Compile::record_method_not_compilable_oom() { 5337 record_method_not_compilable(CompilationMemoryStatistic::failure_reason_memlimit()); 5338 }