1 /*
   2  * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "ci/ciReplay.hpp"
  29 #include "classfile/javaClasses.hpp"
  30 #include "code/exceptionHandlerTable.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "compiler/compilationFailureInfo.hpp"
  33 #include "compiler/compilationMemoryStatistic.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/compileLog.hpp"
  36 #include "compiler/compilerOracle.hpp"
  37 #include "compiler/compiler_globals.hpp"
  38 #include "compiler/disassembler.hpp"
  39 #include "compiler/oopMap.hpp"
  40 #include "gc/shared/barrierSet.hpp"
  41 #include "gc/shared/c2/barrierSetC2.hpp"
  42 #include "jfr/jfrEvents.hpp"
  43 #include "jvm_io.h"
  44 #include "memory/allocation.hpp"
  45 #include "memory/resourceArea.hpp"
  46 #include "opto/addnode.hpp"
  47 #include "opto/block.hpp"
  48 #include "opto/c2compiler.hpp"
  49 #include "opto/callGenerator.hpp"
  50 #include "opto/callnode.hpp"
  51 #include "opto/castnode.hpp"
  52 #include "opto/cfgnode.hpp"
  53 #include "opto/chaitin.hpp"
  54 #include "opto/compile.hpp"
  55 #include "opto/connode.hpp"
  56 #include "opto/convertnode.hpp"
  57 #include "opto/divnode.hpp"
  58 #include "opto/escape.hpp"
  59 #include "opto/idealGraphPrinter.hpp"
  60 #include "opto/locknode.hpp"
  61 #include "opto/loopnode.hpp"
  62 #include "opto/machnode.hpp"
  63 #include "opto/macro.hpp"
  64 #include "opto/matcher.hpp"
  65 #include "opto/mathexactnode.hpp"
  66 #include "opto/memnode.hpp"
  67 #include "opto/mulnode.hpp"
  68 #include "opto/narrowptrnode.hpp"
  69 #include "opto/node.hpp"
  70 #include "opto/opcodes.hpp"
  71 #include "opto/output.hpp"
  72 #include "opto/parse.hpp"
  73 #include "opto/phaseX.hpp"
  74 #include "opto/rootnode.hpp"
  75 #include "opto/runtime.hpp"
  76 #include "opto/stringopts.hpp"
  77 #include "opto/type.hpp"
  78 #include "opto/vector.hpp"
  79 #include "opto/vectornode.hpp"
  80 #include "runtime/globals_extension.hpp"
  81 #include "runtime/sharedRuntime.hpp"
  82 #include "runtime/signature.hpp"
  83 #include "runtime/stubRoutines.hpp"
  84 #include "runtime/timer.hpp"
  85 #include "utilities/align.hpp"
  86 #include "utilities/copy.hpp"
  87 #include "utilities/macros.hpp"
  88 #include "utilities/resourceHash.hpp"
  89 
  90 // -------------------- Compile::mach_constant_base_node -----------------------
  91 // Constant table base node singleton.
  92 MachConstantBaseNode* Compile::mach_constant_base_node() {
  93   if (_mach_constant_base_node == nullptr) {
  94     _mach_constant_base_node = new MachConstantBaseNode();
  95     _mach_constant_base_node->add_req(C->root());
  96   }
  97   return _mach_constant_base_node;
  98 }
  99 
 100 
 101 /// Support for intrinsics.
 102 
 103 // Return the index at which m must be inserted (or already exists).
 104 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
 105 class IntrinsicDescPair {
 106  private:
 107   ciMethod* _m;
 108   bool _is_virtual;
 109  public:
 110   IntrinsicDescPair(ciMethod* m, bool is_virtual) : _m(m), _is_virtual(is_virtual) {}
 111   static int compare(IntrinsicDescPair* const& key, CallGenerator* const& elt) {
 112     ciMethod* m= elt->method();
 113     ciMethod* key_m = key->_m;
 114     if (key_m < m)      return -1;
 115     else if (key_m > m) return 1;
 116     else {
 117       bool is_virtual = elt->is_virtual();
 118       bool key_virtual = key->_is_virtual;
 119       if (key_virtual < is_virtual)      return -1;
 120       else if (key_virtual > is_virtual) return 1;
 121       else                               return 0;
 122     }
 123   }
 124 };
 125 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found) {
 126 #ifdef ASSERT
 127   for (int i = 1; i < _intrinsics.length(); i++) {
 128     CallGenerator* cg1 = _intrinsics.at(i-1);
 129     CallGenerator* cg2 = _intrinsics.at(i);
 130     assert(cg1->method() != cg2->method()
 131            ? cg1->method()     < cg2->method()
 132            : cg1->is_virtual() < cg2->is_virtual(),
 133            "compiler intrinsics list must stay sorted");
 134   }
 135 #endif
 136   IntrinsicDescPair pair(m, is_virtual);
 137   return _intrinsics.find_sorted<IntrinsicDescPair*, IntrinsicDescPair::compare>(&pair, found);
 138 }
 139 
 140 void Compile::register_intrinsic(CallGenerator* cg) {
 141   bool found = false;
 142   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual(), found);
 143   assert(!found, "registering twice");
 144   _intrinsics.insert_before(index, cg);
 145   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
 146 }
 147 
 148 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
 149   assert(m->is_loaded(), "don't try this on unloaded methods");
 150   if (_intrinsics.length() > 0) {
 151     bool found = false;
 152     int index = intrinsic_insertion_index(m, is_virtual, found);
 153      if (found) {
 154       return _intrinsics.at(index);
 155     }
 156   }
 157   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
 158   if (m->intrinsic_id() != vmIntrinsics::_none &&
 159       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
 160     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
 161     if (cg != nullptr) {
 162       // Save it for next time:
 163       register_intrinsic(cg);
 164       return cg;
 165     } else {
 166       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
 167     }
 168   }
 169   return nullptr;
 170 }
 171 
 172 // Compile::make_vm_intrinsic is defined in library_call.cpp.
 173 
 174 #ifndef PRODUCT
 175 // statistics gathering...
 176 
 177 juint  Compile::_intrinsic_hist_count[vmIntrinsics::number_of_intrinsics()] = {0};
 178 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::number_of_intrinsics()] = {0};
 179 
 180 inline int as_int(vmIntrinsics::ID id) {
 181   return vmIntrinsics::as_int(id);
 182 }
 183 
 184 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
 185   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
 186   int oflags = _intrinsic_hist_flags[as_int(id)];
 187   assert(flags != 0, "what happened?");
 188   if (is_virtual) {
 189     flags |= _intrinsic_virtual;
 190   }
 191   bool changed = (flags != oflags);
 192   if ((flags & _intrinsic_worked) != 0) {
 193     juint count = (_intrinsic_hist_count[as_int(id)] += 1);
 194     if (count == 1) {
 195       changed = true;           // first time
 196     }
 197     // increment the overall count also:
 198     _intrinsic_hist_count[as_int(vmIntrinsics::_none)] += 1;
 199   }
 200   if (changed) {
 201     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
 202       // Something changed about the intrinsic's virtuality.
 203       if ((flags & _intrinsic_virtual) != 0) {
 204         // This is the first use of this intrinsic as a virtual call.
 205         if (oflags != 0) {
 206           // We already saw it as a non-virtual, so note both cases.
 207           flags |= _intrinsic_both;
 208         }
 209       } else if ((oflags & _intrinsic_both) == 0) {
 210         // This is the first use of this intrinsic as a non-virtual
 211         flags |= _intrinsic_both;
 212       }
 213     }
 214     _intrinsic_hist_flags[as_int(id)] = (jubyte) (oflags | flags);
 215   }
 216   // update the overall flags also:
 217   _intrinsic_hist_flags[as_int(vmIntrinsics::_none)] |= (jubyte) flags;
 218   return changed;
 219 }
 220 
 221 static char* format_flags(int flags, char* buf) {
 222   buf[0] = 0;
 223   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
 224   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
 225   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
 226   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
 227   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
 228   if (buf[0] == 0)  strcat(buf, ",");
 229   assert(buf[0] == ',', "must be");
 230   return &buf[1];
 231 }
 232 
 233 void Compile::print_intrinsic_statistics() {
 234   char flagsbuf[100];
 235   ttyLocker ttyl;
 236   if (xtty != nullptr)  xtty->head("statistics type='intrinsic'");
 237   tty->print_cr("Compiler intrinsic usage:");
 238   juint total = _intrinsic_hist_count[as_int(vmIntrinsics::_none)];
 239   if (total == 0)  total = 1;  // avoid div0 in case of no successes
 240   #define PRINT_STAT_LINE(name, c, f) \
 241     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
 242   for (auto id : EnumRange<vmIntrinsicID>{}) {
 243     int   flags = _intrinsic_hist_flags[as_int(id)];
 244     juint count = _intrinsic_hist_count[as_int(id)];
 245     if ((flags | count) != 0) {
 246       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
 247     }
 248   }
 249   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[as_int(vmIntrinsics::_none)], flagsbuf));
 250   if (xtty != nullptr)  xtty->tail("statistics");
 251 }
 252 
 253 void Compile::print_statistics() {
 254   { ttyLocker ttyl;
 255     if (xtty != nullptr)  xtty->head("statistics type='opto'");
 256     Parse::print_statistics();
 257     PhaseStringOpts::print_statistics();
 258     PhaseCCP::print_statistics();
 259     PhaseRegAlloc::print_statistics();
 260     PhaseOutput::print_statistics();
 261     PhasePeephole::print_statistics();
 262     PhaseIdealLoop::print_statistics();
 263     ConnectionGraph::print_statistics();
 264     PhaseMacroExpand::print_statistics();
 265     if (xtty != nullptr)  xtty->tail("statistics");
 266   }
 267   if (_intrinsic_hist_flags[as_int(vmIntrinsics::_none)] != 0) {
 268     // put this under its own <statistics> element.
 269     print_intrinsic_statistics();
 270   }
 271 }
 272 #endif //PRODUCT
 273 
 274 void Compile::gvn_replace_by(Node* n, Node* nn) {
 275   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
 276     Node* use = n->last_out(i);
 277     bool is_in_table = initial_gvn()->hash_delete(use);
 278     uint uses_found = 0;
 279     for (uint j = 0; j < use->len(); j++) {
 280       if (use->in(j) == n) {
 281         if (j < use->req())
 282           use->set_req(j, nn);
 283         else
 284           use->set_prec(j, nn);
 285         uses_found++;
 286       }
 287     }
 288     if (is_in_table) {
 289       // reinsert into table
 290       initial_gvn()->hash_find_insert(use);
 291     }
 292     record_for_igvn(use);
 293     PhaseIterGVN::add_users_of_use_to_worklist(nn, use, *_igvn_worklist);
 294     i -= uses_found;    // we deleted 1 or more copies of this edge
 295   }
 296 }
 297 
 298 
 299 // Identify all nodes that are reachable from below, useful.
 300 // Use breadth-first pass that records state in a Unique_Node_List,
 301 // recursive traversal is slower.
 302 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
 303   int estimated_worklist_size = live_nodes();
 304   useful.map( estimated_worklist_size, nullptr );  // preallocate space
 305 
 306   // Initialize worklist
 307   if (root() != nullptr)  { useful.push(root()); }
 308   // If 'top' is cached, declare it useful to preserve cached node
 309   if (cached_top_node())  { useful.push(cached_top_node()); }
 310 
 311   // Push all useful nodes onto the list, breadthfirst
 312   for( uint next = 0; next < useful.size(); ++next ) {
 313     assert( next < unique(), "Unique useful nodes < total nodes");
 314     Node *n  = useful.at(next);
 315     uint max = n->len();
 316     for( uint i = 0; i < max; ++i ) {
 317       Node *m = n->in(i);
 318       if (not_a_node(m))  continue;
 319       useful.push(m);
 320     }
 321   }
 322 }
 323 
 324 // Update dead_node_list with any missing dead nodes using useful
 325 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
 326 void Compile::update_dead_node_list(Unique_Node_List &useful) {
 327   uint max_idx = unique();
 328   VectorSet& useful_node_set = useful.member_set();
 329 
 330   for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
 331     // If node with index node_idx is not in useful set,
 332     // mark it as dead in dead node list.
 333     if (!useful_node_set.test(node_idx)) {
 334       record_dead_node(node_idx);
 335     }
 336   }
 337 }
 338 
 339 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
 340   int shift = 0;
 341   for (int i = 0; i < inlines->length(); i++) {
 342     CallGenerator* cg = inlines->at(i);
 343     if (useful.member(cg->call_node())) {
 344       if (shift > 0) {
 345         inlines->at_put(i - shift, cg);
 346       }
 347     } else {
 348       shift++; // skip over the dead element
 349     }
 350   }
 351   if (shift > 0) {
 352     inlines->trunc_to(inlines->length() - shift); // remove last elements from compacted array
 353   }
 354 }
 355 
 356 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Node* dead) {
 357   assert(dead != nullptr && dead->is_Call(), "sanity");
 358   int found = 0;
 359   for (int i = 0; i < inlines->length(); i++) {
 360     if (inlines->at(i)->call_node() == dead) {
 361       inlines->remove_at(i);
 362       found++;
 363       NOT_DEBUG( break; ) // elements are unique, so exit early
 364     }
 365   }
 366   assert(found <= 1, "not unique");
 367 }
 368 
 369 template<typename N, ENABLE_IF_SDEFN(std::is_base_of<Node, N>::value)>
 370 void Compile::remove_useless_nodes(GrowableArray<N*>& node_list, Unique_Node_List& useful) {
 371   for (int i = node_list.length() - 1; i >= 0; i--) {
 372     N* node = node_list.at(i);
 373     if (!useful.member(node)) {
 374       node_list.delete_at(i); // replaces i-th with last element which is known to be useful (already processed)
 375     }
 376   }
 377 }
 378 
 379 void Compile::remove_useless_node(Node* dead) {
 380   remove_modified_node(dead);
 381 
 382   // Constant node that has no out-edges and has only one in-edge from
 383   // root is usually dead. However, sometimes reshaping walk makes
 384   // it reachable by adding use edges. So, we will NOT count Con nodes
 385   // as dead to be conservative about the dead node count at any
 386   // given time.
 387   if (!dead->is_Con()) {
 388     record_dead_node(dead->_idx);
 389   }
 390   if (dead->is_macro()) {
 391     remove_macro_node(dead);
 392   }
 393   if (dead->is_expensive()) {
 394     remove_expensive_node(dead);
 395   }
 396   if (dead->Opcode() == Op_Opaque4) {
 397     remove_template_assertion_predicate_opaq(dead);
 398   }
 399   if (dead->is_ParsePredicate()) {
 400     remove_parse_predicate(dead->as_ParsePredicate());
 401   }
 402   if (dead->for_post_loop_opts_igvn()) {
 403     remove_from_post_loop_opts_igvn(dead);
 404   }
 405   if (dead->is_Call()) {
 406     remove_useless_late_inlines(                &_late_inlines, dead);
 407     remove_useless_late_inlines(         &_string_late_inlines, dead);
 408     remove_useless_late_inlines(         &_boxing_late_inlines, dead);
 409     remove_useless_late_inlines(&_vector_reboxing_late_inlines, dead);
 410 
 411     if (dead->is_CallStaticJava()) {
 412       remove_unstable_if_trap(dead->as_CallStaticJava(), false);
 413     }
 414   }
 415   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 416   bs->unregister_potential_barrier_node(dead);
 417 }
 418 
 419 // Disconnect all useless nodes by disconnecting those at the boundary.
 420 void Compile::disconnect_useless_nodes(Unique_Node_List& useful, Unique_Node_List& worklist) {
 421   uint next = 0;
 422   while (next < useful.size()) {
 423     Node *n = useful.at(next++);
 424     if (n->is_SafePoint()) {
 425       // We're done with a parsing phase. Replaced nodes are not valid
 426       // beyond that point.
 427       n->as_SafePoint()->delete_replaced_nodes();
 428     }
 429     // Use raw traversal of out edges since this code removes out edges
 430     int max = n->outcnt();
 431     for (int j = 0; j < max; ++j) {
 432       Node* child = n->raw_out(j);
 433       if (!useful.member(child)) {
 434         assert(!child->is_top() || child != top(),
 435                "If top is cached in Compile object it is in useful list");
 436         // Only need to remove this out-edge to the useless node
 437         n->raw_del_out(j);
 438         --j;
 439         --max;
 440       }
 441     }
 442     if (n->outcnt() == 1 && n->has_special_unique_user()) {
 443       assert(useful.member(n->unique_out()), "do not push a useless node");
 444       worklist.push(n->unique_out());
 445     }
 446   }
 447 
 448   remove_useless_nodes(_macro_nodes,        useful); // remove useless macro nodes
 449   remove_useless_nodes(_parse_predicates,   useful); // remove useless Parse Predicate nodes
 450   remove_useless_nodes(_template_assertion_predicate_opaqs, useful); // remove useless Assertion Predicate opaque nodes
 451   remove_useless_nodes(_expensive_nodes,    useful); // remove useless expensive nodes
 452   remove_useless_nodes(_for_post_loop_igvn, useful); // remove useless node recorded for post loop opts IGVN pass
 453   remove_useless_unstable_if_traps(useful);          // remove useless unstable_if traps
 454   remove_useless_coarsened_locks(useful);            // remove useless coarsened locks nodes
 455 #ifdef ASSERT
 456   if (_modified_nodes != nullptr) {
 457     _modified_nodes->remove_useless_nodes(useful.member_set());
 458   }
 459 #endif
 460 
 461   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 462   bs->eliminate_useless_gc_barriers(useful, this);
 463   // clean up the late inline lists
 464   remove_useless_late_inlines(                &_late_inlines, useful);
 465   remove_useless_late_inlines(         &_string_late_inlines, useful);
 466   remove_useless_late_inlines(         &_boxing_late_inlines, useful);
 467   remove_useless_late_inlines(&_vector_reboxing_late_inlines, useful);
 468   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
 469 }
 470 
 471 // ============================================================================
 472 //------------------------------CompileWrapper---------------------------------
 473 class CompileWrapper : public StackObj {
 474   Compile *const _compile;
 475  public:
 476   CompileWrapper(Compile* compile);
 477 
 478   ~CompileWrapper();
 479 };
 480 
 481 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
 482   // the Compile* pointer is stored in the current ciEnv:
 483   ciEnv* env = compile->env();
 484   assert(env == ciEnv::current(), "must already be a ciEnv active");
 485   assert(env->compiler_data() == nullptr, "compile already active?");
 486   env->set_compiler_data(compile);
 487   assert(compile == Compile::current(), "sanity");
 488 
 489   compile->set_type_dict(nullptr);
 490   compile->set_clone_map(new Dict(cmpkey, hashkey, _compile->comp_arena()));
 491   compile->clone_map().set_clone_idx(0);
 492   compile->set_type_last_size(0);
 493   compile->set_last_tf(nullptr, nullptr);
 494   compile->set_indexSet_arena(nullptr);
 495   compile->set_indexSet_free_block_list(nullptr);
 496   compile->init_type_arena();
 497   Type::Initialize(compile);
 498   _compile->begin_method();
 499   _compile->clone_map().set_debug(_compile->has_method() && _compile->directive()->CloneMapDebugOption);
 500 }
 501 CompileWrapper::~CompileWrapper() {
 502   // simulate crash during compilation
 503   assert(CICrashAt < 0 || _compile->compile_id() != CICrashAt, "just as planned");
 504 
 505   _compile->end_method();
 506   _compile->env()->set_compiler_data(nullptr);
 507 }
 508 
 509 
 510 //----------------------------print_compile_messages---------------------------
 511 void Compile::print_compile_messages() {
 512 #ifndef PRODUCT
 513   // Check if recompiling
 514   if (!subsume_loads() && PrintOpto) {
 515     // Recompiling without allowing machine instructions to subsume loads
 516     tty->print_cr("*********************************************************");
 517     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
 518     tty->print_cr("*********************************************************");
 519   }
 520   if ((do_escape_analysis() != DoEscapeAnalysis) && PrintOpto) {
 521     // Recompiling without escape analysis
 522     tty->print_cr("*********************************************************");
 523     tty->print_cr("** Bailout: Recompile without escape analysis          **");
 524     tty->print_cr("*********************************************************");
 525   }
 526   if (do_iterative_escape_analysis() != DoEscapeAnalysis && PrintOpto) {
 527     // Recompiling without iterative escape analysis
 528     tty->print_cr("*********************************************************");
 529     tty->print_cr("** Bailout: Recompile without iterative escape analysis**");
 530     tty->print_cr("*********************************************************");
 531   }
 532   if (do_reduce_allocation_merges() != ReduceAllocationMerges && PrintOpto) {
 533     // Recompiling without reducing allocation merges
 534     tty->print_cr("*********************************************************");
 535     tty->print_cr("** Bailout: Recompile without reduce allocation merges **");
 536     tty->print_cr("*********************************************************");
 537   }
 538   if ((eliminate_boxing() != EliminateAutoBox) && PrintOpto) {
 539     // Recompiling without boxing elimination
 540     tty->print_cr("*********************************************************");
 541     tty->print_cr("** Bailout: Recompile without boxing elimination       **");
 542     tty->print_cr("*********************************************************");
 543   }
 544   if ((do_locks_coarsening() != EliminateLocks) && PrintOpto) {
 545     // Recompiling without locks coarsening
 546     tty->print_cr("*********************************************************");
 547     tty->print_cr("** Bailout: Recompile without locks coarsening         **");
 548     tty->print_cr("*********************************************************");
 549   }
 550   if (env()->break_at_compile()) {
 551     // Open the debugger when compiling this method.
 552     tty->print("### Breaking when compiling: ");
 553     method()->print_short_name();
 554     tty->cr();
 555     BREAKPOINT;
 556   }
 557 
 558   if( PrintOpto ) {
 559     if (is_osr_compilation()) {
 560       tty->print("[OSR]%3d", _compile_id);
 561     } else {
 562       tty->print("%3d", _compile_id);
 563     }
 564   }
 565 #endif
 566 }
 567 
 568 #ifndef PRODUCT
 569 void Compile::print_ideal_ir(const char* phase_name) {
 570   // keep the following output all in one block
 571   // This output goes directly to the tty, not the compiler log.
 572   // To enable tools to match it up with the compilation activity,
 573   // be sure to tag this tty output with the compile ID.
 574 
 575   // Node dumping can cause a safepoint, which can break the tty lock.
 576   // Buffer all node dumps, so that all safepoints happen before we lock.
 577   ResourceMark rm;
 578   stringStream ss;
 579 
 580   if (_output == nullptr) {
 581     ss.print_cr("AFTER: %s", phase_name);
 582     // Print out all nodes in ascending order of index.
 583     root()->dump_bfs(MaxNodeLimit, nullptr, "+S$", &ss);
 584   } else {
 585     // Dump the node blockwise if we have a scheduling
 586     _output->print_scheduling(&ss);
 587   }
 588 
 589   // Check that the lock is not broken by a safepoint.
 590   NoSafepointVerifier nsv;
 591   ttyLocker ttyl;
 592   if (xtty != nullptr) {
 593     xtty->head("ideal compile_id='%d'%s compile_phase='%s'",
 594                compile_id(),
 595                is_osr_compilation() ? " compile_kind='osr'" : "",
 596                phase_name);
 597   }
 598 
 599   tty->print("%s", ss.as_string());
 600 
 601   if (xtty != nullptr) {
 602     xtty->tail("ideal");
 603   }
 604 }
 605 #endif
 606 
 607 // ============================================================================
 608 //------------------------------Compile standard-------------------------------
 609 
 610 // Compile a method.  entry_bci is -1 for normal compilations and indicates
 611 // the continuation bci for on stack replacement.
 612 
 613 
 614 Compile::Compile( ciEnv* ci_env, ciMethod* target, int osr_bci,
 615                   Options options, DirectiveSet* directive)
 616                 : Phase(Compiler),
 617                   _compile_id(ci_env->compile_id()),
 618                   _options(options),
 619                   _method(target),
 620                   _entry_bci(osr_bci),
 621                   _ilt(nullptr),
 622                   _stub_function(nullptr),
 623                   _stub_name(nullptr),
 624                   _stub_entry_point(nullptr),
 625                   _max_node_limit(MaxNodeLimit),
 626                   _post_loop_opts_phase(false),
 627                   _allow_macro_nodes(true),
 628                   _inlining_progress(false),
 629                   _inlining_incrementally(false),
 630                   _do_cleanup(false),
 631                   _has_reserved_stack_access(target->has_reserved_stack_access()),
 632 #ifndef PRODUCT
 633                   _igv_idx(0),
 634                   _trace_opto_output(directive->TraceOptoOutputOption),
 635 #endif
 636                   _has_method_handle_invokes(false),
 637                   _clinit_barrier_on_entry(false),
 638                   _stress_seed(0),
 639                   _comp_arena(mtCompiler),
 640                   _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())),
 641                   _env(ci_env),
 642                   _directive(directive),
 643                   _log(ci_env->log()),
 644                   _first_failure_details(nullptr),
 645                   _intrinsics        (comp_arena(), 0, 0, nullptr),
 646                   _macro_nodes       (comp_arena(), 8, 0, nullptr),
 647                   _parse_predicates  (comp_arena(), 8, 0, nullptr),
 648                   _template_assertion_predicate_opaqs (comp_arena(), 8, 0, nullptr),
 649                   _expensive_nodes   (comp_arena(), 8, 0, nullptr),
 650                   _for_post_loop_igvn(comp_arena(), 8, 0, nullptr),
 651                   _unstable_if_traps (comp_arena(), 8, 0, nullptr),
 652                   _coarsened_locks   (comp_arena(), 8, 0, nullptr),
 653                   _congraph(nullptr),
 654                   NOT_PRODUCT(_igv_printer(nullptr) COMMA)
 655                   _unique(0),
 656                   _dead_node_count(0),
 657                   _dead_node_list(comp_arena()),
 658                   _node_arena_one(mtCompiler, Arena::Tag::tag_node),
 659                   _node_arena_two(mtCompiler, Arena::Tag::tag_node),
 660                   _node_arena(&_node_arena_one),
 661                   _mach_constant_base_node(nullptr),
 662                   _Compile_types(mtCompiler),
 663                   _initial_gvn(nullptr),
 664                   _igvn_worklist(nullptr),
 665                   _types(nullptr),
 666                   _node_hash(nullptr),
 667                   _late_inlines(comp_arena(), 2, 0, nullptr),
 668                   _string_late_inlines(comp_arena(), 2, 0, nullptr),
 669                   _boxing_late_inlines(comp_arena(), 2, 0, nullptr),
 670                   _vector_reboxing_late_inlines(comp_arena(), 2, 0, nullptr),
 671                   _late_inlines_pos(0),
 672                   _number_of_mh_late_inlines(0),
 673                   _oom(false),
 674                   _print_inlining_stream(new (mtCompiler) stringStream()),
 675                   _print_inlining_list(nullptr),
 676                   _print_inlining_idx(0),
 677                   _print_inlining_output(nullptr),
 678                   _replay_inline_data(nullptr),
 679                   _java_calls(0),
 680                   _inner_loops(0),
 681                   _interpreter_frame_size(0),
 682                   _output(nullptr)
 683 #ifndef PRODUCT
 684                   , _in_dump_cnt(0)
 685 #endif
 686 {
 687   C = this;
 688   CompileWrapper cw(this);
 689 
 690   TraceTime t1("Total compilation time", &_t_totalCompilation, CITime, CITimeVerbose);
 691   TraceTime t2(nullptr, &_t_methodCompilation, CITime, false);
 692 
 693 #if defined(SUPPORT_ASSEMBLY) || defined(SUPPORT_ABSTRACT_ASSEMBLY)
 694   bool print_opto_assembly = directive->PrintOptoAssemblyOption;
 695   // We can always print a disassembly, either abstract (hex dump) or
 696   // with the help of a suitable hsdis library. Thus, we should not
 697   // couple print_assembly and print_opto_assembly controls.
 698   // But: always print opto and regular assembly on compile command 'print'.
 699   bool print_assembly = directive->PrintAssemblyOption;
 700   set_print_assembly(print_opto_assembly || print_assembly);
 701 #else
 702   set_print_assembly(false); // must initialize.
 703 #endif
 704 
 705 #ifndef PRODUCT
 706   set_parsed_irreducible_loop(false);
 707 #endif
 708 
 709   if (directive->ReplayInlineOption) {
 710     _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level());
 711   }
 712   set_print_inlining(directive->PrintInliningOption || PrintOptoInlining);
 713   set_print_intrinsics(directive->PrintIntrinsicsOption);
 714   set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it
 715 
 716   if (ProfileTraps) {
 717     // Make sure the method being compiled gets its own MDO,
 718     // so we can at least track the decompile_count().
 719     method()->ensure_method_data();
 720   }
 721 
 722   Init(/*do_aliasing=*/ true);
 723 
 724   print_compile_messages();
 725 
 726   _ilt = InlineTree::build_inline_tree_root();
 727 
 728   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
 729   assert(num_alias_types() >= AliasIdxRaw, "");
 730 
 731 #define MINIMUM_NODE_HASH  1023
 732 
 733   // GVN that will be run immediately on new nodes
 734   uint estimated_size = method()->code_size()*4+64;
 735   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
 736   _igvn_worklist = new (comp_arena()) Unique_Node_List(comp_arena());
 737   _types = new (comp_arena()) Type_Array(comp_arena());
 738   _node_hash = new (comp_arena()) NodeHash(comp_arena(), estimated_size);
 739   PhaseGVN gvn;
 740   set_initial_gvn(&gvn);
 741 
 742   print_inlining_init();
 743   { // Scope for timing the parser
 744     TracePhase tp("parse", &timers[_t_parser]);
 745 
 746     // Put top into the hash table ASAP.
 747     initial_gvn()->transform(top());
 748 
 749     // Set up tf(), start(), and find a CallGenerator.
 750     CallGenerator* cg = nullptr;
 751     if (is_osr_compilation()) {
 752       const TypeTuple *domain = StartOSRNode::osr_domain();
 753       const TypeTuple *range = TypeTuple::make_range(method()->signature());
 754       init_tf(TypeFunc::make(domain, range));
 755       StartNode* s = new StartOSRNode(root(), domain);
 756       initial_gvn()->set_type_bottom(s);
 757       init_start(s);
 758       cg = CallGenerator::for_osr(method(), entry_bci());
 759     } else {
 760       // Normal case.
 761       init_tf(TypeFunc::make(method()));
 762       StartNode* s = new StartNode(root(), tf()->domain());
 763       initial_gvn()->set_type_bottom(s);
 764       init_start(s);
 765       if (method()->intrinsic_id() == vmIntrinsics::_Reference_get) {
 766         // With java.lang.ref.reference.get() we must go through the
 767         // intrinsic - even when get() is the root
 768         // method of the compile - so that, if necessary, the value in
 769         // the referent field of the reference object gets recorded by
 770         // the pre-barrier code.
 771         cg = find_intrinsic(method(), false);
 772       }
 773       if (cg == nullptr) {
 774         float past_uses = method()->interpreter_invocation_count();
 775         float expected_uses = past_uses;
 776         cg = CallGenerator::for_inline(method(), expected_uses);
 777       }
 778     }
 779     if (failing())  return;
 780     if (cg == nullptr) {
 781       const char* reason = InlineTree::check_can_parse(method());
 782       assert(reason != nullptr, "expect reason for parse failure");
 783       stringStream ss;
 784       ss.print("cannot parse method: %s", reason);
 785       record_method_not_compilable(ss.as_string());
 786       return;
 787     }
 788 
 789     gvn.set_type(root(), root()->bottom_type());
 790 
 791     JVMState* jvms = build_start_state(start(), tf());
 792     if ((jvms = cg->generate(jvms)) == nullptr) {
 793       assert(failure_reason() != nullptr, "expect reason for parse failure");
 794       stringStream ss;
 795       ss.print("method parse failed: %s", failure_reason());
 796       record_method_not_compilable(ss.as_string());
 797       return;
 798     }
 799     GraphKit kit(jvms);
 800 
 801     if (!kit.stopped()) {
 802       // Accept return values, and transfer control we know not where.
 803       // This is done by a special, unique ReturnNode bound to root.
 804       return_values(kit.jvms());
 805     }
 806 
 807     if (kit.has_exceptions()) {
 808       // Any exceptions that escape from this call must be rethrown
 809       // to whatever caller is dynamically above us on the stack.
 810       // This is done by a special, unique RethrowNode bound to root.
 811       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
 812     }
 813 
 814     assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
 815 
 816     if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
 817       inline_string_calls(true);
 818     }
 819 
 820     if (failing())  return;
 821 
 822     // Remove clutter produced by parsing.
 823     if (!failing()) {
 824       ResourceMark rm;
 825       PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist());
 826     }
 827   }
 828 
 829   // Note:  Large methods are capped off in do_one_bytecode().
 830   if (failing())  return;
 831 
 832   // After parsing, node notes are no longer automagic.
 833   // They must be propagated by register_new_node_with_optimizer(),
 834   // clone(), or the like.
 835   set_default_node_notes(nullptr);
 836 
 837 #ifndef PRODUCT
 838   if (should_print_igv(1)) {
 839     _igv_printer->print_inlining();
 840   }
 841 #endif
 842 
 843   if (failing())  return;
 844   NOT_PRODUCT( verify_graph_edges(); )
 845 
 846   if (StressLCM || StressGCM || StressIGVN || StressCCP ||
 847       StressIncrementalInlining || StressMacroExpansion) {
 848     initialize_stress_seed(directive);
 849   }
 850 
 851   // Now optimize
 852   Optimize();
 853   if (failing())  return;
 854   NOT_PRODUCT( verify_graph_edges(); )
 855 
 856 #ifndef PRODUCT
 857   if (should_print_ideal()) {
 858     print_ideal_ir("print_ideal");
 859   }
 860 #endif
 861 
 862 #ifdef ASSERT
 863   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 864   bs->verify_gc_barriers(this, BarrierSetC2::BeforeCodeGen);
 865 #endif
 866 
 867   // Dump compilation data to replay it.
 868   if (directive->DumpReplayOption) {
 869     env()->dump_replay_data(_compile_id);
 870   }
 871   if (directive->DumpInlineOption && (ilt() != nullptr)) {
 872     env()->dump_inline_data(_compile_id);
 873   }
 874 
 875   // Now that we know the size of all the monitors we can add a fixed slot
 876   // for the original deopt pc.
 877   int next_slot = fixed_slots() + (sizeof(address) / VMRegImpl::stack_slot_size);
 878   set_fixed_slots(next_slot);
 879 
 880   // Compute when to use implicit null checks. Used by matching trap based
 881   // nodes and NullCheck optimization.
 882   set_allowed_deopt_reasons();
 883 
 884   // Now generate code
 885   Code_Gen();
 886 }
 887 
 888 //------------------------------Compile----------------------------------------
 889 // Compile a runtime stub
 890 Compile::Compile( ciEnv* ci_env,
 891                   TypeFunc_generator generator,
 892                   address stub_function,
 893                   const char *stub_name,
 894                   int is_fancy_jump,
 895                   bool pass_tls,
 896                   bool return_pc,
 897                   DirectiveSet* directive)
 898   : Phase(Compiler),
 899     _compile_id(0),
 900     _options(Options::for_runtime_stub()),
 901     _method(nullptr),
 902     _entry_bci(InvocationEntryBci),
 903     _stub_function(stub_function),
 904     _stub_name(stub_name),
 905     _stub_entry_point(nullptr),
 906     _max_node_limit(MaxNodeLimit),
 907     _post_loop_opts_phase(false),
 908     _allow_macro_nodes(true),
 909     _inlining_progress(false),
 910     _inlining_incrementally(false),
 911     _has_reserved_stack_access(false),
 912 #ifndef PRODUCT
 913     _igv_idx(0),
 914     _trace_opto_output(directive->TraceOptoOutputOption),
 915 #endif
 916     _has_method_handle_invokes(false),
 917     _clinit_barrier_on_entry(false),
 918     _stress_seed(0),
 919     _comp_arena(mtCompiler),
 920     _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())),
 921     _env(ci_env),
 922     _directive(directive),
 923     _log(ci_env->log()),
 924     _first_failure_details(nullptr),
 925     _for_post_loop_igvn(comp_arena(), 8, 0, nullptr),
 926     _congraph(nullptr),
 927     NOT_PRODUCT(_igv_printer(nullptr) COMMA)
 928     _unique(0),
 929     _dead_node_count(0),
 930     _dead_node_list(comp_arena()),
 931     _node_arena_one(mtCompiler),
 932     _node_arena_two(mtCompiler),
 933     _node_arena(&_node_arena_one),
 934     _mach_constant_base_node(nullptr),
 935     _Compile_types(mtCompiler),
 936     _initial_gvn(nullptr),
 937     _igvn_worklist(nullptr),
 938     _types(nullptr),
 939     _node_hash(nullptr),
 940     _number_of_mh_late_inlines(0),
 941     _oom(false),
 942     _print_inlining_stream(new (mtCompiler) stringStream()),
 943     _print_inlining_list(nullptr),
 944     _print_inlining_idx(0),
 945     _print_inlining_output(nullptr),
 946     _replay_inline_data(nullptr),
 947     _java_calls(0),
 948     _inner_loops(0),
 949     _interpreter_frame_size(0),
 950     _output(nullptr),
 951 #ifndef PRODUCT
 952     _in_dump_cnt(0),
 953 #endif
 954     _allowed_reasons(0) {
 955   C = this;
 956 
 957   TraceTime t1(nullptr, &_t_totalCompilation, CITime, false);
 958   TraceTime t2(nullptr, &_t_stubCompilation, CITime, false);
 959 
 960 #ifndef PRODUCT
 961   set_print_assembly(PrintFrameConverterAssembly);
 962   set_parsed_irreducible_loop(false);
 963 #else
 964   set_print_assembly(false); // Must initialize.
 965 #endif
 966   set_has_irreducible_loop(false); // no loops
 967 
 968   CompileWrapper cw(this);
 969   Init(/*do_aliasing=*/ false);
 970   init_tf((*generator)());
 971 
 972   _igvn_worklist = new (comp_arena()) Unique_Node_List(comp_arena());
 973   _types = new (comp_arena()) Type_Array(comp_arena());
 974   _node_hash = new (comp_arena()) NodeHash(comp_arena(), 255);
 975 
 976   if (StressLCM || StressGCM) {
 977     initialize_stress_seed(directive);
 978   }
 979 
 980   {
 981     PhaseGVN gvn;
 982     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
 983     gvn.transform(top());
 984 
 985     GraphKit kit;
 986     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
 987   }
 988 
 989   NOT_PRODUCT( verify_graph_edges(); )
 990 
 991   Code_Gen();
 992 }
 993 
 994 Compile::~Compile() {
 995   delete _print_inlining_stream;
 996   delete _first_failure_details;
 997 };
 998 
 999 //------------------------------Init-------------------------------------------
1000 // Prepare for a single compilation
1001 void Compile::Init(bool aliasing) {
1002   _do_aliasing = aliasing;
1003   _unique  = 0;
1004   _regalloc = nullptr;
1005 
1006   _tf      = nullptr;  // filled in later
1007   _top     = nullptr;  // cached later
1008   _matcher = nullptr;  // filled in later
1009   _cfg     = nullptr;  // filled in later
1010 
1011   IA32_ONLY( set_24_bit_selection_and_mode(true, false); )
1012 
1013   _node_note_array = nullptr;
1014   _default_node_notes = nullptr;
1015   DEBUG_ONLY( _modified_nodes = nullptr; ) // Used in Optimize()
1016 
1017   _immutable_memory = nullptr; // filled in at first inquiry
1018 
1019 #ifdef ASSERT
1020   _phase_optimize_finished = false;
1021   _exception_backedge = false;
1022   _type_verify = nullptr;
1023 #endif
1024 
1025   // Globally visible Nodes
1026   // First set TOP to null to give safe behavior during creation of RootNode
1027   set_cached_top_node(nullptr);
1028   set_root(new RootNode());
1029   // Now that you have a Root to point to, create the real TOP
1030   set_cached_top_node( new ConNode(Type::TOP) );
1031   set_recent_alloc(nullptr, nullptr);
1032 
1033   // Create Debug Information Recorder to record scopes, oopmaps, etc.
1034   env()->set_oop_recorder(new OopRecorder(env()->arena()));
1035   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
1036   env()->set_dependencies(new Dependencies(env()));
1037 
1038   _fixed_slots = 0;
1039   set_has_split_ifs(false);
1040   set_has_loops(false); // first approximation
1041   set_has_stringbuilder(false);
1042   set_has_boxed_value(false);
1043   _trap_can_recompile = false;  // no traps emitted yet
1044   _major_progress = true; // start out assuming good things will happen
1045   set_has_unsafe_access(false);
1046   set_max_vector_size(0);
1047   set_clear_upper_avx(false);  //false as default for clear upper bits of ymm registers
1048   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
1049   set_decompile_count(0);
1050 
1051 #ifndef PRODUCT
1052   Copy::zero_to_bytes(_igv_phase_iter, sizeof(_igv_phase_iter));
1053 #endif
1054 
1055   set_do_freq_based_layout(_directive->BlockLayoutByFrequencyOption);
1056   _loop_opts_cnt = LoopOptsCount;
1057   set_do_inlining(Inline);
1058   set_max_inline_size(MaxInlineSize);
1059   set_freq_inline_size(FreqInlineSize);
1060   set_do_scheduling(OptoScheduling);
1061 
1062   set_do_vector_loop(false);
1063   set_has_monitors(false);
1064   set_has_scoped_access(false);
1065 
1066   if (AllowVectorizeOnDemand) {
1067     if (has_method() && _directive->VectorizeOption) {
1068       set_do_vector_loop(true);
1069       NOT_PRODUCT(if (do_vector_loop() && Verbose) {tty->print("Compile::Init: do vectorized loops (SIMD like) for method %s\n",  method()->name()->as_quoted_ascii());})
1070     } else if (has_method() && method()->name() != nullptr &&
1071                method()->intrinsic_id() == vmIntrinsics::_forEachRemaining) {
1072       set_do_vector_loop(true);
1073     }
1074   }
1075   set_use_cmove(UseCMoveUnconditionally /* || do_vector_loop()*/); //TODO: consider do_vector_loop() mandate use_cmove unconditionally
1076   NOT_PRODUCT(if (use_cmove() && Verbose && has_method()) {tty->print("Compile::Init: use CMove without profitability tests for method %s\n",  method()->name()->as_quoted_ascii());})
1077 
1078   _max_node_limit = _directive->MaxNodeLimitOption;
1079 
1080   if (VM_Version::supports_fast_class_init_checks() && has_method() && !is_osr_compilation() && method()->needs_clinit_barrier()) {
1081     set_clinit_barrier_on_entry(true);
1082   }
1083   if (debug_info()->recording_non_safepoints()) {
1084     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
1085                         (comp_arena(), 8, 0, nullptr));
1086     set_default_node_notes(Node_Notes::make(this));
1087   }
1088 
1089   const int grow_ats = 16;
1090   _max_alias_types = grow_ats;
1091   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
1092   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
1093   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
1094   {
1095     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
1096   }
1097   // Initialize the first few types.
1098   _alias_types[AliasIdxTop]->Init(AliasIdxTop, nullptr);
1099   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
1100   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
1101   _num_alias_types = AliasIdxRaw+1;
1102   // Zero out the alias type cache.
1103   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
1104   // A null adr_type hits in the cache right away.  Preload the right answer.
1105   probe_alias_cache(nullptr)->_index = AliasIdxTop;
1106 }
1107 
1108 //---------------------------init_start----------------------------------------
1109 // Install the StartNode on this compile object.
1110 void Compile::init_start(StartNode* s) {
1111   if (failing())
1112     return; // already failing
1113   assert(s == start(), "");
1114 }
1115 
1116 /**
1117  * Return the 'StartNode'. We must not have a pending failure, since the ideal graph
1118  * can be in an inconsistent state, i.e., we can get segmentation faults when traversing
1119  * the ideal graph.
1120  */
1121 StartNode* Compile::start() const {
1122   assert (!failing(), "Must not have pending failure. Reason is: %s", failure_reason());
1123   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
1124     Node* start = root()->fast_out(i);
1125     if (start->is_Start()) {
1126       return start->as_Start();
1127     }
1128   }
1129   fatal("Did not find Start node!");
1130   return nullptr;
1131 }
1132 
1133 //-------------------------------immutable_memory-------------------------------------
1134 // Access immutable memory
1135 Node* Compile::immutable_memory() {
1136   if (_immutable_memory != nullptr) {
1137     return _immutable_memory;
1138   }
1139   StartNode* s = start();
1140   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
1141     Node *p = s->fast_out(i);
1142     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
1143       _immutable_memory = p;
1144       return _immutable_memory;
1145     }
1146   }
1147   ShouldNotReachHere();
1148   return nullptr;
1149 }
1150 
1151 //----------------------set_cached_top_node------------------------------------
1152 // Install the cached top node, and make sure Node::is_top works correctly.
1153 void Compile::set_cached_top_node(Node* tn) {
1154   if (tn != nullptr)  verify_top(tn);
1155   Node* old_top = _top;
1156   _top = tn;
1157   // Calling Node::setup_is_top allows the nodes the chance to adjust
1158   // their _out arrays.
1159   if (_top != nullptr)     _top->setup_is_top();
1160   if (old_top != nullptr)  old_top->setup_is_top();
1161   assert(_top == nullptr || top()->is_top(), "");
1162 }
1163 
1164 #ifdef ASSERT
1165 uint Compile::count_live_nodes_by_graph_walk() {
1166   Unique_Node_List useful(comp_arena());
1167   // Get useful node list by walking the graph.
1168   identify_useful_nodes(useful);
1169   return useful.size();
1170 }
1171 
1172 void Compile::print_missing_nodes() {
1173 
1174   // Return if CompileLog is null and PrintIdealNodeCount is false.
1175   if ((_log == nullptr) && (! PrintIdealNodeCount)) {
1176     return;
1177   }
1178 
1179   // This is an expensive function. It is executed only when the user
1180   // specifies VerifyIdealNodeCount option or otherwise knows the
1181   // additional work that needs to be done to identify reachable nodes
1182   // by walking the flow graph and find the missing ones using
1183   // _dead_node_list.
1184 
1185   Unique_Node_List useful(comp_arena());
1186   // Get useful node list by walking the graph.
1187   identify_useful_nodes(useful);
1188 
1189   uint l_nodes = C->live_nodes();
1190   uint l_nodes_by_walk = useful.size();
1191 
1192   if (l_nodes != l_nodes_by_walk) {
1193     if (_log != nullptr) {
1194       _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
1195       _log->stamp();
1196       _log->end_head();
1197     }
1198     VectorSet& useful_member_set = useful.member_set();
1199     int last_idx = l_nodes_by_walk;
1200     for (int i = 0; i < last_idx; i++) {
1201       if (useful_member_set.test(i)) {
1202         if (_dead_node_list.test(i)) {
1203           if (_log != nullptr) {
1204             _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
1205           }
1206           if (PrintIdealNodeCount) {
1207             // Print the log message to tty
1208               tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
1209               useful.at(i)->dump();
1210           }
1211         }
1212       }
1213       else if (! _dead_node_list.test(i)) {
1214         if (_log != nullptr) {
1215           _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
1216         }
1217         if (PrintIdealNodeCount) {
1218           // Print the log message to tty
1219           tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
1220         }
1221       }
1222     }
1223     if (_log != nullptr) {
1224       _log->tail("mismatched_nodes");
1225     }
1226   }
1227 }
1228 void Compile::record_modified_node(Node* n) {
1229   if (_modified_nodes != nullptr && !_inlining_incrementally && !n->is_Con()) {
1230     _modified_nodes->push(n);
1231   }
1232 }
1233 
1234 void Compile::remove_modified_node(Node* n) {
1235   if (_modified_nodes != nullptr) {
1236     _modified_nodes->remove(n);
1237   }
1238 }
1239 #endif
1240 
1241 #ifndef PRODUCT
1242 void Compile::verify_top(Node* tn) const {
1243   if (tn != nullptr) {
1244     assert(tn->is_Con(), "top node must be a constant");
1245     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
1246     assert(tn->in(0) != nullptr, "must have live top node");
1247   }
1248 }
1249 #endif
1250 
1251 
1252 ///-------------------Managing Per-Node Debug & Profile Info-------------------
1253 
1254 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1255   guarantee(arr != nullptr, "");
1256   int num_blocks = arr->length();
1257   if (grow_by < num_blocks)  grow_by = num_blocks;
1258   int num_notes = grow_by * _node_notes_block_size;
1259   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1260   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1261   while (num_notes > 0) {
1262     arr->append(notes);
1263     notes     += _node_notes_block_size;
1264     num_notes -= _node_notes_block_size;
1265   }
1266   assert(num_notes == 0, "exact multiple, please");
1267 }
1268 
1269 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1270   if (source == nullptr || dest == nullptr)  return false;
1271 
1272   if (dest->is_Con())
1273     return false;               // Do not push debug info onto constants.
1274 
1275 #ifdef ASSERT
1276   // Leave a bread crumb trail pointing to the original node:
1277   if (dest != nullptr && dest != source && dest->debug_orig() == nullptr) {
1278     dest->set_debug_orig(source);
1279   }
1280 #endif
1281 
1282   if (node_note_array() == nullptr)
1283     return false;               // Not collecting any notes now.
1284 
1285   // This is a copy onto a pre-existing node, which may already have notes.
1286   // If both nodes have notes, do not overwrite any pre-existing notes.
1287   Node_Notes* source_notes = node_notes_at(source->_idx);
1288   if (source_notes == nullptr || source_notes->is_clear())  return false;
1289   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
1290   if (dest_notes == nullptr || dest_notes->is_clear()) {
1291     return set_node_notes_at(dest->_idx, source_notes);
1292   }
1293 
1294   Node_Notes merged_notes = (*source_notes);
1295   // The order of operations here ensures that dest notes will win...
1296   merged_notes.update_from(dest_notes);
1297   return set_node_notes_at(dest->_idx, &merged_notes);
1298 }
1299 
1300 
1301 //--------------------------allow_range_check_smearing-------------------------
1302 // Gating condition for coalescing similar range checks.
1303 // Sometimes we try 'speculatively' replacing a series of a range checks by a
1304 // single covering check that is at least as strong as any of them.
1305 // If the optimization succeeds, the simplified (strengthened) range check
1306 // will always succeed.  If it fails, we will deopt, and then give up
1307 // on the optimization.
1308 bool Compile::allow_range_check_smearing() const {
1309   // If this method has already thrown a range-check,
1310   // assume it was because we already tried range smearing
1311   // and it failed.
1312   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1313   return !already_trapped;
1314 }
1315 
1316 
1317 //------------------------------flatten_alias_type-----------------------------
1318 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1319   assert(do_aliasing(), "Aliasing should be enabled");
1320   int offset = tj->offset();
1321   TypePtr::PTR ptr = tj->ptr();
1322 
1323   // Known instance (scalarizable allocation) alias only with itself.
1324   bool is_known_inst = tj->isa_oopptr() != nullptr &&
1325                        tj->is_oopptr()->is_known_instance();
1326 
1327   // Process weird unsafe references.
1328   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1329     assert(InlineUnsafeOps || StressReflectiveCode, "indeterminate pointers come only from unsafe ops");
1330     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1331     tj = TypeOopPtr::BOTTOM;
1332     ptr = tj->ptr();
1333     offset = tj->offset();
1334   }
1335 
1336   // Array pointers need some flattening
1337   const TypeAryPtr* ta = tj->isa_aryptr();
1338   if (ta && ta->is_stable()) {
1339     // Erase stability property for alias analysis.
1340     tj = ta = ta->cast_to_stable(false);
1341   }
1342   if( ta && is_known_inst ) {
1343     if ( offset != Type::OffsetBot &&
1344          offset > arrayOopDesc::length_offset_in_bytes() ) {
1345       offset = Type::OffsetBot; // Flatten constant access into array body only
1346       tj = ta = ta->
1347               remove_speculative()->
1348               cast_to_ptr_type(ptr)->
1349               with_offset(offset);
1350     }
1351   } else if (ta) {
1352     // For arrays indexed by constant indices, we flatten the alias
1353     // space to include all of the array body.  Only the header, klass
1354     // and array length can be accessed un-aliased.
1355     if( offset != Type::OffsetBot ) {
1356       if( ta->const_oop() ) { // MethodData* or Method*
1357         offset = Type::OffsetBot;   // Flatten constant access into array body
1358         tj = ta = ta->
1359                 remove_speculative()->
1360                 cast_to_ptr_type(ptr)->
1361                 cast_to_exactness(false)->
1362                 with_offset(offset);
1363       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1364         // range is OK as-is.
1365         tj = ta = TypeAryPtr::RANGE;
1366       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1367         tj = TypeInstPtr::KLASS; // all klass loads look alike
1368         ta = TypeAryPtr::RANGE; // generic ignored junk
1369         ptr = TypePtr::BotPTR;
1370       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1371         tj = TypeInstPtr::MARK;
1372         ta = TypeAryPtr::RANGE; // generic ignored junk
1373         ptr = TypePtr::BotPTR;
1374       } else {                  // Random constant offset into array body
1375         offset = Type::OffsetBot;   // Flatten constant access into array body
1376         tj = ta = ta->
1377                 remove_speculative()->
1378                 cast_to_ptr_type(ptr)->
1379                 cast_to_exactness(false)->
1380                 with_offset(offset);
1381       }
1382     }
1383     // Arrays of fixed size alias with arrays of unknown size.
1384     if (ta->size() != TypeInt::POS) {
1385       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1386       tj = ta = ta->
1387               remove_speculative()->
1388               cast_to_ptr_type(ptr)->
1389               with_ary(tary)->
1390               cast_to_exactness(false);
1391     }
1392     // Arrays of known objects become arrays of unknown objects.
1393     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1394       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1395       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,nullptr,false,offset);
1396     }
1397     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1398       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1399       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,nullptr,false,offset);
1400     }
1401     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1402     // cannot be distinguished by bytecode alone.
1403     if (ta->elem() == TypeInt::BOOL) {
1404       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1405       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1406       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
1407     }
1408     // During the 2nd round of IterGVN, NotNull castings are removed.
1409     // Make sure the Bottom and NotNull variants alias the same.
1410     // Also, make sure exact and non-exact variants alias the same.
1411     if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != nullptr) {
1412       tj = ta = ta->
1413               remove_speculative()->
1414               cast_to_ptr_type(TypePtr::BotPTR)->
1415               cast_to_exactness(false)->
1416               with_offset(offset);
1417     }
1418   }
1419 
1420   // Oop pointers need some flattening
1421   const TypeInstPtr *to = tj->isa_instptr();
1422   if (to && to != TypeOopPtr::BOTTOM) {
1423     ciInstanceKlass* ik = to->instance_klass();
1424     if( ptr == TypePtr::Constant ) {
1425       if (ik != ciEnv::current()->Class_klass() ||
1426           offset < ik->layout_helper_size_in_bytes()) {
1427         // No constant oop pointers (such as Strings); they alias with
1428         // unknown strings.
1429         assert(!is_known_inst, "not scalarizable allocation");
1430         tj = to = to->
1431                 cast_to_instance_id(TypeOopPtr::InstanceBot)->
1432                 remove_speculative()->
1433                 cast_to_ptr_type(TypePtr::BotPTR)->
1434                 cast_to_exactness(false);
1435       }
1436     } else if( is_known_inst ) {
1437       tj = to; // Keep NotNull and klass_is_exact for instance type
1438     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1439       // During the 2nd round of IterGVN, NotNull castings are removed.
1440       // Make sure the Bottom and NotNull variants alias the same.
1441       // Also, make sure exact and non-exact variants alias the same.
1442       tj = to = to->
1443               remove_speculative()->
1444               cast_to_instance_id(TypeOopPtr::InstanceBot)->
1445               cast_to_ptr_type(TypePtr::BotPTR)->
1446               cast_to_exactness(false);
1447     }
1448     if (to->speculative() != nullptr) {
1449       tj = to = to->remove_speculative();
1450     }
1451     // Canonicalize the holder of this field
1452     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1453       // First handle header references such as a LoadKlassNode, even if the
1454       // object's klass is unloaded at compile time (4965979).
1455       if (!is_known_inst) { // Do it only for non-instance types
1456         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, nullptr, offset);
1457       }
1458     } else if (offset < 0 || offset >= ik->layout_helper_size_in_bytes()) {
1459       // Static fields are in the space above the normal instance
1460       // fields in the java.lang.Class instance.
1461       if (ik != ciEnv::current()->Class_klass()) {
1462         to = nullptr;
1463         tj = TypeOopPtr::BOTTOM;
1464         offset = tj->offset();
1465       }
1466     } else {
1467       ciInstanceKlass *canonical_holder = ik->get_canonical_holder(offset);
1468       assert(offset < canonical_holder->layout_helper_size_in_bytes(), "");
1469       if (!ik->equals(canonical_holder) || tj->offset() != offset) {
1470         if( is_known_inst ) {
1471           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, nullptr, offset, to->instance_id());
1472         } else {
1473           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, nullptr, offset);
1474         }
1475       }
1476     }
1477   }
1478 
1479   // Klass pointers to object array klasses need some flattening
1480   const TypeKlassPtr *tk = tj->isa_klassptr();
1481   if( tk ) {
1482     // If we are referencing a field within a Klass, we need
1483     // to assume the worst case of an Object.  Both exact and
1484     // inexact types must flatten to the same alias class so
1485     // use NotNull as the PTR.
1486     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1487       tj = tk = TypeInstKlassPtr::make(TypePtr::NotNull,
1488                                        env()->Object_klass(),
1489                                        offset);
1490     }
1491 
1492     if (tk->isa_aryklassptr() && tk->is_aryklassptr()->elem()->isa_klassptr()) {
1493       ciKlass* k = ciObjArrayKlass::make(env()->Object_klass());
1494       if (!k || !k->is_loaded()) {                  // Only fails for some -Xcomp runs
1495         tj = tk = TypeInstKlassPtr::make(TypePtr::NotNull, env()->Object_klass(), offset);
1496       } else {
1497         tj = tk = TypeAryKlassPtr::make(TypePtr::NotNull, tk->is_aryklassptr()->elem(), k, offset);
1498       }
1499     }
1500 
1501     // Check for precise loads from the primary supertype array and force them
1502     // to the supertype cache alias index.  Check for generic array loads from
1503     // the primary supertype array and also force them to the supertype cache
1504     // alias index.  Since the same load can reach both, we need to merge
1505     // these 2 disparate memories into the same alias class.  Since the
1506     // primary supertype array is read-only, there's no chance of confusion
1507     // where we bypass an array load and an array store.
1508     int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
1509     if (offset == Type::OffsetBot ||
1510         (offset >= primary_supers_offset &&
1511          offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
1512         offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
1513       offset = in_bytes(Klass::secondary_super_cache_offset());
1514       tj = tk = tk->with_offset(offset);
1515     }
1516   }
1517 
1518   // Flatten all Raw pointers together.
1519   if (tj->base() == Type::RawPtr)
1520     tj = TypeRawPtr::BOTTOM;
1521 
1522   if (tj->base() == Type::AnyPtr)
1523     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1524 
1525   offset = tj->offset();
1526   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1527 
1528   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1529           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1530           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1531           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1532           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1533           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1534           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr),
1535           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1536   assert( tj->ptr() != TypePtr::TopPTR &&
1537           tj->ptr() != TypePtr::AnyNull &&
1538           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1539 //    assert( tj->ptr() != TypePtr::Constant ||
1540 //            tj->base() == Type::RawPtr ||
1541 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1542 
1543   return tj;
1544 }
1545 
1546 void Compile::AliasType::Init(int i, const TypePtr* at) {
1547   assert(AliasIdxTop <= i && i < Compile::current()->_max_alias_types, "Invalid alias index");
1548   _index = i;
1549   _adr_type = at;
1550   _field = nullptr;
1551   _element = nullptr;
1552   _is_rewritable = true; // default
1553   const TypeOopPtr *atoop = (at != nullptr) ? at->isa_oopptr() : nullptr;
1554   if (atoop != nullptr && atoop->is_known_instance()) {
1555     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1556     _general_index = Compile::current()->get_alias_index(gt);
1557   } else {
1558     _general_index = 0;
1559   }
1560 }
1561 
1562 BasicType Compile::AliasType::basic_type() const {
1563   if (element() != nullptr) {
1564     const Type* element = adr_type()->is_aryptr()->elem();
1565     return element->isa_narrowoop() ? T_OBJECT : element->array_element_basic_type();
1566   } if (field() != nullptr) {
1567     return field()->layout_type();
1568   } else {
1569     return T_ILLEGAL; // unknown
1570   }
1571 }
1572 
1573 //---------------------------------print_on------------------------------------
1574 #ifndef PRODUCT
1575 void Compile::AliasType::print_on(outputStream* st) {
1576   if (index() < 10)
1577         st->print("@ <%d> ", index());
1578   else  st->print("@ <%d>",  index());
1579   st->print(is_rewritable() ? "   " : " RO");
1580   int offset = adr_type()->offset();
1581   if (offset == Type::OffsetBot)
1582         st->print(" +any");
1583   else  st->print(" +%-3d", offset);
1584   st->print(" in ");
1585   adr_type()->dump_on(st);
1586   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1587   if (field() != nullptr && tjp) {
1588     if (tjp->is_instptr()->instance_klass()  != field()->holder() ||
1589         tjp->offset() != field()->offset_in_bytes()) {
1590       st->print(" != ");
1591       field()->print();
1592       st->print(" ***");
1593     }
1594   }
1595 }
1596 
1597 void print_alias_types() {
1598   Compile* C = Compile::current();
1599   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1600   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1601     C->alias_type(idx)->print_on(tty);
1602     tty->cr();
1603   }
1604 }
1605 #endif
1606 
1607 
1608 //----------------------------probe_alias_cache--------------------------------
1609 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1610   intptr_t key = (intptr_t) adr_type;
1611   key ^= key >> logAliasCacheSize;
1612   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1613 }
1614 
1615 
1616 //-----------------------------grow_alias_types--------------------------------
1617 void Compile::grow_alias_types() {
1618   const int old_ats  = _max_alias_types; // how many before?
1619   const int new_ats  = old_ats;          // how many more?
1620   const int grow_ats = old_ats+new_ats;  // how many now?
1621   _max_alias_types = grow_ats;
1622   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1623   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1624   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1625   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1626 }
1627 
1628 
1629 //--------------------------------find_alias_type------------------------------
1630 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
1631   if (!do_aliasing()) {
1632     return alias_type(AliasIdxBot);
1633   }
1634 
1635   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1636   if (ace->_adr_type == adr_type) {
1637     return alias_type(ace->_index);
1638   }
1639 
1640   // Handle special cases.
1641   if (adr_type == nullptr)          return alias_type(AliasIdxTop);
1642   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1643 
1644   // Do it the slow way.
1645   const TypePtr* flat = flatten_alias_type(adr_type);
1646 
1647 #ifdef ASSERT
1648   {
1649     ResourceMark rm;
1650     assert(flat == flatten_alias_type(flat), "not idempotent: adr_type = %s; flat = %s => %s",
1651            Type::str(adr_type), Type::str(flat), Type::str(flatten_alias_type(flat)));
1652     assert(flat != TypePtr::BOTTOM, "cannot alias-analyze an untyped ptr: adr_type = %s",
1653            Type::str(adr_type));
1654     if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1655       const TypeOopPtr* foop = flat->is_oopptr();
1656       // Scalarizable allocations have exact klass always.
1657       bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1658       const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1659       assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type: foop = %s; xoop = %s",
1660              Type::str(foop), Type::str(xoop));
1661     }
1662   }
1663 #endif
1664 
1665   int idx = AliasIdxTop;
1666   for (int i = 0; i < num_alias_types(); i++) {
1667     if (alias_type(i)->adr_type() == flat) {
1668       idx = i;
1669       break;
1670     }
1671   }
1672 
1673   if (idx == AliasIdxTop) {
1674     if (no_create)  return nullptr;
1675     // Grow the array if necessary.
1676     if (_num_alias_types == _max_alias_types)  grow_alias_types();
1677     // Add a new alias type.
1678     idx = _num_alias_types++;
1679     _alias_types[idx]->Init(idx, flat);
1680     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1681     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1682     if (flat->isa_instptr()) {
1683       if (flat->offset() == java_lang_Class::klass_offset()
1684           && flat->is_instptr()->instance_klass() == env()->Class_klass())
1685         alias_type(idx)->set_rewritable(false);
1686     }
1687     if (flat->isa_aryptr()) {
1688 #ifdef ASSERT
1689       const int header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1690       // (T_BYTE has the weakest alignment and size restrictions...)
1691       assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
1692 #endif
1693       if (flat->offset() == TypePtr::OffsetBot) {
1694         alias_type(idx)->set_element(flat->is_aryptr()->elem());
1695       }
1696     }
1697     if (flat->isa_klassptr()) {
1698       if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
1699         alias_type(idx)->set_rewritable(false);
1700       if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
1701         alias_type(idx)->set_rewritable(false);
1702       if (flat->offset() == in_bytes(Klass::access_flags_offset()))
1703         alias_type(idx)->set_rewritable(false);
1704       if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
1705         alias_type(idx)->set_rewritable(false);
1706       if (flat->offset() == in_bytes(Klass::secondary_super_cache_offset()))
1707         alias_type(idx)->set_rewritable(false);
1708     }
1709     // %%% (We would like to finalize JavaThread::threadObj_offset(),
1710     // but the base pointer type is not distinctive enough to identify
1711     // references into JavaThread.)
1712 
1713     // Check for final fields.
1714     const TypeInstPtr* tinst = flat->isa_instptr();
1715     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1716       ciField* field;
1717       if (tinst->const_oop() != nullptr &&
1718           tinst->instance_klass() == ciEnv::current()->Class_klass() &&
1719           tinst->offset() >= (tinst->instance_klass()->layout_helper_size_in_bytes())) {
1720         // static field
1721         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1722         field = k->get_field_by_offset(tinst->offset(), true);
1723       } else {
1724         ciInstanceKlass *k = tinst->instance_klass();
1725         field = k->get_field_by_offset(tinst->offset(), false);
1726       }
1727       assert(field == nullptr ||
1728              original_field == nullptr ||
1729              (field->holder() == original_field->holder() &&
1730               field->offset_in_bytes() == original_field->offset_in_bytes() &&
1731               field->is_static() == original_field->is_static()), "wrong field?");
1732       // Set field() and is_rewritable() attributes.
1733       if (field != nullptr)  alias_type(idx)->set_field(field);
1734     }
1735   }
1736 
1737   // Fill the cache for next time.
1738   ace->_adr_type = adr_type;
1739   ace->_index    = idx;
1740   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1741 
1742   // Might as well try to fill the cache for the flattened version, too.
1743   AliasCacheEntry* face = probe_alias_cache(flat);
1744   if (face->_adr_type == nullptr) {
1745     face->_adr_type = flat;
1746     face->_index    = idx;
1747     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1748   }
1749 
1750   return alias_type(idx);
1751 }
1752 
1753 
1754 Compile::AliasType* Compile::alias_type(ciField* field) {
1755   const TypeOopPtr* t;
1756   if (field->is_static())
1757     t = TypeInstPtr::make(field->holder()->java_mirror());
1758   else
1759     t = TypeOopPtr::make_from_klass_raw(field->holder());
1760   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1761   assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
1762   return atp;
1763 }
1764 
1765 
1766 //------------------------------have_alias_type--------------------------------
1767 bool Compile::have_alias_type(const TypePtr* adr_type) {
1768   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1769   if (ace->_adr_type == adr_type) {
1770     return true;
1771   }
1772 
1773   // Handle special cases.
1774   if (adr_type == nullptr)             return true;
1775   if (adr_type == TypePtr::BOTTOM)  return true;
1776 
1777   return find_alias_type(adr_type, true, nullptr) != nullptr;
1778 }
1779 
1780 //-----------------------------must_alias--------------------------------------
1781 // True if all values of the given address type are in the given alias category.
1782 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1783   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1784   if (adr_type == nullptr)              return true;  // null serves as TypePtr::TOP
1785   if (alias_idx == AliasIdxTop)         return false; // the empty category
1786   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1787 
1788   // the only remaining possible overlap is identity
1789   int adr_idx = get_alias_index(adr_type);
1790   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1791   assert(adr_idx == alias_idx ||
1792          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1793           && adr_type                       != TypeOopPtr::BOTTOM),
1794          "should not be testing for overlap with an unsafe pointer");
1795   return adr_idx == alias_idx;
1796 }
1797 
1798 //------------------------------can_alias--------------------------------------
1799 // True if any values of the given address type are in the given alias category.
1800 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1801   if (alias_idx == AliasIdxTop)         return false; // the empty category
1802   if (adr_type == nullptr)              return false; // null serves as TypePtr::TOP
1803   // Known instance doesn't alias with bottom memory
1804   if (alias_idx == AliasIdxBot)         return !adr_type->is_known_instance();                   // the universal category
1805   if (adr_type->base() == Type::AnyPtr) return !C->get_adr_type(alias_idx)->is_known_instance(); // TypePtr::BOTTOM or its twins
1806 
1807   // the only remaining possible overlap is identity
1808   int adr_idx = get_alias_index(adr_type);
1809   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1810   return adr_idx == alias_idx;
1811 }
1812 
1813 // Mark all ParsePredicateNodes as useless. They will later be removed from the graph in IGVN together with their
1814 // uncommon traps if no Runtime Predicates were created from the Parse Predicates.
1815 void Compile::mark_parse_predicate_nodes_useless(PhaseIterGVN& igvn) {
1816   if (parse_predicate_count() == 0) {
1817     return;
1818   }
1819   for (int i = 0; i < parse_predicate_count(); i++) {
1820     ParsePredicateNode* parse_predicate = _parse_predicates.at(i);
1821     parse_predicate->mark_useless();
1822     igvn._worklist.push(parse_predicate);
1823   }
1824   _parse_predicates.clear();
1825 }
1826 
1827 void Compile::record_for_post_loop_opts_igvn(Node* n) {
1828   if (!n->for_post_loop_opts_igvn()) {
1829     assert(!_for_post_loop_igvn.contains(n), "duplicate");
1830     n->add_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn);
1831     _for_post_loop_igvn.append(n);
1832   }
1833 }
1834 
1835 void Compile::remove_from_post_loop_opts_igvn(Node* n) {
1836   n->remove_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn);
1837   _for_post_loop_igvn.remove(n);
1838 }
1839 
1840 void Compile::process_for_post_loop_opts_igvn(PhaseIterGVN& igvn) {
1841   // Verify that all previous optimizations produced a valid graph
1842   // at least to this point, even if no loop optimizations were done.
1843   PhaseIdealLoop::verify(igvn);
1844 
1845   C->set_post_loop_opts_phase(); // no more loop opts allowed
1846 
1847   assert(!C->major_progress(), "not cleared");
1848 
1849   if (_for_post_loop_igvn.length() > 0) {
1850     while (_for_post_loop_igvn.length() > 0) {
1851       Node* n = _for_post_loop_igvn.pop();
1852       n->remove_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn);
1853       igvn._worklist.push(n);
1854     }
1855     igvn.optimize();
1856     if (failing()) return;
1857     assert(_for_post_loop_igvn.length() == 0, "no more delayed nodes allowed");
1858     assert(C->parse_predicate_count() == 0, "all parse predicates should have been removed now");
1859 
1860     // Sometimes IGVN sets major progress (e.g., when processing loop nodes).
1861     if (C->major_progress()) {
1862       C->clear_major_progress(); // ensure that major progress is now clear
1863     }
1864   }
1865 }
1866 
1867 void Compile::record_unstable_if_trap(UnstableIfTrap* trap) {
1868   if (OptimizeUnstableIf) {
1869     _unstable_if_traps.append(trap);
1870   }
1871 }
1872 
1873 void Compile::remove_useless_unstable_if_traps(Unique_Node_List& useful) {
1874   for (int i = _unstable_if_traps.length() - 1; i >= 0; i--) {
1875     UnstableIfTrap* trap = _unstable_if_traps.at(i);
1876     Node* n = trap->uncommon_trap();
1877     if (!useful.member(n)) {
1878       _unstable_if_traps.delete_at(i); // replaces i-th with last element which is known to be useful (already processed)
1879     }
1880   }
1881 }
1882 
1883 // Remove the unstable if trap associated with 'unc' from candidates. It is either dead
1884 // or fold-compares case. Return true if succeed or not found.
1885 //
1886 // In rare cases, the found trap has been processed. It is too late to delete it. Return
1887 // false and ask fold-compares to yield.
1888 //
1889 // 'fold-compares' may use the uncommon_trap of the dominating IfNode to cover the fused
1890 // IfNode. This breaks the unstable_if trap invariant: control takes the unstable path
1891 // when deoptimization does happen.
1892 bool Compile::remove_unstable_if_trap(CallStaticJavaNode* unc, bool yield) {
1893   for (int i = 0; i < _unstable_if_traps.length(); ++i) {
1894     UnstableIfTrap* trap = _unstable_if_traps.at(i);
1895     if (trap->uncommon_trap() == unc) {
1896       if (yield && trap->modified()) {
1897         return false;
1898       }
1899       _unstable_if_traps.delete_at(i);
1900       break;
1901     }
1902   }
1903   return true;
1904 }
1905 
1906 // Re-calculate unstable_if traps with the liveness of next_bci, which points to the unlikely path.
1907 // It needs to be done after igvn because fold-compares may fuse uncommon_traps and before renumbering.
1908 void Compile::process_for_unstable_if_traps(PhaseIterGVN& igvn) {
1909   for (int i = _unstable_if_traps.length() - 1; i >= 0; --i) {
1910     UnstableIfTrap* trap = _unstable_if_traps.at(i);
1911     CallStaticJavaNode* unc = trap->uncommon_trap();
1912     int next_bci = trap->next_bci();
1913     bool modified = trap->modified();
1914 
1915     if (next_bci != -1 && !modified) {
1916       assert(!_dead_node_list.test(unc->_idx), "changing a dead node!");
1917       JVMState* jvms = unc->jvms();
1918       ciMethod* method = jvms->method();
1919       ciBytecodeStream iter(method);
1920 
1921       iter.force_bci(jvms->bci());
1922       assert(next_bci == iter.next_bci() || next_bci == iter.get_dest(), "wrong next_bci at unstable_if");
1923       Bytecodes::Code c = iter.cur_bc();
1924       Node* lhs = nullptr;
1925       Node* rhs = nullptr;
1926       if (c == Bytecodes::_if_acmpeq || c == Bytecodes::_if_acmpne) {
1927         lhs = unc->peek_operand(0);
1928         rhs = unc->peek_operand(1);
1929       } else if (c == Bytecodes::_ifnull || c == Bytecodes::_ifnonnull) {
1930         lhs = unc->peek_operand(0);
1931       }
1932 
1933       ResourceMark rm;
1934       const MethodLivenessResult& live_locals = method->liveness_at_bci(next_bci);
1935       assert(live_locals.is_valid(), "broken liveness info");
1936       int len = (int)live_locals.size();
1937 
1938       for (int i = 0; i < len; i++) {
1939         Node* local = unc->local(jvms, i);
1940         // kill local using the liveness of next_bci.
1941         // give up when the local looks like an operand to secure reexecution.
1942         if (!live_locals.at(i) && !local->is_top() && local != lhs && local!= rhs) {
1943           uint idx = jvms->locoff() + i;
1944 #ifdef ASSERT
1945           if (PrintOpto && Verbose) {
1946             tty->print("[unstable_if] kill local#%d: ", idx);
1947             local->dump();
1948             tty->cr();
1949           }
1950 #endif
1951           igvn.replace_input_of(unc, idx, top());
1952           modified = true;
1953         }
1954       }
1955     }
1956 
1957     // keep the mondified trap for late query
1958     if (modified) {
1959       trap->set_modified();
1960     } else {
1961       _unstable_if_traps.delete_at(i);
1962     }
1963   }
1964   igvn.optimize();
1965 }
1966 
1967 // StringOpts and late inlining of string methods
1968 void Compile::inline_string_calls(bool parse_time) {
1969   {
1970     // remove useless nodes to make the usage analysis simpler
1971     ResourceMark rm;
1972     PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist());
1973   }
1974 
1975   {
1976     ResourceMark rm;
1977     print_method(PHASE_BEFORE_STRINGOPTS, 3);
1978     PhaseStringOpts pso(initial_gvn());
1979     print_method(PHASE_AFTER_STRINGOPTS, 3);
1980   }
1981 
1982   // now inline anything that we skipped the first time around
1983   if (!parse_time) {
1984     _late_inlines_pos = _late_inlines.length();
1985   }
1986 
1987   while (_string_late_inlines.length() > 0) {
1988     CallGenerator* cg = _string_late_inlines.pop();
1989     cg->do_late_inline();
1990     if (failing())  return;
1991   }
1992   _string_late_inlines.trunc_to(0);
1993 }
1994 
1995 // Late inlining of boxing methods
1996 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
1997   if (_boxing_late_inlines.length() > 0) {
1998     assert(has_boxed_value(), "inconsistent");
1999 
2000     set_inlining_incrementally(true);
2001 
2002     igvn_worklist()->ensure_empty(); // should be done with igvn
2003 
2004     _late_inlines_pos = _late_inlines.length();
2005 
2006     while (_boxing_late_inlines.length() > 0) {
2007       CallGenerator* cg = _boxing_late_inlines.pop();
2008       cg->do_late_inline();
2009       if (failing())  return;
2010     }
2011     _boxing_late_inlines.trunc_to(0);
2012 
2013     inline_incrementally_cleanup(igvn);
2014 
2015     set_inlining_incrementally(false);
2016   }
2017 }
2018 
2019 bool Compile::inline_incrementally_one() {
2020   assert(IncrementalInline, "incremental inlining should be on");
2021 
2022   TracePhase tp("incrementalInline_inline", &timers[_t_incrInline_inline]);
2023 
2024   set_inlining_progress(false);
2025   set_do_cleanup(false);
2026 
2027   for (int i = 0; i < _late_inlines.length(); i++) {
2028     _late_inlines_pos = i+1;
2029     CallGenerator* cg = _late_inlines.at(i);
2030     bool does_dispatch = cg->is_virtual_late_inline() || cg->is_mh_late_inline();
2031     if (inlining_incrementally() || does_dispatch) { // a call can be either inlined or strength-reduced to a direct call
2032       cg->do_late_inline();
2033       assert(_late_inlines.at(i) == cg, "no insertions before current position allowed");
2034       if (failing()) {
2035         return false;
2036       } else if (inlining_progress()) {
2037         _late_inlines_pos = i+1; // restore the position in case new elements were inserted
2038         print_method(PHASE_INCREMENTAL_INLINE_STEP, 3, cg->call_node());
2039         break; // process one call site at a time
2040       }
2041     } else {
2042       // Ignore late inline direct calls when inlining is not allowed.
2043       // They are left in the late inline list when node budget is exhausted until the list is fully drained.
2044     }
2045   }
2046   // Remove processed elements.
2047   _late_inlines.remove_till(_late_inlines_pos);
2048   _late_inlines_pos = 0;
2049 
2050   assert(inlining_progress() || _late_inlines.length() == 0, "no progress");
2051 
2052   bool needs_cleanup = do_cleanup() || over_inlining_cutoff();
2053 
2054   set_inlining_progress(false);
2055   set_do_cleanup(false);
2056 
2057   bool force_cleanup = directive()->IncrementalInlineForceCleanupOption;
2058   return (_late_inlines.length() > 0) && !needs_cleanup && !force_cleanup;
2059 }
2060 
2061 void Compile::inline_incrementally_cleanup(PhaseIterGVN& igvn) {
2062   {
2063     TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]);
2064     ResourceMark rm;
2065     PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist());
2066   }
2067   {
2068     TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2069     igvn.reset_from_gvn(initial_gvn());
2070     igvn.optimize();
2071     if (failing()) return;
2072   }
2073   print_method(PHASE_INCREMENTAL_INLINE_CLEANUP, 3);
2074 }
2075 
2076 // Perform incremental inlining until bound on number of live nodes is reached
2077 void Compile::inline_incrementally(PhaseIterGVN& igvn) {
2078   TracePhase tp("incrementalInline", &timers[_t_incrInline]);
2079 
2080   set_inlining_incrementally(true);
2081   uint low_live_nodes = 0;
2082 
2083   while (_late_inlines.length() > 0) {
2084     if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2085       if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
2086         TracePhase tp("incrementalInline_ideal", &timers[_t_incrInline_ideal]);
2087         // PhaseIdealLoop is expensive so we only try it once we are
2088         // out of live nodes and we only try it again if the previous
2089         // helped got the number of nodes down significantly
2090         PhaseIdealLoop::optimize(igvn, LoopOptsNone);
2091         if (failing())  return;
2092         low_live_nodes = live_nodes();
2093         _major_progress = true;
2094       }
2095 
2096       if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2097         bool do_print_inlining = print_inlining() || print_intrinsics();
2098         if (do_print_inlining || log() != nullptr) {
2099           // Print inlining message for candidates that we couldn't inline for lack of space.
2100           for (int i = 0; i < _late_inlines.length(); i++) {
2101             CallGenerator* cg = _late_inlines.at(i);
2102             const char* msg = "live nodes > LiveNodeCountInliningCutoff";
2103             if (do_print_inlining) {
2104               cg->print_inlining_late(InliningResult::FAILURE, msg);
2105             }
2106             log_late_inline_failure(cg, msg);
2107           }
2108         }
2109         break; // finish
2110       }
2111     }
2112 
2113     igvn_worklist()->ensure_empty(); // should be done with igvn
2114 
2115     while (inline_incrementally_one()) {
2116       assert(!failing(), "inconsistent");
2117     }
2118     if (failing())  return;
2119 
2120     inline_incrementally_cleanup(igvn);
2121 
2122     print_method(PHASE_INCREMENTAL_INLINE_STEP, 3);
2123 
2124     if (failing())  return;
2125 
2126     if (_late_inlines.length() == 0) {
2127       break; // no more progress
2128     }
2129   }
2130 
2131   igvn_worklist()->ensure_empty(); // should be done with igvn
2132 
2133   if (_string_late_inlines.length() > 0) {
2134     assert(has_stringbuilder(), "inconsistent");
2135 
2136     inline_string_calls(false);
2137 
2138     if (failing())  return;
2139 
2140     inline_incrementally_cleanup(igvn);
2141   }
2142 
2143   set_inlining_incrementally(false);
2144 }
2145 
2146 void Compile::process_late_inline_calls_no_inline(PhaseIterGVN& igvn) {
2147   // "inlining_incrementally() == false" is used to signal that no inlining is allowed
2148   // (see LateInlineVirtualCallGenerator::do_late_inline_check() for details).
2149   // Tracking and verification of modified nodes is disabled by setting "_modified_nodes == nullptr"
2150   // as if "inlining_incrementally() == true" were set.
2151   assert(inlining_incrementally() == false, "not allowed");
2152   assert(_modified_nodes == nullptr, "not allowed");
2153   assert(_late_inlines.length() > 0, "sanity");
2154 
2155   while (_late_inlines.length() > 0) {
2156     igvn_worklist()->ensure_empty(); // should be done with igvn
2157 
2158     while (inline_incrementally_one()) {
2159       assert(!failing(), "inconsistent");
2160     }
2161     if (failing())  return;
2162 
2163     inline_incrementally_cleanup(igvn);
2164   }
2165 }
2166 
2167 bool Compile::optimize_loops(PhaseIterGVN& igvn, LoopOptsMode mode) {
2168   if (_loop_opts_cnt > 0) {
2169     while (major_progress() && (_loop_opts_cnt > 0)) {
2170       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2171       PhaseIdealLoop::optimize(igvn, mode);
2172       _loop_opts_cnt--;
2173       if (failing())  return false;
2174       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
2175     }
2176   }
2177   return true;
2178 }
2179 
2180 // Remove edges from "root" to each SafePoint at a backward branch.
2181 // They were inserted during parsing (see add_safepoint()) to make
2182 // infinite loops without calls or exceptions visible to root, i.e.,
2183 // useful.
2184 void Compile::remove_root_to_sfpts_edges(PhaseIterGVN& igvn) {
2185   Node *r = root();
2186   if (r != nullptr) {
2187     for (uint i = r->req(); i < r->len(); ++i) {
2188       Node *n = r->in(i);
2189       if (n != nullptr && n->is_SafePoint()) {
2190         r->rm_prec(i);
2191         if (n->outcnt() == 0) {
2192           igvn.remove_dead_node(n);
2193         }
2194         --i;
2195       }
2196     }
2197     // Parsing may have added top inputs to the root node (Path
2198     // leading to the Halt node proven dead). Make sure we get a
2199     // chance to clean them up.
2200     igvn._worklist.push(r);
2201     igvn.optimize();
2202   }
2203 }
2204 
2205 //------------------------------Optimize---------------------------------------
2206 // Given a graph, optimize it.
2207 void Compile::Optimize() {
2208   TracePhase tp("optimizer", &timers[_t_optimizer]);
2209 
2210 #ifndef PRODUCT
2211   if (env()->break_at_compile()) {
2212     BREAKPOINT;
2213   }
2214 
2215 #endif
2216 
2217   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2218 #ifdef ASSERT
2219   bs->verify_gc_barriers(this, BarrierSetC2::BeforeOptimize);
2220 #endif
2221 
2222   ResourceMark rm;
2223 
2224   print_inlining_reinit();
2225 
2226   NOT_PRODUCT( verify_graph_edges(); )
2227 
2228   print_method(PHASE_AFTER_PARSING, 1);
2229 
2230  {
2231   // Iterative Global Value Numbering, including ideal transforms
2232   // Initialize IterGVN with types and values from parse-time GVN
2233   PhaseIterGVN igvn(initial_gvn());
2234 #ifdef ASSERT
2235   _modified_nodes = new (comp_arena()) Unique_Node_List(comp_arena());
2236 #endif
2237   {
2238     TracePhase tp("iterGVN", &timers[_t_iterGVN]);
2239     igvn.optimize();
2240   }
2241 
2242   if (failing())  return;
2243 
2244   print_method(PHASE_ITER_GVN1, 2);
2245 
2246   process_for_unstable_if_traps(igvn);
2247 
2248   if (failing())  return;
2249 
2250   inline_incrementally(igvn);
2251 
2252   print_method(PHASE_INCREMENTAL_INLINE, 2);
2253 
2254   if (failing())  return;
2255 
2256   if (eliminate_boxing()) {
2257     // Inline valueOf() methods now.
2258     inline_boxing_calls(igvn);
2259 
2260     if (failing())  return;
2261 
2262     if (AlwaysIncrementalInline || StressIncrementalInlining) {
2263       inline_incrementally(igvn);
2264     }
2265 
2266     print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
2267 
2268     if (failing())  return;
2269   }
2270 
2271   // Remove the speculative part of types and clean up the graph from
2272   // the extra CastPP nodes whose only purpose is to carry them. Do
2273   // that early so that optimizations are not disrupted by the extra
2274   // CastPP nodes.
2275   remove_speculative_types(igvn);
2276 
2277   if (failing())  return;
2278 
2279   // No more new expensive nodes will be added to the list from here
2280   // so keep only the actual candidates for optimizations.
2281   cleanup_expensive_nodes(igvn);
2282 
2283   if (failing())  return;
2284 
2285   assert(EnableVectorSupport || !has_vbox_nodes(), "sanity");
2286   if (EnableVectorSupport && has_vbox_nodes()) {
2287     TracePhase tp("", &timers[_t_vector]);
2288     PhaseVector pv(igvn);
2289     pv.optimize_vector_boxes();
2290     if (failing())  return;
2291     print_method(PHASE_ITER_GVN_AFTER_VECTOR, 2);
2292   }
2293   assert(!has_vbox_nodes(), "sanity");
2294 
2295   if (!failing() && RenumberLiveNodes && live_nodes() + NodeLimitFudgeFactor < unique()) {
2296     Compile::TracePhase tp("", &timers[_t_renumberLive]);
2297     igvn_worklist()->ensure_empty(); // should be done with igvn
2298     {
2299       ResourceMark rm;
2300       PhaseRenumberLive prl(initial_gvn(), *igvn_worklist());
2301     }
2302     igvn.reset_from_gvn(initial_gvn());
2303     igvn.optimize();
2304     if (failing()) return;
2305   }
2306 
2307   // Now that all inlining is over and no PhaseRemoveUseless will run, cut edge from root to loop
2308   // safepoints
2309   remove_root_to_sfpts_edges(igvn);
2310 
2311   if (failing())  return;
2312 
2313   // Perform escape analysis
2314   if (do_escape_analysis() && ConnectionGraph::has_candidates(this)) {
2315     if (has_loops()) {
2316       // Cleanup graph (remove dead nodes).
2317       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2318       PhaseIdealLoop::optimize(igvn, LoopOptsMaxUnroll);
2319       if (failing())  return;
2320     }
2321     bool progress;
2322     print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
2323     do {
2324       ConnectionGraph::do_analysis(this, &igvn);
2325 
2326       if (failing())  return;
2327 
2328       int mcount = macro_count(); // Record number of allocations and locks before IGVN
2329 
2330       // Optimize out fields loads from scalar replaceable allocations.
2331       igvn.optimize();
2332       print_method(PHASE_ITER_GVN_AFTER_EA, 2);
2333 
2334       if (failing()) return;
2335 
2336       if (congraph() != nullptr && macro_count() > 0) {
2337         TracePhase tp("macroEliminate", &timers[_t_macroEliminate]);
2338         PhaseMacroExpand mexp(igvn);
2339         mexp.eliminate_macro_nodes();
2340         if (failing()) return;
2341 
2342         igvn.set_delay_transform(false);
2343         igvn.optimize();
2344         if (failing()) return;
2345 
2346         print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
2347       }
2348 
2349       ConnectionGraph::verify_ram_nodes(this, root());
2350       if (failing())  return;
2351 
2352       progress = do_iterative_escape_analysis() &&
2353                  (macro_count() < mcount) &&
2354                  ConnectionGraph::has_candidates(this);
2355       // Try again if candidates exist and made progress
2356       // by removing some allocations and/or locks.
2357     } while (progress);
2358   }
2359 
2360   // Loop transforms on the ideal graph.  Range Check Elimination,
2361   // peeling, unrolling, etc.
2362 
2363   // Set loop opts counter
2364   if((_loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
2365     {
2366       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2367       PhaseIdealLoop::optimize(igvn, LoopOptsDefault);
2368       _loop_opts_cnt--;
2369       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
2370       if (failing())  return;
2371     }
2372     // Loop opts pass if partial peeling occurred in previous pass
2373     if(PartialPeelLoop && major_progress() && (_loop_opts_cnt > 0)) {
2374       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2375       PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf);
2376       _loop_opts_cnt--;
2377       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
2378       if (failing())  return;
2379     }
2380     // Loop opts pass for loop-unrolling before CCP
2381     if(major_progress() && (_loop_opts_cnt > 0)) {
2382       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2383       PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf);
2384       _loop_opts_cnt--;
2385       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
2386     }
2387     if (!failing()) {
2388       // Verify that last round of loop opts produced a valid graph
2389       PhaseIdealLoop::verify(igvn);
2390     }
2391   }
2392   if (failing())  return;
2393 
2394   // Conditional Constant Propagation;
2395   print_method(PHASE_BEFORE_CCP1, 2);
2396   PhaseCCP ccp( &igvn );
2397   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
2398   {
2399     TracePhase tp("ccp", &timers[_t_ccp]);
2400     ccp.do_transform();
2401   }
2402   print_method(PHASE_CCP1, 2);
2403 
2404   assert( true, "Break here to ccp.dump_old2new_map()");
2405 
2406   // Iterative Global Value Numbering, including ideal transforms
2407   {
2408     TracePhase tp("iterGVN2", &timers[_t_iterGVN2]);
2409     igvn.reset_from_igvn(&ccp);
2410     igvn.optimize();
2411   }
2412   print_method(PHASE_ITER_GVN2, 2);
2413 
2414   if (failing())  return;
2415 
2416   // Loop transforms on the ideal graph.  Range Check Elimination,
2417   // peeling, unrolling, etc.
2418   if (!optimize_loops(igvn, LoopOptsDefault)) {
2419     return;
2420   }
2421 
2422   if (failing())  return;
2423 
2424   C->clear_major_progress(); // ensure that major progress is now clear
2425 
2426   process_for_post_loop_opts_igvn(igvn);
2427 
2428   if (failing())  return;
2429 
2430 #ifdef ASSERT
2431   bs->verify_gc_barriers(this, BarrierSetC2::BeforeMacroExpand);
2432 #endif
2433 
2434   {
2435     TracePhase tp("macroExpand", &timers[_t_macroExpand]);
2436     print_method(PHASE_BEFORE_MACRO_EXPANSION, 3);
2437     PhaseMacroExpand  mex(igvn);
2438     if (mex.expand_macro_nodes()) {
2439       assert(failing(), "must bail out w/ explicit message");
2440       return;
2441     }
2442     print_method(PHASE_AFTER_MACRO_EXPANSION, 2);
2443   }
2444 
2445   {
2446     TracePhase tp("barrierExpand", &timers[_t_barrierExpand]);
2447     if (bs->expand_barriers(this, igvn)) {
2448       assert(failing(), "must bail out w/ explicit message");
2449       return;
2450     }
2451     print_method(PHASE_BARRIER_EXPANSION, 2);
2452   }
2453 
2454   if (C->max_vector_size() > 0) {
2455     C->optimize_logic_cones(igvn);
2456     igvn.optimize();
2457     if (failing()) return;
2458   }
2459 
2460   DEBUG_ONLY( _modified_nodes = nullptr; )
2461 
2462   assert(igvn._worklist.size() == 0, "not empty");
2463 
2464   assert(_late_inlines.length() == 0 || IncrementalInlineMH || IncrementalInlineVirtual, "not empty");
2465 
2466   if (_late_inlines.length() > 0) {
2467     // More opportunities to optimize virtual and MH calls.
2468     // Though it's maybe too late to perform inlining, strength-reducing them to direct calls is still an option.
2469     process_late_inline_calls_no_inline(igvn);
2470     if (failing())  return;
2471   }
2472  } // (End scope of igvn; run destructor if necessary for asserts.)
2473 
2474  check_no_dead_use();
2475 
2476  process_print_inlining();
2477 
2478  // We will never use the NodeHash table any more. Clear it so that final_graph_reshaping does not have
2479  // to remove hashes to unlock nodes for modifications.
2480  C->node_hash()->clear();
2481 
2482  // A method with only infinite loops has no edges entering loops from root
2483  {
2484    TracePhase tp("graphReshape", &timers[_t_graphReshaping]);
2485    if (final_graph_reshaping()) {
2486      assert(failing(), "must bail out w/ explicit message");
2487      return;
2488    }
2489  }
2490 
2491  print_method(PHASE_OPTIMIZE_FINISHED, 2);
2492  DEBUG_ONLY(set_phase_optimize_finished();)
2493 }
2494 
2495 #ifdef ASSERT
2496 void Compile::check_no_dead_use() const {
2497   ResourceMark rm;
2498   Unique_Node_List wq;
2499   wq.push(root());
2500   for (uint i = 0; i < wq.size(); ++i) {
2501     Node* n = wq.at(i);
2502     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
2503       Node* u = n->fast_out(j);
2504       if (u->outcnt() == 0 && !u->is_Con()) {
2505         u->dump();
2506         fatal("no reachable node should have no use");
2507       }
2508       wq.push(u);
2509     }
2510   }
2511 }
2512 #endif
2513 
2514 void Compile::inline_vector_reboxing_calls() {
2515   if (C->_vector_reboxing_late_inlines.length() > 0) {
2516     _late_inlines_pos = C->_late_inlines.length();
2517     while (_vector_reboxing_late_inlines.length() > 0) {
2518       CallGenerator* cg = _vector_reboxing_late_inlines.pop();
2519       cg->do_late_inline();
2520       if (failing())  return;
2521       print_method(PHASE_INLINE_VECTOR_REBOX, 3, cg->call_node());
2522     }
2523     _vector_reboxing_late_inlines.trunc_to(0);
2524   }
2525 }
2526 
2527 bool Compile::has_vbox_nodes() {
2528   if (C->_vector_reboxing_late_inlines.length() > 0) {
2529     return true;
2530   }
2531   for (int macro_idx = C->macro_count() - 1; macro_idx >= 0; macro_idx--) {
2532     Node * n = C->macro_node(macro_idx);
2533     assert(n->is_macro(), "only macro nodes expected here");
2534     if (n->Opcode() == Op_VectorUnbox || n->Opcode() == Op_VectorBox || n->Opcode() == Op_VectorBoxAllocate) {
2535       return true;
2536     }
2537   }
2538   return false;
2539 }
2540 
2541 //---------------------------- Bitwise operation packing optimization ---------------------------
2542 
2543 static bool is_vector_unary_bitwise_op(Node* n) {
2544   return n->Opcode() == Op_XorV &&
2545          VectorNode::is_vector_bitwise_not_pattern(n);
2546 }
2547 
2548 static bool is_vector_binary_bitwise_op(Node* n) {
2549   switch (n->Opcode()) {
2550     case Op_AndV:
2551     case Op_OrV:
2552       return true;
2553 
2554     case Op_XorV:
2555       return !is_vector_unary_bitwise_op(n);
2556 
2557     default:
2558       return false;
2559   }
2560 }
2561 
2562 static bool is_vector_ternary_bitwise_op(Node* n) {
2563   return n->Opcode() == Op_MacroLogicV;
2564 }
2565 
2566 static bool is_vector_bitwise_op(Node* n) {
2567   return is_vector_unary_bitwise_op(n)  ||
2568          is_vector_binary_bitwise_op(n) ||
2569          is_vector_ternary_bitwise_op(n);
2570 }
2571 
2572 static bool is_vector_bitwise_cone_root(Node* n) {
2573   if (n->bottom_type()->isa_vectmask() || !is_vector_bitwise_op(n)) {
2574     return false;
2575   }
2576   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2577     if (is_vector_bitwise_op(n->fast_out(i))) {
2578       return false;
2579     }
2580   }
2581   return true;
2582 }
2583 
2584 static uint collect_unique_inputs(Node* n, Unique_Node_List& inputs) {
2585   uint cnt = 0;
2586   if (is_vector_bitwise_op(n)) {
2587     uint inp_cnt = n->is_predicated_vector() ? n->req()-1 : n->req();
2588     if (VectorNode::is_vector_bitwise_not_pattern(n)) {
2589       for (uint i = 1; i < inp_cnt; i++) {
2590         Node* in = n->in(i);
2591         bool skip = VectorNode::is_all_ones_vector(in);
2592         if (!skip && !inputs.member(in)) {
2593           inputs.push(in);
2594           cnt++;
2595         }
2596       }
2597       assert(cnt <= 1, "not unary");
2598     } else {
2599       uint last_req = inp_cnt;
2600       if (is_vector_ternary_bitwise_op(n)) {
2601         last_req = inp_cnt - 1; // skip last input
2602       }
2603       for (uint i = 1; i < last_req; i++) {
2604         Node* def = n->in(i);
2605         if (!inputs.member(def)) {
2606           inputs.push(def);
2607           cnt++;
2608         }
2609       }
2610     }
2611   } else { // not a bitwise operations
2612     if (!inputs.member(n)) {
2613       inputs.push(n);
2614       cnt++;
2615     }
2616   }
2617   return cnt;
2618 }
2619 
2620 void Compile::collect_logic_cone_roots(Unique_Node_List& list) {
2621   Unique_Node_List useful_nodes;
2622   C->identify_useful_nodes(useful_nodes);
2623 
2624   for (uint i = 0; i < useful_nodes.size(); i++) {
2625     Node* n = useful_nodes.at(i);
2626     if (is_vector_bitwise_cone_root(n)) {
2627       list.push(n);
2628     }
2629   }
2630 }
2631 
2632 Node* Compile::xform_to_MacroLogicV(PhaseIterGVN& igvn,
2633                                     const TypeVect* vt,
2634                                     Unique_Node_List& partition,
2635                                     Unique_Node_List& inputs) {
2636   assert(partition.size() == 2 || partition.size() == 3, "not supported");
2637   assert(inputs.size()    == 2 || inputs.size()    == 3, "not supported");
2638   assert(Matcher::match_rule_supported_vector(Op_MacroLogicV, vt->length(), vt->element_basic_type()), "not supported");
2639 
2640   Node* in1 = inputs.at(0);
2641   Node* in2 = inputs.at(1);
2642   Node* in3 = (inputs.size() == 3 ? inputs.at(2) : in2);
2643 
2644   uint func = compute_truth_table(partition, inputs);
2645 
2646   Node* pn = partition.at(partition.size() - 1);
2647   Node* mask = pn->is_predicated_vector() ? pn->in(pn->req()-1) : nullptr;
2648   return igvn.transform(MacroLogicVNode::make(igvn, in1, in2, in3, mask, func, vt));
2649 }
2650 
2651 static uint extract_bit(uint func, uint pos) {
2652   return (func & (1 << pos)) >> pos;
2653 }
2654 
2655 //
2656 //  A macro logic node represents a truth table. It has 4 inputs,
2657 //  First three inputs corresponds to 3 columns of a truth table
2658 //  and fourth input captures the logic function.
2659 //
2660 //  eg.  fn = (in1 AND in2) OR in3;
2661 //
2662 //      MacroNode(in1,in2,in3,fn)
2663 //
2664 //  -----------------
2665 //  in1 in2 in3  fn
2666 //  -----------------
2667 //  0    0   0    0
2668 //  0    0   1    1
2669 //  0    1   0    0
2670 //  0    1   1    1
2671 //  1    0   0    0
2672 //  1    0   1    1
2673 //  1    1   0    1
2674 //  1    1   1    1
2675 //
2676 
2677 uint Compile::eval_macro_logic_op(uint func, uint in1 , uint in2, uint in3) {
2678   int res = 0;
2679   for (int i = 0; i < 8; i++) {
2680     int bit1 = extract_bit(in1, i);
2681     int bit2 = extract_bit(in2, i);
2682     int bit3 = extract_bit(in3, i);
2683 
2684     int func_bit_pos = (bit1 << 2 | bit2 << 1 | bit3);
2685     int func_bit = extract_bit(func, func_bit_pos);
2686 
2687     res |= func_bit << i;
2688   }
2689   return res;
2690 }
2691 
2692 static uint eval_operand(Node* n, ResourceHashtable<Node*,uint>& eval_map) {
2693   assert(n != nullptr, "");
2694   assert(eval_map.contains(n), "absent");
2695   return *(eval_map.get(n));
2696 }
2697 
2698 static void eval_operands(Node* n,
2699                           uint& func1, uint& func2, uint& func3,
2700                           ResourceHashtable<Node*,uint>& eval_map) {
2701   assert(is_vector_bitwise_op(n), "");
2702 
2703   if (is_vector_unary_bitwise_op(n)) {
2704     Node* opnd = n->in(1);
2705     if (VectorNode::is_vector_bitwise_not_pattern(n) && VectorNode::is_all_ones_vector(opnd)) {
2706       opnd = n->in(2);
2707     }
2708     func1 = eval_operand(opnd, eval_map);
2709   } else if (is_vector_binary_bitwise_op(n)) {
2710     func1 = eval_operand(n->in(1), eval_map);
2711     func2 = eval_operand(n->in(2), eval_map);
2712   } else {
2713     assert(is_vector_ternary_bitwise_op(n), "unknown operation");
2714     func1 = eval_operand(n->in(1), eval_map);
2715     func2 = eval_operand(n->in(2), eval_map);
2716     func3 = eval_operand(n->in(3), eval_map);
2717   }
2718 }
2719 
2720 uint Compile::compute_truth_table(Unique_Node_List& partition, Unique_Node_List& inputs) {
2721   assert(inputs.size() <= 3, "sanity");
2722   ResourceMark rm;
2723   uint res = 0;
2724   ResourceHashtable<Node*,uint> eval_map;
2725 
2726   // Populate precomputed functions for inputs.
2727   // Each input corresponds to one column of 3 input truth-table.
2728   uint input_funcs[] = { 0xAA,   // (_, _, c) -> c
2729                          0xCC,   // (_, b, _) -> b
2730                          0xF0 }; // (a, _, _) -> a
2731   for (uint i = 0; i < inputs.size(); i++) {
2732     eval_map.put(inputs.at(i), input_funcs[2-i]);
2733   }
2734 
2735   for (uint i = 0; i < partition.size(); i++) {
2736     Node* n = partition.at(i);
2737 
2738     uint func1 = 0, func2 = 0, func3 = 0;
2739     eval_operands(n, func1, func2, func3, eval_map);
2740 
2741     switch (n->Opcode()) {
2742       case Op_OrV:
2743         assert(func3 == 0, "not binary");
2744         res = func1 | func2;
2745         break;
2746       case Op_AndV:
2747         assert(func3 == 0, "not binary");
2748         res = func1 & func2;
2749         break;
2750       case Op_XorV:
2751         if (VectorNode::is_vector_bitwise_not_pattern(n)) {
2752           assert(func2 == 0 && func3 == 0, "not unary");
2753           res = (~func1) & 0xFF;
2754         } else {
2755           assert(func3 == 0, "not binary");
2756           res = func1 ^ func2;
2757         }
2758         break;
2759       case Op_MacroLogicV:
2760         // Ordering of inputs may change during evaluation of sub-tree
2761         // containing MacroLogic node as a child node, thus a re-evaluation
2762         // makes sure that function is evaluated in context of current
2763         // inputs.
2764         res = eval_macro_logic_op(n->in(4)->get_int(), func1, func2, func3);
2765         break;
2766 
2767       default: assert(false, "not supported: %s", n->Name());
2768     }
2769     assert(res <= 0xFF, "invalid");
2770     eval_map.put(n, res);
2771   }
2772   return res;
2773 }
2774 
2775 // Criteria under which nodes gets packed into a macro logic node:-
2776 //  1) Parent and both child nodes are all unmasked or masked with
2777 //     same predicates.
2778 //  2) Masked parent can be packed with left child if it is predicated
2779 //     and both have same predicates.
2780 //  3) Masked parent can be packed with right child if its un-predicated
2781 //     or has matching predication condition.
2782 //  4) An unmasked parent can be packed with an unmasked child.
2783 bool Compile::compute_logic_cone(Node* n, Unique_Node_List& partition, Unique_Node_List& inputs) {
2784   assert(partition.size() == 0, "not empty");
2785   assert(inputs.size() == 0, "not empty");
2786   if (is_vector_ternary_bitwise_op(n)) {
2787     return false;
2788   }
2789 
2790   bool is_unary_op = is_vector_unary_bitwise_op(n);
2791   if (is_unary_op) {
2792     assert(collect_unique_inputs(n, inputs) == 1, "not unary");
2793     return false; // too few inputs
2794   }
2795 
2796   bool pack_left_child = true;
2797   bool pack_right_child = true;
2798 
2799   bool left_child_LOP = is_vector_bitwise_op(n->in(1));
2800   bool right_child_LOP = is_vector_bitwise_op(n->in(2));
2801 
2802   int left_child_input_cnt = 0;
2803   int right_child_input_cnt = 0;
2804 
2805   bool parent_is_predicated = n->is_predicated_vector();
2806   bool left_child_predicated = n->in(1)->is_predicated_vector();
2807   bool right_child_predicated = n->in(2)->is_predicated_vector();
2808 
2809   Node* parent_pred = parent_is_predicated ? n->in(n->req()-1) : nullptr;
2810   Node* left_child_pred = left_child_predicated ? n->in(1)->in(n->in(1)->req()-1) : nullptr;
2811   Node* right_child_pred = right_child_predicated ? n->in(1)->in(n->in(1)->req()-1) : nullptr;
2812 
2813   do {
2814     if (pack_left_child && left_child_LOP &&
2815         ((!parent_is_predicated && !left_child_predicated) ||
2816         ((parent_is_predicated && left_child_predicated &&
2817           parent_pred == left_child_pred)))) {
2818        partition.push(n->in(1));
2819        left_child_input_cnt = collect_unique_inputs(n->in(1), inputs);
2820     } else {
2821        inputs.push(n->in(1));
2822        left_child_input_cnt = 1;
2823     }
2824 
2825     if (pack_right_child && right_child_LOP &&
2826         (!right_child_predicated ||
2827          (right_child_predicated && parent_is_predicated &&
2828           parent_pred == right_child_pred))) {
2829        partition.push(n->in(2));
2830        right_child_input_cnt = collect_unique_inputs(n->in(2), inputs);
2831     } else {
2832        inputs.push(n->in(2));
2833        right_child_input_cnt = 1;
2834     }
2835 
2836     if (inputs.size() > 3) {
2837       assert(partition.size() > 0, "");
2838       inputs.clear();
2839       partition.clear();
2840       if (left_child_input_cnt > right_child_input_cnt) {
2841         pack_left_child = false;
2842       } else {
2843         pack_right_child = false;
2844       }
2845     } else {
2846       break;
2847     }
2848   } while(true);
2849 
2850   if(partition.size()) {
2851     partition.push(n);
2852   }
2853 
2854   return (partition.size() == 2 || partition.size() == 3) &&
2855          (inputs.size()    == 2 || inputs.size()    == 3);
2856 }
2857 
2858 void Compile::process_logic_cone_root(PhaseIterGVN &igvn, Node *n, VectorSet &visited) {
2859   assert(is_vector_bitwise_op(n), "not a root");
2860 
2861   visited.set(n->_idx);
2862 
2863   // 1) Do a DFS walk over the logic cone.
2864   for (uint i = 1; i < n->req(); i++) {
2865     Node* in = n->in(i);
2866     if (!visited.test(in->_idx) && is_vector_bitwise_op(in)) {
2867       process_logic_cone_root(igvn, in, visited);
2868     }
2869   }
2870 
2871   // 2) Bottom up traversal: Merge node[s] with
2872   // the parent to form macro logic node.
2873   Unique_Node_List partition;
2874   Unique_Node_List inputs;
2875   if (compute_logic_cone(n, partition, inputs)) {
2876     const TypeVect* vt = n->bottom_type()->is_vect();
2877     Node* pn = partition.at(partition.size() - 1);
2878     Node* mask = pn->is_predicated_vector() ? pn->in(pn->req()-1) : nullptr;
2879     if (mask == nullptr ||
2880         Matcher::match_rule_supported_vector_masked(Op_MacroLogicV, vt->length(), vt->element_basic_type())) {
2881       Node* macro_logic = xform_to_MacroLogicV(igvn, vt, partition, inputs);
2882       VectorNode::trace_new_vector(macro_logic, "MacroLogic");
2883       igvn.replace_node(n, macro_logic);
2884     }
2885   }
2886 }
2887 
2888 void Compile::optimize_logic_cones(PhaseIterGVN &igvn) {
2889   ResourceMark rm;
2890   if (Matcher::match_rule_supported(Op_MacroLogicV)) {
2891     Unique_Node_List list;
2892     collect_logic_cone_roots(list);
2893 
2894     while (list.size() > 0) {
2895       Node* n = list.pop();
2896       const TypeVect* vt = n->bottom_type()->is_vect();
2897       bool supported = Matcher::match_rule_supported_vector(Op_MacroLogicV, vt->length(), vt->element_basic_type());
2898       if (supported) {
2899         VectorSet visited(comp_arena());
2900         process_logic_cone_root(igvn, n, visited);
2901       }
2902     }
2903   }
2904 }
2905 
2906 //------------------------------Code_Gen---------------------------------------
2907 // Given a graph, generate code for it
2908 void Compile::Code_Gen() {
2909   if (failing()) {
2910     return;
2911   }
2912 
2913   // Perform instruction selection.  You might think we could reclaim Matcher
2914   // memory PDQ, but actually the Matcher is used in generating spill code.
2915   // Internals of the Matcher (including some VectorSets) must remain live
2916   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
2917   // set a bit in reclaimed memory.
2918 
2919   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2920   // nodes.  Mapping is only valid at the root of each matched subtree.
2921   NOT_PRODUCT( verify_graph_edges(); )
2922 
2923   Matcher matcher;
2924   _matcher = &matcher;
2925   {
2926     TracePhase tp("matcher", &timers[_t_matcher]);
2927     matcher.match();
2928     if (failing()) {
2929       return;
2930     }
2931   }
2932   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2933   // nodes.  Mapping is only valid at the root of each matched subtree.
2934   NOT_PRODUCT( verify_graph_edges(); )
2935 
2936   // If you have too many nodes, or if matching has failed, bail out
2937   check_node_count(0, "out of nodes matching instructions");
2938   if (failing()) {
2939     return;
2940   }
2941 
2942   print_method(PHASE_MATCHING, 2);
2943 
2944   // Build a proper-looking CFG
2945   PhaseCFG cfg(node_arena(), root(), matcher);
2946   _cfg = &cfg;
2947   {
2948     TracePhase tp("scheduler", &timers[_t_scheduler]);
2949     bool success = cfg.do_global_code_motion();
2950     if (!success) {
2951       return;
2952     }
2953 
2954     print_method(PHASE_GLOBAL_CODE_MOTION, 2);
2955     NOT_PRODUCT( verify_graph_edges(); )
2956     cfg.verify();
2957   }
2958 
2959   PhaseChaitin regalloc(unique(), cfg, matcher, false);
2960   _regalloc = &regalloc;
2961   {
2962     TracePhase tp("regalloc", &timers[_t_registerAllocation]);
2963     // Perform register allocation.  After Chaitin, use-def chains are
2964     // no longer accurate (at spill code) and so must be ignored.
2965     // Node->LRG->reg mappings are still accurate.
2966     _regalloc->Register_Allocate();
2967 
2968     // Bail out if the allocator builds too many nodes
2969     if (failing()) {
2970       return;
2971     }
2972 
2973     print_method(PHASE_REGISTER_ALLOCATION, 2);
2974   }
2975 
2976   // Prior to register allocation we kept empty basic blocks in case the
2977   // the allocator needed a place to spill.  After register allocation we
2978   // are not adding any new instructions.  If any basic block is empty, we
2979   // can now safely remove it.
2980   {
2981     TracePhase tp("blockOrdering", &timers[_t_blockOrdering]);
2982     cfg.remove_empty_blocks();
2983     if (do_freq_based_layout()) {
2984       PhaseBlockLayout layout(cfg);
2985     } else {
2986       cfg.set_loop_alignment();
2987     }
2988     cfg.fixup_flow();
2989     cfg.remove_unreachable_blocks();
2990     cfg.verify_dominator_tree();
2991     print_method(PHASE_BLOCK_ORDERING, 3);
2992   }
2993 
2994   // Apply peephole optimizations
2995   if( OptoPeephole ) {
2996     TracePhase tp("peephole", &timers[_t_peephole]);
2997     PhasePeephole peep( _regalloc, cfg);
2998     peep.do_transform();
2999     print_method(PHASE_PEEPHOLE, 3);
3000   }
3001 
3002   // Do late expand if CPU requires this.
3003   if (Matcher::require_postalloc_expand) {
3004     TracePhase tp("postalloc_expand", &timers[_t_postalloc_expand]);
3005     cfg.postalloc_expand(_regalloc);
3006     print_method(PHASE_POSTALLOC_EXPAND, 3);
3007   }
3008 
3009   // Convert Nodes to instruction bits in a buffer
3010   {
3011     TracePhase tp("output", &timers[_t_output]);
3012     PhaseOutput output;
3013     output.Output();
3014     if (failing())  return;
3015     output.install();
3016     print_method(PHASE_FINAL_CODE, 1); // Compile::_output is not null here
3017   }
3018 
3019   // He's dead, Jim.
3020   _cfg     = (PhaseCFG*)((intptr_t)0xdeadbeef);
3021   _regalloc = (PhaseChaitin*)((intptr_t)0xdeadbeef);
3022 }
3023 
3024 //------------------------------Final_Reshape_Counts---------------------------
3025 // This class defines counters to help identify when a method
3026 // may/must be executed using hardware with only 24-bit precision.
3027 struct Final_Reshape_Counts : public StackObj {
3028   int  _call_count;             // count non-inlined 'common' calls
3029   int  _float_count;            // count float ops requiring 24-bit precision
3030   int  _double_count;           // count double ops requiring more precision
3031   int  _java_call_count;        // count non-inlined 'java' calls
3032   int  _inner_loop_count;       // count loops which need alignment
3033   VectorSet _visited;           // Visitation flags
3034   Node_List _tests;             // Set of IfNodes & PCTableNodes
3035 
3036   Final_Reshape_Counts() :
3037     _call_count(0), _float_count(0), _double_count(0),
3038     _java_call_count(0), _inner_loop_count(0) { }
3039 
3040   void inc_call_count  () { _call_count  ++; }
3041   void inc_float_count () { _float_count ++; }
3042   void inc_double_count() { _double_count++; }
3043   void inc_java_call_count() { _java_call_count++; }
3044   void inc_inner_loop_count() { _inner_loop_count++; }
3045 
3046   int  get_call_count  () const { return _call_count  ; }
3047   int  get_float_count () const { return _float_count ; }
3048   int  get_double_count() const { return _double_count; }
3049   int  get_java_call_count() const { return _java_call_count; }
3050   int  get_inner_loop_count() const { return _inner_loop_count; }
3051 };
3052 
3053 // Eliminate trivially redundant StoreCMs and accumulate their
3054 // precedence edges.
3055 void Compile::eliminate_redundant_card_marks(Node* n) {
3056   assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
3057   if (n->in(MemNode::Address)->outcnt() > 1) {
3058     // There are multiple users of the same address so it might be
3059     // possible to eliminate some of the StoreCMs
3060     Node* mem = n->in(MemNode::Memory);
3061     Node* adr = n->in(MemNode::Address);
3062     Node* val = n->in(MemNode::ValueIn);
3063     Node* prev = n;
3064     bool done = false;
3065     // Walk the chain of StoreCMs eliminating ones that match.  As
3066     // long as it's a chain of single users then the optimization is
3067     // safe.  Eliminating partially redundant StoreCMs would require
3068     // cloning copies down the other paths.
3069     while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
3070       if (adr == mem->in(MemNode::Address) &&
3071           val == mem->in(MemNode::ValueIn)) {
3072         // redundant StoreCM
3073         if (mem->req() > MemNode::OopStore) {
3074           // Hasn't been processed by this code yet.
3075           n->add_prec(mem->in(MemNode::OopStore));
3076         } else {
3077           // Already converted to precedence edge
3078           for (uint i = mem->req(); i < mem->len(); i++) {
3079             // Accumulate any precedence edges
3080             if (mem->in(i) != nullptr) {
3081               n->add_prec(mem->in(i));
3082             }
3083           }
3084           // Everything above this point has been processed.
3085           done = true;
3086         }
3087         // Eliminate the previous StoreCM
3088         prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
3089         assert(mem->outcnt() == 0, "should be dead");
3090         mem->disconnect_inputs(this);
3091       } else {
3092         prev = mem;
3093       }
3094       mem = prev->in(MemNode::Memory);
3095     }
3096   }
3097 }
3098 
3099 //------------------------------final_graph_reshaping_impl----------------------
3100 // Implement items 1-5 from final_graph_reshaping below.
3101 void Compile::final_graph_reshaping_impl(Node *n, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes) {
3102 
3103   if ( n->outcnt() == 0 ) return; // dead node
3104   uint nop = n->Opcode();
3105 
3106   // Check for 2-input instruction with "last use" on right input.
3107   // Swap to left input.  Implements item (2).
3108   if( n->req() == 3 &&          // two-input instruction
3109       n->in(1)->outcnt() > 1 && // left use is NOT a last use
3110       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
3111       n->in(2)->outcnt() == 1 &&// right use IS a last use
3112       !n->in(2)->is_Con() ) {   // right use is not a constant
3113     // Check for commutative opcode
3114     switch( nop ) {
3115     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
3116     case Op_MaxI:  case Op_MaxL:  case Op_MaxF:  case Op_MaxD:
3117     case Op_MinI:  case Op_MinL:  case Op_MinF:  case Op_MinD:
3118     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
3119     case Op_AndL:  case Op_XorL:  case Op_OrL:
3120     case Op_AndI:  case Op_XorI:  case Op_OrI: {
3121       // Move "last use" input to left by swapping inputs
3122       n->swap_edges(1, 2);
3123       break;
3124     }
3125     default:
3126       break;
3127     }
3128   }
3129 
3130 #ifdef ASSERT
3131   if( n->is_Mem() ) {
3132     int alias_idx = get_alias_index(n->as_Mem()->adr_type());
3133     assert( n->in(0) != nullptr || alias_idx != Compile::AliasIdxRaw ||
3134             // oop will be recorded in oop map if load crosses safepoint
3135             (n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
3136                               LoadNode::is_immutable_value(n->in(MemNode::Address)))),
3137             "raw memory operations should have control edge");
3138   }
3139   if (n->is_MemBar()) {
3140     MemBarNode* mb = n->as_MemBar();
3141     if (mb->trailing_store() || mb->trailing_load_store()) {
3142       assert(mb->leading_membar()->trailing_membar() == mb, "bad membar pair");
3143       Node* mem = BarrierSet::barrier_set()->barrier_set_c2()->step_over_gc_barrier(mb->in(MemBarNode::Precedent));
3144       assert((mb->trailing_store() && mem->is_Store() && mem->as_Store()->is_release()) ||
3145              (mb->trailing_load_store() && mem->is_LoadStore()), "missing mem op");
3146     } else if (mb->leading()) {
3147       assert(mb->trailing_membar()->leading_membar() == mb, "bad membar pair");
3148     }
3149   }
3150 #endif
3151   // Count FPU ops and common calls, implements item (3)
3152   bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->final_graph_reshaping(this, n, nop, dead_nodes);
3153   if (!gc_handled) {
3154     final_graph_reshaping_main_switch(n, frc, nop, dead_nodes);
3155   }
3156 
3157   // Collect CFG split points
3158   if (n->is_MultiBranch() && !n->is_RangeCheck()) {
3159     frc._tests.push(n);
3160   }
3161 }
3162 
3163 void Compile::final_graph_reshaping_main_switch(Node* n, Final_Reshape_Counts& frc, uint nop, Unique_Node_List& dead_nodes) {
3164   switch( nop ) {
3165   // Count all float operations that may use FPU
3166   case Op_AddF:
3167   case Op_SubF:
3168   case Op_MulF:
3169   case Op_DivF:
3170   case Op_NegF:
3171   case Op_ModF:
3172   case Op_ConvI2F:
3173   case Op_ConF:
3174   case Op_CmpF:
3175   case Op_CmpF3:
3176   case Op_StoreF:
3177   case Op_LoadF:
3178   // case Op_ConvL2F: // longs are split into 32-bit halves
3179     frc.inc_float_count();
3180     break;
3181 
3182   case Op_ConvF2D:
3183   case Op_ConvD2F:
3184     frc.inc_float_count();
3185     frc.inc_double_count();
3186     break;
3187 
3188   // Count all double operations that may use FPU
3189   case Op_AddD:
3190   case Op_SubD:
3191   case Op_MulD:
3192   case Op_DivD:
3193   case Op_NegD:
3194   case Op_ModD:
3195   case Op_ConvI2D:
3196   case Op_ConvD2I:
3197   // case Op_ConvL2D: // handled by leaf call
3198   // case Op_ConvD2L: // handled by leaf call
3199   case Op_ConD:
3200   case Op_CmpD:
3201   case Op_CmpD3:
3202   case Op_StoreD:
3203   case Op_LoadD:
3204   case Op_LoadD_unaligned:
3205     frc.inc_double_count();
3206     break;
3207   case Op_Opaque1:              // Remove Opaque Nodes before matching
3208     n->subsume_by(n->in(1), this);
3209     break;
3210   case Op_CallStaticJava:
3211   case Op_CallJava:
3212   case Op_CallDynamicJava:
3213     frc.inc_java_call_count(); // Count java call site;
3214   case Op_CallRuntime:
3215   case Op_CallLeaf:
3216   case Op_CallLeafVector:
3217   case Op_CallLeafNoFP: {
3218     assert (n->is_Call(), "");
3219     CallNode *call = n->as_Call();
3220     // Count call sites where the FP mode bit would have to be flipped.
3221     // Do not count uncommon runtime calls:
3222     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
3223     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
3224     if (!call->is_CallStaticJava() || !call->as_CallStaticJava()->_name) {
3225       frc.inc_call_count();   // Count the call site
3226     } else {                  // See if uncommon argument is shared
3227       Node *n = call->in(TypeFunc::Parms);
3228       int nop = n->Opcode();
3229       // Clone shared simple arguments to uncommon calls, item (1).
3230       if (n->outcnt() > 1 &&
3231           !n->is_Proj() &&
3232           nop != Op_CreateEx &&
3233           nop != Op_CheckCastPP &&
3234           nop != Op_DecodeN &&
3235           nop != Op_DecodeNKlass &&
3236           !n->is_Mem() &&
3237           !n->is_Phi()) {
3238         Node *x = n->clone();
3239         call->set_req(TypeFunc::Parms, x);
3240       }
3241     }
3242     break;
3243   }
3244 
3245   case Op_StoreCM:
3246     {
3247       // Convert OopStore dependence into precedence edge
3248       Node* prec = n->in(MemNode::OopStore);
3249       n->del_req(MemNode::OopStore);
3250       n->add_prec(prec);
3251       eliminate_redundant_card_marks(n);
3252     }
3253 
3254     // fall through
3255 
3256   case Op_StoreB:
3257   case Op_StoreC:
3258   case Op_StoreI:
3259   case Op_StoreL:
3260   case Op_CompareAndSwapB:
3261   case Op_CompareAndSwapS:
3262   case Op_CompareAndSwapI:
3263   case Op_CompareAndSwapL:
3264   case Op_CompareAndSwapP:
3265   case Op_CompareAndSwapN:
3266   case Op_WeakCompareAndSwapB:
3267   case Op_WeakCompareAndSwapS:
3268   case Op_WeakCompareAndSwapI:
3269   case Op_WeakCompareAndSwapL:
3270   case Op_WeakCompareAndSwapP:
3271   case Op_WeakCompareAndSwapN:
3272   case Op_CompareAndExchangeB:
3273   case Op_CompareAndExchangeS:
3274   case Op_CompareAndExchangeI:
3275   case Op_CompareAndExchangeL:
3276   case Op_CompareAndExchangeP:
3277   case Op_CompareAndExchangeN:
3278   case Op_GetAndAddS:
3279   case Op_GetAndAddB:
3280   case Op_GetAndAddI:
3281   case Op_GetAndAddL:
3282   case Op_GetAndSetS:
3283   case Op_GetAndSetB:
3284   case Op_GetAndSetI:
3285   case Op_GetAndSetL:
3286   case Op_GetAndSetP:
3287   case Op_GetAndSetN:
3288   case Op_StoreP:
3289   case Op_StoreN:
3290   case Op_StoreNKlass:
3291   case Op_LoadB:
3292   case Op_LoadUB:
3293   case Op_LoadUS:
3294   case Op_LoadI:
3295   case Op_LoadKlass:
3296   case Op_LoadNKlass:
3297   case Op_LoadL:
3298   case Op_LoadL_unaligned:
3299   case Op_LoadP:
3300   case Op_LoadN:
3301   case Op_LoadRange:
3302   case Op_LoadS:
3303     break;
3304 
3305   case Op_AddP: {               // Assert sane base pointers
3306     Node *addp = n->in(AddPNode::Address);
3307     assert( !addp->is_AddP() ||
3308             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
3309             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
3310             "Base pointers must match (addp %u)", addp->_idx );
3311 #ifdef _LP64
3312     if ((UseCompressedOops || UseCompressedClassPointers) &&
3313         addp->Opcode() == Op_ConP &&
3314         addp == n->in(AddPNode::Base) &&
3315         n->in(AddPNode::Offset)->is_Con()) {
3316       // If the transformation of ConP to ConN+DecodeN is beneficial depends
3317       // on the platform and on the compressed oops mode.
3318       // Use addressing with narrow klass to load with offset on x86.
3319       // Some platforms can use the constant pool to load ConP.
3320       // Do this transformation here since IGVN will convert ConN back to ConP.
3321       const Type* t = addp->bottom_type();
3322       bool is_oop   = t->isa_oopptr() != nullptr;
3323       bool is_klass = t->isa_klassptr() != nullptr;
3324 
3325       if ((is_oop   && Matcher::const_oop_prefer_decode()  ) ||
3326           (is_klass && Matcher::const_klass_prefer_decode())) {
3327         Node* nn = nullptr;
3328 
3329         int op = is_oop ? Op_ConN : Op_ConNKlass;
3330 
3331         // Look for existing ConN node of the same exact type.
3332         Node* r  = root();
3333         uint cnt = r->outcnt();
3334         for (uint i = 0; i < cnt; i++) {
3335           Node* m = r->raw_out(i);
3336           if (m!= nullptr && m->Opcode() == op &&
3337               m->bottom_type()->make_ptr() == t) {
3338             nn = m;
3339             break;
3340           }
3341         }
3342         if (nn != nullptr) {
3343           // Decode a narrow oop to match address
3344           // [R12 + narrow_oop_reg<<3 + offset]
3345           if (is_oop) {
3346             nn = new DecodeNNode(nn, t);
3347           } else {
3348             nn = new DecodeNKlassNode(nn, t);
3349           }
3350           // Check for succeeding AddP which uses the same Base.
3351           // Otherwise we will run into the assertion above when visiting that guy.
3352           for (uint i = 0; i < n->outcnt(); ++i) {
3353             Node *out_i = n->raw_out(i);
3354             if (out_i && out_i->is_AddP() && out_i->in(AddPNode::Base) == addp) {
3355               out_i->set_req(AddPNode::Base, nn);
3356 #ifdef ASSERT
3357               for (uint j = 0; j < out_i->outcnt(); ++j) {
3358                 Node *out_j = out_i->raw_out(j);
3359                 assert(out_j == nullptr || !out_j->is_AddP() || out_j->in(AddPNode::Base) != addp,
3360                        "more than 2 AddP nodes in a chain (out_j %u)", out_j->_idx);
3361               }
3362 #endif
3363             }
3364           }
3365           n->set_req(AddPNode::Base, nn);
3366           n->set_req(AddPNode::Address, nn);
3367           if (addp->outcnt() == 0) {
3368             addp->disconnect_inputs(this);
3369           }
3370         }
3371       }
3372     }
3373 #endif
3374     break;
3375   }
3376 
3377   case Op_CastPP: {
3378     // Remove CastPP nodes to gain more freedom during scheduling but
3379     // keep the dependency they encode as control or precedence edges
3380     // (if control is set already) on memory operations. Some CastPP
3381     // nodes don't have a control (don't carry a dependency): skip
3382     // those.
3383     if (n->in(0) != nullptr) {
3384       ResourceMark rm;
3385       Unique_Node_List wq;
3386       wq.push(n);
3387       for (uint next = 0; next < wq.size(); ++next) {
3388         Node *m = wq.at(next);
3389         for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) {
3390           Node* use = m->fast_out(i);
3391           if (use->is_Mem() || use->is_EncodeNarrowPtr()) {
3392             use->ensure_control_or_add_prec(n->in(0));
3393           } else {
3394             switch(use->Opcode()) {
3395             case Op_AddP:
3396             case Op_DecodeN:
3397             case Op_DecodeNKlass:
3398             case Op_CheckCastPP:
3399             case Op_CastPP:
3400               wq.push(use);
3401               break;
3402             }
3403           }
3404         }
3405       }
3406     }
3407     const bool is_LP64 = LP64_ONLY(true) NOT_LP64(false);
3408     if (is_LP64 && n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
3409       Node* in1 = n->in(1);
3410       const Type* t = n->bottom_type();
3411       Node* new_in1 = in1->clone();
3412       new_in1->as_DecodeN()->set_type(t);
3413 
3414       if (!Matcher::narrow_oop_use_complex_address()) {
3415         //
3416         // x86, ARM and friends can handle 2 adds in addressing mode
3417         // and Matcher can fold a DecodeN node into address by using
3418         // a narrow oop directly and do implicit null check in address:
3419         //
3420         // [R12 + narrow_oop_reg<<3 + offset]
3421         // NullCheck narrow_oop_reg
3422         //
3423         // On other platforms (Sparc) we have to keep new DecodeN node and
3424         // use it to do implicit null check in address:
3425         //
3426         // decode_not_null narrow_oop_reg, base_reg
3427         // [base_reg + offset]
3428         // NullCheck base_reg
3429         //
3430         // Pin the new DecodeN node to non-null path on these platform (Sparc)
3431         // to keep the information to which null check the new DecodeN node
3432         // corresponds to use it as value in implicit_null_check().
3433         //
3434         new_in1->set_req(0, n->in(0));
3435       }
3436 
3437       n->subsume_by(new_in1, this);
3438       if (in1->outcnt() == 0) {
3439         in1->disconnect_inputs(this);
3440       }
3441     } else {
3442       n->subsume_by(n->in(1), this);
3443       if (n->outcnt() == 0) {
3444         n->disconnect_inputs(this);
3445       }
3446     }
3447     break;
3448   }
3449 #ifdef _LP64
3450   case Op_CmpP:
3451     // Do this transformation here to preserve CmpPNode::sub() and
3452     // other TypePtr related Ideal optimizations (for example, ptr nullness).
3453     if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
3454       Node* in1 = n->in(1);
3455       Node* in2 = n->in(2);
3456       if (!in1->is_DecodeNarrowPtr()) {
3457         in2 = in1;
3458         in1 = n->in(2);
3459       }
3460       assert(in1->is_DecodeNarrowPtr(), "sanity");
3461 
3462       Node* new_in2 = nullptr;
3463       if (in2->is_DecodeNarrowPtr()) {
3464         assert(in2->Opcode() == in1->Opcode(), "must be same node type");
3465         new_in2 = in2->in(1);
3466       } else if (in2->Opcode() == Op_ConP) {
3467         const Type* t = in2->bottom_type();
3468         if (t == TypePtr::NULL_PTR) {
3469           assert(in1->is_DecodeN(), "compare klass to null?");
3470           // Don't convert CmpP null check into CmpN if compressed
3471           // oops implicit null check is not generated.
3472           // This will allow to generate normal oop implicit null check.
3473           if (Matcher::gen_narrow_oop_implicit_null_checks())
3474             new_in2 = ConNode::make(TypeNarrowOop::NULL_PTR);
3475           //
3476           // This transformation together with CastPP transformation above
3477           // will generated code for implicit null checks for compressed oops.
3478           //
3479           // The original code after Optimize()
3480           //
3481           //    LoadN memory, narrow_oop_reg
3482           //    decode narrow_oop_reg, base_reg
3483           //    CmpP base_reg, nullptr
3484           //    CastPP base_reg // NotNull
3485           //    Load [base_reg + offset], val_reg
3486           //
3487           // after these transformations will be
3488           //
3489           //    LoadN memory, narrow_oop_reg
3490           //    CmpN narrow_oop_reg, nullptr
3491           //    decode_not_null narrow_oop_reg, base_reg
3492           //    Load [base_reg + offset], val_reg
3493           //
3494           // and the uncommon path (== nullptr) will use narrow_oop_reg directly
3495           // since narrow oops can be used in debug info now (see the code in
3496           // final_graph_reshaping_walk()).
3497           //
3498           // At the end the code will be matched to
3499           // on x86:
3500           //
3501           //    Load_narrow_oop memory, narrow_oop_reg
3502           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
3503           //    NullCheck narrow_oop_reg
3504           //
3505           // and on sparc:
3506           //
3507           //    Load_narrow_oop memory, narrow_oop_reg
3508           //    decode_not_null narrow_oop_reg, base_reg
3509           //    Load [base_reg + offset], val_reg
3510           //    NullCheck base_reg
3511           //
3512         } else if (t->isa_oopptr()) {
3513           new_in2 = ConNode::make(t->make_narrowoop());
3514         } else if (t->isa_klassptr()) {
3515           new_in2 = ConNode::make(t->make_narrowklass());
3516         }
3517       }
3518       if (new_in2 != nullptr) {
3519         Node* cmpN = new CmpNNode(in1->in(1), new_in2);
3520         n->subsume_by(cmpN, this);
3521         if (in1->outcnt() == 0) {
3522           in1->disconnect_inputs(this);
3523         }
3524         if (in2->outcnt() == 0) {
3525           in2->disconnect_inputs(this);
3526         }
3527       }
3528     }
3529     break;
3530 
3531   case Op_DecodeN:
3532   case Op_DecodeNKlass:
3533     assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
3534     // DecodeN could be pinned when it can't be fold into
3535     // an address expression, see the code for Op_CastPP above.
3536     assert(n->in(0) == nullptr || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
3537     break;
3538 
3539   case Op_EncodeP:
3540   case Op_EncodePKlass: {
3541     Node* in1 = n->in(1);
3542     if (in1->is_DecodeNarrowPtr()) {
3543       n->subsume_by(in1->in(1), this);
3544     } else if (in1->Opcode() == Op_ConP) {
3545       const Type* t = in1->bottom_type();
3546       if (t == TypePtr::NULL_PTR) {
3547         assert(t->isa_oopptr(), "null klass?");
3548         n->subsume_by(ConNode::make(TypeNarrowOop::NULL_PTR), this);
3549       } else if (t->isa_oopptr()) {
3550         n->subsume_by(ConNode::make(t->make_narrowoop()), this);
3551       } else if (t->isa_klassptr()) {
3552         n->subsume_by(ConNode::make(t->make_narrowklass()), this);
3553       }
3554     }
3555     if (in1->outcnt() == 0) {
3556       in1->disconnect_inputs(this);
3557     }
3558     break;
3559   }
3560 
3561   case Op_Proj: {
3562     if (OptimizeStringConcat || IncrementalInline) {
3563       ProjNode* proj = n->as_Proj();
3564       if (proj->_is_io_use) {
3565         assert(proj->_con == TypeFunc::I_O || proj->_con == TypeFunc::Memory, "");
3566         // Separate projections were used for the exception path which
3567         // are normally removed by a late inline.  If it wasn't inlined
3568         // then they will hang around and should just be replaced with
3569         // the original one. Merge them.
3570         Node* non_io_proj = proj->in(0)->as_Multi()->proj_out_or_null(proj->_con, false /*is_io_use*/);
3571         if (non_io_proj  != nullptr) {
3572           proj->subsume_by(non_io_proj , this);
3573         }
3574       }
3575     }
3576     break;
3577   }
3578 
3579   case Op_Phi:
3580     if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
3581       // The EncodeP optimization may create Phi with the same edges
3582       // for all paths. It is not handled well by Register Allocator.
3583       Node* unique_in = n->in(1);
3584       assert(unique_in != nullptr, "");
3585       uint cnt = n->req();
3586       for (uint i = 2; i < cnt; i++) {
3587         Node* m = n->in(i);
3588         assert(m != nullptr, "");
3589         if (unique_in != m)
3590           unique_in = nullptr;
3591       }
3592       if (unique_in != nullptr) {
3593         n->subsume_by(unique_in, this);
3594       }
3595     }
3596     break;
3597 
3598 #endif
3599 
3600 #ifdef ASSERT
3601   case Op_CastII:
3602     // Verify that all range check dependent CastII nodes were removed.
3603     if (n->isa_CastII()->has_range_check()) {
3604       n->dump(3);
3605       assert(false, "Range check dependent CastII node was not removed");
3606     }
3607     break;
3608 #endif
3609 
3610   case Op_ModI:
3611     if (UseDivMod) {
3612       // Check if a%b and a/b both exist
3613       Node* d = n->find_similar(Op_DivI);
3614       if (d) {
3615         // Replace them with a fused divmod if supported
3616         if (Matcher::has_match_rule(Op_DivModI)) {
3617           DivModINode* divmod = DivModINode::make(n);
3618           d->subsume_by(divmod->div_proj(), this);
3619           n->subsume_by(divmod->mod_proj(), this);
3620         } else {
3621           // replace a%b with a-((a/b)*b)
3622           Node* mult = new MulINode(d, d->in(2));
3623           Node* sub  = new SubINode(d->in(1), mult);
3624           n->subsume_by(sub, this);
3625         }
3626       }
3627     }
3628     break;
3629 
3630   case Op_ModL:
3631     if (UseDivMod) {
3632       // Check if a%b and a/b both exist
3633       Node* d = n->find_similar(Op_DivL);
3634       if (d) {
3635         // Replace them with a fused divmod if supported
3636         if (Matcher::has_match_rule(Op_DivModL)) {
3637           DivModLNode* divmod = DivModLNode::make(n);
3638           d->subsume_by(divmod->div_proj(), this);
3639           n->subsume_by(divmod->mod_proj(), this);
3640         } else {
3641           // replace a%b with a-((a/b)*b)
3642           Node* mult = new MulLNode(d, d->in(2));
3643           Node* sub  = new SubLNode(d->in(1), mult);
3644           n->subsume_by(sub, this);
3645         }
3646       }
3647     }
3648     break;
3649 
3650   case Op_UModI:
3651     if (UseDivMod) {
3652       // Check if a%b and a/b both exist
3653       Node* d = n->find_similar(Op_UDivI);
3654       if (d) {
3655         // Replace them with a fused unsigned divmod if supported
3656         if (Matcher::has_match_rule(Op_UDivModI)) {
3657           UDivModINode* divmod = UDivModINode::make(n);
3658           d->subsume_by(divmod->div_proj(), this);
3659           n->subsume_by(divmod->mod_proj(), this);
3660         } else {
3661           // replace a%b with a-((a/b)*b)
3662           Node* mult = new MulINode(d, d->in(2));
3663           Node* sub  = new SubINode(d->in(1), mult);
3664           n->subsume_by(sub, this);
3665         }
3666       }
3667     }
3668     break;
3669 
3670   case Op_UModL:
3671     if (UseDivMod) {
3672       // Check if a%b and a/b both exist
3673       Node* d = n->find_similar(Op_UDivL);
3674       if (d) {
3675         // Replace them with a fused unsigned divmod if supported
3676         if (Matcher::has_match_rule(Op_UDivModL)) {
3677           UDivModLNode* divmod = UDivModLNode::make(n);
3678           d->subsume_by(divmod->div_proj(), this);
3679           n->subsume_by(divmod->mod_proj(), this);
3680         } else {
3681           // replace a%b with a-((a/b)*b)
3682           Node* mult = new MulLNode(d, d->in(2));
3683           Node* sub  = new SubLNode(d->in(1), mult);
3684           n->subsume_by(sub, this);
3685         }
3686       }
3687     }
3688     break;
3689 
3690   case Op_LoadVector:
3691   case Op_StoreVector:
3692 #ifdef ASSERT
3693     // Add VerifyVectorAlignment node between adr and load / store.
3694     if (VerifyAlignVector && Matcher::has_match_rule(Op_VerifyVectorAlignment)) {
3695       bool must_verify_alignment = n->is_LoadVector() ? n->as_LoadVector()->must_verify_alignment() :
3696                                                         n->as_StoreVector()->must_verify_alignment();
3697       if (must_verify_alignment) {
3698         jlong vector_width = n->is_LoadVector() ? n->as_LoadVector()->memory_size() :
3699                                                   n->as_StoreVector()->memory_size();
3700         // The memory access should be aligned to the vector width in bytes.
3701         // However, the underlying array is possibly less well aligned, but at least
3702         // to ObjectAlignmentInBytes. Hence, even if multiple arrays are accessed in
3703         // a loop we can expect at least the following alignment:
3704         jlong guaranteed_alignment = MIN2(vector_width, (jlong)ObjectAlignmentInBytes);
3705         assert(2 <= guaranteed_alignment && guaranteed_alignment <= 64, "alignment must be in range");
3706         assert(is_power_of_2(guaranteed_alignment), "alignment must be power of 2");
3707         // Create mask from alignment. e.g. 0b1000 -> 0b0111
3708         jlong mask = guaranteed_alignment - 1;
3709         Node* mask_con = ConLNode::make(mask);
3710         VerifyVectorAlignmentNode* va = new VerifyVectorAlignmentNode(n->in(MemNode::Address), mask_con);
3711         n->set_req(MemNode::Address, va);
3712       }
3713     }
3714 #endif
3715     break;
3716 
3717   case Op_LoadVectorGather:
3718   case Op_StoreVectorScatter:
3719   case Op_LoadVectorGatherMasked:
3720   case Op_StoreVectorScatterMasked:
3721   case Op_VectorCmpMasked:
3722   case Op_VectorMaskGen:
3723   case Op_LoadVectorMasked:
3724   case Op_StoreVectorMasked:
3725     break;
3726 
3727   case Op_AddReductionVI:
3728   case Op_AddReductionVL:
3729   case Op_AddReductionVF:
3730   case Op_AddReductionVD:
3731   case Op_MulReductionVI:
3732   case Op_MulReductionVL:
3733   case Op_MulReductionVF:
3734   case Op_MulReductionVD:
3735   case Op_MinReductionV:
3736   case Op_MaxReductionV:
3737   case Op_AndReductionV:
3738   case Op_OrReductionV:
3739   case Op_XorReductionV:
3740     break;
3741 
3742   case Op_PackB:
3743   case Op_PackS:
3744   case Op_PackI:
3745   case Op_PackF:
3746   case Op_PackL:
3747   case Op_PackD:
3748     if (n->req()-1 > 2) {
3749       // Replace many operand PackNodes with a binary tree for matching
3750       PackNode* p = (PackNode*) n;
3751       Node* btp = p->binary_tree_pack(1, n->req());
3752       n->subsume_by(btp, this);
3753     }
3754     break;
3755   case Op_Loop:
3756     assert(!n->as_Loop()->is_loop_nest_inner_loop() || _loop_opts_cnt == 0, "should have been turned into a counted loop");
3757   case Op_CountedLoop:
3758   case Op_LongCountedLoop:
3759   case Op_OuterStripMinedLoop:
3760     if (n->as_Loop()->is_inner_loop()) {
3761       frc.inc_inner_loop_count();
3762     }
3763     n->as_Loop()->verify_strip_mined(0);
3764     break;
3765   case Op_LShiftI:
3766   case Op_RShiftI:
3767   case Op_URShiftI:
3768   case Op_LShiftL:
3769   case Op_RShiftL:
3770   case Op_URShiftL:
3771     if (Matcher::need_masked_shift_count) {
3772       // The cpu's shift instructions don't restrict the count to the
3773       // lower 5/6 bits. We need to do the masking ourselves.
3774       Node* in2 = n->in(2);
3775       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
3776       const TypeInt* t = in2->find_int_type();
3777       if (t != nullptr && t->is_con()) {
3778         juint shift = t->get_con();
3779         if (shift > mask) { // Unsigned cmp
3780           n->set_req(2, ConNode::make(TypeInt::make(shift & mask)));
3781         }
3782       } else {
3783         if (t == nullptr || t->_lo < 0 || t->_hi > (int)mask) {
3784           Node* shift = new AndINode(in2, ConNode::make(TypeInt::make(mask)));
3785           n->set_req(2, shift);
3786         }
3787       }
3788       if (in2->outcnt() == 0) { // Remove dead node
3789         in2->disconnect_inputs(this);
3790       }
3791     }
3792     break;
3793   case Op_MemBarStoreStore:
3794   case Op_MemBarRelease:
3795     // Break the link with AllocateNode: it is no longer useful and
3796     // confuses register allocation.
3797     if (n->req() > MemBarNode::Precedent) {
3798       n->set_req(MemBarNode::Precedent, top());
3799     }
3800     break;
3801   case Op_MemBarAcquire: {
3802     if (n->as_MemBar()->trailing_load() && n->req() > MemBarNode::Precedent) {
3803       // At parse time, the trailing MemBarAcquire for a volatile load
3804       // is created with an edge to the load. After optimizations,
3805       // that input may be a chain of Phis. If those phis have no
3806       // other use, then the MemBarAcquire keeps them alive and
3807       // register allocation can be confused.
3808       dead_nodes.push(n->in(MemBarNode::Precedent));
3809       n->set_req(MemBarNode::Precedent, top());
3810     }
3811     break;
3812   }
3813   case Op_Blackhole:
3814     break;
3815   case Op_RangeCheck: {
3816     RangeCheckNode* rc = n->as_RangeCheck();
3817     Node* iff = new IfNode(rc->in(0), rc->in(1), rc->_prob, rc->_fcnt);
3818     n->subsume_by(iff, this);
3819     frc._tests.push(iff);
3820     break;
3821   }
3822   case Op_ConvI2L: {
3823     if (!Matcher::convi2l_type_required) {
3824       // Code generation on some platforms doesn't need accurate
3825       // ConvI2L types. Widening the type can help remove redundant
3826       // address computations.
3827       n->as_Type()->set_type(TypeLong::INT);
3828       ResourceMark rm;
3829       Unique_Node_List wq;
3830       wq.push(n);
3831       for (uint next = 0; next < wq.size(); next++) {
3832         Node *m = wq.at(next);
3833 
3834         for(;;) {
3835           // Loop over all nodes with identical inputs edges as m
3836           Node* k = m->find_similar(m->Opcode());
3837           if (k == nullptr) {
3838             break;
3839           }
3840           // Push their uses so we get a chance to remove node made
3841           // redundant
3842           for (DUIterator_Fast imax, i = k->fast_outs(imax); i < imax; i++) {
3843             Node* u = k->fast_out(i);
3844             if (u->Opcode() == Op_LShiftL ||
3845                 u->Opcode() == Op_AddL ||
3846                 u->Opcode() == Op_SubL ||
3847                 u->Opcode() == Op_AddP) {
3848               wq.push(u);
3849             }
3850           }
3851           // Replace all nodes with identical edges as m with m
3852           k->subsume_by(m, this);
3853         }
3854       }
3855     }
3856     break;
3857   }
3858   case Op_CmpUL: {
3859     if (!Matcher::has_match_rule(Op_CmpUL)) {
3860       // No support for unsigned long comparisons
3861       ConINode* sign_pos = new ConINode(TypeInt::make(BitsPerLong - 1));
3862       Node* sign_bit_mask = new RShiftLNode(n->in(1), sign_pos);
3863       Node* orl = new OrLNode(n->in(1), sign_bit_mask);
3864       ConLNode* remove_sign_mask = new ConLNode(TypeLong::make(max_jlong));
3865       Node* andl = new AndLNode(orl, remove_sign_mask);
3866       Node* cmp = new CmpLNode(andl, n->in(2));
3867       n->subsume_by(cmp, this);
3868     }
3869     break;
3870   }
3871   default:
3872     assert(!n->is_Call(), "");
3873     assert(!n->is_Mem(), "");
3874     assert(nop != Op_ProfileBoolean, "should be eliminated during IGVN");
3875     break;
3876   }
3877 }
3878 
3879 //------------------------------final_graph_reshaping_walk---------------------
3880 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
3881 // requires that the walk visits a node's inputs before visiting the node.
3882 void Compile::final_graph_reshaping_walk(Node_Stack& nstack, Node* root, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes) {
3883   Unique_Node_List sfpt;
3884 
3885   frc._visited.set(root->_idx); // first, mark node as visited
3886   uint cnt = root->req();
3887   Node *n = root;
3888   uint  i = 0;
3889   while (true) {
3890     if (i < cnt) {
3891       // Place all non-visited non-null inputs onto stack
3892       Node* m = n->in(i);
3893       ++i;
3894       if (m != nullptr && !frc._visited.test_set(m->_idx)) {
3895         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != nullptr) {
3896           // compute worst case interpreter size in case of a deoptimization
3897           update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size());
3898 
3899           sfpt.push(m);
3900         }
3901         cnt = m->req();
3902         nstack.push(n, i); // put on stack parent and next input's index
3903         n = m;
3904         i = 0;
3905       }
3906     } else {
3907       // Now do post-visit work
3908       final_graph_reshaping_impl(n, frc, dead_nodes);
3909       if (nstack.is_empty())
3910         break;             // finished
3911       n = nstack.node();   // Get node from stack
3912       cnt = n->req();
3913       i = nstack.index();
3914       nstack.pop();        // Shift to the next node on stack
3915     }
3916   }
3917 
3918   // Skip next transformation if compressed oops are not used.
3919   if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
3920       (!UseCompressedOops && !UseCompressedClassPointers))
3921     return;
3922 
3923   // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
3924   // It could be done for an uncommon traps or any safepoints/calls
3925   // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
3926   while (sfpt.size() > 0) {
3927     n = sfpt.pop();
3928     JVMState *jvms = n->as_SafePoint()->jvms();
3929     assert(jvms != nullptr, "sanity");
3930     int start = jvms->debug_start();
3931     int end   = n->req();
3932     bool is_uncommon = (n->is_CallStaticJava() &&
3933                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
3934     for (int j = start; j < end; j++) {
3935       Node* in = n->in(j);
3936       if (in->is_DecodeNarrowPtr()) {
3937         bool safe_to_skip = true;
3938         if (!is_uncommon ) {
3939           // Is it safe to skip?
3940           for (uint i = 0; i < in->outcnt(); i++) {
3941             Node* u = in->raw_out(i);
3942             if (!u->is_SafePoint() ||
3943                 (u->is_Call() && u->as_Call()->has_non_debug_use(n))) {
3944               safe_to_skip = false;
3945             }
3946           }
3947         }
3948         if (safe_to_skip) {
3949           n->set_req(j, in->in(1));
3950         }
3951         if (in->outcnt() == 0) {
3952           in->disconnect_inputs(this);
3953         }
3954       }
3955     }
3956   }
3957 }
3958 
3959 //------------------------------final_graph_reshaping--------------------------
3960 // Final Graph Reshaping.
3961 //
3962 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
3963 //     and not commoned up and forced early.  Must come after regular
3964 //     optimizations to avoid GVN undoing the cloning.  Clone constant
3965 //     inputs to Loop Phis; these will be split by the allocator anyways.
3966 //     Remove Opaque nodes.
3967 // (2) Move last-uses by commutative operations to the left input to encourage
3968 //     Intel update-in-place two-address operations and better register usage
3969 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
3970 //     calls canonicalizing them back.
3971 // (3) Count the number of double-precision FP ops, single-precision FP ops
3972 //     and call sites.  On Intel, we can get correct rounding either by
3973 //     forcing singles to memory (requires extra stores and loads after each
3974 //     FP bytecode) or we can set a rounding mode bit (requires setting and
3975 //     clearing the mode bit around call sites).  The mode bit is only used
3976 //     if the relative frequency of single FP ops to calls is low enough.
3977 //     This is a key transform for SPEC mpeg_audio.
3978 // (4) Detect infinite loops; blobs of code reachable from above but not
3979 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
3980 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
3981 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
3982 //     Detection is by looking for IfNodes where only 1 projection is
3983 //     reachable from below or CatchNodes missing some targets.
3984 // (5) Assert for insane oop offsets in debug mode.
3985 
3986 bool Compile::final_graph_reshaping() {
3987   // an infinite loop may have been eliminated by the optimizer,
3988   // in which case the graph will be empty.
3989   if (root()->req() == 1) {
3990     // Do not compile method that is only a trivial infinite loop,
3991     // since the content of the loop may have been eliminated.
3992     record_method_not_compilable("trivial infinite loop");
3993     return true;
3994   }
3995 
3996   // Expensive nodes have their control input set to prevent the GVN
3997   // from freely commoning them. There's no GVN beyond this point so
3998   // no need to keep the control input. We want the expensive nodes to
3999   // be freely moved to the least frequent code path by gcm.
4000   assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
4001   for (int i = 0; i < expensive_count(); i++) {
4002     _expensive_nodes.at(i)->set_req(0, nullptr);
4003   }
4004 
4005   Final_Reshape_Counts frc;
4006 
4007   // Visit everybody reachable!
4008   // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc
4009   Node_Stack nstack(live_nodes() >> 1);
4010   Unique_Node_List dead_nodes;
4011   final_graph_reshaping_walk(nstack, root(), frc, dead_nodes);
4012 
4013   // Check for unreachable (from below) code (i.e., infinite loops).
4014   for( uint i = 0; i < frc._tests.size(); i++ ) {
4015     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
4016     // Get number of CFG targets.
4017     // Note that PCTables include exception targets after calls.
4018     uint required_outcnt = n->required_outcnt();
4019     if (n->outcnt() != required_outcnt) {
4020       // Check for a few special cases.  Rethrow Nodes never take the
4021       // 'fall-thru' path, so expected kids is 1 less.
4022       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
4023         if (n->in(0)->in(0)->is_Call()) {
4024           CallNode* call = n->in(0)->in(0)->as_Call();
4025           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
4026             required_outcnt--;      // Rethrow always has 1 less kid
4027           } else if (call->req() > TypeFunc::Parms &&
4028                      call->is_CallDynamicJava()) {
4029             // Check for null receiver. In such case, the optimizer has
4030             // detected that the virtual call will always result in a null
4031             // pointer exception. The fall-through projection of this CatchNode
4032             // will not be populated.
4033             Node* arg0 = call->in(TypeFunc::Parms);
4034             if (arg0->is_Type() &&
4035                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
4036               required_outcnt--;
4037             }
4038           } else if (call->entry_point() == OptoRuntime::new_array_Java() ||
4039                      call->entry_point() == OptoRuntime::new_array_nozero_Java()) {
4040             // Check for illegal array length. In such case, the optimizer has
4041             // detected that the allocation attempt will always result in an
4042             // exception. There is no fall-through projection of this CatchNode .
4043             assert(call->is_CallStaticJava(), "static call expected");
4044             assert(call->req() == call->jvms()->endoff() + 1, "missing extra input");
4045             uint valid_length_test_input = call->req() - 1;
4046             Node* valid_length_test = call->in(valid_length_test_input);
4047             call->del_req(valid_length_test_input);
4048             if (valid_length_test->find_int_con(1) == 0) {
4049               required_outcnt--;
4050             }
4051             dead_nodes.push(valid_length_test);
4052             assert(n->outcnt() == required_outcnt, "malformed control flow");
4053             continue;
4054           }
4055         }
4056       }
4057 
4058       // Recheck with a better notion of 'required_outcnt'
4059       if (n->outcnt() != required_outcnt) {
4060         record_method_not_compilable("malformed control flow");
4061         return true;            // Not all targets reachable!
4062       }
4063     } else if (n->is_PCTable() && n->in(0) && n->in(0)->in(0) && n->in(0)->in(0)->is_Call()) {
4064       CallNode* call = n->in(0)->in(0)->as_Call();
4065       if (call->entry_point() == OptoRuntime::new_array_Java() ||
4066           call->entry_point() == OptoRuntime::new_array_nozero_Java()) {
4067         assert(call->is_CallStaticJava(), "static call expected");
4068         assert(call->req() == call->jvms()->endoff() + 1, "missing extra input");
4069         uint valid_length_test_input = call->req() - 1;
4070         dead_nodes.push(call->in(valid_length_test_input));
4071         call->del_req(valid_length_test_input); // valid length test useless now
4072       }
4073     }
4074     // Check that I actually visited all kids.  Unreached kids
4075     // must be infinite loops.
4076     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
4077       if (!frc._visited.test(n->fast_out(j)->_idx)) {
4078         record_method_not_compilable("infinite loop");
4079         return true;            // Found unvisited kid; must be unreach
4080       }
4081 
4082     // Here so verification code in final_graph_reshaping_walk()
4083     // always see an OuterStripMinedLoopEnd
4084     if (n->is_OuterStripMinedLoopEnd() || n->is_LongCountedLoopEnd()) {
4085       IfNode* init_iff = n->as_If();
4086       Node* iff = new IfNode(init_iff->in(0), init_iff->in(1), init_iff->_prob, init_iff->_fcnt);
4087       n->subsume_by(iff, this);
4088     }
4089   }
4090 
4091   while (dead_nodes.size() > 0) {
4092     Node* m = dead_nodes.pop();
4093     if (m->outcnt() == 0 && m != top()) {
4094       for (uint j = 0; j < m->req(); j++) {
4095         Node* in = m->in(j);
4096         if (in != nullptr) {
4097           dead_nodes.push(in);
4098         }
4099       }
4100       m->disconnect_inputs(this);
4101     }
4102   }
4103 
4104 #ifdef IA32
4105   // If original bytecodes contained a mixture of floats and doubles
4106   // check if the optimizer has made it homogeneous, item (3).
4107   if (UseSSE == 0 &&
4108       frc.get_float_count() > 32 &&
4109       frc.get_double_count() == 0 &&
4110       (10 * frc.get_call_count() < frc.get_float_count()) ) {
4111     set_24_bit_selection_and_mode(false, true);
4112   }
4113 #endif // IA32
4114 
4115   set_java_calls(frc.get_java_call_count());
4116   set_inner_loops(frc.get_inner_loop_count());
4117 
4118   // No infinite loops, no reason to bail out.
4119   return false;
4120 }
4121 
4122 //-----------------------------too_many_traps----------------------------------
4123 // Report if there are too many traps at the current method and bci.
4124 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
4125 bool Compile::too_many_traps(ciMethod* method,
4126                              int bci,
4127                              Deoptimization::DeoptReason reason) {
4128   ciMethodData* md = method->method_data();
4129   if (md->is_empty()) {
4130     // Assume the trap has not occurred, or that it occurred only
4131     // because of a transient condition during start-up in the interpreter.
4132     return false;
4133   }
4134   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : nullptr;
4135   if (md->has_trap_at(bci, m, reason) != 0) {
4136     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
4137     // Also, if there are multiple reasons, or if there is no per-BCI record,
4138     // assume the worst.
4139     if (log())
4140       log()->elem("observe trap='%s' count='%d'",
4141                   Deoptimization::trap_reason_name(reason),
4142                   md->trap_count(reason));
4143     return true;
4144   } else {
4145     // Ignore method/bci and see if there have been too many globally.
4146     return too_many_traps(reason, md);
4147   }
4148 }
4149 
4150 // Less-accurate variant which does not require a method and bci.
4151 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
4152                              ciMethodData* logmd) {
4153   if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) {
4154     // Too many traps globally.
4155     // Note that we use cumulative trap_count, not just md->trap_count.
4156     if (log()) {
4157       int mcount = (logmd == nullptr)? -1: (int)logmd->trap_count(reason);
4158       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
4159                   Deoptimization::trap_reason_name(reason),
4160                   mcount, trap_count(reason));
4161     }
4162     return true;
4163   } else {
4164     // The coast is clear.
4165     return false;
4166   }
4167 }
4168 
4169 //--------------------------too_many_recompiles--------------------------------
4170 // Report if there are too many recompiles at the current method and bci.
4171 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
4172 // Is not eager to return true, since this will cause the compiler to use
4173 // Action_none for a trap point, to avoid too many recompilations.
4174 bool Compile::too_many_recompiles(ciMethod* method,
4175                                   int bci,
4176                                   Deoptimization::DeoptReason reason) {
4177   ciMethodData* md = method->method_data();
4178   if (md->is_empty()) {
4179     // Assume the trap has not occurred, or that it occurred only
4180     // because of a transient condition during start-up in the interpreter.
4181     return false;
4182   }
4183   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
4184   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
4185   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
4186   Deoptimization::DeoptReason per_bc_reason
4187     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
4188   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : nullptr;
4189   if ((per_bc_reason == Deoptimization::Reason_none
4190        || md->has_trap_at(bci, m, reason) != 0)
4191       // The trap frequency measure we care about is the recompile count:
4192       && md->trap_recompiled_at(bci, m)
4193       && md->overflow_recompile_count() >= bc_cutoff) {
4194     // Do not emit a trap here if it has already caused recompilations.
4195     // Also, if there are multiple reasons, or if there is no per-BCI record,
4196     // assume the worst.
4197     if (log())
4198       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
4199                   Deoptimization::trap_reason_name(reason),
4200                   md->trap_count(reason),
4201                   md->overflow_recompile_count());
4202     return true;
4203   } else if (trap_count(reason) != 0
4204              && decompile_count() >= m_cutoff) {
4205     // Too many recompiles globally, and we have seen this sort of trap.
4206     // Use cumulative decompile_count, not just md->decompile_count.
4207     if (log())
4208       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
4209                   Deoptimization::trap_reason_name(reason),
4210                   md->trap_count(reason), trap_count(reason),
4211                   md->decompile_count(), decompile_count());
4212     return true;
4213   } else {
4214     // The coast is clear.
4215     return false;
4216   }
4217 }
4218 
4219 // Compute when not to trap. Used by matching trap based nodes and
4220 // NullCheck optimization.
4221 void Compile::set_allowed_deopt_reasons() {
4222   _allowed_reasons = 0;
4223   if (is_method_compilation()) {
4224     for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) {
4225       assert(rs < BitsPerInt, "recode bit map");
4226       if (!too_many_traps((Deoptimization::DeoptReason) rs)) {
4227         _allowed_reasons |= nth_bit(rs);
4228       }
4229     }
4230   }
4231 }
4232 
4233 bool Compile::needs_clinit_barrier(ciMethod* method, ciMethod* accessing_method) {
4234   return method->is_static() && needs_clinit_barrier(method->holder(), accessing_method);
4235 }
4236 
4237 bool Compile::needs_clinit_barrier(ciField* field, ciMethod* accessing_method) {
4238   return field->is_static() && needs_clinit_barrier(field->holder(), accessing_method);
4239 }
4240 
4241 bool Compile::needs_clinit_barrier(ciInstanceKlass* holder, ciMethod* accessing_method) {
4242   if (holder->is_initialized()) {
4243     return false;
4244   }
4245   if (holder->is_being_initialized()) {
4246     if (accessing_method->holder() == holder) {
4247       // Access inside a class. The barrier can be elided when access happens in <clinit>,
4248       // <init>, or a static method. In all those cases, there was an initialization
4249       // barrier on the holder klass passed.
4250       if (accessing_method->is_static_initializer() ||
4251           accessing_method->is_object_initializer() ||
4252           accessing_method->is_static()) {
4253         return false;
4254       }
4255     } else if (accessing_method->holder()->is_subclass_of(holder)) {
4256       // Access from a subclass. The barrier can be elided only when access happens in <clinit>.
4257       // In case of <init> or a static method, the barrier is on the subclass is not enough:
4258       // child class can become fully initialized while its parent class is still being initialized.
4259       if (accessing_method->is_static_initializer()) {
4260         return false;
4261       }
4262     }
4263     ciMethod* root = method(); // the root method of compilation
4264     if (root != accessing_method) {
4265       return needs_clinit_barrier(holder, root); // check access in the context of compilation root
4266     }
4267   }
4268   return true;
4269 }
4270 
4271 #ifndef PRODUCT
4272 //------------------------------verify_bidirectional_edges---------------------
4273 // For each input edge to a node (ie - for each Use-Def edge), verify that
4274 // there is a corresponding Def-Use edge.
4275 void Compile::verify_bidirectional_edges(Unique_Node_List &visited) {
4276   // Allocate stack of size C->live_nodes()/16 to avoid frequent realloc
4277   uint stack_size = live_nodes() >> 4;
4278   Node_List nstack(MAX2(stack_size, (uint)OptoNodeListSize));
4279   nstack.push(_root);
4280 
4281   while (nstack.size() > 0) {
4282     Node* n = nstack.pop();
4283     if (visited.member(n)) {
4284       continue;
4285     }
4286     visited.push(n);
4287 
4288     // Walk over all input edges, checking for correspondence
4289     uint length = n->len();
4290     for (uint i = 0; i < length; i++) {
4291       Node* in = n->in(i);
4292       if (in != nullptr && !visited.member(in)) {
4293         nstack.push(in); // Put it on stack
4294       }
4295       if (in != nullptr && !in->is_top()) {
4296         // Count instances of `next`
4297         int cnt = 0;
4298         for (uint idx = 0; idx < in->_outcnt; idx++) {
4299           if (in->_out[idx] == n) {
4300             cnt++;
4301           }
4302         }
4303         assert(cnt > 0, "Failed to find Def-Use edge.");
4304         // Check for duplicate edges
4305         // walk the input array downcounting the input edges to n
4306         for (uint j = 0; j < length; j++) {
4307           if (n->in(j) == in) {
4308             cnt--;
4309           }
4310         }
4311         assert(cnt == 0, "Mismatched edge count.");
4312       } else if (in == nullptr) {
4313         assert(i == 0 || i >= n->req() ||
4314                n->is_Region() || n->is_Phi() || n->is_ArrayCopy() ||
4315                (n->is_Unlock() && i == (n->req() - 1)) ||
4316                (n->is_MemBar() && i == 5), // the precedence edge to a membar can be removed during macro node expansion
4317               "only region, phi, arraycopy, unlock or membar nodes have null data edges");
4318       } else {
4319         assert(in->is_top(), "sanity");
4320         // Nothing to check.
4321       }
4322     }
4323   }
4324 }
4325 
4326 //------------------------------verify_graph_edges---------------------------
4327 // Walk the Graph and verify that there is a one-to-one correspondence
4328 // between Use-Def edges and Def-Use edges in the graph.
4329 void Compile::verify_graph_edges(bool no_dead_code) {
4330   if (VerifyGraphEdges) {
4331     Unique_Node_List visited;
4332 
4333     // Call graph walk to check edges
4334     verify_bidirectional_edges(visited);
4335     if (no_dead_code) {
4336       // Now make sure that no visited node is used by an unvisited node.
4337       bool dead_nodes = false;
4338       Unique_Node_List checked;
4339       while (visited.size() > 0) {
4340         Node* n = visited.pop();
4341         checked.push(n);
4342         for (uint i = 0; i < n->outcnt(); i++) {
4343           Node* use = n->raw_out(i);
4344           if (checked.member(use))  continue;  // already checked
4345           if (visited.member(use))  continue;  // already in the graph
4346           if (use->is_Con())        continue;  // a dead ConNode is OK
4347           // At this point, we have found a dead node which is DU-reachable.
4348           if (!dead_nodes) {
4349             tty->print_cr("*** Dead nodes reachable via DU edges:");
4350             dead_nodes = true;
4351           }
4352           use->dump(2);
4353           tty->print_cr("---");
4354           checked.push(use);  // No repeats; pretend it is now checked.
4355         }
4356       }
4357       assert(!dead_nodes, "using nodes must be reachable from root");
4358     }
4359   }
4360 }
4361 #endif
4362 
4363 // The Compile object keeps track of failure reasons separately from the ciEnv.
4364 // This is required because there is not quite a 1-1 relation between the
4365 // ciEnv and its compilation task and the Compile object.  Note that one
4366 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
4367 // to backtrack and retry without subsuming loads.  Other than this backtracking
4368 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
4369 // by the logic in C2Compiler.
4370 void Compile::record_failure(const char* reason) {
4371   if (log() != nullptr) {
4372     log()->elem("failure reason='%s' phase='compile'", reason);
4373   }
4374   if (_failure_reason.get() == nullptr) {
4375     // Record the first failure reason.
4376     _failure_reason.set(reason);
4377     if (CaptureBailoutInformation) {
4378       _first_failure_details = new CompilationFailureInfo(reason);
4379     }
4380   }
4381 
4382   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
4383     C->print_method(PHASE_FAILURE, 1);
4384   }
4385   _root = nullptr;  // flush the graph, too
4386 }
4387 
4388 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator)
4389   : TraceTime(name, accumulator, CITime, CITimeVerbose),
4390     _compile(Compile::current()),
4391     _log(nullptr),
4392     _phase_name(name),
4393     _dolog(CITimeVerbose)
4394 {
4395   assert(_compile != nullptr, "sanity check");
4396   if (_dolog) {
4397     _log = _compile->log();
4398   }
4399   if (_log != nullptr) {
4400     _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, _compile->unique(), _compile->live_nodes());
4401     _log->stamp();
4402     _log->end_head();
4403   }
4404 }
4405 
4406 Compile::TracePhase::~TracePhase() {
4407   if (_compile->failing()) return;
4408 #ifdef ASSERT
4409   if (PrintIdealNodeCount) {
4410     tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
4411                   _phase_name, _compile->unique(), _compile->live_nodes(), _compile->count_live_nodes_by_graph_walk());
4412   }
4413 
4414   if (VerifyIdealNodeCount) {
4415     _compile->print_missing_nodes();
4416   }
4417 #endif
4418 
4419   if (_log != nullptr) {
4420     _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, _compile->unique(), _compile->live_nodes());
4421   }
4422 }
4423 
4424 //----------------------------static_subtype_check-----------------------------
4425 // Shortcut important common cases when superklass is exact:
4426 // (0) superklass is java.lang.Object (can occur in reflective code)
4427 // (1) subklass is already limited to a subtype of superklass => always ok
4428 // (2) subklass does not overlap with superklass => always fail
4429 // (3) superklass has NO subtypes and we can check with a simple compare.
4430 Compile::SubTypeCheckResult Compile::static_subtype_check(const TypeKlassPtr* superk, const TypeKlassPtr* subk, bool skip) {
4431   if (skip) {
4432     return SSC_full_test;       // Let caller generate the general case.
4433   }
4434 
4435   if (subk->is_java_subtype_of(superk)) {
4436     return SSC_always_true; // (0) and (1)  this test cannot fail
4437   }
4438 
4439   if (!subk->maybe_java_subtype_of(superk)) {
4440     return SSC_always_false; // (2) true path dead; no dynamic test needed
4441   }
4442 
4443   const Type* superelem = superk;
4444   if (superk->isa_aryklassptr()) {
4445     int ignored;
4446     superelem = superk->is_aryklassptr()->base_element_type(ignored);
4447   }
4448 
4449   if (superelem->isa_instklassptr()) {
4450     ciInstanceKlass* ik = superelem->is_instklassptr()->instance_klass();
4451     if (!ik->has_subklass()) {
4452       if (!ik->is_final()) {
4453         // Add a dependency if there is a chance of a later subclass.
4454         dependencies()->assert_leaf_type(ik);
4455       }
4456       if (!superk->maybe_java_subtype_of(subk)) {
4457         return SSC_always_false;
4458       }
4459       return SSC_easy_test;     // (3) caller can do a simple ptr comparison
4460     }
4461   } else {
4462     // A primitive array type has no subtypes.
4463     return SSC_easy_test;       // (3) caller can do a simple ptr comparison
4464   }
4465 
4466   return SSC_full_test;
4467 }
4468 
4469 Node* Compile::conv_I2X_index(PhaseGVN* phase, Node* idx, const TypeInt* sizetype, Node* ctrl) {
4470 #ifdef _LP64
4471   // The scaled index operand to AddP must be a clean 64-bit value.
4472   // Java allows a 32-bit int to be incremented to a negative
4473   // value, which appears in a 64-bit register as a large
4474   // positive number.  Using that large positive number as an
4475   // operand in pointer arithmetic has bad consequences.
4476   // On the other hand, 32-bit overflow is rare, and the possibility
4477   // can often be excluded, if we annotate the ConvI2L node with
4478   // a type assertion that its value is known to be a small positive
4479   // number.  (The prior range check has ensured this.)
4480   // This assertion is used by ConvI2LNode::Ideal.
4481   int index_max = max_jint - 1;  // array size is max_jint, index is one less
4482   if (sizetype != nullptr) index_max = sizetype->_hi - 1;
4483   const TypeInt* iidxtype = TypeInt::make(0, index_max, Type::WidenMax);
4484   idx = constrained_convI2L(phase, idx, iidxtype, ctrl);
4485 #endif
4486   return idx;
4487 }
4488 
4489 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check)
4490 Node* Compile::constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl, bool carry_dependency) {
4491   if (ctrl != nullptr) {
4492     // Express control dependency by a CastII node with a narrow type.
4493     // Make the CastII node dependent on the control input to prevent the narrowed ConvI2L
4494     // node from floating above the range check during loop optimizations. Otherwise, the
4495     // ConvI2L node may be eliminated independently of the range check, causing the data path
4496     // to become TOP while the control path is still there (although it's unreachable).
4497     value = new CastIINode(ctrl, value, itype, carry_dependency ? ConstraintCastNode::StrongDependency : ConstraintCastNode::RegularDependency, true /* range check dependency */);
4498     value = phase->transform(value);
4499   }
4500   const TypeLong* ltype = TypeLong::make(itype->_lo, itype->_hi, itype->_widen);
4501   return phase->transform(new ConvI2LNode(value, ltype));
4502 }
4503 
4504 // The message about the current inlining is accumulated in
4505 // _print_inlining_stream and transferred into the _print_inlining_list
4506 // once we know whether inlining succeeds or not. For regular
4507 // inlining, messages are appended to the buffer pointed by
4508 // _print_inlining_idx in the _print_inlining_list. For late inlining,
4509 // a new buffer is added after _print_inlining_idx in the list. This
4510 // way we can update the inlining message for late inlining call site
4511 // when the inlining is attempted again.
4512 void Compile::print_inlining_init() {
4513   if (print_inlining() || print_intrinsics()) {
4514     // print_inlining_init is actually called several times.
4515     print_inlining_reset();
4516     _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer*>(comp_arena(), 1, 1, new PrintInliningBuffer());
4517   }
4518 }
4519 
4520 void Compile::print_inlining_reinit() {
4521   if (print_inlining() || print_intrinsics()) {
4522     print_inlining_reset();
4523   }
4524 }
4525 
4526 void Compile::print_inlining_reset() {
4527   _print_inlining_stream->reset();
4528 }
4529 
4530 void Compile::print_inlining_commit() {
4531   assert(print_inlining() || print_intrinsics(), "PrintInlining off?");
4532   // Transfer the message from _print_inlining_stream to the current
4533   // _print_inlining_list buffer and clear _print_inlining_stream.
4534   _print_inlining_list->at(_print_inlining_idx)->ss()->write(_print_inlining_stream->base(), _print_inlining_stream->size());
4535   print_inlining_reset();
4536 }
4537 
4538 void Compile::print_inlining_push() {
4539   // Add new buffer to the _print_inlining_list at current position
4540   _print_inlining_idx++;
4541   _print_inlining_list->insert_before(_print_inlining_idx, new PrintInliningBuffer());
4542 }
4543 
4544 Compile::PrintInliningBuffer* Compile::print_inlining_current() {
4545   return _print_inlining_list->at(_print_inlining_idx);
4546 }
4547 
4548 void Compile::print_inlining_update(CallGenerator* cg) {
4549   if (print_inlining() || print_intrinsics()) {
4550     if (cg->is_late_inline()) {
4551       if (print_inlining_current()->cg() != cg &&
4552           (print_inlining_current()->cg() != nullptr ||
4553            print_inlining_current()->ss()->size() != 0)) {
4554         print_inlining_push();
4555       }
4556       print_inlining_commit();
4557       print_inlining_current()->set_cg(cg);
4558     } else {
4559       if (print_inlining_current()->cg() != nullptr) {
4560         print_inlining_push();
4561       }
4562       print_inlining_commit();
4563     }
4564   }
4565 }
4566 
4567 void Compile::print_inlining_move_to(CallGenerator* cg) {
4568   // We resume inlining at a late inlining call site. Locate the
4569   // corresponding inlining buffer so that we can update it.
4570   if (print_inlining() || print_intrinsics()) {
4571     for (int i = 0; i < _print_inlining_list->length(); i++) {
4572       if (_print_inlining_list->at(i)->cg() == cg) {
4573         _print_inlining_idx = i;
4574         return;
4575       }
4576     }
4577     ShouldNotReachHere();
4578   }
4579 }
4580 
4581 void Compile::print_inlining_update_delayed(CallGenerator* cg) {
4582   if (print_inlining() || print_intrinsics()) {
4583     assert(_print_inlining_stream->size() > 0, "missing inlining msg");
4584     assert(print_inlining_current()->cg() == cg, "wrong entry");
4585     // replace message with new message
4586     _print_inlining_list->at_put(_print_inlining_idx, new PrintInliningBuffer());
4587     print_inlining_commit();
4588     print_inlining_current()->set_cg(cg);
4589   }
4590 }
4591 
4592 void Compile::print_inlining_assert_ready() {
4593   assert(!_print_inlining || _print_inlining_stream->size() == 0, "losing data");
4594 }
4595 
4596 void Compile::process_print_inlining() {
4597   assert(_late_inlines.length() == 0, "not drained yet");
4598   if (print_inlining() || print_intrinsics()) {
4599     ResourceMark rm;
4600     stringStream ss;
4601     assert(_print_inlining_list != nullptr, "process_print_inlining should be called only once.");
4602     for (int i = 0; i < _print_inlining_list->length(); i++) {
4603       PrintInliningBuffer* pib = _print_inlining_list->at(i);
4604       ss.print("%s", pib->ss()->freeze());
4605       delete pib;
4606       DEBUG_ONLY(_print_inlining_list->at_put(i, nullptr));
4607     }
4608     // Reset _print_inlining_list, it only contains destructed objects.
4609     // It is on the arena, so it will be freed when the arena is reset.
4610     _print_inlining_list = nullptr;
4611     // _print_inlining_stream won't be used anymore, either.
4612     print_inlining_reset();
4613     size_t end = ss.size();
4614     _print_inlining_output = NEW_ARENA_ARRAY(comp_arena(), char, end+1);
4615     strncpy(_print_inlining_output, ss.freeze(), end+1);
4616     _print_inlining_output[end] = 0;
4617   }
4618 }
4619 
4620 void Compile::dump_print_inlining() {
4621   if (_print_inlining_output != nullptr) {
4622     tty->print_raw(_print_inlining_output);
4623   }
4624 }
4625 
4626 void Compile::log_late_inline(CallGenerator* cg) {
4627   if (log() != nullptr) {
4628     log()->head("late_inline method='%d'  inline_id='" JLONG_FORMAT "'", log()->identify(cg->method()),
4629                 cg->unique_id());
4630     JVMState* p = cg->call_node()->jvms();
4631     while (p != nullptr) {
4632       log()->elem("jvms bci='%d' method='%d'", p->bci(), log()->identify(p->method()));
4633       p = p->caller();
4634     }
4635     log()->tail("late_inline");
4636   }
4637 }
4638 
4639 void Compile::log_late_inline_failure(CallGenerator* cg, const char* msg) {
4640   log_late_inline(cg);
4641   if (log() != nullptr) {
4642     log()->inline_fail(msg);
4643   }
4644 }
4645 
4646 void Compile::log_inline_id(CallGenerator* cg) {
4647   if (log() != nullptr) {
4648     // The LogCompilation tool needs a unique way to identify late
4649     // inline call sites. This id must be unique for this call site in
4650     // this compilation. Try to have it unique across compilations as
4651     // well because it can be convenient when grepping through the log
4652     // file.
4653     // Distinguish OSR compilations from others in case CICountOSR is
4654     // on.
4655     jlong id = ((jlong)unique()) + (((jlong)compile_id()) << 33) + (CICountOSR && is_osr_compilation() ? ((jlong)1) << 32 : 0);
4656     cg->set_unique_id(id);
4657     log()->elem("inline_id id='" JLONG_FORMAT "'", id);
4658   }
4659 }
4660 
4661 void Compile::log_inline_failure(const char* msg) {
4662   if (C->log() != nullptr) {
4663     C->log()->inline_fail(msg);
4664   }
4665 }
4666 
4667 
4668 // Dump inlining replay data to the stream.
4669 // Don't change thread state and acquire any locks.
4670 void Compile::dump_inline_data(outputStream* out) {
4671   InlineTree* inl_tree = ilt();
4672   if (inl_tree != nullptr) {
4673     out->print(" inline %d", inl_tree->count());
4674     inl_tree->dump_replay_data(out);
4675   }
4676 }
4677 
4678 void Compile::dump_inline_data_reduced(outputStream* out) {
4679   assert(ReplayReduce, "");
4680 
4681   InlineTree* inl_tree = ilt();
4682   if (inl_tree == nullptr) {
4683     return;
4684   }
4685   // Enable iterative replay file reduction
4686   // Output "compile" lines for depth 1 subtrees,
4687   // simulating that those trees were compiled
4688   // instead of inlined.
4689   for (int i = 0; i < inl_tree->subtrees().length(); ++i) {
4690     InlineTree* sub = inl_tree->subtrees().at(i);
4691     if (sub->inline_level() != 1) {
4692       continue;
4693     }
4694 
4695     ciMethod* method = sub->method();
4696     int entry_bci = -1;
4697     int comp_level = env()->task()->comp_level();
4698     out->print("compile ");
4699     method->dump_name_as_ascii(out);
4700     out->print(" %d %d", entry_bci, comp_level);
4701     out->print(" inline %d", sub->count());
4702     sub->dump_replay_data(out, -1);
4703     out->cr();
4704   }
4705 }
4706 
4707 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
4708   if (n1->Opcode() < n2->Opcode())      return -1;
4709   else if (n1->Opcode() > n2->Opcode()) return 1;
4710 
4711   assert(n1->req() == n2->req(), "can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req());
4712   for (uint i = 1; i < n1->req(); i++) {
4713     if (n1->in(i) < n2->in(i))      return -1;
4714     else if (n1->in(i) > n2->in(i)) return 1;
4715   }
4716 
4717   return 0;
4718 }
4719 
4720 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
4721   Node* n1 = *n1p;
4722   Node* n2 = *n2p;
4723 
4724   return cmp_expensive_nodes(n1, n2);
4725 }
4726 
4727 void Compile::sort_expensive_nodes() {
4728   if (!expensive_nodes_sorted()) {
4729     _expensive_nodes.sort(cmp_expensive_nodes);
4730   }
4731 }
4732 
4733 bool Compile::expensive_nodes_sorted() const {
4734   for (int i = 1; i < _expensive_nodes.length(); i++) {
4735     if (cmp_expensive_nodes(_expensive_nodes.adr_at(i), _expensive_nodes.adr_at(i-1)) < 0) {
4736       return false;
4737     }
4738   }
4739   return true;
4740 }
4741 
4742 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
4743   if (_expensive_nodes.length() == 0) {
4744     return false;
4745   }
4746 
4747   assert(OptimizeExpensiveOps, "optimization off?");
4748 
4749   // Take this opportunity to remove dead nodes from the list
4750   int j = 0;
4751   for (int i = 0; i < _expensive_nodes.length(); i++) {
4752     Node* n = _expensive_nodes.at(i);
4753     if (!n->is_unreachable(igvn)) {
4754       assert(n->is_expensive(), "should be expensive");
4755       _expensive_nodes.at_put(j, n);
4756       j++;
4757     }
4758   }
4759   _expensive_nodes.trunc_to(j);
4760 
4761   // Then sort the list so that similar nodes are next to each other
4762   // and check for at least two nodes of identical kind with same data
4763   // inputs.
4764   sort_expensive_nodes();
4765 
4766   for (int i = 0; i < _expensive_nodes.length()-1; i++) {
4767     if (cmp_expensive_nodes(_expensive_nodes.adr_at(i), _expensive_nodes.adr_at(i+1)) == 0) {
4768       return true;
4769     }
4770   }
4771 
4772   return false;
4773 }
4774 
4775 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
4776   if (_expensive_nodes.length() == 0) {
4777     return;
4778   }
4779 
4780   assert(OptimizeExpensiveOps, "optimization off?");
4781 
4782   // Sort to bring similar nodes next to each other and clear the
4783   // control input of nodes for which there's only a single copy.
4784   sort_expensive_nodes();
4785 
4786   int j = 0;
4787   int identical = 0;
4788   int i = 0;
4789   bool modified = false;
4790   for (; i < _expensive_nodes.length()-1; i++) {
4791     assert(j <= i, "can't write beyond current index");
4792     if (_expensive_nodes.at(i)->Opcode() == _expensive_nodes.at(i+1)->Opcode()) {
4793       identical++;
4794       _expensive_nodes.at_put(j++, _expensive_nodes.at(i));
4795       continue;
4796     }
4797     if (identical > 0) {
4798       _expensive_nodes.at_put(j++, _expensive_nodes.at(i));
4799       identical = 0;
4800     } else {
4801       Node* n = _expensive_nodes.at(i);
4802       igvn.replace_input_of(n, 0, nullptr);
4803       igvn.hash_insert(n);
4804       modified = true;
4805     }
4806   }
4807   if (identical > 0) {
4808     _expensive_nodes.at_put(j++, _expensive_nodes.at(i));
4809   } else if (_expensive_nodes.length() >= 1) {
4810     Node* n = _expensive_nodes.at(i);
4811     igvn.replace_input_of(n, 0, nullptr);
4812     igvn.hash_insert(n);
4813     modified = true;
4814   }
4815   _expensive_nodes.trunc_to(j);
4816   if (modified) {
4817     igvn.optimize();
4818   }
4819 }
4820 
4821 void Compile::add_expensive_node(Node * n) {
4822   assert(!_expensive_nodes.contains(n), "duplicate entry in expensive list");
4823   assert(n->is_expensive(), "expensive nodes with non-null control here only");
4824   assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
4825   if (OptimizeExpensiveOps) {
4826     _expensive_nodes.append(n);
4827   } else {
4828     // Clear control input and let IGVN optimize expensive nodes if
4829     // OptimizeExpensiveOps is off.
4830     n->set_req(0, nullptr);
4831   }
4832 }
4833 
4834 /**
4835  * Track coarsened Lock and Unlock nodes.
4836  */
4837 
4838 class Lock_List : public Node_List {
4839   uint _origin_cnt;
4840 public:
4841   Lock_List(Arena *a, uint cnt) : Node_List(a), _origin_cnt(cnt) {}
4842   uint origin_cnt() const { return _origin_cnt; }
4843 };
4844 
4845 void Compile::add_coarsened_locks(GrowableArray<AbstractLockNode*>& locks) {
4846   int length = locks.length();
4847   if (length > 0) {
4848     // Have to keep this list until locks elimination during Macro nodes elimination.
4849     Lock_List* locks_list = new (comp_arena()) Lock_List(comp_arena(), length);
4850     AbstractLockNode* alock = locks.at(0);
4851     BoxLockNode* box = alock->box_node()->as_BoxLock();
4852     for (int i = 0; i < length; i++) {
4853       AbstractLockNode* lock = locks.at(i);
4854       assert(lock->is_coarsened(), "expecting only coarsened AbstractLock nodes, but got '%s'[%d] node", lock->Name(), lock->_idx);
4855       locks_list->push(lock);
4856       BoxLockNode* this_box = lock->box_node()->as_BoxLock();
4857       if (this_box != box) {
4858         // Locking regions (BoxLock) could be Unbalanced here:
4859         //  - its coarsened locks were eliminated in earlier
4860         //    macro nodes elimination followed by loop unroll
4861         //  - it is OSR locking region (no Lock node)
4862         // Preserve Unbalanced status in such cases.
4863         if (!this_box->is_unbalanced()) {
4864           this_box->set_coarsened();
4865         }
4866         if (!box->is_unbalanced()) {
4867           box->set_coarsened();
4868         }
4869       }
4870     }
4871     _coarsened_locks.append(locks_list);
4872   }
4873 }
4874 
4875 void Compile::remove_useless_coarsened_locks(Unique_Node_List& useful) {
4876   int count = coarsened_count();
4877   for (int i = 0; i < count; i++) {
4878     Node_List* locks_list = _coarsened_locks.at(i);
4879     for (uint j = 0; j < locks_list->size(); j++) {
4880       Node* lock = locks_list->at(j);
4881       assert(lock->is_AbstractLock(), "sanity");
4882       if (!useful.member(lock)) {
4883         locks_list->yank(lock);
4884       }
4885     }
4886   }
4887 }
4888 
4889 void Compile::remove_coarsened_lock(Node* n) {
4890   if (n->is_AbstractLock()) {
4891     int count = coarsened_count();
4892     for (int i = 0; i < count; i++) {
4893       Node_List* locks_list = _coarsened_locks.at(i);
4894       locks_list->yank(n);
4895     }
4896   }
4897 }
4898 
4899 bool Compile::coarsened_locks_consistent() {
4900   int count = coarsened_count();
4901   for (int i = 0; i < count; i++) {
4902     bool unbalanced = false;
4903     bool modified = false; // track locks kind modifications
4904     Lock_List* locks_list = (Lock_List*)_coarsened_locks.at(i);
4905     uint size = locks_list->size();
4906     if (size == 0) {
4907       unbalanced = false; // All locks were eliminated - good
4908     } else if (size != locks_list->origin_cnt()) {
4909       unbalanced = true; // Some locks were removed from list
4910     } else {
4911       for (uint j = 0; j < size; j++) {
4912         Node* lock = locks_list->at(j);
4913         // All nodes in group should have the same state (modified or not)
4914         if (!lock->as_AbstractLock()->is_coarsened()) {
4915           if (j == 0) {
4916             // first on list was modified, the rest should be too for consistency
4917             modified = true;
4918           } else if (!modified) {
4919             // this lock was modified but previous locks on the list were not
4920             unbalanced = true;
4921             break;
4922           }
4923         } else if (modified) {
4924           // previous locks on list were modified but not this lock
4925           unbalanced = true;
4926           break;
4927         }
4928       }
4929     }
4930     if (unbalanced) {
4931       // unbalanced monitor enter/exit - only some [un]lock nodes were removed or modified
4932 #ifdef ASSERT
4933       if (PrintEliminateLocks) {
4934         tty->print_cr("=== unbalanced coarsened locks ===");
4935         for (uint l = 0; l < size; l++) {
4936           locks_list->at(l)->dump();
4937         }
4938       }
4939 #endif
4940       record_failure(C2Compiler::retry_no_locks_coarsening());
4941       return false;
4942     }
4943   }
4944   return true;
4945 }
4946 
4947 // Mark locking regions (identified by BoxLockNode) as unbalanced if
4948 // locks coarsening optimization removed Lock/Unlock nodes from them.
4949 // Such regions become unbalanced because coarsening only removes part
4950 // of Lock/Unlock nodes in region. As result we can't execute other
4951 // locks elimination optimizations which assume all code paths have
4952 // corresponding pair of Lock/Unlock nodes - they are balanced.
4953 void Compile::mark_unbalanced_boxes() const {
4954   int count = coarsened_count();
4955   for (int i = 0; i < count; i++) {
4956     Node_List* locks_list = _coarsened_locks.at(i);
4957     uint size = locks_list->size();
4958     if (size > 0) {
4959       AbstractLockNode* alock = locks_list->at(0)->as_AbstractLock();
4960       BoxLockNode* box = alock->box_node()->as_BoxLock();
4961       if (alock->is_coarsened()) {
4962         // coarsened_locks_consistent(), which is called before this method, verifies
4963         // that the rest of Lock/Unlock nodes on locks_list are also coarsened.
4964         assert(!box->is_eliminated(), "regions with coarsened locks should not be marked as eliminated");
4965         for (uint j = 1; j < size; j++) {
4966           assert(locks_list->at(j)->as_AbstractLock()->is_coarsened(), "only coarsened locks are expected here");
4967           BoxLockNode* this_box = locks_list->at(j)->as_AbstractLock()->box_node()->as_BoxLock();
4968           if (box != this_box) {
4969             assert(!this_box->is_eliminated(), "regions with coarsened locks should not be marked as eliminated");
4970             box->set_unbalanced();
4971             this_box->set_unbalanced();
4972           }
4973         }
4974       }
4975     }
4976   }
4977 }
4978 
4979 /**
4980  * Remove the speculative part of types and clean up the graph
4981  */
4982 void Compile::remove_speculative_types(PhaseIterGVN &igvn) {
4983   if (UseTypeSpeculation) {
4984     Unique_Node_List worklist;
4985     worklist.push(root());
4986     int modified = 0;
4987     // Go over all type nodes that carry a speculative type, drop the
4988     // speculative part of the type and enqueue the node for an igvn
4989     // which may optimize it out.
4990     for (uint next = 0; next < worklist.size(); ++next) {
4991       Node *n  = worklist.at(next);
4992       if (n->is_Type()) {
4993         TypeNode* tn = n->as_Type();
4994         const Type* t = tn->type();
4995         const Type* t_no_spec = t->remove_speculative();
4996         if (t_no_spec != t) {
4997           bool in_hash = igvn.hash_delete(n);
4998           assert(in_hash || n->hash() == Node::NO_HASH, "node should be in igvn hash table");
4999           tn->set_type(t_no_spec);
5000           igvn.hash_insert(n);
5001           igvn._worklist.push(n); // give it a chance to go away
5002           modified++;
5003         }
5004       }
5005       // Iterate over outs - endless loops is unreachable from below
5006       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
5007         Node *m = n->fast_out(i);
5008         if (not_a_node(m)) {
5009           continue;
5010         }
5011         worklist.push(m);
5012       }
5013     }
5014     // Drop the speculative part of all types in the igvn's type table
5015     igvn.remove_speculative_types();
5016     if (modified > 0) {
5017       igvn.optimize();
5018       if (failing())  return;
5019     }
5020 #ifdef ASSERT
5021     // Verify that after the IGVN is over no speculative type has resurfaced
5022     worklist.clear();
5023     worklist.push(root());
5024     for (uint next = 0; next < worklist.size(); ++next) {
5025       Node *n  = worklist.at(next);
5026       const Type* t = igvn.type_or_null(n);
5027       assert((t == nullptr) || (t == t->remove_speculative()), "no more speculative types");
5028       if (n->is_Type()) {
5029         t = n->as_Type()->type();
5030         assert(t == t->remove_speculative(), "no more speculative types");
5031       }
5032       // Iterate over outs - endless loops is unreachable from below
5033       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
5034         Node *m = n->fast_out(i);
5035         if (not_a_node(m)) {
5036           continue;
5037         }
5038         worklist.push(m);
5039       }
5040     }
5041     igvn.check_no_speculative_types();
5042 #endif
5043   }
5044 }
5045 
5046 // Auxiliary methods to support randomized stressing/fuzzing.
5047 
5048 void Compile::initialize_stress_seed(const DirectiveSet* directive) {
5049   if (FLAG_IS_DEFAULT(StressSeed) || (FLAG_IS_ERGO(StressSeed) && directive->RepeatCompilationOption)) {
5050     _stress_seed = static_cast<uint>(Ticks::now().nanoseconds());
5051     FLAG_SET_ERGO(StressSeed, _stress_seed);
5052   } else {
5053     _stress_seed = StressSeed;
5054   }
5055   if (_log != nullptr) {
5056     _log->elem("stress_test seed='%u'", _stress_seed);
5057   }
5058 }
5059 
5060 int Compile::random() {
5061   _stress_seed = os::next_random(_stress_seed);
5062   return static_cast<int>(_stress_seed);
5063 }
5064 
5065 // This method can be called the arbitrary number of times, with current count
5066 // as the argument. The logic allows selecting a single candidate from the
5067 // running list of candidates as follows:
5068 //    int count = 0;
5069 //    Cand* selected = null;
5070 //    while(cand = cand->next()) {
5071 //      if (randomized_select(++count)) {
5072 //        selected = cand;
5073 //      }
5074 //    }
5075 //
5076 // Including count equalizes the chances any candidate is "selected".
5077 // This is useful when we don't have the complete list of candidates to choose
5078 // from uniformly. In this case, we need to adjust the randomicity of the
5079 // selection, or else we will end up biasing the selection towards the latter
5080 // candidates.
5081 //
5082 // Quick back-envelope calculation shows that for the list of n candidates
5083 // the equal probability for the candidate to persist as "best" can be
5084 // achieved by replacing it with "next" k-th candidate with the probability
5085 // of 1/k. It can be easily shown that by the end of the run, the
5086 // probability for any candidate is converged to 1/n, thus giving the
5087 // uniform distribution among all the candidates.
5088 //
5089 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
5090 #define RANDOMIZED_DOMAIN_POW 29
5091 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
5092 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
5093 bool Compile::randomized_select(int count) {
5094   assert(count > 0, "only positive");
5095   return (random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);
5096 }
5097 
5098 CloneMap&     Compile::clone_map()                 { return _clone_map; }
5099 void          Compile::set_clone_map(Dict* d)      { _clone_map._dict = d; }
5100 
5101 void NodeCloneInfo::dump_on(outputStream* st) const {
5102   st->print(" {%d:%d} ", idx(), gen());
5103 }
5104 
5105 void CloneMap::clone(Node* old, Node* nnn, int gen) {
5106   uint64_t val = value(old->_idx);
5107   NodeCloneInfo cio(val);
5108   assert(val != 0, "old node should be in the map");
5109   NodeCloneInfo cin(cio.idx(), gen + cio.gen());
5110   insert(nnn->_idx, cin.get());
5111 #ifndef PRODUCT
5112   if (is_debug()) {
5113     tty->print_cr("CloneMap::clone inserted node %d info {%d:%d} into CloneMap", nnn->_idx, cin.idx(), cin.gen());
5114   }
5115 #endif
5116 }
5117 
5118 void CloneMap::verify_insert_and_clone(Node* old, Node* nnn, int gen) {
5119   NodeCloneInfo cio(value(old->_idx));
5120   if (cio.get() == 0) {
5121     cio.set(old->_idx, 0);
5122     insert(old->_idx, cio.get());
5123 #ifndef PRODUCT
5124     if (is_debug()) {
5125       tty->print_cr("CloneMap::verify_insert_and_clone inserted node %d info {%d:%d} into CloneMap", old->_idx, cio.idx(), cio.gen());
5126     }
5127 #endif
5128   }
5129   clone(old, nnn, gen);
5130 }
5131 
5132 int CloneMap::max_gen() const {
5133   int g = 0;
5134   DictI di(_dict);
5135   for(; di.test(); ++di) {
5136     int t = gen(di._key);
5137     if (g < t) {
5138       g = t;
5139 #ifndef PRODUCT
5140       if (is_debug()) {
5141         tty->print_cr("CloneMap::max_gen() update max=%d from %d", g, _2_node_idx_t(di._key));
5142       }
5143 #endif
5144     }
5145   }
5146   return g;
5147 }
5148 
5149 void CloneMap::dump(node_idx_t key, outputStream* st) const {
5150   uint64_t val = value(key);
5151   if (val != 0) {
5152     NodeCloneInfo ni(val);
5153     ni.dump_on(st);
5154   }
5155 }
5156 
5157 void Compile::shuffle_macro_nodes() {
5158   if (_macro_nodes.length() < 2) {
5159     return;
5160   }
5161   for (uint i = _macro_nodes.length() - 1; i >= 1; i--) {
5162     uint j = C->random() % (i + 1);
5163     swap(_macro_nodes.at(i), _macro_nodes.at(j));
5164   }
5165 }
5166 
5167 // Move Allocate nodes to the start of the list
5168 void Compile::sort_macro_nodes() {
5169   int count = macro_count();
5170   int allocates = 0;
5171   for (int i = 0; i < count; i++) {
5172     Node* n = macro_node(i);
5173     if (n->is_Allocate()) {
5174       if (i != allocates) {
5175         Node* tmp = macro_node(allocates);
5176         _macro_nodes.at_put(allocates, n);
5177         _macro_nodes.at_put(i, tmp);
5178       }
5179       allocates++;
5180     }
5181   }
5182 }
5183 
5184 void Compile::print_method(CompilerPhaseType cpt, int level, Node* n) {
5185   if (failing()) { return; }
5186   EventCompilerPhase event(UNTIMED);
5187   if (event.should_commit()) {
5188     CompilerEvent::PhaseEvent::post(event, C->_latest_stage_start_counter, cpt, C->_compile_id, level);
5189   }
5190 #ifndef PRODUCT
5191   ResourceMark rm;
5192   stringStream ss;
5193   ss.print_raw(CompilerPhaseTypeHelper::to_description(cpt));
5194   int iter = ++_igv_phase_iter[cpt];
5195   if (iter > 1) {
5196     ss.print(" %d", iter);
5197   }
5198   if (n != nullptr) {
5199     ss.print(": %d %s ", n->_idx, NodeClassNames[n->Opcode()]);
5200   }
5201 
5202   const char* name = ss.as_string();
5203   if (should_print_igv(level)) {
5204     _igv_printer->print_method(name, level);
5205   }
5206   if (should_print_phase(cpt)) {
5207     print_ideal_ir(CompilerPhaseTypeHelper::to_name(cpt));
5208   }
5209 #endif
5210   C->_latest_stage_start_counter.stamp();
5211 }
5212 
5213 // Only used from CompileWrapper
5214 void Compile::begin_method() {
5215 #ifndef PRODUCT
5216   if (_method != nullptr && should_print_igv(1)) {
5217     _igv_printer->begin_method();
5218   }
5219 #endif
5220   C->_latest_stage_start_counter.stamp();
5221 }
5222 
5223 // Only used from CompileWrapper
5224 void Compile::end_method() {
5225   EventCompilerPhase event(UNTIMED);
5226   if (event.should_commit()) {
5227     CompilerEvent::PhaseEvent::post(event, C->_latest_stage_start_counter, PHASE_END, C->_compile_id, 1);
5228   }
5229 
5230 #ifndef PRODUCT
5231   if (_method != nullptr && should_print_igv(1)) {
5232     _igv_printer->end_method();
5233   }
5234 #endif
5235 }
5236 
5237 bool Compile::should_print_phase(CompilerPhaseType cpt) {
5238 #ifndef PRODUCT
5239   if (_directive->should_print_phase(cpt)) {
5240     return true;
5241   }
5242 #endif
5243   return false;
5244 }
5245 
5246 bool Compile::should_print_igv(const int level) {
5247 #ifndef PRODUCT
5248   if (PrintIdealGraphLevel < 0) { // disabled by the user
5249     return false;
5250   }
5251 
5252   bool need = directive()->IGVPrintLevelOption >= level;
5253   if (need && !_igv_printer) {
5254     _igv_printer = IdealGraphPrinter::printer();
5255     _igv_printer->set_compile(this);
5256   }
5257   return need;
5258 #else
5259   return false;
5260 #endif
5261 }
5262 
5263 #ifndef PRODUCT
5264 IdealGraphPrinter* Compile::_debug_file_printer = nullptr;
5265 IdealGraphPrinter* Compile::_debug_network_printer = nullptr;
5266 
5267 // Called from debugger. Prints method to the default file with the default phase name.
5268 // This works regardless of any Ideal Graph Visualizer flags set or not.
5269 void igv_print() {
5270   Compile::current()->igv_print_method_to_file();
5271 }
5272 
5273 // Same as igv_print() above but with a specified phase name.
5274 void igv_print(const char* phase_name) {
5275   Compile::current()->igv_print_method_to_file(phase_name);
5276 }
5277 
5278 // Called from debugger. Prints method with the default phase name to the default network or the one specified with
5279 // the network flags for the Ideal Graph Visualizer, or to the default file depending on the 'network' argument.
5280 // This works regardless of any Ideal Graph Visualizer flags set or not.
5281 void igv_print(bool network) {
5282   if (network) {
5283     Compile::current()->igv_print_method_to_network();
5284   } else {
5285     Compile::current()->igv_print_method_to_file();
5286   }
5287 }
5288 
5289 // Same as igv_print(bool network) above but with a specified phase name.
5290 void igv_print(bool network, const char* phase_name) {
5291   if (network) {
5292     Compile::current()->igv_print_method_to_network(phase_name);
5293   } else {
5294     Compile::current()->igv_print_method_to_file(phase_name);
5295   }
5296 }
5297 
5298 // Called from debugger. Normal write to the default _printer. Only works if Ideal Graph Visualizer printing flags are set.
5299 void igv_print_default() {
5300   Compile::current()->print_method(PHASE_DEBUG, 0);
5301 }
5302 
5303 // Called from debugger, especially when replaying a trace in which the program state cannot be altered like with rr replay.
5304 // A method is appended to an existing default file with the default phase name. This means that igv_append() must follow
5305 // an earlier igv_print(*) call which sets up the file. This works regardless of any Ideal Graph Visualizer flags set or not.
5306 void igv_append() {
5307   Compile::current()->igv_print_method_to_file("Debug", true);
5308 }
5309 
5310 // Same as igv_append() above but with a specified phase name.
5311 void igv_append(const char* phase_name) {
5312   Compile::current()->igv_print_method_to_file(phase_name, true);
5313 }
5314 
5315 void Compile::igv_print_method_to_file(const char* phase_name, bool append) {
5316   const char* file_name = "custom_debug.xml";
5317   if (_debug_file_printer == nullptr) {
5318     _debug_file_printer = new IdealGraphPrinter(C, file_name, append);
5319   } else {
5320     _debug_file_printer->update_compiled_method(C->method());
5321   }
5322   tty->print_cr("Method %s to %s", append ? "appended" : "printed", file_name);
5323   _debug_file_printer->print(phase_name, (Node*)C->root());
5324 }
5325 
5326 void Compile::igv_print_method_to_network(const char* phase_name) {
5327   if (_debug_network_printer == nullptr) {
5328     _debug_network_printer = new IdealGraphPrinter(C);
5329   } else {
5330     _debug_network_printer->update_compiled_method(C->method());
5331   }
5332   tty->print_cr("Method printed over network stream to IGV");
5333   _debug_network_printer->print(phase_name, (Node*)C->root());
5334 }
5335 #endif
5336 
5337 Node* Compile::narrow_value(BasicType bt, Node* value, const Type* type, PhaseGVN* phase, bool transform_res) {
5338   if (type != nullptr && phase->type(value)->higher_equal(type)) {
5339     return value;
5340   }
5341   Node* result = nullptr;
5342   if (bt == T_BYTE) {
5343     result = phase->transform(new LShiftINode(value, phase->intcon(24)));
5344     result = new RShiftINode(result, phase->intcon(24));
5345   } else if (bt == T_BOOLEAN) {
5346     result = new AndINode(value, phase->intcon(0xFF));
5347   } else if (bt == T_CHAR) {
5348     result = new AndINode(value,phase->intcon(0xFFFF));
5349   } else {
5350     assert(bt == T_SHORT, "unexpected narrow type");
5351     result = phase->transform(new LShiftINode(value, phase->intcon(16)));
5352     result = new RShiftINode(result, phase->intcon(16));
5353   }
5354   if (transform_res) {
5355     result = phase->transform(result);
5356   }
5357   return result;
5358 }
5359 
5360 void Compile::record_method_not_compilable_oom() {
5361   record_method_not_compilable(CompilationMemoryStatistic::failure_reason_memlimit());
5362 }