1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "asm/macroAssembler.hpp" 26 #include "asm/macroAssembler.inline.hpp" 27 #include "ci/ciReplay.hpp" 28 #include "classfile/javaClasses.hpp" 29 #include "code/aotCodeCache.hpp" 30 #include "code/exceptionHandlerTable.hpp" 31 #include "code/nmethod.hpp" 32 #include "compiler/compilationFailureInfo.hpp" 33 #include "compiler/compilationMemoryStatistic.hpp" 34 #include "compiler/compileBroker.hpp" 35 #include "compiler/compileLog.hpp" 36 #include "compiler/compilerDefinitions.hpp" 37 #include "compiler/compilerOracle.hpp" 38 #include "compiler/compiler_globals.hpp" 39 #include "compiler/disassembler.hpp" 40 #include "compiler/oopMap.hpp" 41 #include "gc/shared/barrierSet.hpp" 42 #include "gc/shared/c2/barrierSetC2.hpp" 43 #include "jfr/jfrEvents.hpp" 44 #include "jvm_io.h" 45 #include "memory/allocation.hpp" 46 #include "memory/arena.hpp" 47 #include "memory/resourceArea.hpp" 48 #include "opto/addnode.hpp" 49 #include "opto/block.hpp" 50 #include "opto/c2compiler.hpp" 51 #include "opto/callGenerator.hpp" 52 #include "opto/callnode.hpp" 53 #include "opto/castnode.hpp" 54 #include "opto/cfgnode.hpp" 55 #include "opto/chaitin.hpp" 56 #include "opto/compile.hpp" 57 #include "opto/connode.hpp" 58 #include "opto/convertnode.hpp" 59 #include "opto/divnode.hpp" 60 #include "opto/escape.hpp" 61 #include "opto/idealGraphPrinter.hpp" 62 #include "opto/locknode.hpp" 63 #include "opto/loopnode.hpp" 64 #include "opto/machnode.hpp" 65 #include "opto/macro.hpp" 66 #include "opto/matcher.hpp" 67 #include "opto/mathexactnode.hpp" 68 #include "opto/memnode.hpp" 69 #include "opto/mulnode.hpp" 70 #include "opto/narrowptrnode.hpp" 71 #include "opto/node.hpp" 72 #include "opto/opaquenode.hpp" 73 #include "opto/opcodes.hpp" 74 #include "opto/output.hpp" 75 #include "opto/parse.hpp" 76 #include "opto/phaseX.hpp" 77 #include "opto/rootnode.hpp" 78 #include "opto/runtime.hpp" 79 #include "opto/stringopts.hpp" 80 #include "opto/type.hpp" 81 #include "opto/vector.hpp" 82 #include "opto/vectornode.hpp" 83 #include "runtime/globals_extension.hpp" 84 #include "runtime/sharedRuntime.hpp" 85 #include "runtime/signature.hpp" 86 #include "runtime/stubRoutines.hpp" 87 #include "runtime/timer.hpp" 88 #include "utilities/align.hpp" 89 #include "utilities/copy.hpp" 90 #include "utilities/macros.hpp" 91 #include "utilities/resourceHash.hpp" 92 93 // -------------------- Compile::mach_constant_base_node ----------------------- 94 // Constant table base node singleton. 95 MachConstantBaseNode* Compile::mach_constant_base_node() { 96 if (_mach_constant_base_node == nullptr) { 97 _mach_constant_base_node = new MachConstantBaseNode(); 98 _mach_constant_base_node->add_req(C->root()); 99 } 100 return _mach_constant_base_node; 101 } 102 103 104 /// Support for intrinsics. 105 106 // Return the index at which m must be inserted (or already exists). 107 // The sort order is by the address of the ciMethod, with is_virtual as minor key. 108 class IntrinsicDescPair { 109 private: 110 ciMethod* _m; 111 bool _is_virtual; 112 public: 113 IntrinsicDescPair(ciMethod* m, bool is_virtual) : _m(m), _is_virtual(is_virtual) {} 114 static int compare(IntrinsicDescPair* const& key, CallGenerator* const& elt) { 115 ciMethod* m= elt->method(); 116 ciMethod* key_m = key->_m; 117 if (key_m < m) return -1; 118 else if (key_m > m) return 1; 119 else { 120 bool is_virtual = elt->is_virtual(); 121 bool key_virtual = key->_is_virtual; 122 if (key_virtual < is_virtual) return -1; 123 else if (key_virtual > is_virtual) return 1; 124 else return 0; 125 } 126 } 127 }; 128 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found) { 129 #ifdef ASSERT 130 for (int i = 1; i < _intrinsics.length(); i++) { 131 CallGenerator* cg1 = _intrinsics.at(i-1); 132 CallGenerator* cg2 = _intrinsics.at(i); 133 assert(cg1->method() != cg2->method() 134 ? cg1->method() < cg2->method() 135 : cg1->is_virtual() < cg2->is_virtual(), 136 "compiler intrinsics list must stay sorted"); 137 } 138 #endif 139 IntrinsicDescPair pair(m, is_virtual); 140 return _intrinsics.find_sorted<IntrinsicDescPair*, IntrinsicDescPair::compare>(&pair, found); 141 } 142 143 void Compile::register_intrinsic(CallGenerator* cg) { 144 bool found = false; 145 int index = intrinsic_insertion_index(cg->method(), cg->is_virtual(), found); 146 assert(!found, "registering twice"); 147 _intrinsics.insert_before(index, cg); 148 assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked"); 149 } 150 151 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) { 152 assert(m->is_loaded(), "don't try this on unloaded methods"); 153 if (_intrinsics.length() > 0) { 154 bool found = false; 155 int index = intrinsic_insertion_index(m, is_virtual, found); 156 if (found) { 157 return _intrinsics.at(index); 158 } 159 } 160 // Lazily create intrinsics for intrinsic IDs well-known in the runtime. 161 if (m->intrinsic_id() != vmIntrinsics::_none && 162 m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) { 163 CallGenerator* cg = make_vm_intrinsic(m, is_virtual); 164 if (cg != nullptr) { 165 // Save it for next time: 166 register_intrinsic(cg); 167 return cg; 168 } else { 169 gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled); 170 } 171 } 172 return nullptr; 173 } 174 175 // Compile::make_vm_intrinsic is defined in library_call.cpp. 176 177 #ifndef PRODUCT 178 // statistics gathering... 179 180 juint Compile::_intrinsic_hist_count[vmIntrinsics::number_of_intrinsics()] = {0}; 181 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::number_of_intrinsics()] = {0}; 182 183 inline int as_int(vmIntrinsics::ID id) { 184 return vmIntrinsics::as_int(id); 185 } 186 187 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) { 188 assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob"); 189 int oflags = _intrinsic_hist_flags[as_int(id)]; 190 assert(flags != 0, "what happened?"); 191 if (is_virtual) { 192 flags |= _intrinsic_virtual; 193 } 194 bool changed = (flags != oflags); 195 if ((flags & _intrinsic_worked) != 0) { 196 juint count = (_intrinsic_hist_count[as_int(id)] += 1); 197 if (count == 1) { 198 changed = true; // first time 199 } 200 // increment the overall count also: 201 _intrinsic_hist_count[as_int(vmIntrinsics::_none)] += 1; 202 } 203 if (changed) { 204 if (((oflags ^ flags) & _intrinsic_virtual) != 0) { 205 // Something changed about the intrinsic's virtuality. 206 if ((flags & _intrinsic_virtual) != 0) { 207 // This is the first use of this intrinsic as a virtual call. 208 if (oflags != 0) { 209 // We already saw it as a non-virtual, so note both cases. 210 flags |= _intrinsic_both; 211 } 212 } else if ((oflags & _intrinsic_both) == 0) { 213 // This is the first use of this intrinsic as a non-virtual 214 flags |= _intrinsic_both; 215 } 216 } 217 _intrinsic_hist_flags[as_int(id)] = (jubyte) (oflags | flags); 218 } 219 // update the overall flags also: 220 _intrinsic_hist_flags[as_int(vmIntrinsics::_none)] |= (jubyte) flags; 221 return changed; 222 } 223 224 static char* format_flags(int flags, char* buf) { 225 buf[0] = 0; 226 if ((flags & Compile::_intrinsic_worked) != 0) strcat(buf, ",worked"); 227 if ((flags & Compile::_intrinsic_failed) != 0) strcat(buf, ",failed"); 228 if ((flags & Compile::_intrinsic_disabled) != 0) strcat(buf, ",disabled"); 229 if ((flags & Compile::_intrinsic_virtual) != 0) strcat(buf, ",virtual"); 230 if ((flags & Compile::_intrinsic_both) != 0) strcat(buf, ",nonvirtual"); 231 if (buf[0] == 0) strcat(buf, ","); 232 assert(buf[0] == ',', "must be"); 233 return &buf[1]; 234 } 235 236 void Compile::print_intrinsic_statistics() { 237 char flagsbuf[100]; 238 ttyLocker ttyl; 239 if (xtty != nullptr) xtty->head("statistics type='intrinsic'"); 240 tty->print_cr("Compiler intrinsic usage:"); 241 juint total = _intrinsic_hist_count[as_int(vmIntrinsics::_none)]; 242 if (total == 0) total = 1; // avoid div0 in case of no successes 243 #define PRINT_STAT_LINE(name, c, f) \ 244 tty->print_cr(" %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f); 245 for (auto id : EnumRange<vmIntrinsicID>{}) { 246 int flags = _intrinsic_hist_flags[as_int(id)]; 247 juint count = _intrinsic_hist_count[as_int(id)]; 248 if ((flags | count) != 0) { 249 PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf)); 250 } 251 } 252 PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[as_int(vmIntrinsics::_none)], flagsbuf)); 253 if (xtty != nullptr) xtty->tail("statistics"); 254 } 255 256 void Compile::print_statistics() { 257 { ttyLocker ttyl; 258 if (xtty != nullptr) xtty->head("statistics type='opto'"); 259 Parse::print_statistics(); 260 PhaseStringOpts::print_statistics(); 261 PhaseCCP::print_statistics(); 262 PhaseRegAlloc::print_statistics(); 263 PhaseOutput::print_statistics(); 264 PhasePeephole::print_statistics(); 265 PhaseIdealLoop::print_statistics(); 266 ConnectionGraph::print_statistics(); 267 PhaseMacroExpand::print_statistics(); 268 if (xtty != nullptr) xtty->tail("statistics"); 269 } 270 if (_intrinsic_hist_flags[as_int(vmIntrinsics::_none)] != 0) { 271 // put this under its own <statistics> element. 272 print_intrinsic_statistics(); 273 } 274 } 275 #endif //PRODUCT 276 277 void Compile::gvn_replace_by(Node* n, Node* nn) { 278 for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) { 279 Node* use = n->last_out(i); 280 bool is_in_table = initial_gvn()->hash_delete(use); 281 uint uses_found = 0; 282 for (uint j = 0; j < use->len(); j++) { 283 if (use->in(j) == n) { 284 if (j < use->req()) 285 use->set_req(j, nn); 286 else 287 use->set_prec(j, nn); 288 uses_found++; 289 } 290 } 291 if (is_in_table) { 292 // reinsert into table 293 initial_gvn()->hash_find_insert(use); 294 } 295 record_for_igvn(use); 296 PhaseIterGVN::add_users_of_use_to_worklist(nn, use, *_igvn_worklist); 297 i -= uses_found; // we deleted 1 or more copies of this edge 298 } 299 } 300 301 302 // Identify all nodes that are reachable from below, useful. 303 // Use breadth-first pass that records state in a Unique_Node_List, 304 // recursive traversal is slower. 305 void Compile::identify_useful_nodes(Unique_Node_List &useful) { 306 int estimated_worklist_size = live_nodes(); 307 useful.map( estimated_worklist_size, nullptr ); // preallocate space 308 309 // Initialize worklist 310 if (root() != nullptr) { useful.push(root()); } 311 // If 'top' is cached, declare it useful to preserve cached node 312 if (cached_top_node()) { useful.push(cached_top_node()); } 313 314 // Push all useful nodes onto the list, breadthfirst 315 for( uint next = 0; next < useful.size(); ++next ) { 316 assert( next < unique(), "Unique useful nodes < total nodes"); 317 Node *n = useful.at(next); 318 uint max = n->len(); 319 for( uint i = 0; i < max; ++i ) { 320 Node *m = n->in(i); 321 if (not_a_node(m)) continue; 322 useful.push(m); 323 } 324 } 325 } 326 327 // Update dead_node_list with any missing dead nodes using useful 328 // list. Consider all non-useful nodes to be useless i.e., dead nodes. 329 void Compile::update_dead_node_list(Unique_Node_List &useful) { 330 uint max_idx = unique(); 331 VectorSet& useful_node_set = useful.member_set(); 332 333 for (uint node_idx = 0; node_idx < max_idx; node_idx++) { 334 // If node with index node_idx is not in useful set, 335 // mark it as dead in dead node list. 336 if (!useful_node_set.test(node_idx)) { 337 record_dead_node(node_idx); 338 } 339 } 340 } 341 342 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) { 343 int shift = 0; 344 for (int i = 0; i < inlines->length(); i++) { 345 CallGenerator* cg = inlines->at(i); 346 if (useful.member(cg->call_node())) { 347 if (shift > 0) { 348 inlines->at_put(i - shift, cg); 349 } 350 } else { 351 shift++; // skip over the dead element 352 } 353 } 354 if (shift > 0) { 355 inlines->trunc_to(inlines->length() - shift); // remove last elements from compacted array 356 } 357 } 358 359 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Node* dead) { 360 assert(dead != nullptr && dead->is_Call(), "sanity"); 361 int found = 0; 362 for (int i = 0; i < inlines->length(); i++) { 363 if (inlines->at(i)->call_node() == dead) { 364 inlines->remove_at(i); 365 found++; 366 NOT_DEBUG( break; ) // elements are unique, so exit early 367 } 368 } 369 assert(found <= 1, "not unique"); 370 } 371 372 template<typename N, ENABLE_IF_SDEFN(std::is_base_of<Node, N>::value)> 373 void Compile::remove_useless_nodes(GrowableArray<N*>& node_list, Unique_Node_List& useful) { 374 for (int i = node_list.length() - 1; i >= 0; i--) { 375 N* node = node_list.at(i); 376 if (!useful.member(node)) { 377 node_list.delete_at(i); // replaces i-th with last element which is known to be useful (already processed) 378 } 379 } 380 } 381 382 void Compile::remove_useless_node(Node* dead) { 383 remove_modified_node(dead); 384 385 // Constant node that has no out-edges and has only one in-edge from 386 // root is usually dead. However, sometimes reshaping walk makes 387 // it reachable by adding use edges. So, we will NOT count Con nodes 388 // as dead to be conservative about the dead node count at any 389 // given time. 390 if (!dead->is_Con()) { 391 record_dead_node(dead->_idx); 392 } 393 if (dead->is_macro()) { 394 remove_macro_node(dead); 395 } 396 if (dead->is_expensive()) { 397 remove_expensive_node(dead); 398 } 399 if (dead->is_OpaqueTemplateAssertionPredicate()) { 400 remove_template_assertion_predicate_opaque(dead->as_OpaqueTemplateAssertionPredicate()); 401 } 402 if (dead->is_ParsePredicate()) { 403 remove_parse_predicate(dead->as_ParsePredicate()); 404 } 405 if (dead->for_post_loop_opts_igvn()) { 406 remove_from_post_loop_opts_igvn(dead); 407 } 408 if (dead->for_merge_stores_igvn()) { 409 remove_from_merge_stores_igvn(dead); 410 } 411 if (dead->is_Call()) { 412 remove_useless_late_inlines( &_late_inlines, dead); 413 remove_useless_late_inlines( &_string_late_inlines, dead); 414 remove_useless_late_inlines( &_boxing_late_inlines, dead); 415 remove_useless_late_inlines(&_vector_reboxing_late_inlines, dead); 416 417 if (dead->is_CallStaticJava()) { 418 remove_unstable_if_trap(dead->as_CallStaticJava(), false); 419 } 420 } 421 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 422 bs->unregister_potential_barrier_node(dead); 423 } 424 425 // Disconnect all useless nodes by disconnecting those at the boundary. 426 void Compile::disconnect_useless_nodes(Unique_Node_List& useful, Unique_Node_List& worklist, const Unique_Node_List* root_and_safepoints) { 427 uint next = 0; 428 while (next < useful.size()) { 429 Node *n = useful.at(next++); 430 if (n->is_SafePoint()) { 431 // We're done with a parsing phase. Replaced nodes are not valid 432 // beyond that point. 433 n->as_SafePoint()->delete_replaced_nodes(); 434 } 435 // Use raw traversal of out edges since this code removes out edges 436 int max = n->outcnt(); 437 for (int j = 0; j < max; ++j) { 438 Node* child = n->raw_out(j); 439 if (!useful.member(child)) { 440 assert(!child->is_top() || child != top(), 441 "If top is cached in Compile object it is in useful list"); 442 // Only need to remove this out-edge to the useless node 443 n->raw_del_out(j); 444 --j; 445 --max; 446 if (child->is_data_proj_of_pure_function(n)) { 447 worklist.push(n); 448 } 449 } 450 } 451 if (n->outcnt() == 1 && n->has_special_unique_user()) { 452 assert(useful.member(n->unique_out()), "do not push a useless node"); 453 worklist.push(n->unique_out()); 454 } 455 } 456 457 remove_useless_nodes(_macro_nodes, useful); // remove useless macro nodes 458 remove_useless_nodes(_parse_predicates, useful); // remove useless Parse Predicate nodes 459 // Remove useless Template Assertion Predicate opaque nodes 460 remove_useless_nodes(_template_assertion_predicate_opaques, useful); 461 remove_useless_nodes(_expensive_nodes, useful); // remove useless expensive nodes 462 remove_useless_nodes(_for_post_loop_igvn, useful); // remove useless node recorded for post loop opts IGVN pass 463 remove_useless_nodes(_for_merge_stores_igvn, useful); // remove useless node recorded for merge stores IGVN pass 464 remove_useless_unstable_if_traps(useful); // remove useless unstable_if traps 465 remove_useless_coarsened_locks(useful); // remove useless coarsened locks nodes 466 #ifdef ASSERT 467 if (_modified_nodes != nullptr) { 468 _modified_nodes->remove_useless_nodes(useful.member_set()); 469 } 470 #endif 471 472 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 473 bs->eliminate_useless_gc_barriers(useful, this); 474 // clean up the late inline lists 475 remove_useless_late_inlines( &_late_inlines, useful); 476 remove_useless_late_inlines( &_string_late_inlines, useful); 477 remove_useless_late_inlines( &_boxing_late_inlines, useful); 478 remove_useless_late_inlines(&_vector_reboxing_late_inlines, useful); 479 DEBUG_ONLY(verify_graph_edges(true /*check for no_dead_code*/, root_and_safepoints);) 480 } 481 482 // ============================================================================ 483 //------------------------------CompileWrapper--------------------------------- 484 class CompileWrapper : public StackObj { 485 Compile *const _compile; 486 public: 487 CompileWrapper(Compile* compile); 488 489 ~CompileWrapper(); 490 }; 491 492 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) { 493 // the Compile* pointer is stored in the current ciEnv: 494 ciEnv* env = compile->env(); 495 assert(env == ciEnv::current(), "must already be a ciEnv active"); 496 assert(env->compiler_data() == nullptr, "compile already active?"); 497 env->set_compiler_data(compile); 498 assert(compile == Compile::current(), "sanity"); 499 500 compile->set_type_dict(nullptr); 501 compile->set_clone_map(new Dict(cmpkey, hashkey, _compile->comp_arena())); 502 compile->clone_map().set_clone_idx(0); 503 compile->set_type_last_size(0); 504 compile->set_last_tf(nullptr, nullptr); 505 compile->set_indexSet_arena(nullptr); 506 compile->set_indexSet_free_block_list(nullptr); 507 compile->init_type_arena(); 508 Type::Initialize(compile); 509 _compile->begin_method(); 510 _compile->clone_map().set_debug(_compile->has_method() && _compile->directive()->CloneMapDebugOption); 511 } 512 CompileWrapper::~CompileWrapper() { 513 // simulate crash during compilation 514 assert(CICrashAt < 0 || _compile->compile_id() != CICrashAt, "just as planned"); 515 516 _compile->end_method(); 517 _compile->env()->set_compiler_data(nullptr); 518 } 519 520 521 //----------------------------print_compile_messages--------------------------- 522 void Compile::print_compile_messages() { 523 #ifndef PRODUCT 524 // Check if recompiling 525 if (!subsume_loads() && PrintOpto) { 526 // Recompiling without allowing machine instructions to subsume loads 527 tty->print_cr("*********************************************************"); 528 tty->print_cr("** Bailout: Recompile without subsuming loads **"); 529 tty->print_cr("*********************************************************"); 530 } 531 if ((do_escape_analysis() != DoEscapeAnalysis) && PrintOpto) { 532 // Recompiling without escape analysis 533 tty->print_cr("*********************************************************"); 534 tty->print_cr("** Bailout: Recompile without escape analysis **"); 535 tty->print_cr("*********************************************************"); 536 } 537 if (do_iterative_escape_analysis() != DoEscapeAnalysis && PrintOpto) { 538 // Recompiling without iterative escape analysis 539 tty->print_cr("*********************************************************"); 540 tty->print_cr("** Bailout: Recompile without iterative escape analysis**"); 541 tty->print_cr("*********************************************************"); 542 } 543 if (do_reduce_allocation_merges() != ReduceAllocationMerges && PrintOpto) { 544 // Recompiling without reducing allocation merges 545 tty->print_cr("*********************************************************"); 546 tty->print_cr("** Bailout: Recompile without reduce allocation merges **"); 547 tty->print_cr("*********************************************************"); 548 } 549 if ((eliminate_boxing() != EliminateAutoBox) && PrintOpto) { 550 // Recompiling without boxing elimination 551 tty->print_cr("*********************************************************"); 552 tty->print_cr("** Bailout: Recompile without boxing elimination **"); 553 tty->print_cr("*********************************************************"); 554 } 555 if ((do_locks_coarsening() != EliminateLocks) && PrintOpto) { 556 // Recompiling without locks coarsening 557 tty->print_cr("*********************************************************"); 558 tty->print_cr("** Bailout: Recompile without locks coarsening **"); 559 tty->print_cr("*********************************************************"); 560 } 561 if (env()->break_at_compile()) { 562 // Open the debugger when compiling this method. 563 tty->print("### Breaking when compiling: "); 564 method()->print_short_name(); 565 tty->cr(); 566 BREAKPOINT; 567 } 568 569 if( PrintOpto ) { 570 if (is_osr_compilation()) { 571 tty->print("[OSR]%3d", _compile_id); 572 } else { 573 tty->print("%3d", _compile_id); 574 } 575 } 576 #endif 577 } 578 579 #ifndef PRODUCT 580 void Compile::print_phase(const char* phase_name) { 581 tty->print_cr("%u.\t%s", ++_phase_counter, phase_name); 582 } 583 584 void Compile::print_ideal_ir(const char* phase_name) { 585 // keep the following output all in one block 586 // This output goes directly to the tty, not the compiler log. 587 // To enable tools to match it up with the compilation activity, 588 // be sure to tag this tty output with the compile ID. 589 590 // Node dumping can cause a safepoint, which can break the tty lock. 591 // Buffer all node dumps, so that all safepoints happen before we lock. 592 ResourceMark rm; 593 stringStream ss; 594 595 if (_output == nullptr) { 596 ss.print_cr("AFTER: %s", phase_name); 597 // Print out all nodes in ascending order of index. 598 root()->dump_bfs(MaxNodeLimit, nullptr, "+S$", &ss); 599 } else { 600 // Dump the node blockwise if we have a scheduling 601 _output->print_scheduling(&ss); 602 } 603 604 // Check that the lock is not broken by a safepoint. 605 NoSafepointVerifier nsv; 606 ttyLocker ttyl; 607 if (xtty != nullptr) { 608 xtty->head("ideal compile_id='%d'%s compile_phase='%s'", 609 compile_id(), 610 is_osr_compilation() ? " compile_kind='osr'" : "", 611 phase_name); 612 } 613 614 tty->print("%s", ss.as_string()); 615 616 if (xtty != nullptr) { 617 xtty->tail("ideal"); 618 } 619 } 620 #endif 621 622 // ============================================================================ 623 //------------------------------Compile standard------------------------------- 624 625 // Compile a method. entry_bci is -1 for normal compilations and indicates 626 // the continuation bci for on stack replacement. 627 628 629 Compile::Compile(ciEnv* ci_env, ciMethod* target, int osr_bci, 630 Options options, DirectiveSet* directive) 631 : Phase(Compiler), 632 _compile_id(ci_env->compile_id()), 633 _options(options), 634 _method(target), 635 _entry_bci(osr_bci), 636 _ilt(nullptr), 637 _stub_function(nullptr), 638 _stub_name(nullptr), 639 _stub_id(-1), 640 _stub_entry_point(nullptr), 641 _max_node_limit(MaxNodeLimit), 642 _post_loop_opts_phase(false), 643 _merge_stores_phase(false), 644 _allow_macro_nodes(true), 645 _inlining_progress(false), 646 _inlining_incrementally(false), 647 _do_cleanup(false), 648 _has_reserved_stack_access(target->has_reserved_stack_access()), 649 #ifndef PRODUCT 650 _igv_idx(0), 651 _trace_opto_output(directive->TraceOptoOutputOption), 652 #endif 653 _has_method_handle_invokes(false), 654 _clinit_barrier_on_entry(false), 655 _has_clinit_barriers(false), 656 _stress_seed(0), 657 _comp_arena(mtCompiler, Arena::Tag::tag_comp), 658 _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())), 659 _env(ci_env), 660 _directive(directive), 661 _log(ci_env->log()), 662 _first_failure_details(nullptr), 663 _intrinsics(comp_arena(), 0, 0, nullptr), 664 _macro_nodes(comp_arena(), 8, 0, nullptr), 665 _parse_predicates(comp_arena(), 8, 0, nullptr), 666 _template_assertion_predicate_opaques(comp_arena(), 8, 0, nullptr), 667 _expensive_nodes(comp_arena(), 8, 0, nullptr), 668 _for_post_loop_igvn(comp_arena(), 8, 0, nullptr), 669 _for_merge_stores_igvn(comp_arena(), 8, 0, nullptr), 670 _unstable_if_traps(comp_arena(), 8, 0, nullptr), 671 _coarsened_locks(comp_arena(), 8, 0, nullptr), 672 _congraph(nullptr), 673 NOT_PRODUCT(_igv_printer(nullptr) COMMA) 674 _unique(0), 675 _dead_node_count(0), 676 _dead_node_list(comp_arena()), 677 _node_arena_one(mtCompiler, Arena::Tag::tag_node), 678 _node_arena_two(mtCompiler, Arena::Tag::tag_node), 679 _node_arena(&_node_arena_one), 680 _mach_constant_base_node(nullptr), 681 _Compile_types(mtCompiler, Arena::Tag::tag_type), 682 _initial_gvn(nullptr), 683 _igvn_worklist(nullptr), 684 _types(nullptr), 685 _node_hash(nullptr), 686 _late_inlines(comp_arena(), 2, 0, nullptr), 687 _string_late_inlines(comp_arena(), 2, 0, nullptr), 688 _boxing_late_inlines(comp_arena(), 2, 0, nullptr), 689 _vector_reboxing_late_inlines(comp_arena(), 2, 0, nullptr), 690 _late_inlines_pos(0), 691 _number_of_mh_late_inlines(0), 692 _oom(false), 693 _replay_inline_data(nullptr), 694 _inline_printer(this), 695 _java_calls(0), 696 _inner_loops(0), 697 _interpreter_frame_size(0), 698 _output(nullptr) 699 #ifndef PRODUCT 700 , 701 _in_dump_cnt(0) 702 #endif 703 { 704 C = this; 705 CompileWrapper cw(this); 706 707 TraceTime t1("Total compilation time", &_t_totalCompilation, CITime, CITimeVerbose); 708 TraceTime t2(nullptr, &_t_methodCompilation, CITime, false); 709 710 #if defined(SUPPORT_ASSEMBLY) || defined(SUPPORT_ABSTRACT_ASSEMBLY) 711 bool print_opto_assembly = directive->PrintOptoAssemblyOption; 712 // We can always print a disassembly, either abstract (hex dump) or 713 // with the help of a suitable hsdis library. Thus, we should not 714 // couple print_assembly and print_opto_assembly controls. 715 // But: always print opto and regular assembly on compile command 'print'. 716 bool print_assembly = directive->PrintAssemblyOption; 717 set_print_assembly(print_opto_assembly || print_assembly); 718 #else 719 set_print_assembly(false); // must initialize. 720 #endif 721 722 #ifndef PRODUCT 723 set_parsed_irreducible_loop(false); 724 #endif 725 726 if (directive->ReplayInlineOption) { 727 _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level()); 728 } 729 set_print_inlining(directive->PrintInliningOption || PrintOptoInlining); 730 set_print_intrinsics(directive->PrintIntrinsicsOption); 731 set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it 732 733 if (ProfileTraps) { 734 // Make sure the method being compiled gets its own MDO, 735 // so we can at least track the decompile_count(). 736 method()->ensure_method_data(); 737 } 738 739 if (StressLCM || StressGCM || StressIGVN || StressCCP || 740 StressIncrementalInlining || StressMacroExpansion || StressUnstableIfTraps || StressBailout || 741 StressLoopPeeling) { 742 initialize_stress_seed(directive); 743 } 744 745 Init(/*do_aliasing=*/ true); 746 747 print_compile_messages(); 748 749 _ilt = InlineTree::build_inline_tree_root(); 750 751 // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice 752 assert(num_alias_types() >= AliasIdxRaw, ""); 753 754 #define MINIMUM_NODE_HASH 1023 755 756 // GVN that will be run immediately on new nodes 757 uint estimated_size = method()->code_size()*4+64; 758 estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size); 759 _igvn_worklist = new (comp_arena()) Unique_Node_List(comp_arena()); 760 _types = new (comp_arena()) Type_Array(comp_arena()); 761 _node_hash = new (comp_arena()) NodeHash(comp_arena(), estimated_size); 762 PhaseGVN gvn; 763 set_initial_gvn(&gvn); 764 765 { // Scope for timing the parser 766 TracePhase tp(_t_parser); 767 768 // Put top into the hash table ASAP. 769 initial_gvn()->transform(top()); 770 771 // Set up tf(), start(), and find a CallGenerator. 772 CallGenerator* cg = nullptr; 773 if (is_osr_compilation()) { 774 const TypeTuple *domain = StartOSRNode::osr_domain(); 775 const TypeTuple *range = TypeTuple::make_range(method()->signature()); 776 init_tf(TypeFunc::make(domain, range)); 777 StartNode* s = new StartOSRNode(root(), domain); 778 initial_gvn()->set_type_bottom(s); 779 verify_start(s); 780 cg = CallGenerator::for_osr(method(), entry_bci()); 781 } else { 782 // Normal case. 783 init_tf(TypeFunc::make(method())); 784 StartNode* s = new StartNode(root(), tf()->domain()); 785 initial_gvn()->set_type_bottom(s); 786 verify_start(s); 787 if (method()->intrinsic_id() == vmIntrinsics::_Reference_get) { 788 // With java.lang.ref.reference.get() we must go through the 789 // intrinsic - even when get() is the root 790 // method of the compile - so that, if necessary, the value in 791 // the referent field of the reference object gets recorded by 792 // the pre-barrier code. 793 cg = find_intrinsic(method(), false); 794 } 795 if (cg == nullptr) { 796 float past_uses = method()->interpreter_invocation_count(); 797 float expected_uses = past_uses; 798 cg = CallGenerator::for_inline(method(), expected_uses); 799 } 800 } 801 if (failing()) return; 802 if (cg == nullptr) { 803 const char* reason = InlineTree::check_can_parse(method()); 804 assert(reason != nullptr, "expect reason for parse failure"); 805 stringStream ss; 806 ss.print("cannot parse method: %s", reason); 807 record_method_not_compilable(ss.as_string()); 808 return; 809 } 810 811 gvn.set_type(root(), root()->bottom_type()); 812 813 JVMState* jvms = build_start_state(start(), tf()); 814 if ((jvms = cg->generate(jvms)) == nullptr) { 815 assert(failure_reason() != nullptr, "expect reason for parse failure"); 816 stringStream ss; 817 ss.print("method parse failed: %s", failure_reason()); 818 record_method_not_compilable(ss.as_string() DEBUG_ONLY(COMMA true)); 819 return; 820 } 821 GraphKit kit(jvms); 822 823 if (!kit.stopped()) { 824 // Accept return values, and transfer control we know not where. 825 // This is done by a special, unique ReturnNode bound to root. 826 return_values(kit.jvms()); 827 } 828 829 if (kit.has_exceptions()) { 830 // Any exceptions that escape from this call must be rethrown 831 // to whatever caller is dynamically above us on the stack. 832 // This is done by a special, unique RethrowNode bound to root. 833 rethrow_exceptions(kit.transfer_exceptions_into_jvms()); 834 } 835 836 assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off"); 837 838 if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) { 839 inline_string_calls(true); 840 } 841 842 if (failing()) return; 843 844 // Remove clutter produced by parsing. 845 if (!failing()) { 846 ResourceMark rm; 847 PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist()); 848 } 849 } 850 851 // Note: Large methods are capped off in do_one_bytecode(). 852 if (failing()) return; 853 854 // After parsing, node notes are no longer automagic. 855 // They must be propagated by register_new_node_with_optimizer(), 856 // clone(), or the like. 857 set_default_node_notes(nullptr); 858 859 #ifndef PRODUCT 860 if (should_print_igv(1)) { 861 _igv_printer->print_inlining(); 862 } 863 #endif 864 865 if (failing()) return; 866 NOT_PRODUCT( verify_graph_edges(); ) 867 868 // Now optimize 869 Optimize(); 870 if (failing()) return; 871 NOT_PRODUCT( verify_graph_edges(); ) 872 873 #ifndef PRODUCT 874 if (should_print_ideal()) { 875 print_ideal_ir("print_ideal"); 876 } 877 #endif 878 879 #ifdef ASSERT 880 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 881 bs->verify_gc_barriers(this, BarrierSetC2::BeforeCodeGen); 882 #endif 883 884 // Dump compilation data to replay it. 885 if (directive->DumpReplayOption) { 886 env()->dump_replay_data(_compile_id); 887 } 888 if (directive->DumpInlineOption && (ilt() != nullptr)) { 889 env()->dump_inline_data(_compile_id); 890 } 891 892 // Now that we know the size of all the monitors we can add a fixed slot 893 // for the original deopt pc. 894 int next_slot = fixed_slots() + (sizeof(address) / VMRegImpl::stack_slot_size); 895 set_fixed_slots(next_slot); 896 897 // Compute when to use implicit null checks. Used by matching trap based 898 // nodes and NullCheck optimization. 899 set_allowed_deopt_reasons(); 900 901 // Now generate code 902 Code_Gen(); 903 } 904 905 //------------------------------Compile---------------------------------------- 906 // Compile a runtime stub 907 Compile::Compile(ciEnv* ci_env, 908 TypeFunc_generator generator, 909 address stub_function, 910 const char* stub_name, 911 int stub_id, 912 int is_fancy_jump, 913 bool pass_tls, 914 bool return_pc, 915 DirectiveSet* directive) 916 : Phase(Compiler), 917 _compile_id(0), 918 _options(Options::for_runtime_stub()), 919 _method(nullptr), 920 _entry_bci(InvocationEntryBci), 921 _stub_function(stub_function), 922 _stub_name(stub_name), 923 _stub_id(stub_id), 924 _stub_entry_point(nullptr), 925 _max_node_limit(MaxNodeLimit), 926 _post_loop_opts_phase(false), 927 _merge_stores_phase(false), 928 _allow_macro_nodes(true), 929 _inlining_progress(false), 930 _inlining_incrementally(false), 931 _has_reserved_stack_access(false), 932 #ifndef PRODUCT 933 _igv_idx(0), 934 _trace_opto_output(directive->TraceOptoOutputOption), 935 #endif 936 _has_method_handle_invokes(false), 937 _clinit_barrier_on_entry(false), 938 _has_clinit_barriers(false), 939 _stress_seed(0), 940 _comp_arena(mtCompiler, Arena::Tag::tag_comp), 941 _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())), 942 _env(ci_env), 943 _directive(directive), 944 _log(ci_env->log()), 945 _first_failure_details(nullptr), 946 _for_post_loop_igvn(comp_arena(), 8, 0, nullptr), 947 _for_merge_stores_igvn(comp_arena(), 8, 0, nullptr), 948 _congraph(nullptr), 949 NOT_PRODUCT(_igv_printer(nullptr) COMMA) 950 _unique(0), 951 _dead_node_count(0), 952 _dead_node_list(comp_arena()), 953 _node_arena_one(mtCompiler, Arena::Tag::tag_node), 954 _node_arena_two(mtCompiler, Arena::Tag::tag_node), 955 _node_arena(&_node_arena_one), 956 _mach_constant_base_node(nullptr), 957 _Compile_types(mtCompiler, Arena::Tag::tag_type), 958 _initial_gvn(nullptr), 959 _igvn_worklist(nullptr), 960 _types(nullptr), 961 _node_hash(nullptr), 962 _number_of_mh_late_inlines(0), 963 _oom(false), 964 _replay_inline_data(nullptr), 965 _inline_printer(this), 966 _java_calls(0), 967 _inner_loops(0), 968 _interpreter_frame_size(0), 969 _output(nullptr), 970 #ifndef PRODUCT 971 _in_dump_cnt(0), 972 #endif 973 _allowed_reasons(0) { 974 C = this; 975 976 // try to reuse an existing stub 977 { 978 CodeBlob* blob = AOTCodeCache::load_code_blob(AOTCodeEntry::C2Blob, _stub_id, stub_name); 979 if (blob != nullptr) { 980 RuntimeStub* rs = blob->as_runtime_stub(); 981 _stub_entry_point = rs->entry_point(); 982 return; 983 } 984 } 985 986 TraceTime t1(nullptr, &_t_totalCompilation, CITime, false); 987 TraceTime t2(nullptr, &_t_stubCompilation, CITime, false); 988 989 #ifndef PRODUCT 990 set_print_assembly(PrintFrameConverterAssembly); 991 set_parsed_irreducible_loop(false); 992 #else 993 set_print_assembly(false); // Must initialize. 994 #endif 995 set_has_irreducible_loop(false); // no loops 996 997 CompileWrapper cw(this); 998 Init(/*do_aliasing=*/ false); 999 init_tf((*generator)()); 1000 1001 _igvn_worklist = new (comp_arena()) Unique_Node_List(comp_arena()); 1002 _types = new (comp_arena()) Type_Array(comp_arena()); 1003 _node_hash = new (comp_arena()) NodeHash(comp_arena(), 255); 1004 1005 if (StressLCM || StressGCM || StressBailout) { 1006 initialize_stress_seed(directive); 1007 } 1008 1009 { 1010 PhaseGVN gvn; 1011 set_initial_gvn(&gvn); // not significant, but GraphKit guys use it pervasively 1012 gvn.transform(top()); 1013 1014 GraphKit kit; 1015 kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc); 1016 } 1017 1018 NOT_PRODUCT( verify_graph_edges(); ) 1019 1020 Code_Gen(); 1021 } 1022 1023 Compile::~Compile() { 1024 delete _first_failure_details; 1025 }; 1026 1027 //------------------------------Init------------------------------------------- 1028 // Prepare for a single compilation 1029 void Compile::Init(bool aliasing) { 1030 _do_aliasing = aliasing; 1031 _unique = 0; 1032 _regalloc = nullptr; 1033 1034 _tf = nullptr; // filled in later 1035 _top = nullptr; // cached later 1036 _matcher = nullptr; // filled in later 1037 _cfg = nullptr; // filled in later 1038 1039 _node_note_array = nullptr; 1040 _default_node_notes = nullptr; 1041 DEBUG_ONLY( _modified_nodes = nullptr; ) // Used in Optimize() 1042 1043 _immutable_memory = nullptr; // filled in at first inquiry 1044 1045 #ifdef ASSERT 1046 _phase_optimize_finished = false; 1047 _phase_verify_ideal_loop = false; 1048 _exception_backedge = false; 1049 _type_verify = nullptr; 1050 #endif 1051 1052 // Globally visible Nodes 1053 // First set TOP to null to give safe behavior during creation of RootNode 1054 set_cached_top_node(nullptr); 1055 set_root(new RootNode()); 1056 // Now that you have a Root to point to, create the real TOP 1057 set_cached_top_node( new ConNode(Type::TOP) ); 1058 set_recent_alloc(nullptr, nullptr); 1059 1060 // Create Debug Information Recorder to record scopes, oopmaps, etc. 1061 env()->set_oop_recorder(new OopRecorder(env()->arena())); 1062 env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder())); 1063 env()->set_dependencies(new Dependencies(env())); 1064 1065 _fixed_slots = 0; 1066 set_has_split_ifs(false); 1067 set_has_loops(false); // first approximation 1068 set_has_stringbuilder(false); 1069 set_has_boxed_value(false); 1070 _trap_can_recompile = false; // no traps emitted yet 1071 _major_progress = true; // start out assuming good things will happen 1072 set_has_unsafe_access(false); 1073 set_max_vector_size(0); 1074 set_clear_upper_avx(false); //false as default for clear upper bits of ymm registers 1075 Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist)); 1076 set_decompile_count(0); 1077 1078 #ifndef PRODUCT 1079 _phase_counter = 0; 1080 Copy::zero_to_bytes(_igv_phase_iter, sizeof(_igv_phase_iter)); 1081 #endif 1082 1083 set_do_freq_based_layout(_directive->BlockLayoutByFrequencyOption); 1084 _loop_opts_cnt = LoopOptsCount; 1085 set_do_inlining(Inline); 1086 set_max_inline_size(MaxInlineSize); 1087 set_freq_inline_size(FreqInlineSize); 1088 set_do_scheduling(OptoScheduling); 1089 1090 set_do_vector_loop(false); 1091 set_has_monitors(false); 1092 set_has_scoped_access(false); 1093 1094 if (AllowVectorizeOnDemand) { 1095 if (has_method() && _directive->VectorizeOption) { 1096 set_do_vector_loop(true); 1097 NOT_PRODUCT(if (do_vector_loop() && Verbose) {tty->print("Compile::Init: do vectorized loops (SIMD like) for method %s\n", method()->name()->as_quoted_ascii());}) 1098 } else if (has_method() && method()->name() != nullptr && 1099 method()->intrinsic_id() == vmIntrinsics::_forEachRemaining) { 1100 set_do_vector_loop(true); 1101 } 1102 } 1103 set_use_cmove(UseCMoveUnconditionally /* || do_vector_loop()*/); //TODO: consider do_vector_loop() mandate use_cmove unconditionally 1104 NOT_PRODUCT(if (use_cmove() && Verbose && has_method()) {tty->print("Compile::Init: use CMove without profitability tests for method %s\n", method()->name()->as_quoted_ascii());}) 1105 1106 _max_node_limit = _directive->MaxNodeLimitOption; 1107 1108 if (VM_Version::supports_fast_class_init_checks() && has_method() && !is_osr_compilation() && 1109 (method()->needs_clinit_barrier() || (do_clinit_barriers() && method()->is_static()))) { 1110 set_clinit_barrier_on_entry(true); 1111 if (do_clinit_barriers()) { 1112 set_has_clinit_barriers(true); // Entry clinit barrier is in prolog code. 1113 } 1114 } 1115 if (debug_info()->recording_non_safepoints()) { 1116 set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*> 1117 (comp_arena(), 8, 0, nullptr)); 1118 set_default_node_notes(Node_Notes::make(this)); 1119 } 1120 1121 const int grow_ats = 16; 1122 _max_alias_types = grow_ats; 1123 _alias_types = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats); 1124 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, grow_ats); 1125 Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats); 1126 { 1127 for (int i = 0; i < grow_ats; i++) _alias_types[i] = &ats[i]; 1128 } 1129 // Initialize the first few types. 1130 _alias_types[AliasIdxTop]->Init(AliasIdxTop, nullptr); 1131 _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM); 1132 _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM); 1133 _num_alias_types = AliasIdxRaw+1; 1134 // Zero out the alias type cache. 1135 Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache)); 1136 // A null adr_type hits in the cache right away. Preload the right answer. 1137 probe_alias_cache(nullptr)->_index = AliasIdxTop; 1138 } 1139 1140 #ifdef ASSERT 1141 // Verify that the current StartNode is valid. 1142 void Compile::verify_start(StartNode* s) const { 1143 assert(failing_internal() || s == start(), "should be StartNode"); 1144 } 1145 #endif 1146 1147 /** 1148 * Return the 'StartNode'. We must not have a pending failure, since the ideal graph 1149 * can be in an inconsistent state, i.e., we can get segmentation faults when traversing 1150 * the ideal graph. 1151 */ 1152 StartNode* Compile::start() const { 1153 assert (!failing_internal() || C->failure_is_artificial(), "Must not have pending failure. Reason is: %s", failure_reason()); 1154 for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) { 1155 Node* start = root()->fast_out(i); 1156 if (start->is_Start()) { 1157 return start->as_Start(); 1158 } 1159 } 1160 fatal("Did not find Start node!"); 1161 return nullptr; 1162 } 1163 1164 //-------------------------------immutable_memory------------------------------------- 1165 // Access immutable memory 1166 Node* Compile::immutable_memory() { 1167 if (_immutable_memory != nullptr) { 1168 return _immutable_memory; 1169 } 1170 StartNode* s = start(); 1171 for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) { 1172 Node *p = s->fast_out(i); 1173 if (p != s && p->as_Proj()->_con == TypeFunc::Memory) { 1174 _immutable_memory = p; 1175 return _immutable_memory; 1176 } 1177 } 1178 ShouldNotReachHere(); 1179 return nullptr; 1180 } 1181 1182 //----------------------set_cached_top_node------------------------------------ 1183 // Install the cached top node, and make sure Node::is_top works correctly. 1184 void Compile::set_cached_top_node(Node* tn) { 1185 if (tn != nullptr) verify_top(tn); 1186 Node* old_top = _top; 1187 _top = tn; 1188 // Calling Node::setup_is_top allows the nodes the chance to adjust 1189 // their _out arrays. 1190 if (_top != nullptr) _top->setup_is_top(); 1191 if (old_top != nullptr) old_top->setup_is_top(); 1192 assert(_top == nullptr || top()->is_top(), ""); 1193 } 1194 1195 #ifdef ASSERT 1196 uint Compile::count_live_nodes_by_graph_walk() { 1197 Unique_Node_List useful(comp_arena()); 1198 // Get useful node list by walking the graph. 1199 identify_useful_nodes(useful); 1200 return useful.size(); 1201 } 1202 1203 void Compile::print_missing_nodes() { 1204 1205 // Return if CompileLog is null and PrintIdealNodeCount is false. 1206 if ((_log == nullptr) && (! PrintIdealNodeCount)) { 1207 return; 1208 } 1209 1210 // This is an expensive function. It is executed only when the user 1211 // specifies VerifyIdealNodeCount option or otherwise knows the 1212 // additional work that needs to be done to identify reachable nodes 1213 // by walking the flow graph and find the missing ones using 1214 // _dead_node_list. 1215 1216 Unique_Node_List useful(comp_arena()); 1217 // Get useful node list by walking the graph. 1218 identify_useful_nodes(useful); 1219 1220 uint l_nodes = C->live_nodes(); 1221 uint l_nodes_by_walk = useful.size(); 1222 1223 if (l_nodes != l_nodes_by_walk) { 1224 if (_log != nullptr) { 1225 _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk))); 1226 _log->stamp(); 1227 _log->end_head(); 1228 } 1229 VectorSet& useful_member_set = useful.member_set(); 1230 int last_idx = l_nodes_by_walk; 1231 for (int i = 0; i < last_idx; i++) { 1232 if (useful_member_set.test(i)) { 1233 if (_dead_node_list.test(i)) { 1234 if (_log != nullptr) { 1235 _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i); 1236 } 1237 if (PrintIdealNodeCount) { 1238 // Print the log message to tty 1239 tty->print_cr("mismatched_node idx='%d' both live and dead'", i); 1240 useful.at(i)->dump(); 1241 } 1242 } 1243 } 1244 else if (! _dead_node_list.test(i)) { 1245 if (_log != nullptr) { 1246 _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i); 1247 } 1248 if (PrintIdealNodeCount) { 1249 // Print the log message to tty 1250 tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i); 1251 } 1252 } 1253 } 1254 if (_log != nullptr) { 1255 _log->tail("mismatched_nodes"); 1256 } 1257 } 1258 } 1259 void Compile::record_modified_node(Node* n) { 1260 if (_modified_nodes != nullptr && !_inlining_incrementally && !n->is_Con()) { 1261 _modified_nodes->push(n); 1262 } 1263 } 1264 1265 void Compile::remove_modified_node(Node* n) { 1266 if (_modified_nodes != nullptr) { 1267 _modified_nodes->remove(n); 1268 } 1269 } 1270 #endif 1271 1272 #ifndef PRODUCT 1273 void Compile::verify_top(Node* tn) const { 1274 if (tn != nullptr) { 1275 assert(tn->is_Con(), "top node must be a constant"); 1276 assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type"); 1277 assert(tn->in(0) != nullptr, "must have live top node"); 1278 } 1279 } 1280 #endif 1281 1282 1283 ///-------------------Managing Per-Node Debug & Profile Info------------------- 1284 1285 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) { 1286 guarantee(arr != nullptr, ""); 1287 int num_blocks = arr->length(); 1288 if (grow_by < num_blocks) grow_by = num_blocks; 1289 int num_notes = grow_by * _node_notes_block_size; 1290 Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes); 1291 Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes)); 1292 while (num_notes > 0) { 1293 arr->append(notes); 1294 notes += _node_notes_block_size; 1295 num_notes -= _node_notes_block_size; 1296 } 1297 assert(num_notes == 0, "exact multiple, please"); 1298 } 1299 1300 bool Compile::copy_node_notes_to(Node* dest, Node* source) { 1301 if (source == nullptr || dest == nullptr) return false; 1302 1303 if (dest->is_Con()) 1304 return false; // Do not push debug info onto constants. 1305 1306 #ifdef ASSERT 1307 // Leave a bread crumb trail pointing to the original node: 1308 if (dest != nullptr && dest != source && dest->debug_orig() == nullptr) { 1309 dest->set_debug_orig(source); 1310 } 1311 #endif 1312 1313 if (node_note_array() == nullptr) 1314 return false; // Not collecting any notes now. 1315 1316 // This is a copy onto a pre-existing node, which may already have notes. 1317 // If both nodes have notes, do not overwrite any pre-existing notes. 1318 Node_Notes* source_notes = node_notes_at(source->_idx); 1319 if (source_notes == nullptr || source_notes->is_clear()) return false; 1320 Node_Notes* dest_notes = node_notes_at(dest->_idx); 1321 if (dest_notes == nullptr || dest_notes->is_clear()) { 1322 return set_node_notes_at(dest->_idx, source_notes); 1323 } 1324 1325 Node_Notes merged_notes = (*source_notes); 1326 // The order of operations here ensures that dest notes will win... 1327 merged_notes.update_from(dest_notes); 1328 return set_node_notes_at(dest->_idx, &merged_notes); 1329 } 1330 1331 1332 //--------------------------allow_range_check_smearing------------------------- 1333 // Gating condition for coalescing similar range checks. 1334 // Sometimes we try 'speculatively' replacing a series of a range checks by a 1335 // single covering check that is at least as strong as any of them. 1336 // If the optimization succeeds, the simplified (strengthened) range check 1337 // will always succeed. If it fails, we will deopt, and then give up 1338 // on the optimization. 1339 bool Compile::allow_range_check_smearing() const { 1340 // If this method has already thrown a range-check, 1341 // assume it was because we already tried range smearing 1342 // and it failed. 1343 uint already_trapped = trap_count(Deoptimization::Reason_range_check); 1344 return !already_trapped; 1345 } 1346 1347 1348 //------------------------------flatten_alias_type----------------------------- 1349 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const { 1350 assert(do_aliasing(), "Aliasing should be enabled"); 1351 int offset = tj->offset(); 1352 TypePtr::PTR ptr = tj->ptr(); 1353 1354 // Known instance (scalarizable allocation) alias only with itself. 1355 bool is_known_inst = tj->isa_oopptr() != nullptr && 1356 tj->is_oopptr()->is_known_instance(); 1357 1358 // Process weird unsafe references. 1359 if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) { 1360 assert(InlineUnsafeOps || StressReflectiveCode, "indeterminate pointers come only from unsafe ops"); 1361 assert(!is_known_inst, "scalarizable allocation should not have unsafe references"); 1362 tj = TypeOopPtr::BOTTOM; 1363 ptr = tj->ptr(); 1364 offset = tj->offset(); 1365 } 1366 1367 // Array pointers need some flattening 1368 const TypeAryPtr* ta = tj->isa_aryptr(); 1369 if (ta && ta->is_stable()) { 1370 // Erase stability property for alias analysis. 1371 tj = ta = ta->cast_to_stable(false); 1372 } 1373 if( ta && is_known_inst ) { 1374 if ( offset != Type::OffsetBot && 1375 offset > arrayOopDesc::length_offset_in_bytes() ) { 1376 offset = Type::OffsetBot; // Flatten constant access into array body only 1377 tj = ta = ta-> 1378 remove_speculative()-> 1379 cast_to_ptr_type(ptr)-> 1380 with_offset(offset); 1381 } 1382 } else if (ta) { 1383 // For arrays indexed by constant indices, we flatten the alias 1384 // space to include all of the array body. Only the header, klass 1385 // and array length can be accessed un-aliased. 1386 if( offset != Type::OffsetBot ) { 1387 if( ta->const_oop() ) { // MethodData* or Method* 1388 offset = Type::OffsetBot; // Flatten constant access into array body 1389 tj = ta = ta-> 1390 remove_speculative()-> 1391 cast_to_ptr_type(ptr)-> 1392 cast_to_exactness(false)-> 1393 with_offset(offset); 1394 } else if( offset == arrayOopDesc::length_offset_in_bytes() ) { 1395 // range is OK as-is. 1396 tj = ta = TypeAryPtr::RANGE; 1397 } else if( offset == oopDesc::klass_offset_in_bytes() ) { 1398 tj = TypeInstPtr::KLASS; // all klass loads look alike 1399 ta = TypeAryPtr::RANGE; // generic ignored junk 1400 ptr = TypePtr::BotPTR; 1401 } else if( offset == oopDesc::mark_offset_in_bytes() ) { 1402 tj = TypeInstPtr::MARK; 1403 ta = TypeAryPtr::RANGE; // generic ignored junk 1404 ptr = TypePtr::BotPTR; 1405 } else { // Random constant offset into array body 1406 offset = Type::OffsetBot; // Flatten constant access into array body 1407 tj = ta = ta-> 1408 remove_speculative()-> 1409 cast_to_ptr_type(ptr)-> 1410 cast_to_exactness(false)-> 1411 with_offset(offset); 1412 } 1413 } 1414 // Arrays of fixed size alias with arrays of unknown size. 1415 if (ta->size() != TypeInt::POS) { 1416 const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS); 1417 tj = ta = ta-> 1418 remove_speculative()-> 1419 cast_to_ptr_type(ptr)-> 1420 with_ary(tary)-> 1421 cast_to_exactness(false); 1422 } 1423 // Arrays of known objects become arrays of unknown objects. 1424 if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) { 1425 const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size()); 1426 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,nullptr,false,offset); 1427 } 1428 if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) { 1429 const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size()); 1430 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,nullptr,false,offset); 1431 } 1432 // Arrays of bytes and of booleans both use 'bastore' and 'baload' so 1433 // cannot be distinguished by bytecode alone. 1434 if (ta->elem() == TypeInt::BOOL) { 1435 const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size()); 1436 ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE); 1437 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset); 1438 } 1439 // During the 2nd round of IterGVN, NotNull castings are removed. 1440 // Make sure the Bottom and NotNull variants alias the same. 1441 // Also, make sure exact and non-exact variants alias the same. 1442 if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != nullptr) { 1443 tj = ta = ta-> 1444 remove_speculative()-> 1445 cast_to_ptr_type(TypePtr::BotPTR)-> 1446 cast_to_exactness(false)-> 1447 with_offset(offset); 1448 } 1449 } 1450 1451 // Oop pointers need some flattening 1452 const TypeInstPtr *to = tj->isa_instptr(); 1453 if (to && to != TypeOopPtr::BOTTOM) { 1454 ciInstanceKlass* ik = to->instance_klass(); 1455 if( ptr == TypePtr::Constant ) { 1456 if (ik != ciEnv::current()->Class_klass() || 1457 offset < ik->layout_helper_size_in_bytes()) { 1458 // No constant oop pointers (such as Strings); they alias with 1459 // unknown strings. 1460 assert(!is_known_inst, "not scalarizable allocation"); 1461 tj = to = to-> 1462 cast_to_instance_id(TypeOopPtr::InstanceBot)-> 1463 remove_speculative()-> 1464 cast_to_ptr_type(TypePtr::BotPTR)-> 1465 cast_to_exactness(false); 1466 } 1467 } else if( is_known_inst ) { 1468 tj = to; // Keep NotNull and klass_is_exact for instance type 1469 } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) { 1470 // During the 2nd round of IterGVN, NotNull castings are removed. 1471 // Make sure the Bottom and NotNull variants alias the same. 1472 // Also, make sure exact and non-exact variants alias the same. 1473 tj = to = to-> 1474 remove_speculative()-> 1475 cast_to_instance_id(TypeOopPtr::InstanceBot)-> 1476 cast_to_ptr_type(TypePtr::BotPTR)-> 1477 cast_to_exactness(false); 1478 } 1479 if (to->speculative() != nullptr) { 1480 tj = to = to->remove_speculative(); 1481 } 1482 // Canonicalize the holder of this field 1483 if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) { 1484 // First handle header references such as a LoadKlassNode, even if the 1485 // object's klass is unloaded at compile time (4965979). 1486 if (!is_known_inst) { // Do it only for non-instance types 1487 tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, nullptr, offset); 1488 } 1489 } else if (offset < 0 || offset >= ik->layout_helper_size_in_bytes()) { 1490 // Static fields are in the space above the normal instance 1491 // fields in the java.lang.Class instance. 1492 if (ik != ciEnv::current()->Class_klass()) { 1493 to = nullptr; 1494 tj = TypeOopPtr::BOTTOM; 1495 offset = tj->offset(); 1496 } 1497 } else { 1498 ciInstanceKlass *canonical_holder = ik->get_canonical_holder(offset); 1499 assert(offset < canonical_holder->layout_helper_size_in_bytes(), ""); 1500 assert(tj->offset() == offset, "no change to offset expected"); 1501 bool xk = to->klass_is_exact(); 1502 int instance_id = to->instance_id(); 1503 1504 // If the input type's class is the holder: if exact, the type only includes interfaces implemented by the holder 1505 // but if not exact, it may include extra interfaces: build new type from the holder class to make sure only 1506 // its interfaces are included. 1507 if (xk && ik->equals(canonical_holder)) { 1508 assert(tj == TypeInstPtr::make(to->ptr(), canonical_holder, is_known_inst, nullptr, offset, instance_id), "exact type should be canonical type"); 1509 } else { 1510 assert(xk || !is_known_inst, "Known instance should be exact type"); 1511 tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, is_known_inst, nullptr, offset, instance_id); 1512 } 1513 } 1514 } 1515 1516 // Klass pointers to object array klasses need some flattening 1517 const TypeKlassPtr *tk = tj->isa_klassptr(); 1518 if( tk ) { 1519 // If we are referencing a field within a Klass, we need 1520 // to assume the worst case of an Object. Both exact and 1521 // inexact types must flatten to the same alias class so 1522 // use NotNull as the PTR. 1523 if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) { 1524 tj = tk = TypeInstKlassPtr::make(TypePtr::NotNull, 1525 env()->Object_klass(), 1526 offset); 1527 } 1528 1529 if (tk->isa_aryklassptr() && tk->is_aryklassptr()->elem()->isa_klassptr()) { 1530 ciKlass* k = ciObjArrayKlass::make(env()->Object_klass()); 1531 if (!k || !k->is_loaded()) { // Only fails for some -Xcomp runs 1532 tj = tk = TypeInstKlassPtr::make(TypePtr::NotNull, env()->Object_klass(), offset); 1533 } else { 1534 tj = tk = TypeAryKlassPtr::make(TypePtr::NotNull, tk->is_aryklassptr()->elem(), k, offset); 1535 } 1536 } 1537 1538 // Check for precise loads from the primary supertype array and force them 1539 // to the supertype cache alias index. Check for generic array loads from 1540 // the primary supertype array and also force them to the supertype cache 1541 // alias index. Since the same load can reach both, we need to merge 1542 // these 2 disparate memories into the same alias class. Since the 1543 // primary supertype array is read-only, there's no chance of confusion 1544 // where we bypass an array load and an array store. 1545 int primary_supers_offset = in_bytes(Klass::primary_supers_offset()); 1546 if (offset == Type::OffsetBot || 1547 (offset >= primary_supers_offset && 1548 offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) || 1549 offset == (int)in_bytes(Klass::secondary_super_cache_offset())) { 1550 offset = in_bytes(Klass::secondary_super_cache_offset()); 1551 tj = tk = tk->with_offset(offset); 1552 } 1553 } 1554 1555 // Flatten all Raw pointers together. 1556 if (tj->base() == Type::RawPtr) 1557 tj = TypeRawPtr::BOTTOM; 1558 1559 if (tj->base() == Type::AnyPtr) 1560 tj = TypePtr::BOTTOM; // An error, which the caller must check for. 1561 1562 offset = tj->offset(); 1563 assert( offset != Type::OffsetTop, "Offset has fallen from constant" ); 1564 1565 assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) || 1566 (offset == Type::OffsetBot && tj->base() == Type::AryPtr) || 1567 (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) || 1568 (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) || 1569 (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) || 1570 (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) || 1571 (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr), 1572 "For oops, klasses, raw offset must be constant; for arrays the offset is never known" ); 1573 assert( tj->ptr() != TypePtr::TopPTR && 1574 tj->ptr() != TypePtr::AnyNull && 1575 tj->ptr() != TypePtr::Null, "No imprecise addresses" ); 1576 // assert( tj->ptr() != TypePtr::Constant || 1577 // tj->base() == Type::RawPtr || 1578 // tj->base() == Type::KlassPtr, "No constant oop addresses" ); 1579 1580 return tj; 1581 } 1582 1583 void Compile::AliasType::Init(int i, const TypePtr* at) { 1584 assert(AliasIdxTop <= i && i < Compile::current()->_max_alias_types, "Invalid alias index"); 1585 _index = i; 1586 _adr_type = at; 1587 _field = nullptr; 1588 _element = nullptr; 1589 _is_rewritable = true; // default 1590 const TypeOopPtr *atoop = (at != nullptr) ? at->isa_oopptr() : nullptr; 1591 if (atoop != nullptr && atoop->is_known_instance()) { 1592 const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot); 1593 _general_index = Compile::current()->get_alias_index(gt); 1594 } else { 1595 _general_index = 0; 1596 } 1597 } 1598 1599 BasicType Compile::AliasType::basic_type() const { 1600 if (element() != nullptr) { 1601 const Type* element = adr_type()->is_aryptr()->elem(); 1602 return element->isa_narrowoop() ? T_OBJECT : element->array_element_basic_type(); 1603 } if (field() != nullptr) { 1604 return field()->layout_type(); 1605 } else { 1606 return T_ILLEGAL; // unknown 1607 } 1608 } 1609 1610 //---------------------------------print_on------------------------------------ 1611 #ifndef PRODUCT 1612 void Compile::AliasType::print_on(outputStream* st) { 1613 if (index() < 10) 1614 st->print("@ <%d> ", index()); 1615 else st->print("@ <%d>", index()); 1616 st->print(is_rewritable() ? " " : " RO"); 1617 int offset = adr_type()->offset(); 1618 if (offset == Type::OffsetBot) 1619 st->print(" +any"); 1620 else st->print(" +%-3d", offset); 1621 st->print(" in "); 1622 adr_type()->dump_on(st); 1623 const TypeOopPtr* tjp = adr_type()->isa_oopptr(); 1624 if (field() != nullptr && tjp) { 1625 if (tjp->is_instptr()->instance_klass() != field()->holder() || 1626 tjp->offset() != field()->offset_in_bytes()) { 1627 st->print(" != "); 1628 field()->print(); 1629 st->print(" ***"); 1630 } 1631 } 1632 } 1633 1634 void print_alias_types() { 1635 Compile* C = Compile::current(); 1636 tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1); 1637 for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) { 1638 C->alias_type(idx)->print_on(tty); 1639 tty->cr(); 1640 } 1641 } 1642 #endif 1643 1644 1645 //----------------------------probe_alias_cache-------------------------------- 1646 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) { 1647 intptr_t key = (intptr_t) adr_type; 1648 key ^= key >> logAliasCacheSize; 1649 return &_alias_cache[key & right_n_bits(logAliasCacheSize)]; 1650 } 1651 1652 1653 //-----------------------------grow_alias_types-------------------------------- 1654 void Compile::grow_alias_types() { 1655 const int old_ats = _max_alias_types; // how many before? 1656 const int new_ats = old_ats; // how many more? 1657 const int grow_ats = old_ats+new_ats; // how many now? 1658 _max_alias_types = grow_ats; 1659 _alias_types = REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats); 1660 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats); 1661 Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats); 1662 for (int i = 0; i < new_ats; i++) _alias_types[old_ats+i] = &ats[i]; 1663 } 1664 1665 1666 //--------------------------------find_alias_type------------------------------ 1667 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) { 1668 if (!do_aliasing()) { 1669 return alias_type(AliasIdxBot); 1670 } 1671 1672 AliasCacheEntry* ace = probe_alias_cache(adr_type); 1673 if (ace->_adr_type == adr_type) { 1674 return alias_type(ace->_index); 1675 } 1676 1677 // Handle special cases. 1678 if (adr_type == nullptr) return alias_type(AliasIdxTop); 1679 if (adr_type == TypePtr::BOTTOM) return alias_type(AliasIdxBot); 1680 1681 // Do it the slow way. 1682 const TypePtr* flat = flatten_alias_type(adr_type); 1683 1684 #ifdef ASSERT 1685 { 1686 ResourceMark rm; 1687 assert(flat == flatten_alias_type(flat), "not idempotent: adr_type = %s; flat = %s => %s", 1688 Type::str(adr_type), Type::str(flat), Type::str(flatten_alias_type(flat))); 1689 assert(flat != TypePtr::BOTTOM, "cannot alias-analyze an untyped ptr: adr_type = %s", 1690 Type::str(adr_type)); 1691 if (flat->isa_oopptr() && !flat->isa_klassptr()) { 1692 const TypeOopPtr* foop = flat->is_oopptr(); 1693 // Scalarizable allocations have exact klass always. 1694 bool exact = !foop->klass_is_exact() || foop->is_known_instance(); 1695 const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr(); 1696 assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type: foop = %s; xoop = %s", 1697 Type::str(foop), Type::str(xoop)); 1698 } 1699 } 1700 #endif 1701 1702 int idx = AliasIdxTop; 1703 for (int i = 0; i < num_alias_types(); i++) { 1704 if (alias_type(i)->adr_type() == flat) { 1705 idx = i; 1706 break; 1707 } 1708 } 1709 1710 if (idx == AliasIdxTop) { 1711 if (no_create) return nullptr; 1712 // Grow the array if necessary. 1713 if (_num_alias_types == _max_alias_types) grow_alias_types(); 1714 // Add a new alias type. 1715 idx = _num_alias_types++; 1716 _alias_types[idx]->Init(idx, flat); 1717 if (flat == TypeInstPtr::KLASS) alias_type(idx)->set_rewritable(false); 1718 if (flat == TypeAryPtr::RANGE) alias_type(idx)->set_rewritable(false); 1719 if (flat->isa_instptr()) { 1720 if (flat->offset() == java_lang_Class::klass_offset() 1721 && flat->is_instptr()->instance_klass() == env()->Class_klass()) 1722 alias_type(idx)->set_rewritable(false); 1723 } 1724 if (flat->isa_aryptr()) { 1725 #ifdef ASSERT 1726 const int header_size_min = arrayOopDesc::base_offset_in_bytes(T_BYTE); 1727 // (T_BYTE has the weakest alignment and size restrictions...) 1728 assert(flat->offset() < header_size_min, "array body reference must be OffsetBot"); 1729 #endif 1730 if (flat->offset() == TypePtr::OffsetBot) { 1731 alias_type(idx)->set_element(flat->is_aryptr()->elem()); 1732 } 1733 } 1734 if (flat->isa_klassptr()) { 1735 if (UseCompactObjectHeaders) { 1736 if (flat->offset() == in_bytes(Klass::prototype_header_offset())) 1737 alias_type(idx)->set_rewritable(false); 1738 } 1739 if (flat->offset() == in_bytes(Klass::super_check_offset_offset())) 1740 alias_type(idx)->set_rewritable(false); 1741 if (flat->offset() == in_bytes(Klass::access_flags_offset())) 1742 alias_type(idx)->set_rewritable(false); 1743 if (flat->offset() == in_bytes(Klass::misc_flags_offset())) 1744 alias_type(idx)->set_rewritable(false); 1745 if (flat->offset() == in_bytes(Klass::java_mirror_offset())) 1746 alias_type(idx)->set_rewritable(false); 1747 if (flat->offset() == in_bytes(Klass::secondary_super_cache_offset())) 1748 alias_type(idx)->set_rewritable(false); 1749 } 1750 // %%% (We would like to finalize JavaThread::threadObj_offset(), 1751 // but the base pointer type is not distinctive enough to identify 1752 // references into JavaThread.) 1753 1754 // Check for final fields. 1755 const TypeInstPtr* tinst = flat->isa_instptr(); 1756 if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) { 1757 ciField* field; 1758 if (tinst->const_oop() != nullptr && 1759 tinst->instance_klass() == ciEnv::current()->Class_klass() && 1760 tinst->offset() >= (tinst->instance_klass()->layout_helper_size_in_bytes())) { 1761 // static field 1762 ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass(); 1763 field = k->get_field_by_offset(tinst->offset(), true); 1764 } else { 1765 ciInstanceKlass *k = tinst->instance_klass(); 1766 field = k->get_field_by_offset(tinst->offset(), false); 1767 } 1768 assert(field == nullptr || 1769 original_field == nullptr || 1770 (field->holder() == original_field->holder() && 1771 field->offset_in_bytes() == original_field->offset_in_bytes() && 1772 field->is_static() == original_field->is_static()), "wrong field?"); 1773 // Set field() and is_rewritable() attributes. 1774 if (field != nullptr) alias_type(idx)->set_field(field); 1775 } 1776 } 1777 1778 // Fill the cache for next time. 1779 ace->_adr_type = adr_type; 1780 ace->_index = idx; 1781 assert(alias_type(adr_type) == alias_type(idx), "type must be installed"); 1782 1783 // Might as well try to fill the cache for the flattened version, too. 1784 AliasCacheEntry* face = probe_alias_cache(flat); 1785 if (face->_adr_type == nullptr) { 1786 face->_adr_type = flat; 1787 face->_index = idx; 1788 assert(alias_type(flat) == alias_type(idx), "flat type must work too"); 1789 } 1790 1791 return alias_type(idx); 1792 } 1793 1794 1795 Compile::AliasType* Compile::alias_type(ciField* field) { 1796 const TypeOopPtr* t; 1797 if (field->is_static()) 1798 t = TypeInstPtr::make(field->holder()->java_mirror()); 1799 else 1800 t = TypeOopPtr::make_from_klass_raw(field->holder()); 1801 AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field); 1802 assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct"); 1803 return atp; 1804 } 1805 1806 1807 //------------------------------have_alias_type-------------------------------- 1808 bool Compile::have_alias_type(const TypePtr* adr_type) { 1809 AliasCacheEntry* ace = probe_alias_cache(adr_type); 1810 if (ace->_adr_type == adr_type) { 1811 return true; 1812 } 1813 1814 // Handle special cases. 1815 if (adr_type == nullptr) return true; 1816 if (adr_type == TypePtr::BOTTOM) return true; 1817 1818 return find_alias_type(adr_type, true, nullptr) != nullptr; 1819 } 1820 1821 //-----------------------------must_alias-------------------------------------- 1822 // True if all values of the given address type are in the given alias category. 1823 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) { 1824 if (alias_idx == AliasIdxBot) return true; // the universal category 1825 if (adr_type == nullptr) return true; // null serves as TypePtr::TOP 1826 if (alias_idx == AliasIdxTop) return false; // the empty category 1827 if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins 1828 1829 // the only remaining possible overlap is identity 1830 int adr_idx = get_alias_index(adr_type); 1831 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, ""); 1832 assert(adr_idx == alias_idx || 1833 (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM 1834 && adr_type != TypeOopPtr::BOTTOM), 1835 "should not be testing for overlap with an unsafe pointer"); 1836 return adr_idx == alias_idx; 1837 } 1838 1839 //------------------------------can_alias-------------------------------------- 1840 // True if any values of the given address type are in the given alias category. 1841 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) { 1842 if (alias_idx == AliasIdxTop) return false; // the empty category 1843 if (adr_type == nullptr) return false; // null serves as TypePtr::TOP 1844 // Known instance doesn't alias with bottom memory 1845 if (alias_idx == AliasIdxBot) return !adr_type->is_known_instance(); // the universal category 1846 if (adr_type->base() == Type::AnyPtr) return !C->get_adr_type(alias_idx)->is_known_instance(); // TypePtr::BOTTOM or its twins 1847 1848 // the only remaining possible overlap is identity 1849 int adr_idx = get_alias_index(adr_type); 1850 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, ""); 1851 return adr_idx == alias_idx; 1852 } 1853 1854 // Mark all ParsePredicateNodes as useless. They will later be removed from the graph in IGVN together with their 1855 // uncommon traps if no Runtime Predicates were created from the Parse Predicates. 1856 void Compile::mark_parse_predicate_nodes_useless(PhaseIterGVN& igvn) { 1857 if (parse_predicate_count() == 0) { 1858 return; 1859 } 1860 for (int i = 0; i < parse_predicate_count(); i++) { 1861 ParsePredicateNode* parse_predicate = _parse_predicates.at(i); 1862 parse_predicate->mark_useless(igvn); 1863 } 1864 _parse_predicates.clear(); 1865 } 1866 1867 void Compile::record_for_post_loop_opts_igvn(Node* n) { 1868 if (!n->for_post_loop_opts_igvn()) { 1869 assert(!_for_post_loop_igvn.contains(n), "duplicate"); 1870 n->add_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn); 1871 _for_post_loop_igvn.append(n); 1872 } 1873 } 1874 1875 void Compile::remove_from_post_loop_opts_igvn(Node* n) { 1876 n->remove_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn); 1877 _for_post_loop_igvn.remove(n); 1878 } 1879 1880 void Compile::process_for_post_loop_opts_igvn(PhaseIterGVN& igvn) { 1881 // Verify that all previous optimizations produced a valid graph 1882 // at least to this point, even if no loop optimizations were done. 1883 PhaseIdealLoop::verify(igvn); 1884 1885 if (has_loops() || _loop_opts_cnt > 0) { 1886 print_method(PHASE_AFTER_LOOP_OPTS, 2); 1887 } 1888 C->set_post_loop_opts_phase(); // no more loop opts allowed 1889 1890 assert(!C->major_progress(), "not cleared"); 1891 1892 if (_for_post_loop_igvn.length() > 0) { 1893 while (_for_post_loop_igvn.length() > 0) { 1894 Node* n = _for_post_loop_igvn.pop(); 1895 n->remove_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn); 1896 igvn._worklist.push(n); 1897 } 1898 igvn.optimize(); 1899 if (failing()) return; 1900 assert(_for_post_loop_igvn.length() == 0, "no more delayed nodes allowed"); 1901 assert(C->parse_predicate_count() == 0, "all parse predicates should have been removed now"); 1902 1903 // Sometimes IGVN sets major progress (e.g., when processing loop nodes). 1904 if (C->major_progress()) { 1905 C->clear_major_progress(); // ensure that major progress is now clear 1906 } 1907 } 1908 } 1909 1910 void Compile::record_for_merge_stores_igvn(Node* n) { 1911 if (!n->for_merge_stores_igvn()) { 1912 assert(!_for_merge_stores_igvn.contains(n), "duplicate"); 1913 n->add_flag(Node::NodeFlags::Flag_for_merge_stores_igvn); 1914 _for_merge_stores_igvn.append(n); 1915 } 1916 } 1917 1918 void Compile::remove_from_merge_stores_igvn(Node* n) { 1919 n->remove_flag(Node::NodeFlags::Flag_for_merge_stores_igvn); 1920 _for_merge_stores_igvn.remove(n); 1921 } 1922 1923 // We need to wait with merging stores until RangeCheck smearing has removed the RangeChecks during 1924 // the post loops IGVN phase. If we do it earlier, then there may still be some RangeChecks between 1925 // the stores, and we merge the wrong sequence of stores. 1926 // Example: 1927 // StoreI RangeCheck StoreI StoreI RangeCheck StoreI 1928 // Apply MergeStores: 1929 // StoreI RangeCheck [ StoreL ] RangeCheck StoreI 1930 // Remove more RangeChecks: 1931 // StoreI [ StoreL ] StoreI 1932 // But now it would have been better to do this instead: 1933 // [ StoreL ] [ StoreL ] 1934 // 1935 // Note: we allow stores to merge in this dedicated IGVN round, and any later IGVN round, 1936 // since we never unset _merge_stores_phase. 1937 void Compile::process_for_merge_stores_igvn(PhaseIterGVN& igvn) { 1938 C->set_merge_stores_phase(); 1939 1940 if (_for_merge_stores_igvn.length() > 0) { 1941 while (_for_merge_stores_igvn.length() > 0) { 1942 Node* n = _for_merge_stores_igvn.pop(); 1943 n->remove_flag(Node::NodeFlags::Flag_for_merge_stores_igvn); 1944 igvn._worklist.push(n); 1945 } 1946 igvn.optimize(); 1947 if (failing()) return; 1948 assert(_for_merge_stores_igvn.length() == 0, "no more delayed nodes allowed"); 1949 print_method(PHASE_AFTER_MERGE_STORES, 3); 1950 } 1951 } 1952 1953 void Compile::record_unstable_if_trap(UnstableIfTrap* trap) { 1954 if (OptimizeUnstableIf) { 1955 _unstable_if_traps.append(trap); 1956 } 1957 } 1958 1959 void Compile::remove_useless_unstable_if_traps(Unique_Node_List& useful) { 1960 for (int i = _unstable_if_traps.length() - 1; i >= 0; i--) { 1961 UnstableIfTrap* trap = _unstable_if_traps.at(i); 1962 Node* n = trap->uncommon_trap(); 1963 if (!useful.member(n)) { 1964 _unstable_if_traps.delete_at(i); // replaces i-th with last element which is known to be useful (already processed) 1965 } 1966 } 1967 } 1968 1969 // Remove the unstable if trap associated with 'unc' from candidates. It is either dead 1970 // or fold-compares case. Return true if succeed or not found. 1971 // 1972 // In rare cases, the found trap has been processed. It is too late to delete it. Return 1973 // false and ask fold-compares to yield. 1974 // 1975 // 'fold-compares' may use the uncommon_trap of the dominating IfNode to cover the fused 1976 // IfNode. This breaks the unstable_if trap invariant: control takes the unstable path 1977 // when deoptimization does happen. 1978 bool Compile::remove_unstable_if_trap(CallStaticJavaNode* unc, bool yield) { 1979 for (int i = 0; i < _unstable_if_traps.length(); ++i) { 1980 UnstableIfTrap* trap = _unstable_if_traps.at(i); 1981 if (trap->uncommon_trap() == unc) { 1982 if (yield && trap->modified()) { 1983 return false; 1984 } 1985 _unstable_if_traps.delete_at(i); 1986 break; 1987 } 1988 } 1989 return true; 1990 } 1991 1992 // Re-calculate unstable_if traps with the liveness of next_bci, which points to the unlikely path. 1993 // It needs to be done after igvn because fold-compares may fuse uncommon_traps and before renumbering. 1994 void Compile::process_for_unstable_if_traps(PhaseIterGVN& igvn) { 1995 for (int i = _unstable_if_traps.length() - 1; i >= 0; --i) { 1996 UnstableIfTrap* trap = _unstable_if_traps.at(i); 1997 CallStaticJavaNode* unc = trap->uncommon_trap(); 1998 int next_bci = trap->next_bci(); 1999 bool modified = trap->modified(); 2000 2001 if (next_bci != -1 && !modified) { 2002 assert(!_dead_node_list.test(unc->_idx), "changing a dead node!"); 2003 JVMState* jvms = unc->jvms(); 2004 ciMethod* method = jvms->method(); 2005 ciBytecodeStream iter(method); 2006 2007 iter.force_bci(jvms->bci()); 2008 assert(next_bci == iter.next_bci() || next_bci == iter.get_dest(), "wrong next_bci at unstable_if"); 2009 Bytecodes::Code c = iter.cur_bc(); 2010 Node* lhs = nullptr; 2011 Node* rhs = nullptr; 2012 if (c == Bytecodes::_if_acmpeq || c == Bytecodes::_if_acmpne) { 2013 lhs = unc->peek_operand(0); 2014 rhs = unc->peek_operand(1); 2015 } else if (c == Bytecodes::_ifnull || c == Bytecodes::_ifnonnull) { 2016 lhs = unc->peek_operand(0); 2017 } 2018 2019 ResourceMark rm; 2020 const MethodLivenessResult& live_locals = method->liveness_at_bci(next_bci); 2021 assert(live_locals.is_valid(), "broken liveness info"); 2022 int len = (int)live_locals.size(); 2023 2024 for (int i = 0; i < len; i++) { 2025 Node* local = unc->local(jvms, i); 2026 // kill local using the liveness of next_bci. 2027 // give up when the local looks like an operand to secure reexecution. 2028 if (!live_locals.at(i) && !local->is_top() && local != lhs && local!= rhs) { 2029 uint idx = jvms->locoff() + i; 2030 #ifdef ASSERT 2031 if (PrintOpto && Verbose) { 2032 tty->print("[unstable_if] kill local#%d: ", idx); 2033 local->dump(); 2034 tty->cr(); 2035 } 2036 #endif 2037 igvn.replace_input_of(unc, idx, top()); 2038 modified = true; 2039 } 2040 } 2041 } 2042 2043 // keep the mondified trap for late query 2044 if (modified) { 2045 trap->set_modified(); 2046 } else { 2047 _unstable_if_traps.delete_at(i); 2048 } 2049 } 2050 igvn.optimize(); 2051 } 2052 2053 // StringOpts and late inlining of string methods 2054 void Compile::inline_string_calls(bool parse_time) { 2055 { 2056 // remove useless nodes to make the usage analysis simpler 2057 ResourceMark rm; 2058 PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist()); 2059 } 2060 2061 { 2062 ResourceMark rm; 2063 print_method(PHASE_BEFORE_STRINGOPTS, 3); 2064 PhaseStringOpts pso(initial_gvn()); 2065 print_method(PHASE_AFTER_STRINGOPTS, 3); 2066 } 2067 2068 // now inline anything that we skipped the first time around 2069 if (!parse_time) { 2070 _late_inlines_pos = _late_inlines.length(); 2071 } 2072 2073 while (_string_late_inlines.length() > 0) { 2074 CallGenerator* cg = _string_late_inlines.pop(); 2075 cg->do_late_inline(); 2076 if (failing()) return; 2077 } 2078 _string_late_inlines.trunc_to(0); 2079 } 2080 2081 // Late inlining of boxing methods 2082 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) { 2083 if (_boxing_late_inlines.length() > 0) { 2084 assert(has_boxed_value(), "inconsistent"); 2085 2086 set_inlining_incrementally(true); 2087 2088 igvn_worklist()->ensure_empty(); // should be done with igvn 2089 2090 _late_inlines_pos = _late_inlines.length(); 2091 2092 while (_boxing_late_inlines.length() > 0) { 2093 CallGenerator* cg = _boxing_late_inlines.pop(); 2094 cg->do_late_inline(); 2095 if (failing()) return; 2096 } 2097 _boxing_late_inlines.trunc_to(0); 2098 2099 inline_incrementally_cleanup(igvn); 2100 2101 set_inlining_incrementally(false); 2102 } 2103 } 2104 2105 bool Compile::inline_incrementally_one() { 2106 assert(IncrementalInline, "incremental inlining should be on"); 2107 2108 TracePhase tp(_t_incrInline_inline); 2109 2110 set_inlining_progress(false); 2111 set_do_cleanup(false); 2112 2113 for (int i = 0; i < _late_inlines.length(); i++) { 2114 _late_inlines_pos = i+1; 2115 CallGenerator* cg = _late_inlines.at(i); 2116 bool is_scheduled_for_igvn_before = C->igvn_worklist()->member(cg->call_node()); 2117 bool does_dispatch = cg->is_virtual_late_inline() || cg->is_mh_late_inline(); 2118 if (inlining_incrementally() || does_dispatch) { // a call can be either inlined or strength-reduced to a direct call 2119 cg->do_late_inline(); 2120 assert(_late_inlines.at(i) == cg, "no insertions before current position allowed"); 2121 if (failing()) { 2122 return false; 2123 } else if (inlining_progress()) { 2124 _late_inlines_pos = i+1; // restore the position in case new elements were inserted 2125 print_method(PHASE_INCREMENTAL_INLINE_STEP, 3, cg->call_node()); 2126 break; // process one call site at a time 2127 } else { 2128 bool is_scheduled_for_igvn_after = C->igvn_worklist()->member(cg->call_node()); 2129 if (!is_scheduled_for_igvn_before && is_scheduled_for_igvn_after) { 2130 // Avoid potential infinite loop if node already in the IGVN list 2131 assert(false, "scheduled for IGVN during inlining attempt"); 2132 } else { 2133 // Ensure call node has not disappeared from IGVN worklist during a failed inlining attempt 2134 assert(!is_scheduled_for_igvn_before || is_scheduled_for_igvn_after, "call node removed from IGVN list during inlining pass"); 2135 cg->call_node()->set_generator(cg); 2136 } 2137 } 2138 } else { 2139 // Ignore late inline direct calls when inlining is not allowed. 2140 // They are left in the late inline list when node budget is exhausted until the list is fully drained. 2141 } 2142 } 2143 // Remove processed elements. 2144 _late_inlines.remove_till(_late_inlines_pos); 2145 _late_inlines_pos = 0; 2146 2147 assert(inlining_progress() || _late_inlines.length() == 0, "no progress"); 2148 2149 bool needs_cleanup = do_cleanup() || over_inlining_cutoff(); 2150 2151 set_inlining_progress(false); 2152 set_do_cleanup(false); 2153 2154 bool force_cleanup = directive()->IncrementalInlineForceCleanupOption; 2155 return (_late_inlines.length() > 0) && !needs_cleanup && !force_cleanup; 2156 } 2157 2158 void Compile::inline_incrementally_cleanup(PhaseIterGVN& igvn) { 2159 { 2160 TracePhase tp(_t_incrInline_pru); 2161 ResourceMark rm; 2162 PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist()); 2163 } 2164 { 2165 TracePhase tp(_t_incrInline_igvn); 2166 igvn.reset_from_gvn(initial_gvn()); 2167 igvn.optimize(); 2168 if (failing()) return; 2169 } 2170 print_method(PHASE_INCREMENTAL_INLINE_CLEANUP, 3); 2171 } 2172 2173 // Perform incremental inlining until bound on number of live nodes is reached 2174 void Compile::inline_incrementally(PhaseIterGVN& igvn) { 2175 TracePhase tp(_t_incrInline); 2176 2177 set_inlining_incrementally(true); 2178 uint low_live_nodes = 0; 2179 2180 while (_late_inlines.length() > 0) { 2181 if (live_nodes() > (uint)LiveNodeCountInliningCutoff) { 2182 if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) { 2183 TracePhase tp(_t_incrInline_ideal); 2184 // PhaseIdealLoop is expensive so we only try it once we are 2185 // out of live nodes and we only try it again if the previous 2186 // helped got the number of nodes down significantly 2187 PhaseIdealLoop::optimize(igvn, LoopOptsNone); 2188 if (failing()) return; 2189 low_live_nodes = live_nodes(); 2190 _major_progress = true; 2191 } 2192 2193 if (live_nodes() > (uint)LiveNodeCountInliningCutoff) { 2194 bool do_print_inlining = print_inlining() || print_intrinsics(); 2195 if (do_print_inlining || log() != nullptr) { 2196 // Print inlining message for candidates that we couldn't inline for lack of space. 2197 for (int i = 0; i < _late_inlines.length(); i++) { 2198 CallGenerator* cg = _late_inlines.at(i); 2199 const char* msg = "live nodes > LiveNodeCountInliningCutoff"; 2200 if (do_print_inlining) { 2201 inline_printer()->record(cg->method(), cg->call_node()->jvms(), InliningResult::FAILURE, msg); 2202 } 2203 log_late_inline_failure(cg, msg); 2204 } 2205 } 2206 break; // finish 2207 } 2208 } 2209 2210 igvn_worklist()->ensure_empty(); // should be done with igvn 2211 2212 while (inline_incrementally_one()) { 2213 assert(!failing_internal() || failure_is_artificial(), "inconsistent"); 2214 } 2215 if (failing()) return; 2216 2217 inline_incrementally_cleanup(igvn); 2218 2219 print_method(PHASE_INCREMENTAL_INLINE_STEP, 3); 2220 2221 if (failing()) return; 2222 2223 if (_late_inlines.length() == 0) { 2224 break; // no more progress 2225 } 2226 } 2227 2228 igvn_worklist()->ensure_empty(); // should be done with igvn 2229 2230 if (_string_late_inlines.length() > 0) { 2231 assert(has_stringbuilder(), "inconsistent"); 2232 2233 inline_string_calls(false); 2234 2235 if (failing()) return; 2236 2237 inline_incrementally_cleanup(igvn); 2238 } 2239 2240 set_inlining_incrementally(false); 2241 } 2242 2243 void Compile::process_late_inline_calls_no_inline(PhaseIterGVN& igvn) { 2244 // "inlining_incrementally() == false" is used to signal that no inlining is allowed 2245 // (see LateInlineVirtualCallGenerator::do_late_inline_check() for details). 2246 // Tracking and verification of modified nodes is disabled by setting "_modified_nodes == nullptr" 2247 // as if "inlining_incrementally() == true" were set. 2248 assert(inlining_incrementally() == false, "not allowed"); 2249 assert(_modified_nodes == nullptr, "not allowed"); 2250 assert(_late_inlines.length() > 0, "sanity"); 2251 2252 while (_late_inlines.length() > 0) { 2253 igvn_worklist()->ensure_empty(); // should be done with igvn 2254 2255 while (inline_incrementally_one()) { 2256 assert(!failing_internal() || failure_is_artificial(), "inconsistent"); 2257 } 2258 if (failing()) return; 2259 2260 inline_incrementally_cleanup(igvn); 2261 } 2262 } 2263 2264 bool Compile::optimize_loops(PhaseIterGVN& igvn, LoopOptsMode mode) { 2265 if (_loop_opts_cnt > 0) { 2266 while (major_progress() && (_loop_opts_cnt > 0)) { 2267 TracePhase tp(_t_idealLoop); 2268 PhaseIdealLoop::optimize(igvn, mode); 2269 _loop_opts_cnt--; 2270 if (failing()) return false; 2271 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2); 2272 } 2273 } 2274 return true; 2275 } 2276 2277 // Remove edges from "root" to each SafePoint at a backward branch. 2278 // They were inserted during parsing (see add_safepoint()) to make 2279 // infinite loops without calls or exceptions visible to root, i.e., 2280 // useful. 2281 void Compile::remove_root_to_sfpts_edges(PhaseIterGVN& igvn) { 2282 Node *r = root(); 2283 if (r != nullptr) { 2284 for (uint i = r->req(); i < r->len(); ++i) { 2285 Node *n = r->in(i); 2286 if (n != nullptr && n->is_SafePoint()) { 2287 r->rm_prec(i); 2288 if (n->outcnt() == 0) { 2289 igvn.remove_dead_node(n); 2290 } 2291 --i; 2292 } 2293 } 2294 // Parsing may have added top inputs to the root node (Path 2295 // leading to the Halt node proven dead). Make sure we get a 2296 // chance to clean them up. 2297 igvn._worklist.push(r); 2298 igvn.optimize(); 2299 } 2300 } 2301 2302 //------------------------------Optimize--------------------------------------- 2303 // Given a graph, optimize it. 2304 void Compile::Optimize() { 2305 TracePhase tp(_t_optimizer); 2306 2307 #ifndef PRODUCT 2308 if (env()->break_at_compile()) { 2309 BREAKPOINT; 2310 } 2311 2312 #endif 2313 2314 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 2315 #ifdef ASSERT 2316 bs->verify_gc_barriers(this, BarrierSetC2::BeforeOptimize); 2317 #endif 2318 2319 ResourceMark rm; 2320 2321 NOT_PRODUCT( verify_graph_edges(); ) 2322 2323 print_method(PHASE_AFTER_PARSING, 1); 2324 2325 { 2326 // Iterative Global Value Numbering, including ideal transforms 2327 // Initialize IterGVN with types and values from parse-time GVN 2328 PhaseIterGVN igvn(initial_gvn()); 2329 #ifdef ASSERT 2330 _modified_nodes = new (comp_arena()) Unique_Node_List(comp_arena()); 2331 #endif 2332 { 2333 TracePhase tp(_t_iterGVN); 2334 igvn.optimize(); 2335 } 2336 2337 if (failing()) return; 2338 2339 print_method(PHASE_ITER_GVN1, 2); 2340 2341 process_for_unstable_if_traps(igvn); 2342 2343 if (failing()) return; 2344 2345 inline_incrementally(igvn); 2346 2347 print_method(PHASE_INCREMENTAL_INLINE, 2); 2348 2349 if (failing()) return; 2350 2351 if (eliminate_boxing()) { 2352 // Inline valueOf() methods now. 2353 inline_boxing_calls(igvn); 2354 2355 if (failing()) return; 2356 2357 if (AlwaysIncrementalInline || StressIncrementalInlining) { 2358 inline_incrementally(igvn); 2359 } 2360 2361 print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2); 2362 2363 if (failing()) return; 2364 } 2365 2366 // Remove the speculative part of types and clean up the graph from 2367 // the extra CastPP nodes whose only purpose is to carry them. Do 2368 // that early so that optimizations are not disrupted by the extra 2369 // CastPP nodes. 2370 remove_speculative_types(igvn); 2371 2372 if (failing()) return; 2373 2374 // No more new expensive nodes will be added to the list from here 2375 // so keep only the actual candidates for optimizations. 2376 cleanup_expensive_nodes(igvn); 2377 2378 if (failing()) return; 2379 2380 assert(EnableVectorSupport || !has_vbox_nodes(), "sanity"); 2381 if (EnableVectorSupport && has_vbox_nodes()) { 2382 TracePhase tp(_t_vector); 2383 PhaseVector pv(igvn); 2384 pv.optimize_vector_boxes(); 2385 if (failing()) return; 2386 print_method(PHASE_ITER_GVN_AFTER_VECTOR, 2); 2387 } 2388 assert(!has_vbox_nodes(), "sanity"); 2389 2390 if (!failing() && RenumberLiveNodes && live_nodes() + NodeLimitFudgeFactor < unique()) { 2391 Compile::TracePhase tp(_t_renumberLive); 2392 igvn_worklist()->ensure_empty(); // should be done with igvn 2393 { 2394 ResourceMark rm; 2395 PhaseRenumberLive prl(initial_gvn(), *igvn_worklist()); 2396 } 2397 igvn.reset_from_gvn(initial_gvn()); 2398 igvn.optimize(); 2399 if (failing()) return; 2400 } 2401 2402 // Now that all inlining is over and no PhaseRemoveUseless will run, cut edge from root to loop 2403 // safepoints 2404 remove_root_to_sfpts_edges(igvn); 2405 2406 if (failing()) return; 2407 2408 if (has_loops()) { 2409 print_method(PHASE_BEFORE_LOOP_OPTS, 2); 2410 } 2411 2412 // Perform escape analysis 2413 if (do_escape_analysis() && ConnectionGraph::has_candidates(this)) { 2414 if (has_loops()) { 2415 // Cleanup graph (remove dead nodes). 2416 TracePhase tp(_t_idealLoop); 2417 PhaseIdealLoop::optimize(igvn, LoopOptsMaxUnroll); 2418 if (failing()) return; 2419 } 2420 bool progress; 2421 print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2); 2422 do { 2423 ConnectionGraph::do_analysis(this, &igvn); 2424 2425 if (failing()) return; 2426 2427 int mcount = macro_count(); // Record number of allocations and locks before IGVN 2428 2429 // Optimize out fields loads from scalar replaceable allocations. 2430 igvn.optimize(); 2431 print_method(PHASE_ITER_GVN_AFTER_EA, 2); 2432 2433 if (failing()) return; 2434 2435 if (congraph() != nullptr && macro_count() > 0) { 2436 TracePhase tp(_t_macroEliminate); 2437 PhaseMacroExpand mexp(igvn); 2438 mexp.eliminate_macro_nodes(); 2439 if (failing()) return; 2440 2441 igvn.set_delay_transform(false); 2442 igvn.optimize(); 2443 if (failing()) return; 2444 2445 print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2); 2446 } 2447 2448 ConnectionGraph::verify_ram_nodes(this, root()); 2449 if (failing()) return; 2450 2451 progress = do_iterative_escape_analysis() && 2452 (macro_count() < mcount) && 2453 ConnectionGraph::has_candidates(this); 2454 // Try again if candidates exist and made progress 2455 // by removing some allocations and/or locks. 2456 } while (progress); 2457 } 2458 2459 // Loop transforms on the ideal graph. Range Check Elimination, 2460 // peeling, unrolling, etc. 2461 2462 // Set loop opts counter 2463 if((_loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) { 2464 { 2465 TracePhase tp(_t_idealLoop); 2466 PhaseIdealLoop::optimize(igvn, LoopOptsDefault); 2467 _loop_opts_cnt--; 2468 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2); 2469 if (failing()) return; 2470 } 2471 // Loop opts pass if partial peeling occurred in previous pass 2472 if(PartialPeelLoop && major_progress() && (_loop_opts_cnt > 0)) { 2473 TracePhase tp(_t_idealLoop); 2474 PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf); 2475 _loop_opts_cnt--; 2476 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2); 2477 if (failing()) return; 2478 } 2479 // Loop opts pass for loop-unrolling before CCP 2480 if(major_progress() && (_loop_opts_cnt > 0)) { 2481 TracePhase tp(_t_idealLoop); 2482 PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf); 2483 _loop_opts_cnt--; 2484 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2); 2485 } 2486 if (!failing()) { 2487 // Verify that last round of loop opts produced a valid graph 2488 PhaseIdealLoop::verify(igvn); 2489 } 2490 } 2491 if (failing()) return; 2492 2493 // Conditional Constant Propagation; 2494 print_method(PHASE_BEFORE_CCP1, 2); 2495 PhaseCCP ccp( &igvn ); 2496 assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)"); 2497 { 2498 TracePhase tp(_t_ccp); 2499 ccp.do_transform(); 2500 } 2501 print_method(PHASE_CCP1, 2); 2502 2503 assert( true, "Break here to ccp.dump_old2new_map()"); 2504 2505 // Iterative Global Value Numbering, including ideal transforms 2506 { 2507 TracePhase tp(_t_iterGVN2); 2508 igvn.reset_from_igvn(&ccp); 2509 igvn.optimize(); 2510 } 2511 print_method(PHASE_ITER_GVN2, 2); 2512 2513 if (failing()) return; 2514 2515 // Loop transforms on the ideal graph. Range Check Elimination, 2516 // peeling, unrolling, etc. 2517 if (!optimize_loops(igvn, LoopOptsDefault)) { 2518 return; 2519 } 2520 2521 if (failing()) return; 2522 2523 C->clear_major_progress(); // ensure that major progress is now clear 2524 2525 process_for_post_loop_opts_igvn(igvn); 2526 2527 process_for_merge_stores_igvn(igvn); 2528 2529 if (failing()) return; 2530 2531 #ifdef ASSERT 2532 bs->verify_gc_barriers(this, BarrierSetC2::BeforeMacroExpand); 2533 #endif 2534 2535 { 2536 TracePhase tp(_t_macroExpand); 2537 print_method(PHASE_BEFORE_MACRO_EXPANSION, 3); 2538 PhaseMacroExpand mex(igvn); 2539 if (mex.expand_macro_nodes()) { 2540 assert(failing(), "must bail out w/ explicit message"); 2541 return; 2542 } 2543 print_method(PHASE_AFTER_MACRO_EXPANSION, 2); 2544 } 2545 2546 { 2547 TracePhase tp(_t_barrierExpand); 2548 if (bs->expand_barriers(this, igvn)) { 2549 assert(failing(), "must bail out w/ explicit message"); 2550 return; 2551 } 2552 print_method(PHASE_BARRIER_EXPANSION, 2); 2553 } 2554 2555 if (C->max_vector_size() > 0) { 2556 C->optimize_logic_cones(igvn); 2557 igvn.optimize(); 2558 if (failing()) return; 2559 } 2560 2561 DEBUG_ONLY( _modified_nodes = nullptr; ) 2562 2563 assert(igvn._worklist.size() == 0, "not empty"); 2564 2565 assert(_late_inlines.length() == 0 || IncrementalInlineMH || IncrementalInlineVirtual, "not empty"); 2566 2567 if (_late_inlines.length() > 0) { 2568 // More opportunities to optimize virtual and MH calls. 2569 // Though it's maybe too late to perform inlining, strength-reducing them to direct calls is still an option. 2570 process_late_inline_calls_no_inline(igvn); 2571 if (failing()) return; 2572 } 2573 } // (End scope of igvn; run destructor if necessary for asserts.) 2574 2575 check_no_dead_use(); 2576 2577 // We will never use the NodeHash table any more. Clear it so that final_graph_reshaping does not have 2578 // to remove hashes to unlock nodes for modifications. 2579 C->node_hash()->clear(); 2580 2581 // A method with only infinite loops has no edges entering loops from root 2582 { 2583 TracePhase tp(_t_graphReshaping); 2584 if (final_graph_reshaping()) { 2585 assert(failing(), "must bail out w/ explicit message"); 2586 return; 2587 } 2588 } 2589 2590 print_method(PHASE_OPTIMIZE_FINISHED, 2); 2591 DEBUG_ONLY(set_phase_optimize_finished();) 2592 } 2593 2594 #ifdef ASSERT 2595 void Compile::check_no_dead_use() const { 2596 ResourceMark rm; 2597 Unique_Node_List wq; 2598 wq.push(root()); 2599 for (uint i = 0; i < wq.size(); ++i) { 2600 Node* n = wq.at(i); 2601 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) { 2602 Node* u = n->fast_out(j); 2603 if (u->outcnt() == 0 && !u->is_Con()) { 2604 u->dump(); 2605 fatal("no reachable node should have no use"); 2606 } 2607 wq.push(u); 2608 } 2609 } 2610 } 2611 #endif 2612 2613 void Compile::inline_vector_reboxing_calls() { 2614 if (C->_vector_reboxing_late_inlines.length() > 0) { 2615 _late_inlines_pos = C->_late_inlines.length(); 2616 while (_vector_reboxing_late_inlines.length() > 0) { 2617 CallGenerator* cg = _vector_reboxing_late_inlines.pop(); 2618 cg->do_late_inline(); 2619 if (failing()) return; 2620 print_method(PHASE_INLINE_VECTOR_REBOX, 3, cg->call_node()); 2621 } 2622 _vector_reboxing_late_inlines.trunc_to(0); 2623 } 2624 } 2625 2626 bool Compile::has_vbox_nodes() { 2627 if (C->_vector_reboxing_late_inlines.length() > 0) { 2628 return true; 2629 } 2630 for (int macro_idx = C->macro_count() - 1; macro_idx >= 0; macro_idx--) { 2631 Node * n = C->macro_node(macro_idx); 2632 assert(n->is_macro(), "only macro nodes expected here"); 2633 if (n->Opcode() == Op_VectorUnbox || n->Opcode() == Op_VectorBox || n->Opcode() == Op_VectorBoxAllocate) { 2634 return true; 2635 } 2636 } 2637 return false; 2638 } 2639 2640 //---------------------------- Bitwise operation packing optimization --------------------------- 2641 2642 static bool is_vector_unary_bitwise_op(Node* n) { 2643 return n->Opcode() == Op_XorV && 2644 VectorNode::is_vector_bitwise_not_pattern(n); 2645 } 2646 2647 static bool is_vector_binary_bitwise_op(Node* n) { 2648 switch (n->Opcode()) { 2649 case Op_AndV: 2650 case Op_OrV: 2651 return true; 2652 2653 case Op_XorV: 2654 return !is_vector_unary_bitwise_op(n); 2655 2656 default: 2657 return false; 2658 } 2659 } 2660 2661 static bool is_vector_ternary_bitwise_op(Node* n) { 2662 return n->Opcode() == Op_MacroLogicV; 2663 } 2664 2665 static bool is_vector_bitwise_op(Node* n) { 2666 return is_vector_unary_bitwise_op(n) || 2667 is_vector_binary_bitwise_op(n) || 2668 is_vector_ternary_bitwise_op(n); 2669 } 2670 2671 static bool is_vector_bitwise_cone_root(Node* n) { 2672 if (n->bottom_type()->isa_vectmask() || !is_vector_bitwise_op(n)) { 2673 return false; 2674 } 2675 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 2676 if (is_vector_bitwise_op(n->fast_out(i))) { 2677 return false; 2678 } 2679 } 2680 return true; 2681 } 2682 2683 static uint collect_unique_inputs(Node* n, Unique_Node_List& inputs) { 2684 uint cnt = 0; 2685 if (is_vector_bitwise_op(n)) { 2686 uint inp_cnt = n->is_predicated_vector() ? n->req()-1 : n->req(); 2687 if (VectorNode::is_vector_bitwise_not_pattern(n)) { 2688 for (uint i = 1; i < inp_cnt; i++) { 2689 Node* in = n->in(i); 2690 bool skip = VectorNode::is_all_ones_vector(in); 2691 if (!skip && !inputs.member(in)) { 2692 inputs.push(in); 2693 cnt++; 2694 } 2695 } 2696 assert(cnt <= 1, "not unary"); 2697 } else { 2698 uint last_req = inp_cnt; 2699 if (is_vector_ternary_bitwise_op(n)) { 2700 last_req = inp_cnt - 1; // skip last input 2701 } 2702 for (uint i = 1; i < last_req; i++) { 2703 Node* def = n->in(i); 2704 if (!inputs.member(def)) { 2705 inputs.push(def); 2706 cnt++; 2707 } 2708 } 2709 } 2710 } else { // not a bitwise operations 2711 if (!inputs.member(n)) { 2712 inputs.push(n); 2713 cnt++; 2714 } 2715 } 2716 return cnt; 2717 } 2718 2719 void Compile::collect_logic_cone_roots(Unique_Node_List& list) { 2720 Unique_Node_List useful_nodes; 2721 C->identify_useful_nodes(useful_nodes); 2722 2723 for (uint i = 0; i < useful_nodes.size(); i++) { 2724 Node* n = useful_nodes.at(i); 2725 if (is_vector_bitwise_cone_root(n)) { 2726 list.push(n); 2727 } 2728 } 2729 } 2730 2731 Node* Compile::xform_to_MacroLogicV(PhaseIterGVN& igvn, 2732 const TypeVect* vt, 2733 Unique_Node_List& partition, 2734 Unique_Node_List& inputs) { 2735 assert(partition.size() == 2 || partition.size() == 3, "not supported"); 2736 assert(inputs.size() == 2 || inputs.size() == 3, "not supported"); 2737 assert(Matcher::match_rule_supported_vector(Op_MacroLogicV, vt->length(), vt->element_basic_type()), "not supported"); 2738 2739 Node* in1 = inputs.at(0); 2740 Node* in2 = inputs.at(1); 2741 Node* in3 = (inputs.size() == 3 ? inputs.at(2) : in2); 2742 2743 uint func = compute_truth_table(partition, inputs); 2744 2745 Node* pn = partition.at(partition.size() - 1); 2746 Node* mask = pn->is_predicated_vector() ? pn->in(pn->req()-1) : nullptr; 2747 return igvn.transform(MacroLogicVNode::make(igvn, in1, in2, in3, mask, func, vt)); 2748 } 2749 2750 static uint extract_bit(uint func, uint pos) { 2751 return (func & (1 << pos)) >> pos; 2752 } 2753 2754 // 2755 // A macro logic node represents a truth table. It has 4 inputs, 2756 // First three inputs corresponds to 3 columns of a truth table 2757 // and fourth input captures the logic function. 2758 // 2759 // eg. fn = (in1 AND in2) OR in3; 2760 // 2761 // MacroNode(in1,in2,in3,fn) 2762 // 2763 // ----------------- 2764 // in1 in2 in3 fn 2765 // ----------------- 2766 // 0 0 0 0 2767 // 0 0 1 1 2768 // 0 1 0 0 2769 // 0 1 1 1 2770 // 1 0 0 0 2771 // 1 0 1 1 2772 // 1 1 0 1 2773 // 1 1 1 1 2774 // 2775 2776 uint Compile::eval_macro_logic_op(uint func, uint in1 , uint in2, uint in3) { 2777 int res = 0; 2778 for (int i = 0; i < 8; i++) { 2779 int bit1 = extract_bit(in1, i); 2780 int bit2 = extract_bit(in2, i); 2781 int bit3 = extract_bit(in3, i); 2782 2783 int func_bit_pos = (bit1 << 2 | bit2 << 1 | bit3); 2784 int func_bit = extract_bit(func, func_bit_pos); 2785 2786 res |= func_bit << i; 2787 } 2788 return res; 2789 } 2790 2791 static uint eval_operand(Node* n, ResourceHashtable<Node*,uint>& eval_map) { 2792 assert(n != nullptr, ""); 2793 assert(eval_map.contains(n), "absent"); 2794 return *(eval_map.get(n)); 2795 } 2796 2797 static void eval_operands(Node* n, 2798 uint& func1, uint& func2, uint& func3, 2799 ResourceHashtable<Node*,uint>& eval_map) { 2800 assert(is_vector_bitwise_op(n), ""); 2801 2802 if (is_vector_unary_bitwise_op(n)) { 2803 Node* opnd = n->in(1); 2804 if (VectorNode::is_vector_bitwise_not_pattern(n) && VectorNode::is_all_ones_vector(opnd)) { 2805 opnd = n->in(2); 2806 } 2807 func1 = eval_operand(opnd, eval_map); 2808 } else if (is_vector_binary_bitwise_op(n)) { 2809 func1 = eval_operand(n->in(1), eval_map); 2810 func2 = eval_operand(n->in(2), eval_map); 2811 } else { 2812 assert(is_vector_ternary_bitwise_op(n), "unknown operation"); 2813 func1 = eval_operand(n->in(1), eval_map); 2814 func2 = eval_operand(n->in(2), eval_map); 2815 func3 = eval_operand(n->in(3), eval_map); 2816 } 2817 } 2818 2819 uint Compile::compute_truth_table(Unique_Node_List& partition, Unique_Node_List& inputs) { 2820 assert(inputs.size() <= 3, "sanity"); 2821 ResourceMark rm; 2822 uint res = 0; 2823 ResourceHashtable<Node*,uint> eval_map; 2824 2825 // Populate precomputed functions for inputs. 2826 // Each input corresponds to one column of 3 input truth-table. 2827 uint input_funcs[] = { 0xAA, // (_, _, c) -> c 2828 0xCC, // (_, b, _) -> b 2829 0xF0 }; // (a, _, _) -> a 2830 for (uint i = 0; i < inputs.size(); i++) { 2831 eval_map.put(inputs.at(i), input_funcs[2-i]); 2832 } 2833 2834 for (uint i = 0; i < partition.size(); i++) { 2835 Node* n = partition.at(i); 2836 2837 uint func1 = 0, func2 = 0, func3 = 0; 2838 eval_operands(n, func1, func2, func3, eval_map); 2839 2840 switch (n->Opcode()) { 2841 case Op_OrV: 2842 assert(func3 == 0, "not binary"); 2843 res = func1 | func2; 2844 break; 2845 case Op_AndV: 2846 assert(func3 == 0, "not binary"); 2847 res = func1 & func2; 2848 break; 2849 case Op_XorV: 2850 if (VectorNode::is_vector_bitwise_not_pattern(n)) { 2851 assert(func2 == 0 && func3 == 0, "not unary"); 2852 res = (~func1) & 0xFF; 2853 } else { 2854 assert(func3 == 0, "not binary"); 2855 res = func1 ^ func2; 2856 } 2857 break; 2858 case Op_MacroLogicV: 2859 // Ordering of inputs may change during evaluation of sub-tree 2860 // containing MacroLogic node as a child node, thus a re-evaluation 2861 // makes sure that function is evaluated in context of current 2862 // inputs. 2863 res = eval_macro_logic_op(n->in(4)->get_int(), func1, func2, func3); 2864 break; 2865 2866 default: assert(false, "not supported: %s", n->Name()); 2867 } 2868 assert(res <= 0xFF, "invalid"); 2869 eval_map.put(n, res); 2870 } 2871 return res; 2872 } 2873 2874 // Criteria under which nodes gets packed into a macro logic node:- 2875 // 1) Parent and both child nodes are all unmasked or masked with 2876 // same predicates. 2877 // 2) Masked parent can be packed with left child if it is predicated 2878 // and both have same predicates. 2879 // 3) Masked parent can be packed with right child if its un-predicated 2880 // or has matching predication condition. 2881 // 4) An unmasked parent can be packed with an unmasked child. 2882 bool Compile::compute_logic_cone(Node* n, Unique_Node_List& partition, Unique_Node_List& inputs) { 2883 assert(partition.size() == 0, "not empty"); 2884 assert(inputs.size() == 0, "not empty"); 2885 if (is_vector_ternary_bitwise_op(n)) { 2886 return false; 2887 } 2888 2889 bool is_unary_op = is_vector_unary_bitwise_op(n); 2890 if (is_unary_op) { 2891 assert(collect_unique_inputs(n, inputs) == 1, "not unary"); 2892 return false; // too few inputs 2893 } 2894 2895 bool pack_left_child = true; 2896 bool pack_right_child = true; 2897 2898 bool left_child_LOP = is_vector_bitwise_op(n->in(1)); 2899 bool right_child_LOP = is_vector_bitwise_op(n->in(2)); 2900 2901 int left_child_input_cnt = 0; 2902 int right_child_input_cnt = 0; 2903 2904 bool parent_is_predicated = n->is_predicated_vector(); 2905 bool left_child_predicated = n->in(1)->is_predicated_vector(); 2906 bool right_child_predicated = n->in(2)->is_predicated_vector(); 2907 2908 Node* parent_pred = parent_is_predicated ? n->in(n->req()-1) : nullptr; 2909 Node* left_child_pred = left_child_predicated ? n->in(1)->in(n->in(1)->req()-1) : nullptr; 2910 Node* right_child_pred = right_child_predicated ? n->in(1)->in(n->in(1)->req()-1) : nullptr; 2911 2912 do { 2913 if (pack_left_child && left_child_LOP && 2914 ((!parent_is_predicated && !left_child_predicated) || 2915 ((parent_is_predicated && left_child_predicated && 2916 parent_pred == left_child_pred)))) { 2917 partition.push(n->in(1)); 2918 left_child_input_cnt = collect_unique_inputs(n->in(1), inputs); 2919 } else { 2920 inputs.push(n->in(1)); 2921 left_child_input_cnt = 1; 2922 } 2923 2924 if (pack_right_child && right_child_LOP && 2925 (!right_child_predicated || 2926 (right_child_predicated && parent_is_predicated && 2927 parent_pred == right_child_pred))) { 2928 partition.push(n->in(2)); 2929 right_child_input_cnt = collect_unique_inputs(n->in(2), inputs); 2930 } else { 2931 inputs.push(n->in(2)); 2932 right_child_input_cnt = 1; 2933 } 2934 2935 if (inputs.size() > 3) { 2936 assert(partition.size() > 0, ""); 2937 inputs.clear(); 2938 partition.clear(); 2939 if (left_child_input_cnt > right_child_input_cnt) { 2940 pack_left_child = false; 2941 } else { 2942 pack_right_child = false; 2943 } 2944 } else { 2945 break; 2946 } 2947 } while(true); 2948 2949 if(partition.size()) { 2950 partition.push(n); 2951 } 2952 2953 return (partition.size() == 2 || partition.size() == 3) && 2954 (inputs.size() == 2 || inputs.size() == 3); 2955 } 2956 2957 void Compile::process_logic_cone_root(PhaseIterGVN &igvn, Node *n, VectorSet &visited) { 2958 assert(is_vector_bitwise_op(n), "not a root"); 2959 2960 visited.set(n->_idx); 2961 2962 // 1) Do a DFS walk over the logic cone. 2963 for (uint i = 1; i < n->req(); i++) { 2964 Node* in = n->in(i); 2965 if (!visited.test(in->_idx) && is_vector_bitwise_op(in)) { 2966 process_logic_cone_root(igvn, in, visited); 2967 } 2968 } 2969 2970 // 2) Bottom up traversal: Merge node[s] with 2971 // the parent to form macro logic node. 2972 Unique_Node_List partition; 2973 Unique_Node_List inputs; 2974 if (compute_logic_cone(n, partition, inputs)) { 2975 const TypeVect* vt = n->bottom_type()->is_vect(); 2976 Node* pn = partition.at(partition.size() - 1); 2977 Node* mask = pn->is_predicated_vector() ? pn->in(pn->req()-1) : nullptr; 2978 if (mask == nullptr || 2979 Matcher::match_rule_supported_vector_masked(Op_MacroLogicV, vt->length(), vt->element_basic_type())) { 2980 Node* macro_logic = xform_to_MacroLogicV(igvn, vt, partition, inputs); 2981 VectorNode::trace_new_vector(macro_logic, "MacroLogic"); 2982 igvn.replace_node(n, macro_logic); 2983 } 2984 } 2985 } 2986 2987 void Compile::optimize_logic_cones(PhaseIterGVN &igvn) { 2988 ResourceMark rm; 2989 if (Matcher::match_rule_supported(Op_MacroLogicV)) { 2990 Unique_Node_List list; 2991 collect_logic_cone_roots(list); 2992 2993 while (list.size() > 0) { 2994 Node* n = list.pop(); 2995 const TypeVect* vt = n->bottom_type()->is_vect(); 2996 bool supported = Matcher::match_rule_supported_vector(Op_MacroLogicV, vt->length(), vt->element_basic_type()); 2997 if (supported) { 2998 VectorSet visited(comp_arena()); 2999 process_logic_cone_root(igvn, n, visited); 3000 } 3001 } 3002 } 3003 } 3004 3005 //------------------------------Code_Gen--------------------------------------- 3006 // Given a graph, generate code for it 3007 void Compile::Code_Gen() { 3008 if (failing()) { 3009 return; 3010 } 3011 3012 // Perform instruction selection. You might think we could reclaim Matcher 3013 // memory PDQ, but actually the Matcher is used in generating spill code. 3014 // Internals of the Matcher (including some VectorSets) must remain live 3015 // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage 3016 // set a bit in reclaimed memory. 3017 3018 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine 3019 // nodes. Mapping is only valid at the root of each matched subtree. 3020 NOT_PRODUCT( verify_graph_edges(); ) 3021 3022 Matcher matcher; 3023 _matcher = &matcher; 3024 { 3025 TracePhase tp(_t_matcher); 3026 matcher.match(); 3027 if (failing()) { 3028 return; 3029 } 3030 } 3031 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine 3032 // nodes. Mapping is only valid at the root of each matched subtree. 3033 NOT_PRODUCT( verify_graph_edges(); ) 3034 3035 // If you have too many nodes, or if matching has failed, bail out 3036 check_node_count(0, "out of nodes matching instructions"); 3037 if (failing()) { 3038 return; 3039 } 3040 3041 print_method(PHASE_MATCHING, 2); 3042 3043 // Build a proper-looking CFG 3044 PhaseCFG cfg(node_arena(), root(), matcher); 3045 if (failing()) { 3046 return; 3047 } 3048 _cfg = &cfg; 3049 { 3050 TracePhase tp(_t_scheduler); 3051 bool success = cfg.do_global_code_motion(); 3052 if (!success) { 3053 return; 3054 } 3055 3056 print_method(PHASE_GLOBAL_CODE_MOTION, 2); 3057 NOT_PRODUCT( verify_graph_edges(); ) 3058 cfg.verify(); 3059 if (failing()) { 3060 return; 3061 } 3062 } 3063 3064 PhaseChaitin regalloc(unique(), cfg, matcher, false); 3065 _regalloc = ®alloc; 3066 { 3067 TracePhase tp(_t_registerAllocation); 3068 // Perform register allocation. After Chaitin, use-def chains are 3069 // no longer accurate (at spill code) and so must be ignored. 3070 // Node->LRG->reg mappings are still accurate. 3071 _regalloc->Register_Allocate(); 3072 3073 // Bail out if the allocator builds too many nodes 3074 if (failing()) { 3075 return; 3076 } 3077 3078 print_method(PHASE_REGISTER_ALLOCATION, 2); 3079 } 3080 3081 // Prior to register allocation we kept empty basic blocks in case the 3082 // the allocator needed a place to spill. After register allocation we 3083 // are not adding any new instructions. If any basic block is empty, we 3084 // can now safely remove it. 3085 { 3086 TracePhase tp(_t_blockOrdering); 3087 cfg.remove_empty_blocks(); 3088 if (do_freq_based_layout()) { 3089 PhaseBlockLayout layout(cfg); 3090 } else { 3091 cfg.set_loop_alignment(); 3092 } 3093 cfg.fixup_flow(); 3094 cfg.remove_unreachable_blocks(); 3095 cfg.verify_dominator_tree(); 3096 print_method(PHASE_BLOCK_ORDERING, 3); 3097 } 3098 3099 // Apply peephole optimizations 3100 if( OptoPeephole ) { 3101 TracePhase tp(_t_peephole); 3102 PhasePeephole peep( _regalloc, cfg); 3103 peep.do_transform(); 3104 print_method(PHASE_PEEPHOLE, 3); 3105 } 3106 3107 // Do late expand if CPU requires this. 3108 if (Matcher::require_postalloc_expand) { 3109 TracePhase tp(_t_postalloc_expand); 3110 cfg.postalloc_expand(_regalloc); 3111 print_method(PHASE_POSTALLOC_EXPAND, 3); 3112 } 3113 3114 #ifdef ASSERT 3115 { 3116 CompilationMemoryStatistic::do_test_allocations(); 3117 if (failing()) return; 3118 } 3119 #endif 3120 3121 // Convert Nodes to instruction bits in a buffer 3122 { 3123 TracePhase tp(_t_output); 3124 PhaseOutput output; 3125 output.Output(); 3126 if (failing()) return; 3127 output.install(); 3128 print_method(PHASE_FINAL_CODE, 1); // Compile::_output is not null here 3129 } 3130 3131 // He's dead, Jim. 3132 _cfg = (PhaseCFG*)((intptr_t)0xdeadbeef); 3133 _regalloc = (PhaseChaitin*)((intptr_t)0xdeadbeef); 3134 } 3135 3136 //------------------------------Final_Reshape_Counts--------------------------- 3137 // This class defines counters to help identify when a method 3138 // may/must be executed using hardware with only 24-bit precision. 3139 struct Final_Reshape_Counts : public StackObj { 3140 int _call_count; // count non-inlined 'common' calls 3141 int _float_count; // count float ops requiring 24-bit precision 3142 int _double_count; // count double ops requiring more precision 3143 int _java_call_count; // count non-inlined 'java' calls 3144 int _inner_loop_count; // count loops which need alignment 3145 VectorSet _visited; // Visitation flags 3146 Node_List _tests; // Set of IfNodes & PCTableNodes 3147 3148 Final_Reshape_Counts() : 3149 _call_count(0), _float_count(0), _double_count(0), 3150 _java_call_count(0), _inner_loop_count(0) { } 3151 3152 void inc_call_count () { _call_count ++; } 3153 void inc_float_count () { _float_count ++; } 3154 void inc_double_count() { _double_count++; } 3155 void inc_java_call_count() { _java_call_count++; } 3156 void inc_inner_loop_count() { _inner_loop_count++; } 3157 3158 int get_call_count () const { return _call_count ; } 3159 int get_float_count () const { return _float_count ; } 3160 int get_double_count() const { return _double_count; } 3161 int get_java_call_count() const { return _java_call_count; } 3162 int get_inner_loop_count() const { return _inner_loop_count; } 3163 }; 3164 3165 //------------------------------final_graph_reshaping_impl---------------------- 3166 // Implement items 1-5 from final_graph_reshaping below. 3167 void Compile::final_graph_reshaping_impl(Node *n, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes) { 3168 3169 if ( n->outcnt() == 0 ) return; // dead node 3170 uint nop = n->Opcode(); 3171 3172 // Check for 2-input instruction with "last use" on right input. 3173 // Swap to left input. Implements item (2). 3174 if( n->req() == 3 && // two-input instruction 3175 n->in(1)->outcnt() > 1 && // left use is NOT a last use 3176 (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop 3177 n->in(2)->outcnt() == 1 &&// right use IS a last use 3178 !n->in(2)->is_Con() ) { // right use is not a constant 3179 // Check for commutative opcode 3180 switch( nop ) { 3181 case Op_AddI: case Op_AddF: case Op_AddD: case Op_AddL: 3182 case Op_MaxI: case Op_MaxL: case Op_MaxF: case Op_MaxD: 3183 case Op_MinI: case Op_MinL: case Op_MinF: case Op_MinD: 3184 case Op_MulI: case Op_MulF: case Op_MulD: case Op_MulL: 3185 case Op_AndL: case Op_XorL: case Op_OrL: 3186 case Op_AndI: case Op_XorI: case Op_OrI: { 3187 // Move "last use" input to left by swapping inputs 3188 n->swap_edges(1, 2); 3189 break; 3190 } 3191 default: 3192 break; 3193 } 3194 } 3195 3196 #ifdef ASSERT 3197 if( n->is_Mem() ) { 3198 int alias_idx = get_alias_index(n->as_Mem()->adr_type()); 3199 assert( n->in(0) != nullptr || alias_idx != Compile::AliasIdxRaw || 3200 // oop will be recorded in oop map if load crosses safepoint 3201 (n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() || 3202 LoadNode::is_immutable_value(n->in(MemNode::Address)))), 3203 "raw memory operations should have control edge"); 3204 } 3205 if (n->is_MemBar()) { 3206 MemBarNode* mb = n->as_MemBar(); 3207 if (mb->trailing_store() || mb->trailing_load_store()) { 3208 assert(mb->leading_membar()->trailing_membar() == mb, "bad membar pair"); 3209 Node* mem = BarrierSet::barrier_set()->barrier_set_c2()->step_over_gc_barrier(mb->in(MemBarNode::Precedent)); 3210 assert((mb->trailing_store() && mem->is_Store() && mem->as_Store()->is_release()) || 3211 (mb->trailing_load_store() && mem->is_LoadStore()), "missing mem op"); 3212 } else if (mb->leading()) { 3213 assert(mb->trailing_membar()->leading_membar() == mb, "bad membar pair"); 3214 } 3215 } 3216 #endif 3217 // Count FPU ops and common calls, implements item (3) 3218 bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->final_graph_reshaping(this, n, nop, dead_nodes); 3219 if (!gc_handled) { 3220 final_graph_reshaping_main_switch(n, frc, nop, dead_nodes); 3221 } 3222 3223 // Collect CFG split points 3224 if (n->is_MultiBranch() && !n->is_RangeCheck()) { 3225 frc._tests.push(n); 3226 } 3227 } 3228 3229 void Compile::handle_div_mod_op(Node* n, BasicType bt, bool is_unsigned) { 3230 if (!UseDivMod) { 3231 return; 3232 } 3233 3234 // Check if "a % b" and "a / b" both exist 3235 Node* d = n->find_similar(Op_DivIL(bt, is_unsigned)); 3236 if (d == nullptr) { 3237 return; 3238 } 3239 3240 // Replace them with a fused divmod if supported 3241 if (Matcher::has_match_rule(Op_DivModIL(bt, is_unsigned))) { 3242 DivModNode* divmod = DivModNode::make(n, bt, is_unsigned); 3243 // If the divisor input for a Div (or Mod etc.) is not zero, then the control input of the Div is set to zero. 3244 // It could be that the divisor input is found not zero because its type is narrowed down by a CastII in the 3245 // subgraph for that input. Range check CastIIs are removed during final graph reshape. To preserve the dependency 3246 // carried by a CastII, precedence edges are added to the Div node. We need to transfer the precedence edges to the 3247 // DivMod node so the dependency is not lost. 3248 divmod->add_prec_from(n); 3249 divmod->add_prec_from(d); 3250 d->subsume_by(divmod->div_proj(), this); 3251 n->subsume_by(divmod->mod_proj(), this); 3252 } else { 3253 // Replace "a % b" with "a - ((a / b) * b)" 3254 Node* mult = MulNode::make(d, d->in(2), bt); 3255 Node* sub = SubNode::make(d->in(1), mult, bt); 3256 n->subsume_by(sub, this); 3257 } 3258 } 3259 3260 void Compile::final_graph_reshaping_main_switch(Node* n, Final_Reshape_Counts& frc, uint nop, Unique_Node_List& dead_nodes) { 3261 switch( nop ) { 3262 // Count all float operations that may use FPU 3263 case Op_AddF: 3264 case Op_SubF: 3265 case Op_MulF: 3266 case Op_DivF: 3267 case Op_NegF: 3268 case Op_ModF: 3269 case Op_ConvI2F: 3270 case Op_ConF: 3271 case Op_CmpF: 3272 case Op_CmpF3: 3273 case Op_StoreF: 3274 case Op_LoadF: 3275 // case Op_ConvL2F: // longs are split into 32-bit halves 3276 frc.inc_float_count(); 3277 break; 3278 3279 case Op_ConvF2D: 3280 case Op_ConvD2F: 3281 frc.inc_float_count(); 3282 frc.inc_double_count(); 3283 break; 3284 3285 // Count all double operations that may use FPU 3286 case Op_AddD: 3287 case Op_SubD: 3288 case Op_MulD: 3289 case Op_DivD: 3290 case Op_NegD: 3291 case Op_ModD: 3292 case Op_ConvI2D: 3293 case Op_ConvD2I: 3294 // case Op_ConvL2D: // handled by leaf call 3295 // case Op_ConvD2L: // handled by leaf call 3296 case Op_ConD: 3297 case Op_CmpD: 3298 case Op_CmpD3: 3299 case Op_StoreD: 3300 case Op_LoadD: 3301 case Op_LoadD_unaligned: 3302 frc.inc_double_count(); 3303 break; 3304 case Op_Opaque1: // Remove Opaque Nodes before matching 3305 n->subsume_by(n->in(1), this); 3306 break; 3307 case Op_CallStaticJava: 3308 case Op_CallJava: 3309 case Op_CallDynamicJava: 3310 frc.inc_java_call_count(); // Count java call site; 3311 case Op_CallRuntime: 3312 case Op_CallLeaf: 3313 case Op_CallLeafVector: 3314 case Op_CallLeafNoFP: { 3315 assert (n->is_Call(), ""); 3316 CallNode *call = n->as_Call(); 3317 // Count call sites where the FP mode bit would have to be flipped. 3318 // Do not count uncommon runtime calls: 3319 // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking, 3320 // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ... 3321 if (!call->is_CallStaticJava() || !call->as_CallStaticJava()->_name) { 3322 frc.inc_call_count(); // Count the call site 3323 } else { // See if uncommon argument is shared 3324 Node *n = call->in(TypeFunc::Parms); 3325 int nop = n->Opcode(); 3326 // Clone shared simple arguments to uncommon calls, item (1). 3327 if (n->outcnt() > 1 && 3328 !n->is_Proj() && 3329 nop != Op_CreateEx && 3330 nop != Op_CheckCastPP && 3331 nop != Op_DecodeN && 3332 nop != Op_DecodeNKlass && 3333 !n->is_Mem() && 3334 !n->is_Phi()) { 3335 Node *x = n->clone(); 3336 call->set_req(TypeFunc::Parms, x); 3337 } 3338 } 3339 break; 3340 } 3341 case Op_StoreB: 3342 case Op_StoreC: 3343 case Op_StoreI: 3344 case Op_StoreL: 3345 case Op_CompareAndSwapB: 3346 case Op_CompareAndSwapS: 3347 case Op_CompareAndSwapI: 3348 case Op_CompareAndSwapL: 3349 case Op_CompareAndSwapP: 3350 case Op_CompareAndSwapN: 3351 case Op_WeakCompareAndSwapB: 3352 case Op_WeakCompareAndSwapS: 3353 case Op_WeakCompareAndSwapI: 3354 case Op_WeakCompareAndSwapL: 3355 case Op_WeakCompareAndSwapP: 3356 case Op_WeakCompareAndSwapN: 3357 case Op_CompareAndExchangeB: 3358 case Op_CompareAndExchangeS: 3359 case Op_CompareAndExchangeI: 3360 case Op_CompareAndExchangeL: 3361 case Op_CompareAndExchangeP: 3362 case Op_CompareAndExchangeN: 3363 case Op_GetAndAddS: 3364 case Op_GetAndAddB: 3365 case Op_GetAndAddI: 3366 case Op_GetAndAddL: 3367 case Op_GetAndSetS: 3368 case Op_GetAndSetB: 3369 case Op_GetAndSetI: 3370 case Op_GetAndSetL: 3371 case Op_GetAndSetP: 3372 case Op_GetAndSetN: 3373 case Op_StoreP: 3374 case Op_StoreN: 3375 case Op_StoreNKlass: 3376 case Op_LoadB: 3377 case Op_LoadUB: 3378 case Op_LoadUS: 3379 case Op_LoadI: 3380 case Op_LoadKlass: 3381 case Op_LoadNKlass: 3382 case Op_LoadL: 3383 case Op_LoadL_unaligned: 3384 case Op_LoadP: 3385 case Op_LoadN: 3386 case Op_LoadRange: 3387 case Op_LoadS: 3388 break; 3389 3390 case Op_AddP: { // Assert sane base pointers 3391 Node *addp = n->in(AddPNode::Address); 3392 assert( !addp->is_AddP() || 3393 addp->in(AddPNode::Base)->is_top() || // Top OK for allocation 3394 addp->in(AddPNode::Base) == n->in(AddPNode::Base), 3395 "Base pointers must match (addp %u)", addp->_idx ); 3396 #ifdef _LP64 3397 if ((UseCompressedOops || UseCompressedClassPointers) && 3398 addp->Opcode() == Op_ConP && 3399 addp == n->in(AddPNode::Base) && 3400 n->in(AddPNode::Offset)->is_Con()) { 3401 // If the transformation of ConP to ConN+DecodeN is beneficial depends 3402 // on the platform and on the compressed oops mode. 3403 // Use addressing with narrow klass to load with offset on x86. 3404 // Some platforms can use the constant pool to load ConP. 3405 // Do this transformation here since IGVN will convert ConN back to ConP. 3406 const Type* t = addp->bottom_type(); 3407 bool is_oop = t->isa_oopptr() != nullptr; 3408 bool is_klass = t->isa_klassptr() != nullptr; 3409 3410 if ((is_oop && UseCompressedOops && Matcher::const_oop_prefer_decode() ) || 3411 (is_klass && UseCompressedClassPointers && Matcher::const_klass_prefer_decode() && 3412 t->isa_klassptr()->exact_klass()->is_in_encoding_range())) { 3413 Node* nn = nullptr; 3414 3415 int op = is_oop ? Op_ConN : Op_ConNKlass; 3416 3417 // Look for existing ConN node of the same exact type. 3418 Node* r = root(); 3419 uint cnt = r->outcnt(); 3420 for (uint i = 0; i < cnt; i++) { 3421 Node* m = r->raw_out(i); 3422 if (m!= nullptr && m->Opcode() == op && 3423 m->bottom_type()->make_ptr() == t) { 3424 nn = m; 3425 break; 3426 } 3427 } 3428 if (nn != nullptr) { 3429 // Decode a narrow oop to match address 3430 // [R12 + narrow_oop_reg<<3 + offset] 3431 if (is_oop) { 3432 nn = new DecodeNNode(nn, t); 3433 } else { 3434 nn = new DecodeNKlassNode(nn, t); 3435 } 3436 // Check for succeeding AddP which uses the same Base. 3437 // Otherwise we will run into the assertion above when visiting that guy. 3438 for (uint i = 0; i < n->outcnt(); ++i) { 3439 Node *out_i = n->raw_out(i); 3440 if (out_i && out_i->is_AddP() && out_i->in(AddPNode::Base) == addp) { 3441 out_i->set_req(AddPNode::Base, nn); 3442 #ifdef ASSERT 3443 for (uint j = 0; j < out_i->outcnt(); ++j) { 3444 Node *out_j = out_i->raw_out(j); 3445 assert(out_j == nullptr || !out_j->is_AddP() || out_j->in(AddPNode::Base) != addp, 3446 "more than 2 AddP nodes in a chain (out_j %u)", out_j->_idx); 3447 } 3448 #endif 3449 } 3450 } 3451 n->set_req(AddPNode::Base, nn); 3452 n->set_req(AddPNode::Address, nn); 3453 if (addp->outcnt() == 0) { 3454 addp->disconnect_inputs(this); 3455 } 3456 } 3457 } 3458 } 3459 #endif 3460 break; 3461 } 3462 3463 case Op_CastPP: { 3464 // Remove CastPP nodes to gain more freedom during scheduling but 3465 // keep the dependency they encode as control or precedence edges 3466 // (if control is set already) on memory operations. Some CastPP 3467 // nodes don't have a control (don't carry a dependency): skip 3468 // those. 3469 if (n->in(0) != nullptr) { 3470 ResourceMark rm; 3471 Unique_Node_List wq; 3472 wq.push(n); 3473 for (uint next = 0; next < wq.size(); ++next) { 3474 Node *m = wq.at(next); 3475 for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) { 3476 Node* use = m->fast_out(i); 3477 if (use->is_Mem() || use->is_EncodeNarrowPtr()) { 3478 use->ensure_control_or_add_prec(n->in(0)); 3479 } else { 3480 switch(use->Opcode()) { 3481 case Op_AddP: 3482 case Op_DecodeN: 3483 case Op_DecodeNKlass: 3484 case Op_CheckCastPP: 3485 case Op_CastPP: 3486 wq.push(use); 3487 break; 3488 } 3489 } 3490 } 3491 } 3492 } 3493 const bool is_LP64 = LP64_ONLY(true) NOT_LP64(false); 3494 if (is_LP64 && n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) { 3495 Node* in1 = n->in(1); 3496 const Type* t = n->bottom_type(); 3497 Node* new_in1 = in1->clone(); 3498 new_in1->as_DecodeN()->set_type(t); 3499 3500 if (!Matcher::narrow_oop_use_complex_address()) { 3501 // 3502 // x86, ARM and friends can handle 2 adds in addressing mode 3503 // and Matcher can fold a DecodeN node into address by using 3504 // a narrow oop directly and do implicit null check in address: 3505 // 3506 // [R12 + narrow_oop_reg<<3 + offset] 3507 // NullCheck narrow_oop_reg 3508 // 3509 // On other platforms (Sparc) we have to keep new DecodeN node and 3510 // use it to do implicit null check in address: 3511 // 3512 // decode_not_null narrow_oop_reg, base_reg 3513 // [base_reg + offset] 3514 // NullCheck base_reg 3515 // 3516 // Pin the new DecodeN node to non-null path on these platform (Sparc) 3517 // to keep the information to which null check the new DecodeN node 3518 // corresponds to use it as value in implicit_null_check(). 3519 // 3520 new_in1->set_req(0, n->in(0)); 3521 } 3522 3523 n->subsume_by(new_in1, this); 3524 if (in1->outcnt() == 0) { 3525 in1->disconnect_inputs(this); 3526 } 3527 } else { 3528 n->subsume_by(n->in(1), this); 3529 if (n->outcnt() == 0) { 3530 n->disconnect_inputs(this); 3531 } 3532 } 3533 break; 3534 } 3535 case Op_CastII: { 3536 n->as_CastII()->remove_range_check_cast(this); 3537 break; 3538 } 3539 #ifdef _LP64 3540 case Op_CmpP: 3541 // Do this transformation here to preserve CmpPNode::sub() and 3542 // other TypePtr related Ideal optimizations (for example, ptr nullness). 3543 if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) { 3544 Node* in1 = n->in(1); 3545 Node* in2 = n->in(2); 3546 if (!in1->is_DecodeNarrowPtr()) { 3547 in2 = in1; 3548 in1 = n->in(2); 3549 } 3550 assert(in1->is_DecodeNarrowPtr(), "sanity"); 3551 3552 Node* new_in2 = nullptr; 3553 if (in2->is_DecodeNarrowPtr()) { 3554 assert(in2->Opcode() == in1->Opcode(), "must be same node type"); 3555 new_in2 = in2->in(1); 3556 } else if (in2->Opcode() == Op_ConP) { 3557 const Type* t = in2->bottom_type(); 3558 if (t == TypePtr::NULL_PTR) { 3559 assert(in1->is_DecodeN(), "compare klass to null?"); 3560 // Don't convert CmpP null check into CmpN if compressed 3561 // oops implicit null check is not generated. 3562 // This will allow to generate normal oop implicit null check. 3563 if (Matcher::gen_narrow_oop_implicit_null_checks()) 3564 new_in2 = ConNode::make(TypeNarrowOop::NULL_PTR); 3565 // 3566 // This transformation together with CastPP transformation above 3567 // will generated code for implicit null checks for compressed oops. 3568 // 3569 // The original code after Optimize() 3570 // 3571 // LoadN memory, narrow_oop_reg 3572 // decode narrow_oop_reg, base_reg 3573 // CmpP base_reg, nullptr 3574 // CastPP base_reg // NotNull 3575 // Load [base_reg + offset], val_reg 3576 // 3577 // after these transformations will be 3578 // 3579 // LoadN memory, narrow_oop_reg 3580 // CmpN narrow_oop_reg, nullptr 3581 // decode_not_null narrow_oop_reg, base_reg 3582 // Load [base_reg + offset], val_reg 3583 // 3584 // and the uncommon path (== nullptr) will use narrow_oop_reg directly 3585 // since narrow oops can be used in debug info now (see the code in 3586 // final_graph_reshaping_walk()). 3587 // 3588 // At the end the code will be matched to 3589 // on x86: 3590 // 3591 // Load_narrow_oop memory, narrow_oop_reg 3592 // Load [R12 + narrow_oop_reg<<3 + offset], val_reg 3593 // NullCheck narrow_oop_reg 3594 // 3595 // and on sparc: 3596 // 3597 // Load_narrow_oop memory, narrow_oop_reg 3598 // decode_not_null narrow_oop_reg, base_reg 3599 // Load [base_reg + offset], val_reg 3600 // NullCheck base_reg 3601 // 3602 } else if (t->isa_oopptr()) { 3603 new_in2 = ConNode::make(t->make_narrowoop()); 3604 } else if (t->isa_klassptr()) { 3605 new_in2 = ConNode::make(t->make_narrowklass()); 3606 } 3607 } 3608 if (new_in2 != nullptr) { 3609 Node* cmpN = new CmpNNode(in1->in(1), new_in2); 3610 n->subsume_by(cmpN, this); 3611 if (in1->outcnt() == 0) { 3612 in1->disconnect_inputs(this); 3613 } 3614 if (in2->outcnt() == 0) { 3615 in2->disconnect_inputs(this); 3616 } 3617 } 3618 } 3619 break; 3620 3621 case Op_DecodeN: 3622 case Op_DecodeNKlass: 3623 assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out"); 3624 // DecodeN could be pinned when it can't be fold into 3625 // an address expression, see the code for Op_CastPP above. 3626 assert(n->in(0) == nullptr || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control"); 3627 break; 3628 3629 case Op_EncodeP: 3630 case Op_EncodePKlass: { 3631 Node* in1 = n->in(1); 3632 if (in1->is_DecodeNarrowPtr()) { 3633 n->subsume_by(in1->in(1), this); 3634 } else if (in1->Opcode() == Op_ConP) { 3635 const Type* t = in1->bottom_type(); 3636 if (t == TypePtr::NULL_PTR) { 3637 assert(t->isa_oopptr(), "null klass?"); 3638 n->subsume_by(ConNode::make(TypeNarrowOop::NULL_PTR), this); 3639 } else if (t->isa_oopptr()) { 3640 n->subsume_by(ConNode::make(t->make_narrowoop()), this); 3641 } else if (t->isa_klassptr()) { 3642 n->subsume_by(ConNode::make(t->make_narrowklass()), this); 3643 } 3644 } 3645 if (in1->outcnt() == 0) { 3646 in1->disconnect_inputs(this); 3647 } 3648 break; 3649 } 3650 3651 case Op_Proj: { 3652 if (OptimizeStringConcat || IncrementalInline) { 3653 ProjNode* proj = n->as_Proj(); 3654 if (proj->_is_io_use) { 3655 assert(proj->_con == TypeFunc::I_O || proj->_con == TypeFunc::Memory, ""); 3656 // Separate projections were used for the exception path which 3657 // are normally removed by a late inline. If it wasn't inlined 3658 // then they will hang around and should just be replaced with 3659 // the original one. Merge them. 3660 Node* non_io_proj = proj->in(0)->as_Multi()->proj_out_or_null(proj->_con, false /*is_io_use*/); 3661 if (non_io_proj != nullptr) { 3662 proj->subsume_by(non_io_proj , this); 3663 } 3664 } 3665 } 3666 break; 3667 } 3668 3669 case Op_Phi: 3670 if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) { 3671 // The EncodeP optimization may create Phi with the same edges 3672 // for all paths. It is not handled well by Register Allocator. 3673 Node* unique_in = n->in(1); 3674 assert(unique_in != nullptr, ""); 3675 uint cnt = n->req(); 3676 for (uint i = 2; i < cnt; i++) { 3677 Node* m = n->in(i); 3678 assert(m != nullptr, ""); 3679 if (unique_in != m) 3680 unique_in = nullptr; 3681 } 3682 if (unique_in != nullptr) { 3683 n->subsume_by(unique_in, this); 3684 } 3685 } 3686 break; 3687 3688 #endif 3689 3690 case Op_ModI: 3691 handle_div_mod_op(n, T_INT, false); 3692 break; 3693 3694 case Op_ModL: 3695 handle_div_mod_op(n, T_LONG, false); 3696 break; 3697 3698 case Op_UModI: 3699 handle_div_mod_op(n, T_INT, true); 3700 break; 3701 3702 case Op_UModL: 3703 handle_div_mod_op(n, T_LONG, true); 3704 break; 3705 3706 case Op_LoadVector: 3707 case Op_StoreVector: 3708 #ifdef ASSERT 3709 // Add VerifyVectorAlignment node between adr and load / store. 3710 if (VerifyAlignVector && Matcher::has_match_rule(Op_VerifyVectorAlignment)) { 3711 bool must_verify_alignment = n->is_LoadVector() ? n->as_LoadVector()->must_verify_alignment() : 3712 n->as_StoreVector()->must_verify_alignment(); 3713 if (must_verify_alignment) { 3714 jlong vector_width = n->is_LoadVector() ? n->as_LoadVector()->memory_size() : 3715 n->as_StoreVector()->memory_size(); 3716 // The memory access should be aligned to the vector width in bytes. 3717 // However, the underlying array is possibly less well aligned, but at least 3718 // to ObjectAlignmentInBytes. Hence, even if multiple arrays are accessed in 3719 // a loop we can expect at least the following alignment: 3720 jlong guaranteed_alignment = MIN2(vector_width, (jlong)ObjectAlignmentInBytes); 3721 assert(2 <= guaranteed_alignment && guaranteed_alignment <= 64, "alignment must be in range"); 3722 assert(is_power_of_2(guaranteed_alignment), "alignment must be power of 2"); 3723 // Create mask from alignment. e.g. 0b1000 -> 0b0111 3724 jlong mask = guaranteed_alignment - 1; 3725 Node* mask_con = ConLNode::make(mask); 3726 VerifyVectorAlignmentNode* va = new VerifyVectorAlignmentNode(n->in(MemNode::Address), mask_con); 3727 n->set_req(MemNode::Address, va); 3728 } 3729 } 3730 #endif 3731 break; 3732 3733 case Op_LoadVectorGather: 3734 case Op_StoreVectorScatter: 3735 case Op_LoadVectorGatherMasked: 3736 case Op_StoreVectorScatterMasked: 3737 case Op_VectorCmpMasked: 3738 case Op_VectorMaskGen: 3739 case Op_LoadVectorMasked: 3740 case Op_StoreVectorMasked: 3741 break; 3742 3743 case Op_AddReductionVI: 3744 case Op_AddReductionVL: 3745 case Op_AddReductionVF: 3746 case Op_AddReductionVD: 3747 case Op_MulReductionVI: 3748 case Op_MulReductionVL: 3749 case Op_MulReductionVF: 3750 case Op_MulReductionVD: 3751 case Op_MinReductionV: 3752 case Op_MaxReductionV: 3753 case Op_AndReductionV: 3754 case Op_OrReductionV: 3755 case Op_XorReductionV: 3756 break; 3757 3758 case Op_PackB: 3759 case Op_PackS: 3760 case Op_PackI: 3761 case Op_PackF: 3762 case Op_PackL: 3763 case Op_PackD: 3764 if (n->req()-1 > 2) { 3765 // Replace many operand PackNodes with a binary tree for matching 3766 PackNode* p = (PackNode*) n; 3767 Node* btp = p->binary_tree_pack(1, n->req()); 3768 n->subsume_by(btp, this); 3769 } 3770 break; 3771 case Op_Loop: 3772 assert(!n->as_Loop()->is_loop_nest_inner_loop() || _loop_opts_cnt == 0, "should have been turned into a counted loop"); 3773 case Op_CountedLoop: 3774 case Op_LongCountedLoop: 3775 case Op_OuterStripMinedLoop: 3776 if (n->as_Loop()->is_inner_loop()) { 3777 frc.inc_inner_loop_count(); 3778 } 3779 n->as_Loop()->verify_strip_mined(0); 3780 break; 3781 case Op_LShiftI: 3782 case Op_RShiftI: 3783 case Op_URShiftI: 3784 case Op_LShiftL: 3785 case Op_RShiftL: 3786 case Op_URShiftL: 3787 if (Matcher::need_masked_shift_count) { 3788 // The cpu's shift instructions don't restrict the count to the 3789 // lower 5/6 bits. We need to do the masking ourselves. 3790 Node* in2 = n->in(2); 3791 juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1); 3792 const TypeInt* t = in2->find_int_type(); 3793 if (t != nullptr && t->is_con()) { 3794 juint shift = t->get_con(); 3795 if (shift > mask) { // Unsigned cmp 3796 n->set_req(2, ConNode::make(TypeInt::make(shift & mask))); 3797 } 3798 } else { 3799 if (t == nullptr || t->_lo < 0 || t->_hi > (int)mask) { 3800 Node* shift = new AndINode(in2, ConNode::make(TypeInt::make(mask))); 3801 n->set_req(2, shift); 3802 } 3803 } 3804 if (in2->outcnt() == 0) { // Remove dead node 3805 in2->disconnect_inputs(this); 3806 } 3807 } 3808 break; 3809 case Op_MemBarStoreStore: 3810 case Op_MemBarRelease: 3811 // Break the link with AllocateNode: it is no longer useful and 3812 // confuses register allocation. 3813 if (n->req() > MemBarNode::Precedent) { 3814 n->set_req(MemBarNode::Precedent, top()); 3815 } 3816 break; 3817 case Op_MemBarAcquire: { 3818 if (n->as_MemBar()->trailing_load() && n->req() > MemBarNode::Precedent) { 3819 // At parse time, the trailing MemBarAcquire for a volatile load 3820 // is created with an edge to the load. After optimizations, 3821 // that input may be a chain of Phis. If those phis have no 3822 // other use, then the MemBarAcquire keeps them alive and 3823 // register allocation can be confused. 3824 dead_nodes.push(n->in(MemBarNode::Precedent)); 3825 n->set_req(MemBarNode::Precedent, top()); 3826 } 3827 break; 3828 } 3829 case Op_Blackhole: 3830 break; 3831 case Op_RangeCheck: { 3832 RangeCheckNode* rc = n->as_RangeCheck(); 3833 Node* iff = new IfNode(rc->in(0), rc->in(1), rc->_prob, rc->_fcnt); 3834 n->subsume_by(iff, this); 3835 frc._tests.push(iff); 3836 break; 3837 } 3838 case Op_ConvI2L: { 3839 if (!Matcher::convi2l_type_required) { 3840 // Code generation on some platforms doesn't need accurate 3841 // ConvI2L types. Widening the type can help remove redundant 3842 // address computations. 3843 n->as_Type()->set_type(TypeLong::INT); 3844 ResourceMark rm; 3845 Unique_Node_List wq; 3846 wq.push(n); 3847 for (uint next = 0; next < wq.size(); next++) { 3848 Node *m = wq.at(next); 3849 3850 for(;;) { 3851 // Loop over all nodes with identical inputs edges as m 3852 Node* k = m->find_similar(m->Opcode()); 3853 if (k == nullptr) { 3854 break; 3855 } 3856 // Push their uses so we get a chance to remove node made 3857 // redundant 3858 for (DUIterator_Fast imax, i = k->fast_outs(imax); i < imax; i++) { 3859 Node* u = k->fast_out(i); 3860 if (u->Opcode() == Op_LShiftL || 3861 u->Opcode() == Op_AddL || 3862 u->Opcode() == Op_SubL || 3863 u->Opcode() == Op_AddP) { 3864 wq.push(u); 3865 } 3866 } 3867 // Replace all nodes with identical edges as m with m 3868 k->subsume_by(m, this); 3869 } 3870 } 3871 } 3872 break; 3873 } 3874 case Op_CmpUL: { 3875 if (!Matcher::has_match_rule(Op_CmpUL)) { 3876 // No support for unsigned long comparisons 3877 ConINode* sign_pos = new ConINode(TypeInt::make(BitsPerLong - 1)); 3878 Node* sign_bit_mask = new RShiftLNode(n->in(1), sign_pos); 3879 Node* orl = new OrLNode(n->in(1), sign_bit_mask); 3880 ConLNode* remove_sign_mask = new ConLNode(TypeLong::make(max_jlong)); 3881 Node* andl = new AndLNode(orl, remove_sign_mask); 3882 Node* cmp = new CmpLNode(andl, n->in(2)); 3883 n->subsume_by(cmp, this); 3884 } 3885 break; 3886 } 3887 #ifdef ASSERT 3888 case Op_ConNKlass: { 3889 const TypePtr* tp = n->as_Type()->type()->make_ptr(); 3890 ciKlass* klass = tp->is_klassptr()->exact_klass(); 3891 assert(klass->is_in_encoding_range(), "klass cannot be compressed"); 3892 break; 3893 } 3894 #endif 3895 default: 3896 assert(!n->is_Call(), ""); 3897 assert(!n->is_Mem(), ""); 3898 assert(nop != Op_ProfileBoolean, "should be eliminated during IGVN"); 3899 break; 3900 } 3901 } 3902 3903 //------------------------------final_graph_reshaping_walk--------------------- 3904 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(), 3905 // requires that the walk visits a node's inputs before visiting the node. 3906 void Compile::final_graph_reshaping_walk(Node_Stack& nstack, Node* root, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes) { 3907 Unique_Node_List sfpt; 3908 3909 frc._visited.set(root->_idx); // first, mark node as visited 3910 uint cnt = root->req(); 3911 Node *n = root; 3912 uint i = 0; 3913 while (true) { 3914 if (i < cnt) { 3915 // Place all non-visited non-null inputs onto stack 3916 Node* m = n->in(i); 3917 ++i; 3918 if (m != nullptr && !frc._visited.test_set(m->_idx)) { 3919 if (m->is_SafePoint() && m->as_SafePoint()->jvms() != nullptr) { 3920 // compute worst case interpreter size in case of a deoptimization 3921 update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size()); 3922 3923 sfpt.push(m); 3924 } 3925 cnt = m->req(); 3926 nstack.push(n, i); // put on stack parent and next input's index 3927 n = m; 3928 i = 0; 3929 } 3930 } else { 3931 // Now do post-visit work 3932 final_graph_reshaping_impl(n, frc, dead_nodes); 3933 if (nstack.is_empty()) 3934 break; // finished 3935 n = nstack.node(); // Get node from stack 3936 cnt = n->req(); 3937 i = nstack.index(); 3938 nstack.pop(); // Shift to the next node on stack 3939 } 3940 } 3941 3942 // Skip next transformation if compressed oops are not used. 3943 if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) || 3944 (!UseCompressedOops && !UseCompressedClassPointers)) 3945 return; 3946 3947 // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges. 3948 // It could be done for an uncommon traps or any safepoints/calls 3949 // if the DecodeN/DecodeNKlass node is referenced only in a debug info. 3950 while (sfpt.size() > 0) { 3951 n = sfpt.pop(); 3952 JVMState *jvms = n->as_SafePoint()->jvms(); 3953 assert(jvms != nullptr, "sanity"); 3954 int start = jvms->debug_start(); 3955 int end = n->req(); 3956 bool is_uncommon = (n->is_CallStaticJava() && 3957 n->as_CallStaticJava()->uncommon_trap_request() != 0); 3958 for (int j = start; j < end; j++) { 3959 Node* in = n->in(j); 3960 if (in->is_DecodeNarrowPtr()) { 3961 bool safe_to_skip = true; 3962 if (!is_uncommon ) { 3963 // Is it safe to skip? 3964 for (uint i = 0; i < in->outcnt(); i++) { 3965 Node* u = in->raw_out(i); 3966 if (!u->is_SafePoint() || 3967 (u->is_Call() && u->as_Call()->has_non_debug_use(n))) { 3968 safe_to_skip = false; 3969 } 3970 } 3971 } 3972 if (safe_to_skip) { 3973 n->set_req(j, in->in(1)); 3974 } 3975 if (in->outcnt() == 0) { 3976 in->disconnect_inputs(this); 3977 } 3978 } 3979 } 3980 } 3981 } 3982 3983 //------------------------------final_graph_reshaping-------------------------- 3984 // Final Graph Reshaping. 3985 // 3986 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late 3987 // and not commoned up and forced early. Must come after regular 3988 // optimizations to avoid GVN undoing the cloning. Clone constant 3989 // inputs to Loop Phis; these will be split by the allocator anyways. 3990 // Remove Opaque nodes. 3991 // (2) Move last-uses by commutative operations to the left input to encourage 3992 // Intel update-in-place two-address operations and better register usage 3993 // on RISCs. Must come after regular optimizations to avoid GVN Ideal 3994 // calls canonicalizing them back. 3995 // (3) Count the number of double-precision FP ops, single-precision FP ops 3996 // and call sites. On Intel, we can get correct rounding either by 3997 // forcing singles to memory (requires extra stores and loads after each 3998 // FP bytecode) or we can set a rounding mode bit (requires setting and 3999 // clearing the mode bit around call sites). The mode bit is only used 4000 // if the relative frequency of single FP ops to calls is low enough. 4001 // This is a key transform for SPEC mpeg_audio. 4002 // (4) Detect infinite loops; blobs of code reachable from above but not 4003 // below. Several of the Code_Gen algorithms fail on such code shapes, 4004 // so we simply bail out. Happens a lot in ZKM.jar, but also happens 4005 // from time to time in other codes (such as -Xcomp finalizer loops, etc). 4006 // Detection is by looking for IfNodes where only 1 projection is 4007 // reachable from below or CatchNodes missing some targets. 4008 // (5) Assert for insane oop offsets in debug mode. 4009 4010 bool Compile::final_graph_reshaping() { 4011 // an infinite loop may have been eliminated by the optimizer, 4012 // in which case the graph will be empty. 4013 if (root()->req() == 1) { 4014 // Do not compile method that is only a trivial infinite loop, 4015 // since the content of the loop may have been eliminated. 4016 record_method_not_compilable("trivial infinite loop"); 4017 return true; 4018 } 4019 4020 // Expensive nodes have their control input set to prevent the GVN 4021 // from freely commoning them. There's no GVN beyond this point so 4022 // no need to keep the control input. We want the expensive nodes to 4023 // be freely moved to the least frequent code path by gcm. 4024 assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?"); 4025 for (int i = 0; i < expensive_count(); i++) { 4026 _expensive_nodes.at(i)->set_req(0, nullptr); 4027 } 4028 4029 Final_Reshape_Counts frc; 4030 4031 // Visit everybody reachable! 4032 // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc 4033 Node_Stack nstack(live_nodes() >> 1); 4034 Unique_Node_List dead_nodes; 4035 final_graph_reshaping_walk(nstack, root(), frc, dead_nodes); 4036 4037 // Check for unreachable (from below) code (i.e., infinite loops). 4038 for( uint i = 0; i < frc._tests.size(); i++ ) { 4039 MultiBranchNode *n = frc._tests[i]->as_MultiBranch(); 4040 // Get number of CFG targets. 4041 // Note that PCTables include exception targets after calls. 4042 uint required_outcnt = n->required_outcnt(); 4043 if (n->outcnt() != required_outcnt) { 4044 // Check for a few special cases. Rethrow Nodes never take the 4045 // 'fall-thru' path, so expected kids is 1 less. 4046 if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) { 4047 if (n->in(0)->in(0)->is_Call()) { 4048 CallNode* call = n->in(0)->in(0)->as_Call(); 4049 if (call->entry_point() == OptoRuntime::rethrow_stub()) { 4050 required_outcnt--; // Rethrow always has 1 less kid 4051 } else if (call->req() > TypeFunc::Parms && 4052 call->is_CallDynamicJava()) { 4053 // Check for null receiver. In such case, the optimizer has 4054 // detected that the virtual call will always result in a null 4055 // pointer exception. The fall-through projection of this CatchNode 4056 // will not be populated. 4057 Node* arg0 = call->in(TypeFunc::Parms); 4058 if (arg0->is_Type() && 4059 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) { 4060 required_outcnt--; 4061 } 4062 } else if (call->entry_point() == OptoRuntime::new_array_Java() || 4063 call->entry_point() == OptoRuntime::new_array_nozero_Java()) { 4064 // Check for illegal array length. In such case, the optimizer has 4065 // detected that the allocation attempt will always result in an 4066 // exception. There is no fall-through projection of this CatchNode . 4067 assert(call->is_CallStaticJava(), "static call expected"); 4068 assert(call->req() == call->jvms()->endoff() + 1, "missing extra input"); 4069 uint valid_length_test_input = call->req() - 1; 4070 Node* valid_length_test = call->in(valid_length_test_input); 4071 call->del_req(valid_length_test_input); 4072 if (valid_length_test->find_int_con(1) == 0) { 4073 required_outcnt--; 4074 } 4075 dead_nodes.push(valid_length_test); 4076 assert(n->outcnt() == required_outcnt, "malformed control flow"); 4077 continue; 4078 } 4079 } 4080 } 4081 4082 // Recheck with a better notion of 'required_outcnt' 4083 if (n->outcnt() != required_outcnt) { 4084 record_method_not_compilable("malformed control flow"); 4085 return true; // Not all targets reachable! 4086 } 4087 } else if (n->is_PCTable() && n->in(0) && n->in(0)->in(0) && n->in(0)->in(0)->is_Call()) { 4088 CallNode* call = n->in(0)->in(0)->as_Call(); 4089 if (call->entry_point() == OptoRuntime::new_array_Java() || 4090 call->entry_point() == OptoRuntime::new_array_nozero_Java()) { 4091 assert(call->is_CallStaticJava(), "static call expected"); 4092 assert(call->req() == call->jvms()->endoff() + 1, "missing extra input"); 4093 uint valid_length_test_input = call->req() - 1; 4094 dead_nodes.push(call->in(valid_length_test_input)); 4095 call->del_req(valid_length_test_input); // valid length test useless now 4096 } 4097 } 4098 // Check that I actually visited all kids. Unreached kids 4099 // must be infinite loops. 4100 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) 4101 if (!frc._visited.test(n->fast_out(j)->_idx)) { 4102 record_method_not_compilable("infinite loop"); 4103 return true; // Found unvisited kid; must be unreach 4104 } 4105 4106 // Here so verification code in final_graph_reshaping_walk() 4107 // always see an OuterStripMinedLoopEnd 4108 if (n->is_OuterStripMinedLoopEnd() || n->is_LongCountedLoopEnd()) { 4109 IfNode* init_iff = n->as_If(); 4110 Node* iff = new IfNode(init_iff->in(0), init_iff->in(1), init_iff->_prob, init_iff->_fcnt); 4111 n->subsume_by(iff, this); 4112 } 4113 } 4114 4115 while (dead_nodes.size() > 0) { 4116 Node* m = dead_nodes.pop(); 4117 if (m->outcnt() == 0 && m != top()) { 4118 for (uint j = 0; j < m->req(); j++) { 4119 Node* in = m->in(j); 4120 if (in != nullptr) { 4121 dead_nodes.push(in); 4122 } 4123 } 4124 m->disconnect_inputs(this); 4125 } 4126 } 4127 4128 set_java_calls(frc.get_java_call_count()); 4129 set_inner_loops(frc.get_inner_loop_count()); 4130 4131 // No infinite loops, no reason to bail out. 4132 return false; 4133 } 4134 4135 //-----------------------------too_many_traps---------------------------------- 4136 // Report if there are too many traps at the current method and bci. 4137 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded. 4138 bool Compile::too_many_traps(ciMethod* method, 4139 int bci, 4140 Deoptimization::DeoptReason reason) { 4141 if (method->has_trap_at(bci)) { 4142 return true; 4143 } 4144 if (PreloadReduceTraps && for_preload()) { 4145 // Preload code should not have traps, if possible. 4146 return true; 4147 } 4148 ciMethodData* md = method->method_data(); 4149 if (md->is_empty()) { 4150 // Assume the trap has not occurred, or that it occurred only 4151 // because of a transient condition during start-up in the interpreter. 4152 return false; 4153 } 4154 ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : nullptr; 4155 if (md->has_trap_at(bci, m, reason) != 0) { 4156 // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic. 4157 // Also, if there are multiple reasons, or if there is no per-BCI record, 4158 // assume the worst. 4159 if (log()) 4160 log()->elem("observe trap='%s' count='%d'", 4161 Deoptimization::trap_reason_name(reason), 4162 md->trap_count(reason)); 4163 return true; 4164 } else { 4165 // Ignore method/bci and see if there have been too many globally. 4166 return too_many_traps(reason, md); 4167 } 4168 } 4169 4170 // Less-accurate variant which does not require a method and bci. 4171 bool Compile::too_many_traps(Deoptimization::DeoptReason reason, 4172 ciMethodData* logmd) { 4173 if (PreloadReduceTraps && for_preload()) { 4174 // Preload code should not have traps, if possible. 4175 return true; 4176 } 4177 if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) { 4178 // Too many traps globally. 4179 // Note that we use cumulative trap_count, not just md->trap_count. 4180 if (log()) { 4181 int mcount = (logmd == nullptr)? -1: (int)logmd->trap_count(reason); 4182 log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'", 4183 Deoptimization::trap_reason_name(reason), 4184 mcount, trap_count(reason)); 4185 } 4186 return true; 4187 } else { 4188 // The coast is clear. 4189 return false; 4190 } 4191 } 4192 4193 //--------------------------too_many_recompiles-------------------------------- 4194 // Report if there are too many recompiles at the current method and bci. 4195 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff. 4196 // Is not eager to return true, since this will cause the compiler to use 4197 // Action_none for a trap point, to avoid too many recompilations. 4198 bool Compile::too_many_recompiles(ciMethod* method, 4199 int bci, 4200 Deoptimization::DeoptReason reason) { 4201 ciMethodData* md = method->method_data(); 4202 if (md->is_empty()) { 4203 // Assume the trap has not occurred, or that it occurred only 4204 // because of a transient condition during start-up in the interpreter. 4205 return false; 4206 } 4207 // Pick a cutoff point well within PerBytecodeRecompilationCutoff. 4208 uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8; 4209 uint m_cutoff = (uint) PerMethodRecompilationCutoff / 2 + 1; // not zero 4210 Deoptimization::DeoptReason per_bc_reason 4211 = Deoptimization::reason_recorded_per_bytecode_if_any(reason); 4212 ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : nullptr; 4213 if ((per_bc_reason == Deoptimization::Reason_none 4214 || md->has_trap_at(bci, m, reason) != 0) 4215 // The trap frequency measure we care about is the recompile count: 4216 && md->trap_recompiled_at(bci, m) 4217 && md->overflow_recompile_count() >= bc_cutoff) { 4218 // Do not emit a trap here if it has already caused recompilations. 4219 // Also, if there are multiple reasons, or if there is no per-BCI record, 4220 // assume the worst. 4221 if (log()) 4222 log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'", 4223 Deoptimization::trap_reason_name(reason), 4224 md->trap_count(reason), 4225 md->overflow_recompile_count()); 4226 return true; 4227 } else if (trap_count(reason) != 0 4228 && decompile_count() >= m_cutoff) { 4229 // Too many recompiles globally, and we have seen this sort of trap. 4230 // Use cumulative decompile_count, not just md->decompile_count. 4231 if (log()) 4232 log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'", 4233 Deoptimization::trap_reason_name(reason), 4234 md->trap_count(reason), trap_count(reason), 4235 md->decompile_count(), decompile_count()); 4236 return true; 4237 } else { 4238 // The coast is clear. 4239 return false; 4240 } 4241 } 4242 4243 // Compute when not to trap. Used by matching trap based nodes and 4244 // NullCheck optimization. 4245 void Compile::set_allowed_deopt_reasons() { 4246 _allowed_reasons = 0; 4247 if (is_method_compilation()) { 4248 for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) { 4249 assert(rs < BitsPerInt, "recode bit map"); 4250 if (!too_many_traps((Deoptimization::DeoptReason) rs)) { 4251 _allowed_reasons |= nth_bit(rs); 4252 } 4253 } 4254 } 4255 } 4256 4257 bool Compile::needs_clinit_barrier(ciMethod* method, ciMethod* accessing_method) { 4258 return method->is_static() && needs_clinit_barrier(method->holder(), accessing_method); 4259 } 4260 4261 bool Compile::needs_clinit_barrier(ciField* field, ciMethod* accessing_method) { 4262 return field->is_static() && needs_clinit_barrier(field->holder(), accessing_method); 4263 } 4264 4265 bool Compile::needs_clinit_barrier(ciInstanceKlass* holder, ciMethod* accessing_method) { 4266 if (holder->is_initialized() && !do_clinit_barriers()) { 4267 return false; 4268 } 4269 if (holder->is_being_initialized() || do_clinit_barriers()) { 4270 if (accessing_method->holder() == holder) { 4271 // Access inside a class. The barrier can be elided when access happens in <clinit>, 4272 // <init>, or a static method. In all those cases, there was an initialization 4273 // barrier on the holder klass passed. 4274 if (accessing_method->is_static_initializer() || 4275 accessing_method->is_object_initializer() || 4276 accessing_method->is_static()) { 4277 return false; 4278 } 4279 } else if (accessing_method->holder()->is_subclass_of(holder)) { 4280 // Access from a subclass. The barrier can be elided only when access happens in <clinit>. 4281 // In case of <init> or a static method, the barrier is on the subclass is not enough: 4282 // child class can become fully initialized while its parent class is still being initialized. 4283 if (accessing_method->is_static_initializer()) { 4284 return false; 4285 } 4286 } 4287 ciMethod* root = method(); // the root method of compilation 4288 if (root != accessing_method) { 4289 return needs_clinit_barrier(holder, root); // check access in the context of compilation root 4290 } 4291 } 4292 return true; 4293 } 4294 4295 #ifndef PRODUCT 4296 //------------------------------verify_bidirectional_edges--------------------- 4297 // For each input edge to a node (ie - for each Use-Def edge), verify that 4298 // there is a corresponding Def-Use edge. 4299 void Compile::verify_bidirectional_edges(Unique_Node_List& visited, const Unique_Node_List* root_and_safepoints) const { 4300 // Allocate stack of size C->live_nodes()/16 to avoid frequent realloc 4301 uint stack_size = live_nodes() >> 4; 4302 Node_List nstack(MAX2(stack_size, (uint) OptoNodeListSize)); 4303 if (root_and_safepoints != nullptr) { 4304 assert(root_and_safepoints->member(_root), "root is not in root_and_safepoints"); 4305 for (uint i = 0, limit = root_and_safepoints->size(); i < limit; i++) { 4306 Node* root_or_safepoint = root_and_safepoints->at(i); 4307 // If the node is a safepoint, let's check if it still has a control input 4308 // Lack of control input signifies that this node was killed by CCP or 4309 // recursively by remove_globally_dead_node and it shouldn't be a starting 4310 // point. 4311 if (!root_or_safepoint->is_SafePoint() || root_or_safepoint->in(0) != nullptr) { 4312 nstack.push(root_or_safepoint); 4313 } 4314 } 4315 } else { 4316 nstack.push(_root); 4317 } 4318 4319 while (nstack.size() > 0) { 4320 Node* n = nstack.pop(); 4321 if (visited.member(n)) { 4322 continue; 4323 } 4324 visited.push(n); 4325 4326 // Walk over all input edges, checking for correspondence 4327 uint length = n->len(); 4328 for (uint i = 0; i < length; i++) { 4329 Node* in = n->in(i); 4330 if (in != nullptr && !visited.member(in)) { 4331 nstack.push(in); // Put it on stack 4332 } 4333 if (in != nullptr && !in->is_top()) { 4334 // Count instances of `next` 4335 int cnt = 0; 4336 for (uint idx = 0; idx < in->_outcnt; idx++) { 4337 if (in->_out[idx] == n) { 4338 cnt++; 4339 } 4340 } 4341 assert(cnt > 0, "Failed to find Def-Use edge."); 4342 // Check for duplicate edges 4343 // walk the input array downcounting the input edges to n 4344 for (uint j = 0; j < length; j++) { 4345 if (n->in(j) == in) { 4346 cnt--; 4347 } 4348 } 4349 assert(cnt == 0, "Mismatched edge count."); 4350 } else if (in == nullptr) { 4351 assert(i == 0 || i >= n->req() || 4352 n->is_Region() || n->is_Phi() || n->is_ArrayCopy() || 4353 (n->is_Unlock() && i == (n->req() - 1)) || 4354 (n->is_MemBar() && i == 5), // the precedence edge to a membar can be removed during macro node expansion 4355 "only region, phi, arraycopy, unlock or membar nodes have null data edges"); 4356 } else { 4357 assert(in->is_top(), "sanity"); 4358 // Nothing to check. 4359 } 4360 } 4361 } 4362 } 4363 4364 //------------------------------verify_graph_edges--------------------------- 4365 // Walk the Graph and verify that there is a one-to-one correspondence 4366 // between Use-Def edges and Def-Use edges in the graph. 4367 void Compile::verify_graph_edges(bool no_dead_code, const Unique_Node_List* root_and_safepoints) const { 4368 if (VerifyGraphEdges) { 4369 Unique_Node_List visited; 4370 4371 // Call graph walk to check edges 4372 verify_bidirectional_edges(visited, root_and_safepoints); 4373 if (no_dead_code) { 4374 // Now make sure that no visited node is used by an unvisited node. 4375 bool dead_nodes = false; 4376 Unique_Node_List checked; 4377 while (visited.size() > 0) { 4378 Node* n = visited.pop(); 4379 checked.push(n); 4380 for (uint i = 0; i < n->outcnt(); i++) { 4381 Node* use = n->raw_out(i); 4382 if (checked.member(use)) continue; // already checked 4383 if (visited.member(use)) continue; // already in the graph 4384 if (use->is_Con()) continue; // a dead ConNode is OK 4385 // At this point, we have found a dead node which is DU-reachable. 4386 if (!dead_nodes) { 4387 tty->print_cr("*** Dead nodes reachable via DU edges:"); 4388 dead_nodes = true; 4389 } 4390 use->dump(2); 4391 tty->print_cr("---"); 4392 checked.push(use); // No repeats; pretend it is now checked. 4393 } 4394 } 4395 assert(!dead_nodes, "using nodes must be reachable from root"); 4396 } 4397 } 4398 } 4399 #endif 4400 4401 // The Compile object keeps track of failure reasons separately from the ciEnv. 4402 // This is required because there is not quite a 1-1 relation between the 4403 // ciEnv and its compilation task and the Compile object. Note that one 4404 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides 4405 // to backtrack and retry without subsuming loads. Other than this backtracking 4406 // behavior, the Compile's failure reason is quietly copied up to the ciEnv 4407 // by the logic in C2Compiler. 4408 void Compile::record_failure(const char* reason DEBUG_ONLY(COMMA bool allow_multiple_failures)) { 4409 if (log() != nullptr) { 4410 log()->elem("failure reason='%s' phase='compile'", reason); 4411 } 4412 if (_failure_reason.get() == nullptr) { 4413 // Record the first failure reason. 4414 _failure_reason.set(reason); 4415 if (CaptureBailoutInformation) { 4416 _first_failure_details = new CompilationFailureInfo(reason); 4417 } 4418 } else { 4419 assert(!StressBailout || allow_multiple_failures, "should have handled previous failure."); 4420 } 4421 4422 if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) { 4423 C->print_method(PHASE_FAILURE, 1); 4424 } 4425 _root = nullptr; // flush the graph, too 4426 } 4427 4428 Compile::TracePhase::TracePhase(const char* name, PhaseTraceId id) 4429 : TraceTime(name, &Phase::timers[id], CITime, CITimeVerbose), 4430 _compile(Compile::current()), 4431 _log(nullptr), 4432 _dolog(CITimeVerbose) 4433 { 4434 assert(_compile != nullptr, "sanity check"); 4435 assert(id != PhaseTraceId::_t_none, "Don't use none"); 4436 if (_dolog) { 4437 _log = _compile->log(); 4438 } 4439 if (_log != nullptr) { 4440 _log->begin_head("phase name='%s' nodes='%d' live='%d'", phase_name(), _compile->unique(), _compile->live_nodes()); 4441 _log->stamp(); 4442 _log->end_head(); 4443 } 4444 4445 // Inform memory statistic, if enabled 4446 if (CompilationMemoryStatistic::enabled()) { 4447 CompilationMemoryStatistic::on_phase_start((int)id, name); 4448 } 4449 } 4450 4451 Compile::TracePhase::TracePhase(PhaseTraceId id) 4452 : TracePhase(Phase::get_phase_trace_id_text(id), id) {} 4453 4454 Compile::TracePhase::~TracePhase() { 4455 4456 // Inform memory statistic, if enabled 4457 if (CompilationMemoryStatistic::enabled()) { 4458 CompilationMemoryStatistic::on_phase_end(); 4459 } 4460 4461 if (_compile->failing_internal()) { 4462 if (_log != nullptr) { 4463 _log->done("phase"); 4464 } 4465 return; // timing code, not stressing bailouts. 4466 } 4467 #ifdef ASSERT 4468 if (PrintIdealNodeCount) { 4469 tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'", 4470 phase_name(), _compile->unique(), _compile->live_nodes(), _compile->count_live_nodes_by_graph_walk()); 4471 } 4472 4473 if (VerifyIdealNodeCount) { 4474 _compile->print_missing_nodes(); 4475 } 4476 #endif 4477 4478 if (_log != nullptr) { 4479 _log->done("phase name='%s' nodes='%d' live='%d'", phase_name(), _compile->unique(), _compile->live_nodes()); 4480 } 4481 } 4482 4483 //----------------------------static_subtype_check----------------------------- 4484 // Shortcut important common cases when superklass is exact: 4485 // (0) superklass is java.lang.Object (can occur in reflective code) 4486 // (1) subklass is already limited to a subtype of superklass => always ok 4487 // (2) subklass does not overlap with superklass => always fail 4488 // (3) superklass has NO subtypes and we can check with a simple compare. 4489 Compile::SubTypeCheckResult Compile::static_subtype_check(const TypeKlassPtr* superk, const TypeKlassPtr* subk, bool skip) { 4490 if (skip) { 4491 return SSC_full_test; // Let caller generate the general case. 4492 } 4493 4494 if (subk->is_java_subtype_of(superk)) { 4495 return SSC_always_true; // (0) and (1) this test cannot fail 4496 } 4497 4498 if (!subk->maybe_java_subtype_of(superk)) { 4499 return SSC_always_false; // (2) true path dead; no dynamic test needed 4500 } 4501 4502 const Type* superelem = superk; 4503 if (superk->isa_aryklassptr()) { 4504 int ignored; 4505 superelem = superk->is_aryklassptr()->base_element_type(ignored); 4506 } 4507 4508 if (superelem->isa_instklassptr()) { 4509 ciInstanceKlass* ik = superelem->is_instklassptr()->instance_klass(); 4510 if (!ik->has_subklass()) { 4511 if (!ik->is_final()) { 4512 // Add a dependency if there is a chance of a later subclass. 4513 dependencies()->assert_leaf_type(ik); 4514 } 4515 if (!superk->maybe_java_subtype_of(subk)) { 4516 return SSC_always_false; 4517 } 4518 return SSC_easy_test; // (3) caller can do a simple ptr comparison 4519 } 4520 } else { 4521 // A primitive array type has no subtypes. 4522 return SSC_easy_test; // (3) caller can do a simple ptr comparison 4523 } 4524 4525 return SSC_full_test; 4526 } 4527 4528 Node* Compile::conv_I2X_index(PhaseGVN* phase, Node* idx, const TypeInt* sizetype, Node* ctrl) { 4529 #ifdef _LP64 4530 // The scaled index operand to AddP must be a clean 64-bit value. 4531 // Java allows a 32-bit int to be incremented to a negative 4532 // value, which appears in a 64-bit register as a large 4533 // positive number. Using that large positive number as an 4534 // operand in pointer arithmetic has bad consequences. 4535 // On the other hand, 32-bit overflow is rare, and the possibility 4536 // can often be excluded, if we annotate the ConvI2L node with 4537 // a type assertion that its value is known to be a small positive 4538 // number. (The prior range check has ensured this.) 4539 // This assertion is used by ConvI2LNode::Ideal. 4540 int index_max = max_jint - 1; // array size is max_jint, index is one less 4541 if (sizetype != nullptr) index_max = sizetype->_hi - 1; 4542 const TypeInt* iidxtype = TypeInt::make(0, index_max, Type::WidenMax); 4543 idx = constrained_convI2L(phase, idx, iidxtype, ctrl); 4544 #endif 4545 return idx; 4546 } 4547 4548 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check) 4549 Node* Compile::constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl, bool carry_dependency) { 4550 if (ctrl != nullptr) { 4551 // Express control dependency by a CastII node with a narrow type. 4552 // Make the CastII node dependent on the control input to prevent the narrowed ConvI2L 4553 // node from floating above the range check during loop optimizations. Otherwise, the 4554 // ConvI2L node may be eliminated independently of the range check, causing the data path 4555 // to become TOP while the control path is still there (although it's unreachable). 4556 value = new CastIINode(ctrl, value, itype, carry_dependency ? ConstraintCastNode::StrongDependency : ConstraintCastNode::RegularDependency, true /* range check dependency */); 4557 value = phase->transform(value); 4558 } 4559 const TypeLong* ltype = TypeLong::make(itype->_lo, itype->_hi, itype->_widen); 4560 return phase->transform(new ConvI2LNode(value, ltype)); 4561 } 4562 4563 void Compile::dump_print_inlining() { 4564 inline_printer()->print_on(tty); 4565 } 4566 4567 void Compile::log_late_inline(CallGenerator* cg) { 4568 if (log() != nullptr) { 4569 log()->head("late_inline method='%d' inline_id='" JLONG_FORMAT "'", log()->identify(cg->method()), 4570 cg->unique_id()); 4571 JVMState* p = cg->call_node()->jvms(); 4572 while (p != nullptr) { 4573 log()->elem("jvms bci='%d' method='%d'", p->bci(), log()->identify(p->method())); 4574 p = p->caller(); 4575 } 4576 log()->tail("late_inline"); 4577 } 4578 } 4579 4580 void Compile::log_late_inline_failure(CallGenerator* cg, const char* msg) { 4581 log_late_inline(cg); 4582 if (log() != nullptr) { 4583 log()->inline_fail(msg); 4584 } 4585 } 4586 4587 void Compile::log_inline_id(CallGenerator* cg) { 4588 if (log() != nullptr) { 4589 // The LogCompilation tool needs a unique way to identify late 4590 // inline call sites. This id must be unique for this call site in 4591 // this compilation. Try to have it unique across compilations as 4592 // well because it can be convenient when grepping through the log 4593 // file. 4594 // Distinguish OSR compilations from others in case CICountOSR is 4595 // on. 4596 jlong id = ((jlong)unique()) + (((jlong)compile_id()) << 33) + (CICountOSR && is_osr_compilation() ? ((jlong)1) << 32 : 0); 4597 cg->set_unique_id(id); 4598 log()->elem("inline_id id='" JLONG_FORMAT "'", id); 4599 } 4600 } 4601 4602 void Compile::log_inline_failure(const char* msg) { 4603 if (C->log() != nullptr) { 4604 C->log()->inline_fail(msg); 4605 } 4606 } 4607 4608 4609 // Dump inlining replay data to the stream. 4610 // Don't change thread state and acquire any locks. 4611 void Compile::dump_inline_data(outputStream* out) { 4612 InlineTree* inl_tree = ilt(); 4613 if (inl_tree != nullptr) { 4614 out->print(" inline %d", inl_tree->count()); 4615 inl_tree->dump_replay_data(out); 4616 } 4617 } 4618 4619 void Compile::dump_inline_data_reduced(outputStream* out) { 4620 assert(ReplayReduce, ""); 4621 4622 InlineTree* inl_tree = ilt(); 4623 if (inl_tree == nullptr) { 4624 return; 4625 } 4626 // Enable iterative replay file reduction 4627 // Output "compile" lines for depth 1 subtrees, 4628 // simulating that those trees were compiled 4629 // instead of inlined. 4630 for (int i = 0; i < inl_tree->subtrees().length(); ++i) { 4631 InlineTree* sub = inl_tree->subtrees().at(i); 4632 if (sub->inline_level() != 1) { 4633 continue; 4634 } 4635 4636 ciMethod* method = sub->method(); 4637 int entry_bci = -1; 4638 int comp_level = env()->task()->comp_level(); 4639 out->print("compile "); 4640 method->dump_name_as_ascii(out); 4641 out->print(" %d %d", entry_bci, comp_level); 4642 out->print(" inline %d", sub->count()); 4643 sub->dump_replay_data(out, -1); 4644 out->cr(); 4645 } 4646 } 4647 4648 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) { 4649 if (n1->Opcode() < n2->Opcode()) return -1; 4650 else if (n1->Opcode() > n2->Opcode()) return 1; 4651 4652 assert(n1->req() == n2->req(), "can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req()); 4653 for (uint i = 1; i < n1->req(); i++) { 4654 if (n1->in(i) < n2->in(i)) return -1; 4655 else if (n1->in(i) > n2->in(i)) return 1; 4656 } 4657 4658 return 0; 4659 } 4660 4661 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) { 4662 Node* n1 = *n1p; 4663 Node* n2 = *n2p; 4664 4665 return cmp_expensive_nodes(n1, n2); 4666 } 4667 4668 void Compile::sort_expensive_nodes() { 4669 if (!expensive_nodes_sorted()) { 4670 _expensive_nodes.sort(cmp_expensive_nodes); 4671 } 4672 } 4673 4674 bool Compile::expensive_nodes_sorted() const { 4675 for (int i = 1; i < _expensive_nodes.length(); i++) { 4676 if (cmp_expensive_nodes(_expensive_nodes.adr_at(i), _expensive_nodes.adr_at(i-1)) < 0) { 4677 return false; 4678 } 4679 } 4680 return true; 4681 } 4682 4683 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) { 4684 if (_expensive_nodes.length() == 0) { 4685 return false; 4686 } 4687 4688 assert(OptimizeExpensiveOps, "optimization off?"); 4689 4690 // Take this opportunity to remove dead nodes from the list 4691 int j = 0; 4692 for (int i = 0; i < _expensive_nodes.length(); i++) { 4693 Node* n = _expensive_nodes.at(i); 4694 if (!n->is_unreachable(igvn)) { 4695 assert(n->is_expensive(), "should be expensive"); 4696 _expensive_nodes.at_put(j, n); 4697 j++; 4698 } 4699 } 4700 _expensive_nodes.trunc_to(j); 4701 4702 // Then sort the list so that similar nodes are next to each other 4703 // and check for at least two nodes of identical kind with same data 4704 // inputs. 4705 sort_expensive_nodes(); 4706 4707 for (int i = 0; i < _expensive_nodes.length()-1; i++) { 4708 if (cmp_expensive_nodes(_expensive_nodes.adr_at(i), _expensive_nodes.adr_at(i+1)) == 0) { 4709 return true; 4710 } 4711 } 4712 4713 return false; 4714 } 4715 4716 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) { 4717 if (_expensive_nodes.length() == 0) { 4718 return; 4719 } 4720 4721 assert(OptimizeExpensiveOps, "optimization off?"); 4722 4723 // Sort to bring similar nodes next to each other and clear the 4724 // control input of nodes for which there's only a single copy. 4725 sort_expensive_nodes(); 4726 4727 int j = 0; 4728 int identical = 0; 4729 int i = 0; 4730 bool modified = false; 4731 for (; i < _expensive_nodes.length()-1; i++) { 4732 assert(j <= i, "can't write beyond current index"); 4733 if (_expensive_nodes.at(i)->Opcode() == _expensive_nodes.at(i+1)->Opcode()) { 4734 identical++; 4735 _expensive_nodes.at_put(j++, _expensive_nodes.at(i)); 4736 continue; 4737 } 4738 if (identical > 0) { 4739 _expensive_nodes.at_put(j++, _expensive_nodes.at(i)); 4740 identical = 0; 4741 } else { 4742 Node* n = _expensive_nodes.at(i); 4743 igvn.replace_input_of(n, 0, nullptr); 4744 igvn.hash_insert(n); 4745 modified = true; 4746 } 4747 } 4748 if (identical > 0) { 4749 _expensive_nodes.at_put(j++, _expensive_nodes.at(i)); 4750 } else if (_expensive_nodes.length() >= 1) { 4751 Node* n = _expensive_nodes.at(i); 4752 igvn.replace_input_of(n, 0, nullptr); 4753 igvn.hash_insert(n); 4754 modified = true; 4755 } 4756 _expensive_nodes.trunc_to(j); 4757 if (modified) { 4758 igvn.optimize(); 4759 } 4760 } 4761 4762 void Compile::add_expensive_node(Node * n) { 4763 assert(!_expensive_nodes.contains(n), "duplicate entry in expensive list"); 4764 assert(n->is_expensive(), "expensive nodes with non-null control here only"); 4765 assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here"); 4766 if (OptimizeExpensiveOps) { 4767 _expensive_nodes.append(n); 4768 } else { 4769 // Clear control input and let IGVN optimize expensive nodes if 4770 // OptimizeExpensiveOps is off. 4771 n->set_req(0, nullptr); 4772 } 4773 } 4774 4775 /** 4776 * Track coarsened Lock and Unlock nodes. 4777 */ 4778 4779 class Lock_List : public Node_List { 4780 uint _origin_cnt; 4781 public: 4782 Lock_List(Arena *a, uint cnt) : Node_List(a), _origin_cnt(cnt) {} 4783 uint origin_cnt() const { return _origin_cnt; } 4784 }; 4785 4786 void Compile::add_coarsened_locks(GrowableArray<AbstractLockNode*>& locks) { 4787 int length = locks.length(); 4788 if (length > 0) { 4789 // Have to keep this list until locks elimination during Macro nodes elimination. 4790 Lock_List* locks_list = new (comp_arena()) Lock_List(comp_arena(), length); 4791 AbstractLockNode* alock = locks.at(0); 4792 BoxLockNode* box = alock->box_node()->as_BoxLock(); 4793 for (int i = 0; i < length; i++) { 4794 AbstractLockNode* lock = locks.at(i); 4795 assert(lock->is_coarsened(), "expecting only coarsened AbstractLock nodes, but got '%s'[%d] node", lock->Name(), lock->_idx); 4796 locks_list->push(lock); 4797 BoxLockNode* this_box = lock->box_node()->as_BoxLock(); 4798 if (this_box != box) { 4799 // Locking regions (BoxLock) could be Unbalanced here: 4800 // - its coarsened locks were eliminated in earlier 4801 // macro nodes elimination followed by loop unroll 4802 // - it is OSR locking region (no Lock node) 4803 // Preserve Unbalanced status in such cases. 4804 if (!this_box->is_unbalanced()) { 4805 this_box->set_coarsened(); 4806 } 4807 if (!box->is_unbalanced()) { 4808 box->set_coarsened(); 4809 } 4810 } 4811 } 4812 _coarsened_locks.append(locks_list); 4813 } 4814 } 4815 4816 void Compile::remove_useless_coarsened_locks(Unique_Node_List& useful) { 4817 int count = coarsened_count(); 4818 for (int i = 0; i < count; i++) { 4819 Node_List* locks_list = _coarsened_locks.at(i); 4820 for (uint j = 0; j < locks_list->size(); j++) { 4821 Node* lock = locks_list->at(j); 4822 assert(lock->is_AbstractLock(), "sanity"); 4823 if (!useful.member(lock)) { 4824 locks_list->yank(lock); 4825 } 4826 } 4827 } 4828 } 4829 4830 void Compile::remove_coarsened_lock(Node* n) { 4831 if (n->is_AbstractLock()) { 4832 int count = coarsened_count(); 4833 for (int i = 0; i < count; i++) { 4834 Node_List* locks_list = _coarsened_locks.at(i); 4835 locks_list->yank(n); 4836 } 4837 } 4838 } 4839 4840 bool Compile::coarsened_locks_consistent() { 4841 int count = coarsened_count(); 4842 for (int i = 0; i < count; i++) { 4843 bool unbalanced = false; 4844 bool modified = false; // track locks kind modifications 4845 Lock_List* locks_list = (Lock_List*)_coarsened_locks.at(i); 4846 uint size = locks_list->size(); 4847 if (size == 0) { 4848 unbalanced = false; // All locks were eliminated - good 4849 } else if (size != locks_list->origin_cnt()) { 4850 unbalanced = true; // Some locks were removed from list 4851 } else { 4852 for (uint j = 0; j < size; j++) { 4853 Node* lock = locks_list->at(j); 4854 // All nodes in group should have the same state (modified or not) 4855 if (!lock->as_AbstractLock()->is_coarsened()) { 4856 if (j == 0) { 4857 // first on list was modified, the rest should be too for consistency 4858 modified = true; 4859 } else if (!modified) { 4860 // this lock was modified but previous locks on the list were not 4861 unbalanced = true; 4862 break; 4863 } 4864 } else if (modified) { 4865 // previous locks on list were modified but not this lock 4866 unbalanced = true; 4867 break; 4868 } 4869 } 4870 } 4871 if (unbalanced) { 4872 // unbalanced monitor enter/exit - only some [un]lock nodes were removed or modified 4873 #ifdef ASSERT 4874 if (PrintEliminateLocks) { 4875 tty->print_cr("=== unbalanced coarsened locks ==="); 4876 for (uint l = 0; l < size; l++) { 4877 locks_list->at(l)->dump(); 4878 } 4879 } 4880 #endif 4881 record_failure(C2Compiler::retry_no_locks_coarsening()); 4882 return false; 4883 } 4884 } 4885 return true; 4886 } 4887 4888 // Mark locking regions (identified by BoxLockNode) as unbalanced if 4889 // locks coarsening optimization removed Lock/Unlock nodes from them. 4890 // Such regions become unbalanced because coarsening only removes part 4891 // of Lock/Unlock nodes in region. As result we can't execute other 4892 // locks elimination optimizations which assume all code paths have 4893 // corresponding pair of Lock/Unlock nodes - they are balanced. 4894 void Compile::mark_unbalanced_boxes() const { 4895 int count = coarsened_count(); 4896 for (int i = 0; i < count; i++) { 4897 Node_List* locks_list = _coarsened_locks.at(i); 4898 uint size = locks_list->size(); 4899 if (size > 0) { 4900 AbstractLockNode* alock = locks_list->at(0)->as_AbstractLock(); 4901 BoxLockNode* box = alock->box_node()->as_BoxLock(); 4902 if (alock->is_coarsened()) { 4903 // coarsened_locks_consistent(), which is called before this method, verifies 4904 // that the rest of Lock/Unlock nodes on locks_list are also coarsened. 4905 assert(!box->is_eliminated(), "regions with coarsened locks should not be marked as eliminated"); 4906 for (uint j = 1; j < size; j++) { 4907 assert(locks_list->at(j)->as_AbstractLock()->is_coarsened(), "only coarsened locks are expected here"); 4908 BoxLockNode* this_box = locks_list->at(j)->as_AbstractLock()->box_node()->as_BoxLock(); 4909 if (box != this_box) { 4910 assert(!this_box->is_eliminated(), "regions with coarsened locks should not be marked as eliminated"); 4911 box->set_unbalanced(); 4912 this_box->set_unbalanced(); 4913 } 4914 } 4915 } 4916 } 4917 } 4918 } 4919 4920 /** 4921 * Remove the speculative part of types and clean up the graph 4922 */ 4923 void Compile::remove_speculative_types(PhaseIterGVN &igvn) { 4924 if (UseTypeSpeculation) { 4925 Unique_Node_List worklist; 4926 worklist.push(root()); 4927 int modified = 0; 4928 // Go over all type nodes that carry a speculative type, drop the 4929 // speculative part of the type and enqueue the node for an igvn 4930 // which may optimize it out. 4931 for (uint next = 0; next < worklist.size(); ++next) { 4932 Node *n = worklist.at(next); 4933 if (n->is_Type()) { 4934 TypeNode* tn = n->as_Type(); 4935 const Type* t = tn->type(); 4936 const Type* t_no_spec = t->remove_speculative(); 4937 if (t_no_spec != t) { 4938 bool in_hash = igvn.hash_delete(n); 4939 assert(in_hash || n->hash() == Node::NO_HASH, "node should be in igvn hash table"); 4940 tn->set_type(t_no_spec); 4941 igvn.hash_insert(n); 4942 igvn._worklist.push(n); // give it a chance to go away 4943 modified++; 4944 } 4945 } 4946 // Iterate over outs - endless loops is unreachable from below 4947 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 4948 Node *m = n->fast_out(i); 4949 if (not_a_node(m)) { 4950 continue; 4951 } 4952 worklist.push(m); 4953 } 4954 } 4955 // Drop the speculative part of all types in the igvn's type table 4956 igvn.remove_speculative_types(); 4957 if (modified > 0) { 4958 igvn.optimize(); 4959 if (failing()) return; 4960 } 4961 #ifdef ASSERT 4962 // Verify that after the IGVN is over no speculative type has resurfaced 4963 worklist.clear(); 4964 worklist.push(root()); 4965 for (uint next = 0; next < worklist.size(); ++next) { 4966 Node *n = worklist.at(next); 4967 const Type* t = igvn.type_or_null(n); 4968 assert((t == nullptr) || (t == t->remove_speculative()), "no more speculative types"); 4969 if (n->is_Type()) { 4970 t = n->as_Type()->type(); 4971 assert(t == t->remove_speculative(), "no more speculative types"); 4972 } 4973 // Iterate over outs - endless loops is unreachable from below 4974 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 4975 Node *m = n->fast_out(i); 4976 if (not_a_node(m)) { 4977 continue; 4978 } 4979 worklist.push(m); 4980 } 4981 } 4982 igvn.check_no_speculative_types(); 4983 #endif 4984 } 4985 } 4986 4987 // Auxiliary methods to support randomized stressing/fuzzing. 4988 4989 void Compile::initialize_stress_seed(const DirectiveSet* directive) { 4990 if (FLAG_IS_DEFAULT(StressSeed) || (FLAG_IS_ERGO(StressSeed) && directive->RepeatCompilationOption)) { 4991 _stress_seed = static_cast<uint>(Ticks::now().nanoseconds()); 4992 FLAG_SET_ERGO(StressSeed, _stress_seed); 4993 } else { 4994 _stress_seed = StressSeed; 4995 } 4996 if (_log != nullptr) { 4997 _log->elem("stress_test seed='%u'", _stress_seed); 4998 } 4999 } 5000 5001 int Compile::random() { 5002 _stress_seed = os::next_random(_stress_seed); 5003 return static_cast<int>(_stress_seed); 5004 } 5005 5006 // This method can be called the arbitrary number of times, with current count 5007 // as the argument. The logic allows selecting a single candidate from the 5008 // running list of candidates as follows: 5009 // int count = 0; 5010 // Cand* selected = null; 5011 // while(cand = cand->next()) { 5012 // if (randomized_select(++count)) { 5013 // selected = cand; 5014 // } 5015 // } 5016 // 5017 // Including count equalizes the chances any candidate is "selected". 5018 // This is useful when we don't have the complete list of candidates to choose 5019 // from uniformly. In this case, we need to adjust the randomicity of the 5020 // selection, or else we will end up biasing the selection towards the latter 5021 // candidates. 5022 // 5023 // Quick back-envelope calculation shows that for the list of n candidates 5024 // the equal probability for the candidate to persist as "best" can be 5025 // achieved by replacing it with "next" k-th candidate with the probability 5026 // of 1/k. It can be easily shown that by the end of the run, the 5027 // probability for any candidate is converged to 1/n, thus giving the 5028 // uniform distribution among all the candidates. 5029 // 5030 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large. 5031 #define RANDOMIZED_DOMAIN_POW 29 5032 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW) 5033 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1) 5034 bool Compile::randomized_select(int count) { 5035 assert(count > 0, "only positive"); 5036 return (random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count); 5037 } 5038 5039 #ifdef ASSERT 5040 // Failures are geometrically distributed with probability 1/StressBailoutMean. 5041 bool Compile::fail_randomly() { 5042 if ((random() % StressBailoutMean) != 0) { 5043 return false; 5044 } 5045 record_failure("StressBailout"); 5046 return true; 5047 } 5048 5049 bool Compile::failure_is_artificial() { 5050 return C->failure_reason_is("StressBailout"); 5051 } 5052 #endif 5053 5054 CloneMap& Compile::clone_map() { return _clone_map; } 5055 void Compile::set_clone_map(Dict* d) { _clone_map._dict = d; } 5056 5057 void NodeCloneInfo::dump_on(outputStream* st) const { 5058 st->print(" {%d:%d} ", idx(), gen()); 5059 } 5060 5061 void CloneMap::clone(Node* old, Node* nnn, int gen) { 5062 uint64_t val = value(old->_idx); 5063 NodeCloneInfo cio(val); 5064 assert(val != 0, "old node should be in the map"); 5065 NodeCloneInfo cin(cio.idx(), gen + cio.gen()); 5066 insert(nnn->_idx, cin.get()); 5067 #ifndef PRODUCT 5068 if (is_debug()) { 5069 tty->print_cr("CloneMap::clone inserted node %d info {%d:%d} into CloneMap", nnn->_idx, cin.idx(), cin.gen()); 5070 } 5071 #endif 5072 } 5073 5074 void CloneMap::verify_insert_and_clone(Node* old, Node* nnn, int gen) { 5075 NodeCloneInfo cio(value(old->_idx)); 5076 if (cio.get() == 0) { 5077 cio.set(old->_idx, 0); 5078 insert(old->_idx, cio.get()); 5079 #ifndef PRODUCT 5080 if (is_debug()) { 5081 tty->print_cr("CloneMap::verify_insert_and_clone inserted node %d info {%d:%d} into CloneMap", old->_idx, cio.idx(), cio.gen()); 5082 } 5083 #endif 5084 } 5085 clone(old, nnn, gen); 5086 } 5087 5088 int CloneMap::max_gen() const { 5089 int g = 0; 5090 DictI di(_dict); 5091 for(; di.test(); ++di) { 5092 int t = gen(di._key); 5093 if (g < t) { 5094 g = t; 5095 #ifndef PRODUCT 5096 if (is_debug()) { 5097 tty->print_cr("CloneMap::max_gen() update max=%d from %d", g, _2_node_idx_t(di._key)); 5098 } 5099 #endif 5100 } 5101 } 5102 return g; 5103 } 5104 5105 void CloneMap::dump(node_idx_t key, outputStream* st) const { 5106 uint64_t val = value(key); 5107 if (val != 0) { 5108 NodeCloneInfo ni(val); 5109 ni.dump_on(st); 5110 } 5111 } 5112 5113 void Compile::shuffle_macro_nodes() { 5114 if (_macro_nodes.length() < 2) { 5115 return; 5116 } 5117 for (uint i = _macro_nodes.length() - 1; i >= 1; i--) { 5118 uint j = C->random() % (i + 1); 5119 swap(_macro_nodes.at(i), _macro_nodes.at(j)); 5120 } 5121 } 5122 5123 // Move Allocate nodes to the start of the list 5124 void Compile::sort_macro_nodes() { 5125 int count = macro_count(); 5126 int allocates = 0; 5127 for (int i = 0; i < count; i++) { 5128 Node* n = macro_node(i); 5129 if (n->is_Allocate()) { 5130 if (i != allocates) { 5131 Node* tmp = macro_node(allocates); 5132 _macro_nodes.at_put(allocates, n); 5133 _macro_nodes.at_put(i, tmp); 5134 } 5135 allocates++; 5136 } 5137 } 5138 } 5139 5140 void Compile::print_method(CompilerPhaseType cpt, int level, Node* n) { 5141 if (failing_internal()) { return; } // failing_internal to not stress bailouts from printing code. 5142 EventCompilerPhase event(UNTIMED); 5143 if (event.should_commit()) { 5144 CompilerEvent::PhaseEvent::post(event, C->_latest_stage_start_counter, cpt, C->_compile_id, level); 5145 } 5146 #ifndef PRODUCT 5147 ResourceMark rm; 5148 stringStream ss; 5149 ss.print_raw(CompilerPhaseTypeHelper::to_description(cpt)); 5150 int iter = ++_igv_phase_iter[cpt]; 5151 if (iter > 1) { 5152 ss.print(" %d", iter); 5153 } 5154 if (n != nullptr) { 5155 ss.print(": %d %s", n->_idx, NodeClassNames[n->Opcode()]); 5156 if (n->is_Call()) { 5157 CallNode* call = n->as_Call(); 5158 if (call->_name != nullptr) { 5159 // E.g. uncommon traps etc. 5160 ss.print(" - %s", call->_name); 5161 } else if (call->is_CallJava()) { 5162 CallJavaNode* call_java = call->as_CallJava(); 5163 if (call_java->method() != nullptr) { 5164 ss.print(" -"); 5165 call_java->method()->print_short_name(&ss); 5166 } 5167 } 5168 } 5169 } 5170 5171 const char* name = ss.as_string(); 5172 if (should_print_igv(level)) { 5173 _igv_printer->print_graph(name); 5174 } 5175 if (should_print_phase(level)) { 5176 print_phase(name); 5177 } 5178 if (should_print_ideal_phase(cpt)) { 5179 print_ideal_ir(CompilerPhaseTypeHelper::to_name(cpt)); 5180 } 5181 #endif 5182 C->_latest_stage_start_counter.stamp(); 5183 } 5184 5185 // Only used from CompileWrapper 5186 void Compile::begin_method() { 5187 #ifndef PRODUCT 5188 if (_method != nullptr && should_print_igv(1)) { 5189 _igv_printer->begin_method(); 5190 } 5191 #endif 5192 C->_latest_stage_start_counter.stamp(); 5193 } 5194 5195 // Only used from CompileWrapper 5196 void Compile::end_method() { 5197 EventCompilerPhase event(UNTIMED); 5198 if (event.should_commit()) { 5199 CompilerEvent::PhaseEvent::post(event, C->_latest_stage_start_counter, PHASE_END, C->_compile_id, 1); 5200 } 5201 5202 #ifndef PRODUCT 5203 if (_method != nullptr && should_print_igv(1)) { 5204 _igv_printer->end_method(); 5205 } 5206 #endif 5207 } 5208 5209 #ifndef PRODUCT 5210 bool Compile::should_print_phase(const int level) const { 5211 return PrintPhaseLevel > 0 && directive()->PhasePrintLevelOption >= level && 5212 _method != nullptr; // Do not print phases for stubs. 5213 } 5214 5215 bool Compile::should_print_ideal_phase(CompilerPhaseType cpt) const { 5216 return _directive->should_print_ideal_phase(cpt); 5217 } 5218 5219 void Compile::init_igv() { 5220 if (_igv_printer == nullptr) { 5221 _igv_printer = IdealGraphPrinter::printer(); 5222 _igv_printer->set_compile(this); 5223 } 5224 } 5225 5226 bool Compile::should_print_igv(const int level) { 5227 PRODUCT_RETURN_(return false;); 5228 5229 if (PrintIdealGraphLevel < 0) { // disabled by the user 5230 return false; 5231 } 5232 5233 bool need = directive()->IGVPrintLevelOption >= level; 5234 if (need) { 5235 Compile::init_igv(); 5236 } 5237 return need; 5238 } 5239 5240 IdealGraphPrinter* Compile::_debug_file_printer = nullptr; 5241 IdealGraphPrinter* Compile::_debug_network_printer = nullptr; 5242 5243 // Called from debugger. Prints method to the default file with the default phase name. 5244 // This works regardless of any Ideal Graph Visualizer flags set or not. 5245 // Use in debugger (gdb/rr): p igv_print($sp, $fp, $pc). 5246 void igv_print(void* sp, void* fp, void* pc) { 5247 frame fr(sp, fp, pc); 5248 Compile::current()->igv_print_method_to_file(nullptr, false, &fr); 5249 } 5250 5251 // Same as igv_print() above but with a specified phase name. 5252 void igv_print(const char* phase_name, void* sp, void* fp, void* pc) { 5253 frame fr(sp, fp, pc); 5254 Compile::current()->igv_print_method_to_file(phase_name, false, &fr); 5255 } 5256 5257 // Called from debugger. Prints method with the default phase name to the default network or the one specified with 5258 // the network flags for the Ideal Graph Visualizer, or to the default file depending on the 'network' argument. 5259 // This works regardless of any Ideal Graph Visualizer flags set or not. 5260 // Use in debugger (gdb/rr): p igv_print(true, $sp, $fp, $pc). 5261 void igv_print(bool network, void* sp, void* fp, void* pc) { 5262 frame fr(sp, fp, pc); 5263 if (network) { 5264 Compile::current()->igv_print_method_to_network(nullptr, &fr); 5265 } else { 5266 Compile::current()->igv_print_method_to_file(nullptr, false, &fr); 5267 } 5268 } 5269 5270 // Same as igv_print(bool network, ...) above but with a specified phase name. 5271 // Use in debugger (gdb/rr): p igv_print(true, "MyPhase", $sp, $fp, $pc). 5272 void igv_print(bool network, const char* phase_name, void* sp, void* fp, void* pc) { 5273 frame fr(sp, fp, pc); 5274 if (network) { 5275 Compile::current()->igv_print_method_to_network(phase_name, &fr); 5276 } else { 5277 Compile::current()->igv_print_method_to_file(phase_name, false, &fr); 5278 } 5279 } 5280 5281 // Called from debugger. Normal write to the default _printer. Only works if Ideal Graph Visualizer printing flags are set. 5282 void igv_print_default() { 5283 Compile::current()->print_method(PHASE_DEBUG, 0); 5284 } 5285 5286 // Called from debugger, especially when replaying a trace in which the program state cannot be altered like with rr replay. 5287 // A method is appended to an existing default file with the default phase name. This means that igv_append() must follow 5288 // an earlier igv_print(*) call which sets up the file. This works regardless of any Ideal Graph Visualizer flags set or not. 5289 // Use in debugger (gdb/rr): p igv_append($sp, $fp, $pc). 5290 void igv_append(void* sp, void* fp, void* pc) { 5291 frame fr(sp, fp, pc); 5292 Compile::current()->igv_print_method_to_file(nullptr, true, &fr); 5293 } 5294 5295 // Same as igv_append(...) above but with a specified phase name. 5296 // Use in debugger (gdb/rr): p igv_append("MyPhase", $sp, $fp, $pc). 5297 void igv_append(const char* phase_name, void* sp, void* fp, void* pc) { 5298 frame fr(sp, fp, pc); 5299 Compile::current()->igv_print_method_to_file(phase_name, true, &fr); 5300 } 5301 5302 void Compile::igv_print_method_to_file(const char* phase_name, bool append, const frame* fr) { 5303 const char* file_name = "custom_debug.xml"; 5304 if (_debug_file_printer == nullptr) { 5305 _debug_file_printer = new IdealGraphPrinter(C, file_name, append); 5306 } else { 5307 _debug_file_printer->update_compiled_method(C->method()); 5308 } 5309 tty->print_cr("Method %s to %s", append ? "appended" : "printed", file_name); 5310 _debug_file_printer->print_graph(phase_name, fr); 5311 } 5312 5313 void Compile::igv_print_method_to_network(const char* phase_name, const frame* fr) { 5314 ResourceMark rm; 5315 GrowableArray<const Node*> empty_list; 5316 igv_print_graph_to_network(phase_name, empty_list, fr); 5317 } 5318 5319 void Compile::igv_print_graph_to_network(const char* name, GrowableArray<const Node*>& visible_nodes, const frame* fr) { 5320 if (_debug_network_printer == nullptr) { 5321 _debug_network_printer = new IdealGraphPrinter(C); 5322 } else { 5323 _debug_network_printer->update_compiled_method(C->method()); 5324 } 5325 tty->print_cr("Method printed over network stream to IGV"); 5326 _debug_network_printer->print(name, C->root(), visible_nodes, fr); 5327 } 5328 #endif // !PRODUCT 5329 5330 Node* Compile::narrow_value(BasicType bt, Node* value, const Type* type, PhaseGVN* phase, bool transform_res) { 5331 if (type != nullptr && phase->type(value)->higher_equal(type)) { 5332 return value; 5333 } 5334 Node* result = nullptr; 5335 if (bt == T_BYTE) { 5336 result = phase->transform(new LShiftINode(value, phase->intcon(24))); 5337 result = new RShiftINode(result, phase->intcon(24)); 5338 } else if (bt == T_BOOLEAN) { 5339 result = new AndINode(value, phase->intcon(0xFF)); 5340 } else if (bt == T_CHAR) { 5341 result = new AndINode(value,phase->intcon(0xFFFF)); 5342 } else { 5343 assert(bt == T_SHORT, "unexpected narrow type"); 5344 result = phase->transform(new LShiftINode(value, phase->intcon(16))); 5345 result = new RShiftINode(result, phase->intcon(16)); 5346 } 5347 if (transform_res) { 5348 result = phase->transform(result); 5349 } 5350 return result; 5351 } 5352 5353 void Compile::record_method_not_compilable_oom() { 5354 record_method_not_compilable(CompilationMemoryStatistic::failure_reason_memlimit()); 5355 }