1 /*
   2  * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "ci/ciReplay.hpp"
  29 #include "classfile/javaClasses.hpp"
  30 #include "code/exceptionHandlerTable.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "compiler/compilationFailureInfo.hpp"
  33 #include "compiler/compilationMemoryStatistic.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/compileLog.hpp"
  36 #include "compiler/compilerOracle.hpp"
  37 #include "compiler/compiler_globals.hpp"
  38 #include "compiler/disassembler.hpp"
  39 #include "compiler/oopMap.hpp"
  40 #include "gc/shared/barrierSet.hpp"
  41 #include "gc/shared/c2/barrierSetC2.hpp"
  42 #include "jfr/jfrEvents.hpp"
  43 #include "jvm_io.h"
  44 #include "memory/allocation.hpp"
  45 #include "memory/resourceArea.hpp"
  46 #include "opto/addnode.hpp"
  47 #include "opto/block.hpp"
  48 #include "opto/c2compiler.hpp"
  49 #include "opto/callGenerator.hpp"
  50 #include "opto/callnode.hpp"
  51 #include "opto/castnode.hpp"
  52 #include "opto/cfgnode.hpp"
  53 #include "opto/chaitin.hpp"
  54 #include "opto/compile.hpp"
  55 #include "opto/connode.hpp"
  56 #include "opto/convertnode.hpp"
  57 #include "opto/divnode.hpp"
  58 #include "opto/escape.hpp"
  59 #include "opto/idealGraphPrinter.hpp"
  60 #include "opto/locknode.hpp"
  61 #include "opto/loopnode.hpp"
  62 #include "opto/machnode.hpp"
  63 #include "opto/macro.hpp"
  64 #include "opto/matcher.hpp"
  65 #include "opto/mathexactnode.hpp"
  66 #include "opto/memnode.hpp"
  67 #include "opto/mulnode.hpp"
  68 #include "opto/narrowptrnode.hpp"
  69 #include "opto/node.hpp"
  70 #include "opto/opcodes.hpp"
  71 #include "opto/output.hpp"
  72 #include "opto/parse.hpp"
  73 #include "opto/phaseX.hpp"
  74 #include "opto/rootnode.hpp"
  75 #include "opto/runtime.hpp"
  76 #include "opto/stringopts.hpp"
  77 #include "opto/type.hpp"
  78 #include "opto/vector.hpp"
  79 #include "opto/vectornode.hpp"
  80 #include "runtime/globals_extension.hpp"
  81 #include "runtime/sharedRuntime.hpp"
  82 #include "runtime/signature.hpp"
  83 #include "runtime/stubRoutines.hpp"
  84 #include "runtime/timer.hpp"
  85 #include "utilities/align.hpp"
  86 #include "utilities/copy.hpp"
  87 #include "utilities/macros.hpp"
  88 #include "utilities/resourceHash.hpp"
  89 
  90 // -------------------- Compile::mach_constant_base_node -----------------------
  91 // Constant table base node singleton.
  92 MachConstantBaseNode* Compile::mach_constant_base_node() {
  93   if (_mach_constant_base_node == nullptr) {
  94     _mach_constant_base_node = new MachConstantBaseNode();
  95     _mach_constant_base_node->add_req(C->root());
  96   }
  97   return _mach_constant_base_node;
  98 }
  99 
 100 
 101 /// Support for intrinsics.
 102 
 103 // Return the index at which m must be inserted (or already exists).
 104 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
 105 class IntrinsicDescPair {
 106  private:
 107   ciMethod* _m;
 108   bool _is_virtual;
 109  public:
 110   IntrinsicDescPair(ciMethod* m, bool is_virtual) : _m(m), _is_virtual(is_virtual) {}
 111   static int compare(IntrinsicDescPair* const& key, CallGenerator* const& elt) {
 112     ciMethod* m= elt->method();
 113     ciMethod* key_m = key->_m;
 114     if (key_m < m)      return -1;
 115     else if (key_m > m) return 1;
 116     else {
 117       bool is_virtual = elt->is_virtual();
 118       bool key_virtual = key->_is_virtual;
 119       if (key_virtual < is_virtual)      return -1;
 120       else if (key_virtual > is_virtual) return 1;
 121       else                               return 0;
 122     }
 123   }
 124 };
 125 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found) {
 126 #ifdef ASSERT
 127   for (int i = 1; i < _intrinsics.length(); i++) {
 128     CallGenerator* cg1 = _intrinsics.at(i-1);
 129     CallGenerator* cg2 = _intrinsics.at(i);
 130     assert(cg1->method() != cg2->method()
 131            ? cg1->method()     < cg2->method()
 132            : cg1->is_virtual() < cg2->is_virtual(),
 133            "compiler intrinsics list must stay sorted");
 134   }
 135 #endif
 136   IntrinsicDescPair pair(m, is_virtual);
 137   return _intrinsics.find_sorted<IntrinsicDescPair*, IntrinsicDescPair::compare>(&pair, found);
 138 }
 139 
 140 void Compile::register_intrinsic(CallGenerator* cg) {
 141   bool found = false;
 142   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual(), found);
 143   assert(!found, "registering twice");
 144   _intrinsics.insert_before(index, cg);
 145   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
 146 }
 147 
 148 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
 149   assert(m->is_loaded(), "don't try this on unloaded methods");
 150   if (_intrinsics.length() > 0) {
 151     bool found = false;
 152     int index = intrinsic_insertion_index(m, is_virtual, found);
 153      if (found) {
 154       return _intrinsics.at(index);
 155     }
 156   }
 157   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
 158   if (m->intrinsic_id() != vmIntrinsics::_none &&
 159       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
 160     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
 161     if (cg != nullptr) {
 162       // Save it for next time:
 163       register_intrinsic(cg);
 164       return cg;
 165     } else {
 166       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
 167     }
 168   }
 169   return nullptr;
 170 }
 171 
 172 // Compile::make_vm_intrinsic is defined in library_call.cpp.
 173 
 174 #ifndef PRODUCT
 175 // statistics gathering...
 176 
 177 juint  Compile::_intrinsic_hist_count[vmIntrinsics::number_of_intrinsics()] = {0};
 178 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::number_of_intrinsics()] = {0};
 179 
 180 inline int as_int(vmIntrinsics::ID id) {
 181   return vmIntrinsics::as_int(id);
 182 }
 183 
 184 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
 185   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
 186   int oflags = _intrinsic_hist_flags[as_int(id)];
 187   assert(flags != 0, "what happened?");
 188   if (is_virtual) {
 189     flags |= _intrinsic_virtual;
 190   }
 191   bool changed = (flags != oflags);
 192   if ((flags & _intrinsic_worked) != 0) {
 193     juint count = (_intrinsic_hist_count[as_int(id)] += 1);
 194     if (count == 1) {
 195       changed = true;           // first time
 196     }
 197     // increment the overall count also:
 198     _intrinsic_hist_count[as_int(vmIntrinsics::_none)] += 1;
 199   }
 200   if (changed) {
 201     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
 202       // Something changed about the intrinsic's virtuality.
 203       if ((flags & _intrinsic_virtual) != 0) {
 204         // This is the first use of this intrinsic as a virtual call.
 205         if (oflags != 0) {
 206           // We already saw it as a non-virtual, so note both cases.
 207           flags |= _intrinsic_both;
 208         }
 209       } else if ((oflags & _intrinsic_both) == 0) {
 210         // This is the first use of this intrinsic as a non-virtual
 211         flags |= _intrinsic_both;
 212       }
 213     }
 214     _intrinsic_hist_flags[as_int(id)] = (jubyte) (oflags | flags);
 215   }
 216   // update the overall flags also:
 217   _intrinsic_hist_flags[as_int(vmIntrinsics::_none)] |= (jubyte) flags;
 218   return changed;
 219 }
 220 
 221 static char* format_flags(int flags, char* buf) {
 222   buf[0] = 0;
 223   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
 224   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
 225   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
 226   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
 227   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
 228   if (buf[0] == 0)  strcat(buf, ",");
 229   assert(buf[0] == ',', "must be");
 230   return &buf[1];
 231 }
 232 
 233 void Compile::print_intrinsic_statistics() {
 234   char flagsbuf[100];
 235   ttyLocker ttyl;
 236   if (xtty != nullptr)  xtty->head("statistics type='intrinsic'");
 237   tty->print_cr("Compiler intrinsic usage:");
 238   juint total = _intrinsic_hist_count[as_int(vmIntrinsics::_none)];
 239   if (total == 0)  total = 1;  // avoid div0 in case of no successes
 240   #define PRINT_STAT_LINE(name, c, f) \
 241     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
 242   for (auto id : EnumRange<vmIntrinsicID>{}) {
 243     int   flags = _intrinsic_hist_flags[as_int(id)];
 244     juint count = _intrinsic_hist_count[as_int(id)];
 245     if ((flags | count) != 0) {
 246       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
 247     }
 248   }
 249   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[as_int(vmIntrinsics::_none)], flagsbuf));
 250   if (xtty != nullptr)  xtty->tail("statistics");
 251 }
 252 
 253 void Compile::print_statistics() {
 254   { ttyLocker ttyl;
 255     if (xtty != nullptr)  xtty->head("statistics type='opto'");
 256     Parse::print_statistics();
 257     PhaseStringOpts::print_statistics();
 258     PhaseCCP::print_statistics();
 259     PhaseRegAlloc::print_statistics();
 260     PhaseOutput::print_statistics();
 261     PhasePeephole::print_statistics();
 262     PhaseIdealLoop::print_statistics();
 263     ConnectionGraph::print_statistics();
 264     PhaseMacroExpand::print_statistics();
 265     if (xtty != nullptr)  xtty->tail("statistics");
 266   }
 267   if (_intrinsic_hist_flags[as_int(vmIntrinsics::_none)] != 0) {
 268     // put this under its own <statistics> element.
 269     print_intrinsic_statistics();
 270   }
 271 }
 272 #endif //PRODUCT
 273 
 274 void Compile::gvn_replace_by(Node* n, Node* nn) {
 275   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
 276     Node* use = n->last_out(i);
 277     bool is_in_table = initial_gvn()->hash_delete(use);
 278     uint uses_found = 0;
 279     for (uint j = 0; j < use->len(); j++) {
 280       if (use->in(j) == n) {
 281         if (j < use->req())
 282           use->set_req(j, nn);
 283         else
 284           use->set_prec(j, nn);
 285         uses_found++;
 286       }
 287     }
 288     if (is_in_table) {
 289       // reinsert into table
 290       initial_gvn()->hash_find_insert(use);
 291     }
 292     record_for_igvn(use);
 293     PhaseIterGVN::add_users_of_use_to_worklist(nn, use, *_igvn_worklist);
 294     i -= uses_found;    // we deleted 1 or more copies of this edge
 295   }
 296 }
 297 
 298 
 299 // Identify all nodes that are reachable from below, useful.
 300 // Use breadth-first pass that records state in a Unique_Node_List,
 301 // recursive traversal is slower.
 302 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
 303   int estimated_worklist_size = live_nodes();
 304   useful.map( estimated_worklist_size, nullptr );  // preallocate space
 305 
 306   // Initialize worklist
 307   if (root() != nullptr)  { useful.push(root()); }
 308   // If 'top' is cached, declare it useful to preserve cached node
 309   if (cached_top_node())  { useful.push(cached_top_node()); }
 310 
 311   // Push all useful nodes onto the list, breadthfirst
 312   for( uint next = 0; next < useful.size(); ++next ) {
 313     assert( next < unique(), "Unique useful nodes < total nodes");
 314     Node *n  = useful.at(next);
 315     uint max = n->len();
 316     for( uint i = 0; i < max; ++i ) {
 317       Node *m = n->in(i);
 318       if (not_a_node(m))  continue;
 319       useful.push(m);
 320     }
 321   }
 322 }
 323 
 324 // Update dead_node_list with any missing dead nodes using useful
 325 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
 326 void Compile::update_dead_node_list(Unique_Node_List &useful) {
 327   uint max_idx = unique();
 328   VectorSet& useful_node_set = useful.member_set();
 329 
 330   for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
 331     // If node with index node_idx is not in useful set,
 332     // mark it as dead in dead node list.
 333     if (!useful_node_set.test(node_idx)) {
 334       record_dead_node(node_idx);
 335     }
 336   }
 337 }
 338 
 339 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
 340   int shift = 0;
 341   for (int i = 0; i < inlines->length(); i++) {
 342     CallGenerator* cg = inlines->at(i);
 343     if (useful.member(cg->call_node())) {
 344       if (shift > 0) {
 345         inlines->at_put(i - shift, cg);
 346       }
 347     } else {
 348       shift++; // skip over the dead element
 349     }
 350   }
 351   if (shift > 0) {
 352     inlines->trunc_to(inlines->length() - shift); // remove last elements from compacted array
 353   }
 354 }
 355 
 356 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Node* dead) {
 357   assert(dead != nullptr && dead->is_Call(), "sanity");
 358   int found = 0;
 359   for (int i = 0; i < inlines->length(); i++) {
 360     if (inlines->at(i)->call_node() == dead) {
 361       inlines->remove_at(i);
 362       found++;
 363       NOT_DEBUG( break; ) // elements are unique, so exit early
 364     }
 365   }
 366   assert(found <= 1, "not unique");
 367 }
 368 
 369 template<typename N, ENABLE_IF_SDEFN(std::is_base_of<Node, N>::value)>
 370 void Compile::remove_useless_nodes(GrowableArray<N*>& node_list, Unique_Node_List& useful) {
 371   for (int i = node_list.length() - 1; i >= 0; i--) {
 372     N* node = node_list.at(i);
 373     if (!useful.member(node)) {
 374       node_list.delete_at(i); // replaces i-th with last element which is known to be useful (already processed)
 375     }
 376   }
 377 }
 378 
 379 void Compile::remove_useless_node(Node* dead) {
 380   remove_modified_node(dead);
 381 
 382   // Constant node that has no out-edges and has only one in-edge from
 383   // root is usually dead. However, sometimes reshaping walk makes
 384   // it reachable by adding use edges. So, we will NOT count Con nodes
 385   // as dead to be conservative about the dead node count at any
 386   // given time.
 387   if (!dead->is_Con()) {
 388     record_dead_node(dead->_idx);
 389   }
 390   if (dead->is_macro()) {
 391     remove_macro_node(dead);
 392   }
 393   if (dead->is_expensive()) {
 394     remove_expensive_node(dead);
 395   }
 396   if (dead->Opcode() == Op_Opaque4) {
 397     remove_template_assertion_predicate_opaq(dead);
 398   }
 399   if (dead->is_ParsePredicate()) {
 400     remove_parse_predicate(dead->as_ParsePredicate());
 401   }
 402   if (dead->for_post_loop_opts_igvn()) {
 403     remove_from_post_loop_opts_igvn(dead);
 404   }
 405   if (dead->is_Call()) {
 406     remove_useless_late_inlines(                &_late_inlines, dead);
 407     remove_useless_late_inlines(         &_string_late_inlines, dead);
 408     remove_useless_late_inlines(         &_boxing_late_inlines, dead);
 409     remove_useless_late_inlines(&_vector_reboxing_late_inlines, dead);
 410 
 411     if (dead->is_CallStaticJava()) {
 412       remove_unstable_if_trap(dead->as_CallStaticJava(), false);
 413     }
 414   }
 415   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 416   bs->unregister_potential_barrier_node(dead);
 417 }
 418 
 419 // Disconnect all useless nodes by disconnecting those at the boundary.
 420 void Compile::disconnect_useless_nodes(Unique_Node_List& useful, Unique_Node_List& worklist) {
 421   uint next = 0;
 422   while (next < useful.size()) {
 423     Node *n = useful.at(next++);
 424     if (n->is_SafePoint()) {
 425       // We're done with a parsing phase. Replaced nodes are not valid
 426       // beyond that point.
 427       n->as_SafePoint()->delete_replaced_nodes();
 428     }
 429     // Use raw traversal of out edges since this code removes out edges
 430     int max = n->outcnt();
 431     for (int j = 0; j < max; ++j) {
 432       Node* child = n->raw_out(j);
 433       if (!useful.member(child)) {
 434         assert(!child->is_top() || child != top(),
 435                "If top is cached in Compile object it is in useful list");
 436         // Only need to remove this out-edge to the useless node
 437         n->raw_del_out(j);
 438         --j;
 439         --max;
 440       }
 441     }
 442     if (n->outcnt() == 1 && n->has_special_unique_user()) {
 443       assert(useful.member(n->unique_out()), "do not push a useless node");
 444       worklist.push(n->unique_out());
 445     }
 446   }
 447 
 448   remove_useless_nodes(_macro_nodes,        useful); // remove useless macro nodes
 449   remove_useless_nodes(_parse_predicates,   useful); // remove useless Parse Predicate nodes
 450   remove_useless_nodes(_template_assertion_predicate_opaqs, useful); // remove useless Assertion Predicate opaque nodes
 451   remove_useless_nodes(_expensive_nodes,    useful); // remove useless expensive nodes
 452   remove_useless_nodes(_for_post_loop_igvn, useful); // remove useless node recorded for post loop opts IGVN pass
 453   remove_useless_unstable_if_traps(useful);          // remove useless unstable_if traps
 454   remove_useless_coarsened_locks(useful);            // remove useless coarsened locks nodes
 455 #ifdef ASSERT
 456   if (_modified_nodes != nullptr) {
 457     _modified_nodes->remove_useless_nodes(useful.member_set());
 458   }
 459 #endif
 460 
 461   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 462   bs->eliminate_useless_gc_barriers(useful, this);
 463   // clean up the late inline lists
 464   remove_useless_late_inlines(                &_late_inlines, useful);
 465   remove_useless_late_inlines(         &_string_late_inlines, useful);
 466   remove_useless_late_inlines(         &_boxing_late_inlines, useful);
 467   remove_useless_late_inlines(&_vector_reboxing_late_inlines, useful);
 468   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
 469 }
 470 
 471 // ============================================================================
 472 //------------------------------CompileWrapper---------------------------------
 473 class CompileWrapper : public StackObj {
 474   Compile *const _compile;
 475  public:
 476   CompileWrapper(Compile* compile);
 477 
 478   ~CompileWrapper();
 479 };
 480 
 481 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
 482   // the Compile* pointer is stored in the current ciEnv:
 483   ciEnv* env = compile->env();
 484   assert(env == ciEnv::current(), "must already be a ciEnv active");
 485   assert(env->compiler_data() == nullptr, "compile already active?");
 486   env->set_compiler_data(compile);
 487   assert(compile == Compile::current(), "sanity");
 488 
 489   compile->set_type_dict(nullptr);
 490   compile->set_clone_map(new Dict(cmpkey, hashkey, _compile->comp_arena()));
 491   compile->clone_map().set_clone_idx(0);
 492   compile->set_type_last_size(0);
 493   compile->set_last_tf(nullptr, nullptr);
 494   compile->set_indexSet_arena(nullptr);
 495   compile->set_indexSet_free_block_list(nullptr);
 496   compile->init_type_arena();
 497   Type::Initialize(compile);
 498   _compile->begin_method();
 499   _compile->clone_map().set_debug(_compile->has_method() && _compile->directive()->CloneMapDebugOption);
 500 }
 501 CompileWrapper::~CompileWrapper() {
 502   // simulate crash during compilation
 503   assert(CICrashAt < 0 || _compile->compile_id() != CICrashAt, "just as planned");
 504 
 505   _compile->end_method();
 506   _compile->env()->set_compiler_data(nullptr);
 507 }
 508 
 509 
 510 //----------------------------print_compile_messages---------------------------
 511 void Compile::print_compile_messages() {
 512 #ifndef PRODUCT
 513   // Check if recompiling
 514   if (!subsume_loads() && PrintOpto) {
 515     // Recompiling without allowing machine instructions to subsume loads
 516     tty->print_cr("*********************************************************");
 517     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
 518     tty->print_cr("*********************************************************");
 519   }
 520   if ((do_escape_analysis() != DoEscapeAnalysis) && PrintOpto) {
 521     // Recompiling without escape analysis
 522     tty->print_cr("*********************************************************");
 523     tty->print_cr("** Bailout: Recompile without escape analysis          **");
 524     tty->print_cr("*********************************************************");
 525   }
 526   if (do_iterative_escape_analysis() != DoEscapeAnalysis && PrintOpto) {
 527     // Recompiling without iterative escape analysis
 528     tty->print_cr("*********************************************************");
 529     tty->print_cr("** Bailout: Recompile without iterative escape analysis**");
 530     tty->print_cr("*********************************************************");
 531   }
 532   if (do_reduce_allocation_merges() != ReduceAllocationMerges && PrintOpto) {
 533     // Recompiling without reducing allocation merges
 534     tty->print_cr("*********************************************************");
 535     tty->print_cr("** Bailout: Recompile without reduce allocation merges **");
 536     tty->print_cr("*********************************************************");
 537   }
 538   if ((eliminate_boxing() != EliminateAutoBox) && PrintOpto) {
 539     // Recompiling without boxing elimination
 540     tty->print_cr("*********************************************************");
 541     tty->print_cr("** Bailout: Recompile without boxing elimination       **");
 542     tty->print_cr("*********************************************************");
 543   }
 544   if ((do_locks_coarsening() != EliminateLocks) && PrintOpto) {
 545     // Recompiling without locks coarsening
 546     tty->print_cr("*********************************************************");
 547     tty->print_cr("** Bailout: Recompile without locks coarsening         **");
 548     tty->print_cr("*********************************************************");
 549   }
 550   if (env()->break_at_compile()) {
 551     // Open the debugger when compiling this method.
 552     tty->print("### Breaking when compiling: ");
 553     method()->print_short_name();
 554     tty->cr();
 555     BREAKPOINT;
 556   }
 557 
 558   if( PrintOpto ) {
 559     if (is_osr_compilation()) {
 560       tty->print("[OSR]%3d", _compile_id);
 561     } else {
 562       tty->print("%3d", _compile_id);
 563     }
 564   }
 565 #endif
 566 }
 567 
 568 #ifndef PRODUCT
 569 void Compile::print_ideal_ir(const char* phase_name) {
 570   // keep the following output all in one block
 571   // This output goes directly to the tty, not the compiler log.
 572   // To enable tools to match it up with the compilation activity,
 573   // be sure to tag this tty output with the compile ID.
 574 
 575   // Node dumping can cause a safepoint, which can break the tty lock.
 576   // Buffer all node dumps, so that all safepoints happen before we lock.
 577   ResourceMark rm;
 578   stringStream ss;
 579 
 580   if (_output == nullptr) {
 581     ss.print_cr("AFTER: %s", phase_name);
 582     // Print out all nodes in ascending order of index.
 583     root()->dump_bfs(MaxNodeLimit, nullptr, "+S$", &ss);
 584   } else {
 585     // Dump the node blockwise if we have a scheduling
 586     _output->print_scheduling(&ss);
 587   }
 588 
 589   // Check that the lock is not broken by a safepoint.
 590   NoSafepointVerifier nsv;
 591   ttyLocker ttyl;
 592   if (xtty != nullptr) {
 593     xtty->head("ideal compile_id='%d'%s compile_phase='%s'",
 594                compile_id(),
 595                is_osr_compilation() ? " compile_kind='osr'" : "",
 596                phase_name);
 597   }
 598 
 599   tty->print("%s", ss.as_string());
 600 
 601   if (xtty != nullptr) {
 602     xtty->tail("ideal");
 603   }
 604 }
 605 #endif
 606 
 607 // ============================================================================
 608 //------------------------------Compile standard-------------------------------
 609 
 610 // Compile a method.  entry_bci is -1 for normal compilations and indicates
 611 // the continuation bci for on stack replacement.
 612 
 613 
 614 Compile::Compile( ciEnv* ci_env, ciMethod* target, int osr_bci,
 615                   Options options, DirectiveSet* directive)
 616                 : Phase(Compiler),
 617                   _compile_id(ci_env->compile_id()),
 618                   _options(options),
 619                   _method(target),
 620                   _entry_bci(osr_bci),
 621                   _ilt(nullptr),
 622                   _stub_function(nullptr),
 623                   _stub_name(nullptr),
 624                   _stub_entry_point(nullptr),
 625                   _max_node_limit(MaxNodeLimit),
 626                   _post_loop_opts_phase(false),
 627                   _allow_macro_nodes(true),
 628                   _inlining_progress(false),
 629                   _inlining_incrementally(false),
 630                   _do_cleanup(false),
 631                   _has_reserved_stack_access(target->has_reserved_stack_access()),
 632 #ifndef PRODUCT
 633                   _igv_idx(0),
 634                   _trace_opto_output(directive->TraceOptoOutputOption),
 635 #endif
 636                   _has_method_handle_invokes(false),
 637                   _clinit_barrier_on_entry(false),
 638                   _has_clinit_barriers(false),
 639                   _stress_seed(0),
 640                   _comp_arena(mtCompiler),
 641                   _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())),
 642                   _env(ci_env),
 643                   _directive(directive),
 644                   _log(ci_env->log()),
 645                   _first_failure_details(nullptr),
 646                   _intrinsics        (comp_arena(), 0, 0, nullptr),
 647                   _macro_nodes       (comp_arena(), 8, 0, nullptr),
 648                   _parse_predicates  (comp_arena(), 8, 0, nullptr),
 649                   _template_assertion_predicate_opaqs (comp_arena(), 8, 0, nullptr),
 650                   _expensive_nodes   (comp_arena(), 8, 0, nullptr),
 651                   _for_post_loop_igvn(comp_arena(), 8, 0, nullptr),
 652                   _unstable_if_traps (comp_arena(), 8, 0, nullptr),
 653                   _coarsened_locks   (comp_arena(), 8, 0, nullptr),
 654                   _congraph(nullptr),
 655                   NOT_PRODUCT(_igv_printer(nullptr) COMMA)
 656                   _unique(0),
 657                   _dead_node_count(0),
 658                   _dead_node_list(comp_arena()),
 659                   _node_arena_one(mtCompiler, Arena::Tag::tag_node),
 660                   _node_arena_two(mtCompiler, Arena::Tag::tag_node),
 661                   _node_arena(&_node_arena_one),
 662                   _mach_constant_base_node(nullptr),
 663                   _Compile_types(mtCompiler),
 664                   _initial_gvn(nullptr),
 665                   _igvn_worklist(nullptr),
 666                   _types(nullptr),
 667                   _node_hash(nullptr),
 668                   _late_inlines(comp_arena(), 2, 0, nullptr),
 669                   _string_late_inlines(comp_arena(), 2, 0, nullptr),
 670                   _boxing_late_inlines(comp_arena(), 2, 0, nullptr),
 671                   _vector_reboxing_late_inlines(comp_arena(), 2, 0, nullptr),
 672                   _late_inlines_pos(0),
 673                   _number_of_mh_late_inlines(0),
 674                   _oom(false),
 675                   _print_inlining_stream(new (mtCompiler) stringStream()),
 676                   _print_inlining_list(nullptr),
 677                   _print_inlining_idx(0),
 678                   _print_inlining_output(nullptr),
 679                   _replay_inline_data(nullptr),
 680                   _java_calls(0),
 681                   _inner_loops(0),
 682                   _interpreter_frame_size(0),
 683                   _output(nullptr)
 684 #ifndef PRODUCT
 685                   , _in_dump_cnt(0)
 686 #endif
 687 {
 688   C = this;
 689   CompileWrapper cw(this);
 690 
 691   TraceTime t1("Total compilation time", &_t_totalCompilation, CITime, CITimeVerbose);
 692   TraceTime t2(nullptr, &_t_methodCompilation, CITime, false);
 693 
 694 #if defined(SUPPORT_ASSEMBLY) || defined(SUPPORT_ABSTRACT_ASSEMBLY)
 695   bool print_opto_assembly = directive->PrintOptoAssemblyOption;
 696   // We can always print a disassembly, either abstract (hex dump) or
 697   // with the help of a suitable hsdis library. Thus, we should not
 698   // couple print_assembly and print_opto_assembly controls.
 699   // But: always print opto and regular assembly on compile command 'print'.
 700   bool print_assembly = directive->PrintAssemblyOption;
 701   set_print_assembly(print_opto_assembly || print_assembly);
 702 #else
 703   set_print_assembly(false); // must initialize.
 704 #endif
 705 
 706 #ifndef PRODUCT
 707   set_parsed_irreducible_loop(false);
 708 #endif
 709 
 710   if (directive->ReplayInlineOption) {
 711     _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level());
 712   }
 713   set_print_inlining(directive->PrintInliningOption || PrintOptoInlining);
 714   set_print_intrinsics(directive->PrintIntrinsicsOption);
 715   set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it
 716 
 717   if (ProfileTraps) {
 718     // Make sure the method being compiled gets its own MDO,
 719     // so we can at least track the decompile_count().
 720     method()->ensure_method_data();
 721   }
 722 
 723   Init(/*do_aliasing=*/ true);
 724 
 725   print_compile_messages();
 726 
 727   _ilt = InlineTree::build_inline_tree_root();
 728 
 729   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
 730   assert(num_alias_types() >= AliasIdxRaw, "");
 731 
 732 #define MINIMUM_NODE_HASH  1023
 733 
 734   // GVN that will be run immediately on new nodes
 735   uint estimated_size = method()->code_size()*4+64;
 736   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
 737   _igvn_worklist = new (comp_arena()) Unique_Node_List(comp_arena());
 738   _types = new (comp_arena()) Type_Array(comp_arena());
 739   _node_hash = new (comp_arena()) NodeHash(comp_arena(), estimated_size);
 740   PhaseGVN gvn;
 741   set_initial_gvn(&gvn);
 742 
 743   print_inlining_init();
 744   { // Scope for timing the parser
 745     TracePhase tp("parse", &timers[_t_parser]);
 746 
 747     // Put top into the hash table ASAP.
 748     initial_gvn()->transform(top());
 749 
 750     // Set up tf(), start(), and find a CallGenerator.
 751     CallGenerator* cg = nullptr;
 752     if (is_osr_compilation()) {
 753       const TypeTuple *domain = StartOSRNode::osr_domain();
 754       const TypeTuple *range = TypeTuple::make_range(method()->signature());
 755       init_tf(TypeFunc::make(domain, range));
 756       StartNode* s = new StartOSRNode(root(), domain);
 757       initial_gvn()->set_type_bottom(s);
 758       init_start(s);
 759       cg = CallGenerator::for_osr(method(), entry_bci());
 760     } else {
 761       // Normal case.
 762       init_tf(TypeFunc::make(method()));
 763       StartNode* s = new StartNode(root(), tf()->domain());
 764       initial_gvn()->set_type_bottom(s);
 765       init_start(s);
 766       if (method()->intrinsic_id() == vmIntrinsics::_Reference_get) {
 767         // With java.lang.ref.reference.get() we must go through the
 768         // intrinsic - even when get() is the root
 769         // method of the compile - so that, if necessary, the value in
 770         // the referent field of the reference object gets recorded by
 771         // the pre-barrier code.
 772         cg = find_intrinsic(method(), false);
 773       }
 774       if (cg == nullptr) {
 775         float past_uses = method()->interpreter_invocation_count();
 776         float expected_uses = past_uses;
 777         cg = CallGenerator::for_inline(method(), expected_uses);
 778       }
 779     }
 780     if (failing())  return;
 781     if (cg == nullptr) {
 782       const char* reason = InlineTree::check_can_parse(method());
 783       assert(reason != nullptr, "expect reason for parse failure");
 784       stringStream ss;
 785       ss.print("cannot parse method: %s", reason);
 786       record_method_not_compilable(ss.as_string());
 787       return;
 788     }
 789 
 790     gvn.set_type(root(), root()->bottom_type());
 791 
 792     JVMState* jvms = build_start_state(start(), tf());
 793     if ((jvms = cg->generate(jvms)) == nullptr) {
 794       assert(failure_reason() != nullptr, "expect reason for parse failure");
 795       stringStream ss;
 796       ss.print("method parse failed: %s", failure_reason());
 797       record_method_not_compilable(ss.as_string());
 798       return;
 799     }
 800     GraphKit kit(jvms);
 801 
 802     if (!kit.stopped()) {
 803       // Accept return values, and transfer control we know not where.
 804       // This is done by a special, unique ReturnNode bound to root.
 805       return_values(kit.jvms());
 806     }
 807 
 808     if (kit.has_exceptions()) {
 809       // Any exceptions that escape from this call must be rethrown
 810       // to whatever caller is dynamically above us on the stack.
 811       // This is done by a special, unique RethrowNode bound to root.
 812       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
 813     }
 814 
 815     assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
 816 
 817     if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
 818       inline_string_calls(true);
 819     }
 820 
 821     if (failing())  return;
 822 
 823     // Remove clutter produced by parsing.
 824     if (!failing()) {
 825       ResourceMark rm;
 826       PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist());
 827     }
 828   }
 829 
 830   // Note:  Large methods are capped off in do_one_bytecode().
 831   if (failing())  return;
 832 
 833   // After parsing, node notes are no longer automagic.
 834   // They must be propagated by register_new_node_with_optimizer(),
 835   // clone(), or the like.
 836   set_default_node_notes(nullptr);
 837 
 838 #ifndef PRODUCT
 839   if (should_print_igv(1)) {
 840     _igv_printer->print_inlining();
 841   }
 842 #endif
 843 
 844   if (failing())  return;
 845   NOT_PRODUCT( verify_graph_edges(); )
 846 
 847   if (StressLCM || StressGCM || StressIGVN || StressCCP ||
 848       StressIncrementalInlining || StressMacroExpansion) {
 849     initialize_stress_seed(directive);
 850   }
 851 
 852   // Now optimize
 853   Optimize();
 854   if (failing())  return;
 855   NOT_PRODUCT( verify_graph_edges(); )
 856 
 857 #ifndef PRODUCT
 858   if (should_print_ideal()) {
 859     print_ideal_ir("print_ideal");
 860   }
 861 #endif
 862 
 863 #ifdef ASSERT
 864   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 865   bs->verify_gc_barriers(this, BarrierSetC2::BeforeCodeGen);
 866 #endif
 867 
 868   // Dump compilation data to replay it.
 869   if (directive->DumpReplayOption) {
 870     env()->dump_replay_data(_compile_id);
 871   }
 872   if (directive->DumpInlineOption && (ilt() != nullptr)) {
 873     env()->dump_inline_data(_compile_id);
 874   }
 875 
 876   // Now that we know the size of all the monitors we can add a fixed slot
 877   // for the original deopt pc.
 878   int next_slot = fixed_slots() + (sizeof(address) / VMRegImpl::stack_slot_size);
 879   set_fixed_slots(next_slot);
 880 
 881   // Compute when to use implicit null checks. Used by matching trap based
 882   // nodes and NullCheck optimization.
 883   set_allowed_deopt_reasons();
 884 
 885   // Now generate code
 886   Code_Gen();
 887 }
 888 
 889 //------------------------------Compile----------------------------------------
 890 // Compile a runtime stub
 891 Compile::Compile( ciEnv* ci_env,
 892                   TypeFunc_generator generator,
 893                   address stub_function,
 894                   const char *stub_name,
 895                   int is_fancy_jump,
 896                   bool pass_tls,
 897                   bool return_pc,
 898                   DirectiveSet* directive)
 899   : Phase(Compiler),
 900     _compile_id(0),
 901     _options(Options::for_runtime_stub()),
 902     _method(nullptr),
 903     _entry_bci(InvocationEntryBci),
 904     _stub_function(stub_function),
 905     _stub_name(stub_name),
 906     _stub_entry_point(nullptr),
 907     _max_node_limit(MaxNodeLimit),
 908     _post_loop_opts_phase(false),
 909     _allow_macro_nodes(true),
 910     _inlining_progress(false),
 911     _inlining_incrementally(false),
 912     _has_reserved_stack_access(false),
 913 #ifndef PRODUCT
 914     _igv_idx(0),
 915     _trace_opto_output(directive->TraceOptoOutputOption),
 916 #endif
 917     _has_method_handle_invokes(false),
 918     _clinit_barrier_on_entry(false),
 919     _has_clinit_barriers(false),
 920     _stress_seed(0),
 921     _comp_arena(mtCompiler),
 922     _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())),
 923     _env(ci_env),
 924     _directive(directive),
 925     _log(ci_env->log()),
 926     _first_failure_details(nullptr),
 927     _for_post_loop_igvn(comp_arena(), 8, 0, nullptr),
 928     _congraph(nullptr),
 929     NOT_PRODUCT(_igv_printer(nullptr) COMMA)
 930     _unique(0),
 931     _dead_node_count(0),
 932     _dead_node_list(comp_arena()),
 933     _node_arena_one(mtCompiler),
 934     _node_arena_two(mtCompiler),
 935     _node_arena(&_node_arena_one),
 936     _mach_constant_base_node(nullptr),
 937     _Compile_types(mtCompiler),
 938     _initial_gvn(nullptr),
 939     _igvn_worklist(nullptr),
 940     _types(nullptr),
 941     _node_hash(nullptr),
 942     _number_of_mh_late_inlines(0),
 943     _oom(false),
 944     _print_inlining_stream(new (mtCompiler) stringStream()),
 945     _print_inlining_list(nullptr),
 946     _print_inlining_idx(0),
 947     _print_inlining_output(nullptr),
 948     _replay_inline_data(nullptr),
 949     _java_calls(0),
 950     _inner_loops(0),
 951     _interpreter_frame_size(0),
 952     _output(nullptr),
 953 #ifndef PRODUCT
 954     _in_dump_cnt(0),
 955 #endif
 956     _allowed_reasons(0) {
 957   C = this;
 958 
 959   TraceTime t1(nullptr, &_t_totalCompilation, CITime, false);
 960   TraceTime t2(nullptr, &_t_stubCompilation, CITime, false);
 961 
 962 #ifndef PRODUCT
 963   set_print_assembly(PrintFrameConverterAssembly);
 964   set_parsed_irreducible_loop(false);
 965 #else
 966   set_print_assembly(false); // Must initialize.
 967 #endif
 968   set_has_irreducible_loop(false); // no loops
 969 
 970   CompileWrapper cw(this);
 971   Init(/*do_aliasing=*/ false);
 972   init_tf((*generator)());
 973 
 974   _igvn_worklist = new (comp_arena()) Unique_Node_List(comp_arena());
 975   _types = new (comp_arena()) Type_Array(comp_arena());
 976   _node_hash = new (comp_arena()) NodeHash(comp_arena(), 255);
 977 
 978   if (StressLCM || StressGCM) {
 979     initialize_stress_seed(directive);
 980   }
 981 
 982   {
 983     PhaseGVN gvn;
 984     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
 985     gvn.transform(top());
 986 
 987     GraphKit kit;
 988     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
 989   }
 990 
 991   NOT_PRODUCT( verify_graph_edges(); )
 992 
 993   Code_Gen();
 994 }
 995 
 996 Compile::~Compile() {
 997   delete _print_inlining_stream;
 998   delete _first_failure_details;
 999 };
1000 
1001 //------------------------------Init-------------------------------------------
1002 // Prepare for a single compilation
1003 void Compile::Init(bool aliasing) {
1004   _do_aliasing = aliasing;
1005   _unique  = 0;
1006   _regalloc = nullptr;
1007 
1008   _tf      = nullptr;  // filled in later
1009   _top     = nullptr;  // cached later
1010   _matcher = nullptr;  // filled in later
1011   _cfg     = nullptr;  // filled in later
1012 
1013   IA32_ONLY( set_24_bit_selection_and_mode(true, false); )
1014 
1015   _node_note_array = nullptr;
1016   _default_node_notes = nullptr;
1017   DEBUG_ONLY( _modified_nodes = nullptr; ) // Used in Optimize()
1018 
1019   _immutable_memory = nullptr; // filled in at first inquiry
1020 
1021 #ifdef ASSERT
1022   _phase_optimize_finished = false;
1023   _exception_backedge = false;
1024   _type_verify = nullptr;
1025 #endif
1026 
1027   // Globally visible Nodes
1028   // First set TOP to null to give safe behavior during creation of RootNode
1029   set_cached_top_node(nullptr);
1030   set_root(new RootNode());
1031   // Now that you have a Root to point to, create the real TOP
1032   set_cached_top_node( new ConNode(Type::TOP) );
1033   set_recent_alloc(nullptr, nullptr);
1034 
1035   // Create Debug Information Recorder to record scopes, oopmaps, etc.
1036   env()->set_oop_recorder(new OopRecorder(env()->arena()));
1037   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
1038   env()->set_dependencies(new Dependencies(env()));
1039 
1040   _fixed_slots = 0;
1041   set_has_split_ifs(false);
1042   set_has_loops(false); // first approximation
1043   set_has_stringbuilder(false);
1044   set_has_boxed_value(false);
1045   _trap_can_recompile = false;  // no traps emitted yet
1046   _major_progress = true; // start out assuming good things will happen
1047   set_has_unsafe_access(false);
1048   set_max_vector_size(0);
1049   set_clear_upper_avx(false);  //false as default for clear upper bits of ymm registers
1050   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
1051   set_decompile_count(0);
1052 
1053 #ifndef PRODUCT
1054   Copy::zero_to_bytes(_igv_phase_iter, sizeof(_igv_phase_iter));
1055 #endif
1056 
1057   set_do_freq_based_layout(_directive->BlockLayoutByFrequencyOption);
1058   _loop_opts_cnt = LoopOptsCount;
1059   set_do_inlining(Inline);
1060   set_max_inline_size(MaxInlineSize);
1061   set_freq_inline_size(FreqInlineSize);
1062   set_do_scheduling(OptoScheduling);
1063 
1064   set_do_vector_loop(false);
1065   set_has_monitors(false);
1066   set_has_scoped_access(false);
1067 
1068   if (AllowVectorizeOnDemand) {
1069     if (has_method() && _directive->VectorizeOption) {
1070       set_do_vector_loop(true);
1071       NOT_PRODUCT(if (do_vector_loop() && Verbose) {tty->print("Compile::Init: do vectorized loops (SIMD like) for method %s\n",  method()->name()->as_quoted_ascii());})
1072     } else if (has_method() && method()->name() != nullptr &&
1073                method()->intrinsic_id() == vmIntrinsics::_forEachRemaining) {
1074       set_do_vector_loop(true);
1075     }
1076   }
1077   set_use_cmove(UseCMoveUnconditionally /* || do_vector_loop()*/); //TODO: consider do_vector_loop() mandate use_cmove unconditionally
1078   NOT_PRODUCT(if (use_cmove() && Verbose && has_method()) {tty->print("Compile::Init: use CMove without profitability tests for method %s\n",  method()->name()->as_quoted_ascii());})
1079 
1080   _max_node_limit = _directive->MaxNodeLimitOption;
1081 
1082   if (VM_Version::supports_fast_class_init_checks() && has_method() && !is_osr_compilation() &&
1083       (method()->needs_clinit_barrier() || (do_clinit_barriers() && method()->is_static()))) {
1084     set_clinit_barrier_on_entry(true);
1085     if (do_clinit_barriers()) {
1086       set_has_clinit_barriers(true); // Entry clinit barrier is in prolog code.
1087     }
1088   }
1089   if (debug_info()->recording_non_safepoints()) {
1090     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
1091                         (comp_arena(), 8, 0, nullptr));
1092     set_default_node_notes(Node_Notes::make(this));
1093   }
1094 
1095   const int grow_ats = 16;
1096   _max_alias_types = grow_ats;
1097   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
1098   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
1099   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
1100   {
1101     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
1102   }
1103   // Initialize the first few types.
1104   _alias_types[AliasIdxTop]->Init(AliasIdxTop, nullptr);
1105   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
1106   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
1107   _num_alias_types = AliasIdxRaw+1;
1108   // Zero out the alias type cache.
1109   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
1110   // A null adr_type hits in the cache right away.  Preload the right answer.
1111   probe_alias_cache(nullptr)->_index = AliasIdxTop;
1112 }
1113 
1114 //---------------------------init_start----------------------------------------
1115 // Install the StartNode on this compile object.
1116 void Compile::init_start(StartNode* s) {
1117   if (failing())
1118     return; // already failing
1119   assert(s == start(), "");
1120 }
1121 
1122 /**
1123  * Return the 'StartNode'. We must not have a pending failure, since the ideal graph
1124  * can be in an inconsistent state, i.e., we can get segmentation faults when traversing
1125  * the ideal graph.
1126  */
1127 StartNode* Compile::start() const {
1128   assert (!failing(), "Must not have pending failure. Reason is: %s", failure_reason());
1129   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
1130     Node* start = root()->fast_out(i);
1131     if (start->is_Start()) {
1132       return start->as_Start();
1133     }
1134   }
1135   fatal("Did not find Start node!");
1136   return nullptr;
1137 }
1138 
1139 //-------------------------------immutable_memory-------------------------------------
1140 // Access immutable memory
1141 Node* Compile::immutable_memory() {
1142   if (_immutable_memory != nullptr) {
1143     return _immutable_memory;
1144   }
1145   StartNode* s = start();
1146   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
1147     Node *p = s->fast_out(i);
1148     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
1149       _immutable_memory = p;
1150       return _immutable_memory;
1151     }
1152   }
1153   ShouldNotReachHere();
1154   return nullptr;
1155 }
1156 
1157 //----------------------set_cached_top_node------------------------------------
1158 // Install the cached top node, and make sure Node::is_top works correctly.
1159 void Compile::set_cached_top_node(Node* tn) {
1160   if (tn != nullptr)  verify_top(tn);
1161   Node* old_top = _top;
1162   _top = tn;
1163   // Calling Node::setup_is_top allows the nodes the chance to adjust
1164   // their _out arrays.
1165   if (_top != nullptr)     _top->setup_is_top();
1166   if (old_top != nullptr)  old_top->setup_is_top();
1167   assert(_top == nullptr || top()->is_top(), "");
1168 }
1169 
1170 #ifdef ASSERT
1171 uint Compile::count_live_nodes_by_graph_walk() {
1172   Unique_Node_List useful(comp_arena());
1173   // Get useful node list by walking the graph.
1174   identify_useful_nodes(useful);
1175   return useful.size();
1176 }
1177 
1178 void Compile::print_missing_nodes() {
1179 
1180   // Return if CompileLog is null and PrintIdealNodeCount is false.
1181   if ((_log == nullptr) && (! PrintIdealNodeCount)) {
1182     return;
1183   }
1184 
1185   // This is an expensive function. It is executed only when the user
1186   // specifies VerifyIdealNodeCount option or otherwise knows the
1187   // additional work that needs to be done to identify reachable nodes
1188   // by walking the flow graph and find the missing ones using
1189   // _dead_node_list.
1190 
1191   Unique_Node_List useful(comp_arena());
1192   // Get useful node list by walking the graph.
1193   identify_useful_nodes(useful);
1194 
1195   uint l_nodes = C->live_nodes();
1196   uint l_nodes_by_walk = useful.size();
1197 
1198   if (l_nodes != l_nodes_by_walk) {
1199     if (_log != nullptr) {
1200       _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
1201       _log->stamp();
1202       _log->end_head();
1203     }
1204     VectorSet& useful_member_set = useful.member_set();
1205     int last_idx = l_nodes_by_walk;
1206     for (int i = 0; i < last_idx; i++) {
1207       if (useful_member_set.test(i)) {
1208         if (_dead_node_list.test(i)) {
1209           if (_log != nullptr) {
1210             _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
1211           }
1212           if (PrintIdealNodeCount) {
1213             // Print the log message to tty
1214               tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
1215               useful.at(i)->dump();
1216           }
1217         }
1218       }
1219       else if (! _dead_node_list.test(i)) {
1220         if (_log != nullptr) {
1221           _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
1222         }
1223         if (PrintIdealNodeCount) {
1224           // Print the log message to tty
1225           tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
1226         }
1227       }
1228     }
1229     if (_log != nullptr) {
1230       _log->tail("mismatched_nodes");
1231     }
1232   }
1233 }
1234 void Compile::record_modified_node(Node* n) {
1235   if (_modified_nodes != nullptr && !_inlining_incrementally && !n->is_Con()) {
1236     _modified_nodes->push(n);
1237   }
1238 }
1239 
1240 void Compile::remove_modified_node(Node* n) {
1241   if (_modified_nodes != nullptr) {
1242     _modified_nodes->remove(n);
1243   }
1244 }
1245 #endif
1246 
1247 #ifndef PRODUCT
1248 void Compile::verify_top(Node* tn) const {
1249   if (tn != nullptr) {
1250     assert(tn->is_Con(), "top node must be a constant");
1251     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
1252     assert(tn->in(0) != nullptr, "must have live top node");
1253   }
1254 }
1255 #endif
1256 
1257 
1258 ///-------------------Managing Per-Node Debug & Profile Info-------------------
1259 
1260 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1261   guarantee(arr != nullptr, "");
1262   int num_blocks = arr->length();
1263   if (grow_by < num_blocks)  grow_by = num_blocks;
1264   int num_notes = grow_by * _node_notes_block_size;
1265   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1266   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1267   while (num_notes > 0) {
1268     arr->append(notes);
1269     notes     += _node_notes_block_size;
1270     num_notes -= _node_notes_block_size;
1271   }
1272   assert(num_notes == 0, "exact multiple, please");
1273 }
1274 
1275 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1276   if (source == nullptr || dest == nullptr)  return false;
1277 
1278   if (dest->is_Con())
1279     return false;               // Do not push debug info onto constants.
1280 
1281 #ifdef ASSERT
1282   // Leave a bread crumb trail pointing to the original node:
1283   if (dest != nullptr && dest != source && dest->debug_orig() == nullptr) {
1284     dest->set_debug_orig(source);
1285   }
1286 #endif
1287 
1288   if (node_note_array() == nullptr)
1289     return false;               // Not collecting any notes now.
1290 
1291   // This is a copy onto a pre-existing node, which may already have notes.
1292   // If both nodes have notes, do not overwrite any pre-existing notes.
1293   Node_Notes* source_notes = node_notes_at(source->_idx);
1294   if (source_notes == nullptr || source_notes->is_clear())  return false;
1295   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
1296   if (dest_notes == nullptr || dest_notes->is_clear()) {
1297     return set_node_notes_at(dest->_idx, source_notes);
1298   }
1299 
1300   Node_Notes merged_notes = (*source_notes);
1301   // The order of operations here ensures that dest notes will win...
1302   merged_notes.update_from(dest_notes);
1303   return set_node_notes_at(dest->_idx, &merged_notes);
1304 }
1305 
1306 
1307 //--------------------------allow_range_check_smearing-------------------------
1308 // Gating condition for coalescing similar range checks.
1309 // Sometimes we try 'speculatively' replacing a series of a range checks by a
1310 // single covering check that is at least as strong as any of them.
1311 // If the optimization succeeds, the simplified (strengthened) range check
1312 // will always succeed.  If it fails, we will deopt, and then give up
1313 // on the optimization.
1314 bool Compile::allow_range_check_smearing() const {
1315   // If this method has already thrown a range-check,
1316   // assume it was because we already tried range smearing
1317   // and it failed.
1318   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1319   return !already_trapped;
1320 }
1321 
1322 
1323 //------------------------------flatten_alias_type-----------------------------
1324 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1325   assert(do_aliasing(), "Aliasing should be enabled");
1326   int offset = tj->offset();
1327   TypePtr::PTR ptr = tj->ptr();
1328 
1329   // Known instance (scalarizable allocation) alias only with itself.
1330   bool is_known_inst = tj->isa_oopptr() != nullptr &&
1331                        tj->is_oopptr()->is_known_instance();
1332 
1333   // Process weird unsafe references.
1334   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1335     assert(InlineUnsafeOps || StressReflectiveCode, "indeterminate pointers come only from unsafe ops");
1336     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1337     tj = TypeOopPtr::BOTTOM;
1338     ptr = tj->ptr();
1339     offset = tj->offset();
1340   }
1341 
1342   // Array pointers need some flattening
1343   const TypeAryPtr* ta = tj->isa_aryptr();
1344   if (ta && ta->is_stable()) {
1345     // Erase stability property for alias analysis.
1346     tj = ta = ta->cast_to_stable(false);
1347   }
1348   if( ta && is_known_inst ) {
1349     if ( offset != Type::OffsetBot &&
1350          offset > arrayOopDesc::length_offset_in_bytes() ) {
1351       offset = Type::OffsetBot; // Flatten constant access into array body only
1352       tj = ta = ta->
1353               remove_speculative()->
1354               cast_to_ptr_type(ptr)->
1355               with_offset(offset);
1356     }
1357   } else if (ta) {
1358     // For arrays indexed by constant indices, we flatten the alias
1359     // space to include all of the array body.  Only the header, klass
1360     // and array length can be accessed un-aliased.
1361     if( offset != Type::OffsetBot ) {
1362       if( ta->const_oop() ) { // MethodData* or Method*
1363         offset = Type::OffsetBot;   // Flatten constant access into array body
1364         tj = ta = ta->
1365                 remove_speculative()->
1366                 cast_to_ptr_type(ptr)->
1367                 cast_to_exactness(false)->
1368                 with_offset(offset);
1369       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1370         // range is OK as-is.
1371         tj = ta = TypeAryPtr::RANGE;
1372       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1373         tj = TypeInstPtr::KLASS; // all klass loads look alike
1374         ta = TypeAryPtr::RANGE; // generic ignored junk
1375         ptr = TypePtr::BotPTR;
1376       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1377         tj = TypeInstPtr::MARK;
1378         ta = TypeAryPtr::RANGE; // generic ignored junk
1379         ptr = TypePtr::BotPTR;
1380       } else {                  // Random constant offset into array body
1381         offset = Type::OffsetBot;   // Flatten constant access into array body
1382         tj = ta = ta->
1383                 remove_speculative()->
1384                 cast_to_ptr_type(ptr)->
1385                 cast_to_exactness(false)->
1386                 with_offset(offset);
1387       }
1388     }
1389     // Arrays of fixed size alias with arrays of unknown size.
1390     if (ta->size() != TypeInt::POS) {
1391       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1392       tj = ta = ta->
1393               remove_speculative()->
1394               cast_to_ptr_type(ptr)->
1395               with_ary(tary)->
1396               cast_to_exactness(false);
1397     }
1398     // Arrays of known objects become arrays of unknown objects.
1399     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1400       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1401       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,nullptr,false,offset);
1402     }
1403     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1404       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1405       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,nullptr,false,offset);
1406     }
1407     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1408     // cannot be distinguished by bytecode alone.
1409     if (ta->elem() == TypeInt::BOOL) {
1410       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1411       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1412       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
1413     }
1414     // During the 2nd round of IterGVN, NotNull castings are removed.
1415     // Make sure the Bottom and NotNull variants alias the same.
1416     // Also, make sure exact and non-exact variants alias the same.
1417     if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != nullptr) {
1418       tj = ta = ta->
1419               remove_speculative()->
1420               cast_to_ptr_type(TypePtr::BotPTR)->
1421               cast_to_exactness(false)->
1422               with_offset(offset);
1423     }
1424   }
1425 
1426   // Oop pointers need some flattening
1427   const TypeInstPtr *to = tj->isa_instptr();
1428   if (to && to != TypeOopPtr::BOTTOM) {
1429     ciInstanceKlass* ik = to->instance_klass();
1430     if( ptr == TypePtr::Constant ) {
1431       if (ik != ciEnv::current()->Class_klass() ||
1432           offset < ik->layout_helper_size_in_bytes()) {
1433         // No constant oop pointers (such as Strings); they alias with
1434         // unknown strings.
1435         assert(!is_known_inst, "not scalarizable allocation");
1436         tj = to = to->
1437                 cast_to_instance_id(TypeOopPtr::InstanceBot)->
1438                 remove_speculative()->
1439                 cast_to_ptr_type(TypePtr::BotPTR)->
1440                 cast_to_exactness(false);
1441       }
1442     } else if( is_known_inst ) {
1443       tj = to; // Keep NotNull and klass_is_exact for instance type
1444     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1445       // During the 2nd round of IterGVN, NotNull castings are removed.
1446       // Make sure the Bottom and NotNull variants alias the same.
1447       // Also, make sure exact and non-exact variants alias the same.
1448       tj = to = to->
1449               remove_speculative()->
1450               cast_to_instance_id(TypeOopPtr::InstanceBot)->
1451               cast_to_ptr_type(TypePtr::BotPTR)->
1452               cast_to_exactness(false);
1453     }
1454     if (to->speculative() != nullptr) {
1455       tj = to = to->remove_speculative();
1456     }
1457     // Canonicalize the holder of this field
1458     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1459       // First handle header references such as a LoadKlassNode, even if the
1460       // object's klass is unloaded at compile time (4965979).
1461       if (!is_known_inst) { // Do it only for non-instance types
1462         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, nullptr, offset);
1463       }
1464     } else if (offset < 0 || offset >= ik->layout_helper_size_in_bytes()) {
1465       // Static fields are in the space above the normal instance
1466       // fields in the java.lang.Class instance.
1467       if (ik != ciEnv::current()->Class_klass()) {
1468         to = nullptr;
1469         tj = TypeOopPtr::BOTTOM;
1470         offset = tj->offset();
1471       }
1472     } else {
1473       ciInstanceKlass *canonical_holder = ik->get_canonical_holder(offset);
1474       assert(offset < canonical_holder->layout_helper_size_in_bytes(), "");
1475       if (!ik->equals(canonical_holder) || tj->offset() != offset) {
1476         if( is_known_inst ) {
1477           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, nullptr, offset, to->instance_id());
1478         } else {
1479           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, nullptr, offset);
1480         }
1481       }
1482     }
1483   }
1484 
1485   // Klass pointers to object array klasses need some flattening
1486   const TypeKlassPtr *tk = tj->isa_klassptr();
1487   if( tk ) {
1488     // If we are referencing a field within a Klass, we need
1489     // to assume the worst case of an Object.  Both exact and
1490     // inexact types must flatten to the same alias class so
1491     // use NotNull as the PTR.
1492     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1493       tj = tk = TypeInstKlassPtr::make(TypePtr::NotNull,
1494                                        env()->Object_klass(),
1495                                        offset);
1496     }
1497 
1498     if (tk->isa_aryklassptr() && tk->is_aryklassptr()->elem()->isa_klassptr()) {
1499       ciKlass* k = ciObjArrayKlass::make(env()->Object_klass());
1500       if (!k || !k->is_loaded()) {                  // Only fails for some -Xcomp runs
1501         tj = tk = TypeInstKlassPtr::make(TypePtr::NotNull, env()->Object_klass(), offset);
1502       } else {
1503         tj = tk = TypeAryKlassPtr::make(TypePtr::NotNull, tk->is_aryklassptr()->elem(), k, offset);
1504       }
1505     }
1506 
1507     // Check for precise loads from the primary supertype array and force them
1508     // to the supertype cache alias index.  Check for generic array loads from
1509     // the primary supertype array and also force them to the supertype cache
1510     // alias index.  Since the same load can reach both, we need to merge
1511     // these 2 disparate memories into the same alias class.  Since the
1512     // primary supertype array is read-only, there's no chance of confusion
1513     // where we bypass an array load and an array store.
1514     int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
1515     if (offset == Type::OffsetBot ||
1516         (offset >= primary_supers_offset &&
1517          offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
1518         offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
1519       offset = in_bytes(Klass::secondary_super_cache_offset());
1520       tj = tk = tk->with_offset(offset);
1521     }
1522   }
1523 
1524   // Flatten all Raw pointers together.
1525   if (tj->base() == Type::RawPtr)
1526     tj = TypeRawPtr::BOTTOM;
1527 
1528   if (tj->base() == Type::AnyPtr)
1529     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1530 
1531   offset = tj->offset();
1532   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1533 
1534   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1535           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1536           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1537           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1538           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1539           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1540           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr),
1541           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1542   assert( tj->ptr() != TypePtr::TopPTR &&
1543           tj->ptr() != TypePtr::AnyNull &&
1544           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1545 //    assert( tj->ptr() != TypePtr::Constant ||
1546 //            tj->base() == Type::RawPtr ||
1547 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1548 
1549   return tj;
1550 }
1551 
1552 void Compile::AliasType::Init(int i, const TypePtr* at) {
1553   assert(AliasIdxTop <= i && i < Compile::current()->_max_alias_types, "Invalid alias index");
1554   _index = i;
1555   _adr_type = at;
1556   _field = nullptr;
1557   _element = nullptr;
1558   _is_rewritable = true; // default
1559   const TypeOopPtr *atoop = (at != nullptr) ? at->isa_oopptr() : nullptr;
1560   if (atoop != nullptr && atoop->is_known_instance()) {
1561     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1562     _general_index = Compile::current()->get_alias_index(gt);
1563   } else {
1564     _general_index = 0;
1565   }
1566 }
1567 
1568 BasicType Compile::AliasType::basic_type() const {
1569   if (element() != nullptr) {
1570     const Type* element = adr_type()->is_aryptr()->elem();
1571     return element->isa_narrowoop() ? T_OBJECT : element->array_element_basic_type();
1572   } if (field() != nullptr) {
1573     return field()->layout_type();
1574   } else {
1575     return T_ILLEGAL; // unknown
1576   }
1577 }
1578 
1579 //---------------------------------print_on------------------------------------
1580 #ifndef PRODUCT
1581 void Compile::AliasType::print_on(outputStream* st) {
1582   if (index() < 10)
1583         st->print("@ <%d> ", index());
1584   else  st->print("@ <%d>",  index());
1585   st->print(is_rewritable() ? "   " : " RO");
1586   int offset = adr_type()->offset();
1587   if (offset == Type::OffsetBot)
1588         st->print(" +any");
1589   else  st->print(" +%-3d", offset);
1590   st->print(" in ");
1591   adr_type()->dump_on(st);
1592   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1593   if (field() != nullptr && tjp) {
1594     if (tjp->is_instptr()->instance_klass()  != field()->holder() ||
1595         tjp->offset() != field()->offset_in_bytes()) {
1596       st->print(" != ");
1597       field()->print();
1598       st->print(" ***");
1599     }
1600   }
1601 }
1602 
1603 void print_alias_types() {
1604   Compile* C = Compile::current();
1605   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1606   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1607     C->alias_type(idx)->print_on(tty);
1608     tty->cr();
1609   }
1610 }
1611 #endif
1612 
1613 
1614 //----------------------------probe_alias_cache--------------------------------
1615 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1616   intptr_t key = (intptr_t) adr_type;
1617   key ^= key >> logAliasCacheSize;
1618   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1619 }
1620 
1621 
1622 //-----------------------------grow_alias_types--------------------------------
1623 void Compile::grow_alias_types() {
1624   const int old_ats  = _max_alias_types; // how many before?
1625   const int new_ats  = old_ats;          // how many more?
1626   const int grow_ats = old_ats+new_ats;  // how many now?
1627   _max_alias_types = grow_ats;
1628   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1629   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1630   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1631   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1632 }
1633 
1634 
1635 //--------------------------------find_alias_type------------------------------
1636 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
1637   if (!do_aliasing()) {
1638     return alias_type(AliasIdxBot);
1639   }
1640 
1641   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1642   if (ace->_adr_type == adr_type) {
1643     return alias_type(ace->_index);
1644   }
1645 
1646   // Handle special cases.
1647   if (adr_type == nullptr)          return alias_type(AliasIdxTop);
1648   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1649 
1650   // Do it the slow way.
1651   const TypePtr* flat = flatten_alias_type(adr_type);
1652 
1653 #ifdef ASSERT
1654   {
1655     ResourceMark rm;
1656     assert(flat == flatten_alias_type(flat), "not idempotent: adr_type = %s; flat = %s => %s",
1657            Type::str(adr_type), Type::str(flat), Type::str(flatten_alias_type(flat)));
1658     assert(flat != TypePtr::BOTTOM, "cannot alias-analyze an untyped ptr: adr_type = %s",
1659            Type::str(adr_type));
1660     if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1661       const TypeOopPtr* foop = flat->is_oopptr();
1662       // Scalarizable allocations have exact klass always.
1663       bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1664       const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1665       assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type: foop = %s; xoop = %s",
1666              Type::str(foop), Type::str(xoop));
1667     }
1668   }
1669 #endif
1670 
1671   int idx = AliasIdxTop;
1672   for (int i = 0; i < num_alias_types(); i++) {
1673     if (alias_type(i)->adr_type() == flat) {
1674       idx = i;
1675       break;
1676     }
1677   }
1678 
1679   if (idx == AliasIdxTop) {
1680     if (no_create)  return nullptr;
1681     // Grow the array if necessary.
1682     if (_num_alias_types == _max_alias_types)  grow_alias_types();
1683     // Add a new alias type.
1684     idx = _num_alias_types++;
1685     _alias_types[idx]->Init(idx, flat);
1686     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1687     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1688     if (flat->isa_instptr()) {
1689       if (flat->offset() == java_lang_Class::klass_offset()
1690           && flat->is_instptr()->instance_klass() == env()->Class_klass())
1691         alias_type(idx)->set_rewritable(false);
1692     }
1693     if (flat->isa_aryptr()) {
1694 #ifdef ASSERT
1695       const int header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1696       // (T_BYTE has the weakest alignment and size restrictions...)
1697       assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
1698 #endif
1699       if (flat->offset() == TypePtr::OffsetBot) {
1700         alias_type(idx)->set_element(flat->is_aryptr()->elem());
1701       }
1702     }
1703     if (flat->isa_klassptr()) {
1704       if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
1705         alias_type(idx)->set_rewritable(false);
1706       if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
1707         alias_type(idx)->set_rewritable(false);
1708       if (flat->offset() == in_bytes(Klass::access_flags_offset()))
1709         alias_type(idx)->set_rewritable(false);
1710       if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
1711         alias_type(idx)->set_rewritable(false);
1712       if (flat->offset() == in_bytes(Klass::secondary_super_cache_offset()))
1713         alias_type(idx)->set_rewritable(false);
1714     }
1715     // %%% (We would like to finalize JavaThread::threadObj_offset(),
1716     // but the base pointer type is not distinctive enough to identify
1717     // references into JavaThread.)
1718 
1719     // Check for final fields.
1720     const TypeInstPtr* tinst = flat->isa_instptr();
1721     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1722       ciField* field;
1723       if (tinst->const_oop() != nullptr &&
1724           tinst->instance_klass() == ciEnv::current()->Class_klass() &&
1725           tinst->offset() >= (tinst->instance_klass()->layout_helper_size_in_bytes())) {
1726         // static field
1727         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1728         field = k->get_field_by_offset(tinst->offset(), true);
1729       } else {
1730         ciInstanceKlass *k = tinst->instance_klass();
1731         field = k->get_field_by_offset(tinst->offset(), false);
1732       }
1733       assert(field == nullptr ||
1734              original_field == nullptr ||
1735              (field->holder() == original_field->holder() &&
1736               field->offset_in_bytes() == original_field->offset_in_bytes() &&
1737               field->is_static() == original_field->is_static()), "wrong field?");
1738       // Set field() and is_rewritable() attributes.
1739       if (field != nullptr)  alias_type(idx)->set_field(field);
1740     }
1741   }
1742 
1743   // Fill the cache for next time.
1744   ace->_adr_type = adr_type;
1745   ace->_index    = idx;
1746   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1747 
1748   // Might as well try to fill the cache for the flattened version, too.
1749   AliasCacheEntry* face = probe_alias_cache(flat);
1750   if (face->_adr_type == nullptr) {
1751     face->_adr_type = flat;
1752     face->_index    = idx;
1753     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1754   }
1755 
1756   return alias_type(idx);
1757 }
1758 
1759 
1760 Compile::AliasType* Compile::alias_type(ciField* field) {
1761   const TypeOopPtr* t;
1762   if (field->is_static())
1763     t = TypeInstPtr::make(field->holder()->java_mirror());
1764   else
1765     t = TypeOopPtr::make_from_klass_raw(field->holder());
1766   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1767   assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
1768   return atp;
1769 }
1770 
1771 
1772 //------------------------------have_alias_type--------------------------------
1773 bool Compile::have_alias_type(const TypePtr* adr_type) {
1774   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1775   if (ace->_adr_type == adr_type) {
1776     return true;
1777   }
1778 
1779   // Handle special cases.
1780   if (adr_type == nullptr)             return true;
1781   if (adr_type == TypePtr::BOTTOM)  return true;
1782 
1783   return find_alias_type(adr_type, true, nullptr) != nullptr;
1784 }
1785 
1786 //-----------------------------must_alias--------------------------------------
1787 // True if all values of the given address type are in the given alias category.
1788 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1789   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1790   if (adr_type == nullptr)              return true;  // null serves as TypePtr::TOP
1791   if (alias_idx == AliasIdxTop)         return false; // the empty category
1792   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1793 
1794   // the only remaining possible overlap is identity
1795   int adr_idx = get_alias_index(adr_type);
1796   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1797   assert(adr_idx == alias_idx ||
1798          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1799           && adr_type                       != TypeOopPtr::BOTTOM),
1800          "should not be testing for overlap with an unsafe pointer");
1801   return adr_idx == alias_idx;
1802 }
1803 
1804 //------------------------------can_alias--------------------------------------
1805 // True if any values of the given address type are in the given alias category.
1806 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1807   if (alias_idx == AliasIdxTop)         return false; // the empty category
1808   if (adr_type == nullptr)              return false; // null serves as TypePtr::TOP
1809   // Known instance doesn't alias with bottom memory
1810   if (alias_idx == AliasIdxBot)         return !adr_type->is_known_instance();                   // the universal category
1811   if (adr_type->base() == Type::AnyPtr) return !C->get_adr_type(alias_idx)->is_known_instance(); // TypePtr::BOTTOM or its twins
1812 
1813   // the only remaining possible overlap is identity
1814   int adr_idx = get_alias_index(adr_type);
1815   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1816   return adr_idx == alias_idx;
1817 }
1818 
1819 // Mark all ParsePredicateNodes as useless. They will later be removed from the graph in IGVN together with their
1820 // uncommon traps if no Runtime Predicates were created from the Parse Predicates.
1821 void Compile::mark_parse_predicate_nodes_useless(PhaseIterGVN& igvn) {
1822   if (parse_predicate_count() == 0) {
1823     return;
1824   }
1825   for (int i = 0; i < parse_predicate_count(); i++) {
1826     ParsePredicateNode* parse_predicate = _parse_predicates.at(i);
1827     parse_predicate->mark_useless();
1828     igvn._worklist.push(parse_predicate);
1829   }
1830   _parse_predicates.clear();
1831 }
1832 
1833 void Compile::record_for_post_loop_opts_igvn(Node* n) {
1834   if (!n->for_post_loop_opts_igvn()) {
1835     assert(!_for_post_loop_igvn.contains(n), "duplicate");
1836     n->add_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn);
1837     _for_post_loop_igvn.append(n);
1838   }
1839 }
1840 
1841 void Compile::remove_from_post_loop_opts_igvn(Node* n) {
1842   n->remove_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn);
1843   _for_post_loop_igvn.remove(n);
1844 }
1845 
1846 void Compile::process_for_post_loop_opts_igvn(PhaseIterGVN& igvn) {
1847   // Verify that all previous optimizations produced a valid graph
1848   // at least to this point, even if no loop optimizations were done.
1849   PhaseIdealLoop::verify(igvn);
1850 
1851   C->set_post_loop_opts_phase(); // no more loop opts allowed
1852 
1853   assert(!C->major_progress(), "not cleared");
1854 
1855   if (_for_post_loop_igvn.length() > 0) {
1856     while (_for_post_loop_igvn.length() > 0) {
1857       Node* n = _for_post_loop_igvn.pop();
1858       n->remove_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn);
1859       igvn._worklist.push(n);
1860     }
1861     igvn.optimize();
1862     if (failing()) return;
1863     assert(_for_post_loop_igvn.length() == 0, "no more delayed nodes allowed");
1864     assert(C->parse_predicate_count() == 0, "all parse predicates should have been removed now");
1865 
1866     // Sometimes IGVN sets major progress (e.g., when processing loop nodes).
1867     if (C->major_progress()) {
1868       C->clear_major_progress(); // ensure that major progress is now clear
1869     }
1870   }
1871 }
1872 
1873 void Compile::record_unstable_if_trap(UnstableIfTrap* trap) {
1874   if (OptimizeUnstableIf) {
1875     _unstable_if_traps.append(trap);
1876   }
1877 }
1878 
1879 void Compile::remove_useless_unstable_if_traps(Unique_Node_List& useful) {
1880   for (int i = _unstable_if_traps.length() - 1; i >= 0; i--) {
1881     UnstableIfTrap* trap = _unstable_if_traps.at(i);
1882     Node* n = trap->uncommon_trap();
1883     if (!useful.member(n)) {
1884       _unstable_if_traps.delete_at(i); // replaces i-th with last element which is known to be useful (already processed)
1885     }
1886   }
1887 }
1888 
1889 // Remove the unstable if trap associated with 'unc' from candidates. It is either dead
1890 // or fold-compares case. Return true if succeed or not found.
1891 //
1892 // In rare cases, the found trap has been processed. It is too late to delete it. Return
1893 // false and ask fold-compares to yield.
1894 //
1895 // 'fold-compares' may use the uncommon_trap of the dominating IfNode to cover the fused
1896 // IfNode. This breaks the unstable_if trap invariant: control takes the unstable path
1897 // when deoptimization does happen.
1898 bool Compile::remove_unstable_if_trap(CallStaticJavaNode* unc, bool yield) {
1899   for (int i = 0; i < _unstable_if_traps.length(); ++i) {
1900     UnstableIfTrap* trap = _unstable_if_traps.at(i);
1901     if (trap->uncommon_trap() == unc) {
1902       if (yield && trap->modified()) {
1903         return false;
1904       }
1905       _unstable_if_traps.delete_at(i);
1906       break;
1907     }
1908   }
1909   return true;
1910 }
1911 
1912 // Re-calculate unstable_if traps with the liveness of next_bci, which points to the unlikely path.
1913 // It needs to be done after igvn because fold-compares may fuse uncommon_traps and before renumbering.
1914 void Compile::process_for_unstable_if_traps(PhaseIterGVN& igvn) {
1915   for (int i = _unstable_if_traps.length() - 1; i >= 0; --i) {
1916     UnstableIfTrap* trap = _unstable_if_traps.at(i);
1917     CallStaticJavaNode* unc = trap->uncommon_trap();
1918     int next_bci = trap->next_bci();
1919     bool modified = trap->modified();
1920 
1921     if (next_bci != -1 && !modified) {
1922       assert(!_dead_node_list.test(unc->_idx), "changing a dead node!");
1923       JVMState* jvms = unc->jvms();
1924       ciMethod* method = jvms->method();
1925       ciBytecodeStream iter(method);
1926 
1927       iter.force_bci(jvms->bci());
1928       assert(next_bci == iter.next_bci() || next_bci == iter.get_dest(), "wrong next_bci at unstable_if");
1929       Bytecodes::Code c = iter.cur_bc();
1930       Node* lhs = nullptr;
1931       Node* rhs = nullptr;
1932       if (c == Bytecodes::_if_acmpeq || c == Bytecodes::_if_acmpne) {
1933         lhs = unc->peek_operand(0);
1934         rhs = unc->peek_operand(1);
1935       } else if (c == Bytecodes::_ifnull || c == Bytecodes::_ifnonnull) {
1936         lhs = unc->peek_operand(0);
1937       }
1938 
1939       ResourceMark rm;
1940       const MethodLivenessResult& live_locals = method->liveness_at_bci(next_bci);
1941       assert(live_locals.is_valid(), "broken liveness info");
1942       int len = (int)live_locals.size();
1943 
1944       for (int i = 0; i < len; i++) {
1945         Node* local = unc->local(jvms, i);
1946         // kill local using the liveness of next_bci.
1947         // give up when the local looks like an operand to secure reexecution.
1948         if (!live_locals.at(i) && !local->is_top() && local != lhs && local!= rhs) {
1949           uint idx = jvms->locoff() + i;
1950 #ifdef ASSERT
1951           if (PrintOpto && Verbose) {
1952             tty->print("[unstable_if] kill local#%d: ", idx);
1953             local->dump();
1954             tty->cr();
1955           }
1956 #endif
1957           igvn.replace_input_of(unc, idx, top());
1958           modified = true;
1959         }
1960       }
1961     }
1962 
1963     // keep the mondified trap for late query
1964     if (modified) {
1965       trap->set_modified();
1966     } else {
1967       _unstable_if_traps.delete_at(i);
1968     }
1969   }
1970   igvn.optimize();
1971 }
1972 
1973 // StringOpts and late inlining of string methods
1974 void Compile::inline_string_calls(bool parse_time) {
1975   {
1976     // remove useless nodes to make the usage analysis simpler
1977     ResourceMark rm;
1978     PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist());
1979   }
1980 
1981   {
1982     ResourceMark rm;
1983     print_method(PHASE_BEFORE_STRINGOPTS, 3);
1984     PhaseStringOpts pso(initial_gvn());
1985     print_method(PHASE_AFTER_STRINGOPTS, 3);
1986   }
1987 
1988   // now inline anything that we skipped the first time around
1989   if (!parse_time) {
1990     _late_inlines_pos = _late_inlines.length();
1991   }
1992 
1993   while (_string_late_inlines.length() > 0) {
1994     CallGenerator* cg = _string_late_inlines.pop();
1995     cg->do_late_inline();
1996     if (failing())  return;
1997   }
1998   _string_late_inlines.trunc_to(0);
1999 }
2000 
2001 // Late inlining of boxing methods
2002 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
2003   if (_boxing_late_inlines.length() > 0) {
2004     assert(has_boxed_value(), "inconsistent");
2005 
2006     set_inlining_incrementally(true);
2007 
2008     igvn_worklist()->ensure_empty(); // should be done with igvn
2009 
2010     _late_inlines_pos = _late_inlines.length();
2011 
2012     while (_boxing_late_inlines.length() > 0) {
2013       CallGenerator* cg = _boxing_late_inlines.pop();
2014       cg->do_late_inline();
2015       if (failing())  return;
2016     }
2017     _boxing_late_inlines.trunc_to(0);
2018 
2019     inline_incrementally_cleanup(igvn);
2020 
2021     set_inlining_incrementally(false);
2022   }
2023 }
2024 
2025 bool Compile::inline_incrementally_one() {
2026   assert(IncrementalInline, "incremental inlining should be on");
2027 
2028   TracePhase tp("incrementalInline_inline", &timers[_t_incrInline_inline]);
2029 
2030   set_inlining_progress(false);
2031   set_do_cleanup(false);
2032 
2033   for (int i = 0; i < _late_inlines.length(); i++) {
2034     _late_inlines_pos = i+1;
2035     CallGenerator* cg = _late_inlines.at(i);
2036     bool does_dispatch = cg->is_virtual_late_inline() || cg->is_mh_late_inline();
2037     if (inlining_incrementally() || does_dispatch) { // a call can be either inlined or strength-reduced to a direct call
2038       cg->do_late_inline();
2039       assert(_late_inlines.at(i) == cg, "no insertions before current position allowed");
2040       if (failing()) {
2041         return false;
2042       } else if (inlining_progress()) {
2043         _late_inlines_pos = i+1; // restore the position in case new elements were inserted
2044         print_method(PHASE_INCREMENTAL_INLINE_STEP, 3, cg->call_node());
2045         break; // process one call site at a time
2046       }
2047     } else {
2048       // Ignore late inline direct calls when inlining is not allowed.
2049       // They are left in the late inline list when node budget is exhausted until the list is fully drained.
2050     }
2051   }
2052   // Remove processed elements.
2053   _late_inlines.remove_till(_late_inlines_pos);
2054   _late_inlines_pos = 0;
2055 
2056   assert(inlining_progress() || _late_inlines.length() == 0, "no progress");
2057 
2058   bool needs_cleanup = do_cleanup() || over_inlining_cutoff();
2059 
2060   set_inlining_progress(false);
2061   set_do_cleanup(false);
2062 
2063   bool force_cleanup = directive()->IncrementalInlineForceCleanupOption;
2064   return (_late_inlines.length() > 0) && !needs_cleanup && !force_cleanup;
2065 }
2066 
2067 void Compile::inline_incrementally_cleanup(PhaseIterGVN& igvn) {
2068   {
2069     TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]);
2070     ResourceMark rm;
2071     PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist());
2072   }
2073   {
2074     TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2075     igvn.reset_from_gvn(initial_gvn());
2076     igvn.optimize();
2077     if (failing()) return;
2078   }
2079   print_method(PHASE_INCREMENTAL_INLINE_CLEANUP, 3);
2080 }
2081 
2082 // Perform incremental inlining until bound on number of live nodes is reached
2083 void Compile::inline_incrementally(PhaseIterGVN& igvn) {
2084   TracePhase tp("incrementalInline", &timers[_t_incrInline]);
2085 
2086   set_inlining_incrementally(true);
2087   uint low_live_nodes = 0;
2088 
2089   while (_late_inlines.length() > 0) {
2090     if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2091       if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
2092         TracePhase tp("incrementalInline_ideal", &timers[_t_incrInline_ideal]);
2093         // PhaseIdealLoop is expensive so we only try it once we are
2094         // out of live nodes and we only try it again if the previous
2095         // helped got the number of nodes down significantly
2096         PhaseIdealLoop::optimize(igvn, LoopOptsNone);
2097         if (failing())  return;
2098         low_live_nodes = live_nodes();
2099         _major_progress = true;
2100       }
2101 
2102       if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2103         bool do_print_inlining = print_inlining() || print_intrinsics();
2104         if (do_print_inlining || log() != nullptr) {
2105           // Print inlining message for candidates that we couldn't inline for lack of space.
2106           for (int i = 0; i < _late_inlines.length(); i++) {
2107             CallGenerator* cg = _late_inlines.at(i);
2108             const char* msg = "live nodes > LiveNodeCountInliningCutoff";
2109             if (do_print_inlining) {
2110               cg->print_inlining_late(InliningResult::FAILURE, msg);
2111             }
2112             log_late_inline_failure(cg, msg);
2113           }
2114         }
2115         break; // finish
2116       }
2117     }
2118 
2119     igvn_worklist()->ensure_empty(); // should be done with igvn
2120 
2121     while (inline_incrementally_one()) {
2122       assert(!failing(), "inconsistent");
2123     }
2124     if (failing())  return;
2125 
2126     inline_incrementally_cleanup(igvn);
2127 
2128     print_method(PHASE_INCREMENTAL_INLINE_STEP, 3);
2129 
2130     if (failing())  return;
2131 
2132     if (_late_inlines.length() == 0) {
2133       break; // no more progress
2134     }
2135   }
2136 
2137   igvn_worklist()->ensure_empty(); // should be done with igvn
2138 
2139   if (_string_late_inlines.length() > 0) {
2140     assert(has_stringbuilder(), "inconsistent");
2141 
2142     inline_string_calls(false);
2143 
2144     if (failing())  return;
2145 
2146     inline_incrementally_cleanup(igvn);
2147   }
2148 
2149   set_inlining_incrementally(false);
2150 }
2151 
2152 void Compile::process_late_inline_calls_no_inline(PhaseIterGVN& igvn) {
2153   // "inlining_incrementally() == false" is used to signal that no inlining is allowed
2154   // (see LateInlineVirtualCallGenerator::do_late_inline_check() for details).
2155   // Tracking and verification of modified nodes is disabled by setting "_modified_nodes == nullptr"
2156   // as if "inlining_incrementally() == true" were set.
2157   assert(inlining_incrementally() == false, "not allowed");
2158   assert(_modified_nodes == nullptr, "not allowed");
2159   assert(_late_inlines.length() > 0, "sanity");
2160 
2161   while (_late_inlines.length() > 0) {
2162     igvn_worklist()->ensure_empty(); // should be done with igvn
2163 
2164     while (inline_incrementally_one()) {
2165       assert(!failing(), "inconsistent");
2166     }
2167     if (failing())  return;
2168 
2169     inline_incrementally_cleanup(igvn);
2170   }
2171 }
2172 
2173 bool Compile::optimize_loops(PhaseIterGVN& igvn, LoopOptsMode mode) {
2174   if (_loop_opts_cnt > 0) {
2175     while (major_progress() && (_loop_opts_cnt > 0)) {
2176       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2177       PhaseIdealLoop::optimize(igvn, mode);
2178       _loop_opts_cnt--;
2179       if (failing())  return false;
2180       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
2181     }
2182   }
2183   return true;
2184 }
2185 
2186 // Remove edges from "root" to each SafePoint at a backward branch.
2187 // They were inserted during parsing (see add_safepoint()) to make
2188 // infinite loops without calls or exceptions visible to root, i.e.,
2189 // useful.
2190 void Compile::remove_root_to_sfpts_edges(PhaseIterGVN& igvn) {
2191   Node *r = root();
2192   if (r != nullptr) {
2193     for (uint i = r->req(); i < r->len(); ++i) {
2194       Node *n = r->in(i);
2195       if (n != nullptr && n->is_SafePoint()) {
2196         r->rm_prec(i);
2197         if (n->outcnt() == 0) {
2198           igvn.remove_dead_node(n);
2199         }
2200         --i;
2201       }
2202     }
2203     // Parsing may have added top inputs to the root node (Path
2204     // leading to the Halt node proven dead). Make sure we get a
2205     // chance to clean them up.
2206     igvn._worklist.push(r);
2207     igvn.optimize();
2208   }
2209 }
2210 
2211 //------------------------------Optimize---------------------------------------
2212 // Given a graph, optimize it.
2213 void Compile::Optimize() {
2214   TracePhase tp("optimizer", &timers[_t_optimizer]);
2215 
2216 #ifndef PRODUCT
2217   if (env()->break_at_compile()) {
2218     BREAKPOINT;
2219   }
2220 
2221 #endif
2222 
2223   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2224 #ifdef ASSERT
2225   bs->verify_gc_barriers(this, BarrierSetC2::BeforeOptimize);
2226 #endif
2227 
2228   ResourceMark rm;
2229 
2230   print_inlining_reinit();
2231 
2232   NOT_PRODUCT( verify_graph_edges(); )
2233 
2234   print_method(PHASE_AFTER_PARSING, 1);
2235 
2236  {
2237   // Iterative Global Value Numbering, including ideal transforms
2238   // Initialize IterGVN with types and values from parse-time GVN
2239   PhaseIterGVN igvn(initial_gvn());
2240 #ifdef ASSERT
2241   _modified_nodes = new (comp_arena()) Unique_Node_List(comp_arena());
2242 #endif
2243   {
2244     TracePhase tp("iterGVN", &timers[_t_iterGVN]);
2245     igvn.optimize();
2246   }
2247 
2248   if (failing())  return;
2249 
2250   print_method(PHASE_ITER_GVN1, 2);
2251 
2252   process_for_unstable_if_traps(igvn);
2253 
2254   if (failing())  return;
2255 
2256   inline_incrementally(igvn);
2257 
2258   print_method(PHASE_INCREMENTAL_INLINE, 2);
2259 
2260   if (failing())  return;
2261 
2262   if (eliminate_boxing()) {
2263     // Inline valueOf() methods now.
2264     inline_boxing_calls(igvn);
2265 
2266     if (failing())  return;
2267 
2268     if (AlwaysIncrementalInline || StressIncrementalInlining) {
2269       inline_incrementally(igvn);
2270     }
2271 
2272     print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
2273 
2274     if (failing())  return;
2275   }
2276 
2277   // Remove the speculative part of types and clean up the graph from
2278   // the extra CastPP nodes whose only purpose is to carry them. Do
2279   // that early so that optimizations are not disrupted by the extra
2280   // CastPP nodes.
2281   remove_speculative_types(igvn);
2282 
2283   if (failing())  return;
2284 
2285   // No more new expensive nodes will be added to the list from here
2286   // so keep only the actual candidates for optimizations.
2287   cleanup_expensive_nodes(igvn);
2288 
2289   if (failing())  return;
2290 
2291   assert(EnableVectorSupport || !has_vbox_nodes(), "sanity");
2292   if (EnableVectorSupport && has_vbox_nodes()) {
2293     TracePhase tp("", &timers[_t_vector]);
2294     PhaseVector pv(igvn);
2295     pv.optimize_vector_boxes();
2296     if (failing())  return;
2297     print_method(PHASE_ITER_GVN_AFTER_VECTOR, 2);
2298   }
2299   assert(!has_vbox_nodes(), "sanity");
2300 
2301   if (!failing() && RenumberLiveNodes && live_nodes() + NodeLimitFudgeFactor < unique()) {
2302     Compile::TracePhase tp("", &timers[_t_renumberLive]);
2303     igvn_worklist()->ensure_empty(); // should be done with igvn
2304     {
2305       ResourceMark rm;
2306       PhaseRenumberLive prl(initial_gvn(), *igvn_worklist());
2307     }
2308     igvn.reset_from_gvn(initial_gvn());
2309     igvn.optimize();
2310     if (failing()) return;
2311   }
2312 
2313   // Now that all inlining is over and no PhaseRemoveUseless will run, cut edge from root to loop
2314   // safepoints
2315   remove_root_to_sfpts_edges(igvn);
2316 
2317   if (failing())  return;
2318 
2319   // Perform escape analysis
2320   if (do_escape_analysis() && ConnectionGraph::has_candidates(this)) {
2321     if (has_loops()) {
2322       // Cleanup graph (remove dead nodes).
2323       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2324       PhaseIdealLoop::optimize(igvn, LoopOptsMaxUnroll);
2325       if (failing())  return;
2326     }
2327     bool progress;
2328     print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
2329     do {
2330       ConnectionGraph::do_analysis(this, &igvn);
2331 
2332       if (failing())  return;
2333 
2334       int mcount = macro_count(); // Record number of allocations and locks before IGVN
2335 
2336       // Optimize out fields loads from scalar replaceable allocations.
2337       igvn.optimize();
2338       print_method(PHASE_ITER_GVN_AFTER_EA, 2);
2339 
2340       if (failing()) return;
2341 
2342       if (congraph() != nullptr && macro_count() > 0) {
2343         TracePhase tp("macroEliminate", &timers[_t_macroEliminate]);
2344         PhaseMacroExpand mexp(igvn);
2345         mexp.eliminate_macro_nodes();
2346         if (failing()) return;
2347 
2348         igvn.set_delay_transform(false);
2349         igvn.optimize();
2350         if (failing()) return;
2351 
2352         print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
2353       }
2354 
2355       ConnectionGraph::verify_ram_nodes(this, root());
2356       if (failing())  return;
2357 
2358       progress = do_iterative_escape_analysis() &&
2359                  (macro_count() < mcount) &&
2360                  ConnectionGraph::has_candidates(this);
2361       // Try again if candidates exist and made progress
2362       // by removing some allocations and/or locks.
2363     } while (progress);
2364   }
2365 
2366   // Loop transforms on the ideal graph.  Range Check Elimination,
2367   // peeling, unrolling, etc.
2368 
2369   // Set loop opts counter
2370   if((_loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
2371     {
2372       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2373       PhaseIdealLoop::optimize(igvn, LoopOptsDefault);
2374       _loop_opts_cnt--;
2375       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
2376       if (failing())  return;
2377     }
2378     // Loop opts pass if partial peeling occurred in previous pass
2379     if(PartialPeelLoop && major_progress() && (_loop_opts_cnt > 0)) {
2380       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2381       PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf);
2382       _loop_opts_cnt--;
2383       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
2384       if (failing())  return;
2385     }
2386     // Loop opts pass for loop-unrolling before CCP
2387     if(major_progress() && (_loop_opts_cnt > 0)) {
2388       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2389       PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf);
2390       _loop_opts_cnt--;
2391       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
2392     }
2393     if (!failing()) {
2394       // Verify that last round of loop opts produced a valid graph
2395       PhaseIdealLoop::verify(igvn);
2396     }
2397   }
2398   if (failing())  return;
2399 
2400   // Conditional Constant Propagation;
2401   print_method(PHASE_BEFORE_CCP1, 2);
2402   PhaseCCP ccp( &igvn );
2403   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
2404   {
2405     TracePhase tp("ccp", &timers[_t_ccp]);
2406     ccp.do_transform();
2407   }
2408   print_method(PHASE_CCP1, 2);
2409 
2410   assert( true, "Break here to ccp.dump_old2new_map()");
2411 
2412   // Iterative Global Value Numbering, including ideal transforms
2413   {
2414     TracePhase tp("iterGVN2", &timers[_t_iterGVN2]);
2415     igvn.reset_from_igvn(&ccp);
2416     igvn.optimize();
2417   }
2418   print_method(PHASE_ITER_GVN2, 2);
2419 
2420   if (failing())  return;
2421 
2422   // Loop transforms on the ideal graph.  Range Check Elimination,
2423   // peeling, unrolling, etc.
2424   if (!optimize_loops(igvn, LoopOptsDefault)) {
2425     return;
2426   }
2427 
2428   if (failing())  return;
2429 
2430   C->clear_major_progress(); // ensure that major progress is now clear
2431 
2432   process_for_post_loop_opts_igvn(igvn);
2433 
2434   if (failing())  return;
2435 
2436 #ifdef ASSERT
2437   bs->verify_gc_barriers(this, BarrierSetC2::BeforeMacroExpand);
2438 #endif
2439 
2440   {
2441     TracePhase tp("macroExpand", &timers[_t_macroExpand]);
2442     print_method(PHASE_BEFORE_MACRO_EXPANSION, 3);
2443     PhaseMacroExpand  mex(igvn);
2444     if (mex.expand_macro_nodes()) {
2445       assert(failing(), "must bail out w/ explicit message");
2446       return;
2447     }
2448     print_method(PHASE_AFTER_MACRO_EXPANSION, 2);
2449   }
2450 
2451   {
2452     TracePhase tp("barrierExpand", &timers[_t_barrierExpand]);
2453     if (bs->expand_barriers(this, igvn)) {
2454       assert(failing(), "must bail out w/ explicit message");
2455       return;
2456     }
2457     print_method(PHASE_BARRIER_EXPANSION, 2);
2458   }
2459 
2460   if (C->max_vector_size() > 0) {
2461     C->optimize_logic_cones(igvn);
2462     igvn.optimize();
2463     if (failing()) return;
2464   }
2465 
2466   DEBUG_ONLY( _modified_nodes = nullptr; )
2467 
2468   assert(igvn._worklist.size() == 0, "not empty");
2469 
2470   assert(_late_inlines.length() == 0 || IncrementalInlineMH || IncrementalInlineVirtual, "not empty");
2471 
2472   if (_late_inlines.length() > 0) {
2473     // More opportunities to optimize virtual and MH calls.
2474     // Though it's maybe too late to perform inlining, strength-reducing them to direct calls is still an option.
2475     process_late_inline_calls_no_inline(igvn);
2476     if (failing())  return;
2477   }
2478  } // (End scope of igvn; run destructor if necessary for asserts.)
2479 
2480  check_no_dead_use();
2481 
2482  process_print_inlining();
2483 
2484  // We will never use the NodeHash table any more. Clear it so that final_graph_reshaping does not have
2485  // to remove hashes to unlock nodes for modifications.
2486  C->node_hash()->clear();
2487 
2488  // A method with only infinite loops has no edges entering loops from root
2489  {
2490    TracePhase tp("graphReshape", &timers[_t_graphReshaping]);
2491    if (final_graph_reshaping()) {
2492      assert(failing(), "must bail out w/ explicit message");
2493      return;
2494    }
2495  }
2496 
2497  print_method(PHASE_OPTIMIZE_FINISHED, 2);
2498  DEBUG_ONLY(set_phase_optimize_finished();)
2499 }
2500 
2501 #ifdef ASSERT
2502 void Compile::check_no_dead_use() const {
2503   ResourceMark rm;
2504   Unique_Node_List wq;
2505   wq.push(root());
2506   for (uint i = 0; i < wq.size(); ++i) {
2507     Node* n = wq.at(i);
2508     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
2509       Node* u = n->fast_out(j);
2510       if (u->outcnt() == 0 && !u->is_Con()) {
2511         u->dump();
2512         fatal("no reachable node should have no use");
2513       }
2514       wq.push(u);
2515     }
2516   }
2517 }
2518 #endif
2519 
2520 void Compile::inline_vector_reboxing_calls() {
2521   if (C->_vector_reboxing_late_inlines.length() > 0) {
2522     _late_inlines_pos = C->_late_inlines.length();
2523     while (_vector_reboxing_late_inlines.length() > 0) {
2524       CallGenerator* cg = _vector_reboxing_late_inlines.pop();
2525       cg->do_late_inline();
2526       if (failing())  return;
2527       print_method(PHASE_INLINE_VECTOR_REBOX, 3, cg->call_node());
2528     }
2529     _vector_reboxing_late_inlines.trunc_to(0);
2530   }
2531 }
2532 
2533 bool Compile::has_vbox_nodes() {
2534   if (C->_vector_reboxing_late_inlines.length() > 0) {
2535     return true;
2536   }
2537   for (int macro_idx = C->macro_count() - 1; macro_idx >= 0; macro_idx--) {
2538     Node * n = C->macro_node(macro_idx);
2539     assert(n->is_macro(), "only macro nodes expected here");
2540     if (n->Opcode() == Op_VectorUnbox || n->Opcode() == Op_VectorBox || n->Opcode() == Op_VectorBoxAllocate) {
2541       return true;
2542     }
2543   }
2544   return false;
2545 }
2546 
2547 //---------------------------- Bitwise operation packing optimization ---------------------------
2548 
2549 static bool is_vector_unary_bitwise_op(Node* n) {
2550   return n->Opcode() == Op_XorV &&
2551          VectorNode::is_vector_bitwise_not_pattern(n);
2552 }
2553 
2554 static bool is_vector_binary_bitwise_op(Node* n) {
2555   switch (n->Opcode()) {
2556     case Op_AndV:
2557     case Op_OrV:
2558       return true;
2559 
2560     case Op_XorV:
2561       return !is_vector_unary_bitwise_op(n);
2562 
2563     default:
2564       return false;
2565   }
2566 }
2567 
2568 static bool is_vector_ternary_bitwise_op(Node* n) {
2569   return n->Opcode() == Op_MacroLogicV;
2570 }
2571 
2572 static bool is_vector_bitwise_op(Node* n) {
2573   return is_vector_unary_bitwise_op(n)  ||
2574          is_vector_binary_bitwise_op(n) ||
2575          is_vector_ternary_bitwise_op(n);
2576 }
2577 
2578 static bool is_vector_bitwise_cone_root(Node* n) {
2579   if (n->bottom_type()->isa_vectmask() || !is_vector_bitwise_op(n)) {
2580     return false;
2581   }
2582   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2583     if (is_vector_bitwise_op(n->fast_out(i))) {
2584       return false;
2585     }
2586   }
2587   return true;
2588 }
2589 
2590 static uint collect_unique_inputs(Node* n, Unique_Node_List& inputs) {
2591   uint cnt = 0;
2592   if (is_vector_bitwise_op(n)) {
2593     uint inp_cnt = n->is_predicated_vector() ? n->req()-1 : n->req();
2594     if (VectorNode::is_vector_bitwise_not_pattern(n)) {
2595       for (uint i = 1; i < inp_cnt; i++) {
2596         Node* in = n->in(i);
2597         bool skip = VectorNode::is_all_ones_vector(in);
2598         if (!skip && !inputs.member(in)) {
2599           inputs.push(in);
2600           cnt++;
2601         }
2602       }
2603       assert(cnt <= 1, "not unary");
2604     } else {
2605       uint last_req = inp_cnt;
2606       if (is_vector_ternary_bitwise_op(n)) {
2607         last_req = inp_cnt - 1; // skip last input
2608       }
2609       for (uint i = 1; i < last_req; i++) {
2610         Node* def = n->in(i);
2611         if (!inputs.member(def)) {
2612           inputs.push(def);
2613           cnt++;
2614         }
2615       }
2616     }
2617   } else { // not a bitwise operations
2618     if (!inputs.member(n)) {
2619       inputs.push(n);
2620       cnt++;
2621     }
2622   }
2623   return cnt;
2624 }
2625 
2626 void Compile::collect_logic_cone_roots(Unique_Node_List& list) {
2627   Unique_Node_List useful_nodes;
2628   C->identify_useful_nodes(useful_nodes);
2629 
2630   for (uint i = 0; i < useful_nodes.size(); i++) {
2631     Node* n = useful_nodes.at(i);
2632     if (is_vector_bitwise_cone_root(n)) {
2633       list.push(n);
2634     }
2635   }
2636 }
2637 
2638 Node* Compile::xform_to_MacroLogicV(PhaseIterGVN& igvn,
2639                                     const TypeVect* vt,
2640                                     Unique_Node_List& partition,
2641                                     Unique_Node_List& inputs) {
2642   assert(partition.size() == 2 || partition.size() == 3, "not supported");
2643   assert(inputs.size()    == 2 || inputs.size()    == 3, "not supported");
2644   assert(Matcher::match_rule_supported_vector(Op_MacroLogicV, vt->length(), vt->element_basic_type()), "not supported");
2645 
2646   Node* in1 = inputs.at(0);
2647   Node* in2 = inputs.at(1);
2648   Node* in3 = (inputs.size() == 3 ? inputs.at(2) : in2);
2649 
2650   uint func = compute_truth_table(partition, inputs);
2651 
2652   Node* pn = partition.at(partition.size() - 1);
2653   Node* mask = pn->is_predicated_vector() ? pn->in(pn->req()-1) : nullptr;
2654   return igvn.transform(MacroLogicVNode::make(igvn, in1, in2, in3, mask, func, vt));
2655 }
2656 
2657 static uint extract_bit(uint func, uint pos) {
2658   return (func & (1 << pos)) >> pos;
2659 }
2660 
2661 //
2662 //  A macro logic node represents a truth table. It has 4 inputs,
2663 //  First three inputs corresponds to 3 columns of a truth table
2664 //  and fourth input captures the logic function.
2665 //
2666 //  eg.  fn = (in1 AND in2) OR in3;
2667 //
2668 //      MacroNode(in1,in2,in3,fn)
2669 //
2670 //  -----------------
2671 //  in1 in2 in3  fn
2672 //  -----------------
2673 //  0    0   0    0
2674 //  0    0   1    1
2675 //  0    1   0    0
2676 //  0    1   1    1
2677 //  1    0   0    0
2678 //  1    0   1    1
2679 //  1    1   0    1
2680 //  1    1   1    1
2681 //
2682 
2683 uint Compile::eval_macro_logic_op(uint func, uint in1 , uint in2, uint in3) {
2684   int res = 0;
2685   for (int i = 0; i < 8; i++) {
2686     int bit1 = extract_bit(in1, i);
2687     int bit2 = extract_bit(in2, i);
2688     int bit3 = extract_bit(in3, i);
2689 
2690     int func_bit_pos = (bit1 << 2 | bit2 << 1 | bit3);
2691     int func_bit = extract_bit(func, func_bit_pos);
2692 
2693     res |= func_bit << i;
2694   }
2695   return res;
2696 }
2697 
2698 static uint eval_operand(Node* n, ResourceHashtable<Node*,uint>& eval_map) {
2699   assert(n != nullptr, "");
2700   assert(eval_map.contains(n), "absent");
2701   return *(eval_map.get(n));
2702 }
2703 
2704 static void eval_operands(Node* n,
2705                           uint& func1, uint& func2, uint& func3,
2706                           ResourceHashtable<Node*,uint>& eval_map) {
2707   assert(is_vector_bitwise_op(n), "");
2708 
2709   if (is_vector_unary_bitwise_op(n)) {
2710     Node* opnd = n->in(1);
2711     if (VectorNode::is_vector_bitwise_not_pattern(n) && VectorNode::is_all_ones_vector(opnd)) {
2712       opnd = n->in(2);
2713     }
2714     func1 = eval_operand(opnd, eval_map);
2715   } else if (is_vector_binary_bitwise_op(n)) {
2716     func1 = eval_operand(n->in(1), eval_map);
2717     func2 = eval_operand(n->in(2), eval_map);
2718   } else {
2719     assert(is_vector_ternary_bitwise_op(n), "unknown operation");
2720     func1 = eval_operand(n->in(1), eval_map);
2721     func2 = eval_operand(n->in(2), eval_map);
2722     func3 = eval_operand(n->in(3), eval_map);
2723   }
2724 }
2725 
2726 uint Compile::compute_truth_table(Unique_Node_List& partition, Unique_Node_List& inputs) {
2727   assert(inputs.size() <= 3, "sanity");
2728   ResourceMark rm;
2729   uint res = 0;
2730   ResourceHashtable<Node*,uint> eval_map;
2731 
2732   // Populate precomputed functions for inputs.
2733   // Each input corresponds to one column of 3 input truth-table.
2734   uint input_funcs[] = { 0xAA,   // (_, _, c) -> c
2735                          0xCC,   // (_, b, _) -> b
2736                          0xF0 }; // (a, _, _) -> a
2737   for (uint i = 0; i < inputs.size(); i++) {
2738     eval_map.put(inputs.at(i), input_funcs[2-i]);
2739   }
2740 
2741   for (uint i = 0; i < partition.size(); i++) {
2742     Node* n = partition.at(i);
2743 
2744     uint func1 = 0, func2 = 0, func3 = 0;
2745     eval_operands(n, func1, func2, func3, eval_map);
2746 
2747     switch (n->Opcode()) {
2748       case Op_OrV:
2749         assert(func3 == 0, "not binary");
2750         res = func1 | func2;
2751         break;
2752       case Op_AndV:
2753         assert(func3 == 0, "not binary");
2754         res = func1 & func2;
2755         break;
2756       case Op_XorV:
2757         if (VectorNode::is_vector_bitwise_not_pattern(n)) {
2758           assert(func2 == 0 && func3 == 0, "not unary");
2759           res = (~func1) & 0xFF;
2760         } else {
2761           assert(func3 == 0, "not binary");
2762           res = func1 ^ func2;
2763         }
2764         break;
2765       case Op_MacroLogicV:
2766         // Ordering of inputs may change during evaluation of sub-tree
2767         // containing MacroLogic node as a child node, thus a re-evaluation
2768         // makes sure that function is evaluated in context of current
2769         // inputs.
2770         res = eval_macro_logic_op(n->in(4)->get_int(), func1, func2, func3);
2771         break;
2772 
2773       default: assert(false, "not supported: %s", n->Name());
2774     }
2775     assert(res <= 0xFF, "invalid");
2776     eval_map.put(n, res);
2777   }
2778   return res;
2779 }
2780 
2781 // Criteria under which nodes gets packed into a macro logic node:-
2782 //  1) Parent and both child nodes are all unmasked or masked with
2783 //     same predicates.
2784 //  2) Masked parent can be packed with left child if it is predicated
2785 //     and both have same predicates.
2786 //  3) Masked parent can be packed with right child if its un-predicated
2787 //     or has matching predication condition.
2788 //  4) An unmasked parent can be packed with an unmasked child.
2789 bool Compile::compute_logic_cone(Node* n, Unique_Node_List& partition, Unique_Node_List& inputs) {
2790   assert(partition.size() == 0, "not empty");
2791   assert(inputs.size() == 0, "not empty");
2792   if (is_vector_ternary_bitwise_op(n)) {
2793     return false;
2794   }
2795 
2796   bool is_unary_op = is_vector_unary_bitwise_op(n);
2797   if (is_unary_op) {
2798     assert(collect_unique_inputs(n, inputs) == 1, "not unary");
2799     return false; // too few inputs
2800   }
2801 
2802   bool pack_left_child = true;
2803   bool pack_right_child = true;
2804 
2805   bool left_child_LOP = is_vector_bitwise_op(n->in(1));
2806   bool right_child_LOP = is_vector_bitwise_op(n->in(2));
2807 
2808   int left_child_input_cnt = 0;
2809   int right_child_input_cnt = 0;
2810 
2811   bool parent_is_predicated = n->is_predicated_vector();
2812   bool left_child_predicated = n->in(1)->is_predicated_vector();
2813   bool right_child_predicated = n->in(2)->is_predicated_vector();
2814 
2815   Node* parent_pred = parent_is_predicated ? n->in(n->req()-1) : nullptr;
2816   Node* left_child_pred = left_child_predicated ? n->in(1)->in(n->in(1)->req()-1) : nullptr;
2817   Node* right_child_pred = right_child_predicated ? n->in(1)->in(n->in(1)->req()-1) : nullptr;
2818 
2819   do {
2820     if (pack_left_child && left_child_LOP &&
2821         ((!parent_is_predicated && !left_child_predicated) ||
2822         ((parent_is_predicated && left_child_predicated &&
2823           parent_pred == left_child_pred)))) {
2824        partition.push(n->in(1));
2825        left_child_input_cnt = collect_unique_inputs(n->in(1), inputs);
2826     } else {
2827        inputs.push(n->in(1));
2828        left_child_input_cnt = 1;
2829     }
2830 
2831     if (pack_right_child && right_child_LOP &&
2832         (!right_child_predicated ||
2833          (right_child_predicated && parent_is_predicated &&
2834           parent_pred == right_child_pred))) {
2835        partition.push(n->in(2));
2836        right_child_input_cnt = collect_unique_inputs(n->in(2), inputs);
2837     } else {
2838        inputs.push(n->in(2));
2839        right_child_input_cnt = 1;
2840     }
2841 
2842     if (inputs.size() > 3) {
2843       assert(partition.size() > 0, "");
2844       inputs.clear();
2845       partition.clear();
2846       if (left_child_input_cnt > right_child_input_cnt) {
2847         pack_left_child = false;
2848       } else {
2849         pack_right_child = false;
2850       }
2851     } else {
2852       break;
2853     }
2854   } while(true);
2855 
2856   if(partition.size()) {
2857     partition.push(n);
2858   }
2859 
2860   return (partition.size() == 2 || partition.size() == 3) &&
2861          (inputs.size()    == 2 || inputs.size()    == 3);
2862 }
2863 
2864 void Compile::process_logic_cone_root(PhaseIterGVN &igvn, Node *n, VectorSet &visited) {
2865   assert(is_vector_bitwise_op(n), "not a root");
2866 
2867   visited.set(n->_idx);
2868 
2869   // 1) Do a DFS walk over the logic cone.
2870   for (uint i = 1; i < n->req(); i++) {
2871     Node* in = n->in(i);
2872     if (!visited.test(in->_idx) && is_vector_bitwise_op(in)) {
2873       process_logic_cone_root(igvn, in, visited);
2874     }
2875   }
2876 
2877   // 2) Bottom up traversal: Merge node[s] with
2878   // the parent to form macro logic node.
2879   Unique_Node_List partition;
2880   Unique_Node_List inputs;
2881   if (compute_logic_cone(n, partition, inputs)) {
2882     const TypeVect* vt = n->bottom_type()->is_vect();
2883     Node* pn = partition.at(partition.size() - 1);
2884     Node* mask = pn->is_predicated_vector() ? pn->in(pn->req()-1) : nullptr;
2885     if (mask == nullptr ||
2886         Matcher::match_rule_supported_vector_masked(Op_MacroLogicV, vt->length(), vt->element_basic_type())) {
2887       Node* macro_logic = xform_to_MacroLogicV(igvn, vt, partition, inputs);
2888       VectorNode::trace_new_vector(macro_logic, "MacroLogic");
2889       igvn.replace_node(n, macro_logic);
2890     }
2891   }
2892 }
2893 
2894 void Compile::optimize_logic_cones(PhaseIterGVN &igvn) {
2895   ResourceMark rm;
2896   if (Matcher::match_rule_supported(Op_MacroLogicV)) {
2897     Unique_Node_List list;
2898     collect_logic_cone_roots(list);
2899 
2900     while (list.size() > 0) {
2901       Node* n = list.pop();
2902       const TypeVect* vt = n->bottom_type()->is_vect();
2903       bool supported = Matcher::match_rule_supported_vector(Op_MacroLogicV, vt->length(), vt->element_basic_type());
2904       if (supported) {
2905         VectorSet visited(comp_arena());
2906         process_logic_cone_root(igvn, n, visited);
2907       }
2908     }
2909   }
2910 }
2911 
2912 //------------------------------Code_Gen---------------------------------------
2913 // Given a graph, generate code for it
2914 void Compile::Code_Gen() {
2915   if (failing()) {
2916     return;
2917   }
2918 
2919   // Perform instruction selection.  You might think we could reclaim Matcher
2920   // memory PDQ, but actually the Matcher is used in generating spill code.
2921   // Internals of the Matcher (including some VectorSets) must remain live
2922   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
2923   // set a bit in reclaimed memory.
2924 
2925   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2926   // nodes.  Mapping is only valid at the root of each matched subtree.
2927   NOT_PRODUCT( verify_graph_edges(); )
2928 
2929   Matcher matcher;
2930   _matcher = &matcher;
2931   {
2932     TracePhase tp("matcher", &timers[_t_matcher]);
2933     matcher.match();
2934     if (failing()) {
2935       return;
2936     }
2937   }
2938   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2939   // nodes.  Mapping is only valid at the root of each matched subtree.
2940   NOT_PRODUCT( verify_graph_edges(); )
2941 
2942   // If you have too many nodes, or if matching has failed, bail out
2943   check_node_count(0, "out of nodes matching instructions");
2944   if (failing()) {
2945     return;
2946   }
2947 
2948   print_method(PHASE_MATCHING, 2);
2949 
2950   // Build a proper-looking CFG
2951   PhaseCFG cfg(node_arena(), root(), matcher);
2952   _cfg = &cfg;
2953   {
2954     TracePhase tp("scheduler", &timers[_t_scheduler]);
2955     bool success = cfg.do_global_code_motion();
2956     if (!success) {
2957       return;
2958     }
2959 
2960     print_method(PHASE_GLOBAL_CODE_MOTION, 2);
2961     NOT_PRODUCT( verify_graph_edges(); )
2962     cfg.verify();
2963   }
2964 
2965   PhaseChaitin regalloc(unique(), cfg, matcher, false);
2966   _regalloc = &regalloc;
2967   {
2968     TracePhase tp("regalloc", &timers[_t_registerAllocation]);
2969     // Perform register allocation.  After Chaitin, use-def chains are
2970     // no longer accurate (at spill code) and so must be ignored.
2971     // Node->LRG->reg mappings are still accurate.
2972     _regalloc->Register_Allocate();
2973 
2974     // Bail out if the allocator builds too many nodes
2975     if (failing()) {
2976       return;
2977     }
2978 
2979     print_method(PHASE_REGISTER_ALLOCATION, 2);
2980   }
2981 
2982   // Prior to register allocation we kept empty basic blocks in case the
2983   // the allocator needed a place to spill.  After register allocation we
2984   // are not adding any new instructions.  If any basic block is empty, we
2985   // can now safely remove it.
2986   {
2987     TracePhase tp("blockOrdering", &timers[_t_blockOrdering]);
2988     cfg.remove_empty_blocks();
2989     if (do_freq_based_layout()) {
2990       PhaseBlockLayout layout(cfg);
2991     } else {
2992       cfg.set_loop_alignment();
2993     }
2994     cfg.fixup_flow();
2995     cfg.remove_unreachable_blocks();
2996     cfg.verify_dominator_tree();
2997     print_method(PHASE_BLOCK_ORDERING, 3);
2998   }
2999 
3000   // Apply peephole optimizations
3001   if( OptoPeephole ) {
3002     TracePhase tp("peephole", &timers[_t_peephole]);
3003     PhasePeephole peep( _regalloc, cfg);
3004     peep.do_transform();
3005     print_method(PHASE_PEEPHOLE, 3);
3006   }
3007 
3008   // Do late expand if CPU requires this.
3009   if (Matcher::require_postalloc_expand) {
3010     TracePhase tp("postalloc_expand", &timers[_t_postalloc_expand]);
3011     cfg.postalloc_expand(_regalloc);
3012     print_method(PHASE_POSTALLOC_EXPAND, 3);
3013   }
3014 
3015   // Convert Nodes to instruction bits in a buffer
3016   {
3017     TracePhase tp("output", &timers[_t_output]);
3018     PhaseOutput output;
3019     output.Output();
3020     if (failing())  return;
3021     output.install();
3022     print_method(PHASE_FINAL_CODE, 1); // Compile::_output is not null here
3023   }
3024 
3025   // He's dead, Jim.
3026   _cfg     = (PhaseCFG*)((intptr_t)0xdeadbeef);
3027   _regalloc = (PhaseChaitin*)((intptr_t)0xdeadbeef);
3028 }
3029 
3030 //------------------------------Final_Reshape_Counts---------------------------
3031 // This class defines counters to help identify when a method
3032 // may/must be executed using hardware with only 24-bit precision.
3033 struct Final_Reshape_Counts : public StackObj {
3034   int  _call_count;             // count non-inlined 'common' calls
3035   int  _float_count;            // count float ops requiring 24-bit precision
3036   int  _double_count;           // count double ops requiring more precision
3037   int  _java_call_count;        // count non-inlined 'java' calls
3038   int  _inner_loop_count;       // count loops which need alignment
3039   VectorSet _visited;           // Visitation flags
3040   Node_List _tests;             // Set of IfNodes & PCTableNodes
3041 
3042   Final_Reshape_Counts() :
3043     _call_count(0), _float_count(0), _double_count(0),
3044     _java_call_count(0), _inner_loop_count(0) { }
3045 
3046   void inc_call_count  () { _call_count  ++; }
3047   void inc_float_count () { _float_count ++; }
3048   void inc_double_count() { _double_count++; }
3049   void inc_java_call_count() { _java_call_count++; }
3050   void inc_inner_loop_count() { _inner_loop_count++; }
3051 
3052   int  get_call_count  () const { return _call_count  ; }
3053   int  get_float_count () const { return _float_count ; }
3054   int  get_double_count() const { return _double_count; }
3055   int  get_java_call_count() const { return _java_call_count; }
3056   int  get_inner_loop_count() const { return _inner_loop_count; }
3057 };
3058 
3059 // Eliminate trivially redundant StoreCMs and accumulate their
3060 // precedence edges.
3061 void Compile::eliminate_redundant_card_marks(Node* n) {
3062   assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
3063   if (n->in(MemNode::Address)->outcnt() > 1) {
3064     // There are multiple users of the same address so it might be
3065     // possible to eliminate some of the StoreCMs
3066     Node* mem = n->in(MemNode::Memory);
3067     Node* adr = n->in(MemNode::Address);
3068     Node* val = n->in(MemNode::ValueIn);
3069     Node* prev = n;
3070     bool done = false;
3071     // Walk the chain of StoreCMs eliminating ones that match.  As
3072     // long as it's a chain of single users then the optimization is
3073     // safe.  Eliminating partially redundant StoreCMs would require
3074     // cloning copies down the other paths.
3075     while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
3076       if (adr == mem->in(MemNode::Address) &&
3077           val == mem->in(MemNode::ValueIn)) {
3078         // redundant StoreCM
3079         if (mem->req() > MemNode::OopStore) {
3080           // Hasn't been processed by this code yet.
3081           n->add_prec(mem->in(MemNode::OopStore));
3082         } else {
3083           // Already converted to precedence edge
3084           for (uint i = mem->req(); i < mem->len(); i++) {
3085             // Accumulate any precedence edges
3086             if (mem->in(i) != nullptr) {
3087               n->add_prec(mem->in(i));
3088             }
3089           }
3090           // Everything above this point has been processed.
3091           done = true;
3092         }
3093         // Eliminate the previous StoreCM
3094         prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
3095         assert(mem->outcnt() == 0, "should be dead");
3096         mem->disconnect_inputs(this);
3097       } else {
3098         prev = mem;
3099       }
3100       mem = prev->in(MemNode::Memory);
3101     }
3102   }
3103 }
3104 
3105 //------------------------------final_graph_reshaping_impl----------------------
3106 // Implement items 1-5 from final_graph_reshaping below.
3107 void Compile::final_graph_reshaping_impl(Node *n, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes) {
3108 
3109   if ( n->outcnt() == 0 ) return; // dead node
3110   uint nop = n->Opcode();
3111 
3112   // Check for 2-input instruction with "last use" on right input.
3113   // Swap to left input.  Implements item (2).
3114   if( n->req() == 3 &&          // two-input instruction
3115       n->in(1)->outcnt() > 1 && // left use is NOT a last use
3116       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
3117       n->in(2)->outcnt() == 1 &&// right use IS a last use
3118       !n->in(2)->is_Con() ) {   // right use is not a constant
3119     // Check for commutative opcode
3120     switch( nop ) {
3121     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
3122     case Op_MaxI:  case Op_MaxL:  case Op_MaxF:  case Op_MaxD:
3123     case Op_MinI:  case Op_MinL:  case Op_MinF:  case Op_MinD:
3124     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
3125     case Op_AndL:  case Op_XorL:  case Op_OrL:
3126     case Op_AndI:  case Op_XorI:  case Op_OrI: {
3127       // Move "last use" input to left by swapping inputs
3128       n->swap_edges(1, 2);
3129       break;
3130     }
3131     default:
3132       break;
3133     }
3134   }
3135 
3136 #ifdef ASSERT
3137   if( n->is_Mem() ) {
3138     int alias_idx = get_alias_index(n->as_Mem()->adr_type());
3139     assert( n->in(0) != nullptr || alias_idx != Compile::AliasIdxRaw ||
3140             // oop will be recorded in oop map if load crosses safepoint
3141             (n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
3142                               LoadNode::is_immutable_value(n->in(MemNode::Address)))),
3143             "raw memory operations should have control edge");
3144   }
3145   if (n->is_MemBar()) {
3146     MemBarNode* mb = n->as_MemBar();
3147     if (mb->trailing_store() || mb->trailing_load_store()) {
3148       assert(mb->leading_membar()->trailing_membar() == mb, "bad membar pair");
3149       Node* mem = BarrierSet::barrier_set()->barrier_set_c2()->step_over_gc_barrier(mb->in(MemBarNode::Precedent));
3150       assert((mb->trailing_store() && mem->is_Store() && mem->as_Store()->is_release()) ||
3151              (mb->trailing_load_store() && mem->is_LoadStore()), "missing mem op");
3152     } else if (mb->leading()) {
3153       assert(mb->trailing_membar()->leading_membar() == mb, "bad membar pair");
3154     }
3155   }
3156 #endif
3157   // Count FPU ops and common calls, implements item (3)
3158   bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->final_graph_reshaping(this, n, nop, dead_nodes);
3159   if (!gc_handled) {
3160     final_graph_reshaping_main_switch(n, frc, nop, dead_nodes);
3161   }
3162 
3163   // Collect CFG split points
3164   if (n->is_MultiBranch() && !n->is_RangeCheck()) {
3165     frc._tests.push(n);
3166   }
3167 }
3168 
3169 void Compile::final_graph_reshaping_main_switch(Node* n, Final_Reshape_Counts& frc, uint nop, Unique_Node_List& dead_nodes) {
3170   switch( nop ) {
3171   // Count all float operations that may use FPU
3172   case Op_AddF:
3173   case Op_SubF:
3174   case Op_MulF:
3175   case Op_DivF:
3176   case Op_NegF:
3177   case Op_ModF:
3178   case Op_ConvI2F:
3179   case Op_ConF:
3180   case Op_CmpF:
3181   case Op_CmpF3:
3182   case Op_StoreF:
3183   case Op_LoadF:
3184   // case Op_ConvL2F: // longs are split into 32-bit halves
3185     frc.inc_float_count();
3186     break;
3187 
3188   case Op_ConvF2D:
3189   case Op_ConvD2F:
3190     frc.inc_float_count();
3191     frc.inc_double_count();
3192     break;
3193 
3194   // Count all double operations that may use FPU
3195   case Op_AddD:
3196   case Op_SubD:
3197   case Op_MulD:
3198   case Op_DivD:
3199   case Op_NegD:
3200   case Op_ModD:
3201   case Op_ConvI2D:
3202   case Op_ConvD2I:
3203   // case Op_ConvL2D: // handled by leaf call
3204   // case Op_ConvD2L: // handled by leaf call
3205   case Op_ConD:
3206   case Op_CmpD:
3207   case Op_CmpD3:
3208   case Op_StoreD:
3209   case Op_LoadD:
3210   case Op_LoadD_unaligned:
3211     frc.inc_double_count();
3212     break;
3213   case Op_Opaque1:              // Remove Opaque Nodes before matching
3214     n->subsume_by(n->in(1), this);
3215     break;
3216   case Op_CallStaticJava:
3217   case Op_CallJava:
3218   case Op_CallDynamicJava:
3219     frc.inc_java_call_count(); // Count java call site;
3220   case Op_CallRuntime:
3221   case Op_CallLeaf:
3222   case Op_CallLeafVector:
3223   case Op_CallLeafNoFP: {
3224     assert (n->is_Call(), "");
3225     CallNode *call = n->as_Call();
3226     // Count call sites where the FP mode bit would have to be flipped.
3227     // Do not count uncommon runtime calls:
3228     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
3229     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
3230     if (!call->is_CallStaticJava() || !call->as_CallStaticJava()->_name) {
3231       frc.inc_call_count();   // Count the call site
3232     } else {                  // See if uncommon argument is shared
3233       Node *n = call->in(TypeFunc::Parms);
3234       int nop = n->Opcode();
3235       // Clone shared simple arguments to uncommon calls, item (1).
3236       if (n->outcnt() > 1 &&
3237           !n->is_Proj() &&
3238           nop != Op_CreateEx &&
3239           nop != Op_CheckCastPP &&
3240           nop != Op_DecodeN &&
3241           nop != Op_DecodeNKlass &&
3242           !n->is_Mem() &&
3243           !n->is_Phi()) {
3244         Node *x = n->clone();
3245         call->set_req(TypeFunc::Parms, x);
3246       }
3247     }
3248     break;
3249   }
3250 
3251   case Op_StoreCM:
3252     {
3253       // Convert OopStore dependence into precedence edge
3254       Node* prec = n->in(MemNode::OopStore);
3255       n->del_req(MemNode::OopStore);
3256       n->add_prec(prec);
3257       eliminate_redundant_card_marks(n);
3258     }
3259 
3260     // fall through
3261 
3262   case Op_StoreB:
3263   case Op_StoreC:
3264   case Op_StoreI:
3265   case Op_StoreL:
3266   case Op_CompareAndSwapB:
3267   case Op_CompareAndSwapS:
3268   case Op_CompareAndSwapI:
3269   case Op_CompareAndSwapL:
3270   case Op_CompareAndSwapP:
3271   case Op_CompareAndSwapN:
3272   case Op_WeakCompareAndSwapB:
3273   case Op_WeakCompareAndSwapS:
3274   case Op_WeakCompareAndSwapI:
3275   case Op_WeakCompareAndSwapL:
3276   case Op_WeakCompareAndSwapP:
3277   case Op_WeakCompareAndSwapN:
3278   case Op_CompareAndExchangeB:
3279   case Op_CompareAndExchangeS:
3280   case Op_CompareAndExchangeI:
3281   case Op_CompareAndExchangeL:
3282   case Op_CompareAndExchangeP:
3283   case Op_CompareAndExchangeN:
3284   case Op_GetAndAddS:
3285   case Op_GetAndAddB:
3286   case Op_GetAndAddI:
3287   case Op_GetAndAddL:
3288   case Op_GetAndSetS:
3289   case Op_GetAndSetB:
3290   case Op_GetAndSetI:
3291   case Op_GetAndSetL:
3292   case Op_GetAndSetP:
3293   case Op_GetAndSetN:
3294   case Op_StoreP:
3295   case Op_StoreN:
3296   case Op_StoreNKlass:
3297   case Op_LoadB:
3298   case Op_LoadUB:
3299   case Op_LoadUS:
3300   case Op_LoadI:
3301   case Op_LoadKlass:
3302   case Op_LoadNKlass:
3303   case Op_LoadL:
3304   case Op_LoadL_unaligned:
3305   case Op_LoadP:
3306   case Op_LoadN:
3307   case Op_LoadRange:
3308   case Op_LoadS:
3309     break;
3310 
3311   case Op_AddP: {               // Assert sane base pointers
3312     Node *addp = n->in(AddPNode::Address);
3313     assert( !addp->is_AddP() ||
3314             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
3315             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
3316             "Base pointers must match (addp %u)", addp->_idx );
3317 #ifdef _LP64
3318     if ((UseCompressedOops || UseCompressedClassPointers) &&
3319         addp->Opcode() == Op_ConP &&
3320         addp == n->in(AddPNode::Base) &&
3321         n->in(AddPNode::Offset)->is_Con()) {
3322       // If the transformation of ConP to ConN+DecodeN is beneficial depends
3323       // on the platform and on the compressed oops mode.
3324       // Use addressing with narrow klass to load with offset on x86.
3325       // Some platforms can use the constant pool to load ConP.
3326       // Do this transformation here since IGVN will convert ConN back to ConP.
3327       const Type* t = addp->bottom_type();
3328       bool is_oop   = t->isa_oopptr() != nullptr;
3329       bool is_klass = t->isa_klassptr() != nullptr;
3330 
3331       if ((is_oop   && Matcher::const_oop_prefer_decode()  ) ||
3332           (is_klass && Matcher::const_klass_prefer_decode())) {
3333         Node* nn = nullptr;
3334 
3335         int op = is_oop ? Op_ConN : Op_ConNKlass;
3336 
3337         // Look for existing ConN node of the same exact type.
3338         Node* r  = root();
3339         uint cnt = r->outcnt();
3340         for (uint i = 0; i < cnt; i++) {
3341           Node* m = r->raw_out(i);
3342           if (m!= nullptr && m->Opcode() == op &&
3343               m->bottom_type()->make_ptr() == t) {
3344             nn = m;
3345             break;
3346           }
3347         }
3348         if (nn != nullptr) {
3349           // Decode a narrow oop to match address
3350           // [R12 + narrow_oop_reg<<3 + offset]
3351           if (is_oop) {
3352             nn = new DecodeNNode(nn, t);
3353           } else {
3354             nn = new DecodeNKlassNode(nn, t);
3355           }
3356           // Check for succeeding AddP which uses the same Base.
3357           // Otherwise we will run into the assertion above when visiting that guy.
3358           for (uint i = 0; i < n->outcnt(); ++i) {
3359             Node *out_i = n->raw_out(i);
3360             if (out_i && out_i->is_AddP() && out_i->in(AddPNode::Base) == addp) {
3361               out_i->set_req(AddPNode::Base, nn);
3362 #ifdef ASSERT
3363               for (uint j = 0; j < out_i->outcnt(); ++j) {
3364                 Node *out_j = out_i->raw_out(j);
3365                 assert(out_j == nullptr || !out_j->is_AddP() || out_j->in(AddPNode::Base) != addp,
3366                        "more than 2 AddP nodes in a chain (out_j %u)", out_j->_idx);
3367               }
3368 #endif
3369             }
3370           }
3371           n->set_req(AddPNode::Base, nn);
3372           n->set_req(AddPNode::Address, nn);
3373           if (addp->outcnt() == 0) {
3374             addp->disconnect_inputs(this);
3375           }
3376         }
3377       }
3378     }
3379 #endif
3380     break;
3381   }
3382 
3383   case Op_CastPP: {
3384     // Remove CastPP nodes to gain more freedom during scheduling but
3385     // keep the dependency they encode as control or precedence edges
3386     // (if control is set already) on memory operations. Some CastPP
3387     // nodes don't have a control (don't carry a dependency): skip
3388     // those.
3389     if (n->in(0) != nullptr) {
3390       ResourceMark rm;
3391       Unique_Node_List wq;
3392       wq.push(n);
3393       for (uint next = 0; next < wq.size(); ++next) {
3394         Node *m = wq.at(next);
3395         for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) {
3396           Node* use = m->fast_out(i);
3397           if (use->is_Mem() || use->is_EncodeNarrowPtr()) {
3398             use->ensure_control_or_add_prec(n->in(0));
3399           } else {
3400             switch(use->Opcode()) {
3401             case Op_AddP:
3402             case Op_DecodeN:
3403             case Op_DecodeNKlass:
3404             case Op_CheckCastPP:
3405             case Op_CastPP:
3406               wq.push(use);
3407               break;
3408             }
3409           }
3410         }
3411       }
3412     }
3413     const bool is_LP64 = LP64_ONLY(true) NOT_LP64(false);
3414     if (is_LP64 && n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
3415       Node* in1 = n->in(1);
3416       const Type* t = n->bottom_type();
3417       Node* new_in1 = in1->clone();
3418       new_in1->as_DecodeN()->set_type(t);
3419 
3420       if (!Matcher::narrow_oop_use_complex_address()) {
3421         //
3422         // x86, ARM and friends can handle 2 adds in addressing mode
3423         // and Matcher can fold a DecodeN node into address by using
3424         // a narrow oop directly and do implicit null check in address:
3425         //
3426         // [R12 + narrow_oop_reg<<3 + offset]
3427         // NullCheck narrow_oop_reg
3428         //
3429         // On other platforms (Sparc) we have to keep new DecodeN node and
3430         // use it to do implicit null check in address:
3431         //
3432         // decode_not_null narrow_oop_reg, base_reg
3433         // [base_reg + offset]
3434         // NullCheck base_reg
3435         //
3436         // Pin the new DecodeN node to non-null path on these platform (Sparc)
3437         // to keep the information to which null check the new DecodeN node
3438         // corresponds to use it as value in implicit_null_check().
3439         //
3440         new_in1->set_req(0, n->in(0));
3441       }
3442 
3443       n->subsume_by(new_in1, this);
3444       if (in1->outcnt() == 0) {
3445         in1->disconnect_inputs(this);
3446       }
3447     } else {
3448       n->subsume_by(n->in(1), this);
3449       if (n->outcnt() == 0) {
3450         n->disconnect_inputs(this);
3451       }
3452     }
3453     break;
3454   }
3455 #ifdef _LP64
3456   case Op_CmpP:
3457     // Do this transformation here to preserve CmpPNode::sub() and
3458     // other TypePtr related Ideal optimizations (for example, ptr nullness).
3459     if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
3460       Node* in1 = n->in(1);
3461       Node* in2 = n->in(2);
3462       if (!in1->is_DecodeNarrowPtr()) {
3463         in2 = in1;
3464         in1 = n->in(2);
3465       }
3466       assert(in1->is_DecodeNarrowPtr(), "sanity");
3467 
3468       Node* new_in2 = nullptr;
3469       if (in2->is_DecodeNarrowPtr()) {
3470         assert(in2->Opcode() == in1->Opcode(), "must be same node type");
3471         new_in2 = in2->in(1);
3472       } else if (in2->Opcode() == Op_ConP) {
3473         const Type* t = in2->bottom_type();
3474         if (t == TypePtr::NULL_PTR) {
3475           assert(in1->is_DecodeN(), "compare klass to null?");
3476           // Don't convert CmpP null check into CmpN if compressed
3477           // oops implicit null check is not generated.
3478           // This will allow to generate normal oop implicit null check.
3479           if (Matcher::gen_narrow_oop_implicit_null_checks())
3480             new_in2 = ConNode::make(TypeNarrowOop::NULL_PTR);
3481           //
3482           // This transformation together with CastPP transformation above
3483           // will generated code for implicit null checks for compressed oops.
3484           //
3485           // The original code after Optimize()
3486           //
3487           //    LoadN memory, narrow_oop_reg
3488           //    decode narrow_oop_reg, base_reg
3489           //    CmpP base_reg, nullptr
3490           //    CastPP base_reg // NotNull
3491           //    Load [base_reg + offset], val_reg
3492           //
3493           // after these transformations will be
3494           //
3495           //    LoadN memory, narrow_oop_reg
3496           //    CmpN narrow_oop_reg, nullptr
3497           //    decode_not_null narrow_oop_reg, base_reg
3498           //    Load [base_reg + offset], val_reg
3499           //
3500           // and the uncommon path (== nullptr) will use narrow_oop_reg directly
3501           // since narrow oops can be used in debug info now (see the code in
3502           // final_graph_reshaping_walk()).
3503           //
3504           // At the end the code will be matched to
3505           // on x86:
3506           //
3507           //    Load_narrow_oop memory, narrow_oop_reg
3508           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
3509           //    NullCheck narrow_oop_reg
3510           //
3511           // and on sparc:
3512           //
3513           //    Load_narrow_oop memory, narrow_oop_reg
3514           //    decode_not_null narrow_oop_reg, base_reg
3515           //    Load [base_reg + offset], val_reg
3516           //    NullCheck base_reg
3517           //
3518         } else if (t->isa_oopptr()) {
3519           new_in2 = ConNode::make(t->make_narrowoop());
3520         } else if (t->isa_klassptr()) {
3521           new_in2 = ConNode::make(t->make_narrowklass());
3522         }
3523       }
3524       if (new_in2 != nullptr) {
3525         Node* cmpN = new CmpNNode(in1->in(1), new_in2);
3526         n->subsume_by(cmpN, this);
3527         if (in1->outcnt() == 0) {
3528           in1->disconnect_inputs(this);
3529         }
3530         if (in2->outcnt() == 0) {
3531           in2->disconnect_inputs(this);
3532         }
3533       }
3534     }
3535     break;
3536 
3537   case Op_DecodeN:
3538   case Op_DecodeNKlass:
3539     assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
3540     // DecodeN could be pinned when it can't be fold into
3541     // an address expression, see the code for Op_CastPP above.
3542     assert(n->in(0) == nullptr || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
3543     break;
3544 
3545   case Op_EncodeP:
3546   case Op_EncodePKlass: {
3547     Node* in1 = n->in(1);
3548     if (in1->is_DecodeNarrowPtr()) {
3549       n->subsume_by(in1->in(1), this);
3550     } else if (in1->Opcode() == Op_ConP) {
3551       const Type* t = in1->bottom_type();
3552       if (t == TypePtr::NULL_PTR) {
3553         assert(t->isa_oopptr(), "null klass?");
3554         n->subsume_by(ConNode::make(TypeNarrowOop::NULL_PTR), this);
3555       } else if (t->isa_oopptr()) {
3556         n->subsume_by(ConNode::make(t->make_narrowoop()), this);
3557       } else if (t->isa_klassptr()) {
3558         n->subsume_by(ConNode::make(t->make_narrowklass()), this);
3559       }
3560     }
3561     if (in1->outcnt() == 0) {
3562       in1->disconnect_inputs(this);
3563     }
3564     break;
3565   }
3566 
3567   case Op_Proj: {
3568     if (OptimizeStringConcat || IncrementalInline) {
3569       ProjNode* proj = n->as_Proj();
3570       if (proj->_is_io_use) {
3571         assert(proj->_con == TypeFunc::I_O || proj->_con == TypeFunc::Memory, "");
3572         // Separate projections were used for the exception path which
3573         // are normally removed by a late inline.  If it wasn't inlined
3574         // then they will hang around and should just be replaced with
3575         // the original one. Merge them.
3576         Node* non_io_proj = proj->in(0)->as_Multi()->proj_out_or_null(proj->_con, false /*is_io_use*/);
3577         if (non_io_proj  != nullptr) {
3578           proj->subsume_by(non_io_proj , this);
3579         }
3580       }
3581     }
3582     break;
3583   }
3584 
3585   case Op_Phi:
3586     if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
3587       // The EncodeP optimization may create Phi with the same edges
3588       // for all paths. It is not handled well by Register Allocator.
3589       Node* unique_in = n->in(1);
3590       assert(unique_in != nullptr, "");
3591       uint cnt = n->req();
3592       for (uint i = 2; i < cnt; i++) {
3593         Node* m = n->in(i);
3594         assert(m != nullptr, "");
3595         if (unique_in != m)
3596           unique_in = nullptr;
3597       }
3598       if (unique_in != nullptr) {
3599         n->subsume_by(unique_in, this);
3600       }
3601     }
3602     break;
3603 
3604 #endif
3605 
3606 #ifdef ASSERT
3607   case Op_CastII:
3608     // Verify that all range check dependent CastII nodes were removed.
3609     if (n->isa_CastII()->has_range_check()) {
3610       n->dump(3);
3611       assert(false, "Range check dependent CastII node was not removed");
3612     }
3613     break;
3614 #endif
3615 
3616   case Op_ModI:
3617     if (UseDivMod) {
3618       // Check if a%b and a/b both exist
3619       Node* d = n->find_similar(Op_DivI);
3620       if (d) {
3621         // Replace them with a fused divmod if supported
3622         if (Matcher::has_match_rule(Op_DivModI)) {
3623           DivModINode* divmod = DivModINode::make(n);
3624           d->subsume_by(divmod->div_proj(), this);
3625           n->subsume_by(divmod->mod_proj(), this);
3626         } else {
3627           // replace a%b with a-((a/b)*b)
3628           Node* mult = new MulINode(d, d->in(2));
3629           Node* sub  = new SubINode(d->in(1), mult);
3630           n->subsume_by(sub, this);
3631         }
3632       }
3633     }
3634     break;
3635 
3636   case Op_ModL:
3637     if (UseDivMod) {
3638       // Check if a%b and a/b both exist
3639       Node* d = n->find_similar(Op_DivL);
3640       if (d) {
3641         // Replace them with a fused divmod if supported
3642         if (Matcher::has_match_rule(Op_DivModL)) {
3643           DivModLNode* divmod = DivModLNode::make(n);
3644           d->subsume_by(divmod->div_proj(), this);
3645           n->subsume_by(divmod->mod_proj(), this);
3646         } else {
3647           // replace a%b with a-((a/b)*b)
3648           Node* mult = new MulLNode(d, d->in(2));
3649           Node* sub  = new SubLNode(d->in(1), mult);
3650           n->subsume_by(sub, this);
3651         }
3652       }
3653     }
3654     break;
3655 
3656   case Op_UModI:
3657     if (UseDivMod) {
3658       // Check if a%b and a/b both exist
3659       Node* d = n->find_similar(Op_UDivI);
3660       if (d) {
3661         // Replace them with a fused unsigned divmod if supported
3662         if (Matcher::has_match_rule(Op_UDivModI)) {
3663           UDivModINode* divmod = UDivModINode::make(n);
3664           d->subsume_by(divmod->div_proj(), this);
3665           n->subsume_by(divmod->mod_proj(), this);
3666         } else {
3667           // replace a%b with a-((a/b)*b)
3668           Node* mult = new MulINode(d, d->in(2));
3669           Node* sub  = new SubINode(d->in(1), mult);
3670           n->subsume_by(sub, this);
3671         }
3672       }
3673     }
3674     break;
3675 
3676   case Op_UModL:
3677     if (UseDivMod) {
3678       // Check if a%b and a/b both exist
3679       Node* d = n->find_similar(Op_UDivL);
3680       if (d) {
3681         // Replace them with a fused unsigned divmod if supported
3682         if (Matcher::has_match_rule(Op_UDivModL)) {
3683           UDivModLNode* divmod = UDivModLNode::make(n);
3684           d->subsume_by(divmod->div_proj(), this);
3685           n->subsume_by(divmod->mod_proj(), this);
3686         } else {
3687           // replace a%b with a-((a/b)*b)
3688           Node* mult = new MulLNode(d, d->in(2));
3689           Node* sub  = new SubLNode(d->in(1), mult);
3690           n->subsume_by(sub, this);
3691         }
3692       }
3693     }
3694     break;
3695 
3696   case Op_LoadVector:
3697   case Op_StoreVector:
3698 #ifdef ASSERT
3699     // Add VerifyVectorAlignment node between adr and load / store.
3700     if (VerifyAlignVector && Matcher::has_match_rule(Op_VerifyVectorAlignment)) {
3701       bool must_verify_alignment = n->is_LoadVector() ? n->as_LoadVector()->must_verify_alignment() :
3702                                                         n->as_StoreVector()->must_verify_alignment();
3703       if (must_verify_alignment) {
3704         jlong vector_width = n->is_LoadVector() ? n->as_LoadVector()->memory_size() :
3705                                                   n->as_StoreVector()->memory_size();
3706         // The memory access should be aligned to the vector width in bytes.
3707         // However, the underlying array is possibly less well aligned, but at least
3708         // to ObjectAlignmentInBytes. Hence, even if multiple arrays are accessed in
3709         // a loop we can expect at least the following alignment:
3710         jlong guaranteed_alignment = MIN2(vector_width, (jlong)ObjectAlignmentInBytes);
3711         assert(2 <= guaranteed_alignment && guaranteed_alignment <= 64, "alignment must be in range");
3712         assert(is_power_of_2(guaranteed_alignment), "alignment must be power of 2");
3713         // Create mask from alignment. e.g. 0b1000 -> 0b0111
3714         jlong mask = guaranteed_alignment - 1;
3715         Node* mask_con = ConLNode::make(mask);
3716         VerifyVectorAlignmentNode* va = new VerifyVectorAlignmentNode(n->in(MemNode::Address), mask_con);
3717         n->set_req(MemNode::Address, va);
3718       }
3719     }
3720 #endif
3721     break;
3722 
3723   case Op_LoadVectorGather:
3724   case Op_StoreVectorScatter:
3725   case Op_LoadVectorGatherMasked:
3726   case Op_StoreVectorScatterMasked:
3727   case Op_VectorCmpMasked:
3728   case Op_VectorMaskGen:
3729   case Op_LoadVectorMasked:
3730   case Op_StoreVectorMasked:
3731     break;
3732 
3733   case Op_AddReductionVI:
3734   case Op_AddReductionVL:
3735   case Op_AddReductionVF:
3736   case Op_AddReductionVD:
3737   case Op_MulReductionVI:
3738   case Op_MulReductionVL:
3739   case Op_MulReductionVF:
3740   case Op_MulReductionVD:
3741   case Op_MinReductionV:
3742   case Op_MaxReductionV:
3743   case Op_AndReductionV:
3744   case Op_OrReductionV:
3745   case Op_XorReductionV:
3746     break;
3747 
3748   case Op_PackB:
3749   case Op_PackS:
3750   case Op_PackI:
3751   case Op_PackF:
3752   case Op_PackL:
3753   case Op_PackD:
3754     if (n->req()-1 > 2) {
3755       // Replace many operand PackNodes with a binary tree for matching
3756       PackNode* p = (PackNode*) n;
3757       Node* btp = p->binary_tree_pack(1, n->req());
3758       n->subsume_by(btp, this);
3759     }
3760     break;
3761   case Op_Loop:
3762     assert(!n->as_Loop()->is_loop_nest_inner_loop() || _loop_opts_cnt == 0, "should have been turned into a counted loop");
3763   case Op_CountedLoop:
3764   case Op_LongCountedLoop:
3765   case Op_OuterStripMinedLoop:
3766     if (n->as_Loop()->is_inner_loop()) {
3767       frc.inc_inner_loop_count();
3768     }
3769     n->as_Loop()->verify_strip_mined(0);
3770     break;
3771   case Op_LShiftI:
3772   case Op_RShiftI:
3773   case Op_URShiftI:
3774   case Op_LShiftL:
3775   case Op_RShiftL:
3776   case Op_URShiftL:
3777     if (Matcher::need_masked_shift_count) {
3778       // The cpu's shift instructions don't restrict the count to the
3779       // lower 5/6 bits. We need to do the masking ourselves.
3780       Node* in2 = n->in(2);
3781       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
3782       const TypeInt* t = in2->find_int_type();
3783       if (t != nullptr && t->is_con()) {
3784         juint shift = t->get_con();
3785         if (shift > mask) { // Unsigned cmp
3786           n->set_req(2, ConNode::make(TypeInt::make(shift & mask)));
3787         }
3788       } else {
3789         if (t == nullptr || t->_lo < 0 || t->_hi > (int)mask) {
3790           Node* shift = new AndINode(in2, ConNode::make(TypeInt::make(mask)));
3791           n->set_req(2, shift);
3792         }
3793       }
3794       if (in2->outcnt() == 0) { // Remove dead node
3795         in2->disconnect_inputs(this);
3796       }
3797     }
3798     break;
3799   case Op_MemBarStoreStore:
3800   case Op_MemBarRelease:
3801     // Break the link with AllocateNode: it is no longer useful and
3802     // confuses register allocation.
3803     if (n->req() > MemBarNode::Precedent) {
3804       n->set_req(MemBarNode::Precedent, top());
3805     }
3806     break;
3807   case Op_MemBarAcquire: {
3808     if (n->as_MemBar()->trailing_load() && n->req() > MemBarNode::Precedent) {
3809       // At parse time, the trailing MemBarAcquire for a volatile load
3810       // is created with an edge to the load. After optimizations,
3811       // that input may be a chain of Phis. If those phis have no
3812       // other use, then the MemBarAcquire keeps them alive and
3813       // register allocation can be confused.
3814       dead_nodes.push(n->in(MemBarNode::Precedent));
3815       n->set_req(MemBarNode::Precedent, top());
3816     }
3817     break;
3818   }
3819   case Op_Blackhole:
3820     break;
3821   case Op_RangeCheck: {
3822     RangeCheckNode* rc = n->as_RangeCheck();
3823     Node* iff = new IfNode(rc->in(0), rc->in(1), rc->_prob, rc->_fcnt);
3824     n->subsume_by(iff, this);
3825     frc._tests.push(iff);
3826     break;
3827   }
3828   case Op_ConvI2L: {
3829     if (!Matcher::convi2l_type_required) {
3830       // Code generation on some platforms doesn't need accurate
3831       // ConvI2L types. Widening the type can help remove redundant
3832       // address computations.
3833       n->as_Type()->set_type(TypeLong::INT);
3834       ResourceMark rm;
3835       Unique_Node_List wq;
3836       wq.push(n);
3837       for (uint next = 0; next < wq.size(); next++) {
3838         Node *m = wq.at(next);
3839 
3840         for(;;) {
3841           // Loop over all nodes with identical inputs edges as m
3842           Node* k = m->find_similar(m->Opcode());
3843           if (k == nullptr) {
3844             break;
3845           }
3846           // Push their uses so we get a chance to remove node made
3847           // redundant
3848           for (DUIterator_Fast imax, i = k->fast_outs(imax); i < imax; i++) {
3849             Node* u = k->fast_out(i);
3850             if (u->Opcode() == Op_LShiftL ||
3851                 u->Opcode() == Op_AddL ||
3852                 u->Opcode() == Op_SubL ||
3853                 u->Opcode() == Op_AddP) {
3854               wq.push(u);
3855             }
3856           }
3857           // Replace all nodes with identical edges as m with m
3858           k->subsume_by(m, this);
3859         }
3860       }
3861     }
3862     break;
3863   }
3864   case Op_CmpUL: {
3865     if (!Matcher::has_match_rule(Op_CmpUL)) {
3866       // No support for unsigned long comparisons
3867       ConINode* sign_pos = new ConINode(TypeInt::make(BitsPerLong - 1));
3868       Node* sign_bit_mask = new RShiftLNode(n->in(1), sign_pos);
3869       Node* orl = new OrLNode(n->in(1), sign_bit_mask);
3870       ConLNode* remove_sign_mask = new ConLNode(TypeLong::make(max_jlong));
3871       Node* andl = new AndLNode(orl, remove_sign_mask);
3872       Node* cmp = new CmpLNode(andl, n->in(2));
3873       n->subsume_by(cmp, this);
3874     }
3875     break;
3876   }
3877   default:
3878     assert(!n->is_Call(), "");
3879     assert(!n->is_Mem(), "");
3880     assert(nop != Op_ProfileBoolean, "should be eliminated during IGVN");
3881     break;
3882   }
3883 }
3884 
3885 //------------------------------final_graph_reshaping_walk---------------------
3886 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
3887 // requires that the walk visits a node's inputs before visiting the node.
3888 void Compile::final_graph_reshaping_walk(Node_Stack& nstack, Node* root, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes) {
3889   Unique_Node_List sfpt;
3890 
3891   frc._visited.set(root->_idx); // first, mark node as visited
3892   uint cnt = root->req();
3893   Node *n = root;
3894   uint  i = 0;
3895   while (true) {
3896     if (i < cnt) {
3897       // Place all non-visited non-null inputs onto stack
3898       Node* m = n->in(i);
3899       ++i;
3900       if (m != nullptr && !frc._visited.test_set(m->_idx)) {
3901         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != nullptr) {
3902           // compute worst case interpreter size in case of a deoptimization
3903           update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size());
3904 
3905           sfpt.push(m);
3906         }
3907         cnt = m->req();
3908         nstack.push(n, i); // put on stack parent and next input's index
3909         n = m;
3910         i = 0;
3911       }
3912     } else {
3913       // Now do post-visit work
3914       final_graph_reshaping_impl(n, frc, dead_nodes);
3915       if (nstack.is_empty())
3916         break;             // finished
3917       n = nstack.node();   // Get node from stack
3918       cnt = n->req();
3919       i = nstack.index();
3920       nstack.pop();        // Shift to the next node on stack
3921     }
3922   }
3923 
3924   // Skip next transformation if compressed oops are not used.
3925   if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
3926       (!UseCompressedOops && !UseCompressedClassPointers))
3927     return;
3928 
3929   // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
3930   // It could be done for an uncommon traps or any safepoints/calls
3931   // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
3932   while (sfpt.size() > 0) {
3933     n = sfpt.pop();
3934     JVMState *jvms = n->as_SafePoint()->jvms();
3935     assert(jvms != nullptr, "sanity");
3936     int start = jvms->debug_start();
3937     int end   = n->req();
3938     bool is_uncommon = (n->is_CallStaticJava() &&
3939                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
3940     for (int j = start; j < end; j++) {
3941       Node* in = n->in(j);
3942       if (in->is_DecodeNarrowPtr()) {
3943         bool safe_to_skip = true;
3944         if (!is_uncommon ) {
3945           // Is it safe to skip?
3946           for (uint i = 0; i < in->outcnt(); i++) {
3947             Node* u = in->raw_out(i);
3948             if (!u->is_SafePoint() ||
3949                 (u->is_Call() && u->as_Call()->has_non_debug_use(n))) {
3950               safe_to_skip = false;
3951             }
3952           }
3953         }
3954         if (safe_to_skip) {
3955           n->set_req(j, in->in(1));
3956         }
3957         if (in->outcnt() == 0) {
3958           in->disconnect_inputs(this);
3959         }
3960       }
3961     }
3962   }
3963 }
3964 
3965 //------------------------------final_graph_reshaping--------------------------
3966 // Final Graph Reshaping.
3967 //
3968 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
3969 //     and not commoned up and forced early.  Must come after regular
3970 //     optimizations to avoid GVN undoing the cloning.  Clone constant
3971 //     inputs to Loop Phis; these will be split by the allocator anyways.
3972 //     Remove Opaque nodes.
3973 // (2) Move last-uses by commutative operations to the left input to encourage
3974 //     Intel update-in-place two-address operations and better register usage
3975 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
3976 //     calls canonicalizing them back.
3977 // (3) Count the number of double-precision FP ops, single-precision FP ops
3978 //     and call sites.  On Intel, we can get correct rounding either by
3979 //     forcing singles to memory (requires extra stores and loads after each
3980 //     FP bytecode) or we can set a rounding mode bit (requires setting and
3981 //     clearing the mode bit around call sites).  The mode bit is only used
3982 //     if the relative frequency of single FP ops to calls is low enough.
3983 //     This is a key transform for SPEC mpeg_audio.
3984 // (4) Detect infinite loops; blobs of code reachable from above but not
3985 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
3986 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
3987 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
3988 //     Detection is by looking for IfNodes where only 1 projection is
3989 //     reachable from below or CatchNodes missing some targets.
3990 // (5) Assert for insane oop offsets in debug mode.
3991 
3992 bool Compile::final_graph_reshaping() {
3993   // an infinite loop may have been eliminated by the optimizer,
3994   // in which case the graph will be empty.
3995   if (root()->req() == 1) {
3996     // Do not compile method that is only a trivial infinite loop,
3997     // since the content of the loop may have been eliminated.
3998     record_method_not_compilable("trivial infinite loop");
3999     return true;
4000   }
4001 
4002   // Expensive nodes have their control input set to prevent the GVN
4003   // from freely commoning them. There's no GVN beyond this point so
4004   // no need to keep the control input. We want the expensive nodes to
4005   // be freely moved to the least frequent code path by gcm.
4006   assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
4007   for (int i = 0; i < expensive_count(); i++) {
4008     _expensive_nodes.at(i)->set_req(0, nullptr);
4009   }
4010 
4011   Final_Reshape_Counts frc;
4012 
4013   // Visit everybody reachable!
4014   // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc
4015   Node_Stack nstack(live_nodes() >> 1);
4016   Unique_Node_List dead_nodes;
4017   final_graph_reshaping_walk(nstack, root(), frc, dead_nodes);
4018 
4019   // Check for unreachable (from below) code (i.e., infinite loops).
4020   for( uint i = 0; i < frc._tests.size(); i++ ) {
4021     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
4022     // Get number of CFG targets.
4023     // Note that PCTables include exception targets after calls.
4024     uint required_outcnt = n->required_outcnt();
4025     if (n->outcnt() != required_outcnt) {
4026       // Check for a few special cases.  Rethrow Nodes never take the
4027       // 'fall-thru' path, so expected kids is 1 less.
4028       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
4029         if (n->in(0)->in(0)->is_Call()) {
4030           CallNode* call = n->in(0)->in(0)->as_Call();
4031           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
4032             required_outcnt--;      // Rethrow always has 1 less kid
4033           } else if (call->req() > TypeFunc::Parms &&
4034                      call->is_CallDynamicJava()) {
4035             // Check for null receiver. In such case, the optimizer has
4036             // detected that the virtual call will always result in a null
4037             // pointer exception. The fall-through projection of this CatchNode
4038             // will not be populated.
4039             Node* arg0 = call->in(TypeFunc::Parms);
4040             if (arg0->is_Type() &&
4041                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
4042               required_outcnt--;
4043             }
4044           } else if (call->entry_point() == OptoRuntime::new_array_Java() ||
4045                      call->entry_point() == OptoRuntime::new_array_nozero_Java()) {
4046             // Check for illegal array length. In such case, the optimizer has
4047             // detected that the allocation attempt will always result in an
4048             // exception. There is no fall-through projection of this CatchNode .
4049             assert(call->is_CallStaticJava(), "static call expected");
4050             assert(call->req() == call->jvms()->endoff() + 1, "missing extra input");
4051             uint valid_length_test_input = call->req() - 1;
4052             Node* valid_length_test = call->in(valid_length_test_input);
4053             call->del_req(valid_length_test_input);
4054             if (valid_length_test->find_int_con(1) == 0) {
4055               required_outcnt--;
4056             }
4057             dead_nodes.push(valid_length_test);
4058             assert(n->outcnt() == required_outcnt, "malformed control flow");
4059             continue;
4060           }
4061         }
4062       }
4063 
4064       // Recheck with a better notion of 'required_outcnt'
4065       if (n->outcnt() != required_outcnt) {
4066         record_method_not_compilable("malformed control flow");
4067         return true;            // Not all targets reachable!
4068       }
4069     } else if (n->is_PCTable() && n->in(0) && n->in(0)->in(0) && n->in(0)->in(0)->is_Call()) {
4070       CallNode* call = n->in(0)->in(0)->as_Call();
4071       if (call->entry_point() == OptoRuntime::new_array_Java() ||
4072           call->entry_point() == OptoRuntime::new_array_nozero_Java()) {
4073         assert(call->is_CallStaticJava(), "static call expected");
4074         assert(call->req() == call->jvms()->endoff() + 1, "missing extra input");
4075         uint valid_length_test_input = call->req() - 1;
4076         dead_nodes.push(call->in(valid_length_test_input));
4077         call->del_req(valid_length_test_input); // valid length test useless now
4078       }
4079     }
4080     // Check that I actually visited all kids.  Unreached kids
4081     // must be infinite loops.
4082     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
4083       if (!frc._visited.test(n->fast_out(j)->_idx)) {
4084         record_method_not_compilable("infinite loop");
4085         return true;            // Found unvisited kid; must be unreach
4086       }
4087 
4088     // Here so verification code in final_graph_reshaping_walk()
4089     // always see an OuterStripMinedLoopEnd
4090     if (n->is_OuterStripMinedLoopEnd() || n->is_LongCountedLoopEnd()) {
4091       IfNode* init_iff = n->as_If();
4092       Node* iff = new IfNode(init_iff->in(0), init_iff->in(1), init_iff->_prob, init_iff->_fcnt);
4093       n->subsume_by(iff, this);
4094     }
4095   }
4096 
4097   while (dead_nodes.size() > 0) {
4098     Node* m = dead_nodes.pop();
4099     if (m->outcnt() == 0 && m != top()) {
4100       for (uint j = 0; j < m->req(); j++) {
4101         Node* in = m->in(j);
4102         if (in != nullptr) {
4103           dead_nodes.push(in);
4104         }
4105       }
4106       m->disconnect_inputs(this);
4107     }
4108   }
4109 
4110 #ifdef IA32
4111   // If original bytecodes contained a mixture of floats and doubles
4112   // check if the optimizer has made it homogeneous, item (3).
4113   if (UseSSE == 0 &&
4114       frc.get_float_count() > 32 &&
4115       frc.get_double_count() == 0 &&
4116       (10 * frc.get_call_count() < frc.get_float_count()) ) {
4117     set_24_bit_selection_and_mode(false, true);
4118   }
4119 #endif // IA32
4120 
4121   set_java_calls(frc.get_java_call_count());
4122   set_inner_loops(frc.get_inner_loop_count());
4123 
4124   // No infinite loops, no reason to bail out.
4125   return false;
4126 }
4127 
4128 //-----------------------------too_many_traps----------------------------------
4129 // Report if there are too many traps at the current method and bci.
4130 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
4131 bool Compile::too_many_traps(ciMethod* method,
4132                              int bci,
4133                              Deoptimization::DeoptReason reason) {
4134   if (method->has_trap_at(bci)) {
4135     return true;
4136   }
4137   ciMethodData* md = method->method_data();
4138   if (md->is_empty()) {
4139     // Assume the trap has not occurred, or that it occurred only
4140     // because of a transient condition during start-up in the interpreter.
4141     return false;
4142   }
4143   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : nullptr;
4144   if (md->has_trap_at(bci, m, reason) != 0) {
4145     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
4146     // Also, if there are multiple reasons, or if there is no per-BCI record,
4147     // assume the worst.
4148     if (log())
4149       log()->elem("observe trap='%s' count='%d'",
4150                   Deoptimization::trap_reason_name(reason),
4151                   md->trap_count(reason));
4152     return true;
4153   } else {
4154     // Ignore method/bci and see if there have been too many globally.
4155     return too_many_traps(reason, md);
4156   }
4157 }
4158 
4159 // Less-accurate variant which does not require a method and bci.
4160 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
4161                              ciMethodData* logmd) {
4162   if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) {
4163     // Too many traps globally.
4164     // Note that we use cumulative trap_count, not just md->trap_count.
4165     if (log()) {
4166       int mcount = (logmd == nullptr)? -1: (int)logmd->trap_count(reason);
4167       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
4168                   Deoptimization::trap_reason_name(reason),
4169                   mcount, trap_count(reason));
4170     }
4171     return true;
4172   } else {
4173     // The coast is clear.
4174     return false;
4175   }
4176 }
4177 
4178 //--------------------------too_many_recompiles--------------------------------
4179 // Report if there are too many recompiles at the current method and bci.
4180 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
4181 // Is not eager to return true, since this will cause the compiler to use
4182 // Action_none for a trap point, to avoid too many recompilations.
4183 bool Compile::too_many_recompiles(ciMethod* method,
4184                                   int bci,
4185                                   Deoptimization::DeoptReason reason) {
4186   ciMethodData* md = method->method_data();
4187   if (md->is_empty()) {
4188     // Assume the trap has not occurred, or that it occurred only
4189     // because of a transient condition during start-up in the interpreter.
4190     return false;
4191   }
4192   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
4193   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
4194   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
4195   Deoptimization::DeoptReason per_bc_reason
4196     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
4197   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : nullptr;
4198   if ((per_bc_reason == Deoptimization::Reason_none
4199        || md->has_trap_at(bci, m, reason) != 0)
4200       // The trap frequency measure we care about is the recompile count:
4201       && md->trap_recompiled_at(bci, m)
4202       && md->overflow_recompile_count() >= bc_cutoff) {
4203     // Do not emit a trap here if it has already caused recompilations.
4204     // Also, if there are multiple reasons, or if there is no per-BCI record,
4205     // assume the worst.
4206     if (log())
4207       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
4208                   Deoptimization::trap_reason_name(reason),
4209                   md->trap_count(reason),
4210                   md->overflow_recompile_count());
4211     return true;
4212   } else if (trap_count(reason) != 0
4213              && decompile_count() >= m_cutoff) {
4214     // Too many recompiles globally, and we have seen this sort of trap.
4215     // Use cumulative decompile_count, not just md->decompile_count.
4216     if (log())
4217       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
4218                   Deoptimization::trap_reason_name(reason),
4219                   md->trap_count(reason), trap_count(reason),
4220                   md->decompile_count(), decompile_count());
4221     return true;
4222   } else {
4223     // The coast is clear.
4224     return false;
4225   }
4226 }
4227 
4228 // Compute when not to trap. Used by matching trap based nodes and
4229 // NullCheck optimization.
4230 void Compile::set_allowed_deopt_reasons() {
4231   _allowed_reasons = 0;
4232   if (is_method_compilation()) {
4233     for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) {
4234       assert(rs < BitsPerInt, "recode bit map");
4235       if (!too_many_traps((Deoptimization::DeoptReason) rs)) {
4236         _allowed_reasons |= nth_bit(rs);
4237       }
4238     }
4239   }
4240 }
4241 
4242 bool Compile::needs_clinit_barrier(ciMethod* method, ciMethod* accessing_method) {
4243   return method->is_static() && needs_clinit_barrier(method->holder(), accessing_method);
4244 }
4245 
4246 bool Compile::needs_clinit_barrier(ciField* field, ciMethod* accessing_method) {
4247   return field->is_static() && needs_clinit_barrier(field->holder(), accessing_method);
4248 }
4249 
4250 bool Compile::needs_clinit_barrier(ciInstanceKlass* holder, ciMethod* accessing_method) {
4251   if (holder->is_initialized() && !do_clinit_barriers()) {
4252     return false;
4253   }
4254   if (holder->is_being_initialized() || do_clinit_barriers()) {
4255     if (accessing_method->holder() == holder) {
4256       // Access inside a class. The barrier can be elided when access happens in <clinit>,
4257       // <init>, or a static method. In all those cases, there was an initialization
4258       // barrier on the holder klass passed.
4259       if (accessing_method->is_static_initializer() ||
4260           accessing_method->is_object_initializer() ||
4261           accessing_method->is_static()) {
4262         return false;
4263       }
4264     } else if (accessing_method->holder()->is_subclass_of(holder)) {
4265       // Access from a subclass. The barrier can be elided only when access happens in <clinit>.
4266       // In case of <init> or a static method, the barrier is on the subclass is not enough:
4267       // child class can become fully initialized while its parent class is still being initialized.
4268       if (accessing_method->is_static_initializer()) {
4269         return false;
4270       }
4271     }
4272     ciMethod* root = method(); // the root method of compilation
4273     if (root != accessing_method) {
4274       return needs_clinit_barrier(holder, root); // check access in the context of compilation root
4275     }
4276   }
4277   return true;
4278 }
4279 
4280 #ifndef PRODUCT
4281 //------------------------------verify_bidirectional_edges---------------------
4282 // For each input edge to a node (ie - for each Use-Def edge), verify that
4283 // there is a corresponding Def-Use edge.
4284 void Compile::verify_bidirectional_edges(Unique_Node_List &visited) {
4285   // Allocate stack of size C->live_nodes()/16 to avoid frequent realloc
4286   uint stack_size = live_nodes() >> 4;
4287   Node_List nstack(MAX2(stack_size, (uint)OptoNodeListSize));
4288   nstack.push(_root);
4289 
4290   while (nstack.size() > 0) {
4291     Node* n = nstack.pop();
4292     if (visited.member(n)) {
4293       continue;
4294     }
4295     visited.push(n);
4296 
4297     // Walk over all input edges, checking for correspondence
4298     uint length = n->len();
4299     for (uint i = 0; i < length; i++) {
4300       Node* in = n->in(i);
4301       if (in != nullptr && !visited.member(in)) {
4302         nstack.push(in); // Put it on stack
4303       }
4304       if (in != nullptr && !in->is_top()) {
4305         // Count instances of `next`
4306         int cnt = 0;
4307         for (uint idx = 0; idx < in->_outcnt; idx++) {
4308           if (in->_out[idx] == n) {
4309             cnt++;
4310           }
4311         }
4312         assert(cnt > 0, "Failed to find Def-Use edge.");
4313         // Check for duplicate edges
4314         // walk the input array downcounting the input edges to n
4315         for (uint j = 0; j < length; j++) {
4316           if (n->in(j) == in) {
4317             cnt--;
4318           }
4319         }
4320         assert(cnt == 0, "Mismatched edge count.");
4321       } else if (in == nullptr) {
4322         assert(i == 0 || i >= n->req() ||
4323                n->is_Region() || n->is_Phi() || n->is_ArrayCopy() ||
4324                (n->is_Unlock() && i == (n->req() - 1)) ||
4325                (n->is_MemBar() && i == 5), // the precedence edge to a membar can be removed during macro node expansion
4326               "only region, phi, arraycopy, unlock or membar nodes have null data edges");
4327       } else {
4328         assert(in->is_top(), "sanity");
4329         // Nothing to check.
4330       }
4331     }
4332   }
4333 }
4334 
4335 //------------------------------verify_graph_edges---------------------------
4336 // Walk the Graph and verify that there is a one-to-one correspondence
4337 // between Use-Def edges and Def-Use edges in the graph.
4338 void Compile::verify_graph_edges(bool no_dead_code) {
4339   if (VerifyGraphEdges) {
4340     Unique_Node_List visited;
4341 
4342     // Call graph walk to check edges
4343     verify_bidirectional_edges(visited);
4344     if (no_dead_code) {
4345       // Now make sure that no visited node is used by an unvisited node.
4346       bool dead_nodes = false;
4347       Unique_Node_List checked;
4348       while (visited.size() > 0) {
4349         Node* n = visited.pop();
4350         checked.push(n);
4351         for (uint i = 0; i < n->outcnt(); i++) {
4352           Node* use = n->raw_out(i);
4353           if (checked.member(use))  continue;  // already checked
4354           if (visited.member(use))  continue;  // already in the graph
4355           if (use->is_Con())        continue;  // a dead ConNode is OK
4356           // At this point, we have found a dead node which is DU-reachable.
4357           if (!dead_nodes) {
4358             tty->print_cr("*** Dead nodes reachable via DU edges:");
4359             dead_nodes = true;
4360           }
4361           use->dump(2);
4362           tty->print_cr("---");
4363           checked.push(use);  // No repeats; pretend it is now checked.
4364         }
4365       }
4366       assert(!dead_nodes, "using nodes must be reachable from root");
4367     }
4368   }
4369 }
4370 #endif
4371 
4372 // The Compile object keeps track of failure reasons separately from the ciEnv.
4373 // This is required because there is not quite a 1-1 relation between the
4374 // ciEnv and its compilation task and the Compile object.  Note that one
4375 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
4376 // to backtrack and retry without subsuming loads.  Other than this backtracking
4377 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
4378 // by the logic in C2Compiler.
4379 void Compile::record_failure(const char* reason) {
4380   if (log() != nullptr) {
4381     log()->elem("failure reason='%s' phase='compile'", reason);
4382   }
4383   if (_failure_reason.get() == nullptr) {
4384     // Record the first failure reason.
4385     _failure_reason.set(reason);
4386     if (CaptureBailoutInformation) {
4387       _first_failure_details = new CompilationFailureInfo(reason);
4388     }
4389   }
4390 
4391   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
4392     C->print_method(PHASE_FAILURE, 1);
4393   }
4394   _root = nullptr;  // flush the graph, too
4395 }
4396 
4397 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator)
4398   : TraceTime(name, accumulator, CITime, CITimeVerbose),
4399     _compile(Compile::current()),
4400     _log(nullptr),
4401     _phase_name(name),
4402     _dolog(CITimeVerbose)
4403 {
4404   assert(_compile != nullptr, "sanity check");
4405   if (_dolog) {
4406     _log = _compile->log();
4407   }
4408   if (_log != nullptr) {
4409     _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, _compile->unique(), _compile->live_nodes());
4410     _log->stamp();
4411     _log->end_head();
4412   }
4413 }
4414 
4415 Compile::TracePhase::~TracePhase() {
4416   if (_compile->failing()) return;
4417 #ifdef ASSERT
4418   if (PrintIdealNodeCount) {
4419     tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
4420                   _phase_name, _compile->unique(), _compile->live_nodes(), _compile->count_live_nodes_by_graph_walk());
4421   }
4422 
4423   if (VerifyIdealNodeCount) {
4424     _compile->print_missing_nodes();
4425   }
4426 #endif
4427 
4428   if (_log != nullptr) {
4429     _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, _compile->unique(), _compile->live_nodes());
4430   }
4431 }
4432 
4433 //----------------------------static_subtype_check-----------------------------
4434 // Shortcut important common cases when superklass is exact:
4435 // (0) superklass is java.lang.Object (can occur in reflective code)
4436 // (1) subklass is already limited to a subtype of superklass => always ok
4437 // (2) subklass does not overlap with superklass => always fail
4438 // (3) superklass has NO subtypes and we can check with a simple compare.
4439 Compile::SubTypeCheckResult Compile::static_subtype_check(const TypeKlassPtr* superk, const TypeKlassPtr* subk, bool skip) {
4440   if (skip) {
4441     return SSC_full_test;       // Let caller generate the general case.
4442   }
4443 
4444   if (subk->is_java_subtype_of(superk)) {
4445     return SSC_always_true; // (0) and (1)  this test cannot fail
4446   }
4447 
4448   if (!subk->maybe_java_subtype_of(superk)) {
4449     return SSC_always_false; // (2) true path dead; no dynamic test needed
4450   }
4451 
4452   const Type* superelem = superk;
4453   if (superk->isa_aryklassptr()) {
4454     int ignored;
4455     superelem = superk->is_aryklassptr()->base_element_type(ignored);
4456   }
4457 
4458   if (superelem->isa_instklassptr()) {
4459     ciInstanceKlass* ik = superelem->is_instklassptr()->instance_klass();
4460     if (!ik->has_subklass()) {
4461       if (!ik->is_final()) {
4462         // Add a dependency if there is a chance of a later subclass.
4463         dependencies()->assert_leaf_type(ik);
4464       }
4465       if (!superk->maybe_java_subtype_of(subk)) {
4466         return SSC_always_false;
4467       }
4468       return SSC_easy_test;     // (3) caller can do a simple ptr comparison
4469     }
4470   } else {
4471     // A primitive array type has no subtypes.
4472     return SSC_easy_test;       // (3) caller can do a simple ptr comparison
4473   }
4474 
4475   return SSC_full_test;
4476 }
4477 
4478 Node* Compile::conv_I2X_index(PhaseGVN* phase, Node* idx, const TypeInt* sizetype, Node* ctrl) {
4479 #ifdef _LP64
4480   // The scaled index operand to AddP must be a clean 64-bit value.
4481   // Java allows a 32-bit int to be incremented to a negative
4482   // value, which appears in a 64-bit register as a large
4483   // positive number.  Using that large positive number as an
4484   // operand in pointer arithmetic has bad consequences.
4485   // On the other hand, 32-bit overflow is rare, and the possibility
4486   // can often be excluded, if we annotate the ConvI2L node with
4487   // a type assertion that its value is known to be a small positive
4488   // number.  (The prior range check has ensured this.)
4489   // This assertion is used by ConvI2LNode::Ideal.
4490   int index_max = max_jint - 1;  // array size is max_jint, index is one less
4491   if (sizetype != nullptr) index_max = sizetype->_hi - 1;
4492   const TypeInt* iidxtype = TypeInt::make(0, index_max, Type::WidenMax);
4493   idx = constrained_convI2L(phase, idx, iidxtype, ctrl);
4494 #endif
4495   return idx;
4496 }
4497 
4498 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check)
4499 Node* Compile::constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl, bool carry_dependency) {
4500   if (ctrl != nullptr) {
4501     // Express control dependency by a CastII node with a narrow type.
4502     // Make the CastII node dependent on the control input to prevent the narrowed ConvI2L
4503     // node from floating above the range check during loop optimizations. Otherwise, the
4504     // ConvI2L node may be eliminated independently of the range check, causing the data path
4505     // to become TOP while the control path is still there (although it's unreachable).
4506     value = new CastIINode(ctrl, value, itype, carry_dependency ? ConstraintCastNode::StrongDependency : ConstraintCastNode::RegularDependency, true /* range check dependency */);
4507     value = phase->transform(value);
4508   }
4509   const TypeLong* ltype = TypeLong::make(itype->_lo, itype->_hi, itype->_widen);
4510   return phase->transform(new ConvI2LNode(value, ltype));
4511 }
4512 
4513 // The message about the current inlining is accumulated in
4514 // _print_inlining_stream and transferred into the _print_inlining_list
4515 // once we know whether inlining succeeds or not. For regular
4516 // inlining, messages are appended to the buffer pointed by
4517 // _print_inlining_idx in the _print_inlining_list. For late inlining,
4518 // a new buffer is added after _print_inlining_idx in the list. This
4519 // way we can update the inlining message for late inlining call site
4520 // when the inlining is attempted again.
4521 void Compile::print_inlining_init() {
4522   if (print_inlining() || print_intrinsics()) {
4523     // print_inlining_init is actually called several times.
4524     print_inlining_reset();
4525     _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer*>(comp_arena(), 1, 1, new PrintInliningBuffer());
4526   }
4527 }
4528 
4529 void Compile::print_inlining_reinit() {
4530   if (print_inlining() || print_intrinsics()) {
4531     print_inlining_reset();
4532   }
4533 }
4534 
4535 void Compile::print_inlining_reset() {
4536   _print_inlining_stream->reset();
4537 }
4538 
4539 void Compile::print_inlining_commit() {
4540   assert(print_inlining() || print_intrinsics(), "PrintInlining off?");
4541   // Transfer the message from _print_inlining_stream to the current
4542   // _print_inlining_list buffer and clear _print_inlining_stream.
4543   _print_inlining_list->at(_print_inlining_idx)->ss()->write(_print_inlining_stream->base(), _print_inlining_stream->size());
4544   print_inlining_reset();
4545 }
4546 
4547 void Compile::print_inlining_push() {
4548   // Add new buffer to the _print_inlining_list at current position
4549   _print_inlining_idx++;
4550   _print_inlining_list->insert_before(_print_inlining_idx, new PrintInliningBuffer());
4551 }
4552 
4553 Compile::PrintInliningBuffer* Compile::print_inlining_current() {
4554   return _print_inlining_list->at(_print_inlining_idx);
4555 }
4556 
4557 void Compile::print_inlining_update(CallGenerator* cg) {
4558   if (print_inlining() || print_intrinsics()) {
4559     if (cg->is_late_inline()) {
4560       if (print_inlining_current()->cg() != cg &&
4561           (print_inlining_current()->cg() != nullptr ||
4562            print_inlining_current()->ss()->size() != 0)) {
4563         print_inlining_push();
4564       }
4565       print_inlining_commit();
4566       print_inlining_current()->set_cg(cg);
4567     } else {
4568       if (print_inlining_current()->cg() != nullptr) {
4569         print_inlining_push();
4570       }
4571       print_inlining_commit();
4572     }
4573   }
4574 }
4575 
4576 void Compile::print_inlining_move_to(CallGenerator* cg) {
4577   // We resume inlining at a late inlining call site. Locate the
4578   // corresponding inlining buffer so that we can update it.
4579   if (print_inlining() || print_intrinsics()) {
4580     for (int i = 0; i < _print_inlining_list->length(); i++) {
4581       if (_print_inlining_list->at(i)->cg() == cg) {
4582         _print_inlining_idx = i;
4583         return;
4584       }
4585     }
4586     ShouldNotReachHere();
4587   }
4588 }
4589 
4590 void Compile::print_inlining_update_delayed(CallGenerator* cg) {
4591   if (print_inlining() || print_intrinsics()) {
4592     assert(_print_inlining_stream->size() > 0, "missing inlining msg");
4593     assert(print_inlining_current()->cg() == cg, "wrong entry");
4594     // replace message with new message
4595     _print_inlining_list->at_put(_print_inlining_idx, new PrintInliningBuffer());
4596     print_inlining_commit();
4597     print_inlining_current()->set_cg(cg);
4598   }
4599 }
4600 
4601 void Compile::print_inlining_assert_ready() {
4602   assert(!_print_inlining || _print_inlining_stream->size() == 0, "losing data");
4603 }
4604 
4605 void Compile::process_print_inlining() {
4606   assert(_late_inlines.length() == 0, "not drained yet");
4607   if (print_inlining() || print_intrinsics()) {
4608     ResourceMark rm;
4609     stringStream ss;
4610     assert(_print_inlining_list != nullptr, "process_print_inlining should be called only once.");
4611     for (int i = 0; i < _print_inlining_list->length(); i++) {
4612       PrintInliningBuffer* pib = _print_inlining_list->at(i);
4613       ss.print("%s", pib->ss()->freeze());
4614       delete pib;
4615       DEBUG_ONLY(_print_inlining_list->at_put(i, nullptr));
4616     }
4617     // Reset _print_inlining_list, it only contains destructed objects.
4618     // It is on the arena, so it will be freed when the arena is reset.
4619     _print_inlining_list = nullptr;
4620     // _print_inlining_stream won't be used anymore, either.
4621     print_inlining_reset();
4622     size_t end = ss.size();
4623     _print_inlining_output = NEW_ARENA_ARRAY(comp_arena(), char, end+1);
4624     strncpy(_print_inlining_output, ss.freeze(), end+1);
4625     _print_inlining_output[end] = 0;
4626   }
4627 }
4628 
4629 void Compile::dump_print_inlining() {
4630   if (_print_inlining_output != nullptr) {
4631     tty->print_raw(_print_inlining_output);
4632   }
4633 }
4634 
4635 void Compile::log_late_inline(CallGenerator* cg) {
4636   if (log() != nullptr) {
4637     log()->head("late_inline method='%d' inline_id='" JLONG_FORMAT "'", log()->identify(cg->method()),
4638                 cg->unique_id());
4639     JVMState* p = cg->call_node()->jvms();
4640     while (p != nullptr) {
4641       log()->elem("jvms bci='%d' method='%d'", p->bci(), log()->identify(p->method()));
4642       p = p->caller();
4643     }
4644     log()->tail("late_inline");
4645   }
4646 }
4647 
4648 void Compile::log_late_inline_failure(CallGenerator* cg, const char* msg) {
4649   log_late_inline(cg);
4650   if (log() != nullptr) {
4651     log()->inline_fail(msg);
4652   }
4653 }
4654 
4655 void Compile::log_inline_id(CallGenerator* cg) {
4656   if (log() != nullptr) {
4657     // The LogCompilation tool needs a unique way to identify late
4658     // inline call sites. This id must be unique for this call site in
4659     // this compilation. Try to have it unique across compilations as
4660     // well because it can be convenient when grepping through the log
4661     // file.
4662     // Distinguish OSR compilations from others in case CICountOSR is
4663     // on.
4664     jlong id = ((jlong)unique()) + (((jlong)compile_id()) << 33) + (CICountOSR && is_osr_compilation() ? ((jlong)1) << 32 : 0);
4665     cg->set_unique_id(id);
4666     log()->elem("inline_id id='" JLONG_FORMAT "'", id);
4667   }
4668 }
4669 
4670 void Compile::log_inline_failure(const char* msg) {
4671   if (C->log() != nullptr) {
4672     C->log()->inline_fail(msg);
4673   }
4674 }
4675 
4676 
4677 // Dump inlining replay data to the stream.
4678 // Don't change thread state and acquire any locks.
4679 void Compile::dump_inline_data(outputStream* out) {
4680   InlineTree* inl_tree = ilt();
4681   if (inl_tree != nullptr) {
4682     out->print(" inline %d", inl_tree->count());
4683     inl_tree->dump_replay_data(out);
4684   }
4685 }
4686 
4687 void Compile::dump_inline_data_reduced(outputStream* out) {
4688   assert(ReplayReduce, "");
4689 
4690   InlineTree* inl_tree = ilt();
4691   if (inl_tree == nullptr) {
4692     return;
4693   }
4694   // Enable iterative replay file reduction
4695   // Output "compile" lines for depth 1 subtrees,
4696   // simulating that those trees were compiled
4697   // instead of inlined.
4698   for (int i = 0; i < inl_tree->subtrees().length(); ++i) {
4699     InlineTree* sub = inl_tree->subtrees().at(i);
4700     if (sub->inline_level() != 1) {
4701       continue;
4702     }
4703 
4704     ciMethod* method = sub->method();
4705     int entry_bci = -1;
4706     int comp_level = env()->task()->comp_level();
4707     out->print("compile ");
4708     method->dump_name_as_ascii(out);
4709     out->print(" %d %d", entry_bci, comp_level);
4710     out->print(" inline %d", sub->count());
4711     sub->dump_replay_data(out, -1);
4712     out->cr();
4713   }
4714 }
4715 
4716 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
4717   if (n1->Opcode() < n2->Opcode())      return -1;
4718   else if (n1->Opcode() > n2->Opcode()) return 1;
4719 
4720   assert(n1->req() == n2->req(), "can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req());
4721   for (uint i = 1; i < n1->req(); i++) {
4722     if (n1->in(i) < n2->in(i))      return -1;
4723     else if (n1->in(i) > n2->in(i)) return 1;
4724   }
4725 
4726   return 0;
4727 }
4728 
4729 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
4730   Node* n1 = *n1p;
4731   Node* n2 = *n2p;
4732 
4733   return cmp_expensive_nodes(n1, n2);
4734 }
4735 
4736 void Compile::sort_expensive_nodes() {
4737   if (!expensive_nodes_sorted()) {
4738     _expensive_nodes.sort(cmp_expensive_nodes);
4739   }
4740 }
4741 
4742 bool Compile::expensive_nodes_sorted() const {
4743   for (int i = 1; i < _expensive_nodes.length(); i++) {
4744     if (cmp_expensive_nodes(_expensive_nodes.adr_at(i), _expensive_nodes.adr_at(i-1)) < 0) {
4745       return false;
4746     }
4747   }
4748   return true;
4749 }
4750 
4751 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
4752   if (_expensive_nodes.length() == 0) {
4753     return false;
4754   }
4755 
4756   assert(OptimizeExpensiveOps, "optimization off?");
4757 
4758   // Take this opportunity to remove dead nodes from the list
4759   int j = 0;
4760   for (int i = 0; i < _expensive_nodes.length(); i++) {
4761     Node* n = _expensive_nodes.at(i);
4762     if (!n->is_unreachable(igvn)) {
4763       assert(n->is_expensive(), "should be expensive");
4764       _expensive_nodes.at_put(j, n);
4765       j++;
4766     }
4767   }
4768   _expensive_nodes.trunc_to(j);
4769 
4770   // Then sort the list so that similar nodes are next to each other
4771   // and check for at least two nodes of identical kind with same data
4772   // inputs.
4773   sort_expensive_nodes();
4774 
4775   for (int i = 0; i < _expensive_nodes.length()-1; i++) {
4776     if (cmp_expensive_nodes(_expensive_nodes.adr_at(i), _expensive_nodes.adr_at(i+1)) == 0) {
4777       return true;
4778     }
4779   }
4780 
4781   return false;
4782 }
4783 
4784 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
4785   if (_expensive_nodes.length() == 0) {
4786     return;
4787   }
4788 
4789   assert(OptimizeExpensiveOps, "optimization off?");
4790 
4791   // Sort to bring similar nodes next to each other and clear the
4792   // control input of nodes for which there's only a single copy.
4793   sort_expensive_nodes();
4794 
4795   int j = 0;
4796   int identical = 0;
4797   int i = 0;
4798   bool modified = false;
4799   for (; i < _expensive_nodes.length()-1; i++) {
4800     assert(j <= i, "can't write beyond current index");
4801     if (_expensive_nodes.at(i)->Opcode() == _expensive_nodes.at(i+1)->Opcode()) {
4802       identical++;
4803       _expensive_nodes.at_put(j++, _expensive_nodes.at(i));
4804       continue;
4805     }
4806     if (identical > 0) {
4807       _expensive_nodes.at_put(j++, _expensive_nodes.at(i));
4808       identical = 0;
4809     } else {
4810       Node* n = _expensive_nodes.at(i);
4811       igvn.replace_input_of(n, 0, nullptr);
4812       igvn.hash_insert(n);
4813       modified = true;
4814     }
4815   }
4816   if (identical > 0) {
4817     _expensive_nodes.at_put(j++, _expensive_nodes.at(i));
4818   } else if (_expensive_nodes.length() >= 1) {
4819     Node* n = _expensive_nodes.at(i);
4820     igvn.replace_input_of(n, 0, nullptr);
4821     igvn.hash_insert(n);
4822     modified = true;
4823   }
4824   _expensive_nodes.trunc_to(j);
4825   if (modified) {
4826     igvn.optimize();
4827   }
4828 }
4829 
4830 void Compile::add_expensive_node(Node * n) {
4831   assert(!_expensive_nodes.contains(n), "duplicate entry in expensive list");
4832   assert(n->is_expensive(), "expensive nodes with non-null control here only");
4833   assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
4834   if (OptimizeExpensiveOps) {
4835     _expensive_nodes.append(n);
4836   } else {
4837     // Clear control input and let IGVN optimize expensive nodes if
4838     // OptimizeExpensiveOps is off.
4839     n->set_req(0, nullptr);
4840   }
4841 }
4842 
4843 /**
4844  * Track coarsened Lock and Unlock nodes.
4845  */
4846 
4847 class Lock_List : public Node_List {
4848   uint _origin_cnt;
4849 public:
4850   Lock_List(Arena *a, uint cnt) : Node_List(a), _origin_cnt(cnt) {}
4851   uint origin_cnt() const { return _origin_cnt; }
4852 };
4853 
4854 void Compile::add_coarsened_locks(GrowableArray<AbstractLockNode*>& locks) {
4855   int length = locks.length();
4856   if (length > 0) {
4857     // Have to keep this list until locks elimination during Macro nodes elimination.
4858     Lock_List* locks_list = new (comp_arena()) Lock_List(comp_arena(), length);
4859     AbstractLockNode* alock = locks.at(0);
4860     BoxLockNode* box = alock->box_node()->as_BoxLock();
4861     for (int i = 0; i < length; i++) {
4862       AbstractLockNode* lock = locks.at(i);
4863       assert(lock->is_coarsened(), "expecting only coarsened AbstractLock nodes, but got '%s'[%d] node", lock->Name(), lock->_idx);
4864       locks_list->push(lock);
4865       BoxLockNode* this_box = lock->box_node()->as_BoxLock();
4866       if (this_box != box) {
4867         // Locking regions (BoxLock) could be Unbalanced here:
4868         //  - its coarsened locks were eliminated in earlier
4869         //    macro nodes elimination followed by loop unroll
4870         //  - it is OSR locking region (no Lock node)
4871         // Preserve Unbalanced status in such cases.
4872         if (!this_box->is_unbalanced()) {
4873           this_box->set_coarsened();
4874         }
4875         if (!box->is_unbalanced()) {
4876           box->set_coarsened();
4877         }
4878       }
4879     }
4880     _coarsened_locks.append(locks_list);
4881   }
4882 }
4883 
4884 void Compile::remove_useless_coarsened_locks(Unique_Node_List& useful) {
4885   int count = coarsened_count();
4886   for (int i = 0; i < count; i++) {
4887     Node_List* locks_list = _coarsened_locks.at(i);
4888     for (uint j = 0; j < locks_list->size(); j++) {
4889       Node* lock = locks_list->at(j);
4890       assert(lock->is_AbstractLock(), "sanity");
4891       if (!useful.member(lock)) {
4892         locks_list->yank(lock);
4893       }
4894     }
4895   }
4896 }
4897 
4898 void Compile::remove_coarsened_lock(Node* n) {
4899   if (n->is_AbstractLock()) {
4900     int count = coarsened_count();
4901     for (int i = 0; i < count; i++) {
4902       Node_List* locks_list = _coarsened_locks.at(i);
4903       locks_list->yank(n);
4904     }
4905   }
4906 }
4907 
4908 bool Compile::coarsened_locks_consistent() {
4909   int count = coarsened_count();
4910   for (int i = 0; i < count; i++) {
4911     bool unbalanced = false;
4912     bool modified = false; // track locks kind modifications
4913     Lock_List* locks_list = (Lock_List*)_coarsened_locks.at(i);
4914     uint size = locks_list->size();
4915     if (size == 0) {
4916       unbalanced = false; // All locks were eliminated - good
4917     } else if (size != locks_list->origin_cnt()) {
4918       unbalanced = true; // Some locks were removed from list
4919     } else {
4920       for (uint j = 0; j < size; j++) {
4921         Node* lock = locks_list->at(j);
4922         // All nodes in group should have the same state (modified or not)
4923         if (!lock->as_AbstractLock()->is_coarsened()) {
4924           if (j == 0) {
4925             // first on list was modified, the rest should be too for consistency
4926             modified = true;
4927           } else if (!modified) {
4928             // this lock was modified but previous locks on the list were not
4929             unbalanced = true;
4930             break;
4931           }
4932         } else if (modified) {
4933           // previous locks on list were modified but not this lock
4934           unbalanced = true;
4935           break;
4936         }
4937       }
4938     }
4939     if (unbalanced) {
4940       // unbalanced monitor enter/exit - only some [un]lock nodes were removed or modified
4941 #ifdef ASSERT
4942       if (PrintEliminateLocks) {
4943         tty->print_cr("=== unbalanced coarsened locks ===");
4944         for (uint l = 0; l < size; l++) {
4945           locks_list->at(l)->dump();
4946         }
4947       }
4948 #endif
4949       record_failure(C2Compiler::retry_no_locks_coarsening());
4950       return false;
4951     }
4952   }
4953   return true;
4954 }
4955 
4956 // Mark locking regions (identified by BoxLockNode) as unbalanced if
4957 // locks coarsening optimization removed Lock/Unlock nodes from them.
4958 // Such regions become unbalanced because coarsening only removes part
4959 // of Lock/Unlock nodes in region. As result we can't execute other
4960 // locks elimination optimizations which assume all code paths have
4961 // corresponding pair of Lock/Unlock nodes - they are balanced.
4962 void Compile::mark_unbalanced_boxes() const {
4963   int count = coarsened_count();
4964   for (int i = 0; i < count; i++) {
4965     Node_List* locks_list = _coarsened_locks.at(i);
4966     uint size = locks_list->size();
4967     if (size > 0) {
4968       AbstractLockNode* alock = locks_list->at(0)->as_AbstractLock();
4969       BoxLockNode* box = alock->box_node()->as_BoxLock();
4970       if (alock->is_coarsened()) {
4971         // coarsened_locks_consistent(), which is called before this method, verifies
4972         // that the rest of Lock/Unlock nodes on locks_list are also coarsened.
4973         assert(!box->is_eliminated(), "regions with coarsened locks should not be marked as eliminated");
4974         for (uint j = 1; j < size; j++) {
4975           assert(locks_list->at(j)->as_AbstractLock()->is_coarsened(), "only coarsened locks are expected here");
4976           BoxLockNode* this_box = locks_list->at(j)->as_AbstractLock()->box_node()->as_BoxLock();
4977           if (box != this_box) {
4978             assert(!this_box->is_eliminated(), "regions with coarsened locks should not be marked as eliminated");
4979             box->set_unbalanced();
4980             this_box->set_unbalanced();
4981           }
4982         }
4983       }
4984     }
4985   }
4986 }
4987 
4988 /**
4989  * Remove the speculative part of types and clean up the graph
4990  */
4991 void Compile::remove_speculative_types(PhaseIterGVN &igvn) {
4992   if (UseTypeSpeculation) {
4993     Unique_Node_List worklist;
4994     worklist.push(root());
4995     int modified = 0;
4996     // Go over all type nodes that carry a speculative type, drop the
4997     // speculative part of the type and enqueue the node for an igvn
4998     // which may optimize it out.
4999     for (uint next = 0; next < worklist.size(); ++next) {
5000       Node *n  = worklist.at(next);
5001       if (n->is_Type()) {
5002         TypeNode* tn = n->as_Type();
5003         const Type* t = tn->type();
5004         const Type* t_no_spec = t->remove_speculative();
5005         if (t_no_spec != t) {
5006           bool in_hash = igvn.hash_delete(n);
5007           assert(in_hash || n->hash() == Node::NO_HASH, "node should be in igvn hash table");
5008           tn->set_type(t_no_spec);
5009           igvn.hash_insert(n);
5010           igvn._worklist.push(n); // give it a chance to go away
5011           modified++;
5012         }
5013       }
5014       // Iterate over outs - endless loops is unreachable from below
5015       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
5016         Node *m = n->fast_out(i);
5017         if (not_a_node(m)) {
5018           continue;
5019         }
5020         worklist.push(m);
5021       }
5022     }
5023     // Drop the speculative part of all types in the igvn's type table
5024     igvn.remove_speculative_types();
5025     if (modified > 0) {
5026       igvn.optimize();
5027       if (failing())  return;
5028     }
5029 #ifdef ASSERT
5030     // Verify that after the IGVN is over no speculative type has resurfaced
5031     worklist.clear();
5032     worklist.push(root());
5033     for (uint next = 0; next < worklist.size(); ++next) {
5034       Node *n  = worklist.at(next);
5035       const Type* t = igvn.type_or_null(n);
5036       assert((t == nullptr) || (t == t->remove_speculative()), "no more speculative types");
5037       if (n->is_Type()) {
5038         t = n->as_Type()->type();
5039         assert(t == t->remove_speculative(), "no more speculative types");
5040       }
5041       // Iterate over outs - endless loops is unreachable from below
5042       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
5043         Node *m = n->fast_out(i);
5044         if (not_a_node(m)) {
5045           continue;
5046         }
5047         worklist.push(m);
5048       }
5049     }
5050     igvn.check_no_speculative_types();
5051 #endif
5052   }
5053 }
5054 
5055 // Auxiliary methods to support randomized stressing/fuzzing.
5056 
5057 void Compile::initialize_stress_seed(const DirectiveSet* directive) {
5058   if (FLAG_IS_DEFAULT(StressSeed) || (FLAG_IS_ERGO(StressSeed) && directive->RepeatCompilationOption)) {
5059     _stress_seed = static_cast<uint>(Ticks::now().nanoseconds());
5060     FLAG_SET_ERGO(StressSeed, _stress_seed);
5061   } else {
5062     _stress_seed = StressSeed;
5063   }
5064   if (_log != nullptr) {
5065     _log->elem("stress_test seed='%u'", _stress_seed);
5066   }
5067 }
5068 
5069 int Compile::random() {
5070   _stress_seed = os::next_random(_stress_seed);
5071   return static_cast<int>(_stress_seed);
5072 }
5073 
5074 // This method can be called the arbitrary number of times, with current count
5075 // as the argument. The logic allows selecting a single candidate from the
5076 // running list of candidates as follows:
5077 //    int count = 0;
5078 //    Cand* selected = null;
5079 //    while(cand = cand->next()) {
5080 //      if (randomized_select(++count)) {
5081 //        selected = cand;
5082 //      }
5083 //    }
5084 //
5085 // Including count equalizes the chances any candidate is "selected".
5086 // This is useful when we don't have the complete list of candidates to choose
5087 // from uniformly. In this case, we need to adjust the randomicity of the
5088 // selection, or else we will end up biasing the selection towards the latter
5089 // candidates.
5090 //
5091 // Quick back-envelope calculation shows that for the list of n candidates
5092 // the equal probability for the candidate to persist as "best" can be
5093 // achieved by replacing it with "next" k-th candidate with the probability
5094 // of 1/k. It can be easily shown that by the end of the run, the
5095 // probability for any candidate is converged to 1/n, thus giving the
5096 // uniform distribution among all the candidates.
5097 //
5098 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
5099 #define RANDOMIZED_DOMAIN_POW 29
5100 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
5101 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
5102 bool Compile::randomized_select(int count) {
5103   assert(count > 0, "only positive");
5104   return (random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);
5105 }
5106 
5107 CloneMap&     Compile::clone_map()                 { return _clone_map; }
5108 void          Compile::set_clone_map(Dict* d)      { _clone_map._dict = d; }
5109 
5110 void NodeCloneInfo::dump_on(outputStream* st) const {
5111   st->print(" {%d:%d} ", idx(), gen());
5112 }
5113 
5114 void CloneMap::clone(Node* old, Node* nnn, int gen) {
5115   uint64_t val = value(old->_idx);
5116   NodeCloneInfo cio(val);
5117   assert(val != 0, "old node should be in the map");
5118   NodeCloneInfo cin(cio.idx(), gen + cio.gen());
5119   insert(nnn->_idx, cin.get());
5120 #ifndef PRODUCT
5121   if (is_debug()) {
5122     tty->print_cr("CloneMap::clone inserted node %d info {%d:%d} into CloneMap", nnn->_idx, cin.idx(), cin.gen());
5123   }
5124 #endif
5125 }
5126 
5127 void CloneMap::verify_insert_and_clone(Node* old, Node* nnn, int gen) {
5128   NodeCloneInfo cio(value(old->_idx));
5129   if (cio.get() == 0) {
5130     cio.set(old->_idx, 0);
5131     insert(old->_idx, cio.get());
5132 #ifndef PRODUCT
5133     if (is_debug()) {
5134       tty->print_cr("CloneMap::verify_insert_and_clone inserted node %d info {%d:%d} into CloneMap", old->_idx, cio.idx(), cio.gen());
5135     }
5136 #endif
5137   }
5138   clone(old, nnn, gen);
5139 }
5140 
5141 int CloneMap::max_gen() const {
5142   int g = 0;
5143   DictI di(_dict);
5144   for(; di.test(); ++di) {
5145     int t = gen(di._key);
5146     if (g < t) {
5147       g = t;
5148 #ifndef PRODUCT
5149       if (is_debug()) {
5150         tty->print_cr("CloneMap::max_gen() update max=%d from %d", g, _2_node_idx_t(di._key));
5151       }
5152 #endif
5153     }
5154   }
5155   return g;
5156 }
5157 
5158 void CloneMap::dump(node_idx_t key, outputStream* st) const {
5159   uint64_t val = value(key);
5160   if (val != 0) {
5161     NodeCloneInfo ni(val);
5162     ni.dump_on(st);
5163   }
5164 }
5165 
5166 void Compile::shuffle_macro_nodes() {
5167   if (_macro_nodes.length() < 2) {
5168     return;
5169   }
5170   for (uint i = _macro_nodes.length() - 1; i >= 1; i--) {
5171     uint j = C->random() % (i + 1);
5172     swap(_macro_nodes.at(i), _macro_nodes.at(j));
5173   }
5174 }
5175 
5176 // Move Allocate nodes to the start of the list
5177 void Compile::sort_macro_nodes() {
5178   int count = macro_count();
5179   int allocates = 0;
5180   for (int i = 0; i < count; i++) {
5181     Node* n = macro_node(i);
5182     if (n->is_Allocate()) {
5183       if (i != allocates) {
5184         Node* tmp = macro_node(allocates);
5185         _macro_nodes.at_put(allocates, n);
5186         _macro_nodes.at_put(i, tmp);
5187       }
5188       allocates++;
5189     }
5190   }
5191 }
5192 
5193 void Compile::print_method(CompilerPhaseType cpt, int level, Node* n) {
5194   if (failing()) { return; }
5195   EventCompilerPhase event(UNTIMED);
5196   if (event.should_commit()) {
5197     CompilerEvent::PhaseEvent::post(event, C->_latest_stage_start_counter, cpt, C->_compile_id, level);
5198   }
5199 #ifndef PRODUCT
5200   ResourceMark rm;
5201   stringStream ss;
5202   ss.print_raw(CompilerPhaseTypeHelper::to_description(cpt));
5203   int iter = ++_igv_phase_iter[cpt];
5204   if (iter > 1) {
5205     ss.print(" %d", iter);
5206   }
5207   if (n != nullptr) {
5208     ss.print(": %d %s ", n->_idx, NodeClassNames[n->Opcode()]);
5209   }
5210 
5211   const char* name = ss.as_string();
5212   if (should_print_igv(level)) {
5213     _igv_printer->print_method(name, level);
5214   }
5215   if (should_print_phase(cpt)) {
5216     print_ideal_ir(CompilerPhaseTypeHelper::to_name(cpt));
5217   }
5218 #endif
5219   C->_latest_stage_start_counter.stamp();
5220 }
5221 
5222 // Only used from CompileWrapper
5223 void Compile::begin_method() {
5224 #ifndef PRODUCT
5225   if (_method != nullptr && should_print_igv(1)) {
5226     _igv_printer->begin_method();
5227   }
5228 #endif
5229   C->_latest_stage_start_counter.stamp();
5230 }
5231 
5232 // Only used from CompileWrapper
5233 void Compile::end_method() {
5234   EventCompilerPhase event(UNTIMED);
5235   if (event.should_commit()) {
5236     CompilerEvent::PhaseEvent::post(event, C->_latest_stage_start_counter, PHASE_END, C->_compile_id, 1);
5237   }
5238 
5239 #ifndef PRODUCT
5240   if (_method != nullptr && should_print_igv(1)) {
5241     _igv_printer->end_method();
5242   }
5243 #endif
5244 }
5245 
5246 bool Compile::should_print_phase(CompilerPhaseType cpt) {
5247 #ifndef PRODUCT
5248   if (_directive->should_print_phase(cpt)) {
5249     return true;
5250   }
5251 #endif
5252   return false;
5253 }
5254 
5255 bool Compile::should_print_igv(const int level) {
5256 #ifndef PRODUCT
5257   if (PrintIdealGraphLevel < 0) { // disabled by the user
5258     return false;
5259   }
5260 
5261   bool need = directive()->IGVPrintLevelOption >= level;
5262   if (need && !_igv_printer) {
5263     _igv_printer = IdealGraphPrinter::printer();
5264     _igv_printer->set_compile(this);
5265   }
5266   return need;
5267 #else
5268   return false;
5269 #endif
5270 }
5271 
5272 #ifndef PRODUCT
5273 IdealGraphPrinter* Compile::_debug_file_printer = nullptr;
5274 IdealGraphPrinter* Compile::_debug_network_printer = nullptr;
5275 
5276 // Called from debugger. Prints method to the default file with the default phase name.
5277 // This works regardless of any Ideal Graph Visualizer flags set or not.
5278 void igv_print() {
5279   Compile::current()->igv_print_method_to_file();
5280 }
5281 
5282 // Same as igv_print() above but with a specified phase name.
5283 void igv_print(const char* phase_name) {
5284   Compile::current()->igv_print_method_to_file(phase_name);
5285 }
5286 
5287 // Called from debugger. Prints method with the default phase name to the default network or the one specified with
5288 // the network flags for the Ideal Graph Visualizer, or to the default file depending on the 'network' argument.
5289 // This works regardless of any Ideal Graph Visualizer flags set or not.
5290 void igv_print(bool network) {
5291   if (network) {
5292     Compile::current()->igv_print_method_to_network();
5293   } else {
5294     Compile::current()->igv_print_method_to_file();
5295   }
5296 }
5297 
5298 // Same as igv_print(bool network) above but with a specified phase name.
5299 void igv_print(bool network, const char* phase_name) {
5300   if (network) {
5301     Compile::current()->igv_print_method_to_network(phase_name);
5302   } else {
5303     Compile::current()->igv_print_method_to_file(phase_name);
5304   }
5305 }
5306 
5307 // Called from debugger. Normal write to the default _printer. Only works if Ideal Graph Visualizer printing flags are set.
5308 void igv_print_default() {
5309   Compile::current()->print_method(PHASE_DEBUG, 0);
5310 }
5311 
5312 // Called from debugger, especially when replaying a trace in which the program state cannot be altered like with rr replay.
5313 // A method is appended to an existing default file with the default phase name. This means that igv_append() must follow
5314 // an earlier igv_print(*) call which sets up the file. This works regardless of any Ideal Graph Visualizer flags set or not.
5315 void igv_append() {
5316   Compile::current()->igv_print_method_to_file("Debug", true);
5317 }
5318 
5319 // Same as igv_append() above but with a specified phase name.
5320 void igv_append(const char* phase_name) {
5321   Compile::current()->igv_print_method_to_file(phase_name, true);
5322 }
5323 
5324 void Compile::igv_print_method_to_file(const char* phase_name, bool append) {
5325   const char* file_name = "custom_debug.xml";
5326   if (_debug_file_printer == nullptr) {
5327     _debug_file_printer = new IdealGraphPrinter(C, file_name, append);
5328   } else {
5329     _debug_file_printer->update_compiled_method(C->method());
5330   }
5331   tty->print_cr("Method %s to %s", append ? "appended" : "printed", file_name);
5332   _debug_file_printer->print(phase_name, (Node*)C->root());
5333 }
5334 
5335 void Compile::igv_print_method_to_network(const char* phase_name) {
5336   if (_debug_network_printer == nullptr) {
5337     _debug_network_printer = new IdealGraphPrinter(C);
5338   } else {
5339     _debug_network_printer->update_compiled_method(C->method());
5340   }
5341   tty->print_cr("Method printed over network stream to IGV");
5342   _debug_network_printer->print(phase_name, (Node*)C->root());
5343 }
5344 #endif
5345 
5346 Node* Compile::narrow_value(BasicType bt, Node* value, const Type* type, PhaseGVN* phase, bool transform_res) {
5347   if (type != nullptr && phase->type(value)->higher_equal(type)) {
5348     return value;
5349   }
5350   Node* result = nullptr;
5351   if (bt == T_BYTE) {
5352     result = phase->transform(new LShiftINode(value, phase->intcon(24)));
5353     result = new RShiftINode(result, phase->intcon(24));
5354   } else if (bt == T_BOOLEAN) {
5355     result = new AndINode(value, phase->intcon(0xFF));
5356   } else if (bt == T_CHAR) {
5357     result = new AndINode(value,phase->intcon(0xFFFF));
5358   } else {
5359     assert(bt == T_SHORT, "unexpected narrow type");
5360     result = phase->transform(new LShiftINode(value, phase->intcon(16)));
5361     result = new RShiftINode(result, phase->intcon(16));
5362   }
5363   if (transform_res) {
5364     result = phase->transform(result);
5365   }
5366   return result;
5367 }
5368 
5369 void Compile::record_method_not_compilable_oom() {
5370   record_method_not_compilable(CompilationMemoryStatistic::failure_reason_memlimit());
5371 }