1 /*
   2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "asm/macroAssembler.hpp"
  26 #include "asm/macroAssembler.inline.hpp"
  27 #include "ci/ciReplay.hpp"
  28 #include "classfile/javaClasses.hpp"
  29 #include "code/exceptionHandlerTable.hpp"
  30 #include "code/nmethod.hpp"
  31 #include "compiler/compilationFailureInfo.hpp"
  32 #include "compiler/compilationMemoryStatistic.hpp"
  33 #include "compiler/compileBroker.hpp"
  34 #include "compiler/compileLog.hpp"
  35 #include "compiler/compilerOracle.hpp"
  36 #include "compiler/compiler_globals.hpp"
  37 #include "compiler/disassembler.hpp"
  38 #include "compiler/oopMap.hpp"
  39 #include "gc/shared/barrierSet.hpp"
  40 #include "gc/shared/c2/barrierSetC2.hpp"
  41 #include "jfr/jfrEvents.hpp"
  42 #include "jvm_io.h"
  43 #include "memory/allocation.hpp"
  44 #include "memory/arena.hpp"
  45 #include "memory/resourceArea.hpp"
  46 #include "opto/addnode.hpp"
  47 #include "opto/block.hpp"
  48 #include "opto/c2compiler.hpp"
  49 #include "opto/callGenerator.hpp"
  50 #include "opto/callnode.hpp"
  51 #include "opto/castnode.hpp"
  52 #include "opto/cfgnode.hpp"
  53 #include "opto/chaitin.hpp"
  54 #include "opto/compile.hpp"
  55 #include "opto/connode.hpp"
  56 #include "opto/convertnode.hpp"
  57 #include "opto/divnode.hpp"
  58 #include "opto/escape.hpp"
  59 #include "opto/idealGraphPrinter.hpp"
  60 #include "opto/locknode.hpp"
  61 #include "opto/loopnode.hpp"
  62 #include "opto/machnode.hpp"
  63 #include "opto/macro.hpp"
  64 #include "opto/matcher.hpp"
  65 #include "opto/mathexactnode.hpp"
  66 #include "opto/memnode.hpp"
  67 #include "opto/mulnode.hpp"
  68 #include "opto/narrowptrnode.hpp"
  69 #include "opto/node.hpp"
  70 #include "opto/opaquenode.hpp"
  71 #include "opto/opcodes.hpp"
  72 #include "opto/output.hpp"
  73 #include "opto/parse.hpp"
  74 #include "opto/phaseX.hpp"
  75 #include "opto/rootnode.hpp"
  76 #include "opto/runtime.hpp"
  77 #include "opto/stringopts.hpp"
  78 #include "opto/type.hpp"
  79 #include "opto/vector.hpp"
  80 #include "opto/vectornode.hpp"
  81 #include "runtime/globals_extension.hpp"
  82 #include "runtime/sharedRuntime.hpp"
  83 #include "runtime/signature.hpp"
  84 #include "runtime/stubRoutines.hpp"
  85 #include "runtime/timer.hpp"
  86 #include "utilities/align.hpp"
  87 #include "utilities/copy.hpp"
  88 #include "utilities/macros.hpp"
  89 #include "utilities/resourceHash.hpp"
  90 
  91 // -------------------- Compile::mach_constant_base_node -----------------------
  92 // Constant table base node singleton.
  93 MachConstantBaseNode* Compile::mach_constant_base_node() {
  94   if (_mach_constant_base_node == nullptr) {
  95     _mach_constant_base_node = new MachConstantBaseNode();
  96     _mach_constant_base_node->add_req(C->root());
  97   }
  98   return _mach_constant_base_node;
  99 }
 100 
 101 
 102 /// Support for intrinsics.
 103 
 104 // Return the index at which m must be inserted (or already exists).
 105 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
 106 class IntrinsicDescPair {
 107  private:
 108   ciMethod* _m;
 109   bool _is_virtual;
 110  public:
 111   IntrinsicDescPair(ciMethod* m, bool is_virtual) : _m(m), _is_virtual(is_virtual) {}
 112   static int compare(IntrinsicDescPair* const& key, CallGenerator* const& elt) {
 113     ciMethod* m= elt->method();
 114     ciMethod* key_m = key->_m;
 115     if (key_m < m)      return -1;
 116     else if (key_m > m) return 1;
 117     else {
 118       bool is_virtual = elt->is_virtual();
 119       bool key_virtual = key->_is_virtual;
 120       if (key_virtual < is_virtual)      return -1;
 121       else if (key_virtual > is_virtual) return 1;
 122       else                               return 0;
 123     }
 124   }
 125 };
 126 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found) {
 127 #ifdef ASSERT
 128   for (int i = 1; i < _intrinsics.length(); i++) {
 129     CallGenerator* cg1 = _intrinsics.at(i-1);
 130     CallGenerator* cg2 = _intrinsics.at(i);
 131     assert(cg1->method() != cg2->method()
 132            ? cg1->method()     < cg2->method()
 133            : cg1->is_virtual() < cg2->is_virtual(),
 134            "compiler intrinsics list must stay sorted");
 135   }
 136 #endif
 137   IntrinsicDescPair pair(m, is_virtual);
 138   return _intrinsics.find_sorted<IntrinsicDescPair*, IntrinsicDescPair::compare>(&pair, found);
 139 }
 140 
 141 void Compile::register_intrinsic(CallGenerator* cg) {
 142   bool found = false;
 143   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual(), found);
 144   assert(!found, "registering twice");
 145   _intrinsics.insert_before(index, cg);
 146   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
 147 }
 148 
 149 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
 150   assert(m->is_loaded(), "don't try this on unloaded methods");
 151   if (_intrinsics.length() > 0) {
 152     bool found = false;
 153     int index = intrinsic_insertion_index(m, is_virtual, found);
 154      if (found) {
 155       return _intrinsics.at(index);
 156     }
 157   }
 158   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
 159   if (m->intrinsic_id() != vmIntrinsics::_none &&
 160       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
 161     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
 162     if (cg != nullptr) {
 163       // Save it for next time:
 164       register_intrinsic(cg);
 165       return cg;
 166     } else {
 167       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
 168     }
 169   }
 170   return nullptr;
 171 }
 172 
 173 // Compile::make_vm_intrinsic is defined in library_call.cpp.
 174 
 175 #ifndef PRODUCT
 176 // statistics gathering...
 177 
 178 juint  Compile::_intrinsic_hist_count[vmIntrinsics::number_of_intrinsics()] = {0};
 179 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::number_of_intrinsics()] = {0};
 180 
 181 inline int as_int(vmIntrinsics::ID id) {
 182   return vmIntrinsics::as_int(id);
 183 }
 184 
 185 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
 186   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
 187   int oflags = _intrinsic_hist_flags[as_int(id)];
 188   assert(flags != 0, "what happened?");
 189   if (is_virtual) {
 190     flags |= _intrinsic_virtual;
 191   }
 192   bool changed = (flags != oflags);
 193   if ((flags & _intrinsic_worked) != 0) {
 194     juint count = (_intrinsic_hist_count[as_int(id)] += 1);
 195     if (count == 1) {
 196       changed = true;           // first time
 197     }
 198     // increment the overall count also:
 199     _intrinsic_hist_count[as_int(vmIntrinsics::_none)] += 1;
 200   }
 201   if (changed) {
 202     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
 203       // Something changed about the intrinsic's virtuality.
 204       if ((flags & _intrinsic_virtual) != 0) {
 205         // This is the first use of this intrinsic as a virtual call.
 206         if (oflags != 0) {
 207           // We already saw it as a non-virtual, so note both cases.
 208           flags |= _intrinsic_both;
 209         }
 210       } else if ((oflags & _intrinsic_both) == 0) {
 211         // This is the first use of this intrinsic as a non-virtual
 212         flags |= _intrinsic_both;
 213       }
 214     }
 215     _intrinsic_hist_flags[as_int(id)] = (jubyte) (oflags | flags);
 216   }
 217   // update the overall flags also:
 218   _intrinsic_hist_flags[as_int(vmIntrinsics::_none)] |= (jubyte) flags;
 219   return changed;
 220 }
 221 
 222 static char* format_flags(int flags, char* buf) {
 223   buf[0] = 0;
 224   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
 225   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
 226   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
 227   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
 228   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
 229   if (buf[0] == 0)  strcat(buf, ",");
 230   assert(buf[0] == ',', "must be");
 231   return &buf[1];
 232 }
 233 
 234 void Compile::print_intrinsic_statistics() {
 235   char flagsbuf[100];
 236   ttyLocker ttyl;
 237   if (xtty != nullptr)  xtty->head("statistics type='intrinsic'");
 238   tty->print_cr("Compiler intrinsic usage:");
 239   juint total = _intrinsic_hist_count[as_int(vmIntrinsics::_none)];
 240   if (total == 0)  total = 1;  // avoid div0 in case of no successes
 241   #define PRINT_STAT_LINE(name, c, f) \
 242     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
 243   for (auto id : EnumRange<vmIntrinsicID>{}) {
 244     int   flags = _intrinsic_hist_flags[as_int(id)];
 245     juint count = _intrinsic_hist_count[as_int(id)];
 246     if ((flags | count) != 0) {
 247       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
 248     }
 249   }
 250   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[as_int(vmIntrinsics::_none)], flagsbuf));
 251   if (xtty != nullptr)  xtty->tail("statistics");
 252 }
 253 
 254 void Compile::print_statistics() {
 255   { ttyLocker ttyl;
 256     if (xtty != nullptr)  xtty->head("statistics type='opto'");
 257     Parse::print_statistics();
 258     PhaseStringOpts::print_statistics();
 259     PhaseCCP::print_statistics();
 260     PhaseRegAlloc::print_statistics();
 261     PhaseOutput::print_statistics();
 262     PhasePeephole::print_statistics();
 263     PhaseIdealLoop::print_statistics();
 264     ConnectionGraph::print_statistics();
 265     PhaseMacroExpand::print_statistics();
 266     if (xtty != nullptr)  xtty->tail("statistics");
 267   }
 268   if (_intrinsic_hist_flags[as_int(vmIntrinsics::_none)] != 0) {
 269     // put this under its own <statistics> element.
 270     print_intrinsic_statistics();
 271   }
 272 }
 273 #endif //PRODUCT
 274 
 275 void Compile::gvn_replace_by(Node* n, Node* nn) {
 276   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
 277     Node* use = n->last_out(i);
 278     bool is_in_table = initial_gvn()->hash_delete(use);
 279     uint uses_found = 0;
 280     for (uint j = 0; j < use->len(); j++) {
 281       if (use->in(j) == n) {
 282         if (j < use->req())
 283           use->set_req(j, nn);
 284         else
 285           use->set_prec(j, nn);
 286         uses_found++;
 287       }
 288     }
 289     if (is_in_table) {
 290       // reinsert into table
 291       initial_gvn()->hash_find_insert(use);
 292     }
 293     record_for_igvn(use);
 294     PhaseIterGVN::add_users_of_use_to_worklist(nn, use, *_igvn_worklist);
 295     i -= uses_found;    // we deleted 1 or more copies of this edge
 296   }
 297 }
 298 
 299 
 300 // Identify all nodes that are reachable from below, useful.
 301 // Use breadth-first pass that records state in a Unique_Node_List,
 302 // recursive traversal is slower.
 303 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
 304   int estimated_worklist_size = live_nodes();
 305   useful.map( estimated_worklist_size, nullptr );  // preallocate space
 306 
 307   // Initialize worklist
 308   if (root() != nullptr)  { useful.push(root()); }
 309   // If 'top' is cached, declare it useful to preserve cached node
 310   if (cached_top_node())  { useful.push(cached_top_node()); }
 311 
 312   // Push all useful nodes onto the list, breadthfirst
 313   for( uint next = 0; next < useful.size(); ++next ) {
 314     assert( next < unique(), "Unique useful nodes < total nodes");
 315     Node *n  = useful.at(next);
 316     uint max = n->len();
 317     for( uint i = 0; i < max; ++i ) {
 318       Node *m = n->in(i);
 319       if (not_a_node(m))  continue;
 320       useful.push(m);
 321     }
 322   }
 323 }
 324 
 325 // Update dead_node_list with any missing dead nodes using useful
 326 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
 327 void Compile::update_dead_node_list(Unique_Node_List &useful) {
 328   uint max_idx = unique();
 329   VectorSet& useful_node_set = useful.member_set();
 330 
 331   for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
 332     // If node with index node_idx is not in useful set,
 333     // mark it as dead in dead node list.
 334     if (!useful_node_set.test(node_idx)) {
 335       record_dead_node(node_idx);
 336     }
 337   }
 338 }
 339 
 340 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
 341   int shift = 0;
 342   for (int i = 0; i < inlines->length(); i++) {
 343     CallGenerator* cg = inlines->at(i);
 344     if (useful.member(cg->call_node())) {
 345       if (shift > 0) {
 346         inlines->at_put(i - shift, cg);
 347       }
 348     } else {
 349       shift++; // skip over the dead element
 350     }
 351   }
 352   if (shift > 0) {
 353     inlines->trunc_to(inlines->length() - shift); // remove last elements from compacted array
 354   }
 355 }
 356 
 357 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Node* dead) {
 358   assert(dead != nullptr && dead->is_Call(), "sanity");
 359   int found = 0;
 360   for (int i = 0; i < inlines->length(); i++) {
 361     if (inlines->at(i)->call_node() == dead) {
 362       inlines->remove_at(i);
 363       found++;
 364       NOT_DEBUG( break; ) // elements are unique, so exit early
 365     }
 366   }
 367   assert(found <= 1, "not unique");
 368 }
 369 
 370 template<typename N, ENABLE_IF_SDEFN(std::is_base_of<Node, N>::value)>
 371 void Compile::remove_useless_nodes(GrowableArray<N*>& node_list, Unique_Node_List& useful) {
 372   for (int i = node_list.length() - 1; i >= 0; i--) {
 373     N* node = node_list.at(i);
 374     if (!useful.member(node)) {
 375       node_list.delete_at(i); // replaces i-th with last element which is known to be useful (already processed)
 376     }
 377   }
 378 }
 379 
 380 void Compile::remove_useless_node(Node* dead) {
 381   remove_modified_node(dead);
 382 
 383   // Constant node that has no out-edges and has only one in-edge from
 384   // root is usually dead. However, sometimes reshaping walk makes
 385   // it reachable by adding use edges. So, we will NOT count Con nodes
 386   // as dead to be conservative about the dead node count at any
 387   // given time.
 388   if (!dead->is_Con()) {
 389     record_dead_node(dead->_idx);
 390   }
 391   if (dead->is_macro()) {
 392     remove_macro_node(dead);
 393   }
 394   if (dead->is_expensive()) {
 395     remove_expensive_node(dead);
 396   }
 397   if (dead->is_OpaqueTemplateAssertionPredicate()) {
 398     remove_template_assertion_predicate_opaque(dead->as_OpaqueTemplateAssertionPredicate());
 399   }
 400   if (dead->is_ParsePredicate()) {
 401     remove_parse_predicate(dead->as_ParsePredicate());
 402   }
 403   if (dead->for_post_loop_opts_igvn()) {
 404     remove_from_post_loop_opts_igvn(dead);
 405   }
 406   if (dead->for_merge_stores_igvn()) {
 407     remove_from_merge_stores_igvn(dead);
 408   }
 409   if (dead->is_Call()) {
 410     remove_useless_late_inlines(                &_late_inlines, dead);
 411     remove_useless_late_inlines(         &_string_late_inlines, dead);
 412     remove_useless_late_inlines(         &_boxing_late_inlines, dead);
 413     remove_useless_late_inlines(&_vector_reboxing_late_inlines, dead);
 414 
 415     if (dead->is_CallStaticJava()) {
 416       remove_unstable_if_trap(dead->as_CallStaticJava(), false);
 417     }
 418   }
 419   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 420   bs->unregister_potential_barrier_node(dead);
 421 }
 422 
 423 // Disconnect all useless nodes by disconnecting those at the boundary.
 424 void Compile::disconnect_useless_nodes(Unique_Node_List& useful, Unique_Node_List& worklist, const Unique_Node_List* root_and_safepoints) {
 425   uint next = 0;
 426   while (next < useful.size()) {
 427     Node *n = useful.at(next++);
 428     if (n->is_SafePoint()) {
 429       // We're done with a parsing phase. Replaced nodes are not valid
 430       // beyond that point.
 431       n->as_SafePoint()->delete_replaced_nodes();
 432     }
 433     // Use raw traversal of out edges since this code removes out edges
 434     int max = n->outcnt();
 435     for (int j = 0; j < max; ++j) {
 436       Node* child = n->raw_out(j);
 437       if (!useful.member(child)) {
 438         assert(!child->is_top() || child != top(),
 439                "If top is cached in Compile object it is in useful list");
 440         // Only need to remove this out-edge to the useless node
 441         n->raw_del_out(j);
 442         --j;
 443         --max;
 444         if (child->is_data_proj_of_pure_function(n)) {
 445           worklist.push(n);
 446         }
 447       }
 448     }
 449     if (n->outcnt() == 1 && n->has_special_unique_user()) {
 450       assert(useful.member(n->unique_out()), "do not push a useless node");
 451       worklist.push(n->unique_out());
 452     }
 453   }
 454 
 455   remove_useless_nodes(_macro_nodes,        useful); // remove useless macro nodes
 456   remove_useless_nodes(_parse_predicates,   useful); // remove useless Parse Predicate nodes
 457   // Remove useless Template Assertion Predicate opaque nodes
 458   remove_useless_nodes(_template_assertion_predicate_opaques, useful);
 459   remove_useless_nodes(_expensive_nodes,    useful); // remove useless expensive nodes
 460   remove_useless_nodes(_for_post_loop_igvn, useful); // remove useless node recorded for post loop opts IGVN pass
 461   remove_useless_nodes(_for_merge_stores_igvn, useful); // remove useless node recorded for merge stores IGVN pass
 462   remove_useless_unstable_if_traps(useful);          // remove useless unstable_if traps
 463   remove_useless_coarsened_locks(useful);            // remove useless coarsened locks nodes
 464 #ifdef ASSERT
 465   if (_modified_nodes != nullptr) {
 466     _modified_nodes->remove_useless_nodes(useful.member_set());
 467   }
 468 #endif
 469 
 470   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 471   bs->eliminate_useless_gc_barriers(useful, this);
 472   // clean up the late inline lists
 473   remove_useless_late_inlines(                &_late_inlines, useful);
 474   remove_useless_late_inlines(         &_string_late_inlines, useful);
 475   remove_useless_late_inlines(         &_boxing_late_inlines, useful);
 476   remove_useless_late_inlines(&_vector_reboxing_late_inlines, useful);
 477   DEBUG_ONLY(verify_graph_edges(true /*check for no_dead_code*/, root_and_safepoints);)
 478 }
 479 
 480 // ============================================================================
 481 //------------------------------CompileWrapper---------------------------------
 482 class CompileWrapper : public StackObj {
 483   Compile *const _compile;
 484  public:
 485   CompileWrapper(Compile* compile);
 486 
 487   ~CompileWrapper();
 488 };
 489 
 490 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
 491   // the Compile* pointer is stored in the current ciEnv:
 492   ciEnv* env = compile->env();
 493   assert(env == ciEnv::current(), "must already be a ciEnv active");
 494   assert(env->compiler_data() == nullptr, "compile already active?");
 495   env->set_compiler_data(compile);
 496   assert(compile == Compile::current(), "sanity");
 497 
 498   compile->set_type_dict(nullptr);
 499   compile->set_clone_map(new Dict(cmpkey, hashkey, _compile->comp_arena()));
 500   compile->clone_map().set_clone_idx(0);
 501   compile->set_type_last_size(0);
 502   compile->set_last_tf(nullptr, nullptr);
 503   compile->set_indexSet_arena(nullptr);
 504   compile->set_indexSet_free_block_list(nullptr);
 505   compile->init_type_arena();
 506   Type::Initialize(compile);
 507   _compile->begin_method();
 508   _compile->clone_map().set_debug(_compile->has_method() && _compile->directive()->CloneMapDebugOption);
 509 }
 510 CompileWrapper::~CompileWrapper() {
 511   // simulate crash during compilation
 512   assert(CICrashAt < 0 || _compile->compile_id() != CICrashAt, "just as planned");
 513 
 514   _compile->end_method();
 515   _compile->env()->set_compiler_data(nullptr);
 516 }
 517 
 518 
 519 //----------------------------print_compile_messages---------------------------
 520 void Compile::print_compile_messages() {
 521 #ifndef PRODUCT
 522   // Check if recompiling
 523   if (!subsume_loads() && PrintOpto) {
 524     // Recompiling without allowing machine instructions to subsume loads
 525     tty->print_cr("*********************************************************");
 526     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
 527     tty->print_cr("*********************************************************");
 528   }
 529   if ((do_escape_analysis() != DoEscapeAnalysis) && PrintOpto) {
 530     // Recompiling without escape analysis
 531     tty->print_cr("*********************************************************");
 532     tty->print_cr("** Bailout: Recompile without escape analysis          **");
 533     tty->print_cr("*********************************************************");
 534   }
 535   if (do_iterative_escape_analysis() != DoEscapeAnalysis && PrintOpto) {
 536     // Recompiling without iterative escape analysis
 537     tty->print_cr("*********************************************************");
 538     tty->print_cr("** Bailout: Recompile without iterative escape analysis**");
 539     tty->print_cr("*********************************************************");
 540   }
 541   if (do_reduce_allocation_merges() != ReduceAllocationMerges && PrintOpto) {
 542     // Recompiling without reducing allocation merges
 543     tty->print_cr("*********************************************************");
 544     tty->print_cr("** Bailout: Recompile without reduce allocation merges **");
 545     tty->print_cr("*********************************************************");
 546   }
 547   if ((eliminate_boxing() != EliminateAutoBox) && PrintOpto) {
 548     // Recompiling without boxing elimination
 549     tty->print_cr("*********************************************************");
 550     tty->print_cr("** Bailout: Recompile without boxing elimination       **");
 551     tty->print_cr("*********************************************************");
 552   }
 553   if ((do_locks_coarsening() != EliminateLocks) && PrintOpto) {
 554     // Recompiling without locks coarsening
 555     tty->print_cr("*********************************************************");
 556     tty->print_cr("** Bailout: Recompile without locks coarsening         **");
 557     tty->print_cr("*********************************************************");
 558   }
 559   if (env()->break_at_compile()) {
 560     // Open the debugger when compiling this method.
 561     tty->print("### Breaking when compiling: ");
 562     method()->print_short_name();
 563     tty->cr();
 564     BREAKPOINT;
 565   }
 566 
 567   if( PrintOpto ) {
 568     if (is_osr_compilation()) {
 569       tty->print("[OSR]%3d", _compile_id);
 570     } else {
 571       tty->print("%3d", _compile_id);
 572     }
 573   }
 574 #endif
 575 }
 576 
 577 #ifndef PRODUCT
 578 void Compile::print_ideal_ir(const char* phase_name) {
 579   // keep the following output all in one block
 580   // This output goes directly to the tty, not the compiler log.
 581   // To enable tools to match it up with the compilation activity,
 582   // be sure to tag this tty output with the compile ID.
 583 
 584   // Node dumping can cause a safepoint, which can break the tty lock.
 585   // Buffer all node dumps, so that all safepoints happen before we lock.
 586   ResourceMark rm;
 587   stringStream ss;
 588 
 589   if (_output == nullptr) {
 590     ss.print_cr("AFTER: %s", phase_name);
 591     // Print out all nodes in ascending order of index.
 592     root()->dump_bfs(MaxNodeLimit, nullptr, "+S$", &ss);
 593   } else {
 594     // Dump the node blockwise if we have a scheduling
 595     _output->print_scheduling(&ss);
 596   }
 597 
 598   // Check that the lock is not broken by a safepoint.
 599   NoSafepointVerifier nsv;
 600   ttyLocker ttyl;
 601   if (xtty != nullptr) {
 602     xtty->head("ideal compile_id='%d'%s compile_phase='%s'",
 603                compile_id(),
 604                is_osr_compilation() ? " compile_kind='osr'" : "",
 605                phase_name);
 606   }
 607 
 608   tty->print("%s", ss.as_string());
 609 
 610   if (xtty != nullptr) {
 611     xtty->tail("ideal");
 612   }
 613 }
 614 #endif
 615 
 616 // ============================================================================
 617 //------------------------------Compile standard-------------------------------
 618 
 619 // Compile a method.  entry_bci is -1 for normal compilations and indicates
 620 // the continuation bci for on stack replacement.
 621 
 622 
 623 Compile::Compile(ciEnv* ci_env, ciMethod* target, int osr_bci,
 624                  Options options, DirectiveSet* directive)
 625     : Phase(Compiler),
 626       _compile_id(ci_env->compile_id()),
 627       _options(options),
 628       _method(target),
 629       _entry_bci(osr_bci),
 630       _ilt(nullptr),
 631       _stub_function(nullptr),
 632       _stub_name(nullptr),
 633       _stub_entry_point(nullptr),
 634       _max_node_limit(MaxNodeLimit),
 635       _post_loop_opts_phase(false),
 636       _merge_stores_phase(false),
 637       _allow_macro_nodes(true),
 638       _inlining_progress(false),
 639       _inlining_incrementally(false),
 640       _do_cleanup(false),
 641       _has_reserved_stack_access(target->has_reserved_stack_access()),
 642 #ifndef PRODUCT
 643       _igv_idx(0),
 644       _trace_opto_output(directive->TraceOptoOutputOption),
 645 #endif
 646       _has_method_handle_invokes(false),
 647       _clinit_barrier_on_entry(false),
 648       _has_clinit_barriers(false),
 649       _stress_seed(0),
 650       _comp_arena(mtCompiler, Arena::Tag::tag_comp),
 651       _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())),
 652       _env(ci_env),
 653       _directive(directive),
 654       _log(ci_env->log()),
 655       _first_failure_details(nullptr),
 656       _intrinsics(comp_arena(), 0, 0, nullptr),
 657       _macro_nodes(comp_arena(), 8, 0, nullptr),
 658       _parse_predicates(comp_arena(), 8, 0, nullptr),
 659       _template_assertion_predicate_opaques(comp_arena(), 8, 0, nullptr),
 660       _expensive_nodes(comp_arena(), 8, 0, nullptr),
 661       _for_post_loop_igvn(comp_arena(), 8, 0, nullptr),
 662       _for_merge_stores_igvn(comp_arena(), 8, 0, nullptr),
 663       _unstable_if_traps(comp_arena(), 8, 0, nullptr),
 664       _coarsened_locks(comp_arena(), 8, 0, nullptr),
 665       _congraph(nullptr),
 666       NOT_PRODUCT(_igv_printer(nullptr) COMMA)
 667           _unique(0),
 668       _dead_node_count(0),
 669       _dead_node_list(comp_arena()),
 670       _node_arena_one(mtCompiler, Arena::Tag::tag_node),
 671       _node_arena_two(mtCompiler, Arena::Tag::tag_node),
 672       _node_arena(&_node_arena_one),
 673       _mach_constant_base_node(nullptr),
 674       _Compile_types(mtCompiler, Arena::Tag::tag_type),
 675       _initial_gvn(nullptr),
 676       _igvn_worklist(nullptr),
 677       _types(nullptr),
 678       _node_hash(nullptr),
 679       _late_inlines(comp_arena(), 2, 0, nullptr),
 680       _string_late_inlines(comp_arena(), 2, 0, nullptr),
 681       _boxing_late_inlines(comp_arena(), 2, 0, nullptr),
 682       _vector_reboxing_late_inlines(comp_arena(), 2, 0, nullptr),
 683       _late_inlines_pos(0),
 684       _number_of_mh_late_inlines(0),
 685       _oom(false),
 686       _replay_inline_data(nullptr),
 687       _inline_printer(this),
 688       _java_calls(0),
 689       _inner_loops(0),
 690       _interpreter_frame_size(0),
 691       _output(nullptr)
 692 #ifndef PRODUCT
 693       ,
 694       _in_dump_cnt(0)
 695 #endif
 696 {
 697   C = this;
 698   CompileWrapper cw(this);
 699 
 700   TraceTime t1("Total compilation time", &_t_totalCompilation, CITime, CITimeVerbose);
 701   TraceTime t2(nullptr, &_t_methodCompilation, CITime, false);
 702 
 703 #if defined(SUPPORT_ASSEMBLY) || defined(SUPPORT_ABSTRACT_ASSEMBLY)
 704   bool print_opto_assembly = directive->PrintOptoAssemblyOption;
 705   // We can always print a disassembly, either abstract (hex dump) or
 706   // with the help of a suitable hsdis library. Thus, we should not
 707   // couple print_assembly and print_opto_assembly controls.
 708   // But: always print opto and regular assembly on compile command 'print'.
 709   bool print_assembly = directive->PrintAssemblyOption;
 710   set_print_assembly(print_opto_assembly || print_assembly);
 711 #else
 712   set_print_assembly(false); // must initialize.
 713 #endif
 714 
 715 #ifndef PRODUCT
 716   set_parsed_irreducible_loop(false);
 717 #endif
 718 
 719   if (directive->ReplayInlineOption) {
 720     _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level());
 721   }
 722   set_print_inlining(directive->PrintInliningOption || PrintOptoInlining);
 723   set_print_intrinsics(directive->PrintIntrinsicsOption);
 724   set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it
 725 
 726   if (ProfileTraps) {
 727     // Make sure the method being compiled gets its own MDO,
 728     // so we can at least track the decompile_count().
 729     method()->ensure_method_data();
 730   }
 731 
 732   if (StressLCM || StressGCM || StressIGVN || StressCCP ||
 733       StressIncrementalInlining || StressMacroExpansion || StressUnstableIfTraps || StressBailout) {
 734     initialize_stress_seed(directive);
 735   }
 736 
 737   Init(/*do_aliasing=*/ true);
 738 
 739   print_compile_messages();
 740 
 741   _ilt = InlineTree::build_inline_tree_root();
 742 
 743   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
 744   assert(num_alias_types() >= AliasIdxRaw, "");
 745 
 746 #define MINIMUM_NODE_HASH  1023
 747 
 748   // GVN that will be run immediately on new nodes
 749   uint estimated_size = method()->code_size()*4+64;
 750   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
 751   _igvn_worklist = new (comp_arena()) Unique_Node_List(comp_arena());
 752   _types = new (comp_arena()) Type_Array(comp_arena());
 753   _node_hash = new (comp_arena()) NodeHash(comp_arena(), estimated_size);
 754   PhaseGVN gvn;
 755   set_initial_gvn(&gvn);
 756 
 757   { // Scope for timing the parser
 758     TracePhase tp(_t_parser);
 759 
 760     // Put top into the hash table ASAP.
 761     initial_gvn()->transform(top());
 762 
 763     // Set up tf(), start(), and find a CallGenerator.
 764     CallGenerator* cg = nullptr;
 765     if (is_osr_compilation()) {
 766       const TypeTuple *domain = StartOSRNode::osr_domain();
 767       const TypeTuple *range = TypeTuple::make_range(method()->signature());
 768       init_tf(TypeFunc::make(domain, range));
 769       StartNode* s = new StartOSRNode(root(), domain);
 770       initial_gvn()->set_type_bottom(s);
 771       verify_start(s);
 772       cg = CallGenerator::for_osr(method(), entry_bci());
 773     } else {
 774       // Normal case.
 775       init_tf(TypeFunc::make(method()));
 776       StartNode* s = new StartNode(root(), tf()->domain());
 777       initial_gvn()->set_type_bottom(s);
 778       verify_start(s);
 779       if (method()->intrinsic_id() == vmIntrinsics::_Reference_get) {
 780         // With java.lang.ref.reference.get() we must go through the
 781         // intrinsic - even when get() is the root
 782         // method of the compile - so that, if necessary, the value in
 783         // the referent field of the reference object gets recorded by
 784         // the pre-barrier code.
 785         cg = find_intrinsic(method(), false);
 786       }
 787       if (cg == nullptr) {
 788         float past_uses = method()->interpreter_invocation_count();
 789         float expected_uses = past_uses;
 790         cg = CallGenerator::for_inline(method(), expected_uses);
 791       }
 792     }
 793     if (failing())  return;
 794     if (cg == nullptr) {
 795       const char* reason = InlineTree::check_can_parse(method());
 796       assert(reason != nullptr, "expect reason for parse failure");
 797       stringStream ss;
 798       ss.print("cannot parse method: %s", reason);
 799       record_method_not_compilable(ss.as_string());
 800       return;
 801     }
 802 
 803     gvn.set_type(root(), root()->bottom_type());
 804 
 805     JVMState* jvms = build_start_state(start(), tf());
 806     if ((jvms = cg->generate(jvms)) == nullptr) {
 807       assert(failure_reason() != nullptr, "expect reason for parse failure");
 808       stringStream ss;
 809       ss.print("method parse failed: %s", failure_reason());
 810       record_method_not_compilable(ss.as_string() DEBUG_ONLY(COMMA true));
 811       return;
 812     }
 813     GraphKit kit(jvms);
 814 
 815     if (!kit.stopped()) {
 816       // Accept return values, and transfer control we know not where.
 817       // This is done by a special, unique ReturnNode bound to root.
 818       return_values(kit.jvms());
 819     }
 820 
 821     if (kit.has_exceptions()) {
 822       // Any exceptions that escape from this call must be rethrown
 823       // to whatever caller is dynamically above us on the stack.
 824       // This is done by a special, unique RethrowNode bound to root.
 825       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
 826     }
 827 
 828     assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
 829 
 830     if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
 831       inline_string_calls(true);
 832     }
 833 
 834     if (failing())  return;
 835 
 836     // Remove clutter produced by parsing.
 837     if (!failing()) {
 838       ResourceMark rm;
 839       PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist());
 840     }
 841   }
 842 
 843   // Note:  Large methods are capped off in do_one_bytecode().
 844   if (failing())  return;
 845 
 846   // After parsing, node notes are no longer automagic.
 847   // They must be propagated by register_new_node_with_optimizer(),
 848   // clone(), or the like.
 849   set_default_node_notes(nullptr);
 850 
 851 #ifndef PRODUCT
 852   if (should_print_igv(1)) {
 853     _igv_printer->print_inlining();
 854   }
 855 #endif
 856 
 857   if (failing())  return;
 858   NOT_PRODUCT( verify_graph_edges(); )
 859 
 860   // Now optimize
 861   Optimize();
 862   if (failing())  return;
 863   NOT_PRODUCT( verify_graph_edges(); )
 864 
 865 #ifndef PRODUCT
 866   if (should_print_ideal()) {
 867     print_ideal_ir("print_ideal");
 868   }
 869 #endif
 870 
 871 #ifdef ASSERT
 872   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 873   bs->verify_gc_barriers(this, BarrierSetC2::BeforeCodeGen);
 874 #endif
 875 
 876   // Dump compilation data to replay it.
 877   if (directive->DumpReplayOption) {
 878     env()->dump_replay_data(_compile_id);
 879   }
 880   if (directive->DumpInlineOption && (ilt() != nullptr)) {
 881     env()->dump_inline_data(_compile_id);
 882   }
 883 
 884   // Now that we know the size of all the monitors we can add a fixed slot
 885   // for the original deopt pc.
 886   int next_slot = fixed_slots() + (sizeof(address) / VMRegImpl::stack_slot_size);
 887   set_fixed_slots(next_slot);
 888 
 889   // Compute when to use implicit null checks. Used by matching trap based
 890   // nodes and NullCheck optimization.
 891   set_allowed_deopt_reasons();
 892 
 893   // Now generate code
 894   Code_Gen();
 895 }
 896 
 897 //------------------------------Compile----------------------------------------
 898 // Compile a runtime stub
 899 Compile::Compile(ciEnv* ci_env,
 900                  TypeFunc_generator generator,
 901                  address stub_function,
 902                  const char* stub_name,
 903                  int is_fancy_jump,
 904                  bool pass_tls,
 905                  bool return_pc,
 906                  DirectiveSet* directive)
 907     : Phase(Compiler),
 908       _compile_id(0),
 909       _options(Options::for_runtime_stub()),
 910       _method(nullptr),
 911       _entry_bci(InvocationEntryBci),
 912       _stub_function(stub_function),
 913       _stub_name(stub_name),
 914       _stub_entry_point(nullptr),
 915       _max_node_limit(MaxNodeLimit),
 916       _post_loop_opts_phase(false),
 917       _merge_stores_phase(false),
 918       _allow_macro_nodes(true),
 919       _inlining_progress(false),
 920       _inlining_incrementally(false),
 921       _has_reserved_stack_access(false),
 922 #ifndef PRODUCT
 923       _igv_idx(0),
 924       _trace_opto_output(directive->TraceOptoOutputOption),
 925 #endif
 926       _has_method_handle_invokes(false),
 927       _clinit_barrier_on_entry(false),
 928       _has_clinit_barriers(false),
 929       _stress_seed(0),
 930       _comp_arena(mtCompiler, Arena::Tag::tag_comp),
 931       _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())),
 932       _env(ci_env),
 933       _directive(directive),
 934       _log(ci_env->log()),
 935       _first_failure_details(nullptr),
 936       _for_post_loop_igvn(comp_arena(), 8, 0, nullptr),
 937       _for_merge_stores_igvn(comp_arena(), 8, 0, nullptr),
 938       _congraph(nullptr),
 939       NOT_PRODUCT(_igv_printer(nullptr) COMMA)
 940           _unique(0),
 941       _dead_node_count(0),
 942       _dead_node_list(comp_arena()),
 943       _node_arena_one(mtCompiler, Arena::Tag::tag_node),
 944       _node_arena_two(mtCompiler, Arena::Tag::tag_node),
 945       _node_arena(&_node_arena_one),
 946       _mach_constant_base_node(nullptr),
 947       _Compile_types(mtCompiler, Arena::Tag::tag_type),
 948       _initial_gvn(nullptr),
 949       _igvn_worklist(nullptr),
 950       _types(nullptr),
 951       _node_hash(nullptr),
 952       _number_of_mh_late_inlines(0),
 953       _oom(false),
 954       _replay_inline_data(nullptr),
 955       _inline_printer(this),
 956       _java_calls(0),
 957       _inner_loops(0),
 958       _interpreter_frame_size(0),
 959       _output(nullptr),
 960 #ifndef PRODUCT
 961       _in_dump_cnt(0),
 962 #endif
 963       _allowed_reasons(0) {
 964   C = this;
 965 
 966   TraceTime t1(nullptr, &_t_totalCompilation, CITime, false);
 967   TraceTime t2(nullptr, &_t_stubCompilation, CITime, false);
 968 
 969 #ifndef PRODUCT
 970   set_print_assembly(PrintFrameConverterAssembly);
 971   set_parsed_irreducible_loop(false);
 972 #else
 973   set_print_assembly(false); // Must initialize.
 974 #endif
 975   set_has_irreducible_loop(false); // no loops
 976 
 977   CompileWrapper cw(this);
 978   Init(/*do_aliasing=*/ false);
 979   init_tf((*generator)());
 980 
 981   _igvn_worklist = new (comp_arena()) Unique_Node_List(comp_arena());
 982   _types = new (comp_arena()) Type_Array(comp_arena());
 983   _node_hash = new (comp_arena()) NodeHash(comp_arena(), 255);
 984 
 985   if (StressLCM || StressGCM || StressBailout) {
 986     initialize_stress_seed(directive);
 987   }
 988 
 989   {
 990     PhaseGVN gvn;
 991     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
 992     gvn.transform(top());
 993 
 994     GraphKit kit;
 995     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
 996   }
 997 
 998   NOT_PRODUCT( verify_graph_edges(); )
 999 
1000   Code_Gen();
1001 }
1002 
1003 Compile::~Compile() {
1004   delete _first_failure_details;
1005 };
1006 
1007 //------------------------------Init-------------------------------------------
1008 // Prepare for a single compilation
1009 void Compile::Init(bool aliasing) {
1010   _do_aliasing = aliasing;
1011   _unique  = 0;
1012   _regalloc = nullptr;
1013 
1014   _tf      = nullptr;  // filled in later
1015   _top     = nullptr;  // cached later
1016   _matcher = nullptr;  // filled in later
1017   _cfg     = nullptr;  // filled in later
1018 
1019   _node_note_array = nullptr;
1020   _default_node_notes = nullptr;
1021   DEBUG_ONLY( _modified_nodes = nullptr; ) // Used in Optimize()
1022 
1023   _immutable_memory = nullptr; // filled in at first inquiry
1024 
1025 #ifdef ASSERT
1026   _phase_optimize_finished = false;
1027   _phase_verify_ideal_loop = false;
1028   _exception_backedge = false;
1029   _type_verify = nullptr;
1030 #endif
1031 
1032   // Globally visible Nodes
1033   // First set TOP to null to give safe behavior during creation of RootNode
1034   set_cached_top_node(nullptr);
1035   set_root(new RootNode());
1036   // Now that you have a Root to point to, create the real TOP
1037   set_cached_top_node( new ConNode(Type::TOP) );
1038   set_recent_alloc(nullptr, nullptr);
1039 
1040   // Create Debug Information Recorder to record scopes, oopmaps, etc.
1041   env()->set_oop_recorder(new OopRecorder(env()->arena()));
1042   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
1043   env()->set_dependencies(new Dependencies(env()));
1044 
1045   _fixed_slots = 0;
1046   set_has_split_ifs(false);
1047   set_has_loops(false); // first approximation
1048   set_has_stringbuilder(false);
1049   set_has_boxed_value(false);
1050   _trap_can_recompile = false;  // no traps emitted yet
1051   _major_progress = true; // start out assuming good things will happen
1052   set_has_unsafe_access(false);
1053   set_max_vector_size(0);
1054   set_clear_upper_avx(false);  //false as default for clear upper bits of ymm registers
1055   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
1056   set_decompile_count(0);
1057 
1058 #ifndef PRODUCT
1059   Copy::zero_to_bytes(_igv_phase_iter, sizeof(_igv_phase_iter));
1060 #endif
1061 
1062   set_do_freq_based_layout(_directive->BlockLayoutByFrequencyOption);
1063   _loop_opts_cnt = LoopOptsCount;
1064   set_do_inlining(Inline);
1065   set_max_inline_size(MaxInlineSize);
1066   set_freq_inline_size(FreqInlineSize);
1067   set_do_scheduling(OptoScheduling);
1068 
1069   set_do_vector_loop(false);
1070   set_has_monitors(false);
1071   set_has_scoped_access(false);
1072 
1073   if (AllowVectorizeOnDemand) {
1074     if (has_method() && _directive->VectorizeOption) {
1075       set_do_vector_loop(true);
1076       NOT_PRODUCT(if (do_vector_loop() && Verbose) {tty->print("Compile::Init: do vectorized loops (SIMD like) for method %s\n",  method()->name()->as_quoted_ascii());})
1077     } else if (has_method() && method()->name() != nullptr &&
1078                method()->intrinsic_id() == vmIntrinsics::_forEachRemaining) {
1079       set_do_vector_loop(true);
1080     }
1081   }
1082   set_use_cmove(UseCMoveUnconditionally /* || do_vector_loop()*/); //TODO: consider do_vector_loop() mandate use_cmove unconditionally
1083   NOT_PRODUCT(if (use_cmove() && Verbose && has_method()) {tty->print("Compile::Init: use CMove without profitability tests for method %s\n",  method()->name()->as_quoted_ascii());})
1084 
1085   _max_node_limit = _directive->MaxNodeLimitOption;
1086 
1087   if (VM_Version::supports_fast_class_init_checks() && has_method() && !is_osr_compilation() &&
1088       (method()->needs_clinit_barrier() || (do_clinit_barriers() && method()->is_static()))) {
1089     set_clinit_barrier_on_entry(true);
1090     if (do_clinit_barriers()) {
1091       set_has_clinit_barriers(true); // Entry clinit barrier is in prolog code.
1092     }
1093   }
1094   if (debug_info()->recording_non_safepoints()) {
1095     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
1096                         (comp_arena(), 8, 0, nullptr));
1097     set_default_node_notes(Node_Notes::make(this));
1098   }
1099 
1100   const int grow_ats = 16;
1101   _max_alias_types = grow_ats;
1102   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
1103   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
1104   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
1105   {
1106     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
1107   }
1108   // Initialize the first few types.
1109   _alias_types[AliasIdxTop]->Init(AliasIdxTop, nullptr);
1110   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
1111   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
1112   _num_alias_types = AliasIdxRaw+1;
1113   // Zero out the alias type cache.
1114   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
1115   // A null adr_type hits in the cache right away.  Preload the right answer.
1116   probe_alias_cache(nullptr)->_index = AliasIdxTop;
1117 }
1118 
1119 #ifdef ASSERT
1120 // Verify that the current StartNode is valid.
1121 void Compile::verify_start(StartNode* s) const {
1122   assert(failing_internal() || s == start(), "should be StartNode");
1123 }
1124 #endif
1125 
1126 /**
1127  * Return the 'StartNode'. We must not have a pending failure, since the ideal graph
1128  * can be in an inconsistent state, i.e., we can get segmentation faults when traversing
1129  * the ideal graph.
1130  */
1131 StartNode* Compile::start() const {
1132   assert (!failing_internal() || C->failure_is_artificial(), "Must not have pending failure. Reason is: %s", failure_reason());
1133   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
1134     Node* start = root()->fast_out(i);
1135     if (start->is_Start()) {
1136       return start->as_Start();
1137     }
1138   }
1139   fatal("Did not find Start node!");
1140   return nullptr;
1141 }
1142 
1143 //-------------------------------immutable_memory-------------------------------------
1144 // Access immutable memory
1145 Node* Compile::immutable_memory() {
1146   if (_immutable_memory != nullptr) {
1147     return _immutable_memory;
1148   }
1149   StartNode* s = start();
1150   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
1151     Node *p = s->fast_out(i);
1152     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
1153       _immutable_memory = p;
1154       return _immutable_memory;
1155     }
1156   }
1157   ShouldNotReachHere();
1158   return nullptr;
1159 }
1160 
1161 //----------------------set_cached_top_node------------------------------------
1162 // Install the cached top node, and make sure Node::is_top works correctly.
1163 void Compile::set_cached_top_node(Node* tn) {
1164   if (tn != nullptr)  verify_top(tn);
1165   Node* old_top = _top;
1166   _top = tn;
1167   // Calling Node::setup_is_top allows the nodes the chance to adjust
1168   // their _out arrays.
1169   if (_top != nullptr)     _top->setup_is_top();
1170   if (old_top != nullptr)  old_top->setup_is_top();
1171   assert(_top == nullptr || top()->is_top(), "");
1172 }
1173 
1174 #ifdef ASSERT
1175 uint Compile::count_live_nodes_by_graph_walk() {
1176   Unique_Node_List useful(comp_arena());
1177   // Get useful node list by walking the graph.
1178   identify_useful_nodes(useful);
1179   return useful.size();
1180 }
1181 
1182 void Compile::print_missing_nodes() {
1183 
1184   // Return if CompileLog is null and PrintIdealNodeCount is false.
1185   if ((_log == nullptr) && (! PrintIdealNodeCount)) {
1186     return;
1187   }
1188 
1189   // This is an expensive function. It is executed only when the user
1190   // specifies VerifyIdealNodeCount option or otherwise knows the
1191   // additional work that needs to be done to identify reachable nodes
1192   // by walking the flow graph and find the missing ones using
1193   // _dead_node_list.
1194 
1195   Unique_Node_List useful(comp_arena());
1196   // Get useful node list by walking the graph.
1197   identify_useful_nodes(useful);
1198 
1199   uint l_nodes = C->live_nodes();
1200   uint l_nodes_by_walk = useful.size();
1201 
1202   if (l_nodes != l_nodes_by_walk) {
1203     if (_log != nullptr) {
1204       _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
1205       _log->stamp();
1206       _log->end_head();
1207     }
1208     VectorSet& useful_member_set = useful.member_set();
1209     int last_idx = l_nodes_by_walk;
1210     for (int i = 0; i < last_idx; i++) {
1211       if (useful_member_set.test(i)) {
1212         if (_dead_node_list.test(i)) {
1213           if (_log != nullptr) {
1214             _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
1215           }
1216           if (PrintIdealNodeCount) {
1217             // Print the log message to tty
1218               tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
1219               useful.at(i)->dump();
1220           }
1221         }
1222       }
1223       else if (! _dead_node_list.test(i)) {
1224         if (_log != nullptr) {
1225           _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
1226         }
1227         if (PrintIdealNodeCount) {
1228           // Print the log message to tty
1229           tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
1230         }
1231       }
1232     }
1233     if (_log != nullptr) {
1234       _log->tail("mismatched_nodes");
1235     }
1236   }
1237 }
1238 void Compile::record_modified_node(Node* n) {
1239   if (_modified_nodes != nullptr && !_inlining_incrementally && !n->is_Con()) {
1240     _modified_nodes->push(n);
1241   }
1242 }
1243 
1244 void Compile::remove_modified_node(Node* n) {
1245   if (_modified_nodes != nullptr) {
1246     _modified_nodes->remove(n);
1247   }
1248 }
1249 #endif
1250 
1251 #ifndef PRODUCT
1252 void Compile::verify_top(Node* tn) const {
1253   if (tn != nullptr) {
1254     assert(tn->is_Con(), "top node must be a constant");
1255     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
1256     assert(tn->in(0) != nullptr, "must have live top node");
1257   }
1258 }
1259 #endif
1260 
1261 
1262 ///-------------------Managing Per-Node Debug & Profile Info-------------------
1263 
1264 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1265   guarantee(arr != nullptr, "");
1266   int num_blocks = arr->length();
1267   if (grow_by < num_blocks)  grow_by = num_blocks;
1268   int num_notes = grow_by * _node_notes_block_size;
1269   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1270   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1271   while (num_notes > 0) {
1272     arr->append(notes);
1273     notes     += _node_notes_block_size;
1274     num_notes -= _node_notes_block_size;
1275   }
1276   assert(num_notes == 0, "exact multiple, please");
1277 }
1278 
1279 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1280   if (source == nullptr || dest == nullptr)  return false;
1281 
1282   if (dest->is_Con())
1283     return false;               // Do not push debug info onto constants.
1284 
1285 #ifdef ASSERT
1286   // Leave a bread crumb trail pointing to the original node:
1287   if (dest != nullptr && dest != source && dest->debug_orig() == nullptr) {
1288     dest->set_debug_orig(source);
1289   }
1290 #endif
1291 
1292   if (node_note_array() == nullptr)
1293     return false;               // Not collecting any notes now.
1294 
1295   // This is a copy onto a pre-existing node, which may already have notes.
1296   // If both nodes have notes, do not overwrite any pre-existing notes.
1297   Node_Notes* source_notes = node_notes_at(source->_idx);
1298   if (source_notes == nullptr || source_notes->is_clear())  return false;
1299   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
1300   if (dest_notes == nullptr || dest_notes->is_clear()) {
1301     return set_node_notes_at(dest->_idx, source_notes);
1302   }
1303 
1304   Node_Notes merged_notes = (*source_notes);
1305   // The order of operations here ensures that dest notes will win...
1306   merged_notes.update_from(dest_notes);
1307   return set_node_notes_at(dest->_idx, &merged_notes);
1308 }
1309 
1310 
1311 //--------------------------allow_range_check_smearing-------------------------
1312 // Gating condition for coalescing similar range checks.
1313 // Sometimes we try 'speculatively' replacing a series of a range checks by a
1314 // single covering check that is at least as strong as any of them.
1315 // If the optimization succeeds, the simplified (strengthened) range check
1316 // will always succeed.  If it fails, we will deopt, and then give up
1317 // on the optimization.
1318 bool Compile::allow_range_check_smearing() const {
1319   // If this method has already thrown a range-check,
1320   // assume it was because we already tried range smearing
1321   // and it failed.
1322   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1323   return !already_trapped;
1324 }
1325 
1326 
1327 //------------------------------flatten_alias_type-----------------------------
1328 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1329   assert(do_aliasing(), "Aliasing should be enabled");
1330   int offset = tj->offset();
1331   TypePtr::PTR ptr = tj->ptr();
1332 
1333   // Known instance (scalarizable allocation) alias only with itself.
1334   bool is_known_inst = tj->isa_oopptr() != nullptr &&
1335                        tj->is_oopptr()->is_known_instance();
1336 
1337   // Process weird unsafe references.
1338   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1339     assert(InlineUnsafeOps || StressReflectiveCode, "indeterminate pointers come only from unsafe ops");
1340     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1341     tj = TypeOopPtr::BOTTOM;
1342     ptr = tj->ptr();
1343     offset = tj->offset();
1344   }
1345 
1346   // Array pointers need some flattening
1347   const TypeAryPtr* ta = tj->isa_aryptr();
1348   if (ta && ta->is_stable()) {
1349     // Erase stability property for alias analysis.
1350     tj = ta = ta->cast_to_stable(false);
1351   }
1352   if( ta && is_known_inst ) {
1353     if ( offset != Type::OffsetBot &&
1354          offset > arrayOopDesc::length_offset_in_bytes() ) {
1355       offset = Type::OffsetBot; // Flatten constant access into array body only
1356       tj = ta = ta->
1357               remove_speculative()->
1358               cast_to_ptr_type(ptr)->
1359               with_offset(offset);
1360     }
1361   } else if (ta) {
1362     // For arrays indexed by constant indices, we flatten the alias
1363     // space to include all of the array body.  Only the header, klass
1364     // and array length can be accessed un-aliased.
1365     if( offset != Type::OffsetBot ) {
1366       if( ta->const_oop() ) { // MethodData* or Method*
1367         offset = Type::OffsetBot;   // Flatten constant access into array body
1368         tj = ta = ta->
1369                 remove_speculative()->
1370                 cast_to_ptr_type(ptr)->
1371                 cast_to_exactness(false)->
1372                 with_offset(offset);
1373       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1374         // range is OK as-is.
1375         tj = ta = TypeAryPtr::RANGE;
1376       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1377         tj = TypeInstPtr::KLASS; // all klass loads look alike
1378         ta = TypeAryPtr::RANGE; // generic ignored junk
1379         ptr = TypePtr::BotPTR;
1380       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1381         tj = TypeInstPtr::MARK;
1382         ta = TypeAryPtr::RANGE; // generic ignored junk
1383         ptr = TypePtr::BotPTR;
1384       } else {                  // Random constant offset into array body
1385         offset = Type::OffsetBot;   // Flatten constant access into array body
1386         tj = ta = ta->
1387                 remove_speculative()->
1388                 cast_to_ptr_type(ptr)->
1389                 cast_to_exactness(false)->
1390                 with_offset(offset);
1391       }
1392     }
1393     // Arrays of fixed size alias with arrays of unknown size.
1394     if (ta->size() != TypeInt::POS) {
1395       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1396       tj = ta = ta->
1397               remove_speculative()->
1398               cast_to_ptr_type(ptr)->
1399               with_ary(tary)->
1400               cast_to_exactness(false);
1401     }
1402     // Arrays of known objects become arrays of unknown objects.
1403     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1404       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1405       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,nullptr,false,offset);
1406     }
1407     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1408       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1409       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,nullptr,false,offset);
1410     }
1411     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1412     // cannot be distinguished by bytecode alone.
1413     if (ta->elem() == TypeInt::BOOL) {
1414       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1415       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1416       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
1417     }
1418     // During the 2nd round of IterGVN, NotNull castings are removed.
1419     // Make sure the Bottom and NotNull variants alias the same.
1420     // Also, make sure exact and non-exact variants alias the same.
1421     if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != nullptr) {
1422       tj = ta = ta->
1423               remove_speculative()->
1424               cast_to_ptr_type(TypePtr::BotPTR)->
1425               cast_to_exactness(false)->
1426               with_offset(offset);
1427     }
1428   }
1429 
1430   // Oop pointers need some flattening
1431   const TypeInstPtr *to = tj->isa_instptr();
1432   if (to && to != TypeOopPtr::BOTTOM) {
1433     ciInstanceKlass* ik = to->instance_klass();
1434     if( ptr == TypePtr::Constant ) {
1435       if (ik != ciEnv::current()->Class_klass() ||
1436           offset < ik->layout_helper_size_in_bytes()) {
1437         // No constant oop pointers (such as Strings); they alias with
1438         // unknown strings.
1439         assert(!is_known_inst, "not scalarizable allocation");
1440         tj = to = to->
1441                 cast_to_instance_id(TypeOopPtr::InstanceBot)->
1442                 remove_speculative()->
1443                 cast_to_ptr_type(TypePtr::BotPTR)->
1444                 cast_to_exactness(false);
1445       }
1446     } else if( is_known_inst ) {
1447       tj = to; // Keep NotNull and klass_is_exact for instance type
1448     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1449       // During the 2nd round of IterGVN, NotNull castings are removed.
1450       // Make sure the Bottom and NotNull variants alias the same.
1451       // Also, make sure exact and non-exact variants alias the same.
1452       tj = to = to->
1453               remove_speculative()->
1454               cast_to_instance_id(TypeOopPtr::InstanceBot)->
1455               cast_to_ptr_type(TypePtr::BotPTR)->
1456               cast_to_exactness(false);
1457     }
1458     if (to->speculative() != nullptr) {
1459       tj = to = to->remove_speculative();
1460     }
1461     // Canonicalize the holder of this field
1462     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1463       // First handle header references such as a LoadKlassNode, even if the
1464       // object's klass is unloaded at compile time (4965979).
1465       if (!is_known_inst) { // Do it only for non-instance types
1466         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, nullptr, offset);
1467       }
1468     } else if (offset < 0 || offset >= ik->layout_helper_size_in_bytes()) {
1469       // Static fields are in the space above the normal instance
1470       // fields in the java.lang.Class instance.
1471       if (ik != ciEnv::current()->Class_klass()) {
1472         to = nullptr;
1473         tj = TypeOopPtr::BOTTOM;
1474         offset = tj->offset();
1475       }
1476     } else {
1477       ciInstanceKlass *canonical_holder = ik->get_canonical_holder(offset);
1478       assert(offset < canonical_holder->layout_helper_size_in_bytes(), "");
1479       assert(tj->offset() == offset, "no change to offset expected");
1480       bool xk = to->klass_is_exact();
1481       int instance_id = to->instance_id();
1482 
1483       // If the input type's class is the holder: if exact, the type only includes interfaces implemented by the holder
1484       // but if not exact, it may include extra interfaces: build new type from the holder class to make sure only
1485       // its interfaces are included.
1486       if (xk && ik->equals(canonical_holder)) {
1487         assert(tj == TypeInstPtr::make(to->ptr(), canonical_holder, is_known_inst, nullptr, offset, instance_id), "exact type should be canonical type");
1488       } else {
1489         assert(xk || !is_known_inst, "Known instance should be exact type");
1490         tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, is_known_inst, nullptr, offset, instance_id);
1491       }
1492     }
1493   }
1494 
1495   // Klass pointers to object array klasses need some flattening
1496   const TypeKlassPtr *tk = tj->isa_klassptr();
1497   if( tk ) {
1498     // If we are referencing a field within a Klass, we need
1499     // to assume the worst case of an Object.  Both exact and
1500     // inexact types must flatten to the same alias class so
1501     // use NotNull as the PTR.
1502     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1503       tj = tk = TypeInstKlassPtr::make(TypePtr::NotNull,
1504                                        env()->Object_klass(),
1505                                        offset);
1506     }
1507 
1508     if (tk->isa_aryklassptr() && tk->is_aryklassptr()->elem()->isa_klassptr()) {
1509       ciKlass* k = ciObjArrayKlass::make(env()->Object_klass());
1510       if (!k || !k->is_loaded()) {                  // Only fails for some -Xcomp runs
1511         tj = tk = TypeInstKlassPtr::make(TypePtr::NotNull, env()->Object_klass(), offset);
1512       } else {
1513         tj = tk = TypeAryKlassPtr::make(TypePtr::NotNull, tk->is_aryklassptr()->elem(), k, offset);
1514       }
1515     }
1516 
1517     // Check for precise loads from the primary supertype array and force them
1518     // to the supertype cache alias index.  Check for generic array loads from
1519     // the primary supertype array and also force them to the supertype cache
1520     // alias index.  Since the same load can reach both, we need to merge
1521     // these 2 disparate memories into the same alias class.  Since the
1522     // primary supertype array is read-only, there's no chance of confusion
1523     // where we bypass an array load and an array store.
1524     int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
1525     if (offset == Type::OffsetBot ||
1526         (offset >= primary_supers_offset &&
1527          offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
1528         offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
1529       offset = in_bytes(Klass::secondary_super_cache_offset());
1530       tj = tk = tk->with_offset(offset);
1531     }
1532   }
1533 
1534   // Flatten all Raw pointers together.
1535   if (tj->base() == Type::RawPtr)
1536     tj = TypeRawPtr::BOTTOM;
1537 
1538   if (tj->base() == Type::AnyPtr)
1539     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1540 
1541   offset = tj->offset();
1542   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1543 
1544   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1545           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1546           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1547           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1548           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1549           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1550           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr),
1551           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1552   assert( tj->ptr() != TypePtr::TopPTR &&
1553           tj->ptr() != TypePtr::AnyNull &&
1554           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1555 //    assert( tj->ptr() != TypePtr::Constant ||
1556 //            tj->base() == Type::RawPtr ||
1557 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1558 
1559   return tj;
1560 }
1561 
1562 void Compile::AliasType::Init(int i, const TypePtr* at) {
1563   assert(AliasIdxTop <= i && i < Compile::current()->_max_alias_types, "Invalid alias index");
1564   _index = i;
1565   _adr_type = at;
1566   _field = nullptr;
1567   _element = nullptr;
1568   _is_rewritable = true; // default
1569   const TypeOopPtr *atoop = (at != nullptr) ? at->isa_oopptr() : nullptr;
1570   if (atoop != nullptr && atoop->is_known_instance()) {
1571     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1572     _general_index = Compile::current()->get_alias_index(gt);
1573   } else {
1574     _general_index = 0;
1575   }
1576 }
1577 
1578 BasicType Compile::AliasType::basic_type() const {
1579   if (element() != nullptr) {
1580     const Type* element = adr_type()->is_aryptr()->elem();
1581     return element->isa_narrowoop() ? T_OBJECT : element->array_element_basic_type();
1582   } if (field() != nullptr) {
1583     return field()->layout_type();
1584   } else {
1585     return T_ILLEGAL; // unknown
1586   }
1587 }
1588 
1589 //---------------------------------print_on------------------------------------
1590 #ifndef PRODUCT
1591 void Compile::AliasType::print_on(outputStream* st) {
1592   if (index() < 10)
1593         st->print("@ <%d> ", index());
1594   else  st->print("@ <%d>",  index());
1595   st->print(is_rewritable() ? "   " : " RO");
1596   int offset = adr_type()->offset();
1597   if (offset == Type::OffsetBot)
1598         st->print(" +any");
1599   else  st->print(" +%-3d", offset);
1600   st->print(" in ");
1601   adr_type()->dump_on(st);
1602   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1603   if (field() != nullptr && tjp) {
1604     if (tjp->is_instptr()->instance_klass()  != field()->holder() ||
1605         tjp->offset() != field()->offset_in_bytes()) {
1606       st->print(" != ");
1607       field()->print();
1608       st->print(" ***");
1609     }
1610   }
1611 }
1612 
1613 void print_alias_types() {
1614   Compile* C = Compile::current();
1615   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1616   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1617     C->alias_type(idx)->print_on(tty);
1618     tty->cr();
1619   }
1620 }
1621 #endif
1622 
1623 
1624 //----------------------------probe_alias_cache--------------------------------
1625 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1626   intptr_t key = (intptr_t) adr_type;
1627   key ^= key >> logAliasCacheSize;
1628   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1629 }
1630 
1631 
1632 //-----------------------------grow_alias_types--------------------------------
1633 void Compile::grow_alias_types() {
1634   const int old_ats  = _max_alias_types; // how many before?
1635   const int new_ats  = old_ats;          // how many more?
1636   const int grow_ats = old_ats+new_ats;  // how many now?
1637   _max_alias_types = grow_ats;
1638   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1639   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1640   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1641   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1642 }
1643 
1644 
1645 //--------------------------------find_alias_type------------------------------
1646 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
1647   if (!do_aliasing()) {
1648     return alias_type(AliasIdxBot);
1649   }
1650 
1651   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1652   if (ace->_adr_type == adr_type) {
1653     return alias_type(ace->_index);
1654   }
1655 
1656   // Handle special cases.
1657   if (adr_type == nullptr)          return alias_type(AliasIdxTop);
1658   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1659 
1660   // Do it the slow way.
1661   const TypePtr* flat = flatten_alias_type(adr_type);
1662 
1663 #ifdef ASSERT
1664   {
1665     ResourceMark rm;
1666     assert(flat == flatten_alias_type(flat), "not idempotent: adr_type = %s; flat = %s => %s",
1667            Type::str(adr_type), Type::str(flat), Type::str(flatten_alias_type(flat)));
1668     assert(flat != TypePtr::BOTTOM, "cannot alias-analyze an untyped ptr: adr_type = %s",
1669            Type::str(adr_type));
1670     if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1671       const TypeOopPtr* foop = flat->is_oopptr();
1672       // Scalarizable allocations have exact klass always.
1673       bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1674       const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1675       assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type: foop = %s; xoop = %s",
1676              Type::str(foop), Type::str(xoop));
1677     }
1678   }
1679 #endif
1680 
1681   int idx = AliasIdxTop;
1682   for (int i = 0; i < num_alias_types(); i++) {
1683     if (alias_type(i)->adr_type() == flat) {
1684       idx = i;
1685       break;
1686     }
1687   }
1688 
1689   if (idx == AliasIdxTop) {
1690     if (no_create)  return nullptr;
1691     // Grow the array if necessary.
1692     if (_num_alias_types == _max_alias_types)  grow_alias_types();
1693     // Add a new alias type.
1694     idx = _num_alias_types++;
1695     _alias_types[idx]->Init(idx, flat);
1696     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1697     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1698     if (flat->isa_instptr()) {
1699       if (flat->offset() == java_lang_Class::klass_offset()
1700           && flat->is_instptr()->instance_klass() == env()->Class_klass())
1701         alias_type(idx)->set_rewritable(false);
1702     }
1703     if (flat->isa_aryptr()) {
1704 #ifdef ASSERT
1705       const int header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1706       // (T_BYTE has the weakest alignment and size restrictions...)
1707       assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
1708 #endif
1709       if (flat->offset() == TypePtr::OffsetBot) {
1710         alias_type(idx)->set_element(flat->is_aryptr()->elem());
1711       }
1712     }
1713     if (flat->isa_klassptr()) {
1714       if (UseCompactObjectHeaders) {
1715         if (flat->offset() == in_bytes(Klass::prototype_header_offset()))
1716           alias_type(idx)->set_rewritable(false);
1717       }
1718       if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
1719         alias_type(idx)->set_rewritable(false);
1720       if (flat->offset() == in_bytes(Klass::access_flags_offset()))
1721         alias_type(idx)->set_rewritable(false);
1722       if (flat->offset() == in_bytes(Klass::misc_flags_offset()))
1723         alias_type(idx)->set_rewritable(false);
1724       if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
1725         alias_type(idx)->set_rewritable(false);
1726       if (flat->offset() == in_bytes(Klass::secondary_super_cache_offset()))
1727         alias_type(idx)->set_rewritable(false);
1728     }
1729     // %%% (We would like to finalize JavaThread::threadObj_offset(),
1730     // but the base pointer type is not distinctive enough to identify
1731     // references into JavaThread.)
1732 
1733     // Check for final fields.
1734     const TypeInstPtr* tinst = flat->isa_instptr();
1735     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1736       ciField* field;
1737       if (tinst->const_oop() != nullptr &&
1738           tinst->instance_klass() == ciEnv::current()->Class_klass() &&
1739           tinst->offset() >= (tinst->instance_klass()->layout_helper_size_in_bytes())) {
1740         // static field
1741         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1742         field = k->get_field_by_offset(tinst->offset(), true);
1743       } else {
1744         ciInstanceKlass *k = tinst->instance_klass();
1745         field = k->get_field_by_offset(tinst->offset(), false);
1746       }
1747       assert(field == nullptr ||
1748              original_field == nullptr ||
1749              (field->holder() == original_field->holder() &&
1750               field->offset_in_bytes() == original_field->offset_in_bytes() &&
1751               field->is_static() == original_field->is_static()), "wrong field?");
1752       // Set field() and is_rewritable() attributes.
1753       if (field != nullptr)  alias_type(idx)->set_field(field);
1754     }
1755   }
1756 
1757   // Fill the cache for next time.
1758   ace->_adr_type = adr_type;
1759   ace->_index    = idx;
1760   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1761 
1762   // Might as well try to fill the cache for the flattened version, too.
1763   AliasCacheEntry* face = probe_alias_cache(flat);
1764   if (face->_adr_type == nullptr) {
1765     face->_adr_type = flat;
1766     face->_index    = idx;
1767     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1768   }
1769 
1770   return alias_type(idx);
1771 }
1772 
1773 
1774 Compile::AliasType* Compile::alias_type(ciField* field) {
1775   const TypeOopPtr* t;
1776   if (field->is_static())
1777     t = TypeInstPtr::make(field->holder()->java_mirror());
1778   else
1779     t = TypeOopPtr::make_from_klass_raw(field->holder());
1780   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1781   assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
1782   return atp;
1783 }
1784 
1785 
1786 //------------------------------have_alias_type--------------------------------
1787 bool Compile::have_alias_type(const TypePtr* adr_type) {
1788   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1789   if (ace->_adr_type == adr_type) {
1790     return true;
1791   }
1792 
1793   // Handle special cases.
1794   if (adr_type == nullptr)             return true;
1795   if (adr_type == TypePtr::BOTTOM)  return true;
1796 
1797   return find_alias_type(adr_type, true, nullptr) != nullptr;
1798 }
1799 
1800 //-----------------------------must_alias--------------------------------------
1801 // True if all values of the given address type are in the given alias category.
1802 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1803   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1804   if (adr_type == nullptr)              return true;  // null serves as TypePtr::TOP
1805   if (alias_idx == AliasIdxTop)         return false; // the empty category
1806   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1807 
1808   // the only remaining possible overlap is identity
1809   int adr_idx = get_alias_index(adr_type);
1810   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1811   assert(adr_idx == alias_idx ||
1812          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1813           && adr_type                       != TypeOopPtr::BOTTOM),
1814          "should not be testing for overlap with an unsafe pointer");
1815   return adr_idx == alias_idx;
1816 }
1817 
1818 //------------------------------can_alias--------------------------------------
1819 // True if any values of the given address type are in the given alias category.
1820 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1821   if (alias_idx == AliasIdxTop)         return false; // the empty category
1822   if (adr_type == nullptr)              return false; // null serves as TypePtr::TOP
1823   // Known instance doesn't alias with bottom memory
1824   if (alias_idx == AliasIdxBot)         return !adr_type->is_known_instance();                   // the universal category
1825   if (adr_type->base() == Type::AnyPtr) return !C->get_adr_type(alias_idx)->is_known_instance(); // TypePtr::BOTTOM or its twins
1826 
1827   // the only remaining possible overlap is identity
1828   int adr_idx = get_alias_index(adr_type);
1829   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1830   return adr_idx == alias_idx;
1831 }
1832 
1833 // Mark all ParsePredicateNodes as useless. They will later be removed from the graph in IGVN together with their
1834 // uncommon traps if no Runtime Predicates were created from the Parse Predicates.
1835 void Compile::mark_parse_predicate_nodes_useless(PhaseIterGVN& igvn) {
1836   if (parse_predicate_count() == 0) {
1837     return;
1838   }
1839   for (int i = 0; i < parse_predicate_count(); i++) {
1840     ParsePredicateNode* parse_predicate = _parse_predicates.at(i);
1841     parse_predicate->mark_useless(igvn);
1842   }
1843   _parse_predicates.clear();
1844 }
1845 
1846 void Compile::record_for_post_loop_opts_igvn(Node* n) {
1847   if (!n->for_post_loop_opts_igvn()) {
1848     assert(!_for_post_loop_igvn.contains(n), "duplicate");
1849     n->add_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn);
1850     _for_post_loop_igvn.append(n);
1851   }
1852 }
1853 
1854 void Compile::remove_from_post_loop_opts_igvn(Node* n) {
1855   n->remove_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn);
1856   _for_post_loop_igvn.remove(n);
1857 }
1858 
1859 void Compile::process_for_post_loop_opts_igvn(PhaseIterGVN& igvn) {
1860   // Verify that all previous optimizations produced a valid graph
1861   // at least to this point, even if no loop optimizations were done.
1862   PhaseIdealLoop::verify(igvn);
1863 
1864   if (has_loops() || _loop_opts_cnt > 0) {
1865     print_method(PHASE_AFTER_LOOP_OPTS, 2);
1866   }
1867   C->set_post_loop_opts_phase(); // no more loop opts allowed
1868 
1869   assert(!C->major_progress(), "not cleared");
1870 
1871   if (_for_post_loop_igvn.length() > 0) {
1872     while (_for_post_loop_igvn.length() > 0) {
1873       Node* n = _for_post_loop_igvn.pop();
1874       n->remove_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn);
1875       igvn._worklist.push(n);
1876     }
1877     igvn.optimize();
1878     if (failing()) return;
1879     assert(_for_post_loop_igvn.length() == 0, "no more delayed nodes allowed");
1880     assert(C->parse_predicate_count() == 0, "all parse predicates should have been removed now");
1881 
1882     // Sometimes IGVN sets major progress (e.g., when processing loop nodes).
1883     if (C->major_progress()) {
1884       C->clear_major_progress(); // ensure that major progress is now clear
1885     }
1886   }
1887 }
1888 
1889 void Compile::record_for_merge_stores_igvn(Node* n) {
1890   if (!n->for_merge_stores_igvn()) {
1891     assert(!_for_merge_stores_igvn.contains(n), "duplicate");
1892     n->add_flag(Node::NodeFlags::Flag_for_merge_stores_igvn);
1893     _for_merge_stores_igvn.append(n);
1894   }
1895 }
1896 
1897 void Compile::remove_from_merge_stores_igvn(Node* n) {
1898   n->remove_flag(Node::NodeFlags::Flag_for_merge_stores_igvn);
1899   _for_merge_stores_igvn.remove(n);
1900 }
1901 
1902 // We need to wait with merging stores until RangeCheck smearing has removed the RangeChecks during
1903 // the post loops IGVN phase. If we do it earlier, then there may still be some RangeChecks between
1904 // the stores, and we merge the wrong sequence of stores.
1905 // Example:
1906 //   StoreI RangeCheck StoreI StoreI RangeCheck StoreI
1907 // Apply MergeStores:
1908 //   StoreI RangeCheck [   StoreL  ] RangeCheck StoreI
1909 // Remove more RangeChecks:
1910 //   StoreI            [   StoreL  ]            StoreI
1911 // But now it would have been better to do this instead:
1912 //   [         StoreL       ] [       StoreL         ]
1913 //
1914 // Note: we allow stores to merge in this dedicated IGVN round, and any later IGVN round,
1915 //       since we never unset _merge_stores_phase.
1916 void Compile::process_for_merge_stores_igvn(PhaseIterGVN& igvn) {
1917   C->set_merge_stores_phase();
1918 
1919   if (_for_merge_stores_igvn.length() > 0) {
1920     while (_for_merge_stores_igvn.length() > 0) {
1921       Node* n = _for_merge_stores_igvn.pop();
1922       n->remove_flag(Node::NodeFlags::Flag_for_merge_stores_igvn);
1923       igvn._worklist.push(n);
1924     }
1925     igvn.optimize();
1926     if (failing()) return;
1927     assert(_for_merge_stores_igvn.length() == 0, "no more delayed nodes allowed");
1928     print_method(PHASE_AFTER_MERGE_STORES, 3);
1929   }
1930 }
1931 
1932 void Compile::record_unstable_if_trap(UnstableIfTrap* trap) {
1933   if (OptimizeUnstableIf) {
1934     _unstable_if_traps.append(trap);
1935   }
1936 }
1937 
1938 void Compile::remove_useless_unstable_if_traps(Unique_Node_List& useful) {
1939   for (int i = _unstable_if_traps.length() - 1; i >= 0; i--) {
1940     UnstableIfTrap* trap = _unstable_if_traps.at(i);
1941     Node* n = trap->uncommon_trap();
1942     if (!useful.member(n)) {
1943       _unstable_if_traps.delete_at(i); // replaces i-th with last element which is known to be useful (already processed)
1944     }
1945   }
1946 }
1947 
1948 // Remove the unstable if trap associated with 'unc' from candidates. It is either dead
1949 // or fold-compares case. Return true if succeed or not found.
1950 //
1951 // In rare cases, the found trap has been processed. It is too late to delete it. Return
1952 // false and ask fold-compares to yield.
1953 //
1954 // 'fold-compares' may use the uncommon_trap of the dominating IfNode to cover the fused
1955 // IfNode. This breaks the unstable_if trap invariant: control takes the unstable path
1956 // when deoptimization does happen.
1957 bool Compile::remove_unstable_if_trap(CallStaticJavaNode* unc, bool yield) {
1958   for (int i = 0; i < _unstable_if_traps.length(); ++i) {
1959     UnstableIfTrap* trap = _unstable_if_traps.at(i);
1960     if (trap->uncommon_trap() == unc) {
1961       if (yield && trap->modified()) {
1962         return false;
1963       }
1964       _unstable_if_traps.delete_at(i);
1965       break;
1966     }
1967   }
1968   return true;
1969 }
1970 
1971 // Re-calculate unstable_if traps with the liveness of next_bci, which points to the unlikely path.
1972 // It needs to be done after igvn because fold-compares may fuse uncommon_traps and before renumbering.
1973 void Compile::process_for_unstable_if_traps(PhaseIterGVN& igvn) {
1974   for (int i = _unstable_if_traps.length() - 1; i >= 0; --i) {
1975     UnstableIfTrap* trap = _unstable_if_traps.at(i);
1976     CallStaticJavaNode* unc = trap->uncommon_trap();
1977     int next_bci = trap->next_bci();
1978     bool modified = trap->modified();
1979 
1980     if (next_bci != -1 && !modified) {
1981       assert(!_dead_node_list.test(unc->_idx), "changing a dead node!");
1982       JVMState* jvms = unc->jvms();
1983       ciMethod* method = jvms->method();
1984       ciBytecodeStream iter(method);
1985 
1986       iter.force_bci(jvms->bci());
1987       assert(next_bci == iter.next_bci() || next_bci == iter.get_dest(), "wrong next_bci at unstable_if");
1988       Bytecodes::Code c = iter.cur_bc();
1989       Node* lhs = nullptr;
1990       Node* rhs = nullptr;
1991       if (c == Bytecodes::_if_acmpeq || c == Bytecodes::_if_acmpne) {
1992         lhs = unc->peek_operand(0);
1993         rhs = unc->peek_operand(1);
1994       } else if (c == Bytecodes::_ifnull || c == Bytecodes::_ifnonnull) {
1995         lhs = unc->peek_operand(0);
1996       }
1997 
1998       ResourceMark rm;
1999       const MethodLivenessResult& live_locals = method->liveness_at_bci(next_bci);
2000       assert(live_locals.is_valid(), "broken liveness info");
2001       int len = (int)live_locals.size();
2002 
2003       for (int i = 0; i < len; i++) {
2004         Node* local = unc->local(jvms, i);
2005         // kill local using the liveness of next_bci.
2006         // give up when the local looks like an operand to secure reexecution.
2007         if (!live_locals.at(i) && !local->is_top() && local != lhs && local!= rhs) {
2008           uint idx = jvms->locoff() + i;
2009 #ifdef ASSERT
2010           if (PrintOpto && Verbose) {
2011             tty->print("[unstable_if] kill local#%d: ", idx);
2012             local->dump();
2013             tty->cr();
2014           }
2015 #endif
2016           igvn.replace_input_of(unc, idx, top());
2017           modified = true;
2018         }
2019       }
2020     }
2021 
2022     // keep the mondified trap for late query
2023     if (modified) {
2024       trap->set_modified();
2025     } else {
2026       _unstable_if_traps.delete_at(i);
2027     }
2028   }
2029   igvn.optimize();
2030 }
2031 
2032 // StringOpts and late inlining of string methods
2033 void Compile::inline_string_calls(bool parse_time) {
2034   {
2035     // remove useless nodes to make the usage analysis simpler
2036     ResourceMark rm;
2037     PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist());
2038   }
2039 
2040   {
2041     ResourceMark rm;
2042     print_method(PHASE_BEFORE_STRINGOPTS, 3);
2043     PhaseStringOpts pso(initial_gvn());
2044     print_method(PHASE_AFTER_STRINGOPTS, 3);
2045   }
2046 
2047   // now inline anything that we skipped the first time around
2048   if (!parse_time) {
2049     _late_inlines_pos = _late_inlines.length();
2050   }
2051 
2052   while (_string_late_inlines.length() > 0) {
2053     CallGenerator* cg = _string_late_inlines.pop();
2054     cg->do_late_inline();
2055     if (failing())  return;
2056   }
2057   _string_late_inlines.trunc_to(0);
2058 }
2059 
2060 // Late inlining of boxing methods
2061 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
2062   if (_boxing_late_inlines.length() > 0) {
2063     assert(has_boxed_value(), "inconsistent");
2064 
2065     set_inlining_incrementally(true);
2066 
2067     igvn_worklist()->ensure_empty(); // should be done with igvn
2068 
2069     _late_inlines_pos = _late_inlines.length();
2070 
2071     while (_boxing_late_inlines.length() > 0) {
2072       CallGenerator* cg = _boxing_late_inlines.pop();
2073       cg->do_late_inline();
2074       if (failing())  return;
2075     }
2076     _boxing_late_inlines.trunc_to(0);
2077 
2078     inline_incrementally_cleanup(igvn);
2079 
2080     set_inlining_incrementally(false);
2081   }
2082 }
2083 
2084 bool Compile::inline_incrementally_one() {
2085   assert(IncrementalInline, "incremental inlining should be on");
2086 
2087   TracePhase tp(_t_incrInline_inline);
2088 
2089   set_inlining_progress(false);
2090   set_do_cleanup(false);
2091 
2092   for (int i = 0; i < _late_inlines.length(); i++) {
2093     _late_inlines_pos = i+1;
2094     CallGenerator* cg = _late_inlines.at(i);
2095     bool is_scheduled_for_igvn_before = C->igvn_worklist()->member(cg->call_node());
2096     bool does_dispatch = cg->is_virtual_late_inline() || cg->is_mh_late_inline();
2097     if (inlining_incrementally() || does_dispatch) { // a call can be either inlined or strength-reduced to a direct call
2098       cg->do_late_inline();
2099       assert(_late_inlines.at(i) == cg, "no insertions before current position allowed");
2100       if (failing()) {
2101         return false;
2102       } else if (inlining_progress()) {
2103         _late_inlines_pos = i+1; // restore the position in case new elements were inserted
2104         print_method(PHASE_INCREMENTAL_INLINE_STEP, 3, cg->call_node());
2105         break; // process one call site at a time
2106       } else {
2107         bool is_scheduled_for_igvn_after = C->igvn_worklist()->member(cg->call_node());
2108         if (!is_scheduled_for_igvn_before && is_scheduled_for_igvn_after) {
2109           // Avoid potential infinite loop if node already in the IGVN list
2110           assert(false, "scheduled for IGVN during inlining attempt");
2111         } else {
2112           // Ensure call node has not disappeared from IGVN worklist during a failed inlining attempt
2113           assert(!is_scheduled_for_igvn_before || is_scheduled_for_igvn_after, "call node removed from IGVN list during inlining pass");
2114           cg->call_node()->set_generator(cg);
2115         }
2116       }
2117     } else {
2118       // Ignore late inline direct calls when inlining is not allowed.
2119       // They are left in the late inline list when node budget is exhausted until the list is fully drained.
2120     }
2121   }
2122   // Remove processed elements.
2123   _late_inlines.remove_till(_late_inlines_pos);
2124   _late_inlines_pos = 0;
2125 
2126   assert(inlining_progress() || _late_inlines.length() == 0, "no progress");
2127 
2128   bool needs_cleanup = do_cleanup() || over_inlining_cutoff();
2129 
2130   set_inlining_progress(false);
2131   set_do_cleanup(false);
2132 
2133   bool force_cleanup = directive()->IncrementalInlineForceCleanupOption;
2134   return (_late_inlines.length() > 0) && !needs_cleanup && !force_cleanup;
2135 }
2136 
2137 void Compile::inline_incrementally_cleanup(PhaseIterGVN& igvn) {
2138   {
2139     TracePhase tp(_t_incrInline_pru);
2140     ResourceMark rm;
2141     PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist());
2142   }
2143   {
2144     TracePhase tp(_t_incrInline_igvn);
2145     igvn.reset_from_gvn(initial_gvn());
2146     igvn.optimize();
2147     if (failing()) return;
2148   }
2149   print_method(PHASE_INCREMENTAL_INLINE_CLEANUP, 3);
2150 }
2151 
2152 // Perform incremental inlining until bound on number of live nodes is reached
2153 void Compile::inline_incrementally(PhaseIterGVN& igvn) {
2154   TracePhase tp(_t_incrInline);
2155 
2156   set_inlining_incrementally(true);
2157   uint low_live_nodes = 0;
2158 
2159   while (_late_inlines.length() > 0) {
2160     if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2161       if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
2162         TracePhase tp(_t_incrInline_ideal);
2163         // PhaseIdealLoop is expensive so we only try it once we are
2164         // out of live nodes and we only try it again if the previous
2165         // helped got the number of nodes down significantly
2166         PhaseIdealLoop::optimize(igvn, LoopOptsNone);
2167         if (failing())  return;
2168         low_live_nodes = live_nodes();
2169         _major_progress = true;
2170       }
2171 
2172       if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2173         bool do_print_inlining = print_inlining() || print_intrinsics();
2174         if (do_print_inlining || log() != nullptr) {
2175           // Print inlining message for candidates that we couldn't inline for lack of space.
2176           for (int i = 0; i < _late_inlines.length(); i++) {
2177             CallGenerator* cg = _late_inlines.at(i);
2178             const char* msg = "live nodes > LiveNodeCountInliningCutoff";
2179             if (do_print_inlining) {
2180               inline_printer()->record(cg->method(), cg->call_node()->jvms(), InliningResult::FAILURE, msg);
2181             }
2182             log_late_inline_failure(cg, msg);
2183           }
2184         }
2185         break; // finish
2186       }
2187     }
2188 
2189     igvn_worklist()->ensure_empty(); // should be done with igvn
2190 
2191     while (inline_incrementally_one()) {
2192       assert(!failing_internal() || failure_is_artificial(), "inconsistent");
2193     }
2194     if (failing())  return;
2195 
2196     inline_incrementally_cleanup(igvn);
2197 
2198     print_method(PHASE_INCREMENTAL_INLINE_STEP, 3);
2199 
2200     if (failing())  return;
2201 
2202     if (_late_inlines.length() == 0) {
2203       break; // no more progress
2204     }
2205   }
2206 
2207   igvn_worklist()->ensure_empty(); // should be done with igvn
2208 
2209   if (_string_late_inlines.length() > 0) {
2210     assert(has_stringbuilder(), "inconsistent");
2211 
2212     inline_string_calls(false);
2213 
2214     if (failing())  return;
2215 
2216     inline_incrementally_cleanup(igvn);
2217   }
2218 
2219   set_inlining_incrementally(false);
2220 }
2221 
2222 void Compile::process_late_inline_calls_no_inline(PhaseIterGVN& igvn) {
2223   // "inlining_incrementally() == false" is used to signal that no inlining is allowed
2224   // (see LateInlineVirtualCallGenerator::do_late_inline_check() for details).
2225   // Tracking and verification of modified nodes is disabled by setting "_modified_nodes == nullptr"
2226   // as if "inlining_incrementally() == true" were set.
2227   assert(inlining_incrementally() == false, "not allowed");
2228   assert(_modified_nodes == nullptr, "not allowed");
2229   assert(_late_inlines.length() > 0, "sanity");
2230 
2231   while (_late_inlines.length() > 0) {
2232     igvn_worklist()->ensure_empty(); // should be done with igvn
2233 
2234     while (inline_incrementally_one()) {
2235       assert(!failing_internal() || failure_is_artificial(), "inconsistent");
2236     }
2237     if (failing())  return;
2238 
2239     inline_incrementally_cleanup(igvn);
2240   }
2241 }
2242 
2243 bool Compile::optimize_loops(PhaseIterGVN& igvn, LoopOptsMode mode) {
2244   if (_loop_opts_cnt > 0) {
2245     while (major_progress() && (_loop_opts_cnt > 0)) {
2246       TracePhase tp(_t_idealLoop);
2247       PhaseIdealLoop::optimize(igvn, mode);
2248       _loop_opts_cnt--;
2249       if (failing())  return false;
2250       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
2251     }
2252   }
2253   return true;
2254 }
2255 
2256 // Remove edges from "root" to each SafePoint at a backward branch.
2257 // They were inserted during parsing (see add_safepoint()) to make
2258 // infinite loops without calls or exceptions visible to root, i.e.,
2259 // useful.
2260 void Compile::remove_root_to_sfpts_edges(PhaseIterGVN& igvn) {
2261   Node *r = root();
2262   if (r != nullptr) {
2263     for (uint i = r->req(); i < r->len(); ++i) {
2264       Node *n = r->in(i);
2265       if (n != nullptr && n->is_SafePoint()) {
2266         r->rm_prec(i);
2267         if (n->outcnt() == 0) {
2268           igvn.remove_dead_node(n);
2269         }
2270         --i;
2271       }
2272     }
2273     // Parsing may have added top inputs to the root node (Path
2274     // leading to the Halt node proven dead). Make sure we get a
2275     // chance to clean them up.
2276     igvn._worklist.push(r);
2277     igvn.optimize();
2278   }
2279 }
2280 
2281 //------------------------------Optimize---------------------------------------
2282 // Given a graph, optimize it.
2283 void Compile::Optimize() {
2284   TracePhase tp(_t_optimizer);
2285 
2286 #ifndef PRODUCT
2287   if (env()->break_at_compile()) {
2288     BREAKPOINT;
2289   }
2290 
2291 #endif
2292 
2293   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2294 #ifdef ASSERT
2295   bs->verify_gc_barriers(this, BarrierSetC2::BeforeOptimize);
2296 #endif
2297 
2298   ResourceMark rm;
2299 
2300   NOT_PRODUCT( verify_graph_edges(); )
2301 
2302   print_method(PHASE_AFTER_PARSING, 1);
2303 
2304  {
2305   // Iterative Global Value Numbering, including ideal transforms
2306   // Initialize IterGVN with types and values from parse-time GVN
2307   PhaseIterGVN igvn(initial_gvn());
2308 #ifdef ASSERT
2309   _modified_nodes = new (comp_arena()) Unique_Node_List(comp_arena());
2310 #endif
2311   {
2312     TracePhase tp(_t_iterGVN);
2313     igvn.optimize();
2314   }
2315 
2316   if (failing())  return;
2317 
2318   print_method(PHASE_ITER_GVN1, 2);
2319 
2320   process_for_unstable_if_traps(igvn);
2321 
2322   if (failing())  return;
2323 
2324   inline_incrementally(igvn);
2325 
2326   print_method(PHASE_INCREMENTAL_INLINE, 2);
2327 
2328   if (failing())  return;
2329 
2330   if (eliminate_boxing()) {
2331     // Inline valueOf() methods now.
2332     inline_boxing_calls(igvn);
2333 
2334     if (failing())  return;
2335 
2336     if (AlwaysIncrementalInline || StressIncrementalInlining) {
2337       inline_incrementally(igvn);
2338     }
2339 
2340     print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
2341 
2342     if (failing())  return;
2343   }
2344 
2345   // Remove the speculative part of types and clean up the graph from
2346   // the extra CastPP nodes whose only purpose is to carry them. Do
2347   // that early so that optimizations are not disrupted by the extra
2348   // CastPP nodes.
2349   remove_speculative_types(igvn);
2350 
2351   if (failing())  return;
2352 
2353   // No more new expensive nodes will be added to the list from here
2354   // so keep only the actual candidates for optimizations.
2355   cleanup_expensive_nodes(igvn);
2356 
2357   if (failing())  return;
2358 
2359   assert(EnableVectorSupport || !has_vbox_nodes(), "sanity");
2360   if (EnableVectorSupport && has_vbox_nodes()) {
2361     TracePhase tp(_t_vector);
2362     PhaseVector pv(igvn);
2363     pv.optimize_vector_boxes();
2364     if (failing())  return;
2365     print_method(PHASE_ITER_GVN_AFTER_VECTOR, 2);
2366   }
2367   assert(!has_vbox_nodes(), "sanity");
2368 
2369   if (!failing() && RenumberLiveNodes && live_nodes() + NodeLimitFudgeFactor < unique()) {
2370     Compile::TracePhase tp(_t_renumberLive);
2371     igvn_worklist()->ensure_empty(); // should be done with igvn
2372     {
2373       ResourceMark rm;
2374       PhaseRenumberLive prl(initial_gvn(), *igvn_worklist());
2375     }
2376     igvn.reset_from_gvn(initial_gvn());
2377     igvn.optimize();
2378     if (failing()) return;
2379   }
2380 
2381   // Now that all inlining is over and no PhaseRemoveUseless will run, cut edge from root to loop
2382   // safepoints
2383   remove_root_to_sfpts_edges(igvn);
2384 
2385   if (failing())  return;
2386 
2387   if (has_loops()) {
2388     print_method(PHASE_BEFORE_LOOP_OPTS, 2);
2389   }
2390 
2391   // Perform escape analysis
2392   if (do_escape_analysis() && ConnectionGraph::has_candidates(this)) {
2393     if (has_loops()) {
2394       // Cleanup graph (remove dead nodes).
2395       TracePhase tp(_t_idealLoop);
2396       PhaseIdealLoop::optimize(igvn, LoopOptsMaxUnroll);
2397       if (failing())  return;
2398     }
2399     bool progress;
2400     print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
2401     do {
2402       ConnectionGraph::do_analysis(this, &igvn);
2403 
2404       if (failing())  return;
2405 
2406       int mcount = macro_count(); // Record number of allocations and locks before IGVN
2407 
2408       // Optimize out fields loads from scalar replaceable allocations.
2409       igvn.optimize();
2410       print_method(PHASE_ITER_GVN_AFTER_EA, 2);
2411 
2412       if (failing()) return;
2413 
2414       if (congraph() != nullptr && macro_count() > 0) {
2415         TracePhase tp(_t_macroEliminate);
2416         PhaseMacroExpand mexp(igvn);
2417         mexp.eliminate_macro_nodes();
2418         if (failing()) return;
2419 
2420         igvn.set_delay_transform(false);
2421         igvn.optimize();
2422         if (failing()) return;
2423 
2424         print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
2425       }
2426 
2427       ConnectionGraph::verify_ram_nodes(this, root());
2428       if (failing())  return;
2429 
2430       progress = do_iterative_escape_analysis() &&
2431                  (macro_count() < mcount) &&
2432                  ConnectionGraph::has_candidates(this);
2433       // Try again if candidates exist and made progress
2434       // by removing some allocations and/or locks.
2435     } while (progress);
2436   }
2437 
2438   // Loop transforms on the ideal graph.  Range Check Elimination,
2439   // peeling, unrolling, etc.
2440 
2441   // Set loop opts counter
2442   if((_loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
2443     {
2444       TracePhase tp(_t_idealLoop);
2445       PhaseIdealLoop::optimize(igvn, LoopOptsDefault);
2446       _loop_opts_cnt--;
2447       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
2448       if (failing())  return;
2449     }
2450     // Loop opts pass if partial peeling occurred in previous pass
2451     if(PartialPeelLoop && major_progress() && (_loop_opts_cnt > 0)) {
2452       TracePhase tp(_t_idealLoop);
2453       PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf);
2454       _loop_opts_cnt--;
2455       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
2456       if (failing())  return;
2457     }
2458     // Loop opts pass for loop-unrolling before CCP
2459     if(major_progress() && (_loop_opts_cnt > 0)) {
2460       TracePhase tp(_t_idealLoop);
2461       PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf);
2462       _loop_opts_cnt--;
2463       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
2464     }
2465     if (!failing()) {
2466       // Verify that last round of loop opts produced a valid graph
2467       PhaseIdealLoop::verify(igvn);
2468     }
2469   }
2470   if (failing())  return;
2471 
2472   // Conditional Constant Propagation;
2473   print_method(PHASE_BEFORE_CCP1, 2);
2474   PhaseCCP ccp( &igvn );
2475   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
2476   {
2477     TracePhase tp(_t_ccp);
2478     ccp.do_transform();
2479   }
2480   print_method(PHASE_CCP1, 2);
2481 
2482   assert( true, "Break here to ccp.dump_old2new_map()");
2483 
2484   // Iterative Global Value Numbering, including ideal transforms
2485   {
2486     TracePhase tp(_t_iterGVN2);
2487     igvn.reset_from_igvn(&ccp);
2488     igvn.optimize();
2489   }
2490   print_method(PHASE_ITER_GVN2, 2);
2491 
2492   if (failing())  return;
2493 
2494   // Loop transforms on the ideal graph.  Range Check Elimination,
2495   // peeling, unrolling, etc.
2496   if (!optimize_loops(igvn, LoopOptsDefault)) {
2497     return;
2498   }
2499 
2500   if (failing())  return;
2501 
2502   C->clear_major_progress(); // ensure that major progress is now clear
2503 
2504   process_for_post_loop_opts_igvn(igvn);
2505 
2506   process_for_merge_stores_igvn(igvn);
2507 
2508   if (failing())  return;
2509 
2510 #ifdef ASSERT
2511   bs->verify_gc_barriers(this, BarrierSetC2::BeforeMacroExpand);
2512 #endif
2513 
2514   {
2515     TracePhase tp(_t_macroExpand);
2516     print_method(PHASE_BEFORE_MACRO_EXPANSION, 3);
2517     PhaseMacroExpand  mex(igvn);
2518     if (mex.expand_macro_nodes()) {
2519       assert(failing(), "must bail out w/ explicit message");
2520       return;
2521     }
2522     print_method(PHASE_AFTER_MACRO_EXPANSION, 2);
2523   }
2524 
2525   {
2526     TracePhase tp(_t_barrierExpand);
2527     if (bs->expand_barriers(this, igvn)) {
2528       assert(failing(), "must bail out w/ explicit message");
2529       return;
2530     }
2531     print_method(PHASE_BARRIER_EXPANSION, 2);
2532   }
2533 
2534   if (C->max_vector_size() > 0) {
2535     C->optimize_logic_cones(igvn);
2536     igvn.optimize();
2537     if (failing()) return;
2538   }
2539 
2540   DEBUG_ONLY( _modified_nodes = nullptr; )
2541 
2542   assert(igvn._worklist.size() == 0, "not empty");
2543 
2544   assert(_late_inlines.length() == 0 || IncrementalInlineMH || IncrementalInlineVirtual, "not empty");
2545 
2546   if (_late_inlines.length() > 0) {
2547     // More opportunities to optimize virtual and MH calls.
2548     // Though it's maybe too late to perform inlining, strength-reducing them to direct calls is still an option.
2549     process_late_inline_calls_no_inline(igvn);
2550     if (failing())  return;
2551   }
2552  } // (End scope of igvn; run destructor if necessary for asserts.)
2553 
2554  check_no_dead_use();
2555 
2556  // We will never use the NodeHash table any more. Clear it so that final_graph_reshaping does not have
2557  // to remove hashes to unlock nodes for modifications.
2558  C->node_hash()->clear();
2559 
2560  // A method with only infinite loops has no edges entering loops from root
2561  {
2562    TracePhase tp(_t_graphReshaping);
2563    if (final_graph_reshaping()) {
2564      assert(failing(), "must bail out w/ explicit message");
2565      return;
2566    }
2567  }
2568 
2569  print_method(PHASE_OPTIMIZE_FINISHED, 2);
2570  DEBUG_ONLY(set_phase_optimize_finished();)
2571 }
2572 
2573 #ifdef ASSERT
2574 void Compile::check_no_dead_use() const {
2575   ResourceMark rm;
2576   Unique_Node_List wq;
2577   wq.push(root());
2578   for (uint i = 0; i < wq.size(); ++i) {
2579     Node* n = wq.at(i);
2580     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
2581       Node* u = n->fast_out(j);
2582       if (u->outcnt() == 0 && !u->is_Con()) {
2583         u->dump();
2584         fatal("no reachable node should have no use");
2585       }
2586       wq.push(u);
2587     }
2588   }
2589 }
2590 #endif
2591 
2592 void Compile::inline_vector_reboxing_calls() {
2593   if (C->_vector_reboxing_late_inlines.length() > 0) {
2594     _late_inlines_pos = C->_late_inlines.length();
2595     while (_vector_reboxing_late_inlines.length() > 0) {
2596       CallGenerator* cg = _vector_reboxing_late_inlines.pop();
2597       cg->do_late_inline();
2598       if (failing())  return;
2599       print_method(PHASE_INLINE_VECTOR_REBOX, 3, cg->call_node());
2600     }
2601     _vector_reboxing_late_inlines.trunc_to(0);
2602   }
2603 }
2604 
2605 bool Compile::has_vbox_nodes() {
2606   if (C->_vector_reboxing_late_inlines.length() > 0) {
2607     return true;
2608   }
2609   for (int macro_idx = C->macro_count() - 1; macro_idx >= 0; macro_idx--) {
2610     Node * n = C->macro_node(macro_idx);
2611     assert(n->is_macro(), "only macro nodes expected here");
2612     if (n->Opcode() == Op_VectorUnbox || n->Opcode() == Op_VectorBox || n->Opcode() == Op_VectorBoxAllocate) {
2613       return true;
2614     }
2615   }
2616   return false;
2617 }
2618 
2619 //---------------------------- Bitwise operation packing optimization ---------------------------
2620 
2621 static bool is_vector_unary_bitwise_op(Node* n) {
2622   return n->Opcode() == Op_XorV &&
2623          VectorNode::is_vector_bitwise_not_pattern(n);
2624 }
2625 
2626 static bool is_vector_binary_bitwise_op(Node* n) {
2627   switch (n->Opcode()) {
2628     case Op_AndV:
2629     case Op_OrV:
2630       return true;
2631 
2632     case Op_XorV:
2633       return !is_vector_unary_bitwise_op(n);
2634 
2635     default:
2636       return false;
2637   }
2638 }
2639 
2640 static bool is_vector_ternary_bitwise_op(Node* n) {
2641   return n->Opcode() == Op_MacroLogicV;
2642 }
2643 
2644 static bool is_vector_bitwise_op(Node* n) {
2645   return is_vector_unary_bitwise_op(n)  ||
2646          is_vector_binary_bitwise_op(n) ||
2647          is_vector_ternary_bitwise_op(n);
2648 }
2649 
2650 static bool is_vector_bitwise_cone_root(Node* n) {
2651   if (n->bottom_type()->isa_vectmask() || !is_vector_bitwise_op(n)) {
2652     return false;
2653   }
2654   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2655     if (is_vector_bitwise_op(n->fast_out(i))) {
2656       return false;
2657     }
2658   }
2659   return true;
2660 }
2661 
2662 static uint collect_unique_inputs(Node* n, Unique_Node_List& inputs) {
2663   uint cnt = 0;
2664   if (is_vector_bitwise_op(n)) {
2665     uint inp_cnt = n->is_predicated_vector() ? n->req()-1 : n->req();
2666     if (VectorNode::is_vector_bitwise_not_pattern(n)) {
2667       for (uint i = 1; i < inp_cnt; i++) {
2668         Node* in = n->in(i);
2669         bool skip = VectorNode::is_all_ones_vector(in);
2670         if (!skip && !inputs.member(in)) {
2671           inputs.push(in);
2672           cnt++;
2673         }
2674       }
2675       assert(cnt <= 1, "not unary");
2676     } else {
2677       uint last_req = inp_cnt;
2678       if (is_vector_ternary_bitwise_op(n)) {
2679         last_req = inp_cnt - 1; // skip last input
2680       }
2681       for (uint i = 1; i < last_req; i++) {
2682         Node* def = n->in(i);
2683         if (!inputs.member(def)) {
2684           inputs.push(def);
2685           cnt++;
2686         }
2687       }
2688     }
2689   } else { // not a bitwise operations
2690     if (!inputs.member(n)) {
2691       inputs.push(n);
2692       cnt++;
2693     }
2694   }
2695   return cnt;
2696 }
2697 
2698 void Compile::collect_logic_cone_roots(Unique_Node_List& list) {
2699   Unique_Node_List useful_nodes;
2700   C->identify_useful_nodes(useful_nodes);
2701 
2702   for (uint i = 0; i < useful_nodes.size(); i++) {
2703     Node* n = useful_nodes.at(i);
2704     if (is_vector_bitwise_cone_root(n)) {
2705       list.push(n);
2706     }
2707   }
2708 }
2709 
2710 Node* Compile::xform_to_MacroLogicV(PhaseIterGVN& igvn,
2711                                     const TypeVect* vt,
2712                                     Unique_Node_List& partition,
2713                                     Unique_Node_List& inputs) {
2714   assert(partition.size() == 2 || partition.size() == 3, "not supported");
2715   assert(inputs.size()    == 2 || inputs.size()    == 3, "not supported");
2716   assert(Matcher::match_rule_supported_vector(Op_MacroLogicV, vt->length(), vt->element_basic_type()), "not supported");
2717 
2718   Node* in1 = inputs.at(0);
2719   Node* in2 = inputs.at(1);
2720   Node* in3 = (inputs.size() == 3 ? inputs.at(2) : in2);
2721 
2722   uint func = compute_truth_table(partition, inputs);
2723 
2724   Node* pn = partition.at(partition.size() - 1);
2725   Node* mask = pn->is_predicated_vector() ? pn->in(pn->req()-1) : nullptr;
2726   return igvn.transform(MacroLogicVNode::make(igvn, in1, in2, in3, mask, func, vt));
2727 }
2728 
2729 static uint extract_bit(uint func, uint pos) {
2730   return (func & (1 << pos)) >> pos;
2731 }
2732 
2733 //
2734 //  A macro logic node represents a truth table. It has 4 inputs,
2735 //  First three inputs corresponds to 3 columns of a truth table
2736 //  and fourth input captures the logic function.
2737 //
2738 //  eg.  fn = (in1 AND in2) OR in3;
2739 //
2740 //      MacroNode(in1,in2,in3,fn)
2741 //
2742 //  -----------------
2743 //  in1 in2 in3  fn
2744 //  -----------------
2745 //  0    0   0    0
2746 //  0    0   1    1
2747 //  0    1   0    0
2748 //  0    1   1    1
2749 //  1    0   0    0
2750 //  1    0   1    1
2751 //  1    1   0    1
2752 //  1    1   1    1
2753 //
2754 
2755 uint Compile::eval_macro_logic_op(uint func, uint in1 , uint in2, uint in3) {
2756   int res = 0;
2757   for (int i = 0; i < 8; i++) {
2758     int bit1 = extract_bit(in1, i);
2759     int bit2 = extract_bit(in2, i);
2760     int bit3 = extract_bit(in3, i);
2761 
2762     int func_bit_pos = (bit1 << 2 | bit2 << 1 | bit3);
2763     int func_bit = extract_bit(func, func_bit_pos);
2764 
2765     res |= func_bit << i;
2766   }
2767   return res;
2768 }
2769 
2770 static uint eval_operand(Node* n, ResourceHashtable<Node*,uint>& eval_map) {
2771   assert(n != nullptr, "");
2772   assert(eval_map.contains(n), "absent");
2773   return *(eval_map.get(n));
2774 }
2775 
2776 static void eval_operands(Node* n,
2777                           uint& func1, uint& func2, uint& func3,
2778                           ResourceHashtable<Node*,uint>& eval_map) {
2779   assert(is_vector_bitwise_op(n), "");
2780 
2781   if (is_vector_unary_bitwise_op(n)) {
2782     Node* opnd = n->in(1);
2783     if (VectorNode::is_vector_bitwise_not_pattern(n) && VectorNode::is_all_ones_vector(opnd)) {
2784       opnd = n->in(2);
2785     }
2786     func1 = eval_operand(opnd, eval_map);
2787   } else if (is_vector_binary_bitwise_op(n)) {
2788     func1 = eval_operand(n->in(1), eval_map);
2789     func2 = eval_operand(n->in(2), eval_map);
2790   } else {
2791     assert(is_vector_ternary_bitwise_op(n), "unknown operation");
2792     func1 = eval_operand(n->in(1), eval_map);
2793     func2 = eval_operand(n->in(2), eval_map);
2794     func3 = eval_operand(n->in(3), eval_map);
2795   }
2796 }
2797 
2798 uint Compile::compute_truth_table(Unique_Node_List& partition, Unique_Node_List& inputs) {
2799   assert(inputs.size() <= 3, "sanity");
2800   ResourceMark rm;
2801   uint res = 0;
2802   ResourceHashtable<Node*,uint> eval_map;
2803 
2804   // Populate precomputed functions for inputs.
2805   // Each input corresponds to one column of 3 input truth-table.
2806   uint input_funcs[] = { 0xAA,   // (_, _, c) -> c
2807                          0xCC,   // (_, b, _) -> b
2808                          0xF0 }; // (a, _, _) -> a
2809   for (uint i = 0; i < inputs.size(); i++) {
2810     eval_map.put(inputs.at(i), input_funcs[2-i]);
2811   }
2812 
2813   for (uint i = 0; i < partition.size(); i++) {
2814     Node* n = partition.at(i);
2815 
2816     uint func1 = 0, func2 = 0, func3 = 0;
2817     eval_operands(n, func1, func2, func3, eval_map);
2818 
2819     switch (n->Opcode()) {
2820       case Op_OrV:
2821         assert(func3 == 0, "not binary");
2822         res = func1 | func2;
2823         break;
2824       case Op_AndV:
2825         assert(func3 == 0, "not binary");
2826         res = func1 & func2;
2827         break;
2828       case Op_XorV:
2829         if (VectorNode::is_vector_bitwise_not_pattern(n)) {
2830           assert(func2 == 0 && func3 == 0, "not unary");
2831           res = (~func1) & 0xFF;
2832         } else {
2833           assert(func3 == 0, "not binary");
2834           res = func1 ^ func2;
2835         }
2836         break;
2837       case Op_MacroLogicV:
2838         // Ordering of inputs may change during evaluation of sub-tree
2839         // containing MacroLogic node as a child node, thus a re-evaluation
2840         // makes sure that function is evaluated in context of current
2841         // inputs.
2842         res = eval_macro_logic_op(n->in(4)->get_int(), func1, func2, func3);
2843         break;
2844 
2845       default: assert(false, "not supported: %s", n->Name());
2846     }
2847     assert(res <= 0xFF, "invalid");
2848     eval_map.put(n, res);
2849   }
2850   return res;
2851 }
2852 
2853 // Criteria under which nodes gets packed into a macro logic node:-
2854 //  1) Parent and both child nodes are all unmasked or masked with
2855 //     same predicates.
2856 //  2) Masked parent can be packed with left child if it is predicated
2857 //     and both have same predicates.
2858 //  3) Masked parent can be packed with right child if its un-predicated
2859 //     or has matching predication condition.
2860 //  4) An unmasked parent can be packed with an unmasked child.
2861 bool Compile::compute_logic_cone(Node* n, Unique_Node_List& partition, Unique_Node_List& inputs) {
2862   assert(partition.size() == 0, "not empty");
2863   assert(inputs.size() == 0, "not empty");
2864   if (is_vector_ternary_bitwise_op(n)) {
2865     return false;
2866   }
2867 
2868   bool is_unary_op = is_vector_unary_bitwise_op(n);
2869   if (is_unary_op) {
2870     assert(collect_unique_inputs(n, inputs) == 1, "not unary");
2871     return false; // too few inputs
2872   }
2873 
2874   bool pack_left_child = true;
2875   bool pack_right_child = true;
2876 
2877   bool left_child_LOP = is_vector_bitwise_op(n->in(1));
2878   bool right_child_LOP = is_vector_bitwise_op(n->in(2));
2879 
2880   int left_child_input_cnt = 0;
2881   int right_child_input_cnt = 0;
2882 
2883   bool parent_is_predicated = n->is_predicated_vector();
2884   bool left_child_predicated = n->in(1)->is_predicated_vector();
2885   bool right_child_predicated = n->in(2)->is_predicated_vector();
2886 
2887   Node* parent_pred = parent_is_predicated ? n->in(n->req()-1) : nullptr;
2888   Node* left_child_pred = left_child_predicated ? n->in(1)->in(n->in(1)->req()-1) : nullptr;
2889   Node* right_child_pred = right_child_predicated ? n->in(1)->in(n->in(1)->req()-1) : nullptr;
2890 
2891   do {
2892     if (pack_left_child && left_child_LOP &&
2893         ((!parent_is_predicated && !left_child_predicated) ||
2894         ((parent_is_predicated && left_child_predicated &&
2895           parent_pred == left_child_pred)))) {
2896        partition.push(n->in(1));
2897        left_child_input_cnt = collect_unique_inputs(n->in(1), inputs);
2898     } else {
2899        inputs.push(n->in(1));
2900        left_child_input_cnt = 1;
2901     }
2902 
2903     if (pack_right_child && right_child_LOP &&
2904         (!right_child_predicated ||
2905          (right_child_predicated && parent_is_predicated &&
2906           parent_pred == right_child_pred))) {
2907        partition.push(n->in(2));
2908        right_child_input_cnt = collect_unique_inputs(n->in(2), inputs);
2909     } else {
2910        inputs.push(n->in(2));
2911        right_child_input_cnt = 1;
2912     }
2913 
2914     if (inputs.size() > 3) {
2915       assert(partition.size() > 0, "");
2916       inputs.clear();
2917       partition.clear();
2918       if (left_child_input_cnt > right_child_input_cnt) {
2919         pack_left_child = false;
2920       } else {
2921         pack_right_child = false;
2922       }
2923     } else {
2924       break;
2925     }
2926   } while(true);
2927 
2928   if(partition.size()) {
2929     partition.push(n);
2930   }
2931 
2932   return (partition.size() == 2 || partition.size() == 3) &&
2933          (inputs.size()    == 2 || inputs.size()    == 3);
2934 }
2935 
2936 void Compile::process_logic_cone_root(PhaseIterGVN &igvn, Node *n, VectorSet &visited) {
2937   assert(is_vector_bitwise_op(n), "not a root");
2938 
2939   visited.set(n->_idx);
2940 
2941   // 1) Do a DFS walk over the logic cone.
2942   for (uint i = 1; i < n->req(); i++) {
2943     Node* in = n->in(i);
2944     if (!visited.test(in->_idx) && is_vector_bitwise_op(in)) {
2945       process_logic_cone_root(igvn, in, visited);
2946     }
2947   }
2948 
2949   // 2) Bottom up traversal: Merge node[s] with
2950   // the parent to form macro logic node.
2951   Unique_Node_List partition;
2952   Unique_Node_List inputs;
2953   if (compute_logic_cone(n, partition, inputs)) {
2954     const TypeVect* vt = n->bottom_type()->is_vect();
2955     Node* pn = partition.at(partition.size() - 1);
2956     Node* mask = pn->is_predicated_vector() ? pn->in(pn->req()-1) : nullptr;
2957     if (mask == nullptr ||
2958         Matcher::match_rule_supported_vector_masked(Op_MacroLogicV, vt->length(), vt->element_basic_type())) {
2959       Node* macro_logic = xform_to_MacroLogicV(igvn, vt, partition, inputs);
2960       VectorNode::trace_new_vector(macro_logic, "MacroLogic");
2961       igvn.replace_node(n, macro_logic);
2962     }
2963   }
2964 }
2965 
2966 void Compile::optimize_logic_cones(PhaseIterGVN &igvn) {
2967   ResourceMark rm;
2968   if (Matcher::match_rule_supported(Op_MacroLogicV)) {
2969     Unique_Node_List list;
2970     collect_logic_cone_roots(list);
2971 
2972     while (list.size() > 0) {
2973       Node* n = list.pop();
2974       const TypeVect* vt = n->bottom_type()->is_vect();
2975       bool supported = Matcher::match_rule_supported_vector(Op_MacroLogicV, vt->length(), vt->element_basic_type());
2976       if (supported) {
2977         VectorSet visited(comp_arena());
2978         process_logic_cone_root(igvn, n, visited);
2979       }
2980     }
2981   }
2982 }
2983 
2984 //------------------------------Code_Gen---------------------------------------
2985 // Given a graph, generate code for it
2986 void Compile::Code_Gen() {
2987   if (failing()) {
2988     return;
2989   }
2990 
2991   // Perform instruction selection.  You might think we could reclaim Matcher
2992   // memory PDQ, but actually the Matcher is used in generating spill code.
2993   // Internals of the Matcher (including some VectorSets) must remain live
2994   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
2995   // set a bit in reclaimed memory.
2996 
2997   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2998   // nodes.  Mapping is only valid at the root of each matched subtree.
2999   NOT_PRODUCT( verify_graph_edges(); )
3000 
3001   Matcher matcher;
3002   _matcher = &matcher;
3003   {
3004     TracePhase tp(_t_matcher);
3005     matcher.match();
3006     if (failing()) {
3007       return;
3008     }
3009   }
3010   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
3011   // nodes.  Mapping is only valid at the root of each matched subtree.
3012   NOT_PRODUCT( verify_graph_edges(); )
3013 
3014   // If you have too many nodes, or if matching has failed, bail out
3015   check_node_count(0, "out of nodes matching instructions");
3016   if (failing()) {
3017     return;
3018   }
3019 
3020   print_method(PHASE_MATCHING, 2);
3021 
3022   // Build a proper-looking CFG
3023   PhaseCFG cfg(node_arena(), root(), matcher);
3024   if (failing()) {
3025     return;
3026   }
3027   _cfg = &cfg;
3028   {
3029     TracePhase tp(_t_scheduler);
3030     bool success = cfg.do_global_code_motion();
3031     if (!success) {
3032       return;
3033     }
3034 
3035     print_method(PHASE_GLOBAL_CODE_MOTION, 2);
3036     NOT_PRODUCT( verify_graph_edges(); )
3037     cfg.verify();
3038     if (failing()) {
3039       return;
3040     }
3041   }
3042 
3043   PhaseChaitin regalloc(unique(), cfg, matcher, false);
3044   _regalloc = &regalloc;
3045   {
3046     TracePhase tp(_t_registerAllocation);
3047     // Perform register allocation.  After Chaitin, use-def chains are
3048     // no longer accurate (at spill code) and so must be ignored.
3049     // Node->LRG->reg mappings are still accurate.
3050     _regalloc->Register_Allocate();
3051 
3052     // Bail out if the allocator builds too many nodes
3053     if (failing()) {
3054       return;
3055     }
3056 
3057     print_method(PHASE_REGISTER_ALLOCATION, 2);
3058   }
3059 
3060   // Prior to register allocation we kept empty basic blocks in case the
3061   // the allocator needed a place to spill.  After register allocation we
3062   // are not adding any new instructions.  If any basic block is empty, we
3063   // can now safely remove it.
3064   {
3065     TracePhase tp(_t_blockOrdering);
3066     cfg.remove_empty_blocks();
3067     if (do_freq_based_layout()) {
3068       PhaseBlockLayout layout(cfg);
3069     } else {
3070       cfg.set_loop_alignment();
3071     }
3072     cfg.fixup_flow();
3073     cfg.remove_unreachable_blocks();
3074     cfg.verify_dominator_tree();
3075     print_method(PHASE_BLOCK_ORDERING, 3);
3076   }
3077 
3078   // Apply peephole optimizations
3079   if( OptoPeephole ) {
3080     TracePhase tp(_t_peephole);
3081     PhasePeephole peep( _regalloc, cfg);
3082     peep.do_transform();
3083     print_method(PHASE_PEEPHOLE, 3);
3084   }
3085 
3086   // Do late expand if CPU requires this.
3087   if (Matcher::require_postalloc_expand) {
3088     TracePhase tp(_t_postalloc_expand);
3089     cfg.postalloc_expand(_regalloc);
3090     print_method(PHASE_POSTALLOC_EXPAND, 3);
3091   }
3092 
3093 #ifdef ASSERT
3094   {
3095     CompilationMemoryStatistic::do_test_allocations();
3096     if (failing()) return;
3097   }
3098 #endif
3099 
3100   // Convert Nodes to instruction bits in a buffer
3101   {
3102     TracePhase tp(_t_output);
3103     PhaseOutput output;
3104     output.Output();
3105     if (failing())  return;
3106     output.install();
3107     print_method(PHASE_FINAL_CODE, 1); // Compile::_output is not null here
3108   }
3109 
3110   // He's dead, Jim.
3111   _cfg     = (PhaseCFG*)((intptr_t)0xdeadbeef);
3112   _regalloc = (PhaseChaitin*)((intptr_t)0xdeadbeef);
3113 }
3114 
3115 //------------------------------Final_Reshape_Counts---------------------------
3116 // This class defines counters to help identify when a method
3117 // may/must be executed using hardware with only 24-bit precision.
3118 struct Final_Reshape_Counts : public StackObj {
3119   int  _call_count;             // count non-inlined 'common' calls
3120   int  _float_count;            // count float ops requiring 24-bit precision
3121   int  _double_count;           // count double ops requiring more precision
3122   int  _java_call_count;        // count non-inlined 'java' calls
3123   int  _inner_loop_count;       // count loops which need alignment
3124   VectorSet _visited;           // Visitation flags
3125   Node_List _tests;             // Set of IfNodes & PCTableNodes
3126 
3127   Final_Reshape_Counts() :
3128     _call_count(0), _float_count(0), _double_count(0),
3129     _java_call_count(0), _inner_loop_count(0) { }
3130 
3131   void inc_call_count  () { _call_count  ++; }
3132   void inc_float_count () { _float_count ++; }
3133   void inc_double_count() { _double_count++; }
3134   void inc_java_call_count() { _java_call_count++; }
3135   void inc_inner_loop_count() { _inner_loop_count++; }
3136 
3137   int  get_call_count  () const { return _call_count  ; }
3138   int  get_float_count () const { return _float_count ; }
3139   int  get_double_count() const { return _double_count; }
3140   int  get_java_call_count() const { return _java_call_count; }
3141   int  get_inner_loop_count() const { return _inner_loop_count; }
3142 };
3143 
3144 //------------------------------final_graph_reshaping_impl----------------------
3145 // Implement items 1-5 from final_graph_reshaping below.
3146 void Compile::final_graph_reshaping_impl(Node *n, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes) {
3147 
3148   if ( n->outcnt() == 0 ) return; // dead node
3149   uint nop = n->Opcode();
3150 
3151   // Check for 2-input instruction with "last use" on right input.
3152   // Swap to left input.  Implements item (2).
3153   if( n->req() == 3 &&          // two-input instruction
3154       n->in(1)->outcnt() > 1 && // left use is NOT a last use
3155       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
3156       n->in(2)->outcnt() == 1 &&// right use IS a last use
3157       !n->in(2)->is_Con() ) {   // right use is not a constant
3158     // Check for commutative opcode
3159     switch( nop ) {
3160     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
3161     case Op_MaxI:  case Op_MaxL:  case Op_MaxF:  case Op_MaxD:
3162     case Op_MinI:  case Op_MinL:  case Op_MinF:  case Op_MinD:
3163     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
3164     case Op_AndL:  case Op_XorL:  case Op_OrL:
3165     case Op_AndI:  case Op_XorI:  case Op_OrI: {
3166       // Move "last use" input to left by swapping inputs
3167       n->swap_edges(1, 2);
3168       break;
3169     }
3170     default:
3171       break;
3172     }
3173   }
3174 
3175 #ifdef ASSERT
3176   if( n->is_Mem() ) {
3177     int alias_idx = get_alias_index(n->as_Mem()->adr_type());
3178     assert( n->in(0) != nullptr || alias_idx != Compile::AliasIdxRaw ||
3179             // oop will be recorded in oop map if load crosses safepoint
3180             (n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
3181                               LoadNode::is_immutable_value(n->in(MemNode::Address)))),
3182             "raw memory operations should have control edge");
3183   }
3184   if (n->is_MemBar()) {
3185     MemBarNode* mb = n->as_MemBar();
3186     if (mb->trailing_store() || mb->trailing_load_store()) {
3187       assert(mb->leading_membar()->trailing_membar() == mb, "bad membar pair");
3188       Node* mem = BarrierSet::barrier_set()->barrier_set_c2()->step_over_gc_barrier(mb->in(MemBarNode::Precedent));
3189       assert((mb->trailing_store() && mem->is_Store() && mem->as_Store()->is_release()) ||
3190              (mb->trailing_load_store() && mem->is_LoadStore()), "missing mem op");
3191     } else if (mb->leading()) {
3192       assert(mb->trailing_membar()->leading_membar() == mb, "bad membar pair");
3193     }
3194   }
3195 #endif
3196   // Count FPU ops and common calls, implements item (3)
3197   bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->final_graph_reshaping(this, n, nop, dead_nodes);
3198   if (!gc_handled) {
3199     final_graph_reshaping_main_switch(n, frc, nop, dead_nodes);
3200   }
3201 
3202   // Collect CFG split points
3203   if (n->is_MultiBranch() && !n->is_RangeCheck()) {
3204     frc._tests.push(n);
3205   }
3206 }
3207 
3208 void Compile::handle_div_mod_op(Node* n, BasicType bt, bool is_unsigned) {
3209   if (!UseDivMod) {
3210     return;
3211   }
3212 
3213   // Check if "a % b" and "a / b" both exist
3214   Node* d = n->find_similar(Op_DivIL(bt, is_unsigned));
3215   if (d == nullptr) {
3216     return;
3217   }
3218 
3219   // Replace them with a fused divmod if supported
3220   if (Matcher::has_match_rule(Op_DivModIL(bt, is_unsigned))) {
3221     DivModNode* divmod = DivModNode::make(n, bt, is_unsigned);
3222     // If the divisor input for a Div (or Mod etc.) is not zero, then the control input of the Div is set to zero.
3223     // It could be that the divisor input is found not zero because its type is narrowed down by a CastII in the
3224     // subgraph for that input. Range check CastIIs are removed during final graph reshape. To preserve the dependency
3225     // carried by a CastII, precedence edges are added to the Div node. We need to transfer the precedence edges to the
3226     // DivMod node so the dependency is not lost.
3227     divmod->add_prec_from(n);
3228     divmod->add_prec_from(d);
3229     d->subsume_by(divmod->div_proj(), this);
3230     n->subsume_by(divmod->mod_proj(), this);
3231   } else {
3232     // Replace "a % b" with "a - ((a / b) * b)"
3233     Node* mult = MulNode::make(d, d->in(2), bt);
3234     Node* sub = SubNode::make(d->in(1), mult, bt);
3235     n->subsume_by(sub, this);
3236   }
3237 }
3238 
3239 void Compile::final_graph_reshaping_main_switch(Node* n, Final_Reshape_Counts& frc, uint nop, Unique_Node_List& dead_nodes) {
3240   switch( nop ) {
3241   // Count all float operations that may use FPU
3242   case Op_AddF:
3243   case Op_SubF:
3244   case Op_MulF:
3245   case Op_DivF:
3246   case Op_NegF:
3247   case Op_ModF:
3248   case Op_ConvI2F:
3249   case Op_ConF:
3250   case Op_CmpF:
3251   case Op_CmpF3:
3252   case Op_StoreF:
3253   case Op_LoadF:
3254   // case Op_ConvL2F: // longs are split into 32-bit halves
3255     frc.inc_float_count();
3256     break;
3257 
3258   case Op_ConvF2D:
3259   case Op_ConvD2F:
3260     frc.inc_float_count();
3261     frc.inc_double_count();
3262     break;
3263 
3264   // Count all double operations that may use FPU
3265   case Op_AddD:
3266   case Op_SubD:
3267   case Op_MulD:
3268   case Op_DivD:
3269   case Op_NegD:
3270   case Op_ModD:
3271   case Op_ConvI2D:
3272   case Op_ConvD2I:
3273   // case Op_ConvL2D: // handled by leaf call
3274   // case Op_ConvD2L: // handled by leaf call
3275   case Op_ConD:
3276   case Op_CmpD:
3277   case Op_CmpD3:
3278   case Op_StoreD:
3279   case Op_LoadD:
3280   case Op_LoadD_unaligned:
3281     frc.inc_double_count();
3282     break;
3283   case Op_Opaque1:              // Remove Opaque Nodes before matching
3284     n->subsume_by(n->in(1), this);
3285     break;
3286   case Op_CallStaticJava:
3287   case Op_CallJava:
3288   case Op_CallDynamicJava:
3289     frc.inc_java_call_count(); // Count java call site;
3290   case Op_CallRuntime:
3291   case Op_CallLeaf:
3292   case Op_CallLeafVector:
3293   case Op_CallLeafNoFP: {
3294     assert (n->is_Call(), "");
3295     CallNode *call = n->as_Call();
3296     // Count call sites where the FP mode bit would have to be flipped.
3297     // Do not count uncommon runtime calls:
3298     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
3299     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
3300     if (!call->is_CallStaticJava() || !call->as_CallStaticJava()->_name) {
3301       frc.inc_call_count();   // Count the call site
3302     } else {                  // See if uncommon argument is shared
3303       Node *n = call->in(TypeFunc::Parms);
3304       int nop = n->Opcode();
3305       // Clone shared simple arguments to uncommon calls, item (1).
3306       if (n->outcnt() > 1 &&
3307           !n->is_Proj() &&
3308           nop != Op_CreateEx &&
3309           nop != Op_CheckCastPP &&
3310           nop != Op_DecodeN &&
3311           nop != Op_DecodeNKlass &&
3312           !n->is_Mem() &&
3313           !n->is_Phi()) {
3314         Node *x = n->clone();
3315         call->set_req(TypeFunc::Parms, x);
3316       }
3317     }
3318     break;
3319   }
3320   case Op_StoreB:
3321   case Op_StoreC:
3322   case Op_StoreI:
3323   case Op_StoreL:
3324   case Op_CompareAndSwapB:
3325   case Op_CompareAndSwapS:
3326   case Op_CompareAndSwapI:
3327   case Op_CompareAndSwapL:
3328   case Op_CompareAndSwapP:
3329   case Op_CompareAndSwapN:
3330   case Op_WeakCompareAndSwapB:
3331   case Op_WeakCompareAndSwapS:
3332   case Op_WeakCompareAndSwapI:
3333   case Op_WeakCompareAndSwapL:
3334   case Op_WeakCompareAndSwapP:
3335   case Op_WeakCompareAndSwapN:
3336   case Op_CompareAndExchangeB:
3337   case Op_CompareAndExchangeS:
3338   case Op_CompareAndExchangeI:
3339   case Op_CompareAndExchangeL:
3340   case Op_CompareAndExchangeP:
3341   case Op_CompareAndExchangeN:
3342   case Op_GetAndAddS:
3343   case Op_GetAndAddB:
3344   case Op_GetAndAddI:
3345   case Op_GetAndAddL:
3346   case Op_GetAndSetS:
3347   case Op_GetAndSetB:
3348   case Op_GetAndSetI:
3349   case Op_GetAndSetL:
3350   case Op_GetAndSetP:
3351   case Op_GetAndSetN:
3352   case Op_StoreP:
3353   case Op_StoreN:
3354   case Op_StoreNKlass:
3355   case Op_LoadB:
3356   case Op_LoadUB:
3357   case Op_LoadUS:
3358   case Op_LoadI:
3359   case Op_LoadKlass:
3360   case Op_LoadNKlass:
3361   case Op_LoadL:
3362   case Op_LoadL_unaligned:
3363   case Op_LoadP:
3364   case Op_LoadN:
3365   case Op_LoadRange:
3366   case Op_LoadS:
3367     break;
3368 
3369   case Op_AddP: {               // Assert sane base pointers
3370     Node *addp = n->in(AddPNode::Address);
3371     assert( !addp->is_AddP() ||
3372             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
3373             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
3374             "Base pointers must match (addp %u)", addp->_idx );
3375 #ifdef _LP64
3376     if ((UseCompressedOops || UseCompressedClassPointers) &&
3377         addp->Opcode() == Op_ConP &&
3378         addp == n->in(AddPNode::Base) &&
3379         n->in(AddPNode::Offset)->is_Con()) {
3380       // If the transformation of ConP to ConN+DecodeN is beneficial depends
3381       // on the platform and on the compressed oops mode.
3382       // Use addressing with narrow klass to load with offset on x86.
3383       // Some platforms can use the constant pool to load ConP.
3384       // Do this transformation here since IGVN will convert ConN back to ConP.
3385       const Type* t = addp->bottom_type();
3386       bool is_oop   = t->isa_oopptr() != nullptr;
3387       bool is_klass = t->isa_klassptr() != nullptr;
3388 
3389       if ((is_oop   && UseCompressedOops          && Matcher::const_oop_prefer_decode()  ) ||
3390           (is_klass && UseCompressedClassPointers && Matcher::const_klass_prefer_decode() &&
3391            t->isa_klassptr()->exact_klass()->is_in_encoding_range())) {
3392         Node* nn = nullptr;
3393 
3394         int op = is_oop ? Op_ConN : Op_ConNKlass;
3395 
3396         // Look for existing ConN node of the same exact type.
3397         Node* r  = root();
3398         uint cnt = r->outcnt();
3399         for (uint i = 0; i < cnt; i++) {
3400           Node* m = r->raw_out(i);
3401           if (m!= nullptr && m->Opcode() == op &&
3402               m->bottom_type()->make_ptr() == t) {
3403             nn = m;
3404             break;
3405           }
3406         }
3407         if (nn != nullptr) {
3408           // Decode a narrow oop to match address
3409           // [R12 + narrow_oop_reg<<3 + offset]
3410           if (is_oop) {
3411             nn = new DecodeNNode(nn, t);
3412           } else {
3413             nn = new DecodeNKlassNode(nn, t);
3414           }
3415           // Check for succeeding AddP which uses the same Base.
3416           // Otherwise we will run into the assertion above when visiting that guy.
3417           for (uint i = 0; i < n->outcnt(); ++i) {
3418             Node *out_i = n->raw_out(i);
3419             if (out_i && out_i->is_AddP() && out_i->in(AddPNode::Base) == addp) {
3420               out_i->set_req(AddPNode::Base, nn);
3421 #ifdef ASSERT
3422               for (uint j = 0; j < out_i->outcnt(); ++j) {
3423                 Node *out_j = out_i->raw_out(j);
3424                 assert(out_j == nullptr || !out_j->is_AddP() || out_j->in(AddPNode::Base) != addp,
3425                        "more than 2 AddP nodes in a chain (out_j %u)", out_j->_idx);
3426               }
3427 #endif
3428             }
3429           }
3430           n->set_req(AddPNode::Base, nn);
3431           n->set_req(AddPNode::Address, nn);
3432           if (addp->outcnt() == 0) {
3433             addp->disconnect_inputs(this);
3434           }
3435         }
3436       }
3437     }
3438 #endif
3439     break;
3440   }
3441 
3442   case Op_CastPP: {
3443     // Remove CastPP nodes to gain more freedom during scheduling but
3444     // keep the dependency they encode as control or precedence edges
3445     // (if control is set already) on memory operations. Some CastPP
3446     // nodes don't have a control (don't carry a dependency): skip
3447     // those.
3448     if (n->in(0) != nullptr) {
3449       ResourceMark rm;
3450       Unique_Node_List wq;
3451       wq.push(n);
3452       for (uint next = 0; next < wq.size(); ++next) {
3453         Node *m = wq.at(next);
3454         for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) {
3455           Node* use = m->fast_out(i);
3456           if (use->is_Mem() || use->is_EncodeNarrowPtr()) {
3457             use->ensure_control_or_add_prec(n->in(0));
3458           } else {
3459             switch(use->Opcode()) {
3460             case Op_AddP:
3461             case Op_DecodeN:
3462             case Op_DecodeNKlass:
3463             case Op_CheckCastPP:
3464             case Op_CastPP:
3465               wq.push(use);
3466               break;
3467             }
3468           }
3469         }
3470       }
3471     }
3472     const bool is_LP64 = LP64_ONLY(true) NOT_LP64(false);
3473     if (is_LP64 && n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
3474       Node* in1 = n->in(1);
3475       const Type* t = n->bottom_type();
3476       Node* new_in1 = in1->clone();
3477       new_in1->as_DecodeN()->set_type(t);
3478 
3479       if (!Matcher::narrow_oop_use_complex_address()) {
3480         //
3481         // x86, ARM and friends can handle 2 adds in addressing mode
3482         // and Matcher can fold a DecodeN node into address by using
3483         // a narrow oop directly and do implicit null check in address:
3484         //
3485         // [R12 + narrow_oop_reg<<3 + offset]
3486         // NullCheck narrow_oop_reg
3487         //
3488         // On other platforms (Sparc) we have to keep new DecodeN node and
3489         // use it to do implicit null check in address:
3490         //
3491         // decode_not_null narrow_oop_reg, base_reg
3492         // [base_reg + offset]
3493         // NullCheck base_reg
3494         //
3495         // Pin the new DecodeN node to non-null path on these platform (Sparc)
3496         // to keep the information to which null check the new DecodeN node
3497         // corresponds to use it as value in implicit_null_check().
3498         //
3499         new_in1->set_req(0, n->in(0));
3500       }
3501 
3502       n->subsume_by(new_in1, this);
3503       if (in1->outcnt() == 0) {
3504         in1->disconnect_inputs(this);
3505       }
3506     } else {
3507       n->subsume_by(n->in(1), this);
3508       if (n->outcnt() == 0) {
3509         n->disconnect_inputs(this);
3510       }
3511     }
3512     break;
3513   }
3514   case Op_CastII: {
3515     n->as_CastII()->remove_range_check_cast(this);
3516     break;
3517   }
3518 #ifdef _LP64
3519   case Op_CmpP:
3520     // Do this transformation here to preserve CmpPNode::sub() and
3521     // other TypePtr related Ideal optimizations (for example, ptr nullness).
3522     if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
3523       Node* in1 = n->in(1);
3524       Node* in2 = n->in(2);
3525       if (!in1->is_DecodeNarrowPtr()) {
3526         in2 = in1;
3527         in1 = n->in(2);
3528       }
3529       assert(in1->is_DecodeNarrowPtr(), "sanity");
3530 
3531       Node* new_in2 = nullptr;
3532       if (in2->is_DecodeNarrowPtr()) {
3533         assert(in2->Opcode() == in1->Opcode(), "must be same node type");
3534         new_in2 = in2->in(1);
3535       } else if (in2->Opcode() == Op_ConP) {
3536         const Type* t = in2->bottom_type();
3537         if (t == TypePtr::NULL_PTR) {
3538           assert(in1->is_DecodeN(), "compare klass to null?");
3539           // Don't convert CmpP null check into CmpN if compressed
3540           // oops implicit null check is not generated.
3541           // This will allow to generate normal oop implicit null check.
3542           if (Matcher::gen_narrow_oop_implicit_null_checks())
3543             new_in2 = ConNode::make(TypeNarrowOop::NULL_PTR);
3544           //
3545           // This transformation together with CastPP transformation above
3546           // will generated code for implicit null checks for compressed oops.
3547           //
3548           // The original code after Optimize()
3549           //
3550           //    LoadN memory, narrow_oop_reg
3551           //    decode narrow_oop_reg, base_reg
3552           //    CmpP base_reg, nullptr
3553           //    CastPP base_reg // NotNull
3554           //    Load [base_reg + offset], val_reg
3555           //
3556           // after these transformations will be
3557           //
3558           //    LoadN memory, narrow_oop_reg
3559           //    CmpN narrow_oop_reg, nullptr
3560           //    decode_not_null narrow_oop_reg, base_reg
3561           //    Load [base_reg + offset], val_reg
3562           //
3563           // and the uncommon path (== nullptr) will use narrow_oop_reg directly
3564           // since narrow oops can be used in debug info now (see the code in
3565           // final_graph_reshaping_walk()).
3566           //
3567           // At the end the code will be matched to
3568           // on x86:
3569           //
3570           //    Load_narrow_oop memory, narrow_oop_reg
3571           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
3572           //    NullCheck narrow_oop_reg
3573           //
3574           // and on sparc:
3575           //
3576           //    Load_narrow_oop memory, narrow_oop_reg
3577           //    decode_not_null narrow_oop_reg, base_reg
3578           //    Load [base_reg + offset], val_reg
3579           //    NullCheck base_reg
3580           //
3581         } else if (t->isa_oopptr()) {
3582           new_in2 = ConNode::make(t->make_narrowoop());
3583         } else if (t->isa_klassptr()) {
3584           new_in2 = ConNode::make(t->make_narrowklass());
3585         }
3586       }
3587       if (new_in2 != nullptr) {
3588         Node* cmpN = new CmpNNode(in1->in(1), new_in2);
3589         n->subsume_by(cmpN, this);
3590         if (in1->outcnt() == 0) {
3591           in1->disconnect_inputs(this);
3592         }
3593         if (in2->outcnt() == 0) {
3594           in2->disconnect_inputs(this);
3595         }
3596       }
3597     }
3598     break;
3599 
3600   case Op_DecodeN:
3601   case Op_DecodeNKlass:
3602     assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
3603     // DecodeN could be pinned when it can't be fold into
3604     // an address expression, see the code for Op_CastPP above.
3605     assert(n->in(0) == nullptr || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
3606     break;
3607 
3608   case Op_EncodeP:
3609   case Op_EncodePKlass: {
3610     Node* in1 = n->in(1);
3611     if (in1->is_DecodeNarrowPtr()) {
3612       n->subsume_by(in1->in(1), this);
3613     } else if (in1->Opcode() == Op_ConP) {
3614       const Type* t = in1->bottom_type();
3615       if (t == TypePtr::NULL_PTR) {
3616         assert(t->isa_oopptr(), "null klass?");
3617         n->subsume_by(ConNode::make(TypeNarrowOop::NULL_PTR), this);
3618       } else if (t->isa_oopptr()) {
3619         n->subsume_by(ConNode::make(t->make_narrowoop()), this);
3620       } else if (t->isa_klassptr()) {
3621         n->subsume_by(ConNode::make(t->make_narrowklass()), this);
3622       }
3623     }
3624     if (in1->outcnt() == 0) {
3625       in1->disconnect_inputs(this);
3626     }
3627     break;
3628   }
3629 
3630   case Op_Proj: {
3631     if (OptimizeStringConcat || IncrementalInline) {
3632       ProjNode* proj = n->as_Proj();
3633       if (proj->_is_io_use) {
3634         assert(proj->_con == TypeFunc::I_O || proj->_con == TypeFunc::Memory, "");
3635         // Separate projections were used for the exception path which
3636         // are normally removed by a late inline.  If it wasn't inlined
3637         // then they will hang around and should just be replaced with
3638         // the original one. Merge them.
3639         Node* non_io_proj = proj->in(0)->as_Multi()->proj_out_or_null(proj->_con, false /*is_io_use*/);
3640         if (non_io_proj  != nullptr) {
3641           proj->subsume_by(non_io_proj , this);
3642         }
3643       }
3644     }
3645     break;
3646   }
3647 
3648   case Op_Phi:
3649     if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
3650       // The EncodeP optimization may create Phi with the same edges
3651       // for all paths. It is not handled well by Register Allocator.
3652       Node* unique_in = n->in(1);
3653       assert(unique_in != nullptr, "");
3654       uint cnt = n->req();
3655       for (uint i = 2; i < cnt; i++) {
3656         Node* m = n->in(i);
3657         assert(m != nullptr, "");
3658         if (unique_in != m)
3659           unique_in = nullptr;
3660       }
3661       if (unique_in != nullptr) {
3662         n->subsume_by(unique_in, this);
3663       }
3664     }
3665     break;
3666 
3667 #endif
3668 
3669   case Op_ModI:
3670     handle_div_mod_op(n, T_INT, false);
3671     break;
3672 
3673   case Op_ModL:
3674     handle_div_mod_op(n, T_LONG, false);
3675     break;
3676 
3677   case Op_UModI:
3678     handle_div_mod_op(n, T_INT, true);
3679     break;
3680 
3681   case Op_UModL:
3682     handle_div_mod_op(n, T_LONG, true);
3683     break;
3684 
3685   case Op_LoadVector:
3686   case Op_StoreVector:
3687 #ifdef ASSERT
3688     // Add VerifyVectorAlignment node between adr and load / store.
3689     if (VerifyAlignVector && Matcher::has_match_rule(Op_VerifyVectorAlignment)) {
3690       bool must_verify_alignment = n->is_LoadVector() ? n->as_LoadVector()->must_verify_alignment() :
3691                                                         n->as_StoreVector()->must_verify_alignment();
3692       if (must_verify_alignment) {
3693         jlong vector_width = n->is_LoadVector() ? n->as_LoadVector()->memory_size() :
3694                                                   n->as_StoreVector()->memory_size();
3695         // The memory access should be aligned to the vector width in bytes.
3696         // However, the underlying array is possibly less well aligned, but at least
3697         // to ObjectAlignmentInBytes. Hence, even if multiple arrays are accessed in
3698         // a loop we can expect at least the following alignment:
3699         jlong guaranteed_alignment = MIN2(vector_width, (jlong)ObjectAlignmentInBytes);
3700         assert(2 <= guaranteed_alignment && guaranteed_alignment <= 64, "alignment must be in range");
3701         assert(is_power_of_2(guaranteed_alignment), "alignment must be power of 2");
3702         // Create mask from alignment. e.g. 0b1000 -> 0b0111
3703         jlong mask = guaranteed_alignment - 1;
3704         Node* mask_con = ConLNode::make(mask);
3705         VerifyVectorAlignmentNode* va = new VerifyVectorAlignmentNode(n->in(MemNode::Address), mask_con);
3706         n->set_req(MemNode::Address, va);
3707       }
3708     }
3709 #endif
3710     break;
3711 
3712   case Op_LoadVectorGather:
3713   case Op_StoreVectorScatter:
3714   case Op_LoadVectorGatherMasked:
3715   case Op_StoreVectorScatterMasked:
3716   case Op_VectorCmpMasked:
3717   case Op_VectorMaskGen:
3718   case Op_LoadVectorMasked:
3719   case Op_StoreVectorMasked:
3720     break;
3721 
3722   case Op_AddReductionVI:
3723   case Op_AddReductionVL:
3724   case Op_AddReductionVF:
3725   case Op_AddReductionVD:
3726   case Op_MulReductionVI:
3727   case Op_MulReductionVL:
3728   case Op_MulReductionVF:
3729   case Op_MulReductionVD:
3730   case Op_MinReductionV:
3731   case Op_MaxReductionV:
3732   case Op_AndReductionV:
3733   case Op_OrReductionV:
3734   case Op_XorReductionV:
3735     break;
3736 
3737   case Op_PackB:
3738   case Op_PackS:
3739   case Op_PackI:
3740   case Op_PackF:
3741   case Op_PackL:
3742   case Op_PackD:
3743     if (n->req()-1 > 2) {
3744       // Replace many operand PackNodes with a binary tree for matching
3745       PackNode* p = (PackNode*) n;
3746       Node* btp = p->binary_tree_pack(1, n->req());
3747       n->subsume_by(btp, this);
3748     }
3749     break;
3750   case Op_Loop:
3751     assert(!n->as_Loop()->is_loop_nest_inner_loop() || _loop_opts_cnt == 0, "should have been turned into a counted loop");
3752   case Op_CountedLoop:
3753   case Op_LongCountedLoop:
3754   case Op_OuterStripMinedLoop:
3755     if (n->as_Loop()->is_inner_loop()) {
3756       frc.inc_inner_loop_count();
3757     }
3758     n->as_Loop()->verify_strip_mined(0);
3759     break;
3760   case Op_LShiftI:
3761   case Op_RShiftI:
3762   case Op_URShiftI:
3763   case Op_LShiftL:
3764   case Op_RShiftL:
3765   case Op_URShiftL:
3766     if (Matcher::need_masked_shift_count) {
3767       // The cpu's shift instructions don't restrict the count to the
3768       // lower 5/6 bits. We need to do the masking ourselves.
3769       Node* in2 = n->in(2);
3770       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
3771       const TypeInt* t = in2->find_int_type();
3772       if (t != nullptr && t->is_con()) {
3773         juint shift = t->get_con();
3774         if (shift > mask) { // Unsigned cmp
3775           n->set_req(2, ConNode::make(TypeInt::make(shift & mask)));
3776         }
3777       } else {
3778         if (t == nullptr || t->_lo < 0 || t->_hi > (int)mask) {
3779           Node* shift = new AndINode(in2, ConNode::make(TypeInt::make(mask)));
3780           n->set_req(2, shift);
3781         }
3782       }
3783       if (in2->outcnt() == 0) { // Remove dead node
3784         in2->disconnect_inputs(this);
3785       }
3786     }
3787     break;
3788   case Op_MemBarStoreStore:
3789   case Op_MemBarRelease:
3790     // Break the link with AllocateNode: it is no longer useful and
3791     // confuses register allocation.
3792     if (n->req() > MemBarNode::Precedent) {
3793       n->set_req(MemBarNode::Precedent, top());
3794     }
3795     break;
3796   case Op_MemBarAcquire: {
3797     if (n->as_MemBar()->trailing_load() && n->req() > MemBarNode::Precedent) {
3798       // At parse time, the trailing MemBarAcquire for a volatile load
3799       // is created with an edge to the load. After optimizations,
3800       // that input may be a chain of Phis. If those phis have no
3801       // other use, then the MemBarAcquire keeps them alive and
3802       // register allocation can be confused.
3803       dead_nodes.push(n->in(MemBarNode::Precedent));
3804       n->set_req(MemBarNode::Precedent, top());
3805     }
3806     break;
3807   }
3808   case Op_Blackhole:
3809     break;
3810   case Op_RangeCheck: {
3811     RangeCheckNode* rc = n->as_RangeCheck();
3812     Node* iff = new IfNode(rc->in(0), rc->in(1), rc->_prob, rc->_fcnt);
3813     n->subsume_by(iff, this);
3814     frc._tests.push(iff);
3815     break;
3816   }
3817   case Op_ConvI2L: {
3818     if (!Matcher::convi2l_type_required) {
3819       // Code generation on some platforms doesn't need accurate
3820       // ConvI2L types. Widening the type can help remove redundant
3821       // address computations.
3822       n->as_Type()->set_type(TypeLong::INT);
3823       ResourceMark rm;
3824       Unique_Node_List wq;
3825       wq.push(n);
3826       for (uint next = 0; next < wq.size(); next++) {
3827         Node *m = wq.at(next);
3828 
3829         for(;;) {
3830           // Loop over all nodes with identical inputs edges as m
3831           Node* k = m->find_similar(m->Opcode());
3832           if (k == nullptr) {
3833             break;
3834           }
3835           // Push their uses so we get a chance to remove node made
3836           // redundant
3837           for (DUIterator_Fast imax, i = k->fast_outs(imax); i < imax; i++) {
3838             Node* u = k->fast_out(i);
3839             if (u->Opcode() == Op_LShiftL ||
3840                 u->Opcode() == Op_AddL ||
3841                 u->Opcode() == Op_SubL ||
3842                 u->Opcode() == Op_AddP) {
3843               wq.push(u);
3844             }
3845           }
3846           // Replace all nodes with identical edges as m with m
3847           k->subsume_by(m, this);
3848         }
3849       }
3850     }
3851     break;
3852   }
3853   case Op_CmpUL: {
3854     if (!Matcher::has_match_rule(Op_CmpUL)) {
3855       // No support for unsigned long comparisons
3856       ConINode* sign_pos = new ConINode(TypeInt::make(BitsPerLong - 1));
3857       Node* sign_bit_mask = new RShiftLNode(n->in(1), sign_pos);
3858       Node* orl = new OrLNode(n->in(1), sign_bit_mask);
3859       ConLNode* remove_sign_mask = new ConLNode(TypeLong::make(max_jlong));
3860       Node* andl = new AndLNode(orl, remove_sign_mask);
3861       Node* cmp = new CmpLNode(andl, n->in(2));
3862       n->subsume_by(cmp, this);
3863     }
3864     break;
3865   }
3866 #ifdef ASSERT
3867   case Op_ConNKlass: {
3868     const TypePtr* tp = n->as_Type()->type()->make_ptr();
3869     ciKlass* klass = tp->is_klassptr()->exact_klass();
3870     assert(klass->is_in_encoding_range(), "klass cannot be compressed");
3871     break;
3872   }
3873 #endif
3874   default:
3875     assert(!n->is_Call(), "");
3876     assert(!n->is_Mem(), "");
3877     assert(nop != Op_ProfileBoolean, "should be eliminated during IGVN");
3878     break;
3879   }
3880 }
3881 
3882 //------------------------------final_graph_reshaping_walk---------------------
3883 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
3884 // requires that the walk visits a node's inputs before visiting the node.
3885 void Compile::final_graph_reshaping_walk(Node_Stack& nstack, Node* root, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes) {
3886   Unique_Node_List sfpt;
3887 
3888   frc._visited.set(root->_idx); // first, mark node as visited
3889   uint cnt = root->req();
3890   Node *n = root;
3891   uint  i = 0;
3892   while (true) {
3893     if (i < cnt) {
3894       // Place all non-visited non-null inputs onto stack
3895       Node* m = n->in(i);
3896       ++i;
3897       if (m != nullptr && !frc._visited.test_set(m->_idx)) {
3898         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != nullptr) {
3899           // compute worst case interpreter size in case of a deoptimization
3900           update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size());
3901 
3902           sfpt.push(m);
3903         }
3904         cnt = m->req();
3905         nstack.push(n, i); // put on stack parent and next input's index
3906         n = m;
3907         i = 0;
3908       }
3909     } else {
3910       // Now do post-visit work
3911       final_graph_reshaping_impl(n, frc, dead_nodes);
3912       if (nstack.is_empty())
3913         break;             // finished
3914       n = nstack.node();   // Get node from stack
3915       cnt = n->req();
3916       i = nstack.index();
3917       nstack.pop();        // Shift to the next node on stack
3918     }
3919   }
3920 
3921   // Skip next transformation if compressed oops are not used.
3922   if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
3923       (!UseCompressedOops && !UseCompressedClassPointers))
3924     return;
3925 
3926   // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
3927   // It could be done for an uncommon traps or any safepoints/calls
3928   // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
3929   while (sfpt.size() > 0) {
3930     n = sfpt.pop();
3931     JVMState *jvms = n->as_SafePoint()->jvms();
3932     assert(jvms != nullptr, "sanity");
3933     int start = jvms->debug_start();
3934     int end   = n->req();
3935     bool is_uncommon = (n->is_CallStaticJava() &&
3936                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
3937     for (int j = start; j < end; j++) {
3938       Node* in = n->in(j);
3939       if (in->is_DecodeNarrowPtr()) {
3940         bool safe_to_skip = true;
3941         if (!is_uncommon ) {
3942           // Is it safe to skip?
3943           for (uint i = 0; i < in->outcnt(); i++) {
3944             Node* u = in->raw_out(i);
3945             if (!u->is_SafePoint() ||
3946                 (u->is_Call() && u->as_Call()->has_non_debug_use(n))) {
3947               safe_to_skip = false;
3948             }
3949           }
3950         }
3951         if (safe_to_skip) {
3952           n->set_req(j, in->in(1));
3953         }
3954         if (in->outcnt() == 0) {
3955           in->disconnect_inputs(this);
3956         }
3957       }
3958     }
3959   }
3960 }
3961 
3962 //------------------------------final_graph_reshaping--------------------------
3963 // Final Graph Reshaping.
3964 //
3965 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
3966 //     and not commoned up and forced early.  Must come after regular
3967 //     optimizations to avoid GVN undoing the cloning.  Clone constant
3968 //     inputs to Loop Phis; these will be split by the allocator anyways.
3969 //     Remove Opaque nodes.
3970 // (2) Move last-uses by commutative operations to the left input to encourage
3971 //     Intel update-in-place two-address operations and better register usage
3972 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
3973 //     calls canonicalizing them back.
3974 // (3) Count the number of double-precision FP ops, single-precision FP ops
3975 //     and call sites.  On Intel, we can get correct rounding either by
3976 //     forcing singles to memory (requires extra stores and loads after each
3977 //     FP bytecode) or we can set a rounding mode bit (requires setting and
3978 //     clearing the mode bit around call sites).  The mode bit is only used
3979 //     if the relative frequency of single FP ops to calls is low enough.
3980 //     This is a key transform for SPEC mpeg_audio.
3981 // (4) Detect infinite loops; blobs of code reachable from above but not
3982 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
3983 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
3984 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
3985 //     Detection is by looking for IfNodes where only 1 projection is
3986 //     reachable from below or CatchNodes missing some targets.
3987 // (5) Assert for insane oop offsets in debug mode.
3988 
3989 bool Compile::final_graph_reshaping() {
3990   // an infinite loop may have been eliminated by the optimizer,
3991   // in which case the graph will be empty.
3992   if (root()->req() == 1) {
3993     // Do not compile method that is only a trivial infinite loop,
3994     // since the content of the loop may have been eliminated.
3995     record_method_not_compilable("trivial infinite loop");
3996     return true;
3997   }
3998 
3999   // Expensive nodes have their control input set to prevent the GVN
4000   // from freely commoning them. There's no GVN beyond this point so
4001   // no need to keep the control input. We want the expensive nodes to
4002   // be freely moved to the least frequent code path by gcm.
4003   assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
4004   for (int i = 0; i < expensive_count(); i++) {
4005     _expensive_nodes.at(i)->set_req(0, nullptr);
4006   }
4007 
4008   Final_Reshape_Counts frc;
4009 
4010   // Visit everybody reachable!
4011   // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc
4012   Node_Stack nstack(live_nodes() >> 1);
4013   Unique_Node_List dead_nodes;
4014   final_graph_reshaping_walk(nstack, root(), frc, dead_nodes);
4015 
4016   // Check for unreachable (from below) code (i.e., infinite loops).
4017   for( uint i = 0; i < frc._tests.size(); i++ ) {
4018     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
4019     // Get number of CFG targets.
4020     // Note that PCTables include exception targets after calls.
4021     uint required_outcnt = n->required_outcnt();
4022     if (n->outcnt() != required_outcnt) {
4023       // Check for a few special cases.  Rethrow Nodes never take the
4024       // 'fall-thru' path, so expected kids is 1 less.
4025       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
4026         if (n->in(0)->in(0)->is_Call()) {
4027           CallNode* call = n->in(0)->in(0)->as_Call();
4028           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
4029             required_outcnt--;      // Rethrow always has 1 less kid
4030           } else if (call->req() > TypeFunc::Parms &&
4031                      call->is_CallDynamicJava()) {
4032             // Check for null receiver. In such case, the optimizer has
4033             // detected that the virtual call will always result in a null
4034             // pointer exception. The fall-through projection of this CatchNode
4035             // will not be populated.
4036             Node* arg0 = call->in(TypeFunc::Parms);
4037             if (arg0->is_Type() &&
4038                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
4039               required_outcnt--;
4040             }
4041           } else if (call->entry_point() == OptoRuntime::new_array_Java() ||
4042                      call->entry_point() == OptoRuntime::new_array_nozero_Java()) {
4043             // Check for illegal array length. In such case, the optimizer has
4044             // detected that the allocation attempt will always result in an
4045             // exception. There is no fall-through projection of this CatchNode .
4046             assert(call->is_CallStaticJava(), "static call expected");
4047             assert(call->req() == call->jvms()->endoff() + 1, "missing extra input");
4048             uint valid_length_test_input = call->req() - 1;
4049             Node* valid_length_test = call->in(valid_length_test_input);
4050             call->del_req(valid_length_test_input);
4051             if (valid_length_test->find_int_con(1) == 0) {
4052               required_outcnt--;
4053             }
4054             dead_nodes.push(valid_length_test);
4055             assert(n->outcnt() == required_outcnt, "malformed control flow");
4056             continue;
4057           }
4058         }
4059       }
4060 
4061       // Recheck with a better notion of 'required_outcnt'
4062       if (n->outcnt() != required_outcnt) {
4063         record_method_not_compilable("malformed control flow");
4064         return true;            // Not all targets reachable!
4065       }
4066     } else if (n->is_PCTable() && n->in(0) && n->in(0)->in(0) && n->in(0)->in(0)->is_Call()) {
4067       CallNode* call = n->in(0)->in(0)->as_Call();
4068       if (call->entry_point() == OptoRuntime::new_array_Java() ||
4069           call->entry_point() == OptoRuntime::new_array_nozero_Java()) {
4070         assert(call->is_CallStaticJava(), "static call expected");
4071         assert(call->req() == call->jvms()->endoff() + 1, "missing extra input");
4072         uint valid_length_test_input = call->req() - 1;
4073         dead_nodes.push(call->in(valid_length_test_input));
4074         call->del_req(valid_length_test_input); // valid length test useless now
4075       }
4076     }
4077     // Check that I actually visited all kids.  Unreached kids
4078     // must be infinite loops.
4079     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
4080       if (!frc._visited.test(n->fast_out(j)->_idx)) {
4081         record_method_not_compilable("infinite loop");
4082         return true;            // Found unvisited kid; must be unreach
4083       }
4084 
4085     // Here so verification code in final_graph_reshaping_walk()
4086     // always see an OuterStripMinedLoopEnd
4087     if (n->is_OuterStripMinedLoopEnd() || n->is_LongCountedLoopEnd()) {
4088       IfNode* init_iff = n->as_If();
4089       Node* iff = new IfNode(init_iff->in(0), init_iff->in(1), init_iff->_prob, init_iff->_fcnt);
4090       n->subsume_by(iff, this);
4091     }
4092   }
4093 
4094   while (dead_nodes.size() > 0) {
4095     Node* m = dead_nodes.pop();
4096     if (m->outcnt() == 0 && m != top()) {
4097       for (uint j = 0; j < m->req(); j++) {
4098         Node* in = m->in(j);
4099         if (in != nullptr) {
4100           dead_nodes.push(in);
4101         }
4102       }
4103       m->disconnect_inputs(this);
4104     }
4105   }
4106 
4107   set_java_calls(frc.get_java_call_count());
4108   set_inner_loops(frc.get_inner_loop_count());
4109 
4110   // No infinite loops, no reason to bail out.
4111   return false;
4112 }
4113 
4114 //-----------------------------too_many_traps----------------------------------
4115 // Report if there are too many traps at the current method and bci.
4116 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
4117 bool Compile::too_many_traps(ciMethod* method,
4118                              int bci,
4119                              Deoptimization::DeoptReason reason) {
4120   if (method->has_trap_at(bci)) {
4121     return true;
4122   }
4123   if (PreloadReduceTraps && for_preload()) {
4124     // Preload code should not have traps, if possible.
4125     return true;
4126   }
4127   ciMethodData* md = method->method_data();
4128   if (md->is_empty()) {
4129     // Assume the trap has not occurred, or that it occurred only
4130     // because of a transient condition during start-up in the interpreter.
4131     return false;
4132   }
4133   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : nullptr;
4134   if (md->has_trap_at(bci, m, reason) != 0) {
4135     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
4136     // Also, if there are multiple reasons, or if there is no per-BCI record,
4137     // assume the worst.
4138     if (log())
4139       log()->elem("observe trap='%s' count='%d'",
4140                   Deoptimization::trap_reason_name(reason),
4141                   md->trap_count(reason));
4142     return true;
4143   } else {
4144     // Ignore method/bci and see if there have been too many globally.
4145     return too_many_traps(reason, md);
4146   }
4147 }
4148 
4149 // Less-accurate variant which does not require a method and bci.
4150 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
4151                              ciMethodData* logmd) {
4152   if (PreloadReduceTraps && for_preload()) {
4153     // Preload code should not have traps, if possible.
4154     return true;
4155   }
4156   if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) {
4157     // Too many traps globally.
4158     // Note that we use cumulative trap_count, not just md->trap_count.
4159     if (log()) {
4160       int mcount = (logmd == nullptr)? -1: (int)logmd->trap_count(reason);
4161       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
4162                   Deoptimization::trap_reason_name(reason),
4163                   mcount, trap_count(reason));
4164     }
4165     return true;
4166   } else {
4167     // The coast is clear.
4168     return false;
4169   }
4170 }
4171 
4172 //--------------------------too_many_recompiles--------------------------------
4173 // Report if there are too many recompiles at the current method and bci.
4174 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
4175 // Is not eager to return true, since this will cause the compiler to use
4176 // Action_none for a trap point, to avoid too many recompilations.
4177 bool Compile::too_many_recompiles(ciMethod* method,
4178                                   int bci,
4179                                   Deoptimization::DeoptReason reason) {
4180   ciMethodData* md = method->method_data();
4181   if (md->is_empty()) {
4182     // Assume the trap has not occurred, or that it occurred only
4183     // because of a transient condition during start-up in the interpreter.
4184     return false;
4185   }
4186   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
4187   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
4188   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
4189   Deoptimization::DeoptReason per_bc_reason
4190     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
4191   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : nullptr;
4192   if ((per_bc_reason == Deoptimization::Reason_none
4193        || md->has_trap_at(bci, m, reason) != 0)
4194       // The trap frequency measure we care about is the recompile count:
4195       && md->trap_recompiled_at(bci, m)
4196       && md->overflow_recompile_count() >= bc_cutoff) {
4197     // Do not emit a trap here if it has already caused recompilations.
4198     // Also, if there are multiple reasons, or if there is no per-BCI record,
4199     // assume the worst.
4200     if (log())
4201       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
4202                   Deoptimization::trap_reason_name(reason),
4203                   md->trap_count(reason),
4204                   md->overflow_recompile_count());
4205     return true;
4206   } else if (trap_count(reason) != 0
4207              && decompile_count() >= m_cutoff) {
4208     // Too many recompiles globally, and we have seen this sort of trap.
4209     // Use cumulative decompile_count, not just md->decompile_count.
4210     if (log())
4211       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
4212                   Deoptimization::trap_reason_name(reason),
4213                   md->trap_count(reason), trap_count(reason),
4214                   md->decompile_count(), decompile_count());
4215     return true;
4216   } else {
4217     // The coast is clear.
4218     return false;
4219   }
4220 }
4221 
4222 // Compute when not to trap. Used by matching trap based nodes and
4223 // NullCheck optimization.
4224 void Compile::set_allowed_deopt_reasons() {
4225   _allowed_reasons = 0;
4226   if (is_method_compilation()) {
4227     for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) {
4228       assert(rs < BitsPerInt, "recode bit map");
4229       if (!too_many_traps((Deoptimization::DeoptReason) rs)) {
4230         _allowed_reasons |= nth_bit(rs);
4231       }
4232     }
4233   }
4234 }
4235 
4236 bool Compile::needs_clinit_barrier(ciMethod* method, ciMethod* accessing_method) {
4237   return method->is_static() && needs_clinit_barrier(method->holder(), accessing_method);
4238 }
4239 
4240 bool Compile::needs_clinit_barrier(ciField* field, ciMethod* accessing_method) {
4241   return field->is_static() && needs_clinit_barrier(field->holder(), accessing_method);
4242 }
4243 
4244 bool Compile::needs_clinit_barrier(ciInstanceKlass* holder, ciMethod* accessing_method) {
4245   if (holder->is_initialized() && !do_clinit_barriers()) {
4246     return false;
4247   }
4248   if (holder->is_being_initialized() || do_clinit_barriers()) {
4249     if (accessing_method->holder() == holder) {
4250       // Access inside a class. The barrier can be elided when access happens in <clinit>,
4251       // <init>, or a static method. In all those cases, there was an initialization
4252       // barrier on the holder klass passed.
4253       if (accessing_method->is_static_initializer() ||
4254           accessing_method->is_object_initializer() ||
4255           accessing_method->is_static()) {
4256         return false;
4257       }
4258     } else if (accessing_method->holder()->is_subclass_of(holder)) {
4259       // Access from a subclass. The barrier can be elided only when access happens in <clinit>.
4260       // In case of <init> or a static method, the barrier is on the subclass is not enough:
4261       // child class can become fully initialized while its parent class is still being initialized.
4262       if (accessing_method->is_static_initializer()) {
4263         return false;
4264       }
4265     }
4266     ciMethod* root = method(); // the root method of compilation
4267     if (root != accessing_method) {
4268       return needs_clinit_barrier(holder, root); // check access in the context of compilation root
4269     }
4270   }
4271   return true;
4272 }
4273 
4274 #ifndef PRODUCT
4275 //------------------------------verify_bidirectional_edges---------------------
4276 // For each input edge to a node (ie - for each Use-Def edge), verify that
4277 // there is a corresponding Def-Use edge.
4278 void Compile::verify_bidirectional_edges(Unique_Node_List& visited, const Unique_Node_List* root_and_safepoints) const {
4279   // Allocate stack of size C->live_nodes()/16 to avoid frequent realloc
4280   uint stack_size = live_nodes() >> 4;
4281   Node_List nstack(MAX2(stack_size, (uint) OptoNodeListSize));
4282   if (root_and_safepoints != nullptr) {
4283     assert(root_and_safepoints->member(_root), "root is not in root_and_safepoints");
4284     for (uint i = 0, limit = root_and_safepoints->size(); i < limit; i++) {
4285       Node* root_or_safepoint = root_and_safepoints->at(i);
4286       // If the node is a safepoint, let's check if it still has a control input
4287       // Lack of control input signifies that this node was killed by CCP or
4288       // recursively by remove_globally_dead_node and it shouldn't be a starting
4289       // point.
4290       if (!root_or_safepoint->is_SafePoint() || root_or_safepoint->in(0) != nullptr) {
4291         nstack.push(root_or_safepoint);
4292       }
4293     }
4294   } else {
4295     nstack.push(_root);
4296   }
4297 
4298   while (nstack.size() > 0) {
4299     Node* n = nstack.pop();
4300     if (visited.member(n)) {
4301       continue;
4302     }
4303     visited.push(n);
4304 
4305     // Walk over all input edges, checking for correspondence
4306     uint length = n->len();
4307     for (uint i = 0; i < length; i++) {
4308       Node* in = n->in(i);
4309       if (in != nullptr && !visited.member(in)) {
4310         nstack.push(in); // Put it on stack
4311       }
4312       if (in != nullptr && !in->is_top()) {
4313         // Count instances of `next`
4314         int cnt = 0;
4315         for (uint idx = 0; idx < in->_outcnt; idx++) {
4316           if (in->_out[idx] == n) {
4317             cnt++;
4318           }
4319         }
4320         assert(cnt > 0, "Failed to find Def-Use edge.");
4321         // Check for duplicate edges
4322         // walk the input array downcounting the input edges to n
4323         for (uint j = 0; j < length; j++) {
4324           if (n->in(j) == in) {
4325             cnt--;
4326           }
4327         }
4328         assert(cnt == 0, "Mismatched edge count.");
4329       } else if (in == nullptr) {
4330         assert(i == 0 || i >= n->req() ||
4331                n->is_Region() || n->is_Phi() || n->is_ArrayCopy() ||
4332                (n->is_Unlock() && i == (n->req() - 1)) ||
4333                (n->is_MemBar() && i == 5), // the precedence edge to a membar can be removed during macro node expansion
4334               "only region, phi, arraycopy, unlock or membar nodes have null data edges");
4335       } else {
4336         assert(in->is_top(), "sanity");
4337         // Nothing to check.
4338       }
4339     }
4340   }
4341 }
4342 
4343 //------------------------------verify_graph_edges---------------------------
4344 // Walk the Graph and verify that there is a one-to-one correspondence
4345 // between Use-Def edges and Def-Use edges in the graph.
4346 void Compile::verify_graph_edges(bool no_dead_code, const Unique_Node_List* root_and_safepoints) const {
4347   if (VerifyGraphEdges) {
4348     Unique_Node_List visited;
4349 
4350     // Call graph walk to check edges
4351     verify_bidirectional_edges(visited, root_and_safepoints);
4352     if (no_dead_code) {
4353       // Now make sure that no visited node is used by an unvisited node.
4354       bool dead_nodes = false;
4355       Unique_Node_List checked;
4356       while (visited.size() > 0) {
4357         Node* n = visited.pop();
4358         checked.push(n);
4359         for (uint i = 0; i < n->outcnt(); i++) {
4360           Node* use = n->raw_out(i);
4361           if (checked.member(use))  continue;  // already checked
4362           if (visited.member(use))  continue;  // already in the graph
4363           if (use->is_Con())        continue;  // a dead ConNode is OK
4364           // At this point, we have found a dead node which is DU-reachable.
4365           if (!dead_nodes) {
4366             tty->print_cr("*** Dead nodes reachable via DU edges:");
4367             dead_nodes = true;
4368           }
4369           use->dump(2);
4370           tty->print_cr("---");
4371           checked.push(use);  // No repeats; pretend it is now checked.
4372         }
4373       }
4374       assert(!dead_nodes, "using nodes must be reachable from root");
4375     }
4376   }
4377 }
4378 #endif
4379 
4380 // The Compile object keeps track of failure reasons separately from the ciEnv.
4381 // This is required because there is not quite a 1-1 relation between the
4382 // ciEnv and its compilation task and the Compile object.  Note that one
4383 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
4384 // to backtrack and retry without subsuming loads.  Other than this backtracking
4385 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
4386 // by the logic in C2Compiler.
4387 void Compile::record_failure(const char* reason DEBUG_ONLY(COMMA bool allow_multiple_failures)) {
4388   if (log() != nullptr) {
4389     log()->elem("failure reason='%s' phase='compile'", reason);
4390   }
4391   if (_failure_reason.get() == nullptr) {
4392     // Record the first failure reason.
4393     _failure_reason.set(reason);
4394     if (CaptureBailoutInformation) {
4395       _first_failure_details = new CompilationFailureInfo(reason);
4396     }
4397   } else {
4398     assert(!StressBailout || allow_multiple_failures, "should have handled previous failure.");
4399   }
4400 
4401   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
4402     C->print_method(PHASE_FAILURE, 1);
4403   }
4404   _root = nullptr;  // flush the graph, too
4405 }
4406 
4407 Compile::TracePhase::TracePhase(const char* name, PhaseTraceId id)
4408   : TraceTime(name, &Phase::timers[id], CITime, CITimeVerbose),
4409     _compile(Compile::current()),
4410     _log(nullptr),
4411     _dolog(CITimeVerbose)
4412 {
4413   assert(_compile != nullptr, "sanity check");
4414   assert(id != PhaseTraceId::_t_none, "Don't use none");
4415   if (_dolog) {
4416     _log = _compile->log();
4417   }
4418   if (_log != nullptr) {
4419     _log->begin_head("phase name='%s' nodes='%d' live='%d'", phase_name(), _compile->unique(), _compile->live_nodes());
4420     _log->stamp();
4421     _log->end_head();
4422   }
4423 
4424   // Inform memory statistic, if enabled
4425   if (CompilationMemoryStatistic::enabled()) {
4426     CompilationMemoryStatistic::on_phase_start((int)id, name);
4427   }
4428 }
4429 
4430 Compile::TracePhase::TracePhase(PhaseTraceId id)
4431   : TracePhase(Phase::get_phase_trace_id_text(id), id) {}
4432 
4433 Compile::TracePhase::~TracePhase() {
4434 
4435   // Inform memory statistic, if enabled
4436   if (CompilationMemoryStatistic::enabled()) {
4437     CompilationMemoryStatistic::on_phase_end();
4438   }
4439 
4440   if (_compile->failing_internal()) {
4441     if (_log != nullptr) {
4442       _log->done("phase");
4443     }
4444     return; // timing code, not stressing bailouts.
4445   }
4446 #ifdef ASSERT
4447   if (PrintIdealNodeCount) {
4448     tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
4449                   phase_name(), _compile->unique(), _compile->live_nodes(), _compile->count_live_nodes_by_graph_walk());
4450   }
4451 
4452   if (VerifyIdealNodeCount) {
4453     _compile->print_missing_nodes();
4454   }
4455 #endif
4456 
4457   if (_log != nullptr) {
4458     _log->done("phase name='%s' nodes='%d' live='%d'", phase_name(), _compile->unique(), _compile->live_nodes());
4459   }
4460 }
4461 
4462 //----------------------------static_subtype_check-----------------------------
4463 // Shortcut important common cases when superklass is exact:
4464 // (0) superklass is java.lang.Object (can occur in reflective code)
4465 // (1) subklass is already limited to a subtype of superklass => always ok
4466 // (2) subklass does not overlap with superklass => always fail
4467 // (3) superklass has NO subtypes and we can check with a simple compare.
4468 Compile::SubTypeCheckResult Compile::static_subtype_check(const TypeKlassPtr* superk, const TypeKlassPtr* subk, bool skip) {
4469   if (skip) {
4470     return SSC_full_test;       // Let caller generate the general case.
4471   }
4472 
4473   if (subk->is_java_subtype_of(superk)) {
4474     return SSC_always_true; // (0) and (1)  this test cannot fail
4475   }
4476 
4477   if (!subk->maybe_java_subtype_of(superk)) {
4478     return SSC_always_false; // (2) true path dead; no dynamic test needed
4479   }
4480 
4481   const Type* superelem = superk;
4482   if (superk->isa_aryklassptr()) {
4483     int ignored;
4484     superelem = superk->is_aryklassptr()->base_element_type(ignored);
4485   }
4486 
4487   if (superelem->isa_instklassptr()) {
4488     ciInstanceKlass* ik = superelem->is_instklassptr()->instance_klass();
4489     if (!ik->has_subklass()) {
4490       if (!ik->is_final()) {
4491         // Add a dependency if there is a chance of a later subclass.
4492         dependencies()->assert_leaf_type(ik);
4493       }
4494       if (!superk->maybe_java_subtype_of(subk)) {
4495         return SSC_always_false;
4496       }
4497       return SSC_easy_test;     // (3) caller can do a simple ptr comparison
4498     }
4499   } else {
4500     // A primitive array type has no subtypes.
4501     return SSC_easy_test;       // (3) caller can do a simple ptr comparison
4502   }
4503 
4504   return SSC_full_test;
4505 }
4506 
4507 Node* Compile::conv_I2X_index(PhaseGVN* phase, Node* idx, const TypeInt* sizetype, Node* ctrl) {
4508 #ifdef _LP64
4509   // The scaled index operand to AddP must be a clean 64-bit value.
4510   // Java allows a 32-bit int to be incremented to a negative
4511   // value, which appears in a 64-bit register as a large
4512   // positive number.  Using that large positive number as an
4513   // operand in pointer arithmetic has bad consequences.
4514   // On the other hand, 32-bit overflow is rare, and the possibility
4515   // can often be excluded, if we annotate the ConvI2L node with
4516   // a type assertion that its value is known to be a small positive
4517   // number.  (The prior range check has ensured this.)
4518   // This assertion is used by ConvI2LNode::Ideal.
4519   int index_max = max_jint - 1;  // array size is max_jint, index is one less
4520   if (sizetype != nullptr) index_max = sizetype->_hi - 1;
4521   const TypeInt* iidxtype = TypeInt::make(0, index_max, Type::WidenMax);
4522   idx = constrained_convI2L(phase, idx, iidxtype, ctrl);
4523 #endif
4524   return idx;
4525 }
4526 
4527 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check)
4528 Node* Compile::constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl, bool carry_dependency) {
4529   if (ctrl != nullptr) {
4530     // Express control dependency by a CastII node with a narrow type.
4531     // Make the CastII node dependent on the control input to prevent the narrowed ConvI2L
4532     // node from floating above the range check during loop optimizations. Otherwise, the
4533     // ConvI2L node may be eliminated independently of the range check, causing the data path
4534     // to become TOP while the control path is still there (although it's unreachable).
4535     value = new CastIINode(ctrl, value, itype, carry_dependency ? ConstraintCastNode::StrongDependency : ConstraintCastNode::RegularDependency, true /* range check dependency */);
4536     value = phase->transform(value);
4537   }
4538   const TypeLong* ltype = TypeLong::make(itype->_lo, itype->_hi, itype->_widen);
4539   return phase->transform(new ConvI2LNode(value, ltype));
4540 }
4541 
4542 void Compile::dump_print_inlining() {
4543   inline_printer()->print_on(tty);
4544 }
4545 
4546 void Compile::log_late_inline(CallGenerator* cg) {
4547   if (log() != nullptr) {
4548     log()->head("late_inline method='%d' inline_id='" JLONG_FORMAT "'", log()->identify(cg->method()),
4549                 cg->unique_id());
4550     JVMState* p = cg->call_node()->jvms();
4551     while (p != nullptr) {
4552       log()->elem("jvms bci='%d' method='%d'", p->bci(), log()->identify(p->method()));
4553       p = p->caller();
4554     }
4555     log()->tail("late_inline");
4556   }
4557 }
4558 
4559 void Compile::log_late_inline_failure(CallGenerator* cg, const char* msg) {
4560   log_late_inline(cg);
4561   if (log() != nullptr) {
4562     log()->inline_fail(msg);
4563   }
4564 }
4565 
4566 void Compile::log_inline_id(CallGenerator* cg) {
4567   if (log() != nullptr) {
4568     // The LogCompilation tool needs a unique way to identify late
4569     // inline call sites. This id must be unique for this call site in
4570     // this compilation. Try to have it unique across compilations as
4571     // well because it can be convenient when grepping through the log
4572     // file.
4573     // Distinguish OSR compilations from others in case CICountOSR is
4574     // on.
4575     jlong id = ((jlong)unique()) + (((jlong)compile_id()) << 33) + (CICountOSR && is_osr_compilation() ? ((jlong)1) << 32 : 0);
4576     cg->set_unique_id(id);
4577     log()->elem("inline_id id='" JLONG_FORMAT "'", id);
4578   }
4579 }
4580 
4581 void Compile::log_inline_failure(const char* msg) {
4582   if (C->log() != nullptr) {
4583     C->log()->inline_fail(msg);
4584   }
4585 }
4586 
4587 
4588 // Dump inlining replay data to the stream.
4589 // Don't change thread state and acquire any locks.
4590 void Compile::dump_inline_data(outputStream* out) {
4591   InlineTree* inl_tree = ilt();
4592   if (inl_tree != nullptr) {
4593     out->print(" inline %d", inl_tree->count());
4594     inl_tree->dump_replay_data(out);
4595   }
4596 }
4597 
4598 void Compile::dump_inline_data_reduced(outputStream* out) {
4599   assert(ReplayReduce, "");
4600 
4601   InlineTree* inl_tree = ilt();
4602   if (inl_tree == nullptr) {
4603     return;
4604   }
4605   // Enable iterative replay file reduction
4606   // Output "compile" lines for depth 1 subtrees,
4607   // simulating that those trees were compiled
4608   // instead of inlined.
4609   for (int i = 0; i < inl_tree->subtrees().length(); ++i) {
4610     InlineTree* sub = inl_tree->subtrees().at(i);
4611     if (sub->inline_level() != 1) {
4612       continue;
4613     }
4614 
4615     ciMethod* method = sub->method();
4616     int entry_bci = -1;
4617     int comp_level = env()->task()->comp_level();
4618     out->print("compile ");
4619     method->dump_name_as_ascii(out);
4620     out->print(" %d %d", entry_bci, comp_level);
4621     out->print(" inline %d", sub->count());
4622     sub->dump_replay_data(out, -1);
4623     out->cr();
4624   }
4625 }
4626 
4627 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
4628   if (n1->Opcode() < n2->Opcode())      return -1;
4629   else if (n1->Opcode() > n2->Opcode()) return 1;
4630 
4631   assert(n1->req() == n2->req(), "can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req());
4632   for (uint i = 1; i < n1->req(); i++) {
4633     if (n1->in(i) < n2->in(i))      return -1;
4634     else if (n1->in(i) > n2->in(i)) return 1;
4635   }
4636 
4637   return 0;
4638 }
4639 
4640 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
4641   Node* n1 = *n1p;
4642   Node* n2 = *n2p;
4643 
4644   return cmp_expensive_nodes(n1, n2);
4645 }
4646 
4647 void Compile::sort_expensive_nodes() {
4648   if (!expensive_nodes_sorted()) {
4649     _expensive_nodes.sort(cmp_expensive_nodes);
4650   }
4651 }
4652 
4653 bool Compile::expensive_nodes_sorted() const {
4654   for (int i = 1; i < _expensive_nodes.length(); i++) {
4655     if (cmp_expensive_nodes(_expensive_nodes.adr_at(i), _expensive_nodes.adr_at(i-1)) < 0) {
4656       return false;
4657     }
4658   }
4659   return true;
4660 }
4661 
4662 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
4663   if (_expensive_nodes.length() == 0) {
4664     return false;
4665   }
4666 
4667   assert(OptimizeExpensiveOps, "optimization off?");
4668 
4669   // Take this opportunity to remove dead nodes from the list
4670   int j = 0;
4671   for (int i = 0; i < _expensive_nodes.length(); i++) {
4672     Node* n = _expensive_nodes.at(i);
4673     if (!n->is_unreachable(igvn)) {
4674       assert(n->is_expensive(), "should be expensive");
4675       _expensive_nodes.at_put(j, n);
4676       j++;
4677     }
4678   }
4679   _expensive_nodes.trunc_to(j);
4680 
4681   // Then sort the list so that similar nodes are next to each other
4682   // and check for at least two nodes of identical kind with same data
4683   // inputs.
4684   sort_expensive_nodes();
4685 
4686   for (int i = 0; i < _expensive_nodes.length()-1; i++) {
4687     if (cmp_expensive_nodes(_expensive_nodes.adr_at(i), _expensive_nodes.adr_at(i+1)) == 0) {
4688       return true;
4689     }
4690   }
4691 
4692   return false;
4693 }
4694 
4695 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
4696   if (_expensive_nodes.length() == 0) {
4697     return;
4698   }
4699 
4700   assert(OptimizeExpensiveOps, "optimization off?");
4701 
4702   // Sort to bring similar nodes next to each other and clear the
4703   // control input of nodes for which there's only a single copy.
4704   sort_expensive_nodes();
4705 
4706   int j = 0;
4707   int identical = 0;
4708   int i = 0;
4709   bool modified = false;
4710   for (; i < _expensive_nodes.length()-1; i++) {
4711     assert(j <= i, "can't write beyond current index");
4712     if (_expensive_nodes.at(i)->Opcode() == _expensive_nodes.at(i+1)->Opcode()) {
4713       identical++;
4714       _expensive_nodes.at_put(j++, _expensive_nodes.at(i));
4715       continue;
4716     }
4717     if (identical > 0) {
4718       _expensive_nodes.at_put(j++, _expensive_nodes.at(i));
4719       identical = 0;
4720     } else {
4721       Node* n = _expensive_nodes.at(i);
4722       igvn.replace_input_of(n, 0, nullptr);
4723       igvn.hash_insert(n);
4724       modified = true;
4725     }
4726   }
4727   if (identical > 0) {
4728     _expensive_nodes.at_put(j++, _expensive_nodes.at(i));
4729   } else if (_expensive_nodes.length() >= 1) {
4730     Node* n = _expensive_nodes.at(i);
4731     igvn.replace_input_of(n, 0, nullptr);
4732     igvn.hash_insert(n);
4733     modified = true;
4734   }
4735   _expensive_nodes.trunc_to(j);
4736   if (modified) {
4737     igvn.optimize();
4738   }
4739 }
4740 
4741 void Compile::add_expensive_node(Node * n) {
4742   assert(!_expensive_nodes.contains(n), "duplicate entry in expensive list");
4743   assert(n->is_expensive(), "expensive nodes with non-null control here only");
4744   assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
4745   if (OptimizeExpensiveOps) {
4746     _expensive_nodes.append(n);
4747   } else {
4748     // Clear control input and let IGVN optimize expensive nodes if
4749     // OptimizeExpensiveOps is off.
4750     n->set_req(0, nullptr);
4751   }
4752 }
4753 
4754 /**
4755  * Track coarsened Lock and Unlock nodes.
4756  */
4757 
4758 class Lock_List : public Node_List {
4759   uint _origin_cnt;
4760 public:
4761   Lock_List(Arena *a, uint cnt) : Node_List(a), _origin_cnt(cnt) {}
4762   uint origin_cnt() const { return _origin_cnt; }
4763 };
4764 
4765 void Compile::add_coarsened_locks(GrowableArray<AbstractLockNode*>& locks) {
4766   int length = locks.length();
4767   if (length > 0) {
4768     // Have to keep this list until locks elimination during Macro nodes elimination.
4769     Lock_List* locks_list = new (comp_arena()) Lock_List(comp_arena(), length);
4770     AbstractLockNode* alock = locks.at(0);
4771     BoxLockNode* box = alock->box_node()->as_BoxLock();
4772     for (int i = 0; i < length; i++) {
4773       AbstractLockNode* lock = locks.at(i);
4774       assert(lock->is_coarsened(), "expecting only coarsened AbstractLock nodes, but got '%s'[%d] node", lock->Name(), lock->_idx);
4775       locks_list->push(lock);
4776       BoxLockNode* this_box = lock->box_node()->as_BoxLock();
4777       if (this_box != box) {
4778         // Locking regions (BoxLock) could be Unbalanced here:
4779         //  - its coarsened locks were eliminated in earlier
4780         //    macro nodes elimination followed by loop unroll
4781         //  - it is OSR locking region (no Lock node)
4782         // Preserve Unbalanced status in such cases.
4783         if (!this_box->is_unbalanced()) {
4784           this_box->set_coarsened();
4785         }
4786         if (!box->is_unbalanced()) {
4787           box->set_coarsened();
4788         }
4789       }
4790     }
4791     _coarsened_locks.append(locks_list);
4792   }
4793 }
4794 
4795 void Compile::remove_useless_coarsened_locks(Unique_Node_List& useful) {
4796   int count = coarsened_count();
4797   for (int i = 0; i < count; i++) {
4798     Node_List* locks_list = _coarsened_locks.at(i);
4799     for (uint j = 0; j < locks_list->size(); j++) {
4800       Node* lock = locks_list->at(j);
4801       assert(lock->is_AbstractLock(), "sanity");
4802       if (!useful.member(lock)) {
4803         locks_list->yank(lock);
4804       }
4805     }
4806   }
4807 }
4808 
4809 void Compile::remove_coarsened_lock(Node* n) {
4810   if (n->is_AbstractLock()) {
4811     int count = coarsened_count();
4812     for (int i = 0; i < count; i++) {
4813       Node_List* locks_list = _coarsened_locks.at(i);
4814       locks_list->yank(n);
4815     }
4816   }
4817 }
4818 
4819 bool Compile::coarsened_locks_consistent() {
4820   int count = coarsened_count();
4821   for (int i = 0; i < count; i++) {
4822     bool unbalanced = false;
4823     bool modified = false; // track locks kind modifications
4824     Lock_List* locks_list = (Lock_List*)_coarsened_locks.at(i);
4825     uint size = locks_list->size();
4826     if (size == 0) {
4827       unbalanced = false; // All locks were eliminated - good
4828     } else if (size != locks_list->origin_cnt()) {
4829       unbalanced = true; // Some locks were removed from list
4830     } else {
4831       for (uint j = 0; j < size; j++) {
4832         Node* lock = locks_list->at(j);
4833         // All nodes in group should have the same state (modified or not)
4834         if (!lock->as_AbstractLock()->is_coarsened()) {
4835           if (j == 0) {
4836             // first on list was modified, the rest should be too for consistency
4837             modified = true;
4838           } else if (!modified) {
4839             // this lock was modified but previous locks on the list were not
4840             unbalanced = true;
4841             break;
4842           }
4843         } else if (modified) {
4844           // previous locks on list were modified but not this lock
4845           unbalanced = true;
4846           break;
4847         }
4848       }
4849     }
4850     if (unbalanced) {
4851       // unbalanced monitor enter/exit - only some [un]lock nodes were removed or modified
4852 #ifdef ASSERT
4853       if (PrintEliminateLocks) {
4854         tty->print_cr("=== unbalanced coarsened locks ===");
4855         for (uint l = 0; l < size; l++) {
4856           locks_list->at(l)->dump();
4857         }
4858       }
4859 #endif
4860       record_failure(C2Compiler::retry_no_locks_coarsening());
4861       return false;
4862     }
4863   }
4864   return true;
4865 }
4866 
4867 // Mark locking regions (identified by BoxLockNode) as unbalanced if
4868 // locks coarsening optimization removed Lock/Unlock nodes from them.
4869 // Such regions become unbalanced because coarsening only removes part
4870 // of Lock/Unlock nodes in region. As result we can't execute other
4871 // locks elimination optimizations which assume all code paths have
4872 // corresponding pair of Lock/Unlock nodes - they are balanced.
4873 void Compile::mark_unbalanced_boxes() const {
4874   int count = coarsened_count();
4875   for (int i = 0; i < count; i++) {
4876     Node_List* locks_list = _coarsened_locks.at(i);
4877     uint size = locks_list->size();
4878     if (size > 0) {
4879       AbstractLockNode* alock = locks_list->at(0)->as_AbstractLock();
4880       BoxLockNode* box = alock->box_node()->as_BoxLock();
4881       if (alock->is_coarsened()) {
4882         // coarsened_locks_consistent(), which is called before this method, verifies
4883         // that the rest of Lock/Unlock nodes on locks_list are also coarsened.
4884         assert(!box->is_eliminated(), "regions with coarsened locks should not be marked as eliminated");
4885         for (uint j = 1; j < size; j++) {
4886           assert(locks_list->at(j)->as_AbstractLock()->is_coarsened(), "only coarsened locks are expected here");
4887           BoxLockNode* this_box = locks_list->at(j)->as_AbstractLock()->box_node()->as_BoxLock();
4888           if (box != this_box) {
4889             assert(!this_box->is_eliminated(), "regions with coarsened locks should not be marked as eliminated");
4890             box->set_unbalanced();
4891             this_box->set_unbalanced();
4892           }
4893         }
4894       }
4895     }
4896   }
4897 }
4898 
4899 /**
4900  * Remove the speculative part of types and clean up the graph
4901  */
4902 void Compile::remove_speculative_types(PhaseIterGVN &igvn) {
4903   if (UseTypeSpeculation) {
4904     Unique_Node_List worklist;
4905     worklist.push(root());
4906     int modified = 0;
4907     // Go over all type nodes that carry a speculative type, drop the
4908     // speculative part of the type and enqueue the node for an igvn
4909     // which may optimize it out.
4910     for (uint next = 0; next < worklist.size(); ++next) {
4911       Node *n  = worklist.at(next);
4912       if (n->is_Type()) {
4913         TypeNode* tn = n->as_Type();
4914         const Type* t = tn->type();
4915         const Type* t_no_spec = t->remove_speculative();
4916         if (t_no_spec != t) {
4917           bool in_hash = igvn.hash_delete(n);
4918           assert(in_hash || n->hash() == Node::NO_HASH, "node should be in igvn hash table");
4919           tn->set_type(t_no_spec);
4920           igvn.hash_insert(n);
4921           igvn._worklist.push(n); // give it a chance to go away
4922           modified++;
4923         }
4924       }
4925       // Iterate over outs - endless loops is unreachable from below
4926       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
4927         Node *m = n->fast_out(i);
4928         if (not_a_node(m)) {
4929           continue;
4930         }
4931         worklist.push(m);
4932       }
4933     }
4934     // Drop the speculative part of all types in the igvn's type table
4935     igvn.remove_speculative_types();
4936     if (modified > 0) {
4937       igvn.optimize();
4938       if (failing())  return;
4939     }
4940 #ifdef ASSERT
4941     // Verify that after the IGVN is over no speculative type has resurfaced
4942     worklist.clear();
4943     worklist.push(root());
4944     for (uint next = 0; next < worklist.size(); ++next) {
4945       Node *n  = worklist.at(next);
4946       const Type* t = igvn.type_or_null(n);
4947       assert((t == nullptr) || (t == t->remove_speculative()), "no more speculative types");
4948       if (n->is_Type()) {
4949         t = n->as_Type()->type();
4950         assert(t == t->remove_speculative(), "no more speculative types");
4951       }
4952       // Iterate over outs - endless loops is unreachable from below
4953       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
4954         Node *m = n->fast_out(i);
4955         if (not_a_node(m)) {
4956           continue;
4957         }
4958         worklist.push(m);
4959       }
4960     }
4961     igvn.check_no_speculative_types();
4962 #endif
4963   }
4964 }
4965 
4966 // Auxiliary methods to support randomized stressing/fuzzing.
4967 
4968 void Compile::initialize_stress_seed(const DirectiveSet* directive) {
4969   if (FLAG_IS_DEFAULT(StressSeed) || (FLAG_IS_ERGO(StressSeed) && directive->RepeatCompilationOption)) {
4970     _stress_seed = static_cast<uint>(Ticks::now().nanoseconds());
4971     FLAG_SET_ERGO(StressSeed, _stress_seed);
4972   } else {
4973     _stress_seed = StressSeed;
4974   }
4975   if (_log != nullptr) {
4976     _log->elem("stress_test seed='%u'", _stress_seed);
4977   }
4978 }
4979 
4980 int Compile::random() {
4981   _stress_seed = os::next_random(_stress_seed);
4982   return static_cast<int>(_stress_seed);
4983 }
4984 
4985 // This method can be called the arbitrary number of times, with current count
4986 // as the argument. The logic allows selecting a single candidate from the
4987 // running list of candidates as follows:
4988 //    int count = 0;
4989 //    Cand* selected = null;
4990 //    while(cand = cand->next()) {
4991 //      if (randomized_select(++count)) {
4992 //        selected = cand;
4993 //      }
4994 //    }
4995 //
4996 // Including count equalizes the chances any candidate is "selected".
4997 // This is useful when we don't have the complete list of candidates to choose
4998 // from uniformly. In this case, we need to adjust the randomicity of the
4999 // selection, or else we will end up biasing the selection towards the latter
5000 // candidates.
5001 //
5002 // Quick back-envelope calculation shows that for the list of n candidates
5003 // the equal probability for the candidate to persist as "best" can be
5004 // achieved by replacing it with "next" k-th candidate with the probability
5005 // of 1/k. It can be easily shown that by the end of the run, the
5006 // probability for any candidate is converged to 1/n, thus giving the
5007 // uniform distribution among all the candidates.
5008 //
5009 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
5010 #define RANDOMIZED_DOMAIN_POW 29
5011 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
5012 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
5013 bool Compile::randomized_select(int count) {
5014   assert(count > 0, "only positive");
5015   return (random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);
5016 }
5017 
5018 #ifdef ASSERT
5019 // Failures are geometrically distributed with probability 1/StressBailoutMean.
5020 bool Compile::fail_randomly() {
5021   if ((random() % StressBailoutMean) != 0) {
5022     return false;
5023   }
5024   record_failure("StressBailout");
5025   return true;
5026 }
5027 
5028 bool Compile::failure_is_artificial() {
5029   return C->failure_reason_is("StressBailout");
5030 }
5031 #endif
5032 
5033 CloneMap&     Compile::clone_map()                 { return _clone_map; }
5034 void          Compile::set_clone_map(Dict* d)      { _clone_map._dict = d; }
5035 
5036 void NodeCloneInfo::dump_on(outputStream* st) const {
5037   st->print(" {%d:%d} ", idx(), gen());
5038 }
5039 
5040 void CloneMap::clone(Node* old, Node* nnn, int gen) {
5041   uint64_t val = value(old->_idx);
5042   NodeCloneInfo cio(val);
5043   assert(val != 0, "old node should be in the map");
5044   NodeCloneInfo cin(cio.idx(), gen + cio.gen());
5045   insert(nnn->_idx, cin.get());
5046 #ifndef PRODUCT
5047   if (is_debug()) {
5048     tty->print_cr("CloneMap::clone inserted node %d info {%d:%d} into CloneMap", nnn->_idx, cin.idx(), cin.gen());
5049   }
5050 #endif
5051 }
5052 
5053 void CloneMap::verify_insert_and_clone(Node* old, Node* nnn, int gen) {
5054   NodeCloneInfo cio(value(old->_idx));
5055   if (cio.get() == 0) {
5056     cio.set(old->_idx, 0);
5057     insert(old->_idx, cio.get());
5058 #ifndef PRODUCT
5059     if (is_debug()) {
5060       tty->print_cr("CloneMap::verify_insert_and_clone inserted node %d info {%d:%d} into CloneMap", old->_idx, cio.idx(), cio.gen());
5061     }
5062 #endif
5063   }
5064   clone(old, nnn, gen);
5065 }
5066 
5067 int CloneMap::max_gen() const {
5068   int g = 0;
5069   DictI di(_dict);
5070   for(; di.test(); ++di) {
5071     int t = gen(di._key);
5072     if (g < t) {
5073       g = t;
5074 #ifndef PRODUCT
5075       if (is_debug()) {
5076         tty->print_cr("CloneMap::max_gen() update max=%d from %d", g, _2_node_idx_t(di._key));
5077       }
5078 #endif
5079     }
5080   }
5081   return g;
5082 }
5083 
5084 void CloneMap::dump(node_idx_t key, outputStream* st) const {
5085   uint64_t val = value(key);
5086   if (val != 0) {
5087     NodeCloneInfo ni(val);
5088     ni.dump_on(st);
5089   }
5090 }
5091 
5092 void Compile::shuffle_macro_nodes() {
5093   if (_macro_nodes.length() < 2) {
5094     return;
5095   }
5096   for (uint i = _macro_nodes.length() - 1; i >= 1; i--) {
5097     uint j = C->random() % (i + 1);
5098     swap(_macro_nodes.at(i), _macro_nodes.at(j));
5099   }
5100 }
5101 
5102 // Move Allocate nodes to the start of the list
5103 void Compile::sort_macro_nodes() {
5104   int count = macro_count();
5105   int allocates = 0;
5106   for (int i = 0; i < count; i++) {
5107     Node* n = macro_node(i);
5108     if (n->is_Allocate()) {
5109       if (i != allocates) {
5110         Node* tmp = macro_node(allocates);
5111         _macro_nodes.at_put(allocates, n);
5112         _macro_nodes.at_put(i, tmp);
5113       }
5114       allocates++;
5115     }
5116   }
5117 }
5118 
5119 void Compile::print_method(CompilerPhaseType cpt, int level, Node* n) {
5120   if (failing_internal()) { return; } // failing_internal to not stress bailouts from printing code.
5121   EventCompilerPhase event(UNTIMED);
5122   if (event.should_commit()) {
5123     CompilerEvent::PhaseEvent::post(event, C->_latest_stage_start_counter, cpt, C->_compile_id, level);
5124   }
5125 #ifndef PRODUCT
5126   ResourceMark rm;
5127   stringStream ss;
5128   ss.print_raw(CompilerPhaseTypeHelper::to_description(cpt));
5129   int iter = ++_igv_phase_iter[cpt];
5130   if (iter > 1) {
5131     ss.print(" %d", iter);
5132   }
5133   if (n != nullptr) {
5134     ss.print(": %d %s", n->_idx, NodeClassNames[n->Opcode()]);
5135     if (n->is_Call()) {
5136       CallNode* call = n->as_Call();
5137       if (call->_name != nullptr) {
5138         // E.g. uncommon traps etc.
5139         ss.print(" - %s", call->_name);
5140       } else if (call->is_CallJava()) {
5141         CallJavaNode* call_java = call->as_CallJava();
5142         if (call_java->method() != nullptr) {
5143           ss.print(" -");
5144           call_java->method()->print_short_name(&ss);
5145         }
5146       }
5147     }
5148   }
5149 
5150   const char* name = ss.as_string();
5151   if (should_print_igv(level)) {
5152     _igv_printer->print_graph(name);
5153   }
5154   if (should_print_phase(cpt)) {
5155     print_ideal_ir(CompilerPhaseTypeHelper::to_name(cpt));
5156   }
5157 #endif
5158   C->_latest_stage_start_counter.stamp();
5159 }
5160 
5161 // Only used from CompileWrapper
5162 void Compile::begin_method() {
5163 #ifndef PRODUCT
5164   if (_method != nullptr && should_print_igv(1)) {
5165     _igv_printer->begin_method();
5166   }
5167 #endif
5168   C->_latest_stage_start_counter.stamp();
5169 }
5170 
5171 // Only used from CompileWrapper
5172 void Compile::end_method() {
5173   EventCompilerPhase event(UNTIMED);
5174   if (event.should_commit()) {
5175     CompilerEvent::PhaseEvent::post(event, C->_latest_stage_start_counter, PHASE_END, C->_compile_id, 1);
5176   }
5177 
5178 #ifndef PRODUCT
5179   if (_method != nullptr && should_print_igv(1)) {
5180     _igv_printer->end_method();
5181   }
5182 #endif
5183 }
5184 
5185 bool Compile::should_print_phase(CompilerPhaseType cpt) {
5186 #ifndef PRODUCT
5187   if (_directive->should_print_phase(cpt)) {
5188     return true;
5189   }
5190 #endif
5191   return false;
5192 }
5193 
5194 #ifndef PRODUCT
5195 void Compile::init_igv() {
5196   if (_igv_printer == nullptr) {
5197     _igv_printer = IdealGraphPrinter::printer();
5198     _igv_printer->set_compile(this);
5199   }
5200 }
5201 #endif
5202 
5203 bool Compile::should_print_igv(const int level) {
5204 #ifndef PRODUCT
5205   if (PrintIdealGraphLevel < 0) { // disabled by the user
5206     return false;
5207   }
5208 
5209   bool need = directive()->IGVPrintLevelOption >= level;
5210   if (need) {
5211     Compile::init_igv();
5212   }
5213   return need;
5214 #else
5215   return false;
5216 #endif
5217 }
5218 
5219 #ifndef PRODUCT
5220 IdealGraphPrinter* Compile::_debug_file_printer = nullptr;
5221 IdealGraphPrinter* Compile::_debug_network_printer = nullptr;
5222 
5223 // Called from debugger. Prints method to the default file with the default phase name.
5224 // This works regardless of any Ideal Graph Visualizer flags set or not.
5225 void igv_print() {
5226   Compile::current()->igv_print_method_to_file();
5227 }
5228 
5229 // Same as igv_print() above but with a specified phase name.
5230 void igv_print(const char* phase_name) {
5231   Compile::current()->igv_print_method_to_file(phase_name);
5232 }
5233 
5234 // Called from debugger. Prints method with the default phase name to the default network or the one specified with
5235 // the network flags for the Ideal Graph Visualizer, or to the default file depending on the 'network' argument.
5236 // This works regardless of any Ideal Graph Visualizer flags set or not.
5237 void igv_print(bool network) {
5238   if (network) {
5239     Compile::current()->igv_print_method_to_network();
5240   } else {
5241     Compile::current()->igv_print_method_to_file();
5242   }
5243 }
5244 
5245 // Same as igv_print(bool network) above but with a specified phase name.
5246 void igv_print(bool network, const char* phase_name) {
5247   if (network) {
5248     Compile::current()->igv_print_method_to_network(phase_name);
5249   } else {
5250     Compile::current()->igv_print_method_to_file(phase_name);
5251   }
5252 }
5253 
5254 // Called from debugger. Normal write to the default _printer. Only works if Ideal Graph Visualizer printing flags are set.
5255 void igv_print_default() {
5256   Compile::current()->print_method(PHASE_DEBUG, 0);
5257 }
5258 
5259 // Called from debugger, especially when replaying a trace in which the program state cannot be altered like with rr replay.
5260 // A method is appended to an existing default file with the default phase name. This means that igv_append() must follow
5261 // an earlier igv_print(*) call which sets up the file. This works regardless of any Ideal Graph Visualizer flags set or not.
5262 void igv_append() {
5263   Compile::current()->igv_print_method_to_file("Debug", true);
5264 }
5265 
5266 // Same as igv_append() above but with a specified phase name.
5267 void igv_append(const char* phase_name) {
5268   Compile::current()->igv_print_method_to_file(phase_name, true);
5269 }
5270 
5271 void Compile::igv_print_method_to_file(const char* phase_name, bool append) {
5272   const char* file_name = "custom_debug.xml";
5273   if (_debug_file_printer == nullptr) {
5274     _debug_file_printer = new IdealGraphPrinter(C, file_name, append);
5275   } else {
5276     _debug_file_printer->update_compiled_method(C->method());
5277   }
5278   tty->print_cr("Method %s to %s", append ? "appended" : "printed", file_name);
5279   _debug_file_printer->print_graph(phase_name);
5280 }
5281 
5282 void Compile::igv_print_method_to_network(const char* phase_name) {
5283   ResourceMark rm;
5284   GrowableArray<const Node*> empty_list;
5285   igv_print_graph_to_network(phase_name, empty_list);
5286 }
5287 
5288 void Compile::igv_print_graph_to_network(const char* name, GrowableArray<const Node*>& visible_nodes) {
5289   if (_debug_network_printer == nullptr) {
5290     _debug_network_printer = new IdealGraphPrinter(C);
5291   } else {
5292     _debug_network_printer->update_compiled_method(C->method());
5293   }
5294   tty->print_cr("Method printed over network stream to IGV");
5295   _debug_network_printer->print(name, C->root(), visible_nodes);
5296 }
5297 #endif
5298 
5299 Node* Compile::narrow_value(BasicType bt, Node* value, const Type* type, PhaseGVN* phase, bool transform_res) {
5300   if (type != nullptr && phase->type(value)->higher_equal(type)) {
5301     return value;
5302   }
5303   Node* result = nullptr;
5304   if (bt == T_BYTE) {
5305     result = phase->transform(new LShiftINode(value, phase->intcon(24)));
5306     result = new RShiftINode(result, phase->intcon(24));
5307   } else if (bt == T_BOOLEAN) {
5308     result = new AndINode(value, phase->intcon(0xFF));
5309   } else if (bt == T_CHAR) {
5310     result = new AndINode(value,phase->intcon(0xFFFF));
5311   } else {
5312     assert(bt == T_SHORT, "unexpected narrow type");
5313     result = phase->transform(new LShiftINode(value, phase->intcon(16)));
5314     result = new RShiftINode(result, phase->intcon(16));
5315   }
5316   if (transform_res) {
5317     result = phase->transform(result);
5318   }
5319   return result;
5320 }
5321 
5322 void Compile::record_method_not_compilable_oom() {
5323   record_method_not_compilable(CompilationMemoryStatistic::failure_reason_memlimit());
5324 }