1 /*
   2  * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "ci/ciReplay.hpp"
  29 #include "classfile/javaClasses.hpp"
  30 #include "code/exceptionHandlerTable.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "compiler/compilationFailureInfo.hpp"
  33 #include "compiler/compilationMemoryStatistic.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/compileLog.hpp"
  36 #include "compiler/compilerOracle.hpp"
  37 #include "compiler/compiler_globals.hpp"
  38 #include "compiler/disassembler.hpp"
  39 #include "compiler/oopMap.hpp"
  40 #include "gc/shared/barrierSet.hpp"
  41 #include "gc/shared/c2/barrierSetC2.hpp"
  42 #include "jfr/jfrEvents.hpp"
  43 #include "jvm_io.h"
  44 #include "memory/allocation.hpp"
  45 #include "memory/resourceArea.hpp"
  46 #include "opto/addnode.hpp"
  47 #include "opto/block.hpp"
  48 #include "opto/c2compiler.hpp"
  49 #include "opto/callGenerator.hpp"
  50 #include "opto/callnode.hpp"
  51 #include "opto/castnode.hpp"
  52 #include "opto/cfgnode.hpp"
  53 #include "opto/chaitin.hpp"
  54 #include "opto/compile.hpp"
  55 #include "opto/connode.hpp"
  56 #include "opto/convertnode.hpp"
  57 #include "opto/divnode.hpp"
  58 #include "opto/escape.hpp"
  59 #include "opto/idealGraphPrinter.hpp"
  60 #include "opto/locknode.hpp"
  61 #include "opto/loopnode.hpp"
  62 #include "opto/machnode.hpp"
  63 #include "opto/macro.hpp"
  64 #include "opto/matcher.hpp"
  65 #include "opto/mathexactnode.hpp"
  66 #include "opto/memnode.hpp"
  67 #include "opto/mulnode.hpp"
  68 #include "opto/narrowptrnode.hpp"
  69 #include "opto/node.hpp"
  70 #include "opto/opcodes.hpp"
  71 #include "opto/output.hpp"
  72 #include "opto/parse.hpp"
  73 #include "opto/phaseX.hpp"
  74 #include "opto/rootnode.hpp"
  75 #include "opto/runtime.hpp"
  76 #include "opto/stringopts.hpp"
  77 #include "opto/type.hpp"
  78 #include "opto/vector.hpp"
  79 #include "opto/vectornode.hpp"
  80 #include "runtime/globals_extension.hpp"
  81 #include "runtime/sharedRuntime.hpp"
  82 #include "runtime/signature.hpp"
  83 #include "runtime/stubRoutines.hpp"
  84 #include "runtime/timer.hpp"
  85 #include "utilities/align.hpp"
  86 #include "utilities/copy.hpp"
  87 #include "utilities/macros.hpp"
  88 #include "utilities/resourceHash.hpp"
  89 
  90 // -------------------- Compile::mach_constant_base_node -----------------------
  91 // Constant table base node singleton.
  92 MachConstantBaseNode* Compile::mach_constant_base_node() {
  93   if (_mach_constant_base_node == nullptr) {
  94     _mach_constant_base_node = new MachConstantBaseNode();
  95     _mach_constant_base_node->add_req(C->root());
  96   }
  97   return _mach_constant_base_node;
  98 }
  99 
 100 
 101 /// Support for intrinsics.
 102 
 103 // Return the index at which m must be inserted (or already exists).
 104 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
 105 class IntrinsicDescPair {
 106  private:
 107   ciMethod* _m;
 108   bool _is_virtual;
 109  public:
 110   IntrinsicDescPair(ciMethod* m, bool is_virtual) : _m(m), _is_virtual(is_virtual) {}
 111   static int compare(IntrinsicDescPair* const& key, CallGenerator* const& elt) {
 112     ciMethod* m= elt->method();
 113     ciMethod* key_m = key->_m;
 114     if (key_m < m)      return -1;
 115     else if (key_m > m) return 1;
 116     else {
 117       bool is_virtual = elt->is_virtual();
 118       bool key_virtual = key->_is_virtual;
 119       if (key_virtual < is_virtual)      return -1;
 120       else if (key_virtual > is_virtual) return 1;
 121       else                               return 0;
 122     }
 123   }
 124 };
 125 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found) {
 126 #ifdef ASSERT
 127   for (int i = 1; i < _intrinsics.length(); i++) {
 128     CallGenerator* cg1 = _intrinsics.at(i-1);
 129     CallGenerator* cg2 = _intrinsics.at(i);
 130     assert(cg1->method() != cg2->method()
 131            ? cg1->method()     < cg2->method()
 132            : cg1->is_virtual() < cg2->is_virtual(),
 133            "compiler intrinsics list must stay sorted");
 134   }
 135 #endif
 136   IntrinsicDescPair pair(m, is_virtual);
 137   return _intrinsics.find_sorted<IntrinsicDescPair*, IntrinsicDescPair::compare>(&pair, found);
 138 }
 139 
 140 void Compile::register_intrinsic(CallGenerator* cg) {
 141   bool found = false;
 142   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual(), found);
 143   assert(!found, "registering twice");
 144   _intrinsics.insert_before(index, cg);
 145   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
 146 }
 147 
 148 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
 149   assert(m->is_loaded(), "don't try this on unloaded methods");
 150   if (_intrinsics.length() > 0) {
 151     bool found = false;
 152     int index = intrinsic_insertion_index(m, is_virtual, found);
 153      if (found) {
 154       return _intrinsics.at(index);
 155     }
 156   }
 157   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
 158   if (m->intrinsic_id() != vmIntrinsics::_none &&
 159       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
 160     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
 161     if (cg != nullptr) {
 162       // Save it for next time:
 163       register_intrinsic(cg);
 164       return cg;
 165     } else {
 166       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
 167     }
 168   }
 169   return nullptr;
 170 }
 171 
 172 // Compile::make_vm_intrinsic is defined in library_call.cpp.
 173 
 174 #ifndef PRODUCT
 175 // statistics gathering...
 176 
 177 juint  Compile::_intrinsic_hist_count[vmIntrinsics::number_of_intrinsics()] = {0};
 178 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::number_of_intrinsics()] = {0};
 179 
 180 inline int as_int(vmIntrinsics::ID id) {
 181   return vmIntrinsics::as_int(id);
 182 }
 183 
 184 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
 185   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
 186   int oflags = _intrinsic_hist_flags[as_int(id)];
 187   assert(flags != 0, "what happened?");
 188   if (is_virtual) {
 189     flags |= _intrinsic_virtual;
 190   }
 191   bool changed = (flags != oflags);
 192   if ((flags & _intrinsic_worked) != 0) {
 193     juint count = (_intrinsic_hist_count[as_int(id)] += 1);
 194     if (count == 1) {
 195       changed = true;           // first time
 196     }
 197     // increment the overall count also:
 198     _intrinsic_hist_count[as_int(vmIntrinsics::_none)] += 1;
 199   }
 200   if (changed) {
 201     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
 202       // Something changed about the intrinsic's virtuality.
 203       if ((flags & _intrinsic_virtual) != 0) {
 204         // This is the first use of this intrinsic as a virtual call.
 205         if (oflags != 0) {
 206           // We already saw it as a non-virtual, so note both cases.
 207           flags |= _intrinsic_both;
 208         }
 209       } else if ((oflags & _intrinsic_both) == 0) {
 210         // This is the first use of this intrinsic as a non-virtual
 211         flags |= _intrinsic_both;
 212       }
 213     }
 214     _intrinsic_hist_flags[as_int(id)] = (jubyte) (oflags | flags);
 215   }
 216   // update the overall flags also:
 217   _intrinsic_hist_flags[as_int(vmIntrinsics::_none)] |= (jubyte) flags;
 218   return changed;
 219 }
 220 
 221 static char* format_flags(int flags, char* buf) {
 222   buf[0] = 0;
 223   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
 224   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
 225   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
 226   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
 227   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
 228   if (buf[0] == 0)  strcat(buf, ",");
 229   assert(buf[0] == ',', "must be");
 230   return &buf[1];
 231 }
 232 
 233 void Compile::print_intrinsic_statistics() {
 234   char flagsbuf[100];
 235   ttyLocker ttyl;
 236   if (xtty != nullptr)  xtty->head("statistics type='intrinsic'");
 237   tty->print_cr("Compiler intrinsic usage:");
 238   juint total = _intrinsic_hist_count[as_int(vmIntrinsics::_none)];
 239   if (total == 0)  total = 1;  // avoid div0 in case of no successes
 240   #define PRINT_STAT_LINE(name, c, f) \
 241     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
 242   for (auto id : EnumRange<vmIntrinsicID>{}) {
 243     int   flags = _intrinsic_hist_flags[as_int(id)];
 244     juint count = _intrinsic_hist_count[as_int(id)];
 245     if ((flags | count) != 0) {
 246       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
 247     }
 248   }
 249   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[as_int(vmIntrinsics::_none)], flagsbuf));
 250   if (xtty != nullptr)  xtty->tail("statistics");
 251 }
 252 
 253 void Compile::print_statistics() {
 254   { ttyLocker ttyl;
 255     if (xtty != nullptr)  xtty->head("statistics type='opto'");
 256     Parse::print_statistics();
 257     PhaseStringOpts::print_statistics();
 258     PhaseCCP::print_statistics();
 259     PhaseRegAlloc::print_statistics();
 260     PhaseOutput::print_statistics();
 261     PhasePeephole::print_statistics();
 262     PhaseIdealLoop::print_statistics();
 263     ConnectionGraph::print_statistics();
 264     PhaseMacroExpand::print_statistics();
 265     if (xtty != nullptr)  xtty->tail("statistics");
 266   }
 267   if (_intrinsic_hist_flags[as_int(vmIntrinsics::_none)] != 0) {
 268     // put this under its own <statistics> element.
 269     print_intrinsic_statistics();
 270   }
 271 }
 272 #endif //PRODUCT
 273 
 274 void Compile::gvn_replace_by(Node* n, Node* nn) {
 275   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
 276     Node* use = n->last_out(i);
 277     bool is_in_table = initial_gvn()->hash_delete(use);
 278     uint uses_found = 0;
 279     for (uint j = 0; j < use->len(); j++) {
 280       if (use->in(j) == n) {
 281         if (j < use->req())
 282           use->set_req(j, nn);
 283         else
 284           use->set_prec(j, nn);
 285         uses_found++;
 286       }
 287     }
 288     if (is_in_table) {
 289       // reinsert into table
 290       initial_gvn()->hash_find_insert(use);
 291     }
 292     record_for_igvn(use);
 293     PhaseIterGVN::add_users_of_use_to_worklist(nn, use, *_igvn_worklist);
 294     i -= uses_found;    // we deleted 1 or more copies of this edge
 295   }
 296 }
 297 
 298 
 299 // Identify all nodes that are reachable from below, useful.
 300 // Use breadth-first pass that records state in a Unique_Node_List,
 301 // recursive traversal is slower.
 302 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
 303   int estimated_worklist_size = live_nodes();
 304   useful.map( estimated_worklist_size, nullptr );  // preallocate space
 305 
 306   // Initialize worklist
 307   if (root() != nullptr)  { useful.push(root()); }
 308   // If 'top' is cached, declare it useful to preserve cached node
 309   if (cached_top_node())  { useful.push(cached_top_node()); }
 310 
 311   // Push all useful nodes onto the list, breadthfirst
 312   for( uint next = 0; next < useful.size(); ++next ) {
 313     assert( next < unique(), "Unique useful nodes < total nodes");
 314     Node *n  = useful.at(next);
 315     uint max = n->len();
 316     for( uint i = 0; i < max; ++i ) {
 317       Node *m = n->in(i);
 318       if (not_a_node(m))  continue;
 319       useful.push(m);
 320     }
 321   }
 322 }
 323 
 324 // Update dead_node_list with any missing dead nodes using useful
 325 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
 326 void Compile::update_dead_node_list(Unique_Node_List &useful) {
 327   uint max_idx = unique();
 328   VectorSet& useful_node_set = useful.member_set();
 329 
 330   for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
 331     // If node with index node_idx is not in useful set,
 332     // mark it as dead in dead node list.
 333     if (!useful_node_set.test(node_idx)) {
 334       record_dead_node(node_idx);
 335     }
 336   }
 337 }
 338 
 339 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
 340   int shift = 0;
 341   for (int i = 0; i < inlines->length(); i++) {
 342     CallGenerator* cg = inlines->at(i);
 343     if (useful.member(cg->call_node())) {
 344       if (shift > 0) {
 345         inlines->at_put(i - shift, cg);
 346       }
 347     } else {
 348       shift++; // skip over the dead element
 349     }
 350   }
 351   if (shift > 0) {
 352     inlines->trunc_to(inlines->length() - shift); // remove last elements from compacted array
 353   }
 354 }
 355 
 356 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Node* dead) {
 357   assert(dead != nullptr && dead->is_Call(), "sanity");
 358   int found = 0;
 359   for (int i = 0; i < inlines->length(); i++) {
 360     if (inlines->at(i)->call_node() == dead) {
 361       inlines->remove_at(i);
 362       found++;
 363       NOT_DEBUG( break; ) // elements are unique, so exit early
 364     }
 365   }
 366   assert(found <= 1, "not unique");
 367 }
 368 
 369 template<typename N, ENABLE_IF_SDEFN(std::is_base_of<Node, N>::value)>
 370 void Compile::remove_useless_nodes(GrowableArray<N*>& node_list, Unique_Node_List& useful) {
 371   for (int i = node_list.length() - 1; i >= 0; i--) {
 372     N* node = node_list.at(i);
 373     if (!useful.member(node)) {
 374       node_list.delete_at(i); // replaces i-th with last element which is known to be useful (already processed)
 375     }
 376   }
 377 }
 378 
 379 void Compile::remove_useless_node(Node* dead) {
 380   remove_modified_node(dead);
 381 
 382   // Constant node that has no out-edges and has only one in-edge from
 383   // root is usually dead. However, sometimes reshaping walk makes
 384   // it reachable by adding use edges. So, we will NOT count Con nodes
 385   // as dead to be conservative about the dead node count at any
 386   // given time.
 387   if (!dead->is_Con()) {
 388     record_dead_node(dead->_idx);
 389   }
 390   if (dead->is_macro()) {
 391     remove_macro_node(dead);
 392   }
 393   if (dead->is_expensive()) {
 394     remove_expensive_node(dead);
 395   }
 396   if (dead->is_OpaqueTemplateAssertionPredicate()) {
 397     remove_template_assertion_predicate_opaq(dead);
 398   }
 399   if (dead->is_ParsePredicate()) {
 400     remove_parse_predicate(dead->as_ParsePredicate());
 401   }
 402   if (dead->for_post_loop_opts_igvn()) {
 403     remove_from_post_loop_opts_igvn(dead);
 404   }
 405   if (dead->is_Call()) {
 406     remove_useless_late_inlines(                &_late_inlines, dead);
 407     remove_useless_late_inlines(         &_string_late_inlines, dead);
 408     remove_useless_late_inlines(         &_boxing_late_inlines, dead);
 409     remove_useless_late_inlines(&_vector_reboxing_late_inlines, dead);
 410 
 411     if (dead->is_CallStaticJava()) {
 412       remove_unstable_if_trap(dead->as_CallStaticJava(), false);
 413     }
 414   }
 415   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 416   bs->unregister_potential_barrier_node(dead);
 417 }
 418 
 419 // Disconnect all useless nodes by disconnecting those at the boundary.
 420 void Compile::disconnect_useless_nodes(Unique_Node_List& useful, Unique_Node_List& worklist) {
 421   uint next = 0;
 422   while (next < useful.size()) {
 423     Node *n = useful.at(next++);
 424     if (n->is_SafePoint()) {
 425       // We're done with a parsing phase. Replaced nodes are not valid
 426       // beyond that point.
 427       n->as_SafePoint()->delete_replaced_nodes();
 428     }
 429     // Use raw traversal of out edges since this code removes out edges
 430     int max = n->outcnt();
 431     for (int j = 0; j < max; ++j) {
 432       Node* child = n->raw_out(j);
 433       if (!useful.member(child)) {
 434         assert(!child->is_top() || child != top(),
 435                "If top is cached in Compile object it is in useful list");
 436         // Only need to remove this out-edge to the useless node
 437         n->raw_del_out(j);
 438         --j;
 439         --max;
 440       }
 441     }
 442     if (n->outcnt() == 1 && n->has_special_unique_user()) {
 443       assert(useful.member(n->unique_out()), "do not push a useless node");
 444       worklist.push(n->unique_out());
 445     }
 446   }
 447 
 448   remove_useless_nodes(_macro_nodes,        useful); // remove useless macro nodes
 449   remove_useless_nodes(_parse_predicates,   useful); // remove useless Parse Predicate nodes
 450   remove_useless_nodes(_template_assertion_predicate_opaqs, useful); // remove useless Assertion Predicate opaque nodes
 451   remove_useless_nodes(_expensive_nodes,    useful); // remove useless expensive nodes
 452   remove_useless_nodes(_for_post_loop_igvn, useful); // remove useless node recorded for post loop opts IGVN pass
 453   remove_useless_unstable_if_traps(useful);          // remove useless unstable_if traps
 454   remove_useless_coarsened_locks(useful);            // remove useless coarsened locks nodes
 455 #ifdef ASSERT
 456   if (_modified_nodes != nullptr) {
 457     _modified_nodes->remove_useless_nodes(useful.member_set());
 458   }
 459 #endif
 460 
 461   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 462   bs->eliminate_useless_gc_barriers(useful, this);
 463   // clean up the late inline lists
 464   remove_useless_late_inlines(                &_late_inlines, useful);
 465   remove_useless_late_inlines(         &_string_late_inlines, useful);
 466   remove_useless_late_inlines(         &_boxing_late_inlines, useful);
 467   remove_useless_late_inlines(&_vector_reboxing_late_inlines, useful);
 468   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
 469 }
 470 
 471 // ============================================================================
 472 //------------------------------CompileWrapper---------------------------------
 473 class CompileWrapper : public StackObj {
 474   Compile *const _compile;
 475  public:
 476   CompileWrapper(Compile* compile);
 477 
 478   ~CompileWrapper();
 479 };
 480 
 481 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
 482   // the Compile* pointer is stored in the current ciEnv:
 483   ciEnv* env = compile->env();
 484   assert(env == ciEnv::current(), "must already be a ciEnv active");
 485   assert(env->compiler_data() == nullptr, "compile already active?");
 486   env->set_compiler_data(compile);
 487   assert(compile == Compile::current(), "sanity");
 488 
 489   compile->set_type_dict(nullptr);
 490   compile->set_clone_map(new Dict(cmpkey, hashkey, _compile->comp_arena()));
 491   compile->clone_map().set_clone_idx(0);
 492   compile->set_type_last_size(0);
 493   compile->set_last_tf(nullptr, nullptr);
 494   compile->set_indexSet_arena(nullptr);
 495   compile->set_indexSet_free_block_list(nullptr);
 496   compile->init_type_arena();
 497   Type::Initialize(compile);
 498   _compile->begin_method();
 499   _compile->clone_map().set_debug(_compile->has_method() && _compile->directive()->CloneMapDebugOption);
 500 }
 501 CompileWrapper::~CompileWrapper() {
 502   // simulate crash during compilation
 503   assert(CICrashAt < 0 || _compile->compile_id() != CICrashAt, "just as planned");
 504 
 505   _compile->end_method();
 506   _compile->env()->set_compiler_data(nullptr);
 507 }
 508 
 509 
 510 //----------------------------print_compile_messages---------------------------
 511 void Compile::print_compile_messages() {
 512 #ifndef PRODUCT
 513   // Check if recompiling
 514   if (!subsume_loads() && PrintOpto) {
 515     // Recompiling without allowing machine instructions to subsume loads
 516     tty->print_cr("*********************************************************");
 517     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
 518     tty->print_cr("*********************************************************");
 519   }
 520   if ((do_escape_analysis() != DoEscapeAnalysis) && PrintOpto) {
 521     // Recompiling without escape analysis
 522     tty->print_cr("*********************************************************");
 523     tty->print_cr("** Bailout: Recompile without escape analysis          **");
 524     tty->print_cr("*********************************************************");
 525   }
 526   if (do_iterative_escape_analysis() != DoEscapeAnalysis && PrintOpto) {
 527     // Recompiling without iterative escape analysis
 528     tty->print_cr("*********************************************************");
 529     tty->print_cr("** Bailout: Recompile without iterative escape analysis**");
 530     tty->print_cr("*********************************************************");
 531   }
 532   if (do_reduce_allocation_merges() != ReduceAllocationMerges && PrintOpto) {
 533     // Recompiling without reducing allocation merges
 534     tty->print_cr("*********************************************************");
 535     tty->print_cr("** Bailout: Recompile without reduce allocation merges **");
 536     tty->print_cr("*********************************************************");
 537   }
 538   if ((eliminate_boxing() != EliminateAutoBox) && PrintOpto) {
 539     // Recompiling without boxing elimination
 540     tty->print_cr("*********************************************************");
 541     tty->print_cr("** Bailout: Recompile without boxing elimination       **");
 542     tty->print_cr("*********************************************************");
 543   }
 544   if ((do_locks_coarsening() != EliminateLocks) && PrintOpto) {
 545     // Recompiling without locks coarsening
 546     tty->print_cr("*********************************************************");
 547     tty->print_cr("** Bailout: Recompile without locks coarsening         **");
 548     tty->print_cr("*********************************************************");
 549   }
 550   if (env()->break_at_compile()) {
 551     // Open the debugger when compiling this method.
 552     tty->print("### Breaking when compiling: ");
 553     method()->print_short_name();
 554     tty->cr();
 555     BREAKPOINT;
 556   }
 557 
 558   if( PrintOpto ) {
 559     if (is_osr_compilation()) {
 560       tty->print("[OSR]%3d", _compile_id);
 561     } else {
 562       tty->print("%3d", _compile_id);
 563     }
 564   }
 565 #endif
 566 }
 567 
 568 #ifndef PRODUCT
 569 void Compile::print_ideal_ir(const char* phase_name) {
 570   // keep the following output all in one block
 571   // This output goes directly to the tty, not the compiler log.
 572   // To enable tools to match it up with the compilation activity,
 573   // be sure to tag this tty output with the compile ID.
 574 
 575   // Node dumping can cause a safepoint, which can break the tty lock.
 576   // Buffer all node dumps, so that all safepoints happen before we lock.
 577   ResourceMark rm;
 578   stringStream ss;
 579 
 580   if (_output == nullptr) {
 581     ss.print_cr("AFTER: %s", phase_name);
 582     // Print out all nodes in ascending order of index.
 583     root()->dump_bfs(MaxNodeLimit, nullptr, "+S$", &ss);
 584   } else {
 585     // Dump the node blockwise if we have a scheduling
 586     _output->print_scheduling(&ss);
 587   }
 588 
 589   // Check that the lock is not broken by a safepoint.
 590   NoSafepointVerifier nsv;
 591   ttyLocker ttyl;
 592   if (xtty != nullptr) {
 593     xtty->head("ideal compile_id='%d'%s compile_phase='%s'",
 594                compile_id(),
 595                is_osr_compilation() ? " compile_kind='osr'" : "",
 596                phase_name);
 597   }
 598 
 599   tty->print("%s", ss.as_string());
 600 
 601   if (xtty != nullptr) {
 602     xtty->tail("ideal");
 603   }
 604 }
 605 #endif
 606 
 607 // ============================================================================
 608 //------------------------------Compile standard-------------------------------
 609 
 610 // Compile a method.  entry_bci is -1 for normal compilations and indicates
 611 // the continuation bci for on stack replacement.
 612 
 613 
 614 Compile::Compile( ciEnv* ci_env, ciMethod* target, int osr_bci,
 615                   Options options, DirectiveSet* directive)
 616                 : Phase(Compiler),
 617                   _compile_id(ci_env->compile_id()),
 618                   _options(options),
 619                   _method(target),
 620                   _entry_bci(osr_bci),
 621                   _ilt(nullptr),
 622                   _stub_function(nullptr),
 623                   _stub_name(nullptr),
 624                   _stub_entry_point(nullptr),
 625                   _max_node_limit(MaxNodeLimit),
 626                   _post_loop_opts_phase(false),
 627                   _allow_macro_nodes(true),
 628                   _inlining_progress(false),
 629                   _inlining_incrementally(false),
 630                   _do_cleanup(false),
 631                   _has_reserved_stack_access(target->has_reserved_stack_access()),
 632 #ifndef PRODUCT
 633                   _igv_idx(0),
 634                   _trace_opto_output(directive->TraceOptoOutputOption),
 635 #endif
 636                   _has_method_handle_invokes(false),
 637                   _clinit_barrier_on_entry(false),
 638                   _has_clinit_barriers(false),
 639                   _stress_seed(0),
 640                   _comp_arena(mtCompiler),
 641                   _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())),
 642                   _env(ci_env),
 643                   _directive(directive),
 644                   _log(ci_env->log()),
 645                   _first_failure_details(nullptr),
 646                   _intrinsics        (comp_arena(), 0, 0, nullptr),
 647                   _macro_nodes       (comp_arena(), 8, 0, nullptr),
 648                   _parse_predicates  (comp_arena(), 8, 0, nullptr),
 649                   _template_assertion_predicate_opaqs (comp_arena(), 8, 0, nullptr),
 650                   _expensive_nodes   (comp_arena(), 8, 0, nullptr),
 651                   _for_post_loop_igvn(comp_arena(), 8, 0, nullptr),
 652                   _unstable_if_traps (comp_arena(), 8, 0, nullptr),
 653                   _coarsened_locks   (comp_arena(), 8, 0, nullptr),
 654                   _congraph(nullptr),
 655                   NOT_PRODUCT(_igv_printer(nullptr) COMMA)
 656                   _unique(0),
 657                   _dead_node_count(0),
 658                   _dead_node_list(comp_arena()),
 659                   _node_arena_one(mtCompiler, Arena::Tag::tag_node),
 660                   _node_arena_two(mtCompiler, Arena::Tag::tag_node),
 661                   _node_arena(&_node_arena_one),
 662                   _mach_constant_base_node(nullptr),
 663                   _Compile_types(mtCompiler),
 664                   _initial_gvn(nullptr),
 665                   _igvn_worklist(nullptr),
 666                   _types(nullptr),
 667                   _node_hash(nullptr),
 668                   _late_inlines(comp_arena(), 2, 0, nullptr),
 669                   _string_late_inlines(comp_arena(), 2, 0, nullptr),
 670                   _boxing_late_inlines(comp_arena(), 2, 0, nullptr),
 671                   _vector_reboxing_late_inlines(comp_arena(), 2, 0, nullptr),
 672                   _late_inlines_pos(0),
 673                   _number_of_mh_late_inlines(0),
 674                   _oom(false),
 675                   _print_inlining_stream(new (mtCompiler) stringStream()),
 676                   _print_inlining_list(nullptr),
 677                   _print_inlining_idx(0),
 678                   _print_inlining_output(nullptr),
 679                   _replay_inline_data(nullptr),
 680                   _java_calls(0),
 681                   _inner_loops(0),
 682                   _interpreter_frame_size(0),
 683                   _output(nullptr)
 684 #ifndef PRODUCT
 685                   , _in_dump_cnt(0)
 686 #endif
 687 {
 688   C = this;
 689   CompileWrapper cw(this);
 690 
 691   TraceTime t1("Total compilation time", &_t_totalCompilation, CITime, CITimeVerbose);
 692   TraceTime t2(nullptr, &_t_methodCompilation, CITime, false);
 693 
 694 #if defined(SUPPORT_ASSEMBLY) || defined(SUPPORT_ABSTRACT_ASSEMBLY)
 695   bool print_opto_assembly = directive->PrintOptoAssemblyOption;
 696   // We can always print a disassembly, either abstract (hex dump) or
 697   // with the help of a suitable hsdis library. Thus, we should not
 698   // couple print_assembly and print_opto_assembly controls.
 699   // But: always print opto and regular assembly on compile command 'print'.
 700   bool print_assembly = directive->PrintAssemblyOption;
 701   set_print_assembly(print_opto_assembly || print_assembly);
 702 #else
 703   set_print_assembly(false); // must initialize.
 704 #endif
 705 
 706 #ifndef PRODUCT
 707   set_parsed_irreducible_loop(false);
 708 #endif
 709 
 710   if (directive->ReplayInlineOption) {
 711     _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level());
 712   }
 713   set_print_inlining(directive->PrintInliningOption || PrintOptoInlining);
 714   set_print_intrinsics(directive->PrintIntrinsicsOption);
 715   set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it
 716 
 717   if (ProfileTraps) {
 718     // Make sure the method being compiled gets its own MDO,
 719     // so we can at least track the decompile_count().
 720     method()->ensure_method_data();
 721   }
 722 
 723   if (StressLCM || StressGCM || StressIGVN || StressCCP ||
 724       StressIncrementalInlining || StressMacroExpansion || StressUnstableIfTraps || StressBailout) {
 725     initialize_stress_seed(directive);
 726   }
 727 
 728   Init(/*do_aliasing=*/ true);
 729 
 730   print_compile_messages();
 731 
 732   _ilt = InlineTree::build_inline_tree_root();
 733 
 734   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
 735   assert(num_alias_types() >= AliasIdxRaw, "");
 736 
 737 #define MINIMUM_NODE_HASH  1023
 738 
 739   // GVN that will be run immediately on new nodes
 740   uint estimated_size = method()->code_size()*4+64;
 741   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
 742   _igvn_worklist = new (comp_arena()) Unique_Node_List(comp_arena());
 743   _types = new (comp_arena()) Type_Array(comp_arena());
 744   _node_hash = new (comp_arena()) NodeHash(comp_arena(), estimated_size);
 745   PhaseGVN gvn;
 746   set_initial_gvn(&gvn);
 747 
 748   print_inlining_init();
 749   { // Scope for timing the parser
 750     TracePhase tp(_t_parser);
 751 
 752     // Put top into the hash table ASAP.
 753     initial_gvn()->transform(top());
 754 
 755     // Set up tf(), start(), and find a CallGenerator.
 756     CallGenerator* cg = nullptr;
 757     if (is_osr_compilation()) {
 758       const TypeTuple *domain = StartOSRNode::osr_domain();
 759       const TypeTuple *range = TypeTuple::make_range(method()->signature());
 760       init_tf(TypeFunc::make(domain, range));
 761       StartNode* s = new StartOSRNode(root(), domain);
 762       initial_gvn()->set_type_bottom(s);
 763       verify_start(s);
 764       cg = CallGenerator::for_osr(method(), entry_bci());
 765     } else {
 766       // Normal case.
 767       init_tf(TypeFunc::make(method()));
 768       StartNode* s = new StartNode(root(), tf()->domain());
 769       initial_gvn()->set_type_bottom(s);
 770       verify_start(s);
 771       if (method()->intrinsic_id() == vmIntrinsics::_Reference_get) {
 772         // With java.lang.ref.reference.get() we must go through the
 773         // intrinsic - even when get() is the root
 774         // method of the compile - so that, if necessary, the value in
 775         // the referent field of the reference object gets recorded by
 776         // the pre-barrier code.
 777         cg = find_intrinsic(method(), false);
 778       }
 779       if (cg == nullptr) {
 780         float past_uses = method()->interpreter_invocation_count();
 781         float expected_uses = past_uses;
 782         cg = CallGenerator::for_inline(method(), expected_uses);
 783       }
 784     }
 785     if (failing())  return;
 786     if (cg == nullptr) {
 787       const char* reason = InlineTree::check_can_parse(method());
 788       assert(reason != nullptr, "expect reason for parse failure");
 789       stringStream ss;
 790       ss.print("cannot parse method: %s", reason);
 791       record_method_not_compilable(ss.as_string());
 792       return;
 793     }
 794 
 795     gvn.set_type(root(), root()->bottom_type());
 796 
 797     JVMState* jvms = build_start_state(start(), tf());
 798     if ((jvms = cg->generate(jvms)) == nullptr) {
 799       assert(failure_reason() != nullptr, "expect reason for parse failure");
 800       stringStream ss;
 801       ss.print("method parse failed: %s", failure_reason());
 802       record_method_not_compilable(ss.as_string() DEBUG_ONLY(COMMA true));
 803       return;
 804     }
 805     GraphKit kit(jvms);
 806 
 807     if (!kit.stopped()) {
 808       // Accept return values, and transfer control we know not where.
 809       // This is done by a special, unique ReturnNode bound to root.
 810       return_values(kit.jvms());
 811     }
 812 
 813     if (kit.has_exceptions()) {
 814       // Any exceptions that escape from this call must be rethrown
 815       // to whatever caller is dynamically above us on the stack.
 816       // This is done by a special, unique RethrowNode bound to root.
 817       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
 818     }
 819 
 820     assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
 821 
 822     if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
 823       inline_string_calls(true);
 824     }
 825 
 826     if (failing())  return;
 827 
 828     // Remove clutter produced by parsing.
 829     if (!failing()) {
 830       ResourceMark rm;
 831       PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist());
 832     }
 833   }
 834 
 835   // Note:  Large methods are capped off in do_one_bytecode().
 836   if (failing())  return;
 837 
 838   // After parsing, node notes are no longer automagic.
 839   // They must be propagated by register_new_node_with_optimizer(),
 840   // clone(), or the like.
 841   set_default_node_notes(nullptr);
 842 
 843 #ifndef PRODUCT
 844   if (should_print_igv(1)) {
 845     _igv_printer->print_inlining();
 846   }
 847 #endif
 848 
 849   if (failing())  return;
 850   NOT_PRODUCT( verify_graph_edges(); )
 851 
 852   // Now optimize
 853   Optimize();
 854   if (failing())  return;
 855   NOT_PRODUCT( verify_graph_edges(); )
 856 
 857 #ifndef PRODUCT
 858   if (should_print_ideal()) {
 859     print_ideal_ir("print_ideal");
 860   }
 861 #endif
 862 
 863 #ifdef ASSERT
 864   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 865   bs->verify_gc_barriers(this, BarrierSetC2::BeforeCodeGen);
 866 #endif
 867 
 868   // Dump compilation data to replay it.
 869   if (directive->DumpReplayOption) {
 870     env()->dump_replay_data(_compile_id);
 871   }
 872   if (directive->DumpInlineOption && (ilt() != nullptr)) {
 873     env()->dump_inline_data(_compile_id);
 874   }
 875 
 876   // Now that we know the size of all the monitors we can add a fixed slot
 877   // for the original deopt pc.
 878   int next_slot = fixed_slots() + (sizeof(address) / VMRegImpl::stack_slot_size);
 879   set_fixed_slots(next_slot);
 880 
 881   // Compute when to use implicit null checks. Used by matching trap based
 882   // nodes and NullCheck optimization.
 883   set_allowed_deopt_reasons();
 884 
 885   // Now generate code
 886   Code_Gen();
 887 }
 888 
 889 //------------------------------Compile----------------------------------------
 890 // Compile a runtime stub
 891 Compile::Compile( ciEnv* ci_env,
 892                   TypeFunc_generator generator,
 893                   address stub_function,
 894                   const char *stub_name,
 895                   int is_fancy_jump,
 896                   bool pass_tls,
 897                   bool return_pc,
 898                   DirectiveSet* directive)
 899   : Phase(Compiler),
 900     _compile_id(0),
 901     _options(Options::for_runtime_stub()),
 902     _method(nullptr),
 903     _entry_bci(InvocationEntryBci),
 904     _stub_function(stub_function),
 905     _stub_name(stub_name),
 906     _stub_entry_point(nullptr),
 907     _max_node_limit(MaxNodeLimit),
 908     _post_loop_opts_phase(false),
 909     _allow_macro_nodes(true),
 910     _inlining_progress(false),
 911     _inlining_incrementally(false),
 912     _has_reserved_stack_access(false),
 913 #ifndef PRODUCT
 914     _igv_idx(0),
 915     _trace_opto_output(directive->TraceOptoOutputOption),
 916 #endif
 917     _has_method_handle_invokes(false),
 918     _clinit_barrier_on_entry(false),
 919     _has_clinit_barriers(false),
 920     _stress_seed(0),
 921     _comp_arena(mtCompiler),
 922     _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())),
 923     _env(ci_env),
 924     _directive(directive),
 925     _log(ci_env->log()),
 926     _first_failure_details(nullptr),
 927     _for_post_loop_igvn(comp_arena(), 8, 0, nullptr),
 928     _congraph(nullptr),
 929     NOT_PRODUCT(_igv_printer(nullptr) COMMA)
 930     _unique(0),
 931     _dead_node_count(0),
 932     _dead_node_list(comp_arena()),
 933     _node_arena_one(mtCompiler),
 934     _node_arena_two(mtCompiler),
 935     _node_arena(&_node_arena_one),
 936     _mach_constant_base_node(nullptr),
 937     _Compile_types(mtCompiler),
 938     _initial_gvn(nullptr),
 939     _igvn_worklist(nullptr),
 940     _types(nullptr),
 941     _node_hash(nullptr),
 942     _number_of_mh_late_inlines(0),
 943     _oom(false),
 944     _print_inlining_stream(new (mtCompiler) stringStream()),
 945     _print_inlining_list(nullptr),
 946     _print_inlining_idx(0),
 947     _print_inlining_output(nullptr),
 948     _replay_inline_data(nullptr),
 949     _java_calls(0),
 950     _inner_loops(0),
 951     _interpreter_frame_size(0),
 952     _output(nullptr),
 953 #ifndef PRODUCT
 954     _in_dump_cnt(0),
 955 #endif
 956     _allowed_reasons(0) {
 957   C = this;
 958 
 959   TraceTime t1(nullptr, &_t_totalCompilation, CITime, false);
 960   TraceTime t2(nullptr, &_t_stubCompilation, CITime, false);
 961 
 962 #ifndef PRODUCT
 963   set_print_assembly(PrintFrameConverterAssembly);
 964   set_parsed_irreducible_loop(false);
 965 #else
 966   set_print_assembly(false); // Must initialize.
 967 #endif
 968   set_has_irreducible_loop(false); // no loops
 969 
 970   CompileWrapper cw(this);
 971   Init(/*do_aliasing=*/ false);
 972   init_tf((*generator)());
 973 
 974   _igvn_worklist = new (comp_arena()) Unique_Node_List(comp_arena());
 975   _types = new (comp_arena()) Type_Array(comp_arena());
 976   _node_hash = new (comp_arena()) NodeHash(comp_arena(), 255);
 977 
 978   if (StressLCM || StressGCM || StressBailout) {
 979     initialize_stress_seed(directive);
 980   }
 981 
 982   {
 983     PhaseGVN gvn;
 984     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
 985     gvn.transform(top());
 986 
 987     GraphKit kit;
 988     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
 989   }
 990 
 991   NOT_PRODUCT( verify_graph_edges(); )
 992 
 993   Code_Gen();
 994 }
 995 
 996 Compile::~Compile() {
 997   delete _print_inlining_stream;
 998   delete _first_failure_details;
 999 };
1000 
1001 //------------------------------Init-------------------------------------------
1002 // Prepare for a single compilation
1003 void Compile::Init(bool aliasing) {
1004   _do_aliasing = aliasing;
1005   _unique  = 0;
1006   _regalloc = nullptr;
1007 
1008   _tf      = nullptr;  // filled in later
1009   _top     = nullptr;  // cached later
1010   _matcher = nullptr;  // filled in later
1011   _cfg     = nullptr;  // filled in later
1012 
1013   IA32_ONLY( set_24_bit_selection_and_mode(true, false); )
1014 
1015   _node_note_array = nullptr;
1016   _default_node_notes = nullptr;
1017   DEBUG_ONLY( _modified_nodes = nullptr; ) // Used in Optimize()
1018 
1019   _immutable_memory = nullptr; // filled in at first inquiry
1020 
1021 #ifdef ASSERT
1022   _phase_optimize_finished = false;
1023   _phase_verify_ideal_loop = false;
1024   _exception_backedge = false;
1025   _type_verify = nullptr;
1026 #endif
1027 
1028   // Globally visible Nodes
1029   // First set TOP to null to give safe behavior during creation of RootNode
1030   set_cached_top_node(nullptr);
1031   set_root(new RootNode());
1032   // Now that you have a Root to point to, create the real TOP
1033   set_cached_top_node( new ConNode(Type::TOP) );
1034   set_recent_alloc(nullptr, nullptr);
1035 
1036   // Create Debug Information Recorder to record scopes, oopmaps, etc.
1037   env()->set_oop_recorder(new OopRecorder(env()->arena()));
1038   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
1039   env()->set_dependencies(new Dependencies(env()));
1040 
1041   _fixed_slots = 0;
1042   set_has_split_ifs(false);
1043   set_has_loops(false); // first approximation
1044   set_has_stringbuilder(false);
1045   set_has_boxed_value(false);
1046   _trap_can_recompile = false;  // no traps emitted yet
1047   _major_progress = true; // start out assuming good things will happen
1048   set_has_unsafe_access(false);
1049   set_max_vector_size(0);
1050   set_clear_upper_avx(false);  //false as default for clear upper bits of ymm registers
1051   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
1052   set_decompile_count(0);
1053 
1054 #ifndef PRODUCT
1055   Copy::zero_to_bytes(_igv_phase_iter, sizeof(_igv_phase_iter));
1056 #endif
1057 
1058   set_do_freq_based_layout(_directive->BlockLayoutByFrequencyOption);
1059   _loop_opts_cnt = LoopOptsCount;
1060   set_do_inlining(Inline);
1061   set_max_inline_size(MaxInlineSize);
1062   set_freq_inline_size(FreqInlineSize);
1063   set_do_scheduling(OptoScheduling);
1064 
1065   set_do_vector_loop(false);
1066   set_has_monitors(false);
1067   set_has_scoped_access(false);
1068 
1069   if (AllowVectorizeOnDemand) {
1070     if (has_method() && _directive->VectorizeOption) {
1071       set_do_vector_loop(true);
1072       NOT_PRODUCT(if (do_vector_loop() && Verbose) {tty->print("Compile::Init: do vectorized loops (SIMD like) for method %s\n",  method()->name()->as_quoted_ascii());})
1073     } else if (has_method() && method()->name() != nullptr &&
1074                method()->intrinsic_id() == vmIntrinsics::_forEachRemaining) {
1075       set_do_vector_loop(true);
1076     }
1077   }
1078   set_use_cmove(UseCMoveUnconditionally /* || do_vector_loop()*/); //TODO: consider do_vector_loop() mandate use_cmove unconditionally
1079   NOT_PRODUCT(if (use_cmove() && Verbose && has_method()) {tty->print("Compile::Init: use CMove without profitability tests for method %s\n",  method()->name()->as_quoted_ascii());})
1080 
1081   _max_node_limit = _directive->MaxNodeLimitOption;
1082 
1083   if (VM_Version::supports_fast_class_init_checks() && has_method() && !is_osr_compilation() &&
1084       (method()->needs_clinit_barrier() || (do_clinit_barriers() && method()->is_static()))) {
1085     set_clinit_barrier_on_entry(true);
1086     if (do_clinit_barriers()) {
1087       set_has_clinit_barriers(true); // Entry clinit barrier is in prolog code.
1088     }
1089   }
1090   if (debug_info()->recording_non_safepoints()) {
1091     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
1092                         (comp_arena(), 8, 0, nullptr));
1093     set_default_node_notes(Node_Notes::make(this));
1094   }
1095 
1096   const int grow_ats = 16;
1097   _max_alias_types = grow_ats;
1098   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
1099   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
1100   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
1101   {
1102     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
1103   }
1104   // Initialize the first few types.
1105   _alias_types[AliasIdxTop]->Init(AliasIdxTop, nullptr);
1106   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
1107   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
1108   _num_alias_types = AliasIdxRaw+1;
1109   // Zero out the alias type cache.
1110   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
1111   // A null adr_type hits in the cache right away.  Preload the right answer.
1112   probe_alias_cache(nullptr)->_index = AliasIdxTop;
1113 }
1114 
1115 #ifdef ASSERT
1116 // Verify that the current StartNode is valid.
1117 void Compile::verify_start(StartNode* s) const {
1118   assert(failing_internal() || s == start(), "should be StartNode");
1119 }
1120 #endif
1121 
1122 /**
1123  * Return the 'StartNode'. We must not have a pending failure, since the ideal graph
1124  * can be in an inconsistent state, i.e., we can get segmentation faults when traversing
1125  * the ideal graph.
1126  */
1127 StartNode* Compile::start() const {
1128   assert (!failing_internal() || C->failure_is_artificial(), "Must not have pending failure. Reason is: %s", failure_reason());
1129   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
1130     Node* start = root()->fast_out(i);
1131     if (start->is_Start()) {
1132       return start->as_Start();
1133     }
1134   }
1135   fatal("Did not find Start node!");
1136   return nullptr;
1137 }
1138 
1139 //-------------------------------immutable_memory-------------------------------------
1140 // Access immutable memory
1141 Node* Compile::immutable_memory() {
1142   if (_immutable_memory != nullptr) {
1143     return _immutable_memory;
1144   }
1145   StartNode* s = start();
1146   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
1147     Node *p = s->fast_out(i);
1148     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
1149       _immutable_memory = p;
1150       return _immutable_memory;
1151     }
1152   }
1153   ShouldNotReachHere();
1154   return nullptr;
1155 }
1156 
1157 //----------------------set_cached_top_node------------------------------------
1158 // Install the cached top node, and make sure Node::is_top works correctly.
1159 void Compile::set_cached_top_node(Node* tn) {
1160   if (tn != nullptr)  verify_top(tn);
1161   Node* old_top = _top;
1162   _top = tn;
1163   // Calling Node::setup_is_top allows the nodes the chance to adjust
1164   // their _out arrays.
1165   if (_top != nullptr)     _top->setup_is_top();
1166   if (old_top != nullptr)  old_top->setup_is_top();
1167   assert(_top == nullptr || top()->is_top(), "");
1168 }
1169 
1170 #ifdef ASSERT
1171 uint Compile::count_live_nodes_by_graph_walk() {
1172   Unique_Node_List useful(comp_arena());
1173   // Get useful node list by walking the graph.
1174   identify_useful_nodes(useful);
1175   return useful.size();
1176 }
1177 
1178 void Compile::print_missing_nodes() {
1179 
1180   // Return if CompileLog is null and PrintIdealNodeCount is false.
1181   if ((_log == nullptr) && (! PrintIdealNodeCount)) {
1182     return;
1183   }
1184 
1185   // This is an expensive function. It is executed only when the user
1186   // specifies VerifyIdealNodeCount option or otherwise knows the
1187   // additional work that needs to be done to identify reachable nodes
1188   // by walking the flow graph and find the missing ones using
1189   // _dead_node_list.
1190 
1191   Unique_Node_List useful(comp_arena());
1192   // Get useful node list by walking the graph.
1193   identify_useful_nodes(useful);
1194 
1195   uint l_nodes = C->live_nodes();
1196   uint l_nodes_by_walk = useful.size();
1197 
1198   if (l_nodes != l_nodes_by_walk) {
1199     if (_log != nullptr) {
1200       _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
1201       _log->stamp();
1202       _log->end_head();
1203     }
1204     VectorSet& useful_member_set = useful.member_set();
1205     int last_idx = l_nodes_by_walk;
1206     for (int i = 0; i < last_idx; i++) {
1207       if (useful_member_set.test(i)) {
1208         if (_dead_node_list.test(i)) {
1209           if (_log != nullptr) {
1210             _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
1211           }
1212           if (PrintIdealNodeCount) {
1213             // Print the log message to tty
1214               tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
1215               useful.at(i)->dump();
1216           }
1217         }
1218       }
1219       else if (! _dead_node_list.test(i)) {
1220         if (_log != nullptr) {
1221           _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
1222         }
1223         if (PrintIdealNodeCount) {
1224           // Print the log message to tty
1225           tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
1226         }
1227       }
1228     }
1229     if (_log != nullptr) {
1230       _log->tail("mismatched_nodes");
1231     }
1232   }
1233 }
1234 void Compile::record_modified_node(Node* n) {
1235   if (_modified_nodes != nullptr && !_inlining_incrementally && !n->is_Con()) {
1236     _modified_nodes->push(n);
1237   }
1238 }
1239 
1240 void Compile::remove_modified_node(Node* n) {
1241   if (_modified_nodes != nullptr) {
1242     _modified_nodes->remove(n);
1243   }
1244 }
1245 #endif
1246 
1247 #ifndef PRODUCT
1248 void Compile::verify_top(Node* tn) const {
1249   if (tn != nullptr) {
1250     assert(tn->is_Con(), "top node must be a constant");
1251     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
1252     assert(tn->in(0) != nullptr, "must have live top node");
1253   }
1254 }
1255 #endif
1256 
1257 
1258 ///-------------------Managing Per-Node Debug & Profile Info-------------------
1259 
1260 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1261   guarantee(arr != nullptr, "");
1262   int num_blocks = arr->length();
1263   if (grow_by < num_blocks)  grow_by = num_blocks;
1264   int num_notes = grow_by * _node_notes_block_size;
1265   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1266   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1267   while (num_notes > 0) {
1268     arr->append(notes);
1269     notes     += _node_notes_block_size;
1270     num_notes -= _node_notes_block_size;
1271   }
1272   assert(num_notes == 0, "exact multiple, please");
1273 }
1274 
1275 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1276   if (source == nullptr || dest == nullptr)  return false;
1277 
1278   if (dest->is_Con())
1279     return false;               // Do not push debug info onto constants.
1280 
1281 #ifdef ASSERT
1282   // Leave a bread crumb trail pointing to the original node:
1283   if (dest != nullptr && dest != source && dest->debug_orig() == nullptr) {
1284     dest->set_debug_orig(source);
1285   }
1286 #endif
1287 
1288   if (node_note_array() == nullptr)
1289     return false;               // Not collecting any notes now.
1290 
1291   // This is a copy onto a pre-existing node, which may already have notes.
1292   // If both nodes have notes, do not overwrite any pre-existing notes.
1293   Node_Notes* source_notes = node_notes_at(source->_idx);
1294   if (source_notes == nullptr || source_notes->is_clear())  return false;
1295   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
1296   if (dest_notes == nullptr || dest_notes->is_clear()) {
1297     return set_node_notes_at(dest->_idx, source_notes);
1298   }
1299 
1300   Node_Notes merged_notes = (*source_notes);
1301   // The order of operations here ensures that dest notes will win...
1302   merged_notes.update_from(dest_notes);
1303   return set_node_notes_at(dest->_idx, &merged_notes);
1304 }
1305 
1306 
1307 //--------------------------allow_range_check_smearing-------------------------
1308 // Gating condition for coalescing similar range checks.
1309 // Sometimes we try 'speculatively' replacing a series of a range checks by a
1310 // single covering check that is at least as strong as any of them.
1311 // If the optimization succeeds, the simplified (strengthened) range check
1312 // will always succeed.  If it fails, we will deopt, and then give up
1313 // on the optimization.
1314 bool Compile::allow_range_check_smearing() const {
1315   // If this method has already thrown a range-check,
1316   // assume it was because we already tried range smearing
1317   // and it failed.
1318   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1319   return !already_trapped;
1320 }
1321 
1322 
1323 //------------------------------flatten_alias_type-----------------------------
1324 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1325   assert(do_aliasing(), "Aliasing should be enabled");
1326   int offset = tj->offset();
1327   TypePtr::PTR ptr = tj->ptr();
1328 
1329   // Known instance (scalarizable allocation) alias only with itself.
1330   bool is_known_inst = tj->isa_oopptr() != nullptr &&
1331                        tj->is_oopptr()->is_known_instance();
1332 
1333   // Process weird unsafe references.
1334   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1335     assert(InlineUnsafeOps || StressReflectiveCode, "indeterminate pointers come only from unsafe ops");
1336     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1337     tj = TypeOopPtr::BOTTOM;
1338     ptr = tj->ptr();
1339     offset = tj->offset();
1340   }
1341 
1342   // Array pointers need some flattening
1343   const TypeAryPtr* ta = tj->isa_aryptr();
1344   if (ta && ta->is_stable()) {
1345     // Erase stability property for alias analysis.
1346     tj = ta = ta->cast_to_stable(false);
1347   }
1348   if( ta && is_known_inst ) {
1349     if ( offset != Type::OffsetBot &&
1350          offset > arrayOopDesc::length_offset_in_bytes() ) {
1351       offset = Type::OffsetBot; // Flatten constant access into array body only
1352       tj = ta = ta->
1353               remove_speculative()->
1354               cast_to_ptr_type(ptr)->
1355               with_offset(offset);
1356     }
1357   } else if (ta) {
1358     // For arrays indexed by constant indices, we flatten the alias
1359     // space to include all of the array body.  Only the header, klass
1360     // and array length can be accessed un-aliased.
1361     if( offset != Type::OffsetBot ) {
1362       if( ta->const_oop() ) { // MethodData* or Method*
1363         offset = Type::OffsetBot;   // Flatten constant access into array body
1364         tj = ta = ta->
1365                 remove_speculative()->
1366                 cast_to_ptr_type(ptr)->
1367                 cast_to_exactness(false)->
1368                 with_offset(offset);
1369       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1370         // range is OK as-is.
1371         tj = ta = TypeAryPtr::RANGE;
1372       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1373         tj = TypeInstPtr::KLASS; // all klass loads look alike
1374         ta = TypeAryPtr::RANGE; // generic ignored junk
1375         ptr = TypePtr::BotPTR;
1376       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1377         tj = TypeInstPtr::MARK;
1378         ta = TypeAryPtr::RANGE; // generic ignored junk
1379         ptr = TypePtr::BotPTR;
1380       } else {                  // Random constant offset into array body
1381         offset = Type::OffsetBot;   // Flatten constant access into array body
1382         tj = ta = ta->
1383                 remove_speculative()->
1384                 cast_to_ptr_type(ptr)->
1385                 cast_to_exactness(false)->
1386                 with_offset(offset);
1387       }
1388     }
1389     // Arrays of fixed size alias with arrays of unknown size.
1390     if (ta->size() != TypeInt::POS) {
1391       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1392       tj = ta = ta->
1393               remove_speculative()->
1394               cast_to_ptr_type(ptr)->
1395               with_ary(tary)->
1396               cast_to_exactness(false);
1397     }
1398     // Arrays of known objects become arrays of unknown objects.
1399     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1400       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1401       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,nullptr,false,offset);
1402     }
1403     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1404       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1405       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,nullptr,false,offset);
1406     }
1407     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1408     // cannot be distinguished by bytecode alone.
1409     if (ta->elem() == TypeInt::BOOL) {
1410       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1411       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1412       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
1413     }
1414     // During the 2nd round of IterGVN, NotNull castings are removed.
1415     // Make sure the Bottom and NotNull variants alias the same.
1416     // Also, make sure exact and non-exact variants alias the same.
1417     if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != nullptr) {
1418       tj = ta = ta->
1419               remove_speculative()->
1420               cast_to_ptr_type(TypePtr::BotPTR)->
1421               cast_to_exactness(false)->
1422               with_offset(offset);
1423     }
1424   }
1425 
1426   // Oop pointers need some flattening
1427   const TypeInstPtr *to = tj->isa_instptr();
1428   if (to && to != TypeOopPtr::BOTTOM) {
1429     ciInstanceKlass* ik = to->instance_klass();
1430     if( ptr == TypePtr::Constant ) {
1431       if (ik != ciEnv::current()->Class_klass() ||
1432           offset < ik->layout_helper_size_in_bytes()) {
1433         // No constant oop pointers (such as Strings); they alias with
1434         // unknown strings.
1435         assert(!is_known_inst, "not scalarizable allocation");
1436         tj = to = to->
1437                 cast_to_instance_id(TypeOopPtr::InstanceBot)->
1438                 remove_speculative()->
1439                 cast_to_ptr_type(TypePtr::BotPTR)->
1440                 cast_to_exactness(false);
1441       }
1442     } else if( is_known_inst ) {
1443       tj = to; // Keep NotNull and klass_is_exact for instance type
1444     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1445       // During the 2nd round of IterGVN, NotNull castings are removed.
1446       // Make sure the Bottom and NotNull variants alias the same.
1447       // Also, make sure exact and non-exact variants alias the same.
1448       tj = to = to->
1449               remove_speculative()->
1450               cast_to_instance_id(TypeOopPtr::InstanceBot)->
1451               cast_to_ptr_type(TypePtr::BotPTR)->
1452               cast_to_exactness(false);
1453     }
1454     if (to->speculative() != nullptr) {
1455       tj = to = to->remove_speculative();
1456     }
1457     // Canonicalize the holder of this field
1458     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1459       // First handle header references such as a LoadKlassNode, even if the
1460       // object's klass is unloaded at compile time (4965979).
1461       if (!is_known_inst) { // Do it only for non-instance types
1462         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, nullptr, offset);
1463       }
1464     } else if (offset < 0 || offset >= ik->layout_helper_size_in_bytes()) {
1465       // Static fields are in the space above the normal instance
1466       // fields in the java.lang.Class instance.
1467       if (ik != ciEnv::current()->Class_klass()) {
1468         to = nullptr;
1469         tj = TypeOopPtr::BOTTOM;
1470         offset = tj->offset();
1471       }
1472     } else {
1473       ciInstanceKlass *canonical_holder = ik->get_canonical_holder(offset);
1474       assert(offset < canonical_holder->layout_helper_size_in_bytes(), "");
1475       assert(tj->offset() == offset, "no change to offset expected");
1476       bool xk = to->klass_is_exact();
1477       int instance_id = to->instance_id();
1478 
1479       // If the input type's class is the holder: if exact, the type only includes interfaces implemented by the holder
1480       // but if not exact, it may include extra interfaces: build new type from the holder class to make sure only
1481       // its interfaces are included.
1482       if (xk && ik->equals(canonical_holder)) {
1483         assert(tj == TypeInstPtr::make(to->ptr(), canonical_holder, is_known_inst, nullptr, offset, instance_id), "exact type should be canonical type");
1484       } else {
1485         assert(xk || !is_known_inst, "Known instance should be exact type");
1486         tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, is_known_inst, nullptr, offset, instance_id);
1487       }
1488     }
1489   }
1490 
1491   // Klass pointers to object array klasses need some flattening
1492   const TypeKlassPtr *tk = tj->isa_klassptr();
1493   if( tk ) {
1494     // If we are referencing a field within a Klass, we need
1495     // to assume the worst case of an Object.  Both exact and
1496     // inexact types must flatten to the same alias class so
1497     // use NotNull as the PTR.
1498     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1499       tj = tk = TypeInstKlassPtr::make(TypePtr::NotNull,
1500                                        env()->Object_klass(),
1501                                        offset);
1502     }
1503 
1504     if (tk->isa_aryklassptr() && tk->is_aryklassptr()->elem()->isa_klassptr()) {
1505       ciKlass* k = ciObjArrayKlass::make(env()->Object_klass());
1506       if (!k || !k->is_loaded()) {                  // Only fails for some -Xcomp runs
1507         tj = tk = TypeInstKlassPtr::make(TypePtr::NotNull, env()->Object_klass(), offset);
1508       } else {
1509         tj = tk = TypeAryKlassPtr::make(TypePtr::NotNull, tk->is_aryklassptr()->elem(), k, offset);
1510       }
1511     }
1512 
1513     // Check for precise loads from the primary supertype array and force them
1514     // to the supertype cache alias index.  Check for generic array loads from
1515     // the primary supertype array and also force them to the supertype cache
1516     // alias index.  Since the same load can reach both, we need to merge
1517     // these 2 disparate memories into the same alias class.  Since the
1518     // primary supertype array is read-only, there's no chance of confusion
1519     // where we bypass an array load and an array store.
1520     int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
1521     if (offset == Type::OffsetBot ||
1522         (offset >= primary_supers_offset &&
1523          offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
1524         offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
1525       offset = in_bytes(Klass::secondary_super_cache_offset());
1526       tj = tk = tk->with_offset(offset);
1527     }
1528   }
1529 
1530   // Flatten all Raw pointers together.
1531   if (tj->base() == Type::RawPtr)
1532     tj = TypeRawPtr::BOTTOM;
1533 
1534   if (tj->base() == Type::AnyPtr)
1535     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1536 
1537   offset = tj->offset();
1538   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1539 
1540   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1541           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1542           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1543           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1544           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1545           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1546           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr),
1547           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1548   assert( tj->ptr() != TypePtr::TopPTR &&
1549           tj->ptr() != TypePtr::AnyNull &&
1550           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1551 //    assert( tj->ptr() != TypePtr::Constant ||
1552 //            tj->base() == Type::RawPtr ||
1553 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1554 
1555   return tj;
1556 }
1557 
1558 void Compile::AliasType::Init(int i, const TypePtr* at) {
1559   assert(AliasIdxTop <= i && i < Compile::current()->_max_alias_types, "Invalid alias index");
1560   _index = i;
1561   _adr_type = at;
1562   _field = nullptr;
1563   _element = nullptr;
1564   _is_rewritable = true; // default
1565   const TypeOopPtr *atoop = (at != nullptr) ? at->isa_oopptr() : nullptr;
1566   if (atoop != nullptr && atoop->is_known_instance()) {
1567     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1568     _general_index = Compile::current()->get_alias_index(gt);
1569   } else {
1570     _general_index = 0;
1571   }
1572 }
1573 
1574 BasicType Compile::AliasType::basic_type() const {
1575   if (element() != nullptr) {
1576     const Type* element = adr_type()->is_aryptr()->elem();
1577     return element->isa_narrowoop() ? T_OBJECT : element->array_element_basic_type();
1578   } if (field() != nullptr) {
1579     return field()->layout_type();
1580   } else {
1581     return T_ILLEGAL; // unknown
1582   }
1583 }
1584 
1585 //---------------------------------print_on------------------------------------
1586 #ifndef PRODUCT
1587 void Compile::AliasType::print_on(outputStream* st) {
1588   if (index() < 10)
1589         st->print("@ <%d> ", index());
1590   else  st->print("@ <%d>",  index());
1591   st->print(is_rewritable() ? "   " : " RO");
1592   int offset = adr_type()->offset();
1593   if (offset == Type::OffsetBot)
1594         st->print(" +any");
1595   else  st->print(" +%-3d", offset);
1596   st->print(" in ");
1597   adr_type()->dump_on(st);
1598   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1599   if (field() != nullptr && tjp) {
1600     if (tjp->is_instptr()->instance_klass()  != field()->holder() ||
1601         tjp->offset() != field()->offset_in_bytes()) {
1602       st->print(" != ");
1603       field()->print();
1604       st->print(" ***");
1605     }
1606   }
1607 }
1608 
1609 void print_alias_types() {
1610   Compile* C = Compile::current();
1611   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1612   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1613     C->alias_type(idx)->print_on(tty);
1614     tty->cr();
1615   }
1616 }
1617 #endif
1618 
1619 
1620 //----------------------------probe_alias_cache--------------------------------
1621 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1622   intptr_t key = (intptr_t) adr_type;
1623   key ^= key >> logAliasCacheSize;
1624   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1625 }
1626 
1627 
1628 //-----------------------------grow_alias_types--------------------------------
1629 void Compile::grow_alias_types() {
1630   const int old_ats  = _max_alias_types; // how many before?
1631   const int new_ats  = old_ats;          // how many more?
1632   const int grow_ats = old_ats+new_ats;  // how many now?
1633   _max_alias_types = grow_ats;
1634   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1635   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1636   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1637   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1638 }
1639 
1640 
1641 //--------------------------------find_alias_type------------------------------
1642 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
1643   if (!do_aliasing()) {
1644     return alias_type(AliasIdxBot);
1645   }
1646 
1647   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1648   if (ace->_adr_type == adr_type) {
1649     return alias_type(ace->_index);
1650   }
1651 
1652   // Handle special cases.
1653   if (adr_type == nullptr)          return alias_type(AliasIdxTop);
1654   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1655 
1656   // Do it the slow way.
1657   const TypePtr* flat = flatten_alias_type(adr_type);
1658 
1659 #ifdef ASSERT
1660   {
1661     ResourceMark rm;
1662     assert(flat == flatten_alias_type(flat), "not idempotent: adr_type = %s; flat = %s => %s",
1663            Type::str(adr_type), Type::str(flat), Type::str(flatten_alias_type(flat)));
1664     assert(flat != TypePtr::BOTTOM, "cannot alias-analyze an untyped ptr: adr_type = %s",
1665            Type::str(adr_type));
1666     if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1667       const TypeOopPtr* foop = flat->is_oopptr();
1668       // Scalarizable allocations have exact klass always.
1669       bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1670       const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1671       assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type: foop = %s; xoop = %s",
1672              Type::str(foop), Type::str(xoop));
1673     }
1674   }
1675 #endif
1676 
1677   int idx = AliasIdxTop;
1678   for (int i = 0; i < num_alias_types(); i++) {
1679     if (alias_type(i)->adr_type() == flat) {
1680       idx = i;
1681       break;
1682     }
1683   }
1684 
1685   if (idx == AliasIdxTop) {
1686     if (no_create)  return nullptr;
1687     // Grow the array if necessary.
1688     if (_num_alias_types == _max_alias_types)  grow_alias_types();
1689     // Add a new alias type.
1690     idx = _num_alias_types++;
1691     _alias_types[idx]->Init(idx, flat);
1692     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1693     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1694     if (flat->isa_instptr()) {
1695       if (flat->offset() == java_lang_Class::klass_offset()
1696           && flat->is_instptr()->instance_klass() == env()->Class_klass())
1697         alias_type(idx)->set_rewritable(false);
1698     }
1699     if (flat->isa_aryptr()) {
1700 #ifdef ASSERT
1701       const int header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1702       // (T_BYTE has the weakest alignment and size restrictions...)
1703       assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
1704 #endif
1705       if (flat->offset() == TypePtr::OffsetBot) {
1706         alias_type(idx)->set_element(flat->is_aryptr()->elem());
1707       }
1708     }
1709     if (flat->isa_klassptr()) {
1710       if (UseCompactObjectHeaders) {
1711         if (flat->offset() == in_bytes(Klass::prototype_header_offset()))
1712           alias_type(idx)->set_rewritable(false);
1713       }
1714       if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
1715         alias_type(idx)->set_rewritable(false);
1716       if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
1717         alias_type(idx)->set_rewritable(false);
1718       if (flat->offset() == in_bytes(Klass::access_flags_offset()))
1719         alias_type(idx)->set_rewritable(false);
1720       if (flat->offset() == in_bytes(Klass::misc_flags_offset()))
1721         alias_type(idx)->set_rewritable(false);
1722       if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
1723         alias_type(idx)->set_rewritable(false);
1724       if (flat->offset() == in_bytes(Klass::secondary_super_cache_offset()))
1725         alias_type(idx)->set_rewritable(false);
1726     }
1727     // %%% (We would like to finalize JavaThread::threadObj_offset(),
1728     // but the base pointer type is not distinctive enough to identify
1729     // references into JavaThread.)
1730 
1731     // Check for final fields.
1732     const TypeInstPtr* tinst = flat->isa_instptr();
1733     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1734       ciField* field;
1735       if (tinst->const_oop() != nullptr &&
1736           tinst->instance_klass() == ciEnv::current()->Class_klass() &&
1737           tinst->offset() >= (tinst->instance_klass()->layout_helper_size_in_bytes())) {
1738         // static field
1739         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1740         field = k->get_field_by_offset(tinst->offset(), true);
1741       } else {
1742         ciInstanceKlass *k = tinst->instance_klass();
1743         field = k->get_field_by_offset(tinst->offset(), false);
1744       }
1745       assert(field == nullptr ||
1746              original_field == nullptr ||
1747              (field->holder() == original_field->holder() &&
1748               field->offset_in_bytes() == original_field->offset_in_bytes() &&
1749               field->is_static() == original_field->is_static()), "wrong field?");
1750       // Set field() and is_rewritable() attributes.
1751       if (field != nullptr)  alias_type(idx)->set_field(field);
1752     }
1753   }
1754 
1755   // Fill the cache for next time.
1756   ace->_adr_type = adr_type;
1757   ace->_index    = idx;
1758   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1759 
1760   // Might as well try to fill the cache for the flattened version, too.
1761   AliasCacheEntry* face = probe_alias_cache(flat);
1762   if (face->_adr_type == nullptr) {
1763     face->_adr_type = flat;
1764     face->_index    = idx;
1765     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1766   }
1767 
1768   return alias_type(idx);
1769 }
1770 
1771 
1772 Compile::AliasType* Compile::alias_type(ciField* field) {
1773   const TypeOopPtr* t;
1774   if (field->is_static())
1775     t = TypeInstPtr::make(field->holder()->java_mirror());
1776   else
1777     t = TypeOopPtr::make_from_klass_raw(field->holder());
1778   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1779   assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
1780   return atp;
1781 }
1782 
1783 
1784 //------------------------------have_alias_type--------------------------------
1785 bool Compile::have_alias_type(const TypePtr* adr_type) {
1786   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1787   if (ace->_adr_type == adr_type) {
1788     return true;
1789   }
1790 
1791   // Handle special cases.
1792   if (adr_type == nullptr)             return true;
1793   if (adr_type == TypePtr::BOTTOM)  return true;
1794 
1795   return find_alias_type(adr_type, true, nullptr) != nullptr;
1796 }
1797 
1798 //-----------------------------must_alias--------------------------------------
1799 // True if all values of the given address type are in the given alias category.
1800 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1801   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1802   if (adr_type == nullptr)              return true;  // null serves as TypePtr::TOP
1803   if (alias_idx == AliasIdxTop)         return false; // the empty category
1804   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1805 
1806   // the only remaining possible overlap is identity
1807   int adr_idx = get_alias_index(adr_type);
1808   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1809   assert(adr_idx == alias_idx ||
1810          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1811           && adr_type                       != TypeOopPtr::BOTTOM),
1812          "should not be testing for overlap with an unsafe pointer");
1813   return adr_idx == alias_idx;
1814 }
1815 
1816 //------------------------------can_alias--------------------------------------
1817 // True if any values of the given address type are in the given alias category.
1818 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1819   if (alias_idx == AliasIdxTop)         return false; // the empty category
1820   if (adr_type == nullptr)              return false; // null serves as TypePtr::TOP
1821   // Known instance doesn't alias with bottom memory
1822   if (alias_idx == AliasIdxBot)         return !adr_type->is_known_instance();                   // the universal category
1823   if (adr_type->base() == Type::AnyPtr) return !C->get_adr_type(alias_idx)->is_known_instance(); // TypePtr::BOTTOM or its twins
1824 
1825   // the only remaining possible overlap is identity
1826   int adr_idx = get_alias_index(adr_type);
1827   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1828   return adr_idx == alias_idx;
1829 }
1830 
1831 // Mark all ParsePredicateNodes as useless. They will later be removed from the graph in IGVN together with their
1832 // uncommon traps if no Runtime Predicates were created from the Parse Predicates.
1833 void Compile::mark_parse_predicate_nodes_useless(PhaseIterGVN& igvn) {
1834   if (parse_predicate_count() == 0) {
1835     return;
1836   }
1837   for (int i = 0; i < parse_predicate_count(); i++) {
1838     ParsePredicateNode* parse_predicate = _parse_predicates.at(i);
1839     parse_predicate->mark_useless();
1840     igvn._worklist.push(parse_predicate);
1841   }
1842   _parse_predicates.clear();
1843 }
1844 
1845 void Compile::record_for_post_loop_opts_igvn(Node* n) {
1846   if (!n->for_post_loop_opts_igvn()) {
1847     assert(!_for_post_loop_igvn.contains(n), "duplicate");
1848     n->add_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn);
1849     _for_post_loop_igvn.append(n);
1850   }
1851 }
1852 
1853 void Compile::remove_from_post_loop_opts_igvn(Node* n) {
1854   n->remove_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn);
1855   _for_post_loop_igvn.remove(n);
1856 }
1857 
1858 void Compile::process_for_post_loop_opts_igvn(PhaseIterGVN& igvn) {
1859   // Verify that all previous optimizations produced a valid graph
1860   // at least to this point, even if no loop optimizations were done.
1861   PhaseIdealLoop::verify(igvn);
1862 
1863   C->set_post_loop_opts_phase(); // no more loop opts allowed
1864 
1865   assert(!C->major_progress(), "not cleared");
1866 
1867   if (_for_post_loop_igvn.length() > 0) {
1868     while (_for_post_loop_igvn.length() > 0) {
1869       Node* n = _for_post_loop_igvn.pop();
1870       n->remove_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn);
1871       igvn._worklist.push(n);
1872     }
1873     igvn.optimize();
1874     if (failing()) return;
1875     assert(_for_post_loop_igvn.length() == 0, "no more delayed nodes allowed");
1876     assert(C->parse_predicate_count() == 0, "all parse predicates should have been removed now");
1877 
1878     // Sometimes IGVN sets major progress (e.g., when processing loop nodes).
1879     if (C->major_progress()) {
1880       C->clear_major_progress(); // ensure that major progress is now clear
1881     }
1882   }
1883 }
1884 
1885 void Compile::record_unstable_if_trap(UnstableIfTrap* trap) {
1886   if (OptimizeUnstableIf) {
1887     _unstable_if_traps.append(trap);
1888   }
1889 }
1890 
1891 void Compile::remove_useless_unstable_if_traps(Unique_Node_List& useful) {
1892   for (int i = _unstable_if_traps.length() - 1; i >= 0; i--) {
1893     UnstableIfTrap* trap = _unstable_if_traps.at(i);
1894     Node* n = trap->uncommon_trap();
1895     if (!useful.member(n)) {
1896       _unstable_if_traps.delete_at(i); // replaces i-th with last element which is known to be useful (already processed)
1897     }
1898   }
1899 }
1900 
1901 // Remove the unstable if trap associated with 'unc' from candidates. It is either dead
1902 // or fold-compares case. Return true if succeed or not found.
1903 //
1904 // In rare cases, the found trap has been processed. It is too late to delete it. Return
1905 // false and ask fold-compares to yield.
1906 //
1907 // 'fold-compares' may use the uncommon_trap of the dominating IfNode to cover the fused
1908 // IfNode. This breaks the unstable_if trap invariant: control takes the unstable path
1909 // when deoptimization does happen.
1910 bool Compile::remove_unstable_if_trap(CallStaticJavaNode* unc, bool yield) {
1911   for (int i = 0; i < _unstable_if_traps.length(); ++i) {
1912     UnstableIfTrap* trap = _unstable_if_traps.at(i);
1913     if (trap->uncommon_trap() == unc) {
1914       if (yield && trap->modified()) {
1915         return false;
1916       }
1917       _unstable_if_traps.delete_at(i);
1918       break;
1919     }
1920   }
1921   return true;
1922 }
1923 
1924 // Re-calculate unstable_if traps with the liveness of next_bci, which points to the unlikely path.
1925 // It needs to be done after igvn because fold-compares may fuse uncommon_traps and before renumbering.
1926 void Compile::process_for_unstable_if_traps(PhaseIterGVN& igvn) {
1927   for (int i = _unstable_if_traps.length() - 1; i >= 0; --i) {
1928     UnstableIfTrap* trap = _unstable_if_traps.at(i);
1929     CallStaticJavaNode* unc = trap->uncommon_trap();
1930     int next_bci = trap->next_bci();
1931     bool modified = trap->modified();
1932 
1933     if (next_bci != -1 && !modified) {
1934       assert(!_dead_node_list.test(unc->_idx), "changing a dead node!");
1935       JVMState* jvms = unc->jvms();
1936       ciMethod* method = jvms->method();
1937       ciBytecodeStream iter(method);
1938 
1939       iter.force_bci(jvms->bci());
1940       assert(next_bci == iter.next_bci() || next_bci == iter.get_dest(), "wrong next_bci at unstable_if");
1941       Bytecodes::Code c = iter.cur_bc();
1942       Node* lhs = nullptr;
1943       Node* rhs = nullptr;
1944       if (c == Bytecodes::_if_acmpeq || c == Bytecodes::_if_acmpne) {
1945         lhs = unc->peek_operand(0);
1946         rhs = unc->peek_operand(1);
1947       } else if (c == Bytecodes::_ifnull || c == Bytecodes::_ifnonnull) {
1948         lhs = unc->peek_operand(0);
1949       }
1950 
1951       ResourceMark rm;
1952       const MethodLivenessResult& live_locals = method->liveness_at_bci(next_bci);
1953       assert(live_locals.is_valid(), "broken liveness info");
1954       int len = (int)live_locals.size();
1955 
1956       for (int i = 0; i < len; i++) {
1957         Node* local = unc->local(jvms, i);
1958         // kill local using the liveness of next_bci.
1959         // give up when the local looks like an operand to secure reexecution.
1960         if (!live_locals.at(i) && !local->is_top() && local != lhs && local!= rhs) {
1961           uint idx = jvms->locoff() + i;
1962 #ifdef ASSERT
1963           if (PrintOpto && Verbose) {
1964             tty->print("[unstable_if] kill local#%d: ", idx);
1965             local->dump();
1966             tty->cr();
1967           }
1968 #endif
1969           igvn.replace_input_of(unc, idx, top());
1970           modified = true;
1971         }
1972       }
1973     }
1974 
1975     // keep the mondified trap for late query
1976     if (modified) {
1977       trap->set_modified();
1978     } else {
1979       _unstable_if_traps.delete_at(i);
1980     }
1981   }
1982   igvn.optimize();
1983 }
1984 
1985 // StringOpts and late inlining of string methods
1986 void Compile::inline_string_calls(bool parse_time) {
1987   {
1988     // remove useless nodes to make the usage analysis simpler
1989     ResourceMark rm;
1990     PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist());
1991   }
1992 
1993   {
1994     ResourceMark rm;
1995     print_method(PHASE_BEFORE_STRINGOPTS, 3);
1996     PhaseStringOpts pso(initial_gvn());
1997     print_method(PHASE_AFTER_STRINGOPTS, 3);
1998   }
1999 
2000   // now inline anything that we skipped the first time around
2001   if (!parse_time) {
2002     _late_inlines_pos = _late_inlines.length();
2003   }
2004 
2005   while (_string_late_inlines.length() > 0) {
2006     CallGenerator* cg = _string_late_inlines.pop();
2007     cg->do_late_inline();
2008     if (failing())  return;
2009   }
2010   _string_late_inlines.trunc_to(0);
2011 }
2012 
2013 // Late inlining of boxing methods
2014 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
2015   if (_boxing_late_inlines.length() > 0) {
2016     assert(has_boxed_value(), "inconsistent");
2017 
2018     set_inlining_incrementally(true);
2019 
2020     igvn_worklist()->ensure_empty(); // should be done with igvn
2021 
2022     _late_inlines_pos = _late_inlines.length();
2023 
2024     while (_boxing_late_inlines.length() > 0) {
2025       CallGenerator* cg = _boxing_late_inlines.pop();
2026       cg->do_late_inline();
2027       if (failing())  return;
2028     }
2029     _boxing_late_inlines.trunc_to(0);
2030 
2031     inline_incrementally_cleanup(igvn);
2032 
2033     set_inlining_incrementally(false);
2034   }
2035 }
2036 
2037 bool Compile::inline_incrementally_one() {
2038   assert(IncrementalInline, "incremental inlining should be on");
2039 
2040   TracePhase tp(_t_incrInline_inline);
2041 
2042   set_inlining_progress(false);
2043   set_do_cleanup(false);
2044 
2045   for (int i = 0; i < _late_inlines.length(); i++) {
2046     _late_inlines_pos = i+1;
2047     CallGenerator* cg = _late_inlines.at(i);
2048     bool does_dispatch = cg->is_virtual_late_inline() || cg->is_mh_late_inline();
2049     if (inlining_incrementally() || does_dispatch) { // a call can be either inlined or strength-reduced to a direct call
2050       cg->do_late_inline();
2051       assert(_late_inlines.at(i) == cg, "no insertions before current position allowed");
2052       if (failing()) {
2053         return false;
2054       } else if (inlining_progress()) {
2055         _late_inlines_pos = i+1; // restore the position in case new elements were inserted
2056         print_method(PHASE_INCREMENTAL_INLINE_STEP, 3, cg->call_node());
2057         break; // process one call site at a time
2058       }
2059     } else {
2060       // Ignore late inline direct calls when inlining is not allowed.
2061       // They are left in the late inline list when node budget is exhausted until the list is fully drained.
2062     }
2063   }
2064   // Remove processed elements.
2065   _late_inlines.remove_till(_late_inlines_pos);
2066   _late_inlines_pos = 0;
2067 
2068   assert(inlining_progress() || _late_inlines.length() == 0, "no progress");
2069 
2070   bool needs_cleanup = do_cleanup() || over_inlining_cutoff();
2071 
2072   set_inlining_progress(false);
2073   set_do_cleanup(false);
2074 
2075   bool force_cleanup = directive()->IncrementalInlineForceCleanupOption;
2076   return (_late_inlines.length() > 0) && !needs_cleanup && !force_cleanup;
2077 }
2078 
2079 void Compile::inline_incrementally_cleanup(PhaseIterGVN& igvn) {
2080   {
2081     TracePhase tp(_t_incrInline_pru);
2082     ResourceMark rm;
2083     PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist());
2084   }
2085   {
2086     TracePhase tp(_t_incrInline_igvn);
2087     igvn.reset_from_gvn(initial_gvn());
2088     igvn.optimize();
2089     if (failing()) return;
2090   }
2091   print_method(PHASE_INCREMENTAL_INLINE_CLEANUP, 3);
2092 }
2093 
2094 // Perform incremental inlining until bound on number of live nodes is reached
2095 void Compile::inline_incrementally(PhaseIterGVN& igvn) {
2096   TracePhase tp(_t_incrInline);
2097 
2098   set_inlining_incrementally(true);
2099   uint low_live_nodes = 0;
2100 
2101   while (_late_inlines.length() > 0) {
2102     if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2103       if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
2104         TracePhase tp(_t_incrInline_ideal);
2105         // PhaseIdealLoop is expensive so we only try it once we are
2106         // out of live nodes and we only try it again if the previous
2107         // helped got the number of nodes down significantly
2108         PhaseIdealLoop::optimize(igvn, LoopOptsNone);
2109         if (failing())  return;
2110         low_live_nodes = live_nodes();
2111         _major_progress = true;
2112       }
2113 
2114       if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2115         bool do_print_inlining = print_inlining() || print_intrinsics();
2116         if (do_print_inlining || log() != nullptr) {
2117           // Print inlining message for candidates that we couldn't inline for lack of space.
2118           for (int i = 0; i < _late_inlines.length(); i++) {
2119             CallGenerator* cg = _late_inlines.at(i);
2120             const char* msg = "live nodes > LiveNodeCountInliningCutoff";
2121             if (do_print_inlining) {
2122               cg->print_inlining_late(InliningResult::FAILURE, msg);
2123             }
2124             log_late_inline_failure(cg, msg);
2125           }
2126         }
2127         break; // finish
2128       }
2129     }
2130 
2131     igvn_worklist()->ensure_empty(); // should be done with igvn
2132 
2133     while (inline_incrementally_one()) {
2134       assert(!failing_internal() || failure_is_artificial(), "inconsistent");
2135     }
2136     if (failing())  return;
2137 
2138     inline_incrementally_cleanup(igvn);
2139 
2140     print_method(PHASE_INCREMENTAL_INLINE_STEP, 3);
2141 
2142     if (failing())  return;
2143 
2144     if (_late_inlines.length() == 0) {
2145       break; // no more progress
2146     }
2147   }
2148 
2149   igvn_worklist()->ensure_empty(); // should be done with igvn
2150 
2151   if (_string_late_inlines.length() > 0) {
2152     assert(has_stringbuilder(), "inconsistent");
2153 
2154     inline_string_calls(false);
2155 
2156     if (failing())  return;
2157 
2158     inline_incrementally_cleanup(igvn);
2159   }
2160 
2161   set_inlining_incrementally(false);
2162 }
2163 
2164 void Compile::process_late_inline_calls_no_inline(PhaseIterGVN& igvn) {
2165   // "inlining_incrementally() == false" is used to signal that no inlining is allowed
2166   // (see LateInlineVirtualCallGenerator::do_late_inline_check() for details).
2167   // Tracking and verification of modified nodes is disabled by setting "_modified_nodes == nullptr"
2168   // as if "inlining_incrementally() == true" were set.
2169   assert(inlining_incrementally() == false, "not allowed");
2170   assert(_modified_nodes == nullptr, "not allowed");
2171   assert(_late_inlines.length() > 0, "sanity");
2172 
2173   while (_late_inlines.length() > 0) {
2174     igvn_worklist()->ensure_empty(); // should be done with igvn
2175 
2176     while (inline_incrementally_one()) {
2177       assert(!failing_internal() || failure_is_artificial(), "inconsistent");
2178     }
2179     if (failing())  return;
2180 
2181     inline_incrementally_cleanup(igvn);
2182   }
2183 }
2184 
2185 bool Compile::optimize_loops(PhaseIterGVN& igvn, LoopOptsMode mode) {
2186   if (_loop_opts_cnt > 0) {
2187     while (major_progress() && (_loop_opts_cnt > 0)) {
2188       TracePhase tp(_t_idealLoop);
2189       PhaseIdealLoop::optimize(igvn, mode);
2190       _loop_opts_cnt--;
2191       if (failing())  return false;
2192       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
2193     }
2194   }
2195   return true;
2196 }
2197 
2198 // Remove edges from "root" to each SafePoint at a backward branch.
2199 // They were inserted during parsing (see add_safepoint()) to make
2200 // infinite loops without calls or exceptions visible to root, i.e.,
2201 // useful.
2202 void Compile::remove_root_to_sfpts_edges(PhaseIterGVN& igvn) {
2203   Node *r = root();
2204   if (r != nullptr) {
2205     for (uint i = r->req(); i < r->len(); ++i) {
2206       Node *n = r->in(i);
2207       if (n != nullptr && n->is_SafePoint()) {
2208         r->rm_prec(i);
2209         if (n->outcnt() == 0) {
2210           igvn.remove_dead_node(n);
2211         }
2212         --i;
2213       }
2214     }
2215     // Parsing may have added top inputs to the root node (Path
2216     // leading to the Halt node proven dead). Make sure we get a
2217     // chance to clean them up.
2218     igvn._worklist.push(r);
2219     igvn.optimize();
2220   }
2221 }
2222 
2223 //------------------------------Optimize---------------------------------------
2224 // Given a graph, optimize it.
2225 void Compile::Optimize() {
2226   TracePhase tp(_t_optimizer);
2227 
2228 #ifndef PRODUCT
2229   if (env()->break_at_compile()) {
2230     BREAKPOINT;
2231   }
2232 
2233 #endif
2234 
2235   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2236 #ifdef ASSERT
2237   bs->verify_gc_barriers(this, BarrierSetC2::BeforeOptimize);
2238 #endif
2239 
2240   ResourceMark rm;
2241 
2242   print_inlining_reinit();
2243 
2244   NOT_PRODUCT( verify_graph_edges(); )
2245 
2246   print_method(PHASE_AFTER_PARSING, 1);
2247 
2248  {
2249   // Iterative Global Value Numbering, including ideal transforms
2250   // Initialize IterGVN with types and values from parse-time GVN
2251   PhaseIterGVN igvn(initial_gvn());
2252 #ifdef ASSERT
2253   _modified_nodes = new (comp_arena()) Unique_Node_List(comp_arena());
2254 #endif
2255   {
2256     TracePhase tp(_t_iterGVN);
2257     igvn.optimize();
2258   }
2259 
2260   if (failing())  return;
2261 
2262   print_method(PHASE_ITER_GVN1, 2);
2263 
2264   process_for_unstable_if_traps(igvn);
2265 
2266   if (failing())  return;
2267 
2268   inline_incrementally(igvn);
2269 
2270   print_method(PHASE_INCREMENTAL_INLINE, 2);
2271 
2272   if (failing())  return;
2273 
2274   if (eliminate_boxing()) {
2275     // Inline valueOf() methods now.
2276     inline_boxing_calls(igvn);
2277 
2278     if (failing())  return;
2279 
2280     if (AlwaysIncrementalInline || StressIncrementalInlining) {
2281       inline_incrementally(igvn);
2282     }
2283 
2284     print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
2285 
2286     if (failing())  return;
2287   }
2288 
2289   // Remove the speculative part of types and clean up the graph from
2290   // the extra CastPP nodes whose only purpose is to carry them. Do
2291   // that early so that optimizations are not disrupted by the extra
2292   // CastPP nodes.
2293   remove_speculative_types(igvn);
2294 
2295   if (failing())  return;
2296 
2297   // No more new expensive nodes will be added to the list from here
2298   // so keep only the actual candidates for optimizations.
2299   cleanup_expensive_nodes(igvn);
2300 
2301   if (failing())  return;
2302 
2303   assert(EnableVectorSupport || !has_vbox_nodes(), "sanity");
2304   if (EnableVectorSupport && has_vbox_nodes()) {
2305     TracePhase tp(_t_vector);
2306     PhaseVector pv(igvn);
2307     pv.optimize_vector_boxes();
2308     if (failing())  return;
2309     print_method(PHASE_ITER_GVN_AFTER_VECTOR, 2);
2310   }
2311   assert(!has_vbox_nodes(), "sanity");
2312 
2313   if (!failing() && RenumberLiveNodes && live_nodes() + NodeLimitFudgeFactor < unique()) {
2314     Compile::TracePhase tp(_t_renumberLive);
2315     igvn_worklist()->ensure_empty(); // should be done with igvn
2316     {
2317       ResourceMark rm;
2318       PhaseRenumberLive prl(initial_gvn(), *igvn_worklist());
2319     }
2320     igvn.reset_from_gvn(initial_gvn());
2321     igvn.optimize();
2322     if (failing()) return;
2323   }
2324 
2325   // Now that all inlining is over and no PhaseRemoveUseless will run, cut edge from root to loop
2326   // safepoints
2327   remove_root_to_sfpts_edges(igvn);
2328 
2329   if (failing())  return;
2330 
2331   // Perform escape analysis
2332   if (do_escape_analysis() && ConnectionGraph::has_candidates(this)) {
2333     if (has_loops()) {
2334       // Cleanup graph (remove dead nodes).
2335       TracePhase tp(_t_idealLoop);
2336       PhaseIdealLoop::optimize(igvn, LoopOptsMaxUnroll);
2337       if (failing())  return;
2338     }
2339     bool progress;
2340     print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
2341     do {
2342       ConnectionGraph::do_analysis(this, &igvn);
2343 
2344       if (failing())  return;
2345 
2346       int mcount = macro_count(); // Record number of allocations and locks before IGVN
2347 
2348       // Optimize out fields loads from scalar replaceable allocations.
2349       igvn.optimize();
2350       print_method(PHASE_ITER_GVN_AFTER_EA, 2);
2351 
2352       if (failing()) return;
2353 
2354       if (congraph() != nullptr && macro_count() > 0) {
2355         TracePhase tp(_t_macroEliminate);
2356         PhaseMacroExpand mexp(igvn);
2357         mexp.eliminate_macro_nodes();
2358         if (failing()) return;
2359 
2360         igvn.set_delay_transform(false);
2361         igvn.optimize();
2362         if (failing()) return;
2363 
2364         print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
2365       }
2366 
2367       ConnectionGraph::verify_ram_nodes(this, root());
2368       if (failing())  return;
2369 
2370       progress = do_iterative_escape_analysis() &&
2371                  (macro_count() < mcount) &&
2372                  ConnectionGraph::has_candidates(this);
2373       // Try again if candidates exist and made progress
2374       // by removing some allocations and/or locks.
2375     } while (progress);
2376   }
2377 
2378   // Loop transforms on the ideal graph.  Range Check Elimination,
2379   // peeling, unrolling, etc.
2380 
2381   // Set loop opts counter
2382   if((_loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
2383     {
2384       TracePhase tp(_t_idealLoop);
2385       PhaseIdealLoop::optimize(igvn, LoopOptsDefault);
2386       _loop_opts_cnt--;
2387       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
2388       if (failing())  return;
2389     }
2390     // Loop opts pass if partial peeling occurred in previous pass
2391     if(PartialPeelLoop && major_progress() && (_loop_opts_cnt > 0)) {
2392       TracePhase tp(_t_idealLoop);
2393       PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf);
2394       _loop_opts_cnt--;
2395       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
2396       if (failing())  return;
2397     }
2398     // Loop opts pass for loop-unrolling before CCP
2399     if(major_progress() && (_loop_opts_cnt > 0)) {
2400       TracePhase tp(_t_idealLoop);
2401       PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf);
2402       _loop_opts_cnt--;
2403       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
2404     }
2405     if (!failing()) {
2406       // Verify that last round of loop opts produced a valid graph
2407       PhaseIdealLoop::verify(igvn);
2408     }
2409   }
2410   if (failing())  return;
2411 
2412   // Conditional Constant Propagation;
2413   print_method(PHASE_BEFORE_CCP1, 2);
2414   PhaseCCP ccp( &igvn );
2415   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
2416   {
2417     TracePhase tp(_t_ccp);
2418     ccp.do_transform();
2419   }
2420   print_method(PHASE_CCP1, 2);
2421 
2422   assert( true, "Break here to ccp.dump_old2new_map()");
2423 
2424   // Iterative Global Value Numbering, including ideal transforms
2425   {
2426     TracePhase tp(_t_iterGVN2);
2427     igvn.reset_from_igvn(&ccp);
2428     igvn.optimize();
2429   }
2430   print_method(PHASE_ITER_GVN2, 2);
2431 
2432   if (failing())  return;
2433 
2434   // Loop transforms on the ideal graph.  Range Check Elimination,
2435   // peeling, unrolling, etc.
2436   if (!optimize_loops(igvn, LoopOptsDefault)) {
2437     return;
2438   }
2439 
2440   if (failing())  return;
2441 
2442   C->clear_major_progress(); // ensure that major progress is now clear
2443 
2444   process_for_post_loop_opts_igvn(igvn);
2445 
2446   if (failing())  return;
2447 
2448 #ifdef ASSERT
2449   bs->verify_gc_barriers(this, BarrierSetC2::BeforeMacroExpand);
2450 #endif
2451 
2452   {
2453     TracePhase tp(_t_macroExpand);
2454     print_method(PHASE_BEFORE_MACRO_EXPANSION, 3);
2455     PhaseMacroExpand  mex(igvn);
2456     if (mex.expand_macro_nodes()) {
2457       assert(failing(), "must bail out w/ explicit message");
2458       return;
2459     }
2460     print_method(PHASE_AFTER_MACRO_EXPANSION, 2);
2461   }
2462 
2463   {
2464     TracePhase tp(_t_barrierExpand);
2465     if (bs->expand_barriers(this, igvn)) {
2466       assert(failing(), "must bail out w/ explicit message");
2467       return;
2468     }
2469     print_method(PHASE_BARRIER_EXPANSION, 2);
2470   }
2471 
2472   if (C->max_vector_size() > 0) {
2473     C->optimize_logic_cones(igvn);
2474     igvn.optimize();
2475     if (failing()) return;
2476   }
2477 
2478   DEBUG_ONLY( _modified_nodes = nullptr; )
2479 
2480   assert(igvn._worklist.size() == 0, "not empty");
2481 
2482   assert(_late_inlines.length() == 0 || IncrementalInlineMH || IncrementalInlineVirtual, "not empty");
2483 
2484   if (_late_inlines.length() > 0) {
2485     // More opportunities to optimize virtual and MH calls.
2486     // Though it's maybe too late to perform inlining, strength-reducing them to direct calls is still an option.
2487     process_late_inline_calls_no_inline(igvn);
2488     if (failing())  return;
2489   }
2490  } // (End scope of igvn; run destructor if necessary for asserts.)
2491 
2492  check_no_dead_use();
2493 
2494  process_print_inlining();
2495 
2496  // We will never use the NodeHash table any more. Clear it so that final_graph_reshaping does not have
2497  // to remove hashes to unlock nodes for modifications.
2498  C->node_hash()->clear();
2499 
2500  // A method with only infinite loops has no edges entering loops from root
2501  {
2502    TracePhase tp(_t_graphReshaping);
2503    if (final_graph_reshaping()) {
2504      assert(failing(), "must bail out w/ explicit message");
2505      return;
2506    }
2507  }
2508 
2509  print_method(PHASE_OPTIMIZE_FINISHED, 2);
2510  DEBUG_ONLY(set_phase_optimize_finished();)
2511 }
2512 
2513 #ifdef ASSERT
2514 void Compile::check_no_dead_use() const {
2515   ResourceMark rm;
2516   Unique_Node_List wq;
2517   wq.push(root());
2518   for (uint i = 0; i < wq.size(); ++i) {
2519     Node* n = wq.at(i);
2520     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
2521       Node* u = n->fast_out(j);
2522       if (u->outcnt() == 0 && !u->is_Con()) {
2523         u->dump();
2524         fatal("no reachable node should have no use");
2525       }
2526       wq.push(u);
2527     }
2528   }
2529 }
2530 #endif
2531 
2532 void Compile::inline_vector_reboxing_calls() {
2533   if (C->_vector_reboxing_late_inlines.length() > 0) {
2534     _late_inlines_pos = C->_late_inlines.length();
2535     while (_vector_reboxing_late_inlines.length() > 0) {
2536       CallGenerator* cg = _vector_reboxing_late_inlines.pop();
2537       cg->do_late_inline();
2538       if (failing())  return;
2539       print_method(PHASE_INLINE_VECTOR_REBOX, 3, cg->call_node());
2540     }
2541     _vector_reboxing_late_inlines.trunc_to(0);
2542   }
2543 }
2544 
2545 bool Compile::has_vbox_nodes() {
2546   if (C->_vector_reboxing_late_inlines.length() > 0) {
2547     return true;
2548   }
2549   for (int macro_idx = C->macro_count() - 1; macro_idx >= 0; macro_idx--) {
2550     Node * n = C->macro_node(macro_idx);
2551     assert(n->is_macro(), "only macro nodes expected here");
2552     if (n->Opcode() == Op_VectorUnbox || n->Opcode() == Op_VectorBox || n->Opcode() == Op_VectorBoxAllocate) {
2553       return true;
2554     }
2555   }
2556   return false;
2557 }
2558 
2559 //---------------------------- Bitwise operation packing optimization ---------------------------
2560 
2561 static bool is_vector_unary_bitwise_op(Node* n) {
2562   return n->Opcode() == Op_XorV &&
2563          VectorNode::is_vector_bitwise_not_pattern(n);
2564 }
2565 
2566 static bool is_vector_binary_bitwise_op(Node* n) {
2567   switch (n->Opcode()) {
2568     case Op_AndV:
2569     case Op_OrV:
2570       return true;
2571 
2572     case Op_XorV:
2573       return !is_vector_unary_bitwise_op(n);
2574 
2575     default:
2576       return false;
2577   }
2578 }
2579 
2580 static bool is_vector_ternary_bitwise_op(Node* n) {
2581   return n->Opcode() == Op_MacroLogicV;
2582 }
2583 
2584 static bool is_vector_bitwise_op(Node* n) {
2585   return is_vector_unary_bitwise_op(n)  ||
2586          is_vector_binary_bitwise_op(n) ||
2587          is_vector_ternary_bitwise_op(n);
2588 }
2589 
2590 static bool is_vector_bitwise_cone_root(Node* n) {
2591   if (n->bottom_type()->isa_vectmask() || !is_vector_bitwise_op(n)) {
2592     return false;
2593   }
2594   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2595     if (is_vector_bitwise_op(n->fast_out(i))) {
2596       return false;
2597     }
2598   }
2599   return true;
2600 }
2601 
2602 static uint collect_unique_inputs(Node* n, Unique_Node_List& inputs) {
2603   uint cnt = 0;
2604   if (is_vector_bitwise_op(n)) {
2605     uint inp_cnt = n->is_predicated_vector() ? n->req()-1 : n->req();
2606     if (VectorNode::is_vector_bitwise_not_pattern(n)) {
2607       for (uint i = 1; i < inp_cnt; i++) {
2608         Node* in = n->in(i);
2609         bool skip = VectorNode::is_all_ones_vector(in);
2610         if (!skip && !inputs.member(in)) {
2611           inputs.push(in);
2612           cnt++;
2613         }
2614       }
2615       assert(cnt <= 1, "not unary");
2616     } else {
2617       uint last_req = inp_cnt;
2618       if (is_vector_ternary_bitwise_op(n)) {
2619         last_req = inp_cnt - 1; // skip last input
2620       }
2621       for (uint i = 1; i < last_req; i++) {
2622         Node* def = n->in(i);
2623         if (!inputs.member(def)) {
2624           inputs.push(def);
2625           cnt++;
2626         }
2627       }
2628     }
2629   } else { // not a bitwise operations
2630     if (!inputs.member(n)) {
2631       inputs.push(n);
2632       cnt++;
2633     }
2634   }
2635   return cnt;
2636 }
2637 
2638 void Compile::collect_logic_cone_roots(Unique_Node_List& list) {
2639   Unique_Node_List useful_nodes;
2640   C->identify_useful_nodes(useful_nodes);
2641 
2642   for (uint i = 0; i < useful_nodes.size(); i++) {
2643     Node* n = useful_nodes.at(i);
2644     if (is_vector_bitwise_cone_root(n)) {
2645       list.push(n);
2646     }
2647   }
2648 }
2649 
2650 Node* Compile::xform_to_MacroLogicV(PhaseIterGVN& igvn,
2651                                     const TypeVect* vt,
2652                                     Unique_Node_List& partition,
2653                                     Unique_Node_List& inputs) {
2654   assert(partition.size() == 2 || partition.size() == 3, "not supported");
2655   assert(inputs.size()    == 2 || inputs.size()    == 3, "not supported");
2656   assert(Matcher::match_rule_supported_vector(Op_MacroLogicV, vt->length(), vt->element_basic_type()), "not supported");
2657 
2658   Node* in1 = inputs.at(0);
2659   Node* in2 = inputs.at(1);
2660   Node* in3 = (inputs.size() == 3 ? inputs.at(2) : in2);
2661 
2662   uint func = compute_truth_table(partition, inputs);
2663 
2664   Node* pn = partition.at(partition.size() - 1);
2665   Node* mask = pn->is_predicated_vector() ? pn->in(pn->req()-1) : nullptr;
2666   return igvn.transform(MacroLogicVNode::make(igvn, in1, in2, in3, mask, func, vt));
2667 }
2668 
2669 static uint extract_bit(uint func, uint pos) {
2670   return (func & (1 << pos)) >> pos;
2671 }
2672 
2673 //
2674 //  A macro logic node represents a truth table. It has 4 inputs,
2675 //  First three inputs corresponds to 3 columns of a truth table
2676 //  and fourth input captures the logic function.
2677 //
2678 //  eg.  fn = (in1 AND in2) OR in3;
2679 //
2680 //      MacroNode(in1,in2,in3,fn)
2681 //
2682 //  -----------------
2683 //  in1 in2 in3  fn
2684 //  -----------------
2685 //  0    0   0    0
2686 //  0    0   1    1
2687 //  0    1   0    0
2688 //  0    1   1    1
2689 //  1    0   0    0
2690 //  1    0   1    1
2691 //  1    1   0    1
2692 //  1    1   1    1
2693 //
2694 
2695 uint Compile::eval_macro_logic_op(uint func, uint in1 , uint in2, uint in3) {
2696   int res = 0;
2697   for (int i = 0; i < 8; i++) {
2698     int bit1 = extract_bit(in1, i);
2699     int bit2 = extract_bit(in2, i);
2700     int bit3 = extract_bit(in3, i);
2701 
2702     int func_bit_pos = (bit1 << 2 | bit2 << 1 | bit3);
2703     int func_bit = extract_bit(func, func_bit_pos);
2704 
2705     res |= func_bit << i;
2706   }
2707   return res;
2708 }
2709 
2710 static uint eval_operand(Node* n, ResourceHashtable<Node*,uint>& eval_map) {
2711   assert(n != nullptr, "");
2712   assert(eval_map.contains(n), "absent");
2713   return *(eval_map.get(n));
2714 }
2715 
2716 static void eval_operands(Node* n,
2717                           uint& func1, uint& func2, uint& func3,
2718                           ResourceHashtable<Node*,uint>& eval_map) {
2719   assert(is_vector_bitwise_op(n), "");
2720 
2721   if (is_vector_unary_bitwise_op(n)) {
2722     Node* opnd = n->in(1);
2723     if (VectorNode::is_vector_bitwise_not_pattern(n) && VectorNode::is_all_ones_vector(opnd)) {
2724       opnd = n->in(2);
2725     }
2726     func1 = eval_operand(opnd, eval_map);
2727   } else if (is_vector_binary_bitwise_op(n)) {
2728     func1 = eval_operand(n->in(1), eval_map);
2729     func2 = eval_operand(n->in(2), eval_map);
2730   } else {
2731     assert(is_vector_ternary_bitwise_op(n), "unknown operation");
2732     func1 = eval_operand(n->in(1), eval_map);
2733     func2 = eval_operand(n->in(2), eval_map);
2734     func3 = eval_operand(n->in(3), eval_map);
2735   }
2736 }
2737 
2738 uint Compile::compute_truth_table(Unique_Node_List& partition, Unique_Node_List& inputs) {
2739   assert(inputs.size() <= 3, "sanity");
2740   ResourceMark rm;
2741   uint res = 0;
2742   ResourceHashtable<Node*,uint> eval_map;
2743 
2744   // Populate precomputed functions for inputs.
2745   // Each input corresponds to one column of 3 input truth-table.
2746   uint input_funcs[] = { 0xAA,   // (_, _, c) -> c
2747                          0xCC,   // (_, b, _) -> b
2748                          0xF0 }; // (a, _, _) -> a
2749   for (uint i = 0; i < inputs.size(); i++) {
2750     eval_map.put(inputs.at(i), input_funcs[2-i]);
2751   }
2752 
2753   for (uint i = 0; i < partition.size(); i++) {
2754     Node* n = partition.at(i);
2755 
2756     uint func1 = 0, func2 = 0, func3 = 0;
2757     eval_operands(n, func1, func2, func3, eval_map);
2758 
2759     switch (n->Opcode()) {
2760       case Op_OrV:
2761         assert(func3 == 0, "not binary");
2762         res = func1 | func2;
2763         break;
2764       case Op_AndV:
2765         assert(func3 == 0, "not binary");
2766         res = func1 & func2;
2767         break;
2768       case Op_XorV:
2769         if (VectorNode::is_vector_bitwise_not_pattern(n)) {
2770           assert(func2 == 0 && func3 == 0, "not unary");
2771           res = (~func1) & 0xFF;
2772         } else {
2773           assert(func3 == 0, "not binary");
2774           res = func1 ^ func2;
2775         }
2776         break;
2777       case Op_MacroLogicV:
2778         // Ordering of inputs may change during evaluation of sub-tree
2779         // containing MacroLogic node as a child node, thus a re-evaluation
2780         // makes sure that function is evaluated in context of current
2781         // inputs.
2782         res = eval_macro_logic_op(n->in(4)->get_int(), func1, func2, func3);
2783         break;
2784 
2785       default: assert(false, "not supported: %s", n->Name());
2786     }
2787     assert(res <= 0xFF, "invalid");
2788     eval_map.put(n, res);
2789   }
2790   return res;
2791 }
2792 
2793 // Criteria under which nodes gets packed into a macro logic node:-
2794 //  1) Parent and both child nodes are all unmasked or masked with
2795 //     same predicates.
2796 //  2) Masked parent can be packed with left child if it is predicated
2797 //     and both have same predicates.
2798 //  3) Masked parent can be packed with right child if its un-predicated
2799 //     or has matching predication condition.
2800 //  4) An unmasked parent can be packed with an unmasked child.
2801 bool Compile::compute_logic_cone(Node* n, Unique_Node_List& partition, Unique_Node_List& inputs) {
2802   assert(partition.size() == 0, "not empty");
2803   assert(inputs.size() == 0, "not empty");
2804   if (is_vector_ternary_bitwise_op(n)) {
2805     return false;
2806   }
2807 
2808   bool is_unary_op = is_vector_unary_bitwise_op(n);
2809   if (is_unary_op) {
2810     assert(collect_unique_inputs(n, inputs) == 1, "not unary");
2811     return false; // too few inputs
2812   }
2813 
2814   bool pack_left_child = true;
2815   bool pack_right_child = true;
2816 
2817   bool left_child_LOP = is_vector_bitwise_op(n->in(1));
2818   bool right_child_LOP = is_vector_bitwise_op(n->in(2));
2819 
2820   int left_child_input_cnt = 0;
2821   int right_child_input_cnt = 0;
2822 
2823   bool parent_is_predicated = n->is_predicated_vector();
2824   bool left_child_predicated = n->in(1)->is_predicated_vector();
2825   bool right_child_predicated = n->in(2)->is_predicated_vector();
2826 
2827   Node* parent_pred = parent_is_predicated ? n->in(n->req()-1) : nullptr;
2828   Node* left_child_pred = left_child_predicated ? n->in(1)->in(n->in(1)->req()-1) : nullptr;
2829   Node* right_child_pred = right_child_predicated ? n->in(1)->in(n->in(1)->req()-1) : nullptr;
2830 
2831   do {
2832     if (pack_left_child && left_child_LOP &&
2833         ((!parent_is_predicated && !left_child_predicated) ||
2834         ((parent_is_predicated && left_child_predicated &&
2835           parent_pred == left_child_pred)))) {
2836        partition.push(n->in(1));
2837        left_child_input_cnt = collect_unique_inputs(n->in(1), inputs);
2838     } else {
2839        inputs.push(n->in(1));
2840        left_child_input_cnt = 1;
2841     }
2842 
2843     if (pack_right_child && right_child_LOP &&
2844         (!right_child_predicated ||
2845          (right_child_predicated && parent_is_predicated &&
2846           parent_pred == right_child_pred))) {
2847        partition.push(n->in(2));
2848        right_child_input_cnt = collect_unique_inputs(n->in(2), inputs);
2849     } else {
2850        inputs.push(n->in(2));
2851        right_child_input_cnt = 1;
2852     }
2853 
2854     if (inputs.size() > 3) {
2855       assert(partition.size() > 0, "");
2856       inputs.clear();
2857       partition.clear();
2858       if (left_child_input_cnt > right_child_input_cnt) {
2859         pack_left_child = false;
2860       } else {
2861         pack_right_child = false;
2862       }
2863     } else {
2864       break;
2865     }
2866   } while(true);
2867 
2868   if(partition.size()) {
2869     partition.push(n);
2870   }
2871 
2872   return (partition.size() == 2 || partition.size() == 3) &&
2873          (inputs.size()    == 2 || inputs.size()    == 3);
2874 }
2875 
2876 void Compile::process_logic_cone_root(PhaseIterGVN &igvn, Node *n, VectorSet &visited) {
2877   assert(is_vector_bitwise_op(n), "not a root");
2878 
2879   visited.set(n->_idx);
2880 
2881   // 1) Do a DFS walk over the logic cone.
2882   for (uint i = 1; i < n->req(); i++) {
2883     Node* in = n->in(i);
2884     if (!visited.test(in->_idx) && is_vector_bitwise_op(in)) {
2885       process_logic_cone_root(igvn, in, visited);
2886     }
2887   }
2888 
2889   // 2) Bottom up traversal: Merge node[s] with
2890   // the parent to form macro logic node.
2891   Unique_Node_List partition;
2892   Unique_Node_List inputs;
2893   if (compute_logic_cone(n, partition, inputs)) {
2894     const TypeVect* vt = n->bottom_type()->is_vect();
2895     Node* pn = partition.at(partition.size() - 1);
2896     Node* mask = pn->is_predicated_vector() ? pn->in(pn->req()-1) : nullptr;
2897     if (mask == nullptr ||
2898         Matcher::match_rule_supported_vector_masked(Op_MacroLogicV, vt->length(), vt->element_basic_type())) {
2899       Node* macro_logic = xform_to_MacroLogicV(igvn, vt, partition, inputs);
2900       VectorNode::trace_new_vector(macro_logic, "MacroLogic");
2901       igvn.replace_node(n, macro_logic);
2902     }
2903   }
2904 }
2905 
2906 void Compile::optimize_logic_cones(PhaseIterGVN &igvn) {
2907   ResourceMark rm;
2908   if (Matcher::match_rule_supported(Op_MacroLogicV)) {
2909     Unique_Node_List list;
2910     collect_logic_cone_roots(list);
2911 
2912     while (list.size() > 0) {
2913       Node* n = list.pop();
2914       const TypeVect* vt = n->bottom_type()->is_vect();
2915       bool supported = Matcher::match_rule_supported_vector(Op_MacroLogicV, vt->length(), vt->element_basic_type());
2916       if (supported) {
2917         VectorSet visited(comp_arena());
2918         process_logic_cone_root(igvn, n, visited);
2919       }
2920     }
2921   }
2922 }
2923 
2924 //------------------------------Code_Gen---------------------------------------
2925 // Given a graph, generate code for it
2926 void Compile::Code_Gen() {
2927   if (failing()) {
2928     return;
2929   }
2930 
2931   // Perform instruction selection.  You might think we could reclaim Matcher
2932   // memory PDQ, but actually the Matcher is used in generating spill code.
2933   // Internals of the Matcher (including some VectorSets) must remain live
2934   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
2935   // set a bit in reclaimed memory.
2936 
2937   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2938   // nodes.  Mapping is only valid at the root of each matched subtree.
2939   NOT_PRODUCT( verify_graph_edges(); )
2940 
2941   Matcher matcher;
2942   _matcher = &matcher;
2943   {
2944     TracePhase tp(_t_matcher);
2945     matcher.match();
2946     if (failing()) {
2947       return;
2948     }
2949   }
2950   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2951   // nodes.  Mapping is only valid at the root of each matched subtree.
2952   NOT_PRODUCT( verify_graph_edges(); )
2953 
2954   // If you have too many nodes, or if matching has failed, bail out
2955   check_node_count(0, "out of nodes matching instructions");
2956   if (failing()) {
2957     return;
2958   }
2959 
2960   print_method(PHASE_MATCHING, 2);
2961 
2962   // Build a proper-looking CFG
2963   PhaseCFG cfg(node_arena(), root(), matcher);
2964   if (failing()) {
2965     return;
2966   }
2967   _cfg = &cfg;
2968   {
2969     TracePhase tp(_t_scheduler);
2970     bool success = cfg.do_global_code_motion();
2971     if (!success) {
2972       return;
2973     }
2974 
2975     print_method(PHASE_GLOBAL_CODE_MOTION, 2);
2976     NOT_PRODUCT( verify_graph_edges(); )
2977     cfg.verify();
2978   }
2979 
2980   PhaseChaitin regalloc(unique(), cfg, matcher, false);
2981   _regalloc = &regalloc;
2982   {
2983     TracePhase tp(_t_registerAllocation);
2984     // Perform register allocation.  After Chaitin, use-def chains are
2985     // no longer accurate (at spill code) and so must be ignored.
2986     // Node->LRG->reg mappings are still accurate.
2987     _regalloc->Register_Allocate();
2988 
2989     // Bail out if the allocator builds too many nodes
2990     if (failing()) {
2991       return;
2992     }
2993 
2994     print_method(PHASE_REGISTER_ALLOCATION, 2);
2995   }
2996 
2997   // Prior to register allocation we kept empty basic blocks in case the
2998   // the allocator needed a place to spill.  After register allocation we
2999   // are not adding any new instructions.  If any basic block is empty, we
3000   // can now safely remove it.
3001   {
3002     TracePhase tp(_t_blockOrdering);
3003     cfg.remove_empty_blocks();
3004     if (do_freq_based_layout()) {
3005       PhaseBlockLayout layout(cfg);
3006     } else {
3007       cfg.set_loop_alignment();
3008     }
3009     cfg.fixup_flow();
3010     cfg.remove_unreachable_blocks();
3011     cfg.verify_dominator_tree();
3012     print_method(PHASE_BLOCK_ORDERING, 3);
3013   }
3014 
3015   // Apply peephole optimizations
3016   if( OptoPeephole ) {
3017     TracePhase tp(_t_peephole);
3018     PhasePeephole peep( _regalloc, cfg);
3019     peep.do_transform();
3020     print_method(PHASE_PEEPHOLE, 3);
3021   }
3022 
3023   // Do late expand if CPU requires this.
3024   if (Matcher::require_postalloc_expand) {
3025     TracePhase tp(_t_postalloc_expand);
3026     cfg.postalloc_expand(_regalloc);
3027     print_method(PHASE_POSTALLOC_EXPAND, 3);
3028   }
3029 
3030   // Convert Nodes to instruction bits in a buffer
3031   {
3032     TracePhase tp(_t_output);
3033     PhaseOutput output;
3034     output.Output();
3035     if (failing())  return;
3036     output.install();
3037     print_method(PHASE_FINAL_CODE, 1); // Compile::_output is not null here
3038   }
3039 
3040   // He's dead, Jim.
3041   _cfg     = (PhaseCFG*)((intptr_t)0xdeadbeef);
3042   _regalloc = (PhaseChaitin*)((intptr_t)0xdeadbeef);
3043 }
3044 
3045 //------------------------------Final_Reshape_Counts---------------------------
3046 // This class defines counters to help identify when a method
3047 // may/must be executed using hardware with only 24-bit precision.
3048 struct Final_Reshape_Counts : public StackObj {
3049   int  _call_count;             // count non-inlined 'common' calls
3050   int  _float_count;            // count float ops requiring 24-bit precision
3051   int  _double_count;           // count double ops requiring more precision
3052   int  _java_call_count;        // count non-inlined 'java' calls
3053   int  _inner_loop_count;       // count loops which need alignment
3054   VectorSet _visited;           // Visitation flags
3055   Node_List _tests;             // Set of IfNodes & PCTableNodes
3056 
3057   Final_Reshape_Counts() :
3058     _call_count(0), _float_count(0), _double_count(0),
3059     _java_call_count(0), _inner_loop_count(0) { }
3060 
3061   void inc_call_count  () { _call_count  ++; }
3062   void inc_float_count () { _float_count ++; }
3063   void inc_double_count() { _double_count++; }
3064   void inc_java_call_count() { _java_call_count++; }
3065   void inc_inner_loop_count() { _inner_loop_count++; }
3066 
3067   int  get_call_count  () const { return _call_count  ; }
3068   int  get_float_count () const { return _float_count ; }
3069   int  get_double_count() const { return _double_count; }
3070   int  get_java_call_count() const { return _java_call_count; }
3071   int  get_inner_loop_count() const { return _inner_loop_count; }
3072 };
3073 
3074 //------------------------------final_graph_reshaping_impl----------------------
3075 // Implement items 1-5 from final_graph_reshaping below.
3076 void Compile::final_graph_reshaping_impl(Node *n, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes) {
3077 
3078   if ( n->outcnt() == 0 ) return; // dead node
3079   uint nop = n->Opcode();
3080 
3081   // Check for 2-input instruction with "last use" on right input.
3082   // Swap to left input.  Implements item (2).
3083   if( n->req() == 3 &&          // two-input instruction
3084       n->in(1)->outcnt() > 1 && // left use is NOT a last use
3085       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
3086       n->in(2)->outcnt() == 1 &&// right use IS a last use
3087       !n->in(2)->is_Con() ) {   // right use is not a constant
3088     // Check for commutative opcode
3089     switch( nop ) {
3090     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
3091     case Op_MaxI:  case Op_MaxL:  case Op_MaxF:  case Op_MaxD:
3092     case Op_MinI:  case Op_MinL:  case Op_MinF:  case Op_MinD:
3093     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
3094     case Op_AndL:  case Op_XorL:  case Op_OrL:
3095     case Op_AndI:  case Op_XorI:  case Op_OrI: {
3096       // Move "last use" input to left by swapping inputs
3097       n->swap_edges(1, 2);
3098       break;
3099     }
3100     default:
3101       break;
3102     }
3103   }
3104 
3105 #ifdef ASSERT
3106   if( n->is_Mem() ) {
3107     int alias_idx = get_alias_index(n->as_Mem()->adr_type());
3108     assert( n->in(0) != nullptr || alias_idx != Compile::AliasIdxRaw ||
3109             // oop will be recorded in oop map if load crosses safepoint
3110             (n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
3111                               LoadNode::is_immutable_value(n->in(MemNode::Address)))),
3112             "raw memory operations should have control edge");
3113   }
3114   if (n->is_MemBar()) {
3115     MemBarNode* mb = n->as_MemBar();
3116     if (mb->trailing_store() || mb->trailing_load_store()) {
3117       assert(mb->leading_membar()->trailing_membar() == mb, "bad membar pair");
3118       Node* mem = BarrierSet::barrier_set()->barrier_set_c2()->step_over_gc_barrier(mb->in(MemBarNode::Precedent));
3119       assert((mb->trailing_store() && mem->is_Store() && mem->as_Store()->is_release()) ||
3120              (mb->trailing_load_store() && mem->is_LoadStore()), "missing mem op");
3121     } else if (mb->leading()) {
3122       assert(mb->trailing_membar()->leading_membar() == mb, "bad membar pair");
3123     }
3124   }
3125 #endif
3126   // Count FPU ops and common calls, implements item (3)
3127   bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->final_graph_reshaping(this, n, nop, dead_nodes);
3128   if (!gc_handled) {
3129     final_graph_reshaping_main_switch(n, frc, nop, dead_nodes);
3130   }
3131 
3132   // Collect CFG split points
3133   if (n->is_MultiBranch() && !n->is_RangeCheck()) {
3134     frc._tests.push(n);
3135   }
3136 }
3137 
3138 void Compile::handle_div_mod_op(Node* n, BasicType bt, bool is_unsigned) {
3139   if (!UseDivMod) {
3140     return;
3141   }
3142 
3143   // Check if "a % b" and "a / b" both exist
3144   Node* d = n->find_similar(Op_DivIL(bt, is_unsigned));
3145   if (d == nullptr) {
3146     return;
3147   }
3148 
3149   // Replace them with a fused divmod if supported
3150   if (Matcher::has_match_rule(Op_DivModIL(bt, is_unsigned))) {
3151     DivModNode* divmod = DivModNode::make(n, bt, is_unsigned);
3152     d->subsume_by(divmod->div_proj(), this);
3153     n->subsume_by(divmod->mod_proj(), this);
3154   } else {
3155     // Replace "a % b" with "a - ((a / b) * b)"
3156     Node* mult = MulNode::make(d, d->in(2), bt);
3157     Node* sub = SubNode::make(d->in(1), mult, bt);
3158     n->subsume_by(sub, this);
3159   }
3160 }
3161 
3162 void Compile::final_graph_reshaping_main_switch(Node* n, Final_Reshape_Counts& frc, uint nop, Unique_Node_List& dead_nodes) {
3163   switch( nop ) {
3164   // Count all float operations that may use FPU
3165   case Op_AddF:
3166   case Op_SubF:
3167   case Op_MulF:
3168   case Op_DivF:
3169   case Op_NegF:
3170   case Op_ModF:
3171   case Op_ConvI2F:
3172   case Op_ConF:
3173   case Op_CmpF:
3174   case Op_CmpF3:
3175   case Op_StoreF:
3176   case Op_LoadF:
3177   // case Op_ConvL2F: // longs are split into 32-bit halves
3178     frc.inc_float_count();
3179     break;
3180 
3181   case Op_ConvF2D:
3182   case Op_ConvD2F:
3183     frc.inc_float_count();
3184     frc.inc_double_count();
3185     break;
3186 
3187   // Count all double operations that may use FPU
3188   case Op_AddD:
3189   case Op_SubD:
3190   case Op_MulD:
3191   case Op_DivD:
3192   case Op_NegD:
3193   case Op_ModD:
3194   case Op_ConvI2D:
3195   case Op_ConvD2I:
3196   // case Op_ConvL2D: // handled by leaf call
3197   // case Op_ConvD2L: // handled by leaf call
3198   case Op_ConD:
3199   case Op_CmpD:
3200   case Op_CmpD3:
3201   case Op_StoreD:
3202   case Op_LoadD:
3203   case Op_LoadD_unaligned:
3204     frc.inc_double_count();
3205     break;
3206   case Op_Opaque1:              // Remove Opaque Nodes before matching
3207     n->subsume_by(n->in(1), this);
3208     break;
3209   case Op_CallStaticJava:
3210   case Op_CallJava:
3211   case Op_CallDynamicJava:
3212     frc.inc_java_call_count(); // Count java call site;
3213   case Op_CallRuntime:
3214   case Op_CallLeaf:
3215   case Op_CallLeafVector:
3216   case Op_CallLeafNoFP: {
3217     assert (n->is_Call(), "");
3218     CallNode *call = n->as_Call();
3219     // Count call sites where the FP mode bit would have to be flipped.
3220     // Do not count uncommon runtime calls:
3221     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
3222     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
3223     if (!call->is_CallStaticJava() || !call->as_CallStaticJava()->_name) {
3224       frc.inc_call_count();   // Count the call site
3225     } else {                  // See if uncommon argument is shared
3226       Node *n = call->in(TypeFunc::Parms);
3227       int nop = n->Opcode();
3228       // Clone shared simple arguments to uncommon calls, item (1).
3229       if (n->outcnt() > 1 &&
3230           !n->is_Proj() &&
3231           nop != Op_CreateEx &&
3232           nop != Op_CheckCastPP &&
3233           nop != Op_DecodeN &&
3234           nop != Op_DecodeNKlass &&
3235           !n->is_Mem() &&
3236           !n->is_Phi()) {
3237         Node *x = n->clone();
3238         call->set_req(TypeFunc::Parms, x);
3239       }
3240     }
3241     break;
3242   }
3243   case Op_StoreB:
3244   case Op_StoreC:
3245   case Op_StoreI:
3246   case Op_StoreL:
3247   case Op_CompareAndSwapB:
3248   case Op_CompareAndSwapS:
3249   case Op_CompareAndSwapI:
3250   case Op_CompareAndSwapL:
3251   case Op_CompareAndSwapP:
3252   case Op_CompareAndSwapN:
3253   case Op_WeakCompareAndSwapB:
3254   case Op_WeakCompareAndSwapS:
3255   case Op_WeakCompareAndSwapI:
3256   case Op_WeakCompareAndSwapL:
3257   case Op_WeakCompareAndSwapP:
3258   case Op_WeakCompareAndSwapN:
3259   case Op_CompareAndExchangeB:
3260   case Op_CompareAndExchangeS:
3261   case Op_CompareAndExchangeI:
3262   case Op_CompareAndExchangeL:
3263   case Op_CompareAndExchangeP:
3264   case Op_CompareAndExchangeN:
3265   case Op_GetAndAddS:
3266   case Op_GetAndAddB:
3267   case Op_GetAndAddI:
3268   case Op_GetAndAddL:
3269   case Op_GetAndSetS:
3270   case Op_GetAndSetB:
3271   case Op_GetAndSetI:
3272   case Op_GetAndSetL:
3273   case Op_GetAndSetP:
3274   case Op_GetAndSetN:
3275   case Op_StoreP:
3276   case Op_StoreN:
3277   case Op_StoreNKlass:
3278   case Op_LoadB:
3279   case Op_LoadUB:
3280   case Op_LoadUS:
3281   case Op_LoadI:
3282   case Op_LoadKlass:
3283   case Op_LoadNKlass:
3284   case Op_LoadL:
3285   case Op_LoadL_unaligned:
3286   case Op_LoadP:
3287   case Op_LoadN:
3288   case Op_LoadRange:
3289   case Op_LoadS:
3290     break;
3291 
3292   case Op_AddP: {               // Assert sane base pointers
3293     Node *addp = n->in(AddPNode::Address);
3294     assert( !addp->is_AddP() ||
3295             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
3296             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
3297             "Base pointers must match (addp %u)", addp->_idx );
3298 #ifdef _LP64
3299     if ((UseCompressedOops || UseCompressedClassPointers) &&
3300         addp->Opcode() == Op_ConP &&
3301         addp == n->in(AddPNode::Base) &&
3302         n->in(AddPNode::Offset)->is_Con()) {
3303       // If the transformation of ConP to ConN+DecodeN is beneficial depends
3304       // on the platform and on the compressed oops mode.
3305       // Use addressing with narrow klass to load with offset on x86.
3306       // Some platforms can use the constant pool to load ConP.
3307       // Do this transformation here since IGVN will convert ConN back to ConP.
3308       const Type* t = addp->bottom_type();
3309       bool is_oop   = t->isa_oopptr() != nullptr;
3310       bool is_klass = t->isa_klassptr() != nullptr;
3311 
3312       if ((is_oop   && UseCompressedOops          && Matcher::const_oop_prefer_decode()  ) ||
3313           (is_klass && UseCompressedClassPointers && Matcher::const_klass_prefer_decode() &&
3314            t->isa_klassptr()->exact_klass()->is_in_encoding_range())) {
3315         Node* nn = nullptr;
3316 
3317         int op = is_oop ? Op_ConN : Op_ConNKlass;
3318 
3319         // Look for existing ConN node of the same exact type.
3320         Node* r  = root();
3321         uint cnt = r->outcnt();
3322         for (uint i = 0; i < cnt; i++) {
3323           Node* m = r->raw_out(i);
3324           if (m!= nullptr && m->Opcode() == op &&
3325               m->bottom_type()->make_ptr() == t) {
3326             nn = m;
3327             break;
3328           }
3329         }
3330         if (nn != nullptr) {
3331           // Decode a narrow oop to match address
3332           // [R12 + narrow_oop_reg<<3 + offset]
3333           if (is_oop) {
3334             nn = new DecodeNNode(nn, t);
3335           } else {
3336             nn = new DecodeNKlassNode(nn, t);
3337           }
3338           // Check for succeeding AddP which uses the same Base.
3339           // Otherwise we will run into the assertion above when visiting that guy.
3340           for (uint i = 0; i < n->outcnt(); ++i) {
3341             Node *out_i = n->raw_out(i);
3342             if (out_i && out_i->is_AddP() && out_i->in(AddPNode::Base) == addp) {
3343               out_i->set_req(AddPNode::Base, nn);
3344 #ifdef ASSERT
3345               for (uint j = 0; j < out_i->outcnt(); ++j) {
3346                 Node *out_j = out_i->raw_out(j);
3347                 assert(out_j == nullptr || !out_j->is_AddP() || out_j->in(AddPNode::Base) != addp,
3348                        "more than 2 AddP nodes in a chain (out_j %u)", out_j->_idx);
3349               }
3350 #endif
3351             }
3352           }
3353           n->set_req(AddPNode::Base, nn);
3354           n->set_req(AddPNode::Address, nn);
3355           if (addp->outcnt() == 0) {
3356             addp->disconnect_inputs(this);
3357           }
3358         }
3359       }
3360     }
3361 #endif
3362     break;
3363   }
3364 
3365   case Op_CastPP: {
3366     // Remove CastPP nodes to gain more freedom during scheduling but
3367     // keep the dependency they encode as control or precedence edges
3368     // (if control is set already) on memory operations. Some CastPP
3369     // nodes don't have a control (don't carry a dependency): skip
3370     // those.
3371     if (n->in(0) != nullptr) {
3372       ResourceMark rm;
3373       Unique_Node_List wq;
3374       wq.push(n);
3375       for (uint next = 0; next < wq.size(); ++next) {
3376         Node *m = wq.at(next);
3377         for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) {
3378           Node* use = m->fast_out(i);
3379           if (use->is_Mem() || use->is_EncodeNarrowPtr()) {
3380             use->ensure_control_or_add_prec(n->in(0));
3381           } else {
3382             switch(use->Opcode()) {
3383             case Op_AddP:
3384             case Op_DecodeN:
3385             case Op_DecodeNKlass:
3386             case Op_CheckCastPP:
3387             case Op_CastPP:
3388               wq.push(use);
3389               break;
3390             }
3391           }
3392         }
3393       }
3394     }
3395     const bool is_LP64 = LP64_ONLY(true) NOT_LP64(false);
3396     if (is_LP64 && n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
3397       Node* in1 = n->in(1);
3398       const Type* t = n->bottom_type();
3399       Node* new_in1 = in1->clone();
3400       new_in1->as_DecodeN()->set_type(t);
3401 
3402       if (!Matcher::narrow_oop_use_complex_address()) {
3403         //
3404         // x86, ARM and friends can handle 2 adds in addressing mode
3405         // and Matcher can fold a DecodeN node into address by using
3406         // a narrow oop directly and do implicit null check in address:
3407         //
3408         // [R12 + narrow_oop_reg<<3 + offset]
3409         // NullCheck narrow_oop_reg
3410         //
3411         // On other platforms (Sparc) we have to keep new DecodeN node and
3412         // use it to do implicit null check in address:
3413         //
3414         // decode_not_null narrow_oop_reg, base_reg
3415         // [base_reg + offset]
3416         // NullCheck base_reg
3417         //
3418         // Pin the new DecodeN node to non-null path on these platform (Sparc)
3419         // to keep the information to which null check the new DecodeN node
3420         // corresponds to use it as value in implicit_null_check().
3421         //
3422         new_in1->set_req(0, n->in(0));
3423       }
3424 
3425       n->subsume_by(new_in1, this);
3426       if (in1->outcnt() == 0) {
3427         in1->disconnect_inputs(this);
3428       }
3429     } else {
3430       n->subsume_by(n->in(1), this);
3431       if (n->outcnt() == 0) {
3432         n->disconnect_inputs(this);
3433       }
3434     }
3435     break;
3436   }
3437 #ifdef _LP64
3438   case Op_CmpP:
3439     // Do this transformation here to preserve CmpPNode::sub() and
3440     // other TypePtr related Ideal optimizations (for example, ptr nullness).
3441     if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
3442       Node* in1 = n->in(1);
3443       Node* in2 = n->in(2);
3444       if (!in1->is_DecodeNarrowPtr()) {
3445         in2 = in1;
3446         in1 = n->in(2);
3447       }
3448       assert(in1->is_DecodeNarrowPtr(), "sanity");
3449 
3450       Node* new_in2 = nullptr;
3451       if (in2->is_DecodeNarrowPtr()) {
3452         assert(in2->Opcode() == in1->Opcode(), "must be same node type");
3453         new_in2 = in2->in(1);
3454       } else if (in2->Opcode() == Op_ConP) {
3455         const Type* t = in2->bottom_type();
3456         if (t == TypePtr::NULL_PTR) {
3457           assert(in1->is_DecodeN(), "compare klass to null?");
3458           // Don't convert CmpP null check into CmpN if compressed
3459           // oops implicit null check is not generated.
3460           // This will allow to generate normal oop implicit null check.
3461           if (Matcher::gen_narrow_oop_implicit_null_checks())
3462             new_in2 = ConNode::make(TypeNarrowOop::NULL_PTR);
3463           //
3464           // This transformation together with CastPP transformation above
3465           // will generated code for implicit null checks for compressed oops.
3466           //
3467           // The original code after Optimize()
3468           //
3469           //    LoadN memory, narrow_oop_reg
3470           //    decode narrow_oop_reg, base_reg
3471           //    CmpP base_reg, nullptr
3472           //    CastPP base_reg // NotNull
3473           //    Load [base_reg + offset], val_reg
3474           //
3475           // after these transformations will be
3476           //
3477           //    LoadN memory, narrow_oop_reg
3478           //    CmpN narrow_oop_reg, nullptr
3479           //    decode_not_null narrow_oop_reg, base_reg
3480           //    Load [base_reg + offset], val_reg
3481           //
3482           // and the uncommon path (== nullptr) will use narrow_oop_reg directly
3483           // since narrow oops can be used in debug info now (see the code in
3484           // final_graph_reshaping_walk()).
3485           //
3486           // At the end the code will be matched to
3487           // on x86:
3488           //
3489           //    Load_narrow_oop memory, narrow_oop_reg
3490           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
3491           //    NullCheck narrow_oop_reg
3492           //
3493           // and on sparc:
3494           //
3495           //    Load_narrow_oop memory, narrow_oop_reg
3496           //    decode_not_null narrow_oop_reg, base_reg
3497           //    Load [base_reg + offset], val_reg
3498           //    NullCheck base_reg
3499           //
3500         } else if (t->isa_oopptr()) {
3501           new_in2 = ConNode::make(t->make_narrowoop());
3502         } else if (t->isa_klassptr()) {
3503           new_in2 = ConNode::make(t->make_narrowklass());
3504         }
3505       }
3506       if (new_in2 != nullptr) {
3507         Node* cmpN = new CmpNNode(in1->in(1), new_in2);
3508         n->subsume_by(cmpN, this);
3509         if (in1->outcnt() == 0) {
3510           in1->disconnect_inputs(this);
3511         }
3512         if (in2->outcnt() == 0) {
3513           in2->disconnect_inputs(this);
3514         }
3515       }
3516     }
3517     break;
3518 
3519   case Op_DecodeN:
3520   case Op_DecodeNKlass:
3521     assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
3522     // DecodeN could be pinned when it can't be fold into
3523     // an address expression, see the code for Op_CastPP above.
3524     assert(n->in(0) == nullptr || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
3525     break;
3526 
3527   case Op_EncodeP:
3528   case Op_EncodePKlass: {
3529     Node* in1 = n->in(1);
3530     if (in1->is_DecodeNarrowPtr()) {
3531       n->subsume_by(in1->in(1), this);
3532     } else if (in1->Opcode() == Op_ConP) {
3533       const Type* t = in1->bottom_type();
3534       if (t == TypePtr::NULL_PTR) {
3535         assert(t->isa_oopptr(), "null klass?");
3536         n->subsume_by(ConNode::make(TypeNarrowOop::NULL_PTR), this);
3537       } else if (t->isa_oopptr()) {
3538         n->subsume_by(ConNode::make(t->make_narrowoop()), this);
3539       } else if (t->isa_klassptr()) {
3540         n->subsume_by(ConNode::make(t->make_narrowklass()), this);
3541       }
3542     }
3543     if (in1->outcnt() == 0) {
3544       in1->disconnect_inputs(this);
3545     }
3546     break;
3547   }
3548 
3549   case Op_Proj: {
3550     if (OptimizeStringConcat || IncrementalInline) {
3551       ProjNode* proj = n->as_Proj();
3552       if (proj->_is_io_use) {
3553         assert(proj->_con == TypeFunc::I_O || proj->_con == TypeFunc::Memory, "");
3554         // Separate projections were used for the exception path which
3555         // are normally removed by a late inline.  If it wasn't inlined
3556         // then they will hang around and should just be replaced with
3557         // the original one. Merge them.
3558         Node* non_io_proj = proj->in(0)->as_Multi()->proj_out_or_null(proj->_con, false /*is_io_use*/);
3559         if (non_io_proj  != nullptr) {
3560           proj->subsume_by(non_io_proj , this);
3561         }
3562       }
3563     }
3564     break;
3565   }
3566 
3567   case Op_Phi:
3568     if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
3569       // The EncodeP optimization may create Phi with the same edges
3570       // for all paths. It is not handled well by Register Allocator.
3571       Node* unique_in = n->in(1);
3572       assert(unique_in != nullptr, "");
3573       uint cnt = n->req();
3574       for (uint i = 2; i < cnt; i++) {
3575         Node* m = n->in(i);
3576         assert(m != nullptr, "");
3577         if (unique_in != m)
3578           unique_in = nullptr;
3579       }
3580       if (unique_in != nullptr) {
3581         n->subsume_by(unique_in, this);
3582       }
3583     }
3584     break;
3585 
3586 #endif
3587 
3588 #ifdef ASSERT
3589   case Op_CastII:
3590     // Verify that all range check dependent CastII nodes were removed.
3591     if (n->isa_CastII()->has_range_check()) {
3592       n->dump(3);
3593       assert(false, "Range check dependent CastII node was not removed");
3594     }
3595     break;
3596 #endif
3597 
3598   case Op_ModI:
3599     handle_div_mod_op(n, T_INT, false);
3600     break;
3601 
3602   case Op_ModL:
3603     handle_div_mod_op(n, T_LONG, false);
3604     break;
3605 
3606   case Op_UModI:
3607     handle_div_mod_op(n, T_INT, true);
3608     break;
3609 
3610   case Op_UModL:
3611     handle_div_mod_op(n, T_LONG, true);
3612     break;
3613 
3614   case Op_LoadVector:
3615   case Op_StoreVector:
3616 #ifdef ASSERT
3617     // Add VerifyVectorAlignment node between adr and load / store.
3618     if (VerifyAlignVector && Matcher::has_match_rule(Op_VerifyVectorAlignment)) {
3619       bool must_verify_alignment = n->is_LoadVector() ? n->as_LoadVector()->must_verify_alignment() :
3620                                                         n->as_StoreVector()->must_verify_alignment();
3621       if (must_verify_alignment) {
3622         jlong vector_width = n->is_LoadVector() ? n->as_LoadVector()->memory_size() :
3623                                                   n->as_StoreVector()->memory_size();
3624         // The memory access should be aligned to the vector width in bytes.
3625         // However, the underlying array is possibly less well aligned, but at least
3626         // to ObjectAlignmentInBytes. Hence, even if multiple arrays are accessed in
3627         // a loop we can expect at least the following alignment:
3628         jlong guaranteed_alignment = MIN2(vector_width, (jlong)ObjectAlignmentInBytes);
3629         assert(2 <= guaranteed_alignment && guaranteed_alignment <= 64, "alignment must be in range");
3630         assert(is_power_of_2(guaranteed_alignment), "alignment must be power of 2");
3631         // Create mask from alignment. e.g. 0b1000 -> 0b0111
3632         jlong mask = guaranteed_alignment - 1;
3633         Node* mask_con = ConLNode::make(mask);
3634         VerifyVectorAlignmentNode* va = new VerifyVectorAlignmentNode(n->in(MemNode::Address), mask_con);
3635         n->set_req(MemNode::Address, va);
3636       }
3637     }
3638 #endif
3639     break;
3640 
3641   case Op_LoadVectorGather:
3642   case Op_StoreVectorScatter:
3643   case Op_LoadVectorGatherMasked:
3644   case Op_StoreVectorScatterMasked:
3645   case Op_VectorCmpMasked:
3646   case Op_VectorMaskGen:
3647   case Op_LoadVectorMasked:
3648   case Op_StoreVectorMasked:
3649     break;
3650 
3651   case Op_AddReductionVI:
3652   case Op_AddReductionVL:
3653   case Op_AddReductionVF:
3654   case Op_AddReductionVD:
3655   case Op_MulReductionVI:
3656   case Op_MulReductionVL:
3657   case Op_MulReductionVF:
3658   case Op_MulReductionVD:
3659   case Op_MinReductionV:
3660   case Op_MaxReductionV:
3661   case Op_AndReductionV:
3662   case Op_OrReductionV:
3663   case Op_XorReductionV:
3664     break;
3665 
3666   case Op_PackB:
3667   case Op_PackS:
3668   case Op_PackI:
3669   case Op_PackF:
3670   case Op_PackL:
3671   case Op_PackD:
3672     if (n->req()-1 > 2) {
3673       // Replace many operand PackNodes with a binary tree for matching
3674       PackNode* p = (PackNode*) n;
3675       Node* btp = p->binary_tree_pack(1, n->req());
3676       n->subsume_by(btp, this);
3677     }
3678     break;
3679   case Op_Loop:
3680     assert(!n->as_Loop()->is_loop_nest_inner_loop() || _loop_opts_cnt == 0, "should have been turned into a counted loop");
3681   case Op_CountedLoop:
3682   case Op_LongCountedLoop:
3683   case Op_OuterStripMinedLoop:
3684     if (n->as_Loop()->is_inner_loop()) {
3685       frc.inc_inner_loop_count();
3686     }
3687     n->as_Loop()->verify_strip_mined(0);
3688     break;
3689   case Op_LShiftI:
3690   case Op_RShiftI:
3691   case Op_URShiftI:
3692   case Op_LShiftL:
3693   case Op_RShiftL:
3694   case Op_URShiftL:
3695     if (Matcher::need_masked_shift_count) {
3696       // The cpu's shift instructions don't restrict the count to the
3697       // lower 5/6 bits. We need to do the masking ourselves.
3698       Node* in2 = n->in(2);
3699       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
3700       const TypeInt* t = in2->find_int_type();
3701       if (t != nullptr && t->is_con()) {
3702         juint shift = t->get_con();
3703         if (shift > mask) { // Unsigned cmp
3704           n->set_req(2, ConNode::make(TypeInt::make(shift & mask)));
3705         }
3706       } else {
3707         if (t == nullptr || t->_lo < 0 || t->_hi > (int)mask) {
3708           Node* shift = new AndINode(in2, ConNode::make(TypeInt::make(mask)));
3709           n->set_req(2, shift);
3710         }
3711       }
3712       if (in2->outcnt() == 0) { // Remove dead node
3713         in2->disconnect_inputs(this);
3714       }
3715     }
3716     break;
3717   case Op_MemBarStoreStore:
3718   case Op_MemBarRelease:
3719     // Break the link with AllocateNode: it is no longer useful and
3720     // confuses register allocation.
3721     if (n->req() > MemBarNode::Precedent) {
3722       n->set_req(MemBarNode::Precedent, top());
3723     }
3724     break;
3725   case Op_MemBarAcquire: {
3726     if (n->as_MemBar()->trailing_load() && n->req() > MemBarNode::Precedent) {
3727       // At parse time, the trailing MemBarAcquire for a volatile load
3728       // is created with an edge to the load. After optimizations,
3729       // that input may be a chain of Phis. If those phis have no
3730       // other use, then the MemBarAcquire keeps them alive and
3731       // register allocation can be confused.
3732       dead_nodes.push(n->in(MemBarNode::Precedent));
3733       n->set_req(MemBarNode::Precedent, top());
3734     }
3735     break;
3736   }
3737   case Op_Blackhole:
3738     break;
3739   case Op_RangeCheck: {
3740     RangeCheckNode* rc = n->as_RangeCheck();
3741     Node* iff = new IfNode(rc->in(0), rc->in(1), rc->_prob, rc->_fcnt);
3742     n->subsume_by(iff, this);
3743     frc._tests.push(iff);
3744     break;
3745   }
3746   case Op_ConvI2L: {
3747     if (!Matcher::convi2l_type_required) {
3748       // Code generation on some platforms doesn't need accurate
3749       // ConvI2L types. Widening the type can help remove redundant
3750       // address computations.
3751       n->as_Type()->set_type(TypeLong::INT);
3752       ResourceMark rm;
3753       Unique_Node_List wq;
3754       wq.push(n);
3755       for (uint next = 0; next < wq.size(); next++) {
3756         Node *m = wq.at(next);
3757 
3758         for(;;) {
3759           // Loop over all nodes with identical inputs edges as m
3760           Node* k = m->find_similar(m->Opcode());
3761           if (k == nullptr) {
3762             break;
3763           }
3764           // Push their uses so we get a chance to remove node made
3765           // redundant
3766           for (DUIterator_Fast imax, i = k->fast_outs(imax); i < imax; i++) {
3767             Node* u = k->fast_out(i);
3768             if (u->Opcode() == Op_LShiftL ||
3769                 u->Opcode() == Op_AddL ||
3770                 u->Opcode() == Op_SubL ||
3771                 u->Opcode() == Op_AddP) {
3772               wq.push(u);
3773             }
3774           }
3775           // Replace all nodes with identical edges as m with m
3776           k->subsume_by(m, this);
3777         }
3778       }
3779     }
3780     break;
3781   }
3782   case Op_CmpUL: {
3783     if (!Matcher::has_match_rule(Op_CmpUL)) {
3784       // No support for unsigned long comparisons
3785       ConINode* sign_pos = new ConINode(TypeInt::make(BitsPerLong - 1));
3786       Node* sign_bit_mask = new RShiftLNode(n->in(1), sign_pos);
3787       Node* orl = new OrLNode(n->in(1), sign_bit_mask);
3788       ConLNode* remove_sign_mask = new ConLNode(TypeLong::make(max_jlong));
3789       Node* andl = new AndLNode(orl, remove_sign_mask);
3790       Node* cmp = new CmpLNode(andl, n->in(2));
3791       n->subsume_by(cmp, this);
3792     }
3793     break;
3794   }
3795 #ifdef ASSERT
3796   case Op_ConNKlass: {
3797     const TypePtr* tp = n->as_Type()->type()->make_ptr();
3798     ciKlass* klass = tp->is_klassptr()->exact_klass();
3799     assert(klass->is_in_encoding_range(), "klass cannot be compressed");
3800     break;
3801   }
3802 #endif
3803   default:
3804     assert(!n->is_Call(), "");
3805     assert(!n->is_Mem(), "");
3806     assert(nop != Op_ProfileBoolean, "should be eliminated during IGVN");
3807     break;
3808   }
3809 }
3810 
3811 //------------------------------final_graph_reshaping_walk---------------------
3812 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
3813 // requires that the walk visits a node's inputs before visiting the node.
3814 void Compile::final_graph_reshaping_walk(Node_Stack& nstack, Node* root, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes) {
3815   Unique_Node_List sfpt;
3816 
3817   frc._visited.set(root->_idx); // first, mark node as visited
3818   uint cnt = root->req();
3819   Node *n = root;
3820   uint  i = 0;
3821   while (true) {
3822     if (i < cnt) {
3823       // Place all non-visited non-null inputs onto stack
3824       Node* m = n->in(i);
3825       ++i;
3826       if (m != nullptr && !frc._visited.test_set(m->_idx)) {
3827         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != nullptr) {
3828           // compute worst case interpreter size in case of a deoptimization
3829           update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size());
3830 
3831           sfpt.push(m);
3832         }
3833         cnt = m->req();
3834         nstack.push(n, i); // put on stack parent and next input's index
3835         n = m;
3836         i = 0;
3837       }
3838     } else {
3839       // Now do post-visit work
3840       final_graph_reshaping_impl(n, frc, dead_nodes);
3841       if (nstack.is_empty())
3842         break;             // finished
3843       n = nstack.node();   // Get node from stack
3844       cnt = n->req();
3845       i = nstack.index();
3846       nstack.pop();        // Shift to the next node on stack
3847     }
3848   }
3849 
3850   // Skip next transformation if compressed oops are not used.
3851   if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
3852       (!UseCompressedOops && !UseCompressedClassPointers))
3853     return;
3854 
3855   // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
3856   // It could be done for an uncommon traps or any safepoints/calls
3857   // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
3858   while (sfpt.size() > 0) {
3859     n = sfpt.pop();
3860     JVMState *jvms = n->as_SafePoint()->jvms();
3861     assert(jvms != nullptr, "sanity");
3862     int start = jvms->debug_start();
3863     int end   = n->req();
3864     bool is_uncommon = (n->is_CallStaticJava() &&
3865                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
3866     for (int j = start; j < end; j++) {
3867       Node* in = n->in(j);
3868       if (in->is_DecodeNarrowPtr()) {
3869         bool safe_to_skip = true;
3870         if (!is_uncommon ) {
3871           // Is it safe to skip?
3872           for (uint i = 0; i < in->outcnt(); i++) {
3873             Node* u = in->raw_out(i);
3874             if (!u->is_SafePoint() ||
3875                 (u->is_Call() && u->as_Call()->has_non_debug_use(n))) {
3876               safe_to_skip = false;
3877             }
3878           }
3879         }
3880         if (safe_to_skip) {
3881           n->set_req(j, in->in(1));
3882         }
3883         if (in->outcnt() == 0) {
3884           in->disconnect_inputs(this);
3885         }
3886       }
3887     }
3888   }
3889 }
3890 
3891 //------------------------------final_graph_reshaping--------------------------
3892 // Final Graph Reshaping.
3893 //
3894 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
3895 //     and not commoned up and forced early.  Must come after regular
3896 //     optimizations to avoid GVN undoing the cloning.  Clone constant
3897 //     inputs to Loop Phis; these will be split by the allocator anyways.
3898 //     Remove Opaque nodes.
3899 // (2) Move last-uses by commutative operations to the left input to encourage
3900 //     Intel update-in-place two-address operations and better register usage
3901 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
3902 //     calls canonicalizing them back.
3903 // (3) Count the number of double-precision FP ops, single-precision FP ops
3904 //     and call sites.  On Intel, we can get correct rounding either by
3905 //     forcing singles to memory (requires extra stores and loads after each
3906 //     FP bytecode) or we can set a rounding mode bit (requires setting and
3907 //     clearing the mode bit around call sites).  The mode bit is only used
3908 //     if the relative frequency of single FP ops to calls is low enough.
3909 //     This is a key transform for SPEC mpeg_audio.
3910 // (4) Detect infinite loops; blobs of code reachable from above but not
3911 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
3912 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
3913 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
3914 //     Detection is by looking for IfNodes where only 1 projection is
3915 //     reachable from below or CatchNodes missing some targets.
3916 // (5) Assert for insane oop offsets in debug mode.
3917 
3918 bool Compile::final_graph_reshaping() {
3919   // an infinite loop may have been eliminated by the optimizer,
3920   // in which case the graph will be empty.
3921   if (root()->req() == 1) {
3922     // Do not compile method that is only a trivial infinite loop,
3923     // since the content of the loop may have been eliminated.
3924     record_method_not_compilable("trivial infinite loop");
3925     return true;
3926   }
3927 
3928   // Expensive nodes have their control input set to prevent the GVN
3929   // from freely commoning them. There's no GVN beyond this point so
3930   // no need to keep the control input. We want the expensive nodes to
3931   // be freely moved to the least frequent code path by gcm.
3932   assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
3933   for (int i = 0; i < expensive_count(); i++) {
3934     _expensive_nodes.at(i)->set_req(0, nullptr);
3935   }
3936 
3937   Final_Reshape_Counts frc;
3938 
3939   // Visit everybody reachable!
3940   // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc
3941   Node_Stack nstack(live_nodes() >> 1);
3942   Unique_Node_List dead_nodes;
3943   final_graph_reshaping_walk(nstack, root(), frc, dead_nodes);
3944 
3945   // Check for unreachable (from below) code (i.e., infinite loops).
3946   for( uint i = 0; i < frc._tests.size(); i++ ) {
3947     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
3948     // Get number of CFG targets.
3949     // Note that PCTables include exception targets after calls.
3950     uint required_outcnt = n->required_outcnt();
3951     if (n->outcnt() != required_outcnt) {
3952       // Check for a few special cases.  Rethrow Nodes never take the
3953       // 'fall-thru' path, so expected kids is 1 less.
3954       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
3955         if (n->in(0)->in(0)->is_Call()) {
3956           CallNode* call = n->in(0)->in(0)->as_Call();
3957           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
3958             required_outcnt--;      // Rethrow always has 1 less kid
3959           } else if (call->req() > TypeFunc::Parms &&
3960                      call->is_CallDynamicJava()) {
3961             // Check for null receiver. In such case, the optimizer has
3962             // detected that the virtual call will always result in a null
3963             // pointer exception. The fall-through projection of this CatchNode
3964             // will not be populated.
3965             Node* arg0 = call->in(TypeFunc::Parms);
3966             if (arg0->is_Type() &&
3967                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
3968               required_outcnt--;
3969             }
3970           } else if (call->entry_point() == OptoRuntime::new_array_Java() ||
3971                      call->entry_point() == OptoRuntime::new_array_nozero_Java()) {
3972             // Check for illegal array length. In such case, the optimizer has
3973             // detected that the allocation attempt will always result in an
3974             // exception. There is no fall-through projection of this CatchNode .
3975             assert(call->is_CallStaticJava(), "static call expected");
3976             assert(call->req() == call->jvms()->endoff() + 1, "missing extra input");
3977             uint valid_length_test_input = call->req() - 1;
3978             Node* valid_length_test = call->in(valid_length_test_input);
3979             call->del_req(valid_length_test_input);
3980             if (valid_length_test->find_int_con(1) == 0) {
3981               required_outcnt--;
3982             }
3983             dead_nodes.push(valid_length_test);
3984             assert(n->outcnt() == required_outcnt, "malformed control flow");
3985             continue;
3986           }
3987         }
3988       }
3989 
3990       // Recheck with a better notion of 'required_outcnt'
3991       if (n->outcnt() != required_outcnt) {
3992         record_method_not_compilable("malformed control flow");
3993         return true;            // Not all targets reachable!
3994       }
3995     } else if (n->is_PCTable() && n->in(0) && n->in(0)->in(0) && n->in(0)->in(0)->is_Call()) {
3996       CallNode* call = n->in(0)->in(0)->as_Call();
3997       if (call->entry_point() == OptoRuntime::new_array_Java() ||
3998           call->entry_point() == OptoRuntime::new_array_nozero_Java()) {
3999         assert(call->is_CallStaticJava(), "static call expected");
4000         assert(call->req() == call->jvms()->endoff() + 1, "missing extra input");
4001         uint valid_length_test_input = call->req() - 1;
4002         dead_nodes.push(call->in(valid_length_test_input));
4003         call->del_req(valid_length_test_input); // valid length test useless now
4004       }
4005     }
4006     // Check that I actually visited all kids.  Unreached kids
4007     // must be infinite loops.
4008     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
4009       if (!frc._visited.test(n->fast_out(j)->_idx)) {
4010         record_method_not_compilable("infinite loop");
4011         return true;            // Found unvisited kid; must be unreach
4012       }
4013 
4014     // Here so verification code in final_graph_reshaping_walk()
4015     // always see an OuterStripMinedLoopEnd
4016     if (n->is_OuterStripMinedLoopEnd() || n->is_LongCountedLoopEnd()) {
4017       IfNode* init_iff = n->as_If();
4018       Node* iff = new IfNode(init_iff->in(0), init_iff->in(1), init_iff->_prob, init_iff->_fcnt);
4019       n->subsume_by(iff, this);
4020     }
4021   }
4022 
4023   while (dead_nodes.size() > 0) {
4024     Node* m = dead_nodes.pop();
4025     if (m->outcnt() == 0 && m != top()) {
4026       for (uint j = 0; j < m->req(); j++) {
4027         Node* in = m->in(j);
4028         if (in != nullptr) {
4029           dead_nodes.push(in);
4030         }
4031       }
4032       m->disconnect_inputs(this);
4033     }
4034   }
4035 
4036 #ifdef IA32
4037   // If original bytecodes contained a mixture of floats and doubles
4038   // check if the optimizer has made it homogeneous, item (3).
4039   if (UseSSE == 0 &&
4040       frc.get_float_count() > 32 &&
4041       frc.get_double_count() == 0 &&
4042       (10 * frc.get_call_count() < frc.get_float_count()) ) {
4043     set_24_bit_selection_and_mode(false, true);
4044   }
4045 #endif // IA32
4046 
4047   set_java_calls(frc.get_java_call_count());
4048   set_inner_loops(frc.get_inner_loop_count());
4049 
4050   // No infinite loops, no reason to bail out.
4051   return false;
4052 }
4053 
4054 //-----------------------------too_many_traps----------------------------------
4055 // Report if there are too many traps at the current method and bci.
4056 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
4057 bool Compile::too_many_traps(ciMethod* method,
4058                              int bci,
4059                              Deoptimization::DeoptReason reason) {
4060   if (method->has_trap_at(bci)) {
4061     return true;
4062   }
4063   ciMethodData* md = method->method_data();
4064   if (md->is_empty()) {
4065     // Assume the trap has not occurred, or that it occurred only
4066     // because of a transient condition during start-up in the interpreter.
4067     return false;
4068   }
4069   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : nullptr;
4070   if (md->has_trap_at(bci, m, reason) != 0) {
4071     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
4072     // Also, if there are multiple reasons, or if there is no per-BCI record,
4073     // assume the worst.
4074     if (log())
4075       log()->elem("observe trap='%s' count='%d'",
4076                   Deoptimization::trap_reason_name(reason),
4077                   md->trap_count(reason));
4078     return true;
4079   } else {
4080     // Ignore method/bci and see if there have been too many globally.
4081     return too_many_traps(reason, md);
4082   }
4083 }
4084 
4085 // Less-accurate variant which does not require a method and bci.
4086 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
4087                              ciMethodData* logmd) {
4088   if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) {
4089     // Too many traps globally.
4090     // Note that we use cumulative trap_count, not just md->trap_count.
4091     if (log()) {
4092       int mcount = (logmd == nullptr)? -1: (int)logmd->trap_count(reason);
4093       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
4094                   Deoptimization::trap_reason_name(reason),
4095                   mcount, trap_count(reason));
4096     }
4097     return true;
4098   } else {
4099     // The coast is clear.
4100     return false;
4101   }
4102 }
4103 
4104 //--------------------------too_many_recompiles--------------------------------
4105 // Report if there are too many recompiles at the current method and bci.
4106 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
4107 // Is not eager to return true, since this will cause the compiler to use
4108 // Action_none for a trap point, to avoid too many recompilations.
4109 bool Compile::too_many_recompiles(ciMethod* method,
4110                                   int bci,
4111                                   Deoptimization::DeoptReason reason) {
4112   ciMethodData* md = method->method_data();
4113   if (md->is_empty()) {
4114     // Assume the trap has not occurred, or that it occurred only
4115     // because of a transient condition during start-up in the interpreter.
4116     return false;
4117   }
4118   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
4119   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
4120   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
4121   Deoptimization::DeoptReason per_bc_reason
4122     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
4123   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : nullptr;
4124   if ((per_bc_reason == Deoptimization::Reason_none
4125        || md->has_trap_at(bci, m, reason) != 0)
4126       // The trap frequency measure we care about is the recompile count:
4127       && md->trap_recompiled_at(bci, m)
4128       && md->overflow_recompile_count() >= bc_cutoff) {
4129     // Do not emit a trap here if it has already caused recompilations.
4130     // Also, if there are multiple reasons, or if there is no per-BCI record,
4131     // assume the worst.
4132     if (log())
4133       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
4134                   Deoptimization::trap_reason_name(reason),
4135                   md->trap_count(reason),
4136                   md->overflow_recompile_count());
4137     return true;
4138   } else if (trap_count(reason) != 0
4139              && decompile_count() >= m_cutoff) {
4140     // Too many recompiles globally, and we have seen this sort of trap.
4141     // Use cumulative decompile_count, not just md->decompile_count.
4142     if (log())
4143       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
4144                   Deoptimization::trap_reason_name(reason),
4145                   md->trap_count(reason), trap_count(reason),
4146                   md->decompile_count(), decompile_count());
4147     return true;
4148   } else {
4149     // The coast is clear.
4150     return false;
4151   }
4152 }
4153 
4154 // Compute when not to trap. Used by matching trap based nodes and
4155 // NullCheck optimization.
4156 void Compile::set_allowed_deopt_reasons() {
4157   _allowed_reasons = 0;
4158   if (is_method_compilation()) {
4159     for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) {
4160       assert(rs < BitsPerInt, "recode bit map");
4161       if (!too_many_traps((Deoptimization::DeoptReason) rs)) {
4162         _allowed_reasons |= nth_bit(rs);
4163       }
4164     }
4165   }
4166 }
4167 
4168 bool Compile::needs_clinit_barrier(ciMethod* method, ciMethod* accessing_method) {
4169   return method->is_static() && needs_clinit_barrier(method->holder(), accessing_method);
4170 }
4171 
4172 bool Compile::needs_clinit_barrier(ciField* field, ciMethod* accessing_method) {
4173   return field->is_static() && needs_clinit_barrier(field->holder(), accessing_method);
4174 }
4175 
4176 bool Compile::needs_clinit_barrier(ciInstanceKlass* holder, ciMethod* accessing_method) {
4177   if (holder->is_initialized() && !do_clinit_barriers()) {
4178     return false;
4179   }
4180   if (holder->is_being_initialized() || do_clinit_barriers()) {
4181     if (accessing_method->holder() == holder) {
4182       // Access inside a class. The barrier can be elided when access happens in <clinit>,
4183       // <init>, or a static method. In all those cases, there was an initialization
4184       // barrier on the holder klass passed.
4185       if (accessing_method->is_static_initializer() ||
4186           accessing_method->is_object_initializer() ||
4187           accessing_method->is_static()) {
4188         return false;
4189       }
4190     } else if (accessing_method->holder()->is_subclass_of(holder)) {
4191       // Access from a subclass. The barrier can be elided only when access happens in <clinit>.
4192       // In case of <init> or a static method, the barrier is on the subclass is not enough:
4193       // child class can become fully initialized while its parent class is still being initialized.
4194       if (accessing_method->is_static_initializer()) {
4195         return false;
4196       }
4197     }
4198     ciMethod* root = method(); // the root method of compilation
4199     if (root != accessing_method) {
4200       return needs_clinit_barrier(holder, root); // check access in the context of compilation root
4201     }
4202   }
4203   return true;
4204 }
4205 
4206 #ifndef PRODUCT
4207 //------------------------------verify_bidirectional_edges---------------------
4208 // For each input edge to a node (ie - for each Use-Def edge), verify that
4209 // there is a corresponding Def-Use edge.
4210 void Compile::verify_bidirectional_edges(Unique_Node_List &visited) {
4211   // Allocate stack of size C->live_nodes()/16 to avoid frequent realloc
4212   uint stack_size = live_nodes() >> 4;
4213   Node_List nstack(MAX2(stack_size, (uint)OptoNodeListSize));
4214   nstack.push(_root);
4215 
4216   while (nstack.size() > 0) {
4217     Node* n = nstack.pop();
4218     if (visited.member(n)) {
4219       continue;
4220     }
4221     visited.push(n);
4222 
4223     // Walk over all input edges, checking for correspondence
4224     uint length = n->len();
4225     for (uint i = 0; i < length; i++) {
4226       Node* in = n->in(i);
4227       if (in != nullptr && !visited.member(in)) {
4228         nstack.push(in); // Put it on stack
4229       }
4230       if (in != nullptr && !in->is_top()) {
4231         // Count instances of `next`
4232         int cnt = 0;
4233         for (uint idx = 0; idx < in->_outcnt; idx++) {
4234           if (in->_out[idx] == n) {
4235             cnt++;
4236           }
4237         }
4238         assert(cnt > 0, "Failed to find Def-Use edge.");
4239         // Check for duplicate edges
4240         // walk the input array downcounting the input edges to n
4241         for (uint j = 0; j < length; j++) {
4242           if (n->in(j) == in) {
4243             cnt--;
4244           }
4245         }
4246         assert(cnt == 0, "Mismatched edge count.");
4247       } else if (in == nullptr) {
4248         assert(i == 0 || i >= n->req() ||
4249                n->is_Region() || n->is_Phi() || n->is_ArrayCopy() ||
4250                (n->is_Unlock() && i == (n->req() - 1)) ||
4251                (n->is_MemBar() && i == 5), // the precedence edge to a membar can be removed during macro node expansion
4252               "only region, phi, arraycopy, unlock or membar nodes have null data edges");
4253       } else {
4254         assert(in->is_top(), "sanity");
4255         // Nothing to check.
4256       }
4257     }
4258   }
4259 }
4260 
4261 //------------------------------verify_graph_edges---------------------------
4262 // Walk the Graph and verify that there is a one-to-one correspondence
4263 // between Use-Def edges and Def-Use edges in the graph.
4264 void Compile::verify_graph_edges(bool no_dead_code) {
4265   if (VerifyGraphEdges) {
4266     Unique_Node_List visited;
4267 
4268     // Call graph walk to check edges
4269     verify_bidirectional_edges(visited);
4270     if (no_dead_code) {
4271       // Now make sure that no visited node is used by an unvisited node.
4272       bool dead_nodes = false;
4273       Unique_Node_List checked;
4274       while (visited.size() > 0) {
4275         Node* n = visited.pop();
4276         checked.push(n);
4277         for (uint i = 0; i < n->outcnt(); i++) {
4278           Node* use = n->raw_out(i);
4279           if (checked.member(use))  continue;  // already checked
4280           if (visited.member(use))  continue;  // already in the graph
4281           if (use->is_Con())        continue;  // a dead ConNode is OK
4282           // At this point, we have found a dead node which is DU-reachable.
4283           if (!dead_nodes) {
4284             tty->print_cr("*** Dead nodes reachable via DU edges:");
4285             dead_nodes = true;
4286           }
4287           use->dump(2);
4288           tty->print_cr("---");
4289           checked.push(use);  // No repeats; pretend it is now checked.
4290         }
4291       }
4292       assert(!dead_nodes, "using nodes must be reachable from root");
4293     }
4294   }
4295 }
4296 #endif
4297 
4298 // The Compile object keeps track of failure reasons separately from the ciEnv.
4299 // This is required because there is not quite a 1-1 relation between the
4300 // ciEnv and its compilation task and the Compile object.  Note that one
4301 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
4302 // to backtrack and retry without subsuming loads.  Other than this backtracking
4303 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
4304 // by the logic in C2Compiler.
4305 void Compile::record_failure(const char* reason DEBUG_ONLY(COMMA bool allow_multiple_failures)) {
4306   if (log() != nullptr) {
4307     log()->elem("failure reason='%s' phase='compile'", reason);
4308   }
4309   if (_failure_reason.get() == nullptr) {
4310     // Record the first failure reason.
4311     _failure_reason.set(reason);
4312     if (CaptureBailoutInformation) {
4313       _first_failure_details = new CompilationFailureInfo(reason);
4314     }
4315   } else {
4316     assert(!StressBailout || allow_multiple_failures, "should have handled previous failure.");
4317   }
4318 
4319   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
4320     C->print_method(PHASE_FAILURE, 1);
4321   }
4322   _root = nullptr;  // flush the graph, too
4323 }
4324 
4325 Compile::TracePhase::TracePhase(const char* name, PhaseTraceId id)
4326   : TraceTime(name, &Phase::timers[id], CITime, CITimeVerbose),
4327     _compile(Compile::current()),
4328     _log(nullptr),
4329     _dolog(CITimeVerbose)
4330 {
4331   assert(_compile != nullptr, "sanity check");
4332   if (_dolog) {
4333     _log = _compile->log();
4334   }
4335   if (_log != nullptr) {
4336     _log->begin_head("phase name='%s' nodes='%d' live='%d'", phase_name(), _compile->unique(), _compile->live_nodes());
4337     _log->stamp();
4338     _log->end_head();
4339   }
4340 }
4341 
4342 Compile::TracePhase::TracePhase(PhaseTraceId id)
4343   : TracePhase(Phase::get_phase_trace_id_text(id), id) {}
4344 
4345 Compile::TracePhase::~TracePhase() {
4346   if (_compile->failing_internal()) {
4347     return; // timing code, not stressing bailouts.
4348   }
4349 #ifdef ASSERT
4350   if (PrintIdealNodeCount) {
4351     tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
4352                   phase_name(), _compile->unique(), _compile->live_nodes(), _compile->count_live_nodes_by_graph_walk());
4353   }
4354 
4355   if (VerifyIdealNodeCount) {
4356     _compile->print_missing_nodes();
4357   }
4358 #endif
4359 
4360   if (_log != nullptr) {
4361     _log->done("phase name='%s' nodes='%d' live='%d'", phase_name(), _compile->unique(), _compile->live_nodes());
4362   }
4363 }
4364 
4365 //----------------------------static_subtype_check-----------------------------
4366 // Shortcut important common cases when superklass is exact:
4367 // (0) superklass is java.lang.Object (can occur in reflective code)
4368 // (1) subklass is already limited to a subtype of superklass => always ok
4369 // (2) subklass does not overlap with superklass => always fail
4370 // (3) superklass has NO subtypes and we can check with a simple compare.
4371 Compile::SubTypeCheckResult Compile::static_subtype_check(const TypeKlassPtr* superk, const TypeKlassPtr* subk, bool skip) {
4372   if (skip) {
4373     return SSC_full_test;       // Let caller generate the general case.
4374   }
4375 
4376   if (subk->is_java_subtype_of(superk)) {
4377     return SSC_always_true; // (0) and (1)  this test cannot fail
4378   }
4379 
4380   if (!subk->maybe_java_subtype_of(superk)) {
4381     return SSC_always_false; // (2) true path dead; no dynamic test needed
4382   }
4383 
4384   const Type* superelem = superk;
4385   if (superk->isa_aryklassptr()) {
4386     int ignored;
4387     superelem = superk->is_aryklassptr()->base_element_type(ignored);
4388   }
4389 
4390   if (superelem->isa_instklassptr()) {
4391     ciInstanceKlass* ik = superelem->is_instklassptr()->instance_klass();
4392     if (!ik->has_subklass()) {
4393       if (!ik->is_final()) {
4394         // Add a dependency if there is a chance of a later subclass.
4395         dependencies()->assert_leaf_type(ik);
4396       }
4397       if (!superk->maybe_java_subtype_of(subk)) {
4398         return SSC_always_false;
4399       }
4400       return SSC_easy_test;     // (3) caller can do a simple ptr comparison
4401     }
4402   } else {
4403     // A primitive array type has no subtypes.
4404     return SSC_easy_test;       // (3) caller can do a simple ptr comparison
4405   }
4406 
4407   return SSC_full_test;
4408 }
4409 
4410 Node* Compile::conv_I2X_index(PhaseGVN* phase, Node* idx, const TypeInt* sizetype, Node* ctrl) {
4411 #ifdef _LP64
4412   // The scaled index operand to AddP must be a clean 64-bit value.
4413   // Java allows a 32-bit int to be incremented to a negative
4414   // value, which appears in a 64-bit register as a large
4415   // positive number.  Using that large positive number as an
4416   // operand in pointer arithmetic has bad consequences.
4417   // On the other hand, 32-bit overflow is rare, and the possibility
4418   // can often be excluded, if we annotate the ConvI2L node with
4419   // a type assertion that its value is known to be a small positive
4420   // number.  (The prior range check has ensured this.)
4421   // This assertion is used by ConvI2LNode::Ideal.
4422   int index_max = max_jint - 1;  // array size is max_jint, index is one less
4423   if (sizetype != nullptr) index_max = sizetype->_hi - 1;
4424   const TypeInt* iidxtype = TypeInt::make(0, index_max, Type::WidenMax);
4425   idx = constrained_convI2L(phase, idx, iidxtype, ctrl);
4426 #endif
4427   return idx;
4428 }
4429 
4430 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check)
4431 Node* Compile::constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl, bool carry_dependency) {
4432   if (ctrl != nullptr) {
4433     // Express control dependency by a CastII node with a narrow type.
4434     // Make the CastII node dependent on the control input to prevent the narrowed ConvI2L
4435     // node from floating above the range check during loop optimizations. Otherwise, the
4436     // ConvI2L node may be eliminated independently of the range check, causing the data path
4437     // to become TOP while the control path is still there (although it's unreachable).
4438     value = new CastIINode(ctrl, value, itype, carry_dependency ? ConstraintCastNode::StrongDependency : ConstraintCastNode::RegularDependency, true /* range check dependency */);
4439     value = phase->transform(value);
4440   }
4441   const TypeLong* ltype = TypeLong::make(itype->_lo, itype->_hi, itype->_widen);
4442   return phase->transform(new ConvI2LNode(value, ltype));
4443 }
4444 
4445 // The message about the current inlining is accumulated in
4446 // _print_inlining_stream and transferred into the _print_inlining_list
4447 // once we know whether inlining succeeds or not. For regular
4448 // inlining, messages are appended to the buffer pointed by
4449 // _print_inlining_idx in the _print_inlining_list. For late inlining,
4450 // a new buffer is added after _print_inlining_idx in the list. This
4451 // way we can update the inlining message for late inlining call site
4452 // when the inlining is attempted again.
4453 void Compile::print_inlining_init() {
4454   if (print_inlining() || print_intrinsics()) {
4455     // print_inlining_init is actually called several times.
4456     print_inlining_reset();
4457     _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer*>(comp_arena(), 1, 1, new PrintInliningBuffer());
4458   }
4459 }
4460 
4461 void Compile::print_inlining_reinit() {
4462   if (print_inlining() || print_intrinsics()) {
4463     print_inlining_reset();
4464   }
4465 }
4466 
4467 void Compile::print_inlining_reset() {
4468   _print_inlining_stream->reset();
4469 }
4470 
4471 void Compile::print_inlining_commit() {
4472   assert(print_inlining() || print_intrinsics(), "PrintInlining off?");
4473   // Transfer the message from _print_inlining_stream to the current
4474   // _print_inlining_list buffer and clear _print_inlining_stream.
4475   _print_inlining_list->at(_print_inlining_idx)->ss()->write(_print_inlining_stream->base(), _print_inlining_stream->size());
4476   print_inlining_reset();
4477 }
4478 
4479 void Compile::print_inlining_push() {
4480   // Add new buffer to the _print_inlining_list at current position
4481   _print_inlining_idx++;
4482   _print_inlining_list->insert_before(_print_inlining_idx, new PrintInliningBuffer());
4483 }
4484 
4485 Compile::PrintInliningBuffer* Compile::print_inlining_current() {
4486   return _print_inlining_list->at(_print_inlining_idx);
4487 }
4488 
4489 void Compile::print_inlining_update(CallGenerator* cg) {
4490   if (print_inlining() || print_intrinsics()) {
4491     if (cg->is_late_inline()) {
4492       if (print_inlining_current()->cg() != cg &&
4493           (print_inlining_current()->cg() != nullptr ||
4494            print_inlining_current()->ss()->size() != 0)) {
4495         print_inlining_push();
4496       }
4497       print_inlining_commit();
4498       print_inlining_current()->set_cg(cg);
4499     } else {
4500       if (print_inlining_current()->cg() != nullptr) {
4501         print_inlining_push();
4502       }
4503       print_inlining_commit();
4504     }
4505   }
4506 }
4507 
4508 void Compile::print_inlining_move_to(CallGenerator* cg) {
4509   // We resume inlining at a late inlining call site. Locate the
4510   // corresponding inlining buffer so that we can update it.
4511   if (print_inlining() || print_intrinsics()) {
4512     for (int i = 0; i < _print_inlining_list->length(); i++) {
4513       if (_print_inlining_list->at(i)->cg() == cg) {
4514         _print_inlining_idx = i;
4515         return;
4516       }
4517     }
4518     ShouldNotReachHere();
4519   }
4520 }
4521 
4522 void Compile::print_inlining_update_delayed(CallGenerator* cg) {
4523   if (print_inlining() || print_intrinsics()) {
4524     assert(_print_inlining_stream->size() > 0, "missing inlining msg");
4525     assert(print_inlining_current()->cg() == cg, "wrong entry");
4526     // replace message with new message
4527     _print_inlining_list->at_put(_print_inlining_idx, new PrintInliningBuffer());
4528     print_inlining_commit();
4529     print_inlining_current()->set_cg(cg);
4530   }
4531 }
4532 
4533 void Compile::print_inlining_assert_ready() {
4534   assert(!_print_inlining || _print_inlining_stream->size() == 0, "losing data");
4535 }
4536 
4537 void Compile::process_print_inlining() {
4538   assert(_late_inlines.length() == 0, "not drained yet");
4539   if (print_inlining() || print_intrinsics()) {
4540     ResourceMark rm;
4541     stringStream ss;
4542     assert(_print_inlining_list != nullptr, "process_print_inlining should be called only once.");
4543     for (int i = 0; i < _print_inlining_list->length(); i++) {
4544       PrintInliningBuffer* pib = _print_inlining_list->at(i);
4545       ss.print("%s", pib->ss()->freeze());
4546       delete pib;
4547       DEBUG_ONLY(_print_inlining_list->at_put(i, nullptr));
4548     }
4549     // Reset _print_inlining_list, it only contains destructed objects.
4550     // It is on the arena, so it will be freed when the arena is reset.
4551     _print_inlining_list = nullptr;
4552     // _print_inlining_stream won't be used anymore, either.
4553     print_inlining_reset();
4554     size_t end = ss.size();
4555     _print_inlining_output = NEW_ARENA_ARRAY(comp_arena(), char, end+1);
4556     strncpy(_print_inlining_output, ss.freeze(), end+1);
4557     _print_inlining_output[end] = 0;
4558   }
4559 }
4560 
4561 void Compile::dump_print_inlining() {
4562   if (_print_inlining_output != nullptr) {
4563     tty->print_raw(_print_inlining_output);
4564   }
4565 }
4566 
4567 void Compile::log_late_inline(CallGenerator* cg) {
4568   if (log() != nullptr) {
4569     log()->head("late_inline method='%d' inline_id='" JLONG_FORMAT "'", log()->identify(cg->method()),
4570                 cg->unique_id());
4571     JVMState* p = cg->call_node()->jvms();
4572     while (p != nullptr) {
4573       log()->elem("jvms bci='%d' method='%d'", p->bci(), log()->identify(p->method()));
4574       p = p->caller();
4575     }
4576     log()->tail("late_inline");
4577   }
4578 }
4579 
4580 void Compile::log_late_inline_failure(CallGenerator* cg, const char* msg) {
4581   log_late_inline(cg);
4582   if (log() != nullptr) {
4583     log()->inline_fail(msg);
4584   }
4585 }
4586 
4587 void Compile::log_inline_id(CallGenerator* cg) {
4588   if (log() != nullptr) {
4589     // The LogCompilation tool needs a unique way to identify late
4590     // inline call sites. This id must be unique for this call site in
4591     // this compilation. Try to have it unique across compilations as
4592     // well because it can be convenient when grepping through the log
4593     // file.
4594     // Distinguish OSR compilations from others in case CICountOSR is
4595     // on.
4596     jlong id = ((jlong)unique()) + (((jlong)compile_id()) << 33) + (CICountOSR && is_osr_compilation() ? ((jlong)1) << 32 : 0);
4597     cg->set_unique_id(id);
4598     log()->elem("inline_id id='" JLONG_FORMAT "'", id);
4599   }
4600 }
4601 
4602 void Compile::log_inline_failure(const char* msg) {
4603   if (C->log() != nullptr) {
4604     C->log()->inline_fail(msg);
4605   }
4606 }
4607 
4608 
4609 // Dump inlining replay data to the stream.
4610 // Don't change thread state and acquire any locks.
4611 void Compile::dump_inline_data(outputStream* out) {
4612   InlineTree* inl_tree = ilt();
4613   if (inl_tree != nullptr) {
4614     out->print(" inline %d", inl_tree->count());
4615     inl_tree->dump_replay_data(out);
4616   }
4617 }
4618 
4619 void Compile::dump_inline_data_reduced(outputStream* out) {
4620   assert(ReplayReduce, "");
4621 
4622   InlineTree* inl_tree = ilt();
4623   if (inl_tree == nullptr) {
4624     return;
4625   }
4626   // Enable iterative replay file reduction
4627   // Output "compile" lines for depth 1 subtrees,
4628   // simulating that those trees were compiled
4629   // instead of inlined.
4630   for (int i = 0; i < inl_tree->subtrees().length(); ++i) {
4631     InlineTree* sub = inl_tree->subtrees().at(i);
4632     if (sub->inline_level() != 1) {
4633       continue;
4634     }
4635 
4636     ciMethod* method = sub->method();
4637     int entry_bci = -1;
4638     int comp_level = env()->task()->comp_level();
4639     out->print("compile ");
4640     method->dump_name_as_ascii(out);
4641     out->print(" %d %d", entry_bci, comp_level);
4642     out->print(" inline %d", sub->count());
4643     sub->dump_replay_data(out, -1);
4644     out->cr();
4645   }
4646 }
4647 
4648 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
4649   if (n1->Opcode() < n2->Opcode())      return -1;
4650   else if (n1->Opcode() > n2->Opcode()) return 1;
4651 
4652   assert(n1->req() == n2->req(), "can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req());
4653   for (uint i = 1; i < n1->req(); i++) {
4654     if (n1->in(i) < n2->in(i))      return -1;
4655     else if (n1->in(i) > n2->in(i)) return 1;
4656   }
4657 
4658   return 0;
4659 }
4660 
4661 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
4662   Node* n1 = *n1p;
4663   Node* n2 = *n2p;
4664 
4665   return cmp_expensive_nodes(n1, n2);
4666 }
4667 
4668 void Compile::sort_expensive_nodes() {
4669   if (!expensive_nodes_sorted()) {
4670     _expensive_nodes.sort(cmp_expensive_nodes);
4671   }
4672 }
4673 
4674 bool Compile::expensive_nodes_sorted() const {
4675   for (int i = 1; i < _expensive_nodes.length(); i++) {
4676     if (cmp_expensive_nodes(_expensive_nodes.adr_at(i), _expensive_nodes.adr_at(i-1)) < 0) {
4677       return false;
4678     }
4679   }
4680   return true;
4681 }
4682 
4683 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
4684   if (_expensive_nodes.length() == 0) {
4685     return false;
4686   }
4687 
4688   assert(OptimizeExpensiveOps, "optimization off?");
4689 
4690   // Take this opportunity to remove dead nodes from the list
4691   int j = 0;
4692   for (int i = 0; i < _expensive_nodes.length(); i++) {
4693     Node* n = _expensive_nodes.at(i);
4694     if (!n->is_unreachable(igvn)) {
4695       assert(n->is_expensive(), "should be expensive");
4696       _expensive_nodes.at_put(j, n);
4697       j++;
4698     }
4699   }
4700   _expensive_nodes.trunc_to(j);
4701 
4702   // Then sort the list so that similar nodes are next to each other
4703   // and check for at least two nodes of identical kind with same data
4704   // inputs.
4705   sort_expensive_nodes();
4706 
4707   for (int i = 0; i < _expensive_nodes.length()-1; i++) {
4708     if (cmp_expensive_nodes(_expensive_nodes.adr_at(i), _expensive_nodes.adr_at(i+1)) == 0) {
4709       return true;
4710     }
4711   }
4712 
4713   return false;
4714 }
4715 
4716 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
4717   if (_expensive_nodes.length() == 0) {
4718     return;
4719   }
4720 
4721   assert(OptimizeExpensiveOps, "optimization off?");
4722 
4723   // Sort to bring similar nodes next to each other and clear the
4724   // control input of nodes for which there's only a single copy.
4725   sort_expensive_nodes();
4726 
4727   int j = 0;
4728   int identical = 0;
4729   int i = 0;
4730   bool modified = false;
4731   for (; i < _expensive_nodes.length()-1; i++) {
4732     assert(j <= i, "can't write beyond current index");
4733     if (_expensive_nodes.at(i)->Opcode() == _expensive_nodes.at(i+1)->Opcode()) {
4734       identical++;
4735       _expensive_nodes.at_put(j++, _expensive_nodes.at(i));
4736       continue;
4737     }
4738     if (identical > 0) {
4739       _expensive_nodes.at_put(j++, _expensive_nodes.at(i));
4740       identical = 0;
4741     } else {
4742       Node* n = _expensive_nodes.at(i);
4743       igvn.replace_input_of(n, 0, nullptr);
4744       igvn.hash_insert(n);
4745       modified = true;
4746     }
4747   }
4748   if (identical > 0) {
4749     _expensive_nodes.at_put(j++, _expensive_nodes.at(i));
4750   } else if (_expensive_nodes.length() >= 1) {
4751     Node* n = _expensive_nodes.at(i);
4752     igvn.replace_input_of(n, 0, nullptr);
4753     igvn.hash_insert(n);
4754     modified = true;
4755   }
4756   _expensive_nodes.trunc_to(j);
4757   if (modified) {
4758     igvn.optimize();
4759   }
4760 }
4761 
4762 void Compile::add_expensive_node(Node * n) {
4763   assert(!_expensive_nodes.contains(n), "duplicate entry in expensive list");
4764   assert(n->is_expensive(), "expensive nodes with non-null control here only");
4765   assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
4766   if (OptimizeExpensiveOps) {
4767     _expensive_nodes.append(n);
4768   } else {
4769     // Clear control input and let IGVN optimize expensive nodes if
4770     // OptimizeExpensiveOps is off.
4771     n->set_req(0, nullptr);
4772   }
4773 }
4774 
4775 /**
4776  * Track coarsened Lock and Unlock nodes.
4777  */
4778 
4779 class Lock_List : public Node_List {
4780   uint _origin_cnt;
4781 public:
4782   Lock_List(Arena *a, uint cnt) : Node_List(a), _origin_cnt(cnt) {}
4783   uint origin_cnt() const { return _origin_cnt; }
4784 };
4785 
4786 void Compile::add_coarsened_locks(GrowableArray<AbstractLockNode*>& locks) {
4787   int length = locks.length();
4788   if (length > 0) {
4789     // Have to keep this list until locks elimination during Macro nodes elimination.
4790     Lock_List* locks_list = new (comp_arena()) Lock_List(comp_arena(), length);
4791     AbstractLockNode* alock = locks.at(0);
4792     BoxLockNode* box = alock->box_node()->as_BoxLock();
4793     for (int i = 0; i < length; i++) {
4794       AbstractLockNode* lock = locks.at(i);
4795       assert(lock->is_coarsened(), "expecting only coarsened AbstractLock nodes, but got '%s'[%d] node", lock->Name(), lock->_idx);
4796       locks_list->push(lock);
4797       BoxLockNode* this_box = lock->box_node()->as_BoxLock();
4798       if (this_box != box) {
4799         // Locking regions (BoxLock) could be Unbalanced here:
4800         //  - its coarsened locks were eliminated in earlier
4801         //    macro nodes elimination followed by loop unroll
4802         //  - it is OSR locking region (no Lock node)
4803         // Preserve Unbalanced status in such cases.
4804         if (!this_box->is_unbalanced()) {
4805           this_box->set_coarsened();
4806         }
4807         if (!box->is_unbalanced()) {
4808           box->set_coarsened();
4809         }
4810       }
4811     }
4812     _coarsened_locks.append(locks_list);
4813   }
4814 }
4815 
4816 void Compile::remove_useless_coarsened_locks(Unique_Node_List& useful) {
4817   int count = coarsened_count();
4818   for (int i = 0; i < count; i++) {
4819     Node_List* locks_list = _coarsened_locks.at(i);
4820     for (uint j = 0; j < locks_list->size(); j++) {
4821       Node* lock = locks_list->at(j);
4822       assert(lock->is_AbstractLock(), "sanity");
4823       if (!useful.member(lock)) {
4824         locks_list->yank(lock);
4825       }
4826     }
4827   }
4828 }
4829 
4830 void Compile::remove_coarsened_lock(Node* n) {
4831   if (n->is_AbstractLock()) {
4832     int count = coarsened_count();
4833     for (int i = 0; i < count; i++) {
4834       Node_List* locks_list = _coarsened_locks.at(i);
4835       locks_list->yank(n);
4836     }
4837   }
4838 }
4839 
4840 bool Compile::coarsened_locks_consistent() {
4841   int count = coarsened_count();
4842   for (int i = 0; i < count; i++) {
4843     bool unbalanced = false;
4844     bool modified = false; // track locks kind modifications
4845     Lock_List* locks_list = (Lock_List*)_coarsened_locks.at(i);
4846     uint size = locks_list->size();
4847     if (size == 0) {
4848       unbalanced = false; // All locks were eliminated - good
4849     } else if (size != locks_list->origin_cnt()) {
4850       unbalanced = true; // Some locks were removed from list
4851     } else {
4852       for (uint j = 0; j < size; j++) {
4853         Node* lock = locks_list->at(j);
4854         // All nodes in group should have the same state (modified or not)
4855         if (!lock->as_AbstractLock()->is_coarsened()) {
4856           if (j == 0) {
4857             // first on list was modified, the rest should be too for consistency
4858             modified = true;
4859           } else if (!modified) {
4860             // this lock was modified but previous locks on the list were not
4861             unbalanced = true;
4862             break;
4863           }
4864         } else if (modified) {
4865           // previous locks on list were modified but not this lock
4866           unbalanced = true;
4867           break;
4868         }
4869       }
4870     }
4871     if (unbalanced) {
4872       // unbalanced monitor enter/exit - only some [un]lock nodes were removed or modified
4873 #ifdef ASSERT
4874       if (PrintEliminateLocks) {
4875         tty->print_cr("=== unbalanced coarsened locks ===");
4876         for (uint l = 0; l < size; l++) {
4877           locks_list->at(l)->dump();
4878         }
4879       }
4880 #endif
4881       record_failure(C2Compiler::retry_no_locks_coarsening());
4882       return false;
4883     }
4884   }
4885   return true;
4886 }
4887 
4888 // Mark locking regions (identified by BoxLockNode) as unbalanced if
4889 // locks coarsening optimization removed Lock/Unlock nodes from them.
4890 // Such regions become unbalanced because coarsening only removes part
4891 // of Lock/Unlock nodes in region. As result we can't execute other
4892 // locks elimination optimizations which assume all code paths have
4893 // corresponding pair of Lock/Unlock nodes - they are balanced.
4894 void Compile::mark_unbalanced_boxes() const {
4895   int count = coarsened_count();
4896   for (int i = 0; i < count; i++) {
4897     Node_List* locks_list = _coarsened_locks.at(i);
4898     uint size = locks_list->size();
4899     if (size > 0) {
4900       AbstractLockNode* alock = locks_list->at(0)->as_AbstractLock();
4901       BoxLockNode* box = alock->box_node()->as_BoxLock();
4902       if (alock->is_coarsened()) {
4903         // coarsened_locks_consistent(), which is called before this method, verifies
4904         // that the rest of Lock/Unlock nodes on locks_list are also coarsened.
4905         assert(!box->is_eliminated(), "regions with coarsened locks should not be marked as eliminated");
4906         for (uint j = 1; j < size; j++) {
4907           assert(locks_list->at(j)->as_AbstractLock()->is_coarsened(), "only coarsened locks are expected here");
4908           BoxLockNode* this_box = locks_list->at(j)->as_AbstractLock()->box_node()->as_BoxLock();
4909           if (box != this_box) {
4910             assert(!this_box->is_eliminated(), "regions with coarsened locks should not be marked as eliminated");
4911             box->set_unbalanced();
4912             this_box->set_unbalanced();
4913           }
4914         }
4915       }
4916     }
4917   }
4918 }
4919 
4920 /**
4921  * Remove the speculative part of types and clean up the graph
4922  */
4923 void Compile::remove_speculative_types(PhaseIterGVN &igvn) {
4924   if (UseTypeSpeculation) {
4925     Unique_Node_List worklist;
4926     worklist.push(root());
4927     int modified = 0;
4928     // Go over all type nodes that carry a speculative type, drop the
4929     // speculative part of the type and enqueue the node for an igvn
4930     // which may optimize it out.
4931     for (uint next = 0; next < worklist.size(); ++next) {
4932       Node *n  = worklist.at(next);
4933       if (n->is_Type()) {
4934         TypeNode* tn = n->as_Type();
4935         const Type* t = tn->type();
4936         const Type* t_no_spec = t->remove_speculative();
4937         if (t_no_spec != t) {
4938           bool in_hash = igvn.hash_delete(n);
4939           assert(in_hash || n->hash() == Node::NO_HASH, "node should be in igvn hash table");
4940           tn->set_type(t_no_spec);
4941           igvn.hash_insert(n);
4942           igvn._worklist.push(n); // give it a chance to go away
4943           modified++;
4944         }
4945       }
4946       // Iterate over outs - endless loops is unreachable from below
4947       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
4948         Node *m = n->fast_out(i);
4949         if (not_a_node(m)) {
4950           continue;
4951         }
4952         worklist.push(m);
4953       }
4954     }
4955     // Drop the speculative part of all types in the igvn's type table
4956     igvn.remove_speculative_types();
4957     if (modified > 0) {
4958       igvn.optimize();
4959       if (failing())  return;
4960     }
4961 #ifdef ASSERT
4962     // Verify that after the IGVN is over no speculative type has resurfaced
4963     worklist.clear();
4964     worklist.push(root());
4965     for (uint next = 0; next < worklist.size(); ++next) {
4966       Node *n  = worklist.at(next);
4967       const Type* t = igvn.type_or_null(n);
4968       assert((t == nullptr) || (t == t->remove_speculative()), "no more speculative types");
4969       if (n->is_Type()) {
4970         t = n->as_Type()->type();
4971         assert(t == t->remove_speculative(), "no more speculative types");
4972       }
4973       // Iterate over outs - endless loops is unreachable from below
4974       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
4975         Node *m = n->fast_out(i);
4976         if (not_a_node(m)) {
4977           continue;
4978         }
4979         worklist.push(m);
4980       }
4981     }
4982     igvn.check_no_speculative_types();
4983 #endif
4984   }
4985 }
4986 
4987 // Auxiliary methods to support randomized stressing/fuzzing.
4988 
4989 void Compile::initialize_stress_seed(const DirectiveSet* directive) {
4990   if (FLAG_IS_DEFAULT(StressSeed) || (FLAG_IS_ERGO(StressSeed) && directive->RepeatCompilationOption)) {
4991     _stress_seed = static_cast<uint>(Ticks::now().nanoseconds());
4992     FLAG_SET_ERGO(StressSeed, _stress_seed);
4993   } else {
4994     _stress_seed = StressSeed;
4995   }
4996   if (_log != nullptr) {
4997     _log->elem("stress_test seed='%u'", _stress_seed);
4998   }
4999 }
5000 
5001 int Compile::random() {
5002   _stress_seed = os::next_random(_stress_seed);
5003   return static_cast<int>(_stress_seed);
5004 }
5005 
5006 // This method can be called the arbitrary number of times, with current count
5007 // as the argument. The logic allows selecting a single candidate from the
5008 // running list of candidates as follows:
5009 //    int count = 0;
5010 //    Cand* selected = null;
5011 //    while(cand = cand->next()) {
5012 //      if (randomized_select(++count)) {
5013 //        selected = cand;
5014 //      }
5015 //    }
5016 //
5017 // Including count equalizes the chances any candidate is "selected".
5018 // This is useful when we don't have the complete list of candidates to choose
5019 // from uniformly. In this case, we need to adjust the randomicity of the
5020 // selection, or else we will end up biasing the selection towards the latter
5021 // candidates.
5022 //
5023 // Quick back-envelope calculation shows that for the list of n candidates
5024 // the equal probability for the candidate to persist as "best" can be
5025 // achieved by replacing it with "next" k-th candidate with the probability
5026 // of 1/k. It can be easily shown that by the end of the run, the
5027 // probability for any candidate is converged to 1/n, thus giving the
5028 // uniform distribution among all the candidates.
5029 //
5030 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
5031 #define RANDOMIZED_DOMAIN_POW 29
5032 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
5033 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
5034 bool Compile::randomized_select(int count) {
5035   assert(count > 0, "only positive");
5036   return (random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);
5037 }
5038 
5039 #ifdef ASSERT
5040 // Failures are geometrically distributed with probability 1/StressBailoutMean.
5041 bool Compile::fail_randomly() {
5042   if ((random() % StressBailoutMean) != 0) {
5043     return false;
5044   }
5045   record_failure("StressBailout");
5046   return true;
5047 }
5048 
5049 bool Compile::failure_is_artificial() {
5050   assert(failing_internal(), "should be failing");
5051   return C->failure_reason_is("StressBailout");
5052 }
5053 #endif
5054 
5055 CloneMap&     Compile::clone_map()                 { return _clone_map; }
5056 void          Compile::set_clone_map(Dict* d)      { _clone_map._dict = d; }
5057 
5058 void NodeCloneInfo::dump_on(outputStream* st) const {
5059   st->print(" {%d:%d} ", idx(), gen());
5060 }
5061 
5062 void CloneMap::clone(Node* old, Node* nnn, int gen) {
5063   uint64_t val = value(old->_idx);
5064   NodeCloneInfo cio(val);
5065   assert(val != 0, "old node should be in the map");
5066   NodeCloneInfo cin(cio.idx(), gen + cio.gen());
5067   insert(nnn->_idx, cin.get());
5068 #ifndef PRODUCT
5069   if (is_debug()) {
5070     tty->print_cr("CloneMap::clone inserted node %d info {%d:%d} into CloneMap", nnn->_idx, cin.idx(), cin.gen());
5071   }
5072 #endif
5073 }
5074 
5075 void CloneMap::verify_insert_and_clone(Node* old, Node* nnn, int gen) {
5076   NodeCloneInfo cio(value(old->_idx));
5077   if (cio.get() == 0) {
5078     cio.set(old->_idx, 0);
5079     insert(old->_idx, cio.get());
5080 #ifndef PRODUCT
5081     if (is_debug()) {
5082       tty->print_cr("CloneMap::verify_insert_and_clone inserted node %d info {%d:%d} into CloneMap", old->_idx, cio.idx(), cio.gen());
5083     }
5084 #endif
5085   }
5086   clone(old, nnn, gen);
5087 }
5088 
5089 int CloneMap::max_gen() const {
5090   int g = 0;
5091   DictI di(_dict);
5092   for(; di.test(); ++di) {
5093     int t = gen(di._key);
5094     if (g < t) {
5095       g = t;
5096 #ifndef PRODUCT
5097       if (is_debug()) {
5098         tty->print_cr("CloneMap::max_gen() update max=%d from %d", g, _2_node_idx_t(di._key));
5099       }
5100 #endif
5101     }
5102   }
5103   return g;
5104 }
5105 
5106 void CloneMap::dump(node_idx_t key, outputStream* st) const {
5107   uint64_t val = value(key);
5108   if (val != 0) {
5109     NodeCloneInfo ni(val);
5110     ni.dump_on(st);
5111   }
5112 }
5113 
5114 void Compile::shuffle_macro_nodes() {
5115   if (_macro_nodes.length() < 2) {
5116     return;
5117   }
5118   for (uint i = _macro_nodes.length() - 1; i >= 1; i--) {
5119     uint j = C->random() % (i + 1);
5120     swap(_macro_nodes.at(i), _macro_nodes.at(j));
5121   }
5122 }
5123 
5124 // Move Allocate nodes to the start of the list
5125 void Compile::sort_macro_nodes() {
5126   int count = macro_count();
5127   int allocates = 0;
5128   for (int i = 0; i < count; i++) {
5129     Node* n = macro_node(i);
5130     if (n->is_Allocate()) {
5131       if (i != allocates) {
5132         Node* tmp = macro_node(allocates);
5133         _macro_nodes.at_put(allocates, n);
5134         _macro_nodes.at_put(i, tmp);
5135       }
5136       allocates++;
5137     }
5138   }
5139 }
5140 
5141 void Compile::print_method(CompilerPhaseType cpt, int level, Node* n) {
5142   if (failing_internal()) { return; } // failing_internal to not stress bailouts from printing code.
5143   EventCompilerPhase event(UNTIMED);
5144   if (event.should_commit()) {
5145     CompilerEvent::PhaseEvent::post(event, C->_latest_stage_start_counter, cpt, C->_compile_id, level);
5146   }
5147 #ifndef PRODUCT
5148   ResourceMark rm;
5149   stringStream ss;
5150   ss.print_raw(CompilerPhaseTypeHelper::to_description(cpt));
5151   int iter = ++_igv_phase_iter[cpt];
5152   if (iter > 1) {
5153     ss.print(" %d", iter);
5154   }
5155   if (n != nullptr) {
5156     ss.print(": %d %s", n->_idx, NodeClassNames[n->Opcode()]);
5157     if (n->is_Call()) {
5158       CallNode* call = n->as_Call();
5159       if (call->_name != nullptr) {
5160         // E.g. uncommon traps etc.
5161         ss.print(" - %s", call->_name);
5162       } else if (call->is_CallJava()) {
5163         CallJavaNode* call_java = call->as_CallJava();
5164         if (call_java->method() != nullptr) {
5165           ss.print(" -");
5166           call_java->method()->print_short_name(&ss);
5167         }
5168       }
5169     }
5170   }
5171 
5172   const char* name = ss.as_string();
5173   if (should_print_igv(level)) {
5174     _igv_printer->print_method(name, level);
5175   }
5176   if (should_print_phase(cpt)) {
5177     print_ideal_ir(CompilerPhaseTypeHelper::to_name(cpt));
5178   }
5179 #endif
5180   C->_latest_stage_start_counter.stamp();
5181 }
5182 
5183 // Only used from CompileWrapper
5184 void Compile::begin_method() {
5185 #ifndef PRODUCT
5186   if (_method != nullptr && should_print_igv(1)) {
5187     _igv_printer->begin_method();
5188   }
5189 #endif
5190   C->_latest_stage_start_counter.stamp();
5191 }
5192 
5193 // Only used from CompileWrapper
5194 void Compile::end_method() {
5195   EventCompilerPhase event(UNTIMED);
5196   if (event.should_commit()) {
5197     CompilerEvent::PhaseEvent::post(event, C->_latest_stage_start_counter, PHASE_END, C->_compile_id, 1);
5198   }
5199 
5200 #ifndef PRODUCT
5201   if (_method != nullptr && should_print_igv(1)) {
5202     _igv_printer->end_method();
5203   }
5204 #endif
5205 }
5206 
5207 bool Compile::should_print_phase(CompilerPhaseType cpt) {
5208 #ifndef PRODUCT
5209   if (_directive->should_print_phase(cpt)) {
5210     return true;
5211   }
5212 #endif
5213   return false;
5214 }
5215 
5216 bool Compile::should_print_igv(const int level) {
5217 #ifndef PRODUCT
5218   if (PrintIdealGraphLevel < 0) { // disabled by the user
5219     return false;
5220   }
5221 
5222   bool need = directive()->IGVPrintLevelOption >= level;
5223   if (need && !_igv_printer) {
5224     _igv_printer = IdealGraphPrinter::printer();
5225     _igv_printer->set_compile(this);
5226   }
5227   return need;
5228 #else
5229   return false;
5230 #endif
5231 }
5232 
5233 #ifndef PRODUCT
5234 IdealGraphPrinter* Compile::_debug_file_printer = nullptr;
5235 IdealGraphPrinter* Compile::_debug_network_printer = nullptr;
5236 
5237 // Called from debugger. Prints method to the default file with the default phase name.
5238 // This works regardless of any Ideal Graph Visualizer flags set or not.
5239 void igv_print() {
5240   Compile::current()->igv_print_method_to_file();
5241 }
5242 
5243 // Same as igv_print() above but with a specified phase name.
5244 void igv_print(const char* phase_name) {
5245   Compile::current()->igv_print_method_to_file(phase_name);
5246 }
5247 
5248 // Called from debugger. Prints method with the default phase name to the default network or the one specified with
5249 // the network flags for the Ideal Graph Visualizer, or to the default file depending on the 'network' argument.
5250 // This works regardless of any Ideal Graph Visualizer flags set or not.
5251 void igv_print(bool network) {
5252   if (network) {
5253     Compile::current()->igv_print_method_to_network();
5254   } else {
5255     Compile::current()->igv_print_method_to_file();
5256   }
5257 }
5258 
5259 // Same as igv_print(bool network) above but with a specified phase name.
5260 void igv_print(bool network, const char* phase_name) {
5261   if (network) {
5262     Compile::current()->igv_print_method_to_network(phase_name);
5263   } else {
5264     Compile::current()->igv_print_method_to_file(phase_name);
5265   }
5266 }
5267 
5268 // Called from debugger. Normal write to the default _printer. Only works if Ideal Graph Visualizer printing flags are set.
5269 void igv_print_default() {
5270   Compile::current()->print_method(PHASE_DEBUG, 0);
5271 }
5272 
5273 // Called from debugger, especially when replaying a trace in which the program state cannot be altered like with rr replay.
5274 // A method is appended to an existing default file with the default phase name. This means that igv_append() must follow
5275 // an earlier igv_print(*) call which sets up the file. This works regardless of any Ideal Graph Visualizer flags set or not.
5276 void igv_append() {
5277   Compile::current()->igv_print_method_to_file("Debug", true);
5278 }
5279 
5280 // Same as igv_append() above but with a specified phase name.
5281 void igv_append(const char* phase_name) {
5282   Compile::current()->igv_print_method_to_file(phase_name, true);
5283 }
5284 
5285 void Compile::igv_print_method_to_file(const char* phase_name, bool append) {
5286   const char* file_name = "custom_debug.xml";
5287   if (_debug_file_printer == nullptr) {
5288     _debug_file_printer = new IdealGraphPrinter(C, file_name, append);
5289   } else {
5290     _debug_file_printer->update_compiled_method(C->method());
5291   }
5292   tty->print_cr("Method %s to %s", append ? "appended" : "printed", file_name);
5293   _debug_file_printer->print(phase_name, (Node*)C->root());
5294 }
5295 
5296 void Compile::igv_print_method_to_network(const char* phase_name) {
5297   if (_debug_network_printer == nullptr) {
5298     _debug_network_printer = new IdealGraphPrinter(C);
5299   } else {
5300     _debug_network_printer->update_compiled_method(C->method());
5301   }
5302   tty->print_cr("Method printed over network stream to IGV");
5303   _debug_network_printer->print(phase_name, (Node*)C->root());
5304 }
5305 #endif
5306 
5307 Node* Compile::narrow_value(BasicType bt, Node* value, const Type* type, PhaseGVN* phase, bool transform_res) {
5308   if (type != nullptr && phase->type(value)->higher_equal(type)) {
5309     return value;
5310   }
5311   Node* result = nullptr;
5312   if (bt == T_BYTE) {
5313     result = phase->transform(new LShiftINode(value, phase->intcon(24)));
5314     result = new RShiftINode(result, phase->intcon(24));
5315   } else if (bt == T_BOOLEAN) {
5316     result = new AndINode(value, phase->intcon(0xFF));
5317   } else if (bt == T_CHAR) {
5318     result = new AndINode(value,phase->intcon(0xFFFF));
5319   } else {
5320     assert(bt == T_SHORT, "unexpected narrow type");
5321     result = phase->transform(new LShiftINode(value, phase->intcon(16)));
5322     result = new RShiftINode(result, phase->intcon(16));
5323   }
5324   if (transform_res) {
5325     result = phase->transform(result);
5326   }
5327   return result;
5328 }
5329 
5330 void Compile::record_method_not_compilable_oom() {
5331   record_method_not_compilable(CompilationMemoryStatistic::failure_reason_memlimit());
5332 }