1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "asm/macroAssembler.hpp" 26 #include "asm/macroAssembler.inline.hpp" 27 #include "ci/ciReplay.hpp" 28 #include "classfile/javaClasses.hpp" 29 #include "code/exceptionHandlerTable.hpp" 30 #include "code/nmethod.hpp" 31 #include "compiler/compilationFailureInfo.hpp" 32 #include "compiler/compilationMemoryStatistic.hpp" 33 #include "compiler/compileBroker.hpp" 34 #include "compiler/compileLog.hpp" 35 #include "compiler/compilerOracle.hpp" 36 #include "compiler/compiler_globals.hpp" 37 #include "compiler/disassembler.hpp" 38 #include "compiler/oopMap.hpp" 39 #include "gc/shared/barrierSet.hpp" 40 #include "gc/shared/c2/barrierSetC2.hpp" 41 #include "jfr/jfrEvents.hpp" 42 #include "jvm_io.h" 43 #include "memory/allocation.hpp" 44 #include "memory/arena.hpp" 45 #include "memory/resourceArea.hpp" 46 #include "opto/addnode.hpp" 47 #include "opto/block.hpp" 48 #include "opto/c2compiler.hpp" 49 #include "opto/callGenerator.hpp" 50 #include "opto/callnode.hpp" 51 #include "opto/castnode.hpp" 52 #include "opto/cfgnode.hpp" 53 #include "opto/chaitin.hpp" 54 #include "opto/compile.hpp" 55 #include "opto/connode.hpp" 56 #include "opto/convertnode.hpp" 57 #include "opto/divnode.hpp" 58 #include "opto/escape.hpp" 59 #include "opto/idealGraphPrinter.hpp" 60 #include "opto/locknode.hpp" 61 #include "opto/loopnode.hpp" 62 #include "opto/machnode.hpp" 63 #include "opto/macro.hpp" 64 #include "opto/matcher.hpp" 65 #include "opto/mathexactnode.hpp" 66 #include "opto/memnode.hpp" 67 #include "opto/mulnode.hpp" 68 #include "opto/narrowptrnode.hpp" 69 #include "opto/node.hpp" 70 #include "opto/opaquenode.hpp" 71 #include "opto/opcodes.hpp" 72 #include "opto/output.hpp" 73 #include "opto/parse.hpp" 74 #include "opto/phaseX.hpp" 75 #include "opto/rootnode.hpp" 76 #include "opto/runtime.hpp" 77 #include "opto/stringopts.hpp" 78 #include "opto/type.hpp" 79 #include "opto/vector.hpp" 80 #include "opto/vectornode.hpp" 81 #include "runtime/globals_extension.hpp" 82 #include "runtime/sharedRuntime.hpp" 83 #include "runtime/signature.hpp" 84 #include "runtime/stubRoutines.hpp" 85 #include "runtime/timer.hpp" 86 #include "utilities/align.hpp" 87 #include "utilities/copy.hpp" 88 #include "utilities/macros.hpp" 89 #include "utilities/resourceHash.hpp" 90 91 // -------------------- Compile::mach_constant_base_node ----------------------- 92 // Constant table base node singleton. 93 MachConstantBaseNode* Compile::mach_constant_base_node() { 94 if (_mach_constant_base_node == nullptr) { 95 _mach_constant_base_node = new MachConstantBaseNode(); 96 _mach_constant_base_node->add_req(C->root()); 97 } 98 return _mach_constant_base_node; 99 } 100 101 102 /// Support for intrinsics. 103 104 // Return the index at which m must be inserted (or already exists). 105 // The sort order is by the address of the ciMethod, with is_virtual as minor key. 106 class IntrinsicDescPair { 107 private: 108 ciMethod* _m; 109 bool _is_virtual; 110 public: 111 IntrinsicDescPair(ciMethod* m, bool is_virtual) : _m(m), _is_virtual(is_virtual) {} 112 static int compare(IntrinsicDescPair* const& key, CallGenerator* const& elt) { 113 ciMethod* m= elt->method(); 114 ciMethod* key_m = key->_m; 115 if (key_m < m) return -1; 116 else if (key_m > m) return 1; 117 else { 118 bool is_virtual = elt->is_virtual(); 119 bool key_virtual = key->_is_virtual; 120 if (key_virtual < is_virtual) return -1; 121 else if (key_virtual > is_virtual) return 1; 122 else return 0; 123 } 124 } 125 }; 126 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found) { 127 #ifdef ASSERT 128 for (int i = 1; i < _intrinsics.length(); i++) { 129 CallGenerator* cg1 = _intrinsics.at(i-1); 130 CallGenerator* cg2 = _intrinsics.at(i); 131 assert(cg1->method() != cg2->method() 132 ? cg1->method() < cg2->method() 133 : cg1->is_virtual() < cg2->is_virtual(), 134 "compiler intrinsics list must stay sorted"); 135 } 136 #endif 137 IntrinsicDescPair pair(m, is_virtual); 138 return _intrinsics.find_sorted<IntrinsicDescPair*, IntrinsicDescPair::compare>(&pair, found); 139 } 140 141 void Compile::register_intrinsic(CallGenerator* cg) { 142 bool found = false; 143 int index = intrinsic_insertion_index(cg->method(), cg->is_virtual(), found); 144 assert(!found, "registering twice"); 145 _intrinsics.insert_before(index, cg); 146 assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked"); 147 } 148 149 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) { 150 assert(m->is_loaded(), "don't try this on unloaded methods"); 151 if (_intrinsics.length() > 0) { 152 bool found = false; 153 int index = intrinsic_insertion_index(m, is_virtual, found); 154 if (found) { 155 return _intrinsics.at(index); 156 } 157 } 158 // Lazily create intrinsics for intrinsic IDs well-known in the runtime. 159 if (m->intrinsic_id() != vmIntrinsics::_none && 160 m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) { 161 CallGenerator* cg = make_vm_intrinsic(m, is_virtual); 162 if (cg != nullptr) { 163 // Save it for next time: 164 register_intrinsic(cg); 165 return cg; 166 } else { 167 gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled); 168 } 169 } 170 return nullptr; 171 } 172 173 // Compile::make_vm_intrinsic is defined in library_call.cpp. 174 175 #ifndef PRODUCT 176 // statistics gathering... 177 178 juint Compile::_intrinsic_hist_count[vmIntrinsics::number_of_intrinsics()] = {0}; 179 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::number_of_intrinsics()] = {0}; 180 181 inline int as_int(vmIntrinsics::ID id) { 182 return vmIntrinsics::as_int(id); 183 } 184 185 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) { 186 assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob"); 187 int oflags = _intrinsic_hist_flags[as_int(id)]; 188 assert(flags != 0, "what happened?"); 189 if (is_virtual) { 190 flags |= _intrinsic_virtual; 191 } 192 bool changed = (flags != oflags); 193 if ((flags & _intrinsic_worked) != 0) { 194 juint count = (_intrinsic_hist_count[as_int(id)] += 1); 195 if (count == 1) { 196 changed = true; // first time 197 } 198 // increment the overall count also: 199 _intrinsic_hist_count[as_int(vmIntrinsics::_none)] += 1; 200 } 201 if (changed) { 202 if (((oflags ^ flags) & _intrinsic_virtual) != 0) { 203 // Something changed about the intrinsic's virtuality. 204 if ((flags & _intrinsic_virtual) != 0) { 205 // This is the first use of this intrinsic as a virtual call. 206 if (oflags != 0) { 207 // We already saw it as a non-virtual, so note both cases. 208 flags |= _intrinsic_both; 209 } 210 } else if ((oflags & _intrinsic_both) == 0) { 211 // This is the first use of this intrinsic as a non-virtual 212 flags |= _intrinsic_both; 213 } 214 } 215 _intrinsic_hist_flags[as_int(id)] = (jubyte) (oflags | flags); 216 } 217 // update the overall flags also: 218 _intrinsic_hist_flags[as_int(vmIntrinsics::_none)] |= (jubyte) flags; 219 return changed; 220 } 221 222 static char* format_flags(int flags, char* buf) { 223 buf[0] = 0; 224 if ((flags & Compile::_intrinsic_worked) != 0) strcat(buf, ",worked"); 225 if ((flags & Compile::_intrinsic_failed) != 0) strcat(buf, ",failed"); 226 if ((flags & Compile::_intrinsic_disabled) != 0) strcat(buf, ",disabled"); 227 if ((flags & Compile::_intrinsic_virtual) != 0) strcat(buf, ",virtual"); 228 if ((flags & Compile::_intrinsic_both) != 0) strcat(buf, ",nonvirtual"); 229 if (buf[0] == 0) strcat(buf, ","); 230 assert(buf[0] == ',', "must be"); 231 return &buf[1]; 232 } 233 234 void Compile::print_intrinsic_statistics() { 235 char flagsbuf[100]; 236 ttyLocker ttyl; 237 if (xtty != nullptr) xtty->head("statistics type='intrinsic'"); 238 tty->print_cr("Compiler intrinsic usage:"); 239 juint total = _intrinsic_hist_count[as_int(vmIntrinsics::_none)]; 240 if (total == 0) total = 1; // avoid div0 in case of no successes 241 #define PRINT_STAT_LINE(name, c, f) \ 242 tty->print_cr(" %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f); 243 for (auto id : EnumRange<vmIntrinsicID>{}) { 244 int flags = _intrinsic_hist_flags[as_int(id)]; 245 juint count = _intrinsic_hist_count[as_int(id)]; 246 if ((flags | count) != 0) { 247 PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf)); 248 } 249 } 250 PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[as_int(vmIntrinsics::_none)], flagsbuf)); 251 if (xtty != nullptr) xtty->tail("statistics"); 252 } 253 254 void Compile::print_statistics() { 255 { ttyLocker ttyl; 256 if (xtty != nullptr) xtty->head("statistics type='opto'"); 257 Parse::print_statistics(); 258 PhaseStringOpts::print_statistics(); 259 PhaseCCP::print_statistics(); 260 PhaseRegAlloc::print_statistics(); 261 PhaseOutput::print_statistics(); 262 PhasePeephole::print_statistics(); 263 PhaseIdealLoop::print_statistics(); 264 ConnectionGraph::print_statistics(); 265 PhaseMacroExpand::print_statistics(); 266 if (xtty != nullptr) xtty->tail("statistics"); 267 } 268 if (_intrinsic_hist_flags[as_int(vmIntrinsics::_none)] != 0) { 269 // put this under its own <statistics> element. 270 print_intrinsic_statistics(); 271 } 272 } 273 #endif //PRODUCT 274 275 void Compile::gvn_replace_by(Node* n, Node* nn) { 276 for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) { 277 Node* use = n->last_out(i); 278 bool is_in_table = initial_gvn()->hash_delete(use); 279 uint uses_found = 0; 280 for (uint j = 0; j < use->len(); j++) { 281 if (use->in(j) == n) { 282 if (j < use->req()) 283 use->set_req(j, nn); 284 else 285 use->set_prec(j, nn); 286 uses_found++; 287 } 288 } 289 if (is_in_table) { 290 // reinsert into table 291 initial_gvn()->hash_find_insert(use); 292 } 293 record_for_igvn(use); 294 PhaseIterGVN::add_users_of_use_to_worklist(nn, use, *_igvn_worklist); 295 i -= uses_found; // we deleted 1 or more copies of this edge 296 } 297 } 298 299 300 // Identify all nodes that are reachable from below, useful. 301 // Use breadth-first pass that records state in a Unique_Node_List, 302 // recursive traversal is slower. 303 void Compile::identify_useful_nodes(Unique_Node_List &useful) { 304 int estimated_worklist_size = live_nodes(); 305 useful.map( estimated_worklist_size, nullptr ); // preallocate space 306 307 // Initialize worklist 308 if (root() != nullptr) { useful.push(root()); } 309 // If 'top' is cached, declare it useful to preserve cached node 310 if (cached_top_node()) { useful.push(cached_top_node()); } 311 312 // Push all useful nodes onto the list, breadthfirst 313 for( uint next = 0; next < useful.size(); ++next ) { 314 assert( next < unique(), "Unique useful nodes < total nodes"); 315 Node *n = useful.at(next); 316 uint max = n->len(); 317 for( uint i = 0; i < max; ++i ) { 318 Node *m = n->in(i); 319 if (not_a_node(m)) continue; 320 useful.push(m); 321 } 322 } 323 } 324 325 // Update dead_node_list with any missing dead nodes using useful 326 // list. Consider all non-useful nodes to be useless i.e., dead nodes. 327 void Compile::update_dead_node_list(Unique_Node_List &useful) { 328 uint max_idx = unique(); 329 VectorSet& useful_node_set = useful.member_set(); 330 331 for (uint node_idx = 0; node_idx < max_idx; node_idx++) { 332 // If node with index node_idx is not in useful set, 333 // mark it as dead in dead node list. 334 if (!useful_node_set.test(node_idx)) { 335 record_dead_node(node_idx); 336 } 337 } 338 } 339 340 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) { 341 int shift = 0; 342 for (int i = 0; i < inlines->length(); i++) { 343 CallGenerator* cg = inlines->at(i); 344 if (useful.member(cg->call_node())) { 345 if (shift > 0) { 346 inlines->at_put(i - shift, cg); 347 } 348 } else { 349 shift++; // skip over the dead element 350 } 351 } 352 if (shift > 0) { 353 inlines->trunc_to(inlines->length() - shift); // remove last elements from compacted array 354 } 355 } 356 357 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Node* dead) { 358 assert(dead != nullptr && dead->is_Call(), "sanity"); 359 int found = 0; 360 for (int i = 0; i < inlines->length(); i++) { 361 if (inlines->at(i)->call_node() == dead) { 362 inlines->remove_at(i); 363 found++; 364 NOT_DEBUG( break; ) // elements are unique, so exit early 365 } 366 } 367 assert(found <= 1, "not unique"); 368 } 369 370 template<typename N, ENABLE_IF_SDEFN(std::is_base_of<Node, N>::value)> 371 void Compile::remove_useless_nodes(GrowableArray<N*>& node_list, Unique_Node_List& useful) { 372 for (int i = node_list.length() - 1; i >= 0; i--) { 373 N* node = node_list.at(i); 374 if (!useful.member(node)) { 375 node_list.delete_at(i); // replaces i-th with last element which is known to be useful (already processed) 376 } 377 } 378 } 379 380 void Compile::remove_useless_node(Node* dead) { 381 remove_modified_node(dead); 382 383 // Constant node that has no out-edges and has only one in-edge from 384 // root is usually dead. However, sometimes reshaping walk makes 385 // it reachable by adding use edges. So, we will NOT count Con nodes 386 // as dead to be conservative about the dead node count at any 387 // given time. 388 if (!dead->is_Con()) { 389 record_dead_node(dead->_idx); 390 } 391 if (dead->is_macro()) { 392 remove_macro_node(dead); 393 } 394 if (dead->is_expensive()) { 395 remove_expensive_node(dead); 396 } 397 if (dead->is_OpaqueTemplateAssertionPredicate()) { 398 remove_template_assertion_predicate_opaque(dead->as_OpaqueTemplateAssertionPredicate()); 399 } 400 if (dead->is_ParsePredicate()) { 401 remove_parse_predicate(dead->as_ParsePredicate()); 402 } 403 if (dead->for_post_loop_opts_igvn()) { 404 remove_from_post_loop_opts_igvn(dead); 405 } 406 if (dead->for_merge_stores_igvn()) { 407 remove_from_merge_stores_igvn(dead); 408 } 409 if (dead->is_Call()) { 410 remove_useless_late_inlines( &_late_inlines, dead); 411 remove_useless_late_inlines( &_string_late_inlines, dead); 412 remove_useless_late_inlines( &_boxing_late_inlines, dead); 413 remove_useless_late_inlines(&_vector_reboxing_late_inlines, dead); 414 415 if (dead->is_CallStaticJava()) { 416 remove_unstable_if_trap(dead->as_CallStaticJava(), false); 417 } 418 } 419 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 420 bs->unregister_potential_barrier_node(dead); 421 } 422 423 // Disconnect all useless nodes by disconnecting those at the boundary. 424 void Compile::disconnect_useless_nodes(Unique_Node_List& useful, Unique_Node_List& worklist, const Unique_Node_List* root_and_safepoints) { 425 uint next = 0; 426 while (next < useful.size()) { 427 Node *n = useful.at(next++); 428 if (n->is_SafePoint()) { 429 // We're done with a parsing phase. Replaced nodes are not valid 430 // beyond that point. 431 n->as_SafePoint()->delete_replaced_nodes(); 432 } 433 // Use raw traversal of out edges since this code removes out edges 434 int max = n->outcnt(); 435 for (int j = 0; j < max; ++j) { 436 Node* child = n->raw_out(j); 437 if (!useful.member(child)) { 438 assert(!child->is_top() || child != top(), 439 "If top is cached in Compile object it is in useful list"); 440 // Only need to remove this out-edge to the useless node 441 n->raw_del_out(j); 442 --j; 443 --max; 444 if (child->is_data_proj_of_pure_function(n)) { 445 worklist.push(n); 446 } 447 } 448 } 449 if (n->outcnt() == 1 && n->has_special_unique_user()) { 450 assert(useful.member(n->unique_out()), "do not push a useless node"); 451 worklist.push(n->unique_out()); 452 } 453 } 454 455 remove_useless_nodes(_macro_nodes, useful); // remove useless macro nodes 456 remove_useless_nodes(_parse_predicates, useful); // remove useless Parse Predicate nodes 457 // Remove useless Template Assertion Predicate opaque nodes 458 remove_useless_nodes(_template_assertion_predicate_opaques, useful); 459 remove_useless_nodes(_expensive_nodes, useful); // remove useless expensive nodes 460 remove_useless_nodes(_for_post_loop_igvn, useful); // remove useless node recorded for post loop opts IGVN pass 461 remove_useless_nodes(_for_merge_stores_igvn, useful); // remove useless node recorded for merge stores IGVN pass 462 remove_useless_unstable_if_traps(useful); // remove useless unstable_if traps 463 remove_useless_coarsened_locks(useful); // remove useless coarsened locks nodes 464 #ifdef ASSERT 465 if (_modified_nodes != nullptr) { 466 _modified_nodes->remove_useless_nodes(useful.member_set()); 467 } 468 #endif 469 470 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 471 bs->eliminate_useless_gc_barriers(useful, this); 472 // clean up the late inline lists 473 remove_useless_late_inlines( &_late_inlines, useful); 474 remove_useless_late_inlines( &_string_late_inlines, useful); 475 remove_useless_late_inlines( &_boxing_late_inlines, useful); 476 remove_useless_late_inlines(&_vector_reboxing_late_inlines, useful); 477 debug_only(verify_graph_edges(true /*check for no_dead_code*/, root_and_safepoints);) 478 } 479 480 // ============================================================================ 481 //------------------------------CompileWrapper--------------------------------- 482 class CompileWrapper : public StackObj { 483 Compile *const _compile; 484 public: 485 CompileWrapper(Compile* compile); 486 487 ~CompileWrapper(); 488 }; 489 490 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) { 491 // the Compile* pointer is stored in the current ciEnv: 492 ciEnv* env = compile->env(); 493 assert(env == ciEnv::current(), "must already be a ciEnv active"); 494 assert(env->compiler_data() == nullptr, "compile already active?"); 495 env->set_compiler_data(compile); 496 assert(compile == Compile::current(), "sanity"); 497 498 compile->set_type_dict(nullptr); 499 compile->set_clone_map(new Dict(cmpkey, hashkey, _compile->comp_arena())); 500 compile->clone_map().set_clone_idx(0); 501 compile->set_type_last_size(0); 502 compile->set_last_tf(nullptr, nullptr); 503 compile->set_indexSet_arena(nullptr); 504 compile->set_indexSet_free_block_list(nullptr); 505 compile->init_type_arena(); 506 Type::Initialize(compile); 507 _compile->begin_method(); 508 _compile->clone_map().set_debug(_compile->has_method() && _compile->directive()->CloneMapDebugOption); 509 } 510 CompileWrapper::~CompileWrapper() { 511 // simulate crash during compilation 512 assert(CICrashAt < 0 || _compile->compile_id() != CICrashAt, "just as planned"); 513 514 _compile->end_method(); 515 _compile->env()->set_compiler_data(nullptr); 516 } 517 518 519 //----------------------------print_compile_messages--------------------------- 520 void Compile::print_compile_messages() { 521 #ifndef PRODUCT 522 // Check if recompiling 523 if (!subsume_loads() && PrintOpto) { 524 // Recompiling without allowing machine instructions to subsume loads 525 tty->print_cr("*********************************************************"); 526 tty->print_cr("** Bailout: Recompile without subsuming loads **"); 527 tty->print_cr("*********************************************************"); 528 } 529 if ((do_escape_analysis() != DoEscapeAnalysis) && PrintOpto) { 530 // Recompiling without escape analysis 531 tty->print_cr("*********************************************************"); 532 tty->print_cr("** Bailout: Recompile without escape analysis **"); 533 tty->print_cr("*********************************************************"); 534 } 535 if (do_iterative_escape_analysis() != DoEscapeAnalysis && PrintOpto) { 536 // Recompiling without iterative escape analysis 537 tty->print_cr("*********************************************************"); 538 tty->print_cr("** Bailout: Recompile without iterative escape analysis**"); 539 tty->print_cr("*********************************************************"); 540 } 541 if (do_reduce_allocation_merges() != ReduceAllocationMerges && PrintOpto) { 542 // Recompiling without reducing allocation merges 543 tty->print_cr("*********************************************************"); 544 tty->print_cr("** Bailout: Recompile without reduce allocation merges **"); 545 tty->print_cr("*********************************************************"); 546 } 547 if ((eliminate_boxing() != EliminateAutoBox) && PrintOpto) { 548 // Recompiling without boxing elimination 549 tty->print_cr("*********************************************************"); 550 tty->print_cr("** Bailout: Recompile without boxing elimination **"); 551 tty->print_cr("*********************************************************"); 552 } 553 if ((do_locks_coarsening() != EliminateLocks) && PrintOpto) { 554 // Recompiling without locks coarsening 555 tty->print_cr("*********************************************************"); 556 tty->print_cr("** Bailout: Recompile without locks coarsening **"); 557 tty->print_cr("*********************************************************"); 558 } 559 if (env()->break_at_compile()) { 560 // Open the debugger when compiling this method. 561 tty->print("### Breaking when compiling: "); 562 method()->print_short_name(); 563 tty->cr(); 564 BREAKPOINT; 565 } 566 567 if( PrintOpto ) { 568 if (is_osr_compilation()) { 569 tty->print("[OSR]%3d", _compile_id); 570 } else { 571 tty->print("%3d", _compile_id); 572 } 573 } 574 #endif 575 } 576 577 #ifndef PRODUCT 578 void Compile::print_ideal_ir(const char* phase_name) { 579 // keep the following output all in one block 580 // This output goes directly to the tty, not the compiler log. 581 // To enable tools to match it up with the compilation activity, 582 // be sure to tag this tty output with the compile ID. 583 584 // Node dumping can cause a safepoint, which can break the tty lock. 585 // Buffer all node dumps, so that all safepoints happen before we lock. 586 ResourceMark rm; 587 stringStream ss; 588 589 if (_output == nullptr) { 590 ss.print_cr("AFTER: %s", phase_name); 591 // Print out all nodes in ascending order of index. 592 root()->dump_bfs(MaxNodeLimit, nullptr, "+S$", &ss); 593 } else { 594 // Dump the node blockwise if we have a scheduling 595 _output->print_scheduling(&ss); 596 } 597 598 // Check that the lock is not broken by a safepoint. 599 NoSafepointVerifier nsv; 600 ttyLocker ttyl; 601 if (xtty != nullptr) { 602 xtty->head("ideal compile_id='%d'%s compile_phase='%s'", 603 compile_id(), 604 is_osr_compilation() ? " compile_kind='osr'" : "", 605 phase_name); 606 } 607 608 tty->print("%s", ss.as_string()); 609 610 if (xtty != nullptr) { 611 xtty->tail("ideal"); 612 } 613 } 614 #endif 615 616 // ============================================================================ 617 //------------------------------Compile standard------------------------------- 618 619 // Compile a method. entry_bci is -1 for normal compilations and indicates 620 // the continuation bci for on stack replacement. 621 622 623 Compile::Compile(ciEnv* ci_env, ciMethod* target, int osr_bci, 624 Options options, DirectiveSet* directive) 625 : Phase(Compiler), 626 _compile_id(ci_env->compile_id()), 627 _options(options), 628 _method(target), 629 _entry_bci(osr_bci), 630 _ilt(nullptr), 631 _stub_function(nullptr), 632 _stub_name(nullptr), 633 _stub_entry_point(nullptr), 634 _max_node_limit(MaxNodeLimit), 635 _post_loop_opts_phase(false), 636 _merge_stores_phase(false), 637 _allow_macro_nodes(true), 638 _inlining_progress(false), 639 _inlining_incrementally(false), 640 _do_cleanup(false), 641 _has_reserved_stack_access(target->has_reserved_stack_access()), 642 #ifndef PRODUCT 643 _igv_idx(0), 644 _trace_opto_output(directive->TraceOptoOutputOption), 645 #endif 646 _has_method_handle_invokes(false), 647 _clinit_barrier_on_entry(false), 648 _has_clinit_barriers(false), 649 _stress_seed(0), 650 _comp_arena(mtCompiler, Arena::Tag::tag_comp), 651 _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())), 652 _env(ci_env), 653 _directive(directive), 654 _log(ci_env->log()), 655 _first_failure_details(nullptr), 656 _intrinsics(comp_arena(), 0, 0, nullptr), 657 _macro_nodes(comp_arena(), 8, 0, nullptr), 658 _parse_predicates(comp_arena(), 8, 0, nullptr), 659 _template_assertion_predicate_opaques(comp_arena(), 8, 0, nullptr), 660 _expensive_nodes(comp_arena(), 8, 0, nullptr), 661 _for_post_loop_igvn(comp_arena(), 8, 0, nullptr), 662 _for_merge_stores_igvn(comp_arena(), 8, 0, nullptr), 663 _unstable_if_traps(comp_arena(), 8, 0, nullptr), 664 _coarsened_locks(comp_arena(), 8, 0, nullptr), 665 _congraph(nullptr), 666 NOT_PRODUCT(_igv_printer(nullptr) COMMA) 667 _unique(0), 668 _dead_node_count(0), 669 _dead_node_list(comp_arena()), 670 _node_arena_one(mtCompiler, Arena::Tag::tag_node), 671 _node_arena_two(mtCompiler, Arena::Tag::tag_node), 672 _node_arena(&_node_arena_one), 673 _mach_constant_base_node(nullptr), 674 _Compile_types(mtCompiler, Arena::Tag::tag_type), 675 _initial_gvn(nullptr), 676 _igvn_worklist(nullptr), 677 _types(nullptr), 678 _node_hash(nullptr), 679 _late_inlines(comp_arena(), 2, 0, nullptr), 680 _string_late_inlines(comp_arena(), 2, 0, nullptr), 681 _boxing_late_inlines(comp_arena(), 2, 0, nullptr), 682 _vector_reboxing_late_inlines(comp_arena(), 2, 0, nullptr), 683 _late_inlines_pos(0), 684 _number_of_mh_late_inlines(0), 685 _oom(false), 686 _replay_inline_data(nullptr), 687 _inline_printer(this), 688 _java_calls(0), 689 _inner_loops(0), 690 _interpreter_frame_size(0), 691 _output(nullptr) 692 #ifndef PRODUCT 693 , 694 _in_dump_cnt(0) 695 #endif 696 { 697 C = this; 698 CompileWrapper cw(this); 699 700 TraceTime t1("Total compilation time", &_t_totalCompilation, CITime, CITimeVerbose); 701 TraceTime t2(nullptr, &_t_methodCompilation, CITime, false); 702 703 #if defined(SUPPORT_ASSEMBLY) || defined(SUPPORT_ABSTRACT_ASSEMBLY) 704 bool print_opto_assembly = directive->PrintOptoAssemblyOption; 705 // We can always print a disassembly, either abstract (hex dump) or 706 // with the help of a suitable hsdis library. Thus, we should not 707 // couple print_assembly and print_opto_assembly controls. 708 // But: always print opto and regular assembly on compile command 'print'. 709 bool print_assembly = directive->PrintAssemblyOption; 710 set_print_assembly(print_opto_assembly || print_assembly); 711 #else 712 set_print_assembly(false); // must initialize. 713 #endif 714 715 #ifndef PRODUCT 716 set_parsed_irreducible_loop(false); 717 #endif 718 719 if (directive->ReplayInlineOption) { 720 _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level()); 721 } 722 set_print_inlining(directive->PrintInliningOption || PrintOptoInlining); 723 set_print_intrinsics(directive->PrintIntrinsicsOption); 724 set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it 725 726 if (ProfileTraps) { 727 // Make sure the method being compiled gets its own MDO, 728 // so we can at least track the decompile_count(). 729 method()->ensure_method_data(); 730 } 731 732 if (StressLCM || StressGCM || StressIGVN || StressCCP || 733 StressIncrementalInlining || StressMacroExpansion || StressUnstableIfTraps || StressBailout) { 734 initialize_stress_seed(directive); 735 } 736 737 Init(/*do_aliasing=*/ true); 738 739 print_compile_messages(); 740 741 _ilt = InlineTree::build_inline_tree_root(); 742 743 // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice 744 assert(num_alias_types() >= AliasIdxRaw, ""); 745 746 #define MINIMUM_NODE_HASH 1023 747 748 // GVN that will be run immediately on new nodes 749 uint estimated_size = method()->code_size()*4+64; 750 estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size); 751 _igvn_worklist = new (comp_arena()) Unique_Node_List(comp_arena()); 752 _types = new (comp_arena()) Type_Array(comp_arena()); 753 _node_hash = new (comp_arena()) NodeHash(comp_arena(), estimated_size); 754 PhaseGVN gvn; 755 set_initial_gvn(&gvn); 756 757 { // Scope for timing the parser 758 TracePhase tp(_t_parser); 759 760 // Put top into the hash table ASAP. 761 initial_gvn()->transform(top()); 762 763 // Set up tf(), start(), and find a CallGenerator. 764 CallGenerator* cg = nullptr; 765 if (is_osr_compilation()) { 766 const TypeTuple *domain = StartOSRNode::osr_domain(); 767 const TypeTuple *range = TypeTuple::make_range(method()->signature()); 768 init_tf(TypeFunc::make(domain, range)); 769 StartNode* s = new StartOSRNode(root(), domain); 770 initial_gvn()->set_type_bottom(s); 771 verify_start(s); 772 cg = CallGenerator::for_osr(method(), entry_bci()); 773 } else { 774 // Normal case. 775 init_tf(TypeFunc::make(method())); 776 StartNode* s = new StartNode(root(), tf()->domain()); 777 initial_gvn()->set_type_bottom(s); 778 verify_start(s); 779 if (method()->intrinsic_id() == vmIntrinsics::_Reference_get) { 780 // With java.lang.ref.reference.get() we must go through the 781 // intrinsic - even when get() is the root 782 // method of the compile - so that, if necessary, the value in 783 // the referent field of the reference object gets recorded by 784 // the pre-barrier code. 785 cg = find_intrinsic(method(), false); 786 } 787 if (cg == nullptr) { 788 float past_uses = method()->interpreter_invocation_count(); 789 float expected_uses = past_uses; 790 cg = CallGenerator::for_inline(method(), expected_uses); 791 } 792 } 793 if (failing()) return; 794 if (cg == nullptr) { 795 const char* reason = InlineTree::check_can_parse(method()); 796 assert(reason != nullptr, "expect reason for parse failure"); 797 stringStream ss; 798 ss.print("cannot parse method: %s", reason); 799 record_method_not_compilable(ss.as_string()); 800 return; 801 } 802 803 gvn.set_type(root(), root()->bottom_type()); 804 805 JVMState* jvms = build_start_state(start(), tf()); 806 if ((jvms = cg->generate(jvms)) == nullptr) { 807 assert(failure_reason() != nullptr, "expect reason for parse failure"); 808 stringStream ss; 809 ss.print("method parse failed: %s", failure_reason()); 810 record_method_not_compilable(ss.as_string() DEBUG_ONLY(COMMA true)); 811 return; 812 } 813 GraphKit kit(jvms); 814 815 if (!kit.stopped()) { 816 // Accept return values, and transfer control we know not where. 817 // This is done by a special, unique ReturnNode bound to root. 818 return_values(kit.jvms()); 819 } 820 821 if (kit.has_exceptions()) { 822 // Any exceptions that escape from this call must be rethrown 823 // to whatever caller is dynamically above us on the stack. 824 // This is done by a special, unique RethrowNode bound to root. 825 rethrow_exceptions(kit.transfer_exceptions_into_jvms()); 826 } 827 828 assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off"); 829 830 if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) { 831 inline_string_calls(true); 832 } 833 834 if (failing()) return; 835 836 // Remove clutter produced by parsing. 837 if (!failing()) { 838 ResourceMark rm; 839 PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist()); 840 } 841 } 842 843 // Note: Large methods are capped off in do_one_bytecode(). 844 if (failing()) return; 845 846 // After parsing, node notes are no longer automagic. 847 // They must be propagated by register_new_node_with_optimizer(), 848 // clone(), or the like. 849 set_default_node_notes(nullptr); 850 851 #ifndef PRODUCT 852 if (should_print_igv(1)) { 853 _igv_printer->print_inlining(); 854 } 855 #endif 856 857 if (failing()) return; 858 NOT_PRODUCT( verify_graph_edges(); ) 859 860 // Now optimize 861 Optimize(); 862 if (failing()) return; 863 NOT_PRODUCT( verify_graph_edges(); ) 864 865 #ifndef PRODUCT 866 if (should_print_ideal()) { 867 print_ideal_ir("print_ideal"); 868 } 869 #endif 870 871 #ifdef ASSERT 872 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 873 bs->verify_gc_barriers(this, BarrierSetC2::BeforeCodeGen); 874 #endif 875 876 // Dump compilation data to replay it. 877 if (directive->DumpReplayOption) { 878 env()->dump_replay_data(_compile_id); 879 } 880 if (directive->DumpInlineOption && (ilt() != nullptr)) { 881 env()->dump_inline_data(_compile_id); 882 } 883 884 // Now that we know the size of all the monitors we can add a fixed slot 885 // for the original deopt pc. 886 int next_slot = fixed_slots() + (sizeof(address) / VMRegImpl::stack_slot_size); 887 set_fixed_slots(next_slot); 888 889 // Compute when to use implicit null checks. Used by matching trap based 890 // nodes and NullCheck optimization. 891 set_allowed_deopt_reasons(); 892 893 // Now generate code 894 Code_Gen(); 895 } 896 897 //------------------------------Compile---------------------------------------- 898 // Compile a runtime stub 899 Compile::Compile(ciEnv* ci_env, 900 TypeFunc_generator generator, 901 address stub_function, 902 const char* stub_name, 903 int is_fancy_jump, 904 bool pass_tls, 905 bool return_pc, 906 DirectiveSet* directive) 907 : Phase(Compiler), 908 _compile_id(0), 909 _options(Options::for_runtime_stub()), 910 _method(nullptr), 911 _entry_bci(InvocationEntryBci), 912 _stub_function(stub_function), 913 _stub_name(stub_name), 914 _stub_entry_point(nullptr), 915 _max_node_limit(MaxNodeLimit), 916 _post_loop_opts_phase(false), 917 _merge_stores_phase(false), 918 _allow_macro_nodes(true), 919 _inlining_progress(false), 920 _inlining_incrementally(false), 921 _has_reserved_stack_access(false), 922 #ifndef PRODUCT 923 _igv_idx(0), 924 _trace_opto_output(directive->TraceOptoOutputOption), 925 #endif 926 _has_method_handle_invokes(false), 927 _clinit_barrier_on_entry(false), 928 _has_clinit_barriers(false), 929 _stress_seed(0), 930 _comp_arena(mtCompiler, Arena::Tag::tag_comp), 931 _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())), 932 _env(ci_env), 933 _directive(directive), 934 _log(ci_env->log()), 935 _first_failure_details(nullptr), 936 _for_post_loop_igvn(comp_arena(), 8, 0, nullptr), 937 _for_merge_stores_igvn(comp_arena(), 8, 0, nullptr), 938 _congraph(nullptr), 939 NOT_PRODUCT(_igv_printer(nullptr) COMMA) 940 _unique(0), 941 _dead_node_count(0), 942 _dead_node_list(comp_arena()), 943 _node_arena_one(mtCompiler, Arena::Tag::tag_node), 944 _node_arena_two(mtCompiler, Arena::Tag::tag_node), 945 _node_arena(&_node_arena_one), 946 _mach_constant_base_node(nullptr), 947 _Compile_types(mtCompiler, Arena::Tag::tag_type), 948 _initial_gvn(nullptr), 949 _igvn_worklist(nullptr), 950 _types(nullptr), 951 _node_hash(nullptr), 952 _number_of_mh_late_inlines(0), 953 _oom(false), 954 _replay_inline_data(nullptr), 955 _inline_printer(this), 956 _java_calls(0), 957 _inner_loops(0), 958 _interpreter_frame_size(0), 959 _output(nullptr), 960 #ifndef PRODUCT 961 _in_dump_cnt(0), 962 #endif 963 _allowed_reasons(0) { 964 C = this; 965 966 TraceTime t1(nullptr, &_t_totalCompilation, CITime, false); 967 TraceTime t2(nullptr, &_t_stubCompilation, CITime, false); 968 969 #ifndef PRODUCT 970 set_print_assembly(PrintFrameConverterAssembly); 971 set_parsed_irreducible_loop(false); 972 #else 973 set_print_assembly(false); // Must initialize. 974 #endif 975 set_has_irreducible_loop(false); // no loops 976 977 CompileWrapper cw(this); 978 Init(/*do_aliasing=*/ false); 979 init_tf((*generator)()); 980 981 _igvn_worklist = new (comp_arena()) Unique_Node_List(comp_arena()); 982 _types = new (comp_arena()) Type_Array(comp_arena()); 983 _node_hash = new (comp_arena()) NodeHash(comp_arena(), 255); 984 985 if (StressLCM || StressGCM || StressBailout) { 986 initialize_stress_seed(directive); 987 } 988 989 { 990 PhaseGVN gvn; 991 set_initial_gvn(&gvn); // not significant, but GraphKit guys use it pervasively 992 gvn.transform(top()); 993 994 GraphKit kit; 995 kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc); 996 } 997 998 NOT_PRODUCT( verify_graph_edges(); ) 999 1000 Code_Gen(); 1001 } 1002 1003 Compile::~Compile() { 1004 delete _first_failure_details; 1005 }; 1006 1007 //------------------------------Init------------------------------------------- 1008 // Prepare for a single compilation 1009 void Compile::Init(bool aliasing) { 1010 _do_aliasing = aliasing; 1011 _unique = 0; 1012 _regalloc = nullptr; 1013 1014 _tf = nullptr; // filled in later 1015 _top = nullptr; // cached later 1016 _matcher = nullptr; // filled in later 1017 _cfg = nullptr; // filled in later 1018 1019 IA32_ONLY( set_24_bit_selection_and_mode(true, false); ) 1020 1021 _node_note_array = nullptr; 1022 _default_node_notes = nullptr; 1023 DEBUG_ONLY( _modified_nodes = nullptr; ) // Used in Optimize() 1024 1025 _immutable_memory = nullptr; // filled in at first inquiry 1026 1027 #ifdef ASSERT 1028 _phase_optimize_finished = false; 1029 _phase_verify_ideal_loop = false; 1030 _exception_backedge = false; 1031 _type_verify = nullptr; 1032 #endif 1033 1034 // Globally visible Nodes 1035 // First set TOP to null to give safe behavior during creation of RootNode 1036 set_cached_top_node(nullptr); 1037 set_root(new RootNode()); 1038 // Now that you have a Root to point to, create the real TOP 1039 set_cached_top_node( new ConNode(Type::TOP) ); 1040 set_recent_alloc(nullptr, nullptr); 1041 1042 // Create Debug Information Recorder to record scopes, oopmaps, etc. 1043 env()->set_oop_recorder(new OopRecorder(env()->arena())); 1044 env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder())); 1045 env()->set_dependencies(new Dependencies(env())); 1046 1047 _fixed_slots = 0; 1048 set_has_split_ifs(false); 1049 set_has_loops(false); // first approximation 1050 set_has_stringbuilder(false); 1051 set_has_boxed_value(false); 1052 _trap_can_recompile = false; // no traps emitted yet 1053 _major_progress = true; // start out assuming good things will happen 1054 set_has_unsafe_access(false); 1055 set_max_vector_size(0); 1056 set_clear_upper_avx(false); //false as default for clear upper bits of ymm registers 1057 Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist)); 1058 set_decompile_count(0); 1059 1060 #ifndef PRODUCT 1061 Copy::zero_to_bytes(_igv_phase_iter, sizeof(_igv_phase_iter)); 1062 #endif 1063 1064 set_do_freq_based_layout(_directive->BlockLayoutByFrequencyOption); 1065 _loop_opts_cnt = LoopOptsCount; 1066 set_do_inlining(Inline); 1067 set_max_inline_size(MaxInlineSize); 1068 set_freq_inline_size(FreqInlineSize); 1069 set_do_scheduling(OptoScheduling); 1070 1071 set_do_vector_loop(false); 1072 set_has_monitors(false); 1073 set_has_scoped_access(false); 1074 1075 if (AllowVectorizeOnDemand) { 1076 if (has_method() && _directive->VectorizeOption) { 1077 set_do_vector_loop(true); 1078 NOT_PRODUCT(if (do_vector_loop() && Verbose) {tty->print("Compile::Init: do vectorized loops (SIMD like) for method %s\n", method()->name()->as_quoted_ascii());}) 1079 } else if (has_method() && method()->name() != nullptr && 1080 method()->intrinsic_id() == vmIntrinsics::_forEachRemaining) { 1081 set_do_vector_loop(true); 1082 } 1083 } 1084 set_use_cmove(UseCMoveUnconditionally /* || do_vector_loop()*/); //TODO: consider do_vector_loop() mandate use_cmove unconditionally 1085 NOT_PRODUCT(if (use_cmove() && Verbose && has_method()) {tty->print("Compile::Init: use CMove without profitability tests for method %s\n", method()->name()->as_quoted_ascii());}) 1086 1087 _max_node_limit = _directive->MaxNodeLimitOption; 1088 1089 if (VM_Version::supports_fast_class_init_checks() && has_method() && !is_osr_compilation() && 1090 (method()->needs_clinit_barrier() || (do_clinit_barriers() && method()->is_static()))) { 1091 set_clinit_barrier_on_entry(true); 1092 if (do_clinit_barriers()) { 1093 set_has_clinit_barriers(true); // Entry clinit barrier is in prolog code. 1094 } 1095 } 1096 if (debug_info()->recording_non_safepoints()) { 1097 set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*> 1098 (comp_arena(), 8, 0, nullptr)); 1099 set_default_node_notes(Node_Notes::make(this)); 1100 } 1101 1102 const int grow_ats = 16; 1103 _max_alias_types = grow_ats; 1104 _alias_types = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats); 1105 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, grow_ats); 1106 Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats); 1107 { 1108 for (int i = 0; i < grow_ats; i++) _alias_types[i] = &ats[i]; 1109 } 1110 // Initialize the first few types. 1111 _alias_types[AliasIdxTop]->Init(AliasIdxTop, nullptr); 1112 _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM); 1113 _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM); 1114 _num_alias_types = AliasIdxRaw+1; 1115 // Zero out the alias type cache. 1116 Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache)); 1117 // A null adr_type hits in the cache right away. Preload the right answer. 1118 probe_alias_cache(nullptr)->_index = AliasIdxTop; 1119 } 1120 1121 #ifdef ASSERT 1122 // Verify that the current StartNode is valid. 1123 void Compile::verify_start(StartNode* s) const { 1124 assert(failing_internal() || s == start(), "should be StartNode"); 1125 } 1126 #endif 1127 1128 /** 1129 * Return the 'StartNode'. We must not have a pending failure, since the ideal graph 1130 * can be in an inconsistent state, i.e., we can get segmentation faults when traversing 1131 * the ideal graph. 1132 */ 1133 StartNode* Compile::start() const { 1134 assert (!failing_internal() || C->failure_is_artificial(), "Must not have pending failure. Reason is: %s", failure_reason()); 1135 for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) { 1136 Node* start = root()->fast_out(i); 1137 if (start->is_Start()) { 1138 return start->as_Start(); 1139 } 1140 } 1141 fatal("Did not find Start node!"); 1142 return nullptr; 1143 } 1144 1145 //-------------------------------immutable_memory------------------------------------- 1146 // Access immutable memory 1147 Node* Compile::immutable_memory() { 1148 if (_immutable_memory != nullptr) { 1149 return _immutable_memory; 1150 } 1151 StartNode* s = start(); 1152 for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) { 1153 Node *p = s->fast_out(i); 1154 if (p != s && p->as_Proj()->_con == TypeFunc::Memory) { 1155 _immutable_memory = p; 1156 return _immutable_memory; 1157 } 1158 } 1159 ShouldNotReachHere(); 1160 return nullptr; 1161 } 1162 1163 //----------------------set_cached_top_node------------------------------------ 1164 // Install the cached top node, and make sure Node::is_top works correctly. 1165 void Compile::set_cached_top_node(Node* tn) { 1166 if (tn != nullptr) verify_top(tn); 1167 Node* old_top = _top; 1168 _top = tn; 1169 // Calling Node::setup_is_top allows the nodes the chance to adjust 1170 // their _out arrays. 1171 if (_top != nullptr) _top->setup_is_top(); 1172 if (old_top != nullptr) old_top->setup_is_top(); 1173 assert(_top == nullptr || top()->is_top(), ""); 1174 } 1175 1176 #ifdef ASSERT 1177 uint Compile::count_live_nodes_by_graph_walk() { 1178 Unique_Node_List useful(comp_arena()); 1179 // Get useful node list by walking the graph. 1180 identify_useful_nodes(useful); 1181 return useful.size(); 1182 } 1183 1184 void Compile::print_missing_nodes() { 1185 1186 // Return if CompileLog is null and PrintIdealNodeCount is false. 1187 if ((_log == nullptr) && (! PrintIdealNodeCount)) { 1188 return; 1189 } 1190 1191 // This is an expensive function. It is executed only when the user 1192 // specifies VerifyIdealNodeCount option or otherwise knows the 1193 // additional work that needs to be done to identify reachable nodes 1194 // by walking the flow graph and find the missing ones using 1195 // _dead_node_list. 1196 1197 Unique_Node_List useful(comp_arena()); 1198 // Get useful node list by walking the graph. 1199 identify_useful_nodes(useful); 1200 1201 uint l_nodes = C->live_nodes(); 1202 uint l_nodes_by_walk = useful.size(); 1203 1204 if (l_nodes != l_nodes_by_walk) { 1205 if (_log != nullptr) { 1206 _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk))); 1207 _log->stamp(); 1208 _log->end_head(); 1209 } 1210 VectorSet& useful_member_set = useful.member_set(); 1211 int last_idx = l_nodes_by_walk; 1212 for (int i = 0; i < last_idx; i++) { 1213 if (useful_member_set.test(i)) { 1214 if (_dead_node_list.test(i)) { 1215 if (_log != nullptr) { 1216 _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i); 1217 } 1218 if (PrintIdealNodeCount) { 1219 // Print the log message to tty 1220 tty->print_cr("mismatched_node idx='%d' both live and dead'", i); 1221 useful.at(i)->dump(); 1222 } 1223 } 1224 } 1225 else if (! _dead_node_list.test(i)) { 1226 if (_log != nullptr) { 1227 _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i); 1228 } 1229 if (PrintIdealNodeCount) { 1230 // Print the log message to tty 1231 tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i); 1232 } 1233 } 1234 } 1235 if (_log != nullptr) { 1236 _log->tail("mismatched_nodes"); 1237 } 1238 } 1239 } 1240 void Compile::record_modified_node(Node* n) { 1241 if (_modified_nodes != nullptr && !_inlining_incrementally && !n->is_Con()) { 1242 _modified_nodes->push(n); 1243 } 1244 } 1245 1246 void Compile::remove_modified_node(Node* n) { 1247 if (_modified_nodes != nullptr) { 1248 _modified_nodes->remove(n); 1249 } 1250 } 1251 #endif 1252 1253 #ifndef PRODUCT 1254 void Compile::verify_top(Node* tn) const { 1255 if (tn != nullptr) { 1256 assert(tn->is_Con(), "top node must be a constant"); 1257 assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type"); 1258 assert(tn->in(0) != nullptr, "must have live top node"); 1259 } 1260 } 1261 #endif 1262 1263 1264 ///-------------------Managing Per-Node Debug & Profile Info------------------- 1265 1266 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) { 1267 guarantee(arr != nullptr, ""); 1268 int num_blocks = arr->length(); 1269 if (grow_by < num_blocks) grow_by = num_blocks; 1270 int num_notes = grow_by * _node_notes_block_size; 1271 Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes); 1272 Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes)); 1273 while (num_notes > 0) { 1274 arr->append(notes); 1275 notes += _node_notes_block_size; 1276 num_notes -= _node_notes_block_size; 1277 } 1278 assert(num_notes == 0, "exact multiple, please"); 1279 } 1280 1281 bool Compile::copy_node_notes_to(Node* dest, Node* source) { 1282 if (source == nullptr || dest == nullptr) return false; 1283 1284 if (dest->is_Con()) 1285 return false; // Do not push debug info onto constants. 1286 1287 #ifdef ASSERT 1288 // Leave a bread crumb trail pointing to the original node: 1289 if (dest != nullptr && dest != source && dest->debug_orig() == nullptr) { 1290 dest->set_debug_orig(source); 1291 } 1292 #endif 1293 1294 if (node_note_array() == nullptr) 1295 return false; // Not collecting any notes now. 1296 1297 // This is a copy onto a pre-existing node, which may already have notes. 1298 // If both nodes have notes, do not overwrite any pre-existing notes. 1299 Node_Notes* source_notes = node_notes_at(source->_idx); 1300 if (source_notes == nullptr || source_notes->is_clear()) return false; 1301 Node_Notes* dest_notes = node_notes_at(dest->_idx); 1302 if (dest_notes == nullptr || dest_notes->is_clear()) { 1303 return set_node_notes_at(dest->_idx, source_notes); 1304 } 1305 1306 Node_Notes merged_notes = (*source_notes); 1307 // The order of operations here ensures that dest notes will win... 1308 merged_notes.update_from(dest_notes); 1309 return set_node_notes_at(dest->_idx, &merged_notes); 1310 } 1311 1312 1313 //--------------------------allow_range_check_smearing------------------------- 1314 // Gating condition for coalescing similar range checks. 1315 // Sometimes we try 'speculatively' replacing a series of a range checks by a 1316 // single covering check that is at least as strong as any of them. 1317 // If the optimization succeeds, the simplified (strengthened) range check 1318 // will always succeed. If it fails, we will deopt, and then give up 1319 // on the optimization. 1320 bool Compile::allow_range_check_smearing() const { 1321 // If this method has already thrown a range-check, 1322 // assume it was because we already tried range smearing 1323 // and it failed. 1324 uint already_trapped = trap_count(Deoptimization::Reason_range_check); 1325 return !already_trapped; 1326 } 1327 1328 1329 //------------------------------flatten_alias_type----------------------------- 1330 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const { 1331 assert(do_aliasing(), "Aliasing should be enabled"); 1332 int offset = tj->offset(); 1333 TypePtr::PTR ptr = tj->ptr(); 1334 1335 // Known instance (scalarizable allocation) alias only with itself. 1336 bool is_known_inst = tj->isa_oopptr() != nullptr && 1337 tj->is_oopptr()->is_known_instance(); 1338 1339 // Process weird unsafe references. 1340 if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) { 1341 assert(InlineUnsafeOps || StressReflectiveCode, "indeterminate pointers come only from unsafe ops"); 1342 assert(!is_known_inst, "scalarizable allocation should not have unsafe references"); 1343 tj = TypeOopPtr::BOTTOM; 1344 ptr = tj->ptr(); 1345 offset = tj->offset(); 1346 } 1347 1348 // Array pointers need some flattening 1349 const TypeAryPtr* ta = tj->isa_aryptr(); 1350 if (ta && ta->is_stable()) { 1351 // Erase stability property for alias analysis. 1352 tj = ta = ta->cast_to_stable(false); 1353 } 1354 if( ta && is_known_inst ) { 1355 if ( offset != Type::OffsetBot && 1356 offset > arrayOopDesc::length_offset_in_bytes() ) { 1357 offset = Type::OffsetBot; // Flatten constant access into array body only 1358 tj = ta = ta-> 1359 remove_speculative()-> 1360 cast_to_ptr_type(ptr)-> 1361 with_offset(offset); 1362 } 1363 } else if (ta) { 1364 // For arrays indexed by constant indices, we flatten the alias 1365 // space to include all of the array body. Only the header, klass 1366 // and array length can be accessed un-aliased. 1367 if( offset != Type::OffsetBot ) { 1368 if( ta->const_oop() ) { // MethodData* or Method* 1369 offset = Type::OffsetBot; // Flatten constant access into array body 1370 tj = ta = ta-> 1371 remove_speculative()-> 1372 cast_to_ptr_type(ptr)-> 1373 cast_to_exactness(false)-> 1374 with_offset(offset); 1375 } else if( offset == arrayOopDesc::length_offset_in_bytes() ) { 1376 // range is OK as-is. 1377 tj = ta = TypeAryPtr::RANGE; 1378 } else if( offset == oopDesc::klass_offset_in_bytes() ) { 1379 tj = TypeInstPtr::KLASS; // all klass loads look alike 1380 ta = TypeAryPtr::RANGE; // generic ignored junk 1381 ptr = TypePtr::BotPTR; 1382 } else if( offset == oopDesc::mark_offset_in_bytes() ) { 1383 tj = TypeInstPtr::MARK; 1384 ta = TypeAryPtr::RANGE; // generic ignored junk 1385 ptr = TypePtr::BotPTR; 1386 } else { // Random constant offset into array body 1387 offset = Type::OffsetBot; // Flatten constant access into array body 1388 tj = ta = ta-> 1389 remove_speculative()-> 1390 cast_to_ptr_type(ptr)-> 1391 cast_to_exactness(false)-> 1392 with_offset(offset); 1393 } 1394 } 1395 // Arrays of fixed size alias with arrays of unknown size. 1396 if (ta->size() != TypeInt::POS) { 1397 const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS); 1398 tj = ta = ta-> 1399 remove_speculative()-> 1400 cast_to_ptr_type(ptr)-> 1401 with_ary(tary)-> 1402 cast_to_exactness(false); 1403 } 1404 // Arrays of known objects become arrays of unknown objects. 1405 if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) { 1406 const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size()); 1407 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,nullptr,false,offset); 1408 } 1409 if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) { 1410 const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size()); 1411 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,nullptr,false,offset); 1412 } 1413 // Arrays of bytes and of booleans both use 'bastore' and 'baload' so 1414 // cannot be distinguished by bytecode alone. 1415 if (ta->elem() == TypeInt::BOOL) { 1416 const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size()); 1417 ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE); 1418 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset); 1419 } 1420 // During the 2nd round of IterGVN, NotNull castings are removed. 1421 // Make sure the Bottom and NotNull variants alias the same. 1422 // Also, make sure exact and non-exact variants alias the same. 1423 if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != nullptr) { 1424 tj = ta = ta-> 1425 remove_speculative()-> 1426 cast_to_ptr_type(TypePtr::BotPTR)-> 1427 cast_to_exactness(false)-> 1428 with_offset(offset); 1429 } 1430 } 1431 1432 // Oop pointers need some flattening 1433 const TypeInstPtr *to = tj->isa_instptr(); 1434 if (to && to != TypeOopPtr::BOTTOM) { 1435 ciInstanceKlass* ik = to->instance_klass(); 1436 if( ptr == TypePtr::Constant ) { 1437 if (ik != ciEnv::current()->Class_klass() || 1438 offset < ik->layout_helper_size_in_bytes()) { 1439 // No constant oop pointers (such as Strings); they alias with 1440 // unknown strings. 1441 assert(!is_known_inst, "not scalarizable allocation"); 1442 tj = to = to-> 1443 cast_to_instance_id(TypeOopPtr::InstanceBot)-> 1444 remove_speculative()-> 1445 cast_to_ptr_type(TypePtr::BotPTR)-> 1446 cast_to_exactness(false); 1447 } 1448 } else if( is_known_inst ) { 1449 tj = to; // Keep NotNull and klass_is_exact for instance type 1450 } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) { 1451 // During the 2nd round of IterGVN, NotNull castings are removed. 1452 // Make sure the Bottom and NotNull variants alias the same. 1453 // Also, make sure exact and non-exact variants alias the same. 1454 tj = to = to-> 1455 remove_speculative()-> 1456 cast_to_instance_id(TypeOopPtr::InstanceBot)-> 1457 cast_to_ptr_type(TypePtr::BotPTR)-> 1458 cast_to_exactness(false); 1459 } 1460 if (to->speculative() != nullptr) { 1461 tj = to = to->remove_speculative(); 1462 } 1463 // Canonicalize the holder of this field 1464 if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) { 1465 // First handle header references such as a LoadKlassNode, even if the 1466 // object's klass is unloaded at compile time (4965979). 1467 if (!is_known_inst) { // Do it only for non-instance types 1468 tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, nullptr, offset); 1469 } 1470 } else if (offset < 0 || offset >= ik->layout_helper_size_in_bytes()) { 1471 // Static fields are in the space above the normal instance 1472 // fields in the java.lang.Class instance. 1473 if (ik != ciEnv::current()->Class_klass()) { 1474 to = nullptr; 1475 tj = TypeOopPtr::BOTTOM; 1476 offset = tj->offset(); 1477 } 1478 } else { 1479 ciInstanceKlass *canonical_holder = ik->get_canonical_holder(offset); 1480 assert(offset < canonical_holder->layout_helper_size_in_bytes(), ""); 1481 assert(tj->offset() == offset, "no change to offset expected"); 1482 bool xk = to->klass_is_exact(); 1483 int instance_id = to->instance_id(); 1484 1485 // If the input type's class is the holder: if exact, the type only includes interfaces implemented by the holder 1486 // but if not exact, it may include extra interfaces: build new type from the holder class to make sure only 1487 // its interfaces are included. 1488 if (xk && ik->equals(canonical_holder)) { 1489 assert(tj == TypeInstPtr::make(to->ptr(), canonical_holder, is_known_inst, nullptr, offset, instance_id), "exact type should be canonical type"); 1490 } else { 1491 assert(xk || !is_known_inst, "Known instance should be exact type"); 1492 tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, is_known_inst, nullptr, offset, instance_id); 1493 } 1494 } 1495 } 1496 1497 // Klass pointers to object array klasses need some flattening 1498 const TypeKlassPtr *tk = tj->isa_klassptr(); 1499 if( tk ) { 1500 // If we are referencing a field within a Klass, we need 1501 // to assume the worst case of an Object. Both exact and 1502 // inexact types must flatten to the same alias class so 1503 // use NotNull as the PTR. 1504 if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) { 1505 tj = tk = TypeInstKlassPtr::make(TypePtr::NotNull, 1506 env()->Object_klass(), 1507 offset); 1508 } 1509 1510 if (tk->isa_aryklassptr() && tk->is_aryklassptr()->elem()->isa_klassptr()) { 1511 ciKlass* k = ciObjArrayKlass::make(env()->Object_klass()); 1512 if (!k || !k->is_loaded()) { // Only fails for some -Xcomp runs 1513 tj = tk = TypeInstKlassPtr::make(TypePtr::NotNull, env()->Object_klass(), offset); 1514 } else { 1515 tj = tk = TypeAryKlassPtr::make(TypePtr::NotNull, tk->is_aryklassptr()->elem(), k, offset); 1516 } 1517 } 1518 1519 // Check for precise loads from the primary supertype array and force them 1520 // to the supertype cache alias index. Check for generic array loads from 1521 // the primary supertype array and also force them to the supertype cache 1522 // alias index. Since the same load can reach both, we need to merge 1523 // these 2 disparate memories into the same alias class. Since the 1524 // primary supertype array is read-only, there's no chance of confusion 1525 // where we bypass an array load and an array store. 1526 int primary_supers_offset = in_bytes(Klass::primary_supers_offset()); 1527 if (offset == Type::OffsetBot || 1528 (offset >= primary_supers_offset && 1529 offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) || 1530 offset == (int)in_bytes(Klass::secondary_super_cache_offset())) { 1531 offset = in_bytes(Klass::secondary_super_cache_offset()); 1532 tj = tk = tk->with_offset(offset); 1533 } 1534 } 1535 1536 // Flatten all Raw pointers together. 1537 if (tj->base() == Type::RawPtr) 1538 tj = TypeRawPtr::BOTTOM; 1539 1540 if (tj->base() == Type::AnyPtr) 1541 tj = TypePtr::BOTTOM; // An error, which the caller must check for. 1542 1543 offset = tj->offset(); 1544 assert( offset != Type::OffsetTop, "Offset has fallen from constant" ); 1545 1546 assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) || 1547 (offset == Type::OffsetBot && tj->base() == Type::AryPtr) || 1548 (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) || 1549 (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) || 1550 (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) || 1551 (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) || 1552 (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr), 1553 "For oops, klasses, raw offset must be constant; for arrays the offset is never known" ); 1554 assert( tj->ptr() != TypePtr::TopPTR && 1555 tj->ptr() != TypePtr::AnyNull && 1556 tj->ptr() != TypePtr::Null, "No imprecise addresses" ); 1557 // assert( tj->ptr() != TypePtr::Constant || 1558 // tj->base() == Type::RawPtr || 1559 // tj->base() == Type::KlassPtr, "No constant oop addresses" ); 1560 1561 return tj; 1562 } 1563 1564 void Compile::AliasType::Init(int i, const TypePtr* at) { 1565 assert(AliasIdxTop <= i && i < Compile::current()->_max_alias_types, "Invalid alias index"); 1566 _index = i; 1567 _adr_type = at; 1568 _field = nullptr; 1569 _element = nullptr; 1570 _is_rewritable = true; // default 1571 const TypeOopPtr *atoop = (at != nullptr) ? at->isa_oopptr() : nullptr; 1572 if (atoop != nullptr && atoop->is_known_instance()) { 1573 const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot); 1574 _general_index = Compile::current()->get_alias_index(gt); 1575 } else { 1576 _general_index = 0; 1577 } 1578 } 1579 1580 BasicType Compile::AliasType::basic_type() const { 1581 if (element() != nullptr) { 1582 const Type* element = adr_type()->is_aryptr()->elem(); 1583 return element->isa_narrowoop() ? T_OBJECT : element->array_element_basic_type(); 1584 } if (field() != nullptr) { 1585 return field()->layout_type(); 1586 } else { 1587 return T_ILLEGAL; // unknown 1588 } 1589 } 1590 1591 //---------------------------------print_on------------------------------------ 1592 #ifndef PRODUCT 1593 void Compile::AliasType::print_on(outputStream* st) { 1594 if (index() < 10) 1595 st->print("@ <%d> ", index()); 1596 else st->print("@ <%d>", index()); 1597 st->print(is_rewritable() ? " " : " RO"); 1598 int offset = adr_type()->offset(); 1599 if (offset == Type::OffsetBot) 1600 st->print(" +any"); 1601 else st->print(" +%-3d", offset); 1602 st->print(" in "); 1603 adr_type()->dump_on(st); 1604 const TypeOopPtr* tjp = adr_type()->isa_oopptr(); 1605 if (field() != nullptr && tjp) { 1606 if (tjp->is_instptr()->instance_klass() != field()->holder() || 1607 tjp->offset() != field()->offset_in_bytes()) { 1608 st->print(" != "); 1609 field()->print(); 1610 st->print(" ***"); 1611 } 1612 } 1613 } 1614 1615 void print_alias_types() { 1616 Compile* C = Compile::current(); 1617 tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1); 1618 for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) { 1619 C->alias_type(idx)->print_on(tty); 1620 tty->cr(); 1621 } 1622 } 1623 #endif 1624 1625 1626 //----------------------------probe_alias_cache-------------------------------- 1627 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) { 1628 intptr_t key = (intptr_t) adr_type; 1629 key ^= key >> logAliasCacheSize; 1630 return &_alias_cache[key & right_n_bits(logAliasCacheSize)]; 1631 } 1632 1633 1634 //-----------------------------grow_alias_types-------------------------------- 1635 void Compile::grow_alias_types() { 1636 const int old_ats = _max_alias_types; // how many before? 1637 const int new_ats = old_ats; // how many more? 1638 const int grow_ats = old_ats+new_ats; // how many now? 1639 _max_alias_types = grow_ats; 1640 _alias_types = REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats); 1641 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats); 1642 Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats); 1643 for (int i = 0; i < new_ats; i++) _alias_types[old_ats+i] = &ats[i]; 1644 } 1645 1646 1647 //--------------------------------find_alias_type------------------------------ 1648 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) { 1649 if (!do_aliasing()) { 1650 return alias_type(AliasIdxBot); 1651 } 1652 1653 AliasCacheEntry* ace = probe_alias_cache(adr_type); 1654 if (ace->_adr_type == adr_type) { 1655 return alias_type(ace->_index); 1656 } 1657 1658 // Handle special cases. 1659 if (adr_type == nullptr) return alias_type(AliasIdxTop); 1660 if (adr_type == TypePtr::BOTTOM) return alias_type(AliasIdxBot); 1661 1662 // Do it the slow way. 1663 const TypePtr* flat = flatten_alias_type(adr_type); 1664 1665 #ifdef ASSERT 1666 { 1667 ResourceMark rm; 1668 assert(flat == flatten_alias_type(flat), "not idempotent: adr_type = %s; flat = %s => %s", 1669 Type::str(adr_type), Type::str(flat), Type::str(flatten_alias_type(flat))); 1670 assert(flat != TypePtr::BOTTOM, "cannot alias-analyze an untyped ptr: adr_type = %s", 1671 Type::str(adr_type)); 1672 if (flat->isa_oopptr() && !flat->isa_klassptr()) { 1673 const TypeOopPtr* foop = flat->is_oopptr(); 1674 // Scalarizable allocations have exact klass always. 1675 bool exact = !foop->klass_is_exact() || foop->is_known_instance(); 1676 const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr(); 1677 assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type: foop = %s; xoop = %s", 1678 Type::str(foop), Type::str(xoop)); 1679 } 1680 } 1681 #endif 1682 1683 int idx = AliasIdxTop; 1684 for (int i = 0; i < num_alias_types(); i++) { 1685 if (alias_type(i)->adr_type() == flat) { 1686 idx = i; 1687 break; 1688 } 1689 } 1690 1691 if (idx == AliasIdxTop) { 1692 if (no_create) return nullptr; 1693 // Grow the array if necessary. 1694 if (_num_alias_types == _max_alias_types) grow_alias_types(); 1695 // Add a new alias type. 1696 idx = _num_alias_types++; 1697 _alias_types[idx]->Init(idx, flat); 1698 if (flat == TypeInstPtr::KLASS) alias_type(idx)->set_rewritable(false); 1699 if (flat == TypeAryPtr::RANGE) alias_type(idx)->set_rewritable(false); 1700 if (flat->isa_instptr()) { 1701 if (flat->offset() == java_lang_Class::klass_offset() 1702 && flat->is_instptr()->instance_klass() == env()->Class_klass()) 1703 alias_type(idx)->set_rewritable(false); 1704 } 1705 if (flat->isa_aryptr()) { 1706 #ifdef ASSERT 1707 const int header_size_min = arrayOopDesc::base_offset_in_bytes(T_BYTE); 1708 // (T_BYTE has the weakest alignment and size restrictions...) 1709 assert(flat->offset() < header_size_min, "array body reference must be OffsetBot"); 1710 #endif 1711 if (flat->offset() == TypePtr::OffsetBot) { 1712 alias_type(idx)->set_element(flat->is_aryptr()->elem()); 1713 } 1714 } 1715 if (flat->isa_klassptr()) { 1716 if (UseCompactObjectHeaders) { 1717 if (flat->offset() == in_bytes(Klass::prototype_header_offset())) 1718 alias_type(idx)->set_rewritable(false); 1719 } 1720 if (flat->offset() == in_bytes(Klass::super_check_offset_offset())) 1721 alias_type(idx)->set_rewritable(false); 1722 if (flat->offset() == in_bytes(Klass::access_flags_offset())) 1723 alias_type(idx)->set_rewritable(false); 1724 if (flat->offset() == in_bytes(Klass::misc_flags_offset())) 1725 alias_type(idx)->set_rewritable(false); 1726 if (flat->offset() == in_bytes(Klass::java_mirror_offset())) 1727 alias_type(idx)->set_rewritable(false); 1728 if (flat->offset() == in_bytes(Klass::secondary_super_cache_offset())) 1729 alias_type(idx)->set_rewritable(false); 1730 } 1731 // %%% (We would like to finalize JavaThread::threadObj_offset(), 1732 // but the base pointer type is not distinctive enough to identify 1733 // references into JavaThread.) 1734 1735 // Check for final fields. 1736 const TypeInstPtr* tinst = flat->isa_instptr(); 1737 if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) { 1738 ciField* field; 1739 if (tinst->const_oop() != nullptr && 1740 tinst->instance_klass() == ciEnv::current()->Class_klass() && 1741 tinst->offset() >= (tinst->instance_klass()->layout_helper_size_in_bytes())) { 1742 // static field 1743 ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass(); 1744 field = k->get_field_by_offset(tinst->offset(), true); 1745 } else { 1746 ciInstanceKlass *k = tinst->instance_klass(); 1747 field = k->get_field_by_offset(tinst->offset(), false); 1748 } 1749 assert(field == nullptr || 1750 original_field == nullptr || 1751 (field->holder() == original_field->holder() && 1752 field->offset_in_bytes() == original_field->offset_in_bytes() && 1753 field->is_static() == original_field->is_static()), "wrong field?"); 1754 // Set field() and is_rewritable() attributes. 1755 if (field != nullptr) alias_type(idx)->set_field(field); 1756 } 1757 } 1758 1759 // Fill the cache for next time. 1760 ace->_adr_type = adr_type; 1761 ace->_index = idx; 1762 assert(alias_type(adr_type) == alias_type(idx), "type must be installed"); 1763 1764 // Might as well try to fill the cache for the flattened version, too. 1765 AliasCacheEntry* face = probe_alias_cache(flat); 1766 if (face->_adr_type == nullptr) { 1767 face->_adr_type = flat; 1768 face->_index = idx; 1769 assert(alias_type(flat) == alias_type(idx), "flat type must work too"); 1770 } 1771 1772 return alias_type(idx); 1773 } 1774 1775 1776 Compile::AliasType* Compile::alias_type(ciField* field) { 1777 const TypeOopPtr* t; 1778 if (field->is_static()) 1779 t = TypeInstPtr::make(field->holder()->java_mirror()); 1780 else 1781 t = TypeOopPtr::make_from_klass_raw(field->holder()); 1782 AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field); 1783 assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct"); 1784 return atp; 1785 } 1786 1787 1788 //------------------------------have_alias_type-------------------------------- 1789 bool Compile::have_alias_type(const TypePtr* adr_type) { 1790 AliasCacheEntry* ace = probe_alias_cache(adr_type); 1791 if (ace->_adr_type == adr_type) { 1792 return true; 1793 } 1794 1795 // Handle special cases. 1796 if (adr_type == nullptr) return true; 1797 if (adr_type == TypePtr::BOTTOM) return true; 1798 1799 return find_alias_type(adr_type, true, nullptr) != nullptr; 1800 } 1801 1802 //-----------------------------must_alias-------------------------------------- 1803 // True if all values of the given address type are in the given alias category. 1804 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) { 1805 if (alias_idx == AliasIdxBot) return true; // the universal category 1806 if (adr_type == nullptr) return true; // null serves as TypePtr::TOP 1807 if (alias_idx == AliasIdxTop) return false; // the empty category 1808 if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins 1809 1810 // the only remaining possible overlap is identity 1811 int adr_idx = get_alias_index(adr_type); 1812 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, ""); 1813 assert(adr_idx == alias_idx || 1814 (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM 1815 && adr_type != TypeOopPtr::BOTTOM), 1816 "should not be testing for overlap with an unsafe pointer"); 1817 return adr_idx == alias_idx; 1818 } 1819 1820 //------------------------------can_alias-------------------------------------- 1821 // True if any values of the given address type are in the given alias category. 1822 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) { 1823 if (alias_idx == AliasIdxTop) return false; // the empty category 1824 if (adr_type == nullptr) return false; // null serves as TypePtr::TOP 1825 // Known instance doesn't alias with bottom memory 1826 if (alias_idx == AliasIdxBot) return !adr_type->is_known_instance(); // the universal category 1827 if (adr_type->base() == Type::AnyPtr) return !C->get_adr_type(alias_idx)->is_known_instance(); // TypePtr::BOTTOM or its twins 1828 1829 // the only remaining possible overlap is identity 1830 int adr_idx = get_alias_index(adr_type); 1831 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, ""); 1832 return adr_idx == alias_idx; 1833 } 1834 1835 // Mark all ParsePredicateNodes as useless. They will later be removed from the graph in IGVN together with their 1836 // uncommon traps if no Runtime Predicates were created from the Parse Predicates. 1837 void Compile::mark_parse_predicate_nodes_useless(PhaseIterGVN& igvn) { 1838 if (parse_predicate_count() == 0) { 1839 return; 1840 } 1841 for (int i = 0; i < parse_predicate_count(); i++) { 1842 ParsePredicateNode* parse_predicate = _parse_predicates.at(i); 1843 parse_predicate->mark_useless(igvn); 1844 } 1845 _parse_predicates.clear(); 1846 } 1847 1848 void Compile::record_for_post_loop_opts_igvn(Node* n) { 1849 if (!n->for_post_loop_opts_igvn()) { 1850 assert(!_for_post_loop_igvn.contains(n), "duplicate"); 1851 n->add_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn); 1852 _for_post_loop_igvn.append(n); 1853 } 1854 } 1855 1856 void Compile::remove_from_post_loop_opts_igvn(Node* n) { 1857 n->remove_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn); 1858 _for_post_loop_igvn.remove(n); 1859 } 1860 1861 void Compile::process_for_post_loop_opts_igvn(PhaseIterGVN& igvn) { 1862 // Verify that all previous optimizations produced a valid graph 1863 // at least to this point, even if no loop optimizations were done. 1864 PhaseIdealLoop::verify(igvn); 1865 1866 C->set_post_loop_opts_phase(); // no more loop opts allowed 1867 1868 assert(!C->major_progress(), "not cleared"); 1869 1870 if (_for_post_loop_igvn.length() > 0) { 1871 while (_for_post_loop_igvn.length() > 0) { 1872 Node* n = _for_post_loop_igvn.pop(); 1873 n->remove_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn); 1874 igvn._worklist.push(n); 1875 } 1876 igvn.optimize(); 1877 if (failing()) return; 1878 assert(_for_post_loop_igvn.length() == 0, "no more delayed nodes allowed"); 1879 assert(C->parse_predicate_count() == 0, "all parse predicates should have been removed now"); 1880 1881 // Sometimes IGVN sets major progress (e.g., when processing loop nodes). 1882 if (C->major_progress()) { 1883 C->clear_major_progress(); // ensure that major progress is now clear 1884 } 1885 } 1886 } 1887 1888 void Compile::record_for_merge_stores_igvn(Node* n) { 1889 if (!n->for_merge_stores_igvn()) { 1890 assert(!_for_merge_stores_igvn.contains(n), "duplicate"); 1891 n->add_flag(Node::NodeFlags::Flag_for_merge_stores_igvn); 1892 _for_merge_stores_igvn.append(n); 1893 } 1894 } 1895 1896 void Compile::remove_from_merge_stores_igvn(Node* n) { 1897 n->remove_flag(Node::NodeFlags::Flag_for_merge_stores_igvn); 1898 _for_merge_stores_igvn.remove(n); 1899 } 1900 1901 // We need to wait with merging stores until RangeCheck smearing has removed the RangeChecks during 1902 // the post loops IGVN phase. If we do it earlier, then there may still be some RangeChecks between 1903 // the stores, and we merge the wrong sequence of stores. 1904 // Example: 1905 // StoreI RangeCheck StoreI StoreI RangeCheck StoreI 1906 // Apply MergeStores: 1907 // StoreI RangeCheck [ StoreL ] RangeCheck StoreI 1908 // Remove more RangeChecks: 1909 // StoreI [ StoreL ] StoreI 1910 // But now it would have been better to do this instead: 1911 // [ StoreL ] [ StoreL ] 1912 // 1913 // Note: we allow stores to merge in this dedicated IGVN round, and any later IGVN round, 1914 // since we never unset _merge_stores_phase. 1915 void Compile::process_for_merge_stores_igvn(PhaseIterGVN& igvn) { 1916 C->set_merge_stores_phase(); 1917 1918 if (_for_merge_stores_igvn.length() > 0) { 1919 while (_for_merge_stores_igvn.length() > 0) { 1920 Node* n = _for_merge_stores_igvn.pop(); 1921 n->remove_flag(Node::NodeFlags::Flag_for_merge_stores_igvn); 1922 igvn._worklist.push(n); 1923 } 1924 igvn.optimize(); 1925 if (failing()) return; 1926 assert(_for_merge_stores_igvn.length() == 0, "no more delayed nodes allowed"); 1927 print_method(PHASE_AFTER_MERGE_STORES, 3); 1928 } 1929 } 1930 1931 void Compile::record_unstable_if_trap(UnstableIfTrap* trap) { 1932 if (OptimizeUnstableIf) { 1933 _unstable_if_traps.append(trap); 1934 } 1935 } 1936 1937 void Compile::remove_useless_unstable_if_traps(Unique_Node_List& useful) { 1938 for (int i = _unstable_if_traps.length() - 1; i >= 0; i--) { 1939 UnstableIfTrap* trap = _unstable_if_traps.at(i); 1940 Node* n = trap->uncommon_trap(); 1941 if (!useful.member(n)) { 1942 _unstable_if_traps.delete_at(i); // replaces i-th with last element which is known to be useful (already processed) 1943 } 1944 } 1945 } 1946 1947 // Remove the unstable if trap associated with 'unc' from candidates. It is either dead 1948 // or fold-compares case. Return true if succeed or not found. 1949 // 1950 // In rare cases, the found trap has been processed. It is too late to delete it. Return 1951 // false and ask fold-compares to yield. 1952 // 1953 // 'fold-compares' may use the uncommon_trap of the dominating IfNode to cover the fused 1954 // IfNode. This breaks the unstable_if trap invariant: control takes the unstable path 1955 // when deoptimization does happen. 1956 bool Compile::remove_unstable_if_trap(CallStaticJavaNode* unc, bool yield) { 1957 for (int i = 0; i < _unstable_if_traps.length(); ++i) { 1958 UnstableIfTrap* trap = _unstable_if_traps.at(i); 1959 if (trap->uncommon_trap() == unc) { 1960 if (yield && trap->modified()) { 1961 return false; 1962 } 1963 _unstable_if_traps.delete_at(i); 1964 break; 1965 } 1966 } 1967 return true; 1968 } 1969 1970 // Re-calculate unstable_if traps with the liveness of next_bci, which points to the unlikely path. 1971 // It needs to be done after igvn because fold-compares may fuse uncommon_traps and before renumbering. 1972 void Compile::process_for_unstable_if_traps(PhaseIterGVN& igvn) { 1973 for (int i = _unstable_if_traps.length() - 1; i >= 0; --i) { 1974 UnstableIfTrap* trap = _unstable_if_traps.at(i); 1975 CallStaticJavaNode* unc = trap->uncommon_trap(); 1976 int next_bci = trap->next_bci(); 1977 bool modified = trap->modified(); 1978 1979 if (next_bci != -1 && !modified) { 1980 assert(!_dead_node_list.test(unc->_idx), "changing a dead node!"); 1981 JVMState* jvms = unc->jvms(); 1982 ciMethod* method = jvms->method(); 1983 ciBytecodeStream iter(method); 1984 1985 iter.force_bci(jvms->bci()); 1986 assert(next_bci == iter.next_bci() || next_bci == iter.get_dest(), "wrong next_bci at unstable_if"); 1987 Bytecodes::Code c = iter.cur_bc(); 1988 Node* lhs = nullptr; 1989 Node* rhs = nullptr; 1990 if (c == Bytecodes::_if_acmpeq || c == Bytecodes::_if_acmpne) { 1991 lhs = unc->peek_operand(0); 1992 rhs = unc->peek_operand(1); 1993 } else if (c == Bytecodes::_ifnull || c == Bytecodes::_ifnonnull) { 1994 lhs = unc->peek_operand(0); 1995 } 1996 1997 ResourceMark rm; 1998 const MethodLivenessResult& live_locals = method->liveness_at_bci(next_bci); 1999 assert(live_locals.is_valid(), "broken liveness info"); 2000 int len = (int)live_locals.size(); 2001 2002 for (int i = 0; i < len; i++) { 2003 Node* local = unc->local(jvms, i); 2004 // kill local using the liveness of next_bci. 2005 // give up when the local looks like an operand to secure reexecution. 2006 if (!live_locals.at(i) && !local->is_top() && local != lhs && local!= rhs) { 2007 uint idx = jvms->locoff() + i; 2008 #ifdef ASSERT 2009 if (PrintOpto && Verbose) { 2010 tty->print("[unstable_if] kill local#%d: ", idx); 2011 local->dump(); 2012 tty->cr(); 2013 } 2014 #endif 2015 igvn.replace_input_of(unc, idx, top()); 2016 modified = true; 2017 } 2018 } 2019 } 2020 2021 // keep the mondified trap for late query 2022 if (modified) { 2023 trap->set_modified(); 2024 } else { 2025 _unstable_if_traps.delete_at(i); 2026 } 2027 } 2028 igvn.optimize(); 2029 } 2030 2031 // StringOpts and late inlining of string methods 2032 void Compile::inline_string_calls(bool parse_time) { 2033 { 2034 // remove useless nodes to make the usage analysis simpler 2035 ResourceMark rm; 2036 PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist()); 2037 } 2038 2039 { 2040 ResourceMark rm; 2041 print_method(PHASE_BEFORE_STRINGOPTS, 3); 2042 PhaseStringOpts pso(initial_gvn()); 2043 print_method(PHASE_AFTER_STRINGOPTS, 3); 2044 } 2045 2046 // now inline anything that we skipped the first time around 2047 if (!parse_time) { 2048 _late_inlines_pos = _late_inlines.length(); 2049 } 2050 2051 while (_string_late_inlines.length() > 0) { 2052 CallGenerator* cg = _string_late_inlines.pop(); 2053 cg->do_late_inline(); 2054 if (failing()) return; 2055 } 2056 _string_late_inlines.trunc_to(0); 2057 } 2058 2059 // Late inlining of boxing methods 2060 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) { 2061 if (_boxing_late_inlines.length() > 0) { 2062 assert(has_boxed_value(), "inconsistent"); 2063 2064 set_inlining_incrementally(true); 2065 2066 igvn_worklist()->ensure_empty(); // should be done with igvn 2067 2068 _late_inlines_pos = _late_inlines.length(); 2069 2070 while (_boxing_late_inlines.length() > 0) { 2071 CallGenerator* cg = _boxing_late_inlines.pop(); 2072 cg->do_late_inline(); 2073 if (failing()) return; 2074 } 2075 _boxing_late_inlines.trunc_to(0); 2076 2077 inline_incrementally_cleanup(igvn); 2078 2079 set_inlining_incrementally(false); 2080 } 2081 } 2082 2083 bool Compile::inline_incrementally_one() { 2084 assert(IncrementalInline, "incremental inlining should be on"); 2085 2086 TracePhase tp(_t_incrInline_inline); 2087 2088 set_inlining_progress(false); 2089 set_do_cleanup(false); 2090 2091 for (int i = 0; i < _late_inlines.length(); i++) { 2092 _late_inlines_pos = i+1; 2093 CallGenerator* cg = _late_inlines.at(i); 2094 bool is_scheduled_for_igvn_before = C->igvn_worklist()->member(cg->call_node()); 2095 bool does_dispatch = cg->is_virtual_late_inline() || cg->is_mh_late_inline(); 2096 if (inlining_incrementally() || does_dispatch) { // a call can be either inlined or strength-reduced to a direct call 2097 cg->do_late_inline(); 2098 assert(_late_inlines.at(i) == cg, "no insertions before current position allowed"); 2099 if (failing()) { 2100 return false; 2101 } else if (inlining_progress()) { 2102 _late_inlines_pos = i+1; // restore the position in case new elements were inserted 2103 print_method(PHASE_INCREMENTAL_INLINE_STEP, 3, cg->call_node()); 2104 break; // process one call site at a time 2105 } else { 2106 bool is_scheduled_for_igvn_after = C->igvn_worklist()->member(cg->call_node()); 2107 if (!is_scheduled_for_igvn_before && is_scheduled_for_igvn_after) { 2108 // Avoid potential infinite loop if node already in the IGVN list 2109 assert(false, "scheduled for IGVN during inlining attempt"); 2110 } else { 2111 // Ensure call node has not disappeared from IGVN worklist during a failed inlining attempt 2112 assert(!is_scheduled_for_igvn_before || is_scheduled_for_igvn_after, "call node removed from IGVN list during inlining pass"); 2113 cg->call_node()->set_generator(cg); 2114 } 2115 } 2116 } else { 2117 // Ignore late inline direct calls when inlining is not allowed. 2118 // They are left in the late inline list when node budget is exhausted until the list is fully drained. 2119 } 2120 } 2121 // Remove processed elements. 2122 _late_inlines.remove_till(_late_inlines_pos); 2123 _late_inlines_pos = 0; 2124 2125 assert(inlining_progress() || _late_inlines.length() == 0, "no progress"); 2126 2127 bool needs_cleanup = do_cleanup() || over_inlining_cutoff(); 2128 2129 set_inlining_progress(false); 2130 set_do_cleanup(false); 2131 2132 bool force_cleanup = directive()->IncrementalInlineForceCleanupOption; 2133 return (_late_inlines.length() > 0) && !needs_cleanup && !force_cleanup; 2134 } 2135 2136 void Compile::inline_incrementally_cleanup(PhaseIterGVN& igvn) { 2137 { 2138 TracePhase tp(_t_incrInline_pru); 2139 ResourceMark rm; 2140 PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist()); 2141 } 2142 { 2143 TracePhase tp(_t_incrInline_igvn); 2144 igvn.reset_from_gvn(initial_gvn()); 2145 igvn.optimize(); 2146 if (failing()) return; 2147 } 2148 print_method(PHASE_INCREMENTAL_INLINE_CLEANUP, 3); 2149 } 2150 2151 // Perform incremental inlining until bound on number of live nodes is reached 2152 void Compile::inline_incrementally(PhaseIterGVN& igvn) { 2153 TracePhase tp(_t_incrInline); 2154 2155 set_inlining_incrementally(true); 2156 uint low_live_nodes = 0; 2157 2158 while (_late_inlines.length() > 0) { 2159 if (live_nodes() > (uint)LiveNodeCountInliningCutoff) { 2160 if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) { 2161 TracePhase tp(_t_incrInline_ideal); 2162 // PhaseIdealLoop is expensive so we only try it once we are 2163 // out of live nodes and we only try it again if the previous 2164 // helped got the number of nodes down significantly 2165 PhaseIdealLoop::optimize(igvn, LoopOptsNone); 2166 if (failing()) return; 2167 low_live_nodes = live_nodes(); 2168 _major_progress = true; 2169 } 2170 2171 if (live_nodes() > (uint)LiveNodeCountInliningCutoff) { 2172 bool do_print_inlining = print_inlining() || print_intrinsics(); 2173 if (do_print_inlining || log() != nullptr) { 2174 // Print inlining message for candidates that we couldn't inline for lack of space. 2175 for (int i = 0; i < _late_inlines.length(); i++) { 2176 CallGenerator* cg = _late_inlines.at(i); 2177 const char* msg = "live nodes > LiveNodeCountInliningCutoff"; 2178 if (do_print_inlining) { 2179 inline_printer()->record(cg->method(), cg->call_node()->jvms(), InliningResult::FAILURE, msg); 2180 } 2181 log_late_inline_failure(cg, msg); 2182 } 2183 } 2184 break; // finish 2185 } 2186 } 2187 2188 igvn_worklist()->ensure_empty(); // should be done with igvn 2189 2190 while (inline_incrementally_one()) { 2191 assert(!failing_internal() || failure_is_artificial(), "inconsistent"); 2192 } 2193 if (failing()) return; 2194 2195 inline_incrementally_cleanup(igvn); 2196 2197 print_method(PHASE_INCREMENTAL_INLINE_STEP, 3); 2198 2199 if (failing()) return; 2200 2201 if (_late_inlines.length() == 0) { 2202 break; // no more progress 2203 } 2204 } 2205 2206 igvn_worklist()->ensure_empty(); // should be done with igvn 2207 2208 if (_string_late_inlines.length() > 0) { 2209 assert(has_stringbuilder(), "inconsistent"); 2210 2211 inline_string_calls(false); 2212 2213 if (failing()) return; 2214 2215 inline_incrementally_cleanup(igvn); 2216 } 2217 2218 set_inlining_incrementally(false); 2219 } 2220 2221 void Compile::process_late_inline_calls_no_inline(PhaseIterGVN& igvn) { 2222 // "inlining_incrementally() == false" is used to signal that no inlining is allowed 2223 // (see LateInlineVirtualCallGenerator::do_late_inline_check() for details). 2224 // Tracking and verification of modified nodes is disabled by setting "_modified_nodes == nullptr" 2225 // as if "inlining_incrementally() == true" were set. 2226 assert(inlining_incrementally() == false, "not allowed"); 2227 assert(_modified_nodes == nullptr, "not allowed"); 2228 assert(_late_inlines.length() > 0, "sanity"); 2229 2230 while (_late_inlines.length() > 0) { 2231 igvn_worklist()->ensure_empty(); // should be done with igvn 2232 2233 while (inline_incrementally_one()) { 2234 assert(!failing_internal() || failure_is_artificial(), "inconsistent"); 2235 } 2236 if (failing()) return; 2237 2238 inline_incrementally_cleanup(igvn); 2239 } 2240 } 2241 2242 bool Compile::optimize_loops(PhaseIterGVN& igvn, LoopOptsMode mode) { 2243 if (_loop_opts_cnt > 0) { 2244 while (major_progress() && (_loop_opts_cnt > 0)) { 2245 TracePhase tp(_t_idealLoop); 2246 PhaseIdealLoop::optimize(igvn, mode); 2247 _loop_opts_cnt--; 2248 if (failing()) return false; 2249 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2); 2250 } 2251 } 2252 return true; 2253 } 2254 2255 // Remove edges from "root" to each SafePoint at a backward branch. 2256 // They were inserted during parsing (see add_safepoint()) to make 2257 // infinite loops without calls or exceptions visible to root, i.e., 2258 // useful. 2259 void Compile::remove_root_to_sfpts_edges(PhaseIterGVN& igvn) { 2260 Node *r = root(); 2261 if (r != nullptr) { 2262 for (uint i = r->req(); i < r->len(); ++i) { 2263 Node *n = r->in(i); 2264 if (n != nullptr && n->is_SafePoint()) { 2265 r->rm_prec(i); 2266 if (n->outcnt() == 0) { 2267 igvn.remove_dead_node(n); 2268 } 2269 --i; 2270 } 2271 } 2272 // Parsing may have added top inputs to the root node (Path 2273 // leading to the Halt node proven dead). Make sure we get a 2274 // chance to clean them up. 2275 igvn._worklist.push(r); 2276 igvn.optimize(); 2277 } 2278 } 2279 2280 //------------------------------Optimize--------------------------------------- 2281 // Given a graph, optimize it. 2282 void Compile::Optimize() { 2283 TracePhase tp(_t_optimizer); 2284 2285 #ifndef PRODUCT 2286 if (env()->break_at_compile()) { 2287 BREAKPOINT; 2288 } 2289 2290 #endif 2291 2292 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 2293 #ifdef ASSERT 2294 bs->verify_gc_barriers(this, BarrierSetC2::BeforeOptimize); 2295 #endif 2296 2297 ResourceMark rm; 2298 2299 NOT_PRODUCT( verify_graph_edges(); ) 2300 2301 print_method(PHASE_AFTER_PARSING, 1); 2302 2303 { 2304 // Iterative Global Value Numbering, including ideal transforms 2305 // Initialize IterGVN with types and values from parse-time GVN 2306 PhaseIterGVN igvn(initial_gvn()); 2307 #ifdef ASSERT 2308 _modified_nodes = new (comp_arena()) Unique_Node_List(comp_arena()); 2309 #endif 2310 { 2311 TracePhase tp(_t_iterGVN); 2312 igvn.optimize(); 2313 } 2314 2315 if (failing()) return; 2316 2317 print_method(PHASE_ITER_GVN1, 2); 2318 2319 process_for_unstable_if_traps(igvn); 2320 2321 if (failing()) return; 2322 2323 inline_incrementally(igvn); 2324 2325 print_method(PHASE_INCREMENTAL_INLINE, 2); 2326 2327 if (failing()) return; 2328 2329 if (eliminate_boxing()) { 2330 // Inline valueOf() methods now. 2331 inline_boxing_calls(igvn); 2332 2333 if (failing()) return; 2334 2335 if (AlwaysIncrementalInline || StressIncrementalInlining) { 2336 inline_incrementally(igvn); 2337 } 2338 2339 print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2); 2340 2341 if (failing()) return; 2342 } 2343 2344 // Remove the speculative part of types and clean up the graph from 2345 // the extra CastPP nodes whose only purpose is to carry them. Do 2346 // that early so that optimizations are not disrupted by the extra 2347 // CastPP nodes. 2348 remove_speculative_types(igvn); 2349 2350 if (failing()) return; 2351 2352 // No more new expensive nodes will be added to the list from here 2353 // so keep only the actual candidates for optimizations. 2354 cleanup_expensive_nodes(igvn); 2355 2356 if (failing()) return; 2357 2358 assert(EnableVectorSupport || !has_vbox_nodes(), "sanity"); 2359 if (EnableVectorSupport && has_vbox_nodes()) { 2360 TracePhase tp(_t_vector); 2361 PhaseVector pv(igvn); 2362 pv.optimize_vector_boxes(); 2363 if (failing()) return; 2364 print_method(PHASE_ITER_GVN_AFTER_VECTOR, 2); 2365 } 2366 assert(!has_vbox_nodes(), "sanity"); 2367 2368 if (!failing() && RenumberLiveNodes && live_nodes() + NodeLimitFudgeFactor < unique()) { 2369 Compile::TracePhase tp(_t_renumberLive); 2370 igvn_worklist()->ensure_empty(); // should be done with igvn 2371 { 2372 ResourceMark rm; 2373 PhaseRenumberLive prl(initial_gvn(), *igvn_worklist()); 2374 } 2375 igvn.reset_from_gvn(initial_gvn()); 2376 igvn.optimize(); 2377 if (failing()) return; 2378 } 2379 2380 // Now that all inlining is over and no PhaseRemoveUseless will run, cut edge from root to loop 2381 // safepoints 2382 remove_root_to_sfpts_edges(igvn); 2383 2384 if (failing()) return; 2385 2386 // Perform escape analysis 2387 if (do_escape_analysis() && ConnectionGraph::has_candidates(this)) { 2388 if (has_loops()) { 2389 // Cleanup graph (remove dead nodes). 2390 TracePhase tp(_t_idealLoop); 2391 PhaseIdealLoop::optimize(igvn, LoopOptsMaxUnroll); 2392 if (failing()) return; 2393 } 2394 bool progress; 2395 print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2); 2396 do { 2397 ConnectionGraph::do_analysis(this, &igvn); 2398 2399 if (failing()) return; 2400 2401 int mcount = macro_count(); // Record number of allocations and locks before IGVN 2402 2403 // Optimize out fields loads from scalar replaceable allocations. 2404 igvn.optimize(); 2405 print_method(PHASE_ITER_GVN_AFTER_EA, 2); 2406 2407 if (failing()) return; 2408 2409 if (congraph() != nullptr && macro_count() > 0) { 2410 TracePhase tp(_t_macroEliminate); 2411 PhaseMacroExpand mexp(igvn); 2412 mexp.eliminate_macro_nodes(); 2413 if (failing()) return; 2414 2415 igvn.set_delay_transform(false); 2416 igvn.optimize(); 2417 if (failing()) return; 2418 2419 print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2); 2420 } 2421 2422 ConnectionGraph::verify_ram_nodes(this, root()); 2423 if (failing()) return; 2424 2425 progress = do_iterative_escape_analysis() && 2426 (macro_count() < mcount) && 2427 ConnectionGraph::has_candidates(this); 2428 // Try again if candidates exist and made progress 2429 // by removing some allocations and/or locks. 2430 } while (progress); 2431 } 2432 2433 // Loop transforms on the ideal graph. Range Check Elimination, 2434 // peeling, unrolling, etc. 2435 2436 // Set loop opts counter 2437 if((_loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) { 2438 { 2439 TracePhase tp(_t_idealLoop); 2440 PhaseIdealLoop::optimize(igvn, LoopOptsDefault); 2441 _loop_opts_cnt--; 2442 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2); 2443 if (failing()) return; 2444 } 2445 // Loop opts pass if partial peeling occurred in previous pass 2446 if(PartialPeelLoop && major_progress() && (_loop_opts_cnt > 0)) { 2447 TracePhase tp(_t_idealLoop); 2448 PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf); 2449 _loop_opts_cnt--; 2450 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2); 2451 if (failing()) return; 2452 } 2453 // Loop opts pass for loop-unrolling before CCP 2454 if(major_progress() && (_loop_opts_cnt > 0)) { 2455 TracePhase tp(_t_idealLoop); 2456 PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf); 2457 _loop_opts_cnt--; 2458 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2); 2459 } 2460 if (!failing()) { 2461 // Verify that last round of loop opts produced a valid graph 2462 PhaseIdealLoop::verify(igvn); 2463 } 2464 } 2465 if (failing()) return; 2466 2467 // Conditional Constant Propagation; 2468 print_method(PHASE_BEFORE_CCP1, 2); 2469 PhaseCCP ccp( &igvn ); 2470 assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)"); 2471 { 2472 TracePhase tp(_t_ccp); 2473 ccp.do_transform(); 2474 } 2475 print_method(PHASE_CCP1, 2); 2476 2477 assert( true, "Break here to ccp.dump_old2new_map()"); 2478 2479 // Iterative Global Value Numbering, including ideal transforms 2480 { 2481 TracePhase tp(_t_iterGVN2); 2482 igvn.reset_from_igvn(&ccp); 2483 igvn.optimize(); 2484 } 2485 print_method(PHASE_ITER_GVN2, 2); 2486 2487 if (failing()) return; 2488 2489 // Loop transforms on the ideal graph. Range Check Elimination, 2490 // peeling, unrolling, etc. 2491 if (!optimize_loops(igvn, LoopOptsDefault)) { 2492 return; 2493 } 2494 2495 if (failing()) return; 2496 2497 C->clear_major_progress(); // ensure that major progress is now clear 2498 2499 process_for_post_loop_opts_igvn(igvn); 2500 2501 process_for_merge_stores_igvn(igvn); 2502 2503 if (failing()) return; 2504 2505 #ifdef ASSERT 2506 bs->verify_gc_barriers(this, BarrierSetC2::BeforeMacroExpand); 2507 #endif 2508 2509 { 2510 TracePhase tp(_t_macroExpand); 2511 print_method(PHASE_BEFORE_MACRO_EXPANSION, 3); 2512 PhaseMacroExpand mex(igvn); 2513 if (mex.expand_macro_nodes()) { 2514 assert(failing(), "must bail out w/ explicit message"); 2515 return; 2516 } 2517 print_method(PHASE_AFTER_MACRO_EXPANSION, 2); 2518 } 2519 2520 { 2521 TracePhase tp(_t_barrierExpand); 2522 if (bs->expand_barriers(this, igvn)) { 2523 assert(failing(), "must bail out w/ explicit message"); 2524 return; 2525 } 2526 print_method(PHASE_BARRIER_EXPANSION, 2); 2527 } 2528 2529 if (C->max_vector_size() > 0) { 2530 C->optimize_logic_cones(igvn); 2531 igvn.optimize(); 2532 if (failing()) return; 2533 } 2534 2535 DEBUG_ONLY( _modified_nodes = nullptr; ) 2536 2537 assert(igvn._worklist.size() == 0, "not empty"); 2538 2539 assert(_late_inlines.length() == 0 || IncrementalInlineMH || IncrementalInlineVirtual, "not empty"); 2540 2541 if (_late_inlines.length() > 0) { 2542 // More opportunities to optimize virtual and MH calls. 2543 // Though it's maybe too late to perform inlining, strength-reducing them to direct calls is still an option. 2544 process_late_inline_calls_no_inline(igvn); 2545 if (failing()) return; 2546 } 2547 } // (End scope of igvn; run destructor if necessary for asserts.) 2548 2549 check_no_dead_use(); 2550 2551 // We will never use the NodeHash table any more. Clear it so that final_graph_reshaping does not have 2552 // to remove hashes to unlock nodes for modifications. 2553 C->node_hash()->clear(); 2554 2555 // A method with only infinite loops has no edges entering loops from root 2556 { 2557 TracePhase tp(_t_graphReshaping); 2558 if (final_graph_reshaping()) { 2559 assert(failing(), "must bail out w/ explicit message"); 2560 return; 2561 } 2562 } 2563 2564 print_method(PHASE_OPTIMIZE_FINISHED, 2); 2565 DEBUG_ONLY(set_phase_optimize_finished();) 2566 } 2567 2568 #ifdef ASSERT 2569 void Compile::check_no_dead_use() const { 2570 ResourceMark rm; 2571 Unique_Node_List wq; 2572 wq.push(root()); 2573 for (uint i = 0; i < wq.size(); ++i) { 2574 Node* n = wq.at(i); 2575 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) { 2576 Node* u = n->fast_out(j); 2577 if (u->outcnt() == 0 && !u->is_Con()) { 2578 u->dump(); 2579 fatal("no reachable node should have no use"); 2580 } 2581 wq.push(u); 2582 } 2583 } 2584 } 2585 #endif 2586 2587 void Compile::inline_vector_reboxing_calls() { 2588 if (C->_vector_reboxing_late_inlines.length() > 0) { 2589 _late_inlines_pos = C->_late_inlines.length(); 2590 while (_vector_reboxing_late_inlines.length() > 0) { 2591 CallGenerator* cg = _vector_reboxing_late_inlines.pop(); 2592 cg->do_late_inline(); 2593 if (failing()) return; 2594 print_method(PHASE_INLINE_VECTOR_REBOX, 3, cg->call_node()); 2595 } 2596 _vector_reboxing_late_inlines.trunc_to(0); 2597 } 2598 } 2599 2600 bool Compile::has_vbox_nodes() { 2601 if (C->_vector_reboxing_late_inlines.length() > 0) { 2602 return true; 2603 } 2604 for (int macro_idx = C->macro_count() - 1; macro_idx >= 0; macro_idx--) { 2605 Node * n = C->macro_node(macro_idx); 2606 assert(n->is_macro(), "only macro nodes expected here"); 2607 if (n->Opcode() == Op_VectorUnbox || n->Opcode() == Op_VectorBox || n->Opcode() == Op_VectorBoxAllocate) { 2608 return true; 2609 } 2610 } 2611 return false; 2612 } 2613 2614 //---------------------------- Bitwise operation packing optimization --------------------------- 2615 2616 static bool is_vector_unary_bitwise_op(Node* n) { 2617 return n->Opcode() == Op_XorV && 2618 VectorNode::is_vector_bitwise_not_pattern(n); 2619 } 2620 2621 static bool is_vector_binary_bitwise_op(Node* n) { 2622 switch (n->Opcode()) { 2623 case Op_AndV: 2624 case Op_OrV: 2625 return true; 2626 2627 case Op_XorV: 2628 return !is_vector_unary_bitwise_op(n); 2629 2630 default: 2631 return false; 2632 } 2633 } 2634 2635 static bool is_vector_ternary_bitwise_op(Node* n) { 2636 return n->Opcode() == Op_MacroLogicV; 2637 } 2638 2639 static bool is_vector_bitwise_op(Node* n) { 2640 return is_vector_unary_bitwise_op(n) || 2641 is_vector_binary_bitwise_op(n) || 2642 is_vector_ternary_bitwise_op(n); 2643 } 2644 2645 static bool is_vector_bitwise_cone_root(Node* n) { 2646 if (n->bottom_type()->isa_vectmask() || !is_vector_bitwise_op(n)) { 2647 return false; 2648 } 2649 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 2650 if (is_vector_bitwise_op(n->fast_out(i))) { 2651 return false; 2652 } 2653 } 2654 return true; 2655 } 2656 2657 static uint collect_unique_inputs(Node* n, Unique_Node_List& inputs) { 2658 uint cnt = 0; 2659 if (is_vector_bitwise_op(n)) { 2660 uint inp_cnt = n->is_predicated_vector() ? n->req()-1 : n->req(); 2661 if (VectorNode::is_vector_bitwise_not_pattern(n)) { 2662 for (uint i = 1; i < inp_cnt; i++) { 2663 Node* in = n->in(i); 2664 bool skip = VectorNode::is_all_ones_vector(in); 2665 if (!skip && !inputs.member(in)) { 2666 inputs.push(in); 2667 cnt++; 2668 } 2669 } 2670 assert(cnt <= 1, "not unary"); 2671 } else { 2672 uint last_req = inp_cnt; 2673 if (is_vector_ternary_bitwise_op(n)) { 2674 last_req = inp_cnt - 1; // skip last input 2675 } 2676 for (uint i = 1; i < last_req; i++) { 2677 Node* def = n->in(i); 2678 if (!inputs.member(def)) { 2679 inputs.push(def); 2680 cnt++; 2681 } 2682 } 2683 } 2684 } else { // not a bitwise operations 2685 if (!inputs.member(n)) { 2686 inputs.push(n); 2687 cnt++; 2688 } 2689 } 2690 return cnt; 2691 } 2692 2693 void Compile::collect_logic_cone_roots(Unique_Node_List& list) { 2694 Unique_Node_List useful_nodes; 2695 C->identify_useful_nodes(useful_nodes); 2696 2697 for (uint i = 0; i < useful_nodes.size(); i++) { 2698 Node* n = useful_nodes.at(i); 2699 if (is_vector_bitwise_cone_root(n)) { 2700 list.push(n); 2701 } 2702 } 2703 } 2704 2705 Node* Compile::xform_to_MacroLogicV(PhaseIterGVN& igvn, 2706 const TypeVect* vt, 2707 Unique_Node_List& partition, 2708 Unique_Node_List& inputs) { 2709 assert(partition.size() == 2 || partition.size() == 3, "not supported"); 2710 assert(inputs.size() == 2 || inputs.size() == 3, "not supported"); 2711 assert(Matcher::match_rule_supported_vector(Op_MacroLogicV, vt->length(), vt->element_basic_type()), "not supported"); 2712 2713 Node* in1 = inputs.at(0); 2714 Node* in2 = inputs.at(1); 2715 Node* in3 = (inputs.size() == 3 ? inputs.at(2) : in2); 2716 2717 uint func = compute_truth_table(partition, inputs); 2718 2719 Node* pn = partition.at(partition.size() - 1); 2720 Node* mask = pn->is_predicated_vector() ? pn->in(pn->req()-1) : nullptr; 2721 return igvn.transform(MacroLogicVNode::make(igvn, in1, in2, in3, mask, func, vt)); 2722 } 2723 2724 static uint extract_bit(uint func, uint pos) { 2725 return (func & (1 << pos)) >> pos; 2726 } 2727 2728 // 2729 // A macro logic node represents a truth table. It has 4 inputs, 2730 // First three inputs corresponds to 3 columns of a truth table 2731 // and fourth input captures the logic function. 2732 // 2733 // eg. fn = (in1 AND in2) OR in3; 2734 // 2735 // MacroNode(in1,in2,in3,fn) 2736 // 2737 // ----------------- 2738 // in1 in2 in3 fn 2739 // ----------------- 2740 // 0 0 0 0 2741 // 0 0 1 1 2742 // 0 1 0 0 2743 // 0 1 1 1 2744 // 1 0 0 0 2745 // 1 0 1 1 2746 // 1 1 0 1 2747 // 1 1 1 1 2748 // 2749 2750 uint Compile::eval_macro_logic_op(uint func, uint in1 , uint in2, uint in3) { 2751 int res = 0; 2752 for (int i = 0; i < 8; i++) { 2753 int bit1 = extract_bit(in1, i); 2754 int bit2 = extract_bit(in2, i); 2755 int bit3 = extract_bit(in3, i); 2756 2757 int func_bit_pos = (bit1 << 2 | bit2 << 1 | bit3); 2758 int func_bit = extract_bit(func, func_bit_pos); 2759 2760 res |= func_bit << i; 2761 } 2762 return res; 2763 } 2764 2765 static uint eval_operand(Node* n, ResourceHashtable<Node*,uint>& eval_map) { 2766 assert(n != nullptr, ""); 2767 assert(eval_map.contains(n), "absent"); 2768 return *(eval_map.get(n)); 2769 } 2770 2771 static void eval_operands(Node* n, 2772 uint& func1, uint& func2, uint& func3, 2773 ResourceHashtable<Node*,uint>& eval_map) { 2774 assert(is_vector_bitwise_op(n), ""); 2775 2776 if (is_vector_unary_bitwise_op(n)) { 2777 Node* opnd = n->in(1); 2778 if (VectorNode::is_vector_bitwise_not_pattern(n) && VectorNode::is_all_ones_vector(opnd)) { 2779 opnd = n->in(2); 2780 } 2781 func1 = eval_operand(opnd, eval_map); 2782 } else if (is_vector_binary_bitwise_op(n)) { 2783 func1 = eval_operand(n->in(1), eval_map); 2784 func2 = eval_operand(n->in(2), eval_map); 2785 } else { 2786 assert(is_vector_ternary_bitwise_op(n), "unknown operation"); 2787 func1 = eval_operand(n->in(1), eval_map); 2788 func2 = eval_operand(n->in(2), eval_map); 2789 func3 = eval_operand(n->in(3), eval_map); 2790 } 2791 } 2792 2793 uint Compile::compute_truth_table(Unique_Node_List& partition, Unique_Node_List& inputs) { 2794 assert(inputs.size() <= 3, "sanity"); 2795 ResourceMark rm; 2796 uint res = 0; 2797 ResourceHashtable<Node*,uint> eval_map; 2798 2799 // Populate precomputed functions for inputs. 2800 // Each input corresponds to one column of 3 input truth-table. 2801 uint input_funcs[] = { 0xAA, // (_, _, c) -> c 2802 0xCC, // (_, b, _) -> b 2803 0xF0 }; // (a, _, _) -> a 2804 for (uint i = 0; i < inputs.size(); i++) { 2805 eval_map.put(inputs.at(i), input_funcs[2-i]); 2806 } 2807 2808 for (uint i = 0; i < partition.size(); i++) { 2809 Node* n = partition.at(i); 2810 2811 uint func1 = 0, func2 = 0, func3 = 0; 2812 eval_operands(n, func1, func2, func3, eval_map); 2813 2814 switch (n->Opcode()) { 2815 case Op_OrV: 2816 assert(func3 == 0, "not binary"); 2817 res = func1 | func2; 2818 break; 2819 case Op_AndV: 2820 assert(func3 == 0, "not binary"); 2821 res = func1 & func2; 2822 break; 2823 case Op_XorV: 2824 if (VectorNode::is_vector_bitwise_not_pattern(n)) { 2825 assert(func2 == 0 && func3 == 0, "not unary"); 2826 res = (~func1) & 0xFF; 2827 } else { 2828 assert(func3 == 0, "not binary"); 2829 res = func1 ^ func2; 2830 } 2831 break; 2832 case Op_MacroLogicV: 2833 // Ordering of inputs may change during evaluation of sub-tree 2834 // containing MacroLogic node as a child node, thus a re-evaluation 2835 // makes sure that function is evaluated in context of current 2836 // inputs. 2837 res = eval_macro_logic_op(n->in(4)->get_int(), func1, func2, func3); 2838 break; 2839 2840 default: assert(false, "not supported: %s", n->Name()); 2841 } 2842 assert(res <= 0xFF, "invalid"); 2843 eval_map.put(n, res); 2844 } 2845 return res; 2846 } 2847 2848 // Criteria under which nodes gets packed into a macro logic node:- 2849 // 1) Parent and both child nodes are all unmasked or masked with 2850 // same predicates. 2851 // 2) Masked parent can be packed with left child if it is predicated 2852 // and both have same predicates. 2853 // 3) Masked parent can be packed with right child if its un-predicated 2854 // or has matching predication condition. 2855 // 4) An unmasked parent can be packed with an unmasked child. 2856 bool Compile::compute_logic_cone(Node* n, Unique_Node_List& partition, Unique_Node_List& inputs) { 2857 assert(partition.size() == 0, "not empty"); 2858 assert(inputs.size() == 0, "not empty"); 2859 if (is_vector_ternary_bitwise_op(n)) { 2860 return false; 2861 } 2862 2863 bool is_unary_op = is_vector_unary_bitwise_op(n); 2864 if (is_unary_op) { 2865 assert(collect_unique_inputs(n, inputs) == 1, "not unary"); 2866 return false; // too few inputs 2867 } 2868 2869 bool pack_left_child = true; 2870 bool pack_right_child = true; 2871 2872 bool left_child_LOP = is_vector_bitwise_op(n->in(1)); 2873 bool right_child_LOP = is_vector_bitwise_op(n->in(2)); 2874 2875 int left_child_input_cnt = 0; 2876 int right_child_input_cnt = 0; 2877 2878 bool parent_is_predicated = n->is_predicated_vector(); 2879 bool left_child_predicated = n->in(1)->is_predicated_vector(); 2880 bool right_child_predicated = n->in(2)->is_predicated_vector(); 2881 2882 Node* parent_pred = parent_is_predicated ? n->in(n->req()-1) : nullptr; 2883 Node* left_child_pred = left_child_predicated ? n->in(1)->in(n->in(1)->req()-1) : nullptr; 2884 Node* right_child_pred = right_child_predicated ? n->in(1)->in(n->in(1)->req()-1) : nullptr; 2885 2886 do { 2887 if (pack_left_child && left_child_LOP && 2888 ((!parent_is_predicated && !left_child_predicated) || 2889 ((parent_is_predicated && left_child_predicated && 2890 parent_pred == left_child_pred)))) { 2891 partition.push(n->in(1)); 2892 left_child_input_cnt = collect_unique_inputs(n->in(1), inputs); 2893 } else { 2894 inputs.push(n->in(1)); 2895 left_child_input_cnt = 1; 2896 } 2897 2898 if (pack_right_child && right_child_LOP && 2899 (!right_child_predicated || 2900 (right_child_predicated && parent_is_predicated && 2901 parent_pred == right_child_pred))) { 2902 partition.push(n->in(2)); 2903 right_child_input_cnt = collect_unique_inputs(n->in(2), inputs); 2904 } else { 2905 inputs.push(n->in(2)); 2906 right_child_input_cnt = 1; 2907 } 2908 2909 if (inputs.size() > 3) { 2910 assert(partition.size() > 0, ""); 2911 inputs.clear(); 2912 partition.clear(); 2913 if (left_child_input_cnt > right_child_input_cnt) { 2914 pack_left_child = false; 2915 } else { 2916 pack_right_child = false; 2917 } 2918 } else { 2919 break; 2920 } 2921 } while(true); 2922 2923 if(partition.size()) { 2924 partition.push(n); 2925 } 2926 2927 return (partition.size() == 2 || partition.size() == 3) && 2928 (inputs.size() == 2 || inputs.size() == 3); 2929 } 2930 2931 void Compile::process_logic_cone_root(PhaseIterGVN &igvn, Node *n, VectorSet &visited) { 2932 assert(is_vector_bitwise_op(n), "not a root"); 2933 2934 visited.set(n->_idx); 2935 2936 // 1) Do a DFS walk over the logic cone. 2937 for (uint i = 1; i < n->req(); i++) { 2938 Node* in = n->in(i); 2939 if (!visited.test(in->_idx) && is_vector_bitwise_op(in)) { 2940 process_logic_cone_root(igvn, in, visited); 2941 } 2942 } 2943 2944 // 2) Bottom up traversal: Merge node[s] with 2945 // the parent to form macro logic node. 2946 Unique_Node_List partition; 2947 Unique_Node_List inputs; 2948 if (compute_logic_cone(n, partition, inputs)) { 2949 const TypeVect* vt = n->bottom_type()->is_vect(); 2950 Node* pn = partition.at(partition.size() - 1); 2951 Node* mask = pn->is_predicated_vector() ? pn->in(pn->req()-1) : nullptr; 2952 if (mask == nullptr || 2953 Matcher::match_rule_supported_vector_masked(Op_MacroLogicV, vt->length(), vt->element_basic_type())) { 2954 Node* macro_logic = xform_to_MacroLogicV(igvn, vt, partition, inputs); 2955 VectorNode::trace_new_vector(macro_logic, "MacroLogic"); 2956 igvn.replace_node(n, macro_logic); 2957 } 2958 } 2959 } 2960 2961 void Compile::optimize_logic_cones(PhaseIterGVN &igvn) { 2962 ResourceMark rm; 2963 if (Matcher::match_rule_supported(Op_MacroLogicV)) { 2964 Unique_Node_List list; 2965 collect_logic_cone_roots(list); 2966 2967 while (list.size() > 0) { 2968 Node* n = list.pop(); 2969 const TypeVect* vt = n->bottom_type()->is_vect(); 2970 bool supported = Matcher::match_rule_supported_vector(Op_MacroLogicV, vt->length(), vt->element_basic_type()); 2971 if (supported) { 2972 VectorSet visited(comp_arena()); 2973 process_logic_cone_root(igvn, n, visited); 2974 } 2975 } 2976 } 2977 } 2978 2979 //------------------------------Code_Gen--------------------------------------- 2980 // Given a graph, generate code for it 2981 void Compile::Code_Gen() { 2982 if (failing()) { 2983 return; 2984 } 2985 2986 // Perform instruction selection. You might think we could reclaim Matcher 2987 // memory PDQ, but actually the Matcher is used in generating spill code. 2988 // Internals of the Matcher (including some VectorSets) must remain live 2989 // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage 2990 // set a bit in reclaimed memory. 2991 2992 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine 2993 // nodes. Mapping is only valid at the root of each matched subtree. 2994 NOT_PRODUCT( verify_graph_edges(); ) 2995 2996 Matcher matcher; 2997 _matcher = &matcher; 2998 { 2999 TracePhase tp(_t_matcher); 3000 matcher.match(); 3001 if (failing()) { 3002 return; 3003 } 3004 } 3005 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine 3006 // nodes. Mapping is only valid at the root of each matched subtree. 3007 NOT_PRODUCT( verify_graph_edges(); ) 3008 3009 // If you have too many nodes, or if matching has failed, bail out 3010 check_node_count(0, "out of nodes matching instructions"); 3011 if (failing()) { 3012 return; 3013 } 3014 3015 print_method(PHASE_MATCHING, 2); 3016 3017 // Build a proper-looking CFG 3018 PhaseCFG cfg(node_arena(), root(), matcher); 3019 if (failing()) { 3020 return; 3021 } 3022 _cfg = &cfg; 3023 { 3024 TracePhase tp(_t_scheduler); 3025 bool success = cfg.do_global_code_motion(); 3026 if (!success) { 3027 return; 3028 } 3029 3030 print_method(PHASE_GLOBAL_CODE_MOTION, 2); 3031 NOT_PRODUCT( verify_graph_edges(); ) 3032 cfg.verify(); 3033 if (failing()) { 3034 return; 3035 } 3036 } 3037 3038 PhaseChaitin regalloc(unique(), cfg, matcher, false); 3039 _regalloc = ®alloc; 3040 { 3041 TracePhase tp(_t_registerAllocation); 3042 // Perform register allocation. After Chaitin, use-def chains are 3043 // no longer accurate (at spill code) and so must be ignored. 3044 // Node->LRG->reg mappings are still accurate. 3045 _regalloc->Register_Allocate(); 3046 3047 // Bail out if the allocator builds too many nodes 3048 if (failing()) { 3049 return; 3050 } 3051 3052 print_method(PHASE_REGISTER_ALLOCATION, 2); 3053 } 3054 3055 // Prior to register allocation we kept empty basic blocks in case the 3056 // the allocator needed a place to spill. After register allocation we 3057 // are not adding any new instructions. If any basic block is empty, we 3058 // can now safely remove it. 3059 { 3060 TracePhase tp(_t_blockOrdering); 3061 cfg.remove_empty_blocks(); 3062 if (do_freq_based_layout()) { 3063 PhaseBlockLayout layout(cfg); 3064 } else { 3065 cfg.set_loop_alignment(); 3066 } 3067 cfg.fixup_flow(); 3068 cfg.remove_unreachable_blocks(); 3069 cfg.verify_dominator_tree(); 3070 print_method(PHASE_BLOCK_ORDERING, 3); 3071 } 3072 3073 // Apply peephole optimizations 3074 if( OptoPeephole ) { 3075 TracePhase tp(_t_peephole); 3076 PhasePeephole peep( _regalloc, cfg); 3077 peep.do_transform(); 3078 print_method(PHASE_PEEPHOLE, 3); 3079 } 3080 3081 // Do late expand if CPU requires this. 3082 if (Matcher::require_postalloc_expand) { 3083 TracePhase tp(_t_postalloc_expand); 3084 cfg.postalloc_expand(_regalloc); 3085 print_method(PHASE_POSTALLOC_EXPAND, 3); 3086 } 3087 3088 #ifdef ASSERT 3089 { 3090 CompilationMemoryStatistic::do_test_allocations(); 3091 if (failing()) return; 3092 } 3093 #endif 3094 3095 // Convert Nodes to instruction bits in a buffer 3096 { 3097 TracePhase tp(_t_output); 3098 PhaseOutput output; 3099 output.Output(); 3100 if (failing()) return; 3101 output.install(); 3102 print_method(PHASE_FINAL_CODE, 1); // Compile::_output is not null here 3103 } 3104 3105 // He's dead, Jim. 3106 _cfg = (PhaseCFG*)((intptr_t)0xdeadbeef); 3107 _regalloc = (PhaseChaitin*)((intptr_t)0xdeadbeef); 3108 } 3109 3110 //------------------------------Final_Reshape_Counts--------------------------- 3111 // This class defines counters to help identify when a method 3112 // may/must be executed using hardware with only 24-bit precision. 3113 struct Final_Reshape_Counts : public StackObj { 3114 int _call_count; // count non-inlined 'common' calls 3115 int _float_count; // count float ops requiring 24-bit precision 3116 int _double_count; // count double ops requiring more precision 3117 int _java_call_count; // count non-inlined 'java' calls 3118 int _inner_loop_count; // count loops which need alignment 3119 VectorSet _visited; // Visitation flags 3120 Node_List _tests; // Set of IfNodes & PCTableNodes 3121 3122 Final_Reshape_Counts() : 3123 _call_count(0), _float_count(0), _double_count(0), 3124 _java_call_count(0), _inner_loop_count(0) { } 3125 3126 void inc_call_count () { _call_count ++; } 3127 void inc_float_count () { _float_count ++; } 3128 void inc_double_count() { _double_count++; } 3129 void inc_java_call_count() { _java_call_count++; } 3130 void inc_inner_loop_count() { _inner_loop_count++; } 3131 3132 int get_call_count () const { return _call_count ; } 3133 int get_float_count () const { return _float_count ; } 3134 int get_double_count() const { return _double_count; } 3135 int get_java_call_count() const { return _java_call_count; } 3136 int get_inner_loop_count() const { return _inner_loop_count; } 3137 }; 3138 3139 //------------------------------final_graph_reshaping_impl---------------------- 3140 // Implement items 1-5 from final_graph_reshaping below. 3141 void Compile::final_graph_reshaping_impl(Node *n, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes) { 3142 3143 if ( n->outcnt() == 0 ) return; // dead node 3144 uint nop = n->Opcode(); 3145 3146 // Check for 2-input instruction with "last use" on right input. 3147 // Swap to left input. Implements item (2). 3148 if( n->req() == 3 && // two-input instruction 3149 n->in(1)->outcnt() > 1 && // left use is NOT a last use 3150 (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop 3151 n->in(2)->outcnt() == 1 &&// right use IS a last use 3152 !n->in(2)->is_Con() ) { // right use is not a constant 3153 // Check for commutative opcode 3154 switch( nop ) { 3155 case Op_AddI: case Op_AddF: case Op_AddD: case Op_AddL: 3156 case Op_MaxI: case Op_MaxL: case Op_MaxF: case Op_MaxD: 3157 case Op_MinI: case Op_MinL: case Op_MinF: case Op_MinD: 3158 case Op_MulI: case Op_MulF: case Op_MulD: case Op_MulL: 3159 case Op_AndL: case Op_XorL: case Op_OrL: 3160 case Op_AndI: case Op_XorI: case Op_OrI: { 3161 // Move "last use" input to left by swapping inputs 3162 n->swap_edges(1, 2); 3163 break; 3164 } 3165 default: 3166 break; 3167 } 3168 } 3169 3170 #ifdef ASSERT 3171 if( n->is_Mem() ) { 3172 int alias_idx = get_alias_index(n->as_Mem()->adr_type()); 3173 assert( n->in(0) != nullptr || alias_idx != Compile::AliasIdxRaw || 3174 // oop will be recorded in oop map if load crosses safepoint 3175 (n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() || 3176 LoadNode::is_immutable_value(n->in(MemNode::Address)))), 3177 "raw memory operations should have control edge"); 3178 } 3179 if (n->is_MemBar()) { 3180 MemBarNode* mb = n->as_MemBar(); 3181 if (mb->trailing_store() || mb->trailing_load_store()) { 3182 assert(mb->leading_membar()->trailing_membar() == mb, "bad membar pair"); 3183 Node* mem = BarrierSet::barrier_set()->barrier_set_c2()->step_over_gc_barrier(mb->in(MemBarNode::Precedent)); 3184 assert((mb->trailing_store() && mem->is_Store() && mem->as_Store()->is_release()) || 3185 (mb->trailing_load_store() && mem->is_LoadStore()), "missing mem op"); 3186 } else if (mb->leading()) { 3187 assert(mb->trailing_membar()->leading_membar() == mb, "bad membar pair"); 3188 } 3189 } 3190 #endif 3191 // Count FPU ops and common calls, implements item (3) 3192 bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->final_graph_reshaping(this, n, nop, dead_nodes); 3193 if (!gc_handled) { 3194 final_graph_reshaping_main_switch(n, frc, nop, dead_nodes); 3195 } 3196 3197 // Collect CFG split points 3198 if (n->is_MultiBranch() && !n->is_RangeCheck()) { 3199 frc._tests.push(n); 3200 } 3201 } 3202 3203 void Compile::handle_div_mod_op(Node* n, BasicType bt, bool is_unsigned) { 3204 if (!UseDivMod) { 3205 return; 3206 } 3207 3208 // Check if "a % b" and "a / b" both exist 3209 Node* d = n->find_similar(Op_DivIL(bt, is_unsigned)); 3210 if (d == nullptr) { 3211 return; 3212 } 3213 3214 // Replace them with a fused divmod if supported 3215 if (Matcher::has_match_rule(Op_DivModIL(bt, is_unsigned))) { 3216 DivModNode* divmod = DivModNode::make(n, bt, is_unsigned); 3217 // If the divisor input for a Div (or Mod etc.) is not zero, then the control input of the Div is set to zero. 3218 // It could be that the divisor input is found not zero because its type is narrowed down by a CastII in the 3219 // subgraph for that input. Range check CastIIs are removed during final graph reshape. To preserve the dependency 3220 // carried by a CastII, precedence edges are added to the Div node. We need to transfer the precedence edges to the 3221 // DivMod node so the dependency is not lost. 3222 divmod->add_prec_from(n); 3223 divmod->add_prec_from(d); 3224 d->subsume_by(divmod->div_proj(), this); 3225 n->subsume_by(divmod->mod_proj(), this); 3226 } else { 3227 // Replace "a % b" with "a - ((a / b) * b)" 3228 Node* mult = MulNode::make(d, d->in(2), bt); 3229 Node* sub = SubNode::make(d->in(1), mult, bt); 3230 n->subsume_by(sub, this); 3231 } 3232 } 3233 3234 void Compile::final_graph_reshaping_main_switch(Node* n, Final_Reshape_Counts& frc, uint nop, Unique_Node_List& dead_nodes) { 3235 switch( nop ) { 3236 // Count all float operations that may use FPU 3237 case Op_AddF: 3238 case Op_SubF: 3239 case Op_MulF: 3240 case Op_DivF: 3241 case Op_NegF: 3242 case Op_ModF: 3243 case Op_ConvI2F: 3244 case Op_ConF: 3245 case Op_CmpF: 3246 case Op_CmpF3: 3247 case Op_StoreF: 3248 case Op_LoadF: 3249 // case Op_ConvL2F: // longs are split into 32-bit halves 3250 frc.inc_float_count(); 3251 break; 3252 3253 case Op_ConvF2D: 3254 case Op_ConvD2F: 3255 frc.inc_float_count(); 3256 frc.inc_double_count(); 3257 break; 3258 3259 // Count all double operations that may use FPU 3260 case Op_AddD: 3261 case Op_SubD: 3262 case Op_MulD: 3263 case Op_DivD: 3264 case Op_NegD: 3265 case Op_ModD: 3266 case Op_ConvI2D: 3267 case Op_ConvD2I: 3268 // case Op_ConvL2D: // handled by leaf call 3269 // case Op_ConvD2L: // handled by leaf call 3270 case Op_ConD: 3271 case Op_CmpD: 3272 case Op_CmpD3: 3273 case Op_StoreD: 3274 case Op_LoadD: 3275 case Op_LoadD_unaligned: 3276 frc.inc_double_count(); 3277 break; 3278 case Op_Opaque1: // Remove Opaque Nodes before matching 3279 n->subsume_by(n->in(1), this); 3280 break; 3281 case Op_CallStaticJava: 3282 case Op_CallJava: 3283 case Op_CallDynamicJava: 3284 frc.inc_java_call_count(); // Count java call site; 3285 case Op_CallRuntime: 3286 case Op_CallLeaf: 3287 case Op_CallLeafVector: 3288 case Op_CallLeafNoFP: { 3289 assert (n->is_Call(), ""); 3290 CallNode *call = n->as_Call(); 3291 // Count call sites where the FP mode bit would have to be flipped. 3292 // Do not count uncommon runtime calls: 3293 // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking, 3294 // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ... 3295 if (!call->is_CallStaticJava() || !call->as_CallStaticJava()->_name) { 3296 frc.inc_call_count(); // Count the call site 3297 } else { // See if uncommon argument is shared 3298 Node *n = call->in(TypeFunc::Parms); 3299 int nop = n->Opcode(); 3300 // Clone shared simple arguments to uncommon calls, item (1). 3301 if (n->outcnt() > 1 && 3302 !n->is_Proj() && 3303 nop != Op_CreateEx && 3304 nop != Op_CheckCastPP && 3305 nop != Op_DecodeN && 3306 nop != Op_DecodeNKlass && 3307 !n->is_Mem() && 3308 !n->is_Phi()) { 3309 Node *x = n->clone(); 3310 call->set_req(TypeFunc::Parms, x); 3311 } 3312 } 3313 break; 3314 } 3315 case Op_StoreB: 3316 case Op_StoreC: 3317 case Op_StoreI: 3318 case Op_StoreL: 3319 case Op_CompareAndSwapB: 3320 case Op_CompareAndSwapS: 3321 case Op_CompareAndSwapI: 3322 case Op_CompareAndSwapL: 3323 case Op_CompareAndSwapP: 3324 case Op_CompareAndSwapN: 3325 case Op_WeakCompareAndSwapB: 3326 case Op_WeakCompareAndSwapS: 3327 case Op_WeakCompareAndSwapI: 3328 case Op_WeakCompareAndSwapL: 3329 case Op_WeakCompareAndSwapP: 3330 case Op_WeakCompareAndSwapN: 3331 case Op_CompareAndExchangeB: 3332 case Op_CompareAndExchangeS: 3333 case Op_CompareAndExchangeI: 3334 case Op_CompareAndExchangeL: 3335 case Op_CompareAndExchangeP: 3336 case Op_CompareAndExchangeN: 3337 case Op_GetAndAddS: 3338 case Op_GetAndAddB: 3339 case Op_GetAndAddI: 3340 case Op_GetAndAddL: 3341 case Op_GetAndSetS: 3342 case Op_GetAndSetB: 3343 case Op_GetAndSetI: 3344 case Op_GetAndSetL: 3345 case Op_GetAndSetP: 3346 case Op_GetAndSetN: 3347 case Op_StoreP: 3348 case Op_StoreN: 3349 case Op_StoreNKlass: 3350 case Op_LoadB: 3351 case Op_LoadUB: 3352 case Op_LoadUS: 3353 case Op_LoadI: 3354 case Op_LoadKlass: 3355 case Op_LoadNKlass: 3356 case Op_LoadL: 3357 case Op_LoadL_unaligned: 3358 case Op_LoadP: 3359 case Op_LoadN: 3360 case Op_LoadRange: 3361 case Op_LoadS: 3362 break; 3363 3364 case Op_AddP: { // Assert sane base pointers 3365 Node *addp = n->in(AddPNode::Address); 3366 assert( !addp->is_AddP() || 3367 addp->in(AddPNode::Base)->is_top() || // Top OK for allocation 3368 addp->in(AddPNode::Base) == n->in(AddPNode::Base), 3369 "Base pointers must match (addp %u)", addp->_idx ); 3370 #ifdef _LP64 3371 if ((UseCompressedOops || UseCompressedClassPointers) && 3372 addp->Opcode() == Op_ConP && 3373 addp == n->in(AddPNode::Base) && 3374 n->in(AddPNode::Offset)->is_Con()) { 3375 // If the transformation of ConP to ConN+DecodeN is beneficial depends 3376 // on the platform and on the compressed oops mode. 3377 // Use addressing with narrow klass to load with offset on x86. 3378 // Some platforms can use the constant pool to load ConP. 3379 // Do this transformation here since IGVN will convert ConN back to ConP. 3380 const Type* t = addp->bottom_type(); 3381 bool is_oop = t->isa_oopptr() != nullptr; 3382 bool is_klass = t->isa_klassptr() != nullptr; 3383 3384 if ((is_oop && UseCompressedOops && Matcher::const_oop_prefer_decode() ) || 3385 (is_klass && UseCompressedClassPointers && Matcher::const_klass_prefer_decode() && 3386 t->isa_klassptr()->exact_klass()->is_in_encoding_range())) { 3387 Node* nn = nullptr; 3388 3389 int op = is_oop ? Op_ConN : Op_ConNKlass; 3390 3391 // Look for existing ConN node of the same exact type. 3392 Node* r = root(); 3393 uint cnt = r->outcnt(); 3394 for (uint i = 0; i < cnt; i++) { 3395 Node* m = r->raw_out(i); 3396 if (m!= nullptr && m->Opcode() == op && 3397 m->bottom_type()->make_ptr() == t) { 3398 nn = m; 3399 break; 3400 } 3401 } 3402 if (nn != nullptr) { 3403 // Decode a narrow oop to match address 3404 // [R12 + narrow_oop_reg<<3 + offset] 3405 if (is_oop) { 3406 nn = new DecodeNNode(nn, t); 3407 } else { 3408 nn = new DecodeNKlassNode(nn, t); 3409 } 3410 // Check for succeeding AddP which uses the same Base. 3411 // Otherwise we will run into the assertion above when visiting that guy. 3412 for (uint i = 0; i < n->outcnt(); ++i) { 3413 Node *out_i = n->raw_out(i); 3414 if (out_i && out_i->is_AddP() && out_i->in(AddPNode::Base) == addp) { 3415 out_i->set_req(AddPNode::Base, nn); 3416 #ifdef ASSERT 3417 for (uint j = 0; j < out_i->outcnt(); ++j) { 3418 Node *out_j = out_i->raw_out(j); 3419 assert(out_j == nullptr || !out_j->is_AddP() || out_j->in(AddPNode::Base) != addp, 3420 "more than 2 AddP nodes in a chain (out_j %u)", out_j->_idx); 3421 } 3422 #endif 3423 } 3424 } 3425 n->set_req(AddPNode::Base, nn); 3426 n->set_req(AddPNode::Address, nn); 3427 if (addp->outcnt() == 0) { 3428 addp->disconnect_inputs(this); 3429 } 3430 } 3431 } 3432 } 3433 #endif 3434 break; 3435 } 3436 3437 case Op_CastPP: { 3438 // Remove CastPP nodes to gain more freedom during scheduling but 3439 // keep the dependency they encode as control or precedence edges 3440 // (if control is set already) on memory operations. Some CastPP 3441 // nodes don't have a control (don't carry a dependency): skip 3442 // those. 3443 if (n->in(0) != nullptr) { 3444 ResourceMark rm; 3445 Unique_Node_List wq; 3446 wq.push(n); 3447 for (uint next = 0; next < wq.size(); ++next) { 3448 Node *m = wq.at(next); 3449 for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) { 3450 Node* use = m->fast_out(i); 3451 if (use->is_Mem() || use->is_EncodeNarrowPtr()) { 3452 use->ensure_control_or_add_prec(n->in(0)); 3453 } else { 3454 switch(use->Opcode()) { 3455 case Op_AddP: 3456 case Op_DecodeN: 3457 case Op_DecodeNKlass: 3458 case Op_CheckCastPP: 3459 case Op_CastPP: 3460 wq.push(use); 3461 break; 3462 } 3463 } 3464 } 3465 } 3466 } 3467 const bool is_LP64 = LP64_ONLY(true) NOT_LP64(false); 3468 if (is_LP64 && n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) { 3469 Node* in1 = n->in(1); 3470 const Type* t = n->bottom_type(); 3471 Node* new_in1 = in1->clone(); 3472 new_in1->as_DecodeN()->set_type(t); 3473 3474 if (!Matcher::narrow_oop_use_complex_address()) { 3475 // 3476 // x86, ARM and friends can handle 2 adds in addressing mode 3477 // and Matcher can fold a DecodeN node into address by using 3478 // a narrow oop directly and do implicit null check in address: 3479 // 3480 // [R12 + narrow_oop_reg<<3 + offset] 3481 // NullCheck narrow_oop_reg 3482 // 3483 // On other platforms (Sparc) we have to keep new DecodeN node and 3484 // use it to do implicit null check in address: 3485 // 3486 // decode_not_null narrow_oop_reg, base_reg 3487 // [base_reg + offset] 3488 // NullCheck base_reg 3489 // 3490 // Pin the new DecodeN node to non-null path on these platform (Sparc) 3491 // to keep the information to which null check the new DecodeN node 3492 // corresponds to use it as value in implicit_null_check(). 3493 // 3494 new_in1->set_req(0, n->in(0)); 3495 } 3496 3497 n->subsume_by(new_in1, this); 3498 if (in1->outcnt() == 0) { 3499 in1->disconnect_inputs(this); 3500 } 3501 } else { 3502 n->subsume_by(n->in(1), this); 3503 if (n->outcnt() == 0) { 3504 n->disconnect_inputs(this); 3505 } 3506 } 3507 break; 3508 } 3509 case Op_CastII: { 3510 n->as_CastII()->remove_range_check_cast(this); 3511 break; 3512 } 3513 #ifdef _LP64 3514 case Op_CmpP: 3515 // Do this transformation here to preserve CmpPNode::sub() and 3516 // other TypePtr related Ideal optimizations (for example, ptr nullness). 3517 if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) { 3518 Node* in1 = n->in(1); 3519 Node* in2 = n->in(2); 3520 if (!in1->is_DecodeNarrowPtr()) { 3521 in2 = in1; 3522 in1 = n->in(2); 3523 } 3524 assert(in1->is_DecodeNarrowPtr(), "sanity"); 3525 3526 Node* new_in2 = nullptr; 3527 if (in2->is_DecodeNarrowPtr()) { 3528 assert(in2->Opcode() == in1->Opcode(), "must be same node type"); 3529 new_in2 = in2->in(1); 3530 } else if (in2->Opcode() == Op_ConP) { 3531 const Type* t = in2->bottom_type(); 3532 if (t == TypePtr::NULL_PTR) { 3533 assert(in1->is_DecodeN(), "compare klass to null?"); 3534 // Don't convert CmpP null check into CmpN if compressed 3535 // oops implicit null check is not generated. 3536 // This will allow to generate normal oop implicit null check. 3537 if (Matcher::gen_narrow_oop_implicit_null_checks()) 3538 new_in2 = ConNode::make(TypeNarrowOop::NULL_PTR); 3539 // 3540 // This transformation together with CastPP transformation above 3541 // will generated code for implicit null checks for compressed oops. 3542 // 3543 // The original code after Optimize() 3544 // 3545 // LoadN memory, narrow_oop_reg 3546 // decode narrow_oop_reg, base_reg 3547 // CmpP base_reg, nullptr 3548 // CastPP base_reg // NotNull 3549 // Load [base_reg + offset], val_reg 3550 // 3551 // after these transformations will be 3552 // 3553 // LoadN memory, narrow_oop_reg 3554 // CmpN narrow_oop_reg, nullptr 3555 // decode_not_null narrow_oop_reg, base_reg 3556 // Load [base_reg + offset], val_reg 3557 // 3558 // and the uncommon path (== nullptr) will use narrow_oop_reg directly 3559 // since narrow oops can be used in debug info now (see the code in 3560 // final_graph_reshaping_walk()). 3561 // 3562 // At the end the code will be matched to 3563 // on x86: 3564 // 3565 // Load_narrow_oop memory, narrow_oop_reg 3566 // Load [R12 + narrow_oop_reg<<3 + offset], val_reg 3567 // NullCheck narrow_oop_reg 3568 // 3569 // and on sparc: 3570 // 3571 // Load_narrow_oop memory, narrow_oop_reg 3572 // decode_not_null narrow_oop_reg, base_reg 3573 // Load [base_reg + offset], val_reg 3574 // NullCheck base_reg 3575 // 3576 } else if (t->isa_oopptr()) { 3577 new_in2 = ConNode::make(t->make_narrowoop()); 3578 } else if (t->isa_klassptr()) { 3579 new_in2 = ConNode::make(t->make_narrowklass()); 3580 } 3581 } 3582 if (new_in2 != nullptr) { 3583 Node* cmpN = new CmpNNode(in1->in(1), new_in2); 3584 n->subsume_by(cmpN, this); 3585 if (in1->outcnt() == 0) { 3586 in1->disconnect_inputs(this); 3587 } 3588 if (in2->outcnt() == 0) { 3589 in2->disconnect_inputs(this); 3590 } 3591 } 3592 } 3593 break; 3594 3595 case Op_DecodeN: 3596 case Op_DecodeNKlass: 3597 assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out"); 3598 // DecodeN could be pinned when it can't be fold into 3599 // an address expression, see the code for Op_CastPP above. 3600 assert(n->in(0) == nullptr || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control"); 3601 break; 3602 3603 case Op_EncodeP: 3604 case Op_EncodePKlass: { 3605 Node* in1 = n->in(1); 3606 if (in1->is_DecodeNarrowPtr()) { 3607 n->subsume_by(in1->in(1), this); 3608 } else if (in1->Opcode() == Op_ConP) { 3609 const Type* t = in1->bottom_type(); 3610 if (t == TypePtr::NULL_PTR) { 3611 assert(t->isa_oopptr(), "null klass?"); 3612 n->subsume_by(ConNode::make(TypeNarrowOop::NULL_PTR), this); 3613 } else if (t->isa_oopptr()) { 3614 n->subsume_by(ConNode::make(t->make_narrowoop()), this); 3615 } else if (t->isa_klassptr()) { 3616 n->subsume_by(ConNode::make(t->make_narrowklass()), this); 3617 } 3618 } 3619 if (in1->outcnt() == 0) { 3620 in1->disconnect_inputs(this); 3621 } 3622 break; 3623 } 3624 3625 case Op_Proj: { 3626 if (OptimizeStringConcat || IncrementalInline) { 3627 ProjNode* proj = n->as_Proj(); 3628 if (proj->_is_io_use) { 3629 assert(proj->_con == TypeFunc::I_O || proj->_con == TypeFunc::Memory, ""); 3630 // Separate projections were used for the exception path which 3631 // are normally removed by a late inline. If it wasn't inlined 3632 // then they will hang around and should just be replaced with 3633 // the original one. Merge them. 3634 Node* non_io_proj = proj->in(0)->as_Multi()->proj_out_or_null(proj->_con, false /*is_io_use*/); 3635 if (non_io_proj != nullptr) { 3636 proj->subsume_by(non_io_proj , this); 3637 } 3638 } 3639 } 3640 break; 3641 } 3642 3643 case Op_Phi: 3644 if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) { 3645 // The EncodeP optimization may create Phi with the same edges 3646 // for all paths. It is not handled well by Register Allocator. 3647 Node* unique_in = n->in(1); 3648 assert(unique_in != nullptr, ""); 3649 uint cnt = n->req(); 3650 for (uint i = 2; i < cnt; i++) { 3651 Node* m = n->in(i); 3652 assert(m != nullptr, ""); 3653 if (unique_in != m) 3654 unique_in = nullptr; 3655 } 3656 if (unique_in != nullptr) { 3657 n->subsume_by(unique_in, this); 3658 } 3659 } 3660 break; 3661 3662 #endif 3663 3664 case Op_ModI: 3665 handle_div_mod_op(n, T_INT, false); 3666 break; 3667 3668 case Op_ModL: 3669 handle_div_mod_op(n, T_LONG, false); 3670 break; 3671 3672 case Op_UModI: 3673 handle_div_mod_op(n, T_INT, true); 3674 break; 3675 3676 case Op_UModL: 3677 handle_div_mod_op(n, T_LONG, true); 3678 break; 3679 3680 case Op_LoadVector: 3681 case Op_StoreVector: 3682 #ifdef ASSERT 3683 // Add VerifyVectorAlignment node between adr and load / store. 3684 if (VerifyAlignVector && Matcher::has_match_rule(Op_VerifyVectorAlignment)) { 3685 bool must_verify_alignment = n->is_LoadVector() ? n->as_LoadVector()->must_verify_alignment() : 3686 n->as_StoreVector()->must_verify_alignment(); 3687 if (must_verify_alignment) { 3688 jlong vector_width = n->is_LoadVector() ? n->as_LoadVector()->memory_size() : 3689 n->as_StoreVector()->memory_size(); 3690 // The memory access should be aligned to the vector width in bytes. 3691 // However, the underlying array is possibly less well aligned, but at least 3692 // to ObjectAlignmentInBytes. Hence, even if multiple arrays are accessed in 3693 // a loop we can expect at least the following alignment: 3694 jlong guaranteed_alignment = MIN2(vector_width, (jlong)ObjectAlignmentInBytes); 3695 assert(2 <= guaranteed_alignment && guaranteed_alignment <= 64, "alignment must be in range"); 3696 assert(is_power_of_2(guaranteed_alignment), "alignment must be power of 2"); 3697 // Create mask from alignment. e.g. 0b1000 -> 0b0111 3698 jlong mask = guaranteed_alignment - 1; 3699 Node* mask_con = ConLNode::make(mask); 3700 VerifyVectorAlignmentNode* va = new VerifyVectorAlignmentNode(n->in(MemNode::Address), mask_con); 3701 n->set_req(MemNode::Address, va); 3702 } 3703 } 3704 #endif 3705 break; 3706 3707 case Op_LoadVectorGather: 3708 case Op_StoreVectorScatter: 3709 case Op_LoadVectorGatherMasked: 3710 case Op_StoreVectorScatterMasked: 3711 case Op_VectorCmpMasked: 3712 case Op_VectorMaskGen: 3713 case Op_LoadVectorMasked: 3714 case Op_StoreVectorMasked: 3715 break; 3716 3717 case Op_AddReductionVI: 3718 case Op_AddReductionVL: 3719 case Op_AddReductionVF: 3720 case Op_AddReductionVD: 3721 case Op_MulReductionVI: 3722 case Op_MulReductionVL: 3723 case Op_MulReductionVF: 3724 case Op_MulReductionVD: 3725 case Op_MinReductionV: 3726 case Op_MaxReductionV: 3727 case Op_AndReductionV: 3728 case Op_OrReductionV: 3729 case Op_XorReductionV: 3730 break; 3731 3732 case Op_PackB: 3733 case Op_PackS: 3734 case Op_PackI: 3735 case Op_PackF: 3736 case Op_PackL: 3737 case Op_PackD: 3738 if (n->req()-1 > 2) { 3739 // Replace many operand PackNodes with a binary tree for matching 3740 PackNode* p = (PackNode*) n; 3741 Node* btp = p->binary_tree_pack(1, n->req()); 3742 n->subsume_by(btp, this); 3743 } 3744 break; 3745 case Op_Loop: 3746 assert(!n->as_Loop()->is_loop_nest_inner_loop() || _loop_opts_cnt == 0, "should have been turned into a counted loop"); 3747 case Op_CountedLoop: 3748 case Op_LongCountedLoop: 3749 case Op_OuterStripMinedLoop: 3750 if (n->as_Loop()->is_inner_loop()) { 3751 frc.inc_inner_loop_count(); 3752 } 3753 n->as_Loop()->verify_strip_mined(0); 3754 break; 3755 case Op_LShiftI: 3756 case Op_RShiftI: 3757 case Op_URShiftI: 3758 case Op_LShiftL: 3759 case Op_RShiftL: 3760 case Op_URShiftL: 3761 if (Matcher::need_masked_shift_count) { 3762 // The cpu's shift instructions don't restrict the count to the 3763 // lower 5/6 bits. We need to do the masking ourselves. 3764 Node* in2 = n->in(2); 3765 juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1); 3766 const TypeInt* t = in2->find_int_type(); 3767 if (t != nullptr && t->is_con()) { 3768 juint shift = t->get_con(); 3769 if (shift > mask) { // Unsigned cmp 3770 n->set_req(2, ConNode::make(TypeInt::make(shift & mask))); 3771 } 3772 } else { 3773 if (t == nullptr || t->_lo < 0 || t->_hi > (int)mask) { 3774 Node* shift = new AndINode(in2, ConNode::make(TypeInt::make(mask))); 3775 n->set_req(2, shift); 3776 } 3777 } 3778 if (in2->outcnt() == 0) { // Remove dead node 3779 in2->disconnect_inputs(this); 3780 } 3781 } 3782 break; 3783 case Op_MemBarStoreStore: 3784 case Op_MemBarRelease: 3785 // Break the link with AllocateNode: it is no longer useful and 3786 // confuses register allocation. 3787 if (n->req() > MemBarNode::Precedent) { 3788 n->set_req(MemBarNode::Precedent, top()); 3789 } 3790 break; 3791 case Op_MemBarAcquire: { 3792 if (n->as_MemBar()->trailing_load() && n->req() > MemBarNode::Precedent) { 3793 // At parse time, the trailing MemBarAcquire for a volatile load 3794 // is created with an edge to the load. After optimizations, 3795 // that input may be a chain of Phis. If those phis have no 3796 // other use, then the MemBarAcquire keeps them alive and 3797 // register allocation can be confused. 3798 dead_nodes.push(n->in(MemBarNode::Precedent)); 3799 n->set_req(MemBarNode::Precedent, top()); 3800 } 3801 break; 3802 } 3803 case Op_Blackhole: 3804 break; 3805 case Op_RangeCheck: { 3806 RangeCheckNode* rc = n->as_RangeCheck(); 3807 Node* iff = new IfNode(rc->in(0), rc->in(1), rc->_prob, rc->_fcnt); 3808 n->subsume_by(iff, this); 3809 frc._tests.push(iff); 3810 break; 3811 } 3812 case Op_ConvI2L: { 3813 if (!Matcher::convi2l_type_required) { 3814 // Code generation on some platforms doesn't need accurate 3815 // ConvI2L types. Widening the type can help remove redundant 3816 // address computations. 3817 n->as_Type()->set_type(TypeLong::INT); 3818 ResourceMark rm; 3819 Unique_Node_List wq; 3820 wq.push(n); 3821 for (uint next = 0; next < wq.size(); next++) { 3822 Node *m = wq.at(next); 3823 3824 for(;;) { 3825 // Loop over all nodes with identical inputs edges as m 3826 Node* k = m->find_similar(m->Opcode()); 3827 if (k == nullptr) { 3828 break; 3829 } 3830 // Push their uses so we get a chance to remove node made 3831 // redundant 3832 for (DUIterator_Fast imax, i = k->fast_outs(imax); i < imax; i++) { 3833 Node* u = k->fast_out(i); 3834 if (u->Opcode() == Op_LShiftL || 3835 u->Opcode() == Op_AddL || 3836 u->Opcode() == Op_SubL || 3837 u->Opcode() == Op_AddP) { 3838 wq.push(u); 3839 } 3840 } 3841 // Replace all nodes with identical edges as m with m 3842 k->subsume_by(m, this); 3843 } 3844 } 3845 } 3846 break; 3847 } 3848 case Op_CmpUL: { 3849 if (!Matcher::has_match_rule(Op_CmpUL)) { 3850 // No support for unsigned long comparisons 3851 ConINode* sign_pos = new ConINode(TypeInt::make(BitsPerLong - 1)); 3852 Node* sign_bit_mask = new RShiftLNode(n->in(1), sign_pos); 3853 Node* orl = new OrLNode(n->in(1), sign_bit_mask); 3854 ConLNode* remove_sign_mask = new ConLNode(TypeLong::make(max_jlong)); 3855 Node* andl = new AndLNode(orl, remove_sign_mask); 3856 Node* cmp = new CmpLNode(andl, n->in(2)); 3857 n->subsume_by(cmp, this); 3858 } 3859 break; 3860 } 3861 #ifdef ASSERT 3862 case Op_ConNKlass: { 3863 const TypePtr* tp = n->as_Type()->type()->make_ptr(); 3864 ciKlass* klass = tp->is_klassptr()->exact_klass(); 3865 assert(klass->is_in_encoding_range(), "klass cannot be compressed"); 3866 break; 3867 } 3868 #endif 3869 default: 3870 assert(!n->is_Call(), ""); 3871 assert(!n->is_Mem(), ""); 3872 assert(nop != Op_ProfileBoolean, "should be eliminated during IGVN"); 3873 break; 3874 } 3875 } 3876 3877 //------------------------------final_graph_reshaping_walk--------------------- 3878 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(), 3879 // requires that the walk visits a node's inputs before visiting the node. 3880 void Compile::final_graph_reshaping_walk(Node_Stack& nstack, Node* root, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes) { 3881 Unique_Node_List sfpt; 3882 3883 frc._visited.set(root->_idx); // first, mark node as visited 3884 uint cnt = root->req(); 3885 Node *n = root; 3886 uint i = 0; 3887 while (true) { 3888 if (i < cnt) { 3889 // Place all non-visited non-null inputs onto stack 3890 Node* m = n->in(i); 3891 ++i; 3892 if (m != nullptr && !frc._visited.test_set(m->_idx)) { 3893 if (m->is_SafePoint() && m->as_SafePoint()->jvms() != nullptr) { 3894 // compute worst case interpreter size in case of a deoptimization 3895 update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size()); 3896 3897 sfpt.push(m); 3898 } 3899 cnt = m->req(); 3900 nstack.push(n, i); // put on stack parent and next input's index 3901 n = m; 3902 i = 0; 3903 } 3904 } else { 3905 // Now do post-visit work 3906 final_graph_reshaping_impl(n, frc, dead_nodes); 3907 if (nstack.is_empty()) 3908 break; // finished 3909 n = nstack.node(); // Get node from stack 3910 cnt = n->req(); 3911 i = nstack.index(); 3912 nstack.pop(); // Shift to the next node on stack 3913 } 3914 } 3915 3916 // Skip next transformation if compressed oops are not used. 3917 if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) || 3918 (!UseCompressedOops && !UseCompressedClassPointers)) 3919 return; 3920 3921 // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges. 3922 // It could be done for an uncommon traps or any safepoints/calls 3923 // if the DecodeN/DecodeNKlass node is referenced only in a debug info. 3924 while (sfpt.size() > 0) { 3925 n = sfpt.pop(); 3926 JVMState *jvms = n->as_SafePoint()->jvms(); 3927 assert(jvms != nullptr, "sanity"); 3928 int start = jvms->debug_start(); 3929 int end = n->req(); 3930 bool is_uncommon = (n->is_CallStaticJava() && 3931 n->as_CallStaticJava()->uncommon_trap_request() != 0); 3932 for (int j = start; j < end; j++) { 3933 Node* in = n->in(j); 3934 if (in->is_DecodeNarrowPtr()) { 3935 bool safe_to_skip = true; 3936 if (!is_uncommon ) { 3937 // Is it safe to skip? 3938 for (uint i = 0; i < in->outcnt(); i++) { 3939 Node* u = in->raw_out(i); 3940 if (!u->is_SafePoint() || 3941 (u->is_Call() && u->as_Call()->has_non_debug_use(n))) { 3942 safe_to_skip = false; 3943 } 3944 } 3945 } 3946 if (safe_to_skip) { 3947 n->set_req(j, in->in(1)); 3948 } 3949 if (in->outcnt() == 0) { 3950 in->disconnect_inputs(this); 3951 } 3952 } 3953 } 3954 } 3955 } 3956 3957 //------------------------------final_graph_reshaping-------------------------- 3958 // Final Graph Reshaping. 3959 // 3960 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late 3961 // and not commoned up and forced early. Must come after regular 3962 // optimizations to avoid GVN undoing the cloning. Clone constant 3963 // inputs to Loop Phis; these will be split by the allocator anyways. 3964 // Remove Opaque nodes. 3965 // (2) Move last-uses by commutative operations to the left input to encourage 3966 // Intel update-in-place two-address operations and better register usage 3967 // on RISCs. Must come after regular optimizations to avoid GVN Ideal 3968 // calls canonicalizing them back. 3969 // (3) Count the number of double-precision FP ops, single-precision FP ops 3970 // and call sites. On Intel, we can get correct rounding either by 3971 // forcing singles to memory (requires extra stores and loads after each 3972 // FP bytecode) or we can set a rounding mode bit (requires setting and 3973 // clearing the mode bit around call sites). The mode bit is only used 3974 // if the relative frequency of single FP ops to calls is low enough. 3975 // This is a key transform for SPEC mpeg_audio. 3976 // (4) Detect infinite loops; blobs of code reachable from above but not 3977 // below. Several of the Code_Gen algorithms fail on such code shapes, 3978 // so we simply bail out. Happens a lot in ZKM.jar, but also happens 3979 // from time to time in other codes (such as -Xcomp finalizer loops, etc). 3980 // Detection is by looking for IfNodes where only 1 projection is 3981 // reachable from below or CatchNodes missing some targets. 3982 // (5) Assert for insane oop offsets in debug mode. 3983 3984 bool Compile::final_graph_reshaping() { 3985 // an infinite loop may have been eliminated by the optimizer, 3986 // in which case the graph will be empty. 3987 if (root()->req() == 1) { 3988 // Do not compile method that is only a trivial infinite loop, 3989 // since the content of the loop may have been eliminated. 3990 record_method_not_compilable("trivial infinite loop"); 3991 return true; 3992 } 3993 3994 // Expensive nodes have their control input set to prevent the GVN 3995 // from freely commoning them. There's no GVN beyond this point so 3996 // no need to keep the control input. We want the expensive nodes to 3997 // be freely moved to the least frequent code path by gcm. 3998 assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?"); 3999 for (int i = 0; i < expensive_count(); i++) { 4000 _expensive_nodes.at(i)->set_req(0, nullptr); 4001 } 4002 4003 Final_Reshape_Counts frc; 4004 4005 // Visit everybody reachable! 4006 // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc 4007 Node_Stack nstack(live_nodes() >> 1); 4008 Unique_Node_List dead_nodes; 4009 final_graph_reshaping_walk(nstack, root(), frc, dead_nodes); 4010 4011 // Check for unreachable (from below) code (i.e., infinite loops). 4012 for( uint i = 0; i < frc._tests.size(); i++ ) { 4013 MultiBranchNode *n = frc._tests[i]->as_MultiBranch(); 4014 // Get number of CFG targets. 4015 // Note that PCTables include exception targets after calls. 4016 uint required_outcnt = n->required_outcnt(); 4017 if (n->outcnt() != required_outcnt) { 4018 // Check for a few special cases. Rethrow Nodes never take the 4019 // 'fall-thru' path, so expected kids is 1 less. 4020 if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) { 4021 if (n->in(0)->in(0)->is_Call()) { 4022 CallNode* call = n->in(0)->in(0)->as_Call(); 4023 if (call->entry_point() == OptoRuntime::rethrow_stub()) { 4024 required_outcnt--; // Rethrow always has 1 less kid 4025 } else if (call->req() > TypeFunc::Parms && 4026 call->is_CallDynamicJava()) { 4027 // Check for null receiver. In such case, the optimizer has 4028 // detected that the virtual call will always result in a null 4029 // pointer exception. The fall-through projection of this CatchNode 4030 // will not be populated. 4031 Node* arg0 = call->in(TypeFunc::Parms); 4032 if (arg0->is_Type() && 4033 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) { 4034 required_outcnt--; 4035 } 4036 } else if (call->entry_point() == OptoRuntime::new_array_Java() || 4037 call->entry_point() == OptoRuntime::new_array_nozero_Java()) { 4038 // Check for illegal array length. In such case, the optimizer has 4039 // detected that the allocation attempt will always result in an 4040 // exception. There is no fall-through projection of this CatchNode . 4041 assert(call->is_CallStaticJava(), "static call expected"); 4042 assert(call->req() == call->jvms()->endoff() + 1, "missing extra input"); 4043 uint valid_length_test_input = call->req() - 1; 4044 Node* valid_length_test = call->in(valid_length_test_input); 4045 call->del_req(valid_length_test_input); 4046 if (valid_length_test->find_int_con(1) == 0) { 4047 required_outcnt--; 4048 } 4049 dead_nodes.push(valid_length_test); 4050 assert(n->outcnt() == required_outcnt, "malformed control flow"); 4051 continue; 4052 } 4053 } 4054 } 4055 4056 // Recheck with a better notion of 'required_outcnt' 4057 if (n->outcnt() != required_outcnt) { 4058 record_method_not_compilable("malformed control flow"); 4059 return true; // Not all targets reachable! 4060 } 4061 } else if (n->is_PCTable() && n->in(0) && n->in(0)->in(0) && n->in(0)->in(0)->is_Call()) { 4062 CallNode* call = n->in(0)->in(0)->as_Call(); 4063 if (call->entry_point() == OptoRuntime::new_array_Java() || 4064 call->entry_point() == OptoRuntime::new_array_nozero_Java()) { 4065 assert(call->is_CallStaticJava(), "static call expected"); 4066 assert(call->req() == call->jvms()->endoff() + 1, "missing extra input"); 4067 uint valid_length_test_input = call->req() - 1; 4068 dead_nodes.push(call->in(valid_length_test_input)); 4069 call->del_req(valid_length_test_input); // valid length test useless now 4070 } 4071 } 4072 // Check that I actually visited all kids. Unreached kids 4073 // must be infinite loops. 4074 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) 4075 if (!frc._visited.test(n->fast_out(j)->_idx)) { 4076 record_method_not_compilable("infinite loop"); 4077 return true; // Found unvisited kid; must be unreach 4078 } 4079 4080 // Here so verification code in final_graph_reshaping_walk() 4081 // always see an OuterStripMinedLoopEnd 4082 if (n->is_OuterStripMinedLoopEnd() || n->is_LongCountedLoopEnd()) { 4083 IfNode* init_iff = n->as_If(); 4084 Node* iff = new IfNode(init_iff->in(0), init_iff->in(1), init_iff->_prob, init_iff->_fcnt); 4085 n->subsume_by(iff, this); 4086 } 4087 } 4088 4089 while (dead_nodes.size() > 0) { 4090 Node* m = dead_nodes.pop(); 4091 if (m->outcnt() == 0 && m != top()) { 4092 for (uint j = 0; j < m->req(); j++) { 4093 Node* in = m->in(j); 4094 if (in != nullptr) { 4095 dead_nodes.push(in); 4096 } 4097 } 4098 m->disconnect_inputs(this); 4099 } 4100 } 4101 4102 #ifdef IA32 4103 // If original bytecodes contained a mixture of floats and doubles 4104 // check if the optimizer has made it homogeneous, item (3). 4105 if (UseSSE == 0 && 4106 frc.get_float_count() > 32 && 4107 frc.get_double_count() == 0 && 4108 (10 * frc.get_call_count() < frc.get_float_count()) ) { 4109 set_24_bit_selection_and_mode(false, true); 4110 } 4111 #endif // IA32 4112 4113 set_java_calls(frc.get_java_call_count()); 4114 set_inner_loops(frc.get_inner_loop_count()); 4115 4116 // No infinite loops, no reason to bail out. 4117 return false; 4118 } 4119 4120 //-----------------------------too_many_traps---------------------------------- 4121 // Report if there are too many traps at the current method and bci. 4122 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded. 4123 bool Compile::too_many_traps(ciMethod* method, 4124 int bci, 4125 Deoptimization::DeoptReason reason) { 4126 if (method->has_trap_at(bci)) { 4127 return true; 4128 } 4129 if (PreloadReduceTraps && for_preload()) { 4130 // Preload code should not have traps, if possible. 4131 return true; 4132 } 4133 ciMethodData* md = method->method_data(); 4134 if (md->is_empty()) { 4135 // Assume the trap has not occurred, or that it occurred only 4136 // because of a transient condition during start-up in the interpreter. 4137 return false; 4138 } 4139 ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : nullptr; 4140 if (md->has_trap_at(bci, m, reason) != 0) { 4141 // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic. 4142 // Also, if there are multiple reasons, or if there is no per-BCI record, 4143 // assume the worst. 4144 if (log()) 4145 log()->elem("observe trap='%s' count='%d'", 4146 Deoptimization::trap_reason_name(reason), 4147 md->trap_count(reason)); 4148 return true; 4149 } else { 4150 // Ignore method/bci and see if there have been too many globally. 4151 return too_many_traps(reason, md); 4152 } 4153 } 4154 4155 // Less-accurate variant which does not require a method and bci. 4156 bool Compile::too_many_traps(Deoptimization::DeoptReason reason, 4157 ciMethodData* logmd) { 4158 if (PreloadReduceTraps && for_preload()) { 4159 // Preload code should not have traps, if possible. 4160 return true; 4161 } 4162 if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) { 4163 // Too many traps globally. 4164 // Note that we use cumulative trap_count, not just md->trap_count. 4165 if (log()) { 4166 int mcount = (logmd == nullptr)? -1: (int)logmd->trap_count(reason); 4167 log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'", 4168 Deoptimization::trap_reason_name(reason), 4169 mcount, trap_count(reason)); 4170 } 4171 return true; 4172 } else { 4173 // The coast is clear. 4174 return false; 4175 } 4176 } 4177 4178 //--------------------------too_many_recompiles-------------------------------- 4179 // Report if there are too many recompiles at the current method and bci. 4180 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff. 4181 // Is not eager to return true, since this will cause the compiler to use 4182 // Action_none for a trap point, to avoid too many recompilations. 4183 bool Compile::too_many_recompiles(ciMethod* method, 4184 int bci, 4185 Deoptimization::DeoptReason reason) { 4186 ciMethodData* md = method->method_data(); 4187 if (md->is_empty()) { 4188 // Assume the trap has not occurred, or that it occurred only 4189 // because of a transient condition during start-up in the interpreter. 4190 return false; 4191 } 4192 // Pick a cutoff point well within PerBytecodeRecompilationCutoff. 4193 uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8; 4194 uint m_cutoff = (uint) PerMethodRecompilationCutoff / 2 + 1; // not zero 4195 Deoptimization::DeoptReason per_bc_reason 4196 = Deoptimization::reason_recorded_per_bytecode_if_any(reason); 4197 ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : nullptr; 4198 if ((per_bc_reason == Deoptimization::Reason_none 4199 || md->has_trap_at(bci, m, reason) != 0) 4200 // The trap frequency measure we care about is the recompile count: 4201 && md->trap_recompiled_at(bci, m) 4202 && md->overflow_recompile_count() >= bc_cutoff) { 4203 // Do not emit a trap here if it has already caused recompilations. 4204 // Also, if there are multiple reasons, or if there is no per-BCI record, 4205 // assume the worst. 4206 if (log()) 4207 log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'", 4208 Deoptimization::trap_reason_name(reason), 4209 md->trap_count(reason), 4210 md->overflow_recompile_count()); 4211 return true; 4212 } else if (trap_count(reason) != 0 4213 && decompile_count() >= m_cutoff) { 4214 // Too many recompiles globally, and we have seen this sort of trap. 4215 // Use cumulative decompile_count, not just md->decompile_count. 4216 if (log()) 4217 log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'", 4218 Deoptimization::trap_reason_name(reason), 4219 md->trap_count(reason), trap_count(reason), 4220 md->decompile_count(), decompile_count()); 4221 return true; 4222 } else { 4223 // The coast is clear. 4224 return false; 4225 } 4226 } 4227 4228 // Compute when not to trap. Used by matching trap based nodes and 4229 // NullCheck optimization. 4230 void Compile::set_allowed_deopt_reasons() { 4231 _allowed_reasons = 0; 4232 if (is_method_compilation()) { 4233 for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) { 4234 assert(rs < BitsPerInt, "recode bit map"); 4235 if (!too_many_traps((Deoptimization::DeoptReason) rs)) { 4236 _allowed_reasons |= nth_bit(rs); 4237 } 4238 } 4239 } 4240 } 4241 4242 bool Compile::needs_clinit_barrier(ciMethod* method, ciMethod* accessing_method) { 4243 return method->is_static() && needs_clinit_barrier(method->holder(), accessing_method); 4244 } 4245 4246 bool Compile::needs_clinit_barrier(ciField* field, ciMethod* accessing_method) { 4247 return field->is_static() && needs_clinit_barrier(field->holder(), accessing_method); 4248 } 4249 4250 bool Compile::needs_clinit_barrier(ciInstanceKlass* holder, ciMethod* accessing_method) { 4251 if (holder->is_initialized() && !do_clinit_barriers()) { 4252 return false; 4253 } 4254 if (holder->is_being_initialized() || do_clinit_barriers()) { 4255 if (accessing_method->holder() == holder) { 4256 // Access inside a class. The barrier can be elided when access happens in <clinit>, 4257 // <init>, or a static method. In all those cases, there was an initialization 4258 // barrier on the holder klass passed. 4259 if (accessing_method->is_static_initializer() || 4260 accessing_method->is_object_initializer() || 4261 accessing_method->is_static()) { 4262 return false; 4263 } 4264 } else if (accessing_method->holder()->is_subclass_of(holder)) { 4265 // Access from a subclass. The barrier can be elided only when access happens in <clinit>. 4266 // In case of <init> or a static method, the barrier is on the subclass is not enough: 4267 // child class can become fully initialized while its parent class is still being initialized. 4268 if (accessing_method->is_static_initializer()) { 4269 return false; 4270 } 4271 } 4272 ciMethod* root = method(); // the root method of compilation 4273 if (root != accessing_method) { 4274 return needs_clinit_barrier(holder, root); // check access in the context of compilation root 4275 } 4276 } 4277 return true; 4278 } 4279 4280 #ifndef PRODUCT 4281 //------------------------------verify_bidirectional_edges--------------------- 4282 // For each input edge to a node (ie - for each Use-Def edge), verify that 4283 // there is a corresponding Def-Use edge. 4284 void Compile::verify_bidirectional_edges(Unique_Node_List& visited, const Unique_Node_List* root_and_safepoints) const { 4285 // Allocate stack of size C->live_nodes()/16 to avoid frequent realloc 4286 uint stack_size = live_nodes() >> 4; 4287 Node_List nstack(MAX2(stack_size, (uint) OptoNodeListSize)); 4288 if (root_and_safepoints != nullptr) { 4289 assert(root_and_safepoints->member(_root), "root is not in root_and_safepoints"); 4290 for (uint i = 0, limit = root_and_safepoints->size(); i < limit; i++) { 4291 Node* root_or_safepoint = root_and_safepoints->at(i); 4292 // If the node is a safepoint, let's check if it still has a control input 4293 // Lack of control input signifies that this node was killed by CCP or 4294 // recursively by remove_globally_dead_node and it shouldn't be a starting 4295 // point. 4296 if (!root_or_safepoint->is_SafePoint() || root_or_safepoint->in(0) != nullptr) { 4297 nstack.push(root_or_safepoint); 4298 } 4299 } 4300 } else { 4301 nstack.push(_root); 4302 } 4303 4304 while (nstack.size() > 0) { 4305 Node* n = nstack.pop(); 4306 if (visited.member(n)) { 4307 continue; 4308 } 4309 visited.push(n); 4310 4311 // Walk over all input edges, checking for correspondence 4312 uint length = n->len(); 4313 for (uint i = 0; i < length; i++) { 4314 Node* in = n->in(i); 4315 if (in != nullptr && !visited.member(in)) { 4316 nstack.push(in); // Put it on stack 4317 } 4318 if (in != nullptr && !in->is_top()) { 4319 // Count instances of `next` 4320 int cnt = 0; 4321 for (uint idx = 0; idx < in->_outcnt; idx++) { 4322 if (in->_out[idx] == n) { 4323 cnt++; 4324 } 4325 } 4326 assert(cnt > 0, "Failed to find Def-Use edge."); 4327 // Check for duplicate edges 4328 // walk the input array downcounting the input edges to n 4329 for (uint j = 0; j < length; j++) { 4330 if (n->in(j) == in) { 4331 cnt--; 4332 } 4333 } 4334 assert(cnt == 0, "Mismatched edge count."); 4335 } else if (in == nullptr) { 4336 assert(i == 0 || i >= n->req() || 4337 n->is_Region() || n->is_Phi() || n->is_ArrayCopy() || 4338 (n->is_Unlock() && i == (n->req() - 1)) || 4339 (n->is_MemBar() && i == 5), // the precedence edge to a membar can be removed during macro node expansion 4340 "only region, phi, arraycopy, unlock or membar nodes have null data edges"); 4341 } else { 4342 assert(in->is_top(), "sanity"); 4343 // Nothing to check. 4344 } 4345 } 4346 } 4347 } 4348 4349 //------------------------------verify_graph_edges--------------------------- 4350 // Walk the Graph and verify that there is a one-to-one correspondence 4351 // between Use-Def edges and Def-Use edges in the graph. 4352 void Compile::verify_graph_edges(bool no_dead_code, const Unique_Node_List* root_and_safepoints) const { 4353 if (VerifyGraphEdges) { 4354 Unique_Node_List visited; 4355 4356 // Call graph walk to check edges 4357 verify_bidirectional_edges(visited, root_and_safepoints); 4358 if (no_dead_code) { 4359 // Now make sure that no visited node is used by an unvisited node. 4360 bool dead_nodes = false; 4361 Unique_Node_List checked; 4362 while (visited.size() > 0) { 4363 Node* n = visited.pop(); 4364 checked.push(n); 4365 for (uint i = 0; i < n->outcnt(); i++) { 4366 Node* use = n->raw_out(i); 4367 if (checked.member(use)) continue; // already checked 4368 if (visited.member(use)) continue; // already in the graph 4369 if (use->is_Con()) continue; // a dead ConNode is OK 4370 // At this point, we have found a dead node which is DU-reachable. 4371 if (!dead_nodes) { 4372 tty->print_cr("*** Dead nodes reachable via DU edges:"); 4373 dead_nodes = true; 4374 } 4375 use->dump(2); 4376 tty->print_cr("---"); 4377 checked.push(use); // No repeats; pretend it is now checked. 4378 } 4379 } 4380 assert(!dead_nodes, "using nodes must be reachable from root"); 4381 } 4382 } 4383 } 4384 #endif 4385 4386 // The Compile object keeps track of failure reasons separately from the ciEnv. 4387 // This is required because there is not quite a 1-1 relation between the 4388 // ciEnv and its compilation task and the Compile object. Note that one 4389 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides 4390 // to backtrack and retry without subsuming loads. Other than this backtracking 4391 // behavior, the Compile's failure reason is quietly copied up to the ciEnv 4392 // by the logic in C2Compiler. 4393 void Compile::record_failure(const char* reason DEBUG_ONLY(COMMA bool allow_multiple_failures)) { 4394 if (log() != nullptr) { 4395 log()->elem("failure reason='%s' phase='compile'", reason); 4396 } 4397 if (_failure_reason.get() == nullptr) { 4398 // Record the first failure reason. 4399 _failure_reason.set(reason); 4400 if (CaptureBailoutInformation) { 4401 _first_failure_details = new CompilationFailureInfo(reason); 4402 } 4403 } else { 4404 assert(!StressBailout || allow_multiple_failures, "should have handled previous failure."); 4405 } 4406 4407 if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) { 4408 C->print_method(PHASE_FAILURE, 1); 4409 } 4410 _root = nullptr; // flush the graph, too 4411 } 4412 4413 Compile::TracePhase::TracePhase(const char* name, PhaseTraceId id) 4414 : TraceTime(name, &Phase::timers[id], CITime, CITimeVerbose), 4415 _compile(Compile::current()), 4416 _log(nullptr), 4417 _dolog(CITimeVerbose) 4418 { 4419 assert(_compile != nullptr, "sanity check"); 4420 assert(id != PhaseTraceId::_t_none, "Don't use none"); 4421 if (_dolog) { 4422 _log = _compile->log(); 4423 } 4424 if (_log != nullptr) { 4425 _log->begin_head("phase name='%s' nodes='%d' live='%d'", phase_name(), _compile->unique(), _compile->live_nodes()); 4426 _log->stamp(); 4427 _log->end_head(); 4428 } 4429 4430 // Inform memory statistic, if enabled 4431 if (CompilationMemoryStatistic::enabled()) { 4432 CompilationMemoryStatistic::on_phase_start((int)id, name); 4433 } 4434 } 4435 4436 Compile::TracePhase::TracePhase(PhaseTraceId id) 4437 : TracePhase(Phase::get_phase_trace_id_text(id), id) {} 4438 4439 Compile::TracePhase::~TracePhase() { 4440 4441 // Inform memory statistic, if enabled 4442 if (CompilationMemoryStatistic::enabled()) { 4443 CompilationMemoryStatistic::on_phase_end(); 4444 } 4445 4446 if (_compile->failing_internal()) { 4447 if (_log != nullptr) { 4448 _log->done("phase"); 4449 } 4450 return; // timing code, not stressing bailouts. 4451 } 4452 #ifdef ASSERT 4453 if (PrintIdealNodeCount) { 4454 tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'", 4455 phase_name(), _compile->unique(), _compile->live_nodes(), _compile->count_live_nodes_by_graph_walk()); 4456 } 4457 4458 if (VerifyIdealNodeCount) { 4459 _compile->print_missing_nodes(); 4460 } 4461 #endif 4462 4463 if (_log != nullptr) { 4464 _log->done("phase name='%s' nodes='%d' live='%d'", phase_name(), _compile->unique(), _compile->live_nodes()); 4465 } 4466 } 4467 4468 //----------------------------static_subtype_check----------------------------- 4469 // Shortcut important common cases when superklass is exact: 4470 // (0) superklass is java.lang.Object (can occur in reflective code) 4471 // (1) subklass is already limited to a subtype of superklass => always ok 4472 // (2) subklass does not overlap with superklass => always fail 4473 // (3) superklass has NO subtypes and we can check with a simple compare. 4474 Compile::SubTypeCheckResult Compile::static_subtype_check(const TypeKlassPtr* superk, const TypeKlassPtr* subk, bool skip) { 4475 if (skip) { 4476 return SSC_full_test; // Let caller generate the general case. 4477 } 4478 4479 if (subk->is_java_subtype_of(superk)) { 4480 return SSC_always_true; // (0) and (1) this test cannot fail 4481 } 4482 4483 if (!subk->maybe_java_subtype_of(superk)) { 4484 return SSC_always_false; // (2) true path dead; no dynamic test needed 4485 } 4486 4487 const Type* superelem = superk; 4488 if (superk->isa_aryklassptr()) { 4489 int ignored; 4490 superelem = superk->is_aryklassptr()->base_element_type(ignored); 4491 } 4492 4493 if (superelem->isa_instklassptr()) { 4494 ciInstanceKlass* ik = superelem->is_instklassptr()->instance_klass(); 4495 if (!ik->has_subklass()) { 4496 if (!ik->is_final()) { 4497 // Add a dependency if there is a chance of a later subclass. 4498 dependencies()->assert_leaf_type(ik); 4499 } 4500 if (!superk->maybe_java_subtype_of(subk)) { 4501 return SSC_always_false; 4502 } 4503 return SSC_easy_test; // (3) caller can do a simple ptr comparison 4504 } 4505 } else { 4506 // A primitive array type has no subtypes. 4507 return SSC_easy_test; // (3) caller can do a simple ptr comparison 4508 } 4509 4510 return SSC_full_test; 4511 } 4512 4513 Node* Compile::conv_I2X_index(PhaseGVN* phase, Node* idx, const TypeInt* sizetype, Node* ctrl) { 4514 #ifdef _LP64 4515 // The scaled index operand to AddP must be a clean 64-bit value. 4516 // Java allows a 32-bit int to be incremented to a negative 4517 // value, which appears in a 64-bit register as a large 4518 // positive number. Using that large positive number as an 4519 // operand in pointer arithmetic has bad consequences. 4520 // On the other hand, 32-bit overflow is rare, and the possibility 4521 // can often be excluded, if we annotate the ConvI2L node with 4522 // a type assertion that its value is known to be a small positive 4523 // number. (The prior range check has ensured this.) 4524 // This assertion is used by ConvI2LNode::Ideal. 4525 int index_max = max_jint - 1; // array size is max_jint, index is one less 4526 if (sizetype != nullptr) index_max = sizetype->_hi - 1; 4527 const TypeInt* iidxtype = TypeInt::make(0, index_max, Type::WidenMax); 4528 idx = constrained_convI2L(phase, idx, iidxtype, ctrl); 4529 #endif 4530 return idx; 4531 } 4532 4533 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check) 4534 Node* Compile::constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl, bool carry_dependency) { 4535 if (ctrl != nullptr) { 4536 // Express control dependency by a CastII node with a narrow type. 4537 // Make the CastII node dependent on the control input to prevent the narrowed ConvI2L 4538 // node from floating above the range check during loop optimizations. Otherwise, the 4539 // ConvI2L node may be eliminated independently of the range check, causing the data path 4540 // to become TOP while the control path is still there (although it's unreachable). 4541 value = new CastIINode(ctrl, value, itype, carry_dependency ? ConstraintCastNode::StrongDependency : ConstraintCastNode::RegularDependency, true /* range check dependency */); 4542 value = phase->transform(value); 4543 } 4544 const TypeLong* ltype = TypeLong::make(itype->_lo, itype->_hi, itype->_widen); 4545 return phase->transform(new ConvI2LNode(value, ltype)); 4546 } 4547 4548 void Compile::dump_print_inlining() { 4549 inline_printer()->print_on(tty); 4550 } 4551 4552 void Compile::log_late_inline(CallGenerator* cg) { 4553 if (log() != nullptr) { 4554 log()->head("late_inline method='%d' inline_id='" JLONG_FORMAT "'", log()->identify(cg->method()), 4555 cg->unique_id()); 4556 JVMState* p = cg->call_node()->jvms(); 4557 while (p != nullptr) { 4558 log()->elem("jvms bci='%d' method='%d'", p->bci(), log()->identify(p->method())); 4559 p = p->caller(); 4560 } 4561 log()->tail("late_inline"); 4562 } 4563 } 4564 4565 void Compile::log_late_inline_failure(CallGenerator* cg, const char* msg) { 4566 log_late_inline(cg); 4567 if (log() != nullptr) { 4568 log()->inline_fail(msg); 4569 } 4570 } 4571 4572 void Compile::log_inline_id(CallGenerator* cg) { 4573 if (log() != nullptr) { 4574 // The LogCompilation tool needs a unique way to identify late 4575 // inline call sites. This id must be unique for this call site in 4576 // this compilation. Try to have it unique across compilations as 4577 // well because it can be convenient when grepping through the log 4578 // file. 4579 // Distinguish OSR compilations from others in case CICountOSR is 4580 // on. 4581 jlong id = ((jlong)unique()) + (((jlong)compile_id()) << 33) + (CICountOSR && is_osr_compilation() ? ((jlong)1) << 32 : 0); 4582 cg->set_unique_id(id); 4583 log()->elem("inline_id id='" JLONG_FORMAT "'", id); 4584 } 4585 } 4586 4587 void Compile::log_inline_failure(const char* msg) { 4588 if (C->log() != nullptr) { 4589 C->log()->inline_fail(msg); 4590 } 4591 } 4592 4593 4594 // Dump inlining replay data to the stream. 4595 // Don't change thread state and acquire any locks. 4596 void Compile::dump_inline_data(outputStream* out) { 4597 InlineTree* inl_tree = ilt(); 4598 if (inl_tree != nullptr) { 4599 out->print(" inline %d", inl_tree->count()); 4600 inl_tree->dump_replay_data(out); 4601 } 4602 } 4603 4604 void Compile::dump_inline_data_reduced(outputStream* out) { 4605 assert(ReplayReduce, ""); 4606 4607 InlineTree* inl_tree = ilt(); 4608 if (inl_tree == nullptr) { 4609 return; 4610 } 4611 // Enable iterative replay file reduction 4612 // Output "compile" lines for depth 1 subtrees, 4613 // simulating that those trees were compiled 4614 // instead of inlined. 4615 for (int i = 0; i < inl_tree->subtrees().length(); ++i) { 4616 InlineTree* sub = inl_tree->subtrees().at(i); 4617 if (sub->inline_level() != 1) { 4618 continue; 4619 } 4620 4621 ciMethod* method = sub->method(); 4622 int entry_bci = -1; 4623 int comp_level = env()->task()->comp_level(); 4624 out->print("compile "); 4625 method->dump_name_as_ascii(out); 4626 out->print(" %d %d", entry_bci, comp_level); 4627 out->print(" inline %d", sub->count()); 4628 sub->dump_replay_data(out, -1); 4629 out->cr(); 4630 } 4631 } 4632 4633 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) { 4634 if (n1->Opcode() < n2->Opcode()) return -1; 4635 else if (n1->Opcode() > n2->Opcode()) return 1; 4636 4637 assert(n1->req() == n2->req(), "can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req()); 4638 for (uint i = 1; i < n1->req(); i++) { 4639 if (n1->in(i) < n2->in(i)) return -1; 4640 else if (n1->in(i) > n2->in(i)) return 1; 4641 } 4642 4643 return 0; 4644 } 4645 4646 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) { 4647 Node* n1 = *n1p; 4648 Node* n2 = *n2p; 4649 4650 return cmp_expensive_nodes(n1, n2); 4651 } 4652 4653 void Compile::sort_expensive_nodes() { 4654 if (!expensive_nodes_sorted()) { 4655 _expensive_nodes.sort(cmp_expensive_nodes); 4656 } 4657 } 4658 4659 bool Compile::expensive_nodes_sorted() const { 4660 for (int i = 1; i < _expensive_nodes.length(); i++) { 4661 if (cmp_expensive_nodes(_expensive_nodes.adr_at(i), _expensive_nodes.adr_at(i-1)) < 0) { 4662 return false; 4663 } 4664 } 4665 return true; 4666 } 4667 4668 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) { 4669 if (_expensive_nodes.length() == 0) { 4670 return false; 4671 } 4672 4673 assert(OptimizeExpensiveOps, "optimization off?"); 4674 4675 // Take this opportunity to remove dead nodes from the list 4676 int j = 0; 4677 for (int i = 0; i < _expensive_nodes.length(); i++) { 4678 Node* n = _expensive_nodes.at(i); 4679 if (!n->is_unreachable(igvn)) { 4680 assert(n->is_expensive(), "should be expensive"); 4681 _expensive_nodes.at_put(j, n); 4682 j++; 4683 } 4684 } 4685 _expensive_nodes.trunc_to(j); 4686 4687 // Then sort the list so that similar nodes are next to each other 4688 // and check for at least two nodes of identical kind with same data 4689 // inputs. 4690 sort_expensive_nodes(); 4691 4692 for (int i = 0; i < _expensive_nodes.length()-1; i++) { 4693 if (cmp_expensive_nodes(_expensive_nodes.adr_at(i), _expensive_nodes.adr_at(i+1)) == 0) { 4694 return true; 4695 } 4696 } 4697 4698 return false; 4699 } 4700 4701 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) { 4702 if (_expensive_nodes.length() == 0) { 4703 return; 4704 } 4705 4706 assert(OptimizeExpensiveOps, "optimization off?"); 4707 4708 // Sort to bring similar nodes next to each other and clear the 4709 // control input of nodes for which there's only a single copy. 4710 sort_expensive_nodes(); 4711 4712 int j = 0; 4713 int identical = 0; 4714 int i = 0; 4715 bool modified = false; 4716 for (; i < _expensive_nodes.length()-1; i++) { 4717 assert(j <= i, "can't write beyond current index"); 4718 if (_expensive_nodes.at(i)->Opcode() == _expensive_nodes.at(i+1)->Opcode()) { 4719 identical++; 4720 _expensive_nodes.at_put(j++, _expensive_nodes.at(i)); 4721 continue; 4722 } 4723 if (identical > 0) { 4724 _expensive_nodes.at_put(j++, _expensive_nodes.at(i)); 4725 identical = 0; 4726 } else { 4727 Node* n = _expensive_nodes.at(i); 4728 igvn.replace_input_of(n, 0, nullptr); 4729 igvn.hash_insert(n); 4730 modified = true; 4731 } 4732 } 4733 if (identical > 0) { 4734 _expensive_nodes.at_put(j++, _expensive_nodes.at(i)); 4735 } else if (_expensive_nodes.length() >= 1) { 4736 Node* n = _expensive_nodes.at(i); 4737 igvn.replace_input_of(n, 0, nullptr); 4738 igvn.hash_insert(n); 4739 modified = true; 4740 } 4741 _expensive_nodes.trunc_to(j); 4742 if (modified) { 4743 igvn.optimize(); 4744 } 4745 } 4746 4747 void Compile::add_expensive_node(Node * n) { 4748 assert(!_expensive_nodes.contains(n), "duplicate entry in expensive list"); 4749 assert(n->is_expensive(), "expensive nodes with non-null control here only"); 4750 assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here"); 4751 if (OptimizeExpensiveOps) { 4752 _expensive_nodes.append(n); 4753 } else { 4754 // Clear control input and let IGVN optimize expensive nodes if 4755 // OptimizeExpensiveOps is off. 4756 n->set_req(0, nullptr); 4757 } 4758 } 4759 4760 /** 4761 * Track coarsened Lock and Unlock nodes. 4762 */ 4763 4764 class Lock_List : public Node_List { 4765 uint _origin_cnt; 4766 public: 4767 Lock_List(Arena *a, uint cnt) : Node_List(a), _origin_cnt(cnt) {} 4768 uint origin_cnt() const { return _origin_cnt; } 4769 }; 4770 4771 void Compile::add_coarsened_locks(GrowableArray<AbstractLockNode*>& locks) { 4772 int length = locks.length(); 4773 if (length > 0) { 4774 // Have to keep this list until locks elimination during Macro nodes elimination. 4775 Lock_List* locks_list = new (comp_arena()) Lock_List(comp_arena(), length); 4776 AbstractLockNode* alock = locks.at(0); 4777 BoxLockNode* box = alock->box_node()->as_BoxLock(); 4778 for (int i = 0; i < length; i++) { 4779 AbstractLockNode* lock = locks.at(i); 4780 assert(lock->is_coarsened(), "expecting only coarsened AbstractLock nodes, but got '%s'[%d] node", lock->Name(), lock->_idx); 4781 locks_list->push(lock); 4782 BoxLockNode* this_box = lock->box_node()->as_BoxLock(); 4783 if (this_box != box) { 4784 // Locking regions (BoxLock) could be Unbalanced here: 4785 // - its coarsened locks were eliminated in earlier 4786 // macro nodes elimination followed by loop unroll 4787 // - it is OSR locking region (no Lock node) 4788 // Preserve Unbalanced status in such cases. 4789 if (!this_box->is_unbalanced()) { 4790 this_box->set_coarsened(); 4791 } 4792 if (!box->is_unbalanced()) { 4793 box->set_coarsened(); 4794 } 4795 } 4796 } 4797 _coarsened_locks.append(locks_list); 4798 } 4799 } 4800 4801 void Compile::remove_useless_coarsened_locks(Unique_Node_List& useful) { 4802 int count = coarsened_count(); 4803 for (int i = 0; i < count; i++) { 4804 Node_List* locks_list = _coarsened_locks.at(i); 4805 for (uint j = 0; j < locks_list->size(); j++) { 4806 Node* lock = locks_list->at(j); 4807 assert(lock->is_AbstractLock(), "sanity"); 4808 if (!useful.member(lock)) { 4809 locks_list->yank(lock); 4810 } 4811 } 4812 } 4813 } 4814 4815 void Compile::remove_coarsened_lock(Node* n) { 4816 if (n->is_AbstractLock()) { 4817 int count = coarsened_count(); 4818 for (int i = 0; i < count; i++) { 4819 Node_List* locks_list = _coarsened_locks.at(i); 4820 locks_list->yank(n); 4821 } 4822 } 4823 } 4824 4825 bool Compile::coarsened_locks_consistent() { 4826 int count = coarsened_count(); 4827 for (int i = 0; i < count; i++) { 4828 bool unbalanced = false; 4829 bool modified = false; // track locks kind modifications 4830 Lock_List* locks_list = (Lock_List*)_coarsened_locks.at(i); 4831 uint size = locks_list->size(); 4832 if (size == 0) { 4833 unbalanced = false; // All locks were eliminated - good 4834 } else if (size != locks_list->origin_cnt()) { 4835 unbalanced = true; // Some locks were removed from list 4836 } else { 4837 for (uint j = 0; j < size; j++) { 4838 Node* lock = locks_list->at(j); 4839 // All nodes in group should have the same state (modified or not) 4840 if (!lock->as_AbstractLock()->is_coarsened()) { 4841 if (j == 0) { 4842 // first on list was modified, the rest should be too for consistency 4843 modified = true; 4844 } else if (!modified) { 4845 // this lock was modified but previous locks on the list were not 4846 unbalanced = true; 4847 break; 4848 } 4849 } else if (modified) { 4850 // previous locks on list were modified but not this lock 4851 unbalanced = true; 4852 break; 4853 } 4854 } 4855 } 4856 if (unbalanced) { 4857 // unbalanced monitor enter/exit - only some [un]lock nodes were removed or modified 4858 #ifdef ASSERT 4859 if (PrintEliminateLocks) { 4860 tty->print_cr("=== unbalanced coarsened locks ==="); 4861 for (uint l = 0; l < size; l++) { 4862 locks_list->at(l)->dump(); 4863 } 4864 } 4865 #endif 4866 record_failure(C2Compiler::retry_no_locks_coarsening()); 4867 return false; 4868 } 4869 } 4870 return true; 4871 } 4872 4873 // Mark locking regions (identified by BoxLockNode) as unbalanced if 4874 // locks coarsening optimization removed Lock/Unlock nodes from them. 4875 // Such regions become unbalanced because coarsening only removes part 4876 // of Lock/Unlock nodes in region. As result we can't execute other 4877 // locks elimination optimizations which assume all code paths have 4878 // corresponding pair of Lock/Unlock nodes - they are balanced. 4879 void Compile::mark_unbalanced_boxes() const { 4880 int count = coarsened_count(); 4881 for (int i = 0; i < count; i++) { 4882 Node_List* locks_list = _coarsened_locks.at(i); 4883 uint size = locks_list->size(); 4884 if (size > 0) { 4885 AbstractLockNode* alock = locks_list->at(0)->as_AbstractLock(); 4886 BoxLockNode* box = alock->box_node()->as_BoxLock(); 4887 if (alock->is_coarsened()) { 4888 // coarsened_locks_consistent(), which is called before this method, verifies 4889 // that the rest of Lock/Unlock nodes on locks_list are also coarsened. 4890 assert(!box->is_eliminated(), "regions with coarsened locks should not be marked as eliminated"); 4891 for (uint j = 1; j < size; j++) { 4892 assert(locks_list->at(j)->as_AbstractLock()->is_coarsened(), "only coarsened locks are expected here"); 4893 BoxLockNode* this_box = locks_list->at(j)->as_AbstractLock()->box_node()->as_BoxLock(); 4894 if (box != this_box) { 4895 assert(!this_box->is_eliminated(), "regions with coarsened locks should not be marked as eliminated"); 4896 box->set_unbalanced(); 4897 this_box->set_unbalanced(); 4898 } 4899 } 4900 } 4901 } 4902 } 4903 } 4904 4905 /** 4906 * Remove the speculative part of types and clean up the graph 4907 */ 4908 void Compile::remove_speculative_types(PhaseIterGVN &igvn) { 4909 if (UseTypeSpeculation) { 4910 Unique_Node_List worklist; 4911 worklist.push(root()); 4912 int modified = 0; 4913 // Go over all type nodes that carry a speculative type, drop the 4914 // speculative part of the type and enqueue the node for an igvn 4915 // which may optimize it out. 4916 for (uint next = 0; next < worklist.size(); ++next) { 4917 Node *n = worklist.at(next); 4918 if (n->is_Type()) { 4919 TypeNode* tn = n->as_Type(); 4920 const Type* t = tn->type(); 4921 const Type* t_no_spec = t->remove_speculative(); 4922 if (t_no_spec != t) { 4923 bool in_hash = igvn.hash_delete(n); 4924 assert(in_hash || n->hash() == Node::NO_HASH, "node should be in igvn hash table"); 4925 tn->set_type(t_no_spec); 4926 igvn.hash_insert(n); 4927 igvn._worklist.push(n); // give it a chance to go away 4928 modified++; 4929 } 4930 } 4931 // Iterate over outs - endless loops is unreachable from below 4932 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 4933 Node *m = n->fast_out(i); 4934 if (not_a_node(m)) { 4935 continue; 4936 } 4937 worklist.push(m); 4938 } 4939 } 4940 // Drop the speculative part of all types in the igvn's type table 4941 igvn.remove_speculative_types(); 4942 if (modified > 0) { 4943 igvn.optimize(); 4944 if (failing()) return; 4945 } 4946 #ifdef ASSERT 4947 // Verify that after the IGVN is over no speculative type has resurfaced 4948 worklist.clear(); 4949 worklist.push(root()); 4950 for (uint next = 0; next < worklist.size(); ++next) { 4951 Node *n = worklist.at(next); 4952 const Type* t = igvn.type_or_null(n); 4953 assert((t == nullptr) || (t == t->remove_speculative()), "no more speculative types"); 4954 if (n->is_Type()) { 4955 t = n->as_Type()->type(); 4956 assert(t == t->remove_speculative(), "no more speculative types"); 4957 } 4958 // Iterate over outs - endless loops is unreachable from below 4959 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 4960 Node *m = n->fast_out(i); 4961 if (not_a_node(m)) { 4962 continue; 4963 } 4964 worklist.push(m); 4965 } 4966 } 4967 igvn.check_no_speculative_types(); 4968 #endif 4969 } 4970 } 4971 4972 // Auxiliary methods to support randomized stressing/fuzzing. 4973 4974 void Compile::initialize_stress_seed(const DirectiveSet* directive) { 4975 if (FLAG_IS_DEFAULT(StressSeed) || (FLAG_IS_ERGO(StressSeed) && directive->RepeatCompilationOption)) { 4976 _stress_seed = static_cast<uint>(Ticks::now().nanoseconds()); 4977 FLAG_SET_ERGO(StressSeed, _stress_seed); 4978 } else { 4979 _stress_seed = StressSeed; 4980 } 4981 if (_log != nullptr) { 4982 _log->elem("stress_test seed='%u'", _stress_seed); 4983 } 4984 } 4985 4986 int Compile::random() { 4987 _stress_seed = os::next_random(_stress_seed); 4988 return static_cast<int>(_stress_seed); 4989 } 4990 4991 // This method can be called the arbitrary number of times, with current count 4992 // as the argument. The logic allows selecting a single candidate from the 4993 // running list of candidates as follows: 4994 // int count = 0; 4995 // Cand* selected = null; 4996 // while(cand = cand->next()) { 4997 // if (randomized_select(++count)) { 4998 // selected = cand; 4999 // } 5000 // } 5001 // 5002 // Including count equalizes the chances any candidate is "selected". 5003 // This is useful when we don't have the complete list of candidates to choose 5004 // from uniformly. In this case, we need to adjust the randomicity of the 5005 // selection, or else we will end up biasing the selection towards the latter 5006 // candidates. 5007 // 5008 // Quick back-envelope calculation shows that for the list of n candidates 5009 // the equal probability for the candidate to persist as "best" can be 5010 // achieved by replacing it with "next" k-th candidate with the probability 5011 // of 1/k. It can be easily shown that by the end of the run, the 5012 // probability for any candidate is converged to 1/n, thus giving the 5013 // uniform distribution among all the candidates. 5014 // 5015 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large. 5016 #define RANDOMIZED_DOMAIN_POW 29 5017 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW) 5018 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1) 5019 bool Compile::randomized_select(int count) { 5020 assert(count > 0, "only positive"); 5021 return (random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count); 5022 } 5023 5024 #ifdef ASSERT 5025 // Failures are geometrically distributed with probability 1/StressBailoutMean. 5026 bool Compile::fail_randomly() { 5027 if ((random() % StressBailoutMean) != 0) { 5028 return false; 5029 } 5030 record_failure("StressBailout"); 5031 return true; 5032 } 5033 5034 bool Compile::failure_is_artificial() { 5035 return C->failure_reason_is("StressBailout"); 5036 } 5037 #endif 5038 5039 CloneMap& Compile::clone_map() { return _clone_map; } 5040 void Compile::set_clone_map(Dict* d) { _clone_map._dict = d; } 5041 5042 void NodeCloneInfo::dump_on(outputStream* st) const { 5043 st->print(" {%d:%d} ", idx(), gen()); 5044 } 5045 5046 void CloneMap::clone(Node* old, Node* nnn, int gen) { 5047 uint64_t val = value(old->_idx); 5048 NodeCloneInfo cio(val); 5049 assert(val != 0, "old node should be in the map"); 5050 NodeCloneInfo cin(cio.idx(), gen + cio.gen()); 5051 insert(nnn->_idx, cin.get()); 5052 #ifndef PRODUCT 5053 if (is_debug()) { 5054 tty->print_cr("CloneMap::clone inserted node %d info {%d:%d} into CloneMap", nnn->_idx, cin.idx(), cin.gen()); 5055 } 5056 #endif 5057 } 5058 5059 void CloneMap::verify_insert_and_clone(Node* old, Node* nnn, int gen) { 5060 NodeCloneInfo cio(value(old->_idx)); 5061 if (cio.get() == 0) { 5062 cio.set(old->_idx, 0); 5063 insert(old->_idx, cio.get()); 5064 #ifndef PRODUCT 5065 if (is_debug()) { 5066 tty->print_cr("CloneMap::verify_insert_and_clone inserted node %d info {%d:%d} into CloneMap", old->_idx, cio.idx(), cio.gen()); 5067 } 5068 #endif 5069 } 5070 clone(old, nnn, gen); 5071 } 5072 5073 int CloneMap::max_gen() const { 5074 int g = 0; 5075 DictI di(_dict); 5076 for(; di.test(); ++di) { 5077 int t = gen(di._key); 5078 if (g < t) { 5079 g = t; 5080 #ifndef PRODUCT 5081 if (is_debug()) { 5082 tty->print_cr("CloneMap::max_gen() update max=%d from %d", g, _2_node_idx_t(di._key)); 5083 } 5084 #endif 5085 } 5086 } 5087 return g; 5088 } 5089 5090 void CloneMap::dump(node_idx_t key, outputStream* st) const { 5091 uint64_t val = value(key); 5092 if (val != 0) { 5093 NodeCloneInfo ni(val); 5094 ni.dump_on(st); 5095 } 5096 } 5097 5098 void Compile::shuffle_macro_nodes() { 5099 if (_macro_nodes.length() < 2) { 5100 return; 5101 } 5102 for (uint i = _macro_nodes.length() - 1; i >= 1; i--) { 5103 uint j = C->random() % (i + 1); 5104 swap(_macro_nodes.at(i), _macro_nodes.at(j)); 5105 } 5106 } 5107 5108 // Move Allocate nodes to the start of the list 5109 void Compile::sort_macro_nodes() { 5110 int count = macro_count(); 5111 int allocates = 0; 5112 for (int i = 0; i < count; i++) { 5113 Node* n = macro_node(i); 5114 if (n->is_Allocate()) { 5115 if (i != allocates) { 5116 Node* tmp = macro_node(allocates); 5117 _macro_nodes.at_put(allocates, n); 5118 _macro_nodes.at_put(i, tmp); 5119 } 5120 allocates++; 5121 } 5122 } 5123 } 5124 5125 void Compile::print_method(CompilerPhaseType cpt, int level, Node* n) { 5126 if (failing_internal()) { return; } // failing_internal to not stress bailouts from printing code. 5127 EventCompilerPhase event(UNTIMED); 5128 if (event.should_commit()) { 5129 CompilerEvent::PhaseEvent::post(event, C->_latest_stage_start_counter, cpt, C->_compile_id, level); 5130 } 5131 #ifndef PRODUCT 5132 ResourceMark rm; 5133 stringStream ss; 5134 ss.print_raw(CompilerPhaseTypeHelper::to_description(cpt)); 5135 int iter = ++_igv_phase_iter[cpt]; 5136 if (iter > 1) { 5137 ss.print(" %d", iter); 5138 } 5139 if (n != nullptr) { 5140 ss.print(": %d %s", n->_idx, NodeClassNames[n->Opcode()]); 5141 if (n->is_Call()) { 5142 CallNode* call = n->as_Call(); 5143 if (call->_name != nullptr) { 5144 // E.g. uncommon traps etc. 5145 ss.print(" - %s", call->_name); 5146 } else if (call->is_CallJava()) { 5147 CallJavaNode* call_java = call->as_CallJava(); 5148 if (call_java->method() != nullptr) { 5149 ss.print(" -"); 5150 call_java->method()->print_short_name(&ss); 5151 } 5152 } 5153 } 5154 } 5155 5156 const char* name = ss.as_string(); 5157 if (should_print_igv(level)) { 5158 _igv_printer->print_graph(name); 5159 } 5160 if (should_print_phase(cpt)) { 5161 print_ideal_ir(CompilerPhaseTypeHelper::to_name(cpt)); 5162 } 5163 #endif 5164 C->_latest_stage_start_counter.stamp(); 5165 } 5166 5167 // Only used from CompileWrapper 5168 void Compile::begin_method() { 5169 #ifndef PRODUCT 5170 if (_method != nullptr && should_print_igv(1)) { 5171 _igv_printer->begin_method(); 5172 } 5173 #endif 5174 C->_latest_stage_start_counter.stamp(); 5175 } 5176 5177 // Only used from CompileWrapper 5178 void Compile::end_method() { 5179 EventCompilerPhase event(UNTIMED); 5180 if (event.should_commit()) { 5181 CompilerEvent::PhaseEvent::post(event, C->_latest_stage_start_counter, PHASE_END, C->_compile_id, 1); 5182 } 5183 5184 #ifndef PRODUCT 5185 if (_method != nullptr && should_print_igv(1)) { 5186 _igv_printer->end_method(); 5187 } 5188 #endif 5189 } 5190 5191 bool Compile::should_print_phase(CompilerPhaseType cpt) { 5192 #ifndef PRODUCT 5193 if (_directive->should_print_phase(cpt)) { 5194 return true; 5195 } 5196 #endif 5197 return false; 5198 } 5199 5200 #ifndef PRODUCT 5201 void Compile::init_igv() { 5202 if (_igv_printer == nullptr) { 5203 _igv_printer = IdealGraphPrinter::printer(); 5204 _igv_printer->set_compile(this); 5205 } 5206 } 5207 #endif 5208 5209 bool Compile::should_print_igv(const int level) { 5210 #ifndef PRODUCT 5211 if (PrintIdealGraphLevel < 0) { // disabled by the user 5212 return false; 5213 } 5214 5215 bool need = directive()->IGVPrintLevelOption >= level; 5216 if (need) { 5217 Compile::init_igv(); 5218 } 5219 return need; 5220 #else 5221 return false; 5222 #endif 5223 } 5224 5225 #ifndef PRODUCT 5226 IdealGraphPrinter* Compile::_debug_file_printer = nullptr; 5227 IdealGraphPrinter* Compile::_debug_network_printer = nullptr; 5228 5229 // Called from debugger. Prints method to the default file with the default phase name. 5230 // This works regardless of any Ideal Graph Visualizer flags set or not. 5231 void igv_print() { 5232 Compile::current()->igv_print_method_to_file(); 5233 } 5234 5235 // Same as igv_print() above but with a specified phase name. 5236 void igv_print(const char* phase_name) { 5237 Compile::current()->igv_print_method_to_file(phase_name); 5238 } 5239 5240 // Called from debugger. Prints method with the default phase name to the default network or the one specified with 5241 // the network flags for the Ideal Graph Visualizer, or to the default file depending on the 'network' argument. 5242 // This works regardless of any Ideal Graph Visualizer flags set or not. 5243 void igv_print(bool network) { 5244 if (network) { 5245 Compile::current()->igv_print_method_to_network(); 5246 } else { 5247 Compile::current()->igv_print_method_to_file(); 5248 } 5249 } 5250 5251 // Same as igv_print(bool network) above but with a specified phase name. 5252 void igv_print(bool network, const char* phase_name) { 5253 if (network) { 5254 Compile::current()->igv_print_method_to_network(phase_name); 5255 } else { 5256 Compile::current()->igv_print_method_to_file(phase_name); 5257 } 5258 } 5259 5260 // Called from debugger. Normal write to the default _printer. Only works if Ideal Graph Visualizer printing flags are set. 5261 void igv_print_default() { 5262 Compile::current()->print_method(PHASE_DEBUG, 0); 5263 } 5264 5265 // Called from debugger, especially when replaying a trace in which the program state cannot be altered like with rr replay. 5266 // A method is appended to an existing default file with the default phase name. This means that igv_append() must follow 5267 // an earlier igv_print(*) call which sets up the file. This works regardless of any Ideal Graph Visualizer flags set or not. 5268 void igv_append() { 5269 Compile::current()->igv_print_method_to_file("Debug", true); 5270 } 5271 5272 // Same as igv_append() above but with a specified phase name. 5273 void igv_append(const char* phase_name) { 5274 Compile::current()->igv_print_method_to_file(phase_name, true); 5275 } 5276 5277 void Compile::igv_print_method_to_file(const char* phase_name, bool append) { 5278 const char* file_name = "custom_debug.xml"; 5279 if (_debug_file_printer == nullptr) { 5280 _debug_file_printer = new IdealGraphPrinter(C, file_name, append); 5281 } else { 5282 _debug_file_printer->update_compiled_method(C->method()); 5283 } 5284 tty->print_cr("Method %s to %s", append ? "appended" : "printed", file_name); 5285 _debug_file_printer->print_graph(phase_name); 5286 } 5287 5288 void Compile::igv_print_method_to_network(const char* phase_name) { 5289 ResourceMark rm; 5290 GrowableArray<const Node*> empty_list; 5291 igv_print_graph_to_network(phase_name, (Node*) C->root(), empty_list); 5292 } 5293 5294 void Compile::igv_print_graph_to_network(const char* name, Node* node, GrowableArray<const Node*>& visible_nodes) { 5295 if (_debug_network_printer == nullptr) { 5296 _debug_network_printer = new IdealGraphPrinter(C); 5297 } else { 5298 _debug_network_printer->update_compiled_method(C->method()); 5299 } 5300 tty->print_cr("Method printed over network stream to IGV"); 5301 _debug_network_printer->print(name, C->root(), visible_nodes); 5302 } 5303 #endif 5304 5305 Node* Compile::narrow_value(BasicType bt, Node* value, const Type* type, PhaseGVN* phase, bool transform_res) { 5306 if (type != nullptr && phase->type(value)->higher_equal(type)) { 5307 return value; 5308 } 5309 Node* result = nullptr; 5310 if (bt == T_BYTE) { 5311 result = phase->transform(new LShiftINode(value, phase->intcon(24))); 5312 result = new RShiftINode(result, phase->intcon(24)); 5313 } else if (bt == T_BOOLEAN) { 5314 result = new AndINode(value, phase->intcon(0xFF)); 5315 } else if (bt == T_CHAR) { 5316 result = new AndINode(value,phase->intcon(0xFFFF)); 5317 } else { 5318 assert(bt == T_SHORT, "unexpected narrow type"); 5319 result = phase->transform(new LShiftINode(value, phase->intcon(16))); 5320 result = new RShiftINode(result, phase->intcon(16)); 5321 } 5322 if (transform_res) { 5323 result = phase->transform(result); 5324 } 5325 return result; 5326 } 5327 5328 void Compile::record_method_not_compilable_oom() { 5329 record_method_not_compilable(CompilationMemoryStatistic::failure_reason_memlimit()); 5330 }