1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "asm/macroAssembler.hpp" 26 #include "asm/macroAssembler.inline.hpp" 27 #include "ci/ciReplay.hpp" 28 #include "classfile/javaClasses.hpp" 29 #include "code/aotCodeCache.hpp" 30 #include "code/exceptionHandlerTable.hpp" 31 #include "code/nmethod.hpp" 32 #include "compiler/compilationFailureInfo.hpp" 33 #include "compiler/compilationMemoryStatistic.hpp" 34 #include "compiler/compileBroker.hpp" 35 #include "compiler/compileLog.hpp" 36 #include "compiler/compiler_globals.hpp" 37 #include "compiler/compilerDefinitions.hpp" 38 #include "compiler/compilerOracle.hpp" 39 #include "compiler/disassembler.hpp" 40 #include "compiler/oopMap.hpp" 41 #include "gc/shared/barrierSet.hpp" 42 #include "gc/shared/c2/barrierSetC2.hpp" 43 #include "jfr/jfrEvents.hpp" 44 #include "jvm_io.h" 45 #include "memory/allocation.hpp" 46 #include "memory/arena.hpp" 47 #include "memory/resourceArea.hpp" 48 #include "opto/addnode.hpp" 49 #include "opto/block.hpp" 50 #include "opto/c2compiler.hpp" 51 #include "opto/callGenerator.hpp" 52 #include "opto/callnode.hpp" 53 #include "opto/castnode.hpp" 54 #include "opto/cfgnode.hpp" 55 #include "opto/chaitin.hpp" 56 #include "opto/compile.hpp" 57 #include "opto/connode.hpp" 58 #include "opto/convertnode.hpp" 59 #include "opto/divnode.hpp" 60 #include "opto/escape.hpp" 61 #include "opto/idealGraphPrinter.hpp" 62 #include "opto/locknode.hpp" 63 #include "opto/loopnode.hpp" 64 #include "opto/machnode.hpp" 65 #include "opto/macro.hpp" 66 #include "opto/matcher.hpp" 67 #include "opto/mathexactnode.hpp" 68 #include "opto/memnode.hpp" 69 #include "opto/mulnode.hpp" 70 #include "opto/narrowptrnode.hpp" 71 #include "opto/node.hpp" 72 #include "opto/opaquenode.hpp" 73 #include "opto/opcodes.hpp" 74 #include "opto/output.hpp" 75 #include "opto/parse.hpp" 76 #include "opto/phaseX.hpp" 77 #include "opto/rootnode.hpp" 78 #include "opto/runtime.hpp" 79 #include "opto/stringopts.hpp" 80 #include "opto/type.hpp" 81 #include "opto/vector.hpp" 82 #include "opto/vectornode.hpp" 83 #include "runtime/globals_extension.hpp" 84 #include "runtime/sharedRuntime.hpp" 85 #include "runtime/signature.hpp" 86 #include "runtime/stubRoutines.hpp" 87 #include "runtime/timer.hpp" 88 #include "utilities/align.hpp" 89 #include "utilities/copy.hpp" 90 #include "utilities/hashTable.hpp" 91 #include "utilities/macros.hpp" 92 93 // -------------------- Compile::mach_constant_base_node ----------------------- 94 // Constant table base node singleton. 95 MachConstantBaseNode* Compile::mach_constant_base_node() { 96 if (_mach_constant_base_node == nullptr) { 97 _mach_constant_base_node = new MachConstantBaseNode(); 98 _mach_constant_base_node->add_req(C->root()); 99 } 100 return _mach_constant_base_node; 101 } 102 103 104 /// Support for intrinsics. 105 106 // Return the index at which m must be inserted (or already exists). 107 // The sort order is by the address of the ciMethod, with is_virtual as minor key. 108 class IntrinsicDescPair { 109 private: 110 ciMethod* _m; 111 bool _is_virtual; 112 public: 113 IntrinsicDescPair(ciMethod* m, bool is_virtual) : _m(m), _is_virtual(is_virtual) {} 114 static int compare(IntrinsicDescPair* const& key, CallGenerator* const& elt) { 115 ciMethod* m= elt->method(); 116 ciMethod* key_m = key->_m; 117 if (key_m < m) return -1; 118 else if (key_m > m) return 1; 119 else { 120 bool is_virtual = elt->is_virtual(); 121 bool key_virtual = key->_is_virtual; 122 if (key_virtual < is_virtual) return -1; 123 else if (key_virtual > is_virtual) return 1; 124 else return 0; 125 } 126 } 127 }; 128 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found) { 129 #ifdef ASSERT 130 for (int i = 1; i < _intrinsics.length(); i++) { 131 CallGenerator* cg1 = _intrinsics.at(i-1); 132 CallGenerator* cg2 = _intrinsics.at(i); 133 assert(cg1->method() != cg2->method() 134 ? cg1->method() < cg2->method() 135 : cg1->is_virtual() < cg2->is_virtual(), 136 "compiler intrinsics list must stay sorted"); 137 } 138 #endif 139 IntrinsicDescPair pair(m, is_virtual); 140 return _intrinsics.find_sorted<IntrinsicDescPair*, IntrinsicDescPair::compare>(&pair, found); 141 } 142 143 void Compile::register_intrinsic(CallGenerator* cg) { 144 bool found = false; 145 int index = intrinsic_insertion_index(cg->method(), cg->is_virtual(), found); 146 assert(!found, "registering twice"); 147 _intrinsics.insert_before(index, cg); 148 assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked"); 149 } 150 151 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) { 152 assert(m->is_loaded(), "don't try this on unloaded methods"); 153 if (_intrinsics.length() > 0) { 154 bool found = false; 155 int index = intrinsic_insertion_index(m, is_virtual, found); 156 if (found) { 157 return _intrinsics.at(index); 158 } 159 } 160 // Lazily create intrinsics for intrinsic IDs well-known in the runtime. 161 if (m->intrinsic_id() != vmIntrinsics::_none && 162 m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) { 163 CallGenerator* cg = make_vm_intrinsic(m, is_virtual); 164 if (cg != nullptr) { 165 // Save it for next time: 166 register_intrinsic(cg); 167 return cg; 168 } else { 169 gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled); 170 } 171 } 172 return nullptr; 173 } 174 175 // Compile::make_vm_intrinsic is defined in library_call.cpp. 176 177 #ifndef PRODUCT 178 // statistics gathering... 179 180 juint Compile::_intrinsic_hist_count[vmIntrinsics::number_of_intrinsics()] = {0}; 181 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::number_of_intrinsics()] = {0}; 182 183 inline int as_int(vmIntrinsics::ID id) { 184 return vmIntrinsics::as_int(id); 185 } 186 187 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) { 188 assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob"); 189 int oflags = _intrinsic_hist_flags[as_int(id)]; 190 assert(flags != 0, "what happened?"); 191 if (is_virtual) { 192 flags |= _intrinsic_virtual; 193 } 194 bool changed = (flags != oflags); 195 if ((flags & _intrinsic_worked) != 0) { 196 juint count = (_intrinsic_hist_count[as_int(id)] += 1); 197 if (count == 1) { 198 changed = true; // first time 199 } 200 // increment the overall count also: 201 _intrinsic_hist_count[as_int(vmIntrinsics::_none)] += 1; 202 } 203 if (changed) { 204 if (((oflags ^ flags) & _intrinsic_virtual) != 0) { 205 // Something changed about the intrinsic's virtuality. 206 if ((flags & _intrinsic_virtual) != 0) { 207 // This is the first use of this intrinsic as a virtual call. 208 if (oflags != 0) { 209 // We already saw it as a non-virtual, so note both cases. 210 flags |= _intrinsic_both; 211 } 212 } else if ((oflags & _intrinsic_both) == 0) { 213 // This is the first use of this intrinsic as a non-virtual 214 flags |= _intrinsic_both; 215 } 216 } 217 _intrinsic_hist_flags[as_int(id)] = (jubyte) (oflags | flags); 218 } 219 // update the overall flags also: 220 _intrinsic_hist_flags[as_int(vmIntrinsics::_none)] |= (jubyte) flags; 221 return changed; 222 } 223 224 static char* format_flags(int flags, char* buf) { 225 buf[0] = 0; 226 if ((flags & Compile::_intrinsic_worked) != 0) strcat(buf, ",worked"); 227 if ((flags & Compile::_intrinsic_failed) != 0) strcat(buf, ",failed"); 228 if ((flags & Compile::_intrinsic_disabled) != 0) strcat(buf, ",disabled"); 229 if ((flags & Compile::_intrinsic_virtual) != 0) strcat(buf, ",virtual"); 230 if ((flags & Compile::_intrinsic_both) != 0) strcat(buf, ",nonvirtual"); 231 if (buf[0] == 0) strcat(buf, ","); 232 assert(buf[0] == ',', "must be"); 233 return &buf[1]; 234 } 235 236 void Compile::print_intrinsic_statistics() { 237 char flagsbuf[100]; 238 ttyLocker ttyl; 239 if (xtty != nullptr) xtty->head("statistics type='intrinsic'"); 240 tty->print_cr("Compiler intrinsic usage:"); 241 juint total = _intrinsic_hist_count[as_int(vmIntrinsics::_none)]; 242 if (total == 0) total = 1; // avoid div0 in case of no successes 243 #define PRINT_STAT_LINE(name, c, f) \ 244 tty->print_cr(" %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f); 245 for (auto id : EnumRange<vmIntrinsicID>{}) { 246 int flags = _intrinsic_hist_flags[as_int(id)]; 247 juint count = _intrinsic_hist_count[as_int(id)]; 248 if ((flags | count) != 0) { 249 PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf)); 250 } 251 } 252 PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[as_int(vmIntrinsics::_none)], flagsbuf)); 253 if (xtty != nullptr) xtty->tail("statistics"); 254 } 255 256 void Compile::print_statistics() { 257 { ttyLocker ttyl; 258 if (xtty != nullptr) xtty->head("statistics type='opto'"); 259 Parse::print_statistics(); 260 PhaseStringOpts::print_statistics(); 261 PhaseCCP::print_statistics(); 262 PhaseRegAlloc::print_statistics(); 263 PhaseOutput::print_statistics(); 264 PhasePeephole::print_statistics(); 265 PhaseIdealLoop::print_statistics(); 266 ConnectionGraph::print_statistics(); 267 PhaseMacroExpand::print_statistics(); 268 if (xtty != nullptr) xtty->tail("statistics"); 269 } 270 if (_intrinsic_hist_flags[as_int(vmIntrinsics::_none)] != 0) { 271 // put this under its own <statistics> element. 272 print_intrinsic_statistics(); 273 } 274 } 275 #endif //PRODUCT 276 277 void Compile::gvn_replace_by(Node* n, Node* nn) { 278 for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) { 279 Node* use = n->last_out(i); 280 bool is_in_table = initial_gvn()->hash_delete(use); 281 uint uses_found = 0; 282 for (uint j = 0; j < use->len(); j++) { 283 if (use->in(j) == n) { 284 if (j < use->req()) 285 use->set_req(j, nn); 286 else 287 use->set_prec(j, nn); 288 uses_found++; 289 } 290 } 291 if (is_in_table) { 292 // reinsert into table 293 initial_gvn()->hash_find_insert(use); 294 } 295 record_for_igvn(use); 296 PhaseIterGVN::add_users_of_use_to_worklist(nn, use, *_igvn_worklist); 297 i -= uses_found; // we deleted 1 or more copies of this edge 298 } 299 } 300 301 302 // Identify all nodes that are reachable from below, useful. 303 // Use breadth-first pass that records state in a Unique_Node_List, 304 // recursive traversal is slower. 305 void Compile::identify_useful_nodes(Unique_Node_List &useful) { 306 int estimated_worklist_size = live_nodes(); 307 useful.map( estimated_worklist_size, nullptr ); // preallocate space 308 309 // Initialize worklist 310 if (root() != nullptr) { useful.push(root()); } 311 // If 'top' is cached, declare it useful to preserve cached node 312 if (cached_top_node()) { useful.push(cached_top_node()); } 313 314 // Push all useful nodes onto the list, breadthfirst 315 for( uint next = 0; next < useful.size(); ++next ) { 316 assert( next < unique(), "Unique useful nodes < total nodes"); 317 Node *n = useful.at(next); 318 uint max = n->len(); 319 for( uint i = 0; i < max; ++i ) { 320 Node *m = n->in(i); 321 if (not_a_node(m)) continue; 322 useful.push(m); 323 } 324 } 325 } 326 327 // Update dead_node_list with any missing dead nodes using useful 328 // list. Consider all non-useful nodes to be useless i.e., dead nodes. 329 void Compile::update_dead_node_list(Unique_Node_List &useful) { 330 uint max_idx = unique(); 331 VectorSet& useful_node_set = useful.member_set(); 332 333 for (uint node_idx = 0; node_idx < max_idx; node_idx++) { 334 // If node with index node_idx is not in useful set, 335 // mark it as dead in dead node list. 336 if (!useful_node_set.test(node_idx)) { 337 record_dead_node(node_idx); 338 } 339 } 340 } 341 342 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) { 343 int shift = 0; 344 for (int i = 0; i < inlines->length(); i++) { 345 CallGenerator* cg = inlines->at(i); 346 if (useful.member(cg->call_node())) { 347 if (shift > 0) { 348 inlines->at_put(i - shift, cg); 349 } 350 } else { 351 shift++; // skip over the dead element 352 } 353 } 354 if (shift > 0) { 355 inlines->trunc_to(inlines->length() - shift); // remove last elements from compacted array 356 } 357 } 358 359 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Node* dead) { 360 assert(dead != nullptr && dead->is_Call(), "sanity"); 361 int found = 0; 362 for (int i = 0; i < inlines->length(); i++) { 363 if (inlines->at(i)->call_node() == dead) { 364 inlines->remove_at(i); 365 found++; 366 NOT_DEBUG( break; ) // elements are unique, so exit early 367 } 368 } 369 assert(found <= 1, "not unique"); 370 } 371 372 template<typename N, ENABLE_IF_SDEFN(std::is_base_of<Node, N>::value)> 373 void Compile::remove_useless_nodes(GrowableArray<N*>& node_list, Unique_Node_List& useful) { 374 for (int i = node_list.length() - 1; i >= 0; i--) { 375 N* node = node_list.at(i); 376 if (!useful.member(node)) { 377 node_list.delete_at(i); // replaces i-th with last element which is known to be useful (already processed) 378 } 379 } 380 } 381 382 void Compile::remove_useless_node(Node* dead) { 383 remove_modified_node(dead); 384 385 // Constant node that has no out-edges and has only one in-edge from 386 // root is usually dead. However, sometimes reshaping walk makes 387 // it reachable by adding use edges. So, we will NOT count Con nodes 388 // as dead to be conservative about the dead node count at any 389 // given time. 390 if (!dead->is_Con()) { 391 record_dead_node(dead->_idx); 392 } 393 if (dead->is_macro()) { 394 remove_macro_node(dead); 395 } 396 if (dead->is_expensive()) { 397 remove_expensive_node(dead); 398 } 399 if (dead->is_OpaqueTemplateAssertionPredicate()) { 400 remove_template_assertion_predicate_opaque(dead->as_OpaqueTemplateAssertionPredicate()); 401 } 402 if (dead->is_ParsePredicate()) { 403 remove_parse_predicate(dead->as_ParsePredicate()); 404 } 405 if (dead->for_post_loop_opts_igvn()) { 406 remove_from_post_loop_opts_igvn(dead); 407 } 408 if (dead->for_merge_stores_igvn()) { 409 remove_from_merge_stores_igvn(dead); 410 } 411 if (dead->is_Call()) { 412 remove_useless_late_inlines( &_late_inlines, dead); 413 remove_useless_late_inlines( &_string_late_inlines, dead); 414 remove_useless_late_inlines( &_boxing_late_inlines, dead); 415 remove_useless_late_inlines(&_vector_reboxing_late_inlines, dead); 416 417 if (dead->is_CallStaticJava()) { 418 remove_unstable_if_trap(dead->as_CallStaticJava(), false); 419 } 420 } 421 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 422 bs->unregister_potential_barrier_node(dead); 423 } 424 425 // Disconnect all useless nodes by disconnecting those at the boundary. 426 void Compile::disconnect_useless_nodes(Unique_Node_List& useful, Unique_Node_List& worklist, const Unique_Node_List* root_and_safepoints) { 427 uint next = 0; 428 while (next < useful.size()) { 429 Node *n = useful.at(next++); 430 if (n->is_SafePoint()) { 431 // We're done with a parsing phase. Replaced nodes are not valid 432 // beyond that point. 433 n->as_SafePoint()->delete_replaced_nodes(); 434 } 435 // Use raw traversal of out edges since this code removes out edges 436 int max = n->outcnt(); 437 for (int j = 0; j < max; ++j) { 438 Node* child = n->raw_out(j); 439 if (!useful.member(child)) { 440 assert(!child->is_top() || child != top(), 441 "If top is cached in Compile object it is in useful list"); 442 // Only need to remove this out-edge to the useless node 443 n->raw_del_out(j); 444 --j; 445 --max; 446 if (child->is_data_proj_of_pure_function(n)) { 447 worklist.push(n); 448 } 449 } 450 } 451 if (n->outcnt() == 1 && n->has_special_unique_user()) { 452 assert(useful.member(n->unique_out()), "do not push a useless node"); 453 worklist.push(n->unique_out()); 454 } 455 } 456 457 remove_useless_nodes(_macro_nodes, useful); // remove useless macro nodes 458 remove_useless_nodes(_parse_predicates, useful); // remove useless Parse Predicate nodes 459 // Remove useless Template Assertion Predicate opaque nodes 460 remove_useless_nodes(_template_assertion_predicate_opaques, useful); 461 remove_useless_nodes(_expensive_nodes, useful); // remove useless expensive nodes 462 remove_useless_nodes(_for_post_loop_igvn, useful); // remove useless node recorded for post loop opts IGVN pass 463 remove_useless_nodes(_for_merge_stores_igvn, useful); // remove useless node recorded for merge stores IGVN pass 464 remove_useless_unstable_if_traps(useful); // remove useless unstable_if traps 465 remove_useless_coarsened_locks(useful); // remove useless coarsened locks nodes 466 #ifdef ASSERT 467 if (_modified_nodes != nullptr) { 468 _modified_nodes->remove_useless_nodes(useful.member_set()); 469 } 470 #endif 471 472 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 473 bs->eliminate_useless_gc_barriers(useful, this); 474 // clean up the late inline lists 475 remove_useless_late_inlines( &_late_inlines, useful); 476 remove_useless_late_inlines( &_string_late_inlines, useful); 477 remove_useless_late_inlines( &_boxing_late_inlines, useful); 478 remove_useless_late_inlines(&_vector_reboxing_late_inlines, useful); 479 DEBUG_ONLY(verify_graph_edges(true /*check for no_dead_code*/, root_and_safepoints);) 480 } 481 482 // ============================================================================ 483 //------------------------------CompileWrapper--------------------------------- 484 class CompileWrapper : public StackObj { 485 Compile *const _compile; 486 public: 487 CompileWrapper(Compile* compile); 488 489 ~CompileWrapper(); 490 }; 491 492 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) { 493 // the Compile* pointer is stored in the current ciEnv: 494 ciEnv* env = compile->env(); 495 assert(env == ciEnv::current(), "must already be a ciEnv active"); 496 assert(env->compiler_data() == nullptr, "compile already active?"); 497 env->set_compiler_data(compile); 498 assert(compile == Compile::current(), "sanity"); 499 500 compile->set_type_dict(nullptr); 501 compile->set_clone_map(new Dict(cmpkey, hashkey, _compile->comp_arena())); 502 compile->clone_map().set_clone_idx(0); 503 compile->set_type_last_size(0); 504 compile->set_last_tf(nullptr, nullptr); 505 compile->set_indexSet_arena(nullptr); 506 compile->set_indexSet_free_block_list(nullptr); 507 compile->init_type_arena(); 508 Type::Initialize(compile); 509 _compile->begin_method(); 510 _compile->clone_map().set_debug(_compile->has_method() && _compile->directive()->CloneMapDebugOption); 511 } 512 CompileWrapper::~CompileWrapper() { 513 // simulate crash during compilation 514 assert(CICrashAt < 0 || _compile->compile_id() != CICrashAt, "just as planned"); 515 516 _compile->end_method(); 517 _compile->env()->set_compiler_data(nullptr); 518 } 519 520 521 //----------------------------print_compile_messages--------------------------- 522 void Compile::print_compile_messages() { 523 #ifndef PRODUCT 524 // Check if recompiling 525 if (!subsume_loads() && PrintOpto) { 526 // Recompiling without allowing machine instructions to subsume loads 527 tty->print_cr("*********************************************************"); 528 tty->print_cr("** Bailout: Recompile without subsuming loads **"); 529 tty->print_cr("*********************************************************"); 530 } 531 if ((do_escape_analysis() != DoEscapeAnalysis) && PrintOpto) { 532 // Recompiling without escape analysis 533 tty->print_cr("*********************************************************"); 534 tty->print_cr("** Bailout: Recompile without escape analysis **"); 535 tty->print_cr("*********************************************************"); 536 } 537 if (do_iterative_escape_analysis() != DoEscapeAnalysis && PrintOpto) { 538 // Recompiling without iterative escape analysis 539 tty->print_cr("*********************************************************"); 540 tty->print_cr("** Bailout: Recompile without iterative escape analysis**"); 541 tty->print_cr("*********************************************************"); 542 } 543 if (do_reduce_allocation_merges() != ReduceAllocationMerges && PrintOpto) { 544 // Recompiling without reducing allocation merges 545 tty->print_cr("*********************************************************"); 546 tty->print_cr("** Bailout: Recompile without reduce allocation merges **"); 547 tty->print_cr("*********************************************************"); 548 } 549 if ((eliminate_boxing() != EliminateAutoBox) && PrintOpto) { 550 // Recompiling without boxing elimination 551 tty->print_cr("*********************************************************"); 552 tty->print_cr("** Bailout: Recompile without boxing elimination **"); 553 tty->print_cr("*********************************************************"); 554 } 555 if ((do_locks_coarsening() != EliminateLocks) && PrintOpto) { 556 // Recompiling without locks coarsening 557 tty->print_cr("*********************************************************"); 558 tty->print_cr("** Bailout: Recompile without locks coarsening **"); 559 tty->print_cr("*********************************************************"); 560 } 561 if (env()->break_at_compile()) { 562 // Open the debugger when compiling this method. 563 tty->print("### Breaking when compiling: "); 564 method()->print_short_name(); 565 tty->cr(); 566 BREAKPOINT; 567 } 568 569 if( PrintOpto ) { 570 if (is_osr_compilation()) { 571 tty->print("[OSR]"); 572 } else if (env()->task()->is_precompile()) { 573 if (for_preload()) { 574 tty->print("[PRE]"); 575 } else { 576 tty->print("[AOT]"); 577 } 578 } 579 tty->print("%3d", _compile_id); 580 } 581 #endif 582 } 583 584 #ifndef PRODUCT 585 void Compile::print_phase(const char* phase_name) { 586 tty->print_cr("%u.\t%s", ++_phase_counter, phase_name); 587 } 588 589 void Compile::print_ideal_ir(const char* phase_name) { 590 // keep the following output all in one block 591 // This output goes directly to the tty, not the compiler log. 592 // To enable tools to match it up with the compilation activity, 593 // be sure to tag this tty output with the compile ID. 594 595 // Node dumping can cause a safepoint, which can break the tty lock. 596 // Buffer all node dumps, so that all safepoints happen before we lock. 597 ResourceMark rm; 598 stringStream ss; 599 600 if (_output == nullptr) { 601 ss.print_cr("AFTER: %s", phase_name); 602 // Print out all nodes in ascending order of index. 603 root()->dump_bfs(MaxNodeLimit, nullptr, "+S$", &ss); 604 } else { 605 // Dump the node blockwise if we have a scheduling 606 _output->print_scheduling(&ss); 607 } 608 609 // Check that the lock is not broken by a safepoint. 610 NoSafepointVerifier nsv; 611 ttyLocker ttyl; 612 if (xtty != nullptr) { 613 xtty->head("ideal compile_id='%d'%s compile_phase='%s'", 614 compile_id(), 615 is_osr_compilation() ? " compile_kind='osr'" : 616 (for_preload() ? " compile_kind='AP'" : ""), 617 phase_name); 618 } 619 620 tty->print("%s", ss.as_string()); 621 622 if (xtty != nullptr) { 623 xtty->tail("ideal"); 624 } 625 } 626 #endif 627 628 // ============================================================================ 629 //------------------------------Compile standard------------------------------- 630 631 // Compile a method. entry_bci is -1 for normal compilations and indicates 632 // the continuation bci for on stack replacement. 633 634 635 Compile::Compile(ciEnv* ci_env, ciMethod* target, int osr_bci, 636 Options options, DirectiveSet* directive) 637 : Phase(Compiler), 638 _compile_id(ci_env->compile_id()), 639 _options(options), 640 _method(target), 641 _entry_bci(osr_bci), 642 _ilt(nullptr), 643 _stub_function(nullptr), 644 _stub_name(nullptr), 645 _stub_id(StubId::NO_STUBID), 646 _stub_entry_point(nullptr), 647 _max_node_limit(MaxNodeLimit), 648 _post_loop_opts_phase(false), 649 _merge_stores_phase(false), 650 _allow_macro_nodes(true), 651 _inlining_progress(false), 652 _inlining_incrementally(false), 653 _do_cleanup(false), 654 _has_reserved_stack_access(target->has_reserved_stack_access()), 655 #ifndef PRODUCT 656 _igv_idx(0), 657 _trace_opto_output(directive->TraceOptoOutputOption), 658 #endif 659 _has_method_handle_invokes(false), 660 _clinit_barrier_on_entry(false), 661 _has_clinit_barriers(false), 662 _stress_seed(0), 663 _comp_arena(mtCompiler, Arena::Tag::tag_comp), 664 _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())), 665 _env(ci_env), 666 _directive(directive), 667 _log(ci_env->log()), 668 _first_failure_details(nullptr), 669 _intrinsics(comp_arena(), 0, 0, nullptr), 670 _macro_nodes(comp_arena(), 8, 0, nullptr), 671 _parse_predicates(comp_arena(), 8, 0, nullptr), 672 _template_assertion_predicate_opaques(comp_arena(), 8, 0, nullptr), 673 _expensive_nodes(comp_arena(), 8, 0, nullptr), 674 _for_post_loop_igvn(comp_arena(), 8, 0, nullptr), 675 _for_merge_stores_igvn(comp_arena(), 8, 0, nullptr), 676 _unstable_if_traps(comp_arena(), 8, 0, nullptr), 677 _coarsened_locks(comp_arena(), 8, 0, nullptr), 678 _congraph(nullptr), 679 NOT_PRODUCT(_igv_printer(nullptr) COMMA) 680 _unique(0), 681 _dead_node_count(0), 682 _dead_node_list(comp_arena()), 683 _node_arena_one(mtCompiler, Arena::Tag::tag_node), 684 _node_arena_two(mtCompiler, Arena::Tag::tag_node), 685 _node_arena(&_node_arena_one), 686 _mach_constant_base_node(nullptr), 687 _Compile_types(mtCompiler, Arena::Tag::tag_type), 688 _initial_gvn(nullptr), 689 _igvn_worklist(nullptr), 690 _types(nullptr), 691 _node_hash(nullptr), 692 _late_inlines(comp_arena(), 2, 0, nullptr), 693 _string_late_inlines(comp_arena(), 2, 0, nullptr), 694 _boxing_late_inlines(comp_arena(), 2, 0, nullptr), 695 _vector_reboxing_late_inlines(comp_arena(), 2, 0, nullptr), 696 _late_inlines_pos(0), 697 _number_of_mh_late_inlines(0), 698 _oom(false), 699 _replay_inline_data(nullptr), 700 _inline_printer(this), 701 _java_calls(0), 702 _inner_loops(0), 703 _interpreter_frame_size(0), 704 _output(nullptr) 705 #ifndef PRODUCT 706 , 707 _in_dump_cnt(0) 708 #endif 709 { 710 C = this; 711 CompileWrapper cw(this); 712 713 TraceTime t1("Total compilation time", &_t_totalCompilation, CITime, CITimeVerbose); 714 TraceTime t2(nullptr, &_t_methodCompilation, CITime, false); 715 716 #if defined(SUPPORT_ASSEMBLY) || defined(SUPPORT_ABSTRACT_ASSEMBLY) 717 bool print_opto_assembly = directive->PrintOptoAssemblyOption; 718 // We can always print a disassembly, either abstract (hex dump) or 719 // with the help of a suitable hsdis library. Thus, we should not 720 // couple print_assembly and print_opto_assembly controls. 721 // But: always print opto and regular assembly on compile command 'print'. 722 bool print_assembly = directive->PrintAssemblyOption; 723 set_print_assembly(print_opto_assembly || print_assembly); 724 #else 725 set_print_assembly(false); // must initialize. 726 #endif 727 728 #ifndef PRODUCT 729 set_parsed_irreducible_loop(false); 730 #endif 731 732 if (directive->ReplayInlineOption) { 733 _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level()); 734 } 735 set_print_inlining(directive->PrintInliningOption || PrintOptoInlining); 736 set_print_intrinsics(directive->PrintIntrinsicsOption); 737 set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it 738 739 if (ProfileTraps) { 740 // Make sure the method being compiled gets its own MDO, 741 // so we can at least track the decompile_count(). 742 method()->ensure_method_data(); 743 } 744 745 if (StressLCM || StressGCM || StressIGVN || StressCCP || 746 StressIncrementalInlining || StressMacroExpansion || 747 StressMacroElimination || StressUnstableIfTraps || 748 StressBailout || StressLoopPeeling) { 749 initialize_stress_seed(directive); 750 } 751 752 Init(/*do_aliasing=*/ true); 753 754 print_compile_messages(); 755 756 _ilt = InlineTree::build_inline_tree_root(); 757 758 // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice 759 assert(num_alias_types() >= AliasIdxRaw, ""); 760 761 #define MINIMUM_NODE_HASH 1023 762 763 // GVN that will be run immediately on new nodes 764 uint estimated_size = method()->code_size()*4+64; 765 estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size); 766 _igvn_worklist = new (comp_arena()) Unique_Node_List(comp_arena()); 767 _types = new (comp_arena()) Type_Array(comp_arena()); 768 _node_hash = new (comp_arena()) NodeHash(comp_arena(), estimated_size); 769 PhaseGVN gvn; 770 set_initial_gvn(&gvn); 771 772 { // Scope for timing the parser 773 TracePhase tp(_t_parser); 774 775 // Put top into the hash table ASAP. 776 initial_gvn()->transform(top()); 777 778 // Set up tf(), start(), and find a CallGenerator. 779 CallGenerator* cg = nullptr; 780 if (is_osr_compilation()) { 781 const TypeTuple *domain = StartOSRNode::osr_domain(); 782 const TypeTuple *range = TypeTuple::make_range(method()->signature()); 783 init_tf(TypeFunc::make(domain, range)); 784 StartNode* s = new StartOSRNode(root(), domain); 785 initial_gvn()->set_type_bottom(s); 786 verify_start(s); 787 cg = CallGenerator::for_osr(method(), entry_bci()); 788 } else { 789 // Normal case. 790 init_tf(TypeFunc::make(method())); 791 StartNode* s = new StartNode(root(), tf()->domain()); 792 initial_gvn()->set_type_bottom(s); 793 verify_start(s); 794 float past_uses = method()->interpreter_invocation_count(); 795 float expected_uses = past_uses; 796 cg = CallGenerator::for_inline(method(), expected_uses); 797 } 798 if (failing()) return; 799 if (cg == nullptr) { 800 const char* reason = InlineTree::check_can_parse(method()); 801 assert(reason != nullptr, "expect reason for parse failure"); 802 stringStream ss; 803 ss.print("cannot parse method: %s", reason); 804 record_method_not_compilable(ss.as_string()); 805 return; 806 } 807 808 gvn.set_type(root(), root()->bottom_type()); 809 810 JVMState* jvms = build_start_state(start(), tf()); 811 if ((jvms = cg->generate(jvms)) == nullptr) { 812 assert(failure_reason() != nullptr, "expect reason for parse failure"); 813 stringStream ss; 814 ss.print("method parse failed: %s", failure_reason()); 815 record_method_not_compilable(ss.as_string() DEBUG_ONLY(COMMA true)); 816 return; 817 } 818 GraphKit kit(jvms); 819 820 if (!kit.stopped()) { 821 // Accept return values, and transfer control we know not where. 822 // This is done by a special, unique ReturnNode bound to root. 823 return_values(kit.jvms()); 824 } 825 826 if (kit.has_exceptions()) { 827 // Any exceptions that escape from this call must be rethrown 828 // to whatever caller is dynamically above us on the stack. 829 // This is done by a special, unique RethrowNode bound to root. 830 rethrow_exceptions(kit.transfer_exceptions_into_jvms()); 831 } 832 833 assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off"); 834 835 if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) { 836 inline_string_calls(true); 837 } 838 839 if (failing()) return; 840 841 // Remove clutter produced by parsing. 842 if (!failing()) { 843 ResourceMark rm; 844 PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist()); 845 } 846 } 847 848 // Note: Large methods are capped off in do_one_bytecode(). 849 if (failing()) return; 850 851 // After parsing, node notes are no longer automagic. 852 // They must be propagated by register_new_node_with_optimizer(), 853 // clone(), or the like. 854 set_default_node_notes(nullptr); 855 856 #ifndef PRODUCT 857 if (should_print_igv(1)) { 858 _igv_printer->print_inlining(); 859 } 860 #endif 861 862 if (failing()) return; 863 NOT_PRODUCT( verify_graph_edges(); ) 864 865 // Now optimize 866 Optimize(); 867 if (failing()) return; 868 NOT_PRODUCT( verify_graph_edges(); ) 869 870 #ifndef PRODUCT 871 if (should_print_ideal()) { 872 print_ideal_ir("print_ideal"); 873 } 874 #endif 875 876 #ifdef ASSERT 877 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 878 bs->verify_gc_barriers(this, BarrierSetC2::BeforeCodeGen); 879 #endif 880 881 // Dump compilation data to replay it. 882 if (directive->DumpReplayOption) { 883 env()->dump_replay_data(_compile_id); 884 } 885 if (directive->DumpInlineOption && (ilt() != nullptr)) { 886 env()->dump_inline_data(_compile_id); 887 } 888 889 // Now that we know the size of all the monitors we can add a fixed slot 890 // for the original deopt pc. 891 int next_slot = fixed_slots() + (sizeof(address) / VMRegImpl::stack_slot_size); 892 set_fixed_slots(next_slot); 893 894 // Compute when to use implicit null checks. Used by matching trap based 895 // nodes and NullCheck optimization. 896 set_allowed_deopt_reasons(); 897 898 // Now generate code 899 Code_Gen(); 900 } 901 902 //------------------------------Compile---------------------------------------- 903 // Compile a runtime stub 904 Compile::Compile(ciEnv* ci_env, 905 TypeFunc_generator generator, 906 address stub_function, 907 const char* stub_name, 908 StubId stub_id, 909 int is_fancy_jump, 910 bool pass_tls, 911 bool return_pc, 912 DirectiveSet* directive) 913 : Phase(Compiler), 914 _compile_id(0), 915 _options(Options::for_runtime_stub()), 916 _method(nullptr), 917 _entry_bci(InvocationEntryBci), 918 _stub_function(stub_function), 919 _stub_name(stub_name), 920 _stub_id(stub_id), 921 _stub_entry_point(nullptr), 922 _max_node_limit(MaxNodeLimit), 923 _post_loop_opts_phase(false), 924 _merge_stores_phase(false), 925 _allow_macro_nodes(true), 926 _inlining_progress(false), 927 _inlining_incrementally(false), 928 _has_reserved_stack_access(false), 929 #ifndef PRODUCT 930 _igv_idx(0), 931 _trace_opto_output(directive->TraceOptoOutputOption), 932 #endif 933 _has_method_handle_invokes(false), 934 _clinit_barrier_on_entry(false), 935 _has_clinit_barriers(false), 936 _stress_seed(0), 937 _comp_arena(mtCompiler, Arena::Tag::tag_comp), 938 _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())), 939 _env(ci_env), 940 _directive(directive), 941 _log(ci_env->log()), 942 _first_failure_details(nullptr), 943 _for_post_loop_igvn(comp_arena(), 8, 0, nullptr), 944 _for_merge_stores_igvn(comp_arena(), 8, 0, nullptr), 945 _congraph(nullptr), 946 NOT_PRODUCT(_igv_printer(nullptr) COMMA) 947 _unique(0), 948 _dead_node_count(0), 949 _dead_node_list(comp_arena()), 950 _node_arena_one(mtCompiler, Arena::Tag::tag_node), 951 _node_arena_two(mtCompiler, Arena::Tag::tag_node), 952 _node_arena(&_node_arena_one), 953 _mach_constant_base_node(nullptr), 954 _Compile_types(mtCompiler, Arena::Tag::tag_type), 955 _initial_gvn(nullptr), 956 _igvn_worklist(nullptr), 957 _types(nullptr), 958 _node_hash(nullptr), 959 _number_of_mh_late_inlines(0), 960 _oom(false), 961 _replay_inline_data(nullptr), 962 _inline_printer(this), 963 _java_calls(0), 964 _inner_loops(0), 965 _interpreter_frame_size(0), 966 _output(nullptr), 967 #ifndef PRODUCT 968 _in_dump_cnt(0), 969 #endif 970 _allowed_reasons(0) { 971 C = this; 972 973 // try to reuse an existing stub 974 { 975 BlobId blob_id = StubInfo::blob(_stub_id); 976 CodeBlob* blob = AOTCodeCache::load_code_blob(AOTCodeEntry::C2Blob, blob_id); 977 if (blob != nullptr) { 978 RuntimeStub* rs = blob->as_runtime_stub(); 979 _stub_entry_point = rs->entry_point(); 980 return; 981 } 982 } 983 984 TraceTime t1(nullptr, &_t_totalCompilation, CITime, false); 985 TraceTime t2(nullptr, &_t_stubCompilation, CITime, false); 986 987 #ifndef PRODUCT 988 set_print_assembly(PrintFrameConverterAssembly); 989 set_parsed_irreducible_loop(false); 990 #else 991 set_print_assembly(false); // Must initialize. 992 #endif 993 set_has_irreducible_loop(false); // no loops 994 995 CompileWrapper cw(this); 996 Init(/*do_aliasing=*/ false); 997 init_tf((*generator)()); 998 999 _igvn_worklist = new (comp_arena()) Unique_Node_List(comp_arena()); 1000 _types = new (comp_arena()) Type_Array(comp_arena()); 1001 _node_hash = new (comp_arena()) NodeHash(comp_arena(), 255); 1002 1003 if (StressLCM || StressGCM || StressBailout) { 1004 initialize_stress_seed(directive); 1005 } 1006 1007 { 1008 PhaseGVN gvn; 1009 set_initial_gvn(&gvn); // not significant, but GraphKit guys use it pervasively 1010 gvn.transform(top()); 1011 1012 GraphKit kit; 1013 kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc); 1014 } 1015 1016 NOT_PRODUCT( verify_graph_edges(); ) 1017 1018 Code_Gen(); 1019 } 1020 1021 Compile::~Compile() { 1022 delete _first_failure_details; 1023 }; 1024 1025 //------------------------------Init------------------------------------------- 1026 // Prepare for a single compilation 1027 void Compile::Init(bool aliasing) { 1028 _do_aliasing = aliasing; 1029 _unique = 0; 1030 _regalloc = nullptr; 1031 1032 _tf = nullptr; // filled in later 1033 _top = nullptr; // cached later 1034 _matcher = nullptr; // filled in later 1035 _cfg = nullptr; // filled in later 1036 1037 _node_note_array = nullptr; 1038 _default_node_notes = nullptr; 1039 DEBUG_ONLY( _modified_nodes = nullptr; ) // Used in Optimize() 1040 1041 _immutable_memory = nullptr; // filled in at first inquiry 1042 1043 #ifdef ASSERT 1044 _phase_optimize_finished = false; 1045 _phase_verify_ideal_loop = false; 1046 _exception_backedge = false; 1047 _type_verify = nullptr; 1048 #endif 1049 1050 // Globally visible Nodes 1051 // First set TOP to null to give safe behavior during creation of RootNode 1052 set_cached_top_node(nullptr); 1053 set_root(new RootNode()); 1054 // Now that you have a Root to point to, create the real TOP 1055 set_cached_top_node( new ConNode(Type::TOP) ); 1056 set_recent_alloc(nullptr, nullptr); 1057 1058 // Create Debug Information Recorder to record scopes, oopmaps, etc. 1059 env()->set_oop_recorder(new OopRecorder(env()->arena())); 1060 env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder())); 1061 env()->set_dependencies(new Dependencies(env())); 1062 1063 _fixed_slots = 0; 1064 set_has_split_ifs(false); 1065 set_has_loops(false); // first approximation 1066 set_has_stringbuilder(false); 1067 set_has_boxed_value(false); 1068 _trap_can_recompile = false; // no traps emitted yet 1069 _major_progress = true; // start out assuming good things will happen 1070 set_has_unsafe_access(false); 1071 set_max_vector_size(0); 1072 set_clear_upper_avx(false); //false as default for clear upper bits of ymm registers 1073 Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist)); 1074 set_decompile_count(0); 1075 1076 #ifndef PRODUCT 1077 _phase_counter = 0; 1078 Copy::zero_to_bytes(_igv_phase_iter, sizeof(_igv_phase_iter)); 1079 #endif 1080 1081 set_do_freq_based_layout(_directive->BlockLayoutByFrequencyOption); 1082 _loop_opts_cnt = LoopOptsCount; 1083 set_do_inlining(Inline); 1084 set_max_inline_size(MaxInlineSize); 1085 set_freq_inline_size(FreqInlineSize); 1086 set_do_scheduling(OptoScheduling); 1087 1088 set_do_vector_loop(false); 1089 set_has_monitors(false); 1090 set_has_scoped_access(false); 1091 1092 if (AllowVectorizeOnDemand) { 1093 if (has_method() && _directive->VectorizeOption) { 1094 set_do_vector_loop(true); 1095 NOT_PRODUCT(if (do_vector_loop() && Verbose) {tty->print("Compile::Init: do vectorized loops (SIMD like) for method %s\n", method()->name()->as_quoted_ascii());}) 1096 } else if (has_method() && method()->name() != nullptr && 1097 method()->intrinsic_id() == vmIntrinsics::_forEachRemaining) { 1098 set_do_vector_loop(true); 1099 } 1100 } 1101 set_use_cmove(UseCMoveUnconditionally /* || do_vector_loop()*/); //TODO: consider do_vector_loop() mandate use_cmove unconditionally 1102 NOT_PRODUCT(if (use_cmove() && Verbose && has_method()) {tty->print("Compile::Init: use CMove without profitability tests for method %s\n", method()->name()->as_quoted_ascii());}) 1103 1104 _max_node_limit = _directive->MaxNodeLimitOption; 1105 1106 if (VM_Version::supports_fast_class_init_checks() && has_method() && !is_osr_compilation() && 1107 (method()->needs_clinit_barrier() || (do_clinit_barriers() && method()->is_static()))) { 1108 set_clinit_barrier_on_entry(true); 1109 if (do_clinit_barriers()) { 1110 set_has_clinit_barriers(true); // Entry clinit barrier is in prolog code. 1111 } 1112 } 1113 if (debug_info()->recording_non_safepoints()) { 1114 set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*> 1115 (comp_arena(), 8, 0, nullptr)); 1116 set_default_node_notes(Node_Notes::make(this)); 1117 } 1118 1119 const int grow_ats = 16; 1120 _max_alias_types = grow_ats; 1121 _alias_types = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats); 1122 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, grow_ats); 1123 Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats); 1124 { 1125 for (int i = 0; i < grow_ats; i++) _alias_types[i] = &ats[i]; 1126 } 1127 // Initialize the first few types. 1128 _alias_types[AliasIdxTop]->Init(AliasIdxTop, nullptr); 1129 _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM); 1130 _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM); 1131 _num_alias_types = AliasIdxRaw+1; 1132 // Zero out the alias type cache. 1133 Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache)); 1134 // A null adr_type hits in the cache right away. Preload the right answer. 1135 probe_alias_cache(nullptr)->_index = AliasIdxTop; 1136 } 1137 1138 #ifdef ASSERT 1139 // Verify that the current StartNode is valid. 1140 void Compile::verify_start(StartNode* s) const { 1141 assert(failing_internal() || s == start(), "should be StartNode"); 1142 } 1143 #endif 1144 1145 /** 1146 * Return the 'StartNode'. We must not have a pending failure, since the ideal graph 1147 * can be in an inconsistent state, i.e., we can get segmentation faults when traversing 1148 * the ideal graph. 1149 */ 1150 StartNode* Compile::start() const { 1151 assert (!failing_internal() || C->failure_is_artificial(), "Must not have pending failure. Reason is: %s", failure_reason()); 1152 for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) { 1153 Node* start = root()->fast_out(i); 1154 if (start->is_Start()) { 1155 return start->as_Start(); 1156 } 1157 } 1158 fatal("Did not find Start node!"); 1159 return nullptr; 1160 } 1161 1162 //-------------------------------immutable_memory------------------------------------- 1163 // Access immutable memory 1164 Node* Compile::immutable_memory() { 1165 if (_immutable_memory != nullptr) { 1166 return _immutable_memory; 1167 } 1168 StartNode* s = start(); 1169 for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) { 1170 Node *p = s->fast_out(i); 1171 if (p != s && p->as_Proj()->_con == TypeFunc::Memory) { 1172 _immutable_memory = p; 1173 return _immutable_memory; 1174 } 1175 } 1176 ShouldNotReachHere(); 1177 return nullptr; 1178 } 1179 1180 //----------------------set_cached_top_node------------------------------------ 1181 // Install the cached top node, and make sure Node::is_top works correctly. 1182 void Compile::set_cached_top_node(Node* tn) { 1183 if (tn != nullptr) verify_top(tn); 1184 Node* old_top = _top; 1185 _top = tn; 1186 // Calling Node::setup_is_top allows the nodes the chance to adjust 1187 // their _out arrays. 1188 if (_top != nullptr) _top->setup_is_top(); 1189 if (old_top != nullptr) old_top->setup_is_top(); 1190 assert(_top == nullptr || top()->is_top(), ""); 1191 } 1192 1193 #ifdef ASSERT 1194 uint Compile::count_live_nodes_by_graph_walk() { 1195 Unique_Node_List useful(comp_arena()); 1196 // Get useful node list by walking the graph. 1197 identify_useful_nodes(useful); 1198 return useful.size(); 1199 } 1200 1201 void Compile::print_missing_nodes() { 1202 1203 // Return if CompileLog is null and PrintIdealNodeCount is false. 1204 if ((_log == nullptr) && (! PrintIdealNodeCount)) { 1205 return; 1206 } 1207 1208 // This is an expensive function. It is executed only when the user 1209 // specifies VerifyIdealNodeCount option or otherwise knows the 1210 // additional work that needs to be done to identify reachable nodes 1211 // by walking the flow graph and find the missing ones using 1212 // _dead_node_list. 1213 1214 Unique_Node_List useful(comp_arena()); 1215 // Get useful node list by walking the graph. 1216 identify_useful_nodes(useful); 1217 1218 uint l_nodes = C->live_nodes(); 1219 uint l_nodes_by_walk = useful.size(); 1220 1221 if (l_nodes != l_nodes_by_walk) { 1222 if (_log != nullptr) { 1223 _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk))); 1224 _log->stamp(); 1225 _log->end_head(); 1226 } 1227 VectorSet& useful_member_set = useful.member_set(); 1228 int last_idx = l_nodes_by_walk; 1229 for (int i = 0; i < last_idx; i++) { 1230 if (useful_member_set.test(i)) { 1231 if (_dead_node_list.test(i)) { 1232 if (_log != nullptr) { 1233 _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i); 1234 } 1235 if (PrintIdealNodeCount) { 1236 // Print the log message to tty 1237 tty->print_cr("mismatched_node idx='%d' both live and dead'", i); 1238 useful.at(i)->dump(); 1239 } 1240 } 1241 } 1242 else if (! _dead_node_list.test(i)) { 1243 if (_log != nullptr) { 1244 _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i); 1245 } 1246 if (PrintIdealNodeCount) { 1247 // Print the log message to tty 1248 tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i); 1249 } 1250 } 1251 } 1252 if (_log != nullptr) { 1253 _log->tail("mismatched_nodes"); 1254 } 1255 } 1256 } 1257 void Compile::record_modified_node(Node* n) { 1258 if (_modified_nodes != nullptr && !_inlining_incrementally && !n->is_Con()) { 1259 _modified_nodes->push(n); 1260 } 1261 } 1262 1263 void Compile::remove_modified_node(Node* n) { 1264 if (_modified_nodes != nullptr) { 1265 _modified_nodes->remove(n); 1266 } 1267 } 1268 #endif 1269 1270 #ifndef PRODUCT 1271 void Compile::verify_top(Node* tn) const { 1272 if (tn != nullptr) { 1273 assert(tn->is_Con(), "top node must be a constant"); 1274 assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type"); 1275 assert(tn->in(0) != nullptr, "must have live top node"); 1276 } 1277 } 1278 #endif 1279 1280 1281 ///-------------------Managing Per-Node Debug & Profile Info------------------- 1282 1283 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) { 1284 guarantee(arr != nullptr, ""); 1285 int num_blocks = arr->length(); 1286 if (grow_by < num_blocks) grow_by = num_blocks; 1287 int num_notes = grow_by * _node_notes_block_size; 1288 Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes); 1289 Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes)); 1290 while (num_notes > 0) { 1291 arr->append(notes); 1292 notes += _node_notes_block_size; 1293 num_notes -= _node_notes_block_size; 1294 } 1295 assert(num_notes == 0, "exact multiple, please"); 1296 } 1297 1298 bool Compile::copy_node_notes_to(Node* dest, Node* source) { 1299 if (source == nullptr || dest == nullptr) return false; 1300 1301 if (dest->is_Con()) 1302 return false; // Do not push debug info onto constants. 1303 1304 #ifdef ASSERT 1305 // Leave a bread crumb trail pointing to the original node: 1306 if (dest != nullptr && dest != source && dest->debug_orig() == nullptr) { 1307 dest->set_debug_orig(source); 1308 } 1309 #endif 1310 1311 if (node_note_array() == nullptr) 1312 return false; // Not collecting any notes now. 1313 1314 // This is a copy onto a pre-existing node, which may already have notes. 1315 // If both nodes have notes, do not overwrite any pre-existing notes. 1316 Node_Notes* source_notes = node_notes_at(source->_idx); 1317 if (source_notes == nullptr || source_notes->is_clear()) return false; 1318 Node_Notes* dest_notes = node_notes_at(dest->_idx); 1319 if (dest_notes == nullptr || dest_notes->is_clear()) { 1320 return set_node_notes_at(dest->_idx, source_notes); 1321 } 1322 1323 Node_Notes merged_notes = (*source_notes); 1324 // The order of operations here ensures that dest notes will win... 1325 merged_notes.update_from(dest_notes); 1326 return set_node_notes_at(dest->_idx, &merged_notes); 1327 } 1328 1329 1330 //--------------------------allow_range_check_smearing------------------------- 1331 // Gating condition for coalescing similar range checks. 1332 // Sometimes we try 'speculatively' replacing a series of a range checks by a 1333 // single covering check that is at least as strong as any of them. 1334 // If the optimization succeeds, the simplified (strengthened) range check 1335 // will always succeed. If it fails, we will deopt, and then give up 1336 // on the optimization. 1337 bool Compile::allow_range_check_smearing() const { 1338 // If this method has already thrown a range-check, 1339 // assume it was because we already tried range smearing 1340 // and it failed. 1341 uint already_trapped = trap_count(Deoptimization::Reason_range_check); 1342 return !already_trapped; 1343 } 1344 1345 1346 //------------------------------flatten_alias_type----------------------------- 1347 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const { 1348 assert(do_aliasing(), "Aliasing should be enabled"); 1349 int offset = tj->offset(); 1350 TypePtr::PTR ptr = tj->ptr(); 1351 1352 // Known instance (scalarizable allocation) alias only with itself. 1353 bool is_known_inst = tj->isa_oopptr() != nullptr && 1354 tj->is_oopptr()->is_known_instance(); 1355 1356 // Process weird unsafe references. 1357 if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) { 1358 assert(InlineUnsafeOps || StressReflectiveCode, "indeterminate pointers come only from unsafe ops"); 1359 assert(!is_known_inst, "scalarizable allocation should not have unsafe references"); 1360 tj = TypeOopPtr::BOTTOM; 1361 ptr = tj->ptr(); 1362 offset = tj->offset(); 1363 } 1364 1365 // Array pointers need some flattening 1366 const TypeAryPtr* ta = tj->isa_aryptr(); 1367 if (ta && ta->is_stable()) { 1368 // Erase stability property for alias analysis. 1369 tj = ta = ta->cast_to_stable(false); 1370 } 1371 if( ta && is_known_inst ) { 1372 if ( offset != Type::OffsetBot && 1373 offset > arrayOopDesc::length_offset_in_bytes() ) { 1374 offset = Type::OffsetBot; // Flatten constant access into array body only 1375 tj = ta = ta-> 1376 remove_speculative()-> 1377 cast_to_ptr_type(ptr)-> 1378 with_offset(offset); 1379 } 1380 } else if (ta) { 1381 // For arrays indexed by constant indices, we flatten the alias 1382 // space to include all of the array body. Only the header, klass 1383 // and array length can be accessed un-aliased. 1384 if( offset != Type::OffsetBot ) { 1385 if( ta->const_oop() ) { // MethodData* or Method* 1386 offset = Type::OffsetBot; // Flatten constant access into array body 1387 tj = ta = ta-> 1388 remove_speculative()-> 1389 cast_to_ptr_type(ptr)-> 1390 cast_to_exactness(false)-> 1391 with_offset(offset); 1392 } else if( offset == arrayOopDesc::length_offset_in_bytes() ) { 1393 // range is OK as-is. 1394 tj = ta = TypeAryPtr::RANGE; 1395 } else if( offset == oopDesc::klass_offset_in_bytes() ) { 1396 tj = TypeInstPtr::KLASS; // all klass loads look alike 1397 ta = TypeAryPtr::RANGE; // generic ignored junk 1398 ptr = TypePtr::BotPTR; 1399 } else if( offset == oopDesc::mark_offset_in_bytes() ) { 1400 tj = TypeInstPtr::MARK; 1401 ta = TypeAryPtr::RANGE; // generic ignored junk 1402 ptr = TypePtr::BotPTR; 1403 } else { // Random constant offset into array body 1404 offset = Type::OffsetBot; // Flatten constant access into array body 1405 tj = ta = ta-> 1406 remove_speculative()-> 1407 cast_to_ptr_type(ptr)-> 1408 cast_to_exactness(false)-> 1409 with_offset(offset); 1410 } 1411 } 1412 // Arrays of fixed size alias with arrays of unknown size. 1413 if (ta->size() != TypeInt::POS) { 1414 const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS); 1415 tj = ta = ta-> 1416 remove_speculative()-> 1417 cast_to_ptr_type(ptr)-> 1418 with_ary(tary)-> 1419 cast_to_exactness(false); 1420 } 1421 // Arrays of known objects become arrays of unknown objects. 1422 if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) { 1423 const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size()); 1424 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,nullptr,false,offset); 1425 } 1426 if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) { 1427 const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size()); 1428 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,nullptr,false,offset); 1429 } 1430 // Arrays of bytes and of booleans both use 'bastore' and 'baload' so 1431 // cannot be distinguished by bytecode alone. 1432 if (ta->elem() == TypeInt::BOOL) { 1433 const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size()); 1434 ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE); 1435 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset); 1436 } 1437 // During the 2nd round of IterGVN, NotNull castings are removed. 1438 // Make sure the Bottom and NotNull variants alias the same. 1439 // Also, make sure exact and non-exact variants alias the same. 1440 if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != nullptr) { 1441 tj = ta = ta-> 1442 remove_speculative()-> 1443 cast_to_ptr_type(TypePtr::BotPTR)-> 1444 cast_to_exactness(false)-> 1445 with_offset(offset); 1446 } 1447 } 1448 1449 // Oop pointers need some flattening 1450 const TypeInstPtr *to = tj->isa_instptr(); 1451 if (to && to != TypeOopPtr::BOTTOM) { 1452 ciInstanceKlass* ik = to->instance_klass(); 1453 if( ptr == TypePtr::Constant ) { 1454 if (ik != ciEnv::current()->Class_klass() || 1455 offset < ik->layout_helper_size_in_bytes()) { 1456 // No constant oop pointers (such as Strings); they alias with 1457 // unknown strings. 1458 assert(!is_known_inst, "not scalarizable allocation"); 1459 tj = to = to-> 1460 cast_to_instance_id(TypeOopPtr::InstanceBot)-> 1461 remove_speculative()-> 1462 cast_to_ptr_type(TypePtr::BotPTR)-> 1463 cast_to_exactness(false); 1464 } 1465 } else if( is_known_inst ) { 1466 tj = to; // Keep NotNull and klass_is_exact for instance type 1467 } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) { 1468 // During the 2nd round of IterGVN, NotNull castings are removed. 1469 // Make sure the Bottom and NotNull variants alias the same. 1470 // Also, make sure exact and non-exact variants alias the same. 1471 tj = to = to-> 1472 remove_speculative()-> 1473 cast_to_instance_id(TypeOopPtr::InstanceBot)-> 1474 cast_to_ptr_type(TypePtr::BotPTR)-> 1475 cast_to_exactness(false); 1476 } 1477 if (to->speculative() != nullptr) { 1478 tj = to = to->remove_speculative(); 1479 } 1480 // Canonicalize the holder of this field 1481 if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) { 1482 // First handle header references such as a LoadKlassNode, even if the 1483 // object's klass is unloaded at compile time (4965979). 1484 if (!is_known_inst) { // Do it only for non-instance types 1485 tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, nullptr, offset); 1486 } 1487 } else if (offset < 0 || offset >= ik->layout_helper_size_in_bytes()) { 1488 // Static fields are in the space above the normal instance 1489 // fields in the java.lang.Class instance. 1490 if (ik != ciEnv::current()->Class_klass()) { 1491 to = nullptr; 1492 tj = TypeOopPtr::BOTTOM; 1493 offset = tj->offset(); 1494 } 1495 } else { 1496 ciInstanceKlass *canonical_holder = ik->get_canonical_holder(offset); 1497 assert(offset < canonical_holder->layout_helper_size_in_bytes(), ""); 1498 assert(tj->offset() == offset, "no change to offset expected"); 1499 bool xk = to->klass_is_exact(); 1500 int instance_id = to->instance_id(); 1501 1502 // If the input type's class is the holder: if exact, the type only includes interfaces implemented by the holder 1503 // but if not exact, it may include extra interfaces: build new type from the holder class to make sure only 1504 // its interfaces are included. 1505 if (xk && ik->equals(canonical_holder)) { 1506 assert(tj == TypeInstPtr::make(to->ptr(), canonical_holder, is_known_inst, nullptr, offset, instance_id), "exact type should be canonical type"); 1507 } else { 1508 assert(xk || !is_known_inst, "Known instance should be exact type"); 1509 tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, is_known_inst, nullptr, offset, instance_id); 1510 } 1511 } 1512 } 1513 1514 // Klass pointers to object array klasses need some flattening 1515 const TypeKlassPtr *tk = tj->isa_klassptr(); 1516 if( tk ) { 1517 // If we are referencing a field within a Klass, we need 1518 // to assume the worst case of an Object. Both exact and 1519 // inexact types must flatten to the same alias class so 1520 // use NotNull as the PTR. 1521 if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) { 1522 tj = tk = TypeInstKlassPtr::make(TypePtr::NotNull, 1523 env()->Object_klass(), 1524 offset); 1525 } 1526 1527 if (tk->isa_aryklassptr() && tk->is_aryklassptr()->elem()->isa_klassptr()) { 1528 ciKlass* k = ciObjArrayKlass::make(env()->Object_klass()); 1529 if (!k || !k->is_loaded()) { // Only fails for some -Xcomp runs 1530 tj = tk = TypeInstKlassPtr::make(TypePtr::NotNull, env()->Object_klass(), offset); 1531 } else { 1532 tj = tk = TypeAryKlassPtr::make(TypePtr::NotNull, tk->is_aryklassptr()->elem(), k, offset); 1533 } 1534 } 1535 1536 // Check for precise loads from the primary supertype array and force them 1537 // to the supertype cache alias index. Check for generic array loads from 1538 // the primary supertype array and also force them to the supertype cache 1539 // alias index. Since the same load can reach both, we need to merge 1540 // these 2 disparate memories into the same alias class. Since the 1541 // primary supertype array is read-only, there's no chance of confusion 1542 // where we bypass an array load and an array store. 1543 int primary_supers_offset = in_bytes(Klass::primary_supers_offset()); 1544 if (offset == Type::OffsetBot || 1545 (offset >= primary_supers_offset && 1546 offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) || 1547 offset == (int)in_bytes(Klass::secondary_super_cache_offset())) { 1548 offset = in_bytes(Klass::secondary_super_cache_offset()); 1549 tj = tk = tk->with_offset(offset); 1550 } 1551 } 1552 1553 // Flatten all Raw pointers together. 1554 if (tj->base() == Type::RawPtr) 1555 tj = TypeRawPtr::BOTTOM; 1556 1557 if (tj->base() == Type::AnyPtr) 1558 tj = TypePtr::BOTTOM; // An error, which the caller must check for. 1559 1560 offset = tj->offset(); 1561 assert( offset != Type::OffsetTop, "Offset has fallen from constant" ); 1562 1563 assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) || 1564 (offset == Type::OffsetBot && tj->base() == Type::AryPtr) || 1565 (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) || 1566 (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) || 1567 (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) || 1568 (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) || 1569 (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr), 1570 "For oops, klasses, raw offset must be constant; for arrays the offset is never known" ); 1571 assert( tj->ptr() != TypePtr::TopPTR && 1572 tj->ptr() != TypePtr::AnyNull && 1573 tj->ptr() != TypePtr::Null, "No imprecise addresses" ); 1574 // assert( tj->ptr() != TypePtr::Constant || 1575 // tj->base() == Type::RawPtr || 1576 // tj->base() == Type::KlassPtr, "No constant oop addresses" ); 1577 1578 return tj; 1579 } 1580 1581 void Compile::AliasType::Init(int i, const TypePtr* at) { 1582 assert(AliasIdxTop <= i && i < Compile::current()->_max_alias_types, "Invalid alias index"); 1583 _index = i; 1584 _adr_type = at; 1585 _field = nullptr; 1586 _element = nullptr; 1587 _is_rewritable = true; // default 1588 const TypeOopPtr *atoop = (at != nullptr) ? at->isa_oopptr() : nullptr; 1589 if (atoop != nullptr && atoop->is_known_instance()) { 1590 const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot); 1591 _general_index = Compile::current()->get_alias_index(gt); 1592 } else { 1593 _general_index = 0; 1594 } 1595 } 1596 1597 BasicType Compile::AliasType::basic_type() const { 1598 if (element() != nullptr) { 1599 const Type* element = adr_type()->is_aryptr()->elem(); 1600 return element->isa_narrowoop() ? T_OBJECT : element->array_element_basic_type(); 1601 } if (field() != nullptr) { 1602 return field()->layout_type(); 1603 } else { 1604 return T_ILLEGAL; // unknown 1605 } 1606 } 1607 1608 //---------------------------------print_on------------------------------------ 1609 #ifndef PRODUCT 1610 void Compile::AliasType::print_on(outputStream* st) { 1611 if (index() < 10) 1612 st->print("@ <%d> ", index()); 1613 else st->print("@ <%d>", index()); 1614 st->print(is_rewritable() ? " " : " RO"); 1615 int offset = adr_type()->offset(); 1616 if (offset == Type::OffsetBot) 1617 st->print(" +any"); 1618 else st->print(" +%-3d", offset); 1619 st->print(" in "); 1620 adr_type()->dump_on(st); 1621 const TypeOopPtr* tjp = adr_type()->isa_oopptr(); 1622 if (field() != nullptr && tjp) { 1623 if (tjp->is_instptr()->instance_klass() != field()->holder() || 1624 tjp->offset() != field()->offset_in_bytes()) { 1625 st->print(" != "); 1626 field()->print(); 1627 st->print(" ***"); 1628 } 1629 } 1630 } 1631 1632 void print_alias_types() { 1633 Compile* C = Compile::current(); 1634 tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1); 1635 for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) { 1636 C->alias_type(idx)->print_on(tty); 1637 tty->cr(); 1638 } 1639 } 1640 #endif 1641 1642 1643 //----------------------------probe_alias_cache-------------------------------- 1644 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) { 1645 intptr_t key = (intptr_t) adr_type; 1646 key ^= key >> logAliasCacheSize; 1647 return &_alias_cache[key & right_n_bits(logAliasCacheSize)]; 1648 } 1649 1650 1651 //-----------------------------grow_alias_types-------------------------------- 1652 void Compile::grow_alias_types() { 1653 const int old_ats = _max_alias_types; // how many before? 1654 const int new_ats = old_ats; // how many more? 1655 const int grow_ats = old_ats+new_ats; // how many now? 1656 _max_alias_types = grow_ats; 1657 _alias_types = REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats); 1658 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats); 1659 Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats); 1660 for (int i = 0; i < new_ats; i++) _alias_types[old_ats+i] = &ats[i]; 1661 } 1662 1663 1664 //--------------------------------find_alias_type------------------------------ 1665 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) { 1666 if (!do_aliasing()) { 1667 return alias_type(AliasIdxBot); 1668 } 1669 1670 AliasCacheEntry* ace = probe_alias_cache(adr_type); 1671 if (ace->_adr_type == adr_type) { 1672 return alias_type(ace->_index); 1673 } 1674 1675 // Handle special cases. 1676 if (adr_type == nullptr) return alias_type(AliasIdxTop); 1677 if (adr_type == TypePtr::BOTTOM) return alias_type(AliasIdxBot); 1678 1679 // Do it the slow way. 1680 const TypePtr* flat = flatten_alias_type(adr_type); 1681 1682 #ifdef ASSERT 1683 { 1684 ResourceMark rm; 1685 assert(flat == flatten_alias_type(flat), "not idempotent: adr_type = %s; flat = %s => %s", 1686 Type::str(adr_type), Type::str(flat), Type::str(flatten_alias_type(flat))); 1687 assert(flat != TypePtr::BOTTOM, "cannot alias-analyze an untyped ptr: adr_type = %s", 1688 Type::str(adr_type)); 1689 if (flat->isa_oopptr() && !flat->isa_klassptr()) { 1690 const TypeOopPtr* foop = flat->is_oopptr(); 1691 // Scalarizable allocations have exact klass always. 1692 bool exact = !foop->klass_is_exact() || foop->is_known_instance(); 1693 const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr(); 1694 assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type: foop = %s; xoop = %s", 1695 Type::str(foop), Type::str(xoop)); 1696 } 1697 } 1698 #endif 1699 1700 int idx = AliasIdxTop; 1701 for (int i = 0; i < num_alias_types(); i++) { 1702 if (alias_type(i)->adr_type() == flat) { 1703 idx = i; 1704 break; 1705 } 1706 } 1707 1708 if (idx == AliasIdxTop) { 1709 if (no_create) return nullptr; 1710 // Grow the array if necessary. 1711 if (_num_alias_types == _max_alias_types) grow_alias_types(); 1712 // Add a new alias type. 1713 idx = _num_alias_types++; 1714 _alias_types[idx]->Init(idx, flat); 1715 if (flat == TypeInstPtr::KLASS) alias_type(idx)->set_rewritable(false); 1716 if (flat == TypeAryPtr::RANGE) alias_type(idx)->set_rewritable(false); 1717 if (flat->isa_instptr()) { 1718 if (flat->offset() == java_lang_Class::klass_offset() 1719 && flat->is_instptr()->instance_klass() == env()->Class_klass()) 1720 alias_type(idx)->set_rewritable(false); 1721 } 1722 if (flat->isa_aryptr()) { 1723 #ifdef ASSERT 1724 const int header_size_min = arrayOopDesc::base_offset_in_bytes(T_BYTE); 1725 // (T_BYTE has the weakest alignment and size restrictions...) 1726 assert(flat->offset() < header_size_min, "array body reference must be OffsetBot"); 1727 #endif 1728 if (flat->offset() == TypePtr::OffsetBot) { 1729 alias_type(idx)->set_element(flat->is_aryptr()->elem()); 1730 } 1731 } 1732 if (flat->isa_klassptr()) { 1733 if (UseCompactObjectHeaders) { 1734 if (flat->offset() == in_bytes(Klass::prototype_header_offset())) 1735 alias_type(idx)->set_rewritable(false); 1736 } 1737 if (flat->offset() == in_bytes(Klass::super_check_offset_offset())) 1738 alias_type(idx)->set_rewritable(false); 1739 if (flat->offset() == in_bytes(Klass::access_flags_offset())) 1740 alias_type(idx)->set_rewritable(false); 1741 if (flat->offset() == in_bytes(Klass::misc_flags_offset())) 1742 alias_type(idx)->set_rewritable(false); 1743 if (flat->offset() == in_bytes(Klass::java_mirror_offset())) 1744 alias_type(idx)->set_rewritable(false); 1745 if (flat->offset() == in_bytes(Klass::secondary_super_cache_offset())) 1746 alias_type(idx)->set_rewritable(false); 1747 } 1748 // %%% (We would like to finalize JavaThread::threadObj_offset(), 1749 // but the base pointer type is not distinctive enough to identify 1750 // references into JavaThread.) 1751 1752 // Check for final fields. 1753 const TypeInstPtr* tinst = flat->isa_instptr(); 1754 if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) { 1755 ciField* field; 1756 if (tinst->const_oop() != nullptr && 1757 tinst->instance_klass() == ciEnv::current()->Class_klass() && 1758 tinst->offset() >= (tinst->instance_klass()->layout_helper_size_in_bytes())) { 1759 // static field 1760 ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass(); 1761 field = k->get_field_by_offset(tinst->offset(), true); 1762 } else { 1763 ciInstanceKlass *k = tinst->instance_klass(); 1764 field = k->get_field_by_offset(tinst->offset(), false); 1765 } 1766 assert(field == nullptr || 1767 original_field == nullptr || 1768 (field->holder() == original_field->holder() && 1769 field->offset_in_bytes() == original_field->offset_in_bytes() && 1770 field->is_static() == original_field->is_static()), "wrong field?"); 1771 // Set field() and is_rewritable() attributes. 1772 if (field != nullptr) alias_type(idx)->set_field(field); 1773 } 1774 } 1775 1776 // Fill the cache for next time. 1777 ace->_adr_type = adr_type; 1778 ace->_index = idx; 1779 assert(alias_type(adr_type) == alias_type(idx), "type must be installed"); 1780 1781 // Might as well try to fill the cache for the flattened version, too. 1782 AliasCacheEntry* face = probe_alias_cache(flat); 1783 if (face->_adr_type == nullptr) { 1784 face->_adr_type = flat; 1785 face->_index = idx; 1786 assert(alias_type(flat) == alias_type(idx), "flat type must work too"); 1787 } 1788 1789 return alias_type(idx); 1790 } 1791 1792 1793 Compile::AliasType* Compile::alias_type(ciField* field) { 1794 const TypeOopPtr* t; 1795 if (field->is_static()) 1796 t = TypeInstPtr::make(field->holder()->java_mirror()); 1797 else 1798 t = TypeOopPtr::make_from_klass_raw(field->holder()); 1799 AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field); 1800 assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct"); 1801 return atp; 1802 } 1803 1804 1805 //------------------------------have_alias_type-------------------------------- 1806 bool Compile::have_alias_type(const TypePtr* adr_type) { 1807 AliasCacheEntry* ace = probe_alias_cache(adr_type); 1808 if (ace->_adr_type == adr_type) { 1809 return true; 1810 } 1811 1812 // Handle special cases. 1813 if (adr_type == nullptr) return true; 1814 if (adr_type == TypePtr::BOTTOM) return true; 1815 1816 return find_alias_type(adr_type, true, nullptr) != nullptr; 1817 } 1818 1819 //-----------------------------must_alias-------------------------------------- 1820 // True if all values of the given address type are in the given alias category. 1821 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) { 1822 if (alias_idx == AliasIdxBot) return true; // the universal category 1823 if (adr_type == nullptr) return true; // null serves as TypePtr::TOP 1824 if (alias_idx == AliasIdxTop) return false; // the empty category 1825 if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins 1826 1827 // the only remaining possible overlap is identity 1828 int adr_idx = get_alias_index(adr_type); 1829 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, ""); 1830 assert(adr_idx == alias_idx || 1831 (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM 1832 && adr_type != TypeOopPtr::BOTTOM), 1833 "should not be testing for overlap with an unsafe pointer"); 1834 return adr_idx == alias_idx; 1835 } 1836 1837 //------------------------------can_alias-------------------------------------- 1838 // True if any values of the given address type are in the given alias category. 1839 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) { 1840 if (alias_idx == AliasIdxTop) return false; // the empty category 1841 if (adr_type == nullptr) return false; // null serves as TypePtr::TOP 1842 // Known instance doesn't alias with bottom memory 1843 if (alias_idx == AliasIdxBot) return !adr_type->is_known_instance(); // the universal category 1844 if (adr_type->base() == Type::AnyPtr) return !C->get_adr_type(alias_idx)->is_known_instance(); // TypePtr::BOTTOM or its twins 1845 1846 // the only remaining possible overlap is identity 1847 int adr_idx = get_alias_index(adr_type); 1848 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, ""); 1849 return adr_idx == alias_idx; 1850 } 1851 1852 // Mark all ParsePredicateNodes as useless. They will later be removed from the graph in IGVN together with their 1853 // uncommon traps if no Runtime Predicates were created from the Parse Predicates. 1854 void Compile::mark_parse_predicate_nodes_useless(PhaseIterGVN& igvn) { 1855 if (parse_predicate_count() == 0) { 1856 return; 1857 } 1858 for (int i = 0; i < parse_predicate_count(); i++) { 1859 ParsePredicateNode* parse_predicate = _parse_predicates.at(i); 1860 parse_predicate->mark_useless(igvn); 1861 } 1862 _parse_predicates.clear(); 1863 } 1864 1865 void Compile::record_for_post_loop_opts_igvn(Node* n) { 1866 if (!n->for_post_loop_opts_igvn()) { 1867 assert(!_for_post_loop_igvn.contains(n), "duplicate"); 1868 n->add_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn); 1869 _for_post_loop_igvn.append(n); 1870 } 1871 } 1872 1873 void Compile::remove_from_post_loop_opts_igvn(Node* n) { 1874 n->remove_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn); 1875 _for_post_loop_igvn.remove(n); 1876 } 1877 1878 void Compile::process_for_post_loop_opts_igvn(PhaseIterGVN& igvn) { 1879 // Verify that all previous optimizations produced a valid graph 1880 // at least to this point, even if no loop optimizations were done. 1881 PhaseIdealLoop::verify(igvn); 1882 1883 if (has_loops() || _loop_opts_cnt > 0) { 1884 print_method(PHASE_AFTER_LOOP_OPTS, 2); 1885 } 1886 C->set_post_loop_opts_phase(); // no more loop opts allowed 1887 1888 assert(!C->major_progress(), "not cleared"); 1889 1890 if (_for_post_loop_igvn.length() > 0) { 1891 while (_for_post_loop_igvn.length() > 0) { 1892 Node* n = _for_post_loop_igvn.pop(); 1893 n->remove_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn); 1894 igvn._worklist.push(n); 1895 } 1896 igvn.optimize(); 1897 if (failing()) return; 1898 assert(_for_post_loop_igvn.length() == 0, "no more delayed nodes allowed"); 1899 assert(C->parse_predicate_count() == 0, "all parse predicates should have been removed now"); 1900 1901 // Sometimes IGVN sets major progress (e.g., when processing loop nodes). 1902 if (C->major_progress()) { 1903 C->clear_major_progress(); // ensure that major progress is now clear 1904 } 1905 } 1906 } 1907 1908 void Compile::record_for_merge_stores_igvn(Node* n) { 1909 if (!n->for_merge_stores_igvn()) { 1910 assert(!_for_merge_stores_igvn.contains(n), "duplicate"); 1911 n->add_flag(Node::NodeFlags::Flag_for_merge_stores_igvn); 1912 _for_merge_stores_igvn.append(n); 1913 } 1914 } 1915 1916 void Compile::remove_from_merge_stores_igvn(Node* n) { 1917 n->remove_flag(Node::NodeFlags::Flag_for_merge_stores_igvn); 1918 _for_merge_stores_igvn.remove(n); 1919 } 1920 1921 // We need to wait with merging stores until RangeCheck smearing has removed the RangeChecks during 1922 // the post loops IGVN phase. If we do it earlier, then there may still be some RangeChecks between 1923 // the stores, and we merge the wrong sequence of stores. 1924 // Example: 1925 // StoreI RangeCheck StoreI StoreI RangeCheck StoreI 1926 // Apply MergeStores: 1927 // StoreI RangeCheck [ StoreL ] RangeCheck StoreI 1928 // Remove more RangeChecks: 1929 // StoreI [ StoreL ] StoreI 1930 // But now it would have been better to do this instead: 1931 // [ StoreL ] [ StoreL ] 1932 // 1933 // Note: we allow stores to merge in this dedicated IGVN round, and any later IGVN round, 1934 // since we never unset _merge_stores_phase. 1935 void Compile::process_for_merge_stores_igvn(PhaseIterGVN& igvn) { 1936 C->set_merge_stores_phase(); 1937 1938 if (_for_merge_stores_igvn.length() > 0) { 1939 while (_for_merge_stores_igvn.length() > 0) { 1940 Node* n = _for_merge_stores_igvn.pop(); 1941 n->remove_flag(Node::NodeFlags::Flag_for_merge_stores_igvn); 1942 igvn._worklist.push(n); 1943 } 1944 igvn.optimize(); 1945 if (failing()) return; 1946 assert(_for_merge_stores_igvn.length() == 0, "no more delayed nodes allowed"); 1947 print_method(PHASE_AFTER_MERGE_STORES, 3); 1948 } 1949 } 1950 1951 void Compile::record_unstable_if_trap(UnstableIfTrap* trap) { 1952 if (OptimizeUnstableIf) { 1953 _unstable_if_traps.append(trap); 1954 } 1955 } 1956 1957 void Compile::remove_useless_unstable_if_traps(Unique_Node_List& useful) { 1958 for (int i = _unstable_if_traps.length() - 1; i >= 0; i--) { 1959 UnstableIfTrap* trap = _unstable_if_traps.at(i); 1960 Node* n = trap->uncommon_trap(); 1961 if (!useful.member(n)) { 1962 _unstable_if_traps.delete_at(i); // replaces i-th with last element which is known to be useful (already processed) 1963 } 1964 } 1965 } 1966 1967 // Remove the unstable if trap associated with 'unc' from candidates. It is either dead 1968 // or fold-compares case. Return true if succeed or not found. 1969 // 1970 // In rare cases, the found trap has been processed. It is too late to delete it. Return 1971 // false and ask fold-compares to yield. 1972 // 1973 // 'fold-compares' may use the uncommon_trap of the dominating IfNode to cover the fused 1974 // IfNode. This breaks the unstable_if trap invariant: control takes the unstable path 1975 // when deoptimization does happen. 1976 bool Compile::remove_unstable_if_trap(CallStaticJavaNode* unc, bool yield) { 1977 for (int i = 0; i < _unstable_if_traps.length(); ++i) { 1978 UnstableIfTrap* trap = _unstable_if_traps.at(i); 1979 if (trap->uncommon_trap() == unc) { 1980 if (yield && trap->modified()) { 1981 return false; 1982 } 1983 _unstable_if_traps.delete_at(i); 1984 break; 1985 } 1986 } 1987 return true; 1988 } 1989 1990 // Re-calculate unstable_if traps with the liveness of next_bci, which points to the unlikely path. 1991 // It needs to be done after igvn because fold-compares may fuse uncommon_traps and before renumbering. 1992 void Compile::process_for_unstable_if_traps(PhaseIterGVN& igvn) { 1993 for (int i = _unstable_if_traps.length() - 1; i >= 0; --i) { 1994 UnstableIfTrap* trap = _unstable_if_traps.at(i); 1995 CallStaticJavaNode* unc = trap->uncommon_trap(); 1996 int next_bci = trap->next_bci(); 1997 bool modified = trap->modified(); 1998 1999 if (next_bci != -1 && !modified) { 2000 assert(!_dead_node_list.test(unc->_idx), "changing a dead node!"); 2001 JVMState* jvms = unc->jvms(); 2002 ciMethod* method = jvms->method(); 2003 ciBytecodeStream iter(method); 2004 2005 iter.force_bci(jvms->bci()); 2006 assert(next_bci == iter.next_bci() || next_bci == iter.get_dest(), "wrong next_bci at unstable_if"); 2007 Bytecodes::Code c = iter.cur_bc(); 2008 Node* lhs = nullptr; 2009 Node* rhs = nullptr; 2010 if (c == Bytecodes::_if_acmpeq || c == Bytecodes::_if_acmpne) { 2011 lhs = unc->peek_operand(0); 2012 rhs = unc->peek_operand(1); 2013 } else if (c == Bytecodes::_ifnull || c == Bytecodes::_ifnonnull) { 2014 lhs = unc->peek_operand(0); 2015 } 2016 2017 ResourceMark rm; 2018 const MethodLivenessResult& live_locals = method->liveness_at_bci(next_bci); 2019 assert(live_locals.is_valid(), "broken liveness info"); 2020 int len = (int)live_locals.size(); 2021 2022 for (int i = 0; i < len; i++) { 2023 Node* local = unc->local(jvms, i); 2024 // kill local using the liveness of next_bci. 2025 // give up when the local looks like an operand to secure reexecution. 2026 if (!live_locals.at(i) && !local->is_top() && local != lhs && local!= rhs) { 2027 uint idx = jvms->locoff() + i; 2028 #ifdef ASSERT 2029 if (PrintOpto && Verbose) { 2030 tty->print("[unstable_if] kill local#%d: ", idx); 2031 local->dump(); 2032 tty->cr(); 2033 } 2034 #endif 2035 igvn.replace_input_of(unc, idx, top()); 2036 modified = true; 2037 } 2038 } 2039 } 2040 2041 // keep the mondified trap for late query 2042 if (modified) { 2043 trap->set_modified(); 2044 } else { 2045 _unstable_if_traps.delete_at(i); 2046 } 2047 } 2048 igvn.optimize(); 2049 } 2050 2051 // StringOpts and late inlining of string methods 2052 void Compile::inline_string_calls(bool parse_time) { 2053 { 2054 // remove useless nodes to make the usage analysis simpler 2055 ResourceMark rm; 2056 PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist()); 2057 } 2058 2059 { 2060 ResourceMark rm; 2061 print_method(PHASE_BEFORE_STRINGOPTS, 3); 2062 PhaseStringOpts pso(initial_gvn()); 2063 print_method(PHASE_AFTER_STRINGOPTS, 3); 2064 } 2065 2066 // now inline anything that we skipped the first time around 2067 if (!parse_time) { 2068 _late_inlines_pos = _late_inlines.length(); 2069 } 2070 2071 while (_string_late_inlines.length() > 0) { 2072 CallGenerator* cg = _string_late_inlines.pop(); 2073 cg->do_late_inline(); 2074 if (failing()) return; 2075 } 2076 _string_late_inlines.trunc_to(0); 2077 } 2078 2079 // Late inlining of boxing methods 2080 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) { 2081 if (_boxing_late_inlines.length() > 0) { 2082 assert(has_boxed_value(), "inconsistent"); 2083 2084 set_inlining_incrementally(true); 2085 2086 igvn_worklist()->ensure_empty(); // should be done with igvn 2087 2088 _late_inlines_pos = _late_inlines.length(); 2089 2090 while (_boxing_late_inlines.length() > 0) { 2091 CallGenerator* cg = _boxing_late_inlines.pop(); 2092 cg->do_late_inline(); 2093 if (failing()) return; 2094 } 2095 _boxing_late_inlines.trunc_to(0); 2096 2097 inline_incrementally_cleanup(igvn); 2098 2099 set_inlining_incrementally(false); 2100 } 2101 } 2102 2103 bool Compile::inline_incrementally_one() { 2104 assert(IncrementalInline, "incremental inlining should be on"); 2105 2106 TracePhase tp(_t_incrInline_inline); 2107 2108 set_inlining_progress(false); 2109 set_do_cleanup(false); 2110 2111 for (int i = 0; i < _late_inlines.length(); i++) { 2112 _late_inlines_pos = i+1; 2113 CallGenerator* cg = _late_inlines.at(i); 2114 bool is_scheduled_for_igvn_before = C->igvn_worklist()->member(cg->call_node()); 2115 bool does_dispatch = cg->is_virtual_late_inline() || cg->is_mh_late_inline(); 2116 if (inlining_incrementally() || does_dispatch) { // a call can be either inlined or strength-reduced to a direct call 2117 cg->do_late_inline(); 2118 assert(_late_inlines.at(i) == cg, "no insertions before current position allowed"); 2119 if (failing()) { 2120 return false; 2121 } else if (inlining_progress()) { 2122 _late_inlines_pos = i+1; // restore the position in case new elements were inserted 2123 print_method(PHASE_INCREMENTAL_INLINE_STEP, 3, cg->call_node()); 2124 break; // process one call site at a time 2125 } else { 2126 bool is_scheduled_for_igvn_after = C->igvn_worklist()->member(cg->call_node()); 2127 if (!is_scheduled_for_igvn_before && is_scheduled_for_igvn_after) { 2128 // Avoid potential infinite loop if node already in the IGVN list 2129 assert(false, "scheduled for IGVN during inlining attempt"); 2130 } else { 2131 // Ensure call node has not disappeared from IGVN worklist during a failed inlining attempt 2132 assert(!is_scheduled_for_igvn_before || is_scheduled_for_igvn_after, "call node removed from IGVN list during inlining pass"); 2133 cg->call_node()->set_generator(cg); 2134 } 2135 } 2136 } else { 2137 // Ignore late inline direct calls when inlining is not allowed. 2138 // They are left in the late inline list when node budget is exhausted until the list is fully drained. 2139 } 2140 } 2141 // Remove processed elements. 2142 _late_inlines.remove_till(_late_inlines_pos); 2143 _late_inlines_pos = 0; 2144 2145 assert(inlining_progress() || _late_inlines.length() == 0, "no progress"); 2146 2147 bool needs_cleanup = do_cleanup() || over_inlining_cutoff(); 2148 2149 set_inlining_progress(false); 2150 set_do_cleanup(false); 2151 2152 bool force_cleanup = directive()->IncrementalInlineForceCleanupOption; 2153 return (_late_inlines.length() > 0) && !needs_cleanup && !force_cleanup; 2154 } 2155 2156 void Compile::inline_incrementally_cleanup(PhaseIterGVN& igvn) { 2157 { 2158 TracePhase tp(_t_incrInline_pru); 2159 ResourceMark rm; 2160 PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist()); 2161 } 2162 { 2163 TracePhase tp(_t_incrInline_igvn); 2164 igvn.reset(); 2165 igvn.optimize(); 2166 if (failing()) return; 2167 } 2168 print_method(PHASE_INCREMENTAL_INLINE_CLEANUP, 3); 2169 } 2170 2171 // Perform incremental inlining until bound on number of live nodes is reached 2172 void Compile::inline_incrementally(PhaseIterGVN& igvn) { 2173 TracePhase tp(_t_incrInline); 2174 2175 set_inlining_incrementally(true); 2176 uint low_live_nodes = 0; 2177 2178 while (_late_inlines.length() > 0) { 2179 if (live_nodes() > (uint)LiveNodeCountInliningCutoff) { 2180 if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) { 2181 TracePhase tp(_t_incrInline_ideal); 2182 // PhaseIdealLoop is expensive so we only try it once we are 2183 // out of live nodes and we only try it again if the previous 2184 // helped got the number of nodes down significantly 2185 PhaseIdealLoop::optimize(igvn, LoopOptsNone); 2186 if (failing()) return; 2187 low_live_nodes = live_nodes(); 2188 _major_progress = true; 2189 } 2190 2191 if (live_nodes() > (uint)LiveNodeCountInliningCutoff) { 2192 bool do_print_inlining = print_inlining() || print_intrinsics(); 2193 if (do_print_inlining || log() != nullptr) { 2194 // Print inlining message for candidates that we couldn't inline for lack of space. 2195 for (int i = 0; i < _late_inlines.length(); i++) { 2196 CallGenerator* cg = _late_inlines.at(i); 2197 const char* msg = "live nodes > LiveNodeCountInliningCutoff"; 2198 if (do_print_inlining) { 2199 inline_printer()->record(cg->method(), cg->call_node()->jvms(), InliningResult::FAILURE, msg); 2200 } 2201 log_late_inline_failure(cg, msg); 2202 } 2203 } 2204 break; // finish 2205 } 2206 } 2207 2208 igvn_worklist()->ensure_empty(); // should be done with igvn 2209 2210 while (inline_incrementally_one()) { 2211 assert(!failing_internal() || failure_is_artificial(), "inconsistent"); 2212 } 2213 if (failing()) return; 2214 2215 inline_incrementally_cleanup(igvn); 2216 2217 print_method(PHASE_INCREMENTAL_INLINE_STEP, 3); 2218 2219 if (failing()) return; 2220 2221 if (_late_inlines.length() == 0) { 2222 break; // no more progress 2223 } 2224 } 2225 2226 igvn_worklist()->ensure_empty(); // should be done with igvn 2227 2228 if (_string_late_inlines.length() > 0) { 2229 assert(has_stringbuilder(), "inconsistent"); 2230 2231 inline_string_calls(false); 2232 2233 if (failing()) return; 2234 2235 inline_incrementally_cleanup(igvn); 2236 } 2237 2238 set_inlining_incrementally(false); 2239 } 2240 2241 void Compile::process_late_inline_calls_no_inline(PhaseIterGVN& igvn) { 2242 // "inlining_incrementally() == false" is used to signal that no inlining is allowed 2243 // (see LateInlineVirtualCallGenerator::do_late_inline_check() for details). 2244 // Tracking and verification of modified nodes is disabled by setting "_modified_nodes == nullptr" 2245 // as if "inlining_incrementally() == true" were set. 2246 assert(inlining_incrementally() == false, "not allowed"); 2247 assert(_modified_nodes == nullptr, "not allowed"); 2248 assert(_late_inlines.length() > 0, "sanity"); 2249 2250 while (_late_inlines.length() > 0) { 2251 igvn_worklist()->ensure_empty(); // should be done with igvn 2252 2253 while (inline_incrementally_one()) { 2254 assert(!failing_internal() || failure_is_artificial(), "inconsistent"); 2255 } 2256 if (failing()) return; 2257 2258 inline_incrementally_cleanup(igvn); 2259 } 2260 } 2261 2262 bool Compile::optimize_loops(PhaseIterGVN& igvn, LoopOptsMode mode) { 2263 if (_loop_opts_cnt > 0) { 2264 while (major_progress() && (_loop_opts_cnt > 0)) { 2265 TracePhase tp(_t_idealLoop); 2266 PhaseIdealLoop::optimize(igvn, mode); 2267 _loop_opts_cnt--; 2268 if (failing()) return false; 2269 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2); 2270 } 2271 } 2272 return true; 2273 } 2274 2275 // Remove edges from "root" to each SafePoint at a backward branch. 2276 // They were inserted during parsing (see add_safepoint()) to make 2277 // infinite loops without calls or exceptions visible to root, i.e., 2278 // useful. 2279 void Compile::remove_root_to_sfpts_edges(PhaseIterGVN& igvn) { 2280 Node *r = root(); 2281 if (r != nullptr) { 2282 for (uint i = r->req(); i < r->len(); ++i) { 2283 Node *n = r->in(i); 2284 if (n != nullptr && n->is_SafePoint()) { 2285 r->rm_prec(i); 2286 if (n->outcnt() == 0) { 2287 igvn.remove_dead_node(n); 2288 } 2289 --i; 2290 } 2291 } 2292 // Parsing may have added top inputs to the root node (Path 2293 // leading to the Halt node proven dead). Make sure we get a 2294 // chance to clean them up. 2295 igvn._worklist.push(r); 2296 igvn.optimize(); 2297 } 2298 } 2299 2300 //------------------------------Optimize--------------------------------------- 2301 // Given a graph, optimize it. 2302 void Compile::Optimize() { 2303 TracePhase tp(_t_optimizer); 2304 2305 #ifndef PRODUCT 2306 if (env()->break_at_compile()) { 2307 BREAKPOINT; 2308 } 2309 2310 #endif 2311 2312 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 2313 #ifdef ASSERT 2314 bs->verify_gc_barriers(this, BarrierSetC2::BeforeOptimize); 2315 #endif 2316 2317 ResourceMark rm; 2318 2319 NOT_PRODUCT( verify_graph_edges(); ) 2320 2321 print_method(PHASE_AFTER_PARSING, 1); 2322 2323 { 2324 // Iterative Global Value Numbering, including ideal transforms 2325 PhaseIterGVN igvn; 2326 #ifdef ASSERT 2327 _modified_nodes = new (comp_arena()) Unique_Node_List(comp_arena()); 2328 #endif 2329 { 2330 TracePhase tp(_t_iterGVN); 2331 igvn.optimize(); 2332 } 2333 2334 if (failing()) return; 2335 2336 print_method(PHASE_ITER_GVN1, 2); 2337 2338 process_for_unstable_if_traps(igvn); 2339 2340 if (failing()) return; 2341 2342 inline_incrementally(igvn); 2343 2344 print_method(PHASE_INCREMENTAL_INLINE, 2); 2345 2346 if (failing()) return; 2347 2348 if (eliminate_boxing()) { 2349 // Inline valueOf() methods now. 2350 inline_boxing_calls(igvn); 2351 2352 if (failing()) return; 2353 2354 if (AlwaysIncrementalInline || StressIncrementalInlining) { 2355 inline_incrementally(igvn); 2356 } 2357 2358 print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2); 2359 2360 if (failing()) return; 2361 } 2362 2363 // Remove the speculative part of types and clean up the graph from 2364 // the extra CastPP nodes whose only purpose is to carry them. Do 2365 // that early so that optimizations are not disrupted by the extra 2366 // CastPP nodes. 2367 remove_speculative_types(igvn); 2368 2369 if (failing()) return; 2370 2371 // No more new expensive nodes will be added to the list from here 2372 // so keep only the actual candidates for optimizations. 2373 cleanup_expensive_nodes(igvn); 2374 2375 if (failing()) return; 2376 2377 assert(EnableVectorSupport || !has_vbox_nodes(), "sanity"); 2378 if (EnableVectorSupport && has_vbox_nodes()) { 2379 TracePhase tp(_t_vector); 2380 PhaseVector pv(igvn); 2381 pv.optimize_vector_boxes(); 2382 if (failing()) return; 2383 print_method(PHASE_ITER_GVN_AFTER_VECTOR, 2); 2384 } 2385 assert(!has_vbox_nodes(), "sanity"); 2386 2387 if (!failing() && RenumberLiveNodes && live_nodes() + NodeLimitFudgeFactor < unique()) { 2388 Compile::TracePhase tp(_t_renumberLive); 2389 igvn_worklist()->ensure_empty(); // should be done with igvn 2390 { 2391 ResourceMark rm; 2392 PhaseRenumberLive prl(initial_gvn(), *igvn_worklist()); 2393 } 2394 igvn.reset(); 2395 igvn.optimize(); 2396 if (failing()) return; 2397 } 2398 2399 // Now that all inlining is over and no PhaseRemoveUseless will run, cut edge from root to loop 2400 // safepoints 2401 remove_root_to_sfpts_edges(igvn); 2402 2403 if (failing()) return; 2404 2405 if (has_loops()) { 2406 print_method(PHASE_BEFORE_LOOP_OPTS, 2); 2407 } 2408 2409 // Perform escape analysis 2410 if (do_escape_analysis() && ConnectionGraph::has_candidates(this)) { 2411 if (has_loops()) { 2412 // Cleanup graph (remove dead nodes). 2413 TracePhase tp(_t_idealLoop); 2414 PhaseIdealLoop::optimize(igvn, LoopOptsMaxUnroll); 2415 if (failing()) return; 2416 } 2417 bool progress; 2418 print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2); 2419 do { 2420 ConnectionGraph::do_analysis(this, &igvn); 2421 2422 if (failing()) return; 2423 2424 int mcount = macro_count(); // Record number of allocations and locks before IGVN 2425 2426 // Optimize out fields loads from scalar replaceable allocations. 2427 igvn.optimize(); 2428 print_method(PHASE_ITER_GVN_AFTER_EA, 2); 2429 2430 if (failing()) return; 2431 2432 if (congraph() != nullptr && macro_count() > 0) { 2433 TracePhase tp(_t_macroEliminate); 2434 PhaseMacroExpand mexp(igvn); 2435 mexp.eliminate_macro_nodes(); 2436 if (failing()) return; 2437 print_method(PHASE_AFTER_MACRO_ELIMINATION, 2); 2438 2439 igvn.set_delay_transform(false); 2440 igvn.optimize(); 2441 if (failing()) return; 2442 2443 print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2); 2444 } 2445 2446 ConnectionGraph::verify_ram_nodes(this, root()); 2447 if (failing()) return; 2448 2449 progress = do_iterative_escape_analysis() && 2450 (macro_count() < mcount) && 2451 ConnectionGraph::has_candidates(this); 2452 // Try again if candidates exist and made progress 2453 // by removing some allocations and/or locks. 2454 } while (progress); 2455 } 2456 2457 // Loop transforms on the ideal graph. Range Check Elimination, 2458 // peeling, unrolling, etc. 2459 2460 // Set loop opts counter 2461 if((_loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) { 2462 { 2463 TracePhase tp(_t_idealLoop); 2464 PhaseIdealLoop::optimize(igvn, LoopOptsDefault); 2465 _loop_opts_cnt--; 2466 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2); 2467 if (failing()) return; 2468 } 2469 // Loop opts pass if partial peeling occurred in previous pass 2470 if(PartialPeelLoop && major_progress() && (_loop_opts_cnt > 0)) { 2471 TracePhase tp(_t_idealLoop); 2472 PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf); 2473 _loop_opts_cnt--; 2474 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2); 2475 if (failing()) return; 2476 } 2477 // Loop opts pass for loop-unrolling before CCP 2478 if(major_progress() && (_loop_opts_cnt > 0)) { 2479 TracePhase tp(_t_idealLoop); 2480 PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf); 2481 _loop_opts_cnt--; 2482 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2); 2483 } 2484 if (!failing()) { 2485 // Verify that last round of loop opts produced a valid graph 2486 PhaseIdealLoop::verify(igvn); 2487 } 2488 } 2489 if (failing()) return; 2490 2491 // Conditional Constant Propagation; 2492 print_method(PHASE_BEFORE_CCP1, 2); 2493 PhaseCCP ccp( &igvn ); 2494 assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)"); 2495 { 2496 TracePhase tp(_t_ccp); 2497 ccp.do_transform(); 2498 } 2499 print_method(PHASE_CCP1, 2); 2500 2501 assert( true, "Break here to ccp.dump_old2new_map()"); 2502 2503 // Iterative Global Value Numbering, including ideal transforms 2504 { 2505 TracePhase tp(_t_iterGVN2); 2506 igvn.reset_from_igvn(&ccp); 2507 igvn.optimize(); 2508 } 2509 print_method(PHASE_ITER_GVN2, 2); 2510 2511 if (failing()) return; 2512 2513 // Loop transforms on the ideal graph. Range Check Elimination, 2514 // peeling, unrolling, etc. 2515 if (!optimize_loops(igvn, LoopOptsDefault)) { 2516 return; 2517 } 2518 2519 if (failing()) return; 2520 2521 C->clear_major_progress(); // ensure that major progress is now clear 2522 2523 process_for_post_loop_opts_igvn(igvn); 2524 2525 process_for_merge_stores_igvn(igvn); 2526 2527 if (failing()) return; 2528 2529 #ifdef ASSERT 2530 bs->verify_gc_barriers(this, BarrierSetC2::BeforeMacroExpand); 2531 #endif 2532 2533 { 2534 TracePhase tp(_t_macroExpand); 2535 print_method(PHASE_BEFORE_MACRO_EXPANSION, 3); 2536 PhaseMacroExpand mex(igvn); 2537 // Do not allow new macro nodes once we start to eliminate and expand 2538 C->reset_allow_macro_nodes(); 2539 // Last attempt to eliminate macro nodes before expand 2540 mex.eliminate_macro_nodes(); 2541 if (failing()) { 2542 return; 2543 } 2544 mex.eliminate_opaque_looplimit_macro_nodes(); 2545 if (failing()) { 2546 return; 2547 } 2548 print_method(PHASE_AFTER_MACRO_ELIMINATION, 2); 2549 if (mex.expand_macro_nodes()) { 2550 assert(failing(), "must bail out w/ explicit message"); 2551 return; 2552 } 2553 print_method(PHASE_AFTER_MACRO_EXPANSION, 2); 2554 } 2555 2556 { 2557 TracePhase tp(_t_barrierExpand); 2558 if (bs->expand_barriers(this, igvn)) { 2559 assert(failing(), "must bail out w/ explicit message"); 2560 return; 2561 } 2562 print_method(PHASE_BARRIER_EXPANSION, 2); 2563 } 2564 2565 if (C->max_vector_size() > 0) { 2566 C->optimize_logic_cones(igvn); 2567 igvn.optimize(); 2568 if (failing()) return; 2569 } 2570 2571 DEBUG_ONLY( _modified_nodes = nullptr; ) 2572 2573 assert(igvn._worklist.size() == 0, "not empty"); 2574 2575 assert(_late_inlines.length() == 0 || IncrementalInlineMH || IncrementalInlineVirtual, "not empty"); 2576 2577 if (_late_inlines.length() > 0) { 2578 // More opportunities to optimize virtual and MH calls. 2579 // Though it's maybe too late to perform inlining, strength-reducing them to direct calls is still an option. 2580 process_late_inline_calls_no_inline(igvn); 2581 if (failing()) return; 2582 } 2583 } // (End scope of igvn; run destructor if necessary for asserts.) 2584 2585 check_no_dead_use(); 2586 2587 // We will never use the NodeHash table any more. Clear it so that final_graph_reshaping does not have 2588 // to remove hashes to unlock nodes for modifications. 2589 C->node_hash()->clear(); 2590 2591 // A method with only infinite loops has no edges entering loops from root 2592 { 2593 TracePhase tp(_t_graphReshaping); 2594 if (final_graph_reshaping()) { 2595 assert(failing(), "must bail out w/ explicit message"); 2596 return; 2597 } 2598 } 2599 2600 print_method(PHASE_OPTIMIZE_FINISHED, 2); 2601 DEBUG_ONLY(set_phase_optimize_finished();) 2602 } 2603 2604 #ifdef ASSERT 2605 void Compile::check_no_dead_use() const { 2606 ResourceMark rm; 2607 Unique_Node_List wq; 2608 wq.push(root()); 2609 for (uint i = 0; i < wq.size(); ++i) { 2610 Node* n = wq.at(i); 2611 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) { 2612 Node* u = n->fast_out(j); 2613 if (u->outcnt() == 0 && !u->is_Con()) { 2614 u->dump(); 2615 fatal("no reachable node should have no use"); 2616 } 2617 wq.push(u); 2618 } 2619 } 2620 } 2621 #endif 2622 2623 void Compile::inline_vector_reboxing_calls() { 2624 if (C->_vector_reboxing_late_inlines.length() > 0) { 2625 _late_inlines_pos = C->_late_inlines.length(); 2626 while (_vector_reboxing_late_inlines.length() > 0) { 2627 CallGenerator* cg = _vector_reboxing_late_inlines.pop(); 2628 cg->do_late_inline(); 2629 if (failing()) return; 2630 print_method(PHASE_INLINE_VECTOR_REBOX, 3, cg->call_node()); 2631 } 2632 _vector_reboxing_late_inlines.trunc_to(0); 2633 } 2634 } 2635 2636 bool Compile::has_vbox_nodes() { 2637 if (C->_vector_reboxing_late_inlines.length() > 0) { 2638 return true; 2639 } 2640 for (int macro_idx = C->macro_count() - 1; macro_idx >= 0; macro_idx--) { 2641 Node * n = C->macro_node(macro_idx); 2642 assert(n->is_macro(), "only macro nodes expected here"); 2643 if (n->Opcode() == Op_VectorUnbox || n->Opcode() == Op_VectorBox || n->Opcode() == Op_VectorBoxAllocate) { 2644 return true; 2645 } 2646 } 2647 return false; 2648 } 2649 2650 //---------------------------- Bitwise operation packing optimization --------------------------- 2651 2652 static bool is_vector_unary_bitwise_op(Node* n) { 2653 return n->Opcode() == Op_XorV && 2654 VectorNode::is_vector_bitwise_not_pattern(n); 2655 } 2656 2657 static bool is_vector_binary_bitwise_op(Node* n) { 2658 switch (n->Opcode()) { 2659 case Op_AndV: 2660 case Op_OrV: 2661 return true; 2662 2663 case Op_XorV: 2664 return !is_vector_unary_bitwise_op(n); 2665 2666 default: 2667 return false; 2668 } 2669 } 2670 2671 static bool is_vector_ternary_bitwise_op(Node* n) { 2672 return n->Opcode() == Op_MacroLogicV; 2673 } 2674 2675 static bool is_vector_bitwise_op(Node* n) { 2676 return is_vector_unary_bitwise_op(n) || 2677 is_vector_binary_bitwise_op(n) || 2678 is_vector_ternary_bitwise_op(n); 2679 } 2680 2681 static bool is_vector_bitwise_cone_root(Node* n) { 2682 if (n->bottom_type()->isa_vectmask() || !is_vector_bitwise_op(n)) { 2683 return false; 2684 } 2685 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 2686 if (is_vector_bitwise_op(n->fast_out(i))) { 2687 return false; 2688 } 2689 } 2690 return true; 2691 } 2692 2693 static uint collect_unique_inputs(Node* n, Unique_Node_List& inputs) { 2694 uint cnt = 0; 2695 if (is_vector_bitwise_op(n)) { 2696 uint inp_cnt = n->is_predicated_vector() ? n->req()-1 : n->req(); 2697 if (VectorNode::is_vector_bitwise_not_pattern(n)) { 2698 for (uint i = 1; i < inp_cnt; i++) { 2699 Node* in = n->in(i); 2700 bool skip = VectorNode::is_all_ones_vector(in); 2701 if (!skip && !inputs.member(in)) { 2702 inputs.push(in); 2703 cnt++; 2704 } 2705 } 2706 assert(cnt <= 1, "not unary"); 2707 } else { 2708 uint last_req = inp_cnt; 2709 if (is_vector_ternary_bitwise_op(n)) { 2710 last_req = inp_cnt - 1; // skip last input 2711 } 2712 for (uint i = 1; i < last_req; i++) { 2713 Node* def = n->in(i); 2714 if (!inputs.member(def)) { 2715 inputs.push(def); 2716 cnt++; 2717 } 2718 } 2719 } 2720 } else { // not a bitwise operations 2721 if (!inputs.member(n)) { 2722 inputs.push(n); 2723 cnt++; 2724 } 2725 } 2726 return cnt; 2727 } 2728 2729 void Compile::collect_logic_cone_roots(Unique_Node_List& list) { 2730 Unique_Node_List useful_nodes; 2731 C->identify_useful_nodes(useful_nodes); 2732 2733 for (uint i = 0; i < useful_nodes.size(); i++) { 2734 Node* n = useful_nodes.at(i); 2735 if (is_vector_bitwise_cone_root(n)) { 2736 list.push(n); 2737 } 2738 } 2739 } 2740 2741 Node* Compile::xform_to_MacroLogicV(PhaseIterGVN& igvn, 2742 const TypeVect* vt, 2743 Unique_Node_List& partition, 2744 Unique_Node_List& inputs) { 2745 assert(partition.size() == 2 || partition.size() == 3, "not supported"); 2746 assert(inputs.size() == 2 || inputs.size() == 3, "not supported"); 2747 assert(Matcher::match_rule_supported_vector(Op_MacroLogicV, vt->length(), vt->element_basic_type()), "not supported"); 2748 2749 Node* in1 = inputs.at(0); 2750 Node* in2 = inputs.at(1); 2751 Node* in3 = (inputs.size() == 3 ? inputs.at(2) : in2); 2752 2753 uint func = compute_truth_table(partition, inputs); 2754 2755 Node* pn = partition.at(partition.size() - 1); 2756 Node* mask = pn->is_predicated_vector() ? pn->in(pn->req()-1) : nullptr; 2757 return igvn.transform(MacroLogicVNode::make(igvn, in1, in2, in3, mask, func, vt)); 2758 } 2759 2760 static uint extract_bit(uint func, uint pos) { 2761 return (func & (1 << pos)) >> pos; 2762 } 2763 2764 // 2765 // A macro logic node represents a truth table. It has 4 inputs, 2766 // First three inputs corresponds to 3 columns of a truth table 2767 // and fourth input captures the logic function. 2768 // 2769 // eg. fn = (in1 AND in2) OR in3; 2770 // 2771 // MacroNode(in1,in2,in3,fn) 2772 // 2773 // ----------------- 2774 // in1 in2 in3 fn 2775 // ----------------- 2776 // 0 0 0 0 2777 // 0 0 1 1 2778 // 0 1 0 0 2779 // 0 1 1 1 2780 // 1 0 0 0 2781 // 1 0 1 1 2782 // 1 1 0 1 2783 // 1 1 1 1 2784 // 2785 2786 uint Compile::eval_macro_logic_op(uint func, uint in1 , uint in2, uint in3) { 2787 int res = 0; 2788 for (int i = 0; i < 8; i++) { 2789 int bit1 = extract_bit(in1, i); 2790 int bit2 = extract_bit(in2, i); 2791 int bit3 = extract_bit(in3, i); 2792 2793 int func_bit_pos = (bit1 << 2 | bit2 << 1 | bit3); 2794 int func_bit = extract_bit(func, func_bit_pos); 2795 2796 res |= func_bit << i; 2797 } 2798 return res; 2799 } 2800 2801 static uint eval_operand(Node* n, HashTable<Node*,uint>& eval_map) { 2802 assert(n != nullptr, ""); 2803 assert(eval_map.contains(n), "absent"); 2804 return *(eval_map.get(n)); 2805 } 2806 2807 static void eval_operands(Node* n, 2808 uint& func1, uint& func2, uint& func3, 2809 HashTable<Node*,uint>& eval_map) { 2810 assert(is_vector_bitwise_op(n), ""); 2811 2812 if (is_vector_unary_bitwise_op(n)) { 2813 Node* opnd = n->in(1); 2814 if (VectorNode::is_vector_bitwise_not_pattern(n) && VectorNode::is_all_ones_vector(opnd)) { 2815 opnd = n->in(2); 2816 } 2817 func1 = eval_operand(opnd, eval_map); 2818 } else if (is_vector_binary_bitwise_op(n)) { 2819 func1 = eval_operand(n->in(1), eval_map); 2820 func2 = eval_operand(n->in(2), eval_map); 2821 } else { 2822 assert(is_vector_ternary_bitwise_op(n), "unknown operation"); 2823 func1 = eval_operand(n->in(1), eval_map); 2824 func2 = eval_operand(n->in(2), eval_map); 2825 func3 = eval_operand(n->in(3), eval_map); 2826 } 2827 } 2828 2829 uint Compile::compute_truth_table(Unique_Node_List& partition, Unique_Node_List& inputs) { 2830 assert(inputs.size() <= 3, "sanity"); 2831 ResourceMark rm; 2832 uint res = 0; 2833 HashTable<Node*,uint> eval_map; 2834 2835 // Populate precomputed functions for inputs. 2836 // Each input corresponds to one column of 3 input truth-table. 2837 uint input_funcs[] = { 0xAA, // (_, _, c) -> c 2838 0xCC, // (_, b, _) -> b 2839 0xF0 }; // (a, _, _) -> a 2840 for (uint i = 0; i < inputs.size(); i++) { 2841 eval_map.put(inputs.at(i), input_funcs[2-i]); 2842 } 2843 2844 for (uint i = 0; i < partition.size(); i++) { 2845 Node* n = partition.at(i); 2846 2847 uint func1 = 0, func2 = 0, func3 = 0; 2848 eval_operands(n, func1, func2, func3, eval_map); 2849 2850 switch (n->Opcode()) { 2851 case Op_OrV: 2852 assert(func3 == 0, "not binary"); 2853 res = func1 | func2; 2854 break; 2855 case Op_AndV: 2856 assert(func3 == 0, "not binary"); 2857 res = func1 & func2; 2858 break; 2859 case Op_XorV: 2860 if (VectorNode::is_vector_bitwise_not_pattern(n)) { 2861 assert(func2 == 0 && func3 == 0, "not unary"); 2862 res = (~func1) & 0xFF; 2863 } else { 2864 assert(func3 == 0, "not binary"); 2865 res = func1 ^ func2; 2866 } 2867 break; 2868 case Op_MacroLogicV: 2869 // Ordering of inputs may change during evaluation of sub-tree 2870 // containing MacroLogic node as a child node, thus a re-evaluation 2871 // makes sure that function is evaluated in context of current 2872 // inputs. 2873 res = eval_macro_logic_op(n->in(4)->get_int(), func1, func2, func3); 2874 break; 2875 2876 default: assert(false, "not supported: %s", n->Name()); 2877 } 2878 assert(res <= 0xFF, "invalid"); 2879 eval_map.put(n, res); 2880 } 2881 return res; 2882 } 2883 2884 // Criteria under which nodes gets packed into a macro logic node:- 2885 // 1) Parent and both child nodes are all unmasked or masked with 2886 // same predicates. 2887 // 2) Masked parent can be packed with left child if it is predicated 2888 // and both have same predicates. 2889 // 3) Masked parent can be packed with right child if its un-predicated 2890 // or has matching predication condition. 2891 // 4) An unmasked parent can be packed with an unmasked child. 2892 bool Compile::compute_logic_cone(Node* n, Unique_Node_List& partition, Unique_Node_List& inputs) { 2893 assert(partition.size() == 0, "not empty"); 2894 assert(inputs.size() == 0, "not empty"); 2895 if (is_vector_ternary_bitwise_op(n)) { 2896 return false; 2897 } 2898 2899 bool is_unary_op = is_vector_unary_bitwise_op(n); 2900 if (is_unary_op) { 2901 assert(collect_unique_inputs(n, inputs) == 1, "not unary"); 2902 return false; // too few inputs 2903 } 2904 2905 bool pack_left_child = true; 2906 bool pack_right_child = true; 2907 2908 bool left_child_LOP = is_vector_bitwise_op(n->in(1)); 2909 bool right_child_LOP = is_vector_bitwise_op(n->in(2)); 2910 2911 int left_child_input_cnt = 0; 2912 int right_child_input_cnt = 0; 2913 2914 bool parent_is_predicated = n->is_predicated_vector(); 2915 bool left_child_predicated = n->in(1)->is_predicated_vector(); 2916 bool right_child_predicated = n->in(2)->is_predicated_vector(); 2917 2918 Node* parent_pred = parent_is_predicated ? n->in(n->req()-1) : nullptr; 2919 Node* left_child_pred = left_child_predicated ? n->in(1)->in(n->in(1)->req()-1) : nullptr; 2920 Node* right_child_pred = right_child_predicated ? n->in(1)->in(n->in(1)->req()-1) : nullptr; 2921 2922 do { 2923 if (pack_left_child && left_child_LOP && 2924 ((!parent_is_predicated && !left_child_predicated) || 2925 ((parent_is_predicated && left_child_predicated && 2926 parent_pred == left_child_pred)))) { 2927 partition.push(n->in(1)); 2928 left_child_input_cnt = collect_unique_inputs(n->in(1), inputs); 2929 } else { 2930 inputs.push(n->in(1)); 2931 left_child_input_cnt = 1; 2932 } 2933 2934 if (pack_right_child && right_child_LOP && 2935 (!right_child_predicated || 2936 (right_child_predicated && parent_is_predicated && 2937 parent_pred == right_child_pred))) { 2938 partition.push(n->in(2)); 2939 right_child_input_cnt = collect_unique_inputs(n->in(2), inputs); 2940 } else { 2941 inputs.push(n->in(2)); 2942 right_child_input_cnt = 1; 2943 } 2944 2945 if (inputs.size() > 3) { 2946 assert(partition.size() > 0, ""); 2947 inputs.clear(); 2948 partition.clear(); 2949 if (left_child_input_cnt > right_child_input_cnt) { 2950 pack_left_child = false; 2951 } else { 2952 pack_right_child = false; 2953 } 2954 } else { 2955 break; 2956 } 2957 } while(true); 2958 2959 if(partition.size()) { 2960 partition.push(n); 2961 } 2962 2963 return (partition.size() == 2 || partition.size() == 3) && 2964 (inputs.size() == 2 || inputs.size() == 3); 2965 } 2966 2967 void Compile::process_logic_cone_root(PhaseIterGVN &igvn, Node *n, VectorSet &visited) { 2968 assert(is_vector_bitwise_op(n), "not a root"); 2969 2970 visited.set(n->_idx); 2971 2972 // 1) Do a DFS walk over the logic cone. 2973 for (uint i = 1; i < n->req(); i++) { 2974 Node* in = n->in(i); 2975 if (!visited.test(in->_idx) && is_vector_bitwise_op(in)) { 2976 process_logic_cone_root(igvn, in, visited); 2977 } 2978 } 2979 2980 // 2) Bottom up traversal: Merge node[s] with 2981 // the parent to form macro logic node. 2982 Unique_Node_List partition; 2983 Unique_Node_List inputs; 2984 if (compute_logic_cone(n, partition, inputs)) { 2985 const TypeVect* vt = n->bottom_type()->is_vect(); 2986 Node* pn = partition.at(partition.size() - 1); 2987 Node* mask = pn->is_predicated_vector() ? pn->in(pn->req()-1) : nullptr; 2988 if (mask == nullptr || 2989 Matcher::match_rule_supported_vector_masked(Op_MacroLogicV, vt->length(), vt->element_basic_type())) { 2990 Node* macro_logic = xform_to_MacroLogicV(igvn, vt, partition, inputs); 2991 VectorNode::trace_new_vector(macro_logic, "MacroLogic"); 2992 igvn.replace_node(n, macro_logic); 2993 } 2994 } 2995 } 2996 2997 void Compile::optimize_logic_cones(PhaseIterGVN &igvn) { 2998 ResourceMark rm; 2999 if (Matcher::match_rule_supported(Op_MacroLogicV)) { 3000 Unique_Node_List list; 3001 collect_logic_cone_roots(list); 3002 3003 while (list.size() > 0) { 3004 Node* n = list.pop(); 3005 const TypeVect* vt = n->bottom_type()->is_vect(); 3006 bool supported = Matcher::match_rule_supported_vector(Op_MacroLogicV, vt->length(), vt->element_basic_type()); 3007 if (supported) { 3008 VectorSet visited(comp_arena()); 3009 process_logic_cone_root(igvn, n, visited); 3010 } 3011 } 3012 } 3013 } 3014 3015 //------------------------------Code_Gen--------------------------------------- 3016 // Given a graph, generate code for it 3017 void Compile::Code_Gen() { 3018 if (failing()) { 3019 return; 3020 } 3021 3022 // Perform instruction selection. You might think we could reclaim Matcher 3023 // memory PDQ, but actually the Matcher is used in generating spill code. 3024 // Internals of the Matcher (including some VectorSets) must remain live 3025 // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage 3026 // set a bit in reclaimed memory. 3027 3028 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine 3029 // nodes. Mapping is only valid at the root of each matched subtree. 3030 NOT_PRODUCT( verify_graph_edges(); ) 3031 3032 Matcher matcher; 3033 _matcher = &matcher; 3034 { 3035 TracePhase tp(_t_matcher); 3036 matcher.match(); 3037 if (failing()) { 3038 return; 3039 } 3040 } 3041 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine 3042 // nodes. Mapping is only valid at the root of each matched subtree. 3043 NOT_PRODUCT( verify_graph_edges(); ) 3044 3045 // If you have too many nodes, or if matching has failed, bail out 3046 check_node_count(0, "out of nodes matching instructions"); 3047 if (failing()) { 3048 return; 3049 } 3050 3051 print_method(PHASE_MATCHING, 2); 3052 3053 // Build a proper-looking CFG 3054 PhaseCFG cfg(node_arena(), root(), matcher); 3055 if (failing()) { 3056 return; 3057 } 3058 _cfg = &cfg; 3059 { 3060 TracePhase tp(_t_scheduler); 3061 bool success = cfg.do_global_code_motion(); 3062 if (!success) { 3063 return; 3064 } 3065 3066 print_method(PHASE_GLOBAL_CODE_MOTION, 2); 3067 NOT_PRODUCT( verify_graph_edges(); ) 3068 cfg.verify(); 3069 if (failing()) { 3070 return; 3071 } 3072 } 3073 3074 PhaseChaitin regalloc(unique(), cfg, matcher, false); 3075 _regalloc = ®alloc; 3076 { 3077 TracePhase tp(_t_registerAllocation); 3078 // Perform register allocation. After Chaitin, use-def chains are 3079 // no longer accurate (at spill code) and so must be ignored. 3080 // Node->LRG->reg mappings are still accurate. 3081 _regalloc->Register_Allocate(); 3082 3083 // Bail out if the allocator builds too many nodes 3084 if (failing()) { 3085 return; 3086 } 3087 3088 print_method(PHASE_REGISTER_ALLOCATION, 2); 3089 } 3090 3091 // Prior to register allocation we kept empty basic blocks in case the 3092 // the allocator needed a place to spill. After register allocation we 3093 // are not adding any new instructions. If any basic block is empty, we 3094 // can now safely remove it. 3095 { 3096 TracePhase tp(_t_blockOrdering); 3097 cfg.remove_empty_blocks(); 3098 if (do_freq_based_layout()) { 3099 PhaseBlockLayout layout(cfg); 3100 } else { 3101 cfg.set_loop_alignment(); 3102 } 3103 cfg.fixup_flow(); 3104 cfg.remove_unreachable_blocks(); 3105 cfg.verify_dominator_tree(); 3106 print_method(PHASE_BLOCK_ORDERING, 3); 3107 } 3108 3109 // Apply peephole optimizations 3110 if( OptoPeephole ) { 3111 TracePhase tp(_t_peephole); 3112 PhasePeephole peep( _regalloc, cfg); 3113 peep.do_transform(); 3114 print_method(PHASE_PEEPHOLE, 3); 3115 } 3116 3117 // Do late expand if CPU requires this. 3118 if (Matcher::require_postalloc_expand) { 3119 TracePhase tp(_t_postalloc_expand); 3120 cfg.postalloc_expand(_regalloc); 3121 print_method(PHASE_POSTALLOC_EXPAND, 3); 3122 } 3123 3124 #ifdef ASSERT 3125 { 3126 CompilationMemoryStatistic::do_test_allocations(); 3127 if (failing()) return; 3128 } 3129 #endif 3130 3131 // Convert Nodes to instruction bits in a buffer 3132 { 3133 TracePhase tp(_t_output); 3134 PhaseOutput output; 3135 output.Output(); 3136 if (failing()) return; 3137 output.install(); 3138 print_method(PHASE_FINAL_CODE, 1); // Compile::_output is not null here 3139 } 3140 3141 // He's dead, Jim. 3142 _cfg = (PhaseCFG*)((intptr_t)0xdeadbeef); 3143 _regalloc = (PhaseChaitin*)((intptr_t)0xdeadbeef); 3144 } 3145 3146 //------------------------------Final_Reshape_Counts--------------------------- 3147 // This class defines counters to help identify when a method 3148 // may/must be executed using hardware with only 24-bit precision. 3149 struct Final_Reshape_Counts : public StackObj { 3150 int _call_count; // count non-inlined 'common' calls 3151 int _float_count; // count float ops requiring 24-bit precision 3152 int _double_count; // count double ops requiring more precision 3153 int _java_call_count; // count non-inlined 'java' calls 3154 int _inner_loop_count; // count loops which need alignment 3155 VectorSet _visited; // Visitation flags 3156 Node_List _tests; // Set of IfNodes & PCTableNodes 3157 3158 Final_Reshape_Counts() : 3159 _call_count(0), _float_count(0), _double_count(0), 3160 _java_call_count(0), _inner_loop_count(0) { } 3161 3162 void inc_call_count () { _call_count ++; } 3163 void inc_float_count () { _float_count ++; } 3164 void inc_double_count() { _double_count++; } 3165 void inc_java_call_count() { _java_call_count++; } 3166 void inc_inner_loop_count() { _inner_loop_count++; } 3167 3168 int get_call_count () const { return _call_count ; } 3169 int get_float_count () const { return _float_count ; } 3170 int get_double_count() const { return _double_count; } 3171 int get_java_call_count() const { return _java_call_count; } 3172 int get_inner_loop_count() const { return _inner_loop_count; } 3173 }; 3174 3175 //------------------------------final_graph_reshaping_impl---------------------- 3176 // Implement items 1-5 from final_graph_reshaping below. 3177 void Compile::final_graph_reshaping_impl(Node *n, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes) { 3178 3179 if ( n->outcnt() == 0 ) return; // dead node 3180 uint nop = n->Opcode(); 3181 3182 // Check for 2-input instruction with "last use" on right input. 3183 // Swap to left input. Implements item (2). 3184 if( n->req() == 3 && // two-input instruction 3185 n->in(1)->outcnt() > 1 && // left use is NOT a last use 3186 (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop 3187 n->in(2)->outcnt() == 1 &&// right use IS a last use 3188 !n->in(2)->is_Con() ) { // right use is not a constant 3189 // Check for commutative opcode 3190 switch( nop ) { 3191 case Op_AddI: case Op_AddF: case Op_AddD: case Op_AddL: 3192 case Op_MaxI: case Op_MaxL: case Op_MaxF: case Op_MaxD: 3193 case Op_MinI: case Op_MinL: case Op_MinF: case Op_MinD: 3194 case Op_MulI: case Op_MulF: case Op_MulD: case Op_MulL: 3195 case Op_AndL: case Op_XorL: case Op_OrL: 3196 case Op_AndI: case Op_XorI: case Op_OrI: { 3197 // Move "last use" input to left by swapping inputs 3198 n->swap_edges(1, 2); 3199 break; 3200 } 3201 default: 3202 break; 3203 } 3204 } 3205 3206 #ifdef ASSERT 3207 if( n->is_Mem() ) { 3208 int alias_idx = get_alias_index(n->as_Mem()->adr_type()); 3209 assert( n->in(0) != nullptr || alias_idx != Compile::AliasIdxRaw || 3210 // oop will be recorded in oop map if load crosses safepoint 3211 (n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() || 3212 LoadNode::is_immutable_value(n->in(MemNode::Address)))), 3213 "raw memory operations should have control edge"); 3214 } 3215 if (n->is_MemBar()) { 3216 MemBarNode* mb = n->as_MemBar(); 3217 if (mb->trailing_store() || mb->trailing_load_store()) { 3218 assert(mb->leading_membar()->trailing_membar() == mb, "bad membar pair"); 3219 Node* mem = BarrierSet::barrier_set()->barrier_set_c2()->step_over_gc_barrier(mb->in(MemBarNode::Precedent)); 3220 assert((mb->trailing_store() && mem->is_Store() && mem->as_Store()->is_release()) || 3221 (mb->trailing_load_store() && mem->is_LoadStore()), "missing mem op"); 3222 } else if (mb->leading()) { 3223 assert(mb->trailing_membar()->leading_membar() == mb, "bad membar pair"); 3224 } 3225 } 3226 #endif 3227 // Count FPU ops and common calls, implements item (3) 3228 bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->final_graph_reshaping(this, n, nop, dead_nodes); 3229 if (!gc_handled) { 3230 final_graph_reshaping_main_switch(n, frc, nop, dead_nodes); 3231 } 3232 3233 // Collect CFG split points 3234 if (n->is_MultiBranch() && !n->is_RangeCheck()) { 3235 frc._tests.push(n); 3236 } 3237 } 3238 3239 void Compile::handle_div_mod_op(Node* n, BasicType bt, bool is_unsigned) { 3240 if (!UseDivMod) { 3241 return; 3242 } 3243 3244 // Check if "a % b" and "a / b" both exist 3245 Node* d = n->find_similar(Op_DivIL(bt, is_unsigned)); 3246 if (d == nullptr) { 3247 return; 3248 } 3249 3250 // Replace them with a fused divmod if supported 3251 if (Matcher::has_match_rule(Op_DivModIL(bt, is_unsigned))) { 3252 DivModNode* divmod = DivModNode::make(n, bt, is_unsigned); 3253 // If the divisor input for a Div (or Mod etc.) is not zero, then the control input of the Div is set to zero. 3254 // It could be that the divisor input is found not zero because its type is narrowed down by a CastII in the 3255 // subgraph for that input. Range check CastIIs are removed during final graph reshape. To preserve the dependency 3256 // carried by a CastII, precedence edges are added to the Div node. We need to transfer the precedence edges to the 3257 // DivMod node so the dependency is not lost. 3258 divmod->add_prec_from(n); 3259 divmod->add_prec_from(d); 3260 d->subsume_by(divmod->div_proj(), this); 3261 n->subsume_by(divmod->mod_proj(), this); 3262 } else { 3263 // Replace "a % b" with "a - ((a / b) * b)" 3264 Node* mult = MulNode::make(d, d->in(2), bt); 3265 Node* sub = SubNode::make(d->in(1), mult, bt); 3266 n->subsume_by(sub, this); 3267 } 3268 } 3269 3270 void Compile::final_graph_reshaping_main_switch(Node* n, Final_Reshape_Counts& frc, uint nop, Unique_Node_List& dead_nodes) { 3271 switch( nop ) { 3272 // Count all float operations that may use FPU 3273 case Op_AddF: 3274 case Op_SubF: 3275 case Op_MulF: 3276 case Op_DivF: 3277 case Op_NegF: 3278 case Op_ModF: 3279 case Op_ConvI2F: 3280 case Op_ConF: 3281 case Op_CmpF: 3282 case Op_CmpF3: 3283 case Op_StoreF: 3284 case Op_LoadF: 3285 // case Op_ConvL2F: // longs are split into 32-bit halves 3286 frc.inc_float_count(); 3287 break; 3288 3289 case Op_ConvF2D: 3290 case Op_ConvD2F: 3291 frc.inc_float_count(); 3292 frc.inc_double_count(); 3293 break; 3294 3295 // Count all double operations that may use FPU 3296 case Op_AddD: 3297 case Op_SubD: 3298 case Op_MulD: 3299 case Op_DivD: 3300 case Op_NegD: 3301 case Op_ModD: 3302 case Op_ConvI2D: 3303 case Op_ConvD2I: 3304 // case Op_ConvL2D: // handled by leaf call 3305 // case Op_ConvD2L: // handled by leaf call 3306 case Op_ConD: 3307 case Op_CmpD: 3308 case Op_CmpD3: 3309 case Op_StoreD: 3310 case Op_LoadD: 3311 case Op_LoadD_unaligned: 3312 frc.inc_double_count(); 3313 break; 3314 case Op_Opaque1: // Remove Opaque Nodes before matching 3315 n->subsume_by(n->in(1), this); 3316 break; 3317 case Op_CallLeafPure: { 3318 // If the pure call is not supported, then lower to a CallLeaf. 3319 if (!Matcher::match_rule_supported(Op_CallLeafPure)) { 3320 CallNode* call = n->as_Call(); 3321 CallNode* new_call = new CallLeafNode(call->tf(), call->entry_point(), 3322 call->_name, TypeRawPtr::BOTTOM); 3323 new_call->init_req(TypeFunc::Control, call->in(TypeFunc::Control)); 3324 new_call->init_req(TypeFunc::I_O, C->top()); 3325 new_call->init_req(TypeFunc::Memory, C->top()); 3326 new_call->init_req(TypeFunc::ReturnAdr, C->top()); 3327 new_call->init_req(TypeFunc::FramePtr, C->top()); 3328 for (unsigned int i = TypeFunc::Parms; i < call->tf()->domain()->cnt(); i++) { 3329 new_call->init_req(i, call->in(i)); 3330 } 3331 n->subsume_by(new_call, this); 3332 } 3333 frc.inc_call_count(); 3334 break; 3335 } 3336 case Op_CallStaticJava: 3337 case Op_CallJava: 3338 case Op_CallDynamicJava: 3339 frc.inc_java_call_count(); // Count java call site; 3340 case Op_CallRuntime: 3341 case Op_CallLeaf: 3342 case Op_CallLeafVector: 3343 case Op_CallLeafNoFP: { 3344 assert (n->is_Call(), ""); 3345 CallNode *call = n->as_Call(); 3346 // Count call sites where the FP mode bit would have to be flipped. 3347 // Do not count uncommon runtime calls: 3348 // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking, 3349 // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ... 3350 if (!call->is_CallStaticJava() || !call->as_CallStaticJava()->_name) { 3351 frc.inc_call_count(); // Count the call site 3352 } else { // See if uncommon argument is shared 3353 Node *n = call->in(TypeFunc::Parms); 3354 int nop = n->Opcode(); 3355 // Clone shared simple arguments to uncommon calls, item (1). 3356 if (n->outcnt() > 1 && 3357 !n->is_Proj() && 3358 nop != Op_CreateEx && 3359 nop != Op_CheckCastPP && 3360 nop != Op_DecodeN && 3361 nop != Op_DecodeNKlass && 3362 !n->is_Mem() && 3363 !n->is_Phi()) { 3364 Node *x = n->clone(); 3365 call->set_req(TypeFunc::Parms, x); 3366 } 3367 } 3368 break; 3369 } 3370 case Op_StoreB: 3371 case Op_StoreC: 3372 case Op_StoreI: 3373 case Op_StoreL: 3374 case Op_CompareAndSwapB: 3375 case Op_CompareAndSwapS: 3376 case Op_CompareAndSwapI: 3377 case Op_CompareAndSwapL: 3378 case Op_CompareAndSwapP: 3379 case Op_CompareAndSwapN: 3380 case Op_WeakCompareAndSwapB: 3381 case Op_WeakCompareAndSwapS: 3382 case Op_WeakCompareAndSwapI: 3383 case Op_WeakCompareAndSwapL: 3384 case Op_WeakCompareAndSwapP: 3385 case Op_WeakCompareAndSwapN: 3386 case Op_CompareAndExchangeB: 3387 case Op_CompareAndExchangeS: 3388 case Op_CompareAndExchangeI: 3389 case Op_CompareAndExchangeL: 3390 case Op_CompareAndExchangeP: 3391 case Op_CompareAndExchangeN: 3392 case Op_GetAndAddS: 3393 case Op_GetAndAddB: 3394 case Op_GetAndAddI: 3395 case Op_GetAndAddL: 3396 case Op_GetAndSetS: 3397 case Op_GetAndSetB: 3398 case Op_GetAndSetI: 3399 case Op_GetAndSetL: 3400 case Op_GetAndSetP: 3401 case Op_GetAndSetN: 3402 case Op_StoreP: 3403 case Op_StoreN: 3404 case Op_StoreNKlass: 3405 case Op_LoadB: 3406 case Op_LoadUB: 3407 case Op_LoadUS: 3408 case Op_LoadI: 3409 case Op_LoadKlass: 3410 case Op_LoadNKlass: 3411 case Op_LoadL: 3412 case Op_LoadL_unaligned: 3413 case Op_LoadP: 3414 case Op_LoadN: 3415 case Op_LoadRange: 3416 case Op_LoadS: 3417 break; 3418 3419 case Op_AddP: { // Assert sane base pointers 3420 Node *addp = n->in(AddPNode::Address); 3421 assert( !addp->is_AddP() || 3422 addp->in(AddPNode::Base)->is_top() || // Top OK for allocation 3423 addp->in(AddPNode::Base) == n->in(AddPNode::Base), 3424 "Base pointers must match (addp %u)", addp->_idx ); 3425 #ifdef _LP64 3426 if ((UseCompressedOops || UseCompressedClassPointers) && 3427 addp->Opcode() == Op_ConP && 3428 addp == n->in(AddPNode::Base) && 3429 n->in(AddPNode::Offset)->is_Con()) { 3430 // If the transformation of ConP to ConN+DecodeN is beneficial depends 3431 // on the platform and on the compressed oops mode. 3432 // Use addressing with narrow klass to load with offset on x86. 3433 // Some platforms can use the constant pool to load ConP. 3434 // Do this transformation here since IGVN will convert ConN back to ConP. 3435 const Type* t = addp->bottom_type(); 3436 bool is_oop = t->isa_oopptr() != nullptr; 3437 bool is_klass = t->isa_klassptr() != nullptr; 3438 3439 if ((is_oop && UseCompressedOops && Matcher::const_oop_prefer_decode() ) || 3440 (is_klass && UseCompressedClassPointers && Matcher::const_klass_prefer_decode() && 3441 t->isa_klassptr()->exact_klass()->is_in_encoding_range())) { 3442 Node* nn = nullptr; 3443 3444 int op = is_oop ? Op_ConN : Op_ConNKlass; 3445 3446 // Look for existing ConN node of the same exact type. 3447 Node* r = root(); 3448 uint cnt = r->outcnt(); 3449 for (uint i = 0; i < cnt; i++) { 3450 Node* m = r->raw_out(i); 3451 if (m!= nullptr && m->Opcode() == op && 3452 m->bottom_type()->make_ptr() == t) { 3453 nn = m; 3454 break; 3455 } 3456 } 3457 if (nn != nullptr) { 3458 // Decode a narrow oop to match address 3459 // [R12 + narrow_oop_reg<<3 + offset] 3460 if (is_oop) { 3461 nn = new DecodeNNode(nn, t); 3462 } else { 3463 nn = new DecodeNKlassNode(nn, t); 3464 } 3465 // Check for succeeding AddP which uses the same Base. 3466 // Otherwise we will run into the assertion above when visiting that guy. 3467 for (uint i = 0; i < n->outcnt(); ++i) { 3468 Node *out_i = n->raw_out(i); 3469 if (out_i && out_i->is_AddP() && out_i->in(AddPNode::Base) == addp) { 3470 out_i->set_req(AddPNode::Base, nn); 3471 #ifdef ASSERT 3472 for (uint j = 0; j < out_i->outcnt(); ++j) { 3473 Node *out_j = out_i->raw_out(j); 3474 assert(out_j == nullptr || !out_j->is_AddP() || out_j->in(AddPNode::Base) != addp, 3475 "more than 2 AddP nodes in a chain (out_j %u)", out_j->_idx); 3476 } 3477 #endif 3478 } 3479 } 3480 n->set_req(AddPNode::Base, nn); 3481 n->set_req(AddPNode::Address, nn); 3482 if (addp->outcnt() == 0) { 3483 addp->disconnect_inputs(this); 3484 } 3485 } 3486 } 3487 } 3488 #endif 3489 break; 3490 } 3491 3492 case Op_CastPP: { 3493 // Remove CastPP nodes to gain more freedom during scheduling but 3494 // keep the dependency they encode as control or precedence edges 3495 // (if control is set already) on memory operations. Some CastPP 3496 // nodes don't have a control (don't carry a dependency): skip 3497 // those. 3498 if (n->in(0) != nullptr) { 3499 ResourceMark rm; 3500 Unique_Node_List wq; 3501 wq.push(n); 3502 for (uint next = 0; next < wq.size(); ++next) { 3503 Node *m = wq.at(next); 3504 for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) { 3505 Node* use = m->fast_out(i); 3506 if (use->is_Mem() || use->is_EncodeNarrowPtr()) { 3507 use->ensure_control_or_add_prec(n->in(0)); 3508 } else { 3509 switch(use->Opcode()) { 3510 case Op_AddP: 3511 case Op_DecodeN: 3512 case Op_DecodeNKlass: 3513 case Op_CheckCastPP: 3514 case Op_CastPP: 3515 wq.push(use); 3516 break; 3517 } 3518 } 3519 } 3520 } 3521 } 3522 const bool is_LP64 = LP64_ONLY(true) NOT_LP64(false); 3523 if (is_LP64 && n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) { 3524 Node* in1 = n->in(1); 3525 const Type* t = n->bottom_type(); 3526 Node* new_in1 = in1->clone(); 3527 new_in1->as_DecodeN()->set_type(t); 3528 3529 if (!Matcher::narrow_oop_use_complex_address()) { 3530 // 3531 // x86, ARM and friends can handle 2 adds in addressing mode 3532 // and Matcher can fold a DecodeN node into address by using 3533 // a narrow oop directly and do implicit null check in address: 3534 // 3535 // [R12 + narrow_oop_reg<<3 + offset] 3536 // NullCheck narrow_oop_reg 3537 // 3538 // On other platforms (Sparc) we have to keep new DecodeN node and 3539 // use it to do implicit null check in address: 3540 // 3541 // decode_not_null narrow_oop_reg, base_reg 3542 // [base_reg + offset] 3543 // NullCheck base_reg 3544 // 3545 // Pin the new DecodeN node to non-null path on these platform (Sparc) 3546 // to keep the information to which null check the new DecodeN node 3547 // corresponds to use it as value in implicit_null_check(). 3548 // 3549 new_in1->set_req(0, n->in(0)); 3550 } 3551 3552 n->subsume_by(new_in1, this); 3553 if (in1->outcnt() == 0) { 3554 in1->disconnect_inputs(this); 3555 } 3556 } else { 3557 n->subsume_by(n->in(1), this); 3558 if (n->outcnt() == 0) { 3559 n->disconnect_inputs(this); 3560 } 3561 } 3562 break; 3563 } 3564 case Op_CastII: { 3565 n->as_CastII()->remove_range_check_cast(this); 3566 break; 3567 } 3568 #ifdef _LP64 3569 case Op_CmpP: 3570 // Do this transformation here to preserve CmpPNode::sub() and 3571 // other TypePtr related Ideal optimizations (for example, ptr nullness). 3572 if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) { 3573 Node* in1 = n->in(1); 3574 Node* in2 = n->in(2); 3575 if (!in1->is_DecodeNarrowPtr()) { 3576 in2 = in1; 3577 in1 = n->in(2); 3578 } 3579 assert(in1->is_DecodeNarrowPtr(), "sanity"); 3580 3581 Node* new_in2 = nullptr; 3582 if (in2->is_DecodeNarrowPtr()) { 3583 assert(in2->Opcode() == in1->Opcode(), "must be same node type"); 3584 new_in2 = in2->in(1); 3585 } else if (in2->Opcode() == Op_ConP) { 3586 const Type* t = in2->bottom_type(); 3587 if (t == TypePtr::NULL_PTR) { 3588 assert(in1->is_DecodeN(), "compare klass to null?"); 3589 // Don't convert CmpP null check into CmpN if compressed 3590 // oops implicit null check is not generated. 3591 // This will allow to generate normal oop implicit null check. 3592 if (Matcher::gen_narrow_oop_implicit_null_checks()) 3593 new_in2 = ConNode::make(TypeNarrowOop::NULL_PTR); 3594 // 3595 // This transformation together with CastPP transformation above 3596 // will generated code for implicit null checks for compressed oops. 3597 // 3598 // The original code after Optimize() 3599 // 3600 // LoadN memory, narrow_oop_reg 3601 // decode narrow_oop_reg, base_reg 3602 // CmpP base_reg, nullptr 3603 // CastPP base_reg // NotNull 3604 // Load [base_reg + offset], val_reg 3605 // 3606 // after these transformations will be 3607 // 3608 // LoadN memory, narrow_oop_reg 3609 // CmpN narrow_oop_reg, nullptr 3610 // decode_not_null narrow_oop_reg, base_reg 3611 // Load [base_reg + offset], val_reg 3612 // 3613 // and the uncommon path (== nullptr) will use narrow_oop_reg directly 3614 // since narrow oops can be used in debug info now (see the code in 3615 // final_graph_reshaping_walk()). 3616 // 3617 // At the end the code will be matched to 3618 // on x86: 3619 // 3620 // Load_narrow_oop memory, narrow_oop_reg 3621 // Load [R12 + narrow_oop_reg<<3 + offset], val_reg 3622 // NullCheck narrow_oop_reg 3623 // 3624 // and on sparc: 3625 // 3626 // Load_narrow_oop memory, narrow_oop_reg 3627 // decode_not_null narrow_oop_reg, base_reg 3628 // Load [base_reg + offset], val_reg 3629 // NullCheck base_reg 3630 // 3631 } else if (t->isa_oopptr()) { 3632 new_in2 = ConNode::make(t->make_narrowoop()); 3633 } else if (t->isa_klassptr()) { 3634 ciKlass* klass = t->is_klassptr()->exact_klass(); 3635 if (klass->is_in_encoding_range()) { 3636 new_in2 = ConNode::make(t->make_narrowklass()); 3637 } 3638 } 3639 } 3640 if (new_in2 != nullptr) { 3641 Node* cmpN = new CmpNNode(in1->in(1), new_in2); 3642 n->subsume_by(cmpN, this); 3643 if (in1->outcnt() == 0) { 3644 in1->disconnect_inputs(this); 3645 } 3646 if (in2->outcnt() == 0) { 3647 in2->disconnect_inputs(this); 3648 } 3649 } 3650 } 3651 break; 3652 3653 case Op_DecodeN: 3654 case Op_DecodeNKlass: 3655 assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out"); 3656 // DecodeN could be pinned when it can't be fold into 3657 // an address expression, see the code for Op_CastPP above. 3658 assert(n->in(0) == nullptr || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control"); 3659 break; 3660 3661 case Op_EncodeP: 3662 case Op_EncodePKlass: { 3663 Node* in1 = n->in(1); 3664 if (in1->is_DecodeNarrowPtr()) { 3665 n->subsume_by(in1->in(1), this); 3666 } else if (in1->Opcode() == Op_ConP) { 3667 const Type* t = in1->bottom_type(); 3668 if (t == TypePtr::NULL_PTR) { 3669 assert(t->isa_oopptr(), "null klass?"); 3670 n->subsume_by(ConNode::make(TypeNarrowOop::NULL_PTR), this); 3671 } else if (t->isa_oopptr()) { 3672 n->subsume_by(ConNode::make(t->make_narrowoop()), this); 3673 } else if (t->isa_klassptr()) { 3674 ciKlass* klass = t->is_klassptr()->exact_klass(); 3675 if (klass->is_in_encoding_range()) { 3676 n->subsume_by(ConNode::make(t->make_narrowklass()), this); 3677 } else { 3678 assert(false, "unencodable klass in ConP -> EncodeP"); 3679 C->record_failure("unencodable klass in ConP -> EncodeP"); 3680 } 3681 } 3682 } 3683 if (in1->outcnt() == 0) { 3684 in1->disconnect_inputs(this); 3685 } 3686 break; 3687 } 3688 3689 case Op_Proj: { 3690 if (OptimizeStringConcat || IncrementalInline) { 3691 ProjNode* proj = n->as_Proj(); 3692 if (proj->_is_io_use) { 3693 assert(proj->_con == TypeFunc::I_O || proj->_con == TypeFunc::Memory, ""); 3694 // Separate projections were used for the exception path which 3695 // are normally removed by a late inline. If it wasn't inlined 3696 // then they will hang around and should just be replaced with 3697 // the original one. Merge them. 3698 Node* non_io_proj = proj->in(0)->as_Multi()->proj_out_or_null(proj->_con, false /*is_io_use*/); 3699 if (non_io_proj != nullptr) { 3700 proj->subsume_by(non_io_proj , this); 3701 } 3702 } 3703 } 3704 break; 3705 } 3706 3707 case Op_Phi: 3708 if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) { 3709 // The EncodeP optimization may create Phi with the same edges 3710 // for all paths. It is not handled well by Register Allocator. 3711 Node* unique_in = n->in(1); 3712 assert(unique_in != nullptr, ""); 3713 uint cnt = n->req(); 3714 for (uint i = 2; i < cnt; i++) { 3715 Node* m = n->in(i); 3716 assert(m != nullptr, ""); 3717 if (unique_in != m) 3718 unique_in = nullptr; 3719 } 3720 if (unique_in != nullptr) { 3721 n->subsume_by(unique_in, this); 3722 } 3723 } 3724 break; 3725 3726 #endif 3727 3728 case Op_ModI: 3729 handle_div_mod_op(n, T_INT, false); 3730 break; 3731 3732 case Op_ModL: 3733 handle_div_mod_op(n, T_LONG, false); 3734 break; 3735 3736 case Op_UModI: 3737 handle_div_mod_op(n, T_INT, true); 3738 break; 3739 3740 case Op_UModL: 3741 handle_div_mod_op(n, T_LONG, true); 3742 break; 3743 3744 case Op_LoadVector: 3745 case Op_StoreVector: 3746 #ifdef ASSERT 3747 // Add VerifyVectorAlignment node between adr and load / store. 3748 if (VerifyAlignVector && Matcher::has_match_rule(Op_VerifyVectorAlignment)) { 3749 bool must_verify_alignment = n->is_LoadVector() ? n->as_LoadVector()->must_verify_alignment() : 3750 n->as_StoreVector()->must_verify_alignment(); 3751 if (must_verify_alignment) { 3752 jlong vector_width = n->is_LoadVector() ? n->as_LoadVector()->memory_size() : 3753 n->as_StoreVector()->memory_size(); 3754 // The memory access should be aligned to the vector width in bytes. 3755 // However, the underlying array is possibly less well aligned, but at least 3756 // to ObjectAlignmentInBytes. Hence, even if multiple arrays are accessed in 3757 // a loop we can expect at least the following alignment: 3758 jlong guaranteed_alignment = MIN2(vector_width, (jlong)ObjectAlignmentInBytes); 3759 assert(2 <= guaranteed_alignment && guaranteed_alignment <= 64, "alignment must be in range"); 3760 assert(is_power_of_2(guaranteed_alignment), "alignment must be power of 2"); 3761 // Create mask from alignment. e.g. 0b1000 -> 0b0111 3762 jlong mask = guaranteed_alignment - 1; 3763 Node* mask_con = ConLNode::make(mask); 3764 VerifyVectorAlignmentNode* va = new VerifyVectorAlignmentNode(n->in(MemNode::Address), mask_con); 3765 n->set_req(MemNode::Address, va); 3766 } 3767 } 3768 #endif 3769 break; 3770 3771 case Op_LoadVectorGather: 3772 case Op_StoreVectorScatter: 3773 case Op_LoadVectorGatherMasked: 3774 case Op_StoreVectorScatterMasked: 3775 case Op_VectorCmpMasked: 3776 case Op_VectorMaskGen: 3777 case Op_LoadVectorMasked: 3778 case Op_StoreVectorMasked: 3779 break; 3780 3781 case Op_AddReductionVI: 3782 case Op_AddReductionVL: 3783 case Op_AddReductionVF: 3784 case Op_AddReductionVD: 3785 case Op_MulReductionVI: 3786 case Op_MulReductionVL: 3787 case Op_MulReductionVF: 3788 case Op_MulReductionVD: 3789 case Op_MinReductionV: 3790 case Op_MaxReductionV: 3791 case Op_AndReductionV: 3792 case Op_OrReductionV: 3793 case Op_XorReductionV: 3794 break; 3795 3796 case Op_PackB: 3797 case Op_PackS: 3798 case Op_PackI: 3799 case Op_PackF: 3800 case Op_PackL: 3801 case Op_PackD: 3802 if (n->req()-1 > 2) { 3803 // Replace many operand PackNodes with a binary tree for matching 3804 PackNode* p = (PackNode*) n; 3805 Node* btp = p->binary_tree_pack(1, n->req()); 3806 n->subsume_by(btp, this); 3807 } 3808 break; 3809 case Op_Loop: 3810 assert(!n->as_Loop()->is_loop_nest_inner_loop() || _loop_opts_cnt == 0, "should have been turned into a counted loop"); 3811 case Op_CountedLoop: 3812 case Op_LongCountedLoop: 3813 case Op_OuterStripMinedLoop: 3814 if (n->as_Loop()->is_inner_loop()) { 3815 frc.inc_inner_loop_count(); 3816 } 3817 n->as_Loop()->verify_strip_mined(0); 3818 break; 3819 case Op_LShiftI: 3820 case Op_RShiftI: 3821 case Op_URShiftI: 3822 case Op_LShiftL: 3823 case Op_RShiftL: 3824 case Op_URShiftL: 3825 if (Matcher::need_masked_shift_count) { 3826 // The cpu's shift instructions don't restrict the count to the 3827 // lower 5/6 bits. We need to do the masking ourselves. 3828 Node* in2 = n->in(2); 3829 juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1); 3830 const TypeInt* t = in2->find_int_type(); 3831 if (t != nullptr && t->is_con()) { 3832 juint shift = t->get_con(); 3833 if (shift > mask) { // Unsigned cmp 3834 n->set_req(2, ConNode::make(TypeInt::make(shift & mask))); 3835 } 3836 } else { 3837 if (t == nullptr || t->_lo < 0 || t->_hi > (int)mask) { 3838 Node* shift = new AndINode(in2, ConNode::make(TypeInt::make(mask))); 3839 n->set_req(2, shift); 3840 } 3841 } 3842 if (in2->outcnt() == 0) { // Remove dead node 3843 in2->disconnect_inputs(this); 3844 } 3845 } 3846 break; 3847 case Op_MemBarStoreStore: 3848 case Op_MemBarRelease: 3849 // Break the link with AllocateNode: it is no longer useful and 3850 // confuses register allocation. 3851 if (n->req() > MemBarNode::Precedent) { 3852 n->set_req(MemBarNode::Precedent, top()); 3853 } 3854 break; 3855 case Op_MemBarAcquire: { 3856 if (n->as_MemBar()->trailing_load() && n->req() > MemBarNode::Precedent) { 3857 // At parse time, the trailing MemBarAcquire for a volatile load 3858 // is created with an edge to the load. After optimizations, 3859 // that input may be a chain of Phis. If those phis have no 3860 // other use, then the MemBarAcquire keeps them alive and 3861 // register allocation can be confused. 3862 dead_nodes.push(n->in(MemBarNode::Precedent)); 3863 n->set_req(MemBarNode::Precedent, top()); 3864 } 3865 break; 3866 } 3867 case Op_Blackhole: 3868 break; 3869 case Op_RangeCheck: { 3870 RangeCheckNode* rc = n->as_RangeCheck(); 3871 Node* iff = new IfNode(rc->in(0), rc->in(1), rc->_prob, rc->_fcnt); 3872 n->subsume_by(iff, this); 3873 frc._tests.push(iff); 3874 break; 3875 } 3876 case Op_ConvI2L: { 3877 if (!Matcher::convi2l_type_required) { 3878 // Code generation on some platforms doesn't need accurate 3879 // ConvI2L types. Widening the type can help remove redundant 3880 // address computations. 3881 n->as_Type()->set_type(TypeLong::INT); 3882 ResourceMark rm; 3883 Unique_Node_List wq; 3884 wq.push(n); 3885 for (uint next = 0; next < wq.size(); next++) { 3886 Node *m = wq.at(next); 3887 3888 for(;;) { 3889 // Loop over all nodes with identical inputs edges as m 3890 Node* k = m->find_similar(m->Opcode()); 3891 if (k == nullptr) { 3892 break; 3893 } 3894 // Push their uses so we get a chance to remove node made 3895 // redundant 3896 for (DUIterator_Fast imax, i = k->fast_outs(imax); i < imax; i++) { 3897 Node* u = k->fast_out(i); 3898 if (u->Opcode() == Op_LShiftL || 3899 u->Opcode() == Op_AddL || 3900 u->Opcode() == Op_SubL || 3901 u->Opcode() == Op_AddP) { 3902 wq.push(u); 3903 } 3904 } 3905 // Replace all nodes with identical edges as m with m 3906 k->subsume_by(m, this); 3907 } 3908 } 3909 } 3910 break; 3911 } 3912 case Op_CmpUL: { 3913 if (!Matcher::has_match_rule(Op_CmpUL)) { 3914 // No support for unsigned long comparisons 3915 ConINode* sign_pos = new ConINode(TypeInt::make(BitsPerLong - 1)); 3916 Node* sign_bit_mask = new RShiftLNode(n->in(1), sign_pos); 3917 Node* orl = new OrLNode(n->in(1), sign_bit_mask); 3918 ConLNode* remove_sign_mask = new ConLNode(TypeLong::make(max_jlong)); 3919 Node* andl = new AndLNode(orl, remove_sign_mask); 3920 Node* cmp = new CmpLNode(andl, n->in(2)); 3921 n->subsume_by(cmp, this); 3922 } 3923 break; 3924 } 3925 #ifdef ASSERT 3926 case Op_ConNKlass: { 3927 const TypePtr* tp = n->as_Type()->type()->make_ptr(); 3928 ciKlass* klass = tp->is_klassptr()->exact_klass(); 3929 assert(klass->is_in_encoding_range(), "klass cannot be compressed"); 3930 break; 3931 } 3932 #endif 3933 default: 3934 assert(!n->is_Call(), ""); 3935 assert(!n->is_Mem(), ""); 3936 assert(nop != Op_ProfileBoolean, "should be eliminated during IGVN"); 3937 break; 3938 } 3939 } 3940 3941 //------------------------------final_graph_reshaping_walk--------------------- 3942 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(), 3943 // requires that the walk visits a node's inputs before visiting the node. 3944 void Compile::final_graph_reshaping_walk(Node_Stack& nstack, Node* root, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes) { 3945 Unique_Node_List sfpt; 3946 3947 frc._visited.set(root->_idx); // first, mark node as visited 3948 uint cnt = root->req(); 3949 Node *n = root; 3950 uint i = 0; 3951 while (true) { 3952 if (i < cnt) { 3953 // Place all non-visited non-null inputs onto stack 3954 Node* m = n->in(i); 3955 ++i; 3956 if (m != nullptr && !frc._visited.test_set(m->_idx)) { 3957 if (m->is_SafePoint() && m->as_SafePoint()->jvms() != nullptr) { 3958 // compute worst case interpreter size in case of a deoptimization 3959 update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size()); 3960 3961 sfpt.push(m); 3962 } 3963 cnt = m->req(); 3964 nstack.push(n, i); // put on stack parent and next input's index 3965 n = m; 3966 i = 0; 3967 } 3968 } else { 3969 // Now do post-visit work 3970 final_graph_reshaping_impl(n, frc, dead_nodes); 3971 if (nstack.is_empty()) 3972 break; // finished 3973 n = nstack.node(); // Get node from stack 3974 cnt = n->req(); 3975 i = nstack.index(); 3976 nstack.pop(); // Shift to the next node on stack 3977 } 3978 } 3979 3980 // Skip next transformation if compressed oops are not used. 3981 if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) || 3982 (!UseCompressedOops && !UseCompressedClassPointers)) 3983 return; 3984 3985 // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges. 3986 // It could be done for an uncommon traps or any safepoints/calls 3987 // if the DecodeN/DecodeNKlass node is referenced only in a debug info. 3988 while (sfpt.size() > 0) { 3989 n = sfpt.pop(); 3990 JVMState *jvms = n->as_SafePoint()->jvms(); 3991 assert(jvms != nullptr, "sanity"); 3992 int start = jvms->debug_start(); 3993 int end = n->req(); 3994 bool is_uncommon = (n->is_CallStaticJava() && 3995 n->as_CallStaticJava()->uncommon_trap_request() != 0); 3996 for (int j = start; j < end; j++) { 3997 Node* in = n->in(j); 3998 if (in->is_DecodeNarrowPtr()) { 3999 bool safe_to_skip = true; 4000 if (!is_uncommon ) { 4001 // Is it safe to skip? 4002 for (uint i = 0; i < in->outcnt(); i++) { 4003 Node* u = in->raw_out(i); 4004 if (!u->is_SafePoint() || 4005 (u->is_Call() && u->as_Call()->has_non_debug_use(n))) { 4006 safe_to_skip = false; 4007 } 4008 } 4009 } 4010 if (safe_to_skip) { 4011 n->set_req(j, in->in(1)); 4012 } 4013 if (in->outcnt() == 0) { 4014 in->disconnect_inputs(this); 4015 } 4016 } 4017 } 4018 } 4019 } 4020 4021 //------------------------------final_graph_reshaping-------------------------- 4022 // Final Graph Reshaping. 4023 // 4024 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late 4025 // and not commoned up and forced early. Must come after regular 4026 // optimizations to avoid GVN undoing the cloning. Clone constant 4027 // inputs to Loop Phis; these will be split by the allocator anyways. 4028 // Remove Opaque nodes. 4029 // (2) Move last-uses by commutative operations to the left input to encourage 4030 // Intel update-in-place two-address operations and better register usage 4031 // on RISCs. Must come after regular optimizations to avoid GVN Ideal 4032 // calls canonicalizing them back. 4033 // (3) Count the number of double-precision FP ops, single-precision FP ops 4034 // and call sites. On Intel, we can get correct rounding either by 4035 // forcing singles to memory (requires extra stores and loads after each 4036 // FP bytecode) or we can set a rounding mode bit (requires setting and 4037 // clearing the mode bit around call sites). The mode bit is only used 4038 // if the relative frequency of single FP ops to calls is low enough. 4039 // This is a key transform for SPEC mpeg_audio. 4040 // (4) Detect infinite loops; blobs of code reachable from above but not 4041 // below. Several of the Code_Gen algorithms fail on such code shapes, 4042 // so we simply bail out. Happens a lot in ZKM.jar, but also happens 4043 // from time to time in other codes (such as -Xcomp finalizer loops, etc). 4044 // Detection is by looking for IfNodes where only 1 projection is 4045 // reachable from below or CatchNodes missing some targets. 4046 // (5) Assert for insane oop offsets in debug mode. 4047 4048 bool Compile::final_graph_reshaping() { 4049 // an infinite loop may have been eliminated by the optimizer, 4050 // in which case the graph will be empty. 4051 if (root()->req() == 1) { 4052 // Do not compile method that is only a trivial infinite loop, 4053 // since the content of the loop may have been eliminated. 4054 record_method_not_compilable("trivial infinite loop"); 4055 return true; 4056 } 4057 4058 // Expensive nodes have their control input set to prevent the GVN 4059 // from freely commoning them. There's no GVN beyond this point so 4060 // no need to keep the control input. We want the expensive nodes to 4061 // be freely moved to the least frequent code path by gcm. 4062 assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?"); 4063 for (int i = 0; i < expensive_count(); i++) { 4064 _expensive_nodes.at(i)->set_req(0, nullptr); 4065 } 4066 4067 Final_Reshape_Counts frc; 4068 4069 // Visit everybody reachable! 4070 // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc 4071 Node_Stack nstack(live_nodes() >> 1); 4072 Unique_Node_List dead_nodes; 4073 final_graph_reshaping_walk(nstack, root(), frc, dead_nodes); 4074 4075 // Check for unreachable (from below) code (i.e., infinite loops). 4076 for( uint i = 0; i < frc._tests.size(); i++ ) { 4077 MultiBranchNode *n = frc._tests[i]->as_MultiBranch(); 4078 // Get number of CFG targets. 4079 // Note that PCTables include exception targets after calls. 4080 uint required_outcnt = n->required_outcnt(); 4081 if (n->outcnt() != required_outcnt) { 4082 // Check for a few special cases. Rethrow Nodes never take the 4083 // 'fall-thru' path, so expected kids is 1 less. 4084 if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) { 4085 if (n->in(0)->in(0)->is_Call()) { 4086 CallNode* call = n->in(0)->in(0)->as_Call(); 4087 if (call->entry_point() == OptoRuntime::rethrow_stub()) { 4088 required_outcnt--; // Rethrow always has 1 less kid 4089 } else if (call->req() > TypeFunc::Parms && 4090 call->is_CallDynamicJava()) { 4091 // Check for null receiver. In such case, the optimizer has 4092 // detected that the virtual call will always result in a null 4093 // pointer exception. The fall-through projection of this CatchNode 4094 // will not be populated. 4095 Node* arg0 = call->in(TypeFunc::Parms); 4096 if (arg0->is_Type() && 4097 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) { 4098 required_outcnt--; 4099 } 4100 } else if (call->entry_point() == OptoRuntime::new_array_Java() || 4101 call->entry_point() == OptoRuntime::new_array_nozero_Java()) { 4102 // Check for illegal array length. In such case, the optimizer has 4103 // detected that the allocation attempt will always result in an 4104 // exception. There is no fall-through projection of this CatchNode . 4105 assert(call->is_CallStaticJava(), "static call expected"); 4106 assert(call->req() == call->jvms()->endoff() + 1, "missing extra input"); 4107 uint valid_length_test_input = call->req() - 1; 4108 Node* valid_length_test = call->in(valid_length_test_input); 4109 call->del_req(valid_length_test_input); 4110 if (valid_length_test->find_int_con(1) == 0) { 4111 required_outcnt--; 4112 } 4113 dead_nodes.push(valid_length_test); 4114 assert(n->outcnt() == required_outcnt, "malformed control flow"); 4115 continue; 4116 } 4117 } 4118 } 4119 4120 // Recheck with a better notion of 'required_outcnt' 4121 if (n->outcnt() != required_outcnt) { 4122 record_method_not_compilable("malformed control flow"); 4123 return true; // Not all targets reachable! 4124 } 4125 } else if (n->is_PCTable() && n->in(0) && n->in(0)->in(0) && n->in(0)->in(0)->is_Call()) { 4126 CallNode* call = n->in(0)->in(0)->as_Call(); 4127 if (call->entry_point() == OptoRuntime::new_array_Java() || 4128 call->entry_point() == OptoRuntime::new_array_nozero_Java()) { 4129 assert(call->is_CallStaticJava(), "static call expected"); 4130 assert(call->req() == call->jvms()->endoff() + 1, "missing extra input"); 4131 uint valid_length_test_input = call->req() - 1; 4132 dead_nodes.push(call->in(valid_length_test_input)); 4133 call->del_req(valid_length_test_input); // valid length test useless now 4134 } 4135 } 4136 // Check that I actually visited all kids. Unreached kids 4137 // must be infinite loops. 4138 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) 4139 if (!frc._visited.test(n->fast_out(j)->_idx)) { 4140 record_method_not_compilable("infinite loop"); 4141 return true; // Found unvisited kid; must be unreach 4142 } 4143 4144 // Here so verification code in final_graph_reshaping_walk() 4145 // always see an OuterStripMinedLoopEnd 4146 if (n->is_OuterStripMinedLoopEnd() || n->is_LongCountedLoopEnd()) { 4147 IfNode* init_iff = n->as_If(); 4148 Node* iff = new IfNode(init_iff->in(0), init_iff->in(1), init_iff->_prob, init_iff->_fcnt); 4149 n->subsume_by(iff, this); 4150 } 4151 } 4152 4153 while (dead_nodes.size() > 0) { 4154 Node* m = dead_nodes.pop(); 4155 if (m->outcnt() == 0 && m != top()) { 4156 for (uint j = 0; j < m->req(); j++) { 4157 Node* in = m->in(j); 4158 if (in != nullptr) { 4159 dead_nodes.push(in); 4160 } 4161 } 4162 m->disconnect_inputs(this); 4163 } 4164 } 4165 4166 set_java_calls(frc.get_java_call_count()); 4167 set_inner_loops(frc.get_inner_loop_count()); 4168 4169 // No infinite loops, no reason to bail out. 4170 return false; 4171 } 4172 4173 //-----------------------------too_many_traps---------------------------------- 4174 // Report if there are too many traps at the current method and bci. 4175 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded. 4176 bool Compile::too_many_traps(ciMethod* method, 4177 int bci, 4178 Deoptimization::DeoptReason reason) { 4179 if (method->has_trap_at(bci)) { 4180 return true; 4181 } 4182 if (PreloadReduceTraps && for_preload()) { 4183 // Preload code should not have traps, if possible. 4184 return true; 4185 } 4186 ciMethodData* md = method->method_data(); 4187 if (md->is_empty()) { 4188 // Assume the trap has not occurred, or that it occurred only 4189 // because of a transient condition during start-up in the interpreter. 4190 return false; 4191 } 4192 ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : nullptr; 4193 if (md->has_trap_at(bci, m, reason) != 0) { 4194 // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic. 4195 // Also, if there are multiple reasons, or if there is no per-BCI record, 4196 // assume the worst. 4197 if (log()) 4198 log()->elem("observe trap='%s' count='%d'", 4199 Deoptimization::trap_reason_name(reason), 4200 md->trap_count(reason)); 4201 return true; 4202 } else { 4203 // Ignore method/bci and see if there have been too many globally. 4204 return too_many_traps(reason, md); 4205 } 4206 } 4207 4208 // Less-accurate variant which does not require a method and bci. 4209 bool Compile::too_many_traps(Deoptimization::DeoptReason reason, 4210 ciMethodData* logmd) { 4211 if (PreloadReduceTraps && for_preload()) { 4212 // Preload code should not have traps, if possible. 4213 return true; 4214 } 4215 if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) { 4216 // Too many traps globally. 4217 // Note that we use cumulative trap_count, not just md->trap_count. 4218 if (log()) { 4219 int mcount = (logmd == nullptr)? -1: (int)logmd->trap_count(reason); 4220 log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'", 4221 Deoptimization::trap_reason_name(reason), 4222 mcount, trap_count(reason)); 4223 } 4224 return true; 4225 } else { 4226 // The coast is clear. 4227 return false; 4228 } 4229 } 4230 4231 //--------------------------too_many_recompiles-------------------------------- 4232 // Report if there are too many recompiles at the current method and bci. 4233 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff. 4234 // Is not eager to return true, since this will cause the compiler to use 4235 // Action_none for a trap point, to avoid too many recompilations. 4236 bool Compile::too_many_recompiles(ciMethod* method, 4237 int bci, 4238 Deoptimization::DeoptReason reason) { 4239 ciMethodData* md = method->method_data(); 4240 if (md->is_empty()) { 4241 // Assume the trap has not occurred, or that it occurred only 4242 // because of a transient condition during start-up in the interpreter. 4243 return false; 4244 } 4245 // Pick a cutoff point well within PerBytecodeRecompilationCutoff. 4246 uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8; 4247 uint m_cutoff = (uint) PerMethodRecompilationCutoff / 2 + 1; // not zero 4248 Deoptimization::DeoptReason per_bc_reason 4249 = Deoptimization::reason_recorded_per_bytecode_if_any(reason); 4250 ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : nullptr; 4251 if ((per_bc_reason == Deoptimization::Reason_none 4252 || md->has_trap_at(bci, m, reason) != 0) 4253 // The trap frequency measure we care about is the recompile count: 4254 && md->trap_recompiled_at(bci, m) 4255 && md->overflow_recompile_count() >= bc_cutoff) { 4256 // Do not emit a trap here if it has already caused recompilations. 4257 // Also, if there are multiple reasons, or if there is no per-BCI record, 4258 // assume the worst. 4259 if (log()) 4260 log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'", 4261 Deoptimization::trap_reason_name(reason), 4262 md->trap_count(reason), 4263 md->overflow_recompile_count()); 4264 return true; 4265 } else if (trap_count(reason) != 0 4266 && decompile_count() >= m_cutoff) { 4267 // Too many recompiles globally, and we have seen this sort of trap. 4268 // Use cumulative decompile_count, not just md->decompile_count. 4269 if (log()) 4270 log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'", 4271 Deoptimization::trap_reason_name(reason), 4272 md->trap_count(reason), trap_count(reason), 4273 md->decompile_count(), decompile_count()); 4274 return true; 4275 } else { 4276 // The coast is clear. 4277 return false; 4278 } 4279 } 4280 4281 // Compute when not to trap. Used by matching trap based nodes and 4282 // NullCheck optimization. 4283 void Compile::set_allowed_deopt_reasons() { 4284 _allowed_reasons = 0; 4285 if (is_method_compilation()) { 4286 for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) { 4287 assert(rs < BitsPerInt, "recode bit map"); 4288 if (!too_many_traps((Deoptimization::DeoptReason) rs)) { 4289 _allowed_reasons |= nth_bit(rs); 4290 } 4291 } 4292 } 4293 } 4294 4295 bool Compile::needs_clinit_barrier(ciMethod* method, ciMethod* accessing_method) { 4296 return method->is_static() && needs_clinit_barrier(method->holder(), accessing_method); 4297 } 4298 4299 bool Compile::needs_clinit_barrier(ciField* field, ciMethod* accessing_method) { 4300 return field->is_static() && needs_clinit_barrier(field->holder(), accessing_method); 4301 } 4302 4303 bool Compile::needs_clinit_barrier(ciInstanceKlass* holder, ciMethod* accessing_method) { 4304 if (holder->is_initialized() && !do_clinit_barriers()) { 4305 return false; 4306 } 4307 if (holder->is_being_initialized() || do_clinit_barriers()) { 4308 if (accessing_method->holder() == holder) { 4309 // Access inside a class. The barrier can be elided when access happens in <clinit>, 4310 // <init>, or a static method. In all those cases, there was an initialization 4311 // barrier on the holder klass passed. 4312 if (accessing_method->is_static_initializer() || 4313 accessing_method->is_object_initializer() || 4314 accessing_method->is_static()) { 4315 return false; 4316 } 4317 } else if (accessing_method->holder()->is_subclass_of(holder)) { 4318 // Access from a subclass. The barrier can be elided only when access happens in <clinit>. 4319 // In case of <init> or a static method, the barrier is on the subclass is not enough: 4320 // child class can become fully initialized while its parent class is still being initialized. 4321 if (accessing_method->is_static_initializer()) { 4322 return false; 4323 } 4324 } 4325 ciMethod* root = method(); // the root method of compilation 4326 if (root != accessing_method) { 4327 return needs_clinit_barrier(holder, root); // check access in the context of compilation root 4328 } 4329 } 4330 return true; 4331 } 4332 4333 #ifndef PRODUCT 4334 //------------------------------verify_bidirectional_edges--------------------- 4335 // For each input edge to a node (ie - for each Use-Def edge), verify that 4336 // there is a corresponding Def-Use edge. 4337 void Compile::verify_bidirectional_edges(Unique_Node_List& visited, const Unique_Node_List* root_and_safepoints) const { 4338 // Allocate stack of size C->live_nodes()/16 to avoid frequent realloc 4339 uint stack_size = live_nodes() >> 4; 4340 Node_List nstack(MAX2(stack_size, (uint) OptoNodeListSize)); 4341 if (root_and_safepoints != nullptr) { 4342 assert(root_and_safepoints->member(_root), "root is not in root_and_safepoints"); 4343 for (uint i = 0, limit = root_and_safepoints->size(); i < limit; i++) { 4344 Node* root_or_safepoint = root_and_safepoints->at(i); 4345 // If the node is a safepoint, let's check if it still has a control input 4346 // Lack of control input signifies that this node was killed by CCP or 4347 // recursively by remove_globally_dead_node and it shouldn't be a starting 4348 // point. 4349 if (!root_or_safepoint->is_SafePoint() || root_or_safepoint->in(0) != nullptr) { 4350 nstack.push(root_or_safepoint); 4351 } 4352 } 4353 } else { 4354 nstack.push(_root); 4355 } 4356 4357 while (nstack.size() > 0) { 4358 Node* n = nstack.pop(); 4359 if (visited.member(n)) { 4360 continue; 4361 } 4362 visited.push(n); 4363 4364 // Walk over all input edges, checking for correspondence 4365 uint length = n->len(); 4366 for (uint i = 0; i < length; i++) { 4367 Node* in = n->in(i); 4368 if (in != nullptr && !visited.member(in)) { 4369 nstack.push(in); // Put it on stack 4370 } 4371 if (in != nullptr && !in->is_top()) { 4372 // Count instances of `next` 4373 int cnt = 0; 4374 for (uint idx = 0; idx < in->_outcnt; idx++) { 4375 if (in->_out[idx] == n) { 4376 cnt++; 4377 } 4378 } 4379 assert(cnt > 0, "Failed to find Def-Use edge."); 4380 // Check for duplicate edges 4381 // walk the input array downcounting the input edges to n 4382 for (uint j = 0; j < length; j++) { 4383 if (n->in(j) == in) { 4384 cnt--; 4385 } 4386 } 4387 assert(cnt == 0, "Mismatched edge count."); 4388 } else if (in == nullptr) { 4389 assert(i == 0 || i >= n->req() || 4390 n->is_Region() || n->is_Phi() || n->is_ArrayCopy() || 4391 (n->is_Unlock() && i == (n->req() - 1)) || 4392 (n->is_MemBar() && i == 5), // the precedence edge to a membar can be removed during macro node expansion 4393 "only region, phi, arraycopy, unlock or membar nodes have null data edges"); 4394 } else { 4395 assert(in->is_top(), "sanity"); 4396 // Nothing to check. 4397 } 4398 } 4399 } 4400 } 4401 4402 //------------------------------verify_graph_edges--------------------------- 4403 // Walk the Graph and verify that there is a one-to-one correspondence 4404 // between Use-Def edges and Def-Use edges in the graph. 4405 void Compile::verify_graph_edges(bool no_dead_code, const Unique_Node_List* root_and_safepoints) const { 4406 if (VerifyGraphEdges) { 4407 Unique_Node_List visited; 4408 4409 // Call graph walk to check edges 4410 verify_bidirectional_edges(visited, root_and_safepoints); 4411 if (no_dead_code) { 4412 // Now make sure that no visited node is used by an unvisited node. 4413 bool dead_nodes = false; 4414 Unique_Node_List checked; 4415 while (visited.size() > 0) { 4416 Node* n = visited.pop(); 4417 checked.push(n); 4418 for (uint i = 0; i < n->outcnt(); i++) { 4419 Node* use = n->raw_out(i); 4420 if (checked.member(use)) continue; // already checked 4421 if (visited.member(use)) continue; // already in the graph 4422 if (use->is_Con()) continue; // a dead ConNode is OK 4423 // At this point, we have found a dead node which is DU-reachable. 4424 if (!dead_nodes) { 4425 tty->print_cr("*** Dead nodes reachable via DU edges:"); 4426 dead_nodes = true; 4427 } 4428 use->dump(2); 4429 tty->print_cr("---"); 4430 checked.push(use); // No repeats; pretend it is now checked. 4431 } 4432 } 4433 assert(!dead_nodes, "using nodes must be reachable from root"); 4434 } 4435 } 4436 } 4437 #endif 4438 4439 // The Compile object keeps track of failure reasons separately from the ciEnv. 4440 // This is required because there is not quite a 1-1 relation between the 4441 // ciEnv and its compilation task and the Compile object. Note that one 4442 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides 4443 // to backtrack and retry without subsuming loads. Other than this backtracking 4444 // behavior, the Compile's failure reason is quietly copied up to the ciEnv 4445 // by the logic in C2Compiler. 4446 void Compile::record_failure(const char* reason DEBUG_ONLY(COMMA bool allow_multiple_failures)) { 4447 if (log() != nullptr) { 4448 log()->elem("failure reason='%s' phase='compile'", reason); 4449 } 4450 if (_failure_reason.get() == nullptr) { 4451 // Record the first failure reason. 4452 _failure_reason.set(reason); 4453 if (CaptureBailoutInformation) { 4454 _first_failure_details = new CompilationFailureInfo(reason); 4455 } 4456 } else { 4457 assert(!StressBailout || allow_multiple_failures, "should have handled previous failure."); 4458 } 4459 4460 if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) { 4461 C->print_method(PHASE_FAILURE, 1); 4462 } 4463 _root = nullptr; // flush the graph, too 4464 } 4465 4466 Compile::TracePhase::TracePhase(const char* name, PhaseTraceId id) 4467 : TraceTime(name, &Phase::timers[id], CITime, CITimeVerbose), 4468 _compile(Compile::current()), 4469 _log(nullptr), 4470 _dolog(CITimeVerbose) 4471 { 4472 assert(_compile != nullptr, "sanity check"); 4473 assert(id != PhaseTraceId::_t_none, "Don't use none"); 4474 if (_dolog) { 4475 _log = _compile->log(); 4476 } 4477 if (_log != nullptr) { 4478 _log->begin_head("phase name='%s' nodes='%d' live='%d'", phase_name(), _compile->unique(), _compile->live_nodes()); 4479 _log->stamp(); 4480 _log->end_head(); 4481 } 4482 4483 // Inform memory statistic, if enabled 4484 if (CompilationMemoryStatistic::enabled()) { 4485 CompilationMemoryStatistic::on_phase_start((int)id, name); 4486 } 4487 } 4488 4489 Compile::TracePhase::TracePhase(PhaseTraceId id) 4490 : TracePhase(Phase::get_phase_trace_id_text(id), id) {} 4491 4492 Compile::TracePhase::~TracePhase() { 4493 4494 // Inform memory statistic, if enabled 4495 if (CompilationMemoryStatistic::enabled()) { 4496 CompilationMemoryStatistic::on_phase_end(); 4497 } 4498 4499 if (_compile->failing_internal()) { 4500 if (_log != nullptr) { 4501 _log->done("phase"); 4502 } 4503 return; // timing code, not stressing bailouts. 4504 } 4505 #ifdef ASSERT 4506 if (PrintIdealNodeCount) { 4507 tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'", 4508 phase_name(), _compile->unique(), _compile->live_nodes(), _compile->count_live_nodes_by_graph_walk()); 4509 } 4510 4511 if (VerifyIdealNodeCount) { 4512 _compile->print_missing_nodes(); 4513 } 4514 #endif 4515 4516 if (_log != nullptr) { 4517 _log->done("phase name='%s' nodes='%d' live='%d'", phase_name(), _compile->unique(), _compile->live_nodes()); 4518 } 4519 } 4520 4521 //----------------------------static_subtype_check----------------------------- 4522 // Shortcut important common cases when superklass is exact: 4523 // (0) superklass is java.lang.Object (can occur in reflective code) 4524 // (1) subklass is already limited to a subtype of superklass => always ok 4525 // (2) subklass does not overlap with superklass => always fail 4526 // (3) superklass has NO subtypes and we can check with a simple compare. 4527 Compile::SubTypeCheckResult Compile::static_subtype_check(const TypeKlassPtr* superk, const TypeKlassPtr* subk, bool skip) { 4528 if (skip) { 4529 return SSC_full_test; // Let caller generate the general case. 4530 } 4531 4532 if (subk->is_java_subtype_of(superk)) { 4533 return SSC_always_true; // (0) and (1) this test cannot fail 4534 } 4535 4536 if (!subk->maybe_java_subtype_of(superk)) { 4537 return SSC_always_false; // (2) true path dead; no dynamic test needed 4538 } 4539 4540 const Type* superelem = superk; 4541 if (superk->isa_aryklassptr()) { 4542 int ignored; 4543 superelem = superk->is_aryklassptr()->base_element_type(ignored); 4544 } 4545 4546 if (superelem->isa_instklassptr()) { 4547 ciInstanceKlass* ik = superelem->is_instklassptr()->instance_klass(); 4548 if (!ik->has_subklass()) { 4549 if (!ik->is_final()) { 4550 // Add a dependency if there is a chance of a later subclass. 4551 dependencies()->assert_leaf_type(ik); 4552 } 4553 if (!superk->maybe_java_subtype_of(subk)) { 4554 return SSC_always_false; 4555 } 4556 return SSC_easy_test; // (3) caller can do a simple ptr comparison 4557 } 4558 } else { 4559 // A primitive array type has no subtypes. 4560 return SSC_easy_test; // (3) caller can do a simple ptr comparison 4561 } 4562 4563 return SSC_full_test; 4564 } 4565 4566 Node* Compile::conv_I2X_index(PhaseGVN* phase, Node* idx, const TypeInt* sizetype, Node* ctrl) { 4567 #ifdef _LP64 4568 // The scaled index operand to AddP must be a clean 64-bit value. 4569 // Java allows a 32-bit int to be incremented to a negative 4570 // value, which appears in a 64-bit register as a large 4571 // positive number. Using that large positive number as an 4572 // operand in pointer arithmetic has bad consequences. 4573 // On the other hand, 32-bit overflow is rare, and the possibility 4574 // can often be excluded, if we annotate the ConvI2L node with 4575 // a type assertion that its value is known to be a small positive 4576 // number. (The prior range check has ensured this.) 4577 // This assertion is used by ConvI2LNode::Ideal. 4578 int index_max = max_jint - 1; // array size is max_jint, index is one less 4579 if (sizetype != nullptr && sizetype->_hi > 0) { 4580 index_max = sizetype->_hi - 1; 4581 } 4582 const TypeInt* iidxtype = TypeInt::make(0, index_max, Type::WidenMax); 4583 idx = constrained_convI2L(phase, idx, iidxtype, ctrl); 4584 #endif 4585 return idx; 4586 } 4587 4588 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check) 4589 Node* Compile::constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl, bool carry_dependency) { 4590 if (ctrl != nullptr) { 4591 // Express control dependency by a CastII node with a narrow type. 4592 // Make the CastII node dependent on the control input to prevent the narrowed ConvI2L 4593 // node from floating above the range check during loop optimizations. Otherwise, the 4594 // ConvI2L node may be eliminated independently of the range check, causing the data path 4595 // to become TOP while the control path is still there (although it's unreachable). 4596 value = new CastIINode(ctrl, value, itype, carry_dependency ? ConstraintCastNode::StrongDependency : ConstraintCastNode::RegularDependency, true /* range check dependency */); 4597 value = phase->transform(value); 4598 } 4599 const TypeLong* ltype = TypeLong::make(itype->_lo, itype->_hi, itype->_widen); 4600 return phase->transform(new ConvI2LNode(value, ltype)); 4601 } 4602 4603 void Compile::dump_print_inlining() { 4604 inline_printer()->print_on(tty); 4605 } 4606 4607 void Compile::log_late_inline(CallGenerator* cg) { 4608 if (log() != nullptr) { 4609 log()->head("late_inline method='%d' inline_id='" JLONG_FORMAT "'", log()->identify(cg->method()), 4610 cg->unique_id()); 4611 JVMState* p = cg->call_node()->jvms(); 4612 while (p != nullptr) { 4613 log()->elem("jvms bci='%d' method='%d'", p->bci(), log()->identify(p->method())); 4614 p = p->caller(); 4615 } 4616 log()->tail("late_inline"); 4617 } 4618 } 4619 4620 void Compile::log_late_inline_failure(CallGenerator* cg, const char* msg) { 4621 log_late_inline(cg); 4622 if (log() != nullptr) { 4623 log()->inline_fail(msg); 4624 } 4625 } 4626 4627 void Compile::log_inline_id(CallGenerator* cg) { 4628 if (log() != nullptr) { 4629 // The LogCompilation tool needs a unique way to identify late 4630 // inline call sites. This id must be unique for this call site in 4631 // this compilation. Try to have it unique across compilations as 4632 // well because it can be convenient when grepping through the log 4633 // file. 4634 // Distinguish OSR compilations from others in case CICountOSR is 4635 // on. 4636 jlong id = ((jlong)unique()) + (((jlong)compile_id()) << 33) + (CICountOSR && is_osr_compilation() ? ((jlong)1) << 32 : 0); 4637 cg->set_unique_id(id); 4638 log()->elem("inline_id id='" JLONG_FORMAT "'", id); 4639 } 4640 } 4641 4642 void Compile::log_inline_failure(const char* msg) { 4643 if (C->log() != nullptr) { 4644 C->log()->inline_fail(msg); 4645 } 4646 } 4647 4648 4649 // Dump inlining replay data to the stream. 4650 // Don't change thread state and acquire any locks. 4651 void Compile::dump_inline_data(outputStream* out) { 4652 InlineTree* inl_tree = ilt(); 4653 if (inl_tree != nullptr) { 4654 out->print(" inline %d", inl_tree->count()); 4655 inl_tree->dump_replay_data(out); 4656 } 4657 } 4658 4659 void Compile::dump_inline_data_reduced(outputStream* out) { 4660 assert(ReplayReduce, ""); 4661 4662 InlineTree* inl_tree = ilt(); 4663 if (inl_tree == nullptr) { 4664 return; 4665 } 4666 // Enable iterative replay file reduction 4667 // Output "compile" lines for depth 1 subtrees, 4668 // simulating that those trees were compiled 4669 // instead of inlined. 4670 for (int i = 0; i < inl_tree->subtrees().length(); ++i) { 4671 InlineTree* sub = inl_tree->subtrees().at(i); 4672 if (sub->inline_level() != 1) { 4673 continue; 4674 } 4675 4676 ciMethod* method = sub->method(); 4677 int entry_bci = -1; 4678 int comp_level = env()->task()->comp_level(); 4679 out->print("compile "); 4680 method->dump_name_as_ascii(out); 4681 out->print(" %d %d", entry_bci, comp_level); 4682 out->print(" inline %d", sub->count()); 4683 sub->dump_replay_data(out, -1); 4684 out->cr(); 4685 } 4686 } 4687 4688 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) { 4689 if (n1->Opcode() < n2->Opcode()) return -1; 4690 else if (n1->Opcode() > n2->Opcode()) return 1; 4691 4692 assert(n1->req() == n2->req(), "can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req()); 4693 for (uint i = 1; i < n1->req(); i++) { 4694 if (n1->in(i) < n2->in(i)) return -1; 4695 else if (n1->in(i) > n2->in(i)) return 1; 4696 } 4697 4698 return 0; 4699 } 4700 4701 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) { 4702 Node* n1 = *n1p; 4703 Node* n2 = *n2p; 4704 4705 return cmp_expensive_nodes(n1, n2); 4706 } 4707 4708 void Compile::sort_expensive_nodes() { 4709 if (!expensive_nodes_sorted()) { 4710 _expensive_nodes.sort(cmp_expensive_nodes); 4711 } 4712 } 4713 4714 bool Compile::expensive_nodes_sorted() const { 4715 for (int i = 1; i < _expensive_nodes.length(); i++) { 4716 if (cmp_expensive_nodes(_expensive_nodes.adr_at(i), _expensive_nodes.adr_at(i-1)) < 0) { 4717 return false; 4718 } 4719 } 4720 return true; 4721 } 4722 4723 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) { 4724 if (_expensive_nodes.length() == 0) { 4725 return false; 4726 } 4727 4728 assert(OptimizeExpensiveOps, "optimization off?"); 4729 4730 // Take this opportunity to remove dead nodes from the list 4731 int j = 0; 4732 for (int i = 0; i < _expensive_nodes.length(); i++) { 4733 Node* n = _expensive_nodes.at(i); 4734 if (!n->is_unreachable(igvn)) { 4735 assert(n->is_expensive(), "should be expensive"); 4736 _expensive_nodes.at_put(j, n); 4737 j++; 4738 } 4739 } 4740 _expensive_nodes.trunc_to(j); 4741 4742 // Then sort the list so that similar nodes are next to each other 4743 // and check for at least two nodes of identical kind with same data 4744 // inputs. 4745 sort_expensive_nodes(); 4746 4747 for (int i = 0; i < _expensive_nodes.length()-1; i++) { 4748 if (cmp_expensive_nodes(_expensive_nodes.adr_at(i), _expensive_nodes.adr_at(i+1)) == 0) { 4749 return true; 4750 } 4751 } 4752 4753 return false; 4754 } 4755 4756 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) { 4757 if (_expensive_nodes.length() == 0) { 4758 return; 4759 } 4760 4761 assert(OptimizeExpensiveOps, "optimization off?"); 4762 4763 // Sort to bring similar nodes next to each other and clear the 4764 // control input of nodes for which there's only a single copy. 4765 sort_expensive_nodes(); 4766 4767 int j = 0; 4768 int identical = 0; 4769 int i = 0; 4770 bool modified = false; 4771 for (; i < _expensive_nodes.length()-1; i++) { 4772 assert(j <= i, "can't write beyond current index"); 4773 if (_expensive_nodes.at(i)->Opcode() == _expensive_nodes.at(i+1)->Opcode()) { 4774 identical++; 4775 _expensive_nodes.at_put(j++, _expensive_nodes.at(i)); 4776 continue; 4777 } 4778 if (identical > 0) { 4779 _expensive_nodes.at_put(j++, _expensive_nodes.at(i)); 4780 identical = 0; 4781 } else { 4782 Node* n = _expensive_nodes.at(i); 4783 igvn.replace_input_of(n, 0, nullptr); 4784 igvn.hash_insert(n); 4785 modified = true; 4786 } 4787 } 4788 if (identical > 0) { 4789 _expensive_nodes.at_put(j++, _expensive_nodes.at(i)); 4790 } else if (_expensive_nodes.length() >= 1) { 4791 Node* n = _expensive_nodes.at(i); 4792 igvn.replace_input_of(n, 0, nullptr); 4793 igvn.hash_insert(n); 4794 modified = true; 4795 } 4796 _expensive_nodes.trunc_to(j); 4797 if (modified) { 4798 igvn.optimize(); 4799 } 4800 } 4801 4802 void Compile::add_expensive_node(Node * n) { 4803 assert(!_expensive_nodes.contains(n), "duplicate entry in expensive list"); 4804 assert(n->is_expensive(), "expensive nodes with non-null control here only"); 4805 assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here"); 4806 if (OptimizeExpensiveOps) { 4807 _expensive_nodes.append(n); 4808 } else { 4809 // Clear control input and let IGVN optimize expensive nodes if 4810 // OptimizeExpensiveOps is off. 4811 n->set_req(0, nullptr); 4812 } 4813 } 4814 4815 /** 4816 * Track coarsened Lock and Unlock nodes. 4817 */ 4818 4819 class Lock_List : public Node_List { 4820 uint _origin_cnt; 4821 public: 4822 Lock_List(Arena *a, uint cnt) : Node_List(a), _origin_cnt(cnt) {} 4823 uint origin_cnt() const { return _origin_cnt; } 4824 }; 4825 4826 void Compile::add_coarsened_locks(GrowableArray<AbstractLockNode*>& locks) { 4827 int length = locks.length(); 4828 if (length > 0) { 4829 // Have to keep this list until locks elimination during Macro nodes elimination. 4830 Lock_List* locks_list = new (comp_arena()) Lock_List(comp_arena(), length); 4831 AbstractLockNode* alock = locks.at(0); 4832 BoxLockNode* box = alock->box_node()->as_BoxLock(); 4833 for (int i = 0; i < length; i++) { 4834 AbstractLockNode* lock = locks.at(i); 4835 assert(lock->is_coarsened(), "expecting only coarsened AbstractLock nodes, but got '%s'[%d] node", lock->Name(), lock->_idx); 4836 locks_list->push(lock); 4837 BoxLockNode* this_box = lock->box_node()->as_BoxLock(); 4838 if (this_box != box) { 4839 // Locking regions (BoxLock) could be Unbalanced here: 4840 // - its coarsened locks were eliminated in earlier 4841 // macro nodes elimination followed by loop unroll 4842 // - it is OSR locking region (no Lock node) 4843 // Preserve Unbalanced status in such cases. 4844 if (!this_box->is_unbalanced()) { 4845 this_box->set_coarsened(); 4846 } 4847 if (!box->is_unbalanced()) { 4848 box->set_coarsened(); 4849 } 4850 } 4851 } 4852 _coarsened_locks.append(locks_list); 4853 } 4854 } 4855 4856 void Compile::remove_useless_coarsened_locks(Unique_Node_List& useful) { 4857 int count = coarsened_count(); 4858 for (int i = 0; i < count; i++) { 4859 Node_List* locks_list = _coarsened_locks.at(i); 4860 for (uint j = 0; j < locks_list->size(); j++) { 4861 Node* lock = locks_list->at(j); 4862 assert(lock->is_AbstractLock(), "sanity"); 4863 if (!useful.member(lock)) { 4864 locks_list->yank(lock); 4865 } 4866 } 4867 } 4868 } 4869 4870 void Compile::remove_coarsened_lock(Node* n) { 4871 if (n->is_AbstractLock()) { 4872 int count = coarsened_count(); 4873 for (int i = 0; i < count; i++) { 4874 Node_List* locks_list = _coarsened_locks.at(i); 4875 locks_list->yank(n); 4876 } 4877 } 4878 } 4879 4880 bool Compile::coarsened_locks_consistent() { 4881 int count = coarsened_count(); 4882 for (int i = 0; i < count; i++) { 4883 bool unbalanced = false; 4884 bool modified = false; // track locks kind modifications 4885 Lock_List* locks_list = (Lock_List*)_coarsened_locks.at(i); 4886 uint size = locks_list->size(); 4887 if (size == 0) { 4888 unbalanced = false; // All locks were eliminated - good 4889 } else if (size != locks_list->origin_cnt()) { 4890 unbalanced = true; // Some locks were removed from list 4891 } else { 4892 for (uint j = 0; j < size; j++) { 4893 Node* lock = locks_list->at(j); 4894 // All nodes in group should have the same state (modified or not) 4895 if (!lock->as_AbstractLock()->is_coarsened()) { 4896 if (j == 0) { 4897 // first on list was modified, the rest should be too for consistency 4898 modified = true; 4899 } else if (!modified) { 4900 // this lock was modified but previous locks on the list were not 4901 unbalanced = true; 4902 break; 4903 } 4904 } else if (modified) { 4905 // previous locks on list were modified but not this lock 4906 unbalanced = true; 4907 break; 4908 } 4909 } 4910 } 4911 if (unbalanced) { 4912 // unbalanced monitor enter/exit - only some [un]lock nodes were removed or modified 4913 #ifdef ASSERT 4914 if (PrintEliminateLocks) { 4915 tty->print_cr("=== unbalanced coarsened locks ==="); 4916 for (uint l = 0; l < size; l++) { 4917 locks_list->at(l)->dump(); 4918 } 4919 } 4920 #endif 4921 record_failure(C2Compiler::retry_no_locks_coarsening()); 4922 return false; 4923 } 4924 } 4925 return true; 4926 } 4927 4928 // Mark locking regions (identified by BoxLockNode) as unbalanced if 4929 // locks coarsening optimization removed Lock/Unlock nodes from them. 4930 // Such regions become unbalanced because coarsening only removes part 4931 // of Lock/Unlock nodes in region. As result we can't execute other 4932 // locks elimination optimizations which assume all code paths have 4933 // corresponding pair of Lock/Unlock nodes - they are balanced. 4934 void Compile::mark_unbalanced_boxes() const { 4935 int count = coarsened_count(); 4936 for (int i = 0; i < count; i++) { 4937 Node_List* locks_list = _coarsened_locks.at(i); 4938 uint size = locks_list->size(); 4939 if (size > 0) { 4940 AbstractLockNode* alock = locks_list->at(0)->as_AbstractLock(); 4941 BoxLockNode* box = alock->box_node()->as_BoxLock(); 4942 if (alock->is_coarsened()) { 4943 // coarsened_locks_consistent(), which is called before this method, verifies 4944 // that the rest of Lock/Unlock nodes on locks_list are also coarsened. 4945 assert(!box->is_eliminated(), "regions with coarsened locks should not be marked as eliminated"); 4946 for (uint j = 1; j < size; j++) { 4947 assert(locks_list->at(j)->as_AbstractLock()->is_coarsened(), "only coarsened locks are expected here"); 4948 BoxLockNode* this_box = locks_list->at(j)->as_AbstractLock()->box_node()->as_BoxLock(); 4949 if (box != this_box) { 4950 assert(!this_box->is_eliminated(), "regions with coarsened locks should not be marked as eliminated"); 4951 box->set_unbalanced(); 4952 this_box->set_unbalanced(); 4953 } 4954 } 4955 } 4956 } 4957 } 4958 } 4959 4960 /** 4961 * Remove the speculative part of types and clean up the graph 4962 */ 4963 void Compile::remove_speculative_types(PhaseIterGVN &igvn) { 4964 if (UseTypeSpeculation) { 4965 Unique_Node_List worklist; 4966 worklist.push(root()); 4967 int modified = 0; 4968 // Go over all type nodes that carry a speculative type, drop the 4969 // speculative part of the type and enqueue the node for an igvn 4970 // which may optimize it out. 4971 for (uint next = 0; next < worklist.size(); ++next) { 4972 Node *n = worklist.at(next); 4973 if (n->is_Type()) { 4974 TypeNode* tn = n->as_Type(); 4975 const Type* t = tn->type(); 4976 const Type* t_no_spec = t->remove_speculative(); 4977 if (t_no_spec != t) { 4978 bool in_hash = igvn.hash_delete(n); 4979 assert(in_hash || n->hash() == Node::NO_HASH, "node should be in igvn hash table"); 4980 tn->set_type(t_no_spec); 4981 igvn.hash_insert(n); 4982 igvn._worklist.push(n); // give it a chance to go away 4983 modified++; 4984 } 4985 } 4986 // Iterate over outs - endless loops is unreachable from below 4987 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 4988 Node *m = n->fast_out(i); 4989 if (not_a_node(m)) { 4990 continue; 4991 } 4992 worklist.push(m); 4993 } 4994 } 4995 // Drop the speculative part of all types in the igvn's type table 4996 igvn.remove_speculative_types(); 4997 if (modified > 0) { 4998 igvn.optimize(); 4999 if (failing()) return; 5000 } 5001 #ifdef ASSERT 5002 // Verify that after the IGVN is over no speculative type has resurfaced 5003 worklist.clear(); 5004 worklist.push(root()); 5005 for (uint next = 0; next < worklist.size(); ++next) { 5006 Node *n = worklist.at(next); 5007 const Type* t = igvn.type_or_null(n); 5008 assert((t == nullptr) || (t == t->remove_speculative()), "no more speculative types"); 5009 if (n->is_Type()) { 5010 t = n->as_Type()->type(); 5011 assert(t == t->remove_speculative(), "no more speculative types"); 5012 } 5013 // Iterate over outs - endless loops is unreachable from below 5014 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 5015 Node *m = n->fast_out(i); 5016 if (not_a_node(m)) { 5017 continue; 5018 } 5019 worklist.push(m); 5020 } 5021 } 5022 igvn.check_no_speculative_types(); 5023 #endif 5024 } 5025 } 5026 5027 // Auxiliary methods to support randomized stressing/fuzzing. 5028 5029 void Compile::initialize_stress_seed(const DirectiveSet* directive) { 5030 if (FLAG_IS_DEFAULT(StressSeed) || (FLAG_IS_ERGO(StressSeed) && directive->RepeatCompilationOption)) { 5031 _stress_seed = static_cast<uint>(Ticks::now().nanoseconds()); 5032 FLAG_SET_ERGO(StressSeed, _stress_seed); 5033 } else { 5034 _stress_seed = StressSeed; 5035 } 5036 if (_log != nullptr) { 5037 _log->elem("stress_test seed='%u'", _stress_seed); 5038 } 5039 } 5040 5041 int Compile::random() { 5042 _stress_seed = os::next_random(_stress_seed); 5043 return static_cast<int>(_stress_seed); 5044 } 5045 5046 // This method can be called the arbitrary number of times, with current count 5047 // as the argument. The logic allows selecting a single candidate from the 5048 // running list of candidates as follows: 5049 // int count = 0; 5050 // Cand* selected = null; 5051 // while(cand = cand->next()) { 5052 // if (randomized_select(++count)) { 5053 // selected = cand; 5054 // } 5055 // } 5056 // 5057 // Including count equalizes the chances any candidate is "selected". 5058 // This is useful when we don't have the complete list of candidates to choose 5059 // from uniformly. In this case, we need to adjust the randomicity of the 5060 // selection, or else we will end up biasing the selection towards the latter 5061 // candidates. 5062 // 5063 // Quick back-envelope calculation shows that for the list of n candidates 5064 // the equal probability for the candidate to persist as "best" can be 5065 // achieved by replacing it with "next" k-th candidate with the probability 5066 // of 1/k. It can be easily shown that by the end of the run, the 5067 // probability for any candidate is converged to 1/n, thus giving the 5068 // uniform distribution among all the candidates. 5069 // 5070 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large. 5071 #define RANDOMIZED_DOMAIN_POW 29 5072 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW) 5073 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1) 5074 bool Compile::randomized_select(int count) { 5075 assert(count > 0, "only positive"); 5076 return (random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count); 5077 } 5078 5079 #ifdef ASSERT 5080 // Failures are geometrically distributed with probability 1/StressBailoutMean. 5081 bool Compile::fail_randomly() { 5082 if ((random() % StressBailoutMean) != 0) { 5083 return false; 5084 } 5085 record_failure("StressBailout"); 5086 return true; 5087 } 5088 5089 bool Compile::failure_is_artificial() { 5090 return C->failure_reason_is("StressBailout"); 5091 } 5092 #endif 5093 5094 CloneMap& Compile::clone_map() { return _clone_map; } 5095 void Compile::set_clone_map(Dict* d) { _clone_map._dict = d; } 5096 5097 void NodeCloneInfo::dump_on(outputStream* st) const { 5098 st->print(" {%d:%d} ", idx(), gen()); 5099 } 5100 5101 void CloneMap::clone(Node* old, Node* nnn, int gen) { 5102 uint64_t val = value(old->_idx); 5103 NodeCloneInfo cio(val); 5104 assert(val != 0, "old node should be in the map"); 5105 NodeCloneInfo cin(cio.idx(), gen + cio.gen()); 5106 insert(nnn->_idx, cin.get()); 5107 #ifndef PRODUCT 5108 if (is_debug()) { 5109 tty->print_cr("CloneMap::clone inserted node %d info {%d:%d} into CloneMap", nnn->_idx, cin.idx(), cin.gen()); 5110 } 5111 #endif 5112 } 5113 5114 void CloneMap::verify_insert_and_clone(Node* old, Node* nnn, int gen) { 5115 NodeCloneInfo cio(value(old->_idx)); 5116 if (cio.get() == 0) { 5117 cio.set(old->_idx, 0); 5118 insert(old->_idx, cio.get()); 5119 #ifndef PRODUCT 5120 if (is_debug()) { 5121 tty->print_cr("CloneMap::verify_insert_and_clone inserted node %d info {%d:%d} into CloneMap", old->_idx, cio.idx(), cio.gen()); 5122 } 5123 #endif 5124 } 5125 clone(old, nnn, gen); 5126 } 5127 5128 int CloneMap::max_gen() const { 5129 int g = 0; 5130 DictI di(_dict); 5131 for(; di.test(); ++di) { 5132 int t = gen(di._key); 5133 if (g < t) { 5134 g = t; 5135 #ifndef PRODUCT 5136 if (is_debug()) { 5137 tty->print_cr("CloneMap::max_gen() update max=%d from %d", g, _2_node_idx_t(di._key)); 5138 } 5139 #endif 5140 } 5141 } 5142 return g; 5143 } 5144 5145 void CloneMap::dump(node_idx_t key, outputStream* st) const { 5146 uint64_t val = value(key); 5147 if (val != 0) { 5148 NodeCloneInfo ni(val); 5149 ni.dump_on(st); 5150 } 5151 } 5152 5153 void Compile::shuffle_macro_nodes() { 5154 if (_macro_nodes.length() < 2) { 5155 return; 5156 } 5157 for (uint i = _macro_nodes.length() - 1; i >= 1; i--) { 5158 uint j = C->random() % (i + 1); 5159 swap(_macro_nodes.at(i), _macro_nodes.at(j)); 5160 } 5161 } 5162 5163 // Move Allocate nodes to the start of the list 5164 void Compile::sort_macro_nodes() { 5165 int count = macro_count(); 5166 int allocates = 0; 5167 for (int i = 0; i < count; i++) { 5168 Node* n = macro_node(i); 5169 if (n->is_Allocate()) { 5170 if (i != allocates) { 5171 Node* tmp = macro_node(allocates); 5172 _macro_nodes.at_put(allocates, n); 5173 _macro_nodes.at_put(i, tmp); 5174 } 5175 allocates++; 5176 } 5177 } 5178 } 5179 5180 void Compile::print_method(CompilerPhaseType cpt, int level, Node* n) { 5181 if (failing_internal()) { return; } // failing_internal to not stress bailouts from printing code. 5182 EventCompilerPhase event(UNTIMED); 5183 if (event.should_commit()) { 5184 CompilerEvent::PhaseEvent::post(event, C->_latest_stage_start_counter, cpt, C->_compile_id, level); 5185 } 5186 #ifndef PRODUCT 5187 ResourceMark rm; 5188 stringStream ss; 5189 ss.print_raw(CompilerPhaseTypeHelper::to_description(cpt)); 5190 int iter = ++_igv_phase_iter[cpt]; 5191 if (iter > 1) { 5192 ss.print(" %d", iter); 5193 } 5194 if (n != nullptr) { 5195 ss.print(": %d %s", n->_idx, NodeClassNames[n->Opcode()]); 5196 if (n->is_Call()) { 5197 CallNode* call = n->as_Call(); 5198 if (call->_name != nullptr) { 5199 // E.g. uncommon traps etc. 5200 ss.print(" - %s", call->_name); 5201 } else if (call->is_CallJava()) { 5202 CallJavaNode* call_java = call->as_CallJava(); 5203 if (call_java->method() != nullptr) { 5204 ss.print(" -"); 5205 call_java->method()->print_short_name(&ss); 5206 } 5207 } 5208 } 5209 } 5210 5211 const char* name = ss.as_string(); 5212 if (should_print_igv(level)) { 5213 _igv_printer->print_graph(name); 5214 } 5215 if (should_print_phase(level)) { 5216 print_phase(name); 5217 } 5218 if (should_print_ideal_phase(cpt)) { 5219 print_ideal_ir(CompilerPhaseTypeHelper::to_name(cpt)); 5220 } 5221 #endif 5222 C->_latest_stage_start_counter.stamp(); 5223 } 5224 5225 // Only used from CompileWrapper 5226 void Compile::begin_method() { 5227 #ifndef PRODUCT 5228 if (_method != nullptr && should_print_igv(1)) { 5229 _igv_printer->begin_method(); 5230 } 5231 #endif 5232 C->_latest_stage_start_counter.stamp(); 5233 } 5234 5235 // Only used from CompileWrapper 5236 void Compile::end_method() { 5237 EventCompilerPhase event(UNTIMED); 5238 if (event.should_commit()) { 5239 CompilerEvent::PhaseEvent::post(event, C->_latest_stage_start_counter, PHASE_END, C->_compile_id, 1); 5240 } 5241 5242 #ifndef PRODUCT 5243 if (_method != nullptr && should_print_igv(1)) { 5244 _igv_printer->end_method(); 5245 } 5246 #endif 5247 } 5248 5249 #ifndef PRODUCT 5250 bool Compile::should_print_phase(const int level) const { 5251 return PrintPhaseLevel > 0 && directive()->PhasePrintLevelOption >= level && 5252 _method != nullptr; // Do not print phases for stubs. 5253 } 5254 5255 bool Compile::should_print_ideal_phase(CompilerPhaseType cpt) const { 5256 return _directive->should_print_ideal_phase(cpt); 5257 } 5258 5259 void Compile::init_igv() { 5260 if (_igv_printer == nullptr) { 5261 _igv_printer = IdealGraphPrinter::printer(); 5262 _igv_printer->set_compile(this); 5263 } 5264 } 5265 5266 bool Compile::should_print_igv(const int level) { 5267 PRODUCT_RETURN_(return false;); 5268 5269 if (PrintIdealGraphLevel < 0) { // disabled by the user 5270 return false; 5271 } 5272 5273 bool need = directive()->IGVPrintLevelOption >= level; 5274 if (need) { 5275 Compile::init_igv(); 5276 } 5277 return need; 5278 } 5279 5280 IdealGraphPrinter* Compile::_debug_file_printer = nullptr; 5281 IdealGraphPrinter* Compile::_debug_network_printer = nullptr; 5282 5283 // Called from debugger. Prints method to the default file with the default phase name. 5284 // This works regardless of any Ideal Graph Visualizer flags set or not. 5285 // Use in debugger (gdb/rr): p igv_print($sp, $fp, $pc). 5286 void igv_print(void* sp, void* fp, void* pc) { 5287 frame fr(sp, fp, pc); 5288 Compile::current()->igv_print_method_to_file(nullptr, false, &fr); 5289 } 5290 5291 // Same as igv_print() above but with a specified phase name. 5292 void igv_print(const char* phase_name, void* sp, void* fp, void* pc) { 5293 frame fr(sp, fp, pc); 5294 Compile::current()->igv_print_method_to_file(phase_name, false, &fr); 5295 } 5296 5297 // Called from debugger. Prints method with the default phase name to the default network or the one specified with 5298 // the network flags for the Ideal Graph Visualizer, or to the default file depending on the 'network' argument. 5299 // This works regardless of any Ideal Graph Visualizer flags set or not. 5300 // Use in debugger (gdb/rr): p igv_print(true, $sp, $fp, $pc). 5301 void igv_print(bool network, void* sp, void* fp, void* pc) { 5302 frame fr(sp, fp, pc); 5303 if (network) { 5304 Compile::current()->igv_print_method_to_network(nullptr, &fr); 5305 } else { 5306 Compile::current()->igv_print_method_to_file(nullptr, false, &fr); 5307 } 5308 } 5309 5310 // Same as igv_print(bool network, ...) above but with a specified phase name. 5311 // Use in debugger (gdb/rr): p igv_print(true, "MyPhase", $sp, $fp, $pc). 5312 void igv_print(bool network, const char* phase_name, void* sp, void* fp, void* pc) { 5313 frame fr(sp, fp, pc); 5314 if (network) { 5315 Compile::current()->igv_print_method_to_network(phase_name, &fr); 5316 } else { 5317 Compile::current()->igv_print_method_to_file(phase_name, false, &fr); 5318 } 5319 } 5320 5321 // Called from debugger. Normal write to the default _printer. Only works if Ideal Graph Visualizer printing flags are set. 5322 void igv_print_default() { 5323 Compile::current()->print_method(PHASE_DEBUG, 0); 5324 } 5325 5326 // Called from debugger, especially when replaying a trace in which the program state cannot be altered like with rr replay. 5327 // A method is appended to an existing default file with the default phase name. This means that igv_append() must follow 5328 // an earlier igv_print(*) call which sets up the file. This works regardless of any Ideal Graph Visualizer flags set or not. 5329 // Use in debugger (gdb/rr): p igv_append($sp, $fp, $pc). 5330 void igv_append(void* sp, void* fp, void* pc) { 5331 frame fr(sp, fp, pc); 5332 Compile::current()->igv_print_method_to_file(nullptr, true, &fr); 5333 } 5334 5335 // Same as igv_append(...) above but with a specified phase name. 5336 // Use in debugger (gdb/rr): p igv_append("MyPhase", $sp, $fp, $pc). 5337 void igv_append(const char* phase_name, void* sp, void* fp, void* pc) { 5338 frame fr(sp, fp, pc); 5339 Compile::current()->igv_print_method_to_file(phase_name, true, &fr); 5340 } 5341 5342 void Compile::igv_print_method_to_file(const char* phase_name, bool append, const frame* fr) { 5343 const char* file_name = "custom_debug.xml"; 5344 if (_debug_file_printer == nullptr) { 5345 _debug_file_printer = new IdealGraphPrinter(C, file_name, append); 5346 } else { 5347 _debug_file_printer->update_compiled_method(C->method()); 5348 } 5349 tty->print_cr("Method %s to %s", append ? "appended" : "printed", file_name); 5350 _debug_file_printer->print_graph(phase_name, fr); 5351 } 5352 5353 void Compile::igv_print_method_to_network(const char* phase_name, const frame* fr) { 5354 ResourceMark rm; 5355 GrowableArray<const Node*> empty_list; 5356 igv_print_graph_to_network(phase_name, empty_list, fr); 5357 } 5358 5359 void Compile::igv_print_graph_to_network(const char* name, GrowableArray<const Node*>& visible_nodes, const frame* fr) { 5360 if (_debug_network_printer == nullptr) { 5361 _debug_network_printer = new IdealGraphPrinter(C); 5362 } else { 5363 _debug_network_printer->update_compiled_method(C->method()); 5364 } 5365 tty->print_cr("Method printed over network stream to IGV"); 5366 _debug_network_printer->print(name, C->root(), visible_nodes, fr); 5367 } 5368 #endif // !PRODUCT 5369 5370 Node* Compile::narrow_value(BasicType bt, Node* value, const Type* type, PhaseGVN* phase, bool transform_res) { 5371 if (type != nullptr && phase->type(value)->higher_equal(type)) { 5372 return value; 5373 } 5374 Node* result = nullptr; 5375 if (bt == T_BYTE) { 5376 result = phase->transform(new LShiftINode(value, phase->intcon(24))); 5377 result = new RShiftINode(result, phase->intcon(24)); 5378 } else if (bt == T_BOOLEAN) { 5379 result = new AndINode(value, phase->intcon(0xFF)); 5380 } else if (bt == T_CHAR) { 5381 result = new AndINode(value,phase->intcon(0xFFFF)); 5382 } else { 5383 assert(bt == T_SHORT, "unexpected narrow type"); 5384 result = phase->transform(new LShiftINode(value, phase->intcon(16))); 5385 result = new RShiftINode(result, phase->intcon(16)); 5386 } 5387 if (transform_res) { 5388 result = phase->transform(result); 5389 } 5390 return result; 5391 } 5392 5393 void Compile::record_method_not_compilable_oom() { 5394 record_method_not_compilable(CompilationMemoryStatistic::failure_reason_memlimit()); 5395 }