1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "asm/macroAssembler.hpp" 26 #include "asm/macroAssembler.inline.hpp" 27 #include "ci/ciReplay.hpp" 28 #include "classfile/javaClasses.hpp" 29 #include "code/exceptionHandlerTable.hpp" 30 #include "code/nmethod.hpp" 31 #include "compiler/compilationFailureInfo.hpp" 32 #include "compiler/compilationMemoryStatistic.hpp" 33 #include "compiler/compileBroker.hpp" 34 #include "compiler/compileLog.hpp" 35 #include "compiler/compilerOracle.hpp" 36 #include "compiler/compiler_globals.hpp" 37 #include "compiler/disassembler.hpp" 38 #include "compiler/oopMap.hpp" 39 #include "gc/shared/barrierSet.hpp" 40 #include "gc/shared/c2/barrierSetC2.hpp" 41 #include "jfr/jfrEvents.hpp" 42 #include "jvm_io.h" 43 #include "memory/allocation.hpp" 44 #include "memory/resourceArea.hpp" 45 #include "opto/addnode.hpp" 46 #include "opto/block.hpp" 47 #include "opto/c2compiler.hpp" 48 #include "opto/callGenerator.hpp" 49 #include "opto/callnode.hpp" 50 #include "opto/castnode.hpp" 51 #include "opto/cfgnode.hpp" 52 #include "opto/chaitin.hpp" 53 #include "opto/compile.hpp" 54 #include "opto/connode.hpp" 55 #include "opto/convertnode.hpp" 56 #include "opto/divnode.hpp" 57 #include "opto/escape.hpp" 58 #include "opto/idealGraphPrinter.hpp" 59 #include "opto/locknode.hpp" 60 #include "opto/loopnode.hpp" 61 #include "opto/machnode.hpp" 62 #include "opto/macro.hpp" 63 #include "opto/matcher.hpp" 64 #include "opto/mathexactnode.hpp" 65 #include "opto/memnode.hpp" 66 #include "opto/mulnode.hpp" 67 #include "opto/narrowptrnode.hpp" 68 #include "opto/node.hpp" 69 #include "opto/opcodes.hpp" 70 #include "opto/output.hpp" 71 #include "opto/parse.hpp" 72 #include "opto/phaseX.hpp" 73 #include "opto/rootnode.hpp" 74 #include "opto/runtime.hpp" 75 #include "opto/stringopts.hpp" 76 #include "opto/type.hpp" 77 #include "opto/vector.hpp" 78 #include "opto/vectornode.hpp" 79 #include "runtime/globals_extension.hpp" 80 #include "runtime/sharedRuntime.hpp" 81 #include "runtime/signature.hpp" 82 #include "runtime/stubRoutines.hpp" 83 #include "runtime/timer.hpp" 84 #include "utilities/align.hpp" 85 #include "utilities/copy.hpp" 86 #include "utilities/macros.hpp" 87 #include "utilities/resourceHash.hpp" 88 89 // -------------------- Compile::mach_constant_base_node ----------------------- 90 // Constant table base node singleton. 91 MachConstantBaseNode* Compile::mach_constant_base_node() { 92 if (_mach_constant_base_node == nullptr) { 93 _mach_constant_base_node = new MachConstantBaseNode(); 94 _mach_constant_base_node->add_req(C->root()); 95 } 96 return _mach_constant_base_node; 97 } 98 99 100 /// Support for intrinsics. 101 102 // Return the index at which m must be inserted (or already exists). 103 // The sort order is by the address of the ciMethod, with is_virtual as minor key. 104 class IntrinsicDescPair { 105 private: 106 ciMethod* _m; 107 bool _is_virtual; 108 public: 109 IntrinsicDescPair(ciMethod* m, bool is_virtual) : _m(m), _is_virtual(is_virtual) {} 110 static int compare(IntrinsicDescPair* const& key, CallGenerator* const& elt) { 111 ciMethod* m= elt->method(); 112 ciMethod* key_m = key->_m; 113 if (key_m < m) return -1; 114 else if (key_m > m) return 1; 115 else { 116 bool is_virtual = elt->is_virtual(); 117 bool key_virtual = key->_is_virtual; 118 if (key_virtual < is_virtual) return -1; 119 else if (key_virtual > is_virtual) return 1; 120 else return 0; 121 } 122 } 123 }; 124 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found) { 125 #ifdef ASSERT 126 for (int i = 1; i < _intrinsics.length(); i++) { 127 CallGenerator* cg1 = _intrinsics.at(i-1); 128 CallGenerator* cg2 = _intrinsics.at(i); 129 assert(cg1->method() != cg2->method() 130 ? cg1->method() < cg2->method() 131 : cg1->is_virtual() < cg2->is_virtual(), 132 "compiler intrinsics list must stay sorted"); 133 } 134 #endif 135 IntrinsicDescPair pair(m, is_virtual); 136 return _intrinsics.find_sorted<IntrinsicDescPair*, IntrinsicDescPair::compare>(&pair, found); 137 } 138 139 void Compile::register_intrinsic(CallGenerator* cg) { 140 bool found = false; 141 int index = intrinsic_insertion_index(cg->method(), cg->is_virtual(), found); 142 assert(!found, "registering twice"); 143 _intrinsics.insert_before(index, cg); 144 assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked"); 145 } 146 147 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) { 148 assert(m->is_loaded(), "don't try this on unloaded methods"); 149 if (_intrinsics.length() > 0) { 150 bool found = false; 151 int index = intrinsic_insertion_index(m, is_virtual, found); 152 if (found) { 153 return _intrinsics.at(index); 154 } 155 } 156 // Lazily create intrinsics for intrinsic IDs well-known in the runtime. 157 if (m->intrinsic_id() != vmIntrinsics::_none && 158 m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) { 159 CallGenerator* cg = make_vm_intrinsic(m, is_virtual); 160 if (cg != nullptr) { 161 // Save it for next time: 162 register_intrinsic(cg); 163 return cg; 164 } else { 165 gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled); 166 } 167 } 168 return nullptr; 169 } 170 171 // Compile::make_vm_intrinsic is defined in library_call.cpp. 172 173 #ifndef PRODUCT 174 // statistics gathering... 175 176 juint Compile::_intrinsic_hist_count[vmIntrinsics::number_of_intrinsics()] = {0}; 177 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::number_of_intrinsics()] = {0}; 178 179 inline int as_int(vmIntrinsics::ID id) { 180 return vmIntrinsics::as_int(id); 181 } 182 183 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) { 184 assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob"); 185 int oflags = _intrinsic_hist_flags[as_int(id)]; 186 assert(flags != 0, "what happened?"); 187 if (is_virtual) { 188 flags |= _intrinsic_virtual; 189 } 190 bool changed = (flags != oflags); 191 if ((flags & _intrinsic_worked) != 0) { 192 juint count = (_intrinsic_hist_count[as_int(id)] += 1); 193 if (count == 1) { 194 changed = true; // first time 195 } 196 // increment the overall count also: 197 _intrinsic_hist_count[as_int(vmIntrinsics::_none)] += 1; 198 } 199 if (changed) { 200 if (((oflags ^ flags) & _intrinsic_virtual) != 0) { 201 // Something changed about the intrinsic's virtuality. 202 if ((flags & _intrinsic_virtual) != 0) { 203 // This is the first use of this intrinsic as a virtual call. 204 if (oflags != 0) { 205 // We already saw it as a non-virtual, so note both cases. 206 flags |= _intrinsic_both; 207 } 208 } else if ((oflags & _intrinsic_both) == 0) { 209 // This is the first use of this intrinsic as a non-virtual 210 flags |= _intrinsic_both; 211 } 212 } 213 _intrinsic_hist_flags[as_int(id)] = (jubyte) (oflags | flags); 214 } 215 // update the overall flags also: 216 _intrinsic_hist_flags[as_int(vmIntrinsics::_none)] |= (jubyte) flags; 217 return changed; 218 } 219 220 static char* format_flags(int flags, char* buf) { 221 buf[0] = 0; 222 if ((flags & Compile::_intrinsic_worked) != 0) strcat(buf, ",worked"); 223 if ((flags & Compile::_intrinsic_failed) != 0) strcat(buf, ",failed"); 224 if ((flags & Compile::_intrinsic_disabled) != 0) strcat(buf, ",disabled"); 225 if ((flags & Compile::_intrinsic_virtual) != 0) strcat(buf, ",virtual"); 226 if ((flags & Compile::_intrinsic_both) != 0) strcat(buf, ",nonvirtual"); 227 if (buf[0] == 0) strcat(buf, ","); 228 assert(buf[0] == ',', "must be"); 229 return &buf[1]; 230 } 231 232 void Compile::print_intrinsic_statistics() { 233 char flagsbuf[100]; 234 ttyLocker ttyl; 235 if (xtty != nullptr) xtty->head("statistics type='intrinsic'"); 236 tty->print_cr("Compiler intrinsic usage:"); 237 juint total = _intrinsic_hist_count[as_int(vmIntrinsics::_none)]; 238 if (total == 0) total = 1; // avoid div0 in case of no successes 239 #define PRINT_STAT_LINE(name, c, f) \ 240 tty->print_cr(" %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f); 241 for (auto id : EnumRange<vmIntrinsicID>{}) { 242 int flags = _intrinsic_hist_flags[as_int(id)]; 243 juint count = _intrinsic_hist_count[as_int(id)]; 244 if ((flags | count) != 0) { 245 PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf)); 246 } 247 } 248 PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[as_int(vmIntrinsics::_none)], flagsbuf)); 249 if (xtty != nullptr) xtty->tail("statistics"); 250 } 251 252 void Compile::print_statistics() { 253 { ttyLocker ttyl; 254 if (xtty != nullptr) xtty->head("statistics type='opto'"); 255 Parse::print_statistics(); 256 PhaseStringOpts::print_statistics(); 257 PhaseCCP::print_statistics(); 258 PhaseRegAlloc::print_statistics(); 259 PhaseOutput::print_statistics(); 260 PhasePeephole::print_statistics(); 261 PhaseIdealLoop::print_statistics(); 262 ConnectionGraph::print_statistics(); 263 PhaseMacroExpand::print_statistics(); 264 if (xtty != nullptr) xtty->tail("statistics"); 265 } 266 if (_intrinsic_hist_flags[as_int(vmIntrinsics::_none)] != 0) { 267 // put this under its own <statistics> element. 268 print_intrinsic_statistics(); 269 } 270 } 271 #endif //PRODUCT 272 273 void Compile::gvn_replace_by(Node* n, Node* nn) { 274 for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) { 275 Node* use = n->last_out(i); 276 bool is_in_table = initial_gvn()->hash_delete(use); 277 uint uses_found = 0; 278 for (uint j = 0; j < use->len(); j++) { 279 if (use->in(j) == n) { 280 if (j < use->req()) 281 use->set_req(j, nn); 282 else 283 use->set_prec(j, nn); 284 uses_found++; 285 } 286 } 287 if (is_in_table) { 288 // reinsert into table 289 initial_gvn()->hash_find_insert(use); 290 } 291 record_for_igvn(use); 292 PhaseIterGVN::add_users_of_use_to_worklist(nn, use, *_igvn_worklist); 293 i -= uses_found; // we deleted 1 or more copies of this edge 294 } 295 } 296 297 298 // Identify all nodes that are reachable from below, useful. 299 // Use breadth-first pass that records state in a Unique_Node_List, 300 // recursive traversal is slower. 301 void Compile::identify_useful_nodes(Unique_Node_List &useful) { 302 int estimated_worklist_size = live_nodes(); 303 useful.map( estimated_worklist_size, nullptr ); // preallocate space 304 305 // Initialize worklist 306 if (root() != nullptr) { useful.push(root()); } 307 // If 'top' is cached, declare it useful to preserve cached node 308 if (cached_top_node()) { useful.push(cached_top_node()); } 309 310 // Push all useful nodes onto the list, breadthfirst 311 for( uint next = 0; next < useful.size(); ++next ) { 312 assert( next < unique(), "Unique useful nodes < total nodes"); 313 Node *n = useful.at(next); 314 uint max = n->len(); 315 for( uint i = 0; i < max; ++i ) { 316 Node *m = n->in(i); 317 if (not_a_node(m)) continue; 318 useful.push(m); 319 } 320 } 321 } 322 323 // Update dead_node_list with any missing dead nodes using useful 324 // list. Consider all non-useful nodes to be useless i.e., dead nodes. 325 void Compile::update_dead_node_list(Unique_Node_List &useful) { 326 uint max_idx = unique(); 327 VectorSet& useful_node_set = useful.member_set(); 328 329 for (uint node_idx = 0; node_idx < max_idx; node_idx++) { 330 // If node with index node_idx is not in useful set, 331 // mark it as dead in dead node list. 332 if (!useful_node_set.test(node_idx)) { 333 record_dead_node(node_idx); 334 } 335 } 336 } 337 338 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) { 339 int shift = 0; 340 for (int i = 0; i < inlines->length(); i++) { 341 CallGenerator* cg = inlines->at(i); 342 if (useful.member(cg->call_node())) { 343 if (shift > 0) { 344 inlines->at_put(i - shift, cg); 345 } 346 } else { 347 shift++; // skip over the dead element 348 } 349 } 350 if (shift > 0) { 351 inlines->trunc_to(inlines->length() - shift); // remove last elements from compacted array 352 } 353 } 354 355 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Node* dead) { 356 assert(dead != nullptr && dead->is_Call(), "sanity"); 357 int found = 0; 358 for (int i = 0; i < inlines->length(); i++) { 359 if (inlines->at(i)->call_node() == dead) { 360 inlines->remove_at(i); 361 found++; 362 NOT_DEBUG( break; ) // elements are unique, so exit early 363 } 364 } 365 assert(found <= 1, "not unique"); 366 } 367 368 template<typename N, ENABLE_IF_SDEFN(std::is_base_of<Node, N>::value)> 369 void Compile::remove_useless_nodes(GrowableArray<N*>& node_list, Unique_Node_List& useful) { 370 for (int i = node_list.length() - 1; i >= 0; i--) { 371 N* node = node_list.at(i); 372 if (!useful.member(node)) { 373 node_list.delete_at(i); // replaces i-th with last element which is known to be useful (already processed) 374 } 375 } 376 } 377 378 void Compile::remove_useless_node(Node* dead) { 379 remove_modified_node(dead); 380 381 // Constant node that has no out-edges and has only one in-edge from 382 // root is usually dead. However, sometimes reshaping walk makes 383 // it reachable by adding use edges. So, we will NOT count Con nodes 384 // as dead to be conservative about the dead node count at any 385 // given time. 386 if (!dead->is_Con()) { 387 record_dead_node(dead->_idx); 388 } 389 if (dead->is_macro()) { 390 remove_macro_node(dead); 391 } 392 if (dead->is_expensive()) { 393 remove_expensive_node(dead); 394 } 395 if (dead->is_OpaqueTemplateAssertionPredicate()) { 396 remove_template_assertion_predicate_opaq(dead); 397 } 398 if (dead->is_ParsePredicate()) { 399 remove_parse_predicate(dead->as_ParsePredicate()); 400 } 401 if (dead->for_post_loop_opts_igvn()) { 402 remove_from_post_loop_opts_igvn(dead); 403 } 404 if (dead->is_Call()) { 405 remove_useless_late_inlines( &_late_inlines, dead); 406 remove_useless_late_inlines( &_string_late_inlines, dead); 407 remove_useless_late_inlines( &_boxing_late_inlines, dead); 408 remove_useless_late_inlines(&_vector_reboxing_late_inlines, dead); 409 410 if (dead->is_CallStaticJava()) { 411 remove_unstable_if_trap(dead->as_CallStaticJava(), false); 412 } 413 } 414 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 415 bs->unregister_potential_barrier_node(dead); 416 } 417 418 // Disconnect all useless nodes by disconnecting those at the boundary. 419 void Compile::disconnect_useless_nodes(Unique_Node_List& useful, Unique_Node_List& worklist) { 420 uint next = 0; 421 while (next < useful.size()) { 422 Node *n = useful.at(next++); 423 if (n->is_SafePoint()) { 424 // We're done with a parsing phase. Replaced nodes are not valid 425 // beyond that point. 426 n->as_SafePoint()->delete_replaced_nodes(); 427 } 428 // Use raw traversal of out edges since this code removes out edges 429 int max = n->outcnt(); 430 for (int j = 0; j < max; ++j) { 431 Node* child = n->raw_out(j); 432 if (!useful.member(child)) { 433 assert(!child->is_top() || child != top(), 434 "If top is cached in Compile object it is in useful list"); 435 // Only need to remove this out-edge to the useless node 436 n->raw_del_out(j); 437 --j; 438 --max; 439 } 440 } 441 if (n->outcnt() == 1 && n->has_special_unique_user()) { 442 assert(useful.member(n->unique_out()), "do not push a useless node"); 443 worklist.push(n->unique_out()); 444 } 445 } 446 447 remove_useless_nodes(_macro_nodes, useful); // remove useless macro nodes 448 remove_useless_nodes(_parse_predicates, useful); // remove useless Parse Predicate nodes 449 remove_useless_nodes(_template_assertion_predicate_opaqs, useful); // remove useless Assertion Predicate opaque nodes 450 remove_useless_nodes(_expensive_nodes, useful); // remove useless expensive nodes 451 remove_useless_nodes(_for_post_loop_igvn, useful); // remove useless node recorded for post loop opts IGVN pass 452 remove_useless_unstable_if_traps(useful); // remove useless unstable_if traps 453 remove_useless_coarsened_locks(useful); // remove useless coarsened locks nodes 454 #ifdef ASSERT 455 if (_modified_nodes != nullptr) { 456 _modified_nodes->remove_useless_nodes(useful.member_set()); 457 } 458 #endif 459 460 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 461 bs->eliminate_useless_gc_barriers(useful, this); 462 // clean up the late inline lists 463 remove_useless_late_inlines( &_late_inlines, useful); 464 remove_useless_late_inlines( &_string_late_inlines, useful); 465 remove_useless_late_inlines( &_boxing_late_inlines, useful); 466 remove_useless_late_inlines(&_vector_reboxing_late_inlines, useful); 467 debug_only(verify_graph_edges(true/*check for no_dead_code*/);) 468 } 469 470 // ============================================================================ 471 //------------------------------CompileWrapper--------------------------------- 472 class CompileWrapper : public StackObj { 473 Compile *const _compile; 474 public: 475 CompileWrapper(Compile* compile); 476 477 ~CompileWrapper(); 478 }; 479 480 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) { 481 // the Compile* pointer is stored in the current ciEnv: 482 ciEnv* env = compile->env(); 483 assert(env == ciEnv::current(), "must already be a ciEnv active"); 484 assert(env->compiler_data() == nullptr, "compile already active?"); 485 env->set_compiler_data(compile); 486 assert(compile == Compile::current(), "sanity"); 487 488 compile->set_type_dict(nullptr); 489 compile->set_clone_map(new Dict(cmpkey, hashkey, _compile->comp_arena())); 490 compile->clone_map().set_clone_idx(0); 491 compile->set_type_last_size(0); 492 compile->set_last_tf(nullptr, nullptr); 493 compile->set_indexSet_arena(nullptr); 494 compile->set_indexSet_free_block_list(nullptr); 495 compile->init_type_arena(); 496 Type::Initialize(compile); 497 _compile->begin_method(); 498 _compile->clone_map().set_debug(_compile->has_method() && _compile->directive()->CloneMapDebugOption); 499 } 500 CompileWrapper::~CompileWrapper() { 501 // simulate crash during compilation 502 assert(CICrashAt < 0 || _compile->compile_id() != CICrashAt, "just as planned"); 503 504 _compile->end_method(); 505 _compile->env()->set_compiler_data(nullptr); 506 } 507 508 509 //----------------------------print_compile_messages--------------------------- 510 void Compile::print_compile_messages() { 511 #ifndef PRODUCT 512 // Check if recompiling 513 if (!subsume_loads() && PrintOpto) { 514 // Recompiling without allowing machine instructions to subsume loads 515 tty->print_cr("*********************************************************"); 516 tty->print_cr("** Bailout: Recompile without subsuming loads **"); 517 tty->print_cr("*********************************************************"); 518 } 519 if ((do_escape_analysis() != DoEscapeAnalysis) && PrintOpto) { 520 // Recompiling without escape analysis 521 tty->print_cr("*********************************************************"); 522 tty->print_cr("** Bailout: Recompile without escape analysis **"); 523 tty->print_cr("*********************************************************"); 524 } 525 if (do_iterative_escape_analysis() != DoEscapeAnalysis && PrintOpto) { 526 // Recompiling without iterative escape analysis 527 tty->print_cr("*********************************************************"); 528 tty->print_cr("** Bailout: Recompile without iterative escape analysis**"); 529 tty->print_cr("*********************************************************"); 530 } 531 if (do_reduce_allocation_merges() != ReduceAllocationMerges && PrintOpto) { 532 // Recompiling without reducing allocation merges 533 tty->print_cr("*********************************************************"); 534 tty->print_cr("** Bailout: Recompile without reduce allocation merges **"); 535 tty->print_cr("*********************************************************"); 536 } 537 if ((eliminate_boxing() != EliminateAutoBox) && PrintOpto) { 538 // Recompiling without boxing elimination 539 tty->print_cr("*********************************************************"); 540 tty->print_cr("** Bailout: Recompile without boxing elimination **"); 541 tty->print_cr("*********************************************************"); 542 } 543 if ((do_locks_coarsening() != EliminateLocks) && PrintOpto) { 544 // Recompiling without locks coarsening 545 tty->print_cr("*********************************************************"); 546 tty->print_cr("** Bailout: Recompile without locks coarsening **"); 547 tty->print_cr("*********************************************************"); 548 } 549 if (env()->break_at_compile()) { 550 // Open the debugger when compiling this method. 551 tty->print("### Breaking when compiling: "); 552 method()->print_short_name(); 553 tty->cr(); 554 BREAKPOINT; 555 } 556 557 if( PrintOpto ) { 558 if (is_osr_compilation()) { 559 tty->print("[OSR]%3d", _compile_id); 560 } else { 561 tty->print("%3d", _compile_id); 562 } 563 } 564 #endif 565 } 566 567 #ifndef PRODUCT 568 void Compile::print_ideal_ir(const char* phase_name) { 569 // keep the following output all in one block 570 // This output goes directly to the tty, not the compiler log. 571 // To enable tools to match it up with the compilation activity, 572 // be sure to tag this tty output with the compile ID. 573 574 // Node dumping can cause a safepoint, which can break the tty lock. 575 // Buffer all node dumps, so that all safepoints happen before we lock. 576 ResourceMark rm; 577 stringStream ss; 578 579 if (_output == nullptr) { 580 ss.print_cr("AFTER: %s", phase_name); 581 // Print out all nodes in ascending order of index. 582 root()->dump_bfs(MaxNodeLimit, nullptr, "+S$", &ss); 583 } else { 584 // Dump the node blockwise if we have a scheduling 585 _output->print_scheduling(&ss); 586 } 587 588 // Check that the lock is not broken by a safepoint. 589 NoSafepointVerifier nsv; 590 ttyLocker ttyl; 591 if (xtty != nullptr) { 592 xtty->head("ideal compile_id='%d'%s compile_phase='%s'", 593 compile_id(), 594 is_osr_compilation() ? " compile_kind='osr'" : "", 595 phase_name); 596 } 597 598 tty->print("%s", ss.as_string()); 599 600 if (xtty != nullptr) { 601 xtty->tail("ideal"); 602 } 603 } 604 #endif 605 606 // ============================================================================ 607 //------------------------------Compile standard------------------------------- 608 609 // Compile a method. entry_bci is -1 for normal compilations and indicates 610 // the continuation bci for on stack replacement. 611 612 613 Compile::Compile(ciEnv* ci_env, ciMethod* target, int osr_bci, 614 Options options, DirectiveSet* directive) 615 : Phase(Compiler), 616 _compile_id(ci_env->compile_id()), 617 _options(options), 618 _method(target), 619 _entry_bci(osr_bci), 620 _ilt(nullptr), 621 _stub_function(nullptr), 622 _stub_name(nullptr), 623 _stub_entry_point(nullptr), 624 _max_node_limit(MaxNodeLimit), 625 _post_loop_opts_phase(false), 626 _allow_macro_nodes(true), 627 _inlining_progress(false), 628 _inlining_incrementally(false), 629 _do_cleanup(false), 630 _has_reserved_stack_access(target->has_reserved_stack_access()), 631 #ifndef PRODUCT 632 _igv_idx(0), 633 _trace_opto_output(directive->TraceOptoOutputOption), 634 #endif 635 _has_method_handle_invokes(false), 636 _clinit_barrier_on_entry(false), 637 _has_clinit_barriers(false), 638 _stress_seed(0), 639 _comp_arena(mtCompiler), 640 _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())), 641 _env(ci_env), 642 _directive(directive), 643 _log(ci_env->log()), 644 _first_failure_details(nullptr), 645 _intrinsics(comp_arena(), 0, 0, nullptr), 646 _macro_nodes(comp_arena(), 8, 0, nullptr), 647 _parse_predicates(comp_arena(), 8, 0, nullptr), 648 _template_assertion_predicate_opaqs(comp_arena(), 8, 0, nullptr), 649 _expensive_nodes(comp_arena(), 8, 0, nullptr), 650 _for_post_loop_igvn(comp_arena(), 8, 0, nullptr), 651 _unstable_if_traps(comp_arena(), 8, 0, nullptr), 652 _coarsened_locks(comp_arena(), 8, 0, nullptr), 653 _congraph(nullptr), 654 NOT_PRODUCT(_igv_printer(nullptr) COMMA) 655 _unique(0), 656 _dead_node_count(0), 657 _dead_node_list(comp_arena()), 658 _node_arena_one(mtCompiler, Arena::Tag::tag_node), 659 _node_arena_two(mtCompiler, Arena::Tag::tag_node), 660 _node_arena(&_node_arena_one), 661 _mach_constant_base_node(nullptr), 662 _Compile_types(mtCompiler), 663 _initial_gvn(nullptr), 664 _igvn_worklist(nullptr), 665 _types(nullptr), 666 _node_hash(nullptr), 667 _late_inlines(comp_arena(), 2, 0, nullptr), 668 _string_late_inlines(comp_arena(), 2, 0, nullptr), 669 _boxing_late_inlines(comp_arena(), 2, 0, nullptr), 670 _vector_reboxing_late_inlines(comp_arena(), 2, 0, nullptr), 671 _late_inlines_pos(0), 672 _number_of_mh_late_inlines(0), 673 _oom(false), 674 _replay_inline_data(nullptr), 675 _inline_printer(this), 676 _java_calls(0), 677 _inner_loops(0), 678 _interpreter_frame_size(0), 679 _output(nullptr) 680 #ifndef PRODUCT 681 , 682 _in_dump_cnt(0) 683 #endif 684 { 685 C = this; 686 CompileWrapper cw(this); 687 688 TraceTime t1("Total compilation time", &_t_totalCompilation, CITime, CITimeVerbose); 689 TraceTime t2(nullptr, &_t_methodCompilation, CITime, false); 690 691 #if defined(SUPPORT_ASSEMBLY) || defined(SUPPORT_ABSTRACT_ASSEMBLY) 692 bool print_opto_assembly = directive->PrintOptoAssemblyOption; 693 // We can always print a disassembly, either abstract (hex dump) or 694 // with the help of a suitable hsdis library. Thus, we should not 695 // couple print_assembly and print_opto_assembly controls. 696 // But: always print opto and regular assembly on compile command 'print'. 697 bool print_assembly = directive->PrintAssemblyOption; 698 set_print_assembly(print_opto_assembly || print_assembly); 699 #else 700 set_print_assembly(false); // must initialize. 701 #endif 702 703 #ifndef PRODUCT 704 set_parsed_irreducible_loop(false); 705 #endif 706 707 if (directive->ReplayInlineOption) { 708 _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level()); 709 } 710 set_print_inlining(directive->PrintInliningOption || PrintOptoInlining); 711 set_print_intrinsics(directive->PrintIntrinsicsOption); 712 set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it 713 714 if (ProfileTraps) { 715 // Make sure the method being compiled gets its own MDO, 716 // so we can at least track the decompile_count(). 717 method()->ensure_method_data(); 718 } 719 720 if (StressLCM || StressGCM || StressIGVN || StressCCP || 721 StressIncrementalInlining || StressMacroExpansion || StressUnstableIfTraps || StressBailout) { 722 initialize_stress_seed(directive); 723 } 724 725 Init(/*do_aliasing=*/ true); 726 727 print_compile_messages(); 728 729 _ilt = InlineTree::build_inline_tree_root(); 730 731 // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice 732 assert(num_alias_types() >= AliasIdxRaw, ""); 733 734 #define MINIMUM_NODE_HASH 1023 735 736 // GVN that will be run immediately on new nodes 737 uint estimated_size = method()->code_size()*4+64; 738 estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size); 739 _igvn_worklist = new (comp_arena()) Unique_Node_List(comp_arena()); 740 _types = new (comp_arena()) Type_Array(comp_arena()); 741 _node_hash = new (comp_arena()) NodeHash(comp_arena(), estimated_size); 742 PhaseGVN gvn; 743 set_initial_gvn(&gvn); 744 745 { // Scope for timing the parser 746 TracePhase tp(_t_parser); 747 748 // Put top into the hash table ASAP. 749 initial_gvn()->transform(top()); 750 751 // Set up tf(), start(), and find a CallGenerator. 752 CallGenerator* cg = nullptr; 753 if (is_osr_compilation()) { 754 const TypeTuple *domain = StartOSRNode::osr_domain(); 755 const TypeTuple *range = TypeTuple::make_range(method()->signature()); 756 init_tf(TypeFunc::make(domain, range)); 757 StartNode* s = new StartOSRNode(root(), domain); 758 initial_gvn()->set_type_bottom(s); 759 verify_start(s); 760 cg = CallGenerator::for_osr(method(), entry_bci()); 761 } else { 762 // Normal case. 763 init_tf(TypeFunc::make(method())); 764 StartNode* s = new StartNode(root(), tf()->domain()); 765 initial_gvn()->set_type_bottom(s); 766 verify_start(s); 767 if (method()->intrinsic_id() == vmIntrinsics::_Reference_get) { 768 // With java.lang.ref.reference.get() we must go through the 769 // intrinsic - even when get() is the root 770 // method of the compile - so that, if necessary, the value in 771 // the referent field of the reference object gets recorded by 772 // the pre-barrier code. 773 cg = find_intrinsic(method(), false); 774 } 775 if (cg == nullptr) { 776 float past_uses = method()->interpreter_invocation_count(); 777 float expected_uses = past_uses; 778 cg = CallGenerator::for_inline(method(), expected_uses); 779 } 780 } 781 if (failing()) return; 782 if (cg == nullptr) { 783 const char* reason = InlineTree::check_can_parse(method()); 784 assert(reason != nullptr, "expect reason for parse failure"); 785 stringStream ss; 786 ss.print("cannot parse method: %s", reason); 787 record_method_not_compilable(ss.as_string()); 788 return; 789 } 790 791 gvn.set_type(root(), root()->bottom_type()); 792 793 JVMState* jvms = build_start_state(start(), tf()); 794 if ((jvms = cg->generate(jvms)) == nullptr) { 795 assert(failure_reason() != nullptr, "expect reason for parse failure"); 796 stringStream ss; 797 ss.print("method parse failed: %s", failure_reason()); 798 record_method_not_compilable(ss.as_string() DEBUG_ONLY(COMMA true)); 799 return; 800 } 801 GraphKit kit(jvms); 802 803 if (!kit.stopped()) { 804 // Accept return values, and transfer control we know not where. 805 // This is done by a special, unique ReturnNode bound to root. 806 return_values(kit.jvms()); 807 } 808 809 if (kit.has_exceptions()) { 810 // Any exceptions that escape from this call must be rethrown 811 // to whatever caller is dynamically above us on the stack. 812 // This is done by a special, unique RethrowNode bound to root. 813 rethrow_exceptions(kit.transfer_exceptions_into_jvms()); 814 } 815 816 assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off"); 817 818 if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) { 819 inline_string_calls(true); 820 } 821 822 if (failing()) return; 823 824 // Remove clutter produced by parsing. 825 if (!failing()) { 826 ResourceMark rm; 827 PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist()); 828 } 829 } 830 831 // Note: Large methods are capped off in do_one_bytecode(). 832 if (failing()) return; 833 834 // After parsing, node notes are no longer automagic. 835 // They must be propagated by register_new_node_with_optimizer(), 836 // clone(), or the like. 837 set_default_node_notes(nullptr); 838 839 #ifndef PRODUCT 840 if (should_print_igv(1)) { 841 _igv_printer->print_inlining(); 842 } 843 #endif 844 845 if (failing()) return; 846 NOT_PRODUCT( verify_graph_edges(); ) 847 848 // Now optimize 849 Optimize(); 850 if (failing()) return; 851 NOT_PRODUCT( verify_graph_edges(); ) 852 853 #ifndef PRODUCT 854 if (should_print_ideal()) { 855 print_ideal_ir("print_ideal"); 856 } 857 #endif 858 859 #ifdef ASSERT 860 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 861 bs->verify_gc_barriers(this, BarrierSetC2::BeforeCodeGen); 862 #endif 863 864 // Dump compilation data to replay it. 865 if (directive->DumpReplayOption) { 866 env()->dump_replay_data(_compile_id); 867 } 868 if (directive->DumpInlineOption && (ilt() != nullptr)) { 869 env()->dump_inline_data(_compile_id); 870 } 871 872 // Now that we know the size of all the monitors we can add a fixed slot 873 // for the original deopt pc. 874 int next_slot = fixed_slots() + (sizeof(address) / VMRegImpl::stack_slot_size); 875 set_fixed_slots(next_slot); 876 877 // Compute when to use implicit null checks. Used by matching trap based 878 // nodes and NullCheck optimization. 879 set_allowed_deopt_reasons(); 880 881 // Now generate code 882 Code_Gen(); 883 } 884 885 //------------------------------Compile---------------------------------------- 886 // Compile a runtime stub 887 Compile::Compile(ciEnv* ci_env, 888 TypeFunc_generator generator, 889 address stub_function, 890 const char* stub_name, 891 int is_fancy_jump, 892 bool pass_tls, 893 bool return_pc, 894 DirectiveSet* directive) 895 : Phase(Compiler), 896 _compile_id(0), 897 _options(Options::for_runtime_stub()), 898 _method(nullptr), 899 _entry_bci(InvocationEntryBci), 900 _stub_function(stub_function), 901 _stub_name(stub_name), 902 _stub_entry_point(nullptr), 903 _max_node_limit(MaxNodeLimit), 904 _post_loop_opts_phase(false), 905 _allow_macro_nodes(true), 906 _inlining_progress(false), 907 _inlining_incrementally(false), 908 _has_reserved_stack_access(false), 909 #ifndef PRODUCT 910 _igv_idx(0), 911 _trace_opto_output(directive->TraceOptoOutputOption), 912 #endif 913 _has_method_handle_invokes(false), 914 _clinit_barrier_on_entry(false), 915 _has_clinit_barriers(false), 916 _stress_seed(0), 917 _comp_arena(mtCompiler), 918 _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())), 919 _env(ci_env), 920 _directive(directive), 921 _log(ci_env->log()), 922 _first_failure_details(nullptr), 923 _for_post_loop_igvn(comp_arena(), 8, 0, nullptr), 924 _congraph(nullptr), 925 NOT_PRODUCT(_igv_printer(nullptr) COMMA) 926 _unique(0), 927 _dead_node_count(0), 928 _dead_node_list(comp_arena()), 929 _node_arena_one(mtCompiler), 930 _node_arena_two(mtCompiler), 931 _node_arena(&_node_arena_one), 932 _mach_constant_base_node(nullptr), 933 _Compile_types(mtCompiler), 934 _initial_gvn(nullptr), 935 _igvn_worklist(nullptr), 936 _types(nullptr), 937 _node_hash(nullptr), 938 _number_of_mh_late_inlines(0), 939 _oom(false), 940 _replay_inline_data(nullptr), 941 _inline_printer(this), 942 _java_calls(0), 943 _inner_loops(0), 944 _interpreter_frame_size(0), 945 _output(nullptr), 946 #ifndef PRODUCT 947 _in_dump_cnt(0), 948 #endif 949 _allowed_reasons(0) { 950 C = this; 951 952 TraceTime t1(nullptr, &_t_totalCompilation, CITime, false); 953 TraceTime t2(nullptr, &_t_stubCompilation, CITime, false); 954 955 #ifndef PRODUCT 956 set_print_assembly(PrintFrameConverterAssembly); 957 set_parsed_irreducible_loop(false); 958 #else 959 set_print_assembly(false); // Must initialize. 960 #endif 961 set_has_irreducible_loop(false); // no loops 962 963 CompileWrapper cw(this); 964 Init(/*do_aliasing=*/ false); 965 init_tf((*generator)()); 966 967 _igvn_worklist = new (comp_arena()) Unique_Node_List(comp_arena()); 968 _types = new (comp_arena()) Type_Array(comp_arena()); 969 _node_hash = new (comp_arena()) NodeHash(comp_arena(), 255); 970 971 if (StressLCM || StressGCM || StressBailout) { 972 initialize_stress_seed(directive); 973 } 974 975 { 976 PhaseGVN gvn; 977 set_initial_gvn(&gvn); // not significant, but GraphKit guys use it pervasively 978 gvn.transform(top()); 979 980 GraphKit kit; 981 kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc); 982 } 983 984 NOT_PRODUCT( verify_graph_edges(); ) 985 986 Code_Gen(); 987 } 988 989 Compile::~Compile() { 990 delete _first_failure_details; 991 }; 992 993 //------------------------------Init------------------------------------------- 994 // Prepare for a single compilation 995 void Compile::Init(bool aliasing) { 996 _do_aliasing = aliasing; 997 _unique = 0; 998 _regalloc = nullptr; 999 1000 _tf = nullptr; // filled in later 1001 _top = nullptr; // cached later 1002 _matcher = nullptr; // filled in later 1003 _cfg = nullptr; // filled in later 1004 1005 IA32_ONLY( set_24_bit_selection_and_mode(true, false); ) 1006 1007 _node_note_array = nullptr; 1008 _default_node_notes = nullptr; 1009 DEBUG_ONLY( _modified_nodes = nullptr; ) // Used in Optimize() 1010 1011 _immutable_memory = nullptr; // filled in at first inquiry 1012 1013 #ifdef ASSERT 1014 _phase_optimize_finished = false; 1015 _phase_verify_ideal_loop = false; 1016 _exception_backedge = false; 1017 _type_verify = nullptr; 1018 #endif 1019 1020 // Globally visible Nodes 1021 // First set TOP to null to give safe behavior during creation of RootNode 1022 set_cached_top_node(nullptr); 1023 set_root(new RootNode()); 1024 // Now that you have a Root to point to, create the real TOP 1025 set_cached_top_node( new ConNode(Type::TOP) ); 1026 set_recent_alloc(nullptr, nullptr); 1027 1028 // Create Debug Information Recorder to record scopes, oopmaps, etc. 1029 env()->set_oop_recorder(new OopRecorder(env()->arena())); 1030 env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder())); 1031 env()->set_dependencies(new Dependencies(env())); 1032 1033 _fixed_slots = 0; 1034 set_has_split_ifs(false); 1035 set_has_loops(false); // first approximation 1036 set_has_stringbuilder(false); 1037 set_has_boxed_value(false); 1038 _trap_can_recompile = false; // no traps emitted yet 1039 _major_progress = true; // start out assuming good things will happen 1040 set_has_unsafe_access(false); 1041 set_max_vector_size(0); 1042 set_clear_upper_avx(false); //false as default for clear upper bits of ymm registers 1043 Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist)); 1044 set_decompile_count(0); 1045 1046 #ifndef PRODUCT 1047 Copy::zero_to_bytes(_igv_phase_iter, sizeof(_igv_phase_iter)); 1048 #endif 1049 1050 set_do_freq_based_layout(_directive->BlockLayoutByFrequencyOption); 1051 _loop_opts_cnt = LoopOptsCount; 1052 set_do_inlining(Inline); 1053 set_max_inline_size(MaxInlineSize); 1054 set_freq_inline_size(FreqInlineSize); 1055 set_do_scheduling(OptoScheduling); 1056 1057 set_do_vector_loop(false); 1058 set_has_monitors(false); 1059 set_has_scoped_access(false); 1060 1061 if (AllowVectorizeOnDemand) { 1062 if (has_method() && _directive->VectorizeOption) { 1063 set_do_vector_loop(true); 1064 NOT_PRODUCT(if (do_vector_loop() && Verbose) {tty->print("Compile::Init: do vectorized loops (SIMD like) for method %s\n", method()->name()->as_quoted_ascii());}) 1065 } else if (has_method() && method()->name() != nullptr && 1066 method()->intrinsic_id() == vmIntrinsics::_forEachRemaining) { 1067 set_do_vector_loop(true); 1068 } 1069 } 1070 set_use_cmove(UseCMoveUnconditionally /* || do_vector_loop()*/); //TODO: consider do_vector_loop() mandate use_cmove unconditionally 1071 NOT_PRODUCT(if (use_cmove() && Verbose && has_method()) {tty->print("Compile::Init: use CMove without profitability tests for method %s\n", method()->name()->as_quoted_ascii());}) 1072 1073 _max_node_limit = _directive->MaxNodeLimitOption; 1074 1075 if (VM_Version::supports_fast_class_init_checks() && has_method() && !is_osr_compilation() && 1076 (method()->needs_clinit_barrier() || (do_clinit_barriers() && method()->is_static()))) { 1077 set_clinit_barrier_on_entry(true); 1078 if (do_clinit_barriers()) { 1079 set_has_clinit_barriers(true); // Entry clinit barrier is in prolog code. 1080 } 1081 } 1082 if (debug_info()->recording_non_safepoints()) { 1083 set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*> 1084 (comp_arena(), 8, 0, nullptr)); 1085 set_default_node_notes(Node_Notes::make(this)); 1086 } 1087 1088 const int grow_ats = 16; 1089 _max_alias_types = grow_ats; 1090 _alias_types = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats); 1091 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, grow_ats); 1092 Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats); 1093 { 1094 for (int i = 0; i < grow_ats; i++) _alias_types[i] = &ats[i]; 1095 } 1096 // Initialize the first few types. 1097 _alias_types[AliasIdxTop]->Init(AliasIdxTop, nullptr); 1098 _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM); 1099 _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM); 1100 _num_alias_types = AliasIdxRaw+1; 1101 // Zero out the alias type cache. 1102 Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache)); 1103 // A null adr_type hits in the cache right away. Preload the right answer. 1104 probe_alias_cache(nullptr)->_index = AliasIdxTop; 1105 } 1106 1107 #ifdef ASSERT 1108 // Verify that the current StartNode is valid. 1109 void Compile::verify_start(StartNode* s) const { 1110 assert(failing_internal() || s == start(), "should be StartNode"); 1111 } 1112 #endif 1113 1114 /** 1115 * Return the 'StartNode'. We must not have a pending failure, since the ideal graph 1116 * can be in an inconsistent state, i.e., we can get segmentation faults when traversing 1117 * the ideal graph. 1118 */ 1119 StartNode* Compile::start() const { 1120 assert (!failing_internal() || C->failure_is_artificial(), "Must not have pending failure. Reason is: %s", failure_reason()); 1121 for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) { 1122 Node* start = root()->fast_out(i); 1123 if (start->is_Start()) { 1124 return start->as_Start(); 1125 } 1126 } 1127 fatal("Did not find Start node!"); 1128 return nullptr; 1129 } 1130 1131 //-------------------------------immutable_memory------------------------------------- 1132 // Access immutable memory 1133 Node* Compile::immutable_memory() { 1134 if (_immutable_memory != nullptr) { 1135 return _immutable_memory; 1136 } 1137 StartNode* s = start(); 1138 for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) { 1139 Node *p = s->fast_out(i); 1140 if (p != s && p->as_Proj()->_con == TypeFunc::Memory) { 1141 _immutable_memory = p; 1142 return _immutable_memory; 1143 } 1144 } 1145 ShouldNotReachHere(); 1146 return nullptr; 1147 } 1148 1149 //----------------------set_cached_top_node------------------------------------ 1150 // Install the cached top node, and make sure Node::is_top works correctly. 1151 void Compile::set_cached_top_node(Node* tn) { 1152 if (tn != nullptr) verify_top(tn); 1153 Node* old_top = _top; 1154 _top = tn; 1155 // Calling Node::setup_is_top allows the nodes the chance to adjust 1156 // their _out arrays. 1157 if (_top != nullptr) _top->setup_is_top(); 1158 if (old_top != nullptr) old_top->setup_is_top(); 1159 assert(_top == nullptr || top()->is_top(), ""); 1160 } 1161 1162 #ifdef ASSERT 1163 uint Compile::count_live_nodes_by_graph_walk() { 1164 Unique_Node_List useful(comp_arena()); 1165 // Get useful node list by walking the graph. 1166 identify_useful_nodes(useful); 1167 return useful.size(); 1168 } 1169 1170 void Compile::print_missing_nodes() { 1171 1172 // Return if CompileLog is null and PrintIdealNodeCount is false. 1173 if ((_log == nullptr) && (! PrintIdealNodeCount)) { 1174 return; 1175 } 1176 1177 // This is an expensive function. It is executed only when the user 1178 // specifies VerifyIdealNodeCount option or otherwise knows the 1179 // additional work that needs to be done to identify reachable nodes 1180 // by walking the flow graph and find the missing ones using 1181 // _dead_node_list. 1182 1183 Unique_Node_List useful(comp_arena()); 1184 // Get useful node list by walking the graph. 1185 identify_useful_nodes(useful); 1186 1187 uint l_nodes = C->live_nodes(); 1188 uint l_nodes_by_walk = useful.size(); 1189 1190 if (l_nodes != l_nodes_by_walk) { 1191 if (_log != nullptr) { 1192 _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk))); 1193 _log->stamp(); 1194 _log->end_head(); 1195 } 1196 VectorSet& useful_member_set = useful.member_set(); 1197 int last_idx = l_nodes_by_walk; 1198 for (int i = 0; i < last_idx; i++) { 1199 if (useful_member_set.test(i)) { 1200 if (_dead_node_list.test(i)) { 1201 if (_log != nullptr) { 1202 _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i); 1203 } 1204 if (PrintIdealNodeCount) { 1205 // Print the log message to tty 1206 tty->print_cr("mismatched_node idx='%d' both live and dead'", i); 1207 useful.at(i)->dump(); 1208 } 1209 } 1210 } 1211 else if (! _dead_node_list.test(i)) { 1212 if (_log != nullptr) { 1213 _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i); 1214 } 1215 if (PrintIdealNodeCount) { 1216 // Print the log message to tty 1217 tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i); 1218 } 1219 } 1220 } 1221 if (_log != nullptr) { 1222 _log->tail("mismatched_nodes"); 1223 } 1224 } 1225 } 1226 void Compile::record_modified_node(Node* n) { 1227 if (_modified_nodes != nullptr && !_inlining_incrementally && !n->is_Con()) { 1228 _modified_nodes->push(n); 1229 } 1230 } 1231 1232 void Compile::remove_modified_node(Node* n) { 1233 if (_modified_nodes != nullptr) { 1234 _modified_nodes->remove(n); 1235 } 1236 } 1237 #endif 1238 1239 #ifndef PRODUCT 1240 void Compile::verify_top(Node* tn) const { 1241 if (tn != nullptr) { 1242 assert(tn->is_Con(), "top node must be a constant"); 1243 assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type"); 1244 assert(tn->in(0) != nullptr, "must have live top node"); 1245 } 1246 } 1247 #endif 1248 1249 1250 ///-------------------Managing Per-Node Debug & Profile Info------------------- 1251 1252 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) { 1253 guarantee(arr != nullptr, ""); 1254 int num_blocks = arr->length(); 1255 if (grow_by < num_blocks) grow_by = num_blocks; 1256 int num_notes = grow_by * _node_notes_block_size; 1257 Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes); 1258 Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes)); 1259 while (num_notes > 0) { 1260 arr->append(notes); 1261 notes += _node_notes_block_size; 1262 num_notes -= _node_notes_block_size; 1263 } 1264 assert(num_notes == 0, "exact multiple, please"); 1265 } 1266 1267 bool Compile::copy_node_notes_to(Node* dest, Node* source) { 1268 if (source == nullptr || dest == nullptr) return false; 1269 1270 if (dest->is_Con()) 1271 return false; // Do not push debug info onto constants. 1272 1273 #ifdef ASSERT 1274 // Leave a bread crumb trail pointing to the original node: 1275 if (dest != nullptr && dest != source && dest->debug_orig() == nullptr) { 1276 dest->set_debug_orig(source); 1277 } 1278 #endif 1279 1280 if (node_note_array() == nullptr) 1281 return false; // Not collecting any notes now. 1282 1283 // This is a copy onto a pre-existing node, which may already have notes. 1284 // If both nodes have notes, do not overwrite any pre-existing notes. 1285 Node_Notes* source_notes = node_notes_at(source->_idx); 1286 if (source_notes == nullptr || source_notes->is_clear()) return false; 1287 Node_Notes* dest_notes = node_notes_at(dest->_idx); 1288 if (dest_notes == nullptr || dest_notes->is_clear()) { 1289 return set_node_notes_at(dest->_idx, source_notes); 1290 } 1291 1292 Node_Notes merged_notes = (*source_notes); 1293 // The order of operations here ensures that dest notes will win... 1294 merged_notes.update_from(dest_notes); 1295 return set_node_notes_at(dest->_idx, &merged_notes); 1296 } 1297 1298 1299 //--------------------------allow_range_check_smearing------------------------- 1300 // Gating condition for coalescing similar range checks. 1301 // Sometimes we try 'speculatively' replacing a series of a range checks by a 1302 // single covering check that is at least as strong as any of them. 1303 // If the optimization succeeds, the simplified (strengthened) range check 1304 // will always succeed. If it fails, we will deopt, and then give up 1305 // on the optimization. 1306 bool Compile::allow_range_check_smearing() const { 1307 // If this method has already thrown a range-check, 1308 // assume it was because we already tried range smearing 1309 // and it failed. 1310 uint already_trapped = trap_count(Deoptimization::Reason_range_check); 1311 return !already_trapped; 1312 } 1313 1314 1315 //------------------------------flatten_alias_type----------------------------- 1316 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const { 1317 assert(do_aliasing(), "Aliasing should be enabled"); 1318 int offset = tj->offset(); 1319 TypePtr::PTR ptr = tj->ptr(); 1320 1321 // Known instance (scalarizable allocation) alias only with itself. 1322 bool is_known_inst = tj->isa_oopptr() != nullptr && 1323 tj->is_oopptr()->is_known_instance(); 1324 1325 // Process weird unsafe references. 1326 if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) { 1327 assert(InlineUnsafeOps || StressReflectiveCode, "indeterminate pointers come only from unsafe ops"); 1328 assert(!is_known_inst, "scalarizable allocation should not have unsafe references"); 1329 tj = TypeOopPtr::BOTTOM; 1330 ptr = tj->ptr(); 1331 offset = tj->offset(); 1332 } 1333 1334 // Array pointers need some flattening 1335 const TypeAryPtr* ta = tj->isa_aryptr(); 1336 if (ta && ta->is_stable()) { 1337 // Erase stability property for alias analysis. 1338 tj = ta = ta->cast_to_stable(false); 1339 } 1340 if( ta && is_known_inst ) { 1341 if ( offset != Type::OffsetBot && 1342 offset > arrayOopDesc::length_offset_in_bytes() ) { 1343 offset = Type::OffsetBot; // Flatten constant access into array body only 1344 tj = ta = ta-> 1345 remove_speculative()-> 1346 cast_to_ptr_type(ptr)-> 1347 with_offset(offset); 1348 } 1349 } else if (ta) { 1350 // For arrays indexed by constant indices, we flatten the alias 1351 // space to include all of the array body. Only the header, klass 1352 // and array length can be accessed un-aliased. 1353 if( offset != Type::OffsetBot ) { 1354 if( ta->const_oop() ) { // MethodData* or Method* 1355 offset = Type::OffsetBot; // Flatten constant access into array body 1356 tj = ta = ta-> 1357 remove_speculative()-> 1358 cast_to_ptr_type(ptr)-> 1359 cast_to_exactness(false)-> 1360 with_offset(offset); 1361 } else if( offset == arrayOopDesc::length_offset_in_bytes() ) { 1362 // range is OK as-is. 1363 tj = ta = TypeAryPtr::RANGE; 1364 } else if( offset == oopDesc::klass_offset_in_bytes() ) { 1365 tj = TypeInstPtr::KLASS; // all klass loads look alike 1366 ta = TypeAryPtr::RANGE; // generic ignored junk 1367 ptr = TypePtr::BotPTR; 1368 } else if( offset == oopDesc::mark_offset_in_bytes() ) { 1369 tj = TypeInstPtr::MARK; 1370 ta = TypeAryPtr::RANGE; // generic ignored junk 1371 ptr = TypePtr::BotPTR; 1372 } else { // Random constant offset into array body 1373 offset = Type::OffsetBot; // Flatten constant access into array body 1374 tj = ta = ta-> 1375 remove_speculative()-> 1376 cast_to_ptr_type(ptr)-> 1377 cast_to_exactness(false)-> 1378 with_offset(offset); 1379 } 1380 } 1381 // Arrays of fixed size alias with arrays of unknown size. 1382 if (ta->size() != TypeInt::POS) { 1383 const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS); 1384 tj = ta = ta-> 1385 remove_speculative()-> 1386 cast_to_ptr_type(ptr)-> 1387 with_ary(tary)-> 1388 cast_to_exactness(false); 1389 } 1390 // Arrays of known objects become arrays of unknown objects. 1391 if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) { 1392 const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size()); 1393 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,nullptr,false,offset); 1394 } 1395 if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) { 1396 const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size()); 1397 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,nullptr,false,offset); 1398 } 1399 // Arrays of bytes and of booleans both use 'bastore' and 'baload' so 1400 // cannot be distinguished by bytecode alone. 1401 if (ta->elem() == TypeInt::BOOL) { 1402 const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size()); 1403 ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE); 1404 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset); 1405 } 1406 // During the 2nd round of IterGVN, NotNull castings are removed. 1407 // Make sure the Bottom and NotNull variants alias the same. 1408 // Also, make sure exact and non-exact variants alias the same. 1409 if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != nullptr) { 1410 tj = ta = ta-> 1411 remove_speculative()-> 1412 cast_to_ptr_type(TypePtr::BotPTR)-> 1413 cast_to_exactness(false)-> 1414 with_offset(offset); 1415 } 1416 } 1417 1418 // Oop pointers need some flattening 1419 const TypeInstPtr *to = tj->isa_instptr(); 1420 if (to && to != TypeOopPtr::BOTTOM) { 1421 ciInstanceKlass* ik = to->instance_klass(); 1422 if( ptr == TypePtr::Constant ) { 1423 if (ik != ciEnv::current()->Class_klass() || 1424 offset < ik->layout_helper_size_in_bytes()) { 1425 // No constant oop pointers (such as Strings); they alias with 1426 // unknown strings. 1427 assert(!is_known_inst, "not scalarizable allocation"); 1428 tj = to = to-> 1429 cast_to_instance_id(TypeOopPtr::InstanceBot)-> 1430 remove_speculative()-> 1431 cast_to_ptr_type(TypePtr::BotPTR)-> 1432 cast_to_exactness(false); 1433 } 1434 } else if( is_known_inst ) { 1435 tj = to; // Keep NotNull and klass_is_exact for instance type 1436 } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) { 1437 // During the 2nd round of IterGVN, NotNull castings are removed. 1438 // Make sure the Bottom and NotNull variants alias the same. 1439 // Also, make sure exact and non-exact variants alias the same. 1440 tj = to = to-> 1441 remove_speculative()-> 1442 cast_to_instance_id(TypeOopPtr::InstanceBot)-> 1443 cast_to_ptr_type(TypePtr::BotPTR)-> 1444 cast_to_exactness(false); 1445 } 1446 if (to->speculative() != nullptr) { 1447 tj = to = to->remove_speculative(); 1448 } 1449 // Canonicalize the holder of this field 1450 if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) { 1451 // First handle header references such as a LoadKlassNode, even if the 1452 // object's klass is unloaded at compile time (4965979). 1453 if (!is_known_inst) { // Do it only for non-instance types 1454 tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, nullptr, offset); 1455 } 1456 } else if (offset < 0 || offset >= ik->layout_helper_size_in_bytes()) { 1457 // Static fields are in the space above the normal instance 1458 // fields in the java.lang.Class instance. 1459 if (ik != ciEnv::current()->Class_klass()) { 1460 to = nullptr; 1461 tj = TypeOopPtr::BOTTOM; 1462 offset = tj->offset(); 1463 } 1464 } else { 1465 ciInstanceKlass *canonical_holder = ik->get_canonical_holder(offset); 1466 assert(offset < canonical_holder->layout_helper_size_in_bytes(), ""); 1467 assert(tj->offset() == offset, "no change to offset expected"); 1468 bool xk = to->klass_is_exact(); 1469 int instance_id = to->instance_id(); 1470 1471 // If the input type's class is the holder: if exact, the type only includes interfaces implemented by the holder 1472 // but if not exact, it may include extra interfaces: build new type from the holder class to make sure only 1473 // its interfaces are included. 1474 if (xk && ik->equals(canonical_holder)) { 1475 assert(tj == TypeInstPtr::make(to->ptr(), canonical_holder, is_known_inst, nullptr, offset, instance_id), "exact type should be canonical type"); 1476 } else { 1477 assert(xk || !is_known_inst, "Known instance should be exact type"); 1478 tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, is_known_inst, nullptr, offset, instance_id); 1479 } 1480 } 1481 } 1482 1483 // Klass pointers to object array klasses need some flattening 1484 const TypeKlassPtr *tk = tj->isa_klassptr(); 1485 if( tk ) { 1486 // If we are referencing a field within a Klass, we need 1487 // to assume the worst case of an Object. Both exact and 1488 // inexact types must flatten to the same alias class so 1489 // use NotNull as the PTR. 1490 if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) { 1491 tj = tk = TypeInstKlassPtr::make(TypePtr::NotNull, 1492 env()->Object_klass(), 1493 offset); 1494 } 1495 1496 if (tk->isa_aryklassptr() && tk->is_aryklassptr()->elem()->isa_klassptr()) { 1497 ciKlass* k = ciObjArrayKlass::make(env()->Object_klass()); 1498 if (!k || !k->is_loaded()) { // Only fails for some -Xcomp runs 1499 tj = tk = TypeInstKlassPtr::make(TypePtr::NotNull, env()->Object_klass(), offset); 1500 } else { 1501 tj = tk = TypeAryKlassPtr::make(TypePtr::NotNull, tk->is_aryklassptr()->elem(), k, offset); 1502 } 1503 } 1504 1505 // Check for precise loads from the primary supertype array and force them 1506 // to the supertype cache alias index. Check for generic array loads from 1507 // the primary supertype array and also force them to the supertype cache 1508 // alias index. Since the same load can reach both, we need to merge 1509 // these 2 disparate memories into the same alias class. Since the 1510 // primary supertype array is read-only, there's no chance of confusion 1511 // where we bypass an array load and an array store. 1512 int primary_supers_offset = in_bytes(Klass::primary_supers_offset()); 1513 if (offset == Type::OffsetBot || 1514 (offset >= primary_supers_offset && 1515 offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) || 1516 offset == (int)in_bytes(Klass::secondary_super_cache_offset())) { 1517 offset = in_bytes(Klass::secondary_super_cache_offset()); 1518 tj = tk = tk->with_offset(offset); 1519 } 1520 } 1521 1522 // Flatten all Raw pointers together. 1523 if (tj->base() == Type::RawPtr) 1524 tj = TypeRawPtr::BOTTOM; 1525 1526 if (tj->base() == Type::AnyPtr) 1527 tj = TypePtr::BOTTOM; // An error, which the caller must check for. 1528 1529 offset = tj->offset(); 1530 assert( offset != Type::OffsetTop, "Offset has fallen from constant" ); 1531 1532 assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) || 1533 (offset == Type::OffsetBot && tj->base() == Type::AryPtr) || 1534 (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) || 1535 (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) || 1536 (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) || 1537 (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) || 1538 (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr), 1539 "For oops, klasses, raw offset must be constant; for arrays the offset is never known" ); 1540 assert( tj->ptr() != TypePtr::TopPTR && 1541 tj->ptr() != TypePtr::AnyNull && 1542 tj->ptr() != TypePtr::Null, "No imprecise addresses" ); 1543 // assert( tj->ptr() != TypePtr::Constant || 1544 // tj->base() == Type::RawPtr || 1545 // tj->base() == Type::KlassPtr, "No constant oop addresses" ); 1546 1547 return tj; 1548 } 1549 1550 void Compile::AliasType::Init(int i, const TypePtr* at) { 1551 assert(AliasIdxTop <= i && i < Compile::current()->_max_alias_types, "Invalid alias index"); 1552 _index = i; 1553 _adr_type = at; 1554 _field = nullptr; 1555 _element = nullptr; 1556 _is_rewritable = true; // default 1557 const TypeOopPtr *atoop = (at != nullptr) ? at->isa_oopptr() : nullptr; 1558 if (atoop != nullptr && atoop->is_known_instance()) { 1559 const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot); 1560 _general_index = Compile::current()->get_alias_index(gt); 1561 } else { 1562 _general_index = 0; 1563 } 1564 } 1565 1566 BasicType Compile::AliasType::basic_type() const { 1567 if (element() != nullptr) { 1568 const Type* element = adr_type()->is_aryptr()->elem(); 1569 return element->isa_narrowoop() ? T_OBJECT : element->array_element_basic_type(); 1570 } if (field() != nullptr) { 1571 return field()->layout_type(); 1572 } else { 1573 return T_ILLEGAL; // unknown 1574 } 1575 } 1576 1577 //---------------------------------print_on------------------------------------ 1578 #ifndef PRODUCT 1579 void Compile::AliasType::print_on(outputStream* st) { 1580 if (index() < 10) 1581 st->print("@ <%d> ", index()); 1582 else st->print("@ <%d>", index()); 1583 st->print(is_rewritable() ? " " : " RO"); 1584 int offset = adr_type()->offset(); 1585 if (offset == Type::OffsetBot) 1586 st->print(" +any"); 1587 else st->print(" +%-3d", offset); 1588 st->print(" in "); 1589 adr_type()->dump_on(st); 1590 const TypeOopPtr* tjp = adr_type()->isa_oopptr(); 1591 if (field() != nullptr && tjp) { 1592 if (tjp->is_instptr()->instance_klass() != field()->holder() || 1593 tjp->offset() != field()->offset_in_bytes()) { 1594 st->print(" != "); 1595 field()->print(); 1596 st->print(" ***"); 1597 } 1598 } 1599 } 1600 1601 void print_alias_types() { 1602 Compile* C = Compile::current(); 1603 tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1); 1604 for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) { 1605 C->alias_type(idx)->print_on(tty); 1606 tty->cr(); 1607 } 1608 } 1609 #endif 1610 1611 1612 //----------------------------probe_alias_cache-------------------------------- 1613 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) { 1614 intptr_t key = (intptr_t) adr_type; 1615 key ^= key >> logAliasCacheSize; 1616 return &_alias_cache[key & right_n_bits(logAliasCacheSize)]; 1617 } 1618 1619 1620 //-----------------------------grow_alias_types-------------------------------- 1621 void Compile::grow_alias_types() { 1622 const int old_ats = _max_alias_types; // how many before? 1623 const int new_ats = old_ats; // how many more? 1624 const int grow_ats = old_ats+new_ats; // how many now? 1625 _max_alias_types = grow_ats; 1626 _alias_types = REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats); 1627 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats); 1628 Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats); 1629 for (int i = 0; i < new_ats; i++) _alias_types[old_ats+i] = &ats[i]; 1630 } 1631 1632 1633 //--------------------------------find_alias_type------------------------------ 1634 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) { 1635 if (!do_aliasing()) { 1636 return alias_type(AliasIdxBot); 1637 } 1638 1639 AliasCacheEntry* ace = probe_alias_cache(adr_type); 1640 if (ace->_adr_type == adr_type) { 1641 return alias_type(ace->_index); 1642 } 1643 1644 // Handle special cases. 1645 if (adr_type == nullptr) return alias_type(AliasIdxTop); 1646 if (adr_type == TypePtr::BOTTOM) return alias_type(AliasIdxBot); 1647 1648 // Do it the slow way. 1649 const TypePtr* flat = flatten_alias_type(adr_type); 1650 1651 #ifdef ASSERT 1652 { 1653 ResourceMark rm; 1654 assert(flat == flatten_alias_type(flat), "not idempotent: adr_type = %s; flat = %s => %s", 1655 Type::str(adr_type), Type::str(flat), Type::str(flatten_alias_type(flat))); 1656 assert(flat != TypePtr::BOTTOM, "cannot alias-analyze an untyped ptr: adr_type = %s", 1657 Type::str(adr_type)); 1658 if (flat->isa_oopptr() && !flat->isa_klassptr()) { 1659 const TypeOopPtr* foop = flat->is_oopptr(); 1660 // Scalarizable allocations have exact klass always. 1661 bool exact = !foop->klass_is_exact() || foop->is_known_instance(); 1662 const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr(); 1663 assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type: foop = %s; xoop = %s", 1664 Type::str(foop), Type::str(xoop)); 1665 } 1666 } 1667 #endif 1668 1669 int idx = AliasIdxTop; 1670 for (int i = 0; i < num_alias_types(); i++) { 1671 if (alias_type(i)->adr_type() == flat) { 1672 idx = i; 1673 break; 1674 } 1675 } 1676 1677 if (idx == AliasIdxTop) { 1678 if (no_create) return nullptr; 1679 // Grow the array if necessary. 1680 if (_num_alias_types == _max_alias_types) grow_alias_types(); 1681 // Add a new alias type. 1682 idx = _num_alias_types++; 1683 _alias_types[idx]->Init(idx, flat); 1684 if (flat == TypeInstPtr::KLASS) alias_type(idx)->set_rewritable(false); 1685 if (flat == TypeAryPtr::RANGE) alias_type(idx)->set_rewritable(false); 1686 if (flat->isa_instptr()) { 1687 if (flat->offset() == java_lang_Class::klass_offset() 1688 && flat->is_instptr()->instance_klass() == env()->Class_klass()) 1689 alias_type(idx)->set_rewritable(false); 1690 } 1691 if (flat->isa_aryptr()) { 1692 #ifdef ASSERT 1693 const int header_size_min = arrayOopDesc::base_offset_in_bytes(T_BYTE); 1694 // (T_BYTE has the weakest alignment and size restrictions...) 1695 assert(flat->offset() < header_size_min, "array body reference must be OffsetBot"); 1696 #endif 1697 if (flat->offset() == TypePtr::OffsetBot) { 1698 alias_type(idx)->set_element(flat->is_aryptr()->elem()); 1699 } 1700 } 1701 if (flat->isa_klassptr()) { 1702 if (UseCompactObjectHeaders) { 1703 if (flat->offset() == in_bytes(Klass::prototype_header_offset())) 1704 alias_type(idx)->set_rewritable(false); 1705 } 1706 if (flat->offset() == in_bytes(Klass::super_check_offset_offset())) 1707 alias_type(idx)->set_rewritable(false); 1708 if (flat->offset() == in_bytes(Klass::access_flags_offset())) 1709 alias_type(idx)->set_rewritable(false); 1710 if (flat->offset() == in_bytes(Klass::misc_flags_offset())) 1711 alias_type(idx)->set_rewritable(false); 1712 if (flat->offset() == in_bytes(Klass::java_mirror_offset())) 1713 alias_type(idx)->set_rewritable(false); 1714 if (flat->offset() == in_bytes(Klass::secondary_super_cache_offset())) 1715 alias_type(idx)->set_rewritable(false); 1716 } 1717 // %%% (We would like to finalize JavaThread::threadObj_offset(), 1718 // but the base pointer type is not distinctive enough to identify 1719 // references into JavaThread.) 1720 1721 // Check for final fields. 1722 const TypeInstPtr* tinst = flat->isa_instptr(); 1723 if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) { 1724 ciField* field; 1725 if (tinst->const_oop() != nullptr && 1726 tinst->instance_klass() == ciEnv::current()->Class_klass() && 1727 tinst->offset() >= (tinst->instance_klass()->layout_helper_size_in_bytes())) { 1728 // static field 1729 ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass(); 1730 field = k->get_field_by_offset(tinst->offset(), true); 1731 } else { 1732 ciInstanceKlass *k = tinst->instance_klass(); 1733 field = k->get_field_by_offset(tinst->offset(), false); 1734 } 1735 assert(field == nullptr || 1736 original_field == nullptr || 1737 (field->holder() == original_field->holder() && 1738 field->offset_in_bytes() == original_field->offset_in_bytes() && 1739 field->is_static() == original_field->is_static()), "wrong field?"); 1740 // Set field() and is_rewritable() attributes. 1741 if (field != nullptr) alias_type(idx)->set_field(field); 1742 } 1743 } 1744 1745 // Fill the cache for next time. 1746 ace->_adr_type = adr_type; 1747 ace->_index = idx; 1748 assert(alias_type(adr_type) == alias_type(idx), "type must be installed"); 1749 1750 // Might as well try to fill the cache for the flattened version, too. 1751 AliasCacheEntry* face = probe_alias_cache(flat); 1752 if (face->_adr_type == nullptr) { 1753 face->_adr_type = flat; 1754 face->_index = idx; 1755 assert(alias_type(flat) == alias_type(idx), "flat type must work too"); 1756 } 1757 1758 return alias_type(idx); 1759 } 1760 1761 1762 Compile::AliasType* Compile::alias_type(ciField* field) { 1763 const TypeOopPtr* t; 1764 if (field->is_static()) 1765 t = TypeInstPtr::make(field->holder()->java_mirror()); 1766 else 1767 t = TypeOopPtr::make_from_klass_raw(field->holder()); 1768 AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field); 1769 assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct"); 1770 return atp; 1771 } 1772 1773 1774 //------------------------------have_alias_type-------------------------------- 1775 bool Compile::have_alias_type(const TypePtr* adr_type) { 1776 AliasCacheEntry* ace = probe_alias_cache(adr_type); 1777 if (ace->_adr_type == adr_type) { 1778 return true; 1779 } 1780 1781 // Handle special cases. 1782 if (adr_type == nullptr) return true; 1783 if (adr_type == TypePtr::BOTTOM) return true; 1784 1785 return find_alias_type(adr_type, true, nullptr) != nullptr; 1786 } 1787 1788 //-----------------------------must_alias-------------------------------------- 1789 // True if all values of the given address type are in the given alias category. 1790 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) { 1791 if (alias_idx == AliasIdxBot) return true; // the universal category 1792 if (adr_type == nullptr) return true; // null serves as TypePtr::TOP 1793 if (alias_idx == AliasIdxTop) return false; // the empty category 1794 if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins 1795 1796 // the only remaining possible overlap is identity 1797 int adr_idx = get_alias_index(adr_type); 1798 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, ""); 1799 assert(adr_idx == alias_idx || 1800 (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM 1801 && adr_type != TypeOopPtr::BOTTOM), 1802 "should not be testing for overlap with an unsafe pointer"); 1803 return adr_idx == alias_idx; 1804 } 1805 1806 //------------------------------can_alias-------------------------------------- 1807 // True if any values of the given address type are in the given alias category. 1808 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) { 1809 if (alias_idx == AliasIdxTop) return false; // the empty category 1810 if (adr_type == nullptr) return false; // null serves as TypePtr::TOP 1811 // Known instance doesn't alias with bottom memory 1812 if (alias_idx == AliasIdxBot) return !adr_type->is_known_instance(); // the universal category 1813 if (adr_type->base() == Type::AnyPtr) return !C->get_adr_type(alias_idx)->is_known_instance(); // TypePtr::BOTTOM or its twins 1814 1815 // the only remaining possible overlap is identity 1816 int adr_idx = get_alias_index(adr_type); 1817 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, ""); 1818 return adr_idx == alias_idx; 1819 } 1820 1821 // Mark all ParsePredicateNodes as useless. They will later be removed from the graph in IGVN together with their 1822 // uncommon traps if no Runtime Predicates were created from the Parse Predicates. 1823 void Compile::mark_parse_predicate_nodes_useless(PhaseIterGVN& igvn) { 1824 if (parse_predicate_count() == 0) { 1825 return; 1826 } 1827 for (int i = 0; i < parse_predicate_count(); i++) { 1828 ParsePredicateNode* parse_predicate = _parse_predicates.at(i); 1829 parse_predicate->mark_useless(); 1830 igvn._worklist.push(parse_predicate); 1831 } 1832 _parse_predicates.clear(); 1833 } 1834 1835 void Compile::record_for_post_loop_opts_igvn(Node* n) { 1836 if (!n->for_post_loop_opts_igvn()) { 1837 assert(!_for_post_loop_igvn.contains(n), "duplicate"); 1838 n->add_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn); 1839 _for_post_loop_igvn.append(n); 1840 } 1841 } 1842 1843 void Compile::remove_from_post_loop_opts_igvn(Node* n) { 1844 n->remove_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn); 1845 _for_post_loop_igvn.remove(n); 1846 } 1847 1848 void Compile::process_for_post_loop_opts_igvn(PhaseIterGVN& igvn) { 1849 // Verify that all previous optimizations produced a valid graph 1850 // at least to this point, even if no loop optimizations were done. 1851 PhaseIdealLoop::verify(igvn); 1852 1853 C->set_post_loop_opts_phase(); // no more loop opts allowed 1854 1855 assert(!C->major_progress(), "not cleared"); 1856 1857 if (_for_post_loop_igvn.length() > 0) { 1858 while (_for_post_loop_igvn.length() > 0) { 1859 Node* n = _for_post_loop_igvn.pop(); 1860 n->remove_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn); 1861 igvn._worklist.push(n); 1862 } 1863 igvn.optimize(); 1864 if (failing()) return; 1865 assert(_for_post_loop_igvn.length() == 0, "no more delayed nodes allowed"); 1866 assert(C->parse_predicate_count() == 0, "all parse predicates should have been removed now"); 1867 1868 // Sometimes IGVN sets major progress (e.g., when processing loop nodes). 1869 if (C->major_progress()) { 1870 C->clear_major_progress(); // ensure that major progress is now clear 1871 } 1872 } 1873 } 1874 1875 void Compile::record_unstable_if_trap(UnstableIfTrap* trap) { 1876 if (OptimizeUnstableIf) { 1877 _unstable_if_traps.append(trap); 1878 } 1879 } 1880 1881 void Compile::remove_useless_unstable_if_traps(Unique_Node_List& useful) { 1882 for (int i = _unstable_if_traps.length() - 1; i >= 0; i--) { 1883 UnstableIfTrap* trap = _unstable_if_traps.at(i); 1884 Node* n = trap->uncommon_trap(); 1885 if (!useful.member(n)) { 1886 _unstable_if_traps.delete_at(i); // replaces i-th with last element which is known to be useful (already processed) 1887 } 1888 } 1889 } 1890 1891 // Remove the unstable if trap associated with 'unc' from candidates. It is either dead 1892 // or fold-compares case. Return true if succeed or not found. 1893 // 1894 // In rare cases, the found trap has been processed. It is too late to delete it. Return 1895 // false and ask fold-compares to yield. 1896 // 1897 // 'fold-compares' may use the uncommon_trap of the dominating IfNode to cover the fused 1898 // IfNode. This breaks the unstable_if trap invariant: control takes the unstable path 1899 // when deoptimization does happen. 1900 bool Compile::remove_unstable_if_trap(CallStaticJavaNode* unc, bool yield) { 1901 for (int i = 0; i < _unstable_if_traps.length(); ++i) { 1902 UnstableIfTrap* trap = _unstable_if_traps.at(i); 1903 if (trap->uncommon_trap() == unc) { 1904 if (yield && trap->modified()) { 1905 return false; 1906 } 1907 _unstable_if_traps.delete_at(i); 1908 break; 1909 } 1910 } 1911 return true; 1912 } 1913 1914 // Re-calculate unstable_if traps with the liveness of next_bci, which points to the unlikely path. 1915 // It needs to be done after igvn because fold-compares may fuse uncommon_traps and before renumbering. 1916 void Compile::process_for_unstable_if_traps(PhaseIterGVN& igvn) { 1917 for (int i = _unstable_if_traps.length() - 1; i >= 0; --i) { 1918 UnstableIfTrap* trap = _unstable_if_traps.at(i); 1919 CallStaticJavaNode* unc = trap->uncommon_trap(); 1920 int next_bci = trap->next_bci(); 1921 bool modified = trap->modified(); 1922 1923 if (next_bci != -1 && !modified) { 1924 assert(!_dead_node_list.test(unc->_idx), "changing a dead node!"); 1925 JVMState* jvms = unc->jvms(); 1926 ciMethod* method = jvms->method(); 1927 ciBytecodeStream iter(method); 1928 1929 iter.force_bci(jvms->bci()); 1930 assert(next_bci == iter.next_bci() || next_bci == iter.get_dest(), "wrong next_bci at unstable_if"); 1931 Bytecodes::Code c = iter.cur_bc(); 1932 Node* lhs = nullptr; 1933 Node* rhs = nullptr; 1934 if (c == Bytecodes::_if_acmpeq || c == Bytecodes::_if_acmpne) { 1935 lhs = unc->peek_operand(0); 1936 rhs = unc->peek_operand(1); 1937 } else if (c == Bytecodes::_ifnull || c == Bytecodes::_ifnonnull) { 1938 lhs = unc->peek_operand(0); 1939 } 1940 1941 ResourceMark rm; 1942 const MethodLivenessResult& live_locals = method->liveness_at_bci(next_bci); 1943 assert(live_locals.is_valid(), "broken liveness info"); 1944 int len = (int)live_locals.size(); 1945 1946 for (int i = 0; i < len; i++) { 1947 Node* local = unc->local(jvms, i); 1948 // kill local using the liveness of next_bci. 1949 // give up when the local looks like an operand to secure reexecution. 1950 if (!live_locals.at(i) && !local->is_top() && local != lhs && local!= rhs) { 1951 uint idx = jvms->locoff() + i; 1952 #ifdef ASSERT 1953 if (PrintOpto && Verbose) { 1954 tty->print("[unstable_if] kill local#%d: ", idx); 1955 local->dump(); 1956 tty->cr(); 1957 } 1958 #endif 1959 igvn.replace_input_of(unc, idx, top()); 1960 modified = true; 1961 } 1962 } 1963 } 1964 1965 // keep the mondified trap for late query 1966 if (modified) { 1967 trap->set_modified(); 1968 } else { 1969 _unstable_if_traps.delete_at(i); 1970 } 1971 } 1972 igvn.optimize(); 1973 } 1974 1975 // StringOpts and late inlining of string methods 1976 void Compile::inline_string_calls(bool parse_time) { 1977 { 1978 // remove useless nodes to make the usage analysis simpler 1979 ResourceMark rm; 1980 PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist()); 1981 } 1982 1983 { 1984 ResourceMark rm; 1985 print_method(PHASE_BEFORE_STRINGOPTS, 3); 1986 PhaseStringOpts pso(initial_gvn()); 1987 print_method(PHASE_AFTER_STRINGOPTS, 3); 1988 } 1989 1990 // now inline anything that we skipped the first time around 1991 if (!parse_time) { 1992 _late_inlines_pos = _late_inlines.length(); 1993 } 1994 1995 while (_string_late_inlines.length() > 0) { 1996 CallGenerator* cg = _string_late_inlines.pop(); 1997 cg->do_late_inline(); 1998 if (failing()) return; 1999 } 2000 _string_late_inlines.trunc_to(0); 2001 } 2002 2003 // Late inlining of boxing methods 2004 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) { 2005 if (_boxing_late_inlines.length() > 0) { 2006 assert(has_boxed_value(), "inconsistent"); 2007 2008 set_inlining_incrementally(true); 2009 2010 igvn_worklist()->ensure_empty(); // should be done with igvn 2011 2012 _late_inlines_pos = _late_inlines.length(); 2013 2014 while (_boxing_late_inlines.length() > 0) { 2015 CallGenerator* cg = _boxing_late_inlines.pop(); 2016 cg->do_late_inline(); 2017 if (failing()) return; 2018 } 2019 _boxing_late_inlines.trunc_to(0); 2020 2021 inline_incrementally_cleanup(igvn); 2022 2023 set_inlining_incrementally(false); 2024 } 2025 } 2026 2027 bool Compile::inline_incrementally_one() { 2028 assert(IncrementalInline, "incremental inlining should be on"); 2029 2030 TracePhase tp(_t_incrInline_inline); 2031 2032 set_inlining_progress(false); 2033 set_do_cleanup(false); 2034 2035 for (int i = 0; i < _late_inlines.length(); i++) { 2036 _late_inlines_pos = i+1; 2037 CallGenerator* cg = _late_inlines.at(i); 2038 bool does_dispatch = cg->is_virtual_late_inline() || cg->is_mh_late_inline(); 2039 if (inlining_incrementally() || does_dispatch) { // a call can be either inlined or strength-reduced to a direct call 2040 cg->do_late_inline(); 2041 assert(_late_inlines.at(i) == cg, "no insertions before current position allowed"); 2042 if (failing()) { 2043 return false; 2044 } else if (inlining_progress()) { 2045 _late_inlines_pos = i+1; // restore the position in case new elements were inserted 2046 print_method(PHASE_INCREMENTAL_INLINE_STEP, 3, cg->call_node()); 2047 break; // process one call site at a time 2048 } 2049 } else { 2050 // Ignore late inline direct calls when inlining is not allowed. 2051 // They are left in the late inline list when node budget is exhausted until the list is fully drained. 2052 } 2053 } 2054 // Remove processed elements. 2055 _late_inlines.remove_till(_late_inlines_pos); 2056 _late_inlines_pos = 0; 2057 2058 assert(inlining_progress() || _late_inlines.length() == 0, "no progress"); 2059 2060 bool needs_cleanup = do_cleanup() || over_inlining_cutoff(); 2061 2062 set_inlining_progress(false); 2063 set_do_cleanup(false); 2064 2065 bool force_cleanup = directive()->IncrementalInlineForceCleanupOption; 2066 return (_late_inlines.length() > 0) && !needs_cleanup && !force_cleanup; 2067 } 2068 2069 void Compile::inline_incrementally_cleanup(PhaseIterGVN& igvn) { 2070 { 2071 TracePhase tp(_t_incrInline_pru); 2072 ResourceMark rm; 2073 PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist()); 2074 } 2075 { 2076 TracePhase tp(_t_incrInline_igvn); 2077 igvn.reset_from_gvn(initial_gvn()); 2078 igvn.optimize(); 2079 if (failing()) return; 2080 } 2081 print_method(PHASE_INCREMENTAL_INLINE_CLEANUP, 3); 2082 } 2083 2084 // Perform incremental inlining until bound on number of live nodes is reached 2085 void Compile::inline_incrementally(PhaseIterGVN& igvn) { 2086 TracePhase tp(_t_incrInline); 2087 2088 set_inlining_incrementally(true); 2089 uint low_live_nodes = 0; 2090 2091 while (_late_inlines.length() > 0) { 2092 if (live_nodes() > (uint)LiveNodeCountInliningCutoff) { 2093 if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) { 2094 TracePhase tp(_t_incrInline_ideal); 2095 // PhaseIdealLoop is expensive so we only try it once we are 2096 // out of live nodes and we only try it again if the previous 2097 // helped got the number of nodes down significantly 2098 PhaseIdealLoop::optimize(igvn, LoopOptsNone); 2099 if (failing()) return; 2100 low_live_nodes = live_nodes(); 2101 _major_progress = true; 2102 } 2103 2104 if (live_nodes() > (uint)LiveNodeCountInliningCutoff) { 2105 bool do_print_inlining = print_inlining() || print_intrinsics(); 2106 if (do_print_inlining || log() != nullptr) { 2107 // Print inlining message for candidates that we couldn't inline for lack of space. 2108 for (int i = 0; i < _late_inlines.length(); i++) { 2109 CallGenerator* cg = _late_inlines.at(i); 2110 const char* msg = "live nodes > LiveNodeCountInliningCutoff"; 2111 if (do_print_inlining) { 2112 inline_printer()->record(cg->method(), cg->call_node()->jvms(), InliningResult::FAILURE, msg); 2113 } 2114 log_late_inline_failure(cg, msg); 2115 } 2116 } 2117 break; // finish 2118 } 2119 } 2120 2121 igvn_worklist()->ensure_empty(); // should be done with igvn 2122 2123 while (inline_incrementally_one()) { 2124 assert(!failing_internal() || failure_is_artificial(), "inconsistent"); 2125 } 2126 if (failing()) return; 2127 2128 inline_incrementally_cleanup(igvn); 2129 2130 print_method(PHASE_INCREMENTAL_INLINE_STEP, 3); 2131 2132 if (failing()) return; 2133 2134 if (_late_inlines.length() == 0) { 2135 break; // no more progress 2136 } 2137 } 2138 2139 igvn_worklist()->ensure_empty(); // should be done with igvn 2140 2141 if (_string_late_inlines.length() > 0) { 2142 assert(has_stringbuilder(), "inconsistent"); 2143 2144 inline_string_calls(false); 2145 2146 if (failing()) return; 2147 2148 inline_incrementally_cleanup(igvn); 2149 } 2150 2151 set_inlining_incrementally(false); 2152 } 2153 2154 void Compile::process_late_inline_calls_no_inline(PhaseIterGVN& igvn) { 2155 // "inlining_incrementally() == false" is used to signal that no inlining is allowed 2156 // (see LateInlineVirtualCallGenerator::do_late_inline_check() for details). 2157 // Tracking and verification of modified nodes is disabled by setting "_modified_nodes == nullptr" 2158 // as if "inlining_incrementally() == true" were set. 2159 assert(inlining_incrementally() == false, "not allowed"); 2160 assert(_modified_nodes == nullptr, "not allowed"); 2161 assert(_late_inlines.length() > 0, "sanity"); 2162 2163 while (_late_inlines.length() > 0) { 2164 igvn_worklist()->ensure_empty(); // should be done with igvn 2165 2166 while (inline_incrementally_one()) { 2167 assert(!failing_internal() || failure_is_artificial(), "inconsistent"); 2168 } 2169 if (failing()) return; 2170 2171 inline_incrementally_cleanup(igvn); 2172 } 2173 } 2174 2175 bool Compile::optimize_loops(PhaseIterGVN& igvn, LoopOptsMode mode) { 2176 if (_loop_opts_cnt > 0) { 2177 while (major_progress() && (_loop_opts_cnt > 0)) { 2178 TracePhase tp(_t_idealLoop); 2179 PhaseIdealLoop::optimize(igvn, mode); 2180 _loop_opts_cnt--; 2181 if (failing()) return false; 2182 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2); 2183 } 2184 } 2185 return true; 2186 } 2187 2188 // Remove edges from "root" to each SafePoint at a backward branch. 2189 // They were inserted during parsing (see add_safepoint()) to make 2190 // infinite loops without calls or exceptions visible to root, i.e., 2191 // useful. 2192 void Compile::remove_root_to_sfpts_edges(PhaseIterGVN& igvn) { 2193 Node *r = root(); 2194 if (r != nullptr) { 2195 for (uint i = r->req(); i < r->len(); ++i) { 2196 Node *n = r->in(i); 2197 if (n != nullptr && n->is_SafePoint()) { 2198 r->rm_prec(i); 2199 if (n->outcnt() == 0) { 2200 igvn.remove_dead_node(n); 2201 } 2202 --i; 2203 } 2204 } 2205 // Parsing may have added top inputs to the root node (Path 2206 // leading to the Halt node proven dead). Make sure we get a 2207 // chance to clean them up. 2208 igvn._worklist.push(r); 2209 igvn.optimize(); 2210 } 2211 } 2212 2213 //------------------------------Optimize--------------------------------------- 2214 // Given a graph, optimize it. 2215 void Compile::Optimize() { 2216 TracePhase tp(_t_optimizer); 2217 2218 #ifndef PRODUCT 2219 if (env()->break_at_compile()) { 2220 BREAKPOINT; 2221 } 2222 2223 #endif 2224 2225 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 2226 #ifdef ASSERT 2227 bs->verify_gc_barriers(this, BarrierSetC2::BeforeOptimize); 2228 #endif 2229 2230 ResourceMark rm; 2231 2232 NOT_PRODUCT( verify_graph_edges(); ) 2233 2234 print_method(PHASE_AFTER_PARSING, 1); 2235 2236 { 2237 // Iterative Global Value Numbering, including ideal transforms 2238 // Initialize IterGVN with types and values from parse-time GVN 2239 PhaseIterGVN igvn(initial_gvn()); 2240 #ifdef ASSERT 2241 _modified_nodes = new (comp_arena()) Unique_Node_List(comp_arena()); 2242 #endif 2243 { 2244 TracePhase tp(_t_iterGVN); 2245 igvn.optimize(); 2246 } 2247 2248 if (failing()) return; 2249 2250 print_method(PHASE_ITER_GVN1, 2); 2251 2252 process_for_unstable_if_traps(igvn); 2253 2254 if (failing()) return; 2255 2256 inline_incrementally(igvn); 2257 2258 print_method(PHASE_INCREMENTAL_INLINE, 2); 2259 2260 if (failing()) return; 2261 2262 if (eliminate_boxing()) { 2263 // Inline valueOf() methods now. 2264 inline_boxing_calls(igvn); 2265 2266 if (failing()) return; 2267 2268 if (AlwaysIncrementalInline || StressIncrementalInlining) { 2269 inline_incrementally(igvn); 2270 } 2271 2272 print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2); 2273 2274 if (failing()) return; 2275 } 2276 2277 // Remove the speculative part of types and clean up the graph from 2278 // the extra CastPP nodes whose only purpose is to carry them. Do 2279 // that early so that optimizations are not disrupted by the extra 2280 // CastPP nodes. 2281 remove_speculative_types(igvn); 2282 2283 if (failing()) return; 2284 2285 // No more new expensive nodes will be added to the list from here 2286 // so keep only the actual candidates for optimizations. 2287 cleanup_expensive_nodes(igvn); 2288 2289 if (failing()) return; 2290 2291 assert(EnableVectorSupport || !has_vbox_nodes(), "sanity"); 2292 if (EnableVectorSupport && has_vbox_nodes()) { 2293 TracePhase tp(_t_vector); 2294 PhaseVector pv(igvn); 2295 pv.optimize_vector_boxes(); 2296 if (failing()) return; 2297 print_method(PHASE_ITER_GVN_AFTER_VECTOR, 2); 2298 } 2299 assert(!has_vbox_nodes(), "sanity"); 2300 2301 if (!failing() && RenumberLiveNodes && live_nodes() + NodeLimitFudgeFactor < unique()) { 2302 Compile::TracePhase tp(_t_renumberLive); 2303 igvn_worklist()->ensure_empty(); // should be done with igvn 2304 { 2305 ResourceMark rm; 2306 PhaseRenumberLive prl(initial_gvn(), *igvn_worklist()); 2307 } 2308 igvn.reset_from_gvn(initial_gvn()); 2309 igvn.optimize(); 2310 if (failing()) return; 2311 } 2312 2313 // Now that all inlining is over and no PhaseRemoveUseless will run, cut edge from root to loop 2314 // safepoints 2315 remove_root_to_sfpts_edges(igvn); 2316 2317 if (failing()) return; 2318 2319 // Perform escape analysis 2320 if (do_escape_analysis() && ConnectionGraph::has_candidates(this)) { 2321 if (has_loops()) { 2322 // Cleanup graph (remove dead nodes). 2323 TracePhase tp(_t_idealLoop); 2324 PhaseIdealLoop::optimize(igvn, LoopOptsMaxUnroll); 2325 if (failing()) return; 2326 } 2327 bool progress; 2328 print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2); 2329 do { 2330 ConnectionGraph::do_analysis(this, &igvn); 2331 2332 if (failing()) return; 2333 2334 int mcount = macro_count(); // Record number of allocations and locks before IGVN 2335 2336 // Optimize out fields loads from scalar replaceable allocations. 2337 igvn.optimize(); 2338 print_method(PHASE_ITER_GVN_AFTER_EA, 2); 2339 2340 if (failing()) return; 2341 2342 if (congraph() != nullptr && macro_count() > 0) { 2343 TracePhase tp(_t_macroEliminate); 2344 PhaseMacroExpand mexp(igvn); 2345 mexp.eliminate_macro_nodes(); 2346 if (failing()) return; 2347 2348 igvn.set_delay_transform(false); 2349 igvn.optimize(); 2350 if (failing()) return; 2351 2352 print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2); 2353 } 2354 2355 ConnectionGraph::verify_ram_nodes(this, root()); 2356 if (failing()) return; 2357 2358 progress = do_iterative_escape_analysis() && 2359 (macro_count() < mcount) && 2360 ConnectionGraph::has_candidates(this); 2361 // Try again if candidates exist and made progress 2362 // by removing some allocations and/or locks. 2363 } while (progress); 2364 } 2365 2366 // Loop transforms on the ideal graph. Range Check Elimination, 2367 // peeling, unrolling, etc. 2368 2369 // Set loop opts counter 2370 if((_loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) { 2371 { 2372 TracePhase tp(_t_idealLoop); 2373 PhaseIdealLoop::optimize(igvn, LoopOptsDefault); 2374 _loop_opts_cnt--; 2375 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2); 2376 if (failing()) return; 2377 } 2378 // Loop opts pass if partial peeling occurred in previous pass 2379 if(PartialPeelLoop && major_progress() && (_loop_opts_cnt > 0)) { 2380 TracePhase tp(_t_idealLoop); 2381 PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf); 2382 _loop_opts_cnt--; 2383 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2); 2384 if (failing()) return; 2385 } 2386 // Loop opts pass for loop-unrolling before CCP 2387 if(major_progress() && (_loop_opts_cnt > 0)) { 2388 TracePhase tp(_t_idealLoop); 2389 PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf); 2390 _loop_opts_cnt--; 2391 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2); 2392 } 2393 if (!failing()) { 2394 // Verify that last round of loop opts produced a valid graph 2395 PhaseIdealLoop::verify(igvn); 2396 } 2397 } 2398 if (failing()) return; 2399 2400 // Conditional Constant Propagation; 2401 print_method(PHASE_BEFORE_CCP1, 2); 2402 PhaseCCP ccp( &igvn ); 2403 assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)"); 2404 { 2405 TracePhase tp(_t_ccp); 2406 ccp.do_transform(); 2407 } 2408 print_method(PHASE_CCP1, 2); 2409 2410 assert( true, "Break here to ccp.dump_old2new_map()"); 2411 2412 // Iterative Global Value Numbering, including ideal transforms 2413 { 2414 TracePhase tp(_t_iterGVN2); 2415 igvn.reset_from_igvn(&ccp); 2416 igvn.optimize(); 2417 } 2418 print_method(PHASE_ITER_GVN2, 2); 2419 2420 if (failing()) return; 2421 2422 // Loop transforms on the ideal graph. Range Check Elimination, 2423 // peeling, unrolling, etc. 2424 if (!optimize_loops(igvn, LoopOptsDefault)) { 2425 return; 2426 } 2427 2428 if (failing()) return; 2429 2430 C->clear_major_progress(); // ensure that major progress is now clear 2431 2432 process_for_post_loop_opts_igvn(igvn); 2433 2434 if (failing()) return; 2435 2436 #ifdef ASSERT 2437 bs->verify_gc_barriers(this, BarrierSetC2::BeforeMacroExpand); 2438 #endif 2439 2440 { 2441 TracePhase tp(_t_macroExpand); 2442 print_method(PHASE_BEFORE_MACRO_EXPANSION, 3); 2443 PhaseMacroExpand mex(igvn); 2444 if (mex.expand_macro_nodes()) { 2445 assert(failing(), "must bail out w/ explicit message"); 2446 return; 2447 } 2448 print_method(PHASE_AFTER_MACRO_EXPANSION, 2); 2449 } 2450 2451 { 2452 TracePhase tp(_t_barrierExpand); 2453 if (bs->expand_barriers(this, igvn)) { 2454 assert(failing(), "must bail out w/ explicit message"); 2455 return; 2456 } 2457 print_method(PHASE_BARRIER_EXPANSION, 2); 2458 } 2459 2460 if (C->max_vector_size() > 0) { 2461 C->optimize_logic_cones(igvn); 2462 igvn.optimize(); 2463 if (failing()) return; 2464 } 2465 2466 DEBUG_ONLY( _modified_nodes = nullptr; ) 2467 2468 assert(igvn._worklist.size() == 0, "not empty"); 2469 2470 assert(_late_inlines.length() == 0 || IncrementalInlineMH || IncrementalInlineVirtual, "not empty"); 2471 2472 if (_late_inlines.length() > 0) { 2473 // More opportunities to optimize virtual and MH calls. 2474 // Though it's maybe too late to perform inlining, strength-reducing them to direct calls is still an option. 2475 process_late_inline_calls_no_inline(igvn); 2476 if (failing()) return; 2477 } 2478 } // (End scope of igvn; run destructor if necessary for asserts.) 2479 2480 check_no_dead_use(); 2481 2482 // We will never use the NodeHash table any more. Clear it so that final_graph_reshaping does not have 2483 // to remove hashes to unlock nodes for modifications. 2484 C->node_hash()->clear(); 2485 2486 // A method with only infinite loops has no edges entering loops from root 2487 { 2488 TracePhase tp(_t_graphReshaping); 2489 if (final_graph_reshaping()) { 2490 assert(failing(), "must bail out w/ explicit message"); 2491 return; 2492 } 2493 } 2494 2495 print_method(PHASE_OPTIMIZE_FINISHED, 2); 2496 DEBUG_ONLY(set_phase_optimize_finished();) 2497 } 2498 2499 #ifdef ASSERT 2500 void Compile::check_no_dead_use() const { 2501 ResourceMark rm; 2502 Unique_Node_List wq; 2503 wq.push(root()); 2504 for (uint i = 0; i < wq.size(); ++i) { 2505 Node* n = wq.at(i); 2506 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) { 2507 Node* u = n->fast_out(j); 2508 if (u->outcnt() == 0 && !u->is_Con()) { 2509 u->dump(); 2510 fatal("no reachable node should have no use"); 2511 } 2512 wq.push(u); 2513 } 2514 } 2515 } 2516 #endif 2517 2518 void Compile::inline_vector_reboxing_calls() { 2519 if (C->_vector_reboxing_late_inlines.length() > 0) { 2520 _late_inlines_pos = C->_late_inlines.length(); 2521 while (_vector_reboxing_late_inlines.length() > 0) { 2522 CallGenerator* cg = _vector_reboxing_late_inlines.pop(); 2523 cg->do_late_inline(); 2524 if (failing()) return; 2525 print_method(PHASE_INLINE_VECTOR_REBOX, 3, cg->call_node()); 2526 } 2527 _vector_reboxing_late_inlines.trunc_to(0); 2528 } 2529 } 2530 2531 bool Compile::has_vbox_nodes() { 2532 if (C->_vector_reboxing_late_inlines.length() > 0) { 2533 return true; 2534 } 2535 for (int macro_idx = C->macro_count() - 1; macro_idx >= 0; macro_idx--) { 2536 Node * n = C->macro_node(macro_idx); 2537 assert(n->is_macro(), "only macro nodes expected here"); 2538 if (n->Opcode() == Op_VectorUnbox || n->Opcode() == Op_VectorBox || n->Opcode() == Op_VectorBoxAllocate) { 2539 return true; 2540 } 2541 } 2542 return false; 2543 } 2544 2545 //---------------------------- Bitwise operation packing optimization --------------------------- 2546 2547 static bool is_vector_unary_bitwise_op(Node* n) { 2548 return n->Opcode() == Op_XorV && 2549 VectorNode::is_vector_bitwise_not_pattern(n); 2550 } 2551 2552 static bool is_vector_binary_bitwise_op(Node* n) { 2553 switch (n->Opcode()) { 2554 case Op_AndV: 2555 case Op_OrV: 2556 return true; 2557 2558 case Op_XorV: 2559 return !is_vector_unary_bitwise_op(n); 2560 2561 default: 2562 return false; 2563 } 2564 } 2565 2566 static bool is_vector_ternary_bitwise_op(Node* n) { 2567 return n->Opcode() == Op_MacroLogicV; 2568 } 2569 2570 static bool is_vector_bitwise_op(Node* n) { 2571 return is_vector_unary_bitwise_op(n) || 2572 is_vector_binary_bitwise_op(n) || 2573 is_vector_ternary_bitwise_op(n); 2574 } 2575 2576 static bool is_vector_bitwise_cone_root(Node* n) { 2577 if (n->bottom_type()->isa_vectmask() || !is_vector_bitwise_op(n)) { 2578 return false; 2579 } 2580 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 2581 if (is_vector_bitwise_op(n->fast_out(i))) { 2582 return false; 2583 } 2584 } 2585 return true; 2586 } 2587 2588 static uint collect_unique_inputs(Node* n, Unique_Node_List& inputs) { 2589 uint cnt = 0; 2590 if (is_vector_bitwise_op(n)) { 2591 uint inp_cnt = n->is_predicated_vector() ? n->req()-1 : n->req(); 2592 if (VectorNode::is_vector_bitwise_not_pattern(n)) { 2593 for (uint i = 1; i < inp_cnt; i++) { 2594 Node* in = n->in(i); 2595 bool skip = VectorNode::is_all_ones_vector(in); 2596 if (!skip && !inputs.member(in)) { 2597 inputs.push(in); 2598 cnt++; 2599 } 2600 } 2601 assert(cnt <= 1, "not unary"); 2602 } else { 2603 uint last_req = inp_cnt; 2604 if (is_vector_ternary_bitwise_op(n)) { 2605 last_req = inp_cnt - 1; // skip last input 2606 } 2607 for (uint i = 1; i < last_req; i++) { 2608 Node* def = n->in(i); 2609 if (!inputs.member(def)) { 2610 inputs.push(def); 2611 cnt++; 2612 } 2613 } 2614 } 2615 } else { // not a bitwise operations 2616 if (!inputs.member(n)) { 2617 inputs.push(n); 2618 cnt++; 2619 } 2620 } 2621 return cnt; 2622 } 2623 2624 void Compile::collect_logic_cone_roots(Unique_Node_List& list) { 2625 Unique_Node_List useful_nodes; 2626 C->identify_useful_nodes(useful_nodes); 2627 2628 for (uint i = 0; i < useful_nodes.size(); i++) { 2629 Node* n = useful_nodes.at(i); 2630 if (is_vector_bitwise_cone_root(n)) { 2631 list.push(n); 2632 } 2633 } 2634 } 2635 2636 Node* Compile::xform_to_MacroLogicV(PhaseIterGVN& igvn, 2637 const TypeVect* vt, 2638 Unique_Node_List& partition, 2639 Unique_Node_List& inputs) { 2640 assert(partition.size() == 2 || partition.size() == 3, "not supported"); 2641 assert(inputs.size() == 2 || inputs.size() == 3, "not supported"); 2642 assert(Matcher::match_rule_supported_vector(Op_MacroLogicV, vt->length(), vt->element_basic_type()), "not supported"); 2643 2644 Node* in1 = inputs.at(0); 2645 Node* in2 = inputs.at(1); 2646 Node* in3 = (inputs.size() == 3 ? inputs.at(2) : in2); 2647 2648 uint func = compute_truth_table(partition, inputs); 2649 2650 Node* pn = partition.at(partition.size() - 1); 2651 Node* mask = pn->is_predicated_vector() ? pn->in(pn->req()-1) : nullptr; 2652 return igvn.transform(MacroLogicVNode::make(igvn, in1, in2, in3, mask, func, vt)); 2653 } 2654 2655 static uint extract_bit(uint func, uint pos) { 2656 return (func & (1 << pos)) >> pos; 2657 } 2658 2659 // 2660 // A macro logic node represents a truth table. It has 4 inputs, 2661 // First three inputs corresponds to 3 columns of a truth table 2662 // and fourth input captures the logic function. 2663 // 2664 // eg. fn = (in1 AND in2) OR in3; 2665 // 2666 // MacroNode(in1,in2,in3,fn) 2667 // 2668 // ----------------- 2669 // in1 in2 in3 fn 2670 // ----------------- 2671 // 0 0 0 0 2672 // 0 0 1 1 2673 // 0 1 0 0 2674 // 0 1 1 1 2675 // 1 0 0 0 2676 // 1 0 1 1 2677 // 1 1 0 1 2678 // 1 1 1 1 2679 // 2680 2681 uint Compile::eval_macro_logic_op(uint func, uint in1 , uint in2, uint in3) { 2682 int res = 0; 2683 for (int i = 0; i < 8; i++) { 2684 int bit1 = extract_bit(in1, i); 2685 int bit2 = extract_bit(in2, i); 2686 int bit3 = extract_bit(in3, i); 2687 2688 int func_bit_pos = (bit1 << 2 | bit2 << 1 | bit3); 2689 int func_bit = extract_bit(func, func_bit_pos); 2690 2691 res |= func_bit << i; 2692 } 2693 return res; 2694 } 2695 2696 static uint eval_operand(Node* n, ResourceHashtable<Node*,uint>& eval_map) { 2697 assert(n != nullptr, ""); 2698 assert(eval_map.contains(n), "absent"); 2699 return *(eval_map.get(n)); 2700 } 2701 2702 static void eval_operands(Node* n, 2703 uint& func1, uint& func2, uint& func3, 2704 ResourceHashtable<Node*,uint>& eval_map) { 2705 assert(is_vector_bitwise_op(n), ""); 2706 2707 if (is_vector_unary_bitwise_op(n)) { 2708 Node* opnd = n->in(1); 2709 if (VectorNode::is_vector_bitwise_not_pattern(n) && VectorNode::is_all_ones_vector(opnd)) { 2710 opnd = n->in(2); 2711 } 2712 func1 = eval_operand(opnd, eval_map); 2713 } else if (is_vector_binary_bitwise_op(n)) { 2714 func1 = eval_operand(n->in(1), eval_map); 2715 func2 = eval_operand(n->in(2), eval_map); 2716 } else { 2717 assert(is_vector_ternary_bitwise_op(n), "unknown operation"); 2718 func1 = eval_operand(n->in(1), eval_map); 2719 func2 = eval_operand(n->in(2), eval_map); 2720 func3 = eval_operand(n->in(3), eval_map); 2721 } 2722 } 2723 2724 uint Compile::compute_truth_table(Unique_Node_List& partition, Unique_Node_List& inputs) { 2725 assert(inputs.size() <= 3, "sanity"); 2726 ResourceMark rm; 2727 uint res = 0; 2728 ResourceHashtable<Node*,uint> eval_map; 2729 2730 // Populate precomputed functions for inputs. 2731 // Each input corresponds to one column of 3 input truth-table. 2732 uint input_funcs[] = { 0xAA, // (_, _, c) -> c 2733 0xCC, // (_, b, _) -> b 2734 0xF0 }; // (a, _, _) -> a 2735 for (uint i = 0; i < inputs.size(); i++) { 2736 eval_map.put(inputs.at(i), input_funcs[2-i]); 2737 } 2738 2739 for (uint i = 0; i < partition.size(); i++) { 2740 Node* n = partition.at(i); 2741 2742 uint func1 = 0, func2 = 0, func3 = 0; 2743 eval_operands(n, func1, func2, func3, eval_map); 2744 2745 switch (n->Opcode()) { 2746 case Op_OrV: 2747 assert(func3 == 0, "not binary"); 2748 res = func1 | func2; 2749 break; 2750 case Op_AndV: 2751 assert(func3 == 0, "not binary"); 2752 res = func1 & func2; 2753 break; 2754 case Op_XorV: 2755 if (VectorNode::is_vector_bitwise_not_pattern(n)) { 2756 assert(func2 == 0 && func3 == 0, "not unary"); 2757 res = (~func1) & 0xFF; 2758 } else { 2759 assert(func3 == 0, "not binary"); 2760 res = func1 ^ func2; 2761 } 2762 break; 2763 case Op_MacroLogicV: 2764 // Ordering of inputs may change during evaluation of sub-tree 2765 // containing MacroLogic node as a child node, thus a re-evaluation 2766 // makes sure that function is evaluated in context of current 2767 // inputs. 2768 res = eval_macro_logic_op(n->in(4)->get_int(), func1, func2, func3); 2769 break; 2770 2771 default: assert(false, "not supported: %s", n->Name()); 2772 } 2773 assert(res <= 0xFF, "invalid"); 2774 eval_map.put(n, res); 2775 } 2776 return res; 2777 } 2778 2779 // Criteria under which nodes gets packed into a macro logic node:- 2780 // 1) Parent and both child nodes are all unmasked or masked with 2781 // same predicates. 2782 // 2) Masked parent can be packed with left child if it is predicated 2783 // and both have same predicates. 2784 // 3) Masked parent can be packed with right child if its un-predicated 2785 // or has matching predication condition. 2786 // 4) An unmasked parent can be packed with an unmasked child. 2787 bool Compile::compute_logic_cone(Node* n, Unique_Node_List& partition, Unique_Node_List& inputs) { 2788 assert(partition.size() == 0, "not empty"); 2789 assert(inputs.size() == 0, "not empty"); 2790 if (is_vector_ternary_bitwise_op(n)) { 2791 return false; 2792 } 2793 2794 bool is_unary_op = is_vector_unary_bitwise_op(n); 2795 if (is_unary_op) { 2796 assert(collect_unique_inputs(n, inputs) == 1, "not unary"); 2797 return false; // too few inputs 2798 } 2799 2800 bool pack_left_child = true; 2801 bool pack_right_child = true; 2802 2803 bool left_child_LOP = is_vector_bitwise_op(n->in(1)); 2804 bool right_child_LOP = is_vector_bitwise_op(n->in(2)); 2805 2806 int left_child_input_cnt = 0; 2807 int right_child_input_cnt = 0; 2808 2809 bool parent_is_predicated = n->is_predicated_vector(); 2810 bool left_child_predicated = n->in(1)->is_predicated_vector(); 2811 bool right_child_predicated = n->in(2)->is_predicated_vector(); 2812 2813 Node* parent_pred = parent_is_predicated ? n->in(n->req()-1) : nullptr; 2814 Node* left_child_pred = left_child_predicated ? n->in(1)->in(n->in(1)->req()-1) : nullptr; 2815 Node* right_child_pred = right_child_predicated ? n->in(1)->in(n->in(1)->req()-1) : nullptr; 2816 2817 do { 2818 if (pack_left_child && left_child_LOP && 2819 ((!parent_is_predicated && !left_child_predicated) || 2820 ((parent_is_predicated && left_child_predicated && 2821 parent_pred == left_child_pred)))) { 2822 partition.push(n->in(1)); 2823 left_child_input_cnt = collect_unique_inputs(n->in(1), inputs); 2824 } else { 2825 inputs.push(n->in(1)); 2826 left_child_input_cnt = 1; 2827 } 2828 2829 if (pack_right_child && right_child_LOP && 2830 (!right_child_predicated || 2831 (right_child_predicated && parent_is_predicated && 2832 parent_pred == right_child_pred))) { 2833 partition.push(n->in(2)); 2834 right_child_input_cnt = collect_unique_inputs(n->in(2), inputs); 2835 } else { 2836 inputs.push(n->in(2)); 2837 right_child_input_cnt = 1; 2838 } 2839 2840 if (inputs.size() > 3) { 2841 assert(partition.size() > 0, ""); 2842 inputs.clear(); 2843 partition.clear(); 2844 if (left_child_input_cnt > right_child_input_cnt) { 2845 pack_left_child = false; 2846 } else { 2847 pack_right_child = false; 2848 } 2849 } else { 2850 break; 2851 } 2852 } while(true); 2853 2854 if(partition.size()) { 2855 partition.push(n); 2856 } 2857 2858 return (partition.size() == 2 || partition.size() == 3) && 2859 (inputs.size() == 2 || inputs.size() == 3); 2860 } 2861 2862 void Compile::process_logic_cone_root(PhaseIterGVN &igvn, Node *n, VectorSet &visited) { 2863 assert(is_vector_bitwise_op(n), "not a root"); 2864 2865 visited.set(n->_idx); 2866 2867 // 1) Do a DFS walk over the logic cone. 2868 for (uint i = 1; i < n->req(); i++) { 2869 Node* in = n->in(i); 2870 if (!visited.test(in->_idx) && is_vector_bitwise_op(in)) { 2871 process_logic_cone_root(igvn, in, visited); 2872 } 2873 } 2874 2875 // 2) Bottom up traversal: Merge node[s] with 2876 // the parent to form macro logic node. 2877 Unique_Node_List partition; 2878 Unique_Node_List inputs; 2879 if (compute_logic_cone(n, partition, inputs)) { 2880 const TypeVect* vt = n->bottom_type()->is_vect(); 2881 Node* pn = partition.at(partition.size() - 1); 2882 Node* mask = pn->is_predicated_vector() ? pn->in(pn->req()-1) : nullptr; 2883 if (mask == nullptr || 2884 Matcher::match_rule_supported_vector_masked(Op_MacroLogicV, vt->length(), vt->element_basic_type())) { 2885 Node* macro_logic = xform_to_MacroLogicV(igvn, vt, partition, inputs); 2886 VectorNode::trace_new_vector(macro_logic, "MacroLogic"); 2887 igvn.replace_node(n, macro_logic); 2888 } 2889 } 2890 } 2891 2892 void Compile::optimize_logic_cones(PhaseIterGVN &igvn) { 2893 ResourceMark rm; 2894 if (Matcher::match_rule_supported(Op_MacroLogicV)) { 2895 Unique_Node_List list; 2896 collect_logic_cone_roots(list); 2897 2898 while (list.size() > 0) { 2899 Node* n = list.pop(); 2900 const TypeVect* vt = n->bottom_type()->is_vect(); 2901 bool supported = Matcher::match_rule_supported_vector(Op_MacroLogicV, vt->length(), vt->element_basic_type()); 2902 if (supported) { 2903 VectorSet visited(comp_arena()); 2904 process_logic_cone_root(igvn, n, visited); 2905 } 2906 } 2907 } 2908 } 2909 2910 //------------------------------Code_Gen--------------------------------------- 2911 // Given a graph, generate code for it 2912 void Compile::Code_Gen() { 2913 if (failing()) { 2914 return; 2915 } 2916 2917 // Perform instruction selection. You might think we could reclaim Matcher 2918 // memory PDQ, but actually the Matcher is used in generating spill code. 2919 // Internals of the Matcher (including some VectorSets) must remain live 2920 // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage 2921 // set a bit in reclaimed memory. 2922 2923 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine 2924 // nodes. Mapping is only valid at the root of each matched subtree. 2925 NOT_PRODUCT( verify_graph_edges(); ) 2926 2927 Matcher matcher; 2928 _matcher = &matcher; 2929 { 2930 TracePhase tp(_t_matcher); 2931 matcher.match(); 2932 if (failing()) { 2933 return; 2934 } 2935 } 2936 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine 2937 // nodes. Mapping is only valid at the root of each matched subtree. 2938 NOT_PRODUCT( verify_graph_edges(); ) 2939 2940 // If you have too many nodes, or if matching has failed, bail out 2941 check_node_count(0, "out of nodes matching instructions"); 2942 if (failing()) { 2943 return; 2944 } 2945 2946 print_method(PHASE_MATCHING, 2); 2947 2948 // Build a proper-looking CFG 2949 PhaseCFG cfg(node_arena(), root(), matcher); 2950 if (failing()) { 2951 return; 2952 } 2953 _cfg = &cfg; 2954 { 2955 TracePhase tp(_t_scheduler); 2956 bool success = cfg.do_global_code_motion(); 2957 if (!success) { 2958 return; 2959 } 2960 2961 print_method(PHASE_GLOBAL_CODE_MOTION, 2); 2962 NOT_PRODUCT( verify_graph_edges(); ) 2963 cfg.verify(); 2964 if (failing()) { 2965 return; 2966 } 2967 } 2968 2969 PhaseChaitin regalloc(unique(), cfg, matcher, false); 2970 _regalloc = ®alloc; 2971 { 2972 TracePhase tp(_t_registerAllocation); 2973 // Perform register allocation. After Chaitin, use-def chains are 2974 // no longer accurate (at spill code) and so must be ignored. 2975 // Node->LRG->reg mappings are still accurate. 2976 _regalloc->Register_Allocate(); 2977 2978 // Bail out if the allocator builds too many nodes 2979 if (failing()) { 2980 return; 2981 } 2982 2983 print_method(PHASE_REGISTER_ALLOCATION, 2); 2984 } 2985 2986 // Prior to register allocation we kept empty basic blocks in case the 2987 // the allocator needed a place to spill. After register allocation we 2988 // are not adding any new instructions. If any basic block is empty, we 2989 // can now safely remove it. 2990 { 2991 TracePhase tp(_t_blockOrdering); 2992 cfg.remove_empty_blocks(); 2993 if (do_freq_based_layout()) { 2994 PhaseBlockLayout layout(cfg); 2995 } else { 2996 cfg.set_loop_alignment(); 2997 } 2998 cfg.fixup_flow(); 2999 cfg.remove_unreachable_blocks(); 3000 cfg.verify_dominator_tree(); 3001 print_method(PHASE_BLOCK_ORDERING, 3); 3002 } 3003 3004 // Apply peephole optimizations 3005 if( OptoPeephole ) { 3006 TracePhase tp(_t_peephole); 3007 PhasePeephole peep( _regalloc, cfg); 3008 peep.do_transform(); 3009 print_method(PHASE_PEEPHOLE, 3); 3010 } 3011 3012 // Do late expand if CPU requires this. 3013 if (Matcher::require_postalloc_expand) { 3014 TracePhase tp(_t_postalloc_expand); 3015 cfg.postalloc_expand(_regalloc); 3016 print_method(PHASE_POSTALLOC_EXPAND, 3); 3017 } 3018 3019 // Convert Nodes to instruction bits in a buffer 3020 { 3021 TracePhase tp(_t_output); 3022 PhaseOutput output; 3023 output.Output(); 3024 if (failing()) return; 3025 output.install(); 3026 print_method(PHASE_FINAL_CODE, 1); // Compile::_output is not null here 3027 } 3028 3029 // He's dead, Jim. 3030 _cfg = (PhaseCFG*)((intptr_t)0xdeadbeef); 3031 _regalloc = (PhaseChaitin*)((intptr_t)0xdeadbeef); 3032 } 3033 3034 //------------------------------Final_Reshape_Counts--------------------------- 3035 // This class defines counters to help identify when a method 3036 // may/must be executed using hardware with only 24-bit precision. 3037 struct Final_Reshape_Counts : public StackObj { 3038 int _call_count; // count non-inlined 'common' calls 3039 int _float_count; // count float ops requiring 24-bit precision 3040 int _double_count; // count double ops requiring more precision 3041 int _java_call_count; // count non-inlined 'java' calls 3042 int _inner_loop_count; // count loops which need alignment 3043 VectorSet _visited; // Visitation flags 3044 Node_List _tests; // Set of IfNodes & PCTableNodes 3045 3046 Final_Reshape_Counts() : 3047 _call_count(0), _float_count(0), _double_count(0), 3048 _java_call_count(0), _inner_loop_count(0) { } 3049 3050 void inc_call_count () { _call_count ++; } 3051 void inc_float_count () { _float_count ++; } 3052 void inc_double_count() { _double_count++; } 3053 void inc_java_call_count() { _java_call_count++; } 3054 void inc_inner_loop_count() { _inner_loop_count++; } 3055 3056 int get_call_count () const { return _call_count ; } 3057 int get_float_count () const { return _float_count ; } 3058 int get_double_count() const { return _double_count; } 3059 int get_java_call_count() const { return _java_call_count; } 3060 int get_inner_loop_count() const { return _inner_loop_count; } 3061 }; 3062 3063 //------------------------------final_graph_reshaping_impl---------------------- 3064 // Implement items 1-5 from final_graph_reshaping below. 3065 void Compile::final_graph_reshaping_impl(Node *n, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes) { 3066 3067 if ( n->outcnt() == 0 ) return; // dead node 3068 uint nop = n->Opcode(); 3069 3070 // Check for 2-input instruction with "last use" on right input. 3071 // Swap to left input. Implements item (2). 3072 if( n->req() == 3 && // two-input instruction 3073 n->in(1)->outcnt() > 1 && // left use is NOT a last use 3074 (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop 3075 n->in(2)->outcnt() == 1 &&// right use IS a last use 3076 !n->in(2)->is_Con() ) { // right use is not a constant 3077 // Check for commutative opcode 3078 switch( nop ) { 3079 case Op_AddI: case Op_AddF: case Op_AddD: case Op_AddL: 3080 case Op_MaxI: case Op_MaxL: case Op_MaxF: case Op_MaxD: 3081 case Op_MinI: case Op_MinL: case Op_MinF: case Op_MinD: 3082 case Op_MulI: case Op_MulF: case Op_MulD: case Op_MulL: 3083 case Op_AndL: case Op_XorL: case Op_OrL: 3084 case Op_AndI: case Op_XorI: case Op_OrI: { 3085 // Move "last use" input to left by swapping inputs 3086 n->swap_edges(1, 2); 3087 break; 3088 } 3089 default: 3090 break; 3091 } 3092 } 3093 3094 #ifdef ASSERT 3095 if( n->is_Mem() ) { 3096 int alias_idx = get_alias_index(n->as_Mem()->adr_type()); 3097 assert( n->in(0) != nullptr || alias_idx != Compile::AliasIdxRaw || 3098 // oop will be recorded in oop map if load crosses safepoint 3099 (n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() || 3100 LoadNode::is_immutable_value(n->in(MemNode::Address)))), 3101 "raw memory operations should have control edge"); 3102 } 3103 if (n->is_MemBar()) { 3104 MemBarNode* mb = n->as_MemBar(); 3105 if (mb->trailing_store() || mb->trailing_load_store()) { 3106 assert(mb->leading_membar()->trailing_membar() == mb, "bad membar pair"); 3107 Node* mem = BarrierSet::barrier_set()->barrier_set_c2()->step_over_gc_barrier(mb->in(MemBarNode::Precedent)); 3108 assert((mb->trailing_store() && mem->is_Store() && mem->as_Store()->is_release()) || 3109 (mb->trailing_load_store() && mem->is_LoadStore()), "missing mem op"); 3110 } else if (mb->leading()) { 3111 assert(mb->trailing_membar()->leading_membar() == mb, "bad membar pair"); 3112 } 3113 } 3114 #endif 3115 // Count FPU ops and common calls, implements item (3) 3116 bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->final_graph_reshaping(this, n, nop, dead_nodes); 3117 if (!gc_handled) { 3118 final_graph_reshaping_main_switch(n, frc, nop, dead_nodes); 3119 } 3120 3121 // Collect CFG split points 3122 if (n->is_MultiBranch() && !n->is_RangeCheck()) { 3123 frc._tests.push(n); 3124 } 3125 } 3126 3127 void Compile::handle_div_mod_op(Node* n, BasicType bt, bool is_unsigned) { 3128 if (!UseDivMod) { 3129 return; 3130 } 3131 3132 // Check if "a % b" and "a / b" both exist 3133 Node* d = n->find_similar(Op_DivIL(bt, is_unsigned)); 3134 if (d == nullptr) { 3135 return; 3136 } 3137 3138 // Replace them with a fused divmod if supported 3139 if (Matcher::has_match_rule(Op_DivModIL(bt, is_unsigned))) { 3140 DivModNode* divmod = DivModNode::make(n, bt, is_unsigned); 3141 // If the divisor input for a Div (or Mod etc.) is not zero, then the control input of the Div is set to zero. 3142 // It could be that the divisor input is found not zero because its type is narrowed down by a CastII in the 3143 // subgraph for that input. Range check CastIIs are removed during final graph reshape. To preserve the dependency 3144 // carried by a CastII, precedence edges are added to the Div node. We need to transfer the precedence edges to the 3145 // DivMod node so the dependency is not lost. 3146 divmod->add_prec_from(n); 3147 divmod->add_prec_from(d); 3148 d->subsume_by(divmod->div_proj(), this); 3149 n->subsume_by(divmod->mod_proj(), this); 3150 } else { 3151 // Replace "a % b" with "a - ((a / b) * b)" 3152 Node* mult = MulNode::make(d, d->in(2), bt); 3153 Node* sub = SubNode::make(d->in(1), mult, bt); 3154 n->subsume_by(sub, this); 3155 } 3156 } 3157 3158 void Compile::final_graph_reshaping_main_switch(Node* n, Final_Reshape_Counts& frc, uint nop, Unique_Node_List& dead_nodes) { 3159 switch( nop ) { 3160 // Count all float operations that may use FPU 3161 case Op_AddF: 3162 case Op_SubF: 3163 case Op_MulF: 3164 case Op_DivF: 3165 case Op_NegF: 3166 case Op_ModF: 3167 case Op_ConvI2F: 3168 case Op_ConF: 3169 case Op_CmpF: 3170 case Op_CmpF3: 3171 case Op_StoreF: 3172 case Op_LoadF: 3173 // case Op_ConvL2F: // longs are split into 32-bit halves 3174 frc.inc_float_count(); 3175 break; 3176 3177 case Op_ConvF2D: 3178 case Op_ConvD2F: 3179 frc.inc_float_count(); 3180 frc.inc_double_count(); 3181 break; 3182 3183 // Count all double operations that may use FPU 3184 case Op_AddD: 3185 case Op_SubD: 3186 case Op_MulD: 3187 case Op_DivD: 3188 case Op_NegD: 3189 case Op_ModD: 3190 case Op_ConvI2D: 3191 case Op_ConvD2I: 3192 // case Op_ConvL2D: // handled by leaf call 3193 // case Op_ConvD2L: // handled by leaf call 3194 case Op_ConD: 3195 case Op_CmpD: 3196 case Op_CmpD3: 3197 case Op_StoreD: 3198 case Op_LoadD: 3199 case Op_LoadD_unaligned: 3200 frc.inc_double_count(); 3201 break; 3202 case Op_Opaque1: // Remove Opaque Nodes before matching 3203 n->subsume_by(n->in(1), this); 3204 break; 3205 case Op_CallStaticJava: 3206 case Op_CallJava: 3207 case Op_CallDynamicJava: 3208 frc.inc_java_call_count(); // Count java call site; 3209 case Op_CallRuntime: 3210 case Op_CallLeaf: 3211 case Op_CallLeafVector: 3212 case Op_CallLeafNoFP: { 3213 assert (n->is_Call(), ""); 3214 CallNode *call = n->as_Call(); 3215 // Count call sites where the FP mode bit would have to be flipped. 3216 // Do not count uncommon runtime calls: 3217 // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking, 3218 // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ... 3219 if (!call->is_CallStaticJava() || !call->as_CallStaticJava()->_name) { 3220 frc.inc_call_count(); // Count the call site 3221 } else { // See if uncommon argument is shared 3222 Node *n = call->in(TypeFunc::Parms); 3223 int nop = n->Opcode(); 3224 // Clone shared simple arguments to uncommon calls, item (1). 3225 if (n->outcnt() > 1 && 3226 !n->is_Proj() && 3227 nop != Op_CreateEx && 3228 nop != Op_CheckCastPP && 3229 nop != Op_DecodeN && 3230 nop != Op_DecodeNKlass && 3231 !n->is_Mem() && 3232 !n->is_Phi()) { 3233 Node *x = n->clone(); 3234 call->set_req(TypeFunc::Parms, x); 3235 } 3236 } 3237 break; 3238 } 3239 case Op_StoreB: 3240 case Op_StoreC: 3241 case Op_StoreI: 3242 case Op_StoreL: 3243 case Op_CompareAndSwapB: 3244 case Op_CompareAndSwapS: 3245 case Op_CompareAndSwapI: 3246 case Op_CompareAndSwapL: 3247 case Op_CompareAndSwapP: 3248 case Op_CompareAndSwapN: 3249 case Op_WeakCompareAndSwapB: 3250 case Op_WeakCompareAndSwapS: 3251 case Op_WeakCompareAndSwapI: 3252 case Op_WeakCompareAndSwapL: 3253 case Op_WeakCompareAndSwapP: 3254 case Op_WeakCompareAndSwapN: 3255 case Op_CompareAndExchangeB: 3256 case Op_CompareAndExchangeS: 3257 case Op_CompareAndExchangeI: 3258 case Op_CompareAndExchangeL: 3259 case Op_CompareAndExchangeP: 3260 case Op_CompareAndExchangeN: 3261 case Op_GetAndAddS: 3262 case Op_GetAndAddB: 3263 case Op_GetAndAddI: 3264 case Op_GetAndAddL: 3265 case Op_GetAndSetS: 3266 case Op_GetAndSetB: 3267 case Op_GetAndSetI: 3268 case Op_GetAndSetL: 3269 case Op_GetAndSetP: 3270 case Op_GetAndSetN: 3271 case Op_StoreP: 3272 case Op_StoreN: 3273 case Op_StoreNKlass: 3274 case Op_LoadB: 3275 case Op_LoadUB: 3276 case Op_LoadUS: 3277 case Op_LoadI: 3278 case Op_LoadKlass: 3279 case Op_LoadNKlass: 3280 case Op_LoadL: 3281 case Op_LoadL_unaligned: 3282 case Op_LoadP: 3283 case Op_LoadN: 3284 case Op_LoadRange: 3285 case Op_LoadS: 3286 break; 3287 3288 case Op_AddP: { // Assert sane base pointers 3289 Node *addp = n->in(AddPNode::Address); 3290 assert( !addp->is_AddP() || 3291 addp->in(AddPNode::Base)->is_top() || // Top OK for allocation 3292 addp->in(AddPNode::Base) == n->in(AddPNode::Base), 3293 "Base pointers must match (addp %u)", addp->_idx ); 3294 #ifdef _LP64 3295 if ((UseCompressedOops || UseCompressedClassPointers) && 3296 addp->Opcode() == Op_ConP && 3297 addp == n->in(AddPNode::Base) && 3298 n->in(AddPNode::Offset)->is_Con()) { 3299 // If the transformation of ConP to ConN+DecodeN is beneficial depends 3300 // on the platform and on the compressed oops mode. 3301 // Use addressing with narrow klass to load with offset on x86. 3302 // Some platforms can use the constant pool to load ConP. 3303 // Do this transformation here since IGVN will convert ConN back to ConP. 3304 const Type* t = addp->bottom_type(); 3305 bool is_oop = t->isa_oopptr() != nullptr; 3306 bool is_klass = t->isa_klassptr() != nullptr; 3307 3308 if ((is_oop && UseCompressedOops && Matcher::const_oop_prefer_decode() ) || 3309 (is_klass && UseCompressedClassPointers && Matcher::const_klass_prefer_decode() && 3310 t->isa_klassptr()->exact_klass()->is_in_encoding_range())) { 3311 Node* nn = nullptr; 3312 3313 int op = is_oop ? Op_ConN : Op_ConNKlass; 3314 3315 // Look for existing ConN node of the same exact type. 3316 Node* r = root(); 3317 uint cnt = r->outcnt(); 3318 for (uint i = 0; i < cnt; i++) { 3319 Node* m = r->raw_out(i); 3320 if (m!= nullptr && m->Opcode() == op && 3321 m->bottom_type()->make_ptr() == t) { 3322 nn = m; 3323 break; 3324 } 3325 } 3326 if (nn != nullptr) { 3327 // Decode a narrow oop to match address 3328 // [R12 + narrow_oop_reg<<3 + offset] 3329 if (is_oop) { 3330 nn = new DecodeNNode(nn, t); 3331 } else { 3332 nn = new DecodeNKlassNode(nn, t); 3333 } 3334 // Check for succeeding AddP which uses the same Base. 3335 // Otherwise we will run into the assertion above when visiting that guy. 3336 for (uint i = 0; i < n->outcnt(); ++i) { 3337 Node *out_i = n->raw_out(i); 3338 if (out_i && out_i->is_AddP() && out_i->in(AddPNode::Base) == addp) { 3339 out_i->set_req(AddPNode::Base, nn); 3340 #ifdef ASSERT 3341 for (uint j = 0; j < out_i->outcnt(); ++j) { 3342 Node *out_j = out_i->raw_out(j); 3343 assert(out_j == nullptr || !out_j->is_AddP() || out_j->in(AddPNode::Base) != addp, 3344 "more than 2 AddP nodes in a chain (out_j %u)", out_j->_idx); 3345 } 3346 #endif 3347 } 3348 } 3349 n->set_req(AddPNode::Base, nn); 3350 n->set_req(AddPNode::Address, nn); 3351 if (addp->outcnt() == 0) { 3352 addp->disconnect_inputs(this); 3353 } 3354 } 3355 } 3356 } 3357 #endif 3358 break; 3359 } 3360 3361 case Op_CastPP: { 3362 // Remove CastPP nodes to gain more freedom during scheduling but 3363 // keep the dependency they encode as control or precedence edges 3364 // (if control is set already) on memory operations. Some CastPP 3365 // nodes don't have a control (don't carry a dependency): skip 3366 // those. 3367 if (n->in(0) != nullptr) { 3368 ResourceMark rm; 3369 Unique_Node_List wq; 3370 wq.push(n); 3371 for (uint next = 0; next < wq.size(); ++next) { 3372 Node *m = wq.at(next); 3373 for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) { 3374 Node* use = m->fast_out(i); 3375 if (use->is_Mem() || use->is_EncodeNarrowPtr()) { 3376 use->ensure_control_or_add_prec(n->in(0)); 3377 } else { 3378 switch(use->Opcode()) { 3379 case Op_AddP: 3380 case Op_DecodeN: 3381 case Op_DecodeNKlass: 3382 case Op_CheckCastPP: 3383 case Op_CastPP: 3384 wq.push(use); 3385 break; 3386 } 3387 } 3388 } 3389 } 3390 } 3391 const bool is_LP64 = LP64_ONLY(true) NOT_LP64(false); 3392 if (is_LP64 && n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) { 3393 Node* in1 = n->in(1); 3394 const Type* t = n->bottom_type(); 3395 Node* new_in1 = in1->clone(); 3396 new_in1->as_DecodeN()->set_type(t); 3397 3398 if (!Matcher::narrow_oop_use_complex_address()) { 3399 // 3400 // x86, ARM and friends can handle 2 adds in addressing mode 3401 // and Matcher can fold a DecodeN node into address by using 3402 // a narrow oop directly and do implicit null check in address: 3403 // 3404 // [R12 + narrow_oop_reg<<3 + offset] 3405 // NullCheck narrow_oop_reg 3406 // 3407 // On other platforms (Sparc) we have to keep new DecodeN node and 3408 // use it to do implicit null check in address: 3409 // 3410 // decode_not_null narrow_oop_reg, base_reg 3411 // [base_reg + offset] 3412 // NullCheck base_reg 3413 // 3414 // Pin the new DecodeN node to non-null path on these platform (Sparc) 3415 // to keep the information to which null check the new DecodeN node 3416 // corresponds to use it as value in implicit_null_check(). 3417 // 3418 new_in1->set_req(0, n->in(0)); 3419 } 3420 3421 n->subsume_by(new_in1, this); 3422 if (in1->outcnt() == 0) { 3423 in1->disconnect_inputs(this); 3424 } 3425 } else { 3426 n->subsume_by(n->in(1), this); 3427 if (n->outcnt() == 0) { 3428 n->disconnect_inputs(this); 3429 } 3430 } 3431 break; 3432 } 3433 case Op_CastII: { 3434 n->as_CastII()->remove_range_check_cast(this); 3435 break; 3436 } 3437 #ifdef _LP64 3438 case Op_CmpP: 3439 // Do this transformation here to preserve CmpPNode::sub() and 3440 // other TypePtr related Ideal optimizations (for example, ptr nullness). 3441 if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) { 3442 Node* in1 = n->in(1); 3443 Node* in2 = n->in(2); 3444 if (!in1->is_DecodeNarrowPtr()) { 3445 in2 = in1; 3446 in1 = n->in(2); 3447 } 3448 assert(in1->is_DecodeNarrowPtr(), "sanity"); 3449 3450 Node* new_in2 = nullptr; 3451 if (in2->is_DecodeNarrowPtr()) { 3452 assert(in2->Opcode() == in1->Opcode(), "must be same node type"); 3453 new_in2 = in2->in(1); 3454 } else if (in2->Opcode() == Op_ConP) { 3455 const Type* t = in2->bottom_type(); 3456 if (t == TypePtr::NULL_PTR) { 3457 assert(in1->is_DecodeN(), "compare klass to null?"); 3458 // Don't convert CmpP null check into CmpN if compressed 3459 // oops implicit null check is not generated. 3460 // This will allow to generate normal oop implicit null check. 3461 if (Matcher::gen_narrow_oop_implicit_null_checks()) 3462 new_in2 = ConNode::make(TypeNarrowOop::NULL_PTR); 3463 // 3464 // This transformation together with CastPP transformation above 3465 // will generated code for implicit null checks for compressed oops. 3466 // 3467 // The original code after Optimize() 3468 // 3469 // LoadN memory, narrow_oop_reg 3470 // decode narrow_oop_reg, base_reg 3471 // CmpP base_reg, nullptr 3472 // CastPP base_reg // NotNull 3473 // Load [base_reg + offset], val_reg 3474 // 3475 // after these transformations will be 3476 // 3477 // LoadN memory, narrow_oop_reg 3478 // CmpN narrow_oop_reg, nullptr 3479 // decode_not_null narrow_oop_reg, base_reg 3480 // Load [base_reg + offset], val_reg 3481 // 3482 // and the uncommon path (== nullptr) will use narrow_oop_reg directly 3483 // since narrow oops can be used in debug info now (see the code in 3484 // final_graph_reshaping_walk()). 3485 // 3486 // At the end the code will be matched to 3487 // on x86: 3488 // 3489 // Load_narrow_oop memory, narrow_oop_reg 3490 // Load [R12 + narrow_oop_reg<<3 + offset], val_reg 3491 // NullCheck narrow_oop_reg 3492 // 3493 // and on sparc: 3494 // 3495 // Load_narrow_oop memory, narrow_oop_reg 3496 // decode_not_null narrow_oop_reg, base_reg 3497 // Load [base_reg + offset], val_reg 3498 // NullCheck base_reg 3499 // 3500 } else if (t->isa_oopptr()) { 3501 new_in2 = ConNode::make(t->make_narrowoop()); 3502 } else if (t->isa_klassptr()) { 3503 new_in2 = ConNode::make(t->make_narrowklass()); 3504 } 3505 } 3506 if (new_in2 != nullptr) { 3507 Node* cmpN = new CmpNNode(in1->in(1), new_in2); 3508 n->subsume_by(cmpN, this); 3509 if (in1->outcnt() == 0) { 3510 in1->disconnect_inputs(this); 3511 } 3512 if (in2->outcnt() == 0) { 3513 in2->disconnect_inputs(this); 3514 } 3515 } 3516 } 3517 break; 3518 3519 case Op_DecodeN: 3520 case Op_DecodeNKlass: 3521 assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out"); 3522 // DecodeN could be pinned when it can't be fold into 3523 // an address expression, see the code for Op_CastPP above. 3524 assert(n->in(0) == nullptr || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control"); 3525 break; 3526 3527 case Op_EncodeP: 3528 case Op_EncodePKlass: { 3529 Node* in1 = n->in(1); 3530 if (in1->is_DecodeNarrowPtr()) { 3531 n->subsume_by(in1->in(1), this); 3532 } else if (in1->Opcode() == Op_ConP) { 3533 const Type* t = in1->bottom_type(); 3534 if (t == TypePtr::NULL_PTR) { 3535 assert(t->isa_oopptr(), "null klass?"); 3536 n->subsume_by(ConNode::make(TypeNarrowOop::NULL_PTR), this); 3537 } else if (t->isa_oopptr()) { 3538 n->subsume_by(ConNode::make(t->make_narrowoop()), this); 3539 } else if (t->isa_klassptr()) { 3540 n->subsume_by(ConNode::make(t->make_narrowklass()), this); 3541 } 3542 } 3543 if (in1->outcnt() == 0) { 3544 in1->disconnect_inputs(this); 3545 } 3546 break; 3547 } 3548 3549 case Op_Proj: { 3550 if (OptimizeStringConcat || IncrementalInline) { 3551 ProjNode* proj = n->as_Proj(); 3552 if (proj->_is_io_use) { 3553 assert(proj->_con == TypeFunc::I_O || proj->_con == TypeFunc::Memory, ""); 3554 // Separate projections were used for the exception path which 3555 // are normally removed by a late inline. If it wasn't inlined 3556 // then they will hang around and should just be replaced with 3557 // the original one. Merge them. 3558 Node* non_io_proj = proj->in(0)->as_Multi()->proj_out_or_null(proj->_con, false /*is_io_use*/); 3559 if (non_io_proj != nullptr) { 3560 proj->subsume_by(non_io_proj , this); 3561 } 3562 } 3563 } 3564 break; 3565 } 3566 3567 case Op_Phi: 3568 if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) { 3569 // The EncodeP optimization may create Phi with the same edges 3570 // for all paths. It is not handled well by Register Allocator. 3571 Node* unique_in = n->in(1); 3572 assert(unique_in != nullptr, ""); 3573 uint cnt = n->req(); 3574 for (uint i = 2; i < cnt; i++) { 3575 Node* m = n->in(i); 3576 assert(m != nullptr, ""); 3577 if (unique_in != m) 3578 unique_in = nullptr; 3579 } 3580 if (unique_in != nullptr) { 3581 n->subsume_by(unique_in, this); 3582 } 3583 } 3584 break; 3585 3586 #endif 3587 3588 case Op_ModI: 3589 handle_div_mod_op(n, T_INT, false); 3590 break; 3591 3592 case Op_ModL: 3593 handle_div_mod_op(n, T_LONG, false); 3594 break; 3595 3596 case Op_UModI: 3597 handle_div_mod_op(n, T_INT, true); 3598 break; 3599 3600 case Op_UModL: 3601 handle_div_mod_op(n, T_LONG, true); 3602 break; 3603 3604 case Op_LoadVector: 3605 case Op_StoreVector: 3606 #ifdef ASSERT 3607 // Add VerifyVectorAlignment node between adr and load / store. 3608 if (VerifyAlignVector && Matcher::has_match_rule(Op_VerifyVectorAlignment)) { 3609 bool must_verify_alignment = n->is_LoadVector() ? n->as_LoadVector()->must_verify_alignment() : 3610 n->as_StoreVector()->must_verify_alignment(); 3611 if (must_verify_alignment) { 3612 jlong vector_width = n->is_LoadVector() ? n->as_LoadVector()->memory_size() : 3613 n->as_StoreVector()->memory_size(); 3614 // The memory access should be aligned to the vector width in bytes. 3615 // However, the underlying array is possibly less well aligned, but at least 3616 // to ObjectAlignmentInBytes. Hence, even if multiple arrays are accessed in 3617 // a loop we can expect at least the following alignment: 3618 jlong guaranteed_alignment = MIN2(vector_width, (jlong)ObjectAlignmentInBytes); 3619 assert(2 <= guaranteed_alignment && guaranteed_alignment <= 64, "alignment must be in range"); 3620 assert(is_power_of_2(guaranteed_alignment), "alignment must be power of 2"); 3621 // Create mask from alignment. e.g. 0b1000 -> 0b0111 3622 jlong mask = guaranteed_alignment - 1; 3623 Node* mask_con = ConLNode::make(mask); 3624 VerifyVectorAlignmentNode* va = new VerifyVectorAlignmentNode(n->in(MemNode::Address), mask_con); 3625 n->set_req(MemNode::Address, va); 3626 } 3627 } 3628 #endif 3629 break; 3630 3631 case Op_LoadVectorGather: 3632 case Op_StoreVectorScatter: 3633 case Op_LoadVectorGatherMasked: 3634 case Op_StoreVectorScatterMasked: 3635 case Op_VectorCmpMasked: 3636 case Op_VectorMaskGen: 3637 case Op_LoadVectorMasked: 3638 case Op_StoreVectorMasked: 3639 break; 3640 3641 case Op_AddReductionVI: 3642 case Op_AddReductionVL: 3643 case Op_AddReductionVF: 3644 case Op_AddReductionVD: 3645 case Op_MulReductionVI: 3646 case Op_MulReductionVL: 3647 case Op_MulReductionVF: 3648 case Op_MulReductionVD: 3649 case Op_MinReductionV: 3650 case Op_MaxReductionV: 3651 case Op_AndReductionV: 3652 case Op_OrReductionV: 3653 case Op_XorReductionV: 3654 break; 3655 3656 case Op_PackB: 3657 case Op_PackS: 3658 case Op_PackI: 3659 case Op_PackF: 3660 case Op_PackL: 3661 case Op_PackD: 3662 if (n->req()-1 > 2) { 3663 // Replace many operand PackNodes with a binary tree for matching 3664 PackNode* p = (PackNode*) n; 3665 Node* btp = p->binary_tree_pack(1, n->req()); 3666 n->subsume_by(btp, this); 3667 } 3668 break; 3669 case Op_Loop: 3670 assert(!n->as_Loop()->is_loop_nest_inner_loop() || _loop_opts_cnt == 0, "should have been turned into a counted loop"); 3671 case Op_CountedLoop: 3672 case Op_LongCountedLoop: 3673 case Op_OuterStripMinedLoop: 3674 if (n->as_Loop()->is_inner_loop()) { 3675 frc.inc_inner_loop_count(); 3676 } 3677 n->as_Loop()->verify_strip_mined(0); 3678 break; 3679 case Op_LShiftI: 3680 case Op_RShiftI: 3681 case Op_URShiftI: 3682 case Op_LShiftL: 3683 case Op_RShiftL: 3684 case Op_URShiftL: 3685 if (Matcher::need_masked_shift_count) { 3686 // The cpu's shift instructions don't restrict the count to the 3687 // lower 5/6 bits. We need to do the masking ourselves. 3688 Node* in2 = n->in(2); 3689 juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1); 3690 const TypeInt* t = in2->find_int_type(); 3691 if (t != nullptr && t->is_con()) { 3692 juint shift = t->get_con(); 3693 if (shift > mask) { // Unsigned cmp 3694 n->set_req(2, ConNode::make(TypeInt::make(shift & mask))); 3695 } 3696 } else { 3697 if (t == nullptr || t->_lo < 0 || t->_hi > (int)mask) { 3698 Node* shift = new AndINode(in2, ConNode::make(TypeInt::make(mask))); 3699 n->set_req(2, shift); 3700 } 3701 } 3702 if (in2->outcnt() == 0) { // Remove dead node 3703 in2->disconnect_inputs(this); 3704 } 3705 } 3706 break; 3707 case Op_MemBarStoreStore: 3708 case Op_MemBarRelease: 3709 // Break the link with AllocateNode: it is no longer useful and 3710 // confuses register allocation. 3711 if (n->req() > MemBarNode::Precedent) { 3712 n->set_req(MemBarNode::Precedent, top()); 3713 } 3714 break; 3715 case Op_MemBarAcquire: { 3716 if (n->as_MemBar()->trailing_load() && n->req() > MemBarNode::Precedent) { 3717 // At parse time, the trailing MemBarAcquire for a volatile load 3718 // is created with an edge to the load. After optimizations, 3719 // that input may be a chain of Phis. If those phis have no 3720 // other use, then the MemBarAcquire keeps them alive and 3721 // register allocation can be confused. 3722 dead_nodes.push(n->in(MemBarNode::Precedent)); 3723 n->set_req(MemBarNode::Precedent, top()); 3724 } 3725 break; 3726 } 3727 case Op_Blackhole: 3728 break; 3729 case Op_RangeCheck: { 3730 RangeCheckNode* rc = n->as_RangeCheck(); 3731 Node* iff = new IfNode(rc->in(0), rc->in(1), rc->_prob, rc->_fcnt); 3732 n->subsume_by(iff, this); 3733 frc._tests.push(iff); 3734 break; 3735 } 3736 case Op_ConvI2L: { 3737 if (!Matcher::convi2l_type_required) { 3738 // Code generation on some platforms doesn't need accurate 3739 // ConvI2L types. Widening the type can help remove redundant 3740 // address computations. 3741 n->as_Type()->set_type(TypeLong::INT); 3742 ResourceMark rm; 3743 Unique_Node_List wq; 3744 wq.push(n); 3745 for (uint next = 0; next < wq.size(); next++) { 3746 Node *m = wq.at(next); 3747 3748 for(;;) { 3749 // Loop over all nodes with identical inputs edges as m 3750 Node* k = m->find_similar(m->Opcode()); 3751 if (k == nullptr) { 3752 break; 3753 } 3754 // Push their uses so we get a chance to remove node made 3755 // redundant 3756 for (DUIterator_Fast imax, i = k->fast_outs(imax); i < imax; i++) { 3757 Node* u = k->fast_out(i); 3758 if (u->Opcode() == Op_LShiftL || 3759 u->Opcode() == Op_AddL || 3760 u->Opcode() == Op_SubL || 3761 u->Opcode() == Op_AddP) { 3762 wq.push(u); 3763 } 3764 } 3765 // Replace all nodes with identical edges as m with m 3766 k->subsume_by(m, this); 3767 } 3768 } 3769 } 3770 break; 3771 } 3772 case Op_CmpUL: { 3773 if (!Matcher::has_match_rule(Op_CmpUL)) { 3774 // No support for unsigned long comparisons 3775 ConINode* sign_pos = new ConINode(TypeInt::make(BitsPerLong - 1)); 3776 Node* sign_bit_mask = new RShiftLNode(n->in(1), sign_pos); 3777 Node* orl = new OrLNode(n->in(1), sign_bit_mask); 3778 ConLNode* remove_sign_mask = new ConLNode(TypeLong::make(max_jlong)); 3779 Node* andl = new AndLNode(orl, remove_sign_mask); 3780 Node* cmp = new CmpLNode(andl, n->in(2)); 3781 n->subsume_by(cmp, this); 3782 } 3783 break; 3784 } 3785 #ifdef ASSERT 3786 case Op_ConNKlass: { 3787 const TypePtr* tp = n->as_Type()->type()->make_ptr(); 3788 ciKlass* klass = tp->is_klassptr()->exact_klass(); 3789 assert(klass->is_in_encoding_range(), "klass cannot be compressed"); 3790 break; 3791 } 3792 #endif 3793 default: 3794 assert(!n->is_Call(), ""); 3795 assert(!n->is_Mem(), ""); 3796 assert(nop != Op_ProfileBoolean, "should be eliminated during IGVN"); 3797 break; 3798 } 3799 } 3800 3801 //------------------------------final_graph_reshaping_walk--------------------- 3802 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(), 3803 // requires that the walk visits a node's inputs before visiting the node. 3804 void Compile::final_graph_reshaping_walk(Node_Stack& nstack, Node* root, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes) { 3805 Unique_Node_List sfpt; 3806 3807 frc._visited.set(root->_idx); // first, mark node as visited 3808 uint cnt = root->req(); 3809 Node *n = root; 3810 uint i = 0; 3811 while (true) { 3812 if (i < cnt) { 3813 // Place all non-visited non-null inputs onto stack 3814 Node* m = n->in(i); 3815 ++i; 3816 if (m != nullptr && !frc._visited.test_set(m->_idx)) { 3817 if (m->is_SafePoint() && m->as_SafePoint()->jvms() != nullptr) { 3818 // compute worst case interpreter size in case of a deoptimization 3819 update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size()); 3820 3821 sfpt.push(m); 3822 } 3823 cnt = m->req(); 3824 nstack.push(n, i); // put on stack parent and next input's index 3825 n = m; 3826 i = 0; 3827 } 3828 } else { 3829 // Now do post-visit work 3830 final_graph_reshaping_impl(n, frc, dead_nodes); 3831 if (nstack.is_empty()) 3832 break; // finished 3833 n = nstack.node(); // Get node from stack 3834 cnt = n->req(); 3835 i = nstack.index(); 3836 nstack.pop(); // Shift to the next node on stack 3837 } 3838 } 3839 3840 // Skip next transformation if compressed oops are not used. 3841 if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) || 3842 (!UseCompressedOops && !UseCompressedClassPointers)) 3843 return; 3844 3845 // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges. 3846 // It could be done for an uncommon traps or any safepoints/calls 3847 // if the DecodeN/DecodeNKlass node is referenced only in a debug info. 3848 while (sfpt.size() > 0) { 3849 n = sfpt.pop(); 3850 JVMState *jvms = n->as_SafePoint()->jvms(); 3851 assert(jvms != nullptr, "sanity"); 3852 int start = jvms->debug_start(); 3853 int end = n->req(); 3854 bool is_uncommon = (n->is_CallStaticJava() && 3855 n->as_CallStaticJava()->uncommon_trap_request() != 0); 3856 for (int j = start; j < end; j++) { 3857 Node* in = n->in(j); 3858 if (in->is_DecodeNarrowPtr()) { 3859 bool safe_to_skip = true; 3860 if (!is_uncommon ) { 3861 // Is it safe to skip? 3862 for (uint i = 0; i < in->outcnt(); i++) { 3863 Node* u = in->raw_out(i); 3864 if (!u->is_SafePoint() || 3865 (u->is_Call() && u->as_Call()->has_non_debug_use(n))) { 3866 safe_to_skip = false; 3867 } 3868 } 3869 } 3870 if (safe_to_skip) { 3871 n->set_req(j, in->in(1)); 3872 } 3873 if (in->outcnt() == 0) { 3874 in->disconnect_inputs(this); 3875 } 3876 } 3877 } 3878 } 3879 } 3880 3881 //------------------------------final_graph_reshaping-------------------------- 3882 // Final Graph Reshaping. 3883 // 3884 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late 3885 // and not commoned up and forced early. Must come after regular 3886 // optimizations to avoid GVN undoing the cloning. Clone constant 3887 // inputs to Loop Phis; these will be split by the allocator anyways. 3888 // Remove Opaque nodes. 3889 // (2) Move last-uses by commutative operations to the left input to encourage 3890 // Intel update-in-place two-address operations and better register usage 3891 // on RISCs. Must come after regular optimizations to avoid GVN Ideal 3892 // calls canonicalizing them back. 3893 // (3) Count the number of double-precision FP ops, single-precision FP ops 3894 // and call sites. On Intel, we can get correct rounding either by 3895 // forcing singles to memory (requires extra stores and loads after each 3896 // FP bytecode) or we can set a rounding mode bit (requires setting and 3897 // clearing the mode bit around call sites). The mode bit is only used 3898 // if the relative frequency of single FP ops to calls is low enough. 3899 // This is a key transform for SPEC mpeg_audio. 3900 // (4) Detect infinite loops; blobs of code reachable from above but not 3901 // below. Several of the Code_Gen algorithms fail on such code shapes, 3902 // so we simply bail out. Happens a lot in ZKM.jar, but also happens 3903 // from time to time in other codes (such as -Xcomp finalizer loops, etc). 3904 // Detection is by looking for IfNodes where only 1 projection is 3905 // reachable from below or CatchNodes missing some targets. 3906 // (5) Assert for insane oop offsets in debug mode. 3907 3908 bool Compile::final_graph_reshaping() { 3909 // an infinite loop may have been eliminated by the optimizer, 3910 // in which case the graph will be empty. 3911 if (root()->req() == 1) { 3912 // Do not compile method that is only a trivial infinite loop, 3913 // since the content of the loop may have been eliminated. 3914 record_method_not_compilable("trivial infinite loop"); 3915 return true; 3916 } 3917 3918 // Expensive nodes have their control input set to prevent the GVN 3919 // from freely commoning them. There's no GVN beyond this point so 3920 // no need to keep the control input. We want the expensive nodes to 3921 // be freely moved to the least frequent code path by gcm. 3922 assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?"); 3923 for (int i = 0; i < expensive_count(); i++) { 3924 _expensive_nodes.at(i)->set_req(0, nullptr); 3925 } 3926 3927 Final_Reshape_Counts frc; 3928 3929 // Visit everybody reachable! 3930 // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc 3931 Node_Stack nstack(live_nodes() >> 1); 3932 Unique_Node_List dead_nodes; 3933 final_graph_reshaping_walk(nstack, root(), frc, dead_nodes); 3934 3935 // Check for unreachable (from below) code (i.e., infinite loops). 3936 for( uint i = 0; i < frc._tests.size(); i++ ) { 3937 MultiBranchNode *n = frc._tests[i]->as_MultiBranch(); 3938 // Get number of CFG targets. 3939 // Note that PCTables include exception targets after calls. 3940 uint required_outcnt = n->required_outcnt(); 3941 if (n->outcnt() != required_outcnt) { 3942 // Check for a few special cases. Rethrow Nodes never take the 3943 // 'fall-thru' path, so expected kids is 1 less. 3944 if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) { 3945 if (n->in(0)->in(0)->is_Call()) { 3946 CallNode* call = n->in(0)->in(0)->as_Call(); 3947 if (call->entry_point() == OptoRuntime::rethrow_stub()) { 3948 required_outcnt--; // Rethrow always has 1 less kid 3949 } else if (call->req() > TypeFunc::Parms && 3950 call->is_CallDynamicJava()) { 3951 // Check for null receiver. In such case, the optimizer has 3952 // detected that the virtual call will always result in a null 3953 // pointer exception. The fall-through projection of this CatchNode 3954 // will not be populated. 3955 Node* arg0 = call->in(TypeFunc::Parms); 3956 if (arg0->is_Type() && 3957 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) { 3958 required_outcnt--; 3959 } 3960 } else if (call->entry_point() == OptoRuntime::new_array_Java() || 3961 call->entry_point() == OptoRuntime::new_array_nozero_Java()) { 3962 // Check for illegal array length. In such case, the optimizer has 3963 // detected that the allocation attempt will always result in an 3964 // exception. There is no fall-through projection of this CatchNode . 3965 assert(call->is_CallStaticJava(), "static call expected"); 3966 assert(call->req() == call->jvms()->endoff() + 1, "missing extra input"); 3967 uint valid_length_test_input = call->req() - 1; 3968 Node* valid_length_test = call->in(valid_length_test_input); 3969 call->del_req(valid_length_test_input); 3970 if (valid_length_test->find_int_con(1) == 0) { 3971 required_outcnt--; 3972 } 3973 dead_nodes.push(valid_length_test); 3974 assert(n->outcnt() == required_outcnt, "malformed control flow"); 3975 continue; 3976 } 3977 } 3978 } 3979 3980 // Recheck with a better notion of 'required_outcnt' 3981 if (n->outcnt() != required_outcnt) { 3982 record_method_not_compilable("malformed control flow"); 3983 return true; // Not all targets reachable! 3984 } 3985 } else if (n->is_PCTable() && n->in(0) && n->in(0)->in(0) && n->in(0)->in(0)->is_Call()) { 3986 CallNode* call = n->in(0)->in(0)->as_Call(); 3987 if (call->entry_point() == OptoRuntime::new_array_Java() || 3988 call->entry_point() == OptoRuntime::new_array_nozero_Java()) { 3989 assert(call->is_CallStaticJava(), "static call expected"); 3990 assert(call->req() == call->jvms()->endoff() + 1, "missing extra input"); 3991 uint valid_length_test_input = call->req() - 1; 3992 dead_nodes.push(call->in(valid_length_test_input)); 3993 call->del_req(valid_length_test_input); // valid length test useless now 3994 } 3995 } 3996 // Check that I actually visited all kids. Unreached kids 3997 // must be infinite loops. 3998 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) 3999 if (!frc._visited.test(n->fast_out(j)->_idx)) { 4000 record_method_not_compilable("infinite loop"); 4001 return true; // Found unvisited kid; must be unreach 4002 } 4003 4004 // Here so verification code in final_graph_reshaping_walk() 4005 // always see an OuterStripMinedLoopEnd 4006 if (n->is_OuterStripMinedLoopEnd() || n->is_LongCountedLoopEnd()) { 4007 IfNode* init_iff = n->as_If(); 4008 Node* iff = new IfNode(init_iff->in(0), init_iff->in(1), init_iff->_prob, init_iff->_fcnt); 4009 n->subsume_by(iff, this); 4010 } 4011 } 4012 4013 while (dead_nodes.size() > 0) { 4014 Node* m = dead_nodes.pop(); 4015 if (m->outcnt() == 0 && m != top()) { 4016 for (uint j = 0; j < m->req(); j++) { 4017 Node* in = m->in(j); 4018 if (in != nullptr) { 4019 dead_nodes.push(in); 4020 } 4021 } 4022 m->disconnect_inputs(this); 4023 } 4024 } 4025 4026 #ifdef IA32 4027 // If original bytecodes contained a mixture of floats and doubles 4028 // check if the optimizer has made it homogeneous, item (3). 4029 if (UseSSE == 0 && 4030 frc.get_float_count() > 32 && 4031 frc.get_double_count() == 0 && 4032 (10 * frc.get_call_count() < frc.get_float_count()) ) { 4033 set_24_bit_selection_and_mode(false, true); 4034 } 4035 #endif // IA32 4036 4037 set_java_calls(frc.get_java_call_count()); 4038 set_inner_loops(frc.get_inner_loop_count()); 4039 4040 // No infinite loops, no reason to bail out. 4041 return false; 4042 } 4043 4044 //-----------------------------too_many_traps---------------------------------- 4045 // Report if there are too many traps at the current method and bci. 4046 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded. 4047 bool Compile::too_many_traps(ciMethod* method, 4048 int bci, 4049 Deoptimization::DeoptReason reason) { 4050 if (method->has_trap_at(bci)) { 4051 return true; 4052 } 4053 ciMethodData* md = method->method_data(); 4054 if (md->is_empty()) { 4055 // Assume the trap has not occurred, or that it occurred only 4056 // because of a transient condition during start-up in the interpreter. 4057 return false; 4058 } 4059 ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : nullptr; 4060 if (md->has_trap_at(bci, m, reason) != 0) { 4061 // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic. 4062 // Also, if there are multiple reasons, or if there is no per-BCI record, 4063 // assume the worst. 4064 if (log()) 4065 log()->elem("observe trap='%s' count='%d'", 4066 Deoptimization::trap_reason_name(reason), 4067 md->trap_count(reason)); 4068 return true; 4069 } else { 4070 // Ignore method/bci and see if there have been too many globally. 4071 return too_many_traps(reason, md); 4072 } 4073 } 4074 4075 // Less-accurate variant which does not require a method and bci. 4076 bool Compile::too_many_traps(Deoptimization::DeoptReason reason, 4077 ciMethodData* logmd) { 4078 if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) { 4079 // Too many traps globally. 4080 // Note that we use cumulative trap_count, not just md->trap_count. 4081 if (log()) { 4082 int mcount = (logmd == nullptr)? -1: (int)logmd->trap_count(reason); 4083 log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'", 4084 Deoptimization::trap_reason_name(reason), 4085 mcount, trap_count(reason)); 4086 } 4087 return true; 4088 } else { 4089 // The coast is clear. 4090 return false; 4091 } 4092 } 4093 4094 //--------------------------too_many_recompiles-------------------------------- 4095 // Report if there are too many recompiles at the current method and bci. 4096 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff. 4097 // Is not eager to return true, since this will cause the compiler to use 4098 // Action_none for a trap point, to avoid too many recompilations. 4099 bool Compile::too_many_recompiles(ciMethod* method, 4100 int bci, 4101 Deoptimization::DeoptReason reason) { 4102 ciMethodData* md = method->method_data(); 4103 if (md->is_empty()) { 4104 // Assume the trap has not occurred, or that it occurred only 4105 // because of a transient condition during start-up in the interpreter. 4106 return false; 4107 } 4108 // Pick a cutoff point well within PerBytecodeRecompilationCutoff. 4109 uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8; 4110 uint m_cutoff = (uint) PerMethodRecompilationCutoff / 2 + 1; // not zero 4111 Deoptimization::DeoptReason per_bc_reason 4112 = Deoptimization::reason_recorded_per_bytecode_if_any(reason); 4113 ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : nullptr; 4114 if ((per_bc_reason == Deoptimization::Reason_none 4115 || md->has_trap_at(bci, m, reason) != 0) 4116 // The trap frequency measure we care about is the recompile count: 4117 && md->trap_recompiled_at(bci, m) 4118 && md->overflow_recompile_count() >= bc_cutoff) { 4119 // Do not emit a trap here if it has already caused recompilations. 4120 // Also, if there are multiple reasons, or if there is no per-BCI record, 4121 // assume the worst. 4122 if (log()) 4123 log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'", 4124 Deoptimization::trap_reason_name(reason), 4125 md->trap_count(reason), 4126 md->overflow_recompile_count()); 4127 return true; 4128 } else if (trap_count(reason) != 0 4129 && decompile_count() >= m_cutoff) { 4130 // Too many recompiles globally, and we have seen this sort of trap. 4131 // Use cumulative decompile_count, not just md->decompile_count. 4132 if (log()) 4133 log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'", 4134 Deoptimization::trap_reason_name(reason), 4135 md->trap_count(reason), trap_count(reason), 4136 md->decompile_count(), decompile_count()); 4137 return true; 4138 } else { 4139 // The coast is clear. 4140 return false; 4141 } 4142 } 4143 4144 // Compute when not to trap. Used by matching trap based nodes and 4145 // NullCheck optimization. 4146 void Compile::set_allowed_deopt_reasons() { 4147 _allowed_reasons = 0; 4148 if (is_method_compilation()) { 4149 for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) { 4150 assert(rs < BitsPerInt, "recode bit map"); 4151 if (!too_many_traps((Deoptimization::DeoptReason) rs)) { 4152 _allowed_reasons |= nth_bit(rs); 4153 } 4154 } 4155 } 4156 } 4157 4158 bool Compile::needs_clinit_barrier(ciMethod* method, ciMethod* accessing_method) { 4159 return method->is_static() && needs_clinit_barrier(method->holder(), accessing_method); 4160 } 4161 4162 bool Compile::needs_clinit_barrier(ciField* field, ciMethod* accessing_method) { 4163 return field->is_static() && needs_clinit_barrier(field->holder(), accessing_method); 4164 } 4165 4166 bool Compile::needs_clinit_barrier(ciInstanceKlass* holder, ciMethod* accessing_method) { 4167 if (holder->is_initialized() && !do_clinit_barriers()) { 4168 return false; 4169 } 4170 if (holder->is_being_initialized() || do_clinit_barriers()) { 4171 if (accessing_method->holder() == holder) { 4172 // Access inside a class. The barrier can be elided when access happens in <clinit>, 4173 // <init>, or a static method. In all those cases, there was an initialization 4174 // barrier on the holder klass passed. 4175 if (accessing_method->is_static_initializer() || 4176 accessing_method->is_object_initializer() || 4177 accessing_method->is_static()) { 4178 return false; 4179 } 4180 } else if (accessing_method->holder()->is_subclass_of(holder)) { 4181 // Access from a subclass. The barrier can be elided only when access happens in <clinit>. 4182 // In case of <init> or a static method, the barrier is on the subclass is not enough: 4183 // child class can become fully initialized while its parent class is still being initialized. 4184 if (accessing_method->is_static_initializer()) { 4185 return false; 4186 } 4187 } 4188 ciMethod* root = method(); // the root method of compilation 4189 if (root != accessing_method) { 4190 return needs_clinit_barrier(holder, root); // check access in the context of compilation root 4191 } 4192 } 4193 return true; 4194 } 4195 4196 #ifndef PRODUCT 4197 //------------------------------verify_bidirectional_edges--------------------- 4198 // For each input edge to a node (ie - for each Use-Def edge), verify that 4199 // there is a corresponding Def-Use edge. 4200 void Compile::verify_bidirectional_edges(Unique_Node_List &visited) { 4201 // Allocate stack of size C->live_nodes()/16 to avoid frequent realloc 4202 uint stack_size = live_nodes() >> 4; 4203 Node_List nstack(MAX2(stack_size, (uint)OptoNodeListSize)); 4204 nstack.push(_root); 4205 4206 while (nstack.size() > 0) { 4207 Node* n = nstack.pop(); 4208 if (visited.member(n)) { 4209 continue; 4210 } 4211 visited.push(n); 4212 4213 // Walk over all input edges, checking for correspondence 4214 uint length = n->len(); 4215 for (uint i = 0; i < length; i++) { 4216 Node* in = n->in(i); 4217 if (in != nullptr && !visited.member(in)) { 4218 nstack.push(in); // Put it on stack 4219 } 4220 if (in != nullptr && !in->is_top()) { 4221 // Count instances of `next` 4222 int cnt = 0; 4223 for (uint idx = 0; idx < in->_outcnt; idx++) { 4224 if (in->_out[idx] == n) { 4225 cnt++; 4226 } 4227 } 4228 assert(cnt > 0, "Failed to find Def-Use edge."); 4229 // Check for duplicate edges 4230 // walk the input array downcounting the input edges to n 4231 for (uint j = 0; j < length; j++) { 4232 if (n->in(j) == in) { 4233 cnt--; 4234 } 4235 } 4236 assert(cnt == 0, "Mismatched edge count."); 4237 } else if (in == nullptr) { 4238 assert(i == 0 || i >= n->req() || 4239 n->is_Region() || n->is_Phi() || n->is_ArrayCopy() || 4240 (n->is_Unlock() && i == (n->req() - 1)) || 4241 (n->is_MemBar() && i == 5), // the precedence edge to a membar can be removed during macro node expansion 4242 "only region, phi, arraycopy, unlock or membar nodes have null data edges"); 4243 } else { 4244 assert(in->is_top(), "sanity"); 4245 // Nothing to check. 4246 } 4247 } 4248 } 4249 } 4250 4251 //------------------------------verify_graph_edges--------------------------- 4252 // Walk the Graph and verify that there is a one-to-one correspondence 4253 // between Use-Def edges and Def-Use edges in the graph. 4254 void Compile::verify_graph_edges(bool no_dead_code) { 4255 if (VerifyGraphEdges) { 4256 Unique_Node_List visited; 4257 4258 // Call graph walk to check edges 4259 verify_bidirectional_edges(visited); 4260 if (no_dead_code) { 4261 // Now make sure that no visited node is used by an unvisited node. 4262 bool dead_nodes = false; 4263 Unique_Node_List checked; 4264 while (visited.size() > 0) { 4265 Node* n = visited.pop(); 4266 checked.push(n); 4267 for (uint i = 0; i < n->outcnt(); i++) { 4268 Node* use = n->raw_out(i); 4269 if (checked.member(use)) continue; // already checked 4270 if (visited.member(use)) continue; // already in the graph 4271 if (use->is_Con()) continue; // a dead ConNode is OK 4272 // At this point, we have found a dead node which is DU-reachable. 4273 if (!dead_nodes) { 4274 tty->print_cr("*** Dead nodes reachable via DU edges:"); 4275 dead_nodes = true; 4276 } 4277 use->dump(2); 4278 tty->print_cr("---"); 4279 checked.push(use); // No repeats; pretend it is now checked. 4280 } 4281 } 4282 assert(!dead_nodes, "using nodes must be reachable from root"); 4283 } 4284 } 4285 } 4286 #endif 4287 4288 // The Compile object keeps track of failure reasons separately from the ciEnv. 4289 // This is required because there is not quite a 1-1 relation between the 4290 // ciEnv and its compilation task and the Compile object. Note that one 4291 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides 4292 // to backtrack and retry without subsuming loads. Other than this backtracking 4293 // behavior, the Compile's failure reason is quietly copied up to the ciEnv 4294 // by the logic in C2Compiler. 4295 void Compile::record_failure(const char* reason DEBUG_ONLY(COMMA bool allow_multiple_failures)) { 4296 if (log() != nullptr) { 4297 log()->elem("failure reason='%s' phase='compile'", reason); 4298 } 4299 if (_failure_reason.get() == nullptr) { 4300 // Record the first failure reason. 4301 _failure_reason.set(reason); 4302 if (CaptureBailoutInformation) { 4303 _first_failure_details = new CompilationFailureInfo(reason); 4304 } 4305 } else { 4306 assert(!StressBailout || allow_multiple_failures, "should have handled previous failure."); 4307 } 4308 4309 if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) { 4310 C->print_method(PHASE_FAILURE, 1); 4311 } 4312 _root = nullptr; // flush the graph, too 4313 } 4314 4315 Compile::TracePhase::TracePhase(const char* name, PhaseTraceId id) 4316 : TraceTime(name, &Phase::timers[id], CITime, CITimeVerbose), 4317 _compile(Compile::current()), 4318 _log(nullptr), 4319 _dolog(CITimeVerbose) 4320 { 4321 assert(_compile != nullptr, "sanity check"); 4322 if (_dolog) { 4323 _log = _compile->log(); 4324 } 4325 if (_log != nullptr) { 4326 _log->begin_head("phase name='%s' nodes='%d' live='%d'", phase_name(), _compile->unique(), _compile->live_nodes()); 4327 _log->stamp(); 4328 _log->end_head(); 4329 } 4330 } 4331 4332 Compile::TracePhase::TracePhase(PhaseTraceId id) 4333 : TracePhase(Phase::get_phase_trace_id_text(id), id) {} 4334 4335 Compile::TracePhase::~TracePhase() { 4336 if (_compile->failing_internal()) { 4337 if (_log != nullptr) { 4338 _log->done("phase"); 4339 } 4340 return; // timing code, not stressing bailouts. 4341 } 4342 #ifdef ASSERT 4343 if (PrintIdealNodeCount) { 4344 tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'", 4345 phase_name(), _compile->unique(), _compile->live_nodes(), _compile->count_live_nodes_by_graph_walk()); 4346 } 4347 4348 if (VerifyIdealNodeCount) { 4349 _compile->print_missing_nodes(); 4350 } 4351 #endif 4352 4353 if (_log != nullptr) { 4354 _log->done("phase name='%s' nodes='%d' live='%d'", phase_name(), _compile->unique(), _compile->live_nodes()); 4355 } 4356 } 4357 4358 //----------------------------static_subtype_check----------------------------- 4359 // Shortcut important common cases when superklass is exact: 4360 // (0) superklass is java.lang.Object (can occur in reflective code) 4361 // (1) subklass is already limited to a subtype of superklass => always ok 4362 // (2) subklass does not overlap with superklass => always fail 4363 // (3) superklass has NO subtypes and we can check with a simple compare. 4364 Compile::SubTypeCheckResult Compile::static_subtype_check(const TypeKlassPtr* superk, const TypeKlassPtr* subk, bool skip) { 4365 if (skip) { 4366 return SSC_full_test; // Let caller generate the general case. 4367 } 4368 4369 if (subk->is_java_subtype_of(superk)) { 4370 return SSC_always_true; // (0) and (1) this test cannot fail 4371 } 4372 4373 if (!subk->maybe_java_subtype_of(superk)) { 4374 return SSC_always_false; // (2) true path dead; no dynamic test needed 4375 } 4376 4377 const Type* superelem = superk; 4378 if (superk->isa_aryklassptr()) { 4379 int ignored; 4380 superelem = superk->is_aryklassptr()->base_element_type(ignored); 4381 } 4382 4383 if (superelem->isa_instklassptr()) { 4384 ciInstanceKlass* ik = superelem->is_instklassptr()->instance_klass(); 4385 if (!ik->has_subklass()) { 4386 if (!ik->is_final()) { 4387 // Add a dependency if there is a chance of a later subclass. 4388 dependencies()->assert_leaf_type(ik); 4389 } 4390 if (!superk->maybe_java_subtype_of(subk)) { 4391 return SSC_always_false; 4392 } 4393 return SSC_easy_test; // (3) caller can do a simple ptr comparison 4394 } 4395 } else { 4396 // A primitive array type has no subtypes. 4397 return SSC_easy_test; // (3) caller can do a simple ptr comparison 4398 } 4399 4400 return SSC_full_test; 4401 } 4402 4403 Node* Compile::conv_I2X_index(PhaseGVN* phase, Node* idx, const TypeInt* sizetype, Node* ctrl) { 4404 #ifdef _LP64 4405 // The scaled index operand to AddP must be a clean 64-bit value. 4406 // Java allows a 32-bit int to be incremented to a negative 4407 // value, which appears in a 64-bit register as a large 4408 // positive number. Using that large positive number as an 4409 // operand in pointer arithmetic has bad consequences. 4410 // On the other hand, 32-bit overflow is rare, and the possibility 4411 // can often be excluded, if we annotate the ConvI2L node with 4412 // a type assertion that its value is known to be a small positive 4413 // number. (The prior range check has ensured this.) 4414 // This assertion is used by ConvI2LNode::Ideal. 4415 int index_max = max_jint - 1; // array size is max_jint, index is one less 4416 if (sizetype != nullptr) index_max = sizetype->_hi - 1; 4417 const TypeInt* iidxtype = TypeInt::make(0, index_max, Type::WidenMax); 4418 idx = constrained_convI2L(phase, idx, iidxtype, ctrl); 4419 #endif 4420 return idx; 4421 } 4422 4423 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check) 4424 Node* Compile::constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl, bool carry_dependency) { 4425 if (ctrl != nullptr) { 4426 // Express control dependency by a CastII node with a narrow type. 4427 // Make the CastII node dependent on the control input to prevent the narrowed ConvI2L 4428 // node from floating above the range check during loop optimizations. Otherwise, the 4429 // ConvI2L node may be eliminated independently of the range check, causing the data path 4430 // to become TOP while the control path is still there (although it's unreachable). 4431 value = new CastIINode(ctrl, value, itype, carry_dependency ? ConstraintCastNode::StrongDependency : ConstraintCastNode::RegularDependency, true /* range check dependency */); 4432 value = phase->transform(value); 4433 } 4434 const TypeLong* ltype = TypeLong::make(itype->_lo, itype->_hi, itype->_widen); 4435 return phase->transform(new ConvI2LNode(value, ltype)); 4436 } 4437 4438 void Compile::dump_print_inlining() { 4439 inline_printer()->print_on(tty); 4440 } 4441 4442 void Compile::log_late_inline(CallGenerator* cg) { 4443 if (log() != nullptr) { 4444 log()->head("late_inline method='%d' inline_id='" JLONG_FORMAT "'", log()->identify(cg->method()), 4445 cg->unique_id()); 4446 JVMState* p = cg->call_node()->jvms(); 4447 while (p != nullptr) { 4448 log()->elem("jvms bci='%d' method='%d'", p->bci(), log()->identify(p->method())); 4449 p = p->caller(); 4450 } 4451 log()->tail("late_inline"); 4452 } 4453 } 4454 4455 void Compile::log_late_inline_failure(CallGenerator* cg, const char* msg) { 4456 log_late_inline(cg); 4457 if (log() != nullptr) { 4458 log()->inline_fail(msg); 4459 } 4460 } 4461 4462 void Compile::log_inline_id(CallGenerator* cg) { 4463 if (log() != nullptr) { 4464 // The LogCompilation tool needs a unique way to identify late 4465 // inline call sites. This id must be unique for this call site in 4466 // this compilation. Try to have it unique across compilations as 4467 // well because it can be convenient when grepping through the log 4468 // file. 4469 // Distinguish OSR compilations from others in case CICountOSR is 4470 // on. 4471 jlong id = ((jlong)unique()) + (((jlong)compile_id()) << 33) + (CICountOSR && is_osr_compilation() ? ((jlong)1) << 32 : 0); 4472 cg->set_unique_id(id); 4473 log()->elem("inline_id id='" JLONG_FORMAT "'", id); 4474 } 4475 } 4476 4477 void Compile::log_inline_failure(const char* msg) { 4478 if (C->log() != nullptr) { 4479 C->log()->inline_fail(msg); 4480 } 4481 } 4482 4483 4484 // Dump inlining replay data to the stream. 4485 // Don't change thread state and acquire any locks. 4486 void Compile::dump_inline_data(outputStream* out) { 4487 InlineTree* inl_tree = ilt(); 4488 if (inl_tree != nullptr) { 4489 out->print(" inline %d", inl_tree->count()); 4490 inl_tree->dump_replay_data(out); 4491 } 4492 } 4493 4494 void Compile::dump_inline_data_reduced(outputStream* out) { 4495 assert(ReplayReduce, ""); 4496 4497 InlineTree* inl_tree = ilt(); 4498 if (inl_tree == nullptr) { 4499 return; 4500 } 4501 // Enable iterative replay file reduction 4502 // Output "compile" lines for depth 1 subtrees, 4503 // simulating that those trees were compiled 4504 // instead of inlined. 4505 for (int i = 0; i < inl_tree->subtrees().length(); ++i) { 4506 InlineTree* sub = inl_tree->subtrees().at(i); 4507 if (sub->inline_level() != 1) { 4508 continue; 4509 } 4510 4511 ciMethod* method = sub->method(); 4512 int entry_bci = -1; 4513 int comp_level = env()->task()->comp_level(); 4514 out->print("compile "); 4515 method->dump_name_as_ascii(out); 4516 out->print(" %d %d", entry_bci, comp_level); 4517 out->print(" inline %d", sub->count()); 4518 sub->dump_replay_data(out, -1); 4519 out->cr(); 4520 } 4521 } 4522 4523 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) { 4524 if (n1->Opcode() < n2->Opcode()) return -1; 4525 else if (n1->Opcode() > n2->Opcode()) return 1; 4526 4527 assert(n1->req() == n2->req(), "can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req()); 4528 for (uint i = 1; i < n1->req(); i++) { 4529 if (n1->in(i) < n2->in(i)) return -1; 4530 else if (n1->in(i) > n2->in(i)) return 1; 4531 } 4532 4533 return 0; 4534 } 4535 4536 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) { 4537 Node* n1 = *n1p; 4538 Node* n2 = *n2p; 4539 4540 return cmp_expensive_nodes(n1, n2); 4541 } 4542 4543 void Compile::sort_expensive_nodes() { 4544 if (!expensive_nodes_sorted()) { 4545 _expensive_nodes.sort(cmp_expensive_nodes); 4546 } 4547 } 4548 4549 bool Compile::expensive_nodes_sorted() const { 4550 for (int i = 1; i < _expensive_nodes.length(); i++) { 4551 if (cmp_expensive_nodes(_expensive_nodes.adr_at(i), _expensive_nodes.adr_at(i-1)) < 0) { 4552 return false; 4553 } 4554 } 4555 return true; 4556 } 4557 4558 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) { 4559 if (_expensive_nodes.length() == 0) { 4560 return false; 4561 } 4562 4563 assert(OptimizeExpensiveOps, "optimization off?"); 4564 4565 // Take this opportunity to remove dead nodes from the list 4566 int j = 0; 4567 for (int i = 0; i < _expensive_nodes.length(); i++) { 4568 Node* n = _expensive_nodes.at(i); 4569 if (!n->is_unreachable(igvn)) { 4570 assert(n->is_expensive(), "should be expensive"); 4571 _expensive_nodes.at_put(j, n); 4572 j++; 4573 } 4574 } 4575 _expensive_nodes.trunc_to(j); 4576 4577 // Then sort the list so that similar nodes are next to each other 4578 // and check for at least two nodes of identical kind with same data 4579 // inputs. 4580 sort_expensive_nodes(); 4581 4582 for (int i = 0; i < _expensive_nodes.length()-1; i++) { 4583 if (cmp_expensive_nodes(_expensive_nodes.adr_at(i), _expensive_nodes.adr_at(i+1)) == 0) { 4584 return true; 4585 } 4586 } 4587 4588 return false; 4589 } 4590 4591 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) { 4592 if (_expensive_nodes.length() == 0) { 4593 return; 4594 } 4595 4596 assert(OptimizeExpensiveOps, "optimization off?"); 4597 4598 // Sort to bring similar nodes next to each other and clear the 4599 // control input of nodes for which there's only a single copy. 4600 sort_expensive_nodes(); 4601 4602 int j = 0; 4603 int identical = 0; 4604 int i = 0; 4605 bool modified = false; 4606 for (; i < _expensive_nodes.length()-1; i++) { 4607 assert(j <= i, "can't write beyond current index"); 4608 if (_expensive_nodes.at(i)->Opcode() == _expensive_nodes.at(i+1)->Opcode()) { 4609 identical++; 4610 _expensive_nodes.at_put(j++, _expensive_nodes.at(i)); 4611 continue; 4612 } 4613 if (identical > 0) { 4614 _expensive_nodes.at_put(j++, _expensive_nodes.at(i)); 4615 identical = 0; 4616 } else { 4617 Node* n = _expensive_nodes.at(i); 4618 igvn.replace_input_of(n, 0, nullptr); 4619 igvn.hash_insert(n); 4620 modified = true; 4621 } 4622 } 4623 if (identical > 0) { 4624 _expensive_nodes.at_put(j++, _expensive_nodes.at(i)); 4625 } else if (_expensive_nodes.length() >= 1) { 4626 Node* n = _expensive_nodes.at(i); 4627 igvn.replace_input_of(n, 0, nullptr); 4628 igvn.hash_insert(n); 4629 modified = true; 4630 } 4631 _expensive_nodes.trunc_to(j); 4632 if (modified) { 4633 igvn.optimize(); 4634 } 4635 } 4636 4637 void Compile::add_expensive_node(Node * n) { 4638 assert(!_expensive_nodes.contains(n), "duplicate entry in expensive list"); 4639 assert(n->is_expensive(), "expensive nodes with non-null control here only"); 4640 assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here"); 4641 if (OptimizeExpensiveOps) { 4642 _expensive_nodes.append(n); 4643 } else { 4644 // Clear control input and let IGVN optimize expensive nodes if 4645 // OptimizeExpensiveOps is off. 4646 n->set_req(0, nullptr); 4647 } 4648 } 4649 4650 /** 4651 * Track coarsened Lock and Unlock nodes. 4652 */ 4653 4654 class Lock_List : public Node_List { 4655 uint _origin_cnt; 4656 public: 4657 Lock_List(Arena *a, uint cnt) : Node_List(a), _origin_cnt(cnt) {} 4658 uint origin_cnt() const { return _origin_cnt; } 4659 }; 4660 4661 void Compile::add_coarsened_locks(GrowableArray<AbstractLockNode*>& locks) { 4662 int length = locks.length(); 4663 if (length > 0) { 4664 // Have to keep this list until locks elimination during Macro nodes elimination. 4665 Lock_List* locks_list = new (comp_arena()) Lock_List(comp_arena(), length); 4666 AbstractLockNode* alock = locks.at(0); 4667 BoxLockNode* box = alock->box_node()->as_BoxLock(); 4668 for (int i = 0; i < length; i++) { 4669 AbstractLockNode* lock = locks.at(i); 4670 assert(lock->is_coarsened(), "expecting only coarsened AbstractLock nodes, but got '%s'[%d] node", lock->Name(), lock->_idx); 4671 locks_list->push(lock); 4672 BoxLockNode* this_box = lock->box_node()->as_BoxLock(); 4673 if (this_box != box) { 4674 // Locking regions (BoxLock) could be Unbalanced here: 4675 // - its coarsened locks were eliminated in earlier 4676 // macro nodes elimination followed by loop unroll 4677 // - it is OSR locking region (no Lock node) 4678 // Preserve Unbalanced status in such cases. 4679 if (!this_box->is_unbalanced()) { 4680 this_box->set_coarsened(); 4681 } 4682 if (!box->is_unbalanced()) { 4683 box->set_coarsened(); 4684 } 4685 } 4686 } 4687 _coarsened_locks.append(locks_list); 4688 } 4689 } 4690 4691 void Compile::remove_useless_coarsened_locks(Unique_Node_List& useful) { 4692 int count = coarsened_count(); 4693 for (int i = 0; i < count; i++) { 4694 Node_List* locks_list = _coarsened_locks.at(i); 4695 for (uint j = 0; j < locks_list->size(); j++) { 4696 Node* lock = locks_list->at(j); 4697 assert(lock->is_AbstractLock(), "sanity"); 4698 if (!useful.member(lock)) { 4699 locks_list->yank(lock); 4700 } 4701 } 4702 } 4703 } 4704 4705 void Compile::remove_coarsened_lock(Node* n) { 4706 if (n->is_AbstractLock()) { 4707 int count = coarsened_count(); 4708 for (int i = 0; i < count; i++) { 4709 Node_List* locks_list = _coarsened_locks.at(i); 4710 locks_list->yank(n); 4711 } 4712 } 4713 } 4714 4715 bool Compile::coarsened_locks_consistent() { 4716 int count = coarsened_count(); 4717 for (int i = 0; i < count; i++) { 4718 bool unbalanced = false; 4719 bool modified = false; // track locks kind modifications 4720 Lock_List* locks_list = (Lock_List*)_coarsened_locks.at(i); 4721 uint size = locks_list->size(); 4722 if (size == 0) { 4723 unbalanced = false; // All locks were eliminated - good 4724 } else if (size != locks_list->origin_cnt()) { 4725 unbalanced = true; // Some locks were removed from list 4726 } else { 4727 for (uint j = 0; j < size; j++) { 4728 Node* lock = locks_list->at(j); 4729 // All nodes in group should have the same state (modified or not) 4730 if (!lock->as_AbstractLock()->is_coarsened()) { 4731 if (j == 0) { 4732 // first on list was modified, the rest should be too for consistency 4733 modified = true; 4734 } else if (!modified) { 4735 // this lock was modified but previous locks on the list were not 4736 unbalanced = true; 4737 break; 4738 } 4739 } else if (modified) { 4740 // previous locks on list were modified but not this lock 4741 unbalanced = true; 4742 break; 4743 } 4744 } 4745 } 4746 if (unbalanced) { 4747 // unbalanced monitor enter/exit - only some [un]lock nodes were removed or modified 4748 #ifdef ASSERT 4749 if (PrintEliminateLocks) { 4750 tty->print_cr("=== unbalanced coarsened locks ==="); 4751 for (uint l = 0; l < size; l++) { 4752 locks_list->at(l)->dump(); 4753 } 4754 } 4755 #endif 4756 record_failure(C2Compiler::retry_no_locks_coarsening()); 4757 return false; 4758 } 4759 } 4760 return true; 4761 } 4762 4763 // Mark locking regions (identified by BoxLockNode) as unbalanced if 4764 // locks coarsening optimization removed Lock/Unlock nodes from them. 4765 // Such regions become unbalanced because coarsening only removes part 4766 // of Lock/Unlock nodes in region. As result we can't execute other 4767 // locks elimination optimizations which assume all code paths have 4768 // corresponding pair of Lock/Unlock nodes - they are balanced. 4769 void Compile::mark_unbalanced_boxes() const { 4770 int count = coarsened_count(); 4771 for (int i = 0; i < count; i++) { 4772 Node_List* locks_list = _coarsened_locks.at(i); 4773 uint size = locks_list->size(); 4774 if (size > 0) { 4775 AbstractLockNode* alock = locks_list->at(0)->as_AbstractLock(); 4776 BoxLockNode* box = alock->box_node()->as_BoxLock(); 4777 if (alock->is_coarsened()) { 4778 // coarsened_locks_consistent(), which is called before this method, verifies 4779 // that the rest of Lock/Unlock nodes on locks_list are also coarsened. 4780 assert(!box->is_eliminated(), "regions with coarsened locks should not be marked as eliminated"); 4781 for (uint j = 1; j < size; j++) { 4782 assert(locks_list->at(j)->as_AbstractLock()->is_coarsened(), "only coarsened locks are expected here"); 4783 BoxLockNode* this_box = locks_list->at(j)->as_AbstractLock()->box_node()->as_BoxLock(); 4784 if (box != this_box) { 4785 assert(!this_box->is_eliminated(), "regions with coarsened locks should not be marked as eliminated"); 4786 box->set_unbalanced(); 4787 this_box->set_unbalanced(); 4788 } 4789 } 4790 } 4791 } 4792 } 4793 } 4794 4795 /** 4796 * Remove the speculative part of types and clean up the graph 4797 */ 4798 void Compile::remove_speculative_types(PhaseIterGVN &igvn) { 4799 if (UseTypeSpeculation) { 4800 Unique_Node_List worklist; 4801 worklist.push(root()); 4802 int modified = 0; 4803 // Go over all type nodes that carry a speculative type, drop the 4804 // speculative part of the type and enqueue the node for an igvn 4805 // which may optimize it out. 4806 for (uint next = 0; next < worklist.size(); ++next) { 4807 Node *n = worklist.at(next); 4808 if (n->is_Type()) { 4809 TypeNode* tn = n->as_Type(); 4810 const Type* t = tn->type(); 4811 const Type* t_no_spec = t->remove_speculative(); 4812 if (t_no_spec != t) { 4813 bool in_hash = igvn.hash_delete(n); 4814 assert(in_hash || n->hash() == Node::NO_HASH, "node should be in igvn hash table"); 4815 tn->set_type(t_no_spec); 4816 igvn.hash_insert(n); 4817 igvn._worklist.push(n); // give it a chance to go away 4818 modified++; 4819 } 4820 } 4821 // Iterate over outs - endless loops is unreachable from below 4822 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 4823 Node *m = n->fast_out(i); 4824 if (not_a_node(m)) { 4825 continue; 4826 } 4827 worklist.push(m); 4828 } 4829 } 4830 // Drop the speculative part of all types in the igvn's type table 4831 igvn.remove_speculative_types(); 4832 if (modified > 0) { 4833 igvn.optimize(); 4834 if (failing()) return; 4835 } 4836 #ifdef ASSERT 4837 // Verify that after the IGVN is over no speculative type has resurfaced 4838 worklist.clear(); 4839 worklist.push(root()); 4840 for (uint next = 0; next < worklist.size(); ++next) { 4841 Node *n = worklist.at(next); 4842 const Type* t = igvn.type_or_null(n); 4843 assert((t == nullptr) || (t == t->remove_speculative()), "no more speculative types"); 4844 if (n->is_Type()) { 4845 t = n->as_Type()->type(); 4846 assert(t == t->remove_speculative(), "no more speculative types"); 4847 } 4848 // Iterate over outs - endless loops is unreachable from below 4849 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 4850 Node *m = n->fast_out(i); 4851 if (not_a_node(m)) { 4852 continue; 4853 } 4854 worklist.push(m); 4855 } 4856 } 4857 igvn.check_no_speculative_types(); 4858 #endif 4859 } 4860 } 4861 4862 // Auxiliary methods to support randomized stressing/fuzzing. 4863 4864 void Compile::initialize_stress_seed(const DirectiveSet* directive) { 4865 if (FLAG_IS_DEFAULT(StressSeed) || (FLAG_IS_ERGO(StressSeed) && directive->RepeatCompilationOption)) { 4866 _stress_seed = static_cast<uint>(Ticks::now().nanoseconds()); 4867 FLAG_SET_ERGO(StressSeed, _stress_seed); 4868 } else { 4869 _stress_seed = StressSeed; 4870 } 4871 if (_log != nullptr) { 4872 _log->elem("stress_test seed='%u'", _stress_seed); 4873 } 4874 } 4875 4876 int Compile::random() { 4877 _stress_seed = os::next_random(_stress_seed); 4878 return static_cast<int>(_stress_seed); 4879 } 4880 4881 // This method can be called the arbitrary number of times, with current count 4882 // as the argument. The logic allows selecting a single candidate from the 4883 // running list of candidates as follows: 4884 // int count = 0; 4885 // Cand* selected = null; 4886 // while(cand = cand->next()) { 4887 // if (randomized_select(++count)) { 4888 // selected = cand; 4889 // } 4890 // } 4891 // 4892 // Including count equalizes the chances any candidate is "selected". 4893 // This is useful when we don't have the complete list of candidates to choose 4894 // from uniformly. In this case, we need to adjust the randomicity of the 4895 // selection, or else we will end up biasing the selection towards the latter 4896 // candidates. 4897 // 4898 // Quick back-envelope calculation shows that for the list of n candidates 4899 // the equal probability for the candidate to persist as "best" can be 4900 // achieved by replacing it with "next" k-th candidate with the probability 4901 // of 1/k. It can be easily shown that by the end of the run, the 4902 // probability for any candidate is converged to 1/n, thus giving the 4903 // uniform distribution among all the candidates. 4904 // 4905 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large. 4906 #define RANDOMIZED_DOMAIN_POW 29 4907 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW) 4908 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1) 4909 bool Compile::randomized_select(int count) { 4910 assert(count > 0, "only positive"); 4911 return (random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count); 4912 } 4913 4914 #ifdef ASSERT 4915 // Failures are geometrically distributed with probability 1/StressBailoutMean. 4916 bool Compile::fail_randomly() { 4917 if ((random() % StressBailoutMean) != 0) { 4918 return false; 4919 } 4920 record_failure("StressBailout"); 4921 return true; 4922 } 4923 4924 bool Compile::failure_is_artificial() { 4925 return C->failure_reason_is("StressBailout"); 4926 } 4927 #endif 4928 4929 CloneMap& Compile::clone_map() { return _clone_map; } 4930 void Compile::set_clone_map(Dict* d) { _clone_map._dict = d; } 4931 4932 void NodeCloneInfo::dump_on(outputStream* st) const { 4933 st->print(" {%d:%d} ", idx(), gen()); 4934 } 4935 4936 void CloneMap::clone(Node* old, Node* nnn, int gen) { 4937 uint64_t val = value(old->_idx); 4938 NodeCloneInfo cio(val); 4939 assert(val != 0, "old node should be in the map"); 4940 NodeCloneInfo cin(cio.idx(), gen + cio.gen()); 4941 insert(nnn->_idx, cin.get()); 4942 #ifndef PRODUCT 4943 if (is_debug()) { 4944 tty->print_cr("CloneMap::clone inserted node %d info {%d:%d} into CloneMap", nnn->_idx, cin.idx(), cin.gen()); 4945 } 4946 #endif 4947 } 4948 4949 void CloneMap::verify_insert_and_clone(Node* old, Node* nnn, int gen) { 4950 NodeCloneInfo cio(value(old->_idx)); 4951 if (cio.get() == 0) { 4952 cio.set(old->_idx, 0); 4953 insert(old->_idx, cio.get()); 4954 #ifndef PRODUCT 4955 if (is_debug()) { 4956 tty->print_cr("CloneMap::verify_insert_and_clone inserted node %d info {%d:%d} into CloneMap", old->_idx, cio.idx(), cio.gen()); 4957 } 4958 #endif 4959 } 4960 clone(old, nnn, gen); 4961 } 4962 4963 int CloneMap::max_gen() const { 4964 int g = 0; 4965 DictI di(_dict); 4966 for(; di.test(); ++di) { 4967 int t = gen(di._key); 4968 if (g < t) { 4969 g = t; 4970 #ifndef PRODUCT 4971 if (is_debug()) { 4972 tty->print_cr("CloneMap::max_gen() update max=%d from %d", g, _2_node_idx_t(di._key)); 4973 } 4974 #endif 4975 } 4976 } 4977 return g; 4978 } 4979 4980 void CloneMap::dump(node_idx_t key, outputStream* st) const { 4981 uint64_t val = value(key); 4982 if (val != 0) { 4983 NodeCloneInfo ni(val); 4984 ni.dump_on(st); 4985 } 4986 } 4987 4988 void Compile::shuffle_macro_nodes() { 4989 if (_macro_nodes.length() < 2) { 4990 return; 4991 } 4992 for (uint i = _macro_nodes.length() - 1; i >= 1; i--) { 4993 uint j = C->random() % (i + 1); 4994 swap(_macro_nodes.at(i), _macro_nodes.at(j)); 4995 } 4996 } 4997 4998 // Move Allocate nodes to the start of the list 4999 void Compile::sort_macro_nodes() { 5000 int count = macro_count(); 5001 int allocates = 0; 5002 for (int i = 0; i < count; i++) { 5003 Node* n = macro_node(i); 5004 if (n->is_Allocate()) { 5005 if (i != allocates) { 5006 Node* tmp = macro_node(allocates); 5007 _macro_nodes.at_put(allocates, n); 5008 _macro_nodes.at_put(i, tmp); 5009 } 5010 allocates++; 5011 } 5012 } 5013 } 5014 5015 void Compile::print_method(CompilerPhaseType cpt, int level, Node* n) { 5016 if (failing_internal()) { return; } // failing_internal to not stress bailouts from printing code. 5017 EventCompilerPhase event(UNTIMED); 5018 if (event.should_commit()) { 5019 CompilerEvent::PhaseEvent::post(event, C->_latest_stage_start_counter, cpt, C->_compile_id, level); 5020 } 5021 #ifndef PRODUCT 5022 ResourceMark rm; 5023 stringStream ss; 5024 ss.print_raw(CompilerPhaseTypeHelper::to_description(cpt)); 5025 int iter = ++_igv_phase_iter[cpt]; 5026 if (iter > 1) { 5027 ss.print(" %d", iter); 5028 } 5029 if (n != nullptr) { 5030 ss.print(": %d %s", n->_idx, NodeClassNames[n->Opcode()]); 5031 if (n->is_Call()) { 5032 CallNode* call = n->as_Call(); 5033 if (call->_name != nullptr) { 5034 // E.g. uncommon traps etc. 5035 ss.print(" - %s", call->_name); 5036 } else if (call->is_CallJava()) { 5037 CallJavaNode* call_java = call->as_CallJava(); 5038 if (call_java->method() != nullptr) { 5039 ss.print(" -"); 5040 call_java->method()->print_short_name(&ss); 5041 } 5042 } 5043 } 5044 } 5045 5046 const char* name = ss.as_string(); 5047 if (should_print_igv(level)) { 5048 _igv_printer->print_graph(name); 5049 } 5050 if (should_print_phase(cpt)) { 5051 print_ideal_ir(CompilerPhaseTypeHelper::to_name(cpt)); 5052 } 5053 #endif 5054 C->_latest_stage_start_counter.stamp(); 5055 } 5056 5057 // Only used from CompileWrapper 5058 void Compile::begin_method() { 5059 #ifndef PRODUCT 5060 if (_method != nullptr && should_print_igv(1)) { 5061 _igv_printer->begin_method(); 5062 } 5063 #endif 5064 C->_latest_stage_start_counter.stamp(); 5065 } 5066 5067 // Only used from CompileWrapper 5068 void Compile::end_method() { 5069 EventCompilerPhase event(UNTIMED); 5070 if (event.should_commit()) { 5071 CompilerEvent::PhaseEvent::post(event, C->_latest_stage_start_counter, PHASE_END, C->_compile_id, 1); 5072 } 5073 5074 #ifndef PRODUCT 5075 if (_method != nullptr && should_print_igv(1)) { 5076 _igv_printer->end_method(); 5077 } 5078 #endif 5079 } 5080 5081 bool Compile::should_print_phase(CompilerPhaseType cpt) { 5082 #ifndef PRODUCT 5083 if (_directive->should_print_phase(cpt)) { 5084 return true; 5085 } 5086 #endif 5087 return false; 5088 } 5089 5090 #ifndef PRODUCT 5091 void Compile::init_igv() { 5092 if (_igv_printer == nullptr) { 5093 _igv_printer = IdealGraphPrinter::printer(); 5094 _igv_printer->set_compile(this); 5095 } 5096 } 5097 #endif 5098 5099 bool Compile::should_print_igv(const int level) { 5100 #ifndef PRODUCT 5101 if (PrintIdealGraphLevel < 0) { // disabled by the user 5102 return false; 5103 } 5104 5105 bool need = directive()->IGVPrintLevelOption >= level; 5106 if (need) { 5107 Compile::init_igv(); 5108 } 5109 return need; 5110 #else 5111 return false; 5112 #endif 5113 } 5114 5115 #ifndef PRODUCT 5116 IdealGraphPrinter* Compile::_debug_file_printer = nullptr; 5117 IdealGraphPrinter* Compile::_debug_network_printer = nullptr; 5118 5119 // Called from debugger. Prints method to the default file with the default phase name. 5120 // This works regardless of any Ideal Graph Visualizer flags set or not. 5121 void igv_print() { 5122 Compile::current()->igv_print_method_to_file(); 5123 } 5124 5125 // Same as igv_print() above but with a specified phase name. 5126 void igv_print(const char* phase_name) { 5127 Compile::current()->igv_print_method_to_file(phase_name); 5128 } 5129 5130 // Called from debugger. Prints method with the default phase name to the default network or the one specified with 5131 // the network flags for the Ideal Graph Visualizer, or to the default file depending on the 'network' argument. 5132 // This works regardless of any Ideal Graph Visualizer flags set or not. 5133 void igv_print(bool network) { 5134 if (network) { 5135 Compile::current()->igv_print_method_to_network(); 5136 } else { 5137 Compile::current()->igv_print_method_to_file(); 5138 } 5139 } 5140 5141 // Same as igv_print(bool network) above but with a specified phase name. 5142 void igv_print(bool network, const char* phase_name) { 5143 if (network) { 5144 Compile::current()->igv_print_method_to_network(phase_name); 5145 } else { 5146 Compile::current()->igv_print_method_to_file(phase_name); 5147 } 5148 } 5149 5150 // Called from debugger. Normal write to the default _printer. Only works if Ideal Graph Visualizer printing flags are set. 5151 void igv_print_default() { 5152 Compile::current()->print_method(PHASE_DEBUG, 0); 5153 } 5154 5155 // Called from debugger, especially when replaying a trace in which the program state cannot be altered like with rr replay. 5156 // A method is appended to an existing default file with the default phase name. This means that igv_append() must follow 5157 // an earlier igv_print(*) call which sets up the file. This works regardless of any Ideal Graph Visualizer flags set or not. 5158 void igv_append() { 5159 Compile::current()->igv_print_method_to_file("Debug", true); 5160 } 5161 5162 // Same as igv_append() above but with a specified phase name. 5163 void igv_append(const char* phase_name) { 5164 Compile::current()->igv_print_method_to_file(phase_name, true); 5165 } 5166 5167 void Compile::igv_print_method_to_file(const char* phase_name, bool append) { 5168 const char* file_name = "custom_debug.xml"; 5169 if (_debug_file_printer == nullptr) { 5170 _debug_file_printer = new IdealGraphPrinter(C, file_name, append); 5171 } else { 5172 _debug_file_printer->update_compiled_method(C->method()); 5173 } 5174 tty->print_cr("Method %s to %s", append ? "appended" : "printed", file_name); 5175 _debug_file_printer->print_graph(phase_name); 5176 } 5177 5178 void Compile::igv_print_method_to_network(const char* phase_name) { 5179 ResourceMark rm; 5180 GrowableArray<const Node*> empty_list; 5181 igv_print_graph_to_network(phase_name, (Node*) C->root(), empty_list); 5182 } 5183 5184 void Compile::igv_print_graph_to_network(const char* name, Node* node, GrowableArray<const Node*>& visible_nodes) { 5185 if (_debug_network_printer == nullptr) { 5186 _debug_network_printer = new IdealGraphPrinter(C); 5187 } else { 5188 _debug_network_printer->update_compiled_method(C->method()); 5189 } 5190 tty->print_cr("Method printed over network stream to IGV"); 5191 _debug_network_printer->print(name, C->root(), visible_nodes); 5192 } 5193 #endif 5194 5195 Node* Compile::narrow_value(BasicType bt, Node* value, const Type* type, PhaseGVN* phase, bool transform_res) { 5196 if (type != nullptr && phase->type(value)->higher_equal(type)) { 5197 return value; 5198 } 5199 Node* result = nullptr; 5200 if (bt == T_BYTE) { 5201 result = phase->transform(new LShiftINode(value, phase->intcon(24))); 5202 result = new RShiftINode(result, phase->intcon(24)); 5203 } else if (bt == T_BOOLEAN) { 5204 result = new AndINode(value, phase->intcon(0xFF)); 5205 } else if (bt == T_CHAR) { 5206 result = new AndINode(value,phase->intcon(0xFFFF)); 5207 } else { 5208 assert(bt == T_SHORT, "unexpected narrow type"); 5209 result = phase->transform(new LShiftINode(value, phase->intcon(16))); 5210 result = new RShiftINode(result, phase->intcon(16)); 5211 } 5212 if (transform_res) { 5213 result = phase->transform(result); 5214 } 5215 return result; 5216 } 5217 5218 void Compile::record_method_not_compilable_oom() { 5219 record_method_not_compilable(CompilationMemoryStatistic::failure_reason_memlimit()); 5220 }