1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "asm/macroAssembler.hpp" 26 #include "asm/macroAssembler.inline.hpp" 27 #include "ci/ciReplay.hpp" 28 #include "classfile/javaClasses.hpp" 29 #include "code/exceptionHandlerTable.hpp" 30 #include "code/nmethod.hpp" 31 #include "compiler/compilationFailureInfo.hpp" 32 #include "compiler/compilationMemoryStatistic.hpp" 33 #include "compiler/compileBroker.hpp" 34 #include "compiler/compileLog.hpp" 35 #include "compiler/compilerOracle.hpp" 36 #include "compiler/compiler_globals.hpp" 37 #include "compiler/disassembler.hpp" 38 #include "compiler/oopMap.hpp" 39 #include "gc/shared/barrierSet.hpp" 40 #include "gc/shared/c2/barrierSetC2.hpp" 41 #include "jfr/jfrEvents.hpp" 42 #include "jvm_io.h" 43 #include "memory/allocation.hpp" 44 #include "memory/arena.hpp" 45 #include "memory/resourceArea.hpp" 46 #include "opto/addnode.hpp" 47 #include "opto/block.hpp" 48 #include "opto/c2compiler.hpp" 49 #include "opto/callGenerator.hpp" 50 #include "opto/callnode.hpp" 51 #include "opto/castnode.hpp" 52 #include "opto/cfgnode.hpp" 53 #include "opto/chaitin.hpp" 54 #include "opto/compile.hpp" 55 #include "opto/connode.hpp" 56 #include "opto/convertnode.hpp" 57 #include "opto/divnode.hpp" 58 #include "opto/escape.hpp" 59 #include "opto/idealGraphPrinter.hpp" 60 #include "opto/locknode.hpp" 61 #include "opto/loopnode.hpp" 62 #include "opto/machnode.hpp" 63 #include "opto/macro.hpp" 64 #include "opto/matcher.hpp" 65 #include "opto/mathexactnode.hpp" 66 #include "opto/memnode.hpp" 67 #include "opto/mulnode.hpp" 68 #include "opto/narrowptrnode.hpp" 69 #include "opto/node.hpp" 70 #include "opto/opcodes.hpp" 71 #include "opto/output.hpp" 72 #include "opto/parse.hpp" 73 #include "opto/phaseX.hpp" 74 #include "opto/rootnode.hpp" 75 #include "opto/runtime.hpp" 76 #include "opto/stringopts.hpp" 77 #include "opto/type.hpp" 78 #include "opto/vector.hpp" 79 #include "opto/vectornode.hpp" 80 #include "runtime/globals_extension.hpp" 81 #include "runtime/sharedRuntime.hpp" 82 #include "runtime/signature.hpp" 83 #include "runtime/stubRoutines.hpp" 84 #include "runtime/timer.hpp" 85 #include "utilities/align.hpp" 86 #include "utilities/copy.hpp" 87 #include "utilities/macros.hpp" 88 #include "utilities/resourceHash.hpp" 89 90 // -------------------- Compile::mach_constant_base_node ----------------------- 91 // Constant table base node singleton. 92 MachConstantBaseNode* Compile::mach_constant_base_node() { 93 if (_mach_constant_base_node == nullptr) { 94 _mach_constant_base_node = new MachConstantBaseNode(); 95 _mach_constant_base_node->add_req(C->root()); 96 } 97 return _mach_constant_base_node; 98 } 99 100 101 /// Support for intrinsics. 102 103 // Return the index at which m must be inserted (or already exists). 104 // The sort order is by the address of the ciMethod, with is_virtual as minor key. 105 class IntrinsicDescPair { 106 private: 107 ciMethod* _m; 108 bool _is_virtual; 109 public: 110 IntrinsicDescPair(ciMethod* m, bool is_virtual) : _m(m), _is_virtual(is_virtual) {} 111 static int compare(IntrinsicDescPair* const& key, CallGenerator* const& elt) { 112 ciMethod* m= elt->method(); 113 ciMethod* key_m = key->_m; 114 if (key_m < m) return -1; 115 else if (key_m > m) return 1; 116 else { 117 bool is_virtual = elt->is_virtual(); 118 bool key_virtual = key->_is_virtual; 119 if (key_virtual < is_virtual) return -1; 120 else if (key_virtual > is_virtual) return 1; 121 else return 0; 122 } 123 } 124 }; 125 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found) { 126 #ifdef ASSERT 127 for (int i = 1; i < _intrinsics.length(); i++) { 128 CallGenerator* cg1 = _intrinsics.at(i-1); 129 CallGenerator* cg2 = _intrinsics.at(i); 130 assert(cg1->method() != cg2->method() 131 ? cg1->method() < cg2->method() 132 : cg1->is_virtual() < cg2->is_virtual(), 133 "compiler intrinsics list must stay sorted"); 134 } 135 #endif 136 IntrinsicDescPair pair(m, is_virtual); 137 return _intrinsics.find_sorted<IntrinsicDescPair*, IntrinsicDescPair::compare>(&pair, found); 138 } 139 140 void Compile::register_intrinsic(CallGenerator* cg) { 141 bool found = false; 142 int index = intrinsic_insertion_index(cg->method(), cg->is_virtual(), found); 143 assert(!found, "registering twice"); 144 _intrinsics.insert_before(index, cg); 145 assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked"); 146 } 147 148 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) { 149 assert(m->is_loaded(), "don't try this on unloaded methods"); 150 if (_intrinsics.length() > 0) { 151 bool found = false; 152 int index = intrinsic_insertion_index(m, is_virtual, found); 153 if (found) { 154 return _intrinsics.at(index); 155 } 156 } 157 // Lazily create intrinsics for intrinsic IDs well-known in the runtime. 158 if (m->intrinsic_id() != vmIntrinsics::_none && 159 m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) { 160 CallGenerator* cg = make_vm_intrinsic(m, is_virtual); 161 if (cg != nullptr) { 162 // Save it for next time: 163 register_intrinsic(cg); 164 return cg; 165 } else { 166 gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled); 167 } 168 } 169 return nullptr; 170 } 171 172 // Compile::make_vm_intrinsic is defined in library_call.cpp. 173 174 #ifndef PRODUCT 175 // statistics gathering... 176 177 juint Compile::_intrinsic_hist_count[vmIntrinsics::number_of_intrinsics()] = {0}; 178 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::number_of_intrinsics()] = {0}; 179 180 inline int as_int(vmIntrinsics::ID id) { 181 return vmIntrinsics::as_int(id); 182 } 183 184 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) { 185 assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob"); 186 int oflags = _intrinsic_hist_flags[as_int(id)]; 187 assert(flags != 0, "what happened?"); 188 if (is_virtual) { 189 flags |= _intrinsic_virtual; 190 } 191 bool changed = (flags != oflags); 192 if ((flags & _intrinsic_worked) != 0) { 193 juint count = (_intrinsic_hist_count[as_int(id)] += 1); 194 if (count == 1) { 195 changed = true; // first time 196 } 197 // increment the overall count also: 198 _intrinsic_hist_count[as_int(vmIntrinsics::_none)] += 1; 199 } 200 if (changed) { 201 if (((oflags ^ flags) & _intrinsic_virtual) != 0) { 202 // Something changed about the intrinsic's virtuality. 203 if ((flags & _intrinsic_virtual) != 0) { 204 // This is the first use of this intrinsic as a virtual call. 205 if (oflags != 0) { 206 // We already saw it as a non-virtual, so note both cases. 207 flags |= _intrinsic_both; 208 } 209 } else if ((oflags & _intrinsic_both) == 0) { 210 // This is the first use of this intrinsic as a non-virtual 211 flags |= _intrinsic_both; 212 } 213 } 214 _intrinsic_hist_flags[as_int(id)] = (jubyte) (oflags | flags); 215 } 216 // update the overall flags also: 217 _intrinsic_hist_flags[as_int(vmIntrinsics::_none)] |= (jubyte) flags; 218 return changed; 219 } 220 221 static char* format_flags(int flags, char* buf) { 222 buf[0] = 0; 223 if ((flags & Compile::_intrinsic_worked) != 0) strcat(buf, ",worked"); 224 if ((flags & Compile::_intrinsic_failed) != 0) strcat(buf, ",failed"); 225 if ((flags & Compile::_intrinsic_disabled) != 0) strcat(buf, ",disabled"); 226 if ((flags & Compile::_intrinsic_virtual) != 0) strcat(buf, ",virtual"); 227 if ((flags & Compile::_intrinsic_both) != 0) strcat(buf, ",nonvirtual"); 228 if (buf[0] == 0) strcat(buf, ","); 229 assert(buf[0] == ',', "must be"); 230 return &buf[1]; 231 } 232 233 void Compile::print_intrinsic_statistics() { 234 char flagsbuf[100]; 235 ttyLocker ttyl; 236 if (xtty != nullptr) xtty->head("statistics type='intrinsic'"); 237 tty->print_cr("Compiler intrinsic usage:"); 238 juint total = _intrinsic_hist_count[as_int(vmIntrinsics::_none)]; 239 if (total == 0) total = 1; // avoid div0 in case of no successes 240 #define PRINT_STAT_LINE(name, c, f) \ 241 tty->print_cr(" %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f); 242 for (auto id : EnumRange<vmIntrinsicID>{}) { 243 int flags = _intrinsic_hist_flags[as_int(id)]; 244 juint count = _intrinsic_hist_count[as_int(id)]; 245 if ((flags | count) != 0) { 246 PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf)); 247 } 248 } 249 PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[as_int(vmIntrinsics::_none)], flagsbuf)); 250 if (xtty != nullptr) xtty->tail("statistics"); 251 } 252 253 void Compile::print_statistics() { 254 { ttyLocker ttyl; 255 if (xtty != nullptr) xtty->head("statistics type='opto'"); 256 Parse::print_statistics(); 257 PhaseStringOpts::print_statistics(); 258 PhaseCCP::print_statistics(); 259 PhaseRegAlloc::print_statistics(); 260 PhaseOutput::print_statistics(); 261 PhasePeephole::print_statistics(); 262 PhaseIdealLoop::print_statistics(); 263 ConnectionGraph::print_statistics(); 264 PhaseMacroExpand::print_statistics(); 265 if (xtty != nullptr) xtty->tail("statistics"); 266 } 267 if (_intrinsic_hist_flags[as_int(vmIntrinsics::_none)] != 0) { 268 // put this under its own <statistics> element. 269 print_intrinsic_statistics(); 270 } 271 } 272 #endif //PRODUCT 273 274 void Compile::gvn_replace_by(Node* n, Node* nn) { 275 for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) { 276 Node* use = n->last_out(i); 277 bool is_in_table = initial_gvn()->hash_delete(use); 278 uint uses_found = 0; 279 for (uint j = 0; j < use->len(); j++) { 280 if (use->in(j) == n) { 281 if (j < use->req()) 282 use->set_req(j, nn); 283 else 284 use->set_prec(j, nn); 285 uses_found++; 286 } 287 } 288 if (is_in_table) { 289 // reinsert into table 290 initial_gvn()->hash_find_insert(use); 291 } 292 record_for_igvn(use); 293 PhaseIterGVN::add_users_of_use_to_worklist(nn, use, *_igvn_worklist); 294 i -= uses_found; // we deleted 1 or more copies of this edge 295 } 296 } 297 298 299 // Identify all nodes that are reachable from below, useful. 300 // Use breadth-first pass that records state in a Unique_Node_List, 301 // recursive traversal is slower. 302 void Compile::identify_useful_nodes(Unique_Node_List &useful) { 303 int estimated_worklist_size = live_nodes(); 304 useful.map( estimated_worklist_size, nullptr ); // preallocate space 305 306 // Initialize worklist 307 if (root() != nullptr) { useful.push(root()); } 308 // If 'top' is cached, declare it useful to preserve cached node 309 if (cached_top_node()) { useful.push(cached_top_node()); } 310 311 // Push all useful nodes onto the list, breadthfirst 312 for( uint next = 0; next < useful.size(); ++next ) { 313 assert( next < unique(), "Unique useful nodes < total nodes"); 314 Node *n = useful.at(next); 315 uint max = n->len(); 316 for( uint i = 0; i < max; ++i ) { 317 Node *m = n->in(i); 318 if (not_a_node(m)) continue; 319 useful.push(m); 320 } 321 } 322 } 323 324 // Update dead_node_list with any missing dead nodes using useful 325 // list. Consider all non-useful nodes to be useless i.e., dead nodes. 326 void Compile::update_dead_node_list(Unique_Node_List &useful) { 327 uint max_idx = unique(); 328 VectorSet& useful_node_set = useful.member_set(); 329 330 for (uint node_idx = 0; node_idx < max_idx; node_idx++) { 331 // If node with index node_idx is not in useful set, 332 // mark it as dead in dead node list. 333 if (!useful_node_set.test(node_idx)) { 334 record_dead_node(node_idx); 335 } 336 } 337 } 338 339 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) { 340 int shift = 0; 341 for (int i = 0; i < inlines->length(); i++) { 342 CallGenerator* cg = inlines->at(i); 343 if (useful.member(cg->call_node())) { 344 if (shift > 0) { 345 inlines->at_put(i - shift, cg); 346 } 347 } else { 348 shift++; // skip over the dead element 349 } 350 } 351 if (shift > 0) { 352 inlines->trunc_to(inlines->length() - shift); // remove last elements from compacted array 353 } 354 } 355 356 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Node* dead) { 357 assert(dead != nullptr && dead->is_Call(), "sanity"); 358 int found = 0; 359 for (int i = 0; i < inlines->length(); i++) { 360 if (inlines->at(i)->call_node() == dead) { 361 inlines->remove_at(i); 362 found++; 363 NOT_DEBUG( break; ) // elements are unique, so exit early 364 } 365 } 366 assert(found <= 1, "not unique"); 367 } 368 369 template<typename N, ENABLE_IF_SDEFN(std::is_base_of<Node, N>::value)> 370 void Compile::remove_useless_nodes(GrowableArray<N*>& node_list, Unique_Node_List& useful) { 371 for (int i = node_list.length() - 1; i >= 0; i--) { 372 N* node = node_list.at(i); 373 if (!useful.member(node)) { 374 node_list.delete_at(i); // replaces i-th with last element which is known to be useful (already processed) 375 } 376 } 377 } 378 379 void Compile::remove_useless_node(Node* dead) { 380 remove_modified_node(dead); 381 382 // Constant node that has no out-edges and has only one in-edge from 383 // root is usually dead. However, sometimes reshaping walk makes 384 // it reachable by adding use edges. So, we will NOT count Con nodes 385 // as dead to be conservative about the dead node count at any 386 // given time. 387 if (!dead->is_Con()) { 388 record_dead_node(dead->_idx); 389 } 390 if (dead->is_macro()) { 391 remove_macro_node(dead); 392 } 393 if (dead->is_expensive()) { 394 remove_expensive_node(dead); 395 } 396 if (dead->is_OpaqueTemplateAssertionPredicate()) { 397 remove_template_assertion_predicate_opaq(dead); 398 } 399 if (dead->is_ParsePredicate()) { 400 remove_parse_predicate(dead->as_ParsePredicate()); 401 } 402 if (dead->for_post_loop_opts_igvn()) { 403 remove_from_post_loop_opts_igvn(dead); 404 } 405 if (dead->for_merge_stores_igvn()) { 406 remove_from_merge_stores_igvn(dead); 407 } 408 if (dead->is_Call()) { 409 remove_useless_late_inlines( &_late_inlines, dead); 410 remove_useless_late_inlines( &_string_late_inlines, dead); 411 remove_useless_late_inlines( &_boxing_late_inlines, dead); 412 remove_useless_late_inlines(&_vector_reboxing_late_inlines, dead); 413 414 if (dead->is_CallStaticJava()) { 415 remove_unstable_if_trap(dead->as_CallStaticJava(), false); 416 } 417 } 418 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 419 bs->unregister_potential_barrier_node(dead); 420 } 421 422 // Disconnect all useless nodes by disconnecting those at the boundary. 423 void Compile::disconnect_useless_nodes(Unique_Node_List& useful, Unique_Node_List& worklist) { 424 uint next = 0; 425 while (next < useful.size()) { 426 Node *n = useful.at(next++); 427 if (n->is_SafePoint()) { 428 // We're done with a parsing phase. Replaced nodes are not valid 429 // beyond that point. 430 n->as_SafePoint()->delete_replaced_nodes(); 431 } 432 // Use raw traversal of out edges since this code removes out edges 433 int max = n->outcnt(); 434 for (int j = 0; j < max; ++j) { 435 Node* child = n->raw_out(j); 436 if (!useful.member(child)) { 437 assert(!child->is_top() || child != top(), 438 "If top is cached in Compile object it is in useful list"); 439 // Only need to remove this out-edge to the useless node 440 n->raw_del_out(j); 441 --j; 442 --max; 443 if (child->is_data_proj_of_pure_function(n)) { 444 worklist.push(n); 445 } 446 } 447 } 448 if (n->outcnt() == 1 && n->has_special_unique_user()) { 449 assert(useful.member(n->unique_out()), "do not push a useless node"); 450 worklist.push(n->unique_out()); 451 } 452 } 453 454 remove_useless_nodes(_macro_nodes, useful); // remove useless macro nodes 455 remove_useless_nodes(_parse_predicates, useful); // remove useless Parse Predicate nodes 456 remove_useless_nodes(_template_assertion_predicate_opaqs, useful); // remove useless Assertion Predicate opaque nodes 457 remove_useless_nodes(_expensive_nodes, useful); // remove useless expensive nodes 458 remove_useless_nodes(_for_post_loop_igvn, useful); // remove useless node recorded for post loop opts IGVN pass 459 remove_useless_nodes(_for_merge_stores_igvn, useful); // remove useless node recorded for merge stores IGVN pass 460 remove_useless_unstable_if_traps(useful); // remove useless unstable_if traps 461 remove_useless_coarsened_locks(useful); // remove useless coarsened locks nodes 462 #ifdef ASSERT 463 if (_modified_nodes != nullptr) { 464 _modified_nodes->remove_useless_nodes(useful.member_set()); 465 } 466 #endif 467 468 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 469 bs->eliminate_useless_gc_barriers(useful, this); 470 // clean up the late inline lists 471 remove_useless_late_inlines( &_late_inlines, useful); 472 remove_useless_late_inlines( &_string_late_inlines, useful); 473 remove_useless_late_inlines( &_boxing_late_inlines, useful); 474 remove_useless_late_inlines(&_vector_reboxing_late_inlines, useful); 475 debug_only(verify_graph_edges(true/*check for no_dead_code*/);) 476 } 477 478 // ============================================================================ 479 //------------------------------CompileWrapper--------------------------------- 480 class CompileWrapper : public StackObj { 481 Compile *const _compile; 482 public: 483 CompileWrapper(Compile* compile); 484 485 ~CompileWrapper(); 486 }; 487 488 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) { 489 // the Compile* pointer is stored in the current ciEnv: 490 ciEnv* env = compile->env(); 491 assert(env == ciEnv::current(), "must already be a ciEnv active"); 492 assert(env->compiler_data() == nullptr, "compile already active?"); 493 env->set_compiler_data(compile); 494 assert(compile == Compile::current(), "sanity"); 495 496 compile->set_type_dict(nullptr); 497 compile->set_clone_map(new Dict(cmpkey, hashkey, _compile->comp_arena())); 498 compile->clone_map().set_clone_idx(0); 499 compile->set_type_last_size(0); 500 compile->set_last_tf(nullptr, nullptr); 501 compile->set_indexSet_arena(nullptr); 502 compile->set_indexSet_free_block_list(nullptr); 503 compile->init_type_arena(); 504 Type::Initialize(compile); 505 _compile->begin_method(); 506 _compile->clone_map().set_debug(_compile->has_method() && _compile->directive()->CloneMapDebugOption); 507 } 508 CompileWrapper::~CompileWrapper() { 509 // simulate crash during compilation 510 assert(CICrashAt < 0 || _compile->compile_id() != CICrashAt, "just as planned"); 511 512 _compile->end_method(); 513 _compile->env()->set_compiler_data(nullptr); 514 } 515 516 517 //----------------------------print_compile_messages--------------------------- 518 void Compile::print_compile_messages() { 519 #ifndef PRODUCT 520 // Check if recompiling 521 if (!subsume_loads() && PrintOpto) { 522 // Recompiling without allowing machine instructions to subsume loads 523 tty->print_cr("*********************************************************"); 524 tty->print_cr("** Bailout: Recompile without subsuming loads **"); 525 tty->print_cr("*********************************************************"); 526 } 527 if ((do_escape_analysis() != DoEscapeAnalysis) && PrintOpto) { 528 // Recompiling without escape analysis 529 tty->print_cr("*********************************************************"); 530 tty->print_cr("** Bailout: Recompile without escape analysis **"); 531 tty->print_cr("*********************************************************"); 532 } 533 if (do_iterative_escape_analysis() != DoEscapeAnalysis && PrintOpto) { 534 // Recompiling without iterative escape analysis 535 tty->print_cr("*********************************************************"); 536 tty->print_cr("** Bailout: Recompile without iterative escape analysis**"); 537 tty->print_cr("*********************************************************"); 538 } 539 if (do_reduce_allocation_merges() != ReduceAllocationMerges && PrintOpto) { 540 // Recompiling without reducing allocation merges 541 tty->print_cr("*********************************************************"); 542 tty->print_cr("** Bailout: Recompile without reduce allocation merges **"); 543 tty->print_cr("*********************************************************"); 544 } 545 if ((eliminate_boxing() != EliminateAutoBox) && PrintOpto) { 546 // Recompiling without boxing elimination 547 tty->print_cr("*********************************************************"); 548 tty->print_cr("** Bailout: Recompile without boxing elimination **"); 549 tty->print_cr("*********************************************************"); 550 } 551 if ((do_locks_coarsening() != EliminateLocks) && PrintOpto) { 552 // Recompiling without locks coarsening 553 tty->print_cr("*********************************************************"); 554 tty->print_cr("** Bailout: Recompile without locks coarsening **"); 555 tty->print_cr("*********************************************************"); 556 } 557 if (env()->break_at_compile()) { 558 // Open the debugger when compiling this method. 559 tty->print("### Breaking when compiling: "); 560 method()->print_short_name(); 561 tty->cr(); 562 BREAKPOINT; 563 } 564 565 if( PrintOpto ) { 566 if (is_osr_compilation()) { 567 tty->print("[OSR]%3d", _compile_id); 568 } else { 569 tty->print("%3d", _compile_id); 570 } 571 } 572 #endif 573 } 574 575 #ifndef PRODUCT 576 void Compile::print_ideal_ir(const char* phase_name) { 577 // keep the following output all in one block 578 // This output goes directly to the tty, not the compiler log. 579 // To enable tools to match it up with the compilation activity, 580 // be sure to tag this tty output with the compile ID. 581 582 // Node dumping can cause a safepoint, which can break the tty lock. 583 // Buffer all node dumps, so that all safepoints happen before we lock. 584 ResourceMark rm; 585 stringStream ss; 586 587 if (_output == nullptr) { 588 ss.print_cr("AFTER: %s", phase_name); 589 // Print out all nodes in ascending order of index. 590 root()->dump_bfs(MaxNodeLimit, nullptr, "+S$", &ss); 591 } else { 592 // Dump the node blockwise if we have a scheduling 593 _output->print_scheduling(&ss); 594 } 595 596 // Check that the lock is not broken by a safepoint. 597 NoSafepointVerifier nsv; 598 ttyLocker ttyl; 599 if (xtty != nullptr) { 600 xtty->head("ideal compile_id='%d'%s compile_phase='%s'", 601 compile_id(), 602 is_osr_compilation() ? " compile_kind='osr'" : "", 603 phase_name); 604 } 605 606 tty->print("%s", ss.as_string()); 607 608 if (xtty != nullptr) { 609 xtty->tail("ideal"); 610 } 611 } 612 #endif 613 614 // ============================================================================ 615 //------------------------------Compile standard------------------------------- 616 617 // Compile a method. entry_bci is -1 for normal compilations and indicates 618 // the continuation bci for on stack replacement. 619 620 621 Compile::Compile(ciEnv* ci_env, ciMethod* target, int osr_bci, 622 Options options, DirectiveSet* directive) 623 : Phase(Compiler), 624 _compile_id(ci_env->compile_id()), 625 _options(options), 626 _method(target), 627 _entry_bci(osr_bci), 628 _ilt(nullptr), 629 _stub_function(nullptr), 630 _stub_name(nullptr), 631 _stub_entry_point(nullptr), 632 _max_node_limit(MaxNodeLimit), 633 _post_loop_opts_phase(false), 634 _merge_stores_phase(false), 635 _allow_macro_nodes(true), 636 _inlining_progress(false), 637 _inlining_incrementally(false), 638 _do_cleanup(false), 639 _has_reserved_stack_access(target->has_reserved_stack_access()), 640 #ifndef PRODUCT 641 _igv_idx(0), 642 _trace_opto_output(directive->TraceOptoOutputOption), 643 #endif 644 _has_method_handle_invokes(false), 645 _clinit_barrier_on_entry(false), 646 _has_clinit_barriers(false), 647 _stress_seed(0), 648 _comp_arena(mtCompiler, Arena::Tag::tag_comp), 649 _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())), 650 _env(ci_env), 651 _directive(directive), 652 _log(ci_env->log()), 653 _first_failure_details(nullptr), 654 _intrinsics(comp_arena(), 0, 0, nullptr), 655 _macro_nodes(comp_arena(), 8, 0, nullptr), 656 _parse_predicates(comp_arena(), 8, 0, nullptr), 657 _template_assertion_predicate_opaqs(comp_arena(), 8, 0, nullptr), 658 _expensive_nodes(comp_arena(), 8, 0, nullptr), 659 _for_post_loop_igvn(comp_arena(), 8, 0, nullptr), 660 _for_merge_stores_igvn(comp_arena(), 8, 0, nullptr), 661 _unstable_if_traps(comp_arena(), 8, 0, nullptr), 662 _coarsened_locks(comp_arena(), 8, 0, nullptr), 663 _congraph(nullptr), 664 NOT_PRODUCT(_igv_printer(nullptr) COMMA) 665 _unique(0), 666 _dead_node_count(0), 667 _dead_node_list(comp_arena()), 668 _node_arena_one(mtCompiler, Arena::Tag::tag_node), 669 _node_arena_two(mtCompiler, Arena::Tag::tag_node), 670 _node_arena(&_node_arena_one), 671 _mach_constant_base_node(nullptr), 672 _Compile_types(mtCompiler, Arena::Tag::tag_type), 673 _initial_gvn(nullptr), 674 _igvn_worklist(nullptr), 675 _types(nullptr), 676 _node_hash(nullptr), 677 _late_inlines(comp_arena(), 2, 0, nullptr), 678 _string_late_inlines(comp_arena(), 2, 0, nullptr), 679 _boxing_late_inlines(comp_arena(), 2, 0, nullptr), 680 _vector_reboxing_late_inlines(comp_arena(), 2, 0, nullptr), 681 _late_inlines_pos(0), 682 _number_of_mh_late_inlines(0), 683 _oom(false), 684 _replay_inline_data(nullptr), 685 _inline_printer(this), 686 _java_calls(0), 687 _inner_loops(0), 688 _interpreter_frame_size(0), 689 _output(nullptr) 690 #ifndef PRODUCT 691 , 692 _in_dump_cnt(0) 693 #endif 694 { 695 C = this; 696 CompileWrapper cw(this); 697 698 TraceTime t1("Total compilation time", &_t_totalCompilation, CITime, CITimeVerbose); 699 TraceTime t2(nullptr, &_t_methodCompilation, CITime, false); 700 701 #if defined(SUPPORT_ASSEMBLY) || defined(SUPPORT_ABSTRACT_ASSEMBLY) 702 bool print_opto_assembly = directive->PrintOptoAssemblyOption; 703 // We can always print a disassembly, either abstract (hex dump) or 704 // with the help of a suitable hsdis library. Thus, we should not 705 // couple print_assembly and print_opto_assembly controls. 706 // But: always print opto and regular assembly on compile command 'print'. 707 bool print_assembly = directive->PrintAssemblyOption; 708 set_print_assembly(print_opto_assembly || print_assembly); 709 #else 710 set_print_assembly(false); // must initialize. 711 #endif 712 713 #ifndef PRODUCT 714 set_parsed_irreducible_loop(false); 715 #endif 716 717 if (directive->ReplayInlineOption) { 718 _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level()); 719 } 720 set_print_inlining(directive->PrintInliningOption || PrintOptoInlining); 721 set_print_intrinsics(directive->PrintIntrinsicsOption); 722 set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it 723 724 if (ProfileTraps) { 725 // Make sure the method being compiled gets its own MDO, 726 // so we can at least track the decompile_count(). 727 method()->ensure_method_data(); 728 } 729 730 if (StressLCM || StressGCM || StressIGVN || StressCCP || 731 StressIncrementalInlining || StressMacroExpansion || StressUnstableIfTraps || StressBailout) { 732 initialize_stress_seed(directive); 733 } 734 735 Init(/*do_aliasing=*/ true); 736 737 print_compile_messages(); 738 739 _ilt = InlineTree::build_inline_tree_root(); 740 741 // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice 742 assert(num_alias_types() >= AliasIdxRaw, ""); 743 744 #define MINIMUM_NODE_HASH 1023 745 746 // GVN that will be run immediately on new nodes 747 uint estimated_size = method()->code_size()*4+64; 748 estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size); 749 _igvn_worklist = new (comp_arena()) Unique_Node_List(comp_arena()); 750 _types = new (comp_arena()) Type_Array(comp_arena()); 751 _node_hash = new (comp_arena()) NodeHash(comp_arena(), estimated_size); 752 PhaseGVN gvn; 753 set_initial_gvn(&gvn); 754 755 { // Scope for timing the parser 756 TracePhase tp(_t_parser); 757 758 // Put top into the hash table ASAP. 759 initial_gvn()->transform(top()); 760 761 // Set up tf(), start(), and find a CallGenerator. 762 CallGenerator* cg = nullptr; 763 if (is_osr_compilation()) { 764 const TypeTuple *domain = StartOSRNode::osr_domain(); 765 const TypeTuple *range = TypeTuple::make_range(method()->signature()); 766 init_tf(TypeFunc::make(domain, range)); 767 StartNode* s = new StartOSRNode(root(), domain); 768 initial_gvn()->set_type_bottom(s); 769 verify_start(s); 770 cg = CallGenerator::for_osr(method(), entry_bci()); 771 } else { 772 // Normal case. 773 init_tf(TypeFunc::make(method())); 774 StartNode* s = new StartNode(root(), tf()->domain()); 775 initial_gvn()->set_type_bottom(s); 776 verify_start(s); 777 if (method()->intrinsic_id() == vmIntrinsics::_Reference_get) { 778 // With java.lang.ref.reference.get() we must go through the 779 // intrinsic - even when get() is the root 780 // method of the compile - so that, if necessary, the value in 781 // the referent field of the reference object gets recorded by 782 // the pre-barrier code. 783 cg = find_intrinsic(method(), false); 784 } 785 if (cg == nullptr) { 786 float past_uses = method()->interpreter_invocation_count(); 787 float expected_uses = past_uses; 788 cg = CallGenerator::for_inline(method(), expected_uses); 789 } 790 } 791 if (failing()) return; 792 if (cg == nullptr) { 793 const char* reason = InlineTree::check_can_parse(method()); 794 assert(reason != nullptr, "expect reason for parse failure"); 795 stringStream ss; 796 ss.print("cannot parse method: %s", reason); 797 record_method_not_compilable(ss.as_string()); 798 return; 799 } 800 801 gvn.set_type(root(), root()->bottom_type()); 802 803 JVMState* jvms = build_start_state(start(), tf()); 804 if ((jvms = cg->generate(jvms)) == nullptr) { 805 assert(failure_reason() != nullptr, "expect reason for parse failure"); 806 stringStream ss; 807 ss.print("method parse failed: %s", failure_reason()); 808 record_method_not_compilable(ss.as_string() DEBUG_ONLY(COMMA true)); 809 return; 810 } 811 GraphKit kit(jvms); 812 813 if (!kit.stopped()) { 814 // Accept return values, and transfer control we know not where. 815 // This is done by a special, unique ReturnNode bound to root. 816 return_values(kit.jvms()); 817 } 818 819 if (kit.has_exceptions()) { 820 // Any exceptions that escape from this call must be rethrown 821 // to whatever caller is dynamically above us on the stack. 822 // This is done by a special, unique RethrowNode bound to root. 823 rethrow_exceptions(kit.transfer_exceptions_into_jvms()); 824 } 825 826 assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off"); 827 828 if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) { 829 inline_string_calls(true); 830 } 831 832 if (failing()) return; 833 834 // Remove clutter produced by parsing. 835 if (!failing()) { 836 ResourceMark rm; 837 PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist()); 838 } 839 } 840 841 // Note: Large methods are capped off in do_one_bytecode(). 842 if (failing()) return; 843 844 // After parsing, node notes are no longer automagic. 845 // They must be propagated by register_new_node_with_optimizer(), 846 // clone(), or the like. 847 set_default_node_notes(nullptr); 848 849 #ifndef PRODUCT 850 if (should_print_igv(1)) { 851 _igv_printer->print_inlining(); 852 } 853 #endif 854 855 if (failing()) return; 856 NOT_PRODUCT( verify_graph_edges(); ) 857 858 // Now optimize 859 Optimize(); 860 if (failing()) return; 861 NOT_PRODUCT( verify_graph_edges(); ) 862 863 #ifndef PRODUCT 864 if (should_print_ideal()) { 865 print_ideal_ir("print_ideal"); 866 } 867 #endif 868 869 #ifdef ASSERT 870 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 871 bs->verify_gc_barriers(this, BarrierSetC2::BeforeCodeGen); 872 #endif 873 874 // Dump compilation data to replay it. 875 if (directive->DumpReplayOption) { 876 env()->dump_replay_data(_compile_id); 877 } 878 if (directive->DumpInlineOption && (ilt() != nullptr)) { 879 env()->dump_inline_data(_compile_id); 880 } 881 882 // Now that we know the size of all the monitors we can add a fixed slot 883 // for the original deopt pc. 884 int next_slot = fixed_slots() + (sizeof(address) / VMRegImpl::stack_slot_size); 885 set_fixed_slots(next_slot); 886 887 // Compute when to use implicit null checks. Used by matching trap based 888 // nodes and NullCheck optimization. 889 set_allowed_deopt_reasons(); 890 891 // Now generate code 892 Code_Gen(); 893 } 894 895 //------------------------------Compile---------------------------------------- 896 // Compile a runtime stub 897 Compile::Compile(ciEnv* ci_env, 898 TypeFunc_generator generator, 899 address stub_function, 900 const char* stub_name, 901 int is_fancy_jump, 902 bool pass_tls, 903 bool return_pc, 904 DirectiveSet* directive) 905 : Phase(Compiler), 906 _compile_id(0), 907 _options(Options::for_runtime_stub()), 908 _method(nullptr), 909 _entry_bci(InvocationEntryBci), 910 _stub_function(stub_function), 911 _stub_name(stub_name), 912 _stub_entry_point(nullptr), 913 _max_node_limit(MaxNodeLimit), 914 _post_loop_opts_phase(false), 915 _merge_stores_phase(false), 916 _allow_macro_nodes(true), 917 _inlining_progress(false), 918 _inlining_incrementally(false), 919 _has_reserved_stack_access(false), 920 #ifndef PRODUCT 921 _igv_idx(0), 922 _trace_opto_output(directive->TraceOptoOutputOption), 923 #endif 924 _has_method_handle_invokes(false), 925 _clinit_barrier_on_entry(false), 926 _has_clinit_barriers(false), 927 _stress_seed(0), 928 _comp_arena(mtCompiler, Arena::Tag::tag_comp), 929 _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())), 930 _env(ci_env), 931 _directive(directive), 932 _log(ci_env->log()), 933 _first_failure_details(nullptr), 934 _for_post_loop_igvn(comp_arena(), 8, 0, nullptr), 935 _for_merge_stores_igvn(comp_arena(), 8, 0, nullptr), 936 _congraph(nullptr), 937 NOT_PRODUCT(_igv_printer(nullptr) COMMA) 938 _unique(0), 939 _dead_node_count(0), 940 _dead_node_list(comp_arena()), 941 _node_arena_one(mtCompiler, Arena::Tag::tag_node), 942 _node_arena_two(mtCompiler, Arena::Tag::tag_node), 943 _node_arena(&_node_arena_one), 944 _mach_constant_base_node(nullptr), 945 _Compile_types(mtCompiler, Arena::Tag::tag_type), 946 _initial_gvn(nullptr), 947 _igvn_worklist(nullptr), 948 _types(nullptr), 949 _node_hash(nullptr), 950 _number_of_mh_late_inlines(0), 951 _oom(false), 952 _replay_inline_data(nullptr), 953 _inline_printer(this), 954 _java_calls(0), 955 _inner_loops(0), 956 _interpreter_frame_size(0), 957 _output(nullptr), 958 #ifndef PRODUCT 959 _in_dump_cnt(0), 960 #endif 961 _allowed_reasons(0) { 962 C = this; 963 964 TraceTime t1(nullptr, &_t_totalCompilation, CITime, false); 965 TraceTime t2(nullptr, &_t_stubCompilation, CITime, false); 966 967 #ifndef PRODUCT 968 set_print_assembly(PrintFrameConverterAssembly); 969 set_parsed_irreducible_loop(false); 970 #else 971 set_print_assembly(false); // Must initialize. 972 #endif 973 set_has_irreducible_loop(false); // no loops 974 975 CompileWrapper cw(this); 976 Init(/*do_aliasing=*/ false); 977 init_tf((*generator)()); 978 979 _igvn_worklist = new (comp_arena()) Unique_Node_List(comp_arena()); 980 _types = new (comp_arena()) Type_Array(comp_arena()); 981 _node_hash = new (comp_arena()) NodeHash(comp_arena(), 255); 982 983 if (StressLCM || StressGCM || StressBailout) { 984 initialize_stress_seed(directive); 985 } 986 987 { 988 PhaseGVN gvn; 989 set_initial_gvn(&gvn); // not significant, but GraphKit guys use it pervasively 990 gvn.transform(top()); 991 992 GraphKit kit; 993 kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc); 994 } 995 996 NOT_PRODUCT( verify_graph_edges(); ) 997 998 Code_Gen(); 999 } 1000 1001 Compile::~Compile() { 1002 delete _first_failure_details; 1003 }; 1004 1005 //------------------------------Init------------------------------------------- 1006 // Prepare for a single compilation 1007 void Compile::Init(bool aliasing) { 1008 _do_aliasing = aliasing; 1009 _unique = 0; 1010 _regalloc = nullptr; 1011 1012 _tf = nullptr; // filled in later 1013 _top = nullptr; // cached later 1014 _matcher = nullptr; // filled in later 1015 _cfg = nullptr; // filled in later 1016 1017 IA32_ONLY( set_24_bit_selection_and_mode(true, false); ) 1018 1019 _node_note_array = nullptr; 1020 _default_node_notes = nullptr; 1021 DEBUG_ONLY( _modified_nodes = nullptr; ) // Used in Optimize() 1022 1023 _immutable_memory = nullptr; // filled in at first inquiry 1024 1025 #ifdef ASSERT 1026 _phase_optimize_finished = false; 1027 _phase_verify_ideal_loop = false; 1028 _exception_backedge = false; 1029 _type_verify = nullptr; 1030 #endif 1031 1032 // Globally visible Nodes 1033 // First set TOP to null to give safe behavior during creation of RootNode 1034 set_cached_top_node(nullptr); 1035 set_root(new RootNode()); 1036 // Now that you have a Root to point to, create the real TOP 1037 set_cached_top_node( new ConNode(Type::TOP) ); 1038 set_recent_alloc(nullptr, nullptr); 1039 1040 // Create Debug Information Recorder to record scopes, oopmaps, etc. 1041 env()->set_oop_recorder(new OopRecorder(env()->arena())); 1042 env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder())); 1043 env()->set_dependencies(new Dependencies(env())); 1044 1045 _fixed_slots = 0; 1046 set_has_split_ifs(false); 1047 set_has_loops(false); // first approximation 1048 set_has_stringbuilder(false); 1049 set_has_boxed_value(false); 1050 _trap_can_recompile = false; // no traps emitted yet 1051 _major_progress = true; // start out assuming good things will happen 1052 set_has_unsafe_access(false); 1053 set_max_vector_size(0); 1054 set_clear_upper_avx(false); //false as default for clear upper bits of ymm registers 1055 Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist)); 1056 set_decompile_count(0); 1057 1058 #ifndef PRODUCT 1059 Copy::zero_to_bytes(_igv_phase_iter, sizeof(_igv_phase_iter)); 1060 #endif 1061 1062 set_do_freq_based_layout(_directive->BlockLayoutByFrequencyOption); 1063 _loop_opts_cnt = LoopOptsCount; 1064 set_do_inlining(Inline); 1065 set_max_inline_size(MaxInlineSize); 1066 set_freq_inline_size(FreqInlineSize); 1067 set_do_scheduling(OptoScheduling); 1068 1069 set_do_vector_loop(false); 1070 set_has_monitors(false); 1071 set_has_scoped_access(false); 1072 1073 if (AllowVectorizeOnDemand) { 1074 if (has_method() && _directive->VectorizeOption) { 1075 set_do_vector_loop(true); 1076 NOT_PRODUCT(if (do_vector_loop() && Verbose) {tty->print("Compile::Init: do vectorized loops (SIMD like) for method %s\n", method()->name()->as_quoted_ascii());}) 1077 } else if (has_method() && method()->name() != nullptr && 1078 method()->intrinsic_id() == vmIntrinsics::_forEachRemaining) { 1079 set_do_vector_loop(true); 1080 } 1081 } 1082 set_use_cmove(UseCMoveUnconditionally /* || do_vector_loop()*/); //TODO: consider do_vector_loop() mandate use_cmove unconditionally 1083 NOT_PRODUCT(if (use_cmove() && Verbose && has_method()) {tty->print("Compile::Init: use CMove without profitability tests for method %s\n", method()->name()->as_quoted_ascii());}) 1084 1085 _max_node_limit = _directive->MaxNodeLimitOption; 1086 1087 if (VM_Version::supports_fast_class_init_checks() && has_method() && !is_osr_compilation() && 1088 (method()->needs_clinit_barrier() || (do_clinit_barriers() && method()->is_static()))) { 1089 set_clinit_barrier_on_entry(true); 1090 if (do_clinit_barriers()) { 1091 set_has_clinit_barriers(true); // Entry clinit barrier is in prolog code. 1092 } 1093 } 1094 if (debug_info()->recording_non_safepoints()) { 1095 set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*> 1096 (comp_arena(), 8, 0, nullptr)); 1097 set_default_node_notes(Node_Notes::make(this)); 1098 } 1099 1100 const int grow_ats = 16; 1101 _max_alias_types = grow_ats; 1102 _alias_types = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats); 1103 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, grow_ats); 1104 Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats); 1105 { 1106 for (int i = 0; i < grow_ats; i++) _alias_types[i] = &ats[i]; 1107 } 1108 // Initialize the first few types. 1109 _alias_types[AliasIdxTop]->Init(AliasIdxTop, nullptr); 1110 _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM); 1111 _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM); 1112 _num_alias_types = AliasIdxRaw+1; 1113 // Zero out the alias type cache. 1114 Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache)); 1115 // A null adr_type hits in the cache right away. Preload the right answer. 1116 probe_alias_cache(nullptr)->_index = AliasIdxTop; 1117 } 1118 1119 #ifdef ASSERT 1120 // Verify that the current StartNode is valid. 1121 void Compile::verify_start(StartNode* s) const { 1122 assert(failing_internal() || s == start(), "should be StartNode"); 1123 } 1124 #endif 1125 1126 /** 1127 * Return the 'StartNode'. We must not have a pending failure, since the ideal graph 1128 * can be in an inconsistent state, i.e., we can get segmentation faults when traversing 1129 * the ideal graph. 1130 */ 1131 StartNode* Compile::start() const { 1132 assert (!failing_internal() || C->failure_is_artificial(), "Must not have pending failure. Reason is: %s", failure_reason()); 1133 for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) { 1134 Node* start = root()->fast_out(i); 1135 if (start->is_Start()) { 1136 return start->as_Start(); 1137 } 1138 } 1139 fatal("Did not find Start node!"); 1140 return nullptr; 1141 } 1142 1143 //-------------------------------immutable_memory------------------------------------- 1144 // Access immutable memory 1145 Node* Compile::immutable_memory() { 1146 if (_immutable_memory != nullptr) { 1147 return _immutable_memory; 1148 } 1149 StartNode* s = start(); 1150 for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) { 1151 Node *p = s->fast_out(i); 1152 if (p != s && p->as_Proj()->_con == TypeFunc::Memory) { 1153 _immutable_memory = p; 1154 return _immutable_memory; 1155 } 1156 } 1157 ShouldNotReachHere(); 1158 return nullptr; 1159 } 1160 1161 //----------------------set_cached_top_node------------------------------------ 1162 // Install the cached top node, and make sure Node::is_top works correctly. 1163 void Compile::set_cached_top_node(Node* tn) { 1164 if (tn != nullptr) verify_top(tn); 1165 Node* old_top = _top; 1166 _top = tn; 1167 // Calling Node::setup_is_top allows the nodes the chance to adjust 1168 // their _out arrays. 1169 if (_top != nullptr) _top->setup_is_top(); 1170 if (old_top != nullptr) old_top->setup_is_top(); 1171 assert(_top == nullptr || top()->is_top(), ""); 1172 } 1173 1174 #ifdef ASSERT 1175 uint Compile::count_live_nodes_by_graph_walk() { 1176 Unique_Node_List useful(comp_arena()); 1177 // Get useful node list by walking the graph. 1178 identify_useful_nodes(useful); 1179 return useful.size(); 1180 } 1181 1182 void Compile::print_missing_nodes() { 1183 1184 // Return if CompileLog is null and PrintIdealNodeCount is false. 1185 if ((_log == nullptr) && (! PrintIdealNodeCount)) { 1186 return; 1187 } 1188 1189 // This is an expensive function. It is executed only when the user 1190 // specifies VerifyIdealNodeCount option or otherwise knows the 1191 // additional work that needs to be done to identify reachable nodes 1192 // by walking the flow graph and find the missing ones using 1193 // _dead_node_list. 1194 1195 Unique_Node_List useful(comp_arena()); 1196 // Get useful node list by walking the graph. 1197 identify_useful_nodes(useful); 1198 1199 uint l_nodes = C->live_nodes(); 1200 uint l_nodes_by_walk = useful.size(); 1201 1202 if (l_nodes != l_nodes_by_walk) { 1203 if (_log != nullptr) { 1204 _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk))); 1205 _log->stamp(); 1206 _log->end_head(); 1207 } 1208 VectorSet& useful_member_set = useful.member_set(); 1209 int last_idx = l_nodes_by_walk; 1210 for (int i = 0; i < last_idx; i++) { 1211 if (useful_member_set.test(i)) { 1212 if (_dead_node_list.test(i)) { 1213 if (_log != nullptr) { 1214 _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i); 1215 } 1216 if (PrintIdealNodeCount) { 1217 // Print the log message to tty 1218 tty->print_cr("mismatched_node idx='%d' both live and dead'", i); 1219 useful.at(i)->dump(); 1220 } 1221 } 1222 } 1223 else if (! _dead_node_list.test(i)) { 1224 if (_log != nullptr) { 1225 _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i); 1226 } 1227 if (PrintIdealNodeCount) { 1228 // Print the log message to tty 1229 tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i); 1230 } 1231 } 1232 } 1233 if (_log != nullptr) { 1234 _log->tail("mismatched_nodes"); 1235 } 1236 } 1237 } 1238 void Compile::record_modified_node(Node* n) { 1239 if (_modified_nodes != nullptr && !_inlining_incrementally && !n->is_Con()) { 1240 _modified_nodes->push(n); 1241 } 1242 } 1243 1244 void Compile::remove_modified_node(Node* n) { 1245 if (_modified_nodes != nullptr) { 1246 _modified_nodes->remove(n); 1247 } 1248 } 1249 #endif 1250 1251 #ifndef PRODUCT 1252 void Compile::verify_top(Node* tn) const { 1253 if (tn != nullptr) { 1254 assert(tn->is_Con(), "top node must be a constant"); 1255 assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type"); 1256 assert(tn->in(0) != nullptr, "must have live top node"); 1257 } 1258 } 1259 #endif 1260 1261 1262 ///-------------------Managing Per-Node Debug & Profile Info------------------- 1263 1264 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) { 1265 guarantee(arr != nullptr, ""); 1266 int num_blocks = arr->length(); 1267 if (grow_by < num_blocks) grow_by = num_blocks; 1268 int num_notes = grow_by * _node_notes_block_size; 1269 Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes); 1270 Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes)); 1271 while (num_notes > 0) { 1272 arr->append(notes); 1273 notes += _node_notes_block_size; 1274 num_notes -= _node_notes_block_size; 1275 } 1276 assert(num_notes == 0, "exact multiple, please"); 1277 } 1278 1279 bool Compile::copy_node_notes_to(Node* dest, Node* source) { 1280 if (source == nullptr || dest == nullptr) return false; 1281 1282 if (dest->is_Con()) 1283 return false; // Do not push debug info onto constants. 1284 1285 #ifdef ASSERT 1286 // Leave a bread crumb trail pointing to the original node: 1287 if (dest != nullptr && dest != source && dest->debug_orig() == nullptr) { 1288 dest->set_debug_orig(source); 1289 } 1290 #endif 1291 1292 if (node_note_array() == nullptr) 1293 return false; // Not collecting any notes now. 1294 1295 // This is a copy onto a pre-existing node, which may already have notes. 1296 // If both nodes have notes, do not overwrite any pre-existing notes. 1297 Node_Notes* source_notes = node_notes_at(source->_idx); 1298 if (source_notes == nullptr || source_notes->is_clear()) return false; 1299 Node_Notes* dest_notes = node_notes_at(dest->_idx); 1300 if (dest_notes == nullptr || dest_notes->is_clear()) { 1301 return set_node_notes_at(dest->_idx, source_notes); 1302 } 1303 1304 Node_Notes merged_notes = (*source_notes); 1305 // The order of operations here ensures that dest notes will win... 1306 merged_notes.update_from(dest_notes); 1307 return set_node_notes_at(dest->_idx, &merged_notes); 1308 } 1309 1310 1311 //--------------------------allow_range_check_smearing------------------------- 1312 // Gating condition for coalescing similar range checks. 1313 // Sometimes we try 'speculatively' replacing a series of a range checks by a 1314 // single covering check that is at least as strong as any of them. 1315 // If the optimization succeeds, the simplified (strengthened) range check 1316 // will always succeed. If it fails, we will deopt, and then give up 1317 // on the optimization. 1318 bool Compile::allow_range_check_smearing() const { 1319 // If this method has already thrown a range-check, 1320 // assume it was because we already tried range smearing 1321 // and it failed. 1322 uint already_trapped = trap_count(Deoptimization::Reason_range_check); 1323 return !already_trapped; 1324 } 1325 1326 1327 //------------------------------flatten_alias_type----------------------------- 1328 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const { 1329 assert(do_aliasing(), "Aliasing should be enabled"); 1330 int offset = tj->offset(); 1331 TypePtr::PTR ptr = tj->ptr(); 1332 1333 // Known instance (scalarizable allocation) alias only with itself. 1334 bool is_known_inst = tj->isa_oopptr() != nullptr && 1335 tj->is_oopptr()->is_known_instance(); 1336 1337 // Process weird unsafe references. 1338 if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) { 1339 assert(InlineUnsafeOps || StressReflectiveCode, "indeterminate pointers come only from unsafe ops"); 1340 assert(!is_known_inst, "scalarizable allocation should not have unsafe references"); 1341 tj = TypeOopPtr::BOTTOM; 1342 ptr = tj->ptr(); 1343 offset = tj->offset(); 1344 } 1345 1346 // Array pointers need some flattening 1347 const TypeAryPtr* ta = tj->isa_aryptr(); 1348 if (ta && ta->is_stable()) { 1349 // Erase stability property for alias analysis. 1350 tj = ta = ta->cast_to_stable(false); 1351 } 1352 if( ta && is_known_inst ) { 1353 if ( offset != Type::OffsetBot && 1354 offset > arrayOopDesc::length_offset_in_bytes() ) { 1355 offset = Type::OffsetBot; // Flatten constant access into array body only 1356 tj = ta = ta-> 1357 remove_speculative()-> 1358 cast_to_ptr_type(ptr)-> 1359 with_offset(offset); 1360 } 1361 } else if (ta) { 1362 // For arrays indexed by constant indices, we flatten the alias 1363 // space to include all of the array body. Only the header, klass 1364 // and array length can be accessed un-aliased. 1365 if( offset != Type::OffsetBot ) { 1366 if( ta->const_oop() ) { // MethodData* or Method* 1367 offset = Type::OffsetBot; // Flatten constant access into array body 1368 tj = ta = ta-> 1369 remove_speculative()-> 1370 cast_to_ptr_type(ptr)-> 1371 cast_to_exactness(false)-> 1372 with_offset(offset); 1373 } else if( offset == arrayOopDesc::length_offset_in_bytes() ) { 1374 // range is OK as-is. 1375 tj = ta = TypeAryPtr::RANGE; 1376 } else if( offset == oopDesc::klass_offset_in_bytes() ) { 1377 tj = TypeInstPtr::KLASS; // all klass loads look alike 1378 ta = TypeAryPtr::RANGE; // generic ignored junk 1379 ptr = TypePtr::BotPTR; 1380 } else if( offset == oopDesc::mark_offset_in_bytes() ) { 1381 tj = TypeInstPtr::MARK; 1382 ta = TypeAryPtr::RANGE; // generic ignored junk 1383 ptr = TypePtr::BotPTR; 1384 } else { // Random constant offset into array body 1385 offset = Type::OffsetBot; // Flatten constant access into array body 1386 tj = ta = ta-> 1387 remove_speculative()-> 1388 cast_to_ptr_type(ptr)-> 1389 cast_to_exactness(false)-> 1390 with_offset(offset); 1391 } 1392 } 1393 // Arrays of fixed size alias with arrays of unknown size. 1394 if (ta->size() != TypeInt::POS) { 1395 const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS); 1396 tj = ta = ta-> 1397 remove_speculative()-> 1398 cast_to_ptr_type(ptr)-> 1399 with_ary(tary)-> 1400 cast_to_exactness(false); 1401 } 1402 // Arrays of known objects become arrays of unknown objects. 1403 if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) { 1404 const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size()); 1405 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,nullptr,false,offset); 1406 } 1407 if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) { 1408 const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size()); 1409 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,nullptr,false,offset); 1410 } 1411 // Arrays of bytes and of booleans both use 'bastore' and 'baload' so 1412 // cannot be distinguished by bytecode alone. 1413 if (ta->elem() == TypeInt::BOOL) { 1414 const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size()); 1415 ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE); 1416 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset); 1417 } 1418 // During the 2nd round of IterGVN, NotNull castings are removed. 1419 // Make sure the Bottom and NotNull variants alias the same. 1420 // Also, make sure exact and non-exact variants alias the same. 1421 if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != nullptr) { 1422 tj = ta = ta-> 1423 remove_speculative()-> 1424 cast_to_ptr_type(TypePtr::BotPTR)-> 1425 cast_to_exactness(false)-> 1426 with_offset(offset); 1427 } 1428 } 1429 1430 // Oop pointers need some flattening 1431 const TypeInstPtr *to = tj->isa_instptr(); 1432 if (to && to != TypeOopPtr::BOTTOM) { 1433 ciInstanceKlass* ik = to->instance_klass(); 1434 if( ptr == TypePtr::Constant ) { 1435 if (ik != ciEnv::current()->Class_klass() || 1436 offset < ik->layout_helper_size_in_bytes()) { 1437 // No constant oop pointers (such as Strings); they alias with 1438 // unknown strings. 1439 assert(!is_known_inst, "not scalarizable allocation"); 1440 tj = to = to-> 1441 cast_to_instance_id(TypeOopPtr::InstanceBot)-> 1442 remove_speculative()-> 1443 cast_to_ptr_type(TypePtr::BotPTR)-> 1444 cast_to_exactness(false); 1445 } 1446 } else if( is_known_inst ) { 1447 tj = to; // Keep NotNull and klass_is_exact for instance type 1448 } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) { 1449 // During the 2nd round of IterGVN, NotNull castings are removed. 1450 // Make sure the Bottom and NotNull variants alias the same. 1451 // Also, make sure exact and non-exact variants alias the same. 1452 tj = to = to-> 1453 remove_speculative()-> 1454 cast_to_instance_id(TypeOopPtr::InstanceBot)-> 1455 cast_to_ptr_type(TypePtr::BotPTR)-> 1456 cast_to_exactness(false); 1457 } 1458 if (to->speculative() != nullptr) { 1459 tj = to = to->remove_speculative(); 1460 } 1461 // Canonicalize the holder of this field 1462 if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) { 1463 // First handle header references such as a LoadKlassNode, even if the 1464 // object's klass is unloaded at compile time (4965979). 1465 if (!is_known_inst) { // Do it only for non-instance types 1466 tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, nullptr, offset); 1467 } 1468 } else if (offset < 0 || offset >= ik->layout_helper_size_in_bytes()) { 1469 // Static fields are in the space above the normal instance 1470 // fields in the java.lang.Class instance. 1471 if (ik != ciEnv::current()->Class_klass()) { 1472 to = nullptr; 1473 tj = TypeOopPtr::BOTTOM; 1474 offset = tj->offset(); 1475 } 1476 } else { 1477 ciInstanceKlass *canonical_holder = ik->get_canonical_holder(offset); 1478 assert(offset < canonical_holder->layout_helper_size_in_bytes(), ""); 1479 assert(tj->offset() == offset, "no change to offset expected"); 1480 bool xk = to->klass_is_exact(); 1481 int instance_id = to->instance_id(); 1482 1483 // If the input type's class is the holder: if exact, the type only includes interfaces implemented by the holder 1484 // but if not exact, it may include extra interfaces: build new type from the holder class to make sure only 1485 // its interfaces are included. 1486 if (xk && ik->equals(canonical_holder)) { 1487 assert(tj == TypeInstPtr::make(to->ptr(), canonical_holder, is_known_inst, nullptr, offset, instance_id), "exact type should be canonical type"); 1488 } else { 1489 assert(xk || !is_known_inst, "Known instance should be exact type"); 1490 tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, is_known_inst, nullptr, offset, instance_id); 1491 } 1492 } 1493 } 1494 1495 // Klass pointers to object array klasses need some flattening 1496 const TypeKlassPtr *tk = tj->isa_klassptr(); 1497 if( tk ) { 1498 // If we are referencing a field within a Klass, we need 1499 // to assume the worst case of an Object. Both exact and 1500 // inexact types must flatten to the same alias class so 1501 // use NotNull as the PTR. 1502 if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) { 1503 tj = tk = TypeInstKlassPtr::make(TypePtr::NotNull, 1504 env()->Object_klass(), 1505 offset); 1506 } 1507 1508 if (tk->isa_aryklassptr() && tk->is_aryklassptr()->elem()->isa_klassptr()) { 1509 ciKlass* k = ciObjArrayKlass::make(env()->Object_klass()); 1510 if (!k || !k->is_loaded()) { // Only fails for some -Xcomp runs 1511 tj = tk = TypeInstKlassPtr::make(TypePtr::NotNull, env()->Object_klass(), offset); 1512 } else { 1513 tj = tk = TypeAryKlassPtr::make(TypePtr::NotNull, tk->is_aryklassptr()->elem(), k, offset); 1514 } 1515 } 1516 1517 // Check for precise loads from the primary supertype array and force them 1518 // to the supertype cache alias index. Check for generic array loads from 1519 // the primary supertype array and also force them to the supertype cache 1520 // alias index. Since the same load can reach both, we need to merge 1521 // these 2 disparate memories into the same alias class. Since the 1522 // primary supertype array is read-only, there's no chance of confusion 1523 // where we bypass an array load and an array store. 1524 int primary_supers_offset = in_bytes(Klass::primary_supers_offset()); 1525 if (offset == Type::OffsetBot || 1526 (offset >= primary_supers_offset && 1527 offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) || 1528 offset == (int)in_bytes(Klass::secondary_super_cache_offset())) { 1529 offset = in_bytes(Klass::secondary_super_cache_offset()); 1530 tj = tk = tk->with_offset(offset); 1531 } 1532 } 1533 1534 // Flatten all Raw pointers together. 1535 if (tj->base() == Type::RawPtr) 1536 tj = TypeRawPtr::BOTTOM; 1537 1538 if (tj->base() == Type::AnyPtr) 1539 tj = TypePtr::BOTTOM; // An error, which the caller must check for. 1540 1541 offset = tj->offset(); 1542 assert( offset != Type::OffsetTop, "Offset has fallen from constant" ); 1543 1544 assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) || 1545 (offset == Type::OffsetBot && tj->base() == Type::AryPtr) || 1546 (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) || 1547 (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) || 1548 (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) || 1549 (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) || 1550 (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr), 1551 "For oops, klasses, raw offset must be constant; for arrays the offset is never known" ); 1552 assert( tj->ptr() != TypePtr::TopPTR && 1553 tj->ptr() != TypePtr::AnyNull && 1554 tj->ptr() != TypePtr::Null, "No imprecise addresses" ); 1555 // assert( tj->ptr() != TypePtr::Constant || 1556 // tj->base() == Type::RawPtr || 1557 // tj->base() == Type::KlassPtr, "No constant oop addresses" ); 1558 1559 return tj; 1560 } 1561 1562 void Compile::AliasType::Init(int i, const TypePtr* at) { 1563 assert(AliasIdxTop <= i && i < Compile::current()->_max_alias_types, "Invalid alias index"); 1564 _index = i; 1565 _adr_type = at; 1566 _field = nullptr; 1567 _element = nullptr; 1568 _is_rewritable = true; // default 1569 const TypeOopPtr *atoop = (at != nullptr) ? at->isa_oopptr() : nullptr; 1570 if (atoop != nullptr && atoop->is_known_instance()) { 1571 const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot); 1572 _general_index = Compile::current()->get_alias_index(gt); 1573 } else { 1574 _general_index = 0; 1575 } 1576 } 1577 1578 BasicType Compile::AliasType::basic_type() const { 1579 if (element() != nullptr) { 1580 const Type* element = adr_type()->is_aryptr()->elem(); 1581 return element->isa_narrowoop() ? T_OBJECT : element->array_element_basic_type(); 1582 } if (field() != nullptr) { 1583 return field()->layout_type(); 1584 } else { 1585 return T_ILLEGAL; // unknown 1586 } 1587 } 1588 1589 //---------------------------------print_on------------------------------------ 1590 #ifndef PRODUCT 1591 void Compile::AliasType::print_on(outputStream* st) { 1592 if (index() < 10) 1593 st->print("@ <%d> ", index()); 1594 else st->print("@ <%d>", index()); 1595 st->print(is_rewritable() ? " " : " RO"); 1596 int offset = adr_type()->offset(); 1597 if (offset == Type::OffsetBot) 1598 st->print(" +any"); 1599 else st->print(" +%-3d", offset); 1600 st->print(" in "); 1601 adr_type()->dump_on(st); 1602 const TypeOopPtr* tjp = adr_type()->isa_oopptr(); 1603 if (field() != nullptr && tjp) { 1604 if (tjp->is_instptr()->instance_klass() != field()->holder() || 1605 tjp->offset() != field()->offset_in_bytes()) { 1606 st->print(" != "); 1607 field()->print(); 1608 st->print(" ***"); 1609 } 1610 } 1611 } 1612 1613 void print_alias_types() { 1614 Compile* C = Compile::current(); 1615 tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1); 1616 for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) { 1617 C->alias_type(idx)->print_on(tty); 1618 tty->cr(); 1619 } 1620 } 1621 #endif 1622 1623 1624 //----------------------------probe_alias_cache-------------------------------- 1625 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) { 1626 intptr_t key = (intptr_t) adr_type; 1627 key ^= key >> logAliasCacheSize; 1628 return &_alias_cache[key & right_n_bits(logAliasCacheSize)]; 1629 } 1630 1631 1632 //-----------------------------grow_alias_types-------------------------------- 1633 void Compile::grow_alias_types() { 1634 const int old_ats = _max_alias_types; // how many before? 1635 const int new_ats = old_ats; // how many more? 1636 const int grow_ats = old_ats+new_ats; // how many now? 1637 _max_alias_types = grow_ats; 1638 _alias_types = REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats); 1639 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats); 1640 Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats); 1641 for (int i = 0; i < new_ats; i++) _alias_types[old_ats+i] = &ats[i]; 1642 } 1643 1644 1645 //--------------------------------find_alias_type------------------------------ 1646 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) { 1647 if (!do_aliasing()) { 1648 return alias_type(AliasIdxBot); 1649 } 1650 1651 AliasCacheEntry* ace = probe_alias_cache(adr_type); 1652 if (ace->_adr_type == adr_type) { 1653 return alias_type(ace->_index); 1654 } 1655 1656 // Handle special cases. 1657 if (adr_type == nullptr) return alias_type(AliasIdxTop); 1658 if (adr_type == TypePtr::BOTTOM) return alias_type(AliasIdxBot); 1659 1660 // Do it the slow way. 1661 const TypePtr* flat = flatten_alias_type(adr_type); 1662 1663 #ifdef ASSERT 1664 { 1665 ResourceMark rm; 1666 assert(flat == flatten_alias_type(flat), "not idempotent: adr_type = %s; flat = %s => %s", 1667 Type::str(adr_type), Type::str(flat), Type::str(flatten_alias_type(flat))); 1668 assert(flat != TypePtr::BOTTOM, "cannot alias-analyze an untyped ptr: adr_type = %s", 1669 Type::str(adr_type)); 1670 if (flat->isa_oopptr() && !flat->isa_klassptr()) { 1671 const TypeOopPtr* foop = flat->is_oopptr(); 1672 // Scalarizable allocations have exact klass always. 1673 bool exact = !foop->klass_is_exact() || foop->is_known_instance(); 1674 const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr(); 1675 assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type: foop = %s; xoop = %s", 1676 Type::str(foop), Type::str(xoop)); 1677 } 1678 } 1679 #endif 1680 1681 int idx = AliasIdxTop; 1682 for (int i = 0; i < num_alias_types(); i++) { 1683 if (alias_type(i)->adr_type() == flat) { 1684 idx = i; 1685 break; 1686 } 1687 } 1688 1689 if (idx == AliasIdxTop) { 1690 if (no_create) return nullptr; 1691 // Grow the array if necessary. 1692 if (_num_alias_types == _max_alias_types) grow_alias_types(); 1693 // Add a new alias type. 1694 idx = _num_alias_types++; 1695 _alias_types[idx]->Init(idx, flat); 1696 if (flat == TypeInstPtr::KLASS) alias_type(idx)->set_rewritable(false); 1697 if (flat == TypeAryPtr::RANGE) alias_type(idx)->set_rewritable(false); 1698 if (flat->isa_instptr()) { 1699 if (flat->offset() == java_lang_Class::klass_offset() 1700 && flat->is_instptr()->instance_klass() == env()->Class_klass()) 1701 alias_type(idx)->set_rewritable(false); 1702 } 1703 if (flat->isa_aryptr()) { 1704 #ifdef ASSERT 1705 const int header_size_min = arrayOopDesc::base_offset_in_bytes(T_BYTE); 1706 // (T_BYTE has the weakest alignment and size restrictions...) 1707 assert(flat->offset() < header_size_min, "array body reference must be OffsetBot"); 1708 #endif 1709 if (flat->offset() == TypePtr::OffsetBot) { 1710 alias_type(idx)->set_element(flat->is_aryptr()->elem()); 1711 } 1712 } 1713 if (flat->isa_klassptr()) { 1714 if (UseCompactObjectHeaders) { 1715 if (flat->offset() == in_bytes(Klass::prototype_header_offset())) 1716 alias_type(idx)->set_rewritable(false); 1717 } 1718 if (flat->offset() == in_bytes(Klass::super_check_offset_offset())) 1719 alias_type(idx)->set_rewritable(false); 1720 if (flat->offset() == in_bytes(Klass::access_flags_offset())) 1721 alias_type(idx)->set_rewritable(false); 1722 if (flat->offset() == in_bytes(Klass::misc_flags_offset())) 1723 alias_type(idx)->set_rewritable(false); 1724 if (flat->offset() == in_bytes(Klass::java_mirror_offset())) 1725 alias_type(idx)->set_rewritable(false); 1726 if (flat->offset() == in_bytes(Klass::secondary_super_cache_offset())) 1727 alias_type(idx)->set_rewritable(false); 1728 } 1729 // %%% (We would like to finalize JavaThread::threadObj_offset(), 1730 // but the base pointer type is not distinctive enough to identify 1731 // references into JavaThread.) 1732 1733 // Check for final fields. 1734 const TypeInstPtr* tinst = flat->isa_instptr(); 1735 if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) { 1736 ciField* field; 1737 if (tinst->const_oop() != nullptr && 1738 tinst->instance_klass() == ciEnv::current()->Class_klass() && 1739 tinst->offset() >= (tinst->instance_klass()->layout_helper_size_in_bytes())) { 1740 // static field 1741 ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass(); 1742 field = k->get_field_by_offset(tinst->offset(), true); 1743 } else { 1744 ciInstanceKlass *k = tinst->instance_klass(); 1745 field = k->get_field_by_offset(tinst->offset(), false); 1746 } 1747 assert(field == nullptr || 1748 original_field == nullptr || 1749 (field->holder() == original_field->holder() && 1750 field->offset_in_bytes() == original_field->offset_in_bytes() && 1751 field->is_static() == original_field->is_static()), "wrong field?"); 1752 // Set field() and is_rewritable() attributes. 1753 if (field != nullptr) alias_type(idx)->set_field(field); 1754 } 1755 } 1756 1757 // Fill the cache for next time. 1758 ace->_adr_type = adr_type; 1759 ace->_index = idx; 1760 assert(alias_type(adr_type) == alias_type(idx), "type must be installed"); 1761 1762 // Might as well try to fill the cache for the flattened version, too. 1763 AliasCacheEntry* face = probe_alias_cache(flat); 1764 if (face->_adr_type == nullptr) { 1765 face->_adr_type = flat; 1766 face->_index = idx; 1767 assert(alias_type(flat) == alias_type(idx), "flat type must work too"); 1768 } 1769 1770 return alias_type(idx); 1771 } 1772 1773 1774 Compile::AliasType* Compile::alias_type(ciField* field) { 1775 const TypeOopPtr* t; 1776 if (field->is_static()) 1777 t = TypeInstPtr::make(field->holder()->java_mirror()); 1778 else 1779 t = TypeOopPtr::make_from_klass_raw(field->holder()); 1780 AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field); 1781 assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct"); 1782 return atp; 1783 } 1784 1785 1786 //------------------------------have_alias_type-------------------------------- 1787 bool Compile::have_alias_type(const TypePtr* adr_type) { 1788 AliasCacheEntry* ace = probe_alias_cache(adr_type); 1789 if (ace->_adr_type == adr_type) { 1790 return true; 1791 } 1792 1793 // Handle special cases. 1794 if (adr_type == nullptr) return true; 1795 if (adr_type == TypePtr::BOTTOM) return true; 1796 1797 return find_alias_type(adr_type, true, nullptr) != nullptr; 1798 } 1799 1800 //-----------------------------must_alias-------------------------------------- 1801 // True if all values of the given address type are in the given alias category. 1802 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) { 1803 if (alias_idx == AliasIdxBot) return true; // the universal category 1804 if (adr_type == nullptr) return true; // null serves as TypePtr::TOP 1805 if (alias_idx == AliasIdxTop) return false; // the empty category 1806 if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins 1807 1808 // the only remaining possible overlap is identity 1809 int adr_idx = get_alias_index(adr_type); 1810 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, ""); 1811 assert(adr_idx == alias_idx || 1812 (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM 1813 && adr_type != TypeOopPtr::BOTTOM), 1814 "should not be testing for overlap with an unsafe pointer"); 1815 return adr_idx == alias_idx; 1816 } 1817 1818 //------------------------------can_alias-------------------------------------- 1819 // True if any values of the given address type are in the given alias category. 1820 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) { 1821 if (alias_idx == AliasIdxTop) return false; // the empty category 1822 if (adr_type == nullptr) return false; // null serves as TypePtr::TOP 1823 // Known instance doesn't alias with bottom memory 1824 if (alias_idx == AliasIdxBot) return !adr_type->is_known_instance(); // the universal category 1825 if (adr_type->base() == Type::AnyPtr) return !C->get_adr_type(alias_idx)->is_known_instance(); // TypePtr::BOTTOM or its twins 1826 1827 // the only remaining possible overlap is identity 1828 int adr_idx = get_alias_index(adr_type); 1829 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, ""); 1830 return adr_idx == alias_idx; 1831 } 1832 1833 // Mark all ParsePredicateNodes as useless. They will later be removed from the graph in IGVN together with their 1834 // uncommon traps if no Runtime Predicates were created from the Parse Predicates. 1835 void Compile::mark_parse_predicate_nodes_useless(PhaseIterGVN& igvn) { 1836 if (parse_predicate_count() == 0) { 1837 return; 1838 } 1839 for (int i = 0; i < parse_predicate_count(); i++) { 1840 ParsePredicateNode* parse_predicate = _parse_predicates.at(i); 1841 parse_predicate->mark_useless(); 1842 igvn._worklist.push(parse_predicate); 1843 } 1844 _parse_predicates.clear(); 1845 } 1846 1847 void Compile::record_for_post_loop_opts_igvn(Node* n) { 1848 if (!n->for_post_loop_opts_igvn()) { 1849 assert(!_for_post_loop_igvn.contains(n), "duplicate"); 1850 n->add_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn); 1851 _for_post_loop_igvn.append(n); 1852 } 1853 } 1854 1855 void Compile::remove_from_post_loop_opts_igvn(Node* n) { 1856 n->remove_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn); 1857 _for_post_loop_igvn.remove(n); 1858 } 1859 1860 void Compile::process_for_post_loop_opts_igvn(PhaseIterGVN& igvn) { 1861 // Verify that all previous optimizations produced a valid graph 1862 // at least to this point, even if no loop optimizations were done. 1863 PhaseIdealLoop::verify(igvn); 1864 1865 C->set_post_loop_opts_phase(); // no more loop opts allowed 1866 1867 assert(!C->major_progress(), "not cleared"); 1868 1869 if (_for_post_loop_igvn.length() > 0) { 1870 while (_for_post_loop_igvn.length() > 0) { 1871 Node* n = _for_post_loop_igvn.pop(); 1872 n->remove_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn); 1873 igvn._worklist.push(n); 1874 } 1875 igvn.optimize(); 1876 if (failing()) return; 1877 assert(_for_post_loop_igvn.length() == 0, "no more delayed nodes allowed"); 1878 assert(C->parse_predicate_count() == 0, "all parse predicates should have been removed now"); 1879 1880 // Sometimes IGVN sets major progress (e.g., when processing loop nodes). 1881 if (C->major_progress()) { 1882 C->clear_major_progress(); // ensure that major progress is now clear 1883 } 1884 } 1885 } 1886 1887 void Compile::record_for_merge_stores_igvn(Node* n) { 1888 if (!n->for_merge_stores_igvn()) { 1889 assert(!_for_merge_stores_igvn.contains(n), "duplicate"); 1890 n->add_flag(Node::NodeFlags::Flag_for_merge_stores_igvn); 1891 _for_merge_stores_igvn.append(n); 1892 } 1893 } 1894 1895 void Compile::remove_from_merge_stores_igvn(Node* n) { 1896 n->remove_flag(Node::NodeFlags::Flag_for_merge_stores_igvn); 1897 _for_merge_stores_igvn.remove(n); 1898 } 1899 1900 // We need to wait with merging stores until RangeCheck smearing has removed the RangeChecks during 1901 // the post loops IGVN phase. If we do it earlier, then there may still be some RangeChecks between 1902 // the stores, and we merge the wrong sequence of stores. 1903 // Example: 1904 // StoreI RangeCheck StoreI StoreI RangeCheck StoreI 1905 // Apply MergeStores: 1906 // StoreI RangeCheck [ StoreL ] RangeCheck StoreI 1907 // Remove more RangeChecks: 1908 // StoreI [ StoreL ] StoreI 1909 // But now it would have been better to do this instead: 1910 // [ StoreL ] [ StoreL ] 1911 // 1912 // Note: we allow stores to merge in this dedicated IGVN round, and any later IGVN round, 1913 // since we never unset _merge_stores_phase. 1914 void Compile::process_for_merge_stores_igvn(PhaseIterGVN& igvn) { 1915 C->set_merge_stores_phase(); 1916 1917 if (_for_merge_stores_igvn.length() > 0) { 1918 while (_for_merge_stores_igvn.length() > 0) { 1919 Node* n = _for_merge_stores_igvn.pop(); 1920 n->remove_flag(Node::NodeFlags::Flag_for_merge_stores_igvn); 1921 igvn._worklist.push(n); 1922 } 1923 igvn.optimize(); 1924 if (failing()) return; 1925 assert(_for_merge_stores_igvn.length() == 0, "no more delayed nodes allowed"); 1926 print_method(PHASE_AFTER_MERGE_STORES, 3); 1927 } 1928 } 1929 1930 void Compile::record_unstable_if_trap(UnstableIfTrap* trap) { 1931 if (OptimizeUnstableIf) { 1932 _unstable_if_traps.append(trap); 1933 } 1934 } 1935 1936 void Compile::remove_useless_unstable_if_traps(Unique_Node_List& useful) { 1937 for (int i = _unstable_if_traps.length() - 1; i >= 0; i--) { 1938 UnstableIfTrap* trap = _unstable_if_traps.at(i); 1939 Node* n = trap->uncommon_trap(); 1940 if (!useful.member(n)) { 1941 _unstable_if_traps.delete_at(i); // replaces i-th with last element which is known to be useful (already processed) 1942 } 1943 } 1944 } 1945 1946 // Remove the unstable if trap associated with 'unc' from candidates. It is either dead 1947 // or fold-compares case. Return true if succeed or not found. 1948 // 1949 // In rare cases, the found trap has been processed. It is too late to delete it. Return 1950 // false and ask fold-compares to yield. 1951 // 1952 // 'fold-compares' may use the uncommon_trap of the dominating IfNode to cover the fused 1953 // IfNode. This breaks the unstable_if trap invariant: control takes the unstable path 1954 // when deoptimization does happen. 1955 bool Compile::remove_unstable_if_trap(CallStaticJavaNode* unc, bool yield) { 1956 for (int i = 0; i < _unstable_if_traps.length(); ++i) { 1957 UnstableIfTrap* trap = _unstable_if_traps.at(i); 1958 if (trap->uncommon_trap() == unc) { 1959 if (yield && trap->modified()) { 1960 return false; 1961 } 1962 _unstable_if_traps.delete_at(i); 1963 break; 1964 } 1965 } 1966 return true; 1967 } 1968 1969 // Re-calculate unstable_if traps with the liveness of next_bci, which points to the unlikely path. 1970 // It needs to be done after igvn because fold-compares may fuse uncommon_traps and before renumbering. 1971 void Compile::process_for_unstable_if_traps(PhaseIterGVN& igvn) { 1972 for (int i = _unstable_if_traps.length() - 1; i >= 0; --i) { 1973 UnstableIfTrap* trap = _unstable_if_traps.at(i); 1974 CallStaticJavaNode* unc = trap->uncommon_trap(); 1975 int next_bci = trap->next_bci(); 1976 bool modified = trap->modified(); 1977 1978 if (next_bci != -1 && !modified) { 1979 assert(!_dead_node_list.test(unc->_idx), "changing a dead node!"); 1980 JVMState* jvms = unc->jvms(); 1981 ciMethod* method = jvms->method(); 1982 ciBytecodeStream iter(method); 1983 1984 iter.force_bci(jvms->bci()); 1985 assert(next_bci == iter.next_bci() || next_bci == iter.get_dest(), "wrong next_bci at unstable_if"); 1986 Bytecodes::Code c = iter.cur_bc(); 1987 Node* lhs = nullptr; 1988 Node* rhs = nullptr; 1989 if (c == Bytecodes::_if_acmpeq || c == Bytecodes::_if_acmpne) { 1990 lhs = unc->peek_operand(0); 1991 rhs = unc->peek_operand(1); 1992 } else if (c == Bytecodes::_ifnull || c == Bytecodes::_ifnonnull) { 1993 lhs = unc->peek_operand(0); 1994 } 1995 1996 ResourceMark rm; 1997 const MethodLivenessResult& live_locals = method->liveness_at_bci(next_bci); 1998 assert(live_locals.is_valid(), "broken liveness info"); 1999 int len = (int)live_locals.size(); 2000 2001 for (int i = 0; i < len; i++) { 2002 Node* local = unc->local(jvms, i); 2003 // kill local using the liveness of next_bci. 2004 // give up when the local looks like an operand to secure reexecution. 2005 if (!live_locals.at(i) && !local->is_top() && local != lhs && local!= rhs) { 2006 uint idx = jvms->locoff() + i; 2007 #ifdef ASSERT 2008 if (PrintOpto && Verbose) { 2009 tty->print("[unstable_if] kill local#%d: ", idx); 2010 local->dump(); 2011 tty->cr(); 2012 } 2013 #endif 2014 igvn.replace_input_of(unc, idx, top()); 2015 modified = true; 2016 } 2017 } 2018 } 2019 2020 // keep the mondified trap for late query 2021 if (modified) { 2022 trap->set_modified(); 2023 } else { 2024 _unstable_if_traps.delete_at(i); 2025 } 2026 } 2027 igvn.optimize(); 2028 } 2029 2030 // StringOpts and late inlining of string methods 2031 void Compile::inline_string_calls(bool parse_time) { 2032 { 2033 // remove useless nodes to make the usage analysis simpler 2034 ResourceMark rm; 2035 PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist()); 2036 } 2037 2038 { 2039 ResourceMark rm; 2040 print_method(PHASE_BEFORE_STRINGOPTS, 3); 2041 PhaseStringOpts pso(initial_gvn()); 2042 print_method(PHASE_AFTER_STRINGOPTS, 3); 2043 } 2044 2045 // now inline anything that we skipped the first time around 2046 if (!parse_time) { 2047 _late_inlines_pos = _late_inlines.length(); 2048 } 2049 2050 while (_string_late_inlines.length() > 0) { 2051 CallGenerator* cg = _string_late_inlines.pop(); 2052 cg->do_late_inline(); 2053 if (failing()) return; 2054 } 2055 _string_late_inlines.trunc_to(0); 2056 } 2057 2058 // Late inlining of boxing methods 2059 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) { 2060 if (_boxing_late_inlines.length() > 0) { 2061 assert(has_boxed_value(), "inconsistent"); 2062 2063 set_inlining_incrementally(true); 2064 2065 igvn_worklist()->ensure_empty(); // should be done with igvn 2066 2067 _late_inlines_pos = _late_inlines.length(); 2068 2069 while (_boxing_late_inlines.length() > 0) { 2070 CallGenerator* cg = _boxing_late_inlines.pop(); 2071 cg->do_late_inline(); 2072 if (failing()) return; 2073 } 2074 _boxing_late_inlines.trunc_to(0); 2075 2076 inline_incrementally_cleanup(igvn); 2077 2078 set_inlining_incrementally(false); 2079 } 2080 } 2081 2082 bool Compile::inline_incrementally_one() { 2083 assert(IncrementalInline, "incremental inlining should be on"); 2084 2085 TracePhase tp(_t_incrInline_inline); 2086 2087 set_inlining_progress(false); 2088 set_do_cleanup(false); 2089 2090 for (int i = 0; i < _late_inlines.length(); i++) { 2091 _late_inlines_pos = i+1; 2092 CallGenerator* cg = _late_inlines.at(i); 2093 bool does_dispatch = cg->is_virtual_late_inline() || cg->is_mh_late_inline(); 2094 if (inlining_incrementally() || does_dispatch) { // a call can be either inlined or strength-reduced to a direct call 2095 cg->do_late_inline(); 2096 assert(_late_inlines.at(i) == cg, "no insertions before current position allowed"); 2097 if (failing()) { 2098 return false; 2099 } else if (inlining_progress()) { 2100 _late_inlines_pos = i+1; // restore the position in case new elements were inserted 2101 print_method(PHASE_INCREMENTAL_INLINE_STEP, 3, cg->call_node()); 2102 break; // process one call site at a time 2103 } 2104 } else { 2105 // Ignore late inline direct calls when inlining is not allowed. 2106 // They are left in the late inline list when node budget is exhausted until the list is fully drained. 2107 } 2108 } 2109 // Remove processed elements. 2110 _late_inlines.remove_till(_late_inlines_pos); 2111 _late_inlines_pos = 0; 2112 2113 assert(inlining_progress() || _late_inlines.length() == 0, "no progress"); 2114 2115 bool needs_cleanup = do_cleanup() || over_inlining_cutoff(); 2116 2117 set_inlining_progress(false); 2118 set_do_cleanup(false); 2119 2120 bool force_cleanup = directive()->IncrementalInlineForceCleanupOption; 2121 return (_late_inlines.length() > 0) && !needs_cleanup && !force_cleanup; 2122 } 2123 2124 void Compile::inline_incrementally_cleanup(PhaseIterGVN& igvn) { 2125 { 2126 TracePhase tp(_t_incrInline_pru); 2127 ResourceMark rm; 2128 PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist()); 2129 } 2130 { 2131 TracePhase tp(_t_incrInline_igvn); 2132 igvn.reset_from_gvn(initial_gvn()); 2133 igvn.optimize(); 2134 if (failing()) return; 2135 } 2136 print_method(PHASE_INCREMENTAL_INLINE_CLEANUP, 3); 2137 } 2138 2139 // Perform incremental inlining until bound on number of live nodes is reached 2140 void Compile::inline_incrementally(PhaseIterGVN& igvn) { 2141 TracePhase tp(_t_incrInline); 2142 2143 set_inlining_incrementally(true); 2144 uint low_live_nodes = 0; 2145 2146 while (_late_inlines.length() > 0) { 2147 if (live_nodes() > (uint)LiveNodeCountInliningCutoff) { 2148 if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) { 2149 TracePhase tp(_t_incrInline_ideal); 2150 // PhaseIdealLoop is expensive so we only try it once we are 2151 // out of live nodes and we only try it again if the previous 2152 // helped got the number of nodes down significantly 2153 PhaseIdealLoop::optimize(igvn, LoopOptsNone); 2154 if (failing()) return; 2155 low_live_nodes = live_nodes(); 2156 _major_progress = true; 2157 } 2158 2159 if (live_nodes() > (uint)LiveNodeCountInliningCutoff) { 2160 bool do_print_inlining = print_inlining() || print_intrinsics(); 2161 if (do_print_inlining || log() != nullptr) { 2162 // Print inlining message for candidates that we couldn't inline for lack of space. 2163 for (int i = 0; i < _late_inlines.length(); i++) { 2164 CallGenerator* cg = _late_inlines.at(i); 2165 const char* msg = "live nodes > LiveNodeCountInliningCutoff"; 2166 if (do_print_inlining) { 2167 inline_printer()->record(cg->method(), cg->call_node()->jvms(), InliningResult::FAILURE, msg); 2168 } 2169 log_late_inline_failure(cg, msg); 2170 } 2171 } 2172 break; // finish 2173 } 2174 } 2175 2176 igvn_worklist()->ensure_empty(); // should be done with igvn 2177 2178 while (inline_incrementally_one()) { 2179 assert(!failing_internal() || failure_is_artificial(), "inconsistent"); 2180 } 2181 if (failing()) return; 2182 2183 inline_incrementally_cleanup(igvn); 2184 2185 print_method(PHASE_INCREMENTAL_INLINE_STEP, 3); 2186 2187 if (failing()) return; 2188 2189 if (_late_inlines.length() == 0) { 2190 break; // no more progress 2191 } 2192 } 2193 2194 igvn_worklist()->ensure_empty(); // should be done with igvn 2195 2196 if (_string_late_inlines.length() > 0) { 2197 assert(has_stringbuilder(), "inconsistent"); 2198 2199 inline_string_calls(false); 2200 2201 if (failing()) return; 2202 2203 inline_incrementally_cleanup(igvn); 2204 } 2205 2206 set_inlining_incrementally(false); 2207 } 2208 2209 void Compile::process_late_inline_calls_no_inline(PhaseIterGVN& igvn) { 2210 // "inlining_incrementally() == false" is used to signal that no inlining is allowed 2211 // (see LateInlineVirtualCallGenerator::do_late_inline_check() for details). 2212 // Tracking and verification of modified nodes is disabled by setting "_modified_nodes == nullptr" 2213 // as if "inlining_incrementally() == true" were set. 2214 assert(inlining_incrementally() == false, "not allowed"); 2215 assert(_modified_nodes == nullptr, "not allowed"); 2216 assert(_late_inlines.length() > 0, "sanity"); 2217 2218 while (_late_inlines.length() > 0) { 2219 igvn_worklist()->ensure_empty(); // should be done with igvn 2220 2221 while (inline_incrementally_one()) { 2222 assert(!failing_internal() || failure_is_artificial(), "inconsistent"); 2223 } 2224 if (failing()) return; 2225 2226 inline_incrementally_cleanup(igvn); 2227 } 2228 } 2229 2230 bool Compile::optimize_loops(PhaseIterGVN& igvn, LoopOptsMode mode) { 2231 if (_loop_opts_cnt > 0) { 2232 while (major_progress() && (_loop_opts_cnt > 0)) { 2233 TracePhase tp(_t_idealLoop); 2234 PhaseIdealLoop::optimize(igvn, mode); 2235 _loop_opts_cnt--; 2236 if (failing()) return false; 2237 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2); 2238 } 2239 } 2240 return true; 2241 } 2242 2243 // Remove edges from "root" to each SafePoint at a backward branch. 2244 // They were inserted during parsing (see add_safepoint()) to make 2245 // infinite loops without calls or exceptions visible to root, i.e., 2246 // useful. 2247 void Compile::remove_root_to_sfpts_edges(PhaseIterGVN& igvn) { 2248 Node *r = root(); 2249 if (r != nullptr) { 2250 for (uint i = r->req(); i < r->len(); ++i) { 2251 Node *n = r->in(i); 2252 if (n != nullptr && n->is_SafePoint()) { 2253 r->rm_prec(i); 2254 if (n->outcnt() == 0) { 2255 igvn.remove_dead_node(n); 2256 } 2257 --i; 2258 } 2259 } 2260 // Parsing may have added top inputs to the root node (Path 2261 // leading to the Halt node proven dead). Make sure we get a 2262 // chance to clean them up. 2263 igvn._worklist.push(r); 2264 igvn.optimize(); 2265 } 2266 } 2267 2268 //------------------------------Optimize--------------------------------------- 2269 // Given a graph, optimize it. 2270 void Compile::Optimize() { 2271 TracePhase tp(_t_optimizer); 2272 2273 #ifndef PRODUCT 2274 if (env()->break_at_compile()) { 2275 BREAKPOINT; 2276 } 2277 2278 #endif 2279 2280 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 2281 #ifdef ASSERT 2282 bs->verify_gc_barriers(this, BarrierSetC2::BeforeOptimize); 2283 #endif 2284 2285 ResourceMark rm; 2286 2287 NOT_PRODUCT( verify_graph_edges(); ) 2288 2289 print_method(PHASE_AFTER_PARSING, 1); 2290 2291 { 2292 // Iterative Global Value Numbering, including ideal transforms 2293 // Initialize IterGVN with types and values from parse-time GVN 2294 PhaseIterGVN igvn(initial_gvn()); 2295 #ifdef ASSERT 2296 _modified_nodes = new (comp_arena()) Unique_Node_List(comp_arena()); 2297 #endif 2298 { 2299 TracePhase tp(_t_iterGVN); 2300 igvn.optimize(); 2301 } 2302 2303 if (failing()) return; 2304 2305 print_method(PHASE_ITER_GVN1, 2); 2306 2307 process_for_unstable_if_traps(igvn); 2308 2309 if (failing()) return; 2310 2311 inline_incrementally(igvn); 2312 2313 print_method(PHASE_INCREMENTAL_INLINE, 2); 2314 2315 if (failing()) return; 2316 2317 if (eliminate_boxing()) { 2318 // Inline valueOf() methods now. 2319 inline_boxing_calls(igvn); 2320 2321 if (failing()) return; 2322 2323 if (AlwaysIncrementalInline || StressIncrementalInlining) { 2324 inline_incrementally(igvn); 2325 } 2326 2327 print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2); 2328 2329 if (failing()) return; 2330 } 2331 2332 // Remove the speculative part of types and clean up the graph from 2333 // the extra CastPP nodes whose only purpose is to carry them. Do 2334 // that early so that optimizations are not disrupted by the extra 2335 // CastPP nodes. 2336 remove_speculative_types(igvn); 2337 2338 if (failing()) return; 2339 2340 // No more new expensive nodes will be added to the list from here 2341 // so keep only the actual candidates for optimizations. 2342 cleanup_expensive_nodes(igvn); 2343 2344 if (failing()) return; 2345 2346 assert(EnableVectorSupport || !has_vbox_nodes(), "sanity"); 2347 if (EnableVectorSupport && has_vbox_nodes()) { 2348 TracePhase tp(_t_vector); 2349 PhaseVector pv(igvn); 2350 pv.optimize_vector_boxes(); 2351 if (failing()) return; 2352 print_method(PHASE_ITER_GVN_AFTER_VECTOR, 2); 2353 } 2354 assert(!has_vbox_nodes(), "sanity"); 2355 2356 if (!failing() && RenumberLiveNodes && live_nodes() + NodeLimitFudgeFactor < unique()) { 2357 Compile::TracePhase tp(_t_renumberLive); 2358 igvn_worklist()->ensure_empty(); // should be done with igvn 2359 { 2360 ResourceMark rm; 2361 PhaseRenumberLive prl(initial_gvn(), *igvn_worklist()); 2362 } 2363 igvn.reset_from_gvn(initial_gvn()); 2364 igvn.optimize(); 2365 if (failing()) return; 2366 } 2367 2368 // Now that all inlining is over and no PhaseRemoveUseless will run, cut edge from root to loop 2369 // safepoints 2370 remove_root_to_sfpts_edges(igvn); 2371 2372 if (failing()) return; 2373 2374 // Perform escape analysis 2375 if (do_escape_analysis() && ConnectionGraph::has_candidates(this)) { 2376 if (has_loops()) { 2377 // Cleanup graph (remove dead nodes). 2378 TracePhase tp(_t_idealLoop); 2379 PhaseIdealLoop::optimize(igvn, LoopOptsMaxUnroll); 2380 if (failing()) return; 2381 } 2382 bool progress; 2383 print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2); 2384 do { 2385 ConnectionGraph::do_analysis(this, &igvn); 2386 2387 if (failing()) return; 2388 2389 int mcount = macro_count(); // Record number of allocations and locks before IGVN 2390 2391 // Optimize out fields loads from scalar replaceable allocations. 2392 igvn.optimize(); 2393 print_method(PHASE_ITER_GVN_AFTER_EA, 2); 2394 2395 if (failing()) return; 2396 2397 if (congraph() != nullptr && macro_count() > 0) { 2398 TracePhase tp(_t_macroEliminate); 2399 PhaseMacroExpand mexp(igvn); 2400 mexp.eliminate_macro_nodes(); 2401 if (failing()) return; 2402 2403 igvn.set_delay_transform(false); 2404 igvn.optimize(); 2405 if (failing()) return; 2406 2407 print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2); 2408 } 2409 2410 ConnectionGraph::verify_ram_nodes(this, root()); 2411 if (failing()) return; 2412 2413 progress = do_iterative_escape_analysis() && 2414 (macro_count() < mcount) && 2415 ConnectionGraph::has_candidates(this); 2416 // Try again if candidates exist and made progress 2417 // by removing some allocations and/or locks. 2418 } while (progress); 2419 } 2420 2421 // Loop transforms on the ideal graph. Range Check Elimination, 2422 // peeling, unrolling, etc. 2423 2424 // Set loop opts counter 2425 if((_loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) { 2426 { 2427 TracePhase tp(_t_idealLoop); 2428 PhaseIdealLoop::optimize(igvn, LoopOptsDefault); 2429 _loop_opts_cnt--; 2430 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2); 2431 if (failing()) return; 2432 } 2433 // Loop opts pass if partial peeling occurred in previous pass 2434 if(PartialPeelLoop && major_progress() && (_loop_opts_cnt > 0)) { 2435 TracePhase tp(_t_idealLoop); 2436 PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf); 2437 _loop_opts_cnt--; 2438 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2); 2439 if (failing()) return; 2440 } 2441 // Loop opts pass for loop-unrolling before CCP 2442 if(major_progress() && (_loop_opts_cnt > 0)) { 2443 TracePhase tp(_t_idealLoop); 2444 PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf); 2445 _loop_opts_cnt--; 2446 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2); 2447 } 2448 if (!failing()) { 2449 // Verify that last round of loop opts produced a valid graph 2450 PhaseIdealLoop::verify(igvn); 2451 } 2452 } 2453 if (failing()) return; 2454 2455 // Conditional Constant Propagation; 2456 print_method(PHASE_BEFORE_CCP1, 2); 2457 PhaseCCP ccp( &igvn ); 2458 assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)"); 2459 { 2460 TracePhase tp(_t_ccp); 2461 ccp.do_transform(); 2462 } 2463 print_method(PHASE_CCP1, 2); 2464 2465 assert( true, "Break here to ccp.dump_old2new_map()"); 2466 2467 // Iterative Global Value Numbering, including ideal transforms 2468 { 2469 TracePhase tp(_t_iterGVN2); 2470 igvn.reset_from_igvn(&ccp); 2471 igvn.optimize(); 2472 } 2473 print_method(PHASE_ITER_GVN2, 2); 2474 2475 if (failing()) return; 2476 2477 // Loop transforms on the ideal graph. Range Check Elimination, 2478 // peeling, unrolling, etc. 2479 if (!optimize_loops(igvn, LoopOptsDefault)) { 2480 return; 2481 } 2482 2483 if (failing()) return; 2484 2485 C->clear_major_progress(); // ensure that major progress is now clear 2486 2487 process_for_post_loop_opts_igvn(igvn); 2488 2489 process_for_merge_stores_igvn(igvn); 2490 2491 if (failing()) return; 2492 2493 #ifdef ASSERT 2494 bs->verify_gc_barriers(this, BarrierSetC2::BeforeMacroExpand); 2495 #endif 2496 2497 { 2498 TracePhase tp(_t_macroExpand); 2499 print_method(PHASE_BEFORE_MACRO_EXPANSION, 3); 2500 PhaseMacroExpand mex(igvn); 2501 if (mex.expand_macro_nodes()) { 2502 assert(failing(), "must bail out w/ explicit message"); 2503 return; 2504 } 2505 print_method(PHASE_AFTER_MACRO_EXPANSION, 2); 2506 } 2507 2508 { 2509 TracePhase tp(_t_barrierExpand); 2510 if (bs->expand_barriers(this, igvn)) { 2511 assert(failing(), "must bail out w/ explicit message"); 2512 return; 2513 } 2514 print_method(PHASE_BARRIER_EXPANSION, 2); 2515 } 2516 2517 if (C->max_vector_size() > 0) { 2518 C->optimize_logic_cones(igvn); 2519 igvn.optimize(); 2520 if (failing()) return; 2521 } 2522 2523 DEBUG_ONLY( _modified_nodes = nullptr; ) 2524 2525 assert(igvn._worklist.size() == 0, "not empty"); 2526 2527 assert(_late_inlines.length() == 0 || IncrementalInlineMH || IncrementalInlineVirtual, "not empty"); 2528 2529 if (_late_inlines.length() > 0) { 2530 // More opportunities to optimize virtual and MH calls. 2531 // Though it's maybe too late to perform inlining, strength-reducing them to direct calls is still an option. 2532 process_late_inline_calls_no_inline(igvn); 2533 if (failing()) return; 2534 } 2535 } // (End scope of igvn; run destructor if necessary for asserts.) 2536 2537 check_no_dead_use(); 2538 2539 // We will never use the NodeHash table any more. Clear it so that final_graph_reshaping does not have 2540 // to remove hashes to unlock nodes for modifications. 2541 C->node_hash()->clear(); 2542 2543 // A method with only infinite loops has no edges entering loops from root 2544 { 2545 TracePhase tp(_t_graphReshaping); 2546 if (final_graph_reshaping()) { 2547 assert(failing(), "must bail out w/ explicit message"); 2548 return; 2549 } 2550 } 2551 2552 print_method(PHASE_OPTIMIZE_FINISHED, 2); 2553 DEBUG_ONLY(set_phase_optimize_finished();) 2554 } 2555 2556 #ifdef ASSERT 2557 void Compile::check_no_dead_use() const { 2558 ResourceMark rm; 2559 Unique_Node_List wq; 2560 wq.push(root()); 2561 for (uint i = 0; i < wq.size(); ++i) { 2562 Node* n = wq.at(i); 2563 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) { 2564 Node* u = n->fast_out(j); 2565 if (u->outcnt() == 0 && !u->is_Con()) { 2566 u->dump(); 2567 fatal("no reachable node should have no use"); 2568 } 2569 wq.push(u); 2570 } 2571 } 2572 } 2573 #endif 2574 2575 void Compile::inline_vector_reboxing_calls() { 2576 if (C->_vector_reboxing_late_inlines.length() > 0) { 2577 _late_inlines_pos = C->_late_inlines.length(); 2578 while (_vector_reboxing_late_inlines.length() > 0) { 2579 CallGenerator* cg = _vector_reboxing_late_inlines.pop(); 2580 cg->do_late_inline(); 2581 if (failing()) return; 2582 print_method(PHASE_INLINE_VECTOR_REBOX, 3, cg->call_node()); 2583 } 2584 _vector_reboxing_late_inlines.trunc_to(0); 2585 } 2586 } 2587 2588 bool Compile::has_vbox_nodes() { 2589 if (C->_vector_reboxing_late_inlines.length() > 0) { 2590 return true; 2591 } 2592 for (int macro_idx = C->macro_count() - 1; macro_idx >= 0; macro_idx--) { 2593 Node * n = C->macro_node(macro_idx); 2594 assert(n->is_macro(), "only macro nodes expected here"); 2595 if (n->Opcode() == Op_VectorUnbox || n->Opcode() == Op_VectorBox || n->Opcode() == Op_VectorBoxAllocate) { 2596 return true; 2597 } 2598 } 2599 return false; 2600 } 2601 2602 //---------------------------- Bitwise operation packing optimization --------------------------- 2603 2604 static bool is_vector_unary_bitwise_op(Node* n) { 2605 return n->Opcode() == Op_XorV && 2606 VectorNode::is_vector_bitwise_not_pattern(n); 2607 } 2608 2609 static bool is_vector_binary_bitwise_op(Node* n) { 2610 switch (n->Opcode()) { 2611 case Op_AndV: 2612 case Op_OrV: 2613 return true; 2614 2615 case Op_XorV: 2616 return !is_vector_unary_bitwise_op(n); 2617 2618 default: 2619 return false; 2620 } 2621 } 2622 2623 static bool is_vector_ternary_bitwise_op(Node* n) { 2624 return n->Opcode() == Op_MacroLogicV; 2625 } 2626 2627 static bool is_vector_bitwise_op(Node* n) { 2628 return is_vector_unary_bitwise_op(n) || 2629 is_vector_binary_bitwise_op(n) || 2630 is_vector_ternary_bitwise_op(n); 2631 } 2632 2633 static bool is_vector_bitwise_cone_root(Node* n) { 2634 if (n->bottom_type()->isa_vectmask() || !is_vector_bitwise_op(n)) { 2635 return false; 2636 } 2637 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 2638 if (is_vector_bitwise_op(n->fast_out(i))) { 2639 return false; 2640 } 2641 } 2642 return true; 2643 } 2644 2645 static uint collect_unique_inputs(Node* n, Unique_Node_List& inputs) { 2646 uint cnt = 0; 2647 if (is_vector_bitwise_op(n)) { 2648 uint inp_cnt = n->is_predicated_vector() ? n->req()-1 : n->req(); 2649 if (VectorNode::is_vector_bitwise_not_pattern(n)) { 2650 for (uint i = 1; i < inp_cnt; i++) { 2651 Node* in = n->in(i); 2652 bool skip = VectorNode::is_all_ones_vector(in); 2653 if (!skip && !inputs.member(in)) { 2654 inputs.push(in); 2655 cnt++; 2656 } 2657 } 2658 assert(cnt <= 1, "not unary"); 2659 } else { 2660 uint last_req = inp_cnt; 2661 if (is_vector_ternary_bitwise_op(n)) { 2662 last_req = inp_cnt - 1; // skip last input 2663 } 2664 for (uint i = 1; i < last_req; i++) { 2665 Node* def = n->in(i); 2666 if (!inputs.member(def)) { 2667 inputs.push(def); 2668 cnt++; 2669 } 2670 } 2671 } 2672 } else { // not a bitwise operations 2673 if (!inputs.member(n)) { 2674 inputs.push(n); 2675 cnt++; 2676 } 2677 } 2678 return cnt; 2679 } 2680 2681 void Compile::collect_logic_cone_roots(Unique_Node_List& list) { 2682 Unique_Node_List useful_nodes; 2683 C->identify_useful_nodes(useful_nodes); 2684 2685 for (uint i = 0; i < useful_nodes.size(); i++) { 2686 Node* n = useful_nodes.at(i); 2687 if (is_vector_bitwise_cone_root(n)) { 2688 list.push(n); 2689 } 2690 } 2691 } 2692 2693 Node* Compile::xform_to_MacroLogicV(PhaseIterGVN& igvn, 2694 const TypeVect* vt, 2695 Unique_Node_List& partition, 2696 Unique_Node_List& inputs) { 2697 assert(partition.size() == 2 || partition.size() == 3, "not supported"); 2698 assert(inputs.size() == 2 || inputs.size() == 3, "not supported"); 2699 assert(Matcher::match_rule_supported_vector(Op_MacroLogicV, vt->length(), vt->element_basic_type()), "not supported"); 2700 2701 Node* in1 = inputs.at(0); 2702 Node* in2 = inputs.at(1); 2703 Node* in3 = (inputs.size() == 3 ? inputs.at(2) : in2); 2704 2705 uint func = compute_truth_table(partition, inputs); 2706 2707 Node* pn = partition.at(partition.size() - 1); 2708 Node* mask = pn->is_predicated_vector() ? pn->in(pn->req()-1) : nullptr; 2709 return igvn.transform(MacroLogicVNode::make(igvn, in1, in2, in3, mask, func, vt)); 2710 } 2711 2712 static uint extract_bit(uint func, uint pos) { 2713 return (func & (1 << pos)) >> pos; 2714 } 2715 2716 // 2717 // A macro logic node represents a truth table. It has 4 inputs, 2718 // First three inputs corresponds to 3 columns of a truth table 2719 // and fourth input captures the logic function. 2720 // 2721 // eg. fn = (in1 AND in2) OR in3; 2722 // 2723 // MacroNode(in1,in2,in3,fn) 2724 // 2725 // ----------------- 2726 // in1 in2 in3 fn 2727 // ----------------- 2728 // 0 0 0 0 2729 // 0 0 1 1 2730 // 0 1 0 0 2731 // 0 1 1 1 2732 // 1 0 0 0 2733 // 1 0 1 1 2734 // 1 1 0 1 2735 // 1 1 1 1 2736 // 2737 2738 uint Compile::eval_macro_logic_op(uint func, uint in1 , uint in2, uint in3) { 2739 int res = 0; 2740 for (int i = 0; i < 8; i++) { 2741 int bit1 = extract_bit(in1, i); 2742 int bit2 = extract_bit(in2, i); 2743 int bit3 = extract_bit(in3, i); 2744 2745 int func_bit_pos = (bit1 << 2 | bit2 << 1 | bit3); 2746 int func_bit = extract_bit(func, func_bit_pos); 2747 2748 res |= func_bit << i; 2749 } 2750 return res; 2751 } 2752 2753 static uint eval_operand(Node* n, ResourceHashtable<Node*,uint>& eval_map) { 2754 assert(n != nullptr, ""); 2755 assert(eval_map.contains(n), "absent"); 2756 return *(eval_map.get(n)); 2757 } 2758 2759 static void eval_operands(Node* n, 2760 uint& func1, uint& func2, uint& func3, 2761 ResourceHashtable<Node*,uint>& eval_map) { 2762 assert(is_vector_bitwise_op(n), ""); 2763 2764 if (is_vector_unary_bitwise_op(n)) { 2765 Node* opnd = n->in(1); 2766 if (VectorNode::is_vector_bitwise_not_pattern(n) && VectorNode::is_all_ones_vector(opnd)) { 2767 opnd = n->in(2); 2768 } 2769 func1 = eval_operand(opnd, eval_map); 2770 } else if (is_vector_binary_bitwise_op(n)) { 2771 func1 = eval_operand(n->in(1), eval_map); 2772 func2 = eval_operand(n->in(2), eval_map); 2773 } else { 2774 assert(is_vector_ternary_bitwise_op(n), "unknown operation"); 2775 func1 = eval_operand(n->in(1), eval_map); 2776 func2 = eval_operand(n->in(2), eval_map); 2777 func3 = eval_operand(n->in(3), eval_map); 2778 } 2779 } 2780 2781 uint Compile::compute_truth_table(Unique_Node_List& partition, Unique_Node_List& inputs) { 2782 assert(inputs.size() <= 3, "sanity"); 2783 ResourceMark rm; 2784 uint res = 0; 2785 ResourceHashtable<Node*,uint> eval_map; 2786 2787 // Populate precomputed functions for inputs. 2788 // Each input corresponds to one column of 3 input truth-table. 2789 uint input_funcs[] = { 0xAA, // (_, _, c) -> c 2790 0xCC, // (_, b, _) -> b 2791 0xF0 }; // (a, _, _) -> a 2792 for (uint i = 0; i < inputs.size(); i++) { 2793 eval_map.put(inputs.at(i), input_funcs[2-i]); 2794 } 2795 2796 for (uint i = 0; i < partition.size(); i++) { 2797 Node* n = partition.at(i); 2798 2799 uint func1 = 0, func2 = 0, func3 = 0; 2800 eval_operands(n, func1, func2, func3, eval_map); 2801 2802 switch (n->Opcode()) { 2803 case Op_OrV: 2804 assert(func3 == 0, "not binary"); 2805 res = func1 | func2; 2806 break; 2807 case Op_AndV: 2808 assert(func3 == 0, "not binary"); 2809 res = func1 & func2; 2810 break; 2811 case Op_XorV: 2812 if (VectorNode::is_vector_bitwise_not_pattern(n)) { 2813 assert(func2 == 0 && func3 == 0, "not unary"); 2814 res = (~func1) & 0xFF; 2815 } else { 2816 assert(func3 == 0, "not binary"); 2817 res = func1 ^ func2; 2818 } 2819 break; 2820 case Op_MacroLogicV: 2821 // Ordering of inputs may change during evaluation of sub-tree 2822 // containing MacroLogic node as a child node, thus a re-evaluation 2823 // makes sure that function is evaluated in context of current 2824 // inputs. 2825 res = eval_macro_logic_op(n->in(4)->get_int(), func1, func2, func3); 2826 break; 2827 2828 default: assert(false, "not supported: %s", n->Name()); 2829 } 2830 assert(res <= 0xFF, "invalid"); 2831 eval_map.put(n, res); 2832 } 2833 return res; 2834 } 2835 2836 // Criteria under which nodes gets packed into a macro logic node:- 2837 // 1) Parent and both child nodes are all unmasked or masked with 2838 // same predicates. 2839 // 2) Masked parent can be packed with left child if it is predicated 2840 // and both have same predicates. 2841 // 3) Masked parent can be packed with right child if its un-predicated 2842 // or has matching predication condition. 2843 // 4) An unmasked parent can be packed with an unmasked child. 2844 bool Compile::compute_logic_cone(Node* n, Unique_Node_List& partition, Unique_Node_List& inputs) { 2845 assert(partition.size() == 0, "not empty"); 2846 assert(inputs.size() == 0, "not empty"); 2847 if (is_vector_ternary_bitwise_op(n)) { 2848 return false; 2849 } 2850 2851 bool is_unary_op = is_vector_unary_bitwise_op(n); 2852 if (is_unary_op) { 2853 assert(collect_unique_inputs(n, inputs) == 1, "not unary"); 2854 return false; // too few inputs 2855 } 2856 2857 bool pack_left_child = true; 2858 bool pack_right_child = true; 2859 2860 bool left_child_LOP = is_vector_bitwise_op(n->in(1)); 2861 bool right_child_LOP = is_vector_bitwise_op(n->in(2)); 2862 2863 int left_child_input_cnt = 0; 2864 int right_child_input_cnt = 0; 2865 2866 bool parent_is_predicated = n->is_predicated_vector(); 2867 bool left_child_predicated = n->in(1)->is_predicated_vector(); 2868 bool right_child_predicated = n->in(2)->is_predicated_vector(); 2869 2870 Node* parent_pred = parent_is_predicated ? n->in(n->req()-1) : nullptr; 2871 Node* left_child_pred = left_child_predicated ? n->in(1)->in(n->in(1)->req()-1) : nullptr; 2872 Node* right_child_pred = right_child_predicated ? n->in(1)->in(n->in(1)->req()-1) : nullptr; 2873 2874 do { 2875 if (pack_left_child && left_child_LOP && 2876 ((!parent_is_predicated && !left_child_predicated) || 2877 ((parent_is_predicated && left_child_predicated && 2878 parent_pred == left_child_pred)))) { 2879 partition.push(n->in(1)); 2880 left_child_input_cnt = collect_unique_inputs(n->in(1), inputs); 2881 } else { 2882 inputs.push(n->in(1)); 2883 left_child_input_cnt = 1; 2884 } 2885 2886 if (pack_right_child && right_child_LOP && 2887 (!right_child_predicated || 2888 (right_child_predicated && parent_is_predicated && 2889 parent_pred == right_child_pred))) { 2890 partition.push(n->in(2)); 2891 right_child_input_cnt = collect_unique_inputs(n->in(2), inputs); 2892 } else { 2893 inputs.push(n->in(2)); 2894 right_child_input_cnt = 1; 2895 } 2896 2897 if (inputs.size() > 3) { 2898 assert(partition.size() > 0, ""); 2899 inputs.clear(); 2900 partition.clear(); 2901 if (left_child_input_cnt > right_child_input_cnt) { 2902 pack_left_child = false; 2903 } else { 2904 pack_right_child = false; 2905 } 2906 } else { 2907 break; 2908 } 2909 } while(true); 2910 2911 if(partition.size()) { 2912 partition.push(n); 2913 } 2914 2915 return (partition.size() == 2 || partition.size() == 3) && 2916 (inputs.size() == 2 || inputs.size() == 3); 2917 } 2918 2919 void Compile::process_logic_cone_root(PhaseIterGVN &igvn, Node *n, VectorSet &visited) { 2920 assert(is_vector_bitwise_op(n), "not a root"); 2921 2922 visited.set(n->_idx); 2923 2924 // 1) Do a DFS walk over the logic cone. 2925 for (uint i = 1; i < n->req(); i++) { 2926 Node* in = n->in(i); 2927 if (!visited.test(in->_idx) && is_vector_bitwise_op(in)) { 2928 process_logic_cone_root(igvn, in, visited); 2929 } 2930 } 2931 2932 // 2) Bottom up traversal: Merge node[s] with 2933 // the parent to form macro logic node. 2934 Unique_Node_List partition; 2935 Unique_Node_List inputs; 2936 if (compute_logic_cone(n, partition, inputs)) { 2937 const TypeVect* vt = n->bottom_type()->is_vect(); 2938 Node* pn = partition.at(partition.size() - 1); 2939 Node* mask = pn->is_predicated_vector() ? pn->in(pn->req()-1) : nullptr; 2940 if (mask == nullptr || 2941 Matcher::match_rule_supported_vector_masked(Op_MacroLogicV, vt->length(), vt->element_basic_type())) { 2942 Node* macro_logic = xform_to_MacroLogicV(igvn, vt, partition, inputs); 2943 VectorNode::trace_new_vector(macro_logic, "MacroLogic"); 2944 igvn.replace_node(n, macro_logic); 2945 } 2946 } 2947 } 2948 2949 void Compile::optimize_logic_cones(PhaseIterGVN &igvn) { 2950 ResourceMark rm; 2951 if (Matcher::match_rule_supported(Op_MacroLogicV)) { 2952 Unique_Node_List list; 2953 collect_logic_cone_roots(list); 2954 2955 while (list.size() > 0) { 2956 Node* n = list.pop(); 2957 const TypeVect* vt = n->bottom_type()->is_vect(); 2958 bool supported = Matcher::match_rule_supported_vector(Op_MacroLogicV, vt->length(), vt->element_basic_type()); 2959 if (supported) { 2960 VectorSet visited(comp_arena()); 2961 process_logic_cone_root(igvn, n, visited); 2962 } 2963 } 2964 } 2965 } 2966 2967 //------------------------------Code_Gen--------------------------------------- 2968 // Given a graph, generate code for it 2969 void Compile::Code_Gen() { 2970 if (failing()) { 2971 return; 2972 } 2973 2974 // Perform instruction selection. You might think we could reclaim Matcher 2975 // memory PDQ, but actually the Matcher is used in generating spill code. 2976 // Internals of the Matcher (including some VectorSets) must remain live 2977 // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage 2978 // set a bit in reclaimed memory. 2979 2980 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine 2981 // nodes. Mapping is only valid at the root of each matched subtree. 2982 NOT_PRODUCT( verify_graph_edges(); ) 2983 2984 Matcher matcher; 2985 _matcher = &matcher; 2986 { 2987 TracePhase tp(_t_matcher); 2988 matcher.match(); 2989 if (failing()) { 2990 return; 2991 } 2992 } 2993 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine 2994 // nodes. Mapping is only valid at the root of each matched subtree. 2995 NOT_PRODUCT( verify_graph_edges(); ) 2996 2997 // If you have too many nodes, or if matching has failed, bail out 2998 check_node_count(0, "out of nodes matching instructions"); 2999 if (failing()) { 3000 return; 3001 } 3002 3003 print_method(PHASE_MATCHING, 2); 3004 3005 // Build a proper-looking CFG 3006 PhaseCFG cfg(node_arena(), root(), matcher); 3007 if (failing()) { 3008 return; 3009 } 3010 _cfg = &cfg; 3011 { 3012 TracePhase tp(_t_scheduler); 3013 bool success = cfg.do_global_code_motion(); 3014 if (!success) { 3015 return; 3016 } 3017 3018 print_method(PHASE_GLOBAL_CODE_MOTION, 2); 3019 NOT_PRODUCT( verify_graph_edges(); ) 3020 cfg.verify(); 3021 if (failing()) { 3022 return; 3023 } 3024 } 3025 3026 PhaseChaitin regalloc(unique(), cfg, matcher, false); 3027 _regalloc = ®alloc; 3028 { 3029 TracePhase tp(_t_registerAllocation); 3030 // Perform register allocation. After Chaitin, use-def chains are 3031 // no longer accurate (at spill code) and so must be ignored. 3032 // Node->LRG->reg mappings are still accurate. 3033 _regalloc->Register_Allocate(); 3034 3035 // Bail out if the allocator builds too many nodes 3036 if (failing()) { 3037 return; 3038 } 3039 3040 print_method(PHASE_REGISTER_ALLOCATION, 2); 3041 } 3042 3043 // Prior to register allocation we kept empty basic blocks in case the 3044 // the allocator needed a place to spill. After register allocation we 3045 // are not adding any new instructions. If any basic block is empty, we 3046 // can now safely remove it. 3047 { 3048 TracePhase tp(_t_blockOrdering); 3049 cfg.remove_empty_blocks(); 3050 if (do_freq_based_layout()) { 3051 PhaseBlockLayout layout(cfg); 3052 } else { 3053 cfg.set_loop_alignment(); 3054 } 3055 cfg.fixup_flow(); 3056 cfg.remove_unreachable_blocks(); 3057 cfg.verify_dominator_tree(); 3058 print_method(PHASE_BLOCK_ORDERING, 3); 3059 } 3060 3061 // Apply peephole optimizations 3062 if( OptoPeephole ) { 3063 TracePhase tp(_t_peephole); 3064 PhasePeephole peep( _regalloc, cfg); 3065 peep.do_transform(); 3066 print_method(PHASE_PEEPHOLE, 3); 3067 } 3068 3069 // Do late expand if CPU requires this. 3070 if (Matcher::require_postalloc_expand) { 3071 TracePhase tp(_t_postalloc_expand); 3072 cfg.postalloc_expand(_regalloc); 3073 print_method(PHASE_POSTALLOC_EXPAND, 3); 3074 } 3075 3076 #ifdef ASSERT 3077 { 3078 CompilationMemoryStatistic::do_test_allocations(); 3079 if (failing()) return; 3080 } 3081 #endif 3082 3083 // Convert Nodes to instruction bits in a buffer 3084 { 3085 TracePhase tp(_t_output); 3086 PhaseOutput output; 3087 output.Output(); 3088 if (failing()) return; 3089 output.install(); 3090 print_method(PHASE_FINAL_CODE, 1); // Compile::_output is not null here 3091 } 3092 3093 // He's dead, Jim. 3094 _cfg = (PhaseCFG*)((intptr_t)0xdeadbeef); 3095 _regalloc = (PhaseChaitin*)((intptr_t)0xdeadbeef); 3096 } 3097 3098 //------------------------------Final_Reshape_Counts--------------------------- 3099 // This class defines counters to help identify when a method 3100 // may/must be executed using hardware with only 24-bit precision. 3101 struct Final_Reshape_Counts : public StackObj { 3102 int _call_count; // count non-inlined 'common' calls 3103 int _float_count; // count float ops requiring 24-bit precision 3104 int _double_count; // count double ops requiring more precision 3105 int _java_call_count; // count non-inlined 'java' calls 3106 int _inner_loop_count; // count loops which need alignment 3107 VectorSet _visited; // Visitation flags 3108 Node_List _tests; // Set of IfNodes & PCTableNodes 3109 3110 Final_Reshape_Counts() : 3111 _call_count(0), _float_count(0), _double_count(0), 3112 _java_call_count(0), _inner_loop_count(0) { } 3113 3114 void inc_call_count () { _call_count ++; } 3115 void inc_float_count () { _float_count ++; } 3116 void inc_double_count() { _double_count++; } 3117 void inc_java_call_count() { _java_call_count++; } 3118 void inc_inner_loop_count() { _inner_loop_count++; } 3119 3120 int get_call_count () const { return _call_count ; } 3121 int get_float_count () const { return _float_count ; } 3122 int get_double_count() const { return _double_count; } 3123 int get_java_call_count() const { return _java_call_count; } 3124 int get_inner_loop_count() const { return _inner_loop_count; } 3125 }; 3126 3127 //------------------------------final_graph_reshaping_impl---------------------- 3128 // Implement items 1-5 from final_graph_reshaping below. 3129 void Compile::final_graph_reshaping_impl(Node *n, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes) { 3130 3131 if ( n->outcnt() == 0 ) return; // dead node 3132 uint nop = n->Opcode(); 3133 3134 // Check for 2-input instruction with "last use" on right input. 3135 // Swap to left input. Implements item (2). 3136 if( n->req() == 3 && // two-input instruction 3137 n->in(1)->outcnt() > 1 && // left use is NOT a last use 3138 (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop 3139 n->in(2)->outcnt() == 1 &&// right use IS a last use 3140 !n->in(2)->is_Con() ) { // right use is not a constant 3141 // Check for commutative opcode 3142 switch( nop ) { 3143 case Op_AddI: case Op_AddF: case Op_AddD: case Op_AddL: 3144 case Op_MaxI: case Op_MaxL: case Op_MaxF: case Op_MaxD: 3145 case Op_MinI: case Op_MinL: case Op_MinF: case Op_MinD: 3146 case Op_MulI: case Op_MulF: case Op_MulD: case Op_MulL: 3147 case Op_AndL: case Op_XorL: case Op_OrL: 3148 case Op_AndI: case Op_XorI: case Op_OrI: { 3149 // Move "last use" input to left by swapping inputs 3150 n->swap_edges(1, 2); 3151 break; 3152 } 3153 default: 3154 break; 3155 } 3156 } 3157 3158 #ifdef ASSERT 3159 if( n->is_Mem() ) { 3160 int alias_idx = get_alias_index(n->as_Mem()->adr_type()); 3161 assert( n->in(0) != nullptr || alias_idx != Compile::AliasIdxRaw || 3162 // oop will be recorded in oop map if load crosses safepoint 3163 (n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() || 3164 LoadNode::is_immutable_value(n->in(MemNode::Address)))), 3165 "raw memory operations should have control edge"); 3166 } 3167 if (n->is_MemBar()) { 3168 MemBarNode* mb = n->as_MemBar(); 3169 if (mb->trailing_store() || mb->trailing_load_store()) { 3170 assert(mb->leading_membar()->trailing_membar() == mb, "bad membar pair"); 3171 Node* mem = BarrierSet::barrier_set()->barrier_set_c2()->step_over_gc_barrier(mb->in(MemBarNode::Precedent)); 3172 assert((mb->trailing_store() && mem->is_Store() && mem->as_Store()->is_release()) || 3173 (mb->trailing_load_store() && mem->is_LoadStore()), "missing mem op"); 3174 } else if (mb->leading()) { 3175 assert(mb->trailing_membar()->leading_membar() == mb, "bad membar pair"); 3176 } 3177 } 3178 #endif 3179 // Count FPU ops and common calls, implements item (3) 3180 bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->final_graph_reshaping(this, n, nop, dead_nodes); 3181 if (!gc_handled) { 3182 final_graph_reshaping_main_switch(n, frc, nop, dead_nodes); 3183 } 3184 3185 // Collect CFG split points 3186 if (n->is_MultiBranch() && !n->is_RangeCheck()) { 3187 frc._tests.push(n); 3188 } 3189 } 3190 3191 void Compile::handle_div_mod_op(Node* n, BasicType bt, bool is_unsigned) { 3192 if (!UseDivMod) { 3193 return; 3194 } 3195 3196 // Check if "a % b" and "a / b" both exist 3197 Node* d = n->find_similar(Op_DivIL(bt, is_unsigned)); 3198 if (d == nullptr) { 3199 return; 3200 } 3201 3202 // Replace them with a fused divmod if supported 3203 if (Matcher::has_match_rule(Op_DivModIL(bt, is_unsigned))) { 3204 DivModNode* divmod = DivModNode::make(n, bt, is_unsigned); 3205 // If the divisor input for a Div (or Mod etc.) is not zero, then the control input of the Div is set to zero. 3206 // It could be that the divisor input is found not zero because its type is narrowed down by a CastII in the 3207 // subgraph for that input. Range check CastIIs are removed during final graph reshape. To preserve the dependency 3208 // carried by a CastII, precedence edges are added to the Div node. We need to transfer the precedence edges to the 3209 // DivMod node so the dependency is not lost. 3210 divmod->add_prec_from(n); 3211 divmod->add_prec_from(d); 3212 d->subsume_by(divmod->div_proj(), this); 3213 n->subsume_by(divmod->mod_proj(), this); 3214 } else { 3215 // Replace "a % b" with "a - ((a / b) * b)" 3216 Node* mult = MulNode::make(d, d->in(2), bt); 3217 Node* sub = SubNode::make(d->in(1), mult, bt); 3218 n->subsume_by(sub, this); 3219 } 3220 } 3221 3222 void Compile::final_graph_reshaping_main_switch(Node* n, Final_Reshape_Counts& frc, uint nop, Unique_Node_List& dead_nodes) { 3223 switch( nop ) { 3224 // Count all float operations that may use FPU 3225 case Op_AddF: 3226 case Op_SubF: 3227 case Op_MulF: 3228 case Op_DivF: 3229 case Op_NegF: 3230 case Op_ModF: 3231 case Op_ConvI2F: 3232 case Op_ConF: 3233 case Op_CmpF: 3234 case Op_CmpF3: 3235 case Op_StoreF: 3236 case Op_LoadF: 3237 // case Op_ConvL2F: // longs are split into 32-bit halves 3238 frc.inc_float_count(); 3239 break; 3240 3241 case Op_ConvF2D: 3242 case Op_ConvD2F: 3243 frc.inc_float_count(); 3244 frc.inc_double_count(); 3245 break; 3246 3247 // Count all double operations that may use FPU 3248 case Op_AddD: 3249 case Op_SubD: 3250 case Op_MulD: 3251 case Op_DivD: 3252 case Op_NegD: 3253 case Op_ModD: 3254 case Op_ConvI2D: 3255 case Op_ConvD2I: 3256 // case Op_ConvL2D: // handled by leaf call 3257 // case Op_ConvD2L: // handled by leaf call 3258 case Op_ConD: 3259 case Op_CmpD: 3260 case Op_CmpD3: 3261 case Op_StoreD: 3262 case Op_LoadD: 3263 case Op_LoadD_unaligned: 3264 frc.inc_double_count(); 3265 break; 3266 case Op_Opaque1: // Remove Opaque Nodes before matching 3267 n->subsume_by(n->in(1), this); 3268 break; 3269 case Op_CallStaticJava: 3270 case Op_CallJava: 3271 case Op_CallDynamicJava: 3272 frc.inc_java_call_count(); // Count java call site; 3273 case Op_CallRuntime: 3274 case Op_CallLeaf: 3275 case Op_CallLeafVector: 3276 case Op_CallLeafNoFP: { 3277 assert (n->is_Call(), ""); 3278 CallNode *call = n->as_Call(); 3279 // Count call sites where the FP mode bit would have to be flipped. 3280 // Do not count uncommon runtime calls: 3281 // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking, 3282 // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ... 3283 if (!call->is_CallStaticJava() || !call->as_CallStaticJava()->_name) { 3284 frc.inc_call_count(); // Count the call site 3285 } else { // See if uncommon argument is shared 3286 Node *n = call->in(TypeFunc::Parms); 3287 int nop = n->Opcode(); 3288 // Clone shared simple arguments to uncommon calls, item (1). 3289 if (n->outcnt() > 1 && 3290 !n->is_Proj() && 3291 nop != Op_CreateEx && 3292 nop != Op_CheckCastPP && 3293 nop != Op_DecodeN && 3294 nop != Op_DecodeNKlass && 3295 !n->is_Mem() && 3296 !n->is_Phi()) { 3297 Node *x = n->clone(); 3298 call->set_req(TypeFunc::Parms, x); 3299 } 3300 } 3301 break; 3302 } 3303 case Op_StoreB: 3304 case Op_StoreC: 3305 case Op_StoreI: 3306 case Op_StoreL: 3307 case Op_CompareAndSwapB: 3308 case Op_CompareAndSwapS: 3309 case Op_CompareAndSwapI: 3310 case Op_CompareAndSwapL: 3311 case Op_CompareAndSwapP: 3312 case Op_CompareAndSwapN: 3313 case Op_WeakCompareAndSwapB: 3314 case Op_WeakCompareAndSwapS: 3315 case Op_WeakCompareAndSwapI: 3316 case Op_WeakCompareAndSwapL: 3317 case Op_WeakCompareAndSwapP: 3318 case Op_WeakCompareAndSwapN: 3319 case Op_CompareAndExchangeB: 3320 case Op_CompareAndExchangeS: 3321 case Op_CompareAndExchangeI: 3322 case Op_CompareAndExchangeL: 3323 case Op_CompareAndExchangeP: 3324 case Op_CompareAndExchangeN: 3325 case Op_GetAndAddS: 3326 case Op_GetAndAddB: 3327 case Op_GetAndAddI: 3328 case Op_GetAndAddL: 3329 case Op_GetAndSetS: 3330 case Op_GetAndSetB: 3331 case Op_GetAndSetI: 3332 case Op_GetAndSetL: 3333 case Op_GetAndSetP: 3334 case Op_GetAndSetN: 3335 case Op_StoreP: 3336 case Op_StoreN: 3337 case Op_StoreNKlass: 3338 case Op_LoadB: 3339 case Op_LoadUB: 3340 case Op_LoadUS: 3341 case Op_LoadI: 3342 case Op_LoadKlass: 3343 case Op_LoadNKlass: 3344 case Op_LoadL: 3345 case Op_LoadL_unaligned: 3346 case Op_LoadP: 3347 case Op_LoadN: 3348 case Op_LoadRange: 3349 case Op_LoadS: 3350 break; 3351 3352 case Op_AddP: { // Assert sane base pointers 3353 Node *addp = n->in(AddPNode::Address); 3354 assert( !addp->is_AddP() || 3355 addp->in(AddPNode::Base)->is_top() || // Top OK for allocation 3356 addp->in(AddPNode::Base) == n->in(AddPNode::Base), 3357 "Base pointers must match (addp %u)", addp->_idx ); 3358 #ifdef _LP64 3359 if ((UseCompressedOops || UseCompressedClassPointers) && 3360 addp->Opcode() == Op_ConP && 3361 addp == n->in(AddPNode::Base) && 3362 n->in(AddPNode::Offset)->is_Con()) { 3363 // If the transformation of ConP to ConN+DecodeN is beneficial depends 3364 // on the platform and on the compressed oops mode. 3365 // Use addressing with narrow klass to load with offset on x86. 3366 // Some platforms can use the constant pool to load ConP. 3367 // Do this transformation here since IGVN will convert ConN back to ConP. 3368 const Type* t = addp->bottom_type(); 3369 bool is_oop = t->isa_oopptr() != nullptr; 3370 bool is_klass = t->isa_klassptr() != nullptr; 3371 3372 if ((is_oop && UseCompressedOops && Matcher::const_oop_prefer_decode() ) || 3373 (is_klass && UseCompressedClassPointers && Matcher::const_klass_prefer_decode() && 3374 t->isa_klassptr()->exact_klass()->is_in_encoding_range())) { 3375 Node* nn = nullptr; 3376 3377 int op = is_oop ? Op_ConN : Op_ConNKlass; 3378 3379 // Look for existing ConN node of the same exact type. 3380 Node* r = root(); 3381 uint cnt = r->outcnt(); 3382 for (uint i = 0; i < cnt; i++) { 3383 Node* m = r->raw_out(i); 3384 if (m!= nullptr && m->Opcode() == op && 3385 m->bottom_type()->make_ptr() == t) { 3386 nn = m; 3387 break; 3388 } 3389 } 3390 if (nn != nullptr) { 3391 // Decode a narrow oop to match address 3392 // [R12 + narrow_oop_reg<<3 + offset] 3393 if (is_oop) { 3394 nn = new DecodeNNode(nn, t); 3395 } else { 3396 nn = new DecodeNKlassNode(nn, t); 3397 } 3398 // Check for succeeding AddP which uses the same Base. 3399 // Otherwise we will run into the assertion above when visiting that guy. 3400 for (uint i = 0; i < n->outcnt(); ++i) { 3401 Node *out_i = n->raw_out(i); 3402 if (out_i && out_i->is_AddP() && out_i->in(AddPNode::Base) == addp) { 3403 out_i->set_req(AddPNode::Base, nn); 3404 #ifdef ASSERT 3405 for (uint j = 0; j < out_i->outcnt(); ++j) { 3406 Node *out_j = out_i->raw_out(j); 3407 assert(out_j == nullptr || !out_j->is_AddP() || out_j->in(AddPNode::Base) != addp, 3408 "more than 2 AddP nodes in a chain (out_j %u)", out_j->_idx); 3409 } 3410 #endif 3411 } 3412 } 3413 n->set_req(AddPNode::Base, nn); 3414 n->set_req(AddPNode::Address, nn); 3415 if (addp->outcnt() == 0) { 3416 addp->disconnect_inputs(this); 3417 } 3418 } 3419 } 3420 } 3421 #endif 3422 break; 3423 } 3424 3425 case Op_CastPP: { 3426 // Remove CastPP nodes to gain more freedom during scheduling but 3427 // keep the dependency they encode as control or precedence edges 3428 // (if control is set already) on memory operations. Some CastPP 3429 // nodes don't have a control (don't carry a dependency): skip 3430 // those. 3431 if (n->in(0) != nullptr) { 3432 ResourceMark rm; 3433 Unique_Node_List wq; 3434 wq.push(n); 3435 for (uint next = 0; next < wq.size(); ++next) { 3436 Node *m = wq.at(next); 3437 for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) { 3438 Node* use = m->fast_out(i); 3439 if (use->is_Mem() || use->is_EncodeNarrowPtr()) { 3440 use->ensure_control_or_add_prec(n->in(0)); 3441 } else { 3442 switch(use->Opcode()) { 3443 case Op_AddP: 3444 case Op_DecodeN: 3445 case Op_DecodeNKlass: 3446 case Op_CheckCastPP: 3447 case Op_CastPP: 3448 wq.push(use); 3449 break; 3450 } 3451 } 3452 } 3453 } 3454 } 3455 const bool is_LP64 = LP64_ONLY(true) NOT_LP64(false); 3456 if (is_LP64 && n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) { 3457 Node* in1 = n->in(1); 3458 const Type* t = n->bottom_type(); 3459 Node* new_in1 = in1->clone(); 3460 new_in1->as_DecodeN()->set_type(t); 3461 3462 if (!Matcher::narrow_oop_use_complex_address()) { 3463 // 3464 // x86, ARM and friends can handle 2 adds in addressing mode 3465 // and Matcher can fold a DecodeN node into address by using 3466 // a narrow oop directly and do implicit null check in address: 3467 // 3468 // [R12 + narrow_oop_reg<<3 + offset] 3469 // NullCheck narrow_oop_reg 3470 // 3471 // On other platforms (Sparc) we have to keep new DecodeN node and 3472 // use it to do implicit null check in address: 3473 // 3474 // decode_not_null narrow_oop_reg, base_reg 3475 // [base_reg + offset] 3476 // NullCheck base_reg 3477 // 3478 // Pin the new DecodeN node to non-null path on these platform (Sparc) 3479 // to keep the information to which null check the new DecodeN node 3480 // corresponds to use it as value in implicit_null_check(). 3481 // 3482 new_in1->set_req(0, n->in(0)); 3483 } 3484 3485 n->subsume_by(new_in1, this); 3486 if (in1->outcnt() == 0) { 3487 in1->disconnect_inputs(this); 3488 } 3489 } else { 3490 n->subsume_by(n->in(1), this); 3491 if (n->outcnt() == 0) { 3492 n->disconnect_inputs(this); 3493 } 3494 } 3495 break; 3496 } 3497 case Op_CastII: { 3498 n->as_CastII()->remove_range_check_cast(this); 3499 break; 3500 } 3501 #ifdef _LP64 3502 case Op_CmpP: 3503 // Do this transformation here to preserve CmpPNode::sub() and 3504 // other TypePtr related Ideal optimizations (for example, ptr nullness). 3505 if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) { 3506 Node* in1 = n->in(1); 3507 Node* in2 = n->in(2); 3508 if (!in1->is_DecodeNarrowPtr()) { 3509 in2 = in1; 3510 in1 = n->in(2); 3511 } 3512 assert(in1->is_DecodeNarrowPtr(), "sanity"); 3513 3514 Node* new_in2 = nullptr; 3515 if (in2->is_DecodeNarrowPtr()) { 3516 assert(in2->Opcode() == in1->Opcode(), "must be same node type"); 3517 new_in2 = in2->in(1); 3518 } else if (in2->Opcode() == Op_ConP) { 3519 const Type* t = in2->bottom_type(); 3520 if (t == TypePtr::NULL_PTR) { 3521 assert(in1->is_DecodeN(), "compare klass to null?"); 3522 // Don't convert CmpP null check into CmpN if compressed 3523 // oops implicit null check is not generated. 3524 // This will allow to generate normal oop implicit null check. 3525 if (Matcher::gen_narrow_oop_implicit_null_checks()) 3526 new_in2 = ConNode::make(TypeNarrowOop::NULL_PTR); 3527 // 3528 // This transformation together with CastPP transformation above 3529 // will generated code for implicit null checks for compressed oops. 3530 // 3531 // The original code after Optimize() 3532 // 3533 // LoadN memory, narrow_oop_reg 3534 // decode narrow_oop_reg, base_reg 3535 // CmpP base_reg, nullptr 3536 // CastPP base_reg // NotNull 3537 // Load [base_reg + offset], val_reg 3538 // 3539 // after these transformations will be 3540 // 3541 // LoadN memory, narrow_oop_reg 3542 // CmpN narrow_oop_reg, nullptr 3543 // decode_not_null narrow_oop_reg, base_reg 3544 // Load [base_reg + offset], val_reg 3545 // 3546 // and the uncommon path (== nullptr) will use narrow_oop_reg directly 3547 // since narrow oops can be used in debug info now (see the code in 3548 // final_graph_reshaping_walk()). 3549 // 3550 // At the end the code will be matched to 3551 // on x86: 3552 // 3553 // Load_narrow_oop memory, narrow_oop_reg 3554 // Load [R12 + narrow_oop_reg<<3 + offset], val_reg 3555 // NullCheck narrow_oop_reg 3556 // 3557 // and on sparc: 3558 // 3559 // Load_narrow_oop memory, narrow_oop_reg 3560 // decode_not_null narrow_oop_reg, base_reg 3561 // Load [base_reg + offset], val_reg 3562 // NullCheck base_reg 3563 // 3564 } else if (t->isa_oopptr()) { 3565 new_in2 = ConNode::make(t->make_narrowoop()); 3566 } else if (t->isa_klassptr()) { 3567 new_in2 = ConNode::make(t->make_narrowklass()); 3568 } 3569 } 3570 if (new_in2 != nullptr) { 3571 Node* cmpN = new CmpNNode(in1->in(1), new_in2); 3572 n->subsume_by(cmpN, this); 3573 if (in1->outcnt() == 0) { 3574 in1->disconnect_inputs(this); 3575 } 3576 if (in2->outcnt() == 0) { 3577 in2->disconnect_inputs(this); 3578 } 3579 } 3580 } 3581 break; 3582 3583 case Op_DecodeN: 3584 case Op_DecodeNKlass: 3585 assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out"); 3586 // DecodeN could be pinned when it can't be fold into 3587 // an address expression, see the code for Op_CastPP above. 3588 assert(n->in(0) == nullptr || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control"); 3589 break; 3590 3591 case Op_EncodeP: 3592 case Op_EncodePKlass: { 3593 Node* in1 = n->in(1); 3594 if (in1->is_DecodeNarrowPtr()) { 3595 n->subsume_by(in1->in(1), this); 3596 } else if (in1->Opcode() == Op_ConP) { 3597 const Type* t = in1->bottom_type(); 3598 if (t == TypePtr::NULL_PTR) { 3599 assert(t->isa_oopptr(), "null klass?"); 3600 n->subsume_by(ConNode::make(TypeNarrowOop::NULL_PTR), this); 3601 } else if (t->isa_oopptr()) { 3602 n->subsume_by(ConNode::make(t->make_narrowoop()), this); 3603 } else if (t->isa_klassptr()) { 3604 n->subsume_by(ConNode::make(t->make_narrowklass()), this); 3605 } 3606 } 3607 if (in1->outcnt() == 0) { 3608 in1->disconnect_inputs(this); 3609 } 3610 break; 3611 } 3612 3613 case Op_Proj: { 3614 if (OptimizeStringConcat || IncrementalInline) { 3615 ProjNode* proj = n->as_Proj(); 3616 if (proj->_is_io_use) { 3617 assert(proj->_con == TypeFunc::I_O || proj->_con == TypeFunc::Memory, ""); 3618 // Separate projections were used for the exception path which 3619 // are normally removed by a late inline. If it wasn't inlined 3620 // then they will hang around and should just be replaced with 3621 // the original one. Merge them. 3622 Node* non_io_proj = proj->in(0)->as_Multi()->proj_out_or_null(proj->_con, false /*is_io_use*/); 3623 if (non_io_proj != nullptr) { 3624 proj->subsume_by(non_io_proj , this); 3625 } 3626 } 3627 } 3628 break; 3629 } 3630 3631 case Op_Phi: 3632 if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) { 3633 // The EncodeP optimization may create Phi with the same edges 3634 // for all paths. It is not handled well by Register Allocator. 3635 Node* unique_in = n->in(1); 3636 assert(unique_in != nullptr, ""); 3637 uint cnt = n->req(); 3638 for (uint i = 2; i < cnt; i++) { 3639 Node* m = n->in(i); 3640 assert(m != nullptr, ""); 3641 if (unique_in != m) 3642 unique_in = nullptr; 3643 } 3644 if (unique_in != nullptr) { 3645 n->subsume_by(unique_in, this); 3646 } 3647 } 3648 break; 3649 3650 #endif 3651 3652 case Op_ModI: 3653 handle_div_mod_op(n, T_INT, false); 3654 break; 3655 3656 case Op_ModL: 3657 handle_div_mod_op(n, T_LONG, false); 3658 break; 3659 3660 case Op_UModI: 3661 handle_div_mod_op(n, T_INT, true); 3662 break; 3663 3664 case Op_UModL: 3665 handle_div_mod_op(n, T_LONG, true); 3666 break; 3667 3668 case Op_LoadVector: 3669 case Op_StoreVector: 3670 #ifdef ASSERT 3671 // Add VerifyVectorAlignment node between adr and load / store. 3672 if (VerifyAlignVector && Matcher::has_match_rule(Op_VerifyVectorAlignment)) { 3673 bool must_verify_alignment = n->is_LoadVector() ? n->as_LoadVector()->must_verify_alignment() : 3674 n->as_StoreVector()->must_verify_alignment(); 3675 if (must_verify_alignment) { 3676 jlong vector_width = n->is_LoadVector() ? n->as_LoadVector()->memory_size() : 3677 n->as_StoreVector()->memory_size(); 3678 // The memory access should be aligned to the vector width in bytes. 3679 // However, the underlying array is possibly less well aligned, but at least 3680 // to ObjectAlignmentInBytes. Hence, even if multiple arrays are accessed in 3681 // a loop we can expect at least the following alignment: 3682 jlong guaranteed_alignment = MIN2(vector_width, (jlong)ObjectAlignmentInBytes); 3683 assert(2 <= guaranteed_alignment && guaranteed_alignment <= 64, "alignment must be in range"); 3684 assert(is_power_of_2(guaranteed_alignment), "alignment must be power of 2"); 3685 // Create mask from alignment. e.g. 0b1000 -> 0b0111 3686 jlong mask = guaranteed_alignment - 1; 3687 Node* mask_con = ConLNode::make(mask); 3688 VerifyVectorAlignmentNode* va = new VerifyVectorAlignmentNode(n->in(MemNode::Address), mask_con); 3689 n->set_req(MemNode::Address, va); 3690 } 3691 } 3692 #endif 3693 break; 3694 3695 case Op_LoadVectorGather: 3696 case Op_StoreVectorScatter: 3697 case Op_LoadVectorGatherMasked: 3698 case Op_StoreVectorScatterMasked: 3699 case Op_VectorCmpMasked: 3700 case Op_VectorMaskGen: 3701 case Op_LoadVectorMasked: 3702 case Op_StoreVectorMasked: 3703 break; 3704 3705 case Op_AddReductionVI: 3706 case Op_AddReductionVL: 3707 case Op_AddReductionVF: 3708 case Op_AddReductionVD: 3709 case Op_MulReductionVI: 3710 case Op_MulReductionVL: 3711 case Op_MulReductionVF: 3712 case Op_MulReductionVD: 3713 case Op_MinReductionV: 3714 case Op_MaxReductionV: 3715 case Op_AndReductionV: 3716 case Op_OrReductionV: 3717 case Op_XorReductionV: 3718 break; 3719 3720 case Op_PackB: 3721 case Op_PackS: 3722 case Op_PackI: 3723 case Op_PackF: 3724 case Op_PackL: 3725 case Op_PackD: 3726 if (n->req()-1 > 2) { 3727 // Replace many operand PackNodes with a binary tree for matching 3728 PackNode* p = (PackNode*) n; 3729 Node* btp = p->binary_tree_pack(1, n->req()); 3730 n->subsume_by(btp, this); 3731 } 3732 break; 3733 case Op_Loop: 3734 assert(!n->as_Loop()->is_loop_nest_inner_loop() || _loop_opts_cnt == 0, "should have been turned into a counted loop"); 3735 case Op_CountedLoop: 3736 case Op_LongCountedLoop: 3737 case Op_OuterStripMinedLoop: 3738 if (n->as_Loop()->is_inner_loop()) { 3739 frc.inc_inner_loop_count(); 3740 } 3741 n->as_Loop()->verify_strip_mined(0); 3742 break; 3743 case Op_LShiftI: 3744 case Op_RShiftI: 3745 case Op_URShiftI: 3746 case Op_LShiftL: 3747 case Op_RShiftL: 3748 case Op_URShiftL: 3749 if (Matcher::need_masked_shift_count) { 3750 // The cpu's shift instructions don't restrict the count to the 3751 // lower 5/6 bits. We need to do the masking ourselves. 3752 Node* in2 = n->in(2); 3753 juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1); 3754 const TypeInt* t = in2->find_int_type(); 3755 if (t != nullptr && t->is_con()) { 3756 juint shift = t->get_con(); 3757 if (shift > mask) { // Unsigned cmp 3758 n->set_req(2, ConNode::make(TypeInt::make(shift & mask))); 3759 } 3760 } else { 3761 if (t == nullptr || t->_lo < 0 || t->_hi > (int)mask) { 3762 Node* shift = new AndINode(in2, ConNode::make(TypeInt::make(mask))); 3763 n->set_req(2, shift); 3764 } 3765 } 3766 if (in2->outcnt() == 0) { // Remove dead node 3767 in2->disconnect_inputs(this); 3768 } 3769 } 3770 break; 3771 case Op_MemBarStoreStore: 3772 case Op_MemBarRelease: 3773 // Break the link with AllocateNode: it is no longer useful and 3774 // confuses register allocation. 3775 if (n->req() > MemBarNode::Precedent) { 3776 n->set_req(MemBarNode::Precedent, top()); 3777 } 3778 break; 3779 case Op_MemBarAcquire: { 3780 if (n->as_MemBar()->trailing_load() && n->req() > MemBarNode::Precedent) { 3781 // At parse time, the trailing MemBarAcquire for a volatile load 3782 // is created with an edge to the load. After optimizations, 3783 // that input may be a chain of Phis. If those phis have no 3784 // other use, then the MemBarAcquire keeps them alive and 3785 // register allocation can be confused. 3786 dead_nodes.push(n->in(MemBarNode::Precedent)); 3787 n->set_req(MemBarNode::Precedent, top()); 3788 } 3789 break; 3790 } 3791 case Op_Blackhole: 3792 break; 3793 case Op_RangeCheck: { 3794 RangeCheckNode* rc = n->as_RangeCheck(); 3795 Node* iff = new IfNode(rc->in(0), rc->in(1), rc->_prob, rc->_fcnt); 3796 n->subsume_by(iff, this); 3797 frc._tests.push(iff); 3798 break; 3799 } 3800 case Op_ConvI2L: { 3801 if (!Matcher::convi2l_type_required) { 3802 // Code generation on some platforms doesn't need accurate 3803 // ConvI2L types. Widening the type can help remove redundant 3804 // address computations. 3805 n->as_Type()->set_type(TypeLong::INT); 3806 ResourceMark rm; 3807 Unique_Node_List wq; 3808 wq.push(n); 3809 for (uint next = 0; next < wq.size(); next++) { 3810 Node *m = wq.at(next); 3811 3812 for(;;) { 3813 // Loop over all nodes with identical inputs edges as m 3814 Node* k = m->find_similar(m->Opcode()); 3815 if (k == nullptr) { 3816 break; 3817 } 3818 // Push their uses so we get a chance to remove node made 3819 // redundant 3820 for (DUIterator_Fast imax, i = k->fast_outs(imax); i < imax; i++) { 3821 Node* u = k->fast_out(i); 3822 if (u->Opcode() == Op_LShiftL || 3823 u->Opcode() == Op_AddL || 3824 u->Opcode() == Op_SubL || 3825 u->Opcode() == Op_AddP) { 3826 wq.push(u); 3827 } 3828 } 3829 // Replace all nodes with identical edges as m with m 3830 k->subsume_by(m, this); 3831 } 3832 } 3833 } 3834 break; 3835 } 3836 case Op_CmpUL: { 3837 if (!Matcher::has_match_rule(Op_CmpUL)) { 3838 // No support for unsigned long comparisons 3839 ConINode* sign_pos = new ConINode(TypeInt::make(BitsPerLong - 1)); 3840 Node* sign_bit_mask = new RShiftLNode(n->in(1), sign_pos); 3841 Node* orl = new OrLNode(n->in(1), sign_bit_mask); 3842 ConLNode* remove_sign_mask = new ConLNode(TypeLong::make(max_jlong)); 3843 Node* andl = new AndLNode(orl, remove_sign_mask); 3844 Node* cmp = new CmpLNode(andl, n->in(2)); 3845 n->subsume_by(cmp, this); 3846 } 3847 break; 3848 } 3849 #ifdef ASSERT 3850 case Op_ConNKlass: { 3851 const TypePtr* tp = n->as_Type()->type()->make_ptr(); 3852 ciKlass* klass = tp->is_klassptr()->exact_klass(); 3853 assert(klass->is_in_encoding_range(), "klass cannot be compressed"); 3854 break; 3855 } 3856 #endif 3857 default: 3858 assert(!n->is_Call(), ""); 3859 assert(!n->is_Mem(), ""); 3860 assert(nop != Op_ProfileBoolean, "should be eliminated during IGVN"); 3861 break; 3862 } 3863 } 3864 3865 //------------------------------final_graph_reshaping_walk--------------------- 3866 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(), 3867 // requires that the walk visits a node's inputs before visiting the node. 3868 void Compile::final_graph_reshaping_walk(Node_Stack& nstack, Node* root, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes) { 3869 Unique_Node_List sfpt; 3870 3871 frc._visited.set(root->_idx); // first, mark node as visited 3872 uint cnt = root->req(); 3873 Node *n = root; 3874 uint i = 0; 3875 while (true) { 3876 if (i < cnt) { 3877 // Place all non-visited non-null inputs onto stack 3878 Node* m = n->in(i); 3879 ++i; 3880 if (m != nullptr && !frc._visited.test_set(m->_idx)) { 3881 if (m->is_SafePoint() && m->as_SafePoint()->jvms() != nullptr) { 3882 // compute worst case interpreter size in case of a deoptimization 3883 update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size()); 3884 3885 sfpt.push(m); 3886 } 3887 cnt = m->req(); 3888 nstack.push(n, i); // put on stack parent and next input's index 3889 n = m; 3890 i = 0; 3891 } 3892 } else { 3893 // Now do post-visit work 3894 final_graph_reshaping_impl(n, frc, dead_nodes); 3895 if (nstack.is_empty()) 3896 break; // finished 3897 n = nstack.node(); // Get node from stack 3898 cnt = n->req(); 3899 i = nstack.index(); 3900 nstack.pop(); // Shift to the next node on stack 3901 } 3902 } 3903 3904 // Skip next transformation if compressed oops are not used. 3905 if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) || 3906 (!UseCompressedOops && !UseCompressedClassPointers)) 3907 return; 3908 3909 // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges. 3910 // It could be done for an uncommon traps or any safepoints/calls 3911 // if the DecodeN/DecodeNKlass node is referenced only in a debug info. 3912 while (sfpt.size() > 0) { 3913 n = sfpt.pop(); 3914 JVMState *jvms = n->as_SafePoint()->jvms(); 3915 assert(jvms != nullptr, "sanity"); 3916 int start = jvms->debug_start(); 3917 int end = n->req(); 3918 bool is_uncommon = (n->is_CallStaticJava() && 3919 n->as_CallStaticJava()->uncommon_trap_request() != 0); 3920 for (int j = start; j < end; j++) { 3921 Node* in = n->in(j); 3922 if (in->is_DecodeNarrowPtr()) { 3923 bool safe_to_skip = true; 3924 if (!is_uncommon ) { 3925 // Is it safe to skip? 3926 for (uint i = 0; i < in->outcnt(); i++) { 3927 Node* u = in->raw_out(i); 3928 if (!u->is_SafePoint() || 3929 (u->is_Call() && u->as_Call()->has_non_debug_use(n))) { 3930 safe_to_skip = false; 3931 } 3932 } 3933 } 3934 if (safe_to_skip) { 3935 n->set_req(j, in->in(1)); 3936 } 3937 if (in->outcnt() == 0) { 3938 in->disconnect_inputs(this); 3939 } 3940 } 3941 } 3942 } 3943 } 3944 3945 //------------------------------final_graph_reshaping-------------------------- 3946 // Final Graph Reshaping. 3947 // 3948 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late 3949 // and not commoned up and forced early. Must come after regular 3950 // optimizations to avoid GVN undoing the cloning. Clone constant 3951 // inputs to Loop Phis; these will be split by the allocator anyways. 3952 // Remove Opaque nodes. 3953 // (2) Move last-uses by commutative operations to the left input to encourage 3954 // Intel update-in-place two-address operations and better register usage 3955 // on RISCs. Must come after regular optimizations to avoid GVN Ideal 3956 // calls canonicalizing them back. 3957 // (3) Count the number of double-precision FP ops, single-precision FP ops 3958 // and call sites. On Intel, we can get correct rounding either by 3959 // forcing singles to memory (requires extra stores and loads after each 3960 // FP bytecode) or we can set a rounding mode bit (requires setting and 3961 // clearing the mode bit around call sites). The mode bit is only used 3962 // if the relative frequency of single FP ops to calls is low enough. 3963 // This is a key transform for SPEC mpeg_audio. 3964 // (4) Detect infinite loops; blobs of code reachable from above but not 3965 // below. Several of the Code_Gen algorithms fail on such code shapes, 3966 // so we simply bail out. Happens a lot in ZKM.jar, but also happens 3967 // from time to time in other codes (such as -Xcomp finalizer loops, etc). 3968 // Detection is by looking for IfNodes where only 1 projection is 3969 // reachable from below or CatchNodes missing some targets. 3970 // (5) Assert for insane oop offsets in debug mode. 3971 3972 bool Compile::final_graph_reshaping() { 3973 // an infinite loop may have been eliminated by the optimizer, 3974 // in which case the graph will be empty. 3975 if (root()->req() == 1) { 3976 // Do not compile method that is only a trivial infinite loop, 3977 // since the content of the loop may have been eliminated. 3978 record_method_not_compilable("trivial infinite loop"); 3979 return true; 3980 } 3981 3982 // Expensive nodes have their control input set to prevent the GVN 3983 // from freely commoning them. There's no GVN beyond this point so 3984 // no need to keep the control input. We want the expensive nodes to 3985 // be freely moved to the least frequent code path by gcm. 3986 assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?"); 3987 for (int i = 0; i < expensive_count(); i++) { 3988 _expensive_nodes.at(i)->set_req(0, nullptr); 3989 } 3990 3991 Final_Reshape_Counts frc; 3992 3993 // Visit everybody reachable! 3994 // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc 3995 Node_Stack nstack(live_nodes() >> 1); 3996 Unique_Node_List dead_nodes; 3997 final_graph_reshaping_walk(nstack, root(), frc, dead_nodes); 3998 3999 // Check for unreachable (from below) code (i.e., infinite loops). 4000 for( uint i = 0; i < frc._tests.size(); i++ ) { 4001 MultiBranchNode *n = frc._tests[i]->as_MultiBranch(); 4002 // Get number of CFG targets. 4003 // Note that PCTables include exception targets after calls. 4004 uint required_outcnt = n->required_outcnt(); 4005 if (n->outcnt() != required_outcnt) { 4006 // Check for a few special cases. Rethrow Nodes never take the 4007 // 'fall-thru' path, so expected kids is 1 less. 4008 if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) { 4009 if (n->in(0)->in(0)->is_Call()) { 4010 CallNode* call = n->in(0)->in(0)->as_Call(); 4011 if (call->entry_point() == OptoRuntime::rethrow_stub()) { 4012 required_outcnt--; // Rethrow always has 1 less kid 4013 } else if (call->req() > TypeFunc::Parms && 4014 call->is_CallDynamicJava()) { 4015 // Check for null receiver. In such case, the optimizer has 4016 // detected that the virtual call will always result in a null 4017 // pointer exception. The fall-through projection of this CatchNode 4018 // will not be populated. 4019 Node* arg0 = call->in(TypeFunc::Parms); 4020 if (arg0->is_Type() && 4021 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) { 4022 required_outcnt--; 4023 } 4024 } else if (call->entry_point() == OptoRuntime::new_array_Java() || 4025 call->entry_point() == OptoRuntime::new_array_nozero_Java()) { 4026 // Check for illegal array length. In such case, the optimizer has 4027 // detected that the allocation attempt will always result in an 4028 // exception. There is no fall-through projection of this CatchNode . 4029 assert(call->is_CallStaticJava(), "static call expected"); 4030 assert(call->req() == call->jvms()->endoff() + 1, "missing extra input"); 4031 uint valid_length_test_input = call->req() - 1; 4032 Node* valid_length_test = call->in(valid_length_test_input); 4033 call->del_req(valid_length_test_input); 4034 if (valid_length_test->find_int_con(1) == 0) { 4035 required_outcnt--; 4036 } 4037 dead_nodes.push(valid_length_test); 4038 assert(n->outcnt() == required_outcnt, "malformed control flow"); 4039 continue; 4040 } 4041 } 4042 } 4043 4044 // Recheck with a better notion of 'required_outcnt' 4045 if (n->outcnt() != required_outcnt) { 4046 record_method_not_compilable("malformed control flow"); 4047 return true; // Not all targets reachable! 4048 } 4049 } else if (n->is_PCTable() && n->in(0) && n->in(0)->in(0) && n->in(0)->in(0)->is_Call()) { 4050 CallNode* call = n->in(0)->in(0)->as_Call(); 4051 if (call->entry_point() == OptoRuntime::new_array_Java() || 4052 call->entry_point() == OptoRuntime::new_array_nozero_Java()) { 4053 assert(call->is_CallStaticJava(), "static call expected"); 4054 assert(call->req() == call->jvms()->endoff() + 1, "missing extra input"); 4055 uint valid_length_test_input = call->req() - 1; 4056 dead_nodes.push(call->in(valid_length_test_input)); 4057 call->del_req(valid_length_test_input); // valid length test useless now 4058 } 4059 } 4060 // Check that I actually visited all kids. Unreached kids 4061 // must be infinite loops. 4062 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) 4063 if (!frc._visited.test(n->fast_out(j)->_idx)) { 4064 record_method_not_compilable("infinite loop"); 4065 return true; // Found unvisited kid; must be unreach 4066 } 4067 4068 // Here so verification code in final_graph_reshaping_walk() 4069 // always see an OuterStripMinedLoopEnd 4070 if (n->is_OuterStripMinedLoopEnd() || n->is_LongCountedLoopEnd()) { 4071 IfNode* init_iff = n->as_If(); 4072 Node* iff = new IfNode(init_iff->in(0), init_iff->in(1), init_iff->_prob, init_iff->_fcnt); 4073 n->subsume_by(iff, this); 4074 } 4075 } 4076 4077 while (dead_nodes.size() > 0) { 4078 Node* m = dead_nodes.pop(); 4079 if (m->outcnt() == 0 && m != top()) { 4080 for (uint j = 0; j < m->req(); j++) { 4081 Node* in = m->in(j); 4082 if (in != nullptr) { 4083 dead_nodes.push(in); 4084 } 4085 } 4086 m->disconnect_inputs(this); 4087 } 4088 } 4089 4090 #ifdef IA32 4091 // If original bytecodes contained a mixture of floats and doubles 4092 // check if the optimizer has made it homogeneous, item (3). 4093 if (UseSSE == 0 && 4094 frc.get_float_count() > 32 && 4095 frc.get_double_count() == 0 && 4096 (10 * frc.get_call_count() < frc.get_float_count()) ) { 4097 set_24_bit_selection_and_mode(false, true); 4098 } 4099 #endif // IA32 4100 4101 set_java_calls(frc.get_java_call_count()); 4102 set_inner_loops(frc.get_inner_loop_count()); 4103 4104 // No infinite loops, no reason to bail out. 4105 return false; 4106 } 4107 4108 //-----------------------------too_many_traps---------------------------------- 4109 // Report if there are too many traps at the current method and bci. 4110 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded. 4111 bool Compile::too_many_traps(ciMethod* method, 4112 int bci, 4113 Deoptimization::DeoptReason reason) { 4114 if (method->has_trap_at(bci)) { 4115 return true; 4116 } 4117 ciMethodData* md = method->method_data(); 4118 if (md->is_empty()) { 4119 // Assume the trap has not occurred, or that it occurred only 4120 // because of a transient condition during start-up in the interpreter. 4121 return false; 4122 } 4123 ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : nullptr; 4124 if (md->has_trap_at(bci, m, reason) != 0) { 4125 // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic. 4126 // Also, if there are multiple reasons, or if there is no per-BCI record, 4127 // assume the worst. 4128 if (log()) 4129 log()->elem("observe trap='%s' count='%d'", 4130 Deoptimization::trap_reason_name(reason), 4131 md->trap_count(reason)); 4132 return true; 4133 } else { 4134 // Ignore method/bci and see if there have been too many globally. 4135 return too_many_traps(reason, md); 4136 } 4137 } 4138 4139 // Less-accurate variant which does not require a method and bci. 4140 bool Compile::too_many_traps(Deoptimization::DeoptReason reason, 4141 ciMethodData* logmd) { 4142 if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) { 4143 // Too many traps globally. 4144 // Note that we use cumulative trap_count, not just md->trap_count. 4145 if (log()) { 4146 int mcount = (logmd == nullptr)? -1: (int)logmd->trap_count(reason); 4147 log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'", 4148 Deoptimization::trap_reason_name(reason), 4149 mcount, trap_count(reason)); 4150 } 4151 return true; 4152 } else { 4153 // The coast is clear. 4154 return false; 4155 } 4156 } 4157 4158 //--------------------------too_many_recompiles-------------------------------- 4159 // Report if there are too many recompiles at the current method and bci. 4160 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff. 4161 // Is not eager to return true, since this will cause the compiler to use 4162 // Action_none for a trap point, to avoid too many recompilations. 4163 bool Compile::too_many_recompiles(ciMethod* method, 4164 int bci, 4165 Deoptimization::DeoptReason reason) { 4166 ciMethodData* md = method->method_data(); 4167 if (md->is_empty()) { 4168 // Assume the trap has not occurred, or that it occurred only 4169 // because of a transient condition during start-up in the interpreter. 4170 return false; 4171 } 4172 // Pick a cutoff point well within PerBytecodeRecompilationCutoff. 4173 uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8; 4174 uint m_cutoff = (uint) PerMethodRecompilationCutoff / 2 + 1; // not zero 4175 Deoptimization::DeoptReason per_bc_reason 4176 = Deoptimization::reason_recorded_per_bytecode_if_any(reason); 4177 ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : nullptr; 4178 if ((per_bc_reason == Deoptimization::Reason_none 4179 || md->has_trap_at(bci, m, reason) != 0) 4180 // The trap frequency measure we care about is the recompile count: 4181 && md->trap_recompiled_at(bci, m) 4182 && md->overflow_recompile_count() >= bc_cutoff) { 4183 // Do not emit a trap here if it has already caused recompilations. 4184 // Also, if there are multiple reasons, or if there is no per-BCI record, 4185 // assume the worst. 4186 if (log()) 4187 log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'", 4188 Deoptimization::trap_reason_name(reason), 4189 md->trap_count(reason), 4190 md->overflow_recompile_count()); 4191 return true; 4192 } else if (trap_count(reason) != 0 4193 && decompile_count() >= m_cutoff) { 4194 // Too many recompiles globally, and we have seen this sort of trap. 4195 // Use cumulative decompile_count, not just md->decompile_count. 4196 if (log()) 4197 log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'", 4198 Deoptimization::trap_reason_name(reason), 4199 md->trap_count(reason), trap_count(reason), 4200 md->decompile_count(), decompile_count()); 4201 return true; 4202 } else { 4203 // The coast is clear. 4204 return false; 4205 } 4206 } 4207 4208 // Compute when not to trap. Used by matching trap based nodes and 4209 // NullCheck optimization. 4210 void Compile::set_allowed_deopt_reasons() { 4211 _allowed_reasons = 0; 4212 if (is_method_compilation()) { 4213 for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) { 4214 assert(rs < BitsPerInt, "recode bit map"); 4215 if (!too_many_traps((Deoptimization::DeoptReason) rs)) { 4216 _allowed_reasons |= nth_bit(rs); 4217 } 4218 } 4219 } 4220 } 4221 4222 bool Compile::needs_clinit_barrier(ciMethod* method, ciMethod* accessing_method) { 4223 return method->is_static() && needs_clinit_barrier(method->holder(), accessing_method); 4224 } 4225 4226 bool Compile::needs_clinit_barrier(ciField* field, ciMethod* accessing_method) { 4227 return field->is_static() && needs_clinit_barrier(field->holder(), accessing_method); 4228 } 4229 4230 bool Compile::needs_clinit_barrier(ciInstanceKlass* holder, ciMethod* accessing_method) { 4231 if (holder->is_initialized() && !do_clinit_barriers()) { 4232 return false; 4233 } 4234 if (holder->is_being_initialized() || do_clinit_barriers()) { 4235 if (accessing_method->holder() == holder) { 4236 // Access inside a class. The barrier can be elided when access happens in <clinit>, 4237 // <init>, or a static method. In all those cases, there was an initialization 4238 // barrier on the holder klass passed. 4239 if (accessing_method->is_static_initializer() || 4240 accessing_method->is_object_initializer() || 4241 accessing_method->is_static()) { 4242 return false; 4243 } 4244 } else if (accessing_method->holder()->is_subclass_of(holder)) { 4245 // Access from a subclass. The barrier can be elided only when access happens in <clinit>. 4246 // In case of <init> or a static method, the barrier is on the subclass is not enough: 4247 // child class can become fully initialized while its parent class is still being initialized. 4248 if (accessing_method->is_static_initializer()) { 4249 return false; 4250 } 4251 } 4252 ciMethod* root = method(); // the root method of compilation 4253 if (root != accessing_method) { 4254 return needs_clinit_barrier(holder, root); // check access in the context of compilation root 4255 } 4256 } 4257 return true; 4258 } 4259 4260 #ifndef PRODUCT 4261 //------------------------------verify_bidirectional_edges--------------------- 4262 // For each input edge to a node (ie - for each Use-Def edge), verify that 4263 // there is a corresponding Def-Use edge. 4264 void Compile::verify_bidirectional_edges(Unique_Node_List &visited) { 4265 // Allocate stack of size C->live_nodes()/16 to avoid frequent realloc 4266 uint stack_size = live_nodes() >> 4; 4267 Node_List nstack(MAX2(stack_size, (uint)OptoNodeListSize)); 4268 nstack.push(_root); 4269 4270 while (nstack.size() > 0) { 4271 Node* n = nstack.pop(); 4272 if (visited.member(n)) { 4273 continue; 4274 } 4275 visited.push(n); 4276 4277 // Walk over all input edges, checking for correspondence 4278 uint length = n->len(); 4279 for (uint i = 0; i < length; i++) { 4280 Node* in = n->in(i); 4281 if (in != nullptr && !visited.member(in)) { 4282 nstack.push(in); // Put it on stack 4283 } 4284 if (in != nullptr && !in->is_top()) { 4285 // Count instances of `next` 4286 int cnt = 0; 4287 for (uint idx = 0; idx < in->_outcnt; idx++) { 4288 if (in->_out[idx] == n) { 4289 cnt++; 4290 } 4291 } 4292 assert(cnt > 0, "Failed to find Def-Use edge."); 4293 // Check for duplicate edges 4294 // walk the input array downcounting the input edges to n 4295 for (uint j = 0; j < length; j++) { 4296 if (n->in(j) == in) { 4297 cnt--; 4298 } 4299 } 4300 assert(cnt == 0, "Mismatched edge count."); 4301 } else if (in == nullptr) { 4302 assert(i == 0 || i >= n->req() || 4303 n->is_Region() || n->is_Phi() || n->is_ArrayCopy() || 4304 (n->is_Unlock() && i == (n->req() - 1)) || 4305 (n->is_MemBar() && i == 5), // the precedence edge to a membar can be removed during macro node expansion 4306 "only region, phi, arraycopy, unlock or membar nodes have null data edges"); 4307 } else { 4308 assert(in->is_top(), "sanity"); 4309 // Nothing to check. 4310 } 4311 } 4312 } 4313 } 4314 4315 //------------------------------verify_graph_edges--------------------------- 4316 // Walk the Graph and verify that there is a one-to-one correspondence 4317 // between Use-Def edges and Def-Use edges in the graph. 4318 void Compile::verify_graph_edges(bool no_dead_code) { 4319 if (VerifyGraphEdges) { 4320 Unique_Node_List visited; 4321 4322 // Call graph walk to check edges 4323 verify_bidirectional_edges(visited); 4324 if (no_dead_code) { 4325 // Now make sure that no visited node is used by an unvisited node. 4326 bool dead_nodes = false; 4327 Unique_Node_List checked; 4328 while (visited.size() > 0) { 4329 Node* n = visited.pop(); 4330 checked.push(n); 4331 for (uint i = 0; i < n->outcnt(); i++) { 4332 Node* use = n->raw_out(i); 4333 if (checked.member(use)) continue; // already checked 4334 if (visited.member(use)) continue; // already in the graph 4335 if (use->is_Con()) continue; // a dead ConNode is OK 4336 // At this point, we have found a dead node which is DU-reachable. 4337 if (!dead_nodes) { 4338 tty->print_cr("*** Dead nodes reachable via DU edges:"); 4339 dead_nodes = true; 4340 } 4341 use->dump(2); 4342 tty->print_cr("---"); 4343 checked.push(use); // No repeats; pretend it is now checked. 4344 } 4345 } 4346 assert(!dead_nodes, "using nodes must be reachable from root"); 4347 } 4348 } 4349 } 4350 #endif 4351 4352 // The Compile object keeps track of failure reasons separately from the ciEnv. 4353 // This is required because there is not quite a 1-1 relation between the 4354 // ciEnv and its compilation task and the Compile object. Note that one 4355 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides 4356 // to backtrack and retry without subsuming loads. Other than this backtracking 4357 // behavior, the Compile's failure reason is quietly copied up to the ciEnv 4358 // by the logic in C2Compiler. 4359 void Compile::record_failure(const char* reason DEBUG_ONLY(COMMA bool allow_multiple_failures)) { 4360 if (log() != nullptr) { 4361 log()->elem("failure reason='%s' phase='compile'", reason); 4362 } 4363 if (_failure_reason.get() == nullptr) { 4364 // Record the first failure reason. 4365 _failure_reason.set(reason); 4366 if (CaptureBailoutInformation) { 4367 _first_failure_details = new CompilationFailureInfo(reason); 4368 } 4369 } else { 4370 assert(!StressBailout || allow_multiple_failures, "should have handled previous failure."); 4371 } 4372 4373 if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) { 4374 C->print_method(PHASE_FAILURE, 1); 4375 } 4376 _root = nullptr; // flush the graph, too 4377 } 4378 4379 Compile::TracePhase::TracePhase(const char* name, PhaseTraceId id) 4380 : TraceTime(name, &Phase::timers[id], CITime, CITimeVerbose), 4381 _compile(Compile::current()), 4382 _log(nullptr), 4383 _dolog(CITimeVerbose) 4384 { 4385 assert(_compile != nullptr, "sanity check"); 4386 assert(id != PhaseTraceId::_t_none, "Don't use none"); 4387 if (_dolog) { 4388 _log = _compile->log(); 4389 } 4390 if (_log != nullptr) { 4391 _log->begin_head("phase name='%s' nodes='%d' live='%d'", phase_name(), _compile->unique(), _compile->live_nodes()); 4392 _log->stamp(); 4393 _log->end_head(); 4394 } 4395 4396 // Inform memory statistic, if enabled 4397 if (CompilationMemoryStatistic::enabled()) { 4398 CompilationMemoryStatistic::on_phase_start((int)id, name); 4399 } 4400 } 4401 4402 Compile::TracePhase::TracePhase(PhaseTraceId id) 4403 : TracePhase(Phase::get_phase_trace_id_text(id), id) {} 4404 4405 Compile::TracePhase::~TracePhase() { 4406 4407 // Inform memory statistic, if enabled 4408 if (CompilationMemoryStatistic::enabled()) { 4409 CompilationMemoryStatistic::on_phase_end(); 4410 } 4411 4412 if (_compile->failing_internal()) { 4413 if (_log != nullptr) { 4414 _log->done("phase"); 4415 } 4416 return; // timing code, not stressing bailouts. 4417 } 4418 #ifdef ASSERT 4419 if (PrintIdealNodeCount) { 4420 tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'", 4421 phase_name(), _compile->unique(), _compile->live_nodes(), _compile->count_live_nodes_by_graph_walk()); 4422 } 4423 4424 if (VerifyIdealNodeCount) { 4425 _compile->print_missing_nodes(); 4426 } 4427 #endif 4428 4429 if (_log != nullptr) { 4430 _log->done("phase name='%s' nodes='%d' live='%d'", phase_name(), _compile->unique(), _compile->live_nodes()); 4431 } 4432 } 4433 4434 //----------------------------static_subtype_check----------------------------- 4435 // Shortcut important common cases when superklass is exact: 4436 // (0) superklass is java.lang.Object (can occur in reflective code) 4437 // (1) subklass is already limited to a subtype of superklass => always ok 4438 // (2) subklass does not overlap with superklass => always fail 4439 // (3) superklass has NO subtypes and we can check with a simple compare. 4440 Compile::SubTypeCheckResult Compile::static_subtype_check(const TypeKlassPtr* superk, const TypeKlassPtr* subk, bool skip) { 4441 if (skip) { 4442 return SSC_full_test; // Let caller generate the general case. 4443 } 4444 4445 if (subk->is_java_subtype_of(superk)) { 4446 return SSC_always_true; // (0) and (1) this test cannot fail 4447 } 4448 4449 if (!subk->maybe_java_subtype_of(superk)) { 4450 return SSC_always_false; // (2) true path dead; no dynamic test needed 4451 } 4452 4453 const Type* superelem = superk; 4454 if (superk->isa_aryklassptr()) { 4455 int ignored; 4456 superelem = superk->is_aryklassptr()->base_element_type(ignored); 4457 } 4458 4459 if (superelem->isa_instklassptr()) { 4460 ciInstanceKlass* ik = superelem->is_instklassptr()->instance_klass(); 4461 if (!ik->has_subklass()) { 4462 if (!ik->is_final()) { 4463 // Add a dependency if there is a chance of a later subclass. 4464 dependencies()->assert_leaf_type(ik); 4465 } 4466 if (!superk->maybe_java_subtype_of(subk)) { 4467 return SSC_always_false; 4468 } 4469 return SSC_easy_test; // (3) caller can do a simple ptr comparison 4470 } 4471 } else { 4472 // A primitive array type has no subtypes. 4473 return SSC_easy_test; // (3) caller can do a simple ptr comparison 4474 } 4475 4476 return SSC_full_test; 4477 } 4478 4479 Node* Compile::conv_I2X_index(PhaseGVN* phase, Node* idx, const TypeInt* sizetype, Node* ctrl) { 4480 #ifdef _LP64 4481 // The scaled index operand to AddP must be a clean 64-bit value. 4482 // Java allows a 32-bit int to be incremented to a negative 4483 // value, which appears in a 64-bit register as a large 4484 // positive number. Using that large positive number as an 4485 // operand in pointer arithmetic has bad consequences. 4486 // On the other hand, 32-bit overflow is rare, and the possibility 4487 // can often be excluded, if we annotate the ConvI2L node with 4488 // a type assertion that its value is known to be a small positive 4489 // number. (The prior range check has ensured this.) 4490 // This assertion is used by ConvI2LNode::Ideal. 4491 int index_max = max_jint - 1; // array size is max_jint, index is one less 4492 if (sizetype != nullptr) index_max = sizetype->_hi - 1; 4493 const TypeInt* iidxtype = TypeInt::make(0, index_max, Type::WidenMax); 4494 idx = constrained_convI2L(phase, idx, iidxtype, ctrl); 4495 #endif 4496 return idx; 4497 } 4498 4499 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check) 4500 Node* Compile::constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl, bool carry_dependency) { 4501 if (ctrl != nullptr) { 4502 // Express control dependency by a CastII node with a narrow type. 4503 // Make the CastII node dependent on the control input to prevent the narrowed ConvI2L 4504 // node from floating above the range check during loop optimizations. Otherwise, the 4505 // ConvI2L node may be eliminated independently of the range check, causing the data path 4506 // to become TOP while the control path is still there (although it's unreachable). 4507 value = new CastIINode(ctrl, value, itype, carry_dependency ? ConstraintCastNode::StrongDependency : ConstraintCastNode::RegularDependency, true /* range check dependency */); 4508 value = phase->transform(value); 4509 } 4510 const TypeLong* ltype = TypeLong::make(itype->_lo, itype->_hi, itype->_widen); 4511 return phase->transform(new ConvI2LNode(value, ltype)); 4512 } 4513 4514 void Compile::dump_print_inlining() { 4515 inline_printer()->print_on(tty); 4516 } 4517 4518 void Compile::log_late_inline(CallGenerator* cg) { 4519 if (log() != nullptr) { 4520 log()->head("late_inline method='%d' inline_id='" JLONG_FORMAT "'", log()->identify(cg->method()), 4521 cg->unique_id()); 4522 JVMState* p = cg->call_node()->jvms(); 4523 while (p != nullptr) { 4524 log()->elem("jvms bci='%d' method='%d'", p->bci(), log()->identify(p->method())); 4525 p = p->caller(); 4526 } 4527 log()->tail("late_inline"); 4528 } 4529 } 4530 4531 void Compile::log_late_inline_failure(CallGenerator* cg, const char* msg) { 4532 log_late_inline(cg); 4533 if (log() != nullptr) { 4534 log()->inline_fail(msg); 4535 } 4536 } 4537 4538 void Compile::log_inline_id(CallGenerator* cg) { 4539 if (log() != nullptr) { 4540 // The LogCompilation tool needs a unique way to identify late 4541 // inline call sites. This id must be unique for this call site in 4542 // this compilation. Try to have it unique across compilations as 4543 // well because it can be convenient when grepping through the log 4544 // file. 4545 // Distinguish OSR compilations from others in case CICountOSR is 4546 // on. 4547 jlong id = ((jlong)unique()) + (((jlong)compile_id()) << 33) + (CICountOSR && is_osr_compilation() ? ((jlong)1) << 32 : 0); 4548 cg->set_unique_id(id); 4549 log()->elem("inline_id id='" JLONG_FORMAT "'", id); 4550 } 4551 } 4552 4553 void Compile::log_inline_failure(const char* msg) { 4554 if (C->log() != nullptr) { 4555 C->log()->inline_fail(msg); 4556 } 4557 } 4558 4559 4560 // Dump inlining replay data to the stream. 4561 // Don't change thread state and acquire any locks. 4562 void Compile::dump_inline_data(outputStream* out) { 4563 InlineTree* inl_tree = ilt(); 4564 if (inl_tree != nullptr) { 4565 out->print(" inline %d", inl_tree->count()); 4566 inl_tree->dump_replay_data(out); 4567 } 4568 } 4569 4570 void Compile::dump_inline_data_reduced(outputStream* out) { 4571 assert(ReplayReduce, ""); 4572 4573 InlineTree* inl_tree = ilt(); 4574 if (inl_tree == nullptr) { 4575 return; 4576 } 4577 // Enable iterative replay file reduction 4578 // Output "compile" lines for depth 1 subtrees, 4579 // simulating that those trees were compiled 4580 // instead of inlined. 4581 for (int i = 0; i < inl_tree->subtrees().length(); ++i) { 4582 InlineTree* sub = inl_tree->subtrees().at(i); 4583 if (sub->inline_level() != 1) { 4584 continue; 4585 } 4586 4587 ciMethod* method = sub->method(); 4588 int entry_bci = -1; 4589 int comp_level = env()->task()->comp_level(); 4590 out->print("compile "); 4591 method->dump_name_as_ascii(out); 4592 out->print(" %d %d", entry_bci, comp_level); 4593 out->print(" inline %d", sub->count()); 4594 sub->dump_replay_data(out, -1); 4595 out->cr(); 4596 } 4597 } 4598 4599 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) { 4600 if (n1->Opcode() < n2->Opcode()) return -1; 4601 else if (n1->Opcode() > n2->Opcode()) return 1; 4602 4603 assert(n1->req() == n2->req(), "can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req()); 4604 for (uint i = 1; i < n1->req(); i++) { 4605 if (n1->in(i) < n2->in(i)) return -1; 4606 else if (n1->in(i) > n2->in(i)) return 1; 4607 } 4608 4609 return 0; 4610 } 4611 4612 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) { 4613 Node* n1 = *n1p; 4614 Node* n2 = *n2p; 4615 4616 return cmp_expensive_nodes(n1, n2); 4617 } 4618 4619 void Compile::sort_expensive_nodes() { 4620 if (!expensive_nodes_sorted()) { 4621 _expensive_nodes.sort(cmp_expensive_nodes); 4622 } 4623 } 4624 4625 bool Compile::expensive_nodes_sorted() const { 4626 for (int i = 1; i < _expensive_nodes.length(); i++) { 4627 if (cmp_expensive_nodes(_expensive_nodes.adr_at(i), _expensive_nodes.adr_at(i-1)) < 0) { 4628 return false; 4629 } 4630 } 4631 return true; 4632 } 4633 4634 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) { 4635 if (_expensive_nodes.length() == 0) { 4636 return false; 4637 } 4638 4639 assert(OptimizeExpensiveOps, "optimization off?"); 4640 4641 // Take this opportunity to remove dead nodes from the list 4642 int j = 0; 4643 for (int i = 0; i < _expensive_nodes.length(); i++) { 4644 Node* n = _expensive_nodes.at(i); 4645 if (!n->is_unreachable(igvn)) { 4646 assert(n->is_expensive(), "should be expensive"); 4647 _expensive_nodes.at_put(j, n); 4648 j++; 4649 } 4650 } 4651 _expensive_nodes.trunc_to(j); 4652 4653 // Then sort the list so that similar nodes are next to each other 4654 // and check for at least two nodes of identical kind with same data 4655 // inputs. 4656 sort_expensive_nodes(); 4657 4658 for (int i = 0; i < _expensive_nodes.length()-1; i++) { 4659 if (cmp_expensive_nodes(_expensive_nodes.adr_at(i), _expensive_nodes.adr_at(i+1)) == 0) { 4660 return true; 4661 } 4662 } 4663 4664 return false; 4665 } 4666 4667 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) { 4668 if (_expensive_nodes.length() == 0) { 4669 return; 4670 } 4671 4672 assert(OptimizeExpensiveOps, "optimization off?"); 4673 4674 // Sort to bring similar nodes next to each other and clear the 4675 // control input of nodes for which there's only a single copy. 4676 sort_expensive_nodes(); 4677 4678 int j = 0; 4679 int identical = 0; 4680 int i = 0; 4681 bool modified = false; 4682 for (; i < _expensive_nodes.length()-1; i++) { 4683 assert(j <= i, "can't write beyond current index"); 4684 if (_expensive_nodes.at(i)->Opcode() == _expensive_nodes.at(i+1)->Opcode()) { 4685 identical++; 4686 _expensive_nodes.at_put(j++, _expensive_nodes.at(i)); 4687 continue; 4688 } 4689 if (identical > 0) { 4690 _expensive_nodes.at_put(j++, _expensive_nodes.at(i)); 4691 identical = 0; 4692 } else { 4693 Node* n = _expensive_nodes.at(i); 4694 igvn.replace_input_of(n, 0, nullptr); 4695 igvn.hash_insert(n); 4696 modified = true; 4697 } 4698 } 4699 if (identical > 0) { 4700 _expensive_nodes.at_put(j++, _expensive_nodes.at(i)); 4701 } else if (_expensive_nodes.length() >= 1) { 4702 Node* n = _expensive_nodes.at(i); 4703 igvn.replace_input_of(n, 0, nullptr); 4704 igvn.hash_insert(n); 4705 modified = true; 4706 } 4707 _expensive_nodes.trunc_to(j); 4708 if (modified) { 4709 igvn.optimize(); 4710 } 4711 } 4712 4713 void Compile::add_expensive_node(Node * n) { 4714 assert(!_expensive_nodes.contains(n), "duplicate entry in expensive list"); 4715 assert(n->is_expensive(), "expensive nodes with non-null control here only"); 4716 assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here"); 4717 if (OptimizeExpensiveOps) { 4718 _expensive_nodes.append(n); 4719 } else { 4720 // Clear control input and let IGVN optimize expensive nodes if 4721 // OptimizeExpensiveOps is off. 4722 n->set_req(0, nullptr); 4723 } 4724 } 4725 4726 /** 4727 * Track coarsened Lock and Unlock nodes. 4728 */ 4729 4730 class Lock_List : public Node_List { 4731 uint _origin_cnt; 4732 public: 4733 Lock_List(Arena *a, uint cnt) : Node_List(a), _origin_cnt(cnt) {} 4734 uint origin_cnt() const { return _origin_cnt; } 4735 }; 4736 4737 void Compile::add_coarsened_locks(GrowableArray<AbstractLockNode*>& locks) { 4738 int length = locks.length(); 4739 if (length > 0) { 4740 // Have to keep this list until locks elimination during Macro nodes elimination. 4741 Lock_List* locks_list = new (comp_arena()) Lock_List(comp_arena(), length); 4742 AbstractLockNode* alock = locks.at(0); 4743 BoxLockNode* box = alock->box_node()->as_BoxLock(); 4744 for (int i = 0; i < length; i++) { 4745 AbstractLockNode* lock = locks.at(i); 4746 assert(lock->is_coarsened(), "expecting only coarsened AbstractLock nodes, but got '%s'[%d] node", lock->Name(), lock->_idx); 4747 locks_list->push(lock); 4748 BoxLockNode* this_box = lock->box_node()->as_BoxLock(); 4749 if (this_box != box) { 4750 // Locking regions (BoxLock) could be Unbalanced here: 4751 // - its coarsened locks were eliminated in earlier 4752 // macro nodes elimination followed by loop unroll 4753 // - it is OSR locking region (no Lock node) 4754 // Preserve Unbalanced status in such cases. 4755 if (!this_box->is_unbalanced()) { 4756 this_box->set_coarsened(); 4757 } 4758 if (!box->is_unbalanced()) { 4759 box->set_coarsened(); 4760 } 4761 } 4762 } 4763 _coarsened_locks.append(locks_list); 4764 } 4765 } 4766 4767 void Compile::remove_useless_coarsened_locks(Unique_Node_List& useful) { 4768 int count = coarsened_count(); 4769 for (int i = 0; i < count; i++) { 4770 Node_List* locks_list = _coarsened_locks.at(i); 4771 for (uint j = 0; j < locks_list->size(); j++) { 4772 Node* lock = locks_list->at(j); 4773 assert(lock->is_AbstractLock(), "sanity"); 4774 if (!useful.member(lock)) { 4775 locks_list->yank(lock); 4776 } 4777 } 4778 } 4779 } 4780 4781 void Compile::remove_coarsened_lock(Node* n) { 4782 if (n->is_AbstractLock()) { 4783 int count = coarsened_count(); 4784 for (int i = 0; i < count; i++) { 4785 Node_List* locks_list = _coarsened_locks.at(i); 4786 locks_list->yank(n); 4787 } 4788 } 4789 } 4790 4791 bool Compile::coarsened_locks_consistent() { 4792 int count = coarsened_count(); 4793 for (int i = 0; i < count; i++) { 4794 bool unbalanced = false; 4795 bool modified = false; // track locks kind modifications 4796 Lock_List* locks_list = (Lock_List*)_coarsened_locks.at(i); 4797 uint size = locks_list->size(); 4798 if (size == 0) { 4799 unbalanced = false; // All locks were eliminated - good 4800 } else if (size != locks_list->origin_cnt()) { 4801 unbalanced = true; // Some locks were removed from list 4802 } else { 4803 for (uint j = 0; j < size; j++) { 4804 Node* lock = locks_list->at(j); 4805 // All nodes in group should have the same state (modified or not) 4806 if (!lock->as_AbstractLock()->is_coarsened()) { 4807 if (j == 0) { 4808 // first on list was modified, the rest should be too for consistency 4809 modified = true; 4810 } else if (!modified) { 4811 // this lock was modified but previous locks on the list were not 4812 unbalanced = true; 4813 break; 4814 } 4815 } else if (modified) { 4816 // previous locks on list were modified but not this lock 4817 unbalanced = true; 4818 break; 4819 } 4820 } 4821 } 4822 if (unbalanced) { 4823 // unbalanced monitor enter/exit - only some [un]lock nodes were removed or modified 4824 #ifdef ASSERT 4825 if (PrintEliminateLocks) { 4826 tty->print_cr("=== unbalanced coarsened locks ==="); 4827 for (uint l = 0; l < size; l++) { 4828 locks_list->at(l)->dump(); 4829 } 4830 } 4831 #endif 4832 record_failure(C2Compiler::retry_no_locks_coarsening()); 4833 return false; 4834 } 4835 } 4836 return true; 4837 } 4838 4839 // Mark locking regions (identified by BoxLockNode) as unbalanced if 4840 // locks coarsening optimization removed Lock/Unlock nodes from them. 4841 // Such regions become unbalanced because coarsening only removes part 4842 // of Lock/Unlock nodes in region. As result we can't execute other 4843 // locks elimination optimizations which assume all code paths have 4844 // corresponding pair of Lock/Unlock nodes - they are balanced. 4845 void Compile::mark_unbalanced_boxes() const { 4846 int count = coarsened_count(); 4847 for (int i = 0; i < count; i++) { 4848 Node_List* locks_list = _coarsened_locks.at(i); 4849 uint size = locks_list->size(); 4850 if (size > 0) { 4851 AbstractLockNode* alock = locks_list->at(0)->as_AbstractLock(); 4852 BoxLockNode* box = alock->box_node()->as_BoxLock(); 4853 if (alock->is_coarsened()) { 4854 // coarsened_locks_consistent(), which is called before this method, verifies 4855 // that the rest of Lock/Unlock nodes on locks_list are also coarsened. 4856 assert(!box->is_eliminated(), "regions with coarsened locks should not be marked as eliminated"); 4857 for (uint j = 1; j < size; j++) { 4858 assert(locks_list->at(j)->as_AbstractLock()->is_coarsened(), "only coarsened locks are expected here"); 4859 BoxLockNode* this_box = locks_list->at(j)->as_AbstractLock()->box_node()->as_BoxLock(); 4860 if (box != this_box) { 4861 assert(!this_box->is_eliminated(), "regions with coarsened locks should not be marked as eliminated"); 4862 box->set_unbalanced(); 4863 this_box->set_unbalanced(); 4864 } 4865 } 4866 } 4867 } 4868 } 4869 } 4870 4871 /** 4872 * Remove the speculative part of types and clean up the graph 4873 */ 4874 void Compile::remove_speculative_types(PhaseIterGVN &igvn) { 4875 if (UseTypeSpeculation) { 4876 Unique_Node_List worklist; 4877 worklist.push(root()); 4878 int modified = 0; 4879 // Go over all type nodes that carry a speculative type, drop the 4880 // speculative part of the type and enqueue the node for an igvn 4881 // which may optimize it out. 4882 for (uint next = 0; next < worklist.size(); ++next) { 4883 Node *n = worklist.at(next); 4884 if (n->is_Type()) { 4885 TypeNode* tn = n->as_Type(); 4886 const Type* t = tn->type(); 4887 const Type* t_no_spec = t->remove_speculative(); 4888 if (t_no_spec != t) { 4889 bool in_hash = igvn.hash_delete(n); 4890 assert(in_hash || n->hash() == Node::NO_HASH, "node should be in igvn hash table"); 4891 tn->set_type(t_no_spec); 4892 igvn.hash_insert(n); 4893 igvn._worklist.push(n); // give it a chance to go away 4894 modified++; 4895 } 4896 } 4897 // Iterate over outs - endless loops is unreachable from below 4898 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 4899 Node *m = n->fast_out(i); 4900 if (not_a_node(m)) { 4901 continue; 4902 } 4903 worklist.push(m); 4904 } 4905 } 4906 // Drop the speculative part of all types in the igvn's type table 4907 igvn.remove_speculative_types(); 4908 if (modified > 0) { 4909 igvn.optimize(); 4910 if (failing()) return; 4911 } 4912 #ifdef ASSERT 4913 // Verify that after the IGVN is over no speculative type has resurfaced 4914 worklist.clear(); 4915 worklist.push(root()); 4916 for (uint next = 0; next < worklist.size(); ++next) { 4917 Node *n = worklist.at(next); 4918 const Type* t = igvn.type_or_null(n); 4919 assert((t == nullptr) || (t == t->remove_speculative()), "no more speculative types"); 4920 if (n->is_Type()) { 4921 t = n->as_Type()->type(); 4922 assert(t == t->remove_speculative(), "no more speculative types"); 4923 } 4924 // Iterate over outs - endless loops is unreachable from below 4925 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 4926 Node *m = n->fast_out(i); 4927 if (not_a_node(m)) { 4928 continue; 4929 } 4930 worklist.push(m); 4931 } 4932 } 4933 igvn.check_no_speculative_types(); 4934 #endif 4935 } 4936 } 4937 4938 // Auxiliary methods to support randomized stressing/fuzzing. 4939 4940 void Compile::initialize_stress_seed(const DirectiveSet* directive) { 4941 if (FLAG_IS_DEFAULT(StressSeed) || (FLAG_IS_ERGO(StressSeed) && directive->RepeatCompilationOption)) { 4942 _stress_seed = static_cast<uint>(Ticks::now().nanoseconds()); 4943 FLAG_SET_ERGO(StressSeed, _stress_seed); 4944 } else { 4945 _stress_seed = StressSeed; 4946 } 4947 if (_log != nullptr) { 4948 _log->elem("stress_test seed='%u'", _stress_seed); 4949 } 4950 } 4951 4952 int Compile::random() { 4953 _stress_seed = os::next_random(_stress_seed); 4954 return static_cast<int>(_stress_seed); 4955 } 4956 4957 // This method can be called the arbitrary number of times, with current count 4958 // as the argument. The logic allows selecting a single candidate from the 4959 // running list of candidates as follows: 4960 // int count = 0; 4961 // Cand* selected = null; 4962 // while(cand = cand->next()) { 4963 // if (randomized_select(++count)) { 4964 // selected = cand; 4965 // } 4966 // } 4967 // 4968 // Including count equalizes the chances any candidate is "selected". 4969 // This is useful when we don't have the complete list of candidates to choose 4970 // from uniformly. In this case, we need to adjust the randomicity of the 4971 // selection, or else we will end up biasing the selection towards the latter 4972 // candidates. 4973 // 4974 // Quick back-envelope calculation shows that for the list of n candidates 4975 // the equal probability for the candidate to persist as "best" can be 4976 // achieved by replacing it with "next" k-th candidate with the probability 4977 // of 1/k. It can be easily shown that by the end of the run, the 4978 // probability for any candidate is converged to 1/n, thus giving the 4979 // uniform distribution among all the candidates. 4980 // 4981 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large. 4982 #define RANDOMIZED_DOMAIN_POW 29 4983 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW) 4984 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1) 4985 bool Compile::randomized_select(int count) { 4986 assert(count > 0, "only positive"); 4987 return (random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count); 4988 } 4989 4990 #ifdef ASSERT 4991 // Failures are geometrically distributed with probability 1/StressBailoutMean. 4992 bool Compile::fail_randomly() { 4993 if ((random() % StressBailoutMean) != 0) { 4994 return false; 4995 } 4996 record_failure("StressBailout"); 4997 return true; 4998 } 4999 5000 bool Compile::failure_is_artificial() { 5001 return C->failure_reason_is("StressBailout"); 5002 } 5003 #endif 5004 5005 CloneMap& Compile::clone_map() { return _clone_map; } 5006 void Compile::set_clone_map(Dict* d) { _clone_map._dict = d; } 5007 5008 void NodeCloneInfo::dump_on(outputStream* st) const { 5009 st->print(" {%d:%d} ", idx(), gen()); 5010 } 5011 5012 void CloneMap::clone(Node* old, Node* nnn, int gen) { 5013 uint64_t val = value(old->_idx); 5014 NodeCloneInfo cio(val); 5015 assert(val != 0, "old node should be in the map"); 5016 NodeCloneInfo cin(cio.idx(), gen + cio.gen()); 5017 insert(nnn->_idx, cin.get()); 5018 #ifndef PRODUCT 5019 if (is_debug()) { 5020 tty->print_cr("CloneMap::clone inserted node %d info {%d:%d} into CloneMap", nnn->_idx, cin.idx(), cin.gen()); 5021 } 5022 #endif 5023 } 5024 5025 void CloneMap::verify_insert_and_clone(Node* old, Node* nnn, int gen) { 5026 NodeCloneInfo cio(value(old->_idx)); 5027 if (cio.get() == 0) { 5028 cio.set(old->_idx, 0); 5029 insert(old->_idx, cio.get()); 5030 #ifndef PRODUCT 5031 if (is_debug()) { 5032 tty->print_cr("CloneMap::verify_insert_and_clone inserted node %d info {%d:%d} into CloneMap", old->_idx, cio.idx(), cio.gen()); 5033 } 5034 #endif 5035 } 5036 clone(old, nnn, gen); 5037 } 5038 5039 int CloneMap::max_gen() const { 5040 int g = 0; 5041 DictI di(_dict); 5042 for(; di.test(); ++di) { 5043 int t = gen(di._key); 5044 if (g < t) { 5045 g = t; 5046 #ifndef PRODUCT 5047 if (is_debug()) { 5048 tty->print_cr("CloneMap::max_gen() update max=%d from %d", g, _2_node_idx_t(di._key)); 5049 } 5050 #endif 5051 } 5052 } 5053 return g; 5054 } 5055 5056 void CloneMap::dump(node_idx_t key, outputStream* st) const { 5057 uint64_t val = value(key); 5058 if (val != 0) { 5059 NodeCloneInfo ni(val); 5060 ni.dump_on(st); 5061 } 5062 } 5063 5064 void Compile::shuffle_macro_nodes() { 5065 if (_macro_nodes.length() < 2) { 5066 return; 5067 } 5068 for (uint i = _macro_nodes.length() - 1; i >= 1; i--) { 5069 uint j = C->random() % (i + 1); 5070 swap(_macro_nodes.at(i), _macro_nodes.at(j)); 5071 } 5072 } 5073 5074 // Move Allocate nodes to the start of the list 5075 void Compile::sort_macro_nodes() { 5076 int count = macro_count(); 5077 int allocates = 0; 5078 for (int i = 0; i < count; i++) { 5079 Node* n = macro_node(i); 5080 if (n->is_Allocate()) { 5081 if (i != allocates) { 5082 Node* tmp = macro_node(allocates); 5083 _macro_nodes.at_put(allocates, n); 5084 _macro_nodes.at_put(i, tmp); 5085 } 5086 allocates++; 5087 } 5088 } 5089 } 5090 5091 void Compile::print_method(CompilerPhaseType cpt, int level, Node* n) { 5092 if (failing_internal()) { return; } // failing_internal to not stress bailouts from printing code. 5093 EventCompilerPhase event(UNTIMED); 5094 if (event.should_commit()) { 5095 CompilerEvent::PhaseEvent::post(event, C->_latest_stage_start_counter, cpt, C->_compile_id, level); 5096 } 5097 #ifndef PRODUCT 5098 ResourceMark rm; 5099 stringStream ss; 5100 ss.print_raw(CompilerPhaseTypeHelper::to_description(cpt)); 5101 int iter = ++_igv_phase_iter[cpt]; 5102 if (iter > 1) { 5103 ss.print(" %d", iter); 5104 } 5105 if (n != nullptr) { 5106 ss.print(": %d %s", n->_idx, NodeClassNames[n->Opcode()]); 5107 if (n->is_Call()) { 5108 CallNode* call = n->as_Call(); 5109 if (call->_name != nullptr) { 5110 // E.g. uncommon traps etc. 5111 ss.print(" - %s", call->_name); 5112 } else if (call->is_CallJava()) { 5113 CallJavaNode* call_java = call->as_CallJava(); 5114 if (call_java->method() != nullptr) { 5115 ss.print(" -"); 5116 call_java->method()->print_short_name(&ss); 5117 } 5118 } 5119 } 5120 } 5121 5122 const char* name = ss.as_string(); 5123 if (should_print_igv(level)) { 5124 _igv_printer->print_graph(name); 5125 } 5126 if (should_print_phase(cpt)) { 5127 print_ideal_ir(CompilerPhaseTypeHelper::to_name(cpt)); 5128 } 5129 #endif 5130 C->_latest_stage_start_counter.stamp(); 5131 } 5132 5133 // Only used from CompileWrapper 5134 void Compile::begin_method() { 5135 #ifndef PRODUCT 5136 if (_method != nullptr && should_print_igv(1)) { 5137 _igv_printer->begin_method(); 5138 } 5139 #endif 5140 C->_latest_stage_start_counter.stamp(); 5141 } 5142 5143 // Only used from CompileWrapper 5144 void Compile::end_method() { 5145 EventCompilerPhase event(UNTIMED); 5146 if (event.should_commit()) { 5147 CompilerEvent::PhaseEvent::post(event, C->_latest_stage_start_counter, PHASE_END, C->_compile_id, 1); 5148 } 5149 5150 #ifndef PRODUCT 5151 if (_method != nullptr && should_print_igv(1)) { 5152 _igv_printer->end_method(); 5153 } 5154 #endif 5155 } 5156 5157 bool Compile::should_print_phase(CompilerPhaseType cpt) { 5158 #ifndef PRODUCT 5159 if (_directive->should_print_phase(cpt)) { 5160 return true; 5161 } 5162 #endif 5163 return false; 5164 } 5165 5166 #ifndef PRODUCT 5167 void Compile::init_igv() { 5168 if (_igv_printer == nullptr) { 5169 _igv_printer = IdealGraphPrinter::printer(); 5170 _igv_printer->set_compile(this); 5171 } 5172 } 5173 #endif 5174 5175 bool Compile::should_print_igv(const int level) { 5176 #ifndef PRODUCT 5177 if (PrintIdealGraphLevel < 0) { // disabled by the user 5178 return false; 5179 } 5180 5181 bool need = directive()->IGVPrintLevelOption >= level; 5182 if (need) { 5183 Compile::init_igv(); 5184 } 5185 return need; 5186 #else 5187 return false; 5188 #endif 5189 } 5190 5191 #ifndef PRODUCT 5192 IdealGraphPrinter* Compile::_debug_file_printer = nullptr; 5193 IdealGraphPrinter* Compile::_debug_network_printer = nullptr; 5194 5195 // Called from debugger. Prints method to the default file with the default phase name. 5196 // This works regardless of any Ideal Graph Visualizer flags set or not. 5197 void igv_print() { 5198 Compile::current()->igv_print_method_to_file(); 5199 } 5200 5201 // Same as igv_print() above but with a specified phase name. 5202 void igv_print(const char* phase_name) { 5203 Compile::current()->igv_print_method_to_file(phase_name); 5204 } 5205 5206 // Called from debugger. Prints method with the default phase name to the default network or the one specified with 5207 // the network flags for the Ideal Graph Visualizer, or to the default file depending on the 'network' argument. 5208 // This works regardless of any Ideal Graph Visualizer flags set or not. 5209 void igv_print(bool network) { 5210 if (network) { 5211 Compile::current()->igv_print_method_to_network(); 5212 } else { 5213 Compile::current()->igv_print_method_to_file(); 5214 } 5215 } 5216 5217 // Same as igv_print(bool network) above but with a specified phase name. 5218 void igv_print(bool network, const char* phase_name) { 5219 if (network) { 5220 Compile::current()->igv_print_method_to_network(phase_name); 5221 } else { 5222 Compile::current()->igv_print_method_to_file(phase_name); 5223 } 5224 } 5225 5226 // Called from debugger. Normal write to the default _printer. Only works if Ideal Graph Visualizer printing flags are set. 5227 void igv_print_default() { 5228 Compile::current()->print_method(PHASE_DEBUG, 0); 5229 } 5230 5231 // Called from debugger, especially when replaying a trace in which the program state cannot be altered like with rr replay. 5232 // A method is appended to an existing default file with the default phase name. This means that igv_append() must follow 5233 // an earlier igv_print(*) call which sets up the file. This works regardless of any Ideal Graph Visualizer flags set or not. 5234 void igv_append() { 5235 Compile::current()->igv_print_method_to_file("Debug", true); 5236 } 5237 5238 // Same as igv_append() above but with a specified phase name. 5239 void igv_append(const char* phase_name) { 5240 Compile::current()->igv_print_method_to_file(phase_name, true); 5241 } 5242 5243 void Compile::igv_print_method_to_file(const char* phase_name, bool append) { 5244 const char* file_name = "custom_debug.xml"; 5245 if (_debug_file_printer == nullptr) { 5246 _debug_file_printer = new IdealGraphPrinter(C, file_name, append); 5247 } else { 5248 _debug_file_printer->update_compiled_method(C->method()); 5249 } 5250 tty->print_cr("Method %s to %s", append ? "appended" : "printed", file_name); 5251 _debug_file_printer->print_graph(phase_name); 5252 } 5253 5254 void Compile::igv_print_method_to_network(const char* phase_name) { 5255 ResourceMark rm; 5256 GrowableArray<const Node*> empty_list; 5257 igv_print_graph_to_network(phase_name, (Node*) C->root(), empty_list); 5258 } 5259 5260 void Compile::igv_print_graph_to_network(const char* name, Node* node, GrowableArray<const Node*>& visible_nodes) { 5261 if (_debug_network_printer == nullptr) { 5262 _debug_network_printer = new IdealGraphPrinter(C); 5263 } else { 5264 _debug_network_printer->update_compiled_method(C->method()); 5265 } 5266 tty->print_cr("Method printed over network stream to IGV"); 5267 _debug_network_printer->print(name, C->root(), visible_nodes); 5268 } 5269 #endif 5270 5271 Node* Compile::narrow_value(BasicType bt, Node* value, const Type* type, PhaseGVN* phase, bool transform_res) { 5272 if (type != nullptr && phase->type(value)->higher_equal(type)) { 5273 return value; 5274 } 5275 Node* result = nullptr; 5276 if (bt == T_BYTE) { 5277 result = phase->transform(new LShiftINode(value, phase->intcon(24))); 5278 result = new RShiftINode(result, phase->intcon(24)); 5279 } else if (bt == T_BOOLEAN) { 5280 result = new AndINode(value, phase->intcon(0xFF)); 5281 } else if (bt == T_CHAR) { 5282 result = new AndINode(value,phase->intcon(0xFFFF)); 5283 } else { 5284 assert(bt == T_SHORT, "unexpected narrow type"); 5285 result = phase->transform(new LShiftINode(value, phase->intcon(16))); 5286 result = new RShiftINode(result, phase->intcon(16)); 5287 } 5288 if (transform_res) { 5289 result = phase->transform(result); 5290 } 5291 return result; 5292 } 5293 5294 void Compile::record_method_not_compilable_oom() { 5295 record_method_not_compilable(CompilationMemoryStatistic::failure_reason_memlimit()); 5296 }