1 /*
   2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "asm/macroAssembler.hpp"
  26 #include "asm/macroAssembler.inline.hpp"
  27 #include "ci/ciReplay.hpp"
  28 #include "classfile/javaClasses.hpp"
  29 #include "code/aotCodeCache.hpp"
  30 #include "code/exceptionHandlerTable.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "compiler/compilationFailureInfo.hpp"
  33 #include "compiler/compilationMemoryStatistic.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/compileLog.hpp"
  36 #include "compiler/compilerDefinitions.hpp"
  37 #include "compiler/compilerOracle.hpp"
  38 #include "compiler/compiler_globals.hpp"
  39 #include "compiler/disassembler.hpp"
  40 #include "compiler/oopMap.hpp"
  41 #include "gc/shared/barrierSet.hpp"
  42 #include "gc/shared/c2/barrierSetC2.hpp"
  43 #include "jfr/jfrEvents.hpp"
  44 #include "jvm_io.h"
  45 #include "memory/allocation.hpp"
  46 #include "memory/arena.hpp"
  47 #include "memory/resourceArea.hpp"
  48 #include "opto/addnode.hpp"
  49 #include "opto/block.hpp"
  50 #include "opto/c2compiler.hpp"
  51 #include "opto/callGenerator.hpp"
  52 #include "opto/callnode.hpp"
  53 #include "opto/castnode.hpp"
  54 #include "opto/cfgnode.hpp"
  55 #include "opto/chaitin.hpp"
  56 #include "opto/compile.hpp"
  57 #include "opto/connode.hpp"
  58 #include "opto/convertnode.hpp"
  59 #include "opto/divnode.hpp"
  60 #include "opto/escape.hpp"
  61 #include "opto/idealGraphPrinter.hpp"
  62 #include "opto/locknode.hpp"
  63 #include "opto/loopnode.hpp"
  64 #include "opto/machnode.hpp"
  65 #include "opto/macro.hpp"
  66 #include "opto/matcher.hpp"
  67 #include "opto/mathexactnode.hpp"
  68 #include "opto/memnode.hpp"
  69 #include "opto/mulnode.hpp"
  70 #include "opto/narrowptrnode.hpp"
  71 #include "opto/node.hpp"
  72 #include "opto/opaquenode.hpp"
  73 #include "opto/opcodes.hpp"
  74 #include "opto/output.hpp"
  75 #include "opto/parse.hpp"
  76 #include "opto/phaseX.hpp"
  77 #include "opto/rootnode.hpp"
  78 #include "opto/runtime.hpp"
  79 #include "opto/stringopts.hpp"
  80 #include "opto/type.hpp"
  81 #include "opto/vector.hpp"
  82 #include "opto/vectornode.hpp"
  83 #include "runtime/globals_extension.hpp"
  84 #include "runtime/sharedRuntime.hpp"
  85 #include "runtime/signature.hpp"
  86 #include "runtime/stubRoutines.hpp"
  87 #include "runtime/timer.hpp"
  88 #include "utilities/align.hpp"
  89 #include "utilities/copy.hpp"
  90 #include "utilities/macros.hpp"
  91 #include "utilities/resourceHash.hpp"
  92 
  93 // -------------------- Compile::mach_constant_base_node -----------------------
  94 // Constant table base node singleton.
  95 MachConstantBaseNode* Compile::mach_constant_base_node() {
  96   if (_mach_constant_base_node == nullptr) {
  97     _mach_constant_base_node = new MachConstantBaseNode();
  98     _mach_constant_base_node->add_req(C->root());
  99   }
 100   return _mach_constant_base_node;
 101 }
 102 
 103 
 104 /// Support for intrinsics.
 105 
 106 // Return the index at which m must be inserted (or already exists).
 107 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
 108 class IntrinsicDescPair {
 109  private:
 110   ciMethod* _m;
 111   bool _is_virtual;
 112  public:
 113   IntrinsicDescPair(ciMethod* m, bool is_virtual) : _m(m), _is_virtual(is_virtual) {}
 114   static int compare(IntrinsicDescPair* const& key, CallGenerator* const& elt) {
 115     ciMethod* m= elt->method();
 116     ciMethod* key_m = key->_m;
 117     if (key_m < m)      return -1;
 118     else if (key_m > m) return 1;
 119     else {
 120       bool is_virtual = elt->is_virtual();
 121       bool key_virtual = key->_is_virtual;
 122       if (key_virtual < is_virtual)      return -1;
 123       else if (key_virtual > is_virtual) return 1;
 124       else                               return 0;
 125     }
 126   }
 127 };
 128 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found) {
 129 #ifdef ASSERT
 130   for (int i = 1; i < _intrinsics.length(); i++) {
 131     CallGenerator* cg1 = _intrinsics.at(i-1);
 132     CallGenerator* cg2 = _intrinsics.at(i);
 133     assert(cg1->method() != cg2->method()
 134            ? cg1->method()     < cg2->method()
 135            : cg1->is_virtual() < cg2->is_virtual(),
 136            "compiler intrinsics list must stay sorted");
 137   }
 138 #endif
 139   IntrinsicDescPair pair(m, is_virtual);
 140   return _intrinsics.find_sorted<IntrinsicDescPair*, IntrinsicDescPair::compare>(&pair, found);
 141 }
 142 
 143 void Compile::register_intrinsic(CallGenerator* cg) {
 144   bool found = false;
 145   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual(), found);
 146   assert(!found, "registering twice");
 147   _intrinsics.insert_before(index, cg);
 148   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
 149 }
 150 
 151 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
 152   assert(m->is_loaded(), "don't try this on unloaded methods");
 153   if (_intrinsics.length() > 0) {
 154     bool found = false;
 155     int index = intrinsic_insertion_index(m, is_virtual, found);
 156      if (found) {
 157       return _intrinsics.at(index);
 158     }
 159   }
 160   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
 161   if (m->intrinsic_id() != vmIntrinsics::_none &&
 162       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
 163     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
 164     if (cg != nullptr) {
 165       // Save it for next time:
 166       register_intrinsic(cg);
 167       return cg;
 168     } else {
 169       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
 170     }
 171   }
 172   return nullptr;
 173 }
 174 
 175 // Compile::make_vm_intrinsic is defined in library_call.cpp.
 176 
 177 #ifndef PRODUCT
 178 // statistics gathering...
 179 
 180 juint  Compile::_intrinsic_hist_count[vmIntrinsics::number_of_intrinsics()] = {0};
 181 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::number_of_intrinsics()] = {0};
 182 
 183 inline int as_int(vmIntrinsics::ID id) {
 184   return vmIntrinsics::as_int(id);
 185 }
 186 
 187 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
 188   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
 189   int oflags = _intrinsic_hist_flags[as_int(id)];
 190   assert(flags != 0, "what happened?");
 191   if (is_virtual) {
 192     flags |= _intrinsic_virtual;
 193   }
 194   bool changed = (flags != oflags);
 195   if ((flags & _intrinsic_worked) != 0) {
 196     juint count = (_intrinsic_hist_count[as_int(id)] += 1);
 197     if (count == 1) {
 198       changed = true;           // first time
 199     }
 200     // increment the overall count also:
 201     _intrinsic_hist_count[as_int(vmIntrinsics::_none)] += 1;
 202   }
 203   if (changed) {
 204     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
 205       // Something changed about the intrinsic's virtuality.
 206       if ((flags & _intrinsic_virtual) != 0) {
 207         // This is the first use of this intrinsic as a virtual call.
 208         if (oflags != 0) {
 209           // We already saw it as a non-virtual, so note both cases.
 210           flags |= _intrinsic_both;
 211         }
 212       } else if ((oflags & _intrinsic_both) == 0) {
 213         // This is the first use of this intrinsic as a non-virtual
 214         flags |= _intrinsic_both;
 215       }
 216     }
 217     _intrinsic_hist_flags[as_int(id)] = (jubyte) (oflags | flags);
 218   }
 219   // update the overall flags also:
 220   _intrinsic_hist_flags[as_int(vmIntrinsics::_none)] |= (jubyte) flags;
 221   return changed;
 222 }
 223 
 224 static char* format_flags(int flags, char* buf) {
 225   buf[0] = 0;
 226   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
 227   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
 228   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
 229   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
 230   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
 231   if (buf[0] == 0)  strcat(buf, ",");
 232   assert(buf[0] == ',', "must be");
 233   return &buf[1];
 234 }
 235 
 236 void Compile::print_intrinsic_statistics() {
 237   char flagsbuf[100];
 238   ttyLocker ttyl;
 239   if (xtty != nullptr)  xtty->head("statistics type='intrinsic'");
 240   tty->print_cr("Compiler intrinsic usage:");
 241   juint total = _intrinsic_hist_count[as_int(vmIntrinsics::_none)];
 242   if (total == 0)  total = 1;  // avoid div0 in case of no successes
 243   #define PRINT_STAT_LINE(name, c, f) \
 244     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
 245   for (auto id : EnumRange<vmIntrinsicID>{}) {
 246     int   flags = _intrinsic_hist_flags[as_int(id)];
 247     juint count = _intrinsic_hist_count[as_int(id)];
 248     if ((flags | count) != 0) {
 249       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
 250     }
 251   }
 252   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[as_int(vmIntrinsics::_none)], flagsbuf));
 253   if (xtty != nullptr)  xtty->tail("statistics");
 254 }
 255 
 256 void Compile::print_statistics() {
 257   { ttyLocker ttyl;
 258     if (xtty != nullptr)  xtty->head("statistics type='opto'");
 259     Parse::print_statistics();
 260     PhaseStringOpts::print_statistics();
 261     PhaseCCP::print_statistics();
 262     PhaseRegAlloc::print_statistics();
 263     PhaseOutput::print_statistics();
 264     PhasePeephole::print_statistics();
 265     PhaseIdealLoop::print_statistics();
 266     ConnectionGraph::print_statistics();
 267     PhaseMacroExpand::print_statistics();
 268     if (xtty != nullptr)  xtty->tail("statistics");
 269   }
 270   if (_intrinsic_hist_flags[as_int(vmIntrinsics::_none)] != 0) {
 271     // put this under its own <statistics> element.
 272     print_intrinsic_statistics();
 273   }
 274 }
 275 #endif //PRODUCT
 276 
 277 void Compile::gvn_replace_by(Node* n, Node* nn) {
 278   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
 279     Node* use = n->last_out(i);
 280     bool is_in_table = initial_gvn()->hash_delete(use);
 281     uint uses_found = 0;
 282     for (uint j = 0; j < use->len(); j++) {
 283       if (use->in(j) == n) {
 284         if (j < use->req())
 285           use->set_req(j, nn);
 286         else
 287           use->set_prec(j, nn);
 288         uses_found++;
 289       }
 290     }
 291     if (is_in_table) {
 292       // reinsert into table
 293       initial_gvn()->hash_find_insert(use);
 294     }
 295     record_for_igvn(use);
 296     PhaseIterGVN::add_users_of_use_to_worklist(nn, use, *_igvn_worklist);
 297     i -= uses_found;    // we deleted 1 or more copies of this edge
 298   }
 299 }
 300 
 301 
 302 // Identify all nodes that are reachable from below, useful.
 303 // Use breadth-first pass that records state in a Unique_Node_List,
 304 // recursive traversal is slower.
 305 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
 306   int estimated_worklist_size = live_nodes();
 307   useful.map( estimated_worklist_size, nullptr );  // preallocate space
 308 
 309   // Initialize worklist
 310   if (root() != nullptr)  { useful.push(root()); }
 311   // If 'top' is cached, declare it useful to preserve cached node
 312   if (cached_top_node())  { useful.push(cached_top_node()); }
 313 
 314   // Push all useful nodes onto the list, breadthfirst
 315   for( uint next = 0; next < useful.size(); ++next ) {
 316     assert( next < unique(), "Unique useful nodes < total nodes");
 317     Node *n  = useful.at(next);
 318     uint max = n->len();
 319     for( uint i = 0; i < max; ++i ) {
 320       Node *m = n->in(i);
 321       if (not_a_node(m))  continue;
 322       useful.push(m);
 323     }
 324   }
 325 }
 326 
 327 // Update dead_node_list with any missing dead nodes using useful
 328 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
 329 void Compile::update_dead_node_list(Unique_Node_List &useful) {
 330   uint max_idx = unique();
 331   VectorSet& useful_node_set = useful.member_set();
 332 
 333   for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
 334     // If node with index node_idx is not in useful set,
 335     // mark it as dead in dead node list.
 336     if (!useful_node_set.test(node_idx)) {
 337       record_dead_node(node_idx);
 338     }
 339   }
 340 }
 341 
 342 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
 343   int shift = 0;
 344   for (int i = 0; i < inlines->length(); i++) {
 345     CallGenerator* cg = inlines->at(i);
 346     if (useful.member(cg->call_node())) {
 347       if (shift > 0) {
 348         inlines->at_put(i - shift, cg);
 349       }
 350     } else {
 351       shift++; // skip over the dead element
 352     }
 353   }
 354   if (shift > 0) {
 355     inlines->trunc_to(inlines->length() - shift); // remove last elements from compacted array
 356   }
 357 }
 358 
 359 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Node* dead) {
 360   assert(dead != nullptr && dead->is_Call(), "sanity");
 361   int found = 0;
 362   for (int i = 0; i < inlines->length(); i++) {
 363     if (inlines->at(i)->call_node() == dead) {
 364       inlines->remove_at(i);
 365       found++;
 366       NOT_DEBUG( break; ) // elements are unique, so exit early
 367     }
 368   }
 369   assert(found <= 1, "not unique");
 370 }
 371 
 372 template<typename N, ENABLE_IF_SDEFN(std::is_base_of<Node, N>::value)>
 373 void Compile::remove_useless_nodes(GrowableArray<N*>& node_list, Unique_Node_List& useful) {
 374   for (int i = node_list.length() - 1; i >= 0; i--) {
 375     N* node = node_list.at(i);
 376     if (!useful.member(node)) {
 377       node_list.delete_at(i); // replaces i-th with last element which is known to be useful (already processed)
 378     }
 379   }
 380 }
 381 
 382 void Compile::remove_useless_node(Node* dead) {
 383   remove_modified_node(dead);
 384 
 385   // Constant node that has no out-edges and has only one in-edge from
 386   // root is usually dead. However, sometimes reshaping walk makes
 387   // it reachable by adding use edges. So, we will NOT count Con nodes
 388   // as dead to be conservative about the dead node count at any
 389   // given time.
 390   if (!dead->is_Con()) {
 391     record_dead_node(dead->_idx);
 392   }
 393   if (dead->is_macro()) {
 394     remove_macro_node(dead);
 395   }
 396   if (dead->is_expensive()) {
 397     remove_expensive_node(dead);
 398   }
 399   if (dead->is_OpaqueTemplateAssertionPredicate()) {
 400     remove_template_assertion_predicate_opaque(dead->as_OpaqueTemplateAssertionPredicate());
 401   }
 402   if (dead->is_ParsePredicate()) {
 403     remove_parse_predicate(dead->as_ParsePredicate());
 404   }
 405   if (dead->for_post_loop_opts_igvn()) {
 406     remove_from_post_loop_opts_igvn(dead);
 407   }
 408   if (dead->for_merge_stores_igvn()) {
 409     remove_from_merge_stores_igvn(dead);
 410   }
 411   if (dead->is_Call()) {
 412     remove_useless_late_inlines(                &_late_inlines, dead);
 413     remove_useless_late_inlines(         &_string_late_inlines, dead);
 414     remove_useless_late_inlines(         &_boxing_late_inlines, dead);
 415     remove_useless_late_inlines(&_vector_reboxing_late_inlines, dead);
 416 
 417     if (dead->is_CallStaticJava()) {
 418       remove_unstable_if_trap(dead->as_CallStaticJava(), false);
 419     }
 420   }
 421   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 422   bs->unregister_potential_barrier_node(dead);
 423 }
 424 
 425 // Disconnect all useless nodes by disconnecting those at the boundary.
 426 void Compile::disconnect_useless_nodes(Unique_Node_List& useful, Unique_Node_List& worklist, const Unique_Node_List* root_and_safepoints) {
 427   uint next = 0;
 428   while (next < useful.size()) {
 429     Node *n = useful.at(next++);
 430     if (n->is_SafePoint()) {
 431       // We're done with a parsing phase. Replaced nodes are not valid
 432       // beyond that point.
 433       n->as_SafePoint()->delete_replaced_nodes();
 434     }
 435     // Use raw traversal of out edges since this code removes out edges
 436     int max = n->outcnt();
 437     for (int j = 0; j < max; ++j) {
 438       Node* child = n->raw_out(j);
 439       if (!useful.member(child)) {
 440         assert(!child->is_top() || child != top(),
 441                "If top is cached in Compile object it is in useful list");
 442         // Only need to remove this out-edge to the useless node
 443         n->raw_del_out(j);
 444         --j;
 445         --max;
 446         if (child->is_data_proj_of_pure_function(n)) {
 447           worklist.push(n);
 448         }
 449       }
 450     }
 451     if (n->outcnt() == 1 && n->has_special_unique_user()) {
 452       assert(useful.member(n->unique_out()), "do not push a useless node");
 453       worklist.push(n->unique_out());
 454     }
 455   }
 456 
 457   remove_useless_nodes(_macro_nodes,        useful); // remove useless macro nodes
 458   remove_useless_nodes(_parse_predicates,   useful); // remove useless Parse Predicate nodes
 459   // Remove useless Template Assertion Predicate opaque nodes
 460   remove_useless_nodes(_template_assertion_predicate_opaques, useful);
 461   remove_useless_nodes(_expensive_nodes,    useful); // remove useless expensive nodes
 462   remove_useless_nodes(_for_post_loop_igvn, useful); // remove useless node recorded for post loop opts IGVN pass
 463   remove_useless_nodes(_for_merge_stores_igvn, useful); // remove useless node recorded for merge stores IGVN pass
 464   remove_useless_unstable_if_traps(useful);          // remove useless unstable_if traps
 465   remove_useless_coarsened_locks(useful);            // remove useless coarsened locks nodes
 466 #ifdef ASSERT
 467   if (_modified_nodes != nullptr) {
 468     _modified_nodes->remove_useless_nodes(useful.member_set());
 469   }
 470 #endif
 471 
 472   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 473   bs->eliminate_useless_gc_barriers(useful, this);
 474   // clean up the late inline lists
 475   remove_useless_late_inlines(                &_late_inlines, useful);
 476   remove_useless_late_inlines(         &_string_late_inlines, useful);
 477   remove_useless_late_inlines(         &_boxing_late_inlines, useful);
 478   remove_useless_late_inlines(&_vector_reboxing_late_inlines, useful);
 479   DEBUG_ONLY(verify_graph_edges(true /*check for no_dead_code*/, root_and_safepoints);)
 480 }
 481 
 482 // ============================================================================
 483 //------------------------------CompileWrapper---------------------------------
 484 class CompileWrapper : public StackObj {
 485   Compile *const _compile;
 486  public:
 487   CompileWrapper(Compile* compile);
 488 
 489   ~CompileWrapper();
 490 };
 491 
 492 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
 493   // the Compile* pointer is stored in the current ciEnv:
 494   ciEnv* env = compile->env();
 495   assert(env == ciEnv::current(), "must already be a ciEnv active");
 496   assert(env->compiler_data() == nullptr, "compile already active?");
 497   env->set_compiler_data(compile);
 498   assert(compile == Compile::current(), "sanity");
 499 
 500   compile->set_type_dict(nullptr);
 501   compile->set_clone_map(new Dict(cmpkey, hashkey, _compile->comp_arena()));
 502   compile->clone_map().set_clone_idx(0);
 503   compile->set_type_last_size(0);
 504   compile->set_last_tf(nullptr, nullptr);
 505   compile->set_indexSet_arena(nullptr);
 506   compile->set_indexSet_free_block_list(nullptr);
 507   compile->init_type_arena();
 508   Type::Initialize(compile);
 509   _compile->begin_method();
 510   _compile->clone_map().set_debug(_compile->has_method() && _compile->directive()->CloneMapDebugOption);
 511 }
 512 CompileWrapper::~CompileWrapper() {
 513   // simulate crash during compilation
 514   assert(CICrashAt < 0 || _compile->compile_id() != CICrashAt, "just as planned");
 515 
 516   _compile->end_method();
 517   _compile->env()->set_compiler_data(nullptr);
 518 }
 519 
 520 
 521 //----------------------------print_compile_messages---------------------------
 522 void Compile::print_compile_messages() {
 523 #ifndef PRODUCT
 524   // Check if recompiling
 525   if (!subsume_loads() && PrintOpto) {
 526     // Recompiling without allowing machine instructions to subsume loads
 527     tty->print_cr("*********************************************************");
 528     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
 529     tty->print_cr("*********************************************************");
 530   }
 531   if ((do_escape_analysis() != DoEscapeAnalysis) && PrintOpto) {
 532     // Recompiling without escape analysis
 533     tty->print_cr("*********************************************************");
 534     tty->print_cr("** Bailout: Recompile without escape analysis          **");
 535     tty->print_cr("*********************************************************");
 536   }
 537   if (do_iterative_escape_analysis() != DoEscapeAnalysis && PrintOpto) {
 538     // Recompiling without iterative escape analysis
 539     tty->print_cr("*********************************************************");
 540     tty->print_cr("** Bailout: Recompile without iterative escape analysis**");
 541     tty->print_cr("*********************************************************");
 542   }
 543   if (do_reduce_allocation_merges() != ReduceAllocationMerges && PrintOpto) {
 544     // Recompiling without reducing allocation merges
 545     tty->print_cr("*********************************************************");
 546     tty->print_cr("** Bailout: Recompile without reduce allocation merges **");
 547     tty->print_cr("*********************************************************");
 548   }
 549   if ((eliminate_boxing() != EliminateAutoBox) && PrintOpto) {
 550     // Recompiling without boxing elimination
 551     tty->print_cr("*********************************************************");
 552     tty->print_cr("** Bailout: Recompile without boxing elimination       **");
 553     tty->print_cr("*********************************************************");
 554   }
 555   if ((do_locks_coarsening() != EliminateLocks) && PrintOpto) {
 556     // Recompiling without locks coarsening
 557     tty->print_cr("*********************************************************");
 558     tty->print_cr("** Bailout: Recompile without locks coarsening         **");
 559     tty->print_cr("*********************************************************");
 560   }
 561   if (env()->break_at_compile()) {
 562     // Open the debugger when compiling this method.
 563     tty->print("### Breaking when compiling: ");
 564     method()->print_short_name();
 565     tty->cr();
 566     BREAKPOINT;
 567   }
 568 
 569   if( PrintOpto ) {
 570     if (is_osr_compilation()) {
 571       tty->print("[OSR]%3d", _compile_id);
 572     } else {
 573       tty->print("%3d", _compile_id);
 574     }
 575   }
 576 #endif
 577 }
 578 
 579 #ifndef PRODUCT
 580 void Compile::print_phase(const char* phase_name) {
 581   tty->print_cr("%u.\t%s", ++_phase_counter, phase_name);
 582 }
 583 
 584 void Compile::print_ideal_ir(const char* phase_name) {
 585   // keep the following output all in one block
 586   // This output goes directly to the tty, not the compiler log.
 587   // To enable tools to match it up with the compilation activity,
 588   // be sure to tag this tty output with the compile ID.
 589 
 590   // Node dumping can cause a safepoint, which can break the tty lock.
 591   // Buffer all node dumps, so that all safepoints happen before we lock.
 592   ResourceMark rm;
 593   stringStream ss;
 594 
 595   if (_output == nullptr) {
 596     ss.print_cr("AFTER: %s", phase_name);
 597     // Print out all nodes in ascending order of index.
 598     root()->dump_bfs(MaxNodeLimit, nullptr, "+S$", &ss);
 599   } else {
 600     // Dump the node blockwise if we have a scheduling
 601     _output->print_scheduling(&ss);
 602   }
 603 
 604   // Check that the lock is not broken by a safepoint.
 605   NoSafepointVerifier nsv;
 606   ttyLocker ttyl;
 607   if (xtty != nullptr) {
 608     xtty->head("ideal compile_id='%d'%s compile_phase='%s'",
 609                compile_id(),
 610                is_osr_compilation() ? " compile_kind='osr'" : "",
 611                phase_name);
 612   }
 613 
 614   tty->print("%s", ss.as_string());
 615 
 616   if (xtty != nullptr) {
 617     xtty->tail("ideal");
 618   }
 619 }
 620 #endif
 621 
 622 // ============================================================================
 623 //------------------------------Compile standard-------------------------------
 624 
 625 // Compile a method.  entry_bci is -1 for normal compilations and indicates
 626 // the continuation bci for on stack replacement.
 627 
 628 
 629 Compile::Compile(ciEnv* ci_env, ciMethod* target, int osr_bci,
 630                  Options options, DirectiveSet* directive)
 631     : Phase(Compiler),
 632       _compile_id(ci_env->compile_id()),
 633       _options(options),
 634       _method(target),
 635       _entry_bci(osr_bci),
 636       _ilt(nullptr),
 637       _stub_function(nullptr),
 638       _stub_name(nullptr),
 639       _stub_id(-1),
 640       _stub_entry_point(nullptr),
 641       _max_node_limit(MaxNodeLimit),
 642       _post_loop_opts_phase(false),
 643       _merge_stores_phase(false),
 644       _allow_macro_nodes(true),
 645       _inlining_progress(false),
 646       _inlining_incrementally(false),
 647       _do_cleanup(false),
 648       _has_reserved_stack_access(target->has_reserved_stack_access()),
 649 #ifndef PRODUCT
 650       _igv_idx(0),
 651       _trace_opto_output(directive->TraceOptoOutputOption),
 652 #endif
 653       _has_method_handle_invokes(false),
 654       _clinit_barrier_on_entry(false),
 655       _has_clinit_barriers(false),
 656       _stress_seed(0),
 657       _comp_arena(mtCompiler, Arena::Tag::tag_comp),
 658       _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())),
 659       _env(ci_env),
 660       _directive(directive),
 661       _log(ci_env->log()),
 662       _first_failure_details(nullptr),
 663       _intrinsics(comp_arena(), 0, 0, nullptr),
 664       _macro_nodes(comp_arena(), 8, 0, nullptr),
 665       _parse_predicates(comp_arena(), 8, 0, nullptr),
 666       _template_assertion_predicate_opaques(comp_arena(), 8, 0, nullptr),
 667       _expensive_nodes(comp_arena(), 8, 0, nullptr),
 668       _for_post_loop_igvn(comp_arena(), 8, 0, nullptr),
 669       _for_merge_stores_igvn(comp_arena(), 8, 0, nullptr),
 670       _unstable_if_traps(comp_arena(), 8, 0, nullptr),
 671       _coarsened_locks(comp_arena(), 8, 0, nullptr),
 672       _congraph(nullptr),
 673       NOT_PRODUCT(_igv_printer(nullptr) COMMA)
 674           _unique(0),
 675       _dead_node_count(0),
 676       _dead_node_list(comp_arena()),
 677       _node_arena_one(mtCompiler, Arena::Tag::tag_node),
 678       _node_arena_two(mtCompiler, Arena::Tag::tag_node),
 679       _node_arena(&_node_arena_one),
 680       _mach_constant_base_node(nullptr),
 681       _Compile_types(mtCompiler, Arena::Tag::tag_type),
 682       _initial_gvn(nullptr),
 683       _igvn_worklist(nullptr),
 684       _types(nullptr),
 685       _node_hash(nullptr),
 686       _late_inlines(comp_arena(), 2, 0, nullptr),
 687       _string_late_inlines(comp_arena(), 2, 0, nullptr),
 688       _boxing_late_inlines(comp_arena(), 2, 0, nullptr),
 689       _vector_reboxing_late_inlines(comp_arena(), 2, 0, nullptr),
 690       _late_inlines_pos(0),
 691       _number_of_mh_late_inlines(0),
 692       _oom(false),
 693       _replay_inline_data(nullptr),
 694       _inline_printer(this),
 695       _java_calls(0),
 696       _inner_loops(0),
 697       _interpreter_frame_size(0),
 698       _output(nullptr)
 699 #ifndef PRODUCT
 700       ,
 701       _in_dump_cnt(0)
 702 #endif
 703 {
 704   C = this;
 705   CompileWrapper cw(this);
 706 
 707   TraceTime t1("Total compilation time", &_t_totalCompilation, CITime, CITimeVerbose);
 708   TraceTime t2(nullptr, &_t_methodCompilation, CITime, false);
 709 
 710 #if defined(SUPPORT_ASSEMBLY) || defined(SUPPORT_ABSTRACT_ASSEMBLY)
 711   bool print_opto_assembly = directive->PrintOptoAssemblyOption;
 712   // We can always print a disassembly, either abstract (hex dump) or
 713   // with the help of a suitable hsdis library. Thus, we should not
 714   // couple print_assembly and print_opto_assembly controls.
 715   // But: always print opto and regular assembly on compile command 'print'.
 716   bool print_assembly = directive->PrintAssemblyOption;
 717   set_print_assembly(print_opto_assembly || print_assembly);
 718 #else
 719   set_print_assembly(false); // must initialize.
 720 #endif
 721 
 722 #ifndef PRODUCT
 723   set_parsed_irreducible_loop(false);
 724 #endif
 725 
 726   if (directive->ReplayInlineOption) {
 727     _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level());
 728   }
 729   set_print_inlining(directive->PrintInliningOption || PrintOptoInlining);
 730   set_print_intrinsics(directive->PrintIntrinsicsOption);
 731   set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it
 732 
 733   if (ProfileTraps) {
 734     // Make sure the method being compiled gets its own MDO,
 735     // so we can at least track the decompile_count().
 736     method()->ensure_method_data();
 737   }
 738 
 739   if (StressLCM || StressGCM || StressIGVN || StressCCP ||
 740       StressIncrementalInlining || StressMacroExpansion || StressUnstableIfTraps || StressBailout ||
 741       StressLoopPeeling) {
 742     initialize_stress_seed(directive);
 743   }
 744 
 745   Init(/*do_aliasing=*/ true);
 746 
 747   print_compile_messages();
 748 
 749   _ilt = InlineTree::build_inline_tree_root();
 750 
 751   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
 752   assert(num_alias_types() >= AliasIdxRaw, "");
 753 
 754 #define MINIMUM_NODE_HASH  1023
 755 
 756   // GVN that will be run immediately on new nodes
 757   uint estimated_size = method()->code_size()*4+64;
 758   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
 759   _igvn_worklist = new (comp_arena()) Unique_Node_List(comp_arena());
 760   _types = new (comp_arena()) Type_Array(comp_arena());
 761   _node_hash = new (comp_arena()) NodeHash(comp_arena(), estimated_size);
 762   PhaseGVN gvn;
 763   set_initial_gvn(&gvn);
 764 
 765   { // Scope for timing the parser
 766     TracePhase tp(_t_parser);
 767 
 768     // Put top into the hash table ASAP.
 769     initial_gvn()->transform(top());
 770 
 771     // Set up tf(), start(), and find a CallGenerator.
 772     CallGenerator* cg = nullptr;
 773     if (is_osr_compilation()) {
 774       const TypeTuple *domain = StartOSRNode::osr_domain();
 775       const TypeTuple *range = TypeTuple::make_range(method()->signature());
 776       init_tf(TypeFunc::make(domain, range));
 777       StartNode* s = new StartOSRNode(root(), domain);
 778       initial_gvn()->set_type_bottom(s);
 779       verify_start(s);
 780       cg = CallGenerator::for_osr(method(), entry_bci());
 781     } else {
 782       // Normal case.
 783       init_tf(TypeFunc::make(method()));
 784       StartNode* s = new StartNode(root(), tf()->domain());
 785       initial_gvn()->set_type_bottom(s);
 786       verify_start(s);
 787       if (method()->intrinsic_id() == vmIntrinsics::_Reference_get) {
 788         // With java.lang.ref.reference.get() we must go through the
 789         // intrinsic - even when get() is the root
 790         // method of the compile - so that, if necessary, the value in
 791         // the referent field of the reference object gets recorded by
 792         // the pre-barrier code.
 793         cg = find_intrinsic(method(), false);
 794       }
 795       if (cg == nullptr) {
 796         float past_uses = method()->interpreter_invocation_count();
 797         float expected_uses = past_uses;
 798         cg = CallGenerator::for_inline(method(), expected_uses);
 799       }
 800     }
 801     if (failing())  return;
 802     if (cg == nullptr) {
 803       const char* reason = InlineTree::check_can_parse(method());
 804       assert(reason != nullptr, "expect reason for parse failure");
 805       stringStream ss;
 806       ss.print("cannot parse method: %s", reason);
 807       record_method_not_compilable(ss.as_string());
 808       return;
 809     }
 810 
 811     gvn.set_type(root(), root()->bottom_type());
 812 
 813     JVMState* jvms = build_start_state(start(), tf());
 814     if ((jvms = cg->generate(jvms)) == nullptr) {
 815       assert(failure_reason() != nullptr, "expect reason for parse failure");
 816       stringStream ss;
 817       ss.print("method parse failed: %s", failure_reason());
 818       record_method_not_compilable(ss.as_string() DEBUG_ONLY(COMMA true));
 819       return;
 820     }
 821     GraphKit kit(jvms);
 822 
 823     if (!kit.stopped()) {
 824       // Accept return values, and transfer control we know not where.
 825       // This is done by a special, unique ReturnNode bound to root.
 826       return_values(kit.jvms());
 827     }
 828 
 829     if (kit.has_exceptions()) {
 830       // Any exceptions that escape from this call must be rethrown
 831       // to whatever caller is dynamically above us on the stack.
 832       // This is done by a special, unique RethrowNode bound to root.
 833       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
 834     }
 835 
 836     assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
 837 
 838     if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
 839       inline_string_calls(true);
 840     }
 841 
 842     if (failing())  return;
 843 
 844     // Remove clutter produced by parsing.
 845     if (!failing()) {
 846       ResourceMark rm;
 847       PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist());
 848     }
 849   }
 850 
 851   // Note:  Large methods are capped off in do_one_bytecode().
 852   if (failing())  return;
 853 
 854   // After parsing, node notes are no longer automagic.
 855   // They must be propagated by register_new_node_with_optimizer(),
 856   // clone(), or the like.
 857   set_default_node_notes(nullptr);
 858 
 859 #ifndef PRODUCT
 860   if (should_print_igv(1)) {
 861     _igv_printer->print_inlining();
 862   }
 863 #endif
 864 
 865   if (failing())  return;
 866   NOT_PRODUCT( verify_graph_edges(); )
 867 
 868   // Now optimize
 869   Optimize();
 870   if (failing())  return;
 871   NOT_PRODUCT( verify_graph_edges(); )
 872 
 873 #ifndef PRODUCT
 874   if (should_print_ideal()) {
 875     print_ideal_ir("print_ideal");
 876   }
 877 #endif
 878 
 879 #ifdef ASSERT
 880   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 881   bs->verify_gc_barriers(this, BarrierSetC2::BeforeCodeGen);
 882 #endif
 883 
 884   // Dump compilation data to replay it.
 885   if (directive->DumpReplayOption) {
 886     env()->dump_replay_data(_compile_id);
 887   }
 888   if (directive->DumpInlineOption && (ilt() != nullptr)) {
 889     env()->dump_inline_data(_compile_id);
 890   }
 891 
 892   // Now that we know the size of all the monitors we can add a fixed slot
 893   // for the original deopt pc.
 894   int next_slot = fixed_slots() + (sizeof(address) / VMRegImpl::stack_slot_size);
 895   set_fixed_slots(next_slot);
 896 
 897   // Compute when to use implicit null checks. Used by matching trap based
 898   // nodes and NullCheck optimization.
 899   set_allowed_deopt_reasons();
 900 
 901   // Now generate code
 902   Code_Gen();
 903 }
 904 
 905 //------------------------------Compile----------------------------------------
 906 // Compile a runtime stub
 907 Compile::Compile(ciEnv* ci_env,
 908                  TypeFunc_generator generator,
 909                  address stub_function,
 910                  const char* stub_name,
 911                  int stub_id,
 912                  int is_fancy_jump,
 913                  bool pass_tls,
 914                  bool return_pc,
 915                  DirectiveSet* directive)
 916     : Phase(Compiler),
 917       _compile_id(0),
 918       _options(Options::for_runtime_stub()),
 919       _method(nullptr),
 920       _entry_bci(InvocationEntryBci),
 921       _stub_function(stub_function),
 922       _stub_name(stub_name),
 923       _stub_id(stub_id),
 924       _stub_entry_point(nullptr),
 925       _max_node_limit(MaxNodeLimit),
 926       _post_loop_opts_phase(false),
 927       _merge_stores_phase(false),
 928       _allow_macro_nodes(true),
 929       _inlining_progress(false),
 930       _inlining_incrementally(false),
 931       _has_reserved_stack_access(false),
 932 #ifndef PRODUCT
 933       _igv_idx(0),
 934       _trace_opto_output(directive->TraceOptoOutputOption),
 935 #endif
 936       _has_method_handle_invokes(false),
 937       _clinit_barrier_on_entry(false),
 938       _has_clinit_barriers(false),
 939       _stress_seed(0),
 940       _comp_arena(mtCompiler, Arena::Tag::tag_comp),
 941       _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())),
 942       _env(ci_env),
 943       _directive(directive),
 944       _log(ci_env->log()),
 945       _first_failure_details(nullptr),
 946       _for_post_loop_igvn(comp_arena(), 8, 0, nullptr),
 947       _for_merge_stores_igvn(comp_arena(), 8, 0, nullptr),
 948       _congraph(nullptr),
 949       NOT_PRODUCT(_igv_printer(nullptr) COMMA)
 950           _unique(0),
 951       _dead_node_count(0),
 952       _dead_node_list(comp_arena()),
 953       _node_arena_one(mtCompiler, Arena::Tag::tag_node),
 954       _node_arena_two(mtCompiler, Arena::Tag::tag_node),
 955       _node_arena(&_node_arena_one),
 956       _mach_constant_base_node(nullptr),
 957       _Compile_types(mtCompiler, Arena::Tag::tag_type),
 958       _initial_gvn(nullptr),
 959       _igvn_worklist(nullptr),
 960       _types(nullptr),
 961       _node_hash(nullptr),
 962       _number_of_mh_late_inlines(0),
 963       _oom(false),
 964       _replay_inline_data(nullptr),
 965       _inline_printer(this),
 966       _java_calls(0),
 967       _inner_loops(0),
 968       _interpreter_frame_size(0),
 969       _output(nullptr),
 970 #ifndef PRODUCT
 971       _in_dump_cnt(0),
 972 #endif
 973       _allowed_reasons(0) {
 974   C = this;
 975 
 976   // try to reuse an existing stub
 977   {
 978     CodeBlob* blob = AOTCodeCache::load_code_blob(AOTCodeEntry::C2Blob, _stub_id, stub_name);
 979     if (blob != nullptr) {
 980       RuntimeStub* rs = blob->as_runtime_stub();
 981       _stub_entry_point = rs->entry_point();
 982       return;
 983     }
 984   }
 985 
 986   TraceTime t1(nullptr, &_t_totalCompilation, CITime, false);
 987   TraceTime t2(nullptr, &_t_stubCompilation, CITime, false);
 988 
 989 #ifndef PRODUCT
 990   set_print_assembly(PrintFrameConverterAssembly);
 991   set_parsed_irreducible_loop(false);
 992 #else
 993   set_print_assembly(false); // Must initialize.
 994 #endif
 995   set_has_irreducible_loop(false); // no loops
 996 
 997   CompileWrapper cw(this);
 998   Init(/*do_aliasing=*/ false);
 999   init_tf((*generator)());
1000 
1001   _igvn_worklist = new (comp_arena()) Unique_Node_List(comp_arena());
1002   _types = new (comp_arena()) Type_Array(comp_arena());
1003   _node_hash = new (comp_arena()) NodeHash(comp_arena(), 255);
1004 
1005   if (StressLCM || StressGCM || StressBailout) {
1006     initialize_stress_seed(directive);
1007   }
1008 
1009   {
1010     PhaseGVN gvn;
1011     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
1012     gvn.transform(top());
1013 
1014     GraphKit kit;
1015     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
1016   }
1017 
1018   NOT_PRODUCT( verify_graph_edges(); )
1019 
1020   Code_Gen();
1021 }
1022 
1023 Compile::~Compile() {
1024   delete _first_failure_details;
1025 };
1026 
1027 //------------------------------Init-------------------------------------------
1028 // Prepare for a single compilation
1029 void Compile::Init(bool aliasing) {
1030   _do_aliasing = aliasing;
1031   _unique  = 0;
1032   _regalloc = nullptr;
1033 
1034   _tf      = nullptr;  // filled in later
1035   _top     = nullptr;  // cached later
1036   _matcher = nullptr;  // filled in later
1037   _cfg     = nullptr;  // filled in later
1038 
1039   _node_note_array = nullptr;
1040   _default_node_notes = nullptr;
1041   DEBUG_ONLY( _modified_nodes = nullptr; ) // Used in Optimize()
1042 
1043   _immutable_memory = nullptr; // filled in at first inquiry
1044 
1045 #ifdef ASSERT
1046   _phase_optimize_finished = false;
1047   _phase_verify_ideal_loop = false;
1048   _exception_backedge = false;
1049   _type_verify = nullptr;
1050 #endif
1051 
1052   // Globally visible Nodes
1053   // First set TOP to null to give safe behavior during creation of RootNode
1054   set_cached_top_node(nullptr);
1055   set_root(new RootNode());
1056   // Now that you have a Root to point to, create the real TOP
1057   set_cached_top_node( new ConNode(Type::TOP) );
1058   set_recent_alloc(nullptr, nullptr);
1059 
1060   // Create Debug Information Recorder to record scopes, oopmaps, etc.
1061   env()->set_oop_recorder(new OopRecorder(env()->arena()));
1062   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
1063   env()->set_dependencies(new Dependencies(env()));
1064 
1065   _fixed_slots = 0;
1066   set_has_split_ifs(false);
1067   set_has_loops(false); // first approximation
1068   set_has_stringbuilder(false);
1069   set_has_boxed_value(false);
1070   _trap_can_recompile = false;  // no traps emitted yet
1071   _major_progress = true; // start out assuming good things will happen
1072   set_has_unsafe_access(false);
1073   set_max_vector_size(0);
1074   set_clear_upper_avx(false);  //false as default for clear upper bits of ymm registers
1075   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
1076   set_decompile_count(0);
1077 
1078 #ifndef PRODUCT
1079   _phase_counter = 0;
1080   Copy::zero_to_bytes(_igv_phase_iter, sizeof(_igv_phase_iter));
1081 #endif
1082 
1083   set_do_freq_based_layout(_directive->BlockLayoutByFrequencyOption);
1084   _loop_opts_cnt = LoopOptsCount;
1085   set_do_inlining(Inline);
1086   set_max_inline_size(MaxInlineSize);
1087   set_freq_inline_size(FreqInlineSize);
1088   set_do_scheduling(OptoScheduling);
1089 
1090   set_do_vector_loop(false);
1091   set_has_monitors(false);
1092   set_has_scoped_access(false);
1093 
1094   if (AllowVectorizeOnDemand) {
1095     if (has_method() && _directive->VectorizeOption) {
1096       set_do_vector_loop(true);
1097       NOT_PRODUCT(if (do_vector_loop() && Verbose) {tty->print("Compile::Init: do vectorized loops (SIMD like) for method %s\n",  method()->name()->as_quoted_ascii());})
1098     } else if (has_method() && method()->name() != nullptr &&
1099                method()->intrinsic_id() == vmIntrinsics::_forEachRemaining) {
1100       set_do_vector_loop(true);
1101     }
1102   }
1103   set_use_cmove(UseCMoveUnconditionally /* || do_vector_loop()*/); //TODO: consider do_vector_loop() mandate use_cmove unconditionally
1104   NOT_PRODUCT(if (use_cmove() && Verbose && has_method()) {tty->print("Compile::Init: use CMove without profitability tests for method %s\n",  method()->name()->as_quoted_ascii());})
1105 
1106   _max_node_limit = _directive->MaxNodeLimitOption;
1107 
1108   if (VM_Version::supports_fast_class_init_checks() && has_method() && !is_osr_compilation() &&
1109       (method()->needs_clinit_barrier() || (do_clinit_barriers() && method()->is_static()))) {
1110     set_clinit_barrier_on_entry(true);
1111     if (do_clinit_barriers()) {
1112       set_has_clinit_barriers(true); // Entry clinit barrier is in prolog code.
1113     }
1114   }
1115   if (debug_info()->recording_non_safepoints()) {
1116     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
1117                         (comp_arena(), 8, 0, nullptr));
1118     set_default_node_notes(Node_Notes::make(this));
1119   }
1120 
1121   const int grow_ats = 16;
1122   _max_alias_types = grow_ats;
1123   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
1124   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
1125   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
1126   {
1127     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
1128   }
1129   // Initialize the first few types.
1130   _alias_types[AliasIdxTop]->Init(AliasIdxTop, nullptr);
1131   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
1132   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
1133   _num_alias_types = AliasIdxRaw+1;
1134   // Zero out the alias type cache.
1135   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
1136   // A null adr_type hits in the cache right away.  Preload the right answer.
1137   probe_alias_cache(nullptr)->_index = AliasIdxTop;
1138 }
1139 
1140 #ifdef ASSERT
1141 // Verify that the current StartNode is valid.
1142 void Compile::verify_start(StartNode* s) const {
1143   assert(failing_internal() || s == start(), "should be StartNode");
1144 }
1145 #endif
1146 
1147 /**
1148  * Return the 'StartNode'. We must not have a pending failure, since the ideal graph
1149  * can be in an inconsistent state, i.e., we can get segmentation faults when traversing
1150  * the ideal graph.
1151  */
1152 StartNode* Compile::start() const {
1153   assert (!failing_internal() || C->failure_is_artificial(), "Must not have pending failure. Reason is: %s", failure_reason());
1154   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
1155     Node* start = root()->fast_out(i);
1156     if (start->is_Start()) {
1157       return start->as_Start();
1158     }
1159   }
1160   fatal("Did not find Start node!");
1161   return nullptr;
1162 }
1163 
1164 //-------------------------------immutable_memory-------------------------------------
1165 // Access immutable memory
1166 Node* Compile::immutable_memory() {
1167   if (_immutable_memory != nullptr) {
1168     return _immutable_memory;
1169   }
1170   StartNode* s = start();
1171   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
1172     Node *p = s->fast_out(i);
1173     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
1174       _immutable_memory = p;
1175       return _immutable_memory;
1176     }
1177   }
1178   ShouldNotReachHere();
1179   return nullptr;
1180 }
1181 
1182 //----------------------set_cached_top_node------------------------------------
1183 // Install the cached top node, and make sure Node::is_top works correctly.
1184 void Compile::set_cached_top_node(Node* tn) {
1185   if (tn != nullptr)  verify_top(tn);
1186   Node* old_top = _top;
1187   _top = tn;
1188   // Calling Node::setup_is_top allows the nodes the chance to adjust
1189   // their _out arrays.
1190   if (_top != nullptr)     _top->setup_is_top();
1191   if (old_top != nullptr)  old_top->setup_is_top();
1192   assert(_top == nullptr || top()->is_top(), "");
1193 }
1194 
1195 #ifdef ASSERT
1196 uint Compile::count_live_nodes_by_graph_walk() {
1197   Unique_Node_List useful(comp_arena());
1198   // Get useful node list by walking the graph.
1199   identify_useful_nodes(useful);
1200   return useful.size();
1201 }
1202 
1203 void Compile::print_missing_nodes() {
1204 
1205   // Return if CompileLog is null and PrintIdealNodeCount is false.
1206   if ((_log == nullptr) && (! PrintIdealNodeCount)) {
1207     return;
1208   }
1209 
1210   // This is an expensive function. It is executed only when the user
1211   // specifies VerifyIdealNodeCount option or otherwise knows the
1212   // additional work that needs to be done to identify reachable nodes
1213   // by walking the flow graph and find the missing ones using
1214   // _dead_node_list.
1215 
1216   Unique_Node_List useful(comp_arena());
1217   // Get useful node list by walking the graph.
1218   identify_useful_nodes(useful);
1219 
1220   uint l_nodes = C->live_nodes();
1221   uint l_nodes_by_walk = useful.size();
1222 
1223   if (l_nodes != l_nodes_by_walk) {
1224     if (_log != nullptr) {
1225       _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
1226       _log->stamp();
1227       _log->end_head();
1228     }
1229     VectorSet& useful_member_set = useful.member_set();
1230     int last_idx = l_nodes_by_walk;
1231     for (int i = 0; i < last_idx; i++) {
1232       if (useful_member_set.test(i)) {
1233         if (_dead_node_list.test(i)) {
1234           if (_log != nullptr) {
1235             _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
1236           }
1237           if (PrintIdealNodeCount) {
1238             // Print the log message to tty
1239               tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
1240               useful.at(i)->dump();
1241           }
1242         }
1243       }
1244       else if (! _dead_node_list.test(i)) {
1245         if (_log != nullptr) {
1246           _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
1247         }
1248         if (PrintIdealNodeCount) {
1249           // Print the log message to tty
1250           tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
1251         }
1252       }
1253     }
1254     if (_log != nullptr) {
1255       _log->tail("mismatched_nodes");
1256     }
1257   }
1258 }
1259 void Compile::record_modified_node(Node* n) {
1260   if (_modified_nodes != nullptr && !_inlining_incrementally && !n->is_Con()) {
1261     _modified_nodes->push(n);
1262   }
1263 }
1264 
1265 void Compile::remove_modified_node(Node* n) {
1266   if (_modified_nodes != nullptr) {
1267     _modified_nodes->remove(n);
1268   }
1269 }
1270 #endif
1271 
1272 #ifndef PRODUCT
1273 void Compile::verify_top(Node* tn) const {
1274   if (tn != nullptr) {
1275     assert(tn->is_Con(), "top node must be a constant");
1276     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
1277     assert(tn->in(0) != nullptr, "must have live top node");
1278   }
1279 }
1280 #endif
1281 
1282 
1283 ///-------------------Managing Per-Node Debug & Profile Info-------------------
1284 
1285 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1286   guarantee(arr != nullptr, "");
1287   int num_blocks = arr->length();
1288   if (grow_by < num_blocks)  grow_by = num_blocks;
1289   int num_notes = grow_by * _node_notes_block_size;
1290   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1291   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1292   while (num_notes > 0) {
1293     arr->append(notes);
1294     notes     += _node_notes_block_size;
1295     num_notes -= _node_notes_block_size;
1296   }
1297   assert(num_notes == 0, "exact multiple, please");
1298 }
1299 
1300 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1301   if (source == nullptr || dest == nullptr)  return false;
1302 
1303   if (dest->is_Con())
1304     return false;               // Do not push debug info onto constants.
1305 
1306 #ifdef ASSERT
1307   // Leave a bread crumb trail pointing to the original node:
1308   if (dest != nullptr && dest != source && dest->debug_orig() == nullptr) {
1309     dest->set_debug_orig(source);
1310   }
1311 #endif
1312 
1313   if (node_note_array() == nullptr)
1314     return false;               // Not collecting any notes now.
1315 
1316   // This is a copy onto a pre-existing node, which may already have notes.
1317   // If both nodes have notes, do not overwrite any pre-existing notes.
1318   Node_Notes* source_notes = node_notes_at(source->_idx);
1319   if (source_notes == nullptr || source_notes->is_clear())  return false;
1320   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
1321   if (dest_notes == nullptr || dest_notes->is_clear()) {
1322     return set_node_notes_at(dest->_idx, source_notes);
1323   }
1324 
1325   Node_Notes merged_notes = (*source_notes);
1326   // The order of operations here ensures that dest notes will win...
1327   merged_notes.update_from(dest_notes);
1328   return set_node_notes_at(dest->_idx, &merged_notes);
1329 }
1330 
1331 
1332 //--------------------------allow_range_check_smearing-------------------------
1333 // Gating condition for coalescing similar range checks.
1334 // Sometimes we try 'speculatively' replacing a series of a range checks by a
1335 // single covering check that is at least as strong as any of them.
1336 // If the optimization succeeds, the simplified (strengthened) range check
1337 // will always succeed.  If it fails, we will deopt, and then give up
1338 // on the optimization.
1339 bool Compile::allow_range_check_smearing() const {
1340   // If this method has already thrown a range-check,
1341   // assume it was because we already tried range smearing
1342   // and it failed.
1343   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1344   return !already_trapped;
1345 }
1346 
1347 
1348 //------------------------------flatten_alias_type-----------------------------
1349 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1350   assert(do_aliasing(), "Aliasing should be enabled");
1351   int offset = tj->offset();
1352   TypePtr::PTR ptr = tj->ptr();
1353 
1354   // Known instance (scalarizable allocation) alias only with itself.
1355   bool is_known_inst = tj->isa_oopptr() != nullptr &&
1356                        tj->is_oopptr()->is_known_instance();
1357 
1358   // Process weird unsafe references.
1359   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1360     assert(InlineUnsafeOps || StressReflectiveCode, "indeterminate pointers come only from unsafe ops");
1361     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1362     tj = TypeOopPtr::BOTTOM;
1363     ptr = tj->ptr();
1364     offset = tj->offset();
1365   }
1366 
1367   // Array pointers need some flattening
1368   const TypeAryPtr* ta = tj->isa_aryptr();
1369   if (ta && ta->is_stable()) {
1370     // Erase stability property for alias analysis.
1371     tj = ta = ta->cast_to_stable(false);
1372   }
1373   if( ta && is_known_inst ) {
1374     if ( offset != Type::OffsetBot &&
1375          offset > arrayOopDesc::length_offset_in_bytes() ) {
1376       offset = Type::OffsetBot; // Flatten constant access into array body only
1377       tj = ta = ta->
1378               remove_speculative()->
1379               cast_to_ptr_type(ptr)->
1380               with_offset(offset);
1381     }
1382   } else if (ta) {
1383     // For arrays indexed by constant indices, we flatten the alias
1384     // space to include all of the array body.  Only the header, klass
1385     // and array length can be accessed un-aliased.
1386     if( offset != Type::OffsetBot ) {
1387       if( ta->const_oop() ) { // MethodData* or Method*
1388         offset = Type::OffsetBot;   // Flatten constant access into array body
1389         tj = ta = ta->
1390                 remove_speculative()->
1391                 cast_to_ptr_type(ptr)->
1392                 cast_to_exactness(false)->
1393                 with_offset(offset);
1394       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1395         // range is OK as-is.
1396         tj = ta = TypeAryPtr::RANGE;
1397       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1398         tj = TypeInstPtr::KLASS; // all klass loads look alike
1399         ta = TypeAryPtr::RANGE; // generic ignored junk
1400         ptr = TypePtr::BotPTR;
1401       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1402         tj = TypeInstPtr::MARK;
1403         ta = TypeAryPtr::RANGE; // generic ignored junk
1404         ptr = TypePtr::BotPTR;
1405       } else {                  // Random constant offset into array body
1406         offset = Type::OffsetBot;   // Flatten constant access into array body
1407         tj = ta = ta->
1408                 remove_speculative()->
1409                 cast_to_ptr_type(ptr)->
1410                 cast_to_exactness(false)->
1411                 with_offset(offset);
1412       }
1413     }
1414     // Arrays of fixed size alias with arrays of unknown size.
1415     if (ta->size() != TypeInt::POS) {
1416       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1417       tj = ta = ta->
1418               remove_speculative()->
1419               cast_to_ptr_type(ptr)->
1420               with_ary(tary)->
1421               cast_to_exactness(false);
1422     }
1423     // Arrays of known objects become arrays of unknown objects.
1424     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1425       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1426       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,nullptr,false,offset);
1427     }
1428     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1429       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1430       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,nullptr,false,offset);
1431     }
1432     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1433     // cannot be distinguished by bytecode alone.
1434     if (ta->elem() == TypeInt::BOOL) {
1435       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1436       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1437       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
1438     }
1439     // During the 2nd round of IterGVN, NotNull castings are removed.
1440     // Make sure the Bottom and NotNull variants alias the same.
1441     // Also, make sure exact and non-exact variants alias the same.
1442     if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != nullptr) {
1443       tj = ta = ta->
1444               remove_speculative()->
1445               cast_to_ptr_type(TypePtr::BotPTR)->
1446               cast_to_exactness(false)->
1447               with_offset(offset);
1448     }
1449   }
1450 
1451   // Oop pointers need some flattening
1452   const TypeInstPtr *to = tj->isa_instptr();
1453   if (to && to != TypeOopPtr::BOTTOM) {
1454     ciInstanceKlass* ik = to->instance_klass();
1455     if( ptr == TypePtr::Constant ) {
1456       if (ik != ciEnv::current()->Class_klass() ||
1457           offset < ik->layout_helper_size_in_bytes()) {
1458         // No constant oop pointers (such as Strings); they alias with
1459         // unknown strings.
1460         assert(!is_known_inst, "not scalarizable allocation");
1461         tj = to = to->
1462                 cast_to_instance_id(TypeOopPtr::InstanceBot)->
1463                 remove_speculative()->
1464                 cast_to_ptr_type(TypePtr::BotPTR)->
1465                 cast_to_exactness(false);
1466       }
1467     } else if( is_known_inst ) {
1468       tj = to; // Keep NotNull and klass_is_exact for instance type
1469     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1470       // During the 2nd round of IterGVN, NotNull castings are removed.
1471       // Make sure the Bottom and NotNull variants alias the same.
1472       // Also, make sure exact and non-exact variants alias the same.
1473       tj = to = to->
1474               remove_speculative()->
1475               cast_to_instance_id(TypeOopPtr::InstanceBot)->
1476               cast_to_ptr_type(TypePtr::BotPTR)->
1477               cast_to_exactness(false);
1478     }
1479     if (to->speculative() != nullptr) {
1480       tj = to = to->remove_speculative();
1481     }
1482     // Canonicalize the holder of this field
1483     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1484       // First handle header references such as a LoadKlassNode, even if the
1485       // object's klass is unloaded at compile time (4965979).
1486       if (!is_known_inst) { // Do it only for non-instance types
1487         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, nullptr, offset);
1488       }
1489     } else if (offset < 0 || offset >= ik->layout_helper_size_in_bytes()) {
1490       // Static fields are in the space above the normal instance
1491       // fields in the java.lang.Class instance.
1492       if (ik != ciEnv::current()->Class_klass()) {
1493         to = nullptr;
1494         tj = TypeOopPtr::BOTTOM;
1495         offset = tj->offset();
1496       }
1497     } else {
1498       ciInstanceKlass *canonical_holder = ik->get_canonical_holder(offset);
1499       assert(offset < canonical_holder->layout_helper_size_in_bytes(), "");
1500       assert(tj->offset() == offset, "no change to offset expected");
1501       bool xk = to->klass_is_exact();
1502       int instance_id = to->instance_id();
1503 
1504       // If the input type's class is the holder: if exact, the type only includes interfaces implemented by the holder
1505       // but if not exact, it may include extra interfaces: build new type from the holder class to make sure only
1506       // its interfaces are included.
1507       if (xk && ik->equals(canonical_holder)) {
1508         assert(tj == TypeInstPtr::make(to->ptr(), canonical_holder, is_known_inst, nullptr, offset, instance_id), "exact type should be canonical type");
1509       } else {
1510         assert(xk || !is_known_inst, "Known instance should be exact type");
1511         tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, is_known_inst, nullptr, offset, instance_id);
1512       }
1513     }
1514   }
1515 
1516   // Klass pointers to object array klasses need some flattening
1517   const TypeKlassPtr *tk = tj->isa_klassptr();
1518   if( tk ) {
1519     // If we are referencing a field within a Klass, we need
1520     // to assume the worst case of an Object.  Both exact and
1521     // inexact types must flatten to the same alias class so
1522     // use NotNull as the PTR.
1523     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1524       tj = tk = TypeInstKlassPtr::make(TypePtr::NotNull,
1525                                        env()->Object_klass(),
1526                                        offset);
1527     }
1528 
1529     if (tk->isa_aryklassptr() && tk->is_aryklassptr()->elem()->isa_klassptr()) {
1530       ciKlass* k = ciObjArrayKlass::make(env()->Object_klass());
1531       if (!k || !k->is_loaded()) {                  // Only fails for some -Xcomp runs
1532         tj = tk = TypeInstKlassPtr::make(TypePtr::NotNull, env()->Object_klass(), offset);
1533       } else {
1534         tj = tk = TypeAryKlassPtr::make(TypePtr::NotNull, tk->is_aryklassptr()->elem(), k, offset);
1535       }
1536     }
1537 
1538     // Check for precise loads from the primary supertype array and force them
1539     // to the supertype cache alias index.  Check for generic array loads from
1540     // the primary supertype array and also force them to the supertype cache
1541     // alias index.  Since the same load can reach both, we need to merge
1542     // these 2 disparate memories into the same alias class.  Since the
1543     // primary supertype array is read-only, there's no chance of confusion
1544     // where we bypass an array load and an array store.
1545     int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
1546     if (offset == Type::OffsetBot ||
1547         (offset >= primary_supers_offset &&
1548          offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
1549         offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
1550       offset = in_bytes(Klass::secondary_super_cache_offset());
1551       tj = tk = tk->with_offset(offset);
1552     }
1553   }
1554 
1555   // Flatten all Raw pointers together.
1556   if (tj->base() == Type::RawPtr)
1557     tj = TypeRawPtr::BOTTOM;
1558 
1559   if (tj->base() == Type::AnyPtr)
1560     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1561 
1562   offset = tj->offset();
1563   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1564 
1565   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1566           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1567           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1568           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1569           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1570           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1571           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr),
1572           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1573   assert( tj->ptr() != TypePtr::TopPTR &&
1574           tj->ptr() != TypePtr::AnyNull &&
1575           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1576 //    assert( tj->ptr() != TypePtr::Constant ||
1577 //            tj->base() == Type::RawPtr ||
1578 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1579 
1580   return tj;
1581 }
1582 
1583 void Compile::AliasType::Init(int i, const TypePtr* at) {
1584   assert(AliasIdxTop <= i && i < Compile::current()->_max_alias_types, "Invalid alias index");
1585   _index = i;
1586   _adr_type = at;
1587   _field = nullptr;
1588   _element = nullptr;
1589   _is_rewritable = true; // default
1590   const TypeOopPtr *atoop = (at != nullptr) ? at->isa_oopptr() : nullptr;
1591   if (atoop != nullptr && atoop->is_known_instance()) {
1592     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1593     _general_index = Compile::current()->get_alias_index(gt);
1594   } else {
1595     _general_index = 0;
1596   }
1597 }
1598 
1599 BasicType Compile::AliasType::basic_type() const {
1600   if (element() != nullptr) {
1601     const Type* element = adr_type()->is_aryptr()->elem();
1602     return element->isa_narrowoop() ? T_OBJECT : element->array_element_basic_type();
1603   } if (field() != nullptr) {
1604     return field()->layout_type();
1605   } else {
1606     return T_ILLEGAL; // unknown
1607   }
1608 }
1609 
1610 //---------------------------------print_on------------------------------------
1611 #ifndef PRODUCT
1612 void Compile::AliasType::print_on(outputStream* st) {
1613   if (index() < 10)
1614         st->print("@ <%d> ", index());
1615   else  st->print("@ <%d>",  index());
1616   st->print(is_rewritable() ? "   " : " RO");
1617   int offset = adr_type()->offset();
1618   if (offset == Type::OffsetBot)
1619         st->print(" +any");
1620   else  st->print(" +%-3d", offset);
1621   st->print(" in ");
1622   adr_type()->dump_on(st);
1623   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1624   if (field() != nullptr && tjp) {
1625     if (tjp->is_instptr()->instance_klass()  != field()->holder() ||
1626         tjp->offset() != field()->offset_in_bytes()) {
1627       st->print(" != ");
1628       field()->print();
1629       st->print(" ***");
1630     }
1631   }
1632 }
1633 
1634 void print_alias_types() {
1635   Compile* C = Compile::current();
1636   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1637   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1638     C->alias_type(idx)->print_on(tty);
1639     tty->cr();
1640   }
1641 }
1642 #endif
1643 
1644 
1645 //----------------------------probe_alias_cache--------------------------------
1646 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1647   intptr_t key = (intptr_t) adr_type;
1648   key ^= key >> logAliasCacheSize;
1649   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1650 }
1651 
1652 
1653 //-----------------------------grow_alias_types--------------------------------
1654 void Compile::grow_alias_types() {
1655   const int old_ats  = _max_alias_types; // how many before?
1656   const int new_ats  = old_ats;          // how many more?
1657   const int grow_ats = old_ats+new_ats;  // how many now?
1658   _max_alias_types = grow_ats;
1659   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1660   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1661   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1662   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1663 }
1664 
1665 
1666 //--------------------------------find_alias_type------------------------------
1667 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
1668   if (!do_aliasing()) {
1669     return alias_type(AliasIdxBot);
1670   }
1671 
1672   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1673   if (ace->_adr_type == adr_type) {
1674     return alias_type(ace->_index);
1675   }
1676 
1677   // Handle special cases.
1678   if (adr_type == nullptr)          return alias_type(AliasIdxTop);
1679   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1680 
1681   // Do it the slow way.
1682   const TypePtr* flat = flatten_alias_type(adr_type);
1683 
1684 #ifdef ASSERT
1685   {
1686     ResourceMark rm;
1687     assert(flat == flatten_alias_type(flat), "not idempotent: adr_type = %s; flat = %s => %s",
1688            Type::str(adr_type), Type::str(flat), Type::str(flatten_alias_type(flat)));
1689     assert(flat != TypePtr::BOTTOM, "cannot alias-analyze an untyped ptr: adr_type = %s",
1690            Type::str(adr_type));
1691     if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1692       const TypeOopPtr* foop = flat->is_oopptr();
1693       // Scalarizable allocations have exact klass always.
1694       bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1695       const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1696       assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type: foop = %s; xoop = %s",
1697              Type::str(foop), Type::str(xoop));
1698     }
1699   }
1700 #endif
1701 
1702   int idx = AliasIdxTop;
1703   for (int i = 0; i < num_alias_types(); i++) {
1704     if (alias_type(i)->adr_type() == flat) {
1705       idx = i;
1706       break;
1707     }
1708   }
1709 
1710   if (idx == AliasIdxTop) {
1711     if (no_create)  return nullptr;
1712     // Grow the array if necessary.
1713     if (_num_alias_types == _max_alias_types)  grow_alias_types();
1714     // Add a new alias type.
1715     idx = _num_alias_types++;
1716     _alias_types[idx]->Init(idx, flat);
1717     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1718     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1719     if (flat->isa_instptr()) {
1720       if (flat->offset() == java_lang_Class::klass_offset()
1721           && flat->is_instptr()->instance_klass() == env()->Class_klass())
1722         alias_type(idx)->set_rewritable(false);
1723     }
1724     if (flat->isa_aryptr()) {
1725 #ifdef ASSERT
1726       const int header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1727       // (T_BYTE has the weakest alignment and size restrictions...)
1728       assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
1729 #endif
1730       if (flat->offset() == TypePtr::OffsetBot) {
1731         alias_type(idx)->set_element(flat->is_aryptr()->elem());
1732       }
1733     }
1734     if (flat->isa_klassptr()) {
1735       if (UseCompactObjectHeaders) {
1736         if (flat->offset() == in_bytes(Klass::prototype_header_offset()))
1737           alias_type(idx)->set_rewritable(false);
1738       }
1739       if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
1740         alias_type(idx)->set_rewritable(false);
1741       if (flat->offset() == in_bytes(Klass::access_flags_offset()))
1742         alias_type(idx)->set_rewritable(false);
1743       if (flat->offset() == in_bytes(Klass::misc_flags_offset()))
1744         alias_type(idx)->set_rewritable(false);
1745       if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
1746         alias_type(idx)->set_rewritable(false);
1747       if (flat->offset() == in_bytes(Klass::secondary_super_cache_offset()))
1748         alias_type(idx)->set_rewritable(false);
1749     }
1750     // %%% (We would like to finalize JavaThread::threadObj_offset(),
1751     // but the base pointer type is not distinctive enough to identify
1752     // references into JavaThread.)
1753 
1754     // Check for final fields.
1755     const TypeInstPtr* tinst = flat->isa_instptr();
1756     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1757       ciField* field;
1758       if (tinst->const_oop() != nullptr &&
1759           tinst->instance_klass() == ciEnv::current()->Class_klass() &&
1760           tinst->offset() >= (tinst->instance_klass()->layout_helper_size_in_bytes())) {
1761         // static field
1762         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1763         field = k->get_field_by_offset(tinst->offset(), true);
1764       } else {
1765         ciInstanceKlass *k = tinst->instance_klass();
1766         field = k->get_field_by_offset(tinst->offset(), false);
1767       }
1768       assert(field == nullptr ||
1769              original_field == nullptr ||
1770              (field->holder() == original_field->holder() &&
1771               field->offset_in_bytes() == original_field->offset_in_bytes() &&
1772               field->is_static() == original_field->is_static()), "wrong field?");
1773       // Set field() and is_rewritable() attributes.
1774       if (field != nullptr)  alias_type(idx)->set_field(field);
1775     }
1776   }
1777 
1778   // Fill the cache for next time.
1779   ace->_adr_type = adr_type;
1780   ace->_index    = idx;
1781   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1782 
1783   // Might as well try to fill the cache for the flattened version, too.
1784   AliasCacheEntry* face = probe_alias_cache(flat);
1785   if (face->_adr_type == nullptr) {
1786     face->_adr_type = flat;
1787     face->_index    = idx;
1788     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1789   }
1790 
1791   return alias_type(idx);
1792 }
1793 
1794 
1795 Compile::AliasType* Compile::alias_type(ciField* field) {
1796   const TypeOopPtr* t;
1797   if (field->is_static())
1798     t = TypeInstPtr::make(field->holder()->java_mirror());
1799   else
1800     t = TypeOopPtr::make_from_klass_raw(field->holder());
1801   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1802   assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
1803   return atp;
1804 }
1805 
1806 
1807 //------------------------------have_alias_type--------------------------------
1808 bool Compile::have_alias_type(const TypePtr* adr_type) {
1809   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1810   if (ace->_adr_type == adr_type) {
1811     return true;
1812   }
1813 
1814   // Handle special cases.
1815   if (adr_type == nullptr)             return true;
1816   if (adr_type == TypePtr::BOTTOM)  return true;
1817 
1818   return find_alias_type(adr_type, true, nullptr) != nullptr;
1819 }
1820 
1821 //-----------------------------must_alias--------------------------------------
1822 // True if all values of the given address type are in the given alias category.
1823 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1824   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1825   if (adr_type == nullptr)              return true;  // null serves as TypePtr::TOP
1826   if (alias_idx == AliasIdxTop)         return false; // the empty category
1827   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1828 
1829   // the only remaining possible overlap is identity
1830   int adr_idx = get_alias_index(adr_type);
1831   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1832   assert(adr_idx == alias_idx ||
1833          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1834           && adr_type                       != TypeOopPtr::BOTTOM),
1835          "should not be testing for overlap with an unsafe pointer");
1836   return adr_idx == alias_idx;
1837 }
1838 
1839 //------------------------------can_alias--------------------------------------
1840 // True if any values of the given address type are in the given alias category.
1841 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1842   if (alias_idx == AliasIdxTop)         return false; // the empty category
1843   if (adr_type == nullptr)              return false; // null serves as TypePtr::TOP
1844   // Known instance doesn't alias with bottom memory
1845   if (alias_idx == AliasIdxBot)         return !adr_type->is_known_instance();                   // the universal category
1846   if (adr_type->base() == Type::AnyPtr) return !C->get_adr_type(alias_idx)->is_known_instance(); // TypePtr::BOTTOM or its twins
1847 
1848   // the only remaining possible overlap is identity
1849   int adr_idx = get_alias_index(adr_type);
1850   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1851   return adr_idx == alias_idx;
1852 }
1853 
1854 // Mark all ParsePredicateNodes as useless. They will later be removed from the graph in IGVN together with their
1855 // uncommon traps if no Runtime Predicates were created from the Parse Predicates.
1856 void Compile::mark_parse_predicate_nodes_useless(PhaseIterGVN& igvn) {
1857   if (parse_predicate_count() == 0) {
1858     return;
1859   }
1860   for (int i = 0; i < parse_predicate_count(); i++) {
1861     ParsePredicateNode* parse_predicate = _parse_predicates.at(i);
1862     parse_predicate->mark_useless(igvn);
1863   }
1864   _parse_predicates.clear();
1865 }
1866 
1867 void Compile::record_for_post_loop_opts_igvn(Node* n) {
1868   if (!n->for_post_loop_opts_igvn()) {
1869     assert(!_for_post_loop_igvn.contains(n), "duplicate");
1870     n->add_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn);
1871     _for_post_loop_igvn.append(n);
1872   }
1873 }
1874 
1875 void Compile::remove_from_post_loop_opts_igvn(Node* n) {
1876   n->remove_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn);
1877   _for_post_loop_igvn.remove(n);
1878 }
1879 
1880 void Compile::process_for_post_loop_opts_igvn(PhaseIterGVN& igvn) {
1881   // Verify that all previous optimizations produced a valid graph
1882   // at least to this point, even if no loop optimizations were done.
1883   PhaseIdealLoop::verify(igvn);
1884 
1885   if (has_loops() || _loop_opts_cnt > 0) {
1886     print_method(PHASE_AFTER_LOOP_OPTS, 2);
1887   }
1888   C->set_post_loop_opts_phase(); // no more loop opts allowed
1889 
1890   assert(!C->major_progress(), "not cleared");
1891 
1892   if (_for_post_loop_igvn.length() > 0) {
1893     while (_for_post_loop_igvn.length() > 0) {
1894       Node* n = _for_post_loop_igvn.pop();
1895       n->remove_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn);
1896       igvn._worklist.push(n);
1897     }
1898     igvn.optimize();
1899     if (failing()) return;
1900     assert(_for_post_loop_igvn.length() == 0, "no more delayed nodes allowed");
1901     assert(C->parse_predicate_count() == 0, "all parse predicates should have been removed now");
1902 
1903     // Sometimes IGVN sets major progress (e.g., when processing loop nodes).
1904     if (C->major_progress()) {
1905       C->clear_major_progress(); // ensure that major progress is now clear
1906     }
1907   }
1908 }
1909 
1910 void Compile::record_for_merge_stores_igvn(Node* n) {
1911   if (!n->for_merge_stores_igvn()) {
1912     assert(!_for_merge_stores_igvn.contains(n), "duplicate");
1913     n->add_flag(Node::NodeFlags::Flag_for_merge_stores_igvn);
1914     _for_merge_stores_igvn.append(n);
1915   }
1916 }
1917 
1918 void Compile::remove_from_merge_stores_igvn(Node* n) {
1919   n->remove_flag(Node::NodeFlags::Flag_for_merge_stores_igvn);
1920   _for_merge_stores_igvn.remove(n);
1921 }
1922 
1923 // We need to wait with merging stores until RangeCheck smearing has removed the RangeChecks during
1924 // the post loops IGVN phase. If we do it earlier, then there may still be some RangeChecks between
1925 // the stores, and we merge the wrong sequence of stores.
1926 // Example:
1927 //   StoreI RangeCheck StoreI StoreI RangeCheck StoreI
1928 // Apply MergeStores:
1929 //   StoreI RangeCheck [   StoreL  ] RangeCheck StoreI
1930 // Remove more RangeChecks:
1931 //   StoreI            [   StoreL  ]            StoreI
1932 // But now it would have been better to do this instead:
1933 //   [         StoreL       ] [       StoreL         ]
1934 //
1935 // Note: we allow stores to merge in this dedicated IGVN round, and any later IGVN round,
1936 //       since we never unset _merge_stores_phase.
1937 void Compile::process_for_merge_stores_igvn(PhaseIterGVN& igvn) {
1938   C->set_merge_stores_phase();
1939 
1940   if (_for_merge_stores_igvn.length() > 0) {
1941     while (_for_merge_stores_igvn.length() > 0) {
1942       Node* n = _for_merge_stores_igvn.pop();
1943       n->remove_flag(Node::NodeFlags::Flag_for_merge_stores_igvn);
1944       igvn._worklist.push(n);
1945     }
1946     igvn.optimize();
1947     if (failing()) return;
1948     assert(_for_merge_stores_igvn.length() == 0, "no more delayed nodes allowed");
1949     print_method(PHASE_AFTER_MERGE_STORES, 3);
1950   }
1951 }
1952 
1953 void Compile::record_unstable_if_trap(UnstableIfTrap* trap) {
1954   if (OptimizeUnstableIf) {
1955     _unstable_if_traps.append(trap);
1956   }
1957 }
1958 
1959 void Compile::remove_useless_unstable_if_traps(Unique_Node_List& useful) {
1960   for (int i = _unstable_if_traps.length() - 1; i >= 0; i--) {
1961     UnstableIfTrap* trap = _unstable_if_traps.at(i);
1962     Node* n = trap->uncommon_trap();
1963     if (!useful.member(n)) {
1964       _unstable_if_traps.delete_at(i); // replaces i-th with last element which is known to be useful (already processed)
1965     }
1966   }
1967 }
1968 
1969 // Remove the unstable if trap associated with 'unc' from candidates. It is either dead
1970 // or fold-compares case. Return true if succeed or not found.
1971 //
1972 // In rare cases, the found trap has been processed. It is too late to delete it. Return
1973 // false and ask fold-compares to yield.
1974 //
1975 // 'fold-compares' may use the uncommon_trap of the dominating IfNode to cover the fused
1976 // IfNode. This breaks the unstable_if trap invariant: control takes the unstable path
1977 // when deoptimization does happen.
1978 bool Compile::remove_unstable_if_trap(CallStaticJavaNode* unc, bool yield) {
1979   for (int i = 0; i < _unstable_if_traps.length(); ++i) {
1980     UnstableIfTrap* trap = _unstable_if_traps.at(i);
1981     if (trap->uncommon_trap() == unc) {
1982       if (yield && trap->modified()) {
1983         return false;
1984       }
1985       _unstable_if_traps.delete_at(i);
1986       break;
1987     }
1988   }
1989   return true;
1990 }
1991 
1992 // Re-calculate unstable_if traps with the liveness of next_bci, which points to the unlikely path.
1993 // It needs to be done after igvn because fold-compares may fuse uncommon_traps and before renumbering.
1994 void Compile::process_for_unstable_if_traps(PhaseIterGVN& igvn) {
1995   for (int i = _unstable_if_traps.length() - 1; i >= 0; --i) {
1996     UnstableIfTrap* trap = _unstable_if_traps.at(i);
1997     CallStaticJavaNode* unc = trap->uncommon_trap();
1998     int next_bci = trap->next_bci();
1999     bool modified = trap->modified();
2000 
2001     if (next_bci != -1 && !modified) {
2002       assert(!_dead_node_list.test(unc->_idx), "changing a dead node!");
2003       JVMState* jvms = unc->jvms();
2004       ciMethod* method = jvms->method();
2005       ciBytecodeStream iter(method);
2006 
2007       iter.force_bci(jvms->bci());
2008       assert(next_bci == iter.next_bci() || next_bci == iter.get_dest(), "wrong next_bci at unstable_if");
2009       Bytecodes::Code c = iter.cur_bc();
2010       Node* lhs = nullptr;
2011       Node* rhs = nullptr;
2012       if (c == Bytecodes::_if_acmpeq || c == Bytecodes::_if_acmpne) {
2013         lhs = unc->peek_operand(0);
2014         rhs = unc->peek_operand(1);
2015       } else if (c == Bytecodes::_ifnull || c == Bytecodes::_ifnonnull) {
2016         lhs = unc->peek_operand(0);
2017       }
2018 
2019       ResourceMark rm;
2020       const MethodLivenessResult& live_locals = method->liveness_at_bci(next_bci);
2021       assert(live_locals.is_valid(), "broken liveness info");
2022       int len = (int)live_locals.size();
2023 
2024       for (int i = 0; i < len; i++) {
2025         Node* local = unc->local(jvms, i);
2026         // kill local using the liveness of next_bci.
2027         // give up when the local looks like an operand to secure reexecution.
2028         if (!live_locals.at(i) && !local->is_top() && local != lhs && local!= rhs) {
2029           uint idx = jvms->locoff() + i;
2030 #ifdef ASSERT
2031           if (PrintOpto && Verbose) {
2032             tty->print("[unstable_if] kill local#%d: ", idx);
2033             local->dump();
2034             tty->cr();
2035           }
2036 #endif
2037           igvn.replace_input_of(unc, idx, top());
2038           modified = true;
2039         }
2040       }
2041     }
2042 
2043     // keep the mondified trap for late query
2044     if (modified) {
2045       trap->set_modified();
2046     } else {
2047       _unstable_if_traps.delete_at(i);
2048     }
2049   }
2050   igvn.optimize();
2051 }
2052 
2053 // StringOpts and late inlining of string methods
2054 void Compile::inline_string_calls(bool parse_time) {
2055   {
2056     // remove useless nodes to make the usage analysis simpler
2057     ResourceMark rm;
2058     PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist());
2059   }
2060 
2061   {
2062     ResourceMark rm;
2063     print_method(PHASE_BEFORE_STRINGOPTS, 3);
2064     PhaseStringOpts pso(initial_gvn());
2065     print_method(PHASE_AFTER_STRINGOPTS, 3);
2066   }
2067 
2068   // now inline anything that we skipped the first time around
2069   if (!parse_time) {
2070     _late_inlines_pos = _late_inlines.length();
2071   }
2072 
2073   while (_string_late_inlines.length() > 0) {
2074     CallGenerator* cg = _string_late_inlines.pop();
2075     cg->do_late_inline();
2076     if (failing())  return;
2077   }
2078   _string_late_inlines.trunc_to(0);
2079 }
2080 
2081 // Late inlining of boxing methods
2082 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
2083   if (_boxing_late_inlines.length() > 0) {
2084     assert(has_boxed_value(), "inconsistent");
2085 
2086     set_inlining_incrementally(true);
2087 
2088     igvn_worklist()->ensure_empty(); // should be done with igvn
2089 
2090     _late_inlines_pos = _late_inlines.length();
2091 
2092     while (_boxing_late_inlines.length() > 0) {
2093       CallGenerator* cg = _boxing_late_inlines.pop();
2094       cg->do_late_inline();
2095       if (failing())  return;
2096     }
2097     _boxing_late_inlines.trunc_to(0);
2098 
2099     inline_incrementally_cleanup(igvn);
2100 
2101     set_inlining_incrementally(false);
2102   }
2103 }
2104 
2105 bool Compile::inline_incrementally_one() {
2106   assert(IncrementalInline, "incremental inlining should be on");
2107 
2108   TracePhase tp(_t_incrInline_inline);
2109 
2110   set_inlining_progress(false);
2111   set_do_cleanup(false);
2112 
2113   for (int i = 0; i < _late_inlines.length(); i++) {
2114     _late_inlines_pos = i+1;
2115     CallGenerator* cg = _late_inlines.at(i);
2116     bool is_scheduled_for_igvn_before = C->igvn_worklist()->member(cg->call_node());
2117     bool does_dispatch = cg->is_virtual_late_inline() || cg->is_mh_late_inline();
2118     if (inlining_incrementally() || does_dispatch) { // a call can be either inlined or strength-reduced to a direct call
2119       cg->do_late_inline();
2120       assert(_late_inlines.at(i) == cg, "no insertions before current position allowed");
2121       if (failing()) {
2122         return false;
2123       } else if (inlining_progress()) {
2124         _late_inlines_pos = i+1; // restore the position in case new elements were inserted
2125         print_method(PHASE_INCREMENTAL_INLINE_STEP, 3, cg->call_node());
2126         break; // process one call site at a time
2127       } else {
2128         bool is_scheduled_for_igvn_after = C->igvn_worklist()->member(cg->call_node());
2129         if (!is_scheduled_for_igvn_before && is_scheduled_for_igvn_after) {
2130           // Avoid potential infinite loop if node already in the IGVN list
2131           assert(false, "scheduled for IGVN during inlining attempt");
2132         } else {
2133           // Ensure call node has not disappeared from IGVN worklist during a failed inlining attempt
2134           assert(!is_scheduled_for_igvn_before || is_scheduled_for_igvn_after, "call node removed from IGVN list during inlining pass");
2135           cg->call_node()->set_generator(cg);
2136         }
2137       }
2138     } else {
2139       // Ignore late inline direct calls when inlining is not allowed.
2140       // They are left in the late inline list when node budget is exhausted until the list is fully drained.
2141     }
2142   }
2143   // Remove processed elements.
2144   _late_inlines.remove_till(_late_inlines_pos);
2145   _late_inlines_pos = 0;
2146 
2147   assert(inlining_progress() || _late_inlines.length() == 0, "no progress");
2148 
2149   bool needs_cleanup = do_cleanup() || over_inlining_cutoff();
2150 
2151   set_inlining_progress(false);
2152   set_do_cleanup(false);
2153 
2154   bool force_cleanup = directive()->IncrementalInlineForceCleanupOption;
2155   return (_late_inlines.length() > 0) && !needs_cleanup && !force_cleanup;
2156 }
2157 
2158 void Compile::inline_incrementally_cleanup(PhaseIterGVN& igvn) {
2159   {
2160     TracePhase tp(_t_incrInline_pru);
2161     ResourceMark rm;
2162     PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist());
2163   }
2164   {
2165     TracePhase tp(_t_incrInline_igvn);
2166     igvn.reset_from_gvn(initial_gvn());
2167     igvn.optimize();
2168     if (failing()) return;
2169   }
2170   print_method(PHASE_INCREMENTAL_INLINE_CLEANUP, 3);
2171 }
2172 
2173 // Perform incremental inlining until bound on number of live nodes is reached
2174 void Compile::inline_incrementally(PhaseIterGVN& igvn) {
2175   TracePhase tp(_t_incrInline);
2176 
2177   set_inlining_incrementally(true);
2178   uint low_live_nodes = 0;
2179 
2180   while (_late_inlines.length() > 0) {
2181     if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2182       if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
2183         TracePhase tp(_t_incrInline_ideal);
2184         // PhaseIdealLoop is expensive so we only try it once we are
2185         // out of live nodes and we only try it again if the previous
2186         // helped got the number of nodes down significantly
2187         PhaseIdealLoop::optimize(igvn, LoopOptsNone);
2188         if (failing())  return;
2189         low_live_nodes = live_nodes();
2190         _major_progress = true;
2191       }
2192 
2193       if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2194         bool do_print_inlining = print_inlining() || print_intrinsics();
2195         if (do_print_inlining || log() != nullptr) {
2196           // Print inlining message for candidates that we couldn't inline for lack of space.
2197           for (int i = 0; i < _late_inlines.length(); i++) {
2198             CallGenerator* cg = _late_inlines.at(i);
2199             const char* msg = "live nodes > LiveNodeCountInliningCutoff";
2200             if (do_print_inlining) {
2201               inline_printer()->record(cg->method(), cg->call_node()->jvms(), InliningResult::FAILURE, msg);
2202             }
2203             log_late_inline_failure(cg, msg);
2204           }
2205         }
2206         break; // finish
2207       }
2208     }
2209 
2210     igvn_worklist()->ensure_empty(); // should be done with igvn
2211 
2212     while (inline_incrementally_one()) {
2213       assert(!failing_internal() || failure_is_artificial(), "inconsistent");
2214     }
2215     if (failing())  return;
2216 
2217     inline_incrementally_cleanup(igvn);
2218 
2219     print_method(PHASE_INCREMENTAL_INLINE_STEP, 3);
2220 
2221     if (failing())  return;
2222 
2223     if (_late_inlines.length() == 0) {
2224       break; // no more progress
2225     }
2226   }
2227 
2228   igvn_worklist()->ensure_empty(); // should be done with igvn
2229 
2230   if (_string_late_inlines.length() > 0) {
2231     assert(has_stringbuilder(), "inconsistent");
2232 
2233     inline_string_calls(false);
2234 
2235     if (failing())  return;
2236 
2237     inline_incrementally_cleanup(igvn);
2238   }
2239 
2240   set_inlining_incrementally(false);
2241 }
2242 
2243 void Compile::process_late_inline_calls_no_inline(PhaseIterGVN& igvn) {
2244   // "inlining_incrementally() == false" is used to signal that no inlining is allowed
2245   // (see LateInlineVirtualCallGenerator::do_late_inline_check() for details).
2246   // Tracking and verification of modified nodes is disabled by setting "_modified_nodes == nullptr"
2247   // as if "inlining_incrementally() == true" were set.
2248   assert(inlining_incrementally() == false, "not allowed");
2249   assert(_modified_nodes == nullptr, "not allowed");
2250   assert(_late_inlines.length() > 0, "sanity");
2251 
2252   while (_late_inlines.length() > 0) {
2253     igvn_worklist()->ensure_empty(); // should be done with igvn
2254 
2255     while (inline_incrementally_one()) {
2256       assert(!failing_internal() || failure_is_artificial(), "inconsistent");
2257     }
2258     if (failing())  return;
2259 
2260     inline_incrementally_cleanup(igvn);
2261   }
2262 }
2263 
2264 bool Compile::optimize_loops(PhaseIterGVN& igvn, LoopOptsMode mode) {
2265   if (_loop_opts_cnt > 0) {
2266     while (major_progress() && (_loop_opts_cnt > 0)) {
2267       TracePhase tp(_t_idealLoop);
2268       PhaseIdealLoop::optimize(igvn, mode);
2269       _loop_opts_cnt--;
2270       if (failing())  return false;
2271       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
2272     }
2273   }
2274   return true;
2275 }
2276 
2277 // Remove edges from "root" to each SafePoint at a backward branch.
2278 // They were inserted during parsing (see add_safepoint()) to make
2279 // infinite loops without calls or exceptions visible to root, i.e.,
2280 // useful.
2281 void Compile::remove_root_to_sfpts_edges(PhaseIterGVN& igvn) {
2282   Node *r = root();
2283   if (r != nullptr) {
2284     for (uint i = r->req(); i < r->len(); ++i) {
2285       Node *n = r->in(i);
2286       if (n != nullptr && n->is_SafePoint()) {
2287         r->rm_prec(i);
2288         if (n->outcnt() == 0) {
2289           igvn.remove_dead_node(n);
2290         }
2291         --i;
2292       }
2293     }
2294     // Parsing may have added top inputs to the root node (Path
2295     // leading to the Halt node proven dead). Make sure we get a
2296     // chance to clean them up.
2297     igvn._worklist.push(r);
2298     igvn.optimize();
2299   }
2300 }
2301 
2302 //------------------------------Optimize---------------------------------------
2303 // Given a graph, optimize it.
2304 void Compile::Optimize() {
2305   TracePhase tp(_t_optimizer);
2306 
2307 #ifndef PRODUCT
2308   if (env()->break_at_compile()) {
2309     BREAKPOINT;
2310   }
2311 
2312 #endif
2313 
2314   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2315 #ifdef ASSERT
2316   bs->verify_gc_barriers(this, BarrierSetC2::BeforeOptimize);
2317 #endif
2318 
2319   ResourceMark rm;
2320 
2321   NOT_PRODUCT( verify_graph_edges(); )
2322 
2323   print_method(PHASE_AFTER_PARSING, 1);
2324 
2325  {
2326   // Iterative Global Value Numbering, including ideal transforms
2327   // Initialize IterGVN with types and values from parse-time GVN
2328   PhaseIterGVN igvn(initial_gvn());
2329 #ifdef ASSERT
2330   _modified_nodes = new (comp_arena()) Unique_Node_List(comp_arena());
2331 #endif
2332   {
2333     TracePhase tp(_t_iterGVN);
2334     igvn.optimize();
2335   }
2336 
2337   if (failing())  return;
2338 
2339   print_method(PHASE_ITER_GVN1, 2);
2340 
2341   process_for_unstable_if_traps(igvn);
2342 
2343   if (failing())  return;
2344 
2345   inline_incrementally(igvn);
2346 
2347   print_method(PHASE_INCREMENTAL_INLINE, 2);
2348 
2349   if (failing())  return;
2350 
2351   if (eliminate_boxing()) {
2352     // Inline valueOf() methods now.
2353     inline_boxing_calls(igvn);
2354 
2355     if (failing())  return;
2356 
2357     if (AlwaysIncrementalInline || StressIncrementalInlining) {
2358       inline_incrementally(igvn);
2359     }
2360 
2361     print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
2362 
2363     if (failing())  return;
2364   }
2365 
2366   // Remove the speculative part of types and clean up the graph from
2367   // the extra CastPP nodes whose only purpose is to carry them. Do
2368   // that early so that optimizations are not disrupted by the extra
2369   // CastPP nodes.
2370   remove_speculative_types(igvn);
2371 
2372   if (failing())  return;
2373 
2374   // No more new expensive nodes will be added to the list from here
2375   // so keep only the actual candidates for optimizations.
2376   cleanup_expensive_nodes(igvn);
2377 
2378   if (failing())  return;
2379 
2380   assert(EnableVectorSupport || !has_vbox_nodes(), "sanity");
2381   if (EnableVectorSupport && has_vbox_nodes()) {
2382     TracePhase tp(_t_vector);
2383     PhaseVector pv(igvn);
2384     pv.optimize_vector_boxes();
2385     if (failing())  return;
2386     print_method(PHASE_ITER_GVN_AFTER_VECTOR, 2);
2387   }
2388   assert(!has_vbox_nodes(), "sanity");
2389 
2390   if (!failing() && RenumberLiveNodes && live_nodes() + NodeLimitFudgeFactor < unique()) {
2391     Compile::TracePhase tp(_t_renumberLive);
2392     igvn_worklist()->ensure_empty(); // should be done with igvn
2393     {
2394       ResourceMark rm;
2395       PhaseRenumberLive prl(initial_gvn(), *igvn_worklist());
2396     }
2397     igvn.reset_from_gvn(initial_gvn());
2398     igvn.optimize();
2399     if (failing()) return;
2400   }
2401 
2402   // Now that all inlining is over and no PhaseRemoveUseless will run, cut edge from root to loop
2403   // safepoints
2404   remove_root_to_sfpts_edges(igvn);
2405 
2406   if (failing())  return;
2407 
2408   if (has_loops()) {
2409     print_method(PHASE_BEFORE_LOOP_OPTS, 2);
2410   }
2411 
2412   // Perform escape analysis
2413   if (do_escape_analysis() && ConnectionGraph::has_candidates(this)) {
2414     if (has_loops()) {
2415       // Cleanup graph (remove dead nodes).
2416       TracePhase tp(_t_idealLoop);
2417       PhaseIdealLoop::optimize(igvn, LoopOptsMaxUnroll);
2418       if (failing())  return;
2419     }
2420     bool progress;
2421     print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
2422     do {
2423       ConnectionGraph::do_analysis(this, &igvn);
2424 
2425       if (failing())  return;
2426 
2427       int mcount = macro_count(); // Record number of allocations and locks before IGVN
2428 
2429       // Optimize out fields loads from scalar replaceable allocations.
2430       igvn.optimize();
2431       print_method(PHASE_ITER_GVN_AFTER_EA, 2);
2432 
2433       if (failing()) return;
2434 
2435       if (congraph() != nullptr && macro_count() > 0) {
2436         TracePhase tp(_t_macroEliminate);
2437         PhaseMacroExpand mexp(igvn);
2438         mexp.eliminate_macro_nodes();
2439         if (failing()) return;
2440 
2441         igvn.set_delay_transform(false);
2442         igvn.optimize();
2443         if (failing()) return;
2444 
2445         print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
2446       }
2447 
2448       ConnectionGraph::verify_ram_nodes(this, root());
2449       if (failing())  return;
2450 
2451       progress = do_iterative_escape_analysis() &&
2452                  (macro_count() < mcount) &&
2453                  ConnectionGraph::has_candidates(this);
2454       // Try again if candidates exist and made progress
2455       // by removing some allocations and/or locks.
2456     } while (progress);
2457   }
2458 
2459   // Loop transforms on the ideal graph.  Range Check Elimination,
2460   // peeling, unrolling, etc.
2461 
2462   // Set loop opts counter
2463   if((_loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
2464     {
2465       TracePhase tp(_t_idealLoop);
2466       PhaseIdealLoop::optimize(igvn, LoopOptsDefault);
2467       _loop_opts_cnt--;
2468       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
2469       if (failing())  return;
2470     }
2471     // Loop opts pass if partial peeling occurred in previous pass
2472     if(PartialPeelLoop && major_progress() && (_loop_opts_cnt > 0)) {
2473       TracePhase tp(_t_idealLoop);
2474       PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf);
2475       _loop_opts_cnt--;
2476       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
2477       if (failing())  return;
2478     }
2479     // Loop opts pass for loop-unrolling before CCP
2480     if(major_progress() && (_loop_opts_cnt > 0)) {
2481       TracePhase tp(_t_idealLoop);
2482       PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf);
2483       _loop_opts_cnt--;
2484       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
2485     }
2486     if (!failing()) {
2487       // Verify that last round of loop opts produced a valid graph
2488       PhaseIdealLoop::verify(igvn);
2489     }
2490   }
2491   if (failing())  return;
2492 
2493   // Conditional Constant Propagation;
2494   print_method(PHASE_BEFORE_CCP1, 2);
2495   PhaseCCP ccp( &igvn );
2496   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
2497   {
2498     TracePhase tp(_t_ccp);
2499     ccp.do_transform();
2500   }
2501   print_method(PHASE_CCP1, 2);
2502 
2503   assert( true, "Break here to ccp.dump_old2new_map()");
2504 
2505   // Iterative Global Value Numbering, including ideal transforms
2506   {
2507     TracePhase tp(_t_iterGVN2);
2508     igvn.reset_from_igvn(&ccp);
2509     igvn.optimize();
2510   }
2511   print_method(PHASE_ITER_GVN2, 2);
2512 
2513   if (failing())  return;
2514 
2515   // Loop transforms on the ideal graph.  Range Check Elimination,
2516   // peeling, unrolling, etc.
2517   if (!optimize_loops(igvn, LoopOptsDefault)) {
2518     return;
2519   }
2520 
2521   if (failing())  return;
2522 
2523   C->clear_major_progress(); // ensure that major progress is now clear
2524 
2525   process_for_post_loop_opts_igvn(igvn);
2526 
2527   process_for_merge_stores_igvn(igvn);
2528 
2529   if (failing())  return;
2530 
2531 #ifdef ASSERT
2532   bs->verify_gc_barriers(this, BarrierSetC2::BeforeMacroExpand);
2533 #endif
2534 
2535   {
2536     TracePhase tp(_t_macroExpand);
2537     print_method(PHASE_BEFORE_MACRO_EXPANSION, 3);
2538     PhaseMacroExpand  mex(igvn);
2539     if (mex.expand_macro_nodes()) {
2540       assert(failing(), "must bail out w/ explicit message");
2541       return;
2542     }
2543     print_method(PHASE_AFTER_MACRO_EXPANSION, 2);
2544   }
2545 
2546   {
2547     TracePhase tp(_t_barrierExpand);
2548     if (bs->expand_barriers(this, igvn)) {
2549       assert(failing(), "must bail out w/ explicit message");
2550       return;
2551     }
2552     print_method(PHASE_BARRIER_EXPANSION, 2);
2553   }
2554 
2555   if (C->max_vector_size() > 0) {
2556     C->optimize_logic_cones(igvn);
2557     igvn.optimize();
2558     if (failing()) return;
2559   }
2560 
2561   DEBUG_ONLY( _modified_nodes = nullptr; )
2562 
2563   assert(igvn._worklist.size() == 0, "not empty");
2564 
2565   assert(_late_inlines.length() == 0 || IncrementalInlineMH || IncrementalInlineVirtual, "not empty");
2566 
2567   if (_late_inlines.length() > 0) {
2568     // More opportunities to optimize virtual and MH calls.
2569     // Though it's maybe too late to perform inlining, strength-reducing them to direct calls is still an option.
2570     process_late_inline_calls_no_inline(igvn);
2571     if (failing())  return;
2572   }
2573  } // (End scope of igvn; run destructor if necessary for asserts.)
2574 
2575  check_no_dead_use();
2576 
2577  // We will never use the NodeHash table any more. Clear it so that final_graph_reshaping does not have
2578  // to remove hashes to unlock nodes for modifications.
2579  C->node_hash()->clear();
2580 
2581  // A method with only infinite loops has no edges entering loops from root
2582  {
2583    TracePhase tp(_t_graphReshaping);
2584    if (final_graph_reshaping()) {
2585      assert(failing(), "must bail out w/ explicit message");
2586      return;
2587    }
2588  }
2589 
2590  print_method(PHASE_OPTIMIZE_FINISHED, 2);
2591  DEBUG_ONLY(set_phase_optimize_finished();)
2592 }
2593 
2594 #ifdef ASSERT
2595 void Compile::check_no_dead_use() const {
2596   ResourceMark rm;
2597   Unique_Node_List wq;
2598   wq.push(root());
2599   for (uint i = 0; i < wq.size(); ++i) {
2600     Node* n = wq.at(i);
2601     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
2602       Node* u = n->fast_out(j);
2603       if (u->outcnt() == 0 && !u->is_Con()) {
2604         u->dump();
2605         fatal("no reachable node should have no use");
2606       }
2607       wq.push(u);
2608     }
2609   }
2610 }
2611 #endif
2612 
2613 void Compile::inline_vector_reboxing_calls() {
2614   if (C->_vector_reboxing_late_inlines.length() > 0) {
2615     _late_inlines_pos = C->_late_inlines.length();
2616     while (_vector_reboxing_late_inlines.length() > 0) {
2617       CallGenerator* cg = _vector_reboxing_late_inlines.pop();
2618       cg->do_late_inline();
2619       if (failing())  return;
2620       print_method(PHASE_INLINE_VECTOR_REBOX, 3, cg->call_node());
2621     }
2622     _vector_reboxing_late_inlines.trunc_to(0);
2623   }
2624 }
2625 
2626 bool Compile::has_vbox_nodes() {
2627   if (C->_vector_reboxing_late_inlines.length() > 0) {
2628     return true;
2629   }
2630   for (int macro_idx = C->macro_count() - 1; macro_idx >= 0; macro_idx--) {
2631     Node * n = C->macro_node(macro_idx);
2632     assert(n->is_macro(), "only macro nodes expected here");
2633     if (n->Opcode() == Op_VectorUnbox || n->Opcode() == Op_VectorBox || n->Opcode() == Op_VectorBoxAllocate) {
2634       return true;
2635     }
2636   }
2637   return false;
2638 }
2639 
2640 //---------------------------- Bitwise operation packing optimization ---------------------------
2641 
2642 static bool is_vector_unary_bitwise_op(Node* n) {
2643   return n->Opcode() == Op_XorV &&
2644          VectorNode::is_vector_bitwise_not_pattern(n);
2645 }
2646 
2647 static bool is_vector_binary_bitwise_op(Node* n) {
2648   switch (n->Opcode()) {
2649     case Op_AndV:
2650     case Op_OrV:
2651       return true;
2652 
2653     case Op_XorV:
2654       return !is_vector_unary_bitwise_op(n);
2655 
2656     default:
2657       return false;
2658   }
2659 }
2660 
2661 static bool is_vector_ternary_bitwise_op(Node* n) {
2662   return n->Opcode() == Op_MacroLogicV;
2663 }
2664 
2665 static bool is_vector_bitwise_op(Node* n) {
2666   return is_vector_unary_bitwise_op(n)  ||
2667          is_vector_binary_bitwise_op(n) ||
2668          is_vector_ternary_bitwise_op(n);
2669 }
2670 
2671 static bool is_vector_bitwise_cone_root(Node* n) {
2672   if (n->bottom_type()->isa_vectmask() || !is_vector_bitwise_op(n)) {
2673     return false;
2674   }
2675   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2676     if (is_vector_bitwise_op(n->fast_out(i))) {
2677       return false;
2678     }
2679   }
2680   return true;
2681 }
2682 
2683 static uint collect_unique_inputs(Node* n, Unique_Node_List& inputs) {
2684   uint cnt = 0;
2685   if (is_vector_bitwise_op(n)) {
2686     uint inp_cnt = n->is_predicated_vector() ? n->req()-1 : n->req();
2687     if (VectorNode::is_vector_bitwise_not_pattern(n)) {
2688       for (uint i = 1; i < inp_cnt; i++) {
2689         Node* in = n->in(i);
2690         bool skip = VectorNode::is_all_ones_vector(in);
2691         if (!skip && !inputs.member(in)) {
2692           inputs.push(in);
2693           cnt++;
2694         }
2695       }
2696       assert(cnt <= 1, "not unary");
2697     } else {
2698       uint last_req = inp_cnt;
2699       if (is_vector_ternary_bitwise_op(n)) {
2700         last_req = inp_cnt - 1; // skip last input
2701       }
2702       for (uint i = 1; i < last_req; i++) {
2703         Node* def = n->in(i);
2704         if (!inputs.member(def)) {
2705           inputs.push(def);
2706           cnt++;
2707         }
2708       }
2709     }
2710   } else { // not a bitwise operations
2711     if (!inputs.member(n)) {
2712       inputs.push(n);
2713       cnt++;
2714     }
2715   }
2716   return cnt;
2717 }
2718 
2719 void Compile::collect_logic_cone_roots(Unique_Node_List& list) {
2720   Unique_Node_List useful_nodes;
2721   C->identify_useful_nodes(useful_nodes);
2722 
2723   for (uint i = 0; i < useful_nodes.size(); i++) {
2724     Node* n = useful_nodes.at(i);
2725     if (is_vector_bitwise_cone_root(n)) {
2726       list.push(n);
2727     }
2728   }
2729 }
2730 
2731 Node* Compile::xform_to_MacroLogicV(PhaseIterGVN& igvn,
2732                                     const TypeVect* vt,
2733                                     Unique_Node_List& partition,
2734                                     Unique_Node_List& inputs) {
2735   assert(partition.size() == 2 || partition.size() == 3, "not supported");
2736   assert(inputs.size()    == 2 || inputs.size()    == 3, "not supported");
2737   assert(Matcher::match_rule_supported_vector(Op_MacroLogicV, vt->length(), vt->element_basic_type()), "not supported");
2738 
2739   Node* in1 = inputs.at(0);
2740   Node* in2 = inputs.at(1);
2741   Node* in3 = (inputs.size() == 3 ? inputs.at(2) : in2);
2742 
2743   uint func = compute_truth_table(partition, inputs);
2744 
2745   Node* pn = partition.at(partition.size() - 1);
2746   Node* mask = pn->is_predicated_vector() ? pn->in(pn->req()-1) : nullptr;
2747   return igvn.transform(MacroLogicVNode::make(igvn, in1, in2, in3, mask, func, vt));
2748 }
2749 
2750 static uint extract_bit(uint func, uint pos) {
2751   return (func & (1 << pos)) >> pos;
2752 }
2753 
2754 //
2755 //  A macro logic node represents a truth table. It has 4 inputs,
2756 //  First three inputs corresponds to 3 columns of a truth table
2757 //  and fourth input captures the logic function.
2758 //
2759 //  eg.  fn = (in1 AND in2) OR in3;
2760 //
2761 //      MacroNode(in1,in2,in3,fn)
2762 //
2763 //  -----------------
2764 //  in1 in2 in3  fn
2765 //  -----------------
2766 //  0    0   0    0
2767 //  0    0   1    1
2768 //  0    1   0    0
2769 //  0    1   1    1
2770 //  1    0   0    0
2771 //  1    0   1    1
2772 //  1    1   0    1
2773 //  1    1   1    1
2774 //
2775 
2776 uint Compile::eval_macro_logic_op(uint func, uint in1 , uint in2, uint in3) {
2777   int res = 0;
2778   for (int i = 0; i < 8; i++) {
2779     int bit1 = extract_bit(in1, i);
2780     int bit2 = extract_bit(in2, i);
2781     int bit3 = extract_bit(in3, i);
2782 
2783     int func_bit_pos = (bit1 << 2 | bit2 << 1 | bit3);
2784     int func_bit = extract_bit(func, func_bit_pos);
2785 
2786     res |= func_bit << i;
2787   }
2788   return res;
2789 }
2790 
2791 static uint eval_operand(Node* n, ResourceHashtable<Node*,uint>& eval_map) {
2792   assert(n != nullptr, "");
2793   assert(eval_map.contains(n), "absent");
2794   return *(eval_map.get(n));
2795 }
2796 
2797 static void eval_operands(Node* n,
2798                           uint& func1, uint& func2, uint& func3,
2799                           ResourceHashtable<Node*,uint>& eval_map) {
2800   assert(is_vector_bitwise_op(n), "");
2801 
2802   if (is_vector_unary_bitwise_op(n)) {
2803     Node* opnd = n->in(1);
2804     if (VectorNode::is_vector_bitwise_not_pattern(n) && VectorNode::is_all_ones_vector(opnd)) {
2805       opnd = n->in(2);
2806     }
2807     func1 = eval_operand(opnd, eval_map);
2808   } else if (is_vector_binary_bitwise_op(n)) {
2809     func1 = eval_operand(n->in(1), eval_map);
2810     func2 = eval_operand(n->in(2), eval_map);
2811   } else {
2812     assert(is_vector_ternary_bitwise_op(n), "unknown operation");
2813     func1 = eval_operand(n->in(1), eval_map);
2814     func2 = eval_operand(n->in(2), eval_map);
2815     func3 = eval_operand(n->in(3), eval_map);
2816   }
2817 }
2818 
2819 uint Compile::compute_truth_table(Unique_Node_List& partition, Unique_Node_List& inputs) {
2820   assert(inputs.size() <= 3, "sanity");
2821   ResourceMark rm;
2822   uint res = 0;
2823   ResourceHashtable<Node*,uint> eval_map;
2824 
2825   // Populate precomputed functions for inputs.
2826   // Each input corresponds to one column of 3 input truth-table.
2827   uint input_funcs[] = { 0xAA,   // (_, _, c) -> c
2828                          0xCC,   // (_, b, _) -> b
2829                          0xF0 }; // (a, _, _) -> a
2830   for (uint i = 0; i < inputs.size(); i++) {
2831     eval_map.put(inputs.at(i), input_funcs[2-i]);
2832   }
2833 
2834   for (uint i = 0; i < partition.size(); i++) {
2835     Node* n = partition.at(i);
2836 
2837     uint func1 = 0, func2 = 0, func3 = 0;
2838     eval_operands(n, func1, func2, func3, eval_map);
2839 
2840     switch (n->Opcode()) {
2841       case Op_OrV:
2842         assert(func3 == 0, "not binary");
2843         res = func1 | func2;
2844         break;
2845       case Op_AndV:
2846         assert(func3 == 0, "not binary");
2847         res = func1 & func2;
2848         break;
2849       case Op_XorV:
2850         if (VectorNode::is_vector_bitwise_not_pattern(n)) {
2851           assert(func2 == 0 && func3 == 0, "not unary");
2852           res = (~func1) & 0xFF;
2853         } else {
2854           assert(func3 == 0, "not binary");
2855           res = func1 ^ func2;
2856         }
2857         break;
2858       case Op_MacroLogicV:
2859         // Ordering of inputs may change during evaluation of sub-tree
2860         // containing MacroLogic node as a child node, thus a re-evaluation
2861         // makes sure that function is evaluated in context of current
2862         // inputs.
2863         res = eval_macro_logic_op(n->in(4)->get_int(), func1, func2, func3);
2864         break;
2865 
2866       default: assert(false, "not supported: %s", n->Name());
2867     }
2868     assert(res <= 0xFF, "invalid");
2869     eval_map.put(n, res);
2870   }
2871   return res;
2872 }
2873 
2874 // Criteria under which nodes gets packed into a macro logic node:-
2875 //  1) Parent and both child nodes are all unmasked or masked with
2876 //     same predicates.
2877 //  2) Masked parent can be packed with left child if it is predicated
2878 //     and both have same predicates.
2879 //  3) Masked parent can be packed with right child if its un-predicated
2880 //     or has matching predication condition.
2881 //  4) An unmasked parent can be packed with an unmasked child.
2882 bool Compile::compute_logic_cone(Node* n, Unique_Node_List& partition, Unique_Node_List& inputs) {
2883   assert(partition.size() == 0, "not empty");
2884   assert(inputs.size() == 0, "not empty");
2885   if (is_vector_ternary_bitwise_op(n)) {
2886     return false;
2887   }
2888 
2889   bool is_unary_op = is_vector_unary_bitwise_op(n);
2890   if (is_unary_op) {
2891     assert(collect_unique_inputs(n, inputs) == 1, "not unary");
2892     return false; // too few inputs
2893   }
2894 
2895   bool pack_left_child = true;
2896   bool pack_right_child = true;
2897 
2898   bool left_child_LOP = is_vector_bitwise_op(n->in(1));
2899   bool right_child_LOP = is_vector_bitwise_op(n->in(2));
2900 
2901   int left_child_input_cnt = 0;
2902   int right_child_input_cnt = 0;
2903 
2904   bool parent_is_predicated = n->is_predicated_vector();
2905   bool left_child_predicated = n->in(1)->is_predicated_vector();
2906   bool right_child_predicated = n->in(2)->is_predicated_vector();
2907 
2908   Node* parent_pred = parent_is_predicated ? n->in(n->req()-1) : nullptr;
2909   Node* left_child_pred = left_child_predicated ? n->in(1)->in(n->in(1)->req()-1) : nullptr;
2910   Node* right_child_pred = right_child_predicated ? n->in(1)->in(n->in(1)->req()-1) : nullptr;
2911 
2912   do {
2913     if (pack_left_child && left_child_LOP &&
2914         ((!parent_is_predicated && !left_child_predicated) ||
2915         ((parent_is_predicated && left_child_predicated &&
2916           parent_pred == left_child_pred)))) {
2917        partition.push(n->in(1));
2918        left_child_input_cnt = collect_unique_inputs(n->in(1), inputs);
2919     } else {
2920        inputs.push(n->in(1));
2921        left_child_input_cnt = 1;
2922     }
2923 
2924     if (pack_right_child && right_child_LOP &&
2925         (!right_child_predicated ||
2926          (right_child_predicated && parent_is_predicated &&
2927           parent_pred == right_child_pred))) {
2928        partition.push(n->in(2));
2929        right_child_input_cnt = collect_unique_inputs(n->in(2), inputs);
2930     } else {
2931        inputs.push(n->in(2));
2932        right_child_input_cnt = 1;
2933     }
2934 
2935     if (inputs.size() > 3) {
2936       assert(partition.size() > 0, "");
2937       inputs.clear();
2938       partition.clear();
2939       if (left_child_input_cnt > right_child_input_cnt) {
2940         pack_left_child = false;
2941       } else {
2942         pack_right_child = false;
2943       }
2944     } else {
2945       break;
2946     }
2947   } while(true);
2948 
2949   if(partition.size()) {
2950     partition.push(n);
2951   }
2952 
2953   return (partition.size() == 2 || partition.size() == 3) &&
2954          (inputs.size()    == 2 || inputs.size()    == 3);
2955 }
2956 
2957 void Compile::process_logic_cone_root(PhaseIterGVN &igvn, Node *n, VectorSet &visited) {
2958   assert(is_vector_bitwise_op(n), "not a root");
2959 
2960   visited.set(n->_idx);
2961 
2962   // 1) Do a DFS walk over the logic cone.
2963   for (uint i = 1; i < n->req(); i++) {
2964     Node* in = n->in(i);
2965     if (!visited.test(in->_idx) && is_vector_bitwise_op(in)) {
2966       process_logic_cone_root(igvn, in, visited);
2967     }
2968   }
2969 
2970   // 2) Bottom up traversal: Merge node[s] with
2971   // the parent to form macro logic node.
2972   Unique_Node_List partition;
2973   Unique_Node_List inputs;
2974   if (compute_logic_cone(n, partition, inputs)) {
2975     const TypeVect* vt = n->bottom_type()->is_vect();
2976     Node* pn = partition.at(partition.size() - 1);
2977     Node* mask = pn->is_predicated_vector() ? pn->in(pn->req()-1) : nullptr;
2978     if (mask == nullptr ||
2979         Matcher::match_rule_supported_vector_masked(Op_MacroLogicV, vt->length(), vt->element_basic_type())) {
2980       Node* macro_logic = xform_to_MacroLogicV(igvn, vt, partition, inputs);
2981       VectorNode::trace_new_vector(macro_logic, "MacroLogic");
2982       igvn.replace_node(n, macro_logic);
2983     }
2984   }
2985 }
2986 
2987 void Compile::optimize_logic_cones(PhaseIterGVN &igvn) {
2988   ResourceMark rm;
2989   if (Matcher::match_rule_supported(Op_MacroLogicV)) {
2990     Unique_Node_List list;
2991     collect_logic_cone_roots(list);
2992 
2993     while (list.size() > 0) {
2994       Node* n = list.pop();
2995       const TypeVect* vt = n->bottom_type()->is_vect();
2996       bool supported = Matcher::match_rule_supported_vector(Op_MacroLogicV, vt->length(), vt->element_basic_type());
2997       if (supported) {
2998         VectorSet visited(comp_arena());
2999         process_logic_cone_root(igvn, n, visited);
3000       }
3001     }
3002   }
3003 }
3004 
3005 //------------------------------Code_Gen---------------------------------------
3006 // Given a graph, generate code for it
3007 void Compile::Code_Gen() {
3008   if (failing()) {
3009     return;
3010   }
3011 
3012   // Perform instruction selection.  You might think we could reclaim Matcher
3013   // memory PDQ, but actually the Matcher is used in generating spill code.
3014   // Internals of the Matcher (including some VectorSets) must remain live
3015   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
3016   // set a bit in reclaimed memory.
3017 
3018   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
3019   // nodes.  Mapping is only valid at the root of each matched subtree.
3020   NOT_PRODUCT( verify_graph_edges(); )
3021 
3022   Matcher matcher;
3023   _matcher = &matcher;
3024   {
3025     TracePhase tp(_t_matcher);
3026     matcher.match();
3027     if (failing()) {
3028       return;
3029     }
3030   }
3031   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
3032   // nodes.  Mapping is only valid at the root of each matched subtree.
3033   NOT_PRODUCT( verify_graph_edges(); )
3034 
3035   // If you have too many nodes, or if matching has failed, bail out
3036   check_node_count(0, "out of nodes matching instructions");
3037   if (failing()) {
3038     return;
3039   }
3040 
3041   print_method(PHASE_MATCHING, 2);
3042 
3043   // Build a proper-looking CFG
3044   PhaseCFG cfg(node_arena(), root(), matcher);
3045   if (failing()) {
3046     return;
3047   }
3048   _cfg = &cfg;
3049   {
3050     TracePhase tp(_t_scheduler);
3051     bool success = cfg.do_global_code_motion();
3052     if (!success) {
3053       return;
3054     }
3055 
3056     print_method(PHASE_GLOBAL_CODE_MOTION, 2);
3057     NOT_PRODUCT( verify_graph_edges(); )
3058     cfg.verify();
3059     if (failing()) {
3060       return;
3061     }
3062   }
3063 
3064   PhaseChaitin regalloc(unique(), cfg, matcher, false);
3065   _regalloc = &regalloc;
3066   {
3067     TracePhase tp(_t_registerAllocation);
3068     // Perform register allocation.  After Chaitin, use-def chains are
3069     // no longer accurate (at spill code) and so must be ignored.
3070     // Node->LRG->reg mappings are still accurate.
3071     _regalloc->Register_Allocate();
3072 
3073     // Bail out if the allocator builds too many nodes
3074     if (failing()) {
3075       return;
3076     }
3077 
3078     print_method(PHASE_REGISTER_ALLOCATION, 2);
3079   }
3080 
3081   // Prior to register allocation we kept empty basic blocks in case the
3082   // the allocator needed a place to spill.  After register allocation we
3083   // are not adding any new instructions.  If any basic block is empty, we
3084   // can now safely remove it.
3085   {
3086     TracePhase tp(_t_blockOrdering);
3087     cfg.remove_empty_blocks();
3088     if (do_freq_based_layout()) {
3089       PhaseBlockLayout layout(cfg);
3090     } else {
3091       cfg.set_loop_alignment();
3092     }
3093     cfg.fixup_flow();
3094     cfg.remove_unreachable_blocks();
3095     cfg.verify_dominator_tree();
3096     print_method(PHASE_BLOCK_ORDERING, 3);
3097   }
3098 
3099   // Apply peephole optimizations
3100   if( OptoPeephole ) {
3101     TracePhase tp(_t_peephole);
3102     PhasePeephole peep( _regalloc, cfg);
3103     peep.do_transform();
3104     print_method(PHASE_PEEPHOLE, 3);
3105   }
3106 
3107   // Do late expand if CPU requires this.
3108   if (Matcher::require_postalloc_expand) {
3109     TracePhase tp(_t_postalloc_expand);
3110     cfg.postalloc_expand(_regalloc);
3111     print_method(PHASE_POSTALLOC_EXPAND, 3);
3112   }
3113 
3114 #ifdef ASSERT
3115   {
3116     CompilationMemoryStatistic::do_test_allocations();
3117     if (failing()) return;
3118   }
3119 #endif
3120 
3121   // Convert Nodes to instruction bits in a buffer
3122   {
3123     TracePhase tp(_t_output);
3124     PhaseOutput output;
3125     output.Output();
3126     if (failing())  return;
3127     output.install();
3128     print_method(PHASE_FINAL_CODE, 1); // Compile::_output is not null here
3129   }
3130 
3131   // He's dead, Jim.
3132   _cfg     = (PhaseCFG*)((intptr_t)0xdeadbeef);
3133   _regalloc = (PhaseChaitin*)((intptr_t)0xdeadbeef);
3134 }
3135 
3136 //------------------------------Final_Reshape_Counts---------------------------
3137 // This class defines counters to help identify when a method
3138 // may/must be executed using hardware with only 24-bit precision.
3139 struct Final_Reshape_Counts : public StackObj {
3140   int  _call_count;             // count non-inlined 'common' calls
3141   int  _float_count;            // count float ops requiring 24-bit precision
3142   int  _double_count;           // count double ops requiring more precision
3143   int  _java_call_count;        // count non-inlined 'java' calls
3144   int  _inner_loop_count;       // count loops which need alignment
3145   VectorSet _visited;           // Visitation flags
3146   Node_List _tests;             // Set of IfNodes & PCTableNodes
3147 
3148   Final_Reshape_Counts() :
3149     _call_count(0), _float_count(0), _double_count(0),
3150     _java_call_count(0), _inner_loop_count(0) { }
3151 
3152   void inc_call_count  () { _call_count  ++; }
3153   void inc_float_count () { _float_count ++; }
3154   void inc_double_count() { _double_count++; }
3155   void inc_java_call_count() { _java_call_count++; }
3156   void inc_inner_loop_count() { _inner_loop_count++; }
3157 
3158   int  get_call_count  () const { return _call_count  ; }
3159   int  get_float_count () const { return _float_count ; }
3160   int  get_double_count() const { return _double_count; }
3161   int  get_java_call_count() const { return _java_call_count; }
3162   int  get_inner_loop_count() const { return _inner_loop_count; }
3163 };
3164 
3165 //------------------------------final_graph_reshaping_impl----------------------
3166 // Implement items 1-5 from final_graph_reshaping below.
3167 void Compile::final_graph_reshaping_impl(Node *n, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes) {
3168 
3169   if ( n->outcnt() == 0 ) return; // dead node
3170   uint nop = n->Opcode();
3171 
3172   // Check for 2-input instruction with "last use" on right input.
3173   // Swap to left input.  Implements item (2).
3174   if( n->req() == 3 &&          // two-input instruction
3175       n->in(1)->outcnt() > 1 && // left use is NOT a last use
3176       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
3177       n->in(2)->outcnt() == 1 &&// right use IS a last use
3178       !n->in(2)->is_Con() ) {   // right use is not a constant
3179     // Check for commutative opcode
3180     switch( nop ) {
3181     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
3182     case Op_MaxI:  case Op_MaxL:  case Op_MaxF:  case Op_MaxD:
3183     case Op_MinI:  case Op_MinL:  case Op_MinF:  case Op_MinD:
3184     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
3185     case Op_AndL:  case Op_XorL:  case Op_OrL:
3186     case Op_AndI:  case Op_XorI:  case Op_OrI: {
3187       // Move "last use" input to left by swapping inputs
3188       n->swap_edges(1, 2);
3189       break;
3190     }
3191     default:
3192       break;
3193     }
3194   }
3195 
3196 #ifdef ASSERT
3197   if( n->is_Mem() ) {
3198     int alias_idx = get_alias_index(n->as_Mem()->adr_type());
3199     assert( n->in(0) != nullptr || alias_idx != Compile::AliasIdxRaw ||
3200             // oop will be recorded in oop map if load crosses safepoint
3201             (n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
3202                               LoadNode::is_immutable_value(n->in(MemNode::Address)))),
3203             "raw memory operations should have control edge");
3204   }
3205   if (n->is_MemBar()) {
3206     MemBarNode* mb = n->as_MemBar();
3207     if (mb->trailing_store() || mb->trailing_load_store()) {
3208       assert(mb->leading_membar()->trailing_membar() == mb, "bad membar pair");
3209       Node* mem = BarrierSet::barrier_set()->barrier_set_c2()->step_over_gc_barrier(mb->in(MemBarNode::Precedent));
3210       assert((mb->trailing_store() && mem->is_Store() && mem->as_Store()->is_release()) ||
3211              (mb->trailing_load_store() && mem->is_LoadStore()), "missing mem op");
3212     } else if (mb->leading()) {
3213       assert(mb->trailing_membar()->leading_membar() == mb, "bad membar pair");
3214     }
3215   }
3216 #endif
3217   // Count FPU ops and common calls, implements item (3)
3218   bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->final_graph_reshaping(this, n, nop, dead_nodes);
3219   if (!gc_handled) {
3220     final_graph_reshaping_main_switch(n, frc, nop, dead_nodes);
3221   }
3222 
3223   // Collect CFG split points
3224   if (n->is_MultiBranch() && !n->is_RangeCheck()) {
3225     frc._tests.push(n);
3226   }
3227 }
3228 
3229 void Compile::handle_div_mod_op(Node* n, BasicType bt, bool is_unsigned) {
3230   if (!UseDivMod) {
3231     return;
3232   }
3233 
3234   // Check if "a % b" and "a / b" both exist
3235   Node* d = n->find_similar(Op_DivIL(bt, is_unsigned));
3236   if (d == nullptr) {
3237     return;
3238   }
3239 
3240   // Replace them with a fused divmod if supported
3241   if (Matcher::has_match_rule(Op_DivModIL(bt, is_unsigned))) {
3242     DivModNode* divmod = DivModNode::make(n, bt, is_unsigned);
3243     // If the divisor input for a Div (or Mod etc.) is not zero, then the control input of the Div is set to zero.
3244     // It could be that the divisor input is found not zero because its type is narrowed down by a CastII in the
3245     // subgraph for that input. Range check CastIIs are removed during final graph reshape. To preserve the dependency
3246     // carried by a CastII, precedence edges are added to the Div node. We need to transfer the precedence edges to the
3247     // DivMod node so the dependency is not lost.
3248     divmod->add_prec_from(n);
3249     divmod->add_prec_from(d);
3250     d->subsume_by(divmod->div_proj(), this);
3251     n->subsume_by(divmod->mod_proj(), this);
3252   } else {
3253     // Replace "a % b" with "a - ((a / b) * b)"
3254     Node* mult = MulNode::make(d, d->in(2), bt);
3255     Node* sub = SubNode::make(d->in(1), mult, bt);
3256     n->subsume_by(sub, this);
3257   }
3258 }
3259 
3260 void Compile::final_graph_reshaping_main_switch(Node* n, Final_Reshape_Counts& frc, uint nop, Unique_Node_List& dead_nodes) {
3261   switch( nop ) {
3262   // Count all float operations that may use FPU
3263   case Op_AddF:
3264   case Op_SubF:
3265   case Op_MulF:
3266   case Op_DivF:
3267   case Op_NegF:
3268   case Op_ModF:
3269   case Op_ConvI2F:
3270   case Op_ConF:
3271   case Op_CmpF:
3272   case Op_CmpF3:
3273   case Op_StoreF:
3274   case Op_LoadF:
3275   // case Op_ConvL2F: // longs are split into 32-bit halves
3276     frc.inc_float_count();
3277     break;
3278 
3279   case Op_ConvF2D:
3280   case Op_ConvD2F:
3281     frc.inc_float_count();
3282     frc.inc_double_count();
3283     break;
3284 
3285   // Count all double operations that may use FPU
3286   case Op_AddD:
3287   case Op_SubD:
3288   case Op_MulD:
3289   case Op_DivD:
3290   case Op_NegD:
3291   case Op_ModD:
3292   case Op_ConvI2D:
3293   case Op_ConvD2I:
3294   // case Op_ConvL2D: // handled by leaf call
3295   // case Op_ConvD2L: // handled by leaf call
3296   case Op_ConD:
3297   case Op_CmpD:
3298   case Op_CmpD3:
3299   case Op_StoreD:
3300   case Op_LoadD:
3301   case Op_LoadD_unaligned:
3302     frc.inc_double_count();
3303     break;
3304   case Op_Opaque1:              // Remove Opaque Nodes before matching
3305     n->subsume_by(n->in(1), this);
3306     break;
3307   case Op_CallStaticJava:
3308   case Op_CallJava:
3309   case Op_CallDynamicJava:
3310     frc.inc_java_call_count(); // Count java call site;
3311   case Op_CallRuntime:
3312   case Op_CallLeaf:
3313   case Op_CallLeafVector:
3314   case Op_CallLeafNoFP: {
3315     assert (n->is_Call(), "");
3316     CallNode *call = n->as_Call();
3317     // Count call sites where the FP mode bit would have to be flipped.
3318     // Do not count uncommon runtime calls:
3319     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
3320     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
3321     if (!call->is_CallStaticJava() || !call->as_CallStaticJava()->_name) {
3322       frc.inc_call_count();   // Count the call site
3323     } else {                  // See if uncommon argument is shared
3324       Node *n = call->in(TypeFunc::Parms);
3325       int nop = n->Opcode();
3326       // Clone shared simple arguments to uncommon calls, item (1).
3327       if (n->outcnt() > 1 &&
3328           !n->is_Proj() &&
3329           nop != Op_CreateEx &&
3330           nop != Op_CheckCastPP &&
3331           nop != Op_DecodeN &&
3332           nop != Op_DecodeNKlass &&
3333           !n->is_Mem() &&
3334           !n->is_Phi()) {
3335         Node *x = n->clone();
3336         call->set_req(TypeFunc::Parms, x);
3337       }
3338     }
3339     break;
3340   }
3341   case Op_StoreB:
3342   case Op_StoreC:
3343   case Op_StoreI:
3344   case Op_StoreL:
3345   case Op_CompareAndSwapB:
3346   case Op_CompareAndSwapS:
3347   case Op_CompareAndSwapI:
3348   case Op_CompareAndSwapL:
3349   case Op_CompareAndSwapP:
3350   case Op_CompareAndSwapN:
3351   case Op_WeakCompareAndSwapB:
3352   case Op_WeakCompareAndSwapS:
3353   case Op_WeakCompareAndSwapI:
3354   case Op_WeakCompareAndSwapL:
3355   case Op_WeakCompareAndSwapP:
3356   case Op_WeakCompareAndSwapN:
3357   case Op_CompareAndExchangeB:
3358   case Op_CompareAndExchangeS:
3359   case Op_CompareAndExchangeI:
3360   case Op_CompareAndExchangeL:
3361   case Op_CompareAndExchangeP:
3362   case Op_CompareAndExchangeN:
3363   case Op_GetAndAddS:
3364   case Op_GetAndAddB:
3365   case Op_GetAndAddI:
3366   case Op_GetAndAddL:
3367   case Op_GetAndSetS:
3368   case Op_GetAndSetB:
3369   case Op_GetAndSetI:
3370   case Op_GetAndSetL:
3371   case Op_GetAndSetP:
3372   case Op_GetAndSetN:
3373   case Op_StoreP:
3374   case Op_StoreN:
3375   case Op_StoreNKlass:
3376   case Op_LoadB:
3377   case Op_LoadUB:
3378   case Op_LoadUS:
3379   case Op_LoadI:
3380   case Op_LoadKlass:
3381   case Op_LoadNKlass:
3382   case Op_LoadL:
3383   case Op_LoadL_unaligned:
3384   case Op_LoadP:
3385   case Op_LoadN:
3386   case Op_LoadRange:
3387   case Op_LoadS:
3388     break;
3389 
3390   case Op_AddP: {               // Assert sane base pointers
3391     Node *addp = n->in(AddPNode::Address);
3392     assert( !addp->is_AddP() ||
3393             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
3394             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
3395             "Base pointers must match (addp %u)", addp->_idx );
3396 #ifdef _LP64
3397     if ((UseCompressedOops || UseCompressedClassPointers) &&
3398         addp->Opcode() == Op_ConP &&
3399         addp == n->in(AddPNode::Base) &&
3400         n->in(AddPNode::Offset)->is_Con()) {
3401       // If the transformation of ConP to ConN+DecodeN is beneficial depends
3402       // on the platform and on the compressed oops mode.
3403       // Use addressing with narrow klass to load with offset on x86.
3404       // Some platforms can use the constant pool to load ConP.
3405       // Do this transformation here since IGVN will convert ConN back to ConP.
3406       const Type* t = addp->bottom_type();
3407       bool is_oop   = t->isa_oopptr() != nullptr;
3408       bool is_klass = t->isa_klassptr() != nullptr;
3409 
3410       if ((is_oop   && UseCompressedOops          && Matcher::const_oop_prefer_decode()  ) ||
3411           (is_klass && UseCompressedClassPointers && Matcher::const_klass_prefer_decode() &&
3412            t->isa_klassptr()->exact_klass()->is_in_encoding_range())) {
3413         Node* nn = nullptr;
3414 
3415         int op = is_oop ? Op_ConN : Op_ConNKlass;
3416 
3417         // Look for existing ConN node of the same exact type.
3418         Node* r  = root();
3419         uint cnt = r->outcnt();
3420         for (uint i = 0; i < cnt; i++) {
3421           Node* m = r->raw_out(i);
3422           if (m!= nullptr && m->Opcode() == op &&
3423               m->bottom_type()->make_ptr() == t) {
3424             nn = m;
3425             break;
3426           }
3427         }
3428         if (nn != nullptr) {
3429           // Decode a narrow oop to match address
3430           // [R12 + narrow_oop_reg<<3 + offset]
3431           if (is_oop) {
3432             nn = new DecodeNNode(nn, t);
3433           } else {
3434             nn = new DecodeNKlassNode(nn, t);
3435           }
3436           // Check for succeeding AddP which uses the same Base.
3437           // Otherwise we will run into the assertion above when visiting that guy.
3438           for (uint i = 0; i < n->outcnt(); ++i) {
3439             Node *out_i = n->raw_out(i);
3440             if (out_i && out_i->is_AddP() && out_i->in(AddPNode::Base) == addp) {
3441               out_i->set_req(AddPNode::Base, nn);
3442 #ifdef ASSERT
3443               for (uint j = 0; j < out_i->outcnt(); ++j) {
3444                 Node *out_j = out_i->raw_out(j);
3445                 assert(out_j == nullptr || !out_j->is_AddP() || out_j->in(AddPNode::Base) != addp,
3446                        "more than 2 AddP nodes in a chain (out_j %u)", out_j->_idx);
3447               }
3448 #endif
3449             }
3450           }
3451           n->set_req(AddPNode::Base, nn);
3452           n->set_req(AddPNode::Address, nn);
3453           if (addp->outcnt() == 0) {
3454             addp->disconnect_inputs(this);
3455           }
3456         }
3457       }
3458     }
3459 #endif
3460     break;
3461   }
3462 
3463   case Op_CastPP: {
3464     // Remove CastPP nodes to gain more freedom during scheduling but
3465     // keep the dependency they encode as control or precedence edges
3466     // (if control is set already) on memory operations. Some CastPP
3467     // nodes don't have a control (don't carry a dependency): skip
3468     // those.
3469     if (n->in(0) != nullptr) {
3470       ResourceMark rm;
3471       Unique_Node_List wq;
3472       wq.push(n);
3473       for (uint next = 0; next < wq.size(); ++next) {
3474         Node *m = wq.at(next);
3475         for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) {
3476           Node* use = m->fast_out(i);
3477           if (use->is_Mem() || use->is_EncodeNarrowPtr()) {
3478             use->ensure_control_or_add_prec(n->in(0));
3479           } else {
3480             switch(use->Opcode()) {
3481             case Op_AddP:
3482             case Op_DecodeN:
3483             case Op_DecodeNKlass:
3484             case Op_CheckCastPP:
3485             case Op_CastPP:
3486               wq.push(use);
3487               break;
3488             }
3489           }
3490         }
3491       }
3492     }
3493     const bool is_LP64 = LP64_ONLY(true) NOT_LP64(false);
3494     if (is_LP64 && n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
3495       Node* in1 = n->in(1);
3496       const Type* t = n->bottom_type();
3497       Node* new_in1 = in1->clone();
3498       new_in1->as_DecodeN()->set_type(t);
3499 
3500       if (!Matcher::narrow_oop_use_complex_address()) {
3501         //
3502         // x86, ARM and friends can handle 2 adds in addressing mode
3503         // and Matcher can fold a DecodeN node into address by using
3504         // a narrow oop directly and do implicit null check in address:
3505         //
3506         // [R12 + narrow_oop_reg<<3 + offset]
3507         // NullCheck narrow_oop_reg
3508         //
3509         // On other platforms (Sparc) we have to keep new DecodeN node and
3510         // use it to do implicit null check in address:
3511         //
3512         // decode_not_null narrow_oop_reg, base_reg
3513         // [base_reg + offset]
3514         // NullCheck base_reg
3515         //
3516         // Pin the new DecodeN node to non-null path on these platform (Sparc)
3517         // to keep the information to which null check the new DecodeN node
3518         // corresponds to use it as value in implicit_null_check().
3519         //
3520         new_in1->set_req(0, n->in(0));
3521       }
3522 
3523       n->subsume_by(new_in1, this);
3524       if (in1->outcnt() == 0) {
3525         in1->disconnect_inputs(this);
3526       }
3527     } else {
3528       n->subsume_by(n->in(1), this);
3529       if (n->outcnt() == 0) {
3530         n->disconnect_inputs(this);
3531       }
3532     }
3533     break;
3534   }
3535   case Op_CastII: {
3536     n->as_CastII()->remove_range_check_cast(this);
3537     break;
3538   }
3539 #ifdef _LP64
3540   case Op_CmpP:
3541     // Do this transformation here to preserve CmpPNode::sub() and
3542     // other TypePtr related Ideal optimizations (for example, ptr nullness).
3543     if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
3544       Node* in1 = n->in(1);
3545       Node* in2 = n->in(2);
3546       if (!in1->is_DecodeNarrowPtr()) {
3547         in2 = in1;
3548         in1 = n->in(2);
3549       }
3550       assert(in1->is_DecodeNarrowPtr(), "sanity");
3551 
3552       Node* new_in2 = nullptr;
3553       if (in2->is_DecodeNarrowPtr()) {
3554         assert(in2->Opcode() == in1->Opcode(), "must be same node type");
3555         new_in2 = in2->in(1);
3556       } else if (in2->Opcode() == Op_ConP) {
3557         const Type* t = in2->bottom_type();
3558         if (t == TypePtr::NULL_PTR) {
3559           assert(in1->is_DecodeN(), "compare klass to null?");
3560           // Don't convert CmpP null check into CmpN if compressed
3561           // oops implicit null check is not generated.
3562           // This will allow to generate normal oop implicit null check.
3563           if (Matcher::gen_narrow_oop_implicit_null_checks())
3564             new_in2 = ConNode::make(TypeNarrowOop::NULL_PTR);
3565           //
3566           // This transformation together with CastPP transformation above
3567           // will generated code for implicit null checks for compressed oops.
3568           //
3569           // The original code after Optimize()
3570           //
3571           //    LoadN memory, narrow_oop_reg
3572           //    decode narrow_oop_reg, base_reg
3573           //    CmpP base_reg, nullptr
3574           //    CastPP base_reg // NotNull
3575           //    Load [base_reg + offset], val_reg
3576           //
3577           // after these transformations will be
3578           //
3579           //    LoadN memory, narrow_oop_reg
3580           //    CmpN narrow_oop_reg, nullptr
3581           //    decode_not_null narrow_oop_reg, base_reg
3582           //    Load [base_reg + offset], val_reg
3583           //
3584           // and the uncommon path (== nullptr) will use narrow_oop_reg directly
3585           // since narrow oops can be used in debug info now (see the code in
3586           // final_graph_reshaping_walk()).
3587           //
3588           // At the end the code will be matched to
3589           // on x86:
3590           //
3591           //    Load_narrow_oop memory, narrow_oop_reg
3592           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
3593           //    NullCheck narrow_oop_reg
3594           //
3595           // and on sparc:
3596           //
3597           //    Load_narrow_oop memory, narrow_oop_reg
3598           //    decode_not_null narrow_oop_reg, base_reg
3599           //    Load [base_reg + offset], val_reg
3600           //    NullCheck base_reg
3601           //
3602         } else if (t->isa_oopptr()) {
3603           new_in2 = ConNode::make(t->make_narrowoop());
3604         } else if (t->isa_klassptr()) {
3605           new_in2 = ConNode::make(t->make_narrowklass());
3606         }
3607       }
3608       if (new_in2 != nullptr) {
3609         Node* cmpN = new CmpNNode(in1->in(1), new_in2);
3610         n->subsume_by(cmpN, this);
3611         if (in1->outcnt() == 0) {
3612           in1->disconnect_inputs(this);
3613         }
3614         if (in2->outcnt() == 0) {
3615           in2->disconnect_inputs(this);
3616         }
3617       }
3618     }
3619     break;
3620 
3621   case Op_DecodeN:
3622   case Op_DecodeNKlass:
3623     assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
3624     // DecodeN could be pinned when it can't be fold into
3625     // an address expression, see the code for Op_CastPP above.
3626     assert(n->in(0) == nullptr || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
3627     break;
3628 
3629   case Op_EncodeP:
3630   case Op_EncodePKlass: {
3631     Node* in1 = n->in(1);
3632     if (in1->is_DecodeNarrowPtr()) {
3633       n->subsume_by(in1->in(1), this);
3634     } else if (in1->Opcode() == Op_ConP) {
3635       const Type* t = in1->bottom_type();
3636       if (t == TypePtr::NULL_PTR) {
3637         assert(t->isa_oopptr(), "null klass?");
3638         n->subsume_by(ConNode::make(TypeNarrowOop::NULL_PTR), this);
3639       } else if (t->isa_oopptr()) {
3640         n->subsume_by(ConNode::make(t->make_narrowoop()), this);
3641       } else if (t->isa_klassptr()) {
3642         n->subsume_by(ConNode::make(t->make_narrowklass()), this);
3643       }
3644     }
3645     if (in1->outcnt() == 0) {
3646       in1->disconnect_inputs(this);
3647     }
3648     break;
3649   }
3650 
3651   case Op_Proj: {
3652     if (OptimizeStringConcat || IncrementalInline) {
3653       ProjNode* proj = n->as_Proj();
3654       if (proj->_is_io_use) {
3655         assert(proj->_con == TypeFunc::I_O || proj->_con == TypeFunc::Memory, "");
3656         // Separate projections were used for the exception path which
3657         // are normally removed by a late inline.  If it wasn't inlined
3658         // then they will hang around and should just be replaced with
3659         // the original one. Merge them.
3660         Node* non_io_proj = proj->in(0)->as_Multi()->proj_out_or_null(proj->_con, false /*is_io_use*/);
3661         if (non_io_proj  != nullptr) {
3662           proj->subsume_by(non_io_proj , this);
3663         }
3664       }
3665     }
3666     break;
3667   }
3668 
3669   case Op_Phi:
3670     if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
3671       // The EncodeP optimization may create Phi with the same edges
3672       // for all paths. It is not handled well by Register Allocator.
3673       Node* unique_in = n->in(1);
3674       assert(unique_in != nullptr, "");
3675       uint cnt = n->req();
3676       for (uint i = 2; i < cnt; i++) {
3677         Node* m = n->in(i);
3678         assert(m != nullptr, "");
3679         if (unique_in != m)
3680           unique_in = nullptr;
3681       }
3682       if (unique_in != nullptr) {
3683         n->subsume_by(unique_in, this);
3684       }
3685     }
3686     break;
3687 
3688 #endif
3689 
3690   case Op_ModI:
3691     handle_div_mod_op(n, T_INT, false);
3692     break;
3693 
3694   case Op_ModL:
3695     handle_div_mod_op(n, T_LONG, false);
3696     break;
3697 
3698   case Op_UModI:
3699     handle_div_mod_op(n, T_INT, true);
3700     break;
3701 
3702   case Op_UModL:
3703     handle_div_mod_op(n, T_LONG, true);
3704     break;
3705 
3706   case Op_LoadVector:
3707   case Op_StoreVector:
3708 #ifdef ASSERT
3709     // Add VerifyVectorAlignment node between adr and load / store.
3710     if (VerifyAlignVector && Matcher::has_match_rule(Op_VerifyVectorAlignment)) {
3711       bool must_verify_alignment = n->is_LoadVector() ? n->as_LoadVector()->must_verify_alignment() :
3712                                                         n->as_StoreVector()->must_verify_alignment();
3713       if (must_verify_alignment) {
3714         jlong vector_width = n->is_LoadVector() ? n->as_LoadVector()->memory_size() :
3715                                                   n->as_StoreVector()->memory_size();
3716         // The memory access should be aligned to the vector width in bytes.
3717         // However, the underlying array is possibly less well aligned, but at least
3718         // to ObjectAlignmentInBytes. Hence, even if multiple arrays are accessed in
3719         // a loop we can expect at least the following alignment:
3720         jlong guaranteed_alignment = MIN2(vector_width, (jlong)ObjectAlignmentInBytes);
3721         assert(2 <= guaranteed_alignment && guaranteed_alignment <= 64, "alignment must be in range");
3722         assert(is_power_of_2(guaranteed_alignment), "alignment must be power of 2");
3723         // Create mask from alignment. e.g. 0b1000 -> 0b0111
3724         jlong mask = guaranteed_alignment - 1;
3725         Node* mask_con = ConLNode::make(mask);
3726         VerifyVectorAlignmentNode* va = new VerifyVectorAlignmentNode(n->in(MemNode::Address), mask_con);
3727         n->set_req(MemNode::Address, va);
3728       }
3729     }
3730 #endif
3731     break;
3732 
3733   case Op_LoadVectorGather:
3734   case Op_StoreVectorScatter:
3735   case Op_LoadVectorGatherMasked:
3736   case Op_StoreVectorScatterMasked:
3737   case Op_VectorCmpMasked:
3738   case Op_VectorMaskGen:
3739   case Op_LoadVectorMasked:
3740   case Op_StoreVectorMasked:
3741     break;
3742 
3743   case Op_AddReductionVI:
3744   case Op_AddReductionVL:
3745   case Op_AddReductionVF:
3746   case Op_AddReductionVD:
3747   case Op_MulReductionVI:
3748   case Op_MulReductionVL:
3749   case Op_MulReductionVF:
3750   case Op_MulReductionVD:
3751   case Op_MinReductionV:
3752   case Op_MaxReductionV:
3753   case Op_AndReductionV:
3754   case Op_OrReductionV:
3755   case Op_XorReductionV:
3756     break;
3757 
3758   case Op_PackB:
3759   case Op_PackS:
3760   case Op_PackI:
3761   case Op_PackF:
3762   case Op_PackL:
3763   case Op_PackD:
3764     if (n->req()-1 > 2) {
3765       // Replace many operand PackNodes with a binary tree for matching
3766       PackNode* p = (PackNode*) n;
3767       Node* btp = p->binary_tree_pack(1, n->req());
3768       n->subsume_by(btp, this);
3769     }
3770     break;
3771   case Op_Loop:
3772     assert(!n->as_Loop()->is_loop_nest_inner_loop() || _loop_opts_cnt == 0, "should have been turned into a counted loop");
3773   case Op_CountedLoop:
3774   case Op_LongCountedLoop:
3775   case Op_OuterStripMinedLoop:
3776     if (n->as_Loop()->is_inner_loop()) {
3777       frc.inc_inner_loop_count();
3778     }
3779     n->as_Loop()->verify_strip_mined(0);
3780     break;
3781   case Op_LShiftI:
3782   case Op_RShiftI:
3783   case Op_URShiftI:
3784   case Op_LShiftL:
3785   case Op_RShiftL:
3786   case Op_URShiftL:
3787     if (Matcher::need_masked_shift_count) {
3788       // The cpu's shift instructions don't restrict the count to the
3789       // lower 5/6 bits. We need to do the masking ourselves.
3790       Node* in2 = n->in(2);
3791       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
3792       const TypeInt* t = in2->find_int_type();
3793       if (t != nullptr && t->is_con()) {
3794         juint shift = t->get_con();
3795         if (shift > mask) { // Unsigned cmp
3796           n->set_req(2, ConNode::make(TypeInt::make(shift & mask)));
3797         }
3798       } else {
3799         if (t == nullptr || t->_lo < 0 || t->_hi > (int)mask) {
3800           Node* shift = new AndINode(in2, ConNode::make(TypeInt::make(mask)));
3801           n->set_req(2, shift);
3802         }
3803       }
3804       if (in2->outcnt() == 0) { // Remove dead node
3805         in2->disconnect_inputs(this);
3806       }
3807     }
3808     break;
3809   case Op_MemBarStoreStore:
3810   case Op_MemBarRelease:
3811     // Break the link with AllocateNode: it is no longer useful and
3812     // confuses register allocation.
3813     if (n->req() > MemBarNode::Precedent) {
3814       n->set_req(MemBarNode::Precedent, top());
3815     }
3816     break;
3817   case Op_MemBarAcquire: {
3818     if (n->as_MemBar()->trailing_load() && n->req() > MemBarNode::Precedent) {
3819       // At parse time, the trailing MemBarAcquire for a volatile load
3820       // is created with an edge to the load. After optimizations,
3821       // that input may be a chain of Phis. If those phis have no
3822       // other use, then the MemBarAcquire keeps them alive and
3823       // register allocation can be confused.
3824       dead_nodes.push(n->in(MemBarNode::Precedent));
3825       n->set_req(MemBarNode::Precedent, top());
3826     }
3827     break;
3828   }
3829   case Op_Blackhole:
3830     break;
3831   case Op_RangeCheck: {
3832     RangeCheckNode* rc = n->as_RangeCheck();
3833     Node* iff = new IfNode(rc->in(0), rc->in(1), rc->_prob, rc->_fcnt);
3834     n->subsume_by(iff, this);
3835     frc._tests.push(iff);
3836     break;
3837   }
3838   case Op_ConvI2L: {
3839     if (!Matcher::convi2l_type_required) {
3840       // Code generation on some platforms doesn't need accurate
3841       // ConvI2L types. Widening the type can help remove redundant
3842       // address computations.
3843       n->as_Type()->set_type(TypeLong::INT);
3844       ResourceMark rm;
3845       Unique_Node_List wq;
3846       wq.push(n);
3847       for (uint next = 0; next < wq.size(); next++) {
3848         Node *m = wq.at(next);
3849 
3850         for(;;) {
3851           // Loop over all nodes with identical inputs edges as m
3852           Node* k = m->find_similar(m->Opcode());
3853           if (k == nullptr) {
3854             break;
3855           }
3856           // Push their uses so we get a chance to remove node made
3857           // redundant
3858           for (DUIterator_Fast imax, i = k->fast_outs(imax); i < imax; i++) {
3859             Node* u = k->fast_out(i);
3860             if (u->Opcode() == Op_LShiftL ||
3861                 u->Opcode() == Op_AddL ||
3862                 u->Opcode() == Op_SubL ||
3863                 u->Opcode() == Op_AddP) {
3864               wq.push(u);
3865             }
3866           }
3867           // Replace all nodes with identical edges as m with m
3868           k->subsume_by(m, this);
3869         }
3870       }
3871     }
3872     break;
3873   }
3874   case Op_CmpUL: {
3875     if (!Matcher::has_match_rule(Op_CmpUL)) {
3876       // No support for unsigned long comparisons
3877       ConINode* sign_pos = new ConINode(TypeInt::make(BitsPerLong - 1));
3878       Node* sign_bit_mask = new RShiftLNode(n->in(1), sign_pos);
3879       Node* orl = new OrLNode(n->in(1), sign_bit_mask);
3880       ConLNode* remove_sign_mask = new ConLNode(TypeLong::make(max_jlong));
3881       Node* andl = new AndLNode(orl, remove_sign_mask);
3882       Node* cmp = new CmpLNode(andl, n->in(2));
3883       n->subsume_by(cmp, this);
3884     }
3885     break;
3886   }
3887 #ifdef ASSERT
3888   case Op_ConNKlass: {
3889     const TypePtr* tp = n->as_Type()->type()->make_ptr();
3890     ciKlass* klass = tp->is_klassptr()->exact_klass();
3891     assert(klass->is_in_encoding_range(), "klass cannot be compressed");
3892     break;
3893   }
3894 #endif
3895   default:
3896     assert(!n->is_Call(), "");
3897     assert(!n->is_Mem(), "");
3898     assert(nop != Op_ProfileBoolean, "should be eliminated during IGVN");
3899     break;
3900   }
3901 }
3902 
3903 //------------------------------final_graph_reshaping_walk---------------------
3904 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
3905 // requires that the walk visits a node's inputs before visiting the node.
3906 void Compile::final_graph_reshaping_walk(Node_Stack& nstack, Node* root, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes) {
3907   Unique_Node_List sfpt;
3908 
3909   frc._visited.set(root->_idx); // first, mark node as visited
3910   uint cnt = root->req();
3911   Node *n = root;
3912   uint  i = 0;
3913   while (true) {
3914     if (i < cnt) {
3915       // Place all non-visited non-null inputs onto stack
3916       Node* m = n->in(i);
3917       ++i;
3918       if (m != nullptr && !frc._visited.test_set(m->_idx)) {
3919         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != nullptr) {
3920           // compute worst case interpreter size in case of a deoptimization
3921           update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size());
3922 
3923           sfpt.push(m);
3924         }
3925         cnt = m->req();
3926         nstack.push(n, i); // put on stack parent and next input's index
3927         n = m;
3928         i = 0;
3929       }
3930     } else {
3931       // Now do post-visit work
3932       final_graph_reshaping_impl(n, frc, dead_nodes);
3933       if (nstack.is_empty())
3934         break;             // finished
3935       n = nstack.node();   // Get node from stack
3936       cnt = n->req();
3937       i = nstack.index();
3938       nstack.pop();        // Shift to the next node on stack
3939     }
3940   }
3941 
3942   // Skip next transformation if compressed oops are not used.
3943   if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
3944       (!UseCompressedOops && !UseCompressedClassPointers))
3945     return;
3946 
3947   // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
3948   // It could be done for an uncommon traps or any safepoints/calls
3949   // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
3950   while (sfpt.size() > 0) {
3951     n = sfpt.pop();
3952     JVMState *jvms = n->as_SafePoint()->jvms();
3953     assert(jvms != nullptr, "sanity");
3954     int start = jvms->debug_start();
3955     int end   = n->req();
3956     bool is_uncommon = (n->is_CallStaticJava() &&
3957                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
3958     for (int j = start; j < end; j++) {
3959       Node* in = n->in(j);
3960       if (in->is_DecodeNarrowPtr()) {
3961         bool safe_to_skip = true;
3962         if (!is_uncommon ) {
3963           // Is it safe to skip?
3964           for (uint i = 0; i < in->outcnt(); i++) {
3965             Node* u = in->raw_out(i);
3966             if (!u->is_SafePoint() ||
3967                 (u->is_Call() && u->as_Call()->has_non_debug_use(n))) {
3968               safe_to_skip = false;
3969             }
3970           }
3971         }
3972         if (safe_to_skip) {
3973           n->set_req(j, in->in(1));
3974         }
3975         if (in->outcnt() == 0) {
3976           in->disconnect_inputs(this);
3977         }
3978       }
3979     }
3980   }
3981 }
3982 
3983 //------------------------------final_graph_reshaping--------------------------
3984 // Final Graph Reshaping.
3985 //
3986 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
3987 //     and not commoned up and forced early.  Must come after regular
3988 //     optimizations to avoid GVN undoing the cloning.  Clone constant
3989 //     inputs to Loop Phis; these will be split by the allocator anyways.
3990 //     Remove Opaque nodes.
3991 // (2) Move last-uses by commutative operations to the left input to encourage
3992 //     Intel update-in-place two-address operations and better register usage
3993 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
3994 //     calls canonicalizing them back.
3995 // (3) Count the number of double-precision FP ops, single-precision FP ops
3996 //     and call sites.  On Intel, we can get correct rounding either by
3997 //     forcing singles to memory (requires extra stores and loads after each
3998 //     FP bytecode) or we can set a rounding mode bit (requires setting and
3999 //     clearing the mode bit around call sites).  The mode bit is only used
4000 //     if the relative frequency of single FP ops to calls is low enough.
4001 //     This is a key transform for SPEC mpeg_audio.
4002 // (4) Detect infinite loops; blobs of code reachable from above but not
4003 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
4004 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
4005 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
4006 //     Detection is by looking for IfNodes where only 1 projection is
4007 //     reachable from below or CatchNodes missing some targets.
4008 // (5) Assert for insane oop offsets in debug mode.
4009 
4010 bool Compile::final_graph_reshaping() {
4011   // an infinite loop may have been eliminated by the optimizer,
4012   // in which case the graph will be empty.
4013   if (root()->req() == 1) {
4014     // Do not compile method that is only a trivial infinite loop,
4015     // since the content of the loop may have been eliminated.
4016     record_method_not_compilable("trivial infinite loop");
4017     return true;
4018   }
4019 
4020   // Expensive nodes have their control input set to prevent the GVN
4021   // from freely commoning them. There's no GVN beyond this point so
4022   // no need to keep the control input. We want the expensive nodes to
4023   // be freely moved to the least frequent code path by gcm.
4024   assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
4025   for (int i = 0; i < expensive_count(); i++) {
4026     _expensive_nodes.at(i)->set_req(0, nullptr);
4027   }
4028 
4029   Final_Reshape_Counts frc;
4030 
4031   // Visit everybody reachable!
4032   // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc
4033   Node_Stack nstack(live_nodes() >> 1);
4034   Unique_Node_List dead_nodes;
4035   final_graph_reshaping_walk(nstack, root(), frc, dead_nodes);
4036 
4037   // Check for unreachable (from below) code (i.e., infinite loops).
4038   for( uint i = 0; i < frc._tests.size(); i++ ) {
4039     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
4040     // Get number of CFG targets.
4041     // Note that PCTables include exception targets after calls.
4042     uint required_outcnt = n->required_outcnt();
4043     if (n->outcnt() != required_outcnt) {
4044       // Check for a few special cases.  Rethrow Nodes never take the
4045       // 'fall-thru' path, so expected kids is 1 less.
4046       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
4047         if (n->in(0)->in(0)->is_Call()) {
4048           CallNode* call = n->in(0)->in(0)->as_Call();
4049           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
4050             required_outcnt--;      // Rethrow always has 1 less kid
4051           } else if (call->req() > TypeFunc::Parms &&
4052                      call->is_CallDynamicJava()) {
4053             // Check for null receiver. In such case, the optimizer has
4054             // detected that the virtual call will always result in a null
4055             // pointer exception. The fall-through projection of this CatchNode
4056             // will not be populated.
4057             Node* arg0 = call->in(TypeFunc::Parms);
4058             if (arg0->is_Type() &&
4059                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
4060               required_outcnt--;
4061             }
4062           } else if (call->entry_point() == OptoRuntime::new_array_Java() ||
4063                      call->entry_point() == OptoRuntime::new_array_nozero_Java()) {
4064             // Check for illegal array length. In such case, the optimizer has
4065             // detected that the allocation attempt will always result in an
4066             // exception. There is no fall-through projection of this CatchNode .
4067             assert(call->is_CallStaticJava(), "static call expected");
4068             assert(call->req() == call->jvms()->endoff() + 1, "missing extra input");
4069             uint valid_length_test_input = call->req() - 1;
4070             Node* valid_length_test = call->in(valid_length_test_input);
4071             call->del_req(valid_length_test_input);
4072             if (valid_length_test->find_int_con(1) == 0) {
4073               required_outcnt--;
4074             }
4075             dead_nodes.push(valid_length_test);
4076             assert(n->outcnt() == required_outcnt, "malformed control flow");
4077             continue;
4078           }
4079         }
4080       }
4081 
4082       // Recheck with a better notion of 'required_outcnt'
4083       if (n->outcnt() != required_outcnt) {
4084         record_method_not_compilable("malformed control flow");
4085         return true;            // Not all targets reachable!
4086       }
4087     } else if (n->is_PCTable() && n->in(0) && n->in(0)->in(0) && n->in(0)->in(0)->is_Call()) {
4088       CallNode* call = n->in(0)->in(0)->as_Call();
4089       if (call->entry_point() == OptoRuntime::new_array_Java() ||
4090           call->entry_point() == OptoRuntime::new_array_nozero_Java()) {
4091         assert(call->is_CallStaticJava(), "static call expected");
4092         assert(call->req() == call->jvms()->endoff() + 1, "missing extra input");
4093         uint valid_length_test_input = call->req() - 1;
4094         dead_nodes.push(call->in(valid_length_test_input));
4095         call->del_req(valid_length_test_input); // valid length test useless now
4096       }
4097     }
4098     // Check that I actually visited all kids.  Unreached kids
4099     // must be infinite loops.
4100     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
4101       if (!frc._visited.test(n->fast_out(j)->_idx)) {
4102         record_method_not_compilable("infinite loop");
4103         return true;            // Found unvisited kid; must be unreach
4104       }
4105 
4106     // Here so verification code in final_graph_reshaping_walk()
4107     // always see an OuterStripMinedLoopEnd
4108     if (n->is_OuterStripMinedLoopEnd() || n->is_LongCountedLoopEnd()) {
4109       IfNode* init_iff = n->as_If();
4110       Node* iff = new IfNode(init_iff->in(0), init_iff->in(1), init_iff->_prob, init_iff->_fcnt);
4111       n->subsume_by(iff, this);
4112     }
4113   }
4114 
4115   while (dead_nodes.size() > 0) {
4116     Node* m = dead_nodes.pop();
4117     if (m->outcnt() == 0 && m != top()) {
4118       for (uint j = 0; j < m->req(); j++) {
4119         Node* in = m->in(j);
4120         if (in != nullptr) {
4121           dead_nodes.push(in);
4122         }
4123       }
4124       m->disconnect_inputs(this);
4125     }
4126   }
4127 
4128   set_java_calls(frc.get_java_call_count());
4129   set_inner_loops(frc.get_inner_loop_count());
4130 
4131   // No infinite loops, no reason to bail out.
4132   return false;
4133 }
4134 
4135 //-----------------------------too_many_traps----------------------------------
4136 // Report if there are too many traps at the current method and bci.
4137 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
4138 bool Compile::too_many_traps(ciMethod* method,
4139                              int bci,
4140                              Deoptimization::DeoptReason reason) {
4141   if (method->has_trap_at(bci)) {
4142     return true;
4143   }
4144   if (PreloadReduceTraps && for_preload()) {
4145     // Preload code should not have traps, if possible.
4146     return true;
4147   }
4148   ciMethodData* md = method->method_data();
4149   if (md->is_empty()) {
4150     // Assume the trap has not occurred, or that it occurred only
4151     // because of a transient condition during start-up in the interpreter.
4152     return false;
4153   }
4154   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : nullptr;
4155   if (md->has_trap_at(bci, m, reason) != 0) {
4156     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
4157     // Also, if there are multiple reasons, or if there is no per-BCI record,
4158     // assume the worst.
4159     if (log())
4160       log()->elem("observe trap='%s' count='%d'",
4161                   Deoptimization::trap_reason_name(reason),
4162                   md->trap_count(reason));
4163     return true;
4164   } else {
4165     // Ignore method/bci and see if there have been too many globally.
4166     return too_many_traps(reason, md);
4167   }
4168 }
4169 
4170 // Less-accurate variant which does not require a method and bci.
4171 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
4172                              ciMethodData* logmd) {
4173   if (PreloadReduceTraps && for_preload()) {
4174     // Preload code should not have traps, if possible.
4175     return true;
4176   }
4177   if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) {
4178     // Too many traps globally.
4179     // Note that we use cumulative trap_count, not just md->trap_count.
4180     if (log()) {
4181       int mcount = (logmd == nullptr)? -1: (int)logmd->trap_count(reason);
4182       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
4183                   Deoptimization::trap_reason_name(reason),
4184                   mcount, trap_count(reason));
4185     }
4186     return true;
4187   } else {
4188     // The coast is clear.
4189     return false;
4190   }
4191 }
4192 
4193 //--------------------------too_many_recompiles--------------------------------
4194 // Report if there are too many recompiles at the current method and bci.
4195 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
4196 // Is not eager to return true, since this will cause the compiler to use
4197 // Action_none for a trap point, to avoid too many recompilations.
4198 bool Compile::too_many_recompiles(ciMethod* method,
4199                                   int bci,
4200                                   Deoptimization::DeoptReason reason) {
4201   ciMethodData* md = method->method_data();
4202   if (md->is_empty()) {
4203     // Assume the trap has not occurred, or that it occurred only
4204     // because of a transient condition during start-up in the interpreter.
4205     return false;
4206   }
4207   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
4208   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
4209   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
4210   Deoptimization::DeoptReason per_bc_reason
4211     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
4212   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : nullptr;
4213   if ((per_bc_reason == Deoptimization::Reason_none
4214        || md->has_trap_at(bci, m, reason) != 0)
4215       // The trap frequency measure we care about is the recompile count:
4216       && md->trap_recompiled_at(bci, m)
4217       && md->overflow_recompile_count() >= bc_cutoff) {
4218     // Do not emit a trap here if it has already caused recompilations.
4219     // Also, if there are multiple reasons, or if there is no per-BCI record,
4220     // assume the worst.
4221     if (log())
4222       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
4223                   Deoptimization::trap_reason_name(reason),
4224                   md->trap_count(reason),
4225                   md->overflow_recompile_count());
4226     return true;
4227   } else if (trap_count(reason) != 0
4228              && decompile_count() >= m_cutoff) {
4229     // Too many recompiles globally, and we have seen this sort of trap.
4230     // Use cumulative decompile_count, not just md->decompile_count.
4231     if (log())
4232       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
4233                   Deoptimization::trap_reason_name(reason),
4234                   md->trap_count(reason), trap_count(reason),
4235                   md->decompile_count(), decompile_count());
4236     return true;
4237   } else {
4238     // The coast is clear.
4239     return false;
4240   }
4241 }
4242 
4243 // Compute when not to trap. Used by matching trap based nodes and
4244 // NullCheck optimization.
4245 void Compile::set_allowed_deopt_reasons() {
4246   _allowed_reasons = 0;
4247   if (is_method_compilation()) {
4248     for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) {
4249       assert(rs < BitsPerInt, "recode bit map");
4250       if (!too_many_traps((Deoptimization::DeoptReason) rs)) {
4251         _allowed_reasons |= nth_bit(rs);
4252       }
4253     }
4254   }
4255 }
4256 
4257 bool Compile::needs_clinit_barrier(ciMethod* method, ciMethod* accessing_method) {
4258   return method->is_static() && needs_clinit_barrier(method->holder(), accessing_method);
4259 }
4260 
4261 bool Compile::needs_clinit_barrier(ciField* field, ciMethod* accessing_method) {
4262   return field->is_static() && needs_clinit_barrier(field->holder(), accessing_method);
4263 }
4264 
4265 bool Compile::needs_clinit_barrier(ciInstanceKlass* holder, ciMethod* accessing_method) {
4266   if (holder->is_initialized() && !do_clinit_barriers()) {
4267     return false;
4268   }
4269   if (holder->is_being_initialized() || do_clinit_barriers()) {
4270     if (accessing_method->holder() == holder) {
4271       // Access inside a class. The barrier can be elided when access happens in <clinit>,
4272       // <init>, or a static method. In all those cases, there was an initialization
4273       // barrier on the holder klass passed.
4274       if (accessing_method->is_static_initializer() ||
4275           accessing_method->is_object_initializer() ||
4276           accessing_method->is_static()) {
4277         return false;
4278       }
4279     } else if (accessing_method->holder()->is_subclass_of(holder)) {
4280       // Access from a subclass. The barrier can be elided only when access happens in <clinit>.
4281       // In case of <init> or a static method, the barrier is on the subclass is not enough:
4282       // child class can become fully initialized while its parent class is still being initialized.
4283       if (accessing_method->is_static_initializer()) {
4284         return false;
4285       }
4286     }
4287     ciMethod* root = method(); // the root method of compilation
4288     if (root != accessing_method) {
4289       return needs_clinit_barrier(holder, root); // check access in the context of compilation root
4290     }
4291   }
4292   return true;
4293 }
4294 
4295 #ifndef PRODUCT
4296 //------------------------------verify_bidirectional_edges---------------------
4297 // For each input edge to a node (ie - for each Use-Def edge), verify that
4298 // there is a corresponding Def-Use edge.
4299 void Compile::verify_bidirectional_edges(Unique_Node_List& visited, const Unique_Node_List* root_and_safepoints) const {
4300   // Allocate stack of size C->live_nodes()/16 to avoid frequent realloc
4301   uint stack_size = live_nodes() >> 4;
4302   Node_List nstack(MAX2(stack_size, (uint) OptoNodeListSize));
4303   if (root_and_safepoints != nullptr) {
4304     assert(root_and_safepoints->member(_root), "root is not in root_and_safepoints");
4305     for (uint i = 0, limit = root_and_safepoints->size(); i < limit; i++) {
4306       Node* root_or_safepoint = root_and_safepoints->at(i);
4307       // If the node is a safepoint, let's check if it still has a control input
4308       // Lack of control input signifies that this node was killed by CCP or
4309       // recursively by remove_globally_dead_node and it shouldn't be a starting
4310       // point.
4311       if (!root_or_safepoint->is_SafePoint() || root_or_safepoint->in(0) != nullptr) {
4312         nstack.push(root_or_safepoint);
4313       }
4314     }
4315   } else {
4316     nstack.push(_root);
4317   }
4318 
4319   while (nstack.size() > 0) {
4320     Node* n = nstack.pop();
4321     if (visited.member(n)) {
4322       continue;
4323     }
4324     visited.push(n);
4325 
4326     // Walk over all input edges, checking for correspondence
4327     uint length = n->len();
4328     for (uint i = 0; i < length; i++) {
4329       Node* in = n->in(i);
4330       if (in != nullptr && !visited.member(in)) {
4331         nstack.push(in); // Put it on stack
4332       }
4333       if (in != nullptr && !in->is_top()) {
4334         // Count instances of `next`
4335         int cnt = 0;
4336         for (uint idx = 0; idx < in->_outcnt; idx++) {
4337           if (in->_out[idx] == n) {
4338             cnt++;
4339           }
4340         }
4341         assert(cnt > 0, "Failed to find Def-Use edge.");
4342         // Check for duplicate edges
4343         // walk the input array downcounting the input edges to n
4344         for (uint j = 0; j < length; j++) {
4345           if (n->in(j) == in) {
4346             cnt--;
4347           }
4348         }
4349         assert(cnt == 0, "Mismatched edge count.");
4350       } else if (in == nullptr) {
4351         assert(i == 0 || i >= n->req() ||
4352                n->is_Region() || n->is_Phi() || n->is_ArrayCopy() ||
4353                (n->is_Unlock() && i == (n->req() - 1)) ||
4354                (n->is_MemBar() && i == 5), // the precedence edge to a membar can be removed during macro node expansion
4355               "only region, phi, arraycopy, unlock or membar nodes have null data edges");
4356       } else {
4357         assert(in->is_top(), "sanity");
4358         // Nothing to check.
4359       }
4360     }
4361   }
4362 }
4363 
4364 //------------------------------verify_graph_edges---------------------------
4365 // Walk the Graph and verify that there is a one-to-one correspondence
4366 // between Use-Def edges and Def-Use edges in the graph.
4367 void Compile::verify_graph_edges(bool no_dead_code, const Unique_Node_List* root_and_safepoints) const {
4368   if (VerifyGraphEdges) {
4369     Unique_Node_List visited;
4370 
4371     // Call graph walk to check edges
4372     verify_bidirectional_edges(visited, root_and_safepoints);
4373     if (no_dead_code) {
4374       // Now make sure that no visited node is used by an unvisited node.
4375       bool dead_nodes = false;
4376       Unique_Node_List checked;
4377       while (visited.size() > 0) {
4378         Node* n = visited.pop();
4379         checked.push(n);
4380         for (uint i = 0; i < n->outcnt(); i++) {
4381           Node* use = n->raw_out(i);
4382           if (checked.member(use))  continue;  // already checked
4383           if (visited.member(use))  continue;  // already in the graph
4384           if (use->is_Con())        continue;  // a dead ConNode is OK
4385           // At this point, we have found a dead node which is DU-reachable.
4386           if (!dead_nodes) {
4387             tty->print_cr("*** Dead nodes reachable via DU edges:");
4388             dead_nodes = true;
4389           }
4390           use->dump(2);
4391           tty->print_cr("---");
4392           checked.push(use);  // No repeats; pretend it is now checked.
4393         }
4394       }
4395       assert(!dead_nodes, "using nodes must be reachable from root");
4396     }
4397   }
4398 }
4399 #endif
4400 
4401 // The Compile object keeps track of failure reasons separately from the ciEnv.
4402 // This is required because there is not quite a 1-1 relation between the
4403 // ciEnv and its compilation task and the Compile object.  Note that one
4404 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
4405 // to backtrack and retry without subsuming loads.  Other than this backtracking
4406 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
4407 // by the logic in C2Compiler.
4408 void Compile::record_failure(const char* reason DEBUG_ONLY(COMMA bool allow_multiple_failures)) {
4409   if (log() != nullptr) {
4410     log()->elem("failure reason='%s' phase='compile'", reason);
4411   }
4412   if (_failure_reason.get() == nullptr) {
4413     // Record the first failure reason.
4414     _failure_reason.set(reason);
4415     if (CaptureBailoutInformation) {
4416       _first_failure_details = new CompilationFailureInfo(reason);
4417     }
4418   } else {
4419     assert(!StressBailout || allow_multiple_failures, "should have handled previous failure.");
4420   }
4421 
4422   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
4423     C->print_method(PHASE_FAILURE, 1);
4424   }
4425   _root = nullptr;  // flush the graph, too
4426 }
4427 
4428 Compile::TracePhase::TracePhase(const char* name, PhaseTraceId id)
4429   : TraceTime(name, &Phase::timers[id], CITime, CITimeVerbose),
4430     _compile(Compile::current()),
4431     _log(nullptr),
4432     _dolog(CITimeVerbose)
4433 {
4434   assert(_compile != nullptr, "sanity check");
4435   assert(id != PhaseTraceId::_t_none, "Don't use none");
4436   if (_dolog) {
4437     _log = _compile->log();
4438   }
4439   if (_log != nullptr) {
4440     _log->begin_head("phase name='%s' nodes='%d' live='%d'", phase_name(), _compile->unique(), _compile->live_nodes());
4441     _log->stamp();
4442     _log->end_head();
4443   }
4444 
4445   // Inform memory statistic, if enabled
4446   if (CompilationMemoryStatistic::enabled()) {
4447     CompilationMemoryStatistic::on_phase_start((int)id, name);
4448   }
4449 }
4450 
4451 Compile::TracePhase::TracePhase(PhaseTraceId id)
4452   : TracePhase(Phase::get_phase_trace_id_text(id), id) {}
4453 
4454 Compile::TracePhase::~TracePhase() {
4455 
4456   // Inform memory statistic, if enabled
4457   if (CompilationMemoryStatistic::enabled()) {
4458     CompilationMemoryStatistic::on_phase_end();
4459   }
4460 
4461   if (_compile->failing_internal()) {
4462     if (_log != nullptr) {
4463       _log->done("phase");
4464     }
4465     return; // timing code, not stressing bailouts.
4466   }
4467 #ifdef ASSERT
4468   if (PrintIdealNodeCount) {
4469     tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
4470                   phase_name(), _compile->unique(), _compile->live_nodes(), _compile->count_live_nodes_by_graph_walk());
4471   }
4472 
4473   if (VerifyIdealNodeCount) {
4474     _compile->print_missing_nodes();
4475   }
4476 #endif
4477 
4478   if (_log != nullptr) {
4479     _log->done("phase name='%s' nodes='%d' live='%d'", phase_name(), _compile->unique(), _compile->live_nodes());
4480   }
4481 }
4482 
4483 //----------------------------static_subtype_check-----------------------------
4484 // Shortcut important common cases when superklass is exact:
4485 // (0) superklass is java.lang.Object (can occur in reflective code)
4486 // (1) subklass is already limited to a subtype of superklass => always ok
4487 // (2) subklass does not overlap with superklass => always fail
4488 // (3) superklass has NO subtypes and we can check with a simple compare.
4489 Compile::SubTypeCheckResult Compile::static_subtype_check(const TypeKlassPtr* superk, const TypeKlassPtr* subk, bool skip) {
4490   if (skip) {
4491     return SSC_full_test;       // Let caller generate the general case.
4492   }
4493 
4494   if (subk->is_java_subtype_of(superk)) {
4495     return SSC_always_true; // (0) and (1)  this test cannot fail
4496   }
4497 
4498   if (!subk->maybe_java_subtype_of(superk)) {
4499     return SSC_always_false; // (2) true path dead; no dynamic test needed
4500   }
4501 
4502   const Type* superelem = superk;
4503   if (superk->isa_aryklassptr()) {
4504     int ignored;
4505     superelem = superk->is_aryklassptr()->base_element_type(ignored);
4506   }
4507 
4508   if (superelem->isa_instklassptr()) {
4509     ciInstanceKlass* ik = superelem->is_instklassptr()->instance_klass();
4510     if (!ik->has_subklass()) {
4511       if (!ik->is_final()) {
4512         // Add a dependency if there is a chance of a later subclass.
4513         dependencies()->assert_leaf_type(ik);
4514       }
4515       if (!superk->maybe_java_subtype_of(subk)) {
4516         return SSC_always_false;
4517       }
4518       return SSC_easy_test;     // (3) caller can do a simple ptr comparison
4519     }
4520   } else {
4521     // A primitive array type has no subtypes.
4522     return SSC_easy_test;       // (3) caller can do a simple ptr comparison
4523   }
4524 
4525   return SSC_full_test;
4526 }
4527 
4528 Node* Compile::conv_I2X_index(PhaseGVN* phase, Node* idx, const TypeInt* sizetype, Node* ctrl) {
4529 #ifdef _LP64
4530   // The scaled index operand to AddP must be a clean 64-bit value.
4531   // Java allows a 32-bit int to be incremented to a negative
4532   // value, which appears in a 64-bit register as a large
4533   // positive number.  Using that large positive number as an
4534   // operand in pointer arithmetic has bad consequences.
4535   // On the other hand, 32-bit overflow is rare, and the possibility
4536   // can often be excluded, if we annotate the ConvI2L node with
4537   // a type assertion that its value is known to be a small positive
4538   // number.  (The prior range check has ensured this.)
4539   // This assertion is used by ConvI2LNode::Ideal.
4540   int index_max = max_jint - 1;  // array size is max_jint, index is one less
4541   if (sizetype != nullptr) index_max = sizetype->_hi - 1;
4542   const TypeInt* iidxtype = TypeInt::make(0, index_max, Type::WidenMax);
4543   idx = constrained_convI2L(phase, idx, iidxtype, ctrl);
4544 #endif
4545   return idx;
4546 }
4547 
4548 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check)
4549 Node* Compile::constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl, bool carry_dependency) {
4550   if (ctrl != nullptr) {
4551     // Express control dependency by a CastII node with a narrow type.
4552     // Make the CastII node dependent on the control input to prevent the narrowed ConvI2L
4553     // node from floating above the range check during loop optimizations. Otherwise, the
4554     // ConvI2L node may be eliminated independently of the range check, causing the data path
4555     // to become TOP while the control path is still there (although it's unreachable).
4556     value = new CastIINode(ctrl, value, itype, carry_dependency ? ConstraintCastNode::StrongDependency : ConstraintCastNode::RegularDependency, true /* range check dependency */);
4557     value = phase->transform(value);
4558   }
4559   const TypeLong* ltype = TypeLong::make(itype->_lo, itype->_hi, itype->_widen);
4560   return phase->transform(new ConvI2LNode(value, ltype));
4561 }
4562 
4563 void Compile::dump_print_inlining() {
4564   inline_printer()->print_on(tty);
4565 }
4566 
4567 void Compile::log_late_inline(CallGenerator* cg) {
4568   if (log() != nullptr) {
4569     log()->head("late_inline method='%d' inline_id='" JLONG_FORMAT "'", log()->identify(cg->method()),
4570                 cg->unique_id());
4571     JVMState* p = cg->call_node()->jvms();
4572     while (p != nullptr) {
4573       log()->elem("jvms bci='%d' method='%d'", p->bci(), log()->identify(p->method()));
4574       p = p->caller();
4575     }
4576     log()->tail("late_inline");
4577   }
4578 }
4579 
4580 void Compile::log_late_inline_failure(CallGenerator* cg, const char* msg) {
4581   log_late_inline(cg);
4582   if (log() != nullptr) {
4583     log()->inline_fail(msg);
4584   }
4585 }
4586 
4587 void Compile::log_inline_id(CallGenerator* cg) {
4588   if (log() != nullptr) {
4589     // The LogCompilation tool needs a unique way to identify late
4590     // inline call sites. This id must be unique for this call site in
4591     // this compilation. Try to have it unique across compilations as
4592     // well because it can be convenient when grepping through the log
4593     // file.
4594     // Distinguish OSR compilations from others in case CICountOSR is
4595     // on.
4596     jlong id = ((jlong)unique()) + (((jlong)compile_id()) << 33) + (CICountOSR && is_osr_compilation() ? ((jlong)1) << 32 : 0);
4597     cg->set_unique_id(id);
4598     log()->elem("inline_id id='" JLONG_FORMAT "'", id);
4599   }
4600 }
4601 
4602 void Compile::log_inline_failure(const char* msg) {
4603   if (C->log() != nullptr) {
4604     C->log()->inline_fail(msg);
4605   }
4606 }
4607 
4608 
4609 // Dump inlining replay data to the stream.
4610 // Don't change thread state and acquire any locks.
4611 void Compile::dump_inline_data(outputStream* out) {
4612   InlineTree* inl_tree = ilt();
4613   if (inl_tree != nullptr) {
4614     out->print(" inline %d", inl_tree->count());
4615     inl_tree->dump_replay_data(out);
4616   }
4617 }
4618 
4619 void Compile::dump_inline_data_reduced(outputStream* out) {
4620   assert(ReplayReduce, "");
4621 
4622   InlineTree* inl_tree = ilt();
4623   if (inl_tree == nullptr) {
4624     return;
4625   }
4626   // Enable iterative replay file reduction
4627   // Output "compile" lines for depth 1 subtrees,
4628   // simulating that those trees were compiled
4629   // instead of inlined.
4630   for (int i = 0; i < inl_tree->subtrees().length(); ++i) {
4631     InlineTree* sub = inl_tree->subtrees().at(i);
4632     if (sub->inline_level() != 1) {
4633       continue;
4634     }
4635 
4636     ciMethod* method = sub->method();
4637     int entry_bci = -1;
4638     int comp_level = env()->task()->comp_level();
4639     out->print("compile ");
4640     method->dump_name_as_ascii(out);
4641     out->print(" %d %d", entry_bci, comp_level);
4642     out->print(" inline %d", sub->count());
4643     sub->dump_replay_data(out, -1);
4644     out->cr();
4645   }
4646 }
4647 
4648 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
4649   if (n1->Opcode() < n2->Opcode())      return -1;
4650   else if (n1->Opcode() > n2->Opcode()) return 1;
4651 
4652   assert(n1->req() == n2->req(), "can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req());
4653   for (uint i = 1; i < n1->req(); i++) {
4654     if (n1->in(i) < n2->in(i))      return -1;
4655     else if (n1->in(i) > n2->in(i)) return 1;
4656   }
4657 
4658   return 0;
4659 }
4660 
4661 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
4662   Node* n1 = *n1p;
4663   Node* n2 = *n2p;
4664 
4665   return cmp_expensive_nodes(n1, n2);
4666 }
4667 
4668 void Compile::sort_expensive_nodes() {
4669   if (!expensive_nodes_sorted()) {
4670     _expensive_nodes.sort(cmp_expensive_nodes);
4671   }
4672 }
4673 
4674 bool Compile::expensive_nodes_sorted() const {
4675   for (int i = 1; i < _expensive_nodes.length(); i++) {
4676     if (cmp_expensive_nodes(_expensive_nodes.adr_at(i), _expensive_nodes.adr_at(i-1)) < 0) {
4677       return false;
4678     }
4679   }
4680   return true;
4681 }
4682 
4683 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
4684   if (_expensive_nodes.length() == 0) {
4685     return false;
4686   }
4687 
4688   assert(OptimizeExpensiveOps, "optimization off?");
4689 
4690   // Take this opportunity to remove dead nodes from the list
4691   int j = 0;
4692   for (int i = 0; i < _expensive_nodes.length(); i++) {
4693     Node* n = _expensive_nodes.at(i);
4694     if (!n->is_unreachable(igvn)) {
4695       assert(n->is_expensive(), "should be expensive");
4696       _expensive_nodes.at_put(j, n);
4697       j++;
4698     }
4699   }
4700   _expensive_nodes.trunc_to(j);
4701 
4702   // Then sort the list so that similar nodes are next to each other
4703   // and check for at least two nodes of identical kind with same data
4704   // inputs.
4705   sort_expensive_nodes();
4706 
4707   for (int i = 0; i < _expensive_nodes.length()-1; i++) {
4708     if (cmp_expensive_nodes(_expensive_nodes.adr_at(i), _expensive_nodes.adr_at(i+1)) == 0) {
4709       return true;
4710     }
4711   }
4712 
4713   return false;
4714 }
4715 
4716 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
4717   if (_expensive_nodes.length() == 0) {
4718     return;
4719   }
4720 
4721   assert(OptimizeExpensiveOps, "optimization off?");
4722 
4723   // Sort to bring similar nodes next to each other and clear the
4724   // control input of nodes for which there's only a single copy.
4725   sort_expensive_nodes();
4726 
4727   int j = 0;
4728   int identical = 0;
4729   int i = 0;
4730   bool modified = false;
4731   for (; i < _expensive_nodes.length()-1; i++) {
4732     assert(j <= i, "can't write beyond current index");
4733     if (_expensive_nodes.at(i)->Opcode() == _expensive_nodes.at(i+1)->Opcode()) {
4734       identical++;
4735       _expensive_nodes.at_put(j++, _expensive_nodes.at(i));
4736       continue;
4737     }
4738     if (identical > 0) {
4739       _expensive_nodes.at_put(j++, _expensive_nodes.at(i));
4740       identical = 0;
4741     } else {
4742       Node* n = _expensive_nodes.at(i);
4743       igvn.replace_input_of(n, 0, nullptr);
4744       igvn.hash_insert(n);
4745       modified = true;
4746     }
4747   }
4748   if (identical > 0) {
4749     _expensive_nodes.at_put(j++, _expensive_nodes.at(i));
4750   } else if (_expensive_nodes.length() >= 1) {
4751     Node* n = _expensive_nodes.at(i);
4752     igvn.replace_input_of(n, 0, nullptr);
4753     igvn.hash_insert(n);
4754     modified = true;
4755   }
4756   _expensive_nodes.trunc_to(j);
4757   if (modified) {
4758     igvn.optimize();
4759   }
4760 }
4761 
4762 void Compile::add_expensive_node(Node * n) {
4763   assert(!_expensive_nodes.contains(n), "duplicate entry in expensive list");
4764   assert(n->is_expensive(), "expensive nodes with non-null control here only");
4765   assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
4766   if (OptimizeExpensiveOps) {
4767     _expensive_nodes.append(n);
4768   } else {
4769     // Clear control input and let IGVN optimize expensive nodes if
4770     // OptimizeExpensiveOps is off.
4771     n->set_req(0, nullptr);
4772   }
4773 }
4774 
4775 /**
4776  * Track coarsened Lock and Unlock nodes.
4777  */
4778 
4779 class Lock_List : public Node_List {
4780   uint _origin_cnt;
4781 public:
4782   Lock_List(Arena *a, uint cnt) : Node_List(a), _origin_cnt(cnt) {}
4783   uint origin_cnt() const { return _origin_cnt; }
4784 };
4785 
4786 void Compile::add_coarsened_locks(GrowableArray<AbstractLockNode*>& locks) {
4787   int length = locks.length();
4788   if (length > 0) {
4789     // Have to keep this list until locks elimination during Macro nodes elimination.
4790     Lock_List* locks_list = new (comp_arena()) Lock_List(comp_arena(), length);
4791     AbstractLockNode* alock = locks.at(0);
4792     BoxLockNode* box = alock->box_node()->as_BoxLock();
4793     for (int i = 0; i < length; i++) {
4794       AbstractLockNode* lock = locks.at(i);
4795       assert(lock->is_coarsened(), "expecting only coarsened AbstractLock nodes, but got '%s'[%d] node", lock->Name(), lock->_idx);
4796       locks_list->push(lock);
4797       BoxLockNode* this_box = lock->box_node()->as_BoxLock();
4798       if (this_box != box) {
4799         // Locking regions (BoxLock) could be Unbalanced here:
4800         //  - its coarsened locks were eliminated in earlier
4801         //    macro nodes elimination followed by loop unroll
4802         //  - it is OSR locking region (no Lock node)
4803         // Preserve Unbalanced status in such cases.
4804         if (!this_box->is_unbalanced()) {
4805           this_box->set_coarsened();
4806         }
4807         if (!box->is_unbalanced()) {
4808           box->set_coarsened();
4809         }
4810       }
4811     }
4812     _coarsened_locks.append(locks_list);
4813   }
4814 }
4815 
4816 void Compile::remove_useless_coarsened_locks(Unique_Node_List& useful) {
4817   int count = coarsened_count();
4818   for (int i = 0; i < count; i++) {
4819     Node_List* locks_list = _coarsened_locks.at(i);
4820     for (uint j = 0; j < locks_list->size(); j++) {
4821       Node* lock = locks_list->at(j);
4822       assert(lock->is_AbstractLock(), "sanity");
4823       if (!useful.member(lock)) {
4824         locks_list->yank(lock);
4825       }
4826     }
4827   }
4828 }
4829 
4830 void Compile::remove_coarsened_lock(Node* n) {
4831   if (n->is_AbstractLock()) {
4832     int count = coarsened_count();
4833     for (int i = 0; i < count; i++) {
4834       Node_List* locks_list = _coarsened_locks.at(i);
4835       locks_list->yank(n);
4836     }
4837   }
4838 }
4839 
4840 bool Compile::coarsened_locks_consistent() {
4841   int count = coarsened_count();
4842   for (int i = 0; i < count; i++) {
4843     bool unbalanced = false;
4844     bool modified = false; // track locks kind modifications
4845     Lock_List* locks_list = (Lock_List*)_coarsened_locks.at(i);
4846     uint size = locks_list->size();
4847     if (size == 0) {
4848       unbalanced = false; // All locks were eliminated - good
4849     } else if (size != locks_list->origin_cnt()) {
4850       unbalanced = true; // Some locks were removed from list
4851     } else {
4852       for (uint j = 0; j < size; j++) {
4853         Node* lock = locks_list->at(j);
4854         // All nodes in group should have the same state (modified or not)
4855         if (!lock->as_AbstractLock()->is_coarsened()) {
4856           if (j == 0) {
4857             // first on list was modified, the rest should be too for consistency
4858             modified = true;
4859           } else if (!modified) {
4860             // this lock was modified but previous locks on the list were not
4861             unbalanced = true;
4862             break;
4863           }
4864         } else if (modified) {
4865           // previous locks on list were modified but not this lock
4866           unbalanced = true;
4867           break;
4868         }
4869       }
4870     }
4871     if (unbalanced) {
4872       // unbalanced monitor enter/exit - only some [un]lock nodes were removed or modified
4873 #ifdef ASSERT
4874       if (PrintEliminateLocks) {
4875         tty->print_cr("=== unbalanced coarsened locks ===");
4876         for (uint l = 0; l < size; l++) {
4877           locks_list->at(l)->dump();
4878         }
4879       }
4880 #endif
4881       record_failure(C2Compiler::retry_no_locks_coarsening());
4882       return false;
4883     }
4884   }
4885   return true;
4886 }
4887 
4888 // Mark locking regions (identified by BoxLockNode) as unbalanced if
4889 // locks coarsening optimization removed Lock/Unlock nodes from them.
4890 // Such regions become unbalanced because coarsening only removes part
4891 // of Lock/Unlock nodes in region. As result we can't execute other
4892 // locks elimination optimizations which assume all code paths have
4893 // corresponding pair of Lock/Unlock nodes - they are balanced.
4894 void Compile::mark_unbalanced_boxes() const {
4895   int count = coarsened_count();
4896   for (int i = 0; i < count; i++) {
4897     Node_List* locks_list = _coarsened_locks.at(i);
4898     uint size = locks_list->size();
4899     if (size > 0) {
4900       AbstractLockNode* alock = locks_list->at(0)->as_AbstractLock();
4901       BoxLockNode* box = alock->box_node()->as_BoxLock();
4902       if (alock->is_coarsened()) {
4903         // coarsened_locks_consistent(), which is called before this method, verifies
4904         // that the rest of Lock/Unlock nodes on locks_list are also coarsened.
4905         assert(!box->is_eliminated(), "regions with coarsened locks should not be marked as eliminated");
4906         for (uint j = 1; j < size; j++) {
4907           assert(locks_list->at(j)->as_AbstractLock()->is_coarsened(), "only coarsened locks are expected here");
4908           BoxLockNode* this_box = locks_list->at(j)->as_AbstractLock()->box_node()->as_BoxLock();
4909           if (box != this_box) {
4910             assert(!this_box->is_eliminated(), "regions with coarsened locks should not be marked as eliminated");
4911             box->set_unbalanced();
4912             this_box->set_unbalanced();
4913           }
4914         }
4915       }
4916     }
4917   }
4918 }
4919 
4920 /**
4921  * Remove the speculative part of types and clean up the graph
4922  */
4923 void Compile::remove_speculative_types(PhaseIterGVN &igvn) {
4924   if (UseTypeSpeculation) {
4925     Unique_Node_List worklist;
4926     worklist.push(root());
4927     int modified = 0;
4928     // Go over all type nodes that carry a speculative type, drop the
4929     // speculative part of the type and enqueue the node for an igvn
4930     // which may optimize it out.
4931     for (uint next = 0; next < worklist.size(); ++next) {
4932       Node *n  = worklist.at(next);
4933       if (n->is_Type()) {
4934         TypeNode* tn = n->as_Type();
4935         const Type* t = tn->type();
4936         const Type* t_no_spec = t->remove_speculative();
4937         if (t_no_spec != t) {
4938           bool in_hash = igvn.hash_delete(n);
4939           assert(in_hash || n->hash() == Node::NO_HASH, "node should be in igvn hash table");
4940           tn->set_type(t_no_spec);
4941           igvn.hash_insert(n);
4942           igvn._worklist.push(n); // give it a chance to go away
4943           modified++;
4944         }
4945       }
4946       // Iterate over outs - endless loops is unreachable from below
4947       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
4948         Node *m = n->fast_out(i);
4949         if (not_a_node(m)) {
4950           continue;
4951         }
4952         worklist.push(m);
4953       }
4954     }
4955     // Drop the speculative part of all types in the igvn's type table
4956     igvn.remove_speculative_types();
4957     if (modified > 0) {
4958       igvn.optimize();
4959       if (failing())  return;
4960     }
4961 #ifdef ASSERT
4962     // Verify that after the IGVN is over no speculative type has resurfaced
4963     worklist.clear();
4964     worklist.push(root());
4965     for (uint next = 0; next < worklist.size(); ++next) {
4966       Node *n  = worklist.at(next);
4967       const Type* t = igvn.type_or_null(n);
4968       assert((t == nullptr) || (t == t->remove_speculative()), "no more speculative types");
4969       if (n->is_Type()) {
4970         t = n->as_Type()->type();
4971         assert(t == t->remove_speculative(), "no more speculative types");
4972       }
4973       // Iterate over outs - endless loops is unreachable from below
4974       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
4975         Node *m = n->fast_out(i);
4976         if (not_a_node(m)) {
4977           continue;
4978         }
4979         worklist.push(m);
4980       }
4981     }
4982     igvn.check_no_speculative_types();
4983 #endif
4984   }
4985 }
4986 
4987 // Auxiliary methods to support randomized stressing/fuzzing.
4988 
4989 void Compile::initialize_stress_seed(const DirectiveSet* directive) {
4990   if (FLAG_IS_DEFAULT(StressSeed) || (FLAG_IS_ERGO(StressSeed) && directive->RepeatCompilationOption)) {
4991     _stress_seed = static_cast<uint>(Ticks::now().nanoseconds());
4992     FLAG_SET_ERGO(StressSeed, _stress_seed);
4993   } else {
4994     _stress_seed = StressSeed;
4995   }
4996   if (_log != nullptr) {
4997     _log->elem("stress_test seed='%u'", _stress_seed);
4998   }
4999 }
5000 
5001 int Compile::random() {
5002   _stress_seed = os::next_random(_stress_seed);
5003   return static_cast<int>(_stress_seed);
5004 }
5005 
5006 // This method can be called the arbitrary number of times, with current count
5007 // as the argument. The logic allows selecting a single candidate from the
5008 // running list of candidates as follows:
5009 //    int count = 0;
5010 //    Cand* selected = null;
5011 //    while(cand = cand->next()) {
5012 //      if (randomized_select(++count)) {
5013 //        selected = cand;
5014 //      }
5015 //    }
5016 //
5017 // Including count equalizes the chances any candidate is "selected".
5018 // This is useful when we don't have the complete list of candidates to choose
5019 // from uniformly. In this case, we need to adjust the randomicity of the
5020 // selection, or else we will end up biasing the selection towards the latter
5021 // candidates.
5022 //
5023 // Quick back-envelope calculation shows that for the list of n candidates
5024 // the equal probability for the candidate to persist as "best" can be
5025 // achieved by replacing it with "next" k-th candidate with the probability
5026 // of 1/k. It can be easily shown that by the end of the run, the
5027 // probability for any candidate is converged to 1/n, thus giving the
5028 // uniform distribution among all the candidates.
5029 //
5030 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
5031 #define RANDOMIZED_DOMAIN_POW 29
5032 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
5033 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
5034 bool Compile::randomized_select(int count) {
5035   assert(count > 0, "only positive");
5036   return (random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);
5037 }
5038 
5039 #ifdef ASSERT
5040 // Failures are geometrically distributed with probability 1/StressBailoutMean.
5041 bool Compile::fail_randomly() {
5042   if ((random() % StressBailoutMean) != 0) {
5043     return false;
5044   }
5045   record_failure("StressBailout");
5046   return true;
5047 }
5048 
5049 bool Compile::failure_is_artificial() {
5050   return C->failure_reason_is("StressBailout");
5051 }
5052 #endif
5053 
5054 CloneMap&     Compile::clone_map()                 { return _clone_map; }
5055 void          Compile::set_clone_map(Dict* d)      { _clone_map._dict = d; }
5056 
5057 void NodeCloneInfo::dump_on(outputStream* st) const {
5058   st->print(" {%d:%d} ", idx(), gen());
5059 }
5060 
5061 void CloneMap::clone(Node* old, Node* nnn, int gen) {
5062   uint64_t val = value(old->_idx);
5063   NodeCloneInfo cio(val);
5064   assert(val != 0, "old node should be in the map");
5065   NodeCloneInfo cin(cio.idx(), gen + cio.gen());
5066   insert(nnn->_idx, cin.get());
5067 #ifndef PRODUCT
5068   if (is_debug()) {
5069     tty->print_cr("CloneMap::clone inserted node %d info {%d:%d} into CloneMap", nnn->_idx, cin.idx(), cin.gen());
5070   }
5071 #endif
5072 }
5073 
5074 void CloneMap::verify_insert_and_clone(Node* old, Node* nnn, int gen) {
5075   NodeCloneInfo cio(value(old->_idx));
5076   if (cio.get() == 0) {
5077     cio.set(old->_idx, 0);
5078     insert(old->_idx, cio.get());
5079 #ifndef PRODUCT
5080     if (is_debug()) {
5081       tty->print_cr("CloneMap::verify_insert_and_clone inserted node %d info {%d:%d} into CloneMap", old->_idx, cio.idx(), cio.gen());
5082     }
5083 #endif
5084   }
5085   clone(old, nnn, gen);
5086 }
5087 
5088 int CloneMap::max_gen() const {
5089   int g = 0;
5090   DictI di(_dict);
5091   for(; di.test(); ++di) {
5092     int t = gen(di._key);
5093     if (g < t) {
5094       g = t;
5095 #ifndef PRODUCT
5096       if (is_debug()) {
5097         tty->print_cr("CloneMap::max_gen() update max=%d from %d", g, _2_node_idx_t(di._key));
5098       }
5099 #endif
5100     }
5101   }
5102   return g;
5103 }
5104 
5105 void CloneMap::dump(node_idx_t key, outputStream* st) const {
5106   uint64_t val = value(key);
5107   if (val != 0) {
5108     NodeCloneInfo ni(val);
5109     ni.dump_on(st);
5110   }
5111 }
5112 
5113 void Compile::shuffle_macro_nodes() {
5114   if (_macro_nodes.length() < 2) {
5115     return;
5116   }
5117   for (uint i = _macro_nodes.length() - 1; i >= 1; i--) {
5118     uint j = C->random() % (i + 1);
5119     swap(_macro_nodes.at(i), _macro_nodes.at(j));
5120   }
5121 }
5122 
5123 // Move Allocate nodes to the start of the list
5124 void Compile::sort_macro_nodes() {
5125   int count = macro_count();
5126   int allocates = 0;
5127   for (int i = 0; i < count; i++) {
5128     Node* n = macro_node(i);
5129     if (n->is_Allocate()) {
5130       if (i != allocates) {
5131         Node* tmp = macro_node(allocates);
5132         _macro_nodes.at_put(allocates, n);
5133         _macro_nodes.at_put(i, tmp);
5134       }
5135       allocates++;
5136     }
5137   }
5138 }
5139 
5140 void Compile::print_method(CompilerPhaseType cpt, int level, Node* n) {
5141   if (failing_internal()) { return; } // failing_internal to not stress bailouts from printing code.
5142   EventCompilerPhase event(UNTIMED);
5143   if (event.should_commit()) {
5144     CompilerEvent::PhaseEvent::post(event, C->_latest_stage_start_counter, cpt, C->_compile_id, level);
5145   }
5146 #ifndef PRODUCT
5147   ResourceMark rm;
5148   stringStream ss;
5149   ss.print_raw(CompilerPhaseTypeHelper::to_description(cpt));
5150   int iter = ++_igv_phase_iter[cpt];
5151   if (iter > 1) {
5152     ss.print(" %d", iter);
5153   }
5154   if (n != nullptr) {
5155     ss.print(": %d %s", n->_idx, NodeClassNames[n->Opcode()]);
5156     if (n->is_Call()) {
5157       CallNode* call = n->as_Call();
5158       if (call->_name != nullptr) {
5159         // E.g. uncommon traps etc.
5160         ss.print(" - %s", call->_name);
5161       } else if (call->is_CallJava()) {
5162         CallJavaNode* call_java = call->as_CallJava();
5163         if (call_java->method() != nullptr) {
5164           ss.print(" -");
5165           call_java->method()->print_short_name(&ss);
5166         }
5167       }
5168     }
5169   }
5170 
5171   const char* name = ss.as_string();
5172   if (should_print_igv(level)) {
5173     _igv_printer->print_graph(name);
5174   }
5175   if (should_print_phase(level)) {
5176     print_phase(name);
5177   }
5178   if (should_print_ideal_phase(cpt)) {
5179     print_ideal_ir(CompilerPhaseTypeHelper::to_name(cpt));
5180   }
5181 #endif
5182   C->_latest_stage_start_counter.stamp();
5183 }
5184 
5185 // Only used from CompileWrapper
5186 void Compile::begin_method() {
5187 #ifndef PRODUCT
5188   if (_method != nullptr && should_print_igv(1)) {
5189     _igv_printer->begin_method();
5190   }
5191 #endif
5192   C->_latest_stage_start_counter.stamp();
5193 }
5194 
5195 // Only used from CompileWrapper
5196 void Compile::end_method() {
5197   EventCompilerPhase event(UNTIMED);
5198   if (event.should_commit()) {
5199     CompilerEvent::PhaseEvent::post(event, C->_latest_stage_start_counter, PHASE_END, C->_compile_id, 1);
5200   }
5201 
5202 #ifndef PRODUCT
5203   if (_method != nullptr && should_print_igv(1)) {
5204     _igv_printer->end_method();
5205   }
5206 #endif
5207 }
5208 
5209 #ifndef PRODUCT
5210 bool Compile::should_print_phase(const int level) const {
5211   return PrintPhaseLevel > 0 && directive()->PhasePrintLevelOption >= level &&
5212          _method != nullptr; // Do not print phases for stubs.
5213 }
5214 
5215 bool Compile::should_print_ideal_phase(CompilerPhaseType cpt) const {
5216   return _directive->should_print_ideal_phase(cpt);
5217 }
5218 
5219 void Compile::init_igv() {
5220   if (_igv_printer == nullptr) {
5221     _igv_printer = IdealGraphPrinter::printer();
5222     _igv_printer->set_compile(this);
5223   }
5224 }
5225 
5226 bool Compile::should_print_igv(const int level) {
5227   PRODUCT_RETURN_(return false;);
5228 
5229   if (PrintIdealGraphLevel < 0) { // disabled by the user
5230     return false;
5231   }
5232 
5233   bool need = directive()->IGVPrintLevelOption >= level;
5234   if (need) {
5235     Compile::init_igv();
5236   }
5237   return need;
5238 }
5239 
5240 IdealGraphPrinter* Compile::_debug_file_printer = nullptr;
5241 IdealGraphPrinter* Compile::_debug_network_printer = nullptr;
5242 
5243 // Called from debugger. Prints method to the default file with the default phase name.
5244 // This works regardless of any Ideal Graph Visualizer flags set or not.
5245 // Use in debugger (gdb/rr): p igv_print($sp, $fp, $pc).
5246 void igv_print(void* sp, void* fp, void* pc) {
5247   frame fr(sp, fp, pc);
5248   Compile::current()->igv_print_method_to_file(nullptr, false, &fr);
5249 }
5250 
5251 // Same as igv_print() above but with a specified phase name.
5252 void igv_print(const char* phase_name, void* sp, void* fp, void* pc) {
5253   frame fr(sp, fp, pc);
5254   Compile::current()->igv_print_method_to_file(phase_name, false, &fr);
5255 }
5256 
5257 // Called from debugger. Prints method with the default phase name to the default network or the one specified with
5258 // the network flags for the Ideal Graph Visualizer, or to the default file depending on the 'network' argument.
5259 // This works regardless of any Ideal Graph Visualizer flags set or not.
5260 // Use in debugger (gdb/rr): p igv_print(true, $sp, $fp, $pc).
5261 void igv_print(bool network, void* sp, void* fp, void* pc) {
5262   frame fr(sp, fp, pc);
5263   if (network) {
5264     Compile::current()->igv_print_method_to_network(nullptr, &fr);
5265   } else {
5266     Compile::current()->igv_print_method_to_file(nullptr, false, &fr);
5267   }
5268 }
5269 
5270 // Same as igv_print(bool network, ...) above but with a specified phase name.
5271 // Use in debugger (gdb/rr): p igv_print(true, "MyPhase", $sp, $fp, $pc).
5272 void igv_print(bool network, const char* phase_name, void* sp, void* fp, void* pc) {
5273   frame fr(sp, fp, pc);
5274   if (network) {
5275     Compile::current()->igv_print_method_to_network(phase_name, &fr);
5276   } else {
5277     Compile::current()->igv_print_method_to_file(phase_name, false, &fr);
5278   }
5279 }
5280 
5281 // Called from debugger. Normal write to the default _printer. Only works if Ideal Graph Visualizer printing flags are set.
5282 void igv_print_default() {
5283   Compile::current()->print_method(PHASE_DEBUG, 0);
5284 }
5285 
5286 // Called from debugger, especially when replaying a trace in which the program state cannot be altered like with rr replay.
5287 // A method is appended to an existing default file with the default phase name. This means that igv_append() must follow
5288 // an earlier igv_print(*) call which sets up the file. This works regardless of any Ideal Graph Visualizer flags set or not.
5289 // Use in debugger (gdb/rr): p igv_append($sp, $fp, $pc).
5290 void igv_append(void* sp, void* fp, void* pc) {
5291   frame fr(sp, fp, pc);
5292   Compile::current()->igv_print_method_to_file(nullptr, true, &fr);
5293 }
5294 
5295 // Same as igv_append(...) above but with a specified phase name.
5296 // Use in debugger (gdb/rr): p igv_append("MyPhase", $sp, $fp, $pc).
5297 void igv_append(const char* phase_name, void* sp, void* fp, void* pc) {
5298   frame fr(sp, fp, pc);
5299   Compile::current()->igv_print_method_to_file(phase_name, true, &fr);
5300 }
5301 
5302 void Compile::igv_print_method_to_file(const char* phase_name, bool append, const frame* fr) {
5303   const char* file_name = "custom_debug.xml";
5304   if (_debug_file_printer == nullptr) {
5305     _debug_file_printer = new IdealGraphPrinter(C, file_name, append);
5306   } else {
5307     _debug_file_printer->update_compiled_method(C->method());
5308   }
5309   tty->print_cr("Method %s to %s", append ? "appended" : "printed", file_name);
5310   _debug_file_printer->print_graph(phase_name, fr);
5311 }
5312 
5313 void Compile::igv_print_method_to_network(const char* phase_name, const frame* fr) {
5314   ResourceMark rm;
5315   GrowableArray<const Node*> empty_list;
5316   igv_print_graph_to_network(phase_name, empty_list, fr);
5317 }
5318 
5319 void Compile::igv_print_graph_to_network(const char* name, GrowableArray<const Node*>& visible_nodes, const frame* fr) {
5320   if (_debug_network_printer == nullptr) {
5321     _debug_network_printer = new IdealGraphPrinter(C);
5322   } else {
5323     _debug_network_printer->update_compiled_method(C->method());
5324   }
5325   tty->print_cr("Method printed over network stream to IGV");
5326   _debug_network_printer->print(name, C->root(), visible_nodes, fr);
5327 }
5328 #endif // !PRODUCT
5329 
5330 Node* Compile::narrow_value(BasicType bt, Node* value, const Type* type, PhaseGVN* phase, bool transform_res) {
5331   if (type != nullptr && phase->type(value)->higher_equal(type)) {
5332     return value;
5333   }
5334   Node* result = nullptr;
5335   if (bt == T_BYTE) {
5336     result = phase->transform(new LShiftINode(value, phase->intcon(24)));
5337     result = new RShiftINode(result, phase->intcon(24));
5338   } else if (bt == T_BOOLEAN) {
5339     result = new AndINode(value, phase->intcon(0xFF));
5340   } else if (bt == T_CHAR) {
5341     result = new AndINode(value,phase->intcon(0xFFFF));
5342   } else {
5343     assert(bt == T_SHORT, "unexpected narrow type");
5344     result = phase->transform(new LShiftINode(value, phase->intcon(16)));
5345     result = new RShiftINode(result, phase->intcon(16));
5346   }
5347   if (transform_res) {
5348     result = phase->transform(result);
5349   }
5350   return result;
5351 }
5352 
5353 void Compile::record_method_not_compilable_oom() {
5354   record_method_not_compilable(CompilationMemoryStatistic::failure_reason_memlimit());
5355 }