1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "asm/macroAssembler.hpp" 26 #include "asm/macroAssembler.inline.hpp" 27 #include "ci/ciReplay.hpp" 28 #include "classfile/javaClasses.hpp" 29 #include "code/exceptionHandlerTable.hpp" 30 #include "code/nmethod.hpp" 31 #include "compiler/compilationFailureInfo.hpp" 32 #include "compiler/compilationMemoryStatistic.hpp" 33 #include "compiler/compileBroker.hpp" 34 #include "compiler/compileLog.hpp" 35 #include "compiler/compilerOracle.hpp" 36 #include "compiler/compiler_globals.hpp" 37 #include "compiler/disassembler.hpp" 38 #include "compiler/oopMap.hpp" 39 #include "gc/shared/barrierSet.hpp" 40 #include "gc/shared/c2/barrierSetC2.hpp" 41 #include "jfr/jfrEvents.hpp" 42 #include "jvm_io.h" 43 #include "memory/allocation.hpp" 44 #include "memory/arena.hpp" 45 #include "memory/resourceArea.hpp" 46 #include "opto/addnode.hpp" 47 #include "opto/block.hpp" 48 #include "opto/c2compiler.hpp" 49 #include "opto/callGenerator.hpp" 50 #include "opto/callnode.hpp" 51 #include "opto/castnode.hpp" 52 #include "opto/cfgnode.hpp" 53 #include "opto/chaitin.hpp" 54 #include "opto/compile.hpp" 55 #include "opto/connode.hpp" 56 #include "opto/convertnode.hpp" 57 #include "opto/divnode.hpp" 58 #include "opto/escape.hpp" 59 #include "opto/idealGraphPrinter.hpp" 60 #include "opto/locknode.hpp" 61 #include "opto/loopnode.hpp" 62 #include "opto/machnode.hpp" 63 #include "opto/macro.hpp" 64 #include "opto/matcher.hpp" 65 #include "opto/mathexactnode.hpp" 66 #include "opto/memnode.hpp" 67 #include "opto/mulnode.hpp" 68 #include "opto/narrowptrnode.hpp" 69 #include "opto/node.hpp" 70 #include "opto/opaquenode.hpp" 71 #include "opto/opcodes.hpp" 72 #include "opto/output.hpp" 73 #include "opto/parse.hpp" 74 #include "opto/phaseX.hpp" 75 #include "opto/rootnode.hpp" 76 #include "opto/runtime.hpp" 77 #include "opto/stringopts.hpp" 78 #include "opto/type.hpp" 79 #include "opto/vector.hpp" 80 #include "opto/vectornode.hpp" 81 #include "runtime/globals_extension.hpp" 82 #include "runtime/sharedRuntime.hpp" 83 #include "runtime/signature.hpp" 84 #include "runtime/stubRoutines.hpp" 85 #include "runtime/timer.hpp" 86 #include "utilities/align.hpp" 87 #include "utilities/copy.hpp" 88 #include "utilities/macros.hpp" 89 #include "utilities/resourceHash.hpp" 90 91 // -------------------- Compile::mach_constant_base_node ----------------------- 92 // Constant table base node singleton. 93 MachConstantBaseNode* Compile::mach_constant_base_node() { 94 if (_mach_constant_base_node == nullptr) { 95 _mach_constant_base_node = new MachConstantBaseNode(); 96 _mach_constant_base_node->add_req(C->root()); 97 } 98 return _mach_constant_base_node; 99 } 100 101 102 /// Support for intrinsics. 103 104 // Return the index at which m must be inserted (or already exists). 105 // The sort order is by the address of the ciMethod, with is_virtual as minor key. 106 class IntrinsicDescPair { 107 private: 108 ciMethod* _m; 109 bool _is_virtual; 110 public: 111 IntrinsicDescPair(ciMethod* m, bool is_virtual) : _m(m), _is_virtual(is_virtual) {} 112 static int compare(IntrinsicDescPair* const& key, CallGenerator* const& elt) { 113 ciMethod* m= elt->method(); 114 ciMethod* key_m = key->_m; 115 if (key_m < m) return -1; 116 else if (key_m > m) return 1; 117 else { 118 bool is_virtual = elt->is_virtual(); 119 bool key_virtual = key->_is_virtual; 120 if (key_virtual < is_virtual) return -1; 121 else if (key_virtual > is_virtual) return 1; 122 else return 0; 123 } 124 } 125 }; 126 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found) { 127 #ifdef ASSERT 128 for (int i = 1; i < _intrinsics.length(); i++) { 129 CallGenerator* cg1 = _intrinsics.at(i-1); 130 CallGenerator* cg2 = _intrinsics.at(i); 131 assert(cg1->method() != cg2->method() 132 ? cg1->method() < cg2->method() 133 : cg1->is_virtual() < cg2->is_virtual(), 134 "compiler intrinsics list must stay sorted"); 135 } 136 #endif 137 IntrinsicDescPair pair(m, is_virtual); 138 return _intrinsics.find_sorted<IntrinsicDescPair*, IntrinsicDescPair::compare>(&pair, found); 139 } 140 141 void Compile::register_intrinsic(CallGenerator* cg) { 142 bool found = false; 143 int index = intrinsic_insertion_index(cg->method(), cg->is_virtual(), found); 144 assert(!found, "registering twice"); 145 _intrinsics.insert_before(index, cg); 146 assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked"); 147 } 148 149 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) { 150 assert(m->is_loaded(), "don't try this on unloaded methods"); 151 if (_intrinsics.length() > 0) { 152 bool found = false; 153 int index = intrinsic_insertion_index(m, is_virtual, found); 154 if (found) { 155 return _intrinsics.at(index); 156 } 157 } 158 // Lazily create intrinsics for intrinsic IDs well-known in the runtime. 159 if (m->intrinsic_id() != vmIntrinsics::_none && 160 m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) { 161 CallGenerator* cg = make_vm_intrinsic(m, is_virtual); 162 if (cg != nullptr) { 163 // Save it for next time: 164 register_intrinsic(cg); 165 return cg; 166 } else { 167 gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled); 168 } 169 } 170 return nullptr; 171 } 172 173 // Compile::make_vm_intrinsic is defined in library_call.cpp. 174 175 #ifndef PRODUCT 176 // statistics gathering... 177 178 juint Compile::_intrinsic_hist_count[vmIntrinsics::number_of_intrinsics()] = {0}; 179 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::number_of_intrinsics()] = {0}; 180 181 inline int as_int(vmIntrinsics::ID id) { 182 return vmIntrinsics::as_int(id); 183 } 184 185 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) { 186 assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob"); 187 int oflags = _intrinsic_hist_flags[as_int(id)]; 188 assert(flags != 0, "what happened?"); 189 if (is_virtual) { 190 flags |= _intrinsic_virtual; 191 } 192 bool changed = (flags != oflags); 193 if ((flags & _intrinsic_worked) != 0) { 194 juint count = (_intrinsic_hist_count[as_int(id)] += 1); 195 if (count == 1) { 196 changed = true; // first time 197 } 198 // increment the overall count also: 199 _intrinsic_hist_count[as_int(vmIntrinsics::_none)] += 1; 200 } 201 if (changed) { 202 if (((oflags ^ flags) & _intrinsic_virtual) != 0) { 203 // Something changed about the intrinsic's virtuality. 204 if ((flags & _intrinsic_virtual) != 0) { 205 // This is the first use of this intrinsic as a virtual call. 206 if (oflags != 0) { 207 // We already saw it as a non-virtual, so note both cases. 208 flags |= _intrinsic_both; 209 } 210 } else if ((oflags & _intrinsic_both) == 0) { 211 // This is the first use of this intrinsic as a non-virtual 212 flags |= _intrinsic_both; 213 } 214 } 215 _intrinsic_hist_flags[as_int(id)] = (jubyte) (oflags | flags); 216 } 217 // update the overall flags also: 218 _intrinsic_hist_flags[as_int(vmIntrinsics::_none)] |= (jubyte) flags; 219 return changed; 220 } 221 222 static char* format_flags(int flags, char* buf) { 223 buf[0] = 0; 224 if ((flags & Compile::_intrinsic_worked) != 0) strcat(buf, ",worked"); 225 if ((flags & Compile::_intrinsic_failed) != 0) strcat(buf, ",failed"); 226 if ((flags & Compile::_intrinsic_disabled) != 0) strcat(buf, ",disabled"); 227 if ((flags & Compile::_intrinsic_virtual) != 0) strcat(buf, ",virtual"); 228 if ((flags & Compile::_intrinsic_both) != 0) strcat(buf, ",nonvirtual"); 229 if (buf[0] == 0) strcat(buf, ","); 230 assert(buf[0] == ',', "must be"); 231 return &buf[1]; 232 } 233 234 void Compile::print_intrinsic_statistics() { 235 char flagsbuf[100]; 236 ttyLocker ttyl; 237 if (xtty != nullptr) xtty->head("statistics type='intrinsic'"); 238 tty->print_cr("Compiler intrinsic usage:"); 239 juint total = _intrinsic_hist_count[as_int(vmIntrinsics::_none)]; 240 if (total == 0) total = 1; // avoid div0 in case of no successes 241 #define PRINT_STAT_LINE(name, c, f) \ 242 tty->print_cr(" %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f); 243 for (auto id : EnumRange<vmIntrinsicID>{}) { 244 int flags = _intrinsic_hist_flags[as_int(id)]; 245 juint count = _intrinsic_hist_count[as_int(id)]; 246 if ((flags | count) != 0) { 247 PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf)); 248 } 249 } 250 PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[as_int(vmIntrinsics::_none)], flagsbuf)); 251 if (xtty != nullptr) xtty->tail("statistics"); 252 } 253 254 void Compile::print_statistics() { 255 { ttyLocker ttyl; 256 if (xtty != nullptr) xtty->head("statistics type='opto'"); 257 Parse::print_statistics(); 258 PhaseStringOpts::print_statistics(); 259 PhaseCCP::print_statistics(); 260 PhaseRegAlloc::print_statistics(); 261 PhaseOutput::print_statistics(); 262 PhasePeephole::print_statistics(); 263 PhaseIdealLoop::print_statistics(); 264 ConnectionGraph::print_statistics(); 265 PhaseMacroExpand::print_statistics(); 266 if (xtty != nullptr) xtty->tail("statistics"); 267 } 268 if (_intrinsic_hist_flags[as_int(vmIntrinsics::_none)] != 0) { 269 // put this under its own <statistics> element. 270 print_intrinsic_statistics(); 271 } 272 } 273 #endif //PRODUCT 274 275 void Compile::gvn_replace_by(Node* n, Node* nn) { 276 for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) { 277 Node* use = n->last_out(i); 278 bool is_in_table = initial_gvn()->hash_delete(use); 279 uint uses_found = 0; 280 for (uint j = 0; j < use->len(); j++) { 281 if (use->in(j) == n) { 282 if (j < use->req()) 283 use->set_req(j, nn); 284 else 285 use->set_prec(j, nn); 286 uses_found++; 287 } 288 } 289 if (is_in_table) { 290 // reinsert into table 291 initial_gvn()->hash_find_insert(use); 292 } 293 record_for_igvn(use); 294 PhaseIterGVN::add_users_of_use_to_worklist(nn, use, *_igvn_worklist); 295 i -= uses_found; // we deleted 1 or more copies of this edge 296 } 297 } 298 299 300 // Identify all nodes that are reachable from below, useful. 301 // Use breadth-first pass that records state in a Unique_Node_List, 302 // recursive traversal is slower. 303 void Compile::identify_useful_nodes(Unique_Node_List &useful) { 304 int estimated_worklist_size = live_nodes(); 305 useful.map( estimated_worklist_size, nullptr ); // preallocate space 306 307 // Initialize worklist 308 if (root() != nullptr) { useful.push(root()); } 309 // If 'top' is cached, declare it useful to preserve cached node 310 if (cached_top_node()) { useful.push(cached_top_node()); } 311 312 // Push all useful nodes onto the list, breadthfirst 313 for( uint next = 0; next < useful.size(); ++next ) { 314 assert( next < unique(), "Unique useful nodes < total nodes"); 315 Node *n = useful.at(next); 316 uint max = n->len(); 317 for( uint i = 0; i < max; ++i ) { 318 Node *m = n->in(i); 319 if (not_a_node(m)) continue; 320 useful.push(m); 321 } 322 } 323 } 324 325 // Update dead_node_list with any missing dead nodes using useful 326 // list. Consider all non-useful nodes to be useless i.e., dead nodes. 327 void Compile::update_dead_node_list(Unique_Node_List &useful) { 328 uint max_idx = unique(); 329 VectorSet& useful_node_set = useful.member_set(); 330 331 for (uint node_idx = 0; node_idx < max_idx; node_idx++) { 332 // If node with index node_idx is not in useful set, 333 // mark it as dead in dead node list. 334 if (!useful_node_set.test(node_idx)) { 335 record_dead_node(node_idx); 336 } 337 } 338 } 339 340 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) { 341 int shift = 0; 342 for (int i = 0; i < inlines->length(); i++) { 343 CallGenerator* cg = inlines->at(i); 344 if (useful.member(cg->call_node())) { 345 if (shift > 0) { 346 inlines->at_put(i - shift, cg); 347 } 348 } else { 349 shift++; // skip over the dead element 350 } 351 } 352 if (shift > 0) { 353 inlines->trunc_to(inlines->length() - shift); // remove last elements from compacted array 354 } 355 } 356 357 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Node* dead) { 358 assert(dead != nullptr && dead->is_Call(), "sanity"); 359 int found = 0; 360 for (int i = 0; i < inlines->length(); i++) { 361 if (inlines->at(i)->call_node() == dead) { 362 inlines->remove_at(i); 363 found++; 364 NOT_DEBUG( break; ) // elements are unique, so exit early 365 } 366 } 367 assert(found <= 1, "not unique"); 368 } 369 370 template<typename N, ENABLE_IF_SDEFN(std::is_base_of<Node, N>::value)> 371 void Compile::remove_useless_nodes(GrowableArray<N*>& node_list, Unique_Node_List& useful) { 372 for (int i = node_list.length() - 1; i >= 0; i--) { 373 N* node = node_list.at(i); 374 if (!useful.member(node)) { 375 node_list.delete_at(i); // replaces i-th with last element which is known to be useful (already processed) 376 } 377 } 378 } 379 380 void Compile::remove_useless_node(Node* dead) { 381 remove_modified_node(dead); 382 383 // Constant node that has no out-edges and has only one in-edge from 384 // root is usually dead. However, sometimes reshaping walk makes 385 // it reachable by adding use edges. So, we will NOT count Con nodes 386 // as dead to be conservative about the dead node count at any 387 // given time. 388 if (!dead->is_Con()) { 389 record_dead_node(dead->_idx); 390 } 391 if (dead->is_macro()) { 392 remove_macro_node(dead); 393 } 394 if (dead->is_expensive()) { 395 remove_expensive_node(dead); 396 } 397 if (dead->is_OpaqueTemplateAssertionPredicate()) { 398 remove_template_assertion_predicate_opaque(dead->as_OpaqueTemplateAssertionPredicate()); 399 } 400 if (dead->is_ParsePredicate()) { 401 remove_parse_predicate(dead->as_ParsePredicate()); 402 } 403 if (dead->for_post_loop_opts_igvn()) { 404 remove_from_post_loop_opts_igvn(dead); 405 } 406 if (dead->for_merge_stores_igvn()) { 407 remove_from_merge_stores_igvn(dead); 408 } 409 if (dead->is_Call()) { 410 remove_useless_late_inlines( &_late_inlines, dead); 411 remove_useless_late_inlines( &_string_late_inlines, dead); 412 remove_useless_late_inlines( &_boxing_late_inlines, dead); 413 remove_useless_late_inlines(&_vector_reboxing_late_inlines, dead); 414 415 if (dead->is_CallStaticJava()) { 416 remove_unstable_if_trap(dead->as_CallStaticJava(), false); 417 } 418 } 419 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 420 bs->unregister_potential_barrier_node(dead); 421 } 422 423 // Disconnect all useless nodes by disconnecting those at the boundary. 424 void Compile::disconnect_useless_nodes(Unique_Node_List& useful, Unique_Node_List& worklist, const Unique_Node_List* root_and_safepoints) { 425 uint next = 0; 426 while (next < useful.size()) { 427 Node *n = useful.at(next++); 428 if (n->is_SafePoint()) { 429 // We're done with a parsing phase. Replaced nodes are not valid 430 // beyond that point. 431 n->as_SafePoint()->delete_replaced_nodes(); 432 } 433 // Use raw traversal of out edges since this code removes out edges 434 int max = n->outcnt(); 435 for (int j = 0; j < max; ++j) { 436 Node* child = n->raw_out(j); 437 if (!useful.member(child)) { 438 assert(!child->is_top() || child != top(), 439 "If top is cached in Compile object it is in useful list"); 440 // Only need to remove this out-edge to the useless node 441 n->raw_del_out(j); 442 --j; 443 --max; 444 if (child->is_data_proj_of_pure_function(n)) { 445 worklist.push(n); 446 } 447 } 448 } 449 if (n->outcnt() == 1 && n->has_special_unique_user()) { 450 assert(useful.member(n->unique_out()), "do not push a useless node"); 451 worklist.push(n->unique_out()); 452 } 453 } 454 455 remove_useless_nodes(_macro_nodes, useful); // remove useless macro nodes 456 remove_useless_nodes(_parse_predicates, useful); // remove useless Parse Predicate nodes 457 // Remove useless Template Assertion Predicate opaque nodes 458 remove_useless_nodes(_template_assertion_predicate_opaques, useful); 459 remove_useless_nodes(_expensive_nodes, useful); // remove useless expensive nodes 460 remove_useless_nodes(_for_post_loop_igvn, useful); // remove useless node recorded for post loop opts IGVN pass 461 remove_useless_nodes(_for_merge_stores_igvn, useful); // remove useless node recorded for merge stores IGVN pass 462 remove_useless_unstable_if_traps(useful); // remove useless unstable_if traps 463 remove_useless_coarsened_locks(useful); // remove useless coarsened locks nodes 464 #ifdef ASSERT 465 if (_modified_nodes != nullptr) { 466 _modified_nodes->remove_useless_nodes(useful.member_set()); 467 } 468 #endif 469 470 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 471 bs->eliminate_useless_gc_barriers(useful, this); 472 // clean up the late inline lists 473 remove_useless_late_inlines( &_late_inlines, useful); 474 remove_useless_late_inlines( &_string_late_inlines, useful); 475 remove_useless_late_inlines( &_boxing_late_inlines, useful); 476 remove_useless_late_inlines(&_vector_reboxing_late_inlines, useful); 477 DEBUG_ONLY(verify_graph_edges(true /*check for no_dead_code*/, root_and_safepoints);) 478 } 479 480 // ============================================================================ 481 //------------------------------CompileWrapper--------------------------------- 482 class CompileWrapper : public StackObj { 483 Compile *const _compile; 484 public: 485 CompileWrapper(Compile* compile); 486 487 ~CompileWrapper(); 488 }; 489 490 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) { 491 // the Compile* pointer is stored in the current ciEnv: 492 ciEnv* env = compile->env(); 493 assert(env == ciEnv::current(), "must already be a ciEnv active"); 494 assert(env->compiler_data() == nullptr, "compile already active?"); 495 env->set_compiler_data(compile); 496 assert(compile == Compile::current(), "sanity"); 497 498 compile->set_type_dict(nullptr); 499 compile->set_clone_map(new Dict(cmpkey, hashkey, _compile->comp_arena())); 500 compile->clone_map().set_clone_idx(0); 501 compile->set_type_last_size(0); 502 compile->set_last_tf(nullptr, nullptr); 503 compile->set_indexSet_arena(nullptr); 504 compile->set_indexSet_free_block_list(nullptr); 505 compile->init_type_arena(); 506 Type::Initialize(compile); 507 _compile->begin_method(); 508 _compile->clone_map().set_debug(_compile->has_method() && _compile->directive()->CloneMapDebugOption); 509 } 510 CompileWrapper::~CompileWrapper() { 511 // simulate crash during compilation 512 assert(CICrashAt < 0 || _compile->compile_id() != CICrashAt, "just as planned"); 513 514 _compile->end_method(); 515 _compile->env()->set_compiler_data(nullptr); 516 } 517 518 519 //----------------------------print_compile_messages--------------------------- 520 void Compile::print_compile_messages() { 521 #ifndef PRODUCT 522 // Check if recompiling 523 if (!subsume_loads() && PrintOpto) { 524 // Recompiling without allowing machine instructions to subsume loads 525 tty->print_cr("*********************************************************"); 526 tty->print_cr("** Bailout: Recompile without subsuming loads **"); 527 tty->print_cr("*********************************************************"); 528 } 529 if ((do_escape_analysis() != DoEscapeAnalysis) && PrintOpto) { 530 // Recompiling without escape analysis 531 tty->print_cr("*********************************************************"); 532 tty->print_cr("** Bailout: Recompile without escape analysis **"); 533 tty->print_cr("*********************************************************"); 534 } 535 if (do_iterative_escape_analysis() != DoEscapeAnalysis && PrintOpto) { 536 // Recompiling without iterative escape analysis 537 tty->print_cr("*********************************************************"); 538 tty->print_cr("** Bailout: Recompile without iterative escape analysis**"); 539 tty->print_cr("*********************************************************"); 540 } 541 if (do_reduce_allocation_merges() != ReduceAllocationMerges && PrintOpto) { 542 // Recompiling without reducing allocation merges 543 tty->print_cr("*********************************************************"); 544 tty->print_cr("** Bailout: Recompile without reduce allocation merges **"); 545 tty->print_cr("*********************************************************"); 546 } 547 if ((eliminate_boxing() != EliminateAutoBox) && PrintOpto) { 548 // Recompiling without boxing elimination 549 tty->print_cr("*********************************************************"); 550 tty->print_cr("** Bailout: Recompile without boxing elimination **"); 551 tty->print_cr("*********************************************************"); 552 } 553 if ((do_locks_coarsening() != EliminateLocks) && PrintOpto) { 554 // Recompiling without locks coarsening 555 tty->print_cr("*********************************************************"); 556 tty->print_cr("** Bailout: Recompile without locks coarsening **"); 557 tty->print_cr("*********************************************************"); 558 } 559 if (env()->break_at_compile()) { 560 // Open the debugger when compiling this method. 561 tty->print("### Breaking when compiling: "); 562 method()->print_short_name(); 563 tty->cr(); 564 BREAKPOINT; 565 } 566 567 if( PrintOpto ) { 568 if (is_osr_compilation()) { 569 tty->print("[OSR]%3d", _compile_id); 570 } else { 571 tty->print("%3d", _compile_id); 572 } 573 } 574 #endif 575 } 576 577 #ifndef PRODUCT 578 void Compile::print_ideal_ir(const char* phase_name) { 579 // keep the following output all in one block 580 // This output goes directly to the tty, not the compiler log. 581 // To enable tools to match it up with the compilation activity, 582 // be sure to tag this tty output with the compile ID. 583 584 // Node dumping can cause a safepoint, which can break the tty lock. 585 // Buffer all node dumps, so that all safepoints happen before we lock. 586 ResourceMark rm; 587 stringStream ss; 588 589 if (_output == nullptr) { 590 ss.print_cr("AFTER: %s", phase_name); 591 // Print out all nodes in ascending order of index. 592 root()->dump_bfs(MaxNodeLimit, nullptr, "+S$", &ss); 593 } else { 594 // Dump the node blockwise if we have a scheduling 595 _output->print_scheduling(&ss); 596 } 597 598 // Check that the lock is not broken by a safepoint. 599 NoSafepointVerifier nsv; 600 ttyLocker ttyl; 601 if (xtty != nullptr) { 602 xtty->head("ideal compile_id='%d'%s compile_phase='%s'", 603 compile_id(), 604 is_osr_compilation() ? " compile_kind='osr'" : "", 605 phase_name); 606 } 607 608 tty->print("%s", ss.as_string()); 609 610 if (xtty != nullptr) { 611 xtty->tail("ideal"); 612 } 613 } 614 #endif 615 616 // ============================================================================ 617 //------------------------------Compile standard------------------------------- 618 619 // Compile a method. entry_bci is -1 for normal compilations and indicates 620 // the continuation bci for on stack replacement. 621 622 623 Compile::Compile(ciEnv* ci_env, ciMethod* target, int osr_bci, 624 Options options, DirectiveSet* directive) 625 : Phase(Compiler), 626 _compile_id(ci_env->compile_id()), 627 _options(options), 628 _method(target), 629 _entry_bci(osr_bci), 630 _ilt(nullptr), 631 _stub_function(nullptr), 632 _stub_name(nullptr), 633 _stub_entry_point(nullptr), 634 _max_node_limit(MaxNodeLimit), 635 _post_loop_opts_phase(false), 636 _merge_stores_phase(false), 637 _allow_macro_nodes(true), 638 _inlining_progress(false), 639 _inlining_incrementally(false), 640 _do_cleanup(false), 641 _has_reserved_stack_access(target->has_reserved_stack_access()), 642 #ifndef PRODUCT 643 _igv_idx(0), 644 _trace_opto_output(directive->TraceOptoOutputOption), 645 #endif 646 _has_method_handle_invokes(false), 647 _clinit_barrier_on_entry(false), 648 _has_clinit_barriers(false), 649 _stress_seed(0), 650 _comp_arena(mtCompiler, Arena::Tag::tag_comp), 651 _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())), 652 _env(ci_env), 653 _directive(directive), 654 _log(ci_env->log()), 655 _first_failure_details(nullptr), 656 _intrinsics(comp_arena(), 0, 0, nullptr), 657 _macro_nodes(comp_arena(), 8, 0, nullptr), 658 _parse_predicates(comp_arena(), 8, 0, nullptr), 659 _template_assertion_predicate_opaques(comp_arena(), 8, 0, nullptr), 660 _expensive_nodes(comp_arena(), 8, 0, nullptr), 661 _for_post_loop_igvn(comp_arena(), 8, 0, nullptr), 662 _for_merge_stores_igvn(comp_arena(), 8, 0, nullptr), 663 _unstable_if_traps(comp_arena(), 8, 0, nullptr), 664 _coarsened_locks(comp_arena(), 8, 0, nullptr), 665 _congraph(nullptr), 666 NOT_PRODUCT(_igv_printer(nullptr) COMMA) 667 _unique(0), 668 _dead_node_count(0), 669 _dead_node_list(comp_arena()), 670 _node_arena_one(mtCompiler, Arena::Tag::tag_node), 671 _node_arena_two(mtCompiler, Arena::Tag::tag_node), 672 _node_arena(&_node_arena_one), 673 _mach_constant_base_node(nullptr), 674 _Compile_types(mtCompiler, Arena::Tag::tag_type), 675 _initial_gvn(nullptr), 676 _igvn_worklist(nullptr), 677 _types(nullptr), 678 _node_hash(nullptr), 679 _late_inlines(comp_arena(), 2, 0, nullptr), 680 _string_late_inlines(comp_arena(), 2, 0, nullptr), 681 _boxing_late_inlines(comp_arena(), 2, 0, nullptr), 682 _vector_reboxing_late_inlines(comp_arena(), 2, 0, nullptr), 683 _late_inlines_pos(0), 684 _number_of_mh_late_inlines(0), 685 _oom(false), 686 _replay_inline_data(nullptr), 687 _inline_printer(this), 688 _java_calls(0), 689 _inner_loops(0), 690 _interpreter_frame_size(0), 691 _output(nullptr) 692 #ifndef PRODUCT 693 , 694 _in_dump_cnt(0) 695 #endif 696 { 697 C = this; 698 CompileWrapper cw(this); 699 700 TraceTime t1("Total compilation time", &_t_totalCompilation, CITime, CITimeVerbose); 701 TraceTime t2(nullptr, &_t_methodCompilation, CITime, false); 702 703 #if defined(SUPPORT_ASSEMBLY) || defined(SUPPORT_ABSTRACT_ASSEMBLY) 704 bool print_opto_assembly = directive->PrintOptoAssemblyOption; 705 // We can always print a disassembly, either abstract (hex dump) or 706 // with the help of a suitable hsdis library. Thus, we should not 707 // couple print_assembly and print_opto_assembly controls. 708 // But: always print opto and regular assembly on compile command 'print'. 709 bool print_assembly = directive->PrintAssemblyOption; 710 set_print_assembly(print_opto_assembly || print_assembly); 711 #else 712 set_print_assembly(false); // must initialize. 713 #endif 714 715 #ifndef PRODUCT 716 set_parsed_irreducible_loop(false); 717 #endif 718 719 if (directive->ReplayInlineOption) { 720 _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level()); 721 } 722 set_print_inlining(directive->PrintInliningOption || PrintOptoInlining); 723 set_print_intrinsics(directive->PrintIntrinsicsOption); 724 set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it 725 726 if (ProfileTraps) { 727 // Make sure the method being compiled gets its own MDO, 728 // so we can at least track the decompile_count(). 729 method()->ensure_method_data(); 730 } 731 732 if (StressLCM || StressGCM || StressIGVN || StressCCP || 733 StressIncrementalInlining || StressMacroExpansion || StressUnstableIfTraps || StressBailout) { 734 initialize_stress_seed(directive); 735 } 736 737 Init(/*do_aliasing=*/ true); 738 739 print_compile_messages(); 740 741 _ilt = InlineTree::build_inline_tree_root(); 742 743 // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice 744 assert(num_alias_types() >= AliasIdxRaw, ""); 745 746 #define MINIMUM_NODE_HASH 1023 747 748 // GVN that will be run immediately on new nodes 749 uint estimated_size = method()->code_size()*4+64; 750 estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size); 751 _igvn_worklist = new (comp_arena()) Unique_Node_List(comp_arena()); 752 _types = new (comp_arena()) Type_Array(comp_arena()); 753 _node_hash = new (comp_arena()) NodeHash(comp_arena(), estimated_size); 754 PhaseGVN gvn; 755 set_initial_gvn(&gvn); 756 757 { // Scope for timing the parser 758 TracePhase tp(_t_parser); 759 760 // Put top into the hash table ASAP. 761 initial_gvn()->transform(top()); 762 763 // Set up tf(), start(), and find a CallGenerator. 764 CallGenerator* cg = nullptr; 765 if (is_osr_compilation()) { 766 const TypeTuple *domain = StartOSRNode::osr_domain(); 767 const TypeTuple *range = TypeTuple::make_range(method()->signature()); 768 init_tf(TypeFunc::make(domain, range)); 769 StartNode* s = new StartOSRNode(root(), domain); 770 initial_gvn()->set_type_bottom(s); 771 verify_start(s); 772 cg = CallGenerator::for_osr(method(), entry_bci()); 773 } else { 774 // Normal case. 775 init_tf(TypeFunc::make(method())); 776 StartNode* s = new StartNode(root(), tf()->domain()); 777 initial_gvn()->set_type_bottom(s); 778 verify_start(s); 779 if (method()->intrinsic_id() == vmIntrinsics::_Reference_get) { 780 // With java.lang.ref.reference.get() we must go through the 781 // intrinsic - even when get() is the root 782 // method of the compile - so that, if necessary, the value in 783 // the referent field of the reference object gets recorded by 784 // the pre-barrier code. 785 cg = find_intrinsic(method(), false); 786 } 787 if (cg == nullptr) { 788 float past_uses = method()->interpreter_invocation_count(); 789 float expected_uses = past_uses; 790 cg = CallGenerator::for_inline(method(), expected_uses); 791 } 792 } 793 if (failing()) return; 794 if (cg == nullptr) { 795 const char* reason = InlineTree::check_can_parse(method()); 796 assert(reason != nullptr, "expect reason for parse failure"); 797 stringStream ss; 798 ss.print("cannot parse method: %s", reason); 799 record_method_not_compilable(ss.as_string()); 800 return; 801 } 802 803 gvn.set_type(root(), root()->bottom_type()); 804 805 JVMState* jvms = build_start_state(start(), tf()); 806 if ((jvms = cg->generate(jvms)) == nullptr) { 807 assert(failure_reason() != nullptr, "expect reason for parse failure"); 808 stringStream ss; 809 ss.print("method parse failed: %s", failure_reason()); 810 record_method_not_compilable(ss.as_string() DEBUG_ONLY(COMMA true)); 811 return; 812 } 813 GraphKit kit(jvms); 814 815 if (!kit.stopped()) { 816 // Accept return values, and transfer control we know not where. 817 // This is done by a special, unique ReturnNode bound to root. 818 return_values(kit.jvms()); 819 } 820 821 if (kit.has_exceptions()) { 822 // Any exceptions that escape from this call must be rethrown 823 // to whatever caller is dynamically above us on the stack. 824 // This is done by a special, unique RethrowNode bound to root. 825 rethrow_exceptions(kit.transfer_exceptions_into_jvms()); 826 } 827 828 assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off"); 829 830 if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) { 831 inline_string_calls(true); 832 } 833 834 if (failing()) return; 835 836 // Remove clutter produced by parsing. 837 if (!failing()) { 838 ResourceMark rm; 839 PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist()); 840 } 841 } 842 843 // Note: Large methods are capped off in do_one_bytecode(). 844 if (failing()) return; 845 846 // After parsing, node notes are no longer automagic. 847 // They must be propagated by register_new_node_with_optimizer(), 848 // clone(), or the like. 849 set_default_node_notes(nullptr); 850 851 #ifndef PRODUCT 852 if (should_print_igv(1)) { 853 _igv_printer->print_inlining(); 854 } 855 #endif 856 857 if (failing()) return; 858 NOT_PRODUCT( verify_graph_edges(); ) 859 860 // Now optimize 861 Optimize(); 862 if (failing()) return; 863 NOT_PRODUCT( verify_graph_edges(); ) 864 865 #ifndef PRODUCT 866 if (should_print_ideal()) { 867 print_ideal_ir("print_ideal"); 868 } 869 #endif 870 871 #ifdef ASSERT 872 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 873 bs->verify_gc_barriers(this, BarrierSetC2::BeforeCodeGen); 874 #endif 875 876 // Dump compilation data to replay it. 877 if (directive->DumpReplayOption) { 878 env()->dump_replay_data(_compile_id); 879 } 880 if (directive->DumpInlineOption && (ilt() != nullptr)) { 881 env()->dump_inline_data(_compile_id); 882 } 883 884 // Now that we know the size of all the monitors we can add a fixed slot 885 // for the original deopt pc. 886 int next_slot = fixed_slots() + (sizeof(address) / VMRegImpl::stack_slot_size); 887 set_fixed_slots(next_slot); 888 889 // Compute when to use implicit null checks. Used by matching trap based 890 // nodes and NullCheck optimization. 891 set_allowed_deopt_reasons(); 892 893 // Now generate code 894 Code_Gen(); 895 } 896 897 //------------------------------Compile---------------------------------------- 898 // Compile a runtime stub 899 Compile::Compile(ciEnv* ci_env, 900 TypeFunc_generator generator, 901 address stub_function, 902 const char* stub_name, 903 int is_fancy_jump, 904 bool pass_tls, 905 bool return_pc, 906 DirectiveSet* directive) 907 : Phase(Compiler), 908 _compile_id(0), 909 _options(Options::for_runtime_stub()), 910 _method(nullptr), 911 _entry_bci(InvocationEntryBci), 912 _stub_function(stub_function), 913 _stub_name(stub_name), 914 _stub_entry_point(nullptr), 915 _max_node_limit(MaxNodeLimit), 916 _post_loop_opts_phase(false), 917 _merge_stores_phase(false), 918 _allow_macro_nodes(true), 919 _inlining_progress(false), 920 _inlining_incrementally(false), 921 _has_reserved_stack_access(false), 922 #ifndef PRODUCT 923 _igv_idx(0), 924 _trace_opto_output(directive->TraceOptoOutputOption), 925 #endif 926 _has_method_handle_invokes(false), 927 _clinit_barrier_on_entry(false), 928 _has_clinit_barriers(false), 929 _stress_seed(0), 930 _comp_arena(mtCompiler, Arena::Tag::tag_comp), 931 _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())), 932 _env(ci_env), 933 _directive(directive), 934 _log(ci_env->log()), 935 _first_failure_details(nullptr), 936 _for_post_loop_igvn(comp_arena(), 8, 0, nullptr), 937 _for_merge_stores_igvn(comp_arena(), 8, 0, nullptr), 938 _congraph(nullptr), 939 NOT_PRODUCT(_igv_printer(nullptr) COMMA) 940 _unique(0), 941 _dead_node_count(0), 942 _dead_node_list(comp_arena()), 943 _node_arena_one(mtCompiler, Arena::Tag::tag_node), 944 _node_arena_two(mtCompiler, Arena::Tag::tag_node), 945 _node_arena(&_node_arena_one), 946 _mach_constant_base_node(nullptr), 947 _Compile_types(mtCompiler, Arena::Tag::tag_type), 948 _initial_gvn(nullptr), 949 _igvn_worklist(nullptr), 950 _types(nullptr), 951 _node_hash(nullptr), 952 _number_of_mh_late_inlines(0), 953 _oom(false), 954 _replay_inline_data(nullptr), 955 _inline_printer(this), 956 _java_calls(0), 957 _inner_loops(0), 958 _interpreter_frame_size(0), 959 _output(nullptr), 960 #ifndef PRODUCT 961 _in_dump_cnt(0), 962 #endif 963 _allowed_reasons(0) { 964 C = this; 965 966 TraceTime t1(nullptr, &_t_totalCompilation, CITime, false); 967 TraceTime t2(nullptr, &_t_stubCompilation, CITime, false); 968 969 #ifndef PRODUCT 970 set_print_assembly(PrintFrameConverterAssembly); 971 set_parsed_irreducible_loop(false); 972 #else 973 set_print_assembly(false); // Must initialize. 974 #endif 975 set_has_irreducible_loop(false); // no loops 976 977 CompileWrapper cw(this); 978 Init(/*do_aliasing=*/ false); 979 init_tf((*generator)()); 980 981 _igvn_worklist = new (comp_arena()) Unique_Node_List(comp_arena()); 982 _types = new (comp_arena()) Type_Array(comp_arena()); 983 _node_hash = new (comp_arena()) NodeHash(comp_arena(), 255); 984 985 if (StressLCM || StressGCM || StressBailout) { 986 initialize_stress_seed(directive); 987 } 988 989 { 990 PhaseGVN gvn; 991 set_initial_gvn(&gvn); // not significant, but GraphKit guys use it pervasively 992 gvn.transform(top()); 993 994 GraphKit kit; 995 kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc); 996 } 997 998 NOT_PRODUCT( verify_graph_edges(); ) 999 1000 Code_Gen(); 1001 } 1002 1003 Compile::~Compile() { 1004 delete _first_failure_details; 1005 }; 1006 1007 //------------------------------Init------------------------------------------- 1008 // Prepare for a single compilation 1009 void Compile::Init(bool aliasing) { 1010 _do_aliasing = aliasing; 1011 _unique = 0; 1012 _regalloc = nullptr; 1013 1014 _tf = nullptr; // filled in later 1015 _top = nullptr; // cached later 1016 _matcher = nullptr; // filled in later 1017 _cfg = nullptr; // filled in later 1018 1019 _node_note_array = nullptr; 1020 _default_node_notes = nullptr; 1021 DEBUG_ONLY( _modified_nodes = nullptr; ) // Used in Optimize() 1022 1023 _immutable_memory = nullptr; // filled in at first inquiry 1024 1025 #ifdef ASSERT 1026 _phase_optimize_finished = false; 1027 _phase_verify_ideal_loop = false; 1028 _exception_backedge = false; 1029 _type_verify = nullptr; 1030 #endif 1031 1032 // Globally visible Nodes 1033 // First set TOP to null to give safe behavior during creation of RootNode 1034 set_cached_top_node(nullptr); 1035 set_root(new RootNode()); 1036 // Now that you have a Root to point to, create the real TOP 1037 set_cached_top_node( new ConNode(Type::TOP) ); 1038 set_recent_alloc(nullptr, nullptr); 1039 1040 // Create Debug Information Recorder to record scopes, oopmaps, etc. 1041 env()->set_oop_recorder(new OopRecorder(env()->arena())); 1042 env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder())); 1043 env()->set_dependencies(new Dependencies(env())); 1044 1045 _fixed_slots = 0; 1046 set_has_split_ifs(false); 1047 set_has_loops(false); // first approximation 1048 set_has_stringbuilder(false); 1049 set_has_boxed_value(false); 1050 _trap_can_recompile = false; // no traps emitted yet 1051 _major_progress = true; // start out assuming good things will happen 1052 set_has_unsafe_access(false); 1053 set_max_vector_size(0); 1054 set_clear_upper_avx(false); //false as default for clear upper bits of ymm registers 1055 Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist)); 1056 set_decompile_count(0); 1057 1058 #ifndef PRODUCT 1059 Copy::zero_to_bytes(_igv_phase_iter, sizeof(_igv_phase_iter)); 1060 #endif 1061 1062 set_do_freq_based_layout(_directive->BlockLayoutByFrequencyOption); 1063 _loop_opts_cnt = LoopOptsCount; 1064 set_do_inlining(Inline); 1065 set_max_inline_size(MaxInlineSize); 1066 set_freq_inline_size(FreqInlineSize); 1067 set_do_scheduling(OptoScheduling); 1068 1069 set_do_vector_loop(false); 1070 set_has_monitors(false); 1071 set_has_scoped_access(false); 1072 1073 if (AllowVectorizeOnDemand) { 1074 if (has_method() && _directive->VectorizeOption) { 1075 set_do_vector_loop(true); 1076 NOT_PRODUCT(if (do_vector_loop() && Verbose) {tty->print("Compile::Init: do vectorized loops (SIMD like) for method %s\n", method()->name()->as_quoted_ascii());}) 1077 } else if (has_method() && method()->name() != nullptr && 1078 method()->intrinsic_id() == vmIntrinsics::_forEachRemaining) { 1079 set_do_vector_loop(true); 1080 } 1081 } 1082 set_use_cmove(UseCMoveUnconditionally /* || do_vector_loop()*/); //TODO: consider do_vector_loop() mandate use_cmove unconditionally 1083 NOT_PRODUCT(if (use_cmove() && Verbose && has_method()) {tty->print("Compile::Init: use CMove without profitability tests for method %s\n", method()->name()->as_quoted_ascii());}) 1084 1085 _max_node_limit = _directive->MaxNodeLimitOption; 1086 1087 if (VM_Version::supports_fast_class_init_checks() && has_method() && !is_osr_compilation() && 1088 (method()->needs_clinit_barrier() || (do_clinit_barriers() && method()->is_static()))) { 1089 set_clinit_barrier_on_entry(true); 1090 if (do_clinit_barriers()) { 1091 set_has_clinit_barriers(true); // Entry clinit barrier is in prolog code. 1092 } 1093 } 1094 if (debug_info()->recording_non_safepoints()) { 1095 set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*> 1096 (comp_arena(), 8, 0, nullptr)); 1097 set_default_node_notes(Node_Notes::make(this)); 1098 } 1099 1100 const int grow_ats = 16; 1101 _max_alias_types = grow_ats; 1102 _alias_types = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats); 1103 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, grow_ats); 1104 Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats); 1105 { 1106 for (int i = 0; i < grow_ats; i++) _alias_types[i] = &ats[i]; 1107 } 1108 // Initialize the first few types. 1109 _alias_types[AliasIdxTop]->Init(AliasIdxTop, nullptr); 1110 _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM); 1111 _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM); 1112 _num_alias_types = AliasIdxRaw+1; 1113 // Zero out the alias type cache. 1114 Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache)); 1115 // A null adr_type hits in the cache right away. Preload the right answer. 1116 probe_alias_cache(nullptr)->_index = AliasIdxTop; 1117 } 1118 1119 #ifdef ASSERT 1120 // Verify that the current StartNode is valid. 1121 void Compile::verify_start(StartNode* s) const { 1122 assert(failing_internal() || s == start(), "should be StartNode"); 1123 } 1124 #endif 1125 1126 /** 1127 * Return the 'StartNode'. We must not have a pending failure, since the ideal graph 1128 * can be in an inconsistent state, i.e., we can get segmentation faults when traversing 1129 * the ideal graph. 1130 */ 1131 StartNode* Compile::start() const { 1132 assert (!failing_internal() || C->failure_is_artificial(), "Must not have pending failure. Reason is: %s", failure_reason()); 1133 for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) { 1134 Node* start = root()->fast_out(i); 1135 if (start->is_Start()) { 1136 return start->as_Start(); 1137 } 1138 } 1139 fatal("Did not find Start node!"); 1140 return nullptr; 1141 } 1142 1143 //-------------------------------immutable_memory------------------------------------- 1144 // Access immutable memory 1145 Node* Compile::immutable_memory() { 1146 if (_immutable_memory != nullptr) { 1147 return _immutable_memory; 1148 } 1149 StartNode* s = start(); 1150 for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) { 1151 Node *p = s->fast_out(i); 1152 if (p != s && p->as_Proj()->_con == TypeFunc::Memory) { 1153 _immutable_memory = p; 1154 return _immutable_memory; 1155 } 1156 } 1157 ShouldNotReachHere(); 1158 return nullptr; 1159 } 1160 1161 //----------------------set_cached_top_node------------------------------------ 1162 // Install the cached top node, and make sure Node::is_top works correctly. 1163 void Compile::set_cached_top_node(Node* tn) { 1164 if (tn != nullptr) verify_top(tn); 1165 Node* old_top = _top; 1166 _top = tn; 1167 // Calling Node::setup_is_top allows the nodes the chance to adjust 1168 // their _out arrays. 1169 if (_top != nullptr) _top->setup_is_top(); 1170 if (old_top != nullptr) old_top->setup_is_top(); 1171 assert(_top == nullptr || top()->is_top(), ""); 1172 } 1173 1174 #ifdef ASSERT 1175 uint Compile::count_live_nodes_by_graph_walk() { 1176 Unique_Node_List useful(comp_arena()); 1177 // Get useful node list by walking the graph. 1178 identify_useful_nodes(useful); 1179 return useful.size(); 1180 } 1181 1182 void Compile::print_missing_nodes() { 1183 1184 // Return if CompileLog is null and PrintIdealNodeCount is false. 1185 if ((_log == nullptr) && (! PrintIdealNodeCount)) { 1186 return; 1187 } 1188 1189 // This is an expensive function. It is executed only when the user 1190 // specifies VerifyIdealNodeCount option or otherwise knows the 1191 // additional work that needs to be done to identify reachable nodes 1192 // by walking the flow graph and find the missing ones using 1193 // _dead_node_list. 1194 1195 Unique_Node_List useful(comp_arena()); 1196 // Get useful node list by walking the graph. 1197 identify_useful_nodes(useful); 1198 1199 uint l_nodes = C->live_nodes(); 1200 uint l_nodes_by_walk = useful.size(); 1201 1202 if (l_nodes != l_nodes_by_walk) { 1203 if (_log != nullptr) { 1204 _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk))); 1205 _log->stamp(); 1206 _log->end_head(); 1207 } 1208 VectorSet& useful_member_set = useful.member_set(); 1209 int last_idx = l_nodes_by_walk; 1210 for (int i = 0; i < last_idx; i++) { 1211 if (useful_member_set.test(i)) { 1212 if (_dead_node_list.test(i)) { 1213 if (_log != nullptr) { 1214 _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i); 1215 } 1216 if (PrintIdealNodeCount) { 1217 // Print the log message to tty 1218 tty->print_cr("mismatched_node idx='%d' both live and dead'", i); 1219 useful.at(i)->dump(); 1220 } 1221 } 1222 } 1223 else if (! _dead_node_list.test(i)) { 1224 if (_log != nullptr) { 1225 _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i); 1226 } 1227 if (PrintIdealNodeCount) { 1228 // Print the log message to tty 1229 tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i); 1230 } 1231 } 1232 } 1233 if (_log != nullptr) { 1234 _log->tail("mismatched_nodes"); 1235 } 1236 } 1237 } 1238 void Compile::record_modified_node(Node* n) { 1239 if (_modified_nodes != nullptr && !_inlining_incrementally && !n->is_Con()) { 1240 _modified_nodes->push(n); 1241 } 1242 } 1243 1244 void Compile::remove_modified_node(Node* n) { 1245 if (_modified_nodes != nullptr) { 1246 _modified_nodes->remove(n); 1247 } 1248 } 1249 #endif 1250 1251 #ifndef PRODUCT 1252 void Compile::verify_top(Node* tn) const { 1253 if (tn != nullptr) { 1254 assert(tn->is_Con(), "top node must be a constant"); 1255 assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type"); 1256 assert(tn->in(0) != nullptr, "must have live top node"); 1257 } 1258 } 1259 #endif 1260 1261 1262 ///-------------------Managing Per-Node Debug & Profile Info------------------- 1263 1264 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) { 1265 guarantee(arr != nullptr, ""); 1266 int num_blocks = arr->length(); 1267 if (grow_by < num_blocks) grow_by = num_blocks; 1268 int num_notes = grow_by * _node_notes_block_size; 1269 Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes); 1270 Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes)); 1271 while (num_notes > 0) { 1272 arr->append(notes); 1273 notes += _node_notes_block_size; 1274 num_notes -= _node_notes_block_size; 1275 } 1276 assert(num_notes == 0, "exact multiple, please"); 1277 } 1278 1279 bool Compile::copy_node_notes_to(Node* dest, Node* source) { 1280 if (source == nullptr || dest == nullptr) return false; 1281 1282 if (dest->is_Con()) 1283 return false; // Do not push debug info onto constants. 1284 1285 #ifdef ASSERT 1286 // Leave a bread crumb trail pointing to the original node: 1287 if (dest != nullptr && dest != source && dest->debug_orig() == nullptr) { 1288 dest->set_debug_orig(source); 1289 } 1290 #endif 1291 1292 if (node_note_array() == nullptr) 1293 return false; // Not collecting any notes now. 1294 1295 // This is a copy onto a pre-existing node, which may already have notes. 1296 // If both nodes have notes, do not overwrite any pre-existing notes. 1297 Node_Notes* source_notes = node_notes_at(source->_idx); 1298 if (source_notes == nullptr || source_notes->is_clear()) return false; 1299 Node_Notes* dest_notes = node_notes_at(dest->_idx); 1300 if (dest_notes == nullptr || dest_notes->is_clear()) { 1301 return set_node_notes_at(dest->_idx, source_notes); 1302 } 1303 1304 Node_Notes merged_notes = (*source_notes); 1305 // The order of operations here ensures that dest notes will win... 1306 merged_notes.update_from(dest_notes); 1307 return set_node_notes_at(dest->_idx, &merged_notes); 1308 } 1309 1310 1311 //--------------------------allow_range_check_smearing------------------------- 1312 // Gating condition for coalescing similar range checks. 1313 // Sometimes we try 'speculatively' replacing a series of a range checks by a 1314 // single covering check that is at least as strong as any of them. 1315 // If the optimization succeeds, the simplified (strengthened) range check 1316 // will always succeed. If it fails, we will deopt, and then give up 1317 // on the optimization. 1318 bool Compile::allow_range_check_smearing() const { 1319 // If this method has already thrown a range-check, 1320 // assume it was because we already tried range smearing 1321 // and it failed. 1322 uint already_trapped = trap_count(Deoptimization::Reason_range_check); 1323 return !already_trapped; 1324 } 1325 1326 1327 //------------------------------flatten_alias_type----------------------------- 1328 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const { 1329 assert(do_aliasing(), "Aliasing should be enabled"); 1330 int offset = tj->offset(); 1331 TypePtr::PTR ptr = tj->ptr(); 1332 1333 // Known instance (scalarizable allocation) alias only with itself. 1334 bool is_known_inst = tj->isa_oopptr() != nullptr && 1335 tj->is_oopptr()->is_known_instance(); 1336 1337 // Process weird unsafe references. 1338 if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) { 1339 assert(InlineUnsafeOps || StressReflectiveCode, "indeterminate pointers come only from unsafe ops"); 1340 assert(!is_known_inst, "scalarizable allocation should not have unsafe references"); 1341 tj = TypeOopPtr::BOTTOM; 1342 ptr = tj->ptr(); 1343 offset = tj->offset(); 1344 } 1345 1346 // Array pointers need some flattening 1347 const TypeAryPtr* ta = tj->isa_aryptr(); 1348 if (ta && ta->is_stable()) { 1349 // Erase stability property for alias analysis. 1350 tj = ta = ta->cast_to_stable(false); 1351 } 1352 if( ta && is_known_inst ) { 1353 if ( offset != Type::OffsetBot && 1354 offset > arrayOopDesc::length_offset_in_bytes() ) { 1355 offset = Type::OffsetBot; // Flatten constant access into array body only 1356 tj = ta = ta-> 1357 remove_speculative()-> 1358 cast_to_ptr_type(ptr)-> 1359 with_offset(offset); 1360 } 1361 } else if (ta) { 1362 // For arrays indexed by constant indices, we flatten the alias 1363 // space to include all of the array body. Only the header, klass 1364 // and array length can be accessed un-aliased. 1365 if( offset != Type::OffsetBot ) { 1366 if( ta->const_oop() ) { // MethodData* or Method* 1367 offset = Type::OffsetBot; // Flatten constant access into array body 1368 tj = ta = ta-> 1369 remove_speculative()-> 1370 cast_to_ptr_type(ptr)-> 1371 cast_to_exactness(false)-> 1372 with_offset(offset); 1373 } else if( offset == arrayOopDesc::length_offset_in_bytes() ) { 1374 // range is OK as-is. 1375 tj = ta = TypeAryPtr::RANGE; 1376 } else if( offset == oopDesc::klass_offset_in_bytes() ) { 1377 tj = TypeInstPtr::KLASS; // all klass loads look alike 1378 ta = TypeAryPtr::RANGE; // generic ignored junk 1379 ptr = TypePtr::BotPTR; 1380 } else if( offset == oopDesc::mark_offset_in_bytes() ) { 1381 tj = TypeInstPtr::MARK; 1382 ta = TypeAryPtr::RANGE; // generic ignored junk 1383 ptr = TypePtr::BotPTR; 1384 } else { // Random constant offset into array body 1385 offset = Type::OffsetBot; // Flatten constant access into array body 1386 tj = ta = ta-> 1387 remove_speculative()-> 1388 cast_to_ptr_type(ptr)-> 1389 cast_to_exactness(false)-> 1390 with_offset(offset); 1391 } 1392 } 1393 // Arrays of fixed size alias with arrays of unknown size. 1394 if (ta->size() != TypeInt::POS) { 1395 const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS); 1396 tj = ta = ta-> 1397 remove_speculative()-> 1398 cast_to_ptr_type(ptr)-> 1399 with_ary(tary)-> 1400 cast_to_exactness(false); 1401 } 1402 // Arrays of known objects become arrays of unknown objects. 1403 if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) { 1404 const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size()); 1405 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,nullptr,false,offset); 1406 } 1407 if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) { 1408 const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size()); 1409 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,nullptr,false,offset); 1410 } 1411 // Arrays of bytes and of booleans both use 'bastore' and 'baload' so 1412 // cannot be distinguished by bytecode alone. 1413 if (ta->elem() == TypeInt::BOOL) { 1414 const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size()); 1415 ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE); 1416 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset); 1417 } 1418 // During the 2nd round of IterGVN, NotNull castings are removed. 1419 // Make sure the Bottom and NotNull variants alias the same. 1420 // Also, make sure exact and non-exact variants alias the same. 1421 if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != nullptr) { 1422 tj = ta = ta-> 1423 remove_speculative()-> 1424 cast_to_ptr_type(TypePtr::BotPTR)-> 1425 cast_to_exactness(false)-> 1426 with_offset(offset); 1427 } 1428 } 1429 1430 // Oop pointers need some flattening 1431 const TypeInstPtr *to = tj->isa_instptr(); 1432 if (to && to != TypeOopPtr::BOTTOM) { 1433 ciInstanceKlass* ik = to->instance_klass(); 1434 if( ptr == TypePtr::Constant ) { 1435 if (ik != ciEnv::current()->Class_klass() || 1436 offset < ik->layout_helper_size_in_bytes()) { 1437 // No constant oop pointers (such as Strings); they alias with 1438 // unknown strings. 1439 assert(!is_known_inst, "not scalarizable allocation"); 1440 tj = to = to-> 1441 cast_to_instance_id(TypeOopPtr::InstanceBot)-> 1442 remove_speculative()-> 1443 cast_to_ptr_type(TypePtr::BotPTR)-> 1444 cast_to_exactness(false); 1445 } 1446 } else if( is_known_inst ) { 1447 tj = to; // Keep NotNull and klass_is_exact for instance type 1448 } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) { 1449 // During the 2nd round of IterGVN, NotNull castings are removed. 1450 // Make sure the Bottom and NotNull variants alias the same. 1451 // Also, make sure exact and non-exact variants alias the same. 1452 tj = to = to-> 1453 remove_speculative()-> 1454 cast_to_instance_id(TypeOopPtr::InstanceBot)-> 1455 cast_to_ptr_type(TypePtr::BotPTR)-> 1456 cast_to_exactness(false); 1457 } 1458 if (to->speculative() != nullptr) { 1459 tj = to = to->remove_speculative(); 1460 } 1461 // Canonicalize the holder of this field 1462 if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) { 1463 // First handle header references such as a LoadKlassNode, even if the 1464 // object's klass is unloaded at compile time (4965979). 1465 if (!is_known_inst) { // Do it only for non-instance types 1466 tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, nullptr, offset); 1467 } 1468 } else if (offset < 0 || offset >= ik->layout_helper_size_in_bytes()) { 1469 // Static fields are in the space above the normal instance 1470 // fields in the java.lang.Class instance. 1471 if (ik != ciEnv::current()->Class_klass()) { 1472 to = nullptr; 1473 tj = TypeOopPtr::BOTTOM; 1474 offset = tj->offset(); 1475 } 1476 } else { 1477 ciInstanceKlass *canonical_holder = ik->get_canonical_holder(offset); 1478 assert(offset < canonical_holder->layout_helper_size_in_bytes(), ""); 1479 assert(tj->offset() == offset, "no change to offset expected"); 1480 bool xk = to->klass_is_exact(); 1481 int instance_id = to->instance_id(); 1482 1483 // If the input type's class is the holder: if exact, the type only includes interfaces implemented by the holder 1484 // but if not exact, it may include extra interfaces: build new type from the holder class to make sure only 1485 // its interfaces are included. 1486 if (xk && ik->equals(canonical_holder)) { 1487 assert(tj == TypeInstPtr::make(to->ptr(), canonical_holder, is_known_inst, nullptr, offset, instance_id), "exact type should be canonical type"); 1488 } else { 1489 assert(xk || !is_known_inst, "Known instance should be exact type"); 1490 tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, is_known_inst, nullptr, offset, instance_id); 1491 } 1492 } 1493 } 1494 1495 // Klass pointers to object array klasses need some flattening 1496 const TypeKlassPtr *tk = tj->isa_klassptr(); 1497 if( tk ) { 1498 // If we are referencing a field within a Klass, we need 1499 // to assume the worst case of an Object. Both exact and 1500 // inexact types must flatten to the same alias class so 1501 // use NotNull as the PTR. 1502 if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) { 1503 tj = tk = TypeInstKlassPtr::make(TypePtr::NotNull, 1504 env()->Object_klass(), 1505 offset); 1506 } 1507 1508 if (tk->isa_aryklassptr() && tk->is_aryklassptr()->elem()->isa_klassptr()) { 1509 ciKlass* k = ciObjArrayKlass::make(env()->Object_klass()); 1510 if (!k || !k->is_loaded()) { // Only fails for some -Xcomp runs 1511 tj = tk = TypeInstKlassPtr::make(TypePtr::NotNull, env()->Object_klass(), offset); 1512 } else { 1513 tj = tk = TypeAryKlassPtr::make(TypePtr::NotNull, tk->is_aryklassptr()->elem(), k, offset); 1514 } 1515 } 1516 1517 // Check for precise loads from the primary supertype array and force them 1518 // to the supertype cache alias index. Check for generic array loads from 1519 // the primary supertype array and also force them to the supertype cache 1520 // alias index. Since the same load can reach both, we need to merge 1521 // these 2 disparate memories into the same alias class. Since the 1522 // primary supertype array is read-only, there's no chance of confusion 1523 // where we bypass an array load and an array store. 1524 int primary_supers_offset = in_bytes(Klass::primary_supers_offset()); 1525 if (offset == Type::OffsetBot || 1526 (offset >= primary_supers_offset && 1527 offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) || 1528 offset == (int)in_bytes(Klass::secondary_super_cache_offset())) { 1529 offset = in_bytes(Klass::secondary_super_cache_offset()); 1530 tj = tk = tk->with_offset(offset); 1531 } 1532 } 1533 1534 // Flatten all Raw pointers together. 1535 if (tj->base() == Type::RawPtr) 1536 tj = TypeRawPtr::BOTTOM; 1537 1538 if (tj->base() == Type::AnyPtr) 1539 tj = TypePtr::BOTTOM; // An error, which the caller must check for. 1540 1541 offset = tj->offset(); 1542 assert( offset != Type::OffsetTop, "Offset has fallen from constant" ); 1543 1544 assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) || 1545 (offset == Type::OffsetBot && tj->base() == Type::AryPtr) || 1546 (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) || 1547 (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) || 1548 (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) || 1549 (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) || 1550 (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr), 1551 "For oops, klasses, raw offset must be constant; for arrays the offset is never known" ); 1552 assert( tj->ptr() != TypePtr::TopPTR && 1553 tj->ptr() != TypePtr::AnyNull && 1554 tj->ptr() != TypePtr::Null, "No imprecise addresses" ); 1555 // assert( tj->ptr() != TypePtr::Constant || 1556 // tj->base() == Type::RawPtr || 1557 // tj->base() == Type::KlassPtr, "No constant oop addresses" ); 1558 1559 return tj; 1560 } 1561 1562 void Compile::AliasType::Init(int i, const TypePtr* at) { 1563 assert(AliasIdxTop <= i && i < Compile::current()->_max_alias_types, "Invalid alias index"); 1564 _index = i; 1565 _adr_type = at; 1566 _field = nullptr; 1567 _element = nullptr; 1568 _is_rewritable = true; // default 1569 const TypeOopPtr *atoop = (at != nullptr) ? at->isa_oopptr() : nullptr; 1570 if (atoop != nullptr && atoop->is_known_instance()) { 1571 const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot); 1572 _general_index = Compile::current()->get_alias_index(gt); 1573 } else { 1574 _general_index = 0; 1575 } 1576 } 1577 1578 BasicType Compile::AliasType::basic_type() const { 1579 if (element() != nullptr) { 1580 const Type* element = adr_type()->is_aryptr()->elem(); 1581 return element->isa_narrowoop() ? T_OBJECT : element->array_element_basic_type(); 1582 } if (field() != nullptr) { 1583 return field()->layout_type(); 1584 } else { 1585 return T_ILLEGAL; // unknown 1586 } 1587 } 1588 1589 //---------------------------------print_on------------------------------------ 1590 #ifndef PRODUCT 1591 void Compile::AliasType::print_on(outputStream* st) { 1592 if (index() < 10) 1593 st->print("@ <%d> ", index()); 1594 else st->print("@ <%d>", index()); 1595 st->print(is_rewritable() ? " " : " RO"); 1596 int offset = adr_type()->offset(); 1597 if (offset == Type::OffsetBot) 1598 st->print(" +any"); 1599 else st->print(" +%-3d", offset); 1600 st->print(" in "); 1601 adr_type()->dump_on(st); 1602 const TypeOopPtr* tjp = adr_type()->isa_oopptr(); 1603 if (field() != nullptr && tjp) { 1604 if (tjp->is_instptr()->instance_klass() != field()->holder() || 1605 tjp->offset() != field()->offset_in_bytes()) { 1606 st->print(" != "); 1607 field()->print(); 1608 st->print(" ***"); 1609 } 1610 } 1611 } 1612 1613 void print_alias_types() { 1614 Compile* C = Compile::current(); 1615 tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1); 1616 for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) { 1617 C->alias_type(idx)->print_on(tty); 1618 tty->cr(); 1619 } 1620 } 1621 #endif 1622 1623 1624 //----------------------------probe_alias_cache-------------------------------- 1625 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) { 1626 intptr_t key = (intptr_t) adr_type; 1627 key ^= key >> logAliasCacheSize; 1628 return &_alias_cache[key & right_n_bits(logAliasCacheSize)]; 1629 } 1630 1631 1632 //-----------------------------grow_alias_types-------------------------------- 1633 void Compile::grow_alias_types() { 1634 const int old_ats = _max_alias_types; // how many before? 1635 const int new_ats = old_ats; // how many more? 1636 const int grow_ats = old_ats+new_ats; // how many now? 1637 _max_alias_types = grow_ats; 1638 _alias_types = REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats); 1639 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats); 1640 Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats); 1641 for (int i = 0; i < new_ats; i++) _alias_types[old_ats+i] = &ats[i]; 1642 } 1643 1644 1645 //--------------------------------find_alias_type------------------------------ 1646 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) { 1647 if (!do_aliasing()) { 1648 return alias_type(AliasIdxBot); 1649 } 1650 1651 AliasCacheEntry* ace = probe_alias_cache(adr_type); 1652 if (ace->_adr_type == adr_type) { 1653 return alias_type(ace->_index); 1654 } 1655 1656 // Handle special cases. 1657 if (adr_type == nullptr) return alias_type(AliasIdxTop); 1658 if (adr_type == TypePtr::BOTTOM) return alias_type(AliasIdxBot); 1659 1660 // Do it the slow way. 1661 const TypePtr* flat = flatten_alias_type(adr_type); 1662 1663 #ifdef ASSERT 1664 { 1665 ResourceMark rm; 1666 assert(flat == flatten_alias_type(flat), "not idempotent: adr_type = %s; flat = %s => %s", 1667 Type::str(adr_type), Type::str(flat), Type::str(flatten_alias_type(flat))); 1668 assert(flat != TypePtr::BOTTOM, "cannot alias-analyze an untyped ptr: adr_type = %s", 1669 Type::str(adr_type)); 1670 if (flat->isa_oopptr() && !flat->isa_klassptr()) { 1671 const TypeOopPtr* foop = flat->is_oopptr(); 1672 // Scalarizable allocations have exact klass always. 1673 bool exact = !foop->klass_is_exact() || foop->is_known_instance(); 1674 const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr(); 1675 assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type: foop = %s; xoop = %s", 1676 Type::str(foop), Type::str(xoop)); 1677 } 1678 } 1679 #endif 1680 1681 int idx = AliasIdxTop; 1682 for (int i = 0; i < num_alias_types(); i++) { 1683 if (alias_type(i)->adr_type() == flat) { 1684 idx = i; 1685 break; 1686 } 1687 } 1688 1689 if (idx == AliasIdxTop) { 1690 if (no_create) return nullptr; 1691 // Grow the array if necessary. 1692 if (_num_alias_types == _max_alias_types) grow_alias_types(); 1693 // Add a new alias type. 1694 idx = _num_alias_types++; 1695 _alias_types[idx]->Init(idx, flat); 1696 if (flat == TypeInstPtr::KLASS) alias_type(idx)->set_rewritable(false); 1697 if (flat == TypeAryPtr::RANGE) alias_type(idx)->set_rewritable(false); 1698 if (flat->isa_instptr()) { 1699 if (flat->offset() == java_lang_Class::klass_offset() 1700 && flat->is_instptr()->instance_klass() == env()->Class_klass()) 1701 alias_type(idx)->set_rewritable(false); 1702 } 1703 if (flat->isa_aryptr()) { 1704 #ifdef ASSERT 1705 const int header_size_min = arrayOopDesc::base_offset_in_bytes(T_BYTE); 1706 // (T_BYTE has the weakest alignment and size restrictions...) 1707 assert(flat->offset() < header_size_min, "array body reference must be OffsetBot"); 1708 #endif 1709 if (flat->offset() == TypePtr::OffsetBot) { 1710 alias_type(idx)->set_element(flat->is_aryptr()->elem()); 1711 } 1712 } 1713 if (flat->isa_klassptr()) { 1714 if (UseCompactObjectHeaders) { 1715 if (flat->offset() == in_bytes(Klass::prototype_header_offset())) 1716 alias_type(idx)->set_rewritable(false); 1717 } 1718 if (flat->offset() == in_bytes(Klass::super_check_offset_offset())) 1719 alias_type(idx)->set_rewritable(false); 1720 if (flat->offset() == in_bytes(Klass::access_flags_offset())) 1721 alias_type(idx)->set_rewritable(false); 1722 if (flat->offset() == in_bytes(Klass::misc_flags_offset())) 1723 alias_type(idx)->set_rewritable(false); 1724 if (flat->offset() == in_bytes(Klass::java_mirror_offset())) 1725 alias_type(idx)->set_rewritable(false); 1726 if (flat->offset() == in_bytes(Klass::secondary_super_cache_offset())) 1727 alias_type(idx)->set_rewritable(false); 1728 } 1729 // %%% (We would like to finalize JavaThread::threadObj_offset(), 1730 // but the base pointer type is not distinctive enough to identify 1731 // references into JavaThread.) 1732 1733 // Check for final fields. 1734 const TypeInstPtr* tinst = flat->isa_instptr(); 1735 if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) { 1736 ciField* field; 1737 if (tinst->const_oop() != nullptr && 1738 tinst->instance_klass() == ciEnv::current()->Class_klass() && 1739 tinst->offset() >= (tinst->instance_klass()->layout_helper_size_in_bytes())) { 1740 // static field 1741 ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass(); 1742 field = k->get_field_by_offset(tinst->offset(), true); 1743 } else { 1744 ciInstanceKlass *k = tinst->instance_klass(); 1745 field = k->get_field_by_offset(tinst->offset(), false); 1746 } 1747 assert(field == nullptr || 1748 original_field == nullptr || 1749 (field->holder() == original_field->holder() && 1750 field->offset_in_bytes() == original_field->offset_in_bytes() && 1751 field->is_static() == original_field->is_static()), "wrong field?"); 1752 // Set field() and is_rewritable() attributes. 1753 if (field != nullptr) alias_type(idx)->set_field(field); 1754 } 1755 } 1756 1757 // Fill the cache for next time. 1758 ace->_adr_type = adr_type; 1759 ace->_index = idx; 1760 assert(alias_type(adr_type) == alias_type(idx), "type must be installed"); 1761 1762 // Might as well try to fill the cache for the flattened version, too. 1763 AliasCacheEntry* face = probe_alias_cache(flat); 1764 if (face->_adr_type == nullptr) { 1765 face->_adr_type = flat; 1766 face->_index = idx; 1767 assert(alias_type(flat) == alias_type(idx), "flat type must work too"); 1768 } 1769 1770 return alias_type(idx); 1771 } 1772 1773 1774 Compile::AliasType* Compile::alias_type(ciField* field) { 1775 const TypeOopPtr* t; 1776 if (field->is_static()) 1777 t = TypeInstPtr::make(field->holder()->java_mirror()); 1778 else 1779 t = TypeOopPtr::make_from_klass_raw(field->holder()); 1780 AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field); 1781 assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct"); 1782 return atp; 1783 } 1784 1785 1786 //------------------------------have_alias_type-------------------------------- 1787 bool Compile::have_alias_type(const TypePtr* adr_type) { 1788 AliasCacheEntry* ace = probe_alias_cache(adr_type); 1789 if (ace->_adr_type == adr_type) { 1790 return true; 1791 } 1792 1793 // Handle special cases. 1794 if (adr_type == nullptr) return true; 1795 if (adr_type == TypePtr::BOTTOM) return true; 1796 1797 return find_alias_type(adr_type, true, nullptr) != nullptr; 1798 } 1799 1800 //-----------------------------must_alias-------------------------------------- 1801 // True if all values of the given address type are in the given alias category. 1802 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) { 1803 if (alias_idx == AliasIdxBot) return true; // the universal category 1804 if (adr_type == nullptr) return true; // null serves as TypePtr::TOP 1805 if (alias_idx == AliasIdxTop) return false; // the empty category 1806 if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins 1807 1808 // the only remaining possible overlap is identity 1809 int adr_idx = get_alias_index(adr_type); 1810 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, ""); 1811 assert(adr_idx == alias_idx || 1812 (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM 1813 && adr_type != TypeOopPtr::BOTTOM), 1814 "should not be testing for overlap with an unsafe pointer"); 1815 return adr_idx == alias_idx; 1816 } 1817 1818 //------------------------------can_alias-------------------------------------- 1819 // True if any values of the given address type are in the given alias category. 1820 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) { 1821 if (alias_idx == AliasIdxTop) return false; // the empty category 1822 if (adr_type == nullptr) return false; // null serves as TypePtr::TOP 1823 // Known instance doesn't alias with bottom memory 1824 if (alias_idx == AliasIdxBot) return !adr_type->is_known_instance(); // the universal category 1825 if (adr_type->base() == Type::AnyPtr) return !C->get_adr_type(alias_idx)->is_known_instance(); // TypePtr::BOTTOM or its twins 1826 1827 // the only remaining possible overlap is identity 1828 int adr_idx = get_alias_index(adr_type); 1829 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, ""); 1830 return adr_idx == alias_idx; 1831 } 1832 1833 // Mark all ParsePredicateNodes as useless. They will later be removed from the graph in IGVN together with their 1834 // uncommon traps if no Runtime Predicates were created from the Parse Predicates. 1835 void Compile::mark_parse_predicate_nodes_useless(PhaseIterGVN& igvn) { 1836 if (parse_predicate_count() == 0) { 1837 return; 1838 } 1839 for (int i = 0; i < parse_predicate_count(); i++) { 1840 ParsePredicateNode* parse_predicate = _parse_predicates.at(i); 1841 parse_predicate->mark_useless(igvn); 1842 } 1843 _parse_predicates.clear(); 1844 } 1845 1846 void Compile::record_for_post_loop_opts_igvn(Node* n) { 1847 if (!n->for_post_loop_opts_igvn()) { 1848 assert(!_for_post_loop_igvn.contains(n), "duplicate"); 1849 n->add_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn); 1850 _for_post_loop_igvn.append(n); 1851 } 1852 } 1853 1854 void Compile::remove_from_post_loop_opts_igvn(Node* n) { 1855 n->remove_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn); 1856 _for_post_loop_igvn.remove(n); 1857 } 1858 1859 void Compile::process_for_post_loop_opts_igvn(PhaseIterGVN& igvn) { 1860 // Verify that all previous optimizations produced a valid graph 1861 // at least to this point, even if no loop optimizations were done. 1862 PhaseIdealLoop::verify(igvn); 1863 1864 if (has_loops() || _loop_opts_cnt > 0) { 1865 print_method(PHASE_AFTER_LOOP_OPTS, 2); 1866 } 1867 C->set_post_loop_opts_phase(); // no more loop opts allowed 1868 1869 assert(!C->major_progress(), "not cleared"); 1870 1871 if (_for_post_loop_igvn.length() > 0) { 1872 while (_for_post_loop_igvn.length() > 0) { 1873 Node* n = _for_post_loop_igvn.pop(); 1874 n->remove_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn); 1875 igvn._worklist.push(n); 1876 } 1877 igvn.optimize(); 1878 if (failing()) return; 1879 assert(_for_post_loop_igvn.length() == 0, "no more delayed nodes allowed"); 1880 assert(C->parse_predicate_count() == 0, "all parse predicates should have been removed now"); 1881 1882 // Sometimes IGVN sets major progress (e.g., when processing loop nodes). 1883 if (C->major_progress()) { 1884 C->clear_major_progress(); // ensure that major progress is now clear 1885 } 1886 } 1887 } 1888 1889 void Compile::record_for_merge_stores_igvn(Node* n) { 1890 if (!n->for_merge_stores_igvn()) { 1891 assert(!_for_merge_stores_igvn.contains(n), "duplicate"); 1892 n->add_flag(Node::NodeFlags::Flag_for_merge_stores_igvn); 1893 _for_merge_stores_igvn.append(n); 1894 } 1895 } 1896 1897 void Compile::remove_from_merge_stores_igvn(Node* n) { 1898 n->remove_flag(Node::NodeFlags::Flag_for_merge_stores_igvn); 1899 _for_merge_stores_igvn.remove(n); 1900 } 1901 1902 // We need to wait with merging stores until RangeCheck smearing has removed the RangeChecks during 1903 // the post loops IGVN phase. If we do it earlier, then there may still be some RangeChecks between 1904 // the stores, and we merge the wrong sequence of stores. 1905 // Example: 1906 // StoreI RangeCheck StoreI StoreI RangeCheck StoreI 1907 // Apply MergeStores: 1908 // StoreI RangeCheck [ StoreL ] RangeCheck StoreI 1909 // Remove more RangeChecks: 1910 // StoreI [ StoreL ] StoreI 1911 // But now it would have been better to do this instead: 1912 // [ StoreL ] [ StoreL ] 1913 // 1914 // Note: we allow stores to merge in this dedicated IGVN round, and any later IGVN round, 1915 // since we never unset _merge_stores_phase. 1916 void Compile::process_for_merge_stores_igvn(PhaseIterGVN& igvn) { 1917 C->set_merge_stores_phase(); 1918 1919 if (_for_merge_stores_igvn.length() > 0) { 1920 while (_for_merge_stores_igvn.length() > 0) { 1921 Node* n = _for_merge_stores_igvn.pop(); 1922 n->remove_flag(Node::NodeFlags::Flag_for_merge_stores_igvn); 1923 igvn._worklist.push(n); 1924 } 1925 igvn.optimize(); 1926 if (failing()) return; 1927 assert(_for_merge_stores_igvn.length() == 0, "no more delayed nodes allowed"); 1928 print_method(PHASE_AFTER_MERGE_STORES, 3); 1929 } 1930 } 1931 1932 void Compile::record_unstable_if_trap(UnstableIfTrap* trap) { 1933 if (OptimizeUnstableIf) { 1934 _unstable_if_traps.append(trap); 1935 } 1936 } 1937 1938 void Compile::remove_useless_unstable_if_traps(Unique_Node_List& useful) { 1939 for (int i = _unstable_if_traps.length() - 1; i >= 0; i--) { 1940 UnstableIfTrap* trap = _unstable_if_traps.at(i); 1941 Node* n = trap->uncommon_trap(); 1942 if (!useful.member(n)) { 1943 _unstable_if_traps.delete_at(i); // replaces i-th with last element which is known to be useful (already processed) 1944 } 1945 } 1946 } 1947 1948 // Remove the unstable if trap associated with 'unc' from candidates. It is either dead 1949 // or fold-compares case. Return true if succeed or not found. 1950 // 1951 // In rare cases, the found trap has been processed. It is too late to delete it. Return 1952 // false and ask fold-compares to yield. 1953 // 1954 // 'fold-compares' may use the uncommon_trap of the dominating IfNode to cover the fused 1955 // IfNode. This breaks the unstable_if trap invariant: control takes the unstable path 1956 // when deoptimization does happen. 1957 bool Compile::remove_unstable_if_trap(CallStaticJavaNode* unc, bool yield) { 1958 for (int i = 0; i < _unstable_if_traps.length(); ++i) { 1959 UnstableIfTrap* trap = _unstable_if_traps.at(i); 1960 if (trap->uncommon_trap() == unc) { 1961 if (yield && trap->modified()) { 1962 return false; 1963 } 1964 _unstable_if_traps.delete_at(i); 1965 break; 1966 } 1967 } 1968 return true; 1969 } 1970 1971 // Re-calculate unstable_if traps with the liveness of next_bci, which points to the unlikely path. 1972 // It needs to be done after igvn because fold-compares may fuse uncommon_traps and before renumbering. 1973 void Compile::process_for_unstable_if_traps(PhaseIterGVN& igvn) { 1974 for (int i = _unstable_if_traps.length() - 1; i >= 0; --i) { 1975 UnstableIfTrap* trap = _unstable_if_traps.at(i); 1976 CallStaticJavaNode* unc = trap->uncommon_trap(); 1977 int next_bci = trap->next_bci(); 1978 bool modified = trap->modified(); 1979 1980 if (next_bci != -1 && !modified) { 1981 assert(!_dead_node_list.test(unc->_idx), "changing a dead node!"); 1982 JVMState* jvms = unc->jvms(); 1983 ciMethod* method = jvms->method(); 1984 ciBytecodeStream iter(method); 1985 1986 iter.force_bci(jvms->bci()); 1987 assert(next_bci == iter.next_bci() || next_bci == iter.get_dest(), "wrong next_bci at unstable_if"); 1988 Bytecodes::Code c = iter.cur_bc(); 1989 Node* lhs = nullptr; 1990 Node* rhs = nullptr; 1991 if (c == Bytecodes::_if_acmpeq || c == Bytecodes::_if_acmpne) { 1992 lhs = unc->peek_operand(0); 1993 rhs = unc->peek_operand(1); 1994 } else if (c == Bytecodes::_ifnull || c == Bytecodes::_ifnonnull) { 1995 lhs = unc->peek_operand(0); 1996 } 1997 1998 ResourceMark rm; 1999 const MethodLivenessResult& live_locals = method->liveness_at_bci(next_bci); 2000 assert(live_locals.is_valid(), "broken liveness info"); 2001 int len = (int)live_locals.size(); 2002 2003 for (int i = 0; i < len; i++) { 2004 Node* local = unc->local(jvms, i); 2005 // kill local using the liveness of next_bci. 2006 // give up when the local looks like an operand to secure reexecution. 2007 if (!live_locals.at(i) && !local->is_top() && local != lhs && local!= rhs) { 2008 uint idx = jvms->locoff() + i; 2009 #ifdef ASSERT 2010 if (PrintOpto && Verbose) { 2011 tty->print("[unstable_if] kill local#%d: ", idx); 2012 local->dump(); 2013 tty->cr(); 2014 } 2015 #endif 2016 igvn.replace_input_of(unc, idx, top()); 2017 modified = true; 2018 } 2019 } 2020 } 2021 2022 // keep the mondified trap for late query 2023 if (modified) { 2024 trap->set_modified(); 2025 } else { 2026 _unstable_if_traps.delete_at(i); 2027 } 2028 } 2029 igvn.optimize(); 2030 } 2031 2032 // StringOpts and late inlining of string methods 2033 void Compile::inline_string_calls(bool parse_time) { 2034 { 2035 // remove useless nodes to make the usage analysis simpler 2036 ResourceMark rm; 2037 PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist()); 2038 } 2039 2040 { 2041 ResourceMark rm; 2042 print_method(PHASE_BEFORE_STRINGOPTS, 3); 2043 PhaseStringOpts pso(initial_gvn()); 2044 print_method(PHASE_AFTER_STRINGOPTS, 3); 2045 } 2046 2047 // now inline anything that we skipped the first time around 2048 if (!parse_time) { 2049 _late_inlines_pos = _late_inlines.length(); 2050 } 2051 2052 while (_string_late_inlines.length() > 0) { 2053 CallGenerator* cg = _string_late_inlines.pop(); 2054 cg->do_late_inline(); 2055 if (failing()) return; 2056 } 2057 _string_late_inlines.trunc_to(0); 2058 } 2059 2060 // Late inlining of boxing methods 2061 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) { 2062 if (_boxing_late_inlines.length() > 0) { 2063 assert(has_boxed_value(), "inconsistent"); 2064 2065 set_inlining_incrementally(true); 2066 2067 igvn_worklist()->ensure_empty(); // should be done with igvn 2068 2069 _late_inlines_pos = _late_inlines.length(); 2070 2071 while (_boxing_late_inlines.length() > 0) { 2072 CallGenerator* cg = _boxing_late_inlines.pop(); 2073 cg->do_late_inline(); 2074 if (failing()) return; 2075 } 2076 _boxing_late_inlines.trunc_to(0); 2077 2078 inline_incrementally_cleanup(igvn); 2079 2080 set_inlining_incrementally(false); 2081 } 2082 } 2083 2084 bool Compile::inline_incrementally_one() { 2085 assert(IncrementalInline, "incremental inlining should be on"); 2086 2087 TracePhase tp(_t_incrInline_inline); 2088 2089 set_inlining_progress(false); 2090 set_do_cleanup(false); 2091 2092 for (int i = 0; i < _late_inlines.length(); i++) { 2093 _late_inlines_pos = i+1; 2094 CallGenerator* cg = _late_inlines.at(i); 2095 bool is_scheduled_for_igvn_before = C->igvn_worklist()->member(cg->call_node()); 2096 bool does_dispatch = cg->is_virtual_late_inline() || cg->is_mh_late_inline(); 2097 if (inlining_incrementally() || does_dispatch) { // a call can be either inlined or strength-reduced to a direct call 2098 cg->do_late_inline(); 2099 assert(_late_inlines.at(i) == cg, "no insertions before current position allowed"); 2100 if (failing()) { 2101 return false; 2102 } else if (inlining_progress()) { 2103 _late_inlines_pos = i+1; // restore the position in case new elements were inserted 2104 print_method(PHASE_INCREMENTAL_INLINE_STEP, 3, cg->call_node()); 2105 break; // process one call site at a time 2106 } else { 2107 bool is_scheduled_for_igvn_after = C->igvn_worklist()->member(cg->call_node()); 2108 if (!is_scheduled_for_igvn_before && is_scheduled_for_igvn_after) { 2109 // Avoid potential infinite loop if node already in the IGVN list 2110 assert(false, "scheduled for IGVN during inlining attempt"); 2111 } else { 2112 // Ensure call node has not disappeared from IGVN worklist during a failed inlining attempt 2113 assert(!is_scheduled_for_igvn_before || is_scheduled_for_igvn_after, "call node removed from IGVN list during inlining pass"); 2114 cg->call_node()->set_generator(cg); 2115 } 2116 } 2117 } else { 2118 // Ignore late inline direct calls when inlining is not allowed. 2119 // They are left in the late inline list when node budget is exhausted until the list is fully drained. 2120 } 2121 } 2122 // Remove processed elements. 2123 _late_inlines.remove_till(_late_inlines_pos); 2124 _late_inlines_pos = 0; 2125 2126 assert(inlining_progress() || _late_inlines.length() == 0, "no progress"); 2127 2128 bool needs_cleanup = do_cleanup() || over_inlining_cutoff(); 2129 2130 set_inlining_progress(false); 2131 set_do_cleanup(false); 2132 2133 bool force_cleanup = directive()->IncrementalInlineForceCleanupOption; 2134 return (_late_inlines.length() > 0) && !needs_cleanup && !force_cleanup; 2135 } 2136 2137 void Compile::inline_incrementally_cleanup(PhaseIterGVN& igvn) { 2138 { 2139 TracePhase tp(_t_incrInline_pru); 2140 ResourceMark rm; 2141 PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist()); 2142 } 2143 { 2144 TracePhase tp(_t_incrInline_igvn); 2145 igvn.reset_from_gvn(initial_gvn()); 2146 igvn.optimize(); 2147 if (failing()) return; 2148 } 2149 print_method(PHASE_INCREMENTAL_INLINE_CLEANUP, 3); 2150 } 2151 2152 // Perform incremental inlining until bound on number of live nodes is reached 2153 void Compile::inline_incrementally(PhaseIterGVN& igvn) { 2154 TracePhase tp(_t_incrInline); 2155 2156 set_inlining_incrementally(true); 2157 uint low_live_nodes = 0; 2158 2159 while (_late_inlines.length() > 0) { 2160 if (live_nodes() > (uint)LiveNodeCountInliningCutoff) { 2161 if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) { 2162 TracePhase tp(_t_incrInline_ideal); 2163 // PhaseIdealLoop is expensive so we only try it once we are 2164 // out of live nodes and we only try it again if the previous 2165 // helped got the number of nodes down significantly 2166 PhaseIdealLoop::optimize(igvn, LoopOptsNone); 2167 if (failing()) return; 2168 low_live_nodes = live_nodes(); 2169 _major_progress = true; 2170 } 2171 2172 if (live_nodes() > (uint)LiveNodeCountInliningCutoff) { 2173 bool do_print_inlining = print_inlining() || print_intrinsics(); 2174 if (do_print_inlining || log() != nullptr) { 2175 // Print inlining message for candidates that we couldn't inline for lack of space. 2176 for (int i = 0; i < _late_inlines.length(); i++) { 2177 CallGenerator* cg = _late_inlines.at(i); 2178 const char* msg = "live nodes > LiveNodeCountInliningCutoff"; 2179 if (do_print_inlining) { 2180 inline_printer()->record(cg->method(), cg->call_node()->jvms(), InliningResult::FAILURE, msg); 2181 } 2182 log_late_inline_failure(cg, msg); 2183 } 2184 } 2185 break; // finish 2186 } 2187 } 2188 2189 igvn_worklist()->ensure_empty(); // should be done with igvn 2190 2191 while (inline_incrementally_one()) { 2192 assert(!failing_internal() || failure_is_artificial(), "inconsistent"); 2193 } 2194 if (failing()) return; 2195 2196 inline_incrementally_cleanup(igvn); 2197 2198 print_method(PHASE_INCREMENTAL_INLINE_STEP, 3); 2199 2200 if (failing()) return; 2201 2202 if (_late_inlines.length() == 0) { 2203 break; // no more progress 2204 } 2205 } 2206 2207 igvn_worklist()->ensure_empty(); // should be done with igvn 2208 2209 if (_string_late_inlines.length() > 0) { 2210 assert(has_stringbuilder(), "inconsistent"); 2211 2212 inline_string_calls(false); 2213 2214 if (failing()) return; 2215 2216 inline_incrementally_cleanup(igvn); 2217 } 2218 2219 set_inlining_incrementally(false); 2220 } 2221 2222 void Compile::process_late_inline_calls_no_inline(PhaseIterGVN& igvn) { 2223 // "inlining_incrementally() == false" is used to signal that no inlining is allowed 2224 // (see LateInlineVirtualCallGenerator::do_late_inline_check() for details). 2225 // Tracking and verification of modified nodes is disabled by setting "_modified_nodes == nullptr" 2226 // as if "inlining_incrementally() == true" were set. 2227 assert(inlining_incrementally() == false, "not allowed"); 2228 assert(_modified_nodes == nullptr, "not allowed"); 2229 assert(_late_inlines.length() > 0, "sanity"); 2230 2231 while (_late_inlines.length() > 0) { 2232 igvn_worklist()->ensure_empty(); // should be done with igvn 2233 2234 while (inline_incrementally_one()) { 2235 assert(!failing_internal() || failure_is_artificial(), "inconsistent"); 2236 } 2237 if (failing()) return; 2238 2239 inline_incrementally_cleanup(igvn); 2240 } 2241 } 2242 2243 bool Compile::optimize_loops(PhaseIterGVN& igvn, LoopOptsMode mode) { 2244 if (_loop_opts_cnt > 0) { 2245 while (major_progress() && (_loop_opts_cnt > 0)) { 2246 TracePhase tp(_t_idealLoop); 2247 PhaseIdealLoop::optimize(igvn, mode); 2248 _loop_opts_cnt--; 2249 if (failing()) return false; 2250 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2); 2251 } 2252 } 2253 return true; 2254 } 2255 2256 // Remove edges from "root" to each SafePoint at a backward branch. 2257 // They were inserted during parsing (see add_safepoint()) to make 2258 // infinite loops without calls or exceptions visible to root, i.e., 2259 // useful. 2260 void Compile::remove_root_to_sfpts_edges(PhaseIterGVN& igvn) { 2261 Node *r = root(); 2262 if (r != nullptr) { 2263 for (uint i = r->req(); i < r->len(); ++i) { 2264 Node *n = r->in(i); 2265 if (n != nullptr && n->is_SafePoint()) { 2266 r->rm_prec(i); 2267 if (n->outcnt() == 0) { 2268 igvn.remove_dead_node(n); 2269 } 2270 --i; 2271 } 2272 } 2273 // Parsing may have added top inputs to the root node (Path 2274 // leading to the Halt node proven dead). Make sure we get a 2275 // chance to clean them up. 2276 igvn._worklist.push(r); 2277 igvn.optimize(); 2278 } 2279 } 2280 2281 //------------------------------Optimize--------------------------------------- 2282 // Given a graph, optimize it. 2283 void Compile::Optimize() { 2284 TracePhase tp(_t_optimizer); 2285 2286 #ifndef PRODUCT 2287 if (env()->break_at_compile()) { 2288 BREAKPOINT; 2289 } 2290 2291 #endif 2292 2293 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 2294 #ifdef ASSERT 2295 bs->verify_gc_barriers(this, BarrierSetC2::BeforeOptimize); 2296 #endif 2297 2298 ResourceMark rm; 2299 2300 NOT_PRODUCT( verify_graph_edges(); ) 2301 2302 print_method(PHASE_AFTER_PARSING, 1); 2303 2304 { 2305 // Iterative Global Value Numbering, including ideal transforms 2306 // Initialize IterGVN with types and values from parse-time GVN 2307 PhaseIterGVN igvn(initial_gvn()); 2308 #ifdef ASSERT 2309 _modified_nodes = new (comp_arena()) Unique_Node_List(comp_arena()); 2310 #endif 2311 { 2312 TracePhase tp(_t_iterGVN); 2313 igvn.optimize(); 2314 } 2315 2316 if (failing()) return; 2317 2318 print_method(PHASE_ITER_GVN1, 2); 2319 2320 process_for_unstable_if_traps(igvn); 2321 2322 if (failing()) return; 2323 2324 inline_incrementally(igvn); 2325 2326 print_method(PHASE_INCREMENTAL_INLINE, 2); 2327 2328 if (failing()) return; 2329 2330 if (eliminate_boxing()) { 2331 // Inline valueOf() methods now. 2332 inline_boxing_calls(igvn); 2333 2334 if (failing()) return; 2335 2336 if (AlwaysIncrementalInline || StressIncrementalInlining) { 2337 inline_incrementally(igvn); 2338 } 2339 2340 print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2); 2341 2342 if (failing()) return; 2343 } 2344 2345 // Remove the speculative part of types and clean up the graph from 2346 // the extra CastPP nodes whose only purpose is to carry them. Do 2347 // that early so that optimizations are not disrupted by the extra 2348 // CastPP nodes. 2349 remove_speculative_types(igvn); 2350 2351 if (failing()) return; 2352 2353 // No more new expensive nodes will be added to the list from here 2354 // so keep only the actual candidates for optimizations. 2355 cleanup_expensive_nodes(igvn); 2356 2357 if (failing()) return; 2358 2359 assert(EnableVectorSupport || !has_vbox_nodes(), "sanity"); 2360 if (EnableVectorSupport && has_vbox_nodes()) { 2361 TracePhase tp(_t_vector); 2362 PhaseVector pv(igvn); 2363 pv.optimize_vector_boxes(); 2364 if (failing()) return; 2365 print_method(PHASE_ITER_GVN_AFTER_VECTOR, 2); 2366 } 2367 assert(!has_vbox_nodes(), "sanity"); 2368 2369 if (!failing() && RenumberLiveNodes && live_nodes() + NodeLimitFudgeFactor < unique()) { 2370 Compile::TracePhase tp(_t_renumberLive); 2371 igvn_worklist()->ensure_empty(); // should be done with igvn 2372 { 2373 ResourceMark rm; 2374 PhaseRenumberLive prl(initial_gvn(), *igvn_worklist()); 2375 } 2376 igvn.reset_from_gvn(initial_gvn()); 2377 igvn.optimize(); 2378 if (failing()) return; 2379 } 2380 2381 // Now that all inlining is over and no PhaseRemoveUseless will run, cut edge from root to loop 2382 // safepoints 2383 remove_root_to_sfpts_edges(igvn); 2384 2385 if (failing()) return; 2386 2387 if (has_loops()) { 2388 print_method(PHASE_BEFORE_LOOP_OPTS, 2); 2389 } 2390 2391 // Perform escape analysis 2392 if (do_escape_analysis() && ConnectionGraph::has_candidates(this)) { 2393 if (has_loops()) { 2394 // Cleanup graph (remove dead nodes). 2395 TracePhase tp(_t_idealLoop); 2396 PhaseIdealLoop::optimize(igvn, LoopOptsMaxUnroll); 2397 if (failing()) return; 2398 } 2399 bool progress; 2400 print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2); 2401 do { 2402 ConnectionGraph::do_analysis(this, &igvn); 2403 2404 if (failing()) return; 2405 2406 int mcount = macro_count(); // Record number of allocations and locks before IGVN 2407 2408 // Optimize out fields loads from scalar replaceable allocations. 2409 igvn.optimize(); 2410 print_method(PHASE_ITER_GVN_AFTER_EA, 2); 2411 2412 if (failing()) return; 2413 2414 if (congraph() != nullptr && macro_count() > 0) { 2415 TracePhase tp(_t_macroEliminate); 2416 PhaseMacroExpand mexp(igvn); 2417 mexp.eliminate_macro_nodes(); 2418 if (failing()) return; 2419 2420 igvn.set_delay_transform(false); 2421 igvn.optimize(); 2422 if (failing()) return; 2423 2424 print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2); 2425 } 2426 2427 ConnectionGraph::verify_ram_nodes(this, root()); 2428 if (failing()) return; 2429 2430 progress = do_iterative_escape_analysis() && 2431 (macro_count() < mcount) && 2432 ConnectionGraph::has_candidates(this); 2433 // Try again if candidates exist and made progress 2434 // by removing some allocations and/or locks. 2435 } while (progress); 2436 } 2437 2438 // Loop transforms on the ideal graph. Range Check Elimination, 2439 // peeling, unrolling, etc. 2440 2441 // Set loop opts counter 2442 if((_loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) { 2443 { 2444 TracePhase tp(_t_idealLoop); 2445 PhaseIdealLoop::optimize(igvn, LoopOptsDefault); 2446 _loop_opts_cnt--; 2447 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2); 2448 if (failing()) return; 2449 } 2450 // Loop opts pass if partial peeling occurred in previous pass 2451 if(PartialPeelLoop && major_progress() && (_loop_opts_cnt > 0)) { 2452 TracePhase tp(_t_idealLoop); 2453 PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf); 2454 _loop_opts_cnt--; 2455 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2); 2456 if (failing()) return; 2457 } 2458 // Loop opts pass for loop-unrolling before CCP 2459 if(major_progress() && (_loop_opts_cnt > 0)) { 2460 TracePhase tp(_t_idealLoop); 2461 PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf); 2462 _loop_opts_cnt--; 2463 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2); 2464 } 2465 if (!failing()) { 2466 // Verify that last round of loop opts produced a valid graph 2467 PhaseIdealLoop::verify(igvn); 2468 } 2469 } 2470 if (failing()) return; 2471 2472 // Conditional Constant Propagation; 2473 print_method(PHASE_BEFORE_CCP1, 2); 2474 PhaseCCP ccp( &igvn ); 2475 assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)"); 2476 { 2477 TracePhase tp(_t_ccp); 2478 ccp.do_transform(); 2479 } 2480 print_method(PHASE_CCP1, 2); 2481 2482 assert( true, "Break here to ccp.dump_old2new_map()"); 2483 2484 // Iterative Global Value Numbering, including ideal transforms 2485 { 2486 TracePhase tp(_t_iterGVN2); 2487 igvn.reset_from_igvn(&ccp); 2488 igvn.optimize(); 2489 } 2490 print_method(PHASE_ITER_GVN2, 2); 2491 2492 if (failing()) return; 2493 2494 // Loop transforms on the ideal graph. Range Check Elimination, 2495 // peeling, unrolling, etc. 2496 if (!optimize_loops(igvn, LoopOptsDefault)) { 2497 return; 2498 } 2499 2500 if (failing()) return; 2501 2502 C->clear_major_progress(); // ensure that major progress is now clear 2503 2504 process_for_post_loop_opts_igvn(igvn); 2505 2506 process_for_merge_stores_igvn(igvn); 2507 2508 if (failing()) return; 2509 2510 #ifdef ASSERT 2511 bs->verify_gc_barriers(this, BarrierSetC2::BeforeMacroExpand); 2512 #endif 2513 2514 { 2515 TracePhase tp(_t_macroExpand); 2516 print_method(PHASE_BEFORE_MACRO_EXPANSION, 3); 2517 PhaseMacroExpand mex(igvn); 2518 if (mex.expand_macro_nodes()) { 2519 assert(failing(), "must bail out w/ explicit message"); 2520 return; 2521 } 2522 print_method(PHASE_AFTER_MACRO_EXPANSION, 2); 2523 } 2524 2525 { 2526 TracePhase tp(_t_barrierExpand); 2527 if (bs->expand_barriers(this, igvn)) { 2528 assert(failing(), "must bail out w/ explicit message"); 2529 return; 2530 } 2531 print_method(PHASE_BARRIER_EXPANSION, 2); 2532 } 2533 2534 if (C->max_vector_size() > 0) { 2535 C->optimize_logic_cones(igvn); 2536 igvn.optimize(); 2537 if (failing()) return; 2538 } 2539 2540 DEBUG_ONLY( _modified_nodes = nullptr; ) 2541 2542 assert(igvn._worklist.size() == 0, "not empty"); 2543 2544 assert(_late_inlines.length() == 0 || IncrementalInlineMH || IncrementalInlineVirtual, "not empty"); 2545 2546 if (_late_inlines.length() > 0) { 2547 // More opportunities to optimize virtual and MH calls. 2548 // Though it's maybe too late to perform inlining, strength-reducing them to direct calls is still an option. 2549 process_late_inline_calls_no_inline(igvn); 2550 if (failing()) return; 2551 } 2552 } // (End scope of igvn; run destructor if necessary for asserts.) 2553 2554 check_no_dead_use(); 2555 2556 // We will never use the NodeHash table any more. Clear it so that final_graph_reshaping does not have 2557 // to remove hashes to unlock nodes for modifications. 2558 C->node_hash()->clear(); 2559 2560 // A method with only infinite loops has no edges entering loops from root 2561 { 2562 TracePhase tp(_t_graphReshaping); 2563 if (final_graph_reshaping()) { 2564 assert(failing(), "must bail out w/ explicit message"); 2565 return; 2566 } 2567 } 2568 2569 print_method(PHASE_OPTIMIZE_FINISHED, 2); 2570 DEBUG_ONLY(set_phase_optimize_finished();) 2571 } 2572 2573 #ifdef ASSERT 2574 void Compile::check_no_dead_use() const { 2575 ResourceMark rm; 2576 Unique_Node_List wq; 2577 wq.push(root()); 2578 for (uint i = 0; i < wq.size(); ++i) { 2579 Node* n = wq.at(i); 2580 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) { 2581 Node* u = n->fast_out(j); 2582 if (u->outcnt() == 0 && !u->is_Con()) { 2583 u->dump(); 2584 fatal("no reachable node should have no use"); 2585 } 2586 wq.push(u); 2587 } 2588 } 2589 } 2590 #endif 2591 2592 void Compile::inline_vector_reboxing_calls() { 2593 if (C->_vector_reboxing_late_inlines.length() > 0) { 2594 _late_inlines_pos = C->_late_inlines.length(); 2595 while (_vector_reboxing_late_inlines.length() > 0) { 2596 CallGenerator* cg = _vector_reboxing_late_inlines.pop(); 2597 cg->do_late_inline(); 2598 if (failing()) return; 2599 print_method(PHASE_INLINE_VECTOR_REBOX, 3, cg->call_node()); 2600 } 2601 _vector_reboxing_late_inlines.trunc_to(0); 2602 } 2603 } 2604 2605 bool Compile::has_vbox_nodes() { 2606 if (C->_vector_reboxing_late_inlines.length() > 0) { 2607 return true; 2608 } 2609 for (int macro_idx = C->macro_count() - 1; macro_idx >= 0; macro_idx--) { 2610 Node * n = C->macro_node(macro_idx); 2611 assert(n->is_macro(), "only macro nodes expected here"); 2612 if (n->Opcode() == Op_VectorUnbox || n->Opcode() == Op_VectorBox || n->Opcode() == Op_VectorBoxAllocate) { 2613 return true; 2614 } 2615 } 2616 return false; 2617 } 2618 2619 //---------------------------- Bitwise operation packing optimization --------------------------- 2620 2621 static bool is_vector_unary_bitwise_op(Node* n) { 2622 return n->Opcode() == Op_XorV && 2623 VectorNode::is_vector_bitwise_not_pattern(n); 2624 } 2625 2626 static bool is_vector_binary_bitwise_op(Node* n) { 2627 switch (n->Opcode()) { 2628 case Op_AndV: 2629 case Op_OrV: 2630 return true; 2631 2632 case Op_XorV: 2633 return !is_vector_unary_bitwise_op(n); 2634 2635 default: 2636 return false; 2637 } 2638 } 2639 2640 static bool is_vector_ternary_bitwise_op(Node* n) { 2641 return n->Opcode() == Op_MacroLogicV; 2642 } 2643 2644 static bool is_vector_bitwise_op(Node* n) { 2645 return is_vector_unary_bitwise_op(n) || 2646 is_vector_binary_bitwise_op(n) || 2647 is_vector_ternary_bitwise_op(n); 2648 } 2649 2650 static bool is_vector_bitwise_cone_root(Node* n) { 2651 if (n->bottom_type()->isa_vectmask() || !is_vector_bitwise_op(n)) { 2652 return false; 2653 } 2654 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 2655 if (is_vector_bitwise_op(n->fast_out(i))) { 2656 return false; 2657 } 2658 } 2659 return true; 2660 } 2661 2662 static uint collect_unique_inputs(Node* n, Unique_Node_List& inputs) { 2663 uint cnt = 0; 2664 if (is_vector_bitwise_op(n)) { 2665 uint inp_cnt = n->is_predicated_vector() ? n->req()-1 : n->req(); 2666 if (VectorNode::is_vector_bitwise_not_pattern(n)) { 2667 for (uint i = 1; i < inp_cnt; i++) { 2668 Node* in = n->in(i); 2669 bool skip = VectorNode::is_all_ones_vector(in); 2670 if (!skip && !inputs.member(in)) { 2671 inputs.push(in); 2672 cnt++; 2673 } 2674 } 2675 assert(cnt <= 1, "not unary"); 2676 } else { 2677 uint last_req = inp_cnt; 2678 if (is_vector_ternary_bitwise_op(n)) { 2679 last_req = inp_cnt - 1; // skip last input 2680 } 2681 for (uint i = 1; i < last_req; i++) { 2682 Node* def = n->in(i); 2683 if (!inputs.member(def)) { 2684 inputs.push(def); 2685 cnt++; 2686 } 2687 } 2688 } 2689 } else { // not a bitwise operations 2690 if (!inputs.member(n)) { 2691 inputs.push(n); 2692 cnt++; 2693 } 2694 } 2695 return cnt; 2696 } 2697 2698 void Compile::collect_logic_cone_roots(Unique_Node_List& list) { 2699 Unique_Node_List useful_nodes; 2700 C->identify_useful_nodes(useful_nodes); 2701 2702 for (uint i = 0; i < useful_nodes.size(); i++) { 2703 Node* n = useful_nodes.at(i); 2704 if (is_vector_bitwise_cone_root(n)) { 2705 list.push(n); 2706 } 2707 } 2708 } 2709 2710 Node* Compile::xform_to_MacroLogicV(PhaseIterGVN& igvn, 2711 const TypeVect* vt, 2712 Unique_Node_List& partition, 2713 Unique_Node_List& inputs) { 2714 assert(partition.size() == 2 || partition.size() == 3, "not supported"); 2715 assert(inputs.size() == 2 || inputs.size() == 3, "not supported"); 2716 assert(Matcher::match_rule_supported_vector(Op_MacroLogicV, vt->length(), vt->element_basic_type()), "not supported"); 2717 2718 Node* in1 = inputs.at(0); 2719 Node* in2 = inputs.at(1); 2720 Node* in3 = (inputs.size() == 3 ? inputs.at(2) : in2); 2721 2722 uint func = compute_truth_table(partition, inputs); 2723 2724 Node* pn = partition.at(partition.size() - 1); 2725 Node* mask = pn->is_predicated_vector() ? pn->in(pn->req()-1) : nullptr; 2726 return igvn.transform(MacroLogicVNode::make(igvn, in1, in2, in3, mask, func, vt)); 2727 } 2728 2729 static uint extract_bit(uint func, uint pos) { 2730 return (func & (1 << pos)) >> pos; 2731 } 2732 2733 // 2734 // A macro logic node represents a truth table. It has 4 inputs, 2735 // First three inputs corresponds to 3 columns of a truth table 2736 // and fourth input captures the logic function. 2737 // 2738 // eg. fn = (in1 AND in2) OR in3; 2739 // 2740 // MacroNode(in1,in2,in3,fn) 2741 // 2742 // ----------------- 2743 // in1 in2 in3 fn 2744 // ----------------- 2745 // 0 0 0 0 2746 // 0 0 1 1 2747 // 0 1 0 0 2748 // 0 1 1 1 2749 // 1 0 0 0 2750 // 1 0 1 1 2751 // 1 1 0 1 2752 // 1 1 1 1 2753 // 2754 2755 uint Compile::eval_macro_logic_op(uint func, uint in1 , uint in2, uint in3) { 2756 int res = 0; 2757 for (int i = 0; i < 8; i++) { 2758 int bit1 = extract_bit(in1, i); 2759 int bit2 = extract_bit(in2, i); 2760 int bit3 = extract_bit(in3, i); 2761 2762 int func_bit_pos = (bit1 << 2 | bit2 << 1 | bit3); 2763 int func_bit = extract_bit(func, func_bit_pos); 2764 2765 res |= func_bit << i; 2766 } 2767 return res; 2768 } 2769 2770 static uint eval_operand(Node* n, ResourceHashtable<Node*,uint>& eval_map) { 2771 assert(n != nullptr, ""); 2772 assert(eval_map.contains(n), "absent"); 2773 return *(eval_map.get(n)); 2774 } 2775 2776 static void eval_operands(Node* n, 2777 uint& func1, uint& func2, uint& func3, 2778 ResourceHashtable<Node*,uint>& eval_map) { 2779 assert(is_vector_bitwise_op(n), ""); 2780 2781 if (is_vector_unary_bitwise_op(n)) { 2782 Node* opnd = n->in(1); 2783 if (VectorNode::is_vector_bitwise_not_pattern(n) && VectorNode::is_all_ones_vector(opnd)) { 2784 opnd = n->in(2); 2785 } 2786 func1 = eval_operand(opnd, eval_map); 2787 } else if (is_vector_binary_bitwise_op(n)) { 2788 func1 = eval_operand(n->in(1), eval_map); 2789 func2 = eval_operand(n->in(2), eval_map); 2790 } else { 2791 assert(is_vector_ternary_bitwise_op(n), "unknown operation"); 2792 func1 = eval_operand(n->in(1), eval_map); 2793 func2 = eval_operand(n->in(2), eval_map); 2794 func3 = eval_operand(n->in(3), eval_map); 2795 } 2796 } 2797 2798 uint Compile::compute_truth_table(Unique_Node_List& partition, Unique_Node_List& inputs) { 2799 assert(inputs.size() <= 3, "sanity"); 2800 ResourceMark rm; 2801 uint res = 0; 2802 ResourceHashtable<Node*,uint> eval_map; 2803 2804 // Populate precomputed functions for inputs. 2805 // Each input corresponds to one column of 3 input truth-table. 2806 uint input_funcs[] = { 0xAA, // (_, _, c) -> c 2807 0xCC, // (_, b, _) -> b 2808 0xF0 }; // (a, _, _) -> a 2809 for (uint i = 0; i < inputs.size(); i++) { 2810 eval_map.put(inputs.at(i), input_funcs[2-i]); 2811 } 2812 2813 for (uint i = 0; i < partition.size(); i++) { 2814 Node* n = partition.at(i); 2815 2816 uint func1 = 0, func2 = 0, func3 = 0; 2817 eval_operands(n, func1, func2, func3, eval_map); 2818 2819 switch (n->Opcode()) { 2820 case Op_OrV: 2821 assert(func3 == 0, "not binary"); 2822 res = func1 | func2; 2823 break; 2824 case Op_AndV: 2825 assert(func3 == 0, "not binary"); 2826 res = func1 & func2; 2827 break; 2828 case Op_XorV: 2829 if (VectorNode::is_vector_bitwise_not_pattern(n)) { 2830 assert(func2 == 0 && func3 == 0, "not unary"); 2831 res = (~func1) & 0xFF; 2832 } else { 2833 assert(func3 == 0, "not binary"); 2834 res = func1 ^ func2; 2835 } 2836 break; 2837 case Op_MacroLogicV: 2838 // Ordering of inputs may change during evaluation of sub-tree 2839 // containing MacroLogic node as a child node, thus a re-evaluation 2840 // makes sure that function is evaluated in context of current 2841 // inputs. 2842 res = eval_macro_logic_op(n->in(4)->get_int(), func1, func2, func3); 2843 break; 2844 2845 default: assert(false, "not supported: %s", n->Name()); 2846 } 2847 assert(res <= 0xFF, "invalid"); 2848 eval_map.put(n, res); 2849 } 2850 return res; 2851 } 2852 2853 // Criteria under which nodes gets packed into a macro logic node:- 2854 // 1) Parent and both child nodes are all unmasked or masked with 2855 // same predicates. 2856 // 2) Masked parent can be packed with left child if it is predicated 2857 // and both have same predicates. 2858 // 3) Masked parent can be packed with right child if its un-predicated 2859 // or has matching predication condition. 2860 // 4) An unmasked parent can be packed with an unmasked child. 2861 bool Compile::compute_logic_cone(Node* n, Unique_Node_List& partition, Unique_Node_List& inputs) { 2862 assert(partition.size() == 0, "not empty"); 2863 assert(inputs.size() == 0, "not empty"); 2864 if (is_vector_ternary_bitwise_op(n)) { 2865 return false; 2866 } 2867 2868 bool is_unary_op = is_vector_unary_bitwise_op(n); 2869 if (is_unary_op) { 2870 assert(collect_unique_inputs(n, inputs) == 1, "not unary"); 2871 return false; // too few inputs 2872 } 2873 2874 bool pack_left_child = true; 2875 bool pack_right_child = true; 2876 2877 bool left_child_LOP = is_vector_bitwise_op(n->in(1)); 2878 bool right_child_LOP = is_vector_bitwise_op(n->in(2)); 2879 2880 int left_child_input_cnt = 0; 2881 int right_child_input_cnt = 0; 2882 2883 bool parent_is_predicated = n->is_predicated_vector(); 2884 bool left_child_predicated = n->in(1)->is_predicated_vector(); 2885 bool right_child_predicated = n->in(2)->is_predicated_vector(); 2886 2887 Node* parent_pred = parent_is_predicated ? n->in(n->req()-1) : nullptr; 2888 Node* left_child_pred = left_child_predicated ? n->in(1)->in(n->in(1)->req()-1) : nullptr; 2889 Node* right_child_pred = right_child_predicated ? n->in(1)->in(n->in(1)->req()-1) : nullptr; 2890 2891 do { 2892 if (pack_left_child && left_child_LOP && 2893 ((!parent_is_predicated && !left_child_predicated) || 2894 ((parent_is_predicated && left_child_predicated && 2895 parent_pred == left_child_pred)))) { 2896 partition.push(n->in(1)); 2897 left_child_input_cnt = collect_unique_inputs(n->in(1), inputs); 2898 } else { 2899 inputs.push(n->in(1)); 2900 left_child_input_cnt = 1; 2901 } 2902 2903 if (pack_right_child && right_child_LOP && 2904 (!right_child_predicated || 2905 (right_child_predicated && parent_is_predicated && 2906 parent_pred == right_child_pred))) { 2907 partition.push(n->in(2)); 2908 right_child_input_cnt = collect_unique_inputs(n->in(2), inputs); 2909 } else { 2910 inputs.push(n->in(2)); 2911 right_child_input_cnt = 1; 2912 } 2913 2914 if (inputs.size() > 3) { 2915 assert(partition.size() > 0, ""); 2916 inputs.clear(); 2917 partition.clear(); 2918 if (left_child_input_cnt > right_child_input_cnt) { 2919 pack_left_child = false; 2920 } else { 2921 pack_right_child = false; 2922 } 2923 } else { 2924 break; 2925 } 2926 } while(true); 2927 2928 if(partition.size()) { 2929 partition.push(n); 2930 } 2931 2932 return (partition.size() == 2 || partition.size() == 3) && 2933 (inputs.size() == 2 || inputs.size() == 3); 2934 } 2935 2936 void Compile::process_logic_cone_root(PhaseIterGVN &igvn, Node *n, VectorSet &visited) { 2937 assert(is_vector_bitwise_op(n), "not a root"); 2938 2939 visited.set(n->_idx); 2940 2941 // 1) Do a DFS walk over the logic cone. 2942 for (uint i = 1; i < n->req(); i++) { 2943 Node* in = n->in(i); 2944 if (!visited.test(in->_idx) && is_vector_bitwise_op(in)) { 2945 process_logic_cone_root(igvn, in, visited); 2946 } 2947 } 2948 2949 // 2) Bottom up traversal: Merge node[s] with 2950 // the parent to form macro logic node. 2951 Unique_Node_List partition; 2952 Unique_Node_List inputs; 2953 if (compute_logic_cone(n, partition, inputs)) { 2954 const TypeVect* vt = n->bottom_type()->is_vect(); 2955 Node* pn = partition.at(partition.size() - 1); 2956 Node* mask = pn->is_predicated_vector() ? pn->in(pn->req()-1) : nullptr; 2957 if (mask == nullptr || 2958 Matcher::match_rule_supported_vector_masked(Op_MacroLogicV, vt->length(), vt->element_basic_type())) { 2959 Node* macro_logic = xform_to_MacroLogicV(igvn, vt, partition, inputs); 2960 VectorNode::trace_new_vector(macro_logic, "MacroLogic"); 2961 igvn.replace_node(n, macro_logic); 2962 } 2963 } 2964 } 2965 2966 void Compile::optimize_logic_cones(PhaseIterGVN &igvn) { 2967 ResourceMark rm; 2968 if (Matcher::match_rule_supported(Op_MacroLogicV)) { 2969 Unique_Node_List list; 2970 collect_logic_cone_roots(list); 2971 2972 while (list.size() > 0) { 2973 Node* n = list.pop(); 2974 const TypeVect* vt = n->bottom_type()->is_vect(); 2975 bool supported = Matcher::match_rule_supported_vector(Op_MacroLogicV, vt->length(), vt->element_basic_type()); 2976 if (supported) { 2977 VectorSet visited(comp_arena()); 2978 process_logic_cone_root(igvn, n, visited); 2979 } 2980 } 2981 } 2982 } 2983 2984 //------------------------------Code_Gen--------------------------------------- 2985 // Given a graph, generate code for it 2986 void Compile::Code_Gen() { 2987 if (failing()) { 2988 return; 2989 } 2990 2991 // Perform instruction selection. You might think we could reclaim Matcher 2992 // memory PDQ, but actually the Matcher is used in generating spill code. 2993 // Internals of the Matcher (including some VectorSets) must remain live 2994 // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage 2995 // set a bit in reclaimed memory. 2996 2997 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine 2998 // nodes. Mapping is only valid at the root of each matched subtree. 2999 NOT_PRODUCT( verify_graph_edges(); ) 3000 3001 Matcher matcher; 3002 _matcher = &matcher; 3003 { 3004 TracePhase tp(_t_matcher); 3005 matcher.match(); 3006 if (failing()) { 3007 return; 3008 } 3009 } 3010 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine 3011 // nodes. Mapping is only valid at the root of each matched subtree. 3012 NOT_PRODUCT( verify_graph_edges(); ) 3013 3014 // If you have too many nodes, or if matching has failed, bail out 3015 check_node_count(0, "out of nodes matching instructions"); 3016 if (failing()) { 3017 return; 3018 } 3019 3020 print_method(PHASE_MATCHING, 2); 3021 3022 // Build a proper-looking CFG 3023 PhaseCFG cfg(node_arena(), root(), matcher); 3024 if (failing()) { 3025 return; 3026 } 3027 _cfg = &cfg; 3028 { 3029 TracePhase tp(_t_scheduler); 3030 bool success = cfg.do_global_code_motion(); 3031 if (!success) { 3032 return; 3033 } 3034 3035 print_method(PHASE_GLOBAL_CODE_MOTION, 2); 3036 NOT_PRODUCT( verify_graph_edges(); ) 3037 cfg.verify(); 3038 if (failing()) { 3039 return; 3040 } 3041 } 3042 3043 PhaseChaitin regalloc(unique(), cfg, matcher, false); 3044 _regalloc = ®alloc; 3045 { 3046 TracePhase tp(_t_registerAllocation); 3047 // Perform register allocation. After Chaitin, use-def chains are 3048 // no longer accurate (at spill code) and so must be ignored. 3049 // Node->LRG->reg mappings are still accurate. 3050 _regalloc->Register_Allocate(); 3051 3052 // Bail out if the allocator builds too many nodes 3053 if (failing()) { 3054 return; 3055 } 3056 3057 print_method(PHASE_REGISTER_ALLOCATION, 2); 3058 } 3059 3060 // Prior to register allocation we kept empty basic blocks in case the 3061 // the allocator needed a place to spill. After register allocation we 3062 // are not adding any new instructions. If any basic block is empty, we 3063 // can now safely remove it. 3064 { 3065 TracePhase tp(_t_blockOrdering); 3066 cfg.remove_empty_blocks(); 3067 if (do_freq_based_layout()) { 3068 PhaseBlockLayout layout(cfg); 3069 } else { 3070 cfg.set_loop_alignment(); 3071 } 3072 cfg.fixup_flow(); 3073 cfg.remove_unreachable_blocks(); 3074 cfg.verify_dominator_tree(); 3075 print_method(PHASE_BLOCK_ORDERING, 3); 3076 } 3077 3078 // Apply peephole optimizations 3079 if( OptoPeephole ) { 3080 TracePhase tp(_t_peephole); 3081 PhasePeephole peep( _regalloc, cfg); 3082 peep.do_transform(); 3083 print_method(PHASE_PEEPHOLE, 3); 3084 } 3085 3086 // Do late expand if CPU requires this. 3087 if (Matcher::require_postalloc_expand) { 3088 TracePhase tp(_t_postalloc_expand); 3089 cfg.postalloc_expand(_regalloc); 3090 print_method(PHASE_POSTALLOC_EXPAND, 3); 3091 } 3092 3093 #ifdef ASSERT 3094 { 3095 CompilationMemoryStatistic::do_test_allocations(); 3096 if (failing()) return; 3097 } 3098 #endif 3099 3100 // Convert Nodes to instruction bits in a buffer 3101 { 3102 TracePhase tp(_t_output); 3103 PhaseOutput output; 3104 output.Output(); 3105 if (failing()) return; 3106 output.install(); 3107 print_method(PHASE_FINAL_CODE, 1); // Compile::_output is not null here 3108 } 3109 3110 // He's dead, Jim. 3111 _cfg = (PhaseCFG*)((intptr_t)0xdeadbeef); 3112 _regalloc = (PhaseChaitin*)((intptr_t)0xdeadbeef); 3113 } 3114 3115 //------------------------------Final_Reshape_Counts--------------------------- 3116 // This class defines counters to help identify when a method 3117 // may/must be executed using hardware with only 24-bit precision. 3118 struct Final_Reshape_Counts : public StackObj { 3119 int _call_count; // count non-inlined 'common' calls 3120 int _float_count; // count float ops requiring 24-bit precision 3121 int _double_count; // count double ops requiring more precision 3122 int _java_call_count; // count non-inlined 'java' calls 3123 int _inner_loop_count; // count loops which need alignment 3124 VectorSet _visited; // Visitation flags 3125 Node_List _tests; // Set of IfNodes & PCTableNodes 3126 3127 Final_Reshape_Counts() : 3128 _call_count(0), _float_count(0), _double_count(0), 3129 _java_call_count(0), _inner_loop_count(0) { } 3130 3131 void inc_call_count () { _call_count ++; } 3132 void inc_float_count () { _float_count ++; } 3133 void inc_double_count() { _double_count++; } 3134 void inc_java_call_count() { _java_call_count++; } 3135 void inc_inner_loop_count() { _inner_loop_count++; } 3136 3137 int get_call_count () const { return _call_count ; } 3138 int get_float_count () const { return _float_count ; } 3139 int get_double_count() const { return _double_count; } 3140 int get_java_call_count() const { return _java_call_count; } 3141 int get_inner_loop_count() const { return _inner_loop_count; } 3142 }; 3143 3144 //------------------------------final_graph_reshaping_impl---------------------- 3145 // Implement items 1-5 from final_graph_reshaping below. 3146 void Compile::final_graph_reshaping_impl(Node *n, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes) { 3147 3148 if ( n->outcnt() == 0 ) return; // dead node 3149 uint nop = n->Opcode(); 3150 3151 // Check for 2-input instruction with "last use" on right input. 3152 // Swap to left input. Implements item (2). 3153 if( n->req() == 3 && // two-input instruction 3154 n->in(1)->outcnt() > 1 && // left use is NOT a last use 3155 (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop 3156 n->in(2)->outcnt() == 1 &&// right use IS a last use 3157 !n->in(2)->is_Con() ) { // right use is not a constant 3158 // Check for commutative opcode 3159 switch( nop ) { 3160 case Op_AddI: case Op_AddF: case Op_AddD: case Op_AddL: 3161 case Op_MaxI: case Op_MaxL: case Op_MaxF: case Op_MaxD: 3162 case Op_MinI: case Op_MinL: case Op_MinF: case Op_MinD: 3163 case Op_MulI: case Op_MulF: case Op_MulD: case Op_MulL: 3164 case Op_AndL: case Op_XorL: case Op_OrL: 3165 case Op_AndI: case Op_XorI: case Op_OrI: { 3166 // Move "last use" input to left by swapping inputs 3167 n->swap_edges(1, 2); 3168 break; 3169 } 3170 default: 3171 break; 3172 } 3173 } 3174 3175 #ifdef ASSERT 3176 if( n->is_Mem() ) { 3177 int alias_idx = get_alias_index(n->as_Mem()->adr_type()); 3178 assert( n->in(0) != nullptr || alias_idx != Compile::AliasIdxRaw || 3179 // oop will be recorded in oop map if load crosses safepoint 3180 (n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() || 3181 LoadNode::is_immutable_value(n->in(MemNode::Address)))), 3182 "raw memory operations should have control edge"); 3183 } 3184 if (n->is_MemBar()) { 3185 MemBarNode* mb = n->as_MemBar(); 3186 if (mb->trailing_store() || mb->trailing_load_store()) { 3187 assert(mb->leading_membar()->trailing_membar() == mb, "bad membar pair"); 3188 Node* mem = BarrierSet::barrier_set()->barrier_set_c2()->step_over_gc_barrier(mb->in(MemBarNode::Precedent)); 3189 assert((mb->trailing_store() && mem->is_Store() && mem->as_Store()->is_release()) || 3190 (mb->trailing_load_store() && mem->is_LoadStore()), "missing mem op"); 3191 } else if (mb->leading()) { 3192 assert(mb->trailing_membar()->leading_membar() == mb, "bad membar pair"); 3193 } 3194 } 3195 #endif 3196 // Count FPU ops and common calls, implements item (3) 3197 bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->final_graph_reshaping(this, n, nop, dead_nodes); 3198 if (!gc_handled) { 3199 final_graph_reshaping_main_switch(n, frc, nop, dead_nodes); 3200 } 3201 3202 // Collect CFG split points 3203 if (n->is_MultiBranch() && !n->is_RangeCheck()) { 3204 frc._tests.push(n); 3205 } 3206 } 3207 3208 void Compile::handle_div_mod_op(Node* n, BasicType bt, bool is_unsigned) { 3209 if (!UseDivMod) { 3210 return; 3211 } 3212 3213 // Check if "a % b" and "a / b" both exist 3214 Node* d = n->find_similar(Op_DivIL(bt, is_unsigned)); 3215 if (d == nullptr) { 3216 return; 3217 } 3218 3219 // Replace them with a fused divmod if supported 3220 if (Matcher::has_match_rule(Op_DivModIL(bt, is_unsigned))) { 3221 DivModNode* divmod = DivModNode::make(n, bt, is_unsigned); 3222 // If the divisor input for a Div (or Mod etc.) is not zero, then the control input of the Div is set to zero. 3223 // It could be that the divisor input is found not zero because its type is narrowed down by a CastII in the 3224 // subgraph for that input. Range check CastIIs are removed during final graph reshape. To preserve the dependency 3225 // carried by a CastII, precedence edges are added to the Div node. We need to transfer the precedence edges to the 3226 // DivMod node so the dependency is not lost. 3227 divmod->add_prec_from(n); 3228 divmod->add_prec_from(d); 3229 d->subsume_by(divmod->div_proj(), this); 3230 n->subsume_by(divmod->mod_proj(), this); 3231 } else { 3232 // Replace "a % b" with "a - ((a / b) * b)" 3233 Node* mult = MulNode::make(d, d->in(2), bt); 3234 Node* sub = SubNode::make(d->in(1), mult, bt); 3235 n->subsume_by(sub, this); 3236 } 3237 } 3238 3239 void Compile::final_graph_reshaping_main_switch(Node* n, Final_Reshape_Counts& frc, uint nop, Unique_Node_List& dead_nodes) { 3240 switch( nop ) { 3241 // Count all float operations that may use FPU 3242 case Op_AddF: 3243 case Op_SubF: 3244 case Op_MulF: 3245 case Op_DivF: 3246 case Op_NegF: 3247 case Op_ModF: 3248 case Op_ConvI2F: 3249 case Op_ConF: 3250 case Op_CmpF: 3251 case Op_CmpF3: 3252 case Op_StoreF: 3253 case Op_LoadF: 3254 // case Op_ConvL2F: // longs are split into 32-bit halves 3255 frc.inc_float_count(); 3256 break; 3257 3258 case Op_ConvF2D: 3259 case Op_ConvD2F: 3260 frc.inc_float_count(); 3261 frc.inc_double_count(); 3262 break; 3263 3264 // Count all double operations that may use FPU 3265 case Op_AddD: 3266 case Op_SubD: 3267 case Op_MulD: 3268 case Op_DivD: 3269 case Op_NegD: 3270 case Op_ModD: 3271 case Op_ConvI2D: 3272 case Op_ConvD2I: 3273 // case Op_ConvL2D: // handled by leaf call 3274 // case Op_ConvD2L: // handled by leaf call 3275 case Op_ConD: 3276 case Op_CmpD: 3277 case Op_CmpD3: 3278 case Op_StoreD: 3279 case Op_LoadD: 3280 case Op_LoadD_unaligned: 3281 frc.inc_double_count(); 3282 break; 3283 case Op_Opaque1: // Remove Opaque Nodes before matching 3284 n->subsume_by(n->in(1), this); 3285 break; 3286 case Op_CallStaticJava: 3287 case Op_CallJava: 3288 case Op_CallDynamicJava: 3289 frc.inc_java_call_count(); // Count java call site; 3290 case Op_CallRuntime: 3291 case Op_CallLeaf: 3292 case Op_CallLeafVector: 3293 case Op_CallLeafNoFP: { 3294 assert (n->is_Call(), ""); 3295 CallNode *call = n->as_Call(); 3296 // Count call sites where the FP mode bit would have to be flipped. 3297 // Do not count uncommon runtime calls: 3298 // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking, 3299 // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ... 3300 if (!call->is_CallStaticJava() || !call->as_CallStaticJava()->_name) { 3301 frc.inc_call_count(); // Count the call site 3302 } else { // See if uncommon argument is shared 3303 Node *n = call->in(TypeFunc::Parms); 3304 int nop = n->Opcode(); 3305 // Clone shared simple arguments to uncommon calls, item (1). 3306 if (n->outcnt() > 1 && 3307 !n->is_Proj() && 3308 nop != Op_CreateEx && 3309 nop != Op_CheckCastPP && 3310 nop != Op_DecodeN && 3311 nop != Op_DecodeNKlass && 3312 !n->is_Mem() && 3313 !n->is_Phi()) { 3314 Node *x = n->clone(); 3315 call->set_req(TypeFunc::Parms, x); 3316 } 3317 } 3318 break; 3319 } 3320 case Op_StoreB: 3321 case Op_StoreC: 3322 case Op_StoreI: 3323 case Op_StoreL: 3324 case Op_CompareAndSwapB: 3325 case Op_CompareAndSwapS: 3326 case Op_CompareAndSwapI: 3327 case Op_CompareAndSwapL: 3328 case Op_CompareAndSwapP: 3329 case Op_CompareAndSwapN: 3330 case Op_WeakCompareAndSwapB: 3331 case Op_WeakCompareAndSwapS: 3332 case Op_WeakCompareAndSwapI: 3333 case Op_WeakCompareAndSwapL: 3334 case Op_WeakCompareAndSwapP: 3335 case Op_WeakCompareAndSwapN: 3336 case Op_CompareAndExchangeB: 3337 case Op_CompareAndExchangeS: 3338 case Op_CompareAndExchangeI: 3339 case Op_CompareAndExchangeL: 3340 case Op_CompareAndExchangeP: 3341 case Op_CompareAndExchangeN: 3342 case Op_GetAndAddS: 3343 case Op_GetAndAddB: 3344 case Op_GetAndAddI: 3345 case Op_GetAndAddL: 3346 case Op_GetAndSetS: 3347 case Op_GetAndSetB: 3348 case Op_GetAndSetI: 3349 case Op_GetAndSetL: 3350 case Op_GetAndSetP: 3351 case Op_GetAndSetN: 3352 case Op_StoreP: 3353 case Op_StoreN: 3354 case Op_StoreNKlass: 3355 case Op_LoadB: 3356 case Op_LoadUB: 3357 case Op_LoadUS: 3358 case Op_LoadI: 3359 case Op_LoadKlass: 3360 case Op_LoadNKlass: 3361 case Op_LoadL: 3362 case Op_LoadL_unaligned: 3363 case Op_LoadP: 3364 case Op_LoadN: 3365 case Op_LoadRange: 3366 case Op_LoadS: 3367 break; 3368 3369 case Op_AddP: { // Assert sane base pointers 3370 Node *addp = n->in(AddPNode::Address); 3371 assert( !addp->is_AddP() || 3372 addp->in(AddPNode::Base)->is_top() || // Top OK for allocation 3373 addp->in(AddPNode::Base) == n->in(AddPNode::Base), 3374 "Base pointers must match (addp %u)", addp->_idx ); 3375 #ifdef _LP64 3376 if ((UseCompressedOops || UseCompressedClassPointers) && 3377 addp->Opcode() == Op_ConP && 3378 addp == n->in(AddPNode::Base) && 3379 n->in(AddPNode::Offset)->is_Con()) { 3380 // If the transformation of ConP to ConN+DecodeN is beneficial depends 3381 // on the platform and on the compressed oops mode. 3382 // Use addressing with narrow klass to load with offset on x86. 3383 // Some platforms can use the constant pool to load ConP. 3384 // Do this transformation here since IGVN will convert ConN back to ConP. 3385 const Type* t = addp->bottom_type(); 3386 bool is_oop = t->isa_oopptr() != nullptr; 3387 bool is_klass = t->isa_klassptr() != nullptr; 3388 3389 if ((is_oop && UseCompressedOops && Matcher::const_oop_prefer_decode() ) || 3390 (is_klass && UseCompressedClassPointers && Matcher::const_klass_prefer_decode() && 3391 t->isa_klassptr()->exact_klass()->is_in_encoding_range())) { 3392 Node* nn = nullptr; 3393 3394 int op = is_oop ? Op_ConN : Op_ConNKlass; 3395 3396 // Look for existing ConN node of the same exact type. 3397 Node* r = root(); 3398 uint cnt = r->outcnt(); 3399 for (uint i = 0; i < cnt; i++) { 3400 Node* m = r->raw_out(i); 3401 if (m!= nullptr && m->Opcode() == op && 3402 m->bottom_type()->make_ptr() == t) { 3403 nn = m; 3404 break; 3405 } 3406 } 3407 if (nn != nullptr) { 3408 // Decode a narrow oop to match address 3409 // [R12 + narrow_oop_reg<<3 + offset] 3410 if (is_oop) { 3411 nn = new DecodeNNode(nn, t); 3412 } else { 3413 nn = new DecodeNKlassNode(nn, t); 3414 } 3415 // Check for succeeding AddP which uses the same Base. 3416 // Otherwise we will run into the assertion above when visiting that guy. 3417 for (uint i = 0; i < n->outcnt(); ++i) { 3418 Node *out_i = n->raw_out(i); 3419 if (out_i && out_i->is_AddP() && out_i->in(AddPNode::Base) == addp) { 3420 out_i->set_req(AddPNode::Base, nn); 3421 #ifdef ASSERT 3422 for (uint j = 0; j < out_i->outcnt(); ++j) { 3423 Node *out_j = out_i->raw_out(j); 3424 assert(out_j == nullptr || !out_j->is_AddP() || out_j->in(AddPNode::Base) != addp, 3425 "more than 2 AddP nodes in a chain (out_j %u)", out_j->_idx); 3426 } 3427 #endif 3428 } 3429 } 3430 n->set_req(AddPNode::Base, nn); 3431 n->set_req(AddPNode::Address, nn); 3432 if (addp->outcnt() == 0) { 3433 addp->disconnect_inputs(this); 3434 } 3435 } 3436 } 3437 } 3438 #endif 3439 break; 3440 } 3441 3442 case Op_CastPP: { 3443 // Remove CastPP nodes to gain more freedom during scheduling but 3444 // keep the dependency they encode as control or precedence edges 3445 // (if control is set already) on memory operations. Some CastPP 3446 // nodes don't have a control (don't carry a dependency): skip 3447 // those. 3448 if (n->in(0) != nullptr) { 3449 ResourceMark rm; 3450 Unique_Node_List wq; 3451 wq.push(n); 3452 for (uint next = 0; next < wq.size(); ++next) { 3453 Node *m = wq.at(next); 3454 for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) { 3455 Node* use = m->fast_out(i); 3456 if (use->is_Mem() || use->is_EncodeNarrowPtr()) { 3457 use->ensure_control_or_add_prec(n->in(0)); 3458 } else { 3459 switch(use->Opcode()) { 3460 case Op_AddP: 3461 case Op_DecodeN: 3462 case Op_DecodeNKlass: 3463 case Op_CheckCastPP: 3464 case Op_CastPP: 3465 wq.push(use); 3466 break; 3467 } 3468 } 3469 } 3470 } 3471 } 3472 const bool is_LP64 = LP64_ONLY(true) NOT_LP64(false); 3473 if (is_LP64 && n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) { 3474 Node* in1 = n->in(1); 3475 const Type* t = n->bottom_type(); 3476 Node* new_in1 = in1->clone(); 3477 new_in1->as_DecodeN()->set_type(t); 3478 3479 if (!Matcher::narrow_oop_use_complex_address()) { 3480 // 3481 // x86, ARM and friends can handle 2 adds in addressing mode 3482 // and Matcher can fold a DecodeN node into address by using 3483 // a narrow oop directly and do implicit null check in address: 3484 // 3485 // [R12 + narrow_oop_reg<<3 + offset] 3486 // NullCheck narrow_oop_reg 3487 // 3488 // On other platforms (Sparc) we have to keep new DecodeN node and 3489 // use it to do implicit null check in address: 3490 // 3491 // decode_not_null narrow_oop_reg, base_reg 3492 // [base_reg + offset] 3493 // NullCheck base_reg 3494 // 3495 // Pin the new DecodeN node to non-null path on these platform (Sparc) 3496 // to keep the information to which null check the new DecodeN node 3497 // corresponds to use it as value in implicit_null_check(). 3498 // 3499 new_in1->set_req(0, n->in(0)); 3500 } 3501 3502 n->subsume_by(new_in1, this); 3503 if (in1->outcnt() == 0) { 3504 in1->disconnect_inputs(this); 3505 } 3506 } else { 3507 n->subsume_by(n->in(1), this); 3508 if (n->outcnt() == 0) { 3509 n->disconnect_inputs(this); 3510 } 3511 } 3512 break; 3513 } 3514 case Op_CastII: { 3515 n->as_CastII()->remove_range_check_cast(this); 3516 break; 3517 } 3518 #ifdef _LP64 3519 case Op_CmpP: 3520 // Do this transformation here to preserve CmpPNode::sub() and 3521 // other TypePtr related Ideal optimizations (for example, ptr nullness). 3522 if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) { 3523 Node* in1 = n->in(1); 3524 Node* in2 = n->in(2); 3525 if (!in1->is_DecodeNarrowPtr()) { 3526 in2 = in1; 3527 in1 = n->in(2); 3528 } 3529 assert(in1->is_DecodeNarrowPtr(), "sanity"); 3530 3531 Node* new_in2 = nullptr; 3532 if (in2->is_DecodeNarrowPtr()) { 3533 assert(in2->Opcode() == in1->Opcode(), "must be same node type"); 3534 new_in2 = in2->in(1); 3535 } else if (in2->Opcode() == Op_ConP) { 3536 const Type* t = in2->bottom_type(); 3537 if (t == TypePtr::NULL_PTR) { 3538 assert(in1->is_DecodeN(), "compare klass to null?"); 3539 // Don't convert CmpP null check into CmpN if compressed 3540 // oops implicit null check is not generated. 3541 // This will allow to generate normal oop implicit null check. 3542 if (Matcher::gen_narrow_oop_implicit_null_checks()) 3543 new_in2 = ConNode::make(TypeNarrowOop::NULL_PTR); 3544 // 3545 // This transformation together with CastPP transformation above 3546 // will generated code for implicit null checks for compressed oops. 3547 // 3548 // The original code after Optimize() 3549 // 3550 // LoadN memory, narrow_oop_reg 3551 // decode narrow_oop_reg, base_reg 3552 // CmpP base_reg, nullptr 3553 // CastPP base_reg // NotNull 3554 // Load [base_reg + offset], val_reg 3555 // 3556 // after these transformations will be 3557 // 3558 // LoadN memory, narrow_oop_reg 3559 // CmpN narrow_oop_reg, nullptr 3560 // decode_not_null narrow_oop_reg, base_reg 3561 // Load [base_reg + offset], val_reg 3562 // 3563 // and the uncommon path (== nullptr) will use narrow_oop_reg directly 3564 // since narrow oops can be used in debug info now (see the code in 3565 // final_graph_reshaping_walk()). 3566 // 3567 // At the end the code will be matched to 3568 // on x86: 3569 // 3570 // Load_narrow_oop memory, narrow_oop_reg 3571 // Load [R12 + narrow_oop_reg<<3 + offset], val_reg 3572 // NullCheck narrow_oop_reg 3573 // 3574 // and on sparc: 3575 // 3576 // Load_narrow_oop memory, narrow_oop_reg 3577 // decode_not_null narrow_oop_reg, base_reg 3578 // Load [base_reg + offset], val_reg 3579 // NullCheck base_reg 3580 // 3581 } else if (t->isa_oopptr()) { 3582 new_in2 = ConNode::make(t->make_narrowoop()); 3583 } else if (t->isa_klassptr()) { 3584 new_in2 = ConNode::make(t->make_narrowklass()); 3585 } 3586 } 3587 if (new_in2 != nullptr) { 3588 Node* cmpN = new CmpNNode(in1->in(1), new_in2); 3589 n->subsume_by(cmpN, this); 3590 if (in1->outcnt() == 0) { 3591 in1->disconnect_inputs(this); 3592 } 3593 if (in2->outcnt() == 0) { 3594 in2->disconnect_inputs(this); 3595 } 3596 } 3597 } 3598 break; 3599 3600 case Op_DecodeN: 3601 case Op_DecodeNKlass: 3602 assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out"); 3603 // DecodeN could be pinned when it can't be fold into 3604 // an address expression, see the code for Op_CastPP above. 3605 assert(n->in(0) == nullptr || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control"); 3606 break; 3607 3608 case Op_EncodeP: 3609 case Op_EncodePKlass: { 3610 Node* in1 = n->in(1); 3611 if (in1->is_DecodeNarrowPtr()) { 3612 n->subsume_by(in1->in(1), this); 3613 } else if (in1->Opcode() == Op_ConP) { 3614 const Type* t = in1->bottom_type(); 3615 if (t == TypePtr::NULL_PTR) { 3616 assert(t->isa_oopptr(), "null klass?"); 3617 n->subsume_by(ConNode::make(TypeNarrowOop::NULL_PTR), this); 3618 } else if (t->isa_oopptr()) { 3619 n->subsume_by(ConNode::make(t->make_narrowoop()), this); 3620 } else if (t->isa_klassptr()) { 3621 n->subsume_by(ConNode::make(t->make_narrowklass()), this); 3622 } 3623 } 3624 if (in1->outcnt() == 0) { 3625 in1->disconnect_inputs(this); 3626 } 3627 break; 3628 } 3629 3630 case Op_Proj: { 3631 if (OptimizeStringConcat || IncrementalInline) { 3632 ProjNode* proj = n->as_Proj(); 3633 if (proj->_is_io_use) { 3634 assert(proj->_con == TypeFunc::I_O || proj->_con == TypeFunc::Memory, ""); 3635 // Separate projections were used for the exception path which 3636 // are normally removed by a late inline. If it wasn't inlined 3637 // then they will hang around and should just be replaced with 3638 // the original one. Merge them. 3639 Node* non_io_proj = proj->in(0)->as_Multi()->proj_out_or_null(proj->_con, false /*is_io_use*/); 3640 if (non_io_proj != nullptr) { 3641 proj->subsume_by(non_io_proj , this); 3642 } 3643 } 3644 } 3645 break; 3646 } 3647 3648 case Op_Phi: 3649 if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) { 3650 // The EncodeP optimization may create Phi with the same edges 3651 // for all paths. It is not handled well by Register Allocator. 3652 Node* unique_in = n->in(1); 3653 assert(unique_in != nullptr, ""); 3654 uint cnt = n->req(); 3655 for (uint i = 2; i < cnt; i++) { 3656 Node* m = n->in(i); 3657 assert(m != nullptr, ""); 3658 if (unique_in != m) 3659 unique_in = nullptr; 3660 } 3661 if (unique_in != nullptr) { 3662 n->subsume_by(unique_in, this); 3663 } 3664 } 3665 break; 3666 3667 #endif 3668 3669 case Op_ModI: 3670 handle_div_mod_op(n, T_INT, false); 3671 break; 3672 3673 case Op_ModL: 3674 handle_div_mod_op(n, T_LONG, false); 3675 break; 3676 3677 case Op_UModI: 3678 handle_div_mod_op(n, T_INT, true); 3679 break; 3680 3681 case Op_UModL: 3682 handle_div_mod_op(n, T_LONG, true); 3683 break; 3684 3685 case Op_LoadVector: 3686 case Op_StoreVector: 3687 #ifdef ASSERT 3688 // Add VerifyVectorAlignment node between adr and load / store. 3689 if (VerifyAlignVector && Matcher::has_match_rule(Op_VerifyVectorAlignment)) { 3690 bool must_verify_alignment = n->is_LoadVector() ? n->as_LoadVector()->must_verify_alignment() : 3691 n->as_StoreVector()->must_verify_alignment(); 3692 if (must_verify_alignment) { 3693 jlong vector_width = n->is_LoadVector() ? n->as_LoadVector()->memory_size() : 3694 n->as_StoreVector()->memory_size(); 3695 // The memory access should be aligned to the vector width in bytes. 3696 // However, the underlying array is possibly less well aligned, but at least 3697 // to ObjectAlignmentInBytes. Hence, even if multiple arrays are accessed in 3698 // a loop we can expect at least the following alignment: 3699 jlong guaranteed_alignment = MIN2(vector_width, (jlong)ObjectAlignmentInBytes); 3700 assert(2 <= guaranteed_alignment && guaranteed_alignment <= 64, "alignment must be in range"); 3701 assert(is_power_of_2(guaranteed_alignment), "alignment must be power of 2"); 3702 // Create mask from alignment. e.g. 0b1000 -> 0b0111 3703 jlong mask = guaranteed_alignment - 1; 3704 Node* mask_con = ConLNode::make(mask); 3705 VerifyVectorAlignmentNode* va = new VerifyVectorAlignmentNode(n->in(MemNode::Address), mask_con); 3706 n->set_req(MemNode::Address, va); 3707 } 3708 } 3709 #endif 3710 break; 3711 3712 case Op_LoadVectorGather: 3713 case Op_StoreVectorScatter: 3714 case Op_LoadVectorGatherMasked: 3715 case Op_StoreVectorScatterMasked: 3716 case Op_VectorCmpMasked: 3717 case Op_VectorMaskGen: 3718 case Op_LoadVectorMasked: 3719 case Op_StoreVectorMasked: 3720 break; 3721 3722 case Op_AddReductionVI: 3723 case Op_AddReductionVL: 3724 case Op_AddReductionVF: 3725 case Op_AddReductionVD: 3726 case Op_MulReductionVI: 3727 case Op_MulReductionVL: 3728 case Op_MulReductionVF: 3729 case Op_MulReductionVD: 3730 case Op_MinReductionV: 3731 case Op_MaxReductionV: 3732 case Op_AndReductionV: 3733 case Op_OrReductionV: 3734 case Op_XorReductionV: 3735 break; 3736 3737 case Op_PackB: 3738 case Op_PackS: 3739 case Op_PackI: 3740 case Op_PackF: 3741 case Op_PackL: 3742 case Op_PackD: 3743 if (n->req()-1 > 2) { 3744 // Replace many operand PackNodes with a binary tree for matching 3745 PackNode* p = (PackNode*) n; 3746 Node* btp = p->binary_tree_pack(1, n->req()); 3747 n->subsume_by(btp, this); 3748 } 3749 break; 3750 case Op_Loop: 3751 assert(!n->as_Loop()->is_loop_nest_inner_loop() || _loop_opts_cnt == 0, "should have been turned into a counted loop"); 3752 case Op_CountedLoop: 3753 case Op_LongCountedLoop: 3754 case Op_OuterStripMinedLoop: 3755 if (n->as_Loop()->is_inner_loop()) { 3756 frc.inc_inner_loop_count(); 3757 } 3758 n->as_Loop()->verify_strip_mined(0); 3759 break; 3760 case Op_LShiftI: 3761 case Op_RShiftI: 3762 case Op_URShiftI: 3763 case Op_LShiftL: 3764 case Op_RShiftL: 3765 case Op_URShiftL: 3766 if (Matcher::need_masked_shift_count) { 3767 // The cpu's shift instructions don't restrict the count to the 3768 // lower 5/6 bits. We need to do the masking ourselves. 3769 Node* in2 = n->in(2); 3770 juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1); 3771 const TypeInt* t = in2->find_int_type(); 3772 if (t != nullptr && t->is_con()) { 3773 juint shift = t->get_con(); 3774 if (shift > mask) { // Unsigned cmp 3775 n->set_req(2, ConNode::make(TypeInt::make(shift & mask))); 3776 } 3777 } else { 3778 if (t == nullptr || t->_lo < 0 || t->_hi > (int)mask) { 3779 Node* shift = new AndINode(in2, ConNode::make(TypeInt::make(mask))); 3780 n->set_req(2, shift); 3781 } 3782 } 3783 if (in2->outcnt() == 0) { // Remove dead node 3784 in2->disconnect_inputs(this); 3785 } 3786 } 3787 break; 3788 case Op_MemBarStoreStore: 3789 case Op_MemBarRelease: 3790 // Break the link with AllocateNode: it is no longer useful and 3791 // confuses register allocation. 3792 if (n->req() > MemBarNode::Precedent) { 3793 n->set_req(MemBarNode::Precedent, top()); 3794 } 3795 break; 3796 case Op_MemBarAcquire: { 3797 if (n->as_MemBar()->trailing_load() && n->req() > MemBarNode::Precedent) { 3798 // At parse time, the trailing MemBarAcquire for a volatile load 3799 // is created with an edge to the load. After optimizations, 3800 // that input may be a chain of Phis. If those phis have no 3801 // other use, then the MemBarAcquire keeps them alive and 3802 // register allocation can be confused. 3803 dead_nodes.push(n->in(MemBarNode::Precedent)); 3804 n->set_req(MemBarNode::Precedent, top()); 3805 } 3806 break; 3807 } 3808 case Op_Blackhole: 3809 break; 3810 case Op_RangeCheck: { 3811 RangeCheckNode* rc = n->as_RangeCheck(); 3812 Node* iff = new IfNode(rc->in(0), rc->in(1), rc->_prob, rc->_fcnt); 3813 n->subsume_by(iff, this); 3814 frc._tests.push(iff); 3815 break; 3816 } 3817 case Op_ConvI2L: { 3818 if (!Matcher::convi2l_type_required) { 3819 // Code generation on some platforms doesn't need accurate 3820 // ConvI2L types. Widening the type can help remove redundant 3821 // address computations. 3822 n->as_Type()->set_type(TypeLong::INT); 3823 ResourceMark rm; 3824 Unique_Node_List wq; 3825 wq.push(n); 3826 for (uint next = 0; next < wq.size(); next++) { 3827 Node *m = wq.at(next); 3828 3829 for(;;) { 3830 // Loop over all nodes with identical inputs edges as m 3831 Node* k = m->find_similar(m->Opcode()); 3832 if (k == nullptr) { 3833 break; 3834 } 3835 // Push their uses so we get a chance to remove node made 3836 // redundant 3837 for (DUIterator_Fast imax, i = k->fast_outs(imax); i < imax; i++) { 3838 Node* u = k->fast_out(i); 3839 if (u->Opcode() == Op_LShiftL || 3840 u->Opcode() == Op_AddL || 3841 u->Opcode() == Op_SubL || 3842 u->Opcode() == Op_AddP) { 3843 wq.push(u); 3844 } 3845 } 3846 // Replace all nodes with identical edges as m with m 3847 k->subsume_by(m, this); 3848 } 3849 } 3850 } 3851 break; 3852 } 3853 case Op_CmpUL: { 3854 if (!Matcher::has_match_rule(Op_CmpUL)) { 3855 // No support for unsigned long comparisons 3856 ConINode* sign_pos = new ConINode(TypeInt::make(BitsPerLong - 1)); 3857 Node* sign_bit_mask = new RShiftLNode(n->in(1), sign_pos); 3858 Node* orl = new OrLNode(n->in(1), sign_bit_mask); 3859 ConLNode* remove_sign_mask = new ConLNode(TypeLong::make(max_jlong)); 3860 Node* andl = new AndLNode(orl, remove_sign_mask); 3861 Node* cmp = new CmpLNode(andl, n->in(2)); 3862 n->subsume_by(cmp, this); 3863 } 3864 break; 3865 } 3866 #ifdef ASSERT 3867 case Op_ConNKlass: { 3868 const TypePtr* tp = n->as_Type()->type()->make_ptr(); 3869 ciKlass* klass = tp->is_klassptr()->exact_klass(); 3870 assert(klass->is_in_encoding_range(), "klass cannot be compressed"); 3871 break; 3872 } 3873 #endif 3874 default: 3875 assert(!n->is_Call(), ""); 3876 assert(!n->is_Mem(), ""); 3877 assert(nop != Op_ProfileBoolean, "should be eliminated during IGVN"); 3878 break; 3879 } 3880 } 3881 3882 //------------------------------final_graph_reshaping_walk--------------------- 3883 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(), 3884 // requires that the walk visits a node's inputs before visiting the node. 3885 void Compile::final_graph_reshaping_walk(Node_Stack& nstack, Node* root, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes) { 3886 Unique_Node_List sfpt; 3887 3888 frc._visited.set(root->_idx); // first, mark node as visited 3889 uint cnt = root->req(); 3890 Node *n = root; 3891 uint i = 0; 3892 while (true) { 3893 if (i < cnt) { 3894 // Place all non-visited non-null inputs onto stack 3895 Node* m = n->in(i); 3896 ++i; 3897 if (m != nullptr && !frc._visited.test_set(m->_idx)) { 3898 if (m->is_SafePoint() && m->as_SafePoint()->jvms() != nullptr) { 3899 // compute worst case interpreter size in case of a deoptimization 3900 update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size()); 3901 3902 sfpt.push(m); 3903 } 3904 cnt = m->req(); 3905 nstack.push(n, i); // put on stack parent and next input's index 3906 n = m; 3907 i = 0; 3908 } 3909 } else { 3910 // Now do post-visit work 3911 final_graph_reshaping_impl(n, frc, dead_nodes); 3912 if (nstack.is_empty()) 3913 break; // finished 3914 n = nstack.node(); // Get node from stack 3915 cnt = n->req(); 3916 i = nstack.index(); 3917 nstack.pop(); // Shift to the next node on stack 3918 } 3919 } 3920 3921 // Skip next transformation if compressed oops are not used. 3922 if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) || 3923 (!UseCompressedOops && !UseCompressedClassPointers)) 3924 return; 3925 3926 // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges. 3927 // It could be done for an uncommon traps or any safepoints/calls 3928 // if the DecodeN/DecodeNKlass node is referenced only in a debug info. 3929 while (sfpt.size() > 0) { 3930 n = sfpt.pop(); 3931 JVMState *jvms = n->as_SafePoint()->jvms(); 3932 assert(jvms != nullptr, "sanity"); 3933 int start = jvms->debug_start(); 3934 int end = n->req(); 3935 bool is_uncommon = (n->is_CallStaticJava() && 3936 n->as_CallStaticJava()->uncommon_trap_request() != 0); 3937 for (int j = start; j < end; j++) { 3938 Node* in = n->in(j); 3939 if (in->is_DecodeNarrowPtr()) { 3940 bool safe_to_skip = true; 3941 if (!is_uncommon ) { 3942 // Is it safe to skip? 3943 for (uint i = 0; i < in->outcnt(); i++) { 3944 Node* u = in->raw_out(i); 3945 if (!u->is_SafePoint() || 3946 (u->is_Call() && u->as_Call()->has_non_debug_use(n))) { 3947 safe_to_skip = false; 3948 } 3949 } 3950 } 3951 if (safe_to_skip) { 3952 n->set_req(j, in->in(1)); 3953 } 3954 if (in->outcnt() == 0) { 3955 in->disconnect_inputs(this); 3956 } 3957 } 3958 } 3959 } 3960 } 3961 3962 //------------------------------final_graph_reshaping-------------------------- 3963 // Final Graph Reshaping. 3964 // 3965 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late 3966 // and not commoned up and forced early. Must come after regular 3967 // optimizations to avoid GVN undoing the cloning. Clone constant 3968 // inputs to Loop Phis; these will be split by the allocator anyways. 3969 // Remove Opaque nodes. 3970 // (2) Move last-uses by commutative operations to the left input to encourage 3971 // Intel update-in-place two-address operations and better register usage 3972 // on RISCs. Must come after regular optimizations to avoid GVN Ideal 3973 // calls canonicalizing them back. 3974 // (3) Count the number of double-precision FP ops, single-precision FP ops 3975 // and call sites. On Intel, we can get correct rounding either by 3976 // forcing singles to memory (requires extra stores and loads after each 3977 // FP bytecode) or we can set a rounding mode bit (requires setting and 3978 // clearing the mode bit around call sites). The mode bit is only used 3979 // if the relative frequency of single FP ops to calls is low enough. 3980 // This is a key transform for SPEC mpeg_audio. 3981 // (4) Detect infinite loops; blobs of code reachable from above but not 3982 // below. Several of the Code_Gen algorithms fail on such code shapes, 3983 // so we simply bail out. Happens a lot in ZKM.jar, but also happens 3984 // from time to time in other codes (such as -Xcomp finalizer loops, etc). 3985 // Detection is by looking for IfNodes where only 1 projection is 3986 // reachable from below or CatchNodes missing some targets. 3987 // (5) Assert for insane oop offsets in debug mode. 3988 3989 bool Compile::final_graph_reshaping() { 3990 // an infinite loop may have been eliminated by the optimizer, 3991 // in which case the graph will be empty. 3992 if (root()->req() == 1) { 3993 // Do not compile method that is only a trivial infinite loop, 3994 // since the content of the loop may have been eliminated. 3995 record_method_not_compilable("trivial infinite loop"); 3996 return true; 3997 } 3998 3999 // Expensive nodes have their control input set to prevent the GVN 4000 // from freely commoning them. There's no GVN beyond this point so 4001 // no need to keep the control input. We want the expensive nodes to 4002 // be freely moved to the least frequent code path by gcm. 4003 assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?"); 4004 for (int i = 0; i < expensive_count(); i++) { 4005 _expensive_nodes.at(i)->set_req(0, nullptr); 4006 } 4007 4008 Final_Reshape_Counts frc; 4009 4010 // Visit everybody reachable! 4011 // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc 4012 Node_Stack nstack(live_nodes() >> 1); 4013 Unique_Node_List dead_nodes; 4014 final_graph_reshaping_walk(nstack, root(), frc, dead_nodes); 4015 4016 // Check for unreachable (from below) code (i.e., infinite loops). 4017 for( uint i = 0; i < frc._tests.size(); i++ ) { 4018 MultiBranchNode *n = frc._tests[i]->as_MultiBranch(); 4019 // Get number of CFG targets. 4020 // Note that PCTables include exception targets after calls. 4021 uint required_outcnt = n->required_outcnt(); 4022 if (n->outcnt() != required_outcnt) { 4023 // Check for a few special cases. Rethrow Nodes never take the 4024 // 'fall-thru' path, so expected kids is 1 less. 4025 if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) { 4026 if (n->in(0)->in(0)->is_Call()) { 4027 CallNode* call = n->in(0)->in(0)->as_Call(); 4028 if (call->entry_point() == OptoRuntime::rethrow_stub()) { 4029 required_outcnt--; // Rethrow always has 1 less kid 4030 } else if (call->req() > TypeFunc::Parms && 4031 call->is_CallDynamicJava()) { 4032 // Check for null receiver. In such case, the optimizer has 4033 // detected that the virtual call will always result in a null 4034 // pointer exception. The fall-through projection of this CatchNode 4035 // will not be populated. 4036 Node* arg0 = call->in(TypeFunc::Parms); 4037 if (arg0->is_Type() && 4038 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) { 4039 required_outcnt--; 4040 } 4041 } else if (call->entry_point() == OptoRuntime::new_array_Java() || 4042 call->entry_point() == OptoRuntime::new_array_nozero_Java()) { 4043 // Check for illegal array length. In such case, the optimizer has 4044 // detected that the allocation attempt will always result in an 4045 // exception. There is no fall-through projection of this CatchNode . 4046 assert(call->is_CallStaticJava(), "static call expected"); 4047 assert(call->req() == call->jvms()->endoff() + 1, "missing extra input"); 4048 uint valid_length_test_input = call->req() - 1; 4049 Node* valid_length_test = call->in(valid_length_test_input); 4050 call->del_req(valid_length_test_input); 4051 if (valid_length_test->find_int_con(1) == 0) { 4052 required_outcnt--; 4053 } 4054 dead_nodes.push(valid_length_test); 4055 assert(n->outcnt() == required_outcnt, "malformed control flow"); 4056 continue; 4057 } 4058 } 4059 } 4060 4061 // Recheck with a better notion of 'required_outcnt' 4062 if (n->outcnt() != required_outcnt) { 4063 record_method_not_compilable("malformed control flow"); 4064 return true; // Not all targets reachable! 4065 } 4066 } else if (n->is_PCTable() && n->in(0) && n->in(0)->in(0) && n->in(0)->in(0)->is_Call()) { 4067 CallNode* call = n->in(0)->in(0)->as_Call(); 4068 if (call->entry_point() == OptoRuntime::new_array_Java() || 4069 call->entry_point() == OptoRuntime::new_array_nozero_Java()) { 4070 assert(call->is_CallStaticJava(), "static call expected"); 4071 assert(call->req() == call->jvms()->endoff() + 1, "missing extra input"); 4072 uint valid_length_test_input = call->req() - 1; 4073 dead_nodes.push(call->in(valid_length_test_input)); 4074 call->del_req(valid_length_test_input); // valid length test useless now 4075 } 4076 } 4077 // Check that I actually visited all kids. Unreached kids 4078 // must be infinite loops. 4079 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) 4080 if (!frc._visited.test(n->fast_out(j)->_idx)) { 4081 record_method_not_compilable("infinite loop"); 4082 return true; // Found unvisited kid; must be unreach 4083 } 4084 4085 // Here so verification code in final_graph_reshaping_walk() 4086 // always see an OuterStripMinedLoopEnd 4087 if (n->is_OuterStripMinedLoopEnd() || n->is_LongCountedLoopEnd()) { 4088 IfNode* init_iff = n->as_If(); 4089 Node* iff = new IfNode(init_iff->in(0), init_iff->in(1), init_iff->_prob, init_iff->_fcnt); 4090 n->subsume_by(iff, this); 4091 } 4092 } 4093 4094 while (dead_nodes.size() > 0) { 4095 Node* m = dead_nodes.pop(); 4096 if (m->outcnt() == 0 && m != top()) { 4097 for (uint j = 0; j < m->req(); j++) { 4098 Node* in = m->in(j); 4099 if (in != nullptr) { 4100 dead_nodes.push(in); 4101 } 4102 } 4103 m->disconnect_inputs(this); 4104 } 4105 } 4106 4107 set_java_calls(frc.get_java_call_count()); 4108 set_inner_loops(frc.get_inner_loop_count()); 4109 4110 // No infinite loops, no reason to bail out. 4111 return false; 4112 } 4113 4114 //-----------------------------too_many_traps---------------------------------- 4115 // Report if there are too many traps at the current method and bci. 4116 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded. 4117 bool Compile::too_many_traps(ciMethod* method, 4118 int bci, 4119 Deoptimization::DeoptReason reason) { 4120 if (method->has_trap_at(bci)) { 4121 return true; 4122 } 4123 if (PreloadReduceTraps && for_preload()) { 4124 // Preload code should not have traps, if possible. 4125 return true; 4126 } 4127 ciMethodData* md = method->method_data(); 4128 if (md->is_empty()) { 4129 // Assume the trap has not occurred, or that it occurred only 4130 // because of a transient condition during start-up in the interpreter. 4131 return false; 4132 } 4133 ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : nullptr; 4134 if (md->has_trap_at(bci, m, reason) != 0) { 4135 // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic. 4136 // Also, if there are multiple reasons, or if there is no per-BCI record, 4137 // assume the worst. 4138 if (log()) 4139 log()->elem("observe trap='%s' count='%d'", 4140 Deoptimization::trap_reason_name(reason), 4141 md->trap_count(reason)); 4142 return true; 4143 } else { 4144 // Ignore method/bci and see if there have been too many globally. 4145 return too_many_traps(reason, md); 4146 } 4147 } 4148 4149 // Less-accurate variant which does not require a method and bci. 4150 bool Compile::too_many_traps(Deoptimization::DeoptReason reason, 4151 ciMethodData* logmd) { 4152 if (PreloadReduceTraps && for_preload()) { 4153 // Preload code should not have traps, if possible. 4154 return true; 4155 } 4156 if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) { 4157 // Too many traps globally. 4158 // Note that we use cumulative trap_count, not just md->trap_count. 4159 if (log()) { 4160 int mcount = (logmd == nullptr)? -1: (int)logmd->trap_count(reason); 4161 log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'", 4162 Deoptimization::trap_reason_name(reason), 4163 mcount, trap_count(reason)); 4164 } 4165 return true; 4166 } else { 4167 // The coast is clear. 4168 return false; 4169 } 4170 } 4171 4172 //--------------------------too_many_recompiles-------------------------------- 4173 // Report if there are too many recompiles at the current method and bci. 4174 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff. 4175 // Is not eager to return true, since this will cause the compiler to use 4176 // Action_none for a trap point, to avoid too many recompilations. 4177 bool Compile::too_many_recompiles(ciMethod* method, 4178 int bci, 4179 Deoptimization::DeoptReason reason) { 4180 ciMethodData* md = method->method_data(); 4181 if (md->is_empty()) { 4182 // Assume the trap has not occurred, or that it occurred only 4183 // because of a transient condition during start-up in the interpreter. 4184 return false; 4185 } 4186 // Pick a cutoff point well within PerBytecodeRecompilationCutoff. 4187 uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8; 4188 uint m_cutoff = (uint) PerMethodRecompilationCutoff / 2 + 1; // not zero 4189 Deoptimization::DeoptReason per_bc_reason 4190 = Deoptimization::reason_recorded_per_bytecode_if_any(reason); 4191 ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : nullptr; 4192 if ((per_bc_reason == Deoptimization::Reason_none 4193 || md->has_trap_at(bci, m, reason) != 0) 4194 // The trap frequency measure we care about is the recompile count: 4195 && md->trap_recompiled_at(bci, m) 4196 && md->overflow_recompile_count() >= bc_cutoff) { 4197 // Do not emit a trap here if it has already caused recompilations. 4198 // Also, if there are multiple reasons, or if there is no per-BCI record, 4199 // assume the worst. 4200 if (log()) 4201 log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'", 4202 Deoptimization::trap_reason_name(reason), 4203 md->trap_count(reason), 4204 md->overflow_recompile_count()); 4205 return true; 4206 } else if (trap_count(reason) != 0 4207 && decompile_count() >= m_cutoff) { 4208 // Too many recompiles globally, and we have seen this sort of trap. 4209 // Use cumulative decompile_count, not just md->decompile_count. 4210 if (log()) 4211 log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'", 4212 Deoptimization::trap_reason_name(reason), 4213 md->trap_count(reason), trap_count(reason), 4214 md->decompile_count(), decompile_count()); 4215 return true; 4216 } else { 4217 // The coast is clear. 4218 return false; 4219 } 4220 } 4221 4222 // Compute when not to trap. Used by matching trap based nodes and 4223 // NullCheck optimization. 4224 void Compile::set_allowed_deopt_reasons() { 4225 _allowed_reasons = 0; 4226 if (is_method_compilation()) { 4227 for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) { 4228 assert(rs < BitsPerInt, "recode bit map"); 4229 if (!too_many_traps((Deoptimization::DeoptReason) rs)) { 4230 _allowed_reasons |= nth_bit(rs); 4231 } 4232 } 4233 } 4234 } 4235 4236 bool Compile::needs_clinit_barrier(ciMethod* method, ciMethod* accessing_method) { 4237 return method->is_static() && needs_clinit_barrier(method->holder(), accessing_method); 4238 } 4239 4240 bool Compile::needs_clinit_barrier(ciField* field, ciMethod* accessing_method) { 4241 return field->is_static() && needs_clinit_barrier(field->holder(), accessing_method); 4242 } 4243 4244 bool Compile::needs_clinit_barrier(ciInstanceKlass* holder, ciMethod* accessing_method) { 4245 if (holder->is_initialized() && !do_clinit_barriers()) { 4246 return false; 4247 } 4248 if (holder->is_being_initialized() || do_clinit_barriers()) { 4249 if (accessing_method->holder() == holder) { 4250 // Access inside a class. The barrier can be elided when access happens in <clinit>, 4251 // <init>, or a static method. In all those cases, there was an initialization 4252 // barrier on the holder klass passed. 4253 if (accessing_method->is_static_initializer() || 4254 accessing_method->is_object_initializer() || 4255 accessing_method->is_static()) { 4256 return false; 4257 } 4258 } else if (accessing_method->holder()->is_subclass_of(holder)) { 4259 // Access from a subclass. The barrier can be elided only when access happens in <clinit>. 4260 // In case of <init> or a static method, the barrier is on the subclass is not enough: 4261 // child class can become fully initialized while its parent class is still being initialized. 4262 if (accessing_method->is_static_initializer()) { 4263 return false; 4264 } 4265 } 4266 ciMethod* root = method(); // the root method of compilation 4267 if (root != accessing_method) { 4268 return needs_clinit_barrier(holder, root); // check access in the context of compilation root 4269 } 4270 } 4271 return true; 4272 } 4273 4274 #ifndef PRODUCT 4275 //------------------------------verify_bidirectional_edges--------------------- 4276 // For each input edge to a node (ie - for each Use-Def edge), verify that 4277 // there is a corresponding Def-Use edge. 4278 void Compile::verify_bidirectional_edges(Unique_Node_List& visited, const Unique_Node_List* root_and_safepoints) const { 4279 // Allocate stack of size C->live_nodes()/16 to avoid frequent realloc 4280 uint stack_size = live_nodes() >> 4; 4281 Node_List nstack(MAX2(stack_size, (uint) OptoNodeListSize)); 4282 if (root_and_safepoints != nullptr) { 4283 assert(root_and_safepoints->member(_root), "root is not in root_and_safepoints"); 4284 for (uint i = 0, limit = root_and_safepoints->size(); i < limit; i++) { 4285 Node* root_or_safepoint = root_and_safepoints->at(i); 4286 // If the node is a safepoint, let's check if it still has a control input 4287 // Lack of control input signifies that this node was killed by CCP or 4288 // recursively by remove_globally_dead_node and it shouldn't be a starting 4289 // point. 4290 if (!root_or_safepoint->is_SafePoint() || root_or_safepoint->in(0) != nullptr) { 4291 nstack.push(root_or_safepoint); 4292 } 4293 } 4294 } else { 4295 nstack.push(_root); 4296 } 4297 4298 while (nstack.size() > 0) { 4299 Node* n = nstack.pop(); 4300 if (visited.member(n)) { 4301 continue; 4302 } 4303 visited.push(n); 4304 4305 // Walk over all input edges, checking for correspondence 4306 uint length = n->len(); 4307 for (uint i = 0; i < length; i++) { 4308 Node* in = n->in(i); 4309 if (in != nullptr && !visited.member(in)) { 4310 nstack.push(in); // Put it on stack 4311 } 4312 if (in != nullptr && !in->is_top()) { 4313 // Count instances of `next` 4314 int cnt = 0; 4315 for (uint idx = 0; idx < in->_outcnt; idx++) { 4316 if (in->_out[idx] == n) { 4317 cnt++; 4318 } 4319 } 4320 assert(cnt > 0, "Failed to find Def-Use edge."); 4321 // Check for duplicate edges 4322 // walk the input array downcounting the input edges to n 4323 for (uint j = 0; j < length; j++) { 4324 if (n->in(j) == in) { 4325 cnt--; 4326 } 4327 } 4328 assert(cnt == 0, "Mismatched edge count."); 4329 } else if (in == nullptr) { 4330 assert(i == 0 || i >= n->req() || 4331 n->is_Region() || n->is_Phi() || n->is_ArrayCopy() || 4332 (n->is_Unlock() && i == (n->req() - 1)) || 4333 (n->is_MemBar() && i == 5), // the precedence edge to a membar can be removed during macro node expansion 4334 "only region, phi, arraycopy, unlock or membar nodes have null data edges"); 4335 } else { 4336 assert(in->is_top(), "sanity"); 4337 // Nothing to check. 4338 } 4339 } 4340 } 4341 } 4342 4343 //------------------------------verify_graph_edges--------------------------- 4344 // Walk the Graph and verify that there is a one-to-one correspondence 4345 // between Use-Def edges and Def-Use edges in the graph. 4346 void Compile::verify_graph_edges(bool no_dead_code, const Unique_Node_List* root_and_safepoints) const { 4347 if (VerifyGraphEdges) { 4348 Unique_Node_List visited; 4349 4350 // Call graph walk to check edges 4351 verify_bidirectional_edges(visited, root_and_safepoints); 4352 if (no_dead_code) { 4353 // Now make sure that no visited node is used by an unvisited node. 4354 bool dead_nodes = false; 4355 Unique_Node_List checked; 4356 while (visited.size() > 0) { 4357 Node* n = visited.pop(); 4358 checked.push(n); 4359 for (uint i = 0; i < n->outcnt(); i++) { 4360 Node* use = n->raw_out(i); 4361 if (checked.member(use)) continue; // already checked 4362 if (visited.member(use)) continue; // already in the graph 4363 if (use->is_Con()) continue; // a dead ConNode is OK 4364 // At this point, we have found a dead node which is DU-reachable. 4365 if (!dead_nodes) { 4366 tty->print_cr("*** Dead nodes reachable via DU edges:"); 4367 dead_nodes = true; 4368 } 4369 use->dump(2); 4370 tty->print_cr("---"); 4371 checked.push(use); // No repeats; pretend it is now checked. 4372 } 4373 } 4374 assert(!dead_nodes, "using nodes must be reachable from root"); 4375 } 4376 } 4377 } 4378 #endif 4379 4380 // The Compile object keeps track of failure reasons separately from the ciEnv. 4381 // This is required because there is not quite a 1-1 relation between the 4382 // ciEnv and its compilation task and the Compile object. Note that one 4383 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides 4384 // to backtrack and retry without subsuming loads. Other than this backtracking 4385 // behavior, the Compile's failure reason is quietly copied up to the ciEnv 4386 // by the logic in C2Compiler. 4387 void Compile::record_failure(const char* reason DEBUG_ONLY(COMMA bool allow_multiple_failures)) { 4388 if (log() != nullptr) { 4389 log()->elem("failure reason='%s' phase='compile'", reason); 4390 } 4391 if (_failure_reason.get() == nullptr) { 4392 // Record the first failure reason. 4393 _failure_reason.set(reason); 4394 if (CaptureBailoutInformation) { 4395 _first_failure_details = new CompilationFailureInfo(reason); 4396 } 4397 } else { 4398 assert(!StressBailout || allow_multiple_failures, "should have handled previous failure."); 4399 } 4400 4401 if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) { 4402 C->print_method(PHASE_FAILURE, 1); 4403 } 4404 _root = nullptr; // flush the graph, too 4405 } 4406 4407 Compile::TracePhase::TracePhase(const char* name, PhaseTraceId id) 4408 : TraceTime(name, &Phase::timers[id], CITime, CITimeVerbose), 4409 _compile(Compile::current()), 4410 _log(nullptr), 4411 _dolog(CITimeVerbose) 4412 { 4413 assert(_compile != nullptr, "sanity check"); 4414 assert(id != PhaseTraceId::_t_none, "Don't use none"); 4415 if (_dolog) { 4416 _log = _compile->log(); 4417 } 4418 if (_log != nullptr) { 4419 _log->begin_head("phase name='%s' nodes='%d' live='%d'", phase_name(), _compile->unique(), _compile->live_nodes()); 4420 _log->stamp(); 4421 _log->end_head(); 4422 } 4423 4424 // Inform memory statistic, if enabled 4425 if (CompilationMemoryStatistic::enabled()) { 4426 CompilationMemoryStatistic::on_phase_start((int)id, name); 4427 } 4428 } 4429 4430 Compile::TracePhase::TracePhase(PhaseTraceId id) 4431 : TracePhase(Phase::get_phase_trace_id_text(id), id) {} 4432 4433 Compile::TracePhase::~TracePhase() { 4434 4435 // Inform memory statistic, if enabled 4436 if (CompilationMemoryStatistic::enabled()) { 4437 CompilationMemoryStatistic::on_phase_end(); 4438 } 4439 4440 if (_compile->failing_internal()) { 4441 if (_log != nullptr) { 4442 _log->done("phase"); 4443 } 4444 return; // timing code, not stressing bailouts. 4445 } 4446 #ifdef ASSERT 4447 if (PrintIdealNodeCount) { 4448 tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'", 4449 phase_name(), _compile->unique(), _compile->live_nodes(), _compile->count_live_nodes_by_graph_walk()); 4450 } 4451 4452 if (VerifyIdealNodeCount) { 4453 _compile->print_missing_nodes(); 4454 } 4455 #endif 4456 4457 if (_log != nullptr) { 4458 _log->done("phase name='%s' nodes='%d' live='%d'", phase_name(), _compile->unique(), _compile->live_nodes()); 4459 } 4460 } 4461 4462 //----------------------------static_subtype_check----------------------------- 4463 // Shortcut important common cases when superklass is exact: 4464 // (0) superklass is java.lang.Object (can occur in reflective code) 4465 // (1) subklass is already limited to a subtype of superklass => always ok 4466 // (2) subklass does not overlap with superklass => always fail 4467 // (3) superklass has NO subtypes and we can check with a simple compare. 4468 Compile::SubTypeCheckResult Compile::static_subtype_check(const TypeKlassPtr* superk, const TypeKlassPtr* subk, bool skip) { 4469 if (skip) { 4470 return SSC_full_test; // Let caller generate the general case. 4471 } 4472 4473 if (subk->is_java_subtype_of(superk)) { 4474 return SSC_always_true; // (0) and (1) this test cannot fail 4475 } 4476 4477 if (!subk->maybe_java_subtype_of(superk)) { 4478 return SSC_always_false; // (2) true path dead; no dynamic test needed 4479 } 4480 4481 const Type* superelem = superk; 4482 if (superk->isa_aryklassptr()) { 4483 int ignored; 4484 superelem = superk->is_aryklassptr()->base_element_type(ignored); 4485 } 4486 4487 if (superelem->isa_instklassptr()) { 4488 ciInstanceKlass* ik = superelem->is_instklassptr()->instance_klass(); 4489 if (!ik->has_subklass()) { 4490 if (!ik->is_final()) { 4491 // Add a dependency if there is a chance of a later subclass. 4492 dependencies()->assert_leaf_type(ik); 4493 } 4494 if (!superk->maybe_java_subtype_of(subk)) { 4495 return SSC_always_false; 4496 } 4497 return SSC_easy_test; // (3) caller can do a simple ptr comparison 4498 } 4499 } else { 4500 // A primitive array type has no subtypes. 4501 return SSC_easy_test; // (3) caller can do a simple ptr comparison 4502 } 4503 4504 return SSC_full_test; 4505 } 4506 4507 Node* Compile::conv_I2X_index(PhaseGVN* phase, Node* idx, const TypeInt* sizetype, Node* ctrl) { 4508 #ifdef _LP64 4509 // The scaled index operand to AddP must be a clean 64-bit value. 4510 // Java allows a 32-bit int to be incremented to a negative 4511 // value, which appears in a 64-bit register as a large 4512 // positive number. Using that large positive number as an 4513 // operand in pointer arithmetic has bad consequences. 4514 // On the other hand, 32-bit overflow is rare, and the possibility 4515 // can often be excluded, if we annotate the ConvI2L node with 4516 // a type assertion that its value is known to be a small positive 4517 // number. (The prior range check has ensured this.) 4518 // This assertion is used by ConvI2LNode::Ideal. 4519 int index_max = max_jint - 1; // array size is max_jint, index is one less 4520 if (sizetype != nullptr) index_max = sizetype->_hi - 1; 4521 const TypeInt* iidxtype = TypeInt::make(0, index_max, Type::WidenMax); 4522 idx = constrained_convI2L(phase, idx, iidxtype, ctrl); 4523 #endif 4524 return idx; 4525 } 4526 4527 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check) 4528 Node* Compile::constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl, bool carry_dependency) { 4529 if (ctrl != nullptr) { 4530 // Express control dependency by a CastII node with a narrow type. 4531 // Make the CastII node dependent on the control input to prevent the narrowed ConvI2L 4532 // node from floating above the range check during loop optimizations. Otherwise, the 4533 // ConvI2L node may be eliminated independently of the range check, causing the data path 4534 // to become TOP while the control path is still there (although it's unreachable). 4535 value = new CastIINode(ctrl, value, itype, carry_dependency ? ConstraintCastNode::StrongDependency : ConstraintCastNode::RegularDependency, true /* range check dependency */); 4536 value = phase->transform(value); 4537 } 4538 const TypeLong* ltype = TypeLong::make(itype->_lo, itype->_hi, itype->_widen); 4539 return phase->transform(new ConvI2LNode(value, ltype)); 4540 } 4541 4542 void Compile::dump_print_inlining() { 4543 inline_printer()->print_on(tty); 4544 } 4545 4546 void Compile::log_late_inline(CallGenerator* cg) { 4547 if (log() != nullptr) { 4548 log()->head("late_inline method='%d' inline_id='" JLONG_FORMAT "'", log()->identify(cg->method()), 4549 cg->unique_id()); 4550 JVMState* p = cg->call_node()->jvms(); 4551 while (p != nullptr) { 4552 log()->elem("jvms bci='%d' method='%d'", p->bci(), log()->identify(p->method())); 4553 p = p->caller(); 4554 } 4555 log()->tail("late_inline"); 4556 } 4557 } 4558 4559 void Compile::log_late_inline_failure(CallGenerator* cg, const char* msg) { 4560 log_late_inline(cg); 4561 if (log() != nullptr) { 4562 log()->inline_fail(msg); 4563 } 4564 } 4565 4566 void Compile::log_inline_id(CallGenerator* cg) { 4567 if (log() != nullptr) { 4568 // The LogCompilation tool needs a unique way to identify late 4569 // inline call sites. This id must be unique for this call site in 4570 // this compilation. Try to have it unique across compilations as 4571 // well because it can be convenient when grepping through the log 4572 // file. 4573 // Distinguish OSR compilations from others in case CICountOSR is 4574 // on. 4575 jlong id = ((jlong)unique()) + (((jlong)compile_id()) << 33) + (CICountOSR && is_osr_compilation() ? ((jlong)1) << 32 : 0); 4576 cg->set_unique_id(id); 4577 log()->elem("inline_id id='" JLONG_FORMAT "'", id); 4578 } 4579 } 4580 4581 void Compile::log_inline_failure(const char* msg) { 4582 if (C->log() != nullptr) { 4583 C->log()->inline_fail(msg); 4584 } 4585 } 4586 4587 4588 // Dump inlining replay data to the stream. 4589 // Don't change thread state and acquire any locks. 4590 void Compile::dump_inline_data(outputStream* out) { 4591 InlineTree* inl_tree = ilt(); 4592 if (inl_tree != nullptr) { 4593 out->print(" inline %d", inl_tree->count()); 4594 inl_tree->dump_replay_data(out); 4595 } 4596 } 4597 4598 void Compile::dump_inline_data_reduced(outputStream* out) { 4599 assert(ReplayReduce, ""); 4600 4601 InlineTree* inl_tree = ilt(); 4602 if (inl_tree == nullptr) { 4603 return; 4604 } 4605 // Enable iterative replay file reduction 4606 // Output "compile" lines for depth 1 subtrees, 4607 // simulating that those trees were compiled 4608 // instead of inlined. 4609 for (int i = 0; i < inl_tree->subtrees().length(); ++i) { 4610 InlineTree* sub = inl_tree->subtrees().at(i); 4611 if (sub->inline_level() != 1) { 4612 continue; 4613 } 4614 4615 ciMethod* method = sub->method(); 4616 int entry_bci = -1; 4617 int comp_level = env()->task()->comp_level(); 4618 out->print("compile "); 4619 method->dump_name_as_ascii(out); 4620 out->print(" %d %d", entry_bci, comp_level); 4621 out->print(" inline %d", sub->count()); 4622 sub->dump_replay_data(out, -1); 4623 out->cr(); 4624 } 4625 } 4626 4627 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) { 4628 if (n1->Opcode() < n2->Opcode()) return -1; 4629 else if (n1->Opcode() > n2->Opcode()) return 1; 4630 4631 assert(n1->req() == n2->req(), "can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req()); 4632 for (uint i = 1; i < n1->req(); i++) { 4633 if (n1->in(i) < n2->in(i)) return -1; 4634 else if (n1->in(i) > n2->in(i)) return 1; 4635 } 4636 4637 return 0; 4638 } 4639 4640 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) { 4641 Node* n1 = *n1p; 4642 Node* n2 = *n2p; 4643 4644 return cmp_expensive_nodes(n1, n2); 4645 } 4646 4647 void Compile::sort_expensive_nodes() { 4648 if (!expensive_nodes_sorted()) { 4649 _expensive_nodes.sort(cmp_expensive_nodes); 4650 } 4651 } 4652 4653 bool Compile::expensive_nodes_sorted() const { 4654 for (int i = 1; i < _expensive_nodes.length(); i++) { 4655 if (cmp_expensive_nodes(_expensive_nodes.adr_at(i), _expensive_nodes.adr_at(i-1)) < 0) { 4656 return false; 4657 } 4658 } 4659 return true; 4660 } 4661 4662 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) { 4663 if (_expensive_nodes.length() == 0) { 4664 return false; 4665 } 4666 4667 assert(OptimizeExpensiveOps, "optimization off?"); 4668 4669 // Take this opportunity to remove dead nodes from the list 4670 int j = 0; 4671 for (int i = 0; i < _expensive_nodes.length(); i++) { 4672 Node* n = _expensive_nodes.at(i); 4673 if (!n->is_unreachable(igvn)) { 4674 assert(n->is_expensive(), "should be expensive"); 4675 _expensive_nodes.at_put(j, n); 4676 j++; 4677 } 4678 } 4679 _expensive_nodes.trunc_to(j); 4680 4681 // Then sort the list so that similar nodes are next to each other 4682 // and check for at least two nodes of identical kind with same data 4683 // inputs. 4684 sort_expensive_nodes(); 4685 4686 for (int i = 0; i < _expensive_nodes.length()-1; i++) { 4687 if (cmp_expensive_nodes(_expensive_nodes.adr_at(i), _expensive_nodes.adr_at(i+1)) == 0) { 4688 return true; 4689 } 4690 } 4691 4692 return false; 4693 } 4694 4695 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) { 4696 if (_expensive_nodes.length() == 0) { 4697 return; 4698 } 4699 4700 assert(OptimizeExpensiveOps, "optimization off?"); 4701 4702 // Sort to bring similar nodes next to each other and clear the 4703 // control input of nodes for which there's only a single copy. 4704 sort_expensive_nodes(); 4705 4706 int j = 0; 4707 int identical = 0; 4708 int i = 0; 4709 bool modified = false; 4710 for (; i < _expensive_nodes.length()-1; i++) { 4711 assert(j <= i, "can't write beyond current index"); 4712 if (_expensive_nodes.at(i)->Opcode() == _expensive_nodes.at(i+1)->Opcode()) { 4713 identical++; 4714 _expensive_nodes.at_put(j++, _expensive_nodes.at(i)); 4715 continue; 4716 } 4717 if (identical > 0) { 4718 _expensive_nodes.at_put(j++, _expensive_nodes.at(i)); 4719 identical = 0; 4720 } else { 4721 Node* n = _expensive_nodes.at(i); 4722 igvn.replace_input_of(n, 0, nullptr); 4723 igvn.hash_insert(n); 4724 modified = true; 4725 } 4726 } 4727 if (identical > 0) { 4728 _expensive_nodes.at_put(j++, _expensive_nodes.at(i)); 4729 } else if (_expensive_nodes.length() >= 1) { 4730 Node* n = _expensive_nodes.at(i); 4731 igvn.replace_input_of(n, 0, nullptr); 4732 igvn.hash_insert(n); 4733 modified = true; 4734 } 4735 _expensive_nodes.trunc_to(j); 4736 if (modified) { 4737 igvn.optimize(); 4738 } 4739 } 4740 4741 void Compile::add_expensive_node(Node * n) { 4742 assert(!_expensive_nodes.contains(n), "duplicate entry in expensive list"); 4743 assert(n->is_expensive(), "expensive nodes with non-null control here only"); 4744 assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here"); 4745 if (OptimizeExpensiveOps) { 4746 _expensive_nodes.append(n); 4747 } else { 4748 // Clear control input and let IGVN optimize expensive nodes if 4749 // OptimizeExpensiveOps is off. 4750 n->set_req(0, nullptr); 4751 } 4752 } 4753 4754 /** 4755 * Track coarsened Lock and Unlock nodes. 4756 */ 4757 4758 class Lock_List : public Node_List { 4759 uint _origin_cnt; 4760 public: 4761 Lock_List(Arena *a, uint cnt) : Node_List(a), _origin_cnt(cnt) {} 4762 uint origin_cnt() const { return _origin_cnt; } 4763 }; 4764 4765 void Compile::add_coarsened_locks(GrowableArray<AbstractLockNode*>& locks) { 4766 int length = locks.length(); 4767 if (length > 0) { 4768 // Have to keep this list until locks elimination during Macro nodes elimination. 4769 Lock_List* locks_list = new (comp_arena()) Lock_List(comp_arena(), length); 4770 AbstractLockNode* alock = locks.at(0); 4771 BoxLockNode* box = alock->box_node()->as_BoxLock(); 4772 for (int i = 0; i < length; i++) { 4773 AbstractLockNode* lock = locks.at(i); 4774 assert(lock->is_coarsened(), "expecting only coarsened AbstractLock nodes, but got '%s'[%d] node", lock->Name(), lock->_idx); 4775 locks_list->push(lock); 4776 BoxLockNode* this_box = lock->box_node()->as_BoxLock(); 4777 if (this_box != box) { 4778 // Locking regions (BoxLock) could be Unbalanced here: 4779 // - its coarsened locks were eliminated in earlier 4780 // macro nodes elimination followed by loop unroll 4781 // - it is OSR locking region (no Lock node) 4782 // Preserve Unbalanced status in such cases. 4783 if (!this_box->is_unbalanced()) { 4784 this_box->set_coarsened(); 4785 } 4786 if (!box->is_unbalanced()) { 4787 box->set_coarsened(); 4788 } 4789 } 4790 } 4791 _coarsened_locks.append(locks_list); 4792 } 4793 } 4794 4795 void Compile::remove_useless_coarsened_locks(Unique_Node_List& useful) { 4796 int count = coarsened_count(); 4797 for (int i = 0; i < count; i++) { 4798 Node_List* locks_list = _coarsened_locks.at(i); 4799 for (uint j = 0; j < locks_list->size(); j++) { 4800 Node* lock = locks_list->at(j); 4801 assert(lock->is_AbstractLock(), "sanity"); 4802 if (!useful.member(lock)) { 4803 locks_list->yank(lock); 4804 } 4805 } 4806 } 4807 } 4808 4809 void Compile::remove_coarsened_lock(Node* n) { 4810 if (n->is_AbstractLock()) { 4811 int count = coarsened_count(); 4812 for (int i = 0; i < count; i++) { 4813 Node_List* locks_list = _coarsened_locks.at(i); 4814 locks_list->yank(n); 4815 } 4816 } 4817 } 4818 4819 bool Compile::coarsened_locks_consistent() { 4820 int count = coarsened_count(); 4821 for (int i = 0; i < count; i++) { 4822 bool unbalanced = false; 4823 bool modified = false; // track locks kind modifications 4824 Lock_List* locks_list = (Lock_List*)_coarsened_locks.at(i); 4825 uint size = locks_list->size(); 4826 if (size == 0) { 4827 unbalanced = false; // All locks were eliminated - good 4828 } else if (size != locks_list->origin_cnt()) { 4829 unbalanced = true; // Some locks were removed from list 4830 } else { 4831 for (uint j = 0; j < size; j++) { 4832 Node* lock = locks_list->at(j); 4833 // All nodes in group should have the same state (modified or not) 4834 if (!lock->as_AbstractLock()->is_coarsened()) { 4835 if (j == 0) { 4836 // first on list was modified, the rest should be too for consistency 4837 modified = true; 4838 } else if (!modified) { 4839 // this lock was modified but previous locks on the list were not 4840 unbalanced = true; 4841 break; 4842 } 4843 } else if (modified) { 4844 // previous locks on list were modified but not this lock 4845 unbalanced = true; 4846 break; 4847 } 4848 } 4849 } 4850 if (unbalanced) { 4851 // unbalanced monitor enter/exit - only some [un]lock nodes were removed or modified 4852 #ifdef ASSERT 4853 if (PrintEliminateLocks) { 4854 tty->print_cr("=== unbalanced coarsened locks ==="); 4855 for (uint l = 0; l < size; l++) { 4856 locks_list->at(l)->dump(); 4857 } 4858 } 4859 #endif 4860 record_failure(C2Compiler::retry_no_locks_coarsening()); 4861 return false; 4862 } 4863 } 4864 return true; 4865 } 4866 4867 // Mark locking regions (identified by BoxLockNode) as unbalanced if 4868 // locks coarsening optimization removed Lock/Unlock nodes from them. 4869 // Such regions become unbalanced because coarsening only removes part 4870 // of Lock/Unlock nodes in region. As result we can't execute other 4871 // locks elimination optimizations which assume all code paths have 4872 // corresponding pair of Lock/Unlock nodes - they are balanced. 4873 void Compile::mark_unbalanced_boxes() const { 4874 int count = coarsened_count(); 4875 for (int i = 0; i < count; i++) { 4876 Node_List* locks_list = _coarsened_locks.at(i); 4877 uint size = locks_list->size(); 4878 if (size > 0) { 4879 AbstractLockNode* alock = locks_list->at(0)->as_AbstractLock(); 4880 BoxLockNode* box = alock->box_node()->as_BoxLock(); 4881 if (alock->is_coarsened()) { 4882 // coarsened_locks_consistent(), which is called before this method, verifies 4883 // that the rest of Lock/Unlock nodes on locks_list are also coarsened. 4884 assert(!box->is_eliminated(), "regions with coarsened locks should not be marked as eliminated"); 4885 for (uint j = 1; j < size; j++) { 4886 assert(locks_list->at(j)->as_AbstractLock()->is_coarsened(), "only coarsened locks are expected here"); 4887 BoxLockNode* this_box = locks_list->at(j)->as_AbstractLock()->box_node()->as_BoxLock(); 4888 if (box != this_box) { 4889 assert(!this_box->is_eliminated(), "regions with coarsened locks should not be marked as eliminated"); 4890 box->set_unbalanced(); 4891 this_box->set_unbalanced(); 4892 } 4893 } 4894 } 4895 } 4896 } 4897 } 4898 4899 /** 4900 * Remove the speculative part of types and clean up the graph 4901 */ 4902 void Compile::remove_speculative_types(PhaseIterGVN &igvn) { 4903 if (UseTypeSpeculation) { 4904 Unique_Node_List worklist; 4905 worklist.push(root()); 4906 int modified = 0; 4907 // Go over all type nodes that carry a speculative type, drop the 4908 // speculative part of the type and enqueue the node for an igvn 4909 // which may optimize it out. 4910 for (uint next = 0; next < worklist.size(); ++next) { 4911 Node *n = worklist.at(next); 4912 if (n->is_Type()) { 4913 TypeNode* tn = n->as_Type(); 4914 const Type* t = tn->type(); 4915 const Type* t_no_spec = t->remove_speculative(); 4916 if (t_no_spec != t) { 4917 bool in_hash = igvn.hash_delete(n); 4918 assert(in_hash || n->hash() == Node::NO_HASH, "node should be in igvn hash table"); 4919 tn->set_type(t_no_spec); 4920 igvn.hash_insert(n); 4921 igvn._worklist.push(n); // give it a chance to go away 4922 modified++; 4923 } 4924 } 4925 // Iterate over outs - endless loops is unreachable from below 4926 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 4927 Node *m = n->fast_out(i); 4928 if (not_a_node(m)) { 4929 continue; 4930 } 4931 worklist.push(m); 4932 } 4933 } 4934 // Drop the speculative part of all types in the igvn's type table 4935 igvn.remove_speculative_types(); 4936 if (modified > 0) { 4937 igvn.optimize(); 4938 if (failing()) return; 4939 } 4940 #ifdef ASSERT 4941 // Verify that after the IGVN is over no speculative type has resurfaced 4942 worklist.clear(); 4943 worklist.push(root()); 4944 for (uint next = 0; next < worklist.size(); ++next) { 4945 Node *n = worklist.at(next); 4946 const Type* t = igvn.type_or_null(n); 4947 assert((t == nullptr) || (t == t->remove_speculative()), "no more speculative types"); 4948 if (n->is_Type()) { 4949 t = n->as_Type()->type(); 4950 assert(t == t->remove_speculative(), "no more speculative types"); 4951 } 4952 // Iterate over outs - endless loops is unreachable from below 4953 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 4954 Node *m = n->fast_out(i); 4955 if (not_a_node(m)) { 4956 continue; 4957 } 4958 worklist.push(m); 4959 } 4960 } 4961 igvn.check_no_speculative_types(); 4962 #endif 4963 } 4964 } 4965 4966 // Auxiliary methods to support randomized stressing/fuzzing. 4967 4968 void Compile::initialize_stress_seed(const DirectiveSet* directive) { 4969 if (FLAG_IS_DEFAULT(StressSeed) || (FLAG_IS_ERGO(StressSeed) && directive->RepeatCompilationOption)) { 4970 _stress_seed = static_cast<uint>(Ticks::now().nanoseconds()); 4971 FLAG_SET_ERGO(StressSeed, _stress_seed); 4972 } else { 4973 _stress_seed = StressSeed; 4974 } 4975 if (_log != nullptr) { 4976 _log->elem("stress_test seed='%u'", _stress_seed); 4977 } 4978 } 4979 4980 int Compile::random() { 4981 _stress_seed = os::next_random(_stress_seed); 4982 return static_cast<int>(_stress_seed); 4983 } 4984 4985 // This method can be called the arbitrary number of times, with current count 4986 // as the argument. The logic allows selecting a single candidate from the 4987 // running list of candidates as follows: 4988 // int count = 0; 4989 // Cand* selected = null; 4990 // while(cand = cand->next()) { 4991 // if (randomized_select(++count)) { 4992 // selected = cand; 4993 // } 4994 // } 4995 // 4996 // Including count equalizes the chances any candidate is "selected". 4997 // This is useful when we don't have the complete list of candidates to choose 4998 // from uniformly. In this case, we need to adjust the randomicity of the 4999 // selection, or else we will end up biasing the selection towards the latter 5000 // candidates. 5001 // 5002 // Quick back-envelope calculation shows that for the list of n candidates 5003 // the equal probability for the candidate to persist as "best" can be 5004 // achieved by replacing it with "next" k-th candidate with the probability 5005 // of 1/k. It can be easily shown that by the end of the run, the 5006 // probability for any candidate is converged to 1/n, thus giving the 5007 // uniform distribution among all the candidates. 5008 // 5009 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large. 5010 #define RANDOMIZED_DOMAIN_POW 29 5011 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW) 5012 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1) 5013 bool Compile::randomized_select(int count) { 5014 assert(count > 0, "only positive"); 5015 return (random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count); 5016 } 5017 5018 #ifdef ASSERT 5019 // Failures are geometrically distributed with probability 1/StressBailoutMean. 5020 bool Compile::fail_randomly() { 5021 if ((random() % StressBailoutMean) != 0) { 5022 return false; 5023 } 5024 record_failure("StressBailout"); 5025 return true; 5026 } 5027 5028 bool Compile::failure_is_artificial() { 5029 return C->failure_reason_is("StressBailout"); 5030 } 5031 #endif 5032 5033 CloneMap& Compile::clone_map() { return _clone_map; } 5034 void Compile::set_clone_map(Dict* d) { _clone_map._dict = d; } 5035 5036 void NodeCloneInfo::dump_on(outputStream* st) const { 5037 st->print(" {%d:%d} ", idx(), gen()); 5038 } 5039 5040 void CloneMap::clone(Node* old, Node* nnn, int gen) { 5041 uint64_t val = value(old->_idx); 5042 NodeCloneInfo cio(val); 5043 assert(val != 0, "old node should be in the map"); 5044 NodeCloneInfo cin(cio.idx(), gen + cio.gen()); 5045 insert(nnn->_idx, cin.get()); 5046 #ifndef PRODUCT 5047 if (is_debug()) { 5048 tty->print_cr("CloneMap::clone inserted node %d info {%d:%d} into CloneMap", nnn->_idx, cin.idx(), cin.gen()); 5049 } 5050 #endif 5051 } 5052 5053 void CloneMap::verify_insert_and_clone(Node* old, Node* nnn, int gen) { 5054 NodeCloneInfo cio(value(old->_idx)); 5055 if (cio.get() == 0) { 5056 cio.set(old->_idx, 0); 5057 insert(old->_idx, cio.get()); 5058 #ifndef PRODUCT 5059 if (is_debug()) { 5060 tty->print_cr("CloneMap::verify_insert_and_clone inserted node %d info {%d:%d} into CloneMap", old->_idx, cio.idx(), cio.gen()); 5061 } 5062 #endif 5063 } 5064 clone(old, nnn, gen); 5065 } 5066 5067 int CloneMap::max_gen() const { 5068 int g = 0; 5069 DictI di(_dict); 5070 for(; di.test(); ++di) { 5071 int t = gen(di._key); 5072 if (g < t) { 5073 g = t; 5074 #ifndef PRODUCT 5075 if (is_debug()) { 5076 tty->print_cr("CloneMap::max_gen() update max=%d from %d", g, _2_node_idx_t(di._key)); 5077 } 5078 #endif 5079 } 5080 } 5081 return g; 5082 } 5083 5084 void CloneMap::dump(node_idx_t key, outputStream* st) const { 5085 uint64_t val = value(key); 5086 if (val != 0) { 5087 NodeCloneInfo ni(val); 5088 ni.dump_on(st); 5089 } 5090 } 5091 5092 void Compile::shuffle_macro_nodes() { 5093 if (_macro_nodes.length() < 2) { 5094 return; 5095 } 5096 for (uint i = _macro_nodes.length() - 1; i >= 1; i--) { 5097 uint j = C->random() % (i + 1); 5098 swap(_macro_nodes.at(i), _macro_nodes.at(j)); 5099 } 5100 } 5101 5102 // Move Allocate nodes to the start of the list 5103 void Compile::sort_macro_nodes() { 5104 int count = macro_count(); 5105 int allocates = 0; 5106 for (int i = 0; i < count; i++) { 5107 Node* n = macro_node(i); 5108 if (n->is_Allocate()) { 5109 if (i != allocates) { 5110 Node* tmp = macro_node(allocates); 5111 _macro_nodes.at_put(allocates, n); 5112 _macro_nodes.at_put(i, tmp); 5113 } 5114 allocates++; 5115 } 5116 } 5117 } 5118 5119 void Compile::print_method(CompilerPhaseType cpt, int level, Node* n) { 5120 if (failing_internal()) { return; } // failing_internal to not stress bailouts from printing code. 5121 EventCompilerPhase event(UNTIMED); 5122 if (event.should_commit()) { 5123 CompilerEvent::PhaseEvent::post(event, C->_latest_stage_start_counter, cpt, C->_compile_id, level); 5124 } 5125 #ifndef PRODUCT 5126 ResourceMark rm; 5127 stringStream ss; 5128 ss.print_raw(CompilerPhaseTypeHelper::to_description(cpt)); 5129 int iter = ++_igv_phase_iter[cpt]; 5130 if (iter > 1) { 5131 ss.print(" %d", iter); 5132 } 5133 if (n != nullptr) { 5134 ss.print(": %d %s", n->_idx, NodeClassNames[n->Opcode()]); 5135 if (n->is_Call()) { 5136 CallNode* call = n->as_Call(); 5137 if (call->_name != nullptr) { 5138 // E.g. uncommon traps etc. 5139 ss.print(" - %s", call->_name); 5140 } else if (call->is_CallJava()) { 5141 CallJavaNode* call_java = call->as_CallJava(); 5142 if (call_java->method() != nullptr) { 5143 ss.print(" -"); 5144 call_java->method()->print_short_name(&ss); 5145 } 5146 } 5147 } 5148 } 5149 5150 const char* name = ss.as_string(); 5151 if (should_print_igv(level)) { 5152 _igv_printer->print_graph(name); 5153 } 5154 if (should_print_phase(cpt)) { 5155 print_ideal_ir(CompilerPhaseTypeHelper::to_name(cpt)); 5156 } 5157 #endif 5158 C->_latest_stage_start_counter.stamp(); 5159 } 5160 5161 // Only used from CompileWrapper 5162 void Compile::begin_method() { 5163 #ifndef PRODUCT 5164 if (_method != nullptr && should_print_igv(1)) { 5165 _igv_printer->begin_method(); 5166 } 5167 #endif 5168 C->_latest_stage_start_counter.stamp(); 5169 } 5170 5171 // Only used from CompileWrapper 5172 void Compile::end_method() { 5173 EventCompilerPhase event(UNTIMED); 5174 if (event.should_commit()) { 5175 CompilerEvent::PhaseEvent::post(event, C->_latest_stage_start_counter, PHASE_END, C->_compile_id, 1); 5176 } 5177 5178 #ifndef PRODUCT 5179 if (_method != nullptr && should_print_igv(1)) { 5180 _igv_printer->end_method(); 5181 } 5182 #endif 5183 } 5184 5185 bool Compile::should_print_phase(CompilerPhaseType cpt) { 5186 #ifndef PRODUCT 5187 if (_directive->should_print_phase(cpt)) { 5188 return true; 5189 } 5190 #endif 5191 return false; 5192 } 5193 5194 #ifndef PRODUCT 5195 void Compile::init_igv() { 5196 if (_igv_printer == nullptr) { 5197 _igv_printer = IdealGraphPrinter::printer(); 5198 _igv_printer->set_compile(this); 5199 } 5200 } 5201 #endif 5202 5203 bool Compile::should_print_igv(const int level) { 5204 #ifndef PRODUCT 5205 if (PrintIdealGraphLevel < 0) { // disabled by the user 5206 return false; 5207 } 5208 5209 bool need = directive()->IGVPrintLevelOption >= level; 5210 if (need) { 5211 Compile::init_igv(); 5212 } 5213 return need; 5214 #else 5215 return false; 5216 #endif 5217 } 5218 5219 #ifndef PRODUCT 5220 IdealGraphPrinter* Compile::_debug_file_printer = nullptr; 5221 IdealGraphPrinter* Compile::_debug_network_printer = nullptr; 5222 5223 // Called from debugger. Prints method to the default file with the default phase name. 5224 // This works regardless of any Ideal Graph Visualizer flags set or not. 5225 void igv_print() { 5226 Compile::current()->igv_print_method_to_file(); 5227 } 5228 5229 // Same as igv_print() above but with a specified phase name. 5230 void igv_print(const char* phase_name) { 5231 Compile::current()->igv_print_method_to_file(phase_name); 5232 } 5233 5234 // Called from debugger. Prints method with the default phase name to the default network or the one specified with 5235 // the network flags for the Ideal Graph Visualizer, or to the default file depending on the 'network' argument. 5236 // This works regardless of any Ideal Graph Visualizer flags set or not. 5237 void igv_print(bool network) { 5238 if (network) { 5239 Compile::current()->igv_print_method_to_network(); 5240 } else { 5241 Compile::current()->igv_print_method_to_file(); 5242 } 5243 } 5244 5245 // Same as igv_print(bool network) above but with a specified phase name. 5246 void igv_print(bool network, const char* phase_name) { 5247 if (network) { 5248 Compile::current()->igv_print_method_to_network(phase_name); 5249 } else { 5250 Compile::current()->igv_print_method_to_file(phase_name); 5251 } 5252 } 5253 5254 // Called from debugger. Normal write to the default _printer. Only works if Ideal Graph Visualizer printing flags are set. 5255 void igv_print_default() { 5256 Compile::current()->print_method(PHASE_DEBUG, 0); 5257 } 5258 5259 // Called from debugger, especially when replaying a trace in which the program state cannot be altered like with rr replay. 5260 // A method is appended to an existing default file with the default phase name. This means that igv_append() must follow 5261 // an earlier igv_print(*) call which sets up the file. This works regardless of any Ideal Graph Visualizer flags set or not. 5262 void igv_append() { 5263 Compile::current()->igv_print_method_to_file("Debug", true); 5264 } 5265 5266 // Same as igv_append() above but with a specified phase name. 5267 void igv_append(const char* phase_name) { 5268 Compile::current()->igv_print_method_to_file(phase_name, true); 5269 } 5270 5271 void Compile::igv_print_method_to_file(const char* phase_name, bool append) { 5272 const char* file_name = "custom_debug.xml"; 5273 if (_debug_file_printer == nullptr) { 5274 _debug_file_printer = new IdealGraphPrinter(C, file_name, append); 5275 } else { 5276 _debug_file_printer->update_compiled_method(C->method()); 5277 } 5278 tty->print_cr("Method %s to %s", append ? "appended" : "printed", file_name); 5279 _debug_file_printer->print_graph(phase_name); 5280 } 5281 5282 void Compile::igv_print_method_to_network(const char* phase_name) { 5283 ResourceMark rm; 5284 GrowableArray<const Node*> empty_list; 5285 igv_print_graph_to_network(phase_name, empty_list); 5286 } 5287 5288 void Compile::igv_print_graph_to_network(const char* name, GrowableArray<const Node*>& visible_nodes) { 5289 if (_debug_network_printer == nullptr) { 5290 _debug_network_printer = new IdealGraphPrinter(C); 5291 } else { 5292 _debug_network_printer->update_compiled_method(C->method()); 5293 } 5294 tty->print_cr("Method printed over network stream to IGV"); 5295 _debug_network_printer->print(name, C->root(), visible_nodes); 5296 } 5297 #endif 5298 5299 Node* Compile::narrow_value(BasicType bt, Node* value, const Type* type, PhaseGVN* phase, bool transform_res) { 5300 if (type != nullptr && phase->type(value)->higher_equal(type)) { 5301 return value; 5302 } 5303 Node* result = nullptr; 5304 if (bt == T_BYTE) { 5305 result = phase->transform(new LShiftINode(value, phase->intcon(24))); 5306 result = new RShiftINode(result, phase->intcon(24)); 5307 } else if (bt == T_BOOLEAN) { 5308 result = new AndINode(value, phase->intcon(0xFF)); 5309 } else if (bt == T_CHAR) { 5310 result = new AndINode(value,phase->intcon(0xFFFF)); 5311 } else { 5312 assert(bt == T_SHORT, "unexpected narrow type"); 5313 result = phase->transform(new LShiftINode(value, phase->intcon(16))); 5314 result = new RShiftINode(result, phase->intcon(16)); 5315 } 5316 if (transform_res) { 5317 result = phase->transform(result); 5318 } 5319 return result; 5320 } 5321 5322 void Compile::record_method_not_compilable_oom() { 5323 record_method_not_compilable(CompilationMemoryStatistic::failure_reason_memlimit()); 5324 }