1 /* 2 * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/macroAssembler.hpp" 27 #include "asm/macroAssembler.inline.hpp" 28 #include "ci/ciReplay.hpp" 29 #include "classfile/javaClasses.hpp" 30 #include "code/exceptionHandlerTable.hpp" 31 #include "code/nmethod.hpp" 32 #include "compiler/compilationFailureInfo.hpp" 33 #include "compiler/compilationMemoryStatistic.hpp" 34 #include "compiler/compileBroker.hpp" 35 #include "compiler/compileLog.hpp" 36 #include "compiler/compilerOracle.hpp" 37 #include "compiler/compiler_globals.hpp" 38 #include "compiler/disassembler.hpp" 39 #include "compiler/oopMap.hpp" 40 #include "gc/shared/barrierSet.hpp" 41 #include "gc/shared/c2/barrierSetC2.hpp" 42 #include "jfr/jfrEvents.hpp" 43 #include "jvm_io.h" 44 #include "memory/allocation.hpp" 45 #include "memory/resourceArea.hpp" 46 #include "opto/addnode.hpp" 47 #include "opto/block.hpp" 48 #include "opto/c2compiler.hpp" 49 #include "opto/callGenerator.hpp" 50 #include "opto/callnode.hpp" 51 #include "opto/castnode.hpp" 52 #include "opto/cfgnode.hpp" 53 #include "opto/chaitin.hpp" 54 #include "opto/compile.hpp" 55 #include "opto/connode.hpp" 56 #include "opto/convertnode.hpp" 57 #include "opto/divnode.hpp" 58 #include "opto/escape.hpp" 59 #include "opto/idealGraphPrinter.hpp" 60 #include "opto/locknode.hpp" 61 #include "opto/loopnode.hpp" 62 #include "opto/machnode.hpp" 63 #include "opto/macro.hpp" 64 #include "opto/matcher.hpp" 65 #include "opto/mathexactnode.hpp" 66 #include "opto/memnode.hpp" 67 #include "opto/mulnode.hpp" 68 #include "opto/narrowptrnode.hpp" 69 #include "opto/node.hpp" 70 #include "opto/opcodes.hpp" 71 #include "opto/output.hpp" 72 #include "opto/parse.hpp" 73 #include "opto/phaseX.hpp" 74 #include "opto/rootnode.hpp" 75 #include "opto/runtime.hpp" 76 #include "opto/stringopts.hpp" 77 #include "opto/type.hpp" 78 #include "opto/vector.hpp" 79 #include "opto/vectornode.hpp" 80 #include "runtime/globals_extension.hpp" 81 #include "runtime/sharedRuntime.hpp" 82 #include "runtime/signature.hpp" 83 #include "runtime/stubRoutines.hpp" 84 #include "runtime/timer.hpp" 85 #include "utilities/align.hpp" 86 #include "utilities/copy.hpp" 87 #include "utilities/macros.hpp" 88 #include "utilities/resourceHash.hpp" 89 90 // -------------------- Compile::mach_constant_base_node ----------------------- 91 // Constant table base node singleton. 92 MachConstantBaseNode* Compile::mach_constant_base_node() { 93 if (_mach_constant_base_node == nullptr) { 94 _mach_constant_base_node = new MachConstantBaseNode(); 95 _mach_constant_base_node->add_req(C->root()); 96 } 97 return _mach_constant_base_node; 98 } 99 100 101 /// Support for intrinsics. 102 103 // Return the index at which m must be inserted (or already exists). 104 // The sort order is by the address of the ciMethod, with is_virtual as minor key. 105 class IntrinsicDescPair { 106 private: 107 ciMethod* _m; 108 bool _is_virtual; 109 public: 110 IntrinsicDescPair(ciMethod* m, bool is_virtual) : _m(m), _is_virtual(is_virtual) {} 111 static int compare(IntrinsicDescPair* const& key, CallGenerator* const& elt) { 112 ciMethod* m= elt->method(); 113 ciMethod* key_m = key->_m; 114 if (key_m < m) return -1; 115 else if (key_m > m) return 1; 116 else { 117 bool is_virtual = elt->is_virtual(); 118 bool key_virtual = key->_is_virtual; 119 if (key_virtual < is_virtual) return -1; 120 else if (key_virtual > is_virtual) return 1; 121 else return 0; 122 } 123 } 124 }; 125 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found) { 126 #ifdef ASSERT 127 for (int i = 1; i < _intrinsics.length(); i++) { 128 CallGenerator* cg1 = _intrinsics.at(i-1); 129 CallGenerator* cg2 = _intrinsics.at(i); 130 assert(cg1->method() != cg2->method() 131 ? cg1->method() < cg2->method() 132 : cg1->is_virtual() < cg2->is_virtual(), 133 "compiler intrinsics list must stay sorted"); 134 } 135 #endif 136 IntrinsicDescPair pair(m, is_virtual); 137 return _intrinsics.find_sorted<IntrinsicDescPair*, IntrinsicDescPair::compare>(&pair, found); 138 } 139 140 void Compile::register_intrinsic(CallGenerator* cg) { 141 bool found = false; 142 int index = intrinsic_insertion_index(cg->method(), cg->is_virtual(), found); 143 assert(!found, "registering twice"); 144 _intrinsics.insert_before(index, cg); 145 assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked"); 146 } 147 148 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) { 149 assert(m->is_loaded(), "don't try this on unloaded methods"); 150 if (_intrinsics.length() > 0) { 151 bool found = false; 152 int index = intrinsic_insertion_index(m, is_virtual, found); 153 if (found) { 154 return _intrinsics.at(index); 155 } 156 } 157 // Lazily create intrinsics for intrinsic IDs well-known in the runtime. 158 if (m->intrinsic_id() != vmIntrinsics::_none && 159 m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) { 160 CallGenerator* cg = make_vm_intrinsic(m, is_virtual); 161 if (cg != nullptr) { 162 // Save it for next time: 163 register_intrinsic(cg); 164 return cg; 165 } else { 166 gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled); 167 } 168 } 169 return nullptr; 170 } 171 172 // Compile::make_vm_intrinsic is defined in library_call.cpp. 173 174 #ifndef PRODUCT 175 // statistics gathering... 176 177 juint Compile::_intrinsic_hist_count[vmIntrinsics::number_of_intrinsics()] = {0}; 178 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::number_of_intrinsics()] = {0}; 179 180 inline int as_int(vmIntrinsics::ID id) { 181 return vmIntrinsics::as_int(id); 182 } 183 184 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) { 185 assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob"); 186 int oflags = _intrinsic_hist_flags[as_int(id)]; 187 assert(flags != 0, "what happened?"); 188 if (is_virtual) { 189 flags |= _intrinsic_virtual; 190 } 191 bool changed = (flags != oflags); 192 if ((flags & _intrinsic_worked) != 0) { 193 juint count = (_intrinsic_hist_count[as_int(id)] += 1); 194 if (count == 1) { 195 changed = true; // first time 196 } 197 // increment the overall count also: 198 _intrinsic_hist_count[as_int(vmIntrinsics::_none)] += 1; 199 } 200 if (changed) { 201 if (((oflags ^ flags) & _intrinsic_virtual) != 0) { 202 // Something changed about the intrinsic's virtuality. 203 if ((flags & _intrinsic_virtual) != 0) { 204 // This is the first use of this intrinsic as a virtual call. 205 if (oflags != 0) { 206 // We already saw it as a non-virtual, so note both cases. 207 flags |= _intrinsic_both; 208 } 209 } else if ((oflags & _intrinsic_both) == 0) { 210 // This is the first use of this intrinsic as a non-virtual 211 flags |= _intrinsic_both; 212 } 213 } 214 _intrinsic_hist_flags[as_int(id)] = (jubyte) (oflags | flags); 215 } 216 // update the overall flags also: 217 _intrinsic_hist_flags[as_int(vmIntrinsics::_none)] |= (jubyte) flags; 218 return changed; 219 } 220 221 static char* format_flags(int flags, char* buf) { 222 buf[0] = 0; 223 if ((flags & Compile::_intrinsic_worked) != 0) strcat(buf, ",worked"); 224 if ((flags & Compile::_intrinsic_failed) != 0) strcat(buf, ",failed"); 225 if ((flags & Compile::_intrinsic_disabled) != 0) strcat(buf, ",disabled"); 226 if ((flags & Compile::_intrinsic_virtual) != 0) strcat(buf, ",virtual"); 227 if ((flags & Compile::_intrinsic_both) != 0) strcat(buf, ",nonvirtual"); 228 if (buf[0] == 0) strcat(buf, ","); 229 assert(buf[0] == ',', "must be"); 230 return &buf[1]; 231 } 232 233 void Compile::print_intrinsic_statistics() { 234 char flagsbuf[100]; 235 ttyLocker ttyl; 236 if (xtty != nullptr) xtty->head("statistics type='intrinsic'"); 237 tty->print_cr("Compiler intrinsic usage:"); 238 juint total = _intrinsic_hist_count[as_int(vmIntrinsics::_none)]; 239 if (total == 0) total = 1; // avoid div0 in case of no successes 240 #define PRINT_STAT_LINE(name, c, f) \ 241 tty->print_cr(" %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f); 242 for (auto id : EnumRange<vmIntrinsicID>{}) { 243 int flags = _intrinsic_hist_flags[as_int(id)]; 244 juint count = _intrinsic_hist_count[as_int(id)]; 245 if ((flags | count) != 0) { 246 PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf)); 247 } 248 } 249 PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[as_int(vmIntrinsics::_none)], flagsbuf)); 250 if (xtty != nullptr) xtty->tail("statistics"); 251 } 252 253 void Compile::print_statistics() { 254 { ttyLocker ttyl; 255 if (xtty != nullptr) xtty->head("statistics type='opto'"); 256 Parse::print_statistics(); 257 PhaseStringOpts::print_statistics(); 258 PhaseCCP::print_statistics(); 259 PhaseRegAlloc::print_statistics(); 260 PhaseOutput::print_statistics(); 261 PhasePeephole::print_statistics(); 262 PhaseIdealLoop::print_statistics(); 263 ConnectionGraph::print_statistics(); 264 PhaseMacroExpand::print_statistics(); 265 if (xtty != nullptr) xtty->tail("statistics"); 266 } 267 if (_intrinsic_hist_flags[as_int(vmIntrinsics::_none)] != 0) { 268 // put this under its own <statistics> element. 269 print_intrinsic_statistics(); 270 } 271 } 272 #endif //PRODUCT 273 274 void Compile::gvn_replace_by(Node* n, Node* nn) { 275 for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) { 276 Node* use = n->last_out(i); 277 bool is_in_table = initial_gvn()->hash_delete(use); 278 uint uses_found = 0; 279 for (uint j = 0; j < use->len(); j++) { 280 if (use->in(j) == n) { 281 if (j < use->req()) 282 use->set_req(j, nn); 283 else 284 use->set_prec(j, nn); 285 uses_found++; 286 } 287 } 288 if (is_in_table) { 289 // reinsert into table 290 initial_gvn()->hash_find_insert(use); 291 } 292 record_for_igvn(use); 293 PhaseIterGVN::add_users_of_use_to_worklist(nn, use, *_igvn_worklist); 294 i -= uses_found; // we deleted 1 or more copies of this edge 295 } 296 } 297 298 299 // Identify all nodes that are reachable from below, useful. 300 // Use breadth-first pass that records state in a Unique_Node_List, 301 // recursive traversal is slower. 302 void Compile::identify_useful_nodes(Unique_Node_List &useful) { 303 int estimated_worklist_size = live_nodes(); 304 useful.map( estimated_worklist_size, nullptr ); // preallocate space 305 306 // Initialize worklist 307 if (root() != nullptr) { useful.push(root()); } 308 // If 'top' is cached, declare it useful to preserve cached node 309 if (cached_top_node()) { useful.push(cached_top_node()); } 310 311 // Push all useful nodes onto the list, breadthfirst 312 for( uint next = 0; next < useful.size(); ++next ) { 313 assert( next < unique(), "Unique useful nodes < total nodes"); 314 Node *n = useful.at(next); 315 uint max = n->len(); 316 for( uint i = 0; i < max; ++i ) { 317 Node *m = n->in(i); 318 if (not_a_node(m)) continue; 319 useful.push(m); 320 } 321 } 322 } 323 324 // Update dead_node_list with any missing dead nodes using useful 325 // list. Consider all non-useful nodes to be useless i.e., dead nodes. 326 void Compile::update_dead_node_list(Unique_Node_List &useful) { 327 uint max_idx = unique(); 328 VectorSet& useful_node_set = useful.member_set(); 329 330 for (uint node_idx = 0; node_idx < max_idx; node_idx++) { 331 // If node with index node_idx is not in useful set, 332 // mark it as dead in dead node list. 333 if (!useful_node_set.test(node_idx)) { 334 record_dead_node(node_idx); 335 } 336 } 337 } 338 339 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) { 340 int shift = 0; 341 for (int i = 0; i < inlines->length(); i++) { 342 CallGenerator* cg = inlines->at(i); 343 if (useful.member(cg->call_node())) { 344 if (shift > 0) { 345 inlines->at_put(i - shift, cg); 346 } 347 } else { 348 shift++; // skip over the dead element 349 } 350 } 351 if (shift > 0) { 352 inlines->trunc_to(inlines->length() - shift); // remove last elements from compacted array 353 } 354 } 355 356 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Node* dead) { 357 assert(dead != nullptr && dead->is_Call(), "sanity"); 358 int found = 0; 359 for (int i = 0; i < inlines->length(); i++) { 360 if (inlines->at(i)->call_node() == dead) { 361 inlines->remove_at(i); 362 found++; 363 NOT_DEBUG( break; ) // elements are unique, so exit early 364 } 365 } 366 assert(found <= 1, "not unique"); 367 } 368 369 template<typename N, ENABLE_IF_SDEFN(std::is_base_of<Node, N>::value)> 370 void Compile::remove_useless_nodes(GrowableArray<N*>& node_list, Unique_Node_List& useful) { 371 for (int i = node_list.length() - 1; i >= 0; i--) { 372 N* node = node_list.at(i); 373 if (!useful.member(node)) { 374 node_list.delete_at(i); // replaces i-th with last element which is known to be useful (already processed) 375 } 376 } 377 } 378 379 void Compile::remove_useless_node(Node* dead) { 380 remove_modified_node(dead); 381 382 // Constant node that has no out-edges and has only one in-edge from 383 // root is usually dead. However, sometimes reshaping walk makes 384 // it reachable by adding use edges. So, we will NOT count Con nodes 385 // as dead to be conservative about the dead node count at any 386 // given time. 387 if (!dead->is_Con()) { 388 record_dead_node(dead->_idx); 389 } 390 if (dead->is_macro()) { 391 remove_macro_node(dead); 392 } 393 if (dead->is_expensive()) { 394 remove_expensive_node(dead); 395 } 396 if (dead->is_OpaqueTemplateAssertionPredicate()) { 397 remove_template_assertion_predicate_opaq(dead); 398 } 399 if (dead->is_ParsePredicate()) { 400 remove_parse_predicate(dead->as_ParsePredicate()); 401 } 402 if (dead->for_post_loop_opts_igvn()) { 403 remove_from_post_loop_opts_igvn(dead); 404 } 405 if (dead->is_Call()) { 406 remove_useless_late_inlines( &_late_inlines, dead); 407 remove_useless_late_inlines( &_string_late_inlines, dead); 408 remove_useless_late_inlines( &_boxing_late_inlines, dead); 409 remove_useless_late_inlines(&_vector_reboxing_late_inlines, dead); 410 411 if (dead->is_CallStaticJava()) { 412 remove_unstable_if_trap(dead->as_CallStaticJava(), false); 413 } 414 } 415 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 416 bs->unregister_potential_barrier_node(dead); 417 } 418 419 // Disconnect all useless nodes by disconnecting those at the boundary. 420 void Compile::disconnect_useless_nodes(Unique_Node_List& useful, Unique_Node_List& worklist) { 421 uint next = 0; 422 while (next < useful.size()) { 423 Node *n = useful.at(next++); 424 if (n->is_SafePoint()) { 425 // We're done with a parsing phase. Replaced nodes are not valid 426 // beyond that point. 427 n->as_SafePoint()->delete_replaced_nodes(); 428 } 429 // Use raw traversal of out edges since this code removes out edges 430 int max = n->outcnt(); 431 for (int j = 0; j < max; ++j) { 432 Node* child = n->raw_out(j); 433 if (!useful.member(child)) { 434 assert(!child->is_top() || child != top(), 435 "If top is cached in Compile object it is in useful list"); 436 // Only need to remove this out-edge to the useless node 437 n->raw_del_out(j); 438 --j; 439 --max; 440 } 441 } 442 if (n->outcnt() == 1 && n->has_special_unique_user()) { 443 assert(useful.member(n->unique_out()), "do not push a useless node"); 444 worklist.push(n->unique_out()); 445 } 446 } 447 448 remove_useless_nodes(_macro_nodes, useful); // remove useless macro nodes 449 remove_useless_nodes(_parse_predicates, useful); // remove useless Parse Predicate nodes 450 remove_useless_nodes(_template_assertion_predicate_opaqs, useful); // remove useless Assertion Predicate opaque nodes 451 remove_useless_nodes(_expensive_nodes, useful); // remove useless expensive nodes 452 remove_useless_nodes(_for_post_loop_igvn, useful); // remove useless node recorded for post loop opts IGVN pass 453 remove_useless_unstable_if_traps(useful); // remove useless unstable_if traps 454 remove_useless_coarsened_locks(useful); // remove useless coarsened locks nodes 455 #ifdef ASSERT 456 if (_modified_nodes != nullptr) { 457 _modified_nodes->remove_useless_nodes(useful.member_set()); 458 } 459 #endif 460 461 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 462 bs->eliminate_useless_gc_barriers(useful, this); 463 // clean up the late inline lists 464 remove_useless_late_inlines( &_late_inlines, useful); 465 remove_useless_late_inlines( &_string_late_inlines, useful); 466 remove_useless_late_inlines( &_boxing_late_inlines, useful); 467 remove_useless_late_inlines(&_vector_reboxing_late_inlines, useful); 468 debug_only(verify_graph_edges(true/*check for no_dead_code*/);) 469 } 470 471 // ============================================================================ 472 //------------------------------CompileWrapper--------------------------------- 473 class CompileWrapper : public StackObj { 474 Compile *const _compile; 475 public: 476 CompileWrapper(Compile* compile); 477 478 ~CompileWrapper(); 479 }; 480 481 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) { 482 // the Compile* pointer is stored in the current ciEnv: 483 ciEnv* env = compile->env(); 484 assert(env == ciEnv::current(), "must already be a ciEnv active"); 485 assert(env->compiler_data() == nullptr, "compile already active?"); 486 env->set_compiler_data(compile); 487 assert(compile == Compile::current(), "sanity"); 488 489 compile->set_type_dict(nullptr); 490 compile->set_clone_map(new Dict(cmpkey, hashkey, _compile->comp_arena())); 491 compile->clone_map().set_clone_idx(0); 492 compile->set_type_last_size(0); 493 compile->set_last_tf(nullptr, nullptr); 494 compile->set_indexSet_arena(nullptr); 495 compile->set_indexSet_free_block_list(nullptr); 496 compile->init_type_arena(); 497 Type::Initialize(compile); 498 _compile->begin_method(); 499 _compile->clone_map().set_debug(_compile->has_method() && _compile->directive()->CloneMapDebugOption); 500 } 501 CompileWrapper::~CompileWrapper() { 502 // simulate crash during compilation 503 assert(CICrashAt < 0 || _compile->compile_id() != CICrashAt, "just as planned"); 504 505 _compile->end_method(); 506 _compile->env()->set_compiler_data(nullptr); 507 } 508 509 510 //----------------------------print_compile_messages--------------------------- 511 void Compile::print_compile_messages() { 512 #ifndef PRODUCT 513 // Check if recompiling 514 if (!subsume_loads() && PrintOpto) { 515 // Recompiling without allowing machine instructions to subsume loads 516 tty->print_cr("*********************************************************"); 517 tty->print_cr("** Bailout: Recompile without subsuming loads **"); 518 tty->print_cr("*********************************************************"); 519 } 520 if ((do_escape_analysis() != DoEscapeAnalysis) && PrintOpto) { 521 // Recompiling without escape analysis 522 tty->print_cr("*********************************************************"); 523 tty->print_cr("** Bailout: Recompile without escape analysis **"); 524 tty->print_cr("*********************************************************"); 525 } 526 if (do_iterative_escape_analysis() != DoEscapeAnalysis && PrintOpto) { 527 // Recompiling without iterative escape analysis 528 tty->print_cr("*********************************************************"); 529 tty->print_cr("** Bailout: Recompile without iterative escape analysis**"); 530 tty->print_cr("*********************************************************"); 531 } 532 if (do_reduce_allocation_merges() != ReduceAllocationMerges && PrintOpto) { 533 // Recompiling without reducing allocation merges 534 tty->print_cr("*********************************************************"); 535 tty->print_cr("** Bailout: Recompile without reduce allocation merges **"); 536 tty->print_cr("*********************************************************"); 537 } 538 if ((eliminate_boxing() != EliminateAutoBox) && PrintOpto) { 539 // Recompiling without boxing elimination 540 tty->print_cr("*********************************************************"); 541 tty->print_cr("** Bailout: Recompile without boxing elimination **"); 542 tty->print_cr("*********************************************************"); 543 } 544 if ((do_locks_coarsening() != EliminateLocks) && PrintOpto) { 545 // Recompiling without locks coarsening 546 tty->print_cr("*********************************************************"); 547 tty->print_cr("** Bailout: Recompile without locks coarsening **"); 548 tty->print_cr("*********************************************************"); 549 } 550 if (env()->break_at_compile()) { 551 // Open the debugger when compiling this method. 552 tty->print("### Breaking when compiling: "); 553 method()->print_short_name(); 554 tty->cr(); 555 BREAKPOINT; 556 } 557 558 if( PrintOpto ) { 559 if (is_osr_compilation()) { 560 tty->print("[OSR]%3d", _compile_id); 561 } else { 562 tty->print("%3d", _compile_id); 563 } 564 } 565 #endif 566 } 567 568 #ifndef PRODUCT 569 void Compile::print_ideal_ir(const char* phase_name) { 570 // keep the following output all in one block 571 // This output goes directly to the tty, not the compiler log. 572 // To enable tools to match it up with the compilation activity, 573 // be sure to tag this tty output with the compile ID. 574 575 // Node dumping can cause a safepoint, which can break the tty lock. 576 // Buffer all node dumps, so that all safepoints happen before we lock. 577 ResourceMark rm; 578 stringStream ss; 579 580 if (_output == nullptr) { 581 ss.print_cr("AFTER: %s", phase_name); 582 // Print out all nodes in ascending order of index. 583 root()->dump_bfs(MaxNodeLimit, nullptr, "+S$", &ss); 584 } else { 585 // Dump the node blockwise if we have a scheduling 586 _output->print_scheduling(&ss); 587 } 588 589 // Check that the lock is not broken by a safepoint. 590 NoSafepointVerifier nsv; 591 ttyLocker ttyl; 592 if (xtty != nullptr) { 593 xtty->head("ideal compile_id='%d'%s compile_phase='%s'", 594 compile_id(), 595 is_osr_compilation() ? " compile_kind='osr'" : "", 596 phase_name); 597 } 598 599 tty->print("%s", ss.as_string()); 600 601 if (xtty != nullptr) { 602 xtty->tail("ideal"); 603 } 604 } 605 #endif 606 607 // ============================================================================ 608 //------------------------------Compile standard------------------------------- 609 610 // Compile a method. entry_bci is -1 for normal compilations and indicates 611 // the continuation bci for on stack replacement. 612 613 614 Compile::Compile( ciEnv* ci_env, ciMethod* target, int osr_bci, 615 Options options, DirectiveSet* directive) 616 : Phase(Compiler), 617 _compile_id(ci_env->compile_id()), 618 _options(options), 619 _method(target), 620 _entry_bci(osr_bci), 621 _ilt(nullptr), 622 _stub_function(nullptr), 623 _stub_name(nullptr), 624 _stub_entry_point(nullptr), 625 _max_node_limit(MaxNodeLimit), 626 _post_loop_opts_phase(false), 627 _allow_macro_nodes(true), 628 _inlining_progress(false), 629 _inlining_incrementally(false), 630 _do_cleanup(false), 631 _has_reserved_stack_access(target->has_reserved_stack_access()), 632 #ifndef PRODUCT 633 _igv_idx(0), 634 _trace_opto_output(directive->TraceOptoOutputOption), 635 #endif 636 _has_method_handle_invokes(false), 637 _clinit_barrier_on_entry(false), 638 _has_clinit_barriers(false), 639 _stress_seed(0), 640 _comp_arena(mtCompiler), 641 _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())), 642 _env(ci_env), 643 _directive(directive), 644 _log(ci_env->log()), 645 _first_failure_details(nullptr), 646 _intrinsics (comp_arena(), 0, 0, nullptr), 647 _macro_nodes (comp_arena(), 8, 0, nullptr), 648 _parse_predicates (comp_arena(), 8, 0, nullptr), 649 _template_assertion_predicate_opaqs (comp_arena(), 8, 0, nullptr), 650 _expensive_nodes (comp_arena(), 8, 0, nullptr), 651 _for_post_loop_igvn(comp_arena(), 8, 0, nullptr), 652 _unstable_if_traps (comp_arena(), 8, 0, nullptr), 653 _coarsened_locks (comp_arena(), 8, 0, nullptr), 654 _congraph(nullptr), 655 NOT_PRODUCT(_igv_printer(nullptr) COMMA) 656 _unique(0), 657 _dead_node_count(0), 658 _dead_node_list(comp_arena()), 659 _node_arena_one(mtCompiler, Arena::Tag::tag_node), 660 _node_arena_two(mtCompiler, Arena::Tag::tag_node), 661 _node_arena(&_node_arena_one), 662 _mach_constant_base_node(nullptr), 663 _Compile_types(mtCompiler), 664 _initial_gvn(nullptr), 665 _igvn_worklist(nullptr), 666 _types(nullptr), 667 _node_hash(nullptr), 668 _late_inlines(comp_arena(), 2, 0, nullptr), 669 _string_late_inlines(comp_arena(), 2, 0, nullptr), 670 _boxing_late_inlines(comp_arena(), 2, 0, nullptr), 671 _vector_reboxing_late_inlines(comp_arena(), 2, 0, nullptr), 672 _late_inlines_pos(0), 673 _number_of_mh_late_inlines(0), 674 _oom(false), 675 _print_inlining_stream(new (mtCompiler) stringStream()), 676 _print_inlining_list(nullptr), 677 _print_inlining_idx(0), 678 _print_inlining_output(nullptr), 679 _replay_inline_data(nullptr), 680 _java_calls(0), 681 _inner_loops(0), 682 _interpreter_frame_size(0), 683 _output(nullptr) 684 #ifndef PRODUCT 685 , _in_dump_cnt(0) 686 #endif 687 { 688 C = this; 689 CompileWrapper cw(this); 690 691 TraceTime t1("Total compilation time", &_t_totalCompilation, CITime, CITimeVerbose); 692 TraceTime t2(nullptr, &_t_methodCompilation, CITime, false); 693 694 #if defined(SUPPORT_ASSEMBLY) || defined(SUPPORT_ABSTRACT_ASSEMBLY) 695 bool print_opto_assembly = directive->PrintOptoAssemblyOption; 696 // We can always print a disassembly, either abstract (hex dump) or 697 // with the help of a suitable hsdis library. Thus, we should not 698 // couple print_assembly and print_opto_assembly controls. 699 // But: always print opto and regular assembly on compile command 'print'. 700 bool print_assembly = directive->PrintAssemblyOption; 701 set_print_assembly(print_opto_assembly || print_assembly); 702 #else 703 set_print_assembly(false); // must initialize. 704 #endif 705 706 #ifndef PRODUCT 707 set_parsed_irreducible_loop(false); 708 #endif 709 710 if (directive->ReplayInlineOption) { 711 _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level()); 712 } 713 set_print_inlining(directive->PrintInliningOption || PrintOptoInlining); 714 set_print_intrinsics(directive->PrintIntrinsicsOption); 715 set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it 716 717 if (ProfileTraps) { 718 // Make sure the method being compiled gets its own MDO, 719 // so we can at least track the decompile_count(). 720 method()->ensure_method_data(); 721 } 722 723 if (StressLCM || StressGCM || StressIGVN || StressCCP || 724 StressIncrementalInlining || StressMacroExpansion || StressUnstableIfTraps || StressBailout) { 725 initialize_stress_seed(directive); 726 } 727 728 Init(/*do_aliasing=*/ true); 729 730 print_compile_messages(); 731 732 _ilt = InlineTree::build_inline_tree_root(); 733 734 // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice 735 assert(num_alias_types() >= AliasIdxRaw, ""); 736 737 #define MINIMUM_NODE_HASH 1023 738 739 // GVN that will be run immediately on new nodes 740 uint estimated_size = method()->code_size()*4+64; 741 estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size); 742 _igvn_worklist = new (comp_arena()) Unique_Node_List(comp_arena()); 743 _types = new (comp_arena()) Type_Array(comp_arena()); 744 _node_hash = new (comp_arena()) NodeHash(comp_arena(), estimated_size); 745 PhaseGVN gvn; 746 set_initial_gvn(&gvn); 747 748 print_inlining_init(); 749 { // Scope for timing the parser 750 TracePhase tp(_t_parser); 751 752 // Put top into the hash table ASAP. 753 initial_gvn()->transform(top()); 754 755 // Set up tf(), start(), and find a CallGenerator. 756 CallGenerator* cg = nullptr; 757 if (is_osr_compilation()) { 758 const TypeTuple *domain = StartOSRNode::osr_domain(); 759 const TypeTuple *range = TypeTuple::make_range(method()->signature()); 760 init_tf(TypeFunc::make(domain, range)); 761 StartNode* s = new StartOSRNode(root(), domain); 762 initial_gvn()->set_type_bottom(s); 763 verify_start(s); 764 cg = CallGenerator::for_osr(method(), entry_bci()); 765 } else { 766 // Normal case. 767 init_tf(TypeFunc::make(method())); 768 StartNode* s = new StartNode(root(), tf()->domain()); 769 initial_gvn()->set_type_bottom(s); 770 verify_start(s); 771 if (method()->intrinsic_id() == vmIntrinsics::_Reference_get) { 772 // With java.lang.ref.reference.get() we must go through the 773 // intrinsic - even when get() is the root 774 // method of the compile - so that, if necessary, the value in 775 // the referent field of the reference object gets recorded by 776 // the pre-barrier code. 777 cg = find_intrinsic(method(), false); 778 } 779 if (cg == nullptr) { 780 float past_uses = method()->interpreter_invocation_count(); 781 float expected_uses = past_uses; 782 cg = CallGenerator::for_inline(method(), expected_uses); 783 } 784 } 785 if (failing()) return; 786 if (cg == nullptr) { 787 const char* reason = InlineTree::check_can_parse(method()); 788 assert(reason != nullptr, "expect reason for parse failure"); 789 stringStream ss; 790 ss.print("cannot parse method: %s", reason); 791 record_method_not_compilable(ss.as_string()); 792 return; 793 } 794 795 gvn.set_type(root(), root()->bottom_type()); 796 797 JVMState* jvms = build_start_state(start(), tf()); 798 if ((jvms = cg->generate(jvms)) == nullptr) { 799 assert(failure_reason() != nullptr, "expect reason for parse failure"); 800 stringStream ss; 801 ss.print("method parse failed: %s", failure_reason()); 802 record_method_not_compilable(ss.as_string() DEBUG_ONLY(COMMA true)); 803 return; 804 } 805 GraphKit kit(jvms); 806 807 if (!kit.stopped()) { 808 // Accept return values, and transfer control we know not where. 809 // This is done by a special, unique ReturnNode bound to root. 810 return_values(kit.jvms()); 811 } 812 813 if (kit.has_exceptions()) { 814 // Any exceptions that escape from this call must be rethrown 815 // to whatever caller is dynamically above us on the stack. 816 // This is done by a special, unique RethrowNode bound to root. 817 rethrow_exceptions(kit.transfer_exceptions_into_jvms()); 818 } 819 820 assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off"); 821 822 if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) { 823 inline_string_calls(true); 824 } 825 826 if (failing()) return; 827 828 // Remove clutter produced by parsing. 829 if (!failing()) { 830 ResourceMark rm; 831 PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist()); 832 } 833 } 834 835 // Note: Large methods are capped off in do_one_bytecode(). 836 if (failing()) return; 837 838 // After parsing, node notes are no longer automagic. 839 // They must be propagated by register_new_node_with_optimizer(), 840 // clone(), or the like. 841 set_default_node_notes(nullptr); 842 843 #ifndef PRODUCT 844 if (should_print_igv(1)) { 845 _igv_printer->print_inlining(); 846 } 847 #endif 848 849 if (failing()) return; 850 NOT_PRODUCT( verify_graph_edges(); ) 851 852 // Now optimize 853 Optimize(); 854 if (failing()) return; 855 NOT_PRODUCT( verify_graph_edges(); ) 856 857 #ifndef PRODUCT 858 if (should_print_ideal()) { 859 print_ideal_ir("print_ideal"); 860 } 861 #endif 862 863 #ifdef ASSERT 864 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 865 bs->verify_gc_barriers(this, BarrierSetC2::BeforeCodeGen); 866 #endif 867 868 // Dump compilation data to replay it. 869 if (directive->DumpReplayOption) { 870 env()->dump_replay_data(_compile_id); 871 } 872 if (directive->DumpInlineOption && (ilt() != nullptr)) { 873 env()->dump_inline_data(_compile_id); 874 } 875 876 // Now that we know the size of all the monitors we can add a fixed slot 877 // for the original deopt pc. 878 int next_slot = fixed_slots() + (sizeof(address) / VMRegImpl::stack_slot_size); 879 set_fixed_slots(next_slot); 880 881 // Compute when to use implicit null checks. Used by matching trap based 882 // nodes and NullCheck optimization. 883 set_allowed_deopt_reasons(); 884 885 // Now generate code 886 Code_Gen(); 887 } 888 889 //------------------------------Compile---------------------------------------- 890 // Compile a runtime stub 891 Compile::Compile( ciEnv* ci_env, 892 TypeFunc_generator generator, 893 address stub_function, 894 const char *stub_name, 895 int is_fancy_jump, 896 bool pass_tls, 897 bool return_pc, 898 DirectiveSet* directive) 899 : Phase(Compiler), 900 _compile_id(0), 901 _options(Options::for_runtime_stub()), 902 _method(nullptr), 903 _entry_bci(InvocationEntryBci), 904 _stub_function(stub_function), 905 _stub_name(stub_name), 906 _stub_entry_point(nullptr), 907 _max_node_limit(MaxNodeLimit), 908 _post_loop_opts_phase(false), 909 _allow_macro_nodes(true), 910 _inlining_progress(false), 911 _inlining_incrementally(false), 912 _has_reserved_stack_access(false), 913 #ifndef PRODUCT 914 _igv_idx(0), 915 _trace_opto_output(directive->TraceOptoOutputOption), 916 #endif 917 _has_method_handle_invokes(false), 918 _clinit_barrier_on_entry(false), 919 _has_clinit_barriers(false), 920 _stress_seed(0), 921 _comp_arena(mtCompiler), 922 _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())), 923 _env(ci_env), 924 _directive(directive), 925 _log(ci_env->log()), 926 _first_failure_details(nullptr), 927 _for_post_loop_igvn(comp_arena(), 8, 0, nullptr), 928 _congraph(nullptr), 929 NOT_PRODUCT(_igv_printer(nullptr) COMMA) 930 _unique(0), 931 _dead_node_count(0), 932 _dead_node_list(comp_arena()), 933 _node_arena_one(mtCompiler), 934 _node_arena_two(mtCompiler), 935 _node_arena(&_node_arena_one), 936 _mach_constant_base_node(nullptr), 937 _Compile_types(mtCompiler), 938 _initial_gvn(nullptr), 939 _igvn_worklist(nullptr), 940 _types(nullptr), 941 _node_hash(nullptr), 942 _number_of_mh_late_inlines(0), 943 _oom(false), 944 _print_inlining_stream(new (mtCompiler) stringStream()), 945 _print_inlining_list(nullptr), 946 _print_inlining_idx(0), 947 _print_inlining_output(nullptr), 948 _replay_inline_data(nullptr), 949 _java_calls(0), 950 _inner_loops(0), 951 _interpreter_frame_size(0), 952 _output(nullptr), 953 #ifndef PRODUCT 954 _in_dump_cnt(0), 955 #endif 956 _allowed_reasons(0) { 957 C = this; 958 959 TraceTime t1(nullptr, &_t_totalCompilation, CITime, false); 960 TraceTime t2(nullptr, &_t_stubCompilation, CITime, false); 961 962 #ifndef PRODUCT 963 set_print_assembly(PrintFrameConverterAssembly); 964 set_parsed_irreducible_loop(false); 965 #else 966 set_print_assembly(false); // Must initialize. 967 #endif 968 set_has_irreducible_loop(false); // no loops 969 970 CompileWrapper cw(this); 971 Init(/*do_aliasing=*/ false); 972 init_tf((*generator)()); 973 974 _igvn_worklist = new (comp_arena()) Unique_Node_List(comp_arena()); 975 _types = new (comp_arena()) Type_Array(comp_arena()); 976 _node_hash = new (comp_arena()) NodeHash(comp_arena(), 255); 977 978 if (StressLCM || StressGCM || StressBailout) { 979 initialize_stress_seed(directive); 980 } 981 982 { 983 PhaseGVN gvn; 984 set_initial_gvn(&gvn); // not significant, but GraphKit guys use it pervasively 985 gvn.transform(top()); 986 987 GraphKit kit; 988 kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc); 989 } 990 991 NOT_PRODUCT( verify_graph_edges(); ) 992 993 Code_Gen(); 994 } 995 996 Compile::~Compile() { 997 delete _print_inlining_stream; 998 delete _first_failure_details; 999 }; 1000 1001 //------------------------------Init------------------------------------------- 1002 // Prepare for a single compilation 1003 void Compile::Init(bool aliasing) { 1004 _do_aliasing = aliasing; 1005 _unique = 0; 1006 _regalloc = nullptr; 1007 1008 _tf = nullptr; // filled in later 1009 _top = nullptr; // cached later 1010 _matcher = nullptr; // filled in later 1011 _cfg = nullptr; // filled in later 1012 1013 IA32_ONLY( set_24_bit_selection_and_mode(true, false); ) 1014 1015 _node_note_array = nullptr; 1016 _default_node_notes = nullptr; 1017 DEBUG_ONLY( _modified_nodes = nullptr; ) // Used in Optimize() 1018 1019 _immutable_memory = nullptr; // filled in at first inquiry 1020 1021 #ifdef ASSERT 1022 _phase_optimize_finished = false; 1023 _phase_verify_ideal_loop = false; 1024 _exception_backedge = false; 1025 _type_verify = nullptr; 1026 #endif 1027 1028 // Globally visible Nodes 1029 // First set TOP to null to give safe behavior during creation of RootNode 1030 set_cached_top_node(nullptr); 1031 set_root(new RootNode()); 1032 // Now that you have a Root to point to, create the real TOP 1033 set_cached_top_node( new ConNode(Type::TOP) ); 1034 set_recent_alloc(nullptr, nullptr); 1035 1036 // Create Debug Information Recorder to record scopes, oopmaps, etc. 1037 env()->set_oop_recorder(new OopRecorder(env()->arena())); 1038 env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder())); 1039 env()->set_dependencies(new Dependencies(env())); 1040 1041 _fixed_slots = 0; 1042 set_has_split_ifs(false); 1043 set_has_loops(false); // first approximation 1044 set_has_stringbuilder(false); 1045 set_has_boxed_value(false); 1046 _trap_can_recompile = false; // no traps emitted yet 1047 _major_progress = true; // start out assuming good things will happen 1048 set_has_unsafe_access(false); 1049 set_max_vector_size(0); 1050 set_clear_upper_avx(false); //false as default for clear upper bits of ymm registers 1051 Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist)); 1052 set_decompile_count(0); 1053 1054 #ifndef PRODUCT 1055 Copy::zero_to_bytes(_igv_phase_iter, sizeof(_igv_phase_iter)); 1056 #endif 1057 1058 set_do_freq_based_layout(_directive->BlockLayoutByFrequencyOption); 1059 _loop_opts_cnt = LoopOptsCount; 1060 set_do_inlining(Inline); 1061 set_max_inline_size(MaxInlineSize); 1062 set_freq_inline_size(FreqInlineSize); 1063 set_do_scheduling(OptoScheduling); 1064 1065 set_do_vector_loop(false); 1066 set_has_monitors(false); 1067 set_has_scoped_access(false); 1068 1069 if (AllowVectorizeOnDemand) { 1070 if (has_method() && _directive->VectorizeOption) { 1071 set_do_vector_loop(true); 1072 NOT_PRODUCT(if (do_vector_loop() && Verbose) {tty->print("Compile::Init: do vectorized loops (SIMD like) for method %s\n", method()->name()->as_quoted_ascii());}) 1073 } else if (has_method() && method()->name() != nullptr && 1074 method()->intrinsic_id() == vmIntrinsics::_forEachRemaining) { 1075 set_do_vector_loop(true); 1076 } 1077 } 1078 set_use_cmove(UseCMoveUnconditionally /* || do_vector_loop()*/); //TODO: consider do_vector_loop() mandate use_cmove unconditionally 1079 NOT_PRODUCT(if (use_cmove() && Verbose && has_method()) {tty->print("Compile::Init: use CMove without profitability tests for method %s\n", method()->name()->as_quoted_ascii());}) 1080 1081 _max_node_limit = _directive->MaxNodeLimitOption; 1082 1083 if (VM_Version::supports_fast_class_init_checks() && has_method() && !is_osr_compilation() && 1084 (method()->needs_clinit_barrier() || (do_clinit_barriers() && method()->is_static()))) { 1085 set_clinit_barrier_on_entry(true); 1086 if (do_clinit_barriers()) { 1087 set_has_clinit_barriers(true); // Entry clinit barrier is in prolog code. 1088 } 1089 } 1090 if (debug_info()->recording_non_safepoints()) { 1091 set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*> 1092 (comp_arena(), 8, 0, nullptr)); 1093 set_default_node_notes(Node_Notes::make(this)); 1094 } 1095 1096 const int grow_ats = 16; 1097 _max_alias_types = grow_ats; 1098 _alias_types = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats); 1099 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, grow_ats); 1100 Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats); 1101 { 1102 for (int i = 0; i < grow_ats; i++) _alias_types[i] = &ats[i]; 1103 } 1104 // Initialize the first few types. 1105 _alias_types[AliasIdxTop]->Init(AliasIdxTop, nullptr); 1106 _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM); 1107 _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM); 1108 _num_alias_types = AliasIdxRaw+1; 1109 // Zero out the alias type cache. 1110 Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache)); 1111 // A null adr_type hits in the cache right away. Preload the right answer. 1112 probe_alias_cache(nullptr)->_index = AliasIdxTop; 1113 } 1114 1115 #ifdef ASSERT 1116 // Verify that the current StartNode is valid. 1117 void Compile::verify_start(StartNode* s) const { 1118 assert(failing_internal() || s == start(), "should be StartNode"); 1119 } 1120 #endif 1121 1122 /** 1123 * Return the 'StartNode'. We must not have a pending failure, since the ideal graph 1124 * can be in an inconsistent state, i.e., we can get segmentation faults when traversing 1125 * the ideal graph. 1126 */ 1127 StartNode* Compile::start() const { 1128 assert (!failing_internal() || C->failure_is_artificial(), "Must not have pending failure. Reason is: %s", failure_reason()); 1129 for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) { 1130 Node* start = root()->fast_out(i); 1131 if (start->is_Start()) { 1132 return start->as_Start(); 1133 } 1134 } 1135 fatal("Did not find Start node!"); 1136 return nullptr; 1137 } 1138 1139 //-------------------------------immutable_memory------------------------------------- 1140 // Access immutable memory 1141 Node* Compile::immutable_memory() { 1142 if (_immutable_memory != nullptr) { 1143 return _immutable_memory; 1144 } 1145 StartNode* s = start(); 1146 for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) { 1147 Node *p = s->fast_out(i); 1148 if (p != s && p->as_Proj()->_con == TypeFunc::Memory) { 1149 _immutable_memory = p; 1150 return _immutable_memory; 1151 } 1152 } 1153 ShouldNotReachHere(); 1154 return nullptr; 1155 } 1156 1157 //----------------------set_cached_top_node------------------------------------ 1158 // Install the cached top node, and make sure Node::is_top works correctly. 1159 void Compile::set_cached_top_node(Node* tn) { 1160 if (tn != nullptr) verify_top(tn); 1161 Node* old_top = _top; 1162 _top = tn; 1163 // Calling Node::setup_is_top allows the nodes the chance to adjust 1164 // their _out arrays. 1165 if (_top != nullptr) _top->setup_is_top(); 1166 if (old_top != nullptr) old_top->setup_is_top(); 1167 assert(_top == nullptr || top()->is_top(), ""); 1168 } 1169 1170 #ifdef ASSERT 1171 uint Compile::count_live_nodes_by_graph_walk() { 1172 Unique_Node_List useful(comp_arena()); 1173 // Get useful node list by walking the graph. 1174 identify_useful_nodes(useful); 1175 return useful.size(); 1176 } 1177 1178 void Compile::print_missing_nodes() { 1179 1180 // Return if CompileLog is null and PrintIdealNodeCount is false. 1181 if ((_log == nullptr) && (! PrintIdealNodeCount)) { 1182 return; 1183 } 1184 1185 // This is an expensive function. It is executed only when the user 1186 // specifies VerifyIdealNodeCount option or otherwise knows the 1187 // additional work that needs to be done to identify reachable nodes 1188 // by walking the flow graph and find the missing ones using 1189 // _dead_node_list. 1190 1191 Unique_Node_List useful(comp_arena()); 1192 // Get useful node list by walking the graph. 1193 identify_useful_nodes(useful); 1194 1195 uint l_nodes = C->live_nodes(); 1196 uint l_nodes_by_walk = useful.size(); 1197 1198 if (l_nodes != l_nodes_by_walk) { 1199 if (_log != nullptr) { 1200 _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk))); 1201 _log->stamp(); 1202 _log->end_head(); 1203 } 1204 VectorSet& useful_member_set = useful.member_set(); 1205 int last_idx = l_nodes_by_walk; 1206 for (int i = 0; i < last_idx; i++) { 1207 if (useful_member_set.test(i)) { 1208 if (_dead_node_list.test(i)) { 1209 if (_log != nullptr) { 1210 _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i); 1211 } 1212 if (PrintIdealNodeCount) { 1213 // Print the log message to tty 1214 tty->print_cr("mismatched_node idx='%d' both live and dead'", i); 1215 useful.at(i)->dump(); 1216 } 1217 } 1218 } 1219 else if (! _dead_node_list.test(i)) { 1220 if (_log != nullptr) { 1221 _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i); 1222 } 1223 if (PrintIdealNodeCount) { 1224 // Print the log message to tty 1225 tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i); 1226 } 1227 } 1228 } 1229 if (_log != nullptr) { 1230 _log->tail("mismatched_nodes"); 1231 } 1232 } 1233 } 1234 void Compile::record_modified_node(Node* n) { 1235 if (_modified_nodes != nullptr && !_inlining_incrementally && !n->is_Con()) { 1236 _modified_nodes->push(n); 1237 } 1238 } 1239 1240 void Compile::remove_modified_node(Node* n) { 1241 if (_modified_nodes != nullptr) { 1242 _modified_nodes->remove(n); 1243 } 1244 } 1245 #endif 1246 1247 #ifndef PRODUCT 1248 void Compile::verify_top(Node* tn) const { 1249 if (tn != nullptr) { 1250 assert(tn->is_Con(), "top node must be a constant"); 1251 assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type"); 1252 assert(tn->in(0) != nullptr, "must have live top node"); 1253 } 1254 } 1255 #endif 1256 1257 1258 ///-------------------Managing Per-Node Debug & Profile Info------------------- 1259 1260 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) { 1261 guarantee(arr != nullptr, ""); 1262 int num_blocks = arr->length(); 1263 if (grow_by < num_blocks) grow_by = num_blocks; 1264 int num_notes = grow_by * _node_notes_block_size; 1265 Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes); 1266 Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes)); 1267 while (num_notes > 0) { 1268 arr->append(notes); 1269 notes += _node_notes_block_size; 1270 num_notes -= _node_notes_block_size; 1271 } 1272 assert(num_notes == 0, "exact multiple, please"); 1273 } 1274 1275 bool Compile::copy_node_notes_to(Node* dest, Node* source) { 1276 if (source == nullptr || dest == nullptr) return false; 1277 1278 if (dest->is_Con()) 1279 return false; // Do not push debug info onto constants. 1280 1281 #ifdef ASSERT 1282 // Leave a bread crumb trail pointing to the original node: 1283 if (dest != nullptr && dest != source && dest->debug_orig() == nullptr) { 1284 dest->set_debug_orig(source); 1285 } 1286 #endif 1287 1288 if (node_note_array() == nullptr) 1289 return false; // Not collecting any notes now. 1290 1291 // This is a copy onto a pre-existing node, which may already have notes. 1292 // If both nodes have notes, do not overwrite any pre-existing notes. 1293 Node_Notes* source_notes = node_notes_at(source->_idx); 1294 if (source_notes == nullptr || source_notes->is_clear()) return false; 1295 Node_Notes* dest_notes = node_notes_at(dest->_idx); 1296 if (dest_notes == nullptr || dest_notes->is_clear()) { 1297 return set_node_notes_at(dest->_idx, source_notes); 1298 } 1299 1300 Node_Notes merged_notes = (*source_notes); 1301 // The order of operations here ensures that dest notes will win... 1302 merged_notes.update_from(dest_notes); 1303 return set_node_notes_at(dest->_idx, &merged_notes); 1304 } 1305 1306 1307 //--------------------------allow_range_check_smearing------------------------- 1308 // Gating condition for coalescing similar range checks. 1309 // Sometimes we try 'speculatively' replacing a series of a range checks by a 1310 // single covering check that is at least as strong as any of them. 1311 // If the optimization succeeds, the simplified (strengthened) range check 1312 // will always succeed. If it fails, we will deopt, and then give up 1313 // on the optimization. 1314 bool Compile::allow_range_check_smearing() const { 1315 // If this method has already thrown a range-check, 1316 // assume it was because we already tried range smearing 1317 // and it failed. 1318 uint already_trapped = trap_count(Deoptimization::Reason_range_check); 1319 return !already_trapped; 1320 } 1321 1322 1323 //------------------------------flatten_alias_type----------------------------- 1324 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const { 1325 assert(do_aliasing(), "Aliasing should be enabled"); 1326 int offset = tj->offset(); 1327 TypePtr::PTR ptr = tj->ptr(); 1328 1329 // Known instance (scalarizable allocation) alias only with itself. 1330 bool is_known_inst = tj->isa_oopptr() != nullptr && 1331 tj->is_oopptr()->is_known_instance(); 1332 1333 // Process weird unsafe references. 1334 if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) { 1335 assert(InlineUnsafeOps || StressReflectiveCode, "indeterminate pointers come only from unsafe ops"); 1336 assert(!is_known_inst, "scalarizable allocation should not have unsafe references"); 1337 tj = TypeOopPtr::BOTTOM; 1338 ptr = tj->ptr(); 1339 offset = tj->offset(); 1340 } 1341 1342 // Array pointers need some flattening 1343 const TypeAryPtr* ta = tj->isa_aryptr(); 1344 if (ta && ta->is_stable()) { 1345 // Erase stability property for alias analysis. 1346 tj = ta = ta->cast_to_stable(false); 1347 } 1348 if( ta && is_known_inst ) { 1349 if ( offset != Type::OffsetBot && 1350 offset > arrayOopDesc::length_offset_in_bytes() ) { 1351 offset = Type::OffsetBot; // Flatten constant access into array body only 1352 tj = ta = ta-> 1353 remove_speculative()-> 1354 cast_to_ptr_type(ptr)-> 1355 with_offset(offset); 1356 } 1357 } else if (ta) { 1358 // For arrays indexed by constant indices, we flatten the alias 1359 // space to include all of the array body. Only the header, klass 1360 // and array length can be accessed un-aliased. 1361 if( offset != Type::OffsetBot ) { 1362 if( ta->const_oop() ) { // MethodData* or Method* 1363 offset = Type::OffsetBot; // Flatten constant access into array body 1364 tj = ta = ta-> 1365 remove_speculative()-> 1366 cast_to_ptr_type(ptr)-> 1367 cast_to_exactness(false)-> 1368 with_offset(offset); 1369 } else if( offset == arrayOopDesc::length_offset_in_bytes() ) { 1370 // range is OK as-is. 1371 tj = ta = TypeAryPtr::RANGE; 1372 } else if( offset == oopDesc::klass_offset_in_bytes() ) { 1373 tj = TypeInstPtr::KLASS; // all klass loads look alike 1374 ta = TypeAryPtr::RANGE; // generic ignored junk 1375 ptr = TypePtr::BotPTR; 1376 } else if( offset == oopDesc::mark_offset_in_bytes() ) { 1377 tj = TypeInstPtr::MARK; 1378 ta = TypeAryPtr::RANGE; // generic ignored junk 1379 ptr = TypePtr::BotPTR; 1380 } else { // Random constant offset into array body 1381 offset = Type::OffsetBot; // Flatten constant access into array body 1382 tj = ta = ta-> 1383 remove_speculative()-> 1384 cast_to_ptr_type(ptr)-> 1385 cast_to_exactness(false)-> 1386 with_offset(offset); 1387 } 1388 } 1389 // Arrays of fixed size alias with arrays of unknown size. 1390 if (ta->size() != TypeInt::POS) { 1391 const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS); 1392 tj = ta = ta-> 1393 remove_speculative()-> 1394 cast_to_ptr_type(ptr)-> 1395 with_ary(tary)-> 1396 cast_to_exactness(false); 1397 } 1398 // Arrays of known objects become arrays of unknown objects. 1399 if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) { 1400 const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size()); 1401 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,nullptr,false,offset); 1402 } 1403 if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) { 1404 const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size()); 1405 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,nullptr,false,offset); 1406 } 1407 // Arrays of bytes and of booleans both use 'bastore' and 'baload' so 1408 // cannot be distinguished by bytecode alone. 1409 if (ta->elem() == TypeInt::BOOL) { 1410 const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size()); 1411 ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE); 1412 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset); 1413 } 1414 // During the 2nd round of IterGVN, NotNull castings are removed. 1415 // Make sure the Bottom and NotNull variants alias the same. 1416 // Also, make sure exact and non-exact variants alias the same. 1417 if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != nullptr) { 1418 tj = ta = ta-> 1419 remove_speculative()-> 1420 cast_to_ptr_type(TypePtr::BotPTR)-> 1421 cast_to_exactness(false)-> 1422 with_offset(offset); 1423 } 1424 } 1425 1426 // Oop pointers need some flattening 1427 const TypeInstPtr *to = tj->isa_instptr(); 1428 if (to && to != TypeOopPtr::BOTTOM) { 1429 ciInstanceKlass* ik = to->instance_klass(); 1430 if( ptr == TypePtr::Constant ) { 1431 if (ik != ciEnv::current()->Class_klass() || 1432 offset < ik->layout_helper_size_in_bytes()) { 1433 // No constant oop pointers (such as Strings); they alias with 1434 // unknown strings. 1435 assert(!is_known_inst, "not scalarizable allocation"); 1436 tj = to = to-> 1437 cast_to_instance_id(TypeOopPtr::InstanceBot)-> 1438 remove_speculative()-> 1439 cast_to_ptr_type(TypePtr::BotPTR)-> 1440 cast_to_exactness(false); 1441 } 1442 } else if( is_known_inst ) { 1443 tj = to; // Keep NotNull and klass_is_exact for instance type 1444 } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) { 1445 // During the 2nd round of IterGVN, NotNull castings are removed. 1446 // Make sure the Bottom and NotNull variants alias the same. 1447 // Also, make sure exact and non-exact variants alias the same. 1448 tj = to = to-> 1449 remove_speculative()-> 1450 cast_to_instance_id(TypeOopPtr::InstanceBot)-> 1451 cast_to_ptr_type(TypePtr::BotPTR)-> 1452 cast_to_exactness(false); 1453 } 1454 if (to->speculative() != nullptr) { 1455 tj = to = to->remove_speculative(); 1456 } 1457 // Canonicalize the holder of this field 1458 if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) { 1459 // First handle header references such as a LoadKlassNode, even if the 1460 // object's klass is unloaded at compile time (4965979). 1461 if (!is_known_inst) { // Do it only for non-instance types 1462 tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, nullptr, offset); 1463 } 1464 } else if (offset < 0 || offset >= ik->layout_helper_size_in_bytes()) { 1465 // Static fields are in the space above the normal instance 1466 // fields in the java.lang.Class instance. 1467 if (ik != ciEnv::current()->Class_klass()) { 1468 to = nullptr; 1469 tj = TypeOopPtr::BOTTOM; 1470 offset = tj->offset(); 1471 } 1472 } else { 1473 ciInstanceKlass *canonical_holder = ik->get_canonical_holder(offset); 1474 assert(offset < canonical_holder->layout_helper_size_in_bytes(), ""); 1475 assert(tj->offset() == offset, "no change to offset expected"); 1476 bool xk = to->klass_is_exact(); 1477 int instance_id = to->instance_id(); 1478 1479 // If the input type's class is the holder: if exact, the type only includes interfaces implemented by the holder 1480 // but if not exact, it may include extra interfaces: build new type from the holder class to make sure only 1481 // its interfaces are included. 1482 if (xk && ik->equals(canonical_holder)) { 1483 assert(tj == TypeInstPtr::make(to->ptr(), canonical_holder, is_known_inst, nullptr, offset, instance_id), "exact type should be canonical type"); 1484 } else { 1485 assert(xk || !is_known_inst, "Known instance should be exact type"); 1486 tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, is_known_inst, nullptr, offset, instance_id); 1487 } 1488 } 1489 } 1490 1491 // Klass pointers to object array klasses need some flattening 1492 const TypeKlassPtr *tk = tj->isa_klassptr(); 1493 if( tk ) { 1494 // If we are referencing a field within a Klass, we need 1495 // to assume the worst case of an Object. Both exact and 1496 // inexact types must flatten to the same alias class so 1497 // use NotNull as the PTR. 1498 if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) { 1499 tj = tk = TypeInstKlassPtr::make(TypePtr::NotNull, 1500 env()->Object_klass(), 1501 offset); 1502 } 1503 1504 if (tk->isa_aryklassptr() && tk->is_aryklassptr()->elem()->isa_klassptr()) { 1505 ciKlass* k = ciObjArrayKlass::make(env()->Object_klass()); 1506 if (!k || !k->is_loaded()) { // Only fails for some -Xcomp runs 1507 tj = tk = TypeInstKlassPtr::make(TypePtr::NotNull, env()->Object_klass(), offset); 1508 } else { 1509 tj = tk = TypeAryKlassPtr::make(TypePtr::NotNull, tk->is_aryklassptr()->elem(), k, offset); 1510 } 1511 } 1512 1513 // Check for precise loads from the primary supertype array and force them 1514 // to the supertype cache alias index. Check for generic array loads from 1515 // the primary supertype array and also force them to the supertype cache 1516 // alias index. Since the same load can reach both, we need to merge 1517 // these 2 disparate memories into the same alias class. Since the 1518 // primary supertype array is read-only, there's no chance of confusion 1519 // where we bypass an array load and an array store. 1520 int primary_supers_offset = in_bytes(Klass::primary_supers_offset()); 1521 if (offset == Type::OffsetBot || 1522 (offset >= primary_supers_offset && 1523 offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) || 1524 offset == (int)in_bytes(Klass::secondary_super_cache_offset())) { 1525 offset = in_bytes(Klass::secondary_super_cache_offset()); 1526 tj = tk = tk->with_offset(offset); 1527 } 1528 } 1529 1530 // Flatten all Raw pointers together. 1531 if (tj->base() == Type::RawPtr) 1532 tj = TypeRawPtr::BOTTOM; 1533 1534 if (tj->base() == Type::AnyPtr) 1535 tj = TypePtr::BOTTOM; // An error, which the caller must check for. 1536 1537 offset = tj->offset(); 1538 assert( offset != Type::OffsetTop, "Offset has fallen from constant" ); 1539 1540 assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) || 1541 (offset == Type::OffsetBot && tj->base() == Type::AryPtr) || 1542 (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) || 1543 (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) || 1544 (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) || 1545 (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) || 1546 (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr), 1547 "For oops, klasses, raw offset must be constant; for arrays the offset is never known" ); 1548 assert( tj->ptr() != TypePtr::TopPTR && 1549 tj->ptr() != TypePtr::AnyNull && 1550 tj->ptr() != TypePtr::Null, "No imprecise addresses" ); 1551 // assert( tj->ptr() != TypePtr::Constant || 1552 // tj->base() == Type::RawPtr || 1553 // tj->base() == Type::KlassPtr, "No constant oop addresses" ); 1554 1555 return tj; 1556 } 1557 1558 void Compile::AliasType::Init(int i, const TypePtr* at) { 1559 assert(AliasIdxTop <= i && i < Compile::current()->_max_alias_types, "Invalid alias index"); 1560 _index = i; 1561 _adr_type = at; 1562 _field = nullptr; 1563 _element = nullptr; 1564 _is_rewritable = true; // default 1565 const TypeOopPtr *atoop = (at != nullptr) ? at->isa_oopptr() : nullptr; 1566 if (atoop != nullptr && atoop->is_known_instance()) { 1567 const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot); 1568 _general_index = Compile::current()->get_alias_index(gt); 1569 } else { 1570 _general_index = 0; 1571 } 1572 } 1573 1574 BasicType Compile::AliasType::basic_type() const { 1575 if (element() != nullptr) { 1576 const Type* element = adr_type()->is_aryptr()->elem(); 1577 return element->isa_narrowoop() ? T_OBJECT : element->array_element_basic_type(); 1578 } if (field() != nullptr) { 1579 return field()->layout_type(); 1580 } else { 1581 return T_ILLEGAL; // unknown 1582 } 1583 } 1584 1585 //---------------------------------print_on------------------------------------ 1586 #ifndef PRODUCT 1587 void Compile::AliasType::print_on(outputStream* st) { 1588 if (index() < 10) 1589 st->print("@ <%d> ", index()); 1590 else st->print("@ <%d>", index()); 1591 st->print(is_rewritable() ? " " : " RO"); 1592 int offset = adr_type()->offset(); 1593 if (offset == Type::OffsetBot) 1594 st->print(" +any"); 1595 else st->print(" +%-3d", offset); 1596 st->print(" in "); 1597 adr_type()->dump_on(st); 1598 const TypeOopPtr* tjp = adr_type()->isa_oopptr(); 1599 if (field() != nullptr && tjp) { 1600 if (tjp->is_instptr()->instance_klass() != field()->holder() || 1601 tjp->offset() != field()->offset_in_bytes()) { 1602 st->print(" != "); 1603 field()->print(); 1604 st->print(" ***"); 1605 } 1606 } 1607 } 1608 1609 void print_alias_types() { 1610 Compile* C = Compile::current(); 1611 tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1); 1612 for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) { 1613 C->alias_type(idx)->print_on(tty); 1614 tty->cr(); 1615 } 1616 } 1617 #endif 1618 1619 1620 //----------------------------probe_alias_cache-------------------------------- 1621 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) { 1622 intptr_t key = (intptr_t) adr_type; 1623 key ^= key >> logAliasCacheSize; 1624 return &_alias_cache[key & right_n_bits(logAliasCacheSize)]; 1625 } 1626 1627 1628 //-----------------------------grow_alias_types-------------------------------- 1629 void Compile::grow_alias_types() { 1630 const int old_ats = _max_alias_types; // how many before? 1631 const int new_ats = old_ats; // how many more? 1632 const int grow_ats = old_ats+new_ats; // how many now? 1633 _max_alias_types = grow_ats; 1634 _alias_types = REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats); 1635 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats); 1636 Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats); 1637 for (int i = 0; i < new_ats; i++) _alias_types[old_ats+i] = &ats[i]; 1638 } 1639 1640 1641 //--------------------------------find_alias_type------------------------------ 1642 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) { 1643 if (!do_aliasing()) { 1644 return alias_type(AliasIdxBot); 1645 } 1646 1647 AliasCacheEntry* ace = probe_alias_cache(adr_type); 1648 if (ace->_adr_type == adr_type) { 1649 return alias_type(ace->_index); 1650 } 1651 1652 // Handle special cases. 1653 if (adr_type == nullptr) return alias_type(AliasIdxTop); 1654 if (adr_type == TypePtr::BOTTOM) return alias_type(AliasIdxBot); 1655 1656 // Do it the slow way. 1657 const TypePtr* flat = flatten_alias_type(adr_type); 1658 1659 #ifdef ASSERT 1660 { 1661 ResourceMark rm; 1662 assert(flat == flatten_alias_type(flat), "not idempotent: adr_type = %s; flat = %s => %s", 1663 Type::str(adr_type), Type::str(flat), Type::str(flatten_alias_type(flat))); 1664 assert(flat != TypePtr::BOTTOM, "cannot alias-analyze an untyped ptr: adr_type = %s", 1665 Type::str(adr_type)); 1666 if (flat->isa_oopptr() && !flat->isa_klassptr()) { 1667 const TypeOopPtr* foop = flat->is_oopptr(); 1668 // Scalarizable allocations have exact klass always. 1669 bool exact = !foop->klass_is_exact() || foop->is_known_instance(); 1670 const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr(); 1671 assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type: foop = %s; xoop = %s", 1672 Type::str(foop), Type::str(xoop)); 1673 } 1674 } 1675 #endif 1676 1677 int idx = AliasIdxTop; 1678 for (int i = 0; i < num_alias_types(); i++) { 1679 if (alias_type(i)->adr_type() == flat) { 1680 idx = i; 1681 break; 1682 } 1683 } 1684 1685 if (idx == AliasIdxTop) { 1686 if (no_create) return nullptr; 1687 // Grow the array if necessary. 1688 if (_num_alias_types == _max_alias_types) grow_alias_types(); 1689 // Add a new alias type. 1690 idx = _num_alias_types++; 1691 _alias_types[idx]->Init(idx, flat); 1692 if (flat == TypeInstPtr::KLASS) alias_type(idx)->set_rewritable(false); 1693 if (flat == TypeAryPtr::RANGE) alias_type(idx)->set_rewritable(false); 1694 if (flat->isa_instptr()) { 1695 if (flat->offset() == java_lang_Class::klass_offset() 1696 && flat->is_instptr()->instance_klass() == env()->Class_klass()) 1697 alias_type(idx)->set_rewritable(false); 1698 } 1699 if (flat->isa_aryptr()) { 1700 #ifdef ASSERT 1701 const int header_size_min = arrayOopDesc::base_offset_in_bytes(T_BYTE); 1702 // (T_BYTE has the weakest alignment and size restrictions...) 1703 assert(flat->offset() < header_size_min, "array body reference must be OffsetBot"); 1704 #endif 1705 if (flat->offset() == TypePtr::OffsetBot) { 1706 alias_type(idx)->set_element(flat->is_aryptr()->elem()); 1707 } 1708 } 1709 if (flat->isa_klassptr()) { 1710 if (UseCompactObjectHeaders) { 1711 if (flat->offset() == in_bytes(Klass::prototype_header_offset())) 1712 alias_type(idx)->set_rewritable(false); 1713 } 1714 if (flat->offset() == in_bytes(Klass::super_check_offset_offset())) 1715 alias_type(idx)->set_rewritable(false); 1716 if (flat->offset() == in_bytes(Klass::modifier_flags_offset())) 1717 alias_type(idx)->set_rewritable(false); 1718 if (flat->offset() == in_bytes(Klass::access_flags_offset())) 1719 alias_type(idx)->set_rewritable(false); 1720 if (flat->offset() == in_bytes(Klass::misc_flags_offset())) 1721 alias_type(idx)->set_rewritable(false); 1722 if (flat->offset() == in_bytes(Klass::java_mirror_offset())) 1723 alias_type(idx)->set_rewritable(false); 1724 if (flat->offset() == in_bytes(Klass::secondary_super_cache_offset())) 1725 alias_type(idx)->set_rewritable(false); 1726 } 1727 // %%% (We would like to finalize JavaThread::threadObj_offset(), 1728 // but the base pointer type is not distinctive enough to identify 1729 // references into JavaThread.) 1730 1731 // Check for final fields. 1732 const TypeInstPtr* tinst = flat->isa_instptr(); 1733 if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) { 1734 ciField* field; 1735 if (tinst->const_oop() != nullptr && 1736 tinst->instance_klass() == ciEnv::current()->Class_klass() && 1737 tinst->offset() >= (tinst->instance_klass()->layout_helper_size_in_bytes())) { 1738 // static field 1739 ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass(); 1740 field = k->get_field_by_offset(tinst->offset(), true); 1741 } else { 1742 ciInstanceKlass *k = tinst->instance_klass(); 1743 field = k->get_field_by_offset(tinst->offset(), false); 1744 } 1745 assert(field == nullptr || 1746 original_field == nullptr || 1747 (field->holder() == original_field->holder() && 1748 field->offset_in_bytes() == original_field->offset_in_bytes() && 1749 field->is_static() == original_field->is_static()), "wrong field?"); 1750 // Set field() and is_rewritable() attributes. 1751 if (field != nullptr) alias_type(idx)->set_field(field); 1752 } 1753 } 1754 1755 // Fill the cache for next time. 1756 ace->_adr_type = adr_type; 1757 ace->_index = idx; 1758 assert(alias_type(adr_type) == alias_type(idx), "type must be installed"); 1759 1760 // Might as well try to fill the cache for the flattened version, too. 1761 AliasCacheEntry* face = probe_alias_cache(flat); 1762 if (face->_adr_type == nullptr) { 1763 face->_adr_type = flat; 1764 face->_index = idx; 1765 assert(alias_type(flat) == alias_type(idx), "flat type must work too"); 1766 } 1767 1768 return alias_type(idx); 1769 } 1770 1771 1772 Compile::AliasType* Compile::alias_type(ciField* field) { 1773 const TypeOopPtr* t; 1774 if (field->is_static()) 1775 t = TypeInstPtr::make(field->holder()->java_mirror()); 1776 else 1777 t = TypeOopPtr::make_from_klass_raw(field->holder()); 1778 AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field); 1779 assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct"); 1780 return atp; 1781 } 1782 1783 1784 //------------------------------have_alias_type-------------------------------- 1785 bool Compile::have_alias_type(const TypePtr* adr_type) { 1786 AliasCacheEntry* ace = probe_alias_cache(adr_type); 1787 if (ace->_adr_type == adr_type) { 1788 return true; 1789 } 1790 1791 // Handle special cases. 1792 if (adr_type == nullptr) return true; 1793 if (adr_type == TypePtr::BOTTOM) return true; 1794 1795 return find_alias_type(adr_type, true, nullptr) != nullptr; 1796 } 1797 1798 //-----------------------------must_alias-------------------------------------- 1799 // True if all values of the given address type are in the given alias category. 1800 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) { 1801 if (alias_idx == AliasIdxBot) return true; // the universal category 1802 if (adr_type == nullptr) return true; // null serves as TypePtr::TOP 1803 if (alias_idx == AliasIdxTop) return false; // the empty category 1804 if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins 1805 1806 // the only remaining possible overlap is identity 1807 int adr_idx = get_alias_index(adr_type); 1808 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, ""); 1809 assert(adr_idx == alias_idx || 1810 (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM 1811 && adr_type != TypeOopPtr::BOTTOM), 1812 "should not be testing for overlap with an unsafe pointer"); 1813 return adr_idx == alias_idx; 1814 } 1815 1816 //------------------------------can_alias-------------------------------------- 1817 // True if any values of the given address type are in the given alias category. 1818 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) { 1819 if (alias_idx == AliasIdxTop) return false; // the empty category 1820 if (adr_type == nullptr) return false; // null serves as TypePtr::TOP 1821 // Known instance doesn't alias with bottom memory 1822 if (alias_idx == AliasIdxBot) return !adr_type->is_known_instance(); // the universal category 1823 if (adr_type->base() == Type::AnyPtr) return !C->get_adr_type(alias_idx)->is_known_instance(); // TypePtr::BOTTOM or its twins 1824 1825 // the only remaining possible overlap is identity 1826 int adr_idx = get_alias_index(adr_type); 1827 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, ""); 1828 return adr_idx == alias_idx; 1829 } 1830 1831 // Mark all ParsePredicateNodes as useless. They will later be removed from the graph in IGVN together with their 1832 // uncommon traps if no Runtime Predicates were created from the Parse Predicates. 1833 void Compile::mark_parse_predicate_nodes_useless(PhaseIterGVN& igvn) { 1834 if (parse_predicate_count() == 0) { 1835 return; 1836 } 1837 for (int i = 0; i < parse_predicate_count(); i++) { 1838 ParsePredicateNode* parse_predicate = _parse_predicates.at(i); 1839 parse_predicate->mark_useless(); 1840 igvn._worklist.push(parse_predicate); 1841 } 1842 _parse_predicates.clear(); 1843 } 1844 1845 void Compile::record_for_post_loop_opts_igvn(Node* n) { 1846 if (!n->for_post_loop_opts_igvn()) { 1847 assert(!_for_post_loop_igvn.contains(n), "duplicate"); 1848 n->add_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn); 1849 _for_post_loop_igvn.append(n); 1850 } 1851 } 1852 1853 void Compile::remove_from_post_loop_opts_igvn(Node* n) { 1854 n->remove_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn); 1855 _for_post_loop_igvn.remove(n); 1856 } 1857 1858 void Compile::process_for_post_loop_opts_igvn(PhaseIterGVN& igvn) { 1859 // Verify that all previous optimizations produced a valid graph 1860 // at least to this point, even if no loop optimizations were done. 1861 PhaseIdealLoop::verify(igvn); 1862 1863 C->set_post_loop_opts_phase(); // no more loop opts allowed 1864 1865 assert(!C->major_progress(), "not cleared"); 1866 1867 if (_for_post_loop_igvn.length() > 0) { 1868 while (_for_post_loop_igvn.length() > 0) { 1869 Node* n = _for_post_loop_igvn.pop(); 1870 n->remove_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn); 1871 igvn._worklist.push(n); 1872 } 1873 igvn.optimize(); 1874 if (failing()) return; 1875 assert(_for_post_loop_igvn.length() == 0, "no more delayed nodes allowed"); 1876 assert(C->parse_predicate_count() == 0, "all parse predicates should have been removed now"); 1877 1878 // Sometimes IGVN sets major progress (e.g., when processing loop nodes). 1879 if (C->major_progress()) { 1880 C->clear_major_progress(); // ensure that major progress is now clear 1881 } 1882 } 1883 } 1884 1885 void Compile::record_unstable_if_trap(UnstableIfTrap* trap) { 1886 if (OptimizeUnstableIf) { 1887 _unstable_if_traps.append(trap); 1888 } 1889 } 1890 1891 void Compile::remove_useless_unstable_if_traps(Unique_Node_List& useful) { 1892 for (int i = _unstable_if_traps.length() - 1; i >= 0; i--) { 1893 UnstableIfTrap* trap = _unstable_if_traps.at(i); 1894 Node* n = trap->uncommon_trap(); 1895 if (!useful.member(n)) { 1896 _unstable_if_traps.delete_at(i); // replaces i-th with last element which is known to be useful (already processed) 1897 } 1898 } 1899 } 1900 1901 // Remove the unstable if trap associated with 'unc' from candidates. It is either dead 1902 // or fold-compares case. Return true if succeed or not found. 1903 // 1904 // In rare cases, the found trap has been processed. It is too late to delete it. Return 1905 // false and ask fold-compares to yield. 1906 // 1907 // 'fold-compares' may use the uncommon_trap of the dominating IfNode to cover the fused 1908 // IfNode. This breaks the unstable_if trap invariant: control takes the unstable path 1909 // when deoptimization does happen. 1910 bool Compile::remove_unstable_if_trap(CallStaticJavaNode* unc, bool yield) { 1911 for (int i = 0; i < _unstable_if_traps.length(); ++i) { 1912 UnstableIfTrap* trap = _unstable_if_traps.at(i); 1913 if (trap->uncommon_trap() == unc) { 1914 if (yield && trap->modified()) { 1915 return false; 1916 } 1917 _unstable_if_traps.delete_at(i); 1918 break; 1919 } 1920 } 1921 return true; 1922 } 1923 1924 // Re-calculate unstable_if traps with the liveness of next_bci, which points to the unlikely path. 1925 // It needs to be done after igvn because fold-compares may fuse uncommon_traps and before renumbering. 1926 void Compile::process_for_unstable_if_traps(PhaseIterGVN& igvn) { 1927 for (int i = _unstable_if_traps.length() - 1; i >= 0; --i) { 1928 UnstableIfTrap* trap = _unstable_if_traps.at(i); 1929 CallStaticJavaNode* unc = trap->uncommon_trap(); 1930 int next_bci = trap->next_bci(); 1931 bool modified = trap->modified(); 1932 1933 if (next_bci != -1 && !modified) { 1934 assert(!_dead_node_list.test(unc->_idx), "changing a dead node!"); 1935 JVMState* jvms = unc->jvms(); 1936 ciMethod* method = jvms->method(); 1937 ciBytecodeStream iter(method); 1938 1939 iter.force_bci(jvms->bci()); 1940 assert(next_bci == iter.next_bci() || next_bci == iter.get_dest(), "wrong next_bci at unstable_if"); 1941 Bytecodes::Code c = iter.cur_bc(); 1942 Node* lhs = nullptr; 1943 Node* rhs = nullptr; 1944 if (c == Bytecodes::_if_acmpeq || c == Bytecodes::_if_acmpne) { 1945 lhs = unc->peek_operand(0); 1946 rhs = unc->peek_operand(1); 1947 } else if (c == Bytecodes::_ifnull || c == Bytecodes::_ifnonnull) { 1948 lhs = unc->peek_operand(0); 1949 } 1950 1951 ResourceMark rm; 1952 const MethodLivenessResult& live_locals = method->liveness_at_bci(next_bci); 1953 assert(live_locals.is_valid(), "broken liveness info"); 1954 int len = (int)live_locals.size(); 1955 1956 for (int i = 0; i < len; i++) { 1957 Node* local = unc->local(jvms, i); 1958 // kill local using the liveness of next_bci. 1959 // give up when the local looks like an operand to secure reexecution. 1960 if (!live_locals.at(i) && !local->is_top() && local != lhs && local!= rhs) { 1961 uint idx = jvms->locoff() + i; 1962 #ifdef ASSERT 1963 if (PrintOpto && Verbose) { 1964 tty->print("[unstable_if] kill local#%d: ", idx); 1965 local->dump(); 1966 tty->cr(); 1967 } 1968 #endif 1969 igvn.replace_input_of(unc, idx, top()); 1970 modified = true; 1971 } 1972 } 1973 } 1974 1975 // keep the mondified trap for late query 1976 if (modified) { 1977 trap->set_modified(); 1978 } else { 1979 _unstable_if_traps.delete_at(i); 1980 } 1981 } 1982 igvn.optimize(); 1983 } 1984 1985 // StringOpts and late inlining of string methods 1986 void Compile::inline_string_calls(bool parse_time) { 1987 { 1988 // remove useless nodes to make the usage analysis simpler 1989 ResourceMark rm; 1990 PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist()); 1991 } 1992 1993 { 1994 ResourceMark rm; 1995 print_method(PHASE_BEFORE_STRINGOPTS, 3); 1996 PhaseStringOpts pso(initial_gvn()); 1997 print_method(PHASE_AFTER_STRINGOPTS, 3); 1998 } 1999 2000 // now inline anything that we skipped the first time around 2001 if (!parse_time) { 2002 _late_inlines_pos = _late_inlines.length(); 2003 } 2004 2005 while (_string_late_inlines.length() > 0) { 2006 CallGenerator* cg = _string_late_inlines.pop(); 2007 cg->do_late_inline(); 2008 if (failing()) return; 2009 } 2010 _string_late_inlines.trunc_to(0); 2011 } 2012 2013 // Late inlining of boxing methods 2014 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) { 2015 if (_boxing_late_inlines.length() > 0) { 2016 assert(has_boxed_value(), "inconsistent"); 2017 2018 set_inlining_incrementally(true); 2019 2020 igvn_worklist()->ensure_empty(); // should be done with igvn 2021 2022 _late_inlines_pos = _late_inlines.length(); 2023 2024 while (_boxing_late_inlines.length() > 0) { 2025 CallGenerator* cg = _boxing_late_inlines.pop(); 2026 cg->do_late_inline(); 2027 if (failing()) return; 2028 } 2029 _boxing_late_inlines.trunc_to(0); 2030 2031 inline_incrementally_cleanup(igvn); 2032 2033 set_inlining_incrementally(false); 2034 } 2035 } 2036 2037 bool Compile::inline_incrementally_one() { 2038 assert(IncrementalInline, "incremental inlining should be on"); 2039 2040 TracePhase tp(_t_incrInline_inline); 2041 2042 set_inlining_progress(false); 2043 set_do_cleanup(false); 2044 2045 for (int i = 0; i < _late_inlines.length(); i++) { 2046 _late_inlines_pos = i+1; 2047 CallGenerator* cg = _late_inlines.at(i); 2048 bool does_dispatch = cg->is_virtual_late_inline() || cg->is_mh_late_inline(); 2049 if (inlining_incrementally() || does_dispatch) { // a call can be either inlined or strength-reduced to a direct call 2050 cg->do_late_inline(); 2051 assert(_late_inlines.at(i) == cg, "no insertions before current position allowed"); 2052 if (failing()) { 2053 return false; 2054 } else if (inlining_progress()) { 2055 _late_inlines_pos = i+1; // restore the position in case new elements were inserted 2056 print_method(PHASE_INCREMENTAL_INLINE_STEP, 3, cg->call_node()); 2057 break; // process one call site at a time 2058 } 2059 } else { 2060 // Ignore late inline direct calls when inlining is not allowed. 2061 // They are left in the late inline list when node budget is exhausted until the list is fully drained. 2062 } 2063 } 2064 // Remove processed elements. 2065 _late_inlines.remove_till(_late_inlines_pos); 2066 _late_inlines_pos = 0; 2067 2068 assert(inlining_progress() || _late_inlines.length() == 0, "no progress"); 2069 2070 bool needs_cleanup = do_cleanup() || over_inlining_cutoff(); 2071 2072 set_inlining_progress(false); 2073 set_do_cleanup(false); 2074 2075 bool force_cleanup = directive()->IncrementalInlineForceCleanupOption; 2076 return (_late_inlines.length() > 0) && !needs_cleanup && !force_cleanup; 2077 } 2078 2079 void Compile::inline_incrementally_cleanup(PhaseIterGVN& igvn) { 2080 { 2081 TracePhase tp(_t_incrInline_pru); 2082 ResourceMark rm; 2083 PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist()); 2084 } 2085 { 2086 TracePhase tp(_t_incrInline_igvn); 2087 igvn.reset_from_gvn(initial_gvn()); 2088 igvn.optimize(); 2089 if (failing()) return; 2090 } 2091 print_method(PHASE_INCREMENTAL_INLINE_CLEANUP, 3); 2092 } 2093 2094 // Perform incremental inlining until bound on number of live nodes is reached 2095 void Compile::inline_incrementally(PhaseIterGVN& igvn) { 2096 TracePhase tp(_t_incrInline); 2097 2098 set_inlining_incrementally(true); 2099 uint low_live_nodes = 0; 2100 2101 while (_late_inlines.length() > 0) { 2102 if (live_nodes() > (uint)LiveNodeCountInliningCutoff) { 2103 if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) { 2104 TracePhase tp(_t_incrInline_ideal); 2105 // PhaseIdealLoop is expensive so we only try it once we are 2106 // out of live nodes and we only try it again if the previous 2107 // helped got the number of nodes down significantly 2108 PhaseIdealLoop::optimize(igvn, LoopOptsNone); 2109 if (failing()) return; 2110 low_live_nodes = live_nodes(); 2111 _major_progress = true; 2112 } 2113 2114 if (live_nodes() > (uint)LiveNodeCountInliningCutoff) { 2115 bool do_print_inlining = print_inlining() || print_intrinsics(); 2116 if (do_print_inlining || log() != nullptr) { 2117 // Print inlining message for candidates that we couldn't inline for lack of space. 2118 for (int i = 0; i < _late_inlines.length(); i++) { 2119 CallGenerator* cg = _late_inlines.at(i); 2120 const char* msg = "live nodes > LiveNodeCountInliningCutoff"; 2121 if (do_print_inlining) { 2122 cg->print_inlining_late(InliningResult::FAILURE, msg); 2123 } 2124 log_late_inline_failure(cg, msg); 2125 } 2126 } 2127 break; // finish 2128 } 2129 } 2130 2131 igvn_worklist()->ensure_empty(); // should be done with igvn 2132 2133 while (inline_incrementally_one()) { 2134 assert(!failing_internal() || failure_is_artificial(), "inconsistent"); 2135 } 2136 if (failing()) return; 2137 2138 inline_incrementally_cleanup(igvn); 2139 2140 print_method(PHASE_INCREMENTAL_INLINE_STEP, 3); 2141 2142 if (failing()) return; 2143 2144 if (_late_inlines.length() == 0) { 2145 break; // no more progress 2146 } 2147 } 2148 2149 igvn_worklist()->ensure_empty(); // should be done with igvn 2150 2151 if (_string_late_inlines.length() > 0) { 2152 assert(has_stringbuilder(), "inconsistent"); 2153 2154 inline_string_calls(false); 2155 2156 if (failing()) return; 2157 2158 inline_incrementally_cleanup(igvn); 2159 } 2160 2161 set_inlining_incrementally(false); 2162 } 2163 2164 void Compile::process_late_inline_calls_no_inline(PhaseIterGVN& igvn) { 2165 // "inlining_incrementally() == false" is used to signal that no inlining is allowed 2166 // (see LateInlineVirtualCallGenerator::do_late_inline_check() for details). 2167 // Tracking and verification of modified nodes is disabled by setting "_modified_nodes == nullptr" 2168 // as if "inlining_incrementally() == true" were set. 2169 assert(inlining_incrementally() == false, "not allowed"); 2170 assert(_modified_nodes == nullptr, "not allowed"); 2171 assert(_late_inlines.length() > 0, "sanity"); 2172 2173 while (_late_inlines.length() > 0) { 2174 igvn_worklist()->ensure_empty(); // should be done with igvn 2175 2176 while (inline_incrementally_one()) { 2177 assert(!failing_internal() || failure_is_artificial(), "inconsistent"); 2178 } 2179 if (failing()) return; 2180 2181 inline_incrementally_cleanup(igvn); 2182 } 2183 } 2184 2185 bool Compile::optimize_loops(PhaseIterGVN& igvn, LoopOptsMode mode) { 2186 if (_loop_opts_cnt > 0) { 2187 while (major_progress() && (_loop_opts_cnt > 0)) { 2188 TracePhase tp(_t_idealLoop); 2189 PhaseIdealLoop::optimize(igvn, mode); 2190 _loop_opts_cnt--; 2191 if (failing()) return false; 2192 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2); 2193 } 2194 } 2195 return true; 2196 } 2197 2198 // Remove edges from "root" to each SafePoint at a backward branch. 2199 // They were inserted during parsing (see add_safepoint()) to make 2200 // infinite loops without calls or exceptions visible to root, i.e., 2201 // useful. 2202 void Compile::remove_root_to_sfpts_edges(PhaseIterGVN& igvn) { 2203 Node *r = root(); 2204 if (r != nullptr) { 2205 for (uint i = r->req(); i < r->len(); ++i) { 2206 Node *n = r->in(i); 2207 if (n != nullptr && n->is_SafePoint()) { 2208 r->rm_prec(i); 2209 if (n->outcnt() == 0) { 2210 igvn.remove_dead_node(n); 2211 } 2212 --i; 2213 } 2214 } 2215 // Parsing may have added top inputs to the root node (Path 2216 // leading to the Halt node proven dead). Make sure we get a 2217 // chance to clean them up. 2218 igvn._worklist.push(r); 2219 igvn.optimize(); 2220 } 2221 } 2222 2223 //------------------------------Optimize--------------------------------------- 2224 // Given a graph, optimize it. 2225 void Compile::Optimize() { 2226 TracePhase tp(_t_optimizer); 2227 2228 #ifndef PRODUCT 2229 if (env()->break_at_compile()) { 2230 BREAKPOINT; 2231 } 2232 2233 #endif 2234 2235 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 2236 #ifdef ASSERT 2237 bs->verify_gc_barriers(this, BarrierSetC2::BeforeOptimize); 2238 #endif 2239 2240 ResourceMark rm; 2241 2242 print_inlining_reinit(); 2243 2244 NOT_PRODUCT( verify_graph_edges(); ) 2245 2246 print_method(PHASE_AFTER_PARSING, 1); 2247 2248 { 2249 // Iterative Global Value Numbering, including ideal transforms 2250 // Initialize IterGVN with types and values from parse-time GVN 2251 PhaseIterGVN igvn(initial_gvn()); 2252 #ifdef ASSERT 2253 _modified_nodes = new (comp_arena()) Unique_Node_List(comp_arena()); 2254 #endif 2255 { 2256 TracePhase tp(_t_iterGVN); 2257 igvn.optimize(); 2258 } 2259 2260 if (failing()) return; 2261 2262 print_method(PHASE_ITER_GVN1, 2); 2263 2264 process_for_unstable_if_traps(igvn); 2265 2266 if (failing()) return; 2267 2268 inline_incrementally(igvn); 2269 2270 print_method(PHASE_INCREMENTAL_INLINE, 2); 2271 2272 if (failing()) return; 2273 2274 if (eliminate_boxing()) { 2275 // Inline valueOf() methods now. 2276 inline_boxing_calls(igvn); 2277 2278 if (failing()) return; 2279 2280 if (AlwaysIncrementalInline || StressIncrementalInlining) { 2281 inline_incrementally(igvn); 2282 } 2283 2284 print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2); 2285 2286 if (failing()) return; 2287 } 2288 2289 // Remove the speculative part of types and clean up the graph from 2290 // the extra CastPP nodes whose only purpose is to carry them. Do 2291 // that early so that optimizations are not disrupted by the extra 2292 // CastPP nodes. 2293 remove_speculative_types(igvn); 2294 2295 if (failing()) return; 2296 2297 // No more new expensive nodes will be added to the list from here 2298 // so keep only the actual candidates for optimizations. 2299 cleanup_expensive_nodes(igvn); 2300 2301 if (failing()) return; 2302 2303 assert(EnableVectorSupport || !has_vbox_nodes(), "sanity"); 2304 if (EnableVectorSupport && has_vbox_nodes()) { 2305 TracePhase tp(_t_vector); 2306 PhaseVector pv(igvn); 2307 pv.optimize_vector_boxes(); 2308 if (failing()) return; 2309 print_method(PHASE_ITER_GVN_AFTER_VECTOR, 2); 2310 } 2311 assert(!has_vbox_nodes(), "sanity"); 2312 2313 if (!failing() && RenumberLiveNodes && live_nodes() + NodeLimitFudgeFactor < unique()) { 2314 Compile::TracePhase tp(_t_renumberLive); 2315 igvn_worklist()->ensure_empty(); // should be done with igvn 2316 { 2317 ResourceMark rm; 2318 PhaseRenumberLive prl(initial_gvn(), *igvn_worklist()); 2319 } 2320 igvn.reset_from_gvn(initial_gvn()); 2321 igvn.optimize(); 2322 if (failing()) return; 2323 } 2324 2325 // Now that all inlining is over and no PhaseRemoveUseless will run, cut edge from root to loop 2326 // safepoints 2327 remove_root_to_sfpts_edges(igvn); 2328 2329 if (failing()) return; 2330 2331 // Perform escape analysis 2332 if (do_escape_analysis() && ConnectionGraph::has_candidates(this)) { 2333 if (has_loops()) { 2334 // Cleanup graph (remove dead nodes). 2335 TracePhase tp(_t_idealLoop); 2336 PhaseIdealLoop::optimize(igvn, LoopOptsMaxUnroll); 2337 if (failing()) return; 2338 } 2339 bool progress; 2340 print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2); 2341 do { 2342 ConnectionGraph::do_analysis(this, &igvn); 2343 2344 if (failing()) return; 2345 2346 int mcount = macro_count(); // Record number of allocations and locks before IGVN 2347 2348 // Optimize out fields loads from scalar replaceable allocations. 2349 igvn.optimize(); 2350 print_method(PHASE_ITER_GVN_AFTER_EA, 2); 2351 2352 if (failing()) return; 2353 2354 if (congraph() != nullptr && macro_count() > 0) { 2355 TracePhase tp(_t_macroEliminate); 2356 PhaseMacroExpand mexp(igvn); 2357 mexp.eliminate_macro_nodes(); 2358 if (failing()) return; 2359 2360 igvn.set_delay_transform(false); 2361 igvn.optimize(); 2362 if (failing()) return; 2363 2364 print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2); 2365 } 2366 2367 ConnectionGraph::verify_ram_nodes(this, root()); 2368 if (failing()) return; 2369 2370 progress = do_iterative_escape_analysis() && 2371 (macro_count() < mcount) && 2372 ConnectionGraph::has_candidates(this); 2373 // Try again if candidates exist and made progress 2374 // by removing some allocations and/or locks. 2375 } while (progress); 2376 } 2377 2378 // Loop transforms on the ideal graph. Range Check Elimination, 2379 // peeling, unrolling, etc. 2380 2381 // Set loop opts counter 2382 if((_loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) { 2383 { 2384 TracePhase tp(_t_idealLoop); 2385 PhaseIdealLoop::optimize(igvn, LoopOptsDefault); 2386 _loop_opts_cnt--; 2387 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2); 2388 if (failing()) return; 2389 } 2390 // Loop opts pass if partial peeling occurred in previous pass 2391 if(PartialPeelLoop && major_progress() && (_loop_opts_cnt > 0)) { 2392 TracePhase tp(_t_idealLoop); 2393 PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf); 2394 _loop_opts_cnt--; 2395 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2); 2396 if (failing()) return; 2397 } 2398 // Loop opts pass for loop-unrolling before CCP 2399 if(major_progress() && (_loop_opts_cnt > 0)) { 2400 TracePhase tp(_t_idealLoop); 2401 PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf); 2402 _loop_opts_cnt--; 2403 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2); 2404 } 2405 if (!failing()) { 2406 // Verify that last round of loop opts produced a valid graph 2407 PhaseIdealLoop::verify(igvn); 2408 } 2409 } 2410 if (failing()) return; 2411 2412 // Conditional Constant Propagation; 2413 print_method(PHASE_BEFORE_CCP1, 2); 2414 PhaseCCP ccp( &igvn ); 2415 assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)"); 2416 { 2417 TracePhase tp(_t_ccp); 2418 ccp.do_transform(); 2419 } 2420 print_method(PHASE_CCP1, 2); 2421 2422 assert( true, "Break here to ccp.dump_old2new_map()"); 2423 2424 // Iterative Global Value Numbering, including ideal transforms 2425 { 2426 TracePhase tp(_t_iterGVN2); 2427 igvn.reset_from_igvn(&ccp); 2428 igvn.optimize(); 2429 } 2430 print_method(PHASE_ITER_GVN2, 2); 2431 2432 if (failing()) return; 2433 2434 // Loop transforms on the ideal graph. Range Check Elimination, 2435 // peeling, unrolling, etc. 2436 if (!optimize_loops(igvn, LoopOptsDefault)) { 2437 return; 2438 } 2439 2440 if (failing()) return; 2441 2442 C->clear_major_progress(); // ensure that major progress is now clear 2443 2444 process_for_post_loop_opts_igvn(igvn); 2445 2446 if (failing()) return; 2447 2448 #ifdef ASSERT 2449 bs->verify_gc_barriers(this, BarrierSetC2::BeforeMacroExpand); 2450 #endif 2451 2452 { 2453 TracePhase tp(_t_macroExpand); 2454 print_method(PHASE_BEFORE_MACRO_EXPANSION, 3); 2455 PhaseMacroExpand mex(igvn); 2456 if (mex.expand_macro_nodes()) { 2457 assert(failing(), "must bail out w/ explicit message"); 2458 return; 2459 } 2460 print_method(PHASE_AFTER_MACRO_EXPANSION, 2); 2461 } 2462 2463 { 2464 TracePhase tp(_t_barrierExpand); 2465 if (bs->expand_barriers(this, igvn)) { 2466 assert(failing(), "must bail out w/ explicit message"); 2467 return; 2468 } 2469 print_method(PHASE_BARRIER_EXPANSION, 2); 2470 } 2471 2472 if (C->max_vector_size() > 0) { 2473 C->optimize_logic_cones(igvn); 2474 igvn.optimize(); 2475 if (failing()) return; 2476 } 2477 2478 DEBUG_ONLY( _modified_nodes = nullptr; ) 2479 2480 assert(igvn._worklist.size() == 0, "not empty"); 2481 2482 assert(_late_inlines.length() == 0 || IncrementalInlineMH || IncrementalInlineVirtual, "not empty"); 2483 2484 if (_late_inlines.length() > 0) { 2485 // More opportunities to optimize virtual and MH calls. 2486 // Though it's maybe too late to perform inlining, strength-reducing them to direct calls is still an option. 2487 process_late_inline_calls_no_inline(igvn); 2488 if (failing()) return; 2489 } 2490 } // (End scope of igvn; run destructor if necessary for asserts.) 2491 2492 check_no_dead_use(); 2493 2494 process_print_inlining(); 2495 2496 // We will never use the NodeHash table any more. Clear it so that final_graph_reshaping does not have 2497 // to remove hashes to unlock nodes for modifications. 2498 C->node_hash()->clear(); 2499 2500 // A method with only infinite loops has no edges entering loops from root 2501 { 2502 TracePhase tp(_t_graphReshaping); 2503 if (final_graph_reshaping()) { 2504 assert(failing(), "must bail out w/ explicit message"); 2505 return; 2506 } 2507 } 2508 2509 print_method(PHASE_OPTIMIZE_FINISHED, 2); 2510 DEBUG_ONLY(set_phase_optimize_finished();) 2511 } 2512 2513 #ifdef ASSERT 2514 void Compile::check_no_dead_use() const { 2515 ResourceMark rm; 2516 Unique_Node_List wq; 2517 wq.push(root()); 2518 for (uint i = 0; i < wq.size(); ++i) { 2519 Node* n = wq.at(i); 2520 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) { 2521 Node* u = n->fast_out(j); 2522 if (u->outcnt() == 0 && !u->is_Con()) { 2523 u->dump(); 2524 fatal("no reachable node should have no use"); 2525 } 2526 wq.push(u); 2527 } 2528 } 2529 } 2530 #endif 2531 2532 void Compile::inline_vector_reboxing_calls() { 2533 if (C->_vector_reboxing_late_inlines.length() > 0) { 2534 _late_inlines_pos = C->_late_inlines.length(); 2535 while (_vector_reboxing_late_inlines.length() > 0) { 2536 CallGenerator* cg = _vector_reboxing_late_inlines.pop(); 2537 cg->do_late_inline(); 2538 if (failing()) return; 2539 print_method(PHASE_INLINE_VECTOR_REBOX, 3, cg->call_node()); 2540 } 2541 _vector_reboxing_late_inlines.trunc_to(0); 2542 } 2543 } 2544 2545 bool Compile::has_vbox_nodes() { 2546 if (C->_vector_reboxing_late_inlines.length() > 0) { 2547 return true; 2548 } 2549 for (int macro_idx = C->macro_count() - 1; macro_idx >= 0; macro_idx--) { 2550 Node * n = C->macro_node(macro_idx); 2551 assert(n->is_macro(), "only macro nodes expected here"); 2552 if (n->Opcode() == Op_VectorUnbox || n->Opcode() == Op_VectorBox || n->Opcode() == Op_VectorBoxAllocate) { 2553 return true; 2554 } 2555 } 2556 return false; 2557 } 2558 2559 //---------------------------- Bitwise operation packing optimization --------------------------- 2560 2561 static bool is_vector_unary_bitwise_op(Node* n) { 2562 return n->Opcode() == Op_XorV && 2563 VectorNode::is_vector_bitwise_not_pattern(n); 2564 } 2565 2566 static bool is_vector_binary_bitwise_op(Node* n) { 2567 switch (n->Opcode()) { 2568 case Op_AndV: 2569 case Op_OrV: 2570 return true; 2571 2572 case Op_XorV: 2573 return !is_vector_unary_bitwise_op(n); 2574 2575 default: 2576 return false; 2577 } 2578 } 2579 2580 static bool is_vector_ternary_bitwise_op(Node* n) { 2581 return n->Opcode() == Op_MacroLogicV; 2582 } 2583 2584 static bool is_vector_bitwise_op(Node* n) { 2585 return is_vector_unary_bitwise_op(n) || 2586 is_vector_binary_bitwise_op(n) || 2587 is_vector_ternary_bitwise_op(n); 2588 } 2589 2590 static bool is_vector_bitwise_cone_root(Node* n) { 2591 if (n->bottom_type()->isa_vectmask() || !is_vector_bitwise_op(n)) { 2592 return false; 2593 } 2594 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 2595 if (is_vector_bitwise_op(n->fast_out(i))) { 2596 return false; 2597 } 2598 } 2599 return true; 2600 } 2601 2602 static uint collect_unique_inputs(Node* n, Unique_Node_List& inputs) { 2603 uint cnt = 0; 2604 if (is_vector_bitwise_op(n)) { 2605 uint inp_cnt = n->is_predicated_vector() ? n->req()-1 : n->req(); 2606 if (VectorNode::is_vector_bitwise_not_pattern(n)) { 2607 for (uint i = 1; i < inp_cnt; i++) { 2608 Node* in = n->in(i); 2609 bool skip = VectorNode::is_all_ones_vector(in); 2610 if (!skip && !inputs.member(in)) { 2611 inputs.push(in); 2612 cnt++; 2613 } 2614 } 2615 assert(cnt <= 1, "not unary"); 2616 } else { 2617 uint last_req = inp_cnt; 2618 if (is_vector_ternary_bitwise_op(n)) { 2619 last_req = inp_cnt - 1; // skip last input 2620 } 2621 for (uint i = 1; i < last_req; i++) { 2622 Node* def = n->in(i); 2623 if (!inputs.member(def)) { 2624 inputs.push(def); 2625 cnt++; 2626 } 2627 } 2628 } 2629 } else { // not a bitwise operations 2630 if (!inputs.member(n)) { 2631 inputs.push(n); 2632 cnt++; 2633 } 2634 } 2635 return cnt; 2636 } 2637 2638 void Compile::collect_logic_cone_roots(Unique_Node_List& list) { 2639 Unique_Node_List useful_nodes; 2640 C->identify_useful_nodes(useful_nodes); 2641 2642 for (uint i = 0; i < useful_nodes.size(); i++) { 2643 Node* n = useful_nodes.at(i); 2644 if (is_vector_bitwise_cone_root(n)) { 2645 list.push(n); 2646 } 2647 } 2648 } 2649 2650 Node* Compile::xform_to_MacroLogicV(PhaseIterGVN& igvn, 2651 const TypeVect* vt, 2652 Unique_Node_List& partition, 2653 Unique_Node_List& inputs) { 2654 assert(partition.size() == 2 || partition.size() == 3, "not supported"); 2655 assert(inputs.size() == 2 || inputs.size() == 3, "not supported"); 2656 assert(Matcher::match_rule_supported_vector(Op_MacroLogicV, vt->length(), vt->element_basic_type()), "not supported"); 2657 2658 Node* in1 = inputs.at(0); 2659 Node* in2 = inputs.at(1); 2660 Node* in3 = (inputs.size() == 3 ? inputs.at(2) : in2); 2661 2662 uint func = compute_truth_table(partition, inputs); 2663 2664 Node* pn = partition.at(partition.size() - 1); 2665 Node* mask = pn->is_predicated_vector() ? pn->in(pn->req()-1) : nullptr; 2666 return igvn.transform(MacroLogicVNode::make(igvn, in1, in2, in3, mask, func, vt)); 2667 } 2668 2669 static uint extract_bit(uint func, uint pos) { 2670 return (func & (1 << pos)) >> pos; 2671 } 2672 2673 // 2674 // A macro logic node represents a truth table. It has 4 inputs, 2675 // First three inputs corresponds to 3 columns of a truth table 2676 // and fourth input captures the logic function. 2677 // 2678 // eg. fn = (in1 AND in2) OR in3; 2679 // 2680 // MacroNode(in1,in2,in3,fn) 2681 // 2682 // ----------------- 2683 // in1 in2 in3 fn 2684 // ----------------- 2685 // 0 0 0 0 2686 // 0 0 1 1 2687 // 0 1 0 0 2688 // 0 1 1 1 2689 // 1 0 0 0 2690 // 1 0 1 1 2691 // 1 1 0 1 2692 // 1 1 1 1 2693 // 2694 2695 uint Compile::eval_macro_logic_op(uint func, uint in1 , uint in2, uint in3) { 2696 int res = 0; 2697 for (int i = 0; i < 8; i++) { 2698 int bit1 = extract_bit(in1, i); 2699 int bit2 = extract_bit(in2, i); 2700 int bit3 = extract_bit(in3, i); 2701 2702 int func_bit_pos = (bit1 << 2 | bit2 << 1 | bit3); 2703 int func_bit = extract_bit(func, func_bit_pos); 2704 2705 res |= func_bit << i; 2706 } 2707 return res; 2708 } 2709 2710 static uint eval_operand(Node* n, ResourceHashtable<Node*,uint>& eval_map) { 2711 assert(n != nullptr, ""); 2712 assert(eval_map.contains(n), "absent"); 2713 return *(eval_map.get(n)); 2714 } 2715 2716 static void eval_operands(Node* n, 2717 uint& func1, uint& func2, uint& func3, 2718 ResourceHashtable<Node*,uint>& eval_map) { 2719 assert(is_vector_bitwise_op(n), ""); 2720 2721 if (is_vector_unary_bitwise_op(n)) { 2722 Node* opnd = n->in(1); 2723 if (VectorNode::is_vector_bitwise_not_pattern(n) && VectorNode::is_all_ones_vector(opnd)) { 2724 opnd = n->in(2); 2725 } 2726 func1 = eval_operand(opnd, eval_map); 2727 } else if (is_vector_binary_bitwise_op(n)) { 2728 func1 = eval_operand(n->in(1), eval_map); 2729 func2 = eval_operand(n->in(2), eval_map); 2730 } else { 2731 assert(is_vector_ternary_bitwise_op(n), "unknown operation"); 2732 func1 = eval_operand(n->in(1), eval_map); 2733 func2 = eval_operand(n->in(2), eval_map); 2734 func3 = eval_operand(n->in(3), eval_map); 2735 } 2736 } 2737 2738 uint Compile::compute_truth_table(Unique_Node_List& partition, Unique_Node_List& inputs) { 2739 assert(inputs.size() <= 3, "sanity"); 2740 ResourceMark rm; 2741 uint res = 0; 2742 ResourceHashtable<Node*,uint> eval_map; 2743 2744 // Populate precomputed functions for inputs. 2745 // Each input corresponds to one column of 3 input truth-table. 2746 uint input_funcs[] = { 0xAA, // (_, _, c) -> c 2747 0xCC, // (_, b, _) -> b 2748 0xF0 }; // (a, _, _) -> a 2749 for (uint i = 0; i < inputs.size(); i++) { 2750 eval_map.put(inputs.at(i), input_funcs[2-i]); 2751 } 2752 2753 for (uint i = 0; i < partition.size(); i++) { 2754 Node* n = partition.at(i); 2755 2756 uint func1 = 0, func2 = 0, func3 = 0; 2757 eval_operands(n, func1, func2, func3, eval_map); 2758 2759 switch (n->Opcode()) { 2760 case Op_OrV: 2761 assert(func3 == 0, "not binary"); 2762 res = func1 | func2; 2763 break; 2764 case Op_AndV: 2765 assert(func3 == 0, "not binary"); 2766 res = func1 & func2; 2767 break; 2768 case Op_XorV: 2769 if (VectorNode::is_vector_bitwise_not_pattern(n)) { 2770 assert(func2 == 0 && func3 == 0, "not unary"); 2771 res = (~func1) & 0xFF; 2772 } else { 2773 assert(func3 == 0, "not binary"); 2774 res = func1 ^ func2; 2775 } 2776 break; 2777 case Op_MacroLogicV: 2778 // Ordering of inputs may change during evaluation of sub-tree 2779 // containing MacroLogic node as a child node, thus a re-evaluation 2780 // makes sure that function is evaluated in context of current 2781 // inputs. 2782 res = eval_macro_logic_op(n->in(4)->get_int(), func1, func2, func3); 2783 break; 2784 2785 default: assert(false, "not supported: %s", n->Name()); 2786 } 2787 assert(res <= 0xFF, "invalid"); 2788 eval_map.put(n, res); 2789 } 2790 return res; 2791 } 2792 2793 // Criteria under which nodes gets packed into a macro logic node:- 2794 // 1) Parent and both child nodes are all unmasked or masked with 2795 // same predicates. 2796 // 2) Masked parent can be packed with left child if it is predicated 2797 // and both have same predicates. 2798 // 3) Masked parent can be packed with right child if its un-predicated 2799 // or has matching predication condition. 2800 // 4) An unmasked parent can be packed with an unmasked child. 2801 bool Compile::compute_logic_cone(Node* n, Unique_Node_List& partition, Unique_Node_List& inputs) { 2802 assert(partition.size() == 0, "not empty"); 2803 assert(inputs.size() == 0, "not empty"); 2804 if (is_vector_ternary_bitwise_op(n)) { 2805 return false; 2806 } 2807 2808 bool is_unary_op = is_vector_unary_bitwise_op(n); 2809 if (is_unary_op) { 2810 assert(collect_unique_inputs(n, inputs) == 1, "not unary"); 2811 return false; // too few inputs 2812 } 2813 2814 bool pack_left_child = true; 2815 bool pack_right_child = true; 2816 2817 bool left_child_LOP = is_vector_bitwise_op(n->in(1)); 2818 bool right_child_LOP = is_vector_bitwise_op(n->in(2)); 2819 2820 int left_child_input_cnt = 0; 2821 int right_child_input_cnt = 0; 2822 2823 bool parent_is_predicated = n->is_predicated_vector(); 2824 bool left_child_predicated = n->in(1)->is_predicated_vector(); 2825 bool right_child_predicated = n->in(2)->is_predicated_vector(); 2826 2827 Node* parent_pred = parent_is_predicated ? n->in(n->req()-1) : nullptr; 2828 Node* left_child_pred = left_child_predicated ? n->in(1)->in(n->in(1)->req()-1) : nullptr; 2829 Node* right_child_pred = right_child_predicated ? n->in(1)->in(n->in(1)->req()-1) : nullptr; 2830 2831 do { 2832 if (pack_left_child && left_child_LOP && 2833 ((!parent_is_predicated && !left_child_predicated) || 2834 ((parent_is_predicated && left_child_predicated && 2835 parent_pred == left_child_pred)))) { 2836 partition.push(n->in(1)); 2837 left_child_input_cnt = collect_unique_inputs(n->in(1), inputs); 2838 } else { 2839 inputs.push(n->in(1)); 2840 left_child_input_cnt = 1; 2841 } 2842 2843 if (pack_right_child && right_child_LOP && 2844 (!right_child_predicated || 2845 (right_child_predicated && parent_is_predicated && 2846 parent_pred == right_child_pred))) { 2847 partition.push(n->in(2)); 2848 right_child_input_cnt = collect_unique_inputs(n->in(2), inputs); 2849 } else { 2850 inputs.push(n->in(2)); 2851 right_child_input_cnt = 1; 2852 } 2853 2854 if (inputs.size() > 3) { 2855 assert(partition.size() > 0, ""); 2856 inputs.clear(); 2857 partition.clear(); 2858 if (left_child_input_cnt > right_child_input_cnt) { 2859 pack_left_child = false; 2860 } else { 2861 pack_right_child = false; 2862 } 2863 } else { 2864 break; 2865 } 2866 } while(true); 2867 2868 if(partition.size()) { 2869 partition.push(n); 2870 } 2871 2872 return (partition.size() == 2 || partition.size() == 3) && 2873 (inputs.size() == 2 || inputs.size() == 3); 2874 } 2875 2876 void Compile::process_logic_cone_root(PhaseIterGVN &igvn, Node *n, VectorSet &visited) { 2877 assert(is_vector_bitwise_op(n), "not a root"); 2878 2879 visited.set(n->_idx); 2880 2881 // 1) Do a DFS walk over the logic cone. 2882 for (uint i = 1; i < n->req(); i++) { 2883 Node* in = n->in(i); 2884 if (!visited.test(in->_idx) && is_vector_bitwise_op(in)) { 2885 process_logic_cone_root(igvn, in, visited); 2886 } 2887 } 2888 2889 // 2) Bottom up traversal: Merge node[s] with 2890 // the parent to form macro logic node. 2891 Unique_Node_List partition; 2892 Unique_Node_List inputs; 2893 if (compute_logic_cone(n, partition, inputs)) { 2894 const TypeVect* vt = n->bottom_type()->is_vect(); 2895 Node* pn = partition.at(partition.size() - 1); 2896 Node* mask = pn->is_predicated_vector() ? pn->in(pn->req()-1) : nullptr; 2897 if (mask == nullptr || 2898 Matcher::match_rule_supported_vector_masked(Op_MacroLogicV, vt->length(), vt->element_basic_type())) { 2899 Node* macro_logic = xform_to_MacroLogicV(igvn, vt, partition, inputs); 2900 VectorNode::trace_new_vector(macro_logic, "MacroLogic"); 2901 igvn.replace_node(n, macro_logic); 2902 } 2903 } 2904 } 2905 2906 void Compile::optimize_logic_cones(PhaseIterGVN &igvn) { 2907 ResourceMark rm; 2908 if (Matcher::match_rule_supported(Op_MacroLogicV)) { 2909 Unique_Node_List list; 2910 collect_logic_cone_roots(list); 2911 2912 while (list.size() > 0) { 2913 Node* n = list.pop(); 2914 const TypeVect* vt = n->bottom_type()->is_vect(); 2915 bool supported = Matcher::match_rule_supported_vector(Op_MacroLogicV, vt->length(), vt->element_basic_type()); 2916 if (supported) { 2917 VectorSet visited(comp_arena()); 2918 process_logic_cone_root(igvn, n, visited); 2919 } 2920 } 2921 } 2922 } 2923 2924 //------------------------------Code_Gen--------------------------------------- 2925 // Given a graph, generate code for it 2926 void Compile::Code_Gen() { 2927 if (failing()) { 2928 return; 2929 } 2930 2931 // Perform instruction selection. You might think we could reclaim Matcher 2932 // memory PDQ, but actually the Matcher is used in generating spill code. 2933 // Internals of the Matcher (including some VectorSets) must remain live 2934 // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage 2935 // set a bit in reclaimed memory. 2936 2937 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine 2938 // nodes. Mapping is only valid at the root of each matched subtree. 2939 NOT_PRODUCT( verify_graph_edges(); ) 2940 2941 Matcher matcher; 2942 _matcher = &matcher; 2943 { 2944 TracePhase tp(_t_matcher); 2945 matcher.match(); 2946 if (failing()) { 2947 return; 2948 } 2949 } 2950 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine 2951 // nodes. Mapping is only valid at the root of each matched subtree. 2952 NOT_PRODUCT( verify_graph_edges(); ) 2953 2954 // If you have too many nodes, or if matching has failed, bail out 2955 check_node_count(0, "out of nodes matching instructions"); 2956 if (failing()) { 2957 return; 2958 } 2959 2960 print_method(PHASE_MATCHING, 2); 2961 2962 // Build a proper-looking CFG 2963 PhaseCFG cfg(node_arena(), root(), matcher); 2964 if (failing()) { 2965 return; 2966 } 2967 _cfg = &cfg; 2968 { 2969 TracePhase tp(_t_scheduler); 2970 bool success = cfg.do_global_code_motion(); 2971 if (!success) { 2972 return; 2973 } 2974 2975 print_method(PHASE_GLOBAL_CODE_MOTION, 2); 2976 NOT_PRODUCT( verify_graph_edges(); ) 2977 cfg.verify(); 2978 } 2979 2980 PhaseChaitin regalloc(unique(), cfg, matcher, false); 2981 _regalloc = ®alloc; 2982 { 2983 TracePhase tp(_t_registerAllocation); 2984 // Perform register allocation. After Chaitin, use-def chains are 2985 // no longer accurate (at spill code) and so must be ignored. 2986 // Node->LRG->reg mappings are still accurate. 2987 _regalloc->Register_Allocate(); 2988 2989 // Bail out if the allocator builds too many nodes 2990 if (failing()) { 2991 return; 2992 } 2993 2994 print_method(PHASE_REGISTER_ALLOCATION, 2); 2995 } 2996 2997 // Prior to register allocation we kept empty basic blocks in case the 2998 // the allocator needed a place to spill. After register allocation we 2999 // are not adding any new instructions. If any basic block is empty, we 3000 // can now safely remove it. 3001 { 3002 TracePhase tp(_t_blockOrdering); 3003 cfg.remove_empty_blocks(); 3004 if (do_freq_based_layout()) { 3005 PhaseBlockLayout layout(cfg); 3006 } else { 3007 cfg.set_loop_alignment(); 3008 } 3009 cfg.fixup_flow(); 3010 cfg.remove_unreachable_blocks(); 3011 cfg.verify_dominator_tree(); 3012 print_method(PHASE_BLOCK_ORDERING, 3); 3013 } 3014 3015 // Apply peephole optimizations 3016 if( OptoPeephole ) { 3017 TracePhase tp(_t_peephole); 3018 PhasePeephole peep( _regalloc, cfg); 3019 peep.do_transform(); 3020 print_method(PHASE_PEEPHOLE, 3); 3021 } 3022 3023 // Do late expand if CPU requires this. 3024 if (Matcher::require_postalloc_expand) { 3025 TracePhase tp(_t_postalloc_expand); 3026 cfg.postalloc_expand(_regalloc); 3027 print_method(PHASE_POSTALLOC_EXPAND, 3); 3028 } 3029 3030 // Convert Nodes to instruction bits in a buffer 3031 { 3032 TracePhase tp(_t_output); 3033 PhaseOutput output; 3034 output.Output(); 3035 if (failing()) return; 3036 output.install(); 3037 print_method(PHASE_FINAL_CODE, 1); // Compile::_output is not null here 3038 } 3039 3040 // He's dead, Jim. 3041 _cfg = (PhaseCFG*)((intptr_t)0xdeadbeef); 3042 _regalloc = (PhaseChaitin*)((intptr_t)0xdeadbeef); 3043 } 3044 3045 //------------------------------Final_Reshape_Counts--------------------------- 3046 // This class defines counters to help identify when a method 3047 // may/must be executed using hardware with only 24-bit precision. 3048 struct Final_Reshape_Counts : public StackObj { 3049 int _call_count; // count non-inlined 'common' calls 3050 int _float_count; // count float ops requiring 24-bit precision 3051 int _double_count; // count double ops requiring more precision 3052 int _java_call_count; // count non-inlined 'java' calls 3053 int _inner_loop_count; // count loops which need alignment 3054 VectorSet _visited; // Visitation flags 3055 Node_List _tests; // Set of IfNodes & PCTableNodes 3056 3057 Final_Reshape_Counts() : 3058 _call_count(0), _float_count(0), _double_count(0), 3059 _java_call_count(0), _inner_loop_count(0) { } 3060 3061 void inc_call_count () { _call_count ++; } 3062 void inc_float_count () { _float_count ++; } 3063 void inc_double_count() { _double_count++; } 3064 void inc_java_call_count() { _java_call_count++; } 3065 void inc_inner_loop_count() { _inner_loop_count++; } 3066 3067 int get_call_count () const { return _call_count ; } 3068 int get_float_count () const { return _float_count ; } 3069 int get_double_count() const { return _double_count; } 3070 int get_java_call_count() const { return _java_call_count; } 3071 int get_inner_loop_count() const { return _inner_loop_count; } 3072 }; 3073 3074 //------------------------------final_graph_reshaping_impl---------------------- 3075 // Implement items 1-5 from final_graph_reshaping below. 3076 void Compile::final_graph_reshaping_impl(Node *n, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes) { 3077 3078 if ( n->outcnt() == 0 ) return; // dead node 3079 uint nop = n->Opcode(); 3080 3081 // Check for 2-input instruction with "last use" on right input. 3082 // Swap to left input. Implements item (2). 3083 if( n->req() == 3 && // two-input instruction 3084 n->in(1)->outcnt() > 1 && // left use is NOT a last use 3085 (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop 3086 n->in(2)->outcnt() == 1 &&// right use IS a last use 3087 !n->in(2)->is_Con() ) { // right use is not a constant 3088 // Check for commutative opcode 3089 switch( nop ) { 3090 case Op_AddI: case Op_AddF: case Op_AddD: case Op_AddL: 3091 case Op_MaxI: case Op_MaxL: case Op_MaxF: case Op_MaxD: 3092 case Op_MinI: case Op_MinL: case Op_MinF: case Op_MinD: 3093 case Op_MulI: case Op_MulF: case Op_MulD: case Op_MulL: 3094 case Op_AndL: case Op_XorL: case Op_OrL: 3095 case Op_AndI: case Op_XorI: case Op_OrI: { 3096 // Move "last use" input to left by swapping inputs 3097 n->swap_edges(1, 2); 3098 break; 3099 } 3100 default: 3101 break; 3102 } 3103 } 3104 3105 #ifdef ASSERT 3106 if( n->is_Mem() ) { 3107 int alias_idx = get_alias_index(n->as_Mem()->adr_type()); 3108 assert( n->in(0) != nullptr || alias_idx != Compile::AliasIdxRaw || 3109 // oop will be recorded in oop map if load crosses safepoint 3110 (n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() || 3111 LoadNode::is_immutable_value(n->in(MemNode::Address)))), 3112 "raw memory operations should have control edge"); 3113 } 3114 if (n->is_MemBar()) { 3115 MemBarNode* mb = n->as_MemBar(); 3116 if (mb->trailing_store() || mb->trailing_load_store()) { 3117 assert(mb->leading_membar()->trailing_membar() == mb, "bad membar pair"); 3118 Node* mem = BarrierSet::barrier_set()->barrier_set_c2()->step_over_gc_barrier(mb->in(MemBarNode::Precedent)); 3119 assert((mb->trailing_store() && mem->is_Store() && mem->as_Store()->is_release()) || 3120 (mb->trailing_load_store() && mem->is_LoadStore()), "missing mem op"); 3121 } else if (mb->leading()) { 3122 assert(mb->trailing_membar()->leading_membar() == mb, "bad membar pair"); 3123 } 3124 } 3125 #endif 3126 // Count FPU ops and common calls, implements item (3) 3127 bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->final_graph_reshaping(this, n, nop, dead_nodes); 3128 if (!gc_handled) { 3129 final_graph_reshaping_main_switch(n, frc, nop, dead_nodes); 3130 } 3131 3132 // Collect CFG split points 3133 if (n->is_MultiBranch() && !n->is_RangeCheck()) { 3134 frc._tests.push(n); 3135 } 3136 } 3137 3138 void Compile::handle_div_mod_op(Node* n, BasicType bt, bool is_unsigned) { 3139 if (!UseDivMod) { 3140 return; 3141 } 3142 3143 // Check if "a % b" and "a / b" both exist 3144 Node* d = n->find_similar(Op_DivIL(bt, is_unsigned)); 3145 if (d == nullptr) { 3146 return; 3147 } 3148 3149 // Replace them with a fused divmod if supported 3150 if (Matcher::has_match_rule(Op_DivModIL(bt, is_unsigned))) { 3151 DivModNode* divmod = DivModNode::make(n, bt, is_unsigned); 3152 d->subsume_by(divmod->div_proj(), this); 3153 n->subsume_by(divmod->mod_proj(), this); 3154 } else { 3155 // Replace "a % b" with "a - ((a / b) * b)" 3156 Node* mult = MulNode::make(d, d->in(2), bt); 3157 Node* sub = SubNode::make(d->in(1), mult, bt); 3158 n->subsume_by(sub, this); 3159 } 3160 } 3161 3162 void Compile::final_graph_reshaping_main_switch(Node* n, Final_Reshape_Counts& frc, uint nop, Unique_Node_List& dead_nodes) { 3163 switch( nop ) { 3164 // Count all float operations that may use FPU 3165 case Op_AddF: 3166 case Op_SubF: 3167 case Op_MulF: 3168 case Op_DivF: 3169 case Op_NegF: 3170 case Op_ModF: 3171 case Op_ConvI2F: 3172 case Op_ConF: 3173 case Op_CmpF: 3174 case Op_CmpF3: 3175 case Op_StoreF: 3176 case Op_LoadF: 3177 // case Op_ConvL2F: // longs are split into 32-bit halves 3178 frc.inc_float_count(); 3179 break; 3180 3181 case Op_ConvF2D: 3182 case Op_ConvD2F: 3183 frc.inc_float_count(); 3184 frc.inc_double_count(); 3185 break; 3186 3187 // Count all double operations that may use FPU 3188 case Op_AddD: 3189 case Op_SubD: 3190 case Op_MulD: 3191 case Op_DivD: 3192 case Op_NegD: 3193 case Op_ModD: 3194 case Op_ConvI2D: 3195 case Op_ConvD2I: 3196 // case Op_ConvL2D: // handled by leaf call 3197 // case Op_ConvD2L: // handled by leaf call 3198 case Op_ConD: 3199 case Op_CmpD: 3200 case Op_CmpD3: 3201 case Op_StoreD: 3202 case Op_LoadD: 3203 case Op_LoadD_unaligned: 3204 frc.inc_double_count(); 3205 break; 3206 case Op_Opaque1: // Remove Opaque Nodes before matching 3207 n->subsume_by(n->in(1), this); 3208 break; 3209 case Op_CallStaticJava: 3210 case Op_CallJava: 3211 case Op_CallDynamicJava: 3212 frc.inc_java_call_count(); // Count java call site; 3213 case Op_CallRuntime: 3214 case Op_CallLeaf: 3215 case Op_CallLeafVector: 3216 case Op_CallLeafNoFP: { 3217 assert (n->is_Call(), ""); 3218 CallNode *call = n->as_Call(); 3219 // Count call sites where the FP mode bit would have to be flipped. 3220 // Do not count uncommon runtime calls: 3221 // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking, 3222 // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ... 3223 if (!call->is_CallStaticJava() || !call->as_CallStaticJava()->_name) { 3224 frc.inc_call_count(); // Count the call site 3225 } else { // See if uncommon argument is shared 3226 Node *n = call->in(TypeFunc::Parms); 3227 int nop = n->Opcode(); 3228 // Clone shared simple arguments to uncommon calls, item (1). 3229 if (n->outcnt() > 1 && 3230 !n->is_Proj() && 3231 nop != Op_CreateEx && 3232 nop != Op_CheckCastPP && 3233 nop != Op_DecodeN && 3234 nop != Op_DecodeNKlass && 3235 !n->is_Mem() && 3236 !n->is_Phi()) { 3237 Node *x = n->clone(); 3238 call->set_req(TypeFunc::Parms, x); 3239 } 3240 } 3241 break; 3242 } 3243 case Op_StoreB: 3244 case Op_StoreC: 3245 case Op_StoreI: 3246 case Op_StoreL: 3247 case Op_CompareAndSwapB: 3248 case Op_CompareAndSwapS: 3249 case Op_CompareAndSwapI: 3250 case Op_CompareAndSwapL: 3251 case Op_CompareAndSwapP: 3252 case Op_CompareAndSwapN: 3253 case Op_WeakCompareAndSwapB: 3254 case Op_WeakCompareAndSwapS: 3255 case Op_WeakCompareAndSwapI: 3256 case Op_WeakCompareAndSwapL: 3257 case Op_WeakCompareAndSwapP: 3258 case Op_WeakCompareAndSwapN: 3259 case Op_CompareAndExchangeB: 3260 case Op_CompareAndExchangeS: 3261 case Op_CompareAndExchangeI: 3262 case Op_CompareAndExchangeL: 3263 case Op_CompareAndExchangeP: 3264 case Op_CompareAndExchangeN: 3265 case Op_GetAndAddS: 3266 case Op_GetAndAddB: 3267 case Op_GetAndAddI: 3268 case Op_GetAndAddL: 3269 case Op_GetAndSetS: 3270 case Op_GetAndSetB: 3271 case Op_GetAndSetI: 3272 case Op_GetAndSetL: 3273 case Op_GetAndSetP: 3274 case Op_GetAndSetN: 3275 case Op_StoreP: 3276 case Op_StoreN: 3277 case Op_StoreNKlass: 3278 case Op_LoadB: 3279 case Op_LoadUB: 3280 case Op_LoadUS: 3281 case Op_LoadI: 3282 case Op_LoadKlass: 3283 case Op_LoadNKlass: 3284 case Op_LoadL: 3285 case Op_LoadL_unaligned: 3286 case Op_LoadP: 3287 case Op_LoadN: 3288 case Op_LoadRange: 3289 case Op_LoadS: 3290 break; 3291 3292 case Op_AddP: { // Assert sane base pointers 3293 Node *addp = n->in(AddPNode::Address); 3294 assert( !addp->is_AddP() || 3295 addp->in(AddPNode::Base)->is_top() || // Top OK for allocation 3296 addp->in(AddPNode::Base) == n->in(AddPNode::Base), 3297 "Base pointers must match (addp %u)", addp->_idx ); 3298 #ifdef _LP64 3299 if ((UseCompressedOops || UseCompressedClassPointers) && 3300 addp->Opcode() == Op_ConP && 3301 addp == n->in(AddPNode::Base) && 3302 n->in(AddPNode::Offset)->is_Con()) { 3303 // If the transformation of ConP to ConN+DecodeN is beneficial depends 3304 // on the platform and on the compressed oops mode. 3305 // Use addressing with narrow klass to load with offset on x86. 3306 // Some platforms can use the constant pool to load ConP. 3307 // Do this transformation here since IGVN will convert ConN back to ConP. 3308 const Type* t = addp->bottom_type(); 3309 bool is_oop = t->isa_oopptr() != nullptr; 3310 bool is_klass = t->isa_klassptr() != nullptr; 3311 3312 if ((is_oop && UseCompressedOops && Matcher::const_oop_prefer_decode() ) || 3313 (is_klass && UseCompressedClassPointers && Matcher::const_klass_prefer_decode() && 3314 t->isa_klassptr()->exact_klass()->is_in_encoding_range())) { 3315 Node* nn = nullptr; 3316 3317 int op = is_oop ? Op_ConN : Op_ConNKlass; 3318 3319 // Look for existing ConN node of the same exact type. 3320 Node* r = root(); 3321 uint cnt = r->outcnt(); 3322 for (uint i = 0; i < cnt; i++) { 3323 Node* m = r->raw_out(i); 3324 if (m!= nullptr && m->Opcode() == op && 3325 m->bottom_type()->make_ptr() == t) { 3326 nn = m; 3327 break; 3328 } 3329 } 3330 if (nn != nullptr) { 3331 // Decode a narrow oop to match address 3332 // [R12 + narrow_oop_reg<<3 + offset] 3333 if (is_oop) { 3334 nn = new DecodeNNode(nn, t); 3335 } else { 3336 nn = new DecodeNKlassNode(nn, t); 3337 } 3338 // Check for succeeding AddP which uses the same Base. 3339 // Otherwise we will run into the assertion above when visiting that guy. 3340 for (uint i = 0; i < n->outcnt(); ++i) { 3341 Node *out_i = n->raw_out(i); 3342 if (out_i && out_i->is_AddP() && out_i->in(AddPNode::Base) == addp) { 3343 out_i->set_req(AddPNode::Base, nn); 3344 #ifdef ASSERT 3345 for (uint j = 0; j < out_i->outcnt(); ++j) { 3346 Node *out_j = out_i->raw_out(j); 3347 assert(out_j == nullptr || !out_j->is_AddP() || out_j->in(AddPNode::Base) != addp, 3348 "more than 2 AddP nodes in a chain (out_j %u)", out_j->_idx); 3349 } 3350 #endif 3351 } 3352 } 3353 n->set_req(AddPNode::Base, nn); 3354 n->set_req(AddPNode::Address, nn); 3355 if (addp->outcnt() == 0) { 3356 addp->disconnect_inputs(this); 3357 } 3358 } 3359 } 3360 } 3361 #endif 3362 break; 3363 } 3364 3365 case Op_CastPP: { 3366 // Remove CastPP nodes to gain more freedom during scheduling but 3367 // keep the dependency they encode as control or precedence edges 3368 // (if control is set already) on memory operations. Some CastPP 3369 // nodes don't have a control (don't carry a dependency): skip 3370 // those. 3371 if (n->in(0) != nullptr) { 3372 ResourceMark rm; 3373 Unique_Node_List wq; 3374 wq.push(n); 3375 for (uint next = 0; next < wq.size(); ++next) { 3376 Node *m = wq.at(next); 3377 for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) { 3378 Node* use = m->fast_out(i); 3379 if (use->is_Mem() || use->is_EncodeNarrowPtr()) { 3380 use->ensure_control_or_add_prec(n->in(0)); 3381 } else { 3382 switch(use->Opcode()) { 3383 case Op_AddP: 3384 case Op_DecodeN: 3385 case Op_DecodeNKlass: 3386 case Op_CheckCastPP: 3387 case Op_CastPP: 3388 wq.push(use); 3389 break; 3390 } 3391 } 3392 } 3393 } 3394 } 3395 const bool is_LP64 = LP64_ONLY(true) NOT_LP64(false); 3396 if (is_LP64 && n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) { 3397 Node* in1 = n->in(1); 3398 const Type* t = n->bottom_type(); 3399 Node* new_in1 = in1->clone(); 3400 new_in1->as_DecodeN()->set_type(t); 3401 3402 if (!Matcher::narrow_oop_use_complex_address()) { 3403 // 3404 // x86, ARM and friends can handle 2 adds in addressing mode 3405 // and Matcher can fold a DecodeN node into address by using 3406 // a narrow oop directly and do implicit null check in address: 3407 // 3408 // [R12 + narrow_oop_reg<<3 + offset] 3409 // NullCheck narrow_oop_reg 3410 // 3411 // On other platforms (Sparc) we have to keep new DecodeN node and 3412 // use it to do implicit null check in address: 3413 // 3414 // decode_not_null narrow_oop_reg, base_reg 3415 // [base_reg + offset] 3416 // NullCheck base_reg 3417 // 3418 // Pin the new DecodeN node to non-null path on these platform (Sparc) 3419 // to keep the information to which null check the new DecodeN node 3420 // corresponds to use it as value in implicit_null_check(). 3421 // 3422 new_in1->set_req(0, n->in(0)); 3423 } 3424 3425 n->subsume_by(new_in1, this); 3426 if (in1->outcnt() == 0) { 3427 in1->disconnect_inputs(this); 3428 } 3429 } else { 3430 n->subsume_by(n->in(1), this); 3431 if (n->outcnt() == 0) { 3432 n->disconnect_inputs(this); 3433 } 3434 } 3435 break; 3436 } 3437 #ifdef _LP64 3438 case Op_CmpP: 3439 // Do this transformation here to preserve CmpPNode::sub() and 3440 // other TypePtr related Ideal optimizations (for example, ptr nullness). 3441 if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) { 3442 Node* in1 = n->in(1); 3443 Node* in2 = n->in(2); 3444 if (!in1->is_DecodeNarrowPtr()) { 3445 in2 = in1; 3446 in1 = n->in(2); 3447 } 3448 assert(in1->is_DecodeNarrowPtr(), "sanity"); 3449 3450 Node* new_in2 = nullptr; 3451 if (in2->is_DecodeNarrowPtr()) { 3452 assert(in2->Opcode() == in1->Opcode(), "must be same node type"); 3453 new_in2 = in2->in(1); 3454 } else if (in2->Opcode() == Op_ConP) { 3455 const Type* t = in2->bottom_type(); 3456 if (t == TypePtr::NULL_PTR) { 3457 assert(in1->is_DecodeN(), "compare klass to null?"); 3458 // Don't convert CmpP null check into CmpN if compressed 3459 // oops implicit null check is not generated. 3460 // This will allow to generate normal oop implicit null check. 3461 if (Matcher::gen_narrow_oop_implicit_null_checks()) 3462 new_in2 = ConNode::make(TypeNarrowOop::NULL_PTR); 3463 // 3464 // This transformation together with CastPP transformation above 3465 // will generated code for implicit null checks for compressed oops. 3466 // 3467 // The original code after Optimize() 3468 // 3469 // LoadN memory, narrow_oop_reg 3470 // decode narrow_oop_reg, base_reg 3471 // CmpP base_reg, nullptr 3472 // CastPP base_reg // NotNull 3473 // Load [base_reg + offset], val_reg 3474 // 3475 // after these transformations will be 3476 // 3477 // LoadN memory, narrow_oop_reg 3478 // CmpN narrow_oop_reg, nullptr 3479 // decode_not_null narrow_oop_reg, base_reg 3480 // Load [base_reg + offset], val_reg 3481 // 3482 // and the uncommon path (== nullptr) will use narrow_oop_reg directly 3483 // since narrow oops can be used in debug info now (see the code in 3484 // final_graph_reshaping_walk()). 3485 // 3486 // At the end the code will be matched to 3487 // on x86: 3488 // 3489 // Load_narrow_oop memory, narrow_oop_reg 3490 // Load [R12 + narrow_oop_reg<<3 + offset], val_reg 3491 // NullCheck narrow_oop_reg 3492 // 3493 // and on sparc: 3494 // 3495 // Load_narrow_oop memory, narrow_oop_reg 3496 // decode_not_null narrow_oop_reg, base_reg 3497 // Load [base_reg + offset], val_reg 3498 // NullCheck base_reg 3499 // 3500 } else if (t->isa_oopptr()) { 3501 new_in2 = ConNode::make(t->make_narrowoop()); 3502 } else if (t->isa_klassptr()) { 3503 new_in2 = ConNode::make(t->make_narrowklass()); 3504 } 3505 } 3506 if (new_in2 != nullptr) { 3507 Node* cmpN = new CmpNNode(in1->in(1), new_in2); 3508 n->subsume_by(cmpN, this); 3509 if (in1->outcnt() == 0) { 3510 in1->disconnect_inputs(this); 3511 } 3512 if (in2->outcnt() == 0) { 3513 in2->disconnect_inputs(this); 3514 } 3515 } 3516 } 3517 break; 3518 3519 case Op_DecodeN: 3520 case Op_DecodeNKlass: 3521 assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out"); 3522 // DecodeN could be pinned when it can't be fold into 3523 // an address expression, see the code for Op_CastPP above. 3524 assert(n->in(0) == nullptr || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control"); 3525 break; 3526 3527 case Op_EncodeP: 3528 case Op_EncodePKlass: { 3529 Node* in1 = n->in(1); 3530 if (in1->is_DecodeNarrowPtr()) { 3531 n->subsume_by(in1->in(1), this); 3532 } else if (in1->Opcode() == Op_ConP) { 3533 const Type* t = in1->bottom_type(); 3534 if (t == TypePtr::NULL_PTR) { 3535 assert(t->isa_oopptr(), "null klass?"); 3536 n->subsume_by(ConNode::make(TypeNarrowOop::NULL_PTR), this); 3537 } else if (t->isa_oopptr()) { 3538 n->subsume_by(ConNode::make(t->make_narrowoop()), this); 3539 } else if (t->isa_klassptr()) { 3540 n->subsume_by(ConNode::make(t->make_narrowklass()), this); 3541 } 3542 } 3543 if (in1->outcnt() == 0) { 3544 in1->disconnect_inputs(this); 3545 } 3546 break; 3547 } 3548 3549 case Op_Proj: { 3550 if (OptimizeStringConcat || IncrementalInline) { 3551 ProjNode* proj = n->as_Proj(); 3552 if (proj->_is_io_use) { 3553 assert(proj->_con == TypeFunc::I_O || proj->_con == TypeFunc::Memory, ""); 3554 // Separate projections were used for the exception path which 3555 // are normally removed by a late inline. If it wasn't inlined 3556 // then they will hang around and should just be replaced with 3557 // the original one. Merge them. 3558 Node* non_io_proj = proj->in(0)->as_Multi()->proj_out_or_null(proj->_con, false /*is_io_use*/); 3559 if (non_io_proj != nullptr) { 3560 proj->subsume_by(non_io_proj , this); 3561 } 3562 } 3563 } 3564 break; 3565 } 3566 3567 case Op_Phi: 3568 if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) { 3569 // The EncodeP optimization may create Phi with the same edges 3570 // for all paths. It is not handled well by Register Allocator. 3571 Node* unique_in = n->in(1); 3572 assert(unique_in != nullptr, ""); 3573 uint cnt = n->req(); 3574 for (uint i = 2; i < cnt; i++) { 3575 Node* m = n->in(i); 3576 assert(m != nullptr, ""); 3577 if (unique_in != m) 3578 unique_in = nullptr; 3579 } 3580 if (unique_in != nullptr) { 3581 n->subsume_by(unique_in, this); 3582 } 3583 } 3584 break; 3585 3586 #endif 3587 3588 #ifdef ASSERT 3589 case Op_CastII: 3590 // Verify that all range check dependent CastII nodes were removed. 3591 if (n->isa_CastII()->has_range_check()) { 3592 n->dump(3); 3593 assert(false, "Range check dependent CastII node was not removed"); 3594 } 3595 break; 3596 #endif 3597 3598 case Op_ModI: 3599 handle_div_mod_op(n, T_INT, false); 3600 break; 3601 3602 case Op_ModL: 3603 handle_div_mod_op(n, T_LONG, false); 3604 break; 3605 3606 case Op_UModI: 3607 handle_div_mod_op(n, T_INT, true); 3608 break; 3609 3610 case Op_UModL: 3611 handle_div_mod_op(n, T_LONG, true); 3612 break; 3613 3614 case Op_LoadVector: 3615 case Op_StoreVector: 3616 #ifdef ASSERT 3617 // Add VerifyVectorAlignment node between adr and load / store. 3618 if (VerifyAlignVector && Matcher::has_match_rule(Op_VerifyVectorAlignment)) { 3619 bool must_verify_alignment = n->is_LoadVector() ? n->as_LoadVector()->must_verify_alignment() : 3620 n->as_StoreVector()->must_verify_alignment(); 3621 if (must_verify_alignment) { 3622 jlong vector_width = n->is_LoadVector() ? n->as_LoadVector()->memory_size() : 3623 n->as_StoreVector()->memory_size(); 3624 // The memory access should be aligned to the vector width in bytes. 3625 // However, the underlying array is possibly less well aligned, but at least 3626 // to ObjectAlignmentInBytes. Hence, even if multiple arrays are accessed in 3627 // a loop we can expect at least the following alignment: 3628 jlong guaranteed_alignment = MIN2(vector_width, (jlong)ObjectAlignmentInBytes); 3629 assert(2 <= guaranteed_alignment && guaranteed_alignment <= 64, "alignment must be in range"); 3630 assert(is_power_of_2(guaranteed_alignment), "alignment must be power of 2"); 3631 // Create mask from alignment. e.g. 0b1000 -> 0b0111 3632 jlong mask = guaranteed_alignment - 1; 3633 Node* mask_con = ConLNode::make(mask); 3634 VerifyVectorAlignmentNode* va = new VerifyVectorAlignmentNode(n->in(MemNode::Address), mask_con); 3635 n->set_req(MemNode::Address, va); 3636 } 3637 } 3638 #endif 3639 break; 3640 3641 case Op_LoadVectorGather: 3642 case Op_StoreVectorScatter: 3643 case Op_LoadVectorGatherMasked: 3644 case Op_StoreVectorScatterMasked: 3645 case Op_VectorCmpMasked: 3646 case Op_VectorMaskGen: 3647 case Op_LoadVectorMasked: 3648 case Op_StoreVectorMasked: 3649 break; 3650 3651 case Op_AddReductionVI: 3652 case Op_AddReductionVL: 3653 case Op_AddReductionVF: 3654 case Op_AddReductionVD: 3655 case Op_MulReductionVI: 3656 case Op_MulReductionVL: 3657 case Op_MulReductionVF: 3658 case Op_MulReductionVD: 3659 case Op_MinReductionV: 3660 case Op_MaxReductionV: 3661 case Op_AndReductionV: 3662 case Op_OrReductionV: 3663 case Op_XorReductionV: 3664 break; 3665 3666 case Op_PackB: 3667 case Op_PackS: 3668 case Op_PackI: 3669 case Op_PackF: 3670 case Op_PackL: 3671 case Op_PackD: 3672 if (n->req()-1 > 2) { 3673 // Replace many operand PackNodes with a binary tree for matching 3674 PackNode* p = (PackNode*) n; 3675 Node* btp = p->binary_tree_pack(1, n->req()); 3676 n->subsume_by(btp, this); 3677 } 3678 break; 3679 case Op_Loop: 3680 assert(!n->as_Loop()->is_loop_nest_inner_loop() || _loop_opts_cnt == 0, "should have been turned into a counted loop"); 3681 case Op_CountedLoop: 3682 case Op_LongCountedLoop: 3683 case Op_OuterStripMinedLoop: 3684 if (n->as_Loop()->is_inner_loop()) { 3685 frc.inc_inner_loop_count(); 3686 } 3687 n->as_Loop()->verify_strip_mined(0); 3688 break; 3689 case Op_LShiftI: 3690 case Op_RShiftI: 3691 case Op_URShiftI: 3692 case Op_LShiftL: 3693 case Op_RShiftL: 3694 case Op_URShiftL: 3695 if (Matcher::need_masked_shift_count) { 3696 // The cpu's shift instructions don't restrict the count to the 3697 // lower 5/6 bits. We need to do the masking ourselves. 3698 Node* in2 = n->in(2); 3699 juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1); 3700 const TypeInt* t = in2->find_int_type(); 3701 if (t != nullptr && t->is_con()) { 3702 juint shift = t->get_con(); 3703 if (shift > mask) { // Unsigned cmp 3704 n->set_req(2, ConNode::make(TypeInt::make(shift & mask))); 3705 } 3706 } else { 3707 if (t == nullptr || t->_lo < 0 || t->_hi > (int)mask) { 3708 Node* shift = new AndINode(in2, ConNode::make(TypeInt::make(mask))); 3709 n->set_req(2, shift); 3710 } 3711 } 3712 if (in2->outcnt() == 0) { // Remove dead node 3713 in2->disconnect_inputs(this); 3714 } 3715 } 3716 break; 3717 case Op_MemBarStoreStore: 3718 case Op_MemBarRelease: 3719 // Break the link with AllocateNode: it is no longer useful and 3720 // confuses register allocation. 3721 if (n->req() > MemBarNode::Precedent) { 3722 n->set_req(MemBarNode::Precedent, top()); 3723 } 3724 break; 3725 case Op_MemBarAcquire: { 3726 if (n->as_MemBar()->trailing_load() && n->req() > MemBarNode::Precedent) { 3727 // At parse time, the trailing MemBarAcquire for a volatile load 3728 // is created with an edge to the load. After optimizations, 3729 // that input may be a chain of Phis. If those phis have no 3730 // other use, then the MemBarAcquire keeps them alive and 3731 // register allocation can be confused. 3732 dead_nodes.push(n->in(MemBarNode::Precedent)); 3733 n->set_req(MemBarNode::Precedent, top()); 3734 } 3735 break; 3736 } 3737 case Op_Blackhole: 3738 break; 3739 case Op_RangeCheck: { 3740 RangeCheckNode* rc = n->as_RangeCheck(); 3741 Node* iff = new IfNode(rc->in(0), rc->in(1), rc->_prob, rc->_fcnt); 3742 n->subsume_by(iff, this); 3743 frc._tests.push(iff); 3744 break; 3745 } 3746 case Op_ConvI2L: { 3747 if (!Matcher::convi2l_type_required) { 3748 // Code generation on some platforms doesn't need accurate 3749 // ConvI2L types. Widening the type can help remove redundant 3750 // address computations. 3751 n->as_Type()->set_type(TypeLong::INT); 3752 ResourceMark rm; 3753 Unique_Node_List wq; 3754 wq.push(n); 3755 for (uint next = 0; next < wq.size(); next++) { 3756 Node *m = wq.at(next); 3757 3758 for(;;) { 3759 // Loop over all nodes with identical inputs edges as m 3760 Node* k = m->find_similar(m->Opcode()); 3761 if (k == nullptr) { 3762 break; 3763 } 3764 // Push their uses so we get a chance to remove node made 3765 // redundant 3766 for (DUIterator_Fast imax, i = k->fast_outs(imax); i < imax; i++) { 3767 Node* u = k->fast_out(i); 3768 if (u->Opcode() == Op_LShiftL || 3769 u->Opcode() == Op_AddL || 3770 u->Opcode() == Op_SubL || 3771 u->Opcode() == Op_AddP) { 3772 wq.push(u); 3773 } 3774 } 3775 // Replace all nodes with identical edges as m with m 3776 k->subsume_by(m, this); 3777 } 3778 } 3779 } 3780 break; 3781 } 3782 case Op_CmpUL: { 3783 if (!Matcher::has_match_rule(Op_CmpUL)) { 3784 // No support for unsigned long comparisons 3785 ConINode* sign_pos = new ConINode(TypeInt::make(BitsPerLong - 1)); 3786 Node* sign_bit_mask = new RShiftLNode(n->in(1), sign_pos); 3787 Node* orl = new OrLNode(n->in(1), sign_bit_mask); 3788 ConLNode* remove_sign_mask = new ConLNode(TypeLong::make(max_jlong)); 3789 Node* andl = new AndLNode(orl, remove_sign_mask); 3790 Node* cmp = new CmpLNode(andl, n->in(2)); 3791 n->subsume_by(cmp, this); 3792 } 3793 break; 3794 } 3795 #ifdef ASSERT 3796 case Op_ConNKlass: { 3797 const TypePtr* tp = n->as_Type()->type()->make_ptr(); 3798 ciKlass* klass = tp->is_klassptr()->exact_klass(); 3799 assert(klass->is_in_encoding_range(), "klass cannot be compressed"); 3800 break; 3801 } 3802 #endif 3803 default: 3804 assert(!n->is_Call(), ""); 3805 assert(!n->is_Mem(), ""); 3806 assert(nop != Op_ProfileBoolean, "should be eliminated during IGVN"); 3807 break; 3808 } 3809 } 3810 3811 //------------------------------final_graph_reshaping_walk--------------------- 3812 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(), 3813 // requires that the walk visits a node's inputs before visiting the node. 3814 void Compile::final_graph_reshaping_walk(Node_Stack& nstack, Node* root, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes) { 3815 Unique_Node_List sfpt; 3816 3817 frc._visited.set(root->_idx); // first, mark node as visited 3818 uint cnt = root->req(); 3819 Node *n = root; 3820 uint i = 0; 3821 while (true) { 3822 if (i < cnt) { 3823 // Place all non-visited non-null inputs onto stack 3824 Node* m = n->in(i); 3825 ++i; 3826 if (m != nullptr && !frc._visited.test_set(m->_idx)) { 3827 if (m->is_SafePoint() && m->as_SafePoint()->jvms() != nullptr) { 3828 // compute worst case interpreter size in case of a deoptimization 3829 update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size()); 3830 3831 sfpt.push(m); 3832 } 3833 cnt = m->req(); 3834 nstack.push(n, i); // put on stack parent and next input's index 3835 n = m; 3836 i = 0; 3837 } 3838 } else { 3839 // Now do post-visit work 3840 final_graph_reshaping_impl(n, frc, dead_nodes); 3841 if (nstack.is_empty()) 3842 break; // finished 3843 n = nstack.node(); // Get node from stack 3844 cnt = n->req(); 3845 i = nstack.index(); 3846 nstack.pop(); // Shift to the next node on stack 3847 } 3848 } 3849 3850 // Skip next transformation if compressed oops are not used. 3851 if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) || 3852 (!UseCompressedOops && !UseCompressedClassPointers)) 3853 return; 3854 3855 // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges. 3856 // It could be done for an uncommon traps or any safepoints/calls 3857 // if the DecodeN/DecodeNKlass node is referenced only in a debug info. 3858 while (sfpt.size() > 0) { 3859 n = sfpt.pop(); 3860 JVMState *jvms = n->as_SafePoint()->jvms(); 3861 assert(jvms != nullptr, "sanity"); 3862 int start = jvms->debug_start(); 3863 int end = n->req(); 3864 bool is_uncommon = (n->is_CallStaticJava() && 3865 n->as_CallStaticJava()->uncommon_trap_request() != 0); 3866 for (int j = start; j < end; j++) { 3867 Node* in = n->in(j); 3868 if (in->is_DecodeNarrowPtr()) { 3869 bool safe_to_skip = true; 3870 if (!is_uncommon ) { 3871 // Is it safe to skip? 3872 for (uint i = 0; i < in->outcnt(); i++) { 3873 Node* u = in->raw_out(i); 3874 if (!u->is_SafePoint() || 3875 (u->is_Call() && u->as_Call()->has_non_debug_use(n))) { 3876 safe_to_skip = false; 3877 } 3878 } 3879 } 3880 if (safe_to_skip) { 3881 n->set_req(j, in->in(1)); 3882 } 3883 if (in->outcnt() == 0) { 3884 in->disconnect_inputs(this); 3885 } 3886 } 3887 } 3888 } 3889 } 3890 3891 //------------------------------final_graph_reshaping-------------------------- 3892 // Final Graph Reshaping. 3893 // 3894 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late 3895 // and not commoned up and forced early. Must come after regular 3896 // optimizations to avoid GVN undoing the cloning. Clone constant 3897 // inputs to Loop Phis; these will be split by the allocator anyways. 3898 // Remove Opaque nodes. 3899 // (2) Move last-uses by commutative operations to the left input to encourage 3900 // Intel update-in-place two-address operations and better register usage 3901 // on RISCs. Must come after regular optimizations to avoid GVN Ideal 3902 // calls canonicalizing them back. 3903 // (3) Count the number of double-precision FP ops, single-precision FP ops 3904 // and call sites. On Intel, we can get correct rounding either by 3905 // forcing singles to memory (requires extra stores and loads after each 3906 // FP bytecode) or we can set a rounding mode bit (requires setting and 3907 // clearing the mode bit around call sites). The mode bit is only used 3908 // if the relative frequency of single FP ops to calls is low enough. 3909 // This is a key transform for SPEC mpeg_audio. 3910 // (4) Detect infinite loops; blobs of code reachable from above but not 3911 // below. Several of the Code_Gen algorithms fail on such code shapes, 3912 // so we simply bail out. Happens a lot in ZKM.jar, but also happens 3913 // from time to time in other codes (such as -Xcomp finalizer loops, etc). 3914 // Detection is by looking for IfNodes where only 1 projection is 3915 // reachable from below or CatchNodes missing some targets. 3916 // (5) Assert for insane oop offsets in debug mode. 3917 3918 bool Compile::final_graph_reshaping() { 3919 // an infinite loop may have been eliminated by the optimizer, 3920 // in which case the graph will be empty. 3921 if (root()->req() == 1) { 3922 // Do not compile method that is only a trivial infinite loop, 3923 // since the content of the loop may have been eliminated. 3924 record_method_not_compilable("trivial infinite loop"); 3925 return true; 3926 } 3927 3928 // Expensive nodes have their control input set to prevent the GVN 3929 // from freely commoning them. There's no GVN beyond this point so 3930 // no need to keep the control input. We want the expensive nodes to 3931 // be freely moved to the least frequent code path by gcm. 3932 assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?"); 3933 for (int i = 0; i < expensive_count(); i++) { 3934 _expensive_nodes.at(i)->set_req(0, nullptr); 3935 } 3936 3937 Final_Reshape_Counts frc; 3938 3939 // Visit everybody reachable! 3940 // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc 3941 Node_Stack nstack(live_nodes() >> 1); 3942 Unique_Node_List dead_nodes; 3943 final_graph_reshaping_walk(nstack, root(), frc, dead_nodes); 3944 3945 // Check for unreachable (from below) code (i.e., infinite loops). 3946 for( uint i = 0; i < frc._tests.size(); i++ ) { 3947 MultiBranchNode *n = frc._tests[i]->as_MultiBranch(); 3948 // Get number of CFG targets. 3949 // Note that PCTables include exception targets after calls. 3950 uint required_outcnt = n->required_outcnt(); 3951 if (n->outcnt() != required_outcnt) { 3952 // Check for a few special cases. Rethrow Nodes never take the 3953 // 'fall-thru' path, so expected kids is 1 less. 3954 if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) { 3955 if (n->in(0)->in(0)->is_Call()) { 3956 CallNode* call = n->in(0)->in(0)->as_Call(); 3957 if (call->entry_point() == OptoRuntime::rethrow_stub()) { 3958 required_outcnt--; // Rethrow always has 1 less kid 3959 } else if (call->req() > TypeFunc::Parms && 3960 call->is_CallDynamicJava()) { 3961 // Check for null receiver. In such case, the optimizer has 3962 // detected that the virtual call will always result in a null 3963 // pointer exception. The fall-through projection of this CatchNode 3964 // will not be populated. 3965 Node* arg0 = call->in(TypeFunc::Parms); 3966 if (arg0->is_Type() && 3967 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) { 3968 required_outcnt--; 3969 } 3970 } else if (call->entry_point() == OptoRuntime::new_array_Java() || 3971 call->entry_point() == OptoRuntime::new_array_nozero_Java()) { 3972 // Check for illegal array length. In such case, the optimizer has 3973 // detected that the allocation attempt will always result in an 3974 // exception. There is no fall-through projection of this CatchNode . 3975 assert(call->is_CallStaticJava(), "static call expected"); 3976 assert(call->req() == call->jvms()->endoff() + 1, "missing extra input"); 3977 uint valid_length_test_input = call->req() - 1; 3978 Node* valid_length_test = call->in(valid_length_test_input); 3979 call->del_req(valid_length_test_input); 3980 if (valid_length_test->find_int_con(1) == 0) { 3981 required_outcnt--; 3982 } 3983 dead_nodes.push(valid_length_test); 3984 assert(n->outcnt() == required_outcnt, "malformed control flow"); 3985 continue; 3986 } 3987 } 3988 } 3989 3990 // Recheck with a better notion of 'required_outcnt' 3991 if (n->outcnt() != required_outcnt) { 3992 record_method_not_compilable("malformed control flow"); 3993 return true; // Not all targets reachable! 3994 } 3995 } else if (n->is_PCTable() && n->in(0) && n->in(0)->in(0) && n->in(0)->in(0)->is_Call()) { 3996 CallNode* call = n->in(0)->in(0)->as_Call(); 3997 if (call->entry_point() == OptoRuntime::new_array_Java() || 3998 call->entry_point() == OptoRuntime::new_array_nozero_Java()) { 3999 assert(call->is_CallStaticJava(), "static call expected"); 4000 assert(call->req() == call->jvms()->endoff() + 1, "missing extra input"); 4001 uint valid_length_test_input = call->req() - 1; 4002 dead_nodes.push(call->in(valid_length_test_input)); 4003 call->del_req(valid_length_test_input); // valid length test useless now 4004 } 4005 } 4006 // Check that I actually visited all kids. Unreached kids 4007 // must be infinite loops. 4008 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) 4009 if (!frc._visited.test(n->fast_out(j)->_idx)) { 4010 record_method_not_compilable("infinite loop"); 4011 return true; // Found unvisited kid; must be unreach 4012 } 4013 4014 // Here so verification code in final_graph_reshaping_walk() 4015 // always see an OuterStripMinedLoopEnd 4016 if (n->is_OuterStripMinedLoopEnd() || n->is_LongCountedLoopEnd()) { 4017 IfNode* init_iff = n->as_If(); 4018 Node* iff = new IfNode(init_iff->in(0), init_iff->in(1), init_iff->_prob, init_iff->_fcnt); 4019 n->subsume_by(iff, this); 4020 } 4021 } 4022 4023 while (dead_nodes.size() > 0) { 4024 Node* m = dead_nodes.pop(); 4025 if (m->outcnt() == 0 && m != top()) { 4026 for (uint j = 0; j < m->req(); j++) { 4027 Node* in = m->in(j); 4028 if (in != nullptr) { 4029 dead_nodes.push(in); 4030 } 4031 } 4032 m->disconnect_inputs(this); 4033 } 4034 } 4035 4036 #ifdef IA32 4037 // If original bytecodes contained a mixture of floats and doubles 4038 // check if the optimizer has made it homogeneous, item (3). 4039 if (UseSSE == 0 && 4040 frc.get_float_count() > 32 && 4041 frc.get_double_count() == 0 && 4042 (10 * frc.get_call_count() < frc.get_float_count()) ) { 4043 set_24_bit_selection_and_mode(false, true); 4044 } 4045 #endif // IA32 4046 4047 set_java_calls(frc.get_java_call_count()); 4048 set_inner_loops(frc.get_inner_loop_count()); 4049 4050 // No infinite loops, no reason to bail out. 4051 return false; 4052 } 4053 4054 //-----------------------------too_many_traps---------------------------------- 4055 // Report if there are too many traps at the current method and bci. 4056 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded. 4057 bool Compile::too_many_traps(ciMethod* method, 4058 int bci, 4059 Deoptimization::DeoptReason reason) { 4060 if (method->has_trap_at(bci)) { 4061 return true; 4062 } 4063 ciMethodData* md = method->method_data(); 4064 if (md->is_empty()) { 4065 // Assume the trap has not occurred, or that it occurred only 4066 // because of a transient condition during start-up in the interpreter. 4067 return false; 4068 } 4069 ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : nullptr; 4070 if (md->has_trap_at(bci, m, reason) != 0) { 4071 // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic. 4072 // Also, if there are multiple reasons, or if there is no per-BCI record, 4073 // assume the worst. 4074 if (log()) 4075 log()->elem("observe trap='%s' count='%d'", 4076 Deoptimization::trap_reason_name(reason), 4077 md->trap_count(reason)); 4078 return true; 4079 } else { 4080 // Ignore method/bci and see if there have been too many globally. 4081 return too_many_traps(reason, md); 4082 } 4083 } 4084 4085 // Less-accurate variant which does not require a method and bci. 4086 bool Compile::too_many_traps(Deoptimization::DeoptReason reason, 4087 ciMethodData* logmd) { 4088 if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) { 4089 // Too many traps globally. 4090 // Note that we use cumulative trap_count, not just md->trap_count. 4091 if (log()) { 4092 int mcount = (logmd == nullptr)? -1: (int)logmd->trap_count(reason); 4093 log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'", 4094 Deoptimization::trap_reason_name(reason), 4095 mcount, trap_count(reason)); 4096 } 4097 return true; 4098 } else { 4099 // The coast is clear. 4100 return false; 4101 } 4102 } 4103 4104 //--------------------------too_many_recompiles-------------------------------- 4105 // Report if there are too many recompiles at the current method and bci. 4106 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff. 4107 // Is not eager to return true, since this will cause the compiler to use 4108 // Action_none for a trap point, to avoid too many recompilations. 4109 bool Compile::too_many_recompiles(ciMethod* method, 4110 int bci, 4111 Deoptimization::DeoptReason reason) { 4112 ciMethodData* md = method->method_data(); 4113 if (md->is_empty()) { 4114 // Assume the trap has not occurred, or that it occurred only 4115 // because of a transient condition during start-up in the interpreter. 4116 return false; 4117 } 4118 // Pick a cutoff point well within PerBytecodeRecompilationCutoff. 4119 uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8; 4120 uint m_cutoff = (uint) PerMethodRecompilationCutoff / 2 + 1; // not zero 4121 Deoptimization::DeoptReason per_bc_reason 4122 = Deoptimization::reason_recorded_per_bytecode_if_any(reason); 4123 ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : nullptr; 4124 if ((per_bc_reason == Deoptimization::Reason_none 4125 || md->has_trap_at(bci, m, reason) != 0) 4126 // The trap frequency measure we care about is the recompile count: 4127 && md->trap_recompiled_at(bci, m) 4128 && md->overflow_recompile_count() >= bc_cutoff) { 4129 // Do not emit a trap here if it has already caused recompilations. 4130 // Also, if there are multiple reasons, or if there is no per-BCI record, 4131 // assume the worst. 4132 if (log()) 4133 log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'", 4134 Deoptimization::trap_reason_name(reason), 4135 md->trap_count(reason), 4136 md->overflow_recompile_count()); 4137 return true; 4138 } else if (trap_count(reason) != 0 4139 && decompile_count() >= m_cutoff) { 4140 // Too many recompiles globally, and we have seen this sort of trap. 4141 // Use cumulative decompile_count, not just md->decompile_count. 4142 if (log()) 4143 log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'", 4144 Deoptimization::trap_reason_name(reason), 4145 md->trap_count(reason), trap_count(reason), 4146 md->decompile_count(), decompile_count()); 4147 return true; 4148 } else { 4149 // The coast is clear. 4150 return false; 4151 } 4152 } 4153 4154 // Compute when not to trap. Used by matching trap based nodes and 4155 // NullCheck optimization. 4156 void Compile::set_allowed_deopt_reasons() { 4157 _allowed_reasons = 0; 4158 if (is_method_compilation()) { 4159 for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) { 4160 assert(rs < BitsPerInt, "recode bit map"); 4161 if (!too_many_traps((Deoptimization::DeoptReason) rs)) { 4162 _allowed_reasons |= nth_bit(rs); 4163 } 4164 } 4165 } 4166 } 4167 4168 bool Compile::needs_clinit_barrier(ciMethod* method, ciMethod* accessing_method) { 4169 return method->is_static() && needs_clinit_barrier(method->holder(), accessing_method); 4170 } 4171 4172 bool Compile::needs_clinit_barrier(ciField* field, ciMethod* accessing_method) { 4173 return field->is_static() && needs_clinit_barrier(field->holder(), accessing_method); 4174 } 4175 4176 bool Compile::needs_clinit_barrier(ciInstanceKlass* holder, ciMethod* accessing_method) { 4177 if (holder->is_initialized() && !do_clinit_barriers()) { 4178 return false; 4179 } 4180 if (holder->is_being_initialized() || do_clinit_barriers()) { 4181 if (accessing_method->holder() == holder) { 4182 // Access inside a class. The barrier can be elided when access happens in <clinit>, 4183 // <init>, or a static method. In all those cases, there was an initialization 4184 // barrier on the holder klass passed. 4185 if (accessing_method->is_static_initializer() || 4186 accessing_method->is_object_initializer() || 4187 accessing_method->is_static()) { 4188 return false; 4189 } 4190 } else if (accessing_method->holder()->is_subclass_of(holder)) { 4191 // Access from a subclass. The barrier can be elided only when access happens in <clinit>. 4192 // In case of <init> or a static method, the barrier is on the subclass is not enough: 4193 // child class can become fully initialized while its parent class is still being initialized. 4194 if (accessing_method->is_static_initializer()) { 4195 return false; 4196 } 4197 } 4198 ciMethod* root = method(); // the root method of compilation 4199 if (root != accessing_method) { 4200 return needs_clinit_barrier(holder, root); // check access in the context of compilation root 4201 } 4202 } 4203 return true; 4204 } 4205 4206 #ifndef PRODUCT 4207 //------------------------------verify_bidirectional_edges--------------------- 4208 // For each input edge to a node (ie - for each Use-Def edge), verify that 4209 // there is a corresponding Def-Use edge. 4210 void Compile::verify_bidirectional_edges(Unique_Node_List &visited) { 4211 // Allocate stack of size C->live_nodes()/16 to avoid frequent realloc 4212 uint stack_size = live_nodes() >> 4; 4213 Node_List nstack(MAX2(stack_size, (uint)OptoNodeListSize)); 4214 nstack.push(_root); 4215 4216 while (nstack.size() > 0) { 4217 Node* n = nstack.pop(); 4218 if (visited.member(n)) { 4219 continue; 4220 } 4221 visited.push(n); 4222 4223 // Walk over all input edges, checking for correspondence 4224 uint length = n->len(); 4225 for (uint i = 0; i < length; i++) { 4226 Node* in = n->in(i); 4227 if (in != nullptr && !visited.member(in)) { 4228 nstack.push(in); // Put it on stack 4229 } 4230 if (in != nullptr && !in->is_top()) { 4231 // Count instances of `next` 4232 int cnt = 0; 4233 for (uint idx = 0; idx < in->_outcnt; idx++) { 4234 if (in->_out[idx] == n) { 4235 cnt++; 4236 } 4237 } 4238 assert(cnt > 0, "Failed to find Def-Use edge."); 4239 // Check for duplicate edges 4240 // walk the input array downcounting the input edges to n 4241 for (uint j = 0; j < length; j++) { 4242 if (n->in(j) == in) { 4243 cnt--; 4244 } 4245 } 4246 assert(cnt == 0, "Mismatched edge count."); 4247 } else if (in == nullptr) { 4248 assert(i == 0 || i >= n->req() || 4249 n->is_Region() || n->is_Phi() || n->is_ArrayCopy() || 4250 (n->is_Unlock() && i == (n->req() - 1)) || 4251 (n->is_MemBar() && i == 5), // the precedence edge to a membar can be removed during macro node expansion 4252 "only region, phi, arraycopy, unlock or membar nodes have null data edges"); 4253 } else { 4254 assert(in->is_top(), "sanity"); 4255 // Nothing to check. 4256 } 4257 } 4258 } 4259 } 4260 4261 //------------------------------verify_graph_edges--------------------------- 4262 // Walk the Graph and verify that there is a one-to-one correspondence 4263 // between Use-Def edges and Def-Use edges in the graph. 4264 void Compile::verify_graph_edges(bool no_dead_code) { 4265 if (VerifyGraphEdges) { 4266 Unique_Node_List visited; 4267 4268 // Call graph walk to check edges 4269 verify_bidirectional_edges(visited); 4270 if (no_dead_code) { 4271 // Now make sure that no visited node is used by an unvisited node. 4272 bool dead_nodes = false; 4273 Unique_Node_List checked; 4274 while (visited.size() > 0) { 4275 Node* n = visited.pop(); 4276 checked.push(n); 4277 for (uint i = 0; i < n->outcnt(); i++) { 4278 Node* use = n->raw_out(i); 4279 if (checked.member(use)) continue; // already checked 4280 if (visited.member(use)) continue; // already in the graph 4281 if (use->is_Con()) continue; // a dead ConNode is OK 4282 // At this point, we have found a dead node which is DU-reachable. 4283 if (!dead_nodes) { 4284 tty->print_cr("*** Dead nodes reachable via DU edges:"); 4285 dead_nodes = true; 4286 } 4287 use->dump(2); 4288 tty->print_cr("---"); 4289 checked.push(use); // No repeats; pretend it is now checked. 4290 } 4291 } 4292 assert(!dead_nodes, "using nodes must be reachable from root"); 4293 } 4294 } 4295 } 4296 #endif 4297 4298 // The Compile object keeps track of failure reasons separately from the ciEnv. 4299 // This is required because there is not quite a 1-1 relation between the 4300 // ciEnv and its compilation task and the Compile object. Note that one 4301 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides 4302 // to backtrack and retry without subsuming loads. Other than this backtracking 4303 // behavior, the Compile's failure reason is quietly copied up to the ciEnv 4304 // by the logic in C2Compiler. 4305 void Compile::record_failure(const char* reason DEBUG_ONLY(COMMA bool allow_multiple_failures)) { 4306 if (log() != nullptr) { 4307 log()->elem("failure reason='%s' phase='compile'", reason); 4308 } 4309 if (_failure_reason.get() == nullptr) { 4310 // Record the first failure reason. 4311 _failure_reason.set(reason); 4312 if (CaptureBailoutInformation) { 4313 _first_failure_details = new CompilationFailureInfo(reason); 4314 } 4315 } else { 4316 assert(!StressBailout || allow_multiple_failures, "should have handled previous failure."); 4317 } 4318 4319 if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) { 4320 C->print_method(PHASE_FAILURE, 1); 4321 } 4322 _root = nullptr; // flush the graph, too 4323 } 4324 4325 Compile::TracePhase::TracePhase(const char* name, PhaseTraceId id) 4326 : TraceTime(name, &Phase::timers[id], CITime, CITimeVerbose), 4327 _compile(Compile::current()), 4328 _log(nullptr), 4329 _dolog(CITimeVerbose) 4330 { 4331 assert(_compile != nullptr, "sanity check"); 4332 if (_dolog) { 4333 _log = _compile->log(); 4334 } 4335 if (_log != nullptr) { 4336 _log->begin_head("phase name='%s' nodes='%d' live='%d'", phase_name(), _compile->unique(), _compile->live_nodes()); 4337 _log->stamp(); 4338 _log->end_head(); 4339 } 4340 } 4341 4342 Compile::TracePhase::TracePhase(PhaseTraceId id) 4343 : TracePhase(Phase::get_phase_trace_id_text(id), id) {} 4344 4345 Compile::TracePhase::~TracePhase() { 4346 if (_compile->failing_internal()) { 4347 return; // timing code, not stressing bailouts. 4348 } 4349 #ifdef ASSERT 4350 if (PrintIdealNodeCount) { 4351 tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'", 4352 phase_name(), _compile->unique(), _compile->live_nodes(), _compile->count_live_nodes_by_graph_walk()); 4353 } 4354 4355 if (VerifyIdealNodeCount) { 4356 _compile->print_missing_nodes(); 4357 } 4358 #endif 4359 4360 if (_log != nullptr) { 4361 _log->done("phase name='%s' nodes='%d' live='%d'", phase_name(), _compile->unique(), _compile->live_nodes()); 4362 } 4363 } 4364 4365 //----------------------------static_subtype_check----------------------------- 4366 // Shortcut important common cases when superklass is exact: 4367 // (0) superklass is java.lang.Object (can occur in reflective code) 4368 // (1) subklass is already limited to a subtype of superklass => always ok 4369 // (2) subklass does not overlap with superklass => always fail 4370 // (3) superklass has NO subtypes and we can check with a simple compare. 4371 Compile::SubTypeCheckResult Compile::static_subtype_check(const TypeKlassPtr* superk, const TypeKlassPtr* subk, bool skip) { 4372 if (skip) { 4373 return SSC_full_test; // Let caller generate the general case. 4374 } 4375 4376 if (subk->is_java_subtype_of(superk)) { 4377 return SSC_always_true; // (0) and (1) this test cannot fail 4378 } 4379 4380 if (!subk->maybe_java_subtype_of(superk)) { 4381 return SSC_always_false; // (2) true path dead; no dynamic test needed 4382 } 4383 4384 const Type* superelem = superk; 4385 if (superk->isa_aryklassptr()) { 4386 int ignored; 4387 superelem = superk->is_aryklassptr()->base_element_type(ignored); 4388 } 4389 4390 if (superelem->isa_instklassptr()) { 4391 ciInstanceKlass* ik = superelem->is_instklassptr()->instance_klass(); 4392 if (!ik->has_subklass()) { 4393 if (!ik->is_final()) { 4394 // Add a dependency if there is a chance of a later subclass. 4395 dependencies()->assert_leaf_type(ik); 4396 } 4397 if (!superk->maybe_java_subtype_of(subk)) { 4398 return SSC_always_false; 4399 } 4400 return SSC_easy_test; // (3) caller can do a simple ptr comparison 4401 } 4402 } else { 4403 // A primitive array type has no subtypes. 4404 return SSC_easy_test; // (3) caller can do a simple ptr comparison 4405 } 4406 4407 return SSC_full_test; 4408 } 4409 4410 Node* Compile::conv_I2X_index(PhaseGVN* phase, Node* idx, const TypeInt* sizetype, Node* ctrl) { 4411 #ifdef _LP64 4412 // The scaled index operand to AddP must be a clean 64-bit value. 4413 // Java allows a 32-bit int to be incremented to a negative 4414 // value, which appears in a 64-bit register as a large 4415 // positive number. Using that large positive number as an 4416 // operand in pointer arithmetic has bad consequences. 4417 // On the other hand, 32-bit overflow is rare, and the possibility 4418 // can often be excluded, if we annotate the ConvI2L node with 4419 // a type assertion that its value is known to be a small positive 4420 // number. (The prior range check has ensured this.) 4421 // This assertion is used by ConvI2LNode::Ideal. 4422 int index_max = max_jint - 1; // array size is max_jint, index is one less 4423 if (sizetype != nullptr) index_max = sizetype->_hi - 1; 4424 const TypeInt* iidxtype = TypeInt::make(0, index_max, Type::WidenMax); 4425 idx = constrained_convI2L(phase, idx, iidxtype, ctrl); 4426 #endif 4427 return idx; 4428 } 4429 4430 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check) 4431 Node* Compile::constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl, bool carry_dependency) { 4432 if (ctrl != nullptr) { 4433 // Express control dependency by a CastII node with a narrow type. 4434 // Make the CastII node dependent on the control input to prevent the narrowed ConvI2L 4435 // node from floating above the range check during loop optimizations. Otherwise, the 4436 // ConvI2L node may be eliminated independently of the range check, causing the data path 4437 // to become TOP while the control path is still there (although it's unreachable). 4438 value = new CastIINode(ctrl, value, itype, carry_dependency ? ConstraintCastNode::StrongDependency : ConstraintCastNode::RegularDependency, true /* range check dependency */); 4439 value = phase->transform(value); 4440 } 4441 const TypeLong* ltype = TypeLong::make(itype->_lo, itype->_hi, itype->_widen); 4442 return phase->transform(new ConvI2LNode(value, ltype)); 4443 } 4444 4445 // The message about the current inlining is accumulated in 4446 // _print_inlining_stream and transferred into the _print_inlining_list 4447 // once we know whether inlining succeeds or not. For regular 4448 // inlining, messages are appended to the buffer pointed by 4449 // _print_inlining_idx in the _print_inlining_list. For late inlining, 4450 // a new buffer is added after _print_inlining_idx in the list. This 4451 // way we can update the inlining message for late inlining call site 4452 // when the inlining is attempted again. 4453 void Compile::print_inlining_init() { 4454 if (print_inlining() || print_intrinsics()) { 4455 // print_inlining_init is actually called several times. 4456 print_inlining_reset(); 4457 _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer*>(comp_arena(), 1, 1, new PrintInliningBuffer()); 4458 } 4459 } 4460 4461 void Compile::print_inlining_reinit() { 4462 if (print_inlining() || print_intrinsics()) { 4463 print_inlining_reset(); 4464 } 4465 } 4466 4467 void Compile::print_inlining_reset() { 4468 _print_inlining_stream->reset(); 4469 } 4470 4471 void Compile::print_inlining_commit() { 4472 assert(print_inlining() || print_intrinsics(), "PrintInlining off?"); 4473 // Transfer the message from _print_inlining_stream to the current 4474 // _print_inlining_list buffer and clear _print_inlining_stream. 4475 _print_inlining_list->at(_print_inlining_idx)->ss()->write(_print_inlining_stream->base(), _print_inlining_stream->size()); 4476 print_inlining_reset(); 4477 } 4478 4479 void Compile::print_inlining_push() { 4480 // Add new buffer to the _print_inlining_list at current position 4481 _print_inlining_idx++; 4482 _print_inlining_list->insert_before(_print_inlining_idx, new PrintInliningBuffer()); 4483 } 4484 4485 Compile::PrintInliningBuffer* Compile::print_inlining_current() { 4486 return _print_inlining_list->at(_print_inlining_idx); 4487 } 4488 4489 void Compile::print_inlining_update(CallGenerator* cg) { 4490 if (print_inlining() || print_intrinsics()) { 4491 if (cg->is_late_inline()) { 4492 if (print_inlining_current()->cg() != cg && 4493 (print_inlining_current()->cg() != nullptr || 4494 print_inlining_current()->ss()->size() != 0)) { 4495 print_inlining_push(); 4496 } 4497 print_inlining_commit(); 4498 print_inlining_current()->set_cg(cg); 4499 } else { 4500 if (print_inlining_current()->cg() != nullptr) { 4501 print_inlining_push(); 4502 } 4503 print_inlining_commit(); 4504 } 4505 } 4506 } 4507 4508 void Compile::print_inlining_move_to(CallGenerator* cg) { 4509 // We resume inlining at a late inlining call site. Locate the 4510 // corresponding inlining buffer so that we can update it. 4511 if (print_inlining() || print_intrinsics()) { 4512 for (int i = 0; i < _print_inlining_list->length(); i++) { 4513 if (_print_inlining_list->at(i)->cg() == cg) { 4514 _print_inlining_idx = i; 4515 return; 4516 } 4517 } 4518 ShouldNotReachHere(); 4519 } 4520 } 4521 4522 void Compile::print_inlining_update_delayed(CallGenerator* cg) { 4523 if (print_inlining() || print_intrinsics()) { 4524 assert(_print_inlining_stream->size() > 0, "missing inlining msg"); 4525 assert(print_inlining_current()->cg() == cg, "wrong entry"); 4526 // replace message with new message 4527 _print_inlining_list->at_put(_print_inlining_idx, new PrintInliningBuffer()); 4528 print_inlining_commit(); 4529 print_inlining_current()->set_cg(cg); 4530 } 4531 } 4532 4533 void Compile::print_inlining_assert_ready() { 4534 assert(!_print_inlining || _print_inlining_stream->size() == 0, "losing data"); 4535 } 4536 4537 void Compile::process_print_inlining() { 4538 assert(_late_inlines.length() == 0, "not drained yet"); 4539 if (print_inlining() || print_intrinsics()) { 4540 ResourceMark rm; 4541 stringStream ss; 4542 assert(_print_inlining_list != nullptr, "process_print_inlining should be called only once."); 4543 for (int i = 0; i < _print_inlining_list->length(); i++) { 4544 PrintInliningBuffer* pib = _print_inlining_list->at(i); 4545 ss.print("%s", pib->ss()->freeze()); 4546 delete pib; 4547 DEBUG_ONLY(_print_inlining_list->at_put(i, nullptr)); 4548 } 4549 // Reset _print_inlining_list, it only contains destructed objects. 4550 // It is on the arena, so it will be freed when the arena is reset. 4551 _print_inlining_list = nullptr; 4552 // _print_inlining_stream won't be used anymore, either. 4553 print_inlining_reset(); 4554 size_t end = ss.size(); 4555 _print_inlining_output = NEW_ARENA_ARRAY(comp_arena(), char, end+1); 4556 strncpy(_print_inlining_output, ss.freeze(), end+1); 4557 _print_inlining_output[end] = 0; 4558 } 4559 } 4560 4561 void Compile::dump_print_inlining() { 4562 if (_print_inlining_output != nullptr) { 4563 tty->print_raw(_print_inlining_output); 4564 } 4565 } 4566 4567 void Compile::log_late_inline(CallGenerator* cg) { 4568 if (log() != nullptr) { 4569 log()->head("late_inline method='%d' inline_id='" JLONG_FORMAT "'", log()->identify(cg->method()), 4570 cg->unique_id()); 4571 JVMState* p = cg->call_node()->jvms(); 4572 while (p != nullptr) { 4573 log()->elem("jvms bci='%d' method='%d'", p->bci(), log()->identify(p->method())); 4574 p = p->caller(); 4575 } 4576 log()->tail("late_inline"); 4577 } 4578 } 4579 4580 void Compile::log_late_inline_failure(CallGenerator* cg, const char* msg) { 4581 log_late_inline(cg); 4582 if (log() != nullptr) { 4583 log()->inline_fail(msg); 4584 } 4585 } 4586 4587 void Compile::log_inline_id(CallGenerator* cg) { 4588 if (log() != nullptr) { 4589 // The LogCompilation tool needs a unique way to identify late 4590 // inline call sites. This id must be unique for this call site in 4591 // this compilation. Try to have it unique across compilations as 4592 // well because it can be convenient when grepping through the log 4593 // file. 4594 // Distinguish OSR compilations from others in case CICountOSR is 4595 // on. 4596 jlong id = ((jlong)unique()) + (((jlong)compile_id()) << 33) + (CICountOSR && is_osr_compilation() ? ((jlong)1) << 32 : 0); 4597 cg->set_unique_id(id); 4598 log()->elem("inline_id id='" JLONG_FORMAT "'", id); 4599 } 4600 } 4601 4602 void Compile::log_inline_failure(const char* msg) { 4603 if (C->log() != nullptr) { 4604 C->log()->inline_fail(msg); 4605 } 4606 } 4607 4608 4609 // Dump inlining replay data to the stream. 4610 // Don't change thread state and acquire any locks. 4611 void Compile::dump_inline_data(outputStream* out) { 4612 InlineTree* inl_tree = ilt(); 4613 if (inl_tree != nullptr) { 4614 out->print(" inline %d", inl_tree->count()); 4615 inl_tree->dump_replay_data(out); 4616 } 4617 } 4618 4619 void Compile::dump_inline_data_reduced(outputStream* out) { 4620 assert(ReplayReduce, ""); 4621 4622 InlineTree* inl_tree = ilt(); 4623 if (inl_tree == nullptr) { 4624 return; 4625 } 4626 // Enable iterative replay file reduction 4627 // Output "compile" lines for depth 1 subtrees, 4628 // simulating that those trees were compiled 4629 // instead of inlined. 4630 for (int i = 0; i < inl_tree->subtrees().length(); ++i) { 4631 InlineTree* sub = inl_tree->subtrees().at(i); 4632 if (sub->inline_level() != 1) { 4633 continue; 4634 } 4635 4636 ciMethod* method = sub->method(); 4637 int entry_bci = -1; 4638 int comp_level = env()->task()->comp_level(); 4639 out->print("compile "); 4640 method->dump_name_as_ascii(out); 4641 out->print(" %d %d", entry_bci, comp_level); 4642 out->print(" inline %d", sub->count()); 4643 sub->dump_replay_data(out, -1); 4644 out->cr(); 4645 } 4646 } 4647 4648 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) { 4649 if (n1->Opcode() < n2->Opcode()) return -1; 4650 else if (n1->Opcode() > n2->Opcode()) return 1; 4651 4652 assert(n1->req() == n2->req(), "can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req()); 4653 for (uint i = 1; i < n1->req(); i++) { 4654 if (n1->in(i) < n2->in(i)) return -1; 4655 else if (n1->in(i) > n2->in(i)) return 1; 4656 } 4657 4658 return 0; 4659 } 4660 4661 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) { 4662 Node* n1 = *n1p; 4663 Node* n2 = *n2p; 4664 4665 return cmp_expensive_nodes(n1, n2); 4666 } 4667 4668 void Compile::sort_expensive_nodes() { 4669 if (!expensive_nodes_sorted()) { 4670 _expensive_nodes.sort(cmp_expensive_nodes); 4671 } 4672 } 4673 4674 bool Compile::expensive_nodes_sorted() const { 4675 for (int i = 1; i < _expensive_nodes.length(); i++) { 4676 if (cmp_expensive_nodes(_expensive_nodes.adr_at(i), _expensive_nodes.adr_at(i-1)) < 0) { 4677 return false; 4678 } 4679 } 4680 return true; 4681 } 4682 4683 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) { 4684 if (_expensive_nodes.length() == 0) { 4685 return false; 4686 } 4687 4688 assert(OptimizeExpensiveOps, "optimization off?"); 4689 4690 // Take this opportunity to remove dead nodes from the list 4691 int j = 0; 4692 for (int i = 0; i < _expensive_nodes.length(); i++) { 4693 Node* n = _expensive_nodes.at(i); 4694 if (!n->is_unreachable(igvn)) { 4695 assert(n->is_expensive(), "should be expensive"); 4696 _expensive_nodes.at_put(j, n); 4697 j++; 4698 } 4699 } 4700 _expensive_nodes.trunc_to(j); 4701 4702 // Then sort the list so that similar nodes are next to each other 4703 // and check for at least two nodes of identical kind with same data 4704 // inputs. 4705 sort_expensive_nodes(); 4706 4707 for (int i = 0; i < _expensive_nodes.length()-1; i++) { 4708 if (cmp_expensive_nodes(_expensive_nodes.adr_at(i), _expensive_nodes.adr_at(i+1)) == 0) { 4709 return true; 4710 } 4711 } 4712 4713 return false; 4714 } 4715 4716 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) { 4717 if (_expensive_nodes.length() == 0) { 4718 return; 4719 } 4720 4721 assert(OptimizeExpensiveOps, "optimization off?"); 4722 4723 // Sort to bring similar nodes next to each other and clear the 4724 // control input of nodes for which there's only a single copy. 4725 sort_expensive_nodes(); 4726 4727 int j = 0; 4728 int identical = 0; 4729 int i = 0; 4730 bool modified = false; 4731 for (; i < _expensive_nodes.length()-1; i++) { 4732 assert(j <= i, "can't write beyond current index"); 4733 if (_expensive_nodes.at(i)->Opcode() == _expensive_nodes.at(i+1)->Opcode()) { 4734 identical++; 4735 _expensive_nodes.at_put(j++, _expensive_nodes.at(i)); 4736 continue; 4737 } 4738 if (identical > 0) { 4739 _expensive_nodes.at_put(j++, _expensive_nodes.at(i)); 4740 identical = 0; 4741 } else { 4742 Node* n = _expensive_nodes.at(i); 4743 igvn.replace_input_of(n, 0, nullptr); 4744 igvn.hash_insert(n); 4745 modified = true; 4746 } 4747 } 4748 if (identical > 0) { 4749 _expensive_nodes.at_put(j++, _expensive_nodes.at(i)); 4750 } else if (_expensive_nodes.length() >= 1) { 4751 Node* n = _expensive_nodes.at(i); 4752 igvn.replace_input_of(n, 0, nullptr); 4753 igvn.hash_insert(n); 4754 modified = true; 4755 } 4756 _expensive_nodes.trunc_to(j); 4757 if (modified) { 4758 igvn.optimize(); 4759 } 4760 } 4761 4762 void Compile::add_expensive_node(Node * n) { 4763 assert(!_expensive_nodes.contains(n), "duplicate entry in expensive list"); 4764 assert(n->is_expensive(), "expensive nodes with non-null control here only"); 4765 assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here"); 4766 if (OptimizeExpensiveOps) { 4767 _expensive_nodes.append(n); 4768 } else { 4769 // Clear control input and let IGVN optimize expensive nodes if 4770 // OptimizeExpensiveOps is off. 4771 n->set_req(0, nullptr); 4772 } 4773 } 4774 4775 /** 4776 * Track coarsened Lock and Unlock nodes. 4777 */ 4778 4779 class Lock_List : public Node_List { 4780 uint _origin_cnt; 4781 public: 4782 Lock_List(Arena *a, uint cnt) : Node_List(a), _origin_cnt(cnt) {} 4783 uint origin_cnt() const { return _origin_cnt; } 4784 }; 4785 4786 void Compile::add_coarsened_locks(GrowableArray<AbstractLockNode*>& locks) { 4787 int length = locks.length(); 4788 if (length > 0) { 4789 // Have to keep this list until locks elimination during Macro nodes elimination. 4790 Lock_List* locks_list = new (comp_arena()) Lock_List(comp_arena(), length); 4791 AbstractLockNode* alock = locks.at(0); 4792 BoxLockNode* box = alock->box_node()->as_BoxLock(); 4793 for (int i = 0; i < length; i++) { 4794 AbstractLockNode* lock = locks.at(i); 4795 assert(lock->is_coarsened(), "expecting only coarsened AbstractLock nodes, but got '%s'[%d] node", lock->Name(), lock->_idx); 4796 locks_list->push(lock); 4797 BoxLockNode* this_box = lock->box_node()->as_BoxLock(); 4798 if (this_box != box) { 4799 // Locking regions (BoxLock) could be Unbalanced here: 4800 // - its coarsened locks were eliminated in earlier 4801 // macro nodes elimination followed by loop unroll 4802 // - it is OSR locking region (no Lock node) 4803 // Preserve Unbalanced status in such cases. 4804 if (!this_box->is_unbalanced()) { 4805 this_box->set_coarsened(); 4806 } 4807 if (!box->is_unbalanced()) { 4808 box->set_coarsened(); 4809 } 4810 } 4811 } 4812 _coarsened_locks.append(locks_list); 4813 } 4814 } 4815 4816 void Compile::remove_useless_coarsened_locks(Unique_Node_List& useful) { 4817 int count = coarsened_count(); 4818 for (int i = 0; i < count; i++) { 4819 Node_List* locks_list = _coarsened_locks.at(i); 4820 for (uint j = 0; j < locks_list->size(); j++) { 4821 Node* lock = locks_list->at(j); 4822 assert(lock->is_AbstractLock(), "sanity"); 4823 if (!useful.member(lock)) { 4824 locks_list->yank(lock); 4825 } 4826 } 4827 } 4828 } 4829 4830 void Compile::remove_coarsened_lock(Node* n) { 4831 if (n->is_AbstractLock()) { 4832 int count = coarsened_count(); 4833 for (int i = 0; i < count; i++) { 4834 Node_List* locks_list = _coarsened_locks.at(i); 4835 locks_list->yank(n); 4836 } 4837 } 4838 } 4839 4840 bool Compile::coarsened_locks_consistent() { 4841 int count = coarsened_count(); 4842 for (int i = 0; i < count; i++) { 4843 bool unbalanced = false; 4844 bool modified = false; // track locks kind modifications 4845 Lock_List* locks_list = (Lock_List*)_coarsened_locks.at(i); 4846 uint size = locks_list->size(); 4847 if (size == 0) { 4848 unbalanced = false; // All locks were eliminated - good 4849 } else if (size != locks_list->origin_cnt()) { 4850 unbalanced = true; // Some locks were removed from list 4851 } else { 4852 for (uint j = 0; j < size; j++) { 4853 Node* lock = locks_list->at(j); 4854 // All nodes in group should have the same state (modified or not) 4855 if (!lock->as_AbstractLock()->is_coarsened()) { 4856 if (j == 0) { 4857 // first on list was modified, the rest should be too for consistency 4858 modified = true; 4859 } else if (!modified) { 4860 // this lock was modified but previous locks on the list were not 4861 unbalanced = true; 4862 break; 4863 } 4864 } else if (modified) { 4865 // previous locks on list were modified but not this lock 4866 unbalanced = true; 4867 break; 4868 } 4869 } 4870 } 4871 if (unbalanced) { 4872 // unbalanced monitor enter/exit - only some [un]lock nodes were removed or modified 4873 #ifdef ASSERT 4874 if (PrintEliminateLocks) { 4875 tty->print_cr("=== unbalanced coarsened locks ==="); 4876 for (uint l = 0; l < size; l++) { 4877 locks_list->at(l)->dump(); 4878 } 4879 } 4880 #endif 4881 record_failure(C2Compiler::retry_no_locks_coarsening()); 4882 return false; 4883 } 4884 } 4885 return true; 4886 } 4887 4888 // Mark locking regions (identified by BoxLockNode) as unbalanced if 4889 // locks coarsening optimization removed Lock/Unlock nodes from them. 4890 // Such regions become unbalanced because coarsening only removes part 4891 // of Lock/Unlock nodes in region. As result we can't execute other 4892 // locks elimination optimizations which assume all code paths have 4893 // corresponding pair of Lock/Unlock nodes - they are balanced. 4894 void Compile::mark_unbalanced_boxes() const { 4895 int count = coarsened_count(); 4896 for (int i = 0; i < count; i++) { 4897 Node_List* locks_list = _coarsened_locks.at(i); 4898 uint size = locks_list->size(); 4899 if (size > 0) { 4900 AbstractLockNode* alock = locks_list->at(0)->as_AbstractLock(); 4901 BoxLockNode* box = alock->box_node()->as_BoxLock(); 4902 if (alock->is_coarsened()) { 4903 // coarsened_locks_consistent(), which is called before this method, verifies 4904 // that the rest of Lock/Unlock nodes on locks_list are also coarsened. 4905 assert(!box->is_eliminated(), "regions with coarsened locks should not be marked as eliminated"); 4906 for (uint j = 1; j < size; j++) { 4907 assert(locks_list->at(j)->as_AbstractLock()->is_coarsened(), "only coarsened locks are expected here"); 4908 BoxLockNode* this_box = locks_list->at(j)->as_AbstractLock()->box_node()->as_BoxLock(); 4909 if (box != this_box) { 4910 assert(!this_box->is_eliminated(), "regions with coarsened locks should not be marked as eliminated"); 4911 box->set_unbalanced(); 4912 this_box->set_unbalanced(); 4913 } 4914 } 4915 } 4916 } 4917 } 4918 } 4919 4920 /** 4921 * Remove the speculative part of types and clean up the graph 4922 */ 4923 void Compile::remove_speculative_types(PhaseIterGVN &igvn) { 4924 if (UseTypeSpeculation) { 4925 Unique_Node_List worklist; 4926 worklist.push(root()); 4927 int modified = 0; 4928 // Go over all type nodes that carry a speculative type, drop the 4929 // speculative part of the type and enqueue the node for an igvn 4930 // which may optimize it out. 4931 for (uint next = 0; next < worklist.size(); ++next) { 4932 Node *n = worklist.at(next); 4933 if (n->is_Type()) { 4934 TypeNode* tn = n->as_Type(); 4935 const Type* t = tn->type(); 4936 const Type* t_no_spec = t->remove_speculative(); 4937 if (t_no_spec != t) { 4938 bool in_hash = igvn.hash_delete(n); 4939 assert(in_hash || n->hash() == Node::NO_HASH, "node should be in igvn hash table"); 4940 tn->set_type(t_no_spec); 4941 igvn.hash_insert(n); 4942 igvn._worklist.push(n); // give it a chance to go away 4943 modified++; 4944 } 4945 } 4946 // Iterate over outs - endless loops is unreachable from below 4947 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 4948 Node *m = n->fast_out(i); 4949 if (not_a_node(m)) { 4950 continue; 4951 } 4952 worklist.push(m); 4953 } 4954 } 4955 // Drop the speculative part of all types in the igvn's type table 4956 igvn.remove_speculative_types(); 4957 if (modified > 0) { 4958 igvn.optimize(); 4959 if (failing()) return; 4960 } 4961 #ifdef ASSERT 4962 // Verify that after the IGVN is over no speculative type has resurfaced 4963 worklist.clear(); 4964 worklist.push(root()); 4965 for (uint next = 0; next < worklist.size(); ++next) { 4966 Node *n = worklist.at(next); 4967 const Type* t = igvn.type_or_null(n); 4968 assert((t == nullptr) || (t == t->remove_speculative()), "no more speculative types"); 4969 if (n->is_Type()) { 4970 t = n->as_Type()->type(); 4971 assert(t == t->remove_speculative(), "no more speculative types"); 4972 } 4973 // Iterate over outs - endless loops is unreachable from below 4974 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 4975 Node *m = n->fast_out(i); 4976 if (not_a_node(m)) { 4977 continue; 4978 } 4979 worklist.push(m); 4980 } 4981 } 4982 igvn.check_no_speculative_types(); 4983 #endif 4984 } 4985 } 4986 4987 // Auxiliary methods to support randomized stressing/fuzzing. 4988 4989 void Compile::initialize_stress_seed(const DirectiveSet* directive) { 4990 if (FLAG_IS_DEFAULT(StressSeed) || (FLAG_IS_ERGO(StressSeed) && directive->RepeatCompilationOption)) { 4991 _stress_seed = static_cast<uint>(Ticks::now().nanoseconds()); 4992 FLAG_SET_ERGO(StressSeed, _stress_seed); 4993 } else { 4994 _stress_seed = StressSeed; 4995 } 4996 if (_log != nullptr) { 4997 _log->elem("stress_test seed='%u'", _stress_seed); 4998 } 4999 } 5000 5001 int Compile::random() { 5002 _stress_seed = os::next_random(_stress_seed); 5003 return static_cast<int>(_stress_seed); 5004 } 5005 5006 // This method can be called the arbitrary number of times, with current count 5007 // as the argument. The logic allows selecting a single candidate from the 5008 // running list of candidates as follows: 5009 // int count = 0; 5010 // Cand* selected = null; 5011 // while(cand = cand->next()) { 5012 // if (randomized_select(++count)) { 5013 // selected = cand; 5014 // } 5015 // } 5016 // 5017 // Including count equalizes the chances any candidate is "selected". 5018 // This is useful when we don't have the complete list of candidates to choose 5019 // from uniformly. In this case, we need to adjust the randomicity of the 5020 // selection, or else we will end up biasing the selection towards the latter 5021 // candidates. 5022 // 5023 // Quick back-envelope calculation shows that for the list of n candidates 5024 // the equal probability for the candidate to persist as "best" can be 5025 // achieved by replacing it with "next" k-th candidate with the probability 5026 // of 1/k. It can be easily shown that by the end of the run, the 5027 // probability for any candidate is converged to 1/n, thus giving the 5028 // uniform distribution among all the candidates. 5029 // 5030 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large. 5031 #define RANDOMIZED_DOMAIN_POW 29 5032 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW) 5033 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1) 5034 bool Compile::randomized_select(int count) { 5035 assert(count > 0, "only positive"); 5036 return (random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count); 5037 } 5038 5039 #ifdef ASSERT 5040 // Failures are geometrically distributed with probability 1/StressBailoutMean. 5041 bool Compile::fail_randomly() { 5042 if ((random() % StressBailoutMean) != 0) { 5043 return false; 5044 } 5045 record_failure("StressBailout"); 5046 return true; 5047 } 5048 5049 bool Compile::failure_is_artificial() { 5050 assert(failing_internal(), "should be failing"); 5051 return C->failure_reason_is("StressBailout"); 5052 } 5053 #endif 5054 5055 CloneMap& Compile::clone_map() { return _clone_map; } 5056 void Compile::set_clone_map(Dict* d) { _clone_map._dict = d; } 5057 5058 void NodeCloneInfo::dump_on(outputStream* st) const { 5059 st->print(" {%d:%d} ", idx(), gen()); 5060 } 5061 5062 void CloneMap::clone(Node* old, Node* nnn, int gen) { 5063 uint64_t val = value(old->_idx); 5064 NodeCloneInfo cio(val); 5065 assert(val != 0, "old node should be in the map"); 5066 NodeCloneInfo cin(cio.idx(), gen + cio.gen()); 5067 insert(nnn->_idx, cin.get()); 5068 #ifndef PRODUCT 5069 if (is_debug()) { 5070 tty->print_cr("CloneMap::clone inserted node %d info {%d:%d} into CloneMap", nnn->_idx, cin.idx(), cin.gen()); 5071 } 5072 #endif 5073 } 5074 5075 void CloneMap::verify_insert_and_clone(Node* old, Node* nnn, int gen) { 5076 NodeCloneInfo cio(value(old->_idx)); 5077 if (cio.get() == 0) { 5078 cio.set(old->_idx, 0); 5079 insert(old->_idx, cio.get()); 5080 #ifndef PRODUCT 5081 if (is_debug()) { 5082 tty->print_cr("CloneMap::verify_insert_and_clone inserted node %d info {%d:%d} into CloneMap", old->_idx, cio.idx(), cio.gen()); 5083 } 5084 #endif 5085 } 5086 clone(old, nnn, gen); 5087 } 5088 5089 int CloneMap::max_gen() const { 5090 int g = 0; 5091 DictI di(_dict); 5092 for(; di.test(); ++di) { 5093 int t = gen(di._key); 5094 if (g < t) { 5095 g = t; 5096 #ifndef PRODUCT 5097 if (is_debug()) { 5098 tty->print_cr("CloneMap::max_gen() update max=%d from %d", g, _2_node_idx_t(di._key)); 5099 } 5100 #endif 5101 } 5102 } 5103 return g; 5104 } 5105 5106 void CloneMap::dump(node_idx_t key, outputStream* st) const { 5107 uint64_t val = value(key); 5108 if (val != 0) { 5109 NodeCloneInfo ni(val); 5110 ni.dump_on(st); 5111 } 5112 } 5113 5114 void Compile::shuffle_macro_nodes() { 5115 if (_macro_nodes.length() < 2) { 5116 return; 5117 } 5118 for (uint i = _macro_nodes.length() - 1; i >= 1; i--) { 5119 uint j = C->random() % (i + 1); 5120 swap(_macro_nodes.at(i), _macro_nodes.at(j)); 5121 } 5122 } 5123 5124 // Move Allocate nodes to the start of the list 5125 void Compile::sort_macro_nodes() { 5126 int count = macro_count(); 5127 int allocates = 0; 5128 for (int i = 0; i < count; i++) { 5129 Node* n = macro_node(i); 5130 if (n->is_Allocate()) { 5131 if (i != allocates) { 5132 Node* tmp = macro_node(allocates); 5133 _macro_nodes.at_put(allocates, n); 5134 _macro_nodes.at_put(i, tmp); 5135 } 5136 allocates++; 5137 } 5138 } 5139 } 5140 5141 void Compile::print_method(CompilerPhaseType cpt, int level, Node* n) { 5142 if (failing_internal()) { return; } // failing_internal to not stress bailouts from printing code. 5143 EventCompilerPhase event(UNTIMED); 5144 if (event.should_commit()) { 5145 CompilerEvent::PhaseEvent::post(event, C->_latest_stage_start_counter, cpt, C->_compile_id, level); 5146 } 5147 #ifndef PRODUCT 5148 ResourceMark rm; 5149 stringStream ss; 5150 ss.print_raw(CompilerPhaseTypeHelper::to_description(cpt)); 5151 int iter = ++_igv_phase_iter[cpt]; 5152 if (iter > 1) { 5153 ss.print(" %d", iter); 5154 } 5155 if (n != nullptr) { 5156 ss.print(": %d %s", n->_idx, NodeClassNames[n->Opcode()]); 5157 if (n->is_Call()) { 5158 CallNode* call = n->as_Call(); 5159 if (call->_name != nullptr) { 5160 // E.g. uncommon traps etc. 5161 ss.print(" - %s", call->_name); 5162 } else if (call->is_CallJava()) { 5163 CallJavaNode* call_java = call->as_CallJava(); 5164 if (call_java->method() != nullptr) { 5165 ss.print(" -"); 5166 call_java->method()->print_short_name(&ss); 5167 } 5168 } 5169 } 5170 } 5171 5172 const char* name = ss.as_string(); 5173 if (should_print_igv(level)) { 5174 _igv_printer->print_method(name, level); 5175 } 5176 if (should_print_phase(cpt)) { 5177 print_ideal_ir(CompilerPhaseTypeHelper::to_name(cpt)); 5178 } 5179 #endif 5180 C->_latest_stage_start_counter.stamp(); 5181 } 5182 5183 // Only used from CompileWrapper 5184 void Compile::begin_method() { 5185 #ifndef PRODUCT 5186 if (_method != nullptr && should_print_igv(1)) { 5187 _igv_printer->begin_method(); 5188 } 5189 #endif 5190 C->_latest_stage_start_counter.stamp(); 5191 } 5192 5193 // Only used from CompileWrapper 5194 void Compile::end_method() { 5195 EventCompilerPhase event(UNTIMED); 5196 if (event.should_commit()) { 5197 CompilerEvent::PhaseEvent::post(event, C->_latest_stage_start_counter, PHASE_END, C->_compile_id, 1); 5198 } 5199 5200 #ifndef PRODUCT 5201 if (_method != nullptr && should_print_igv(1)) { 5202 _igv_printer->end_method(); 5203 } 5204 #endif 5205 } 5206 5207 bool Compile::should_print_phase(CompilerPhaseType cpt) { 5208 #ifndef PRODUCT 5209 if (_directive->should_print_phase(cpt)) { 5210 return true; 5211 } 5212 #endif 5213 return false; 5214 } 5215 5216 bool Compile::should_print_igv(const int level) { 5217 #ifndef PRODUCT 5218 if (PrintIdealGraphLevel < 0) { // disabled by the user 5219 return false; 5220 } 5221 5222 bool need = directive()->IGVPrintLevelOption >= level; 5223 if (need && !_igv_printer) { 5224 _igv_printer = IdealGraphPrinter::printer(); 5225 _igv_printer->set_compile(this); 5226 } 5227 return need; 5228 #else 5229 return false; 5230 #endif 5231 } 5232 5233 #ifndef PRODUCT 5234 IdealGraphPrinter* Compile::_debug_file_printer = nullptr; 5235 IdealGraphPrinter* Compile::_debug_network_printer = nullptr; 5236 5237 // Called from debugger. Prints method to the default file with the default phase name. 5238 // This works regardless of any Ideal Graph Visualizer flags set or not. 5239 void igv_print() { 5240 Compile::current()->igv_print_method_to_file(); 5241 } 5242 5243 // Same as igv_print() above but with a specified phase name. 5244 void igv_print(const char* phase_name) { 5245 Compile::current()->igv_print_method_to_file(phase_name); 5246 } 5247 5248 // Called from debugger. Prints method with the default phase name to the default network or the one specified with 5249 // the network flags for the Ideal Graph Visualizer, or to the default file depending on the 'network' argument. 5250 // This works regardless of any Ideal Graph Visualizer flags set or not. 5251 void igv_print(bool network) { 5252 if (network) { 5253 Compile::current()->igv_print_method_to_network(); 5254 } else { 5255 Compile::current()->igv_print_method_to_file(); 5256 } 5257 } 5258 5259 // Same as igv_print(bool network) above but with a specified phase name. 5260 void igv_print(bool network, const char* phase_name) { 5261 if (network) { 5262 Compile::current()->igv_print_method_to_network(phase_name); 5263 } else { 5264 Compile::current()->igv_print_method_to_file(phase_name); 5265 } 5266 } 5267 5268 // Called from debugger. Normal write to the default _printer. Only works if Ideal Graph Visualizer printing flags are set. 5269 void igv_print_default() { 5270 Compile::current()->print_method(PHASE_DEBUG, 0); 5271 } 5272 5273 // Called from debugger, especially when replaying a trace in which the program state cannot be altered like with rr replay. 5274 // A method is appended to an existing default file with the default phase name. This means that igv_append() must follow 5275 // an earlier igv_print(*) call which sets up the file. This works regardless of any Ideal Graph Visualizer flags set or not. 5276 void igv_append() { 5277 Compile::current()->igv_print_method_to_file("Debug", true); 5278 } 5279 5280 // Same as igv_append() above but with a specified phase name. 5281 void igv_append(const char* phase_name) { 5282 Compile::current()->igv_print_method_to_file(phase_name, true); 5283 } 5284 5285 void Compile::igv_print_method_to_file(const char* phase_name, bool append) { 5286 const char* file_name = "custom_debug.xml"; 5287 if (_debug_file_printer == nullptr) { 5288 _debug_file_printer = new IdealGraphPrinter(C, file_name, append); 5289 } else { 5290 _debug_file_printer->update_compiled_method(C->method()); 5291 } 5292 tty->print_cr("Method %s to %s", append ? "appended" : "printed", file_name); 5293 _debug_file_printer->print(phase_name, (Node*)C->root()); 5294 } 5295 5296 void Compile::igv_print_method_to_network(const char* phase_name) { 5297 if (_debug_network_printer == nullptr) { 5298 _debug_network_printer = new IdealGraphPrinter(C); 5299 } else { 5300 _debug_network_printer->update_compiled_method(C->method()); 5301 } 5302 tty->print_cr("Method printed over network stream to IGV"); 5303 _debug_network_printer->print(phase_name, (Node*)C->root()); 5304 } 5305 #endif 5306 5307 Node* Compile::narrow_value(BasicType bt, Node* value, const Type* type, PhaseGVN* phase, bool transform_res) { 5308 if (type != nullptr && phase->type(value)->higher_equal(type)) { 5309 return value; 5310 } 5311 Node* result = nullptr; 5312 if (bt == T_BYTE) { 5313 result = phase->transform(new LShiftINode(value, phase->intcon(24))); 5314 result = new RShiftINode(result, phase->intcon(24)); 5315 } else if (bt == T_BOOLEAN) { 5316 result = new AndINode(value, phase->intcon(0xFF)); 5317 } else if (bt == T_CHAR) { 5318 result = new AndINode(value,phase->intcon(0xFFFF)); 5319 } else { 5320 assert(bt == T_SHORT, "unexpected narrow type"); 5321 result = phase->transform(new LShiftINode(value, phase->intcon(16))); 5322 result = new RShiftINode(result, phase->intcon(16)); 5323 } 5324 if (transform_res) { 5325 result = phase->transform(result); 5326 } 5327 return result; 5328 } 5329 5330 void Compile::record_method_not_compilable_oom() { 5331 record_method_not_compilable(CompilationMemoryStatistic::failure_reason_memlimit()); 5332 }