1 /*
   2  * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_OPTO_COMPILE_HPP
  26 #define SHARE_OPTO_COMPILE_HPP
  27 
  28 #include "asm/codeBuffer.hpp"
  29 #include "ci/compilerInterface.hpp"
  30 #include "code/debugInfoRec.hpp"
  31 #include "compiler/compiler_globals.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/compilerEvent.hpp"
  34 #include "compiler/cHeapStringHolder.hpp"
  35 #include "libadt/dict.hpp"
  36 #include "libadt/vectset.hpp"
  37 #include "memory/resourceArea.hpp"
  38 #include "oops/methodData.hpp"
  39 #include "opto/idealGraphPrinter.hpp"
  40 #include "opto/phasetype.hpp"
  41 #include "opto/phase.hpp"
  42 #include "opto/regmask.hpp"
  43 #include "runtime/deoptimization.hpp"
  44 #include "runtime/sharedRuntime.hpp"
  45 #include "runtime/timerTrace.hpp"
  46 #include "runtime/vmThread.hpp"
  47 #include "utilities/ticks.hpp"
  48 #include "utilities/vmEnums.hpp"
  49 #include "opto/printinlining.hpp"
  50 
  51 class AbstractLockNode;
  52 class AddPNode;
  53 class Block;
  54 class Bundle;
  55 class CallGenerator;
  56 class CallStaticJavaNode;
  57 class CloneMap;
  58 class CompilationFailureInfo;
  59 class ConnectionGraph;
  60 class IdealGraphPrinter;
  61 class InlineTree;
  62 class Matcher;
  63 class MachConstantNode;
  64 class MachConstantBaseNode;
  65 class MachNode;
  66 class MachOper;
  67 class MachSafePointNode;
  68 class Node;
  69 class Node_Array;
  70 class Node_List;
  71 class Node_Notes;
  72 class NodeHash;
  73 class NodeCloneInfo;
  74 class OptoReg;
  75 class ParsePredicateNode;
  76 class PhaseCFG;
  77 class PhaseGVN;
  78 class PhaseIterGVN;
  79 class PhaseRegAlloc;
  80 class PhaseCCP;
  81 class PhaseOutput;
  82 class RootNode;
  83 class relocInfo;
  84 class StartNode;
  85 class SafePointNode;
  86 class JVMState;
  87 class Type;
  88 class TypeInt;
  89 class TypeInteger;
  90 class TypeKlassPtr;
  91 class TypePtr;
  92 class TypeOopPtr;
  93 class TypeFunc;
  94 class TypeVect;
  95 class Type_Array;
  96 class Unique_Node_List;
  97 class UnstableIfTrap;
  98 class nmethod;
  99 class Node_Stack;
 100 struct Final_Reshape_Counts;
 101 class VerifyMeetResult;
 102 
 103 enum LoopOptsMode {
 104   LoopOptsDefault,
 105   LoopOptsNone,
 106   LoopOptsMaxUnroll,
 107   LoopOptsShenandoahExpand,
 108   LoopOptsShenandoahPostExpand,
 109   LoopOptsSkipSplitIf,
 110   LoopOptsVerify
 111 };
 112 
 113 // The type of all node counts and indexes.
 114 // It must hold at least 16 bits, but must also be fast to load and store.
 115 // This type, if less than 32 bits, could limit the number of possible nodes.
 116 // (To make this type platform-specific, move to globalDefinitions_xxx.hpp.)
 117 typedef unsigned int node_idx_t;
 118 
 119 class NodeCloneInfo {
 120  private:
 121   uint64_t _idx_clone_orig;
 122  public:
 123 
 124   void set_idx(node_idx_t idx) {
 125     _idx_clone_orig = (_idx_clone_orig & CONST64(0xFFFFFFFF00000000)) | idx;
 126   }
 127   node_idx_t idx() const { return (node_idx_t)(_idx_clone_orig & 0xFFFFFFFF); }
 128 
 129   void set_gen(int generation) {
 130     uint64_t g = (uint64_t)generation << 32;
 131     _idx_clone_orig = (_idx_clone_orig & 0xFFFFFFFF) | g;
 132   }
 133   int gen() const { return (int)(_idx_clone_orig >> 32); }
 134 
 135   void set(uint64_t x) { _idx_clone_orig = x; }
 136   void set(node_idx_t x, int g) { set_idx(x); set_gen(g); }
 137   uint64_t get() const { return _idx_clone_orig; }
 138 
 139   NodeCloneInfo(uint64_t idx_clone_orig) : _idx_clone_orig(idx_clone_orig) {}
 140   NodeCloneInfo(node_idx_t x, int g) : _idx_clone_orig(0) { set(x, g); }
 141 
 142   void dump_on(outputStream* st) const;
 143 };
 144 
 145 class CloneMap {
 146   friend class Compile;
 147  private:
 148   bool      _debug;
 149   Dict*     _dict;
 150   int       _clone_idx;   // current cloning iteration/generation in loop unroll
 151  public:
 152   void*     _2p(node_idx_t key)   const          { return (void*)(intptr_t)key; } // 2 conversion functions to make gcc happy
 153   node_idx_t _2_node_idx_t(const void* k) const  { return (node_idx_t)(intptr_t)k; }
 154   Dict*     dict()                const          { return _dict; }
 155   void insert(node_idx_t key, uint64_t val)      { assert(_dict->operator[](_2p(key)) == nullptr, "key existed"); _dict->Insert(_2p(key), (void*)val); }
 156   void insert(node_idx_t key, NodeCloneInfo& ci) { insert(key, ci.get()); }
 157   void remove(node_idx_t key)                    { _dict->Delete(_2p(key)); }
 158   uint64_t value(node_idx_t key)  const          { return (uint64_t)_dict->operator[](_2p(key)); }
 159   node_idx_t idx(node_idx_t key)  const          { return NodeCloneInfo(value(key)).idx(); }
 160   int gen(node_idx_t key)         const          { return NodeCloneInfo(value(key)).gen(); }
 161   int gen(const void* k)          const          { return gen(_2_node_idx_t(k)); }
 162   int max_gen()                   const;
 163   void clone(Node* old, Node* nnn, int gen);
 164   void verify_insert_and_clone(Node* old, Node* nnn, int gen);
 165   void dump(node_idx_t key, outputStream* st) const;
 166 
 167   int  clone_idx() const                         { return _clone_idx; }
 168   void set_clone_idx(int x)                      { _clone_idx = x; }
 169   bool is_debug()                 const          { return _debug; }
 170   void set_debug(bool debug)                     { _debug = debug; }
 171 
 172   bool same_idx(node_idx_t k1, node_idx_t k2)  const { return idx(k1) == idx(k2); }
 173   bool same_gen(node_idx_t k1, node_idx_t k2)  const { return gen(k1) == gen(k2); }
 174 };
 175 
 176 class Options {
 177   friend class Compile;
 178   friend class VMStructs;
 179  private:
 180   const bool _subsume_loads;         // Load can be matched as part of a larger op.
 181   const bool _do_escape_analysis;    // Do escape analysis.
 182   const bool _do_iterative_escape_analysis;  // Do iterative escape analysis.
 183   const bool _do_reduce_allocation_merges;  // Do try to reduce allocation merges.
 184   const bool _eliminate_boxing;      // Do boxing elimination.
 185   const bool _do_locks_coarsening;   // Do locks coarsening
 186   const bool _do_superword;          // Do SuperWord
 187   const bool _install_code;          // Install the code that was compiled
 188  public:
 189   Options(bool subsume_loads,
 190           bool do_escape_analysis,
 191           bool do_iterative_escape_analysis,
 192           bool do_reduce_allocation_merges,
 193           bool eliminate_boxing,
 194           bool do_locks_coarsening,
 195           bool do_superword,
 196           bool install_code) :
 197           _subsume_loads(subsume_loads),
 198           _do_escape_analysis(do_escape_analysis),
 199           _do_iterative_escape_analysis(do_iterative_escape_analysis),
 200           _do_reduce_allocation_merges(do_reduce_allocation_merges),
 201           _eliminate_boxing(eliminate_boxing),
 202           _do_locks_coarsening(do_locks_coarsening),
 203           _do_superword(do_superword),
 204           _install_code(install_code) {
 205   }
 206 
 207   static Options for_runtime_stub() {
 208     return Options(
 209        /* subsume_loads = */ true,
 210        /* do_escape_analysis = */ false,
 211        /* do_iterative_escape_analysis = */ false,
 212        /* do_reduce_allocation_merges = */ false,
 213        /* eliminate_boxing = */ false,
 214        /* do_lock_coarsening = */ false,
 215        /* do_superword = */ true,
 216        /* install_code = */ true
 217     );
 218   }
 219 };
 220 
 221 //------------------------------Compile----------------------------------------
 222 // This class defines a top-level Compiler invocation.
 223 
 224 class Compile : public Phase {
 225   friend class VMStructs;
 226 
 227  public:
 228   // Fixed alias indexes.  (See also MergeMemNode.)
 229   enum {
 230     AliasIdxTop = 1,  // pseudo-index, aliases to nothing (used as sentinel value)
 231     AliasIdxBot = 2,  // pseudo-index, aliases to everything
 232     AliasIdxRaw = 3   // hard-wired index for TypeRawPtr::BOTTOM
 233   };
 234 
 235   // Variant of TraceTime(nullptr, &_t_accumulator, CITime);
 236   // Integrated with logging.  If logging is turned on, and CITimeVerbose is true,
 237   // then brackets are put into the log, with time stamps and node counts.
 238   // (The time collection itself is always conditionalized on CITime.)
 239   class TracePhase : public TraceTime {
 240    private:
 241     Compile*    _compile;
 242     CompileLog* _log;
 243     bool _dolog;
 244    public:
 245     TracePhase(PhaseTraceId phaseTraceId);
 246     TracePhase(const char* name, PhaseTraceId phaseTraceId);
 247     ~TracePhase();
 248     const char* phase_name() const { return title(); }
 249   };
 250 
 251   // Information per category of alias (memory slice)
 252   class AliasType {
 253    private:
 254     friend class Compile;
 255 
 256     int             _index;         // unique index, used with MergeMemNode
 257     const TypePtr*  _adr_type;      // normalized address type
 258     ciField*        _field;         // relevant instance field, or null if none
 259     const Type*     _element;       // relevant array element type, or null if none
 260     bool            _is_rewritable; // false if the memory is write-once only
 261     int             _general_index; // if this is type is an instance, the general
 262                                     // type that this is an instance of
 263 
 264     void Init(int i, const TypePtr* at);
 265 
 266    public:
 267     int             index()         const { return _index; }
 268     const TypePtr*  adr_type()      const { return _adr_type; }
 269     ciField*        field()         const { return _field; }
 270     const Type*     element()       const { return _element; }
 271     bool            is_rewritable() const { return _is_rewritable; }
 272     bool            is_volatile()   const { return (_field ? _field->is_volatile() : false); }
 273     int             general_index() const { return (_general_index != 0) ? _general_index : _index; }
 274 
 275     void set_rewritable(bool z) { _is_rewritable = z; }
 276     void set_field(ciField* f) {
 277       assert(!_field,"");
 278       _field = f;
 279       if (f->is_final() || f->is_stable()) {
 280         // In the case of @Stable, multiple writes are possible but may be assumed to be no-ops.
 281         _is_rewritable = false;
 282       }
 283     }
 284     void set_element(const Type* e) {
 285       assert(_element == nullptr, "");
 286       _element = e;
 287     }
 288 
 289     BasicType basic_type() const;
 290 
 291     void print_on(outputStream* st) PRODUCT_RETURN;
 292   };
 293 
 294   enum {
 295     logAliasCacheSize = 6,
 296     AliasCacheSize = (1<<logAliasCacheSize)
 297   };
 298   struct AliasCacheEntry { const TypePtr* _adr_type; int _index; };  // simple duple type
 299   enum {
 300     trapHistLength = MethodData::_trap_hist_limit
 301   };
 302 
 303  private:
 304   // Fixed parameters to this compilation.
 305   const int             _compile_id;
 306   const Options         _options;               // Compilation options
 307   ciMethod*             _method;                // The method being compiled.
 308   int                   _entry_bci;             // entry bci for osr methods.
 309   const TypeFunc*       _tf;                    // My kind of signature
 310   InlineTree*           _ilt;                   // Ditto (temporary).
 311   address               _stub_function;         // VM entry for stub being compiled, or null
 312   const char*           _stub_name;             // Name of stub or adapter being compiled, or null
 313   address               _stub_entry_point;      // Compile code entry for generated stub, or null
 314 
 315   // Control of this compilation.
 316   int                   _max_inline_size;       // Max inline size for this compilation
 317   int                   _freq_inline_size;      // Max hot method inline size for this compilation
 318   int                   _fixed_slots;           // count of frame slots not allocated by the register
 319                                                 // allocator i.e. locks, original deopt pc, etc.
 320   uintx                 _max_node_limit;        // Max unique node count during a single compilation.
 321 
 322   bool                  _post_loop_opts_phase;  // Loop opts are finished.
 323   bool                  _allow_macro_nodes;     // True if we allow creation of macro nodes.
 324 
 325   int                   _major_progress;        // Count of something big happening
 326   bool                  _inlining_progress;     // progress doing incremental inlining?
 327   bool                  _inlining_incrementally;// Are we doing incremental inlining (post parse)
 328   bool                  _do_cleanup;            // Cleanup is needed before proceeding with incremental inlining
 329   bool                  _has_loops;             // True if the method _may_ have some loops
 330   bool                  _has_split_ifs;         // True if the method _may_ have some split-if
 331   bool                  _has_unsafe_access;     // True if the method _may_ produce faults in unsafe loads or stores.
 332   bool                  _has_stringbuilder;     // True StringBuffers or StringBuilders are allocated
 333   bool                  _has_boxed_value;       // True if a boxed object is allocated
 334   bool                  _has_reserved_stack_access; // True if the method or an inlined method is annotated with ReservedStackAccess
 335   uint                  _max_vector_size;       // Maximum size of generated vectors
 336   bool                  _clear_upper_avx;       // Clear upper bits of ymm registers using vzeroupper
 337   uint                  _trap_hist[trapHistLength];  // Cumulative traps
 338   bool                  _trap_can_recompile;    // Have we emitted a recompiling trap?
 339   uint                  _decompile_count;       // Cumulative decompilation counts.
 340   bool                  _do_inlining;           // True if we intend to do inlining
 341   bool                  _do_scheduling;         // True if we intend to do scheduling
 342   bool                  _do_freq_based_layout;  // True if we intend to do frequency based block layout
 343   bool                  _do_vector_loop;        // True if allowed to execute loop in parallel iterations
 344   bool                  _use_cmove;             // True if CMove should be used without profitability analysis
 345   bool                  _do_aliasing;           // True if we intend to do aliasing
 346   bool                  _print_assembly;        // True if we should dump assembly code for this compilation
 347   bool                  _print_inlining;        // True if we should print inlining for this compilation
 348   bool                  _print_intrinsics;      // True if we should print intrinsics for this compilation
 349 #ifndef PRODUCT
 350   uint                  _igv_idx;               // Counter for IGV node identifiers
 351   uint                  _igv_phase_iter[PHASE_NUM_TYPES]; // Counters for IGV phase iterations
 352   bool                  _trace_opto_output;
 353   bool                  _parsed_irreducible_loop; // True if ciTypeFlow detected irreducible loops during parsing
 354 #endif
 355   bool                  _has_irreducible_loop;  // Found irreducible loops
 356   // JSR 292
 357   bool                  _has_method_handle_invokes; // True if this method has MethodHandle invokes.
 358   bool                  _has_monitors;          // Metadata transfered to nmethod to enable Continuations lock-detection fastpath
 359   bool                  _has_scoped_access;     // For shared scope closure
 360   bool                  _clinit_barrier_on_entry; // True if clinit barrier is needed on nmethod entry
 361   int                   _loop_opts_cnt;         // loop opts round
 362   uint                  _stress_seed;           // Seed for stress testing
 363 
 364   // Compilation environment.
 365   Arena                 _comp_arena;            // Arena with lifetime equivalent to Compile
 366   void*                 _barrier_set_state;     // Potential GC barrier state for Compile
 367   ciEnv*                _env;                   // CI interface
 368   DirectiveSet*         _directive;             // Compiler directive
 369   CompileLog*           _log;                   // from CompilerThread
 370   CHeapStringHolder     _failure_reason;        // for record_failure/failing pattern
 371   CompilationFailureInfo* _first_failure_details; // Details for the first failure happening during compilation
 372   GrowableArray<CallGenerator*> _intrinsics;    // List of intrinsics.
 373   GrowableArray<Node*>  _macro_nodes;           // List of nodes which need to be expanded before matching.
 374   GrowableArray<ParsePredicateNode*> _parse_predicates; // List of Parse Predicates.
 375   // List of OpaqueTemplateAssertionPredicateNode nodes for Template Assertion Predicates.
 376   GrowableArray<Node*>  _template_assertion_predicate_opaqs;
 377   GrowableArray<Node*>  _expensive_nodes;       // List of nodes that are expensive to compute and that we'd better not let the GVN freely common
 378   GrowableArray<Node*>  _for_post_loop_igvn;    // List of nodes for IGVN after loop opts are over
 379   GrowableArray<UnstableIfTrap*> _unstable_if_traps;        // List of ifnodes after IGVN
 380   GrowableArray<Node_List*> _coarsened_locks;   // List of coarsened Lock and Unlock nodes
 381   ConnectionGraph*      _congraph;
 382 #ifndef PRODUCT
 383   IdealGraphPrinter*    _igv_printer;
 384   static IdealGraphPrinter* _debug_file_printer;
 385   static IdealGraphPrinter* _debug_network_printer;
 386 #endif
 387 
 388 
 389   // Node management
 390   uint                  _unique;                // Counter for unique Node indices
 391   uint                  _dead_node_count;       // Number of dead nodes; VectorSet::Size() is O(N).
 392                                                 // So use this to keep count and make the call O(1).
 393   VectorSet             _dead_node_list;        // Set of dead nodes
 394   DEBUG_ONLY(Unique_Node_List* _modified_nodes;)   // List of nodes which inputs were modified
 395   DEBUG_ONLY(bool       _phase_optimize_finished;) // Used for live node verification while creating new nodes
 396 
 397   DEBUG_ONLY(bool       _phase_verify_ideal_loop;) // Are we in PhaseIdealLoop verification?
 398 
 399   // Arenas for new-space and old-space nodes.
 400   // Swapped between using _node_arena.
 401   // The lifetime of the old-space nodes is during xform.
 402   Arena                 _node_arena_one;
 403   Arena                 _node_arena_two;
 404   Arena*                _node_arena;
 405 public:
 406   Arena* swap_old_and_new() {
 407     Arena* filled_arena_ptr = _node_arena;
 408     Arena* old_arena_ptr = old_arena();
 409     old_arena_ptr->destruct_contents();
 410     _node_arena = old_arena_ptr;
 411     return filled_arena_ptr;
 412   }
 413 private:
 414   RootNode*             _root;                  // Unique root of compilation, or null after bail-out.
 415   Node*                 _top;                   // Unique top node.  (Reset by various phases.)
 416 
 417   Node*                 _immutable_memory;      // Initial memory state
 418 
 419   Node*                 _recent_alloc_obj;
 420   Node*                 _recent_alloc_ctl;
 421 
 422   // Constant table
 423   MachConstantBaseNode* _mach_constant_base_node;  // Constant table base node singleton.
 424 
 425 
 426   // Blocked array of debugging and profiling information,
 427   // tracked per node.
 428   enum { _log2_node_notes_block_size = 8,
 429          _node_notes_block_size = (1<<_log2_node_notes_block_size)
 430   };
 431   GrowableArray<Node_Notes*>* _node_note_array;
 432   Node_Notes*           _default_node_notes;  // default notes for new nodes
 433 
 434   // After parsing and every bulk phase we hang onto the Root instruction.
 435   // The RootNode instruction is where the whole program begins.  It produces
 436   // the initial Control and BOTTOM for everybody else.
 437 
 438   // Type management
 439   Arena                 _Compile_types;         // Arena for all types
 440   Arena*                _type_arena;            // Alias for _Compile_types except in Initialize_shared()
 441   Dict*                 _type_dict;             // Intern table
 442   CloneMap              _clone_map;             // used for recording history of cloned nodes
 443   size_t                _type_last_size;        // Last allocation size (see Type::operator new/delete)
 444   ciMethod*             _last_tf_m;             // Cache for
 445   const TypeFunc*       _last_tf;               //  TypeFunc::make
 446   AliasType**           _alias_types;           // List of alias types seen so far.
 447   int                   _num_alias_types;       // Logical length of _alias_types
 448   int                   _max_alias_types;       // Physical length of _alias_types
 449   AliasCacheEntry       _alias_cache[AliasCacheSize]; // Gets aliases w/o data structure walking
 450 
 451   // Parsing, optimization
 452   PhaseGVN*             _initial_gvn;           // Results of parse-time PhaseGVN
 453 
 454   // Shared worklist for all IGVN rounds. Nodes can be pushed to it at any time.
 455   // If pushed outside IGVN, the Node is processed in the next IGVN round.
 456   Unique_Node_List*     _igvn_worklist;
 457 
 458   // Shared type array for GVN, IGVN and CCP. It maps node idx -> Type*.
 459   Type_Array*           _types;
 460 
 461   // Shared node hash table for GVN, IGVN and CCP.
 462   NodeHash*             _node_hash;
 463 
 464   GrowableArray<CallGenerator*> _late_inlines;        // List of CallGenerators to be revisited after main parsing has finished.
 465   GrowableArray<CallGenerator*> _string_late_inlines; // same but for string operations
 466   GrowableArray<CallGenerator*> _boxing_late_inlines; // same but for boxing operations
 467 
 468   GrowableArray<CallGenerator*> _vector_reboxing_late_inlines; // same but for vector reboxing operations
 469 
 470   int                           _late_inlines_pos;    // Where in the queue should the next late inlining candidate go (emulate depth first inlining)
 471   uint                          _number_of_mh_late_inlines; // number of method handle late inlining still pending
 472 
 473   // "MemLimit" directive was specified and the memory limit was hit during compilation
 474   bool                          _oom;
 475 
 476   // Only keep nodes in the expensive node list that need to be optimized
 477   void cleanup_expensive_nodes(PhaseIterGVN &igvn);
 478   // Use for sorting expensive nodes to bring similar nodes together
 479   static int cmp_expensive_nodes(Node** n1, Node** n2);
 480   // Expensive nodes list already sorted?
 481   bool expensive_nodes_sorted() const;
 482   // Remove the speculative part of types and clean up the graph
 483   void remove_speculative_types(PhaseIterGVN &igvn);
 484 
 485   void* _replay_inline_data; // Pointer to data loaded from file
 486 
 487   void log_late_inline_failure(CallGenerator* cg, const char* msg);
 488   DEBUG_ONLY(bool _exception_backedge;)
 489 
 490   void record_method_not_compilable_oom();
 491 
 492   InlinePrinter _inline_printer;
 493 
 494 public:
 495   void* barrier_set_state() const { return _barrier_set_state; }
 496 
 497   InlinePrinter* inline_printer() { return &_inline_printer; }
 498 
 499 #ifndef PRODUCT
 500   IdealGraphPrinter* igv_printer() { return _igv_printer; }
 501   void reset_igv_phase_iter(CompilerPhaseType cpt) { _igv_phase_iter[cpt] = 0; }
 502 #endif
 503 
 504   void log_late_inline(CallGenerator* cg);
 505   void log_inline_id(CallGenerator* cg);
 506   void log_inline_failure(const char* msg);
 507 
 508   void* replay_inline_data() const { return _replay_inline_data; }
 509 
 510   // Dump inlining replay data to the stream.
 511   void dump_inline_data(outputStream* out);
 512   void dump_inline_data_reduced(outputStream* out);
 513 
 514  private:
 515   // Matching, CFG layout, allocation, code generation
 516   PhaseCFG*             _cfg;                   // Results of CFG finding
 517   int                   _java_calls;            // Number of java calls in the method
 518   int                   _inner_loops;           // Number of inner loops in the method
 519   Matcher*              _matcher;               // Engine to map ideal to machine instructions
 520   PhaseRegAlloc*        _regalloc;              // Results of register allocation.
 521   RegMask               _FIRST_STACK_mask;      // All stack slots usable for spills (depends on frame layout)
 522   Arena*                _indexSet_arena;        // control IndexSet allocation within PhaseChaitin
 523   void*                 _indexSet_free_block_list; // free list of IndexSet bit blocks
 524   int                   _interpreter_frame_size;
 525 
 526   PhaseOutput*          _output;
 527 
 528  public:
 529   // Accessors
 530 
 531   // The Compile instance currently active in this (compiler) thread.
 532   static Compile* current() {
 533     return (Compile*) ciEnv::current()->compiler_data();
 534   }
 535 
 536   int interpreter_frame_size() const            { return _interpreter_frame_size; }
 537 
 538   PhaseOutput*      output() const              { return _output; }
 539   void              set_output(PhaseOutput* o)  { _output = o; }
 540 
 541   // ID for this compilation.  Useful for setting breakpoints in the debugger.
 542   int               compile_id() const          { return _compile_id; }
 543   DirectiveSet*     directive() const           { return _directive; }
 544 
 545   // Does this compilation allow instructions to subsume loads?  User
 546   // instructions that subsume a load may result in an unschedulable
 547   // instruction sequence.
 548   bool              subsume_loads() const       { return _options._subsume_loads; }
 549   /** Do escape analysis. */
 550   bool              do_escape_analysis() const  { return _options._do_escape_analysis; }
 551   bool              do_iterative_escape_analysis() const  { return _options._do_iterative_escape_analysis; }
 552   bool              do_reduce_allocation_merges() const  { return _options._do_reduce_allocation_merges; }
 553   /** Do boxing elimination. */
 554   bool              eliminate_boxing() const    { return _options._eliminate_boxing; }
 555   /** Do aggressive boxing elimination. */
 556   bool              aggressive_unboxing() const { return _options._eliminate_boxing && AggressiveUnboxing; }
 557   bool              should_install_code() const { return _options._install_code; }
 558   /** Do locks coarsening. */
 559   bool              do_locks_coarsening() const { return _options._do_locks_coarsening; }
 560   bool              do_superword() const        { return _options._do_superword; }
 561 
 562   // Other fixed compilation parameters.
 563   ciMethod*         method() const              { return _method; }
 564   int               entry_bci() const           { return _entry_bci; }
 565   bool              is_osr_compilation() const  { return _entry_bci != InvocationEntryBci; }
 566   bool              is_method_compilation() const { return (_method != nullptr && !_method->flags().is_native()); }
 567   const TypeFunc*   tf() const                  { assert(_tf!=nullptr, ""); return _tf; }
 568   void         init_tf(const TypeFunc* tf)      { assert(_tf==nullptr, ""); _tf = tf; }
 569   InlineTree*       ilt() const                 { return _ilt; }
 570   address           stub_function() const       { return _stub_function; }
 571   const char*       stub_name() const           { return _stub_name; }
 572   address           stub_entry_point() const    { return _stub_entry_point; }
 573   void          set_stub_entry_point(address z) { _stub_entry_point = z; }
 574 
 575   // Control of this compilation.
 576   int               fixed_slots() const         { assert(_fixed_slots >= 0, "");         return _fixed_slots; }
 577   void          set_fixed_slots(int n)          { _fixed_slots = n; }
 578   int               major_progress() const      { return _major_progress; }
 579   void          set_inlining_progress(bool z)   { _inlining_progress = z; }
 580   int               inlining_progress() const   { return _inlining_progress; }
 581   void          set_inlining_incrementally(bool z) { _inlining_incrementally = z; }
 582   int               inlining_incrementally() const { return _inlining_incrementally; }
 583   void          set_do_cleanup(bool z)          { _do_cleanup = z; }
 584   int               do_cleanup() const          { return _do_cleanup; }
 585   void          set_major_progress()            { _major_progress++; }
 586   void          restore_major_progress(int progress) { _major_progress += progress; }
 587   void        clear_major_progress()            { _major_progress = 0; }
 588   int               max_inline_size() const     { return _max_inline_size; }
 589   void          set_freq_inline_size(int n)     { _freq_inline_size = n; }
 590   int               freq_inline_size() const    { return _freq_inline_size; }
 591   void          set_max_inline_size(int n)      { _max_inline_size = n; }
 592   bool              has_loops() const           { return _has_loops; }
 593   void          set_has_loops(bool z)           { _has_loops = z; }
 594   bool              has_split_ifs() const       { return _has_split_ifs; }
 595   void          set_has_split_ifs(bool z)       { _has_split_ifs = z; }
 596   bool              has_unsafe_access() const   { return _has_unsafe_access; }
 597   void          set_has_unsafe_access(bool z)   { _has_unsafe_access = z; }
 598   bool              has_stringbuilder() const   { return _has_stringbuilder; }
 599   void          set_has_stringbuilder(bool z)   { _has_stringbuilder = z; }
 600   bool              has_boxed_value() const     { return _has_boxed_value; }
 601   void          set_has_boxed_value(bool z)     { _has_boxed_value = z; }
 602   bool              has_reserved_stack_access() const { return _has_reserved_stack_access; }
 603   void          set_has_reserved_stack_access(bool z) { _has_reserved_stack_access = z; }
 604   uint              max_vector_size() const     { return _max_vector_size; }
 605   void          set_max_vector_size(uint s)     { _max_vector_size = s; }
 606   bool              clear_upper_avx() const     { return _clear_upper_avx; }
 607   void          set_clear_upper_avx(bool s)     { _clear_upper_avx = s; }
 608   void          set_trap_count(uint r, uint c)  { assert(r < trapHistLength, "oob");        _trap_hist[r] = c; }
 609   uint              trap_count(uint r) const    { assert(r < trapHistLength, "oob"); return _trap_hist[r]; }
 610   bool              trap_can_recompile() const  { return _trap_can_recompile; }
 611   void          set_trap_can_recompile(bool z)  { _trap_can_recompile = z; }
 612   uint              decompile_count() const     { return _decompile_count; }
 613   void          set_decompile_count(uint c)     { _decompile_count = c; }
 614   bool              allow_range_check_smearing() const;
 615   bool              do_inlining() const         { return _do_inlining; }
 616   void          set_do_inlining(bool z)         { _do_inlining = z; }
 617   bool              do_scheduling() const       { return _do_scheduling; }
 618   void          set_do_scheduling(bool z)       { _do_scheduling = z; }
 619   bool              do_freq_based_layout() const{ return _do_freq_based_layout; }
 620   void          set_do_freq_based_layout(bool z){ _do_freq_based_layout = z; }
 621   bool              do_vector_loop() const      { return _do_vector_loop; }
 622   void          set_do_vector_loop(bool z)      { _do_vector_loop = z; }
 623   bool              use_cmove() const           { return _use_cmove; }
 624   void          set_use_cmove(bool z)           { _use_cmove = z; }
 625   bool              do_aliasing() const          { return _do_aliasing; }
 626   bool              print_assembly() const       { return _print_assembly; }
 627   void          set_print_assembly(bool z)       { _print_assembly = z; }
 628   bool              print_inlining() const       { return _print_inlining; }
 629   void          set_print_inlining(bool z)       { _print_inlining = z; }
 630   bool              print_intrinsics() const     { return _print_intrinsics; }
 631   void          set_print_intrinsics(bool z)     { _print_intrinsics = z; }
 632   uint              max_node_limit() const       { return (uint)_max_node_limit; }
 633   void          set_max_node_limit(uint n)       { _max_node_limit = n; }
 634   bool              clinit_barrier_on_entry()       { return _clinit_barrier_on_entry; }
 635   void          set_clinit_barrier_on_entry(bool z) { _clinit_barrier_on_entry = z; }
 636   bool              has_monitors() const         { return _has_monitors; }
 637   void          set_has_monitors(bool v)         { _has_monitors = v; }
 638   bool              has_scoped_access() const    { return _has_scoped_access; }
 639   void          set_has_scoped_access(bool v)    { _has_scoped_access = v; }
 640 
 641   // check the CompilerOracle for special behaviours for this compile
 642   bool          method_has_option(CompileCommandEnum option) {
 643     return method() != nullptr && method()->has_option(option);
 644   }
 645 
 646 #ifndef PRODUCT
 647   uint          next_igv_idx()                  { return _igv_idx++; }
 648   bool          trace_opto_output() const       { return _trace_opto_output; }
 649   void          print_ideal_ir(const char* phase_name);
 650   bool          should_print_ideal() const      { return _directive->PrintIdealOption; }
 651   bool              parsed_irreducible_loop() const { return _parsed_irreducible_loop; }
 652   void          set_parsed_irreducible_loop(bool z) { _parsed_irreducible_loop = z; }
 653   int _in_dump_cnt;  // Required for dumping ir nodes.
 654 #endif
 655   bool              has_irreducible_loop() const { return _has_irreducible_loop; }
 656   void          set_has_irreducible_loop(bool z) { _has_irreducible_loop = z; }
 657 
 658   // JSR 292
 659   bool              has_method_handle_invokes() const { return _has_method_handle_invokes;     }
 660   void          set_has_method_handle_invokes(bool z) {        _has_method_handle_invokes = z; }
 661 
 662   Ticks _latest_stage_start_counter;
 663 
 664   void begin_method();
 665   void end_method();
 666   bool should_print_igv(int level);
 667   bool should_print_phase(CompilerPhaseType cpt);
 668 
 669   void print_method(CompilerPhaseType cpt, int level, Node* n = nullptr);
 670 
 671 #ifndef PRODUCT
 672   void init_igv();
 673   void dump_igv(const char* graph_name, int level = 3) {
 674     if (should_print_igv(level)) {
 675       _igv_printer->print_graph(graph_name);
 676     }
 677   }
 678 
 679   void igv_print_method_to_file(const char* phase_name = "Debug", bool append = false);
 680   void igv_print_method_to_network(const char* phase_name = "Debug");
 681   void igv_print_graph_to_network(const char* name, Node* node, GrowableArray<const Node*>& visible_nodes);
 682   static IdealGraphPrinter* debug_file_printer() { return _debug_file_printer; }
 683   static IdealGraphPrinter* debug_network_printer() { return _debug_network_printer; }
 684 #endif
 685 
 686   int           macro_count()             const { return _macro_nodes.length(); }
 687   int           parse_predicate_count()   const { return _parse_predicates.length(); }
 688   int           template_assertion_predicate_count() const { return _template_assertion_predicate_opaqs.length(); }
 689   int           expensive_count()         const { return _expensive_nodes.length(); }
 690   int           coarsened_count()         const { return _coarsened_locks.length(); }
 691 
 692   Node*         macro_node(int idx)       const { return _macro_nodes.at(idx); }
 693   ParsePredicateNode* parse_predicate(int idx) const { return _parse_predicates.at(idx); }
 694 
 695   Node* template_assertion_predicate_opaq_node(int idx) const {
 696     return _template_assertion_predicate_opaqs.at(idx);
 697   }
 698 
 699   Node*         expensive_node(int idx)   const { return _expensive_nodes.at(idx); }
 700 
 701   ConnectionGraph* congraph()                   { return _congraph;}
 702   void set_congraph(ConnectionGraph* congraph)  { _congraph = congraph;}
 703   void add_macro_node(Node * n) {
 704     //assert(n->is_macro(), "must be a macro node");
 705     assert(!_macro_nodes.contains(n), "duplicate entry in expand list");
 706     _macro_nodes.append(n);
 707   }
 708   void remove_macro_node(Node* n) {
 709     // this function may be called twice for a node so we can only remove it
 710     // if it's still existing.
 711     _macro_nodes.remove_if_existing(n);
 712     // Remove from coarsened locks list if present
 713     if (coarsened_count() > 0) {
 714       remove_coarsened_lock(n);
 715     }
 716   }
 717   void add_expensive_node(Node* n);
 718   void remove_expensive_node(Node* n) {
 719     _expensive_nodes.remove_if_existing(n);
 720   }
 721 
 722   void add_parse_predicate(ParsePredicateNode* n) {
 723     assert(!_parse_predicates.contains(n), "duplicate entry in Parse Predicate list");
 724     _parse_predicates.append(n);
 725   }
 726 
 727   void remove_parse_predicate(ParsePredicateNode* n) {
 728     if (parse_predicate_count() > 0) {
 729       _parse_predicates.remove_if_existing(n);
 730     }
 731   }
 732 
 733   void add_template_assertion_predicate_opaq(Node* n) {
 734     assert(!_template_assertion_predicate_opaqs.contains(n),
 735            "Duplicate entry in Template Assertion Predicate OpaqueTemplateAssertionPredicate list");
 736     _template_assertion_predicate_opaqs.append(n);
 737   }
 738 
 739   void remove_template_assertion_predicate_opaq(Node* n) {
 740     if (template_assertion_predicate_count() > 0) {
 741       _template_assertion_predicate_opaqs.remove_if_existing(n);
 742     }
 743   }
 744   void add_coarsened_locks(GrowableArray<AbstractLockNode*>& locks);
 745   void remove_coarsened_lock(Node* n);
 746   bool coarsened_locks_consistent();
 747   void mark_unbalanced_boxes() const;
 748 
 749   bool       post_loop_opts_phase() { return _post_loop_opts_phase;  }
 750   void   set_post_loop_opts_phase() { _post_loop_opts_phase = true;  }
 751   void reset_post_loop_opts_phase() { _post_loop_opts_phase = false; }
 752 
 753 #ifdef ASSERT
 754   bool       phase_verify_ideal_loop() const { return _phase_verify_ideal_loop; }
 755   void   set_phase_verify_ideal_loop() { _phase_verify_ideal_loop = true; }
 756   void reset_phase_verify_ideal_loop() { _phase_verify_ideal_loop = false; }
 757 #endif
 758 
 759   bool       allow_macro_nodes() { return _allow_macro_nodes;  }
 760   void reset_allow_macro_nodes() { _allow_macro_nodes = false;  }
 761 
 762   void record_for_post_loop_opts_igvn(Node* n);
 763   void remove_from_post_loop_opts_igvn(Node* n);
 764   void process_for_post_loop_opts_igvn(PhaseIterGVN& igvn);
 765 
 766   void record_unstable_if_trap(UnstableIfTrap* trap);
 767   bool remove_unstable_if_trap(CallStaticJavaNode* unc, bool yield);
 768   void remove_useless_unstable_if_traps(Unique_Node_List &useful);
 769   void process_for_unstable_if_traps(PhaseIterGVN& igvn);
 770 
 771   void shuffle_macro_nodes();
 772   void sort_macro_nodes();
 773 
 774   void mark_parse_predicate_nodes_useless(PhaseIterGVN& igvn);
 775 
 776   // Are there candidate expensive nodes for optimization?
 777   bool should_optimize_expensive_nodes(PhaseIterGVN &igvn);
 778   // Check whether n1 and n2 are similar
 779   static int cmp_expensive_nodes(Node* n1, Node* n2);
 780   // Sort expensive nodes to locate similar expensive nodes
 781   void sort_expensive_nodes();
 782 
 783   // Compilation environment.
 784   Arena*      comp_arena()           { return &_comp_arena; }
 785   ciEnv*      env() const            { return _env; }
 786   CompileLog* log() const            { return _log; }
 787 
 788   bool        failing_internal() const {
 789     return _env->failing() ||
 790            _failure_reason.get() != nullptr;
 791   }
 792 
 793   const char* failure_reason() const {
 794     return _env->failing() ? _env->failure_reason()
 795                            : _failure_reason.get();
 796   }
 797 
 798   const CompilationFailureInfo* first_failure_details() const { return _first_failure_details; }
 799 
 800   bool failing() {
 801     if (failing_internal()) {
 802       return true;
 803     }
 804 #ifdef ASSERT
 805     // Disable stress code for PhaseIdealLoop verification (would have cascading effects).
 806     if (phase_verify_ideal_loop()) {
 807       return false;
 808     }
 809     if (StressBailout) {
 810       return fail_randomly();
 811     }
 812 #endif
 813     return false;
 814   }
 815 
 816 #ifdef ASSERT
 817   bool fail_randomly();
 818   bool failure_is_artificial();
 819 #endif
 820 
 821   bool failure_reason_is(const char* r) const {
 822     return (r == _failure_reason.get()) ||
 823            (r != nullptr &&
 824             _failure_reason.get() != nullptr &&
 825             strcmp(r, _failure_reason.get()) == 0);
 826   }
 827 
 828   void record_failure(const char* reason DEBUG_ONLY(COMMA bool allow_multiple_failures = false));
 829   void record_method_not_compilable(const char* reason DEBUG_ONLY(COMMA bool allow_multiple_failures = false)) {
 830     env()->record_method_not_compilable(reason);
 831     // Record failure reason.
 832     record_failure(reason DEBUG_ONLY(COMMA allow_multiple_failures));
 833   }
 834   bool check_node_count(uint margin, const char* reason) {
 835     if (oom()) {
 836       record_method_not_compilable_oom();
 837       return true;
 838     }
 839     if (live_nodes() + margin > max_node_limit()) {
 840       record_method_not_compilable(reason);
 841       return true;
 842     } else {
 843       return false;
 844     }
 845   }
 846   bool oom() const { return _oom; }
 847   void set_oom()   { _oom = true; }
 848 
 849   // Node management
 850   uint         unique() const              { return _unique; }
 851   uint         next_unique()               { return _unique++; }
 852   void         set_unique(uint i)          { _unique = i; }
 853   Arena*       node_arena()                { return _node_arena; }
 854   Arena*       old_arena()                 { return (&_node_arena_one == _node_arena) ? &_node_arena_two : &_node_arena_one; }
 855   RootNode*    root() const                { return _root; }
 856   void         set_root(RootNode* r)       { _root = r; }
 857   StartNode*   start() const;              // (Derived from root.)
 858   void         verify_start(StartNode* s) const NOT_DEBUG_RETURN;
 859   Node*        immutable_memory();
 860 
 861   Node*        recent_alloc_ctl() const    { return _recent_alloc_ctl; }
 862   Node*        recent_alloc_obj() const    { return _recent_alloc_obj; }
 863   void         set_recent_alloc(Node* ctl, Node* obj) {
 864                                                   _recent_alloc_ctl = ctl;
 865                                                   _recent_alloc_obj = obj;
 866                                            }
 867   void         record_dead_node(uint idx)  { if (_dead_node_list.test_set(idx)) return;
 868                                              _dead_node_count++;
 869                                            }
 870   void         reset_dead_node_list()      { _dead_node_list.reset();
 871                                              _dead_node_count = 0;
 872                                            }
 873   uint          live_nodes() const         {
 874     int  val = _unique - _dead_node_count;
 875     assert (val >= 0, "number of tracked dead nodes %d more than created nodes %d", _unique, _dead_node_count);
 876             return (uint) val;
 877                                            }
 878 #ifdef ASSERT
 879   void         set_phase_optimize_finished() { _phase_optimize_finished = true; }
 880   bool         phase_optimize_finished() const { return _phase_optimize_finished; }
 881   uint         count_live_nodes_by_graph_walk();
 882   void         print_missing_nodes();
 883 #endif
 884 
 885   // Record modified nodes to check that they are put on IGVN worklist
 886   void         record_modified_node(Node* n) NOT_DEBUG_RETURN;
 887   void         remove_modified_node(Node* n) NOT_DEBUG_RETURN;
 888   DEBUG_ONLY( Unique_Node_List*   modified_nodes() const { return _modified_nodes; } )
 889 
 890   MachConstantBaseNode*     mach_constant_base_node();
 891   bool                  has_mach_constant_base_node() const { return _mach_constant_base_node != nullptr; }
 892   // Generated by adlc, true if CallNode requires MachConstantBase.
 893   bool                      needs_deep_clone_jvms();
 894 
 895   // Handy undefined Node
 896   Node*             top() const                 { return _top; }
 897 
 898   // these are used by guys who need to know about creation and transformation of top:
 899   Node*             cached_top_node()           { return _top; }
 900   void          set_cached_top_node(Node* tn);
 901 
 902   GrowableArray<Node_Notes*>* node_note_array() const { return _node_note_array; }
 903   void set_node_note_array(GrowableArray<Node_Notes*>* arr) { _node_note_array = arr; }
 904   Node_Notes* default_node_notes() const        { return _default_node_notes; }
 905   void    set_default_node_notes(Node_Notes* n) { _default_node_notes = n; }
 906 
 907   Node_Notes*       node_notes_at(int idx);
 908 
 909   inline bool   set_node_notes_at(int idx, Node_Notes* value);
 910   // Copy notes from source to dest, if they exist.
 911   // Overwrite dest only if source provides something.
 912   // Return true if information was moved.
 913   bool copy_node_notes_to(Node* dest, Node* source);
 914 
 915   // Workhorse function to sort out the blocked Node_Notes array:
 916   inline Node_Notes* locate_node_notes(GrowableArray<Node_Notes*>* arr,
 917                                        int idx, bool can_grow = false);
 918 
 919   void grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by);
 920 
 921   // Type management
 922   Arena*            type_arena()                { return _type_arena; }
 923   Dict*             type_dict()                 { return _type_dict; }
 924   size_t            type_last_size()            { return _type_last_size; }
 925   int               num_alias_types()           { return _num_alias_types; }
 926 
 927   void          init_type_arena()                       { _type_arena = &_Compile_types; }
 928   void          set_type_arena(Arena* a)                { _type_arena = a; }
 929   void          set_type_dict(Dict* d)                  { _type_dict = d; }
 930   void          set_type_last_size(size_t sz)           { _type_last_size = sz; }
 931 
 932   const TypeFunc* last_tf(ciMethod* m) {
 933     return (m == _last_tf_m) ? _last_tf : nullptr;
 934   }
 935   void set_last_tf(ciMethod* m, const TypeFunc* tf) {
 936     assert(m != nullptr || tf == nullptr, "");
 937     _last_tf_m = m;
 938     _last_tf = tf;
 939   }
 940 
 941   AliasType*        alias_type(int                idx)  { assert(idx < num_alias_types(), "oob"); return _alias_types[idx]; }
 942   AliasType*        alias_type(const TypePtr* adr_type, ciField* field = nullptr) { return find_alias_type(adr_type, false, field); }
 943   bool         have_alias_type(const TypePtr* adr_type);
 944   AliasType*        alias_type(ciField*         field);
 945 
 946   int               get_alias_index(const TypePtr* at)  { return alias_type(at)->index(); }
 947   const TypePtr*    get_adr_type(uint aidx)             { return alias_type(aidx)->adr_type(); }
 948   int               get_general_index(uint aidx)        { return alias_type(aidx)->general_index(); }
 949 
 950   // Building nodes
 951   void              rethrow_exceptions(JVMState* jvms);
 952   void              return_values(JVMState* jvms);
 953   JVMState*         build_start_state(StartNode* start, const TypeFunc* tf);
 954 
 955   // Decide how to build a call.
 956   // The profile factor is a discount to apply to this site's interp. profile.
 957   CallGenerator*    call_generator(ciMethod* call_method, int vtable_index, bool call_does_dispatch,
 958                                    JVMState* jvms, bool allow_inline, float profile_factor, ciKlass* speculative_receiver_type = nullptr,
 959                                    bool allow_intrinsics = true);
 960   bool should_delay_inlining(ciMethod* call_method, JVMState* jvms) {
 961     return should_delay_string_inlining(call_method, jvms) ||
 962            should_delay_boxing_inlining(call_method, jvms) ||
 963            should_delay_vector_inlining(call_method, jvms);
 964   }
 965   bool should_delay_string_inlining(ciMethod* call_method, JVMState* jvms);
 966   bool should_delay_boxing_inlining(ciMethod* call_method, JVMState* jvms);
 967   bool should_delay_vector_inlining(ciMethod* call_method, JVMState* jvms);
 968   bool should_delay_vector_reboxing_inlining(ciMethod* call_method, JVMState* jvms);
 969 
 970   // Helper functions to identify inlining potential at call-site
 971   ciMethod* optimize_virtual_call(ciMethod* caller, ciInstanceKlass* klass,
 972                                   ciKlass* holder, ciMethod* callee,
 973                                   const TypeOopPtr* receiver_type, bool is_virtual,
 974                                   bool &call_does_dispatch, int &vtable_index,
 975                                   bool check_access = true);
 976   ciMethod* optimize_inlining(ciMethod* caller, ciInstanceKlass* klass, ciKlass* holder,
 977                               ciMethod* callee, const TypeOopPtr* receiver_type,
 978                               bool check_access = true);
 979 
 980   // Report if there were too many traps at a current method and bci.
 981   // Report if a trap was recorded, and/or PerMethodTrapLimit was exceeded.
 982   // If there is no MDO at all, report no trap unless told to assume it.
 983   bool too_many_traps(ciMethod* method, int bci, Deoptimization::DeoptReason reason);
 984   // This version, unspecific to a particular bci, asks if
 985   // PerMethodTrapLimit was exceeded for all inlined methods seen so far.
 986   bool too_many_traps(Deoptimization::DeoptReason reason,
 987                       // Privately used parameter for logging:
 988                       ciMethodData* logmd = nullptr);
 989   // Report if there were too many recompiles at a method and bci.
 990   bool too_many_recompiles(ciMethod* method, int bci, Deoptimization::DeoptReason reason);
 991   // Report if there were too many traps or recompiles at a method and bci.
 992   bool too_many_traps_or_recompiles(ciMethod* method, int bci, Deoptimization::DeoptReason reason) {
 993     return too_many_traps(method, bci, reason) ||
 994            too_many_recompiles(method, bci, reason);
 995   }
 996   // Return a bitset with the reasons where deoptimization is allowed,
 997   // i.e., where there were not too many uncommon traps.
 998   int _allowed_reasons;
 999   int      allowed_deopt_reasons() { return _allowed_reasons; }
1000   void set_allowed_deopt_reasons();
1001 
1002   // Parsing, optimization
1003   PhaseGVN*         initial_gvn()               { return _initial_gvn; }
1004   Unique_Node_List* igvn_worklist() {
1005     assert(_igvn_worklist != nullptr, "must be created in Compile::Compile");
1006     return _igvn_worklist;
1007   }
1008   Type_Array* types() {
1009     assert(_types != nullptr, "must be created in Compile::Compile");
1010     return _types;
1011   }
1012   NodeHash* node_hash() {
1013     assert(_node_hash != nullptr, "must be created in Compile::Compile");
1014     return _node_hash;
1015   }
1016   inline void       record_for_igvn(Node* n);   // Body is after class Unique_Node_List in node.hpp.
1017   inline void       remove_for_igvn(Node* n);   // Body is after class Unique_Node_List in node.hpp.
1018   void          set_initial_gvn(PhaseGVN *gvn)           { _initial_gvn = gvn; }
1019 
1020   // Replace n by nn using initial_gvn, calling hash_delete and
1021   // record_for_igvn as needed.
1022   void gvn_replace_by(Node* n, Node* nn);
1023 
1024 
1025   void              identify_useful_nodes(Unique_Node_List &useful);
1026   void              update_dead_node_list(Unique_Node_List &useful);
1027   void              disconnect_useless_nodes(Unique_Node_List& useful, Unique_Node_List& worklist);
1028 
1029   void              remove_useless_node(Node* dead);
1030 
1031   // Record this CallGenerator for inlining at the end of parsing.
1032   void              add_late_inline(CallGenerator* cg)        {
1033     _late_inlines.insert_before(_late_inlines_pos, cg);
1034     _late_inlines_pos++;
1035   }
1036 
1037   void              prepend_late_inline(CallGenerator* cg)    {
1038     _late_inlines.insert_before(0, cg);
1039   }
1040 
1041   void              add_string_late_inline(CallGenerator* cg) {
1042     _string_late_inlines.push(cg);
1043   }
1044 
1045   void              add_boxing_late_inline(CallGenerator* cg) {
1046     _boxing_late_inlines.push(cg);
1047   }
1048 
1049   void              add_vector_reboxing_late_inline(CallGenerator* cg) {
1050     _vector_reboxing_late_inlines.push(cg);
1051   }
1052 
1053   template<typename N, ENABLE_IF(std::is_base_of<Node, N>::value)>
1054   void remove_useless_nodes(GrowableArray<N*>& node_list, Unique_Node_List& useful);
1055 
1056   void remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful);
1057   void remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Node* dead);
1058 
1059   void remove_useless_coarsened_locks(Unique_Node_List& useful);
1060 
1061   void dump_print_inlining();
1062 
1063   bool over_inlining_cutoff() const {
1064     if (!inlining_incrementally()) {
1065       return unique() > (uint)NodeCountInliningCutoff;
1066     } else {
1067       // Give some room for incremental inlining algorithm to "breathe"
1068       // and avoid thrashing when live node count is close to the limit.
1069       // Keep in mind that live_nodes() isn't accurate during inlining until
1070       // dead node elimination step happens (see Compile::inline_incrementally).
1071       return live_nodes() > (uint)LiveNodeCountInliningCutoff * 11 / 10;
1072     }
1073   }
1074 
1075   void inc_number_of_mh_late_inlines() { _number_of_mh_late_inlines++; }
1076   void dec_number_of_mh_late_inlines() { assert(_number_of_mh_late_inlines > 0, "_number_of_mh_late_inlines < 0 !"); _number_of_mh_late_inlines--; }
1077   bool has_mh_late_inlines() const     { return _number_of_mh_late_inlines > 0; }
1078 
1079   bool inline_incrementally_one();
1080   void inline_incrementally_cleanup(PhaseIterGVN& igvn);
1081   void inline_incrementally(PhaseIterGVN& igvn);
1082   bool should_delay_inlining() { return AlwaysIncrementalInline || (StressIncrementalInlining && (random() % 2) == 0); }
1083   void inline_string_calls(bool parse_time);
1084   void inline_boxing_calls(PhaseIterGVN& igvn);
1085   bool optimize_loops(PhaseIterGVN& igvn, LoopOptsMode mode);
1086   void remove_root_to_sfpts_edges(PhaseIterGVN& igvn);
1087 
1088   void inline_vector_reboxing_calls();
1089   bool has_vbox_nodes();
1090 
1091   void process_late_inline_calls_no_inline(PhaseIterGVN& igvn);
1092 
1093   // Matching, CFG layout, allocation, code generation
1094   PhaseCFG*         cfg()                       { return _cfg; }
1095   bool              has_java_calls() const      { return _java_calls > 0; }
1096   int               java_calls() const          { return _java_calls; }
1097   int               inner_loops() const         { return _inner_loops; }
1098   Matcher*          matcher()                   { return _matcher; }
1099   PhaseRegAlloc*    regalloc()                  { return _regalloc; }
1100   RegMask&          FIRST_STACK_mask()          { return _FIRST_STACK_mask; }
1101   Arena*            indexSet_arena()            { return _indexSet_arena; }
1102   void*             indexSet_free_block_list()  { return _indexSet_free_block_list; }
1103   DebugInformationRecorder* debug_info()        { return env()->debug_info(); }
1104 
1105   void  update_interpreter_frame_size(int size) {
1106     if (_interpreter_frame_size < size) {
1107       _interpreter_frame_size = size;
1108     }
1109   }
1110 
1111   void          set_matcher(Matcher* m)                 { _matcher = m; }
1112 //void          set_regalloc(PhaseRegAlloc* ra)           { _regalloc = ra; }
1113   void          set_indexSet_arena(Arena* a)            { _indexSet_arena = a; }
1114   void          set_indexSet_free_block_list(void* p)   { _indexSet_free_block_list = p; }
1115 
1116   void  set_java_calls(int z) { _java_calls  = z; }
1117   void set_inner_loops(int z) { _inner_loops = z; }
1118 
1119   Dependencies* dependencies() { return env()->dependencies(); }
1120 
1121   // Major entry point.  Given a Scope, compile the associated method.
1122   // For normal compilations, entry_bci is InvocationEntryBci.  For on stack
1123   // replacement, entry_bci indicates the bytecode for which to compile a
1124   // continuation.
1125   Compile(ciEnv* ci_env, ciMethod* target,
1126           int entry_bci, Options options, DirectiveSet* directive);
1127 
1128   // Second major entry point.  From the TypeFunc signature, generate code
1129   // to pass arguments from the Java calling convention to the C calling
1130   // convention.
1131   Compile(ciEnv* ci_env, const TypeFunc *(*gen)(),
1132           address stub_function, const char *stub_name,
1133           int is_fancy_jump, bool pass_tls,
1134           bool return_pc, DirectiveSet* directive);
1135 
1136   ~Compile();
1137 
1138   // Are we compiling a method?
1139   bool has_method() { return method() != nullptr; }
1140 
1141   // Maybe print some information about this compile.
1142   void print_compile_messages();
1143 
1144   // Final graph reshaping, a post-pass after the regular optimizer is done.
1145   bool final_graph_reshaping();
1146 
1147   // returns true if adr is completely contained in the given alias category
1148   bool must_alias(const TypePtr* adr, int alias_idx);
1149 
1150   // returns true if adr overlaps with the given alias category
1151   bool can_alias(const TypePtr* adr, int alias_idx);
1152 
1153   // Stack slots that may be unused by the calling convention but must
1154   // otherwise be preserved.  On Intel this includes the return address.
1155   // On PowerPC it includes the 4 words holding the old TOC & LR glue.
1156   uint in_preserve_stack_slots() {
1157     return SharedRuntime::in_preserve_stack_slots();
1158   }
1159 
1160   // "Top of Stack" slots that may be unused by the calling convention but must
1161   // otherwise be preserved.
1162   // On Intel these are not necessary and the value can be zero.
1163   static uint out_preserve_stack_slots() {
1164     return SharedRuntime::out_preserve_stack_slots();
1165   }
1166 
1167   // Number of outgoing stack slots killed above the out_preserve_stack_slots
1168   // for calls to C.  Supports the var-args backing area for register parms.
1169   uint varargs_C_out_slots_killed() const;
1170 
1171   // Number of Stack Slots consumed by a synchronization entry
1172   int sync_stack_slots() const;
1173 
1174   // Compute the name of old_SP.  See <arch>.ad for frame layout.
1175   OptoReg::Name compute_old_SP();
1176 
1177  private:
1178   // Phase control:
1179   void Init(bool aliasing);                      // Prepare for a single compilation
1180   void Optimize();                               // Given a graph, optimize it
1181   void Code_Gen();                               // Generate code from a graph
1182 
1183   // Management of the AliasType table.
1184   void grow_alias_types();
1185   AliasCacheEntry* probe_alias_cache(const TypePtr* adr_type);
1186   const TypePtr *flatten_alias_type(const TypePtr* adr_type) const;
1187   AliasType* find_alias_type(const TypePtr* adr_type, bool no_create, ciField* field);
1188 
1189   void verify_top(Node*) const PRODUCT_RETURN;
1190 
1191   // Intrinsic setup.
1192   CallGenerator* make_vm_intrinsic(ciMethod* m, bool is_virtual);          // constructor
1193   int            intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found);  // helper
1194   CallGenerator* find_intrinsic(ciMethod* m, bool is_virtual);             // query fn
1195   void           register_intrinsic(CallGenerator* cg);                    // update fn
1196 
1197 #ifndef PRODUCT
1198   static juint  _intrinsic_hist_count[];
1199   static jubyte _intrinsic_hist_flags[];
1200 #endif
1201   // Function calls made by the public function final_graph_reshaping.
1202   // No need to be made public as they are not called elsewhere.
1203   void final_graph_reshaping_impl(Node *n, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes);
1204   void final_graph_reshaping_main_switch(Node* n, Final_Reshape_Counts& frc, uint nop, Unique_Node_List& dead_nodes);
1205   void final_graph_reshaping_walk(Node_Stack& nstack, Node* root, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes);
1206   void handle_div_mod_op(Node* n, BasicType bt, bool is_unsigned);
1207 
1208   // Logic cone optimization.
1209   void optimize_logic_cones(PhaseIterGVN &igvn);
1210   void collect_logic_cone_roots(Unique_Node_List& list);
1211   void process_logic_cone_root(PhaseIterGVN &igvn, Node* n, VectorSet& visited);
1212   bool compute_logic_cone(Node* n, Unique_Node_List& partition, Unique_Node_List& inputs);
1213   uint compute_truth_table(Unique_Node_List& partition, Unique_Node_List& inputs);
1214   uint eval_macro_logic_op(uint func, uint op1, uint op2, uint op3);
1215   Node* xform_to_MacroLogicV(PhaseIterGVN &igvn, const TypeVect* vt, Unique_Node_List& partitions, Unique_Node_List& inputs);
1216   void check_no_dead_use() const NOT_DEBUG_RETURN;
1217 
1218  public:
1219 
1220   // Note:  Histogram array size is about 1 Kb.
1221   enum {                        // flag bits:
1222     _intrinsic_worked = 1,      // succeeded at least once
1223     _intrinsic_failed = 2,      // tried it but it failed
1224     _intrinsic_disabled = 4,    // was requested but disabled (e.g., -XX:-InlineUnsafeOps)
1225     _intrinsic_virtual = 8,     // was seen in the virtual form (rare)
1226     _intrinsic_both = 16        // was seen in the non-virtual form (usual)
1227   };
1228   // Update histogram.  Return boolean if this is a first-time occurrence.
1229   static bool gather_intrinsic_statistics(vmIntrinsics::ID id,
1230                                           bool is_virtual, int flags) PRODUCT_RETURN0;
1231   static void print_intrinsic_statistics() PRODUCT_RETURN;
1232 
1233   // Graph verification code
1234   // Walk the node list, verifying that there is a one-to-one
1235   // correspondence between Use-Def edges and Def-Use edges
1236   // The option no_dead_code enables stronger checks that the
1237   // graph is strongly connected from root in both directions.
1238   void verify_graph_edges(bool no_dead_code = false) PRODUCT_RETURN;
1239 
1240   // Verify bi-directional correspondence of edges
1241   void verify_bidirectional_edges(Unique_Node_List &visited);
1242 
1243   // End-of-run dumps.
1244   static void print_statistics() PRODUCT_RETURN;
1245 
1246   // Verify ADLC assumptions during startup
1247   static void adlc_verification() PRODUCT_RETURN;
1248 
1249   // Definitions of pd methods
1250   static void pd_compiler2_init();
1251 
1252   // Static parse-time type checking logic for gen_subtype_check:
1253   enum SubTypeCheckResult { SSC_always_false, SSC_always_true, SSC_easy_test, SSC_full_test };
1254   SubTypeCheckResult static_subtype_check(const TypeKlassPtr* superk, const TypeKlassPtr* subk, bool skip = StressReflectiveCode);
1255 
1256   static Node* conv_I2X_index(PhaseGVN* phase, Node* offset, const TypeInt* sizetype,
1257                               // Optional control dependency (for example, on range check)
1258                               Node* ctrl = nullptr);
1259 
1260   // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check)
1261   static Node* constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl, bool carry_dependency = false);
1262 
1263   // Auxiliary methods for randomized fuzzing/stressing
1264   int random();
1265   bool randomized_select(int count);
1266 
1267   // seed random number generation and log the seed for repeatability.
1268   void initialize_stress_seed(const DirectiveSet* directive);
1269 
1270   // supporting clone_map
1271   CloneMap&     clone_map();
1272   void          set_clone_map(Dict* d);
1273 
1274   bool needs_clinit_barrier(ciField* ik,         ciMethod* accessing_method);
1275   bool needs_clinit_barrier(ciMethod* ik,        ciMethod* accessing_method);
1276   bool needs_clinit_barrier(ciInstanceKlass* ik, ciMethod* accessing_method);
1277 
1278 #ifdef IA32
1279  private:
1280   bool _select_24_bit_instr;   // We selected an instruction with a 24-bit result
1281   bool _in_24_bit_fp_mode;     // We are emitting instructions with 24-bit results
1282 
1283   // Remember if this compilation changes hardware mode to 24-bit precision.
1284   void set_24_bit_selection_and_mode(bool selection, bool mode) {
1285     _select_24_bit_instr = selection;
1286     _in_24_bit_fp_mode   = mode;
1287   }
1288 
1289  public:
1290   bool select_24_bit_instr() const { return _select_24_bit_instr; }
1291   bool in_24_bit_fp_mode() const   { return _in_24_bit_fp_mode; }
1292 #endif // IA32
1293 #ifdef ASSERT
1294   VerifyMeetResult* _type_verify;
1295   void set_exception_backedge() { _exception_backedge = true; }
1296   bool has_exception_backedge() const { return _exception_backedge; }
1297 #endif
1298 
1299   static bool push_thru_add(PhaseGVN* phase, Node* z, const TypeInteger* tz, const TypeInteger*& rx, const TypeInteger*& ry,
1300                             BasicType out_bt, BasicType in_bt);
1301 
1302   static Node* narrow_value(BasicType bt, Node* value, const Type* type, PhaseGVN* phase, bool transform_res);
1303 };
1304 
1305 #endif // SHARE_OPTO_COMPILE_HPP