1 /* 2 * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_OPTO_COMPILE_HPP 26 #define SHARE_OPTO_COMPILE_HPP 27 28 #include "asm/codeBuffer.hpp" 29 #include "ci/compilerInterface.hpp" 30 #include "code/debugInfoRec.hpp" 31 #include "compiler/compiler_globals.hpp" 32 #include "compiler/compileBroker.hpp" 33 #include "compiler/compilerEvent.hpp" 34 #include "compiler/cHeapStringHolder.hpp" 35 #include "libadt/dict.hpp" 36 #include "libadt/vectset.hpp" 37 #include "memory/resourceArea.hpp" 38 #include "oops/methodData.hpp" 39 #include "opto/idealGraphPrinter.hpp" 40 #include "opto/phasetype.hpp" 41 #include "opto/phase.hpp" 42 #include "opto/regmask.hpp" 43 #include "runtime/deoptimization.hpp" 44 #include "runtime/sharedRuntime.hpp" 45 #include "runtime/timerTrace.hpp" 46 #include "runtime/vmThread.hpp" 47 #include "utilities/ticks.hpp" 48 #include "utilities/vmEnums.hpp" 49 #include "opto/printinlining.hpp" 50 51 class AbstractLockNode; 52 class AddPNode; 53 class Block; 54 class Bundle; 55 class CallGenerator; 56 class CallStaticJavaNode; 57 class CloneMap; 58 class CompilationFailureInfo; 59 class ConnectionGraph; 60 class IdealGraphPrinter; 61 class InlineTree; 62 class Matcher; 63 class MachConstantNode; 64 class MachConstantBaseNode; 65 class MachNode; 66 class MachOper; 67 class MachSafePointNode; 68 class Node; 69 class Node_Array; 70 class Node_List; 71 class Node_Notes; 72 class NodeHash; 73 class NodeCloneInfo; 74 class OptoReg; 75 class ParsePredicateNode; 76 class PhaseCFG; 77 class PhaseGVN; 78 class PhaseIterGVN; 79 class PhaseRegAlloc; 80 class PhaseCCP; 81 class PhaseOutput; 82 class RootNode; 83 class relocInfo; 84 class StartNode; 85 class SafePointNode; 86 class JVMState; 87 class Type; 88 class TypeInt; 89 class TypeInteger; 90 class TypeKlassPtr; 91 class TypePtr; 92 class TypeOopPtr; 93 class TypeFunc; 94 class TypeVect; 95 class Type_Array; 96 class Unique_Node_List; 97 class UnstableIfTrap; 98 class nmethod; 99 class Node_Stack; 100 struct Final_Reshape_Counts; 101 class VerifyMeetResult; 102 103 enum LoopOptsMode { 104 LoopOptsDefault, 105 LoopOptsNone, 106 LoopOptsMaxUnroll, 107 LoopOptsShenandoahExpand, 108 LoopOptsShenandoahPostExpand, 109 LoopOptsSkipSplitIf, 110 LoopOptsVerify 111 }; 112 113 // The type of all node counts and indexes. 114 // It must hold at least 16 bits, but must also be fast to load and store. 115 // This type, if less than 32 bits, could limit the number of possible nodes. 116 // (To make this type platform-specific, move to globalDefinitions_xxx.hpp.) 117 typedef unsigned int node_idx_t; 118 119 class NodeCloneInfo { 120 private: 121 uint64_t _idx_clone_orig; 122 public: 123 124 void set_idx(node_idx_t idx) { 125 _idx_clone_orig = (_idx_clone_orig & CONST64(0xFFFFFFFF00000000)) | idx; 126 } 127 node_idx_t idx() const { return (node_idx_t)(_idx_clone_orig & 0xFFFFFFFF); } 128 129 void set_gen(int generation) { 130 uint64_t g = (uint64_t)generation << 32; 131 _idx_clone_orig = (_idx_clone_orig & 0xFFFFFFFF) | g; 132 } 133 int gen() const { return (int)(_idx_clone_orig >> 32); } 134 135 void set(uint64_t x) { _idx_clone_orig = x; } 136 void set(node_idx_t x, int g) { set_idx(x); set_gen(g); } 137 uint64_t get() const { return _idx_clone_orig; } 138 139 NodeCloneInfo(uint64_t idx_clone_orig) : _idx_clone_orig(idx_clone_orig) {} 140 NodeCloneInfo(node_idx_t x, int g) : _idx_clone_orig(0) { set(x, g); } 141 142 void dump_on(outputStream* st) const; 143 }; 144 145 class CloneMap { 146 friend class Compile; 147 private: 148 bool _debug; 149 Dict* _dict; 150 int _clone_idx; // current cloning iteration/generation in loop unroll 151 public: 152 void* _2p(node_idx_t key) const { return (void*)(intptr_t)key; } // 2 conversion functions to make gcc happy 153 node_idx_t _2_node_idx_t(const void* k) const { return (node_idx_t)(intptr_t)k; } 154 Dict* dict() const { return _dict; } 155 void insert(node_idx_t key, uint64_t val) { assert(_dict->operator[](_2p(key)) == nullptr, "key existed"); _dict->Insert(_2p(key), (void*)val); } 156 void insert(node_idx_t key, NodeCloneInfo& ci) { insert(key, ci.get()); } 157 void remove(node_idx_t key) { _dict->Delete(_2p(key)); } 158 uint64_t value(node_idx_t key) const { return (uint64_t)_dict->operator[](_2p(key)); } 159 node_idx_t idx(node_idx_t key) const { return NodeCloneInfo(value(key)).idx(); } 160 int gen(node_idx_t key) const { return NodeCloneInfo(value(key)).gen(); } 161 int gen(const void* k) const { return gen(_2_node_idx_t(k)); } 162 int max_gen() const; 163 void clone(Node* old, Node* nnn, int gen); 164 void verify_insert_and_clone(Node* old, Node* nnn, int gen); 165 void dump(node_idx_t key, outputStream* st) const; 166 167 int clone_idx() const { return _clone_idx; } 168 void set_clone_idx(int x) { _clone_idx = x; } 169 bool is_debug() const { return _debug; } 170 void set_debug(bool debug) { _debug = debug; } 171 172 bool same_idx(node_idx_t k1, node_idx_t k2) const { return idx(k1) == idx(k2); } 173 bool same_gen(node_idx_t k1, node_idx_t k2) const { return gen(k1) == gen(k2); } 174 }; 175 176 class Options { 177 friend class Compile; 178 friend class VMStructs; 179 private: 180 const bool _subsume_loads; // Load can be matched as part of a larger op. 181 const bool _do_escape_analysis; // Do escape analysis. 182 const bool _do_iterative_escape_analysis; // Do iterative escape analysis. 183 const bool _do_reduce_allocation_merges; // Do try to reduce allocation merges. 184 const bool _eliminate_boxing; // Do boxing elimination. 185 const bool _do_locks_coarsening; // Do locks coarsening 186 const bool _do_superword; // Do SuperWord 187 const bool _install_code; // Install the code that was compiled 188 public: 189 Options(bool subsume_loads, 190 bool do_escape_analysis, 191 bool do_iterative_escape_analysis, 192 bool do_reduce_allocation_merges, 193 bool eliminate_boxing, 194 bool do_locks_coarsening, 195 bool do_superword, 196 bool install_code) : 197 _subsume_loads(subsume_loads), 198 _do_escape_analysis(do_escape_analysis), 199 _do_iterative_escape_analysis(do_iterative_escape_analysis), 200 _do_reduce_allocation_merges(do_reduce_allocation_merges), 201 _eliminate_boxing(eliminate_boxing), 202 _do_locks_coarsening(do_locks_coarsening), 203 _do_superword(do_superword), 204 _install_code(install_code) { 205 } 206 207 static Options for_runtime_stub() { 208 return Options( 209 /* subsume_loads = */ true, 210 /* do_escape_analysis = */ false, 211 /* do_iterative_escape_analysis = */ false, 212 /* do_reduce_allocation_merges = */ false, 213 /* eliminate_boxing = */ false, 214 /* do_lock_coarsening = */ false, 215 /* do_superword = */ true, 216 /* install_code = */ true 217 ); 218 } 219 }; 220 221 //------------------------------Compile---------------------------------------- 222 // This class defines a top-level Compiler invocation. 223 224 class Compile : public Phase { 225 friend class VMStructs; 226 227 public: 228 // Fixed alias indexes. (See also MergeMemNode.) 229 enum { 230 AliasIdxTop = 1, // pseudo-index, aliases to nothing (used as sentinel value) 231 AliasIdxBot = 2, // pseudo-index, aliases to everything 232 AliasIdxRaw = 3 // hard-wired index for TypeRawPtr::BOTTOM 233 }; 234 235 // Variant of TraceTime(nullptr, &_t_accumulator, CITime); 236 // Integrated with logging. If logging is turned on, and CITimeVerbose is true, 237 // then brackets are put into the log, with time stamps and node counts. 238 // (The time collection itself is always conditionalized on CITime.) 239 class TracePhase : public TraceTime { 240 private: 241 Compile* _compile; 242 CompileLog* _log; 243 bool _dolog; 244 public: 245 TracePhase(PhaseTraceId phaseTraceId); 246 TracePhase(const char* name, PhaseTraceId phaseTraceId); 247 ~TracePhase(); 248 const char* phase_name() const { return title(); } 249 }; 250 251 // Information per category of alias (memory slice) 252 class AliasType { 253 private: 254 friend class Compile; 255 256 int _index; // unique index, used with MergeMemNode 257 const TypePtr* _adr_type; // normalized address type 258 ciField* _field; // relevant instance field, or null if none 259 const Type* _element; // relevant array element type, or null if none 260 bool _is_rewritable; // false if the memory is write-once only 261 int _general_index; // if this is type is an instance, the general 262 // type that this is an instance of 263 264 void Init(int i, const TypePtr* at); 265 266 public: 267 int index() const { return _index; } 268 const TypePtr* adr_type() const { return _adr_type; } 269 ciField* field() const { return _field; } 270 const Type* element() const { return _element; } 271 bool is_rewritable() const { return _is_rewritable; } 272 bool is_volatile() const { return (_field ? _field->is_volatile() : false); } 273 int general_index() const { return (_general_index != 0) ? _general_index : _index; } 274 275 void set_rewritable(bool z) { _is_rewritable = z; } 276 void set_field(ciField* f) { 277 assert(!_field,""); 278 _field = f; 279 if (f->is_final() || f->is_stable()) { 280 // In the case of @Stable, multiple writes are possible but may be assumed to be no-ops. 281 _is_rewritable = false; 282 } 283 } 284 void set_element(const Type* e) { 285 assert(_element == nullptr, ""); 286 _element = e; 287 } 288 289 BasicType basic_type() const; 290 291 void print_on(outputStream* st) PRODUCT_RETURN; 292 }; 293 294 enum { 295 logAliasCacheSize = 6, 296 AliasCacheSize = (1<<logAliasCacheSize) 297 }; 298 struct AliasCacheEntry { const TypePtr* _adr_type; int _index; }; // simple duple type 299 enum { 300 trapHistLength = MethodData::_trap_hist_limit 301 }; 302 303 private: 304 // Fixed parameters to this compilation. 305 const int _compile_id; 306 const Options _options; // Compilation options 307 ciMethod* _method; // The method being compiled. 308 int _entry_bci; // entry bci for osr methods. 309 const TypeFunc* _tf; // My kind of signature 310 InlineTree* _ilt; // Ditto (temporary). 311 address _stub_function; // VM entry for stub being compiled, or null 312 const char* _stub_name; // Name of stub or adapter being compiled, or null 313 address _stub_entry_point; // Compile code entry for generated stub, or null 314 315 // Control of this compilation. 316 int _max_inline_size; // Max inline size for this compilation 317 int _freq_inline_size; // Max hot method inline size for this compilation 318 int _fixed_slots; // count of frame slots not allocated by the register 319 // allocator i.e. locks, original deopt pc, etc. 320 uintx _max_node_limit; // Max unique node count during a single compilation. 321 322 bool _post_loop_opts_phase; // Loop opts are finished. 323 bool _allow_macro_nodes; // True if we allow creation of macro nodes. 324 325 int _major_progress; // Count of something big happening 326 bool _inlining_progress; // progress doing incremental inlining? 327 bool _inlining_incrementally;// Are we doing incremental inlining (post parse) 328 bool _do_cleanup; // Cleanup is needed before proceeding with incremental inlining 329 bool _has_loops; // True if the method _may_ have some loops 330 bool _has_split_ifs; // True if the method _may_ have some split-if 331 bool _has_unsafe_access; // True if the method _may_ produce faults in unsafe loads or stores. 332 bool _has_stringbuilder; // True StringBuffers or StringBuilders are allocated 333 bool _has_boxed_value; // True if a boxed object is allocated 334 bool _has_reserved_stack_access; // True if the method or an inlined method is annotated with ReservedStackAccess 335 uint _max_vector_size; // Maximum size of generated vectors 336 bool _clear_upper_avx; // Clear upper bits of ymm registers using vzeroupper 337 uint _trap_hist[trapHistLength]; // Cumulative traps 338 bool _trap_can_recompile; // Have we emitted a recompiling trap? 339 uint _decompile_count; // Cumulative decompilation counts. 340 bool _do_inlining; // True if we intend to do inlining 341 bool _do_scheduling; // True if we intend to do scheduling 342 bool _do_freq_based_layout; // True if we intend to do frequency based block layout 343 bool _do_vector_loop; // True if allowed to execute loop in parallel iterations 344 bool _use_cmove; // True if CMove should be used without profitability analysis 345 bool _do_aliasing; // True if we intend to do aliasing 346 bool _print_assembly; // True if we should dump assembly code for this compilation 347 bool _print_inlining; // True if we should print inlining for this compilation 348 bool _print_intrinsics; // True if we should print intrinsics for this compilation 349 #ifndef PRODUCT 350 uint _igv_idx; // Counter for IGV node identifiers 351 uint _igv_phase_iter[PHASE_NUM_TYPES]; // Counters for IGV phase iterations 352 bool _trace_opto_output; 353 bool _parsed_irreducible_loop; // True if ciTypeFlow detected irreducible loops during parsing 354 #endif 355 bool _has_irreducible_loop; // Found irreducible loops 356 // JSR 292 357 bool _has_method_handle_invokes; // True if this method has MethodHandle invokes. 358 bool _has_monitors; // Metadata transfered to nmethod to enable Continuations lock-detection fastpath 359 bool _has_scoped_access; // For shared scope closure 360 bool _clinit_barrier_on_entry; // True if clinit barrier is needed on nmethod entry 361 int _loop_opts_cnt; // loop opts round 362 uint _stress_seed; // Seed for stress testing 363 364 // Compilation environment. 365 Arena _comp_arena; // Arena with lifetime equivalent to Compile 366 void* _barrier_set_state; // Potential GC barrier state for Compile 367 ciEnv* _env; // CI interface 368 DirectiveSet* _directive; // Compiler directive 369 CompileLog* _log; // from CompilerThread 370 CHeapStringHolder _failure_reason; // for record_failure/failing pattern 371 CompilationFailureInfo* _first_failure_details; // Details for the first failure happening during compilation 372 GrowableArray<CallGenerator*> _intrinsics; // List of intrinsics. 373 GrowableArray<Node*> _macro_nodes; // List of nodes which need to be expanded before matching. 374 GrowableArray<ParsePredicateNode*> _parse_predicates; // List of Parse Predicates. 375 // List of OpaqueTemplateAssertionPredicateNode nodes for Template Assertion Predicates. 376 GrowableArray<Node*> _template_assertion_predicate_opaqs; 377 GrowableArray<Node*> _expensive_nodes; // List of nodes that are expensive to compute and that we'd better not let the GVN freely common 378 GrowableArray<Node*> _for_post_loop_igvn; // List of nodes for IGVN after loop opts are over 379 GrowableArray<UnstableIfTrap*> _unstable_if_traps; // List of ifnodes after IGVN 380 GrowableArray<Node_List*> _coarsened_locks; // List of coarsened Lock and Unlock nodes 381 ConnectionGraph* _congraph; 382 #ifndef PRODUCT 383 IdealGraphPrinter* _igv_printer; 384 static IdealGraphPrinter* _debug_file_printer; 385 static IdealGraphPrinter* _debug_network_printer; 386 #endif 387 388 389 // Node management 390 uint _unique; // Counter for unique Node indices 391 uint _dead_node_count; // Number of dead nodes; VectorSet::Size() is O(N). 392 // So use this to keep count and make the call O(1). 393 VectorSet _dead_node_list; // Set of dead nodes 394 DEBUG_ONLY(Unique_Node_List* _modified_nodes;) // List of nodes which inputs were modified 395 DEBUG_ONLY(bool _phase_optimize_finished;) // Used for live node verification while creating new nodes 396 397 DEBUG_ONLY(bool _phase_verify_ideal_loop;) // Are we in PhaseIdealLoop verification? 398 399 // Arenas for new-space and old-space nodes. 400 // Swapped between using _node_arena. 401 // The lifetime of the old-space nodes is during xform. 402 Arena _node_arena_one; 403 Arena _node_arena_two; 404 Arena* _node_arena; 405 public: 406 Arena* swap_old_and_new() { 407 Arena* filled_arena_ptr = _node_arena; 408 Arena* old_arena_ptr = old_arena(); 409 old_arena_ptr->destruct_contents(); 410 _node_arena = old_arena_ptr; 411 return filled_arena_ptr; 412 } 413 private: 414 RootNode* _root; // Unique root of compilation, or null after bail-out. 415 Node* _top; // Unique top node. (Reset by various phases.) 416 417 Node* _immutable_memory; // Initial memory state 418 419 Node* _recent_alloc_obj; 420 Node* _recent_alloc_ctl; 421 422 // Constant table 423 MachConstantBaseNode* _mach_constant_base_node; // Constant table base node singleton. 424 425 426 // Blocked array of debugging and profiling information, 427 // tracked per node. 428 enum { _log2_node_notes_block_size = 8, 429 _node_notes_block_size = (1<<_log2_node_notes_block_size) 430 }; 431 GrowableArray<Node_Notes*>* _node_note_array; 432 Node_Notes* _default_node_notes; // default notes for new nodes 433 434 // After parsing and every bulk phase we hang onto the Root instruction. 435 // The RootNode instruction is where the whole program begins. It produces 436 // the initial Control and BOTTOM for everybody else. 437 438 // Type management 439 Arena _Compile_types; // Arena for all types 440 Arena* _type_arena; // Alias for _Compile_types except in Initialize_shared() 441 Dict* _type_dict; // Intern table 442 CloneMap _clone_map; // used for recording history of cloned nodes 443 size_t _type_last_size; // Last allocation size (see Type::operator new/delete) 444 ciMethod* _last_tf_m; // Cache for 445 const TypeFunc* _last_tf; // TypeFunc::make 446 AliasType** _alias_types; // List of alias types seen so far. 447 int _num_alias_types; // Logical length of _alias_types 448 int _max_alias_types; // Physical length of _alias_types 449 AliasCacheEntry _alias_cache[AliasCacheSize]; // Gets aliases w/o data structure walking 450 451 // Parsing, optimization 452 PhaseGVN* _initial_gvn; // Results of parse-time PhaseGVN 453 454 // Shared worklist for all IGVN rounds. Nodes can be pushed to it at any time. 455 // If pushed outside IGVN, the Node is processed in the next IGVN round. 456 Unique_Node_List* _igvn_worklist; 457 458 // Shared type array for GVN, IGVN and CCP. It maps node idx -> Type*. 459 Type_Array* _types; 460 461 // Shared node hash table for GVN, IGVN and CCP. 462 NodeHash* _node_hash; 463 464 GrowableArray<CallGenerator*> _late_inlines; // List of CallGenerators to be revisited after main parsing has finished. 465 GrowableArray<CallGenerator*> _string_late_inlines; // same but for string operations 466 GrowableArray<CallGenerator*> _boxing_late_inlines; // same but for boxing operations 467 468 GrowableArray<CallGenerator*> _vector_reboxing_late_inlines; // same but for vector reboxing operations 469 470 int _late_inlines_pos; // Where in the queue should the next late inlining candidate go (emulate depth first inlining) 471 uint _number_of_mh_late_inlines; // number of method handle late inlining still pending 472 473 // "MemLimit" directive was specified and the memory limit was hit during compilation 474 bool _oom; 475 476 // Only keep nodes in the expensive node list that need to be optimized 477 void cleanup_expensive_nodes(PhaseIterGVN &igvn); 478 // Use for sorting expensive nodes to bring similar nodes together 479 static int cmp_expensive_nodes(Node** n1, Node** n2); 480 // Expensive nodes list already sorted? 481 bool expensive_nodes_sorted() const; 482 // Remove the speculative part of types and clean up the graph 483 void remove_speculative_types(PhaseIterGVN &igvn); 484 485 void* _replay_inline_data; // Pointer to data loaded from file 486 487 void log_late_inline_failure(CallGenerator* cg, const char* msg); 488 DEBUG_ONLY(bool _exception_backedge;) 489 490 void record_method_not_compilable_oom(); 491 492 InlinePrinter _inline_printer; 493 494 public: 495 void* barrier_set_state() const { return _barrier_set_state; } 496 497 InlinePrinter* inline_printer() { return &_inline_printer; } 498 499 #ifndef PRODUCT 500 IdealGraphPrinter* igv_printer() { return _igv_printer; } 501 void reset_igv_phase_iter(CompilerPhaseType cpt) { _igv_phase_iter[cpt] = 0; } 502 #endif 503 504 void log_late_inline(CallGenerator* cg); 505 void log_inline_id(CallGenerator* cg); 506 void log_inline_failure(const char* msg); 507 508 void* replay_inline_data() const { return _replay_inline_data; } 509 510 // Dump inlining replay data to the stream. 511 void dump_inline_data(outputStream* out); 512 void dump_inline_data_reduced(outputStream* out); 513 514 private: 515 // Matching, CFG layout, allocation, code generation 516 PhaseCFG* _cfg; // Results of CFG finding 517 int _java_calls; // Number of java calls in the method 518 int _inner_loops; // Number of inner loops in the method 519 Matcher* _matcher; // Engine to map ideal to machine instructions 520 PhaseRegAlloc* _regalloc; // Results of register allocation. 521 RegMask _FIRST_STACK_mask; // All stack slots usable for spills (depends on frame layout) 522 Arena* _indexSet_arena; // control IndexSet allocation within PhaseChaitin 523 void* _indexSet_free_block_list; // free list of IndexSet bit blocks 524 int _interpreter_frame_size; 525 526 PhaseOutput* _output; 527 528 public: 529 // Accessors 530 531 // The Compile instance currently active in this (compiler) thread. 532 static Compile* current() { 533 return (Compile*) ciEnv::current()->compiler_data(); 534 } 535 536 int interpreter_frame_size() const { return _interpreter_frame_size; } 537 538 PhaseOutput* output() const { return _output; } 539 void set_output(PhaseOutput* o) { _output = o; } 540 541 // ID for this compilation. Useful for setting breakpoints in the debugger. 542 int compile_id() const { return _compile_id; } 543 DirectiveSet* directive() const { return _directive; } 544 545 // Does this compilation allow instructions to subsume loads? User 546 // instructions that subsume a load may result in an unschedulable 547 // instruction sequence. 548 bool subsume_loads() const { return _options._subsume_loads; } 549 /** Do escape analysis. */ 550 bool do_escape_analysis() const { return _options._do_escape_analysis; } 551 bool do_iterative_escape_analysis() const { return _options._do_iterative_escape_analysis; } 552 bool do_reduce_allocation_merges() const { return _options._do_reduce_allocation_merges; } 553 /** Do boxing elimination. */ 554 bool eliminate_boxing() const { return _options._eliminate_boxing; } 555 /** Do aggressive boxing elimination. */ 556 bool aggressive_unboxing() const { return _options._eliminate_boxing && AggressiveUnboxing; } 557 bool should_install_code() const { return _options._install_code; } 558 /** Do locks coarsening. */ 559 bool do_locks_coarsening() const { return _options._do_locks_coarsening; } 560 bool do_superword() const { return _options._do_superword; } 561 562 // Other fixed compilation parameters. 563 ciMethod* method() const { return _method; } 564 int entry_bci() const { return _entry_bci; } 565 bool is_osr_compilation() const { return _entry_bci != InvocationEntryBci; } 566 bool is_method_compilation() const { return (_method != nullptr && !_method->flags().is_native()); } 567 const TypeFunc* tf() const { assert(_tf!=nullptr, ""); return _tf; } 568 void init_tf(const TypeFunc* tf) { assert(_tf==nullptr, ""); _tf = tf; } 569 InlineTree* ilt() const { return _ilt; } 570 address stub_function() const { return _stub_function; } 571 const char* stub_name() const { return _stub_name; } 572 address stub_entry_point() const { return _stub_entry_point; } 573 void set_stub_entry_point(address z) { _stub_entry_point = z; } 574 575 // Control of this compilation. 576 int fixed_slots() const { assert(_fixed_slots >= 0, ""); return _fixed_slots; } 577 void set_fixed_slots(int n) { _fixed_slots = n; } 578 int major_progress() const { return _major_progress; } 579 void set_inlining_progress(bool z) { _inlining_progress = z; } 580 int inlining_progress() const { return _inlining_progress; } 581 void set_inlining_incrementally(bool z) { _inlining_incrementally = z; } 582 int inlining_incrementally() const { return _inlining_incrementally; } 583 void set_do_cleanup(bool z) { _do_cleanup = z; } 584 int do_cleanup() const { return _do_cleanup; } 585 void set_major_progress() { _major_progress++; } 586 void restore_major_progress(int progress) { _major_progress += progress; } 587 void clear_major_progress() { _major_progress = 0; } 588 int max_inline_size() const { return _max_inline_size; } 589 void set_freq_inline_size(int n) { _freq_inline_size = n; } 590 int freq_inline_size() const { return _freq_inline_size; } 591 void set_max_inline_size(int n) { _max_inline_size = n; } 592 bool has_loops() const { return _has_loops; } 593 void set_has_loops(bool z) { _has_loops = z; } 594 bool has_split_ifs() const { return _has_split_ifs; } 595 void set_has_split_ifs(bool z) { _has_split_ifs = z; } 596 bool has_unsafe_access() const { return _has_unsafe_access; } 597 void set_has_unsafe_access(bool z) { _has_unsafe_access = z; } 598 bool has_stringbuilder() const { return _has_stringbuilder; } 599 void set_has_stringbuilder(bool z) { _has_stringbuilder = z; } 600 bool has_boxed_value() const { return _has_boxed_value; } 601 void set_has_boxed_value(bool z) { _has_boxed_value = z; } 602 bool has_reserved_stack_access() const { return _has_reserved_stack_access; } 603 void set_has_reserved_stack_access(bool z) { _has_reserved_stack_access = z; } 604 uint max_vector_size() const { return _max_vector_size; } 605 void set_max_vector_size(uint s) { _max_vector_size = s; } 606 bool clear_upper_avx() const { return _clear_upper_avx; } 607 void set_clear_upper_avx(bool s) { _clear_upper_avx = s; } 608 void set_trap_count(uint r, uint c) { assert(r < trapHistLength, "oob"); _trap_hist[r] = c; } 609 uint trap_count(uint r) const { assert(r < trapHistLength, "oob"); return _trap_hist[r]; } 610 bool trap_can_recompile() const { return _trap_can_recompile; } 611 void set_trap_can_recompile(bool z) { _trap_can_recompile = z; } 612 uint decompile_count() const { return _decompile_count; } 613 void set_decompile_count(uint c) { _decompile_count = c; } 614 bool allow_range_check_smearing() const; 615 bool do_inlining() const { return _do_inlining; } 616 void set_do_inlining(bool z) { _do_inlining = z; } 617 bool do_scheduling() const { return _do_scheduling; } 618 void set_do_scheduling(bool z) { _do_scheduling = z; } 619 bool do_freq_based_layout() const{ return _do_freq_based_layout; } 620 void set_do_freq_based_layout(bool z){ _do_freq_based_layout = z; } 621 bool do_vector_loop() const { return _do_vector_loop; } 622 void set_do_vector_loop(bool z) { _do_vector_loop = z; } 623 bool use_cmove() const { return _use_cmove; } 624 void set_use_cmove(bool z) { _use_cmove = z; } 625 bool do_aliasing() const { return _do_aliasing; } 626 bool print_assembly() const { return _print_assembly; } 627 void set_print_assembly(bool z) { _print_assembly = z; } 628 bool print_inlining() const { return _print_inlining; } 629 void set_print_inlining(bool z) { _print_inlining = z; } 630 bool print_intrinsics() const { return _print_intrinsics; } 631 void set_print_intrinsics(bool z) { _print_intrinsics = z; } 632 uint max_node_limit() const { return (uint)_max_node_limit; } 633 void set_max_node_limit(uint n) { _max_node_limit = n; } 634 bool clinit_barrier_on_entry() { return _clinit_barrier_on_entry; } 635 void set_clinit_barrier_on_entry(bool z) { _clinit_barrier_on_entry = z; } 636 bool has_monitors() const { return _has_monitors; } 637 void set_has_monitors(bool v) { _has_monitors = v; } 638 bool has_scoped_access() const { return _has_scoped_access; } 639 void set_has_scoped_access(bool v) { _has_scoped_access = v; } 640 641 // check the CompilerOracle for special behaviours for this compile 642 bool method_has_option(CompileCommandEnum option) { 643 return method() != nullptr && method()->has_option(option); 644 } 645 646 #ifndef PRODUCT 647 uint next_igv_idx() { return _igv_idx++; } 648 bool trace_opto_output() const { return _trace_opto_output; } 649 void print_ideal_ir(const char* phase_name); 650 bool should_print_ideal() const { return _directive->PrintIdealOption; } 651 bool parsed_irreducible_loop() const { return _parsed_irreducible_loop; } 652 void set_parsed_irreducible_loop(bool z) { _parsed_irreducible_loop = z; } 653 int _in_dump_cnt; // Required for dumping ir nodes. 654 #endif 655 bool has_irreducible_loop() const { return _has_irreducible_loop; } 656 void set_has_irreducible_loop(bool z) { _has_irreducible_loop = z; } 657 658 // JSR 292 659 bool has_method_handle_invokes() const { return _has_method_handle_invokes; } 660 void set_has_method_handle_invokes(bool z) { _has_method_handle_invokes = z; } 661 662 Ticks _latest_stage_start_counter; 663 664 void begin_method(); 665 void end_method(); 666 bool should_print_igv(int level); 667 bool should_print_phase(CompilerPhaseType cpt); 668 669 void print_method(CompilerPhaseType cpt, int level, Node* n = nullptr); 670 671 #ifndef PRODUCT 672 void init_igv(); 673 void dump_igv(const char* graph_name, int level = 3) { 674 if (should_print_igv(level)) { 675 _igv_printer->print_graph(graph_name); 676 } 677 } 678 679 void igv_print_method_to_file(const char* phase_name = "Debug", bool append = false); 680 void igv_print_method_to_network(const char* phase_name = "Debug"); 681 void igv_print_graph_to_network(const char* name, Node* node, GrowableArray<const Node*>& visible_nodes); 682 static IdealGraphPrinter* debug_file_printer() { return _debug_file_printer; } 683 static IdealGraphPrinter* debug_network_printer() { return _debug_network_printer; } 684 #endif 685 686 int macro_count() const { return _macro_nodes.length(); } 687 int parse_predicate_count() const { return _parse_predicates.length(); } 688 int template_assertion_predicate_count() const { return _template_assertion_predicate_opaqs.length(); } 689 int expensive_count() const { return _expensive_nodes.length(); } 690 int coarsened_count() const { return _coarsened_locks.length(); } 691 692 Node* macro_node(int idx) const { return _macro_nodes.at(idx); } 693 ParsePredicateNode* parse_predicate(int idx) const { return _parse_predicates.at(idx); } 694 695 Node* template_assertion_predicate_opaq_node(int idx) const { 696 return _template_assertion_predicate_opaqs.at(idx); 697 } 698 699 Node* expensive_node(int idx) const { return _expensive_nodes.at(idx); } 700 701 ConnectionGraph* congraph() { return _congraph;} 702 void set_congraph(ConnectionGraph* congraph) { _congraph = congraph;} 703 void add_macro_node(Node * n) { 704 //assert(n->is_macro(), "must be a macro node"); 705 assert(!_macro_nodes.contains(n), "duplicate entry in expand list"); 706 _macro_nodes.append(n); 707 } 708 void remove_macro_node(Node* n) { 709 // this function may be called twice for a node so we can only remove it 710 // if it's still existing. 711 _macro_nodes.remove_if_existing(n); 712 // Remove from coarsened locks list if present 713 if (coarsened_count() > 0) { 714 remove_coarsened_lock(n); 715 } 716 } 717 void add_expensive_node(Node* n); 718 void remove_expensive_node(Node* n) { 719 _expensive_nodes.remove_if_existing(n); 720 } 721 722 void add_parse_predicate(ParsePredicateNode* n) { 723 assert(!_parse_predicates.contains(n), "duplicate entry in Parse Predicate list"); 724 _parse_predicates.append(n); 725 } 726 727 void remove_parse_predicate(ParsePredicateNode* n) { 728 if (parse_predicate_count() > 0) { 729 _parse_predicates.remove_if_existing(n); 730 } 731 } 732 733 void add_template_assertion_predicate_opaq(Node* n) { 734 assert(!_template_assertion_predicate_opaqs.contains(n), 735 "Duplicate entry in Template Assertion Predicate OpaqueTemplateAssertionPredicate list"); 736 _template_assertion_predicate_opaqs.append(n); 737 } 738 739 void remove_template_assertion_predicate_opaq(Node* n) { 740 if (template_assertion_predicate_count() > 0) { 741 _template_assertion_predicate_opaqs.remove_if_existing(n); 742 } 743 } 744 void add_coarsened_locks(GrowableArray<AbstractLockNode*>& locks); 745 void remove_coarsened_lock(Node* n); 746 bool coarsened_locks_consistent(); 747 void mark_unbalanced_boxes() const; 748 749 bool post_loop_opts_phase() { return _post_loop_opts_phase; } 750 void set_post_loop_opts_phase() { _post_loop_opts_phase = true; } 751 void reset_post_loop_opts_phase() { _post_loop_opts_phase = false; } 752 753 #ifdef ASSERT 754 bool phase_verify_ideal_loop() const { return _phase_verify_ideal_loop; } 755 void set_phase_verify_ideal_loop() { _phase_verify_ideal_loop = true; } 756 void reset_phase_verify_ideal_loop() { _phase_verify_ideal_loop = false; } 757 #endif 758 759 bool allow_macro_nodes() { return _allow_macro_nodes; } 760 void reset_allow_macro_nodes() { _allow_macro_nodes = false; } 761 762 void record_for_post_loop_opts_igvn(Node* n); 763 void remove_from_post_loop_opts_igvn(Node* n); 764 void process_for_post_loop_opts_igvn(PhaseIterGVN& igvn); 765 766 void record_unstable_if_trap(UnstableIfTrap* trap); 767 bool remove_unstable_if_trap(CallStaticJavaNode* unc, bool yield); 768 void remove_useless_unstable_if_traps(Unique_Node_List &useful); 769 void process_for_unstable_if_traps(PhaseIterGVN& igvn); 770 771 void shuffle_macro_nodes(); 772 void sort_macro_nodes(); 773 774 void mark_parse_predicate_nodes_useless(PhaseIterGVN& igvn); 775 776 // Are there candidate expensive nodes for optimization? 777 bool should_optimize_expensive_nodes(PhaseIterGVN &igvn); 778 // Check whether n1 and n2 are similar 779 static int cmp_expensive_nodes(Node* n1, Node* n2); 780 // Sort expensive nodes to locate similar expensive nodes 781 void sort_expensive_nodes(); 782 783 // Compilation environment. 784 Arena* comp_arena() { return &_comp_arena; } 785 ciEnv* env() const { return _env; } 786 CompileLog* log() const { return _log; } 787 788 bool failing_internal() const { 789 return _env->failing() || 790 _failure_reason.get() != nullptr; 791 } 792 793 const char* failure_reason() const { 794 return _env->failing() ? _env->failure_reason() 795 : _failure_reason.get(); 796 } 797 798 const CompilationFailureInfo* first_failure_details() const { return _first_failure_details; } 799 800 bool failing() { 801 if (failing_internal()) { 802 return true; 803 } 804 #ifdef ASSERT 805 // Disable stress code for PhaseIdealLoop verification (would have cascading effects). 806 if (phase_verify_ideal_loop()) { 807 return false; 808 } 809 if (StressBailout) { 810 return fail_randomly(); 811 } 812 #endif 813 return false; 814 } 815 816 #ifdef ASSERT 817 bool fail_randomly(); 818 bool failure_is_artificial(); 819 #endif 820 821 bool failure_reason_is(const char* r) const { 822 return (r == _failure_reason.get()) || 823 (r != nullptr && 824 _failure_reason.get() != nullptr && 825 strcmp(r, _failure_reason.get()) == 0); 826 } 827 828 void record_failure(const char* reason DEBUG_ONLY(COMMA bool allow_multiple_failures = false)); 829 void record_method_not_compilable(const char* reason DEBUG_ONLY(COMMA bool allow_multiple_failures = false)) { 830 env()->record_method_not_compilable(reason); 831 // Record failure reason. 832 record_failure(reason DEBUG_ONLY(COMMA allow_multiple_failures)); 833 } 834 bool check_node_count(uint margin, const char* reason) { 835 if (oom()) { 836 record_method_not_compilable_oom(); 837 return true; 838 } 839 if (live_nodes() + margin > max_node_limit()) { 840 record_method_not_compilable(reason); 841 return true; 842 } else { 843 return false; 844 } 845 } 846 bool oom() const { return _oom; } 847 void set_oom() { _oom = true; } 848 849 // Node management 850 uint unique() const { return _unique; } 851 uint next_unique() { return _unique++; } 852 void set_unique(uint i) { _unique = i; } 853 Arena* node_arena() { return _node_arena; } 854 Arena* old_arena() { return (&_node_arena_one == _node_arena) ? &_node_arena_two : &_node_arena_one; } 855 RootNode* root() const { return _root; } 856 void set_root(RootNode* r) { _root = r; } 857 StartNode* start() const; // (Derived from root.) 858 void verify_start(StartNode* s) const NOT_DEBUG_RETURN; 859 Node* immutable_memory(); 860 861 Node* recent_alloc_ctl() const { return _recent_alloc_ctl; } 862 Node* recent_alloc_obj() const { return _recent_alloc_obj; } 863 void set_recent_alloc(Node* ctl, Node* obj) { 864 _recent_alloc_ctl = ctl; 865 _recent_alloc_obj = obj; 866 } 867 void record_dead_node(uint idx) { if (_dead_node_list.test_set(idx)) return; 868 _dead_node_count++; 869 } 870 void reset_dead_node_list() { _dead_node_list.reset(); 871 _dead_node_count = 0; 872 } 873 uint live_nodes() const { 874 int val = _unique - _dead_node_count; 875 assert (val >= 0, "number of tracked dead nodes %d more than created nodes %d", _unique, _dead_node_count); 876 return (uint) val; 877 } 878 #ifdef ASSERT 879 void set_phase_optimize_finished() { _phase_optimize_finished = true; } 880 bool phase_optimize_finished() const { return _phase_optimize_finished; } 881 uint count_live_nodes_by_graph_walk(); 882 void print_missing_nodes(); 883 #endif 884 885 // Record modified nodes to check that they are put on IGVN worklist 886 void record_modified_node(Node* n) NOT_DEBUG_RETURN; 887 void remove_modified_node(Node* n) NOT_DEBUG_RETURN; 888 DEBUG_ONLY( Unique_Node_List* modified_nodes() const { return _modified_nodes; } ) 889 890 MachConstantBaseNode* mach_constant_base_node(); 891 bool has_mach_constant_base_node() const { return _mach_constant_base_node != nullptr; } 892 // Generated by adlc, true if CallNode requires MachConstantBase. 893 bool needs_deep_clone_jvms(); 894 895 // Handy undefined Node 896 Node* top() const { return _top; } 897 898 // these are used by guys who need to know about creation and transformation of top: 899 Node* cached_top_node() { return _top; } 900 void set_cached_top_node(Node* tn); 901 902 GrowableArray<Node_Notes*>* node_note_array() const { return _node_note_array; } 903 void set_node_note_array(GrowableArray<Node_Notes*>* arr) { _node_note_array = arr; } 904 Node_Notes* default_node_notes() const { return _default_node_notes; } 905 void set_default_node_notes(Node_Notes* n) { _default_node_notes = n; } 906 907 Node_Notes* node_notes_at(int idx); 908 909 inline bool set_node_notes_at(int idx, Node_Notes* value); 910 // Copy notes from source to dest, if they exist. 911 // Overwrite dest only if source provides something. 912 // Return true if information was moved. 913 bool copy_node_notes_to(Node* dest, Node* source); 914 915 // Workhorse function to sort out the blocked Node_Notes array: 916 inline Node_Notes* locate_node_notes(GrowableArray<Node_Notes*>* arr, 917 int idx, bool can_grow = false); 918 919 void grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by); 920 921 // Type management 922 Arena* type_arena() { return _type_arena; } 923 Dict* type_dict() { return _type_dict; } 924 size_t type_last_size() { return _type_last_size; } 925 int num_alias_types() { return _num_alias_types; } 926 927 void init_type_arena() { _type_arena = &_Compile_types; } 928 void set_type_arena(Arena* a) { _type_arena = a; } 929 void set_type_dict(Dict* d) { _type_dict = d; } 930 void set_type_last_size(size_t sz) { _type_last_size = sz; } 931 932 const TypeFunc* last_tf(ciMethod* m) { 933 return (m == _last_tf_m) ? _last_tf : nullptr; 934 } 935 void set_last_tf(ciMethod* m, const TypeFunc* tf) { 936 assert(m != nullptr || tf == nullptr, ""); 937 _last_tf_m = m; 938 _last_tf = tf; 939 } 940 941 AliasType* alias_type(int idx) { assert(idx < num_alias_types(), "oob"); return _alias_types[idx]; } 942 AliasType* alias_type(const TypePtr* adr_type, ciField* field = nullptr) { return find_alias_type(adr_type, false, field); } 943 bool have_alias_type(const TypePtr* adr_type); 944 AliasType* alias_type(ciField* field); 945 946 int get_alias_index(const TypePtr* at) { return alias_type(at)->index(); } 947 const TypePtr* get_adr_type(uint aidx) { return alias_type(aidx)->adr_type(); } 948 int get_general_index(uint aidx) { return alias_type(aidx)->general_index(); } 949 950 // Building nodes 951 void rethrow_exceptions(JVMState* jvms); 952 void return_values(JVMState* jvms); 953 JVMState* build_start_state(StartNode* start, const TypeFunc* tf); 954 955 // Decide how to build a call. 956 // The profile factor is a discount to apply to this site's interp. profile. 957 CallGenerator* call_generator(ciMethod* call_method, int vtable_index, bool call_does_dispatch, 958 JVMState* jvms, bool allow_inline, float profile_factor, ciKlass* speculative_receiver_type = nullptr, 959 bool allow_intrinsics = true); 960 bool should_delay_inlining(ciMethod* call_method, JVMState* jvms) { 961 return should_delay_string_inlining(call_method, jvms) || 962 should_delay_boxing_inlining(call_method, jvms) || 963 should_delay_vector_inlining(call_method, jvms); 964 } 965 bool should_delay_string_inlining(ciMethod* call_method, JVMState* jvms); 966 bool should_delay_boxing_inlining(ciMethod* call_method, JVMState* jvms); 967 bool should_delay_vector_inlining(ciMethod* call_method, JVMState* jvms); 968 bool should_delay_vector_reboxing_inlining(ciMethod* call_method, JVMState* jvms); 969 970 // Helper functions to identify inlining potential at call-site 971 ciMethod* optimize_virtual_call(ciMethod* caller, ciInstanceKlass* klass, 972 ciKlass* holder, ciMethod* callee, 973 const TypeOopPtr* receiver_type, bool is_virtual, 974 bool &call_does_dispatch, int &vtable_index, 975 bool check_access = true); 976 ciMethod* optimize_inlining(ciMethod* caller, ciInstanceKlass* klass, ciKlass* holder, 977 ciMethod* callee, const TypeOopPtr* receiver_type, 978 bool check_access = true); 979 980 // Report if there were too many traps at a current method and bci. 981 // Report if a trap was recorded, and/or PerMethodTrapLimit was exceeded. 982 // If there is no MDO at all, report no trap unless told to assume it. 983 bool too_many_traps(ciMethod* method, int bci, Deoptimization::DeoptReason reason); 984 // This version, unspecific to a particular bci, asks if 985 // PerMethodTrapLimit was exceeded for all inlined methods seen so far. 986 bool too_many_traps(Deoptimization::DeoptReason reason, 987 // Privately used parameter for logging: 988 ciMethodData* logmd = nullptr); 989 // Report if there were too many recompiles at a method and bci. 990 bool too_many_recompiles(ciMethod* method, int bci, Deoptimization::DeoptReason reason); 991 // Report if there were too many traps or recompiles at a method and bci. 992 bool too_many_traps_or_recompiles(ciMethod* method, int bci, Deoptimization::DeoptReason reason) { 993 return too_many_traps(method, bci, reason) || 994 too_many_recompiles(method, bci, reason); 995 } 996 // Return a bitset with the reasons where deoptimization is allowed, 997 // i.e., where there were not too many uncommon traps. 998 int _allowed_reasons; 999 int allowed_deopt_reasons() { return _allowed_reasons; } 1000 void set_allowed_deopt_reasons(); 1001 1002 // Parsing, optimization 1003 PhaseGVN* initial_gvn() { return _initial_gvn; } 1004 Unique_Node_List* igvn_worklist() { 1005 assert(_igvn_worklist != nullptr, "must be created in Compile::Compile"); 1006 return _igvn_worklist; 1007 } 1008 Type_Array* types() { 1009 assert(_types != nullptr, "must be created in Compile::Compile"); 1010 return _types; 1011 } 1012 NodeHash* node_hash() { 1013 assert(_node_hash != nullptr, "must be created in Compile::Compile"); 1014 return _node_hash; 1015 } 1016 inline void record_for_igvn(Node* n); // Body is after class Unique_Node_List in node.hpp. 1017 inline void remove_for_igvn(Node* n); // Body is after class Unique_Node_List in node.hpp. 1018 void set_initial_gvn(PhaseGVN *gvn) { _initial_gvn = gvn; } 1019 1020 // Replace n by nn using initial_gvn, calling hash_delete and 1021 // record_for_igvn as needed. 1022 void gvn_replace_by(Node* n, Node* nn); 1023 1024 1025 void identify_useful_nodes(Unique_Node_List &useful); 1026 void update_dead_node_list(Unique_Node_List &useful); 1027 void disconnect_useless_nodes(Unique_Node_List& useful, Unique_Node_List& worklist); 1028 1029 void remove_useless_node(Node* dead); 1030 1031 // Record this CallGenerator for inlining at the end of parsing. 1032 void add_late_inline(CallGenerator* cg) { 1033 _late_inlines.insert_before(_late_inlines_pos, cg); 1034 _late_inlines_pos++; 1035 } 1036 1037 void prepend_late_inline(CallGenerator* cg) { 1038 _late_inlines.insert_before(0, cg); 1039 } 1040 1041 void add_string_late_inline(CallGenerator* cg) { 1042 _string_late_inlines.push(cg); 1043 } 1044 1045 void add_boxing_late_inline(CallGenerator* cg) { 1046 _boxing_late_inlines.push(cg); 1047 } 1048 1049 void add_vector_reboxing_late_inline(CallGenerator* cg) { 1050 _vector_reboxing_late_inlines.push(cg); 1051 } 1052 1053 template<typename N, ENABLE_IF(std::is_base_of<Node, N>::value)> 1054 void remove_useless_nodes(GrowableArray<N*>& node_list, Unique_Node_List& useful); 1055 1056 void remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful); 1057 void remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Node* dead); 1058 1059 void remove_useless_coarsened_locks(Unique_Node_List& useful); 1060 1061 void dump_print_inlining(); 1062 1063 bool over_inlining_cutoff() const { 1064 if (!inlining_incrementally()) { 1065 return unique() > (uint)NodeCountInliningCutoff; 1066 } else { 1067 // Give some room for incremental inlining algorithm to "breathe" 1068 // and avoid thrashing when live node count is close to the limit. 1069 // Keep in mind that live_nodes() isn't accurate during inlining until 1070 // dead node elimination step happens (see Compile::inline_incrementally). 1071 return live_nodes() > (uint)LiveNodeCountInliningCutoff * 11 / 10; 1072 } 1073 } 1074 1075 void inc_number_of_mh_late_inlines() { _number_of_mh_late_inlines++; } 1076 void dec_number_of_mh_late_inlines() { assert(_number_of_mh_late_inlines > 0, "_number_of_mh_late_inlines < 0 !"); _number_of_mh_late_inlines--; } 1077 bool has_mh_late_inlines() const { return _number_of_mh_late_inlines > 0; } 1078 1079 bool inline_incrementally_one(); 1080 void inline_incrementally_cleanup(PhaseIterGVN& igvn); 1081 void inline_incrementally(PhaseIterGVN& igvn); 1082 bool should_delay_inlining() { return AlwaysIncrementalInline || (StressIncrementalInlining && (random() % 2) == 0); } 1083 void inline_string_calls(bool parse_time); 1084 void inline_boxing_calls(PhaseIterGVN& igvn); 1085 bool optimize_loops(PhaseIterGVN& igvn, LoopOptsMode mode); 1086 void remove_root_to_sfpts_edges(PhaseIterGVN& igvn); 1087 1088 void inline_vector_reboxing_calls(); 1089 bool has_vbox_nodes(); 1090 1091 void process_late_inline_calls_no_inline(PhaseIterGVN& igvn); 1092 1093 // Matching, CFG layout, allocation, code generation 1094 PhaseCFG* cfg() { return _cfg; } 1095 bool has_java_calls() const { return _java_calls > 0; } 1096 int java_calls() const { return _java_calls; } 1097 int inner_loops() const { return _inner_loops; } 1098 Matcher* matcher() { return _matcher; } 1099 PhaseRegAlloc* regalloc() { return _regalloc; } 1100 RegMask& FIRST_STACK_mask() { return _FIRST_STACK_mask; } 1101 Arena* indexSet_arena() { return _indexSet_arena; } 1102 void* indexSet_free_block_list() { return _indexSet_free_block_list; } 1103 DebugInformationRecorder* debug_info() { return env()->debug_info(); } 1104 1105 void update_interpreter_frame_size(int size) { 1106 if (_interpreter_frame_size < size) { 1107 _interpreter_frame_size = size; 1108 } 1109 } 1110 1111 void set_matcher(Matcher* m) { _matcher = m; } 1112 //void set_regalloc(PhaseRegAlloc* ra) { _regalloc = ra; } 1113 void set_indexSet_arena(Arena* a) { _indexSet_arena = a; } 1114 void set_indexSet_free_block_list(void* p) { _indexSet_free_block_list = p; } 1115 1116 void set_java_calls(int z) { _java_calls = z; } 1117 void set_inner_loops(int z) { _inner_loops = z; } 1118 1119 Dependencies* dependencies() { return env()->dependencies(); } 1120 1121 // Major entry point. Given a Scope, compile the associated method. 1122 // For normal compilations, entry_bci is InvocationEntryBci. For on stack 1123 // replacement, entry_bci indicates the bytecode for which to compile a 1124 // continuation. 1125 Compile(ciEnv* ci_env, ciMethod* target, 1126 int entry_bci, Options options, DirectiveSet* directive); 1127 1128 // Second major entry point. From the TypeFunc signature, generate code 1129 // to pass arguments from the Java calling convention to the C calling 1130 // convention. 1131 Compile(ciEnv* ci_env, const TypeFunc *(*gen)(), 1132 address stub_function, const char *stub_name, 1133 int is_fancy_jump, bool pass_tls, 1134 bool return_pc, DirectiveSet* directive); 1135 1136 ~Compile(); 1137 1138 // Are we compiling a method? 1139 bool has_method() { return method() != nullptr; } 1140 1141 // Maybe print some information about this compile. 1142 void print_compile_messages(); 1143 1144 // Final graph reshaping, a post-pass after the regular optimizer is done. 1145 bool final_graph_reshaping(); 1146 1147 // returns true if adr is completely contained in the given alias category 1148 bool must_alias(const TypePtr* adr, int alias_idx); 1149 1150 // returns true if adr overlaps with the given alias category 1151 bool can_alias(const TypePtr* adr, int alias_idx); 1152 1153 // Stack slots that may be unused by the calling convention but must 1154 // otherwise be preserved. On Intel this includes the return address. 1155 // On PowerPC it includes the 4 words holding the old TOC & LR glue. 1156 uint in_preserve_stack_slots() { 1157 return SharedRuntime::in_preserve_stack_slots(); 1158 } 1159 1160 // "Top of Stack" slots that may be unused by the calling convention but must 1161 // otherwise be preserved. 1162 // On Intel these are not necessary and the value can be zero. 1163 static uint out_preserve_stack_slots() { 1164 return SharedRuntime::out_preserve_stack_slots(); 1165 } 1166 1167 // Number of outgoing stack slots killed above the out_preserve_stack_slots 1168 // for calls to C. Supports the var-args backing area for register parms. 1169 uint varargs_C_out_slots_killed() const; 1170 1171 // Number of Stack Slots consumed by a synchronization entry 1172 int sync_stack_slots() const; 1173 1174 // Compute the name of old_SP. See <arch>.ad for frame layout. 1175 OptoReg::Name compute_old_SP(); 1176 1177 private: 1178 // Phase control: 1179 void Init(bool aliasing); // Prepare for a single compilation 1180 void Optimize(); // Given a graph, optimize it 1181 void Code_Gen(); // Generate code from a graph 1182 1183 // Management of the AliasType table. 1184 void grow_alias_types(); 1185 AliasCacheEntry* probe_alias_cache(const TypePtr* adr_type); 1186 const TypePtr *flatten_alias_type(const TypePtr* adr_type) const; 1187 AliasType* find_alias_type(const TypePtr* adr_type, bool no_create, ciField* field); 1188 1189 void verify_top(Node*) const PRODUCT_RETURN; 1190 1191 // Intrinsic setup. 1192 CallGenerator* make_vm_intrinsic(ciMethod* m, bool is_virtual); // constructor 1193 int intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found); // helper 1194 CallGenerator* find_intrinsic(ciMethod* m, bool is_virtual); // query fn 1195 void register_intrinsic(CallGenerator* cg); // update fn 1196 1197 #ifndef PRODUCT 1198 static juint _intrinsic_hist_count[]; 1199 static jubyte _intrinsic_hist_flags[]; 1200 #endif 1201 // Function calls made by the public function final_graph_reshaping. 1202 // No need to be made public as they are not called elsewhere. 1203 void final_graph_reshaping_impl(Node *n, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes); 1204 void final_graph_reshaping_main_switch(Node* n, Final_Reshape_Counts& frc, uint nop, Unique_Node_List& dead_nodes); 1205 void final_graph_reshaping_walk(Node_Stack& nstack, Node* root, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes); 1206 void handle_div_mod_op(Node* n, BasicType bt, bool is_unsigned); 1207 1208 // Logic cone optimization. 1209 void optimize_logic_cones(PhaseIterGVN &igvn); 1210 void collect_logic_cone_roots(Unique_Node_List& list); 1211 void process_logic_cone_root(PhaseIterGVN &igvn, Node* n, VectorSet& visited); 1212 bool compute_logic_cone(Node* n, Unique_Node_List& partition, Unique_Node_List& inputs); 1213 uint compute_truth_table(Unique_Node_List& partition, Unique_Node_List& inputs); 1214 uint eval_macro_logic_op(uint func, uint op1, uint op2, uint op3); 1215 Node* xform_to_MacroLogicV(PhaseIterGVN &igvn, const TypeVect* vt, Unique_Node_List& partitions, Unique_Node_List& inputs); 1216 void check_no_dead_use() const NOT_DEBUG_RETURN; 1217 1218 public: 1219 1220 // Note: Histogram array size is about 1 Kb. 1221 enum { // flag bits: 1222 _intrinsic_worked = 1, // succeeded at least once 1223 _intrinsic_failed = 2, // tried it but it failed 1224 _intrinsic_disabled = 4, // was requested but disabled (e.g., -XX:-InlineUnsafeOps) 1225 _intrinsic_virtual = 8, // was seen in the virtual form (rare) 1226 _intrinsic_both = 16 // was seen in the non-virtual form (usual) 1227 }; 1228 // Update histogram. Return boolean if this is a first-time occurrence. 1229 static bool gather_intrinsic_statistics(vmIntrinsics::ID id, 1230 bool is_virtual, int flags) PRODUCT_RETURN0; 1231 static void print_intrinsic_statistics() PRODUCT_RETURN; 1232 1233 // Graph verification code 1234 // Walk the node list, verifying that there is a one-to-one 1235 // correspondence between Use-Def edges and Def-Use edges 1236 // The option no_dead_code enables stronger checks that the 1237 // graph is strongly connected from root in both directions. 1238 void verify_graph_edges(bool no_dead_code = false) PRODUCT_RETURN; 1239 1240 // Verify bi-directional correspondence of edges 1241 void verify_bidirectional_edges(Unique_Node_List &visited); 1242 1243 // End-of-run dumps. 1244 static void print_statistics() PRODUCT_RETURN; 1245 1246 // Verify ADLC assumptions during startup 1247 static void adlc_verification() PRODUCT_RETURN; 1248 1249 // Definitions of pd methods 1250 static void pd_compiler2_init(); 1251 1252 // Static parse-time type checking logic for gen_subtype_check: 1253 enum SubTypeCheckResult { SSC_always_false, SSC_always_true, SSC_easy_test, SSC_full_test }; 1254 SubTypeCheckResult static_subtype_check(const TypeKlassPtr* superk, const TypeKlassPtr* subk, bool skip = StressReflectiveCode); 1255 1256 static Node* conv_I2X_index(PhaseGVN* phase, Node* offset, const TypeInt* sizetype, 1257 // Optional control dependency (for example, on range check) 1258 Node* ctrl = nullptr); 1259 1260 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check) 1261 static Node* constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl, bool carry_dependency = false); 1262 1263 // Auxiliary methods for randomized fuzzing/stressing 1264 int random(); 1265 bool randomized_select(int count); 1266 1267 // seed random number generation and log the seed for repeatability. 1268 void initialize_stress_seed(const DirectiveSet* directive); 1269 1270 // supporting clone_map 1271 CloneMap& clone_map(); 1272 void set_clone_map(Dict* d); 1273 1274 bool needs_clinit_barrier(ciField* ik, ciMethod* accessing_method); 1275 bool needs_clinit_barrier(ciMethod* ik, ciMethod* accessing_method); 1276 bool needs_clinit_barrier(ciInstanceKlass* ik, ciMethod* accessing_method); 1277 1278 #ifdef IA32 1279 private: 1280 bool _select_24_bit_instr; // We selected an instruction with a 24-bit result 1281 bool _in_24_bit_fp_mode; // We are emitting instructions with 24-bit results 1282 1283 // Remember if this compilation changes hardware mode to 24-bit precision. 1284 void set_24_bit_selection_and_mode(bool selection, bool mode) { 1285 _select_24_bit_instr = selection; 1286 _in_24_bit_fp_mode = mode; 1287 } 1288 1289 public: 1290 bool select_24_bit_instr() const { return _select_24_bit_instr; } 1291 bool in_24_bit_fp_mode() const { return _in_24_bit_fp_mode; } 1292 #endif // IA32 1293 #ifdef ASSERT 1294 VerifyMeetResult* _type_verify; 1295 void set_exception_backedge() { _exception_backedge = true; } 1296 bool has_exception_backedge() const { return _exception_backedge; } 1297 #endif 1298 1299 static bool push_thru_add(PhaseGVN* phase, Node* z, const TypeInteger* tz, const TypeInteger*& rx, const TypeInteger*& ry, 1300 BasicType out_bt, BasicType in_bt); 1301 1302 static Node* narrow_value(BasicType bt, Node* value, const Type* type, PhaseGVN* phase, bool transform_res); 1303 }; 1304 1305 #endif // SHARE_OPTO_COMPILE_HPP