1 /*
2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #ifndef SHARE_OPTO_COMPILE_HPP
26 #define SHARE_OPTO_COMPILE_HPP
27
28 #include "asm/codeBuffer.hpp"
29 #include "ci/compilerInterface.hpp"
30 #include "code/debugInfoRec.hpp"
31 #include "compiler/cHeapStringHolder.hpp"
32 #include "compiler/compileBroker.hpp"
33 #include "compiler/compiler_globals.hpp"
34 #include "compiler/compilerEvent.hpp"
35 #include "libadt/dict.hpp"
36 #include "libadt/vectset.hpp"
37 #include "memory/resourceArea.hpp"
38 #include "oops/methodData.hpp"
39 #include "opto/idealGraphPrinter.hpp"
40 #include "opto/phase.hpp"
41 #include "opto/phasetype.hpp"
42 #include "opto/printinlining.hpp"
43 #include "opto/regmask.hpp"
44 #include "runtime/deoptimization.hpp"
45 #include "runtime/sharedRuntime.hpp"
46 #include "runtime/timerTrace.hpp"
47 #include "runtime/vmThread.hpp"
48 #include "utilities/ticks.hpp"
49 #include "utilities/vmEnums.hpp"
50
51 class AbstractLockNode;
52 class AddPNode;
53 class Block;
54 class Bundle;
55 class CallGenerator;
56 class CallStaticJavaNode;
57 class CloneMap;
58 class CompilationFailureInfo;
59 class ConnectionGraph;
60 class IdealGraphPrinter;
61 class InlineTree;
62 class Matcher;
63 class MachConstantNode;
64 class MachConstantBaseNode;
65 class MachNode;
66 class MachOper;
67 class MachSafePointNode;
68 class Node;
69 class Node_Array;
70 class Node_List;
71 class Node_Notes;
72 class NodeHash;
73 class NodeCloneInfo;
74 class OpaqueTemplateAssertionPredicateNode;
75 class OptoReg;
76 class ParsePredicateNode;
77 class PhaseCFG;
78 class PhaseGVN;
79 class PhaseIterGVN;
80 class PhaseRegAlloc;
81 class PhaseCCP;
82 class PhaseOutput;
83 class RootNode;
84 class relocInfo;
85 class StartNode;
86 class SafePointNode;
87 class JVMState;
88 class Type;
89 class TypeInt;
90 class TypeInteger;
91 class TypeKlassPtr;
92 class TypePtr;
93 class TypeOopPtr;
94 class TypeFunc;
95 class TypeVect;
96 class Type_Array;
97 class Unique_Node_List;
98 class UnstableIfTrap;
99 class nmethod;
100 class Node_Stack;
101 struct Final_Reshape_Counts;
102 class VerifyMeetResult;
103
104 enum LoopOptsMode {
105 LoopOptsDefault,
106 LoopOptsNone,
107 LoopOptsMaxUnroll,
108 LoopOptsShenandoahExpand,
109 LoopOptsSkipSplitIf,
110 LoopOptsVerify
111 };
112
113 // The type of all node counts and indexes.
114 // It must hold at least 16 bits, but must also be fast to load and store.
115 // This type, if less than 32 bits, could limit the number of possible nodes.
116 // (To make this type platform-specific, move to globalDefinitions_xxx.hpp.)
117 typedef unsigned int node_idx_t;
118
119 class NodeCloneInfo {
120 private:
121 uint64_t _idx_clone_orig;
122 public:
123
124 void set_idx(node_idx_t idx) {
125 _idx_clone_orig = (_idx_clone_orig & CONST64(0xFFFFFFFF00000000)) | idx;
126 }
127 node_idx_t idx() const { return (node_idx_t)(_idx_clone_orig & 0xFFFFFFFF); }
128
129 void set_gen(int generation) {
130 uint64_t g = (uint64_t)generation << 32;
131 _idx_clone_orig = (_idx_clone_orig & 0xFFFFFFFF) | g;
132 }
133 int gen() const { return (int)(_idx_clone_orig >> 32); }
134
135 void set(uint64_t x) { _idx_clone_orig = x; }
136 void set(node_idx_t x, int g) { set_idx(x); set_gen(g); }
137 uint64_t get() const { return _idx_clone_orig; }
138
139 NodeCloneInfo(uint64_t idx_clone_orig) : _idx_clone_orig(idx_clone_orig) {}
140 NodeCloneInfo(node_idx_t x, int g) : _idx_clone_orig(0) { set(x, g); }
141
142 void dump_on(outputStream* st) const;
143 };
144
145 class CloneMap {
146 friend class Compile;
147 private:
148 bool _debug;
149 Dict* _dict;
150 int _clone_idx; // current cloning iteration/generation in loop unroll
151 public:
152 void* _2p(node_idx_t key) const { return (void*)(intptr_t)key; } // 2 conversion functions to make gcc happy
153 node_idx_t _2_node_idx_t(const void* k) const { return (node_idx_t)(intptr_t)k; }
154 Dict* dict() const { return _dict; }
155 void insert(node_idx_t key, uint64_t val) { assert(_dict->operator[](_2p(key)) == nullptr, "key existed"); _dict->Insert(_2p(key), (void*)val); }
156 void insert(node_idx_t key, NodeCloneInfo& ci) { insert(key, ci.get()); }
157 void remove(node_idx_t key) { _dict->Delete(_2p(key)); }
158 uint64_t value(node_idx_t key) const { return (uint64_t)_dict->operator[](_2p(key)); }
159 node_idx_t idx(node_idx_t key) const { return NodeCloneInfo(value(key)).idx(); }
160 int gen(node_idx_t key) const { return NodeCloneInfo(value(key)).gen(); }
161 int gen(const void* k) const { return gen(_2_node_idx_t(k)); }
162 int max_gen() const;
163 void clone(Node* old, Node* nnn, int gen);
164 void verify_insert_and_clone(Node* old, Node* nnn, int gen);
165 void dump(node_idx_t key, outputStream* st) const;
166
167 int clone_idx() const { return _clone_idx; }
168 void set_clone_idx(int x) { _clone_idx = x; }
169 bool is_debug() const { return _debug; }
170 void set_debug(bool debug) { _debug = debug; }
171
172 bool same_idx(node_idx_t k1, node_idx_t k2) const { return idx(k1) == idx(k2); }
173 bool same_gen(node_idx_t k1, node_idx_t k2) const { return gen(k1) == gen(k2); }
174 };
175
176 class Options {
177 friend class Compile;
178 private:
179 const bool _subsume_loads; // Load can be matched as part of a larger op.
180 const bool _do_escape_analysis; // Do escape analysis.
181 const bool _do_iterative_escape_analysis; // Do iterative escape analysis.
182 const bool _do_reduce_allocation_merges; // Do try to reduce allocation merges.
183 const bool _eliminate_boxing; // Do boxing elimination.
184 const bool _do_locks_coarsening; // Do locks coarsening
185 const bool _do_superword; // Do SuperWord
186 const bool _install_code; // Install the code that was compiled
187 public:
188 Options(bool subsume_loads,
189 bool do_escape_analysis,
190 bool do_iterative_escape_analysis,
191 bool do_reduce_allocation_merges,
192 bool eliminate_boxing,
193 bool do_locks_coarsening,
194 bool do_superword,
195 bool install_code) :
196 _subsume_loads(subsume_loads),
197 _do_escape_analysis(do_escape_analysis),
198 _do_iterative_escape_analysis(do_iterative_escape_analysis),
199 _do_reduce_allocation_merges(do_reduce_allocation_merges),
200 _eliminate_boxing(eliminate_boxing),
201 _do_locks_coarsening(do_locks_coarsening),
202 _do_superword(do_superword),
203 _install_code(install_code) {
204 }
205
206 static Options for_runtime_stub() {
207 return Options(
208 /* subsume_loads = */ true,
209 /* do_escape_analysis = */ false,
210 /* do_iterative_escape_analysis = */ false,
211 /* do_reduce_allocation_merges = */ false,
212 /* eliminate_boxing = */ false,
213 /* do_lock_coarsening = */ false,
214 /* do_superword = */ true,
215 /* install_code = */ true
216 );
217 }
218 };
219
220 //------------------------------Compile----------------------------------------
221 // This class defines a top-level Compiler invocation.
222
223 class Compile : public Phase {
224
225 public:
226 // Fixed alias indexes. (See also MergeMemNode.)
227 enum {
228 AliasIdxTop = 1, // pseudo-index, aliases to nothing (used as sentinel value)
229 AliasIdxBot = 2, // pseudo-index, aliases to everything
230 AliasIdxRaw = 3 // hard-wired index for TypeRawPtr::BOTTOM
231 };
232
233 // Variant of TraceTime(nullptr, &_t_accumulator, CITime);
234 // Integrated with logging. If logging is turned on, and CITimeVerbose is true,
235 // then brackets are put into the log, with time stamps and node counts.
236 // (The time collection itself is always conditionalized on CITime.)
237 class TracePhase : public TraceTime {
238 private:
239 Compile* const _compile;
240 CompileLog* _log;
241 const bool _dolog;
242 public:
243 TracePhase(PhaseTraceId phaseTraceId);
244 TracePhase(const char* name, PhaseTraceId phaseTraceId);
245 ~TracePhase();
246 const char* phase_name() const { return title(); }
247 };
248
249 // Information per category of alias (memory slice)
250 class AliasType {
251 private:
252 friend class Compile;
253
254 int _index; // unique index, used with MergeMemNode
255 const TypePtr* _adr_type; // normalized address type
256 ciField* _field; // relevant instance field, or null if none
257 const Type* _element; // relevant array element type, or null if none
258 bool _is_rewritable; // false if the memory is write-once only
259 int _general_index; // if this is type is an instance, the general
260 // type that this is an instance of
261
262 void Init(int i, const TypePtr* at);
263
264 public:
265 int index() const { return _index; }
266 const TypePtr* adr_type() const { return _adr_type; }
267 ciField* field() const { return _field; }
268 const Type* element() const { return _element; }
269 bool is_rewritable() const { return _is_rewritable; }
270 bool is_volatile() const { return (_field ? _field->is_volatile() : false); }
271 int general_index() const { return (_general_index != 0) ? _general_index : _index; }
272
273 void set_rewritable(bool z) { _is_rewritable = z; }
274 void set_field(ciField* f) {
275 assert(!_field,"");
276 _field = f;
277 if (f->is_final() || f->is_stable()) {
278 // In the case of @Stable, multiple writes are possible but may be assumed to be no-ops.
279 _is_rewritable = false;
280 }
281 }
282 void set_element(const Type* e) {
283 assert(_element == nullptr, "");
284 _element = e;
285 }
286
287 BasicType basic_type() const;
288
289 void print_on(outputStream* st) PRODUCT_RETURN;
290 };
291
292 enum {
293 logAliasCacheSize = 6,
294 AliasCacheSize = (1<<logAliasCacheSize)
295 };
296 struct AliasCacheEntry { const TypePtr* _adr_type; int _index; }; // simple duple type
297 enum {
298 trapHistLength = MethodData::_trap_hist_limit
299 };
300
301 private:
302 // Fixed parameters to this compilation.
303 const int _compile_id;
304 const Options _options; // Compilation options
305 ciMethod* _method; // The method being compiled.
306 int _entry_bci; // entry bci for osr methods.
307 const TypeFunc* _tf; // My kind of signature
308 InlineTree* _ilt; // Ditto (temporary).
309 address _stub_function; // VM entry for stub being compiled, or null
310 const char* _stub_name; // Name of stub or adapter being compiled, or null
311 StubId _stub_id; // unique id for stub or NO_STUBID
312 address _stub_entry_point; // Compile code entry for generated stub, or null
313
314 // Control of this compilation.
315 int _max_inline_size; // Max inline size for this compilation
316 int _freq_inline_size; // Max hot method inline size for this compilation
317 int _fixed_slots; // count of frame slots not allocated by the register
318 // allocator i.e. locks, original deopt pc, etc.
319 uintx _max_node_limit; // Max unique node count during a single compilation.
320
321 bool _post_loop_opts_phase; // Loop opts are finished.
322 bool _merge_stores_phase; // Phase for merging stores, after post loop opts phase.
323 bool _allow_macro_nodes; // True if we allow creation of macro nodes.
324
325 int _major_progress; // Count of something big happening
326 bool _inlining_progress; // progress doing incremental inlining?
327 bool _inlining_incrementally;// Are we doing incremental inlining (post parse)
328 bool _do_cleanup; // Cleanup is needed before proceeding with incremental inlining
329 bool _has_loops; // True if the method _may_ have some loops
330 bool _has_split_ifs; // True if the method _may_ have some split-if
331 bool _has_unsafe_access; // True if the method _may_ produce faults in unsafe loads or stores.
332 bool _has_stringbuilder; // True StringBuffers or StringBuilders are allocated
333 bool _has_boxed_value; // True if a boxed object is allocated
334 bool _has_reserved_stack_access; // True if the method or an inlined method is annotated with ReservedStackAccess
335 uint _max_vector_size; // Maximum size of generated vectors
336 bool _clear_upper_avx; // Clear upper bits of ymm registers using vzeroupper
337 uint _trap_hist[trapHistLength]; // Cumulative traps
338 bool _trap_can_recompile; // Have we emitted a recompiling trap?
339 uint _decompile_count; // Cumulative decompilation counts.
340 bool _do_inlining; // True if we intend to do inlining
341 bool _do_scheduling; // True if we intend to do scheduling
342 bool _do_freq_based_layout; // True if we intend to do frequency based block layout
343 bool _do_vector_loop; // True if allowed to execute loop in parallel iterations
344 bool _use_cmove; // True if CMove should be used without profitability analysis
345 bool _do_aliasing; // True if we intend to do aliasing
346 bool _print_assembly; // True if we should dump assembly code for this compilation
347 bool _print_inlining; // True if we should print inlining for this compilation
348 bool _print_intrinsics; // True if we should print intrinsics for this compilation
349 #ifndef PRODUCT
350 uint _phase_counter; // Counter for the number of already printed phases
351 uint _igv_idx; // Counter for IGV node identifiers
352 uint _igv_phase_iter[PHASE_NUM_TYPES]; // Counters for IGV phase iterations
353 bool _trace_opto_output;
354 bool _parsed_irreducible_loop; // True if ciTypeFlow detected irreducible loops during parsing
355 #endif
356 bool _has_irreducible_loop; // Found irreducible loops
357 bool _has_monitors; // Metadata transfered to nmethod to enable Continuations lock-detection fastpath
358 bool _has_scoped_access; // For shared scope closure
359 bool _clinit_barrier_on_entry; // True if clinit barrier is needed on nmethod entry
360 int _loop_opts_cnt; // loop opts round
361 uint _stress_seed; // Seed for stress testing
362
363 // Compilation environment.
364 Arena _comp_arena; // Arena with lifetime equivalent to Compile
365 void* _barrier_set_state; // Potential GC barrier state for Compile
366 ciEnv* _env; // CI interface
367 DirectiveSet* _directive; // Compiler directive
368 CompileLog* _log; // from CompilerThread
369 CHeapStringHolder _failure_reason; // for record_failure/failing pattern
370 CompilationFailureInfo* _first_failure_details; // Details for the first failure happening during compilation
371 GrowableArray<CallGenerator*> _intrinsics; // List of intrinsics.
372 GrowableArray<Node*> _macro_nodes; // List of nodes which need to be expanded before matching.
373 GrowableArray<ParsePredicateNode*> _parse_predicates; // List of Parse Predicates.
374 // List of OpaqueTemplateAssertionPredicateNode nodes for Template Assertion Predicates which can be seen as list
375 // of Template Assertion Predicates themselves.
376 GrowableArray<OpaqueTemplateAssertionPredicateNode*> _template_assertion_predicate_opaques;
377 GrowableArray<Node*> _expensive_nodes; // List of nodes that are expensive to compute and that we'd better not let the GVN freely common
378 GrowableArray<Node*> _for_post_loop_igvn; // List of nodes for IGVN after loop opts are over
379 GrowableArray<Node*> _for_merge_stores_igvn; // List of nodes for IGVN merge stores
380 GrowableArray<UnstableIfTrap*> _unstable_if_traps; // List of ifnodes after IGVN
381 GrowableArray<Node_List*> _coarsened_locks; // List of coarsened Lock and Unlock nodes
382 ConnectionGraph* _congraph;
383 #ifndef PRODUCT
384 IdealGraphPrinter* _igv_printer;
385 static IdealGraphPrinter* _debug_file_printer;
386 static IdealGraphPrinter* _debug_network_printer;
387 #endif
388
389
390 // Node management
391 uint _unique; // Counter for unique Node indices
392 uint _dead_node_count; // Number of dead nodes; VectorSet::Size() is O(N).
393 // So use this to keep count and make the call O(1).
394 VectorSet _dead_node_list; // Set of dead nodes
395 DEBUG_ONLY(Unique_Node_List* _modified_nodes;) // List of nodes which inputs were modified
396 DEBUG_ONLY(bool _phase_optimize_finished;) // Used for live node verification while creating new nodes
397
398 DEBUG_ONLY(bool _phase_verify_ideal_loop;) // Are we in PhaseIdealLoop verification?
399
400 // Arenas for new-space and old-space nodes.
401 // Swapped between using _node_arena.
402 // The lifetime of the old-space nodes is during xform.
403 Arena _node_arena_one;
404 Arena _node_arena_two;
405 Arena* _node_arena;
406 public:
407 Arena* swap_old_and_new() {
408 Arena* filled_arena_ptr = _node_arena;
409 Arena* old_arena_ptr = old_arena();
410 old_arena_ptr->destruct_contents();
411 _node_arena = old_arena_ptr;
412 return filled_arena_ptr;
413 }
414 private:
415 RootNode* _root; // Unique root of compilation, or null after bail-out.
416 Node* _top; // Unique top node. (Reset by various phases.)
417
418 Node* _immutable_memory; // Initial memory state
419
420 Node* _recent_alloc_obj;
421 Node* _recent_alloc_ctl;
422
423 // Constant table
424 MachConstantBaseNode* _mach_constant_base_node; // Constant table base node singleton.
425
426
427 // Blocked array of debugging and profiling information,
428 // tracked per node.
429 enum { _log2_node_notes_block_size = 8,
430 _node_notes_block_size = (1<<_log2_node_notes_block_size)
431 };
432 GrowableArray<Node_Notes*>* _node_note_array;
433 Node_Notes* _default_node_notes; // default notes for new nodes
434
435 // After parsing and every bulk phase we hang onto the Root instruction.
436 // The RootNode instruction is where the whole program begins. It produces
437 // the initial Control and BOTTOM for everybody else.
438
439 // Type management
440 Arena _Compile_types; // Arena for all types
441 Arena* _type_arena; // Alias for _Compile_types except in Initialize_shared()
442 Dict* _type_dict; // Intern table
443 CloneMap _clone_map; // used for recording history of cloned nodes
444 size_t _type_last_size; // Last allocation size (see Type::operator new/delete)
445 ciMethod* _last_tf_m; // Cache for
446 const TypeFunc* _last_tf; // TypeFunc::make
447 AliasType** _alias_types; // List of alias types seen so far.
448 int _num_alias_types; // Logical length of _alias_types
449 int _max_alias_types; // Physical length of _alias_types
450 AliasCacheEntry _alias_cache[AliasCacheSize]; // Gets aliases w/o data structure walking
451
452 // Parsing, optimization
453 PhaseGVN* _initial_gvn; // Results of parse-time PhaseGVN
454
455 // Shared worklist for all IGVN rounds. Nodes can be pushed to it at any time.
456 // If pushed outside IGVN, the Node is processed in the next IGVN round.
457 Unique_Node_List* _igvn_worklist;
458
459 // Shared type array for GVN, IGVN and CCP. It maps node idx -> Type*.
460 Type_Array* _types;
461
462 // Shared node hash table for GVN, IGVN and CCP.
463 NodeHash* _node_hash;
464
465 GrowableArray<CallGenerator*> _late_inlines; // List of CallGenerators to be revisited after main parsing has finished.
466 GrowableArray<CallGenerator*> _string_late_inlines; // same but for string operations
467 GrowableArray<CallGenerator*> _boxing_late_inlines; // same but for boxing operations
468
469 GrowableArray<CallGenerator*> _vector_reboxing_late_inlines; // same but for vector reboxing operations
470
471 int _late_inlines_pos; // Where in the queue should the next late inlining candidate go (emulate depth first inlining)
472 uint _number_of_mh_late_inlines; // number of method handle late inlining still pending
473
474 // "MemLimit" directive was specified and the memory limit was hit during compilation
475 bool _oom;
476
477 // Only keep nodes in the expensive node list that need to be optimized
478 void cleanup_expensive_nodes(PhaseIterGVN &igvn);
479 // Use for sorting expensive nodes to bring similar nodes together
480 static int cmp_expensive_nodes(Node** n1, Node** n2);
481 // Expensive nodes list already sorted?
482 bool expensive_nodes_sorted() const;
483 // Remove the speculative part of types and clean up the graph
484 void remove_speculative_types(PhaseIterGVN &igvn);
485
486 void* _replay_inline_data; // Pointer to data loaded from file
487
488 void log_late_inline_failure(CallGenerator* cg, const char* msg);
489 DEBUG_ONLY(bool _exception_backedge;)
490
491 void record_method_not_compilable_oom();
492
493 InlinePrinter _inline_printer;
494
495 public:
496 void* barrier_set_state() const { return _barrier_set_state; }
497
498 InlinePrinter* inline_printer() { return &_inline_printer; }
499
500 #ifndef PRODUCT
501 IdealGraphPrinter* igv_printer() { return _igv_printer; }
502 void reset_igv_phase_iter(CompilerPhaseType cpt) { _igv_phase_iter[cpt] = 0; }
503 #endif
504
505 void log_late_inline(CallGenerator* cg);
506 void log_inline_id(CallGenerator* cg);
507 void log_inline_failure(const char* msg);
508
509 void* replay_inline_data() const { return _replay_inline_data; }
510
511 // Dump inlining replay data to the stream.
512 void dump_inline_data(outputStream* out);
513 void dump_inline_data_reduced(outputStream* out);
514
515 private:
516 // Matching, CFG layout, allocation, code generation
517 PhaseCFG* _cfg; // Results of CFG finding
518 int _java_calls; // Number of java calls in the method
519 int _inner_loops; // Number of inner loops in the method
520 Matcher* _matcher; // Engine to map ideal to machine instructions
521 PhaseRegAlloc* _regalloc; // Results of register allocation.
522 RegMask _FIRST_STACK_mask; // All stack slots usable for spills (depends on frame layout)
523 Arena* _indexSet_arena; // control IndexSet allocation within PhaseChaitin
524 void* _indexSet_free_block_list; // free list of IndexSet bit blocks
525 int _interpreter_frame_size;
526
527 // Holds dynamically allocated extensions of short-lived register masks. Such
528 // extensions are potentially quite large and need tight resource marks which
529 // may conflict with other allocations in the default resource area.
530 // Therefore, we use a dedicated resource area for register masks.
531 ResourceArea _regmask_arena;
532
533 PhaseOutput* _output;
534
535 public:
536 // Accessors
537
538 // The Compile instance currently active in this (compiler) thread.
539 static Compile* current() {
540 return (Compile*) ciEnv::current()->compiler_data();
541 }
542
543 int interpreter_frame_size() const { return _interpreter_frame_size; }
544
545 PhaseOutput* output() const { return _output; }
546 void set_output(PhaseOutput* o) { _output = o; }
547
548 // ID for this compilation. Useful for setting breakpoints in the debugger.
549 int compile_id() const { return _compile_id; }
550 DirectiveSet* directive() const { return _directive; }
551
552 // Does this compilation allow instructions to subsume loads? User
553 // instructions that subsume a load may result in an unschedulable
554 // instruction sequence.
555 bool subsume_loads() const { return _options._subsume_loads; }
556 /** Do escape analysis. */
557 bool do_escape_analysis() const { return _options._do_escape_analysis; }
558 bool do_iterative_escape_analysis() const { return _options._do_iterative_escape_analysis; }
559 bool do_reduce_allocation_merges() const { return _options._do_reduce_allocation_merges; }
560 /** Do boxing elimination. */
561 bool eliminate_boxing() const { return _options._eliminate_boxing; }
562 /** Do aggressive boxing elimination. */
563 bool aggressive_unboxing() const { return _options._eliminate_boxing && AggressiveUnboxing; }
564 bool should_install_code() const { return _options._install_code; }
565 /** Do locks coarsening. */
566 bool do_locks_coarsening() const { return _options._do_locks_coarsening; }
567 bool do_superword() const { return _options._do_superword; }
568
569 // Other fixed compilation parameters.
570 ciMethod* method() const { return _method; }
571 int entry_bci() const { return _entry_bci; }
572 bool is_osr_compilation() const { return _entry_bci != InvocationEntryBci; }
573 bool is_method_compilation() const { return (_method != nullptr && !_method->flags().is_native()); }
574 const TypeFunc* tf() const { assert(_tf!=nullptr, ""); return _tf; }
575 void init_tf(const TypeFunc* tf) { assert(_tf==nullptr, ""); _tf = tf; }
576 InlineTree* ilt() const { return _ilt; }
577 address stub_function() const { return _stub_function; }
578 const char* stub_name() const { return _stub_name; }
579 StubId stub_id() const { return _stub_id; }
580 address stub_entry_point() const { return _stub_entry_point; }
581 void set_stub_entry_point(address z) { _stub_entry_point = z; }
582
583 // Control of this compilation.
584 int fixed_slots() const { assert(_fixed_slots >= 0, ""); return _fixed_slots; }
585 void set_fixed_slots(int n) { _fixed_slots = n; }
586 int major_progress() const { return _major_progress; }
587 void set_inlining_progress(bool z) { _inlining_progress = z; }
588 int inlining_progress() const { return _inlining_progress; }
589 void set_inlining_incrementally(bool z) { _inlining_incrementally = z; }
590 int inlining_incrementally() const { return _inlining_incrementally; }
591 void set_do_cleanup(bool z) { _do_cleanup = z; }
592 int do_cleanup() const { return _do_cleanup; }
593 void set_major_progress() { _major_progress++; }
594 void restore_major_progress(int progress) { _major_progress += progress; }
595 void clear_major_progress() { _major_progress = 0; }
596 int max_inline_size() const { return _max_inline_size; }
597 void set_freq_inline_size(int n) { _freq_inline_size = n; }
598 int freq_inline_size() const { return _freq_inline_size; }
599 void set_max_inline_size(int n) { _max_inline_size = n; }
600 bool has_loops() const { return _has_loops; }
601 void set_has_loops(bool z) { _has_loops = z; }
602 bool has_split_ifs() const { return _has_split_ifs; }
603 void set_has_split_ifs(bool z) { _has_split_ifs = z; }
604 bool has_unsafe_access() const { return _has_unsafe_access; }
605 void set_has_unsafe_access(bool z) { _has_unsafe_access = z; }
606 bool has_stringbuilder() const { return _has_stringbuilder; }
607 void set_has_stringbuilder(bool z) { _has_stringbuilder = z; }
608 bool has_boxed_value() const { return _has_boxed_value; }
609 void set_has_boxed_value(bool z) { _has_boxed_value = z; }
610 bool has_reserved_stack_access() const { return _has_reserved_stack_access; }
611 void set_has_reserved_stack_access(bool z) { _has_reserved_stack_access = z; }
612 uint max_vector_size() const { return _max_vector_size; }
613 void set_max_vector_size(uint s) { _max_vector_size = s; }
614 bool clear_upper_avx() const { return _clear_upper_avx; }
615 void set_clear_upper_avx(bool s) { _clear_upper_avx = s; }
616 void set_trap_count(uint r, uint c) { assert(r < trapHistLength, "oob"); _trap_hist[r] = c; }
617 uint trap_count(uint r) const { assert(r < trapHistLength, "oob"); return _trap_hist[r]; }
618 bool trap_can_recompile() const { return _trap_can_recompile; }
619 void set_trap_can_recompile(bool z) { _trap_can_recompile = z; }
620 uint decompile_count() const { return _decompile_count; }
621 void set_decompile_count(uint c) { _decompile_count = c; }
622 bool allow_range_check_smearing() const;
623 bool do_inlining() const { return _do_inlining; }
624 void set_do_inlining(bool z) { _do_inlining = z; }
625 bool do_scheduling() const { return _do_scheduling; }
626 void set_do_scheduling(bool z) { _do_scheduling = z; }
627 bool do_freq_based_layout() const{ return _do_freq_based_layout; }
628 void set_do_freq_based_layout(bool z){ _do_freq_based_layout = z; }
629 bool do_vector_loop() const { return _do_vector_loop; }
630 void set_do_vector_loop(bool z) { _do_vector_loop = z; }
631 bool use_cmove() const { return _use_cmove; }
632 void set_use_cmove(bool z) { _use_cmove = z; }
633 bool do_aliasing() const { return _do_aliasing; }
634 bool print_assembly() const { return _print_assembly; }
635 void set_print_assembly(bool z) { _print_assembly = z; }
636 bool print_inlining() const { return _print_inlining; }
637 void set_print_inlining(bool z) { _print_inlining = z; }
638 bool print_intrinsics() const { return _print_intrinsics; }
639 void set_print_intrinsics(bool z) { _print_intrinsics = z; }
640 uint max_node_limit() const { return (uint)_max_node_limit; }
641 void set_max_node_limit(uint n) { _max_node_limit = n; }
642 bool clinit_barrier_on_entry() { return _clinit_barrier_on_entry; }
643 void set_clinit_barrier_on_entry(bool z) { _clinit_barrier_on_entry = z; }
644 bool has_monitors() const { return _has_monitors; }
645 void set_has_monitors(bool v) { _has_monitors = v; }
646 bool has_scoped_access() const { return _has_scoped_access; }
647 void set_has_scoped_access(bool v) { _has_scoped_access = v; }
648
649 // check the CompilerOracle for special behaviours for this compile
650 bool method_has_option(CompileCommandEnum option) const {
651 return method() != nullptr && method()->has_option(option);
652 }
653
654 #ifndef PRODUCT
655 uint next_igv_idx() { return _igv_idx++; }
656 bool trace_opto_output() const { return _trace_opto_output; }
657 void print_phase(const char* phase_name);
658 void print_ideal_ir(const char* phase_name);
659 bool should_print_ideal() const { return _directive->PrintIdealOption; }
660 bool parsed_irreducible_loop() const { return _parsed_irreducible_loop; }
661 void set_parsed_irreducible_loop(bool z) { _parsed_irreducible_loop = z; }
662 int _in_dump_cnt; // Required for dumping ir nodes.
663 #endif
664 bool has_irreducible_loop() const { return _has_irreducible_loop; }
665 void set_has_irreducible_loop(bool z) { _has_irreducible_loop = z; }
666
667 Ticks _latest_stage_start_counter;
668
669 void begin_method();
670 void end_method();
671
672 void print_method(CompilerPhaseType cpt, int level, Node* n = nullptr);
673
674 #ifndef PRODUCT
675 bool should_print_igv(int level);
676 bool should_print_phase(int level) const;
677 bool should_print_ideal_phase(CompilerPhaseType cpt) const;
678 void init_igv();
679 void dump_igv(const char* graph_name, int level = 3) {
680 if (should_print_igv(level)) {
681 _igv_printer->print_graph(graph_name, nullptr);
682 }
683 }
684
685 void igv_print_method_to_file(const char* phase_name = nullptr, bool append = false, const frame* fr = nullptr);
686 void igv_print_method_to_network(const char* phase_name = nullptr, const frame* fr = nullptr);
687 void igv_print_graph_to_network(const char* name, GrowableArray<const Node*>& visible_nodes, const frame* fr);
688 static IdealGraphPrinter* debug_file_printer() { return _debug_file_printer; }
689 static IdealGraphPrinter* debug_network_printer() { return _debug_network_printer; }
690 #endif
691
692 const GrowableArray<ParsePredicateNode*>& parse_predicates() const {
693 return _parse_predicates;
694 }
695
696 const GrowableArray<OpaqueTemplateAssertionPredicateNode*>& template_assertion_predicate_opaques() const {
697 return _template_assertion_predicate_opaques;
698 }
699
700 int macro_count() const { return _macro_nodes.length(); }
701 int parse_predicate_count() const { return _parse_predicates.length(); }
702 int template_assertion_predicate_count() const { return _template_assertion_predicate_opaques.length(); }
703 int expensive_count() const { return _expensive_nodes.length(); }
704 int coarsened_count() const { return _coarsened_locks.length(); }
705
706 Node* macro_node(int idx) const { return _macro_nodes.at(idx); }
707
708 Node* expensive_node(int idx) const { return _expensive_nodes.at(idx); }
709
710 ConnectionGraph* congraph() { return _congraph;}
711 void set_congraph(ConnectionGraph* congraph) { _congraph = congraph;}
712 void add_macro_node(Node * n) {
713 //assert(n->is_macro(), "must be a macro node");
714 assert(!_macro_nodes.contains(n), "duplicate entry in expand list");
715 _macro_nodes.append(n);
716 }
717 void remove_macro_node(Node* n) {
718 // this function may be called twice for a node so we can only remove it
719 // if it's still existing.
720 _macro_nodes.remove_if_existing(n);
721 // Remove from coarsened locks list if present
722 if (coarsened_count() > 0) {
723 remove_coarsened_lock(n);
724 }
725 }
726 void add_expensive_node(Node* n);
727 void remove_expensive_node(Node* n) {
728 _expensive_nodes.remove_if_existing(n);
729 }
730
731 void add_parse_predicate(ParsePredicateNode* n) {
732 assert(!_parse_predicates.contains(n), "duplicate entry in Parse Predicate list");
733 _parse_predicates.append(n);
734 }
735
736 void remove_parse_predicate(ParsePredicateNode* n) {
737 if (parse_predicate_count() > 0) {
738 _parse_predicates.remove_if_existing(n);
739 }
740 }
741
742 void add_template_assertion_predicate_opaque(OpaqueTemplateAssertionPredicateNode* n) {
743 assert(!_template_assertion_predicate_opaques.contains(n),
744 "Duplicate entry in Template Assertion Predicate OpaqueTemplateAssertionPredicate list");
745 _template_assertion_predicate_opaques.append(n);
746 }
747
748 void remove_template_assertion_predicate_opaque(OpaqueTemplateAssertionPredicateNode* n) {
749 if (template_assertion_predicate_count() > 0) {
750 _template_assertion_predicate_opaques.remove_if_existing(n);
751 }
752 }
753 void add_coarsened_locks(GrowableArray<AbstractLockNode*>& locks);
754 void remove_coarsened_lock(Node* n);
755 bool coarsened_locks_consistent();
756 void mark_unbalanced_boxes() const;
757
758 bool post_loop_opts_phase() { return _post_loop_opts_phase; }
759 void set_post_loop_opts_phase() { _post_loop_opts_phase = true; }
760 void reset_post_loop_opts_phase() { _post_loop_opts_phase = false; }
761
762 #ifdef ASSERT
763 bool phase_verify_ideal_loop() const { return _phase_verify_ideal_loop; }
764 void set_phase_verify_ideal_loop() { _phase_verify_ideal_loop = true; }
765 void reset_phase_verify_ideal_loop() { _phase_verify_ideal_loop = false; }
766 #endif
767
768 bool allow_macro_nodes() { return _allow_macro_nodes; }
769 void reset_allow_macro_nodes() { _allow_macro_nodes = false; }
770
771 void record_for_post_loop_opts_igvn(Node* n);
772 void remove_from_post_loop_opts_igvn(Node* n);
773 void process_for_post_loop_opts_igvn(PhaseIterGVN& igvn);
774
775 void record_unstable_if_trap(UnstableIfTrap* trap);
776 bool remove_unstable_if_trap(CallStaticJavaNode* unc, bool yield);
777 void remove_useless_unstable_if_traps(Unique_Node_List &useful);
778 void process_for_unstable_if_traps(PhaseIterGVN& igvn);
779
780 bool merge_stores_phase() { return _merge_stores_phase; }
781 void set_merge_stores_phase() { _merge_stores_phase = true; }
782 void record_for_merge_stores_igvn(Node* n);
783 void remove_from_merge_stores_igvn(Node* n);
784 void process_for_merge_stores_igvn(PhaseIterGVN& igvn);
785
786 void shuffle_macro_nodes();
787 void sort_macro_nodes();
788
789 void mark_parse_predicate_nodes_useless(PhaseIterGVN& igvn);
790
791 // Are there candidate expensive nodes for optimization?
792 bool should_optimize_expensive_nodes(PhaseIterGVN &igvn);
793 // Check whether n1 and n2 are similar
794 static int cmp_expensive_nodes(Node* n1, Node* n2);
795 // Sort expensive nodes to locate similar expensive nodes
796 void sort_expensive_nodes();
797
798 // Compilation environment.
799 Arena* comp_arena() { return &_comp_arena; }
800 ciEnv* env() const { return _env; }
801 CompileLog* log() const { return _log; }
802
803 bool failing_internal() const {
804 return _env->failing() ||
805 _failure_reason.get() != nullptr;
806 }
807
808 const char* failure_reason() const {
809 return _env->failing() ? _env->failure_reason()
810 : _failure_reason.get();
811 }
812
813 const CompilationFailureInfo* first_failure_details() const { return _first_failure_details; }
814
815 bool failing() {
816 if (failing_internal()) {
817 return true;
818 }
819 #ifdef ASSERT
820 // Disable stress code for PhaseIdealLoop verification (would have cascading effects).
821 if (phase_verify_ideal_loop()) {
822 return false;
823 }
824 if (StressBailout) {
825 return fail_randomly();
826 }
827 #endif
828 return false;
829 }
830
831 #ifdef ASSERT
832 bool fail_randomly();
833 bool failure_is_artificial();
834 #endif
835
836 bool failure_reason_is(const char* r) const {
837 return (r == _failure_reason.get()) ||
838 (r != nullptr &&
839 _failure_reason.get() != nullptr &&
840 strcmp(r, _failure_reason.get()) == 0);
841 }
842
843 void record_failure(const char* reason DEBUG_ONLY(COMMA bool allow_multiple_failures = false));
844 void record_method_not_compilable(const char* reason DEBUG_ONLY(COMMA bool allow_multiple_failures = false)) {
845 env()->record_method_not_compilable(reason);
846 // Record failure reason.
847 record_failure(reason DEBUG_ONLY(COMMA allow_multiple_failures));
848 }
849 bool check_node_count(uint margin, const char* reason) {
850 if (oom()) {
851 record_method_not_compilable_oom();
852 return true;
853 }
854 if (live_nodes() + margin > max_node_limit()) {
855 record_method_not_compilable(reason);
856 return true;
857 } else {
858 return false;
859 }
860 }
861 bool oom() const { return _oom; }
862 void set_oom() { _oom = true; }
863
864 // Node management
865 uint unique() const { return _unique; }
866 uint next_unique() { return _unique++; }
867 void set_unique(uint i) { _unique = i; }
868 Arena* node_arena() { return _node_arena; }
869 Arena* old_arena() { return (&_node_arena_one == _node_arena) ? &_node_arena_two : &_node_arena_one; }
870 RootNode* root() const { return _root; }
871 void set_root(RootNode* r) { _root = r; }
872 StartNode* start() const; // (Derived from root.)
873 void verify_start(StartNode* s) const NOT_DEBUG_RETURN;
874 Node* immutable_memory();
875
876 Node* recent_alloc_ctl() const { return _recent_alloc_ctl; }
877 Node* recent_alloc_obj() const { return _recent_alloc_obj; }
878 void set_recent_alloc(Node* ctl, Node* obj) {
879 _recent_alloc_ctl = ctl;
880 _recent_alloc_obj = obj;
881 }
882 void record_dead_node(uint idx) { if (_dead_node_list.test_set(idx)) return;
883 _dead_node_count++;
884 }
885 void reset_dead_node_list() { _dead_node_list.reset();
886 _dead_node_count = 0;
887 }
888 uint live_nodes() const {
889 int val = _unique - _dead_node_count;
890 assert (val >= 0, "number of tracked dead nodes %d more than created nodes %d", _unique, _dead_node_count);
891 return (uint) val;
892 }
893 #ifdef ASSERT
894 void set_phase_optimize_finished() { _phase_optimize_finished = true; }
895 bool phase_optimize_finished() const { return _phase_optimize_finished; }
896 uint count_live_nodes_by_graph_walk();
897 void print_missing_nodes();
898 #endif
899
900 // Record modified nodes to check that they are put on IGVN worklist
901 void record_modified_node(Node* n) NOT_DEBUG_RETURN;
902 void remove_modified_node(Node* n) NOT_DEBUG_RETURN;
903 DEBUG_ONLY( Unique_Node_List* modified_nodes() const { return _modified_nodes; } )
904
905 MachConstantBaseNode* mach_constant_base_node();
906 bool has_mach_constant_base_node() const { return _mach_constant_base_node != nullptr; }
907 // Generated by adlc, true if CallNode requires MachConstantBase.
908 bool needs_deep_clone_jvms();
909
910 // Handy undefined Node
911 Node* top() const { return _top; }
912
913 // these are used by guys who need to know about creation and transformation of top:
914 Node* cached_top_node() { return _top; }
915 void set_cached_top_node(Node* tn);
916
917 GrowableArray<Node_Notes*>* node_note_array() const { return _node_note_array; }
918 void set_node_note_array(GrowableArray<Node_Notes*>* arr) { _node_note_array = arr; }
919 Node_Notes* default_node_notes() const { return _default_node_notes; }
920 void set_default_node_notes(Node_Notes* n) { _default_node_notes = n; }
921
922 Node_Notes* node_notes_at(int idx);
923
924 inline bool set_node_notes_at(int idx, Node_Notes* value);
925 // Copy notes from source to dest, if they exist.
926 // Overwrite dest only if source provides something.
927 // Return true if information was moved.
928 bool copy_node_notes_to(Node* dest, Node* source);
929
930 // Workhorse function to sort out the blocked Node_Notes array:
931 Node_Notes* locate_node_notes(GrowableArray<Node_Notes*>* arr,
932 int idx, bool can_grow = false);
933
934 void grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by);
935
936 // Type management
937 Arena* type_arena() { return _type_arena; }
938 Dict* type_dict() { return _type_dict; }
939 size_t type_last_size() { return _type_last_size; }
940 int num_alias_types() { return _num_alias_types; }
941
942 void init_type_arena() { _type_arena = &_Compile_types; }
943 void set_type_arena(Arena* a) { _type_arena = a; }
944 void set_type_dict(Dict* d) { _type_dict = d; }
945 void set_type_last_size(size_t sz) { _type_last_size = sz; }
946
947 const TypeFunc* last_tf(ciMethod* m) {
948 return (m == _last_tf_m) ? _last_tf : nullptr;
949 }
950 void set_last_tf(ciMethod* m, const TypeFunc* tf) {
951 assert(m != nullptr || tf == nullptr, "");
952 _last_tf_m = m;
953 _last_tf = tf;
954 }
955
956 AliasType* alias_type(int idx) { assert(idx < num_alias_types(), "oob"); return _alias_types[idx]; }
957 AliasType* alias_type(const TypePtr* adr_type, ciField* field = nullptr) { return find_alias_type(adr_type, false, field); }
958 bool have_alias_type(const TypePtr* adr_type);
959 AliasType* alias_type(ciField* field);
960
961 int get_alias_index(const TypePtr* at) { return alias_type(at)->index(); }
962 const TypePtr* get_adr_type(uint aidx) { return alias_type(aidx)->adr_type(); }
963 int get_general_index(uint aidx) { return alias_type(aidx)->general_index(); }
964
965 // Building nodes
966 void rethrow_exceptions(JVMState* jvms);
967 void return_values(JVMState* jvms);
968 JVMState* build_start_state(StartNode* start, const TypeFunc* tf);
969
970 // Decide how to build a call.
971 // The profile factor is a discount to apply to this site's interp. profile.
972 CallGenerator* call_generator(ciMethod* call_method, int vtable_index, bool call_does_dispatch,
973 JVMState* jvms, bool allow_inline, float profile_factor, ciKlass* speculative_receiver_type = nullptr,
974 bool allow_intrinsics = true);
975 bool should_delay_inlining(ciMethod* call_method, JVMState* jvms) {
976 return should_delay_string_inlining(call_method, jvms) ||
977 should_delay_boxing_inlining(call_method, jvms) ||
978 should_delay_vector_inlining(call_method, jvms);
979 }
980 bool should_delay_string_inlining(ciMethod* call_method, JVMState* jvms);
981 bool should_delay_boxing_inlining(ciMethod* call_method, JVMState* jvms);
982 bool should_delay_vector_inlining(ciMethod* call_method, JVMState* jvms);
983 bool should_delay_vector_reboxing_inlining(ciMethod* call_method, JVMState* jvms);
984
985 // Helper functions to identify inlining potential at call-site
986 ciMethod* optimize_virtual_call(ciMethod* caller, ciInstanceKlass* klass,
987 ciKlass* holder, ciMethod* callee,
988 const TypeOopPtr* receiver_type, bool is_virtual,
989 bool &call_does_dispatch, int &vtable_index,
990 bool check_access = true);
991 ciMethod* optimize_inlining(ciMethod* caller, ciInstanceKlass* klass, ciKlass* holder,
992 ciMethod* callee, const TypeOopPtr* receiver_type,
993 bool check_access = true);
994
995 // Report if there were too many traps at a current method and bci.
996 // Report if a trap was recorded, and/or PerMethodTrapLimit was exceeded.
997 // If there is no MDO at all, report no trap unless told to assume it.
998 bool too_many_traps(ciMethod* method, int bci, Deoptimization::DeoptReason reason);
999 // This version, unspecific to a particular bci, asks if
1000 // PerMethodTrapLimit was exceeded for all inlined methods seen so far.
1001 bool too_many_traps(Deoptimization::DeoptReason reason,
1002 // Privately used parameter for logging:
1003 ciMethodData* logmd = nullptr);
1004 // Report if there were too many recompiles at a method and bci.
1005 bool too_many_recompiles(ciMethod* method, int bci, Deoptimization::DeoptReason reason);
1006 // Report if there were too many traps or recompiles at a method and bci.
1007 bool too_many_traps_or_recompiles(ciMethod* method, int bci, Deoptimization::DeoptReason reason) {
1008 return too_many_traps(method, bci, reason) ||
1009 too_many_recompiles(method, bci, reason);
1010 }
1011 // Return a bitset with the reasons where deoptimization is allowed,
1012 // i.e., where there were not too many uncommon traps.
1013 int _allowed_reasons;
1014 int allowed_deopt_reasons() { return _allowed_reasons; }
1015 void set_allowed_deopt_reasons();
1016
1017 // Parsing, optimization
1018 PhaseGVN* initial_gvn() { return _initial_gvn; }
1019 Unique_Node_List* igvn_worklist() {
1020 assert(_igvn_worklist != nullptr, "must be created in Compile::Compile");
1021 return _igvn_worklist;
1022 }
1023 Type_Array* types() {
1024 assert(_types != nullptr, "must be created in Compile::Compile");
1025 return _types;
1026 }
1027 NodeHash* node_hash() {
1028 assert(_node_hash != nullptr, "must be created in Compile::Compile");
1029 return _node_hash;
1030 }
1031 inline void record_for_igvn(Node* n); // Body is after class Unique_Node_List in node.hpp.
1032 inline void remove_for_igvn(Node* n); // Body is after class Unique_Node_List in node.hpp.
1033 void set_initial_gvn(PhaseGVN *gvn) { _initial_gvn = gvn; }
1034
1035 // Replace n by nn using initial_gvn, calling hash_delete and
1036 // record_for_igvn as needed.
1037 void gvn_replace_by(Node* n, Node* nn);
1038
1039
1040 void identify_useful_nodes(Unique_Node_List &useful);
1041 void update_dead_node_list(Unique_Node_List &useful);
1042 void disconnect_useless_nodes(Unique_Node_List& useful, Unique_Node_List& worklist, const Unique_Node_List* root_and_safepoints = nullptr);
1043
1044 void remove_useless_node(Node* dead);
1045
1046 // Record this CallGenerator for inlining at the end of parsing.
1047 void add_late_inline(CallGenerator* cg) {
1048 _late_inlines.insert_before(_late_inlines_pos, cg);
1049 _late_inlines_pos++;
1050 }
1051
1052 void prepend_late_inline(CallGenerator* cg) {
1053 _late_inlines.insert_before(0, cg);
1054 }
1055
1056 void add_string_late_inline(CallGenerator* cg) {
1057 _string_late_inlines.push(cg);
1058 }
1059
1060 void add_boxing_late_inline(CallGenerator* cg) {
1061 _boxing_late_inlines.push(cg);
1062 }
1063
1064 void add_vector_reboxing_late_inline(CallGenerator* cg) {
1065 _vector_reboxing_late_inlines.push(cg);
1066 }
1067
1068 template<typename N, ENABLE_IF(std::is_base_of<Node, N>::value)>
1069 void remove_useless_nodes(GrowableArray<N*>& node_list, Unique_Node_List& useful);
1070
1071 void remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful);
1072 void remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Node* dead);
1073
1074 void remove_useless_coarsened_locks(Unique_Node_List& useful);
1075
1076 void dump_print_inlining();
1077
1078 bool over_inlining_cutoff() const {
1079 if (!inlining_incrementally()) {
1080 return unique() > (uint)NodeCountInliningCutoff;
1081 } else {
1082 // Give some room for incremental inlining algorithm to "breathe"
1083 // and avoid thrashing when live node count is close to the limit.
1084 // Keep in mind that live_nodes() isn't accurate during inlining until
1085 // dead node elimination step happens (see Compile::inline_incrementally).
1086 return live_nodes() > (uint)LiveNodeCountInliningCutoff * 11 / 10;
1087 }
1088 }
1089
1090 void inc_number_of_mh_late_inlines() { _number_of_mh_late_inlines++; }
1091 void dec_number_of_mh_late_inlines() { assert(_number_of_mh_late_inlines > 0, "_number_of_mh_late_inlines < 0 !"); _number_of_mh_late_inlines--; }
1092 bool has_mh_late_inlines() const { return _number_of_mh_late_inlines > 0; }
1093
1094 bool inline_incrementally_one();
1095 void inline_incrementally_cleanup(PhaseIterGVN& igvn);
1096 void inline_incrementally(PhaseIterGVN& igvn);
1097 bool should_stress_inlining() { return StressIncrementalInlining && (random() % 2) == 0; }
1098 bool should_delay_inlining() { return AlwaysIncrementalInline || should_stress_inlining(); }
1099 void inline_string_calls(bool parse_time);
1100 void inline_boxing_calls(PhaseIterGVN& igvn);
1101 bool optimize_loops(PhaseIterGVN& igvn, LoopOptsMode mode);
1102 void remove_root_to_sfpts_edges(PhaseIterGVN& igvn);
1103
1104 void inline_vector_reboxing_calls();
1105 bool has_vbox_nodes();
1106
1107 void process_late_inline_calls_no_inline(PhaseIterGVN& igvn);
1108
1109 // Matching, CFG layout, allocation, code generation
1110 PhaseCFG* cfg() { return _cfg; }
1111 bool has_java_calls() const { return _java_calls > 0; }
1112 int java_calls() const { return _java_calls; }
1113 int inner_loops() const { return _inner_loops; }
1114 Matcher* matcher() { return _matcher; }
1115 PhaseRegAlloc* regalloc() { return _regalloc; }
1116 RegMask& FIRST_STACK_mask() { return _FIRST_STACK_mask; }
1117 ResourceArea* regmask_arena() { return &_regmask_arena; }
1118 Arena* indexSet_arena() { return _indexSet_arena; }
1119 void* indexSet_free_block_list() { return _indexSet_free_block_list; }
1120 DebugInformationRecorder* debug_info() { return env()->debug_info(); }
1121
1122 void update_interpreter_frame_size(int size) {
1123 if (_interpreter_frame_size < size) {
1124 _interpreter_frame_size = size;
1125 }
1126 }
1127
1128 void set_matcher(Matcher* m) { _matcher = m; }
1129 //void set_regalloc(PhaseRegAlloc* ra) { _regalloc = ra; }
1130 void set_indexSet_arena(Arena* a) { _indexSet_arena = a; }
1131 void set_indexSet_free_block_list(void* p) { _indexSet_free_block_list = p; }
1132
1133 void set_java_calls(int z) { _java_calls = z; }
1134 void set_inner_loops(int z) { _inner_loops = z; }
1135
1136 Dependencies* dependencies() { return env()->dependencies(); }
1137
1138 // Major entry point. Given a Scope, compile the associated method.
1139 // For normal compilations, entry_bci is InvocationEntryBci. For on stack
1140 // replacement, entry_bci indicates the bytecode for which to compile a
1141 // continuation.
1142 Compile(ciEnv* ci_env, ciMethod* target,
1143 int entry_bci, Options options, DirectiveSet* directive);
1144
1145 // Second major entry point. From the TypeFunc signature, generate code
1146 // to pass arguments from the Java calling convention to the C calling
1147 // convention.
1148 Compile(ciEnv* ci_env, const TypeFunc *(*gen)(),
1149 address stub_function, const char *stub_name,
1150 StubId stub_id, int is_fancy_jump, bool pass_tls,
1151 bool return_pc, DirectiveSet* directive);
1152
1153 ~Compile();
1154
1155 // Are we compiling a method?
1156 bool has_method() { return method() != nullptr; }
1157
1158 // Maybe print some information about this compile.
1159 void print_compile_messages();
1160
1161 // Final graph reshaping, a post-pass after the regular optimizer is done.
1162 bool final_graph_reshaping();
1163
1164 // returns true if adr is completely contained in the given alias category
1165 bool must_alias(const TypePtr* adr, int alias_idx);
1166
1167 // returns true if adr overlaps with the given alias category
1168 bool can_alias(const TypePtr* adr, int alias_idx);
1169
1170 // Stack slots that may be unused by the calling convention but must
1171 // otherwise be preserved. On Intel this includes the return address.
1172 // On PowerPC it includes the 4 words holding the old TOC & LR glue.
1173 uint in_preserve_stack_slots() {
1174 return SharedRuntime::in_preserve_stack_slots();
1175 }
1176
1177 // "Top of Stack" slots that may be unused by the calling convention but must
1178 // otherwise be preserved.
1179 // On Intel these are not necessary and the value can be zero.
1180 static uint out_preserve_stack_slots() {
1181 return SharedRuntime::out_preserve_stack_slots();
1182 }
1183
1184 // Number of outgoing stack slots killed above the out_preserve_stack_slots
1185 // for calls to C. Supports the var-args backing area for register parms.
1186 uint varargs_C_out_slots_killed() const;
1187
1188 // Number of Stack Slots consumed by a synchronization entry
1189 int sync_stack_slots() const;
1190
1191 // Compute the name of old_SP. See <arch>.ad for frame layout.
1192 OptoReg::Name compute_old_SP();
1193
1194 private:
1195 // Phase control:
1196 void Init(bool aliasing); // Prepare for a single compilation
1197 void Optimize(); // Given a graph, optimize it
1198 void Code_Gen(); // Generate code from a graph
1199
1200 // Management of the AliasType table.
1201 void grow_alias_types();
1202 AliasCacheEntry* probe_alias_cache(const TypePtr* adr_type);
1203 const TypePtr *flatten_alias_type(const TypePtr* adr_type) const;
1204 AliasType* find_alias_type(const TypePtr* adr_type, bool no_create, ciField* field);
1205
1206 void verify_top(Node*) const PRODUCT_RETURN;
1207
1208 // Intrinsic setup.
1209 CallGenerator* make_vm_intrinsic(ciMethod* m, bool is_virtual); // constructor
1210 int intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found); // helper
1211 CallGenerator* find_intrinsic(ciMethod* m, bool is_virtual); // query fn
1212 void register_intrinsic(CallGenerator* cg); // update fn
1213
1214 #ifndef PRODUCT
1215 static juint _intrinsic_hist_count[];
1216 static jubyte _intrinsic_hist_flags[];
1217 #endif
1218 // Function calls made by the public function final_graph_reshaping.
1219 // No need to be made public as they are not called elsewhere.
1220 void final_graph_reshaping_impl(Node *n, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes);
1221 void final_graph_reshaping_main_switch(Node* n, Final_Reshape_Counts& frc, uint nop, Unique_Node_List& dead_nodes);
1222 void final_graph_reshaping_walk(Node_Stack& nstack, Node* root, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes);
1223 void handle_div_mod_op(Node* n, BasicType bt, bool is_unsigned);
1224
1225 // Logic cone optimization.
1226 void optimize_logic_cones(PhaseIterGVN &igvn);
1227 void collect_logic_cone_roots(Unique_Node_List& list);
1228 void process_logic_cone_root(PhaseIterGVN &igvn, Node* n, VectorSet& visited);
1229 bool compute_logic_cone(Node* n, Unique_Node_List& partition, Unique_Node_List& inputs);
1230 uint compute_truth_table(Unique_Node_List& partition, Unique_Node_List& inputs);
1231 uint eval_macro_logic_op(uint func, uint op1, uint op2, uint op3);
1232 Node* xform_to_MacroLogicV(PhaseIterGVN &igvn, const TypeVect* vt, Unique_Node_List& partitions, Unique_Node_List& inputs);
1233 void check_no_dead_use() const NOT_DEBUG_RETURN;
1234
1235 public:
1236
1237 // Note: Histogram array size is about 1 Kb.
1238 enum { // flag bits:
1239 _intrinsic_worked = 1, // succeeded at least once
1240 _intrinsic_failed = 2, // tried it but it failed
1241 _intrinsic_disabled = 4, // was requested but disabled (e.g., -XX:-InlineUnsafeOps)
1242 _intrinsic_virtual = 8, // was seen in the virtual form (rare)
1243 _intrinsic_both = 16 // was seen in the non-virtual form (usual)
1244 };
1245 // Update histogram. Return boolean if this is a first-time occurrence.
1246 static bool gather_intrinsic_statistics(vmIntrinsics::ID id,
1247 bool is_virtual, int flags) PRODUCT_RETURN0;
1248 static void print_intrinsic_statistics() PRODUCT_RETURN;
1249
1250 // Graph verification code
1251 // Walk the node list, verifying that there is a one-to-one correspondence
1252 // between Use-Def edges and Def-Use edges. The option no_dead_code enables
1253 // stronger checks that the graph is strongly connected from starting points
1254 // in both directions.
1255 // root_and_safepoints is used to give the starting points for the traversal.
1256 // If not supplied, only root is used. When this check is called after CCP,
1257 // we need to start traversal from Root and safepoints, just like CCP does its
1258 // own traversal (see PhaseCCP::transform for reasons).
1259 //
1260 // To call this function, there are 2 ways to go:
1261 // - give root_and_safepoints to start traversal everywhere needed (like after CCP)
1262 // - if the whole graph is assumed to be reachable from Root's input,
1263 // root_and_safepoints is not needed (like in PhaseRemoveUseless).
1264 //
1265 // Failure to specify root_and_safepoints in case the graph is not fully
1266 // reachable from Root's input make this check unsound (can miss inconsistencies)
1267 // and even incomplete (can make up non-existing problems) if no_dead_code is
1268 // true.
1269 void verify_graph_edges(bool no_dead_code = false, const Unique_Node_List* root_and_safepoints = nullptr) const PRODUCT_RETURN;
1270
1271 // Verify bi-directional correspondence of edges
1272 void verify_bidirectional_edges(Unique_Node_List& visited, const Unique_Node_List* root_and_safepoints = nullptr) const;
1273
1274 // End-of-run dumps.
1275 static void print_statistics() PRODUCT_RETURN;
1276
1277 // Verify ADLC assumptions during startup
1278 static void adlc_verification() PRODUCT_RETURN;
1279
1280 // Definitions of pd methods
1281 static void pd_compiler2_init();
1282
1283 // Static parse-time type checking logic for gen_subtype_check:
1284 enum SubTypeCheckResult { SSC_always_false, SSC_always_true, SSC_easy_test, SSC_full_test };
1285 SubTypeCheckResult static_subtype_check(const TypeKlassPtr* superk, const TypeKlassPtr* subk, bool skip = StressReflectiveCode);
1286
1287 static Node* conv_I2X_index(PhaseGVN* phase, Node* offset, const TypeInt* sizetype,
1288 // Optional control dependency (for example, on range check)
1289 Node* ctrl = nullptr);
1290
1291 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check)
1292 static Node* constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl, bool carry_dependency = false);
1293
1294 // Auxiliary methods for randomized fuzzing/stressing
1295 int random();
1296 bool randomized_select(int count);
1297
1298 // seed random number generation and log the seed for repeatability.
1299 void initialize_stress_seed(const DirectiveSet* directive);
1300
1301 // supporting clone_map
1302 CloneMap& clone_map();
1303 void set_clone_map(Dict* d);
1304
1305 bool needs_clinit_barrier(ciField* ik, ciMethod* accessing_method);
1306 bool needs_clinit_barrier(ciMethod* ik, ciMethod* accessing_method);
1307 bool needs_clinit_barrier(ciInstanceKlass* ik, ciMethod* accessing_method);
1308
1309 #ifdef ASSERT
1310 VerifyMeetResult* _type_verify;
1311 void set_exception_backedge() { _exception_backedge = true; }
1312 bool has_exception_backedge() const { return _exception_backedge; }
1313 #endif
1314
1315 static bool push_thru_add(PhaseGVN* phase, Node* z, const TypeInteger* tz, const TypeInteger*& rx, const TypeInteger*& ry,
1316 BasicType out_bt, BasicType in_bt);
1317
1318 static Node* narrow_value(BasicType bt, Node* value, const Type* type, PhaseGVN* phase, bool transform_res);
1319
1320 #ifndef PRODUCT
1321 private:
1322 // getting rid of the template makes things easier
1323 Node* make_debug_print_call(const char* str, address call_addr, PhaseGVN* gvn,
1324 Node* parm0 = nullptr, Node* parm1 = nullptr,
1325 Node* parm2 = nullptr, Node* parm3 = nullptr,
1326 Node* parm4 = nullptr, Node* parm5 = nullptr,
1327 Node* parm6 = nullptr) const;
1328
1329 public:
1330 // Creates a CallLeafNode for a runtime call that prints a static string and the values of the
1331 // nodes passed as arguments.
1332 // This function also takes care of doing the necessary wiring, including finding a suitable control
1333 // based on the nodes that need to be printed. Note that passing nodes that have incompatible controls
1334 // is undefined behavior.
1335 template <typename... TT, typename... NN>
1336 Node* make_debug_print(const char* str, PhaseGVN* gvn, NN... in) {
1337 address call_addr = CAST_FROM_FN_PTR(address, SharedRuntime::debug_print<TT...>);
1338 return make_debug_print_call(str, call_addr, gvn, in...);
1339 }
1340 #endif
1341 };
1342
1343 #endif // SHARE_OPTO_COMPILE_HPP