1 /*
   2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_OPTO_COMPILE_HPP
  26 #define SHARE_OPTO_COMPILE_HPP
  27 
  28 #include "asm/codeBuffer.hpp"
  29 #include "ci/compilerInterface.hpp"
  30 #include "code/debugInfoRec.hpp"
  31 #include "compiler/compiler_globals.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/compilerEvent.hpp"
  34 #include "compiler/cHeapStringHolder.hpp"
  35 #include "libadt/dict.hpp"
  36 #include "libadt/vectset.hpp"
  37 #include "memory/resourceArea.hpp"
  38 #include "oops/methodData.hpp"
  39 #include "opto/idealGraphPrinter.hpp"
  40 #include "opto/phasetype.hpp"
  41 #include "opto/phase.hpp"
  42 #include "opto/regmask.hpp"
  43 #include "runtime/deoptimization.hpp"
  44 #include "runtime/sharedRuntime.hpp"
  45 #include "runtime/timerTrace.hpp"
  46 #include "runtime/vmThread.hpp"
  47 #include "utilities/ticks.hpp"
  48 #include "utilities/vmEnums.hpp"
  49 #include "opto/printinlining.hpp"
  50 
  51 class AbstractLockNode;
  52 class AddPNode;
  53 class Block;
  54 class Bundle;
  55 class CallGenerator;
  56 class CallStaticJavaNode;
  57 class CloneMap;
  58 class CompilationFailureInfo;
  59 class ConnectionGraph;
  60 class IdealGraphPrinter;
  61 class InlineTree;
  62 class Matcher;
  63 class MachConstantNode;
  64 class MachConstantBaseNode;
  65 class MachNode;
  66 class MachOper;
  67 class MachSafePointNode;
  68 class Node;
  69 class Node_Array;
  70 class Node_List;
  71 class Node_Notes;
  72 class NodeHash;
  73 class NodeCloneInfo;
  74 class OpaqueTemplateAssertionPredicateNode;
  75 class OptoReg;
  76 class ParsePredicateNode;
  77 class PhaseCFG;
  78 class PhaseGVN;
  79 class PhaseIterGVN;
  80 class PhaseRegAlloc;
  81 class PhaseCCP;
  82 class PhaseOutput;
  83 class RootNode;
  84 class relocInfo;
  85 class StartNode;
  86 class SafePointNode;
  87 class JVMState;
  88 class Type;
  89 class TypeInt;
  90 class TypeInteger;
  91 class TypeKlassPtr;
  92 class TypePtr;
  93 class TypeOopPtr;
  94 class TypeFunc;
  95 class TypeVect;
  96 class Type_Array;
  97 class Unique_Node_List;
  98 class UnstableIfTrap;
  99 class nmethod;
 100 class Node_Stack;
 101 struct Final_Reshape_Counts;
 102 class VerifyMeetResult;
 103 
 104 enum LoopOptsMode {
 105   LoopOptsDefault,
 106   LoopOptsNone,
 107   LoopOptsMaxUnroll,
 108   LoopOptsShenandoahExpand,
 109   LoopOptsSkipSplitIf,
 110   LoopOptsVerify
 111 };
 112 
 113 // The type of all node counts and indexes.
 114 // It must hold at least 16 bits, but must also be fast to load and store.
 115 // This type, if less than 32 bits, could limit the number of possible nodes.
 116 // (To make this type platform-specific, move to globalDefinitions_xxx.hpp.)
 117 typedef unsigned int node_idx_t;
 118 
 119 class NodeCloneInfo {
 120  private:
 121   uint64_t _idx_clone_orig;
 122  public:
 123 
 124   void set_idx(node_idx_t idx) {
 125     _idx_clone_orig = (_idx_clone_orig & CONST64(0xFFFFFFFF00000000)) | idx;
 126   }
 127   node_idx_t idx() const { return (node_idx_t)(_idx_clone_orig & 0xFFFFFFFF); }
 128 
 129   void set_gen(int generation) {
 130     uint64_t g = (uint64_t)generation << 32;
 131     _idx_clone_orig = (_idx_clone_orig & 0xFFFFFFFF) | g;
 132   }
 133   int gen() const { return (int)(_idx_clone_orig >> 32); }
 134 
 135   void set(uint64_t x) { _idx_clone_orig = x; }
 136   void set(node_idx_t x, int g) { set_idx(x); set_gen(g); }
 137   uint64_t get() const { return _idx_clone_orig; }
 138 
 139   NodeCloneInfo(uint64_t idx_clone_orig) : _idx_clone_orig(idx_clone_orig) {}
 140   NodeCloneInfo(node_idx_t x, int g) : _idx_clone_orig(0) { set(x, g); }
 141 
 142   void dump_on(outputStream* st) const;
 143 };
 144 
 145 class CloneMap {
 146   friend class Compile;
 147  private:
 148   bool      _debug;
 149   Dict*     _dict;
 150   int       _clone_idx;   // current cloning iteration/generation in loop unroll
 151  public:
 152   void*     _2p(node_idx_t key)   const          { return (void*)(intptr_t)key; } // 2 conversion functions to make gcc happy
 153   node_idx_t _2_node_idx_t(const void* k) const  { return (node_idx_t)(intptr_t)k; }
 154   Dict*     dict()                const          { return _dict; }
 155   void insert(node_idx_t key, uint64_t val)      { assert(_dict->operator[](_2p(key)) == nullptr, "key existed"); _dict->Insert(_2p(key), (void*)val); }
 156   void insert(node_idx_t key, NodeCloneInfo& ci) { insert(key, ci.get()); }
 157   void remove(node_idx_t key)                    { _dict->Delete(_2p(key)); }
 158   uint64_t value(node_idx_t key)  const          { return (uint64_t)_dict->operator[](_2p(key)); }
 159   node_idx_t idx(node_idx_t key)  const          { return NodeCloneInfo(value(key)).idx(); }
 160   int gen(node_idx_t key)         const          { return NodeCloneInfo(value(key)).gen(); }
 161   int gen(const void* k)          const          { return gen(_2_node_idx_t(k)); }
 162   int max_gen()                   const;
 163   void clone(Node* old, Node* nnn, int gen);
 164   void verify_insert_and_clone(Node* old, Node* nnn, int gen);
 165   void dump(node_idx_t key, outputStream* st) const;
 166 
 167   int  clone_idx() const                         { return _clone_idx; }
 168   void set_clone_idx(int x)                      { _clone_idx = x; }
 169   bool is_debug()                 const          { return _debug; }
 170   void set_debug(bool debug)                     { _debug = debug; }
 171 
 172   bool same_idx(node_idx_t k1, node_idx_t k2)  const { return idx(k1) == idx(k2); }
 173   bool same_gen(node_idx_t k1, node_idx_t k2)  const { return gen(k1) == gen(k2); }
 174 };
 175 
 176 class Options {
 177   friend class Compile;
 178  private:
 179   const bool _subsume_loads;         // Load can be matched as part of a larger op.
 180   const bool _do_escape_analysis;    // Do escape analysis.
 181   const bool _do_iterative_escape_analysis;  // Do iterative escape analysis.
 182   const bool _do_reduce_allocation_merges;  // Do try to reduce allocation merges.
 183   const bool _eliminate_boxing;      // Do boxing elimination.
 184   const bool _do_locks_coarsening;   // Do locks coarsening
 185   const bool _do_superword;          // Do SuperWord
 186   const bool _install_code;          // Install the code that was compiled
 187  public:
 188   Options(bool subsume_loads,
 189           bool do_escape_analysis,
 190           bool do_iterative_escape_analysis,
 191           bool do_reduce_allocation_merges,
 192           bool eliminate_boxing,
 193           bool do_locks_coarsening,
 194           bool do_superword,
 195           bool install_code) :
 196           _subsume_loads(subsume_loads),
 197           _do_escape_analysis(do_escape_analysis),
 198           _do_iterative_escape_analysis(do_iterative_escape_analysis),
 199           _do_reduce_allocation_merges(do_reduce_allocation_merges),
 200           _eliminate_boxing(eliminate_boxing),
 201           _do_locks_coarsening(do_locks_coarsening),
 202           _do_superword(do_superword),
 203           _install_code(install_code) {
 204   }
 205 
 206   static Options for_runtime_stub() {
 207     return Options(
 208        /* subsume_loads = */ true,
 209        /* do_escape_analysis = */ false,
 210        /* do_iterative_escape_analysis = */ false,
 211        /* do_reduce_allocation_merges = */ false,
 212        /* eliminate_boxing = */ false,
 213        /* do_lock_coarsening = */ false,
 214        /* do_superword = */ true,
 215        /* install_code = */ true
 216     );
 217   }
 218 };
 219 
 220 //------------------------------Compile----------------------------------------
 221 // This class defines a top-level Compiler invocation.
 222 
 223 class Compile : public Phase {
 224 
 225  public:
 226   // Fixed alias indexes.  (See also MergeMemNode.)
 227   enum {
 228     AliasIdxTop = 1,  // pseudo-index, aliases to nothing (used as sentinel value)
 229     AliasIdxBot = 2,  // pseudo-index, aliases to everything
 230     AliasIdxRaw = 3   // hard-wired index for TypeRawPtr::BOTTOM
 231   };
 232 
 233   // Variant of TraceTime(nullptr, &_t_accumulator, CITime);
 234   // Integrated with logging.  If logging is turned on, and CITimeVerbose is true,
 235   // then brackets are put into the log, with time stamps and node counts.
 236   // (The time collection itself is always conditionalized on CITime.)
 237   class TracePhase : public TraceTime {
 238    private:
 239     Compile* const _compile;
 240     CompileLog* _log;
 241     const bool _dolog;
 242    public:
 243     TracePhase(PhaseTraceId phaseTraceId);
 244     TracePhase(const char* name, PhaseTraceId phaseTraceId);
 245     ~TracePhase();
 246     const char* phase_name() const { return title(); }
 247   };
 248 
 249   // Information per category of alias (memory slice)
 250   class AliasType {
 251    private:
 252     friend class Compile;
 253 
 254     int             _index;         // unique index, used with MergeMemNode
 255     const TypePtr*  _adr_type;      // normalized address type
 256     ciField*        _field;         // relevant instance field, or null if none
 257     const Type*     _element;       // relevant array element type, or null if none
 258     bool            _is_rewritable; // false if the memory is write-once only
 259     int             _general_index; // if this is type is an instance, the general
 260                                     // type that this is an instance of
 261 
 262     void Init(int i, const TypePtr* at);
 263 
 264    public:
 265     int             index()         const { return _index; }
 266     const TypePtr*  adr_type()      const { return _adr_type; }
 267     ciField*        field()         const { return _field; }
 268     const Type*     element()       const { return _element; }
 269     bool            is_rewritable() const { return _is_rewritable; }
 270     bool            is_volatile()   const { return (_field ? _field->is_volatile() : false); }
 271     int             general_index() const { return (_general_index != 0) ? _general_index : _index; }
 272 
 273     void set_rewritable(bool z) { _is_rewritable = z; }
 274     void set_field(ciField* f) {
 275       assert(!_field,"");
 276       _field = f;
 277       if (f->is_final() || f->is_stable()) {
 278         // In the case of @Stable, multiple writes are possible but may be assumed to be no-ops.
 279         _is_rewritable = false;
 280       }
 281     }
 282     void set_element(const Type* e) {
 283       assert(_element == nullptr, "");
 284       _element = e;
 285     }
 286 
 287     BasicType basic_type() const;
 288 
 289     void print_on(outputStream* st) PRODUCT_RETURN;
 290   };
 291 
 292   enum {
 293     logAliasCacheSize = 6,
 294     AliasCacheSize = (1<<logAliasCacheSize)
 295   };
 296   struct AliasCacheEntry { const TypePtr* _adr_type; int _index; };  // simple duple type
 297   enum {
 298     trapHistLength = MethodData::_trap_hist_limit
 299   };
 300 
 301  private:
 302   // Fixed parameters to this compilation.
 303   const int             _compile_id;
 304   const Options         _options;               // Compilation options
 305   ciMethod*             _method;                // The method being compiled.
 306   int                   _entry_bci;             // entry bci for osr methods.
 307   const TypeFunc*       _tf;                    // My kind of signature
 308   InlineTree*           _ilt;                   // Ditto (temporary).
 309   address               _stub_function;         // VM entry for stub being compiled, or null
 310   const char*           _stub_name;             // Name of stub or adapter being compiled, or null
 311   int                   _stub_id;               // unique id for stub or -1
 312   address               _stub_entry_point;      // Compile code entry for generated stub, or null
 313 
 314   // Control of this compilation.
 315   int                   _max_inline_size;       // Max inline size for this compilation
 316   int                   _freq_inline_size;      // Max hot method inline size for this compilation
 317   int                   _fixed_slots;           // count of frame slots not allocated by the register
 318                                                 // allocator i.e. locks, original deopt pc, etc.
 319   uintx                 _max_node_limit;        // Max unique node count during a single compilation.
 320 
 321   bool                  _post_loop_opts_phase;  // Loop opts are finished.
 322   bool                  _merge_stores_phase;    // Phase for merging stores, after post loop opts phase.
 323   bool                  _allow_macro_nodes;     // True if we allow creation of macro nodes.
 324 
 325   int                   _major_progress;        // Count of something big happening
 326   bool                  _inlining_progress;     // progress doing incremental inlining?
 327   bool                  _inlining_incrementally;// Are we doing incremental inlining (post parse)
 328   bool                  _do_cleanup;            // Cleanup is needed before proceeding with incremental inlining
 329   bool                  _has_loops;             // True if the method _may_ have some loops
 330   bool                  _has_split_ifs;         // True if the method _may_ have some split-if
 331   bool                  _has_unsafe_access;     // True if the method _may_ produce faults in unsafe loads or stores.
 332   bool                  _has_stringbuilder;     // True StringBuffers or StringBuilders are allocated
 333   bool                  _has_boxed_value;       // True if a boxed object is allocated
 334   bool                  _has_reserved_stack_access; // True if the method or an inlined method is annotated with ReservedStackAccess
 335   uint                  _max_vector_size;       // Maximum size of generated vectors
 336   bool                  _clear_upper_avx;       // Clear upper bits of ymm registers using vzeroupper
 337   uint                  _trap_hist[trapHistLength];  // Cumulative traps
 338   bool                  _trap_can_recompile;    // Have we emitted a recompiling trap?
 339   uint                  _decompile_count;       // Cumulative decompilation counts.
 340   bool                  _do_inlining;           // True if we intend to do inlining
 341   bool                  _do_scheduling;         // True if we intend to do scheduling
 342   bool                  _do_freq_based_layout;  // True if we intend to do frequency based block layout
 343   bool                  _do_vector_loop;        // True if allowed to execute loop in parallel iterations
 344   bool                  _use_cmove;             // True if CMove should be used without profitability analysis
 345   bool                  _do_aliasing;           // True if we intend to do aliasing
 346   bool                  _print_assembly;        // True if we should dump assembly code for this compilation
 347   bool                  _print_inlining;        // True if we should print inlining for this compilation
 348   bool                  _print_intrinsics;      // True if we should print intrinsics for this compilation
 349 #ifndef PRODUCT
 350   uint                  _phase_counter;         // Counter for the number of already printed phases
 351   uint                  _igv_idx;               // Counter for IGV node identifiers
 352   uint                  _igv_phase_iter[PHASE_NUM_TYPES]; // Counters for IGV phase iterations
 353   bool                  _trace_opto_output;
 354   bool                  _parsed_irreducible_loop; // True if ciTypeFlow detected irreducible loops during parsing
 355 #endif
 356   bool                  _has_irreducible_loop;  // Found irreducible loops
 357   // JSR 292
 358   bool                  _has_method_handle_invokes; // True if this method has MethodHandle invokes.
 359   bool                  _has_monitors;          // Metadata transfered to nmethod to enable Continuations lock-detection fastpath
 360   bool                  _has_scoped_access;     // For shared scope closure
 361   bool                  _clinit_barrier_on_entry; // True if clinit barrier is needed on nmethod entry
 362   int                   _loop_opts_cnt;         // loop opts round
 363   uint                  _stress_seed;           // Seed for stress testing
 364 
 365   // Compilation environment.
 366   Arena                 _comp_arena;            // Arena with lifetime equivalent to Compile
 367   void*                 _barrier_set_state;     // Potential GC barrier state for Compile
 368   ciEnv*                _env;                   // CI interface
 369   DirectiveSet*         _directive;             // Compiler directive
 370   CompileLog*           _log;                   // from CompilerThread
 371   CHeapStringHolder     _failure_reason;        // for record_failure/failing pattern
 372   CompilationFailureInfo* _first_failure_details; // Details for the first failure happening during compilation
 373   GrowableArray<CallGenerator*> _intrinsics;    // List of intrinsics.
 374   GrowableArray<Node*>  _macro_nodes;           // List of nodes which need to be expanded before matching.
 375   GrowableArray<ParsePredicateNode*> _parse_predicates; // List of Parse Predicates.
 376   // List of OpaqueTemplateAssertionPredicateNode nodes for Template Assertion Predicates which can be seen as list
 377   // of Template Assertion Predicates themselves.
 378   GrowableArray<OpaqueTemplateAssertionPredicateNode*>  _template_assertion_predicate_opaques;
 379   GrowableArray<Node*>  _expensive_nodes;       // List of nodes that are expensive to compute and that we'd better not let the GVN freely common
 380   GrowableArray<Node*>  _for_post_loop_igvn;    // List of nodes for IGVN after loop opts are over
 381   GrowableArray<Node*>  _for_merge_stores_igvn; // List of nodes for IGVN merge stores
 382   GrowableArray<UnstableIfTrap*> _unstable_if_traps;        // List of ifnodes after IGVN
 383   GrowableArray<Node_List*> _coarsened_locks;   // List of coarsened Lock and Unlock nodes
 384   ConnectionGraph*      _congraph;
 385 #ifndef PRODUCT
 386   IdealGraphPrinter*    _igv_printer;
 387   static IdealGraphPrinter* _debug_file_printer;
 388   static IdealGraphPrinter* _debug_network_printer;
 389 #endif
 390 
 391 
 392   // Node management
 393   uint                  _unique;                // Counter for unique Node indices
 394   uint                  _dead_node_count;       // Number of dead nodes; VectorSet::Size() is O(N).
 395                                                 // So use this to keep count and make the call O(1).
 396   VectorSet             _dead_node_list;        // Set of dead nodes
 397   DEBUG_ONLY(Unique_Node_List* _modified_nodes;)   // List of nodes which inputs were modified
 398   DEBUG_ONLY(bool       _phase_optimize_finished;) // Used for live node verification while creating new nodes
 399 
 400   DEBUG_ONLY(bool       _phase_verify_ideal_loop;) // Are we in PhaseIdealLoop verification?
 401 
 402   // Arenas for new-space and old-space nodes.
 403   // Swapped between using _node_arena.
 404   // The lifetime of the old-space nodes is during xform.
 405   Arena                 _node_arena_one;
 406   Arena                 _node_arena_two;
 407   Arena*                _node_arena;
 408 public:
 409   Arena* swap_old_and_new() {
 410     Arena* filled_arena_ptr = _node_arena;
 411     Arena* old_arena_ptr = old_arena();
 412     old_arena_ptr->destruct_contents();
 413     _node_arena = old_arena_ptr;
 414     return filled_arena_ptr;
 415   }
 416 private:
 417   RootNode*             _root;                  // Unique root of compilation, or null after bail-out.
 418   Node*                 _top;                   // Unique top node.  (Reset by various phases.)
 419 
 420   Node*                 _immutable_memory;      // Initial memory state
 421 
 422   Node*                 _recent_alloc_obj;
 423   Node*                 _recent_alloc_ctl;
 424 
 425   // Constant table
 426   MachConstantBaseNode* _mach_constant_base_node;  // Constant table base node singleton.
 427 
 428 
 429   // Blocked array of debugging and profiling information,
 430   // tracked per node.
 431   enum { _log2_node_notes_block_size = 8,
 432          _node_notes_block_size = (1<<_log2_node_notes_block_size)
 433   };
 434   GrowableArray<Node_Notes*>* _node_note_array;
 435   Node_Notes*           _default_node_notes;  // default notes for new nodes
 436 
 437   // After parsing and every bulk phase we hang onto the Root instruction.
 438   // The RootNode instruction is where the whole program begins.  It produces
 439   // the initial Control and BOTTOM for everybody else.
 440 
 441   // Type management
 442   Arena                 _Compile_types;         // Arena for all types
 443   Arena*                _type_arena;            // Alias for _Compile_types except in Initialize_shared()
 444   Dict*                 _type_dict;             // Intern table
 445   CloneMap              _clone_map;             // used for recording history of cloned nodes
 446   size_t                _type_last_size;        // Last allocation size (see Type::operator new/delete)
 447   ciMethod*             _last_tf_m;             // Cache for
 448   const TypeFunc*       _last_tf;               //  TypeFunc::make
 449   AliasType**           _alias_types;           // List of alias types seen so far.
 450   int                   _num_alias_types;       // Logical length of _alias_types
 451   int                   _max_alias_types;       // Physical length of _alias_types
 452   AliasCacheEntry       _alias_cache[AliasCacheSize]; // Gets aliases w/o data structure walking
 453 
 454   // Parsing, optimization
 455   PhaseGVN*             _initial_gvn;           // Results of parse-time PhaseGVN
 456 
 457   // Shared worklist for all IGVN rounds. Nodes can be pushed to it at any time.
 458   // If pushed outside IGVN, the Node is processed in the next IGVN round.
 459   Unique_Node_List*     _igvn_worklist;
 460 
 461   // Shared type array for GVN, IGVN and CCP. It maps node idx -> Type*.
 462   Type_Array*           _types;
 463 
 464   // Shared node hash table for GVN, IGVN and CCP.
 465   NodeHash*             _node_hash;
 466 
 467   GrowableArray<CallGenerator*> _late_inlines;        // List of CallGenerators to be revisited after main parsing has finished.
 468   GrowableArray<CallGenerator*> _string_late_inlines; // same but for string operations
 469   GrowableArray<CallGenerator*> _boxing_late_inlines; // same but for boxing operations
 470 
 471   GrowableArray<CallGenerator*> _vector_reboxing_late_inlines; // same but for vector reboxing operations
 472 
 473   int                           _late_inlines_pos;    // Where in the queue should the next late inlining candidate go (emulate depth first inlining)
 474   uint                          _number_of_mh_late_inlines; // number of method handle late inlining still pending
 475 
 476   // "MemLimit" directive was specified and the memory limit was hit during compilation
 477   bool                          _oom;
 478 
 479   // Only keep nodes in the expensive node list that need to be optimized
 480   void cleanup_expensive_nodes(PhaseIterGVN &igvn);
 481   // Use for sorting expensive nodes to bring similar nodes together
 482   static int cmp_expensive_nodes(Node** n1, Node** n2);
 483   // Expensive nodes list already sorted?
 484   bool expensive_nodes_sorted() const;
 485   // Remove the speculative part of types and clean up the graph
 486   void remove_speculative_types(PhaseIterGVN &igvn);
 487 
 488   void* _replay_inline_data; // Pointer to data loaded from file
 489 
 490   void log_late_inline_failure(CallGenerator* cg, const char* msg);
 491   DEBUG_ONLY(bool _exception_backedge;)
 492 
 493   void record_method_not_compilable_oom();
 494 
 495   InlinePrinter _inline_printer;
 496 
 497 public:
 498   void* barrier_set_state() const { return _barrier_set_state; }
 499 
 500   InlinePrinter* inline_printer() { return &_inline_printer; }
 501 
 502 #ifndef PRODUCT
 503   IdealGraphPrinter* igv_printer() { return _igv_printer; }
 504   void reset_igv_phase_iter(CompilerPhaseType cpt) { _igv_phase_iter[cpt] = 0; }
 505 #endif
 506 
 507   void log_late_inline(CallGenerator* cg);
 508   void log_inline_id(CallGenerator* cg);
 509   void log_inline_failure(const char* msg);
 510 
 511   void* replay_inline_data() const { return _replay_inline_data; }
 512 
 513   // Dump inlining replay data to the stream.
 514   void dump_inline_data(outputStream* out);
 515   void dump_inline_data_reduced(outputStream* out);
 516 
 517  private:
 518   // Matching, CFG layout, allocation, code generation
 519   PhaseCFG*             _cfg;                   // Results of CFG finding
 520   int                   _java_calls;            // Number of java calls in the method
 521   int                   _inner_loops;           // Number of inner loops in the method
 522   Matcher*              _matcher;               // Engine to map ideal to machine instructions
 523   PhaseRegAlloc*        _regalloc;              // Results of register allocation.
 524   RegMask               _FIRST_STACK_mask;      // All stack slots usable for spills (depends on frame layout)
 525   Arena*                _indexSet_arena;        // control IndexSet allocation within PhaseChaitin
 526   void*                 _indexSet_free_block_list; // free list of IndexSet bit blocks
 527   int                   _interpreter_frame_size;
 528 
 529   PhaseOutput*          _output;
 530 
 531  public:
 532   // Accessors
 533 
 534   // The Compile instance currently active in this (compiler) thread.
 535   static Compile* current() {
 536     return (Compile*) ciEnv::current()->compiler_data();
 537   }
 538 
 539   int interpreter_frame_size() const            { return _interpreter_frame_size; }
 540 
 541   PhaseOutput*      output() const              { return _output; }
 542   void              set_output(PhaseOutput* o)  { _output = o; }
 543 
 544   // ID for this compilation.  Useful for setting breakpoints in the debugger.
 545   int               compile_id() const          { return _compile_id; }
 546   DirectiveSet*     directive() const           { return _directive; }
 547 
 548   // Does this compilation allow instructions to subsume loads?  User
 549   // instructions that subsume a load may result in an unschedulable
 550   // instruction sequence.
 551   bool              subsume_loads() const       { return _options._subsume_loads; }
 552   /** Do escape analysis. */
 553   bool              do_escape_analysis() const  { return _options._do_escape_analysis; }
 554   bool              do_iterative_escape_analysis() const  { return _options._do_iterative_escape_analysis; }
 555   bool              do_reduce_allocation_merges() const  { return _options._do_reduce_allocation_merges; }
 556   /** Do boxing elimination. */
 557   bool              eliminate_boxing() const    { return _options._eliminate_boxing; }
 558   /** Do aggressive boxing elimination. */
 559   bool              aggressive_unboxing() const { return _options._eliminate_boxing && AggressiveUnboxing; }
 560   bool              should_install_code() const { return _options._install_code; }
 561   /** Do locks coarsening. */
 562   bool              do_locks_coarsening() const { return _options._do_locks_coarsening; }
 563   bool              do_superword() const        { return _options._do_superword; }
 564 
 565   // Other fixed compilation parameters.
 566   ciMethod*         method() const              { return _method; }
 567   int               entry_bci() const           { return _entry_bci; }
 568   bool              is_osr_compilation() const  { return _entry_bci != InvocationEntryBci; }
 569   bool              is_method_compilation() const { return (_method != nullptr && !_method->flags().is_native()); }
 570   const TypeFunc*   tf() const                  { assert(_tf!=nullptr, ""); return _tf; }
 571   void         init_tf(const TypeFunc* tf)      { assert(_tf==nullptr, ""); _tf = tf; }
 572   InlineTree*       ilt() const                 { return _ilt; }
 573   address           stub_function() const       { return _stub_function; }
 574   const char*       stub_name() const           { return _stub_name; }
 575   int               stub_id() const             { return _stub_id; }
 576   address           stub_entry_point() const    { return _stub_entry_point; }
 577   void          set_stub_entry_point(address z) { _stub_entry_point = z; }
 578 
 579   // Control of this compilation.
 580   int               fixed_slots() const         { assert(_fixed_slots >= 0, "");         return _fixed_slots; }
 581   void          set_fixed_slots(int n)          { _fixed_slots = n; }
 582   int               major_progress() const      { return _major_progress; }
 583   void          set_inlining_progress(bool z)   { _inlining_progress = z; }
 584   int               inlining_progress() const   { return _inlining_progress; }
 585   void          set_inlining_incrementally(bool z) { _inlining_incrementally = z; }
 586   int               inlining_incrementally() const { return _inlining_incrementally; }
 587   void          set_do_cleanup(bool z)          { _do_cleanup = z; }
 588   int               do_cleanup() const          { return _do_cleanup; }
 589   void          set_major_progress()            { _major_progress++; }
 590   void          restore_major_progress(int progress) { _major_progress += progress; }
 591   void        clear_major_progress()            { _major_progress = 0; }
 592   int               max_inline_size() const     { return _max_inline_size; }
 593   void          set_freq_inline_size(int n)     { _freq_inline_size = n; }
 594   int               freq_inline_size() const    { return _freq_inline_size; }
 595   void          set_max_inline_size(int n)      { _max_inline_size = n; }
 596   bool              has_loops() const           { return _has_loops; }
 597   void          set_has_loops(bool z)           { _has_loops = z; }
 598   bool              has_split_ifs() const       { return _has_split_ifs; }
 599   void          set_has_split_ifs(bool z)       { _has_split_ifs = z; }
 600   bool              has_unsafe_access() const   { return _has_unsafe_access; }
 601   void          set_has_unsafe_access(bool z)   { _has_unsafe_access = z; }
 602   bool              has_stringbuilder() const   { return _has_stringbuilder; }
 603   void          set_has_stringbuilder(bool z)   { _has_stringbuilder = z; }
 604   bool              has_boxed_value() const     { return _has_boxed_value; }
 605   void          set_has_boxed_value(bool z)     { _has_boxed_value = z; }
 606   bool              has_reserved_stack_access() const { return _has_reserved_stack_access; }
 607   void          set_has_reserved_stack_access(bool z) { _has_reserved_stack_access = z; }
 608   uint              max_vector_size() const     { return _max_vector_size; }
 609   void          set_max_vector_size(uint s)     { _max_vector_size = s; }
 610   bool              clear_upper_avx() const     { return _clear_upper_avx; }
 611   void          set_clear_upper_avx(bool s)     { _clear_upper_avx = s; }
 612   void          set_trap_count(uint r, uint c)  { assert(r < trapHistLength, "oob");        _trap_hist[r] = c; }
 613   uint              trap_count(uint r) const    { assert(r < trapHistLength, "oob"); return _trap_hist[r]; }
 614   bool              trap_can_recompile() const  { return _trap_can_recompile; }
 615   void          set_trap_can_recompile(bool z)  { _trap_can_recompile = z; }
 616   uint              decompile_count() const     { return _decompile_count; }
 617   void          set_decompile_count(uint c)     { _decompile_count = c; }
 618   bool              allow_range_check_smearing() const;
 619   bool              do_inlining() const         { return _do_inlining; }
 620   void          set_do_inlining(bool z)         { _do_inlining = z; }
 621   bool              do_scheduling() const       { return _do_scheduling; }
 622   void          set_do_scheduling(bool z)       { _do_scheduling = z; }
 623   bool              do_freq_based_layout() const{ return _do_freq_based_layout; }
 624   void          set_do_freq_based_layout(bool z){ _do_freq_based_layout = z; }
 625   bool              do_vector_loop() const      { return _do_vector_loop; }
 626   void          set_do_vector_loop(bool z)      { _do_vector_loop = z; }
 627   bool              use_cmove() const           { return _use_cmove; }
 628   void          set_use_cmove(bool z)           { _use_cmove = z; }
 629   bool              do_aliasing() const          { return _do_aliasing; }
 630   bool              print_assembly() const       { return _print_assembly; }
 631   void          set_print_assembly(bool z)       { _print_assembly = z; }
 632   bool              print_inlining() const       { return _print_inlining; }
 633   void          set_print_inlining(bool z)       { _print_inlining = z; }
 634   bool              print_intrinsics() const     { return _print_intrinsics; }
 635   void          set_print_intrinsics(bool z)     { _print_intrinsics = z; }
 636   uint              max_node_limit() const       { return (uint)_max_node_limit; }
 637   void          set_max_node_limit(uint n)       { _max_node_limit = n; }
 638   bool              clinit_barrier_on_entry()       { return _clinit_barrier_on_entry; }
 639   void          set_clinit_barrier_on_entry(bool z) { _clinit_barrier_on_entry = z; }
 640   bool              has_monitors() const         { return _has_monitors; }
 641   void          set_has_monitors(bool v)         { _has_monitors = v; }
 642   bool              has_scoped_access() const    { return _has_scoped_access; }
 643   void          set_has_scoped_access(bool v)    { _has_scoped_access = v; }
 644 
 645   // check the CompilerOracle for special behaviours for this compile
 646   bool          method_has_option(CompileCommandEnum option) const {
 647     return method() != nullptr && method()->has_option(option);
 648   }
 649 
 650 #ifndef PRODUCT
 651   uint          next_igv_idx()                  { return _igv_idx++; }
 652   bool          trace_opto_output() const       { return _trace_opto_output; }
 653   void          print_phase(const char* phase_name);
 654   void          print_ideal_ir(const char* phase_name);
 655   bool          should_print_ideal() const      { return _directive->PrintIdealOption; }
 656   bool              parsed_irreducible_loop() const { return _parsed_irreducible_loop; }
 657   void          set_parsed_irreducible_loop(bool z) { _parsed_irreducible_loop = z; }
 658   int _in_dump_cnt;  // Required for dumping ir nodes.
 659 #endif
 660   bool              has_irreducible_loop() const { return _has_irreducible_loop; }
 661   void          set_has_irreducible_loop(bool z) { _has_irreducible_loop = z; }
 662 
 663   // JSR 292
 664   bool              has_method_handle_invokes() const { return _has_method_handle_invokes;     }
 665   void          set_has_method_handle_invokes(bool z) {        _has_method_handle_invokes = z; }
 666 
 667   Ticks _latest_stage_start_counter;
 668 
 669   void begin_method();
 670   void end_method();
 671 
 672   void print_method(CompilerPhaseType cpt, int level, Node* n = nullptr);
 673 
 674 #ifndef PRODUCT
 675   bool should_print_igv(int level);
 676   bool should_print_phase(int level) const;
 677   bool should_print_ideal_phase(CompilerPhaseType cpt) const;
 678   void init_igv();
 679   void dump_igv(const char* graph_name, int level = 3) {
 680     if (should_print_igv(level)) {
 681       _igv_printer->print_graph(graph_name, nullptr);
 682     }
 683   }
 684 
 685   void igv_print_method_to_file(const char* phase_name = nullptr, bool append = false, const frame* fr = nullptr);
 686   void igv_print_method_to_network(const char* phase_name = nullptr, const frame* fr = nullptr);
 687   void igv_print_graph_to_network(const char* name, GrowableArray<const Node*>& visible_nodes, const frame* fr);
 688   static IdealGraphPrinter* debug_file_printer() { return _debug_file_printer; }
 689   static IdealGraphPrinter* debug_network_printer() { return _debug_network_printer; }
 690 #endif
 691 
 692   const GrowableArray<ParsePredicateNode*>& parse_predicates() const {
 693     return _parse_predicates;
 694   }
 695 
 696   const GrowableArray<OpaqueTemplateAssertionPredicateNode*>& template_assertion_predicate_opaques() const {
 697     return _template_assertion_predicate_opaques;
 698   }
 699 
 700   int           macro_count()             const { return _macro_nodes.length(); }
 701   int           parse_predicate_count()   const { return _parse_predicates.length(); }
 702   int           template_assertion_predicate_count() const { return _template_assertion_predicate_opaques.length(); }
 703   int           expensive_count()         const { return _expensive_nodes.length(); }
 704   int           coarsened_count()         const { return _coarsened_locks.length(); }
 705 
 706   Node*         macro_node(int idx)       const { return _macro_nodes.at(idx); }
 707 
 708   Node*         expensive_node(int idx)   const { return _expensive_nodes.at(idx); }
 709 
 710   ConnectionGraph* congraph()                   { return _congraph;}
 711   void set_congraph(ConnectionGraph* congraph)  { _congraph = congraph;}
 712   void add_macro_node(Node * n) {
 713     //assert(n->is_macro(), "must be a macro node");
 714     assert(!_macro_nodes.contains(n), "duplicate entry in expand list");
 715     _macro_nodes.append(n);
 716   }
 717   void remove_macro_node(Node* n) {
 718     // this function may be called twice for a node so we can only remove it
 719     // if it's still existing.
 720     _macro_nodes.remove_if_existing(n);
 721     // Remove from coarsened locks list if present
 722     if (coarsened_count() > 0) {
 723       remove_coarsened_lock(n);
 724     }
 725   }
 726   void add_expensive_node(Node* n);
 727   void remove_expensive_node(Node* n) {
 728     _expensive_nodes.remove_if_existing(n);
 729   }
 730 
 731   void add_parse_predicate(ParsePredicateNode* n) {
 732     assert(!_parse_predicates.contains(n), "duplicate entry in Parse Predicate list");
 733     _parse_predicates.append(n);
 734   }
 735 
 736   void remove_parse_predicate(ParsePredicateNode* n) {
 737     if (parse_predicate_count() > 0) {
 738       _parse_predicates.remove_if_existing(n);
 739     }
 740   }
 741 
 742   void add_template_assertion_predicate_opaque(OpaqueTemplateAssertionPredicateNode* n) {
 743     assert(!_template_assertion_predicate_opaques.contains(n),
 744            "Duplicate entry in Template Assertion Predicate OpaqueTemplateAssertionPredicate list");
 745     _template_assertion_predicate_opaques.append(n);
 746   }
 747 
 748   void remove_template_assertion_predicate_opaque(OpaqueTemplateAssertionPredicateNode* n) {
 749     if (template_assertion_predicate_count() > 0) {
 750       _template_assertion_predicate_opaques.remove_if_existing(n);
 751     }
 752   }
 753   void add_coarsened_locks(GrowableArray<AbstractLockNode*>& locks);
 754   void remove_coarsened_lock(Node* n);
 755   bool coarsened_locks_consistent();
 756   void mark_unbalanced_boxes() const;
 757 
 758   bool       post_loop_opts_phase() { return _post_loop_opts_phase;  }
 759   void   set_post_loop_opts_phase() { _post_loop_opts_phase = true;  }
 760   void reset_post_loop_opts_phase() { _post_loop_opts_phase = false; }
 761 
 762 #ifdef ASSERT
 763   bool       phase_verify_ideal_loop() const { return _phase_verify_ideal_loop; }
 764   void   set_phase_verify_ideal_loop() { _phase_verify_ideal_loop = true; }
 765   void reset_phase_verify_ideal_loop() { _phase_verify_ideal_loop = false; }
 766 #endif
 767 
 768   bool       allow_macro_nodes() { return _allow_macro_nodes;  }
 769   void reset_allow_macro_nodes() { _allow_macro_nodes = false;  }
 770 
 771   void record_for_post_loop_opts_igvn(Node* n);
 772   void remove_from_post_loop_opts_igvn(Node* n);
 773   void process_for_post_loop_opts_igvn(PhaseIterGVN& igvn);
 774 
 775   void record_unstable_if_trap(UnstableIfTrap* trap);
 776   bool remove_unstable_if_trap(CallStaticJavaNode* unc, bool yield);
 777   void remove_useless_unstable_if_traps(Unique_Node_List &useful);
 778   void process_for_unstable_if_traps(PhaseIterGVN& igvn);
 779 
 780   bool     merge_stores_phase() { return _merge_stores_phase;  }
 781   void set_merge_stores_phase() { _merge_stores_phase = true;  }
 782   void record_for_merge_stores_igvn(Node* n);
 783   void remove_from_merge_stores_igvn(Node* n);
 784   void process_for_merge_stores_igvn(PhaseIterGVN& igvn);
 785 
 786   void shuffle_macro_nodes();
 787   void sort_macro_nodes();
 788 
 789   void mark_parse_predicate_nodes_useless(PhaseIterGVN& igvn);
 790 
 791   // Are there candidate expensive nodes for optimization?
 792   bool should_optimize_expensive_nodes(PhaseIterGVN &igvn);
 793   // Check whether n1 and n2 are similar
 794   static int cmp_expensive_nodes(Node* n1, Node* n2);
 795   // Sort expensive nodes to locate similar expensive nodes
 796   void sort_expensive_nodes();
 797 
 798   // Compilation environment.
 799   Arena*      comp_arena()           { return &_comp_arena; }
 800   ciEnv*      env() const            { return _env; }
 801   CompileLog* log() const            { return _log; }
 802 
 803   bool        failing_internal() const {
 804     return _env->failing() ||
 805            _failure_reason.get() != nullptr;
 806   }
 807 
 808   const char* failure_reason() const {
 809     return _env->failing() ? _env->failure_reason()
 810                            : _failure_reason.get();
 811   }
 812 
 813   const CompilationFailureInfo* first_failure_details() const { return _first_failure_details; }
 814 
 815   bool failing() {
 816     if (failing_internal()) {
 817       return true;
 818     }
 819 #ifdef ASSERT
 820     // Disable stress code for PhaseIdealLoop verification (would have cascading effects).
 821     if (phase_verify_ideal_loop()) {
 822       return false;
 823     }
 824     if (StressBailout) {
 825       return fail_randomly();
 826     }
 827 #endif
 828     return false;
 829   }
 830 
 831 #ifdef ASSERT
 832   bool fail_randomly();
 833   bool failure_is_artificial();
 834 #endif
 835 
 836   bool failure_reason_is(const char* r) const {
 837     return (r == _failure_reason.get()) ||
 838            (r != nullptr &&
 839             _failure_reason.get() != nullptr &&
 840             strcmp(r, _failure_reason.get()) == 0);
 841   }
 842 
 843   void record_failure(const char* reason DEBUG_ONLY(COMMA bool allow_multiple_failures = false));
 844   void record_method_not_compilable(const char* reason DEBUG_ONLY(COMMA bool allow_multiple_failures = false)) {
 845     env()->record_method_not_compilable(reason);
 846     // Record failure reason.
 847     record_failure(reason DEBUG_ONLY(COMMA allow_multiple_failures));
 848   }
 849   bool check_node_count(uint margin, const char* reason) {
 850     if (oom()) {
 851       record_method_not_compilable_oom();
 852       return true;
 853     }
 854     if (live_nodes() + margin > max_node_limit()) {
 855       record_method_not_compilable(reason);
 856       return true;
 857     } else {
 858       return false;
 859     }
 860   }
 861   bool oom() const { return _oom; }
 862   void set_oom()   { _oom = true; }
 863 
 864   // Node management
 865   uint         unique() const              { return _unique; }
 866   uint         next_unique()               { return _unique++; }
 867   void         set_unique(uint i)          { _unique = i; }
 868   Arena*       node_arena()                { return _node_arena; }
 869   Arena*       old_arena()                 { return (&_node_arena_one == _node_arena) ? &_node_arena_two : &_node_arena_one; }
 870   RootNode*    root() const                { return _root; }
 871   void         set_root(RootNode* r)       { _root = r; }
 872   StartNode*   start() const;              // (Derived from root.)
 873   void         verify_start(StartNode* s) const NOT_DEBUG_RETURN;
 874   Node*        immutable_memory();
 875 
 876   Node*        recent_alloc_ctl() const    { return _recent_alloc_ctl; }
 877   Node*        recent_alloc_obj() const    { return _recent_alloc_obj; }
 878   void         set_recent_alloc(Node* ctl, Node* obj) {
 879                                                   _recent_alloc_ctl = ctl;
 880                                                   _recent_alloc_obj = obj;
 881                                            }
 882   void         record_dead_node(uint idx)  { if (_dead_node_list.test_set(idx)) return;
 883                                              _dead_node_count++;
 884                                            }
 885   void         reset_dead_node_list()      { _dead_node_list.reset();
 886                                              _dead_node_count = 0;
 887                                            }
 888   uint          live_nodes() const         {
 889     int  val = _unique - _dead_node_count;
 890     assert (val >= 0, "number of tracked dead nodes %d more than created nodes %d", _unique, _dead_node_count);
 891             return (uint) val;
 892                                            }
 893 #ifdef ASSERT
 894   void         set_phase_optimize_finished() { _phase_optimize_finished = true; }
 895   bool         phase_optimize_finished() const { return _phase_optimize_finished; }
 896   uint         count_live_nodes_by_graph_walk();
 897   void         print_missing_nodes();
 898 #endif
 899 
 900   // Record modified nodes to check that they are put on IGVN worklist
 901   void         record_modified_node(Node* n) NOT_DEBUG_RETURN;
 902   void         remove_modified_node(Node* n) NOT_DEBUG_RETURN;
 903   DEBUG_ONLY( Unique_Node_List*   modified_nodes() const { return _modified_nodes; } )
 904 
 905   MachConstantBaseNode*     mach_constant_base_node();
 906   bool                  has_mach_constant_base_node() const { return _mach_constant_base_node != nullptr; }
 907   // Generated by adlc, true if CallNode requires MachConstantBase.
 908   bool                      needs_deep_clone_jvms();
 909 
 910   // Handy undefined Node
 911   Node*             top() const                 { return _top; }
 912 
 913   // these are used by guys who need to know about creation and transformation of top:
 914   Node*             cached_top_node()           { return _top; }
 915   void          set_cached_top_node(Node* tn);
 916 
 917   GrowableArray<Node_Notes*>* node_note_array() const { return _node_note_array; }
 918   void set_node_note_array(GrowableArray<Node_Notes*>* arr) { _node_note_array = arr; }
 919   Node_Notes* default_node_notes() const        { return _default_node_notes; }
 920   void    set_default_node_notes(Node_Notes* n) { _default_node_notes = n; }
 921 
 922   Node_Notes*       node_notes_at(int idx);
 923 
 924   inline bool   set_node_notes_at(int idx, Node_Notes* value);
 925   // Copy notes from source to dest, if they exist.
 926   // Overwrite dest only if source provides something.
 927   // Return true if information was moved.
 928   bool copy_node_notes_to(Node* dest, Node* source);
 929 
 930   // Workhorse function to sort out the blocked Node_Notes array:
 931   inline Node_Notes* locate_node_notes(GrowableArray<Node_Notes*>* arr,
 932                                        int idx, bool can_grow = false);
 933 
 934   void grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by);
 935 
 936   // Type management
 937   Arena*            type_arena()                { return _type_arena; }
 938   Dict*             type_dict()                 { return _type_dict; }
 939   size_t            type_last_size()            { return _type_last_size; }
 940   int               num_alias_types()           { return _num_alias_types; }
 941 
 942   void          init_type_arena()                       { _type_arena = &_Compile_types; }
 943   void          set_type_arena(Arena* a)                { _type_arena = a; }
 944   void          set_type_dict(Dict* d)                  { _type_dict = d; }
 945   void          set_type_last_size(size_t sz)           { _type_last_size = sz; }
 946 
 947   const TypeFunc* last_tf(ciMethod* m) {
 948     return (m == _last_tf_m) ? _last_tf : nullptr;
 949   }
 950   void set_last_tf(ciMethod* m, const TypeFunc* tf) {
 951     assert(m != nullptr || tf == nullptr, "");
 952     _last_tf_m = m;
 953     _last_tf = tf;
 954   }
 955 
 956   AliasType*        alias_type(int                idx)  { assert(idx < num_alias_types(), "oob"); return _alias_types[idx]; }
 957   AliasType*        alias_type(const TypePtr* adr_type, ciField* field = nullptr) { return find_alias_type(adr_type, false, field); }
 958   bool         have_alias_type(const TypePtr* adr_type);
 959   AliasType*        alias_type(ciField*         field);
 960 
 961   int               get_alias_index(const TypePtr* at)  { return alias_type(at)->index(); }
 962   const TypePtr*    get_adr_type(uint aidx)             { return alias_type(aidx)->adr_type(); }
 963   int               get_general_index(uint aidx)        { return alias_type(aidx)->general_index(); }
 964 
 965   // Building nodes
 966   void              rethrow_exceptions(JVMState* jvms);
 967   void              return_values(JVMState* jvms);
 968   JVMState*         build_start_state(StartNode* start, const TypeFunc* tf);
 969 
 970   // Decide how to build a call.
 971   // The profile factor is a discount to apply to this site's interp. profile.
 972   CallGenerator*    call_generator(ciMethod* call_method, int vtable_index, bool call_does_dispatch,
 973                                    JVMState* jvms, bool allow_inline, float profile_factor, ciKlass* speculative_receiver_type = nullptr,
 974                                    bool allow_intrinsics = true);
 975   bool should_delay_inlining(ciMethod* call_method, JVMState* jvms) {
 976     return should_delay_string_inlining(call_method, jvms) ||
 977            should_delay_boxing_inlining(call_method, jvms) ||
 978            should_delay_vector_inlining(call_method, jvms);
 979   }
 980   bool should_delay_string_inlining(ciMethod* call_method, JVMState* jvms);
 981   bool should_delay_boxing_inlining(ciMethod* call_method, JVMState* jvms);
 982   bool should_delay_vector_inlining(ciMethod* call_method, JVMState* jvms);
 983   bool should_delay_vector_reboxing_inlining(ciMethod* call_method, JVMState* jvms);
 984 
 985   // Helper functions to identify inlining potential at call-site
 986   ciMethod* optimize_virtual_call(ciMethod* caller, ciInstanceKlass* klass,
 987                                   ciKlass* holder, ciMethod* callee,
 988                                   const TypeOopPtr* receiver_type, bool is_virtual,
 989                                   bool &call_does_dispatch, int &vtable_index,
 990                                   bool check_access = true);
 991   ciMethod* optimize_inlining(ciMethod* caller, ciInstanceKlass* klass, ciKlass* holder,
 992                               ciMethod* callee, const TypeOopPtr* receiver_type,
 993                               bool check_access = true);
 994 
 995   // Report if there were too many traps at a current method and bci.
 996   // Report if a trap was recorded, and/or PerMethodTrapLimit was exceeded.
 997   // If there is no MDO at all, report no trap unless told to assume it.
 998   bool too_many_traps(ciMethod* method, int bci, Deoptimization::DeoptReason reason);
 999   // This version, unspecific to a particular bci, asks if
1000   // PerMethodTrapLimit was exceeded for all inlined methods seen so far.
1001   bool too_many_traps(Deoptimization::DeoptReason reason,
1002                       // Privately used parameter for logging:
1003                       ciMethodData* logmd = nullptr);
1004   // Report if there were too many recompiles at a method and bci.
1005   bool too_many_recompiles(ciMethod* method, int bci, Deoptimization::DeoptReason reason);
1006   // Report if there were too many traps or recompiles at a method and bci.
1007   bool too_many_traps_or_recompiles(ciMethod* method, int bci, Deoptimization::DeoptReason reason) {
1008     return too_many_traps(method, bci, reason) ||
1009            too_many_recompiles(method, bci, reason);
1010   }
1011   // Return a bitset with the reasons where deoptimization is allowed,
1012   // i.e., where there were not too many uncommon traps.
1013   int _allowed_reasons;
1014   int      allowed_deopt_reasons() { return _allowed_reasons; }
1015   void set_allowed_deopt_reasons();
1016 
1017   // Parsing, optimization
1018   PhaseGVN*         initial_gvn()               { return _initial_gvn; }
1019   Unique_Node_List* igvn_worklist() {
1020     assert(_igvn_worklist != nullptr, "must be created in Compile::Compile");
1021     return _igvn_worklist;
1022   }
1023   Type_Array* types() {
1024     assert(_types != nullptr, "must be created in Compile::Compile");
1025     return _types;
1026   }
1027   NodeHash* node_hash() {
1028     assert(_node_hash != nullptr, "must be created in Compile::Compile");
1029     return _node_hash;
1030   }
1031   inline void       record_for_igvn(Node* n);   // Body is after class Unique_Node_List in node.hpp.
1032   inline void       remove_for_igvn(Node* n);   // Body is after class Unique_Node_List in node.hpp.
1033   void          set_initial_gvn(PhaseGVN *gvn)           { _initial_gvn = gvn; }
1034 
1035   // Replace n by nn using initial_gvn, calling hash_delete and
1036   // record_for_igvn as needed.
1037   void gvn_replace_by(Node* n, Node* nn);
1038 
1039 
1040   void              identify_useful_nodes(Unique_Node_List &useful);
1041   void              update_dead_node_list(Unique_Node_List &useful);
1042   void disconnect_useless_nodes(Unique_Node_List& useful, Unique_Node_List& worklist, const Unique_Node_List* root_and_safepoints = nullptr);
1043 
1044   void              remove_useless_node(Node* dead);
1045 
1046   // Record this CallGenerator for inlining at the end of parsing.
1047   void              add_late_inline(CallGenerator* cg)        {
1048     _late_inlines.insert_before(_late_inlines_pos, cg);
1049     _late_inlines_pos++;
1050   }
1051 
1052   void              prepend_late_inline(CallGenerator* cg)    {
1053     _late_inlines.insert_before(0, cg);
1054   }
1055 
1056   void              add_string_late_inline(CallGenerator* cg) {
1057     _string_late_inlines.push(cg);
1058   }
1059 
1060   void              add_boxing_late_inline(CallGenerator* cg) {
1061     _boxing_late_inlines.push(cg);
1062   }
1063 
1064   void              add_vector_reboxing_late_inline(CallGenerator* cg) {
1065     _vector_reboxing_late_inlines.push(cg);
1066   }
1067 
1068   template<typename N, ENABLE_IF(std::is_base_of<Node, N>::value)>
1069   void remove_useless_nodes(GrowableArray<N*>& node_list, Unique_Node_List& useful);
1070 
1071   void remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful);
1072   void remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Node* dead);
1073 
1074   void remove_useless_coarsened_locks(Unique_Node_List& useful);
1075 
1076   void dump_print_inlining();
1077 
1078   bool over_inlining_cutoff() const {
1079     if (!inlining_incrementally()) {
1080       return unique() > (uint)NodeCountInliningCutoff;
1081     } else {
1082       // Give some room for incremental inlining algorithm to "breathe"
1083       // and avoid thrashing when live node count is close to the limit.
1084       // Keep in mind that live_nodes() isn't accurate during inlining until
1085       // dead node elimination step happens (see Compile::inline_incrementally).
1086       return live_nodes() > (uint)LiveNodeCountInliningCutoff * 11 / 10;
1087     }
1088   }
1089 
1090   void inc_number_of_mh_late_inlines() { _number_of_mh_late_inlines++; }
1091   void dec_number_of_mh_late_inlines() { assert(_number_of_mh_late_inlines > 0, "_number_of_mh_late_inlines < 0 !"); _number_of_mh_late_inlines--; }
1092   bool has_mh_late_inlines() const     { return _number_of_mh_late_inlines > 0; }
1093 
1094   bool inline_incrementally_one();
1095   void inline_incrementally_cleanup(PhaseIterGVN& igvn);
1096   void inline_incrementally(PhaseIterGVN& igvn);
1097   bool should_delay_inlining() { return AlwaysIncrementalInline || (StressIncrementalInlining && (random() % 2) == 0); }
1098   void inline_string_calls(bool parse_time);
1099   void inline_boxing_calls(PhaseIterGVN& igvn);
1100   bool optimize_loops(PhaseIterGVN& igvn, LoopOptsMode mode);
1101   void remove_root_to_sfpts_edges(PhaseIterGVN& igvn);
1102 
1103   void inline_vector_reboxing_calls();
1104   bool has_vbox_nodes();
1105 
1106   void process_late_inline_calls_no_inline(PhaseIterGVN& igvn);
1107 
1108   // Matching, CFG layout, allocation, code generation
1109   PhaseCFG*         cfg()                       { return _cfg; }
1110   bool              has_java_calls() const      { return _java_calls > 0; }
1111   int               java_calls() const          { return _java_calls; }
1112   int               inner_loops() const         { return _inner_loops; }
1113   Matcher*          matcher()                   { return _matcher; }
1114   PhaseRegAlloc*    regalloc()                  { return _regalloc; }
1115   RegMask&          FIRST_STACK_mask()          { return _FIRST_STACK_mask; }
1116   Arena*            indexSet_arena()            { return _indexSet_arena; }
1117   void*             indexSet_free_block_list()  { return _indexSet_free_block_list; }
1118   DebugInformationRecorder* debug_info()        { return env()->debug_info(); }
1119 
1120   void  update_interpreter_frame_size(int size) {
1121     if (_interpreter_frame_size < size) {
1122       _interpreter_frame_size = size;
1123     }
1124   }
1125 
1126   void          set_matcher(Matcher* m)                 { _matcher = m; }
1127 //void          set_regalloc(PhaseRegAlloc* ra)           { _regalloc = ra; }
1128   void          set_indexSet_arena(Arena* a)            { _indexSet_arena = a; }
1129   void          set_indexSet_free_block_list(void* p)   { _indexSet_free_block_list = p; }
1130 
1131   void  set_java_calls(int z) { _java_calls  = z; }
1132   void set_inner_loops(int z) { _inner_loops = z; }
1133 
1134   Dependencies* dependencies() { return env()->dependencies(); }
1135 
1136   // Major entry point.  Given a Scope, compile the associated method.
1137   // For normal compilations, entry_bci is InvocationEntryBci.  For on stack
1138   // replacement, entry_bci indicates the bytecode for which to compile a
1139   // continuation.
1140   Compile(ciEnv* ci_env, ciMethod* target,
1141           int entry_bci, Options options, DirectiveSet* directive);
1142 
1143   // Second major entry point.  From the TypeFunc signature, generate code
1144   // to pass arguments from the Java calling convention to the C calling
1145   // convention.
1146   Compile(ciEnv* ci_env, const TypeFunc *(*gen)(),
1147           address stub_function, const char *stub_name,
1148           int stub_id, int is_fancy_jump, bool pass_tls,
1149           bool return_pc, DirectiveSet* directive);
1150 
1151   ~Compile();
1152 
1153   // Are we compiling a method?
1154   bool has_method() { return method() != nullptr; }
1155 
1156   // Maybe print some information about this compile.
1157   void print_compile_messages();
1158 
1159   // Final graph reshaping, a post-pass after the regular optimizer is done.
1160   bool final_graph_reshaping();
1161 
1162   // returns true if adr is completely contained in the given alias category
1163   bool must_alias(const TypePtr* adr, int alias_idx);
1164 
1165   // returns true if adr overlaps with the given alias category
1166   bool can_alias(const TypePtr* adr, int alias_idx);
1167 
1168   // Stack slots that may be unused by the calling convention but must
1169   // otherwise be preserved.  On Intel this includes the return address.
1170   // On PowerPC it includes the 4 words holding the old TOC & LR glue.
1171   uint in_preserve_stack_slots() {
1172     return SharedRuntime::in_preserve_stack_slots();
1173   }
1174 
1175   // "Top of Stack" slots that may be unused by the calling convention but must
1176   // otherwise be preserved.
1177   // On Intel these are not necessary and the value can be zero.
1178   static uint out_preserve_stack_slots() {
1179     return SharedRuntime::out_preserve_stack_slots();
1180   }
1181 
1182   // Number of outgoing stack slots killed above the out_preserve_stack_slots
1183   // for calls to C.  Supports the var-args backing area for register parms.
1184   uint varargs_C_out_slots_killed() const;
1185 
1186   // Number of Stack Slots consumed by a synchronization entry
1187   int sync_stack_slots() const;
1188 
1189   // Compute the name of old_SP.  See <arch>.ad for frame layout.
1190   OptoReg::Name compute_old_SP();
1191 
1192  private:
1193   // Phase control:
1194   void Init(bool aliasing);                      // Prepare for a single compilation
1195   void Optimize();                               // Given a graph, optimize it
1196   void Code_Gen();                               // Generate code from a graph
1197 
1198   // Management of the AliasType table.
1199   void grow_alias_types();
1200   AliasCacheEntry* probe_alias_cache(const TypePtr* adr_type);
1201   const TypePtr *flatten_alias_type(const TypePtr* adr_type) const;
1202   AliasType* find_alias_type(const TypePtr* adr_type, bool no_create, ciField* field);
1203 
1204   void verify_top(Node*) const PRODUCT_RETURN;
1205 
1206   // Intrinsic setup.
1207   CallGenerator* make_vm_intrinsic(ciMethod* m, bool is_virtual);          // constructor
1208   int            intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found);  // helper
1209   CallGenerator* find_intrinsic(ciMethod* m, bool is_virtual);             // query fn
1210   void           register_intrinsic(CallGenerator* cg);                    // update fn
1211 
1212 #ifndef PRODUCT
1213   static juint  _intrinsic_hist_count[];
1214   static jubyte _intrinsic_hist_flags[];
1215 #endif
1216   // Function calls made by the public function final_graph_reshaping.
1217   // No need to be made public as they are not called elsewhere.
1218   void final_graph_reshaping_impl(Node *n, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes);
1219   void final_graph_reshaping_main_switch(Node* n, Final_Reshape_Counts& frc, uint nop, Unique_Node_List& dead_nodes);
1220   void final_graph_reshaping_walk(Node_Stack& nstack, Node* root, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes);
1221   void handle_div_mod_op(Node* n, BasicType bt, bool is_unsigned);
1222 
1223   // Logic cone optimization.
1224   void optimize_logic_cones(PhaseIterGVN &igvn);
1225   void collect_logic_cone_roots(Unique_Node_List& list);
1226   void process_logic_cone_root(PhaseIterGVN &igvn, Node* n, VectorSet& visited);
1227   bool compute_logic_cone(Node* n, Unique_Node_List& partition, Unique_Node_List& inputs);
1228   uint compute_truth_table(Unique_Node_List& partition, Unique_Node_List& inputs);
1229   uint eval_macro_logic_op(uint func, uint op1, uint op2, uint op3);
1230   Node* xform_to_MacroLogicV(PhaseIterGVN &igvn, const TypeVect* vt, Unique_Node_List& partitions, Unique_Node_List& inputs);
1231   void check_no_dead_use() const NOT_DEBUG_RETURN;
1232 
1233  public:
1234 
1235   // Note:  Histogram array size is about 1 Kb.
1236   enum {                        // flag bits:
1237     _intrinsic_worked = 1,      // succeeded at least once
1238     _intrinsic_failed = 2,      // tried it but it failed
1239     _intrinsic_disabled = 4,    // was requested but disabled (e.g., -XX:-InlineUnsafeOps)
1240     _intrinsic_virtual = 8,     // was seen in the virtual form (rare)
1241     _intrinsic_both = 16        // was seen in the non-virtual form (usual)
1242   };
1243   // Update histogram.  Return boolean if this is a first-time occurrence.
1244   static bool gather_intrinsic_statistics(vmIntrinsics::ID id,
1245                                           bool is_virtual, int flags) PRODUCT_RETURN0;
1246   static void print_intrinsic_statistics() PRODUCT_RETURN;
1247 
1248   // Graph verification code
1249   // Walk the node list, verifying that there is a one-to-one correspondence
1250   // between Use-Def edges and Def-Use edges. The option no_dead_code enables
1251   // stronger checks that the graph is strongly connected from starting points
1252   // in both directions.
1253   // root_and_safepoints is used to give the starting points for the traversal.
1254   // If not supplied, only root is used. When this check is called after CCP,
1255   // we need to start traversal from Root and safepoints, just like CCP does its
1256   // own traversal (see PhaseCCP::transform for reasons).
1257   //
1258   // To call this function, there are 2 ways to go:
1259   // - give root_and_safepoints to start traversal everywhere needed (like after CCP)
1260   // - if the whole graph is assumed to be reachable from Root's input,
1261   //   root_and_safepoints is not needed (like in PhaseRemoveUseless).
1262   //
1263   // Failure to specify root_and_safepoints in case the graph is not fully
1264   // reachable from Root's input make this check unsound (can miss inconsistencies)
1265   // and even incomplete (can make up non-existing problems) if no_dead_code is
1266   // true.
1267   void verify_graph_edges(bool no_dead_code = false, const Unique_Node_List* root_and_safepoints = nullptr) const PRODUCT_RETURN;
1268 
1269   // Verify bi-directional correspondence of edges
1270   void verify_bidirectional_edges(Unique_Node_List& visited, const Unique_Node_List* root_and_safepoints = nullptr) const;
1271 
1272   // End-of-run dumps.
1273   static void print_statistics() PRODUCT_RETURN;
1274 
1275   // Verify ADLC assumptions during startup
1276   static void adlc_verification() PRODUCT_RETURN;
1277 
1278   // Definitions of pd methods
1279   static void pd_compiler2_init();
1280 
1281   // Static parse-time type checking logic for gen_subtype_check:
1282   enum SubTypeCheckResult { SSC_always_false, SSC_always_true, SSC_easy_test, SSC_full_test };
1283   SubTypeCheckResult static_subtype_check(const TypeKlassPtr* superk, const TypeKlassPtr* subk, bool skip = StressReflectiveCode);
1284 
1285   static Node* conv_I2X_index(PhaseGVN* phase, Node* offset, const TypeInt* sizetype,
1286                               // Optional control dependency (for example, on range check)
1287                               Node* ctrl = nullptr);
1288 
1289   // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check)
1290   static Node* constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl, bool carry_dependency = false);
1291 
1292   // Auxiliary methods for randomized fuzzing/stressing
1293   int random();
1294   bool randomized_select(int count);
1295 
1296   // seed random number generation and log the seed for repeatability.
1297   void initialize_stress_seed(const DirectiveSet* directive);
1298 
1299   // supporting clone_map
1300   CloneMap&     clone_map();
1301   void          set_clone_map(Dict* d);
1302 
1303   bool needs_clinit_barrier(ciField* ik,         ciMethod* accessing_method);
1304   bool needs_clinit_barrier(ciMethod* ik,        ciMethod* accessing_method);
1305   bool needs_clinit_barrier(ciInstanceKlass* ik, ciMethod* accessing_method);
1306 
1307 #ifdef ASSERT
1308   VerifyMeetResult* _type_verify;
1309   void set_exception_backedge() { _exception_backedge = true; }
1310   bool has_exception_backedge() const { return _exception_backedge; }
1311 #endif
1312 
1313   static bool push_thru_add(PhaseGVN* phase, Node* z, const TypeInteger* tz, const TypeInteger*& rx, const TypeInteger*& ry,
1314                             BasicType out_bt, BasicType in_bt);
1315 
1316   static Node* narrow_value(BasicType bt, Node* value, const Type* type, PhaseGVN* phase, bool transform_res);
1317 };
1318 
1319 #endif // SHARE_OPTO_COMPILE_HPP