1 /*
   2  * Copyright (c) 1997, 2026, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_OPTO_COMPILE_HPP
  26 #define SHARE_OPTO_COMPILE_HPP
  27 
  28 #include "asm/codeBuffer.hpp"
  29 #include "ci/compilerInterface.hpp"
  30 #include "code/debugInfoRec.hpp"
  31 #include "compiler/cHeapStringHolder.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/compiler_globals.hpp"
  34 #include "compiler/compilerEvent.hpp"
  35 #include "libadt/dict.hpp"
  36 #include "libadt/vectset.hpp"
  37 #include "memory/resourceArea.hpp"
  38 #include "oops/methodData.hpp"
  39 #include "opto/idealGraphPrinter.hpp"
  40 #include "opto/phase.hpp"
  41 #include "opto/phasetype.hpp"
  42 #include "opto/printinlining.hpp"
  43 #include "opto/regmask.hpp"
  44 #include "runtime/deoptimization.hpp"
  45 #include "runtime/sharedRuntime.hpp"
  46 #include "runtime/timerTrace.hpp"
  47 #include "runtime/vmThread.hpp"
  48 #include "utilities/ticks.hpp"
  49 #include "utilities/vmEnums.hpp"
  50 
  51 class AbstractLockNode;
  52 class AddPNode;
  53 class Block;
  54 class Bundle;
  55 class CallGenerator;
  56 class CallStaticJavaNode;
  57 class CloneMap;
  58 class CompilationFailureInfo;
  59 class ConnectionGraph;
  60 class IdealGraphPrinter;
  61 class InlineTree;
  62 class Matcher;
  63 class MachConstantNode;
  64 class MachConstantBaseNode;
  65 class MachNode;
  66 class MachOper;
  67 class MachSafePointNode;
  68 class Node;
  69 class Node_Array;
  70 class Node_List;
  71 class Node_Notes;
  72 class NodeHash;
  73 class NodeCloneInfo;
  74 class OpaqueTemplateAssertionPredicateNode;
  75 class OptoReg;
  76 class ParsePredicateNode;
  77 class PhaseCFG;
  78 class PhaseGVN;
  79 class PhaseIterGVN;
  80 class PhaseRegAlloc;
  81 class PhaseCCP;
  82 class PhaseOutput;
  83 class RootNode;
  84 class relocInfo;
  85 class StartNode;
  86 class SafePointNode;
  87 class JVMState;
  88 class Type;
  89 class TypeInt;
  90 class TypeInteger;
  91 class TypeKlassPtr;
  92 class TypePtr;
  93 class TypeOopPtr;
  94 class TypeFunc;
  95 class TypeVect;
  96 class Type_Array;
  97 class Unique_Node_List;
  98 class UnstableIfTrap;
  99 class nmethod;
 100 class Node_Stack;
 101 struct Final_Reshape_Counts;
 102 class VerifyMeetResult;
 103 
 104 enum LoopOptsMode {
 105   LoopOptsDefault,
 106   LoopOptsNone,
 107   LoopOptsMaxUnroll,
 108   LoopOptsShenandoahExpand,
 109   LoopOptsSkipSplitIf,
 110   LoopOptsVerify
 111 };
 112 
 113 // The type of all node counts and indexes.
 114 // It must hold at least 16 bits, but must also be fast to load and store.
 115 // This type, if less than 32 bits, could limit the number of possible nodes.
 116 // (To make this type platform-specific, move to globalDefinitions_xxx.hpp.)
 117 typedef unsigned int node_idx_t;
 118 
 119 class NodeCloneInfo {
 120  private:
 121   uint64_t _idx_clone_orig;
 122  public:
 123 
 124   void set_idx(node_idx_t idx) {
 125     _idx_clone_orig = (_idx_clone_orig & CONST64(0xFFFFFFFF00000000)) | idx;
 126   }
 127   node_idx_t idx() const { return (node_idx_t)(_idx_clone_orig & 0xFFFFFFFF); }
 128 
 129   void set_gen(int generation) {
 130     uint64_t g = (uint64_t)generation << 32;
 131     _idx_clone_orig = (_idx_clone_orig & 0xFFFFFFFF) | g;
 132   }
 133   int gen() const { return (int)(_idx_clone_orig >> 32); }
 134 
 135   void set(uint64_t x) { _idx_clone_orig = x; }
 136   void set(node_idx_t x, int g) { set_idx(x); set_gen(g); }
 137   uint64_t get() const { return _idx_clone_orig; }
 138 
 139   NodeCloneInfo(uint64_t idx_clone_orig) : _idx_clone_orig(idx_clone_orig) {}
 140   NodeCloneInfo(node_idx_t x, int g) : _idx_clone_orig(0) { set(x, g); }
 141 
 142   void dump_on(outputStream* st) const;
 143 };
 144 
 145 class CloneMap {
 146   friend class Compile;
 147  private:
 148   bool      _debug;
 149   Dict*     _dict;
 150   int       _clone_idx;   // current cloning iteration/generation in loop unroll
 151  public:
 152   void*     _2p(node_idx_t key)   const          { return (void*)(intptr_t)key; } // 2 conversion functions to make gcc happy
 153   node_idx_t _2_node_idx_t(const void* k) const  { return (node_idx_t)(intptr_t)k; }
 154   Dict*     dict()                const          { return _dict; }
 155   void insert(node_idx_t key, uint64_t val)      { assert(_dict->operator[](_2p(key)) == nullptr, "key existed"); _dict->Insert(_2p(key), (void*)val); }
 156   void insert(node_idx_t key, NodeCloneInfo& ci) { insert(key, ci.get()); }
 157   void remove(node_idx_t key)                    { _dict->Delete(_2p(key)); }
 158   uint64_t value(node_idx_t key)  const          { return (uint64_t)_dict->operator[](_2p(key)); }
 159   node_idx_t idx(node_idx_t key)  const          { return NodeCloneInfo(value(key)).idx(); }
 160   int gen(node_idx_t key)         const          { return NodeCloneInfo(value(key)).gen(); }
 161   int gen(const void* k)          const          { return gen(_2_node_idx_t(k)); }
 162   int max_gen()                   const;
 163   void clone(Node* old, Node* nnn, int gen);
 164   void verify_insert_and_clone(Node* old, Node* nnn, int gen);
 165   void dump(node_idx_t key, outputStream* st) const;
 166 
 167   int  clone_idx() const                         { return _clone_idx; }
 168   void set_clone_idx(int x)                      { _clone_idx = x; }
 169   bool is_debug()                 const          { return _debug; }
 170   void set_debug(bool debug)                     { _debug = debug; }
 171 
 172   bool same_idx(node_idx_t k1, node_idx_t k2)  const { return idx(k1) == idx(k2); }
 173   bool same_gen(node_idx_t k1, node_idx_t k2)  const { return gen(k1) == gen(k2); }
 174 };
 175 
 176 class Options {
 177   friend class Compile;
 178  private:
 179   const bool _subsume_loads;         // Load can be matched as part of a larger op.
 180   const bool _do_escape_analysis;    // Do escape analysis.
 181   const bool _do_iterative_escape_analysis;  // Do iterative escape analysis.
 182   const bool _do_reduce_allocation_merges;  // Do try to reduce allocation merges.
 183   const bool _eliminate_boxing;      // Do boxing elimination.
 184   const bool _do_locks_coarsening;   // Do locks coarsening
 185   const bool _do_superword;          // Do SuperWord
 186   const bool _install_code;          // Install the code that was compiled
 187  public:
 188   Options(bool subsume_loads,
 189           bool do_escape_analysis,
 190           bool do_iterative_escape_analysis,
 191           bool do_reduce_allocation_merges,
 192           bool eliminate_boxing,
 193           bool do_locks_coarsening,
 194           bool do_superword,
 195           bool install_code) :
 196           _subsume_loads(subsume_loads),
 197           _do_escape_analysis(do_escape_analysis),
 198           _do_iterative_escape_analysis(do_iterative_escape_analysis),
 199           _do_reduce_allocation_merges(do_reduce_allocation_merges),
 200           _eliminate_boxing(eliminate_boxing),
 201           _do_locks_coarsening(do_locks_coarsening),
 202           _do_superword(do_superword),
 203           _install_code(install_code) {
 204   }
 205 
 206   static Options for_runtime_stub() {
 207     return Options(
 208        /* subsume_loads = */ true,
 209        /* do_escape_analysis = */ false,
 210        /* do_iterative_escape_analysis = */ false,
 211        /* do_reduce_allocation_merges = */ false,
 212        /* eliminate_boxing = */ false,
 213        /* do_lock_coarsening = */ false,
 214        /* do_superword = */ true,
 215        /* install_code = */ true
 216     );
 217   }
 218 };
 219 
 220 //------------------------------Compile----------------------------------------
 221 // This class defines a top-level Compiler invocation.
 222 
 223 class Compile : public Phase {
 224 
 225  public:
 226   // Fixed alias indexes.  (See also MergeMemNode.)
 227   enum {
 228     AliasIdxTop = 1,  // pseudo-index, aliases to nothing (used as sentinel value)
 229     AliasIdxBot = 2,  // pseudo-index, aliases to everything
 230     AliasIdxRaw = 3   // hard-wired index for TypeRawPtr::BOTTOM
 231   };
 232 
 233   // Variant of TraceTime(nullptr, &_t_accumulator, CITime);
 234   // Integrated with logging.  If logging is turned on, and CITimeVerbose is true,
 235   // then brackets are put into the log, with time stamps and node counts.
 236   // (The time collection itself is always conditionalized on CITime.)
 237   class TracePhase : public TraceTime {
 238    private:
 239     Compile* const _compile;
 240     CompileLog* _log;
 241     const bool _dolog;
 242    public:
 243     TracePhase(PhaseTraceId phaseTraceId);
 244     TracePhase(const char* name, PhaseTraceId phaseTraceId);
 245     ~TracePhase();
 246     const char* phase_name() const { return title(); }
 247   };
 248 
 249   // Information per category of alias (memory slice)
 250   class AliasType {
 251    private:
 252     friend class Compile;
 253 
 254     int             _index;         // unique index, used with MergeMemNode
 255     const TypePtr*  _adr_type;      // normalized address type
 256     ciField*        _field;         // relevant instance field, or null if none
 257     const Type*     _element;       // relevant array element type, or null if none
 258     bool            _is_rewritable; // false if the memory is write-once only
 259     int             _general_index; // if this is type is an instance, the general
 260                                     // type that this is an instance of
 261 
 262     void Init(int i, const TypePtr* at);
 263 
 264    public:
 265     int             index()         const { return _index; }
 266     const TypePtr*  adr_type()      const { return _adr_type; }
 267     ciField*        field()         const { return _field; }
 268     const Type*     element()       const { return _element; }
 269     bool            is_rewritable() const { return _is_rewritable; }
 270     bool            is_volatile()   const { return (_field ? _field->is_volatile() : false); }
 271     int             general_index() const { return (_general_index != 0) ? _general_index : _index; }
 272 
 273     void set_rewritable(bool z) { _is_rewritable = z; }
 274     void set_field(ciField* f) {
 275       assert(!_field,"");
 276       _field = f;
 277       if (f->is_final() || f->is_stable()) {
 278         // In the case of @Stable, multiple writes are possible but may be assumed to be no-ops.
 279         _is_rewritable = false;
 280       }
 281     }
 282     void set_element(const Type* e) {
 283       assert(_element == nullptr, "");
 284       _element = e;
 285     }
 286 
 287     BasicType basic_type() const;
 288 
 289     void print_on(outputStream* st) PRODUCT_RETURN;
 290   };
 291 
 292   enum {
 293     logAliasCacheSize = 6,
 294     AliasCacheSize = (1<<logAliasCacheSize)
 295   };
 296   struct AliasCacheEntry { const TypePtr* _adr_type; int _index; };  // simple duple type
 297   enum {
 298     trapHistLength = MethodData::_trap_hist_limit
 299   };
 300 
 301  private:
 302   // Fixed parameters to this compilation.
 303   const int             _compile_id;
 304   const Options         _options;               // Compilation options
 305   ciMethod*             _method;                // The method being compiled.
 306   int                   _entry_bci;             // entry bci for osr methods.
 307   const TypeFunc*       _tf;                    // My kind of signature
 308   InlineTree*           _ilt;                   // Ditto (temporary).
 309   address               _stub_function;         // VM entry for stub being compiled, or null
 310   const char*           _stub_name;             // Name of stub or adapter being compiled, or null
 311   StubId                   _stub_id;               // unique id for stub or NO_STUBID
 312   address               _stub_entry_point;      // Compile code entry for generated stub, or null
 313 
 314   // Control of this compilation.
 315   int                   _max_inline_size;       // Max inline size for this compilation
 316   int                   _freq_inline_size;      // Max hot method inline size for this compilation
 317   int                   _fixed_slots;           // count of frame slots not allocated by the register
 318                                                 // allocator i.e. locks, original deopt pc, etc.
 319   uintx                 _max_node_limit;        // Max unique node count during a single compilation.
 320 
 321   bool                  _post_loop_opts_phase;  // Loop opts are finished.
 322   bool                  _merge_stores_phase;    // Phase for merging stores, after post loop opts phase.
 323   bool                  _allow_macro_nodes;     // True if we allow creation of macro nodes.
 324 
 325   /* If major progress is set:
 326    *   Marks that the loop tree information (get_ctrl, idom, get_loop, etc.) could be invalid, and we need to rebuild the loop tree.
 327    *   It also indicates that the graph was changed in a way that is promising to be able to apply more loop optimization.
 328    * If major progress is not set:
 329    *   Loop tree information is valid.
 330    *   If major progress is not set at the end of a loop opts phase, then we can stop loop opts, because we do not expect any further progress if we did more loop opts phases.
 331    *
 332    * This is not 100% accurate, the semantics of major progress has become less clear over time, but this is the general idea.
 333    */
 334   bool                  _major_progress;
 335   bool                  _inlining_progress;     // progress doing incremental inlining?
 336   bool                  _inlining_incrementally;// Are we doing incremental inlining (post parse)
 337   bool                  _do_cleanup;            // Cleanup is needed before proceeding with incremental inlining
 338   bool                  _has_loops;             // True if the method _may_ have some loops
 339   bool                  _has_split_ifs;         // True if the method _may_ have some split-if
 340   bool                  _has_unsafe_access;     // True if the method _may_ produce faults in unsafe loads or stores.
 341   bool                  _has_stringbuilder;     // True StringBuffers or StringBuilders are allocated
 342   bool                  _has_boxed_value;       // True if a boxed object is allocated
 343   bool                  _has_reserved_stack_access; // True if the method or an inlined method is annotated with ReservedStackAccess
 344   uint                  _max_vector_size;       // Maximum size of generated vectors
 345   bool                  _clear_upper_avx;       // Clear upper bits of ymm registers using vzeroupper
 346   uint                  _trap_hist[trapHistLength];  // Cumulative traps
 347   bool                  _trap_can_recompile;    // Have we emitted a recompiling trap?
 348   uint                  _decompile_count;       // Cumulative decompilation counts.
 349   bool                  _do_inlining;           // True if we intend to do inlining
 350   bool                  _do_scheduling;         // True if we intend to do scheduling
 351   bool                  _do_freq_based_layout;  // True if we intend to do frequency based block layout
 352   bool                  _do_vector_loop;        // True if allowed to execute loop in parallel iterations
 353   bool                  _use_cmove;             // True if CMove should be used without profitability analysis
 354   bool                  _do_aliasing;           // True if we intend to do aliasing
 355   bool                  _print_assembly;        // True if we should dump assembly code for this compilation
 356   bool                  _print_inlining;        // True if we should print inlining for this compilation
 357   bool                  _print_intrinsics;      // True if we should print intrinsics for this compilation
 358   bool                  _print_phase_loop_opts; // True if we should print before and after loop opts phase
 359 #ifndef PRODUCT
 360   uint                  _phase_counter;         // Counter for the number of already printed phases
 361   uint                  _igv_idx;               // Counter for IGV node identifiers
 362   uint                  _igv_phase_iter[PHASE_NUM_TYPES]; // Counters for IGV phase iterations
 363   bool                  _trace_opto_output;
 364   bool                  _parsed_irreducible_loop; // True if ciTypeFlow detected irreducible loops during parsing
 365 #endif
 366   bool                  _has_irreducible_loop;  // Found irreducible loops
 367   bool                  _has_monitors;          // Metadata transfered to nmethod to enable Continuations lock-detection fastpath
 368   bool                  _has_scoped_access;     // For shared scope closure
 369   bool                  _clinit_barrier_on_entry; // True if clinit barrier is needed on nmethod entry
 370   int                   _loop_opts_cnt;         // loop opts round
 371   uint                  _stress_seed;           // Seed for stress testing
 372 
 373   // Compilation environment.
 374   Arena                 _comp_arena;            // Arena with lifetime equivalent to Compile
 375   void*                 _barrier_set_state;     // Potential GC barrier state for Compile
 376   ciEnv*                _env;                   // CI interface
 377   DirectiveSet*         _directive;             // Compiler directive
 378   CompileLog*           _log;                   // from CompilerThread
 379   CHeapStringHolder     _failure_reason;        // for record_failure/failing pattern
 380   CompilationFailureInfo* _first_failure_details; // Details for the first failure happening during compilation
 381   GrowableArray<CallGenerator*> _intrinsics;    // List of intrinsics.
 382   GrowableArray<Node*>  _macro_nodes;           // List of nodes which need to be expanded before matching.
 383   GrowableArray<ParsePredicateNode*> _parse_predicates; // List of Parse Predicates.
 384   // List of OpaqueTemplateAssertionPredicateNode nodes for Template Assertion Predicates which can be seen as list
 385   // of Template Assertion Predicates themselves.
 386   GrowableArray<OpaqueTemplateAssertionPredicateNode*>  _template_assertion_predicate_opaques;
 387   GrowableArray<Node*>  _expensive_nodes;       // List of nodes that are expensive to compute and that we'd better not let the GVN freely common
 388   GrowableArray<Node*>  _for_post_loop_igvn;    // List of nodes for IGVN after loop opts are over
 389   GrowableArray<Node*>  _for_merge_stores_igvn; // List of nodes for IGVN merge stores
 390   GrowableArray<UnstableIfTrap*> _unstable_if_traps;        // List of ifnodes after IGVN
 391   GrowableArray<Node_List*> _coarsened_locks;   // List of coarsened Lock and Unlock nodes
 392   ConnectionGraph*      _congraph;
 393 #ifndef PRODUCT
 394   IdealGraphPrinter*    _igv_printer;
 395   static IdealGraphPrinter* _debug_file_printer;
 396   static IdealGraphPrinter* _debug_network_printer;
 397 #endif
 398 
 399 
 400   // Node management
 401   uint                  _unique;                // Counter for unique Node indices
 402   uint                  _dead_node_count;       // Number of dead nodes; VectorSet::Size() is O(N).
 403                                                 // So use this to keep count and make the call O(1).
 404   VectorSet             _dead_node_list;        // Set of dead nodes
 405   DEBUG_ONLY(Unique_Node_List* _modified_nodes;)   // List of nodes which inputs were modified
 406   DEBUG_ONLY(bool       _phase_optimize_finished;) // Used for live node verification while creating new nodes
 407 
 408   DEBUG_ONLY(bool       _phase_verify_ideal_loop;) // Are we in PhaseIdealLoop verification?
 409 
 410   // Arenas for new-space and old-space nodes.
 411   // Swapped between using _node_arena.
 412   // The lifetime of the old-space nodes is during xform.
 413   Arena                 _node_arena_one;
 414   Arena                 _node_arena_two;
 415   Arena*                _node_arena;
 416 public:
 417   Arena* swap_old_and_new() {
 418     Arena* filled_arena_ptr = _node_arena;
 419     Arena* old_arena_ptr = old_arena();
 420     old_arena_ptr->destruct_contents();
 421     _node_arena = old_arena_ptr;
 422     return filled_arena_ptr;
 423   }
 424 private:
 425   RootNode*             _root;                  // Unique root of compilation, or null after bail-out.
 426   Node*                 _top;                   // Unique top node.  (Reset by various phases.)
 427 
 428   Node*                 _immutable_memory;      // Initial memory state
 429 
 430   Node*                 _recent_alloc_obj;
 431   Node*                 _recent_alloc_ctl;
 432 
 433   // Constant table
 434   MachConstantBaseNode* _mach_constant_base_node;  // Constant table base node singleton.
 435 
 436 
 437   // Blocked array of debugging and profiling information,
 438   // tracked per node.
 439   enum { _log2_node_notes_block_size = 8,
 440          _node_notes_block_size = (1<<_log2_node_notes_block_size)
 441   };
 442   GrowableArray<Node_Notes*>* _node_note_array;
 443   Node_Notes*           _default_node_notes;  // default notes for new nodes
 444 
 445   // After parsing and every bulk phase we hang onto the Root instruction.
 446   // The RootNode instruction is where the whole program begins.  It produces
 447   // the initial Control and BOTTOM for everybody else.
 448 
 449   // Type management
 450   Arena                 _Compile_types;         // Arena for all types
 451   Arena*                _type_arena;            // Alias for _Compile_types except in Initialize_shared()
 452   Dict*                 _type_dict;             // Intern table
 453   CloneMap              _clone_map;             // used for recording history of cloned nodes
 454   size_t                _type_last_size;        // Last allocation size (see Type::operator new/delete)
 455   ciMethod*             _last_tf_m;             // Cache for
 456   const TypeFunc*       _last_tf;               //  TypeFunc::make
 457   AliasType**           _alias_types;           // List of alias types seen so far.
 458   int                   _num_alias_types;       // Logical length of _alias_types
 459   int                   _max_alias_types;       // Physical length of _alias_types
 460   AliasCacheEntry       _alias_cache[AliasCacheSize]; // Gets aliases w/o data structure walking
 461 
 462   // Parsing, optimization
 463   PhaseGVN*             _initial_gvn;           // Results of parse-time PhaseGVN
 464 
 465   // Shared worklist for all IGVN rounds. Nodes can be pushed to it at any time.
 466   // If pushed outside IGVN, the Node is processed in the next IGVN round.
 467   Unique_Node_List*     _igvn_worklist;
 468 
 469   // Shared type array for GVN, IGVN and CCP. It maps node idx -> Type*.
 470   Type_Array*           _types;
 471 
 472   // Shared node hash table for GVN, IGVN and CCP.
 473   NodeHash*             _node_hash;
 474 
 475   GrowableArray<CallGenerator*> _late_inlines;        // List of CallGenerators to be revisited after main parsing has finished.
 476   GrowableArray<CallGenerator*> _string_late_inlines; // same but for string operations
 477   GrowableArray<CallGenerator*> _boxing_late_inlines; // same but for boxing operations
 478 
 479   GrowableArray<CallGenerator*> _vector_reboxing_late_inlines; // same but for vector reboxing operations
 480 
 481   int                           _late_inlines_pos;    // Where in the queue should the next late inlining candidate go (emulate depth first inlining)
 482   bool                          _has_mh_late_inlines; // Can there still be a method handle late inlining pending?
 483                                                       // false: there can't be one
 484                                                       // true: we've enqueued one at some point so there may still be one
 485 
 486   // "MemLimit" directive was specified and the memory limit was hit during compilation
 487   bool                          _oom;
 488 
 489   // Only keep nodes in the expensive node list that need to be optimized
 490   void cleanup_expensive_nodes(PhaseIterGVN &igvn);
 491   // Use for sorting expensive nodes to bring similar nodes together
 492   static int cmp_expensive_nodes(Node** n1, Node** n2);
 493   // Expensive nodes list already sorted?
 494   bool expensive_nodes_sorted() const;
 495   // Remove the speculative part of types and clean up the graph
 496   void remove_speculative_types(PhaseIterGVN &igvn);
 497 
 498   void* _replay_inline_data; // Pointer to data loaded from file
 499 
 500   void log_late_inline_failure(CallGenerator* cg, const char* msg);
 501   DEBUG_ONLY(bool _exception_backedge;)
 502 
 503   void record_method_not_compilable_oom();
 504 
 505   InlinePrinter _inline_printer;
 506 
 507 public:
 508   void* barrier_set_state() const { return _barrier_set_state; }
 509 
 510   InlinePrinter* inline_printer() { return &_inline_printer; }
 511 
 512 #ifndef PRODUCT
 513   IdealGraphPrinter* igv_printer() { return _igv_printer; }
 514   void reset_igv_phase_iter(CompilerPhaseType cpt) { _igv_phase_iter[cpt] = 0; }
 515 #endif
 516 
 517   void log_late_inline(CallGenerator* cg);
 518   void log_inline_id(CallGenerator* cg);
 519   void log_inline_failure(const char* msg);
 520 
 521   void* replay_inline_data() const { return _replay_inline_data; }
 522 
 523   // Dump inlining replay data to the stream.
 524   void dump_inline_data(outputStream* out);
 525   void dump_inline_data_reduced(outputStream* out);
 526 
 527  private:
 528   // Matching, CFG layout, allocation, code generation
 529   PhaseCFG*             _cfg;                   // Results of CFG finding
 530   int                   _java_calls;            // Number of java calls in the method
 531   int                   _inner_loops;           // Number of inner loops in the method
 532   Matcher*              _matcher;               // Engine to map ideal to machine instructions
 533   PhaseRegAlloc*        _regalloc;              // Results of register allocation.
 534   RegMask               _FIRST_STACK_mask;      // All stack slots usable for spills (depends on frame layout)
 535   Arena*                _indexSet_arena;        // control IndexSet allocation within PhaseChaitin
 536   void*                 _indexSet_free_block_list; // free list of IndexSet bit blocks
 537   int                   _interpreter_frame_size;
 538 
 539   // Holds dynamically allocated extensions of short-lived register masks. Such
 540   // extensions are potentially quite large and need tight resource marks which
 541   // may conflict with other allocations in the default resource area.
 542   // Therefore, we use a dedicated resource area for register masks.
 543   ResourceArea          _regmask_arena;
 544 
 545   PhaseOutput*          _output;
 546 
 547  public:
 548   // Accessors
 549 
 550   // The Compile instance currently active in this (compiler) thread.
 551   static Compile* current() {
 552     return (Compile*) ciEnv::current()->compiler_data();
 553   }
 554 
 555   int interpreter_frame_size() const            { return _interpreter_frame_size; }
 556 
 557   PhaseOutput*      output() const              { return _output; }
 558   void              set_output(PhaseOutput* o)  { _output = o; }
 559 
 560   // ID for this compilation.  Useful for setting breakpoints in the debugger.
 561   int               compile_id() const          { return _compile_id; }
 562   DirectiveSet*     directive() const           { return _directive; }
 563 
 564   // Does this compilation allow instructions to subsume loads?  User
 565   // instructions that subsume a load may result in an unschedulable
 566   // instruction sequence.
 567   bool              subsume_loads() const       { return _options._subsume_loads; }
 568   /** Do escape analysis. */
 569   bool              do_escape_analysis() const  { return _options._do_escape_analysis; }
 570   bool              do_iterative_escape_analysis() const  { return _options._do_iterative_escape_analysis; }
 571   bool              do_reduce_allocation_merges() const  { return _options._do_reduce_allocation_merges; }
 572   /** Do boxing elimination. */
 573   bool              eliminate_boxing() const    { return _options._eliminate_boxing; }
 574   /** Do aggressive boxing elimination. */
 575   bool              aggressive_unboxing() const { return _options._eliminate_boxing && AggressiveUnboxing; }
 576   bool              should_install_code() const { return _options._install_code; }
 577   /** Do locks coarsening. */
 578   bool              do_locks_coarsening() const { return _options._do_locks_coarsening; }
 579   bool              do_superword() const        { return _options._do_superword; }
 580 
 581   // Other fixed compilation parameters.
 582   ciMethod*         method() const              { return _method; }
 583   int               entry_bci() const           { return _entry_bci; }
 584   bool              is_osr_compilation() const  { return _entry_bci != InvocationEntryBci; }
 585   bool              is_method_compilation() const { return (_method != nullptr && !_method->flags().is_native()); }
 586   const TypeFunc*   tf() const                  { assert(_tf!=nullptr, ""); return _tf; }
 587   void         init_tf(const TypeFunc* tf)      { assert(_tf==nullptr, ""); _tf = tf; }
 588   InlineTree*       ilt() const                 { return _ilt; }
 589   address           stub_function() const       { return _stub_function; }
 590   const char*       stub_name() const           { return _stub_name; }
 591   StubId            stub_id() const             { return _stub_id; }
 592   address           stub_entry_point() const    { return _stub_entry_point; }
 593   void          set_stub_entry_point(address z) { _stub_entry_point = z; }
 594 
 595   // Control of this compilation.
 596   int               fixed_slots() const         { assert(_fixed_slots >= 0, "");         return _fixed_slots; }
 597   void          set_fixed_slots(int n)          { _fixed_slots = n; }
 598   void          set_inlining_progress(bool z)   { _inlining_progress = z; }
 599   int               inlining_progress() const   { return _inlining_progress; }
 600   void          set_inlining_incrementally(bool z) { _inlining_incrementally = z; }
 601   int               inlining_incrementally() const { return _inlining_incrementally; }
 602   void          set_do_cleanup(bool z)          { _do_cleanup = z; }
 603   int               do_cleanup() const          { return _do_cleanup; }
 604   bool              major_progress() const      { return _major_progress; }
 605   void          set_major_progress()            { _major_progress = true; }
 606   void          restore_major_progress(bool progress) { _major_progress = _major_progress || progress; }
 607   void        clear_major_progress()            { _major_progress = false; }
 608   int               max_inline_size() const     { return _max_inline_size; }
 609   void          set_freq_inline_size(int n)     { _freq_inline_size = n; }
 610   int               freq_inline_size() const    { return _freq_inline_size; }
 611   void          set_max_inline_size(int n)      { _max_inline_size = n; }
 612   bool              has_loops() const           { return _has_loops; }
 613   void          set_has_loops(bool z)           { _has_loops = z; }
 614   bool              has_split_ifs() const       { return _has_split_ifs; }
 615   void          set_has_split_ifs(bool z)       { _has_split_ifs = z; }
 616   bool              has_unsafe_access() const   { return _has_unsafe_access; }
 617   void          set_has_unsafe_access(bool z)   { _has_unsafe_access = z; }
 618   bool              has_stringbuilder() const   { return _has_stringbuilder; }
 619   void          set_has_stringbuilder(bool z)   { _has_stringbuilder = z; }
 620   bool              has_boxed_value() const     { return _has_boxed_value; }
 621   void          set_has_boxed_value(bool z)     { _has_boxed_value = z; }
 622   bool              has_reserved_stack_access() const { return _has_reserved_stack_access; }
 623   void          set_has_reserved_stack_access(bool z) { _has_reserved_stack_access = z; }
 624   uint              max_vector_size() const     { return _max_vector_size; }
 625   void          set_max_vector_size(uint s)     { _max_vector_size = s; }
 626   bool              clear_upper_avx() const     { return _clear_upper_avx; }
 627   void          set_clear_upper_avx(bool s)     { _clear_upper_avx = s; }
 628   void          set_trap_count(uint r, uint c)  { assert(r < trapHistLength, "oob");        _trap_hist[r] = c; }
 629   uint              trap_count(uint r) const    { assert(r < trapHistLength, "oob"); return _trap_hist[r]; }
 630   bool              trap_can_recompile() const  { return _trap_can_recompile; }
 631   void          set_trap_can_recompile(bool z)  { _trap_can_recompile = z; }
 632   uint              decompile_count() const     { return _decompile_count; }
 633   void          set_decompile_count(uint c)     { _decompile_count = c; }
 634   bool              allow_range_check_smearing() const;
 635   bool              do_inlining() const         { return _do_inlining; }
 636   void          set_do_inlining(bool z)         { _do_inlining = z; }
 637   bool              do_scheduling() const       { return _do_scheduling; }
 638   void          set_do_scheduling(bool z)       { _do_scheduling = z; }
 639   bool              do_freq_based_layout() const{ return _do_freq_based_layout; }
 640   void          set_do_freq_based_layout(bool z){ _do_freq_based_layout = z; }
 641   bool              do_vector_loop() const      { return _do_vector_loop; }
 642   void          set_do_vector_loop(bool z)      { _do_vector_loop = z; }
 643   bool              use_cmove() const           { return _use_cmove; }
 644   void          set_use_cmove(bool z)           { _use_cmove = z; }
 645   bool              do_aliasing() const          { return _do_aliasing; }
 646   bool              print_assembly() const       { return _print_assembly; }
 647   void          set_print_assembly(bool z)       { _print_assembly = z; }
 648   bool              print_inlining() const       { return _print_inlining; }
 649   void          set_print_inlining(bool z)       { _print_inlining = z; }
 650   bool              print_intrinsics() const     { return _print_intrinsics; }
 651   void          set_print_intrinsics(bool z)     { _print_intrinsics = z; }
 652   uint              max_node_limit() const       { return (uint)_max_node_limit; }
 653   void          set_max_node_limit(uint n)       { _max_node_limit = n; }
 654   bool              clinit_barrier_on_entry()       { return _clinit_barrier_on_entry; }
 655   void          set_clinit_barrier_on_entry(bool z) { _clinit_barrier_on_entry = z; }
 656   bool              has_monitors() const         { return _has_monitors; }
 657   void          set_has_monitors(bool v)         { _has_monitors = v; }
 658   bool              has_scoped_access() const    { return _has_scoped_access; }
 659   void          set_has_scoped_access(bool v)    { _has_scoped_access = v; }
 660 
 661   // check the CompilerOracle for special behaviours for this compile
 662   bool          method_has_option(CompileCommandEnum option) const {
 663     return method() != nullptr && method()->has_option(option);
 664   }
 665 
 666 #ifndef PRODUCT
 667   uint          next_igv_idx()                  { return _igv_idx++; }
 668   bool          trace_opto_output() const       { return _trace_opto_output; }
 669   void          print_phase(const char* phase_name);
 670   void          print_ideal_ir(const char* compile_phase_name) const;
 671   bool          should_print_ideal() const      { return _directive->PrintIdealOption; }
 672   bool              parsed_irreducible_loop() const { return _parsed_irreducible_loop; }
 673   void          set_parsed_irreducible_loop(bool z) { _parsed_irreducible_loop = z; }
 674   int _in_dump_cnt;  // Required for dumping ir nodes.
 675 #endif
 676   bool              has_irreducible_loop() const { return _has_irreducible_loop; }
 677   void          set_has_irreducible_loop(bool z) { _has_irreducible_loop = z; }
 678 
 679   Ticks _latest_stage_start_counter;
 680 
 681   void begin_method();
 682   void end_method();
 683 
 684   void print_method(CompilerPhaseType compile_phase, int level, Node* n = nullptr);
 685 
 686 #ifndef PRODUCT
 687   bool should_print_igv(int level);
 688   bool should_print_phase(int level) const;
 689   bool should_print_ideal_phase(CompilerPhaseType cpt) const;
 690   void init_igv();
 691   void dump_igv(const char* graph_name, int level = 3) {
 692     if (should_print_igv(level)) {
 693       _igv_printer->print_graph(graph_name, nullptr);
 694     }
 695   }
 696 
 697   void igv_print_method_to_file(const char* phase_name = nullptr, bool append = false, const frame* fr = nullptr);
 698   void igv_print_method_to_network(const char* phase_name = nullptr, const frame* fr = nullptr);
 699   void igv_print_graph_to_network(const char* name, GrowableArray<const Node*>& visible_nodes, const frame* fr);
 700   static IdealGraphPrinter* debug_file_printer() { return _debug_file_printer; }
 701   static IdealGraphPrinter* debug_network_printer() { return _debug_network_printer; }
 702 #endif
 703 
 704   const GrowableArray<ParsePredicateNode*>& parse_predicates() const {
 705     return _parse_predicates;
 706   }
 707 
 708   const GrowableArray<OpaqueTemplateAssertionPredicateNode*>& template_assertion_predicate_opaques() const {
 709     return _template_assertion_predicate_opaques;
 710   }
 711 
 712   int           macro_count()             const { return _macro_nodes.length(); }
 713   int           parse_predicate_count()   const { return _parse_predicates.length(); }
 714   int           template_assertion_predicate_count() const { return _template_assertion_predicate_opaques.length(); }
 715   int           expensive_count()         const { return _expensive_nodes.length(); }
 716   int           coarsened_count()         const { return _coarsened_locks.length(); }
 717 
 718   Node*         macro_node(int idx)       const { return _macro_nodes.at(idx); }
 719 
 720   Node*         expensive_node(int idx)   const { return _expensive_nodes.at(idx); }
 721 
 722   ConnectionGraph* congraph()                   { return _congraph;}
 723   void set_congraph(ConnectionGraph* congraph)  { _congraph = congraph;}
 724   void add_macro_node(Node * n) {
 725     //assert(n->is_macro(), "must be a macro node");
 726     assert(!_macro_nodes.contains(n), "duplicate entry in expand list");
 727     _macro_nodes.append(n);
 728   }
 729   void remove_macro_node(Node* n) {
 730     // this function may be called twice for a node so we can only remove it
 731     // if it's still existing.
 732     _macro_nodes.remove_if_existing(n);
 733     // Remove from coarsened locks list if present
 734     if (coarsened_count() > 0) {
 735       remove_coarsened_lock(n);
 736     }
 737   }
 738   void add_expensive_node(Node* n);
 739   void remove_expensive_node(Node* n) {
 740     _expensive_nodes.remove_if_existing(n);
 741   }
 742 
 743   void add_parse_predicate(ParsePredicateNode* n) {
 744     assert(!_parse_predicates.contains(n), "duplicate entry in Parse Predicate list");
 745     _parse_predicates.append(n);
 746   }
 747 
 748   void remove_parse_predicate(ParsePredicateNode* n) {
 749     if (parse_predicate_count() > 0) {
 750       _parse_predicates.remove_if_existing(n);
 751     }
 752   }
 753 
 754   void add_template_assertion_predicate_opaque(OpaqueTemplateAssertionPredicateNode* n) {
 755     assert(!_template_assertion_predicate_opaques.contains(n),
 756            "Duplicate entry in Template Assertion Predicate OpaqueTemplateAssertionPredicate list");
 757     _template_assertion_predicate_opaques.append(n);
 758   }
 759 
 760   void remove_template_assertion_predicate_opaque(OpaqueTemplateAssertionPredicateNode* n) {
 761     if (template_assertion_predicate_count() > 0) {
 762       _template_assertion_predicate_opaques.remove_if_existing(n);
 763     }
 764   }
 765   void add_coarsened_locks(GrowableArray<AbstractLockNode*>& locks);
 766   void remove_coarsened_lock(Node* n);
 767   bool coarsened_locks_consistent();
 768   void mark_unbalanced_boxes() const;
 769 
 770   bool       post_loop_opts_phase() { return _post_loop_opts_phase;  }
 771   void   set_post_loop_opts_phase() { _post_loop_opts_phase = true;  }
 772   void reset_post_loop_opts_phase() { _post_loop_opts_phase = false; }
 773 
 774 #ifdef ASSERT
 775   bool       phase_verify_ideal_loop() const { return _phase_verify_ideal_loop; }
 776   void   set_phase_verify_ideal_loop() { _phase_verify_ideal_loop = true; }
 777   void reset_phase_verify_ideal_loop() { _phase_verify_ideal_loop = false; }
 778 #endif
 779 
 780   bool       allow_macro_nodes() { return _allow_macro_nodes;  }
 781   void reset_allow_macro_nodes() { _allow_macro_nodes = false;  }
 782 
 783   void record_for_post_loop_opts_igvn(Node* n);
 784   void remove_from_post_loop_opts_igvn(Node* n);
 785   void process_for_post_loop_opts_igvn(PhaseIterGVN& igvn);
 786 
 787   void record_unstable_if_trap(UnstableIfTrap* trap);
 788   bool remove_unstable_if_trap(CallStaticJavaNode* unc, bool yield);
 789   void remove_useless_unstable_if_traps(Unique_Node_List &useful);
 790   void process_for_unstable_if_traps(PhaseIterGVN& igvn);
 791 
 792   bool     merge_stores_phase() { return _merge_stores_phase;  }
 793   void set_merge_stores_phase() { _merge_stores_phase = true;  }
 794   void record_for_merge_stores_igvn(Node* n);
 795   void remove_from_merge_stores_igvn(Node* n);
 796   void process_for_merge_stores_igvn(PhaseIterGVN& igvn);
 797 
 798   void shuffle_macro_nodes();
 799   void sort_macro_nodes();
 800 
 801   void mark_parse_predicate_nodes_useless(PhaseIterGVN& igvn);
 802 
 803   // Are there candidate expensive nodes for optimization?
 804   bool should_optimize_expensive_nodes(PhaseIterGVN &igvn);
 805   // Check whether n1 and n2 are similar
 806   static int cmp_expensive_nodes(Node* n1, Node* n2);
 807   // Sort expensive nodes to locate similar expensive nodes
 808   void sort_expensive_nodes();
 809 
 810   // Compilation environment.
 811   Arena*      comp_arena()           { return &_comp_arena; }
 812   ciEnv*      env() const            { return _env; }
 813   CompileLog* log() const            { return _log; }
 814 
 815   bool        failing_internal() const {
 816     return _env->failing() ||
 817            _failure_reason.get() != nullptr;
 818   }
 819 
 820   const char* failure_reason() const {
 821     return _env->failing() ? _env->failure_reason()
 822                            : _failure_reason.get();
 823   }
 824 
 825   const CompilationFailureInfo* first_failure_details() const { return _first_failure_details; }
 826 
 827   bool failing() {
 828     if (failing_internal()) {
 829       return true;
 830     }
 831 #ifdef ASSERT
 832     // Disable stress code for PhaseIdealLoop verification (would have cascading effects).
 833     if (phase_verify_ideal_loop()) {
 834       return false;
 835     }
 836     if (StressBailout) {
 837       return fail_randomly();
 838     }
 839 #endif
 840     return false;
 841   }
 842 
 843 #ifdef ASSERT
 844   bool fail_randomly();
 845   bool failure_is_artificial();
 846 #endif
 847 
 848   bool failure_reason_is(const char* r) const {
 849     return (r == _failure_reason.get()) ||
 850            (r != nullptr &&
 851             _failure_reason.get() != nullptr &&
 852             strcmp(r, _failure_reason.get()) == 0);
 853   }
 854 
 855   void record_failure(const char* reason DEBUG_ONLY(COMMA bool allow_multiple_failures = false));
 856   void record_method_not_compilable(const char* reason DEBUG_ONLY(COMMA bool allow_multiple_failures = false)) {
 857     env()->record_method_not_compilable(reason);
 858     // Record failure reason.
 859     record_failure(reason DEBUG_ONLY(COMMA allow_multiple_failures));
 860   }
 861   bool check_node_count(uint margin, const char* reason) {
 862     if (oom()) {
 863       record_method_not_compilable_oom();
 864       return true;
 865     }
 866     if (live_nodes() + margin > max_node_limit()) {
 867       record_method_not_compilable(reason);
 868       return true;
 869     } else {
 870       return false;
 871     }
 872   }
 873   bool oom() const { return _oom; }
 874   void set_oom()   { _oom = true; }
 875 
 876   // Node management
 877   uint         unique() const              { return _unique; }
 878   uint         next_unique()               { return _unique++; }
 879   void         set_unique(uint i)          { _unique = i; }
 880   Arena*       node_arena()                { return _node_arena; }
 881   Arena*       old_arena()                 { return (&_node_arena_one == _node_arena) ? &_node_arena_two : &_node_arena_one; }
 882   RootNode*    root() const                { return _root; }
 883   void         set_root(RootNode* r)       { _root = r; }
 884   StartNode*   start() const;              // (Derived from root.)
 885   void         verify_start(StartNode* s) const NOT_DEBUG_RETURN;
 886   Node*        immutable_memory();
 887 
 888   Node*        recent_alloc_ctl() const    { return _recent_alloc_ctl; }
 889   Node*        recent_alloc_obj() const    { return _recent_alloc_obj; }
 890   void         set_recent_alloc(Node* ctl, Node* obj) {
 891                                                   _recent_alloc_ctl = ctl;
 892                                                   _recent_alloc_obj = obj;
 893                                            }
 894   void         record_dead_node(uint idx)  { if (_dead_node_list.test_set(idx)) return;
 895                                              _dead_node_count++;
 896                                            }
 897   void         reset_dead_node_list()      { _dead_node_list.reset();
 898                                              _dead_node_count = 0;
 899                                            }
 900   uint          live_nodes() const         {
 901     int  val = _unique - _dead_node_count;
 902     assert (val >= 0, "number of tracked dead nodes %d more than created nodes %d", _unique, _dead_node_count);
 903             return (uint) val;
 904                                            }
 905 #ifdef ASSERT
 906   void         set_phase_optimize_finished() { _phase_optimize_finished = true; }
 907   bool         phase_optimize_finished() const { return _phase_optimize_finished; }
 908   uint         count_live_nodes_by_graph_walk();
 909   void         print_missing_nodes();
 910 #endif
 911 
 912   // Record modified nodes to check that they are put on IGVN worklist
 913   void         record_modified_node(Node* n) NOT_DEBUG_RETURN;
 914   void         remove_modified_node(Node* n) NOT_DEBUG_RETURN;
 915   DEBUG_ONLY( Unique_Node_List*   modified_nodes() const { return _modified_nodes; } )
 916 
 917   MachConstantBaseNode*     mach_constant_base_node();
 918   bool                  has_mach_constant_base_node() const { return _mach_constant_base_node != nullptr; }
 919   // Generated by adlc, true if CallNode requires MachConstantBase.
 920   bool                      needs_deep_clone_jvms();
 921 
 922   // Handy undefined Node
 923   Node*             top() const                 { return _top; }
 924 
 925   // these are used by guys who need to know about creation and transformation of top:
 926   Node*             cached_top_node()           { return _top; }
 927   void          set_cached_top_node(Node* tn);
 928 
 929   GrowableArray<Node_Notes*>* node_note_array() const { return _node_note_array; }
 930   void set_node_note_array(GrowableArray<Node_Notes*>* arr) { _node_note_array = arr; }
 931   Node_Notes* default_node_notes() const        { return _default_node_notes; }
 932   void    set_default_node_notes(Node_Notes* n) { _default_node_notes = n; }
 933 
 934   Node_Notes*       node_notes_at(int idx);
 935 
 936   inline bool   set_node_notes_at(int idx, Node_Notes* value);
 937   // Copy notes from source to dest, if they exist.
 938   // Overwrite dest only if source provides something.
 939   // Return true if information was moved.
 940   bool copy_node_notes_to(Node* dest, Node* source);
 941 
 942   // Workhorse function to sort out the blocked Node_Notes array:
 943   Node_Notes* locate_node_notes(GrowableArray<Node_Notes*>* arr,
 944                                 int idx, bool can_grow = false);
 945 
 946   void grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by);
 947 
 948   // Type management
 949   Arena*            type_arena()                { return _type_arena; }
 950   Dict*             type_dict()                 { return _type_dict; }
 951   size_t            type_last_size()            { return _type_last_size; }
 952   int               num_alias_types()           { return _num_alias_types; }
 953 
 954   void          init_type_arena()                       { _type_arena = &_Compile_types; }
 955   void          set_type_arena(Arena* a)                { _type_arena = a; }
 956   void          set_type_dict(Dict* d)                  { _type_dict = d; }
 957   void          set_type_last_size(size_t sz)           { _type_last_size = sz; }
 958 
 959   const TypeFunc* last_tf(ciMethod* m) {
 960     return (m == _last_tf_m) ? _last_tf : nullptr;
 961   }
 962   void set_last_tf(ciMethod* m, const TypeFunc* tf) {
 963     assert(m != nullptr || tf == nullptr, "");
 964     _last_tf_m = m;
 965     _last_tf = tf;
 966   }
 967 
 968   AliasType*        alias_type(int                idx)  { assert(idx < num_alias_types(), "oob"); return _alias_types[idx]; }
 969   AliasType*        alias_type(const TypePtr* adr_type, ciField* field = nullptr) { return find_alias_type(adr_type, false, field); }
 970   bool         have_alias_type(const TypePtr* adr_type);
 971   AliasType*        alias_type(ciField*         field);
 972 
 973   int               get_alias_index(const TypePtr* at)  { return alias_type(at)->index(); }
 974   const TypePtr*    get_adr_type(uint aidx)             { return alias_type(aidx)->adr_type(); }
 975   int               get_general_index(uint aidx)        { return alias_type(aidx)->general_index(); }
 976 
 977   // Building nodes
 978   void              rethrow_exceptions(JVMState* jvms);
 979   void              return_values(JVMState* jvms);
 980   JVMState*         build_start_state(StartNode* start, const TypeFunc* tf);
 981 
 982   // Decide how to build a call.
 983   // The profile factor is a discount to apply to this site's interp. profile.
 984   CallGenerator*    call_generator(ciMethod* call_method, int vtable_index, bool call_does_dispatch,
 985                                    JVMState* jvms, bool allow_inline, float profile_factor, ciKlass* speculative_receiver_type = nullptr,
 986                                    bool allow_intrinsics = true);
 987   bool should_delay_inlining(ciMethod* call_method, JVMState* jvms) {
 988     return C->directive()->should_delay_inline(call_method) ||
 989            should_delay_string_inlining(call_method, jvms) ||
 990            should_delay_boxing_inlining(call_method, jvms) ||
 991            should_delay_vector_inlining(call_method, jvms);
 992   }
 993   bool should_delay_string_inlining(ciMethod* call_method, JVMState* jvms);
 994   bool should_delay_boxing_inlining(ciMethod* call_method, JVMState* jvms);
 995   bool should_delay_vector_inlining(ciMethod* call_method, JVMState* jvms);
 996   bool should_delay_vector_reboxing_inlining(ciMethod* call_method, JVMState* jvms);
 997 
 998   // Helper functions to identify inlining potential at call-site
 999   ciMethod* optimize_virtual_call(ciMethod* caller, ciInstanceKlass* klass,
1000                                   ciKlass* holder, ciMethod* callee,
1001                                   const TypeOopPtr* receiver_type, bool is_virtual,
1002                                   bool &call_does_dispatch, int &vtable_index,
1003                                   bool check_access = true);
1004   ciMethod* optimize_inlining(ciMethod* caller, ciInstanceKlass* klass, ciKlass* holder,
1005                               ciMethod* callee, const TypeOopPtr* receiver_type,
1006                               bool check_access = true);
1007 
1008   // Report if there were too many traps at a current method and bci.
1009   // Report if a trap was recorded, and/or PerMethodTrapLimit was exceeded.
1010   // If there is no MDO at all, report no trap unless told to assume it.
1011   bool too_many_traps(ciMethod* method, int bci, Deoptimization::DeoptReason reason);
1012   // This version, unspecific to a particular bci, asks if
1013   // PerMethodTrapLimit was exceeded for all inlined methods seen so far.
1014   bool too_many_traps(Deoptimization::DeoptReason reason,
1015                       // Privately used parameter for logging:
1016                       ciMethodData* logmd = nullptr);
1017   // Report if there were too many recompiles at a method and bci.
1018   bool too_many_recompiles(ciMethod* method, int bci, Deoptimization::DeoptReason reason);
1019   // Report if there were too many traps or recompiles at a method and bci.
1020   bool too_many_traps_or_recompiles(ciMethod* method, int bci, Deoptimization::DeoptReason reason) {
1021     return too_many_traps(method, bci, reason) ||
1022            too_many_recompiles(method, bci, reason);
1023   }
1024   // Return a bitset with the reasons where deoptimization is allowed,
1025   // i.e., where there were not too many uncommon traps.
1026   int _allowed_reasons;
1027   int      allowed_deopt_reasons() { return _allowed_reasons; }
1028   void set_allowed_deopt_reasons();
1029 
1030   // Parsing, optimization
1031   PhaseGVN*         initial_gvn()               { return _initial_gvn; }
1032   Unique_Node_List* igvn_worklist() {
1033     assert(_igvn_worklist != nullptr, "must be created in Compile::Compile");
1034     return _igvn_worklist;
1035   }
1036   Type_Array* types() {
1037     assert(_types != nullptr, "must be created in Compile::Compile");
1038     return _types;
1039   }
1040   NodeHash* node_hash() {
1041     assert(_node_hash != nullptr, "must be created in Compile::Compile");
1042     return _node_hash;
1043   }
1044   inline void       record_for_igvn(Node* n);   // Body is after class Unique_Node_List in node.hpp.
1045   inline void       remove_for_igvn(Node* n);   // Body is after class Unique_Node_List in node.hpp.
1046   void          set_initial_gvn(PhaseGVN *gvn)           { _initial_gvn = gvn; }
1047 
1048   // Replace n by nn using initial_gvn, calling hash_delete and
1049   // record_for_igvn as needed.
1050   void gvn_replace_by(Node* n, Node* nn);
1051 
1052 
1053   void              identify_useful_nodes(Unique_Node_List &useful);
1054   void              update_dead_node_list(Unique_Node_List &useful);
1055   void disconnect_useless_nodes(Unique_Node_List& useful, Unique_Node_List& worklist, const Unique_Node_List* root_and_safepoints = nullptr);
1056 
1057   void              remove_useless_node(Node* dead);
1058 
1059   // Record this CallGenerator for inlining at the end of parsing.
1060   void              add_late_inline(CallGenerator* cg)        {
1061     _late_inlines.insert_before(_late_inlines_pos, cg);
1062     _late_inlines_pos++;
1063   }
1064 
1065   void              prepend_late_inline(CallGenerator* cg)    {
1066     _late_inlines.insert_before(0, cg);
1067   }
1068 
1069   void              add_string_late_inline(CallGenerator* cg) {
1070     _string_late_inlines.push(cg);
1071   }
1072 
1073   void              add_boxing_late_inline(CallGenerator* cg) {
1074     _boxing_late_inlines.push(cg);
1075   }
1076 
1077   void              add_vector_reboxing_late_inline(CallGenerator* cg) {
1078     _vector_reboxing_late_inlines.push(cg);
1079   }
1080 
1081   template<typename N, ENABLE_IF(std::is_base_of<Node, N>::value)>
1082   void remove_useless_nodes(GrowableArray<N*>& node_list, Unique_Node_List& useful);
1083 
1084   void remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful);
1085   void remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Node* dead);
1086 
1087   void remove_useless_coarsened_locks(Unique_Node_List& useful);
1088 
1089   void dump_print_inlining();
1090 
1091   bool over_inlining_cutoff() const {
1092     if (!inlining_incrementally()) {
1093       return unique() > (uint)NodeCountInliningCutoff;
1094     } else {
1095       // Give some room for incremental inlining algorithm to "breathe"
1096       // and avoid thrashing when live node count is close to the limit.
1097       // Keep in mind that live_nodes() isn't accurate during inlining until
1098       // dead node elimination step happens (see Compile::inline_incrementally).
1099       return live_nodes() > (uint)LiveNodeCountInliningCutoff * 11 / 10;
1100     }
1101   }
1102 
1103   void mark_has_mh_late_inlines() { _has_mh_late_inlines = true; }
1104   bool has_mh_late_inlines() const { return _has_mh_late_inlines; }
1105 
1106   bool inline_incrementally_one();
1107   void inline_incrementally_cleanup(PhaseIterGVN& igvn);
1108   void inline_incrementally(PhaseIterGVN& igvn);
1109   bool should_stress_inlining() { return StressIncrementalInlining && (random() % 2) == 0; }
1110   bool should_delay_inlining() { return AlwaysIncrementalInline || should_stress_inlining(); }
1111   void inline_string_calls(bool parse_time);
1112   void inline_boxing_calls(PhaseIterGVN& igvn);
1113   bool optimize_loops(PhaseIterGVN& igvn, LoopOptsMode mode);
1114   void remove_root_to_sfpts_edges(PhaseIterGVN& igvn);
1115 
1116   void inline_vector_reboxing_calls();
1117   bool has_vbox_nodes();
1118 
1119   void process_late_inline_calls_no_inline(PhaseIterGVN& igvn);
1120 
1121   // Matching, CFG layout, allocation, code generation
1122   PhaseCFG*         cfg()                       { return _cfg; }
1123   bool              has_java_calls() const      { return _java_calls > 0; }
1124   int               java_calls() const          { return _java_calls; }
1125   int               inner_loops() const         { return _inner_loops; }
1126   Matcher*          matcher()                   { return _matcher; }
1127   PhaseRegAlloc*    regalloc()                  { return _regalloc; }
1128   RegMask&          FIRST_STACK_mask()          { return _FIRST_STACK_mask; }
1129   ResourceArea*     regmask_arena()             { return &_regmask_arena; }
1130   Arena*            indexSet_arena()            { return _indexSet_arena; }
1131   void*             indexSet_free_block_list()  { return _indexSet_free_block_list; }
1132   DebugInformationRecorder* debug_info()        { return env()->debug_info(); }
1133 
1134   void  update_interpreter_frame_size(int size) {
1135     if (_interpreter_frame_size < size) {
1136       _interpreter_frame_size = size;
1137     }
1138   }
1139 
1140   void          set_matcher(Matcher* m)                 { _matcher = m; }
1141 //void          set_regalloc(PhaseRegAlloc* ra)           { _regalloc = ra; }
1142   void          set_indexSet_arena(Arena* a)            { _indexSet_arena = a; }
1143   void          set_indexSet_free_block_list(void* p)   { _indexSet_free_block_list = p; }
1144 
1145   void  set_java_calls(int z) { _java_calls  = z; }
1146   void set_inner_loops(int z) { _inner_loops = z; }
1147 
1148   Dependencies* dependencies() { return env()->dependencies(); }
1149 
1150   // Major entry point.  Given a Scope, compile the associated method.
1151   // For normal compilations, entry_bci is InvocationEntryBci.  For on stack
1152   // replacement, entry_bci indicates the bytecode for which to compile a
1153   // continuation.
1154   Compile(ciEnv* ci_env, ciMethod* target,
1155           int entry_bci, Options options, DirectiveSet* directive);
1156 
1157   // Second major entry point.  From the TypeFunc signature, generate code
1158   // to pass arguments from the Java calling convention to the C calling
1159   // convention.
1160   Compile(ciEnv* ci_env, const TypeFunc *(*gen)(),
1161           address stub_function, const char *stub_name,
1162           StubId stub_id, int is_fancy_jump, bool pass_tls,
1163           bool return_pc, DirectiveSet* directive);
1164 
1165   ~Compile();
1166 
1167   // Are we compiling a method?
1168   bool has_method() { return method() != nullptr; }
1169 
1170   // Maybe print some information about this compile.
1171   void print_compile_messages();
1172 
1173   // Final graph reshaping, a post-pass after the regular optimizer is done.
1174   bool final_graph_reshaping();
1175 
1176   // returns true if adr is completely contained in the given alias category
1177   bool must_alias(const TypePtr* adr, int alias_idx);
1178 
1179   // returns true if adr overlaps with the given alias category
1180   bool can_alias(const TypePtr* adr, int alias_idx);
1181 
1182   // Stack slots that may be unused by the calling convention but must
1183   // otherwise be preserved.  On Intel this includes the return address.
1184   // On PowerPC it includes the 4 words holding the old TOC & LR glue.
1185   uint in_preserve_stack_slots() {
1186     return SharedRuntime::in_preserve_stack_slots();
1187   }
1188 
1189   // "Top of Stack" slots that may be unused by the calling convention but must
1190   // otherwise be preserved.
1191   // On Intel these are not necessary and the value can be zero.
1192   static uint out_preserve_stack_slots() {
1193     return SharedRuntime::out_preserve_stack_slots();
1194   }
1195 
1196   // Number of outgoing stack slots killed above the out_preserve_stack_slots
1197   // for calls to C.  Supports the var-args backing area for register parms.
1198   uint varargs_C_out_slots_killed() const;
1199 
1200   // Number of Stack Slots consumed by a synchronization entry
1201   int sync_stack_slots() const;
1202 
1203   // Compute the name of old_SP.  See <arch>.ad for frame layout.
1204   OptoReg::Name compute_old_SP();
1205 
1206  private:
1207   // Phase control:
1208   void Init(bool aliasing);                      // Prepare for a single compilation
1209   void Optimize();                               // Given a graph, optimize it
1210   void Code_Gen();                               // Generate code from a graph
1211 
1212   // Management of the AliasType table.
1213   void grow_alias_types();
1214   AliasCacheEntry* probe_alias_cache(const TypePtr* adr_type);
1215   const TypePtr *flatten_alias_type(const TypePtr* adr_type) const;
1216   AliasType* find_alias_type(const TypePtr* adr_type, bool no_create, ciField* field);
1217 
1218   void verify_top(Node*) const PRODUCT_RETURN;
1219 
1220   // Intrinsic setup.
1221   CallGenerator* make_vm_intrinsic(ciMethod* m, bool is_virtual);          // constructor
1222   int            intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found);  // helper
1223   CallGenerator* find_intrinsic(ciMethod* m, bool is_virtual);             // query fn
1224   void           register_intrinsic(CallGenerator* cg);                    // update fn
1225 
1226 #ifndef PRODUCT
1227   static juint  _intrinsic_hist_count[];
1228   static jubyte _intrinsic_hist_flags[];
1229 #endif
1230   // Function calls made by the public function final_graph_reshaping.
1231   // No need to be made public as they are not called elsewhere.
1232   void final_graph_reshaping_impl(Node *n, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes);
1233   void final_graph_reshaping_main_switch(Node* n, Final_Reshape_Counts& frc, uint nop, Unique_Node_List& dead_nodes);
1234   void final_graph_reshaping_walk(Node_Stack& nstack, Node* root, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes);
1235   void handle_div_mod_op(Node* n, BasicType bt, bool is_unsigned);
1236 
1237   // Logic cone optimization.
1238   void optimize_logic_cones(PhaseIterGVN &igvn);
1239   void collect_logic_cone_roots(Unique_Node_List& list);
1240   void process_logic_cone_root(PhaseIterGVN &igvn, Node* n, VectorSet& visited);
1241   bool compute_logic_cone(Node* n, Unique_Node_List& partition, Unique_Node_List& inputs);
1242   uint compute_truth_table(Unique_Node_List& partition, Unique_Node_List& inputs);
1243   uint eval_macro_logic_op(uint func, uint op1, uint op2, uint op3);
1244   Node* xform_to_MacroLogicV(PhaseIterGVN &igvn, const TypeVect* vt, Unique_Node_List& partitions, Unique_Node_List& inputs);
1245   void check_no_dead_use() const NOT_DEBUG_RETURN;
1246 
1247  public:
1248 
1249   // Note:  Histogram array size is about 1 Kb.
1250   enum {                        // flag bits:
1251     _intrinsic_worked = 1,      // succeeded at least once
1252     _intrinsic_failed = 2,      // tried it but it failed
1253     _intrinsic_disabled = 4,    // was requested but disabled (e.g., -XX:-InlineUnsafeOps)
1254     _intrinsic_virtual = 8,     // was seen in the virtual form (rare)
1255     _intrinsic_both = 16        // was seen in the non-virtual form (usual)
1256   };
1257   // Update histogram.  Return boolean if this is a first-time occurrence.
1258   static bool gather_intrinsic_statistics(vmIntrinsics::ID id,
1259                                           bool is_virtual, int flags) PRODUCT_RETURN0;
1260   static void print_intrinsic_statistics() PRODUCT_RETURN;
1261 
1262   // Graph verification code
1263   // Walk the node list, verifying that there is a one-to-one correspondence
1264   // between Use-Def edges and Def-Use edges. The option no_dead_code enables
1265   // stronger checks that the graph is strongly connected from starting points
1266   // in both directions.
1267   // root_and_safepoints is used to give the starting points for the traversal.
1268   // If not supplied, only root is used. When this check is called after CCP,
1269   // we need to start traversal from Root and safepoints, just like CCP does its
1270   // own traversal (see PhaseCCP::transform for reasons).
1271   //
1272   // To call this function, there are 2 ways to go:
1273   // - give root_and_safepoints to start traversal everywhere needed (like after CCP)
1274   // - if the whole graph is assumed to be reachable from Root's input,
1275   //   root_and_safepoints is not needed (like in PhaseRemoveUseless).
1276   //
1277   // Failure to specify root_and_safepoints in case the graph is not fully
1278   // reachable from Root's input make this check unsound (can miss inconsistencies)
1279   // and even incomplete (can make up non-existing problems) if no_dead_code is
1280   // true.
1281   void verify_graph_edges(bool no_dead_code = false, const Unique_Node_List* root_and_safepoints = nullptr) const PRODUCT_RETURN;
1282 
1283   // Verify bi-directional correspondence of edges
1284   void verify_bidirectional_edges(Unique_Node_List& visited, const Unique_Node_List* root_and_safepoints = nullptr) const;
1285 
1286   // End-of-run dumps.
1287   static void print_statistics() PRODUCT_RETURN;
1288 
1289   // Verify ADLC assumptions during startup
1290   static void adlc_verification() PRODUCT_RETURN;
1291 
1292   // Definitions of pd methods
1293   static void pd_compiler2_init();
1294 
1295   // Static parse-time type checking logic for gen_subtype_check:
1296   enum SubTypeCheckResult { SSC_always_false, SSC_always_true, SSC_easy_test, SSC_full_test };
1297   SubTypeCheckResult static_subtype_check(const TypeKlassPtr* superk, const TypeKlassPtr* subk, bool skip = StressReflectiveCode);
1298 
1299   static Node* conv_I2X_index(PhaseGVN* phase, Node* offset, const TypeInt* sizetype,
1300                               // Optional control dependency (for example, on range check)
1301                               Node* ctrl = nullptr);
1302 
1303   // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check)
1304   static Node* constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl, bool carry_dependency = false);
1305 
1306   // Auxiliary methods for randomized fuzzing/stressing
1307   int random();
1308   bool randomized_select(int count);
1309 
1310   // seed random number generation and log the seed for repeatability.
1311   void initialize_stress_seed(const DirectiveSet* directive);
1312 
1313   // supporting clone_map
1314   CloneMap&     clone_map();
1315   void          set_clone_map(Dict* d);
1316 
1317   bool needs_clinit_barrier(ciField* ik,         ciMethod* accessing_method);
1318   bool needs_clinit_barrier(ciMethod* ik,        ciMethod* accessing_method);
1319   bool needs_clinit_barrier(ciInstanceKlass* ik, ciMethod* accessing_method);
1320 
1321 #ifdef ASSERT
1322   VerifyMeetResult* _type_verify;
1323   void set_exception_backedge() { _exception_backedge = true; }
1324   bool has_exception_backedge() const { return _exception_backedge; }
1325 #endif
1326 
1327   static bool push_thru_add(PhaseGVN* phase, Node* z, const TypeInteger* tz, const TypeInteger*& rx, const TypeInteger*& ry,
1328                             BasicType out_bt, BasicType in_bt);
1329 
1330   static Node* narrow_value(BasicType bt, Node* value, const Type* type, PhaseGVN* phase, bool transform_res);
1331 
1332 #ifndef PRODUCT
1333 private:
1334   // getting rid of the template makes things easier
1335   Node* make_debug_print_call(const char* str, address call_addr, PhaseGVN* gvn,
1336                               Node* parm0 = nullptr, Node* parm1 = nullptr,
1337                               Node* parm2 = nullptr, Node* parm3 = nullptr,
1338                               Node* parm4 = nullptr, Node* parm5 = nullptr,
1339                               Node* parm6 = nullptr) const;
1340 
1341 public:
1342   // Creates a CallLeafNode for a runtime call that prints a static string and the values of the
1343   // nodes passed as arguments.
1344   // This function also takes care of doing the necessary wiring, including finding a suitable control
1345   // based on the nodes that need to be printed. Note that passing nodes that have incompatible controls
1346   // is undefined behavior.
1347   template <typename... TT, typename... NN>
1348   Node* make_debug_print(const char* str, PhaseGVN* gvn, NN... in) {
1349     address call_addr = CAST_FROM_FN_PTR(address, SharedRuntime::debug_print<TT...>);
1350     return make_debug_print_call(str, call_addr, gvn, in...);
1351   }
1352 #endif
1353 };
1354 
1355 #endif // SHARE_OPTO_COMPILE_HPP