1 /* 2 * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_OPTO_COMPILE_HPP 26 #define SHARE_OPTO_COMPILE_HPP 27 28 #include "asm/codeBuffer.hpp" 29 #include "ci/compilerInterface.hpp" 30 #include "code/debugInfoRec.hpp" 31 #include "compiler/compiler_globals.hpp" 32 #include "compiler/compileBroker.hpp" 33 #include "compiler/compilerEvent.hpp" 34 #include "compiler/cHeapStringHolder.hpp" 35 #include "libadt/dict.hpp" 36 #include "libadt/vectset.hpp" 37 #include "memory/resourceArea.hpp" 38 #include "oops/methodData.hpp" 39 #include "opto/idealGraphPrinter.hpp" 40 #include "opto/phasetype.hpp" 41 #include "opto/phase.hpp" 42 #include "opto/regmask.hpp" 43 #include "runtime/deoptimization.hpp" 44 #include "runtime/sharedRuntime.hpp" 45 #include "runtime/timerTrace.hpp" 46 #include "runtime/vmThread.hpp" 47 #include "utilities/ticks.hpp" 48 #include "utilities/vmEnums.hpp" 49 50 class AbstractLockNode; 51 class AddPNode; 52 class Block; 53 class Bundle; 54 class CallGenerator; 55 class CallStaticJavaNode; 56 class CloneMap; 57 class CompilationFailureInfo; 58 class ConnectionGraph; 59 class IdealGraphPrinter; 60 class InlineTree; 61 class Matcher; 62 class MachConstantNode; 63 class MachConstantBaseNode; 64 class MachNode; 65 class MachOper; 66 class MachSafePointNode; 67 class Node; 68 class Node_Array; 69 class Node_List; 70 class Node_Notes; 71 class NodeHash; 72 class NodeCloneInfo; 73 class OptoReg; 74 class ParsePredicateNode; 75 class PhaseCFG; 76 class PhaseGVN; 77 class PhaseIterGVN; 78 class PhaseRegAlloc; 79 class PhaseCCP; 80 class PhaseOutput; 81 class RootNode; 82 class relocInfo; 83 class StartNode; 84 class SafePointNode; 85 class JVMState; 86 class Type; 87 class TypeInt; 88 class TypeInteger; 89 class TypeKlassPtr; 90 class TypePtr; 91 class TypeOopPtr; 92 class TypeFunc; 93 class TypeVect; 94 class Type_Array; 95 class Unique_Node_List; 96 class UnstableIfTrap; 97 class nmethod; 98 class Node_Stack; 99 struct Final_Reshape_Counts; 100 class VerifyMeetResult; 101 102 enum LoopOptsMode { 103 LoopOptsDefault, 104 LoopOptsNone, 105 LoopOptsMaxUnroll, 106 LoopOptsShenandoahExpand, 107 LoopOptsShenandoahPostExpand, 108 LoopOptsSkipSplitIf, 109 LoopOptsVerify 110 }; 111 112 // The type of all node counts and indexes. 113 // It must hold at least 16 bits, but must also be fast to load and store. 114 // This type, if less than 32 bits, could limit the number of possible nodes. 115 // (To make this type platform-specific, move to globalDefinitions_xxx.hpp.) 116 typedef unsigned int node_idx_t; 117 118 class NodeCloneInfo { 119 private: 120 uint64_t _idx_clone_orig; 121 public: 122 123 void set_idx(node_idx_t idx) { 124 _idx_clone_orig = (_idx_clone_orig & CONST64(0xFFFFFFFF00000000)) | idx; 125 } 126 node_idx_t idx() const { return (node_idx_t)(_idx_clone_orig & 0xFFFFFFFF); } 127 128 void set_gen(int generation) { 129 uint64_t g = (uint64_t)generation << 32; 130 _idx_clone_orig = (_idx_clone_orig & 0xFFFFFFFF) | g; 131 } 132 int gen() const { return (int)(_idx_clone_orig >> 32); } 133 134 void set(uint64_t x) { _idx_clone_orig = x; } 135 void set(node_idx_t x, int g) { set_idx(x); set_gen(g); } 136 uint64_t get() const { return _idx_clone_orig; } 137 138 NodeCloneInfo(uint64_t idx_clone_orig) : _idx_clone_orig(idx_clone_orig) {} 139 NodeCloneInfo(node_idx_t x, int g) : _idx_clone_orig(0) { set(x, g); } 140 141 void dump_on(outputStream* st) const; 142 }; 143 144 class CloneMap { 145 friend class Compile; 146 private: 147 bool _debug; 148 Dict* _dict; 149 int _clone_idx; // current cloning iteration/generation in loop unroll 150 public: 151 void* _2p(node_idx_t key) const { return (void*)(intptr_t)key; } // 2 conversion functions to make gcc happy 152 node_idx_t _2_node_idx_t(const void* k) const { return (node_idx_t)(intptr_t)k; } 153 Dict* dict() const { return _dict; } 154 void insert(node_idx_t key, uint64_t val) { assert(_dict->operator[](_2p(key)) == nullptr, "key existed"); _dict->Insert(_2p(key), (void*)val); } 155 void insert(node_idx_t key, NodeCloneInfo& ci) { insert(key, ci.get()); } 156 void remove(node_idx_t key) { _dict->Delete(_2p(key)); } 157 uint64_t value(node_idx_t key) const { return (uint64_t)_dict->operator[](_2p(key)); } 158 node_idx_t idx(node_idx_t key) const { return NodeCloneInfo(value(key)).idx(); } 159 int gen(node_idx_t key) const { return NodeCloneInfo(value(key)).gen(); } 160 int gen(const void* k) const { return gen(_2_node_idx_t(k)); } 161 int max_gen() const; 162 void clone(Node* old, Node* nnn, int gen); 163 void verify_insert_and_clone(Node* old, Node* nnn, int gen); 164 void dump(node_idx_t key, outputStream* st) const; 165 166 int clone_idx() const { return _clone_idx; } 167 void set_clone_idx(int x) { _clone_idx = x; } 168 bool is_debug() const { return _debug; } 169 void set_debug(bool debug) { _debug = debug; } 170 171 bool same_idx(node_idx_t k1, node_idx_t k2) const { return idx(k1) == idx(k2); } 172 bool same_gen(node_idx_t k1, node_idx_t k2) const { return gen(k1) == gen(k2); } 173 }; 174 175 class Options { 176 friend class Compile; 177 friend class VMStructs; 178 private: 179 const bool _subsume_loads; // Load can be matched as part of a larger op. 180 const bool _do_escape_analysis; // Do escape analysis. 181 const bool _do_iterative_escape_analysis; // Do iterative escape analysis. 182 const bool _do_reduce_allocation_merges; // Do try to reduce allocation merges. 183 const bool _eliminate_boxing; // Do boxing elimination. 184 const bool _do_locks_coarsening; // Do locks coarsening 185 const bool _for_preload; // Generate code for preload (before Java method execution), do class init barriers 186 const bool _do_superword; // Do SuperWord 187 const bool _install_code; // Install the code that was compiled 188 public: 189 Options(bool subsume_loads, 190 bool do_escape_analysis, 191 bool do_iterative_escape_analysis, 192 bool do_reduce_allocation_merges, 193 bool eliminate_boxing, 194 bool do_locks_coarsening, 195 bool do_superword, 196 bool for_preload, 197 bool install_code) : 198 _subsume_loads(subsume_loads), 199 _do_escape_analysis(do_escape_analysis), 200 _do_iterative_escape_analysis(do_iterative_escape_analysis), 201 _do_reduce_allocation_merges(do_reduce_allocation_merges), 202 _eliminate_boxing(eliminate_boxing), 203 _do_locks_coarsening(do_locks_coarsening), 204 _for_preload(for_preload), 205 _do_superword(do_superword), 206 _install_code(install_code) { 207 } 208 209 static Options for_runtime_stub() { 210 return Options( 211 /* subsume_loads = */ true, 212 /* do_escape_analysis = */ false, 213 /* do_iterative_escape_analysis = */ false, 214 /* do_reduce_allocation_merges = */ false, 215 /* eliminate_boxing = */ false, 216 /* do_lock_coarsening = */ false, 217 /* for_preload = */ false, 218 /* do_superword = */ true, 219 /* install_code = */ true 220 ); 221 } 222 }; 223 224 //------------------------------Compile---------------------------------------- 225 // This class defines a top-level Compiler invocation. 226 227 class Compile : public Phase { 228 friend class VMStructs; 229 230 public: 231 // Fixed alias indexes. (See also MergeMemNode.) 232 enum { 233 AliasIdxTop = 1, // pseudo-index, aliases to nothing (used as sentinel value) 234 AliasIdxBot = 2, // pseudo-index, aliases to everything 235 AliasIdxRaw = 3 // hard-wired index for TypeRawPtr::BOTTOM 236 }; 237 238 // Variant of TraceTime(nullptr, &_t_accumulator, CITime); 239 // Integrated with logging. If logging is turned on, and CITimeVerbose is true, 240 // then brackets are put into the log, with time stamps and node counts. 241 // (The time collection itself is always conditionalized on CITime.) 242 class TracePhase : public TraceTime { 243 private: 244 Compile* _compile; 245 CompileLog* _log; 246 const char* _phase_name; 247 bool _dolog; 248 public: 249 TracePhase(const char* name, elapsedTimer* accumulator); 250 ~TracePhase(); 251 }; 252 253 // Information per category of alias (memory slice) 254 class AliasType { 255 private: 256 friend class Compile; 257 258 int _index; // unique index, used with MergeMemNode 259 const TypePtr* _adr_type; // normalized address type 260 ciField* _field; // relevant instance field, or null if none 261 const Type* _element; // relevant array element type, or null if none 262 bool _is_rewritable; // false if the memory is write-once only 263 int _general_index; // if this is type is an instance, the general 264 // type that this is an instance of 265 266 void Init(int i, const TypePtr* at); 267 268 public: 269 int index() const { return _index; } 270 const TypePtr* adr_type() const { return _adr_type; } 271 ciField* field() const { return _field; } 272 const Type* element() const { return _element; } 273 bool is_rewritable() const { return _is_rewritable; } 274 bool is_volatile() const { return (_field ? _field->is_volatile() : false); } 275 int general_index() const { return (_general_index != 0) ? _general_index : _index; } 276 277 void set_rewritable(bool z) { _is_rewritable = z; } 278 void set_field(ciField* f) { 279 assert(!_field,""); 280 _field = f; 281 if (f->is_final() || f->is_stable()) { 282 // In the case of @Stable, multiple writes are possible but may be assumed to be no-ops. 283 _is_rewritable = false; 284 } 285 } 286 void set_element(const Type* e) { 287 assert(_element == nullptr, ""); 288 _element = e; 289 } 290 291 BasicType basic_type() const; 292 293 void print_on(outputStream* st) PRODUCT_RETURN; 294 }; 295 296 enum { 297 logAliasCacheSize = 6, 298 AliasCacheSize = (1<<logAliasCacheSize) 299 }; 300 struct AliasCacheEntry { const TypePtr* _adr_type; int _index; }; // simple duple type 301 enum { 302 trapHistLength = MethodData::_trap_hist_limit 303 }; 304 305 private: 306 // Fixed parameters to this compilation. 307 const int _compile_id; 308 const Options _options; // Compilation options 309 ciMethod* _method; // The method being compiled. 310 int _entry_bci; // entry bci for osr methods. 311 const TypeFunc* _tf; // My kind of signature 312 InlineTree* _ilt; // Ditto (temporary). 313 address _stub_function; // VM entry for stub being compiled, or null 314 const char* _stub_name; // Name of stub or adapter being compiled, or null 315 address _stub_entry_point; // Compile code entry for generated stub, or null 316 317 // Control of this compilation. 318 int _max_inline_size; // Max inline size for this compilation 319 int _freq_inline_size; // Max hot method inline size for this compilation 320 int _fixed_slots; // count of frame slots not allocated by the register 321 // allocator i.e. locks, original deopt pc, etc. 322 uintx _max_node_limit; // Max unique node count during a single compilation. 323 324 bool _post_loop_opts_phase; // Loop opts are finished. 325 bool _allow_macro_nodes; // True if we allow creation of macro nodes. 326 327 int _major_progress; // Count of something big happening 328 bool _inlining_progress; // progress doing incremental inlining? 329 bool _inlining_incrementally;// Are we doing incremental inlining (post parse) 330 bool _do_cleanup; // Cleanup is needed before proceeding with incremental inlining 331 bool _has_loops; // True if the method _may_ have some loops 332 bool _has_split_ifs; // True if the method _may_ have some split-if 333 bool _has_unsafe_access; // True if the method _may_ produce faults in unsafe loads or stores. 334 bool _has_stringbuilder; // True StringBuffers or StringBuilders are allocated 335 bool _has_boxed_value; // True if a boxed object is allocated 336 bool _has_reserved_stack_access; // True if the method or an inlined method is annotated with ReservedStackAccess 337 uint _max_vector_size; // Maximum size of generated vectors 338 bool _clear_upper_avx; // Clear upper bits of ymm registers using vzeroupper 339 uint _trap_hist[trapHistLength]; // Cumulative traps 340 bool _trap_can_recompile; // Have we emitted a recompiling trap? 341 uint _decompile_count; // Cumulative decompilation counts. 342 bool _do_inlining; // True if we intend to do inlining 343 bool _do_scheduling; // True if we intend to do scheduling 344 bool _do_freq_based_layout; // True if we intend to do frequency based block layout 345 bool _do_vector_loop; // True if allowed to execute loop in parallel iterations 346 bool _use_cmove; // True if CMove should be used without profitability analysis 347 bool _do_aliasing; // True if we intend to do aliasing 348 bool _print_assembly; // True if we should dump assembly code for this compilation 349 bool _print_inlining; // True if we should print inlining for this compilation 350 bool _print_intrinsics; // True if we should print intrinsics for this compilation 351 #ifndef PRODUCT 352 uint _igv_idx; // Counter for IGV node identifiers 353 uint _igv_phase_iter[PHASE_NUM_TYPES]; // Counters for IGV phase iterations 354 bool _trace_opto_output; 355 bool _parsed_irreducible_loop; // True if ciTypeFlow detected irreducible loops during parsing 356 #endif 357 bool _has_irreducible_loop; // Found irreducible loops 358 // JSR 292 359 bool _has_method_handle_invokes; // True if this method has MethodHandle invokes. 360 bool _has_monitors; // Metadata transfered to nmethod to enable Continuations lock-detection fastpath 361 bool _has_scoped_access; // For shared scope closure 362 bool _clinit_barrier_on_entry; // True if clinit barrier is needed on nmethod entry 363 bool _has_clinit_barriers; // True if compiled code has clinit barriers 364 int _loop_opts_cnt; // loop opts round 365 uint _stress_seed; // Seed for stress testing 366 367 // Compilation environment. 368 Arena _comp_arena; // Arena with lifetime equivalent to Compile 369 void* _barrier_set_state; // Potential GC barrier state for Compile 370 ciEnv* _env; // CI interface 371 DirectiveSet* _directive; // Compiler directive 372 CompileLog* _log; // from CompilerThread 373 CHeapStringHolder _failure_reason; // for record_failure/failing pattern 374 CompilationFailureInfo* _first_failure_details; // Details for the first failure happening during compilation 375 GrowableArray<CallGenerator*> _intrinsics; // List of intrinsics. 376 GrowableArray<Node*> _macro_nodes; // List of nodes which need to be expanded before matching. 377 GrowableArray<ParsePredicateNode*> _parse_predicates; // List of Parse Predicates. 378 GrowableArray<Node*> _template_assertion_predicate_opaqs; // List of Opaque4 nodes for Template Assertion Predicates. 379 GrowableArray<Node*> _expensive_nodes; // List of nodes that are expensive to compute and that we'd better not let the GVN freely common 380 GrowableArray<Node*> _for_post_loop_igvn; // List of nodes for IGVN after loop opts are over 381 GrowableArray<UnstableIfTrap*> _unstable_if_traps; // List of ifnodes after IGVN 382 GrowableArray<Node_List*> _coarsened_locks; // List of coarsened Lock and Unlock nodes 383 ConnectionGraph* _congraph; 384 #ifndef PRODUCT 385 IdealGraphPrinter* _igv_printer; 386 static IdealGraphPrinter* _debug_file_printer; 387 static IdealGraphPrinter* _debug_network_printer; 388 #endif 389 390 391 // Node management 392 uint _unique; // Counter for unique Node indices 393 uint _dead_node_count; // Number of dead nodes; VectorSet::Size() is O(N). 394 // So use this to keep count and make the call O(1). 395 VectorSet _dead_node_list; // Set of dead nodes 396 DEBUG_ONLY(Unique_Node_List* _modified_nodes;) // List of nodes which inputs were modified 397 DEBUG_ONLY(bool _phase_optimize_finished;) // Used for live node verification while creating new nodes 398 399 DEBUG_ONLY(bool _phase_verify_ideal_loop;) // Are we in PhaseIdealLoop verification? 400 401 // Arenas for new-space and old-space nodes. 402 // Swapped between using _node_arena. 403 // The lifetime of the old-space nodes is during xform. 404 Arena _node_arena_one; 405 Arena _node_arena_two; 406 Arena* _node_arena; 407 public: 408 Arena* swap_old_and_new() { 409 Arena* filled_arena_ptr = _node_arena; 410 Arena* old_arena_ptr = old_arena(); 411 old_arena_ptr->destruct_contents(); 412 _node_arena = old_arena_ptr; 413 return filled_arena_ptr; 414 } 415 private: 416 RootNode* _root; // Unique root of compilation, or null after bail-out. 417 Node* _top; // Unique top node. (Reset by various phases.) 418 419 Node* _immutable_memory; // Initial memory state 420 421 Node* _recent_alloc_obj; 422 Node* _recent_alloc_ctl; 423 424 // Constant table 425 MachConstantBaseNode* _mach_constant_base_node; // Constant table base node singleton. 426 427 428 // Blocked array of debugging and profiling information, 429 // tracked per node. 430 enum { _log2_node_notes_block_size = 8, 431 _node_notes_block_size = (1<<_log2_node_notes_block_size) 432 }; 433 GrowableArray<Node_Notes*>* _node_note_array; 434 Node_Notes* _default_node_notes; // default notes for new nodes 435 436 // After parsing and every bulk phase we hang onto the Root instruction. 437 // The RootNode instruction is where the whole program begins. It produces 438 // the initial Control and BOTTOM for everybody else. 439 440 // Type management 441 Arena _Compile_types; // Arena for all types 442 Arena* _type_arena; // Alias for _Compile_types except in Initialize_shared() 443 Dict* _type_dict; // Intern table 444 CloneMap _clone_map; // used for recording history of cloned nodes 445 size_t _type_last_size; // Last allocation size (see Type::operator new/delete) 446 ciMethod* _last_tf_m; // Cache for 447 const TypeFunc* _last_tf; // TypeFunc::make 448 AliasType** _alias_types; // List of alias types seen so far. 449 int _num_alias_types; // Logical length of _alias_types 450 int _max_alias_types; // Physical length of _alias_types 451 AliasCacheEntry _alias_cache[AliasCacheSize]; // Gets aliases w/o data structure walking 452 453 // Parsing, optimization 454 PhaseGVN* _initial_gvn; // Results of parse-time PhaseGVN 455 456 // Shared worklist for all IGVN rounds. Nodes can be pushed to it at any time. 457 // If pushed outside IGVN, the Node is processed in the next IGVN round. 458 Unique_Node_List* _igvn_worklist; 459 460 // Shared type array for GVN, IGVN and CCP. It maps node idx -> Type*. 461 Type_Array* _types; 462 463 // Shared node hash table for GVN, IGVN and CCP. 464 NodeHash* _node_hash; 465 466 GrowableArray<CallGenerator*> _late_inlines; // List of CallGenerators to be revisited after main parsing has finished. 467 GrowableArray<CallGenerator*> _string_late_inlines; // same but for string operations 468 GrowableArray<CallGenerator*> _boxing_late_inlines; // same but for boxing operations 469 470 GrowableArray<CallGenerator*> _vector_reboxing_late_inlines; // same but for vector reboxing operations 471 472 int _late_inlines_pos; // Where in the queue should the next late inlining candidate go (emulate depth first inlining) 473 uint _number_of_mh_late_inlines; // number of method handle late inlining still pending 474 475 // "MemLimit" directive was specified and the memory limit was hit during compilation 476 bool _oom; 477 478 // Inlining may not happen in parse order which would make 479 // PrintInlining output confusing. Keep track of PrintInlining 480 // pieces in order. 481 class PrintInliningBuffer : public CHeapObj<mtCompiler> { 482 private: 483 CallGenerator* _cg; 484 stringStream _ss; 485 static const size_t default_stream_buffer_size = 128; 486 487 public: 488 PrintInliningBuffer() 489 : _cg(nullptr), _ss(default_stream_buffer_size) {} 490 491 stringStream* ss() { return &_ss; } 492 CallGenerator* cg() { return _cg; } 493 void set_cg(CallGenerator* cg) { _cg = cg; } 494 }; 495 496 stringStream* _print_inlining_stream; 497 GrowableArray<PrintInliningBuffer*>* _print_inlining_list; 498 int _print_inlining_idx; 499 char* _print_inlining_output; 500 501 // Only keep nodes in the expensive node list that need to be optimized 502 void cleanup_expensive_nodes(PhaseIterGVN &igvn); 503 // Use for sorting expensive nodes to bring similar nodes together 504 static int cmp_expensive_nodes(Node** n1, Node** n2); 505 // Expensive nodes list already sorted? 506 bool expensive_nodes_sorted() const; 507 // Remove the speculative part of types and clean up the graph 508 void remove_speculative_types(PhaseIterGVN &igvn); 509 510 void* _replay_inline_data; // Pointer to data loaded from file 511 512 void print_inlining_init(); 513 void print_inlining_reinit(); 514 void print_inlining_commit(); 515 void print_inlining_push(); 516 PrintInliningBuffer* print_inlining_current(); 517 518 void log_late_inline_failure(CallGenerator* cg, const char* msg); 519 DEBUG_ONLY(bool _exception_backedge;) 520 521 void record_method_not_compilable_oom(); 522 523 public: 524 525 void* barrier_set_state() const { return _barrier_set_state; } 526 527 stringStream* print_inlining_stream() { 528 assert(print_inlining() || print_intrinsics(), "PrintInlining off?"); 529 return _print_inlining_stream; 530 } 531 532 void print_inlining_update(CallGenerator* cg); 533 void print_inlining_update_delayed(CallGenerator* cg); 534 void print_inlining_move_to(CallGenerator* cg); 535 void print_inlining_assert_ready(); 536 void print_inlining_reset(); 537 538 void print_inlining(ciMethod* method, int inline_level, int bci, InliningResult result, const char* msg = nullptr) { 539 stringStream ss; 540 CompileTask::print_inlining_inner(&ss, method, inline_level, bci, result, msg); 541 print_inlining_stream()->print("%s", ss.freeze()); 542 } 543 544 #ifndef PRODUCT 545 IdealGraphPrinter* igv_printer() { return _igv_printer; } 546 void reset_igv_phase_iter(CompilerPhaseType cpt) { _igv_phase_iter[cpt] = 0; } 547 #endif 548 549 void log_late_inline(CallGenerator* cg); 550 void log_inline_id(CallGenerator* cg); 551 void log_inline_failure(const char* msg); 552 553 void* replay_inline_data() const { return _replay_inline_data; } 554 555 // Dump inlining replay data to the stream. 556 void dump_inline_data(outputStream* out); 557 void dump_inline_data_reduced(outputStream* out); 558 559 private: 560 // Matching, CFG layout, allocation, code generation 561 PhaseCFG* _cfg; // Results of CFG finding 562 int _java_calls; // Number of java calls in the method 563 int _inner_loops; // Number of inner loops in the method 564 Matcher* _matcher; // Engine to map ideal to machine instructions 565 PhaseRegAlloc* _regalloc; // Results of register allocation. 566 RegMask _FIRST_STACK_mask; // All stack slots usable for spills (depends on frame layout) 567 Arena* _indexSet_arena; // control IndexSet allocation within PhaseChaitin 568 void* _indexSet_free_block_list; // free list of IndexSet bit blocks 569 int _interpreter_frame_size; 570 571 PhaseOutput* _output; 572 573 public: 574 // Accessors 575 576 // The Compile instance currently active in this (compiler) thread. 577 static Compile* current() { 578 return (Compile*) ciEnv::current()->compiler_data(); 579 } 580 581 int interpreter_frame_size() const { return _interpreter_frame_size; } 582 583 PhaseOutput* output() const { return _output; } 584 void set_output(PhaseOutput* o) { _output = o; } 585 586 // ID for this compilation. Useful for setting breakpoints in the debugger. 587 int compile_id() const { return _compile_id; } 588 DirectiveSet* directive() const { return _directive; } 589 590 // Does this compilation allow instructions to subsume loads? User 591 // instructions that subsume a load may result in an unschedulable 592 // instruction sequence. 593 bool subsume_loads() const { return _options._subsume_loads; } 594 /** Do escape analysis. */ 595 bool do_escape_analysis() const { return _options._do_escape_analysis; } 596 bool do_iterative_escape_analysis() const { return _options._do_iterative_escape_analysis; } 597 bool do_reduce_allocation_merges() const { return _options._do_reduce_allocation_merges; } 598 /** Do boxing elimination. */ 599 bool eliminate_boxing() const { return _options._eliminate_boxing; } 600 /** Do aggressive boxing elimination. */ 601 bool aggressive_unboxing() const { return _options._eliminate_boxing && AggressiveUnboxing; } 602 bool should_install_code() const { return _options._install_code; } 603 /** Do locks coarsening. */ 604 bool do_locks_coarsening() const { return _options._do_locks_coarsening; } 605 bool do_superword() const { return _options._do_superword; } 606 607 bool do_clinit_barriers() const { return _options._for_preload; } 608 bool for_preload() const { return _options._for_preload; } 609 610 // Other fixed compilation parameters. 611 ciMethod* method() const { return _method; } 612 int entry_bci() const { return _entry_bci; } 613 bool is_osr_compilation() const { return _entry_bci != InvocationEntryBci; } 614 bool is_method_compilation() const { return (_method != nullptr && !_method->flags().is_native()); } 615 const TypeFunc* tf() const { assert(_tf!=nullptr, ""); return _tf; } 616 void init_tf(const TypeFunc* tf) { assert(_tf==nullptr, ""); _tf = tf; } 617 InlineTree* ilt() const { return _ilt; } 618 address stub_function() const { return _stub_function; } 619 const char* stub_name() const { return _stub_name; } 620 address stub_entry_point() const { return _stub_entry_point; } 621 void set_stub_entry_point(address z) { _stub_entry_point = z; } 622 623 // Control of this compilation. 624 int fixed_slots() const { assert(_fixed_slots >= 0, ""); return _fixed_slots; } 625 void set_fixed_slots(int n) { _fixed_slots = n; } 626 int major_progress() const { return _major_progress; } 627 void set_inlining_progress(bool z) { _inlining_progress = z; } 628 int inlining_progress() const { return _inlining_progress; } 629 void set_inlining_incrementally(bool z) { _inlining_incrementally = z; } 630 int inlining_incrementally() const { return _inlining_incrementally; } 631 void set_do_cleanup(bool z) { _do_cleanup = z; } 632 int do_cleanup() const { return _do_cleanup; } 633 void set_major_progress() { _major_progress++; } 634 void restore_major_progress(int progress) { _major_progress += progress; } 635 void clear_major_progress() { _major_progress = 0; } 636 int max_inline_size() const { return _max_inline_size; } 637 void set_freq_inline_size(int n) { _freq_inline_size = n; } 638 int freq_inline_size() const { return _freq_inline_size; } 639 void set_max_inline_size(int n) { _max_inline_size = n; } 640 bool has_loops() const { return _has_loops; } 641 void set_has_loops(bool z) { _has_loops = z; } 642 bool has_split_ifs() const { return _has_split_ifs; } 643 void set_has_split_ifs(bool z) { _has_split_ifs = z; } 644 bool has_unsafe_access() const { return _has_unsafe_access; } 645 void set_has_unsafe_access(bool z) { _has_unsafe_access = z; } 646 bool has_stringbuilder() const { return _has_stringbuilder; } 647 void set_has_stringbuilder(bool z) { _has_stringbuilder = z; } 648 bool has_boxed_value() const { return _has_boxed_value; } 649 void set_has_boxed_value(bool z) { _has_boxed_value = z; } 650 bool has_reserved_stack_access() const { return _has_reserved_stack_access; } 651 void set_has_reserved_stack_access(bool z) { _has_reserved_stack_access = z; } 652 uint max_vector_size() const { return _max_vector_size; } 653 void set_max_vector_size(uint s) { _max_vector_size = s; } 654 bool clear_upper_avx() const { return _clear_upper_avx; } 655 void set_clear_upper_avx(bool s) { _clear_upper_avx = s; } 656 void set_trap_count(uint r, uint c) { assert(r < trapHistLength, "oob"); _trap_hist[r] = c; } 657 uint trap_count(uint r) const { assert(r < trapHistLength, "oob"); return _trap_hist[r]; } 658 bool trap_can_recompile() const { return _trap_can_recompile; } 659 void set_trap_can_recompile(bool z) { _trap_can_recompile = z; } 660 uint decompile_count() const { return _decompile_count; } 661 void set_decompile_count(uint c) { _decompile_count = c; } 662 bool allow_range_check_smearing() const; 663 bool do_inlining() const { return _do_inlining; } 664 void set_do_inlining(bool z) { _do_inlining = z; } 665 bool do_scheduling() const { return _do_scheduling; } 666 void set_do_scheduling(bool z) { _do_scheduling = z; } 667 bool do_freq_based_layout() const{ return _do_freq_based_layout; } 668 void set_do_freq_based_layout(bool z){ _do_freq_based_layout = z; } 669 bool do_vector_loop() const { return _do_vector_loop; } 670 void set_do_vector_loop(bool z) { _do_vector_loop = z; } 671 bool use_cmove() const { return _use_cmove; } 672 void set_use_cmove(bool z) { _use_cmove = z; } 673 bool do_aliasing() const { return _do_aliasing; } 674 bool print_assembly() const { return _print_assembly; } 675 void set_print_assembly(bool z) { _print_assembly = z; } 676 bool print_inlining() const { return _print_inlining; } 677 void set_print_inlining(bool z) { _print_inlining = z; } 678 bool print_intrinsics() const { return _print_intrinsics; } 679 void set_print_intrinsics(bool z) { _print_intrinsics = z; } 680 uint max_node_limit() const { return (uint)_max_node_limit; } 681 void set_max_node_limit(uint n) { _max_node_limit = n; } 682 bool clinit_barrier_on_entry() { return _clinit_barrier_on_entry; } 683 void set_clinit_barrier_on_entry(bool z) { _clinit_barrier_on_entry = z; } 684 bool has_monitors() const { return _has_monitors; } 685 void set_has_monitors(bool v) { _has_monitors = v; } 686 bool has_scoped_access() const { return _has_scoped_access; } 687 void set_has_scoped_access(bool v) { _has_scoped_access = v; } 688 bool has_clinit_barriers() { return _has_clinit_barriers; } 689 void set_has_clinit_barriers(bool z) { _has_clinit_barriers = z; } 690 691 // check the CompilerOracle for special behaviours for this compile 692 bool method_has_option(CompileCommandEnum option) { 693 return method() != nullptr && method()->has_option(option); 694 } 695 696 #ifndef PRODUCT 697 uint next_igv_idx() { return _igv_idx++; } 698 bool trace_opto_output() const { return _trace_opto_output; } 699 void print_ideal_ir(const char* phase_name); 700 bool should_print_ideal() const { return _directive->PrintIdealOption; } 701 bool parsed_irreducible_loop() const { return _parsed_irreducible_loop; } 702 void set_parsed_irreducible_loop(bool z) { _parsed_irreducible_loop = z; } 703 int _in_dump_cnt; // Required for dumping ir nodes. 704 #endif 705 bool has_irreducible_loop() const { return _has_irreducible_loop; } 706 void set_has_irreducible_loop(bool z) { _has_irreducible_loop = z; } 707 708 // JSR 292 709 bool has_method_handle_invokes() const { return _has_method_handle_invokes; } 710 void set_has_method_handle_invokes(bool z) { _has_method_handle_invokes = z; } 711 712 Ticks _latest_stage_start_counter; 713 714 void begin_method(); 715 void end_method(); 716 bool should_print_igv(int level); 717 bool should_print_phase(CompilerPhaseType cpt); 718 719 void print_method(CompilerPhaseType cpt, int level, Node* n = nullptr); 720 721 #ifndef PRODUCT 722 void dump_igv(const char* graph_name, int level = 3) { 723 if (should_print_igv(level)) { 724 _igv_printer->print_method(graph_name, level); 725 } 726 } 727 728 void igv_print_method_to_file(const char* phase_name = "Debug", bool append = false); 729 void igv_print_method_to_network(const char* phase_name = "Debug"); 730 static IdealGraphPrinter* debug_file_printer() { return _debug_file_printer; } 731 static IdealGraphPrinter* debug_network_printer() { return _debug_network_printer; } 732 #endif 733 734 int macro_count() const { return _macro_nodes.length(); } 735 int parse_predicate_count() const { return _parse_predicates.length(); } 736 int template_assertion_predicate_count() const { return _template_assertion_predicate_opaqs.length(); } 737 int expensive_count() const { return _expensive_nodes.length(); } 738 int coarsened_count() const { return _coarsened_locks.length(); } 739 740 Node* macro_node(int idx) const { return _macro_nodes.at(idx); } 741 ParsePredicateNode* parse_predicate(int idx) const { return _parse_predicates.at(idx); } 742 743 Node* template_assertion_predicate_opaq_node(int idx) const { 744 return _template_assertion_predicate_opaqs.at(idx); 745 } 746 747 Node* expensive_node(int idx) const { return _expensive_nodes.at(idx); } 748 749 ConnectionGraph* congraph() { return _congraph;} 750 void set_congraph(ConnectionGraph* congraph) { _congraph = congraph;} 751 void add_macro_node(Node * n) { 752 //assert(n->is_macro(), "must be a macro node"); 753 assert(!_macro_nodes.contains(n), "duplicate entry in expand list"); 754 _macro_nodes.append(n); 755 } 756 void remove_macro_node(Node* n) { 757 // this function may be called twice for a node so we can only remove it 758 // if it's still existing. 759 _macro_nodes.remove_if_existing(n); 760 // Remove from coarsened locks list if present 761 if (coarsened_count() > 0) { 762 remove_coarsened_lock(n); 763 } 764 } 765 void add_expensive_node(Node* n); 766 void remove_expensive_node(Node* n) { 767 _expensive_nodes.remove_if_existing(n); 768 } 769 770 void add_parse_predicate(ParsePredicateNode* n) { 771 assert(!_parse_predicates.contains(n), "duplicate entry in Parse Predicate list"); 772 _parse_predicates.append(n); 773 } 774 775 void remove_parse_predicate(ParsePredicateNode* n) { 776 if (parse_predicate_count() > 0) { 777 _parse_predicates.remove_if_existing(n); 778 } 779 } 780 781 void add_template_assertion_predicate_opaq(Node* n) { 782 assert(!_template_assertion_predicate_opaqs.contains(n), 783 "duplicate entry in template assertion predicate opaque4 list"); 784 _template_assertion_predicate_opaqs.append(n); 785 } 786 787 void remove_template_assertion_predicate_opaq(Node* n) { 788 if (template_assertion_predicate_count() > 0) { 789 _template_assertion_predicate_opaqs.remove_if_existing(n); 790 } 791 } 792 void add_coarsened_locks(GrowableArray<AbstractLockNode*>& locks); 793 void remove_coarsened_lock(Node* n); 794 bool coarsened_locks_consistent(); 795 void mark_unbalanced_boxes() const; 796 797 bool post_loop_opts_phase() { return _post_loop_opts_phase; } 798 void set_post_loop_opts_phase() { _post_loop_opts_phase = true; } 799 void reset_post_loop_opts_phase() { _post_loop_opts_phase = false; } 800 801 #ifdef ASSERT 802 bool phase_verify_ideal_loop() const { return _phase_verify_ideal_loop; } 803 void set_phase_verify_ideal_loop() { _phase_verify_ideal_loop = true; } 804 void reset_phase_verify_ideal_loop() { _phase_verify_ideal_loop = false; } 805 #endif 806 807 bool allow_macro_nodes() { return _allow_macro_nodes; } 808 void reset_allow_macro_nodes() { _allow_macro_nodes = false; } 809 810 void record_for_post_loop_opts_igvn(Node* n); 811 void remove_from_post_loop_opts_igvn(Node* n); 812 void process_for_post_loop_opts_igvn(PhaseIterGVN& igvn); 813 814 void record_unstable_if_trap(UnstableIfTrap* trap); 815 bool remove_unstable_if_trap(CallStaticJavaNode* unc, bool yield); 816 void remove_useless_unstable_if_traps(Unique_Node_List &useful); 817 void process_for_unstable_if_traps(PhaseIterGVN& igvn); 818 819 void shuffle_macro_nodes(); 820 void sort_macro_nodes(); 821 822 void mark_parse_predicate_nodes_useless(PhaseIterGVN& igvn); 823 824 // Are there candidate expensive nodes for optimization? 825 bool should_optimize_expensive_nodes(PhaseIterGVN &igvn); 826 // Check whether n1 and n2 are similar 827 static int cmp_expensive_nodes(Node* n1, Node* n2); 828 // Sort expensive nodes to locate similar expensive nodes 829 void sort_expensive_nodes(); 830 831 // Compilation environment. 832 Arena* comp_arena() { return &_comp_arena; } 833 ciEnv* env() const { return _env; } 834 CompileLog* log() const { return _log; } 835 836 bool failing_internal() const { 837 return _env->failing() || 838 _failure_reason.get() != nullptr; 839 } 840 841 const char* failure_reason() const { 842 return _env->failing() ? _env->failure_reason() 843 : _failure_reason.get(); 844 } 845 846 const CompilationFailureInfo* first_failure_details() const { return _first_failure_details; } 847 848 bool failing() { 849 if (failing_internal()) { 850 return true; 851 } 852 #ifdef ASSERT 853 // Disable stress code for PhaseIdealLoop verification (would have cascading effects). 854 if (phase_verify_ideal_loop()) { 855 return false; 856 } 857 if (StressBailout) { 858 return fail_randomly(); 859 } 860 #endif 861 return false; 862 } 863 864 #ifdef ASSERT 865 bool fail_randomly(); 866 bool failure_is_artificial(); 867 #endif 868 869 bool failure_reason_is(const char* r) const { 870 return (r == _failure_reason.get()) || 871 (r != nullptr && 872 _failure_reason.get() != nullptr && 873 strcmp(r, _failure_reason.get()) == 0); 874 } 875 876 void record_failure(const char* reason DEBUG_ONLY(COMMA bool allow_multiple_failures = false)); 877 void record_method_not_compilable(const char* reason DEBUG_ONLY(COMMA bool allow_multiple_failures = false)) { 878 env()->record_method_not_compilable(reason); 879 // Record failure reason. 880 record_failure(reason DEBUG_ONLY(COMMA allow_multiple_failures)); 881 } 882 bool check_node_count(uint margin, const char* reason) { 883 if (oom()) { 884 record_method_not_compilable_oom(); 885 return true; 886 } 887 if (live_nodes() + margin > max_node_limit()) { 888 record_method_not_compilable(reason); 889 return true; 890 } else { 891 return false; 892 } 893 } 894 bool oom() const { return _oom; } 895 void set_oom() { _oom = true; } 896 897 // Node management 898 uint unique() const { return _unique; } 899 uint next_unique() { return _unique++; } 900 void set_unique(uint i) { _unique = i; } 901 Arena* node_arena() { return _node_arena; } 902 Arena* old_arena() { return (&_node_arena_one == _node_arena) ? &_node_arena_two : &_node_arena_one; } 903 RootNode* root() const { return _root; } 904 void set_root(RootNode* r) { _root = r; } 905 StartNode* start() const; // (Derived from root.) 906 void verify_start(StartNode* s) const NOT_DEBUG_RETURN; 907 Node* immutable_memory(); 908 909 Node* recent_alloc_ctl() const { return _recent_alloc_ctl; } 910 Node* recent_alloc_obj() const { return _recent_alloc_obj; } 911 void set_recent_alloc(Node* ctl, Node* obj) { 912 _recent_alloc_ctl = ctl; 913 _recent_alloc_obj = obj; 914 } 915 void record_dead_node(uint idx) { if (_dead_node_list.test_set(idx)) return; 916 _dead_node_count++; 917 } 918 void reset_dead_node_list() { _dead_node_list.reset(); 919 _dead_node_count = 0; 920 } 921 uint live_nodes() const { 922 int val = _unique - _dead_node_count; 923 assert (val >= 0, "number of tracked dead nodes %d more than created nodes %d", _unique, _dead_node_count); 924 return (uint) val; 925 } 926 #ifdef ASSERT 927 void set_phase_optimize_finished() { _phase_optimize_finished = true; } 928 bool phase_optimize_finished() const { return _phase_optimize_finished; } 929 uint count_live_nodes_by_graph_walk(); 930 void print_missing_nodes(); 931 #endif 932 933 // Record modified nodes to check that they are put on IGVN worklist 934 void record_modified_node(Node* n) NOT_DEBUG_RETURN; 935 void remove_modified_node(Node* n) NOT_DEBUG_RETURN; 936 DEBUG_ONLY( Unique_Node_List* modified_nodes() const { return _modified_nodes; } ) 937 938 MachConstantBaseNode* mach_constant_base_node(); 939 bool has_mach_constant_base_node() const { return _mach_constant_base_node != nullptr; } 940 // Generated by adlc, true if CallNode requires MachConstantBase. 941 bool needs_deep_clone_jvms(); 942 943 // Handy undefined Node 944 Node* top() const { return _top; } 945 946 // these are used by guys who need to know about creation and transformation of top: 947 Node* cached_top_node() { return _top; } 948 void set_cached_top_node(Node* tn); 949 950 GrowableArray<Node_Notes*>* node_note_array() const { return _node_note_array; } 951 void set_node_note_array(GrowableArray<Node_Notes*>* arr) { _node_note_array = arr; } 952 Node_Notes* default_node_notes() const { return _default_node_notes; } 953 void set_default_node_notes(Node_Notes* n) { _default_node_notes = n; } 954 955 Node_Notes* node_notes_at(int idx) { 956 return locate_node_notes(_node_note_array, idx, false); 957 } 958 inline bool set_node_notes_at(int idx, Node_Notes* value); 959 960 // Copy notes from source to dest, if they exist. 961 // Overwrite dest only if source provides something. 962 // Return true if information was moved. 963 bool copy_node_notes_to(Node* dest, Node* source); 964 965 // Workhorse function to sort out the blocked Node_Notes array: 966 inline Node_Notes* locate_node_notes(GrowableArray<Node_Notes*>* arr, 967 int idx, bool can_grow = false); 968 969 void grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by); 970 971 // Type management 972 Arena* type_arena() { return _type_arena; } 973 Dict* type_dict() { return _type_dict; } 974 size_t type_last_size() { return _type_last_size; } 975 int num_alias_types() { return _num_alias_types; } 976 977 void init_type_arena() { _type_arena = &_Compile_types; } 978 void set_type_arena(Arena* a) { _type_arena = a; } 979 void set_type_dict(Dict* d) { _type_dict = d; } 980 void set_type_last_size(size_t sz) { _type_last_size = sz; } 981 982 const TypeFunc* last_tf(ciMethod* m) { 983 return (m == _last_tf_m) ? _last_tf : nullptr; 984 } 985 void set_last_tf(ciMethod* m, const TypeFunc* tf) { 986 assert(m != nullptr || tf == nullptr, ""); 987 _last_tf_m = m; 988 _last_tf = tf; 989 } 990 991 AliasType* alias_type(int idx) { assert(idx < num_alias_types(), "oob"); return _alias_types[idx]; } 992 AliasType* alias_type(const TypePtr* adr_type, ciField* field = nullptr) { return find_alias_type(adr_type, false, field); } 993 bool have_alias_type(const TypePtr* adr_type); 994 AliasType* alias_type(ciField* field); 995 996 int get_alias_index(const TypePtr* at) { return alias_type(at)->index(); } 997 const TypePtr* get_adr_type(uint aidx) { return alias_type(aidx)->adr_type(); } 998 int get_general_index(uint aidx) { return alias_type(aidx)->general_index(); } 999 1000 // Building nodes 1001 void rethrow_exceptions(JVMState* jvms); 1002 void return_values(JVMState* jvms); 1003 JVMState* build_start_state(StartNode* start, const TypeFunc* tf); 1004 1005 // Decide how to build a call. 1006 // The profile factor is a discount to apply to this site's interp. profile. 1007 CallGenerator* call_generator(ciMethod* call_method, int vtable_index, bool call_does_dispatch, 1008 JVMState* jvms, bool allow_inline, float profile_factor, ciKlass* speculative_receiver_type = nullptr, 1009 bool allow_intrinsics = true); 1010 bool should_delay_inlining(ciMethod* call_method, JVMState* jvms) { 1011 return should_delay_string_inlining(call_method, jvms) || 1012 should_delay_boxing_inlining(call_method, jvms) || 1013 should_delay_vector_inlining(call_method, jvms); 1014 } 1015 bool should_delay_string_inlining(ciMethod* call_method, JVMState* jvms); 1016 bool should_delay_boxing_inlining(ciMethod* call_method, JVMState* jvms); 1017 bool should_delay_vector_inlining(ciMethod* call_method, JVMState* jvms); 1018 bool should_delay_vector_reboxing_inlining(ciMethod* call_method, JVMState* jvms); 1019 1020 // Helper functions to identify inlining potential at call-site 1021 ciMethod* optimize_virtual_call(ciMethod* caller, ciInstanceKlass* klass, 1022 ciKlass* holder, ciMethod* callee, 1023 const TypeOopPtr* receiver_type, bool is_virtual, 1024 bool &call_does_dispatch, int &vtable_index, 1025 bool check_access = true); 1026 ciMethod* optimize_inlining(ciMethod* caller, ciInstanceKlass* klass, ciKlass* holder, 1027 ciMethod* callee, const TypeOopPtr* receiver_type, 1028 bool check_access = true); 1029 1030 // Report if there were too many traps at a current method and bci. 1031 // Report if a trap was recorded, and/or PerMethodTrapLimit was exceeded. 1032 // If there is no MDO at all, report no trap unless told to assume it. 1033 bool too_many_traps(ciMethod* method, int bci, Deoptimization::DeoptReason reason); 1034 // This version, unspecific to a particular bci, asks if 1035 // PerMethodTrapLimit was exceeded for all inlined methods seen so far. 1036 bool too_many_traps(Deoptimization::DeoptReason reason, 1037 // Privately used parameter for logging: 1038 ciMethodData* logmd = nullptr); 1039 // Report if there were too many recompiles at a method and bci. 1040 bool too_many_recompiles(ciMethod* method, int bci, Deoptimization::DeoptReason reason); 1041 // Report if there were too many traps or recompiles at a method and bci. 1042 bool too_many_traps_or_recompiles(ciMethod* method, int bci, Deoptimization::DeoptReason reason) { 1043 return too_many_traps(method, bci, reason) || 1044 too_many_recompiles(method, bci, reason); 1045 } 1046 // Return a bitset with the reasons where deoptimization is allowed, 1047 // i.e., where there were not too many uncommon traps. 1048 int _allowed_reasons; 1049 int allowed_deopt_reasons() { return _allowed_reasons; } 1050 void set_allowed_deopt_reasons(); 1051 1052 // Parsing, optimization 1053 PhaseGVN* initial_gvn() { return _initial_gvn; } 1054 Unique_Node_List* igvn_worklist() { 1055 assert(_igvn_worklist != nullptr, "must be created in Compile::Compile"); 1056 return _igvn_worklist; 1057 } 1058 Type_Array* types() { 1059 assert(_types != nullptr, "must be created in Compile::Compile"); 1060 return _types; 1061 } 1062 NodeHash* node_hash() { 1063 assert(_node_hash != nullptr, "must be created in Compile::Compile"); 1064 return _node_hash; 1065 } 1066 inline void record_for_igvn(Node* n); // Body is after class Unique_Node_List in node.hpp. 1067 inline void remove_for_igvn(Node* n); // Body is after class Unique_Node_List in node.hpp. 1068 void set_initial_gvn(PhaseGVN *gvn) { _initial_gvn = gvn; } 1069 1070 // Replace n by nn using initial_gvn, calling hash_delete and 1071 // record_for_igvn as needed. 1072 void gvn_replace_by(Node* n, Node* nn); 1073 1074 1075 void identify_useful_nodes(Unique_Node_List &useful); 1076 void update_dead_node_list(Unique_Node_List &useful); 1077 void disconnect_useless_nodes(Unique_Node_List& useful, Unique_Node_List& worklist); 1078 1079 void remove_useless_node(Node* dead); 1080 1081 // Record this CallGenerator for inlining at the end of parsing. 1082 void add_late_inline(CallGenerator* cg) { 1083 _late_inlines.insert_before(_late_inlines_pos, cg); 1084 _late_inlines_pos++; 1085 } 1086 1087 void prepend_late_inline(CallGenerator* cg) { 1088 _late_inlines.insert_before(0, cg); 1089 } 1090 1091 void add_string_late_inline(CallGenerator* cg) { 1092 _string_late_inlines.push(cg); 1093 } 1094 1095 void add_boxing_late_inline(CallGenerator* cg) { 1096 _boxing_late_inlines.push(cg); 1097 } 1098 1099 void add_vector_reboxing_late_inline(CallGenerator* cg) { 1100 _vector_reboxing_late_inlines.push(cg); 1101 } 1102 1103 template<typename N, ENABLE_IF(std::is_base_of<Node, N>::value)> 1104 void remove_useless_nodes(GrowableArray<N*>& node_list, Unique_Node_List& useful); 1105 1106 void remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful); 1107 void remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Node* dead); 1108 1109 void remove_useless_coarsened_locks(Unique_Node_List& useful); 1110 1111 void process_print_inlining(); 1112 void dump_print_inlining(); 1113 1114 bool over_inlining_cutoff() const { 1115 if (!inlining_incrementally()) { 1116 return unique() > (uint)NodeCountInliningCutoff; 1117 } else { 1118 // Give some room for incremental inlining algorithm to "breathe" 1119 // and avoid thrashing when live node count is close to the limit. 1120 // Keep in mind that live_nodes() isn't accurate during inlining until 1121 // dead node elimination step happens (see Compile::inline_incrementally). 1122 return live_nodes() > (uint)LiveNodeCountInliningCutoff * 11 / 10; 1123 } 1124 } 1125 1126 void inc_number_of_mh_late_inlines() { _number_of_mh_late_inlines++; } 1127 void dec_number_of_mh_late_inlines() { assert(_number_of_mh_late_inlines > 0, "_number_of_mh_late_inlines < 0 !"); _number_of_mh_late_inlines--; } 1128 bool has_mh_late_inlines() const { return _number_of_mh_late_inlines > 0; } 1129 1130 bool inline_incrementally_one(); 1131 void inline_incrementally_cleanup(PhaseIterGVN& igvn); 1132 void inline_incrementally(PhaseIterGVN& igvn); 1133 bool should_delay_inlining() { return AlwaysIncrementalInline || (StressIncrementalInlining && (random() % 2) == 0); } 1134 void inline_string_calls(bool parse_time); 1135 void inline_boxing_calls(PhaseIterGVN& igvn); 1136 bool optimize_loops(PhaseIterGVN& igvn, LoopOptsMode mode); 1137 void remove_root_to_sfpts_edges(PhaseIterGVN& igvn); 1138 1139 void inline_vector_reboxing_calls(); 1140 bool has_vbox_nodes(); 1141 1142 void process_late_inline_calls_no_inline(PhaseIterGVN& igvn); 1143 1144 // Matching, CFG layout, allocation, code generation 1145 PhaseCFG* cfg() { return _cfg; } 1146 bool has_java_calls() const { return _java_calls > 0; } 1147 int java_calls() const { return _java_calls; } 1148 int inner_loops() const { return _inner_loops; } 1149 Matcher* matcher() { return _matcher; } 1150 PhaseRegAlloc* regalloc() { return _regalloc; } 1151 RegMask& FIRST_STACK_mask() { return _FIRST_STACK_mask; } 1152 Arena* indexSet_arena() { return _indexSet_arena; } 1153 void* indexSet_free_block_list() { return _indexSet_free_block_list; } 1154 DebugInformationRecorder* debug_info() { return env()->debug_info(); } 1155 1156 void update_interpreter_frame_size(int size) { 1157 if (_interpreter_frame_size < size) { 1158 _interpreter_frame_size = size; 1159 } 1160 } 1161 1162 void set_matcher(Matcher* m) { _matcher = m; } 1163 //void set_regalloc(PhaseRegAlloc* ra) { _regalloc = ra; } 1164 void set_indexSet_arena(Arena* a) { _indexSet_arena = a; } 1165 void set_indexSet_free_block_list(void* p) { _indexSet_free_block_list = p; } 1166 1167 void set_java_calls(int z) { _java_calls = z; } 1168 void set_inner_loops(int z) { _inner_loops = z; } 1169 1170 Dependencies* dependencies() { return env()->dependencies(); } 1171 1172 // Major entry point. Given a Scope, compile the associated method. 1173 // For normal compilations, entry_bci is InvocationEntryBci. For on stack 1174 // replacement, entry_bci indicates the bytecode for which to compile a 1175 // continuation. 1176 Compile(ciEnv* ci_env, ciMethod* target, 1177 int entry_bci, Options options, DirectiveSet* directive); 1178 1179 // Second major entry point. From the TypeFunc signature, generate code 1180 // to pass arguments from the Java calling convention to the C calling 1181 // convention. 1182 Compile(ciEnv* ci_env, const TypeFunc *(*gen)(), 1183 address stub_function, const char *stub_name, 1184 int is_fancy_jump, bool pass_tls, 1185 bool return_pc, DirectiveSet* directive); 1186 1187 ~Compile(); 1188 1189 // Are we compiling a method? 1190 bool has_method() { return method() != nullptr; } 1191 1192 // Maybe print some information about this compile. 1193 void print_compile_messages(); 1194 1195 // Final graph reshaping, a post-pass after the regular optimizer is done. 1196 bool final_graph_reshaping(); 1197 1198 // returns true if adr is completely contained in the given alias category 1199 bool must_alias(const TypePtr* adr, int alias_idx); 1200 1201 // returns true if adr overlaps with the given alias category 1202 bool can_alias(const TypePtr* adr, int alias_idx); 1203 1204 // Stack slots that may be unused by the calling convention but must 1205 // otherwise be preserved. On Intel this includes the return address. 1206 // On PowerPC it includes the 4 words holding the old TOC & LR glue. 1207 uint in_preserve_stack_slots() { 1208 return SharedRuntime::in_preserve_stack_slots(); 1209 } 1210 1211 // "Top of Stack" slots that may be unused by the calling convention but must 1212 // otherwise be preserved. 1213 // On Intel these are not necessary and the value can be zero. 1214 static uint out_preserve_stack_slots() { 1215 return SharedRuntime::out_preserve_stack_slots(); 1216 } 1217 1218 // Number of outgoing stack slots killed above the out_preserve_stack_slots 1219 // for calls to C. Supports the var-args backing area for register parms. 1220 uint varargs_C_out_slots_killed() const; 1221 1222 // Number of Stack Slots consumed by a synchronization entry 1223 int sync_stack_slots() const; 1224 1225 // Compute the name of old_SP. See <arch>.ad for frame layout. 1226 OptoReg::Name compute_old_SP(); 1227 1228 private: 1229 // Phase control: 1230 void Init(bool aliasing); // Prepare for a single compilation 1231 void Optimize(); // Given a graph, optimize it 1232 void Code_Gen(); // Generate code from a graph 1233 1234 // Management of the AliasType table. 1235 void grow_alias_types(); 1236 AliasCacheEntry* probe_alias_cache(const TypePtr* adr_type); 1237 const TypePtr *flatten_alias_type(const TypePtr* adr_type) const; 1238 AliasType* find_alias_type(const TypePtr* adr_type, bool no_create, ciField* field); 1239 1240 void verify_top(Node*) const PRODUCT_RETURN; 1241 1242 // Intrinsic setup. 1243 CallGenerator* make_vm_intrinsic(ciMethod* m, bool is_virtual); // constructor 1244 int intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found); // helper 1245 CallGenerator* find_intrinsic(ciMethod* m, bool is_virtual); // query fn 1246 void register_intrinsic(CallGenerator* cg); // update fn 1247 1248 #ifndef PRODUCT 1249 static juint _intrinsic_hist_count[]; 1250 static jubyte _intrinsic_hist_flags[]; 1251 #endif 1252 // Function calls made by the public function final_graph_reshaping. 1253 // No need to be made public as they are not called elsewhere. 1254 void final_graph_reshaping_impl(Node *n, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes); 1255 void final_graph_reshaping_main_switch(Node* n, Final_Reshape_Counts& frc, uint nop, Unique_Node_List& dead_nodes); 1256 void final_graph_reshaping_walk(Node_Stack& nstack, Node* root, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes); 1257 void eliminate_redundant_card_marks(Node* n); 1258 void handle_div_mod_op(Node* n, BasicType bt, bool is_unsigned); 1259 1260 // Logic cone optimization. 1261 void optimize_logic_cones(PhaseIterGVN &igvn); 1262 void collect_logic_cone_roots(Unique_Node_List& list); 1263 void process_logic_cone_root(PhaseIterGVN &igvn, Node* n, VectorSet& visited); 1264 bool compute_logic_cone(Node* n, Unique_Node_List& partition, Unique_Node_List& inputs); 1265 uint compute_truth_table(Unique_Node_List& partition, Unique_Node_List& inputs); 1266 uint eval_macro_logic_op(uint func, uint op1, uint op2, uint op3); 1267 Node* xform_to_MacroLogicV(PhaseIterGVN &igvn, const TypeVect* vt, Unique_Node_List& partitions, Unique_Node_List& inputs); 1268 void check_no_dead_use() const NOT_DEBUG_RETURN; 1269 1270 public: 1271 1272 // Note: Histogram array size is about 1 Kb. 1273 enum { // flag bits: 1274 _intrinsic_worked = 1, // succeeded at least once 1275 _intrinsic_failed = 2, // tried it but it failed 1276 _intrinsic_disabled = 4, // was requested but disabled (e.g., -XX:-InlineUnsafeOps) 1277 _intrinsic_virtual = 8, // was seen in the virtual form (rare) 1278 _intrinsic_both = 16 // was seen in the non-virtual form (usual) 1279 }; 1280 // Update histogram. Return boolean if this is a first-time occurrence. 1281 static bool gather_intrinsic_statistics(vmIntrinsics::ID id, 1282 bool is_virtual, int flags) PRODUCT_RETURN0; 1283 static void print_intrinsic_statistics() PRODUCT_RETURN; 1284 1285 // Graph verification code 1286 // Walk the node list, verifying that there is a one-to-one 1287 // correspondence between Use-Def edges and Def-Use edges 1288 // The option no_dead_code enables stronger checks that the 1289 // graph is strongly connected from root in both directions. 1290 void verify_graph_edges(bool no_dead_code = false) PRODUCT_RETURN; 1291 1292 // Verify bi-directional correspondence of edges 1293 void verify_bidirectional_edges(Unique_Node_List &visited); 1294 1295 // End-of-run dumps. 1296 static void print_statistics() PRODUCT_RETURN; 1297 1298 // Verify ADLC assumptions during startup 1299 static void adlc_verification() PRODUCT_RETURN; 1300 1301 // Definitions of pd methods 1302 static void pd_compiler2_init(); 1303 1304 // Static parse-time type checking logic for gen_subtype_check: 1305 enum SubTypeCheckResult { SSC_always_false, SSC_always_true, SSC_easy_test, SSC_full_test }; 1306 SubTypeCheckResult static_subtype_check(const TypeKlassPtr* superk, const TypeKlassPtr* subk, bool skip = StressReflectiveCode); 1307 1308 static Node* conv_I2X_index(PhaseGVN* phase, Node* offset, const TypeInt* sizetype, 1309 // Optional control dependency (for example, on range check) 1310 Node* ctrl = nullptr); 1311 1312 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check) 1313 static Node* constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl, bool carry_dependency = false); 1314 1315 // Auxiliary methods for randomized fuzzing/stressing 1316 int random(); 1317 bool randomized_select(int count); 1318 1319 // seed random number generation and log the seed for repeatability. 1320 void initialize_stress_seed(const DirectiveSet* directive); 1321 1322 // supporting clone_map 1323 CloneMap& clone_map(); 1324 void set_clone_map(Dict* d); 1325 1326 bool needs_clinit_barrier(ciField* ik, ciMethod* accessing_method); 1327 bool needs_clinit_barrier(ciMethod* ik, ciMethod* accessing_method); 1328 bool needs_clinit_barrier(ciInstanceKlass* ik, ciMethod* accessing_method); 1329 1330 #ifdef IA32 1331 private: 1332 bool _select_24_bit_instr; // We selected an instruction with a 24-bit result 1333 bool _in_24_bit_fp_mode; // We are emitting instructions with 24-bit results 1334 1335 // Remember if this compilation changes hardware mode to 24-bit precision. 1336 void set_24_bit_selection_and_mode(bool selection, bool mode) { 1337 _select_24_bit_instr = selection; 1338 _in_24_bit_fp_mode = mode; 1339 } 1340 1341 public: 1342 bool select_24_bit_instr() const { return _select_24_bit_instr; } 1343 bool in_24_bit_fp_mode() const { return _in_24_bit_fp_mode; } 1344 #endif // IA32 1345 #ifdef ASSERT 1346 VerifyMeetResult* _type_verify; 1347 void set_exception_backedge() { _exception_backedge = true; } 1348 bool has_exception_backedge() const { return _exception_backedge; } 1349 #endif 1350 1351 static bool push_thru_add(PhaseGVN* phase, Node* z, const TypeInteger* tz, const TypeInteger*& rx, const TypeInteger*& ry, 1352 BasicType out_bt, BasicType in_bt); 1353 1354 static Node* narrow_value(BasicType bt, Node* value, const Type* type, PhaseGVN* phase, bool transform_res); 1355 }; 1356 1357 #endif // SHARE_OPTO_COMPILE_HPP