1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_OPTO_COMPILE_HPP 26 #define SHARE_OPTO_COMPILE_HPP 27 28 #include "asm/codeBuffer.hpp" 29 #include "ci/compilerInterface.hpp" 30 #include "code/debugInfoRec.hpp" 31 #include "compiler/compiler_globals.hpp" 32 #include "compiler/compileBroker.hpp" 33 #include "compiler/compilerEvent.hpp" 34 #include "compiler/cHeapStringHolder.hpp" 35 #include "libadt/dict.hpp" 36 #include "libadt/vectset.hpp" 37 #include "memory/resourceArea.hpp" 38 #include "oops/methodData.hpp" 39 #include "opto/idealGraphPrinter.hpp" 40 #include "opto/phasetype.hpp" 41 #include "opto/phase.hpp" 42 #include "opto/regmask.hpp" 43 #include "runtime/deoptimization.hpp" 44 #include "runtime/sharedRuntime.hpp" 45 #include "runtime/timerTrace.hpp" 46 #include "runtime/vmThread.hpp" 47 #include "utilities/ticks.hpp" 48 #include "utilities/vmEnums.hpp" 49 #include "opto/printinlining.hpp" 50 51 class AbstractLockNode; 52 class AddPNode; 53 class Block; 54 class Bundle; 55 class CallGenerator; 56 class CallStaticJavaNode; 57 class CloneMap; 58 class CompilationFailureInfo; 59 class ConnectionGraph; 60 class IdealGraphPrinter; 61 class InlineTree; 62 class Matcher; 63 class MachConstantNode; 64 class MachConstantBaseNode; 65 class MachNode; 66 class MachOper; 67 class MachSafePointNode; 68 class Node; 69 class Node_Array; 70 class Node_List; 71 class Node_Notes; 72 class NodeHash; 73 class NodeCloneInfo; 74 class OpaqueTemplateAssertionPredicateNode; 75 class OptoReg; 76 class ParsePredicateNode; 77 class PhaseCFG; 78 class PhaseGVN; 79 class PhaseIterGVN; 80 class PhaseRegAlloc; 81 class PhaseCCP; 82 class PhaseOutput; 83 class RootNode; 84 class relocInfo; 85 class StartNode; 86 class SafePointNode; 87 class JVMState; 88 class Type; 89 class TypeInt; 90 class TypeInteger; 91 class TypeKlassPtr; 92 class TypePtr; 93 class TypeOopPtr; 94 class TypeFunc; 95 class TypeVect; 96 class Type_Array; 97 class Unique_Node_List; 98 class UnstableIfTrap; 99 class nmethod; 100 class Node_Stack; 101 struct Final_Reshape_Counts; 102 class VerifyMeetResult; 103 104 enum LoopOptsMode { 105 LoopOptsDefault, 106 LoopOptsNone, 107 LoopOptsMaxUnroll, 108 LoopOptsShenandoahExpand, 109 LoopOptsSkipSplitIf, 110 LoopOptsVerify 111 }; 112 113 // The type of all node counts and indexes. 114 // It must hold at least 16 bits, but must also be fast to load and store. 115 // This type, if less than 32 bits, could limit the number of possible nodes. 116 // (To make this type platform-specific, move to globalDefinitions_xxx.hpp.) 117 typedef unsigned int node_idx_t; 118 119 class NodeCloneInfo { 120 private: 121 uint64_t _idx_clone_orig; 122 public: 123 124 void set_idx(node_idx_t idx) { 125 _idx_clone_orig = (_idx_clone_orig & CONST64(0xFFFFFFFF00000000)) | idx; 126 } 127 node_idx_t idx() const { return (node_idx_t)(_idx_clone_orig & 0xFFFFFFFF); } 128 129 void set_gen(int generation) { 130 uint64_t g = (uint64_t)generation << 32; 131 _idx_clone_orig = (_idx_clone_orig & 0xFFFFFFFF) | g; 132 } 133 int gen() const { return (int)(_idx_clone_orig >> 32); } 134 135 void set(uint64_t x) { _idx_clone_orig = x; } 136 void set(node_idx_t x, int g) { set_idx(x); set_gen(g); } 137 uint64_t get() const { return _idx_clone_orig; } 138 139 NodeCloneInfo(uint64_t idx_clone_orig) : _idx_clone_orig(idx_clone_orig) {} 140 NodeCloneInfo(node_idx_t x, int g) : _idx_clone_orig(0) { set(x, g); } 141 142 void dump_on(outputStream* st) const; 143 }; 144 145 class CloneMap { 146 friend class Compile; 147 private: 148 bool _debug; 149 Dict* _dict; 150 int _clone_idx; // current cloning iteration/generation in loop unroll 151 public: 152 void* _2p(node_idx_t key) const { return (void*)(intptr_t)key; } // 2 conversion functions to make gcc happy 153 node_idx_t _2_node_idx_t(const void* k) const { return (node_idx_t)(intptr_t)k; } 154 Dict* dict() const { return _dict; } 155 void insert(node_idx_t key, uint64_t val) { assert(_dict->operator[](_2p(key)) == nullptr, "key existed"); _dict->Insert(_2p(key), (void*)val); } 156 void insert(node_idx_t key, NodeCloneInfo& ci) { insert(key, ci.get()); } 157 void remove(node_idx_t key) { _dict->Delete(_2p(key)); } 158 uint64_t value(node_idx_t key) const { return (uint64_t)_dict->operator[](_2p(key)); } 159 node_idx_t idx(node_idx_t key) const { return NodeCloneInfo(value(key)).idx(); } 160 int gen(node_idx_t key) const { return NodeCloneInfo(value(key)).gen(); } 161 int gen(const void* k) const { return gen(_2_node_idx_t(k)); } 162 int max_gen() const; 163 void clone(Node* old, Node* nnn, int gen); 164 void verify_insert_and_clone(Node* old, Node* nnn, int gen); 165 void dump(node_idx_t key, outputStream* st) const; 166 167 int clone_idx() const { return _clone_idx; } 168 void set_clone_idx(int x) { _clone_idx = x; } 169 bool is_debug() const { return _debug; } 170 void set_debug(bool debug) { _debug = debug; } 171 172 bool same_idx(node_idx_t k1, node_idx_t k2) const { return idx(k1) == idx(k2); } 173 bool same_gen(node_idx_t k1, node_idx_t k2) const { return gen(k1) == gen(k2); } 174 }; 175 176 class Options { 177 friend class Compile; 178 private: 179 const bool _subsume_loads; // Load can be matched as part of a larger op. 180 const bool _do_escape_analysis; // Do escape analysis. 181 const bool _do_iterative_escape_analysis; // Do iterative escape analysis. 182 const bool _do_reduce_allocation_merges; // Do try to reduce allocation merges. 183 const bool _eliminate_boxing; // Do boxing elimination. 184 const bool _do_locks_coarsening; // Do locks coarsening 185 const bool _for_preload; // Generate code for preload (before Java method execution), do class init barriers 186 const bool _do_superword; // Do SuperWord 187 const bool _install_code; // Install the code that was compiled 188 public: 189 Options(bool subsume_loads, 190 bool do_escape_analysis, 191 bool do_iterative_escape_analysis, 192 bool do_reduce_allocation_merges, 193 bool eliminate_boxing, 194 bool do_locks_coarsening, 195 bool do_superword, 196 bool for_preload, 197 bool install_code) : 198 _subsume_loads(subsume_loads), 199 _do_escape_analysis(do_escape_analysis), 200 _do_iterative_escape_analysis(do_iterative_escape_analysis), 201 _do_reduce_allocation_merges(do_reduce_allocation_merges), 202 _eliminate_boxing(eliminate_boxing), 203 _do_locks_coarsening(do_locks_coarsening), 204 _for_preload(for_preload), 205 _do_superword(do_superword), 206 _install_code(install_code) { 207 } 208 209 static Options for_runtime_stub() { 210 return Options( 211 /* subsume_loads = */ true, 212 /* do_escape_analysis = */ false, 213 /* do_iterative_escape_analysis = */ false, 214 /* do_reduce_allocation_merges = */ false, 215 /* eliminate_boxing = */ false, 216 /* do_lock_coarsening = */ false, 217 /* for_preload = */ false, 218 /* do_superword = */ true, 219 /* install_code = */ true 220 ); 221 } 222 }; 223 224 //------------------------------Compile---------------------------------------- 225 // This class defines a top-level Compiler invocation. 226 227 class Compile : public Phase { 228 229 public: 230 // Fixed alias indexes. (See also MergeMemNode.) 231 enum { 232 AliasIdxTop = 1, // pseudo-index, aliases to nothing (used as sentinel value) 233 AliasIdxBot = 2, // pseudo-index, aliases to everything 234 AliasIdxRaw = 3 // hard-wired index for TypeRawPtr::BOTTOM 235 }; 236 237 // Variant of TraceTime(nullptr, &_t_accumulator, CITime); 238 // Integrated with logging. If logging is turned on, and CITimeVerbose is true, 239 // then brackets are put into the log, with time stamps and node counts. 240 // (The time collection itself is always conditionalized on CITime.) 241 class TracePhase : public TraceTime { 242 private: 243 Compile* const _compile; 244 CompileLog* _log; 245 const bool _dolog; 246 public: 247 TracePhase(PhaseTraceId phaseTraceId); 248 TracePhase(const char* name, PhaseTraceId phaseTraceId); 249 ~TracePhase(); 250 const char* phase_name() const { return title(); } 251 }; 252 253 // Information per category of alias (memory slice) 254 class AliasType { 255 private: 256 friend class Compile; 257 258 int _index; // unique index, used with MergeMemNode 259 const TypePtr* _adr_type; // normalized address type 260 ciField* _field; // relevant instance field, or null if none 261 const Type* _element; // relevant array element type, or null if none 262 bool _is_rewritable; // false if the memory is write-once only 263 int _general_index; // if this is type is an instance, the general 264 // type that this is an instance of 265 266 void Init(int i, const TypePtr* at); 267 268 public: 269 int index() const { return _index; } 270 const TypePtr* adr_type() const { return _adr_type; } 271 ciField* field() const { return _field; } 272 const Type* element() const { return _element; } 273 bool is_rewritable() const { return _is_rewritable; } 274 bool is_volatile() const { return (_field ? _field->is_volatile() : false); } 275 int general_index() const { return (_general_index != 0) ? _general_index : _index; } 276 277 void set_rewritable(bool z) { _is_rewritable = z; } 278 void set_field(ciField* f) { 279 assert(!_field,""); 280 _field = f; 281 if (f->is_final() || f->is_stable()) { 282 // In the case of @Stable, multiple writes are possible but may be assumed to be no-ops. 283 _is_rewritable = false; 284 } 285 } 286 void set_element(const Type* e) { 287 assert(_element == nullptr, ""); 288 _element = e; 289 } 290 291 BasicType basic_type() const; 292 293 void print_on(outputStream* st) PRODUCT_RETURN; 294 }; 295 296 enum { 297 logAliasCacheSize = 6, 298 AliasCacheSize = (1<<logAliasCacheSize) 299 }; 300 struct AliasCacheEntry { const TypePtr* _adr_type; int _index; }; // simple duple type 301 enum { 302 trapHistLength = MethodData::_trap_hist_limit 303 }; 304 305 private: 306 // Fixed parameters to this compilation. 307 const int _compile_id; 308 const Options _options; // Compilation options 309 ciMethod* _method; // The method being compiled. 310 int _entry_bci; // entry bci for osr methods. 311 const TypeFunc* _tf; // My kind of signature 312 InlineTree* _ilt; // Ditto (temporary). 313 address _stub_function; // VM entry for stub being compiled, or null 314 const char* _stub_name; // Name of stub or adapter being compiled, or null 315 int _stub_id; // unique id for stub or -1 316 address _stub_entry_point; // Compile code entry for generated stub, or null 317 318 // Control of this compilation. 319 int _max_inline_size; // Max inline size for this compilation 320 int _freq_inline_size; // Max hot method inline size for this compilation 321 int _fixed_slots; // count of frame slots not allocated by the register 322 // allocator i.e. locks, original deopt pc, etc. 323 uintx _max_node_limit; // Max unique node count during a single compilation. 324 325 bool _post_loop_opts_phase; // Loop opts are finished. 326 bool _merge_stores_phase; // Phase for merging stores, after post loop opts phase. 327 bool _allow_macro_nodes; // True if we allow creation of macro nodes. 328 329 int _major_progress; // Count of something big happening 330 bool _inlining_progress; // progress doing incremental inlining? 331 bool _inlining_incrementally;// Are we doing incremental inlining (post parse) 332 bool _do_cleanup; // Cleanup is needed before proceeding with incremental inlining 333 bool _has_loops; // True if the method _may_ have some loops 334 bool _has_split_ifs; // True if the method _may_ have some split-if 335 bool _has_unsafe_access; // True if the method _may_ produce faults in unsafe loads or stores. 336 bool _has_stringbuilder; // True StringBuffers or StringBuilders are allocated 337 bool _has_boxed_value; // True if a boxed object is allocated 338 bool _has_reserved_stack_access; // True if the method or an inlined method is annotated with ReservedStackAccess 339 uint _max_vector_size; // Maximum size of generated vectors 340 bool _clear_upper_avx; // Clear upper bits of ymm registers using vzeroupper 341 uint _trap_hist[trapHistLength]; // Cumulative traps 342 bool _trap_can_recompile; // Have we emitted a recompiling trap? 343 uint _decompile_count; // Cumulative decompilation counts. 344 bool _do_inlining; // True if we intend to do inlining 345 bool _do_scheduling; // True if we intend to do scheduling 346 bool _do_freq_based_layout; // True if we intend to do frequency based block layout 347 bool _do_vector_loop; // True if allowed to execute loop in parallel iterations 348 bool _use_cmove; // True if CMove should be used without profitability analysis 349 bool _do_aliasing; // True if we intend to do aliasing 350 bool _print_assembly; // True if we should dump assembly code for this compilation 351 bool _print_inlining; // True if we should print inlining for this compilation 352 bool _print_intrinsics; // True if we should print intrinsics for this compilation 353 #ifndef PRODUCT 354 uint _phase_counter; // Counter for the number of already printed phases 355 uint _igv_idx; // Counter for IGV node identifiers 356 uint _igv_phase_iter[PHASE_NUM_TYPES]; // Counters for IGV phase iterations 357 bool _trace_opto_output; 358 bool _parsed_irreducible_loop; // True if ciTypeFlow detected irreducible loops during parsing 359 #endif 360 bool _has_irreducible_loop; // Found irreducible loops 361 // JSR 292 362 bool _has_method_handle_invokes; // True if this method has MethodHandle invokes. 363 bool _has_monitors; // Metadata transfered to nmethod to enable Continuations lock-detection fastpath 364 bool _has_scoped_access; // For shared scope closure 365 bool _clinit_barrier_on_entry; // True if clinit barrier is needed on nmethod entry 366 bool _has_clinit_barriers; // True if compiled code has clinit barriers 367 int _loop_opts_cnt; // loop opts round 368 uint _stress_seed; // Seed for stress testing 369 370 // Compilation environment. 371 Arena _comp_arena; // Arena with lifetime equivalent to Compile 372 void* _barrier_set_state; // Potential GC barrier state for Compile 373 ciEnv* _env; // CI interface 374 DirectiveSet* _directive; // Compiler directive 375 CompileLog* _log; // from CompilerThread 376 CHeapStringHolder _failure_reason; // for record_failure/failing pattern 377 CompilationFailureInfo* _first_failure_details; // Details for the first failure happening during compilation 378 GrowableArray<CallGenerator*> _intrinsics; // List of intrinsics. 379 GrowableArray<Node*> _macro_nodes; // List of nodes which need to be expanded before matching. 380 GrowableArray<ParsePredicateNode*> _parse_predicates; // List of Parse Predicates. 381 // List of OpaqueTemplateAssertionPredicateNode nodes for Template Assertion Predicates which can be seen as list 382 // of Template Assertion Predicates themselves. 383 GrowableArray<OpaqueTemplateAssertionPredicateNode*> _template_assertion_predicate_opaques; 384 GrowableArray<Node*> _expensive_nodes; // List of nodes that are expensive to compute and that we'd better not let the GVN freely common 385 GrowableArray<Node*> _for_post_loop_igvn; // List of nodes for IGVN after loop opts are over 386 GrowableArray<Node*> _for_merge_stores_igvn; // List of nodes for IGVN merge stores 387 GrowableArray<UnstableIfTrap*> _unstable_if_traps; // List of ifnodes after IGVN 388 GrowableArray<Node_List*> _coarsened_locks; // List of coarsened Lock and Unlock nodes 389 ConnectionGraph* _congraph; 390 #ifndef PRODUCT 391 IdealGraphPrinter* _igv_printer; 392 static IdealGraphPrinter* _debug_file_printer; 393 static IdealGraphPrinter* _debug_network_printer; 394 #endif 395 396 397 // Node management 398 uint _unique; // Counter for unique Node indices 399 uint _dead_node_count; // Number of dead nodes; VectorSet::Size() is O(N). 400 // So use this to keep count and make the call O(1). 401 VectorSet _dead_node_list; // Set of dead nodes 402 DEBUG_ONLY(Unique_Node_List* _modified_nodes;) // List of nodes which inputs were modified 403 DEBUG_ONLY(bool _phase_optimize_finished;) // Used for live node verification while creating new nodes 404 405 DEBUG_ONLY(bool _phase_verify_ideal_loop;) // Are we in PhaseIdealLoop verification? 406 407 // Arenas for new-space and old-space nodes. 408 // Swapped between using _node_arena. 409 // The lifetime of the old-space nodes is during xform. 410 Arena _node_arena_one; 411 Arena _node_arena_two; 412 Arena* _node_arena; 413 public: 414 Arena* swap_old_and_new() { 415 Arena* filled_arena_ptr = _node_arena; 416 Arena* old_arena_ptr = old_arena(); 417 old_arena_ptr->destruct_contents(); 418 _node_arena = old_arena_ptr; 419 return filled_arena_ptr; 420 } 421 private: 422 RootNode* _root; // Unique root of compilation, or null after bail-out. 423 Node* _top; // Unique top node. (Reset by various phases.) 424 425 Node* _immutable_memory; // Initial memory state 426 427 Node* _recent_alloc_obj; 428 Node* _recent_alloc_ctl; 429 430 // Constant table 431 MachConstantBaseNode* _mach_constant_base_node; // Constant table base node singleton. 432 433 434 // Blocked array of debugging and profiling information, 435 // tracked per node. 436 enum { _log2_node_notes_block_size = 8, 437 _node_notes_block_size = (1<<_log2_node_notes_block_size) 438 }; 439 GrowableArray<Node_Notes*>* _node_note_array; 440 Node_Notes* _default_node_notes; // default notes for new nodes 441 442 // After parsing and every bulk phase we hang onto the Root instruction. 443 // The RootNode instruction is where the whole program begins. It produces 444 // the initial Control and BOTTOM for everybody else. 445 446 // Type management 447 Arena _Compile_types; // Arena for all types 448 Arena* _type_arena; // Alias for _Compile_types except in Initialize_shared() 449 Dict* _type_dict; // Intern table 450 CloneMap _clone_map; // used for recording history of cloned nodes 451 size_t _type_last_size; // Last allocation size (see Type::operator new/delete) 452 ciMethod* _last_tf_m; // Cache for 453 const TypeFunc* _last_tf; // TypeFunc::make 454 AliasType** _alias_types; // List of alias types seen so far. 455 int _num_alias_types; // Logical length of _alias_types 456 int _max_alias_types; // Physical length of _alias_types 457 AliasCacheEntry _alias_cache[AliasCacheSize]; // Gets aliases w/o data structure walking 458 459 // Parsing, optimization 460 PhaseGVN* _initial_gvn; // Results of parse-time PhaseGVN 461 462 // Shared worklist for all IGVN rounds. Nodes can be pushed to it at any time. 463 // If pushed outside IGVN, the Node is processed in the next IGVN round. 464 Unique_Node_List* _igvn_worklist; 465 466 // Shared type array for GVN, IGVN and CCP. It maps node idx -> Type*. 467 Type_Array* _types; 468 469 // Shared node hash table for GVN, IGVN and CCP. 470 NodeHash* _node_hash; 471 472 GrowableArray<CallGenerator*> _late_inlines; // List of CallGenerators to be revisited after main parsing has finished. 473 GrowableArray<CallGenerator*> _string_late_inlines; // same but for string operations 474 GrowableArray<CallGenerator*> _boxing_late_inlines; // same but for boxing operations 475 476 GrowableArray<CallGenerator*> _vector_reboxing_late_inlines; // same but for vector reboxing operations 477 478 int _late_inlines_pos; // Where in the queue should the next late inlining candidate go (emulate depth first inlining) 479 uint _number_of_mh_late_inlines; // number of method handle late inlining still pending 480 481 // "MemLimit" directive was specified and the memory limit was hit during compilation 482 bool _oom; 483 484 // Only keep nodes in the expensive node list that need to be optimized 485 void cleanup_expensive_nodes(PhaseIterGVN &igvn); 486 // Use for sorting expensive nodes to bring similar nodes together 487 static int cmp_expensive_nodes(Node** n1, Node** n2); 488 // Expensive nodes list already sorted? 489 bool expensive_nodes_sorted() const; 490 // Remove the speculative part of types and clean up the graph 491 void remove_speculative_types(PhaseIterGVN &igvn); 492 493 void* _replay_inline_data; // Pointer to data loaded from file 494 495 void log_late_inline_failure(CallGenerator* cg, const char* msg); 496 DEBUG_ONLY(bool _exception_backedge;) 497 498 void record_method_not_compilable_oom(); 499 500 InlinePrinter _inline_printer; 501 502 public: 503 void* barrier_set_state() const { return _barrier_set_state; } 504 505 InlinePrinter* inline_printer() { return &_inline_printer; } 506 507 #ifndef PRODUCT 508 IdealGraphPrinter* igv_printer() { return _igv_printer; } 509 void reset_igv_phase_iter(CompilerPhaseType cpt) { _igv_phase_iter[cpt] = 0; } 510 #endif 511 512 void log_late_inline(CallGenerator* cg); 513 void log_inline_id(CallGenerator* cg); 514 void log_inline_failure(const char* msg); 515 516 void* replay_inline_data() const { return _replay_inline_data; } 517 518 // Dump inlining replay data to the stream. 519 void dump_inline_data(outputStream* out); 520 void dump_inline_data_reduced(outputStream* out); 521 522 private: 523 // Matching, CFG layout, allocation, code generation 524 PhaseCFG* _cfg; // Results of CFG finding 525 int _java_calls; // Number of java calls in the method 526 int _inner_loops; // Number of inner loops in the method 527 Matcher* _matcher; // Engine to map ideal to machine instructions 528 PhaseRegAlloc* _regalloc; // Results of register allocation. 529 RegMask _FIRST_STACK_mask; // All stack slots usable for spills (depends on frame layout) 530 Arena* _indexSet_arena; // control IndexSet allocation within PhaseChaitin 531 void* _indexSet_free_block_list; // free list of IndexSet bit blocks 532 int _interpreter_frame_size; 533 534 PhaseOutput* _output; 535 536 public: 537 // Accessors 538 539 // The Compile instance currently active in this (compiler) thread. 540 static Compile* current() { 541 return (Compile*) ciEnv::current()->compiler_data(); 542 } 543 544 int interpreter_frame_size() const { return _interpreter_frame_size; } 545 546 PhaseOutput* output() const { return _output; } 547 void set_output(PhaseOutput* o) { _output = o; } 548 549 // ID for this compilation. Useful for setting breakpoints in the debugger. 550 int compile_id() const { return _compile_id; } 551 DirectiveSet* directive() const { return _directive; } 552 553 // Does this compilation allow instructions to subsume loads? User 554 // instructions that subsume a load may result in an unschedulable 555 // instruction sequence. 556 bool subsume_loads() const { return _options._subsume_loads; } 557 /** Do escape analysis. */ 558 bool do_escape_analysis() const { return _options._do_escape_analysis; } 559 bool do_iterative_escape_analysis() const { return _options._do_iterative_escape_analysis; } 560 bool do_reduce_allocation_merges() const { return _options._do_reduce_allocation_merges; } 561 /** Do boxing elimination. */ 562 bool eliminate_boxing() const { return _options._eliminate_boxing; } 563 /** Do aggressive boxing elimination. */ 564 bool aggressive_unboxing() const { return _options._eliminate_boxing && AggressiveUnboxing; } 565 bool should_install_code() const { return _options._install_code; } 566 /** Do locks coarsening. */ 567 bool do_locks_coarsening() const { return _options._do_locks_coarsening; } 568 bool do_superword() const { return _options._do_superword; } 569 570 bool do_clinit_barriers() const { return _options._for_preload; } 571 bool for_preload() const { return _options._for_preload; } 572 573 // Other fixed compilation parameters. 574 ciMethod* method() const { return _method; } 575 int entry_bci() const { return _entry_bci; } 576 bool is_osr_compilation() const { return _entry_bci != InvocationEntryBci; } 577 bool is_method_compilation() const { return (_method != nullptr && !_method->flags().is_native()); } 578 const TypeFunc* tf() const { assert(_tf!=nullptr, ""); return _tf; } 579 void init_tf(const TypeFunc* tf) { assert(_tf==nullptr, ""); _tf = tf; } 580 InlineTree* ilt() const { return _ilt; } 581 address stub_function() const { return _stub_function; } 582 const char* stub_name() const { return _stub_name; } 583 int stub_id() const { return _stub_id; } 584 address stub_entry_point() const { return _stub_entry_point; } 585 void set_stub_entry_point(address z) { _stub_entry_point = z; } 586 587 // Control of this compilation. 588 int fixed_slots() const { assert(_fixed_slots >= 0, ""); return _fixed_slots; } 589 void set_fixed_slots(int n) { _fixed_slots = n; } 590 int major_progress() const { return _major_progress; } 591 void set_inlining_progress(bool z) { _inlining_progress = z; } 592 int inlining_progress() const { return _inlining_progress; } 593 void set_inlining_incrementally(bool z) { _inlining_incrementally = z; } 594 int inlining_incrementally() const { return _inlining_incrementally; } 595 void set_do_cleanup(bool z) { _do_cleanup = z; } 596 int do_cleanup() const { return _do_cleanup; } 597 void set_major_progress() { _major_progress++; } 598 void restore_major_progress(int progress) { _major_progress += progress; } 599 void clear_major_progress() { _major_progress = 0; } 600 int max_inline_size() const { return _max_inline_size; } 601 void set_freq_inline_size(int n) { _freq_inline_size = n; } 602 int freq_inline_size() const { return _freq_inline_size; } 603 void set_max_inline_size(int n) { _max_inline_size = n; } 604 bool has_loops() const { return _has_loops; } 605 void set_has_loops(bool z) { _has_loops = z; } 606 bool has_split_ifs() const { return _has_split_ifs; } 607 void set_has_split_ifs(bool z) { _has_split_ifs = z; } 608 bool has_unsafe_access() const { return _has_unsafe_access; } 609 void set_has_unsafe_access(bool z) { _has_unsafe_access = z; } 610 bool has_stringbuilder() const { return _has_stringbuilder; } 611 void set_has_stringbuilder(bool z) { _has_stringbuilder = z; } 612 bool has_boxed_value() const { return _has_boxed_value; } 613 void set_has_boxed_value(bool z) { _has_boxed_value = z; } 614 bool has_reserved_stack_access() const { return _has_reserved_stack_access; } 615 void set_has_reserved_stack_access(bool z) { _has_reserved_stack_access = z; } 616 uint max_vector_size() const { return _max_vector_size; } 617 void set_max_vector_size(uint s) { _max_vector_size = s; } 618 bool clear_upper_avx() const { return _clear_upper_avx; } 619 void set_clear_upper_avx(bool s) { _clear_upper_avx = s; } 620 void set_trap_count(uint r, uint c) { assert(r < trapHistLength, "oob"); _trap_hist[r] = c; } 621 uint trap_count(uint r) const { assert(r < trapHistLength, "oob"); return _trap_hist[r]; } 622 bool trap_can_recompile() const { return _trap_can_recompile; } 623 void set_trap_can_recompile(bool z) { _trap_can_recompile = z; } 624 uint decompile_count() const { return _decompile_count; } 625 void set_decompile_count(uint c) { _decompile_count = c; } 626 bool allow_range_check_smearing() const; 627 bool do_inlining() const { return _do_inlining; } 628 void set_do_inlining(bool z) { _do_inlining = z; } 629 bool do_scheduling() const { return _do_scheduling; } 630 void set_do_scheduling(bool z) { _do_scheduling = z; } 631 bool do_freq_based_layout() const{ return _do_freq_based_layout; } 632 void set_do_freq_based_layout(bool z){ _do_freq_based_layout = z; } 633 bool do_vector_loop() const { return _do_vector_loop; } 634 void set_do_vector_loop(bool z) { _do_vector_loop = z; } 635 bool use_cmove() const { return _use_cmove; } 636 void set_use_cmove(bool z) { _use_cmove = z; } 637 bool do_aliasing() const { return _do_aliasing; } 638 bool print_assembly() const { return _print_assembly; } 639 void set_print_assembly(bool z) { _print_assembly = z; } 640 bool print_inlining() const { return _print_inlining; } 641 void set_print_inlining(bool z) { _print_inlining = z; } 642 bool print_intrinsics() const { return _print_intrinsics; } 643 void set_print_intrinsics(bool z) { _print_intrinsics = z; } 644 uint max_node_limit() const { return (uint)_max_node_limit; } 645 void set_max_node_limit(uint n) { _max_node_limit = n; } 646 bool clinit_barrier_on_entry() { return _clinit_barrier_on_entry; } 647 void set_clinit_barrier_on_entry(bool z) { _clinit_barrier_on_entry = z; } 648 bool has_monitors() const { return _has_monitors; } 649 void set_has_monitors(bool v) { _has_monitors = v; } 650 bool has_scoped_access() const { return _has_scoped_access; } 651 void set_has_scoped_access(bool v) { _has_scoped_access = v; } 652 bool has_clinit_barriers() { return _has_clinit_barriers; } 653 void set_has_clinit_barriers(bool z) { _has_clinit_barriers = z; } 654 655 // check the CompilerOracle for special behaviours for this compile 656 bool method_has_option(CompileCommandEnum option) const { 657 return method() != nullptr && method()->has_option(option); 658 } 659 660 #ifndef PRODUCT 661 uint next_igv_idx() { return _igv_idx++; } 662 bool trace_opto_output() const { return _trace_opto_output; } 663 void print_phase(const char* phase_name); 664 void print_ideal_ir(const char* phase_name); 665 bool should_print_ideal() const { return _directive->PrintIdealOption; } 666 bool parsed_irreducible_loop() const { return _parsed_irreducible_loop; } 667 void set_parsed_irreducible_loop(bool z) { _parsed_irreducible_loop = z; } 668 int _in_dump_cnt; // Required for dumping ir nodes. 669 #endif 670 bool has_irreducible_loop() const { return _has_irreducible_loop; } 671 void set_has_irreducible_loop(bool z) { _has_irreducible_loop = z; } 672 673 // JSR 292 674 bool has_method_handle_invokes() const { return _has_method_handle_invokes; } 675 void set_has_method_handle_invokes(bool z) { _has_method_handle_invokes = z; } 676 677 Ticks _latest_stage_start_counter; 678 679 void begin_method(); 680 void end_method(); 681 682 void print_method(CompilerPhaseType cpt, int level, Node* n = nullptr); 683 684 #ifndef PRODUCT 685 bool should_print_igv(int level); 686 bool should_print_phase(int level) const; 687 bool should_print_ideal_phase(CompilerPhaseType cpt) const; 688 void init_igv(); 689 void dump_igv(const char* graph_name, int level = 3) { 690 if (should_print_igv(level)) { 691 _igv_printer->print_graph(graph_name, nullptr); 692 } 693 } 694 695 void igv_print_method_to_file(const char* phase_name = nullptr, bool append = false, const frame* fr = nullptr); 696 void igv_print_method_to_network(const char* phase_name = nullptr, const frame* fr = nullptr); 697 void igv_print_graph_to_network(const char* name, GrowableArray<const Node*>& visible_nodes, const frame* fr); 698 static IdealGraphPrinter* debug_file_printer() { return _debug_file_printer; } 699 static IdealGraphPrinter* debug_network_printer() { return _debug_network_printer; } 700 #endif 701 702 const GrowableArray<ParsePredicateNode*>& parse_predicates() const { 703 return _parse_predicates; 704 } 705 706 const GrowableArray<OpaqueTemplateAssertionPredicateNode*>& template_assertion_predicate_opaques() const { 707 return _template_assertion_predicate_opaques; 708 } 709 710 int macro_count() const { return _macro_nodes.length(); } 711 int parse_predicate_count() const { return _parse_predicates.length(); } 712 int template_assertion_predicate_count() const { return _template_assertion_predicate_opaques.length(); } 713 int expensive_count() const { return _expensive_nodes.length(); } 714 int coarsened_count() const { return _coarsened_locks.length(); } 715 716 Node* macro_node(int idx) const { return _macro_nodes.at(idx); } 717 718 Node* expensive_node(int idx) const { return _expensive_nodes.at(idx); } 719 720 ConnectionGraph* congraph() { return _congraph;} 721 void set_congraph(ConnectionGraph* congraph) { _congraph = congraph;} 722 void add_macro_node(Node * n) { 723 //assert(n->is_macro(), "must be a macro node"); 724 assert(!_macro_nodes.contains(n), "duplicate entry in expand list"); 725 _macro_nodes.append(n); 726 } 727 void remove_macro_node(Node* n) { 728 // this function may be called twice for a node so we can only remove it 729 // if it's still existing. 730 _macro_nodes.remove_if_existing(n); 731 // Remove from coarsened locks list if present 732 if (coarsened_count() > 0) { 733 remove_coarsened_lock(n); 734 } 735 } 736 void add_expensive_node(Node* n); 737 void remove_expensive_node(Node* n) { 738 _expensive_nodes.remove_if_existing(n); 739 } 740 741 void add_parse_predicate(ParsePredicateNode* n) { 742 assert(!_parse_predicates.contains(n), "duplicate entry in Parse Predicate list"); 743 _parse_predicates.append(n); 744 } 745 746 void remove_parse_predicate(ParsePredicateNode* n) { 747 if (parse_predicate_count() > 0) { 748 _parse_predicates.remove_if_existing(n); 749 } 750 } 751 752 void add_template_assertion_predicate_opaque(OpaqueTemplateAssertionPredicateNode* n) { 753 assert(!_template_assertion_predicate_opaques.contains(n), 754 "Duplicate entry in Template Assertion Predicate OpaqueTemplateAssertionPredicate list"); 755 _template_assertion_predicate_opaques.append(n); 756 } 757 758 void remove_template_assertion_predicate_opaque(OpaqueTemplateAssertionPredicateNode* n) { 759 if (template_assertion_predicate_count() > 0) { 760 _template_assertion_predicate_opaques.remove_if_existing(n); 761 } 762 } 763 void add_coarsened_locks(GrowableArray<AbstractLockNode*>& locks); 764 void remove_coarsened_lock(Node* n); 765 bool coarsened_locks_consistent(); 766 void mark_unbalanced_boxes() const; 767 768 bool post_loop_opts_phase() { return _post_loop_opts_phase; } 769 void set_post_loop_opts_phase() { _post_loop_opts_phase = true; } 770 void reset_post_loop_opts_phase() { _post_loop_opts_phase = false; } 771 772 #ifdef ASSERT 773 bool phase_verify_ideal_loop() const { return _phase_verify_ideal_loop; } 774 void set_phase_verify_ideal_loop() { _phase_verify_ideal_loop = true; } 775 void reset_phase_verify_ideal_loop() { _phase_verify_ideal_loop = false; } 776 #endif 777 778 bool allow_macro_nodes() { return _allow_macro_nodes; } 779 void reset_allow_macro_nodes() { _allow_macro_nodes = false; } 780 781 void record_for_post_loop_opts_igvn(Node* n); 782 void remove_from_post_loop_opts_igvn(Node* n); 783 void process_for_post_loop_opts_igvn(PhaseIterGVN& igvn); 784 785 void record_unstable_if_trap(UnstableIfTrap* trap); 786 bool remove_unstable_if_trap(CallStaticJavaNode* unc, bool yield); 787 void remove_useless_unstable_if_traps(Unique_Node_List &useful); 788 void process_for_unstable_if_traps(PhaseIterGVN& igvn); 789 790 bool merge_stores_phase() { return _merge_stores_phase; } 791 void set_merge_stores_phase() { _merge_stores_phase = true; } 792 void record_for_merge_stores_igvn(Node* n); 793 void remove_from_merge_stores_igvn(Node* n); 794 void process_for_merge_stores_igvn(PhaseIterGVN& igvn); 795 796 void shuffle_macro_nodes(); 797 void sort_macro_nodes(); 798 799 void mark_parse_predicate_nodes_useless(PhaseIterGVN& igvn); 800 801 // Are there candidate expensive nodes for optimization? 802 bool should_optimize_expensive_nodes(PhaseIterGVN &igvn); 803 // Check whether n1 and n2 are similar 804 static int cmp_expensive_nodes(Node* n1, Node* n2); 805 // Sort expensive nodes to locate similar expensive nodes 806 void sort_expensive_nodes(); 807 808 // Compilation environment. 809 Arena* comp_arena() { return &_comp_arena; } 810 ciEnv* env() const { return _env; } 811 CompileLog* log() const { return _log; } 812 813 bool failing_internal() const { 814 return _env->failing() || 815 _failure_reason.get() != nullptr; 816 } 817 818 const char* failure_reason() const { 819 return _env->failing() ? _env->failure_reason() 820 : _failure_reason.get(); 821 } 822 823 const CompilationFailureInfo* first_failure_details() const { return _first_failure_details; } 824 825 bool failing() { 826 if (failing_internal()) { 827 return true; 828 } 829 #ifdef ASSERT 830 // Disable stress code for PhaseIdealLoop verification (would have cascading effects). 831 if (phase_verify_ideal_loop()) { 832 return false; 833 } 834 if (StressBailout) { 835 return fail_randomly(); 836 } 837 #endif 838 return false; 839 } 840 841 #ifdef ASSERT 842 bool fail_randomly(); 843 bool failure_is_artificial(); 844 #endif 845 846 bool failure_reason_is(const char* r) const { 847 return (r == _failure_reason.get()) || 848 (r != nullptr && 849 _failure_reason.get() != nullptr && 850 strcmp(r, _failure_reason.get()) == 0); 851 } 852 853 void record_failure(const char* reason DEBUG_ONLY(COMMA bool allow_multiple_failures = false)); 854 void record_method_not_compilable(const char* reason DEBUG_ONLY(COMMA bool allow_multiple_failures = false)) { 855 env()->record_method_not_compilable(reason); 856 // Record failure reason. 857 record_failure(reason DEBUG_ONLY(COMMA allow_multiple_failures)); 858 } 859 bool check_node_count(uint margin, const char* reason) { 860 if (oom()) { 861 record_method_not_compilable_oom(); 862 return true; 863 } 864 if (live_nodes() + margin > max_node_limit()) { 865 record_method_not_compilable(reason); 866 return true; 867 } else { 868 return false; 869 } 870 } 871 bool oom() const { return _oom; } 872 void set_oom() { _oom = true; } 873 874 // Node management 875 uint unique() const { return _unique; } 876 uint next_unique() { return _unique++; } 877 void set_unique(uint i) { _unique = i; } 878 Arena* node_arena() { return _node_arena; } 879 Arena* old_arena() { return (&_node_arena_one == _node_arena) ? &_node_arena_two : &_node_arena_one; } 880 RootNode* root() const { return _root; } 881 void set_root(RootNode* r) { _root = r; } 882 StartNode* start() const; // (Derived from root.) 883 void verify_start(StartNode* s) const NOT_DEBUG_RETURN; 884 Node* immutable_memory(); 885 886 Node* recent_alloc_ctl() const { return _recent_alloc_ctl; } 887 Node* recent_alloc_obj() const { return _recent_alloc_obj; } 888 void set_recent_alloc(Node* ctl, Node* obj) { 889 _recent_alloc_ctl = ctl; 890 _recent_alloc_obj = obj; 891 } 892 void record_dead_node(uint idx) { if (_dead_node_list.test_set(idx)) return; 893 _dead_node_count++; 894 } 895 void reset_dead_node_list() { _dead_node_list.reset(); 896 _dead_node_count = 0; 897 } 898 uint live_nodes() const { 899 int val = _unique - _dead_node_count; 900 assert (val >= 0, "number of tracked dead nodes %d more than created nodes %d", _unique, _dead_node_count); 901 return (uint) val; 902 } 903 #ifdef ASSERT 904 void set_phase_optimize_finished() { _phase_optimize_finished = true; } 905 bool phase_optimize_finished() const { return _phase_optimize_finished; } 906 uint count_live_nodes_by_graph_walk(); 907 void print_missing_nodes(); 908 #endif 909 910 // Record modified nodes to check that they are put on IGVN worklist 911 void record_modified_node(Node* n) NOT_DEBUG_RETURN; 912 void remove_modified_node(Node* n) NOT_DEBUG_RETURN; 913 DEBUG_ONLY( Unique_Node_List* modified_nodes() const { return _modified_nodes; } ) 914 915 MachConstantBaseNode* mach_constant_base_node(); 916 bool has_mach_constant_base_node() const { return _mach_constant_base_node != nullptr; } 917 // Generated by adlc, true if CallNode requires MachConstantBase. 918 bool needs_deep_clone_jvms(); 919 920 // Handy undefined Node 921 Node* top() const { return _top; } 922 923 // these are used by guys who need to know about creation and transformation of top: 924 Node* cached_top_node() { return _top; } 925 void set_cached_top_node(Node* tn); 926 927 GrowableArray<Node_Notes*>* node_note_array() const { return _node_note_array; } 928 void set_node_note_array(GrowableArray<Node_Notes*>* arr) { _node_note_array = arr; } 929 Node_Notes* default_node_notes() const { return _default_node_notes; } 930 void set_default_node_notes(Node_Notes* n) { _default_node_notes = n; } 931 932 Node_Notes* node_notes_at(int idx); 933 934 inline bool set_node_notes_at(int idx, Node_Notes* value); 935 // Copy notes from source to dest, if they exist. 936 // Overwrite dest only if source provides something. 937 // Return true if information was moved. 938 bool copy_node_notes_to(Node* dest, Node* source); 939 940 // Workhorse function to sort out the blocked Node_Notes array: 941 inline Node_Notes* locate_node_notes(GrowableArray<Node_Notes*>* arr, 942 int idx, bool can_grow = false); 943 944 void grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by); 945 946 // Type management 947 Arena* type_arena() { return _type_arena; } 948 Dict* type_dict() { return _type_dict; } 949 size_t type_last_size() { return _type_last_size; } 950 int num_alias_types() { return _num_alias_types; } 951 952 void init_type_arena() { _type_arena = &_Compile_types; } 953 void set_type_arena(Arena* a) { _type_arena = a; } 954 void set_type_dict(Dict* d) { _type_dict = d; } 955 void set_type_last_size(size_t sz) { _type_last_size = sz; } 956 957 const TypeFunc* last_tf(ciMethod* m) { 958 return (m == _last_tf_m) ? _last_tf : nullptr; 959 } 960 void set_last_tf(ciMethod* m, const TypeFunc* tf) { 961 assert(m != nullptr || tf == nullptr, ""); 962 _last_tf_m = m; 963 _last_tf = tf; 964 } 965 966 AliasType* alias_type(int idx) { assert(idx < num_alias_types(), "oob"); return _alias_types[idx]; } 967 AliasType* alias_type(const TypePtr* adr_type, ciField* field = nullptr) { return find_alias_type(adr_type, false, field); } 968 bool have_alias_type(const TypePtr* adr_type); 969 AliasType* alias_type(ciField* field); 970 971 int get_alias_index(const TypePtr* at) { return alias_type(at)->index(); } 972 const TypePtr* get_adr_type(uint aidx) { return alias_type(aidx)->adr_type(); } 973 int get_general_index(uint aidx) { return alias_type(aidx)->general_index(); } 974 975 // Building nodes 976 void rethrow_exceptions(JVMState* jvms); 977 void return_values(JVMState* jvms); 978 JVMState* build_start_state(StartNode* start, const TypeFunc* tf); 979 980 // Decide how to build a call. 981 // The profile factor is a discount to apply to this site's interp. profile. 982 CallGenerator* call_generator(ciMethod* call_method, int vtable_index, bool call_does_dispatch, 983 JVMState* jvms, bool allow_inline, float profile_factor, ciKlass* speculative_receiver_type = nullptr, 984 bool allow_intrinsics = true); 985 bool should_delay_inlining(ciMethod* call_method, JVMState* jvms) { 986 return should_delay_string_inlining(call_method, jvms) || 987 should_delay_boxing_inlining(call_method, jvms) || 988 should_delay_vector_inlining(call_method, jvms); 989 } 990 bool should_delay_string_inlining(ciMethod* call_method, JVMState* jvms); 991 bool should_delay_boxing_inlining(ciMethod* call_method, JVMState* jvms); 992 bool should_delay_vector_inlining(ciMethod* call_method, JVMState* jvms); 993 bool should_delay_vector_reboxing_inlining(ciMethod* call_method, JVMState* jvms); 994 995 // Helper functions to identify inlining potential at call-site 996 ciMethod* optimize_virtual_call(ciMethod* caller, ciInstanceKlass* klass, 997 ciKlass* holder, ciMethod* callee, 998 const TypeOopPtr* receiver_type, bool is_virtual, 999 bool &call_does_dispatch, int &vtable_index, 1000 bool check_access = true); 1001 ciMethod* optimize_inlining(ciMethod* caller, ciInstanceKlass* klass, ciKlass* holder, 1002 ciMethod* callee, const TypeOopPtr* receiver_type, 1003 bool check_access = true); 1004 1005 // Report if there were too many traps at a current method and bci. 1006 // Report if a trap was recorded, and/or PerMethodTrapLimit was exceeded. 1007 // If there is no MDO at all, report no trap unless told to assume it. 1008 bool too_many_traps(ciMethod* method, int bci, Deoptimization::DeoptReason reason); 1009 // This version, unspecific to a particular bci, asks if 1010 // PerMethodTrapLimit was exceeded for all inlined methods seen so far. 1011 bool too_many_traps(Deoptimization::DeoptReason reason, 1012 // Privately used parameter for logging: 1013 ciMethodData* logmd = nullptr); 1014 // Report if there were too many recompiles at a method and bci. 1015 bool too_many_recompiles(ciMethod* method, int bci, Deoptimization::DeoptReason reason); 1016 // Report if there were too many traps or recompiles at a method and bci. 1017 bool too_many_traps_or_recompiles(ciMethod* method, int bci, Deoptimization::DeoptReason reason) { 1018 return too_many_traps(method, bci, reason) || 1019 too_many_recompiles(method, bci, reason); 1020 } 1021 // Return a bitset with the reasons where deoptimization is allowed, 1022 // i.e., where there were not too many uncommon traps. 1023 int _allowed_reasons; 1024 int allowed_deopt_reasons() { return _allowed_reasons; } 1025 void set_allowed_deopt_reasons(); 1026 1027 // Parsing, optimization 1028 PhaseGVN* initial_gvn() { return _initial_gvn; } 1029 Unique_Node_List* igvn_worklist() { 1030 assert(_igvn_worklist != nullptr, "must be created in Compile::Compile"); 1031 return _igvn_worklist; 1032 } 1033 Type_Array* types() { 1034 assert(_types != nullptr, "must be created in Compile::Compile"); 1035 return _types; 1036 } 1037 NodeHash* node_hash() { 1038 assert(_node_hash != nullptr, "must be created in Compile::Compile"); 1039 return _node_hash; 1040 } 1041 inline void record_for_igvn(Node* n); // Body is after class Unique_Node_List in node.hpp. 1042 inline void remove_for_igvn(Node* n); // Body is after class Unique_Node_List in node.hpp. 1043 void set_initial_gvn(PhaseGVN *gvn) { _initial_gvn = gvn; } 1044 1045 // Replace n by nn using initial_gvn, calling hash_delete and 1046 // record_for_igvn as needed. 1047 void gvn_replace_by(Node* n, Node* nn); 1048 1049 1050 void identify_useful_nodes(Unique_Node_List &useful); 1051 void update_dead_node_list(Unique_Node_List &useful); 1052 void disconnect_useless_nodes(Unique_Node_List& useful, Unique_Node_List& worklist, const Unique_Node_List* root_and_safepoints = nullptr); 1053 1054 void remove_useless_node(Node* dead); 1055 1056 // Record this CallGenerator for inlining at the end of parsing. 1057 void add_late_inline(CallGenerator* cg) { 1058 _late_inlines.insert_before(_late_inlines_pos, cg); 1059 _late_inlines_pos++; 1060 } 1061 1062 void prepend_late_inline(CallGenerator* cg) { 1063 _late_inlines.insert_before(0, cg); 1064 } 1065 1066 void add_string_late_inline(CallGenerator* cg) { 1067 _string_late_inlines.push(cg); 1068 } 1069 1070 void add_boxing_late_inline(CallGenerator* cg) { 1071 _boxing_late_inlines.push(cg); 1072 } 1073 1074 void add_vector_reboxing_late_inline(CallGenerator* cg) { 1075 _vector_reboxing_late_inlines.push(cg); 1076 } 1077 1078 template<typename N, ENABLE_IF(std::is_base_of<Node, N>::value)> 1079 void remove_useless_nodes(GrowableArray<N*>& node_list, Unique_Node_List& useful); 1080 1081 void remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful); 1082 void remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Node* dead); 1083 1084 void remove_useless_coarsened_locks(Unique_Node_List& useful); 1085 1086 void dump_print_inlining(); 1087 1088 bool over_inlining_cutoff() const { 1089 if (!inlining_incrementally()) { 1090 return unique() > (uint)NodeCountInliningCutoff; 1091 } else { 1092 // Give some room for incremental inlining algorithm to "breathe" 1093 // and avoid thrashing when live node count is close to the limit. 1094 // Keep in mind that live_nodes() isn't accurate during inlining until 1095 // dead node elimination step happens (see Compile::inline_incrementally). 1096 return live_nodes() > (uint)LiveNodeCountInliningCutoff * 11 / 10; 1097 } 1098 } 1099 1100 void inc_number_of_mh_late_inlines() { _number_of_mh_late_inlines++; } 1101 void dec_number_of_mh_late_inlines() { assert(_number_of_mh_late_inlines > 0, "_number_of_mh_late_inlines < 0 !"); _number_of_mh_late_inlines--; } 1102 bool has_mh_late_inlines() const { return _number_of_mh_late_inlines > 0; } 1103 1104 bool inline_incrementally_one(); 1105 void inline_incrementally_cleanup(PhaseIterGVN& igvn); 1106 void inline_incrementally(PhaseIterGVN& igvn); 1107 bool should_delay_inlining() { return AlwaysIncrementalInline || (StressIncrementalInlining && (random() % 2) == 0); } 1108 void inline_string_calls(bool parse_time); 1109 void inline_boxing_calls(PhaseIterGVN& igvn); 1110 bool optimize_loops(PhaseIterGVN& igvn, LoopOptsMode mode); 1111 void remove_root_to_sfpts_edges(PhaseIterGVN& igvn); 1112 1113 void inline_vector_reboxing_calls(); 1114 bool has_vbox_nodes(); 1115 1116 void process_late_inline_calls_no_inline(PhaseIterGVN& igvn); 1117 1118 // Matching, CFG layout, allocation, code generation 1119 PhaseCFG* cfg() { return _cfg; } 1120 bool has_java_calls() const { return _java_calls > 0; } 1121 int java_calls() const { return _java_calls; } 1122 int inner_loops() const { return _inner_loops; } 1123 Matcher* matcher() { return _matcher; } 1124 PhaseRegAlloc* regalloc() { return _regalloc; } 1125 RegMask& FIRST_STACK_mask() { return _FIRST_STACK_mask; } 1126 Arena* indexSet_arena() { return _indexSet_arena; } 1127 void* indexSet_free_block_list() { return _indexSet_free_block_list; } 1128 DebugInformationRecorder* debug_info() { return env()->debug_info(); } 1129 1130 void update_interpreter_frame_size(int size) { 1131 if (_interpreter_frame_size < size) { 1132 _interpreter_frame_size = size; 1133 } 1134 } 1135 1136 void set_matcher(Matcher* m) { _matcher = m; } 1137 //void set_regalloc(PhaseRegAlloc* ra) { _regalloc = ra; } 1138 void set_indexSet_arena(Arena* a) { _indexSet_arena = a; } 1139 void set_indexSet_free_block_list(void* p) { _indexSet_free_block_list = p; } 1140 1141 void set_java_calls(int z) { _java_calls = z; } 1142 void set_inner_loops(int z) { _inner_loops = z; } 1143 1144 Dependencies* dependencies() { return env()->dependencies(); } 1145 1146 // Major entry point. Given a Scope, compile the associated method. 1147 // For normal compilations, entry_bci is InvocationEntryBci. For on stack 1148 // replacement, entry_bci indicates the bytecode for which to compile a 1149 // continuation. 1150 Compile(ciEnv* ci_env, ciMethod* target, 1151 int entry_bci, Options options, DirectiveSet* directive); 1152 1153 // Second major entry point. From the TypeFunc signature, generate code 1154 // to pass arguments from the Java calling convention to the C calling 1155 // convention. 1156 Compile(ciEnv* ci_env, const TypeFunc *(*gen)(), 1157 address stub_function, const char *stub_name, 1158 int stub_id, int is_fancy_jump, bool pass_tls, 1159 bool return_pc, DirectiveSet* directive); 1160 1161 ~Compile(); 1162 1163 // Are we compiling a method? 1164 bool has_method() { return method() != nullptr; } 1165 1166 // Maybe print some information about this compile. 1167 void print_compile_messages(); 1168 1169 // Final graph reshaping, a post-pass after the regular optimizer is done. 1170 bool final_graph_reshaping(); 1171 1172 // returns true if adr is completely contained in the given alias category 1173 bool must_alias(const TypePtr* adr, int alias_idx); 1174 1175 // returns true if adr overlaps with the given alias category 1176 bool can_alias(const TypePtr* adr, int alias_idx); 1177 1178 // Stack slots that may be unused by the calling convention but must 1179 // otherwise be preserved. On Intel this includes the return address. 1180 // On PowerPC it includes the 4 words holding the old TOC & LR glue. 1181 uint in_preserve_stack_slots() { 1182 return SharedRuntime::in_preserve_stack_slots(); 1183 } 1184 1185 // "Top of Stack" slots that may be unused by the calling convention but must 1186 // otherwise be preserved. 1187 // On Intel these are not necessary and the value can be zero. 1188 static uint out_preserve_stack_slots() { 1189 return SharedRuntime::out_preserve_stack_slots(); 1190 } 1191 1192 // Number of outgoing stack slots killed above the out_preserve_stack_slots 1193 // for calls to C. Supports the var-args backing area for register parms. 1194 uint varargs_C_out_slots_killed() const; 1195 1196 // Number of Stack Slots consumed by a synchronization entry 1197 int sync_stack_slots() const; 1198 1199 // Compute the name of old_SP. See <arch>.ad for frame layout. 1200 OptoReg::Name compute_old_SP(); 1201 1202 private: 1203 // Phase control: 1204 void Init(bool aliasing); // Prepare for a single compilation 1205 void Optimize(); // Given a graph, optimize it 1206 void Code_Gen(); // Generate code from a graph 1207 1208 // Management of the AliasType table. 1209 void grow_alias_types(); 1210 AliasCacheEntry* probe_alias_cache(const TypePtr* adr_type); 1211 const TypePtr *flatten_alias_type(const TypePtr* adr_type) const; 1212 AliasType* find_alias_type(const TypePtr* adr_type, bool no_create, ciField* field); 1213 1214 void verify_top(Node*) const PRODUCT_RETURN; 1215 1216 // Intrinsic setup. 1217 CallGenerator* make_vm_intrinsic(ciMethod* m, bool is_virtual); // constructor 1218 int intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found); // helper 1219 CallGenerator* find_intrinsic(ciMethod* m, bool is_virtual); // query fn 1220 void register_intrinsic(CallGenerator* cg); // update fn 1221 1222 #ifndef PRODUCT 1223 static juint _intrinsic_hist_count[]; 1224 static jubyte _intrinsic_hist_flags[]; 1225 #endif 1226 // Function calls made by the public function final_graph_reshaping. 1227 // No need to be made public as they are not called elsewhere. 1228 void final_graph_reshaping_impl(Node *n, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes); 1229 void final_graph_reshaping_main_switch(Node* n, Final_Reshape_Counts& frc, uint nop, Unique_Node_List& dead_nodes); 1230 void final_graph_reshaping_walk(Node_Stack& nstack, Node* root, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes); 1231 void handle_div_mod_op(Node* n, BasicType bt, bool is_unsigned); 1232 1233 // Logic cone optimization. 1234 void optimize_logic_cones(PhaseIterGVN &igvn); 1235 void collect_logic_cone_roots(Unique_Node_List& list); 1236 void process_logic_cone_root(PhaseIterGVN &igvn, Node* n, VectorSet& visited); 1237 bool compute_logic_cone(Node* n, Unique_Node_List& partition, Unique_Node_List& inputs); 1238 uint compute_truth_table(Unique_Node_List& partition, Unique_Node_List& inputs); 1239 uint eval_macro_logic_op(uint func, uint op1, uint op2, uint op3); 1240 Node* xform_to_MacroLogicV(PhaseIterGVN &igvn, const TypeVect* vt, Unique_Node_List& partitions, Unique_Node_List& inputs); 1241 void check_no_dead_use() const NOT_DEBUG_RETURN; 1242 1243 public: 1244 1245 // Note: Histogram array size is about 1 Kb. 1246 enum { // flag bits: 1247 _intrinsic_worked = 1, // succeeded at least once 1248 _intrinsic_failed = 2, // tried it but it failed 1249 _intrinsic_disabled = 4, // was requested but disabled (e.g., -XX:-InlineUnsafeOps) 1250 _intrinsic_virtual = 8, // was seen in the virtual form (rare) 1251 _intrinsic_both = 16 // was seen in the non-virtual form (usual) 1252 }; 1253 // Update histogram. Return boolean if this is a first-time occurrence. 1254 static bool gather_intrinsic_statistics(vmIntrinsics::ID id, 1255 bool is_virtual, int flags) PRODUCT_RETURN0; 1256 static void print_intrinsic_statistics() PRODUCT_RETURN; 1257 1258 // Graph verification code 1259 // Walk the node list, verifying that there is a one-to-one correspondence 1260 // between Use-Def edges and Def-Use edges. The option no_dead_code enables 1261 // stronger checks that the graph is strongly connected from starting points 1262 // in both directions. 1263 // root_and_safepoints is used to give the starting points for the traversal. 1264 // If not supplied, only root is used. When this check is called after CCP, 1265 // we need to start traversal from Root and safepoints, just like CCP does its 1266 // own traversal (see PhaseCCP::transform for reasons). 1267 // 1268 // To call this function, there are 2 ways to go: 1269 // - give root_and_safepoints to start traversal everywhere needed (like after CCP) 1270 // - if the whole graph is assumed to be reachable from Root's input, 1271 // root_and_safepoints is not needed (like in PhaseRemoveUseless). 1272 // 1273 // Failure to specify root_and_safepoints in case the graph is not fully 1274 // reachable from Root's input make this check unsound (can miss inconsistencies) 1275 // and even incomplete (can make up non-existing problems) if no_dead_code is 1276 // true. 1277 void verify_graph_edges(bool no_dead_code = false, const Unique_Node_List* root_and_safepoints = nullptr) const PRODUCT_RETURN; 1278 1279 // Verify bi-directional correspondence of edges 1280 void verify_bidirectional_edges(Unique_Node_List& visited, const Unique_Node_List* root_and_safepoints = nullptr) const; 1281 1282 // End-of-run dumps. 1283 static void print_statistics() PRODUCT_RETURN; 1284 1285 // Verify ADLC assumptions during startup 1286 static void adlc_verification() PRODUCT_RETURN; 1287 1288 // Definitions of pd methods 1289 static void pd_compiler2_init(); 1290 1291 // Static parse-time type checking logic for gen_subtype_check: 1292 enum SubTypeCheckResult { SSC_always_false, SSC_always_true, SSC_easy_test, SSC_full_test }; 1293 SubTypeCheckResult static_subtype_check(const TypeKlassPtr* superk, const TypeKlassPtr* subk, bool skip = StressReflectiveCode); 1294 1295 static Node* conv_I2X_index(PhaseGVN* phase, Node* offset, const TypeInt* sizetype, 1296 // Optional control dependency (for example, on range check) 1297 Node* ctrl = nullptr); 1298 1299 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check) 1300 static Node* constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl, bool carry_dependency = false); 1301 1302 // Auxiliary methods for randomized fuzzing/stressing 1303 int random(); 1304 bool randomized_select(int count); 1305 1306 // seed random number generation and log the seed for repeatability. 1307 void initialize_stress_seed(const DirectiveSet* directive); 1308 1309 // supporting clone_map 1310 CloneMap& clone_map(); 1311 void set_clone_map(Dict* d); 1312 1313 bool needs_clinit_barrier(ciField* ik, ciMethod* accessing_method); 1314 bool needs_clinit_barrier(ciMethod* ik, ciMethod* accessing_method); 1315 bool needs_clinit_barrier(ciInstanceKlass* ik, ciMethod* accessing_method); 1316 1317 #ifdef ASSERT 1318 VerifyMeetResult* _type_verify; 1319 void set_exception_backedge() { _exception_backedge = true; } 1320 bool has_exception_backedge() const { return _exception_backedge; } 1321 #endif 1322 1323 static bool push_thru_add(PhaseGVN* phase, Node* z, const TypeInteger* tz, const TypeInteger*& rx, const TypeInteger*& ry, 1324 BasicType out_bt, BasicType in_bt); 1325 1326 static Node* narrow_value(BasicType bt, Node* value, const Type* type, PhaseGVN* phase, bool transform_res); 1327 }; 1328 1329 #endif // SHARE_OPTO_COMPILE_HPP