1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_OPTO_COMPILE_HPP 26 #define SHARE_OPTO_COMPILE_HPP 27 28 #include "asm/codeBuffer.hpp" 29 #include "ci/compilerInterface.hpp" 30 #include "code/debugInfoRec.hpp" 31 #include "compiler/compiler_globals.hpp" 32 #include "compiler/compileBroker.hpp" 33 #include "compiler/compilerEvent.hpp" 34 #include "compiler/cHeapStringHolder.hpp" 35 #include "libadt/dict.hpp" 36 #include "libadt/vectset.hpp" 37 #include "memory/resourceArea.hpp" 38 #include "oops/methodData.hpp" 39 #include "opto/idealGraphPrinter.hpp" 40 #include "opto/phasetype.hpp" 41 #include "opto/phase.hpp" 42 #include "opto/regmask.hpp" 43 #include "runtime/deoptimization.hpp" 44 #include "runtime/sharedRuntime.hpp" 45 #include "runtime/timerTrace.hpp" 46 #include "runtime/vmThread.hpp" 47 #include "utilities/ticks.hpp" 48 #include "utilities/vmEnums.hpp" 49 #include "opto/printinlining.hpp" 50 51 class AbstractLockNode; 52 class AddPNode; 53 class Block; 54 class Bundle; 55 class CallGenerator; 56 class CallStaticJavaNode; 57 class CloneMap; 58 class CompilationFailureInfo; 59 class ConnectionGraph; 60 class IdealGraphPrinter; 61 class InlineTree; 62 class Matcher; 63 class MachConstantNode; 64 class MachConstantBaseNode; 65 class MachNode; 66 class MachOper; 67 class MachSafePointNode; 68 class Node; 69 class Node_Array; 70 class Node_List; 71 class Node_Notes; 72 class NodeHash; 73 class NodeCloneInfo; 74 class OpaqueTemplateAssertionPredicateNode; 75 class OptoReg; 76 class ParsePredicateNode; 77 class PhaseCFG; 78 class PhaseGVN; 79 class PhaseIterGVN; 80 class PhaseRegAlloc; 81 class PhaseCCP; 82 class PhaseOutput; 83 class RootNode; 84 class relocInfo; 85 class StartNode; 86 class SafePointNode; 87 class JVMState; 88 class Type; 89 class TypeInt; 90 class TypeInteger; 91 class TypeKlassPtr; 92 class TypePtr; 93 class TypeOopPtr; 94 class TypeFunc; 95 class TypeVect; 96 class Type_Array; 97 class Unique_Node_List; 98 class UnstableIfTrap; 99 class nmethod; 100 class Node_Stack; 101 struct Final_Reshape_Counts; 102 class VerifyMeetResult; 103 104 enum LoopOptsMode { 105 LoopOptsDefault, 106 LoopOptsNone, 107 LoopOptsMaxUnroll, 108 LoopOptsShenandoahExpand, 109 LoopOptsShenandoahPostExpand, 110 LoopOptsSkipSplitIf, 111 LoopOptsVerify 112 }; 113 114 // The type of all node counts and indexes. 115 // It must hold at least 16 bits, but must also be fast to load and store. 116 // This type, if less than 32 bits, could limit the number of possible nodes. 117 // (To make this type platform-specific, move to globalDefinitions_xxx.hpp.) 118 typedef unsigned int node_idx_t; 119 120 class NodeCloneInfo { 121 private: 122 uint64_t _idx_clone_orig; 123 public: 124 125 void set_idx(node_idx_t idx) { 126 _idx_clone_orig = (_idx_clone_orig & CONST64(0xFFFFFFFF00000000)) | idx; 127 } 128 node_idx_t idx() const { return (node_idx_t)(_idx_clone_orig & 0xFFFFFFFF); } 129 130 void set_gen(int generation) { 131 uint64_t g = (uint64_t)generation << 32; 132 _idx_clone_orig = (_idx_clone_orig & 0xFFFFFFFF) | g; 133 } 134 int gen() const { return (int)(_idx_clone_orig >> 32); } 135 136 void set(uint64_t x) { _idx_clone_orig = x; } 137 void set(node_idx_t x, int g) { set_idx(x); set_gen(g); } 138 uint64_t get() const { return _idx_clone_orig; } 139 140 NodeCloneInfo(uint64_t idx_clone_orig) : _idx_clone_orig(idx_clone_orig) {} 141 NodeCloneInfo(node_idx_t x, int g) : _idx_clone_orig(0) { set(x, g); } 142 143 void dump_on(outputStream* st) const; 144 }; 145 146 class CloneMap { 147 friend class Compile; 148 private: 149 bool _debug; 150 Dict* _dict; 151 int _clone_idx; // current cloning iteration/generation in loop unroll 152 public: 153 void* _2p(node_idx_t key) const { return (void*)(intptr_t)key; } // 2 conversion functions to make gcc happy 154 node_idx_t _2_node_idx_t(const void* k) const { return (node_idx_t)(intptr_t)k; } 155 Dict* dict() const { return _dict; } 156 void insert(node_idx_t key, uint64_t val) { assert(_dict->operator[](_2p(key)) == nullptr, "key existed"); _dict->Insert(_2p(key), (void*)val); } 157 void insert(node_idx_t key, NodeCloneInfo& ci) { insert(key, ci.get()); } 158 void remove(node_idx_t key) { _dict->Delete(_2p(key)); } 159 uint64_t value(node_idx_t key) const { return (uint64_t)_dict->operator[](_2p(key)); } 160 node_idx_t idx(node_idx_t key) const { return NodeCloneInfo(value(key)).idx(); } 161 int gen(node_idx_t key) const { return NodeCloneInfo(value(key)).gen(); } 162 int gen(const void* k) const { return gen(_2_node_idx_t(k)); } 163 int max_gen() const; 164 void clone(Node* old, Node* nnn, int gen); 165 void verify_insert_and_clone(Node* old, Node* nnn, int gen); 166 void dump(node_idx_t key, outputStream* st) const; 167 168 int clone_idx() const { return _clone_idx; } 169 void set_clone_idx(int x) { _clone_idx = x; } 170 bool is_debug() const { return _debug; } 171 void set_debug(bool debug) { _debug = debug; } 172 173 bool same_idx(node_idx_t k1, node_idx_t k2) const { return idx(k1) == idx(k2); } 174 bool same_gen(node_idx_t k1, node_idx_t k2) const { return gen(k1) == gen(k2); } 175 }; 176 177 class Options { 178 friend class Compile; 179 private: 180 const bool _subsume_loads; // Load can be matched as part of a larger op. 181 const bool _do_escape_analysis; // Do escape analysis. 182 const bool _do_iterative_escape_analysis; // Do iterative escape analysis. 183 const bool _do_reduce_allocation_merges; // Do try to reduce allocation merges. 184 const bool _eliminate_boxing; // Do boxing elimination. 185 const bool _do_locks_coarsening; // Do locks coarsening 186 const bool _for_preload; // Generate code for preload (before Java method execution), do class init barriers 187 const bool _do_superword; // Do SuperWord 188 const bool _install_code; // Install the code that was compiled 189 public: 190 Options(bool subsume_loads, 191 bool do_escape_analysis, 192 bool do_iterative_escape_analysis, 193 bool do_reduce_allocation_merges, 194 bool eliminate_boxing, 195 bool do_locks_coarsening, 196 bool do_superword, 197 bool for_preload, 198 bool install_code) : 199 _subsume_loads(subsume_loads), 200 _do_escape_analysis(do_escape_analysis), 201 _do_iterative_escape_analysis(do_iterative_escape_analysis), 202 _do_reduce_allocation_merges(do_reduce_allocation_merges), 203 _eliminate_boxing(eliminate_boxing), 204 _do_locks_coarsening(do_locks_coarsening), 205 _for_preload(for_preload), 206 _do_superword(do_superword), 207 _install_code(install_code) { 208 } 209 210 static Options for_runtime_stub() { 211 return Options( 212 /* subsume_loads = */ true, 213 /* do_escape_analysis = */ false, 214 /* do_iterative_escape_analysis = */ false, 215 /* do_reduce_allocation_merges = */ false, 216 /* eliminate_boxing = */ false, 217 /* do_lock_coarsening = */ false, 218 /* for_preload = */ false, 219 /* do_superword = */ true, 220 /* install_code = */ true 221 ); 222 } 223 }; 224 225 //------------------------------Compile---------------------------------------- 226 // This class defines a top-level Compiler invocation. 227 228 class Compile : public Phase { 229 230 public: 231 // Fixed alias indexes. (See also MergeMemNode.) 232 enum { 233 AliasIdxTop = 1, // pseudo-index, aliases to nothing (used as sentinel value) 234 AliasIdxBot = 2, // pseudo-index, aliases to everything 235 AliasIdxRaw = 3 // hard-wired index for TypeRawPtr::BOTTOM 236 }; 237 238 // Variant of TraceTime(nullptr, &_t_accumulator, CITime); 239 // Integrated with logging. If logging is turned on, and CITimeVerbose is true, 240 // then brackets are put into the log, with time stamps and node counts. 241 // (The time collection itself is always conditionalized on CITime.) 242 class TracePhase : public TraceTime { 243 private: 244 Compile* const _compile; 245 CompileLog* _log; 246 const bool _dolog; 247 public: 248 TracePhase(PhaseTraceId phaseTraceId); 249 TracePhase(const char* name, PhaseTraceId phaseTraceId); 250 ~TracePhase(); 251 const char* phase_name() const { return title(); } 252 }; 253 254 // Information per category of alias (memory slice) 255 class AliasType { 256 private: 257 friend class Compile; 258 259 int _index; // unique index, used with MergeMemNode 260 const TypePtr* _adr_type; // normalized address type 261 ciField* _field; // relevant instance field, or null if none 262 const Type* _element; // relevant array element type, or null if none 263 bool _is_rewritable; // false if the memory is write-once only 264 int _general_index; // if this is type is an instance, the general 265 // type that this is an instance of 266 267 void Init(int i, const TypePtr* at); 268 269 public: 270 int index() const { return _index; } 271 const TypePtr* adr_type() const { return _adr_type; } 272 ciField* field() const { return _field; } 273 const Type* element() const { return _element; } 274 bool is_rewritable() const { return _is_rewritable; } 275 bool is_volatile() const { return (_field ? _field->is_volatile() : false); } 276 int general_index() const { return (_general_index != 0) ? _general_index : _index; } 277 278 void set_rewritable(bool z) { _is_rewritable = z; } 279 void set_field(ciField* f) { 280 assert(!_field,""); 281 _field = f; 282 if (f->is_final() || f->is_stable()) { 283 // In the case of @Stable, multiple writes are possible but may be assumed to be no-ops. 284 _is_rewritable = false; 285 } 286 } 287 void set_element(const Type* e) { 288 assert(_element == nullptr, ""); 289 _element = e; 290 } 291 292 BasicType basic_type() const; 293 294 void print_on(outputStream* st) PRODUCT_RETURN; 295 }; 296 297 enum { 298 logAliasCacheSize = 6, 299 AliasCacheSize = (1<<logAliasCacheSize) 300 }; 301 struct AliasCacheEntry { const TypePtr* _adr_type; int _index; }; // simple duple type 302 enum { 303 trapHistLength = MethodData::_trap_hist_limit 304 }; 305 306 private: 307 // Fixed parameters to this compilation. 308 const int _compile_id; 309 const Options _options; // Compilation options 310 ciMethod* _method; // The method being compiled. 311 int _entry_bci; // entry bci for osr methods. 312 const TypeFunc* _tf; // My kind of signature 313 InlineTree* _ilt; // Ditto (temporary). 314 address _stub_function; // VM entry for stub being compiled, or null 315 const char* _stub_name; // Name of stub or adapter being compiled, or null 316 address _stub_entry_point; // Compile code entry for generated stub, or null 317 318 // Control of this compilation. 319 int _max_inline_size; // Max inline size for this compilation 320 int _freq_inline_size; // Max hot method inline size for this compilation 321 int _fixed_slots; // count of frame slots not allocated by the register 322 // allocator i.e. locks, original deopt pc, etc. 323 uintx _max_node_limit; // Max unique node count during a single compilation. 324 325 bool _post_loop_opts_phase; // Loop opts are finished. 326 bool _merge_stores_phase; // Phase for merging stores, after post loop opts phase. 327 bool _allow_macro_nodes; // True if we allow creation of macro nodes. 328 329 int _major_progress; // Count of something big happening 330 bool _inlining_progress; // progress doing incremental inlining? 331 bool _inlining_incrementally;// Are we doing incremental inlining (post parse) 332 bool _do_cleanup; // Cleanup is needed before proceeding with incremental inlining 333 bool _has_loops; // True if the method _may_ have some loops 334 bool _has_split_ifs; // True if the method _may_ have some split-if 335 bool _has_unsafe_access; // True if the method _may_ produce faults in unsafe loads or stores. 336 bool _has_stringbuilder; // True StringBuffers or StringBuilders are allocated 337 bool _has_boxed_value; // True if a boxed object is allocated 338 bool _has_reserved_stack_access; // True if the method or an inlined method is annotated with ReservedStackAccess 339 uint _max_vector_size; // Maximum size of generated vectors 340 bool _clear_upper_avx; // Clear upper bits of ymm registers using vzeroupper 341 uint _trap_hist[trapHistLength]; // Cumulative traps 342 bool _trap_can_recompile; // Have we emitted a recompiling trap? 343 uint _decompile_count; // Cumulative decompilation counts. 344 bool _do_inlining; // True if we intend to do inlining 345 bool _do_scheduling; // True if we intend to do scheduling 346 bool _do_freq_based_layout; // True if we intend to do frequency based block layout 347 bool _do_vector_loop; // True if allowed to execute loop in parallel iterations 348 bool _use_cmove; // True if CMove should be used without profitability analysis 349 bool _do_aliasing; // True if we intend to do aliasing 350 bool _print_assembly; // True if we should dump assembly code for this compilation 351 bool _print_inlining; // True if we should print inlining for this compilation 352 bool _print_intrinsics; // True if we should print intrinsics for this compilation 353 #ifndef PRODUCT 354 uint _igv_idx; // Counter for IGV node identifiers 355 uint _igv_phase_iter[PHASE_NUM_TYPES]; // Counters for IGV phase iterations 356 bool _trace_opto_output; 357 bool _parsed_irreducible_loop; // True if ciTypeFlow detected irreducible loops during parsing 358 #endif 359 bool _has_irreducible_loop; // Found irreducible loops 360 // JSR 292 361 bool _has_method_handle_invokes; // True if this method has MethodHandle invokes. 362 bool _has_monitors; // Metadata transfered to nmethod to enable Continuations lock-detection fastpath 363 bool _has_scoped_access; // For shared scope closure 364 bool _clinit_barrier_on_entry; // True if clinit barrier is needed on nmethod entry 365 bool _has_clinit_barriers; // True if compiled code has clinit barriers 366 int _loop_opts_cnt; // loop opts round 367 uint _stress_seed; // Seed for stress testing 368 369 // Compilation environment. 370 Arena _comp_arena; // Arena with lifetime equivalent to Compile 371 void* _barrier_set_state; // Potential GC barrier state for Compile 372 ciEnv* _env; // CI interface 373 DirectiveSet* _directive; // Compiler directive 374 CompileLog* _log; // from CompilerThread 375 CHeapStringHolder _failure_reason; // for record_failure/failing pattern 376 CompilationFailureInfo* _first_failure_details; // Details for the first failure happening during compilation 377 GrowableArray<CallGenerator*> _intrinsics; // List of intrinsics. 378 GrowableArray<Node*> _macro_nodes; // List of nodes which need to be expanded before matching. 379 GrowableArray<ParsePredicateNode*> _parse_predicates; // List of Parse Predicates. 380 // List of OpaqueTemplateAssertionPredicateNode nodes for Template Assertion Predicates which can be seen as list 381 // of Template Assertion Predicates themselves. 382 GrowableArray<OpaqueTemplateAssertionPredicateNode*> _template_assertion_predicate_opaques; 383 GrowableArray<Node*> _expensive_nodes; // List of nodes that are expensive to compute and that we'd better not let the GVN freely common 384 GrowableArray<Node*> _for_post_loop_igvn; // List of nodes for IGVN after loop opts are over 385 GrowableArray<Node*> _for_merge_stores_igvn; // List of nodes for IGVN merge stores 386 GrowableArray<UnstableIfTrap*> _unstable_if_traps; // List of ifnodes after IGVN 387 GrowableArray<Node_List*> _coarsened_locks; // List of coarsened Lock and Unlock nodes 388 ConnectionGraph* _congraph; 389 #ifndef PRODUCT 390 IdealGraphPrinter* _igv_printer; 391 static IdealGraphPrinter* _debug_file_printer; 392 static IdealGraphPrinter* _debug_network_printer; 393 #endif 394 395 396 // Node management 397 uint _unique; // Counter for unique Node indices 398 uint _dead_node_count; // Number of dead nodes; VectorSet::Size() is O(N). 399 // So use this to keep count and make the call O(1). 400 VectorSet _dead_node_list; // Set of dead nodes 401 DEBUG_ONLY(Unique_Node_List* _modified_nodes;) // List of nodes which inputs were modified 402 DEBUG_ONLY(bool _phase_optimize_finished;) // Used for live node verification while creating new nodes 403 404 DEBUG_ONLY(bool _phase_verify_ideal_loop;) // Are we in PhaseIdealLoop verification? 405 406 // Arenas for new-space and old-space nodes. 407 // Swapped between using _node_arena. 408 // The lifetime of the old-space nodes is during xform. 409 Arena _node_arena_one; 410 Arena _node_arena_two; 411 Arena* _node_arena; 412 public: 413 Arena* swap_old_and_new() { 414 Arena* filled_arena_ptr = _node_arena; 415 Arena* old_arena_ptr = old_arena(); 416 old_arena_ptr->destruct_contents(); 417 _node_arena = old_arena_ptr; 418 return filled_arena_ptr; 419 } 420 private: 421 RootNode* _root; // Unique root of compilation, or null after bail-out. 422 Node* _top; // Unique top node. (Reset by various phases.) 423 424 Node* _immutable_memory; // Initial memory state 425 426 Node* _recent_alloc_obj; 427 Node* _recent_alloc_ctl; 428 429 // Constant table 430 MachConstantBaseNode* _mach_constant_base_node; // Constant table base node singleton. 431 432 433 // Blocked array of debugging and profiling information, 434 // tracked per node. 435 enum { _log2_node_notes_block_size = 8, 436 _node_notes_block_size = (1<<_log2_node_notes_block_size) 437 }; 438 GrowableArray<Node_Notes*>* _node_note_array; 439 Node_Notes* _default_node_notes; // default notes for new nodes 440 441 // After parsing and every bulk phase we hang onto the Root instruction. 442 // The RootNode instruction is where the whole program begins. It produces 443 // the initial Control and BOTTOM for everybody else. 444 445 // Type management 446 Arena _Compile_types; // Arena for all types 447 Arena* _type_arena; // Alias for _Compile_types except in Initialize_shared() 448 Dict* _type_dict; // Intern table 449 CloneMap _clone_map; // used for recording history of cloned nodes 450 size_t _type_last_size; // Last allocation size (see Type::operator new/delete) 451 ciMethod* _last_tf_m; // Cache for 452 const TypeFunc* _last_tf; // TypeFunc::make 453 AliasType** _alias_types; // List of alias types seen so far. 454 int _num_alias_types; // Logical length of _alias_types 455 int _max_alias_types; // Physical length of _alias_types 456 AliasCacheEntry _alias_cache[AliasCacheSize]; // Gets aliases w/o data structure walking 457 458 // Parsing, optimization 459 PhaseGVN* _initial_gvn; // Results of parse-time PhaseGVN 460 461 // Shared worklist for all IGVN rounds. Nodes can be pushed to it at any time. 462 // If pushed outside IGVN, the Node is processed in the next IGVN round. 463 Unique_Node_List* _igvn_worklist; 464 465 // Shared type array for GVN, IGVN and CCP. It maps node idx -> Type*. 466 Type_Array* _types; 467 468 // Shared node hash table for GVN, IGVN and CCP. 469 NodeHash* _node_hash; 470 471 GrowableArray<CallGenerator*> _late_inlines; // List of CallGenerators to be revisited after main parsing has finished. 472 GrowableArray<CallGenerator*> _string_late_inlines; // same but for string operations 473 GrowableArray<CallGenerator*> _boxing_late_inlines; // same but for boxing operations 474 475 GrowableArray<CallGenerator*> _vector_reboxing_late_inlines; // same but for vector reboxing operations 476 477 int _late_inlines_pos; // Where in the queue should the next late inlining candidate go (emulate depth first inlining) 478 uint _number_of_mh_late_inlines; // number of method handle late inlining still pending 479 480 // "MemLimit" directive was specified and the memory limit was hit during compilation 481 bool _oom; 482 483 // Only keep nodes in the expensive node list that need to be optimized 484 void cleanup_expensive_nodes(PhaseIterGVN &igvn); 485 // Use for sorting expensive nodes to bring similar nodes together 486 static int cmp_expensive_nodes(Node** n1, Node** n2); 487 // Expensive nodes list already sorted? 488 bool expensive_nodes_sorted() const; 489 // Remove the speculative part of types and clean up the graph 490 void remove_speculative_types(PhaseIterGVN &igvn); 491 492 void* _replay_inline_data; // Pointer to data loaded from file 493 494 void log_late_inline_failure(CallGenerator* cg, const char* msg); 495 DEBUG_ONLY(bool _exception_backedge;) 496 497 void record_method_not_compilable_oom(); 498 499 InlinePrinter _inline_printer; 500 501 public: 502 void* barrier_set_state() const { return _barrier_set_state; } 503 504 InlinePrinter* inline_printer() { return &_inline_printer; } 505 506 #ifndef PRODUCT 507 IdealGraphPrinter* igv_printer() { return _igv_printer; } 508 void reset_igv_phase_iter(CompilerPhaseType cpt) { _igv_phase_iter[cpt] = 0; } 509 #endif 510 511 void log_late_inline(CallGenerator* cg); 512 void log_inline_id(CallGenerator* cg); 513 void log_inline_failure(const char* msg); 514 515 void* replay_inline_data() const { return _replay_inline_data; } 516 517 // Dump inlining replay data to the stream. 518 void dump_inline_data(outputStream* out); 519 void dump_inline_data_reduced(outputStream* out); 520 521 private: 522 // Matching, CFG layout, allocation, code generation 523 PhaseCFG* _cfg; // Results of CFG finding 524 int _java_calls; // Number of java calls in the method 525 int _inner_loops; // Number of inner loops in the method 526 Matcher* _matcher; // Engine to map ideal to machine instructions 527 PhaseRegAlloc* _regalloc; // Results of register allocation. 528 RegMask _FIRST_STACK_mask; // All stack slots usable for spills (depends on frame layout) 529 Arena* _indexSet_arena; // control IndexSet allocation within PhaseChaitin 530 void* _indexSet_free_block_list; // free list of IndexSet bit blocks 531 int _interpreter_frame_size; 532 533 PhaseOutput* _output; 534 535 public: 536 // Accessors 537 538 // The Compile instance currently active in this (compiler) thread. 539 static Compile* current() { 540 return (Compile*) ciEnv::current()->compiler_data(); 541 } 542 543 int interpreter_frame_size() const { return _interpreter_frame_size; } 544 545 PhaseOutput* output() const { return _output; } 546 void set_output(PhaseOutput* o) { _output = o; } 547 548 // ID for this compilation. Useful for setting breakpoints in the debugger. 549 int compile_id() const { return _compile_id; } 550 DirectiveSet* directive() const { return _directive; } 551 552 // Does this compilation allow instructions to subsume loads? User 553 // instructions that subsume a load may result in an unschedulable 554 // instruction sequence. 555 bool subsume_loads() const { return _options._subsume_loads; } 556 /** Do escape analysis. */ 557 bool do_escape_analysis() const { return _options._do_escape_analysis; } 558 bool do_iterative_escape_analysis() const { return _options._do_iterative_escape_analysis; } 559 bool do_reduce_allocation_merges() const { return _options._do_reduce_allocation_merges; } 560 /** Do boxing elimination. */ 561 bool eliminate_boxing() const { return _options._eliminate_boxing; } 562 /** Do aggressive boxing elimination. */ 563 bool aggressive_unboxing() const { return _options._eliminate_boxing && AggressiveUnboxing; } 564 bool should_install_code() const { return _options._install_code; } 565 /** Do locks coarsening. */ 566 bool do_locks_coarsening() const { return _options._do_locks_coarsening; } 567 bool do_superword() const { return _options._do_superword; } 568 569 bool do_clinit_barriers() const { return _options._for_preload; } 570 bool for_preload() const { return _options._for_preload; } 571 572 // Other fixed compilation parameters. 573 ciMethod* method() const { return _method; } 574 int entry_bci() const { return _entry_bci; } 575 bool is_osr_compilation() const { return _entry_bci != InvocationEntryBci; } 576 bool is_method_compilation() const { return (_method != nullptr && !_method->flags().is_native()); } 577 const TypeFunc* tf() const { assert(_tf!=nullptr, ""); return _tf; } 578 void init_tf(const TypeFunc* tf) { assert(_tf==nullptr, ""); _tf = tf; } 579 InlineTree* ilt() const { return _ilt; } 580 address stub_function() const { return _stub_function; } 581 const char* stub_name() const { return _stub_name; } 582 address stub_entry_point() const { return _stub_entry_point; } 583 void set_stub_entry_point(address z) { _stub_entry_point = z; } 584 585 // Control of this compilation. 586 int fixed_slots() const { assert(_fixed_slots >= 0, ""); return _fixed_slots; } 587 void set_fixed_slots(int n) { _fixed_slots = n; } 588 int major_progress() const { return _major_progress; } 589 void set_inlining_progress(bool z) { _inlining_progress = z; } 590 int inlining_progress() const { return _inlining_progress; } 591 void set_inlining_incrementally(bool z) { _inlining_incrementally = z; } 592 int inlining_incrementally() const { return _inlining_incrementally; } 593 void set_do_cleanup(bool z) { _do_cleanup = z; } 594 int do_cleanup() const { return _do_cleanup; } 595 void set_major_progress() { _major_progress++; } 596 void restore_major_progress(int progress) { _major_progress += progress; } 597 void clear_major_progress() { _major_progress = 0; } 598 int max_inline_size() const { return _max_inline_size; } 599 void set_freq_inline_size(int n) { _freq_inline_size = n; } 600 int freq_inline_size() const { return _freq_inline_size; } 601 void set_max_inline_size(int n) { _max_inline_size = n; } 602 bool has_loops() const { return _has_loops; } 603 void set_has_loops(bool z) { _has_loops = z; } 604 bool has_split_ifs() const { return _has_split_ifs; } 605 void set_has_split_ifs(bool z) { _has_split_ifs = z; } 606 bool has_unsafe_access() const { return _has_unsafe_access; } 607 void set_has_unsafe_access(bool z) { _has_unsafe_access = z; } 608 bool has_stringbuilder() const { return _has_stringbuilder; } 609 void set_has_stringbuilder(bool z) { _has_stringbuilder = z; } 610 bool has_boxed_value() const { return _has_boxed_value; } 611 void set_has_boxed_value(bool z) { _has_boxed_value = z; } 612 bool has_reserved_stack_access() const { return _has_reserved_stack_access; } 613 void set_has_reserved_stack_access(bool z) { _has_reserved_stack_access = z; } 614 uint max_vector_size() const { return _max_vector_size; } 615 void set_max_vector_size(uint s) { _max_vector_size = s; } 616 bool clear_upper_avx() const { return _clear_upper_avx; } 617 void set_clear_upper_avx(bool s) { _clear_upper_avx = s; } 618 void set_trap_count(uint r, uint c) { assert(r < trapHistLength, "oob"); _trap_hist[r] = c; } 619 uint trap_count(uint r) const { assert(r < trapHistLength, "oob"); return _trap_hist[r]; } 620 bool trap_can_recompile() const { return _trap_can_recompile; } 621 void set_trap_can_recompile(bool z) { _trap_can_recompile = z; } 622 uint decompile_count() const { return _decompile_count; } 623 void set_decompile_count(uint c) { _decompile_count = c; } 624 bool allow_range_check_smearing() const; 625 bool do_inlining() const { return _do_inlining; } 626 void set_do_inlining(bool z) { _do_inlining = z; } 627 bool do_scheduling() const { return _do_scheduling; } 628 void set_do_scheduling(bool z) { _do_scheduling = z; } 629 bool do_freq_based_layout() const{ return _do_freq_based_layout; } 630 void set_do_freq_based_layout(bool z){ _do_freq_based_layout = z; } 631 bool do_vector_loop() const { return _do_vector_loop; } 632 void set_do_vector_loop(bool z) { _do_vector_loop = z; } 633 bool use_cmove() const { return _use_cmove; } 634 void set_use_cmove(bool z) { _use_cmove = z; } 635 bool do_aliasing() const { return _do_aliasing; } 636 bool print_assembly() const { return _print_assembly; } 637 void set_print_assembly(bool z) { _print_assembly = z; } 638 bool print_inlining() const { return _print_inlining; } 639 void set_print_inlining(bool z) { _print_inlining = z; } 640 bool print_intrinsics() const { return _print_intrinsics; } 641 void set_print_intrinsics(bool z) { _print_intrinsics = z; } 642 uint max_node_limit() const { return (uint)_max_node_limit; } 643 void set_max_node_limit(uint n) { _max_node_limit = n; } 644 bool clinit_barrier_on_entry() { return _clinit_barrier_on_entry; } 645 void set_clinit_barrier_on_entry(bool z) { _clinit_barrier_on_entry = z; } 646 bool has_monitors() const { return _has_monitors; } 647 void set_has_monitors(bool v) { _has_monitors = v; } 648 bool has_scoped_access() const { return _has_scoped_access; } 649 void set_has_scoped_access(bool v) { _has_scoped_access = v; } 650 bool has_clinit_barriers() { return _has_clinit_barriers; } 651 void set_has_clinit_barriers(bool z) { _has_clinit_barriers = z; } 652 653 // check the CompilerOracle for special behaviours for this compile 654 bool method_has_option(CompileCommandEnum option) { 655 return method() != nullptr && method()->has_option(option); 656 } 657 658 #ifndef PRODUCT 659 uint next_igv_idx() { return _igv_idx++; } 660 bool trace_opto_output() const { return _trace_opto_output; } 661 void print_ideal_ir(const char* phase_name); 662 bool should_print_ideal() const { return _directive->PrintIdealOption; } 663 bool parsed_irreducible_loop() const { return _parsed_irreducible_loop; } 664 void set_parsed_irreducible_loop(bool z) { _parsed_irreducible_loop = z; } 665 int _in_dump_cnt; // Required for dumping ir nodes. 666 #endif 667 bool has_irreducible_loop() const { return _has_irreducible_loop; } 668 void set_has_irreducible_loop(bool z) { _has_irreducible_loop = z; } 669 670 // JSR 292 671 bool has_method_handle_invokes() const { return _has_method_handle_invokes; } 672 void set_has_method_handle_invokes(bool z) { _has_method_handle_invokes = z; } 673 674 Ticks _latest_stage_start_counter; 675 676 void begin_method(); 677 void end_method(); 678 bool should_print_igv(int level); 679 bool should_print_phase(CompilerPhaseType cpt); 680 681 void print_method(CompilerPhaseType cpt, int level, Node* n = nullptr); 682 683 #ifndef PRODUCT 684 void init_igv(); 685 void dump_igv(const char* graph_name, int level = 3) { 686 if (should_print_igv(level)) { 687 _igv_printer->print_graph(graph_name); 688 } 689 } 690 691 void igv_print_method_to_file(const char* phase_name = "Debug", bool append = false); 692 void igv_print_method_to_network(const char* phase_name = "Debug"); 693 void igv_print_graph_to_network(const char* name, Node* node, GrowableArray<const Node*>& visible_nodes); 694 static IdealGraphPrinter* debug_file_printer() { return _debug_file_printer; } 695 static IdealGraphPrinter* debug_network_printer() { return _debug_network_printer; } 696 #endif 697 698 const GrowableArray<ParsePredicateNode*>& parse_predicates() const { 699 return _parse_predicates; 700 } 701 702 const GrowableArray<OpaqueTemplateAssertionPredicateNode*>& template_assertion_predicate_opaques() const { 703 return _template_assertion_predicate_opaques; 704 } 705 706 int macro_count() const { return _macro_nodes.length(); } 707 int parse_predicate_count() const { return _parse_predicates.length(); } 708 int template_assertion_predicate_count() const { return _template_assertion_predicate_opaques.length(); } 709 int expensive_count() const { return _expensive_nodes.length(); } 710 int coarsened_count() const { return _coarsened_locks.length(); } 711 712 Node* macro_node(int idx) const { return _macro_nodes.at(idx); } 713 714 Node* expensive_node(int idx) const { return _expensive_nodes.at(idx); } 715 716 ConnectionGraph* congraph() { return _congraph;} 717 void set_congraph(ConnectionGraph* congraph) { _congraph = congraph;} 718 void add_macro_node(Node * n) { 719 //assert(n->is_macro(), "must be a macro node"); 720 assert(!_macro_nodes.contains(n), "duplicate entry in expand list"); 721 _macro_nodes.append(n); 722 } 723 void remove_macro_node(Node* n) { 724 // this function may be called twice for a node so we can only remove it 725 // if it's still existing. 726 _macro_nodes.remove_if_existing(n); 727 // Remove from coarsened locks list if present 728 if (coarsened_count() > 0) { 729 remove_coarsened_lock(n); 730 } 731 } 732 void add_expensive_node(Node* n); 733 void remove_expensive_node(Node* n) { 734 _expensive_nodes.remove_if_existing(n); 735 } 736 737 void add_parse_predicate(ParsePredicateNode* n) { 738 assert(!_parse_predicates.contains(n), "duplicate entry in Parse Predicate list"); 739 _parse_predicates.append(n); 740 } 741 742 void remove_parse_predicate(ParsePredicateNode* n) { 743 if (parse_predicate_count() > 0) { 744 _parse_predicates.remove_if_existing(n); 745 } 746 } 747 748 void add_template_assertion_predicate_opaque(OpaqueTemplateAssertionPredicateNode* n) { 749 assert(!_template_assertion_predicate_opaques.contains(n), 750 "Duplicate entry in Template Assertion Predicate OpaqueTemplateAssertionPredicate list"); 751 _template_assertion_predicate_opaques.append(n); 752 } 753 754 void remove_template_assertion_predicate_opaque(OpaqueTemplateAssertionPredicateNode* n) { 755 if (template_assertion_predicate_count() > 0) { 756 _template_assertion_predicate_opaques.remove_if_existing(n); 757 } 758 } 759 void add_coarsened_locks(GrowableArray<AbstractLockNode*>& locks); 760 void remove_coarsened_lock(Node* n); 761 bool coarsened_locks_consistent(); 762 void mark_unbalanced_boxes() const; 763 764 bool post_loop_opts_phase() { return _post_loop_opts_phase; } 765 void set_post_loop_opts_phase() { _post_loop_opts_phase = true; } 766 void reset_post_loop_opts_phase() { _post_loop_opts_phase = false; } 767 768 #ifdef ASSERT 769 bool phase_verify_ideal_loop() const { return _phase_verify_ideal_loop; } 770 void set_phase_verify_ideal_loop() { _phase_verify_ideal_loop = true; } 771 void reset_phase_verify_ideal_loop() { _phase_verify_ideal_loop = false; } 772 #endif 773 774 bool allow_macro_nodes() { return _allow_macro_nodes; } 775 void reset_allow_macro_nodes() { _allow_macro_nodes = false; } 776 777 void record_for_post_loop_opts_igvn(Node* n); 778 void remove_from_post_loop_opts_igvn(Node* n); 779 void process_for_post_loop_opts_igvn(PhaseIterGVN& igvn); 780 781 void record_unstable_if_trap(UnstableIfTrap* trap); 782 bool remove_unstable_if_trap(CallStaticJavaNode* unc, bool yield); 783 void remove_useless_unstable_if_traps(Unique_Node_List &useful); 784 void process_for_unstable_if_traps(PhaseIterGVN& igvn); 785 786 bool merge_stores_phase() { return _merge_stores_phase; } 787 void set_merge_stores_phase() { _merge_stores_phase = true; } 788 void record_for_merge_stores_igvn(Node* n); 789 void remove_from_merge_stores_igvn(Node* n); 790 void process_for_merge_stores_igvn(PhaseIterGVN& igvn); 791 792 void shuffle_macro_nodes(); 793 void sort_macro_nodes(); 794 795 void mark_parse_predicate_nodes_useless(PhaseIterGVN& igvn); 796 797 // Are there candidate expensive nodes for optimization? 798 bool should_optimize_expensive_nodes(PhaseIterGVN &igvn); 799 // Check whether n1 and n2 are similar 800 static int cmp_expensive_nodes(Node* n1, Node* n2); 801 // Sort expensive nodes to locate similar expensive nodes 802 void sort_expensive_nodes(); 803 804 // Compilation environment. 805 Arena* comp_arena() { return &_comp_arena; } 806 ciEnv* env() const { return _env; } 807 CompileLog* log() const { return _log; } 808 809 bool failing_internal() const { 810 return _env->failing() || 811 _failure_reason.get() != nullptr; 812 } 813 814 const char* failure_reason() const { 815 return _env->failing() ? _env->failure_reason() 816 : _failure_reason.get(); 817 } 818 819 const CompilationFailureInfo* first_failure_details() const { return _first_failure_details; } 820 821 bool failing() { 822 if (failing_internal()) { 823 return true; 824 } 825 #ifdef ASSERT 826 // Disable stress code for PhaseIdealLoop verification (would have cascading effects). 827 if (phase_verify_ideal_loop()) { 828 return false; 829 } 830 if (StressBailout) { 831 return fail_randomly(); 832 } 833 #endif 834 return false; 835 } 836 837 #ifdef ASSERT 838 bool fail_randomly(); 839 bool failure_is_artificial(); 840 #endif 841 842 bool failure_reason_is(const char* r) const { 843 return (r == _failure_reason.get()) || 844 (r != nullptr && 845 _failure_reason.get() != nullptr && 846 strcmp(r, _failure_reason.get()) == 0); 847 } 848 849 void record_failure(const char* reason DEBUG_ONLY(COMMA bool allow_multiple_failures = false)); 850 void record_method_not_compilable(const char* reason DEBUG_ONLY(COMMA bool allow_multiple_failures = false)) { 851 env()->record_method_not_compilable(reason); 852 // Record failure reason. 853 record_failure(reason DEBUG_ONLY(COMMA allow_multiple_failures)); 854 } 855 bool check_node_count(uint margin, const char* reason) { 856 if (oom()) { 857 record_method_not_compilable_oom(); 858 return true; 859 } 860 if (live_nodes() + margin > max_node_limit()) { 861 record_method_not_compilable(reason); 862 return true; 863 } else { 864 return false; 865 } 866 } 867 bool oom() const { return _oom; } 868 void set_oom() { _oom = true; } 869 870 // Node management 871 uint unique() const { return _unique; } 872 uint next_unique() { return _unique++; } 873 void set_unique(uint i) { _unique = i; } 874 Arena* node_arena() { return _node_arena; } 875 Arena* old_arena() { return (&_node_arena_one == _node_arena) ? &_node_arena_two : &_node_arena_one; } 876 RootNode* root() const { return _root; } 877 void set_root(RootNode* r) { _root = r; } 878 StartNode* start() const; // (Derived from root.) 879 void verify_start(StartNode* s) const NOT_DEBUG_RETURN; 880 Node* immutable_memory(); 881 882 Node* recent_alloc_ctl() const { return _recent_alloc_ctl; } 883 Node* recent_alloc_obj() const { return _recent_alloc_obj; } 884 void set_recent_alloc(Node* ctl, Node* obj) { 885 _recent_alloc_ctl = ctl; 886 _recent_alloc_obj = obj; 887 } 888 void record_dead_node(uint idx) { if (_dead_node_list.test_set(idx)) return; 889 _dead_node_count++; 890 } 891 void reset_dead_node_list() { _dead_node_list.reset(); 892 _dead_node_count = 0; 893 } 894 uint live_nodes() const { 895 int val = _unique - _dead_node_count; 896 assert (val >= 0, "number of tracked dead nodes %d more than created nodes %d", _unique, _dead_node_count); 897 return (uint) val; 898 } 899 #ifdef ASSERT 900 void set_phase_optimize_finished() { _phase_optimize_finished = true; } 901 bool phase_optimize_finished() const { return _phase_optimize_finished; } 902 uint count_live_nodes_by_graph_walk(); 903 void print_missing_nodes(); 904 #endif 905 906 // Record modified nodes to check that they are put on IGVN worklist 907 void record_modified_node(Node* n) NOT_DEBUG_RETURN; 908 void remove_modified_node(Node* n) NOT_DEBUG_RETURN; 909 DEBUG_ONLY( Unique_Node_List* modified_nodes() const { return _modified_nodes; } ) 910 911 MachConstantBaseNode* mach_constant_base_node(); 912 bool has_mach_constant_base_node() const { return _mach_constant_base_node != nullptr; } 913 // Generated by adlc, true if CallNode requires MachConstantBase. 914 bool needs_deep_clone_jvms(); 915 916 // Handy undefined Node 917 Node* top() const { return _top; } 918 919 // these are used by guys who need to know about creation and transformation of top: 920 Node* cached_top_node() { return _top; } 921 void set_cached_top_node(Node* tn); 922 923 GrowableArray<Node_Notes*>* node_note_array() const { return _node_note_array; } 924 void set_node_note_array(GrowableArray<Node_Notes*>* arr) { _node_note_array = arr; } 925 Node_Notes* default_node_notes() const { return _default_node_notes; } 926 void set_default_node_notes(Node_Notes* n) { _default_node_notes = n; } 927 928 Node_Notes* node_notes_at(int idx); 929 930 inline bool set_node_notes_at(int idx, Node_Notes* value); 931 // Copy notes from source to dest, if they exist. 932 // Overwrite dest only if source provides something. 933 // Return true if information was moved. 934 bool copy_node_notes_to(Node* dest, Node* source); 935 936 // Workhorse function to sort out the blocked Node_Notes array: 937 inline Node_Notes* locate_node_notes(GrowableArray<Node_Notes*>* arr, 938 int idx, bool can_grow = false); 939 940 void grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by); 941 942 // Type management 943 Arena* type_arena() { return _type_arena; } 944 Dict* type_dict() { return _type_dict; } 945 size_t type_last_size() { return _type_last_size; } 946 int num_alias_types() { return _num_alias_types; } 947 948 void init_type_arena() { _type_arena = &_Compile_types; } 949 void set_type_arena(Arena* a) { _type_arena = a; } 950 void set_type_dict(Dict* d) { _type_dict = d; } 951 void set_type_last_size(size_t sz) { _type_last_size = sz; } 952 953 const TypeFunc* last_tf(ciMethod* m) { 954 return (m == _last_tf_m) ? _last_tf : nullptr; 955 } 956 void set_last_tf(ciMethod* m, const TypeFunc* tf) { 957 assert(m != nullptr || tf == nullptr, ""); 958 _last_tf_m = m; 959 _last_tf = tf; 960 } 961 962 AliasType* alias_type(int idx) { assert(idx < num_alias_types(), "oob"); return _alias_types[idx]; } 963 AliasType* alias_type(const TypePtr* adr_type, ciField* field = nullptr) { return find_alias_type(adr_type, false, field); } 964 bool have_alias_type(const TypePtr* adr_type); 965 AliasType* alias_type(ciField* field); 966 967 int get_alias_index(const TypePtr* at) { return alias_type(at)->index(); } 968 const TypePtr* get_adr_type(uint aidx) { return alias_type(aidx)->adr_type(); } 969 int get_general_index(uint aidx) { return alias_type(aidx)->general_index(); } 970 971 // Building nodes 972 void rethrow_exceptions(JVMState* jvms); 973 void return_values(JVMState* jvms); 974 JVMState* build_start_state(StartNode* start, const TypeFunc* tf); 975 976 // Decide how to build a call. 977 // The profile factor is a discount to apply to this site's interp. profile. 978 CallGenerator* call_generator(ciMethod* call_method, int vtable_index, bool call_does_dispatch, 979 JVMState* jvms, bool allow_inline, float profile_factor, ciKlass* speculative_receiver_type = nullptr, 980 bool allow_intrinsics = true); 981 bool should_delay_inlining(ciMethod* call_method, JVMState* jvms) { 982 return should_delay_string_inlining(call_method, jvms) || 983 should_delay_boxing_inlining(call_method, jvms) || 984 should_delay_vector_inlining(call_method, jvms); 985 } 986 bool should_delay_string_inlining(ciMethod* call_method, JVMState* jvms); 987 bool should_delay_boxing_inlining(ciMethod* call_method, JVMState* jvms); 988 bool should_delay_vector_inlining(ciMethod* call_method, JVMState* jvms); 989 bool should_delay_vector_reboxing_inlining(ciMethod* call_method, JVMState* jvms); 990 991 // Helper functions to identify inlining potential at call-site 992 ciMethod* optimize_virtual_call(ciMethod* caller, ciInstanceKlass* klass, 993 ciKlass* holder, ciMethod* callee, 994 const TypeOopPtr* receiver_type, bool is_virtual, 995 bool &call_does_dispatch, int &vtable_index, 996 bool check_access = true); 997 ciMethod* optimize_inlining(ciMethod* caller, ciInstanceKlass* klass, ciKlass* holder, 998 ciMethod* callee, const TypeOopPtr* receiver_type, 999 bool check_access = true); 1000 1001 // Report if there were too many traps at a current method and bci. 1002 // Report if a trap was recorded, and/or PerMethodTrapLimit was exceeded. 1003 // If there is no MDO at all, report no trap unless told to assume it. 1004 bool too_many_traps(ciMethod* method, int bci, Deoptimization::DeoptReason reason); 1005 // This version, unspecific to a particular bci, asks if 1006 // PerMethodTrapLimit was exceeded for all inlined methods seen so far. 1007 bool too_many_traps(Deoptimization::DeoptReason reason, 1008 // Privately used parameter for logging: 1009 ciMethodData* logmd = nullptr); 1010 // Report if there were too many recompiles at a method and bci. 1011 bool too_many_recompiles(ciMethod* method, int bci, Deoptimization::DeoptReason reason); 1012 // Report if there were too many traps or recompiles at a method and bci. 1013 bool too_many_traps_or_recompiles(ciMethod* method, int bci, Deoptimization::DeoptReason reason) { 1014 return too_many_traps(method, bci, reason) || 1015 too_many_recompiles(method, bci, reason); 1016 } 1017 // Return a bitset with the reasons where deoptimization is allowed, 1018 // i.e., where there were not too many uncommon traps. 1019 int _allowed_reasons; 1020 int allowed_deopt_reasons() { return _allowed_reasons; } 1021 void set_allowed_deopt_reasons(); 1022 1023 // Parsing, optimization 1024 PhaseGVN* initial_gvn() { return _initial_gvn; } 1025 Unique_Node_List* igvn_worklist() { 1026 assert(_igvn_worklist != nullptr, "must be created in Compile::Compile"); 1027 return _igvn_worklist; 1028 } 1029 Type_Array* types() { 1030 assert(_types != nullptr, "must be created in Compile::Compile"); 1031 return _types; 1032 } 1033 NodeHash* node_hash() { 1034 assert(_node_hash != nullptr, "must be created in Compile::Compile"); 1035 return _node_hash; 1036 } 1037 inline void record_for_igvn(Node* n); // Body is after class Unique_Node_List in node.hpp. 1038 inline void remove_for_igvn(Node* n); // Body is after class Unique_Node_List in node.hpp. 1039 void set_initial_gvn(PhaseGVN *gvn) { _initial_gvn = gvn; } 1040 1041 // Replace n by nn using initial_gvn, calling hash_delete and 1042 // record_for_igvn as needed. 1043 void gvn_replace_by(Node* n, Node* nn); 1044 1045 1046 void identify_useful_nodes(Unique_Node_List &useful); 1047 void update_dead_node_list(Unique_Node_List &useful); 1048 void disconnect_useless_nodes(Unique_Node_List& useful, Unique_Node_List& worklist, const Unique_Node_List* root_and_safepoints = nullptr); 1049 1050 void remove_useless_node(Node* dead); 1051 1052 // Record this CallGenerator for inlining at the end of parsing. 1053 void add_late_inline(CallGenerator* cg) { 1054 _late_inlines.insert_before(_late_inlines_pos, cg); 1055 _late_inlines_pos++; 1056 } 1057 1058 void prepend_late_inline(CallGenerator* cg) { 1059 _late_inlines.insert_before(0, cg); 1060 } 1061 1062 void add_string_late_inline(CallGenerator* cg) { 1063 _string_late_inlines.push(cg); 1064 } 1065 1066 void add_boxing_late_inline(CallGenerator* cg) { 1067 _boxing_late_inlines.push(cg); 1068 } 1069 1070 void add_vector_reboxing_late_inline(CallGenerator* cg) { 1071 _vector_reboxing_late_inlines.push(cg); 1072 } 1073 1074 template<typename N, ENABLE_IF(std::is_base_of<Node, N>::value)> 1075 void remove_useless_nodes(GrowableArray<N*>& node_list, Unique_Node_List& useful); 1076 1077 void remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful); 1078 void remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Node* dead); 1079 1080 void remove_useless_coarsened_locks(Unique_Node_List& useful); 1081 1082 void dump_print_inlining(); 1083 1084 bool over_inlining_cutoff() const { 1085 if (!inlining_incrementally()) { 1086 return unique() > (uint)NodeCountInliningCutoff; 1087 } else { 1088 // Give some room for incremental inlining algorithm to "breathe" 1089 // and avoid thrashing when live node count is close to the limit. 1090 // Keep in mind that live_nodes() isn't accurate during inlining until 1091 // dead node elimination step happens (see Compile::inline_incrementally). 1092 return live_nodes() > (uint)LiveNodeCountInliningCutoff * 11 / 10; 1093 } 1094 } 1095 1096 void inc_number_of_mh_late_inlines() { _number_of_mh_late_inlines++; } 1097 void dec_number_of_mh_late_inlines() { assert(_number_of_mh_late_inlines > 0, "_number_of_mh_late_inlines < 0 !"); _number_of_mh_late_inlines--; } 1098 bool has_mh_late_inlines() const { return _number_of_mh_late_inlines > 0; } 1099 1100 bool inline_incrementally_one(); 1101 void inline_incrementally_cleanup(PhaseIterGVN& igvn); 1102 void inline_incrementally(PhaseIterGVN& igvn); 1103 bool should_delay_inlining() { return AlwaysIncrementalInline || (StressIncrementalInlining && (random() % 2) == 0); } 1104 void inline_string_calls(bool parse_time); 1105 void inline_boxing_calls(PhaseIterGVN& igvn); 1106 bool optimize_loops(PhaseIterGVN& igvn, LoopOptsMode mode); 1107 void remove_root_to_sfpts_edges(PhaseIterGVN& igvn); 1108 1109 void inline_vector_reboxing_calls(); 1110 bool has_vbox_nodes(); 1111 1112 void process_late_inline_calls_no_inline(PhaseIterGVN& igvn); 1113 1114 // Matching, CFG layout, allocation, code generation 1115 PhaseCFG* cfg() { return _cfg; } 1116 bool has_java_calls() const { return _java_calls > 0; } 1117 int java_calls() const { return _java_calls; } 1118 int inner_loops() const { return _inner_loops; } 1119 Matcher* matcher() { return _matcher; } 1120 PhaseRegAlloc* regalloc() { return _regalloc; } 1121 RegMask& FIRST_STACK_mask() { return _FIRST_STACK_mask; } 1122 Arena* indexSet_arena() { return _indexSet_arena; } 1123 void* indexSet_free_block_list() { return _indexSet_free_block_list; } 1124 DebugInformationRecorder* debug_info() { return env()->debug_info(); } 1125 1126 void update_interpreter_frame_size(int size) { 1127 if (_interpreter_frame_size < size) { 1128 _interpreter_frame_size = size; 1129 } 1130 } 1131 1132 void set_matcher(Matcher* m) { _matcher = m; } 1133 //void set_regalloc(PhaseRegAlloc* ra) { _regalloc = ra; } 1134 void set_indexSet_arena(Arena* a) { _indexSet_arena = a; } 1135 void set_indexSet_free_block_list(void* p) { _indexSet_free_block_list = p; } 1136 1137 void set_java_calls(int z) { _java_calls = z; } 1138 void set_inner_loops(int z) { _inner_loops = z; } 1139 1140 Dependencies* dependencies() { return env()->dependencies(); } 1141 1142 // Major entry point. Given a Scope, compile the associated method. 1143 // For normal compilations, entry_bci is InvocationEntryBci. For on stack 1144 // replacement, entry_bci indicates the bytecode for which to compile a 1145 // continuation. 1146 Compile(ciEnv* ci_env, ciMethod* target, 1147 int entry_bci, Options options, DirectiveSet* directive); 1148 1149 // Second major entry point. From the TypeFunc signature, generate code 1150 // to pass arguments from the Java calling convention to the C calling 1151 // convention. 1152 Compile(ciEnv* ci_env, const TypeFunc *(*gen)(), 1153 address stub_function, const char *stub_name, 1154 int is_fancy_jump, bool pass_tls, 1155 bool return_pc, DirectiveSet* directive); 1156 1157 ~Compile(); 1158 1159 // Are we compiling a method? 1160 bool has_method() { return method() != nullptr; } 1161 1162 // Maybe print some information about this compile. 1163 void print_compile_messages(); 1164 1165 // Final graph reshaping, a post-pass after the regular optimizer is done. 1166 bool final_graph_reshaping(); 1167 1168 // returns true if adr is completely contained in the given alias category 1169 bool must_alias(const TypePtr* adr, int alias_idx); 1170 1171 // returns true if adr overlaps with the given alias category 1172 bool can_alias(const TypePtr* adr, int alias_idx); 1173 1174 // Stack slots that may be unused by the calling convention but must 1175 // otherwise be preserved. On Intel this includes the return address. 1176 // On PowerPC it includes the 4 words holding the old TOC & LR glue. 1177 uint in_preserve_stack_slots() { 1178 return SharedRuntime::in_preserve_stack_slots(); 1179 } 1180 1181 // "Top of Stack" slots that may be unused by the calling convention but must 1182 // otherwise be preserved. 1183 // On Intel these are not necessary and the value can be zero. 1184 static uint out_preserve_stack_slots() { 1185 return SharedRuntime::out_preserve_stack_slots(); 1186 } 1187 1188 // Number of outgoing stack slots killed above the out_preserve_stack_slots 1189 // for calls to C. Supports the var-args backing area for register parms. 1190 uint varargs_C_out_slots_killed() const; 1191 1192 // Number of Stack Slots consumed by a synchronization entry 1193 int sync_stack_slots() const; 1194 1195 // Compute the name of old_SP. See <arch>.ad for frame layout. 1196 OptoReg::Name compute_old_SP(); 1197 1198 private: 1199 // Phase control: 1200 void Init(bool aliasing); // Prepare for a single compilation 1201 void Optimize(); // Given a graph, optimize it 1202 void Code_Gen(); // Generate code from a graph 1203 1204 // Management of the AliasType table. 1205 void grow_alias_types(); 1206 AliasCacheEntry* probe_alias_cache(const TypePtr* adr_type); 1207 const TypePtr *flatten_alias_type(const TypePtr* adr_type) const; 1208 AliasType* find_alias_type(const TypePtr* adr_type, bool no_create, ciField* field); 1209 1210 void verify_top(Node*) const PRODUCT_RETURN; 1211 1212 // Intrinsic setup. 1213 CallGenerator* make_vm_intrinsic(ciMethod* m, bool is_virtual); // constructor 1214 int intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found); // helper 1215 CallGenerator* find_intrinsic(ciMethod* m, bool is_virtual); // query fn 1216 void register_intrinsic(CallGenerator* cg); // update fn 1217 1218 #ifndef PRODUCT 1219 static juint _intrinsic_hist_count[]; 1220 static jubyte _intrinsic_hist_flags[]; 1221 #endif 1222 // Function calls made by the public function final_graph_reshaping. 1223 // No need to be made public as they are not called elsewhere. 1224 void final_graph_reshaping_impl(Node *n, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes); 1225 void final_graph_reshaping_main_switch(Node* n, Final_Reshape_Counts& frc, uint nop, Unique_Node_List& dead_nodes); 1226 void final_graph_reshaping_walk(Node_Stack& nstack, Node* root, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes); 1227 void handle_div_mod_op(Node* n, BasicType bt, bool is_unsigned); 1228 1229 // Logic cone optimization. 1230 void optimize_logic_cones(PhaseIterGVN &igvn); 1231 void collect_logic_cone_roots(Unique_Node_List& list); 1232 void process_logic_cone_root(PhaseIterGVN &igvn, Node* n, VectorSet& visited); 1233 bool compute_logic_cone(Node* n, Unique_Node_List& partition, Unique_Node_List& inputs); 1234 uint compute_truth_table(Unique_Node_List& partition, Unique_Node_List& inputs); 1235 uint eval_macro_logic_op(uint func, uint op1, uint op2, uint op3); 1236 Node* xform_to_MacroLogicV(PhaseIterGVN &igvn, const TypeVect* vt, Unique_Node_List& partitions, Unique_Node_List& inputs); 1237 void check_no_dead_use() const NOT_DEBUG_RETURN; 1238 1239 public: 1240 1241 // Note: Histogram array size is about 1 Kb. 1242 enum { // flag bits: 1243 _intrinsic_worked = 1, // succeeded at least once 1244 _intrinsic_failed = 2, // tried it but it failed 1245 _intrinsic_disabled = 4, // was requested but disabled (e.g., -XX:-InlineUnsafeOps) 1246 _intrinsic_virtual = 8, // was seen in the virtual form (rare) 1247 _intrinsic_both = 16 // was seen in the non-virtual form (usual) 1248 }; 1249 // Update histogram. Return boolean if this is a first-time occurrence. 1250 static bool gather_intrinsic_statistics(vmIntrinsics::ID id, 1251 bool is_virtual, int flags) PRODUCT_RETURN0; 1252 static void print_intrinsic_statistics() PRODUCT_RETURN; 1253 1254 // Graph verification code 1255 // Walk the node list, verifying that there is a one-to-one correspondence 1256 // between Use-Def edges and Def-Use edges. The option no_dead_code enables 1257 // stronger checks that the graph is strongly connected from starting points 1258 // in both directions. 1259 // root_and_safepoints is used to give the starting points for the traversal. 1260 // If not supplied, only root is used. When this check is called after CCP, 1261 // we need to start traversal from Root and safepoints, just like CCP does its 1262 // own traversal (see PhaseCCP::transform for reasons). 1263 // 1264 // To call this function, there are 2 ways to go: 1265 // - give root_and_safepoints to start traversal everywhere needed (like after CCP) 1266 // - if the whole graph is assumed to be reachable from Root's input, 1267 // root_and_safepoints is not needed (like in PhaseRemoveUseless). 1268 // 1269 // Failure to specify root_and_safepoints in case the graph is not fully 1270 // reachable from Root's input make this check unsound (can miss inconsistencies) 1271 // and even incomplete (can make up non-existing problems) if no_dead_code is 1272 // true. 1273 void verify_graph_edges(bool no_dead_code = false, const Unique_Node_List* root_and_safepoints = nullptr) const PRODUCT_RETURN; 1274 1275 // Verify bi-directional correspondence of edges 1276 void verify_bidirectional_edges(Unique_Node_List& visited, const Unique_Node_List* root_and_safepoints = nullptr) const; 1277 1278 // End-of-run dumps. 1279 static void print_statistics() PRODUCT_RETURN; 1280 1281 // Verify ADLC assumptions during startup 1282 static void adlc_verification() PRODUCT_RETURN; 1283 1284 // Definitions of pd methods 1285 static void pd_compiler2_init(); 1286 1287 // Static parse-time type checking logic for gen_subtype_check: 1288 enum SubTypeCheckResult { SSC_always_false, SSC_always_true, SSC_easy_test, SSC_full_test }; 1289 SubTypeCheckResult static_subtype_check(const TypeKlassPtr* superk, const TypeKlassPtr* subk, bool skip = StressReflectiveCode); 1290 1291 static Node* conv_I2X_index(PhaseGVN* phase, Node* offset, const TypeInt* sizetype, 1292 // Optional control dependency (for example, on range check) 1293 Node* ctrl = nullptr); 1294 1295 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check) 1296 static Node* constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl, bool carry_dependency = false); 1297 1298 // Auxiliary methods for randomized fuzzing/stressing 1299 int random(); 1300 bool randomized_select(int count); 1301 1302 // seed random number generation and log the seed for repeatability. 1303 void initialize_stress_seed(const DirectiveSet* directive); 1304 1305 // supporting clone_map 1306 CloneMap& clone_map(); 1307 void set_clone_map(Dict* d); 1308 1309 bool needs_clinit_barrier(ciField* ik, ciMethod* accessing_method); 1310 bool needs_clinit_barrier(ciMethod* ik, ciMethod* accessing_method); 1311 bool needs_clinit_barrier(ciInstanceKlass* ik, ciMethod* accessing_method); 1312 1313 #ifdef IA32 1314 private: 1315 bool _select_24_bit_instr; // We selected an instruction with a 24-bit result 1316 bool _in_24_bit_fp_mode; // We are emitting instructions with 24-bit results 1317 1318 // Remember if this compilation changes hardware mode to 24-bit precision. 1319 void set_24_bit_selection_and_mode(bool selection, bool mode) { 1320 _select_24_bit_instr = selection; 1321 _in_24_bit_fp_mode = mode; 1322 } 1323 1324 public: 1325 bool select_24_bit_instr() const { return _select_24_bit_instr; } 1326 bool in_24_bit_fp_mode() const { return _in_24_bit_fp_mode; } 1327 #endif // IA32 1328 #ifdef ASSERT 1329 VerifyMeetResult* _type_verify; 1330 void set_exception_backedge() { _exception_backedge = true; } 1331 bool has_exception_backedge() const { return _exception_backedge; } 1332 #endif 1333 1334 static bool push_thru_add(PhaseGVN* phase, Node* z, const TypeInteger* tz, const TypeInteger*& rx, const TypeInteger*& ry, 1335 BasicType out_bt, BasicType in_bt); 1336 1337 static Node* narrow_value(BasicType bt, Node* value, const Type* type, PhaseGVN* phase, bool transform_res); 1338 }; 1339 1340 #endif // SHARE_OPTO_COMPILE_HPP