1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_OPTO_COMPILE_HPP 26 #define SHARE_OPTO_COMPILE_HPP 27 28 #include "asm/codeBuffer.hpp" 29 #include "ci/compilerInterface.hpp" 30 #include "code/debugInfoRec.hpp" 31 #include "compiler/compiler_globals.hpp" 32 #include "compiler/compileBroker.hpp" 33 #include "compiler/compilerEvent.hpp" 34 #include "compiler/cHeapStringHolder.hpp" 35 #include "libadt/dict.hpp" 36 #include "libadt/vectset.hpp" 37 #include "memory/resourceArea.hpp" 38 #include "oops/methodData.hpp" 39 #include "opto/idealGraphPrinter.hpp" 40 #include "opto/phasetype.hpp" 41 #include "opto/phase.hpp" 42 #include "opto/regmask.hpp" 43 #include "runtime/deoptimization.hpp" 44 #include "runtime/sharedRuntime.hpp" 45 #include "runtime/timerTrace.hpp" 46 #include "runtime/vmThread.hpp" 47 #include "utilities/ticks.hpp" 48 #include "utilities/vmEnums.hpp" 49 #include "opto/printinlining.hpp" 50 51 class AbstractLockNode; 52 class AddPNode; 53 class Block; 54 class Bundle; 55 class CallGenerator; 56 class CallStaticJavaNode; 57 class CloneMap; 58 class CompilationFailureInfo; 59 class ConnectionGraph; 60 class IdealGraphPrinter; 61 class InlineTree; 62 class Matcher; 63 class MachConstantNode; 64 class MachConstantBaseNode; 65 class MachNode; 66 class MachOper; 67 class MachSafePointNode; 68 class Node; 69 class Node_Array; 70 class Node_List; 71 class Node_Notes; 72 class NodeHash; 73 class NodeCloneInfo; 74 class OpaqueTemplateAssertionPredicateNode; 75 class OptoReg; 76 class ParsePredicateNode; 77 class PhaseCFG; 78 class PhaseGVN; 79 class PhaseIterGVN; 80 class PhaseRegAlloc; 81 class PhaseCCP; 82 class PhaseOutput; 83 class RootNode; 84 class relocInfo; 85 class StartNode; 86 class SafePointNode; 87 class JVMState; 88 class Type; 89 class TypeInt; 90 class TypeInteger; 91 class TypeKlassPtr; 92 class TypePtr; 93 class TypeOopPtr; 94 class TypeFunc; 95 class TypeVect; 96 class Type_Array; 97 class Unique_Node_List; 98 class UnstableIfTrap; 99 class nmethod; 100 class Node_Stack; 101 struct Final_Reshape_Counts; 102 class VerifyMeetResult; 103 104 enum LoopOptsMode { 105 LoopOptsDefault, 106 LoopOptsNone, 107 LoopOptsMaxUnroll, 108 LoopOptsShenandoahExpand, 109 LoopOptsSkipSplitIf, 110 LoopOptsVerify 111 }; 112 113 // The type of all node counts and indexes. 114 // It must hold at least 16 bits, but must also be fast to load and store. 115 // This type, if less than 32 bits, could limit the number of possible nodes. 116 // (To make this type platform-specific, move to globalDefinitions_xxx.hpp.) 117 typedef unsigned int node_idx_t; 118 119 class NodeCloneInfo { 120 private: 121 uint64_t _idx_clone_orig; 122 public: 123 124 void set_idx(node_idx_t idx) { 125 _idx_clone_orig = (_idx_clone_orig & CONST64(0xFFFFFFFF00000000)) | idx; 126 } 127 node_idx_t idx() const { return (node_idx_t)(_idx_clone_orig & 0xFFFFFFFF); } 128 129 void set_gen(int generation) { 130 uint64_t g = (uint64_t)generation << 32; 131 _idx_clone_orig = (_idx_clone_orig & 0xFFFFFFFF) | g; 132 } 133 int gen() const { return (int)(_idx_clone_orig >> 32); } 134 135 void set(uint64_t x) { _idx_clone_orig = x; } 136 void set(node_idx_t x, int g) { set_idx(x); set_gen(g); } 137 uint64_t get() const { return _idx_clone_orig; } 138 139 NodeCloneInfo(uint64_t idx_clone_orig) : _idx_clone_orig(idx_clone_orig) {} 140 NodeCloneInfo(node_idx_t x, int g) : _idx_clone_orig(0) { set(x, g); } 141 142 void dump_on(outputStream* st) const; 143 }; 144 145 class CloneMap { 146 friend class Compile; 147 private: 148 bool _debug; 149 Dict* _dict; 150 int _clone_idx; // current cloning iteration/generation in loop unroll 151 public: 152 void* _2p(node_idx_t key) const { return (void*)(intptr_t)key; } // 2 conversion functions to make gcc happy 153 node_idx_t _2_node_idx_t(const void* k) const { return (node_idx_t)(intptr_t)k; } 154 Dict* dict() const { return _dict; } 155 void insert(node_idx_t key, uint64_t val) { assert(_dict->operator[](_2p(key)) == nullptr, "key existed"); _dict->Insert(_2p(key), (void*)val); } 156 void insert(node_idx_t key, NodeCloneInfo& ci) { insert(key, ci.get()); } 157 void remove(node_idx_t key) { _dict->Delete(_2p(key)); } 158 uint64_t value(node_idx_t key) const { return (uint64_t)_dict->operator[](_2p(key)); } 159 node_idx_t idx(node_idx_t key) const { return NodeCloneInfo(value(key)).idx(); } 160 int gen(node_idx_t key) const { return NodeCloneInfo(value(key)).gen(); } 161 int gen(const void* k) const { return gen(_2_node_idx_t(k)); } 162 int max_gen() const; 163 void clone(Node* old, Node* nnn, int gen); 164 void verify_insert_and_clone(Node* old, Node* nnn, int gen); 165 void dump(node_idx_t key, outputStream* st) const; 166 167 int clone_idx() const { return _clone_idx; } 168 void set_clone_idx(int x) { _clone_idx = x; } 169 bool is_debug() const { return _debug; } 170 void set_debug(bool debug) { _debug = debug; } 171 172 bool same_idx(node_idx_t k1, node_idx_t k2) const { return idx(k1) == idx(k2); } 173 bool same_gen(node_idx_t k1, node_idx_t k2) const { return gen(k1) == gen(k2); } 174 }; 175 176 class Options { 177 friend class Compile; 178 private: 179 const bool _subsume_loads; // Load can be matched as part of a larger op. 180 const bool _do_escape_analysis; // Do escape analysis. 181 const bool _do_iterative_escape_analysis; // Do iterative escape analysis. 182 const bool _do_reduce_allocation_merges; // Do try to reduce allocation merges. 183 const bool _eliminate_boxing; // Do boxing elimination. 184 const bool _do_locks_coarsening; // Do locks coarsening 185 const bool _for_preload; // Generate code for preload (before Java method execution), do class init barriers 186 const bool _do_superword; // Do SuperWord 187 const bool _install_code; // Install the code that was compiled 188 public: 189 Options(bool subsume_loads, 190 bool do_escape_analysis, 191 bool do_iterative_escape_analysis, 192 bool do_reduce_allocation_merges, 193 bool eliminate_boxing, 194 bool do_locks_coarsening, 195 bool do_superword, 196 bool for_preload, 197 bool install_code) : 198 _subsume_loads(subsume_loads), 199 _do_escape_analysis(do_escape_analysis), 200 _do_iterative_escape_analysis(do_iterative_escape_analysis), 201 _do_reduce_allocation_merges(do_reduce_allocation_merges), 202 _eliminate_boxing(eliminate_boxing), 203 _do_locks_coarsening(do_locks_coarsening), 204 _for_preload(for_preload), 205 _do_superword(do_superword), 206 _install_code(install_code) { 207 } 208 209 static Options for_runtime_stub() { 210 return Options( 211 /* subsume_loads = */ true, 212 /* do_escape_analysis = */ false, 213 /* do_iterative_escape_analysis = */ false, 214 /* do_reduce_allocation_merges = */ false, 215 /* eliminate_boxing = */ false, 216 /* do_lock_coarsening = */ false, 217 /* for_preload = */ false, 218 /* do_superword = */ true, 219 /* install_code = */ true 220 ); 221 } 222 }; 223 224 //------------------------------Compile---------------------------------------- 225 // This class defines a top-level Compiler invocation. 226 227 class Compile : public Phase { 228 229 public: 230 // Fixed alias indexes. (See also MergeMemNode.) 231 enum { 232 AliasIdxTop = 1, // pseudo-index, aliases to nothing (used as sentinel value) 233 AliasIdxBot = 2, // pseudo-index, aliases to everything 234 AliasIdxRaw = 3 // hard-wired index for TypeRawPtr::BOTTOM 235 }; 236 237 // Variant of TraceTime(nullptr, &_t_accumulator, CITime); 238 // Integrated with logging. If logging is turned on, and CITimeVerbose is true, 239 // then brackets are put into the log, with time stamps and node counts. 240 // (The time collection itself is always conditionalized on CITime.) 241 class TracePhase : public TraceTime { 242 private: 243 Compile* const _compile; 244 CompileLog* _log; 245 const bool _dolog; 246 public: 247 TracePhase(PhaseTraceId phaseTraceId); 248 TracePhase(const char* name, PhaseTraceId phaseTraceId); 249 ~TracePhase(); 250 const char* phase_name() const { return title(); } 251 }; 252 253 // Information per category of alias (memory slice) 254 class AliasType { 255 private: 256 friend class Compile; 257 258 int _index; // unique index, used with MergeMemNode 259 const TypePtr* _adr_type; // normalized address type 260 ciField* _field; // relevant instance field, or null if none 261 const Type* _element; // relevant array element type, or null if none 262 bool _is_rewritable; // false if the memory is write-once only 263 int _general_index; // if this is type is an instance, the general 264 // type that this is an instance of 265 266 void Init(int i, const TypePtr* at); 267 268 public: 269 int index() const { return _index; } 270 const TypePtr* adr_type() const { return _adr_type; } 271 ciField* field() const { return _field; } 272 const Type* element() const { return _element; } 273 bool is_rewritable() const { return _is_rewritable; } 274 bool is_volatile() const { return (_field ? _field->is_volatile() : false); } 275 int general_index() const { return (_general_index != 0) ? _general_index : _index; } 276 277 void set_rewritable(bool z) { _is_rewritable = z; } 278 void set_field(ciField* f) { 279 assert(!_field,""); 280 _field = f; 281 if (f->is_final() || f->is_stable()) { 282 // In the case of @Stable, multiple writes are possible but may be assumed to be no-ops. 283 _is_rewritable = false; 284 } 285 } 286 void set_element(const Type* e) { 287 assert(_element == nullptr, ""); 288 _element = e; 289 } 290 291 BasicType basic_type() const; 292 293 void print_on(outputStream* st) PRODUCT_RETURN; 294 }; 295 296 enum { 297 logAliasCacheSize = 6, 298 AliasCacheSize = (1<<logAliasCacheSize) 299 }; 300 struct AliasCacheEntry { const TypePtr* _adr_type; int _index; }; // simple duple type 301 enum { 302 trapHistLength = MethodData::_trap_hist_limit 303 }; 304 305 private: 306 // Fixed parameters to this compilation. 307 const int _compile_id; 308 const Options _options; // Compilation options 309 ciMethod* _method; // The method being compiled. 310 int _entry_bci; // entry bci for osr methods. 311 const TypeFunc* _tf; // My kind of signature 312 InlineTree* _ilt; // Ditto (temporary). 313 address _stub_function; // VM entry for stub being compiled, or null 314 const char* _stub_name; // Name of stub or adapter being compiled, or null 315 address _stub_entry_point; // Compile code entry for generated stub, or null 316 317 // Control of this compilation. 318 int _max_inline_size; // Max inline size for this compilation 319 int _freq_inline_size; // Max hot method inline size for this compilation 320 int _fixed_slots; // count of frame slots not allocated by the register 321 // allocator i.e. locks, original deopt pc, etc. 322 uintx _max_node_limit; // Max unique node count during a single compilation. 323 324 bool _post_loop_opts_phase; // Loop opts are finished. 325 bool _merge_stores_phase; // Phase for merging stores, after post loop opts phase. 326 bool _allow_macro_nodes; // True if we allow creation of macro nodes. 327 328 int _major_progress; // Count of something big happening 329 bool _inlining_progress; // progress doing incremental inlining? 330 bool _inlining_incrementally;// Are we doing incremental inlining (post parse) 331 bool _do_cleanup; // Cleanup is needed before proceeding with incremental inlining 332 bool _has_loops; // True if the method _may_ have some loops 333 bool _has_split_ifs; // True if the method _may_ have some split-if 334 bool _has_unsafe_access; // True if the method _may_ produce faults in unsafe loads or stores. 335 bool _has_stringbuilder; // True StringBuffers or StringBuilders are allocated 336 bool _has_boxed_value; // True if a boxed object is allocated 337 bool _has_reserved_stack_access; // True if the method or an inlined method is annotated with ReservedStackAccess 338 uint _max_vector_size; // Maximum size of generated vectors 339 bool _clear_upper_avx; // Clear upper bits of ymm registers using vzeroupper 340 uint _trap_hist[trapHistLength]; // Cumulative traps 341 bool _trap_can_recompile; // Have we emitted a recompiling trap? 342 uint _decompile_count; // Cumulative decompilation counts. 343 bool _do_inlining; // True if we intend to do inlining 344 bool _do_scheduling; // True if we intend to do scheduling 345 bool _do_freq_based_layout; // True if we intend to do frequency based block layout 346 bool _do_vector_loop; // True if allowed to execute loop in parallel iterations 347 bool _use_cmove; // True if CMove should be used without profitability analysis 348 bool _do_aliasing; // True if we intend to do aliasing 349 bool _print_assembly; // True if we should dump assembly code for this compilation 350 bool _print_inlining; // True if we should print inlining for this compilation 351 bool _print_intrinsics; // True if we should print intrinsics for this compilation 352 #ifndef PRODUCT 353 uint _igv_idx; // Counter for IGV node identifiers 354 uint _igv_phase_iter[PHASE_NUM_TYPES]; // Counters for IGV phase iterations 355 bool _trace_opto_output; 356 bool _parsed_irreducible_loop; // True if ciTypeFlow detected irreducible loops during parsing 357 #endif 358 bool _has_irreducible_loop; // Found irreducible loops 359 // JSR 292 360 bool _has_method_handle_invokes; // True if this method has MethodHandle invokes. 361 bool _has_monitors; // Metadata transfered to nmethod to enable Continuations lock-detection fastpath 362 bool _has_scoped_access; // For shared scope closure 363 bool _clinit_barrier_on_entry; // True if clinit barrier is needed on nmethod entry 364 bool _has_clinit_barriers; // True if compiled code has clinit barriers 365 int _loop_opts_cnt; // loop opts round 366 uint _stress_seed; // Seed for stress testing 367 368 // Compilation environment. 369 Arena _comp_arena; // Arena with lifetime equivalent to Compile 370 void* _barrier_set_state; // Potential GC barrier state for Compile 371 ciEnv* _env; // CI interface 372 DirectiveSet* _directive; // Compiler directive 373 CompileLog* _log; // from CompilerThread 374 CHeapStringHolder _failure_reason; // for record_failure/failing pattern 375 CompilationFailureInfo* _first_failure_details; // Details for the first failure happening during compilation 376 GrowableArray<CallGenerator*> _intrinsics; // List of intrinsics. 377 GrowableArray<Node*> _macro_nodes; // List of nodes which need to be expanded before matching. 378 GrowableArray<ParsePredicateNode*> _parse_predicates; // List of Parse Predicates. 379 // List of OpaqueTemplateAssertionPredicateNode nodes for Template Assertion Predicates which can be seen as list 380 // of Template Assertion Predicates themselves. 381 GrowableArray<OpaqueTemplateAssertionPredicateNode*> _template_assertion_predicate_opaques; 382 GrowableArray<Node*> _expensive_nodes; // List of nodes that are expensive to compute and that we'd better not let the GVN freely common 383 GrowableArray<Node*> _for_post_loop_igvn; // List of nodes for IGVN after loop opts are over 384 GrowableArray<Node*> _for_merge_stores_igvn; // List of nodes for IGVN merge stores 385 GrowableArray<UnstableIfTrap*> _unstable_if_traps; // List of ifnodes after IGVN 386 GrowableArray<Node_List*> _coarsened_locks; // List of coarsened Lock and Unlock nodes 387 ConnectionGraph* _congraph; 388 #ifndef PRODUCT 389 IdealGraphPrinter* _igv_printer; 390 static IdealGraphPrinter* _debug_file_printer; 391 static IdealGraphPrinter* _debug_network_printer; 392 #endif 393 394 395 // Node management 396 uint _unique; // Counter for unique Node indices 397 uint _dead_node_count; // Number of dead nodes; VectorSet::Size() is O(N). 398 // So use this to keep count and make the call O(1). 399 VectorSet _dead_node_list; // Set of dead nodes 400 DEBUG_ONLY(Unique_Node_List* _modified_nodes;) // List of nodes which inputs were modified 401 DEBUG_ONLY(bool _phase_optimize_finished;) // Used for live node verification while creating new nodes 402 403 DEBUG_ONLY(bool _phase_verify_ideal_loop;) // Are we in PhaseIdealLoop verification? 404 405 // Arenas for new-space and old-space nodes. 406 // Swapped between using _node_arena. 407 // The lifetime of the old-space nodes is during xform. 408 Arena _node_arena_one; 409 Arena _node_arena_two; 410 Arena* _node_arena; 411 public: 412 Arena* swap_old_and_new() { 413 Arena* filled_arena_ptr = _node_arena; 414 Arena* old_arena_ptr = old_arena(); 415 old_arena_ptr->destruct_contents(); 416 _node_arena = old_arena_ptr; 417 return filled_arena_ptr; 418 } 419 private: 420 RootNode* _root; // Unique root of compilation, or null after bail-out. 421 Node* _top; // Unique top node. (Reset by various phases.) 422 423 Node* _immutable_memory; // Initial memory state 424 425 Node* _recent_alloc_obj; 426 Node* _recent_alloc_ctl; 427 428 // Constant table 429 MachConstantBaseNode* _mach_constant_base_node; // Constant table base node singleton. 430 431 432 // Blocked array of debugging and profiling information, 433 // tracked per node. 434 enum { _log2_node_notes_block_size = 8, 435 _node_notes_block_size = (1<<_log2_node_notes_block_size) 436 }; 437 GrowableArray<Node_Notes*>* _node_note_array; 438 Node_Notes* _default_node_notes; // default notes for new nodes 439 440 // After parsing and every bulk phase we hang onto the Root instruction. 441 // The RootNode instruction is where the whole program begins. It produces 442 // the initial Control and BOTTOM for everybody else. 443 444 // Type management 445 Arena _Compile_types; // Arena for all types 446 Arena* _type_arena; // Alias for _Compile_types except in Initialize_shared() 447 Dict* _type_dict; // Intern table 448 CloneMap _clone_map; // used for recording history of cloned nodes 449 size_t _type_last_size; // Last allocation size (see Type::operator new/delete) 450 ciMethod* _last_tf_m; // Cache for 451 const TypeFunc* _last_tf; // TypeFunc::make 452 AliasType** _alias_types; // List of alias types seen so far. 453 int _num_alias_types; // Logical length of _alias_types 454 int _max_alias_types; // Physical length of _alias_types 455 AliasCacheEntry _alias_cache[AliasCacheSize]; // Gets aliases w/o data structure walking 456 457 // Parsing, optimization 458 PhaseGVN* _initial_gvn; // Results of parse-time PhaseGVN 459 460 // Shared worklist for all IGVN rounds. Nodes can be pushed to it at any time. 461 // If pushed outside IGVN, the Node is processed in the next IGVN round. 462 Unique_Node_List* _igvn_worklist; 463 464 // Shared type array for GVN, IGVN and CCP. It maps node idx -> Type*. 465 Type_Array* _types; 466 467 // Shared node hash table for GVN, IGVN and CCP. 468 NodeHash* _node_hash; 469 470 GrowableArray<CallGenerator*> _late_inlines; // List of CallGenerators to be revisited after main parsing has finished. 471 GrowableArray<CallGenerator*> _string_late_inlines; // same but for string operations 472 GrowableArray<CallGenerator*> _boxing_late_inlines; // same but for boxing operations 473 474 GrowableArray<CallGenerator*> _vector_reboxing_late_inlines; // same but for vector reboxing operations 475 476 int _late_inlines_pos; // Where in the queue should the next late inlining candidate go (emulate depth first inlining) 477 uint _number_of_mh_late_inlines; // number of method handle late inlining still pending 478 479 // "MemLimit" directive was specified and the memory limit was hit during compilation 480 bool _oom; 481 482 // Only keep nodes in the expensive node list that need to be optimized 483 void cleanup_expensive_nodes(PhaseIterGVN &igvn); 484 // Use for sorting expensive nodes to bring similar nodes together 485 static int cmp_expensive_nodes(Node** n1, Node** n2); 486 // Expensive nodes list already sorted? 487 bool expensive_nodes_sorted() const; 488 // Remove the speculative part of types and clean up the graph 489 void remove_speculative_types(PhaseIterGVN &igvn); 490 491 void* _replay_inline_data; // Pointer to data loaded from file 492 493 void log_late_inline_failure(CallGenerator* cg, const char* msg); 494 DEBUG_ONLY(bool _exception_backedge;) 495 496 void record_method_not_compilable_oom(); 497 498 InlinePrinter _inline_printer; 499 500 public: 501 void* barrier_set_state() const { return _barrier_set_state; } 502 503 InlinePrinter* inline_printer() { return &_inline_printer; } 504 505 #ifndef PRODUCT 506 IdealGraphPrinter* igv_printer() { return _igv_printer; } 507 void reset_igv_phase_iter(CompilerPhaseType cpt) { _igv_phase_iter[cpt] = 0; } 508 #endif 509 510 void log_late_inline(CallGenerator* cg); 511 void log_inline_id(CallGenerator* cg); 512 void log_inline_failure(const char* msg); 513 514 void* replay_inline_data() const { return _replay_inline_data; } 515 516 // Dump inlining replay data to the stream. 517 void dump_inline_data(outputStream* out); 518 void dump_inline_data_reduced(outputStream* out); 519 520 private: 521 // Matching, CFG layout, allocation, code generation 522 PhaseCFG* _cfg; // Results of CFG finding 523 int _java_calls; // Number of java calls in the method 524 int _inner_loops; // Number of inner loops in the method 525 Matcher* _matcher; // Engine to map ideal to machine instructions 526 PhaseRegAlloc* _regalloc; // Results of register allocation. 527 RegMask _FIRST_STACK_mask; // All stack slots usable for spills (depends on frame layout) 528 Arena* _indexSet_arena; // control IndexSet allocation within PhaseChaitin 529 void* _indexSet_free_block_list; // free list of IndexSet bit blocks 530 int _interpreter_frame_size; 531 532 PhaseOutput* _output; 533 534 public: 535 // Accessors 536 537 // The Compile instance currently active in this (compiler) thread. 538 static Compile* current() { 539 return (Compile*) ciEnv::current()->compiler_data(); 540 } 541 542 int interpreter_frame_size() const { return _interpreter_frame_size; } 543 544 PhaseOutput* output() const { return _output; } 545 void set_output(PhaseOutput* o) { _output = o; } 546 547 // ID for this compilation. Useful for setting breakpoints in the debugger. 548 int compile_id() const { return _compile_id; } 549 DirectiveSet* directive() const { return _directive; } 550 551 // Does this compilation allow instructions to subsume loads? User 552 // instructions that subsume a load may result in an unschedulable 553 // instruction sequence. 554 bool subsume_loads() const { return _options._subsume_loads; } 555 /** Do escape analysis. */ 556 bool do_escape_analysis() const { return _options._do_escape_analysis; } 557 bool do_iterative_escape_analysis() const { return _options._do_iterative_escape_analysis; } 558 bool do_reduce_allocation_merges() const { return _options._do_reduce_allocation_merges; } 559 /** Do boxing elimination. */ 560 bool eliminate_boxing() const { return _options._eliminate_boxing; } 561 /** Do aggressive boxing elimination. */ 562 bool aggressive_unboxing() const { return _options._eliminate_boxing && AggressiveUnboxing; } 563 bool should_install_code() const { return _options._install_code; } 564 /** Do locks coarsening. */ 565 bool do_locks_coarsening() const { return _options._do_locks_coarsening; } 566 bool do_superword() const { return _options._do_superword; } 567 568 bool do_clinit_barriers() const { return _options._for_preload; } 569 bool for_preload() const { return _options._for_preload; } 570 571 // Other fixed compilation parameters. 572 ciMethod* method() const { return _method; } 573 int entry_bci() const { return _entry_bci; } 574 bool is_osr_compilation() const { return _entry_bci != InvocationEntryBci; } 575 bool is_method_compilation() const { return (_method != nullptr && !_method->flags().is_native()); } 576 const TypeFunc* tf() const { assert(_tf!=nullptr, ""); return _tf; } 577 void init_tf(const TypeFunc* tf) { assert(_tf==nullptr, ""); _tf = tf; } 578 InlineTree* ilt() const { return _ilt; } 579 address stub_function() const { return _stub_function; } 580 const char* stub_name() const { return _stub_name; } 581 address stub_entry_point() const { return _stub_entry_point; } 582 void set_stub_entry_point(address z) { _stub_entry_point = z; } 583 584 // Control of this compilation. 585 int fixed_slots() const { assert(_fixed_slots >= 0, ""); return _fixed_slots; } 586 void set_fixed_slots(int n) { _fixed_slots = n; } 587 int major_progress() const { return _major_progress; } 588 void set_inlining_progress(bool z) { _inlining_progress = z; } 589 int inlining_progress() const { return _inlining_progress; } 590 void set_inlining_incrementally(bool z) { _inlining_incrementally = z; } 591 int inlining_incrementally() const { return _inlining_incrementally; } 592 void set_do_cleanup(bool z) { _do_cleanup = z; } 593 int do_cleanup() const { return _do_cleanup; } 594 void set_major_progress() { _major_progress++; } 595 void restore_major_progress(int progress) { _major_progress += progress; } 596 void clear_major_progress() { _major_progress = 0; } 597 int max_inline_size() const { return _max_inline_size; } 598 void set_freq_inline_size(int n) { _freq_inline_size = n; } 599 int freq_inline_size() const { return _freq_inline_size; } 600 void set_max_inline_size(int n) { _max_inline_size = n; } 601 bool has_loops() const { return _has_loops; } 602 void set_has_loops(bool z) { _has_loops = z; } 603 bool has_split_ifs() const { return _has_split_ifs; } 604 void set_has_split_ifs(bool z) { _has_split_ifs = z; } 605 bool has_unsafe_access() const { return _has_unsafe_access; } 606 void set_has_unsafe_access(bool z) { _has_unsafe_access = z; } 607 bool has_stringbuilder() const { return _has_stringbuilder; } 608 void set_has_stringbuilder(bool z) { _has_stringbuilder = z; } 609 bool has_boxed_value() const { return _has_boxed_value; } 610 void set_has_boxed_value(bool z) { _has_boxed_value = z; } 611 bool has_reserved_stack_access() const { return _has_reserved_stack_access; } 612 void set_has_reserved_stack_access(bool z) { _has_reserved_stack_access = z; } 613 uint max_vector_size() const { return _max_vector_size; } 614 void set_max_vector_size(uint s) { _max_vector_size = s; } 615 bool clear_upper_avx() const { return _clear_upper_avx; } 616 void set_clear_upper_avx(bool s) { _clear_upper_avx = s; } 617 void set_trap_count(uint r, uint c) { assert(r < trapHistLength, "oob"); _trap_hist[r] = c; } 618 uint trap_count(uint r) const { assert(r < trapHistLength, "oob"); return _trap_hist[r]; } 619 bool trap_can_recompile() const { return _trap_can_recompile; } 620 void set_trap_can_recompile(bool z) { _trap_can_recompile = z; } 621 uint decompile_count() const { return _decompile_count; } 622 void set_decompile_count(uint c) { _decompile_count = c; } 623 bool allow_range_check_smearing() const; 624 bool do_inlining() const { return _do_inlining; } 625 void set_do_inlining(bool z) { _do_inlining = z; } 626 bool do_scheduling() const { return _do_scheduling; } 627 void set_do_scheduling(bool z) { _do_scheduling = z; } 628 bool do_freq_based_layout() const{ return _do_freq_based_layout; } 629 void set_do_freq_based_layout(bool z){ _do_freq_based_layout = z; } 630 bool do_vector_loop() const { return _do_vector_loop; } 631 void set_do_vector_loop(bool z) { _do_vector_loop = z; } 632 bool use_cmove() const { return _use_cmove; } 633 void set_use_cmove(bool z) { _use_cmove = z; } 634 bool do_aliasing() const { return _do_aliasing; } 635 bool print_assembly() const { return _print_assembly; } 636 void set_print_assembly(bool z) { _print_assembly = z; } 637 bool print_inlining() const { return _print_inlining; } 638 void set_print_inlining(bool z) { _print_inlining = z; } 639 bool print_intrinsics() const { return _print_intrinsics; } 640 void set_print_intrinsics(bool z) { _print_intrinsics = z; } 641 uint max_node_limit() const { return (uint)_max_node_limit; } 642 void set_max_node_limit(uint n) { _max_node_limit = n; } 643 bool clinit_barrier_on_entry() { return _clinit_barrier_on_entry; } 644 void set_clinit_barrier_on_entry(bool z) { _clinit_barrier_on_entry = z; } 645 bool has_monitors() const { return _has_monitors; } 646 void set_has_monitors(bool v) { _has_monitors = v; } 647 bool has_scoped_access() const { return _has_scoped_access; } 648 void set_has_scoped_access(bool v) { _has_scoped_access = v; } 649 bool has_clinit_barriers() { return _has_clinit_barriers; } 650 void set_has_clinit_barriers(bool z) { _has_clinit_barriers = z; } 651 652 // check the CompilerOracle for special behaviours for this compile 653 bool method_has_option(CompileCommandEnum option) { 654 return method() != nullptr && method()->has_option(option); 655 } 656 657 #ifndef PRODUCT 658 uint next_igv_idx() { return _igv_idx++; } 659 bool trace_opto_output() const { return _trace_opto_output; } 660 void print_ideal_ir(const char* phase_name); 661 bool should_print_ideal() const { return _directive->PrintIdealOption; } 662 bool parsed_irreducible_loop() const { return _parsed_irreducible_loop; } 663 void set_parsed_irreducible_loop(bool z) { _parsed_irreducible_loop = z; } 664 int _in_dump_cnt; // Required for dumping ir nodes. 665 #endif 666 bool has_irreducible_loop() const { return _has_irreducible_loop; } 667 void set_has_irreducible_loop(bool z) { _has_irreducible_loop = z; } 668 669 // JSR 292 670 bool has_method_handle_invokes() const { return _has_method_handle_invokes; } 671 void set_has_method_handle_invokes(bool z) { _has_method_handle_invokes = z; } 672 673 Ticks _latest_stage_start_counter; 674 675 void begin_method(); 676 void end_method(); 677 bool should_print_igv(int level); 678 bool should_print_phase(CompilerPhaseType cpt); 679 680 void print_method(CompilerPhaseType cpt, int level, Node* n = nullptr); 681 682 #ifndef PRODUCT 683 void init_igv(); 684 void dump_igv(const char* graph_name, int level = 3) { 685 if (should_print_igv(level)) { 686 _igv_printer->print_graph(graph_name); 687 } 688 } 689 690 void igv_print_method_to_file(const char* phase_name = "Debug", bool append = false); 691 void igv_print_method_to_network(const char* phase_name = "Debug"); 692 void igv_print_graph_to_network(const char* name, GrowableArray<const Node*>& visible_nodes); 693 static IdealGraphPrinter* debug_file_printer() { return _debug_file_printer; } 694 static IdealGraphPrinter* debug_network_printer() { return _debug_network_printer; } 695 #endif 696 697 const GrowableArray<ParsePredicateNode*>& parse_predicates() const { 698 return _parse_predicates; 699 } 700 701 const GrowableArray<OpaqueTemplateAssertionPredicateNode*>& template_assertion_predicate_opaques() const { 702 return _template_assertion_predicate_opaques; 703 } 704 705 int macro_count() const { return _macro_nodes.length(); } 706 int parse_predicate_count() const { return _parse_predicates.length(); } 707 int template_assertion_predicate_count() const { return _template_assertion_predicate_opaques.length(); } 708 int expensive_count() const { return _expensive_nodes.length(); } 709 int coarsened_count() const { return _coarsened_locks.length(); } 710 711 Node* macro_node(int idx) const { return _macro_nodes.at(idx); } 712 713 Node* expensive_node(int idx) const { return _expensive_nodes.at(idx); } 714 715 ConnectionGraph* congraph() { return _congraph;} 716 void set_congraph(ConnectionGraph* congraph) { _congraph = congraph;} 717 void add_macro_node(Node * n) { 718 //assert(n->is_macro(), "must be a macro node"); 719 assert(!_macro_nodes.contains(n), "duplicate entry in expand list"); 720 _macro_nodes.append(n); 721 } 722 void remove_macro_node(Node* n) { 723 // this function may be called twice for a node so we can only remove it 724 // if it's still existing. 725 _macro_nodes.remove_if_existing(n); 726 // Remove from coarsened locks list if present 727 if (coarsened_count() > 0) { 728 remove_coarsened_lock(n); 729 } 730 } 731 void add_expensive_node(Node* n); 732 void remove_expensive_node(Node* n) { 733 _expensive_nodes.remove_if_existing(n); 734 } 735 736 void add_parse_predicate(ParsePredicateNode* n) { 737 assert(!_parse_predicates.contains(n), "duplicate entry in Parse Predicate list"); 738 _parse_predicates.append(n); 739 } 740 741 void remove_parse_predicate(ParsePredicateNode* n) { 742 if (parse_predicate_count() > 0) { 743 _parse_predicates.remove_if_existing(n); 744 } 745 } 746 747 void add_template_assertion_predicate_opaque(OpaqueTemplateAssertionPredicateNode* n) { 748 assert(!_template_assertion_predicate_opaques.contains(n), 749 "Duplicate entry in Template Assertion Predicate OpaqueTemplateAssertionPredicate list"); 750 _template_assertion_predicate_opaques.append(n); 751 } 752 753 void remove_template_assertion_predicate_opaque(OpaqueTemplateAssertionPredicateNode* n) { 754 if (template_assertion_predicate_count() > 0) { 755 _template_assertion_predicate_opaques.remove_if_existing(n); 756 } 757 } 758 void add_coarsened_locks(GrowableArray<AbstractLockNode*>& locks); 759 void remove_coarsened_lock(Node* n); 760 bool coarsened_locks_consistent(); 761 void mark_unbalanced_boxes() const; 762 763 bool post_loop_opts_phase() { return _post_loop_opts_phase; } 764 void set_post_loop_opts_phase() { _post_loop_opts_phase = true; } 765 void reset_post_loop_opts_phase() { _post_loop_opts_phase = false; } 766 767 #ifdef ASSERT 768 bool phase_verify_ideal_loop() const { return _phase_verify_ideal_loop; } 769 void set_phase_verify_ideal_loop() { _phase_verify_ideal_loop = true; } 770 void reset_phase_verify_ideal_loop() { _phase_verify_ideal_loop = false; } 771 #endif 772 773 bool allow_macro_nodes() { return _allow_macro_nodes; } 774 void reset_allow_macro_nodes() { _allow_macro_nodes = false; } 775 776 void record_for_post_loop_opts_igvn(Node* n); 777 void remove_from_post_loop_opts_igvn(Node* n); 778 void process_for_post_loop_opts_igvn(PhaseIterGVN& igvn); 779 780 void record_unstable_if_trap(UnstableIfTrap* trap); 781 bool remove_unstable_if_trap(CallStaticJavaNode* unc, bool yield); 782 void remove_useless_unstable_if_traps(Unique_Node_List &useful); 783 void process_for_unstable_if_traps(PhaseIterGVN& igvn); 784 785 bool merge_stores_phase() { return _merge_stores_phase; } 786 void set_merge_stores_phase() { _merge_stores_phase = true; } 787 void record_for_merge_stores_igvn(Node* n); 788 void remove_from_merge_stores_igvn(Node* n); 789 void process_for_merge_stores_igvn(PhaseIterGVN& igvn); 790 791 void shuffle_macro_nodes(); 792 void sort_macro_nodes(); 793 794 void mark_parse_predicate_nodes_useless(PhaseIterGVN& igvn); 795 796 // Are there candidate expensive nodes for optimization? 797 bool should_optimize_expensive_nodes(PhaseIterGVN &igvn); 798 // Check whether n1 and n2 are similar 799 static int cmp_expensive_nodes(Node* n1, Node* n2); 800 // Sort expensive nodes to locate similar expensive nodes 801 void sort_expensive_nodes(); 802 803 // Compilation environment. 804 Arena* comp_arena() { return &_comp_arena; } 805 ciEnv* env() const { return _env; } 806 CompileLog* log() const { return _log; } 807 808 bool failing_internal() const { 809 return _env->failing() || 810 _failure_reason.get() != nullptr; 811 } 812 813 const char* failure_reason() const { 814 return _env->failing() ? _env->failure_reason() 815 : _failure_reason.get(); 816 } 817 818 const CompilationFailureInfo* first_failure_details() const { return _first_failure_details; } 819 820 bool failing() { 821 if (failing_internal()) { 822 return true; 823 } 824 #ifdef ASSERT 825 // Disable stress code for PhaseIdealLoop verification (would have cascading effects). 826 if (phase_verify_ideal_loop()) { 827 return false; 828 } 829 if (StressBailout) { 830 return fail_randomly(); 831 } 832 #endif 833 return false; 834 } 835 836 #ifdef ASSERT 837 bool fail_randomly(); 838 bool failure_is_artificial(); 839 #endif 840 841 bool failure_reason_is(const char* r) const { 842 return (r == _failure_reason.get()) || 843 (r != nullptr && 844 _failure_reason.get() != nullptr && 845 strcmp(r, _failure_reason.get()) == 0); 846 } 847 848 void record_failure(const char* reason DEBUG_ONLY(COMMA bool allow_multiple_failures = false)); 849 void record_method_not_compilable(const char* reason DEBUG_ONLY(COMMA bool allow_multiple_failures = false)) { 850 env()->record_method_not_compilable(reason); 851 // Record failure reason. 852 record_failure(reason DEBUG_ONLY(COMMA allow_multiple_failures)); 853 } 854 bool check_node_count(uint margin, const char* reason) { 855 if (oom()) { 856 record_method_not_compilable_oom(); 857 return true; 858 } 859 if (live_nodes() + margin > max_node_limit()) { 860 record_method_not_compilable(reason); 861 return true; 862 } else { 863 return false; 864 } 865 } 866 bool oom() const { return _oom; } 867 void set_oom() { _oom = true; } 868 869 // Node management 870 uint unique() const { return _unique; } 871 uint next_unique() { return _unique++; } 872 void set_unique(uint i) { _unique = i; } 873 Arena* node_arena() { return _node_arena; } 874 Arena* old_arena() { return (&_node_arena_one == _node_arena) ? &_node_arena_two : &_node_arena_one; } 875 RootNode* root() const { return _root; } 876 void set_root(RootNode* r) { _root = r; } 877 StartNode* start() const; // (Derived from root.) 878 void verify_start(StartNode* s) const NOT_DEBUG_RETURN; 879 Node* immutable_memory(); 880 881 Node* recent_alloc_ctl() const { return _recent_alloc_ctl; } 882 Node* recent_alloc_obj() const { return _recent_alloc_obj; } 883 void set_recent_alloc(Node* ctl, Node* obj) { 884 _recent_alloc_ctl = ctl; 885 _recent_alloc_obj = obj; 886 } 887 void record_dead_node(uint idx) { if (_dead_node_list.test_set(idx)) return; 888 _dead_node_count++; 889 } 890 void reset_dead_node_list() { _dead_node_list.reset(); 891 _dead_node_count = 0; 892 } 893 uint live_nodes() const { 894 int val = _unique - _dead_node_count; 895 assert (val >= 0, "number of tracked dead nodes %d more than created nodes %d", _unique, _dead_node_count); 896 return (uint) val; 897 } 898 #ifdef ASSERT 899 void set_phase_optimize_finished() { _phase_optimize_finished = true; } 900 bool phase_optimize_finished() const { return _phase_optimize_finished; } 901 uint count_live_nodes_by_graph_walk(); 902 void print_missing_nodes(); 903 #endif 904 905 // Record modified nodes to check that they are put on IGVN worklist 906 void record_modified_node(Node* n) NOT_DEBUG_RETURN; 907 void remove_modified_node(Node* n) NOT_DEBUG_RETURN; 908 DEBUG_ONLY( Unique_Node_List* modified_nodes() const { return _modified_nodes; } ) 909 910 MachConstantBaseNode* mach_constant_base_node(); 911 bool has_mach_constant_base_node() const { return _mach_constant_base_node != nullptr; } 912 // Generated by adlc, true if CallNode requires MachConstantBase. 913 bool needs_deep_clone_jvms(); 914 915 // Handy undefined Node 916 Node* top() const { return _top; } 917 918 // these are used by guys who need to know about creation and transformation of top: 919 Node* cached_top_node() { return _top; } 920 void set_cached_top_node(Node* tn); 921 922 GrowableArray<Node_Notes*>* node_note_array() const { return _node_note_array; } 923 void set_node_note_array(GrowableArray<Node_Notes*>* arr) { _node_note_array = arr; } 924 Node_Notes* default_node_notes() const { return _default_node_notes; } 925 void set_default_node_notes(Node_Notes* n) { _default_node_notes = n; } 926 927 Node_Notes* node_notes_at(int idx); 928 929 inline bool set_node_notes_at(int idx, Node_Notes* value); 930 // Copy notes from source to dest, if they exist. 931 // Overwrite dest only if source provides something. 932 // Return true if information was moved. 933 bool copy_node_notes_to(Node* dest, Node* source); 934 935 // Workhorse function to sort out the blocked Node_Notes array: 936 inline Node_Notes* locate_node_notes(GrowableArray<Node_Notes*>* arr, 937 int idx, bool can_grow = false); 938 939 void grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by); 940 941 // Type management 942 Arena* type_arena() { return _type_arena; } 943 Dict* type_dict() { return _type_dict; } 944 size_t type_last_size() { return _type_last_size; } 945 int num_alias_types() { return _num_alias_types; } 946 947 void init_type_arena() { _type_arena = &_Compile_types; } 948 void set_type_arena(Arena* a) { _type_arena = a; } 949 void set_type_dict(Dict* d) { _type_dict = d; } 950 void set_type_last_size(size_t sz) { _type_last_size = sz; } 951 952 const TypeFunc* last_tf(ciMethod* m) { 953 return (m == _last_tf_m) ? _last_tf : nullptr; 954 } 955 void set_last_tf(ciMethod* m, const TypeFunc* tf) { 956 assert(m != nullptr || tf == nullptr, ""); 957 _last_tf_m = m; 958 _last_tf = tf; 959 } 960 961 AliasType* alias_type(int idx) { assert(idx < num_alias_types(), "oob"); return _alias_types[idx]; } 962 AliasType* alias_type(const TypePtr* adr_type, ciField* field = nullptr) { return find_alias_type(adr_type, false, field); } 963 bool have_alias_type(const TypePtr* adr_type); 964 AliasType* alias_type(ciField* field); 965 966 int get_alias_index(const TypePtr* at) { return alias_type(at)->index(); } 967 const TypePtr* get_adr_type(uint aidx) { return alias_type(aidx)->adr_type(); } 968 int get_general_index(uint aidx) { return alias_type(aidx)->general_index(); } 969 970 // Building nodes 971 void rethrow_exceptions(JVMState* jvms); 972 void return_values(JVMState* jvms); 973 JVMState* build_start_state(StartNode* start, const TypeFunc* tf); 974 975 // Decide how to build a call. 976 // The profile factor is a discount to apply to this site's interp. profile. 977 CallGenerator* call_generator(ciMethod* call_method, int vtable_index, bool call_does_dispatch, 978 JVMState* jvms, bool allow_inline, float profile_factor, ciKlass* speculative_receiver_type = nullptr, 979 bool allow_intrinsics = true); 980 bool should_delay_inlining(ciMethod* call_method, JVMState* jvms) { 981 return should_delay_string_inlining(call_method, jvms) || 982 should_delay_boxing_inlining(call_method, jvms) || 983 should_delay_vector_inlining(call_method, jvms); 984 } 985 bool should_delay_string_inlining(ciMethod* call_method, JVMState* jvms); 986 bool should_delay_boxing_inlining(ciMethod* call_method, JVMState* jvms); 987 bool should_delay_vector_inlining(ciMethod* call_method, JVMState* jvms); 988 bool should_delay_vector_reboxing_inlining(ciMethod* call_method, JVMState* jvms); 989 990 // Helper functions to identify inlining potential at call-site 991 ciMethod* optimize_virtual_call(ciMethod* caller, ciInstanceKlass* klass, 992 ciKlass* holder, ciMethod* callee, 993 const TypeOopPtr* receiver_type, bool is_virtual, 994 bool &call_does_dispatch, int &vtable_index, 995 bool check_access = true); 996 ciMethod* optimize_inlining(ciMethod* caller, ciInstanceKlass* klass, ciKlass* holder, 997 ciMethod* callee, const TypeOopPtr* receiver_type, 998 bool check_access = true); 999 1000 // Report if there were too many traps at a current method and bci. 1001 // Report if a trap was recorded, and/or PerMethodTrapLimit was exceeded. 1002 // If there is no MDO at all, report no trap unless told to assume it. 1003 bool too_many_traps(ciMethod* method, int bci, Deoptimization::DeoptReason reason); 1004 // This version, unspecific to a particular bci, asks if 1005 // PerMethodTrapLimit was exceeded for all inlined methods seen so far. 1006 bool too_many_traps(Deoptimization::DeoptReason reason, 1007 // Privately used parameter for logging: 1008 ciMethodData* logmd = nullptr); 1009 // Report if there were too many recompiles at a method and bci. 1010 bool too_many_recompiles(ciMethod* method, int bci, Deoptimization::DeoptReason reason); 1011 // Report if there were too many traps or recompiles at a method and bci. 1012 bool too_many_traps_or_recompiles(ciMethod* method, int bci, Deoptimization::DeoptReason reason) { 1013 return too_many_traps(method, bci, reason) || 1014 too_many_recompiles(method, bci, reason); 1015 } 1016 // Return a bitset with the reasons where deoptimization is allowed, 1017 // i.e., where there were not too many uncommon traps. 1018 int _allowed_reasons; 1019 int allowed_deopt_reasons() { return _allowed_reasons; } 1020 void set_allowed_deopt_reasons(); 1021 1022 // Parsing, optimization 1023 PhaseGVN* initial_gvn() { return _initial_gvn; } 1024 Unique_Node_List* igvn_worklist() { 1025 assert(_igvn_worklist != nullptr, "must be created in Compile::Compile"); 1026 return _igvn_worklist; 1027 } 1028 Type_Array* types() { 1029 assert(_types != nullptr, "must be created in Compile::Compile"); 1030 return _types; 1031 } 1032 NodeHash* node_hash() { 1033 assert(_node_hash != nullptr, "must be created in Compile::Compile"); 1034 return _node_hash; 1035 } 1036 inline void record_for_igvn(Node* n); // Body is after class Unique_Node_List in node.hpp. 1037 inline void remove_for_igvn(Node* n); // Body is after class Unique_Node_List in node.hpp. 1038 void set_initial_gvn(PhaseGVN *gvn) { _initial_gvn = gvn; } 1039 1040 // Replace n by nn using initial_gvn, calling hash_delete and 1041 // record_for_igvn as needed. 1042 void gvn_replace_by(Node* n, Node* nn); 1043 1044 1045 void identify_useful_nodes(Unique_Node_List &useful); 1046 void update_dead_node_list(Unique_Node_List &useful); 1047 void disconnect_useless_nodes(Unique_Node_List& useful, Unique_Node_List& worklist, const Unique_Node_List* root_and_safepoints = nullptr); 1048 1049 void remove_useless_node(Node* dead); 1050 1051 // Record this CallGenerator for inlining at the end of parsing. 1052 void add_late_inline(CallGenerator* cg) { 1053 _late_inlines.insert_before(_late_inlines_pos, cg); 1054 _late_inlines_pos++; 1055 } 1056 1057 void prepend_late_inline(CallGenerator* cg) { 1058 _late_inlines.insert_before(0, cg); 1059 } 1060 1061 void add_string_late_inline(CallGenerator* cg) { 1062 _string_late_inlines.push(cg); 1063 } 1064 1065 void add_boxing_late_inline(CallGenerator* cg) { 1066 _boxing_late_inlines.push(cg); 1067 } 1068 1069 void add_vector_reboxing_late_inline(CallGenerator* cg) { 1070 _vector_reboxing_late_inlines.push(cg); 1071 } 1072 1073 template<typename N, ENABLE_IF(std::is_base_of<Node, N>::value)> 1074 void remove_useless_nodes(GrowableArray<N*>& node_list, Unique_Node_List& useful); 1075 1076 void remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful); 1077 void remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Node* dead); 1078 1079 void remove_useless_coarsened_locks(Unique_Node_List& useful); 1080 1081 void dump_print_inlining(); 1082 1083 bool over_inlining_cutoff() const { 1084 if (!inlining_incrementally()) { 1085 return unique() > (uint)NodeCountInliningCutoff; 1086 } else { 1087 // Give some room for incremental inlining algorithm to "breathe" 1088 // and avoid thrashing when live node count is close to the limit. 1089 // Keep in mind that live_nodes() isn't accurate during inlining until 1090 // dead node elimination step happens (see Compile::inline_incrementally). 1091 return live_nodes() > (uint)LiveNodeCountInliningCutoff * 11 / 10; 1092 } 1093 } 1094 1095 void inc_number_of_mh_late_inlines() { _number_of_mh_late_inlines++; } 1096 void dec_number_of_mh_late_inlines() { assert(_number_of_mh_late_inlines > 0, "_number_of_mh_late_inlines < 0 !"); _number_of_mh_late_inlines--; } 1097 bool has_mh_late_inlines() const { return _number_of_mh_late_inlines > 0; } 1098 1099 bool inline_incrementally_one(); 1100 void inline_incrementally_cleanup(PhaseIterGVN& igvn); 1101 void inline_incrementally(PhaseIterGVN& igvn); 1102 bool should_delay_inlining() { return AlwaysIncrementalInline || (StressIncrementalInlining && (random() % 2) == 0); } 1103 void inline_string_calls(bool parse_time); 1104 void inline_boxing_calls(PhaseIterGVN& igvn); 1105 bool optimize_loops(PhaseIterGVN& igvn, LoopOptsMode mode); 1106 void remove_root_to_sfpts_edges(PhaseIterGVN& igvn); 1107 1108 void inline_vector_reboxing_calls(); 1109 bool has_vbox_nodes(); 1110 1111 void process_late_inline_calls_no_inline(PhaseIterGVN& igvn); 1112 1113 // Matching, CFG layout, allocation, code generation 1114 PhaseCFG* cfg() { return _cfg; } 1115 bool has_java_calls() const { return _java_calls > 0; } 1116 int java_calls() const { return _java_calls; } 1117 int inner_loops() const { return _inner_loops; } 1118 Matcher* matcher() { return _matcher; } 1119 PhaseRegAlloc* regalloc() { return _regalloc; } 1120 RegMask& FIRST_STACK_mask() { return _FIRST_STACK_mask; } 1121 Arena* indexSet_arena() { return _indexSet_arena; } 1122 void* indexSet_free_block_list() { return _indexSet_free_block_list; } 1123 DebugInformationRecorder* debug_info() { return env()->debug_info(); } 1124 1125 void update_interpreter_frame_size(int size) { 1126 if (_interpreter_frame_size < size) { 1127 _interpreter_frame_size = size; 1128 } 1129 } 1130 1131 void set_matcher(Matcher* m) { _matcher = m; } 1132 //void set_regalloc(PhaseRegAlloc* ra) { _regalloc = ra; } 1133 void set_indexSet_arena(Arena* a) { _indexSet_arena = a; } 1134 void set_indexSet_free_block_list(void* p) { _indexSet_free_block_list = p; } 1135 1136 void set_java_calls(int z) { _java_calls = z; } 1137 void set_inner_loops(int z) { _inner_loops = z; } 1138 1139 Dependencies* dependencies() { return env()->dependencies(); } 1140 1141 // Major entry point. Given a Scope, compile the associated method. 1142 // For normal compilations, entry_bci is InvocationEntryBci. For on stack 1143 // replacement, entry_bci indicates the bytecode for which to compile a 1144 // continuation. 1145 Compile(ciEnv* ci_env, ciMethod* target, 1146 int entry_bci, Options options, DirectiveSet* directive); 1147 1148 // Second major entry point. From the TypeFunc signature, generate code 1149 // to pass arguments from the Java calling convention to the C calling 1150 // convention. 1151 Compile(ciEnv* ci_env, const TypeFunc *(*gen)(), 1152 address stub_function, const char *stub_name, 1153 int is_fancy_jump, bool pass_tls, 1154 bool return_pc, DirectiveSet* directive); 1155 1156 ~Compile(); 1157 1158 // Are we compiling a method? 1159 bool has_method() { return method() != nullptr; } 1160 1161 // Maybe print some information about this compile. 1162 void print_compile_messages(); 1163 1164 // Final graph reshaping, a post-pass after the regular optimizer is done. 1165 bool final_graph_reshaping(); 1166 1167 // returns true if adr is completely contained in the given alias category 1168 bool must_alias(const TypePtr* adr, int alias_idx); 1169 1170 // returns true if adr overlaps with the given alias category 1171 bool can_alias(const TypePtr* adr, int alias_idx); 1172 1173 // Stack slots that may be unused by the calling convention but must 1174 // otherwise be preserved. On Intel this includes the return address. 1175 // On PowerPC it includes the 4 words holding the old TOC & LR glue. 1176 uint in_preserve_stack_slots() { 1177 return SharedRuntime::in_preserve_stack_slots(); 1178 } 1179 1180 // "Top of Stack" slots that may be unused by the calling convention but must 1181 // otherwise be preserved. 1182 // On Intel these are not necessary and the value can be zero. 1183 static uint out_preserve_stack_slots() { 1184 return SharedRuntime::out_preserve_stack_slots(); 1185 } 1186 1187 // Number of outgoing stack slots killed above the out_preserve_stack_slots 1188 // for calls to C. Supports the var-args backing area for register parms. 1189 uint varargs_C_out_slots_killed() const; 1190 1191 // Number of Stack Slots consumed by a synchronization entry 1192 int sync_stack_slots() const; 1193 1194 // Compute the name of old_SP. See <arch>.ad for frame layout. 1195 OptoReg::Name compute_old_SP(); 1196 1197 private: 1198 // Phase control: 1199 void Init(bool aliasing); // Prepare for a single compilation 1200 void Optimize(); // Given a graph, optimize it 1201 void Code_Gen(); // Generate code from a graph 1202 1203 // Management of the AliasType table. 1204 void grow_alias_types(); 1205 AliasCacheEntry* probe_alias_cache(const TypePtr* adr_type); 1206 const TypePtr *flatten_alias_type(const TypePtr* adr_type) const; 1207 AliasType* find_alias_type(const TypePtr* adr_type, bool no_create, ciField* field); 1208 1209 void verify_top(Node*) const PRODUCT_RETURN; 1210 1211 // Intrinsic setup. 1212 CallGenerator* make_vm_intrinsic(ciMethod* m, bool is_virtual); // constructor 1213 int intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found); // helper 1214 CallGenerator* find_intrinsic(ciMethod* m, bool is_virtual); // query fn 1215 void register_intrinsic(CallGenerator* cg); // update fn 1216 1217 #ifndef PRODUCT 1218 static juint _intrinsic_hist_count[]; 1219 static jubyte _intrinsic_hist_flags[]; 1220 #endif 1221 // Function calls made by the public function final_graph_reshaping. 1222 // No need to be made public as they are not called elsewhere. 1223 void final_graph_reshaping_impl(Node *n, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes); 1224 void final_graph_reshaping_main_switch(Node* n, Final_Reshape_Counts& frc, uint nop, Unique_Node_List& dead_nodes); 1225 void final_graph_reshaping_walk(Node_Stack& nstack, Node* root, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes); 1226 void handle_div_mod_op(Node* n, BasicType bt, bool is_unsigned); 1227 1228 // Logic cone optimization. 1229 void optimize_logic_cones(PhaseIterGVN &igvn); 1230 void collect_logic_cone_roots(Unique_Node_List& list); 1231 void process_logic_cone_root(PhaseIterGVN &igvn, Node* n, VectorSet& visited); 1232 bool compute_logic_cone(Node* n, Unique_Node_List& partition, Unique_Node_List& inputs); 1233 uint compute_truth_table(Unique_Node_List& partition, Unique_Node_List& inputs); 1234 uint eval_macro_logic_op(uint func, uint op1, uint op2, uint op3); 1235 Node* xform_to_MacroLogicV(PhaseIterGVN &igvn, const TypeVect* vt, Unique_Node_List& partitions, Unique_Node_List& inputs); 1236 void check_no_dead_use() const NOT_DEBUG_RETURN; 1237 1238 public: 1239 1240 // Note: Histogram array size is about 1 Kb. 1241 enum { // flag bits: 1242 _intrinsic_worked = 1, // succeeded at least once 1243 _intrinsic_failed = 2, // tried it but it failed 1244 _intrinsic_disabled = 4, // was requested but disabled (e.g., -XX:-InlineUnsafeOps) 1245 _intrinsic_virtual = 8, // was seen in the virtual form (rare) 1246 _intrinsic_both = 16 // was seen in the non-virtual form (usual) 1247 }; 1248 // Update histogram. Return boolean if this is a first-time occurrence. 1249 static bool gather_intrinsic_statistics(vmIntrinsics::ID id, 1250 bool is_virtual, int flags) PRODUCT_RETURN0; 1251 static void print_intrinsic_statistics() PRODUCT_RETURN; 1252 1253 // Graph verification code 1254 // Walk the node list, verifying that there is a one-to-one correspondence 1255 // between Use-Def edges and Def-Use edges. The option no_dead_code enables 1256 // stronger checks that the graph is strongly connected from starting points 1257 // in both directions. 1258 // root_and_safepoints is used to give the starting points for the traversal. 1259 // If not supplied, only root is used. When this check is called after CCP, 1260 // we need to start traversal from Root and safepoints, just like CCP does its 1261 // own traversal (see PhaseCCP::transform for reasons). 1262 // 1263 // To call this function, there are 2 ways to go: 1264 // - give root_and_safepoints to start traversal everywhere needed (like after CCP) 1265 // - if the whole graph is assumed to be reachable from Root's input, 1266 // root_and_safepoints is not needed (like in PhaseRemoveUseless). 1267 // 1268 // Failure to specify root_and_safepoints in case the graph is not fully 1269 // reachable from Root's input make this check unsound (can miss inconsistencies) 1270 // and even incomplete (can make up non-existing problems) if no_dead_code is 1271 // true. 1272 void verify_graph_edges(bool no_dead_code = false, const Unique_Node_List* root_and_safepoints = nullptr) const PRODUCT_RETURN; 1273 1274 // Verify bi-directional correspondence of edges 1275 void verify_bidirectional_edges(Unique_Node_List& visited, const Unique_Node_List* root_and_safepoints = nullptr) const; 1276 1277 // End-of-run dumps. 1278 static void print_statistics() PRODUCT_RETURN; 1279 1280 // Verify ADLC assumptions during startup 1281 static void adlc_verification() PRODUCT_RETURN; 1282 1283 // Definitions of pd methods 1284 static void pd_compiler2_init(); 1285 1286 // Static parse-time type checking logic for gen_subtype_check: 1287 enum SubTypeCheckResult { SSC_always_false, SSC_always_true, SSC_easy_test, SSC_full_test }; 1288 SubTypeCheckResult static_subtype_check(const TypeKlassPtr* superk, const TypeKlassPtr* subk, bool skip = StressReflectiveCode); 1289 1290 static Node* conv_I2X_index(PhaseGVN* phase, Node* offset, const TypeInt* sizetype, 1291 // Optional control dependency (for example, on range check) 1292 Node* ctrl = nullptr); 1293 1294 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check) 1295 static Node* constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl, bool carry_dependency = false); 1296 1297 // Auxiliary methods for randomized fuzzing/stressing 1298 int random(); 1299 bool randomized_select(int count); 1300 1301 // seed random number generation and log the seed for repeatability. 1302 void initialize_stress_seed(const DirectiveSet* directive); 1303 1304 // supporting clone_map 1305 CloneMap& clone_map(); 1306 void set_clone_map(Dict* d); 1307 1308 bool needs_clinit_barrier(ciField* ik, ciMethod* accessing_method); 1309 bool needs_clinit_barrier(ciMethod* ik, ciMethod* accessing_method); 1310 bool needs_clinit_barrier(ciInstanceKlass* ik, ciMethod* accessing_method); 1311 1312 #ifdef ASSERT 1313 VerifyMeetResult* _type_verify; 1314 void set_exception_backedge() { _exception_backedge = true; } 1315 bool has_exception_backedge() const { return _exception_backedge; } 1316 #endif 1317 1318 static bool push_thru_add(PhaseGVN* phase, Node* z, const TypeInteger* tz, const TypeInteger*& rx, const TypeInteger*& ry, 1319 BasicType out_bt, BasicType in_bt); 1320 1321 static Node* narrow_value(BasicType bt, Node* value, const Type* type, PhaseGVN* phase, bool transform_res); 1322 }; 1323 1324 #endif // SHARE_OPTO_COMPILE_HPP