1 /*
   2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_OPTO_COMPILE_HPP
  26 #define SHARE_OPTO_COMPILE_HPP
  27 
  28 #include "asm/codeBuffer.hpp"
  29 #include "ci/compilerInterface.hpp"
  30 #include "code/debugInfoRec.hpp"
  31 #include "compiler/cHeapStringHolder.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/compiler_globals.hpp"
  34 #include "compiler/compilerEvent.hpp"
  35 #include "libadt/dict.hpp"
  36 #include "libadt/vectset.hpp"
  37 #include "memory/resourceArea.hpp"
  38 #include "oops/methodData.hpp"
  39 #include "opto/idealGraphPrinter.hpp"
  40 #include "opto/phase.hpp"
  41 #include "opto/phasetype.hpp"
  42 #include "opto/printinlining.hpp"
  43 #include "opto/regmask.hpp"
  44 #include "runtime/deoptimization.hpp"
  45 #include "runtime/sharedRuntime.hpp"
  46 #include "runtime/timerTrace.hpp"
  47 #include "runtime/vmThread.hpp"
  48 #include "utilities/ticks.hpp"
  49 #include "utilities/vmEnums.hpp"
  50 
  51 class AbstractLockNode;
  52 class AddPNode;
  53 class Block;
  54 class Bundle;
  55 class CallGenerator;
  56 class CallStaticJavaNode;
  57 class CloneMap;
  58 class CompilationFailureInfo;
  59 class ConnectionGraph;
  60 class IdealGraphPrinter;
  61 class InlineTree;
  62 class Matcher;
  63 class MachConstantNode;
  64 class MachConstantBaseNode;
  65 class MachNode;
  66 class MachOper;
  67 class MachSafePointNode;
  68 class Node;
  69 class Node_Array;
  70 class Node_List;
  71 class Node_Notes;
  72 class NodeHash;
  73 class NodeCloneInfo;
  74 class OpaqueTemplateAssertionPredicateNode;
  75 class OptoReg;
  76 class ParsePredicateNode;
  77 class PhaseCFG;
  78 class PhaseGVN;
  79 class PhaseIterGVN;
  80 class PhaseRegAlloc;
  81 class PhaseCCP;
  82 class PhaseOutput;
  83 class RootNode;
  84 class relocInfo;
  85 class StartNode;
  86 class SafePointNode;
  87 class JVMState;
  88 class Type;
  89 class TypeInt;
  90 class TypeInteger;
  91 class TypeKlassPtr;
  92 class TypePtr;
  93 class TypeOopPtr;
  94 class TypeFunc;
  95 class TypeVect;
  96 class Type_Array;
  97 class Unique_Node_List;
  98 class UnstableIfTrap;
  99 class nmethod;
 100 class Node_Stack;
 101 struct Final_Reshape_Counts;
 102 class VerifyMeetResult;
 103 
 104 enum LoopOptsMode {
 105   LoopOptsDefault,
 106   LoopOptsNone,
 107   LoopOptsMaxUnroll,
 108   LoopOptsShenandoahExpand,
 109   LoopOptsSkipSplitIf,
 110   LoopOptsVerify
 111 };
 112 
 113 // The type of all node counts and indexes.
 114 // It must hold at least 16 bits, but must also be fast to load and store.
 115 // This type, if less than 32 bits, could limit the number of possible nodes.
 116 // (To make this type platform-specific, move to globalDefinitions_xxx.hpp.)
 117 typedef unsigned int node_idx_t;
 118 
 119 class NodeCloneInfo {
 120  private:
 121   uint64_t _idx_clone_orig;
 122  public:
 123 
 124   void set_idx(node_idx_t idx) {
 125     _idx_clone_orig = (_idx_clone_orig & CONST64(0xFFFFFFFF00000000)) | idx;
 126   }
 127   node_idx_t idx() const { return (node_idx_t)(_idx_clone_orig & 0xFFFFFFFF); }
 128 
 129   void set_gen(int generation) {
 130     uint64_t g = (uint64_t)generation << 32;
 131     _idx_clone_orig = (_idx_clone_orig & 0xFFFFFFFF) | g;
 132   }
 133   int gen() const { return (int)(_idx_clone_orig >> 32); }
 134 
 135   void set(uint64_t x) { _idx_clone_orig = x; }
 136   void set(node_idx_t x, int g) { set_idx(x); set_gen(g); }
 137   uint64_t get() const { return _idx_clone_orig; }
 138 
 139   NodeCloneInfo(uint64_t idx_clone_orig) : _idx_clone_orig(idx_clone_orig) {}
 140   NodeCloneInfo(node_idx_t x, int g) : _idx_clone_orig(0) { set(x, g); }
 141 
 142   void dump_on(outputStream* st) const;
 143 };
 144 
 145 class CloneMap {
 146   friend class Compile;
 147  private:
 148   bool      _debug;
 149   Dict*     _dict;
 150   int       _clone_idx;   // current cloning iteration/generation in loop unroll
 151  public:
 152   void*     _2p(node_idx_t key)   const          { return (void*)(intptr_t)key; } // 2 conversion functions to make gcc happy
 153   node_idx_t _2_node_idx_t(const void* k) const  { return (node_idx_t)(intptr_t)k; }
 154   Dict*     dict()                const          { return _dict; }
 155   void insert(node_idx_t key, uint64_t val)      { assert(_dict->operator[](_2p(key)) == nullptr, "key existed"); _dict->Insert(_2p(key), (void*)val); }
 156   void insert(node_idx_t key, NodeCloneInfo& ci) { insert(key, ci.get()); }
 157   void remove(node_idx_t key)                    { _dict->Delete(_2p(key)); }
 158   uint64_t value(node_idx_t key)  const          { return (uint64_t)_dict->operator[](_2p(key)); }
 159   node_idx_t idx(node_idx_t key)  const          { return NodeCloneInfo(value(key)).idx(); }
 160   int gen(node_idx_t key)         const          { return NodeCloneInfo(value(key)).gen(); }
 161   int gen(const void* k)          const          { return gen(_2_node_idx_t(k)); }
 162   int max_gen()                   const;
 163   void clone(Node* old, Node* nnn, int gen);
 164   void verify_insert_and_clone(Node* old, Node* nnn, int gen);
 165   void dump(node_idx_t key, outputStream* st) const;
 166 
 167   int  clone_idx() const                         { return _clone_idx; }
 168   void set_clone_idx(int x)                      { _clone_idx = x; }
 169   bool is_debug()                 const          { return _debug; }
 170   void set_debug(bool debug)                     { _debug = debug; }
 171 
 172   bool same_idx(node_idx_t k1, node_idx_t k2)  const { return idx(k1) == idx(k2); }
 173   bool same_gen(node_idx_t k1, node_idx_t k2)  const { return gen(k1) == gen(k2); }
 174 };
 175 
 176 class Options {
 177   friend class Compile;
 178  private:
 179   const bool _subsume_loads;         // Load can be matched as part of a larger op.
 180   const bool _do_escape_analysis;    // Do escape analysis.
 181   const bool _do_iterative_escape_analysis;  // Do iterative escape analysis.
 182   const bool _do_reduce_allocation_merges;  // Do try to reduce allocation merges.
 183   const bool _eliminate_boxing;      // Do boxing elimination.
 184   const bool _do_locks_coarsening;   // Do locks coarsening
 185   const bool _for_preload;           // Generate code for preload (before Java method execution), do class init barriers
 186   const bool _do_superword;          // Do SuperWord
 187   const bool _install_code;          // Install the code that was compiled
 188  public:
 189   Options(bool subsume_loads,
 190           bool do_escape_analysis,
 191           bool do_iterative_escape_analysis,
 192           bool do_reduce_allocation_merges,
 193           bool eliminate_boxing,
 194           bool do_locks_coarsening,
 195           bool do_superword,
 196           bool for_preload,
 197           bool install_code) :
 198           _subsume_loads(subsume_loads),
 199           _do_escape_analysis(do_escape_analysis),
 200           _do_iterative_escape_analysis(do_iterative_escape_analysis),
 201           _do_reduce_allocation_merges(do_reduce_allocation_merges),
 202           _eliminate_boxing(eliminate_boxing),
 203           _do_locks_coarsening(do_locks_coarsening),
 204           _for_preload(for_preload),
 205           _do_superword(do_superword),
 206           _install_code(install_code) {
 207   }
 208 
 209   static Options for_runtime_stub() {
 210     return Options(
 211        /* subsume_loads = */ true,
 212        /* do_escape_analysis = */ false,
 213        /* do_iterative_escape_analysis = */ false,
 214        /* do_reduce_allocation_merges = */ false,
 215        /* eliminate_boxing = */ false,
 216        /* do_lock_coarsening = */ false,
 217        /* for_preload = */ false,
 218        /* do_superword = */ true,
 219        /* install_code = */ true
 220     );
 221   }
 222 };
 223 
 224 //------------------------------Compile----------------------------------------
 225 // This class defines a top-level Compiler invocation.
 226 
 227 class Compile : public Phase {
 228 
 229  public:
 230   // Fixed alias indexes.  (See also MergeMemNode.)
 231   enum {
 232     AliasIdxTop = 1,  // pseudo-index, aliases to nothing (used as sentinel value)
 233     AliasIdxBot = 2,  // pseudo-index, aliases to everything
 234     AliasIdxRaw = 3   // hard-wired index for TypeRawPtr::BOTTOM
 235   };
 236 
 237   // Variant of TraceTime(nullptr, &_t_accumulator, CITime);
 238   // Integrated with logging.  If logging is turned on, and CITimeVerbose is true,
 239   // then brackets are put into the log, with time stamps and node counts.
 240   // (The time collection itself is always conditionalized on CITime.)
 241   class TracePhase : public TraceTime {
 242    private:
 243     Compile* const _compile;
 244     CompileLog* _log;
 245     const bool _dolog;
 246    public:
 247     TracePhase(PhaseTraceId phaseTraceId);
 248     TracePhase(const char* name, PhaseTraceId phaseTraceId);
 249     ~TracePhase();
 250     const char* phase_name() const { return title(); }
 251   };
 252 
 253   // Information per category of alias (memory slice)
 254   class AliasType {
 255    private:
 256     friend class Compile;
 257 
 258     int             _index;         // unique index, used with MergeMemNode
 259     const TypePtr*  _adr_type;      // normalized address type
 260     ciField*        _field;         // relevant instance field, or null if none
 261     const Type*     _element;       // relevant array element type, or null if none
 262     bool            _is_rewritable; // false if the memory is write-once only
 263     int             _general_index; // if this is type is an instance, the general
 264                                     // type that this is an instance of
 265 
 266     void Init(int i, const TypePtr* at);
 267 
 268    public:
 269     int             index()         const { return _index; }
 270     const TypePtr*  adr_type()      const { return _adr_type; }
 271     ciField*        field()         const { return _field; }
 272     const Type*     element()       const { return _element; }
 273     bool            is_rewritable() const { return _is_rewritable; }
 274     bool            is_volatile()   const { return (_field ? _field->is_volatile() : false); }
 275     int             general_index() const { return (_general_index != 0) ? _general_index : _index; }
 276 
 277     void set_rewritable(bool z) { _is_rewritable = z; }
 278     void set_field(ciField* f) {
 279       assert(!_field,"");
 280       _field = f;
 281       if (f->is_final() || f->is_stable()) {
 282         // In the case of @Stable, multiple writes are possible but may be assumed to be no-ops.
 283         _is_rewritable = false;
 284       }
 285     }
 286     void set_element(const Type* e) {
 287       assert(_element == nullptr, "");
 288       _element = e;
 289     }
 290 
 291     BasicType basic_type() const;
 292 
 293     void print_on(outputStream* st) PRODUCT_RETURN;
 294   };
 295 
 296   enum {
 297     logAliasCacheSize = 6,
 298     AliasCacheSize = (1<<logAliasCacheSize)
 299   };
 300   struct AliasCacheEntry { const TypePtr* _adr_type; int _index; };  // simple duple type
 301   enum {
 302     trapHistLength = MethodData::_trap_hist_limit
 303   };
 304 
 305  private:
 306   // Fixed parameters to this compilation.
 307   const int             _compile_id;
 308   const Options         _options;               // Compilation options
 309   ciMethod*             _method;                // The method being compiled.
 310   int                   _entry_bci;             // entry bci for osr methods.
 311   const TypeFunc*       _tf;                    // My kind of signature
 312   InlineTree*           _ilt;                   // Ditto (temporary).
 313   address               _stub_function;         // VM entry for stub being compiled, or null
 314   const char*           _stub_name;             // Name of stub or adapter being compiled, or null
 315   StubId                   _stub_id;               // unique id for stub or NO_STUBID
 316   address               _stub_entry_point;      // Compile code entry for generated stub, or null
 317 
 318   // Control of this compilation.
 319   int                   _max_inline_size;       // Max inline size for this compilation
 320   int                   _freq_inline_size;      // Max hot method inline size for this compilation
 321   int                   _fixed_slots;           // count of frame slots not allocated by the register
 322                                                 // allocator i.e. locks, original deopt pc, etc.
 323   uintx                 _max_node_limit;        // Max unique node count during a single compilation.
 324 
 325   bool                  _post_loop_opts_phase;  // Loop opts are finished.
 326   bool                  _merge_stores_phase;    // Phase for merging stores, after post loop opts phase.
 327   bool                  _allow_macro_nodes;     // True if we allow creation of macro nodes.
 328 
 329   /* If major progress is set:
 330    *   Marks that the loop tree information (get_ctrl, idom, get_loop, etc.) could be invalid, and we need to rebuild the loop tree.
 331    *   It also indicates that the graph was changed in a way that is promising to be able to apply more loop optimization.
 332    * If major progress is not set:
 333    *   Loop tree information is valid.
 334    *   If major progress is not set at the end of a loop opts phase, then we can stop loop opts, because we do not expect any further progress if we did more loop opts phases.
 335    *
 336    * This is not 100% accurate, the semantics of major progress has become less clear over time, but this is the general idea.
 337    */
 338   bool                  _major_progress;
 339   bool                  _inlining_progress;     // progress doing incremental inlining?
 340   bool                  _inlining_incrementally;// Are we doing incremental inlining (post parse)
 341   bool                  _do_cleanup;            // Cleanup is needed before proceeding with incremental inlining
 342   bool                  _has_loops;             // True if the method _may_ have some loops
 343   bool                  _has_split_ifs;         // True if the method _may_ have some split-if
 344   bool                  _has_unsafe_access;     // True if the method _may_ produce faults in unsafe loads or stores.
 345   bool                  _has_stringbuilder;     // True StringBuffers or StringBuilders are allocated
 346   bool                  _has_boxed_value;       // True if a boxed object is allocated
 347   bool                  _has_reserved_stack_access; // True if the method or an inlined method is annotated with ReservedStackAccess
 348   uint                  _max_vector_size;       // Maximum size of generated vectors
 349   bool                  _clear_upper_avx;       // Clear upper bits of ymm registers using vzeroupper
 350   uint                  _trap_hist[trapHistLength];  // Cumulative traps
 351   bool                  _trap_can_recompile;    // Have we emitted a recompiling trap?
 352   uint                  _decompile_count;       // Cumulative decompilation counts.
 353   bool                  _do_inlining;           // True if we intend to do inlining
 354   bool                  _do_scheduling;         // True if we intend to do scheduling
 355   bool                  _do_freq_based_layout;  // True if we intend to do frequency based block layout
 356   bool                  _do_vector_loop;        // True if allowed to execute loop in parallel iterations
 357   bool                  _use_cmove;             // True if CMove should be used without profitability analysis
 358   bool                  _do_aliasing;           // True if we intend to do aliasing
 359   bool                  _print_assembly;        // True if we should dump assembly code for this compilation
 360   bool                  _print_inlining;        // True if we should print inlining for this compilation
 361   bool                  _print_intrinsics;      // True if we should print intrinsics for this compilation
 362 #ifndef PRODUCT
 363   uint                  _phase_counter;         // Counter for the number of already printed phases
 364   uint                  _igv_idx;               // Counter for IGV node identifiers
 365   uint                  _igv_phase_iter[PHASE_NUM_TYPES]; // Counters for IGV phase iterations
 366   bool                  _trace_opto_output;
 367   bool                  _parsed_irreducible_loop; // True if ciTypeFlow detected irreducible loops during parsing
 368 #endif
 369   bool                  _has_irreducible_loop;  // Found irreducible loops
 370   bool                  _has_monitors;          // Metadata transfered to nmethod to enable Continuations lock-detection fastpath
 371   bool                  _has_scoped_access;     // For shared scope closure
 372   bool                  _clinit_barrier_on_entry; // True if clinit barrier is needed on nmethod entry
 373   bool                  _has_clinit_barriers;   // True if compiled code has clinit barriers
 374   int                   _loop_opts_cnt;         // loop opts round
 375   uint                  _stress_seed;           // Seed for stress testing
 376 
 377   // Compilation environment.
 378   Arena                 _comp_arena;            // Arena with lifetime equivalent to Compile
 379   void*                 _barrier_set_state;     // Potential GC barrier state for Compile
 380   ciEnv*                _env;                   // CI interface
 381   DirectiveSet*         _directive;             // Compiler directive
 382   CompileLog*           _log;                   // from CompilerThread
 383   CHeapStringHolder     _failure_reason;        // for record_failure/failing pattern
 384   CompilationFailureInfo* _first_failure_details; // Details for the first failure happening during compilation
 385   GrowableArray<CallGenerator*> _intrinsics;    // List of intrinsics.
 386   GrowableArray<Node*>  _macro_nodes;           // List of nodes which need to be expanded before matching.
 387   GrowableArray<ParsePredicateNode*> _parse_predicates; // List of Parse Predicates.
 388   // List of OpaqueTemplateAssertionPredicateNode nodes for Template Assertion Predicates which can be seen as list
 389   // of Template Assertion Predicates themselves.
 390   GrowableArray<OpaqueTemplateAssertionPredicateNode*>  _template_assertion_predicate_opaques;
 391   GrowableArray<Node*>  _expensive_nodes;       // List of nodes that are expensive to compute and that we'd better not let the GVN freely common
 392   GrowableArray<Node*>  _for_post_loop_igvn;    // List of nodes for IGVN after loop opts are over
 393   GrowableArray<Node*>  _for_merge_stores_igvn; // List of nodes for IGVN merge stores
 394   GrowableArray<UnstableIfTrap*> _unstable_if_traps;        // List of ifnodes after IGVN
 395   GrowableArray<Node_List*> _coarsened_locks;   // List of coarsened Lock and Unlock nodes
 396   ConnectionGraph*      _congraph;
 397 #ifndef PRODUCT
 398   IdealGraphPrinter*    _igv_printer;
 399   static IdealGraphPrinter* _debug_file_printer;
 400   static IdealGraphPrinter* _debug_network_printer;
 401 #endif
 402 
 403 
 404   // Node management
 405   uint                  _unique;                // Counter for unique Node indices
 406   uint                  _dead_node_count;       // Number of dead nodes; VectorSet::Size() is O(N).
 407                                                 // So use this to keep count and make the call O(1).
 408   VectorSet             _dead_node_list;        // Set of dead nodes
 409   DEBUG_ONLY(Unique_Node_List* _modified_nodes;)   // List of nodes which inputs were modified
 410   DEBUG_ONLY(bool       _phase_optimize_finished;) // Used for live node verification while creating new nodes
 411 
 412   DEBUG_ONLY(bool       _phase_verify_ideal_loop;) // Are we in PhaseIdealLoop verification?
 413 
 414   // Arenas for new-space and old-space nodes.
 415   // Swapped between using _node_arena.
 416   // The lifetime of the old-space nodes is during xform.
 417   Arena                 _node_arena_one;
 418   Arena                 _node_arena_two;
 419   Arena*                _node_arena;
 420 public:
 421   Arena* swap_old_and_new() {
 422     Arena* filled_arena_ptr = _node_arena;
 423     Arena* old_arena_ptr = old_arena();
 424     old_arena_ptr->destruct_contents();
 425     _node_arena = old_arena_ptr;
 426     return filled_arena_ptr;
 427   }
 428 private:
 429   RootNode*             _root;                  // Unique root of compilation, or null after bail-out.
 430   Node*                 _top;                   // Unique top node.  (Reset by various phases.)
 431 
 432   Node*                 _immutable_memory;      // Initial memory state
 433 
 434   Node*                 _recent_alloc_obj;
 435   Node*                 _recent_alloc_ctl;
 436 
 437   // Constant table
 438   MachConstantBaseNode* _mach_constant_base_node;  // Constant table base node singleton.
 439 
 440 
 441   // Blocked array of debugging and profiling information,
 442   // tracked per node.
 443   enum { _log2_node_notes_block_size = 8,
 444          _node_notes_block_size = (1<<_log2_node_notes_block_size)
 445   };
 446   GrowableArray<Node_Notes*>* _node_note_array;
 447   Node_Notes*           _default_node_notes;  // default notes for new nodes
 448 
 449   // After parsing and every bulk phase we hang onto the Root instruction.
 450   // The RootNode instruction is where the whole program begins.  It produces
 451   // the initial Control and BOTTOM for everybody else.
 452 
 453   // Type management
 454   Arena                 _Compile_types;         // Arena for all types
 455   Arena*                _type_arena;            // Alias for _Compile_types except in Initialize_shared()
 456   Dict*                 _type_dict;             // Intern table
 457   CloneMap              _clone_map;             // used for recording history of cloned nodes
 458   size_t                _type_last_size;        // Last allocation size (see Type::operator new/delete)
 459   ciMethod*             _last_tf_m;             // Cache for
 460   const TypeFunc*       _last_tf;               //  TypeFunc::make
 461   AliasType**           _alias_types;           // List of alias types seen so far.
 462   int                   _num_alias_types;       // Logical length of _alias_types
 463   int                   _max_alias_types;       // Physical length of _alias_types
 464   AliasCacheEntry       _alias_cache[AliasCacheSize]; // Gets aliases w/o data structure walking
 465 
 466   // Parsing, optimization
 467   PhaseGVN*             _initial_gvn;           // Results of parse-time PhaseGVN
 468 
 469   // Shared worklist for all IGVN rounds. Nodes can be pushed to it at any time.
 470   // If pushed outside IGVN, the Node is processed in the next IGVN round.
 471   Unique_Node_List*     _igvn_worklist;
 472 
 473   // Shared type array for GVN, IGVN and CCP. It maps node idx -> Type*.
 474   Type_Array*           _types;
 475 
 476   // Shared node hash table for GVN, IGVN and CCP.
 477   NodeHash*             _node_hash;
 478 
 479   GrowableArray<CallGenerator*> _late_inlines;        // List of CallGenerators to be revisited after main parsing has finished.
 480   GrowableArray<CallGenerator*> _string_late_inlines; // same but for string operations
 481   GrowableArray<CallGenerator*> _boxing_late_inlines; // same but for boxing operations
 482 
 483   GrowableArray<CallGenerator*> _vector_reboxing_late_inlines; // same but for vector reboxing operations
 484 
 485   int                           _late_inlines_pos;    // Where in the queue should the next late inlining candidate go (emulate depth first inlining)
 486   uint                          _number_of_mh_late_inlines; // number of method handle late inlining still pending
 487 
 488   // "MemLimit" directive was specified and the memory limit was hit during compilation
 489   bool                          _oom;
 490 
 491   // Only keep nodes in the expensive node list that need to be optimized
 492   void cleanup_expensive_nodes(PhaseIterGVN &igvn);
 493   // Use for sorting expensive nodes to bring similar nodes together
 494   static int cmp_expensive_nodes(Node** n1, Node** n2);
 495   // Expensive nodes list already sorted?
 496   bool expensive_nodes_sorted() const;
 497   // Remove the speculative part of types and clean up the graph
 498   void remove_speculative_types(PhaseIterGVN &igvn);
 499 
 500   void* _replay_inline_data; // Pointer to data loaded from file
 501 
 502   void log_late_inline_failure(CallGenerator* cg, const char* msg);
 503   DEBUG_ONLY(bool _exception_backedge;)
 504 
 505   void record_method_not_compilable_oom();
 506 
 507   InlinePrinter _inline_printer;
 508 
 509 public:
 510   void* barrier_set_state() const { return _barrier_set_state; }
 511 
 512   InlinePrinter* inline_printer() { return &_inline_printer; }
 513 
 514 #ifndef PRODUCT
 515   IdealGraphPrinter* igv_printer() { return _igv_printer; }
 516   void reset_igv_phase_iter(CompilerPhaseType cpt) { _igv_phase_iter[cpt] = 0; }
 517 #endif
 518 
 519   void log_late_inline(CallGenerator* cg);
 520   void log_inline_id(CallGenerator* cg);
 521   void log_inline_failure(const char* msg);
 522 
 523   void* replay_inline_data() const { return _replay_inline_data; }
 524 
 525   // Dump inlining replay data to the stream.
 526   void dump_inline_data(outputStream* out);
 527   void dump_inline_data_reduced(outputStream* out);
 528 
 529  private:
 530   // Matching, CFG layout, allocation, code generation
 531   PhaseCFG*             _cfg;                   // Results of CFG finding
 532   int                   _java_calls;            // Number of java calls in the method
 533   int                   _inner_loops;           // Number of inner loops in the method
 534   Matcher*              _matcher;               // Engine to map ideal to machine instructions
 535   PhaseRegAlloc*        _regalloc;              // Results of register allocation.
 536   RegMask               _FIRST_STACK_mask;      // All stack slots usable for spills (depends on frame layout)
 537   Arena*                _indexSet_arena;        // control IndexSet allocation within PhaseChaitin
 538   void*                 _indexSet_free_block_list; // free list of IndexSet bit blocks
 539   int                   _interpreter_frame_size;
 540 
 541   // Holds dynamically allocated extensions of short-lived register masks. Such
 542   // extensions are potentially quite large and need tight resource marks which
 543   // may conflict with other allocations in the default resource area.
 544   // Therefore, we use a dedicated resource area for register masks.
 545   ResourceArea          _regmask_arena;
 546 
 547   PhaseOutput*          _output;
 548 
 549  public:
 550   // Accessors
 551 
 552   // The Compile instance currently active in this (compiler) thread.
 553   static Compile* current() {
 554     return (Compile*) ciEnv::current()->compiler_data();
 555   }
 556 
 557   int interpreter_frame_size() const            { return _interpreter_frame_size; }
 558 
 559   PhaseOutput*      output() const              { return _output; }
 560   void              set_output(PhaseOutput* o)  { _output = o; }
 561 
 562   // ID for this compilation.  Useful for setting breakpoints in the debugger.
 563   int               compile_id() const          { return _compile_id; }
 564   DirectiveSet*     directive() const           { return _directive; }
 565 
 566   // Does this compilation allow instructions to subsume loads?  User
 567   // instructions that subsume a load may result in an unschedulable
 568   // instruction sequence.
 569   bool              subsume_loads() const       { return _options._subsume_loads; }
 570   /** Do escape analysis. */
 571   bool              do_escape_analysis() const  { return _options._do_escape_analysis; }
 572   bool              do_iterative_escape_analysis() const  { return _options._do_iterative_escape_analysis; }
 573   bool              do_reduce_allocation_merges() const  { return _options._do_reduce_allocation_merges; }
 574   /** Do boxing elimination. */
 575   bool              eliminate_boxing() const    { return _options._eliminate_boxing; }
 576   /** Do aggressive boxing elimination. */
 577   bool              aggressive_unboxing() const { return _options._eliminate_boxing && AggressiveUnboxing; }
 578   bool              should_install_code() const { return _options._install_code; }
 579   /** Do locks coarsening. */
 580   bool              do_locks_coarsening() const { return _options._do_locks_coarsening; }
 581   bool              do_superword() const        { return _options._do_superword; }
 582 
 583   bool              do_clinit_barriers()  const { return _options._for_preload; }
 584   bool              for_preload()         const { return _options._for_preload; }
 585 
 586   // Other fixed compilation parameters.
 587   ciMethod*         method() const              { return _method; }
 588   int               entry_bci() const           { return _entry_bci; }
 589   bool              is_osr_compilation() const  { return _entry_bci != InvocationEntryBci; }
 590   bool              is_method_compilation() const { return (_method != nullptr && !_method->flags().is_native()); }
 591   const TypeFunc*   tf() const                  { assert(_tf!=nullptr, ""); return _tf; }
 592   void         init_tf(const TypeFunc* tf)      { assert(_tf==nullptr, ""); _tf = tf; }
 593   InlineTree*       ilt() const                 { return _ilt; }
 594   address           stub_function() const       { return _stub_function; }
 595   const char*       stub_name() const           { return _stub_name; }
 596   StubId            stub_id() const             { return _stub_id; }
 597   address           stub_entry_point() const    { return _stub_entry_point; }
 598   void          set_stub_entry_point(address z) { _stub_entry_point = z; }
 599 
 600   // Control of this compilation.
 601   int               fixed_slots() const         { assert(_fixed_slots >= 0, "");         return _fixed_slots; }
 602   void          set_fixed_slots(int n)          { _fixed_slots = n; }
 603   void          set_inlining_progress(bool z)   { _inlining_progress = z; }
 604   int               inlining_progress() const   { return _inlining_progress; }
 605   void          set_inlining_incrementally(bool z) { _inlining_incrementally = z; }
 606   int               inlining_incrementally() const { return _inlining_incrementally; }
 607   void          set_do_cleanup(bool z)          { _do_cleanup = z; }
 608   int               do_cleanup() const          { return _do_cleanup; }
 609   bool              major_progress() const      { return _major_progress; }
 610   void          set_major_progress()            { _major_progress = true; }
 611   void          restore_major_progress(bool progress) { _major_progress = _major_progress || progress; }
 612   void        clear_major_progress()            { _major_progress = false; }
 613   int               max_inline_size() const     { return _max_inline_size; }
 614   void          set_freq_inline_size(int n)     { _freq_inline_size = n; }
 615   int               freq_inline_size() const    { return _freq_inline_size; }
 616   void          set_max_inline_size(int n)      { _max_inline_size = n; }
 617   bool              has_loops() const           { return _has_loops; }
 618   void          set_has_loops(bool z)           { _has_loops = z; }
 619   bool              has_split_ifs() const       { return _has_split_ifs; }
 620   void          set_has_split_ifs(bool z)       { _has_split_ifs = z; }
 621   bool              has_unsafe_access() const   { return _has_unsafe_access; }
 622   void          set_has_unsafe_access(bool z)   { _has_unsafe_access = z; }
 623   bool              has_stringbuilder() const   { return _has_stringbuilder; }
 624   void          set_has_stringbuilder(bool z)   { _has_stringbuilder = z; }
 625   bool              has_boxed_value() const     { return _has_boxed_value; }
 626   void          set_has_boxed_value(bool z)     { _has_boxed_value = z; }
 627   bool              has_reserved_stack_access() const { return _has_reserved_stack_access; }
 628   void          set_has_reserved_stack_access(bool z) { _has_reserved_stack_access = z; }
 629   uint              max_vector_size() const     { return _max_vector_size; }
 630   void          set_max_vector_size(uint s)     { _max_vector_size = s; }
 631   bool              clear_upper_avx() const     { return _clear_upper_avx; }
 632   void          set_clear_upper_avx(bool s)     { _clear_upper_avx = s; }
 633   void          set_trap_count(uint r, uint c)  { assert(r < trapHistLength, "oob");        _trap_hist[r] = c; }
 634   uint              trap_count(uint r) const    { assert(r < trapHistLength, "oob"); return _trap_hist[r]; }
 635   bool              trap_can_recompile() const  { return _trap_can_recompile; }
 636   void          set_trap_can_recompile(bool z)  { _trap_can_recompile = z; }
 637   uint              decompile_count() const     { return _decompile_count; }
 638   void          set_decompile_count(uint c)     { _decompile_count = c; }
 639   bool              allow_range_check_smearing() const;
 640   bool              do_inlining() const         { return _do_inlining; }
 641   void          set_do_inlining(bool z)         { _do_inlining = z; }
 642   bool              do_scheduling() const       { return _do_scheduling; }
 643   void          set_do_scheduling(bool z)       { _do_scheduling = z; }
 644   bool              do_freq_based_layout() const{ return _do_freq_based_layout; }
 645   void          set_do_freq_based_layout(bool z){ _do_freq_based_layout = z; }
 646   bool              do_vector_loop() const      { return _do_vector_loop; }
 647   void          set_do_vector_loop(bool z)      { _do_vector_loop = z; }
 648   bool              use_cmove() const           { return _use_cmove; }
 649   void          set_use_cmove(bool z)           { _use_cmove = z; }
 650   bool              do_aliasing() const          { return _do_aliasing; }
 651   bool              print_assembly() const       { return _print_assembly; }
 652   void          set_print_assembly(bool z)       { _print_assembly = z; }
 653   bool              print_inlining() const       { return _print_inlining; }
 654   void          set_print_inlining(bool z)       { _print_inlining = z; }
 655   bool              print_intrinsics() const     { return _print_intrinsics; }
 656   void          set_print_intrinsics(bool z)     { _print_intrinsics = z; }
 657   uint              max_node_limit() const       { return (uint)_max_node_limit; }
 658   void          set_max_node_limit(uint n)       { _max_node_limit = n; }
 659   bool              clinit_barrier_on_entry()       { return _clinit_barrier_on_entry; }
 660   void          set_clinit_barrier_on_entry(bool z) { _clinit_barrier_on_entry = z; }
 661   bool              has_monitors() const         { return _has_monitors; }
 662   void          set_has_monitors(bool v)         { _has_monitors = v; }
 663   bool              has_scoped_access() const    { return _has_scoped_access; }
 664   void          set_has_scoped_access(bool v)    { _has_scoped_access = v; }
 665   bool              has_clinit_barriers()        { return _has_clinit_barriers; }
 666   void          set_has_clinit_barriers(bool z)  { _has_clinit_barriers = z; }
 667 
 668   // check the CompilerOracle for special behaviours for this compile
 669   bool          method_has_option(CompileCommandEnum option) const {
 670     return method() != nullptr && method()->has_option(option);
 671   }
 672 
 673 #ifndef PRODUCT
 674   uint          next_igv_idx()                  { return _igv_idx++; }
 675   bool          trace_opto_output() const       { return _trace_opto_output; }
 676   void          print_phase(const char* phase_name);
 677   void          print_ideal_ir(const char* phase_name);
 678   bool          should_print_ideal() const      { return _directive->PrintIdealOption; }
 679   bool              parsed_irreducible_loop() const { return _parsed_irreducible_loop; }
 680   void          set_parsed_irreducible_loop(bool z) { _parsed_irreducible_loop = z; }
 681   int _in_dump_cnt;  // Required for dumping ir nodes.
 682 #endif
 683   bool              has_irreducible_loop() const { return _has_irreducible_loop; }
 684   void          set_has_irreducible_loop(bool z) { _has_irreducible_loop = z; }
 685 
 686   Ticks _latest_stage_start_counter;
 687 
 688   void begin_method();
 689   void end_method();
 690 
 691   void print_method(CompilerPhaseType cpt, int level, Node* n = nullptr);
 692 
 693 #ifndef PRODUCT
 694   bool should_print_igv(int level);
 695   bool should_print_phase(int level) const;
 696   bool should_print_ideal_phase(CompilerPhaseType cpt) const;
 697   void init_igv();
 698   void dump_igv(const char* graph_name, int level = 3) {
 699     if (should_print_igv(level)) {
 700       _igv_printer->print_graph(graph_name, nullptr);
 701     }
 702   }
 703 
 704   void igv_print_method_to_file(const char* phase_name = nullptr, bool append = false, const frame* fr = nullptr);
 705   void igv_print_method_to_network(const char* phase_name = nullptr, const frame* fr = nullptr);
 706   void igv_print_graph_to_network(const char* name, GrowableArray<const Node*>& visible_nodes, const frame* fr);
 707   static IdealGraphPrinter* debug_file_printer() { return _debug_file_printer; }
 708   static IdealGraphPrinter* debug_network_printer() { return _debug_network_printer; }
 709 #endif
 710 
 711   const GrowableArray<ParsePredicateNode*>& parse_predicates() const {
 712     return _parse_predicates;
 713   }
 714 
 715   const GrowableArray<OpaqueTemplateAssertionPredicateNode*>& template_assertion_predicate_opaques() const {
 716     return _template_assertion_predicate_opaques;
 717   }
 718 
 719   int           macro_count()             const { return _macro_nodes.length(); }
 720   int           parse_predicate_count()   const { return _parse_predicates.length(); }
 721   int           template_assertion_predicate_count() const { return _template_assertion_predicate_opaques.length(); }
 722   int           expensive_count()         const { return _expensive_nodes.length(); }
 723   int           coarsened_count()         const { return _coarsened_locks.length(); }
 724 
 725   Node*         macro_node(int idx)       const { return _macro_nodes.at(idx); }
 726 
 727   Node*         expensive_node(int idx)   const { return _expensive_nodes.at(idx); }
 728 
 729   ConnectionGraph* congraph()                   { return _congraph;}
 730   void set_congraph(ConnectionGraph* congraph)  { _congraph = congraph;}
 731   void add_macro_node(Node * n) {
 732     //assert(n->is_macro(), "must be a macro node");
 733     assert(!_macro_nodes.contains(n), "duplicate entry in expand list");
 734     _macro_nodes.append(n);
 735   }
 736   void remove_macro_node(Node* n) {
 737     // this function may be called twice for a node so we can only remove it
 738     // if it's still existing.
 739     _macro_nodes.remove_if_existing(n);
 740     // Remove from coarsened locks list if present
 741     if (coarsened_count() > 0) {
 742       remove_coarsened_lock(n);
 743     }
 744   }
 745   void add_expensive_node(Node* n);
 746   void remove_expensive_node(Node* n) {
 747     _expensive_nodes.remove_if_existing(n);
 748   }
 749 
 750   void add_parse_predicate(ParsePredicateNode* n) {
 751     assert(!_parse_predicates.contains(n), "duplicate entry in Parse Predicate list");
 752     _parse_predicates.append(n);
 753   }
 754 
 755   void remove_parse_predicate(ParsePredicateNode* n) {
 756     if (parse_predicate_count() > 0) {
 757       _parse_predicates.remove_if_existing(n);
 758     }
 759   }
 760 
 761   void add_template_assertion_predicate_opaque(OpaqueTemplateAssertionPredicateNode* n) {
 762     assert(!_template_assertion_predicate_opaques.contains(n),
 763            "Duplicate entry in Template Assertion Predicate OpaqueTemplateAssertionPredicate list");
 764     _template_assertion_predicate_opaques.append(n);
 765   }
 766 
 767   void remove_template_assertion_predicate_opaque(OpaqueTemplateAssertionPredicateNode* n) {
 768     if (template_assertion_predicate_count() > 0) {
 769       _template_assertion_predicate_opaques.remove_if_existing(n);
 770     }
 771   }
 772   void add_coarsened_locks(GrowableArray<AbstractLockNode*>& locks);
 773   void remove_coarsened_lock(Node* n);
 774   bool coarsened_locks_consistent();
 775   void mark_unbalanced_boxes() const;
 776 
 777   bool       post_loop_opts_phase() { return _post_loop_opts_phase;  }
 778   void   set_post_loop_opts_phase() { _post_loop_opts_phase = true;  }
 779   void reset_post_loop_opts_phase() { _post_loop_opts_phase = false; }
 780 
 781 #ifdef ASSERT
 782   bool       phase_verify_ideal_loop() const { return _phase_verify_ideal_loop; }
 783   void   set_phase_verify_ideal_loop() { _phase_verify_ideal_loop = true; }
 784   void reset_phase_verify_ideal_loop() { _phase_verify_ideal_loop = false; }
 785 #endif
 786 
 787   bool       allow_macro_nodes() { return _allow_macro_nodes;  }
 788   void reset_allow_macro_nodes() { _allow_macro_nodes = false;  }
 789 
 790   void record_for_post_loop_opts_igvn(Node* n);
 791   void remove_from_post_loop_opts_igvn(Node* n);
 792   void process_for_post_loop_opts_igvn(PhaseIterGVN& igvn);
 793 
 794   void record_unstable_if_trap(UnstableIfTrap* trap);
 795   bool remove_unstable_if_trap(CallStaticJavaNode* unc, bool yield);
 796   void remove_useless_unstable_if_traps(Unique_Node_List &useful);
 797   void process_for_unstable_if_traps(PhaseIterGVN& igvn);
 798 
 799   bool     merge_stores_phase() { return _merge_stores_phase;  }
 800   void set_merge_stores_phase() { _merge_stores_phase = true;  }
 801   void record_for_merge_stores_igvn(Node* n);
 802   void remove_from_merge_stores_igvn(Node* n);
 803   void process_for_merge_stores_igvn(PhaseIterGVN& igvn);
 804 
 805   void shuffle_macro_nodes();
 806   void sort_macro_nodes();
 807 
 808   void mark_parse_predicate_nodes_useless(PhaseIterGVN& igvn);
 809 
 810   // Are there candidate expensive nodes for optimization?
 811   bool should_optimize_expensive_nodes(PhaseIterGVN &igvn);
 812   // Check whether n1 and n2 are similar
 813   static int cmp_expensive_nodes(Node* n1, Node* n2);
 814   // Sort expensive nodes to locate similar expensive nodes
 815   void sort_expensive_nodes();
 816 
 817   // Compilation environment.
 818   Arena*      comp_arena()           { return &_comp_arena; }
 819   ciEnv*      env() const            { return _env; }
 820   CompileLog* log() const            { return _log; }
 821 
 822   bool        failing_internal() const {
 823     return _env->failing() ||
 824            _failure_reason.get() != nullptr;
 825   }
 826 
 827   const char* failure_reason() const {
 828     return _env->failing() ? _env->failure_reason()
 829                            : _failure_reason.get();
 830   }
 831 
 832   const CompilationFailureInfo* first_failure_details() const { return _first_failure_details; }
 833 
 834   bool failing() {
 835     if (failing_internal()) {
 836       return true;
 837     }
 838 #ifdef ASSERT
 839     // Disable stress code for PhaseIdealLoop verification (would have cascading effects).
 840     if (phase_verify_ideal_loop()) {
 841       return false;
 842     }
 843     if (StressBailout) {
 844       return fail_randomly();
 845     }
 846 #endif
 847     return false;
 848   }
 849 
 850 #ifdef ASSERT
 851   bool fail_randomly();
 852   bool failure_is_artificial();
 853 #endif
 854 
 855   bool failure_reason_is(const char* r) const {
 856     return (r == _failure_reason.get()) ||
 857            (r != nullptr &&
 858             _failure_reason.get() != nullptr &&
 859             strcmp(r, _failure_reason.get()) == 0);
 860   }
 861 
 862   void record_failure(const char* reason DEBUG_ONLY(COMMA bool allow_multiple_failures = false));
 863   void record_method_not_compilable(const char* reason DEBUG_ONLY(COMMA bool allow_multiple_failures = false)) {
 864     env()->record_method_not_compilable(reason);
 865     // Record failure reason.
 866     record_failure(reason DEBUG_ONLY(COMMA allow_multiple_failures));
 867   }
 868   bool check_node_count(uint margin, const char* reason) {
 869     if (oom()) {
 870       record_method_not_compilable_oom();
 871       return true;
 872     }
 873     if (live_nodes() + margin > max_node_limit()) {
 874       record_method_not_compilable(reason);
 875       return true;
 876     } else {
 877       return false;
 878     }
 879   }
 880   bool oom() const { return _oom; }
 881   void set_oom()   { _oom = true; }
 882 
 883   // Node management
 884   uint         unique() const              { return _unique; }
 885   uint         next_unique()               { return _unique++; }
 886   void         set_unique(uint i)          { _unique = i; }
 887   Arena*       node_arena()                { return _node_arena; }
 888   Arena*       old_arena()                 { return (&_node_arena_one == _node_arena) ? &_node_arena_two : &_node_arena_one; }
 889   RootNode*    root() const                { return _root; }
 890   void         set_root(RootNode* r)       { _root = r; }
 891   StartNode*   start() const;              // (Derived from root.)
 892   void         verify_start(StartNode* s) const NOT_DEBUG_RETURN;
 893   Node*        immutable_memory();
 894 
 895   Node*        recent_alloc_ctl() const    { return _recent_alloc_ctl; }
 896   Node*        recent_alloc_obj() const    { return _recent_alloc_obj; }
 897   void         set_recent_alloc(Node* ctl, Node* obj) {
 898                                                   _recent_alloc_ctl = ctl;
 899                                                   _recent_alloc_obj = obj;
 900                                            }
 901   void         record_dead_node(uint idx)  { if (_dead_node_list.test_set(idx)) return;
 902                                              _dead_node_count++;
 903                                            }
 904   void         reset_dead_node_list()      { _dead_node_list.reset();
 905                                              _dead_node_count = 0;
 906                                            }
 907   uint          live_nodes() const         {
 908     int  val = _unique - _dead_node_count;
 909     assert (val >= 0, "number of tracked dead nodes %d more than created nodes %d", _unique, _dead_node_count);
 910             return (uint) val;
 911                                            }
 912 #ifdef ASSERT
 913   void         set_phase_optimize_finished() { _phase_optimize_finished = true; }
 914   bool         phase_optimize_finished() const { return _phase_optimize_finished; }
 915   uint         count_live_nodes_by_graph_walk();
 916   void         print_missing_nodes();
 917 #endif
 918 
 919   // Record modified nodes to check that they are put on IGVN worklist
 920   void         record_modified_node(Node* n) NOT_DEBUG_RETURN;
 921   void         remove_modified_node(Node* n) NOT_DEBUG_RETURN;
 922   DEBUG_ONLY( Unique_Node_List*   modified_nodes() const { return _modified_nodes; } )
 923 
 924   MachConstantBaseNode*     mach_constant_base_node();
 925   bool                  has_mach_constant_base_node() const { return _mach_constant_base_node != nullptr; }
 926   // Generated by adlc, true if CallNode requires MachConstantBase.
 927   bool                      needs_deep_clone_jvms();
 928 
 929   // Handy undefined Node
 930   Node*             top() const                 { return _top; }
 931 
 932   // these are used by guys who need to know about creation and transformation of top:
 933   Node*             cached_top_node()           { return _top; }
 934   void          set_cached_top_node(Node* tn);
 935 
 936   GrowableArray<Node_Notes*>* node_note_array() const { return _node_note_array; }
 937   void set_node_note_array(GrowableArray<Node_Notes*>* arr) { _node_note_array = arr; }
 938   Node_Notes* default_node_notes() const        { return _default_node_notes; }
 939   void    set_default_node_notes(Node_Notes* n) { _default_node_notes = n; }
 940 
 941   Node_Notes*       node_notes_at(int idx);
 942 
 943   inline bool   set_node_notes_at(int idx, Node_Notes* value);
 944   // Copy notes from source to dest, if they exist.
 945   // Overwrite dest only if source provides something.
 946   // Return true if information was moved.
 947   bool copy_node_notes_to(Node* dest, Node* source);
 948 
 949   // Workhorse function to sort out the blocked Node_Notes array:
 950   Node_Notes* locate_node_notes(GrowableArray<Node_Notes*>* arr,
 951                                 int idx, bool can_grow = false);
 952 
 953   void grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by);
 954 
 955   // Type management
 956   Arena*            type_arena()                { return _type_arena; }
 957   Dict*             type_dict()                 { return _type_dict; }
 958   size_t            type_last_size()            { return _type_last_size; }
 959   int               num_alias_types()           { return _num_alias_types; }
 960 
 961   void          init_type_arena()                       { _type_arena = &_Compile_types; }
 962   void          set_type_arena(Arena* a)                { _type_arena = a; }
 963   void          set_type_dict(Dict* d)                  { _type_dict = d; }
 964   void          set_type_last_size(size_t sz)           { _type_last_size = sz; }
 965 
 966   const TypeFunc* last_tf(ciMethod* m) {
 967     return (m == _last_tf_m) ? _last_tf : nullptr;
 968   }
 969   void set_last_tf(ciMethod* m, const TypeFunc* tf) {
 970     assert(m != nullptr || tf == nullptr, "");
 971     _last_tf_m = m;
 972     _last_tf = tf;
 973   }
 974 
 975   AliasType*        alias_type(int                idx)  { assert(idx < num_alias_types(), "oob"); return _alias_types[idx]; }
 976   AliasType*        alias_type(const TypePtr* adr_type, ciField* field = nullptr) { return find_alias_type(adr_type, false, field); }
 977   bool         have_alias_type(const TypePtr* adr_type);
 978   AliasType*        alias_type(ciField*         field);
 979 
 980   int               get_alias_index(const TypePtr* at)  { return alias_type(at)->index(); }
 981   const TypePtr*    get_adr_type(uint aidx)             { return alias_type(aidx)->adr_type(); }
 982   int               get_general_index(uint aidx)        { return alias_type(aidx)->general_index(); }
 983 
 984   // Building nodes
 985   void              rethrow_exceptions(JVMState* jvms);
 986   void              return_values(JVMState* jvms);
 987   JVMState*         build_start_state(StartNode* start, const TypeFunc* tf);
 988 
 989   // Decide how to build a call.
 990   // The profile factor is a discount to apply to this site's interp. profile.
 991   CallGenerator*    call_generator(ciMethod* call_method, int vtable_index, bool call_does_dispatch,
 992                                    JVMState* jvms, bool allow_inline, float profile_factor, ciKlass* speculative_receiver_type = nullptr,
 993                                    bool allow_intrinsics = true);
 994   bool should_delay_inlining(ciMethod* call_method, JVMState* jvms) {
 995     return should_delay_string_inlining(call_method, jvms) ||
 996            should_delay_boxing_inlining(call_method, jvms) ||
 997            should_delay_vector_inlining(call_method, jvms);
 998   }
 999   bool should_delay_string_inlining(ciMethod* call_method, JVMState* jvms);
1000   bool should_delay_boxing_inlining(ciMethod* call_method, JVMState* jvms);
1001   bool should_delay_vector_inlining(ciMethod* call_method, JVMState* jvms);
1002   bool should_delay_vector_reboxing_inlining(ciMethod* call_method, JVMState* jvms);
1003 
1004   // Helper functions to identify inlining potential at call-site
1005   ciMethod* optimize_virtual_call(ciMethod* caller, ciInstanceKlass* klass,
1006                                   ciKlass* holder, ciMethod* callee,
1007                                   const TypeOopPtr* receiver_type, bool is_virtual,
1008                                   bool &call_does_dispatch, int &vtable_index,
1009                                   bool check_access = true);
1010   ciMethod* optimize_inlining(ciMethod* caller, ciInstanceKlass* klass, ciKlass* holder,
1011                               ciMethod* callee, const TypeOopPtr* receiver_type,
1012                               bool check_access = true);
1013 
1014   // Report if there were too many traps at a current method and bci.
1015   // Report if a trap was recorded, and/or PerMethodTrapLimit was exceeded.
1016   // If there is no MDO at all, report no trap unless told to assume it.
1017   bool too_many_traps(ciMethod* method, int bci, Deoptimization::DeoptReason reason);
1018   // This version, unspecific to a particular bci, asks if
1019   // PerMethodTrapLimit was exceeded for all inlined methods seen so far.
1020   bool too_many_traps(Deoptimization::DeoptReason reason,
1021                       // Privately used parameter for logging:
1022                       ciMethodData* logmd = nullptr);
1023   // Report if there were too many recompiles at a method and bci.
1024   bool too_many_recompiles(ciMethod* method, int bci, Deoptimization::DeoptReason reason);
1025   // Report if there were too many traps or recompiles at a method and bci.
1026   bool too_many_traps_or_recompiles(ciMethod* method, int bci, Deoptimization::DeoptReason reason) {
1027     return too_many_traps(method, bci, reason) ||
1028            too_many_recompiles(method, bci, reason);
1029   }
1030   // Return a bitset with the reasons where deoptimization is allowed,
1031   // i.e., where there were not too many uncommon traps.
1032   int _allowed_reasons;
1033   int      allowed_deopt_reasons() { return _allowed_reasons; }
1034   void set_allowed_deopt_reasons();
1035 
1036   // Parsing, optimization
1037   PhaseGVN*         initial_gvn()               { return _initial_gvn; }
1038   Unique_Node_List* igvn_worklist() {
1039     assert(_igvn_worklist != nullptr, "must be created in Compile::Compile");
1040     return _igvn_worklist;
1041   }
1042   Type_Array* types() {
1043     assert(_types != nullptr, "must be created in Compile::Compile");
1044     return _types;
1045   }
1046   NodeHash* node_hash() {
1047     assert(_node_hash != nullptr, "must be created in Compile::Compile");
1048     return _node_hash;
1049   }
1050   inline void       record_for_igvn(Node* n);   // Body is after class Unique_Node_List in node.hpp.
1051   inline void       remove_for_igvn(Node* n);   // Body is after class Unique_Node_List in node.hpp.
1052   void          set_initial_gvn(PhaseGVN *gvn)           { _initial_gvn = gvn; }
1053 
1054   // Replace n by nn using initial_gvn, calling hash_delete and
1055   // record_for_igvn as needed.
1056   void gvn_replace_by(Node* n, Node* nn);
1057 
1058 
1059   void              identify_useful_nodes(Unique_Node_List &useful);
1060   void              update_dead_node_list(Unique_Node_List &useful);
1061   void disconnect_useless_nodes(Unique_Node_List& useful, Unique_Node_List& worklist, const Unique_Node_List* root_and_safepoints = nullptr);
1062 
1063   void              remove_useless_node(Node* dead);
1064 
1065   // Record this CallGenerator for inlining at the end of parsing.
1066   void              add_late_inline(CallGenerator* cg)        {
1067     _late_inlines.insert_before(_late_inlines_pos, cg);
1068     _late_inlines_pos++;
1069   }
1070 
1071   void              prepend_late_inline(CallGenerator* cg)    {
1072     _late_inlines.insert_before(0, cg);
1073   }
1074 
1075   void              add_string_late_inline(CallGenerator* cg) {
1076     _string_late_inlines.push(cg);
1077   }
1078 
1079   void              add_boxing_late_inline(CallGenerator* cg) {
1080     _boxing_late_inlines.push(cg);
1081   }
1082 
1083   void              add_vector_reboxing_late_inline(CallGenerator* cg) {
1084     _vector_reboxing_late_inlines.push(cg);
1085   }
1086 
1087   template<typename N, ENABLE_IF(std::is_base_of<Node, N>::value)>
1088   void remove_useless_nodes(GrowableArray<N*>& node_list, Unique_Node_List& useful);
1089 
1090   void remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful);
1091   void remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Node* dead);
1092 
1093   void remove_useless_coarsened_locks(Unique_Node_List& useful);
1094 
1095   void dump_print_inlining();
1096 
1097   bool over_inlining_cutoff() const {
1098     if (!inlining_incrementally()) {
1099       return unique() > (uint)NodeCountInliningCutoff;
1100     } else {
1101       // Give some room for incremental inlining algorithm to "breathe"
1102       // and avoid thrashing when live node count is close to the limit.
1103       // Keep in mind that live_nodes() isn't accurate during inlining until
1104       // dead node elimination step happens (see Compile::inline_incrementally).
1105       return live_nodes() > (uint)LiveNodeCountInliningCutoff * 11 / 10;
1106     }
1107   }
1108 
1109   void inc_number_of_mh_late_inlines() { _number_of_mh_late_inlines++; }
1110   void dec_number_of_mh_late_inlines() { assert(_number_of_mh_late_inlines > 0, "_number_of_mh_late_inlines < 0 !"); _number_of_mh_late_inlines--; }
1111   bool has_mh_late_inlines() const     { return _number_of_mh_late_inlines > 0; }
1112 
1113   bool inline_incrementally_one();
1114   void inline_incrementally_cleanup(PhaseIterGVN& igvn);
1115   void inline_incrementally(PhaseIterGVN& igvn);
1116   bool should_stress_inlining() { return StressIncrementalInlining && (random() % 2) == 0; }
1117   bool should_delay_inlining() { return AlwaysIncrementalInline || should_stress_inlining(); }
1118   void inline_string_calls(bool parse_time);
1119   void inline_boxing_calls(PhaseIterGVN& igvn);
1120   bool optimize_loops(PhaseIterGVN& igvn, LoopOptsMode mode);
1121   void remove_root_to_sfpts_edges(PhaseIterGVN& igvn);
1122 
1123   void inline_vector_reboxing_calls();
1124   bool has_vbox_nodes();
1125 
1126   void process_late_inline_calls_no_inline(PhaseIterGVN& igvn);
1127 
1128   // Matching, CFG layout, allocation, code generation
1129   PhaseCFG*         cfg()                       { return _cfg; }
1130   bool              has_java_calls() const      { return _java_calls > 0; }
1131   int               java_calls() const          { return _java_calls; }
1132   int               inner_loops() const         { return _inner_loops; }
1133   Matcher*          matcher()                   { return _matcher; }
1134   PhaseRegAlloc*    regalloc()                  { return _regalloc; }
1135   RegMask&          FIRST_STACK_mask()          { return _FIRST_STACK_mask; }
1136   ResourceArea*     regmask_arena()             { return &_regmask_arena; }
1137   Arena*            indexSet_arena()            { return _indexSet_arena; }
1138   void*             indexSet_free_block_list()  { return _indexSet_free_block_list; }
1139   DebugInformationRecorder* debug_info()        { return env()->debug_info(); }
1140 
1141   void  update_interpreter_frame_size(int size) {
1142     if (_interpreter_frame_size < size) {
1143       _interpreter_frame_size = size;
1144     }
1145   }
1146 
1147   void          set_matcher(Matcher* m)                 { _matcher = m; }
1148 //void          set_regalloc(PhaseRegAlloc* ra)           { _regalloc = ra; }
1149   void          set_indexSet_arena(Arena* a)            { _indexSet_arena = a; }
1150   void          set_indexSet_free_block_list(void* p)   { _indexSet_free_block_list = p; }
1151 
1152   void  set_java_calls(int z) { _java_calls  = z; }
1153   void set_inner_loops(int z) { _inner_loops = z; }
1154 
1155   Dependencies* dependencies() { return env()->dependencies(); }
1156 
1157   // Major entry point.  Given a Scope, compile the associated method.
1158   // For normal compilations, entry_bci is InvocationEntryBci.  For on stack
1159   // replacement, entry_bci indicates the bytecode for which to compile a
1160   // continuation.
1161   Compile(ciEnv* ci_env, ciMethod* target,
1162           int entry_bci, Options options, DirectiveSet* directive);
1163 
1164   // Second major entry point.  From the TypeFunc signature, generate code
1165   // to pass arguments from the Java calling convention to the C calling
1166   // convention.
1167   Compile(ciEnv* ci_env, const TypeFunc *(*gen)(),
1168           address stub_function, const char *stub_name,
1169           StubId stub_id, int is_fancy_jump, bool pass_tls,
1170           bool return_pc, DirectiveSet* directive);
1171 
1172   ~Compile();
1173 
1174   // Are we compiling a method?
1175   bool has_method() { return method() != nullptr; }
1176 
1177   // Maybe print some information about this compile.
1178   void print_compile_messages();
1179 
1180   // Final graph reshaping, a post-pass after the regular optimizer is done.
1181   bool final_graph_reshaping();
1182 
1183   // returns true if adr is completely contained in the given alias category
1184   bool must_alias(const TypePtr* adr, int alias_idx);
1185 
1186   // returns true if adr overlaps with the given alias category
1187   bool can_alias(const TypePtr* adr, int alias_idx);
1188 
1189   // Stack slots that may be unused by the calling convention but must
1190   // otherwise be preserved.  On Intel this includes the return address.
1191   // On PowerPC it includes the 4 words holding the old TOC & LR glue.
1192   uint in_preserve_stack_slots() {
1193     return SharedRuntime::in_preserve_stack_slots();
1194   }
1195 
1196   // "Top of Stack" slots that may be unused by the calling convention but must
1197   // otherwise be preserved.
1198   // On Intel these are not necessary and the value can be zero.
1199   static uint out_preserve_stack_slots() {
1200     return SharedRuntime::out_preserve_stack_slots();
1201   }
1202 
1203   // Number of outgoing stack slots killed above the out_preserve_stack_slots
1204   // for calls to C.  Supports the var-args backing area for register parms.
1205   uint varargs_C_out_slots_killed() const;
1206 
1207   // Number of Stack Slots consumed by a synchronization entry
1208   int sync_stack_slots() const;
1209 
1210   // Compute the name of old_SP.  See <arch>.ad for frame layout.
1211   OptoReg::Name compute_old_SP();
1212 
1213  private:
1214   // Phase control:
1215   void Init(bool aliasing);                      // Prepare for a single compilation
1216   void Optimize();                               // Given a graph, optimize it
1217   void Code_Gen();                               // Generate code from a graph
1218 
1219   // Management of the AliasType table.
1220   void grow_alias_types();
1221   AliasCacheEntry* probe_alias_cache(const TypePtr* adr_type);
1222   const TypePtr *flatten_alias_type(const TypePtr* adr_type) const;
1223   AliasType* find_alias_type(const TypePtr* adr_type, bool no_create, ciField* field);
1224 
1225   void verify_top(Node*) const PRODUCT_RETURN;
1226 
1227   // Intrinsic setup.
1228   CallGenerator* make_vm_intrinsic(ciMethod* m, bool is_virtual);          // constructor
1229   int            intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found);  // helper
1230   CallGenerator* find_intrinsic(ciMethod* m, bool is_virtual);             // query fn
1231   void           register_intrinsic(CallGenerator* cg);                    // update fn
1232 
1233 #ifndef PRODUCT
1234   static juint  _intrinsic_hist_count[];
1235   static jubyte _intrinsic_hist_flags[];
1236 #endif
1237   // Function calls made by the public function final_graph_reshaping.
1238   // No need to be made public as they are not called elsewhere.
1239   void final_graph_reshaping_impl(Node *n, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes);
1240   void final_graph_reshaping_main_switch(Node* n, Final_Reshape_Counts& frc, uint nop, Unique_Node_List& dead_nodes);
1241   void final_graph_reshaping_walk(Node_Stack& nstack, Node* root, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes);
1242   void handle_div_mod_op(Node* n, BasicType bt, bool is_unsigned);
1243 
1244   // Logic cone optimization.
1245   void optimize_logic_cones(PhaseIterGVN &igvn);
1246   void collect_logic_cone_roots(Unique_Node_List& list);
1247   void process_logic_cone_root(PhaseIterGVN &igvn, Node* n, VectorSet& visited);
1248   bool compute_logic_cone(Node* n, Unique_Node_List& partition, Unique_Node_List& inputs);
1249   uint compute_truth_table(Unique_Node_List& partition, Unique_Node_List& inputs);
1250   uint eval_macro_logic_op(uint func, uint op1, uint op2, uint op3);
1251   Node* xform_to_MacroLogicV(PhaseIterGVN &igvn, const TypeVect* vt, Unique_Node_List& partitions, Unique_Node_List& inputs);
1252   void check_no_dead_use() const NOT_DEBUG_RETURN;
1253 
1254  public:
1255 
1256   // Note:  Histogram array size is about 1 Kb.
1257   enum {                        // flag bits:
1258     _intrinsic_worked = 1,      // succeeded at least once
1259     _intrinsic_failed = 2,      // tried it but it failed
1260     _intrinsic_disabled = 4,    // was requested but disabled (e.g., -XX:-InlineUnsafeOps)
1261     _intrinsic_virtual = 8,     // was seen in the virtual form (rare)
1262     _intrinsic_both = 16        // was seen in the non-virtual form (usual)
1263   };
1264   // Update histogram.  Return boolean if this is a first-time occurrence.
1265   static bool gather_intrinsic_statistics(vmIntrinsics::ID id,
1266                                           bool is_virtual, int flags) PRODUCT_RETURN0;
1267   static void print_intrinsic_statistics() PRODUCT_RETURN;
1268 
1269   // Graph verification code
1270   // Walk the node list, verifying that there is a one-to-one correspondence
1271   // between Use-Def edges and Def-Use edges. The option no_dead_code enables
1272   // stronger checks that the graph is strongly connected from starting points
1273   // in both directions.
1274   // root_and_safepoints is used to give the starting points for the traversal.
1275   // If not supplied, only root is used. When this check is called after CCP,
1276   // we need to start traversal from Root and safepoints, just like CCP does its
1277   // own traversal (see PhaseCCP::transform for reasons).
1278   //
1279   // To call this function, there are 2 ways to go:
1280   // - give root_and_safepoints to start traversal everywhere needed (like after CCP)
1281   // - if the whole graph is assumed to be reachable from Root's input,
1282   //   root_and_safepoints is not needed (like in PhaseRemoveUseless).
1283   //
1284   // Failure to specify root_and_safepoints in case the graph is not fully
1285   // reachable from Root's input make this check unsound (can miss inconsistencies)
1286   // and even incomplete (can make up non-existing problems) if no_dead_code is
1287   // true.
1288   void verify_graph_edges(bool no_dead_code = false, const Unique_Node_List* root_and_safepoints = nullptr) const PRODUCT_RETURN;
1289 
1290   // Verify bi-directional correspondence of edges
1291   void verify_bidirectional_edges(Unique_Node_List& visited, const Unique_Node_List* root_and_safepoints = nullptr) const;
1292 
1293   // End-of-run dumps.
1294   static void print_statistics() PRODUCT_RETURN;
1295 
1296   // Verify ADLC assumptions during startup
1297   static void adlc_verification() PRODUCT_RETURN;
1298 
1299   // Definitions of pd methods
1300   static void pd_compiler2_init();
1301 
1302   // Static parse-time type checking logic for gen_subtype_check:
1303   enum SubTypeCheckResult { SSC_always_false, SSC_always_true, SSC_easy_test, SSC_full_test };
1304   SubTypeCheckResult static_subtype_check(const TypeKlassPtr* superk, const TypeKlassPtr* subk, bool skip = StressReflectiveCode);
1305 
1306   static Node* conv_I2X_index(PhaseGVN* phase, Node* offset, const TypeInt* sizetype,
1307                               // Optional control dependency (for example, on range check)
1308                               Node* ctrl = nullptr);
1309 
1310   // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check)
1311   static Node* constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl, bool carry_dependency = false);
1312 
1313   // Auxiliary methods for randomized fuzzing/stressing
1314   int random();
1315   bool randomized_select(int count);
1316 
1317   // seed random number generation and log the seed for repeatability.
1318   void initialize_stress_seed(const DirectiveSet* directive);
1319 
1320   // supporting clone_map
1321   CloneMap&     clone_map();
1322   void          set_clone_map(Dict* d);
1323 
1324   bool needs_clinit_barrier(ciField* ik,         ciMethod* accessing_method);
1325   bool needs_clinit_barrier(ciMethod* ik,        ciMethod* accessing_method);
1326   bool needs_clinit_barrier(ciInstanceKlass* ik, ciMethod* accessing_method);
1327 
1328 #ifdef ASSERT
1329   VerifyMeetResult* _type_verify;
1330   void set_exception_backedge() { _exception_backedge = true; }
1331   bool has_exception_backedge() const { return _exception_backedge; }
1332 #endif
1333 
1334   static bool push_thru_add(PhaseGVN* phase, Node* z, const TypeInteger* tz, const TypeInteger*& rx, const TypeInteger*& ry,
1335                             BasicType out_bt, BasicType in_bt);
1336 
1337   static Node* narrow_value(BasicType bt, Node* value, const Type* type, PhaseGVN* phase, bool transform_res);
1338 
1339 #ifndef PRODUCT
1340 private:
1341   // getting rid of the template makes things easier
1342   Node* make_debug_print_call(const char* str, address call_addr, PhaseGVN* gvn,
1343                               Node* parm0 = nullptr, Node* parm1 = nullptr,
1344                               Node* parm2 = nullptr, Node* parm3 = nullptr,
1345                               Node* parm4 = nullptr, Node* parm5 = nullptr,
1346                               Node* parm6 = nullptr) const;
1347 
1348 public:
1349   // Creates a CallLeafNode for a runtime call that prints a static string and the values of the
1350   // nodes passed as arguments.
1351   // This function also takes care of doing the necessary wiring, including finding a suitable control
1352   // based on the nodes that need to be printed. Note that passing nodes that have incompatible controls
1353   // is undefined behavior.
1354   template <typename... TT, typename... NN>
1355   Node* make_debug_print(const char* str, PhaseGVN* gvn, NN... in) {
1356     address call_addr = CAST_FROM_FN_PTR(address, SharedRuntime::debug_print<TT...>);
1357     return make_debug_print_call(str, call_addr, gvn, in...);
1358   }
1359 #endif
1360 };
1361 
1362 #endif // SHARE_OPTO_COMPILE_HPP