1 /*
   2  * Copyright (c) 1998, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "ci/ciCallSite.hpp"
  26 #include "ci/ciMethodHandle.hpp"
  27 #include "ci/ciSymbols.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "compiler/compileBroker.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "interpreter/linkResolver.hpp"
  32 #include "logging/log.hpp"
  33 #include "logging/logLevel.hpp"
  34 #include "logging/logMessage.hpp"
  35 #include "logging/logStream.hpp"
  36 #include "oops/trainingData.hpp"
  37 #include "opto/addnode.hpp"
  38 #include "opto/callGenerator.hpp"
  39 #include "opto/castnode.hpp"
  40 #include "opto/cfgnode.hpp"
  41 #include "opto/mulnode.hpp"
  42 #include "opto/parse.hpp"
  43 #include "opto/rootnode.hpp"
  44 #include "opto/runtime.hpp"
  45 #include "opto/subnode.hpp"
  46 #include "prims/methodHandles.hpp"
  47 #include "runtime/sharedRuntime.hpp"
  48 #include "utilities/macros.hpp"
  49 #if INCLUDE_JFR
  50 #include "jfr/jfr.hpp"
  51 #endif
  52 
  53 static void print_trace_type_profile(outputStream* out, int depth, ciKlass* prof_klass, int site_count, int receiver_count,
  54                                      bool with_deco) {
  55   if (with_deco) {
  56     CompileTask::print_inline_indent(depth, out);
  57   }
  58   out->print(" \\-> TypeProfile (%d/%d counts) = ", receiver_count, site_count);
  59   prof_klass->name()->print_symbol_on(out);
  60   if (with_deco) {
  61     out->cr();
  62   }
  63 }
  64 
  65 static void trace_type_profile(Compile* C, ciMethod* method, JVMState* jvms,
  66                                ciMethod* prof_method, ciKlass* prof_klass, int site_count, int receiver_count) {
  67   int depth = jvms->depth() - 1;
  68   int bci = jvms->bci();
  69   if (TraceTypeProfile || C->print_inlining()) {
  70     if (!C->print_inlining()) {
  71       if (!PrintOpto && !PrintCompilation) {
  72         method->print_short_name();
  73         tty->cr();
  74       }
  75       CompileTask::print_inlining_tty(prof_method, depth, bci, InliningResult::SUCCESS);
  76       print_trace_type_profile(tty, depth, prof_klass, site_count, receiver_count, true);
  77     } else {
  78       auto stream = C->inline_printer()->record(method, jvms, InliningResult::SUCCESS);
  79       print_trace_type_profile(stream, depth, prof_klass, site_count, receiver_count, false);
  80     }
  81   }
  82 
  83   LogTarget(Debug, jit, inlining) lt;
  84   if (lt.is_enabled()) {
  85     LogStream ls(lt);
  86     print_trace_type_profile(&ls, depth, prof_klass, site_count, receiver_count, true);
  87   }
  88 }
  89 
  90 CallGenerator* Compile::call_generator(ciMethod* callee, int vtable_index, bool call_does_dispatch,
  91                                        JVMState* jvms, bool allow_inline,
  92                                        float prof_factor, ciKlass* speculative_receiver_type,
  93                                        bool allow_intrinsics) {
  94   assert(callee != nullptr, "failed method resolution");
  95 
  96   ciMethod*       caller      = jvms->method();
  97   int             bci         = jvms->bci();
  98   Bytecodes::Code bytecode    = caller->java_code_at_bci(bci);
  99   ciMethod*       orig_callee = caller->get_method_at_bci(bci);
 100 
 101   const bool is_virtual_or_interface = (bytecode == Bytecodes::_invokevirtual) ||
 102                                        (bytecode == Bytecodes::_invokeinterface) ||
 103                                        (orig_callee->intrinsic_id() == vmIntrinsics::_linkToVirtual) ||
 104                                        (orig_callee->intrinsic_id() == vmIntrinsics::_linkToInterface);
 105 
 106   callee->ensure_method_data(true);
 107 
 108   // Dtrace currently doesn't work unless all calls are vanilla
 109   if (env()->dtrace_method_probes()) {
 110     allow_inline = false;
 111   }
 112 
 113   // Note: When we get profiling during stage-1 compiles, we want to pull
 114   // from more specific profile data which pertains to this inlining.
 115   // Right now, ignore the information in jvms->caller(), and do method[bci].
 116   ciCallProfile profile = caller->call_profile_at_bci(bci);
 117 
 118   // See how many times this site has been invoked.
 119   int site_count = profile.count();
 120   int receiver_count = -1;
 121   if (call_does_dispatch && UseTypeProfile && profile.has_receiver(0)) {
 122     // Receivers in the profile structure are ordered by call counts
 123     // so that the most called (major) receiver is profile.receiver(0).
 124     receiver_count = profile.receiver_count(0);
 125   }
 126 
 127   CompileLog* log = this->log();
 128   if (log != nullptr) {
 129     int rid = (receiver_count >= 0)? log->identify(profile.receiver(0)): -1;
 130     int r2id = (rid != -1 && profile.has_receiver(1))? log->identify(profile.receiver(1)):-1;
 131     log->begin_elem("call method='%d' count='%d' prof_factor='%f'",
 132                     log->identify(callee), site_count, prof_factor);
 133     if (call_does_dispatch)  log->print(" virtual='1'");
 134     if (allow_inline)     log->print(" inline='1'");
 135     if (receiver_count >= 0) {
 136       log->print(" receiver='%d' receiver_count='%d'", rid, receiver_count);
 137       if (profile.has_receiver(1)) {
 138         log->print(" receiver2='%d' receiver2_count='%d'", r2id, profile.receiver_count(1));
 139       }
 140     }
 141     if (callee->is_method_handle_intrinsic()) {
 142       log->print(" method_handle_intrinsic='1'");
 143     }
 144     log->end_elem();
 145   }
 146 
 147   // Special case the handling of certain common, profitable library
 148   // methods.  If these methods are replaced with specialized code,
 149   // then we return it as the inlined version of the call.
 150   CallGenerator* cg_intrinsic = nullptr;
 151   if (allow_inline && allow_intrinsics) {
 152     CallGenerator* cg = find_intrinsic(callee, call_does_dispatch);
 153     if (cg != nullptr) {
 154       if (cg->is_predicated()) {
 155         // Code without intrinsic but, hopefully, inlined.
 156         CallGenerator* inline_cg = this->call_generator(callee,
 157               vtable_index, call_does_dispatch, jvms, allow_inline, prof_factor, speculative_receiver_type, false);
 158         if (inline_cg != nullptr) {
 159           cg = CallGenerator::for_predicated_intrinsic(cg, inline_cg);
 160         }
 161       }
 162 
 163       // If intrinsic does the virtual dispatch, we try to use the type profile
 164       // first, and hopefully inline it as the regular virtual call below.
 165       // We will retry the intrinsic if nothing had claimed it afterwards.
 166       if (cg->does_virtual_dispatch()) {
 167         cg_intrinsic = cg;
 168         cg = nullptr;
 169       } else if (IncrementalInline && should_delay_vector_inlining(callee, jvms)) {
 170         return CallGenerator::for_late_inline(callee, cg);
 171       } else {
 172         return cg;
 173       }
 174     }
 175   }
 176 
 177   // Do method handle calls.
 178   // NOTE: This must happen before normal inlining logic below since
 179   // MethodHandle.invoke* are native methods which obviously don't
 180   // have bytecodes and so normal inlining fails.
 181   if (callee->is_method_handle_intrinsic()) {
 182     CallGenerator* cg = CallGenerator::for_method_handle_call(jvms, caller, callee, allow_inline);
 183     return cg;
 184   }
 185 
 186   // Attempt to inline...
 187   if (allow_inline) {
 188     // The profile data is only partly attributable to this caller,
 189     // scale back the call site information.
 190     float past_uses = jvms->method()->scale_count(site_count, prof_factor);
 191     // This is the number of times we expect the call code to be used.
 192     float expected_uses = past_uses;
 193 
 194     // Try inlining a bytecoded method:
 195     if (!call_does_dispatch) {
 196       InlineTree* ilt = InlineTree::find_subtree_from_root(this->ilt(), jvms->caller(), jvms->method());
 197       bool should_delay = C->should_delay_inlining();
 198       if (ilt->ok_to_inline(callee, jvms, profile, should_delay)) {
 199         CallGenerator* cg = CallGenerator::for_inline(callee, expected_uses);
 200         // For optimized virtual calls assert at runtime that receiver object
 201         // is a subtype of the inlined method holder. CHA can report a method
 202         // as a unique target under an abstract method, but receiver type
 203         // sometimes has a broader type. Similar scenario is possible with
 204         // default methods when type system loses information about implemented
 205         // interfaces.
 206         if (cg != nullptr && is_virtual_or_interface && !callee->is_static()) {
 207           CallGenerator* trap_cg = CallGenerator::for_uncommon_trap(callee,
 208               Deoptimization::Reason_receiver_constraint, Deoptimization::Action_none);
 209 
 210           cg = CallGenerator::for_guarded_call(callee->holder(), trap_cg, cg);
 211         }
 212         if (cg != nullptr) {
 213           // Delay the inlining of this method to give us the
 214           // opportunity to perform some high level optimizations
 215           // first.
 216           if (should_delay) {
 217             return CallGenerator::for_late_inline(callee, cg);
 218           } else if (should_delay_string_inlining(callee, jvms)) {
 219             return CallGenerator::for_string_late_inline(callee, cg);
 220           } else if (should_delay_boxing_inlining(callee, jvms)) {
 221             return CallGenerator::for_boxing_late_inline(callee, cg);
 222           } else if (should_delay_vector_reboxing_inlining(callee, jvms)) {
 223             return CallGenerator::for_vector_reboxing_late_inline(callee, cg);
 224           } else {
 225             return cg;
 226           }
 227         }
 228       }
 229     }
 230 
 231     // Try using the type profile.
 232     if (call_does_dispatch && site_count > 0 && UseTypeProfile) {
 233       // The major receiver's count >= TypeProfileMajorReceiverPercent of site_count.
 234       bool have_major_receiver = profile.has_receiver(0) && (100.*profile.receiver_prob(0) >= (float)TypeProfileMajorReceiverPercent);
 235       ciMethod* receiver_method = nullptr;
 236 
 237       int morphism = profile.morphism();
 238       if (speculative_receiver_type != nullptr) {
 239         if (!too_many_traps_or_recompiles(caller, bci, Deoptimization::Reason_speculate_class_check)) {
 240           // We have a speculative type, we should be able to resolve
 241           // the call. We do that before looking at the profiling at
 242           // this invoke because it may lead to bimorphic inlining which
 243           // a speculative type should help us avoid.
 244           receiver_method = callee->resolve_invoke(jvms->method()->holder(),
 245                                                    speculative_receiver_type);
 246           if (receiver_method == nullptr) {
 247             speculative_receiver_type = nullptr;
 248           } else {
 249             morphism = 1;
 250           }
 251         } else {
 252           // speculation failed before. Use profiling at the call
 253           // (could allow bimorphic inlining for instance).
 254           speculative_receiver_type = nullptr;
 255         }
 256       }
 257       if (receiver_method == nullptr &&
 258           (have_major_receiver || morphism == 1 ||
 259            (morphism == 2 && UseBimorphicInlining))) {
 260         // receiver_method = profile.method();
 261         // Profiles do not suggest methods now.  Look it up in the major receiver.
 262         receiver_method = callee->resolve_invoke(jvms->method()->holder(),
 263                                                       profile.receiver(0));
 264       }
 265       if (receiver_method != nullptr) {
 266         // The single majority receiver sufficiently outweighs the minority.
 267         CallGenerator* hit_cg = this->call_generator(receiver_method,
 268               vtable_index, !call_does_dispatch, jvms, allow_inline, prof_factor);
 269         if (hit_cg != nullptr) {
 270           // Look up second receiver.
 271           CallGenerator* next_hit_cg = nullptr;
 272           ciMethod* next_receiver_method = nullptr;
 273           if (morphism == 2 && UseBimorphicInlining) {
 274             next_receiver_method = callee->resolve_invoke(jvms->method()->holder(),
 275                                                                profile.receiver(1));
 276             if (next_receiver_method != nullptr) {
 277               next_hit_cg = this->call_generator(next_receiver_method,
 278                                   vtable_index, !call_does_dispatch, jvms,
 279                                   allow_inline, prof_factor);
 280               if (next_hit_cg != nullptr && !next_hit_cg->is_inline() &&
 281                   have_major_receiver && UseOnlyInlinedBimorphic) {
 282                   // Skip if we can't inline second receiver's method
 283                   next_hit_cg = nullptr;
 284               }
 285             }
 286           }
 287           CallGenerator* miss_cg;
 288           Deoptimization::DeoptReason reason = (morphism == 2
 289                                                ? Deoptimization::Reason_bimorphic
 290                                                : Deoptimization::reason_class_check(speculative_receiver_type != nullptr));
 291           if ((morphism == 1 || (morphism == 2 && next_hit_cg != nullptr)) &&
 292               !too_many_traps_or_recompiles(caller, bci, reason)
 293              ) {
 294             // Generate uncommon trap for class check failure path
 295             // in case of monomorphic or bimorphic virtual call site.
 296             miss_cg = CallGenerator::for_uncommon_trap(callee, reason,
 297                         Deoptimization::Action_maybe_recompile);
 298           } else {
 299             // Generate virtual call for class check failure path
 300             // in case of polymorphic virtual call site.
 301             miss_cg = (IncrementalInlineVirtual ? CallGenerator::for_late_inline_virtual(callee, vtable_index, prof_factor)
 302                                                 : CallGenerator::for_virtual_call(callee, vtable_index));
 303           }
 304           if (miss_cg != nullptr) {
 305             if (next_hit_cg != nullptr) {
 306               assert(speculative_receiver_type == nullptr, "shouldn't end up here if we used speculation");
 307               trace_type_profile(C, jvms->method(), jvms, next_receiver_method, profile.receiver(1), site_count, profile.receiver_count(1));
 308               // We don't need to record dependency on a receiver here and below.
 309               // Whenever we inline, the dependency is added by Parse::Parse().
 310               miss_cg = CallGenerator::for_predicted_call(profile.receiver(1), miss_cg, next_hit_cg, PROB_MAX);
 311             }
 312             if (miss_cg != nullptr) {
 313               ciKlass* k = speculative_receiver_type != nullptr ? speculative_receiver_type : profile.receiver(0);
 314               trace_type_profile(C, jvms->method(), jvms, receiver_method, k, site_count, receiver_count);
 315               float hit_prob = speculative_receiver_type != nullptr ? 1.0 : profile.receiver_prob(0);
 316               CallGenerator* cg = CallGenerator::for_predicted_call(k, miss_cg, hit_cg, hit_prob);
 317               if (cg != nullptr) {
 318                 return cg;
 319               }
 320             }
 321           }
 322         }
 323       }
 324     }
 325 
 326     // If there is only one implementor of this interface then we
 327     // may be able to bind this invoke directly to the implementing
 328     // klass but we need both a dependence on the single interface
 329     // and on the method we bind to. Additionally since all we know
 330     // about the receiver type is that it's supposed to implement the
 331     // interface we have to insert a check that it's the class we
 332     // expect.  Interface types are not checked by the verifier so
 333     // they are roughly equivalent to Object.
 334     // The number of implementors for declared_interface is less or
 335     // equal to the number of implementors for target->holder() so
 336     // if number of implementors of target->holder() == 1 then
 337     // number of implementors for decl_interface is 0 or 1. If
 338     // it's 0 then no class implements decl_interface and there's
 339     // no point in inlining.
 340     if (call_does_dispatch && bytecode == Bytecodes::_invokeinterface) {
 341       ciInstanceKlass* declared_interface =
 342           caller->get_declared_method_holder_at_bci(bci)->as_instance_klass();
 343       ciInstanceKlass* singleton = declared_interface->unique_implementor();
 344 
 345       if (singleton != nullptr) {
 346         assert(singleton != declared_interface, "not a unique implementor");
 347 
 348         ciMethod* cha_monomorphic_target =
 349             callee->find_monomorphic_target(caller->holder(), declared_interface, singleton);
 350 
 351         if (cha_monomorphic_target != nullptr &&
 352             cha_monomorphic_target->holder() != env()->Object_klass()) { // subtype check against Object is useless
 353           ciKlass* holder = cha_monomorphic_target->holder();
 354 
 355           // Try to inline the method found by CHA. Inlined method is guarded by the type check.
 356           CallGenerator* hit_cg = call_generator(cha_monomorphic_target,
 357               vtable_index, !call_does_dispatch, jvms, allow_inline, prof_factor);
 358 
 359           // Deoptimize on type check fail. The interpreter will throw ICCE for us.
 360           CallGenerator* miss_cg = CallGenerator::for_uncommon_trap(callee,
 361               Deoptimization::Reason_class_check, Deoptimization::Action_none);
 362 
 363           ciKlass* constraint = (holder->is_subclass_of(singleton) ? holder : singleton); // avoid upcasts
 364           CallGenerator* cg = CallGenerator::for_guarded_call(constraint, miss_cg, hit_cg);
 365           if (hit_cg != nullptr && cg != nullptr) {
 366             dependencies()->assert_unique_implementor(declared_interface, singleton);
 367             dependencies()->assert_unique_concrete_method(declared_interface, cha_monomorphic_target, declared_interface, callee);
 368             return cg;
 369           }
 370         }
 371       }
 372     } // call_does_dispatch && bytecode == Bytecodes::_invokeinterface
 373 
 374     // Nothing claimed the intrinsic, we go with straight-forward inlining
 375     // for already discovered intrinsic.
 376     if (allow_intrinsics && cg_intrinsic != nullptr) {
 377       assert(cg_intrinsic->does_virtual_dispatch(), "sanity");
 378       return cg_intrinsic;
 379     }
 380   } // allow_inline
 381 
 382   // There was no special inlining tactic, or it bailed out.
 383   // Use a more generic tactic, like a simple call.
 384   if (call_does_dispatch) {
 385     const char* msg = "virtual call";
 386     C->inline_printer()->record(callee, jvms, InliningResult::FAILURE, msg);
 387     C->log_inline_failure(msg);
 388     if (IncrementalInlineVirtual && allow_inline) {
 389       return CallGenerator::for_late_inline_virtual(callee, vtable_index, prof_factor); // attempt to inline through virtual call later
 390     } else {
 391       return CallGenerator::for_virtual_call(callee, vtable_index);
 392     }
 393   } else {
 394     // Class Hierarchy Analysis or Type Profile reveals a unique target, or it is a static or special call.
 395     CallGenerator* cg = CallGenerator::for_direct_call(callee, should_delay_inlining(callee, jvms));
 396     // For optimized virtual calls assert at runtime that receiver object
 397     // is a subtype of the method holder.
 398     if (cg != nullptr && is_virtual_or_interface && !callee->is_static()) {
 399       CallGenerator* trap_cg = CallGenerator::for_uncommon_trap(callee,
 400           Deoptimization::Reason_receiver_constraint, Deoptimization::Action_none);
 401       cg = CallGenerator::for_guarded_call(callee->holder(), trap_cg, cg);
 402     }
 403     return cg;
 404   }
 405 }
 406 
 407 // Return true for methods that shouldn't be inlined early so that
 408 // they are easier to analyze and optimize as intrinsics.
 409 bool Compile::should_delay_string_inlining(ciMethod* call_method, JVMState* jvms) {
 410   if (has_stringbuilder()) {
 411 
 412     if ((call_method->holder() == C->env()->StringBuilder_klass() ||
 413          call_method->holder() == C->env()->StringBuffer_klass()) &&
 414         (jvms->method()->holder() == C->env()->StringBuilder_klass() ||
 415          jvms->method()->holder() == C->env()->StringBuffer_klass())) {
 416       // Delay SB calls only when called from non-SB code
 417       return false;
 418     }
 419 
 420     switch (call_method->intrinsic_id()) {
 421       case vmIntrinsics::_StringBuilder_void:
 422       case vmIntrinsics::_StringBuilder_int:
 423       case vmIntrinsics::_StringBuilder_String:
 424       case vmIntrinsics::_StringBuilder_append_char:
 425       case vmIntrinsics::_StringBuilder_append_int:
 426       case vmIntrinsics::_StringBuilder_append_String:
 427       case vmIntrinsics::_StringBuilder_toString:
 428       case vmIntrinsics::_StringBuffer_void:
 429       case vmIntrinsics::_StringBuffer_int:
 430       case vmIntrinsics::_StringBuffer_String:
 431       case vmIntrinsics::_StringBuffer_append_char:
 432       case vmIntrinsics::_StringBuffer_append_int:
 433       case vmIntrinsics::_StringBuffer_append_String:
 434       case vmIntrinsics::_StringBuffer_toString:
 435       case vmIntrinsics::_Integer_toString:
 436         return true;
 437 
 438       case vmIntrinsics::_String_String:
 439         {
 440           Node* receiver = jvms->map()->in(jvms->argoff() + 1);
 441           if (receiver->is_Proj() && receiver->in(0)->is_CallStaticJava()) {
 442             CallStaticJavaNode* csj = receiver->in(0)->as_CallStaticJava();
 443             ciMethod* m = csj->method();
 444             if (m != nullptr &&
 445                 (m->intrinsic_id() == vmIntrinsics::_StringBuffer_toString ||
 446                  m->intrinsic_id() == vmIntrinsics::_StringBuilder_toString))
 447               // Delay String.<init>(new SB())
 448               return true;
 449           }
 450           return false;
 451         }
 452 
 453       default:
 454         return false;
 455     }
 456   }
 457   return false;
 458 }
 459 
 460 bool Compile::should_delay_boxing_inlining(ciMethod* call_method, JVMState* jvms) {
 461   if (eliminate_boxing() && call_method->is_boxing_method()) {
 462     set_has_boxed_value(true);
 463     return aggressive_unboxing();
 464   }
 465   return false;
 466 }
 467 
 468 bool Compile::should_delay_vector_inlining(ciMethod* call_method, JVMState* jvms) {
 469   return EnableVectorSupport && call_method->is_vector_method();
 470 }
 471 
 472 bool Compile::should_delay_vector_reboxing_inlining(ciMethod* call_method, JVMState* jvms) {
 473   return EnableVectorSupport && (call_method->intrinsic_id() == vmIntrinsics::_VectorRebox);
 474 }
 475 
 476 // uncommon-trap call-sites where callee is unloaded, uninitialized or will not link
 477 bool Parse::can_not_compile_call_site(ciMethod *dest_method, ciInstanceKlass* klass) {
 478   // Additional inputs to consider...
 479   // bc      = bc()
 480   // caller  = method()
 481   // iter().get_method_holder_index()
 482   assert( dest_method->is_loaded(), "ciTypeFlow should not let us get here" );
 483   // Interface classes can be loaded & linked and never get around to
 484   // being initialized.  Uncommon-trap for not-initialized static or
 485   // v-calls.  Let interface calls happen.
 486   ciInstanceKlass* holder_klass = dest_method->holder();
 487   if (!holder_klass->is_being_initialized() &&
 488       !holder_klass->is_initialized() &&
 489       !holder_klass->is_interface()) {
 490     if (C->env()->task()->is_precompile()) {
 491       ResourceMark rm;
 492       log_debug(precompile)("Emitting uncommon trap (cannot compile call site) in AOT code for %s", holder_klass->name()->as_klass_external_name());
 493     }
 494     uncommon_trap(Deoptimization::Reason_uninitialized,
 495                   Deoptimization::Action_reinterpret,
 496                   holder_klass);
 497     return true;
 498   }
 499 
 500   assert(dest_method->is_loaded(), "dest_method: typeflow responsibility");
 501   return false;
 502 }
 503 
 504 #ifdef ASSERT
 505 static bool check_call_consistency(JVMState* jvms, CallGenerator* cg) {
 506   ciMethod* symbolic_info = jvms->method()->get_method_at_bci(jvms->bci());
 507   ciMethod* resolved_method = cg->method();
 508   if (!ciMethod::is_consistent_info(symbolic_info, resolved_method)) {
 509     tty->print_cr("JVMS:");
 510     jvms->dump();
 511     tty->print_cr("Bytecode info:");
 512     jvms->method()->get_method_at_bci(jvms->bci())->print(); tty->cr();
 513     tty->print_cr("Resolved method:");
 514     cg->method()->print(); tty->cr();
 515     return false;
 516   }
 517   return true;
 518 }
 519 #endif // ASSERT
 520 
 521 //------------------------------do_call----------------------------------------
 522 // Handle your basic call.  Inline if we can & want to, else just setup call.
 523 void Parse::do_call() {
 524   // It's likely we are going to add debug info soon.
 525   // Also, if we inline a guy who eventually needs debug info for this JVMS,
 526   // our contribution to it is cleaned up right here.
 527   kill_dead_locals();
 528 
 529   // Set frequently used booleans
 530   const bool is_virtual = bc() == Bytecodes::_invokevirtual;
 531   const bool is_virtual_or_interface = is_virtual || bc() == Bytecodes::_invokeinterface;
 532   const bool has_receiver = Bytecodes::has_receiver(bc());
 533 
 534   // Find target being called
 535   bool             will_link;
 536   ciSignature*     declared_signature = nullptr;
 537   ciMethod*        orig_callee  = iter().get_method(will_link, &declared_signature);  // callee in the bytecode
 538   ciInstanceKlass* holder_klass = orig_callee->holder();
 539   ciKlass*         holder       = iter().get_declared_method_holder();
 540   ciInstanceKlass* klass = ciEnv::get_instance_klass_for_declared_method_holder(holder);
 541   assert(declared_signature != nullptr, "cannot be null");
 542   JFR_ONLY(Jfr::on_resolution(this, holder, orig_callee);)
 543 
 544   // Bump max node limit for JSR292 users
 545   if (bc() == Bytecodes::_invokedynamic || orig_callee->is_method_handle_intrinsic()) {
 546     C->set_max_node_limit(3*MaxNodeLimit);
 547   }
 548 
 549   // uncommon-trap when callee is unloaded, uninitialized or will not link
 550   // bailout when too many arguments for register representation
 551   if (!will_link || can_not_compile_call_site(orig_callee, klass)) {
 552     if (PrintOpto && (Verbose || WizardMode)) {
 553       method()->print_name(); tty->print_cr(" can not compile call at bci %d to:", bci());
 554       orig_callee->print_name(); tty->cr();
 555     }
 556     return;
 557   }
 558   assert(holder_klass->is_loaded(), "");
 559   //assert((bc_callee->is_static() || is_invokedynamic) == !has_receiver , "must match bc");  // XXX invokehandle (cur_bc_raw)
 560   // Note: this takes into account invokeinterface of methods declared in java/lang/Object,
 561   // which should be invokevirtuals but according to the VM spec may be invokeinterfaces
 562   assert(holder_klass->is_interface() || holder_klass->super() == nullptr || (bc() != Bytecodes::_invokeinterface), "must match bc");
 563   // Note:  In the absence of miranda methods, an abstract class K can perform
 564   // an invokevirtual directly on an interface method I.m if K implements I.
 565 
 566   // orig_callee is the resolved callee which's signature includes the
 567   // appendix argument.
 568   const int nargs = orig_callee->arg_size();
 569   const bool is_signature_polymorphic = MethodHandles::is_signature_polymorphic(orig_callee->intrinsic_id());
 570 
 571   // Push appendix argument (MethodType, CallSite, etc.), if one.
 572   if (iter().has_appendix()) {
 573     ciObject* appendix_arg = iter().get_appendix();
 574     const TypeOopPtr* appendix_arg_type = TypeOopPtr::make_from_constant(appendix_arg, /* require_const= */ true);
 575     Node* appendix_arg_node = _gvn.makecon(appendix_arg_type);
 576     push(appendix_arg_node);
 577   }
 578 
 579   // ---------------------
 580   // Does Class Hierarchy Analysis reveal only a single target of a v-call?
 581   // Then we may inline or make a static call, but become dependent on there being only 1 target.
 582   // Does the call-site type profile reveal only one receiver?
 583   // Then we may introduce a run-time check and inline on the path where it succeeds.
 584   // The other path may uncommon_trap, check for another receiver, or do a v-call.
 585 
 586   // Try to get the most accurate receiver type
 587   ciMethod* callee             = orig_callee;
 588   int       vtable_index       = Method::invalid_vtable_index;
 589   bool      call_does_dispatch = false;
 590 
 591   // Speculative type of the receiver if any
 592   ciKlass* speculative_receiver_type = nullptr;
 593   if (is_virtual_or_interface) {
 594     Node* receiver_node             = stack(sp() - nargs);
 595     const TypeOopPtr* receiver_type = _gvn.type(receiver_node)->isa_oopptr();
 596     // call_does_dispatch and vtable_index are out-parameters.  They might be changed.
 597     // For arrays, klass below is Object. When vtable calls are used,
 598     // resolving the call with Object would allow an illegal call to
 599     // finalize() on an array. We use holder instead: illegal calls to
 600     // finalize() won't be compiled as vtable calls (IC call
 601     // resolution will catch the illegal call) and the few legal calls
 602     // on array types won't be either.
 603     callee = C->optimize_virtual_call(method(), klass, holder, orig_callee,
 604                                       receiver_type, is_virtual,
 605                                       call_does_dispatch, vtable_index);  // out-parameters
 606     speculative_receiver_type = receiver_type != nullptr ? receiver_type->speculative_type() : nullptr;
 607   }
 608 
 609   // Additional receiver subtype checks for interface calls via invokespecial or invokeinterface.
 610   ciKlass* receiver_constraint = nullptr;
 611   if (iter().cur_bc_raw() == Bytecodes::_invokespecial && !orig_callee->is_object_initializer()) {
 612     ciInstanceKlass* calling_klass = method()->holder();
 613     ciInstanceKlass* sender_klass = calling_klass;
 614     if (sender_klass->is_interface()) {
 615       receiver_constraint = sender_klass;
 616     }
 617   } else if (iter().cur_bc_raw() == Bytecodes::_invokeinterface && orig_callee->is_private()) {
 618     assert(holder->is_interface(), "How did we get a non-interface method here!");
 619     receiver_constraint = holder;
 620   }
 621 
 622   if (receiver_constraint != nullptr) {
 623     Node* receiver_node = stack(sp() - nargs);
 624     Node* cls_node = makecon(TypeKlassPtr::make(receiver_constraint, Type::trust_interfaces));
 625     Node* bad_type_ctrl = nullptr;
 626     Node* casted_receiver = gen_checkcast(receiver_node, cls_node, &bad_type_ctrl);
 627     if (bad_type_ctrl != nullptr) {
 628       PreserveJVMState pjvms(this);
 629       set_control(bad_type_ctrl);
 630       uncommon_trap(Deoptimization::Reason_class_check,
 631                     Deoptimization::Action_none);
 632     }
 633     if (stopped()) {
 634       return; // MUST uncommon-trap?
 635     }
 636     set_stack(sp() - nargs, casted_receiver);
 637   }
 638 
 639   // Note:  It's OK to try to inline a virtual call.
 640   // The call generator will not attempt to inline a polymorphic call
 641   // unless it knows how to optimize the receiver dispatch.
 642   bool try_inline = (C->do_inlining() || InlineAccessors);
 643 
 644   // ---------------------
 645   dec_sp(nargs);              // Temporarily pop args for JVM state of call
 646   JVMState* jvms = sync_jvms();
 647 
 648   // ---------------------
 649   // Decide call tactic.
 650   // This call checks with CHA, the interpreter profile, intrinsics table, etc.
 651   // It decides whether inlining is desirable or not.
 652   CallGenerator* cg = C->call_generator(callee, vtable_index, call_does_dispatch, jvms, try_inline, prof_factor(), speculative_receiver_type);
 653 
 654   // NOTE:  Don't use orig_callee and callee after this point!  Use cg->method() instead.
 655   orig_callee = callee = nullptr;
 656 
 657   // ---------------------
 658 
 659   // Feed profiling data for arguments to the type system so it can
 660   // propagate it as speculative types
 661   record_profiled_arguments_for_speculation(cg->method(), bc());
 662 
 663 #ifndef PRODUCT
 664   // bump global counters for calls
 665   count_compiled_calls(/*at_method_entry*/ false, cg->is_inline());
 666 
 667   // Record first part of parsing work for this call
 668   parse_histogram()->record_change();
 669 #endif // not PRODUCT
 670 
 671   assert(jvms == this->jvms(), "still operating on the right JVMS");
 672   assert(jvms_in_sync(),       "jvms must carry full info into CG");
 673 
 674   // save across call, for a subsequent cast_not_null.
 675   Node* receiver = has_receiver ? argument(0) : nullptr;
 676 
 677   // The extra CheckCastPPs for speculative types mess with PhaseStringOpts
 678   if (receiver != nullptr && !call_does_dispatch && !cg->is_string_late_inline()) {
 679     // Feed profiling data for a single receiver to the type system so
 680     // it can propagate it as a speculative type
 681     receiver = record_profiled_receiver_for_speculation(receiver);
 682   }
 683 
 684   JVMState* new_jvms = cg->generate(jvms);
 685   if (new_jvms == nullptr) {
 686     // When inlining attempt fails (e.g., too many arguments),
 687     // it may contaminate the current compile state, making it
 688     // impossible to pull back and try again.  Once we call
 689     // cg->generate(), we are committed.  If it fails, the whole
 690     // compilation task is compromised.
 691     if (failing())  return;
 692 
 693     // This can happen if a library intrinsic is available, but refuses
 694     // the call site, perhaps because it did not match a pattern the
 695     // intrinsic was expecting to optimize. Should always be possible to
 696     // get a normal java call that may inline in that case
 697     cg = C->call_generator(cg->method(), vtable_index, call_does_dispatch, jvms, try_inline, prof_factor(), speculative_receiver_type, /* allow_intrinsics= */ false);
 698     new_jvms = cg->generate(jvms);
 699     if (new_jvms == nullptr) {
 700       guarantee(failing(), "call failed to generate:  calls should work");
 701       return;
 702     }
 703   }
 704 
 705   if (cg->is_inline()) {
 706     // Accumulate has_loops estimate
 707     C->env()->notice_inlined_method(cg->method());
 708   }
 709 
 710   // Reset parser state from [new_]jvms, which now carries results of the call.
 711   // Return value (if any) is already pushed on the stack by the cg.
 712   add_exception_states_from(new_jvms);
 713   if (new_jvms->map()->control() == top()) {
 714     stop_and_kill_map();
 715   } else {
 716     assert(new_jvms->same_calls_as(jvms), "method/bci left unchanged");
 717     set_jvms(new_jvms);
 718   }
 719 
 720   assert(check_call_consistency(jvms, cg), "inconsistent info");
 721 
 722   if (!stopped()) {
 723     // This was some sort of virtual call, which did a null check for us.
 724     // Now we can assert receiver-not-null, on the normal return path.
 725     if (receiver != nullptr && cg->is_virtual()) {
 726       Node* cast = cast_not_null(receiver);
 727       // %%% assert(receiver == cast, "should already have cast the receiver");
 728     }
 729 
 730     ciType* rtype = cg->method()->return_type();
 731     ciType* ctype = declared_signature->return_type();
 732 
 733     if (Bytecodes::has_optional_appendix(iter().cur_bc_raw()) || is_signature_polymorphic) {
 734       // Be careful here with return types.
 735       if (ctype != rtype) {
 736         BasicType rt = rtype->basic_type();
 737         BasicType ct = ctype->basic_type();
 738         if (ct == T_VOID) {
 739           // It's OK for a method  to return a value that is discarded.
 740           // The discarding does not require any special action from the caller.
 741           // The Java code knows this, at VerifyType.isNullConversion.
 742           pop_node(rt);  // whatever it was, pop it
 743         } else if (rt == T_INT || is_subword_type(rt)) {
 744           // Nothing.  These cases are handled in lambda form bytecode.
 745           assert(ct == T_INT || is_subword_type(ct), "must match: rt=%s, ct=%s", type2name(rt), type2name(ct));
 746         } else if (is_reference_type(rt)) {
 747           assert(is_reference_type(ct), "rt=%s, ct=%s", type2name(rt), type2name(ct));
 748           if (ctype->is_loaded()) {
 749             const TypeOopPtr* arg_type = TypeOopPtr::make_from_klass(rtype->as_klass());
 750             const Type*       sig_type = TypeOopPtr::make_from_klass(ctype->as_klass());
 751             if (arg_type != nullptr && !arg_type->higher_equal(sig_type)) {
 752               Node* retnode = pop();
 753               Node* cast_obj = _gvn.transform(new CheckCastPPNode(control(), retnode, sig_type));
 754               push(cast_obj);
 755             }
 756           }
 757         } else {
 758           assert(rt == ct, "unexpected mismatch: rt=%s, ct=%s", type2name(rt), type2name(ct));
 759           // push a zero; it's better than getting an oop/int mismatch
 760           pop_node(rt);
 761           Node* retnode = zerocon(ct);
 762           push_node(ct, retnode);
 763         }
 764         // Now that the value is well-behaved, continue with the call-site type.
 765         rtype = ctype;
 766       }
 767     } else {
 768       // Symbolic resolution enforces the types to be the same.
 769       // NOTE: We must relax the assert for unloaded types because two
 770       // different ciType instances of the same unloaded class type
 771       // can appear to be "loaded" by different loaders (depending on
 772       // the accessing class).
 773       assert(!rtype->is_loaded() || !ctype->is_loaded() || rtype == ctype,
 774              "mismatched return types: rtype=%s, ctype=%s", rtype->name(), ctype->name());
 775     }
 776 
 777     // If the return type of the method is not loaded, assert that the
 778     // value we got is a null.  Otherwise, we need to recompile.
 779     if (!rtype->is_loaded()) {
 780       if (PrintOpto && (Verbose || WizardMode)) {
 781         method()->print_name(); tty->print_cr(" asserting nullness of result at bci: %d", bci());
 782         cg->method()->print_name(); tty->cr();
 783       }
 784       if (C->log() != nullptr) {
 785         C->log()->elem("assert_null reason='return' klass='%d'",
 786                        C->log()->identify(rtype));
 787       }
 788       // If there is going to be a trap, put it at the next bytecode:
 789       set_bci(iter().next_bci());
 790       null_assert(peek());
 791       set_bci(iter().cur_bci()); // put it back
 792     }
 793     BasicType ct = ctype->basic_type();
 794     if (is_reference_type(ct)) {
 795       record_profiled_return_for_speculation();
 796     }
 797   }
 798 
 799   // Restart record of parsing work after possible inlining of call
 800 #ifndef PRODUCT
 801   parse_histogram()->set_initial_state(bc());
 802 #endif
 803 }
 804 
 805 //---------------------------catch_call_exceptions-----------------------------
 806 // Put a Catch and CatchProj nodes behind a just-created call.
 807 // Send their caught exceptions to the proper handler.
 808 // This may be used after a call to the rethrow VM stub,
 809 // when it is needed to process unloaded exception classes.
 810 void Parse::catch_call_exceptions(ciExceptionHandlerStream& handlers) {
 811   // Exceptions are delivered through this channel:
 812   Node* i_o = this->i_o();
 813 
 814   // Add a CatchNode.
 815   Arena tmp_mem{mtCompiler};
 816   GrowableArray<int> bcis(&tmp_mem, 8, 0, -1);
 817   GrowableArray<const Type*> extypes(&tmp_mem, 8, 0, nullptr);
 818   GrowableArray<int> saw_unloaded(&tmp_mem, 8, 0, -1);
 819 
 820   bool default_handler = false;
 821   for (; !handlers.is_done(); handlers.next()) {
 822     ciExceptionHandler* h       = handlers.handler();
 823     int                 h_bci   = h->handler_bci();
 824     ciInstanceKlass*    h_klass = h->is_catch_all() ? env()->Throwable_klass() : h->catch_klass();
 825     // Do not introduce unloaded exception types into the graph:
 826     if (!h_klass->is_loaded()) {
 827       if (saw_unloaded.contains(h_bci)) {
 828         /* We've already seen an unloaded exception with h_bci,
 829            so don't duplicate. Duplication will cause the CatchNode to be
 830            unnecessarily large. See 4713716. */
 831         continue;
 832       } else {
 833         saw_unloaded.append(h_bci);
 834       }
 835     }
 836     const Type* h_extype = TypeOopPtr::make_from_klass(h_klass);
 837     // (We use make_from_klass because it respects UseUniqueSubclasses.)
 838     h_extype = h_extype->join(TypeInstPtr::NOTNULL);
 839     assert(!h_extype->empty(), "sanity");
 840     // Note: It's OK if the BCIs repeat themselves.
 841     bcis.append(h_bci);
 842     extypes.append(h_extype);
 843     if (h_bci == -1) {
 844       default_handler = true;
 845     }
 846   }
 847 
 848   if (!default_handler) {
 849     bcis.append(-1);
 850     const Type* extype = TypeOopPtr::make_from_klass(env()->Throwable_klass())->is_instptr();
 851     extype = extype->join(TypeInstPtr::NOTNULL);
 852     extypes.append(extype);
 853   }
 854 
 855   int len = bcis.length();
 856   CatchNode *cn = new CatchNode(control(), i_o, len+1);
 857   Node *catch_ = _gvn.transform(cn);
 858 
 859   // now branch with the exception state to each of the (potential)
 860   // handlers
 861   for(int i=0; i < len; i++) {
 862     // Setup JVM state to enter the handler.
 863     PreserveJVMState pjvms(this);
 864     // Locals are just copied from before the call.
 865     // Get control from the CatchNode.
 866     int handler_bci = bcis.at(i);
 867     Node* ctrl = _gvn.transform( new CatchProjNode(catch_, i+1,handler_bci));
 868     // This handler cannot happen?
 869     if (ctrl == top())  continue;
 870     set_control(ctrl);
 871 
 872     // Create exception oop
 873     const TypeInstPtr* extype = extypes.at(i)->is_instptr();
 874     Node* ex_oop = _gvn.transform(new CreateExNode(extypes.at(i), ctrl, i_o));
 875 
 876     // Handle unloaded exception classes.
 877     if (saw_unloaded.contains(handler_bci)) {
 878       // An unloaded exception type is coming here.  Do an uncommon trap.
 879 #ifndef PRODUCT
 880       // We do not expect the same handler bci to take both cold unloaded
 881       // and hot loaded exceptions.  But, watch for it.
 882       if (PrintOpto && (Verbose || WizardMode) && extype->is_loaded()) {
 883         tty->print("Warning: Handler @%d takes mixed loaded/unloaded exceptions in ", bci());
 884         method()->print_name(); tty->cr();
 885       } else if (PrintOpto && (Verbose || WizardMode)) {
 886         tty->print("Bailing out on unloaded exception type ");
 887         extype->instance_klass()->print_name();
 888         tty->print(" at bci:%d in ", bci());
 889         method()->print_name(); tty->cr();
 890       }
 891 #endif
 892       // Emit an uncommon trap instead of processing the block.
 893       set_bci(handler_bci);
 894       push_ex_oop(ex_oop);
 895       uncommon_trap(Deoptimization::Reason_unloaded,
 896                     Deoptimization::Action_reinterpret,
 897                     extype->instance_klass(), "!loaded exception");
 898       set_bci(iter().cur_bci()); // put it back
 899       continue;
 900     }
 901 
 902     // go to the exception handler
 903     if (handler_bci < 0) {     // merge with corresponding rethrow node
 904       throw_to_exit(make_exception_state(ex_oop));
 905     } else {                      // Else jump to corresponding handle
 906       push_ex_oop(ex_oop);        // Clear stack and push just the oop.
 907       merge_exception(handler_bci);
 908     }
 909   }
 910 
 911   // The first CatchProj is for the normal return.
 912   // (Note:  If this is a call to rethrow_Java, this node goes dead.)
 913   set_control(_gvn.transform( new CatchProjNode(catch_, CatchProjNode::fall_through_index, CatchProjNode::no_handler_bci)));
 914 }
 915 
 916 
 917 //----------------------------catch_inline_exceptions--------------------------
 918 // Handle all exceptions thrown by an inlined method or individual bytecode.
 919 // Common case 1: we have no handler, so all exceptions merge right into
 920 // the rethrow case.
 921 // Case 2: we have some handlers, with loaded exception klasses that have
 922 // no subklasses.  We do a Deutsch-Schiffman style type-check on the incoming
 923 // exception oop and branch to the handler directly.
 924 // Case 3: We have some handlers with subklasses or are not loaded at
 925 // compile-time.  We have to call the runtime to resolve the exception.
 926 // So we insert a RethrowCall and all the logic that goes with it.
 927 void Parse::catch_inline_exceptions(SafePointNode* ex_map) {
 928   // Caller is responsible for saving away the map for normal control flow!
 929   assert(stopped(), "call set_map(nullptr) first");
 930   assert(method()->has_exception_handlers(), "don't come here w/o work to do");
 931 
 932   Node* ex_node = saved_ex_oop(ex_map);
 933   if (ex_node == top()) {
 934     // No action needed.
 935     return;
 936   }
 937   const TypeInstPtr* ex_type = _gvn.type(ex_node)->isa_instptr();
 938   NOT_PRODUCT(if (ex_type==nullptr) tty->print_cr("*** Exception not InstPtr"));
 939   if (ex_type == nullptr)
 940     ex_type = TypeOopPtr::make_from_klass(env()->Throwable_klass())->is_instptr();
 941 
 942   // determine potential exception handlers
 943   ciExceptionHandlerStream handlers(method(), bci(),
 944                                     ex_type->instance_klass(),
 945                                     ex_type->klass_is_exact());
 946 
 947   // Start executing from the given throw state.  (Keep its stack, for now.)
 948   // Get the exception oop as known at compile time.
 949   ex_node = use_exception_state(ex_map);
 950 
 951   // Get the exception oop klass from its header
 952   Node* ex_klass_node = nullptr;
 953   if (has_exception_handler() && !ex_type->klass_is_exact()) {
 954     Node* p = basic_plus_adr( ex_node, ex_node, oopDesc::klass_offset_in_bytes());
 955     ex_klass_node = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), p, TypeInstPtr::KLASS, TypeInstKlassPtr::OBJECT));
 956 
 957     // Compute the exception klass a little more cleverly.
 958     // Obvious solution is to simple do a LoadKlass from the 'ex_node'.
 959     // However, if the ex_node is a PhiNode, I'm going to do a LoadKlass for
 960     // each arm of the Phi.  If I know something clever about the exceptions
 961     // I'm loading the class from, I can replace the LoadKlass with the
 962     // klass constant for the exception oop.
 963     if (ex_node->is_Phi()) {
 964       ex_klass_node = new PhiNode(ex_node->in(0), TypeInstKlassPtr::OBJECT);
 965       for (uint i = 1; i < ex_node->req(); i++) {
 966         Node* ex_in = ex_node->in(i);
 967         if (ex_in == top() || ex_in == nullptr) {
 968           // This path was not taken.
 969           ex_klass_node->init_req(i, top());
 970           continue;
 971         }
 972         Node* p = basic_plus_adr(ex_in, ex_in, oopDesc::klass_offset_in_bytes());
 973         Node* k = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), p, TypeInstPtr::KLASS, TypeInstKlassPtr::OBJECT));
 974         ex_klass_node->init_req( i, k );
 975       }
 976       ex_klass_node = _gvn.transform(ex_klass_node);
 977     }
 978   }
 979 
 980   // Scan the exception table for applicable handlers.
 981   // If none, we can call rethrow() and be done!
 982   // If precise (loaded with no subklasses), insert a D.S. style
 983   // pointer compare to the correct handler and loop back.
 984   // If imprecise, switch to the Rethrow VM-call style handling.
 985 
 986   int remaining = handlers.count_remaining();
 987 
 988   // iterate through all entries sequentially
 989   for (;!handlers.is_done(); handlers.next()) {
 990     ciExceptionHandler* handler = handlers.handler();
 991 
 992     if (handler->is_rethrow()) {
 993       // If we fell off the end of the table without finding an imprecise
 994       // exception klass (and without finding a generic handler) then we
 995       // know this exception is not handled in this method.  We just rethrow
 996       // the exception into the caller.
 997       throw_to_exit(make_exception_state(ex_node));
 998       return;
 999     }
1000 
1001     // exception handler bci range covers throw_bci => investigate further
1002     int handler_bci = handler->handler_bci();
1003 
1004     if (remaining == 1) {
1005       push_ex_oop(ex_node);        // Push exception oop for handler
1006       if (PrintOpto && WizardMode) {
1007         tty->print_cr("  Catching every inline exception bci:%d -> handler_bci:%d", bci(), handler_bci);
1008       }
1009       // If this is a backwards branch in the bytecodes, add safepoint
1010       maybe_add_safepoint(handler_bci);
1011       merge_exception(handler_bci); // jump to handler
1012       return;                   // No more handling to be done here!
1013     }
1014 
1015     // Get the handler's klass
1016     ciInstanceKlass* klass = handler->catch_klass();
1017 
1018     if (!klass->is_loaded()) {  // klass is not loaded?
1019       // fall through into catch_call_exceptions which will emit a
1020       // handler with an uncommon trap.
1021       break;
1022     }
1023 
1024     if (klass->is_interface())  // should not happen, but...
1025       break;                    // bail out
1026 
1027     // Check the type of the exception against the catch type
1028     const TypeKlassPtr *tk = TypeKlassPtr::make(klass);
1029     Node* con = _gvn.makecon(tk);
1030     Node* not_subtype_ctrl = gen_subtype_check(ex_klass_node, con);
1031     if (!stopped()) {
1032       PreserveJVMState pjvms(this);
1033       const TypeInstPtr* tinst = TypeOopPtr::make_from_klass_unique(klass)->cast_to_ptr_type(TypePtr::NotNull)->is_instptr();
1034       assert(klass->has_subklass() || tinst->klass_is_exact(), "lost exactness");
1035       Node* ex_oop = _gvn.transform(new CheckCastPPNode(control(), ex_node, tinst));
1036       push_ex_oop(ex_oop);      // Push exception oop for handler
1037       if (PrintOpto && WizardMode) {
1038         tty->print("  Catching inline exception bci:%d -> handler_bci:%d -- ", bci(), handler_bci);
1039         klass->print_name();
1040         tty->cr();
1041       }
1042       // If this is a backwards branch in the bytecodes, add safepoint
1043       maybe_add_safepoint(handler_bci);
1044       merge_exception(handler_bci);
1045     }
1046     set_control(not_subtype_ctrl);
1047 
1048     // Come here if exception does not match handler.
1049     // Carry on with more handler checks.
1050     --remaining;
1051   }
1052 
1053   assert(!stopped(), "you should return if you finish the chain");
1054 
1055   // Oops, need to call into the VM to resolve the klasses at runtime.
1056   // Note:  This call must not deoptimize, since it is not a real at this bci!
1057   kill_dead_locals();
1058 
1059   make_runtime_call(RC_NO_LEAF | RC_MUST_THROW,
1060                     OptoRuntime::rethrow_Type(),
1061                     OptoRuntime::rethrow_stub(),
1062                     nullptr, nullptr,
1063                     ex_node);
1064 
1065   // Rethrow is a pure call, no side effects, only a result.
1066   // The result cannot be allocated, so we use I_O
1067 
1068   // Catch exceptions from the rethrow
1069   catch_call_exceptions(handlers);
1070 }
1071 
1072 
1073 // (Note:  Moved add_debug_info into GraphKit::add_safepoint_edges.)
1074 
1075 
1076 #ifndef PRODUCT
1077 void Parse::count_compiled_calls(bool at_method_entry, bool is_inline) {
1078   if( CountCompiledCalls ) {
1079     if( at_method_entry ) {
1080       // bump invocation counter if top method (for statistics)
1081       if (CountCompiledCalls && depth() == 1) {
1082         const TypePtr* addr_type = TypeMetadataPtr::make(method());
1083         Node* adr1 = makecon(addr_type);
1084         Node* adr2 = basic_plus_adr(adr1, adr1, in_bytes(Method::compiled_invocation_counter_offset()));
1085         increment_counter(adr2);
1086       }
1087     } else if (is_inline) {
1088       switch (bc()) {
1089       case Bytecodes::_invokevirtual:   increment_counter(SharedRuntime::nof_inlined_calls_addr()); break;
1090       case Bytecodes::_invokeinterface: increment_counter(SharedRuntime::nof_inlined_interface_calls_addr()); break;
1091       case Bytecodes::_invokestatic:
1092       case Bytecodes::_invokedynamic:
1093       case Bytecodes::_invokespecial:   increment_counter(SharedRuntime::nof_inlined_static_calls_addr()); break;
1094       default: fatal("unexpected call bytecode");
1095       }
1096     } else {
1097       switch (bc()) {
1098       case Bytecodes::_invokevirtual:   increment_counter(SharedRuntime::nof_normal_calls_addr()); break;
1099       case Bytecodes::_invokeinterface: increment_counter(SharedRuntime::nof_interface_calls_addr()); break;
1100       case Bytecodes::_invokestatic:
1101       case Bytecodes::_invokedynamic:
1102       case Bytecodes::_invokespecial:   increment_counter(SharedRuntime::nof_static_calls_addr()); break;
1103       default: fatal("unexpected call bytecode");
1104       }
1105     }
1106   }
1107 }
1108 #endif //PRODUCT
1109 
1110 
1111 ciMethod* Compile::optimize_virtual_call(ciMethod* caller, ciInstanceKlass* klass,
1112                                          ciKlass* holder, ciMethod* callee,
1113                                          const TypeOopPtr* receiver_type, bool is_virtual,
1114                                          bool& call_does_dispatch, int& vtable_index,
1115                                          bool check_access) {
1116   // Set default values for out-parameters.
1117   call_does_dispatch = true;
1118   vtable_index       = Method::invalid_vtable_index;
1119 
1120   // Choose call strategy.
1121   ciMethod* optimized_virtual_method = optimize_inlining(caller, klass, holder, callee,
1122                                                          receiver_type, check_access);
1123 
1124   // Have the call been sufficiently improved such that it is no longer a virtual?
1125   if (optimized_virtual_method != nullptr) {
1126     callee             = optimized_virtual_method;
1127     call_does_dispatch = false;
1128   } else if (!UseInlineCaches && is_virtual && callee->is_loaded()) {
1129     // We can make a vtable call at this site
1130     vtable_index = callee->resolve_vtable_index(caller->holder(), holder);
1131   }
1132   return callee;
1133 }
1134 
1135 // Identify possible target method and inlining style
1136 ciMethod* Compile::optimize_inlining(ciMethod* caller, ciInstanceKlass* klass, ciKlass* holder,
1137                                      ciMethod* callee, const TypeOopPtr* receiver_type,
1138                                      bool check_access) {
1139   // only use for virtual or interface calls
1140 
1141   // If it is obviously final, do not bother to call find_monomorphic_target,
1142   // because the class hierarchy checks are not needed, and may fail due to
1143   // incompletely loaded classes.  Since we do our own class loading checks
1144   // in this module, we may confidently bind to any method.
1145   if (callee->can_be_statically_bound()) {
1146     return callee;
1147   }
1148 
1149   if (receiver_type == nullptr) {
1150     return nullptr; // no receiver type info
1151   }
1152 
1153   // Attempt to improve the receiver
1154   bool actual_receiver_is_exact = false;
1155   ciInstanceKlass* actual_receiver = klass;
1156   // Array methods are all inherited from Object, and are monomorphic.
1157   // finalize() call on array is not allowed.
1158   if (receiver_type->isa_aryptr() &&
1159       callee->holder() == env()->Object_klass() &&
1160       callee->name() != ciSymbols::finalize_method_name()) {
1161     return callee;
1162   }
1163 
1164   // All other interesting cases are instance klasses.
1165   if (!receiver_type->isa_instptr()) {
1166     return nullptr;
1167   }
1168 
1169   ciInstanceKlass* receiver_klass = receiver_type->is_instptr()->instance_klass();
1170   if (receiver_klass->is_loaded() && receiver_klass->is_initialized() && !receiver_klass->is_interface() &&
1171       (receiver_klass == actual_receiver || receiver_klass->is_subtype_of(actual_receiver))) {
1172     // ikl is a same or better type than the original actual_receiver,
1173     // e.g. static receiver from bytecodes.
1174     actual_receiver = receiver_klass;
1175     // Is the actual_receiver exact?
1176     actual_receiver_is_exact = receiver_type->klass_is_exact();
1177   }
1178 
1179   ciInstanceKlass*   calling_klass = caller->holder();
1180   ciMethod* cha_monomorphic_target = callee->find_monomorphic_target(calling_klass, klass, actual_receiver, check_access);
1181 
1182   if (cha_monomorphic_target != nullptr) {
1183     // Hardwiring a virtual.
1184     assert(!callee->can_be_statically_bound(), "should have been handled earlier");
1185     assert(!cha_monomorphic_target->is_abstract(), "");
1186     if (!cha_monomorphic_target->can_be_statically_bound(actual_receiver)) {
1187       // If we inlined because CHA revealed only a single target method,
1188       // then we are dependent on that target method not getting overridden
1189       // by dynamic class loading.  Be sure to test the "static" receiver
1190       // dest_method here, as opposed to the actual receiver, which may
1191       // falsely lead us to believe that the receiver is final or private.
1192       dependencies()->assert_unique_concrete_method(actual_receiver, cha_monomorphic_target, holder, callee);
1193     }
1194     return cha_monomorphic_target;
1195   }
1196 
1197   // If the type is exact, we can still bind the method w/o a vcall.
1198   // (This case comes after CHA so we can see how much extra work it does.)
1199   if (actual_receiver_is_exact) {
1200     // In case of evolution, there is a dependence on every inlined method, since each
1201     // such method can be changed when its class is redefined.
1202     ciMethod* exact_method = callee->resolve_invoke(calling_klass, actual_receiver);
1203     if (exact_method != nullptr) {
1204       return exact_method;
1205     }
1206   }
1207 
1208   return nullptr;
1209 }