1 /* 2 * Copyright (c) 1998, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "ci/ciCallSite.hpp" 26 #include "ci/ciMethodHandle.hpp" 27 #include "ci/ciSymbols.hpp" 28 #include "classfile/vmSymbols.hpp" 29 #include "compiler/compileBroker.hpp" 30 #include "compiler/compileLog.hpp" 31 #include "interpreter/linkResolver.hpp" 32 #include "logging/log.hpp" 33 #include "logging/logLevel.hpp" 34 #include "logging/logMessage.hpp" 35 #include "logging/logStream.hpp" 36 #include "opto/addnode.hpp" 37 #include "opto/callGenerator.hpp" 38 #include "opto/castnode.hpp" 39 #include "opto/cfgnode.hpp" 40 #include "opto/mulnode.hpp" 41 #include "opto/parse.hpp" 42 #include "opto/rootnode.hpp" 43 #include "opto/runtime.hpp" 44 #include "opto/subnode.hpp" 45 #include "prims/methodHandles.hpp" 46 #include "runtime/sharedRuntime.hpp" 47 #include "utilities/macros.hpp" 48 #if INCLUDE_JFR 49 #include "jfr/jfr.hpp" 50 #endif 51 52 static void print_trace_type_profile(outputStream* out, int depth, ciKlass* prof_klass, int site_count, int receiver_count, 53 bool with_deco) { 54 if (with_deco) { 55 CompileTask::print_inline_indent(depth, out); 56 } 57 out->print(" \\-> TypeProfile (%d/%d counts) = ", receiver_count, site_count); 58 prof_klass->name()->print_symbol_on(out); 59 if (with_deco) { 60 out->cr(); 61 } 62 } 63 64 static void trace_type_profile(Compile* C, ciMethod* method, JVMState* jvms, 65 ciMethod* prof_method, ciKlass* prof_klass, int site_count, int receiver_count) { 66 int depth = jvms->depth() - 1; 67 int bci = jvms->bci(); 68 if (TraceTypeProfile || C->print_inlining()) { 69 if (!C->print_inlining()) { 70 if (!PrintOpto && !PrintCompilation) { 71 method->print_short_name(); 72 tty->cr(); 73 } 74 CompileTask::print_inlining_tty(prof_method, depth, bci, InliningResult::SUCCESS); 75 print_trace_type_profile(tty, depth, prof_klass, site_count, receiver_count, true); 76 } else { 77 auto stream = C->inline_printer()->record(method, jvms, InliningResult::SUCCESS); 78 print_trace_type_profile(stream, depth, prof_klass, site_count, receiver_count, false); 79 } 80 } 81 82 LogTarget(Debug, jit, inlining) lt; 83 if (lt.is_enabled()) { 84 LogStream ls(lt); 85 print_trace_type_profile(&ls, depth, prof_klass, site_count, receiver_count, true); 86 } 87 } 88 89 CallGenerator* Compile::call_generator(ciMethod* callee, int vtable_index, bool call_does_dispatch, 90 JVMState* jvms, bool allow_inline, 91 float prof_factor, ciKlass* speculative_receiver_type, 92 bool allow_intrinsics) { 93 assert(callee != nullptr, "failed method resolution"); 94 95 ciMethod* caller = jvms->method(); 96 int bci = jvms->bci(); 97 Bytecodes::Code bytecode = caller->java_code_at_bci(bci); 98 ciMethod* orig_callee = caller->get_method_at_bci(bci); 99 100 const bool is_virtual_or_interface = (bytecode == Bytecodes::_invokevirtual) || 101 (bytecode == Bytecodes::_invokeinterface) || 102 (orig_callee->intrinsic_id() == vmIntrinsics::_linkToVirtual) || 103 (orig_callee->intrinsic_id() == vmIntrinsics::_linkToInterface); 104 105 callee->ensure_method_data(true); 106 107 // Dtrace currently doesn't work unless all calls are vanilla 108 if (env()->dtrace_method_probes()) { 109 allow_inline = false; 110 } 111 112 // Note: When we get profiling during stage-1 compiles, we want to pull 113 // from more specific profile data which pertains to this inlining. 114 // Right now, ignore the information in jvms->caller(), and do method[bci]. 115 ciCallProfile profile = caller->call_profile_at_bci(bci); 116 117 // See how many times this site has been invoked. 118 int site_count = profile.count(); 119 int receiver_count = -1; 120 if (call_does_dispatch && UseTypeProfile && profile.has_receiver(0)) { 121 // Receivers in the profile structure are ordered by call counts 122 // so that the most called (major) receiver is profile.receiver(0). 123 receiver_count = profile.receiver_count(0); 124 } 125 126 CompileLog* log = this->log(); 127 if (log != nullptr) { 128 int rid = (receiver_count >= 0)? log->identify(profile.receiver(0)): -1; 129 int r2id = (rid != -1 && profile.has_receiver(1))? log->identify(profile.receiver(1)):-1; 130 log->begin_elem("call method='%d' count='%d' prof_factor='%f'", 131 log->identify(callee), site_count, prof_factor); 132 if (call_does_dispatch) log->print(" virtual='1'"); 133 if (allow_inline) log->print(" inline='1'"); 134 if (receiver_count >= 0) { 135 log->print(" receiver='%d' receiver_count='%d'", rid, receiver_count); 136 if (profile.has_receiver(1)) { 137 log->print(" receiver2='%d' receiver2_count='%d'", r2id, profile.receiver_count(1)); 138 } 139 } 140 if (callee->is_method_handle_intrinsic()) { 141 log->print(" method_handle_intrinsic='1'"); 142 } 143 log->end_elem(); 144 } 145 146 // Special case the handling of certain common, profitable library 147 // methods. If these methods are replaced with specialized code, 148 // then we return it as the inlined version of the call. 149 CallGenerator* cg_intrinsic = nullptr; 150 if (allow_inline && allow_intrinsics) { 151 CallGenerator* cg = find_intrinsic(callee, call_does_dispatch); 152 if (cg != nullptr) { 153 if (cg->is_predicated()) { 154 // Code without intrinsic but, hopefully, inlined. 155 CallGenerator* inline_cg = this->call_generator(callee, 156 vtable_index, call_does_dispatch, jvms, allow_inline, prof_factor, speculative_receiver_type, false); 157 if (inline_cg != nullptr) { 158 cg = CallGenerator::for_predicated_intrinsic(cg, inline_cg); 159 } 160 } 161 162 // If intrinsic does the virtual dispatch, we try to use the type profile 163 // first, and hopefully inline it as the regular virtual call below. 164 // We will retry the intrinsic if nothing had claimed it afterwards. 165 if (cg->does_virtual_dispatch()) { 166 cg_intrinsic = cg; 167 cg = nullptr; 168 } else if (IncrementalInline && should_delay_vector_inlining(callee, jvms)) { 169 return CallGenerator::for_late_inline(callee, cg); 170 } else { 171 return cg; 172 } 173 } 174 } 175 176 // Do method handle calls. 177 // NOTE: This must happen before normal inlining logic below since 178 // MethodHandle.invoke* are native methods which obviously don't 179 // have bytecodes and so normal inlining fails. 180 if (callee->is_method_handle_intrinsic()) { 181 CallGenerator* cg = CallGenerator::for_method_handle_call(jvms, caller, callee, allow_inline); 182 return cg; 183 } 184 185 // Attempt to inline... 186 if (allow_inline) { 187 // The profile data is only partly attributable to this caller, 188 // scale back the call site information. 189 float past_uses = jvms->method()->scale_count(site_count, prof_factor); 190 // This is the number of times we expect the call code to be used. 191 float expected_uses = past_uses; 192 193 // Try inlining a bytecoded method: 194 if (!call_does_dispatch) { 195 InlineTree* ilt = InlineTree::find_subtree_from_root(this->ilt(), jvms->caller(), jvms->method()); 196 bool should_delay = C->should_delay_inlining(); 197 if (ilt->ok_to_inline(callee, jvms, profile, should_delay)) { 198 CallGenerator* cg = CallGenerator::for_inline(callee, expected_uses); 199 // For optimized virtual calls assert at runtime that receiver object 200 // is a subtype of the inlined method holder. CHA can report a method 201 // as a unique target under an abstract method, but receiver type 202 // sometimes has a broader type. Similar scenario is possible with 203 // default methods when type system loses information about implemented 204 // interfaces. 205 if (cg != nullptr && is_virtual_or_interface && !callee->is_static()) { 206 CallGenerator* trap_cg = CallGenerator::for_uncommon_trap(callee, 207 Deoptimization::Reason_receiver_constraint, Deoptimization::Action_none); 208 209 cg = CallGenerator::for_guarded_call(callee->holder(), trap_cg, cg); 210 } 211 if (cg != nullptr) { 212 // Delay the inlining of this method to give us the 213 // opportunity to perform some high level optimizations 214 // first. 215 if (should_delay) { 216 return CallGenerator::for_late_inline(callee, cg); 217 } else if (should_delay_string_inlining(callee, jvms)) { 218 return CallGenerator::for_string_late_inline(callee, cg); 219 } else if (should_delay_boxing_inlining(callee, jvms)) { 220 return CallGenerator::for_boxing_late_inline(callee, cg); 221 } else if (should_delay_vector_reboxing_inlining(callee, jvms)) { 222 return CallGenerator::for_vector_reboxing_late_inline(callee, cg); 223 } else { 224 return cg; 225 } 226 } 227 } 228 } 229 230 // Try using the type profile. 231 if (call_does_dispatch && site_count > 0 && UseTypeProfile) { 232 // The major receiver's count >= TypeProfileMajorReceiverPercent of site_count. 233 bool have_major_receiver = profile.has_receiver(0) && (100.*profile.receiver_prob(0) >= (float)TypeProfileMajorReceiverPercent); 234 ciMethod* receiver_method = nullptr; 235 236 int morphism = profile.morphism(); 237 if (speculative_receiver_type != nullptr) { 238 if (!too_many_traps_or_recompiles(caller, bci, Deoptimization::Reason_speculate_class_check)) { 239 // We have a speculative type, we should be able to resolve 240 // the call. We do that before looking at the profiling at 241 // this invoke because it may lead to bimorphic inlining which 242 // a speculative type should help us avoid. 243 receiver_method = callee->resolve_invoke(jvms->method()->holder(), 244 speculative_receiver_type); 245 if (receiver_method == nullptr) { 246 speculative_receiver_type = nullptr; 247 } else { 248 morphism = 1; 249 } 250 } else { 251 // speculation failed before. Use profiling at the call 252 // (could allow bimorphic inlining for instance). 253 speculative_receiver_type = nullptr; 254 } 255 } 256 if (receiver_method == nullptr && 257 (have_major_receiver || morphism == 1 || 258 (morphism == 2 && UseBimorphicInlining))) { 259 // receiver_method = profile.method(); 260 // Profiles do not suggest methods now. Look it up in the major receiver. 261 receiver_method = callee->resolve_invoke(jvms->method()->holder(), 262 profile.receiver(0)); 263 } 264 if (receiver_method != nullptr) { 265 // The single majority receiver sufficiently outweighs the minority. 266 CallGenerator* hit_cg = this->call_generator(receiver_method, 267 vtable_index, !call_does_dispatch, jvms, allow_inline, prof_factor); 268 if (hit_cg != nullptr) { 269 // Look up second receiver. 270 CallGenerator* next_hit_cg = nullptr; 271 ciMethod* next_receiver_method = nullptr; 272 if (morphism == 2 && UseBimorphicInlining) { 273 next_receiver_method = callee->resolve_invoke(jvms->method()->holder(), 274 profile.receiver(1)); 275 if (next_receiver_method != nullptr) { 276 next_hit_cg = this->call_generator(next_receiver_method, 277 vtable_index, !call_does_dispatch, jvms, 278 allow_inline, prof_factor); 279 if (next_hit_cg != nullptr && !next_hit_cg->is_inline() && 280 have_major_receiver && UseOnlyInlinedBimorphic) { 281 // Skip if we can't inline second receiver's method 282 next_hit_cg = nullptr; 283 } 284 } 285 } 286 CallGenerator* miss_cg; 287 Deoptimization::DeoptReason reason = (morphism == 2 288 ? Deoptimization::Reason_bimorphic 289 : Deoptimization::reason_class_check(speculative_receiver_type != nullptr)); 290 if ((morphism == 1 || (morphism == 2 && next_hit_cg != nullptr)) && 291 !too_many_traps_or_recompiles(caller, bci, reason) 292 ) { 293 // Generate uncommon trap for class check failure path 294 // in case of monomorphic or bimorphic virtual call site. 295 miss_cg = CallGenerator::for_uncommon_trap(callee, reason, 296 Deoptimization::Action_maybe_recompile); 297 } else { 298 // Generate virtual call for class check failure path 299 // in case of polymorphic virtual call site. 300 miss_cg = (IncrementalInlineVirtual ? CallGenerator::for_late_inline_virtual(callee, vtable_index, prof_factor) 301 : CallGenerator::for_virtual_call(callee, vtable_index)); 302 } 303 if (miss_cg != nullptr) { 304 if (next_hit_cg != nullptr) { 305 assert(speculative_receiver_type == nullptr, "shouldn't end up here if we used speculation"); 306 trace_type_profile(C, jvms->method(), jvms, next_receiver_method, profile.receiver(1), site_count, profile.receiver_count(1)); 307 // We don't need to record dependency on a receiver here and below. 308 // Whenever we inline, the dependency is added by Parse::Parse(). 309 miss_cg = CallGenerator::for_predicted_call(profile.receiver(1), miss_cg, next_hit_cg, PROB_MAX); 310 } 311 if (miss_cg != nullptr) { 312 ciKlass* k = speculative_receiver_type != nullptr ? speculative_receiver_type : profile.receiver(0); 313 trace_type_profile(C, jvms->method(), jvms, receiver_method, k, site_count, receiver_count); 314 float hit_prob = speculative_receiver_type != nullptr ? 1.0 : profile.receiver_prob(0); 315 CallGenerator* cg = CallGenerator::for_predicted_call(k, miss_cg, hit_cg, hit_prob); 316 if (cg != nullptr) { 317 return cg; 318 } 319 } 320 } 321 } 322 } 323 } 324 325 // If there is only one implementor of this interface then we 326 // may be able to bind this invoke directly to the implementing 327 // klass but we need both a dependence on the single interface 328 // and on the method we bind to. Additionally since all we know 329 // about the receiver type is that it's supposed to implement the 330 // interface we have to insert a check that it's the class we 331 // expect. Interface types are not checked by the verifier so 332 // they are roughly equivalent to Object. 333 // The number of implementors for declared_interface is less or 334 // equal to the number of implementors for target->holder() so 335 // if number of implementors of target->holder() == 1 then 336 // number of implementors for decl_interface is 0 or 1. If 337 // it's 0 then no class implements decl_interface and there's 338 // no point in inlining. 339 if (call_does_dispatch && bytecode == Bytecodes::_invokeinterface) { 340 ciInstanceKlass* declared_interface = 341 caller->get_declared_method_holder_at_bci(bci)->as_instance_klass(); 342 ciInstanceKlass* singleton = declared_interface->unique_implementor(); 343 344 if (singleton != nullptr) { 345 assert(singleton != declared_interface, "not a unique implementor"); 346 347 ciMethod* cha_monomorphic_target = 348 callee->find_monomorphic_target(caller->holder(), declared_interface, singleton); 349 350 if (cha_monomorphic_target != nullptr && 351 cha_monomorphic_target->holder() != env()->Object_klass()) { // subtype check against Object is useless 352 ciKlass* holder = cha_monomorphic_target->holder(); 353 354 // Try to inline the method found by CHA. Inlined method is guarded by the type check. 355 CallGenerator* hit_cg = call_generator(cha_monomorphic_target, 356 vtable_index, !call_does_dispatch, jvms, allow_inline, prof_factor); 357 358 // Deoptimize on type check fail. The interpreter will throw ICCE for us. 359 CallGenerator* miss_cg = CallGenerator::for_uncommon_trap(callee, 360 Deoptimization::Reason_class_check, Deoptimization::Action_none); 361 362 ciKlass* constraint = (holder->is_subclass_of(singleton) ? holder : singleton); // avoid upcasts 363 CallGenerator* cg = CallGenerator::for_guarded_call(constraint, miss_cg, hit_cg); 364 if (hit_cg != nullptr && cg != nullptr) { 365 dependencies()->assert_unique_implementor(declared_interface, singleton); 366 dependencies()->assert_unique_concrete_method(declared_interface, cha_monomorphic_target, declared_interface, callee); 367 return cg; 368 } 369 } 370 } 371 } // call_does_dispatch && bytecode == Bytecodes::_invokeinterface 372 373 // Nothing claimed the intrinsic, we go with straight-forward inlining 374 // for already discovered intrinsic. 375 if (allow_intrinsics && cg_intrinsic != nullptr) { 376 assert(cg_intrinsic->does_virtual_dispatch(), "sanity"); 377 return cg_intrinsic; 378 } 379 } // allow_inline 380 381 // There was no special inlining tactic, or it bailed out. 382 // Use a more generic tactic, like a simple call. 383 if (call_does_dispatch) { 384 const char* msg = "virtual call"; 385 C->inline_printer()->record(callee, jvms, InliningResult::FAILURE, msg); 386 C->log_inline_failure(msg); 387 if (IncrementalInlineVirtual && allow_inline) { 388 return CallGenerator::for_late_inline_virtual(callee, vtable_index, prof_factor); // attempt to inline through virtual call later 389 } else { 390 return CallGenerator::for_virtual_call(callee, vtable_index); 391 } 392 } else { 393 // Class Hierarchy Analysis or Type Profile reveals a unique target, or it is a static or special call. 394 CallGenerator* cg = CallGenerator::for_direct_call(callee, should_delay_inlining(callee, jvms)); 395 // For optimized virtual calls assert at runtime that receiver object 396 // is a subtype of the method holder. 397 if (cg != nullptr && is_virtual_or_interface && !callee->is_static()) { 398 CallGenerator* trap_cg = CallGenerator::for_uncommon_trap(callee, 399 Deoptimization::Reason_receiver_constraint, Deoptimization::Action_none); 400 cg = CallGenerator::for_guarded_call(callee->holder(), trap_cg, cg); 401 } 402 return cg; 403 } 404 } 405 406 // Return true for methods that shouldn't be inlined early so that 407 // they are easier to analyze and optimize as intrinsics. 408 bool Compile::should_delay_string_inlining(ciMethod* call_method, JVMState* jvms) { 409 if (has_stringbuilder()) { 410 411 if ((call_method->holder() == C->env()->StringBuilder_klass() || 412 call_method->holder() == C->env()->StringBuffer_klass()) && 413 (jvms->method()->holder() == C->env()->StringBuilder_klass() || 414 jvms->method()->holder() == C->env()->StringBuffer_klass())) { 415 // Delay SB calls only when called from non-SB code 416 return false; 417 } 418 419 switch (call_method->intrinsic_id()) { 420 case vmIntrinsics::_StringBuilder_void: 421 case vmIntrinsics::_StringBuilder_int: 422 case vmIntrinsics::_StringBuilder_String: 423 case vmIntrinsics::_StringBuilder_append_char: 424 case vmIntrinsics::_StringBuilder_append_int: 425 case vmIntrinsics::_StringBuilder_append_String: 426 case vmIntrinsics::_StringBuilder_toString: 427 case vmIntrinsics::_StringBuffer_void: 428 case vmIntrinsics::_StringBuffer_int: 429 case vmIntrinsics::_StringBuffer_String: 430 case vmIntrinsics::_StringBuffer_append_char: 431 case vmIntrinsics::_StringBuffer_append_int: 432 case vmIntrinsics::_StringBuffer_append_String: 433 case vmIntrinsics::_StringBuffer_toString: 434 case vmIntrinsics::_Integer_toString: 435 return true; 436 437 case vmIntrinsics::_String_String: 438 { 439 Node* receiver = jvms->map()->in(jvms->argoff() + 1); 440 if (receiver->is_Proj() && receiver->in(0)->is_CallStaticJava()) { 441 CallStaticJavaNode* csj = receiver->in(0)->as_CallStaticJava(); 442 ciMethod* m = csj->method(); 443 if (m != nullptr && 444 (m->intrinsic_id() == vmIntrinsics::_StringBuffer_toString || 445 m->intrinsic_id() == vmIntrinsics::_StringBuilder_toString)) 446 // Delay String.<init>(new SB()) 447 return true; 448 } 449 return false; 450 } 451 452 default: 453 return false; 454 } 455 } 456 return false; 457 } 458 459 bool Compile::should_delay_boxing_inlining(ciMethod* call_method, JVMState* jvms) { 460 if (eliminate_boxing() && call_method->is_boxing_method()) { 461 set_has_boxed_value(true); 462 return aggressive_unboxing(); 463 } 464 return false; 465 } 466 467 bool Compile::should_delay_vector_inlining(ciMethod* call_method, JVMState* jvms) { 468 return EnableVectorSupport && call_method->is_vector_method(); 469 } 470 471 bool Compile::should_delay_vector_reboxing_inlining(ciMethod* call_method, JVMState* jvms) { 472 return EnableVectorSupport && (call_method->intrinsic_id() == vmIntrinsics::_VectorRebox); 473 } 474 475 // uncommon-trap call-sites where callee is unloaded, uninitialized or will not link 476 bool Parse::can_not_compile_call_site(ciMethod *dest_method, ciInstanceKlass* klass) { 477 // Additional inputs to consider... 478 // bc = bc() 479 // caller = method() 480 // iter().get_method_holder_index() 481 assert( dest_method->is_loaded(), "ciTypeFlow should not let us get here" ); 482 // Interface classes can be loaded & linked and never get around to 483 // being initialized. Uncommon-trap for not-initialized static or 484 // v-calls. Let interface calls happen. 485 ciInstanceKlass* holder_klass = dest_method->holder(); 486 if (!holder_klass->is_being_initialized() && 487 !holder_klass->is_initialized() && 488 !holder_klass->is_interface()) { 489 uncommon_trap(Deoptimization::Reason_uninitialized, 490 Deoptimization::Action_reinterpret, 491 holder_klass); 492 return true; 493 } 494 495 assert(dest_method->is_loaded(), "dest_method: typeflow responsibility"); 496 return false; 497 } 498 499 #ifdef ASSERT 500 static bool check_call_consistency(JVMState* jvms, CallGenerator* cg) { 501 ciMethod* symbolic_info = jvms->method()->get_method_at_bci(jvms->bci()); 502 ciMethod* resolved_method = cg->method(); 503 if (!ciMethod::is_consistent_info(symbolic_info, resolved_method)) { 504 tty->print_cr("JVMS:"); 505 jvms->dump(); 506 tty->print_cr("Bytecode info:"); 507 jvms->method()->get_method_at_bci(jvms->bci())->print(); tty->cr(); 508 tty->print_cr("Resolved method:"); 509 cg->method()->print(); tty->cr(); 510 return false; 511 } 512 return true; 513 } 514 #endif // ASSERT 515 516 //------------------------------do_call---------------------------------------- 517 // Handle your basic call. Inline if we can & want to, else just setup call. 518 void Parse::do_call() { 519 // It's likely we are going to add debug info soon. 520 // Also, if we inline a guy who eventually needs debug info for this JVMS, 521 // our contribution to it is cleaned up right here. 522 kill_dead_locals(); 523 524 // Set frequently used booleans 525 const bool is_virtual = bc() == Bytecodes::_invokevirtual; 526 const bool is_virtual_or_interface = is_virtual || bc() == Bytecodes::_invokeinterface; 527 const bool has_receiver = Bytecodes::has_receiver(bc()); 528 529 // Find target being called 530 bool will_link; 531 ciSignature* declared_signature = nullptr; 532 ciMethod* orig_callee = iter().get_method(will_link, &declared_signature); // callee in the bytecode 533 ciInstanceKlass* holder_klass = orig_callee->holder(); 534 ciKlass* holder = iter().get_declared_method_holder(); 535 ciInstanceKlass* klass = ciEnv::get_instance_klass_for_declared_method_holder(holder); 536 assert(declared_signature != nullptr, "cannot be null"); 537 JFR_ONLY(Jfr::on_resolution(this, holder, orig_callee);) 538 539 // Bump max node limit for JSR292 users 540 if (bc() == Bytecodes::_invokedynamic || orig_callee->is_method_handle_intrinsic()) { 541 C->set_max_node_limit(3*MaxNodeLimit); 542 } 543 544 // uncommon-trap when callee is unloaded, uninitialized or will not link 545 // bailout when too many arguments for register representation 546 if (!will_link || can_not_compile_call_site(orig_callee, klass)) { 547 if (PrintOpto && (Verbose || WizardMode)) { 548 method()->print_name(); tty->print_cr(" can not compile call at bci %d to:", bci()); 549 orig_callee->print_name(); tty->cr(); 550 } 551 return; 552 } 553 assert(holder_klass->is_loaded(), ""); 554 //assert((bc_callee->is_static() || is_invokedynamic) == !has_receiver , "must match bc"); // XXX invokehandle (cur_bc_raw) 555 // Note: this takes into account invokeinterface of methods declared in java/lang/Object, 556 // which should be invokevirtuals but according to the VM spec may be invokeinterfaces 557 assert(holder_klass->is_interface() || holder_klass->super() == nullptr || (bc() != Bytecodes::_invokeinterface), "must match bc"); 558 // Note: In the absence of miranda methods, an abstract class K can perform 559 // an invokevirtual directly on an interface method I.m if K implements I. 560 561 // orig_callee is the resolved callee which's signature includes the 562 // appendix argument. 563 const int nargs = orig_callee->arg_size(); 564 const bool is_signature_polymorphic = MethodHandles::is_signature_polymorphic(orig_callee->intrinsic_id()); 565 566 // Push appendix argument (MethodType, CallSite, etc.), if one. 567 if (iter().has_appendix()) { 568 ciObject* appendix_arg = iter().get_appendix(); 569 const TypeOopPtr* appendix_arg_type = TypeOopPtr::make_from_constant(appendix_arg, /* require_const= */ true); 570 Node* appendix_arg_node = _gvn.makecon(appendix_arg_type); 571 push(appendix_arg_node); 572 } 573 574 // --------------------- 575 // Does Class Hierarchy Analysis reveal only a single target of a v-call? 576 // Then we may inline or make a static call, but become dependent on there being only 1 target. 577 // Does the call-site type profile reveal only one receiver? 578 // Then we may introduce a run-time check and inline on the path where it succeeds. 579 // The other path may uncommon_trap, check for another receiver, or do a v-call. 580 581 // Try to get the most accurate receiver type 582 ciMethod* callee = orig_callee; 583 int vtable_index = Method::invalid_vtable_index; 584 bool call_does_dispatch = false; 585 586 // Speculative type of the receiver if any 587 ciKlass* speculative_receiver_type = nullptr; 588 if (is_virtual_or_interface) { 589 Node* receiver_node = stack(sp() - nargs); 590 const TypeOopPtr* receiver_type = _gvn.type(receiver_node)->isa_oopptr(); 591 // call_does_dispatch and vtable_index are out-parameters. They might be changed. 592 // For arrays, klass below is Object. When vtable calls are used, 593 // resolving the call with Object would allow an illegal call to 594 // finalize() on an array. We use holder instead: illegal calls to 595 // finalize() won't be compiled as vtable calls (IC call 596 // resolution will catch the illegal call) and the few legal calls 597 // on array types won't be either. 598 callee = C->optimize_virtual_call(method(), klass, holder, orig_callee, 599 receiver_type, is_virtual, 600 call_does_dispatch, vtable_index); // out-parameters 601 speculative_receiver_type = receiver_type != nullptr ? receiver_type->speculative_type() : nullptr; 602 } 603 604 // Additional receiver subtype checks for interface calls via invokespecial or invokeinterface. 605 ciKlass* receiver_constraint = nullptr; 606 if (iter().cur_bc_raw() == Bytecodes::_invokespecial && !orig_callee->is_object_initializer()) { 607 ciInstanceKlass* calling_klass = method()->holder(); 608 ciInstanceKlass* sender_klass = calling_klass; 609 if (sender_klass->is_interface()) { 610 receiver_constraint = sender_klass; 611 } 612 } else if (iter().cur_bc_raw() == Bytecodes::_invokeinterface && orig_callee->is_private()) { 613 assert(holder->is_interface(), "How did we get a non-interface method here!"); 614 receiver_constraint = holder; 615 } 616 617 if (receiver_constraint != nullptr) { 618 Node* receiver_node = stack(sp() - nargs); 619 Node* cls_node = makecon(TypeKlassPtr::make(receiver_constraint, Type::trust_interfaces)); 620 Node* bad_type_ctrl = nullptr; 621 Node* casted_receiver = gen_checkcast(receiver_node, cls_node, &bad_type_ctrl); 622 if (bad_type_ctrl != nullptr) { 623 PreserveJVMState pjvms(this); 624 set_control(bad_type_ctrl); 625 uncommon_trap(Deoptimization::Reason_class_check, 626 Deoptimization::Action_none); 627 } 628 if (stopped()) { 629 return; // MUST uncommon-trap? 630 } 631 set_stack(sp() - nargs, casted_receiver); 632 } 633 634 // Note: It's OK to try to inline a virtual call. 635 // The call generator will not attempt to inline a polymorphic call 636 // unless it knows how to optimize the receiver dispatch. 637 bool try_inline = (C->do_inlining() || InlineAccessors); 638 639 // --------------------- 640 dec_sp(nargs); // Temporarily pop args for JVM state of call 641 JVMState* jvms = sync_jvms(); 642 643 // --------------------- 644 // Decide call tactic. 645 // This call checks with CHA, the interpreter profile, intrinsics table, etc. 646 // It decides whether inlining is desirable or not. 647 CallGenerator* cg = C->call_generator(callee, vtable_index, call_does_dispatch, jvms, try_inline, prof_factor(), speculative_receiver_type); 648 649 // NOTE: Don't use orig_callee and callee after this point! Use cg->method() instead. 650 orig_callee = callee = nullptr; 651 652 // --------------------- 653 654 // Feed profiling data for arguments to the type system so it can 655 // propagate it as speculative types 656 record_profiled_arguments_for_speculation(cg->method(), bc()); 657 658 #ifndef PRODUCT 659 // bump global counters for calls 660 count_compiled_calls(/*at_method_entry*/ false, cg->is_inline()); 661 662 // Record first part of parsing work for this call 663 parse_histogram()->record_change(); 664 #endif // not PRODUCT 665 666 assert(jvms == this->jvms(), "still operating on the right JVMS"); 667 assert(jvms_in_sync(), "jvms must carry full info into CG"); 668 669 // save across call, for a subsequent cast_not_null. 670 Node* receiver = has_receiver ? argument(0) : nullptr; 671 672 // The extra CheckCastPPs for speculative types mess with PhaseStringOpts 673 if (receiver != nullptr && !call_does_dispatch && !cg->is_string_late_inline()) { 674 // Feed profiling data for a single receiver to the type system so 675 // it can propagate it as a speculative type 676 receiver = record_profiled_receiver_for_speculation(receiver); 677 } 678 679 JVMState* new_jvms = cg->generate(jvms); 680 if (new_jvms == nullptr) { 681 // When inlining attempt fails (e.g., too many arguments), 682 // it may contaminate the current compile state, making it 683 // impossible to pull back and try again. Once we call 684 // cg->generate(), we are committed. If it fails, the whole 685 // compilation task is compromised. 686 if (failing()) return; 687 688 // This can happen if a library intrinsic is available, but refuses 689 // the call site, perhaps because it did not match a pattern the 690 // intrinsic was expecting to optimize. Should always be possible to 691 // get a normal java call that may inline in that case 692 cg = C->call_generator(cg->method(), vtable_index, call_does_dispatch, jvms, try_inline, prof_factor(), speculative_receiver_type, /* allow_intrinsics= */ false); 693 new_jvms = cg->generate(jvms); 694 if (new_jvms == nullptr) { 695 guarantee(failing(), "call failed to generate: calls should work"); 696 return; 697 } 698 } 699 700 if (cg->is_inline()) { 701 // Accumulate has_loops estimate 702 C->env()->notice_inlined_method(cg->method()); 703 } 704 705 // Reset parser state from [new_]jvms, which now carries results of the call. 706 // Return value (if any) is already pushed on the stack by the cg. 707 add_exception_states_from(new_jvms); 708 if (new_jvms->map()->control() == top()) { 709 stop_and_kill_map(); 710 } else { 711 assert(new_jvms->same_calls_as(jvms), "method/bci left unchanged"); 712 set_jvms(new_jvms); 713 } 714 715 assert(check_call_consistency(jvms, cg), "inconsistent info"); 716 717 if (!stopped()) { 718 // This was some sort of virtual call, which did a null check for us. 719 // Now we can assert receiver-not-null, on the normal return path. 720 if (receiver != nullptr && cg->is_virtual()) { 721 Node* cast = cast_not_null(receiver); 722 // %%% assert(receiver == cast, "should already have cast the receiver"); 723 } 724 725 ciType* rtype = cg->method()->return_type(); 726 ciType* ctype = declared_signature->return_type(); 727 728 if (Bytecodes::has_optional_appendix(iter().cur_bc_raw()) || is_signature_polymorphic) { 729 // Be careful here with return types. 730 if (ctype != rtype) { 731 BasicType rt = rtype->basic_type(); 732 BasicType ct = ctype->basic_type(); 733 if (ct == T_VOID) { 734 // It's OK for a method to return a value that is discarded. 735 // The discarding does not require any special action from the caller. 736 // The Java code knows this, at VerifyType.isNullConversion. 737 pop_node(rt); // whatever it was, pop it 738 } else if (rt == T_INT || is_subword_type(rt)) { 739 // Nothing. These cases are handled in lambda form bytecode. 740 assert(ct == T_INT || is_subword_type(ct), "must match: rt=%s, ct=%s", type2name(rt), type2name(ct)); 741 } else if (is_reference_type(rt)) { 742 assert(is_reference_type(ct), "rt=%s, ct=%s", type2name(rt), type2name(ct)); 743 if (ctype->is_loaded()) { 744 const TypeOopPtr* arg_type = TypeOopPtr::make_from_klass(rtype->as_klass()); 745 const Type* sig_type = TypeOopPtr::make_from_klass(ctype->as_klass()); 746 if (arg_type != nullptr && !arg_type->higher_equal(sig_type)) { 747 Node* retnode = pop(); 748 Node* cast_obj = _gvn.transform(new CheckCastPPNode(control(), retnode, sig_type)); 749 push(cast_obj); 750 } 751 } 752 } else { 753 assert(rt == ct, "unexpected mismatch: rt=%s, ct=%s", type2name(rt), type2name(ct)); 754 // push a zero; it's better than getting an oop/int mismatch 755 pop_node(rt); 756 Node* retnode = zerocon(ct); 757 push_node(ct, retnode); 758 } 759 // Now that the value is well-behaved, continue with the call-site type. 760 rtype = ctype; 761 } 762 } else { 763 // Symbolic resolution enforces the types to be the same. 764 // NOTE: We must relax the assert for unloaded types because two 765 // different ciType instances of the same unloaded class type 766 // can appear to be "loaded" by different loaders (depending on 767 // the accessing class). 768 assert(!rtype->is_loaded() || !ctype->is_loaded() || rtype == ctype, 769 "mismatched return types: rtype=%s, ctype=%s", rtype->name(), ctype->name()); 770 } 771 772 // If the return type of the method is not loaded, assert that the 773 // value we got is a null. Otherwise, we need to recompile. 774 if (!rtype->is_loaded()) { 775 if (PrintOpto && (Verbose || WizardMode)) { 776 method()->print_name(); tty->print_cr(" asserting nullness of result at bci: %d", bci()); 777 cg->method()->print_name(); tty->cr(); 778 } 779 if (C->log() != nullptr) { 780 C->log()->elem("assert_null reason='return' klass='%d'", 781 C->log()->identify(rtype)); 782 } 783 // If there is going to be a trap, put it at the next bytecode: 784 set_bci(iter().next_bci()); 785 null_assert(peek()); 786 set_bci(iter().cur_bci()); // put it back 787 } 788 BasicType ct = ctype->basic_type(); 789 if (is_reference_type(ct)) { 790 record_profiled_return_for_speculation(); 791 } 792 } 793 794 // Restart record of parsing work after possible inlining of call 795 #ifndef PRODUCT 796 parse_histogram()->set_initial_state(bc()); 797 #endif 798 } 799 800 //---------------------------catch_call_exceptions----------------------------- 801 // Put a Catch and CatchProj nodes behind a just-created call. 802 // Send their caught exceptions to the proper handler. 803 // This may be used after a call to the rethrow VM stub, 804 // when it is needed to process unloaded exception classes. 805 void Parse::catch_call_exceptions(ciExceptionHandlerStream& handlers) { 806 // Exceptions are delivered through this channel: 807 Node* i_o = this->i_o(); 808 809 // Add a CatchNode. 810 Arena tmp_mem{mtCompiler}; 811 GrowableArray<int> bcis(&tmp_mem, 8, 0, -1); 812 GrowableArray<const Type*> extypes(&tmp_mem, 8, 0, nullptr); 813 GrowableArray<int> saw_unloaded(&tmp_mem, 8, 0, -1); 814 815 bool default_handler = false; 816 for (; !handlers.is_done(); handlers.next()) { 817 ciExceptionHandler* h = handlers.handler(); 818 int h_bci = h->handler_bci(); 819 ciInstanceKlass* h_klass = h->is_catch_all() ? env()->Throwable_klass() : h->catch_klass(); 820 // Do not introduce unloaded exception types into the graph: 821 if (!h_klass->is_loaded()) { 822 if (saw_unloaded.contains(h_bci)) { 823 /* We've already seen an unloaded exception with h_bci, 824 so don't duplicate. Duplication will cause the CatchNode to be 825 unnecessarily large. See 4713716. */ 826 continue; 827 } else { 828 saw_unloaded.append(h_bci); 829 } 830 } 831 const Type* h_extype = TypeOopPtr::make_from_klass(h_klass); 832 // (We use make_from_klass because it respects UseUniqueSubclasses.) 833 h_extype = h_extype->join(TypeInstPtr::NOTNULL); 834 assert(!h_extype->empty(), "sanity"); 835 // Note: It's OK if the BCIs repeat themselves. 836 bcis.append(h_bci); 837 extypes.append(h_extype); 838 if (h_bci == -1) { 839 default_handler = true; 840 } 841 } 842 843 if (!default_handler) { 844 bcis.append(-1); 845 const Type* extype = TypeOopPtr::make_from_klass(env()->Throwable_klass())->is_instptr(); 846 extype = extype->join(TypeInstPtr::NOTNULL); 847 extypes.append(extype); 848 } 849 850 int len = bcis.length(); 851 CatchNode *cn = new CatchNode(control(), i_o, len+1); 852 Node *catch_ = _gvn.transform(cn); 853 854 // now branch with the exception state to each of the (potential) 855 // handlers 856 for(int i=0; i < len; i++) { 857 // Setup JVM state to enter the handler. 858 PreserveJVMState pjvms(this); 859 // Locals are just copied from before the call. 860 // Get control from the CatchNode. 861 int handler_bci = bcis.at(i); 862 Node* ctrl = _gvn.transform( new CatchProjNode(catch_, i+1,handler_bci)); 863 // This handler cannot happen? 864 if (ctrl == top()) continue; 865 set_control(ctrl); 866 867 // Create exception oop 868 const TypeInstPtr* extype = extypes.at(i)->is_instptr(); 869 Node* ex_oop = _gvn.transform(new CreateExNode(extypes.at(i), ctrl, i_o)); 870 871 // Handle unloaded exception classes. 872 if (saw_unloaded.contains(handler_bci)) { 873 // An unloaded exception type is coming here. Do an uncommon trap. 874 #ifndef PRODUCT 875 // We do not expect the same handler bci to take both cold unloaded 876 // and hot loaded exceptions. But, watch for it. 877 if (PrintOpto && (Verbose || WizardMode) && extype->is_loaded()) { 878 tty->print("Warning: Handler @%d takes mixed loaded/unloaded exceptions in ", bci()); 879 method()->print_name(); tty->cr(); 880 } else if (PrintOpto && (Verbose || WizardMode)) { 881 tty->print("Bailing out on unloaded exception type "); 882 extype->instance_klass()->print_name(); 883 tty->print(" at bci:%d in ", bci()); 884 method()->print_name(); tty->cr(); 885 } 886 #endif 887 // Emit an uncommon trap instead of processing the block. 888 set_bci(handler_bci); 889 push_ex_oop(ex_oop); 890 uncommon_trap(Deoptimization::Reason_unloaded, 891 Deoptimization::Action_reinterpret, 892 extype->instance_klass(), "!loaded exception"); 893 set_bci(iter().cur_bci()); // put it back 894 continue; 895 } 896 897 // go to the exception handler 898 if (handler_bci < 0) { // merge with corresponding rethrow node 899 throw_to_exit(make_exception_state(ex_oop)); 900 } else { // Else jump to corresponding handle 901 push_ex_oop(ex_oop); // Clear stack and push just the oop. 902 merge_exception(handler_bci); 903 } 904 } 905 906 // The first CatchProj is for the normal return. 907 // (Note: If this is a call to rethrow_Java, this node goes dead.) 908 set_control(_gvn.transform( new CatchProjNode(catch_, CatchProjNode::fall_through_index, CatchProjNode::no_handler_bci))); 909 } 910 911 912 //----------------------------catch_inline_exceptions-------------------------- 913 // Handle all exceptions thrown by an inlined method or individual bytecode. 914 // Common case 1: we have no handler, so all exceptions merge right into 915 // the rethrow case. 916 // Case 2: we have some handlers, with loaded exception klasses that have 917 // no subklasses. We do a Deutsch-Schiffman style type-check on the incoming 918 // exception oop and branch to the handler directly. 919 // Case 3: We have some handlers with subklasses or are not loaded at 920 // compile-time. We have to call the runtime to resolve the exception. 921 // So we insert a RethrowCall and all the logic that goes with it. 922 void Parse::catch_inline_exceptions(SafePointNode* ex_map) { 923 // Caller is responsible for saving away the map for normal control flow! 924 assert(stopped(), "call set_map(nullptr) first"); 925 assert(method()->has_exception_handlers(), "don't come here w/o work to do"); 926 927 Node* ex_node = saved_ex_oop(ex_map); 928 if (ex_node == top()) { 929 // No action needed. 930 return; 931 } 932 const TypeInstPtr* ex_type = _gvn.type(ex_node)->isa_instptr(); 933 NOT_PRODUCT(if (ex_type==nullptr) tty->print_cr("*** Exception not InstPtr")); 934 if (ex_type == nullptr) 935 ex_type = TypeOopPtr::make_from_klass(env()->Throwable_klass())->is_instptr(); 936 937 // determine potential exception handlers 938 ciExceptionHandlerStream handlers(method(), bci(), 939 ex_type->instance_klass(), 940 ex_type->klass_is_exact()); 941 942 // Start executing from the given throw state. (Keep its stack, for now.) 943 // Get the exception oop as known at compile time. 944 ex_node = use_exception_state(ex_map); 945 946 // Get the exception oop klass from its header 947 Node* ex_klass_node = nullptr; 948 if (has_exception_handler() && !ex_type->klass_is_exact()) { 949 Node* p = basic_plus_adr( ex_node, ex_node, oopDesc::klass_offset_in_bytes()); 950 ex_klass_node = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), p, TypeInstPtr::KLASS, TypeInstKlassPtr::OBJECT)); 951 952 // Compute the exception klass a little more cleverly. 953 // Obvious solution is to simple do a LoadKlass from the 'ex_node'. 954 // However, if the ex_node is a PhiNode, I'm going to do a LoadKlass for 955 // each arm of the Phi. If I know something clever about the exceptions 956 // I'm loading the class from, I can replace the LoadKlass with the 957 // klass constant for the exception oop. 958 if (ex_node->is_Phi()) { 959 ex_klass_node = new PhiNode(ex_node->in(0), TypeInstKlassPtr::OBJECT); 960 for (uint i = 1; i < ex_node->req(); i++) { 961 Node* ex_in = ex_node->in(i); 962 if (ex_in == top() || ex_in == nullptr) { 963 // This path was not taken. 964 ex_klass_node->init_req(i, top()); 965 continue; 966 } 967 Node* p = basic_plus_adr(ex_in, ex_in, oopDesc::klass_offset_in_bytes()); 968 Node* k = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), p, TypeInstPtr::KLASS, TypeInstKlassPtr::OBJECT)); 969 ex_klass_node->init_req( i, k ); 970 } 971 ex_klass_node = _gvn.transform(ex_klass_node); 972 } 973 } 974 975 // Scan the exception table for applicable handlers. 976 // If none, we can call rethrow() and be done! 977 // If precise (loaded with no subklasses), insert a D.S. style 978 // pointer compare to the correct handler and loop back. 979 // If imprecise, switch to the Rethrow VM-call style handling. 980 981 int remaining = handlers.count_remaining(); 982 983 // iterate through all entries sequentially 984 for (;!handlers.is_done(); handlers.next()) { 985 ciExceptionHandler* handler = handlers.handler(); 986 987 if (handler->is_rethrow()) { 988 // If we fell off the end of the table without finding an imprecise 989 // exception klass (and without finding a generic handler) then we 990 // know this exception is not handled in this method. We just rethrow 991 // the exception into the caller. 992 throw_to_exit(make_exception_state(ex_node)); 993 return; 994 } 995 996 // exception handler bci range covers throw_bci => investigate further 997 int handler_bci = handler->handler_bci(); 998 999 if (remaining == 1) { 1000 push_ex_oop(ex_node); // Push exception oop for handler 1001 if (PrintOpto && WizardMode) { 1002 tty->print_cr(" Catching every inline exception bci:%d -> handler_bci:%d", bci(), handler_bci); 1003 } 1004 // If this is a backwards branch in the bytecodes, add safepoint 1005 maybe_add_safepoint(handler_bci); 1006 merge_exception(handler_bci); // jump to handler 1007 return; // No more handling to be done here! 1008 } 1009 1010 // Get the handler's klass 1011 ciInstanceKlass* klass = handler->catch_klass(); 1012 1013 if (!klass->is_loaded()) { // klass is not loaded? 1014 // fall through into catch_call_exceptions which will emit a 1015 // handler with an uncommon trap. 1016 break; 1017 } 1018 1019 if (klass->is_interface()) // should not happen, but... 1020 break; // bail out 1021 1022 // Check the type of the exception against the catch type 1023 const TypeKlassPtr *tk = TypeKlassPtr::make(klass); 1024 Node* con = _gvn.makecon(tk); 1025 Node* not_subtype_ctrl = gen_subtype_check(ex_klass_node, con); 1026 if (!stopped()) { 1027 PreserveJVMState pjvms(this); 1028 const TypeInstPtr* tinst = TypeOopPtr::make_from_klass_unique(klass)->cast_to_ptr_type(TypePtr::NotNull)->is_instptr(); 1029 assert(klass->has_subklass() || tinst->klass_is_exact(), "lost exactness"); 1030 Node* ex_oop = _gvn.transform(new CheckCastPPNode(control(), ex_node, tinst)); 1031 push_ex_oop(ex_oop); // Push exception oop for handler 1032 if (PrintOpto && WizardMode) { 1033 tty->print(" Catching inline exception bci:%d -> handler_bci:%d -- ", bci(), handler_bci); 1034 klass->print_name(); 1035 tty->cr(); 1036 } 1037 // If this is a backwards branch in the bytecodes, add safepoint 1038 maybe_add_safepoint(handler_bci); 1039 merge_exception(handler_bci); 1040 } 1041 set_control(not_subtype_ctrl); 1042 1043 // Come here if exception does not match handler. 1044 // Carry on with more handler checks. 1045 --remaining; 1046 } 1047 1048 assert(!stopped(), "you should return if you finish the chain"); 1049 1050 // Oops, need to call into the VM to resolve the klasses at runtime. 1051 // Note: This call must not deoptimize, since it is not a real at this bci! 1052 kill_dead_locals(); 1053 1054 make_runtime_call(RC_NO_LEAF | RC_MUST_THROW, 1055 OptoRuntime::rethrow_Type(), 1056 OptoRuntime::rethrow_stub(), 1057 nullptr, nullptr, 1058 ex_node); 1059 1060 // Rethrow is a pure call, no side effects, only a result. 1061 // The result cannot be allocated, so we use I_O 1062 1063 // Catch exceptions from the rethrow 1064 catch_call_exceptions(handlers); 1065 } 1066 1067 1068 // (Note: Moved add_debug_info into GraphKit::add_safepoint_edges.) 1069 1070 1071 #ifndef PRODUCT 1072 void Parse::count_compiled_calls(bool at_method_entry, bool is_inline) { 1073 if( CountCompiledCalls ) { 1074 if( at_method_entry ) { 1075 // bump invocation counter if top method (for statistics) 1076 if (CountCompiledCalls && depth() == 1) { 1077 const TypePtr* addr_type = TypeMetadataPtr::make(method()); 1078 Node* adr1 = makecon(addr_type); 1079 Node* adr2 = basic_plus_adr(adr1, adr1, in_bytes(Method::compiled_invocation_counter_offset())); 1080 increment_counter(adr2); 1081 } 1082 } else if (is_inline) { 1083 switch (bc()) { 1084 case Bytecodes::_invokevirtual: increment_counter(SharedRuntime::nof_inlined_calls_addr()); break; 1085 case Bytecodes::_invokeinterface: increment_counter(SharedRuntime::nof_inlined_interface_calls_addr()); break; 1086 case Bytecodes::_invokestatic: 1087 case Bytecodes::_invokedynamic: 1088 case Bytecodes::_invokespecial: increment_counter(SharedRuntime::nof_inlined_static_calls_addr()); break; 1089 default: fatal("unexpected call bytecode"); 1090 } 1091 } else { 1092 switch (bc()) { 1093 case Bytecodes::_invokevirtual: increment_counter(SharedRuntime::nof_normal_calls_addr()); break; 1094 case Bytecodes::_invokeinterface: increment_counter(SharedRuntime::nof_interface_calls_addr()); break; 1095 case Bytecodes::_invokestatic: 1096 case Bytecodes::_invokedynamic: 1097 case Bytecodes::_invokespecial: increment_counter(SharedRuntime::nof_static_calls_addr()); break; 1098 default: fatal("unexpected call bytecode"); 1099 } 1100 } 1101 } 1102 } 1103 #endif //PRODUCT 1104 1105 1106 ciMethod* Compile::optimize_virtual_call(ciMethod* caller, ciInstanceKlass* klass, 1107 ciKlass* holder, ciMethod* callee, 1108 const TypeOopPtr* receiver_type, bool is_virtual, 1109 bool& call_does_dispatch, int& vtable_index, 1110 bool check_access) { 1111 // Set default values for out-parameters. 1112 call_does_dispatch = true; 1113 vtable_index = Method::invalid_vtable_index; 1114 1115 // Choose call strategy. 1116 ciMethod* optimized_virtual_method = optimize_inlining(caller, klass, holder, callee, 1117 receiver_type, check_access); 1118 1119 // Have the call been sufficiently improved such that it is no longer a virtual? 1120 if (optimized_virtual_method != nullptr) { 1121 callee = optimized_virtual_method; 1122 call_does_dispatch = false; 1123 } else if (!UseInlineCaches && is_virtual && callee->is_loaded()) { 1124 // We can make a vtable call at this site 1125 vtable_index = callee->resolve_vtable_index(caller->holder(), holder); 1126 } 1127 return callee; 1128 } 1129 1130 // Identify possible target method and inlining style 1131 ciMethod* Compile::optimize_inlining(ciMethod* caller, ciInstanceKlass* klass, ciKlass* holder, 1132 ciMethod* callee, const TypeOopPtr* receiver_type, 1133 bool check_access) { 1134 // only use for virtual or interface calls 1135 1136 // If it is obviously final, do not bother to call find_monomorphic_target, 1137 // because the class hierarchy checks are not needed, and may fail due to 1138 // incompletely loaded classes. Since we do our own class loading checks 1139 // in this module, we may confidently bind to any method. 1140 if (callee->can_be_statically_bound()) { 1141 return callee; 1142 } 1143 1144 if (receiver_type == nullptr) { 1145 return nullptr; // no receiver type info 1146 } 1147 1148 // Attempt to improve the receiver 1149 bool actual_receiver_is_exact = false; 1150 ciInstanceKlass* actual_receiver = klass; 1151 // Array methods are all inherited from Object, and are monomorphic. 1152 // finalize() call on array is not allowed. 1153 if (receiver_type->isa_aryptr() && 1154 callee->holder() == env()->Object_klass() && 1155 callee->name() != ciSymbols::finalize_method_name()) { 1156 return callee; 1157 } 1158 1159 // All other interesting cases are instance klasses. 1160 if (!receiver_type->isa_instptr()) { 1161 return nullptr; 1162 } 1163 1164 ciInstanceKlass* receiver_klass = receiver_type->is_instptr()->instance_klass(); 1165 if (receiver_klass->is_loaded() && receiver_klass->is_initialized() && !receiver_klass->is_interface() && 1166 (receiver_klass == actual_receiver || receiver_klass->is_subtype_of(actual_receiver))) { 1167 // ikl is a same or better type than the original actual_receiver, 1168 // e.g. static receiver from bytecodes. 1169 actual_receiver = receiver_klass; 1170 // Is the actual_receiver exact? 1171 actual_receiver_is_exact = receiver_type->klass_is_exact(); 1172 } 1173 1174 ciInstanceKlass* calling_klass = caller->holder(); 1175 ciMethod* cha_monomorphic_target = callee->find_monomorphic_target(calling_klass, klass, actual_receiver, check_access); 1176 1177 if (cha_monomorphic_target != nullptr) { 1178 // Hardwiring a virtual. 1179 assert(!callee->can_be_statically_bound(), "should have been handled earlier"); 1180 assert(!cha_monomorphic_target->is_abstract(), ""); 1181 if (!cha_monomorphic_target->can_be_statically_bound(actual_receiver)) { 1182 // If we inlined because CHA revealed only a single target method, 1183 // then we are dependent on that target method not getting overridden 1184 // by dynamic class loading. Be sure to test the "static" receiver 1185 // dest_method here, as opposed to the actual receiver, which may 1186 // falsely lead us to believe that the receiver is final or private. 1187 dependencies()->assert_unique_concrete_method(actual_receiver, cha_monomorphic_target, holder, callee); 1188 } 1189 return cha_monomorphic_target; 1190 } 1191 1192 // If the type is exact, we can still bind the method w/o a vcall. 1193 // (This case comes after CHA so we can see how much extra work it does.) 1194 if (actual_receiver_is_exact) { 1195 // In case of evolution, there is a dependence on every inlined method, since each 1196 // such method can be changed when its class is redefined. 1197 ciMethod* exact_method = callee->resolve_invoke(calling_klass, actual_receiver); 1198 if (exact_method != nullptr) { 1199 return exact_method; 1200 } 1201 } 1202 1203 return nullptr; 1204 }