1 /*
   2  * Copyright (c) 1998, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "ci/ciCallSite.hpp"
  26 #include "ci/ciMethodHandle.hpp"
  27 #include "ci/ciSymbols.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "compiler/compileBroker.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "interpreter/linkResolver.hpp"
  32 #include "logging/log.hpp"
  33 #include "logging/logLevel.hpp"
  34 #include "logging/logMessage.hpp"
  35 #include "logging/logStream.hpp"
  36 #include "oops/trainingData.hpp"
  37 #include "opto/addnode.hpp"
  38 #include "opto/callGenerator.hpp"
  39 #include "opto/castnode.hpp"
  40 #include "opto/cfgnode.hpp"
  41 #include "opto/mulnode.hpp"
  42 #include "opto/parse.hpp"
  43 #include "opto/rootnode.hpp"
  44 #include "opto/runtime.hpp"
  45 #include "opto/subnode.hpp"
  46 #include "prims/methodHandles.hpp"
  47 #include "runtime/sharedRuntime.hpp"
  48 #include "utilities/macros.hpp"
  49 #if INCLUDE_JFR
  50 #include "jfr/jfr.hpp"
  51 #endif
  52 
  53 static void print_trace_type_profile(outputStream* out, int depth, ciKlass* prof_klass, int site_count, int receiver_count,
  54                                      bool with_deco) {
  55   if (with_deco) {
  56     CompileTask::print_inline_indent(depth, out);
  57   }
  58   out->print(" \\-> TypeProfile (%d/%d counts) = ", receiver_count, site_count);
  59   prof_klass->name()->print_symbol_on(out);
  60   if (with_deco) {
  61     out->cr();
  62   }
  63 }
  64 
  65 static void trace_type_profile(Compile* C, ciMethod* method, JVMState* jvms,
  66                                ciMethod* prof_method, ciKlass* prof_klass, int site_count, int receiver_count) {
  67   int depth = jvms->depth() - 1;
  68   int bci = jvms->bci();
  69   if (TraceTypeProfile || C->print_inlining()) {
  70     if (!C->print_inlining()) {
  71       if (!PrintOpto && !PrintCompilation) {
  72         method->print_short_name();
  73         tty->cr();
  74       }
  75       CompileTask::print_inlining_tty(prof_method, depth, bci, InliningResult::SUCCESS);
  76       print_trace_type_profile(tty, depth, prof_klass, site_count, receiver_count, true);
  77     } else {
  78       auto stream = C->inline_printer()->record(method, jvms, InliningResult::SUCCESS);
  79       print_trace_type_profile(stream, depth, prof_klass, site_count, receiver_count, false);
  80     }
  81   }
  82 
  83   LogTarget(Debug, jit, inlining) lt;
  84   if (lt.is_enabled()) {
  85     LogStream ls(lt);
  86     print_trace_type_profile(&ls, depth, prof_klass, site_count, receiver_count, true);
  87   }
  88 }
  89 
  90 CallGenerator* Compile::call_generator(ciMethod* callee, int vtable_index, bool call_does_dispatch,
  91                                        JVMState* jvms, bool allow_inline,
  92                                        float prof_factor, ciKlass* speculative_receiver_type,
  93                                        bool allow_intrinsics) {
  94   assert(callee != nullptr, "failed method resolution");
  95 
  96   ciMethod*       caller      = jvms->method();
  97   int             bci         = jvms->bci();
  98   Bytecodes::Code bytecode    = caller->java_code_at_bci(bci);
  99   ciMethod*       orig_callee = caller->get_method_at_bci(bci);
 100 
 101   const bool is_virtual_or_interface = (bytecode == Bytecodes::_invokevirtual) ||
 102                                        (bytecode == Bytecodes::_invokeinterface) ||
 103                                        (orig_callee->intrinsic_id() == vmIntrinsics::_linkToVirtual) ||
 104                                        (orig_callee->intrinsic_id() == vmIntrinsics::_linkToInterface);
 105 
 106   const bool check_access = !orig_callee->is_method_handle_intrinsic(); // method handle intrinsics don't perform access checks
 107 
 108   callee->ensure_method_data(true);
 109 
 110   // Dtrace currently doesn't work unless all calls are vanilla
 111   if (env()->dtrace_method_probes()) {
 112     allow_inline = false;
 113   }
 114 
 115   // Note: When we get profiling during stage-1 compiles, we want to pull
 116   // from more specific profile data which pertains to this inlining.
 117   // Right now, ignore the information in jvms->caller(), and do method[bci].
 118   ciCallProfile profile = caller->call_profile_at_bci(bci);
 119 
 120   // See how many times this site has been invoked.
 121   int site_count = profile.count();
 122   int receiver_count = -1;
 123   if (call_does_dispatch && UseTypeProfile && profile.has_receiver(0)) {
 124     // Receivers in the profile structure are ordered by call counts
 125     // so that the most called (major) receiver is profile.receiver(0).
 126     receiver_count = profile.receiver_count(0);
 127   }
 128 
 129   CompileLog* log = this->log();
 130   if (log != nullptr) {
 131     int rid = (receiver_count >= 0)? log->identify(profile.receiver(0)): -1;
 132     int r2id = (rid != -1 && profile.has_receiver(1))? log->identify(profile.receiver(1)):-1;
 133     log->begin_elem("call method='%d' count='%d' prof_factor='%f'",
 134                     log->identify(callee), site_count, prof_factor);
 135     if (call_does_dispatch)  log->print(" virtual='1'");
 136     if (allow_inline)     log->print(" inline='1'");
 137     if (receiver_count >= 0) {
 138       log->print(" receiver='%d' receiver_count='%d'", rid, receiver_count);
 139       if (profile.has_receiver(1)) {
 140         log->print(" receiver2='%d' receiver2_count='%d'", r2id, profile.receiver_count(1));
 141       }
 142     }
 143     if (callee->is_method_handle_intrinsic()) {
 144       log->print(" method_handle_intrinsic='1'");
 145     }
 146     log->end_elem();
 147   }
 148 
 149   // Special case the handling of certain common, profitable library
 150   // methods.  If these methods are replaced with specialized code,
 151   // then we return it as the inlined version of the call.
 152   CallGenerator* cg_intrinsic = nullptr;
 153   if (allow_inline && allow_intrinsics) {
 154     CallGenerator* cg = find_intrinsic(callee, call_does_dispatch);
 155     if (cg != nullptr) {
 156       if (cg->is_predicated()) {
 157         // Code without intrinsic but, hopefully, inlined.
 158         CallGenerator* inline_cg = this->call_generator(callee,
 159               vtable_index, call_does_dispatch, jvms, allow_inline, prof_factor, speculative_receiver_type, false);
 160         if (inline_cg != nullptr) {
 161           cg = CallGenerator::for_predicated_intrinsic(cg, inline_cg);
 162         }
 163       }
 164 
 165       // If intrinsic does the virtual dispatch, we try to use the type profile
 166       // first, and hopefully inline it as the regular virtual call below.
 167       // We will retry the intrinsic if nothing had claimed it afterwards.
 168       if (cg->does_virtual_dispatch()) {
 169         cg_intrinsic = cg;
 170         cg = nullptr;
 171       } else if (IncrementalInline && should_delay_vector_inlining(callee, jvms)) {
 172         return CallGenerator::for_late_inline(callee, cg);
 173       } else {
 174         return cg;
 175       }
 176     }
 177   }
 178 
 179   // Do method handle calls.
 180   // NOTE: This must happen before normal inlining logic below since
 181   // MethodHandle.invoke* are native methods which obviously don't
 182   // have bytecodes and so normal inlining fails.
 183   if (callee->is_method_handle_intrinsic()) {
 184     CallGenerator* cg = CallGenerator::for_method_handle_call(jvms, caller, callee, allow_inline);
 185     return cg;
 186   }
 187 
 188   // Attempt to inline...
 189   if (allow_inline) {
 190     // The profile data is only partly attributable to this caller,
 191     // scale back the call site information.
 192     float past_uses = jvms->method()->scale_count(site_count, prof_factor);
 193     // This is the number of times we expect the call code to be used.
 194     float expected_uses = past_uses;
 195 
 196     // Try inlining a bytecoded method:
 197     if (!call_does_dispatch) {
 198       InlineTree* ilt = InlineTree::find_subtree_from_root(this->ilt(), jvms->caller(), jvms->method());
 199       bool should_delay = C->should_delay_inlining();
 200       if (ilt->ok_to_inline(callee, jvms, profile, should_delay)) {
 201         CallGenerator* cg = CallGenerator::for_inline(callee, expected_uses);
 202         // For optimized virtual calls assert at runtime that receiver object
 203         // is a subtype of the inlined method holder. CHA can report a method
 204         // as a unique target under an abstract method, but receiver type
 205         // sometimes has a broader type. Similar scenario is possible with
 206         // default methods when type system loses information about implemented
 207         // interfaces.
 208         if (cg != nullptr && is_virtual_or_interface && !callee->is_static()) {
 209           CallGenerator* trap_cg = CallGenerator::for_uncommon_trap(callee,
 210               Deoptimization::Reason_receiver_constraint, Deoptimization::Action_none);
 211 
 212           cg = CallGenerator::for_guarded_call(callee->holder(), trap_cg, cg);
 213         }
 214         if (cg != nullptr) {
 215           // Delay the inlining of this method to give us the
 216           // opportunity to perform some high level optimizations
 217           // first.
 218           if (should_delay) {
 219             return CallGenerator::for_late_inline(callee, cg);
 220           } else if (should_delay_string_inlining(callee, jvms)) {
 221             return CallGenerator::for_string_late_inline(callee, cg);
 222           } else if (should_delay_boxing_inlining(callee, jvms)) {
 223             return CallGenerator::for_boxing_late_inline(callee, cg);
 224           } else if (should_delay_vector_reboxing_inlining(callee, jvms)) {
 225             return CallGenerator::for_vector_reboxing_late_inline(callee, cg);
 226           } else {
 227             return cg;
 228           }
 229         }
 230       }
 231     }
 232 
 233     // Try using the type profile.
 234     if (call_does_dispatch && site_count > 0 && UseTypeProfile) {
 235       // The major receiver's count >= TypeProfileMajorReceiverPercent of site_count.
 236       bool have_major_receiver = profile.has_receiver(0) && (100.*profile.receiver_prob(0) >= (float)TypeProfileMajorReceiverPercent);
 237       ciMethod* receiver_method = nullptr;
 238 
 239       int morphism = profile.morphism();
 240       if (speculative_receiver_type != nullptr) {
 241         if (!too_many_traps_or_recompiles(caller, bci, Deoptimization::Reason_speculate_class_check)) {
 242           // We have a speculative type, we should be able to resolve
 243           // the call. We do that before looking at the profiling at
 244           // this invoke because it may lead to bimorphic inlining which
 245           // a speculative type should help us avoid.
 246           receiver_method = callee->resolve_invoke(jvms->method()->holder(),
 247                                                    speculative_receiver_type,
 248                                                    check_access);
 249           if (receiver_method == nullptr) {
 250             speculative_receiver_type = nullptr;
 251           } else {
 252             morphism = 1;
 253           }
 254         } else {
 255           // speculation failed before. Use profiling at the call
 256           // (could allow bimorphic inlining for instance).
 257           speculative_receiver_type = nullptr;
 258         }
 259       }
 260       if (receiver_method == nullptr &&
 261           (have_major_receiver || morphism == 1 ||
 262            (morphism == 2 && UseBimorphicInlining))) {
 263         // receiver_method = profile.method();
 264         // Profiles do not suggest methods now.  Look it up in the major receiver.
 265         assert(check_access, "required");
 266         receiver_method = callee->resolve_invoke(jvms->method()->holder(),
 267                                                  profile.receiver(0));
 268       }
 269       if (receiver_method != nullptr) {
 270         // The single majority receiver sufficiently outweighs the minority.
 271         CallGenerator* hit_cg = this->call_generator(receiver_method,
 272               vtable_index, !call_does_dispatch, jvms, allow_inline, prof_factor);
 273         if (hit_cg != nullptr) {
 274           // Look up second receiver.
 275           CallGenerator* next_hit_cg = nullptr;
 276           ciMethod* next_receiver_method = nullptr;
 277           if (morphism == 2 && UseBimorphicInlining) {
 278             assert(check_access, "required");
 279             next_receiver_method = callee->resolve_invoke(jvms->method()->holder(),
 280                                                           profile.receiver(1));
 281             if (next_receiver_method != nullptr) {
 282               next_hit_cg = this->call_generator(next_receiver_method,
 283                                   vtable_index, !call_does_dispatch, jvms,
 284                                   allow_inline, prof_factor);
 285               if (next_hit_cg != nullptr && !next_hit_cg->is_inline() &&
 286                   have_major_receiver && UseOnlyInlinedBimorphic) {
 287                   // Skip if we can't inline second receiver's method
 288                   next_hit_cg = nullptr;
 289               }
 290             }
 291           }
 292           CallGenerator* miss_cg;
 293           Deoptimization::DeoptReason reason = (morphism == 2
 294                                                ? Deoptimization::Reason_bimorphic
 295                                                : Deoptimization::reason_class_check(speculative_receiver_type != nullptr));
 296           if ((morphism == 1 || (morphism == 2 && next_hit_cg != nullptr)) &&
 297               !too_many_traps_or_recompiles(caller, bci, reason)
 298              ) {
 299             // Generate uncommon trap for class check failure path
 300             // in case of monomorphic or bimorphic virtual call site.
 301             miss_cg = CallGenerator::for_uncommon_trap(callee, reason,
 302                         Deoptimization::Action_maybe_recompile);
 303           } else {
 304             // Generate virtual call for class check failure path
 305             // in case of polymorphic virtual call site.
 306             miss_cg = (IncrementalInlineVirtual ? CallGenerator::for_late_inline_virtual(callee, vtable_index, prof_factor)
 307                                                 : CallGenerator::for_virtual_call(callee, vtable_index));
 308           }
 309           if (miss_cg != nullptr) {
 310             if (next_hit_cg != nullptr) {
 311               assert(speculative_receiver_type == nullptr, "shouldn't end up here if we used speculation");
 312               trace_type_profile(C, jvms->method(), jvms, next_receiver_method, profile.receiver(1), site_count, profile.receiver_count(1));
 313               // We don't need to record dependency on a receiver here and below.
 314               // Whenever we inline, the dependency is added by Parse::Parse().
 315               miss_cg = CallGenerator::for_predicted_call(profile.receiver(1), miss_cg, next_hit_cg, PROB_MAX);
 316             }
 317             if (miss_cg != nullptr) {
 318               ciKlass* k = speculative_receiver_type != nullptr ? speculative_receiver_type : profile.receiver(0);
 319               trace_type_profile(C, jvms->method(), jvms, receiver_method, k, site_count, receiver_count);
 320               float hit_prob = speculative_receiver_type != nullptr ? 1.0 : profile.receiver_prob(0);
 321               CallGenerator* cg = CallGenerator::for_predicted_call(k, miss_cg, hit_cg, hit_prob);
 322               if (cg != nullptr) {
 323                 return cg;
 324               }
 325             }
 326           }
 327         }
 328       }
 329     }
 330 
 331     // If there is only one implementor of this interface then we
 332     // may be able to bind this invoke directly to the implementing
 333     // klass but we need both a dependence on the single interface
 334     // and on the method we bind to. Additionally since all we know
 335     // about the receiver type is that it's supposed to implement the
 336     // interface we have to insert a check that it's the class we
 337     // expect.  Interface types are not checked by the verifier so
 338     // they are roughly equivalent to Object.
 339     // The number of implementors for declared_interface is less or
 340     // equal to the number of implementors for target->holder() so
 341     // if number of implementors of target->holder() == 1 then
 342     // number of implementors for decl_interface is 0 or 1. If
 343     // it's 0 then no class implements decl_interface and there's
 344     // no point in inlining.
 345     if (call_does_dispatch && bytecode == Bytecodes::_invokeinterface) {
 346       ciInstanceKlass* declared_interface =
 347           caller->get_declared_method_holder_at_bci(bci)->as_instance_klass();
 348       ciInstanceKlass* singleton = declared_interface->unique_implementor();
 349 
 350       if (singleton != nullptr) {
 351         assert(singleton != declared_interface, "not a unique implementor");
 352 
 353         assert(check_access, "required");
 354         ciMethod* cha_monomorphic_target =
 355             callee->find_monomorphic_target(caller->holder(), declared_interface, singleton);
 356 
 357         if (cha_monomorphic_target != nullptr &&
 358             cha_monomorphic_target->holder() != env()->Object_klass()) { // subtype check against Object is useless
 359           ciKlass* holder = cha_monomorphic_target->holder();
 360 
 361           // Try to inline the method found by CHA. Inlined method is guarded by the type check.
 362           CallGenerator* hit_cg = call_generator(cha_monomorphic_target,
 363               vtable_index, !call_does_dispatch, jvms, allow_inline, prof_factor);
 364 
 365           // Deoptimize on type check fail. The interpreter will throw ICCE for us.
 366           CallGenerator* miss_cg = CallGenerator::for_uncommon_trap(callee,
 367               Deoptimization::Reason_class_check, Deoptimization::Action_none);
 368 
 369           ciKlass* constraint = (holder->is_subclass_of(singleton) ? holder : singleton); // avoid upcasts
 370           CallGenerator* cg = CallGenerator::for_guarded_call(constraint, miss_cg, hit_cg);
 371           if (hit_cg != nullptr && cg != nullptr) {
 372             dependencies()->assert_unique_implementor(declared_interface, singleton);
 373             dependencies()->assert_unique_concrete_method(declared_interface, cha_monomorphic_target, declared_interface, callee);
 374             return cg;
 375           }
 376         }
 377       }
 378     } // call_does_dispatch && bytecode == Bytecodes::_invokeinterface
 379 
 380     // Nothing claimed the intrinsic, we go with straight-forward inlining
 381     // for already discovered intrinsic.
 382     if (allow_intrinsics && cg_intrinsic != nullptr) {
 383       assert(cg_intrinsic->does_virtual_dispatch(), "sanity");
 384       return cg_intrinsic;
 385     }
 386   } // allow_inline
 387 
 388   // There was no special inlining tactic, or it bailed out.
 389   // Use a more generic tactic, like a simple call.
 390   if (call_does_dispatch) {
 391     const char* msg = "virtual call";
 392     C->inline_printer()->record(callee, jvms, InliningResult::FAILURE, msg);
 393     C->log_inline_failure(msg);
 394     if (IncrementalInlineVirtual && allow_inline) {
 395       return CallGenerator::for_late_inline_virtual(callee, vtable_index, prof_factor); // attempt to inline through virtual call later
 396     } else {
 397       return CallGenerator::for_virtual_call(callee, vtable_index);
 398     }
 399   } else {
 400     // Class Hierarchy Analysis or Type Profile reveals a unique target, or it is a static or special call.
 401     CallGenerator* cg = CallGenerator::for_direct_call(callee, should_delay_inlining(callee, jvms));
 402     // For optimized virtual calls assert at runtime that receiver object
 403     // is a subtype of the method holder.
 404     if (cg != nullptr && is_virtual_or_interface && !callee->is_static()) {
 405       CallGenerator* trap_cg = CallGenerator::for_uncommon_trap(callee,
 406           Deoptimization::Reason_receiver_constraint, Deoptimization::Action_none);
 407       cg = CallGenerator::for_guarded_call(callee->holder(), trap_cg, cg);
 408     }
 409     return cg;
 410   }
 411 }
 412 
 413 // Return true for methods that shouldn't be inlined early so that
 414 // they are easier to analyze and optimize as intrinsics.
 415 bool Compile::should_delay_string_inlining(ciMethod* call_method, JVMState* jvms) {
 416   if (has_stringbuilder()) {
 417 
 418     if ((call_method->holder() == C->env()->StringBuilder_klass() ||
 419          call_method->holder() == C->env()->StringBuffer_klass()) &&
 420         (jvms->method()->holder() == C->env()->StringBuilder_klass() ||
 421          jvms->method()->holder() == C->env()->StringBuffer_klass())) {
 422       // Delay SB calls only when called from non-SB code
 423       return false;
 424     }
 425 
 426     switch (call_method->intrinsic_id()) {
 427       case vmIntrinsics::_StringBuilder_void:
 428       case vmIntrinsics::_StringBuilder_int:
 429       case vmIntrinsics::_StringBuilder_String:
 430       case vmIntrinsics::_StringBuilder_append_char:
 431       case vmIntrinsics::_StringBuilder_append_int:
 432       case vmIntrinsics::_StringBuilder_append_String:
 433       case vmIntrinsics::_StringBuilder_toString:
 434       case vmIntrinsics::_StringBuffer_void:
 435       case vmIntrinsics::_StringBuffer_int:
 436       case vmIntrinsics::_StringBuffer_String:
 437       case vmIntrinsics::_StringBuffer_append_char:
 438       case vmIntrinsics::_StringBuffer_append_int:
 439       case vmIntrinsics::_StringBuffer_append_String:
 440       case vmIntrinsics::_StringBuffer_toString:
 441       case vmIntrinsics::_Integer_toString:
 442         return true;
 443 
 444       case vmIntrinsics::_String_String:
 445         {
 446           Node* receiver = jvms->map()->in(jvms->argoff() + 1);
 447           if (receiver->is_Proj() && receiver->in(0)->is_CallStaticJava()) {
 448             CallStaticJavaNode* csj = receiver->in(0)->as_CallStaticJava();
 449             ciMethod* m = csj->method();
 450             if (m != nullptr &&
 451                 (m->intrinsic_id() == vmIntrinsics::_StringBuffer_toString ||
 452                  m->intrinsic_id() == vmIntrinsics::_StringBuilder_toString))
 453               // Delay String.<init>(new SB())
 454               return true;
 455           }
 456           return false;
 457         }
 458 
 459       default:
 460         return false;
 461     }
 462   }
 463   return false;
 464 }
 465 
 466 bool Compile::should_delay_boxing_inlining(ciMethod* call_method, JVMState* jvms) {
 467   if (eliminate_boxing() && call_method->is_boxing_method()) {
 468     set_has_boxed_value(true);
 469     return aggressive_unboxing();
 470   }
 471   return false;
 472 }
 473 
 474 bool Compile::should_delay_vector_inlining(ciMethod* call_method, JVMState* jvms) {
 475   return EnableVectorSupport && call_method->is_vector_method();
 476 }
 477 
 478 bool Compile::should_delay_vector_reboxing_inlining(ciMethod* call_method, JVMState* jvms) {
 479   return EnableVectorSupport && (call_method->intrinsic_id() == vmIntrinsics::_VectorRebox);
 480 }
 481 
 482 // uncommon-trap call-sites where callee is unloaded, uninitialized or will not link
 483 bool Parse::can_not_compile_call_site(ciMethod *dest_method, ciInstanceKlass* klass) {
 484   // Additional inputs to consider...
 485   // bc      = bc()
 486   // caller  = method()
 487   // iter().get_method_holder_index()
 488   assert( dest_method->is_loaded(), "ciTypeFlow should not let us get here" );
 489   // Interface classes can be loaded & linked and never get around to
 490   // being initialized.  Uncommon-trap for not-initialized static or
 491   // v-calls.  Let interface calls happen.
 492   ciInstanceKlass* holder_klass = dest_method->holder();
 493   if (!holder_klass->is_being_initialized() &&
 494       !holder_klass->is_initialized() &&
 495       !holder_klass->is_interface()) {
 496     if (C->env()->task()->is_precompile()) {
 497       ResourceMark rm;
 498       log_debug(precompile)("Emitting uncommon trap (cannot compile call site) in AOT code for %s", holder_klass->name()->as_klass_external_name());
 499     }
 500     uncommon_trap(Deoptimization::Reason_uninitialized,
 501                   Deoptimization::Action_reinterpret,
 502                   holder_klass);
 503     return true;
 504   }
 505 
 506   assert(dest_method->is_loaded(), "dest_method: typeflow responsibility");
 507   return false;
 508 }
 509 
 510 #ifdef ASSERT
 511 static bool check_call_consistency(JVMState* jvms, CallGenerator* cg) {
 512   ciMethod* symbolic_info = jvms->method()->get_method_at_bci(jvms->bci());
 513   ciMethod* resolved_method = cg->method();
 514   if (!ciMethod::is_consistent_info(symbolic_info, resolved_method)) {
 515     tty->print_cr("JVMS:");
 516     jvms->dump();
 517     tty->print_cr("Bytecode info:");
 518     jvms->method()->get_method_at_bci(jvms->bci())->print(); tty->cr();
 519     tty->print_cr("Resolved method:");
 520     cg->method()->print(); tty->cr();
 521     return false;
 522   }
 523   return true;
 524 }
 525 #endif // ASSERT
 526 
 527 //------------------------------do_call----------------------------------------
 528 // Handle your basic call.  Inline if we can & want to, else just setup call.
 529 void Parse::do_call() {
 530   // It's likely we are going to add debug info soon.
 531   // Also, if we inline a guy who eventually needs debug info for this JVMS,
 532   // our contribution to it is cleaned up right here.
 533   kill_dead_locals();
 534 
 535   // Set frequently used booleans
 536   const bool is_virtual = bc() == Bytecodes::_invokevirtual;
 537   const bool is_virtual_or_interface = is_virtual || bc() == Bytecodes::_invokeinterface;
 538   const bool has_receiver = Bytecodes::has_receiver(bc());
 539 
 540   // Find target being called
 541   bool             will_link;
 542   ciSignature*     declared_signature = nullptr;
 543   ciMethod*        orig_callee  = iter().get_method(will_link, &declared_signature);  // callee in the bytecode
 544   ciInstanceKlass* holder_klass = orig_callee->holder();
 545   ciKlass*         holder       = iter().get_declared_method_holder();
 546   ciInstanceKlass* klass = ciEnv::get_instance_klass_for_declared_method_holder(holder);
 547   assert(declared_signature != nullptr, "cannot be null");
 548   JFR_ONLY(Jfr::on_resolution(this, holder, orig_callee);)
 549 
 550   // Bump max node limit for JSR292 users
 551   if (bc() == Bytecodes::_invokedynamic || orig_callee->is_method_handle_intrinsic()) {
 552     C->set_max_node_limit(3*MaxNodeLimit);
 553   }
 554 
 555   // uncommon-trap when callee is unloaded, uninitialized or will not link
 556   // bailout when too many arguments for register representation
 557   if (!will_link || can_not_compile_call_site(orig_callee, klass)) {
 558     if (PrintOpto && (Verbose || WizardMode)) {
 559       method()->print_name(); tty->print_cr(" can not compile call at bci %d to:", bci());
 560       orig_callee->print_name(); tty->cr();
 561     }
 562     return;
 563   }
 564   assert(holder_klass->is_loaded(), "");
 565   //assert((bc_callee->is_static() || is_invokedynamic) == !has_receiver , "must match bc");  // XXX invokehandle (cur_bc_raw)
 566   // Note: this takes into account invokeinterface of methods declared in java/lang/Object,
 567   // which should be invokevirtuals but according to the VM spec may be invokeinterfaces
 568   assert(holder_klass->is_interface() || holder_klass->super() == nullptr || (bc() != Bytecodes::_invokeinterface), "must match bc");
 569   // Note:  In the absence of miranda methods, an abstract class K can perform
 570   // an invokevirtual directly on an interface method I.m if K implements I.
 571 
 572   // orig_callee is the resolved callee which's signature includes the
 573   // appendix argument.
 574   const int nargs = orig_callee->arg_size();
 575   const bool is_signature_polymorphic = MethodHandles::is_signature_polymorphic(orig_callee->intrinsic_id());
 576 
 577   // Push appendix argument (MethodType, CallSite, etc.), if one.
 578   if (iter().has_appendix()) {
 579     ciObject* appendix_arg = iter().get_appendix();
 580     const TypeOopPtr* appendix_arg_type = TypeOopPtr::make_from_constant(appendix_arg, /* require_const= */ true);
 581     Node* appendix_arg_node = _gvn.makecon(appendix_arg_type);
 582     push(appendix_arg_node);
 583   }
 584 
 585   // ---------------------
 586   // Does Class Hierarchy Analysis reveal only a single target of a v-call?
 587   // Then we may inline or make a static call, but become dependent on there being only 1 target.
 588   // Does the call-site type profile reveal only one receiver?
 589   // Then we may introduce a run-time check and inline on the path where it succeeds.
 590   // The other path may uncommon_trap, check for another receiver, or do a v-call.
 591 
 592   // Try to get the most accurate receiver type
 593   ciMethod* callee             = orig_callee;
 594   int       vtable_index       = Method::invalid_vtable_index;
 595   bool      call_does_dispatch = false;
 596 
 597   // Speculative type of the receiver if any
 598   ciKlass* speculative_receiver_type = nullptr;
 599   if (is_virtual_or_interface) {
 600     Node* receiver_node             = stack(sp() - nargs);
 601     const TypeOopPtr* receiver_type = _gvn.type(receiver_node)->isa_oopptr();
 602     // call_does_dispatch and vtable_index are out-parameters.  They might be changed.
 603     // For arrays, klass below is Object. When vtable calls are used,
 604     // resolving the call with Object would allow an illegal call to
 605     // finalize() on an array. We use holder instead: illegal calls to
 606     // finalize() won't be compiled as vtable calls (IC call
 607     // resolution will catch the illegal call) and the few legal calls
 608     // on array types won't be either.
 609     callee = C->optimize_virtual_call(method(), klass, holder, orig_callee,
 610                                       receiver_type, is_virtual,
 611                                       call_does_dispatch, vtable_index);  // out-parameters
 612     speculative_receiver_type = receiver_type != nullptr ? receiver_type->speculative_type() : nullptr;
 613   }
 614 
 615   // Additional receiver subtype checks for interface calls via invokespecial or invokeinterface.
 616   ciKlass* receiver_constraint = nullptr;
 617   if (iter().cur_bc_raw() == Bytecodes::_invokespecial && !orig_callee->is_object_initializer()) {
 618     ciInstanceKlass* calling_klass = method()->holder();
 619     ciInstanceKlass* sender_klass = calling_klass;
 620     if (sender_klass->is_interface()) {
 621       receiver_constraint = sender_klass;
 622     }
 623   } else if (iter().cur_bc_raw() == Bytecodes::_invokeinterface && orig_callee->is_private()) {
 624     assert(holder->is_interface(), "How did we get a non-interface method here!");
 625     receiver_constraint = holder;
 626   }
 627 
 628   if (receiver_constraint != nullptr) {
 629     Node* receiver_node = stack(sp() - nargs);
 630     Node* cls_node = makecon(TypeKlassPtr::make(receiver_constraint, Type::trust_interfaces));
 631     Node* bad_type_ctrl = nullptr;
 632     Node* casted_receiver = gen_checkcast(receiver_node, cls_node, &bad_type_ctrl);
 633     if (bad_type_ctrl != nullptr) {
 634       PreserveJVMState pjvms(this);
 635       set_control(bad_type_ctrl);
 636       uncommon_trap(Deoptimization::Reason_class_check,
 637                     Deoptimization::Action_none);
 638     }
 639     if (stopped()) {
 640       return; // MUST uncommon-trap?
 641     }
 642     set_stack(sp() - nargs, casted_receiver);
 643   }
 644 
 645   // Note:  It's OK to try to inline a virtual call.
 646   // The call generator will not attempt to inline a polymorphic call
 647   // unless it knows how to optimize the receiver dispatch.
 648   bool try_inline = (C->do_inlining() || InlineAccessors);
 649 
 650   // ---------------------
 651   dec_sp(nargs);              // Temporarily pop args for JVM state of call
 652   JVMState* jvms = sync_jvms();
 653 
 654   // ---------------------
 655   // Decide call tactic.
 656   // This call checks with CHA, the interpreter profile, intrinsics table, etc.
 657   // It decides whether inlining is desirable or not.
 658   CallGenerator* cg = C->call_generator(callee, vtable_index, call_does_dispatch, jvms, try_inline, prof_factor(), speculative_receiver_type);
 659 
 660   // NOTE:  Don't use orig_callee and callee after this point!  Use cg->method() instead.
 661   orig_callee = callee = nullptr;
 662 
 663   // ---------------------
 664 
 665   // Feed profiling data for arguments to the type system so it can
 666   // propagate it as speculative types
 667   record_profiled_arguments_for_speculation(cg->method(), bc());
 668 
 669 #ifndef PRODUCT
 670   // bump global counters for calls
 671   count_compiled_calls(/*at_method_entry*/ false, cg->is_inline());
 672 
 673   // Record first part of parsing work for this call
 674   parse_histogram()->record_change();
 675 #endif // not PRODUCT
 676 
 677   assert(jvms == this->jvms(), "still operating on the right JVMS");
 678   assert(jvms_in_sync(),       "jvms must carry full info into CG");
 679 
 680   // save across call, for a subsequent cast_not_null.
 681   Node* receiver = has_receiver ? argument(0) : nullptr;
 682 
 683   // The extra CheckCastPPs for speculative types mess with PhaseStringOpts
 684   if (receiver != nullptr && !call_does_dispatch && !cg->is_string_late_inline()) {
 685     // Feed profiling data for a single receiver to the type system so
 686     // it can propagate it as a speculative type
 687     receiver = record_profiled_receiver_for_speculation(receiver);
 688   }
 689 
 690   JVMState* new_jvms = cg->generate(jvms);
 691   if (new_jvms == nullptr) {
 692     // When inlining attempt fails (e.g., too many arguments),
 693     // it may contaminate the current compile state, making it
 694     // impossible to pull back and try again.  Once we call
 695     // cg->generate(), we are committed.  If it fails, the whole
 696     // compilation task is compromised.
 697     if (failing())  return;
 698 
 699     // This can happen if a library intrinsic is available, but refuses
 700     // the call site, perhaps because it did not match a pattern the
 701     // intrinsic was expecting to optimize. Should always be possible to
 702     // get a normal java call that may inline in that case
 703     cg = C->call_generator(cg->method(), vtable_index, call_does_dispatch, jvms, try_inline, prof_factor(), speculative_receiver_type, /* allow_intrinsics= */ false);
 704     new_jvms = cg->generate(jvms);
 705     if (new_jvms == nullptr) {
 706       guarantee(failing(), "call failed to generate:  calls should work");
 707       return;
 708     }
 709   }
 710 
 711   if (cg->is_inline()) {
 712     // Accumulate has_loops estimate
 713     C->env()->notice_inlined_method(cg->method());
 714   }
 715 
 716   // Reset parser state from [new_]jvms, which now carries results of the call.
 717   // Return value (if any) is already pushed on the stack by the cg.
 718   add_exception_states_from(new_jvms);
 719   if (new_jvms->map()->control() == top()) {
 720     stop_and_kill_map();
 721   } else {
 722     assert(new_jvms->same_calls_as(jvms), "method/bci left unchanged");
 723     set_jvms(new_jvms);
 724   }
 725 
 726   assert(check_call_consistency(jvms, cg), "inconsistent info");
 727 
 728   if (!stopped()) {
 729     // This was some sort of virtual call, which did a null check for us.
 730     // Now we can assert receiver-not-null, on the normal return path.
 731     if (receiver != nullptr && cg->is_virtual()) {
 732       Node* cast = cast_not_null(receiver);
 733       // %%% assert(receiver == cast, "should already have cast the receiver");
 734     }
 735 
 736     ciType* rtype = cg->method()->return_type();
 737     ciType* ctype = declared_signature->return_type();
 738 
 739     if (Bytecodes::has_optional_appendix(iter().cur_bc_raw()) || is_signature_polymorphic) {
 740       // Be careful here with return types.
 741       if (ctype != rtype) {
 742         BasicType rt = rtype->basic_type();
 743         BasicType ct = ctype->basic_type();
 744         if (ct == T_VOID) {
 745           // It's OK for a method  to return a value that is discarded.
 746           // The discarding does not require any special action from the caller.
 747           // The Java code knows this, at VerifyType.isNullConversion.
 748           pop_node(rt);  // whatever it was, pop it
 749         } else if (rt == T_INT || is_subword_type(rt)) {
 750           // Nothing.  These cases are handled in lambda form bytecode.
 751           assert(ct == T_INT || is_subword_type(ct), "must match: rt=%s, ct=%s", type2name(rt), type2name(ct));
 752         } else if (is_reference_type(rt)) {
 753           assert(is_reference_type(ct), "rt=%s, ct=%s", type2name(rt), type2name(ct));
 754           if (ctype->is_loaded()) {
 755             const TypeOopPtr* arg_type = TypeOopPtr::make_from_klass(rtype->as_klass());
 756             const Type*       sig_type = TypeOopPtr::make_from_klass(ctype->as_klass());
 757             if (arg_type != nullptr && !arg_type->higher_equal(sig_type)) {
 758               Node* retnode = pop();
 759               Node* cast_obj = _gvn.transform(new CheckCastPPNode(control(), retnode, sig_type));
 760               push(cast_obj);
 761             }
 762           }
 763         } else {
 764           assert(rt == ct, "unexpected mismatch: rt=%s, ct=%s", type2name(rt), type2name(ct));
 765           // push a zero; it's better than getting an oop/int mismatch
 766           pop_node(rt);
 767           Node* retnode = zerocon(ct);
 768           push_node(ct, retnode);
 769         }
 770         // Now that the value is well-behaved, continue with the call-site type.
 771         rtype = ctype;
 772       }
 773     } else {
 774       // Symbolic resolution enforces the types to be the same.
 775       // NOTE: We must relax the assert for unloaded types because two
 776       // different ciType instances of the same unloaded class type
 777       // can appear to be "loaded" by different loaders (depending on
 778       // the accessing class).
 779       assert(!rtype->is_loaded() || !ctype->is_loaded() || rtype == ctype,
 780              "mismatched return types: rtype=%s, ctype=%s", rtype->name(), ctype->name());
 781     }
 782 
 783     // If the return type of the method is not loaded, assert that the
 784     // value we got is a null.  Otherwise, we need to recompile.
 785     if (!rtype->is_loaded()) {
 786       if (PrintOpto && (Verbose || WizardMode)) {
 787         method()->print_name(); tty->print_cr(" asserting nullness of result at bci: %d", bci());
 788         cg->method()->print_name(); tty->cr();
 789       }
 790       if (C->log() != nullptr) {
 791         C->log()->elem("assert_null reason='return' klass='%d'",
 792                        C->log()->identify(rtype));
 793       }
 794       // If there is going to be a trap, put it at the next bytecode:
 795       set_bci(iter().next_bci());
 796       null_assert(peek());
 797       set_bci(iter().cur_bci()); // put it back
 798     }
 799     BasicType ct = ctype->basic_type();
 800     if (is_reference_type(ct)) {
 801       record_profiled_return_for_speculation();
 802     }
 803   }
 804 
 805   // Restart record of parsing work after possible inlining of call
 806 #ifndef PRODUCT
 807   parse_histogram()->set_initial_state(bc());
 808 #endif
 809 }
 810 
 811 //---------------------------catch_call_exceptions-----------------------------
 812 // Put a Catch and CatchProj nodes behind a just-created call.
 813 // Send their caught exceptions to the proper handler.
 814 // This may be used after a call to the rethrow VM stub,
 815 // when it is needed to process unloaded exception classes.
 816 void Parse::catch_call_exceptions(ciExceptionHandlerStream& handlers) {
 817   // Exceptions are delivered through this channel:
 818   Node* i_o = this->i_o();
 819 
 820   // Add a CatchNode.
 821   Arena tmp_mem{mtCompiler};
 822   GrowableArray<int> bcis(&tmp_mem, 8, 0, -1);
 823   GrowableArray<const Type*> extypes(&tmp_mem, 8, 0, nullptr);
 824   GrowableArray<int> saw_unloaded(&tmp_mem, 8, 0, -1);
 825 
 826   bool default_handler = false;
 827   for (; !handlers.is_done(); handlers.next()) {
 828     ciExceptionHandler* h       = handlers.handler();
 829     int                 h_bci   = h->handler_bci();
 830     ciInstanceKlass*    h_klass = h->is_catch_all() ? env()->Throwable_klass() : h->catch_klass();
 831     // Do not introduce unloaded exception types into the graph:
 832     if (!h_klass->is_loaded()) {
 833       if (saw_unloaded.contains(h_bci)) {
 834         /* We've already seen an unloaded exception with h_bci,
 835            so don't duplicate. Duplication will cause the CatchNode to be
 836            unnecessarily large. See 4713716. */
 837         continue;
 838       } else {
 839         saw_unloaded.append(h_bci);
 840       }
 841     }
 842     const Type* h_extype = TypeOopPtr::make_from_klass(h_klass);
 843     // (We use make_from_klass because it respects UseUniqueSubclasses.)
 844     h_extype = h_extype->join(TypeInstPtr::NOTNULL);
 845     assert(!h_extype->empty(), "sanity");
 846     // Note: It's OK if the BCIs repeat themselves.
 847     bcis.append(h_bci);
 848     extypes.append(h_extype);
 849     if (h_bci == -1) {
 850       default_handler = true;
 851     }
 852   }
 853 
 854   if (!default_handler) {
 855     bcis.append(-1);
 856     const Type* extype = TypeOopPtr::make_from_klass(env()->Throwable_klass())->is_instptr();
 857     extype = extype->join(TypeInstPtr::NOTNULL);
 858     extypes.append(extype);
 859   }
 860 
 861   int len = bcis.length();
 862   CatchNode *cn = new CatchNode(control(), i_o, len+1);
 863   Node *catch_ = _gvn.transform(cn);
 864 
 865   // now branch with the exception state to each of the (potential)
 866   // handlers
 867   for(int i=0; i < len; i++) {
 868     // Setup JVM state to enter the handler.
 869     PreserveJVMState pjvms(this);
 870     // Locals are just copied from before the call.
 871     // Get control from the CatchNode.
 872     int handler_bci = bcis.at(i);
 873     Node* ctrl = _gvn.transform( new CatchProjNode(catch_, i+1,handler_bci));
 874     // This handler cannot happen?
 875     if (ctrl == top())  continue;
 876     set_control(ctrl);
 877 
 878     // Create exception oop
 879     const TypeInstPtr* extype = extypes.at(i)->is_instptr();
 880     Node* ex_oop = _gvn.transform(new CreateExNode(extypes.at(i), ctrl, i_o));
 881 
 882     // Handle unloaded exception classes.
 883     if (saw_unloaded.contains(handler_bci)) {
 884       // An unloaded exception type is coming here.  Do an uncommon trap.
 885 #ifndef PRODUCT
 886       // We do not expect the same handler bci to take both cold unloaded
 887       // and hot loaded exceptions.  But, watch for it.
 888       if (PrintOpto && (Verbose || WizardMode) && extype->is_loaded()) {
 889         tty->print("Warning: Handler @%d takes mixed loaded/unloaded exceptions in ", bci());
 890         method()->print_name(); tty->cr();
 891       } else if (PrintOpto && (Verbose || WizardMode)) {
 892         tty->print("Bailing out on unloaded exception type ");
 893         extype->instance_klass()->print_name();
 894         tty->print(" at bci:%d in ", bci());
 895         method()->print_name(); tty->cr();
 896       }
 897 #endif
 898       // Emit an uncommon trap instead of processing the block.
 899       set_bci(handler_bci);
 900       push_ex_oop(ex_oop);
 901       uncommon_trap(Deoptimization::Reason_unloaded,
 902                     Deoptimization::Action_reinterpret,
 903                     extype->instance_klass(), "!loaded exception");
 904       set_bci(iter().cur_bci()); // put it back
 905       continue;
 906     }
 907 
 908     // go to the exception handler
 909     if (handler_bci < 0) {     // merge with corresponding rethrow node
 910       throw_to_exit(make_exception_state(ex_oop));
 911     } else {                      // Else jump to corresponding handle
 912       push_ex_oop(ex_oop);        // Clear stack and push just the oop.
 913       merge_exception(handler_bci);
 914     }
 915   }
 916 
 917   // The first CatchProj is for the normal return.
 918   // (Note:  If this is a call to rethrow_Java, this node goes dead.)
 919   set_control(_gvn.transform( new CatchProjNode(catch_, CatchProjNode::fall_through_index, CatchProjNode::no_handler_bci)));
 920 }
 921 
 922 
 923 //----------------------------catch_inline_exceptions--------------------------
 924 // Handle all exceptions thrown by an inlined method or individual bytecode.
 925 // Common case 1: we have no handler, so all exceptions merge right into
 926 // the rethrow case.
 927 // Case 2: we have some handlers, with loaded exception klasses that have
 928 // no subklasses.  We do a Deutsch-Schiffman style type-check on the incoming
 929 // exception oop and branch to the handler directly.
 930 // Case 3: We have some handlers with subklasses or are not loaded at
 931 // compile-time.  We have to call the runtime to resolve the exception.
 932 // So we insert a RethrowCall and all the logic that goes with it.
 933 void Parse::catch_inline_exceptions(SafePointNode* ex_map) {
 934   // Caller is responsible for saving away the map for normal control flow!
 935   assert(stopped(), "call set_map(nullptr) first");
 936   assert(method()->has_exception_handlers(), "don't come here w/o work to do");
 937 
 938   Node* ex_node = saved_ex_oop(ex_map);
 939   if (ex_node == top()) {
 940     // No action needed.
 941     return;
 942   }
 943   const TypeInstPtr* ex_type = _gvn.type(ex_node)->isa_instptr();
 944   NOT_PRODUCT(if (ex_type==nullptr) tty->print_cr("*** Exception not InstPtr"));
 945   if (ex_type == nullptr)
 946     ex_type = TypeOopPtr::make_from_klass(env()->Throwable_klass())->is_instptr();
 947 
 948   // determine potential exception handlers
 949   ciExceptionHandlerStream handlers(method(), bci(),
 950                                     ex_type->instance_klass(),
 951                                     ex_type->klass_is_exact());
 952 
 953   // Start executing from the given throw state.  (Keep its stack, for now.)
 954   // Get the exception oop as known at compile time.
 955   ex_node = use_exception_state(ex_map);
 956 
 957   // Get the exception oop klass from its header
 958   Node* ex_klass_node = nullptr;
 959   if (has_exception_handler() && !ex_type->klass_is_exact()) {
 960     Node* p = basic_plus_adr( ex_node, ex_node, oopDesc::klass_offset_in_bytes());
 961     ex_klass_node = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), p, TypeInstPtr::KLASS, TypeInstKlassPtr::OBJECT));
 962 
 963     // Compute the exception klass a little more cleverly.
 964     // Obvious solution is to simple do a LoadKlass from the 'ex_node'.
 965     // However, if the ex_node is a PhiNode, I'm going to do a LoadKlass for
 966     // each arm of the Phi.  If I know something clever about the exceptions
 967     // I'm loading the class from, I can replace the LoadKlass with the
 968     // klass constant for the exception oop.
 969     if (ex_node->is_Phi()) {
 970       ex_klass_node = new PhiNode(ex_node->in(0), TypeInstKlassPtr::OBJECT);
 971       for (uint i = 1; i < ex_node->req(); i++) {
 972         Node* ex_in = ex_node->in(i);
 973         if (ex_in == top() || ex_in == nullptr) {
 974           // This path was not taken.
 975           ex_klass_node->init_req(i, top());
 976           continue;
 977         }
 978         Node* p = basic_plus_adr(ex_in, ex_in, oopDesc::klass_offset_in_bytes());
 979         Node* k = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), p, TypeInstPtr::KLASS, TypeInstKlassPtr::OBJECT));
 980         ex_klass_node->init_req( i, k );
 981       }
 982       ex_klass_node = _gvn.transform(ex_klass_node);
 983     }
 984   }
 985 
 986   // Scan the exception table for applicable handlers.
 987   // If none, we can call rethrow() and be done!
 988   // If precise (loaded with no subklasses), insert a D.S. style
 989   // pointer compare to the correct handler and loop back.
 990   // If imprecise, switch to the Rethrow VM-call style handling.
 991 
 992   int remaining = handlers.count_remaining();
 993 
 994   // iterate through all entries sequentially
 995   for (;!handlers.is_done(); handlers.next()) {
 996     ciExceptionHandler* handler = handlers.handler();
 997 
 998     if (handler->is_rethrow()) {
 999       // If we fell off the end of the table without finding an imprecise
1000       // exception klass (and without finding a generic handler) then we
1001       // know this exception is not handled in this method.  We just rethrow
1002       // the exception into the caller.
1003       throw_to_exit(make_exception_state(ex_node));
1004       return;
1005     }
1006 
1007     // exception handler bci range covers throw_bci => investigate further
1008     int handler_bci = handler->handler_bci();
1009 
1010     if (remaining == 1) {
1011       push_ex_oop(ex_node);        // Push exception oop for handler
1012       if (PrintOpto && WizardMode) {
1013         tty->print_cr("  Catching every inline exception bci:%d -> handler_bci:%d", bci(), handler_bci);
1014       }
1015       // If this is a backwards branch in the bytecodes, add safepoint
1016       maybe_add_safepoint(handler_bci);
1017       merge_exception(handler_bci); // jump to handler
1018       return;                   // No more handling to be done here!
1019     }
1020 
1021     // Get the handler's klass
1022     ciInstanceKlass* klass = handler->catch_klass();
1023 
1024     if (!klass->is_loaded()) {  // klass is not loaded?
1025       // fall through into catch_call_exceptions which will emit a
1026       // handler with an uncommon trap.
1027       break;
1028     }
1029 
1030     if (klass->is_interface())  // should not happen, but...
1031       break;                    // bail out
1032 
1033     // Check the type of the exception against the catch type
1034     const TypeKlassPtr *tk = TypeKlassPtr::make(klass);
1035     Node* con = _gvn.makecon(tk);
1036     Node* not_subtype_ctrl = gen_subtype_check(ex_klass_node, con);
1037     if (!stopped()) {
1038       PreserveJVMState pjvms(this);
1039       const TypeInstPtr* tinst = TypeOopPtr::make_from_klass_unique(klass)->cast_to_ptr_type(TypePtr::NotNull)->is_instptr();
1040       assert(klass->has_subklass() || tinst->klass_is_exact(), "lost exactness");
1041       Node* ex_oop = _gvn.transform(new CheckCastPPNode(control(), ex_node, tinst));
1042       push_ex_oop(ex_oop);      // Push exception oop for handler
1043       if (PrintOpto && WizardMode) {
1044         tty->print("  Catching inline exception bci:%d -> handler_bci:%d -- ", bci(), handler_bci);
1045         klass->print_name();
1046         tty->cr();
1047       }
1048       // If this is a backwards branch in the bytecodes, add safepoint
1049       maybe_add_safepoint(handler_bci);
1050       merge_exception(handler_bci);
1051     }
1052     set_control(not_subtype_ctrl);
1053 
1054     // Come here if exception does not match handler.
1055     // Carry on with more handler checks.
1056     --remaining;
1057   }
1058 
1059   assert(!stopped(), "you should return if you finish the chain");
1060 
1061   // Oops, need to call into the VM to resolve the klasses at runtime.
1062   // Note:  This call must not deoptimize, since it is not a real at this bci!
1063   kill_dead_locals();
1064 
1065   make_runtime_call(RC_NO_LEAF | RC_MUST_THROW,
1066                     OptoRuntime::rethrow_Type(),
1067                     OptoRuntime::rethrow_stub(),
1068                     nullptr, nullptr,
1069                     ex_node);
1070 
1071   // Rethrow is a pure call, no side effects, only a result.
1072   // The result cannot be allocated, so we use I_O
1073 
1074   // Catch exceptions from the rethrow
1075   catch_call_exceptions(handlers);
1076 }
1077 
1078 
1079 // (Note:  Moved add_debug_info into GraphKit::add_safepoint_edges.)
1080 
1081 
1082 #ifndef PRODUCT
1083 void Parse::count_compiled_calls(bool at_method_entry, bool is_inline) {
1084   if( CountCompiledCalls ) {
1085     if( at_method_entry ) {
1086       // bump invocation counter if top method (for statistics)
1087       if (CountCompiledCalls && depth() == 1) {
1088         const TypePtr* addr_type = TypeMetadataPtr::make(method());
1089         Node* adr1 = makecon(addr_type);
1090         Node* adr2 = basic_plus_adr(adr1, adr1, in_bytes(Method::compiled_invocation_counter_offset()));
1091         increment_counter(adr2);
1092       }
1093     } else if (is_inline) {
1094       switch (bc()) {
1095       case Bytecodes::_invokevirtual:   increment_counter(SharedRuntime::nof_inlined_calls_addr()); break;
1096       case Bytecodes::_invokeinterface: increment_counter(SharedRuntime::nof_inlined_interface_calls_addr()); break;
1097       case Bytecodes::_invokestatic:
1098       case Bytecodes::_invokedynamic:
1099       case Bytecodes::_invokespecial:   increment_counter(SharedRuntime::nof_inlined_static_calls_addr()); break;
1100       default: fatal("unexpected call bytecode");
1101       }
1102     } else {
1103       switch (bc()) {
1104       case Bytecodes::_invokevirtual:   increment_counter(SharedRuntime::nof_normal_calls_addr()); break;
1105       case Bytecodes::_invokeinterface: increment_counter(SharedRuntime::nof_interface_calls_addr()); break;
1106       case Bytecodes::_invokestatic:
1107       case Bytecodes::_invokedynamic:
1108       case Bytecodes::_invokespecial:   increment_counter(SharedRuntime::nof_static_calls_addr()); break;
1109       default: fatal("unexpected call bytecode");
1110       }
1111     }
1112   }
1113 }
1114 #endif //PRODUCT
1115 
1116 
1117 ciMethod* Compile::optimize_virtual_call(ciMethod* caller, ciInstanceKlass* klass,
1118                                          ciKlass* holder, ciMethod* callee,
1119                                          const TypeOopPtr* receiver_type, bool is_virtual,
1120                                          bool& call_does_dispatch, int& vtable_index,
1121                                          bool check_access) {
1122   // Set default values for out-parameters.
1123   call_does_dispatch = true;
1124   vtable_index       = Method::invalid_vtable_index;
1125 
1126   // Choose call strategy.
1127   ciMethod* optimized_virtual_method = optimize_inlining(caller, klass, holder, callee,
1128                                                          receiver_type, check_access);
1129 
1130   // Have the call been sufficiently improved such that it is no longer a virtual?
1131   if (optimized_virtual_method != nullptr) {
1132     callee             = optimized_virtual_method;
1133     call_does_dispatch = false;
1134   } else if (!UseInlineCaches && is_virtual && callee->is_loaded()) {
1135     // We can make a vtable call at this site
1136     vtable_index = callee->resolve_vtable_index(caller->holder(), holder);
1137   }
1138   return callee;
1139 }
1140 
1141 // Identify possible target method and inlining style
1142 ciMethod* Compile::optimize_inlining(ciMethod* caller, ciInstanceKlass* klass, ciKlass* holder,
1143                                      ciMethod* callee, const TypeOopPtr* receiver_type,
1144                                      bool check_access) {
1145   // only use for virtual or interface calls
1146 
1147   // If it is obviously final, do not bother to call find_monomorphic_target,
1148   // because the class hierarchy checks are not needed, and may fail due to
1149   // incompletely loaded classes.  Since we do our own class loading checks
1150   // in this module, we may confidently bind to any method.
1151   if (callee->can_be_statically_bound()) {
1152     return callee;
1153   }
1154 
1155   if (receiver_type == nullptr) {
1156     return nullptr; // no receiver type info
1157   }
1158 
1159   // Attempt to improve the receiver
1160   bool actual_receiver_is_exact = false;
1161   ciInstanceKlass* actual_receiver = klass;
1162   // Array methods are all inherited from Object, and are monomorphic.
1163   // finalize() call on array is not allowed.
1164   if (receiver_type->isa_aryptr() &&
1165       callee->holder() == env()->Object_klass() &&
1166       callee->name() != ciSymbols::finalize_method_name()) {
1167     return callee;
1168   }
1169 
1170   // All other interesting cases are instance klasses.
1171   if (!receiver_type->isa_instptr()) {
1172     return nullptr;
1173   }
1174 
1175   ciInstanceKlass* receiver_klass = receiver_type->is_instptr()->instance_klass();
1176   if (receiver_klass->is_loaded() && receiver_klass->is_initialized() && !receiver_klass->is_interface() &&
1177       (receiver_klass == actual_receiver || receiver_klass->is_subtype_of(actual_receiver))) {
1178     // ikl is a same or better type than the original actual_receiver,
1179     // e.g. static receiver from bytecodes.
1180     actual_receiver = receiver_klass;
1181     // Is the actual_receiver exact?
1182     actual_receiver_is_exact = receiver_type->klass_is_exact();
1183   }
1184 
1185   ciInstanceKlass*   calling_klass = caller->holder();
1186   ciMethod* cha_monomorphic_target = callee->find_monomorphic_target(calling_klass, klass, actual_receiver, check_access);
1187 
1188   if (cha_monomorphic_target != nullptr) {
1189     // Hardwiring a virtual.
1190     assert(!callee->can_be_statically_bound(), "should have been handled earlier");
1191     assert(!cha_monomorphic_target->is_abstract(), "");
1192     if (!cha_monomorphic_target->can_be_statically_bound(actual_receiver)) {
1193       // If we inlined because CHA revealed only a single target method,
1194       // then we are dependent on that target method not getting overridden
1195       // by dynamic class loading.  Be sure to test the "static" receiver
1196       // dest_method here, as opposed to the actual receiver, which may
1197       // falsely lead us to believe that the receiver is final or private.
1198       dependencies()->assert_unique_concrete_method(actual_receiver, cha_monomorphic_target, holder, callee);
1199     }
1200     return cha_monomorphic_target;
1201   }
1202 
1203   // If the type is exact, we can still bind the method w/o a vcall.
1204   // (This case comes after CHA so we can see how much extra work it does.)
1205   if (actual_receiver_is_exact) {
1206     // In case of evolution, there is a dependence on every inlined method, since each
1207     // such method can be changed when its class is redefined.
1208     ciMethod* exact_method = callee->resolve_invoke(calling_klass, actual_receiver);
1209     if (exact_method != nullptr) {
1210       return exact_method;
1211     }
1212   }
1213 
1214   return nullptr;
1215 }