1 /* 2 * Copyright (c) 2001, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "ci/ciUtilities.hpp" 26 #include "classfile/javaClasses.hpp" 27 #include "ci/ciObjArray.hpp" 28 #include "asm/register.hpp" 29 #include "compiler/compileLog.hpp" 30 #include "gc/shared/barrierSet.hpp" 31 #include "gc/shared/c2/barrierSetC2.hpp" 32 #include "interpreter/interpreter.hpp" 33 #include "memory/resourceArea.hpp" 34 #include "opto/addnode.hpp" 35 #include "opto/castnode.hpp" 36 #include "opto/convertnode.hpp" 37 #include "opto/graphKit.hpp" 38 #include "opto/idealKit.hpp" 39 #include "opto/intrinsicnode.hpp" 40 #include "opto/locknode.hpp" 41 #include "opto/machnode.hpp" 42 #include "opto/opaquenode.hpp" 43 #include "opto/parse.hpp" 44 #include "opto/rootnode.hpp" 45 #include "opto/runtime.hpp" 46 #include "opto/subtypenode.hpp" 47 #include "runtime/deoptimization.hpp" 48 #include "runtime/sharedRuntime.hpp" 49 #include "utilities/bitMap.inline.hpp" 50 #include "utilities/powerOfTwo.hpp" 51 #include "utilities/growableArray.hpp" 52 53 //----------------------------GraphKit----------------------------------------- 54 // Main utility constructor. 55 GraphKit::GraphKit(JVMState* jvms) 56 : Phase(Phase::Parser), 57 _env(C->env()), 58 _gvn(*C->initial_gvn()), 59 _barrier_set(BarrierSet::barrier_set()->barrier_set_c2()) 60 { 61 _exceptions = jvms->map()->next_exception(); 62 if (_exceptions != nullptr) jvms->map()->set_next_exception(nullptr); 63 set_jvms(jvms); 64 } 65 66 // Private constructor for parser. 67 GraphKit::GraphKit() 68 : Phase(Phase::Parser), 69 _env(C->env()), 70 _gvn(*C->initial_gvn()), 71 _barrier_set(BarrierSet::barrier_set()->barrier_set_c2()) 72 { 73 _exceptions = nullptr; 74 set_map(nullptr); 75 debug_only(_sp = -99); 76 debug_only(set_bci(-99)); 77 } 78 79 80 81 //---------------------------clean_stack--------------------------------------- 82 // Clear away rubbish from the stack area of the JVM state. 83 // This destroys any arguments that may be waiting on the stack. 84 void GraphKit::clean_stack(int from_sp) { 85 SafePointNode* map = this->map(); 86 JVMState* jvms = this->jvms(); 87 int stk_size = jvms->stk_size(); 88 int stkoff = jvms->stkoff(); 89 Node* top = this->top(); 90 for (int i = from_sp; i < stk_size; i++) { 91 if (map->in(stkoff + i) != top) { 92 map->set_req(stkoff + i, top); 93 } 94 } 95 } 96 97 98 //--------------------------------sync_jvms----------------------------------- 99 // Make sure our current jvms agrees with our parse state. 100 JVMState* GraphKit::sync_jvms() const { 101 JVMState* jvms = this->jvms(); 102 jvms->set_bci(bci()); // Record the new bci in the JVMState 103 jvms->set_sp(sp()); // Record the new sp in the JVMState 104 assert(jvms_in_sync(), "jvms is now in sync"); 105 return jvms; 106 } 107 108 //--------------------------------sync_jvms_for_reexecute--------------------- 109 // Make sure our current jvms agrees with our parse state. This version 110 // uses the reexecute_sp for reexecuting bytecodes. 111 JVMState* GraphKit::sync_jvms_for_reexecute() { 112 JVMState* jvms = this->jvms(); 113 jvms->set_bci(bci()); // Record the new bci in the JVMState 114 jvms->set_sp(reexecute_sp()); // Record the new sp in the JVMState 115 return jvms; 116 } 117 118 #ifdef ASSERT 119 bool GraphKit::jvms_in_sync() const { 120 Parse* parse = is_Parse(); 121 if (parse == nullptr) { 122 if (bci() != jvms()->bci()) return false; 123 if (sp() != (int)jvms()->sp()) return false; 124 return true; 125 } 126 if (jvms()->method() != parse->method()) return false; 127 if (jvms()->bci() != parse->bci()) return false; 128 int jvms_sp = jvms()->sp(); 129 if (jvms_sp != parse->sp()) return false; 130 int jvms_depth = jvms()->depth(); 131 if (jvms_depth != parse->depth()) return false; 132 return true; 133 } 134 135 // Local helper checks for special internal merge points 136 // used to accumulate and merge exception states. 137 // They are marked by the region's in(0) edge being the map itself. 138 // Such merge points must never "escape" into the parser at large, 139 // until they have been handed to gvn.transform. 140 static bool is_hidden_merge(Node* reg) { 141 if (reg == nullptr) return false; 142 if (reg->is_Phi()) { 143 reg = reg->in(0); 144 if (reg == nullptr) return false; 145 } 146 return reg->is_Region() && reg->in(0) != nullptr && reg->in(0)->is_Root(); 147 } 148 149 void GraphKit::verify_map() const { 150 if (map() == nullptr) return; // null map is OK 151 assert(map()->req() <= jvms()->endoff(), "no extra garbage on map"); 152 assert(!map()->has_exceptions(), "call add_exception_states_from 1st"); 153 assert(!is_hidden_merge(control()), "call use_exception_state, not set_map"); 154 } 155 156 void GraphKit::verify_exception_state(SafePointNode* ex_map) { 157 assert(ex_map->next_exception() == nullptr, "not already part of a chain"); 158 assert(has_saved_ex_oop(ex_map), "every exception state has an ex_oop"); 159 } 160 #endif 161 162 //---------------------------stop_and_kill_map--------------------------------- 163 // Set _map to null, signalling a stop to further bytecode execution. 164 // First smash the current map's control to a constant, to mark it dead. 165 void GraphKit::stop_and_kill_map() { 166 SafePointNode* dead_map = stop(); 167 if (dead_map != nullptr) { 168 dead_map->disconnect_inputs(C); // Mark the map as killed. 169 assert(dead_map->is_killed(), "must be so marked"); 170 } 171 } 172 173 174 //--------------------------------stopped-------------------------------------- 175 // Tell if _map is null, or control is top. 176 bool GraphKit::stopped() { 177 if (map() == nullptr) return true; 178 else if (control() == top()) return true; 179 else return false; 180 } 181 182 183 //-----------------------------has_exception_handler---------------------------------- 184 // Tell if this method or any caller method has exception handlers. 185 bool GraphKit::has_exception_handler() { 186 for (JVMState* jvmsp = jvms(); jvmsp != nullptr; jvmsp = jvmsp->caller()) { 187 if (jvmsp->has_method() && jvmsp->method()->has_exception_handlers()) { 188 return true; 189 } 190 } 191 return false; 192 } 193 194 //------------------------------save_ex_oop------------------------------------ 195 // Save an exception without blowing stack contents or other JVM state. 196 void GraphKit::set_saved_ex_oop(SafePointNode* ex_map, Node* ex_oop) { 197 assert(!has_saved_ex_oop(ex_map), "clear ex-oop before setting again"); 198 ex_map->add_req(ex_oop); 199 debug_only(verify_exception_state(ex_map)); 200 } 201 202 inline static Node* common_saved_ex_oop(SafePointNode* ex_map, bool clear_it) { 203 assert(GraphKit::has_saved_ex_oop(ex_map), "ex_oop must be there"); 204 Node* ex_oop = ex_map->in(ex_map->req()-1); 205 if (clear_it) ex_map->del_req(ex_map->req()-1); 206 return ex_oop; 207 } 208 209 //-----------------------------saved_ex_oop------------------------------------ 210 // Recover a saved exception from its map. 211 Node* GraphKit::saved_ex_oop(SafePointNode* ex_map) { 212 return common_saved_ex_oop(ex_map, false); 213 } 214 215 //--------------------------clear_saved_ex_oop--------------------------------- 216 // Erase a previously saved exception from its map. 217 Node* GraphKit::clear_saved_ex_oop(SafePointNode* ex_map) { 218 return common_saved_ex_oop(ex_map, true); 219 } 220 221 #ifdef ASSERT 222 //---------------------------has_saved_ex_oop---------------------------------- 223 // Erase a previously saved exception from its map. 224 bool GraphKit::has_saved_ex_oop(SafePointNode* ex_map) { 225 return ex_map->req() == ex_map->jvms()->endoff()+1; 226 } 227 #endif 228 229 //-------------------------make_exception_state-------------------------------- 230 // Turn the current JVM state into an exception state, appending the ex_oop. 231 SafePointNode* GraphKit::make_exception_state(Node* ex_oop) { 232 sync_jvms(); 233 SafePointNode* ex_map = stop(); // do not manipulate this map any more 234 set_saved_ex_oop(ex_map, ex_oop); 235 return ex_map; 236 } 237 238 239 //--------------------------add_exception_state-------------------------------- 240 // Add an exception to my list of exceptions. 241 void GraphKit::add_exception_state(SafePointNode* ex_map) { 242 if (ex_map == nullptr || ex_map->control() == top()) { 243 return; 244 } 245 #ifdef ASSERT 246 verify_exception_state(ex_map); 247 if (has_exceptions()) { 248 assert(ex_map->jvms()->same_calls_as(_exceptions->jvms()), "all collected exceptions must come from the same place"); 249 } 250 #endif 251 252 // If there is already an exception of exactly this type, merge with it. 253 // In particular, null-checks and other low-level exceptions common up here. 254 Node* ex_oop = saved_ex_oop(ex_map); 255 const Type* ex_type = _gvn.type(ex_oop); 256 if (ex_oop == top()) { 257 // No action needed. 258 return; 259 } 260 assert(ex_type->isa_instptr(), "exception must be an instance"); 261 for (SafePointNode* e2 = _exceptions; e2 != nullptr; e2 = e2->next_exception()) { 262 const Type* ex_type2 = _gvn.type(saved_ex_oop(e2)); 263 // We check sp also because call bytecodes can generate exceptions 264 // both before and after arguments are popped! 265 if (ex_type2 == ex_type 266 && e2->_jvms->sp() == ex_map->_jvms->sp()) { 267 combine_exception_states(ex_map, e2); 268 return; 269 } 270 } 271 272 // No pre-existing exception of the same type. Chain it on the list. 273 push_exception_state(ex_map); 274 } 275 276 //-----------------------add_exception_states_from----------------------------- 277 void GraphKit::add_exception_states_from(JVMState* jvms) { 278 SafePointNode* ex_map = jvms->map()->next_exception(); 279 if (ex_map != nullptr) { 280 jvms->map()->set_next_exception(nullptr); 281 for (SafePointNode* next_map; ex_map != nullptr; ex_map = next_map) { 282 next_map = ex_map->next_exception(); 283 ex_map->set_next_exception(nullptr); 284 add_exception_state(ex_map); 285 } 286 } 287 } 288 289 //-----------------------transfer_exceptions_into_jvms------------------------- 290 JVMState* GraphKit::transfer_exceptions_into_jvms() { 291 if (map() == nullptr) { 292 // We need a JVMS to carry the exceptions, but the map has gone away. 293 // Create a scratch JVMS, cloned from any of the exception states... 294 if (has_exceptions()) { 295 _map = _exceptions; 296 _map = clone_map(); 297 _map->set_next_exception(nullptr); 298 clear_saved_ex_oop(_map); 299 debug_only(verify_map()); 300 } else { 301 // ...or created from scratch 302 JVMState* jvms = new (C) JVMState(_method, nullptr); 303 jvms->set_bci(_bci); 304 jvms->set_sp(_sp); 305 jvms->set_map(new SafePointNode(TypeFunc::Parms, jvms)); 306 set_jvms(jvms); 307 for (uint i = 0; i < map()->req(); i++) map()->init_req(i, top()); 308 set_all_memory(top()); 309 while (map()->req() < jvms->endoff()) map()->add_req(top()); 310 } 311 // (This is a kludge, in case you didn't notice.) 312 set_control(top()); 313 } 314 JVMState* jvms = sync_jvms(); 315 assert(!jvms->map()->has_exceptions(), "no exceptions on this map yet"); 316 jvms->map()->set_next_exception(_exceptions); 317 _exceptions = nullptr; // done with this set of exceptions 318 return jvms; 319 } 320 321 static inline void add_n_reqs(Node* dstphi, Node* srcphi) { 322 assert(is_hidden_merge(dstphi), "must be a special merge node"); 323 assert(is_hidden_merge(srcphi), "must be a special merge node"); 324 uint limit = srcphi->req(); 325 for (uint i = PhiNode::Input; i < limit; i++) { 326 dstphi->add_req(srcphi->in(i)); 327 } 328 } 329 static inline void add_one_req(Node* dstphi, Node* src) { 330 assert(is_hidden_merge(dstphi), "must be a special merge node"); 331 assert(!is_hidden_merge(src), "must not be a special merge node"); 332 dstphi->add_req(src); 333 } 334 335 //-----------------------combine_exception_states------------------------------ 336 // This helper function combines exception states by building phis on a 337 // specially marked state-merging region. These regions and phis are 338 // untransformed, and can build up gradually. The region is marked by 339 // having a control input of its exception map, rather than null. Such 340 // regions do not appear except in this function, and in use_exception_state. 341 void GraphKit::combine_exception_states(SafePointNode* ex_map, SafePointNode* phi_map) { 342 if (failing_internal()) { 343 return; // dying anyway... 344 } 345 JVMState* ex_jvms = ex_map->_jvms; 346 assert(ex_jvms->same_calls_as(phi_map->_jvms), "consistent call chains"); 347 assert(ex_jvms->stkoff() == phi_map->_jvms->stkoff(), "matching locals"); 348 assert(ex_jvms->sp() == phi_map->_jvms->sp(), "matching stack sizes"); 349 assert(ex_jvms->monoff() == phi_map->_jvms->monoff(), "matching JVMS"); 350 assert(ex_jvms->scloff() == phi_map->_jvms->scloff(), "matching scalar replaced objects"); 351 assert(ex_map->req() == phi_map->req(), "matching maps"); 352 uint tos = ex_jvms->stkoff() + ex_jvms->sp(); 353 Node* hidden_merge_mark = root(); 354 Node* region = phi_map->control(); 355 MergeMemNode* phi_mem = phi_map->merged_memory(); 356 MergeMemNode* ex_mem = ex_map->merged_memory(); 357 if (region->in(0) != hidden_merge_mark) { 358 // The control input is not (yet) a specially-marked region in phi_map. 359 // Make it so, and build some phis. 360 region = new RegionNode(2); 361 _gvn.set_type(region, Type::CONTROL); 362 region->set_req(0, hidden_merge_mark); // marks an internal ex-state 363 region->init_req(1, phi_map->control()); 364 phi_map->set_control(region); 365 Node* io_phi = PhiNode::make(region, phi_map->i_o(), Type::ABIO); 366 record_for_igvn(io_phi); 367 _gvn.set_type(io_phi, Type::ABIO); 368 phi_map->set_i_o(io_phi); 369 for (MergeMemStream mms(phi_mem); mms.next_non_empty(); ) { 370 Node* m = mms.memory(); 371 Node* m_phi = PhiNode::make(region, m, Type::MEMORY, mms.adr_type(C)); 372 record_for_igvn(m_phi); 373 _gvn.set_type(m_phi, Type::MEMORY); 374 mms.set_memory(m_phi); 375 } 376 } 377 378 // Either or both of phi_map and ex_map might already be converted into phis. 379 Node* ex_control = ex_map->control(); 380 // if there is special marking on ex_map also, we add multiple edges from src 381 bool add_multiple = (ex_control->in(0) == hidden_merge_mark); 382 // how wide was the destination phi_map, originally? 383 uint orig_width = region->req(); 384 385 if (add_multiple) { 386 add_n_reqs(region, ex_control); 387 add_n_reqs(phi_map->i_o(), ex_map->i_o()); 388 } else { 389 // ex_map has no merges, so we just add single edges everywhere 390 add_one_req(region, ex_control); 391 add_one_req(phi_map->i_o(), ex_map->i_o()); 392 } 393 for (MergeMemStream mms(phi_mem, ex_mem); mms.next_non_empty2(); ) { 394 if (mms.is_empty()) { 395 // get a copy of the base memory, and patch some inputs into it 396 const TypePtr* adr_type = mms.adr_type(C); 397 Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type); 398 assert(phi->as_Phi()->region() == mms.base_memory()->in(0), ""); 399 mms.set_memory(phi); 400 // Prepare to append interesting stuff onto the newly sliced phi: 401 while (phi->req() > orig_width) phi->del_req(phi->req()-1); 402 } 403 // Append stuff from ex_map: 404 if (add_multiple) { 405 add_n_reqs(mms.memory(), mms.memory2()); 406 } else { 407 add_one_req(mms.memory(), mms.memory2()); 408 } 409 } 410 uint limit = ex_map->req(); 411 for (uint i = TypeFunc::Parms; i < limit; i++) { 412 // Skip everything in the JVMS after tos. (The ex_oop follows.) 413 if (i == tos) i = ex_jvms->monoff(); 414 Node* src = ex_map->in(i); 415 Node* dst = phi_map->in(i); 416 if (src != dst) { 417 PhiNode* phi; 418 if (dst->in(0) != region) { 419 dst = phi = PhiNode::make(region, dst, _gvn.type(dst)); 420 record_for_igvn(phi); 421 _gvn.set_type(phi, phi->type()); 422 phi_map->set_req(i, dst); 423 // Prepare to append interesting stuff onto the new phi: 424 while (dst->req() > orig_width) dst->del_req(dst->req()-1); 425 } else { 426 assert(dst->is_Phi(), "nobody else uses a hidden region"); 427 phi = dst->as_Phi(); 428 } 429 if (add_multiple && src->in(0) == ex_control) { 430 // Both are phis. 431 add_n_reqs(dst, src); 432 } else { 433 while (dst->req() < region->req()) add_one_req(dst, src); 434 } 435 const Type* srctype = _gvn.type(src); 436 if (phi->type() != srctype) { 437 const Type* dsttype = phi->type()->meet_speculative(srctype); 438 if (phi->type() != dsttype) { 439 phi->set_type(dsttype); 440 _gvn.set_type(phi, dsttype); 441 } 442 } 443 } 444 } 445 phi_map->merge_replaced_nodes_with(ex_map); 446 } 447 448 //--------------------------use_exception_state-------------------------------- 449 Node* GraphKit::use_exception_state(SafePointNode* phi_map) { 450 if (failing_internal()) { stop(); return top(); } 451 Node* region = phi_map->control(); 452 Node* hidden_merge_mark = root(); 453 assert(phi_map->jvms()->map() == phi_map, "sanity: 1-1 relation"); 454 Node* ex_oop = clear_saved_ex_oop(phi_map); 455 if (region->in(0) == hidden_merge_mark) { 456 // Special marking for internal ex-states. Process the phis now. 457 region->set_req(0, region); // now it's an ordinary region 458 set_jvms(phi_map->jvms()); // ...so now we can use it as a map 459 // Note: Setting the jvms also sets the bci and sp. 460 set_control(_gvn.transform(region)); 461 uint tos = jvms()->stkoff() + sp(); 462 for (uint i = 1; i < tos; i++) { 463 Node* x = phi_map->in(i); 464 if (x->in(0) == region) { 465 assert(x->is_Phi(), "expected a special phi"); 466 phi_map->set_req(i, _gvn.transform(x)); 467 } 468 } 469 for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) { 470 Node* x = mms.memory(); 471 if (x->in(0) == region) { 472 assert(x->is_Phi(), "nobody else uses a hidden region"); 473 mms.set_memory(_gvn.transform(x)); 474 } 475 } 476 if (ex_oop->in(0) == region) { 477 assert(ex_oop->is_Phi(), "expected a special phi"); 478 ex_oop = _gvn.transform(ex_oop); 479 } 480 } else { 481 set_jvms(phi_map->jvms()); 482 } 483 484 assert(!is_hidden_merge(phi_map->control()), "hidden ex. states cleared"); 485 assert(!is_hidden_merge(phi_map->i_o()), "hidden ex. states cleared"); 486 return ex_oop; 487 } 488 489 //---------------------------------java_bc------------------------------------- 490 Bytecodes::Code GraphKit::java_bc() const { 491 ciMethod* method = this->method(); 492 int bci = this->bci(); 493 if (method != nullptr && bci != InvocationEntryBci) 494 return method->java_code_at_bci(bci); 495 else 496 return Bytecodes::_illegal; 497 } 498 499 void GraphKit::uncommon_trap_if_should_post_on_exceptions(Deoptimization::DeoptReason reason, 500 bool must_throw) { 501 // if the exception capability is set, then we will generate code 502 // to check the JavaThread.should_post_on_exceptions flag to see 503 // if we actually need to report exception events (for this 504 // thread). If we don't need to report exception events, we will 505 // take the normal fast path provided by add_exception_events. If 506 // exception event reporting is enabled for this thread, we will 507 // take the uncommon_trap in the BuildCutout below. 508 509 // first must access the should_post_on_exceptions_flag in this thread's JavaThread 510 Node* jthread = _gvn.transform(new ThreadLocalNode()); 511 Node* adr = basic_plus_adr(top(), jthread, in_bytes(JavaThread::should_post_on_exceptions_flag_offset())); 512 Node* should_post_flag = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered); 513 514 // Test the should_post_on_exceptions_flag vs. 0 515 Node* chk = _gvn.transform( new CmpINode(should_post_flag, intcon(0)) ); 516 Node* tst = _gvn.transform( new BoolNode(chk, BoolTest::eq) ); 517 518 // Branch to slow_path if should_post_on_exceptions_flag was true 519 { BuildCutout unless(this, tst, PROB_MAX); 520 // Do not try anything fancy if we're notifying the VM on every throw. 521 // Cf. case Bytecodes::_athrow in parse2.cpp. 522 uncommon_trap(reason, Deoptimization::Action_none, 523 (ciKlass*)nullptr, (char*)nullptr, must_throw); 524 } 525 526 } 527 528 //------------------------------builtin_throw---------------------------------- 529 void GraphKit::builtin_throw(Deoptimization::DeoptReason reason) { 530 bool must_throw = true; 531 532 // If this particular condition has not yet happened at this 533 // bytecode, then use the uncommon trap mechanism, and allow for 534 // a future recompilation if several traps occur here. 535 // If the throw is hot, try to use a more complicated inline mechanism 536 // which keeps execution inside the compiled code. 537 bool treat_throw_as_hot = false; 538 ciMethodData* md = method()->method_data(); 539 540 if (ProfileTraps) { 541 if (too_many_traps(reason)) { 542 treat_throw_as_hot = true; 543 } 544 // (If there is no MDO at all, assume it is early in 545 // execution, and that any deopts are part of the 546 // startup transient, and don't need to be remembered.) 547 548 // Also, if there is a local exception handler, treat all throws 549 // as hot if there has been at least one in this method. 550 if (C->trap_count(reason) != 0 551 && method()->method_data()->trap_count(reason) != 0 552 && has_exception_handler()) { 553 treat_throw_as_hot = true; 554 } 555 } 556 557 // If this throw happens frequently, an uncommon trap might cause 558 // a performance pothole. If there is a local exception handler, 559 // and if this particular bytecode appears to be deoptimizing often, 560 // let us handle the throw inline, with a preconstructed instance. 561 // Note: If the deopt count has blown up, the uncommon trap 562 // runtime is going to flush this nmethod, not matter what. 563 if (treat_throw_as_hot && method()->can_omit_stack_trace()) { 564 // If the throw is local, we use a pre-existing instance and 565 // punt on the backtrace. This would lead to a missing backtrace 566 // (a repeat of 4292742) if the backtrace object is ever asked 567 // for its backtrace. 568 // Fixing this remaining case of 4292742 requires some flavor of 569 // escape analysis. Leave that for the future. 570 ciInstance* ex_obj = nullptr; 571 switch (reason) { 572 case Deoptimization::Reason_null_check: 573 ex_obj = env()->NullPointerException_instance(); 574 break; 575 case Deoptimization::Reason_div0_check: 576 ex_obj = env()->ArithmeticException_instance(); 577 break; 578 case Deoptimization::Reason_range_check: 579 ex_obj = env()->ArrayIndexOutOfBoundsException_instance(); 580 break; 581 case Deoptimization::Reason_class_check: 582 ex_obj = env()->ClassCastException_instance(); 583 break; 584 case Deoptimization::Reason_array_check: 585 ex_obj = env()->ArrayStoreException_instance(); 586 break; 587 default: 588 break; 589 } 590 if (failing()) { stop(); return; } // exception allocation might fail 591 if (ex_obj != nullptr) { 592 if (env()->jvmti_can_post_on_exceptions()) { 593 // check if we must post exception events, take uncommon trap if so 594 uncommon_trap_if_should_post_on_exceptions(reason, must_throw); 595 // here if should_post_on_exceptions is false 596 // continue on with the normal codegen 597 } 598 599 // Cheat with a preallocated exception object. 600 if (C->log() != nullptr) 601 C->log()->elem("hot_throw preallocated='1' reason='%s'", 602 Deoptimization::trap_reason_name(reason)); 603 const TypeInstPtr* ex_con = TypeInstPtr::make(ex_obj); 604 Node* ex_node = _gvn.transform(ConNode::make(ex_con)); 605 606 // Clear the detail message of the preallocated exception object. 607 // Weblogic sometimes mutates the detail message of exceptions 608 // using reflection. 609 int offset = java_lang_Throwable::get_detailMessage_offset(); 610 const TypePtr* adr_typ = ex_con->add_offset(offset); 611 612 Node *adr = basic_plus_adr(ex_node, ex_node, offset); 613 const TypeOopPtr* val_type = TypeOopPtr::make_from_klass(env()->String_klass()); 614 Node *store = access_store_at(ex_node, adr, adr_typ, null(), val_type, T_OBJECT, IN_HEAP); 615 616 if (!method()->has_exception_handlers()) { 617 // We don't need to preserve the stack if there's no handler as the entire frame is going to be popped anyway. 618 // This prevents issues with exception handling and late inlining. 619 set_sp(0); 620 clean_stack(0); 621 } 622 623 add_exception_state(make_exception_state(ex_node)); 624 return; 625 } 626 } 627 628 // %%% Maybe add entry to OptoRuntime which directly throws the exc.? 629 // It won't be much cheaper than bailing to the interp., since we'll 630 // have to pass up all the debug-info, and the runtime will have to 631 // create the stack trace. 632 633 // Usual case: Bail to interpreter. 634 // Reserve the right to recompile if we haven't seen anything yet. 635 636 ciMethod* m = Deoptimization::reason_is_speculate(reason) ? C->method() : nullptr; 637 Deoptimization::DeoptAction action = Deoptimization::Action_maybe_recompile; 638 if (treat_throw_as_hot 639 && (method()->method_data()->trap_recompiled_at(bci(), m) 640 || C->too_many_traps(reason))) { 641 // We cannot afford to take more traps here. Suffer in the interpreter. 642 if (C->log() != nullptr) 643 C->log()->elem("hot_throw preallocated='0' reason='%s' mcount='%d'", 644 Deoptimization::trap_reason_name(reason), 645 C->trap_count(reason)); 646 action = Deoptimization::Action_none; 647 } 648 649 // "must_throw" prunes the JVM state to include only the stack, if there 650 // are no local exception handlers. This should cut down on register 651 // allocation time and code size, by drastically reducing the number 652 // of in-edges on the call to the uncommon trap. 653 654 uncommon_trap(reason, action, (ciKlass*)nullptr, (char*)nullptr, must_throw); 655 } 656 657 658 //----------------------------PreserveJVMState--------------------------------- 659 PreserveJVMState::PreserveJVMState(GraphKit* kit, bool clone_map) { 660 debug_only(kit->verify_map()); 661 _kit = kit; 662 _map = kit->map(); // preserve the map 663 _sp = kit->sp(); 664 kit->set_map(clone_map ? kit->clone_map() : nullptr); 665 #ifdef ASSERT 666 _bci = kit->bci(); 667 Parse* parser = kit->is_Parse(); 668 int block = (parser == nullptr || parser->block() == nullptr) ? -1 : parser->block()->rpo(); 669 _block = block; 670 #endif 671 } 672 PreserveJVMState::~PreserveJVMState() { 673 GraphKit* kit = _kit; 674 #ifdef ASSERT 675 assert(kit->bci() == _bci, "bci must not shift"); 676 Parse* parser = kit->is_Parse(); 677 int block = (parser == nullptr || parser->block() == nullptr) ? -1 : parser->block()->rpo(); 678 assert(block == _block, "block must not shift"); 679 #endif 680 kit->set_map(_map); 681 kit->set_sp(_sp); 682 } 683 684 685 //-----------------------------BuildCutout------------------------------------- 686 BuildCutout::BuildCutout(GraphKit* kit, Node* p, float prob, float cnt) 687 : PreserveJVMState(kit) 688 { 689 assert(p->is_Con() || p->is_Bool(), "test must be a bool"); 690 SafePointNode* outer_map = _map; // preserved map is caller's 691 SafePointNode* inner_map = kit->map(); 692 IfNode* iff = kit->create_and_map_if(outer_map->control(), p, prob, cnt); 693 outer_map->set_control(kit->gvn().transform( new IfTrueNode(iff) )); 694 inner_map->set_control(kit->gvn().transform( new IfFalseNode(iff) )); 695 } 696 BuildCutout::~BuildCutout() { 697 GraphKit* kit = _kit; 698 assert(kit->stopped(), "cutout code must stop, throw, return, etc."); 699 } 700 701 //---------------------------PreserveReexecuteState---------------------------- 702 PreserveReexecuteState::PreserveReexecuteState(GraphKit* kit) { 703 assert(!kit->stopped(), "must call stopped() before"); 704 _kit = kit; 705 _sp = kit->sp(); 706 _reexecute = kit->jvms()->_reexecute; 707 } 708 PreserveReexecuteState::~PreserveReexecuteState() { 709 if (_kit->stopped()) return; 710 _kit->jvms()->_reexecute = _reexecute; 711 _kit->set_sp(_sp); 712 } 713 714 //------------------------------clone_map-------------------------------------- 715 // Implementation of PreserveJVMState 716 // 717 // Only clone_map(...) here. If this function is only used in the 718 // PreserveJVMState class we may want to get rid of this extra 719 // function eventually and do it all there. 720 721 SafePointNode* GraphKit::clone_map() { 722 if (map() == nullptr) return nullptr; 723 724 // Clone the memory edge first 725 Node* mem = MergeMemNode::make(map()->memory()); 726 gvn().set_type_bottom(mem); 727 728 SafePointNode *clonemap = (SafePointNode*)map()->clone(); 729 JVMState* jvms = this->jvms(); 730 JVMState* clonejvms = jvms->clone_shallow(C); 731 clonemap->set_memory(mem); 732 clonemap->set_jvms(clonejvms); 733 clonejvms->set_map(clonemap); 734 record_for_igvn(clonemap); 735 gvn().set_type_bottom(clonemap); 736 return clonemap; 737 } 738 739 //-----------------------------destruct_map_clone------------------------------ 740 // 741 // Order of destruct is important to increase the likelyhood that memory can be re-used. We need 742 // to destruct/free/delete in the exact opposite order as clone_map(). 743 void GraphKit::destruct_map_clone(SafePointNode* sfp) { 744 if (sfp == nullptr) return; 745 746 Node* mem = sfp->memory(); 747 JVMState* jvms = sfp->jvms(); 748 749 if (jvms != nullptr) { 750 delete jvms; 751 } 752 753 remove_for_igvn(sfp); 754 gvn().clear_type(sfp); 755 sfp->destruct(&_gvn); 756 757 if (mem != nullptr) { 758 gvn().clear_type(mem); 759 mem->destruct(&_gvn); 760 } 761 } 762 763 //-----------------------------set_map_clone----------------------------------- 764 void GraphKit::set_map_clone(SafePointNode* m) { 765 _map = m; 766 _map = clone_map(); 767 _map->set_next_exception(nullptr); 768 debug_only(verify_map()); 769 } 770 771 772 //----------------------------kill_dead_locals--------------------------------- 773 // Detect any locals which are known to be dead, and force them to top. 774 void GraphKit::kill_dead_locals() { 775 // Consult the liveness information for the locals. If any 776 // of them are unused, then they can be replaced by top(). This 777 // should help register allocation time and cut down on the size 778 // of the deoptimization information. 779 780 // This call is made from many of the bytecode handling 781 // subroutines called from the Big Switch in do_one_bytecode. 782 // Every bytecode which might include a slow path is responsible 783 // for killing its dead locals. The more consistent we 784 // are about killing deads, the fewer useless phis will be 785 // constructed for them at various merge points. 786 787 // bci can be -1 (InvocationEntryBci). We return the entry 788 // liveness for the method. 789 790 if (method() == nullptr || method()->code_size() == 0) { 791 // We are building a graph for a call to a native method. 792 // All locals are live. 793 return; 794 } 795 796 ResourceMark rm; 797 798 // Consult the liveness information for the locals. If any 799 // of them are unused, then they can be replaced by top(). This 800 // should help register allocation time and cut down on the size 801 // of the deoptimization information. 802 MethodLivenessResult live_locals = method()->liveness_at_bci(bci()); 803 804 int len = (int)live_locals.size(); 805 assert(len <= jvms()->loc_size(), "too many live locals"); 806 for (int local = 0; local < len; local++) { 807 if (!live_locals.at(local)) { 808 set_local(local, top()); 809 } 810 } 811 } 812 813 #ifdef ASSERT 814 //-------------------------dead_locals_are_killed------------------------------ 815 // Return true if all dead locals are set to top in the map. 816 // Used to assert "clean" debug info at various points. 817 bool GraphKit::dead_locals_are_killed() { 818 if (method() == nullptr || method()->code_size() == 0) { 819 // No locals need to be dead, so all is as it should be. 820 return true; 821 } 822 823 // Make sure somebody called kill_dead_locals upstream. 824 ResourceMark rm; 825 for (JVMState* jvms = this->jvms(); jvms != nullptr; jvms = jvms->caller()) { 826 if (jvms->loc_size() == 0) continue; // no locals to consult 827 SafePointNode* map = jvms->map(); 828 ciMethod* method = jvms->method(); 829 int bci = jvms->bci(); 830 if (jvms == this->jvms()) { 831 bci = this->bci(); // it might not yet be synched 832 } 833 MethodLivenessResult live_locals = method->liveness_at_bci(bci); 834 int len = (int)live_locals.size(); 835 if (!live_locals.is_valid() || len == 0) 836 // This method is trivial, or is poisoned by a breakpoint. 837 return true; 838 assert(len == jvms->loc_size(), "live map consistent with locals map"); 839 for (int local = 0; local < len; local++) { 840 if (!live_locals.at(local) && map->local(jvms, local) != top()) { 841 if (PrintMiscellaneous && (Verbose || WizardMode)) { 842 tty->print_cr("Zombie local %d: ", local); 843 jvms->dump(); 844 } 845 return false; 846 } 847 } 848 } 849 return true; 850 } 851 852 #endif //ASSERT 853 854 // Helper function for enforcing certain bytecodes to reexecute if deoptimization happens. 855 static bool should_reexecute_implied_by_bytecode(JVMState *jvms, bool is_anewarray) { 856 ciMethod* cur_method = jvms->method(); 857 int cur_bci = jvms->bci(); 858 if (cur_method != nullptr && cur_bci != InvocationEntryBci) { 859 Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci); 860 return Interpreter::bytecode_should_reexecute(code) || 861 (is_anewarray && code == Bytecodes::_multianewarray); 862 // Reexecute _multianewarray bytecode which was replaced with 863 // sequence of [a]newarray. See Parse::do_multianewarray(). 864 // 865 // Note: interpreter should not have it set since this optimization 866 // is limited by dimensions and guarded by flag so in some cases 867 // multianewarray() runtime calls will be generated and 868 // the bytecode should not be reexecutes (stack will not be reset). 869 } else { 870 return false; 871 } 872 } 873 874 // Helper function for adding JVMState and debug information to node 875 void GraphKit::add_safepoint_edges(SafePointNode* call, bool must_throw) { 876 // Add the safepoint edges to the call (or other safepoint). 877 878 // Make sure dead locals are set to top. This 879 // should help register allocation time and cut down on the size 880 // of the deoptimization information. 881 assert(dead_locals_are_killed(), "garbage in debug info before safepoint"); 882 883 // Walk the inline list to fill in the correct set of JVMState's 884 // Also fill in the associated edges for each JVMState. 885 886 // If the bytecode needs to be reexecuted we need to put 887 // the arguments back on the stack. 888 const bool should_reexecute = jvms()->should_reexecute(); 889 JVMState* youngest_jvms = should_reexecute ? sync_jvms_for_reexecute() : sync_jvms(); 890 891 // NOTE: set_bci (called from sync_jvms) might reset the reexecute bit to 892 // undefined if the bci is different. This is normal for Parse but it 893 // should not happen for LibraryCallKit because only one bci is processed. 894 assert(!is_LibraryCallKit() || (jvms()->should_reexecute() == should_reexecute), 895 "in LibraryCallKit the reexecute bit should not change"); 896 897 // If we are guaranteed to throw, we can prune everything but the 898 // input to the current bytecode. 899 bool can_prune_locals = false; 900 uint stack_slots_not_pruned = 0; 901 int inputs = 0, depth = 0; 902 if (must_throw) { 903 assert(method() == youngest_jvms->method(), "sanity"); 904 if (compute_stack_effects(inputs, depth)) { 905 can_prune_locals = true; 906 stack_slots_not_pruned = inputs; 907 } 908 } 909 910 if (env()->should_retain_local_variables()) { 911 // At any safepoint, this method can get breakpointed, which would 912 // then require an immediate deoptimization. 913 can_prune_locals = false; // do not prune locals 914 stack_slots_not_pruned = 0; 915 } 916 917 // do not scribble on the input jvms 918 JVMState* out_jvms = youngest_jvms->clone_deep(C); 919 call->set_jvms(out_jvms); // Start jvms list for call node 920 921 // For a known set of bytecodes, the interpreter should reexecute them if 922 // deoptimization happens. We set the reexecute state for them here 923 if (out_jvms->is_reexecute_undefined() && //don't change if already specified 924 should_reexecute_implied_by_bytecode(out_jvms, call->is_AllocateArray())) { 925 #ifdef ASSERT 926 int inputs = 0, not_used; // initialized by GraphKit::compute_stack_effects() 927 assert(method() == youngest_jvms->method(), "sanity"); 928 assert(compute_stack_effects(inputs, not_used), "unknown bytecode: %s", Bytecodes::name(java_bc())); 929 assert(out_jvms->sp() >= (uint)inputs, "not enough operands for reexecution"); 930 #endif // ASSERT 931 out_jvms->set_should_reexecute(true); //NOTE: youngest_jvms not changed 932 } 933 934 // Presize the call: 935 DEBUG_ONLY(uint non_debug_edges = call->req()); 936 call->add_req_batch(top(), youngest_jvms->debug_depth()); 937 assert(call->req() == non_debug_edges + youngest_jvms->debug_depth(), ""); 938 939 // Set up edges so that the call looks like this: 940 // Call [state:] ctl io mem fptr retadr 941 // [parms:] parm0 ... parmN 942 // [root:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN 943 // [...mid:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN [...] 944 // [young:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN 945 // Note that caller debug info precedes callee debug info. 946 947 // Fill pointer walks backwards from "young:" to "root:" in the diagram above: 948 uint debug_ptr = call->req(); 949 950 // Loop over the map input edges associated with jvms, add them 951 // to the call node, & reset all offsets to match call node array. 952 for (JVMState* in_jvms = youngest_jvms; in_jvms != nullptr; ) { 953 uint debug_end = debug_ptr; 954 uint debug_start = debug_ptr - in_jvms->debug_size(); 955 debug_ptr = debug_start; // back up the ptr 956 957 uint p = debug_start; // walks forward in [debug_start, debug_end) 958 uint j, k, l; 959 SafePointNode* in_map = in_jvms->map(); 960 out_jvms->set_map(call); 961 962 if (can_prune_locals) { 963 assert(in_jvms->method() == out_jvms->method(), "sanity"); 964 // If the current throw can reach an exception handler in this JVMS, 965 // then we must keep everything live that can reach that handler. 966 // As a quick and dirty approximation, we look for any handlers at all. 967 if (in_jvms->method()->has_exception_handlers()) { 968 can_prune_locals = false; 969 } 970 } 971 972 // Add the Locals 973 k = in_jvms->locoff(); 974 l = in_jvms->loc_size(); 975 out_jvms->set_locoff(p); 976 if (!can_prune_locals) { 977 for (j = 0; j < l; j++) 978 call->set_req(p++, in_map->in(k+j)); 979 } else { 980 p += l; // already set to top above by add_req_batch 981 } 982 983 // Add the Expression Stack 984 k = in_jvms->stkoff(); 985 l = in_jvms->sp(); 986 out_jvms->set_stkoff(p); 987 if (!can_prune_locals) { 988 for (j = 0; j < l; j++) 989 call->set_req(p++, in_map->in(k+j)); 990 } else if (can_prune_locals && stack_slots_not_pruned != 0) { 991 // Divide stack into {S0,...,S1}, where S0 is set to top. 992 uint s1 = stack_slots_not_pruned; 993 stack_slots_not_pruned = 0; // for next iteration 994 if (s1 > l) s1 = l; 995 uint s0 = l - s1; 996 p += s0; // skip the tops preinstalled by add_req_batch 997 for (j = s0; j < l; j++) 998 call->set_req(p++, in_map->in(k+j)); 999 } else { 1000 p += l; // already set to top above by add_req_batch 1001 } 1002 1003 // Add the Monitors 1004 k = in_jvms->monoff(); 1005 l = in_jvms->mon_size(); 1006 out_jvms->set_monoff(p); 1007 for (j = 0; j < l; j++) 1008 call->set_req(p++, in_map->in(k+j)); 1009 1010 // Copy any scalar object fields. 1011 k = in_jvms->scloff(); 1012 l = in_jvms->scl_size(); 1013 out_jvms->set_scloff(p); 1014 for (j = 0; j < l; j++) 1015 call->set_req(p++, in_map->in(k+j)); 1016 1017 // Finish the new jvms. 1018 out_jvms->set_endoff(p); 1019 1020 assert(out_jvms->endoff() == debug_end, "fill ptr must match"); 1021 assert(out_jvms->depth() == in_jvms->depth(), "depth must match"); 1022 assert(out_jvms->loc_size() == in_jvms->loc_size(), "size must match"); 1023 assert(out_jvms->mon_size() == in_jvms->mon_size(), "size must match"); 1024 assert(out_jvms->scl_size() == in_jvms->scl_size(), "size must match"); 1025 assert(out_jvms->debug_size() == in_jvms->debug_size(), "size must match"); 1026 1027 // Update the two tail pointers in parallel. 1028 out_jvms = out_jvms->caller(); 1029 in_jvms = in_jvms->caller(); 1030 } 1031 1032 assert(debug_ptr == non_debug_edges, "debug info must fit exactly"); 1033 1034 // Test the correctness of JVMState::debug_xxx accessors: 1035 assert(call->jvms()->debug_start() == non_debug_edges, ""); 1036 assert(call->jvms()->debug_end() == call->req(), ""); 1037 assert(call->jvms()->debug_depth() == call->req() - non_debug_edges, ""); 1038 } 1039 1040 bool GraphKit::compute_stack_effects(int& inputs, int& depth) { 1041 Bytecodes::Code code = java_bc(); 1042 if (code == Bytecodes::_wide) { 1043 code = method()->java_code_at_bci(bci() + 1); 1044 } 1045 1046 if (code != Bytecodes::_illegal) { 1047 depth = Bytecodes::depth(code); // checkcast=0, athrow=-1 1048 } 1049 1050 auto rsize = [&]() { 1051 assert(code != Bytecodes::_illegal, "code is illegal!"); 1052 BasicType rtype = Bytecodes::result_type(code); // checkcast=P, athrow=V 1053 return (rtype < T_CONFLICT) ? type2size[rtype] : 0; 1054 }; 1055 1056 switch (code) { 1057 case Bytecodes::_illegal: 1058 return false; 1059 1060 case Bytecodes::_ldc: 1061 case Bytecodes::_ldc_w: 1062 case Bytecodes::_ldc2_w: 1063 inputs = 0; 1064 break; 1065 1066 case Bytecodes::_dup: inputs = 1; break; 1067 case Bytecodes::_dup_x1: inputs = 2; break; 1068 case Bytecodes::_dup_x2: inputs = 3; break; 1069 case Bytecodes::_dup2: inputs = 2; break; 1070 case Bytecodes::_dup2_x1: inputs = 3; break; 1071 case Bytecodes::_dup2_x2: inputs = 4; break; 1072 case Bytecodes::_swap: inputs = 2; break; 1073 case Bytecodes::_arraylength: inputs = 1; break; 1074 1075 case Bytecodes::_getstatic: 1076 case Bytecodes::_putstatic: 1077 case Bytecodes::_getfield: 1078 case Bytecodes::_putfield: 1079 { 1080 bool ignored_will_link; 1081 ciField* field = method()->get_field_at_bci(bci(), ignored_will_link); 1082 int size = field->type()->size(); 1083 bool is_get = (depth >= 0), is_static = (depth & 1); 1084 inputs = (is_static ? 0 : 1); 1085 if (is_get) { 1086 depth = size - inputs; 1087 } else { 1088 inputs += size; // putxxx pops the value from the stack 1089 depth = - inputs; 1090 } 1091 } 1092 break; 1093 1094 case Bytecodes::_invokevirtual: 1095 case Bytecodes::_invokespecial: 1096 case Bytecodes::_invokestatic: 1097 case Bytecodes::_invokedynamic: 1098 case Bytecodes::_invokeinterface: 1099 { 1100 bool ignored_will_link; 1101 ciSignature* declared_signature = nullptr; 1102 ciMethod* ignored_callee = method()->get_method_at_bci(bci(), ignored_will_link, &declared_signature); 1103 assert(declared_signature != nullptr, "cannot be null"); 1104 inputs = declared_signature->arg_size_for_bc(code); 1105 int size = declared_signature->return_type()->size(); 1106 depth = size - inputs; 1107 } 1108 break; 1109 1110 case Bytecodes::_multianewarray: 1111 { 1112 ciBytecodeStream iter(method()); 1113 iter.reset_to_bci(bci()); 1114 iter.next(); 1115 inputs = iter.get_dimensions(); 1116 assert(rsize() == 1, ""); 1117 depth = 1 - inputs; 1118 } 1119 break; 1120 1121 case Bytecodes::_ireturn: 1122 case Bytecodes::_lreturn: 1123 case Bytecodes::_freturn: 1124 case Bytecodes::_dreturn: 1125 case Bytecodes::_areturn: 1126 assert(rsize() == -depth, ""); 1127 inputs = -depth; 1128 break; 1129 1130 case Bytecodes::_jsr: 1131 case Bytecodes::_jsr_w: 1132 inputs = 0; 1133 depth = 1; // S.B. depth=1, not zero 1134 break; 1135 1136 default: 1137 // bytecode produces a typed result 1138 inputs = rsize() - depth; 1139 assert(inputs >= 0, ""); 1140 break; 1141 } 1142 1143 #ifdef ASSERT 1144 // spot check 1145 int outputs = depth + inputs; 1146 assert(outputs >= 0, "sanity"); 1147 switch (code) { 1148 case Bytecodes::_checkcast: assert(inputs == 1 && outputs == 1, ""); break; 1149 case Bytecodes::_athrow: assert(inputs == 1 && outputs == 0, ""); break; 1150 case Bytecodes::_aload_0: assert(inputs == 0 && outputs == 1, ""); break; 1151 case Bytecodes::_return: assert(inputs == 0 && outputs == 0, ""); break; 1152 case Bytecodes::_drem: assert(inputs == 4 && outputs == 2, ""); break; 1153 default: break; 1154 } 1155 #endif //ASSERT 1156 1157 return true; 1158 } 1159 1160 1161 1162 //------------------------------basic_plus_adr--------------------------------- 1163 Node* GraphKit::basic_plus_adr(Node* base, Node* ptr, Node* offset) { 1164 // short-circuit a common case 1165 if (offset == intcon(0)) return ptr; 1166 return _gvn.transform( new AddPNode(base, ptr, offset) ); 1167 } 1168 1169 Node* GraphKit::ConvI2L(Node* offset) { 1170 // short-circuit a common case 1171 jint offset_con = find_int_con(offset, Type::OffsetBot); 1172 if (offset_con != Type::OffsetBot) { 1173 return longcon((jlong) offset_con); 1174 } 1175 return _gvn.transform( new ConvI2LNode(offset)); 1176 } 1177 1178 Node* GraphKit::ConvI2UL(Node* offset) { 1179 juint offset_con = (juint) find_int_con(offset, Type::OffsetBot); 1180 if (offset_con != (juint) Type::OffsetBot) { 1181 return longcon((julong) offset_con); 1182 } 1183 Node* conv = _gvn.transform( new ConvI2LNode(offset)); 1184 Node* mask = _gvn.transform(ConLNode::make((julong) max_juint)); 1185 return _gvn.transform( new AndLNode(conv, mask) ); 1186 } 1187 1188 Node* GraphKit::ConvL2I(Node* offset) { 1189 // short-circuit a common case 1190 jlong offset_con = find_long_con(offset, (jlong)Type::OffsetBot); 1191 if (offset_con != (jlong)Type::OffsetBot) { 1192 return intcon((int) offset_con); 1193 } 1194 return _gvn.transform( new ConvL2INode(offset)); 1195 } 1196 1197 //-------------------------load_object_klass----------------------------------- 1198 Node* GraphKit::load_object_klass(Node* obj) { 1199 // Special-case a fresh allocation to avoid building nodes: 1200 Node* akls = AllocateNode::Ideal_klass(obj, &_gvn); 1201 if (akls != nullptr) return akls; 1202 Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes()); 1203 return _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), k_adr, TypeInstPtr::KLASS)); 1204 } 1205 1206 //-------------------------load_array_length----------------------------------- 1207 Node* GraphKit::load_array_length(Node* array) { 1208 // Special-case a fresh allocation to avoid building nodes: 1209 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(array); 1210 Node *alen; 1211 if (alloc == nullptr) { 1212 Node *r_adr = basic_plus_adr(array, arrayOopDesc::length_offset_in_bytes()); 1213 alen = _gvn.transform( new LoadRangeNode(nullptr, immutable_memory(), r_adr, TypeInt::POS)); 1214 } else { 1215 alen = array_ideal_length(alloc, _gvn.type(array)->is_oopptr(), false); 1216 } 1217 return alen; 1218 } 1219 1220 Node* GraphKit::array_ideal_length(AllocateArrayNode* alloc, 1221 const TypeOopPtr* oop_type, 1222 bool replace_length_in_map) { 1223 Node* length = alloc->Ideal_length(); 1224 if (replace_length_in_map == false || map()->find_edge(length) >= 0) { 1225 Node* ccast = alloc->make_ideal_length(oop_type, &_gvn); 1226 if (ccast != length) { 1227 // do not transform ccast here, it might convert to top node for 1228 // negative array length and break assumptions in parsing stage. 1229 _gvn.set_type_bottom(ccast); 1230 record_for_igvn(ccast); 1231 if (replace_length_in_map) { 1232 replace_in_map(length, ccast); 1233 } 1234 return ccast; 1235 } 1236 } 1237 return length; 1238 } 1239 1240 //------------------------------do_null_check---------------------------------- 1241 // Helper function to do a null pointer check. Returned value is 1242 // the incoming address with null casted away. You are allowed to use the 1243 // not-null value only if you are control dependent on the test. 1244 #ifndef PRODUCT 1245 extern uint explicit_null_checks_inserted, 1246 explicit_null_checks_elided; 1247 #endif 1248 Node* GraphKit::null_check_common(Node* value, BasicType type, 1249 // optional arguments for variations: 1250 bool assert_null, 1251 Node* *null_control, 1252 bool speculative) { 1253 assert(!assert_null || null_control == nullptr, "not both at once"); 1254 if (stopped()) return top(); 1255 NOT_PRODUCT(explicit_null_checks_inserted++); 1256 1257 // Construct null check 1258 Node *chk = nullptr; 1259 switch(type) { 1260 case T_LONG : chk = new CmpLNode(value, _gvn.zerocon(T_LONG)); break; 1261 case T_INT : chk = new CmpINode(value, _gvn.intcon(0)); break; 1262 case T_ARRAY : // fall through 1263 type = T_OBJECT; // simplify further tests 1264 case T_OBJECT : { 1265 const Type *t = _gvn.type( value ); 1266 1267 const TypeOopPtr* tp = t->isa_oopptr(); 1268 if (tp != nullptr && !tp->is_loaded() 1269 // Only for do_null_check, not any of its siblings: 1270 && !assert_null && null_control == nullptr) { 1271 // Usually, any field access or invocation on an unloaded oop type 1272 // will simply fail to link, since the statically linked class is 1273 // likely also to be unloaded. However, in -Xcomp mode, sometimes 1274 // the static class is loaded but the sharper oop type is not. 1275 // Rather than checking for this obscure case in lots of places, 1276 // we simply observe that a null check on an unloaded class 1277 // will always be followed by a nonsense operation, so we 1278 // can just issue the uncommon trap here. 1279 // Our access to the unloaded class will only be correct 1280 // after it has been loaded and initialized, which requires 1281 // a trip through the interpreter. 1282 ciKlass* klass = tp->unloaded_klass(); 1283 #ifndef PRODUCT 1284 if (WizardMode) { tty->print("Null check of unloaded "); klass->print(); tty->cr(); } 1285 #endif 1286 uncommon_trap(Deoptimization::Reason_unloaded, 1287 Deoptimization::Action_reinterpret, 1288 klass, "!loaded"); 1289 return top(); 1290 } 1291 1292 if (assert_null) { 1293 // See if the type is contained in NULL_PTR. 1294 // If so, then the value is already null. 1295 if (t->higher_equal(TypePtr::NULL_PTR)) { 1296 NOT_PRODUCT(explicit_null_checks_elided++); 1297 return value; // Elided null assert quickly! 1298 } 1299 } else { 1300 // See if mixing in the null pointer changes type. 1301 // If so, then the null pointer was not allowed in the original 1302 // type. In other words, "value" was not-null. 1303 if (t->meet(TypePtr::NULL_PTR) != t->remove_speculative()) { 1304 // same as: if (!TypePtr::NULL_PTR->higher_equal(t)) ... 1305 NOT_PRODUCT(explicit_null_checks_elided++); 1306 return value; // Elided null check quickly! 1307 } 1308 } 1309 chk = new CmpPNode( value, null() ); 1310 break; 1311 } 1312 1313 default: 1314 fatal("unexpected type: %s", type2name(type)); 1315 } 1316 assert(chk != nullptr, "sanity check"); 1317 chk = _gvn.transform(chk); 1318 1319 BoolTest::mask btest = assert_null ? BoolTest::eq : BoolTest::ne; 1320 BoolNode *btst = new BoolNode( chk, btest); 1321 Node *tst = _gvn.transform( btst ); 1322 1323 //----------- 1324 // if peephole optimizations occurred, a prior test existed. 1325 // If a prior test existed, maybe it dominates as we can avoid this test. 1326 if (tst != btst && type == T_OBJECT) { 1327 // At this point we want to scan up the CFG to see if we can 1328 // find an identical test (and so avoid this test altogether). 1329 Node *cfg = control(); 1330 int depth = 0; 1331 while( depth < 16 ) { // Limit search depth for speed 1332 if( cfg->Opcode() == Op_IfTrue && 1333 cfg->in(0)->in(1) == tst ) { 1334 // Found prior test. Use "cast_not_null" to construct an identical 1335 // CastPP (and hence hash to) as already exists for the prior test. 1336 // Return that casted value. 1337 if (assert_null) { 1338 replace_in_map(value, null()); 1339 return null(); // do not issue the redundant test 1340 } 1341 Node *oldcontrol = control(); 1342 set_control(cfg); 1343 Node *res = cast_not_null(value); 1344 set_control(oldcontrol); 1345 NOT_PRODUCT(explicit_null_checks_elided++); 1346 return res; 1347 } 1348 cfg = IfNode::up_one_dom(cfg, /*linear_only=*/ true); 1349 if (cfg == nullptr) break; // Quit at region nodes 1350 depth++; 1351 } 1352 } 1353 1354 //----------- 1355 // Branch to failure if null 1356 float ok_prob = PROB_MAX; // a priori estimate: nulls never happen 1357 Deoptimization::DeoptReason reason; 1358 if (assert_null) { 1359 reason = Deoptimization::reason_null_assert(speculative); 1360 } else if (type == T_OBJECT) { 1361 reason = Deoptimization::reason_null_check(speculative); 1362 } else { 1363 reason = Deoptimization::Reason_div0_check; 1364 } 1365 // %%% Since Reason_unhandled is not recorded on a per-bytecode basis, 1366 // ciMethodData::has_trap_at will return a conservative -1 if any 1367 // must-be-null assertion has failed. This could cause performance 1368 // problems for a method after its first do_null_assert failure. 1369 // Consider using 'Reason_class_check' instead? 1370 1371 // To cause an implicit null check, we set the not-null probability 1372 // to the maximum (PROB_MAX). For an explicit check the probability 1373 // is set to a smaller value. 1374 if (null_control != nullptr || too_many_traps(reason)) { 1375 // probability is less likely 1376 ok_prob = PROB_LIKELY_MAG(3); 1377 } else if (!assert_null && 1378 (ImplicitNullCheckThreshold > 0) && 1379 method() != nullptr && 1380 (method()->method_data()->trap_count(reason) 1381 >= (uint)ImplicitNullCheckThreshold)) { 1382 ok_prob = PROB_LIKELY_MAG(3); 1383 } 1384 1385 if (null_control != nullptr) { 1386 IfNode* iff = create_and_map_if(control(), tst, ok_prob, COUNT_UNKNOWN); 1387 Node* null_true = _gvn.transform( new IfFalseNode(iff)); 1388 set_control( _gvn.transform( new IfTrueNode(iff))); 1389 #ifndef PRODUCT 1390 if (null_true == top()) { 1391 explicit_null_checks_elided++; 1392 } 1393 #endif 1394 (*null_control) = null_true; 1395 } else { 1396 BuildCutout unless(this, tst, ok_prob); 1397 // Check for optimizer eliding test at parse time 1398 if (stopped()) { 1399 // Failure not possible; do not bother making uncommon trap. 1400 NOT_PRODUCT(explicit_null_checks_elided++); 1401 } else if (assert_null) { 1402 uncommon_trap(reason, 1403 Deoptimization::Action_make_not_entrant, 1404 nullptr, "assert_null"); 1405 } else { 1406 replace_in_map(value, zerocon(type)); 1407 builtin_throw(reason); 1408 } 1409 } 1410 1411 // Must throw exception, fall-thru not possible? 1412 if (stopped()) { 1413 return top(); // No result 1414 } 1415 1416 if (assert_null) { 1417 // Cast obj to null on this path. 1418 replace_in_map(value, zerocon(type)); 1419 return zerocon(type); 1420 } 1421 1422 // Cast obj to not-null on this path, if there is no null_control. 1423 // (If there is a null_control, a non-null value may come back to haunt us.) 1424 if (type == T_OBJECT) { 1425 Node* cast = cast_not_null(value, false); 1426 if (null_control == nullptr || (*null_control) == top()) 1427 replace_in_map(value, cast); 1428 value = cast; 1429 } 1430 1431 return value; 1432 } 1433 1434 1435 //------------------------------cast_not_null---------------------------------- 1436 // Cast obj to not-null on this path 1437 Node* GraphKit::cast_not_null(Node* obj, bool do_replace_in_map) { 1438 const Type *t = _gvn.type(obj); 1439 const Type *t_not_null = t->join_speculative(TypePtr::NOTNULL); 1440 // Object is already not-null? 1441 if( t == t_not_null ) return obj; 1442 1443 Node* cast = new CastPPNode(control(), obj,t_not_null); 1444 cast = _gvn.transform( cast ); 1445 1446 // Scan for instances of 'obj' in the current JVM mapping. 1447 // These instances are known to be not-null after the test. 1448 if (do_replace_in_map) 1449 replace_in_map(obj, cast); 1450 1451 return cast; // Return casted value 1452 } 1453 1454 // Sometimes in intrinsics, we implicitly know an object is not null 1455 // (there's no actual null check) so we can cast it to not null. In 1456 // the course of optimizations, the input to the cast can become null. 1457 // In that case that data path will die and we need the control path 1458 // to become dead as well to keep the graph consistent. So we have to 1459 // add a check for null for which one branch can't be taken. It uses 1460 // an OpaqueNotNull node that will cause the check to be removed after loop 1461 // opts so the test goes away and the compiled code doesn't execute a 1462 // useless check. 1463 Node* GraphKit::must_be_not_null(Node* value, bool do_replace_in_map) { 1464 if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(value))) { 1465 return value; 1466 } 1467 Node* chk = _gvn.transform(new CmpPNode(value, null())); 1468 Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::ne)); 1469 Node* opaq = _gvn.transform(new OpaqueNotNullNode(C, tst)); 1470 IfNode* iff = new IfNode(control(), opaq, PROB_MAX, COUNT_UNKNOWN); 1471 _gvn.set_type(iff, iff->Value(&_gvn)); 1472 if (!tst->is_Con()) { 1473 record_for_igvn(iff); 1474 } 1475 Node *if_f = _gvn.transform(new IfFalseNode(iff)); 1476 Node *frame = _gvn.transform(new ParmNode(C->start(), TypeFunc::FramePtr)); 1477 Node* halt = _gvn.transform(new HaltNode(if_f, frame, "unexpected null in intrinsic")); 1478 C->root()->add_req(halt); 1479 Node *if_t = _gvn.transform(new IfTrueNode(iff)); 1480 set_control(if_t); 1481 return cast_not_null(value, do_replace_in_map); 1482 } 1483 1484 1485 //--------------------------replace_in_map------------------------------------- 1486 void GraphKit::replace_in_map(Node* old, Node* neww) { 1487 if (old == neww) { 1488 return; 1489 } 1490 1491 map()->replace_edge(old, neww); 1492 1493 // Note: This operation potentially replaces any edge 1494 // on the map. This includes locals, stack, and monitors 1495 // of the current (innermost) JVM state. 1496 1497 // don't let inconsistent types from profiling escape this 1498 // method 1499 1500 const Type* told = _gvn.type(old); 1501 const Type* tnew = _gvn.type(neww); 1502 1503 if (!tnew->higher_equal(told)) { 1504 return; 1505 } 1506 1507 map()->record_replaced_node(old, neww); 1508 } 1509 1510 1511 //============================================================================= 1512 //--------------------------------memory--------------------------------------- 1513 Node* GraphKit::memory(uint alias_idx) { 1514 MergeMemNode* mem = merged_memory(); 1515 Node* p = mem->memory_at(alias_idx); 1516 assert(p != mem->empty_memory(), "empty"); 1517 _gvn.set_type(p, Type::MEMORY); // must be mapped 1518 return p; 1519 } 1520 1521 //-----------------------------reset_memory------------------------------------ 1522 Node* GraphKit::reset_memory() { 1523 Node* mem = map()->memory(); 1524 // do not use this node for any more parsing! 1525 debug_only( map()->set_memory((Node*)nullptr) ); 1526 return _gvn.transform( mem ); 1527 } 1528 1529 //------------------------------set_all_memory--------------------------------- 1530 void GraphKit::set_all_memory(Node* newmem) { 1531 Node* mergemem = MergeMemNode::make(newmem); 1532 gvn().set_type_bottom(mergemem); 1533 map()->set_memory(mergemem); 1534 } 1535 1536 //------------------------------set_all_memory_call---------------------------- 1537 void GraphKit::set_all_memory_call(Node* call, bool separate_io_proj) { 1538 Node* newmem = _gvn.transform( new ProjNode(call, TypeFunc::Memory, separate_io_proj) ); 1539 set_all_memory(newmem); 1540 } 1541 1542 //============================================================================= 1543 // 1544 // parser factory methods for MemNodes 1545 // 1546 // These are layered on top of the factory methods in LoadNode and StoreNode, 1547 // and integrate with the parser's memory state and _gvn engine. 1548 // 1549 1550 // factory methods in "int adr_idx" 1551 Node* GraphKit::make_load(Node* ctl, Node* adr, const Type* t, BasicType bt, 1552 MemNode::MemOrd mo, 1553 LoadNode::ControlDependency control_dependency, 1554 bool require_atomic_access, 1555 bool unaligned, 1556 bool mismatched, 1557 bool unsafe, 1558 uint8_t barrier_data) { 1559 int adr_idx = C->get_alias_index(_gvn.type(adr)->isa_ptr()); 1560 assert(adr_idx != Compile::AliasIdxTop, "use other make_load factory" ); 1561 const TypePtr* adr_type = nullptr; // debug-mode-only argument 1562 debug_only(adr_type = C->get_adr_type(adr_idx)); 1563 Node* mem = memory(adr_idx); 1564 Node* ld = LoadNode::make(_gvn, ctl, mem, adr, adr_type, t, bt, mo, control_dependency, require_atomic_access, unaligned, mismatched, unsafe, barrier_data); 1565 ld = _gvn.transform(ld); 1566 if (((bt == T_OBJECT) && C->do_escape_analysis()) || C->eliminate_boxing()) { 1567 // Improve graph before escape analysis and boxing elimination. 1568 record_for_igvn(ld); 1569 if (ld->is_DecodeN()) { 1570 // Also record the actual load (LoadN) in case ld is DecodeN. In some 1571 // rare corner cases, ld->in(1) can be something other than LoadN (e.g., 1572 // a Phi). Recording such cases is still perfectly sound, but may be 1573 // unnecessary and result in some minor IGVN overhead. 1574 record_for_igvn(ld->in(1)); 1575 } 1576 } 1577 return ld; 1578 } 1579 1580 Node* GraphKit::store_to_memory(Node* ctl, Node* adr, Node *val, BasicType bt, 1581 MemNode::MemOrd mo, 1582 bool require_atomic_access, 1583 bool unaligned, 1584 bool mismatched, 1585 bool unsafe, 1586 int barrier_data) { 1587 int adr_idx = C->get_alias_index(_gvn.type(adr)->isa_ptr()); 1588 assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" ); 1589 const TypePtr* adr_type = nullptr; 1590 debug_only(adr_type = C->get_adr_type(adr_idx)); 1591 Node *mem = memory(adr_idx); 1592 Node* st = StoreNode::make(_gvn, ctl, mem, adr, adr_type, val, bt, mo, require_atomic_access); 1593 if (unaligned) { 1594 st->as_Store()->set_unaligned_access(); 1595 } 1596 if (mismatched) { 1597 st->as_Store()->set_mismatched_access(); 1598 } 1599 if (unsafe) { 1600 st->as_Store()->set_unsafe_access(); 1601 } 1602 st->as_Store()->set_barrier_data(barrier_data); 1603 st = _gvn.transform(st); 1604 set_memory(st, adr_idx); 1605 // Back-to-back stores can only remove intermediate store with DU info 1606 // so push on worklist for optimizer. 1607 if (mem->req() > MemNode::Address && adr == mem->in(MemNode::Address)) 1608 record_for_igvn(st); 1609 1610 return st; 1611 } 1612 1613 Node* GraphKit::access_store_at(Node* obj, 1614 Node* adr, 1615 const TypePtr* adr_type, 1616 Node* val, 1617 const Type* val_type, 1618 BasicType bt, 1619 DecoratorSet decorators) { 1620 // Transformation of a value which could be null pointer (CastPP #null) 1621 // could be delayed during Parse (for example, in adjust_map_after_if()). 1622 // Execute transformation here to avoid barrier generation in such case. 1623 if (_gvn.type(val) == TypePtr::NULL_PTR) { 1624 val = _gvn.makecon(TypePtr::NULL_PTR); 1625 } 1626 1627 if (stopped()) { 1628 return top(); // Dead path ? 1629 } 1630 1631 assert(val != nullptr, "not dead path"); 1632 1633 C2AccessValuePtr addr(adr, adr_type); 1634 C2AccessValue value(val, val_type); 1635 C2ParseAccess access(this, decorators | C2_WRITE_ACCESS, bt, obj, addr); 1636 if (access.is_raw()) { 1637 return _barrier_set->BarrierSetC2::store_at(access, value); 1638 } else { 1639 return _barrier_set->store_at(access, value); 1640 } 1641 } 1642 1643 Node* GraphKit::access_load_at(Node* obj, // containing obj 1644 Node* adr, // actual address to store val at 1645 const TypePtr* adr_type, 1646 const Type* val_type, 1647 BasicType bt, 1648 DecoratorSet decorators) { 1649 if (stopped()) { 1650 return top(); // Dead path ? 1651 } 1652 1653 C2AccessValuePtr addr(adr, adr_type); 1654 C2ParseAccess access(this, decorators | C2_READ_ACCESS, bt, obj, addr); 1655 if (access.is_raw()) { 1656 return _barrier_set->BarrierSetC2::load_at(access, val_type); 1657 } else { 1658 return _barrier_set->load_at(access, val_type); 1659 } 1660 } 1661 1662 Node* GraphKit::access_load(Node* adr, // actual address to load val at 1663 const Type* val_type, 1664 BasicType bt, 1665 DecoratorSet decorators) { 1666 if (stopped()) { 1667 return top(); // Dead path ? 1668 } 1669 1670 C2AccessValuePtr addr(adr, adr->bottom_type()->is_ptr()); 1671 C2ParseAccess access(this, decorators | C2_READ_ACCESS, bt, nullptr, addr); 1672 if (access.is_raw()) { 1673 return _barrier_set->BarrierSetC2::load_at(access, val_type); 1674 } else { 1675 return _barrier_set->load_at(access, val_type); 1676 } 1677 } 1678 1679 Node* GraphKit::access_atomic_cmpxchg_val_at(Node* obj, 1680 Node* adr, 1681 const TypePtr* adr_type, 1682 int alias_idx, 1683 Node* expected_val, 1684 Node* new_val, 1685 const Type* value_type, 1686 BasicType bt, 1687 DecoratorSet decorators) { 1688 C2AccessValuePtr addr(adr, adr_type); 1689 C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS, 1690 bt, obj, addr, alias_idx); 1691 if (access.is_raw()) { 1692 return _barrier_set->BarrierSetC2::atomic_cmpxchg_val_at(access, expected_val, new_val, value_type); 1693 } else { 1694 return _barrier_set->atomic_cmpxchg_val_at(access, expected_val, new_val, value_type); 1695 } 1696 } 1697 1698 Node* GraphKit::access_atomic_cmpxchg_bool_at(Node* obj, 1699 Node* adr, 1700 const TypePtr* adr_type, 1701 int alias_idx, 1702 Node* expected_val, 1703 Node* new_val, 1704 const Type* value_type, 1705 BasicType bt, 1706 DecoratorSet decorators) { 1707 C2AccessValuePtr addr(adr, adr_type); 1708 C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS, 1709 bt, obj, addr, alias_idx); 1710 if (access.is_raw()) { 1711 return _barrier_set->BarrierSetC2::atomic_cmpxchg_bool_at(access, expected_val, new_val, value_type); 1712 } else { 1713 return _barrier_set->atomic_cmpxchg_bool_at(access, expected_val, new_val, value_type); 1714 } 1715 } 1716 1717 Node* GraphKit::access_atomic_xchg_at(Node* obj, 1718 Node* adr, 1719 const TypePtr* adr_type, 1720 int alias_idx, 1721 Node* new_val, 1722 const Type* value_type, 1723 BasicType bt, 1724 DecoratorSet decorators) { 1725 C2AccessValuePtr addr(adr, adr_type); 1726 C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS, 1727 bt, obj, addr, alias_idx); 1728 if (access.is_raw()) { 1729 return _barrier_set->BarrierSetC2::atomic_xchg_at(access, new_val, value_type); 1730 } else { 1731 return _barrier_set->atomic_xchg_at(access, new_val, value_type); 1732 } 1733 } 1734 1735 Node* GraphKit::access_atomic_add_at(Node* obj, 1736 Node* adr, 1737 const TypePtr* adr_type, 1738 int alias_idx, 1739 Node* new_val, 1740 const Type* value_type, 1741 BasicType bt, 1742 DecoratorSet decorators) { 1743 C2AccessValuePtr addr(adr, adr_type); 1744 C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS, bt, obj, addr, alias_idx); 1745 if (access.is_raw()) { 1746 return _barrier_set->BarrierSetC2::atomic_add_at(access, new_val, value_type); 1747 } else { 1748 return _barrier_set->atomic_add_at(access, new_val, value_type); 1749 } 1750 } 1751 1752 void GraphKit::access_clone(Node* src, Node* dst, Node* size, bool is_array) { 1753 return _barrier_set->clone(this, src, dst, size, is_array); 1754 } 1755 1756 //-------------------------array_element_address------------------------- 1757 Node* GraphKit::array_element_address(Node* ary, Node* idx, BasicType elembt, 1758 const TypeInt* sizetype, Node* ctrl) { 1759 uint shift = exact_log2(type2aelembytes(elembt)); 1760 uint header = arrayOopDesc::base_offset_in_bytes(elembt); 1761 1762 // short-circuit a common case (saves lots of confusing waste motion) 1763 jint idx_con = find_int_con(idx, -1); 1764 if (idx_con >= 0) { 1765 intptr_t offset = header + ((intptr_t)idx_con << shift); 1766 return basic_plus_adr(ary, offset); 1767 } 1768 1769 // must be correct type for alignment purposes 1770 Node* base = basic_plus_adr(ary, header); 1771 idx = Compile::conv_I2X_index(&_gvn, idx, sizetype, ctrl); 1772 Node* scale = _gvn.transform( new LShiftXNode(idx, intcon(shift)) ); 1773 return basic_plus_adr(ary, base, scale); 1774 } 1775 1776 //-------------------------load_array_element------------------------- 1777 Node* GraphKit::load_array_element(Node* ary, Node* idx, const TypeAryPtr* arytype, bool set_ctrl) { 1778 const Type* elemtype = arytype->elem(); 1779 BasicType elembt = elemtype->array_element_basic_type(); 1780 Node* adr = array_element_address(ary, idx, elembt, arytype->size()); 1781 if (elembt == T_NARROWOOP) { 1782 elembt = T_OBJECT; // To satisfy switch in LoadNode::make() 1783 } 1784 Node* ld = access_load_at(ary, adr, arytype, elemtype, elembt, 1785 IN_HEAP | IS_ARRAY | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0)); 1786 return ld; 1787 } 1788 1789 //-------------------------set_arguments_for_java_call------------------------- 1790 // Arguments (pre-popped from the stack) are taken from the JVMS. 1791 void GraphKit::set_arguments_for_java_call(CallJavaNode* call) { 1792 // Add the call arguments: 1793 uint nargs = call->method()->arg_size(); 1794 for (uint i = 0; i < nargs; i++) { 1795 Node* arg = argument(i); 1796 call->init_req(i + TypeFunc::Parms, arg); 1797 } 1798 } 1799 1800 //---------------------------set_edges_for_java_call--------------------------- 1801 // Connect a newly created call into the current JVMS. 1802 // A return value node (if any) is returned from set_edges_for_java_call. 1803 void GraphKit::set_edges_for_java_call(CallJavaNode* call, bool must_throw, bool separate_io_proj) { 1804 1805 // Add the predefined inputs: 1806 call->init_req( TypeFunc::Control, control() ); 1807 call->init_req( TypeFunc::I_O , i_o() ); 1808 call->init_req( TypeFunc::Memory , reset_memory() ); 1809 call->init_req( TypeFunc::FramePtr, frameptr() ); 1810 call->init_req( TypeFunc::ReturnAdr, top() ); 1811 1812 add_safepoint_edges(call, must_throw); 1813 1814 Node* xcall = _gvn.transform(call); 1815 1816 if (xcall == top()) { 1817 set_control(top()); 1818 return; 1819 } 1820 assert(xcall == call, "call identity is stable"); 1821 1822 // Re-use the current map to produce the result. 1823 1824 set_control(_gvn.transform(new ProjNode(call, TypeFunc::Control))); 1825 set_i_o( _gvn.transform(new ProjNode(call, TypeFunc::I_O , separate_io_proj))); 1826 set_all_memory_call(xcall, separate_io_proj); 1827 1828 //return xcall; // no need, caller already has it 1829 } 1830 1831 Node* GraphKit::set_results_for_java_call(CallJavaNode* call, bool separate_io_proj, bool deoptimize) { 1832 if (stopped()) return top(); // maybe the call folded up? 1833 1834 // Capture the return value, if any. 1835 Node* ret; 1836 if (call->method() == nullptr || 1837 call->method()->return_type()->basic_type() == T_VOID) 1838 ret = top(); 1839 else ret = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 1840 1841 // Note: Since any out-of-line call can produce an exception, 1842 // we always insert an I_O projection from the call into the result. 1843 1844 make_slow_call_ex(call, env()->Throwable_klass(), separate_io_proj, deoptimize); 1845 1846 if (separate_io_proj) { 1847 // The caller requested separate projections be used by the fall 1848 // through and exceptional paths, so replace the projections for 1849 // the fall through path. 1850 set_i_o(_gvn.transform( new ProjNode(call, TypeFunc::I_O) )); 1851 set_all_memory(_gvn.transform( new ProjNode(call, TypeFunc::Memory) )); 1852 } 1853 return ret; 1854 } 1855 1856 //--------------------set_predefined_input_for_runtime_call-------------------- 1857 // Reading and setting the memory state is way conservative here. 1858 // The real problem is that I am not doing real Type analysis on memory, 1859 // so I cannot distinguish card mark stores from other stores. Across a GC 1860 // point the Store Barrier and the card mark memory has to agree. I cannot 1861 // have a card mark store and its barrier split across the GC point from 1862 // either above or below. Here I get that to happen by reading ALL of memory. 1863 // A better answer would be to separate out card marks from other memory. 1864 // For now, return the input memory state, so that it can be reused 1865 // after the call, if this call has restricted memory effects. 1866 Node* GraphKit::set_predefined_input_for_runtime_call(SafePointNode* call, Node* narrow_mem) { 1867 // Set fixed predefined input arguments 1868 Node* memory = reset_memory(); 1869 Node* m = narrow_mem == nullptr ? memory : narrow_mem; 1870 call->init_req( TypeFunc::Control, control() ); 1871 call->init_req( TypeFunc::I_O, top() ); // does no i/o 1872 call->init_req( TypeFunc::Memory, m ); // may gc ptrs 1873 call->init_req( TypeFunc::FramePtr, frameptr() ); 1874 call->init_req( TypeFunc::ReturnAdr, top() ); 1875 return memory; 1876 } 1877 1878 //-------------------set_predefined_output_for_runtime_call-------------------- 1879 // Set control and memory (not i_o) from the call. 1880 // If keep_mem is not null, use it for the output state, 1881 // except for the RawPtr output of the call, if hook_mem is TypeRawPtr::BOTTOM. 1882 // If hook_mem is null, this call produces no memory effects at all. 1883 // If hook_mem is a Java-visible memory slice (such as arraycopy operands), 1884 // then only that memory slice is taken from the call. 1885 // In the last case, we must put an appropriate memory barrier before 1886 // the call, so as to create the correct anti-dependencies on loads 1887 // preceding the call. 1888 void GraphKit::set_predefined_output_for_runtime_call(Node* call, 1889 Node* keep_mem, 1890 const TypePtr* hook_mem) { 1891 // no i/o 1892 set_control(_gvn.transform( new ProjNode(call,TypeFunc::Control) )); 1893 if (keep_mem) { 1894 // First clone the existing memory state 1895 set_all_memory(keep_mem); 1896 if (hook_mem != nullptr) { 1897 // Make memory for the call 1898 Node* mem = _gvn.transform( new ProjNode(call, TypeFunc::Memory) ); 1899 // Set the RawPtr memory state only. This covers all the heap top/GC stuff 1900 // We also use hook_mem to extract specific effects from arraycopy stubs. 1901 set_memory(mem, hook_mem); 1902 } 1903 // ...else the call has NO memory effects. 1904 1905 // Make sure the call advertises its memory effects precisely. 1906 // This lets us build accurate anti-dependences in gcm.cpp. 1907 assert(C->alias_type(call->adr_type()) == C->alias_type(hook_mem), 1908 "call node must be constructed correctly"); 1909 } else { 1910 assert(hook_mem == nullptr, ""); 1911 // This is not a "slow path" call; all memory comes from the call. 1912 set_all_memory_call(call); 1913 } 1914 } 1915 1916 // Keep track of MergeMems feeding into other MergeMems 1917 static void add_mergemem_users_to_worklist(Unique_Node_List& wl, Node* mem) { 1918 if (!mem->is_MergeMem()) { 1919 return; 1920 } 1921 for (SimpleDUIterator i(mem); i.has_next(); i.next()) { 1922 Node* use = i.get(); 1923 if (use->is_MergeMem()) { 1924 wl.push(use); 1925 } 1926 } 1927 } 1928 1929 // Replace the call with the current state of the kit. 1930 void GraphKit::replace_call(CallNode* call, Node* result, bool do_replaced_nodes, bool do_asserts) { 1931 JVMState* ejvms = nullptr; 1932 if (has_exceptions()) { 1933 ejvms = transfer_exceptions_into_jvms(); 1934 } 1935 1936 ReplacedNodes replaced_nodes = map()->replaced_nodes(); 1937 ReplacedNodes replaced_nodes_exception; 1938 Node* ex_ctl = top(); 1939 1940 SafePointNode* final_state = stop(); 1941 1942 // Find all the needed outputs of this call 1943 CallProjections callprojs; 1944 call->extract_projections(&callprojs, true, do_asserts); 1945 1946 Unique_Node_List wl; 1947 Node* init_mem = call->in(TypeFunc::Memory); 1948 Node* final_mem = final_state->in(TypeFunc::Memory); 1949 Node* final_ctl = final_state->in(TypeFunc::Control); 1950 Node* final_io = final_state->in(TypeFunc::I_O); 1951 1952 // Replace all the old call edges with the edges from the inlining result 1953 if (callprojs.fallthrough_catchproj != nullptr) { 1954 C->gvn_replace_by(callprojs.fallthrough_catchproj, final_ctl); 1955 } 1956 if (callprojs.fallthrough_memproj != nullptr) { 1957 if (final_mem->is_MergeMem()) { 1958 // Parser's exits MergeMem was not transformed but may be optimized 1959 final_mem = _gvn.transform(final_mem); 1960 } 1961 C->gvn_replace_by(callprojs.fallthrough_memproj, final_mem); 1962 add_mergemem_users_to_worklist(wl, final_mem); 1963 } 1964 if (callprojs.fallthrough_ioproj != nullptr) { 1965 C->gvn_replace_by(callprojs.fallthrough_ioproj, final_io); 1966 } 1967 1968 // Replace the result with the new result if it exists and is used 1969 if (callprojs.resproj != nullptr && result != nullptr) { 1970 C->gvn_replace_by(callprojs.resproj, result); 1971 } 1972 1973 if (ejvms == nullptr) { 1974 // No exception edges to simply kill off those paths 1975 if (callprojs.catchall_catchproj != nullptr) { 1976 C->gvn_replace_by(callprojs.catchall_catchproj, C->top()); 1977 } 1978 if (callprojs.catchall_memproj != nullptr) { 1979 C->gvn_replace_by(callprojs.catchall_memproj, C->top()); 1980 } 1981 if (callprojs.catchall_ioproj != nullptr) { 1982 C->gvn_replace_by(callprojs.catchall_ioproj, C->top()); 1983 } 1984 // Replace the old exception object with top 1985 if (callprojs.exobj != nullptr) { 1986 C->gvn_replace_by(callprojs.exobj, C->top()); 1987 } 1988 } else { 1989 GraphKit ekit(ejvms); 1990 1991 // Load my combined exception state into the kit, with all phis transformed: 1992 SafePointNode* ex_map = ekit.combine_and_pop_all_exception_states(); 1993 replaced_nodes_exception = ex_map->replaced_nodes(); 1994 1995 Node* ex_oop = ekit.use_exception_state(ex_map); 1996 1997 if (callprojs.catchall_catchproj != nullptr) { 1998 C->gvn_replace_by(callprojs.catchall_catchproj, ekit.control()); 1999 ex_ctl = ekit.control(); 2000 } 2001 if (callprojs.catchall_memproj != nullptr) { 2002 Node* ex_mem = ekit.reset_memory(); 2003 C->gvn_replace_by(callprojs.catchall_memproj, ex_mem); 2004 add_mergemem_users_to_worklist(wl, ex_mem); 2005 } 2006 if (callprojs.catchall_ioproj != nullptr) { 2007 C->gvn_replace_by(callprojs.catchall_ioproj, ekit.i_o()); 2008 } 2009 2010 // Replace the old exception object with the newly created one 2011 if (callprojs.exobj != nullptr) { 2012 C->gvn_replace_by(callprojs.exobj, ex_oop); 2013 } 2014 } 2015 2016 // Disconnect the call from the graph 2017 call->disconnect_inputs(C); 2018 C->gvn_replace_by(call, C->top()); 2019 2020 // Clean up any MergeMems that feed other MergeMems since the 2021 // optimizer doesn't like that. 2022 while (wl.size() > 0) { 2023 _gvn.transform(wl.pop()); 2024 } 2025 2026 if (callprojs.fallthrough_catchproj != nullptr && !final_ctl->is_top() && do_replaced_nodes) { 2027 replaced_nodes.apply(C, final_ctl); 2028 } 2029 if (!ex_ctl->is_top() && do_replaced_nodes) { 2030 replaced_nodes_exception.apply(C, ex_ctl); 2031 } 2032 } 2033 2034 2035 //------------------------------increment_counter------------------------------ 2036 // for statistics: increment a VM counter by 1 2037 2038 void GraphKit::increment_counter(address counter_addr) { 2039 Node* adr1 = makecon(TypeRawPtr::make(counter_addr)); 2040 increment_counter(adr1); 2041 } 2042 2043 void GraphKit::increment_counter(Node* counter_addr) { 2044 Node* ctrl = control(); 2045 Node* cnt = make_load(ctrl, counter_addr, TypeLong::LONG, T_LONG, MemNode::unordered); 2046 Node* incr = _gvn.transform(new AddLNode(cnt, _gvn.longcon(1))); 2047 store_to_memory(ctrl, counter_addr, incr, T_LONG, MemNode::unordered); 2048 } 2049 2050 2051 //------------------------------uncommon_trap---------------------------------- 2052 // Bail out to the interpreter in mid-method. Implemented by calling the 2053 // uncommon_trap blob. This helper function inserts a runtime call with the 2054 // right debug info. 2055 Node* GraphKit::uncommon_trap(int trap_request, 2056 ciKlass* klass, const char* comment, 2057 bool must_throw, 2058 bool keep_exact_action) { 2059 if (failing_internal()) { 2060 stop(); 2061 } 2062 if (stopped()) return nullptr; // trap reachable? 2063 2064 // Note: If ProfileTraps is true, and if a deopt. actually 2065 // occurs here, the runtime will make sure an MDO exists. There is 2066 // no need to call method()->ensure_method_data() at this point. 2067 2068 // Set the stack pointer to the right value for reexecution: 2069 set_sp(reexecute_sp()); 2070 2071 #ifdef ASSERT 2072 if (!must_throw) { 2073 // Make sure the stack has at least enough depth to execute 2074 // the current bytecode. 2075 int inputs, ignored_depth; 2076 if (compute_stack_effects(inputs, ignored_depth)) { 2077 assert(sp() >= inputs, "must have enough JVMS stack to execute %s: sp=%d, inputs=%d", 2078 Bytecodes::name(java_bc()), sp(), inputs); 2079 } 2080 } 2081 #endif 2082 2083 Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request); 2084 Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request); 2085 2086 switch (action) { 2087 case Deoptimization::Action_maybe_recompile: 2088 case Deoptimization::Action_reinterpret: 2089 // Temporary fix for 6529811 to allow virtual calls to be sure they 2090 // get the chance to go from mono->bi->mega 2091 if (!keep_exact_action && 2092 Deoptimization::trap_request_index(trap_request) < 0 && 2093 too_many_recompiles(reason)) { 2094 // This BCI is causing too many recompilations. 2095 if (C->log() != nullptr) { 2096 C->log()->elem("observe that='trap_action_change' reason='%s' from='%s' to='none'", 2097 Deoptimization::trap_reason_name(reason), 2098 Deoptimization::trap_action_name(action)); 2099 } 2100 action = Deoptimization::Action_none; 2101 trap_request = Deoptimization::make_trap_request(reason, action); 2102 } else { 2103 C->set_trap_can_recompile(true); 2104 } 2105 break; 2106 case Deoptimization::Action_make_not_entrant: 2107 C->set_trap_can_recompile(true); 2108 break; 2109 case Deoptimization::Action_none: 2110 case Deoptimization::Action_make_not_compilable: 2111 break; 2112 default: 2113 #ifdef ASSERT 2114 fatal("unknown action %d: %s", action, Deoptimization::trap_action_name(action)); 2115 #endif 2116 break; 2117 } 2118 2119 if (TraceOptoParse) { 2120 char buf[100]; 2121 tty->print_cr("Uncommon trap %s at bci:%d", 2122 Deoptimization::format_trap_request(buf, sizeof(buf), 2123 trap_request), bci()); 2124 } 2125 2126 CompileLog* log = C->log(); 2127 if (log != nullptr) { 2128 int kid = (klass == nullptr)? -1: log->identify(klass); 2129 log->begin_elem("uncommon_trap bci='%d'", bci()); 2130 char buf[100]; 2131 log->print(" %s", Deoptimization::format_trap_request(buf, sizeof(buf), 2132 trap_request)); 2133 if (kid >= 0) log->print(" klass='%d'", kid); 2134 if (comment != nullptr) log->print(" comment='%s'", comment); 2135 log->end_elem(); 2136 } 2137 2138 // Make sure any guarding test views this path as very unlikely 2139 Node *i0 = control()->in(0); 2140 if (i0 != nullptr && i0->is_If()) { // Found a guarding if test? 2141 IfNode *iff = i0->as_If(); 2142 float f = iff->_prob; // Get prob 2143 if (control()->Opcode() == Op_IfTrue) { 2144 if (f > PROB_UNLIKELY_MAG(4)) 2145 iff->_prob = PROB_MIN; 2146 } else { 2147 if (f < PROB_LIKELY_MAG(4)) 2148 iff->_prob = PROB_MAX; 2149 } 2150 } 2151 2152 // Clear out dead values from the debug info. 2153 kill_dead_locals(); 2154 2155 // Now insert the uncommon trap subroutine call 2156 address call_addr = OptoRuntime::uncommon_trap_blob()->entry_point(); 2157 const TypePtr* no_memory_effects = nullptr; 2158 // Pass the index of the class to be loaded 2159 Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON | 2160 (must_throw ? RC_MUST_THROW : 0), 2161 OptoRuntime::uncommon_trap_Type(), 2162 call_addr, "uncommon_trap", no_memory_effects, 2163 intcon(trap_request)); 2164 assert(call->as_CallStaticJava()->uncommon_trap_request() == trap_request, 2165 "must extract request correctly from the graph"); 2166 assert(trap_request != 0, "zero value reserved by uncommon_trap_request"); 2167 2168 call->set_req(TypeFunc::ReturnAdr, returnadr()); 2169 // The debug info is the only real input to this call. 2170 2171 // Halt-and-catch fire here. The above call should never return! 2172 HaltNode* halt = new HaltNode(control(), frameptr(), "uncommon trap returned which should never happen" 2173 PRODUCT_ONLY(COMMA /*reachable*/false)); 2174 _gvn.set_type_bottom(halt); 2175 root()->add_req(halt); 2176 2177 stop_and_kill_map(); 2178 return call; 2179 } 2180 2181 2182 //--------------------------just_allocated_object------------------------------ 2183 // Report the object that was just allocated. 2184 // It must be the case that there are no intervening safepoints. 2185 // We use this to determine if an object is so "fresh" that 2186 // it does not require card marks. 2187 Node* GraphKit::just_allocated_object(Node* current_control) { 2188 Node* ctrl = current_control; 2189 // Object::<init> is invoked after allocation, most of invoke nodes 2190 // will be reduced, but a region node is kept in parse time, we check 2191 // the pattern and skip the region node if it degraded to a copy. 2192 if (ctrl != nullptr && ctrl->is_Region() && ctrl->req() == 2 && 2193 ctrl->as_Region()->is_copy()) { 2194 ctrl = ctrl->as_Region()->is_copy(); 2195 } 2196 if (C->recent_alloc_ctl() == ctrl) { 2197 return C->recent_alloc_obj(); 2198 } 2199 return nullptr; 2200 } 2201 2202 2203 /** 2204 * Record profiling data exact_kls for Node n with the type system so 2205 * that it can propagate it (speculation) 2206 * 2207 * @param n node that the type applies to 2208 * @param exact_kls type from profiling 2209 * @param maybe_null did profiling see null? 2210 * 2211 * @return node with improved type 2212 */ 2213 Node* GraphKit::record_profile_for_speculation(Node* n, ciKlass* exact_kls, ProfilePtrKind ptr_kind) { 2214 const Type* current_type = _gvn.type(n); 2215 assert(UseTypeSpeculation, "type speculation must be on"); 2216 2217 const TypePtr* speculative = current_type->speculative(); 2218 2219 // Should the klass from the profile be recorded in the speculative type? 2220 if (current_type->would_improve_type(exact_kls, jvms()->depth())) { 2221 const TypeKlassPtr* tklass = TypeKlassPtr::make(exact_kls, Type::trust_interfaces); 2222 const TypeOopPtr* xtype = tklass->as_instance_type(); 2223 assert(xtype->klass_is_exact(), "Should be exact"); 2224 // Any reason to believe n is not null (from this profiling or a previous one)? 2225 assert(ptr_kind != ProfileAlwaysNull, "impossible here"); 2226 const TypePtr* ptr = (ptr_kind == ProfileMaybeNull && current_type->speculative_maybe_null()) ? TypePtr::BOTTOM : TypePtr::NOTNULL; 2227 // record the new speculative type's depth 2228 speculative = xtype->cast_to_ptr_type(ptr->ptr())->is_ptr(); 2229 speculative = speculative->with_inline_depth(jvms()->depth()); 2230 } else if (current_type->would_improve_ptr(ptr_kind)) { 2231 // Profiling report that null was never seen so we can change the 2232 // speculative type to non null ptr. 2233 if (ptr_kind == ProfileAlwaysNull) { 2234 speculative = TypePtr::NULL_PTR; 2235 } else { 2236 assert(ptr_kind == ProfileNeverNull, "nothing else is an improvement"); 2237 const TypePtr* ptr = TypePtr::NOTNULL; 2238 if (speculative != nullptr) { 2239 speculative = speculative->cast_to_ptr_type(ptr->ptr())->is_ptr(); 2240 } else { 2241 speculative = ptr; 2242 } 2243 } 2244 } 2245 2246 if (speculative != current_type->speculative()) { 2247 // Build a type with a speculative type (what we think we know 2248 // about the type but will need a guard when we use it) 2249 const TypeOopPtr* spec_type = TypeOopPtr::make(TypePtr::BotPTR, Type::OffsetBot, TypeOopPtr::InstanceBot, speculative); 2250 // We're changing the type, we need a new CheckCast node to carry 2251 // the new type. The new type depends on the control: what 2252 // profiling tells us is only valid from here as far as we can 2253 // tell. 2254 Node* cast = new CheckCastPPNode(control(), n, current_type->remove_speculative()->join_speculative(spec_type)); 2255 cast = _gvn.transform(cast); 2256 replace_in_map(n, cast); 2257 n = cast; 2258 } 2259 2260 return n; 2261 } 2262 2263 /** 2264 * Record profiling data from receiver profiling at an invoke with the 2265 * type system so that it can propagate it (speculation) 2266 * 2267 * @param n receiver node 2268 * 2269 * @return node with improved type 2270 */ 2271 Node* GraphKit::record_profiled_receiver_for_speculation(Node* n) { 2272 if (!UseTypeSpeculation) { 2273 return n; 2274 } 2275 ciKlass* exact_kls = profile_has_unique_klass(); 2276 ProfilePtrKind ptr_kind = ProfileMaybeNull; 2277 if ((java_bc() == Bytecodes::_checkcast || 2278 java_bc() == Bytecodes::_instanceof || 2279 java_bc() == Bytecodes::_aastore) && 2280 method()->method_data()->is_mature()) { 2281 ciProfileData* data = method()->method_data()->bci_to_data(bci()); 2282 if (data != nullptr) { 2283 if (!data->as_BitData()->null_seen()) { 2284 ptr_kind = ProfileNeverNull; 2285 } else { 2286 assert(data->is_ReceiverTypeData(), "bad profile data type"); 2287 ciReceiverTypeData* call = (ciReceiverTypeData*)data->as_ReceiverTypeData(); 2288 uint i = 0; 2289 for (; i < call->row_limit(); i++) { 2290 ciKlass* receiver = call->receiver(i); 2291 if (receiver != nullptr) { 2292 break; 2293 } 2294 } 2295 ptr_kind = (i == call->row_limit()) ? ProfileAlwaysNull : ProfileMaybeNull; 2296 } 2297 } 2298 } 2299 return record_profile_for_speculation(n, exact_kls, ptr_kind); 2300 } 2301 2302 /** 2303 * Record profiling data from argument profiling at an invoke with the 2304 * type system so that it can propagate it (speculation) 2305 * 2306 * @param dest_method target method for the call 2307 * @param bc what invoke bytecode is this? 2308 */ 2309 void GraphKit::record_profiled_arguments_for_speculation(ciMethod* dest_method, Bytecodes::Code bc) { 2310 if (!UseTypeSpeculation) { 2311 return; 2312 } 2313 const TypeFunc* tf = TypeFunc::make(dest_method); 2314 int nargs = tf->domain()->cnt() - TypeFunc::Parms; 2315 int skip = Bytecodes::has_receiver(bc) ? 1 : 0; 2316 for (int j = skip, i = 0; j < nargs && i < TypeProfileArgsLimit; j++) { 2317 const Type *targ = tf->domain()->field_at(j + TypeFunc::Parms); 2318 if (is_reference_type(targ->basic_type())) { 2319 ProfilePtrKind ptr_kind = ProfileMaybeNull; 2320 ciKlass* better_type = nullptr; 2321 if (method()->argument_profiled_type(bci(), i, better_type, ptr_kind)) { 2322 record_profile_for_speculation(argument(j), better_type, ptr_kind); 2323 } 2324 i++; 2325 } 2326 } 2327 } 2328 2329 /** 2330 * Record profiling data from parameter profiling at an invoke with 2331 * the type system so that it can propagate it (speculation) 2332 */ 2333 void GraphKit::record_profiled_parameters_for_speculation() { 2334 if (!UseTypeSpeculation) { 2335 return; 2336 } 2337 for (int i = 0, j = 0; i < method()->arg_size() ; i++) { 2338 if (_gvn.type(local(i))->isa_oopptr()) { 2339 ProfilePtrKind ptr_kind = ProfileMaybeNull; 2340 ciKlass* better_type = nullptr; 2341 if (method()->parameter_profiled_type(j, better_type, ptr_kind)) { 2342 record_profile_for_speculation(local(i), better_type, ptr_kind); 2343 } 2344 j++; 2345 } 2346 } 2347 } 2348 2349 /** 2350 * Record profiling data from return value profiling at an invoke with 2351 * the type system so that it can propagate it (speculation) 2352 */ 2353 void GraphKit::record_profiled_return_for_speculation() { 2354 if (!UseTypeSpeculation) { 2355 return; 2356 } 2357 ProfilePtrKind ptr_kind = ProfileMaybeNull; 2358 ciKlass* better_type = nullptr; 2359 if (method()->return_profiled_type(bci(), better_type, ptr_kind)) { 2360 // If profiling reports a single type for the return value, 2361 // feed it to the type system so it can propagate it as a 2362 // speculative type 2363 record_profile_for_speculation(stack(sp()-1), better_type, ptr_kind); 2364 } 2365 } 2366 2367 void GraphKit::round_double_arguments(ciMethod* dest_method) { 2368 if (Matcher::strict_fp_requires_explicit_rounding) { 2369 // (Note: TypeFunc::make has a cache that makes this fast.) 2370 const TypeFunc* tf = TypeFunc::make(dest_method); 2371 int nargs = tf->domain()->cnt() - TypeFunc::Parms; 2372 for (int j = 0; j < nargs; j++) { 2373 const Type *targ = tf->domain()->field_at(j + TypeFunc::Parms); 2374 if (targ->basic_type() == T_DOUBLE) { 2375 // If any parameters are doubles, they must be rounded before 2376 // the call, dprecision_rounding does gvn.transform 2377 Node *arg = argument(j); 2378 arg = dprecision_rounding(arg); 2379 set_argument(j, arg); 2380 } 2381 } 2382 } 2383 } 2384 2385 // rounding for strict float precision conformance 2386 Node* GraphKit::precision_rounding(Node* n) { 2387 if (Matcher::strict_fp_requires_explicit_rounding) { 2388 #ifdef IA32 2389 if (UseSSE == 0) { 2390 return _gvn.transform(new RoundFloatNode(nullptr, n)); 2391 } 2392 #else 2393 Unimplemented(); 2394 #endif // IA32 2395 } 2396 return n; 2397 } 2398 2399 // rounding for strict double precision conformance 2400 Node* GraphKit::dprecision_rounding(Node *n) { 2401 if (Matcher::strict_fp_requires_explicit_rounding) { 2402 #ifdef IA32 2403 if (UseSSE < 2) { 2404 return _gvn.transform(new RoundDoubleNode(nullptr, n)); 2405 } 2406 #else 2407 Unimplemented(); 2408 #endif // IA32 2409 } 2410 return n; 2411 } 2412 2413 //============================================================================= 2414 // Generate a fast path/slow path idiom. Graph looks like: 2415 // [foo] indicates that 'foo' is a parameter 2416 // 2417 // [in] null 2418 // \ / 2419 // CmpP 2420 // Bool ne 2421 // If 2422 // / \ 2423 // True False-<2> 2424 // / | 2425 // / cast_not_null 2426 // Load | | ^ 2427 // [fast_test] | | 2428 // gvn to opt_test | | 2429 // / \ | <1> 2430 // True False | 2431 // | \\ | 2432 // [slow_call] \[fast_result] 2433 // Ctl Val \ \ 2434 // | \ \ 2435 // Catch <1> \ \ 2436 // / \ ^ \ \ 2437 // Ex No_Ex | \ \ 2438 // | \ \ | \ <2> \ 2439 // ... \ [slow_res] | | \ [null_result] 2440 // \ \--+--+--- | | 2441 // \ | / \ | / 2442 // --------Region Phi 2443 // 2444 //============================================================================= 2445 // Code is structured as a series of driver functions all called 'do_XXX' that 2446 // call a set of helper functions. Helper functions first, then drivers. 2447 2448 //------------------------------null_check_oop--------------------------------- 2449 // Null check oop. Set null-path control into Region in slot 3. 2450 // Make a cast-not-nullness use the other not-null control. Return cast. 2451 Node* GraphKit::null_check_oop(Node* value, Node* *null_control, 2452 bool never_see_null, 2453 bool safe_for_replace, 2454 bool speculative) { 2455 // Initial null check taken path 2456 (*null_control) = top(); 2457 Node* cast = null_check_common(value, T_OBJECT, false, null_control, speculative); 2458 2459 // Generate uncommon_trap: 2460 if (never_see_null && (*null_control) != top()) { 2461 // If we see an unexpected null at a check-cast we record it and force a 2462 // recompile; the offending check-cast will be compiled to handle nulls. 2463 // If we see more than one offending BCI, then all checkcasts in the 2464 // method will be compiled to handle nulls. 2465 PreserveJVMState pjvms(this); 2466 set_control(*null_control); 2467 replace_in_map(value, null()); 2468 Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculative); 2469 uncommon_trap(reason, 2470 Deoptimization::Action_make_not_entrant); 2471 (*null_control) = top(); // null path is dead 2472 } 2473 if ((*null_control) == top() && safe_for_replace) { 2474 replace_in_map(value, cast); 2475 } 2476 2477 // Cast away null-ness on the result 2478 return cast; 2479 } 2480 2481 //------------------------------opt_iff---------------------------------------- 2482 // Optimize the fast-check IfNode. Set the fast-path region slot 2. 2483 // Return slow-path control. 2484 Node* GraphKit::opt_iff(Node* region, Node* iff) { 2485 IfNode *opt_iff = _gvn.transform(iff)->as_If(); 2486 2487 // Fast path taken; set region slot 2 2488 Node *fast_taken = _gvn.transform( new IfFalseNode(opt_iff) ); 2489 region->init_req(2,fast_taken); // Capture fast-control 2490 2491 // Fast path not-taken, i.e. slow path 2492 Node *slow_taken = _gvn.transform( new IfTrueNode(opt_iff) ); 2493 return slow_taken; 2494 } 2495 2496 //-----------------------------make_runtime_call------------------------------- 2497 Node* GraphKit::make_runtime_call(int flags, 2498 const TypeFunc* call_type, address call_addr, 2499 const char* call_name, 2500 const TypePtr* adr_type, 2501 // The following parms are all optional. 2502 // The first null ends the list. 2503 Node* parm0, Node* parm1, 2504 Node* parm2, Node* parm3, 2505 Node* parm4, Node* parm5, 2506 Node* parm6, Node* parm7) { 2507 assert(call_addr != nullptr, "must not call null targets"); 2508 2509 // Slow-path call 2510 bool is_leaf = !(flags & RC_NO_LEAF); 2511 bool has_io = (!is_leaf && !(flags & RC_NO_IO)); 2512 if (call_name == nullptr) { 2513 assert(!is_leaf, "must supply name for leaf"); 2514 call_name = OptoRuntime::stub_name(call_addr); 2515 } 2516 CallNode* call; 2517 if (!is_leaf) { 2518 call = new CallStaticJavaNode(call_type, call_addr, call_name, adr_type); 2519 } else if (flags & RC_NO_FP) { 2520 call = new CallLeafNoFPNode(call_type, call_addr, call_name, adr_type); 2521 } else if (flags & RC_VECTOR){ 2522 uint num_bits = call_type->range()->field_at(TypeFunc::Parms)->is_vect()->length_in_bytes() * BitsPerByte; 2523 call = new CallLeafVectorNode(call_type, call_addr, call_name, adr_type, num_bits); 2524 } else { 2525 call = new CallLeafNode(call_type, call_addr, call_name, adr_type); 2526 } 2527 2528 // The following is similar to set_edges_for_java_call, 2529 // except that the memory effects of the call are restricted to AliasIdxRaw. 2530 2531 // Slow path call has no side-effects, uses few values 2532 bool wide_in = !(flags & RC_NARROW_MEM); 2533 bool wide_out = (C->get_alias_index(adr_type) == Compile::AliasIdxBot); 2534 2535 Node* prev_mem = nullptr; 2536 if (wide_in) { 2537 prev_mem = set_predefined_input_for_runtime_call(call); 2538 } else { 2539 assert(!wide_out, "narrow in => narrow out"); 2540 Node* narrow_mem = memory(adr_type); 2541 prev_mem = set_predefined_input_for_runtime_call(call, narrow_mem); 2542 } 2543 2544 // Hook each parm in order. Stop looking at the first null. 2545 if (parm0 != nullptr) { call->init_req(TypeFunc::Parms+0, parm0); 2546 if (parm1 != nullptr) { call->init_req(TypeFunc::Parms+1, parm1); 2547 if (parm2 != nullptr) { call->init_req(TypeFunc::Parms+2, parm2); 2548 if (parm3 != nullptr) { call->init_req(TypeFunc::Parms+3, parm3); 2549 if (parm4 != nullptr) { call->init_req(TypeFunc::Parms+4, parm4); 2550 if (parm5 != nullptr) { call->init_req(TypeFunc::Parms+5, parm5); 2551 if (parm6 != nullptr) { call->init_req(TypeFunc::Parms+6, parm6); 2552 if (parm7 != nullptr) { call->init_req(TypeFunc::Parms+7, parm7); 2553 /* close each nested if ===> */ } } } } } } } } 2554 assert(call->in(call->req()-1) != nullptr, "must initialize all parms"); 2555 2556 if (!is_leaf) { 2557 // Non-leaves can block and take safepoints: 2558 add_safepoint_edges(call, ((flags & RC_MUST_THROW) != 0)); 2559 } 2560 // Non-leaves can throw exceptions: 2561 if (has_io) { 2562 call->set_req(TypeFunc::I_O, i_o()); 2563 } 2564 2565 if (flags & RC_UNCOMMON) { 2566 // Set the count to a tiny probability. Cf. Estimate_Block_Frequency. 2567 // (An "if" probability corresponds roughly to an unconditional count. 2568 // Sort of.) 2569 call->set_cnt(PROB_UNLIKELY_MAG(4)); 2570 } 2571 2572 Node* c = _gvn.transform(call); 2573 assert(c == call, "cannot disappear"); 2574 2575 if (wide_out) { 2576 // Slow path call has full side-effects. 2577 set_predefined_output_for_runtime_call(call); 2578 } else { 2579 // Slow path call has few side-effects, and/or sets few values. 2580 set_predefined_output_for_runtime_call(call, prev_mem, adr_type); 2581 } 2582 2583 if (has_io) { 2584 set_i_o(_gvn.transform(new ProjNode(call, TypeFunc::I_O))); 2585 } 2586 return call; 2587 2588 } 2589 2590 // i2b 2591 Node* GraphKit::sign_extend_byte(Node* in) { 2592 Node* tmp = _gvn.transform(new LShiftINode(in, _gvn.intcon(24))); 2593 return _gvn.transform(new RShiftINode(tmp, _gvn.intcon(24))); 2594 } 2595 2596 // i2s 2597 Node* GraphKit::sign_extend_short(Node* in) { 2598 Node* tmp = _gvn.transform(new LShiftINode(in, _gvn.intcon(16))); 2599 return _gvn.transform(new RShiftINode(tmp, _gvn.intcon(16))); 2600 } 2601 2602 //------------------------------merge_memory----------------------------------- 2603 // Merge memory from one path into the current memory state. 2604 void GraphKit::merge_memory(Node* new_mem, Node* region, int new_path) { 2605 for (MergeMemStream mms(merged_memory(), new_mem->as_MergeMem()); mms.next_non_empty2(); ) { 2606 Node* old_slice = mms.force_memory(); 2607 Node* new_slice = mms.memory2(); 2608 if (old_slice != new_slice) { 2609 PhiNode* phi; 2610 if (old_slice->is_Phi() && old_slice->as_Phi()->region() == region) { 2611 if (mms.is_empty()) { 2612 // clone base memory Phi's inputs for this memory slice 2613 assert(old_slice == mms.base_memory(), "sanity"); 2614 phi = PhiNode::make(region, nullptr, Type::MEMORY, mms.adr_type(C)); 2615 _gvn.set_type(phi, Type::MEMORY); 2616 for (uint i = 1; i < phi->req(); i++) { 2617 phi->init_req(i, old_slice->in(i)); 2618 } 2619 } else { 2620 phi = old_slice->as_Phi(); // Phi was generated already 2621 } 2622 } else { 2623 phi = PhiNode::make(region, old_slice, Type::MEMORY, mms.adr_type(C)); 2624 _gvn.set_type(phi, Type::MEMORY); 2625 } 2626 phi->set_req(new_path, new_slice); 2627 mms.set_memory(phi); 2628 } 2629 } 2630 } 2631 2632 //------------------------------make_slow_call_ex------------------------------ 2633 // Make the exception handler hookups for the slow call 2634 void GraphKit::make_slow_call_ex(Node* call, ciInstanceKlass* ex_klass, bool separate_io_proj, bool deoptimize) { 2635 if (stopped()) return; 2636 2637 // Make a catch node with just two handlers: fall-through and catch-all 2638 Node* i_o = _gvn.transform( new ProjNode(call, TypeFunc::I_O, separate_io_proj) ); 2639 Node* catc = _gvn.transform( new CatchNode(control(), i_o, 2) ); 2640 Node* norm = new CatchProjNode(catc, CatchProjNode::fall_through_index, CatchProjNode::no_handler_bci); 2641 _gvn.set_type_bottom(norm); 2642 C->record_for_igvn(norm); 2643 Node* excp = _gvn.transform( new CatchProjNode(catc, CatchProjNode::catch_all_index, CatchProjNode::no_handler_bci) ); 2644 2645 { PreserveJVMState pjvms(this); 2646 set_control(excp); 2647 set_i_o(i_o); 2648 2649 if (excp != top()) { 2650 if (deoptimize) { 2651 // Deoptimize if an exception is caught. Don't construct exception state in this case. 2652 uncommon_trap(Deoptimization::Reason_unhandled, 2653 Deoptimization::Action_none); 2654 } else { 2655 // Create an exception state also. 2656 // Use an exact type if the caller has a specific exception. 2657 const Type* ex_type = TypeOopPtr::make_from_klass_unique(ex_klass)->cast_to_ptr_type(TypePtr::NotNull); 2658 Node* ex_oop = new CreateExNode(ex_type, control(), i_o); 2659 add_exception_state(make_exception_state(_gvn.transform(ex_oop))); 2660 } 2661 } 2662 } 2663 2664 // Get the no-exception control from the CatchNode. 2665 set_control(norm); 2666 } 2667 2668 static IfNode* gen_subtype_check_compare(Node* ctrl, Node* in1, Node* in2, BoolTest::mask test, float p, PhaseGVN& gvn, BasicType bt) { 2669 Node* cmp = nullptr; 2670 switch(bt) { 2671 case T_INT: cmp = new CmpINode(in1, in2); break; 2672 case T_ADDRESS: cmp = new CmpPNode(in1, in2); break; 2673 default: fatal("unexpected comparison type %s", type2name(bt)); 2674 } 2675 cmp = gvn.transform(cmp); 2676 Node* bol = gvn.transform(new BoolNode(cmp, test)); 2677 IfNode* iff = new IfNode(ctrl, bol, p, COUNT_UNKNOWN); 2678 gvn.transform(iff); 2679 if (!bol->is_Con()) gvn.record_for_igvn(iff); 2680 return iff; 2681 } 2682 2683 //-------------------------------gen_subtype_check----------------------------- 2684 // Generate a subtyping check. Takes as input the subtype and supertype. 2685 // Returns 2 values: sets the default control() to the true path and returns 2686 // the false path. Only reads invariant memory; sets no (visible) memory. 2687 // The PartialSubtypeCheckNode sets the hidden 1-word cache in the encoding 2688 // but that's not exposed to the optimizer. This call also doesn't take in an 2689 // Object; if you wish to check an Object you need to load the Object's class 2690 // prior to coming here. 2691 Node* Phase::gen_subtype_check(Node* subklass, Node* superklass, Node** ctrl, Node* mem, PhaseGVN& gvn, 2692 ciMethod* method, int bci) { 2693 Compile* C = gvn.C; 2694 if ((*ctrl)->is_top()) { 2695 return C->top(); 2696 } 2697 2698 // Fast check for identical types, perhaps identical constants. 2699 // The types can even be identical non-constants, in cases 2700 // involving Array.newInstance, Object.clone, etc. 2701 if (subklass == superklass) 2702 return C->top(); // false path is dead; no test needed. 2703 2704 if (gvn.type(superklass)->singleton()) { 2705 const TypeKlassPtr* superk = gvn.type(superklass)->is_klassptr(); 2706 const TypeKlassPtr* subk = gvn.type(subklass)->is_klassptr(); 2707 2708 // In the common case of an exact superklass, try to fold up the 2709 // test before generating code. You may ask, why not just generate 2710 // the code and then let it fold up? The answer is that the generated 2711 // code will necessarily include null checks, which do not always 2712 // completely fold away. If they are also needless, then they turn 2713 // into a performance loss. Example: 2714 // Foo[] fa = blah(); Foo x = fa[0]; fa[1] = x; 2715 // Here, the type of 'fa' is often exact, so the store check 2716 // of fa[1]=x will fold up, without testing the nullness of x. 2717 // 2718 // At macro expansion, we would have already folded the SubTypeCheckNode 2719 // being expanded here because we always perform the static sub type 2720 // check in SubTypeCheckNode::sub() regardless of whether 2721 // StressReflectiveCode is set or not. We can therefore skip this 2722 // static check when StressReflectiveCode is on. 2723 switch (C->static_subtype_check(superk, subk)) { 2724 case Compile::SSC_always_false: 2725 { 2726 Node* always_fail = *ctrl; 2727 *ctrl = gvn.C->top(); 2728 return always_fail; 2729 } 2730 case Compile::SSC_always_true: 2731 return C->top(); 2732 case Compile::SSC_easy_test: 2733 { 2734 // Just do a direct pointer compare and be done. 2735 IfNode* iff = gen_subtype_check_compare(*ctrl, subklass, superklass, BoolTest::eq, PROB_STATIC_FREQUENT, gvn, T_ADDRESS); 2736 *ctrl = gvn.transform(new IfTrueNode(iff)); 2737 return gvn.transform(new IfFalseNode(iff)); 2738 } 2739 case Compile::SSC_full_test: 2740 break; 2741 default: 2742 ShouldNotReachHere(); 2743 } 2744 } 2745 2746 // %%% Possible further optimization: Even if the superklass is not exact, 2747 // if the subklass is the unique subtype of the superklass, the check 2748 // will always succeed. We could leave a dependency behind to ensure this. 2749 2750 // First load the super-klass's check-offset 2751 Node *p1 = gvn.transform(new AddPNode(superklass, superklass, gvn.MakeConX(in_bytes(Klass::super_check_offset_offset())))); 2752 Node* m = C->immutable_memory(); 2753 Node *chk_off = gvn.transform(new LoadINode(nullptr, m, p1, gvn.type(p1)->is_ptr(), TypeInt::INT, MemNode::unordered)); 2754 int cacheoff_con = in_bytes(Klass::secondary_super_cache_offset()); 2755 const TypeInt* chk_off_t = chk_off->Value(&gvn)->isa_int(); 2756 int chk_off_con = (chk_off_t != nullptr && chk_off_t->is_con()) ? chk_off_t->get_con() : cacheoff_con; 2757 bool might_be_cache = (chk_off_con == cacheoff_con); 2758 2759 // Load from the sub-klass's super-class display list, or a 1-word cache of 2760 // the secondary superclass list, or a failing value with a sentinel offset 2761 // if the super-klass is an interface or exceptionally deep in the Java 2762 // hierarchy and we have to scan the secondary superclass list the hard way. 2763 // Worst-case type is a little odd: null is allowed as a result (usually 2764 // klass loads can never produce a null). 2765 Node *chk_off_X = chk_off; 2766 #ifdef _LP64 2767 chk_off_X = gvn.transform(new ConvI2LNode(chk_off_X)); 2768 #endif 2769 Node *p2 = gvn.transform(new AddPNode(subklass,subklass,chk_off_X)); 2770 // For some types like interfaces the following loadKlass is from a 1-word 2771 // cache which is mutable so can't use immutable memory. Other 2772 // types load from the super-class display table which is immutable. 2773 Node *kmem = C->immutable_memory(); 2774 // secondary_super_cache is not immutable but can be treated as such because: 2775 // - no ideal node writes to it in a way that could cause an 2776 // incorrect/missed optimization of the following Load. 2777 // - it's a cache so, worse case, not reading the latest value 2778 // wouldn't cause incorrect execution 2779 if (might_be_cache && mem != nullptr) { 2780 kmem = mem->is_MergeMem() ? mem->as_MergeMem()->memory_at(C->get_alias_index(gvn.type(p2)->is_ptr())) : mem; 2781 } 2782 Node* nkls = gvn.transform(LoadKlassNode::make(gvn, kmem, p2, gvn.type(p2)->is_ptr(), TypeInstKlassPtr::OBJECT_OR_NULL)); 2783 2784 // Compile speed common case: ARE a subtype and we canNOT fail 2785 if (superklass == nkls) { 2786 return C->top(); // false path is dead; no test needed. 2787 } 2788 2789 // Gather the various success & failures here 2790 RegionNode* r_not_subtype = new RegionNode(3); 2791 gvn.record_for_igvn(r_not_subtype); 2792 RegionNode* r_ok_subtype = new RegionNode(4); 2793 gvn.record_for_igvn(r_ok_subtype); 2794 2795 // If we might perform an expensive check, first try to take advantage of profile data that was attached to the 2796 // SubTypeCheck node 2797 if (might_be_cache && method != nullptr && VM_Version::profile_all_receivers_at_type_check()) { 2798 ciCallProfile profile = method->call_profile_at_bci(bci); 2799 float total_prob = 0; 2800 for (int i = 0; profile.has_receiver(i); ++i) { 2801 float prob = profile.receiver_prob(i); 2802 total_prob += prob; 2803 } 2804 if (total_prob * 100. >= TypeProfileSubTypeCheckCommonThreshold) { 2805 const TypeKlassPtr* superk = gvn.type(superklass)->is_klassptr(); 2806 for (int i = 0; profile.has_receiver(i); ++i) { 2807 ciKlass* klass = profile.receiver(i); 2808 const TypeKlassPtr* klass_t = TypeKlassPtr::make(klass); 2809 Compile::SubTypeCheckResult result = C->static_subtype_check(superk, klass_t); 2810 if (result != Compile::SSC_always_true && result != Compile::SSC_always_false) { 2811 continue; 2812 } 2813 float prob = profile.receiver_prob(i); 2814 ConNode* klass_node = gvn.makecon(klass_t); 2815 IfNode* iff = gen_subtype_check_compare(*ctrl, subklass, klass_node, BoolTest::eq, prob, gvn, T_ADDRESS); 2816 Node* iftrue = gvn.transform(new IfTrueNode(iff)); 2817 2818 if (result == Compile::SSC_always_true) { 2819 r_ok_subtype->add_req(iftrue); 2820 } else { 2821 assert(result == Compile::SSC_always_false, ""); 2822 r_not_subtype->add_req(iftrue); 2823 } 2824 *ctrl = gvn.transform(new IfFalseNode(iff)); 2825 } 2826 } 2827 } 2828 2829 // See if we get an immediate positive hit. Happens roughly 83% of the 2830 // time. Test to see if the value loaded just previously from the subklass 2831 // is exactly the superklass. 2832 IfNode *iff1 = gen_subtype_check_compare(*ctrl, superklass, nkls, BoolTest::eq, PROB_LIKELY(0.83f), gvn, T_ADDRESS); 2833 Node *iftrue1 = gvn.transform( new IfTrueNode (iff1)); 2834 *ctrl = gvn.transform(new IfFalseNode(iff1)); 2835 2836 // Compile speed common case: Check for being deterministic right now. If 2837 // chk_off is a constant and not equal to cacheoff then we are NOT a 2838 // subklass. In this case we need exactly the 1 test above and we can 2839 // return those results immediately. 2840 if (!might_be_cache) { 2841 Node* not_subtype_ctrl = *ctrl; 2842 *ctrl = iftrue1; // We need exactly the 1 test above 2843 PhaseIterGVN* igvn = gvn.is_IterGVN(); 2844 if (igvn != nullptr) { 2845 igvn->remove_globally_dead_node(r_ok_subtype); 2846 igvn->remove_globally_dead_node(r_not_subtype); 2847 } 2848 return not_subtype_ctrl; 2849 } 2850 2851 r_ok_subtype->init_req(1, iftrue1); 2852 2853 // Check for immediate negative hit. Happens roughly 11% of the time (which 2854 // is roughly 63% of the remaining cases). Test to see if the loaded 2855 // check-offset points into the subklass display list or the 1-element 2856 // cache. If it points to the display (and NOT the cache) and the display 2857 // missed then it's not a subtype. 2858 Node *cacheoff = gvn.intcon(cacheoff_con); 2859 IfNode *iff2 = gen_subtype_check_compare(*ctrl, chk_off, cacheoff, BoolTest::ne, PROB_LIKELY(0.63f), gvn, T_INT); 2860 r_not_subtype->init_req(1, gvn.transform(new IfTrueNode (iff2))); 2861 *ctrl = gvn.transform(new IfFalseNode(iff2)); 2862 2863 // Check for self. Very rare to get here, but it is taken 1/3 the time. 2864 // No performance impact (too rare) but allows sharing of secondary arrays 2865 // which has some footprint reduction. 2866 IfNode *iff3 = gen_subtype_check_compare(*ctrl, subklass, superklass, BoolTest::eq, PROB_LIKELY(0.36f), gvn, T_ADDRESS); 2867 r_ok_subtype->init_req(2, gvn.transform(new IfTrueNode(iff3))); 2868 *ctrl = gvn.transform(new IfFalseNode(iff3)); 2869 2870 // -- Roads not taken here: -- 2871 // We could also have chosen to perform the self-check at the beginning 2872 // of this code sequence, as the assembler does. This would not pay off 2873 // the same way, since the optimizer, unlike the assembler, can perform 2874 // static type analysis to fold away many successful self-checks. 2875 // Non-foldable self checks work better here in second position, because 2876 // the initial primary superclass check subsumes a self-check for most 2877 // types. An exception would be a secondary type like array-of-interface, 2878 // which does not appear in its own primary supertype display. 2879 // Finally, we could have chosen to move the self-check into the 2880 // PartialSubtypeCheckNode, and from there out-of-line in a platform 2881 // dependent manner. But it is worthwhile to have the check here, 2882 // where it can be perhaps be optimized. The cost in code space is 2883 // small (register compare, branch). 2884 2885 // Now do a linear scan of the secondary super-klass array. Again, no real 2886 // performance impact (too rare) but it's gotta be done. 2887 // Since the code is rarely used, there is no penalty for moving it 2888 // out of line, and it can only improve I-cache density. 2889 // The decision to inline or out-of-line this final check is platform 2890 // dependent, and is found in the AD file definition of PartialSubtypeCheck. 2891 Node* psc = gvn.transform( 2892 new PartialSubtypeCheckNode(*ctrl, subklass, superklass)); 2893 2894 IfNode *iff4 = gen_subtype_check_compare(*ctrl, psc, gvn.zerocon(T_OBJECT), BoolTest::ne, PROB_FAIR, gvn, T_ADDRESS); 2895 r_not_subtype->init_req(2, gvn.transform(new IfTrueNode (iff4))); 2896 r_ok_subtype ->init_req(3, gvn.transform(new IfFalseNode(iff4))); 2897 2898 // Return false path; set default control to true path. 2899 *ctrl = gvn.transform(r_ok_subtype); 2900 return gvn.transform(r_not_subtype); 2901 } 2902 2903 Node* GraphKit::gen_subtype_check(Node* obj_or_subklass, Node* superklass) { 2904 bool expand_subtype_check = C->post_loop_opts_phase(); // macro node expansion is over 2905 if (expand_subtype_check) { 2906 MergeMemNode* mem = merged_memory(); 2907 Node* ctrl = control(); 2908 Node* subklass = obj_or_subklass; 2909 if (!_gvn.type(obj_or_subklass)->isa_klassptr()) { 2910 subklass = load_object_klass(obj_or_subklass); 2911 } 2912 2913 Node* n = Phase::gen_subtype_check(subklass, superklass, &ctrl, mem, _gvn, method(), bci()); 2914 set_control(ctrl); 2915 return n; 2916 } 2917 2918 Node* check = _gvn.transform(new SubTypeCheckNode(C, obj_or_subklass, superklass, method(), bci())); 2919 Node* bol = _gvn.transform(new BoolNode(check, BoolTest::eq)); 2920 IfNode* iff = create_and_xform_if(control(), bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN); 2921 set_control(_gvn.transform(new IfTrueNode(iff))); 2922 return _gvn.transform(new IfFalseNode(iff)); 2923 } 2924 2925 // Profile-driven exact type check: 2926 Node* GraphKit::type_check_receiver(Node* receiver, ciKlass* klass, 2927 float prob, 2928 Node* *casted_receiver) { 2929 assert(!klass->is_interface(), "no exact type check on interfaces"); 2930 2931 const TypeKlassPtr* tklass = TypeKlassPtr::make(klass, Type::trust_interfaces); 2932 Node* recv_klass = load_object_klass(receiver); 2933 Node* want_klass = makecon(tklass); 2934 Node* cmp = _gvn.transform(new CmpPNode(recv_klass, want_klass)); 2935 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 2936 IfNode* iff = create_and_xform_if(control(), bol, prob, COUNT_UNKNOWN); 2937 set_control( _gvn.transform(new IfTrueNode (iff))); 2938 Node* fail = _gvn.transform(new IfFalseNode(iff)); 2939 2940 if (!stopped()) { 2941 const TypeOopPtr* receiver_type = _gvn.type(receiver)->isa_oopptr(); 2942 const TypeOopPtr* recvx_type = tklass->as_instance_type(); 2943 assert(recvx_type->klass_is_exact(), ""); 2944 2945 if (!receiver_type->higher_equal(recvx_type)) { // ignore redundant casts 2946 // Subsume downstream occurrences of receiver with a cast to 2947 // recv_xtype, since now we know what the type will be. 2948 Node* cast = new CheckCastPPNode(control(), receiver, recvx_type); 2949 (*casted_receiver) = _gvn.transform(cast); 2950 assert(!(*casted_receiver)->is_top(), "that path should be unreachable"); 2951 // (User must make the replace_in_map call.) 2952 } 2953 } 2954 2955 return fail; 2956 } 2957 2958 //------------------------------subtype_check_receiver------------------------- 2959 Node* GraphKit::subtype_check_receiver(Node* receiver, ciKlass* klass, 2960 Node** casted_receiver) { 2961 const TypeKlassPtr* tklass = TypeKlassPtr::make(klass, Type::trust_interfaces)->try_improve(); 2962 Node* want_klass = makecon(tklass); 2963 2964 Node* slow_ctl = gen_subtype_check(receiver, want_klass); 2965 2966 // Ignore interface type information until interface types are properly tracked. 2967 if (!stopped() && !klass->is_interface()) { 2968 const TypeOopPtr* receiver_type = _gvn.type(receiver)->isa_oopptr(); 2969 const TypeOopPtr* recv_type = tklass->cast_to_exactness(false)->is_klassptr()->as_instance_type(); 2970 if (!receiver_type->higher_equal(recv_type)) { // ignore redundant casts 2971 Node* cast = new CheckCastPPNode(control(), receiver, recv_type); 2972 (*casted_receiver) = _gvn.transform(cast); 2973 } 2974 } 2975 2976 return slow_ctl; 2977 } 2978 2979 //------------------------------seems_never_null------------------------------- 2980 // Use null_seen information if it is available from the profile. 2981 // If we see an unexpected null at a type check we record it and force a 2982 // recompile; the offending check will be recompiled to handle nulls. 2983 // If we see several offending BCIs, then all checks in the 2984 // method will be recompiled. 2985 bool GraphKit::seems_never_null(Node* obj, ciProfileData* data, bool& speculating) { 2986 speculating = !_gvn.type(obj)->speculative_maybe_null(); 2987 Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculating); 2988 if (UncommonNullCast // Cutout for this technique 2989 && obj != null() // And not the -Xcomp stupid case? 2990 && !too_many_traps(reason) 2991 ) { 2992 if (speculating) { 2993 return true; 2994 } 2995 if (data == nullptr) 2996 // Edge case: no mature data. Be optimistic here. 2997 return true; 2998 // If the profile has not seen a null, assume it won't happen. 2999 assert(java_bc() == Bytecodes::_checkcast || 3000 java_bc() == Bytecodes::_instanceof || 3001 java_bc() == Bytecodes::_aastore, "MDO must collect null_seen bit here"); 3002 return !data->as_BitData()->null_seen(); 3003 } 3004 speculating = false; 3005 return false; 3006 } 3007 3008 void GraphKit::guard_klass_being_initialized(Node* klass) { 3009 int init_state_off = in_bytes(InstanceKlass::init_state_offset()); 3010 Node* adr = basic_plus_adr(top(), klass, init_state_off); 3011 Node* init_state = LoadNode::make(_gvn, nullptr, immutable_memory(), adr, 3012 adr->bottom_type()->is_ptr(), TypeInt::BYTE, 3013 T_BYTE, MemNode::acquire); 3014 init_state = _gvn.transform(init_state); 3015 3016 Node* being_initialized_state = makecon(TypeInt::make(InstanceKlass::being_initialized)); 3017 3018 Node* chk = _gvn.transform(new CmpINode(being_initialized_state, init_state)); 3019 Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::eq)); 3020 3021 { BuildCutout unless(this, tst, PROB_MAX); 3022 uncommon_trap(Deoptimization::Reason_initialized, Deoptimization::Action_reinterpret); 3023 } 3024 } 3025 3026 void GraphKit::guard_init_thread(Node* klass) { 3027 int init_thread_off = in_bytes(InstanceKlass::init_thread_offset()); 3028 Node* adr = basic_plus_adr(top(), klass, init_thread_off); 3029 3030 Node* init_thread = LoadNode::make(_gvn, nullptr, immutable_memory(), adr, 3031 adr->bottom_type()->is_ptr(), TypePtr::NOTNULL, 3032 T_ADDRESS, MemNode::unordered); 3033 init_thread = _gvn.transform(init_thread); 3034 3035 Node* cur_thread = _gvn.transform(new ThreadLocalNode()); 3036 3037 Node* chk = _gvn.transform(new CmpPNode(cur_thread, init_thread)); 3038 Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::eq)); 3039 3040 { BuildCutout unless(this, tst, PROB_MAX); 3041 uncommon_trap(Deoptimization::Reason_uninitialized, Deoptimization::Action_none); 3042 } 3043 } 3044 3045 void GraphKit::clinit_barrier(ciInstanceKlass* ik, ciMethod* context) { 3046 if (ik->is_being_initialized()) { 3047 if (C->needs_clinit_barrier(ik, context)) { 3048 Node* klass = makecon(TypeKlassPtr::make(ik)); 3049 guard_klass_being_initialized(klass); 3050 guard_init_thread(klass); 3051 insert_mem_bar(Op_MemBarCPUOrder); 3052 } 3053 } else if (ik->is_initialized()) { 3054 return; // no barrier needed 3055 } else { 3056 uncommon_trap(Deoptimization::Reason_uninitialized, 3057 Deoptimization::Action_reinterpret, 3058 nullptr); 3059 } 3060 } 3061 3062 //------------------------maybe_cast_profiled_receiver------------------------- 3063 // If the profile has seen exactly one type, narrow to exactly that type. 3064 // Subsequent type checks will always fold up. 3065 Node* GraphKit::maybe_cast_profiled_receiver(Node* not_null_obj, 3066 const TypeKlassPtr* require_klass, 3067 ciKlass* spec_klass, 3068 bool safe_for_replace) { 3069 if (!UseTypeProfile || !TypeProfileCasts) return nullptr; 3070 3071 Deoptimization::DeoptReason reason = Deoptimization::reason_class_check(spec_klass != nullptr); 3072 3073 // Make sure we haven't already deoptimized from this tactic. 3074 if (too_many_traps_or_recompiles(reason)) 3075 return nullptr; 3076 3077 // (No, this isn't a call, but it's enough like a virtual call 3078 // to use the same ciMethod accessor to get the profile info...) 3079 // If we have a speculative type use it instead of profiling (which 3080 // may not help us) 3081 ciKlass* exact_kls = spec_klass == nullptr ? profile_has_unique_klass() : spec_klass; 3082 if (exact_kls != nullptr) {// no cast failures here 3083 if (require_klass == nullptr || 3084 C->static_subtype_check(require_klass, TypeKlassPtr::make(exact_kls, Type::trust_interfaces)) == Compile::SSC_always_true) { 3085 // If we narrow the type to match what the type profile sees or 3086 // the speculative type, we can then remove the rest of the 3087 // cast. 3088 // This is a win, even if the exact_kls is very specific, 3089 // because downstream operations, such as method calls, 3090 // will often benefit from the sharper type. 3091 Node* exact_obj = not_null_obj; // will get updated in place... 3092 Node* slow_ctl = type_check_receiver(exact_obj, exact_kls, 1.0, 3093 &exact_obj); 3094 { PreserveJVMState pjvms(this); 3095 set_control(slow_ctl); 3096 uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile); 3097 } 3098 if (safe_for_replace) { 3099 replace_in_map(not_null_obj, exact_obj); 3100 } 3101 return exact_obj; 3102 } 3103 // assert(ssc == Compile::SSC_always_true)... except maybe the profile lied to us. 3104 } 3105 3106 return nullptr; 3107 } 3108 3109 /** 3110 * Cast obj to type and emit guard unless we had too many traps here 3111 * already 3112 * 3113 * @param obj node being casted 3114 * @param type type to cast the node to 3115 * @param not_null true if we know node cannot be null 3116 */ 3117 Node* GraphKit::maybe_cast_profiled_obj(Node* obj, 3118 ciKlass* type, 3119 bool not_null) { 3120 if (stopped()) { 3121 return obj; 3122 } 3123 3124 // type is null if profiling tells us this object is always null 3125 if (type != nullptr) { 3126 Deoptimization::DeoptReason class_reason = Deoptimization::Reason_speculate_class_check; 3127 Deoptimization::DeoptReason null_reason = Deoptimization::Reason_speculate_null_check; 3128 3129 if (!too_many_traps_or_recompiles(null_reason) && 3130 !too_many_traps_or_recompiles(class_reason)) { 3131 Node* not_null_obj = nullptr; 3132 // not_null is true if we know the object is not null and 3133 // there's no need for a null check 3134 if (!not_null) { 3135 Node* null_ctl = top(); 3136 not_null_obj = null_check_oop(obj, &null_ctl, true, true, true); 3137 assert(null_ctl->is_top(), "no null control here"); 3138 } else { 3139 not_null_obj = obj; 3140 } 3141 3142 Node* exact_obj = not_null_obj; 3143 ciKlass* exact_kls = type; 3144 Node* slow_ctl = type_check_receiver(exact_obj, exact_kls, 1.0, 3145 &exact_obj); 3146 { 3147 PreserveJVMState pjvms(this); 3148 set_control(slow_ctl); 3149 uncommon_trap_exact(class_reason, Deoptimization::Action_maybe_recompile); 3150 } 3151 replace_in_map(not_null_obj, exact_obj); 3152 obj = exact_obj; 3153 } 3154 } else { 3155 if (!too_many_traps_or_recompiles(Deoptimization::Reason_null_assert)) { 3156 Node* exact_obj = null_assert(obj); 3157 replace_in_map(obj, exact_obj); 3158 obj = exact_obj; 3159 } 3160 } 3161 return obj; 3162 } 3163 3164 //-------------------------------gen_instanceof-------------------------------- 3165 // Generate an instance-of idiom. Used by both the instance-of bytecode 3166 // and the reflective instance-of call. 3167 Node* GraphKit::gen_instanceof(Node* obj, Node* superklass, bool safe_for_replace) { 3168 kill_dead_locals(); // Benefit all the uncommon traps 3169 assert( !stopped(), "dead parse path should be checked in callers" ); 3170 assert(!TypePtr::NULL_PTR->higher_equal(_gvn.type(superklass)->is_klassptr()), 3171 "must check for not-null not-dead klass in callers"); 3172 3173 // Make the merge point 3174 enum { _obj_path = 1, _fail_path, _null_path, PATH_LIMIT }; 3175 RegionNode* region = new RegionNode(PATH_LIMIT); 3176 Node* phi = new PhiNode(region, TypeInt::BOOL); 3177 C->set_has_split_ifs(true); // Has chance for split-if optimization 3178 3179 ciProfileData* data = nullptr; 3180 if (java_bc() == Bytecodes::_instanceof) { // Only for the bytecode 3181 data = method()->method_data()->bci_to_data(bci()); 3182 } 3183 bool speculative_not_null = false; 3184 bool never_see_null = (ProfileDynamicTypes // aggressive use of profile 3185 && seems_never_null(obj, data, speculative_not_null)); 3186 3187 // Null check; get casted pointer; set region slot 3 3188 Node* null_ctl = top(); 3189 Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null); 3190 3191 // If not_null_obj is dead, only null-path is taken 3192 if (stopped()) { // Doing instance-of on a null? 3193 set_control(null_ctl); 3194 return intcon(0); 3195 } 3196 region->init_req(_null_path, null_ctl); 3197 phi ->init_req(_null_path, intcon(0)); // Set null path value 3198 if (null_ctl == top()) { 3199 // Do this eagerly, so that pattern matches like is_diamond_phi 3200 // will work even during parsing. 3201 assert(_null_path == PATH_LIMIT-1, "delete last"); 3202 region->del_req(_null_path); 3203 phi ->del_req(_null_path); 3204 } 3205 3206 // Do we know the type check always succeed? 3207 bool known_statically = false; 3208 if (_gvn.type(superklass)->singleton()) { 3209 const TypeKlassPtr* superk = _gvn.type(superklass)->is_klassptr(); 3210 const TypeKlassPtr* subk = _gvn.type(obj)->is_oopptr()->as_klass_type(); 3211 if (subk->is_loaded()) { 3212 int static_res = C->static_subtype_check(superk, subk); 3213 known_statically = (static_res == Compile::SSC_always_true || static_res == Compile::SSC_always_false); 3214 } 3215 } 3216 3217 if (!known_statically) { 3218 const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr(); 3219 // We may not have profiling here or it may not help us. If we 3220 // have a speculative type use it to perform an exact cast. 3221 ciKlass* spec_obj_type = obj_type->speculative_type(); 3222 if (spec_obj_type != nullptr || (ProfileDynamicTypes && data != nullptr)) { 3223 Node* cast_obj = maybe_cast_profiled_receiver(not_null_obj, nullptr, spec_obj_type, safe_for_replace); 3224 if (stopped()) { // Profile disagrees with this path. 3225 set_control(null_ctl); // Null is the only remaining possibility. 3226 return intcon(0); 3227 } 3228 if (cast_obj != nullptr) { 3229 not_null_obj = cast_obj; 3230 } 3231 } 3232 } 3233 3234 // Generate the subtype check 3235 Node* not_subtype_ctrl = gen_subtype_check(not_null_obj, superklass); 3236 3237 // Plug in the success path to the general merge in slot 1. 3238 region->init_req(_obj_path, control()); 3239 phi ->init_req(_obj_path, intcon(1)); 3240 3241 // Plug in the failing path to the general merge in slot 2. 3242 region->init_req(_fail_path, not_subtype_ctrl); 3243 phi ->init_req(_fail_path, intcon(0)); 3244 3245 // Return final merged results 3246 set_control( _gvn.transform(region) ); 3247 record_for_igvn(region); 3248 3249 // If we know the type check always succeeds then we don't use the 3250 // profiling data at this bytecode. Don't lose it, feed it to the 3251 // type system as a speculative type. 3252 if (safe_for_replace) { 3253 Node* casted_obj = record_profiled_receiver_for_speculation(obj); 3254 replace_in_map(obj, casted_obj); 3255 } 3256 3257 return _gvn.transform(phi); 3258 } 3259 3260 //-------------------------------gen_checkcast--------------------------------- 3261 // Generate a checkcast idiom. Used by both the checkcast bytecode and the 3262 // array store bytecode. Stack must be as-if BEFORE doing the bytecode so the 3263 // uncommon-trap paths work. Adjust stack after this call. 3264 // If failure_control is supplied and not null, it is filled in with 3265 // the control edge for the cast failure. Otherwise, an appropriate 3266 // uncommon trap or exception is thrown. 3267 Node* GraphKit::gen_checkcast(Node *obj, Node* superklass, 3268 Node* *failure_control) { 3269 kill_dead_locals(); // Benefit all the uncommon traps 3270 const TypeKlassPtr* klass_ptr_type = _gvn.type(superklass)->is_klassptr(); 3271 const TypeKlassPtr* improved_klass_ptr_type = klass_ptr_type->try_improve(); 3272 const TypeOopPtr* toop = improved_klass_ptr_type->cast_to_exactness(false)->as_instance_type(); 3273 3274 // Fast cutout: Check the case that the cast is vacuously true. 3275 // This detects the common cases where the test will short-circuit 3276 // away completely. We do this before we perform the null check, 3277 // because if the test is going to turn into zero code, we don't 3278 // want a residual null check left around. (Causes a slowdown, 3279 // for example, in some objArray manipulations, such as a[i]=a[j].) 3280 if (improved_klass_ptr_type->singleton()) { 3281 const TypeOopPtr* objtp = _gvn.type(obj)->isa_oopptr(); 3282 if (objtp != nullptr) { 3283 switch (C->static_subtype_check(improved_klass_ptr_type, objtp->as_klass_type())) { 3284 case Compile::SSC_always_true: 3285 // If we know the type check always succeed then we don't use 3286 // the profiling data at this bytecode. Don't lose it, feed it 3287 // to the type system as a speculative type. 3288 return record_profiled_receiver_for_speculation(obj); 3289 case Compile::SSC_always_false: 3290 // It needs a null check because a null will *pass* the cast check. 3291 // A non-null value will always produce an exception. 3292 if (!objtp->maybe_null()) { 3293 bool is_aastore = (java_bc() == Bytecodes::_aastore); 3294 Deoptimization::DeoptReason reason = is_aastore ? 3295 Deoptimization::Reason_array_check : Deoptimization::Reason_class_check; 3296 builtin_throw(reason); 3297 return top(); 3298 } else if (!too_many_traps_or_recompiles(Deoptimization::Reason_null_assert)) { 3299 return null_assert(obj); 3300 } 3301 break; // Fall through to full check 3302 default: 3303 break; 3304 } 3305 } 3306 } 3307 3308 ciProfileData* data = nullptr; 3309 bool safe_for_replace = false; 3310 if (failure_control == nullptr) { // use MDO in regular case only 3311 assert(java_bc() == Bytecodes::_aastore || 3312 java_bc() == Bytecodes::_checkcast, 3313 "interpreter profiles type checks only for these BCs"); 3314 data = method()->method_data()->bci_to_data(bci()); 3315 safe_for_replace = true; 3316 } 3317 3318 // Make the merge point 3319 enum { _obj_path = 1, _null_path, PATH_LIMIT }; 3320 RegionNode* region = new RegionNode(PATH_LIMIT); 3321 Node* phi = new PhiNode(region, toop); 3322 C->set_has_split_ifs(true); // Has chance for split-if optimization 3323 3324 // Use null-cast information if it is available 3325 bool speculative_not_null = false; 3326 bool never_see_null = ((failure_control == nullptr) // regular case only 3327 && seems_never_null(obj, data, speculative_not_null)); 3328 3329 // Null check; get casted pointer; set region slot 3 3330 Node* null_ctl = top(); 3331 Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null); 3332 3333 // If not_null_obj is dead, only null-path is taken 3334 if (stopped()) { // Doing instance-of on a null? 3335 set_control(null_ctl); 3336 return null(); 3337 } 3338 region->init_req(_null_path, null_ctl); 3339 phi ->init_req(_null_path, null()); // Set null path value 3340 if (null_ctl == top()) { 3341 // Do this eagerly, so that pattern matches like is_diamond_phi 3342 // will work even during parsing. 3343 assert(_null_path == PATH_LIMIT-1, "delete last"); 3344 region->del_req(_null_path); 3345 phi ->del_req(_null_path); 3346 } 3347 3348 Node* cast_obj = nullptr; 3349 if (improved_klass_ptr_type->klass_is_exact()) { 3350 // The following optimization tries to statically cast the speculative type of the object 3351 // (for example obtained during profiling) to the type of the superklass and then do a 3352 // dynamic check that the type of the object is what we expect. To work correctly 3353 // for checkcast and aastore the type of superklass should be exact. 3354 const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr(); 3355 // We may not have profiling here or it may not help us. If we have 3356 // a speculative type use it to perform an exact cast. 3357 ciKlass* spec_obj_type = obj_type->speculative_type(); 3358 if (spec_obj_type != nullptr || data != nullptr) { 3359 cast_obj = maybe_cast_profiled_receiver(not_null_obj, improved_klass_ptr_type, spec_obj_type, safe_for_replace); 3360 if (cast_obj != nullptr) { 3361 if (failure_control != nullptr) // failure is now impossible 3362 (*failure_control) = top(); 3363 // adjust the type of the phi to the exact klass: 3364 phi->raise_bottom_type(_gvn.type(cast_obj)->meet_speculative(TypePtr::NULL_PTR)); 3365 } 3366 } 3367 } 3368 3369 if (cast_obj == nullptr) { 3370 // Generate the subtype check 3371 Node* improved_superklass = superklass; 3372 if (improved_klass_ptr_type != klass_ptr_type && improved_klass_ptr_type->singleton()) { 3373 improved_superklass = makecon(improved_klass_ptr_type); 3374 } 3375 Node* not_subtype_ctrl = gen_subtype_check(not_null_obj, improved_superklass); 3376 3377 // Plug in success path into the merge 3378 cast_obj = _gvn.transform(new CheckCastPPNode(control(), not_null_obj, toop)); 3379 // Failure path ends in uncommon trap (or may be dead - failure impossible) 3380 if (failure_control == nullptr) { 3381 if (not_subtype_ctrl != top()) { // If failure is possible 3382 PreserveJVMState pjvms(this); 3383 set_control(not_subtype_ctrl); 3384 bool is_aastore = (java_bc() == Bytecodes::_aastore); 3385 Deoptimization::DeoptReason reason = is_aastore ? 3386 Deoptimization::Reason_array_check : Deoptimization::Reason_class_check; 3387 builtin_throw(reason); 3388 } 3389 } else { 3390 (*failure_control) = not_subtype_ctrl; 3391 } 3392 } 3393 3394 region->init_req(_obj_path, control()); 3395 phi ->init_req(_obj_path, cast_obj); 3396 3397 // A merge of null or Casted-NotNull obj 3398 Node* res = _gvn.transform(phi); 3399 3400 // Note I do NOT always 'replace_in_map(obj,result)' here. 3401 // if( tk->klass()->can_be_primary_super() ) 3402 // This means that if I successfully store an Object into an array-of-String 3403 // I 'forget' that the Object is really now known to be a String. I have to 3404 // do this because we don't have true union types for interfaces - if I store 3405 // a Baz into an array-of-Interface and then tell the optimizer it's an 3406 // Interface, I forget that it's also a Baz and cannot do Baz-like field 3407 // references to it. FIX THIS WHEN UNION TYPES APPEAR! 3408 // replace_in_map( obj, res ); 3409 3410 // Return final merged results 3411 set_control( _gvn.transform(region) ); 3412 record_for_igvn(region); 3413 3414 return record_profiled_receiver_for_speculation(res); 3415 } 3416 3417 //------------------------------next_monitor----------------------------------- 3418 // What number should be given to the next monitor? 3419 int GraphKit::next_monitor() { 3420 int current = jvms()->monitor_depth()* C->sync_stack_slots(); 3421 int next = current + C->sync_stack_slots(); 3422 // Keep the toplevel high water mark current: 3423 if (C->fixed_slots() < next) C->set_fixed_slots(next); 3424 return current; 3425 } 3426 3427 //------------------------------insert_mem_bar--------------------------------- 3428 // Memory barrier to avoid floating things around 3429 // The membar serves as a pinch point between both control and all memory slices. 3430 Node* GraphKit::insert_mem_bar(int opcode, Node* precedent) { 3431 MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent); 3432 mb->init_req(TypeFunc::Control, control()); 3433 mb->init_req(TypeFunc::Memory, reset_memory()); 3434 Node* membar = _gvn.transform(mb); 3435 set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control))); 3436 set_all_memory_call(membar); 3437 return membar; 3438 } 3439 3440 //-------------------------insert_mem_bar_volatile---------------------------- 3441 // Memory barrier to avoid floating things around 3442 // The membar serves as a pinch point between both control and memory(alias_idx). 3443 // If you want to make a pinch point on all memory slices, do not use this 3444 // function (even with AliasIdxBot); use insert_mem_bar() instead. 3445 Node* GraphKit::insert_mem_bar_volatile(int opcode, int alias_idx, Node* precedent) { 3446 // When Parse::do_put_xxx updates a volatile field, it appends a series 3447 // of MemBarVolatile nodes, one for *each* volatile field alias category. 3448 // The first membar is on the same memory slice as the field store opcode. 3449 // This forces the membar to follow the store. (Bug 6500685 broke this.) 3450 // All the other membars (for other volatile slices, including AliasIdxBot, 3451 // which stands for all unknown volatile slices) are control-dependent 3452 // on the first membar. This prevents later volatile loads or stores 3453 // from sliding up past the just-emitted store. 3454 3455 MemBarNode* mb = MemBarNode::make(C, opcode, alias_idx, precedent); 3456 mb->set_req(TypeFunc::Control,control()); 3457 if (alias_idx == Compile::AliasIdxBot) { 3458 mb->set_req(TypeFunc::Memory, merged_memory()->base_memory()); 3459 } else { 3460 assert(!(opcode == Op_Initialize && alias_idx != Compile::AliasIdxRaw), "fix caller"); 3461 mb->set_req(TypeFunc::Memory, memory(alias_idx)); 3462 } 3463 Node* membar = _gvn.transform(mb); 3464 set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control))); 3465 if (alias_idx == Compile::AliasIdxBot) { 3466 merged_memory()->set_base_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory))); 3467 } else { 3468 set_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)),alias_idx); 3469 } 3470 return membar; 3471 } 3472 3473 //------------------------------shared_lock------------------------------------ 3474 // Emit locking code. 3475 FastLockNode* GraphKit::shared_lock(Node* obj) { 3476 // bci is either a monitorenter bc or InvocationEntryBci 3477 // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces 3478 assert(SynchronizationEntryBCI == InvocationEntryBci, ""); 3479 3480 if( !GenerateSynchronizationCode ) 3481 return nullptr; // Not locking things? 3482 if (stopped()) // Dead monitor? 3483 return nullptr; 3484 3485 assert(dead_locals_are_killed(), "should kill locals before sync. point"); 3486 3487 // Box the stack location 3488 Node* box = new BoxLockNode(next_monitor()); 3489 // Check for bailout after new BoxLockNode 3490 if (failing()) { return nullptr; } 3491 box = _gvn.transform(box); 3492 Node* mem = reset_memory(); 3493 3494 FastLockNode * flock = _gvn.transform(new FastLockNode(nullptr, obj, box) )->as_FastLock(); 3495 3496 // Add monitor to debug info for the slow path. If we block inside the 3497 // slow path and de-opt, we need the monitor hanging around 3498 map()->push_monitor( flock ); 3499 3500 const TypeFunc *tf = LockNode::lock_type(); 3501 LockNode *lock = new LockNode(C, tf); 3502 3503 lock->init_req( TypeFunc::Control, control() ); 3504 lock->init_req( TypeFunc::Memory , mem ); 3505 lock->init_req( TypeFunc::I_O , top() ) ; // does no i/o 3506 lock->init_req( TypeFunc::FramePtr, frameptr() ); 3507 lock->init_req( TypeFunc::ReturnAdr, top() ); 3508 3509 lock->init_req(TypeFunc::Parms + 0, obj); 3510 lock->init_req(TypeFunc::Parms + 1, box); 3511 lock->init_req(TypeFunc::Parms + 2, flock); 3512 add_safepoint_edges(lock); 3513 3514 lock = _gvn.transform( lock )->as_Lock(); 3515 3516 // lock has no side-effects, sets few values 3517 set_predefined_output_for_runtime_call(lock, mem, TypeRawPtr::BOTTOM); 3518 3519 insert_mem_bar(Op_MemBarAcquireLock); 3520 3521 // Add this to the worklist so that the lock can be eliminated 3522 record_for_igvn(lock); 3523 3524 #ifndef PRODUCT 3525 if (PrintLockStatistics) { 3526 // Update the counter for this lock. Don't bother using an atomic 3527 // operation since we don't require absolute accuracy. 3528 lock->create_lock_counter(map()->jvms()); 3529 increment_counter(lock->counter()->addr()); 3530 } 3531 #endif 3532 3533 return flock; 3534 } 3535 3536 3537 //------------------------------shared_unlock---------------------------------- 3538 // Emit unlocking code. 3539 void GraphKit::shared_unlock(Node* box, Node* obj) { 3540 // bci is either a monitorenter bc or InvocationEntryBci 3541 // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces 3542 assert(SynchronizationEntryBCI == InvocationEntryBci, ""); 3543 3544 if( !GenerateSynchronizationCode ) 3545 return; 3546 if (stopped()) { // Dead monitor? 3547 map()->pop_monitor(); // Kill monitor from debug info 3548 return; 3549 } 3550 3551 // Memory barrier to avoid floating things down past the locked region 3552 insert_mem_bar(Op_MemBarReleaseLock); 3553 3554 const TypeFunc *tf = OptoRuntime::complete_monitor_exit_Type(); 3555 UnlockNode *unlock = new UnlockNode(C, tf); 3556 #ifdef ASSERT 3557 unlock->set_dbg_jvms(sync_jvms()); 3558 #endif 3559 uint raw_idx = Compile::AliasIdxRaw; 3560 unlock->init_req( TypeFunc::Control, control() ); 3561 unlock->init_req( TypeFunc::Memory , memory(raw_idx) ); 3562 unlock->init_req( TypeFunc::I_O , top() ) ; // does no i/o 3563 unlock->init_req( TypeFunc::FramePtr, frameptr() ); 3564 unlock->init_req( TypeFunc::ReturnAdr, top() ); 3565 3566 unlock->init_req(TypeFunc::Parms + 0, obj); 3567 unlock->init_req(TypeFunc::Parms + 1, box); 3568 unlock = _gvn.transform(unlock)->as_Unlock(); 3569 3570 Node* mem = reset_memory(); 3571 3572 // unlock has no side-effects, sets few values 3573 set_predefined_output_for_runtime_call(unlock, mem, TypeRawPtr::BOTTOM); 3574 3575 // Kill monitor from debug info 3576 map()->pop_monitor( ); 3577 } 3578 3579 //-------------------------------get_layout_helper----------------------------- 3580 // If the given klass is a constant or known to be an array, 3581 // fetch the constant layout helper value into constant_value 3582 // and return null. Otherwise, load the non-constant 3583 // layout helper value, and return the node which represents it. 3584 // This two-faced routine is useful because allocation sites 3585 // almost always feature constant types. 3586 Node* GraphKit::get_layout_helper(Node* klass_node, jint& constant_value) { 3587 const TypeKlassPtr* klass_t = _gvn.type(klass_node)->isa_klassptr(); 3588 if (!StressReflectiveCode && klass_t != nullptr) { 3589 bool xklass = klass_t->klass_is_exact(); 3590 if (xklass || (klass_t->isa_aryklassptr() && klass_t->is_aryklassptr()->elem() != Type::BOTTOM)) { 3591 jint lhelper; 3592 if (klass_t->isa_aryklassptr()) { 3593 BasicType elem = klass_t->as_instance_type()->isa_aryptr()->elem()->array_element_basic_type(); 3594 if (is_reference_type(elem, true)) { 3595 elem = T_OBJECT; 3596 } 3597 lhelper = Klass::array_layout_helper(elem); 3598 } else { 3599 lhelper = klass_t->is_instklassptr()->exact_klass()->layout_helper(); 3600 } 3601 if (lhelper != Klass::_lh_neutral_value) { 3602 constant_value = lhelper; 3603 return (Node*) nullptr; 3604 } 3605 } 3606 } 3607 constant_value = Klass::_lh_neutral_value; // put in a known value 3608 Node* lhp = basic_plus_adr(klass_node, klass_node, in_bytes(Klass::layout_helper_offset())); 3609 return make_load(nullptr, lhp, TypeInt::INT, T_INT, MemNode::unordered); 3610 } 3611 3612 // We just put in an allocate/initialize with a big raw-memory effect. 3613 // Hook selected additional alias categories on the initialization. 3614 static void hook_memory_on_init(GraphKit& kit, int alias_idx, 3615 MergeMemNode* init_in_merge, 3616 Node* init_out_raw) { 3617 DEBUG_ONLY(Node* init_in_raw = init_in_merge->base_memory()); 3618 assert(init_in_merge->memory_at(alias_idx) == init_in_raw, ""); 3619 3620 Node* prevmem = kit.memory(alias_idx); 3621 init_in_merge->set_memory_at(alias_idx, prevmem); 3622 kit.set_memory(init_out_raw, alias_idx); 3623 } 3624 3625 //---------------------------set_output_for_allocation------------------------- 3626 Node* GraphKit::set_output_for_allocation(AllocateNode* alloc, 3627 const TypeOopPtr* oop_type, 3628 bool deoptimize_on_exception) { 3629 int rawidx = Compile::AliasIdxRaw; 3630 alloc->set_req( TypeFunc::FramePtr, frameptr() ); 3631 add_safepoint_edges(alloc); 3632 Node* allocx = _gvn.transform(alloc); 3633 set_control( _gvn.transform(new ProjNode(allocx, TypeFunc::Control) ) ); 3634 // create memory projection for i_o 3635 set_memory ( _gvn.transform( new ProjNode(allocx, TypeFunc::Memory, true) ), rawidx ); 3636 make_slow_call_ex(allocx, env()->Throwable_klass(), true, deoptimize_on_exception); 3637 3638 // create a memory projection as for the normal control path 3639 Node* malloc = _gvn.transform(new ProjNode(allocx, TypeFunc::Memory)); 3640 set_memory(malloc, rawidx); 3641 3642 // a normal slow-call doesn't change i_o, but an allocation does 3643 // we create a separate i_o projection for the normal control path 3644 set_i_o(_gvn.transform( new ProjNode(allocx, TypeFunc::I_O, false) ) ); 3645 Node* rawoop = _gvn.transform( new ProjNode(allocx, TypeFunc::Parms) ); 3646 3647 // put in an initialization barrier 3648 InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, rawidx, 3649 rawoop)->as_Initialize(); 3650 assert(alloc->initialization() == init, "2-way macro link must work"); 3651 assert(init ->allocation() == alloc, "2-way macro link must work"); 3652 { 3653 // Extract memory strands which may participate in the new object's 3654 // initialization, and source them from the new InitializeNode. 3655 // This will allow us to observe initializations when they occur, 3656 // and link them properly (as a group) to the InitializeNode. 3657 assert(init->in(InitializeNode::Memory) == malloc, ""); 3658 MergeMemNode* minit_in = MergeMemNode::make(malloc); 3659 init->set_req(InitializeNode::Memory, minit_in); 3660 record_for_igvn(minit_in); // fold it up later, if possible 3661 Node* minit_out = memory(rawidx); 3662 assert(minit_out->is_Proj() && minit_out->in(0) == init, ""); 3663 // Add an edge in the MergeMem for the header fields so an access 3664 // to one of those has correct memory state 3665 set_memory(minit_out, C->get_alias_index(oop_type->add_offset(oopDesc::mark_offset_in_bytes()))); 3666 set_memory(minit_out, C->get_alias_index(oop_type->add_offset(oopDesc::klass_offset_in_bytes()))); 3667 if (oop_type->isa_aryptr()) { 3668 const TypePtr* telemref = oop_type->add_offset(Type::OffsetBot); 3669 int elemidx = C->get_alias_index(telemref); 3670 hook_memory_on_init(*this, elemidx, minit_in, minit_out); 3671 } else if (oop_type->isa_instptr()) { 3672 ciInstanceKlass* ik = oop_type->is_instptr()->instance_klass(); 3673 for (int i = 0, len = ik->nof_nonstatic_fields(); i < len; i++) { 3674 ciField* field = ik->nonstatic_field_at(i); 3675 if (field->offset_in_bytes() >= TrackedInitializationLimit * HeapWordSize) 3676 continue; // do not bother to track really large numbers of fields 3677 // Find (or create) the alias category for this field: 3678 int fieldidx = C->alias_type(field)->index(); 3679 hook_memory_on_init(*this, fieldidx, minit_in, minit_out); 3680 } 3681 } 3682 } 3683 3684 // Cast raw oop to the real thing... 3685 Node* javaoop = new CheckCastPPNode(control(), rawoop, oop_type); 3686 javaoop = _gvn.transform(javaoop); 3687 C->set_recent_alloc(control(), javaoop); 3688 assert(just_allocated_object(control()) == javaoop, "just allocated"); 3689 3690 #ifdef ASSERT 3691 { // Verify that the AllocateNode::Ideal_allocation recognizers work: 3692 assert(AllocateNode::Ideal_allocation(rawoop) == alloc, 3693 "Ideal_allocation works"); 3694 assert(AllocateNode::Ideal_allocation(javaoop) == alloc, 3695 "Ideal_allocation works"); 3696 if (alloc->is_AllocateArray()) { 3697 assert(AllocateArrayNode::Ideal_array_allocation(rawoop) == alloc->as_AllocateArray(), 3698 "Ideal_allocation works"); 3699 assert(AllocateArrayNode::Ideal_array_allocation(javaoop) == alloc->as_AllocateArray(), 3700 "Ideal_allocation works"); 3701 } else { 3702 assert(alloc->in(AllocateNode::ALength)->is_top(), "no length, please"); 3703 } 3704 } 3705 #endif //ASSERT 3706 3707 return javaoop; 3708 } 3709 3710 //---------------------------new_instance-------------------------------------- 3711 // This routine takes a klass_node which may be constant (for a static type) 3712 // or may be non-constant (for reflective code). It will work equally well 3713 // for either, and the graph will fold nicely if the optimizer later reduces 3714 // the type to a constant. 3715 // The optional arguments are for specialized use by intrinsics: 3716 // - If 'extra_slow_test' if not null is an extra condition for the slow-path. 3717 // - If 'return_size_val', report the total object size to the caller. 3718 // - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize) 3719 Node* GraphKit::new_instance(Node* klass_node, 3720 Node* extra_slow_test, 3721 Node* *return_size_val, 3722 bool deoptimize_on_exception) { 3723 // Compute size in doublewords 3724 // The size is always an integral number of doublewords, represented 3725 // as a positive bytewise size stored in the klass's layout_helper. 3726 // The layout_helper also encodes (in a low bit) the need for a slow path. 3727 jint layout_con = Klass::_lh_neutral_value; 3728 Node* layout_val = get_layout_helper(klass_node, layout_con); 3729 int layout_is_con = (layout_val == nullptr); 3730 3731 if (extra_slow_test == nullptr) extra_slow_test = intcon(0); 3732 // Generate the initial go-slow test. It's either ALWAYS (return a 3733 // Node for 1) or NEVER (return a null) or perhaps (in the reflective 3734 // case) a computed value derived from the layout_helper. 3735 Node* initial_slow_test = nullptr; 3736 if (layout_is_con) { 3737 assert(!StressReflectiveCode, "stress mode does not use these paths"); 3738 bool must_go_slow = Klass::layout_helper_needs_slow_path(layout_con); 3739 initial_slow_test = must_go_slow ? intcon(1) : extra_slow_test; 3740 } else { // reflective case 3741 // This reflective path is used by Unsafe.allocateInstance. 3742 // (It may be stress-tested by specifying StressReflectiveCode.) 3743 // Basically, we want to get into the VM is there's an illegal argument. 3744 Node* bit = intcon(Klass::_lh_instance_slow_path_bit); 3745 initial_slow_test = _gvn.transform( new AndINode(layout_val, bit) ); 3746 if (extra_slow_test != intcon(0)) { 3747 initial_slow_test = _gvn.transform( new OrINode(initial_slow_test, extra_slow_test) ); 3748 } 3749 // (Macro-expander will further convert this to a Bool, if necessary.) 3750 } 3751 3752 // Find the size in bytes. This is easy; it's the layout_helper. 3753 // The size value must be valid even if the slow path is taken. 3754 Node* size = nullptr; 3755 if (layout_is_con) { 3756 size = MakeConX(Klass::layout_helper_size_in_bytes(layout_con)); 3757 } else { // reflective case 3758 // This reflective path is used by clone and Unsafe.allocateInstance. 3759 size = ConvI2X(layout_val); 3760 3761 // Clear the low bits to extract layout_helper_size_in_bytes: 3762 assert((int)Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit"); 3763 Node* mask = MakeConX(~ (intptr_t)right_n_bits(LogBytesPerLong)); 3764 size = _gvn.transform( new AndXNode(size, mask) ); 3765 } 3766 if (return_size_val != nullptr) { 3767 (*return_size_val) = size; 3768 } 3769 3770 // This is a precise notnull oop of the klass. 3771 // (Actually, it need not be precise if this is a reflective allocation.) 3772 // It's what we cast the result to. 3773 const TypeKlassPtr* tklass = _gvn.type(klass_node)->isa_klassptr(); 3774 if (!tklass) tklass = TypeInstKlassPtr::OBJECT; 3775 const TypeOopPtr* oop_type = tklass->as_instance_type(); 3776 3777 // Now generate allocation code 3778 3779 // The entire memory state is needed for slow path of the allocation 3780 // since GC and deoptimization can happened. 3781 Node *mem = reset_memory(); 3782 set_all_memory(mem); // Create new memory state 3783 3784 AllocateNode* alloc = new AllocateNode(C, AllocateNode::alloc_type(Type::TOP), 3785 control(), mem, i_o(), 3786 size, klass_node, 3787 initial_slow_test); 3788 3789 return set_output_for_allocation(alloc, oop_type, deoptimize_on_exception); 3790 } 3791 3792 //-------------------------------new_array------------------------------------- 3793 // helper for both newarray and anewarray 3794 // The 'length' parameter is (obviously) the length of the array. 3795 // The optional arguments are for specialized use by intrinsics: 3796 // - If 'return_size_val', report the non-padded array size (sum of header size 3797 // and array body) to the caller. 3798 // - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize) 3799 Node* GraphKit::new_array(Node* klass_node, // array klass (maybe variable) 3800 Node* length, // number of array elements 3801 int nargs, // number of arguments to push back for uncommon trap 3802 Node* *return_size_val, 3803 bool deoptimize_on_exception) { 3804 jint layout_con = Klass::_lh_neutral_value; 3805 Node* layout_val = get_layout_helper(klass_node, layout_con); 3806 int layout_is_con = (layout_val == nullptr); 3807 3808 if (!layout_is_con && !StressReflectiveCode && 3809 !too_many_traps(Deoptimization::Reason_class_check)) { 3810 // This is a reflective array creation site. 3811 // Optimistically assume that it is a subtype of Object[], 3812 // so that we can fold up all the address arithmetic. 3813 layout_con = Klass::array_layout_helper(T_OBJECT); 3814 Node* cmp_lh = _gvn.transform( new CmpINode(layout_val, intcon(layout_con)) ); 3815 Node* bol_lh = _gvn.transform( new BoolNode(cmp_lh, BoolTest::eq) ); 3816 { BuildCutout unless(this, bol_lh, PROB_MAX); 3817 inc_sp(nargs); 3818 uncommon_trap(Deoptimization::Reason_class_check, 3819 Deoptimization::Action_maybe_recompile); 3820 } 3821 layout_val = nullptr; 3822 layout_is_con = true; 3823 } 3824 3825 // Generate the initial go-slow test. Make sure we do not overflow 3826 // if length is huge (near 2Gig) or negative! We do not need 3827 // exact double-words here, just a close approximation of needed 3828 // double-words. We can't add any offset or rounding bits, lest we 3829 // take a size -1 of bytes and make it positive. Use an unsigned 3830 // compare, so negative sizes look hugely positive. 3831 int fast_size_limit = FastAllocateSizeLimit; 3832 if (layout_is_con) { 3833 assert(!StressReflectiveCode, "stress mode does not use these paths"); 3834 // Increase the size limit if we have exact knowledge of array type. 3835 int log2_esize = Klass::layout_helper_log2_element_size(layout_con); 3836 fast_size_limit <<= (LogBytesPerLong - log2_esize); 3837 } 3838 3839 Node* initial_slow_cmp = _gvn.transform( new CmpUNode( length, intcon( fast_size_limit ) ) ); 3840 Node* initial_slow_test = _gvn.transform( new BoolNode( initial_slow_cmp, BoolTest::gt ) ); 3841 3842 // --- Size Computation --- 3843 // array_size = round_to_heap(array_header + (length << elem_shift)); 3844 // where round_to_heap(x) == align_to(x, MinObjAlignmentInBytes) 3845 // and align_to(x, y) == ((x + y-1) & ~(y-1)) 3846 // The rounding mask is strength-reduced, if possible. 3847 int round_mask = MinObjAlignmentInBytes - 1; 3848 Node* header_size = nullptr; 3849 // (T_BYTE has the weakest alignment and size restrictions...) 3850 if (layout_is_con) { 3851 int hsize = Klass::layout_helper_header_size(layout_con); 3852 int eshift = Klass::layout_helper_log2_element_size(layout_con); 3853 if ((round_mask & ~right_n_bits(eshift)) == 0) 3854 round_mask = 0; // strength-reduce it if it goes away completely 3855 assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded"); 3856 int header_size_min = arrayOopDesc::base_offset_in_bytes(T_BYTE); 3857 assert(header_size_min <= hsize, "generic minimum is smallest"); 3858 header_size = intcon(hsize); 3859 } else { 3860 Node* hss = intcon(Klass::_lh_header_size_shift); 3861 Node* hsm = intcon(Klass::_lh_header_size_mask); 3862 header_size = _gvn.transform(new URShiftINode(layout_val, hss)); 3863 header_size = _gvn.transform(new AndINode(header_size, hsm)); 3864 } 3865 3866 Node* elem_shift = nullptr; 3867 if (layout_is_con) { 3868 int eshift = Klass::layout_helper_log2_element_size(layout_con); 3869 if (eshift != 0) 3870 elem_shift = intcon(eshift); 3871 } else { 3872 // There is no need to mask or shift this value. 3873 // The semantics of LShiftINode include an implicit mask to 0x1F. 3874 assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place"); 3875 elem_shift = layout_val; 3876 } 3877 3878 // Transition to native address size for all offset calculations: 3879 Node* lengthx = ConvI2X(length); 3880 Node* headerx = ConvI2X(header_size); 3881 #ifdef _LP64 3882 { const TypeInt* tilen = _gvn.find_int_type(length); 3883 if (tilen != nullptr && tilen->_lo < 0) { 3884 // Add a manual constraint to a positive range. Cf. array_element_address. 3885 jint size_max = fast_size_limit; 3886 if (size_max > tilen->_hi) size_max = tilen->_hi; 3887 const TypeInt* tlcon = TypeInt::make(0, size_max, Type::WidenMin); 3888 3889 // Only do a narrow I2L conversion if the range check passed. 3890 IfNode* iff = new IfNode(control(), initial_slow_test, PROB_MIN, COUNT_UNKNOWN); 3891 _gvn.transform(iff); 3892 RegionNode* region = new RegionNode(3); 3893 _gvn.set_type(region, Type::CONTROL); 3894 lengthx = new PhiNode(region, TypeLong::LONG); 3895 _gvn.set_type(lengthx, TypeLong::LONG); 3896 3897 // Range check passed. Use ConvI2L node with narrow type. 3898 Node* passed = IfFalse(iff); 3899 region->init_req(1, passed); 3900 // Make I2L conversion control dependent to prevent it from 3901 // floating above the range check during loop optimizations. 3902 lengthx->init_req(1, C->constrained_convI2L(&_gvn, length, tlcon, passed)); 3903 3904 // Range check failed. Use ConvI2L with wide type because length may be invalid. 3905 region->init_req(2, IfTrue(iff)); 3906 lengthx->init_req(2, ConvI2X(length)); 3907 3908 set_control(region); 3909 record_for_igvn(region); 3910 record_for_igvn(lengthx); 3911 } 3912 } 3913 #endif 3914 3915 // Combine header size and body size for the array copy part, then align (if 3916 // necessary) for the allocation part. This computation cannot overflow, 3917 // because it is used only in two places, one where the length is sharply 3918 // limited, and the other after a successful allocation. 3919 Node* abody = lengthx; 3920 if (elem_shift != nullptr) { 3921 abody = _gvn.transform(new LShiftXNode(lengthx, elem_shift)); 3922 } 3923 Node* non_rounded_size = _gvn.transform(new AddXNode(headerx, abody)); 3924 3925 if (return_size_val != nullptr) { 3926 // This is the size 3927 (*return_size_val) = non_rounded_size; 3928 } 3929 3930 Node* size = non_rounded_size; 3931 if (round_mask != 0) { 3932 Node* mask1 = MakeConX(round_mask); 3933 size = _gvn.transform(new AddXNode(size, mask1)); 3934 Node* mask2 = MakeConX(~round_mask); 3935 size = _gvn.transform(new AndXNode(size, mask2)); 3936 } 3937 // else if round_mask == 0, the size computation is self-rounding 3938 3939 // Now generate allocation code 3940 3941 // The entire memory state is needed for slow path of the allocation 3942 // since GC and deoptimization can happened. 3943 Node *mem = reset_memory(); 3944 set_all_memory(mem); // Create new memory state 3945 3946 if (initial_slow_test->is_Bool()) { 3947 // Hide it behind a CMoveI, or else PhaseIdealLoop::split_up will get sick. 3948 initial_slow_test = initial_slow_test->as_Bool()->as_int_value(&_gvn); 3949 } 3950 3951 const TypeOopPtr* ary_type = _gvn.type(klass_node)->is_klassptr()->as_instance_type(); 3952 Node* valid_length_test = _gvn.intcon(1); 3953 if (ary_type->isa_aryptr()) { 3954 BasicType bt = ary_type->isa_aryptr()->elem()->array_element_basic_type(); 3955 jint max = TypeAryPtr::max_array_length(bt); 3956 Node* valid_length_cmp = _gvn.transform(new CmpUNode(length, intcon(max))); 3957 valid_length_test = _gvn.transform(new BoolNode(valid_length_cmp, BoolTest::le)); 3958 } 3959 3960 // Create the AllocateArrayNode and its result projections 3961 AllocateArrayNode* alloc 3962 = new AllocateArrayNode(C, AllocateArrayNode::alloc_type(TypeInt::INT), 3963 control(), mem, i_o(), 3964 size, klass_node, 3965 initial_slow_test, 3966 length, valid_length_test); 3967 3968 // Cast to correct type. Note that the klass_node may be constant or not, 3969 // and in the latter case the actual array type will be inexact also. 3970 // (This happens via a non-constant argument to inline_native_newArray.) 3971 // In any case, the value of klass_node provides the desired array type. 3972 const TypeInt* length_type = _gvn.find_int_type(length); 3973 if (ary_type->isa_aryptr() && length_type != nullptr) { 3974 // Try to get a better type than POS for the size 3975 ary_type = ary_type->is_aryptr()->cast_to_size(length_type); 3976 } 3977 3978 Node* javaoop = set_output_for_allocation(alloc, ary_type, deoptimize_on_exception); 3979 3980 array_ideal_length(alloc, ary_type, true); 3981 return javaoop; 3982 } 3983 3984 // The following "Ideal_foo" functions are placed here because they recognize 3985 // the graph shapes created by the functions immediately above. 3986 3987 //---------------------------Ideal_allocation---------------------------------- 3988 // Given an oop pointer or raw pointer, see if it feeds from an AllocateNode. 3989 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr) { 3990 if (ptr == nullptr) { // reduce dumb test in callers 3991 return nullptr; 3992 } 3993 3994 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 3995 ptr = bs->step_over_gc_barrier(ptr); 3996 3997 if (ptr->is_CheckCastPP()) { // strip only one raw-to-oop cast 3998 ptr = ptr->in(1); 3999 if (ptr == nullptr) return nullptr; 4000 } 4001 // Return null for allocations with several casts: 4002 // j.l.reflect.Array.newInstance(jobject, jint) 4003 // Object.clone() 4004 // to keep more precise type from last cast. 4005 if (ptr->is_Proj()) { 4006 Node* allo = ptr->in(0); 4007 if (allo != nullptr && allo->is_Allocate()) { 4008 return allo->as_Allocate(); 4009 } 4010 } 4011 // Report failure to match. 4012 return nullptr; 4013 } 4014 4015 // Fancy version which also strips off an offset (and reports it to caller). 4016 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseValues* phase, 4017 intptr_t& offset) { 4018 Node* base = AddPNode::Ideal_base_and_offset(ptr, phase, offset); 4019 if (base == nullptr) return nullptr; 4020 return Ideal_allocation(base); 4021 } 4022 4023 // Trace Initialize <- Proj[Parm] <- Allocate 4024 AllocateNode* InitializeNode::allocation() { 4025 Node* rawoop = in(InitializeNode::RawAddress); 4026 if (rawoop->is_Proj()) { 4027 Node* alloc = rawoop->in(0); 4028 if (alloc->is_Allocate()) { 4029 return alloc->as_Allocate(); 4030 } 4031 } 4032 return nullptr; 4033 } 4034 4035 // Trace Allocate -> Proj[Parm] -> Initialize 4036 InitializeNode* AllocateNode::initialization() { 4037 ProjNode* rawoop = proj_out_or_null(AllocateNode::RawAddress); 4038 if (rawoop == nullptr) return nullptr; 4039 for (DUIterator_Fast imax, i = rawoop->fast_outs(imax); i < imax; i++) { 4040 Node* init = rawoop->fast_out(i); 4041 if (init->is_Initialize()) { 4042 assert(init->as_Initialize()->allocation() == this, "2-way link"); 4043 return init->as_Initialize(); 4044 } 4045 } 4046 return nullptr; 4047 } 4048 4049 // Add a Parse Predicate with an uncommon trap on the failing/false path. Normal control will continue on the true path. 4050 void GraphKit::add_parse_predicate(Deoptimization::DeoptReason reason, const int nargs) { 4051 // Too many traps seen? 4052 if (too_many_traps(reason)) { 4053 #ifdef ASSERT 4054 if (TraceLoopPredicate) { 4055 int tc = C->trap_count(reason); 4056 tty->print("too many traps=%s tcount=%d in ", 4057 Deoptimization::trap_reason_name(reason), tc); 4058 method()->print(); // which method has too many predicate traps 4059 tty->cr(); 4060 } 4061 #endif 4062 // We cannot afford to take more traps here, 4063 // do not generate Parse Predicate. 4064 return; 4065 } 4066 4067 ParsePredicateNode* parse_predicate = new ParsePredicateNode(control(), reason, &_gvn); 4068 _gvn.set_type(parse_predicate, parse_predicate->Value(&_gvn)); 4069 Node* if_false = _gvn.transform(new IfFalseNode(parse_predicate)); 4070 { 4071 PreserveJVMState pjvms(this); 4072 set_control(if_false); 4073 inc_sp(nargs); 4074 uncommon_trap(reason, Deoptimization::Action_maybe_recompile); 4075 } 4076 Node* if_true = _gvn.transform(new IfTrueNode(parse_predicate)); 4077 set_control(if_true); 4078 } 4079 4080 // Add Parse Predicates which serve as placeholders to create new Runtime Predicates above them. All 4081 // Runtime Predicates inside a Runtime Predicate block share the same uncommon trap as the Parse Predicate. 4082 void GraphKit::add_parse_predicates(int nargs) { 4083 if (UseLoopPredicate) { 4084 add_parse_predicate(Deoptimization::Reason_predicate, nargs); 4085 } 4086 if (UseProfiledLoopPredicate) { 4087 add_parse_predicate(Deoptimization::Reason_profile_predicate, nargs); 4088 } 4089 // Loop Limit Check Predicate should be near the loop. 4090 add_parse_predicate(Deoptimization::Reason_loop_limit_check, nargs); 4091 } 4092 4093 void GraphKit::sync_kit(IdealKit& ideal) { 4094 set_all_memory(ideal.merged_memory()); 4095 set_i_o(ideal.i_o()); 4096 set_control(ideal.ctrl()); 4097 } 4098 4099 void GraphKit::final_sync(IdealKit& ideal) { 4100 // Final sync IdealKit and graphKit. 4101 sync_kit(ideal); 4102 } 4103 4104 Node* GraphKit::load_String_length(Node* str, bool set_ctrl) { 4105 Node* len = load_array_length(load_String_value(str, set_ctrl)); 4106 Node* coder = load_String_coder(str, set_ctrl); 4107 // Divide length by 2 if coder is UTF16 4108 return _gvn.transform(new RShiftINode(len, coder)); 4109 } 4110 4111 Node* GraphKit::load_String_value(Node* str, bool set_ctrl) { 4112 int value_offset = java_lang_String::value_offset(); 4113 const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(), 4114 false, nullptr, 0); 4115 const TypePtr* value_field_type = string_type->add_offset(value_offset); 4116 const TypeAryPtr* value_type = TypeAryPtr::make(TypePtr::NotNull, 4117 TypeAry::make(TypeInt::BYTE, TypeInt::POS), 4118 ciTypeArrayKlass::make(T_BYTE), true, 0); 4119 Node* p = basic_plus_adr(str, str, value_offset); 4120 Node* load = access_load_at(str, p, value_field_type, value_type, T_OBJECT, 4121 IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED); 4122 return load; 4123 } 4124 4125 Node* GraphKit::load_String_coder(Node* str, bool set_ctrl) { 4126 if (!CompactStrings) { 4127 return intcon(java_lang_String::CODER_UTF16); 4128 } 4129 int coder_offset = java_lang_String::coder_offset(); 4130 const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(), 4131 false, nullptr, 0); 4132 const TypePtr* coder_field_type = string_type->add_offset(coder_offset); 4133 4134 Node* p = basic_plus_adr(str, str, coder_offset); 4135 Node* load = access_load_at(str, p, coder_field_type, TypeInt::BYTE, T_BYTE, 4136 IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED); 4137 return load; 4138 } 4139 4140 void GraphKit::store_String_value(Node* str, Node* value) { 4141 int value_offset = java_lang_String::value_offset(); 4142 const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(), 4143 false, nullptr, 0); 4144 const TypePtr* value_field_type = string_type->add_offset(value_offset); 4145 4146 access_store_at(str, basic_plus_adr(str, value_offset), value_field_type, 4147 value, TypeAryPtr::BYTES, T_OBJECT, IN_HEAP | MO_UNORDERED); 4148 } 4149 4150 void GraphKit::store_String_coder(Node* str, Node* value) { 4151 int coder_offset = java_lang_String::coder_offset(); 4152 const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(), 4153 false, nullptr, 0); 4154 const TypePtr* coder_field_type = string_type->add_offset(coder_offset); 4155 4156 access_store_at(str, basic_plus_adr(str, coder_offset), coder_field_type, 4157 value, TypeInt::BYTE, T_BYTE, IN_HEAP | MO_UNORDERED); 4158 } 4159 4160 // Capture src and dst memory state with a MergeMemNode 4161 Node* GraphKit::capture_memory(const TypePtr* src_type, const TypePtr* dst_type) { 4162 if (src_type == dst_type) { 4163 // Types are equal, we don't need a MergeMemNode 4164 return memory(src_type); 4165 } 4166 MergeMemNode* merge = MergeMemNode::make(map()->memory()); 4167 record_for_igvn(merge); // fold it up later, if possible 4168 int src_idx = C->get_alias_index(src_type); 4169 int dst_idx = C->get_alias_index(dst_type); 4170 merge->set_memory_at(src_idx, memory(src_idx)); 4171 merge->set_memory_at(dst_idx, memory(dst_idx)); 4172 return merge; 4173 } 4174 4175 Node* GraphKit::compress_string(Node* src, const TypeAryPtr* src_type, Node* dst, Node* count) { 4176 assert(Matcher::match_rule_supported(Op_StrCompressedCopy), "Intrinsic not supported"); 4177 assert(src_type == TypeAryPtr::BYTES || src_type == TypeAryPtr::CHARS, "invalid source type"); 4178 // If input and output memory types differ, capture both states to preserve 4179 // the dependency between preceding and subsequent loads/stores. 4180 // For example, the following program: 4181 // StoreB 4182 // compress_string 4183 // LoadB 4184 // has this memory graph (use->def): 4185 // LoadB -> compress_string -> CharMem 4186 // ... -> StoreB -> ByteMem 4187 // The intrinsic hides the dependency between LoadB and StoreB, causing 4188 // the load to read from memory not containing the result of the StoreB. 4189 // The correct memory graph should look like this: 4190 // LoadB -> compress_string -> MergeMem(CharMem, StoreB(ByteMem)) 4191 Node* mem = capture_memory(src_type, TypeAryPtr::BYTES); 4192 StrCompressedCopyNode* str = new StrCompressedCopyNode(control(), mem, src, dst, count); 4193 Node* res_mem = _gvn.transform(new SCMemProjNode(_gvn.transform(str))); 4194 set_memory(res_mem, TypeAryPtr::BYTES); 4195 return str; 4196 } 4197 4198 void GraphKit::inflate_string(Node* src, Node* dst, const TypeAryPtr* dst_type, Node* count) { 4199 assert(Matcher::match_rule_supported(Op_StrInflatedCopy), "Intrinsic not supported"); 4200 assert(dst_type == TypeAryPtr::BYTES || dst_type == TypeAryPtr::CHARS, "invalid dest type"); 4201 // Capture src and dst memory (see comment in 'compress_string'). 4202 Node* mem = capture_memory(TypeAryPtr::BYTES, dst_type); 4203 StrInflatedCopyNode* str = new StrInflatedCopyNode(control(), mem, src, dst, count); 4204 set_memory(_gvn.transform(str), dst_type); 4205 } 4206 4207 void GraphKit::inflate_string_slow(Node* src, Node* dst, Node* start, Node* count) { 4208 /** 4209 * int i_char = start; 4210 * for (int i_byte = 0; i_byte < count; i_byte++) { 4211 * dst[i_char++] = (char)(src[i_byte] & 0xff); 4212 * } 4213 */ 4214 add_parse_predicates(); 4215 C->set_has_loops(true); 4216 4217 RegionNode* head = new RegionNode(3); 4218 head->init_req(1, control()); 4219 gvn().set_type(head, Type::CONTROL); 4220 record_for_igvn(head); 4221 4222 Node* i_byte = new PhiNode(head, TypeInt::INT); 4223 i_byte->init_req(1, intcon(0)); 4224 gvn().set_type(i_byte, TypeInt::INT); 4225 record_for_igvn(i_byte); 4226 4227 Node* i_char = new PhiNode(head, TypeInt::INT); 4228 i_char->init_req(1, start); 4229 gvn().set_type(i_char, TypeInt::INT); 4230 record_for_igvn(i_char); 4231 4232 Node* mem = PhiNode::make(head, memory(TypeAryPtr::BYTES), Type::MEMORY, TypeAryPtr::BYTES); 4233 gvn().set_type(mem, Type::MEMORY); 4234 record_for_igvn(mem); 4235 set_control(head); 4236 set_memory(mem, TypeAryPtr::BYTES); 4237 Node* ch = load_array_element(src, i_byte, TypeAryPtr::BYTES, /* set_ctrl */ true); 4238 Node* st = store_to_memory(control(), array_element_address(dst, i_char, T_BYTE), 4239 AndI(ch, intcon(0xff)), T_CHAR, MemNode::unordered, false, 4240 false, true /* mismatched */); 4241 4242 IfNode* iff = create_and_map_if(head, Bool(CmpI(i_byte, count), BoolTest::lt), PROB_FAIR, COUNT_UNKNOWN); 4243 head->init_req(2, IfTrue(iff)); 4244 mem->init_req(2, st); 4245 i_byte->init_req(2, AddI(i_byte, intcon(1))); 4246 i_char->init_req(2, AddI(i_char, intcon(2))); 4247 4248 set_control(IfFalse(iff)); 4249 set_memory(st, TypeAryPtr::BYTES); 4250 } 4251 4252 Node* GraphKit::make_constant_from_field(ciField* field, Node* obj) { 4253 if (!field->is_constant()) { 4254 return nullptr; // Field not marked as constant. 4255 } 4256 ciInstance* holder = nullptr; 4257 if (!field->is_static()) { 4258 ciObject* const_oop = obj->bottom_type()->is_oopptr()->const_oop(); 4259 if (const_oop != nullptr && const_oop->is_instance()) { 4260 holder = const_oop->as_instance(); 4261 } 4262 } 4263 const Type* con_type = Type::make_constant_from_field(field, holder, field->layout_type(), 4264 /*is_unsigned_load=*/false); 4265 if (con_type != nullptr) { 4266 return makecon(con_type); 4267 } 4268 return nullptr; 4269 } 4270 4271 Node* GraphKit::maybe_narrow_object_type(Node* obj, ciKlass* type) { 4272 const TypeOopPtr* obj_type = obj->bottom_type()->isa_oopptr(); 4273 const TypeOopPtr* sig_type = TypeOopPtr::make_from_klass(type); 4274 if (obj_type != nullptr && sig_type->is_loaded() && !obj_type->higher_equal(sig_type)) { 4275 const Type* narrow_obj_type = obj_type->filter_speculative(sig_type); // keep speculative part 4276 Node* casted_obj = gvn().transform(new CheckCastPPNode(control(), obj, narrow_obj_type)); 4277 return casted_obj; 4278 } 4279 return obj; 4280 }