1 /* 2 * Copyright (c) 2001, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "ci/ciUtilities.hpp" 27 #include "classfile/javaClasses.hpp" 28 #include "ci/ciObjArray.hpp" 29 #include "asm/register.hpp" 30 #include "compiler/compileLog.hpp" 31 #include "gc/shared/barrierSet.hpp" 32 #include "gc/shared/c2/barrierSetC2.hpp" 33 #include "interpreter/interpreter.hpp" 34 #include "memory/resourceArea.hpp" 35 #include "opto/addnode.hpp" 36 #include "opto/castnode.hpp" 37 #include "opto/convertnode.hpp" 38 #include "opto/graphKit.hpp" 39 #include "opto/idealKit.hpp" 40 #include "opto/intrinsicnode.hpp" 41 #include "opto/locknode.hpp" 42 #include "opto/machnode.hpp" 43 #include "opto/opaquenode.hpp" 44 #include "opto/parse.hpp" 45 #include "opto/rootnode.hpp" 46 #include "opto/runtime.hpp" 47 #include "opto/subtypenode.hpp" 48 #include "runtime/deoptimization.hpp" 49 #include "runtime/sharedRuntime.hpp" 50 #include "utilities/bitMap.inline.hpp" 51 #include "utilities/powerOfTwo.hpp" 52 #include "utilities/growableArray.hpp" 53 54 //----------------------------GraphKit----------------------------------------- 55 // Main utility constructor. 56 GraphKit::GraphKit(JVMState* jvms) 57 : Phase(Phase::Parser), 58 _env(C->env()), 59 _gvn(*C->initial_gvn()), 60 _barrier_set(BarrierSet::barrier_set()->barrier_set_c2()) 61 { 62 _exceptions = jvms->map()->next_exception(); 63 if (_exceptions != nullptr) jvms->map()->set_next_exception(nullptr); 64 set_jvms(jvms); 65 } 66 67 // Private constructor for parser. 68 GraphKit::GraphKit() 69 : Phase(Phase::Parser), 70 _env(C->env()), 71 _gvn(*C->initial_gvn()), 72 _barrier_set(BarrierSet::barrier_set()->barrier_set_c2()) 73 { 74 _exceptions = nullptr; 75 set_map(nullptr); 76 debug_only(_sp = -99); 77 debug_only(set_bci(-99)); 78 } 79 80 81 82 //---------------------------clean_stack--------------------------------------- 83 // Clear away rubbish from the stack area of the JVM state. 84 // This destroys any arguments that may be waiting on the stack. 85 void GraphKit::clean_stack(int from_sp) { 86 SafePointNode* map = this->map(); 87 JVMState* jvms = this->jvms(); 88 int stk_size = jvms->stk_size(); 89 int stkoff = jvms->stkoff(); 90 Node* top = this->top(); 91 for (int i = from_sp; i < stk_size; i++) { 92 if (map->in(stkoff + i) != top) { 93 map->set_req(stkoff + i, top); 94 } 95 } 96 } 97 98 99 //--------------------------------sync_jvms----------------------------------- 100 // Make sure our current jvms agrees with our parse state. 101 JVMState* GraphKit::sync_jvms() const { 102 JVMState* jvms = this->jvms(); 103 jvms->set_bci(bci()); // Record the new bci in the JVMState 104 jvms->set_sp(sp()); // Record the new sp in the JVMState 105 assert(jvms_in_sync(), "jvms is now in sync"); 106 return jvms; 107 } 108 109 //--------------------------------sync_jvms_for_reexecute--------------------- 110 // Make sure our current jvms agrees with our parse state. This version 111 // uses the reexecute_sp for reexecuting bytecodes. 112 JVMState* GraphKit::sync_jvms_for_reexecute() { 113 JVMState* jvms = this->jvms(); 114 jvms->set_bci(bci()); // Record the new bci in the JVMState 115 jvms->set_sp(reexecute_sp()); // Record the new sp in the JVMState 116 return jvms; 117 } 118 119 #ifdef ASSERT 120 bool GraphKit::jvms_in_sync() const { 121 Parse* parse = is_Parse(); 122 if (parse == nullptr) { 123 if (bci() != jvms()->bci()) return false; 124 if (sp() != (int)jvms()->sp()) return false; 125 return true; 126 } 127 if (jvms()->method() != parse->method()) return false; 128 if (jvms()->bci() != parse->bci()) return false; 129 int jvms_sp = jvms()->sp(); 130 if (jvms_sp != parse->sp()) return false; 131 int jvms_depth = jvms()->depth(); 132 if (jvms_depth != parse->depth()) return false; 133 return true; 134 } 135 136 // Local helper checks for special internal merge points 137 // used to accumulate and merge exception states. 138 // They are marked by the region's in(0) edge being the map itself. 139 // Such merge points must never "escape" into the parser at large, 140 // until they have been handed to gvn.transform. 141 static bool is_hidden_merge(Node* reg) { 142 if (reg == nullptr) return false; 143 if (reg->is_Phi()) { 144 reg = reg->in(0); 145 if (reg == nullptr) return false; 146 } 147 return reg->is_Region() && reg->in(0) != nullptr && reg->in(0)->is_Root(); 148 } 149 150 void GraphKit::verify_map() const { 151 if (map() == nullptr) return; // null map is OK 152 assert(map()->req() <= jvms()->endoff(), "no extra garbage on map"); 153 assert(!map()->has_exceptions(), "call add_exception_states_from 1st"); 154 assert(!is_hidden_merge(control()), "call use_exception_state, not set_map"); 155 } 156 157 void GraphKit::verify_exception_state(SafePointNode* ex_map) { 158 assert(ex_map->next_exception() == nullptr, "not already part of a chain"); 159 assert(has_saved_ex_oop(ex_map), "every exception state has an ex_oop"); 160 } 161 #endif 162 163 //---------------------------stop_and_kill_map--------------------------------- 164 // Set _map to null, signalling a stop to further bytecode execution. 165 // First smash the current map's control to a constant, to mark it dead. 166 void GraphKit::stop_and_kill_map() { 167 SafePointNode* dead_map = stop(); 168 if (dead_map != nullptr) { 169 dead_map->disconnect_inputs(C); // Mark the map as killed. 170 assert(dead_map->is_killed(), "must be so marked"); 171 } 172 } 173 174 175 //--------------------------------stopped-------------------------------------- 176 // Tell if _map is null, or control is top. 177 bool GraphKit::stopped() { 178 if (map() == nullptr) return true; 179 else if (control() == top()) return true; 180 else return false; 181 } 182 183 184 //-----------------------------has_exception_handler---------------------------------- 185 // Tell if this method or any caller method has exception handlers. 186 bool GraphKit::has_exception_handler() { 187 for (JVMState* jvmsp = jvms(); jvmsp != nullptr; jvmsp = jvmsp->caller()) { 188 if (jvmsp->has_method() && jvmsp->method()->has_exception_handlers()) { 189 return true; 190 } 191 } 192 return false; 193 } 194 195 //------------------------------save_ex_oop------------------------------------ 196 // Save an exception without blowing stack contents or other JVM state. 197 void GraphKit::set_saved_ex_oop(SafePointNode* ex_map, Node* ex_oop) { 198 assert(!has_saved_ex_oop(ex_map), "clear ex-oop before setting again"); 199 ex_map->add_req(ex_oop); 200 debug_only(verify_exception_state(ex_map)); 201 } 202 203 inline static Node* common_saved_ex_oop(SafePointNode* ex_map, bool clear_it) { 204 assert(GraphKit::has_saved_ex_oop(ex_map), "ex_oop must be there"); 205 Node* ex_oop = ex_map->in(ex_map->req()-1); 206 if (clear_it) ex_map->del_req(ex_map->req()-1); 207 return ex_oop; 208 } 209 210 //-----------------------------saved_ex_oop------------------------------------ 211 // Recover a saved exception from its map. 212 Node* GraphKit::saved_ex_oop(SafePointNode* ex_map) { 213 return common_saved_ex_oop(ex_map, false); 214 } 215 216 //--------------------------clear_saved_ex_oop--------------------------------- 217 // Erase a previously saved exception from its map. 218 Node* GraphKit::clear_saved_ex_oop(SafePointNode* ex_map) { 219 return common_saved_ex_oop(ex_map, true); 220 } 221 222 #ifdef ASSERT 223 //---------------------------has_saved_ex_oop---------------------------------- 224 // Erase a previously saved exception from its map. 225 bool GraphKit::has_saved_ex_oop(SafePointNode* ex_map) { 226 return ex_map->req() == ex_map->jvms()->endoff()+1; 227 } 228 #endif 229 230 //-------------------------make_exception_state-------------------------------- 231 // Turn the current JVM state into an exception state, appending the ex_oop. 232 SafePointNode* GraphKit::make_exception_state(Node* ex_oop) { 233 sync_jvms(); 234 SafePointNode* ex_map = stop(); // do not manipulate this map any more 235 set_saved_ex_oop(ex_map, ex_oop); 236 return ex_map; 237 } 238 239 240 //--------------------------add_exception_state-------------------------------- 241 // Add an exception to my list of exceptions. 242 void GraphKit::add_exception_state(SafePointNode* ex_map) { 243 if (ex_map == nullptr || ex_map->control() == top()) { 244 return; 245 } 246 #ifdef ASSERT 247 verify_exception_state(ex_map); 248 if (has_exceptions()) { 249 assert(ex_map->jvms()->same_calls_as(_exceptions->jvms()), "all collected exceptions must come from the same place"); 250 } 251 #endif 252 253 // If there is already an exception of exactly this type, merge with it. 254 // In particular, null-checks and other low-level exceptions common up here. 255 Node* ex_oop = saved_ex_oop(ex_map); 256 const Type* ex_type = _gvn.type(ex_oop); 257 if (ex_oop == top()) { 258 // No action needed. 259 return; 260 } 261 assert(ex_type->isa_instptr(), "exception must be an instance"); 262 for (SafePointNode* e2 = _exceptions; e2 != nullptr; e2 = e2->next_exception()) { 263 const Type* ex_type2 = _gvn.type(saved_ex_oop(e2)); 264 // We check sp also because call bytecodes can generate exceptions 265 // both before and after arguments are popped! 266 if (ex_type2 == ex_type 267 && e2->_jvms->sp() == ex_map->_jvms->sp()) { 268 combine_exception_states(ex_map, e2); 269 return; 270 } 271 } 272 273 // No pre-existing exception of the same type. Chain it on the list. 274 push_exception_state(ex_map); 275 } 276 277 //-----------------------add_exception_states_from----------------------------- 278 void GraphKit::add_exception_states_from(JVMState* jvms) { 279 SafePointNode* ex_map = jvms->map()->next_exception(); 280 if (ex_map != nullptr) { 281 jvms->map()->set_next_exception(nullptr); 282 for (SafePointNode* next_map; ex_map != nullptr; ex_map = next_map) { 283 next_map = ex_map->next_exception(); 284 ex_map->set_next_exception(nullptr); 285 add_exception_state(ex_map); 286 } 287 } 288 } 289 290 //-----------------------transfer_exceptions_into_jvms------------------------- 291 JVMState* GraphKit::transfer_exceptions_into_jvms() { 292 if (map() == nullptr) { 293 // We need a JVMS to carry the exceptions, but the map has gone away. 294 // Create a scratch JVMS, cloned from any of the exception states... 295 if (has_exceptions()) { 296 _map = _exceptions; 297 _map = clone_map(); 298 _map->set_next_exception(nullptr); 299 clear_saved_ex_oop(_map); 300 debug_only(verify_map()); 301 } else { 302 // ...or created from scratch 303 JVMState* jvms = new (C) JVMState(_method, nullptr); 304 jvms->set_bci(_bci); 305 jvms->set_sp(_sp); 306 jvms->set_map(new SafePointNode(TypeFunc::Parms, jvms)); 307 set_jvms(jvms); 308 for (uint i = 0; i < map()->req(); i++) map()->init_req(i, top()); 309 set_all_memory(top()); 310 while (map()->req() < jvms->endoff()) map()->add_req(top()); 311 } 312 // (This is a kludge, in case you didn't notice.) 313 set_control(top()); 314 } 315 JVMState* jvms = sync_jvms(); 316 assert(!jvms->map()->has_exceptions(), "no exceptions on this map yet"); 317 jvms->map()->set_next_exception(_exceptions); 318 _exceptions = nullptr; // done with this set of exceptions 319 return jvms; 320 } 321 322 static inline void add_n_reqs(Node* dstphi, Node* srcphi) { 323 assert(is_hidden_merge(dstphi), "must be a special merge node"); 324 assert(is_hidden_merge(srcphi), "must be a special merge node"); 325 uint limit = srcphi->req(); 326 for (uint i = PhiNode::Input; i < limit; i++) { 327 dstphi->add_req(srcphi->in(i)); 328 } 329 } 330 static inline void add_one_req(Node* dstphi, Node* src) { 331 assert(is_hidden_merge(dstphi), "must be a special merge node"); 332 assert(!is_hidden_merge(src), "must not be a special merge node"); 333 dstphi->add_req(src); 334 } 335 336 //-----------------------combine_exception_states------------------------------ 337 // This helper function combines exception states by building phis on a 338 // specially marked state-merging region. These regions and phis are 339 // untransformed, and can build up gradually. The region is marked by 340 // having a control input of its exception map, rather than null. Such 341 // regions do not appear except in this function, and in use_exception_state. 342 void GraphKit::combine_exception_states(SafePointNode* ex_map, SafePointNode* phi_map) { 343 if (failing_internal()) { 344 return; // dying anyway... 345 } 346 JVMState* ex_jvms = ex_map->_jvms; 347 assert(ex_jvms->same_calls_as(phi_map->_jvms), "consistent call chains"); 348 assert(ex_jvms->stkoff() == phi_map->_jvms->stkoff(), "matching locals"); 349 assert(ex_jvms->sp() == phi_map->_jvms->sp(), "matching stack sizes"); 350 assert(ex_jvms->monoff() == phi_map->_jvms->monoff(), "matching JVMS"); 351 assert(ex_jvms->scloff() == phi_map->_jvms->scloff(), "matching scalar replaced objects"); 352 assert(ex_map->req() == phi_map->req(), "matching maps"); 353 uint tos = ex_jvms->stkoff() + ex_jvms->sp(); 354 Node* hidden_merge_mark = root(); 355 Node* region = phi_map->control(); 356 MergeMemNode* phi_mem = phi_map->merged_memory(); 357 MergeMemNode* ex_mem = ex_map->merged_memory(); 358 if (region->in(0) != hidden_merge_mark) { 359 // The control input is not (yet) a specially-marked region in phi_map. 360 // Make it so, and build some phis. 361 region = new RegionNode(2); 362 _gvn.set_type(region, Type::CONTROL); 363 region->set_req(0, hidden_merge_mark); // marks an internal ex-state 364 region->init_req(1, phi_map->control()); 365 phi_map->set_control(region); 366 Node* io_phi = PhiNode::make(region, phi_map->i_o(), Type::ABIO); 367 record_for_igvn(io_phi); 368 _gvn.set_type(io_phi, Type::ABIO); 369 phi_map->set_i_o(io_phi); 370 for (MergeMemStream mms(phi_mem); mms.next_non_empty(); ) { 371 Node* m = mms.memory(); 372 Node* m_phi = PhiNode::make(region, m, Type::MEMORY, mms.adr_type(C)); 373 record_for_igvn(m_phi); 374 _gvn.set_type(m_phi, Type::MEMORY); 375 mms.set_memory(m_phi); 376 } 377 } 378 379 // Either or both of phi_map and ex_map might already be converted into phis. 380 Node* ex_control = ex_map->control(); 381 // if there is special marking on ex_map also, we add multiple edges from src 382 bool add_multiple = (ex_control->in(0) == hidden_merge_mark); 383 // how wide was the destination phi_map, originally? 384 uint orig_width = region->req(); 385 386 if (add_multiple) { 387 add_n_reqs(region, ex_control); 388 add_n_reqs(phi_map->i_o(), ex_map->i_o()); 389 } else { 390 // ex_map has no merges, so we just add single edges everywhere 391 add_one_req(region, ex_control); 392 add_one_req(phi_map->i_o(), ex_map->i_o()); 393 } 394 for (MergeMemStream mms(phi_mem, ex_mem); mms.next_non_empty2(); ) { 395 if (mms.is_empty()) { 396 // get a copy of the base memory, and patch some inputs into it 397 const TypePtr* adr_type = mms.adr_type(C); 398 Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type); 399 assert(phi->as_Phi()->region() == mms.base_memory()->in(0), ""); 400 mms.set_memory(phi); 401 // Prepare to append interesting stuff onto the newly sliced phi: 402 while (phi->req() > orig_width) phi->del_req(phi->req()-1); 403 } 404 // Append stuff from ex_map: 405 if (add_multiple) { 406 add_n_reqs(mms.memory(), mms.memory2()); 407 } else { 408 add_one_req(mms.memory(), mms.memory2()); 409 } 410 } 411 uint limit = ex_map->req(); 412 for (uint i = TypeFunc::Parms; i < limit; i++) { 413 // Skip everything in the JVMS after tos. (The ex_oop follows.) 414 if (i == tos) i = ex_jvms->monoff(); 415 Node* src = ex_map->in(i); 416 Node* dst = phi_map->in(i); 417 if (src != dst) { 418 PhiNode* phi; 419 if (dst->in(0) != region) { 420 dst = phi = PhiNode::make(region, dst, _gvn.type(dst)); 421 record_for_igvn(phi); 422 _gvn.set_type(phi, phi->type()); 423 phi_map->set_req(i, dst); 424 // Prepare to append interesting stuff onto the new phi: 425 while (dst->req() > orig_width) dst->del_req(dst->req()-1); 426 } else { 427 assert(dst->is_Phi(), "nobody else uses a hidden region"); 428 phi = dst->as_Phi(); 429 } 430 if (add_multiple && src->in(0) == ex_control) { 431 // Both are phis. 432 add_n_reqs(dst, src); 433 } else { 434 while (dst->req() < region->req()) add_one_req(dst, src); 435 } 436 const Type* srctype = _gvn.type(src); 437 if (phi->type() != srctype) { 438 const Type* dsttype = phi->type()->meet_speculative(srctype); 439 if (phi->type() != dsttype) { 440 phi->set_type(dsttype); 441 _gvn.set_type(phi, dsttype); 442 } 443 } 444 } 445 } 446 phi_map->merge_replaced_nodes_with(ex_map); 447 } 448 449 //--------------------------use_exception_state-------------------------------- 450 Node* GraphKit::use_exception_state(SafePointNode* phi_map) { 451 if (failing_internal()) { stop(); return top(); } 452 Node* region = phi_map->control(); 453 Node* hidden_merge_mark = root(); 454 assert(phi_map->jvms()->map() == phi_map, "sanity: 1-1 relation"); 455 Node* ex_oop = clear_saved_ex_oop(phi_map); 456 if (region->in(0) == hidden_merge_mark) { 457 // Special marking for internal ex-states. Process the phis now. 458 region->set_req(0, region); // now it's an ordinary region 459 set_jvms(phi_map->jvms()); // ...so now we can use it as a map 460 // Note: Setting the jvms also sets the bci and sp. 461 set_control(_gvn.transform(region)); 462 uint tos = jvms()->stkoff() + sp(); 463 for (uint i = 1; i < tos; i++) { 464 Node* x = phi_map->in(i); 465 if (x->in(0) == region) { 466 assert(x->is_Phi(), "expected a special phi"); 467 phi_map->set_req(i, _gvn.transform(x)); 468 } 469 } 470 for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) { 471 Node* x = mms.memory(); 472 if (x->in(0) == region) { 473 assert(x->is_Phi(), "nobody else uses a hidden region"); 474 mms.set_memory(_gvn.transform(x)); 475 } 476 } 477 if (ex_oop->in(0) == region) { 478 assert(ex_oop->is_Phi(), "expected a special phi"); 479 ex_oop = _gvn.transform(ex_oop); 480 } 481 } else { 482 set_jvms(phi_map->jvms()); 483 } 484 485 assert(!is_hidden_merge(phi_map->control()), "hidden ex. states cleared"); 486 assert(!is_hidden_merge(phi_map->i_o()), "hidden ex. states cleared"); 487 return ex_oop; 488 } 489 490 //---------------------------------java_bc------------------------------------- 491 Bytecodes::Code GraphKit::java_bc() const { 492 ciMethod* method = this->method(); 493 int bci = this->bci(); 494 if (method != nullptr && bci != InvocationEntryBci) 495 return method->java_code_at_bci(bci); 496 else 497 return Bytecodes::_illegal; 498 } 499 500 void GraphKit::uncommon_trap_if_should_post_on_exceptions(Deoptimization::DeoptReason reason, 501 bool must_throw) { 502 // if the exception capability is set, then we will generate code 503 // to check the JavaThread.should_post_on_exceptions flag to see 504 // if we actually need to report exception events (for this 505 // thread). If we don't need to report exception events, we will 506 // take the normal fast path provided by add_exception_events. If 507 // exception event reporting is enabled for this thread, we will 508 // take the uncommon_trap in the BuildCutout below. 509 510 // first must access the should_post_on_exceptions_flag in this thread's JavaThread 511 Node* jthread = _gvn.transform(new ThreadLocalNode()); 512 Node* adr = basic_plus_adr(top(), jthread, in_bytes(JavaThread::should_post_on_exceptions_flag_offset())); 513 Node* should_post_flag = make_load(control(), adr, TypeInt::INT, T_INT, Compile::AliasIdxRaw, MemNode::unordered); 514 515 // Test the should_post_on_exceptions_flag vs. 0 516 Node* chk = _gvn.transform( new CmpINode(should_post_flag, intcon(0)) ); 517 Node* tst = _gvn.transform( new BoolNode(chk, BoolTest::eq) ); 518 519 // Branch to slow_path if should_post_on_exceptions_flag was true 520 { BuildCutout unless(this, tst, PROB_MAX); 521 // Do not try anything fancy if we're notifying the VM on every throw. 522 // Cf. case Bytecodes::_athrow in parse2.cpp. 523 uncommon_trap(reason, Deoptimization::Action_none, 524 (ciKlass*)nullptr, (char*)nullptr, must_throw); 525 } 526 527 } 528 529 //------------------------------builtin_throw---------------------------------- 530 void GraphKit::builtin_throw(Deoptimization::DeoptReason reason) { 531 bool must_throw = true; 532 533 // If this particular condition has not yet happened at this 534 // bytecode, then use the uncommon trap mechanism, and allow for 535 // a future recompilation if several traps occur here. 536 // If the throw is hot, try to use a more complicated inline mechanism 537 // which keeps execution inside the compiled code. 538 bool treat_throw_as_hot = false; 539 ciMethodData* md = method()->method_data(); 540 541 if (ProfileTraps) { 542 if (too_many_traps(reason)) { 543 treat_throw_as_hot = true; 544 } 545 // (If there is no MDO at all, assume it is early in 546 // execution, and that any deopts are part of the 547 // startup transient, and don't need to be remembered.) 548 549 // Also, if there is a local exception handler, treat all throws 550 // as hot if there has been at least one in this method. 551 if (C->trap_count(reason) != 0 552 && method()->method_data()->trap_count(reason) != 0 553 && has_exception_handler()) { 554 treat_throw_as_hot = true; 555 } 556 } 557 558 // If this throw happens frequently, an uncommon trap might cause 559 // a performance pothole. If there is a local exception handler, 560 // and if this particular bytecode appears to be deoptimizing often, 561 // let us handle the throw inline, with a preconstructed instance. 562 // Note: If the deopt count has blown up, the uncommon trap 563 // runtime is going to flush this nmethod, not matter what. 564 if (treat_throw_as_hot && method()->can_omit_stack_trace()) { 565 // If the throw is local, we use a pre-existing instance and 566 // punt on the backtrace. This would lead to a missing backtrace 567 // (a repeat of 4292742) if the backtrace object is ever asked 568 // for its backtrace. 569 // Fixing this remaining case of 4292742 requires some flavor of 570 // escape analysis. Leave that for the future. 571 ciInstance* ex_obj = nullptr; 572 switch (reason) { 573 case Deoptimization::Reason_null_check: 574 ex_obj = env()->NullPointerException_instance(); 575 break; 576 case Deoptimization::Reason_div0_check: 577 ex_obj = env()->ArithmeticException_instance(); 578 break; 579 case Deoptimization::Reason_range_check: 580 ex_obj = env()->ArrayIndexOutOfBoundsException_instance(); 581 break; 582 case Deoptimization::Reason_class_check: 583 ex_obj = env()->ClassCastException_instance(); 584 break; 585 case Deoptimization::Reason_array_check: 586 ex_obj = env()->ArrayStoreException_instance(); 587 break; 588 default: 589 break; 590 } 591 if (failing()) { stop(); return; } // exception allocation might fail 592 if (ex_obj != nullptr) { 593 if (env()->jvmti_can_post_on_exceptions()) { 594 // check if we must post exception events, take uncommon trap if so 595 uncommon_trap_if_should_post_on_exceptions(reason, must_throw); 596 // here if should_post_on_exceptions is false 597 // continue on with the normal codegen 598 } 599 600 // Cheat with a preallocated exception object. 601 if (C->log() != nullptr) 602 C->log()->elem("hot_throw preallocated='1' reason='%s'", 603 Deoptimization::trap_reason_name(reason)); 604 const TypeInstPtr* ex_con = TypeInstPtr::make(ex_obj); 605 Node* ex_node = _gvn.transform(ConNode::make(ex_con)); 606 607 // Clear the detail message of the preallocated exception object. 608 // Weblogic sometimes mutates the detail message of exceptions 609 // using reflection. 610 int offset = java_lang_Throwable::get_detailMessage_offset(); 611 const TypePtr* adr_typ = ex_con->add_offset(offset); 612 613 Node *adr = basic_plus_adr(ex_node, ex_node, offset); 614 const TypeOopPtr* val_type = TypeOopPtr::make_from_klass(env()->String_klass()); 615 Node *store = access_store_at(ex_node, adr, adr_typ, null(), val_type, T_OBJECT, IN_HEAP); 616 617 if (!method()->has_exception_handlers()) { 618 // We don't need to preserve the stack if there's no handler as the entire frame is going to be popped anyway. 619 // This prevents issues with exception handling and late inlining. 620 set_sp(0); 621 clean_stack(0); 622 } 623 624 add_exception_state(make_exception_state(ex_node)); 625 return; 626 } 627 } 628 629 // %%% Maybe add entry to OptoRuntime which directly throws the exc.? 630 // It won't be much cheaper than bailing to the interp., since we'll 631 // have to pass up all the debug-info, and the runtime will have to 632 // create the stack trace. 633 634 // Usual case: Bail to interpreter. 635 // Reserve the right to recompile if we haven't seen anything yet. 636 637 ciMethod* m = Deoptimization::reason_is_speculate(reason) ? C->method() : nullptr; 638 Deoptimization::DeoptAction action = Deoptimization::Action_maybe_recompile; 639 if (treat_throw_as_hot 640 && (method()->method_data()->trap_recompiled_at(bci(), m) 641 || C->too_many_traps(reason))) { 642 // We cannot afford to take more traps here. Suffer in the interpreter. 643 if (C->log() != nullptr) 644 C->log()->elem("hot_throw preallocated='0' reason='%s' mcount='%d'", 645 Deoptimization::trap_reason_name(reason), 646 C->trap_count(reason)); 647 action = Deoptimization::Action_none; 648 } 649 650 // "must_throw" prunes the JVM state to include only the stack, if there 651 // are no local exception handlers. This should cut down on register 652 // allocation time and code size, by drastically reducing the number 653 // of in-edges on the call to the uncommon trap. 654 655 uncommon_trap(reason, action, (ciKlass*)nullptr, (char*)nullptr, must_throw); 656 } 657 658 659 //----------------------------PreserveJVMState--------------------------------- 660 PreserveJVMState::PreserveJVMState(GraphKit* kit, bool clone_map) { 661 debug_only(kit->verify_map()); 662 _kit = kit; 663 _map = kit->map(); // preserve the map 664 _sp = kit->sp(); 665 kit->set_map(clone_map ? kit->clone_map() : nullptr); 666 #ifdef ASSERT 667 _bci = kit->bci(); 668 Parse* parser = kit->is_Parse(); 669 int block = (parser == nullptr || parser->block() == nullptr) ? -1 : parser->block()->rpo(); 670 _block = block; 671 #endif 672 } 673 PreserveJVMState::~PreserveJVMState() { 674 GraphKit* kit = _kit; 675 #ifdef ASSERT 676 assert(kit->bci() == _bci, "bci must not shift"); 677 Parse* parser = kit->is_Parse(); 678 int block = (parser == nullptr || parser->block() == nullptr) ? -1 : parser->block()->rpo(); 679 assert(block == _block, "block must not shift"); 680 #endif 681 kit->set_map(_map); 682 kit->set_sp(_sp); 683 } 684 685 686 //-----------------------------BuildCutout------------------------------------- 687 BuildCutout::BuildCutout(GraphKit* kit, Node* p, float prob, float cnt) 688 : PreserveJVMState(kit) 689 { 690 assert(p->is_Con() || p->is_Bool(), "test must be a bool"); 691 SafePointNode* outer_map = _map; // preserved map is caller's 692 SafePointNode* inner_map = kit->map(); 693 IfNode* iff = kit->create_and_map_if(outer_map->control(), p, prob, cnt); 694 outer_map->set_control(kit->gvn().transform( new IfTrueNode(iff) )); 695 inner_map->set_control(kit->gvn().transform( new IfFalseNode(iff) )); 696 } 697 BuildCutout::~BuildCutout() { 698 GraphKit* kit = _kit; 699 assert(kit->stopped(), "cutout code must stop, throw, return, etc."); 700 } 701 702 //---------------------------PreserveReexecuteState---------------------------- 703 PreserveReexecuteState::PreserveReexecuteState(GraphKit* kit) { 704 assert(!kit->stopped(), "must call stopped() before"); 705 _kit = kit; 706 _sp = kit->sp(); 707 _reexecute = kit->jvms()->_reexecute; 708 } 709 PreserveReexecuteState::~PreserveReexecuteState() { 710 if (_kit->stopped()) return; 711 _kit->jvms()->_reexecute = _reexecute; 712 _kit->set_sp(_sp); 713 } 714 715 //------------------------------clone_map-------------------------------------- 716 // Implementation of PreserveJVMState 717 // 718 // Only clone_map(...) here. If this function is only used in the 719 // PreserveJVMState class we may want to get rid of this extra 720 // function eventually and do it all there. 721 722 SafePointNode* GraphKit::clone_map() { 723 if (map() == nullptr) return nullptr; 724 725 // Clone the memory edge first 726 Node* mem = MergeMemNode::make(map()->memory()); 727 gvn().set_type_bottom(mem); 728 729 SafePointNode *clonemap = (SafePointNode*)map()->clone(); 730 JVMState* jvms = this->jvms(); 731 JVMState* clonejvms = jvms->clone_shallow(C); 732 clonemap->set_memory(mem); 733 clonemap->set_jvms(clonejvms); 734 clonejvms->set_map(clonemap); 735 record_for_igvn(clonemap); 736 gvn().set_type_bottom(clonemap); 737 return clonemap; 738 } 739 740 //-----------------------------destruct_map_clone------------------------------ 741 // 742 // Order of destruct is important to increase the likelyhood that memory can be re-used. We need 743 // to destruct/free/delete in the exact opposite order as clone_map(). 744 void GraphKit::destruct_map_clone(SafePointNode* sfp) { 745 if (sfp == nullptr) return; 746 747 Node* mem = sfp->memory(); 748 JVMState* jvms = sfp->jvms(); 749 750 if (jvms != nullptr) { 751 delete jvms; 752 } 753 754 remove_for_igvn(sfp); 755 gvn().clear_type(sfp); 756 sfp->destruct(&_gvn); 757 758 if (mem != nullptr) { 759 gvn().clear_type(mem); 760 mem->destruct(&_gvn); 761 } 762 } 763 764 //-----------------------------set_map_clone----------------------------------- 765 void GraphKit::set_map_clone(SafePointNode* m) { 766 _map = m; 767 _map = clone_map(); 768 _map->set_next_exception(nullptr); 769 debug_only(verify_map()); 770 } 771 772 773 //----------------------------kill_dead_locals--------------------------------- 774 // Detect any locals which are known to be dead, and force them to top. 775 void GraphKit::kill_dead_locals() { 776 // Consult the liveness information for the locals. If any 777 // of them are unused, then they can be replaced by top(). This 778 // should help register allocation time and cut down on the size 779 // of the deoptimization information. 780 781 // This call is made from many of the bytecode handling 782 // subroutines called from the Big Switch in do_one_bytecode. 783 // Every bytecode which might include a slow path is responsible 784 // for killing its dead locals. The more consistent we 785 // are about killing deads, the fewer useless phis will be 786 // constructed for them at various merge points. 787 788 // bci can be -1 (InvocationEntryBci). We return the entry 789 // liveness for the method. 790 791 if (method() == nullptr || method()->code_size() == 0) { 792 // We are building a graph for a call to a native method. 793 // All locals are live. 794 return; 795 } 796 797 ResourceMark rm; 798 799 // Consult the liveness information for the locals. If any 800 // of them are unused, then they can be replaced by top(). This 801 // should help register allocation time and cut down on the size 802 // of the deoptimization information. 803 MethodLivenessResult live_locals = method()->liveness_at_bci(bci()); 804 805 int len = (int)live_locals.size(); 806 assert(len <= jvms()->loc_size(), "too many live locals"); 807 for (int local = 0; local < len; local++) { 808 if (!live_locals.at(local)) { 809 set_local(local, top()); 810 } 811 } 812 } 813 814 #ifdef ASSERT 815 //-------------------------dead_locals_are_killed------------------------------ 816 // Return true if all dead locals are set to top in the map. 817 // Used to assert "clean" debug info at various points. 818 bool GraphKit::dead_locals_are_killed() { 819 if (method() == nullptr || method()->code_size() == 0) { 820 // No locals need to be dead, so all is as it should be. 821 return true; 822 } 823 824 // Make sure somebody called kill_dead_locals upstream. 825 ResourceMark rm; 826 for (JVMState* jvms = this->jvms(); jvms != nullptr; jvms = jvms->caller()) { 827 if (jvms->loc_size() == 0) continue; // no locals to consult 828 SafePointNode* map = jvms->map(); 829 ciMethod* method = jvms->method(); 830 int bci = jvms->bci(); 831 if (jvms == this->jvms()) { 832 bci = this->bci(); // it might not yet be synched 833 } 834 MethodLivenessResult live_locals = method->liveness_at_bci(bci); 835 int len = (int)live_locals.size(); 836 if (!live_locals.is_valid() || len == 0) 837 // This method is trivial, or is poisoned by a breakpoint. 838 return true; 839 assert(len == jvms->loc_size(), "live map consistent with locals map"); 840 for (int local = 0; local < len; local++) { 841 if (!live_locals.at(local) && map->local(jvms, local) != top()) { 842 if (PrintMiscellaneous && (Verbose || WizardMode)) { 843 tty->print_cr("Zombie local %d: ", local); 844 jvms->dump(); 845 } 846 return false; 847 } 848 } 849 } 850 return true; 851 } 852 853 #endif //ASSERT 854 855 // Helper function for enforcing certain bytecodes to reexecute if deoptimization happens. 856 static bool should_reexecute_implied_by_bytecode(JVMState *jvms, bool is_anewarray) { 857 ciMethod* cur_method = jvms->method(); 858 int cur_bci = jvms->bci(); 859 if (cur_method != nullptr && cur_bci != InvocationEntryBci) { 860 Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci); 861 return Interpreter::bytecode_should_reexecute(code) || 862 (is_anewarray && code == Bytecodes::_multianewarray); 863 // Reexecute _multianewarray bytecode which was replaced with 864 // sequence of [a]newarray. See Parse::do_multianewarray(). 865 // 866 // Note: interpreter should not have it set since this optimization 867 // is limited by dimensions and guarded by flag so in some cases 868 // multianewarray() runtime calls will be generated and 869 // the bytecode should not be reexecutes (stack will not be reset). 870 } else { 871 return false; 872 } 873 } 874 875 // Helper function for adding JVMState and debug information to node 876 void GraphKit::add_safepoint_edges(SafePointNode* call, bool must_throw) { 877 // Add the safepoint edges to the call (or other safepoint). 878 879 // Make sure dead locals are set to top. This 880 // should help register allocation time and cut down on the size 881 // of the deoptimization information. 882 assert(dead_locals_are_killed(), "garbage in debug info before safepoint"); 883 884 // Walk the inline list to fill in the correct set of JVMState's 885 // Also fill in the associated edges for each JVMState. 886 887 // If the bytecode needs to be reexecuted we need to put 888 // the arguments back on the stack. 889 const bool should_reexecute = jvms()->should_reexecute(); 890 JVMState* youngest_jvms = should_reexecute ? sync_jvms_for_reexecute() : sync_jvms(); 891 892 // NOTE: set_bci (called from sync_jvms) might reset the reexecute bit to 893 // undefined if the bci is different. This is normal for Parse but it 894 // should not happen for LibraryCallKit because only one bci is processed. 895 assert(!is_LibraryCallKit() || (jvms()->should_reexecute() == should_reexecute), 896 "in LibraryCallKit the reexecute bit should not change"); 897 898 // If we are guaranteed to throw, we can prune everything but the 899 // input to the current bytecode. 900 bool can_prune_locals = false; 901 uint stack_slots_not_pruned = 0; 902 int inputs = 0, depth = 0; 903 if (must_throw) { 904 assert(method() == youngest_jvms->method(), "sanity"); 905 if (compute_stack_effects(inputs, depth)) { 906 can_prune_locals = true; 907 stack_slots_not_pruned = inputs; 908 } 909 } 910 911 if (env()->should_retain_local_variables()) { 912 // At any safepoint, this method can get breakpointed, which would 913 // then require an immediate deoptimization. 914 can_prune_locals = false; // do not prune locals 915 stack_slots_not_pruned = 0; 916 } 917 918 // do not scribble on the input jvms 919 JVMState* out_jvms = youngest_jvms->clone_deep(C); 920 call->set_jvms(out_jvms); // Start jvms list for call node 921 922 // For a known set of bytecodes, the interpreter should reexecute them if 923 // deoptimization happens. We set the reexecute state for them here 924 if (out_jvms->is_reexecute_undefined() && //don't change if already specified 925 should_reexecute_implied_by_bytecode(out_jvms, call->is_AllocateArray())) { 926 #ifdef ASSERT 927 int inputs = 0, not_used; // initialized by GraphKit::compute_stack_effects() 928 assert(method() == youngest_jvms->method(), "sanity"); 929 assert(compute_stack_effects(inputs, not_used), "unknown bytecode: %s", Bytecodes::name(java_bc())); 930 assert(out_jvms->sp() >= (uint)inputs, "not enough operands for reexecution"); 931 #endif // ASSERT 932 out_jvms->set_should_reexecute(true); //NOTE: youngest_jvms not changed 933 } 934 935 // Presize the call: 936 DEBUG_ONLY(uint non_debug_edges = call->req()); 937 call->add_req_batch(top(), youngest_jvms->debug_depth()); 938 assert(call->req() == non_debug_edges + youngest_jvms->debug_depth(), ""); 939 940 // Set up edges so that the call looks like this: 941 // Call [state:] ctl io mem fptr retadr 942 // [parms:] parm0 ... parmN 943 // [root:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN 944 // [...mid:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN [...] 945 // [young:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN 946 // Note that caller debug info precedes callee debug info. 947 948 // Fill pointer walks backwards from "young:" to "root:" in the diagram above: 949 uint debug_ptr = call->req(); 950 951 // Loop over the map input edges associated with jvms, add them 952 // to the call node, & reset all offsets to match call node array. 953 for (JVMState* in_jvms = youngest_jvms; in_jvms != nullptr; ) { 954 uint debug_end = debug_ptr; 955 uint debug_start = debug_ptr - in_jvms->debug_size(); 956 debug_ptr = debug_start; // back up the ptr 957 958 uint p = debug_start; // walks forward in [debug_start, debug_end) 959 uint j, k, l; 960 SafePointNode* in_map = in_jvms->map(); 961 out_jvms->set_map(call); 962 963 if (can_prune_locals) { 964 assert(in_jvms->method() == out_jvms->method(), "sanity"); 965 // If the current throw can reach an exception handler in this JVMS, 966 // then we must keep everything live that can reach that handler. 967 // As a quick and dirty approximation, we look for any handlers at all. 968 if (in_jvms->method()->has_exception_handlers()) { 969 can_prune_locals = false; 970 } 971 } 972 973 // Add the Locals 974 k = in_jvms->locoff(); 975 l = in_jvms->loc_size(); 976 out_jvms->set_locoff(p); 977 if (!can_prune_locals) { 978 for (j = 0; j < l; j++) 979 call->set_req(p++, in_map->in(k+j)); 980 } else { 981 p += l; // already set to top above by add_req_batch 982 } 983 984 // Add the Expression Stack 985 k = in_jvms->stkoff(); 986 l = in_jvms->sp(); 987 out_jvms->set_stkoff(p); 988 if (!can_prune_locals) { 989 for (j = 0; j < l; j++) 990 call->set_req(p++, in_map->in(k+j)); 991 } else if (can_prune_locals && stack_slots_not_pruned != 0) { 992 // Divide stack into {S0,...,S1}, where S0 is set to top. 993 uint s1 = stack_slots_not_pruned; 994 stack_slots_not_pruned = 0; // for next iteration 995 if (s1 > l) s1 = l; 996 uint s0 = l - s1; 997 p += s0; // skip the tops preinstalled by add_req_batch 998 for (j = s0; j < l; j++) 999 call->set_req(p++, in_map->in(k+j)); 1000 } else { 1001 p += l; // already set to top above by add_req_batch 1002 } 1003 1004 // Add the Monitors 1005 k = in_jvms->monoff(); 1006 l = in_jvms->mon_size(); 1007 out_jvms->set_monoff(p); 1008 for (j = 0; j < l; j++) 1009 call->set_req(p++, in_map->in(k+j)); 1010 1011 // Copy any scalar object fields. 1012 k = in_jvms->scloff(); 1013 l = in_jvms->scl_size(); 1014 out_jvms->set_scloff(p); 1015 for (j = 0; j < l; j++) 1016 call->set_req(p++, in_map->in(k+j)); 1017 1018 // Finish the new jvms. 1019 out_jvms->set_endoff(p); 1020 1021 assert(out_jvms->endoff() == debug_end, "fill ptr must match"); 1022 assert(out_jvms->depth() == in_jvms->depth(), "depth must match"); 1023 assert(out_jvms->loc_size() == in_jvms->loc_size(), "size must match"); 1024 assert(out_jvms->mon_size() == in_jvms->mon_size(), "size must match"); 1025 assert(out_jvms->scl_size() == in_jvms->scl_size(), "size must match"); 1026 assert(out_jvms->debug_size() == in_jvms->debug_size(), "size must match"); 1027 1028 // Update the two tail pointers in parallel. 1029 out_jvms = out_jvms->caller(); 1030 in_jvms = in_jvms->caller(); 1031 } 1032 1033 assert(debug_ptr == non_debug_edges, "debug info must fit exactly"); 1034 1035 // Test the correctness of JVMState::debug_xxx accessors: 1036 assert(call->jvms()->debug_start() == non_debug_edges, ""); 1037 assert(call->jvms()->debug_end() == call->req(), ""); 1038 assert(call->jvms()->debug_depth() == call->req() - non_debug_edges, ""); 1039 } 1040 1041 bool GraphKit::compute_stack_effects(int& inputs, int& depth) { 1042 Bytecodes::Code code = java_bc(); 1043 if (code == Bytecodes::_wide) { 1044 code = method()->java_code_at_bci(bci() + 1); 1045 } 1046 1047 if (code != Bytecodes::_illegal) { 1048 depth = Bytecodes::depth(code); // checkcast=0, athrow=-1 1049 } 1050 1051 auto rsize = [&]() { 1052 assert(code != Bytecodes::_illegal, "code is illegal!"); 1053 BasicType rtype = Bytecodes::result_type(code); // checkcast=P, athrow=V 1054 return (rtype < T_CONFLICT) ? type2size[rtype] : 0; 1055 }; 1056 1057 switch (code) { 1058 case Bytecodes::_illegal: 1059 return false; 1060 1061 case Bytecodes::_ldc: 1062 case Bytecodes::_ldc_w: 1063 case Bytecodes::_ldc2_w: 1064 inputs = 0; 1065 break; 1066 1067 case Bytecodes::_dup: inputs = 1; break; 1068 case Bytecodes::_dup_x1: inputs = 2; break; 1069 case Bytecodes::_dup_x2: inputs = 3; break; 1070 case Bytecodes::_dup2: inputs = 2; break; 1071 case Bytecodes::_dup2_x1: inputs = 3; break; 1072 case Bytecodes::_dup2_x2: inputs = 4; break; 1073 case Bytecodes::_swap: inputs = 2; break; 1074 case Bytecodes::_arraylength: inputs = 1; break; 1075 1076 case Bytecodes::_getstatic: 1077 case Bytecodes::_putstatic: 1078 case Bytecodes::_getfield: 1079 case Bytecodes::_putfield: 1080 { 1081 bool ignored_will_link; 1082 ciField* field = method()->get_field_at_bci(bci(), ignored_will_link); 1083 int size = field->type()->size(); 1084 bool is_get = (depth >= 0), is_static = (depth & 1); 1085 inputs = (is_static ? 0 : 1); 1086 if (is_get) { 1087 depth = size - inputs; 1088 } else { 1089 inputs += size; // putxxx pops the value from the stack 1090 depth = - inputs; 1091 } 1092 } 1093 break; 1094 1095 case Bytecodes::_invokevirtual: 1096 case Bytecodes::_invokespecial: 1097 case Bytecodes::_invokestatic: 1098 case Bytecodes::_invokedynamic: 1099 case Bytecodes::_invokeinterface: 1100 { 1101 bool ignored_will_link; 1102 ciSignature* declared_signature = nullptr; 1103 ciMethod* ignored_callee = method()->get_method_at_bci(bci(), ignored_will_link, &declared_signature); 1104 assert(declared_signature != nullptr, "cannot be null"); 1105 inputs = declared_signature->arg_size_for_bc(code); 1106 int size = declared_signature->return_type()->size(); 1107 depth = size - inputs; 1108 } 1109 break; 1110 1111 case Bytecodes::_multianewarray: 1112 { 1113 ciBytecodeStream iter(method()); 1114 iter.reset_to_bci(bci()); 1115 iter.next(); 1116 inputs = iter.get_dimensions(); 1117 assert(rsize() == 1, ""); 1118 depth = 1 - inputs; 1119 } 1120 break; 1121 1122 case Bytecodes::_ireturn: 1123 case Bytecodes::_lreturn: 1124 case Bytecodes::_freturn: 1125 case Bytecodes::_dreturn: 1126 case Bytecodes::_areturn: 1127 assert(rsize() == -depth, ""); 1128 inputs = -depth; 1129 break; 1130 1131 case Bytecodes::_jsr: 1132 case Bytecodes::_jsr_w: 1133 inputs = 0; 1134 depth = 1; // S.B. depth=1, not zero 1135 break; 1136 1137 default: 1138 // bytecode produces a typed result 1139 inputs = rsize() - depth; 1140 assert(inputs >= 0, ""); 1141 break; 1142 } 1143 1144 #ifdef ASSERT 1145 // spot check 1146 int outputs = depth + inputs; 1147 assert(outputs >= 0, "sanity"); 1148 switch (code) { 1149 case Bytecodes::_checkcast: assert(inputs == 1 && outputs == 1, ""); break; 1150 case Bytecodes::_athrow: assert(inputs == 1 && outputs == 0, ""); break; 1151 case Bytecodes::_aload_0: assert(inputs == 0 && outputs == 1, ""); break; 1152 case Bytecodes::_return: assert(inputs == 0 && outputs == 0, ""); break; 1153 case Bytecodes::_drem: assert(inputs == 4 && outputs == 2, ""); break; 1154 default: break; 1155 } 1156 #endif //ASSERT 1157 1158 return true; 1159 } 1160 1161 1162 1163 //------------------------------basic_plus_adr--------------------------------- 1164 Node* GraphKit::basic_plus_adr(Node* base, Node* ptr, Node* offset) { 1165 // short-circuit a common case 1166 if (offset == intcon(0)) return ptr; 1167 return _gvn.transform( new AddPNode(base, ptr, offset) ); 1168 } 1169 1170 Node* GraphKit::ConvI2L(Node* offset) { 1171 // short-circuit a common case 1172 jint offset_con = find_int_con(offset, Type::OffsetBot); 1173 if (offset_con != Type::OffsetBot) { 1174 return longcon((jlong) offset_con); 1175 } 1176 return _gvn.transform( new ConvI2LNode(offset)); 1177 } 1178 1179 Node* GraphKit::ConvI2UL(Node* offset) { 1180 juint offset_con = (juint) find_int_con(offset, Type::OffsetBot); 1181 if (offset_con != (juint) Type::OffsetBot) { 1182 return longcon((julong) offset_con); 1183 } 1184 Node* conv = _gvn.transform( new ConvI2LNode(offset)); 1185 Node* mask = _gvn.transform(ConLNode::make((julong) max_juint)); 1186 return _gvn.transform( new AndLNode(conv, mask) ); 1187 } 1188 1189 Node* GraphKit::ConvL2I(Node* offset) { 1190 // short-circuit a common case 1191 jlong offset_con = find_long_con(offset, (jlong)Type::OffsetBot); 1192 if (offset_con != (jlong)Type::OffsetBot) { 1193 return intcon((int) offset_con); 1194 } 1195 return _gvn.transform( new ConvL2INode(offset)); 1196 } 1197 1198 //-------------------------load_object_klass----------------------------------- 1199 Node* GraphKit::load_object_klass(Node* obj) { 1200 // Special-case a fresh allocation to avoid building nodes: 1201 Node* akls = AllocateNode::Ideal_klass(obj, &_gvn); 1202 if (akls != nullptr) return akls; 1203 Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes()); 1204 return _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), k_adr, TypeInstPtr::KLASS)); 1205 } 1206 1207 //-------------------------load_array_length----------------------------------- 1208 Node* GraphKit::load_array_length(Node* array) { 1209 // Special-case a fresh allocation to avoid building nodes: 1210 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(array); 1211 Node *alen; 1212 if (alloc == nullptr) { 1213 Node *r_adr = basic_plus_adr(array, arrayOopDesc::length_offset_in_bytes()); 1214 alen = _gvn.transform( new LoadRangeNode(nullptr, immutable_memory(), r_adr, TypeInt::POS)); 1215 } else { 1216 alen = array_ideal_length(alloc, _gvn.type(array)->is_oopptr(), false); 1217 } 1218 return alen; 1219 } 1220 1221 Node* GraphKit::array_ideal_length(AllocateArrayNode* alloc, 1222 const TypeOopPtr* oop_type, 1223 bool replace_length_in_map) { 1224 Node* length = alloc->Ideal_length(); 1225 if (replace_length_in_map == false || map()->find_edge(length) >= 0) { 1226 Node* ccast = alloc->make_ideal_length(oop_type, &_gvn); 1227 if (ccast != length) { 1228 // do not transform ccast here, it might convert to top node for 1229 // negative array length and break assumptions in parsing stage. 1230 _gvn.set_type_bottom(ccast); 1231 record_for_igvn(ccast); 1232 if (replace_length_in_map) { 1233 replace_in_map(length, ccast); 1234 } 1235 return ccast; 1236 } 1237 } 1238 return length; 1239 } 1240 1241 //------------------------------do_null_check---------------------------------- 1242 // Helper function to do a null pointer check. Returned value is 1243 // the incoming address with null casted away. You are allowed to use the 1244 // not-null value only if you are control dependent on the test. 1245 #ifndef PRODUCT 1246 extern uint explicit_null_checks_inserted, 1247 explicit_null_checks_elided; 1248 #endif 1249 Node* GraphKit::null_check_common(Node* value, BasicType type, 1250 // optional arguments for variations: 1251 bool assert_null, 1252 Node* *null_control, 1253 bool speculative) { 1254 assert(!assert_null || null_control == nullptr, "not both at once"); 1255 if (stopped()) return top(); 1256 NOT_PRODUCT(explicit_null_checks_inserted++); 1257 1258 // Construct null check 1259 Node *chk = nullptr; 1260 switch(type) { 1261 case T_LONG : chk = new CmpLNode(value, _gvn.zerocon(T_LONG)); break; 1262 case T_INT : chk = new CmpINode(value, _gvn.intcon(0)); break; 1263 case T_ARRAY : // fall through 1264 type = T_OBJECT; // simplify further tests 1265 case T_OBJECT : { 1266 const Type *t = _gvn.type( value ); 1267 1268 const TypeOopPtr* tp = t->isa_oopptr(); 1269 if (tp != nullptr && !tp->is_loaded() 1270 // Only for do_null_check, not any of its siblings: 1271 && !assert_null && null_control == nullptr) { 1272 // Usually, any field access or invocation on an unloaded oop type 1273 // will simply fail to link, since the statically linked class is 1274 // likely also to be unloaded. However, in -Xcomp mode, sometimes 1275 // the static class is loaded but the sharper oop type is not. 1276 // Rather than checking for this obscure case in lots of places, 1277 // we simply observe that a null check on an unloaded class 1278 // will always be followed by a nonsense operation, so we 1279 // can just issue the uncommon trap here. 1280 // Our access to the unloaded class will only be correct 1281 // after it has been loaded and initialized, which requires 1282 // a trip through the interpreter. 1283 ciKlass* klass = tp->unloaded_klass(); 1284 #ifndef PRODUCT 1285 if (WizardMode) { tty->print("Null check of unloaded "); klass->print(); tty->cr(); } 1286 #endif 1287 uncommon_trap(Deoptimization::Reason_unloaded, 1288 Deoptimization::Action_reinterpret, 1289 klass, "!loaded"); 1290 return top(); 1291 } 1292 1293 if (assert_null) { 1294 // See if the type is contained in NULL_PTR. 1295 // If so, then the value is already null. 1296 if (t->higher_equal(TypePtr::NULL_PTR)) { 1297 NOT_PRODUCT(explicit_null_checks_elided++); 1298 return value; // Elided null assert quickly! 1299 } 1300 } else { 1301 // See if mixing in the null pointer changes type. 1302 // If so, then the null pointer was not allowed in the original 1303 // type. In other words, "value" was not-null. 1304 if (t->meet(TypePtr::NULL_PTR) != t->remove_speculative()) { 1305 // same as: if (!TypePtr::NULL_PTR->higher_equal(t)) ... 1306 NOT_PRODUCT(explicit_null_checks_elided++); 1307 return value; // Elided null check quickly! 1308 } 1309 } 1310 chk = new CmpPNode( value, null() ); 1311 break; 1312 } 1313 1314 default: 1315 fatal("unexpected type: %s", type2name(type)); 1316 } 1317 assert(chk != nullptr, "sanity check"); 1318 chk = _gvn.transform(chk); 1319 1320 BoolTest::mask btest = assert_null ? BoolTest::eq : BoolTest::ne; 1321 BoolNode *btst = new BoolNode( chk, btest); 1322 Node *tst = _gvn.transform( btst ); 1323 1324 //----------- 1325 // if peephole optimizations occurred, a prior test existed. 1326 // If a prior test existed, maybe it dominates as we can avoid this test. 1327 if (tst != btst && type == T_OBJECT) { 1328 // At this point we want to scan up the CFG to see if we can 1329 // find an identical test (and so avoid this test altogether). 1330 Node *cfg = control(); 1331 int depth = 0; 1332 while( depth < 16 ) { // Limit search depth for speed 1333 if( cfg->Opcode() == Op_IfTrue && 1334 cfg->in(0)->in(1) == tst ) { 1335 // Found prior test. Use "cast_not_null" to construct an identical 1336 // CastPP (and hence hash to) as already exists for the prior test. 1337 // Return that casted value. 1338 if (assert_null) { 1339 replace_in_map(value, null()); 1340 return null(); // do not issue the redundant test 1341 } 1342 Node *oldcontrol = control(); 1343 set_control(cfg); 1344 Node *res = cast_not_null(value); 1345 set_control(oldcontrol); 1346 NOT_PRODUCT(explicit_null_checks_elided++); 1347 return res; 1348 } 1349 cfg = IfNode::up_one_dom(cfg, /*linear_only=*/ true); 1350 if (cfg == nullptr) break; // Quit at region nodes 1351 depth++; 1352 } 1353 } 1354 1355 //----------- 1356 // Branch to failure if null 1357 float ok_prob = PROB_MAX; // a priori estimate: nulls never happen 1358 Deoptimization::DeoptReason reason; 1359 if (assert_null) { 1360 reason = Deoptimization::reason_null_assert(speculative); 1361 } else if (type == T_OBJECT) { 1362 reason = Deoptimization::reason_null_check(speculative); 1363 } else { 1364 reason = Deoptimization::Reason_div0_check; 1365 } 1366 // %%% Since Reason_unhandled is not recorded on a per-bytecode basis, 1367 // ciMethodData::has_trap_at will return a conservative -1 if any 1368 // must-be-null assertion has failed. This could cause performance 1369 // problems for a method after its first do_null_assert failure. 1370 // Consider using 'Reason_class_check' instead? 1371 1372 // To cause an implicit null check, we set the not-null probability 1373 // to the maximum (PROB_MAX). For an explicit check the probability 1374 // is set to a smaller value. 1375 if (null_control != nullptr || too_many_traps(reason)) { 1376 // probability is less likely 1377 ok_prob = PROB_LIKELY_MAG(3); 1378 } else if (!assert_null && 1379 (ImplicitNullCheckThreshold > 0) && 1380 method() != nullptr && 1381 (method()->method_data()->trap_count(reason) 1382 >= (uint)ImplicitNullCheckThreshold)) { 1383 ok_prob = PROB_LIKELY_MAG(3); 1384 } 1385 1386 if (null_control != nullptr) { 1387 IfNode* iff = create_and_map_if(control(), tst, ok_prob, COUNT_UNKNOWN); 1388 Node* null_true = _gvn.transform( new IfFalseNode(iff)); 1389 set_control( _gvn.transform( new IfTrueNode(iff))); 1390 #ifndef PRODUCT 1391 if (null_true == top()) { 1392 explicit_null_checks_elided++; 1393 } 1394 #endif 1395 (*null_control) = null_true; 1396 } else { 1397 BuildCutout unless(this, tst, ok_prob); 1398 // Check for optimizer eliding test at parse time 1399 if (stopped()) { 1400 // Failure not possible; do not bother making uncommon trap. 1401 NOT_PRODUCT(explicit_null_checks_elided++); 1402 } else if (assert_null) { 1403 uncommon_trap(reason, 1404 Deoptimization::Action_make_not_entrant, 1405 nullptr, "assert_null"); 1406 } else { 1407 replace_in_map(value, zerocon(type)); 1408 builtin_throw(reason); 1409 } 1410 } 1411 1412 // Must throw exception, fall-thru not possible? 1413 if (stopped()) { 1414 return top(); // No result 1415 } 1416 1417 if (assert_null) { 1418 // Cast obj to null on this path. 1419 replace_in_map(value, zerocon(type)); 1420 return zerocon(type); 1421 } 1422 1423 // Cast obj to not-null on this path, if there is no null_control. 1424 // (If there is a null_control, a non-null value may come back to haunt us.) 1425 if (type == T_OBJECT) { 1426 Node* cast = cast_not_null(value, false); 1427 if (null_control == nullptr || (*null_control) == top()) 1428 replace_in_map(value, cast); 1429 value = cast; 1430 } 1431 1432 return value; 1433 } 1434 1435 1436 //------------------------------cast_not_null---------------------------------- 1437 // Cast obj to not-null on this path 1438 Node* GraphKit::cast_not_null(Node* obj, bool do_replace_in_map) { 1439 const Type *t = _gvn.type(obj); 1440 const Type *t_not_null = t->join_speculative(TypePtr::NOTNULL); 1441 // Object is already not-null? 1442 if( t == t_not_null ) return obj; 1443 1444 Node* cast = new CastPPNode(control(), obj,t_not_null); 1445 cast = _gvn.transform( cast ); 1446 1447 // Scan for instances of 'obj' in the current JVM mapping. 1448 // These instances are known to be not-null after the test. 1449 if (do_replace_in_map) 1450 replace_in_map(obj, cast); 1451 1452 return cast; // Return casted value 1453 } 1454 1455 // Sometimes in intrinsics, we implicitly know an object is not null 1456 // (there's no actual null check) so we can cast it to not null. In 1457 // the course of optimizations, the input to the cast can become null. 1458 // In that case that data path will die and we need the control path 1459 // to become dead as well to keep the graph consistent. So we have to 1460 // add a check for null for which one branch can't be taken. It uses 1461 // an Opaque4 node that will cause the check to be removed after loop 1462 // opts so the test goes away and the compiled code doesn't execute a 1463 // useless check. 1464 Node* GraphKit::must_be_not_null(Node* value, bool do_replace_in_map) { 1465 if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(value))) { 1466 return value; 1467 } 1468 Node* chk = _gvn.transform(new CmpPNode(value, null())); 1469 Node *tst = _gvn.transform(new BoolNode(chk, BoolTest::ne)); 1470 Node* opaq = _gvn.transform(new Opaque4Node(C, tst, intcon(1))); 1471 IfNode *iff = new IfNode(control(), opaq, PROB_MAX, COUNT_UNKNOWN); 1472 _gvn.set_type(iff, iff->Value(&_gvn)); 1473 if (!tst->is_Con()) { 1474 record_for_igvn(iff); 1475 } 1476 Node *if_f = _gvn.transform(new IfFalseNode(iff)); 1477 Node *frame = _gvn.transform(new ParmNode(C->start(), TypeFunc::FramePtr)); 1478 Node* halt = _gvn.transform(new HaltNode(if_f, frame, "unexpected null in intrinsic")); 1479 C->root()->add_req(halt); 1480 Node *if_t = _gvn.transform(new IfTrueNode(iff)); 1481 set_control(if_t); 1482 return cast_not_null(value, do_replace_in_map); 1483 } 1484 1485 1486 //--------------------------replace_in_map------------------------------------- 1487 void GraphKit::replace_in_map(Node* old, Node* neww) { 1488 if (old == neww) { 1489 return; 1490 } 1491 1492 map()->replace_edge(old, neww); 1493 1494 // Note: This operation potentially replaces any edge 1495 // on the map. This includes locals, stack, and monitors 1496 // of the current (innermost) JVM state. 1497 1498 // don't let inconsistent types from profiling escape this 1499 // method 1500 1501 const Type* told = _gvn.type(old); 1502 const Type* tnew = _gvn.type(neww); 1503 1504 if (!tnew->higher_equal(told)) { 1505 return; 1506 } 1507 1508 map()->record_replaced_node(old, neww); 1509 } 1510 1511 1512 //============================================================================= 1513 //--------------------------------memory--------------------------------------- 1514 Node* GraphKit::memory(uint alias_idx) { 1515 MergeMemNode* mem = merged_memory(); 1516 Node* p = mem->memory_at(alias_idx); 1517 assert(p != mem->empty_memory(), "empty"); 1518 _gvn.set_type(p, Type::MEMORY); // must be mapped 1519 return p; 1520 } 1521 1522 //-----------------------------reset_memory------------------------------------ 1523 Node* GraphKit::reset_memory() { 1524 Node* mem = map()->memory(); 1525 // do not use this node for any more parsing! 1526 debug_only( map()->set_memory((Node*)nullptr) ); 1527 return _gvn.transform( mem ); 1528 } 1529 1530 //------------------------------set_all_memory--------------------------------- 1531 void GraphKit::set_all_memory(Node* newmem) { 1532 Node* mergemem = MergeMemNode::make(newmem); 1533 gvn().set_type_bottom(mergemem); 1534 map()->set_memory(mergemem); 1535 } 1536 1537 //------------------------------set_all_memory_call---------------------------- 1538 void GraphKit::set_all_memory_call(Node* call, bool separate_io_proj) { 1539 Node* newmem = _gvn.transform( new ProjNode(call, TypeFunc::Memory, separate_io_proj) ); 1540 set_all_memory(newmem); 1541 } 1542 1543 //============================================================================= 1544 // 1545 // parser factory methods for MemNodes 1546 // 1547 // These are layered on top of the factory methods in LoadNode and StoreNode, 1548 // and integrate with the parser's memory state and _gvn engine. 1549 // 1550 1551 // factory methods in "int adr_idx" 1552 Node* GraphKit::make_load(Node* ctl, Node* adr, const Type* t, BasicType bt, 1553 int adr_idx, 1554 MemNode::MemOrd mo, 1555 LoadNode::ControlDependency control_dependency, 1556 bool require_atomic_access, 1557 bool unaligned, 1558 bool mismatched, 1559 bool unsafe, 1560 uint8_t barrier_data) { 1561 assert(adr_idx != Compile::AliasIdxTop, "use other make_load factory" ); 1562 const TypePtr* adr_type = nullptr; // debug-mode-only argument 1563 debug_only(adr_type = C->get_adr_type(adr_idx)); 1564 Node* mem = memory(adr_idx); 1565 Node* ld = LoadNode::make(_gvn, ctl, mem, adr, adr_type, t, bt, mo, control_dependency, require_atomic_access, unaligned, mismatched, unsafe, barrier_data); 1566 ld = _gvn.transform(ld); 1567 if (((bt == T_OBJECT) && C->do_escape_analysis()) || C->eliminate_boxing()) { 1568 // Improve graph before escape analysis and boxing elimination. 1569 record_for_igvn(ld); 1570 if (ld->is_DecodeN()) { 1571 // Also record the actual load (LoadN) in case ld is DecodeN. In some 1572 // rare corner cases, ld->in(1) can be something other than LoadN (e.g., 1573 // a Phi). Recording such cases is still perfectly sound, but may be 1574 // unnecessary and result in some minor IGVN overhead. 1575 record_for_igvn(ld->in(1)); 1576 } 1577 } 1578 return ld; 1579 } 1580 1581 Node* GraphKit::store_to_memory(Node* ctl, Node* adr, Node *val, BasicType bt, 1582 int adr_idx, 1583 MemNode::MemOrd mo, 1584 bool require_atomic_access, 1585 bool unaligned, 1586 bool mismatched, 1587 bool unsafe, 1588 int barrier_data) { 1589 assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" ); 1590 const TypePtr* adr_type = nullptr; 1591 debug_only(adr_type = C->get_adr_type(adr_idx)); 1592 Node *mem = memory(adr_idx); 1593 Node* st = StoreNode::make(_gvn, ctl, mem, adr, adr_type, val, bt, mo, require_atomic_access); 1594 if (unaligned) { 1595 st->as_Store()->set_unaligned_access(); 1596 } 1597 if (mismatched) { 1598 st->as_Store()->set_mismatched_access(); 1599 } 1600 if (unsafe) { 1601 st->as_Store()->set_unsafe_access(); 1602 } 1603 st->as_Store()->set_barrier_data(barrier_data); 1604 st = _gvn.transform(st); 1605 set_memory(st, adr_idx); 1606 // Back-to-back stores can only remove intermediate store with DU info 1607 // so push on worklist for optimizer. 1608 if (mem->req() > MemNode::Address && adr == mem->in(MemNode::Address)) 1609 record_for_igvn(st); 1610 1611 return st; 1612 } 1613 1614 Node* GraphKit::access_store_at(Node* obj, 1615 Node* adr, 1616 const TypePtr* adr_type, 1617 Node* val, 1618 const Type* val_type, 1619 BasicType bt, 1620 DecoratorSet decorators) { 1621 // Transformation of a value which could be null pointer (CastPP #null) 1622 // could be delayed during Parse (for example, in adjust_map_after_if()). 1623 // Execute transformation here to avoid barrier generation in such case. 1624 if (_gvn.type(val) == TypePtr::NULL_PTR) { 1625 val = _gvn.makecon(TypePtr::NULL_PTR); 1626 } 1627 1628 if (stopped()) { 1629 return top(); // Dead path ? 1630 } 1631 1632 assert(val != nullptr, "not dead path"); 1633 1634 C2AccessValuePtr addr(adr, adr_type); 1635 C2AccessValue value(val, val_type); 1636 C2ParseAccess access(this, decorators | C2_WRITE_ACCESS, bt, obj, addr); 1637 if (access.is_raw()) { 1638 return _barrier_set->BarrierSetC2::store_at(access, value); 1639 } else { 1640 return _barrier_set->store_at(access, value); 1641 } 1642 } 1643 1644 Node* GraphKit::access_load_at(Node* obj, // containing obj 1645 Node* adr, // actual address to store val at 1646 const TypePtr* adr_type, 1647 const Type* val_type, 1648 BasicType bt, 1649 DecoratorSet decorators) { 1650 if (stopped()) { 1651 return top(); // Dead path ? 1652 } 1653 1654 C2AccessValuePtr addr(adr, adr_type); 1655 C2ParseAccess access(this, decorators | C2_READ_ACCESS, bt, obj, addr); 1656 if (access.is_raw()) { 1657 return _barrier_set->BarrierSetC2::load_at(access, val_type); 1658 } else { 1659 return _barrier_set->load_at(access, val_type); 1660 } 1661 } 1662 1663 Node* GraphKit::access_load(Node* adr, // actual address to load val at 1664 const Type* val_type, 1665 BasicType bt, 1666 DecoratorSet decorators) { 1667 if (stopped()) { 1668 return top(); // Dead path ? 1669 } 1670 1671 C2AccessValuePtr addr(adr, adr->bottom_type()->is_ptr()); 1672 C2ParseAccess access(this, decorators | C2_READ_ACCESS, bt, nullptr, addr); 1673 if (access.is_raw()) { 1674 return _barrier_set->BarrierSetC2::load_at(access, val_type); 1675 } else { 1676 return _barrier_set->load_at(access, val_type); 1677 } 1678 } 1679 1680 Node* GraphKit::access_atomic_cmpxchg_val_at(Node* obj, 1681 Node* adr, 1682 const TypePtr* adr_type, 1683 int alias_idx, 1684 Node* expected_val, 1685 Node* new_val, 1686 const Type* value_type, 1687 BasicType bt, 1688 DecoratorSet decorators) { 1689 C2AccessValuePtr addr(adr, adr_type); 1690 C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS, 1691 bt, obj, addr, alias_idx); 1692 if (access.is_raw()) { 1693 return _barrier_set->BarrierSetC2::atomic_cmpxchg_val_at(access, expected_val, new_val, value_type); 1694 } else { 1695 return _barrier_set->atomic_cmpxchg_val_at(access, expected_val, new_val, value_type); 1696 } 1697 } 1698 1699 Node* GraphKit::access_atomic_cmpxchg_bool_at(Node* obj, 1700 Node* adr, 1701 const TypePtr* adr_type, 1702 int alias_idx, 1703 Node* expected_val, 1704 Node* new_val, 1705 const Type* value_type, 1706 BasicType bt, 1707 DecoratorSet decorators) { 1708 C2AccessValuePtr addr(adr, adr_type); 1709 C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS, 1710 bt, obj, addr, alias_idx); 1711 if (access.is_raw()) { 1712 return _barrier_set->BarrierSetC2::atomic_cmpxchg_bool_at(access, expected_val, new_val, value_type); 1713 } else { 1714 return _barrier_set->atomic_cmpxchg_bool_at(access, expected_val, new_val, value_type); 1715 } 1716 } 1717 1718 Node* GraphKit::access_atomic_xchg_at(Node* obj, 1719 Node* adr, 1720 const TypePtr* adr_type, 1721 int alias_idx, 1722 Node* new_val, 1723 const Type* value_type, 1724 BasicType bt, 1725 DecoratorSet decorators) { 1726 C2AccessValuePtr addr(adr, adr_type); 1727 C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS, 1728 bt, obj, addr, alias_idx); 1729 if (access.is_raw()) { 1730 return _barrier_set->BarrierSetC2::atomic_xchg_at(access, new_val, value_type); 1731 } else { 1732 return _barrier_set->atomic_xchg_at(access, new_val, value_type); 1733 } 1734 } 1735 1736 Node* GraphKit::access_atomic_add_at(Node* obj, 1737 Node* adr, 1738 const TypePtr* adr_type, 1739 int alias_idx, 1740 Node* new_val, 1741 const Type* value_type, 1742 BasicType bt, 1743 DecoratorSet decorators) { 1744 C2AccessValuePtr addr(adr, adr_type); 1745 C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS, bt, obj, addr, alias_idx); 1746 if (access.is_raw()) { 1747 return _barrier_set->BarrierSetC2::atomic_add_at(access, new_val, value_type); 1748 } else { 1749 return _barrier_set->atomic_add_at(access, new_val, value_type); 1750 } 1751 } 1752 1753 void GraphKit::access_clone(Node* src, Node* dst, Node* size, bool is_array) { 1754 return _barrier_set->clone(this, src, dst, size, is_array); 1755 } 1756 1757 //-------------------------array_element_address------------------------- 1758 Node* GraphKit::array_element_address(Node* ary, Node* idx, BasicType elembt, 1759 const TypeInt* sizetype, Node* ctrl) { 1760 uint shift = exact_log2(type2aelembytes(elembt)); 1761 uint header = arrayOopDesc::base_offset_in_bytes(elembt); 1762 1763 // short-circuit a common case (saves lots of confusing waste motion) 1764 jint idx_con = find_int_con(idx, -1); 1765 if (idx_con >= 0) { 1766 intptr_t offset = header + ((intptr_t)idx_con << shift); 1767 return basic_plus_adr(ary, offset); 1768 } 1769 1770 // must be correct type for alignment purposes 1771 Node* base = basic_plus_adr(ary, header); 1772 idx = Compile::conv_I2X_index(&_gvn, idx, sizetype, ctrl); 1773 Node* scale = _gvn.transform( new LShiftXNode(idx, intcon(shift)) ); 1774 return basic_plus_adr(ary, base, scale); 1775 } 1776 1777 //-------------------------load_array_element------------------------- 1778 Node* GraphKit::load_array_element(Node* ary, Node* idx, const TypeAryPtr* arytype, bool set_ctrl) { 1779 const Type* elemtype = arytype->elem(); 1780 BasicType elembt = elemtype->array_element_basic_type(); 1781 Node* adr = array_element_address(ary, idx, elembt, arytype->size()); 1782 if (elembt == T_NARROWOOP) { 1783 elembt = T_OBJECT; // To satisfy switch in LoadNode::make() 1784 } 1785 Node* ld = access_load_at(ary, adr, arytype, elemtype, elembt, 1786 IN_HEAP | IS_ARRAY | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0)); 1787 return ld; 1788 } 1789 1790 //-------------------------set_arguments_for_java_call------------------------- 1791 // Arguments (pre-popped from the stack) are taken from the JVMS. 1792 void GraphKit::set_arguments_for_java_call(CallJavaNode* call) { 1793 // Add the call arguments: 1794 uint nargs = call->method()->arg_size(); 1795 for (uint i = 0; i < nargs; i++) { 1796 Node* arg = argument(i); 1797 call->init_req(i + TypeFunc::Parms, arg); 1798 } 1799 } 1800 1801 //---------------------------set_edges_for_java_call--------------------------- 1802 // Connect a newly created call into the current JVMS. 1803 // A return value node (if any) is returned from set_edges_for_java_call. 1804 void GraphKit::set_edges_for_java_call(CallJavaNode* call, bool must_throw, bool separate_io_proj) { 1805 1806 // Add the predefined inputs: 1807 call->init_req( TypeFunc::Control, control() ); 1808 call->init_req( TypeFunc::I_O , i_o() ); 1809 call->init_req( TypeFunc::Memory , reset_memory() ); 1810 call->init_req( TypeFunc::FramePtr, frameptr() ); 1811 call->init_req( TypeFunc::ReturnAdr, top() ); 1812 1813 add_safepoint_edges(call, must_throw); 1814 1815 Node* xcall = _gvn.transform(call); 1816 1817 if (xcall == top()) { 1818 set_control(top()); 1819 return; 1820 } 1821 assert(xcall == call, "call identity is stable"); 1822 1823 // Re-use the current map to produce the result. 1824 1825 set_control(_gvn.transform(new ProjNode(call, TypeFunc::Control))); 1826 set_i_o( _gvn.transform(new ProjNode(call, TypeFunc::I_O , separate_io_proj))); 1827 set_all_memory_call(xcall, separate_io_proj); 1828 1829 //return xcall; // no need, caller already has it 1830 } 1831 1832 Node* GraphKit::set_results_for_java_call(CallJavaNode* call, bool separate_io_proj, bool deoptimize) { 1833 if (stopped()) return top(); // maybe the call folded up? 1834 1835 // Capture the return value, if any. 1836 Node* ret; 1837 if (call->method() == nullptr || 1838 call->method()->return_type()->basic_type() == T_VOID) 1839 ret = top(); 1840 else ret = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 1841 1842 // Note: Since any out-of-line call can produce an exception, 1843 // we always insert an I_O projection from the call into the result. 1844 1845 make_slow_call_ex(call, env()->Throwable_klass(), separate_io_proj, deoptimize); 1846 1847 if (separate_io_proj) { 1848 // The caller requested separate projections be used by the fall 1849 // through and exceptional paths, so replace the projections for 1850 // the fall through path. 1851 set_i_o(_gvn.transform( new ProjNode(call, TypeFunc::I_O) )); 1852 set_all_memory(_gvn.transform( new ProjNode(call, TypeFunc::Memory) )); 1853 } 1854 return ret; 1855 } 1856 1857 //--------------------set_predefined_input_for_runtime_call-------------------- 1858 // Reading and setting the memory state is way conservative here. 1859 // The real problem is that I am not doing real Type analysis on memory, 1860 // so I cannot distinguish card mark stores from other stores. Across a GC 1861 // point the Store Barrier and the card mark memory has to agree. I cannot 1862 // have a card mark store and its barrier split across the GC point from 1863 // either above or below. Here I get that to happen by reading ALL of memory. 1864 // A better answer would be to separate out card marks from other memory. 1865 // For now, return the input memory state, so that it can be reused 1866 // after the call, if this call has restricted memory effects. 1867 Node* GraphKit::set_predefined_input_for_runtime_call(SafePointNode* call, Node* narrow_mem) { 1868 // Set fixed predefined input arguments 1869 Node* memory = reset_memory(); 1870 Node* m = narrow_mem == nullptr ? memory : narrow_mem; 1871 call->init_req( TypeFunc::Control, control() ); 1872 call->init_req( TypeFunc::I_O, top() ); // does no i/o 1873 call->init_req( TypeFunc::Memory, m ); // may gc ptrs 1874 call->init_req( TypeFunc::FramePtr, frameptr() ); 1875 call->init_req( TypeFunc::ReturnAdr, top() ); 1876 return memory; 1877 } 1878 1879 //-------------------set_predefined_output_for_runtime_call-------------------- 1880 // Set control and memory (not i_o) from the call. 1881 // If keep_mem is not null, use it for the output state, 1882 // except for the RawPtr output of the call, if hook_mem is TypeRawPtr::BOTTOM. 1883 // If hook_mem is null, this call produces no memory effects at all. 1884 // If hook_mem is a Java-visible memory slice (such as arraycopy operands), 1885 // then only that memory slice is taken from the call. 1886 // In the last case, we must put an appropriate memory barrier before 1887 // the call, so as to create the correct anti-dependencies on loads 1888 // preceding the call. 1889 void GraphKit::set_predefined_output_for_runtime_call(Node* call, 1890 Node* keep_mem, 1891 const TypePtr* hook_mem) { 1892 // no i/o 1893 set_control(_gvn.transform( new ProjNode(call,TypeFunc::Control) )); 1894 if (keep_mem) { 1895 // First clone the existing memory state 1896 set_all_memory(keep_mem); 1897 if (hook_mem != nullptr) { 1898 // Make memory for the call 1899 Node* mem = _gvn.transform( new ProjNode(call, TypeFunc::Memory) ); 1900 // Set the RawPtr memory state only. This covers all the heap top/GC stuff 1901 // We also use hook_mem to extract specific effects from arraycopy stubs. 1902 set_memory(mem, hook_mem); 1903 } 1904 // ...else the call has NO memory effects. 1905 1906 // Make sure the call advertises its memory effects precisely. 1907 // This lets us build accurate anti-dependences in gcm.cpp. 1908 assert(C->alias_type(call->adr_type()) == C->alias_type(hook_mem), 1909 "call node must be constructed correctly"); 1910 } else { 1911 assert(hook_mem == nullptr, ""); 1912 // This is not a "slow path" call; all memory comes from the call. 1913 set_all_memory_call(call); 1914 } 1915 } 1916 1917 // Keep track of MergeMems feeding into other MergeMems 1918 static void add_mergemem_users_to_worklist(Unique_Node_List& wl, Node* mem) { 1919 if (!mem->is_MergeMem()) { 1920 return; 1921 } 1922 for (SimpleDUIterator i(mem); i.has_next(); i.next()) { 1923 Node* use = i.get(); 1924 if (use->is_MergeMem()) { 1925 wl.push(use); 1926 } 1927 } 1928 } 1929 1930 // Replace the call with the current state of the kit. 1931 void GraphKit::replace_call(CallNode* call, Node* result, bool do_replaced_nodes) { 1932 JVMState* ejvms = nullptr; 1933 if (has_exceptions()) { 1934 ejvms = transfer_exceptions_into_jvms(); 1935 } 1936 1937 ReplacedNodes replaced_nodes = map()->replaced_nodes(); 1938 ReplacedNodes replaced_nodes_exception; 1939 Node* ex_ctl = top(); 1940 1941 SafePointNode* final_state = stop(); 1942 1943 // Find all the needed outputs of this call 1944 CallProjections callprojs; 1945 call->extract_projections(&callprojs, true); 1946 1947 Unique_Node_List wl; 1948 Node* init_mem = call->in(TypeFunc::Memory); 1949 Node* final_mem = final_state->in(TypeFunc::Memory); 1950 Node* final_ctl = final_state->in(TypeFunc::Control); 1951 Node* final_io = final_state->in(TypeFunc::I_O); 1952 1953 // Replace all the old call edges with the edges from the inlining result 1954 if (callprojs.fallthrough_catchproj != nullptr) { 1955 C->gvn_replace_by(callprojs.fallthrough_catchproj, final_ctl); 1956 } 1957 if (callprojs.fallthrough_memproj != nullptr) { 1958 if (final_mem->is_MergeMem()) { 1959 // Parser's exits MergeMem was not transformed but may be optimized 1960 final_mem = _gvn.transform(final_mem); 1961 } 1962 C->gvn_replace_by(callprojs.fallthrough_memproj, final_mem); 1963 add_mergemem_users_to_worklist(wl, final_mem); 1964 } 1965 if (callprojs.fallthrough_ioproj != nullptr) { 1966 C->gvn_replace_by(callprojs.fallthrough_ioproj, final_io); 1967 } 1968 1969 // Replace the result with the new result if it exists and is used 1970 if (callprojs.resproj != nullptr && result != nullptr) { 1971 C->gvn_replace_by(callprojs.resproj, result); 1972 } 1973 1974 if (ejvms == nullptr) { 1975 // No exception edges to simply kill off those paths 1976 if (callprojs.catchall_catchproj != nullptr) { 1977 C->gvn_replace_by(callprojs.catchall_catchproj, C->top()); 1978 } 1979 if (callprojs.catchall_memproj != nullptr) { 1980 C->gvn_replace_by(callprojs.catchall_memproj, C->top()); 1981 } 1982 if (callprojs.catchall_ioproj != nullptr) { 1983 C->gvn_replace_by(callprojs.catchall_ioproj, C->top()); 1984 } 1985 // Replace the old exception object with top 1986 if (callprojs.exobj != nullptr) { 1987 C->gvn_replace_by(callprojs.exobj, C->top()); 1988 } 1989 } else { 1990 GraphKit ekit(ejvms); 1991 1992 // Load my combined exception state into the kit, with all phis transformed: 1993 SafePointNode* ex_map = ekit.combine_and_pop_all_exception_states(); 1994 replaced_nodes_exception = ex_map->replaced_nodes(); 1995 1996 Node* ex_oop = ekit.use_exception_state(ex_map); 1997 1998 if (callprojs.catchall_catchproj != nullptr) { 1999 C->gvn_replace_by(callprojs.catchall_catchproj, ekit.control()); 2000 ex_ctl = ekit.control(); 2001 } 2002 if (callprojs.catchall_memproj != nullptr) { 2003 Node* ex_mem = ekit.reset_memory(); 2004 C->gvn_replace_by(callprojs.catchall_memproj, ex_mem); 2005 add_mergemem_users_to_worklist(wl, ex_mem); 2006 } 2007 if (callprojs.catchall_ioproj != nullptr) { 2008 C->gvn_replace_by(callprojs.catchall_ioproj, ekit.i_o()); 2009 } 2010 2011 // Replace the old exception object with the newly created one 2012 if (callprojs.exobj != nullptr) { 2013 C->gvn_replace_by(callprojs.exobj, ex_oop); 2014 } 2015 } 2016 2017 // Disconnect the call from the graph 2018 call->disconnect_inputs(C); 2019 C->gvn_replace_by(call, C->top()); 2020 2021 // Clean up any MergeMems that feed other MergeMems since the 2022 // optimizer doesn't like that. 2023 while (wl.size() > 0) { 2024 _gvn.transform(wl.pop()); 2025 } 2026 2027 if (callprojs.fallthrough_catchproj != nullptr && !final_ctl->is_top() && do_replaced_nodes) { 2028 replaced_nodes.apply(C, final_ctl); 2029 } 2030 if (!ex_ctl->is_top() && do_replaced_nodes) { 2031 replaced_nodes_exception.apply(C, ex_ctl); 2032 } 2033 } 2034 2035 2036 //------------------------------increment_counter------------------------------ 2037 // for statistics: increment a VM counter by 1 2038 2039 void GraphKit::increment_counter(address counter_addr) { 2040 Node* adr1 = makecon(TypeRawPtr::make(counter_addr)); 2041 increment_counter(adr1); 2042 } 2043 2044 void GraphKit::increment_counter(Node* counter_addr) { 2045 int adr_type = Compile::AliasIdxRaw; 2046 Node* ctrl = control(); 2047 Node* cnt = make_load(ctrl, counter_addr, TypeLong::LONG, T_LONG, adr_type, MemNode::unordered); 2048 Node* incr = _gvn.transform(new AddLNode(cnt, _gvn.longcon(1))); 2049 store_to_memory(ctrl, counter_addr, incr, T_LONG, adr_type, MemNode::unordered); 2050 } 2051 2052 2053 //------------------------------uncommon_trap---------------------------------- 2054 // Bail out to the interpreter in mid-method. Implemented by calling the 2055 // uncommon_trap blob. This helper function inserts a runtime call with the 2056 // right debug info. 2057 Node* GraphKit::uncommon_trap(int trap_request, 2058 ciKlass* klass, const char* comment, 2059 bool must_throw, 2060 bool keep_exact_action) { 2061 if (failing_internal()) { 2062 stop(); 2063 } 2064 if (stopped()) return nullptr; // trap reachable? 2065 2066 // Note: If ProfileTraps is true, and if a deopt. actually 2067 // occurs here, the runtime will make sure an MDO exists. There is 2068 // no need to call method()->ensure_method_data() at this point. 2069 2070 // Set the stack pointer to the right value for reexecution: 2071 set_sp(reexecute_sp()); 2072 2073 #ifdef ASSERT 2074 if (!must_throw) { 2075 // Make sure the stack has at least enough depth to execute 2076 // the current bytecode. 2077 int inputs, ignored_depth; 2078 if (compute_stack_effects(inputs, ignored_depth)) { 2079 assert(sp() >= inputs, "must have enough JVMS stack to execute %s: sp=%d, inputs=%d", 2080 Bytecodes::name(java_bc()), sp(), inputs); 2081 } 2082 } 2083 #endif 2084 2085 Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request); 2086 Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request); 2087 2088 switch (action) { 2089 case Deoptimization::Action_maybe_recompile: 2090 case Deoptimization::Action_reinterpret: 2091 // Temporary fix for 6529811 to allow virtual calls to be sure they 2092 // get the chance to go from mono->bi->mega 2093 if (!keep_exact_action && 2094 Deoptimization::trap_request_index(trap_request) < 0 && 2095 too_many_recompiles(reason)) { 2096 // This BCI is causing too many recompilations. 2097 if (C->log() != nullptr) { 2098 C->log()->elem("observe that='trap_action_change' reason='%s' from='%s' to='none'", 2099 Deoptimization::trap_reason_name(reason), 2100 Deoptimization::trap_action_name(action)); 2101 } 2102 action = Deoptimization::Action_none; 2103 trap_request = Deoptimization::make_trap_request(reason, action); 2104 } else { 2105 C->set_trap_can_recompile(true); 2106 } 2107 break; 2108 case Deoptimization::Action_make_not_entrant: 2109 C->set_trap_can_recompile(true); 2110 break; 2111 case Deoptimization::Action_none: 2112 case Deoptimization::Action_make_not_compilable: 2113 break; 2114 default: 2115 #ifdef ASSERT 2116 fatal("unknown action %d: %s", action, Deoptimization::trap_action_name(action)); 2117 #endif 2118 break; 2119 } 2120 2121 if (TraceOptoParse) { 2122 char buf[100]; 2123 tty->print_cr("Uncommon trap %s at bci:%d", 2124 Deoptimization::format_trap_request(buf, sizeof(buf), 2125 trap_request), bci()); 2126 } 2127 2128 CompileLog* log = C->log(); 2129 if (log != nullptr) { 2130 int kid = (klass == nullptr)? -1: log->identify(klass); 2131 log->begin_elem("uncommon_trap bci='%d'", bci()); 2132 char buf[100]; 2133 log->print(" %s", Deoptimization::format_trap_request(buf, sizeof(buf), 2134 trap_request)); 2135 if (kid >= 0) log->print(" klass='%d'", kid); 2136 if (comment != nullptr) log->print(" comment='%s'", comment); 2137 log->end_elem(); 2138 } 2139 2140 // Make sure any guarding test views this path as very unlikely 2141 Node *i0 = control()->in(0); 2142 if (i0 != nullptr && i0->is_If()) { // Found a guarding if test? 2143 IfNode *iff = i0->as_If(); 2144 float f = iff->_prob; // Get prob 2145 if (control()->Opcode() == Op_IfTrue) { 2146 if (f > PROB_UNLIKELY_MAG(4)) 2147 iff->_prob = PROB_MIN; 2148 } else { 2149 if (f < PROB_LIKELY_MAG(4)) 2150 iff->_prob = PROB_MAX; 2151 } 2152 } 2153 2154 // Clear out dead values from the debug info. 2155 kill_dead_locals(); 2156 2157 // Now insert the uncommon trap subroutine call 2158 address call_addr = OptoRuntime::uncommon_trap_blob()->entry_point(); 2159 const TypePtr* no_memory_effects = nullptr; 2160 // Pass the index of the class to be loaded 2161 Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON | 2162 (must_throw ? RC_MUST_THROW : 0), 2163 OptoRuntime::uncommon_trap_Type(), 2164 call_addr, "uncommon_trap", no_memory_effects, 2165 intcon(trap_request)); 2166 assert(call->as_CallStaticJava()->uncommon_trap_request() == trap_request, 2167 "must extract request correctly from the graph"); 2168 assert(trap_request != 0, "zero value reserved by uncommon_trap_request"); 2169 2170 call->set_req(TypeFunc::ReturnAdr, returnadr()); 2171 // The debug info is the only real input to this call. 2172 2173 // Halt-and-catch fire here. The above call should never return! 2174 HaltNode* halt = new HaltNode(control(), frameptr(), "uncommon trap returned which should never happen" 2175 PRODUCT_ONLY(COMMA /*reachable*/false)); 2176 _gvn.set_type_bottom(halt); 2177 root()->add_req(halt); 2178 2179 stop_and_kill_map(); 2180 return call; 2181 } 2182 2183 2184 //--------------------------just_allocated_object------------------------------ 2185 // Report the object that was just allocated. 2186 // It must be the case that there are no intervening safepoints. 2187 // We use this to determine if an object is so "fresh" that 2188 // it does not require card marks. 2189 Node* GraphKit::just_allocated_object(Node* current_control) { 2190 Node* ctrl = current_control; 2191 // Object::<init> is invoked after allocation, most of invoke nodes 2192 // will be reduced, but a region node is kept in parse time, we check 2193 // the pattern and skip the region node if it degraded to a copy. 2194 if (ctrl != nullptr && ctrl->is_Region() && ctrl->req() == 2 && 2195 ctrl->as_Region()->is_copy()) { 2196 ctrl = ctrl->as_Region()->is_copy(); 2197 } 2198 if (C->recent_alloc_ctl() == ctrl) { 2199 return C->recent_alloc_obj(); 2200 } 2201 return nullptr; 2202 } 2203 2204 2205 /** 2206 * Record profiling data exact_kls for Node n with the type system so 2207 * that it can propagate it (speculation) 2208 * 2209 * @param n node that the type applies to 2210 * @param exact_kls type from profiling 2211 * @param maybe_null did profiling see null? 2212 * 2213 * @return node with improved type 2214 */ 2215 Node* GraphKit::record_profile_for_speculation(Node* n, ciKlass* exact_kls, ProfilePtrKind ptr_kind) { 2216 const Type* current_type = _gvn.type(n); 2217 assert(UseTypeSpeculation, "type speculation must be on"); 2218 2219 const TypePtr* speculative = current_type->speculative(); 2220 2221 // Should the klass from the profile be recorded in the speculative type? 2222 if (current_type->would_improve_type(exact_kls, jvms()->depth())) { 2223 const TypeKlassPtr* tklass = TypeKlassPtr::make(exact_kls, Type::trust_interfaces); 2224 const TypeOopPtr* xtype = tklass->as_instance_type(); 2225 assert(xtype->klass_is_exact(), "Should be exact"); 2226 // Any reason to believe n is not null (from this profiling or a previous one)? 2227 assert(ptr_kind != ProfileAlwaysNull, "impossible here"); 2228 const TypePtr* ptr = (ptr_kind == ProfileMaybeNull && current_type->speculative_maybe_null()) ? TypePtr::BOTTOM : TypePtr::NOTNULL; 2229 // record the new speculative type's depth 2230 speculative = xtype->cast_to_ptr_type(ptr->ptr())->is_ptr(); 2231 speculative = speculative->with_inline_depth(jvms()->depth()); 2232 } else if (current_type->would_improve_ptr(ptr_kind)) { 2233 // Profiling report that null was never seen so we can change the 2234 // speculative type to non null ptr. 2235 if (ptr_kind == ProfileAlwaysNull) { 2236 speculative = TypePtr::NULL_PTR; 2237 } else { 2238 assert(ptr_kind == ProfileNeverNull, "nothing else is an improvement"); 2239 const TypePtr* ptr = TypePtr::NOTNULL; 2240 if (speculative != nullptr) { 2241 speculative = speculative->cast_to_ptr_type(ptr->ptr())->is_ptr(); 2242 } else { 2243 speculative = ptr; 2244 } 2245 } 2246 } 2247 2248 if (speculative != current_type->speculative()) { 2249 // Build a type with a speculative type (what we think we know 2250 // about the type but will need a guard when we use it) 2251 const TypeOopPtr* spec_type = TypeOopPtr::make(TypePtr::BotPTR, Type::OffsetBot, TypeOopPtr::InstanceBot, speculative); 2252 // We're changing the type, we need a new CheckCast node to carry 2253 // the new type. The new type depends on the control: what 2254 // profiling tells us is only valid from here as far as we can 2255 // tell. 2256 Node* cast = new CheckCastPPNode(control(), n, current_type->remove_speculative()->join_speculative(spec_type)); 2257 cast = _gvn.transform(cast); 2258 replace_in_map(n, cast); 2259 n = cast; 2260 } 2261 2262 return n; 2263 } 2264 2265 /** 2266 * Record profiling data from receiver profiling at an invoke with the 2267 * type system so that it can propagate it (speculation) 2268 * 2269 * @param n receiver node 2270 * 2271 * @return node with improved type 2272 */ 2273 Node* GraphKit::record_profiled_receiver_for_speculation(Node* n) { 2274 if (!UseTypeSpeculation) { 2275 return n; 2276 } 2277 ciKlass* exact_kls = profile_has_unique_klass(); 2278 ProfilePtrKind ptr_kind = ProfileMaybeNull; 2279 if ((java_bc() == Bytecodes::_checkcast || 2280 java_bc() == Bytecodes::_instanceof || 2281 java_bc() == Bytecodes::_aastore) && 2282 method()->method_data()->is_mature()) { 2283 ciProfileData* data = method()->method_data()->bci_to_data(bci()); 2284 if (data != nullptr) { 2285 if (!data->as_BitData()->null_seen()) { 2286 ptr_kind = ProfileNeverNull; 2287 } else { 2288 assert(data->is_ReceiverTypeData(), "bad profile data type"); 2289 ciReceiverTypeData* call = (ciReceiverTypeData*)data->as_ReceiverTypeData(); 2290 uint i = 0; 2291 for (; i < call->row_limit(); i++) { 2292 ciKlass* receiver = call->receiver(i); 2293 if (receiver != nullptr) { 2294 break; 2295 } 2296 } 2297 ptr_kind = (i == call->row_limit()) ? ProfileAlwaysNull : ProfileMaybeNull; 2298 } 2299 } 2300 } 2301 return record_profile_for_speculation(n, exact_kls, ptr_kind); 2302 } 2303 2304 /** 2305 * Record profiling data from argument profiling at an invoke with the 2306 * type system so that it can propagate it (speculation) 2307 * 2308 * @param dest_method target method for the call 2309 * @param bc what invoke bytecode is this? 2310 */ 2311 void GraphKit::record_profiled_arguments_for_speculation(ciMethod* dest_method, Bytecodes::Code bc) { 2312 if (!UseTypeSpeculation) { 2313 return; 2314 } 2315 const TypeFunc* tf = TypeFunc::make(dest_method); 2316 int nargs = tf->domain()->cnt() - TypeFunc::Parms; 2317 int skip = Bytecodes::has_receiver(bc) ? 1 : 0; 2318 for (int j = skip, i = 0; j < nargs && i < TypeProfileArgsLimit; j++) { 2319 const Type *targ = tf->domain()->field_at(j + TypeFunc::Parms); 2320 if (is_reference_type(targ->basic_type())) { 2321 ProfilePtrKind ptr_kind = ProfileMaybeNull; 2322 ciKlass* better_type = nullptr; 2323 if (method()->argument_profiled_type(bci(), i, better_type, ptr_kind)) { 2324 record_profile_for_speculation(argument(j), better_type, ptr_kind); 2325 } 2326 i++; 2327 } 2328 } 2329 } 2330 2331 /** 2332 * Record profiling data from parameter profiling at an invoke with 2333 * the type system so that it can propagate it (speculation) 2334 */ 2335 void GraphKit::record_profiled_parameters_for_speculation() { 2336 if (!UseTypeSpeculation) { 2337 return; 2338 } 2339 for (int i = 0, j = 0; i < method()->arg_size() ; i++) { 2340 if (_gvn.type(local(i))->isa_oopptr()) { 2341 ProfilePtrKind ptr_kind = ProfileMaybeNull; 2342 ciKlass* better_type = nullptr; 2343 if (method()->parameter_profiled_type(j, better_type, ptr_kind)) { 2344 record_profile_for_speculation(local(i), better_type, ptr_kind); 2345 } 2346 j++; 2347 } 2348 } 2349 } 2350 2351 /** 2352 * Record profiling data from return value profiling at an invoke with 2353 * the type system so that it can propagate it (speculation) 2354 */ 2355 void GraphKit::record_profiled_return_for_speculation() { 2356 if (!UseTypeSpeculation) { 2357 return; 2358 } 2359 ProfilePtrKind ptr_kind = ProfileMaybeNull; 2360 ciKlass* better_type = nullptr; 2361 if (method()->return_profiled_type(bci(), better_type, ptr_kind)) { 2362 // If profiling reports a single type for the return value, 2363 // feed it to the type system so it can propagate it as a 2364 // speculative type 2365 record_profile_for_speculation(stack(sp()-1), better_type, ptr_kind); 2366 } 2367 } 2368 2369 void GraphKit::round_double_arguments(ciMethod* dest_method) { 2370 if (Matcher::strict_fp_requires_explicit_rounding) { 2371 // (Note: TypeFunc::make has a cache that makes this fast.) 2372 const TypeFunc* tf = TypeFunc::make(dest_method); 2373 int nargs = tf->domain()->cnt() - TypeFunc::Parms; 2374 for (int j = 0; j < nargs; j++) { 2375 const Type *targ = tf->domain()->field_at(j + TypeFunc::Parms); 2376 if (targ->basic_type() == T_DOUBLE) { 2377 // If any parameters are doubles, they must be rounded before 2378 // the call, dprecision_rounding does gvn.transform 2379 Node *arg = argument(j); 2380 arg = dprecision_rounding(arg); 2381 set_argument(j, arg); 2382 } 2383 } 2384 } 2385 } 2386 2387 // rounding for strict float precision conformance 2388 Node* GraphKit::precision_rounding(Node* n) { 2389 if (Matcher::strict_fp_requires_explicit_rounding) { 2390 #ifdef IA32 2391 if (UseSSE == 0) { 2392 return _gvn.transform(new RoundFloatNode(nullptr, n)); 2393 } 2394 #else 2395 Unimplemented(); 2396 #endif // IA32 2397 } 2398 return n; 2399 } 2400 2401 // rounding for strict double precision conformance 2402 Node* GraphKit::dprecision_rounding(Node *n) { 2403 if (Matcher::strict_fp_requires_explicit_rounding) { 2404 #ifdef IA32 2405 if (UseSSE < 2) { 2406 return _gvn.transform(new RoundDoubleNode(nullptr, n)); 2407 } 2408 #else 2409 Unimplemented(); 2410 #endif // IA32 2411 } 2412 return n; 2413 } 2414 2415 //============================================================================= 2416 // Generate a fast path/slow path idiom. Graph looks like: 2417 // [foo] indicates that 'foo' is a parameter 2418 // 2419 // [in] null 2420 // \ / 2421 // CmpP 2422 // Bool ne 2423 // If 2424 // / \ 2425 // True False-<2> 2426 // / | 2427 // / cast_not_null 2428 // Load | | ^ 2429 // [fast_test] | | 2430 // gvn to opt_test | | 2431 // / \ | <1> 2432 // True False | 2433 // | \\ | 2434 // [slow_call] \[fast_result] 2435 // Ctl Val \ \ 2436 // | \ \ 2437 // Catch <1> \ \ 2438 // / \ ^ \ \ 2439 // Ex No_Ex | \ \ 2440 // | \ \ | \ <2> \ 2441 // ... \ [slow_res] | | \ [null_result] 2442 // \ \--+--+--- | | 2443 // \ | / \ | / 2444 // --------Region Phi 2445 // 2446 //============================================================================= 2447 // Code is structured as a series of driver functions all called 'do_XXX' that 2448 // call a set of helper functions. Helper functions first, then drivers. 2449 2450 //------------------------------null_check_oop--------------------------------- 2451 // Null check oop. Set null-path control into Region in slot 3. 2452 // Make a cast-not-nullness use the other not-null control. Return cast. 2453 Node* GraphKit::null_check_oop(Node* value, Node* *null_control, 2454 bool never_see_null, 2455 bool safe_for_replace, 2456 bool speculative) { 2457 // Initial null check taken path 2458 (*null_control) = top(); 2459 Node* cast = null_check_common(value, T_OBJECT, false, null_control, speculative); 2460 2461 // Generate uncommon_trap: 2462 if (never_see_null && (*null_control) != top()) { 2463 // If we see an unexpected null at a check-cast we record it and force a 2464 // recompile; the offending check-cast will be compiled to handle nulls. 2465 // If we see more than one offending BCI, then all checkcasts in the 2466 // method will be compiled to handle nulls. 2467 PreserveJVMState pjvms(this); 2468 set_control(*null_control); 2469 replace_in_map(value, null()); 2470 Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculative); 2471 uncommon_trap(reason, 2472 Deoptimization::Action_make_not_entrant); 2473 (*null_control) = top(); // null path is dead 2474 } 2475 if ((*null_control) == top() && safe_for_replace) { 2476 replace_in_map(value, cast); 2477 } 2478 2479 // Cast away null-ness on the result 2480 return cast; 2481 } 2482 2483 //------------------------------opt_iff---------------------------------------- 2484 // Optimize the fast-check IfNode. Set the fast-path region slot 2. 2485 // Return slow-path control. 2486 Node* GraphKit::opt_iff(Node* region, Node* iff) { 2487 IfNode *opt_iff = _gvn.transform(iff)->as_If(); 2488 2489 // Fast path taken; set region slot 2 2490 Node *fast_taken = _gvn.transform( new IfFalseNode(opt_iff) ); 2491 region->init_req(2,fast_taken); // Capture fast-control 2492 2493 // Fast path not-taken, i.e. slow path 2494 Node *slow_taken = _gvn.transform( new IfTrueNode(opt_iff) ); 2495 return slow_taken; 2496 } 2497 2498 //-----------------------------make_runtime_call------------------------------- 2499 Node* GraphKit::make_runtime_call(int flags, 2500 const TypeFunc* call_type, address call_addr, 2501 const char* call_name, 2502 const TypePtr* adr_type, 2503 // The following parms are all optional. 2504 // The first null ends the list. 2505 Node* parm0, Node* parm1, 2506 Node* parm2, Node* parm3, 2507 Node* parm4, Node* parm5, 2508 Node* parm6, Node* parm7) { 2509 assert(call_addr != nullptr, "must not call null targets"); 2510 2511 // Slow-path call 2512 bool is_leaf = !(flags & RC_NO_LEAF); 2513 bool has_io = (!is_leaf && !(flags & RC_NO_IO)); 2514 if (call_name == nullptr) { 2515 assert(!is_leaf, "must supply name for leaf"); 2516 call_name = OptoRuntime::stub_name(call_addr); 2517 } 2518 CallNode* call; 2519 if (!is_leaf) { 2520 call = new CallStaticJavaNode(call_type, call_addr, call_name, adr_type); 2521 } else if (flags & RC_NO_FP) { 2522 call = new CallLeafNoFPNode(call_type, call_addr, call_name, adr_type); 2523 } else if (flags & RC_VECTOR){ 2524 uint num_bits = call_type->range()->field_at(TypeFunc::Parms)->is_vect()->length_in_bytes() * BitsPerByte; 2525 call = new CallLeafVectorNode(call_type, call_addr, call_name, adr_type, num_bits); 2526 } else { 2527 call = new CallLeafNode(call_type, call_addr, call_name, adr_type); 2528 } 2529 2530 // The following is similar to set_edges_for_java_call, 2531 // except that the memory effects of the call are restricted to AliasIdxRaw. 2532 2533 // Slow path call has no side-effects, uses few values 2534 bool wide_in = !(flags & RC_NARROW_MEM); 2535 bool wide_out = (C->get_alias_index(adr_type) == Compile::AliasIdxBot); 2536 2537 Node* prev_mem = nullptr; 2538 if (wide_in) { 2539 prev_mem = set_predefined_input_for_runtime_call(call); 2540 } else { 2541 assert(!wide_out, "narrow in => narrow out"); 2542 Node* narrow_mem = memory(adr_type); 2543 prev_mem = set_predefined_input_for_runtime_call(call, narrow_mem); 2544 } 2545 2546 // Hook each parm in order. Stop looking at the first null. 2547 if (parm0 != nullptr) { call->init_req(TypeFunc::Parms+0, parm0); 2548 if (parm1 != nullptr) { call->init_req(TypeFunc::Parms+1, parm1); 2549 if (parm2 != nullptr) { call->init_req(TypeFunc::Parms+2, parm2); 2550 if (parm3 != nullptr) { call->init_req(TypeFunc::Parms+3, parm3); 2551 if (parm4 != nullptr) { call->init_req(TypeFunc::Parms+4, parm4); 2552 if (parm5 != nullptr) { call->init_req(TypeFunc::Parms+5, parm5); 2553 if (parm6 != nullptr) { call->init_req(TypeFunc::Parms+6, parm6); 2554 if (parm7 != nullptr) { call->init_req(TypeFunc::Parms+7, parm7); 2555 /* close each nested if ===> */ } } } } } } } } 2556 assert(call->in(call->req()-1) != nullptr, "must initialize all parms"); 2557 2558 if (!is_leaf) { 2559 // Non-leaves can block and take safepoints: 2560 add_safepoint_edges(call, ((flags & RC_MUST_THROW) != 0)); 2561 } 2562 // Non-leaves can throw exceptions: 2563 if (has_io) { 2564 call->set_req(TypeFunc::I_O, i_o()); 2565 } 2566 2567 if (flags & RC_UNCOMMON) { 2568 // Set the count to a tiny probability. Cf. Estimate_Block_Frequency. 2569 // (An "if" probability corresponds roughly to an unconditional count. 2570 // Sort of.) 2571 call->set_cnt(PROB_UNLIKELY_MAG(4)); 2572 } 2573 2574 Node* c = _gvn.transform(call); 2575 assert(c == call, "cannot disappear"); 2576 2577 if (wide_out) { 2578 // Slow path call has full side-effects. 2579 set_predefined_output_for_runtime_call(call); 2580 } else { 2581 // Slow path call has few side-effects, and/or sets few values. 2582 set_predefined_output_for_runtime_call(call, prev_mem, adr_type); 2583 } 2584 2585 if (has_io) { 2586 set_i_o(_gvn.transform(new ProjNode(call, TypeFunc::I_O))); 2587 } 2588 return call; 2589 2590 } 2591 2592 // i2b 2593 Node* GraphKit::sign_extend_byte(Node* in) { 2594 Node* tmp = _gvn.transform(new LShiftINode(in, _gvn.intcon(24))); 2595 return _gvn.transform(new RShiftINode(tmp, _gvn.intcon(24))); 2596 } 2597 2598 // i2s 2599 Node* GraphKit::sign_extend_short(Node* in) { 2600 Node* tmp = _gvn.transform(new LShiftINode(in, _gvn.intcon(16))); 2601 return _gvn.transform(new RShiftINode(tmp, _gvn.intcon(16))); 2602 } 2603 2604 //------------------------------merge_memory----------------------------------- 2605 // Merge memory from one path into the current memory state. 2606 void GraphKit::merge_memory(Node* new_mem, Node* region, int new_path) { 2607 for (MergeMemStream mms(merged_memory(), new_mem->as_MergeMem()); mms.next_non_empty2(); ) { 2608 Node* old_slice = mms.force_memory(); 2609 Node* new_slice = mms.memory2(); 2610 if (old_slice != new_slice) { 2611 PhiNode* phi; 2612 if (old_slice->is_Phi() && old_slice->as_Phi()->region() == region) { 2613 if (mms.is_empty()) { 2614 // clone base memory Phi's inputs for this memory slice 2615 assert(old_slice == mms.base_memory(), "sanity"); 2616 phi = PhiNode::make(region, nullptr, Type::MEMORY, mms.adr_type(C)); 2617 _gvn.set_type(phi, Type::MEMORY); 2618 for (uint i = 1; i < phi->req(); i++) { 2619 phi->init_req(i, old_slice->in(i)); 2620 } 2621 } else { 2622 phi = old_slice->as_Phi(); // Phi was generated already 2623 } 2624 } else { 2625 phi = PhiNode::make(region, old_slice, Type::MEMORY, mms.adr_type(C)); 2626 _gvn.set_type(phi, Type::MEMORY); 2627 } 2628 phi->set_req(new_path, new_slice); 2629 mms.set_memory(phi); 2630 } 2631 } 2632 } 2633 2634 //------------------------------make_slow_call_ex------------------------------ 2635 // Make the exception handler hookups for the slow call 2636 void GraphKit::make_slow_call_ex(Node* call, ciInstanceKlass* ex_klass, bool separate_io_proj, bool deoptimize) { 2637 if (stopped()) return; 2638 2639 // Make a catch node with just two handlers: fall-through and catch-all 2640 Node* i_o = _gvn.transform( new ProjNode(call, TypeFunc::I_O, separate_io_proj) ); 2641 Node* catc = _gvn.transform( new CatchNode(control(), i_o, 2) ); 2642 Node* norm = new CatchProjNode(catc, CatchProjNode::fall_through_index, CatchProjNode::no_handler_bci); 2643 _gvn.set_type_bottom(norm); 2644 C->record_for_igvn(norm); 2645 Node* excp = _gvn.transform( new CatchProjNode(catc, CatchProjNode::catch_all_index, CatchProjNode::no_handler_bci) ); 2646 2647 { PreserveJVMState pjvms(this); 2648 set_control(excp); 2649 set_i_o(i_o); 2650 2651 if (excp != top()) { 2652 if (deoptimize) { 2653 // Deoptimize if an exception is caught. Don't construct exception state in this case. 2654 uncommon_trap(Deoptimization::Reason_unhandled, 2655 Deoptimization::Action_none); 2656 } else { 2657 // Create an exception state also. 2658 // Use an exact type if the caller has a specific exception. 2659 const Type* ex_type = TypeOopPtr::make_from_klass_unique(ex_klass)->cast_to_ptr_type(TypePtr::NotNull); 2660 Node* ex_oop = new CreateExNode(ex_type, control(), i_o); 2661 add_exception_state(make_exception_state(_gvn.transform(ex_oop))); 2662 } 2663 } 2664 } 2665 2666 // Get the no-exception control from the CatchNode. 2667 set_control(norm); 2668 } 2669 2670 static IfNode* gen_subtype_check_compare(Node* ctrl, Node* in1, Node* in2, BoolTest::mask test, float p, PhaseGVN& gvn, BasicType bt) { 2671 Node* cmp = nullptr; 2672 switch(bt) { 2673 case T_INT: cmp = new CmpINode(in1, in2); break; 2674 case T_ADDRESS: cmp = new CmpPNode(in1, in2); break; 2675 default: fatal("unexpected comparison type %s", type2name(bt)); 2676 } 2677 cmp = gvn.transform(cmp); 2678 Node* bol = gvn.transform(new BoolNode(cmp, test)); 2679 IfNode* iff = new IfNode(ctrl, bol, p, COUNT_UNKNOWN); 2680 gvn.transform(iff); 2681 if (!bol->is_Con()) gvn.record_for_igvn(iff); 2682 return iff; 2683 } 2684 2685 //-------------------------------gen_subtype_check----------------------------- 2686 // Generate a subtyping check. Takes as input the subtype and supertype. 2687 // Returns 2 values: sets the default control() to the true path and returns 2688 // the false path. Only reads invariant memory; sets no (visible) memory. 2689 // The PartialSubtypeCheckNode sets the hidden 1-word cache in the encoding 2690 // but that's not exposed to the optimizer. This call also doesn't take in an 2691 // Object; if you wish to check an Object you need to load the Object's class 2692 // prior to coming here. 2693 Node* Phase::gen_subtype_check(Node* subklass, Node* superklass, Node** ctrl, Node* mem, PhaseGVN& gvn, 2694 ciMethod* method, int bci) { 2695 Compile* C = gvn.C; 2696 if ((*ctrl)->is_top()) { 2697 return C->top(); 2698 } 2699 2700 // Fast check for identical types, perhaps identical constants. 2701 // The types can even be identical non-constants, in cases 2702 // involving Array.newInstance, Object.clone, etc. 2703 if (subklass == superklass) 2704 return C->top(); // false path is dead; no test needed. 2705 2706 if (gvn.type(superklass)->singleton()) { 2707 const TypeKlassPtr* superk = gvn.type(superklass)->is_klassptr(); 2708 const TypeKlassPtr* subk = gvn.type(subklass)->is_klassptr(); 2709 2710 // In the common case of an exact superklass, try to fold up the 2711 // test before generating code. You may ask, why not just generate 2712 // the code and then let it fold up? The answer is that the generated 2713 // code will necessarily include null checks, which do not always 2714 // completely fold away. If they are also needless, then they turn 2715 // into a performance loss. Example: 2716 // Foo[] fa = blah(); Foo x = fa[0]; fa[1] = x; 2717 // Here, the type of 'fa' is often exact, so the store check 2718 // of fa[1]=x will fold up, without testing the nullness of x. 2719 // 2720 // At macro expansion, we would have already folded the SubTypeCheckNode 2721 // being expanded here because we always perform the static sub type 2722 // check in SubTypeCheckNode::sub() regardless of whether 2723 // StressReflectiveCode is set or not. We can therefore skip this 2724 // static check when StressReflectiveCode is on. 2725 switch (C->static_subtype_check(superk, subk)) { 2726 case Compile::SSC_always_false: 2727 { 2728 Node* always_fail = *ctrl; 2729 *ctrl = gvn.C->top(); 2730 return always_fail; 2731 } 2732 case Compile::SSC_always_true: 2733 return C->top(); 2734 case Compile::SSC_easy_test: 2735 { 2736 // Just do a direct pointer compare and be done. 2737 IfNode* iff = gen_subtype_check_compare(*ctrl, subklass, superklass, BoolTest::eq, PROB_STATIC_FREQUENT, gvn, T_ADDRESS); 2738 *ctrl = gvn.transform(new IfTrueNode(iff)); 2739 return gvn.transform(new IfFalseNode(iff)); 2740 } 2741 case Compile::SSC_full_test: 2742 break; 2743 default: 2744 ShouldNotReachHere(); 2745 } 2746 } 2747 2748 // %%% Possible further optimization: Even if the superklass is not exact, 2749 // if the subklass is the unique subtype of the superklass, the check 2750 // will always succeed. We could leave a dependency behind to ensure this. 2751 2752 // First load the super-klass's check-offset 2753 Node *p1 = gvn.transform(new AddPNode(superklass, superklass, gvn.MakeConX(in_bytes(Klass::super_check_offset_offset())))); 2754 Node* m = C->immutable_memory(); 2755 Node *chk_off = gvn.transform(new LoadINode(nullptr, m, p1, gvn.type(p1)->is_ptr(), TypeInt::INT, MemNode::unordered)); 2756 int cacheoff_con = in_bytes(Klass::secondary_super_cache_offset()); 2757 const TypeInt* chk_off_t = chk_off->Value(&gvn)->isa_int(); 2758 int chk_off_con = (chk_off_t != nullptr && chk_off_t->is_con()) ? chk_off_t->get_con() : cacheoff_con; 2759 bool might_be_cache = (chk_off_con == cacheoff_con); 2760 2761 // Load from the sub-klass's super-class display list, or a 1-word cache of 2762 // the secondary superclass list, or a failing value with a sentinel offset 2763 // if the super-klass is an interface or exceptionally deep in the Java 2764 // hierarchy and we have to scan the secondary superclass list the hard way. 2765 // Worst-case type is a little odd: null is allowed as a result (usually 2766 // klass loads can never produce a null). 2767 Node *chk_off_X = chk_off; 2768 #ifdef _LP64 2769 chk_off_X = gvn.transform(new ConvI2LNode(chk_off_X)); 2770 #endif 2771 Node *p2 = gvn.transform(new AddPNode(subklass,subklass,chk_off_X)); 2772 // For some types like interfaces the following loadKlass is from a 1-word 2773 // cache which is mutable so can't use immutable memory. Other 2774 // types load from the super-class display table which is immutable. 2775 Node *kmem = C->immutable_memory(); 2776 // secondary_super_cache is not immutable but can be treated as such because: 2777 // - no ideal node writes to it in a way that could cause an 2778 // incorrect/missed optimization of the following Load. 2779 // - it's a cache so, worse case, not reading the latest value 2780 // wouldn't cause incorrect execution 2781 if (might_be_cache && mem != nullptr) { 2782 kmem = mem->is_MergeMem() ? mem->as_MergeMem()->memory_at(C->get_alias_index(gvn.type(p2)->is_ptr())) : mem; 2783 } 2784 Node *nkls = gvn.transform(LoadKlassNode::make(gvn, nullptr, kmem, p2, gvn.type(p2)->is_ptr(), TypeInstKlassPtr::OBJECT_OR_NULL)); 2785 2786 // Compile speed common case: ARE a subtype and we canNOT fail 2787 if (superklass == nkls) { 2788 return C->top(); // false path is dead; no test needed. 2789 } 2790 2791 // Gather the various success & failures here 2792 RegionNode* r_not_subtype = new RegionNode(3); 2793 gvn.record_for_igvn(r_not_subtype); 2794 RegionNode* r_ok_subtype = new RegionNode(4); 2795 gvn.record_for_igvn(r_ok_subtype); 2796 2797 // If we might perform an expensive check, first try to take advantage of profile data that was attached to the 2798 // SubTypeCheck node 2799 if (might_be_cache && method != nullptr && VM_Version::profile_all_receivers_at_type_check()) { 2800 ciCallProfile profile = method->call_profile_at_bci(bci); 2801 float total_prob = 0; 2802 for (int i = 0; profile.has_receiver(i); ++i) { 2803 float prob = profile.receiver_prob(i); 2804 total_prob += prob; 2805 } 2806 if (total_prob * 100. >= TypeProfileSubTypeCheckCommonThreshold) { 2807 const TypeKlassPtr* superk = gvn.type(superklass)->is_klassptr(); 2808 for (int i = 0; profile.has_receiver(i); ++i) { 2809 ciKlass* klass = profile.receiver(i); 2810 const TypeKlassPtr* klass_t = TypeKlassPtr::make(klass); 2811 Compile::SubTypeCheckResult result = C->static_subtype_check(superk, klass_t); 2812 if (result != Compile::SSC_always_true && result != Compile::SSC_always_false) { 2813 continue; 2814 } 2815 float prob = profile.receiver_prob(i); 2816 ConNode* klass_node = gvn.makecon(klass_t); 2817 IfNode* iff = gen_subtype_check_compare(*ctrl, subklass, klass_node, BoolTest::eq, prob, gvn, T_ADDRESS); 2818 Node* iftrue = gvn.transform(new IfTrueNode(iff)); 2819 2820 if (result == Compile::SSC_always_true) { 2821 r_ok_subtype->add_req(iftrue); 2822 } else { 2823 assert(result == Compile::SSC_always_false, ""); 2824 r_not_subtype->add_req(iftrue); 2825 } 2826 *ctrl = gvn.transform(new IfFalseNode(iff)); 2827 } 2828 } 2829 } 2830 2831 // See if we get an immediate positive hit. Happens roughly 83% of the 2832 // time. Test to see if the value loaded just previously from the subklass 2833 // is exactly the superklass. 2834 IfNode *iff1 = gen_subtype_check_compare(*ctrl, superklass, nkls, BoolTest::eq, PROB_LIKELY(0.83f), gvn, T_ADDRESS); 2835 Node *iftrue1 = gvn.transform( new IfTrueNode (iff1)); 2836 *ctrl = gvn.transform(new IfFalseNode(iff1)); 2837 2838 // Compile speed common case: Check for being deterministic right now. If 2839 // chk_off is a constant and not equal to cacheoff then we are NOT a 2840 // subklass. In this case we need exactly the 1 test above and we can 2841 // return those results immediately. 2842 if (!might_be_cache) { 2843 Node* not_subtype_ctrl = *ctrl; 2844 *ctrl = iftrue1; // We need exactly the 1 test above 2845 PhaseIterGVN* igvn = gvn.is_IterGVN(); 2846 if (igvn != nullptr) { 2847 igvn->remove_globally_dead_node(r_ok_subtype); 2848 igvn->remove_globally_dead_node(r_not_subtype); 2849 } 2850 return not_subtype_ctrl; 2851 } 2852 2853 r_ok_subtype->init_req(1, iftrue1); 2854 2855 // Check for immediate negative hit. Happens roughly 11% of the time (which 2856 // is roughly 63% of the remaining cases). Test to see if the loaded 2857 // check-offset points into the subklass display list or the 1-element 2858 // cache. If it points to the display (and NOT the cache) and the display 2859 // missed then it's not a subtype. 2860 Node *cacheoff = gvn.intcon(cacheoff_con); 2861 IfNode *iff2 = gen_subtype_check_compare(*ctrl, chk_off, cacheoff, BoolTest::ne, PROB_LIKELY(0.63f), gvn, T_INT); 2862 r_not_subtype->init_req(1, gvn.transform(new IfTrueNode (iff2))); 2863 *ctrl = gvn.transform(new IfFalseNode(iff2)); 2864 2865 // Check for self. Very rare to get here, but it is taken 1/3 the time. 2866 // No performance impact (too rare) but allows sharing of secondary arrays 2867 // which has some footprint reduction. 2868 IfNode *iff3 = gen_subtype_check_compare(*ctrl, subklass, superklass, BoolTest::eq, PROB_LIKELY(0.36f), gvn, T_ADDRESS); 2869 r_ok_subtype->init_req(2, gvn.transform(new IfTrueNode(iff3))); 2870 *ctrl = gvn.transform(new IfFalseNode(iff3)); 2871 2872 // -- Roads not taken here: -- 2873 // We could also have chosen to perform the self-check at the beginning 2874 // of this code sequence, as the assembler does. This would not pay off 2875 // the same way, since the optimizer, unlike the assembler, can perform 2876 // static type analysis to fold away many successful self-checks. 2877 // Non-foldable self checks work better here in second position, because 2878 // the initial primary superclass check subsumes a self-check for most 2879 // types. An exception would be a secondary type like array-of-interface, 2880 // which does not appear in its own primary supertype display. 2881 // Finally, we could have chosen to move the self-check into the 2882 // PartialSubtypeCheckNode, and from there out-of-line in a platform 2883 // dependent manner. But it is worthwhile to have the check here, 2884 // where it can be perhaps be optimized. The cost in code space is 2885 // small (register compare, branch). 2886 2887 // Now do a linear scan of the secondary super-klass array. Again, no real 2888 // performance impact (too rare) but it's gotta be done. 2889 // Since the code is rarely used, there is no penalty for moving it 2890 // out of line, and it can only improve I-cache density. 2891 // The decision to inline or out-of-line this final check is platform 2892 // dependent, and is found in the AD file definition of PartialSubtypeCheck. 2893 Node* psc = gvn.transform( 2894 new PartialSubtypeCheckNode(*ctrl, subklass, superklass)); 2895 2896 IfNode *iff4 = gen_subtype_check_compare(*ctrl, psc, gvn.zerocon(T_OBJECT), BoolTest::ne, PROB_FAIR, gvn, T_ADDRESS); 2897 r_not_subtype->init_req(2, gvn.transform(new IfTrueNode (iff4))); 2898 r_ok_subtype ->init_req(3, gvn.transform(new IfFalseNode(iff4))); 2899 2900 // Return false path; set default control to true path. 2901 *ctrl = gvn.transform(r_ok_subtype); 2902 return gvn.transform(r_not_subtype); 2903 } 2904 2905 Node* GraphKit::gen_subtype_check(Node* obj_or_subklass, Node* superklass) { 2906 bool expand_subtype_check = C->post_loop_opts_phase(); // macro node expansion is over 2907 if (expand_subtype_check) { 2908 MergeMemNode* mem = merged_memory(); 2909 Node* ctrl = control(); 2910 Node* subklass = obj_or_subklass; 2911 if (!_gvn.type(obj_or_subklass)->isa_klassptr()) { 2912 subklass = load_object_klass(obj_or_subklass); 2913 } 2914 2915 Node* n = Phase::gen_subtype_check(subklass, superklass, &ctrl, mem, _gvn, method(), bci()); 2916 set_control(ctrl); 2917 return n; 2918 } 2919 2920 Node* check = _gvn.transform(new SubTypeCheckNode(C, obj_or_subklass, superklass, method(), bci())); 2921 Node* bol = _gvn.transform(new BoolNode(check, BoolTest::eq)); 2922 IfNode* iff = create_and_xform_if(control(), bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN); 2923 set_control(_gvn.transform(new IfTrueNode(iff))); 2924 return _gvn.transform(new IfFalseNode(iff)); 2925 } 2926 2927 // Profile-driven exact type check: 2928 Node* GraphKit::type_check_receiver(Node* receiver, ciKlass* klass, 2929 float prob, 2930 Node* *casted_receiver) { 2931 assert(!klass->is_interface(), "no exact type check on interfaces"); 2932 2933 const TypeKlassPtr* tklass = TypeKlassPtr::make(klass, Type::trust_interfaces); 2934 Node* recv_klass = load_object_klass(receiver); 2935 Node* want_klass = makecon(tklass); 2936 Node* cmp = _gvn.transform(new CmpPNode(recv_klass, want_klass)); 2937 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 2938 IfNode* iff = create_and_xform_if(control(), bol, prob, COUNT_UNKNOWN); 2939 set_control( _gvn.transform(new IfTrueNode (iff))); 2940 Node* fail = _gvn.transform(new IfFalseNode(iff)); 2941 2942 if (!stopped()) { 2943 const TypeOopPtr* receiver_type = _gvn.type(receiver)->isa_oopptr(); 2944 const TypeOopPtr* recvx_type = tklass->as_instance_type(); 2945 assert(recvx_type->klass_is_exact(), ""); 2946 2947 if (!receiver_type->higher_equal(recvx_type)) { // ignore redundant casts 2948 // Subsume downstream occurrences of receiver with a cast to 2949 // recv_xtype, since now we know what the type will be. 2950 Node* cast = new CheckCastPPNode(control(), receiver, recvx_type); 2951 (*casted_receiver) = _gvn.transform(cast); 2952 assert(!(*casted_receiver)->is_top(), "that path should be unreachable"); 2953 // (User must make the replace_in_map call.) 2954 } 2955 } 2956 2957 return fail; 2958 } 2959 2960 //------------------------------subtype_check_receiver------------------------- 2961 Node* GraphKit::subtype_check_receiver(Node* receiver, ciKlass* klass, 2962 Node** casted_receiver) { 2963 const TypeKlassPtr* tklass = TypeKlassPtr::make(klass, Type::trust_interfaces)->try_improve(); 2964 Node* want_klass = makecon(tklass); 2965 2966 Node* slow_ctl = gen_subtype_check(receiver, want_klass); 2967 2968 // Ignore interface type information until interface types are properly tracked. 2969 if (!stopped() && !klass->is_interface()) { 2970 const TypeOopPtr* receiver_type = _gvn.type(receiver)->isa_oopptr(); 2971 const TypeOopPtr* recv_type = tklass->cast_to_exactness(false)->is_klassptr()->as_instance_type(); 2972 if (!receiver_type->higher_equal(recv_type)) { // ignore redundant casts 2973 Node* cast = new CheckCastPPNode(control(), receiver, recv_type); 2974 (*casted_receiver) = _gvn.transform(cast); 2975 } 2976 } 2977 2978 return slow_ctl; 2979 } 2980 2981 //------------------------------seems_never_null------------------------------- 2982 // Use null_seen information if it is available from the profile. 2983 // If we see an unexpected null at a type check we record it and force a 2984 // recompile; the offending check will be recompiled to handle nulls. 2985 // If we see several offending BCIs, then all checks in the 2986 // method will be recompiled. 2987 bool GraphKit::seems_never_null(Node* obj, ciProfileData* data, bool& speculating) { 2988 speculating = !_gvn.type(obj)->speculative_maybe_null(); 2989 Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculating); 2990 if (UncommonNullCast // Cutout for this technique 2991 && obj != null() // And not the -Xcomp stupid case? 2992 && !too_many_traps(reason) 2993 ) { 2994 if (speculating) { 2995 return true; 2996 } 2997 if (data == nullptr) 2998 // Edge case: no mature data. Be optimistic here. 2999 return true; 3000 // If the profile has not seen a null, assume it won't happen. 3001 assert(java_bc() == Bytecodes::_checkcast || 3002 java_bc() == Bytecodes::_instanceof || 3003 java_bc() == Bytecodes::_aastore, "MDO must collect null_seen bit here"); 3004 return !data->as_BitData()->null_seen(); 3005 } 3006 speculating = false; 3007 return false; 3008 } 3009 3010 void GraphKit::guard_klass_being_initialized(Node* klass) { 3011 int init_state_off = in_bytes(InstanceKlass::init_state_offset()); 3012 Node* adr = basic_plus_adr(top(), klass, init_state_off); 3013 Node* init_state = LoadNode::make(_gvn, nullptr, immutable_memory(), adr, 3014 adr->bottom_type()->is_ptr(), TypeInt::BYTE, 3015 T_BYTE, MemNode::acquire); 3016 init_state = _gvn.transform(init_state); 3017 3018 Node* being_initialized_state = makecon(TypeInt::make(InstanceKlass::being_initialized)); 3019 3020 Node* chk = _gvn.transform(new CmpINode(being_initialized_state, init_state)); 3021 Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::eq)); 3022 3023 { BuildCutout unless(this, tst, PROB_MAX); 3024 uncommon_trap(Deoptimization::Reason_initialized, Deoptimization::Action_reinterpret); 3025 } 3026 } 3027 3028 void GraphKit::guard_init_thread(Node* klass) { 3029 int init_thread_off = in_bytes(InstanceKlass::init_thread_offset()); 3030 Node* adr = basic_plus_adr(top(), klass, init_thread_off); 3031 3032 Node* init_thread = LoadNode::make(_gvn, nullptr, immutable_memory(), adr, 3033 adr->bottom_type()->is_ptr(), TypePtr::NOTNULL, 3034 T_ADDRESS, MemNode::unordered); 3035 init_thread = _gvn.transform(init_thread); 3036 3037 Node* cur_thread = _gvn.transform(new ThreadLocalNode()); 3038 3039 Node* chk = _gvn.transform(new CmpPNode(cur_thread, init_thread)); 3040 Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::eq)); 3041 3042 { BuildCutout unless(this, tst, PROB_MAX); 3043 uncommon_trap(Deoptimization::Reason_uninitialized, Deoptimization::Action_none); 3044 } 3045 } 3046 3047 void GraphKit::clinit_barrier(ciInstanceKlass* ik, ciMethod* context) { 3048 if (ik->is_being_initialized()) { 3049 if (C->needs_clinit_barrier(ik, context)) { 3050 Node* klass = makecon(TypeKlassPtr::make(ik)); 3051 guard_klass_being_initialized(klass); 3052 guard_init_thread(klass); 3053 insert_mem_bar(Op_MemBarCPUOrder); 3054 } 3055 } else if (ik->is_initialized()) { 3056 return; // no barrier needed 3057 } else { 3058 uncommon_trap(Deoptimization::Reason_uninitialized, 3059 Deoptimization::Action_reinterpret, 3060 nullptr); 3061 } 3062 } 3063 3064 //------------------------maybe_cast_profiled_receiver------------------------- 3065 // If the profile has seen exactly one type, narrow to exactly that type. 3066 // Subsequent type checks will always fold up. 3067 Node* GraphKit::maybe_cast_profiled_receiver(Node* not_null_obj, 3068 const TypeKlassPtr* require_klass, 3069 ciKlass* spec_klass, 3070 bool safe_for_replace) { 3071 if (!UseTypeProfile || !TypeProfileCasts) return nullptr; 3072 3073 Deoptimization::DeoptReason reason = Deoptimization::reason_class_check(spec_klass != nullptr); 3074 3075 // Make sure we haven't already deoptimized from this tactic. 3076 if (too_many_traps_or_recompiles(reason)) 3077 return nullptr; 3078 3079 // (No, this isn't a call, but it's enough like a virtual call 3080 // to use the same ciMethod accessor to get the profile info...) 3081 // If we have a speculative type use it instead of profiling (which 3082 // may not help us) 3083 ciKlass* exact_kls = spec_klass == nullptr ? profile_has_unique_klass() : spec_klass; 3084 if (exact_kls != nullptr) {// no cast failures here 3085 if (require_klass == nullptr || 3086 C->static_subtype_check(require_klass, TypeKlassPtr::make(exact_kls, Type::trust_interfaces)) == Compile::SSC_always_true) { 3087 // If we narrow the type to match what the type profile sees or 3088 // the speculative type, we can then remove the rest of the 3089 // cast. 3090 // This is a win, even if the exact_kls is very specific, 3091 // because downstream operations, such as method calls, 3092 // will often benefit from the sharper type. 3093 Node* exact_obj = not_null_obj; // will get updated in place... 3094 Node* slow_ctl = type_check_receiver(exact_obj, exact_kls, 1.0, 3095 &exact_obj); 3096 { PreserveJVMState pjvms(this); 3097 set_control(slow_ctl); 3098 uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile); 3099 } 3100 if (safe_for_replace) { 3101 replace_in_map(not_null_obj, exact_obj); 3102 } 3103 return exact_obj; 3104 } 3105 // assert(ssc == Compile::SSC_always_true)... except maybe the profile lied to us. 3106 } 3107 3108 return nullptr; 3109 } 3110 3111 /** 3112 * Cast obj to type and emit guard unless we had too many traps here 3113 * already 3114 * 3115 * @param obj node being casted 3116 * @param type type to cast the node to 3117 * @param not_null true if we know node cannot be null 3118 */ 3119 Node* GraphKit::maybe_cast_profiled_obj(Node* obj, 3120 ciKlass* type, 3121 bool not_null) { 3122 if (stopped()) { 3123 return obj; 3124 } 3125 3126 // type is null if profiling tells us this object is always null 3127 if (type != nullptr) { 3128 Deoptimization::DeoptReason class_reason = Deoptimization::Reason_speculate_class_check; 3129 Deoptimization::DeoptReason null_reason = Deoptimization::Reason_speculate_null_check; 3130 3131 if (!too_many_traps_or_recompiles(null_reason) && 3132 !too_many_traps_or_recompiles(class_reason)) { 3133 Node* not_null_obj = nullptr; 3134 // not_null is true if we know the object is not null and 3135 // there's no need for a null check 3136 if (!not_null) { 3137 Node* null_ctl = top(); 3138 not_null_obj = null_check_oop(obj, &null_ctl, true, true, true); 3139 assert(null_ctl->is_top(), "no null control here"); 3140 } else { 3141 not_null_obj = obj; 3142 } 3143 3144 Node* exact_obj = not_null_obj; 3145 ciKlass* exact_kls = type; 3146 Node* slow_ctl = type_check_receiver(exact_obj, exact_kls, 1.0, 3147 &exact_obj); 3148 { 3149 PreserveJVMState pjvms(this); 3150 set_control(slow_ctl); 3151 uncommon_trap_exact(class_reason, Deoptimization::Action_maybe_recompile); 3152 } 3153 replace_in_map(not_null_obj, exact_obj); 3154 obj = exact_obj; 3155 } 3156 } else { 3157 if (!too_many_traps_or_recompiles(Deoptimization::Reason_null_assert)) { 3158 Node* exact_obj = null_assert(obj); 3159 replace_in_map(obj, exact_obj); 3160 obj = exact_obj; 3161 } 3162 } 3163 return obj; 3164 } 3165 3166 //-------------------------------gen_instanceof-------------------------------- 3167 // Generate an instance-of idiom. Used by both the instance-of bytecode 3168 // and the reflective instance-of call. 3169 Node* GraphKit::gen_instanceof(Node* obj, Node* superklass, bool safe_for_replace) { 3170 kill_dead_locals(); // Benefit all the uncommon traps 3171 assert( !stopped(), "dead parse path should be checked in callers" ); 3172 assert(!TypePtr::NULL_PTR->higher_equal(_gvn.type(superklass)->is_klassptr()), 3173 "must check for not-null not-dead klass in callers"); 3174 3175 // Make the merge point 3176 enum { _obj_path = 1, _fail_path, _null_path, PATH_LIMIT }; 3177 RegionNode* region = new RegionNode(PATH_LIMIT); 3178 Node* phi = new PhiNode(region, TypeInt::BOOL); 3179 C->set_has_split_ifs(true); // Has chance for split-if optimization 3180 3181 ciProfileData* data = nullptr; 3182 if (java_bc() == Bytecodes::_instanceof) { // Only for the bytecode 3183 data = method()->method_data()->bci_to_data(bci()); 3184 } 3185 bool speculative_not_null = false; 3186 bool never_see_null = (ProfileDynamicTypes // aggressive use of profile 3187 && seems_never_null(obj, data, speculative_not_null)); 3188 3189 // Null check; get casted pointer; set region slot 3 3190 Node* null_ctl = top(); 3191 Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null); 3192 3193 // If not_null_obj is dead, only null-path is taken 3194 if (stopped()) { // Doing instance-of on a null? 3195 set_control(null_ctl); 3196 return intcon(0); 3197 } 3198 region->init_req(_null_path, null_ctl); 3199 phi ->init_req(_null_path, intcon(0)); // Set null path value 3200 if (null_ctl == top()) { 3201 // Do this eagerly, so that pattern matches like is_diamond_phi 3202 // will work even during parsing. 3203 assert(_null_path == PATH_LIMIT-1, "delete last"); 3204 region->del_req(_null_path); 3205 phi ->del_req(_null_path); 3206 } 3207 3208 // Do we know the type check always succeed? 3209 bool known_statically = false; 3210 if (_gvn.type(superklass)->singleton()) { 3211 const TypeKlassPtr* superk = _gvn.type(superklass)->is_klassptr(); 3212 const TypeKlassPtr* subk = _gvn.type(obj)->is_oopptr()->as_klass_type(); 3213 if (subk->is_loaded()) { 3214 int static_res = C->static_subtype_check(superk, subk); 3215 known_statically = (static_res == Compile::SSC_always_true || static_res == Compile::SSC_always_false); 3216 } 3217 } 3218 3219 if (!known_statically) { 3220 const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr(); 3221 // We may not have profiling here or it may not help us. If we 3222 // have a speculative type use it to perform an exact cast. 3223 ciKlass* spec_obj_type = obj_type->speculative_type(); 3224 if (spec_obj_type != nullptr || (ProfileDynamicTypes && data != nullptr)) { 3225 Node* cast_obj = maybe_cast_profiled_receiver(not_null_obj, nullptr, spec_obj_type, safe_for_replace); 3226 if (stopped()) { // Profile disagrees with this path. 3227 set_control(null_ctl); // Null is the only remaining possibility. 3228 return intcon(0); 3229 } 3230 if (cast_obj != nullptr) { 3231 not_null_obj = cast_obj; 3232 } 3233 } 3234 } 3235 3236 // Generate the subtype check 3237 Node* not_subtype_ctrl = gen_subtype_check(not_null_obj, superklass); 3238 3239 // Plug in the success path to the general merge in slot 1. 3240 region->init_req(_obj_path, control()); 3241 phi ->init_req(_obj_path, intcon(1)); 3242 3243 // Plug in the failing path to the general merge in slot 2. 3244 region->init_req(_fail_path, not_subtype_ctrl); 3245 phi ->init_req(_fail_path, intcon(0)); 3246 3247 // Return final merged results 3248 set_control( _gvn.transform(region) ); 3249 record_for_igvn(region); 3250 3251 // If we know the type check always succeeds then we don't use the 3252 // profiling data at this bytecode. Don't lose it, feed it to the 3253 // type system as a speculative type. 3254 if (safe_for_replace) { 3255 Node* casted_obj = record_profiled_receiver_for_speculation(obj); 3256 replace_in_map(obj, casted_obj); 3257 } 3258 3259 return _gvn.transform(phi); 3260 } 3261 3262 //-------------------------------gen_checkcast--------------------------------- 3263 // Generate a checkcast idiom. Used by both the checkcast bytecode and the 3264 // array store bytecode. Stack must be as-if BEFORE doing the bytecode so the 3265 // uncommon-trap paths work. Adjust stack after this call. 3266 // If failure_control is supplied and not null, it is filled in with 3267 // the control edge for the cast failure. Otherwise, an appropriate 3268 // uncommon trap or exception is thrown. 3269 Node* GraphKit::gen_checkcast(Node *obj, Node* superklass, 3270 Node* *failure_control) { 3271 kill_dead_locals(); // Benefit all the uncommon traps 3272 const TypeKlassPtr* klass_ptr_type = _gvn.type(superklass)->is_klassptr(); 3273 const TypeKlassPtr* improved_klass_ptr_type = klass_ptr_type->try_improve(); 3274 const TypeOopPtr* toop = improved_klass_ptr_type->cast_to_exactness(false)->as_instance_type(); 3275 3276 // Fast cutout: Check the case that the cast is vacuously true. 3277 // This detects the common cases where the test will short-circuit 3278 // away completely. We do this before we perform the null check, 3279 // because if the test is going to turn into zero code, we don't 3280 // want a residual null check left around. (Causes a slowdown, 3281 // for example, in some objArray manipulations, such as a[i]=a[j].) 3282 if (improved_klass_ptr_type->singleton()) { 3283 const TypeOopPtr* objtp = _gvn.type(obj)->isa_oopptr(); 3284 if (objtp != nullptr) { 3285 switch (C->static_subtype_check(improved_klass_ptr_type, objtp->as_klass_type())) { 3286 case Compile::SSC_always_true: 3287 // If we know the type check always succeed then we don't use 3288 // the profiling data at this bytecode. Don't lose it, feed it 3289 // to the type system as a speculative type. 3290 return record_profiled_receiver_for_speculation(obj); 3291 case Compile::SSC_always_false: 3292 // It needs a null check because a null will *pass* the cast check. 3293 // A non-null value will always produce an exception. 3294 if (!objtp->maybe_null()) { 3295 bool is_aastore = (java_bc() == Bytecodes::_aastore); 3296 Deoptimization::DeoptReason reason = is_aastore ? 3297 Deoptimization::Reason_array_check : Deoptimization::Reason_class_check; 3298 builtin_throw(reason); 3299 return top(); 3300 } else if (!too_many_traps_or_recompiles(Deoptimization::Reason_null_assert)) { 3301 return null_assert(obj); 3302 } 3303 break; // Fall through to full check 3304 default: 3305 break; 3306 } 3307 } 3308 } 3309 3310 ciProfileData* data = nullptr; 3311 bool safe_for_replace = false; 3312 if (failure_control == nullptr) { // use MDO in regular case only 3313 assert(java_bc() == Bytecodes::_aastore || 3314 java_bc() == Bytecodes::_checkcast, 3315 "interpreter profiles type checks only for these BCs"); 3316 data = method()->method_data()->bci_to_data(bci()); 3317 safe_for_replace = true; 3318 } 3319 3320 // Make the merge point 3321 enum { _obj_path = 1, _null_path, PATH_LIMIT }; 3322 RegionNode* region = new RegionNode(PATH_LIMIT); 3323 Node* phi = new PhiNode(region, toop); 3324 C->set_has_split_ifs(true); // Has chance for split-if optimization 3325 3326 // Use null-cast information if it is available 3327 bool speculative_not_null = false; 3328 bool never_see_null = ((failure_control == nullptr) // regular case only 3329 && seems_never_null(obj, data, speculative_not_null)); 3330 3331 // Null check; get casted pointer; set region slot 3 3332 Node* null_ctl = top(); 3333 Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null); 3334 3335 // If not_null_obj is dead, only null-path is taken 3336 if (stopped()) { // Doing instance-of on a null? 3337 set_control(null_ctl); 3338 return null(); 3339 } 3340 region->init_req(_null_path, null_ctl); 3341 phi ->init_req(_null_path, null()); // Set null path value 3342 if (null_ctl == top()) { 3343 // Do this eagerly, so that pattern matches like is_diamond_phi 3344 // will work even during parsing. 3345 assert(_null_path == PATH_LIMIT-1, "delete last"); 3346 region->del_req(_null_path); 3347 phi ->del_req(_null_path); 3348 } 3349 3350 Node* cast_obj = nullptr; 3351 if (improved_klass_ptr_type->klass_is_exact()) { 3352 // The following optimization tries to statically cast the speculative type of the object 3353 // (for example obtained during profiling) to the type of the superklass and then do a 3354 // dynamic check that the type of the object is what we expect. To work correctly 3355 // for checkcast and aastore the type of superklass should be exact. 3356 const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr(); 3357 // We may not have profiling here or it may not help us. If we have 3358 // a speculative type use it to perform an exact cast. 3359 ciKlass* spec_obj_type = obj_type->speculative_type(); 3360 if (spec_obj_type != nullptr || data != nullptr) { 3361 cast_obj = maybe_cast_profiled_receiver(not_null_obj, improved_klass_ptr_type, spec_obj_type, safe_for_replace); 3362 if (cast_obj != nullptr) { 3363 if (failure_control != nullptr) // failure is now impossible 3364 (*failure_control) = top(); 3365 // adjust the type of the phi to the exact klass: 3366 phi->raise_bottom_type(_gvn.type(cast_obj)->meet_speculative(TypePtr::NULL_PTR)); 3367 } 3368 } 3369 } 3370 3371 if (cast_obj == nullptr) { 3372 // Generate the subtype check 3373 Node* improved_superklass = superklass; 3374 if (improved_klass_ptr_type != klass_ptr_type && improved_klass_ptr_type->singleton()) { 3375 improved_superklass = makecon(improved_klass_ptr_type); 3376 } 3377 Node* not_subtype_ctrl = gen_subtype_check(not_null_obj, improved_superklass); 3378 3379 // Plug in success path into the merge 3380 cast_obj = _gvn.transform(new CheckCastPPNode(control(), not_null_obj, toop)); 3381 // Failure path ends in uncommon trap (or may be dead - failure impossible) 3382 if (failure_control == nullptr) { 3383 if (not_subtype_ctrl != top()) { // If failure is possible 3384 PreserveJVMState pjvms(this); 3385 set_control(not_subtype_ctrl); 3386 bool is_aastore = (java_bc() == Bytecodes::_aastore); 3387 Deoptimization::DeoptReason reason = is_aastore ? 3388 Deoptimization::Reason_array_check : Deoptimization::Reason_class_check; 3389 builtin_throw(reason); 3390 } 3391 } else { 3392 (*failure_control) = not_subtype_ctrl; 3393 } 3394 } 3395 3396 region->init_req(_obj_path, control()); 3397 phi ->init_req(_obj_path, cast_obj); 3398 3399 // A merge of null or Casted-NotNull obj 3400 Node* res = _gvn.transform(phi); 3401 3402 // Note I do NOT always 'replace_in_map(obj,result)' here. 3403 // if( tk->klass()->can_be_primary_super() ) 3404 // This means that if I successfully store an Object into an array-of-String 3405 // I 'forget' that the Object is really now known to be a String. I have to 3406 // do this because we don't have true union types for interfaces - if I store 3407 // a Baz into an array-of-Interface and then tell the optimizer it's an 3408 // Interface, I forget that it's also a Baz and cannot do Baz-like field 3409 // references to it. FIX THIS WHEN UNION TYPES APPEAR! 3410 // replace_in_map( obj, res ); 3411 3412 // Return final merged results 3413 set_control( _gvn.transform(region) ); 3414 record_for_igvn(region); 3415 3416 return record_profiled_receiver_for_speculation(res); 3417 } 3418 3419 //------------------------------next_monitor----------------------------------- 3420 // What number should be given to the next monitor? 3421 int GraphKit::next_monitor() { 3422 int current = jvms()->monitor_depth()* C->sync_stack_slots(); 3423 int next = current + C->sync_stack_slots(); 3424 // Keep the toplevel high water mark current: 3425 if (C->fixed_slots() < next) C->set_fixed_slots(next); 3426 return current; 3427 } 3428 3429 //------------------------------insert_mem_bar--------------------------------- 3430 // Memory barrier to avoid floating things around 3431 // The membar serves as a pinch point between both control and all memory slices. 3432 Node* GraphKit::insert_mem_bar(int opcode, Node* precedent) { 3433 MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent); 3434 mb->init_req(TypeFunc::Control, control()); 3435 mb->init_req(TypeFunc::Memory, reset_memory()); 3436 Node* membar = _gvn.transform(mb); 3437 set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control))); 3438 set_all_memory_call(membar); 3439 return membar; 3440 } 3441 3442 //-------------------------insert_mem_bar_volatile---------------------------- 3443 // Memory barrier to avoid floating things around 3444 // The membar serves as a pinch point between both control and memory(alias_idx). 3445 // If you want to make a pinch point on all memory slices, do not use this 3446 // function (even with AliasIdxBot); use insert_mem_bar() instead. 3447 Node* GraphKit::insert_mem_bar_volatile(int opcode, int alias_idx, Node* precedent) { 3448 // When Parse::do_put_xxx updates a volatile field, it appends a series 3449 // of MemBarVolatile nodes, one for *each* volatile field alias category. 3450 // The first membar is on the same memory slice as the field store opcode. 3451 // This forces the membar to follow the store. (Bug 6500685 broke this.) 3452 // All the other membars (for other volatile slices, including AliasIdxBot, 3453 // which stands for all unknown volatile slices) are control-dependent 3454 // on the first membar. This prevents later volatile loads or stores 3455 // from sliding up past the just-emitted store. 3456 3457 MemBarNode* mb = MemBarNode::make(C, opcode, alias_idx, precedent); 3458 mb->set_req(TypeFunc::Control,control()); 3459 if (alias_idx == Compile::AliasIdxBot) { 3460 mb->set_req(TypeFunc::Memory, merged_memory()->base_memory()); 3461 } else { 3462 assert(!(opcode == Op_Initialize && alias_idx != Compile::AliasIdxRaw), "fix caller"); 3463 mb->set_req(TypeFunc::Memory, memory(alias_idx)); 3464 } 3465 Node* membar = _gvn.transform(mb); 3466 set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control))); 3467 if (alias_idx == Compile::AliasIdxBot) { 3468 merged_memory()->set_base_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory))); 3469 } else { 3470 set_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)),alias_idx); 3471 } 3472 return membar; 3473 } 3474 3475 //------------------------------shared_lock------------------------------------ 3476 // Emit locking code. 3477 FastLockNode* GraphKit::shared_lock(Node* obj) { 3478 // bci is either a monitorenter bc or InvocationEntryBci 3479 // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces 3480 assert(SynchronizationEntryBCI == InvocationEntryBci, ""); 3481 3482 if( !GenerateSynchronizationCode ) 3483 return nullptr; // Not locking things? 3484 if (stopped()) // Dead monitor? 3485 return nullptr; 3486 3487 assert(dead_locals_are_killed(), "should kill locals before sync. point"); 3488 3489 // Box the stack location 3490 Node* box = new BoxLockNode(next_monitor()); 3491 // Check for bailout after new BoxLockNode 3492 if (failing()) { return nullptr; } 3493 box = _gvn.transform(box); 3494 Node* mem = reset_memory(); 3495 3496 FastLockNode * flock = _gvn.transform(new FastLockNode(nullptr, obj, box) )->as_FastLock(); 3497 3498 // Add monitor to debug info for the slow path. If we block inside the 3499 // slow path and de-opt, we need the monitor hanging around 3500 map()->push_monitor( flock ); 3501 3502 const TypeFunc *tf = LockNode::lock_type(); 3503 LockNode *lock = new LockNode(C, tf); 3504 3505 lock->init_req( TypeFunc::Control, control() ); 3506 lock->init_req( TypeFunc::Memory , mem ); 3507 lock->init_req( TypeFunc::I_O , top() ) ; // does no i/o 3508 lock->init_req( TypeFunc::FramePtr, frameptr() ); 3509 lock->init_req( TypeFunc::ReturnAdr, top() ); 3510 3511 lock->init_req(TypeFunc::Parms + 0, obj); 3512 lock->init_req(TypeFunc::Parms + 1, box); 3513 lock->init_req(TypeFunc::Parms + 2, flock); 3514 add_safepoint_edges(lock); 3515 3516 lock = _gvn.transform( lock )->as_Lock(); 3517 3518 // lock has no side-effects, sets few values 3519 set_predefined_output_for_runtime_call(lock, mem, TypeRawPtr::BOTTOM); 3520 3521 insert_mem_bar(Op_MemBarAcquireLock); 3522 3523 // Add this to the worklist so that the lock can be eliminated 3524 record_for_igvn(lock); 3525 3526 #ifndef PRODUCT 3527 if (PrintLockStatistics) { 3528 // Update the counter for this lock. Don't bother using an atomic 3529 // operation since we don't require absolute accuracy. 3530 lock->create_lock_counter(map()->jvms()); 3531 increment_counter(lock->counter()->addr()); 3532 } 3533 #endif 3534 3535 return flock; 3536 } 3537 3538 3539 //------------------------------shared_unlock---------------------------------- 3540 // Emit unlocking code. 3541 void GraphKit::shared_unlock(Node* box, Node* obj) { 3542 // bci is either a monitorenter bc or InvocationEntryBci 3543 // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces 3544 assert(SynchronizationEntryBCI == InvocationEntryBci, ""); 3545 3546 if( !GenerateSynchronizationCode ) 3547 return; 3548 if (stopped()) { // Dead monitor? 3549 map()->pop_monitor(); // Kill monitor from debug info 3550 return; 3551 } 3552 3553 // Memory barrier to avoid floating things down past the locked region 3554 insert_mem_bar(Op_MemBarReleaseLock); 3555 3556 const TypeFunc *tf = OptoRuntime::complete_monitor_exit_Type(); 3557 UnlockNode *unlock = new UnlockNode(C, tf); 3558 #ifdef ASSERT 3559 unlock->set_dbg_jvms(sync_jvms()); 3560 #endif 3561 uint raw_idx = Compile::AliasIdxRaw; 3562 unlock->init_req( TypeFunc::Control, control() ); 3563 unlock->init_req( TypeFunc::Memory , memory(raw_idx) ); 3564 unlock->init_req( TypeFunc::I_O , top() ) ; // does no i/o 3565 unlock->init_req( TypeFunc::FramePtr, frameptr() ); 3566 unlock->init_req( TypeFunc::ReturnAdr, top() ); 3567 3568 unlock->init_req(TypeFunc::Parms + 0, obj); 3569 unlock->init_req(TypeFunc::Parms + 1, box); 3570 unlock = _gvn.transform(unlock)->as_Unlock(); 3571 3572 Node* mem = reset_memory(); 3573 3574 // unlock has no side-effects, sets few values 3575 set_predefined_output_for_runtime_call(unlock, mem, TypeRawPtr::BOTTOM); 3576 3577 // Kill monitor from debug info 3578 map()->pop_monitor( ); 3579 } 3580 3581 //-------------------------------get_layout_helper----------------------------- 3582 // If the given klass is a constant or known to be an array, 3583 // fetch the constant layout helper value into constant_value 3584 // and return null. Otherwise, load the non-constant 3585 // layout helper value, and return the node which represents it. 3586 // This two-faced routine is useful because allocation sites 3587 // almost always feature constant types. 3588 Node* GraphKit::get_layout_helper(Node* klass_node, jint& constant_value) { 3589 const TypeKlassPtr* klass_t = _gvn.type(klass_node)->isa_klassptr(); 3590 if (!StressReflectiveCode && klass_t != nullptr) { 3591 bool xklass = klass_t->klass_is_exact(); 3592 if (xklass || (klass_t->isa_aryklassptr() && klass_t->is_aryklassptr()->elem() != Type::BOTTOM)) { 3593 jint lhelper; 3594 if (klass_t->isa_aryklassptr()) { 3595 BasicType elem = klass_t->as_instance_type()->isa_aryptr()->elem()->array_element_basic_type(); 3596 if (is_reference_type(elem, true)) { 3597 elem = T_OBJECT; 3598 } 3599 lhelper = Klass::array_layout_helper(elem); 3600 } else { 3601 lhelper = klass_t->is_instklassptr()->exact_klass()->layout_helper(); 3602 } 3603 if (lhelper != Klass::_lh_neutral_value) { 3604 constant_value = lhelper; 3605 return (Node*) nullptr; 3606 } 3607 } 3608 } 3609 constant_value = Klass::_lh_neutral_value; // put in a known value 3610 Node* lhp = basic_plus_adr(klass_node, klass_node, in_bytes(Klass::layout_helper_offset())); 3611 return make_load(nullptr, lhp, TypeInt::INT, T_INT, MemNode::unordered); 3612 } 3613 3614 // We just put in an allocate/initialize with a big raw-memory effect. 3615 // Hook selected additional alias categories on the initialization. 3616 static void hook_memory_on_init(GraphKit& kit, int alias_idx, 3617 MergeMemNode* init_in_merge, 3618 Node* init_out_raw) { 3619 DEBUG_ONLY(Node* init_in_raw = init_in_merge->base_memory()); 3620 assert(init_in_merge->memory_at(alias_idx) == init_in_raw, ""); 3621 3622 Node* prevmem = kit.memory(alias_idx); 3623 init_in_merge->set_memory_at(alias_idx, prevmem); 3624 kit.set_memory(init_out_raw, alias_idx); 3625 } 3626 3627 //---------------------------set_output_for_allocation------------------------- 3628 Node* GraphKit::set_output_for_allocation(AllocateNode* alloc, 3629 const TypeOopPtr* oop_type, 3630 bool deoptimize_on_exception) { 3631 int rawidx = Compile::AliasIdxRaw; 3632 alloc->set_req( TypeFunc::FramePtr, frameptr() ); 3633 add_safepoint_edges(alloc); 3634 Node* allocx = _gvn.transform(alloc); 3635 set_control( _gvn.transform(new ProjNode(allocx, TypeFunc::Control) ) ); 3636 // create memory projection for i_o 3637 set_memory ( _gvn.transform( new ProjNode(allocx, TypeFunc::Memory, true) ), rawidx ); 3638 make_slow_call_ex(allocx, env()->Throwable_klass(), true, deoptimize_on_exception); 3639 3640 // create a memory projection as for the normal control path 3641 Node* malloc = _gvn.transform(new ProjNode(allocx, TypeFunc::Memory)); 3642 set_memory(malloc, rawidx); 3643 3644 // a normal slow-call doesn't change i_o, but an allocation does 3645 // we create a separate i_o projection for the normal control path 3646 set_i_o(_gvn.transform( new ProjNode(allocx, TypeFunc::I_O, false) ) ); 3647 Node* rawoop = _gvn.transform( new ProjNode(allocx, TypeFunc::Parms) ); 3648 3649 // put in an initialization barrier 3650 InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, rawidx, 3651 rawoop)->as_Initialize(); 3652 assert(alloc->initialization() == init, "2-way macro link must work"); 3653 assert(init ->allocation() == alloc, "2-way macro link must work"); 3654 { 3655 // Extract memory strands which may participate in the new object's 3656 // initialization, and source them from the new InitializeNode. 3657 // This will allow us to observe initializations when they occur, 3658 // and link them properly (as a group) to the InitializeNode. 3659 assert(init->in(InitializeNode::Memory) == malloc, ""); 3660 MergeMemNode* minit_in = MergeMemNode::make(malloc); 3661 init->set_req(InitializeNode::Memory, minit_in); 3662 record_for_igvn(minit_in); // fold it up later, if possible 3663 Node* minit_out = memory(rawidx); 3664 assert(minit_out->is_Proj() && minit_out->in(0) == init, ""); 3665 // Add an edge in the MergeMem for the header fields so an access 3666 // to one of those has correct memory state 3667 set_memory(minit_out, C->get_alias_index(oop_type->add_offset(oopDesc::mark_offset_in_bytes()))); 3668 set_memory(minit_out, C->get_alias_index(oop_type->add_offset(oopDesc::klass_offset_in_bytes()))); 3669 if (oop_type->isa_aryptr()) { 3670 const TypePtr* telemref = oop_type->add_offset(Type::OffsetBot); 3671 int elemidx = C->get_alias_index(telemref); 3672 hook_memory_on_init(*this, elemidx, minit_in, minit_out); 3673 } else if (oop_type->isa_instptr()) { 3674 ciInstanceKlass* ik = oop_type->is_instptr()->instance_klass(); 3675 for (int i = 0, len = ik->nof_nonstatic_fields(); i < len; i++) { 3676 ciField* field = ik->nonstatic_field_at(i); 3677 if (field->offset_in_bytes() >= TrackedInitializationLimit * HeapWordSize) 3678 continue; // do not bother to track really large numbers of fields 3679 // Find (or create) the alias category for this field: 3680 int fieldidx = C->alias_type(field)->index(); 3681 hook_memory_on_init(*this, fieldidx, minit_in, minit_out); 3682 } 3683 } 3684 } 3685 3686 // Cast raw oop to the real thing... 3687 Node* javaoop = new CheckCastPPNode(control(), rawoop, oop_type); 3688 javaoop = _gvn.transform(javaoop); 3689 C->set_recent_alloc(control(), javaoop); 3690 assert(just_allocated_object(control()) == javaoop, "just allocated"); 3691 3692 #ifdef ASSERT 3693 { // Verify that the AllocateNode::Ideal_allocation recognizers work: 3694 assert(AllocateNode::Ideal_allocation(rawoop) == alloc, 3695 "Ideal_allocation works"); 3696 assert(AllocateNode::Ideal_allocation(javaoop) == alloc, 3697 "Ideal_allocation works"); 3698 if (alloc->is_AllocateArray()) { 3699 assert(AllocateArrayNode::Ideal_array_allocation(rawoop) == alloc->as_AllocateArray(), 3700 "Ideal_allocation works"); 3701 assert(AllocateArrayNode::Ideal_array_allocation(javaoop) == alloc->as_AllocateArray(), 3702 "Ideal_allocation works"); 3703 } else { 3704 assert(alloc->in(AllocateNode::ALength)->is_top(), "no length, please"); 3705 } 3706 } 3707 #endif //ASSERT 3708 3709 return javaoop; 3710 } 3711 3712 //---------------------------new_instance-------------------------------------- 3713 // This routine takes a klass_node which may be constant (for a static type) 3714 // or may be non-constant (for reflective code). It will work equally well 3715 // for either, and the graph will fold nicely if the optimizer later reduces 3716 // the type to a constant. 3717 // The optional arguments are for specialized use by intrinsics: 3718 // - If 'extra_slow_test' if not null is an extra condition for the slow-path. 3719 // - If 'return_size_val', report the total object size to the caller. 3720 // - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize) 3721 Node* GraphKit::new_instance(Node* klass_node, 3722 Node* extra_slow_test, 3723 Node* *return_size_val, 3724 bool deoptimize_on_exception) { 3725 // Compute size in doublewords 3726 // The size is always an integral number of doublewords, represented 3727 // as a positive bytewise size stored in the klass's layout_helper. 3728 // The layout_helper also encodes (in a low bit) the need for a slow path. 3729 jint layout_con = Klass::_lh_neutral_value; 3730 Node* layout_val = get_layout_helper(klass_node, layout_con); 3731 int layout_is_con = (layout_val == nullptr); 3732 3733 if (extra_slow_test == nullptr) extra_slow_test = intcon(0); 3734 // Generate the initial go-slow test. It's either ALWAYS (return a 3735 // Node for 1) or NEVER (return a null) or perhaps (in the reflective 3736 // case) a computed value derived from the layout_helper. 3737 Node* initial_slow_test = nullptr; 3738 if (layout_is_con) { 3739 assert(!StressReflectiveCode, "stress mode does not use these paths"); 3740 bool must_go_slow = Klass::layout_helper_needs_slow_path(layout_con); 3741 initial_slow_test = must_go_slow ? intcon(1) : extra_slow_test; 3742 } else { // reflective case 3743 // This reflective path is used by Unsafe.allocateInstance. 3744 // (It may be stress-tested by specifying StressReflectiveCode.) 3745 // Basically, we want to get into the VM is there's an illegal argument. 3746 Node* bit = intcon(Klass::_lh_instance_slow_path_bit); 3747 initial_slow_test = _gvn.transform( new AndINode(layout_val, bit) ); 3748 if (extra_slow_test != intcon(0)) { 3749 initial_slow_test = _gvn.transform( new OrINode(initial_slow_test, extra_slow_test) ); 3750 } 3751 // (Macro-expander will further convert this to a Bool, if necessary.) 3752 } 3753 3754 // Find the size in bytes. This is easy; it's the layout_helper. 3755 // The size value must be valid even if the slow path is taken. 3756 Node* size = nullptr; 3757 if (layout_is_con) { 3758 size = MakeConX(Klass::layout_helper_size_in_bytes(layout_con)); 3759 } else { // reflective case 3760 // This reflective path is used by clone and Unsafe.allocateInstance. 3761 size = ConvI2X(layout_val); 3762 3763 // Clear the low bits to extract layout_helper_size_in_bytes: 3764 assert((int)Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit"); 3765 Node* mask = MakeConX(~ (intptr_t)right_n_bits(LogBytesPerLong)); 3766 size = _gvn.transform( new AndXNode(size, mask) ); 3767 } 3768 if (return_size_val != nullptr) { 3769 (*return_size_val) = size; 3770 } 3771 3772 // This is a precise notnull oop of the klass. 3773 // (Actually, it need not be precise if this is a reflective allocation.) 3774 // It's what we cast the result to. 3775 const TypeKlassPtr* tklass = _gvn.type(klass_node)->isa_klassptr(); 3776 if (!tklass) tklass = TypeInstKlassPtr::OBJECT; 3777 const TypeOopPtr* oop_type = tklass->as_instance_type(); 3778 3779 // Now generate allocation code 3780 3781 // The entire memory state is needed for slow path of the allocation 3782 // since GC and deoptimization can happened. 3783 Node *mem = reset_memory(); 3784 set_all_memory(mem); // Create new memory state 3785 3786 AllocateNode* alloc = new AllocateNode(C, AllocateNode::alloc_type(Type::TOP), 3787 control(), mem, i_o(), 3788 size, klass_node, 3789 initial_slow_test); 3790 3791 return set_output_for_allocation(alloc, oop_type, deoptimize_on_exception); 3792 } 3793 3794 //-------------------------------new_array------------------------------------- 3795 // helper for both newarray and anewarray 3796 // The 'length' parameter is (obviously) the length of the array. 3797 // The optional arguments are for specialized use by intrinsics: 3798 // - If 'return_size_val', report the non-padded array size (sum of header size 3799 // and array body) to the caller. 3800 // - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize) 3801 Node* GraphKit::new_array(Node* klass_node, // array klass (maybe variable) 3802 Node* length, // number of array elements 3803 int nargs, // number of arguments to push back for uncommon trap 3804 Node* *return_size_val, 3805 bool deoptimize_on_exception) { 3806 jint layout_con = Klass::_lh_neutral_value; 3807 Node* layout_val = get_layout_helper(klass_node, layout_con); 3808 int layout_is_con = (layout_val == nullptr); 3809 3810 if (!layout_is_con && !StressReflectiveCode && 3811 !too_many_traps(Deoptimization::Reason_class_check)) { 3812 // This is a reflective array creation site. 3813 // Optimistically assume that it is a subtype of Object[], 3814 // so that we can fold up all the address arithmetic. 3815 layout_con = Klass::array_layout_helper(T_OBJECT); 3816 Node* cmp_lh = _gvn.transform( new CmpINode(layout_val, intcon(layout_con)) ); 3817 Node* bol_lh = _gvn.transform( new BoolNode(cmp_lh, BoolTest::eq) ); 3818 { BuildCutout unless(this, bol_lh, PROB_MAX); 3819 inc_sp(nargs); 3820 uncommon_trap(Deoptimization::Reason_class_check, 3821 Deoptimization::Action_maybe_recompile); 3822 } 3823 layout_val = nullptr; 3824 layout_is_con = true; 3825 } 3826 3827 // Generate the initial go-slow test. Make sure we do not overflow 3828 // if length is huge (near 2Gig) or negative! We do not need 3829 // exact double-words here, just a close approximation of needed 3830 // double-words. We can't add any offset or rounding bits, lest we 3831 // take a size -1 of bytes and make it positive. Use an unsigned 3832 // compare, so negative sizes look hugely positive. 3833 int fast_size_limit = FastAllocateSizeLimit; 3834 if (layout_is_con) { 3835 assert(!StressReflectiveCode, "stress mode does not use these paths"); 3836 // Increase the size limit if we have exact knowledge of array type. 3837 int log2_esize = Klass::layout_helper_log2_element_size(layout_con); 3838 fast_size_limit <<= (LogBytesPerLong - log2_esize); 3839 } 3840 3841 Node* initial_slow_cmp = _gvn.transform( new CmpUNode( length, intcon( fast_size_limit ) ) ); 3842 Node* initial_slow_test = _gvn.transform( new BoolNode( initial_slow_cmp, BoolTest::gt ) ); 3843 3844 // --- Size Computation --- 3845 // array_size = round_to_heap(array_header + (length << elem_shift)); 3846 // where round_to_heap(x) == align_to(x, MinObjAlignmentInBytes) 3847 // and align_to(x, y) == ((x + y-1) & ~(y-1)) 3848 // The rounding mask is strength-reduced, if possible. 3849 int round_mask = MinObjAlignmentInBytes - 1; 3850 Node* header_size = nullptr; 3851 // (T_BYTE has the weakest alignment and size restrictions...) 3852 if (layout_is_con) { 3853 int hsize = Klass::layout_helper_header_size(layout_con); 3854 int eshift = Klass::layout_helper_log2_element_size(layout_con); 3855 if ((round_mask & ~right_n_bits(eshift)) == 0) 3856 round_mask = 0; // strength-reduce it if it goes away completely 3857 assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded"); 3858 int header_size_min = arrayOopDesc::base_offset_in_bytes(T_BYTE); 3859 assert(header_size_min <= hsize, "generic minimum is smallest"); 3860 header_size = intcon(hsize); 3861 } else { 3862 Node* hss = intcon(Klass::_lh_header_size_shift); 3863 Node* hsm = intcon(Klass::_lh_header_size_mask); 3864 header_size = _gvn.transform(new URShiftINode(layout_val, hss)); 3865 header_size = _gvn.transform(new AndINode(header_size, hsm)); 3866 } 3867 3868 Node* elem_shift = nullptr; 3869 if (layout_is_con) { 3870 int eshift = Klass::layout_helper_log2_element_size(layout_con); 3871 if (eshift != 0) 3872 elem_shift = intcon(eshift); 3873 } else { 3874 // There is no need to mask or shift this value. 3875 // The semantics of LShiftINode include an implicit mask to 0x1F. 3876 assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place"); 3877 elem_shift = layout_val; 3878 } 3879 3880 // Transition to native address size for all offset calculations: 3881 Node* lengthx = ConvI2X(length); 3882 Node* headerx = ConvI2X(header_size); 3883 #ifdef _LP64 3884 { const TypeInt* tilen = _gvn.find_int_type(length); 3885 if (tilen != nullptr && tilen->_lo < 0) { 3886 // Add a manual constraint to a positive range. Cf. array_element_address. 3887 jint size_max = fast_size_limit; 3888 if (size_max > tilen->_hi) size_max = tilen->_hi; 3889 const TypeInt* tlcon = TypeInt::make(0, size_max, Type::WidenMin); 3890 3891 // Only do a narrow I2L conversion if the range check passed. 3892 IfNode* iff = new IfNode(control(), initial_slow_test, PROB_MIN, COUNT_UNKNOWN); 3893 _gvn.transform(iff); 3894 RegionNode* region = new RegionNode(3); 3895 _gvn.set_type(region, Type::CONTROL); 3896 lengthx = new PhiNode(region, TypeLong::LONG); 3897 _gvn.set_type(lengthx, TypeLong::LONG); 3898 3899 // Range check passed. Use ConvI2L node with narrow type. 3900 Node* passed = IfFalse(iff); 3901 region->init_req(1, passed); 3902 // Make I2L conversion control dependent to prevent it from 3903 // floating above the range check during loop optimizations. 3904 lengthx->init_req(1, C->constrained_convI2L(&_gvn, length, tlcon, passed)); 3905 3906 // Range check failed. Use ConvI2L with wide type because length may be invalid. 3907 region->init_req(2, IfTrue(iff)); 3908 lengthx->init_req(2, ConvI2X(length)); 3909 3910 set_control(region); 3911 record_for_igvn(region); 3912 record_for_igvn(lengthx); 3913 } 3914 } 3915 #endif 3916 3917 // Combine header size and body size for the array copy part, then align (if 3918 // necessary) for the allocation part. This computation cannot overflow, 3919 // because it is used only in two places, one where the length is sharply 3920 // limited, and the other after a successful allocation. 3921 Node* abody = lengthx; 3922 if (elem_shift != nullptr) { 3923 abody = _gvn.transform(new LShiftXNode(lengthx, elem_shift)); 3924 } 3925 Node* non_rounded_size = _gvn.transform(new AddXNode(headerx, abody)); 3926 3927 if (return_size_val != nullptr) { 3928 // This is the size 3929 (*return_size_val) = non_rounded_size; 3930 } 3931 3932 Node* size = non_rounded_size; 3933 if (round_mask != 0) { 3934 Node* mask1 = MakeConX(round_mask); 3935 size = _gvn.transform(new AddXNode(size, mask1)); 3936 Node* mask2 = MakeConX(~round_mask); 3937 size = _gvn.transform(new AndXNode(size, mask2)); 3938 } 3939 // else if round_mask == 0, the size computation is self-rounding 3940 3941 // Now generate allocation code 3942 3943 // The entire memory state is needed for slow path of the allocation 3944 // since GC and deoptimization can happened. 3945 Node *mem = reset_memory(); 3946 set_all_memory(mem); // Create new memory state 3947 3948 if (initial_slow_test->is_Bool()) { 3949 // Hide it behind a CMoveI, or else PhaseIdealLoop::split_up will get sick. 3950 initial_slow_test = initial_slow_test->as_Bool()->as_int_value(&_gvn); 3951 } 3952 3953 const TypeOopPtr* ary_type = _gvn.type(klass_node)->is_klassptr()->as_instance_type(); 3954 Node* valid_length_test = _gvn.intcon(1); 3955 if (ary_type->isa_aryptr()) { 3956 BasicType bt = ary_type->isa_aryptr()->elem()->array_element_basic_type(); 3957 jint max = TypeAryPtr::max_array_length(bt); 3958 Node* valid_length_cmp = _gvn.transform(new CmpUNode(length, intcon(max))); 3959 valid_length_test = _gvn.transform(new BoolNode(valid_length_cmp, BoolTest::le)); 3960 } 3961 3962 // Create the AllocateArrayNode and its result projections 3963 AllocateArrayNode* alloc 3964 = new AllocateArrayNode(C, AllocateArrayNode::alloc_type(TypeInt::INT), 3965 control(), mem, i_o(), 3966 size, klass_node, 3967 initial_slow_test, 3968 length, valid_length_test); 3969 3970 // Cast to correct type. Note that the klass_node may be constant or not, 3971 // and in the latter case the actual array type will be inexact also. 3972 // (This happens via a non-constant argument to inline_native_newArray.) 3973 // In any case, the value of klass_node provides the desired array type. 3974 const TypeInt* length_type = _gvn.find_int_type(length); 3975 if (ary_type->isa_aryptr() && length_type != nullptr) { 3976 // Try to get a better type than POS for the size 3977 ary_type = ary_type->is_aryptr()->cast_to_size(length_type); 3978 } 3979 3980 Node* javaoop = set_output_for_allocation(alloc, ary_type, deoptimize_on_exception); 3981 3982 array_ideal_length(alloc, ary_type, true); 3983 return javaoop; 3984 } 3985 3986 // The following "Ideal_foo" functions are placed here because they recognize 3987 // the graph shapes created by the functions immediately above. 3988 3989 //---------------------------Ideal_allocation---------------------------------- 3990 // Given an oop pointer or raw pointer, see if it feeds from an AllocateNode. 3991 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr) { 3992 if (ptr == nullptr) { // reduce dumb test in callers 3993 return nullptr; 3994 } 3995 3996 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 3997 ptr = bs->step_over_gc_barrier(ptr); 3998 3999 if (ptr->is_CheckCastPP()) { // strip only one raw-to-oop cast 4000 ptr = ptr->in(1); 4001 if (ptr == nullptr) return nullptr; 4002 } 4003 // Return null for allocations with several casts: 4004 // j.l.reflect.Array.newInstance(jobject, jint) 4005 // Object.clone() 4006 // to keep more precise type from last cast. 4007 if (ptr->is_Proj()) { 4008 Node* allo = ptr->in(0); 4009 if (allo != nullptr && allo->is_Allocate()) { 4010 return allo->as_Allocate(); 4011 } 4012 } 4013 // Report failure to match. 4014 return nullptr; 4015 } 4016 4017 // Fancy version which also strips off an offset (and reports it to caller). 4018 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseValues* phase, 4019 intptr_t& offset) { 4020 Node* base = AddPNode::Ideal_base_and_offset(ptr, phase, offset); 4021 if (base == nullptr) return nullptr; 4022 return Ideal_allocation(base); 4023 } 4024 4025 // Trace Initialize <- Proj[Parm] <- Allocate 4026 AllocateNode* InitializeNode::allocation() { 4027 Node* rawoop = in(InitializeNode::RawAddress); 4028 if (rawoop->is_Proj()) { 4029 Node* alloc = rawoop->in(0); 4030 if (alloc->is_Allocate()) { 4031 return alloc->as_Allocate(); 4032 } 4033 } 4034 return nullptr; 4035 } 4036 4037 // Trace Allocate -> Proj[Parm] -> Initialize 4038 InitializeNode* AllocateNode::initialization() { 4039 ProjNode* rawoop = proj_out_or_null(AllocateNode::RawAddress); 4040 if (rawoop == nullptr) return nullptr; 4041 for (DUIterator_Fast imax, i = rawoop->fast_outs(imax); i < imax; i++) { 4042 Node* init = rawoop->fast_out(i); 4043 if (init->is_Initialize()) { 4044 assert(init->as_Initialize()->allocation() == this, "2-way link"); 4045 return init->as_Initialize(); 4046 } 4047 } 4048 return nullptr; 4049 } 4050 4051 // Add a Parse Predicate with an uncommon trap on the failing/false path. Normal control will continue on the true path. 4052 void GraphKit::add_parse_predicate(Deoptimization::DeoptReason reason, const int nargs) { 4053 // Too many traps seen? 4054 if (too_many_traps(reason)) { 4055 #ifdef ASSERT 4056 if (TraceLoopPredicate) { 4057 int tc = C->trap_count(reason); 4058 tty->print("too many traps=%s tcount=%d in ", 4059 Deoptimization::trap_reason_name(reason), tc); 4060 method()->print(); // which method has too many predicate traps 4061 tty->cr(); 4062 } 4063 #endif 4064 // We cannot afford to take more traps here, 4065 // do not generate Parse Predicate. 4066 return; 4067 } 4068 4069 ParsePredicateNode* parse_predicate = new ParsePredicateNode(control(), reason, &_gvn); 4070 _gvn.set_type(parse_predicate, parse_predicate->Value(&_gvn)); 4071 Node* if_false = _gvn.transform(new IfFalseNode(parse_predicate)); 4072 { 4073 PreserveJVMState pjvms(this); 4074 set_control(if_false); 4075 inc_sp(nargs); 4076 uncommon_trap(reason, Deoptimization::Action_maybe_recompile); 4077 } 4078 Node* if_true = _gvn.transform(new IfTrueNode(parse_predicate)); 4079 set_control(if_true); 4080 } 4081 4082 // Add Parse Predicates which serve as placeholders to create new Runtime Predicates above them. All 4083 // Runtime Predicates inside a Runtime Predicate block share the same uncommon trap as the Parse Predicate. 4084 void GraphKit::add_parse_predicates(int nargs) { 4085 if (UseLoopPredicate) { 4086 add_parse_predicate(Deoptimization::Reason_predicate, nargs); 4087 } 4088 if (UseProfiledLoopPredicate) { 4089 add_parse_predicate(Deoptimization::Reason_profile_predicate, nargs); 4090 } 4091 // Loop Limit Check Predicate should be near the loop. 4092 add_parse_predicate(Deoptimization::Reason_loop_limit_check, nargs); 4093 } 4094 4095 void GraphKit::sync_kit(IdealKit& ideal) { 4096 set_all_memory(ideal.merged_memory()); 4097 set_i_o(ideal.i_o()); 4098 set_control(ideal.ctrl()); 4099 } 4100 4101 void GraphKit::final_sync(IdealKit& ideal) { 4102 // Final sync IdealKit and graphKit. 4103 sync_kit(ideal); 4104 } 4105 4106 Node* GraphKit::load_String_length(Node* str, bool set_ctrl) { 4107 Node* len = load_array_length(load_String_value(str, set_ctrl)); 4108 Node* coder = load_String_coder(str, set_ctrl); 4109 // Divide length by 2 if coder is UTF16 4110 return _gvn.transform(new RShiftINode(len, coder)); 4111 } 4112 4113 Node* GraphKit::load_String_value(Node* str, bool set_ctrl) { 4114 int value_offset = java_lang_String::value_offset(); 4115 const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(), 4116 false, nullptr, 0); 4117 const TypePtr* value_field_type = string_type->add_offset(value_offset); 4118 const TypeAryPtr* value_type = TypeAryPtr::make(TypePtr::NotNull, 4119 TypeAry::make(TypeInt::BYTE, TypeInt::POS), 4120 ciTypeArrayKlass::make(T_BYTE), true, 0); 4121 Node* p = basic_plus_adr(str, str, value_offset); 4122 Node* load = access_load_at(str, p, value_field_type, value_type, T_OBJECT, 4123 IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED); 4124 return load; 4125 } 4126 4127 Node* GraphKit::load_String_coder(Node* str, bool set_ctrl) { 4128 if (!CompactStrings) { 4129 return intcon(java_lang_String::CODER_UTF16); 4130 } 4131 int coder_offset = java_lang_String::coder_offset(); 4132 const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(), 4133 false, nullptr, 0); 4134 const TypePtr* coder_field_type = string_type->add_offset(coder_offset); 4135 4136 Node* p = basic_plus_adr(str, str, coder_offset); 4137 Node* load = access_load_at(str, p, coder_field_type, TypeInt::BYTE, T_BYTE, 4138 IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED); 4139 return load; 4140 } 4141 4142 void GraphKit::store_String_value(Node* str, Node* value) { 4143 int value_offset = java_lang_String::value_offset(); 4144 const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(), 4145 false, nullptr, 0); 4146 const TypePtr* value_field_type = string_type->add_offset(value_offset); 4147 4148 access_store_at(str, basic_plus_adr(str, value_offset), value_field_type, 4149 value, TypeAryPtr::BYTES, T_OBJECT, IN_HEAP | MO_UNORDERED); 4150 } 4151 4152 void GraphKit::store_String_coder(Node* str, Node* value) { 4153 int coder_offset = java_lang_String::coder_offset(); 4154 const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(), 4155 false, nullptr, 0); 4156 const TypePtr* coder_field_type = string_type->add_offset(coder_offset); 4157 4158 access_store_at(str, basic_plus_adr(str, coder_offset), coder_field_type, 4159 value, TypeInt::BYTE, T_BYTE, IN_HEAP | MO_UNORDERED); 4160 } 4161 4162 // Capture src and dst memory state with a MergeMemNode 4163 Node* GraphKit::capture_memory(const TypePtr* src_type, const TypePtr* dst_type) { 4164 if (src_type == dst_type) { 4165 // Types are equal, we don't need a MergeMemNode 4166 return memory(src_type); 4167 } 4168 MergeMemNode* merge = MergeMemNode::make(map()->memory()); 4169 record_for_igvn(merge); // fold it up later, if possible 4170 int src_idx = C->get_alias_index(src_type); 4171 int dst_idx = C->get_alias_index(dst_type); 4172 merge->set_memory_at(src_idx, memory(src_idx)); 4173 merge->set_memory_at(dst_idx, memory(dst_idx)); 4174 return merge; 4175 } 4176 4177 Node* GraphKit::compress_string(Node* src, const TypeAryPtr* src_type, Node* dst, Node* count) { 4178 assert(Matcher::match_rule_supported(Op_StrCompressedCopy), "Intrinsic not supported"); 4179 assert(src_type == TypeAryPtr::BYTES || src_type == TypeAryPtr::CHARS, "invalid source type"); 4180 // If input and output memory types differ, capture both states to preserve 4181 // the dependency between preceding and subsequent loads/stores. 4182 // For example, the following program: 4183 // StoreB 4184 // compress_string 4185 // LoadB 4186 // has this memory graph (use->def): 4187 // LoadB -> compress_string -> CharMem 4188 // ... -> StoreB -> ByteMem 4189 // The intrinsic hides the dependency between LoadB and StoreB, causing 4190 // the load to read from memory not containing the result of the StoreB. 4191 // The correct memory graph should look like this: 4192 // LoadB -> compress_string -> MergeMem(CharMem, StoreB(ByteMem)) 4193 Node* mem = capture_memory(src_type, TypeAryPtr::BYTES); 4194 StrCompressedCopyNode* str = new StrCompressedCopyNode(control(), mem, src, dst, count); 4195 Node* res_mem = _gvn.transform(new SCMemProjNode(_gvn.transform(str))); 4196 set_memory(res_mem, TypeAryPtr::BYTES); 4197 return str; 4198 } 4199 4200 void GraphKit::inflate_string(Node* src, Node* dst, const TypeAryPtr* dst_type, Node* count) { 4201 assert(Matcher::match_rule_supported(Op_StrInflatedCopy), "Intrinsic not supported"); 4202 assert(dst_type == TypeAryPtr::BYTES || dst_type == TypeAryPtr::CHARS, "invalid dest type"); 4203 // Capture src and dst memory (see comment in 'compress_string'). 4204 Node* mem = capture_memory(TypeAryPtr::BYTES, dst_type); 4205 StrInflatedCopyNode* str = new StrInflatedCopyNode(control(), mem, src, dst, count); 4206 set_memory(_gvn.transform(str), dst_type); 4207 } 4208 4209 void GraphKit::inflate_string_slow(Node* src, Node* dst, Node* start, Node* count) { 4210 /** 4211 * int i_char = start; 4212 * for (int i_byte = 0; i_byte < count; i_byte++) { 4213 * dst[i_char++] = (char)(src[i_byte] & 0xff); 4214 * } 4215 */ 4216 add_parse_predicates(); 4217 C->set_has_loops(true); 4218 4219 RegionNode* head = new RegionNode(3); 4220 head->init_req(1, control()); 4221 gvn().set_type(head, Type::CONTROL); 4222 record_for_igvn(head); 4223 4224 Node* i_byte = new PhiNode(head, TypeInt::INT); 4225 i_byte->init_req(1, intcon(0)); 4226 gvn().set_type(i_byte, TypeInt::INT); 4227 record_for_igvn(i_byte); 4228 4229 Node* i_char = new PhiNode(head, TypeInt::INT); 4230 i_char->init_req(1, start); 4231 gvn().set_type(i_char, TypeInt::INT); 4232 record_for_igvn(i_char); 4233 4234 Node* mem = PhiNode::make(head, memory(TypeAryPtr::BYTES), Type::MEMORY, TypeAryPtr::BYTES); 4235 gvn().set_type(mem, Type::MEMORY); 4236 record_for_igvn(mem); 4237 set_control(head); 4238 set_memory(mem, TypeAryPtr::BYTES); 4239 Node* ch = load_array_element(src, i_byte, TypeAryPtr::BYTES, /* set_ctrl */ true); 4240 Node* st = store_to_memory(control(), array_element_address(dst, i_char, T_BYTE), 4241 AndI(ch, intcon(0xff)), T_CHAR, TypeAryPtr::BYTES, MemNode::unordered, 4242 false, false, true /* mismatched */); 4243 4244 IfNode* iff = create_and_map_if(head, Bool(CmpI(i_byte, count), BoolTest::lt), PROB_FAIR, COUNT_UNKNOWN); 4245 head->init_req(2, IfTrue(iff)); 4246 mem->init_req(2, st); 4247 i_byte->init_req(2, AddI(i_byte, intcon(1))); 4248 i_char->init_req(2, AddI(i_char, intcon(2))); 4249 4250 set_control(IfFalse(iff)); 4251 set_memory(st, TypeAryPtr::BYTES); 4252 } 4253 4254 Node* GraphKit::make_constant_from_field(ciField* field, Node* obj) { 4255 if (!field->is_constant()) { 4256 return nullptr; // Field not marked as constant. 4257 } 4258 ciInstance* holder = nullptr; 4259 if (!field->is_static()) { 4260 ciObject* const_oop = obj->bottom_type()->is_oopptr()->const_oop(); 4261 if (const_oop != nullptr && const_oop->is_instance()) { 4262 holder = const_oop->as_instance(); 4263 } 4264 } 4265 const Type* con_type = Type::make_constant_from_field(field, holder, field->layout_type(), 4266 /*is_unsigned_load=*/false); 4267 if (con_type != nullptr) { 4268 return makecon(con_type); 4269 } 4270 return nullptr; 4271 } 4272 4273 Node* GraphKit::maybe_narrow_object_type(Node* obj, ciKlass* type) { 4274 const TypeOopPtr* obj_type = obj->bottom_type()->isa_oopptr(); 4275 const TypeOopPtr* sig_type = TypeOopPtr::make_from_klass(type); 4276 if (obj_type != nullptr && sig_type->is_loaded() && !obj_type->higher_equal(sig_type)) { 4277 const Type* narrow_obj_type = obj_type->filter_speculative(sig_type); // keep speculative part 4278 Node* casted_obj = gvn().transform(new CheckCastPPNode(control(), obj, narrow_obj_type)); 4279 return casted_obj; 4280 } 4281 return obj; 4282 }