1 /*
   2  * Copyright (c) 1999, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "asm/macroAssembler.hpp"
  26 #include "ci/ciUtilities.inline.hpp"
  27 #include "ci/ciSymbols.hpp"
  28 #include "classfile/vmIntrinsics.hpp"
  29 #include "compiler/compileBroker.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "gc/shared/barrierSet.hpp"
  32 #include "jfr/support/jfrIntrinsics.hpp"
  33 #include "memory/resourceArea.hpp"
  34 #include "oops/klass.inline.hpp"
  35 #include "oops/objArrayKlass.hpp"
  36 #include "opto/addnode.hpp"
  37 #include "opto/arraycopynode.hpp"
  38 #include "opto/c2compiler.hpp"
  39 #include "opto/castnode.hpp"
  40 #include "opto/cfgnode.hpp"
  41 #include "opto/convertnode.hpp"
  42 #include "opto/countbitsnode.hpp"
  43 #include "opto/idealKit.hpp"
  44 #include "opto/library_call.hpp"
  45 #include "opto/mathexactnode.hpp"
  46 #include "opto/mulnode.hpp"
  47 #include "opto/narrowptrnode.hpp"
  48 #include "opto/opaquenode.hpp"
  49 #include "opto/parse.hpp"
  50 #include "opto/runtime.hpp"
  51 #include "opto/rootnode.hpp"
  52 #include "opto/subnode.hpp"
  53 #include "opto/vectornode.hpp"
  54 #include "prims/jvmtiExport.hpp"
  55 #include "prims/jvmtiThreadState.hpp"
  56 #include "prims/unsafe.hpp"
  57 #include "runtime/jniHandles.inline.hpp"
  58 #include "runtime/objectMonitor.hpp"
  59 #include "runtime/sharedRuntime.hpp"
  60 #include "runtime/stubRoutines.hpp"
  61 #include "utilities/macros.hpp"
  62 #include "utilities/powerOfTwo.hpp"
  63 
  64 //---------------------------make_vm_intrinsic----------------------------
  65 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
  66   vmIntrinsicID id = m->intrinsic_id();
  67   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
  68 
  69   if (!m->is_loaded()) {
  70     // Do not attempt to inline unloaded methods.
  71     return nullptr;
  72   }
  73 
  74   C2Compiler* compiler = (C2Compiler*)CompileBroker::compiler(CompLevel_full_optimization);
  75   bool is_available = false;
  76 
  77   {
  78     // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag
  79     // the compiler must transition to '_thread_in_vm' state because both
  80     // methods access VM-internal data.
  81     VM_ENTRY_MARK;
  82     methodHandle mh(THREAD, m->get_Method());
  83     is_available = compiler != nullptr && compiler->is_intrinsic_available(mh, C->directive());
  84     if (is_available && is_virtual) {
  85       is_available = vmIntrinsics::does_virtual_dispatch(id);
  86     }
  87   }
  88 
  89   if (is_available) {
  90     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
  91     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
  92     return new LibraryIntrinsic(m, is_virtual,
  93                                 vmIntrinsics::predicates_needed(id),
  94                                 vmIntrinsics::does_virtual_dispatch(id),
  95                                 id);
  96   } else {
  97     return nullptr;
  98   }
  99 }
 100 
 101 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
 102   LibraryCallKit kit(jvms, this);
 103   Compile* C = kit.C;
 104   int nodes = C->unique();
 105 #ifndef PRODUCT
 106   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 107     char buf[1000];
 108     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 109     tty->print_cr("Intrinsic %s", str);
 110   }
 111 #endif
 112   ciMethod* callee = kit.callee();
 113   const int bci    = kit.bci();
 114 #ifdef ASSERT
 115   Node* ctrl = kit.control();
 116 #endif
 117   // Try to inline the intrinsic.
 118   if (callee->check_intrinsic_candidate() &&
 119       kit.try_to_inline(_last_predicate)) {
 120     const char *inline_msg = is_virtual() ? "(intrinsic, virtual)"
 121                                           : "(intrinsic)";
 122     CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg);
 123     C->inline_printer()->record(callee, jvms, InliningResult::SUCCESS, inline_msg);
 124     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 125     if (C->log()) {
 126       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 127                      vmIntrinsics::name_at(intrinsic_id()),
 128                      (is_virtual() ? " virtual='1'" : ""),
 129                      C->unique() - nodes);
 130     }
 131     // Push the result from the inlined method onto the stack.
 132     kit.push_result();
 133     return kit.transfer_exceptions_into_jvms();
 134   }
 135 
 136   // The intrinsic bailed out
 137   assert(ctrl == kit.control(), "Control flow was added although the intrinsic bailed out");
 138   if (jvms->has_method()) {
 139     // Not a root compile.
 140     const char* msg;
 141     if (callee->intrinsic_candidate()) {
 142       msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
 143     } else {
 144       msg = is_virtual() ? "failed to inline (intrinsic, virtual), method not annotated"
 145                          : "failed to inline (intrinsic), method not annotated";
 146     }
 147     CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::FAILURE, msg);
 148     C->inline_printer()->record(callee, jvms, InliningResult::FAILURE, msg);
 149   } else {
 150     // Root compile
 151     ResourceMark rm;
 152     stringStream msg_stream;
 153     msg_stream.print("Did not generate intrinsic %s%s at bci:%d in",
 154                      vmIntrinsics::name_at(intrinsic_id()),
 155                      is_virtual() ? " (virtual)" : "", bci);
 156     const char *msg = msg_stream.freeze();
 157     log_debug(jit, inlining)("%s", msg);
 158     if (C->print_intrinsics() || C->print_inlining()) {
 159       tty->print("%s", msg);
 160     }
 161   }
 162   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 163 
 164   return nullptr;
 165 }
 166 
 167 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) {
 168   LibraryCallKit kit(jvms, this);
 169   Compile* C = kit.C;
 170   int nodes = C->unique();
 171   _last_predicate = predicate;
 172 #ifndef PRODUCT
 173   assert(is_predicated() && predicate < predicates_count(), "sanity");
 174   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 175     char buf[1000];
 176     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 177     tty->print_cr("Predicate for intrinsic %s", str);
 178   }
 179 #endif
 180   ciMethod* callee = kit.callee();
 181   const int bci    = kit.bci();
 182 
 183   Node* slow_ctl = kit.try_to_predicate(predicate);
 184   if (!kit.failing()) {
 185     const char *inline_msg = is_virtual() ? "(intrinsic, virtual, predicate)"
 186                                           : "(intrinsic, predicate)";
 187     CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg);
 188     C->inline_printer()->record(callee, jvms, InliningResult::SUCCESS, inline_msg);
 189 
 190     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 191     if (C->log()) {
 192       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
 193                      vmIntrinsics::name_at(intrinsic_id()),
 194                      (is_virtual() ? " virtual='1'" : ""),
 195                      C->unique() - nodes);
 196     }
 197     return slow_ctl; // Could be null if the check folds.
 198   }
 199 
 200   // The intrinsic bailed out
 201   if (jvms->has_method()) {
 202     // Not a root compile.
 203     const char* msg = "failed to generate predicate for intrinsic";
 204     CompileTask::print_inlining_ul(kit.callee(), jvms->depth() - 1, bci, InliningResult::FAILURE, msg);
 205     C->inline_printer()->record(kit.callee(), jvms, InliningResult::FAILURE, msg);
 206   } else {
 207     // Root compile
 208     ResourceMark rm;
 209     stringStream msg_stream;
 210     msg_stream.print("Did not generate intrinsic %s%s at bci:%d in",
 211                      vmIntrinsics::name_at(intrinsic_id()),
 212                      is_virtual() ? " (virtual)" : "", bci);
 213     const char *msg = msg_stream.freeze();
 214     log_debug(jit, inlining)("%s", msg);
 215     C->inline_printer()->record(kit.callee(), jvms, InliningResult::FAILURE, msg);
 216   }
 217   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 218   return nullptr;
 219 }
 220 
 221 bool LibraryCallKit::try_to_inline(int predicate) {
 222   // Handle symbolic names for otherwise undistinguished boolean switches:
 223   const bool is_store       = true;
 224   const bool is_compress    = true;
 225   const bool is_static      = true;
 226   const bool is_volatile    = true;
 227 
 228   if (!jvms()->has_method()) {
 229     // Root JVMState has a null method.
 230     assert(map()->memory()->Opcode() == Op_Parm, "");
 231     // Insert the memory aliasing node
 232     set_all_memory(reset_memory());
 233   }
 234   assert(merged_memory(), "");
 235 
 236   switch (intrinsic_id()) {
 237   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 238   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
 239   case vmIntrinsics::_getClass:                 return inline_native_getClass();
 240 
 241   case vmIntrinsics::_ceil:
 242   case vmIntrinsics::_floor:
 243   case vmIntrinsics::_rint:
 244   case vmIntrinsics::_dsin:
 245   case vmIntrinsics::_dcos:
 246   case vmIntrinsics::_dtan:
 247   case vmIntrinsics::_dtanh:
 248   case vmIntrinsics::_dabs:
 249   case vmIntrinsics::_fabs:
 250   case vmIntrinsics::_iabs:
 251   case vmIntrinsics::_labs:
 252   case vmIntrinsics::_datan2:
 253   case vmIntrinsics::_dsqrt:
 254   case vmIntrinsics::_dsqrt_strict:
 255   case vmIntrinsics::_dexp:
 256   case vmIntrinsics::_dlog:
 257   case vmIntrinsics::_dlog10:
 258   case vmIntrinsics::_dpow:
 259   case vmIntrinsics::_dcopySign:
 260   case vmIntrinsics::_fcopySign:
 261   case vmIntrinsics::_dsignum:
 262   case vmIntrinsics::_roundF:
 263   case vmIntrinsics::_roundD:
 264   case vmIntrinsics::_fsignum:                  return inline_math_native(intrinsic_id());
 265 
 266   case vmIntrinsics::_notify:
 267   case vmIntrinsics::_notifyAll:
 268     return inline_notify(intrinsic_id());
 269 
 270   case vmIntrinsics::_addExactI:                return inline_math_addExactI(false /* add */);
 271   case vmIntrinsics::_addExactL:                return inline_math_addExactL(false /* add */);
 272   case vmIntrinsics::_decrementExactI:          return inline_math_subtractExactI(true /* decrement */);
 273   case vmIntrinsics::_decrementExactL:          return inline_math_subtractExactL(true /* decrement */);
 274   case vmIntrinsics::_incrementExactI:          return inline_math_addExactI(true /* increment */);
 275   case vmIntrinsics::_incrementExactL:          return inline_math_addExactL(true /* increment */);
 276   case vmIntrinsics::_multiplyExactI:           return inline_math_multiplyExactI();
 277   case vmIntrinsics::_multiplyExactL:           return inline_math_multiplyExactL();
 278   case vmIntrinsics::_multiplyHigh:             return inline_math_multiplyHigh();
 279   case vmIntrinsics::_unsignedMultiplyHigh:     return inline_math_unsignedMultiplyHigh();
 280   case vmIntrinsics::_negateExactI:             return inline_math_negateExactI();
 281   case vmIntrinsics::_negateExactL:             return inline_math_negateExactL();
 282   case vmIntrinsics::_subtractExactI:           return inline_math_subtractExactI(false /* subtract */);
 283   case vmIntrinsics::_subtractExactL:           return inline_math_subtractExactL(false /* subtract */);
 284 
 285   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
 286 
 287   case vmIntrinsics::_arraySort:                return inline_array_sort();
 288   case vmIntrinsics::_arrayPartition:           return inline_array_partition();
 289 
 290   case vmIntrinsics::_compareToL:               return inline_string_compareTo(StrIntrinsicNode::LL);
 291   case vmIntrinsics::_compareToU:               return inline_string_compareTo(StrIntrinsicNode::UU);
 292   case vmIntrinsics::_compareToLU:              return inline_string_compareTo(StrIntrinsicNode::LU);
 293   case vmIntrinsics::_compareToUL:              return inline_string_compareTo(StrIntrinsicNode::UL);
 294 
 295   case vmIntrinsics::_indexOfL:                 return inline_string_indexOf(StrIntrinsicNode::LL);
 296   case vmIntrinsics::_indexOfU:                 return inline_string_indexOf(StrIntrinsicNode::UU);
 297   case vmIntrinsics::_indexOfUL:                return inline_string_indexOf(StrIntrinsicNode::UL);
 298   case vmIntrinsics::_indexOfIL:                return inline_string_indexOfI(StrIntrinsicNode::LL);
 299   case vmIntrinsics::_indexOfIU:                return inline_string_indexOfI(StrIntrinsicNode::UU);
 300   case vmIntrinsics::_indexOfIUL:               return inline_string_indexOfI(StrIntrinsicNode::UL);
 301   case vmIntrinsics::_indexOfU_char:            return inline_string_indexOfChar(StrIntrinsicNode::U);
 302   case vmIntrinsics::_indexOfL_char:            return inline_string_indexOfChar(StrIntrinsicNode::L);
 303 
 304   case vmIntrinsics::_equalsL:                  return inline_string_equals(StrIntrinsicNode::LL);
 305 
 306   case vmIntrinsics::_vectorizedHashCode:       return inline_vectorizedHashCode();
 307 
 308   case vmIntrinsics::_toBytesStringU:           return inline_string_toBytesU();
 309   case vmIntrinsics::_getCharsStringU:          return inline_string_getCharsU();
 310   case vmIntrinsics::_getCharStringU:           return inline_string_char_access(!is_store);
 311   case vmIntrinsics::_putCharStringU:           return inline_string_char_access( is_store);
 312 
 313   case vmIntrinsics::_compressStringC:
 314   case vmIntrinsics::_compressStringB:          return inline_string_copy( is_compress);
 315   case vmIntrinsics::_inflateStringC:
 316   case vmIntrinsics::_inflateStringB:           return inline_string_copy(!is_compress);
 317 
 318   case vmIntrinsics::_getReference:             return inline_unsafe_access(!is_store, T_OBJECT,   Relaxed, false);
 319   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_store, T_BOOLEAN,  Relaxed, false);
 320   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_store, T_BYTE,     Relaxed, false);
 321   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_store, T_SHORT,    Relaxed, false);
 322   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_store, T_CHAR,     Relaxed, false);
 323   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_store, T_INT,      Relaxed, false);
 324   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_store, T_LONG,     Relaxed, false);
 325   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_store, T_FLOAT,    Relaxed, false);
 326   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_store, T_DOUBLE,   Relaxed, false);
 327 
 328   case vmIntrinsics::_putReference:             return inline_unsafe_access( is_store, T_OBJECT,   Relaxed, false);
 329   case vmIntrinsics::_putBoolean:               return inline_unsafe_access( is_store, T_BOOLEAN,  Relaxed, false);
 330   case vmIntrinsics::_putByte:                  return inline_unsafe_access( is_store, T_BYTE,     Relaxed, false);
 331   case vmIntrinsics::_putShort:                 return inline_unsafe_access( is_store, T_SHORT,    Relaxed, false);
 332   case vmIntrinsics::_putChar:                  return inline_unsafe_access( is_store, T_CHAR,     Relaxed, false);
 333   case vmIntrinsics::_putInt:                   return inline_unsafe_access( is_store, T_INT,      Relaxed, false);
 334   case vmIntrinsics::_putLong:                  return inline_unsafe_access( is_store, T_LONG,     Relaxed, false);
 335   case vmIntrinsics::_putFloat:                 return inline_unsafe_access( is_store, T_FLOAT,    Relaxed, false);
 336   case vmIntrinsics::_putDouble:                return inline_unsafe_access( is_store, T_DOUBLE,   Relaxed, false);
 337 
 338   case vmIntrinsics::_getReferenceVolatile:     return inline_unsafe_access(!is_store, T_OBJECT,   Volatile, false);
 339   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_store, T_BOOLEAN,  Volatile, false);
 340   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_store, T_BYTE,     Volatile, false);
 341   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_store, T_SHORT,    Volatile, false);
 342   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_store, T_CHAR,     Volatile, false);
 343   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_store, T_INT,      Volatile, false);
 344   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_store, T_LONG,     Volatile, false);
 345   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_store, T_FLOAT,    Volatile, false);
 346   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_store, T_DOUBLE,   Volatile, false);
 347 
 348   case vmIntrinsics::_putReferenceVolatile:     return inline_unsafe_access( is_store, T_OBJECT,   Volatile, false);
 349   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access( is_store, T_BOOLEAN,  Volatile, false);
 350   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access( is_store, T_BYTE,     Volatile, false);
 351   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access( is_store, T_SHORT,    Volatile, false);
 352   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access( is_store, T_CHAR,     Volatile, false);
 353   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access( is_store, T_INT,      Volatile, false);
 354   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access( is_store, T_LONG,     Volatile, false);
 355   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access( is_store, T_FLOAT,    Volatile, false);
 356   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access( is_store, T_DOUBLE,   Volatile, false);
 357 
 358   case vmIntrinsics::_getShortUnaligned:        return inline_unsafe_access(!is_store, T_SHORT,    Relaxed, true);
 359   case vmIntrinsics::_getCharUnaligned:         return inline_unsafe_access(!is_store, T_CHAR,     Relaxed, true);
 360   case vmIntrinsics::_getIntUnaligned:          return inline_unsafe_access(!is_store, T_INT,      Relaxed, true);
 361   case vmIntrinsics::_getLongUnaligned:         return inline_unsafe_access(!is_store, T_LONG,     Relaxed, true);
 362 
 363   case vmIntrinsics::_putShortUnaligned:        return inline_unsafe_access( is_store, T_SHORT,    Relaxed, true);
 364   case vmIntrinsics::_putCharUnaligned:         return inline_unsafe_access( is_store, T_CHAR,     Relaxed, true);
 365   case vmIntrinsics::_putIntUnaligned:          return inline_unsafe_access( is_store, T_INT,      Relaxed, true);
 366   case vmIntrinsics::_putLongUnaligned:         return inline_unsafe_access( is_store, T_LONG,     Relaxed, true);
 367 
 368   case vmIntrinsics::_getReferenceAcquire:      return inline_unsafe_access(!is_store, T_OBJECT,   Acquire, false);
 369   case vmIntrinsics::_getBooleanAcquire:        return inline_unsafe_access(!is_store, T_BOOLEAN,  Acquire, false);
 370   case vmIntrinsics::_getByteAcquire:           return inline_unsafe_access(!is_store, T_BYTE,     Acquire, false);
 371   case vmIntrinsics::_getShortAcquire:          return inline_unsafe_access(!is_store, T_SHORT,    Acquire, false);
 372   case vmIntrinsics::_getCharAcquire:           return inline_unsafe_access(!is_store, T_CHAR,     Acquire, false);
 373   case vmIntrinsics::_getIntAcquire:            return inline_unsafe_access(!is_store, T_INT,      Acquire, false);
 374   case vmIntrinsics::_getLongAcquire:           return inline_unsafe_access(!is_store, T_LONG,     Acquire, false);
 375   case vmIntrinsics::_getFloatAcquire:          return inline_unsafe_access(!is_store, T_FLOAT,    Acquire, false);
 376   case vmIntrinsics::_getDoubleAcquire:         return inline_unsafe_access(!is_store, T_DOUBLE,   Acquire, false);
 377 
 378   case vmIntrinsics::_putReferenceRelease:      return inline_unsafe_access( is_store, T_OBJECT,   Release, false);
 379   case vmIntrinsics::_putBooleanRelease:        return inline_unsafe_access( is_store, T_BOOLEAN,  Release, false);
 380   case vmIntrinsics::_putByteRelease:           return inline_unsafe_access( is_store, T_BYTE,     Release, false);
 381   case vmIntrinsics::_putShortRelease:          return inline_unsafe_access( is_store, T_SHORT,    Release, false);
 382   case vmIntrinsics::_putCharRelease:           return inline_unsafe_access( is_store, T_CHAR,     Release, false);
 383   case vmIntrinsics::_putIntRelease:            return inline_unsafe_access( is_store, T_INT,      Release, false);
 384   case vmIntrinsics::_putLongRelease:           return inline_unsafe_access( is_store, T_LONG,     Release, false);
 385   case vmIntrinsics::_putFloatRelease:          return inline_unsafe_access( is_store, T_FLOAT,    Release, false);
 386   case vmIntrinsics::_putDoubleRelease:         return inline_unsafe_access( is_store, T_DOUBLE,   Release, false);
 387 
 388   case vmIntrinsics::_getReferenceOpaque:       return inline_unsafe_access(!is_store, T_OBJECT,   Opaque, false);
 389   case vmIntrinsics::_getBooleanOpaque:         return inline_unsafe_access(!is_store, T_BOOLEAN,  Opaque, false);
 390   case vmIntrinsics::_getByteOpaque:            return inline_unsafe_access(!is_store, T_BYTE,     Opaque, false);
 391   case vmIntrinsics::_getShortOpaque:           return inline_unsafe_access(!is_store, T_SHORT,    Opaque, false);
 392   case vmIntrinsics::_getCharOpaque:            return inline_unsafe_access(!is_store, T_CHAR,     Opaque, false);
 393   case vmIntrinsics::_getIntOpaque:             return inline_unsafe_access(!is_store, T_INT,      Opaque, false);
 394   case vmIntrinsics::_getLongOpaque:            return inline_unsafe_access(!is_store, T_LONG,     Opaque, false);
 395   case vmIntrinsics::_getFloatOpaque:           return inline_unsafe_access(!is_store, T_FLOAT,    Opaque, false);
 396   case vmIntrinsics::_getDoubleOpaque:          return inline_unsafe_access(!is_store, T_DOUBLE,   Opaque, false);
 397 
 398   case vmIntrinsics::_putReferenceOpaque:       return inline_unsafe_access( is_store, T_OBJECT,   Opaque, false);
 399   case vmIntrinsics::_putBooleanOpaque:         return inline_unsafe_access( is_store, T_BOOLEAN,  Opaque, false);
 400   case vmIntrinsics::_putByteOpaque:            return inline_unsafe_access( is_store, T_BYTE,     Opaque, false);
 401   case vmIntrinsics::_putShortOpaque:           return inline_unsafe_access( is_store, T_SHORT,    Opaque, false);
 402   case vmIntrinsics::_putCharOpaque:            return inline_unsafe_access( is_store, T_CHAR,     Opaque, false);
 403   case vmIntrinsics::_putIntOpaque:             return inline_unsafe_access( is_store, T_INT,      Opaque, false);
 404   case vmIntrinsics::_putLongOpaque:            return inline_unsafe_access( is_store, T_LONG,     Opaque, false);
 405   case vmIntrinsics::_putFloatOpaque:           return inline_unsafe_access( is_store, T_FLOAT,    Opaque, false);
 406   case vmIntrinsics::_putDoubleOpaque:          return inline_unsafe_access( is_store, T_DOUBLE,   Opaque, false);
 407 
 408   case vmIntrinsics::_compareAndSetReference:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap,      Volatile);
 409   case vmIntrinsics::_compareAndSetByte:        return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap,      Volatile);
 410   case vmIntrinsics::_compareAndSetShort:       return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap,      Volatile);
 411   case vmIntrinsics::_compareAndSetInt:         return inline_unsafe_load_store(T_INT,    LS_cmp_swap,      Volatile);
 412   case vmIntrinsics::_compareAndSetLong:        return inline_unsafe_load_store(T_LONG,   LS_cmp_swap,      Volatile);
 413 
 414   case vmIntrinsics::_weakCompareAndSetReferencePlain:     return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Relaxed);
 415   case vmIntrinsics::_weakCompareAndSetReferenceAcquire:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Acquire);
 416   case vmIntrinsics::_weakCompareAndSetReferenceRelease:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Release);
 417   case vmIntrinsics::_weakCompareAndSetReference:          return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Volatile);
 418   case vmIntrinsics::_weakCompareAndSetBytePlain:          return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Relaxed);
 419   case vmIntrinsics::_weakCompareAndSetByteAcquire:        return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Acquire);
 420   case vmIntrinsics::_weakCompareAndSetByteRelease:        return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Release);
 421   case vmIntrinsics::_weakCompareAndSetByte:               return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Volatile);
 422   case vmIntrinsics::_weakCompareAndSetShortPlain:         return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Relaxed);
 423   case vmIntrinsics::_weakCompareAndSetShortAcquire:       return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Acquire);
 424   case vmIntrinsics::_weakCompareAndSetShortRelease:       return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Release);
 425   case vmIntrinsics::_weakCompareAndSetShort:              return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Volatile);
 426   case vmIntrinsics::_weakCompareAndSetIntPlain:           return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Relaxed);
 427   case vmIntrinsics::_weakCompareAndSetIntAcquire:         return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Acquire);
 428   case vmIntrinsics::_weakCompareAndSetIntRelease:         return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Release);
 429   case vmIntrinsics::_weakCompareAndSetInt:                return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Volatile);
 430   case vmIntrinsics::_weakCompareAndSetLongPlain:          return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Relaxed);
 431   case vmIntrinsics::_weakCompareAndSetLongAcquire:        return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Acquire);
 432   case vmIntrinsics::_weakCompareAndSetLongRelease:        return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Release);
 433   case vmIntrinsics::_weakCompareAndSetLong:               return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Volatile);
 434 
 435   case vmIntrinsics::_compareAndExchangeReference:         return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Volatile);
 436   case vmIntrinsics::_compareAndExchangeReferenceAcquire:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Acquire);
 437   case vmIntrinsics::_compareAndExchangeReferenceRelease:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Release);
 438   case vmIntrinsics::_compareAndExchangeByte:              return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Volatile);
 439   case vmIntrinsics::_compareAndExchangeByteAcquire:       return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Acquire);
 440   case vmIntrinsics::_compareAndExchangeByteRelease:       return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Release);
 441   case vmIntrinsics::_compareAndExchangeShort:             return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Volatile);
 442   case vmIntrinsics::_compareAndExchangeShortAcquire:      return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Acquire);
 443   case vmIntrinsics::_compareAndExchangeShortRelease:      return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Release);
 444   case vmIntrinsics::_compareAndExchangeInt:               return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Volatile);
 445   case vmIntrinsics::_compareAndExchangeIntAcquire:        return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Acquire);
 446   case vmIntrinsics::_compareAndExchangeIntRelease:        return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Release);
 447   case vmIntrinsics::_compareAndExchangeLong:              return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Volatile);
 448   case vmIntrinsics::_compareAndExchangeLongAcquire:       return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Acquire);
 449   case vmIntrinsics::_compareAndExchangeLongRelease:       return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Release);
 450 
 451   case vmIntrinsics::_getAndAddByte:                    return inline_unsafe_load_store(T_BYTE,   LS_get_add,       Volatile);
 452   case vmIntrinsics::_getAndAddShort:                   return inline_unsafe_load_store(T_SHORT,  LS_get_add,       Volatile);
 453   case vmIntrinsics::_getAndAddInt:                     return inline_unsafe_load_store(T_INT,    LS_get_add,       Volatile);
 454   case vmIntrinsics::_getAndAddLong:                    return inline_unsafe_load_store(T_LONG,   LS_get_add,       Volatile);
 455 
 456   case vmIntrinsics::_getAndSetByte:                    return inline_unsafe_load_store(T_BYTE,   LS_get_set,       Volatile);
 457   case vmIntrinsics::_getAndSetShort:                   return inline_unsafe_load_store(T_SHORT,  LS_get_set,       Volatile);
 458   case vmIntrinsics::_getAndSetInt:                     return inline_unsafe_load_store(T_INT,    LS_get_set,       Volatile);
 459   case vmIntrinsics::_getAndSetLong:                    return inline_unsafe_load_store(T_LONG,   LS_get_set,       Volatile);
 460   case vmIntrinsics::_getAndSetReference:               return inline_unsafe_load_store(T_OBJECT, LS_get_set,       Volatile);
 461 
 462   case vmIntrinsics::_loadFence:
 463   case vmIntrinsics::_storeFence:
 464   case vmIntrinsics::_storeStoreFence:
 465   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
 466 
 467   case vmIntrinsics::_onSpinWait:               return inline_onspinwait();
 468 
 469   case vmIntrinsics::_currentCarrierThread:     return inline_native_currentCarrierThread();
 470   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
 471   case vmIntrinsics::_setCurrentThread:         return inline_native_setCurrentThread();
 472 
 473   case vmIntrinsics::_scopedValueCache:          return inline_native_scopedValueCache();
 474   case vmIntrinsics::_setScopedValueCache:       return inline_native_setScopedValueCache();
 475 
 476   case vmIntrinsics::_Continuation_pin:          return inline_native_Continuation_pinning(false);
 477   case vmIntrinsics::_Continuation_unpin:        return inline_native_Continuation_pinning(true);
 478 
 479 #if INCLUDE_JVMTI
 480   case vmIntrinsics::_notifyJvmtiVThreadStart:   return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_start()),
 481                                                                                          "notifyJvmtiStart", true, false);
 482   case vmIntrinsics::_notifyJvmtiVThreadEnd:     return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_end()),
 483                                                                                          "notifyJvmtiEnd", false, true);
 484   case vmIntrinsics::_notifyJvmtiVThreadMount:   return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_mount()),
 485                                                                                          "notifyJvmtiMount", false, false);
 486   case vmIntrinsics::_notifyJvmtiVThreadUnmount: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_unmount()),
 487                                                                                          "notifyJvmtiUnmount", false, false);
 488   case vmIntrinsics::_notifyJvmtiVThreadDisableSuspend: return inline_native_notify_jvmti_sync();
 489 #endif
 490 
 491 #ifdef JFR_HAVE_INTRINSICS
 492   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, JfrTime::time_function()), "counterTime");
 493   case vmIntrinsics::_getEventWriter:           return inline_native_getEventWriter();
 494   case vmIntrinsics::_jvm_commit:               return inline_native_jvm_commit();
 495 #endif
 496   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 497   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 498   case vmIntrinsics::_writeback0:               return inline_unsafe_writeback0();
 499   case vmIntrinsics::_writebackPreSync0:        return inline_unsafe_writebackSync0(true);
 500   case vmIntrinsics::_writebackPostSync0:       return inline_unsafe_writebackSync0(false);
 501   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 502   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 503   case vmIntrinsics::_setMemory:                return inline_unsafe_setMemory();
 504   case vmIntrinsics::_getLength:                return inline_native_getLength();
 505   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 506   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 507   case vmIntrinsics::_equalsB:                  return inline_array_equals(StrIntrinsicNode::LL);
 508   case vmIntrinsics::_equalsC:                  return inline_array_equals(StrIntrinsicNode::UU);
 509   case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex(T_INT);
 510   case vmIntrinsics::_Preconditions_checkLongIndex: return inline_preconditions_checkIndex(T_LONG);
 511   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 512 
 513   case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true);
 514   case vmIntrinsics::_newArray:                   return inline_unsafe_newArray(false);
 515 
 516   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 517 
 518   case vmIntrinsics::_isInstance:
 519   case vmIntrinsics::_isHidden:
 520   case vmIntrinsics::_getSuperclass:
 521   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 522 
 523   case vmIntrinsics::_floatToRawIntBits:
 524   case vmIntrinsics::_floatToIntBits:
 525   case vmIntrinsics::_intBitsToFloat:
 526   case vmIntrinsics::_doubleToRawLongBits:
 527   case vmIntrinsics::_doubleToLongBits:
 528   case vmIntrinsics::_longBitsToDouble:
 529   case vmIntrinsics::_floatToFloat16:
 530   case vmIntrinsics::_float16ToFloat:           return inline_fp_conversions(intrinsic_id());
 531   case vmIntrinsics::_sqrt_float16:             return inline_fp16_operations(intrinsic_id(), 1);
 532   case vmIntrinsics::_fma_float16:              return inline_fp16_operations(intrinsic_id(), 3);
 533   case vmIntrinsics::_floatIsFinite:
 534   case vmIntrinsics::_floatIsInfinite:
 535   case vmIntrinsics::_doubleIsFinite:
 536   case vmIntrinsics::_doubleIsInfinite:         return inline_fp_range_check(intrinsic_id());
 537 
 538   case vmIntrinsics::_numberOfLeadingZeros_i:
 539   case vmIntrinsics::_numberOfLeadingZeros_l:
 540   case vmIntrinsics::_numberOfTrailingZeros_i:
 541   case vmIntrinsics::_numberOfTrailingZeros_l:
 542   case vmIntrinsics::_bitCount_i:
 543   case vmIntrinsics::_bitCount_l:
 544   case vmIntrinsics::_reverse_i:
 545   case vmIntrinsics::_reverse_l:
 546   case vmIntrinsics::_reverseBytes_i:
 547   case vmIntrinsics::_reverseBytes_l:
 548   case vmIntrinsics::_reverseBytes_s:
 549   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
 550 
 551   case vmIntrinsics::_compress_i:
 552   case vmIntrinsics::_compress_l:
 553   case vmIntrinsics::_expand_i:
 554   case vmIntrinsics::_expand_l:                 return inline_bitshuffle_methods(intrinsic_id());
 555 
 556   case vmIntrinsics::_compareUnsigned_i:
 557   case vmIntrinsics::_compareUnsigned_l:        return inline_compare_unsigned(intrinsic_id());
 558 
 559   case vmIntrinsics::_divideUnsigned_i:
 560   case vmIntrinsics::_divideUnsigned_l:
 561   case vmIntrinsics::_remainderUnsigned_i:
 562   case vmIntrinsics::_remainderUnsigned_l:      return inline_divmod_methods(intrinsic_id());
 563 
 564   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
 565 
 566   case vmIntrinsics::_Reference_get:            return inline_reference_get();
 567   case vmIntrinsics::_Reference_refersTo0:      return inline_reference_refersTo0(false);
 568   case vmIntrinsics::_PhantomReference_refersTo0: return inline_reference_refersTo0(true);
 569   case vmIntrinsics::_Reference_clear0:         return inline_reference_clear0(false);
 570   case vmIntrinsics::_PhantomReference_clear0:  return inline_reference_clear0(true);
 571 
 572   case vmIntrinsics::_Class_cast:               return inline_Class_cast();
 573 
 574   case vmIntrinsics::_aescrypt_encryptBlock:
 575   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
 576 
 577   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 578   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 579     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
 580 
 581   case vmIntrinsics::_electronicCodeBook_encryptAESCrypt:
 582   case vmIntrinsics::_electronicCodeBook_decryptAESCrypt:
 583     return inline_electronicCodeBook_AESCrypt(intrinsic_id());
 584 
 585   case vmIntrinsics::_counterMode_AESCrypt:
 586     return inline_counterMode_AESCrypt(intrinsic_id());
 587 
 588   case vmIntrinsics::_galoisCounterMode_AESCrypt:
 589     return inline_galoisCounterMode_AESCrypt();
 590 
 591   case vmIntrinsics::_md5_implCompress:
 592   case vmIntrinsics::_sha_implCompress:
 593   case vmIntrinsics::_sha2_implCompress:
 594   case vmIntrinsics::_sha5_implCompress:
 595   case vmIntrinsics::_sha3_implCompress:
 596     return inline_digestBase_implCompress(intrinsic_id());
 597   case vmIntrinsics::_double_keccak:
 598     return inline_double_keccak();
 599 
 600   case vmIntrinsics::_digestBase_implCompressMB:
 601     return inline_digestBase_implCompressMB(predicate);
 602 
 603   case vmIntrinsics::_multiplyToLen:
 604     return inline_multiplyToLen();
 605 
 606   case vmIntrinsics::_squareToLen:
 607     return inline_squareToLen();
 608 
 609   case vmIntrinsics::_mulAdd:
 610     return inline_mulAdd();
 611 
 612   case vmIntrinsics::_montgomeryMultiply:
 613     return inline_montgomeryMultiply();
 614   case vmIntrinsics::_montgomerySquare:
 615     return inline_montgomerySquare();
 616 
 617   case vmIntrinsics::_bigIntegerRightShiftWorker:
 618     return inline_bigIntegerShift(true);
 619   case vmIntrinsics::_bigIntegerLeftShiftWorker:
 620     return inline_bigIntegerShift(false);
 621 
 622   case vmIntrinsics::_vectorizedMismatch:
 623     return inline_vectorizedMismatch();
 624 
 625   case vmIntrinsics::_ghash_processBlocks:
 626     return inline_ghash_processBlocks();
 627   case vmIntrinsics::_chacha20Block:
 628     return inline_chacha20Block();
 629   case vmIntrinsics::_dilithiumAlmostNtt:
 630     return inline_dilithiumAlmostNtt();
 631   case vmIntrinsics::_dilithiumAlmostInverseNtt:
 632     return inline_dilithiumAlmostInverseNtt();
 633   case vmIntrinsics::_dilithiumNttMult:
 634     return inline_dilithiumNttMult();
 635   case vmIntrinsics::_dilithiumMontMulByConstant:
 636     return inline_dilithiumMontMulByConstant();
 637   case vmIntrinsics::_dilithiumDecomposePoly:
 638     return inline_dilithiumDecomposePoly();
 639   case vmIntrinsics::_base64_encodeBlock:
 640     return inline_base64_encodeBlock();
 641   case vmIntrinsics::_base64_decodeBlock:
 642     return inline_base64_decodeBlock();
 643   case vmIntrinsics::_poly1305_processBlocks:
 644     return inline_poly1305_processBlocks();
 645   case vmIntrinsics::_intpoly_montgomeryMult_P256:
 646     return inline_intpoly_montgomeryMult_P256();
 647   case vmIntrinsics::_intpoly_assign:
 648     return inline_intpoly_assign();
 649   case vmIntrinsics::_encodeISOArray:
 650   case vmIntrinsics::_encodeByteISOArray:
 651     return inline_encodeISOArray(false);
 652   case vmIntrinsics::_encodeAsciiArray:
 653     return inline_encodeISOArray(true);
 654 
 655   case vmIntrinsics::_updateCRC32:
 656     return inline_updateCRC32();
 657   case vmIntrinsics::_updateBytesCRC32:
 658     return inline_updateBytesCRC32();
 659   case vmIntrinsics::_updateByteBufferCRC32:
 660     return inline_updateByteBufferCRC32();
 661 
 662   case vmIntrinsics::_updateBytesCRC32C:
 663     return inline_updateBytesCRC32C();
 664   case vmIntrinsics::_updateDirectByteBufferCRC32C:
 665     return inline_updateDirectByteBufferCRC32C();
 666 
 667   case vmIntrinsics::_updateBytesAdler32:
 668     return inline_updateBytesAdler32();
 669   case vmIntrinsics::_updateByteBufferAdler32:
 670     return inline_updateByteBufferAdler32();
 671 
 672   case vmIntrinsics::_profileBoolean:
 673     return inline_profileBoolean();
 674   case vmIntrinsics::_isCompileConstant:
 675     return inline_isCompileConstant();
 676 
 677   case vmIntrinsics::_countPositives:
 678     return inline_countPositives();
 679 
 680   case vmIntrinsics::_fmaD:
 681   case vmIntrinsics::_fmaF:
 682     return inline_fma(intrinsic_id());
 683 
 684   case vmIntrinsics::_isDigit:
 685   case vmIntrinsics::_isLowerCase:
 686   case vmIntrinsics::_isUpperCase:
 687   case vmIntrinsics::_isWhitespace:
 688     return inline_character_compare(intrinsic_id());
 689 
 690   case vmIntrinsics::_min:
 691   case vmIntrinsics::_max:
 692   case vmIntrinsics::_min_strict:
 693   case vmIntrinsics::_max_strict:
 694   case vmIntrinsics::_minL:
 695   case vmIntrinsics::_maxL:
 696   case vmIntrinsics::_minF:
 697   case vmIntrinsics::_maxF:
 698   case vmIntrinsics::_minD:
 699   case vmIntrinsics::_maxD:
 700   case vmIntrinsics::_minF_strict:
 701   case vmIntrinsics::_maxF_strict:
 702   case vmIntrinsics::_minD_strict:
 703   case vmIntrinsics::_maxD_strict:
 704     return inline_min_max(intrinsic_id());
 705 
 706   case vmIntrinsics::_VectorUnaryOp:
 707     return inline_vector_nary_operation(1);
 708   case vmIntrinsics::_VectorBinaryOp:
 709     return inline_vector_nary_operation(2);
 710   case vmIntrinsics::_VectorTernaryOp:
 711     return inline_vector_nary_operation(3);
 712   case vmIntrinsics::_VectorFromBitsCoerced:
 713     return inline_vector_frombits_coerced();
 714   case vmIntrinsics::_VectorMaskOp:
 715     return inline_vector_mask_operation();
 716   case vmIntrinsics::_VectorLoadOp:
 717     return inline_vector_mem_operation(/*is_store=*/false);
 718   case vmIntrinsics::_VectorLoadMaskedOp:
 719     return inline_vector_mem_masked_operation(/*is_store*/false);
 720   case vmIntrinsics::_VectorStoreOp:
 721     return inline_vector_mem_operation(/*is_store=*/true);
 722   case vmIntrinsics::_VectorStoreMaskedOp:
 723     return inline_vector_mem_masked_operation(/*is_store=*/true);
 724   case vmIntrinsics::_VectorGatherOp:
 725     return inline_vector_gather_scatter(/*is_scatter*/ false);
 726   case vmIntrinsics::_VectorScatterOp:
 727     return inline_vector_gather_scatter(/*is_scatter*/ true);
 728   case vmIntrinsics::_VectorReductionCoerced:
 729     return inline_vector_reduction();
 730   case vmIntrinsics::_VectorTest:
 731     return inline_vector_test();
 732   case vmIntrinsics::_VectorBlend:
 733     return inline_vector_blend();
 734   case vmIntrinsics::_VectorRearrange:
 735     return inline_vector_rearrange();
 736   case vmIntrinsics::_VectorSelectFrom:
 737     return inline_vector_select_from();
 738   case vmIntrinsics::_VectorCompare:
 739     return inline_vector_compare();
 740   case vmIntrinsics::_VectorBroadcastInt:
 741     return inline_vector_broadcast_int();
 742   case vmIntrinsics::_VectorConvert:
 743     return inline_vector_convert();
 744   case vmIntrinsics::_VectorInsert:
 745     return inline_vector_insert();
 746   case vmIntrinsics::_VectorExtract:
 747     return inline_vector_extract();
 748   case vmIntrinsics::_VectorCompressExpand:
 749     return inline_vector_compress_expand();
 750   case vmIntrinsics::_VectorSelectFromTwoVectorOp:
 751     return inline_vector_select_from_two_vectors();
 752   case vmIntrinsics::_IndexVector:
 753     return inline_index_vector();
 754   case vmIntrinsics::_IndexPartiallyInUpperRange:
 755     return inline_index_partially_in_upper_range();
 756 
 757   case vmIntrinsics::_getObjectSize:
 758     return inline_getObjectSize();
 759 
 760   case vmIntrinsics::_blackhole:
 761     return inline_blackhole();
 762 
 763   default:
 764     // If you get here, it may be that someone has added a new intrinsic
 765     // to the list in vmIntrinsics.hpp without implementing it here.
 766 #ifndef PRODUCT
 767     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 768       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 769                     vmIntrinsics::name_at(intrinsic_id()), vmIntrinsics::as_int(intrinsic_id()));
 770     }
 771 #endif
 772     return false;
 773   }
 774 }
 775 
 776 Node* LibraryCallKit::try_to_predicate(int predicate) {
 777   if (!jvms()->has_method()) {
 778     // Root JVMState has a null method.
 779     assert(map()->memory()->Opcode() == Op_Parm, "");
 780     // Insert the memory aliasing node
 781     set_all_memory(reset_memory());
 782   }
 783   assert(merged_memory(), "");
 784 
 785   switch (intrinsic_id()) {
 786   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 787     return inline_cipherBlockChaining_AESCrypt_predicate(false);
 788   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 789     return inline_cipherBlockChaining_AESCrypt_predicate(true);
 790   case vmIntrinsics::_electronicCodeBook_encryptAESCrypt:
 791     return inline_electronicCodeBook_AESCrypt_predicate(false);
 792   case vmIntrinsics::_electronicCodeBook_decryptAESCrypt:
 793     return inline_electronicCodeBook_AESCrypt_predicate(true);
 794   case vmIntrinsics::_counterMode_AESCrypt:
 795     return inline_counterMode_AESCrypt_predicate();
 796   case vmIntrinsics::_digestBase_implCompressMB:
 797     return inline_digestBase_implCompressMB_predicate(predicate);
 798   case vmIntrinsics::_galoisCounterMode_AESCrypt:
 799     return inline_galoisCounterMode_AESCrypt_predicate();
 800 
 801   default:
 802     // If you get here, it may be that someone has added a new intrinsic
 803     // to the list in vmIntrinsics.hpp without implementing it here.
 804 #ifndef PRODUCT
 805     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 806       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
 807                     vmIntrinsics::name_at(intrinsic_id()), vmIntrinsics::as_int(intrinsic_id()));
 808     }
 809 #endif
 810     Node* slow_ctl = control();
 811     set_control(top()); // No fast path intrinsic
 812     return slow_ctl;
 813   }
 814 }
 815 
 816 //------------------------------set_result-------------------------------
 817 // Helper function for finishing intrinsics.
 818 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
 819   record_for_igvn(region);
 820   set_control(_gvn.transform(region));
 821   set_result( _gvn.transform(value));
 822   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
 823 }
 824 
 825 //------------------------------generate_guard---------------------------
 826 // Helper function for generating guarded fast-slow graph structures.
 827 // The given 'test', if true, guards a slow path.  If the test fails
 828 // then a fast path can be taken.  (We generally hope it fails.)
 829 // In all cases, GraphKit::control() is updated to the fast path.
 830 // The returned value represents the control for the slow path.
 831 // The return value is never 'top'; it is either a valid control
 832 // or null if it is obvious that the slow path can never be taken.
 833 // Also, if region and the slow control are not null, the slow edge
 834 // is appended to the region.
 835 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
 836   if (stopped()) {
 837     // Already short circuited.
 838     return nullptr;
 839   }
 840 
 841   // Build an if node and its projections.
 842   // If test is true we take the slow path, which we assume is uncommon.
 843   if (_gvn.type(test) == TypeInt::ZERO) {
 844     // The slow branch is never taken.  No need to build this guard.
 845     return nullptr;
 846   }
 847 
 848   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
 849 
 850   Node* if_slow = _gvn.transform(new IfTrueNode(iff));
 851   if (if_slow == top()) {
 852     // The slow branch is never taken.  No need to build this guard.
 853     return nullptr;
 854   }
 855 
 856   if (region != nullptr)
 857     region->add_req(if_slow);
 858 
 859   Node* if_fast = _gvn.transform(new IfFalseNode(iff));
 860   set_control(if_fast);
 861 
 862   return if_slow;
 863 }
 864 
 865 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
 866   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
 867 }
 868 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
 869   return generate_guard(test, region, PROB_FAIR);
 870 }
 871 
 872 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
 873                                                      Node* *pos_index) {
 874   if (stopped())
 875     return nullptr;                // already stopped
 876   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
 877     return nullptr;                // index is already adequately typed
 878   Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0)));
 879   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
 880   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
 881   if (is_neg != nullptr && pos_index != nullptr) {
 882     // Emulate effect of Parse::adjust_map_after_if.
 883     Node* ccast = new CastIINode(control(), index, TypeInt::POS);
 884     (*pos_index) = _gvn.transform(ccast);
 885   }
 886   return is_neg;
 887 }
 888 
 889 // Make sure that 'position' is a valid limit index, in [0..length].
 890 // There are two equivalent plans for checking this:
 891 //   A. (offset + copyLength)  unsigned<=  arrayLength
 892 //   B. offset  <=  (arrayLength - copyLength)
 893 // We require that all of the values above, except for the sum and
 894 // difference, are already known to be non-negative.
 895 // Plan A is robust in the face of overflow, if offset and copyLength
 896 // are both hugely positive.
 897 //
 898 // Plan B is less direct and intuitive, but it does not overflow at
 899 // all, since the difference of two non-negatives is always
 900 // representable.  Whenever Java methods must perform the equivalent
 901 // check they generally use Plan B instead of Plan A.
 902 // For the moment we use Plan A.
 903 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
 904                                                   Node* subseq_length,
 905                                                   Node* array_length,
 906                                                   RegionNode* region) {
 907   if (stopped())
 908     return nullptr;                // already stopped
 909   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
 910   if (zero_offset && subseq_length->eqv_uncast(array_length))
 911     return nullptr;                // common case of whole-array copy
 912   Node* last = subseq_length;
 913   if (!zero_offset)             // last += offset
 914     last = _gvn.transform(new AddINode(last, offset));
 915   Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last));
 916   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
 917   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
 918   return is_over;
 919 }
 920 
 921 // Emit range checks for the given String.value byte array
 922 void LibraryCallKit::generate_string_range_check(Node* array, Node* offset, Node* count, bool char_count) {
 923   if (stopped()) {
 924     return; // already stopped
 925   }
 926   RegionNode* bailout = new RegionNode(1);
 927   record_for_igvn(bailout);
 928   if (char_count) {
 929     // Convert char count to byte count
 930     count = _gvn.transform(new LShiftINode(count, intcon(1)));
 931   }
 932 
 933   // Offset and count must not be negative
 934   generate_negative_guard(offset, bailout);
 935   generate_negative_guard(count, bailout);
 936   // Offset + count must not exceed length of array
 937   generate_limit_guard(offset, count, load_array_length(array), bailout);
 938 
 939   if (bailout->req() > 1) {
 940     PreserveJVMState pjvms(this);
 941     set_control(_gvn.transform(bailout));
 942     uncommon_trap(Deoptimization::Reason_intrinsic,
 943                   Deoptimization::Action_maybe_recompile);
 944   }
 945 }
 946 
 947 Node* LibraryCallKit::current_thread_helper(Node*& tls_output, ByteSize handle_offset,
 948                                             bool is_immutable) {
 949   ciKlass* thread_klass = env()->Thread_klass();
 950   const Type* thread_type
 951     = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
 952 
 953   Node* thread = _gvn.transform(new ThreadLocalNode());
 954   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(handle_offset));
 955   tls_output = thread;
 956 
 957   Node* thread_obj_handle
 958     = (is_immutable
 959       ? LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(),
 960         TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered)
 961       : make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered));
 962   thread_obj_handle = _gvn.transform(thread_obj_handle);
 963 
 964   DecoratorSet decorators = IN_NATIVE;
 965   if (is_immutable) {
 966     decorators |= C2_IMMUTABLE_MEMORY;
 967   }
 968   return access_load(thread_obj_handle, thread_type, T_OBJECT, decorators);
 969 }
 970 
 971 //--------------------------generate_current_thread--------------------
 972 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
 973   return current_thread_helper(tls_output, JavaThread::threadObj_offset(),
 974                                /*is_immutable*/false);
 975 }
 976 
 977 //--------------------------generate_virtual_thread--------------------
 978 Node* LibraryCallKit::generate_virtual_thread(Node* tls_output) {
 979   return current_thread_helper(tls_output, JavaThread::vthread_offset(),
 980                                !C->method()->changes_current_thread());
 981 }
 982 
 983 //------------------------------make_string_method_node------------------------
 984 // Helper method for String intrinsic functions. This version is called with
 985 // str1 and str2 pointing to byte[] nodes containing Latin1 or UTF16 encoded
 986 // characters (depending on 'is_byte'). cnt1 and cnt2 are pointing to Int nodes
 987 // containing the lengths of str1 and str2.
 988 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae) {
 989   Node* result = nullptr;
 990   switch (opcode) {
 991   case Op_StrIndexOf:
 992     result = new StrIndexOfNode(control(), memory(TypeAryPtr::BYTES),
 993                                 str1_start, cnt1, str2_start, cnt2, ae);
 994     break;
 995   case Op_StrComp:
 996     result = new StrCompNode(control(), memory(TypeAryPtr::BYTES),
 997                              str1_start, cnt1, str2_start, cnt2, ae);
 998     break;
 999   case Op_StrEquals:
1000     // We already know that cnt1 == cnt2 here (checked in 'inline_string_equals').
1001     // Use the constant length if there is one because optimized match rule may exist.
1002     result = new StrEqualsNode(control(), memory(TypeAryPtr::BYTES),
1003                                str1_start, str2_start, cnt2->is_Con() ? cnt2 : cnt1, ae);
1004     break;
1005   default:
1006     ShouldNotReachHere();
1007     return nullptr;
1008   }
1009 
1010   // All these intrinsics have checks.
1011   C->set_has_split_ifs(true); // Has chance for split-if optimization
1012   clear_upper_avx();
1013 
1014   return _gvn.transform(result);
1015 }
1016 
1017 //------------------------------inline_string_compareTo------------------------
1018 bool LibraryCallKit::inline_string_compareTo(StrIntrinsicNode::ArgEnc ae) {
1019   Node* arg1 = argument(0);
1020   Node* arg2 = argument(1);
1021 
1022   arg1 = must_be_not_null(arg1, true);
1023   arg2 = must_be_not_null(arg2, true);
1024 
1025   // Get start addr and length of first argument
1026   Node* arg1_start  = array_element_address(arg1, intcon(0), T_BYTE);
1027   Node* arg1_cnt    = load_array_length(arg1);
1028 
1029   // Get start addr and length of second argument
1030   Node* arg2_start  = array_element_address(arg2, intcon(0), T_BYTE);
1031   Node* arg2_cnt    = load_array_length(arg2);
1032 
1033   Node* result = make_string_method_node(Op_StrComp, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae);
1034   set_result(result);
1035   return true;
1036 }
1037 
1038 //------------------------------inline_string_equals------------------------
1039 bool LibraryCallKit::inline_string_equals(StrIntrinsicNode::ArgEnc ae) {
1040   Node* arg1 = argument(0);
1041   Node* arg2 = argument(1);
1042 
1043   // paths (plus control) merge
1044   RegionNode* region = new RegionNode(3);
1045   Node* phi = new PhiNode(region, TypeInt::BOOL);
1046 
1047   if (!stopped()) {
1048 
1049     arg1 = must_be_not_null(arg1, true);
1050     arg2 = must_be_not_null(arg2, true);
1051 
1052     // Get start addr and length of first argument
1053     Node* arg1_start  = array_element_address(arg1, intcon(0), T_BYTE);
1054     Node* arg1_cnt    = load_array_length(arg1);
1055 
1056     // Get start addr and length of second argument
1057     Node* arg2_start  = array_element_address(arg2, intcon(0), T_BYTE);
1058     Node* arg2_cnt    = load_array_length(arg2);
1059 
1060     // Check for arg1_cnt != arg2_cnt
1061     Node* cmp = _gvn.transform(new CmpINode(arg1_cnt, arg2_cnt));
1062     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
1063     Node* if_ne = generate_slow_guard(bol, nullptr);
1064     if (if_ne != nullptr) {
1065       phi->init_req(2, intcon(0));
1066       region->init_req(2, if_ne);
1067     }
1068 
1069     // Check for count == 0 is done by assembler code for StrEquals.
1070 
1071     if (!stopped()) {
1072       Node* equals = make_string_method_node(Op_StrEquals, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae);
1073       phi->init_req(1, equals);
1074       region->init_req(1, control());
1075     }
1076   }
1077 
1078   // post merge
1079   set_control(_gvn.transform(region));
1080   record_for_igvn(region);
1081 
1082   set_result(_gvn.transform(phi));
1083   return true;
1084 }
1085 
1086 //------------------------------inline_array_equals----------------------------
1087 bool LibraryCallKit::inline_array_equals(StrIntrinsicNode::ArgEnc ae) {
1088   assert(ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::LL, "unsupported array types");
1089   Node* arg1 = argument(0);
1090   Node* arg2 = argument(1);
1091 
1092   const TypeAryPtr* mtype = (ae == StrIntrinsicNode::UU) ? TypeAryPtr::CHARS : TypeAryPtr::BYTES;
1093   set_result(_gvn.transform(new AryEqNode(control(), memory(mtype), arg1, arg2, ae)));
1094   clear_upper_avx();
1095 
1096   return true;
1097 }
1098 
1099 
1100 //------------------------------inline_countPositives------------------------------
1101 bool LibraryCallKit::inline_countPositives() {
1102   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1103     return false;
1104   }
1105 
1106   assert(callee()->signature()->size() == 3, "countPositives has 3 parameters");
1107   // no receiver since it is static method
1108   Node* ba         = argument(0);
1109   Node* offset     = argument(1);
1110   Node* len        = argument(2);
1111 
1112   ba = must_be_not_null(ba, true);
1113 
1114   // Range checks
1115   generate_string_range_check(ba, offset, len, false);
1116   if (stopped()) {
1117     return true;
1118   }
1119   Node* ba_start = array_element_address(ba, offset, T_BYTE);
1120   Node* result = new CountPositivesNode(control(), memory(TypeAryPtr::BYTES), ba_start, len);
1121   set_result(_gvn.transform(result));
1122   clear_upper_avx();
1123   return true;
1124 }
1125 
1126 bool LibraryCallKit::inline_preconditions_checkIndex(BasicType bt) {
1127   Node* index = argument(0);
1128   Node* length = bt == T_INT ? argument(1) : argument(2);
1129   if (too_many_traps(Deoptimization::Reason_intrinsic) || too_many_traps(Deoptimization::Reason_range_check)) {
1130     return false;
1131   }
1132 
1133   // check that length is positive
1134   Node* len_pos_cmp = _gvn.transform(CmpNode::make(length, integercon(0, bt), bt));
1135   Node* len_pos_bol = _gvn.transform(new BoolNode(len_pos_cmp, BoolTest::ge));
1136 
1137   {
1138     BuildCutout unless(this, len_pos_bol, PROB_MAX);
1139     uncommon_trap(Deoptimization::Reason_intrinsic,
1140                   Deoptimization::Action_make_not_entrant);
1141   }
1142 
1143   if (stopped()) {
1144     // Length is known to be always negative during compilation and the IR graph so far constructed is good so return success
1145     return true;
1146   }
1147 
1148   // length is now known positive, add a cast node to make this explicit
1149   jlong upper_bound = _gvn.type(length)->is_integer(bt)->hi_as_long();
1150   Node* casted_length = ConstraintCastNode::make_cast_for_basic_type(
1151       control(), length, TypeInteger::make(0, upper_bound, Type::WidenMax, bt),
1152       ConstraintCastNode::RegularDependency, bt);
1153   casted_length = _gvn.transform(casted_length);
1154   replace_in_map(length, casted_length);
1155   length = casted_length;
1156 
1157   // Use an unsigned comparison for the range check itself
1158   Node* rc_cmp = _gvn.transform(CmpNode::make(index, length, bt, true));
1159   BoolTest::mask btest = BoolTest::lt;
1160   Node* rc_bool = _gvn.transform(new BoolNode(rc_cmp, btest));
1161   RangeCheckNode* rc = new RangeCheckNode(control(), rc_bool, PROB_MAX, COUNT_UNKNOWN);
1162   _gvn.set_type(rc, rc->Value(&_gvn));
1163   if (!rc_bool->is_Con()) {
1164     record_for_igvn(rc);
1165   }
1166   set_control(_gvn.transform(new IfTrueNode(rc)));
1167   {
1168     PreserveJVMState pjvms(this);
1169     set_control(_gvn.transform(new IfFalseNode(rc)));
1170     uncommon_trap(Deoptimization::Reason_range_check,
1171                   Deoptimization::Action_make_not_entrant);
1172   }
1173 
1174   if (stopped()) {
1175     // Range check is known to always fail during compilation and the IR graph so far constructed is good so return success
1176     return true;
1177   }
1178 
1179   // index is now known to be >= 0 and < length, cast it
1180   Node* result = ConstraintCastNode::make_cast_for_basic_type(
1181       control(), index, TypeInteger::make(0, upper_bound, Type::WidenMax, bt),
1182       ConstraintCastNode::RegularDependency, bt);
1183   result = _gvn.transform(result);
1184   set_result(result);
1185   replace_in_map(index, result);
1186   return true;
1187 }
1188 
1189 //------------------------------inline_string_indexOf------------------------
1190 bool LibraryCallKit::inline_string_indexOf(StrIntrinsicNode::ArgEnc ae) {
1191   if (!Matcher::match_rule_supported(Op_StrIndexOf)) {
1192     return false;
1193   }
1194   Node* src = argument(0);
1195   Node* tgt = argument(1);
1196 
1197   // Make the merge point
1198   RegionNode* result_rgn = new RegionNode(4);
1199   Node*       result_phi = new PhiNode(result_rgn, TypeInt::INT);
1200 
1201   src = must_be_not_null(src, true);
1202   tgt = must_be_not_null(tgt, true);
1203 
1204   // Get start addr and length of source string
1205   Node* src_start = array_element_address(src, intcon(0), T_BYTE);
1206   Node* src_count = load_array_length(src);
1207 
1208   // Get start addr and length of substring
1209   Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE);
1210   Node* tgt_count = load_array_length(tgt);
1211 
1212   Node* result = nullptr;
1213   bool call_opt_stub = (StubRoutines::_string_indexof_array[ae] != nullptr);
1214 
1215   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
1216     // Divide src size by 2 if String is UTF16 encoded
1217     src_count = _gvn.transform(new RShiftINode(src_count, intcon(1)));
1218   }
1219   if (ae == StrIntrinsicNode::UU) {
1220     // Divide substring size by 2 if String is UTF16 encoded
1221     tgt_count = _gvn.transform(new RShiftINode(tgt_count, intcon(1)));
1222   }
1223 
1224   if (call_opt_stub) {
1225     Node* call = make_runtime_call(RC_LEAF, OptoRuntime::string_IndexOf_Type(),
1226                                    StubRoutines::_string_indexof_array[ae],
1227                                    "stringIndexOf", TypePtr::BOTTOM, src_start,
1228                                    src_count, tgt_start, tgt_count);
1229     result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1230   } else {
1231     result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count,
1232                                result_rgn, result_phi, ae);
1233   }
1234   if (result != nullptr) {
1235     result_phi->init_req(3, result);
1236     result_rgn->init_req(3, control());
1237   }
1238   set_control(_gvn.transform(result_rgn));
1239   record_for_igvn(result_rgn);
1240   set_result(_gvn.transform(result_phi));
1241 
1242   return true;
1243 }
1244 
1245 //-----------------------------inline_string_indexOfI-----------------------
1246 bool LibraryCallKit::inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae) {
1247   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1248     return false;
1249   }
1250   if (!Matcher::match_rule_supported(Op_StrIndexOf)) {
1251     return false;
1252   }
1253 
1254   assert(callee()->signature()->size() == 5, "String.indexOf() has 5 arguments");
1255   Node* src         = argument(0); // byte[]
1256   Node* src_count   = argument(1); // char count
1257   Node* tgt         = argument(2); // byte[]
1258   Node* tgt_count   = argument(3); // char count
1259   Node* from_index  = argument(4); // char index
1260 
1261   src = must_be_not_null(src, true);
1262   tgt = must_be_not_null(tgt, true);
1263 
1264   // Multiply byte array index by 2 if String is UTF16 encoded
1265   Node* src_offset = (ae == StrIntrinsicNode::LL) ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1)));
1266   src_count = _gvn.transform(new SubINode(src_count, from_index));
1267   Node* src_start = array_element_address(src, src_offset, T_BYTE);
1268   Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE);
1269 
1270   // Range checks
1271   generate_string_range_check(src, src_offset, src_count, ae != StrIntrinsicNode::LL);
1272   generate_string_range_check(tgt, intcon(0), tgt_count, ae == StrIntrinsicNode::UU);
1273   if (stopped()) {
1274     return true;
1275   }
1276 
1277   RegionNode* region = new RegionNode(5);
1278   Node* phi = new PhiNode(region, TypeInt::INT);
1279   Node* result = nullptr;
1280 
1281   bool call_opt_stub = (StubRoutines::_string_indexof_array[ae] != nullptr);
1282 
1283   if (call_opt_stub) {
1284     Node* call = make_runtime_call(RC_LEAF, OptoRuntime::string_IndexOf_Type(),
1285                                    StubRoutines::_string_indexof_array[ae],
1286                                    "stringIndexOf", TypePtr::BOTTOM, src_start,
1287                                    src_count, tgt_start, tgt_count);
1288     result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1289   } else {
1290     result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count,
1291                                region, phi, ae);
1292   }
1293   if (result != nullptr) {
1294     // The result is index relative to from_index if substring was found, -1 otherwise.
1295     // Generate code which will fold into cmove.
1296     Node* cmp = _gvn.transform(new CmpINode(result, intcon(0)));
1297     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt));
1298 
1299     Node* if_lt = generate_slow_guard(bol, nullptr);
1300     if (if_lt != nullptr) {
1301       // result == -1
1302       phi->init_req(3, result);
1303       region->init_req(3, if_lt);
1304     }
1305     if (!stopped()) {
1306       result = _gvn.transform(new AddINode(result, from_index));
1307       phi->init_req(4, result);
1308       region->init_req(4, control());
1309     }
1310   }
1311 
1312   set_control(_gvn.transform(region));
1313   record_for_igvn(region);
1314   set_result(_gvn.transform(phi));
1315   clear_upper_avx();
1316 
1317   return true;
1318 }
1319 
1320 // Create StrIndexOfNode with fast path checks
1321 Node* LibraryCallKit::make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count,
1322                                         RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae) {
1323   // Check for substr count > string count
1324   Node* cmp = _gvn.transform(new CmpINode(tgt_count, src_count));
1325   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt));
1326   Node* if_gt = generate_slow_guard(bol, nullptr);
1327   if (if_gt != nullptr) {
1328     phi->init_req(1, intcon(-1));
1329     region->init_req(1, if_gt);
1330   }
1331   if (!stopped()) {
1332     // Check for substr count == 0
1333     cmp = _gvn.transform(new CmpINode(tgt_count, intcon(0)));
1334     bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
1335     Node* if_zero = generate_slow_guard(bol, nullptr);
1336     if (if_zero != nullptr) {
1337       phi->init_req(2, intcon(0));
1338       region->init_req(2, if_zero);
1339     }
1340   }
1341   if (!stopped()) {
1342     return make_string_method_node(Op_StrIndexOf, src_start, src_count, tgt_start, tgt_count, ae);
1343   }
1344   return nullptr;
1345 }
1346 
1347 //-----------------------------inline_string_indexOfChar-----------------------
1348 bool LibraryCallKit::inline_string_indexOfChar(StrIntrinsicNode::ArgEnc ae) {
1349   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1350     return false;
1351   }
1352   if (!Matcher::match_rule_supported(Op_StrIndexOfChar)) {
1353     return false;
1354   }
1355   assert(callee()->signature()->size() == 4, "String.indexOfChar() has 4 arguments");
1356   Node* src         = argument(0); // byte[]
1357   Node* int_ch      = argument(1);
1358   Node* from_index  = argument(2);
1359   Node* max         = argument(3);
1360 
1361   src = must_be_not_null(src, true);
1362 
1363   Node* src_offset = ae == StrIntrinsicNode::L ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1)));
1364   Node* src_start = array_element_address(src, src_offset, T_BYTE);
1365   Node* src_count = _gvn.transform(new SubINode(max, from_index));
1366 
1367   // Range checks
1368   generate_string_range_check(src, src_offset, src_count, ae == StrIntrinsicNode::U);
1369 
1370   // Check for int_ch >= 0
1371   Node* int_ch_cmp = _gvn.transform(new CmpINode(int_ch, intcon(0)));
1372   Node* int_ch_bol = _gvn.transform(new BoolNode(int_ch_cmp, BoolTest::ge));
1373   {
1374     BuildCutout unless(this, int_ch_bol, PROB_MAX);
1375     uncommon_trap(Deoptimization::Reason_intrinsic,
1376                   Deoptimization::Action_maybe_recompile);
1377   }
1378   if (stopped()) {
1379     return true;
1380   }
1381 
1382   RegionNode* region = new RegionNode(3);
1383   Node* phi = new PhiNode(region, TypeInt::INT);
1384 
1385   Node* result = new StrIndexOfCharNode(control(), memory(TypeAryPtr::BYTES), src_start, src_count, int_ch, ae);
1386   C->set_has_split_ifs(true); // Has chance for split-if optimization
1387   _gvn.transform(result);
1388 
1389   Node* cmp = _gvn.transform(new CmpINode(result, intcon(0)));
1390   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt));
1391 
1392   Node* if_lt = generate_slow_guard(bol, nullptr);
1393   if (if_lt != nullptr) {
1394     // result == -1
1395     phi->init_req(2, result);
1396     region->init_req(2, if_lt);
1397   }
1398   if (!stopped()) {
1399     result = _gvn.transform(new AddINode(result, from_index));
1400     phi->init_req(1, result);
1401     region->init_req(1, control());
1402   }
1403   set_control(_gvn.transform(region));
1404   record_for_igvn(region);
1405   set_result(_gvn.transform(phi));
1406   clear_upper_avx();
1407 
1408   return true;
1409 }
1410 //---------------------------inline_string_copy---------------------
1411 // compressIt == true --> generate a compressed copy operation (compress char[]/byte[] to byte[])
1412 //   int StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len)
1413 //   int StringUTF16.compress(byte[] src, int srcOff, byte[] dst, int dstOff, int len)
1414 // compressIt == false --> generate an inflated copy operation (inflate byte[] to char[]/byte[])
1415 //   void StringLatin1.inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len)
1416 //   void StringLatin1.inflate(byte[] src, int srcOff, byte[] dst, int dstOff, int len)
1417 bool LibraryCallKit::inline_string_copy(bool compress) {
1418   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1419     return false;
1420   }
1421   int nargs = 5;  // 2 oops, 3 ints
1422   assert(callee()->signature()->size() == nargs, "string copy has 5 arguments");
1423 
1424   Node* src         = argument(0);
1425   Node* src_offset  = argument(1);
1426   Node* dst         = argument(2);
1427   Node* dst_offset  = argument(3);
1428   Node* length      = argument(4);
1429 
1430   // Check for allocation before we add nodes that would confuse
1431   // tightly_coupled_allocation()
1432   AllocateArrayNode* alloc = tightly_coupled_allocation(dst);
1433 
1434   // Figure out the size and type of the elements we will be copying.
1435   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
1436   const TypeAryPtr* dst_type = dst->Value(&_gvn)->isa_aryptr();
1437   if (src_type == nullptr || dst_type == nullptr) {
1438     return false;
1439   }
1440   BasicType src_elem = src_type->elem()->array_element_basic_type();
1441   BasicType dst_elem = dst_type->elem()->array_element_basic_type();
1442   assert((compress && dst_elem == T_BYTE && (src_elem == T_BYTE || src_elem == T_CHAR)) ||
1443          (!compress && src_elem == T_BYTE && (dst_elem == T_BYTE || dst_elem == T_CHAR)),
1444          "Unsupported array types for inline_string_copy");
1445 
1446   src = must_be_not_null(src, true);
1447   dst = must_be_not_null(dst, true);
1448 
1449   // Convert char[] offsets to byte[] offsets
1450   bool convert_src = (compress && src_elem == T_BYTE);
1451   bool convert_dst = (!compress && dst_elem == T_BYTE);
1452   if (convert_src) {
1453     src_offset = _gvn.transform(new LShiftINode(src_offset, intcon(1)));
1454   } else if (convert_dst) {
1455     dst_offset = _gvn.transform(new LShiftINode(dst_offset, intcon(1)));
1456   }
1457 
1458   // Range checks
1459   generate_string_range_check(src, src_offset, length, convert_src);
1460   generate_string_range_check(dst, dst_offset, length, convert_dst);
1461   if (stopped()) {
1462     return true;
1463   }
1464 
1465   Node* src_start = array_element_address(src, src_offset, src_elem);
1466   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
1467   // 'src_start' points to src array + scaled offset
1468   // 'dst_start' points to dst array + scaled offset
1469   Node* count = nullptr;
1470   if (compress) {
1471     count = compress_string(src_start, TypeAryPtr::get_array_body_type(src_elem), dst_start, length);
1472   } else {
1473     inflate_string(src_start, dst_start, TypeAryPtr::get_array_body_type(dst_elem), length);
1474   }
1475 
1476   if (alloc != nullptr) {
1477     if (alloc->maybe_set_complete(&_gvn)) {
1478       // "You break it, you buy it."
1479       InitializeNode* init = alloc->initialization();
1480       assert(init->is_complete(), "we just did this");
1481       init->set_complete_with_arraycopy();
1482       assert(dst->is_CheckCastPP(), "sanity");
1483       assert(dst->in(0)->in(0) == init, "dest pinned");
1484     }
1485     // Do not let stores that initialize this object be reordered with
1486     // a subsequent store that would make this object accessible by
1487     // other threads.
1488     // Record what AllocateNode this StoreStore protects so that
1489     // escape analysis can go from the MemBarStoreStoreNode to the
1490     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1491     // based on the escape status of the AllocateNode.
1492     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
1493   }
1494   if (compress) {
1495     set_result(_gvn.transform(count));
1496   }
1497   clear_upper_avx();
1498 
1499   return true;
1500 }
1501 
1502 #ifdef _LP64
1503 #define XTOP ,top() /*additional argument*/
1504 #else  //_LP64
1505 #define XTOP        /*no additional argument*/
1506 #endif //_LP64
1507 
1508 //------------------------inline_string_toBytesU--------------------------
1509 // public static byte[] StringUTF16.toBytes(char[] value, int off, int len)
1510 bool LibraryCallKit::inline_string_toBytesU() {
1511   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1512     return false;
1513   }
1514   // Get the arguments.
1515   Node* value     = argument(0);
1516   Node* offset    = argument(1);
1517   Node* length    = argument(2);
1518 
1519   Node* newcopy = nullptr;
1520 
1521   // Set the original stack and the reexecute bit for the interpreter to reexecute
1522   // the bytecode that invokes StringUTF16.toBytes() if deoptimization happens.
1523   { PreserveReexecuteState preexecs(this);
1524     jvms()->set_should_reexecute(true);
1525 
1526     // Check if a null path was taken unconditionally.
1527     value = null_check(value);
1528 
1529     RegionNode* bailout = new RegionNode(1);
1530     record_for_igvn(bailout);
1531 
1532     // Range checks
1533     generate_negative_guard(offset, bailout);
1534     generate_negative_guard(length, bailout);
1535     generate_limit_guard(offset, length, load_array_length(value), bailout);
1536     // Make sure that resulting byte[] length does not overflow Integer.MAX_VALUE
1537     generate_limit_guard(length, intcon(0), intcon(max_jint/2), bailout);
1538 
1539     if (bailout->req() > 1) {
1540       PreserveJVMState pjvms(this);
1541       set_control(_gvn.transform(bailout));
1542       uncommon_trap(Deoptimization::Reason_intrinsic,
1543                     Deoptimization::Action_maybe_recompile);
1544     }
1545     if (stopped()) {
1546       return true;
1547     }
1548 
1549     Node* size = _gvn.transform(new LShiftINode(length, intcon(1)));
1550     Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_BYTE)));
1551     newcopy = new_array(klass_node, size, 0);  // no arguments to push
1552     AllocateArrayNode* alloc = tightly_coupled_allocation(newcopy);
1553     guarantee(alloc != nullptr, "created above");
1554 
1555     // Calculate starting addresses.
1556     Node* src_start = array_element_address(value, offset, T_CHAR);
1557     Node* dst_start = basic_plus_adr(newcopy, arrayOopDesc::base_offset_in_bytes(T_BYTE));
1558 
1559     // Check if src array address is aligned to HeapWordSize (dst is always aligned)
1560     const TypeInt* toffset = gvn().type(offset)->is_int();
1561     bool aligned = toffset->is_con() && ((toffset->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0);
1562 
1563     // Figure out which arraycopy runtime method to call (disjoint, uninitialized).
1564     const char* copyfunc_name = "arraycopy";
1565     address     copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true);
1566     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
1567                       OptoRuntime::fast_arraycopy_Type(),
1568                       copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM,
1569                       src_start, dst_start, ConvI2X(length) XTOP);
1570     // Do not let reads from the cloned object float above the arraycopy.
1571     if (alloc->maybe_set_complete(&_gvn)) {
1572       // "You break it, you buy it."
1573       InitializeNode* init = alloc->initialization();
1574       assert(init->is_complete(), "we just did this");
1575       init->set_complete_with_arraycopy();
1576       assert(newcopy->is_CheckCastPP(), "sanity");
1577       assert(newcopy->in(0)->in(0) == init, "dest pinned");
1578     }
1579     // Do not let stores that initialize this object be reordered with
1580     // a subsequent store that would make this object accessible by
1581     // other threads.
1582     // Record what AllocateNode this StoreStore protects so that
1583     // escape analysis can go from the MemBarStoreStoreNode to the
1584     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1585     // based on the escape status of the AllocateNode.
1586     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
1587   } // original reexecute is set back here
1588 
1589   C->set_has_split_ifs(true); // Has chance for split-if optimization
1590   if (!stopped()) {
1591     set_result(newcopy);
1592   }
1593   clear_upper_avx();
1594 
1595   return true;
1596 }
1597 
1598 //------------------------inline_string_getCharsU--------------------------
1599 // public void StringUTF16.getChars(byte[] src, int srcBegin, int srcEnd, char dst[], int dstBegin)
1600 bool LibraryCallKit::inline_string_getCharsU() {
1601   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1602     return false;
1603   }
1604 
1605   // Get the arguments.
1606   Node* src       = argument(0);
1607   Node* src_begin = argument(1);
1608   Node* src_end   = argument(2); // exclusive offset (i < src_end)
1609   Node* dst       = argument(3);
1610   Node* dst_begin = argument(4);
1611 
1612   // Check for allocation before we add nodes that would confuse
1613   // tightly_coupled_allocation()
1614   AllocateArrayNode* alloc = tightly_coupled_allocation(dst);
1615 
1616   // Check if a null path was taken unconditionally.
1617   src = null_check(src);
1618   dst = null_check(dst);
1619   if (stopped()) {
1620     return true;
1621   }
1622 
1623   // Get length and convert char[] offset to byte[] offset
1624   Node* length = _gvn.transform(new SubINode(src_end, src_begin));
1625   src_begin = _gvn.transform(new LShiftINode(src_begin, intcon(1)));
1626 
1627   // Range checks
1628   generate_string_range_check(src, src_begin, length, true);
1629   generate_string_range_check(dst, dst_begin, length, false);
1630   if (stopped()) {
1631     return true;
1632   }
1633 
1634   if (!stopped()) {
1635     // Calculate starting addresses.
1636     Node* src_start = array_element_address(src, src_begin, T_BYTE);
1637     Node* dst_start = array_element_address(dst, dst_begin, T_CHAR);
1638 
1639     // Check if array addresses are aligned to HeapWordSize
1640     const TypeInt* tsrc = gvn().type(src_begin)->is_int();
1641     const TypeInt* tdst = gvn().type(dst_begin)->is_int();
1642     bool aligned = tsrc->is_con() && ((tsrc->get_con() * type2aelembytes(T_BYTE)) % HeapWordSize == 0) &&
1643                    tdst->is_con() && ((tdst->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0);
1644 
1645     // Figure out which arraycopy runtime method to call (disjoint, uninitialized).
1646     const char* copyfunc_name = "arraycopy";
1647     address     copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true);
1648     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
1649                       OptoRuntime::fast_arraycopy_Type(),
1650                       copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM,
1651                       src_start, dst_start, ConvI2X(length) XTOP);
1652     // Do not let reads from the cloned object float above the arraycopy.
1653     if (alloc != nullptr) {
1654       if (alloc->maybe_set_complete(&_gvn)) {
1655         // "You break it, you buy it."
1656         InitializeNode* init = alloc->initialization();
1657         assert(init->is_complete(), "we just did this");
1658         init->set_complete_with_arraycopy();
1659         assert(dst->is_CheckCastPP(), "sanity");
1660         assert(dst->in(0)->in(0) == init, "dest pinned");
1661       }
1662       // Do not let stores that initialize this object be reordered with
1663       // a subsequent store that would make this object accessible by
1664       // other threads.
1665       // Record what AllocateNode this StoreStore protects so that
1666       // escape analysis can go from the MemBarStoreStoreNode to the
1667       // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1668       // based on the escape status of the AllocateNode.
1669       insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
1670     } else {
1671       insert_mem_bar(Op_MemBarCPUOrder);
1672     }
1673   }
1674 
1675   C->set_has_split_ifs(true); // Has chance for split-if optimization
1676   return true;
1677 }
1678 
1679 //----------------------inline_string_char_access----------------------------
1680 // Store/Load char to/from byte[] array.
1681 // static void StringUTF16.putChar(byte[] val, int index, int c)
1682 // static char StringUTF16.getChar(byte[] val, int index)
1683 bool LibraryCallKit::inline_string_char_access(bool is_store) {
1684   Node* value  = argument(0);
1685   Node* index  = argument(1);
1686   Node* ch = is_store ? argument(2) : nullptr;
1687 
1688   // This intrinsic accesses byte[] array as char[] array. Computing the offsets
1689   // correctly requires matched array shapes.
1690   assert (arrayOopDesc::base_offset_in_bytes(T_CHAR) == arrayOopDesc::base_offset_in_bytes(T_BYTE),
1691           "sanity: byte[] and char[] bases agree");
1692   assert (type2aelembytes(T_CHAR) == type2aelembytes(T_BYTE)*2,
1693           "sanity: byte[] and char[] scales agree");
1694 
1695   // Bail when getChar over constants is requested: constant folding would
1696   // reject folding mismatched char access over byte[]. A normal inlining for getChar
1697   // Java method would constant fold nicely instead.
1698   if (!is_store && value->is_Con() && index->is_Con()) {
1699     return false;
1700   }
1701 
1702   // Save state and restore on bailout
1703   uint old_sp = sp();
1704   SafePointNode* old_map = clone_map();
1705 
1706   value = must_be_not_null(value, true);
1707 
1708   Node* adr = array_element_address(value, index, T_CHAR);
1709   if (adr->is_top()) {
1710     set_map(old_map);
1711     set_sp(old_sp);
1712     return false;
1713   }
1714   destruct_map_clone(old_map);
1715   if (is_store) {
1716     access_store_at(value, adr, TypeAryPtr::BYTES, ch, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED);
1717   } else {
1718     ch = access_load_at(value, adr, TypeAryPtr::BYTES, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD | C2_UNKNOWN_CONTROL_LOAD);
1719     set_result(ch);
1720   }
1721   return true;
1722 }
1723 
1724 
1725 //------------------------------inline_math-----------------------------------
1726 // public static double Math.abs(double)
1727 // public static double Math.sqrt(double)
1728 // public static double Math.log(double)
1729 // public static double Math.log10(double)
1730 // public static double Math.round(double)
1731 bool LibraryCallKit::inline_double_math(vmIntrinsics::ID id) {
1732   Node* arg = argument(0);
1733   Node* n = nullptr;
1734   switch (id) {
1735   case vmIntrinsics::_dabs:   n = new AbsDNode(                arg);  break;
1736   case vmIntrinsics::_dsqrt:
1737   case vmIntrinsics::_dsqrt_strict:
1738                               n = new SqrtDNode(C, control(),  arg);  break;
1739   case vmIntrinsics::_ceil:   n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_ceil); break;
1740   case vmIntrinsics::_floor:  n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_floor); break;
1741   case vmIntrinsics::_rint:   n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_rint); break;
1742   case vmIntrinsics::_roundD: n = new RoundDNode(arg); break;
1743   case vmIntrinsics::_dcopySign: n = CopySignDNode::make(_gvn, arg, argument(2)); break;
1744   case vmIntrinsics::_dsignum: n = SignumDNode::make(_gvn, arg); break;
1745   default:  fatal_unexpected_iid(id);  break;
1746   }
1747   set_result(_gvn.transform(n));
1748   return true;
1749 }
1750 
1751 //------------------------------inline_math-----------------------------------
1752 // public static float Math.abs(float)
1753 // public static int Math.abs(int)
1754 // public static long Math.abs(long)
1755 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1756   Node* arg = argument(0);
1757   Node* n = nullptr;
1758   switch (id) {
1759   case vmIntrinsics::_fabs:   n = new AbsFNode(                arg);  break;
1760   case vmIntrinsics::_iabs:   n = new AbsINode(                arg);  break;
1761   case vmIntrinsics::_labs:   n = new AbsLNode(                arg);  break;
1762   case vmIntrinsics::_fcopySign: n = new CopySignFNode(arg, argument(1)); break;
1763   case vmIntrinsics::_fsignum: n = SignumFNode::make(_gvn, arg); break;
1764   case vmIntrinsics::_roundF: n = new RoundFNode(arg); break;
1765   default:  fatal_unexpected_iid(id);  break;
1766   }
1767   set_result(_gvn.transform(n));
1768   return true;
1769 }
1770 
1771 //------------------------------runtime_math-----------------------------
1772 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1773   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1774          "must be (DD)D or (D)D type");
1775 
1776   // Inputs
1777   Node* a = argument(0);
1778   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? argument(2) : nullptr;
1779 
1780   const TypePtr* no_memory_effects = nullptr;
1781   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1782                                  no_memory_effects,
1783                                  a, top(), b, b ? top() : nullptr);
1784   Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0));
1785 #ifdef ASSERT
1786   Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1));
1787   assert(value_top == top(), "second value must be top");
1788 #endif
1789 
1790   set_result(value);
1791   return true;
1792 }
1793 
1794 //------------------------------inline_math_pow-----------------------------
1795 bool LibraryCallKit::inline_math_pow() {
1796   Node* exp = argument(2);
1797   const TypeD* d = _gvn.type(exp)->isa_double_constant();
1798   if (d != nullptr) {
1799     if (d->getd() == 2.0) {
1800       // Special case: pow(x, 2.0) => x * x
1801       Node* base = argument(0);
1802       set_result(_gvn.transform(new MulDNode(base, base)));
1803       return true;
1804     } else if (d->getd() == 0.5 && Matcher::match_rule_supported(Op_SqrtD)) {
1805       // Special case: pow(x, 0.5) => sqrt(x)
1806       Node* base = argument(0);
1807       Node* zero = _gvn.zerocon(T_DOUBLE);
1808 
1809       RegionNode* region = new RegionNode(3);
1810       Node* phi = new PhiNode(region, Type::DOUBLE);
1811 
1812       Node* cmp  = _gvn.transform(new CmpDNode(base, zero));
1813       // According to the API specs, pow(-0.0, 0.5) = 0.0 and sqrt(-0.0) = -0.0.
1814       // So pow(-0.0, 0.5) shouldn't be replaced with sqrt(-0.0).
1815       // -0.0/+0.0 are both excluded since floating-point comparison doesn't distinguish -0.0 from +0.0.
1816       Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::le));
1817 
1818       Node* if_pow = generate_slow_guard(test, nullptr);
1819       Node* value_sqrt = _gvn.transform(new SqrtDNode(C, control(), base));
1820       phi->init_req(1, value_sqrt);
1821       region->init_req(1, control());
1822 
1823       if (if_pow != nullptr) {
1824         set_control(if_pow);
1825         address target = StubRoutines::dpow() != nullptr ? StubRoutines::dpow() :
1826                                                         CAST_FROM_FN_PTR(address, SharedRuntime::dpow);
1827         const TypePtr* no_memory_effects = nullptr;
1828         Node* trig = make_runtime_call(RC_LEAF, OptoRuntime::Math_DD_D_Type(), target, "POW",
1829                                        no_memory_effects, base, top(), exp, top());
1830         Node* value_pow = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0));
1831 #ifdef ASSERT
1832         Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1));
1833         assert(value_top == top(), "second value must be top");
1834 #endif
1835         phi->init_req(2, value_pow);
1836         region->init_req(2, _gvn.transform(new ProjNode(trig, TypeFunc::Control)));
1837       }
1838 
1839       C->set_has_split_ifs(true); // Has chance for split-if optimization
1840       set_control(_gvn.transform(region));
1841       record_for_igvn(region);
1842       set_result(_gvn.transform(phi));
1843 
1844       return true;
1845     }
1846   }
1847 
1848   return StubRoutines::dpow() != nullptr ?
1849     runtime_math(OptoRuntime::Math_DD_D_Type(), StubRoutines::dpow(),  "dpow") :
1850     runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow),  "POW");
1851 }
1852 
1853 //------------------------------inline_math_native-----------------------------
1854 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1855   switch (id) {
1856   case vmIntrinsics::_dsin:
1857     return StubRoutines::dsin() != nullptr ?
1858       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dsin(), "dsin") :
1859       runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin),   "SIN");
1860   case vmIntrinsics::_dcos:
1861     return StubRoutines::dcos() != nullptr ?
1862       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dcos(), "dcos") :
1863       runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos),   "COS");
1864   case vmIntrinsics::_dtan:
1865     return StubRoutines::dtan() != nullptr ?
1866       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtan(), "dtan") :
1867       runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "TAN");
1868   case vmIntrinsics::_dtanh:
1869     return StubRoutines::dtanh() != nullptr ?
1870       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtanh(), "dtanh") : false;
1871   case vmIntrinsics::_dexp:
1872     return StubRoutines::dexp() != nullptr ?
1873       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dexp(),  "dexp") :
1874       runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp),  "EXP");
1875   case vmIntrinsics::_dlog:
1876     return StubRoutines::dlog() != nullptr ?
1877       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog(), "dlog") :
1878       runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog),   "LOG");
1879   case vmIntrinsics::_dlog10:
1880     return StubRoutines::dlog10() != nullptr ?
1881       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog10(), "dlog10") :
1882       runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), "LOG10");
1883 
1884   case vmIntrinsics::_roundD: return Matcher::match_rule_supported(Op_RoundD) ? inline_double_math(id) : false;
1885   case vmIntrinsics::_ceil:
1886   case vmIntrinsics::_floor:
1887   case vmIntrinsics::_rint:   return Matcher::match_rule_supported(Op_RoundDoubleMode) ? inline_double_math(id) : false;
1888 
1889   case vmIntrinsics::_dsqrt:
1890   case vmIntrinsics::_dsqrt_strict:
1891                               return Matcher::match_rule_supported(Op_SqrtD) ? inline_double_math(id) : false;
1892   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_double_math(id) : false;
1893   case vmIntrinsics::_fabs:   return Matcher::match_rule_supported(Op_AbsF)   ? inline_math(id) : false;
1894   case vmIntrinsics::_iabs:   return Matcher::match_rule_supported(Op_AbsI)   ? inline_math(id) : false;
1895   case vmIntrinsics::_labs:   return Matcher::match_rule_supported(Op_AbsL)   ? inline_math(id) : false;
1896 
1897   case vmIntrinsics::_dpow:      return inline_math_pow();
1898   case vmIntrinsics::_dcopySign: return inline_double_math(id);
1899   case vmIntrinsics::_fcopySign: return inline_math(id);
1900   case vmIntrinsics::_dsignum: return Matcher::match_rule_supported(Op_SignumD) ? inline_double_math(id) : false;
1901   case vmIntrinsics::_fsignum: return Matcher::match_rule_supported(Op_SignumF) ? inline_math(id) : false;
1902   case vmIntrinsics::_roundF: return Matcher::match_rule_supported(Op_RoundF) ? inline_math(id) : false;
1903 
1904    // These intrinsics are not yet correctly implemented
1905   case vmIntrinsics::_datan2:
1906     return false;
1907 
1908   default:
1909     fatal_unexpected_iid(id);
1910     return false;
1911   }
1912 }
1913 
1914 //----------------------------inline_notify-----------------------------------*
1915 bool LibraryCallKit::inline_notify(vmIntrinsics::ID id) {
1916   const TypeFunc* ftype = OptoRuntime::monitor_notify_Type();
1917   address func;
1918   if (id == vmIntrinsics::_notify) {
1919     func = OptoRuntime::monitor_notify_Java();
1920   } else {
1921     func = OptoRuntime::monitor_notifyAll_Java();
1922   }
1923   Node* call = make_runtime_call(RC_NO_LEAF, ftype, func, nullptr, TypeRawPtr::BOTTOM, argument(0));
1924   make_slow_call_ex(call, env()->Throwable_klass(), false);
1925   return true;
1926 }
1927 
1928 
1929 //----------------------------inline_min_max-----------------------------------
1930 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
1931   Node* a = nullptr;
1932   Node* b = nullptr;
1933   Node* n = nullptr;
1934   switch (id) {
1935     case vmIntrinsics::_min:
1936     case vmIntrinsics::_max:
1937     case vmIntrinsics::_minF:
1938     case vmIntrinsics::_maxF:
1939     case vmIntrinsics::_minF_strict:
1940     case vmIntrinsics::_maxF_strict:
1941     case vmIntrinsics::_min_strict:
1942     case vmIntrinsics::_max_strict:
1943       assert(callee()->signature()->size() == 2, "minF/maxF has 2 parameters of size 1 each.");
1944       a = argument(0);
1945       b = argument(1);
1946       break;
1947     case vmIntrinsics::_minD:
1948     case vmIntrinsics::_maxD:
1949     case vmIntrinsics::_minD_strict:
1950     case vmIntrinsics::_maxD_strict:
1951       assert(callee()->signature()->size() == 4, "minD/maxD has 2 parameters of size 2 each.");
1952       a = argument(0);
1953       b = argument(2);
1954       break;
1955     case vmIntrinsics::_minL:
1956     case vmIntrinsics::_maxL:
1957       assert(callee()->signature()->size() == 4, "minL/maxL has 2 parameters of size 2 each.");
1958       a = argument(0);
1959       b = argument(2);
1960       break;
1961     default:
1962       fatal_unexpected_iid(id);
1963       break;
1964   }
1965 
1966   switch (id) {
1967     case vmIntrinsics::_min:
1968     case vmIntrinsics::_min_strict:
1969       n = new MinINode(a, b);
1970       break;
1971     case vmIntrinsics::_max:
1972     case vmIntrinsics::_max_strict:
1973       n = new MaxINode(a, b);
1974       break;
1975     case vmIntrinsics::_minF:
1976     case vmIntrinsics::_minF_strict:
1977       n = new MinFNode(a, b);
1978       break;
1979     case vmIntrinsics::_maxF:
1980     case vmIntrinsics::_maxF_strict:
1981       n = new MaxFNode(a, b);
1982       break;
1983     case vmIntrinsics::_minD:
1984     case vmIntrinsics::_minD_strict:
1985       n = new MinDNode(a, b);
1986       break;
1987     case vmIntrinsics::_maxD:
1988     case vmIntrinsics::_maxD_strict:
1989       n = new MaxDNode(a, b);
1990       break;
1991     case vmIntrinsics::_minL:
1992       n = new MinLNode(_gvn.C, a, b);
1993       break;
1994     case vmIntrinsics::_maxL:
1995       n = new MaxLNode(_gvn.C, a, b);
1996       break;
1997     default:
1998       fatal_unexpected_iid(id);
1999       break;
2000   }
2001 
2002   set_result(_gvn.transform(n));
2003   return true;
2004 }
2005 
2006 bool LibraryCallKit::inline_math_mathExact(Node* math, Node* test) {
2007   if (builtin_throw_too_many_traps(Deoptimization::Reason_intrinsic,
2008                                    env()->ArithmeticException_instance())) {
2009     // It has been already too many times, but we cannot use builtin_throw (e.g. we care about backtraces),
2010     // so let's bail out intrinsic rather than risking deopting again.
2011     return false;
2012   }
2013 
2014   Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) );
2015   IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
2016   Node* fast_path = _gvn.transform( new IfFalseNode(check));
2017   Node* slow_path = _gvn.transform( new IfTrueNode(check) );
2018 
2019   {
2020     PreserveJVMState pjvms(this);
2021     PreserveReexecuteState preexecs(this);
2022     jvms()->set_should_reexecute(true);
2023 
2024     set_control(slow_path);
2025     set_i_o(i_o());
2026 
2027     builtin_throw(Deoptimization::Reason_intrinsic,
2028                   env()->ArithmeticException_instance(),
2029                   /*allow_too_many_traps*/ false);
2030   }
2031 
2032   set_control(fast_path);
2033   set_result(math);
2034   return true;
2035 }
2036 
2037 template <typename OverflowOp>
2038 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) {
2039   typedef typename OverflowOp::MathOp MathOp;
2040 
2041   MathOp* mathOp = new MathOp(arg1, arg2);
2042   Node* operation = _gvn.transform( mathOp );
2043   Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) );
2044   return inline_math_mathExact(operation, ofcheck);
2045 }
2046 
2047 bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
2048   return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1));
2049 }
2050 
2051 bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
2052   return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2));
2053 }
2054 
2055 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
2056   return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1));
2057 }
2058 
2059 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
2060   return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2));
2061 }
2062 
2063 bool LibraryCallKit::inline_math_negateExactI() {
2064   return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0));
2065 }
2066 
2067 bool LibraryCallKit::inline_math_negateExactL() {
2068   return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0));
2069 }
2070 
2071 bool LibraryCallKit::inline_math_multiplyExactI() {
2072   return inline_math_overflow<OverflowMulINode>(argument(0), argument(1));
2073 }
2074 
2075 bool LibraryCallKit::inline_math_multiplyExactL() {
2076   return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2));
2077 }
2078 
2079 bool LibraryCallKit::inline_math_multiplyHigh() {
2080   set_result(_gvn.transform(new MulHiLNode(argument(0), argument(2))));
2081   return true;
2082 }
2083 
2084 bool LibraryCallKit::inline_math_unsignedMultiplyHigh() {
2085   set_result(_gvn.transform(new UMulHiLNode(argument(0), argument(2))));
2086   return true;
2087 }
2088 
2089 inline int
2090 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset, BasicType type) {
2091   const TypePtr* base_type = TypePtr::NULL_PTR;
2092   if (base != nullptr)  base_type = _gvn.type(base)->isa_ptr();
2093   if (base_type == nullptr) {
2094     // Unknown type.
2095     return Type::AnyPtr;
2096   } else if (_gvn.type(base->uncast()) == TypePtr::NULL_PTR) {
2097     // Since this is a null+long form, we have to switch to a rawptr.
2098     base   = _gvn.transform(new CastX2PNode(offset));
2099     offset = MakeConX(0);
2100     return Type::RawPtr;
2101   } else if (base_type->base() == Type::RawPtr) {
2102     return Type::RawPtr;
2103   } else if (base_type->isa_oopptr()) {
2104     // Base is never null => always a heap address.
2105     if (!TypePtr::NULL_PTR->higher_equal(base_type)) {
2106       return Type::OopPtr;
2107     }
2108     // Offset is small => always a heap address.
2109     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2110     if (offset_type != nullptr &&
2111         base_type->offset() == 0 &&     // (should always be?)
2112         offset_type->_lo >= 0 &&
2113         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2114       return Type::OopPtr;
2115     } else if (type == T_OBJECT) {
2116       // off heap access to an oop doesn't make any sense. Has to be on
2117       // heap.
2118       return Type::OopPtr;
2119     }
2120     // Otherwise, it might either be oop+off or null+addr.
2121     return Type::AnyPtr;
2122   } else {
2123     // No information:
2124     return Type::AnyPtr;
2125   }
2126 }
2127 
2128 Node* LibraryCallKit::make_unsafe_address(Node*& base, Node* offset, BasicType type, bool can_cast) {
2129   Node* uncasted_base = base;
2130   int kind = classify_unsafe_addr(uncasted_base, offset, type);
2131   if (kind == Type::RawPtr) {
2132     return basic_plus_adr(top(), uncasted_base, offset);
2133   } else if (kind == Type::AnyPtr) {
2134     assert(base == uncasted_base, "unexpected base change");
2135     if (can_cast) {
2136       if (!_gvn.type(base)->speculative_maybe_null() &&
2137           !too_many_traps(Deoptimization::Reason_speculate_null_check)) {
2138         // According to profiling, this access is always on
2139         // heap. Casting the base to not null and thus avoiding membars
2140         // around the access should allow better optimizations
2141         Node* null_ctl = top();
2142         base = null_check_oop(base, &null_ctl, true, true, true);
2143         assert(null_ctl->is_top(), "no null control here");
2144         return basic_plus_adr(base, offset);
2145       } else if (_gvn.type(base)->speculative_always_null() &&
2146                  !too_many_traps(Deoptimization::Reason_speculate_null_assert)) {
2147         // According to profiling, this access is always off
2148         // heap.
2149         base = null_assert(base);
2150         Node* raw_base = _gvn.transform(new CastX2PNode(offset));
2151         offset = MakeConX(0);
2152         return basic_plus_adr(top(), raw_base, offset);
2153       }
2154     }
2155     // We don't know if it's an on heap or off heap access. Fall back
2156     // to raw memory access.
2157     Node* raw = _gvn.transform(new CheckCastPPNode(control(), base, TypeRawPtr::BOTTOM));
2158     return basic_plus_adr(top(), raw, offset);
2159   } else {
2160     assert(base == uncasted_base, "unexpected base change");
2161     // We know it's an on heap access so base can't be null
2162     if (TypePtr::NULL_PTR->higher_equal(_gvn.type(base))) {
2163       base = must_be_not_null(base, true);
2164     }
2165     return basic_plus_adr(base, offset);
2166   }
2167 }
2168 
2169 //--------------------------inline_number_methods-----------------------------
2170 // inline int     Integer.numberOfLeadingZeros(int)
2171 // inline int        Long.numberOfLeadingZeros(long)
2172 //
2173 // inline int     Integer.numberOfTrailingZeros(int)
2174 // inline int        Long.numberOfTrailingZeros(long)
2175 //
2176 // inline int     Integer.bitCount(int)
2177 // inline int        Long.bitCount(long)
2178 //
2179 // inline char  Character.reverseBytes(char)
2180 // inline short     Short.reverseBytes(short)
2181 // inline int     Integer.reverseBytes(int)
2182 // inline long       Long.reverseBytes(long)
2183 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2184   Node* arg = argument(0);
2185   Node* n = nullptr;
2186   switch (id) {
2187   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new CountLeadingZerosINode( arg); break;
2188   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new CountLeadingZerosLNode( arg); break;
2189   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new CountTrailingZerosINode(arg); break;
2190   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new CountTrailingZerosLNode(arg); break;
2191   case vmIntrinsics::_bitCount_i:               n = new PopCountINode(          arg); break;
2192   case vmIntrinsics::_bitCount_l:               n = new PopCountLNode(          arg); break;
2193   case vmIntrinsics::_reverseBytes_c:           n = new ReverseBytesUSNode(     arg); break;
2194   case vmIntrinsics::_reverseBytes_s:           n = new ReverseBytesSNode(      arg); break;
2195   case vmIntrinsics::_reverseBytes_i:           n = new ReverseBytesINode(      arg); break;
2196   case vmIntrinsics::_reverseBytes_l:           n = new ReverseBytesLNode(      arg); break;
2197   case vmIntrinsics::_reverse_i:                n = new ReverseINode(           arg); break;
2198   case vmIntrinsics::_reverse_l:                n = new ReverseLNode(           arg); break;
2199   default:  fatal_unexpected_iid(id);  break;
2200   }
2201   set_result(_gvn.transform(n));
2202   return true;
2203 }
2204 
2205 //--------------------------inline_bitshuffle_methods-----------------------------
2206 // inline int Integer.compress(int, int)
2207 // inline int Integer.expand(int, int)
2208 // inline long Long.compress(long, long)
2209 // inline long Long.expand(long, long)
2210 bool LibraryCallKit::inline_bitshuffle_methods(vmIntrinsics::ID id) {
2211   Node* n = nullptr;
2212   switch (id) {
2213     case vmIntrinsics::_compress_i:  n = new CompressBitsNode(argument(0), argument(1), TypeInt::INT); break;
2214     case vmIntrinsics::_expand_i:    n = new ExpandBitsNode(argument(0),  argument(1), TypeInt::INT); break;
2215     case vmIntrinsics::_compress_l:  n = new CompressBitsNode(argument(0), argument(2), TypeLong::LONG); break;
2216     case vmIntrinsics::_expand_l:    n = new ExpandBitsNode(argument(0), argument(2), TypeLong::LONG); break;
2217     default:  fatal_unexpected_iid(id);  break;
2218   }
2219   set_result(_gvn.transform(n));
2220   return true;
2221 }
2222 
2223 //--------------------------inline_number_methods-----------------------------
2224 // inline int Integer.compareUnsigned(int, int)
2225 // inline int    Long.compareUnsigned(long, long)
2226 bool LibraryCallKit::inline_compare_unsigned(vmIntrinsics::ID id) {
2227   Node* arg1 = argument(0);
2228   Node* arg2 = (id == vmIntrinsics::_compareUnsigned_l) ? argument(2) : argument(1);
2229   Node* n = nullptr;
2230   switch (id) {
2231     case vmIntrinsics::_compareUnsigned_i:   n = new CmpU3Node(arg1, arg2);  break;
2232     case vmIntrinsics::_compareUnsigned_l:   n = new CmpUL3Node(arg1, arg2); break;
2233     default:  fatal_unexpected_iid(id);  break;
2234   }
2235   set_result(_gvn.transform(n));
2236   return true;
2237 }
2238 
2239 //--------------------------inline_unsigned_divmod_methods-----------------------------
2240 // inline int Integer.divideUnsigned(int, int)
2241 // inline int Integer.remainderUnsigned(int, int)
2242 // inline long Long.divideUnsigned(long, long)
2243 // inline long Long.remainderUnsigned(long, long)
2244 bool LibraryCallKit::inline_divmod_methods(vmIntrinsics::ID id) {
2245   Node* n = nullptr;
2246   switch (id) {
2247     case vmIntrinsics::_divideUnsigned_i: {
2248       zero_check_int(argument(1));
2249       // Compile-time detect of null-exception
2250       if (stopped()) {
2251         return true; // keep the graph constructed so far
2252       }
2253       n = new UDivINode(control(), argument(0), argument(1));
2254       break;
2255     }
2256     case vmIntrinsics::_divideUnsigned_l: {
2257       zero_check_long(argument(2));
2258       // Compile-time detect of null-exception
2259       if (stopped()) {
2260         return true; // keep the graph constructed so far
2261       }
2262       n = new UDivLNode(control(), argument(0), argument(2));
2263       break;
2264     }
2265     case vmIntrinsics::_remainderUnsigned_i: {
2266       zero_check_int(argument(1));
2267       // Compile-time detect of null-exception
2268       if (stopped()) {
2269         return true; // keep the graph constructed so far
2270       }
2271       n = new UModINode(control(), argument(0), argument(1));
2272       break;
2273     }
2274     case vmIntrinsics::_remainderUnsigned_l: {
2275       zero_check_long(argument(2));
2276       // Compile-time detect of null-exception
2277       if (stopped()) {
2278         return true; // keep the graph constructed so far
2279       }
2280       n = new UModLNode(control(), argument(0), argument(2));
2281       break;
2282     }
2283     default:  fatal_unexpected_iid(id);  break;
2284   }
2285   set_result(_gvn.transform(n));
2286   return true;
2287 }
2288 
2289 //----------------------------inline_unsafe_access----------------------------
2290 
2291 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) {
2292   // Attempt to infer a sharper value type from the offset and base type.
2293   ciKlass* sharpened_klass = nullptr;
2294 
2295   // See if it is an instance field, with an object type.
2296   if (alias_type->field() != nullptr) {
2297     if (alias_type->field()->type()->is_klass()) {
2298       sharpened_klass = alias_type->field()->type()->as_klass();
2299     }
2300   }
2301 
2302   const TypeOopPtr* result = nullptr;
2303   // See if it is a narrow oop array.
2304   if (adr_type->isa_aryptr()) {
2305     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2306       const TypeOopPtr* elem_type = adr_type->is_aryptr()->elem()->make_oopptr();
2307       if (elem_type != nullptr && elem_type->is_loaded()) {
2308         // Sharpen the value type.
2309         result = elem_type;
2310       }
2311     }
2312   }
2313 
2314   // The sharpened class might be unloaded if there is no class loader
2315   // contraint in place.
2316   if (result == nullptr && sharpened_klass != nullptr && sharpened_klass->is_loaded()) {
2317     // Sharpen the value type.
2318     result = TypeOopPtr::make_from_klass(sharpened_klass);
2319   }
2320   if (result != nullptr) {
2321 #ifndef PRODUCT
2322     if (C->print_intrinsics() || C->print_inlining()) {
2323       tty->print("  from base type:  ");  adr_type->dump(); tty->cr();
2324       tty->print("  sharpened value: ");  result->dump();    tty->cr();
2325     }
2326 #endif
2327   }
2328   return result;
2329 }
2330 
2331 DecoratorSet LibraryCallKit::mo_decorator_for_access_kind(AccessKind kind) {
2332   switch (kind) {
2333       case Relaxed:
2334         return MO_UNORDERED;
2335       case Opaque:
2336         return MO_RELAXED;
2337       case Acquire:
2338         return MO_ACQUIRE;
2339       case Release:
2340         return MO_RELEASE;
2341       case Volatile:
2342         return MO_SEQ_CST;
2343       default:
2344         ShouldNotReachHere();
2345         return 0;
2346   }
2347 }
2348 
2349 bool LibraryCallKit::inline_unsafe_access(bool is_store, const BasicType type, const AccessKind kind, const bool unaligned) {
2350   if (callee()->is_static())  return false;  // caller must have the capability!
2351   DecoratorSet decorators = C2_UNSAFE_ACCESS;
2352   guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads");
2353   guarantee( is_store || kind != Release, "Release accesses can be produced only for stores");
2354   assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type");
2355 
2356   if (is_reference_type(type)) {
2357     decorators |= ON_UNKNOWN_OOP_REF;
2358   }
2359 
2360   if (unaligned) {
2361     decorators |= C2_UNALIGNED;
2362   }
2363 
2364 #ifndef PRODUCT
2365   {
2366     ResourceMark rm;
2367     // Check the signatures.
2368     ciSignature* sig = callee()->signature();
2369 #ifdef ASSERT
2370     if (!is_store) {
2371       // Object getReference(Object base, int/long offset), etc.
2372       BasicType rtype = sig->return_type()->basic_type();
2373       assert(rtype == type, "getter must return the expected value");
2374       assert(sig->count() == 2, "oop getter has 2 arguments");
2375       assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2376       assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2377     } else {
2378       // void putReference(Object base, int/long offset, Object x), etc.
2379       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2380       assert(sig->count() == 3, "oop putter has 3 arguments");
2381       assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2382       assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2383       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2384       assert(vtype == type, "putter must accept the expected value");
2385     }
2386 #endif // ASSERT
2387  }
2388 #endif //PRODUCT
2389 
2390   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2391 
2392   Node* receiver = argument(0);  // type: oop
2393 
2394   // Build address expression.
2395   Node* heap_base_oop = top();
2396 
2397   // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2398   Node* base = argument(1);  // type: oop
2399   // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2400   Node* offset = argument(2);  // type: long
2401   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2402   // to be plain byte offsets, which are also the same as those accepted
2403   // by oopDesc::field_addr.
2404   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2405          "fieldOffset must be byte-scaled");
2406   // 32-bit machines ignore the high half!
2407   offset = ConvL2X(offset);
2408 
2409   // Save state and restore on bailout
2410   uint old_sp = sp();
2411   SafePointNode* old_map = clone_map();
2412 
2413   Node* adr = make_unsafe_address(base, offset, type, kind == Relaxed);
2414   assert(!stopped(), "Inlining of unsafe access failed: address construction stopped unexpectedly");
2415 
2416   if (_gvn.type(base->uncast())->isa_ptr() == TypePtr::NULL_PTR) {
2417     if (type != T_OBJECT) {
2418       decorators |= IN_NATIVE; // off-heap primitive access
2419     } else {
2420       set_map(old_map);
2421       set_sp(old_sp);
2422       return false; // off-heap oop accesses are not supported
2423     }
2424   } else {
2425     heap_base_oop = base; // on-heap or mixed access
2426   }
2427 
2428   // Can base be null? Otherwise, always on-heap access.
2429   bool can_access_non_heap = TypePtr::NULL_PTR->higher_equal(_gvn.type(base));
2430 
2431   if (!can_access_non_heap) {
2432     decorators |= IN_HEAP;
2433   }
2434 
2435   Node* val = is_store ? argument(4) : nullptr;
2436 
2437   const TypePtr* adr_type = _gvn.type(adr)->isa_ptr();
2438   if (adr_type == TypePtr::NULL_PTR) {
2439     set_map(old_map);
2440     set_sp(old_sp);
2441     return false; // off-heap access with zero address
2442   }
2443 
2444   // Try to categorize the address.
2445   Compile::AliasType* alias_type = C->alias_type(adr_type);
2446   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2447 
2448   if (alias_type->adr_type() == TypeInstPtr::KLASS ||
2449       alias_type->adr_type() == TypeAryPtr::RANGE) {
2450     set_map(old_map);
2451     set_sp(old_sp);
2452     return false; // not supported
2453   }
2454 
2455   bool mismatched = false;
2456   BasicType bt = alias_type->basic_type();
2457   if (bt != T_ILLEGAL) {
2458     assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access");
2459     if (bt == T_BYTE && adr_type->isa_aryptr()) {
2460       // Alias type doesn't differentiate between byte[] and boolean[]).
2461       // Use address type to get the element type.
2462       bt = adr_type->is_aryptr()->elem()->array_element_basic_type();
2463     }
2464     if (is_reference_type(bt, true)) {
2465       // accessing an array field with getReference is not a mismatch
2466       bt = T_OBJECT;
2467     }
2468     if ((bt == T_OBJECT) != (type == T_OBJECT)) {
2469       // Don't intrinsify mismatched object accesses
2470       set_map(old_map);
2471       set_sp(old_sp);
2472       return false;
2473     }
2474     mismatched = (bt != type);
2475   } else if (alias_type->adr_type()->isa_oopptr()) {
2476     mismatched = true; // conservatively mark all "wide" on-heap accesses as mismatched
2477   }
2478 
2479   destruct_map_clone(old_map);
2480   assert(!mismatched || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched");
2481 
2482   if (mismatched) {
2483     decorators |= C2_MISMATCHED;
2484   }
2485 
2486   // First guess at the value type.
2487   const Type *value_type = Type::get_const_basic_type(type);
2488 
2489   // Figure out the memory ordering.
2490   decorators |= mo_decorator_for_access_kind(kind);
2491 
2492   if (!is_store && type == T_OBJECT) {
2493     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2494     if (tjp != nullptr) {
2495       value_type = tjp;
2496     }
2497   }
2498 
2499   receiver = null_check(receiver);
2500   if (stopped()) {
2501     return true;
2502   }
2503   // Heap pointers get a null-check from the interpreter,
2504   // as a courtesy.  However, this is not guaranteed by Unsafe,
2505   // and it is not possible to fully distinguish unintended nulls
2506   // from intended ones in this API.
2507 
2508   if (!is_store) {
2509     Node* p = nullptr;
2510     // Try to constant fold a load from a constant field
2511     ciField* field = alias_type->field();
2512     if (heap_base_oop != top() && field != nullptr && field->is_constant() && !mismatched) {
2513       // final or stable field
2514       p = make_constant_from_field(field, heap_base_oop);
2515     }
2516 
2517     if (p == nullptr) { // Could not constant fold the load
2518       p = access_load_at(heap_base_oop, adr, adr_type, value_type, type, decorators);
2519       // Normalize the value returned by getBoolean in the following cases
2520       if (type == T_BOOLEAN &&
2521           (mismatched ||
2522            heap_base_oop == top() ||                  // - heap_base_oop is null or
2523            (can_access_non_heap && field == nullptr)) // - heap_base_oop is potentially null
2524                                                       //   and the unsafe access is made to large offset
2525                                                       //   (i.e., larger than the maximum offset necessary for any
2526                                                       //   field access)
2527             ) {
2528           IdealKit ideal = IdealKit(this);
2529 #define __ ideal.
2530           IdealVariable normalized_result(ideal);
2531           __ declarations_done();
2532           __ set(normalized_result, p);
2533           __ if_then(p, BoolTest::ne, ideal.ConI(0));
2534           __ set(normalized_result, ideal.ConI(1));
2535           ideal.end_if();
2536           final_sync(ideal);
2537           p = __ value(normalized_result);
2538 #undef __
2539       }
2540     }
2541     if (type == T_ADDRESS) {
2542       p = gvn().transform(new CastP2XNode(nullptr, p));
2543       p = ConvX2UL(p);
2544     }
2545     // The load node has the control of the preceding MemBarCPUOrder.  All
2546     // following nodes will have the control of the MemBarCPUOrder inserted at
2547     // the end of this method.  So, pushing the load onto the stack at a later
2548     // point is fine.
2549     set_result(p);
2550   } else {
2551     if (bt == T_ADDRESS) {
2552       // Repackage the long as a pointer.
2553       val = ConvL2X(val);
2554       val = gvn().transform(new CastX2PNode(val));
2555     }
2556     access_store_at(heap_base_oop, adr, adr_type, val, value_type, type, decorators);
2557   }
2558 
2559   return true;
2560 }
2561 
2562 //----------------------------inline_unsafe_load_store----------------------------
2563 // This method serves a couple of different customers (depending on LoadStoreKind):
2564 //
2565 // LS_cmp_swap:
2566 //
2567 //   boolean compareAndSetReference(Object o, long offset, Object expected, Object x);
2568 //   boolean compareAndSetInt(   Object o, long offset, int    expected, int    x);
2569 //   boolean compareAndSetLong(  Object o, long offset, long   expected, long   x);
2570 //
2571 // LS_cmp_swap_weak:
2572 //
2573 //   boolean weakCompareAndSetReference(       Object o, long offset, Object expected, Object x);
2574 //   boolean weakCompareAndSetReferencePlain(  Object o, long offset, Object expected, Object x);
2575 //   boolean weakCompareAndSetReferenceAcquire(Object o, long offset, Object expected, Object x);
2576 //   boolean weakCompareAndSetReferenceRelease(Object o, long offset, Object expected, Object x);
2577 //
2578 //   boolean weakCompareAndSetInt(          Object o, long offset, int    expected, int    x);
2579 //   boolean weakCompareAndSetIntPlain(     Object o, long offset, int    expected, int    x);
2580 //   boolean weakCompareAndSetIntAcquire(   Object o, long offset, int    expected, int    x);
2581 //   boolean weakCompareAndSetIntRelease(   Object o, long offset, int    expected, int    x);
2582 //
2583 //   boolean weakCompareAndSetLong(         Object o, long offset, long   expected, long   x);
2584 //   boolean weakCompareAndSetLongPlain(    Object o, long offset, long   expected, long   x);
2585 //   boolean weakCompareAndSetLongAcquire(  Object o, long offset, long   expected, long   x);
2586 //   boolean weakCompareAndSetLongRelease(  Object o, long offset, long   expected, long   x);
2587 //
2588 // LS_cmp_exchange:
2589 //
2590 //   Object compareAndExchangeReferenceVolatile(Object o, long offset, Object expected, Object x);
2591 //   Object compareAndExchangeReferenceAcquire( Object o, long offset, Object expected, Object x);
2592 //   Object compareAndExchangeReferenceRelease( Object o, long offset, Object expected, Object x);
2593 //
2594 //   Object compareAndExchangeIntVolatile(   Object o, long offset, Object expected, Object x);
2595 //   Object compareAndExchangeIntAcquire(    Object o, long offset, Object expected, Object x);
2596 //   Object compareAndExchangeIntRelease(    Object o, long offset, Object expected, Object x);
2597 //
2598 //   Object compareAndExchangeLongVolatile(  Object o, long offset, Object expected, Object x);
2599 //   Object compareAndExchangeLongAcquire(   Object o, long offset, Object expected, Object x);
2600 //   Object compareAndExchangeLongRelease(   Object o, long offset, Object expected, Object x);
2601 //
2602 // LS_get_add:
2603 //
2604 //   int  getAndAddInt( Object o, long offset, int  delta)
2605 //   long getAndAddLong(Object o, long offset, long delta)
2606 //
2607 // LS_get_set:
2608 //
2609 //   int    getAndSet(Object o, long offset, int    newValue)
2610 //   long   getAndSet(Object o, long offset, long   newValue)
2611 //   Object getAndSet(Object o, long offset, Object newValue)
2612 //
2613 bool LibraryCallKit::inline_unsafe_load_store(const BasicType type, const LoadStoreKind kind, const AccessKind access_kind) {
2614   // This basic scheme here is the same as inline_unsafe_access, but
2615   // differs in enough details that combining them would make the code
2616   // overly confusing.  (This is a true fact! I originally combined
2617   // them, but even I was confused by it!) As much code/comments as
2618   // possible are retained from inline_unsafe_access though to make
2619   // the correspondences clearer. - dl
2620 
2621   if (callee()->is_static())  return false;  // caller must have the capability!
2622 
2623   DecoratorSet decorators = C2_UNSAFE_ACCESS;
2624   decorators |= mo_decorator_for_access_kind(access_kind);
2625 
2626 #ifndef PRODUCT
2627   BasicType rtype;
2628   {
2629     ResourceMark rm;
2630     // Check the signatures.
2631     ciSignature* sig = callee()->signature();
2632     rtype = sig->return_type()->basic_type();
2633     switch(kind) {
2634       case LS_get_add:
2635       case LS_get_set: {
2636       // Check the signatures.
2637 #ifdef ASSERT
2638       assert(rtype == type, "get and set must return the expected type");
2639       assert(sig->count() == 3, "get and set has 3 arguments");
2640       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
2641       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
2642       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
2643       assert(access_kind == Volatile, "mo is not passed to intrinsic nodes in current implementation");
2644 #endif // ASSERT
2645         break;
2646       }
2647       case LS_cmp_swap:
2648       case LS_cmp_swap_weak: {
2649       // Check the signatures.
2650 #ifdef ASSERT
2651       assert(rtype == T_BOOLEAN, "CAS must return boolean");
2652       assert(sig->count() == 4, "CAS has 4 arguments");
2653       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2654       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2655 #endif // ASSERT
2656         break;
2657       }
2658       case LS_cmp_exchange: {
2659       // Check the signatures.
2660 #ifdef ASSERT
2661       assert(rtype == type, "CAS must return the expected type");
2662       assert(sig->count() == 4, "CAS has 4 arguments");
2663       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2664       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2665 #endif // ASSERT
2666         break;
2667       }
2668       default:
2669         ShouldNotReachHere();
2670     }
2671   }
2672 #endif //PRODUCT
2673 
2674   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2675 
2676   // Get arguments:
2677   Node* receiver = nullptr;
2678   Node* base     = nullptr;
2679   Node* offset   = nullptr;
2680   Node* oldval   = nullptr;
2681   Node* newval   = nullptr;
2682   switch(kind) {
2683     case LS_cmp_swap:
2684     case LS_cmp_swap_weak:
2685     case LS_cmp_exchange: {
2686       const bool two_slot_type = type2size[type] == 2;
2687       receiver = argument(0);  // type: oop
2688       base     = argument(1);  // type: oop
2689       offset   = argument(2);  // type: long
2690       oldval   = argument(4);  // type: oop, int, or long
2691       newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
2692       break;
2693     }
2694     case LS_get_add:
2695     case LS_get_set: {
2696       receiver = argument(0);  // type: oop
2697       base     = argument(1);  // type: oop
2698       offset   = argument(2);  // type: long
2699       oldval   = nullptr;
2700       newval   = argument(4);  // type: oop, int, or long
2701       break;
2702     }
2703     default:
2704       ShouldNotReachHere();
2705   }
2706 
2707   // Build field offset expression.
2708   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2709   // to be plain byte offsets, which are also the same as those accepted
2710   // by oopDesc::field_addr.
2711   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2712   // 32-bit machines ignore the high half of long offsets
2713   offset = ConvL2X(offset);
2714   // Save state and restore on bailout
2715   uint old_sp = sp();
2716   SafePointNode* old_map = clone_map();
2717   Node* adr = make_unsafe_address(base, offset,type, false);
2718   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2719 
2720   Compile::AliasType* alias_type = C->alias_type(adr_type);
2721   BasicType bt = alias_type->basic_type();
2722   if (bt != T_ILLEGAL &&
2723       (is_reference_type(bt) != (type == T_OBJECT))) {
2724     // Don't intrinsify mismatched object accesses.
2725     set_map(old_map);
2726     set_sp(old_sp);
2727     return false;
2728   }
2729 
2730   destruct_map_clone(old_map);
2731 
2732   // For CAS, unlike inline_unsafe_access, there seems no point in
2733   // trying to refine types. Just use the coarse types here.
2734   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2735   const Type *value_type = Type::get_const_basic_type(type);
2736 
2737   switch (kind) {
2738     case LS_get_set:
2739     case LS_cmp_exchange: {
2740       if (type == T_OBJECT) {
2741         const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2742         if (tjp != nullptr) {
2743           value_type = tjp;
2744         }
2745       }
2746       break;
2747     }
2748     case LS_cmp_swap:
2749     case LS_cmp_swap_weak:
2750     case LS_get_add:
2751       break;
2752     default:
2753       ShouldNotReachHere();
2754   }
2755 
2756   // Null check receiver.
2757   receiver = null_check(receiver);
2758   if (stopped()) {
2759     return true;
2760   }
2761 
2762   int alias_idx = C->get_alias_index(adr_type);
2763 
2764   if (is_reference_type(type)) {
2765     decorators |= IN_HEAP | ON_UNKNOWN_OOP_REF;
2766 
2767     // Transformation of a value which could be null pointer (CastPP #null)
2768     // could be delayed during Parse (for example, in adjust_map_after_if()).
2769     // Execute transformation here to avoid barrier generation in such case.
2770     if (_gvn.type(newval) == TypePtr::NULL_PTR)
2771       newval = _gvn.makecon(TypePtr::NULL_PTR);
2772 
2773     if (oldval != nullptr && _gvn.type(oldval) == TypePtr::NULL_PTR) {
2774       // Refine the value to a null constant, when it is known to be null
2775       oldval = _gvn.makecon(TypePtr::NULL_PTR);
2776     }
2777   }
2778 
2779   Node* result = nullptr;
2780   switch (kind) {
2781     case LS_cmp_exchange: {
2782       result = access_atomic_cmpxchg_val_at(base, adr, adr_type, alias_idx,
2783                                             oldval, newval, value_type, type, decorators);
2784       break;
2785     }
2786     case LS_cmp_swap_weak:
2787       decorators |= C2_WEAK_CMPXCHG;
2788     case LS_cmp_swap: {
2789       result = access_atomic_cmpxchg_bool_at(base, adr, adr_type, alias_idx,
2790                                              oldval, newval, value_type, type, decorators);
2791       break;
2792     }
2793     case LS_get_set: {
2794       result = access_atomic_xchg_at(base, adr, adr_type, alias_idx,
2795                                      newval, value_type, type, decorators);
2796       break;
2797     }
2798     case LS_get_add: {
2799       result = access_atomic_add_at(base, adr, adr_type, alias_idx,
2800                                     newval, value_type, type, decorators);
2801       break;
2802     }
2803     default:
2804       ShouldNotReachHere();
2805   }
2806 
2807   assert(type2size[result->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
2808   set_result(result);
2809   return true;
2810 }
2811 
2812 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
2813   // Regardless of form, don't allow previous ld/st to move down,
2814   // then issue acquire, release, or volatile mem_bar.
2815   insert_mem_bar(Op_MemBarCPUOrder);
2816   switch(id) {
2817     case vmIntrinsics::_loadFence:
2818       insert_mem_bar(Op_LoadFence);
2819       return true;
2820     case vmIntrinsics::_storeFence:
2821       insert_mem_bar(Op_StoreFence);
2822       return true;
2823     case vmIntrinsics::_storeStoreFence:
2824       insert_mem_bar(Op_StoreStoreFence);
2825       return true;
2826     case vmIntrinsics::_fullFence:
2827       insert_mem_bar(Op_MemBarVolatile);
2828       return true;
2829     default:
2830       fatal_unexpected_iid(id);
2831       return false;
2832   }
2833 }
2834 
2835 bool LibraryCallKit::inline_onspinwait() {
2836   insert_mem_bar(Op_OnSpinWait);
2837   return true;
2838 }
2839 
2840 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
2841   if (!kls->is_Con()) {
2842     return true;
2843   }
2844   const TypeInstKlassPtr* klsptr = kls->bottom_type()->isa_instklassptr();
2845   if (klsptr == nullptr) {
2846     return true;
2847   }
2848   ciInstanceKlass* ik = klsptr->instance_klass();
2849   // don't need a guard for a klass that is already initialized
2850   return !ik->is_initialized();
2851 }
2852 
2853 //----------------------------inline_unsafe_writeback0-------------------------
2854 // public native void Unsafe.writeback0(long address)
2855 bool LibraryCallKit::inline_unsafe_writeback0() {
2856   if (!Matcher::has_match_rule(Op_CacheWB)) {
2857     return false;
2858   }
2859 #ifndef PRODUCT
2860   assert(Matcher::has_match_rule(Op_CacheWBPreSync), "found match rule for CacheWB but not CacheWBPreSync");
2861   assert(Matcher::has_match_rule(Op_CacheWBPostSync), "found match rule for CacheWB but not CacheWBPostSync");
2862   ciSignature* sig = callee()->signature();
2863   assert(sig->type_at(0)->basic_type() == T_LONG, "Unsafe_writeback0 address is long!");
2864 #endif
2865   null_check_receiver();  // null-check, then ignore
2866   Node *addr = argument(1);
2867   addr = new CastX2PNode(addr);
2868   addr = _gvn.transform(addr);
2869   Node *flush = new CacheWBNode(control(), memory(TypeRawPtr::BOTTOM), addr);
2870   flush = _gvn.transform(flush);
2871   set_memory(flush, TypeRawPtr::BOTTOM);
2872   return true;
2873 }
2874 
2875 //----------------------------inline_unsafe_writeback0-------------------------
2876 // public native void Unsafe.writeback0(long address)
2877 bool LibraryCallKit::inline_unsafe_writebackSync0(bool is_pre) {
2878   if (is_pre && !Matcher::has_match_rule(Op_CacheWBPreSync)) {
2879     return false;
2880   }
2881   if (!is_pre && !Matcher::has_match_rule(Op_CacheWBPostSync)) {
2882     return false;
2883   }
2884 #ifndef PRODUCT
2885   assert(Matcher::has_match_rule(Op_CacheWB),
2886          (is_pre ? "found match rule for CacheWBPreSync but not CacheWB"
2887                 : "found match rule for CacheWBPostSync but not CacheWB"));
2888 
2889 #endif
2890   null_check_receiver();  // null-check, then ignore
2891   Node *sync;
2892   if (is_pre) {
2893     sync = new CacheWBPreSyncNode(control(), memory(TypeRawPtr::BOTTOM));
2894   } else {
2895     sync = new CacheWBPostSyncNode(control(), memory(TypeRawPtr::BOTTOM));
2896   }
2897   sync = _gvn.transform(sync);
2898   set_memory(sync, TypeRawPtr::BOTTOM);
2899   return true;
2900 }
2901 
2902 //----------------------------inline_unsafe_allocate---------------------------
2903 // public native Object Unsafe.allocateInstance(Class<?> cls);
2904 bool LibraryCallKit::inline_unsafe_allocate() {
2905 
2906 #if INCLUDE_JVMTI
2907   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
2908     return false;
2909   }
2910 #endif //INCLUDE_JVMTI
2911 
2912   if (callee()->is_static())  return false;  // caller must have the capability!
2913 
2914   null_check_receiver();  // null-check, then ignore
2915   Node* cls = null_check(argument(1));
2916   if (stopped())  return true;
2917 
2918   Node* kls = load_klass_from_mirror(cls, false, nullptr, 0);
2919   kls = null_check(kls);
2920   if (stopped())  return true;  // argument was like int.class
2921 
2922 #if INCLUDE_JVMTI
2923     // Don't try to access new allocated obj in the intrinsic.
2924     // It causes perfomance issues even when jvmti event VmObjectAlloc is disabled.
2925     // Deoptimize and allocate in interpreter instead.
2926     Node* addr = makecon(TypeRawPtr::make((address) &JvmtiExport::_should_notify_object_alloc));
2927     Node* should_post_vm_object_alloc = make_load(this->control(), addr, TypeInt::INT, T_INT, MemNode::unordered);
2928     Node* chk = _gvn.transform(new CmpINode(should_post_vm_object_alloc, intcon(0)));
2929     Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::eq));
2930     {
2931       BuildCutout unless(this, tst, PROB_MAX);
2932       uncommon_trap(Deoptimization::Reason_intrinsic,
2933                     Deoptimization::Action_make_not_entrant);
2934     }
2935     if (stopped()) {
2936       return true;
2937     }
2938 #endif //INCLUDE_JVMTI
2939 
2940   Node* test = nullptr;
2941   if (LibraryCallKit::klass_needs_init_guard(kls)) {
2942     // Note:  The argument might still be an illegal value like
2943     // Serializable.class or Object[].class.   The runtime will handle it.
2944     // But we must make an explicit check for initialization.
2945     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
2946     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
2947     // can generate code to load it as unsigned byte.
2948     Node* inst = make_load(nullptr, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::acquire);
2949     Node* bits = intcon(InstanceKlass::fully_initialized);
2950     test = _gvn.transform(new SubINode(inst, bits));
2951     // The 'test' is non-zero if we need to take a slow path.
2952   }
2953 
2954   Node* obj = new_instance(kls, test);
2955   set_result(obj);
2956   return true;
2957 }
2958 
2959 //------------------------inline_native_time_funcs--------------
2960 // inline code for System.currentTimeMillis() and System.nanoTime()
2961 // these have the same type and signature
2962 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
2963   const TypeFunc* tf = OptoRuntime::void_long_Type();
2964   const TypePtr* no_memory_effects = nullptr;
2965   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
2966   Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0));
2967 #ifdef ASSERT
2968   Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1));
2969   assert(value_top == top(), "second value must be top");
2970 #endif
2971   set_result(value);
2972   return true;
2973 }
2974 
2975 
2976 #if INCLUDE_JVMTI
2977 
2978 // When notifications are disabled then just update the VTMS transition bit and return.
2979 // Otherwise, the bit is updated in the given function call implementing JVMTI notification protocol.
2980 bool LibraryCallKit::inline_native_notify_jvmti_funcs(address funcAddr, const char* funcName, bool is_start, bool is_end) {
2981   if (!DoJVMTIVirtualThreadTransitions) {
2982     return true;
2983   }
2984   Node* vt_oop = _gvn.transform(must_be_not_null(argument(0), true)); // VirtualThread this argument
2985   IdealKit ideal(this);
2986 
2987   Node* ONE = ideal.ConI(1);
2988   Node* hide = is_start ? ideal.ConI(0) : (is_end ? ideal.ConI(1) : _gvn.transform(argument(1)));
2989   Node* addr = makecon(TypeRawPtr::make((address)&JvmtiVTMSTransitionDisabler::_VTMS_notify_jvmti_events));
2990   Node* notify_jvmti_enabled = ideal.load(ideal.ctrl(), addr, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw);
2991 
2992   ideal.if_then(notify_jvmti_enabled, BoolTest::eq, ONE); {
2993     sync_kit(ideal);
2994     // if notifyJvmti enabled then make a call to the given SharedRuntime function
2995     const TypeFunc* tf = OptoRuntime::notify_jvmti_vthread_Type();
2996     make_runtime_call(RC_NO_LEAF, tf, funcAddr, funcName, TypePtr::BOTTOM, vt_oop, hide);
2997     ideal.sync_kit(this);
2998   } ideal.else_(); {
2999     // set hide value to the VTMS transition bit in current JavaThread and VirtualThread object
3000     Node* thread = ideal.thread();
3001     Node* jt_addr = basic_plus_adr(thread, in_bytes(JavaThread::is_in_VTMS_transition_offset()));
3002     Node* vt_addr = basic_plus_adr(vt_oop, java_lang_Thread::is_in_VTMS_transition_offset());
3003 
3004     sync_kit(ideal);
3005     access_store_at(nullptr, jt_addr, _gvn.type(jt_addr)->is_ptr(), hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED);
3006     access_store_at(nullptr, vt_addr, _gvn.type(vt_addr)->is_ptr(), hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED);
3007 
3008     ideal.sync_kit(this);
3009   } ideal.end_if();
3010   final_sync(ideal);
3011 
3012   return true;
3013 }
3014 
3015 // Always update the is_disable_suspend bit.
3016 bool LibraryCallKit::inline_native_notify_jvmti_sync() {
3017   if (!DoJVMTIVirtualThreadTransitions) {
3018     return true;
3019   }
3020   IdealKit ideal(this);
3021 
3022   {
3023     // unconditionally update the is_disable_suspend bit in current JavaThread
3024     Node* thread = ideal.thread();
3025     Node* arg = _gvn.transform(argument(0)); // argument for notification
3026     Node* addr = basic_plus_adr(thread, in_bytes(JavaThread::is_disable_suspend_offset()));
3027     const TypePtr *addr_type = _gvn.type(addr)->isa_ptr();
3028 
3029     sync_kit(ideal);
3030     access_store_at(nullptr, addr, addr_type, arg, _gvn.type(arg), T_BOOLEAN, IN_NATIVE | MO_UNORDERED);
3031     ideal.sync_kit(this);
3032   }
3033   final_sync(ideal);
3034 
3035   return true;
3036 }
3037 
3038 #endif // INCLUDE_JVMTI
3039 
3040 #ifdef JFR_HAVE_INTRINSICS
3041 
3042 /**
3043  * if oop->klass != null
3044  *   // normal class
3045  *   epoch = _epoch_state ? 2 : 1
3046  *   if oop->klass->trace_id & ((epoch << META_SHIFT) | epoch)) != epoch {
3047  *     ... // enter slow path when the klass is first recorded or the epoch of JFR shifts
3048  *   }
3049  *   id = oop->klass->trace_id >> TRACE_ID_SHIFT // normal class path
3050  * else
3051  *   // primitive class
3052  *   if oop->array_klass != null
3053  *     id = (oop->array_klass->trace_id >> TRACE_ID_SHIFT) + 1 // primitive class path
3054  *   else
3055  *     id = LAST_TYPE_ID + 1 // void class path
3056  *   if (!signaled)
3057  *     signaled = true
3058  */
3059 bool LibraryCallKit::inline_native_classID() {
3060   Node* cls = argument(0);
3061 
3062   IdealKit ideal(this);
3063 #define __ ideal.
3064   IdealVariable result(ideal); __ declarations_done();
3065   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(),
3066                                                  basic_plus_adr(cls, java_lang_Class::klass_offset()),
3067                                                  TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL));
3068 
3069 
3070   __ if_then(kls, BoolTest::ne, null()); {
3071     Node* kls_trace_id_addr = basic_plus_adr(kls, in_bytes(KLASS_TRACE_ID_OFFSET));
3072     Node* kls_trace_id_raw = ideal.load(ideal.ctrl(), kls_trace_id_addr,TypeLong::LONG, T_LONG, Compile::AliasIdxRaw);
3073 
3074     Node* epoch_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::epoch_address()));
3075     Node* epoch = ideal.load(ideal.ctrl(), epoch_address, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw);
3076     epoch = _gvn.transform(new LShiftLNode(longcon(1), epoch));
3077     Node* mask = _gvn.transform(new LShiftLNode(epoch, intcon(META_SHIFT)));
3078     mask = _gvn.transform(new OrLNode(mask, epoch));
3079     Node* kls_trace_id_raw_and_mask = _gvn.transform(new AndLNode(kls_trace_id_raw, mask));
3080 
3081     float unlikely  = PROB_UNLIKELY(0.999);
3082     __ if_then(kls_trace_id_raw_and_mask, BoolTest::ne, epoch, unlikely); {
3083       sync_kit(ideal);
3084       make_runtime_call(RC_LEAF,
3085                         OptoRuntime::class_id_load_barrier_Type(),
3086                         CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::load_barrier),
3087                         "class id load barrier",
3088                         TypePtr::BOTTOM,
3089                         kls);
3090       ideal.sync_kit(this);
3091     } __ end_if();
3092 
3093     ideal.set(result,  _gvn.transform(new URShiftLNode(kls_trace_id_raw, ideal.ConI(TRACE_ID_SHIFT))));
3094   } __ else_(); {
3095     Node* array_kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(),
3096                                                    basic_plus_adr(cls, java_lang_Class::array_klass_offset()),
3097                                                    TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL));
3098     __ if_then(array_kls, BoolTest::ne, null()); {
3099       Node* array_kls_trace_id_addr = basic_plus_adr(array_kls, in_bytes(KLASS_TRACE_ID_OFFSET));
3100       Node* array_kls_trace_id_raw = ideal.load(ideal.ctrl(), array_kls_trace_id_addr, TypeLong::LONG, T_LONG, Compile::AliasIdxRaw);
3101       Node* array_kls_trace_id = _gvn.transform(new URShiftLNode(array_kls_trace_id_raw, ideal.ConI(TRACE_ID_SHIFT)));
3102       ideal.set(result, _gvn.transform(new AddLNode(array_kls_trace_id, longcon(1))));
3103     } __ else_(); {
3104       // void class case
3105       ideal.set(result, _gvn.transform(longcon(LAST_TYPE_ID + 1)));
3106     } __ end_if();
3107 
3108     Node* signaled_flag_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::signal_address()));
3109     Node* signaled = ideal.load(ideal.ctrl(), signaled_flag_address, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw, true, MemNode::acquire);
3110     __ if_then(signaled, BoolTest::ne, ideal.ConI(1)); {
3111       ideal.store(ideal.ctrl(), signaled_flag_address, ideal.ConI(1), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::release, true);
3112     } __ end_if();
3113   } __ end_if();
3114 
3115   final_sync(ideal);
3116   set_result(ideal.value(result));
3117 #undef __
3118   return true;
3119 }
3120 
3121 //------------------------inline_native_jvm_commit------------------
3122 bool LibraryCallKit::inline_native_jvm_commit() {
3123   enum { _true_path = 1, _false_path = 2, PATH_LIMIT };
3124 
3125   // Save input memory and i_o state.
3126   Node* input_memory_state = reset_memory();
3127   set_all_memory(input_memory_state);
3128   Node* input_io_state = i_o();
3129 
3130   // TLS.
3131   Node* tls_ptr = _gvn.transform(new ThreadLocalNode());
3132   // Jfr java buffer.
3133   Node* java_buffer_offset = _gvn.transform(new AddPNode(top(), tls_ptr, _gvn.transform(MakeConX(in_bytes(JAVA_BUFFER_OFFSET_JFR)))));
3134   Node* java_buffer = _gvn.transform(new LoadPNode(control(), input_memory_state, java_buffer_offset, TypePtr::BOTTOM, TypeRawPtr::NOTNULL, MemNode::unordered));
3135   Node* java_buffer_pos_offset = _gvn.transform(new AddPNode(top(), java_buffer, _gvn.transform(MakeConX(in_bytes(JFR_BUFFER_POS_OFFSET)))));
3136 
3137   // Load the current value of the notified field in the JfrThreadLocal.
3138   Node* notified_offset = basic_plus_adr(top(), tls_ptr, in_bytes(NOTIFY_OFFSET_JFR));
3139   Node* notified = make_load(control(), notified_offset, TypeInt::BOOL, T_BOOLEAN, MemNode::unordered);
3140 
3141   // Test for notification.
3142   Node* notified_cmp = _gvn.transform(new CmpINode(notified, _gvn.intcon(1)));
3143   Node* test_notified = _gvn.transform(new BoolNode(notified_cmp, BoolTest::eq));
3144   IfNode* iff_notified = create_and_map_if(control(), test_notified, PROB_MIN, COUNT_UNKNOWN);
3145 
3146   // True branch, is notified.
3147   Node* is_notified = _gvn.transform(new IfTrueNode(iff_notified));
3148   set_control(is_notified);
3149 
3150   // Reset notified state.
3151   store_to_memory(control(), notified_offset, _gvn.intcon(0), T_BOOLEAN, MemNode::unordered);
3152   Node* notified_reset_memory = reset_memory();
3153 
3154   // Iff notified, the return address of the commit method is the current position of the backing java buffer. This is used to reset the event writer.
3155   Node* current_pos_X = _gvn.transform(new LoadXNode(control(), input_memory_state, java_buffer_pos_offset, TypeRawPtr::NOTNULL, TypeX_X, MemNode::unordered));
3156   // Convert the machine-word to a long.
3157   Node* current_pos = _gvn.transform(ConvX2L(current_pos_X));
3158 
3159   // False branch, not notified.
3160   Node* not_notified = _gvn.transform(new IfFalseNode(iff_notified));
3161   set_control(not_notified);
3162   set_all_memory(input_memory_state);
3163 
3164   // Arg is the next position as a long.
3165   Node* arg = argument(0);
3166   // Convert long to machine-word.
3167   Node* next_pos_X = _gvn.transform(ConvL2X(arg));
3168 
3169   // Store the next_position to the underlying jfr java buffer.
3170   store_to_memory(control(), java_buffer_pos_offset, next_pos_X, LP64_ONLY(T_LONG) NOT_LP64(T_INT), MemNode::release);
3171 
3172   Node* commit_memory = reset_memory();
3173   set_all_memory(commit_memory);
3174 
3175   // Now load the flags from off the java buffer and decide if the buffer is a lease. If so, it needs to be returned post-commit.
3176   Node* java_buffer_flags_offset = _gvn.transform(new AddPNode(top(), java_buffer, _gvn.transform(MakeConX(in_bytes(JFR_BUFFER_FLAGS_OFFSET)))));
3177   Node* flags = make_load(control(), java_buffer_flags_offset, TypeInt::UBYTE, T_BYTE, MemNode::unordered);
3178   Node* lease_constant = _gvn.transform(_gvn.intcon(4));
3179 
3180   // And flags with lease constant.
3181   Node* lease = _gvn.transform(new AndINode(flags, lease_constant));
3182 
3183   // Branch on lease to conditionalize returning the leased java buffer.
3184   Node* lease_cmp = _gvn.transform(new CmpINode(lease, lease_constant));
3185   Node* test_lease = _gvn.transform(new BoolNode(lease_cmp, BoolTest::eq));
3186   IfNode* iff_lease = create_and_map_if(control(), test_lease, PROB_MIN, COUNT_UNKNOWN);
3187 
3188   // False branch, not a lease.
3189   Node* not_lease = _gvn.transform(new IfFalseNode(iff_lease));
3190 
3191   // True branch, is lease.
3192   Node* is_lease = _gvn.transform(new IfTrueNode(iff_lease));
3193   set_control(is_lease);
3194 
3195   // Make a runtime call, which can safepoint, to return the leased buffer. This updates both the JfrThreadLocal and the Java event writer oop.
3196   Node* call_return_lease = make_runtime_call(RC_NO_LEAF,
3197                                               OptoRuntime::void_void_Type(),
3198                                               SharedRuntime::jfr_return_lease(),
3199                                               "return_lease", TypePtr::BOTTOM);
3200   Node* call_return_lease_control = _gvn.transform(new ProjNode(call_return_lease, TypeFunc::Control));
3201 
3202   RegionNode* lease_compare_rgn = new RegionNode(PATH_LIMIT);
3203   record_for_igvn(lease_compare_rgn);
3204   PhiNode* lease_compare_mem = new PhiNode(lease_compare_rgn, Type::MEMORY, TypePtr::BOTTOM);
3205   record_for_igvn(lease_compare_mem);
3206   PhiNode* lease_compare_io = new PhiNode(lease_compare_rgn, Type::ABIO);
3207   record_for_igvn(lease_compare_io);
3208   PhiNode* lease_result_value = new PhiNode(lease_compare_rgn, TypeLong::LONG);
3209   record_for_igvn(lease_result_value);
3210 
3211   // Update control and phi nodes.
3212   lease_compare_rgn->init_req(_true_path, call_return_lease_control);
3213   lease_compare_rgn->init_req(_false_path, not_lease);
3214 
3215   lease_compare_mem->init_req(_true_path, _gvn.transform(reset_memory()));
3216   lease_compare_mem->init_req(_false_path, commit_memory);
3217 
3218   lease_compare_io->init_req(_true_path, i_o());
3219   lease_compare_io->init_req(_false_path, input_io_state);
3220 
3221   lease_result_value->init_req(_true_path, null()); // if the lease was returned, return 0.
3222   lease_result_value->init_req(_false_path, arg); // if not lease, return new updated position.
3223 
3224   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3225   PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM);
3226   PhiNode* result_io = new PhiNode(result_rgn, Type::ABIO);
3227   PhiNode* result_value = new PhiNode(result_rgn, TypeLong::LONG);
3228 
3229   // Update control and phi nodes.
3230   result_rgn->init_req(_true_path, is_notified);
3231   result_rgn->init_req(_false_path, _gvn.transform(lease_compare_rgn));
3232 
3233   result_mem->init_req(_true_path, notified_reset_memory);
3234   result_mem->init_req(_false_path, _gvn.transform(lease_compare_mem));
3235 
3236   result_io->init_req(_true_path, input_io_state);
3237   result_io->init_req(_false_path, _gvn.transform(lease_compare_io));
3238 
3239   result_value->init_req(_true_path, current_pos);
3240   result_value->init_req(_false_path, _gvn.transform(lease_result_value));
3241 
3242   // Set output state.
3243   set_control(_gvn.transform(result_rgn));
3244   set_all_memory(_gvn.transform(result_mem));
3245   set_i_o(_gvn.transform(result_io));
3246   set_result(result_rgn, result_value);
3247   return true;
3248 }
3249 
3250 /*
3251  * The intrinsic is a model of this pseudo-code:
3252  *
3253  * JfrThreadLocal* const tl = Thread::jfr_thread_local()
3254  * jobject h_event_writer = tl->java_event_writer();
3255  * if (h_event_writer == nullptr) {
3256  *   return nullptr;
3257  * }
3258  * oop threadObj = Thread::threadObj();
3259  * oop vthread = java_lang_Thread::vthread(threadObj);
3260  * traceid tid;
3261  * bool pinVirtualThread;
3262  * bool excluded;
3263  * if (vthread != threadObj) {  // i.e. current thread is virtual
3264  *   tid = java_lang_Thread::tid(vthread);
3265  *   u2 vthread_epoch_raw = java_lang_Thread::jfr_epoch(vthread);
3266  *   pinVirtualThread = VMContinuations;
3267  *   excluded = vthread_epoch_raw & excluded_mask;
3268  *   if (!excluded) {
3269  *     traceid current_epoch = JfrTraceIdEpoch::current_generation();
3270  *     u2 vthread_epoch = vthread_epoch_raw & epoch_mask;
3271  *     if (vthread_epoch != current_epoch) {
3272  *       write_checkpoint();
3273  *     }
3274  *   }
3275  * } else {
3276  *   tid = java_lang_Thread::tid(threadObj);
3277  *   u2 thread_epoch_raw = java_lang_Thread::jfr_epoch(threadObj);
3278  *   pinVirtualThread = false;
3279  *   excluded = thread_epoch_raw & excluded_mask;
3280  * }
3281  * oop event_writer = JNIHandles::resolve_non_null(h_event_writer);
3282  * traceid tid_in_event_writer = getField(event_writer, "threadID");
3283  * if (tid_in_event_writer != tid) {
3284  *   setField(event_writer, "pinVirtualThread", pinVirtualThread);
3285  *   setField(event_writer, "excluded", excluded);
3286  *   setField(event_writer, "threadID", tid);
3287  * }
3288  * return event_writer
3289  */
3290 bool LibraryCallKit::inline_native_getEventWriter() {
3291   enum { _true_path = 1, _false_path = 2, PATH_LIMIT };
3292 
3293   // Save input memory and i_o state.
3294   Node* input_memory_state = reset_memory();
3295   set_all_memory(input_memory_state);
3296   Node* input_io_state = i_o();
3297 
3298   // The most significant bit of the u2 is used to denote thread exclusion
3299   Node* excluded_shift = _gvn.intcon(15);
3300   Node* excluded_mask = _gvn.intcon(1 << 15);
3301   // The epoch generation is the range [1-32767]
3302   Node* epoch_mask = _gvn.intcon(32767);
3303 
3304   // TLS
3305   Node* tls_ptr = _gvn.transform(new ThreadLocalNode());
3306 
3307   // Load the address of java event writer jobject handle from the jfr_thread_local structure.
3308   Node* jobj_ptr = basic_plus_adr(top(), tls_ptr, in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR));
3309 
3310   // Load the eventwriter jobject handle.
3311   Node* jobj = make_load(control(), jobj_ptr, TypeRawPtr::BOTTOM, T_ADDRESS, MemNode::unordered);
3312 
3313   // Null check the jobject handle.
3314   Node* jobj_cmp_null = _gvn.transform(new CmpPNode(jobj, null()));
3315   Node* test_jobj_not_equal_null = _gvn.transform(new BoolNode(jobj_cmp_null, BoolTest::ne));
3316   IfNode* iff_jobj_not_equal_null = create_and_map_if(control(), test_jobj_not_equal_null, PROB_MAX, COUNT_UNKNOWN);
3317 
3318   // False path, jobj is null.
3319   Node* jobj_is_null = _gvn.transform(new IfFalseNode(iff_jobj_not_equal_null));
3320 
3321   // True path, jobj is not null.
3322   Node* jobj_is_not_null = _gvn.transform(new IfTrueNode(iff_jobj_not_equal_null));
3323 
3324   set_control(jobj_is_not_null);
3325 
3326   // Load the threadObj for the CarrierThread.
3327   Node* threadObj = generate_current_thread(tls_ptr);
3328 
3329   // Load the vthread.
3330   Node* vthread = generate_virtual_thread(tls_ptr);
3331 
3332   // If vthread != threadObj, this is a virtual thread.
3333   Node* vthread_cmp_threadObj = _gvn.transform(new CmpPNode(vthread, threadObj));
3334   Node* test_vthread_not_equal_threadObj = _gvn.transform(new BoolNode(vthread_cmp_threadObj, BoolTest::ne));
3335   IfNode* iff_vthread_not_equal_threadObj =
3336     create_and_map_if(jobj_is_not_null, test_vthread_not_equal_threadObj, PROB_FAIR, COUNT_UNKNOWN);
3337 
3338   // False branch, fallback to threadObj.
3339   Node* vthread_equal_threadObj = _gvn.transform(new IfFalseNode(iff_vthread_not_equal_threadObj));
3340   set_control(vthread_equal_threadObj);
3341 
3342   // Load the tid field from the vthread object.
3343   Node* thread_obj_tid = load_field_from_object(threadObj, "tid", "J");
3344 
3345   // Load the raw epoch value from the threadObj.
3346   Node* threadObj_epoch_offset = basic_plus_adr(threadObj, java_lang_Thread::jfr_epoch_offset());
3347   Node* threadObj_epoch_raw = access_load_at(threadObj, threadObj_epoch_offset,
3348                                              _gvn.type(threadObj_epoch_offset)->isa_ptr(),
3349                                              TypeInt::CHAR, T_CHAR,
3350                                              IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD);
3351 
3352   // Mask off the excluded information from the epoch.
3353   Node * threadObj_is_excluded = _gvn.transform(new AndINode(threadObj_epoch_raw, excluded_mask));
3354 
3355   // True branch, this is a virtual thread.
3356   Node* vthread_not_equal_threadObj = _gvn.transform(new IfTrueNode(iff_vthread_not_equal_threadObj));
3357   set_control(vthread_not_equal_threadObj);
3358 
3359   // Load the tid field from the vthread object.
3360   Node* vthread_tid = load_field_from_object(vthread, "tid", "J");
3361 
3362   // Continuation support determines if a virtual thread should be pinned.
3363   Node* global_addr = makecon(TypeRawPtr::make((address)&VMContinuations));
3364   Node* continuation_support = make_load(control(), global_addr, TypeInt::BOOL, T_BOOLEAN, MemNode::unordered);
3365 
3366   // Load the raw epoch value from the vthread.
3367   Node* vthread_epoch_offset = basic_plus_adr(vthread, java_lang_Thread::jfr_epoch_offset());
3368   Node* vthread_epoch_raw = access_load_at(vthread, vthread_epoch_offset, _gvn.type(vthread_epoch_offset)->is_ptr(),
3369                                            TypeInt::CHAR, T_CHAR,
3370                                            IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD);
3371 
3372   // Mask off the excluded information from the epoch.
3373   Node * vthread_is_excluded = _gvn.transform(new AndINode(vthread_epoch_raw, _gvn.transform(excluded_mask)));
3374 
3375   // Branch on excluded to conditionalize updating the epoch for the virtual thread.
3376   Node* is_excluded_cmp = _gvn.transform(new CmpINode(vthread_is_excluded, _gvn.transform(excluded_mask)));
3377   Node* test_not_excluded = _gvn.transform(new BoolNode(is_excluded_cmp, BoolTest::ne));
3378   IfNode* iff_not_excluded = create_and_map_if(control(), test_not_excluded, PROB_MAX, COUNT_UNKNOWN);
3379 
3380   // False branch, vthread is excluded, no need to write epoch info.
3381   Node* excluded = _gvn.transform(new IfFalseNode(iff_not_excluded));
3382 
3383   // True branch, vthread is included, update epoch info.
3384   Node* included = _gvn.transform(new IfTrueNode(iff_not_excluded));
3385   set_control(included);
3386 
3387   // Get epoch value.
3388   Node* epoch = _gvn.transform(new AndINode(vthread_epoch_raw, _gvn.transform(epoch_mask)));
3389 
3390   // Load the current epoch generation. The value is unsigned 16-bit, so we type it as T_CHAR.
3391   Node* epoch_generation_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::epoch_generation_address()));
3392   Node* current_epoch_generation = make_load(control(), epoch_generation_address, TypeInt::CHAR, T_CHAR, MemNode::unordered);
3393 
3394   // Compare the epoch in the vthread to the current epoch generation.
3395   Node* const epoch_cmp = _gvn.transform(new CmpUNode(current_epoch_generation, epoch));
3396   Node* test_epoch_not_equal = _gvn.transform(new BoolNode(epoch_cmp, BoolTest::ne));
3397   IfNode* iff_epoch_not_equal = create_and_map_if(control(), test_epoch_not_equal, PROB_FAIR, COUNT_UNKNOWN);
3398 
3399   // False path, epoch is equal, checkpoint information is valid.
3400   Node* epoch_is_equal = _gvn.transform(new IfFalseNode(iff_epoch_not_equal));
3401 
3402   // True path, epoch is not equal, write a checkpoint for the vthread.
3403   Node* epoch_is_not_equal = _gvn.transform(new IfTrueNode(iff_epoch_not_equal));
3404 
3405   set_control(epoch_is_not_equal);
3406 
3407   // Make a runtime call, which can safepoint, to write a checkpoint for the vthread for this epoch.
3408   // The call also updates the native thread local thread id and the vthread with the current epoch.
3409   Node* call_write_checkpoint = make_runtime_call(RC_NO_LEAF,
3410                                                   OptoRuntime::jfr_write_checkpoint_Type(),
3411                                                   SharedRuntime::jfr_write_checkpoint(),
3412                                                   "write_checkpoint", TypePtr::BOTTOM);
3413   Node* call_write_checkpoint_control = _gvn.transform(new ProjNode(call_write_checkpoint, TypeFunc::Control));
3414 
3415   // vthread epoch != current epoch
3416   RegionNode* epoch_compare_rgn = new RegionNode(PATH_LIMIT);
3417   record_for_igvn(epoch_compare_rgn);
3418   PhiNode* epoch_compare_mem = new PhiNode(epoch_compare_rgn, Type::MEMORY, TypePtr::BOTTOM);
3419   record_for_igvn(epoch_compare_mem);
3420   PhiNode* epoch_compare_io = new PhiNode(epoch_compare_rgn, Type::ABIO);
3421   record_for_igvn(epoch_compare_io);
3422 
3423   // Update control and phi nodes.
3424   epoch_compare_rgn->init_req(_true_path, call_write_checkpoint_control);
3425   epoch_compare_rgn->init_req(_false_path, epoch_is_equal);
3426   epoch_compare_mem->init_req(_true_path, _gvn.transform(reset_memory()));
3427   epoch_compare_mem->init_req(_false_path, input_memory_state);
3428   epoch_compare_io->init_req(_true_path, i_o());
3429   epoch_compare_io->init_req(_false_path, input_io_state);
3430 
3431   // excluded != true
3432   RegionNode* exclude_compare_rgn = new RegionNode(PATH_LIMIT);
3433   record_for_igvn(exclude_compare_rgn);
3434   PhiNode* exclude_compare_mem = new PhiNode(exclude_compare_rgn, Type::MEMORY, TypePtr::BOTTOM);
3435   record_for_igvn(exclude_compare_mem);
3436   PhiNode* exclude_compare_io = new PhiNode(exclude_compare_rgn, Type::ABIO);
3437   record_for_igvn(exclude_compare_io);
3438 
3439   // Update control and phi nodes.
3440   exclude_compare_rgn->init_req(_true_path, _gvn.transform(epoch_compare_rgn));
3441   exclude_compare_rgn->init_req(_false_path, excluded);
3442   exclude_compare_mem->init_req(_true_path, _gvn.transform(epoch_compare_mem));
3443   exclude_compare_mem->init_req(_false_path, input_memory_state);
3444   exclude_compare_io->init_req(_true_path, _gvn.transform(epoch_compare_io));
3445   exclude_compare_io->init_req(_false_path, input_io_state);
3446 
3447   // vthread != threadObj
3448   RegionNode* vthread_compare_rgn = new RegionNode(PATH_LIMIT);
3449   record_for_igvn(vthread_compare_rgn);
3450   PhiNode* vthread_compare_mem = new PhiNode(vthread_compare_rgn, Type::MEMORY, TypePtr::BOTTOM);
3451   PhiNode* vthread_compare_io = new PhiNode(vthread_compare_rgn, Type::ABIO);
3452   record_for_igvn(vthread_compare_io);
3453   PhiNode* tid = new PhiNode(vthread_compare_rgn, TypeLong::LONG);
3454   record_for_igvn(tid);
3455   PhiNode* exclusion = new PhiNode(vthread_compare_rgn, TypeInt::CHAR);
3456   record_for_igvn(exclusion);
3457   PhiNode* pinVirtualThread = new PhiNode(vthread_compare_rgn, TypeInt::BOOL);
3458   record_for_igvn(pinVirtualThread);
3459 
3460   // Update control and phi nodes.
3461   vthread_compare_rgn->init_req(_true_path, _gvn.transform(exclude_compare_rgn));
3462   vthread_compare_rgn->init_req(_false_path, vthread_equal_threadObj);
3463   vthread_compare_mem->init_req(_true_path, _gvn.transform(exclude_compare_mem));
3464   vthread_compare_mem->init_req(_false_path, input_memory_state);
3465   vthread_compare_io->init_req(_true_path, _gvn.transform(exclude_compare_io));
3466   vthread_compare_io->init_req(_false_path, input_io_state);
3467   tid->init_req(_true_path, _gvn.transform(vthread_tid));
3468   tid->init_req(_false_path, _gvn.transform(thread_obj_tid));
3469   exclusion->init_req(_true_path, _gvn.transform(vthread_is_excluded));
3470   exclusion->init_req(_false_path, _gvn.transform(threadObj_is_excluded));
3471   pinVirtualThread->init_req(_true_path, _gvn.transform(continuation_support));
3472   pinVirtualThread->init_req(_false_path, _gvn.intcon(0));
3473 
3474   // Update branch state.
3475   set_control(_gvn.transform(vthread_compare_rgn));
3476   set_all_memory(_gvn.transform(vthread_compare_mem));
3477   set_i_o(_gvn.transform(vthread_compare_io));
3478 
3479   // Load the event writer oop by dereferencing the jobject handle.
3480   ciKlass* klass_EventWriter = env()->find_system_klass(ciSymbol::make("jdk/jfr/internal/event/EventWriter"));
3481   assert(klass_EventWriter->is_loaded(), "invariant");
3482   ciInstanceKlass* const instklass_EventWriter = klass_EventWriter->as_instance_klass();
3483   const TypeKlassPtr* const aklass = TypeKlassPtr::make(instklass_EventWriter);
3484   const TypeOopPtr* const xtype = aklass->as_instance_type();
3485   Node* jobj_untagged = _gvn.transform(new AddPNode(top(), jobj, _gvn.MakeConX(-JNIHandles::TypeTag::global)));
3486   Node* event_writer = access_load(jobj_untagged, xtype, T_OBJECT, IN_NATIVE | C2_CONTROL_DEPENDENT_LOAD);
3487 
3488   // Load the current thread id from the event writer object.
3489   Node* const event_writer_tid = load_field_from_object(event_writer, "threadID", "J");
3490   // Get the field offset to, conditionally, store an updated tid value later.
3491   Node* const event_writer_tid_field = field_address_from_object(event_writer, "threadID", "J", false);
3492   // Get the field offset to, conditionally, store an updated exclusion value later.
3493   Node* const event_writer_excluded_field = field_address_from_object(event_writer, "excluded", "Z", false);
3494   // Get the field offset to, conditionally, store an updated pinVirtualThread value later.
3495   Node* const event_writer_pin_field = field_address_from_object(event_writer, "pinVirtualThread", "Z", false);
3496 
3497   RegionNode* event_writer_tid_compare_rgn = new RegionNode(PATH_LIMIT);
3498   record_for_igvn(event_writer_tid_compare_rgn);
3499   PhiNode* event_writer_tid_compare_mem = new PhiNode(event_writer_tid_compare_rgn, Type::MEMORY, TypePtr::BOTTOM);
3500   record_for_igvn(event_writer_tid_compare_mem);
3501   PhiNode* event_writer_tid_compare_io = new PhiNode(event_writer_tid_compare_rgn, Type::ABIO);
3502   record_for_igvn(event_writer_tid_compare_io);
3503 
3504   // Compare the current tid from the thread object to what is currently stored in the event writer object.
3505   Node* const tid_cmp = _gvn.transform(new CmpLNode(event_writer_tid, _gvn.transform(tid)));
3506   Node* test_tid_not_equal = _gvn.transform(new BoolNode(tid_cmp, BoolTest::ne));
3507   IfNode* iff_tid_not_equal = create_and_map_if(_gvn.transform(vthread_compare_rgn), test_tid_not_equal, PROB_FAIR, COUNT_UNKNOWN);
3508 
3509   // False path, tids are the same.
3510   Node* tid_is_equal = _gvn.transform(new IfFalseNode(iff_tid_not_equal));
3511 
3512   // True path, tid is not equal, need to update the tid in the event writer.
3513   Node* tid_is_not_equal = _gvn.transform(new IfTrueNode(iff_tid_not_equal));
3514   record_for_igvn(tid_is_not_equal);
3515 
3516   // Store the pin state to the event writer.
3517   store_to_memory(tid_is_not_equal, event_writer_pin_field, _gvn.transform(pinVirtualThread), T_BOOLEAN, MemNode::unordered);
3518 
3519   // Store the exclusion state to the event writer.
3520   Node* excluded_bool = _gvn.transform(new URShiftINode(_gvn.transform(exclusion), excluded_shift));
3521   store_to_memory(tid_is_not_equal, event_writer_excluded_field, excluded_bool, T_BOOLEAN, MemNode::unordered);
3522 
3523   // Store the tid to the event writer.
3524   store_to_memory(tid_is_not_equal, event_writer_tid_field, tid, T_LONG, MemNode::unordered);
3525 
3526   // Update control and phi nodes.
3527   event_writer_tid_compare_rgn->init_req(_true_path, tid_is_not_equal);
3528   event_writer_tid_compare_rgn->init_req(_false_path, tid_is_equal);
3529   event_writer_tid_compare_mem->init_req(_true_path, _gvn.transform(reset_memory()));
3530   event_writer_tid_compare_mem->init_req(_false_path, _gvn.transform(vthread_compare_mem));
3531   event_writer_tid_compare_io->init_req(_true_path, _gvn.transform(i_o()));
3532   event_writer_tid_compare_io->init_req(_false_path, _gvn.transform(vthread_compare_io));
3533 
3534   // Result of top level CFG, Memory, IO and Value.
3535   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3536   PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM);
3537   PhiNode* result_io = new PhiNode(result_rgn, Type::ABIO);
3538   PhiNode* result_value = new PhiNode(result_rgn, TypeInstPtr::BOTTOM);
3539 
3540   // Result control.
3541   result_rgn->init_req(_true_path, _gvn.transform(event_writer_tid_compare_rgn));
3542   result_rgn->init_req(_false_path, jobj_is_null);
3543 
3544   // Result memory.
3545   result_mem->init_req(_true_path, _gvn.transform(event_writer_tid_compare_mem));
3546   result_mem->init_req(_false_path, _gvn.transform(input_memory_state));
3547 
3548   // Result IO.
3549   result_io->init_req(_true_path, _gvn.transform(event_writer_tid_compare_io));
3550   result_io->init_req(_false_path, _gvn.transform(input_io_state));
3551 
3552   // Result value.
3553   result_value->init_req(_true_path, _gvn.transform(event_writer)); // return event writer oop
3554   result_value->init_req(_false_path, null()); // return null
3555 
3556   // Set output state.
3557   set_control(_gvn.transform(result_rgn));
3558   set_all_memory(_gvn.transform(result_mem));
3559   set_i_o(_gvn.transform(result_io));
3560   set_result(result_rgn, result_value);
3561   return true;
3562 }
3563 
3564 /*
3565  * The intrinsic is a model of this pseudo-code:
3566  *
3567  * JfrThreadLocal* const tl = thread->jfr_thread_local();
3568  * if (carrierThread != thread) { // is virtual thread
3569  *   const u2 vthread_epoch_raw = java_lang_Thread::jfr_epoch(thread);
3570  *   bool excluded = vthread_epoch_raw & excluded_mask;
3571  *   Atomic::store(&tl->_contextual_tid, java_lang_Thread::tid(thread));
3572  *   Atomic::store(&tl->_contextual_thread_excluded, is_excluded);
3573  *   if (!excluded) {
3574  *     const u2 vthread_epoch = vthread_epoch_raw & epoch_mask;
3575  *     Atomic::store(&tl->_vthread_epoch, vthread_epoch);
3576  *   }
3577  *   Atomic::release_store(&tl->_vthread, true);
3578  *   return;
3579  * }
3580  * Atomic::release_store(&tl->_vthread, false);
3581  */
3582 void LibraryCallKit::extend_setCurrentThread(Node* jt, Node* thread) {
3583   enum { _true_path = 1, _false_path = 2, PATH_LIMIT };
3584 
3585   Node* input_memory_state = reset_memory();
3586   set_all_memory(input_memory_state);
3587 
3588   // The most significant bit of the u2 is used to denote thread exclusion
3589   Node* excluded_mask = _gvn.intcon(1 << 15);
3590   // The epoch generation is the range [1-32767]
3591   Node* epoch_mask = _gvn.intcon(32767);
3592 
3593   Node* const carrierThread = generate_current_thread(jt);
3594   // If thread != carrierThread, this is a virtual thread.
3595   Node* thread_cmp_carrierThread = _gvn.transform(new CmpPNode(thread, carrierThread));
3596   Node* test_thread_not_equal_carrierThread = _gvn.transform(new BoolNode(thread_cmp_carrierThread, BoolTest::ne));
3597   IfNode* iff_thread_not_equal_carrierThread =
3598     create_and_map_if(control(), test_thread_not_equal_carrierThread, PROB_FAIR, COUNT_UNKNOWN);
3599 
3600   Node* vthread_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_OFFSET_JFR));
3601 
3602   // False branch, is carrierThread.
3603   Node* thread_equal_carrierThread = _gvn.transform(new IfFalseNode(iff_thread_not_equal_carrierThread));
3604   // Store release
3605   Node* vthread_false_memory = store_to_memory(thread_equal_carrierThread, vthread_offset, _gvn.intcon(0), T_BOOLEAN, MemNode::release, true);
3606 
3607   set_all_memory(input_memory_state);
3608 
3609   // True branch, is virtual thread.
3610   Node* thread_not_equal_carrierThread = _gvn.transform(new IfTrueNode(iff_thread_not_equal_carrierThread));
3611   set_control(thread_not_equal_carrierThread);
3612 
3613   // Load the raw epoch value from the vthread.
3614   Node* epoch_offset = basic_plus_adr(thread, java_lang_Thread::jfr_epoch_offset());
3615   Node* epoch_raw = access_load_at(thread, epoch_offset, _gvn.type(epoch_offset)->is_ptr(), TypeInt::CHAR, T_CHAR,
3616                                    IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD);
3617 
3618   // Mask off the excluded information from the epoch.
3619   Node * const is_excluded = _gvn.transform(new AndINode(epoch_raw, _gvn.transform(excluded_mask)));
3620 
3621   // Load the tid field from the thread.
3622   Node* tid = load_field_from_object(thread, "tid", "J");
3623 
3624   // Store the vthread tid to the jfr thread local.
3625   Node* thread_id_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_ID_OFFSET_JFR));
3626   Node* tid_memory = store_to_memory(control(), thread_id_offset, tid, T_LONG, MemNode::unordered, true);
3627 
3628   // Branch is_excluded to conditionalize updating the epoch .
3629   Node* excluded_cmp = _gvn.transform(new CmpINode(is_excluded, _gvn.transform(excluded_mask)));
3630   Node* test_excluded = _gvn.transform(new BoolNode(excluded_cmp, BoolTest::eq));
3631   IfNode* iff_excluded = create_and_map_if(control(), test_excluded, PROB_MIN, COUNT_UNKNOWN);
3632 
3633   // True branch, vthread is excluded, no need to write epoch info.
3634   Node* excluded = _gvn.transform(new IfTrueNode(iff_excluded));
3635   set_control(excluded);
3636   Node* vthread_is_excluded = _gvn.intcon(1);
3637 
3638   // False branch, vthread is included, update epoch info.
3639   Node* included = _gvn.transform(new IfFalseNode(iff_excluded));
3640   set_control(included);
3641   Node* vthread_is_included = _gvn.intcon(0);
3642 
3643   // Get epoch value.
3644   Node* epoch = _gvn.transform(new AndINode(epoch_raw, _gvn.transform(epoch_mask)));
3645 
3646   // Store the vthread epoch to the jfr thread local.
3647   Node* vthread_epoch_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_EPOCH_OFFSET_JFR));
3648   Node* included_memory = store_to_memory(control(), vthread_epoch_offset, epoch, T_CHAR, MemNode::unordered, true);
3649 
3650   RegionNode* excluded_rgn = new RegionNode(PATH_LIMIT);
3651   record_for_igvn(excluded_rgn);
3652   PhiNode* excluded_mem = new PhiNode(excluded_rgn, Type::MEMORY, TypePtr::BOTTOM);
3653   record_for_igvn(excluded_mem);
3654   PhiNode* exclusion = new PhiNode(excluded_rgn, TypeInt::BOOL);
3655   record_for_igvn(exclusion);
3656 
3657   // Merge the excluded control and memory.
3658   excluded_rgn->init_req(_true_path, excluded);
3659   excluded_rgn->init_req(_false_path, included);
3660   excluded_mem->init_req(_true_path, tid_memory);
3661   excluded_mem->init_req(_false_path, included_memory);
3662   exclusion->init_req(_true_path, _gvn.transform(vthread_is_excluded));
3663   exclusion->init_req(_false_path, _gvn.transform(vthread_is_included));
3664 
3665   // Set intermediate state.
3666   set_control(_gvn.transform(excluded_rgn));
3667   set_all_memory(excluded_mem);
3668 
3669   // Store the vthread exclusion state to the jfr thread local.
3670   Node* thread_local_excluded_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_EXCLUDED_OFFSET_JFR));
3671   store_to_memory(control(), thread_local_excluded_offset, _gvn.transform(exclusion), T_BOOLEAN, MemNode::unordered, true);
3672 
3673   // Store release
3674   Node * vthread_true_memory = store_to_memory(control(), vthread_offset, _gvn.intcon(1), T_BOOLEAN, MemNode::release, true);
3675 
3676   RegionNode* thread_compare_rgn = new RegionNode(PATH_LIMIT);
3677   record_for_igvn(thread_compare_rgn);
3678   PhiNode* thread_compare_mem = new PhiNode(thread_compare_rgn, Type::MEMORY, TypePtr::BOTTOM);
3679   record_for_igvn(thread_compare_mem);
3680   PhiNode* vthread = new PhiNode(thread_compare_rgn, TypeInt::BOOL);
3681   record_for_igvn(vthread);
3682 
3683   // Merge the thread_compare control and memory.
3684   thread_compare_rgn->init_req(_true_path, control());
3685   thread_compare_rgn->init_req(_false_path, thread_equal_carrierThread);
3686   thread_compare_mem->init_req(_true_path, vthread_true_memory);
3687   thread_compare_mem->init_req(_false_path, vthread_false_memory);
3688 
3689   // Set output state.
3690   set_control(_gvn.transform(thread_compare_rgn));
3691   set_all_memory(_gvn.transform(thread_compare_mem));
3692 }
3693 
3694 #endif // JFR_HAVE_INTRINSICS
3695 
3696 //------------------------inline_native_currentCarrierThread------------------
3697 bool LibraryCallKit::inline_native_currentCarrierThread() {
3698   Node* junk = nullptr;
3699   set_result(generate_current_thread(junk));
3700   return true;
3701 }
3702 
3703 //------------------------inline_native_currentThread------------------
3704 bool LibraryCallKit::inline_native_currentThread() {
3705   Node* junk = nullptr;
3706   set_result(generate_virtual_thread(junk));
3707   return true;
3708 }
3709 
3710 //------------------------inline_native_setVthread------------------
3711 bool LibraryCallKit::inline_native_setCurrentThread() {
3712   assert(C->method()->changes_current_thread(),
3713          "method changes current Thread but is not annotated ChangesCurrentThread");
3714   Node* arr = argument(1);
3715   Node* thread = _gvn.transform(new ThreadLocalNode());
3716   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::vthread_offset()));
3717   Node* thread_obj_handle
3718     = make_load(nullptr, p, p->bottom_type()->is_ptr(), T_OBJECT, MemNode::unordered);
3719   thread_obj_handle = _gvn.transform(thread_obj_handle);
3720   const TypePtr *adr_type = _gvn.type(thread_obj_handle)->isa_ptr();
3721   access_store_at(nullptr, thread_obj_handle, adr_type, arr, _gvn.type(arr), T_OBJECT, IN_NATIVE | MO_UNORDERED);
3722 
3723   // Change the _monitor_owner_id of the JavaThread
3724   Node* tid = load_field_from_object(arr, "tid", "J");
3725   Node* monitor_owner_id_offset = basic_plus_adr(thread, in_bytes(JavaThread::monitor_owner_id_offset()));
3726   store_to_memory(control(), monitor_owner_id_offset, tid, T_LONG, MemNode::unordered, true);
3727 
3728   JFR_ONLY(extend_setCurrentThread(thread, arr);)
3729   return true;
3730 }
3731 
3732 const Type* LibraryCallKit::scopedValueCache_type() {
3733   ciKlass* objects_klass = ciObjArrayKlass::make(env()->Object_klass());
3734   const TypeOopPtr* etype = TypeOopPtr::make_from_klass(env()->Object_klass());
3735   const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3736 
3737   // Because we create the scopedValue cache lazily we have to make the
3738   // type of the result BotPTR.
3739   bool xk = etype->klass_is_exact();
3740   const Type* objects_type = TypeAryPtr::make(TypePtr::BotPTR, arr0, objects_klass, xk, 0);
3741   return objects_type;
3742 }
3743 
3744 Node* LibraryCallKit::scopedValueCache_helper() {
3745   Node* thread = _gvn.transform(new ThreadLocalNode());
3746   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::scopedValueCache_offset()));
3747   // We cannot use immutable_memory() because we might flip onto a
3748   // different carrier thread, at which point we'll need to use that
3749   // carrier thread's cache.
3750   // return _gvn.transform(LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(),
3751   //       TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered));
3752   return make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered);
3753 }
3754 
3755 //------------------------inline_native_scopedValueCache------------------
3756 bool LibraryCallKit::inline_native_scopedValueCache() {
3757   Node* cache_obj_handle = scopedValueCache_helper();
3758   const Type* objects_type = scopedValueCache_type();
3759   set_result(access_load(cache_obj_handle, objects_type, T_OBJECT, IN_NATIVE));
3760 
3761   return true;
3762 }
3763 
3764 //------------------------inline_native_setScopedValueCache------------------
3765 bool LibraryCallKit::inline_native_setScopedValueCache() {
3766   Node* arr = argument(0);
3767   Node* cache_obj_handle = scopedValueCache_helper();
3768   const Type* objects_type = scopedValueCache_type();
3769 
3770   const TypePtr *adr_type = _gvn.type(cache_obj_handle)->isa_ptr();
3771   access_store_at(nullptr, cache_obj_handle, adr_type, arr, objects_type, T_OBJECT, IN_NATIVE | MO_UNORDERED);
3772 
3773   return true;
3774 }
3775 
3776 //------------------------inline_native_Continuation_pin and unpin-----------
3777 
3778 // Shared implementation routine for both pin and unpin.
3779 bool LibraryCallKit::inline_native_Continuation_pinning(bool unpin) {
3780   enum { _true_path = 1, _false_path = 2, PATH_LIMIT };
3781 
3782   // Save input memory.
3783   Node* input_memory_state = reset_memory();
3784   set_all_memory(input_memory_state);
3785 
3786   // TLS
3787   Node* tls_ptr = _gvn.transform(new ThreadLocalNode());
3788   Node* last_continuation_offset = basic_plus_adr(top(), tls_ptr, in_bytes(JavaThread::cont_entry_offset()));
3789   Node* last_continuation = make_load(control(), last_continuation_offset, last_continuation_offset->get_ptr_type(), T_ADDRESS, MemNode::unordered);
3790 
3791   // Null check the last continuation object.
3792   Node* continuation_cmp_null = _gvn.transform(new CmpPNode(last_continuation, null()));
3793   Node* test_continuation_not_equal_null = _gvn.transform(new BoolNode(continuation_cmp_null, BoolTest::ne));
3794   IfNode* iff_continuation_not_equal_null = create_and_map_if(control(), test_continuation_not_equal_null, PROB_MAX, COUNT_UNKNOWN);
3795 
3796   // False path, last continuation is null.
3797   Node* continuation_is_null = _gvn.transform(new IfFalseNode(iff_continuation_not_equal_null));
3798 
3799   // True path, last continuation is not null.
3800   Node* continuation_is_not_null = _gvn.transform(new IfTrueNode(iff_continuation_not_equal_null));
3801 
3802   set_control(continuation_is_not_null);
3803 
3804   // Load the pin count from the last continuation.
3805   Node* pin_count_offset = basic_plus_adr(top(), last_continuation, in_bytes(ContinuationEntry::pin_count_offset()));
3806   Node* pin_count = make_load(control(), pin_count_offset, TypeInt::INT, T_INT, MemNode::unordered);
3807 
3808   // The loaded pin count is compared against a context specific rhs for over/underflow detection.
3809   Node* pin_count_rhs;
3810   if (unpin) {
3811     pin_count_rhs = _gvn.intcon(0);
3812   } else {
3813     pin_count_rhs = _gvn.intcon(UINT32_MAX);
3814   }
3815   Node* pin_count_cmp = _gvn.transform(new CmpUNode(_gvn.transform(pin_count), pin_count_rhs));
3816   Node* test_pin_count_over_underflow = _gvn.transform(new BoolNode(pin_count_cmp, BoolTest::eq));
3817   IfNode* iff_pin_count_over_underflow = create_and_map_if(control(), test_pin_count_over_underflow, PROB_MIN, COUNT_UNKNOWN);
3818 
3819   // True branch, pin count over/underflow.
3820   Node* pin_count_over_underflow = _gvn.transform(new IfTrueNode(iff_pin_count_over_underflow));
3821   {
3822     // Trap (but not deoptimize (Action_none)) and continue in the interpreter
3823     // which will throw IllegalStateException for pin count over/underflow.
3824     // No memory changed so far - we can use memory create by reset_memory()
3825     // at the beginning of this intrinsic. No need to call reset_memory() again.
3826     PreserveJVMState pjvms(this);
3827     set_control(pin_count_over_underflow);
3828     uncommon_trap(Deoptimization::Reason_intrinsic,
3829                   Deoptimization::Action_none);
3830     assert(stopped(), "invariant");
3831   }
3832 
3833   // False branch, no pin count over/underflow. Increment or decrement pin count and store back.
3834   Node* valid_pin_count = _gvn.transform(new IfFalseNode(iff_pin_count_over_underflow));
3835   set_control(valid_pin_count);
3836 
3837   Node* next_pin_count;
3838   if (unpin) {
3839     next_pin_count = _gvn.transform(new SubINode(pin_count, _gvn.intcon(1)));
3840   } else {
3841     next_pin_count = _gvn.transform(new AddINode(pin_count, _gvn.intcon(1)));
3842   }
3843 
3844   store_to_memory(control(), pin_count_offset, next_pin_count, T_INT, MemNode::unordered);
3845 
3846   // Result of top level CFG and Memory.
3847   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3848   record_for_igvn(result_rgn);
3849   PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM);
3850   record_for_igvn(result_mem);
3851 
3852   result_rgn->init_req(_true_path, _gvn.transform(valid_pin_count));
3853   result_rgn->init_req(_false_path, _gvn.transform(continuation_is_null));
3854   result_mem->init_req(_true_path, _gvn.transform(reset_memory()));
3855   result_mem->init_req(_false_path, _gvn.transform(input_memory_state));
3856 
3857   // Set output state.
3858   set_control(_gvn.transform(result_rgn));
3859   set_all_memory(_gvn.transform(result_mem));
3860 
3861   return true;
3862 }
3863 
3864 //---------------------------load_mirror_from_klass----------------------------
3865 // Given a klass oop, load its java mirror (a java.lang.Class oop).
3866 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3867   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3868   Node* load = make_load(nullptr, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3869   // mirror = ((OopHandle)mirror)->resolve();
3870   return access_load(load, TypeInstPtr::MIRROR, T_OBJECT, IN_NATIVE);
3871 }
3872 
3873 //-----------------------load_klass_from_mirror_common-------------------------
3874 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3875 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3876 // and branch to the given path on the region.
3877 // If never_see_null, take an uncommon trap on null, so we can optimistically
3878 // compile for the non-null case.
3879 // If the region is null, force never_see_null = true.
3880 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3881                                                     bool never_see_null,
3882                                                     RegionNode* region,
3883                                                     int null_path,
3884                                                     int offset) {
3885   if (region == nullptr)  never_see_null = true;
3886   Node* p = basic_plus_adr(mirror, offset);
3887   const TypeKlassPtr*  kls_type = TypeInstKlassPtr::OBJECT_OR_NULL;
3888   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
3889   Node* null_ctl = top();
3890   kls = null_check_oop(kls, &null_ctl, never_see_null);
3891   if (region != nullptr) {
3892     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
3893     region->init_req(null_path, null_ctl);
3894   } else {
3895     assert(null_ctl == top(), "no loose ends");
3896   }
3897   return kls;
3898 }
3899 
3900 //--------------------(inline_native_Class_query helpers)---------------------
3901 // Use this for JVM_ACC_INTERFACE.
3902 // Fall through if (mods & mask) == bits, take the guard otherwise.
3903 Node* LibraryCallKit::generate_klass_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region,
3904                                                  ByteSize offset, const Type* type, BasicType bt) {
3905   // Branch around if the given klass has the given modifier bit set.
3906   // Like generate_guard, adds a new path onto the region.
3907   Node* modp = basic_plus_adr(kls, in_bytes(offset));
3908   Node* mods = make_load(nullptr, modp, type, bt, MemNode::unordered);
3909   Node* mask = intcon(modifier_mask);
3910   Node* bits = intcon(modifier_bits);
3911   Node* mbit = _gvn.transform(new AndINode(mods, mask));
3912   Node* cmp  = _gvn.transform(new CmpINode(mbit, bits));
3913   Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
3914   return generate_fair_guard(bol, region);
3915 }
3916 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3917   return generate_klass_flags_guard(kls, JVM_ACC_INTERFACE, 0, region,
3918                                     Klass::access_flags_offset(), TypeInt::CHAR, T_CHAR);
3919 }
3920 
3921 // Use this for testing if Klass is_hidden, has_finalizer, and is_cloneable_fast.
3922 Node* LibraryCallKit::generate_misc_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3923   return generate_klass_flags_guard(kls, modifier_mask, modifier_bits, region,
3924                                     Klass::misc_flags_offset(), TypeInt::UBYTE, T_BOOLEAN);
3925 }
3926 
3927 Node* LibraryCallKit::generate_hidden_class_guard(Node* kls, RegionNode* region) {
3928   return generate_misc_flags_guard(kls, KlassFlags::_misc_is_hidden_class, 0, region);
3929 }
3930 
3931 //-------------------------inline_native_Class_query-------------------
3932 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3933   const Type* return_type = TypeInt::BOOL;
3934   Node* prim_return_value = top();  // what happens if it's a primitive class?
3935   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3936   bool expect_prim = false;     // most of these guys expect to work on refs
3937 
3938   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3939 
3940   Node* mirror = argument(0);
3941   Node* obj    = top();
3942 
3943   switch (id) {
3944   case vmIntrinsics::_isInstance:
3945     // nothing is an instance of a primitive type
3946     prim_return_value = intcon(0);
3947     obj = argument(1);
3948     break;
3949   case vmIntrinsics::_isHidden:
3950     prim_return_value = intcon(0);
3951     break;
3952   case vmIntrinsics::_getSuperclass:
3953     prim_return_value = null();
3954     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3955     break;
3956   case vmIntrinsics::_getClassAccessFlags:
3957     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3958     return_type = TypeInt::CHAR;
3959     break;
3960   default:
3961     fatal_unexpected_iid(id);
3962     break;
3963   }
3964 
3965   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3966   if (mirror_con == nullptr)  return false;  // cannot happen?
3967 
3968 #ifndef PRODUCT
3969   if (C->print_intrinsics() || C->print_inlining()) {
3970     ciType* k = mirror_con->java_mirror_type();
3971     if (k) {
3972       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
3973       k->print_name();
3974       tty->cr();
3975     }
3976   }
3977 #endif
3978 
3979   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
3980   RegionNode* region = new RegionNode(PATH_LIMIT);
3981   record_for_igvn(region);
3982   PhiNode* phi = new PhiNode(region, return_type);
3983 
3984   // The mirror will never be null of Reflection.getClassAccessFlags, however
3985   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
3986   // if it is. See bug 4774291.
3987 
3988   // For Reflection.getClassAccessFlags(), the null check occurs in
3989   // the wrong place; see inline_unsafe_access(), above, for a similar
3990   // situation.
3991   mirror = null_check(mirror);
3992   // If mirror or obj is dead, only null-path is taken.
3993   if (stopped())  return true;
3994 
3995   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
3996 
3997   // Now load the mirror's klass metaobject, and null-check it.
3998   // Side-effects region with the control path if the klass is null.
3999   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
4000   // If kls is null, we have a primitive mirror.
4001   phi->init_req(_prim_path, prim_return_value);
4002   if (stopped()) { set_result(region, phi); return true; }
4003   bool safe_for_replace = (region->in(_prim_path) == top());
4004 
4005   Node* p;  // handy temp
4006   Node* null_ctl;
4007 
4008   // Now that we have the non-null klass, we can perform the real query.
4009   // For constant classes, the query will constant-fold in LoadNode::Value.
4010   Node* query_value = top();
4011   switch (id) {
4012   case vmIntrinsics::_isInstance:
4013     // nothing is an instance of a primitive type
4014     query_value = gen_instanceof(obj, kls, safe_for_replace);
4015     break;
4016 
4017   case vmIntrinsics::_isHidden:
4018     // (To verify this code sequence, check the asserts in JVM_IsHiddenClass.)
4019     if (generate_hidden_class_guard(kls, region) != nullptr)
4020       // A guard was added.  If the guard is taken, it was an hidden class.
4021       phi->add_req(intcon(1));
4022     // If we fall through, it's a plain class.
4023     query_value = intcon(0);
4024     break;
4025 
4026 
4027   case vmIntrinsics::_getSuperclass:
4028     // The rules here are somewhat unfortunate, but we can still do better
4029     // with random logic than with a JNI call.
4030     // Interfaces store null or Object as _super, but must report null.
4031     // Arrays store an intermediate super as _super, but must report Object.
4032     // Other types can report the actual _super.
4033     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
4034     if (generate_interface_guard(kls, region) != nullptr)
4035       // A guard was added.  If the guard is taken, it was an interface.
4036       phi->add_req(null());
4037     if (generate_array_guard(kls, region) != nullptr)
4038       // A guard was added.  If the guard is taken, it was an array.
4039       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
4040     // If we fall through, it's a plain class.  Get its _super.
4041     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
4042     kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL));
4043     null_ctl = top();
4044     kls = null_check_oop(kls, &null_ctl);
4045     if (null_ctl != top()) {
4046       // If the guard is taken, Object.superClass is null (both klass and mirror).
4047       region->add_req(null_ctl);
4048       phi   ->add_req(null());
4049     }
4050     if (!stopped()) {
4051       query_value = load_mirror_from_klass(kls);
4052     }
4053     break;
4054 
4055   case vmIntrinsics::_getClassAccessFlags:
4056     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
4057     query_value = make_load(nullptr, p, TypeInt::CHAR, T_CHAR, MemNode::unordered);
4058     break;
4059 
4060   default:
4061     fatal_unexpected_iid(id);
4062     break;
4063   }
4064 
4065   // Fall-through is the normal case of a query to a real class.
4066   phi->init_req(1, query_value);
4067   region->init_req(1, control());
4068 
4069   C->set_has_split_ifs(true); // Has chance for split-if optimization
4070   set_result(region, phi);
4071   return true;
4072 }
4073 
4074 //-------------------------inline_Class_cast-------------------
4075 bool LibraryCallKit::inline_Class_cast() {
4076   Node* mirror = argument(0); // Class
4077   Node* obj    = argument(1);
4078   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
4079   if (mirror_con == nullptr) {
4080     return false;  // dead path (mirror->is_top()).
4081   }
4082   if (obj == nullptr || obj->is_top()) {
4083     return false;  // dead path
4084   }
4085   const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr();
4086 
4087   // First, see if Class.cast() can be folded statically.
4088   // java_mirror_type() returns non-null for compile-time Class constants.
4089   ciType* tm = mirror_con->java_mirror_type();
4090   if (tm != nullptr && tm->is_klass() &&
4091       tp != nullptr) {
4092     if (!tp->is_loaded()) {
4093       // Don't use intrinsic when class is not loaded.
4094       return false;
4095     } else {
4096       int static_res = C->static_subtype_check(TypeKlassPtr::make(tm->as_klass(), Type::trust_interfaces), tp->as_klass_type());
4097       if (static_res == Compile::SSC_always_true) {
4098         // isInstance() is true - fold the code.
4099         set_result(obj);
4100         return true;
4101       } else if (static_res == Compile::SSC_always_false) {
4102         // Don't use intrinsic, have to throw ClassCastException.
4103         // If the reference is null, the non-intrinsic bytecode will
4104         // be optimized appropriately.
4105         return false;
4106       }
4107     }
4108   }
4109 
4110   // Bailout intrinsic and do normal inlining if exception path is frequent.
4111   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
4112     return false;
4113   }
4114 
4115   // Generate dynamic checks.
4116   // Class.cast() is java implementation of _checkcast bytecode.
4117   // Do checkcast (Parse::do_checkcast()) optimizations here.
4118 
4119   mirror = null_check(mirror);
4120   // If mirror is dead, only null-path is taken.
4121   if (stopped()) {
4122     return true;
4123   }
4124 
4125   // Not-subtype or the mirror's klass ptr is null (in case it is a primitive).
4126   enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT };
4127   RegionNode* region = new RegionNode(PATH_LIMIT);
4128   record_for_igvn(region);
4129 
4130   // Now load the mirror's klass metaobject, and null-check it.
4131   // If kls is null, we have a primitive mirror and
4132   // nothing is an instance of a primitive type.
4133   Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path);
4134 
4135   Node* res = top();
4136   if (!stopped()) {
4137     Node* bad_type_ctrl = top();
4138     // Do checkcast optimizations.
4139     res = gen_checkcast(obj, kls, &bad_type_ctrl);
4140     region->init_req(_bad_type_path, bad_type_ctrl);
4141   }
4142   if (region->in(_prim_path) != top() ||
4143       region->in(_bad_type_path) != top()) {
4144     // Let Interpreter throw ClassCastException.
4145     PreserveJVMState pjvms(this);
4146     set_control(_gvn.transform(region));
4147     uncommon_trap(Deoptimization::Reason_intrinsic,
4148                   Deoptimization::Action_maybe_recompile);
4149   }
4150   if (!stopped()) {
4151     set_result(res);
4152   }
4153   return true;
4154 }
4155 
4156 
4157 //--------------------------inline_native_subtype_check------------------------
4158 // This intrinsic takes the JNI calls out of the heart of
4159 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
4160 bool LibraryCallKit::inline_native_subtype_check() {
4161   // Pull both arguments off the stack.
4162   Node* args[2];                // two java.lang.Class mirrors: superc, subc
4163   args[0] = argument(0);
4164   args[1] = argument(1);
4165   Node* klasses[2];             // corresponding Klasses: superk, subk
4166   klasses[0] = klasses[1] = top();
4167 
4168   enum {
4169     // A full decision tree on {superc is prim, subc is prim}:
4170     _prim_0_path = 1,           // {P,N} => false
4171                                 // {P,P} & superc!=subc => false
4172     _prim_same_path,            // {P,P} & superc==subc => true
4173     _prim_1_path,               // {N,P} => false
4174     _ref_subtype_path,          // {N,N} & subtype check wins => true
4175     _both_ref_path,             // {N,N} & subtype check loses => false
4176     PATH_LIMIT
4177   };
4178 
4179   RegionNode* region = new RegionNode(PATH_LIMIT);
4180   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
4181   record_for_igvn(region);
4182 
4183   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
4184   const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL;
4185   int class_klass_offset = java_lang_Class::klass_offset();
4186 
4187   // First null-check both mirrors and load each mirror's klass metaobject.
4188   int which_arg;
4189   for (which_arg = 0; which_arg <= 1; which_arg++) {
4190     Node* arg = args[which_arg];
4191     arg = null_check(arg);
4192     if (stopped())  break;
4193     args[which_arg] = arg;
4194 
4195     Node* p = basic_plus_adr(arg, class_klass_offset);
4196     Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
4197     klasses[which_arg] = _gvn.transform(kls);
4198   }
4199 
4200   // Having loaded both klasses, test each for null.
4201   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
4202   for (which_arg = 0; which_arg <= 1; which_arg++) {
4203     Node* kls = klasses[which_arg];
4204     Node* null_ctl = top();
4205     kls = null_check_oop(kls, &null_ctl, never_see_null);
4206     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
4207     region->init_req(prim_path, null_ctl);
4208     if (stopped())  break;
4209     klasses[which_arg] = kls;
4210   }
4211 
4212   if (!stopped()) {
4213     // now we have two reference types, in klasses[0..1]
4214     Node* subk   = klasses[1];  // the argument to isAssignableFrom
4215     Node* superk = klasses[0];  // the receiver
4216     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
4217     // now we have a successful reference subtype check
4218     region->set_req(_ref_subtype_path, control());
4219   }
4220 
4221   // If both operands are primitive (both klasses null), then
4222   // we must return true when they are identical primitives.
4223   // It is convenient to test this after the first null klass check.
4224   set_control(region->in(_prim_0_path)); // go back to first null check
4225   if (!stopped()) {
4226     // Since superc is primitive, make a guard for the superc==subc case.
4227     Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1]));
4228     Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq));
4229     generate_guard(bol_eq, region, PROB_FAIR);
4230     if (region->req() == PATH_LIMIT+1) {
4231       // A guard was added.  If the added guard is taken, superc==subc.
4232       region->swap_edges(PATH_LIMIT, _prim_same_path);
4233       region->del_req(PATH_LIMIT);
4234     }
4235     region->set_req(_prim_0_path, control()); // Not equal after all.
4236   }
4237 
4238   // these are the only paths that produce 'true':
4239   phi->set_req(_prim_same_path,   intcon(1));
4240   phi->set_req(_ref_subtype_path, intcon(1));
4241 
4242   // pull together the cases:
4243   assert(region->req() == PATH_LIMIT, "sane region");
4244   for (uint i = 1; i < region->req(); i++) {
4245     Node* ctl = region->in(i);
4246     if (ctl == nullptr || ctl == top()) {
4247       region->set_req(i, top());
4248       phi   ->set_req(i, top());
4249     } else if (phi->in(i) == nullptr) {
4250       phi->set_req(i, intcon(0)); // all other paths produce 'false'
4251     }
4252   }
4253 
4254   set_control(_gvn.transform(region));
4255   set_result(_gvn.transform(phi));
4256   return true;
4257 }
4258 
4259 //---------------------generate_array_guard_common------------------------
4260 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
4261                                                   bool obj_array, bool not_array, Node** obj) {
4262 
4263   if (stopped()) {
4264     return nullptr;
4265   }
4266 
4267   // If obj_array/non_array==false/false:
4268   // Branch around if the given klass is in fact an array (either obj or prim).
4269   // If obj_array/non_array==false/true:
4270   // Branch around if the given klass is not an array klass of any kind.
4271   // If obj_array/non_array==true/true:
4272   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
4273   // If obj_array/non_array==true/false:
4274   // Branch around if the kls is an oop array (Object[] or subtype)
4275   //
4276   // Like generate_guard, adds a new path onto the region.
4277   jint  layout_con = 0;
4278   Node* layout_val = get_layout_helper(kls, layout_con);
4279   if (layout_val == nullptr) {
4280     bool query = (obj_array
4281                   ? Klass::layout_helper_is_objArray(layout_con)
4282                   : Klass::layout_helper_is_array(layout_con));
4283     if (query == not_array) {
4284       return nullptr;                       // never a branch
4285     } else {                             // always a branch
4286       Node* always_branch = control();
4287       if (region != nullptr)
4288         region->add_req(always_branch);
4289       set_control(top());
4290       return always_branch;
4291     }
4292   }
4293   // Now test the correct condition.
4294   jint  nval = (obj_array
4295                 ? (jint)(Klass::_lh_array_tag_type_value
4296                    <<    Klass::_lh_array_tag_shift)
4297                 : Klass::_lh_neutral_value);
4298   Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval)));
4299   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
4300   // invert the test if we are looking for a non-array
4301   if (not_array)  btest = BoolTest(btest).negate();
4302   Node* bol = _gvn.transform(new BoolNode(cmp, btest));
4303   Node* ctrl = generate_fair_guard(bol, region);
4304   Node* is_array_ctrl = not_array ? control() : ctrl;
4305   if (obj != nullptr && is_array_ctrl != nullptr && is_array_ctrl != top()) {
4306     // Keep track of the fact that 'obj' is an array to prevent
4307     // array specific accesses from floating above the guard.
4308     *obj = _gvn.transform(new CastPPNode(is_array_ctrl, *obj, TypeAryPtr::BOTTOM));
4309   }
4310   return ctrl;
4311 }
4312 
4313 
4314 //-----------------------inline_native_newArray--------------------------
4315 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
4316 // private        native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size);
4317 bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) {
4318   Node* mirror;
4319   Node* count_val;
4320   if (uninitialized) {
4321     null_check_receiver();
4322     mirror    = argument(1);
4323     count_val = argument(2);
4324   } else {
4325     mirror    = argument(0);
4326     count_val = argument(1);
4327   }
4328 
4329   mirror = null_check(mirror);
4330   // If mirror or obj is dead, only null-path is taken.
4331   if (stopped())  return true;
4332 
4333   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
4334   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4335   PhiNode*    result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
4336   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
4337   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4338 
4339   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
4340   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
4341                                                   result_reg, _slow_path);
4342   Node* normal_ctl   = control();
4343   Node* no_array_ctl = result_reg->in(_slow_path);
4344 
4345   // Generate code for the slow case.  We make a call to newArray().
4346   set_control(no_array_ctl);
4347   if (!stopped()) {
4348     // Either the input type is void.class, or else the
4349     // array klass has not yet been cached.  Either the
4350     // ensuing call will throw an exception, or else it
4351     // will cache the array klass for next time.
4352     PreserveJVMState pjvms(this);
4353     CallJavaNode* slow_call = nullptr;
4354     if (uninitialized) {
4355       // Generate optimized virtual call (holder class 'Unsafe' is final)
4356       slow_call = generate_method_call(vmIntrinsics::_allocateUninitializedArray, false, false, true);
4357     } else {
4358       slow_call = generate_method_call_static(vmIntrinsics::_newArray, true);
4359     }
4360     Node* slow_result = set_results_for_java_call(slow_call);
4361     // this->control() comes from set_results_for_java_call
4362     result_reg->set_req(_slow_path, control());
4363     result_val->set_req(_slow_path, slow_result);
4364     result_io ->set_req(_slow_path, i_o());
4365     result_mem->set_req(_slow_path, reset_memory());
4366   }
4367 
4368   set_control(normal_ctl);
4369   if (!stopped()) {
4370     // Normal case:  The array type has been cached in the java.lang.Class.
4371     // The following call works fine even if the array type is polymorphic.
4372     // It could be a dynamic mix of int[], boolean[], Object[], etc.
4373     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
4374     result_reg->init_req(_normal_path, control());
4375     result_val->init_req(_normal_path, obj);
4376     result_io ->init_req(_normal_path, i_o());
4377     result_mem->init_req(_normal_path, reset_memory());
4378 
4379     if (uninitialized) {
4380       // Mark the allocation so that zeroing is skipped
4381       AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(obj);
4382       alloc->maybe_set_complete(&_gvn);
4383     }
4384   }
4385 
4386   // Return the combined state.
4387   set_i_o(        _gvn.transform(result_io)  );
4388   set_all_memory( _gvn.transform(result_mem));
4389 
4390   C->set_has_split_ifs(true); // Has chance for split-if optimization
4391   set_result(result_reg, result_val);
4392   return true;
4393 }
4394 
4395 //----------------------inline_native_getLength--------------------------
4396 // public static native int java.lang.reflect.Array.getLength(Object array);
4397 bool LibraryCallKit::inline_native_getLength() {
4398   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
4399 
4400   Node* array = null_check(argument(0));
4401   // If array is dead, only null-path is taken.
4402   if (stopped())  return true;
4403 
4404   // Deoptimize if it is a non-array.
4405   Node* non_array = generate_non_array_guard(load_object_klass(array), nullptr, &array);
4406 
4407   if (non_array != nullptr) {
4408     PreserveJVMState pjvms(this);
4409     set_control(non_array);
4410     uncommon_trap(Deoptimization::Reason_intrinsic,
4411                   Deoptimization::Action_maybe_recompile);
4412   }
4413 
4414   // If control is dead, only non-array-path is taken.
4415   if (stopped())  return true;
4416 
4417   // The works fine even if the array type is polymorphic.
4418   // It could be a dynamic mix of int[], boolean[], Object[], etc.
4419   Node* result = load_array_length(array);
4420 
4421   C->set_has_split_ifs(true);  // Has chance for split-if optimization
4422   set_result(result);
4423   return true;
4424 }
4425 
4426 //------------------------inline_array_copyOf----------------------------
4427 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
4428 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
4429 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
4430   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
4431 
4432   // Get the arguments.
4433   Node* original          = argument(0);
4434   Node* start             = is_copyOfRange? argument(1): intcon(0);
4435   Node* end               = is_copyOfRange? argument(2): argument(1);
4436   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
4437 
4438   Node* newcopy = nullptr;
4439 
4440   // Set the original stack and the reexecute bit for the interpreter to reexecute
4441   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
4442   { PreserveReexecuteState preexecs(this);
4443     jvms()->set_should_reexecute(true);
4444 
4445     array_type_mirror = null_check(array_type_mirror);
4446     original          = null_check(original);
4447 
4448     // Check if a null path was taken unconditionally.
4449     if (stopped())  return true;
4450 
4451     Node* orig_length = load_array_length(original);
4452 
4453     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, nullptr, 0);
4454     klass_node = null_check(klass_node);
4455 
4456     RegionNode* bailout = new RegionNode(1);
4457     record_for_igvn(bailout);
4458 
4459     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
4460     // Bail out if that is so.
4461     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
4462     if (not_objArray != nullptr) {
4463       // Improve the klass node's type from the new optimistic assumption:
4464       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
4465       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
4466       Node* cast = new CastPPNode(control(), klass_node, akls);
4467       klass_node = _gvn.transform(cast);
4468     }
4469 
4470     // Bail out if either start or end is negative.
4471     generate_negative_guard(start, bailout, &start);
4472     generate_negative_guard(end,   bailout, &end);
4473 
4474     Node* length = end;
4475     if (_gvn.type(start) != TypeInt::ZERO) {
4476       length = _gvn.transform(new SubINode(end, start));
4477     }
4478 
4479     // Bail out if length is negative (i.e., if start > end).
4480     // Without this the new_array would throw
4481     // NegativeArraySizeException but IllegalArgumentException is what
4482     // should be thrown
4483     generate_negative_guard(length, bailout, &length);
4484 
4485     // Bail out if start is larger than the original length
4486     Node* orig_tail = _gvn.transform(new SubINode(orig_length, start));
4487     generate_negative_guard(orig_tail, bailout, &orig_tail);
4488 
4489     if (bailout->req() > 1) {
4490       PreserveJVMState pjvms(this);
4491       set_control(_gvn.transform(bailout));
4492       uncommon_trap(Deoptimization::Reason_intrinsic,
4493                     Deoptimization::Action_maybe_recompile);
4494     }
4495 
4496     if (!stopped()) {
4497       // How many elements will we copy from the original?
4498       // The answer is MinI(orig_tail, length).
4499       Node* moved = _gvn.transform(new MinINode(orig_tail, length));
4500 
4501       // Generate a direct call to the right arraycopy function(s).
4502       // We know the copy is disjoint but we might not know if the
4503       // oop stores need checking.
4504       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
4505       // This will fail a store-check if x contains any non-nulls.
4506 
4507       // ArrayCopyNode:Ideal may transform the ArrayCopyNode to
4508       // loads/stores but it is legal only if we're sure the
4509       // Arrays.copyOf would succeed. So we need all input arguments
4510       // to the copyOf to be validated, including that the copy to the
4511       // new array won't trigger an ArrayStoreException. That subtype
4512       // check can be optimized if we know something on the type of
4513       // the input array from type speculation.
4514       if (_gvn.type(klass_node)->singleton()) {
4515         const TypeKlassPtr* subk = _gvn.type(load_object_klass(original))->is_klassptr();
4516         const TypeKlassPtr* superk = _gvn.type(klass_node)->is_klassptr();
4517 
4518         int test = C->static_subtype_check(superk, subk);
4519         if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) {
4520           const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr();
4521           if (t_original->speculative_type() != nullptr) {
4522             original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true);
4523           }
4524         }
4525       }
4526 
4527       bool validated = false;
4528       // Reason_class_check rather than Reason_intrinsic because we
4529       // want to intrinsify even if this traps.
4530       if (!too_many_traps(Deoptimization::Reason_class_check)) {
4531         Node* not_subtype_ctrl = gen_subtype_check(original, klass_node);
4532 
4533         if (not_subtype_ctrl != top()) {
4534           PreserveJVMState pjvms(this);
4535           set_control(not_subtype_ctrl);
4536           uncommon_trap(Deoptimization::Reason_class_check,
4537                         Deoptimization::Action_make_not_entrant);
4538           assert(stopped(), "Should be stopped");
4539         }
4540         validated = true;
4541       }
4542 
4543       if (!stopped()) {
4544         newcopy = new_array(klass_node, length, 0);  // no arguments to push
4545 
4546         ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true, true,
4547                                                 load_object_klass(original), klass_node);
4548         if (!is_copyOfRange) {
4549           ac->set_copyof(validated);
4550         } else {
4551           ac->set_copyofrange(validated);
4552         }
4553         Node* n = _gvn.transform(ac);
4554         if (n == ac) {
4555           ac->connect_outputs(this);
4556         } else {
4557           assert(validated, "shouldn't transform if all arguments not validated");
4558           set_all_memory(n);
4559         }
4560       }
4561     }
4562   } // original reexecute is set back here
4563 
4564   C->set_has_split_ifs(true); // Has chance for split-if optimization
4565   if (!stopped()) {
4566     set_result(newcopy);
4567   }
4568   return true;
4569 }
4570 
4571 
4572 //----------------------generate_virtual_guard---------------------------
4573 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
4574 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
4575                                              RegionNode* slow_region) {
4576   ciMethod* method = callee();
4577   int vtable_index = method->vtable_index();
4578   assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4579          "bad index %d", vtable_index);
4580   // Get the Method* out of the appropriate vtable entry.
4581   int entry_offset  = in_bytes(Klass::vtable_start_offset()) +
4582                      vtable_index*vtableEntry::size_in_bytes() +
4583                      in_bytes(vtableEntry::method_offset());
4584   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
4585   Node* target_call = make_load(nullptr, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered);
4586 
4587   // Compare the target method with the expected method (e.g., Object.hashCode).
4588   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
4589 
4590   Node* native_call = makecon(native_call_addr);
4591   Node* chk_native  = _gvn.transform(new CmpPNode(target_call, native_call));
4592   Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne));
4593 
4594   return generate_slow_guard(test_native, slow_region);
4595 }
4596 
4597 //-----------------------generate_method_call----------------------------
4598 // Use generate_method_call to make a slow-call to the real
4599 // method if the fast path fails.  An alternative would be to
4600 // use a stub like OptoRuntime::slow_arraycopy_Java.
4601 // This only works for expanding the current library call,
4602 // not another intrinsic.  (E.g., don't use this for making an
4603 // arraycopy call inside of the copyOf intrinsic.)
4604 CallJavaNode*
4605 LibraryCallKit::generate_method_call(vmIntrinsicID method_id, bool is_virtual, bool is_static, bool res_not_null) {
4606   // When compiling the intrinsic method itself, do not use this technique.
4607   guarantee(callee() != C->method(), "cannot make slow-call to self");
4608 
4609   ciMethod* method = callee();
4610   // ensure the JVMS we have will be correct for this call
4611   guarantee(method_id == method->intrinsic_id(), "must match");
4612 
4613   const TypeFunc* tf = TypeFunc::make(method);
4614   if (res_not_null) {
4615     assert(tf->return_type() == T_OBJECT, "");
4616     const TypeTuple* range = tf->range();
4617     const Type** fields = TypeTuple::fields(range->cnt());
4618     fields[TypeFunc::Parms] = range->field_at(TypeFunc::Parms)->filter_speculative(TypePtr::NOTNULL);
4619     const TypeTuple* new_range = TypeTuple::make(range->cnt(), fields);
4620     tf = TypeFunc::make(tf->domain(), new_range);
4621   }
4622   CallJavaNode* slow_call;
4623   if (is_static) {
4624     assert(!is_virtual, "");
4625     slow_call = new CallStaticJavaNode(C, tf,
4626                            SharedRuntime::get_resolve_static_call_stub(), method);
4627   } else if (is_virtual) {
4628     assert(!gvn().type(argument(0))->maybe_null(), "should not be null");
4629     int vtable_index = Method::invalid_vtable_index;
4630     if (UseInlineCaches) {
4631       // Suppress the vtable call
4632     } else {
4633       // hashCode and clone are not a miranda methods,
4634       // so the vtable index is fixed.
4635       // No need to use the linkResolver to get it.
4636        vtable_index = method->vtable_index();
4637        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4638               "bad index %d", vtable_index);
4639     }
4640     slow_call = new CallDynamicJavaNode(tf,
4641                           SharedRuntime::get_resolve_virtual_call_stub(),
4642                           method, vtable_index);
4643   } else {  // neither virtual nor static:  opt_virtual
4644     assert(!gvn().type(argument(0))->maybe_null(), "should not be null");
4645     slow_call = new CallStaticJavaNode(C, tf,
4646                                 SharedRuntime::get_resolve_opt_virtual_call_stub(), method);
4647     slow_call->set_optimized_virtual(true);
4648   }
4649   if (CallGenerator::is_inlined_method_handle_intrinsic(this->method(), bci(), callee())) {
4650     // To be able to issue a direct call (optimized virtual or virtual)
4651     // and skip a call to MH.linkTo*/invokeBasic adapter, additional information
4652     // about the method being invoked should be attached to the call site to
4653     // make resolution logic work (see SharedRuntime::resolve_{virtual,opt_virtual}_call_C).
4654     slow_call->set_override_symbolic_info(true);
4655   }
4656   set_arguments_for_java_call(slow_call);
4657   set_edges_for_java_call(slow_call);
4658   return slow_call;
4659 }
4660 
4661 
4662 /**
4663  * Build special case code for calls to hashCode on an object. This call may
4664  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
4665  * slightly different code.
4666  */
4667 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
4668   assert(is_static == callee()->is_static(), "correct intrinsic selection");
4669   assert(!(is_virtual && is_static), "either virtual, special, or static");
4670 
4671   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
4672 
4673   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4674   PhiNode*    result_val = new PhiNode(result_reg, TypeInt::INT);
4675   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
4676   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4677   Node* obj = nullptr;
4678   if (!is_static) {
4679     // Check for hashing null object
4680     obj = null_check_receiver();
4681     if (stopped())  return true;        // unconditionally null
4682     result_reg->init_req(_null_path, top());
4683     result_val->init_req(_null_path, top());
4684   } else {
4685     // Do a null check, and return zero if null.
4686     // System.identityHashCode(null) == 0
4687     obj = argument(0);
4688     Node* null_ctl = top();
4689     obj = null_check_oop(obj, &null_ctl);
4690     result_reg->init_req(_null_path, null_ctl);
4691     result_val->init_req(_null_path, _gvn.intcon(0));
4692   }
4693 
4694   // Unconditionally null?  Then return right away.
4695   if (stopped()) {
4696     set_control( result_reg->in(_null_path));
4697     if (!stopped())
4698       set_result(result_val->in(_null_path));
4699     return true;
4700   }
4701 
4702   // We only go to the fast case code if we pass a number of guards.  The
4703   // paths which do not pass are accumulated in the slow_region.
4704   RegionNode* slow_region = new RegionNode(1);
4705   record_for_igvn(slow_region);
4706 
4707   // If this is a virtual call, we generate a funny guard.  We pull out
4708   // the vtable entry corresponding to hashCode() from the target object.
4709   // If the target method which we are calling happens to be the native
4710   // Object hashCode() method, we pass the guard.  We do not need this
4711   // guard for non-virtual calls -- the caller is known to be the native
4712   // Object hashCode().
4713   if (is_virtual) {
4714     // After null check, get the object's klass.
4715     Node* obj_klass = load_object_klass(obj);
4716     generate_virtual_guard(obj_klass, slow_region);
4717   }
4718 
4719   // Get the header out of the object, use LoadMarkNode when available
4720   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
4721   // The control of the load must be null. Otherwise, the load can move before
4722   // the null check after castPP removal.
4723   Node* no_ctrl = nullptr;
4724   Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
4725 
4726   if (!UseObjectMonitorTable) {
4727     // Test the header to see if it is safe to read w.r.t. locking.
4728     Node *lock_mask      = _gvn.MakeConX(markWord::lock_mask_in_place);
4729     Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask));
4730     if (LockingMode == LM_LIGHTWEIGHT) {
4731       Node *monitor_val   = _gvn.MakeConX(markWord::monitor_value);
4732       Node *chk_monitor   = _gvn.transform(new CmpXNode(lmasked_header, monitor_val));
4733       Node *test_monitor  = _gvn.transform(new BoolNode(chk_monitor, BoolTest::eq));
4734 
4735       generate_slow_guard(test_monitor, slow_region);
4736     } else {
4737       Node *unlocked_val      = _gvn.MakeConX(markWord::unlocked_value);
4738       Node *chk_unlocked      = _gvn.transform(new CmpXNode(lmasked_header, unlocked_val));
4739       Node *test_not_unlocked = _gvn.transform(new BoolNode(chk_unlocked, BoolTest::ne));
4740 
4741       generate_slow_guard(test_not_unlocked, slow_region);
4742     }
4743   }
4744 
4745   // Get the hash value and check to see that it has been properly assigned.
4746   // We depend on hash_mask being at most 32 bits and avoid the use of
4747   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
4748   // vm: see markWord.hpp.
4749   Node *hash_mask      = _gvn.intcon(markWord::hash_mask);
4750   Node *hash_shift     = _gvn.intcon(markWord::hash_shift);
4751   Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift));
4752   // This hack lets the hash bits live anywhere in the mark object now, as long
4753   // as the shift drops the relevant bits into the low 32 bits.  Note that
4754   // Java spec says that HashCode is an int so there's no point in capturing
4755   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
4756   hshifted_header      = ConvX2I(hshifted_header);
4757   Node *hash_val       = _gvn.transform(new AndINode(hshifted_header, hash_mask));
4758 
4759   Node *no_hash_val    = _gvn.intcon(markWord::no_hash);
4760   Node *chk_assigned   = _gvn.transform(new CmpINode( hash_val, no_hash_val));
4761   Node *test_assigned  = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq));
4762 
4763   generate_slow_guard(test_assigned, slow_region);
4764 
4765   Node* init_mem = reset_memory();
4766   // fill in the rest of the null path:
4767   result_io ->init_req(_null_path, i_o());
4768   result_mem->init_req(_null_path, init_mem);
4769 
4770   result_val->init_req(_fast_path, hash_val);
4771   result_reg->init_req(_fast_path, control());
4772   result_io ->init_req(_fast_path, i_o());
4773   result_mem->init_req(_fast_path, init_mem);
4774 
4775   // Generate code for the slow case.  We make a call to hashCode().
4776   set_control(_gvn.transform(slow_region));
4777   if (!stopped()) {
4778     // No need for PreserveJVMState, because we're using up the present state.
4779     set_all_memory(init_mem);
4780     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
4781     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static, false);
4782     Node* slow_result = set_results_for_java_call(slow_call);
4783     // this->control() comes from set_results_for_java_call
4784     result_reg->init_req(_slow_path, control());
4785     result_val->init_req(_slow_path, slow_result);
4786     result_io  ->set_req(_slow_path, i_o());
4787     result_mem ->set_req(_slow_path, reset_memory());
4788   }
4789 
4790   // Return the combined state.
4791   set_i_o(        _gvn.transform(result_io)  );
4792   set_all_memory( _gvn.transform(result_mem));
4793 
4794   set_result(result_reg, result_val);
4795   return true;
4796 }
4797 
4798 //---------------------------inline_native_getClass----------------------------
4799 // public final native Class<?> java.lang.Object.getClass();
4800 //
4801 // Build special case code for calls to getClass on an object.
4802 bool LibraryCallKit::inline_native_getClass() {
4803   Node* obj = null_check_receiver();
4804   if (stopped())  return true;
4805   set_result(load_mirror_from_klass(load_object_klass(obj)));
4806   return true;
4807 }
4808 
4809 //-----------------inline_native_Reflection_getCallerClass---------------------
4810 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
4811 //
4812 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
4813 //
4814 // NOTE: This code must perform the same logic as JVM_GetCallerClass
4815 // in that it must skip particular security frames and checks for
4816 // caller sensitive methods.
4817 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
4818 #ifndef PRODUCT
4819   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4820     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
4821   }
4822 #endif
4823 
4824   if (!jvms()->has_method()) {
4825 #ifndef PRODUCT
4826     if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4827       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
4828     }
4829 #endif
4830     return false;
4831   }
4832 
4833   // Walk back up the JVM state to find the caller at the required
4834   // depth.
4835   JVMState* caller_jvms = jvms();
4836 
4837   // Cf. JVM_GetCallerClass
4838   // NOTE: Start the loop at depth 1 because the current JVM state does
4839   // not include the Reflection.getCallerClass() frame.
4840   for (int n = 1; caller_jvms != nullptr; caller_jvms = caller_jvms->caller(), n++) {
4841     ciMethod* m = caller_jvms->method();
4842     switch (n) {
4843     case 0:
4844       fatal("current JVM state does not include the Reflection.getCallerClass frame");
4845       break;
4846     case 1:
4847       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
4848       if (!m->caller_sensitive()) {
4849 #ifndef PRODUCT
4850         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4851           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
4852         }
4853 #endif
4854         return false;  // bail-out; let JVM_GetCallerClass do the work
4855       }
4856       break;
4857     default:
4858       if (!m->is_ignored_by_security_stack_walk()) {
4859         // We have reached the desired frame; return the holder class.
4860         // Acquire method holder as java.lang.Class and push as constant.
4861         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
4862         ciInstance* caller_mirror = caller_klass->java_mirror();
4863         set_result(makecon(TypeInstPtr::make(caller_mirror)));
4864 
4865 #ifndef PRODUCT
4866         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4867           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
4868           tty->print_cr("  JVM state at this point:");
4869           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4870             ciMethod* m = jvms()->of_depth(i)->method();
4871             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4872           }
4873         }
4874 #endif
4875         return true;
4876       }
4877       break;
4878     }
4879   }
4880 
4881 #ifndef PRODUCT
4882   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4883     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
4884     tty->print_cr("  JVM state at this point:");
4885     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4886       ciMethod* m = jvms()->of_depth(i)->method();
4887       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4888     }
4889   }
4890 #endif
4891 
4892   return false;  // bail-out; let JVM_GetCallerClass do the work
4893 }
4894 
4895 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
4896   Node* arg = argument(0);
4897   Node* result = nullptr;
4898 
4899   switch (id) {
4900   case vmIntrinsics::_floatToRawIntBits:    result = new MoveF2INode(arg);  break;
4901   case vmIntrinsics::_intBitsToFloat:       result = new MoveI2FNode(arg);  break;
4902   case vmIntrinsics::_doubleToRawLongBits:  result = new MoveD2LNode(arg);  break;
4903   case vmIntrinsics::_longBitsToDouble:     result = new MoveL2DNode(arg);  break;
4904   case vmIntrinsics::_floatToFloat16:       result = new ConvF2HFNode(arg); break;
4905   case vmIntrinsics::_float16ToFloat:       result = new ConvHF2FNode(arg); break;
4906 
4907   case vmIntrinsics::_doubleToLongBits: {
4908     // two paths (plus control) merge in a wood
4909     RegionNode *r = new RegionNode(3);
4910     Node *phi = new PhiNode(r, TypeLong::LONG);
4911 
4912     Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg));
4913     // Build the boolean node
4914     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4915 
4916     // Branch either way.
4917     // NaN case is less traveled, which makes all the difference.
4918     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4919     Node *opt_isnan = _gvn.transform(ifisnan);
4920     assert( opt_isnan->is_If(), "Expect an IfNode");
4921     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4922     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4923 
4924     set_control(iftrue);
4925 
4926     static const jlong nan_bits = CONST64(0x7ff8000000000000);
4927     Node *slow_result = longcon(nan_bits); // return NaN
4928     phi->init_req(1, _gvn.transform( slow_result ));
4929     r->init_req(1, iftrue);
4930 
4931     // Else fall through
4932     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4933     set_control(iffalse);
4934 
4935     phi->init_req(2, _gvn.transform(new MoveD2LNode(arg)));
4936     r->init_req(2, iffalse);
4937 
4938     // Post merge
4939     set_control(_gvn.transform(r));
4940     record_for_igvn(r);
4941 
4942     C->set_has_split_ifs(true); // Has chance for split-if optimization
4943     result = phi;
4944     assert(result->bottom_type()->isa_long(), "must be");
4945     break;
4946   }
4947 
4948   case vmIntrinsics::_floatToIntBits: {
4949     // two paths (plus control) merge in a wood
4950     RegionNode *r = new RegionNode(3);
4951     Node *phi = new PhiNode(r, TypeInt::INT);
4952 
4953     Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg));
4954     // Build the boolean node
4955     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4956 
4957     // Branch either way.
4958     // NaN case is less traveled, which makes all the difference.
4959     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4960     Node *opt_isnan = _gvn.transform(ifisnan);
4961     assert( opt_isnan->is_If(), "Expect an IfNode");
4962     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4963     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4964 
4965     set_control(iftrue);
4966 
4967     static const jint nan_bits = 0x7fc00000;
4968     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
4969     phi->init_req(1, _gvn.transform( slow_result ));
4970     r->init_req(1, iftrue);
4971 
4972     // Else fall through
4973     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4974     set_control(iffalse);
4975 
4976     phi->init_req(2, _gvn.transform(new MoveF2INode(arg)));
4977     r->init_req(2, iffalse);
4978 
4979     // Post merge
4980     set_control(_gvn.transform(r));
4981     record_for_igvn(r);
4982 
4983     C->set_has_split_ifs(true); // Has chance for split-if optimization
4984     result = phi;
4985     assert(result->bottom_type()->isa_int(), "must be");
4986     break;
4987   }
4988 
4989   default:
4990     fatal_unexpected_iid(id);
4991     break;
4992   }
4993   set_result(_gvn.transform(result));
4994   return true;
4995 }
4996 
4997 bool LibraryCallKit::inline_fp_range_check(vmIntrinsics::ID id) {
4998   Node* arg = argument(0);
4999   Node* result = nullptr;
5000 
5001   switch (id) {
5002   case vmIntrinsics::_floatIsInfinite:
5003     result = new IsInfiniteFNode(arg);
5004     break;
5005   case vmIntrinsics::_floatIsFinite:
5006     result = new IsFiniteFNode(arg);
5007     break;
5008   case vmIntrinsics::_doubleIsInfinite:
5009     result = new IsInfiniteDNode(arg);
5010     break;
5011   case vmIntrinsics::_doubleIsFinite:
5012     result = new IsFiniteDNode(arg);
5013     break;
5014   default:
5015     fatal_unexpected_iid(id);
5016     break;
5017   }
5018   set_result(_gvn.transform(result));
5019   return true;
5020 }
5021 
5022 //----------------------inline_unsafe_copyMemory-------------------------
5023 // public native void Unsafe.copyMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
5024 
5025 static bool has_wide_mem(PhaseGVN& gvn, Node* addr, Node* base) {
5026   const TypeAryPtr* addr_t = gvn.type(addr)->isa_aryptr();
5027   const Type*       base_t = gvn.type(base);
5028 
5029   bool in_native = (base_t == TypePtr::NULL_PTR);
5030   bool in_heap   = !TypePtr::NULL_PTR->higher_equal(base_t);
5031   bool is_mixed  = !in_heap && !in_native;
5032 
5033   if (is_mixed) {
5034     return true; // mixed accesses can touch both on-heap and off-heap memory
5035   }
5036   if (in_heap) {
5037     bool is_prim_array = (addr_t != nullptr) && (addr_t->elem() != Type::BOTTOM);
5038     if (!is_prim_array) {
5039       // Though Unsafe.copyMemory() ensures at runtime for on-heap accesses that base is a primitive array,
5040       // there's not enough type information available to determine proper memory slice for it.
5041       return true;
5042     }
5043   }
5044   return false;
5045 }
5046 
5047 bool LibraryCallKit::inline_unsafe_copyMemory() {
5048   if (callee()->is_static())  return false;  // caller must have the capability!
5049   null_check_receiver();  // null-check receiver
5050   if (stopped())  return true;
5051 
5052   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
5053 
5054   Node* src_base =         argument(1);  // type: oop
5055   Node* src_off  = ConvL2X(argument(2)); // type: long
5056   Node* dst_base =         argument(4);  // type: oop
5057   Node* dst_off  = ConvL2X(argument(5)); // type: long
5058   Node* size     = ConvL2X(argument(7)); // type: long
5059 
5060   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
5061          "fieldOffset must be byte-scaled");
5062 
5063   Node* src_addr = make_unsafe_address(src_base, src_off);
5064   Node* dst_addr = make_unsafe_address(dst_base, dst_off);
5065 
5066   Node* thread = _gvn.transform(new ThreadLocalNode());
5067   Node* doing_unsafe_access_addr = basic_plus_adr(top(), thread, in_bytes(JavaThread::doing_unsafe_access_offset()));
5068   BasicType doing_unsafe_access_bt = T_BYTE;
5069   assert((sizeof(bool) * CHAR_BIT) == 8, "not implemented");
5070 
5071   // update volatile field
5072   store_to_memory(control(), doing_unsafe_access_addr, intcon(1), doing_unsafe_access_bt, MemNode::unordered);
5073 
5074   int flags = RC_LEAF | RC_NO_FP;
5075 
5076   const TypePtr* dst_type = TypePtr::BOTTOM;
5077 
5078   // Adjust memory effects of the runtime call based on input values.
5079   if (!has_wide_mem(_gvn, src_addr, src_base) &&
5080       !has_wide_mem(_gvn, dst_addr, dst_base)) {
5081     dst_type = _gvn.type(dst_addr)->is_ptr(); // narrow out memory
5082 
5083     const TypePtr* src_type = _gvn.type(src_addr)->is_ptr();
5084     if (C->get_alias_index(src_type) == C->get_alias_index(dst_type)) {
5085       flags |= RC_NARROW_MEM; // narrow in memory
5086     }
5087   }
5088 
5089   // Call it.  Note that the length argument is not scaled.
5090   make_runtime_call(flags,
5091                     OptoRuntime::fast_arraycopy_Type(),
5092                     StubRoutines::unsafe_arraycopy(),
5093                     "unsafe_arraycopy",
5094                     dst_type,
5095                     src_addr, dst_addr, size XTOP);
5096 
5097   store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, MemNode::unordered);
5098 
5099   return true;
5100 }
5101 
5102 // unsafe_setmemory(void *base, ulong offset, size_t length, char fill_value);
5103 // Fill 'length' bytes starting from 'base[offset]' with 'fill_value'
5104 bool LibraryCallKit::inline_unsafe_setMemory() {
5105   if (callee()->is_static())  return false;  // caller must have the capability!
5106   null_check_receiver();  // null-check receiver
5107   if (stopped())  return true;
5108 
5109   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
5110 
5111   Node* dst_base =         argument(1);  // type: oop
5112   Node* dst_off  = ConvL2X(argument(2)); // type: long
5113   Node* size     = ConvL2X(argument(4)); // type: long
5114   Node* byte     =         argument(6);  // type: byte
5115 
5116   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
5117          "fieldOffset must be byte-scaled");
5118 
5119   Node* dst_addr = make_unsafe_address(dst_base, dst_off);
5120 
5121   Node* thread = _gvn.transform(new ThreadLocalNode());
5122   Node* doing_unsafe_access_addr = basic_plus_adr(top(), thread, in_bytes(JavaThread::doing_unsafe_access_offset()));
5123   BasicType doing_unsafe_access_bt = T_BYTE;
5124   assert((sizeof(bool) * CHAR_BIT) == 8, "not implemented");
5125 
5126   // update volatile field
5127   store_to_memory(control(), doing_unsafe_access_addr, intcon(1), doing_unsafe_access_bt, MemNode::unordered);
5128 
5129   int flags = RC_LEAF | RC_NO_FP;
5130 
5131   const TypePtr* dst_type = TypePtr::BOTTOM;
5132 
5133   // Adjust memory effects of the runtime call based on input values.
5134   if (!has_wide_mem(_gvn, dst_addr, dst_base)) {
5135     dst_type = _gvn.type(dst_addr)->is_ptr(); // narrow out memory
5136 
5137     flags |= RC_NARROW_MEM; // narrow in memory
5138   }
5139 
5140   // Call it.  Note that the length argument is not scaled.
5141   make_runtime_call(flags,
5142                     OptoRuntime::unsafe_setmemory_Type(),
5143                     StubRoutines::unsafe_setmemory(),
5144                     "unsafe_setmemory",
5145                     dst_type,
5146                     dst_addr, size XTOP, byte);
5147 
5148   store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, MemNode::unordered);
5149 
5150   return true;
5151 }
5152 
5153 #undef XTOP
5154 
5155 //------------------------clone_coping-----------------------------------
5156 // Helper function for inline_native_clone.
5157 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array) {
5158   assert(obj_size != nullptr, "");
5159   Node* raw_obj = alloc_obj->in(1);
5160   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
5161 
5162   AllocateNode* alloc = nullptr;
5163   if (ReduceBulkZeroing &&
5164       // If we are implementing an array clone without knowing its source type
5165       // (can happen when compiling the array-guarded branch of a reflective
5166       // Object.clone() invocation), initialize the array within the allocation.
5167       // This is needed because some GCs (e.g. ZGC) might fall back in this case
5168       // to a runtime clone call that assumes fully initialized source arrays.
5169       (!is_array || obj->get_ptr_type()->isa_aryptr() != nullptr)) {
5170     // We will be completely responsible for initializing this object -
5171     // mark Initialize node as complete.
5172     alloc = AllocateNode::Ideal_allocation(alloc_obj);
5173     // The object was just allocated - there should be no any stores!
5174     guarantee(alloc != nullptr && alloc->maybe_set_complete(&_gvn), "");
5175     // Mark as complete_with_arraycopy so that on AllocateNode
5176     // expansion, we know this AllocateNode is initialized by an array
5177     // copy and a StoreStore barrier exists after the array copy.
5178     alloc->initialization()->set_complete_with_arraycopy();
5179   }
5180 
5181   Node* size = _gvn.transform(obj_size);
5182   access_clone(obj, alloc_obj, size, is_array);
5183 
5184   // Do not let reads from the cloned object float above the arraycopy.
5185   if (alloc != nullptr) {
5186     // Do not let stores that initialize this object be reordered with
5187     // a subsequent store that would make this object accessible by
5188     // other threads.
5189     // Record what AllocateNode this StoreStore protects so that
5190     // escape analysis can go from the MemBarStoreStoreNode to the
5191     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
5192     // based on the escape status of the AllocateNode.
5193     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
5194   } else {
5195     insert_mem_bar(Op_MemBarCPUOrder);
5196   }
5197 }
5198 
5199 //------------------------inline_native_clone----------------------------
5200 // protected native Object java.lang.Object.clone();
5201 //
5202 // Here are the simple edge cases:
5203 //  null receiver => normal trap
5204 //  virtual and clone was overridden => slow path to out-of-line clone
5205 //  not cloneable or finalizer => slow path to out-of-line Object.clone
5206 //
5207 // The general case has two steps, allocation and copying.
5208 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
5209 //
5210 // Copying also has two cases, oop arrays and everything else.
5211 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
5212 // Everything else uses the tight inline loop supplied by CopyArrayNode.
5213 //
5214 // These steps fold up nicely if and when the cloned object's klass
5215 // can be sharply typed as an object array, a type array, or an instance.
5216 //
5217 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
5218   PhiNode* result_val;
5219 
5220   // Set the reexecute bit for the interpreter to reexecute
5221   // the bytecode that invokes Object.clone if deoptimization happens.
5222   { PreserveReexecuteState preexecs(this);
5223     jvms()->set_should_reexecute(true);
5224 
5225     Node* obj = null_check_receiver();
5226     if (stopped())  return true;
5227 
5228     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
5229 
5230     // If we are going to clone an instance, we need its exact type to
5231     // know the number and types of fields to convert the clone to
5232     // loads/stores. Maybe a speculative type can help us.
5233     if (!obj_type->klass_is_exact() &&
5234         obj_type->speculative_type() != nullptr &&
5235         obj_type->speculative_type()->is_instance_klass()) {
5236       ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass();
5237       if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem &&
5238           !spec_ik->has_injected_fields()) {
5239         if (!obj_type->isa_instptr() ||
5240             obj_type->is_instptr()->instance_klass()->has_subklass()) {
5241           obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false);
5242         }
5243       }
5244     }
5245 
5246     // Conservatively insert a memory barrier on all memory slices.
5247     // Do not let writes into the original float below the clone.
5248     insert_mem_bar(Op_MemBarCPUOrder);
5249 
5250     // paths into result_reg:
5251     enum {
5252       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
5253       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
5254       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
5255       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
5256       PATH_LIMIT
5257     };
5258     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
5259     result_val             = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
5260     PhiNode*    result_i_o = new PhiNode(result_reg, Type::ABIO);
5261     PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
5262     record_for_igvn(result_reg);
5263 
5264     Node* obj_klass = load_object_klass(obj);
5265     Node* array_obj = obj;
5266     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)nullptr, &array_obj);
5267     if (array_ctl != nullptr) {
5268       // It's an array.
5269       PreserveJVMState pjvms(this);
5270       set_control(array_ctl);
5271       Node* obj_length = load_array_length(array_obj);
5272       Node* array_size = nullptr; // Size of the array without object alignment padding.
5273       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &array_size, /*deoptimize_on_exception=*/true);
5274 
5275       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
5276       if (bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, false, BarrierSetC2::Parsing)) {
5277         // If it is an oop array, it requires very special treatment,
5278         // because gc barriers are required when accessing the array.
5279         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)nullptr);
5280         if (is_obja != nullptr) {
5281           PreserveJVMState pjvms2(this);
5282           set_control(is_obja);
5283           // Generate a direct call to the right arraycopy function(s).
5284           // Clones are always tightly coupled.
5285           ArrayCopyNode* ac = ArrayCopyNode::make(this, true, array_obj, intcon(0), alloc_obj, intcon(0), obj_length, true, false);
5286           ac->set_clone_oop_array();
5287           Node* n = _gvn.transform(ac);
5288           assert(n == ac, "cannot disappear");
5289           ac->connect_outputs(this, /*deoptimize_on_exception=*/true);
5290 
5291           result_reg->init_req(_objArray_path, control());
5292           result_val->init_req(_objArray_path, alloc_obj);
5293           result_i_o ->set_req(_objArray_path, i_o());
5294           result_mem ->set_req(_objArray_path, reset_memory());
5295         }
5296       }
5297       // Otherwise, there are no barriers to worry about.
5298       // (We can dispense with card marks if we know the allocation
5299       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
5300       //  causes the non-eden paths to take compensating steps to
5301       //  simulate a fresh allocation, so that no further
5302       //  card marks are required in compiled code to initialize
5303       //  the object.)
5304 
5305       if (!stopped()) {
5306         copy_to_clone(array_obj, alloc_obj, array_size, true);
5307 
5308         // Present the results of the copy.
5309         result_reg->init_req(_array_path, control());
5310         result_val->init_req(_array_path, alloc_obj);
5311         result_i_o ->set_req(_array_path, i_o());
5312         result_mem ->set_req(_array_path, reset_memory());
5313       }
5314     }
5315 
5316     // We only go to the instance fast case code if we pass a number of guards.
5317     // The paths which do not pass are accumulated in the slow_region.
5318     RegionNode* slow_region = new RegionNode(1);
5319     record_for_igvn(slow_region);
5320     if (!stopped()) {
5321       // It's an instance (we did array above).  Make the slow-path tests.
5322       // If this is a virtual call, we generate a funny guard.  We grab
5323       // the vtable entry corresponding to clone() from the target object.
5324       // If the target method which we are calling happens to be the
5325       // Object clone() method, we pass the guard.  We do not need this
5326       // guard for non-virtual calls; the caller is known to be the native
5327       // Object clone().
5328       if (is_virtual) {
5329         generate_virtual_guard(obj_klass, slow_region);
5330       }
5331 
5332       // The object must be easily cloneable and must not have a finalizer.
5333       // Both of these conditions may be checked in a single test.
5334       // We could optimize the test further, but we don't care.
5335       generate_misc_flags_guard(obj_klass,
5336                                 // Test both conditions:
5337                                 KlassFlags::_misc_is_cloneable_fast | KlassFlags::_misc_has_finalizer,
5338                                 // Must be cloneable but not finalizer:
5339                                 KlassFlags::_misc_is_cloneable_fast,
5340                                 slow_region);
5341     }
5342 
5343     if (!stopped()) {
5344       // It's an instance, and it passed the slow-path tests.
5345       PreserveJVMState pjvms(this);
5346       Node* obj_size = nullptr; // Total object size, including object alignment padding.
5347       // Need to deoptimize on exception from allocation since Object.clone intrinsic
5348       // is reexecuted if deoptimization occurs and there could be problems when merging
5349       // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false).
5350       Node* alloc_obj = new_instance(obj_klass, nullptr, &obj_size, /*deoptimize_on_exception=*/true);
5351 
5352       copy_to_clone(obj, alloc_obj, obj_size, false);
5353 
5354       // Present the results of the slow call.
5355       result_reg->init_req(_instance_path, control());
5356       result_val->init_req(_instance_path, alloc_obj);
5357       result_i_o ->set_req(_instance_path, i_o());
5358       result_mem ->set_req(_instance_path, reset_memory());
5359     }
5360 
5361     // Generate code for the slow case.  We make a call to clone().
5362     set_control(_gvn.transform(slow_region));
5363     if (!stopped()) {
5364       PreserveJVMState pjvms(this);
5365       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual, false, true);
5366       // We need to deoptimize on exception (see comment above)
5367       Node* slow_result = set_results_for_java_call(slow_call, false, /* deoptimize */ true);
5368       // this->control() comes from set_results_for_java_call
5369       result_reg->init_req(_slow_path, control());
5370       result_val->init_req(_slow_path, slow_result);
5371       result_i_o ->set_req(_slow_path, i_o());
5372       result_mem ->set_req(_slow_path, reset_memory());
5373     }
5374 
5375     // Return the combined state.
5376     set_control(    _gvn.transform(result_reg));
5377     set_i_o(        _gvn.transform(result_i_o));
5378     set_all_memory( _gvn.transform(result_mem));
5379   } // original reexecute is set back here
5380 
5381   set_result(_gvn.transform(result_val));
5382   return true;
5383 }
5384 
5385 // If we have a tightly coupled allocation, the arraycopy may take care
5386 // of the array initialization. If one of the guards we insert between
5387 // the allocation and the arraycopy causes a deoptimization, an
5388 // uninitialized array will escape the compiled method. To prevent that
5389 // we set the JVM state for uncommon traps between the allocation and
5390 // the arraycopy to the state before the allocation so, in case of
5391 // deoptimization, we'll reexecute the allocation and the
5392 // initialization.
5393 JVMState* LibraryCallKit::arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp) {
5394   if (alloc != nullptr) {
5395     ciMethod* trap_method = alloc->jvms()->method();
5396     int trap_bci = alloc->jvms()->bci();
5397 
5398     if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
5399         !C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_null_check)) {
5400       // Make sure there's no store between the allocation and the
5401       // arraycopy otherwise visible side effects could be rexecuted
5402       // in case of deoptimization and cause incorrect execution.
5403       bool no_interfering_store = true;
5404       Node* mem = alloc->in(TypeFunc::Memory);
5405       if (mem->is_MergeMem()) {
5406         for (MergeMemStream mms(merged_memory(), mem->as_MergeMem()); mms.next_non_empty2(); ) {
5407           Node* n = mms.memory();
5408           if (n != mms.memory2() && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
5409             assert(n->is_Store(), "what else?");
5410             no_interfering_store = false;
5411             break;
5412           }
5413         }
5414       } else {
5415         for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
5416           Node* n = mms.memory();
5417           if (n != mem && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
5418             assert(n->is_Store(), "what else?");
5419             no_interfering_store = false;
5420             break;
5421           }
5422         }
5423       }
5424 
5425       if (no_interfering_store) {
5426         SafePointNode* sfpt = create_safepoint_with_state_before_array_allocation(alloc);
5427 
5428         JVMState* saved_jvms = jvms();
5429         saved_reexecute_sp = _reexecute_sp;
5430 
5431         set_jvms(sfpt->jvms());
5432         _reexecute_sp = jvms()->sp();
5433 
5434         return saved_jvms;
5435       }
5436     }
5437   }
5438   return nullptr;
5439 }
5440 
5441 // Clone the JVMState of the array allocation and create a new safepoint with it. Re-push the array length to the stack
5442 // such that uncommon traps can be emitted to re-execute the array allocation in the interpreter.
5443 SafePointNode* LibraryCallKit::create_safepoint_with_state_before_array_allocation(const AllocateArrayNode* alloc) const {
5444   JVMState* old_jvms = alloc->jvms()->clone_shallow(C);
5445   uint size = alloc->req();
5446   SafePointNode* sfpt = new SafePointNode(size, old_jvms);
5447   old_jvms->set_map(sfpt);
5448   for (uint i = 0; i < size; i++) {
5449     sfpt->init_req(i, alloc->in(i));
5450   }
5451   // re-push array length for deoptimization
5452   sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), alloc->in(AllocateNode::ALength));
5453   old_jvms->set_sp(old_jvms->sp()+1);
5454   old_jvms->set_monoff(old_jvms->monoff()+1);
5455   old_jvms->set_scloff(old_jvms->scloff()+1);
5456   old_jvms->set_endoff(old_jvms->endoff()+1);
5457   old_jvms->set_should_reexecute(true);
5458 
5459   sfpt->set_i_o(map()->i_o());
5460   sfpt->set_memory(map()->memory());
5461   sfpt->set_control(map()->control());
5462   return sfpt;
5463 }
5464 
5465 // In case of a deoptimization, we restart execution at the
5466 // allocation, allocating a new array. We would leave an uninitialized
5467 // array in the heap that GCs wouldn't expect. Move the allocation
5468 // after the traps so we don't allocate the array if we
5469 // deoptimize. This is possible because tightly_coupled_allocation()
5470 // guarantees there's no observer of the allocated array at this point
5471 // and the control flow is simple enough.
5472 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms_before_guards,
5473                                                     int saved_reexecute_sp, uint new_idx) {
5474   if (saved_jvms_before_guards != nullptr && !stopped()) {
5475     replace_unrelated_uncommon_traps_with_alloc_state(alloc, saved_jvms_before_guards);
5476 
5477     assert(alloc != nullptr, "only with a tightly coupled allocation");
5478     // restore JVM state to the state at the arraycopy
5479     saved_jvms_before_guards->map()->set_control(map()->control());
5480     assert(saved_jvms_before_guards->map()->memory() == map()->memory(), "memory state changed?");
5481     assert(saved_jvms_before_guards->map()->i_o() == map()->i_o(), "IO state changed?");
5482     // If we've improved the types of some nodes (null check) while
5483     // emitting the guards, propagate them to the current state
5484     map()->replaced_nodes().apply(saved_jvms_before_guards->map(), new_idx);
5485     set_jvms(saved_jvms_before_guards);
5486     _reexecute_sp = saved_reexecute_sp;
5487 
5488     // Remove the allocation from above the guards
5489     CallProjections callprojs;
5490     alloc->extract_projections(&callprojs, true);
5491     InitializeNode* init = alloc->initialization();
5492     Node* alloc_mem = alloc->in(TypeFunc::Memory);
5493     C->gvn_replace_by(callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O));
5494     C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem);
5495 
5496     // The CastIINode created in GraphKit::new_array (in AllocateArrayNode::make_ideal_length) must stay below
5497     // the allocation (i.e. is only valid if the allocation succeeds):
5498     // 1) replace CastIINode with AllocateArrayNode's length here
5499     // 2) Create CastIINode again once allocation has moved (see below) at the end of this method
5500     //
5501     // Multiple identical CastIINodes might exist here. Each GraphKit::load_array_length() call will generate
5502     // new separate CastIINode (arraycopy guard checks or any array length use between array allocation and ararycopy)
5503     Node* init_control = init->proj_out(TypeFunc::Control);
5504     Node* alloc_length = alloc->Ideal_length();
5505 #ifdef ASSERT
5506     Node* prev_cast = nullptr;
5507 #endif
5508     for (uint i = 0; i < init_control->outcnt(); i++) {
5509       Node* init_out = init_control->raw_out(i);
5510       if (init_out->is_CastII() && init_out->in(TypeFunc::Control) == init_control && init_out->in(1) == alloc_length) {
5511 #ifdef ASSERT
5512         if (prev_cast == nullptr) {
5513           prev_cast = init_out;
5514         } else {
5515           if (prev_cast->cmp(*init_out) == false) {
5516             prev_cast->dump();
5517             init_out->dump();
5518             assert(false, "not equal CastIINode");
5519           }
5520         }
5521 #endif
5522         C->gvn_replace_by(init_out, alloc_length);
5523       }
5524     }
5525     C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0));
5526 
5527     // move the allocation here (after the guards)
5528     _gvn.hash_delete(alloc);
5529     alloc->set_req(TypeFunc::Control, control());
5530     alloc->set_req(TypeFunc::I_O, i_o());
5531     Node *mem = reset_memory();
5532     set_all_memory(mem);
5533     alloc->set_req(TypeFunc::Memory, mem);
5534     set_control(init->proj_out_or_null(TypeFunc::Control));
5535     set_i_o(callprojs.fallthrough_ioproj);
5536 
5537     // Update memory as done in GraphKit::set_output_for_allocation()
5538     const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength));
5539     const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type();
5540     if (ary_type->isa_aryptr() && length_type != nullptr) {
5541       ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
5542     }
5543     const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot);
5544     int            elemidx  = C->get_alias_index(telemref);
5545     set_memory(init->proj_out_or_null(TypeFunc::Memory), Compile::AliasIdxRaw);
5546     set_memory(init->proj_out_or_null(TypeFunc::Memory), elemidx);
5547 
5548     Node* allocx = _gvn.transform(alloc);
5549     assert(allocx == alloc, "where has the allocation gone?");
5550     assert(dest->is_CheckCastPP(), "not an allocation result?");
5551 
5552     _gvn.hash_delete(dest);
5553     dest->set_req(0, control());
5554     Node* destx = _gvn.transform(dest);
5555     assert(destx == dest, "where has the allocation result gone?");
5556 
5557     array_ideal_length(alloc, ary_type, true);
5558   }
5559 }
5560 
5561 // Unrelated UCTs between the array allocation and the array copy, which are considered safe by tightly_coupled_allocation(),
5562 // need to be replaced by an UCT with a state before the array allocation (including the array length). This is necessary
5563 // because we could hit one of these UCTs (which are executed before the emitted array copy guards and the actual array
5564 // allocation which is moved down in arraycopy_move_allocation_here()). When later resuming execution in the interpreter,
5565 // we would have wrongly skipped the array allocation. To prevent this, we resume execution at the array allocation in
5566 // the interpreter similar to what we are doing for the newly emitted guards for the array copy.
5567 void LibraryCallKit::replace_unrelated_uncommon_traps_with_alloc_state(AllocateArrayNode* alloc,
5568                                                                        JVMState* saved_jvms_before_guards) {
5569   if (saved_jvms_before_guards->map()->control()->is_IfProj()) {
5570     // There is at least one unrelated uncommon trap which needs to be replaced.
5571     SafePointNode* sfpt = create_safepoint_with_state_before_array_allocation(alloc);
5572 
5573     JVMState* saved_jvms = jvms();
5574     const int saved_reexecute_sp = _reexecute_sp;
5575     set_jvms(sfpt->jvms());
5576     _reexecute_sp = jvms()->sp();
5577 
5578     replace_unrelated_uncommon_traps_with_alloc_state(saved_jvms_before_guards);
5579 
5580     // Restore state
5581     set_jvms(saved_jvms);
5582     _reexecute_sp = saved_reexecute_sp;
5583   }
5584 }
5585 
5586 // Replace the unrelated uncommon traps with new uncommon trap nodes by reusing the action and reason. The new uncommon
5587 // traps will have the state of the array allocation. Let the old uncommon trap nodes die.
5588 void LibraryCallKit::replace_unrelated_uncommon_traps_with_alloc_state(JVMState* saved_jvms_before_guards) {
5589   Node* if_proj = saved_jvms_before_guards->map()->control(); // Start the search right before the newly emitted guards
5590   while (if_proj->is_IfProj()) {
5591     CallStaticJavaNode* uncommon_trap = get_uncommon_trap_from_success_proj(if_proj);
5592     if (uncommon_trap != nullptr) {
5593       create_new_uncommon_trap(uncommon_trap);
5594     }
5595     assert(if_proj->in(0)->is_If(), "must be If");
5596     if_proj = if_proj->in(0)->in(0);
5597   }
5598   assert(if_proj->is_Proj() && if_proj->in(0)->is_Initialize(),
5599          "must have reached control projection of init node");
5600 }
5601 
5602 void LibraryCallKit::create_new_uncommon_trap(CallStaticJavaNode* uncommon_trap_call) {
5603   const int trap_request = uncommon_trap_call->uncommon_trap_request();
5604   assert(trap_request != 0, "no valid UCT trap request");
5605   PreserveJVMState pjvms(this);
5606   set_control(uncommon_trap_call->in(0));
5607   uncommon_trap(Deoptimization::trap_request_reason(trap_request),
5608                 Deoptimization::trap_request_action(trap_request));
5609   assert(stopped(), "Should be stopped");
5610   _gvn.hash_delete(uncommon_trap_call);
5611   uncommon_trap_call->set_req(0, top()); // not used anymore, kill it
5612 }
5613 
5614 // Common checks for array sorting intrinsics arguments.
5615 // Returns `true` if checks passed.
5616 bool LibraryCallKit::check_array_sort_arguments(Node* elementType, Node* obj, BasicType& bt) {
5617   // check address of the class
5618   if (elementType == nullptr || elementType->is_top()) {
5619     return false;  // dead path
5620   }
5621   const TypeInstPtr* elem_klass = gvn().type(elementType)->isa_instptr();
5622   if (elem_klass == nullptr) {
5623     return false;  // dead path
5624   }
5625   // java_mirror_type() returns non-null for compile-time Class constants only
5626   ciType* elem_type = elem_klass->java_mirror_type();
5627   if (elem_type == nullptr) {
5628     return false;
5629   }
5630   bt = elem_type->basic_type();
5631   // Disable the intrinsic if the CPU does not support SIMD sort
5632   if (!Matcher::supports_simd_sort(bt)) {
5633     return false;
5634   }
5635   // check address of the array
5636   if (obj == nullptr || obj->is_top()) {
5637     return false;  // dead path
5638   }
5639   const TypeAryPtr* obj_t = _gvn.type(obj)->isa_aryptr();
5640   if (obj_t == nullptr || obj_t->elem() == Type::BOTTOM) {
5641     return false; // failed input validation
5642   }
5643   return true;
5644 }
5645 
5646 //------------------------------inline_array_partition-----------------------
5647 bool LibraryCallKit::inline_array_partition() {
5648   address stubAddr = StubRoutines::select_array_partition_function();
5649   if (stubAddr == nullptr) {
5650     return false; // Intrinsic's stub is not implemented on this platform
5651   }
5652   assert(callee()->signature()->size() == 9, "arrayPartition has 8 parameters (one long)");
5653 
5654   // no receiver because it is a static method
5655   Node* elementType     = argument(0);
5656   Node* obj             = argument(1);
5657   Node* offset          = argument(2); // long
5658   Node* fromIndex       = argument(4);
5659   Node* toIndex         = argument(5);
5660   Node* indexPivot1     = argument(6);
5661   Node* indexPivot2     = argument(7);
5662   // PartitionOperation:  argument(8) is ignored
5663 
5664   Node* pivotIndices = nullptr;
5665   BasicType bt = T_ILLEGAL;
5666 
5667   if (!check_array_sort_arguments(elementType, obj, bt)) {
5668     return false;
5669   }
5670   null_check(obj);
5671   // If obj is dead, only null-path is taken.
5672   if (stopped()) {
5673     return true;
5674   }
5675   // Set the original stack and the reexecute bit for the interpreter to reexecute
5676   // the bytecode that invokes DualPivotQuicksort.partition() if deoptimization happens.
5677   { PreserveReexecuteState preexecs(this);
5678     jvms()->set_should_reexecute(true);
5679 
5680     Node* obj_adr = make_unsafe_address(obj, offset);
5681 
5682     // create the pivotIndices array of type int and size = 2
5683     Node* size = intcon(2);
5684     Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_INT)));
5685     pivotIndices = new_array(klass_node, size, 0);  // no arguments to push
5686     AllocateArrayNode* alloc = tightly_coupled_allocation(pivotIndices);
5687     guarantee(alloc != nullptr, "created above");
5688     Node* pivotIndices_adr = basic_plus_adr(pivotIndices, arrayOopDesc::base_offset_in_bytes(T_INT));
5689 
5690     // pass the basic type enum to the stub
5691     Node* elemType = intcon(bt);
5692 
5693     // Call the stub
5694     const char *stubName = "array_partition_stub";
5695     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::array_partition_Type(),
5696                       stubAddr, stubName, TypePtr::BOTTOM,
5697                       obj_adr, elemType, fromIndex, toIndex, pivotIndices_adr,
5698                       indexPivot1, indexPivot2);
5699 
5700   } // original reexecute is set back here
5701 
5702   if (!stopped()) {
5703     set_result(pivotIndices);
5704   }
5705 
5706   return true;
5707 }
5708 
5709 
5710 //------------------------------inline_array_sort-----------------------
5711 bool LibraryCallKit::inline_array_sort() {
5712   address stubAddr = StubRoutines::select_arraysort_function();
5713   if (stubAddr == nullptr) {
5714     return false; // Intrinsic's stub is not implemented on this platform
5715   }
5716   assert(callee()->signature()->size() == 7, "arraySort has 6 parameters (one long)");
5717 
5718   // no receiver because it is a static method
5719   Node* elementType     = argument(0);
5720   Node* obj             = argument(1);
5721   Node* offset          = argument(2); // long
5722   Node* fromIndex       = argument(4);
5723   Node* toIndex         = argument(5);
5724   // SortOperation:       argument(6) is ignored
5725 
5726   BasicType bt = T_ILLEGAL;
5727 
5728   if (!check_array_sort_arguments(elementType, obj, bt)) {
5729     return false;
5730   }
5731   null_check(obj);
5732   // If obj is dead, only null-path is taken.
5733   if (stopped()) {
5734     return true;
5735   }
5736   Node* obj_adr = make_unsafe_address(obj, offset);
5737 
5738   // pass the basic type enum to the stub
5739   Node* elemType = intcon(bt);
5740 
5741   // Call the stub.
5742   const char *stubName = "arraysort_stub";
5743   make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::array_sort_Type(),
5744                     stubAddr, stubName, TypePtr::BOTTOM,
5745                     obj_adr, elemType, fromIndex, toIndex);
5746 
5747   return true;
5748 }
5749 
5750 
5751 //------------------------------inline_arraycopy-----------------------
5752 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
5753 //                                                      Object dest, int destPos,
5754 //                                                      int length);
5755 bool LibraryCallKit::inline_arraycopy() {
5756   // Get the arguments.
5757   Node* src         = argument(0);  // type: oop
5758   Node* src_offset  = argument(1);  // type: int
5759   Node* dest        = argument(2);  // type: oop
5760   Node* dest_offset = argument(3);  // type: int
5761   Node* length      = argument(4);  // type: int
5762 
5763   uint new_idx = C->unique();
5764 
5765   // Check for allocation before we add nodes that would confuse
5766   // tightly_coupled_allocation()
5767   AllocateArrayNode* alloc = tightly_coupled_allocation(dest);
5768 
5769   int saved_reexecute_sp = -1;
5770   JVMState* saved_jvms_before_guards = arraycopy_restore_alloc_state(alloc, saved_reexecute_sp);
5771   // See arraycopy_restore_alloc_state() comment
5772   // if alloc == null we don't have to worry about a tightly coupled allocation so we can emit all needed guards
5773   // if saved_jvms_before_guards is not null (then alloc is not null) then we can handle guards and a tightly coupled allocation
5774   // if saved_jvms_before_guards is null and alloc is not null, we can't emit any guards
5775   bool can_emit_guards = (alloc == nullptr || saved_jvms_before_guards != nullptr);
5776 
5777   // The following tests must be performed
5778   // (1) src and dest are arrays.
5779   // (2) src and dest arrays must have elements of the same BasicType
5780   // (3) src and dest must not be null.
5781   // (4) src_offset must not be negative.
5782   // (5) dest_offset must not be negative.
5783   // (6) length must not be negative.
5784   // (7) src_offset + length must not exceed length of src.
5785   // (8) dest_offset + length must not exceed length of dest.
5786   // (9) each element of an oop array must be assignable
5787 
5788   // (3) src and dest must not be null.
5789   // always do this here because we need the JVM state for uncommon traps
5790   Node* null_ctl = top();
5791   src  = saved_jvms_before_guards != nullptr ? null_check_oop(src, &null_ctl, true, true) : null_check(src, T_ARRAY);
5792   assert(null_ctl->is_top(), "no null control here");
5793   dest = null_check(dest, T_ARRAY);
5794 
5795   if (!can_emit_guards) {
5796     // if saved_jvms_before_guards is null and alloc is not null, we don't emit any
5797     // guards but the arraycopy node could still take advantage of a
5798     // tightly allocated allocation. tightly_coupled_allocation() is
5799     // called again to make sure it takes the null check above into
5800     // account: the null check is mandatory and if it caused an
5801     // uncommon trap to be emitted then the allocation can't be
5802     // considered tightly coupled in this context.
5803     alloc = tightly_coupled_allocation(dest);
5804   }
5805 
5806   bool validated = false;
5807 
5808   const Type* src_type  = _gvn.type(src);
5809   const Type* dest_type = _gvn.type(dest);
5810   const TypeAryPtr* top_src  = src_type->isa_aryptr();
5811   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5812 
5813   // Do we have the type of src?
5814   bool has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM);
5815   // Do we have the type of dest?
5816   bool has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM);
5817   // Is the type for src from speculation?
5818   bool src_spec = false;
5819   // Is the type for dest from speculation?
5820   bool dest_spec = false;
5821 
5822   if ((!has_src || !has_dest) && can_emit_guards) {
5823     // We don't have sufficient type information, let's see if
5824     // speculative types can help. We need to have types for both src
5825     // and dest so that it pays off.
5826 
5827     // Do we already have or could we have type information for src
5828     bool could_have_src = has_src;
5829     // Do we already have or could we have type information for dest
5830     bool could_have_dest = has_dest;
5831 
5832     ciKlass* src_k = nullptr;
5833     if (!has_src) {
5834       src_k = src_type->speculative_type_not_null();
5835       if (src_k != nullptr && src_k->is_array_klass()) {
5836         could_have_src = true;
5837       }
5838     }
5839 
5840     ciKlass* dest_k = nullptr;
5841     if (!has_dest) {
5842       dest_k = dest_type->speculative_type_not_null();
5843       if (dest_k != nullptr && dest_k->is_array_klass()) {
5844         could_have_dest = true;
5845       }
5846     }
5847 
5848     if (could_have_src && could_have_dest) {
5849       // This is going to pay off so emit the required guards
5850       if (!has_src) {
5851         src = maybe_cast_profiled_obj(src, src_k, true);
5852         src_type  = _gvn.type(src);
5853         top_src  = src_type->isa_aryptr();
5854         has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM);
5855         src_spec = true;
5856       }
5857       if (!has_dest) {
5858         dest = maybe_cast_profiled_obj(dest, dest_k, true);
5859         dest_type  = _gvn.type(dest);
5860         top_dest  = dest_type->isa_aryptr();
5861         has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM);
5862         dest_spec = true;
5863       }
5864     }
5865   }
5866 
5867   if (has_src && has_dest && can_emit_guards) {
5868     BasicType src_elem = top_src->isa_aryptr()->elem()->array_element_basic_type();
5869     BasicType dest_elem = top_dest->isa_aryptr()->elem()->array_element_basic_type();
5870     if (is_reference_type(src_elem, true)) src_elem = T_OBJECT;
5871     if (is_reference_type(dest_elem, true)) dest_elem = T_OBJECT;
5872 
5873     if (src_elem == dest_elem && src_elem == T_OBJECT) {
5874       // If both arrays are object arrays then having the exact types
5875       // for both will remove the need for a subtype check at runtime
5876       // before the call and may make it possible to pick a faster copy
5877       // routine (without a subtype check on every element)
5878       // Do we have the exact type of src?
5879       bool could_have_src = src_spec;
5880       // Do we have the exact type of dest?
5881       bool could_have_dest = dest_spec;
5882       ciKlass* src_k = nullptr;
5883       ciKlass* dest_k = nullptr;
5884       if (!src_spec) {
5885         src_k = src_type->speculative_type_not_null();
5886         if (src_k != nullptr && src_k->is_array_klass()) {
5887           could_have_src = true;
5888         }
5889       }
5890       if (!dest_spec) {
5891         dest_k = dest_type->speculative_type_not_null();
5892         if (dest_k != nullptr && dest_k->is_array_klass()) {
5893           could_have_dest = true;
5894         }
5895       }
5896       if (could_have_src && could_have_dest) {
5897         // If we can have both exact types, emit the missing guards
5898         if (could_have_src && !src_spec) {
5899           src = maybe_cast_profiled_obj(src, src_k, true);
5900         }
5901         if (could_have_dest && !dest_spec) {
5902           dest = maybe_cast_profiled_obj(dest, dest_k, true);
5903         }
5904       }
5905     }
5906   }
5907 
5908   ciMethod* trap_method = method();
5909   int trap_bci = bci();
5910   if (saved_jvms_before_guards != nullptr) {
5911     trap_method = alloc->jvms()->method();
5912     trap_bci = alloc->jvms()->bci();
5913   }
5914 
5915   bool negative_length_guard_generated = false;
5916 
5917   if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
5918       can_emit_guards &&
5919       !src->is_top() && !dest->is_top()) {
5920     // validate arguments: enables transformation the ArrayCopyNode
5921     validated = true;
5922 
5923     RegionNode* slow_region = new RegionNode(1);
5924     record_for_igvn(slow_region);
5925 
5926     // (1) src and dest are arrays.
5927     generate_non_array_guard(load_object_klass(src), slow_region, &src);
5928     generate_non_array_guard(load_object_klass(dest), slow_region, &dest);
5929 
5930     // (2) src and dest arrays must have elements of the same BasicType
5931     // done at macro expansion or at Ideal transformation time
5932 
5933     // (4) src_offset must not be negative.
5934     generate_negative_guard(src_offset, slow_region);
5935 
5936     // (5) dest_offset must not be negative.
5937     generate_negative_guard(dest_offset, slow_region);
5938 
5939     // (7) src_offset + length must not exceed length of src.
5940     generate_limit_guard(src_offset, length,
5941                          load_array_length(src),
5942                          slow_region);
5943 
5944     // (8) dest_offset + length must not exceed length of dest.
5945     generate_limit_guard(dest_offset, length,
5946                          load_array_length(dest),
5947                          slow_region);
5948 
5949     // (6) length must not be negative.
5950     // This is also checked in generate_arraycopy() during macro expansion, but
5951     // we also have to check it here for the case where the ArrayCopyNode will
5952     // be eliminated by Escape Analysis.
5953     if (EliminateAllocations) {
5954       generate_negative_guard(length, slow_region);
5955       negative_length_guard_generated = true;
5956     }
5957 
5958     // (9) each element of an oop array must be assignable
5959     Node* dest_klass = load_object_klass(dest);
5960     if (src != dest) {
5961       Node* not_subtype_ctrl = gen_subtype_check(src, dest_klass);
5962 
5963       if (not_subtype_ctrl != top()) {
5964         PreserveJVMState pjvms(this);
5965         set_control(not_subtype_ctrl);
5966         uncommon_trap(Deoptimization::Reason_intrinsic,
5967                       Deoptimization::Action_make_not_entrant);
5968         assert(stopped(), "Should be stopped");
5969       }
5970     }
5971     {
5972       PreserveJVMState pjvms(this);
5973       set_control(_gvn.transform(slow_region));
5974       uncommon_trap(Deoptimization::Reason_intrinsic,
5975                     Deoptimization::Action_make_not_entrant);
5976       assert(stopped(), "Should be stopped");
5977     }
5978 
5979     const TypeKlassPtr* dest_klass_t = _gvn.type(dest_klass)->is_klassptr();
5980     const Type *toop = dest_klass_t->cast_to_exactness(false)->as_instance_type();
5981     src = _gvn.transform(new CheckCastPPNode(control(), src, toop));
5982     arraycopy_move_allocation_here(alloc, dest, saved_jvms_before_guards, saved_reexecute_sp, new_idx);
5983   }
5984 
5985   if (stopped()) {
5986     return true;
5987   }
5988 
5989   ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != nullptr, negative_length_guard_generated,
5990                                           // Create LoadRange and LoadKlass nodes for use during macro expansion here
5991                                           // so the compiler has a chance to eliminate them: during macro expansion,
5992                                           // we have to set their control (CastPP nodes are eliminated).
5993                                           load_object_klass(src), load_object_klass(dest),
5994                                           load_array_length(src), load_array_length(dest));
5995 
5996   ac->set_arraycopy(validated);
5997 
5998   Node* n = _gvn.transform(ac);
5999   if (n == ac) {
6000     ac->connect_outputs(this);
6001   } else {
6002     assert(validated, "shouldn't transform if all arguments not validated");
6003     set_all_memory(n);
6004   }
6005   clear_upper_avx();
6006 
6007 
6008   return true;
6009 }
6010 
6011 
6012 // Helper function which determines if an arraycopy immediately follows
6013 // an allocation, with no intervening tests or other escapes for the object.
6014 AllocateArrayNode*
6015 LibraryCallKit::tightly_coupled_allocation(Node* ptr) {
6016   if (stopped())             return nullptr;  // no fast path
6017   if (!C->do_aliasing())     return nullptr;  // no MergeMems around
6018 
6019   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr);
6020   if (alloc == nullptr)  return nullptr;
6021 
6022   Node* rawmem = memory(Compile::AliasIdxRaw);
6023   // Is the allocation's memory state untouched?
6024   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
6025     // Bail out if there have been raw-memory effects since the allocation.
6026     // (Example:  There might have been a call or safepoint.)
6027     return nullptr;
6028   }
6029   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
6030   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
6031     return nullptr;
6032   }
6033 
6034   // There must be no unexpected observers of this allocation.
6035   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
6036     Node* obs = ptr->fast_out(i);
6037     if (obs != this->map()) {
6038       return nullptr;
6039     }
6040   }
6041 
6042   // This arraycopy must unconditionally follow the allocation of the ptr.
6043   Node* alloc_ctl = ptr->in(0);
6044   Node* ctl = control();
6045   while (ctl != alloc_ctl) {
6046     // There may be guards which feed into the slow_region.
6047     // Any other control flow means that we might not get a chance
6048     // to finish initializing the allocated object.
6049     // Various low-level checks bottom out in uncommon traps. These
6050     // are considered safe since we've already checked above that
6051     // there is no unexpected observer of this allocation.
6052     if (get_uncommon_trap_from_success_proj(ctl) != nullptr) {
6053       assert(ctl->in(0)->is_If(), "must be If");
6054       ctl = ctl->in(0)->in(0);
6055     } else {
6056       return nullptr;
6057     }
6058   }
6059 
6060   // If we get this far, we have an allocation which immediately
6061   // precedes the arraycopy, and we can take over zeroing the new object.
6062   // The arraycopy will finish the initialization, and provide
6063   // a new control state to which we will anchor the destination pointer.
6064 
6065   return alloc;
6066 }
6067 
6068 CallStaticJavaNode* LibraryCallKit::get_uncommon_trap_from_success_proj(Node* node) {
6069   if (node->is_IfProj()) {
6070     Node* other_proj = node->as_IfProj()->other_if_proj();
6071     for (DUIterator_Fast jmax, j = other_proj->fast_outs(jmax); j < jmax; j++) {
6072       Node* obs = other_proj->fast_out(j);
6073       if (obs->in(0) == other_proj && obs->is_CallStaticJava() &&
6074           (obs->as_CallStaticJava()->entry_point() == OptoRuntime::uncommon_trap_blob()->entry_point())) {
6075         return obs->as_CallStaticJava();
6076       }
6077     }
6078   }
6079   return nullptr;
6080 }
6081 
6082 //-------------inline_encodeISOArray-----------------------------------
6083 // encode char[] to byte[] in ISO_8859_1 or ASCII
6084 bool LibraryCallKit::inline_encodeISOArray(bool ascii) {
6085   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
6086   // no receiver since it is static method
6087   Node *src         = argument(0);
6088   Node *src_offset  = argument(1);
6089   Node *dst         = argument(2);
6090   Node *dst_offset  = argument(3);
6091   Node *length      = argument(4);
6092 
6093   src = must_be_not_null(src, true);
6094   dst = must_be_not_null(dst, true);
6095 
6096   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
6097   const TypeAryPtr* dst_type = dst->Value(&_gvn)->isa_aryptr();
6098   if (src_type == nullptr || src_type->elem() == Type::BOTTOM ||
6099       dst_type == nullptr || dst_type->elem() == Type::BOTTOM) {
6100     // failed array check
6101     return false;
6102   }
6103 
6104   // Figure out the size and type of the elements we will be copying.
6105   BasicType src_elem = src_type->elem()->array_element_basic_type();
6106   BasicType dst_elem = dst_type->elem()->array_element_basic_type();
6107   if (!((src_elem == T_CHAR) || (src_elem== T_BYTE)) || dst_elem != T_BYTE) {
6108     return false;
6109   }
6110 
6111   Node* src_start = array_element_address(src, src_offset, T_CHAR);
6112   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
6113   // 'src_start' points to src array + scaled offset
6114   // 'dst_start' points to dst array + scaled offset
6115 
6116   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
6117   Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length, ascii);
6118   enc = _gvn.transform(enc);
6119   Node* res_mem = _gvn.transform(new SCMemProjNode(enc));
6120   set_memory(res_mem, mtype);
6121   set_result(enc);
6122   clear_upper_avx();
6123 
6124   return true;
6125 }
6126 
6127 //-------------inline_multiplyToLen-----------------------------------
6128 bool LibraryCallKit::inline_multiplyToLen() {
6129   assert(UseMultiplyToLenIntrinsic, "not implemented on this platform");
6130 
6131   address stubAddr = StubRoutines::multiplyToLen();
6132   if (stubAddr == nullptr) {
6133     return false; // Intrinsic's stub is not implemented on this platform
6134   }
6135   const char* stubName = "multiplyToLen";
6136 
6137   assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters");
6138 
6139   // no receiver because it is a static method
6140   Node* x    = argument(0);
6141   Node* xlen = argument(1);
6142   Node* y    = argument(2);
6143   Node* ylen = argument(3);
6144   Node* z    = argument(4);
6145 
6146   x = must_be_not_null(x, true);
6147   y = must_be_not_null(y, true);
6148 
6149   const TypeAryPtr* x_type = x->Value(&_gvn)->isa_aryptr();
6150   const TypeAryPtr* y_type = y->Value(&_gvn)->isa_aryptr();
6151   if (x_type == nullptr || x_type->elem() == Type::BOTTOM ||
6152       y_type == nullptr || y_type->elem() == Type::BOTTOM) {
6153     // failed array check
6154     return false;
6155   }
6156 
6157   BasicType x_elem = x_type->elem()->array_element_basic_type();
6158   BasicType y_elem = y_type->elem()->array_element_basic_type();
6159   if (x_elem != T_INT || y_elem != T_INT) {
6160     return false;
6161   }
6162 
6163   Node* x_start = array_element_address(x, intcon(0), x_elem);
6164   Node* y_start = array_element_address(y, intcon(0), y_elem);
6165   // 'x_start' points to x array + scaled xlen
6166   // 'y_start' points to y array + scaled ylen
6167 
6168   Node* z_start = array_element_address(z, intcon(0), T_INT);
6169 
6170   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
6171                                  OptoRuntime::multiplyToLen_Type(),
6172                                  stubAddr, stubName, TypePtr::BOTTOM,
6173                                  x_start, xlen, y_start, ylen, z_start);
6174 
6175   C->set_has_split_ifs(true); // Has chance for split-if optimization
6176   set_result(z);
6177   return true;
6178 }
6179 
6180 //-------------inline_squareToLen------------------------------------
6181 bool LibraryCallKit::inline_squareToLen() {
6182   assert(UseSquareToLenIntrinsic, "not implemented on this platform");
6183 
6184   address stubAddr = StubRoutines::squareToLen();
6185   if (stubAddr == nullptr) {
6186     return false; // Intrinsic's stub is not implemented on this platform
6187   }
6188   const char* stubName = "squareToLen";
6189 
6190   assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters");
6191 
6192   Node* x    = argument(0);
6193   Node* len  = argument(1);
6194   Node* z    = argument(2);
6195   Node* zlen = argument(3);
6196 
6197   x = must_be_not_null(x, true);
6198   z = must_be_not_null(z, true);
6199 
6200   const TypeAryPtr* x_type = x->Value(&_gvn)->isa_aryptr();
6201   const TypeAryPtr* z_type = z->Value(&_gvn)->isa_aryptr();
6202   if (x_type == nullptr || x_type->elem() == Type::BOTTOM ||
6203       z_type == nullptr || z_type->elem() == Type::BOTTOM) {
6204     // failed array check
6205     return false;
6206   }
6207 
6208   BasicType x_elem = x_type->elem()->array_element_basic_type();
6209   BasicType z_elem = z_type->elem()->array_element_basic_type();
6210   if (x_elem != T_INT || z_elem != T_INT) {
6211     return false;
6212   }
6213 
6214 
6215   Node* x_start = array_element_address(x, intcon(0), x_elem);
6216   Node* z_start = array_element_address(z, intcon(0), z_elem);
6217 
6218   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
6219                                   OptoRuntime::squareToLen_Type(),
6220                                   stubAddr, stubName, TypePtr::BOTTOM,
6221                                   x_start, len, z_start, zlen);
6222 
6223   set_result(z);
6224   return true;
6225 }
6226 
6227 //-------------inline_mulAdd------------------------------------------
6228 bool LibraryCallKit::inline_mulAdd() {
6229   assert(UseMulAddIntrinsic, "not implemented on this platform");
6230 
6231   address stubAddr = StubRoutines::mulAdd();
6232   if (stubAddr == nullptr) {
6233     return false; // Intrinsic's stub is not implemented on this platform
6234   }
6235   const char* stubName = "mulAdd";
6236 
6237   assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters");
6238 
6239   Node* out      = argument(0);
6240   Node* in       = argument(1);
6241   Node* offset   = argument(2);
6242   Node* len      = argument(3);
6243   Node* k        = argument(4);
6244 
6245   in = must_be_not_null(in, true);
6246   out = must_be_not_null(out, true);
6247 
6248   const TypeAryPtr* out_type = out->Value(&_gvn)->isa_aryptr();
6249   const TypeAryPtr* in_type = in->Value(&_gvn)->isa_aryptr();
6250   if (out_type == nullptr || out_type->elem() == Type::BOTTOM ||
6251        in_type == nullptr ||  in_type->elem() == Type::BOTTOM) {
6252     // failed array check
6253     return false;
6254   }
6255 
6256   BasicType out_elem = out_type->elem()->array_element_basic_type();
6257   BasicType in_elem = in_type->elem()->array_element_basic_type();
6258   if (out_elem != T_INT || in_elem != T_INT) {
6259     return false;
6260   }
6261 
6262   Node* outlen = load_array_length(out);
6263   Node* new_offset = _gvn.transform(new SubINode(outlen, offset));
6264   Node* out_start = array_element_address(out, intcon(0), out_elem);
6265   Node* in_start = array_element_address(in, intcon(0), in_elem);
6266 
6267   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
6268                                   OptoRuntime::mulAdd_Type(),
6269                                   stubAddr, stubName, TypePtr::BOTTOM,
6270                                   out_start,in_start, new_offset, len, k);
6271   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6272   set_result(result);
6273   return true;
6274 }
6275 
6276 //-------------inline_montgomeryMultiply-----------------------------------
6277 bool LibraryCallKit::inline_montgomeryMultiply() {
6278   address stubAddr = StubRoutines::montgomeryMultiply();
6279   if (stubAddr == nullptr) {
6280     return false; // Intrinsic's stub is not implemented on this platform
6281   }
6282 
6283   assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform");
6284   const char* stubName = "montgomery_multiply";
6285 
6286   assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters");
6287 
6288   Node* a    = argument(0);
6289   Node* b    = argument(1);
6290   Node* n    = argument(2);
6291   Node* len  = argument(3);
6292   Node* inv  = argument(4);
6293   Node* m    = argument(6);
6294 
6295   const TypeAryPtr* a_type = a->Value(&_gvn)->isa_aryptr();
6296   const TypeAryPtr* b_type = b->Value(&_gvn)->isa_aryptr();
6297   const TypeAryPtr* n_type = n->Value(&_gvn)->isa_aryptr();
6298   const TypeAryPtr* m_type = m->Value(&_gvn)->isa_aryptr();
6299   if (a_type == nullptr || a_type->elem() == Type::BOTTOM ||
6300       b_type == nullptr || b_type->elem() == Type::BOTTOM ||
6301       n_type == nullptr || n_type->elem() == Type::BOTTOM ||
6302       m_type == nullptr || m_type->elem() == Type::BOTTOM) {
6303     // failed array check
6304     return false;
6305   }
6306 
6307   BasicType a_elem = a_type->elem()->array_element_basic_type();
6308   BasicType b_elem = b_type->elem()->array_element_basic_type();
6309   BasicType n_elem = n_type->elem()->array_element_basic_type();
6310   BasicType m_elem = m_type->elem()->array_element_basic_type();
6311   if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
6312     return false;
6313   }
6314 
6315   // Make the call
6316   {
6317     Node* a_start = array_element_address(a, intcon(0), a_elem);
6318     Node* b_start = array_element_address(b, intcon(0), b_elem);
6319     Node* n_start = array_element_address(n, intcon(0), n_elem);
6320     Node* m_start = array_element_address(m, intcon(0), m_elem);
6321 
6322     Node* call = make_runtime_call(RC_LEAF,
6323                                    OptoRuntime::montgomeryMultiply_Type(),
6324                                    stubAddr, stubName, TypePtr::BOTTOM,
6325                                    a_start, b_start, n_start, len, inv, top(),
6326                                    m_start);
6327     set_result(m);
6328   }
6329 
6330   return true;
6331 }
6332 
6333 bool LibraryCallKit::inline_montgomerySquare() {
6334   address stubAddr = StubRoutines::montgomerySquare();
6335   if (stubAddr == nullptr) {
6336     return false; // Intrinsic's stub is not implemented on this platform
6337   }
6338 
6339   assert(UseMontgomerySquareIntrinsic, "not implemented on this platform");
6340   const char* stubName = "montgomery_square";
6341 
6342   assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters");
6343 
6344   Node* a    = argument(0);
6345   Node* n    = argument(1);
6346   Node* len  = argument(2);
6347   Node* inv  = argument(3);
6348   Node* m    = argument(5);
6349 
6350   const TypeAryPtr* a_type = a->Value(&_gvn)->isa_aryptr();
6351   const TypeAryPtr* n_type = n->Value(&_gvn)->isa_aryptr();
6352   const TypeAryPtr* m_type = m->Value(&_gvn)->isa_aryptr();
6353   if (a_type == nullptr || a_type->elem() == Type::BOTTOM ||
6354       n_type == nullptr || n_type->elem() == Type::BOTTOM ||
6355       m_type == nullptr || m_type->elem() == Type::BOTTOM) {
6356     // failed array check
6357     return false;
6358   }
6359 
6360   BasicType a_elem = a_type->elem()->array_element_basic_type();
6361   BasicType n_elem = n_type->elem()->array_element_basic_type();
6362   BasicType m_elem = m_type->elem()->array_element_basic_type();
6363   if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
6364     return false;
6365   }
6366 
6367   // Make the call
6368   {
6369     Node* a_start = array_element_address(a, intcon(0), a_elem);
6370     Node* n_start = array_element_address(n, intcon(0), n_elem);
6371     Node* m_start = array_element_address(m, intcon(0), m_elem);
6372 
6373     Node* call = make_runtime_call(RC_LEAF,
6374                                    OptoRuntime::montgomerySquare_Type(),
6375                                    stubAddr, stubName, TypePtr::BOTTOM,
6376                                    a_start, n_start, len, inv, top(),
6377                                    m_start);
6378     set_result(m);
6379   }
6380 
6381   return true;
6382 }
6383 
6384 bool LibraryCallKit::inline_bigIntegerShift(bool isRightShift) {
6385   address stubAddr = nullptr;
6386   const char* stubName = nullptr;
6387 
6388   stubAddr = isRightShift? StubRoutines::bigIntegerRightShift(): StubRoutines::bigIntegerLeftShift();
6389   if (stubAddr == nullptr) {
6390     return false; // Intrinsic's stub is not implemented on this platform
6391   }
6392 
6393   stubName = isRightShift? "bigIntegerRightShiftWorker" : "bigIntegerLeftShiftWorker";
6394 
6395   assert(callee()->signature()->size() == 5, "expected 5 arguments");
6396 
6397   Node* newArr = argument(0);
6398   Node* oldArr = argument(1);
6399   Node* newIdx = argument(2);
6400   Node* shiftCount = argument(3);
6401   Node* numIter = argument(4);
6402 
6403   const TypeAryPtr* newArr_type = newArr->Value(&_gvn)->isa_aryptr();
6404   const TypeAryPtr* oldArr_type = oldArr->Value(&_gvn)->isa_aryptr();
6405   if (newArr_type == nullptr || newArr_type->elem() == Type::BOTTOM ||
6406       oldArr_type == nullptr || oldArr_type->elem() == Type::BOTTOM) {
6407     return false;
6408   }
6409 
6410   BasicType newArr_elem = newArr_type->elem()->array_element_basic_type();
6411   BasicType oldArr_elem = oldArr_type->elem()->array_element_basic_type();
6412   if (newArr_elem != T_INT || oldArr_elem != T_INT) {
6413     return false;
6414   }
6415 
6416   // Make the call
6417   {
6418     Node* newArr_start = array_element_address(newArr, intcon(0), newArr_elem);
6419     Node* oldArr_start = array_element_address(oldArr, intcon(0), oldArr_elem);
6420 
6421     Node* call = make_runtime_call(RC_LEAF,
6422                                    OptoRuntime::bigIntegerShift_Type(),
6423                                    stubAddr,
6424                                    stubName,
6425                                    TypePtr::BOTTOM,
6426                                    newArr_start,
6427                                    oldArr_start,
6428                                    newIdx,
6429                                    shiftCount,
6430                                    numIter);
6431   }
6432 
6433   return true;
6434 }
6435 
6436 //-------------inline_vectorizedMismatch------------------------------
6437 bool LibraryCallKit::inline_vectorizedMismatch() {
6438   assert(UseVectorizedMismatchIntrinsic, "not implemented on this platform");
6439 
6440   assert(callee()->signature()->size() == 8, "vectorizedMismatch has 6 parameters");
6441   Node* obja    = argument(0); // Object
6442   Node* aoffset = argument(1); // long
6443   Node* objb    = argument(3); // Object
6444   Node* boffset = argument(4); // long
6445   Node* length  = argument(6); // int
6446   Node* scale   = argument(7); // int
6447 
6448   const TypeAryPtr* obja_t = _gvn.type(obja)->isa_aryptr();
6449   const TypeAryPtr* objb_t = _gvn.type(objb)->isa_aryptr();
6450   if (obja_t == nullptr || obja_t->elem() == Type::BOTTOM ||
6451       objb_t == nullptr || objb_t->elem() == Type::BOTTOM ||
6452       scale == top()) {
6453     return false; // failed input validation
6454   }
6455 
6456   Node* obja_adr = make_unsafe_address(obja, aoffset);
6457   Node* objb_adr = make_unsafe_address(objb, boffset);
6458 
6459   // Partial inlining handling for inputs smaller than ArrayOperationPartialInlineSize bytes in size.
6460   //
6461   //    inline_limit = ArrayOperationPartialInlineSize / element_size;
6462   //    if (length <= inline_limit) {
6463   //      inline_path:
6464   //        vmask   = VectorMaskGen length
6465   //        vload1  = LoadVectorMasked obja, vmask
6466   //        vload2  = LoadVectorMasked objb, vmask
6467   //        result1 = VectorCmpMasked vload1, vload2, vmask
6468   //    } else {
6469   //      call_stub_path:
6470   //        result2 = call vectorizedMismatch_stub(obja, objb, length, scale)
6471   //    }
6472   //    exit_block:
6473   //      return Phi(result1, result2);
6474   //
6475   enum { inline_path = 1,  // input is small enough to process it all at once
6476          stub_path   = 2,  // input is too large; call into the VM
6477          PATH_LIMIT  = 3
6478   };
6479 
6480   Node* exit_block = new RegionNode(PATH_LIMIT);
6481   Node* result_phi = new PhiNode(exit_block, TypeInt::INT);
6482   Node* memory_phi = new PhiNode(exit_block, Type::MEMORY, TypePtr::BOTTOM);
6483 
6484   Node* call_stub_path = control();
6485 
6486   BasicType elem_bt = T_ILLEGAL;
6487 
6488   const TypeInt* scale_t = _gvn.type(scale)->is_int();
6489   if (scale_t->is_con()) {
6490     switch (scale_t->get_con()) {
6491       case 0: elem_bt = T_BYTE;  break;
6492       case 1: elem_bt = T_SHORT; break;
6493       case 2: elem_bt = T_INT;   break;
6494       case 3: elem_bt = T_LONG;  break;
6495 
6496       default: elem_bt = T_ILLEGAL; break; // not supported
6497     }
6498   }
6499 
6500   int inline_limit = 0;
6501   bool do_partial_inline = false;
6502 
6503   if (elem_bt != T_ILLEGAL && ArrayOperationPartialInlineSize > 0) {
6504     inline_limit = ArrayOperationPartialInlineSize / type2aelembytes(elem_bt);
6505     do_partial_inline = inline_limit >= 16;
6506   }
6507 
6508   if (do_partial_inline) {
6509     assert(elem_bt != T_ILLEGAL, "sanity");
6510 
6511     if (Matcher::match_rule_supported_vector(Op_VectorMaskGen,    inline_limit, elem_bt) &&
6512         Matcher::match_rule_supported_vector(Op_LoadVectorMasked, inline_limit, elem_bt) &&
6513         Matcher::match_rule_supported_vector(Op_VectorCmpMasked,  inline_limit, elem_bt)) {
6514 
6515       const TypeVect* vt = TypeVect::make(elem_bt, inline_limit);
6516       Node* cmp_length = _gvn.transform(new CmpINode(length, intcon(inline_limit)));
6517       Node* bol_gt     = _gvn.transform(new BoolNode(cmp_length, BoolTest::gt));
6518 
6519       call_stub_path = generate_guard(bol_gt, nullptr, PROB_MIN);
6520 
6521       if (!stopped()) {
6522         Node* casted_length = _gvn.transform(new CastIINode(control(), length, TypeInt::make(0, inline_limit, Type::WidenMin)));
6523 
6524         const TypePtr* obja_adr_t = _gvn.type(obja_adr)->isa_ptr();
6525         const TypePtr* objb_adr_t = _gvn.type(objb_adr)->isa_ptr();
6526         Node* obja_adr_mem = memory(C->get_alias_index(obja_adr_t));
6527         Node* objb_adr_mem = memory(C->get_alias_index(objb_adr_t));
6528 
6529         Node* vmask      = _gvn.transform(VectorMaskGenNode::make(ConvI2X(casted_length), elem_bt));
6530         Node* vload_obja = _gvn.transform(new LoadVectorMaskedNode(control(), obja_adr_mem, obja_adr, obja_adr_t, vt, vmask));
6531         Node* vload_objb = _gvn.transform(new LoadVectorMaskedNode(control(), objb_adr_mem, objb_adr, objb_adr_t, vt, vmask));
6532         Node* result     = _gvn.transform(new VectorCmpMaskedNode(vload_obja, vload_objb, vmask, TypeInt::INT));
6533 
6534         exit_block->init_req(inline_path, control());
6535         memory_phi->init_req(inline_path, map()->memory());
6536         result_phi->init_req(inline_path, result);
6537 
6538         C->set_max_vector_size(MAX2((uint)ArrayOperationPartialInlineSize, C->max_vector_size()));
6539         clear_upper_avx();
6540       }
6541     }
6542   }
6543 
6544   if (call_stub_path != nullptr) {
6545     set_control(call_stub_path);
6546 
6547     Node* call = make_runtime_call(RC_LEAF,
6548                                    OptoRuntime::vectorizedMismatch_Type(),
6549                                    StubRoutines::vectorizedMismatch(), "vectorizedMismatch", TypePtr::BOTTOM,
6550                                    obja_adr, objb_adr, length, scale);
6551 
6552     exit_block->init_req(stub_path, control());
6553     memory_phi->init_req(stub_path, map()->memory());
6554     result_phi->init_req(stub_path, _gvn.transform(new ProjNode(call, TypeFunc::Parms)));
6555   }
6556 
6557   exit_block = _gvn.transform(exit_block);
6558   memory_phi = _gvn.transform(memory_phi);
6559   result_phi = _gvn.transform(result_phi);
6560 
6561   set_control(exit_block);
6562   set_all_memory(memory_phi);
6563   set_result(result_phi);
6564 
6565   return true;
6566 }
6567 
6568 //------------------------------inline_vectorizedHashcode----------------------------
6569 bool LibraryCallKit::inline_vectorizedHashCode() {
6570   assert(UseVectorizedHashCodeIntrinsic, "not implemented on this platform");
6571 
6572   assert(callee()->signature()->size() == 5, "vectorizedHashCode has 5 parameters");
6573   Node* array          = argument(0);
6574   Node* offset         = argument(1);
6575   Node* length         = argument(2);
6576   Node* initialValue   = argument(3);
6577   Node* basic_type     = argument(4);
6578 
6579   if (basic_type == top()) {
6580     return false; // failed input validation
6581   }
6582 
6583   const TypeInt* basic_type_t = _gvn.type(basic_type)->is_int();
6584   if (!basic_type_t->is_con()) {
6585     return false; // Only intrinsify if mode argument is constant
6586   }
6587 
6588   array = must_be_not_null(array, true);
6589 
6590   BasicType bt = (BasicType)basic_type_t->get_con();
6591 
6592   // Resolve address of first element
6593   Node* array_start = array_element_address(array, offset, bt);
6594 
6595   set_result(_gvn.transform(new VectorizedHashCodeNode(control(), memory(TypeAryPtr::get_array_body_type(bt)),
6596     array_start, length, initialValue, basic_type)));
6597   clear_upper_avx();
6598 
6599   return true;
6600 }
6601 
6602 /**
6603  * Calculate CRC32 for byte.
6604  * int java.util.zip.CRC32.update(int crc, int b)
6605  */
6606 bool LibraryCallKit::inline_updateCRC32() {
6607   assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions support");
6608   assert(callee()->signature()->size() == 2, "update has 2 parameters");
6609   // no receiver since it is static method
6610   Node* crc  = argument(0); // type: int
6611   Node* b    = argument(1); // type: int
6612 
6613   /*
6614    *    int c = ~ crc;
6615    *    b = timesXtoThe32[(b ^ c) & 0xFF];
6616    *    b = b ^ (c >>> 8);
6617    *    crc = ~b;
6618    */
6619 
6620   Node* M1 = intcon(-1);
6621   crc = _gvn.transform(new XorINode(crc, M1));
6622   Node* result = _gvn.transform(new XorINode(crc, b));
6623   result = _gvn.transform(new AndINode(result, intcon(0xFF)));
6624 
6625   Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
6626   Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2)));
6627   Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
6628   result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
6629 
6630   crc = _gvn.transform(new URShiftINode(crc, intcon(8)));
6631   result = _gvn.transform(new XorINode(crc, result));
6632   result = _gvn.transform(new XorINode(result, M1));
6633   set_result(result);
6634   return true;
6635 }
6636 
6637 /**
6638  * Calculate CRC32 for byte[] array.
6639  * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
6640  */
6641 bool LibraryCallKit::inline_updateBytesCRC32() {
6642   assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions support");
6643   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
6644   // no receiver since it is static method
6645   Node* crc     = argument(0); // type: int
6646   Node* src     = argument(1); // type: oop
6647   Node* offset  = argument(2); // type: int
6648   Node* length  = argument(3); // type: int
6649 
6650   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
6651   if (src_type == nullptr || src_type->elem() == Type::BOTTOM) {
6652     // failed array check
6653     return false;
6654   }
6655 
6656   // Figure out the size and type of the elements we will be copying.
6657   BasicType src_elem = src_type->elem()->array_element_basic_type();
6658   if (src_elem != T_BYTE) {
6659     return false;
6660   }
6661 
6662   // 'src_start' points to src array + scaled offset
6663   src = must_be_not_null(src, true);
6664   Node* src_start = array_element_address(src, offset, src_elem);
6665 
6666   // We assume that range check is done by caller.
6667   // TODO: generate range check (offset+length < src.length) in debug VM.
6668 
6669   // Call the stub.
6670   address stubAddr = StubRoutines::updateBytesCRC32();
6671   const char *stubName = "updateBytesCRC32";
6672 
6673   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
6674                                  stubAddr, stubName, TypePtr::BOTTOM,
6675                                  crc, src_start, length);
6676   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6677   set_result(result);
6678   return true;
6679 }
6680 
6681 /**
6682  * Calculate CRC32 for ByteBuffer.
6683  * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
6684  */
6685 bool LibraryCallKit::inline_updateByteBufferCRC32() {
6686   assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions support");
6687   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
6688   // no receiver since it is static method
6689   Node* crc     = argument(0); // type: int
6690   Node* src     = argument(1); // type: long
6691   Node* offset  = argument(3); // type: int
6692   Node* length  = argument(4); // type: int
6693 
6694   src = ConvL2X(src);  // adjust Java long to machine word
6695   Node* base = _gvn.transform(new CastX2PNode(src));
6696   offset = ConvI2X(offset);
6697 
6698   // 'src_start' points to src array + scaled offset
6699   Node* src_start = basic_plus_adr(top(), base, offset);
6700 
6701   // Call the stub.
6702   address stubAddr = StubRoutines::updateBytesCRC32();
6703   const char *stubName = "updateBytesCRC32";
6704 
6705   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
6706                                  stubAddr, stubName, TypePtr::BOTTOM,
6707                                  crc, src_start, length);
6708   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6709   set_result(result);
6710   return true;
6711 }
6712 
6713 //------------------------------get_table_from_crc32c_class-----------------------
6714 Node * LibraryCallKit::get_table_from_crc32c_class(ciInstanceKlass *crc32c_class) {
6715   Node* table = load_field_from_object(nullptr, "byteTable", "[I", /*decorators*/ IN_HEAP, /*is_static*/ true, crc32c_class);
6716   assert (table != nullptr, "wrong version of java.util.zip.CRC32C");
6717 
6718   return table;
6719 }
6720 
6721 //------------------------------inline_updateBytesCRC32C-----------------------
6722 //
6723 // Calculate CRC32C for byte[] array.
6724 // int java.util.zip.CRC32C.updateBytes(int crc, byte[] buf, int off, int end)
6725 //
6726 bool LibraryCallKit::inline_updateBytesCRC32C() {
6727   assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
6728   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
6729   assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
6730   // no receiver since it is a static method
6731   Node* crc     = argument(0); // type: int
6732   Node* src     = argument(1); // type: oop
6733   Node* offset  = argument(2); // type: int
6734   Node* end     = argument(3); // type: int
6735 
6736   Node* length = _gvn.transform(new SubINode(end, offset));
6737 
6738   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
6739   if (src_type == nullptr || src_type->elem() == Type::BOTTOM) {
6740     // failed array check
6741     return false;
6742   }
6743 
6744   // Figure out the size and type of the elements we will be copying.
6745   BasicType src_elem = src_type->elem()->array_element_basic_type();
6746   if (src_elem != T_BYTE) {
6747     return false;
6748   }
6749 
6750   // 'src_start' points to src array + scaled offset
6751   src = must_be_not_null(src, true);
6752   Node* src_start = array_element_address(src, offset, src_elem);
6753 
6754   // static final int[] byteTable in class CRC32C
6755   Node* table = get_table_from_crc32c_class(callee()->holder());
6756   table = must_be_not_null(table, true);
6757   Node* table_start = array_element_address(table, intcon(0), T_INT);
6758 
6759   // We assume that range check is done by caller.
6760   // TODO: generate range check (offset+length < src.length) in debug VM.
6761 
6762   // Call the stub.
6763   address stubAddr = StubRoutines::updateBytesCRC32C();
6764   const char *stubName = "updateBytesCRC32C";
6765 
6766   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
6767                                  stubAddr, stubName, TypePtr::BOTTOM,
6768                                  crc, src_start, length, table_start);
6769   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6770   set_result(result);
6771   return true;
6772 }
6773 
6774 //------------------------------inline_updateDirectByteBufferCRC32C-----------------------
6775 //
6776 // Calculate CRC32C for DirectByteBuffer.
6777 // int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end)
6778 //
6779 bool LibraryCallKit::inline_updateDirectByteBufferCRC32C() {
6780   assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
6781   assert(callee()->signature()->size() == 5, "updateDirectByteBuffer has 4 parameters and one is long");
6782   assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
6783   // no receiver since it is a static method
6784   Node* crc     = argument(0); // type: int
6785   Node* src     = argument(1); // type: long
6786   Node* offset  = argument(3); // type: int
6787   Node* end     = argument(4); // type: int
6788 
6789   Node* length = _gvn.transform(new SubINode(end, offset));
6790 
6791   src = ConvL2X(src);  // adjust Java long to machine word
6792   Node* base = _gvn.transform(new CastX2PNode(src));
6793   offset = ConvI2X(offset);
6794 
6795   // 'src_start' points to src array + scaled offset
6796   Node* src_start = basic_plus_adr(top(), base, offset);
6797 
6798   // static final int[] byteTable in class CRC32C
6799   Node* table = get_table_from_crc32c_class(callee()->holder());
6800   table = must_be_not_null(table, true);
6801   Node* table_start = array_element_address(table, intcon(0), T_INT);
6802 
6803   // Call the stub.
6804   address stubAddr = StubRoutines::updateBytesCRC32C();
6805   const char *stubName = "updateBytesCRC32C";
6806 
6807   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
6808                                  stubAddr, stubName, TypePtr::BOTTOM,
6809                                  crc, src_start, length, table_start);
6810   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6811   set_result(result);
6812   return true;
6813 }
6814 
6815 //------------------------------inline_updateBytesAdler32----------------------
6816 //
6817 // Calculate Adler32 checksum for byte[] array.
6818 // int java.util.zip.Adler32.updateBytes(int crc, byte[] buf, int off, int len)
6819 //
6820 bool LibraryCallKit::inline_updateBytesAdler32() {
6821   assert(UseAdler32Intrinsics, "Adler32 Intrinsic support need"); // check if we actually need to check this flag or check a different one
6822   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
6823   assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
6824   // no receiver since it is static method
6825   Node* crc     = argument(0); // type: int
6826   Node* src     = argument(1); // type: oop
6827   Node* offset  = argument(2); // type: int
6828   Node* length  = argument(3); // type: int
6829 
6830   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
6831   if (src_type == nullptr || src_type->elem() == Type::BOTTOM) {
6832     // failed array check
6833     return false;
6834   }
6835 
6836   // Figure out the size and type of the elements we will be copying.
6837   BasicType src_elem = src_type->elem()->array_element_basic_type();
6838   if (src_elem != T_BYTE) {
6839     return false;
6840   }
6841 
6842   // 'src_start' points to src array + scaled offset
6843   Node* src_start = array_element_address(src, offset, src_elem);
6844 
6845   // We assume that range check is done by caller.
6846   // TODO: generate range check (offset+length < src.length) in debug VM.
6847 
6848   // Call the stub.
6849   address stubAddr = StubRoutines::updateBytesAdler32();
6850   const char *stubName = "updateBytesAdler32";
6851 
6852   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
6853                                  stubAddr, stubName, TypePtr::BOTTOM,
6854                                  crc, src_start, length);
6855   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6856   set_result(result);
6857   return true;
6858 }
6859 
6860 //------------------------------inline_updateByteBufferAdler32---------------
6861 //
6862 // Calculate Adler32 checksum for DirectByteBuffer.
6863 // int java.util.zip.Adler32.updateByteBuffer(int crc, long buf, int off, int len)
6864 //
6865 bool LibraryCallKit::inline_updateByteBufferAdler32() {
6866   assert(UseAdler32Intrinsics, "Adler32 Intrinsic support need"); // check if we actually need to check this flag or check a different one
6867   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
6868   assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
6869   // no receiver since it is static method
6870   Node* crc     = argument(0); // type: int
6871   Node* src     = argument(1); // type: long
6872   Node* offset  = argument(3); // type: int
6873   Node* length  = argument(4); // type: int
6874 
6875   src = ConvL2X(src);  // adjust Java long to machine word
6876   Node* base = _gvn.transform(new CastX2PNode(src));
6877   offset = ConvI2X(offset);
6878 
6879   // 'src_start' points to src array + scaled offset
6880   Node* src_start = basic_plus_adr(top(), base, offset);
6881 
6882   // Call the stub.
6883   address stubAddr = StubRoutines::updateBytesAdler32();
6884   const char *stubName = "updateBytesAdler32";
6885 
6886   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
6887                                  stubAddr, stubName, TypePtr::BOTTOM,
6888                                  crc, src_start, length);
6889 
6890   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6891   set_result(result);
6892   return true;
6893 }
6894 
6895 //----------------------------inline_reference_get----------------------------
6896 // public T java.lang.ref.Reference.get();
6897 bool LibraryCallKit::inline_reference_get() {
6898   const int referent_offset = java_lang_ref_Reference::referent_offset();
6899 
6900   // Get the argument:
6901   Node* reference_obj = null_check_receiver();
6902   if (stopped()) return true;
6903 
6904   DecoratorSet decorators = IN_HEAP | ON_WEAK_OOP_REF;
6905   Node* result = load_field_from_object(reference_obj, "referent", "Ljava/lang/Object;",
6906                                         decorators, /*is_static*/ false, nullptr);
6907   if (result == nullptr) return false;
6908 
6909   // Add memory barrier to prevent commoning reads from this field
6910   // across safepoint since GC can change its value.
6911   insert_mem_bar(Op_MemBarCPUOrder);
6912 
6913   set_result(result);
6914   return true;
6915 }
6916 
6917 //----------------------------inline_reference_refersTo0----------------------------
6918 // bool java.lang.ref.Reference.refersTo0();
6919 // bool java.lang.ref.PhantomReference.refersTo0();
6920 bool LibraryCallKit::inline_reference_refersTo0(bool is_phantom) {
6921   // Get arguments:
6922   Node* reference_obj = null_check_receiver();
6923   Node* other_obj = argument(1);
6924   if (stopped()) return true;
6925 
6926   DecoratorSet decorators = IN_HEAP | AS_NO_KEEPALIVE;
6927   decorators |= (is_phantom ? ON_PHANTOM_OOP_REF : ON_WEAK_OOP_REF);
6928   Node* referent = load_field_from_object(reference_obj, "referent", "Ljava/lang/Object;",
6929                                           decorators, /*is_static*/ false, nullptr);
6930   if (referent == nullptr) return false;
6931 
6932   // Add memory barrier to prevent commoning reads from this field
6933   // across safepoint since GC can change its value.
6934   insert_mem_bar(Op_MemBarCPUOrder);
6935 
6936   Node* cmp = _gvn.transform(new CmpPNode(referent, other_obj));
6937   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
6938   IfNode* if_node = create_and_map_if(control(), bol, PROB_FAIR, COUNT_UNKNOWN);
6939 
6940   RegionNode* region = new RegionNode(3);
6941   PhiNode* phi = new PhiNode(region, TypeInt::BOOL);
6942 
6943   Node* if_true = _gvn.transform(new IfTrueNode(if_node));
6944   region->init_req(1, if_true);
6945   phi->init_req(1, intcon(1));
6946 
6947   Node* if_false = _gvn.transform(new IfFalseNode(if_node));
6948   region->init_req(2, if_false);
6949   phi->init_req(2, intcon(0));
6950 
6951   set_control(_gvn.transform(region));
6952   record_for_igvn(region);
6953   set_result(_gvn.transform(phi));
6954   return true;
6955 }
6956 
6957 //----------------------------inline_reference_clear0----------------------------
6958 // void java.lang.ref.Reference.clear0();
6959 // void java.lang.ref.PhantomReference.clear0();
6960 bool LibraryCallKit::inline_reference_clear0(bool is_phantom) {
6961   // This matches the implementation in JVM_ReferenceClear, see the comments there.
6962 
6963   // Get arguments
6964   Node* reference_obj = null_check_receiver();
6965   if (stopped()) return true;
6966 
6967   // Common access parameters
6968   DecoratorSet decorators = IN_HEAP | AS_NO_KEEPALIVE;
6969   decorators |= (is_phantom ? ON_PHANTOM_OOP_REF : ON_WEAK_OOP_REF);
6970   Node* referent_field_addr = basic_plus_adr(reference_obj, java_lang_ref_Reference::referent_offset());
6971   const TypePtr* referent_field_addr_type = _gvn.type(referent_field_addr)->isa_ptr();
6972   const Type* val_type = TypeOopPtr::make_from_klass(env()->Object_klass());
6973 
6974   Node* referent = access_load_at(reference_obj,
6975                                   referent_field_addr,
6976                                   referent_field_addr_type,
6977                                   val_type,
6978                                   T_OBJECT,
6979                                   decorators);
6980 
6981   IdealKit ideal(this);
6982 #define __ ideal.
6983   __ if_then(referent, BoolTest::ne, null());
6984     sync_kit(ideal);
6985     access_store_at(reference_obj,
6986                     referent_field_addr,
6987                     referent_field_addr_type,
6988                     null(),
6989                     val_type,
6990                     T_OBJECT,
6991                     decorators);
6992     __ sync_kit(this);
6993   __ end_if();
6994   final_sync(ideal);
6995 #undef __
6996 
6997   return true;
6998 }
6999 
7000 Node* LibraryCallKit::load_field_from_object(Node* fromObj, const char* fieldName, const char* fieldTypeString,
7001                                              DecoratorSet decorators, bool is_static,
7002                                              ciInstanceKlass* fromKls) {
7003   if (fromKls == nullptr) {
7004     const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
7005     assert(tinst != nullptr, "obj is null");
7006     assert(tinst->is_loaded(), "obj is not loaded");
7007     fromKls = tinst->instance_klass();
7008   } else {
7009     assert(is_static, "only for static field access");
7010   }
7011   ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
7012                                               ciSymbol::make(fieldTypeString),
7013                                               is_static);
7014 
7015   assert(field != nullptr, "undefined field %s %s %s", fieldTypeString, fromKls->name()->as_utf8(), fieldName);
7016   if (field == nullptr) return (Node *) nullptr;
7017 
7018   if (is_static) {
7019     const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
7020     fromObj = makecon(tip);
7021   }
7022 
7023   // Next code  copied from Parse::do_get_xxx():
7024 
7025   // Compute address and memory type.
7026   int offset  = field->offset_in_bytes();
7027   bool is_vol = field->is_volatile();
7028   ciType* field_klass = field->type();
7029   assert(field_klass->is_loaded(), "should be loaded");
7030   const TypePtr* adr_type = C->alias_type(field)->adr_type();
7031   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
7032   assert(C->get_alias_index(adr_type) == C->get_alias_index(_gvn.type(adr)->isa_ptr()),
7033     "slice of address and input slice don't match");
7034   BasicType bt = field->layout_type();
7035 
7036   // Build the resultant type of the load
7037   const Type *type;
7038   if (bt == T_OBJECT) {
7039     type = TypeOopPtr::make_from_klass(field_klass->as_klass());
7040   } else {
7041     type = Type::get_const_basic_type(bt);
7042   }
7043 
7044   if (is_vol) {
7045     decorators |= MO_SEQ_CST;
7046   }
7047 
7048   return access_load_at(fromObj, adr, adr_type, type, bt, decorators);
7049 }
7050 
7051 Node * LibraryCallKit::field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
7052                                                  bool is_exact /* true */, bool is_static /* false */,
7053                                                  ciInstanceKlass * fromKls /* nullptr */) {
7054   if (fromKls == nullptr) {
7055     const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
7056     assert(tinst != nullptr, "obj is null");
7057     assert(tinst->is_loaded(), "obj is not loaded");
7058     assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
7059     fromKls = tinst->instance_klass();
7060   }
7061   else {
7062     assert(is_static, "only for static field access");
7063   }
7064   ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
7065     ciSymbol::make(fieldTypeString),
7066     is_static);
7067 
7068   assert(field != nullptr, "undefined field");
7069   assert(!field->is_volatile(), "not defined for volatile fields");
7070 
7071   if (is_static) {
7072     const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
7073     fromObj = makecon(tip);
7074   }
7075 
7076   // Next code  copied from Parse::do_get_xxx():
7077 
7078   // Compute address and memory type.
7079   int offset = field->offset_in_bytes();
7080   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
7081 
7082   return adr;
7083 }
7084 
7085 //------------------------------inline_aescrypt_Block-----------------------
7086 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
7087   address stubAddr = nullptr;
7088   const char *stubName;
7089   assert(UseAES, "need AES instruction support");
7090 
7091   switch(id) {
7092   case vmIntrinsics::_aescrypt_encryptBlock:
7093     stubAddr = StubRoutines::aescrypt_encryptBlock();
7094     stubName = "aescrypt_encryptBlock";
7095     break;
7096   case vmIntrinsics::_aescrypt_decryptBlock:
7097     stubAddr = StubRoutines::aescrypt_decryptBlock();
7098     stubName = "aescrypt_decryptBlock";
7099     break;
7100   default:
7101     break;
7102   }
7103   if (stubAddr == nullptr) return false;
7104 
7105   Node* aescrypt_object = argument(0);
7106   Node* src             = argument(1);
7107   Node* src_offset      = argument(2);
7108   Node* dest            = argument(3);
7109   Node* dest_offset     = argument(4);
7110 
7111   src = must_be_not_null(src, true);
7112   dest = must_be_not_null(dest, true);
7113 
7114   // (1) src and dest are arrays.
7115   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
7116   const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr();
7117   assert( src_type != nullptr &&  src_type->elem() != Type::BOTTOM &&
7118          dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange");
7119 
7120   // for the quick and dirty code we will skip all the checks.
7121   // we are just trying to get the call to be generated.
7122   Node* src_start  = src;
7123   Node* dest_start = dest;
7124   if (src_offset != nullptr || dest_offset != nullptr) {
7125     assert(src_offset != nullptr && dest_offset != nullptr, "");
7126     src_start  = array_element_address(src,  src_offset,  T_BYTE);
7127     dest_start = array_element_address(dest, dest_offset, T_BYTE);
7128   }
7129 
7130   // now need to get the start of its expanded key array
7131   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
7132   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
7133   if (k_start == nullptr) return false;
7134 
7135   // Call the stub.
7136   make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
7137                     stubAddr, stubName, TypePtr::BOTTOM,
7138                     src_start, dest_start, k_start);
7139 
7140   return true;
7141 }
7142 
7143 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
7144 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
7145   address stubAddr = nullptr;
7146   const char *stubName = nullptr;
7147 
7148   assert(UseAES, "need AES instruction support");
7149 
7150   switch(id) {
7151   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
7152     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
7153     stubName = "cipherBlockChaining_encryptAESCrypt";
7154     break;
7155   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
7156     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
7157     stubName = "cipherBlockChaining_decryptAESCrypt";
7158     break;
7159   default:
7160     break;
7161   }
7162   if (stubAddr == nullptr) return false;
7163 
7164   Node* cipherBlockChaining_object = argument(0);
7165   Node* src                        = argument(1);
7166   Node* src_offset                 = argument(2);
7167   Node* len                        = argument(3);
7168   Node* dest                       = argument(4);
7169   Node* dest_offset                = argument(5);
7170 
7171   src = must_be_not_null(src, false);
7172   dest = must_be_not_null(dest, false);
7173 
7174   // (1) src and dest are arrays.
7175   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
7176   const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr();
7177   assert( src_type != nullptr &&  src_type->elem() != Type::BOTTOM &&
7178          dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange");
7179 
7180   // checks are the responsibility of the caller
7181   Node* src_start  = src;
7182   Node* dest_start = dest;
7183   if (src_offset != nullptr || dest_offset != nullptr) {
7184     assert(src_offset != nullptr && dest_offset != nullptr, "");
7185     src_start  = array_element_address(src,  src_offset,  T_BYTE);
7186     dest_start = array_element_address(dest, dest_offset, T_BYTE);
7187   }
7188 
7189   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
7190   // (because of the predicated logic executed earlier).
7191   // so we cast it here safely.
7192   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
7193 
7194   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
7195   if (embeddedCipherObj == nullptr) return false;
7196 
7197   // cast it to what we know it will be at runtime
7198   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
7199   assert(tinst != nullptr, "CBC obj is null");
7200   assert(tinst->is_loaded(), "CBC obj is not loaded");
7201   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
7202   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
7203 
7204   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
7205   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
7206   const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull);
7207   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
7208   aescrypt_object = _gvn.transform(aescrypt_object);
7209 
7210   // we need to get the start of the aescrypt_object's expanded key array
7211   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
7212   if (k_start == nullptr) return false;
7213 
7214   // similarly, get the start address of the r vector
7215   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B");
7216   if (objRvec == nullptr) return false;
7217   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
7218 
7219   // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
7220   Node* cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
7221                                      OptoRuntime::cipherBlockChaining_aescrypt_Type(),
7222                                      stubAddr, stubName, TypePtr::BOTTOM,
7223                                      src_start, dest_start, k_start, r_start, len);
7224 
7225   // return cipher length (int)
7226   Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms));
7227   set_result(retvalue);
7228   return true;
7229 }
7230 
7231 //------------------------------inline_electronicCodeBook_AESCrypt-----------------------
7232 bool LibraryCallKit::inline_electronicCodeBook_AESCrypt(vmIntrinsics::ID id) {
7233   address stubAddr = nullptr;
7234   const char *stubName = nullptr;
7235 
7236   assert(UseAES, "need AES instruction support");
7237 
7238   switch (id) {
7239   case vmIntrinsics::_electronicCodeBook_encryptAESCrypt:
7240     stubAddr = StubRoutines::electronicCodeBook_encryptAESCrypt();
7241     stubName = "electronicCodeBook_encryptAESCrypt";
7242     break;
7243   case vmIntrinsics::_electronicCodeBook_decryptAESCrypt:
7244     stubAddr = StubRoutines::electronicCodeBook_decryptAESCrypt();
7245     stubName = "electronicCodeBook_decryptAESCrypt";
7246     break;
7247   default:
7248     break;
7249   }
7250 
7251   if (stubAddr == nullptr) return false;
7252 
7253   Node* electronicCodeBook_object = argument(0);
7254   Node* src                       = argument(1);
7255   Node* src_offset                = argument(2);
7256   Node* len                       = argument(3);
7257   Node* dest                      = argument(4);
7258   Node* dest_offset               = argument(5);
7259 
7260   // (1) src and dest are arrays.
7261   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
7262   const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr();
7263   assert( src_type != nullptr &&  src_type->elem() != Type::BOTTOM &&
7264          dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange");
7265 
7266   // checks are the responsibility of the caller
7267   Node* src_start = src;
7268   Node* dest_start = dest;
7269   if (src_offset != nullptr || dest_offset != nullptr) {
7270     assert(src_offset != nullptr && dest_offset != nullptr, "");
7271     src_start = array_element_address(src, src_offset, T_BYTE);
7272     dest_start = array_element_address(dest, dest_offset, T_BYTE);
7273   }
7274 
7275   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
7276   // (because of the predicated logic executed earlier).
7277   // so we cast it here safely.
7278   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
7279 
7280   Node* embeddedCipherObj = load_field_from_object(electronicCodeBook_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
7281   if (embeddedCipherObj == nullptr) return false;
7282 
7283   // cast it to what we know it will be at runtime
7284   const TypeInstPtr* tinst = _gvn.type(electronicCodeBook_object)->isa_instptr();
7285   assert(tinst != nullptr, "ECB obj is null");
7286   assert(tinst->is_loaded(), "ECB obj is not loaded");
7287   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
7288   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
7289 
7290   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
7291   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
7292   const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull);
7293   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
7294   aescrypt_object = _gvn.transform(aescrypt_object);
7295 
7296   // we need to get the start of the aescrypt_object's expanded key array
7297   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
7298   if (k_start == nullptr) return false;
7299 
7300   // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
7301   Node* ecbCrypt = make_runtime_call(RC_LEAF | RC_NO_FP,
7302                                      OptoRuntime::electronicCodeBook_aescrypt_Type(),
7303                                      stubAddr, stubName, TypePtr::BOTTOM,
7304                                      src_start, dest_start, k_start, len);
7305 
7306   // return cipher length (int)
7307   Node* retvalue = _gvn.transform(new ProjNode(ecbCrypt, TypeFunc::Parms));
7308   set_result(retvalue);
7309   return true;
7310 }
7311 
7312 //------------------------------inline_counterMode_AESCrypt-----------------------
7313 bool LibraryCallKit::inline_counterMode_AESCrypt(vmIntrinsics::ID id) {
7314   assert(UseAES, "need AES instruction support");
7315   if (!UseAESCTRIntrinsics) return false;
7316 
7317   address stubAddr = nullptr;
7318   const char *stubName = nullptr;
7319   if (id == vmIntrinsics::_counterMode_AESCrypt) {
7320     stubAddr = StubRoutines::counterMode_AESCrypt();
7321     stubName = "counterMode_AESCrypt";
7322   }
7323   if (stubAddr == nullptr) return false;
7324 
7325   Node* counterMode_object = argument(0);
7326   Node* src = argument(1);
7327   Node* src_offset = argument(2);
7328   Node* len = argument(3);
7329   Node* dest = argument(4);
7330   Node* dest_offset = argument(5);
7331 
7332   // (1) src and dest are arrays.
7333   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
7334   const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr();
7335   assert( src_type != nullptr &&  src_type->elem() != Type::BOTTOM &&
7336          dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange");
7337 
7338   // checks are the responsibility of the caller
7339   Node* src_start = src;
7340   Node* dest_start = dest;
7341   if (src_offset != nullptr || dest_offset != nullptr) {
7342     assert(src_offset != nullptr && dest_offset != nullptr, "");
7343     src_start = array_element_address(src, src_offset, T_BYTE);
7344     dest_start = array_element_address(dest, dest_offset, T_BYTE);
7345   }
7346 
7347   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
7348   // (because of the predicated logic executed earlier).
7349   // so we cast it here safely.
7350   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
7351   Node* embeddedCipherObj = load_field_from_object(counterMode_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
7352   if (embeddedCipherObj == nullptr) return false;
7353   // cast it to what we know it will be at runtime
7354   const TypeInstPtr* tinst = _gvn.type(counterMode_object)->isa_instptr();
7355   assert(tinst != nullptr, "CTR obj is null");
7356   assert(tinst->is_loaded(), "CTR obj is not loaded");
7357   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
7358   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
7359   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
7360   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
7361   const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull);
7362   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
7363   aescrypt_object = _gvn.transform(aescrypt_object);
7364   // we need to get the start of the aescrypt_object's expanded key array
7365   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
7366   if (k_start == nullptr) return false;
7367   // similarly, get the start address of the r vector
7368   Node* obj_counter = load_field_from_object(counterMode_object, "counter", "[B");
7369   if (obj_counter == nullptr) return false;
7370   Node* cnt_start = array_element_address(obj_counter, intcon(0), T_BYTE);
7371 
7372   Node* saved_encCounter = load_field_from_object(counterMode_object, "encryptedCounter", "[B");
7373   if (saved_encCounter == nullptr) return false;
7374   Node* saved_encCounter_start = array_element_address(saved_encCounter, intcon(0), T_BYTE);
7375   Node* used = field_address_from_object(counterMode_object, "used", "I", /*is_exact*/ false);
7376 
7377   // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
7378   Node* ctrCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
7379                                      OptoRuntime::counterMode_aescrypt_Type(),
7380                                      stubAddr, stubName, TypePtr::BOTTOM,
7381                                      src_start, dest_start, k_start, cnt_start, len, saved_encCounter_start, used);
7382 
7383   // return cipher length (int)
7384   Node* retvalue = _gvn.transform(new ProjNode(ctrCrypt, TypeFunc::Parms));
7385   set_result(retvalue);
7386   return true;
7387 }
7388 
7389 //------------------------------get_key_start_from_aescrypt_object-----------------------
7390 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
7391 #if defined(PPC64) || defined(S390) || defined(RISCV64)
7392   // MixColumns for decryption can be reduced by preprocessing MixColumns with round keys.
7393   // Intel's extension is based on this optimization and AESCrypt generates round keys by preprocessing MixColumns.
7394   // However, ppc64 vncipher processes MixColumns and requires the same round keys with encryption.
7395   // The ppc64 and riscv64 stubs of encryption and decryption use the same round keys (sessionK[0]).
7396   Node* objSessionK = load_field_from_object(aescrypt_object, "sessionK", "[[I");
7397   assert (objSessionK != nullptr, "wrong version of com.sun.crypto.provider.AESCrypt");
7398   if (objSessionK == nullptr) {
7399     return (Node *) nullptr;
7400   }
7401   Node* objAESCryptKey = load_array_element(objSessionK, intcon(0), TypeAryPtr::OOPS, /* set_ctrl */ true);
7402 #else
7403   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I");
7404 #endif // PPC64
7405   assert (objAESCryptKey != nullptr, "wrong version of com.sun.crypto.provider.AESCrypt");
7406   if (objAESCryptKey == nullptr) return (Node *) nullptr;
7407 
7408   // now have the array, need to get the start address of the K array
7409   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
7410   return k_start;
7411 }
7412 
7413 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
7414 // Return node representing slow path of predicate check.
7415 // the pseudo code we want to emulate with this predicate is:
7416 // for encryption:
7417 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
7418 // for decryption:
7419 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
7420 //    note cipher==plain is more conservative than the original java code but that's OK
7421 //
7422 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
7423   // The receiver was checked for null already.
7424   Node* objCBC = argument(0);
7425 
7426   Node* src = argument(1);
7427   Node* dest = argument(4);
7428 
7429   // Load embeddedCipher field of CipherBlockChaining object.
7430   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
7431 
7432   // get AESCrypt klass for instanceOf check
7433   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
7434   // will have same classloader as CipherBlockChaining object
7435   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
7436   assert(tinst != nullptr, "CBCobj is null");
7437   assert(tinst->is_loaded(), "CBCobj is not loaded");
7438 
7439   // we want to do an instanceof comparison against the AESCrypt class
7440   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
7441   if (!klass_AESCrypt->is_loaded()) {
7442     // if AESCrypt is not even loaded, we never take the intrinsic fast path
7443     Node* ctrl = control();
7444     set_control(top()); // no regular fast path
7445     return ctrl;
7446   }
7447 
7448   src = must_be_not_null(src, true);
7449   dest = must_be_not_null(dest, true);
7450 
7451   // Resolve oops to stable for CmpP below.
7452   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
7453 
7454   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
7455   Node* cmp_instof  = _gvn.transform(new CmpINode(instof, intcon(1)));
7456   Node* bool_instof  = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
7457 
7458   Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN);
7459 
7460   // for encryption, we are done
7461   if (!decrypting)
7462     return instof_false;  // even if it is null
7463 
7464   // for decryption, we need to add a further check to avoid
7465   // taking the intrinsic path when cipher and plain are the same
7466   // see the original java code for why.
7467   RegionNode* region = new RegionNode(3);
7468   region->init_req(1, instof_false);
7469 
7470   Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest));
7471   Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq));
7472   Node* src_dest_conjoint = generate_guard(bool_src_dest, nullptr, PROB_MIN);
7473   region->init_req(2, src_dest_conjoint);
7474 
7475   record_for_igvn(region);
7476   return _gvn.transform(region);
7477 }
7478 
7479 //----------------------------inline_electronicCodeBook_AESCrypt_predicate----------------------------
7480 // Return node representing slow path of predicate check.
7481 // the pseudo code we want to emulate with this predicate is:
7482 // for encryption:
7483 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
7484 // for decryption:
7485 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
7486 //    note cipher==plain is more conservative than the original java code but that's OK
7487 //
7488 Node* LibraryCallKit::inline_electronicCodeBook_AESCrypt_predicate(bool decrypting) {
7489   // The receiver was checked for null already.
7490   Node* objECB = argument(0);
7491 
7492   // Load embeddedCipher field of ElectronicCodeBook object.
7493   Node* embeddedCipherObj = load_field_from_object(objECB, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
7494 
7495   // get AESCrypt klass for instanceOf check
7496   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
7497   // will have same classloader as ElectronicCodeBook object
7498   const TypeInstPtr* tinst = _gvn.type(objECB)->isa_instptr();
7499   assert(tinst != nullptr, "ECBobj is null");
7500   assert(tinst->is_loaded(), "ECBobj is not loaded");
7501 
7502   // we want to do an instanceof comparison against the AESCrypt class
7503   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
7504   if (!klass_AESCrypt->is_loaded()) {
7505     // if AESCrypt is not even loaded, we never take the intrinsic fast path
7506     Node* ctrl = control();
7507     set_control(top()); // no regular fast path
7508     return ctrl;
7509   }
7510   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
7511 
7512   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
7513   Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
7514   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
7515 
7516   Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN);
7517 
7518   // for encryption, we are done
7519   if (!decrypting)
7520     return instof_false;  // even if it is null
7521 
7522   // for decryption, we need to add a further check to avoid
7523   // taking the intrinsic path when cipher and plain are the same
7524   // see the original java code for why.
7525   RegionNode* region = new RegionNode(3);
7526   region->init_req(1, instof_false);
7527   Node* src = argument(1);
7528   Node* dest = argument(4);
7529   Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest));
7530   Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq));
7531   Node* src_dest_conjoint = generate_guard(bool_src_dest, nullptr, PROB_MIN);
7532   region->init_req(2, src_dest_conjoint);
7533 
7534   record_for_igvn(region);
7535   return _gvn.transform(region);
7536 }
7537 
7538 //----------------------------inline_counterMode_AESCrypt_predicate----------------------------
7539 // Return node representing slow path of predicate check.
7540 // the pseudo code we want to emulate with this predicate is:
7541 // for encryption:
7542 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
7543 // for decryption:
7544 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
7545 //    note cipher==plain is more conservative than the original java code but that's OK
7546 //
7547 
7548 Node* LibraryCallKit::inline_counterMode_AESCrypt_predicate() {
7549   // The receiver was checked for null already.
7550   Node* objCTR = argument(0);
7551 
7552   // Load embeddedCipher field of CipherBlockChaining object.
7553   Node* embeddedCipherObj = load_field_from_object(objCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
7554 
7555   // get AESCrypt klass for instanceOf check
7556   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
7557   // will have same classloader as CipherBlockChaining object
7558   const TypeInstPtr* tinst = _gvn.type(objCTR)->isa_instptr();
7559   assert(tinst != nullptr, "CTRobj is null");
7560   assert(tinst->is_loaded(), "CTRobj is not loaded");
7561 
7562   // we want to do an instanceof comparison against the AESCrypt class
7563   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
7564   if (!klass_AESCrypt->is_loaded()) {
7565     // if AESCrypt is not even loaded, we never take the intrinsic fast path
7566     Node* ctrl = control();
7567     set_control(top()); // no regular fast path
7568     return ctrl;
7569   }
7570 
7571   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
7572   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
7573   Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
7574   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
7575   Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN);
7576 
7577   return instof_false; // even if it is null
7578 }
7579 
7580 //------------------------------inline_ghash_processBlocks
7581 bool LibraryCallKit::inline_ghash_processBlocks() {
7582   address stubAddr;
7583   const char *stubName;
7584   assert(UseGHASHIntrinsics, "need GHASH intrinsics support");
7585 
7586   stubAddr = StubRoutines::ghash_processBlocks();
7587   stubName = "ghash_processBlocks";
7588 
7589   Node* data           = argument(0);
7590   Node* offset         = argument(1);
7591   Node* len            = argument(2);
7592   Node* state          = argument(3);
7593   Node* subkeyH        = argument(4);
7594 
7595   state = must_be_not_null(state, true);
7596   subkeyH = must_be_not_null(subkeyH, true);
7597   data = must_be_not_null(data, true);
7598 
7599   Node* state_start  = array_element_address(state, intcon(0), T_LONG);
7600   assert(state_start, "state is null");
7601   Node* subkeyH_start  = array_element_address(subkeyH, intcon(0), T_LONG);
7602   assert(subkeyH_start, "subkeyH is null");
7603   Node* data_start  = array_element_address(data, offset, T_BYTE);
7604   assert(data_start, "data is null");
7605 
7606   Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP,
7607                                   OptoRuntime::ghash_processBlocks_Type(),
7608                                   stubAddr, stubName, TypePtr::BOTTOM,
7609                                   state_start, subkeyH_start, data_start, len);
7610   return true;
7611 }
7612 
7613 //------------------------------inline_chacha20Block
7614 bool LibraryCallKit::inline_chacha20Block() {
7615   address stubAddr;
7616   const char *stubName;
7617   assert(UseChaCha20Intrinsics, "need ChaCha20 intrinsics support");
7618 
7619   stubAddr = StubRoutines::chacha20Block();
7620   stubName = "chacha20Block";
7621 
7622   Node* state          = argument(0);
7623   Node* result         = argument(1);
7624 
7625   state = must_be_not_null(state, true);
7626   result = must_be_not_null(result, true);
7627 
7628   Node* state_start  = array_element_address(state, intcon(0), T_INT);
7629   assert(state_start, "state is null");
7630   Node* result_start  = array_element_address(result, intcon(0), T_BYTE);
7631   assert(result_start, "result is null");
7632 
7633   Node* cc20Blk = make_runtime_call(RC_LEAF|RC_NO_FP,
7634                                   OptoRuntime::chacha20Block_Type(),
7635                                   stubAddr, stubName, TypePtr::BOTTOM,
7636                                   state_start, result_start);
7637   // return key stream length (int)
7638   Node* retvalue = _gvn.transform(new ProjNode(cc20Blk, TypeFunc::Parms));
7639   set_result(retvalue);
7640   return true;
7641 }
7642 
7643 //------------------------------inline_dilithiumAlmostNtt
7644 bool LibraryCallKit::inline_dilithiumAlmostNtt() {
7645   address stubAddr;
7646   const char *stubName;
7647   assert(UseDilithiumIntrinsics, "need Dilithium intrinsics support");
7648   assert(callee()->signature()->size() == 2, "dilithiumAlmostNtt has 2 parameters");
7649 
7650   stubAddr = StubRoutines::dilithiumAlmostNtt();
7651   stubName = "dilithiumAlmostNtt";
7652   if (!stubAddr) return false;
7653 
7654   Node* coeffs          = argument(0);
7655   Node* ntt_zetas        = argument(1);
7656 
7657   coeffs = must_be_not_null(coeffs, true);
7658   ntt_zetas = must_be_not_null(ntt_zetas, true);
7659 
7660   Node* coeffs_start  = array_element_address(coeffs, intcon(0), T_INT);
7661   assert(coeffs_start, "coeffs is null");
7662   Node* ntt_zetas_start  = array_element_address(ntt_zetas, intcon(0), T_INT);
7663   assert(ntt_zetas_start, "ntt_zetas is null");
7664   Node* dilithiumAlmostNtt = make_runtime_call(RC_LEAF|RC_NO_FP,
7665                                   OptoRuntime::dilithiumAlmostNtt_Type(),
7666                                   stubAddr, stubName, TypePtr::BOTTOM,
7667                                   coeffs_start, ntt_zetas_start);
7668   // return an int
7669   Node* retvalue = _gvn.transform(new ProjNode(dilithiumAlmostNtt, TypeFunc::Parms));
7670   set_result(retvalue);
7671   return true;
7672 }
7673 
7674 //------------------------------inline_dilithiumAlmostInverseNtt
7675 bool LibraryCallKit::inline_dilithiumAlmostInverseNtt() {
7676   address stubAddr;
7677   const char *stubName;
7678   assert(UseDilithiumIntrinsics, "need Dilithium intrinsics support");
7679   assert(callee()->signature()->size() == 2, "dilithiumAlmostInverseNtt has 2 parameters");
7680 
7681   stubAddr = StubRoutines::dilithiumAlmostInverseNtt();
7682   stubName = "dilithiumAlmostInverseNtt";
7683   if (!stubAddr) return false;
7684 
7685   Node* coeffs          = argument(0);
7686   Node* zetas           = argument(1);
7687 
7688   coeffs = must_be_not_null(coeffs, true);
7689   zetas = must_be_not_null(zetas, true);
7690 
7691   Node* coeffs_start  = array_element_address(coeffs, intcon(0), T_INT);
7692   assert(coeffs_start, "coeffs is null");
7693   Node* zetas_start  = array_element_address(zetas, intcon(0), T_INT);
7694   assert(zetas_start, "inverseNtt_zetas is null");
7695   Node* dilithiumAlmostInverseNtt = make_runtime_call(RC_LEAF|RC_NO_FP,
7696                                   OptoRuntime::dilithiumAlmostInverseNtt_Type(),
7697                                   stubAddr, stubName, TypePtr::BOTTOM,
7698                                   coeffs_start, zetas_start);
7699 
7700   // return an int
7701   Node* retvalue = _gvn.transform(new ProjNode(dilithiumAlmostInverseNtt, TypeFunc::Parms));
7702   set_result(retvalue);
7703   return true;
7704 }
7705 
7706 //------------------------------inline_dilithiumNttMult
7707 bool LibraryCallKit::inline_dilithiumNttMult() {
7708   address stubAddr;
7709   const char *stubName;
7710   assert(UseDilithiumIntrinsics, "need Dilithium intrinsics support");
7711   assert(callee()->signature()->size() == 3, "dilithiumNttMult has 3 parameters");
7712 
7713   stubAddr = StubRoutines::dilithiumNttMult();
7714   stubName = "dilithiumNttMult";
7715   if (!stubAddr) return false;
7716 
7717   Node* result          = argument(0);
7718   Node* ntta            = argument(1);
7719   Node* nttb            = argument(2);
7720 
7721   result = must_be_not_null(result, true);
7722   ntta = must_be_not_null(ntta, true);
7723   nttb = must_be_not_null(nttb, true);
7724 
7725   Node* result_start  = array_element_address(result, intcon(0), T_INT);
7726   assert(result_start, "result is null");
7727   Node* ntta_start  = array_element_address(ntta, intcon(0), T_INT);
7728   assert(ntta_start, "ntta is null");
7729   Node* nttb_start  = array_element_address(nttb, intcon(0), T_INT);
7730   assert(nttb_start, "nttb is null");
7731   Node* dilithiumNttMult = make_runtime_call(RC_LEAF|RC_NO_FP,
7732                                   OptoRuntime::dilithiumNttMult_Type(),
7733                                   stubAddr, stubName, TypePtr::BOTTOM,
7734                                   result_start, ntta_start, nttb_start);
7735 
7736   // return an int
7737   Node* retvalue = _gvn.transform(new ProjNode(dilithiumNttMult, TypeFunc::Parms));
7738   set_result(retvalue);
7739 
7740   return true;
7741 }
7742 
7743 //------------------------------inline_dilithiumMontMulByConstant
7744 bool LibraryCallKit::inline_dilithiumMontMulByConstant() {
7745   address stubAddr;
7746   const char *stubName;
7747   assert(UseDilithiumIntrinsics, "need Dilithium intrinsics support");
7748   assert(callee()->signature()->size() == 2, "dilithiumMontMulByConstant has 2 parameters");
7749 
7750   stubAddr = StubRoutines::dilithiumMontMulByConstant();
7751   stubName = "dilithiumMontMulByConstant";
7752   if (!stubAddr) return false;
7753 
7754   Node* coeffs          = argument(0);
7755   Node* constant        = argument(1);
7756 
7757   coeffs = must_be_not_null(coeffs, true);
7758 
7759   Node* coeffs_start  = array_element_address(coeffs, intcon(0), T_INT);
7760   assert(coeffs_start, "coeffs is null");
7761   Node* dilithiumMontMulByConstant = make_runtime_call(RC_LEAF|RC_NO_FP,
7762                                   OptoRuntime::dilithiumMontMulByConstant_Type(),
7763                                   stubAddr, stubName, TypePtr::BOTTOM,
7764                                   coeffs_start, constant);
7765 
7766   // return an int
7767   Node* retvalue = _gvn.transform(new ProjNode(dilithiumMontMulByConstant, TypeFunc::Parms));
7768   set_result(retvalue);
7769   return true;
7770 }
7771 
7772 
7773 //------------------------------inline_dilithiumDecomposePoly
7774 bool LibraryCallKit::inline_dilithiumDecomposePoly() {
7775   address stubAddr;
7776   const char *stubName;
7777   assert(UseDilithiumIntrinsics, "need Dilithium intrinsics support");
7778   assert(callee()->signature()->size() == 5, "dilithiumDecomposePoly has 5 parameters");
7779 
7780   stubAddr = StubRoutines::dilithiumDecomposePoly();
7781   stubName = "dilithiumDecomposePoly";
7782   if (!stubAddr) return false;
7783 
7784   Node* input          = argument(0);
7785   Node* lowPart        = argument(1);
7786   Node* highPart       = argument(2);
7787   Node* twoGamma2      = argument(3);
7788   Node* multiplier     = argument(4);
7789 
7790   input = must_be_not_null(input, true);
7791   lowPart = must_be_not_null(lowPart, true);
7792   highPart = must_be_not_null(highPart, true);
7793 
7794   Node* input_start  = array_element_address(input, intcon(0), T_INT);
7795   assert(input_start, "input is null");
7796   Node* lowPart_start  = array_element_address(lowPart, intcon(0), T_INT);
7797   assert(lowPart_start, "lowPart is null");
7798   Node* highPart_start  = array_element_address(highPart, intcon(0), T_INT);
7799   assert(highPart_start, "highPart is null");
7800 
7801   Node* dilithiumDecomposePoly = make_runtime_call(RC_LEAF|RC_NO_FP,
7802                                   OptoRuntime::dilithiumDecomposePoly_Type(),
7803                                   stubAddr, stubName, TypePtr::BOTTOM,
7804                                   input_start, lowPart_start, highPart_start,
7805                                   twoGamma2, multiplier);
7806 
7807   // return an int
7808   Node* retvalue = _gvn.transform(new ProjNode(dilithiumDecomposePoly, TypeFunc::Parms));
7809   set_result(retvalue);
7810   return true;
7811 }
7812 
7813 bool LibraryCallKit::inline_base64_encodeBlock() {
7814   address stubAddr;
7815   const char *stubName;
7816   assert(UseBASE64Intrinsics, "need Base64 intrinsics support");
7817   assert(callee()->signature()->size() == 6, "base64_encodeBlock has 6 parameters");
7818   stubAddr = StubRoutines::base64_encodeBlock();
7819   stubName = "encodeBlock";
7820 
7821   if (!stubAddr) return false;
7822   Node* base64obj = argument(0);
7823   Node* src = argument(1);
7824   Node* offset = argument(2);
7825   Node* len = argument(3);
7826   Node* dest = argument(4);
7827   Node* dp = argument(5);
7828   Node* isURL = argument(6);
7829 
7830   src = must_be_not_null(src, true);
7831   dest = must_be_not_null(dest, true);
7832 
7833   Node* src_start = array_element_address(src, intcon(0), T_BYTE);
7834   assert(src_start, "source array is null");
7835   Node* dest_start = array_element_address(dest, intcon(0), T_BYTE);
7836   assert(dest_start, "destination array is null");
7837 
7838   Node* base64 = make_runtime_call(RC_LEAF,
7839                                    OptoRuntime::base64_encodeBlock_Type(),
7840                                    stubAddr, stubName, TypePtr::BOTTOM,
7841                                    src_start, offset, len, dest_start, dp, isURL);
7842   return true;
7843 }
7844 
7845 bool LibraryCallKit::inline_base64_decodeBlock() {
7846   address stubAddr;
7847   const char *stubName;
7848   assert(UseBASE64Intrinsics, "need Base64 intrinsics support");
7849   assert(callee()->signature()->size() == 7, "base64_decodeBlock has 7 parameters");
7850   stubAddr = StubRoutines::base64_decodeBlock();
7851   stubName = "decodeBlock";
7852 
7853   if (!stubAddr) return false;
7854   Node* base64obj = argument(0);
7855   Node* src = argument(1);
7856   Node* src_offset = argument(2);
7857   Node* len = argument(3);
7858   Node* dest = argument(4);
7859   Node* dest_offset = argument(5);
7860   Node* isURL = argument(6);
7861   Node* isMIME = argument(7);
7862 
7863   src = must_be_not_null(src, true);
7864   dest = must_be_not_null(dest, true);
7865 
7866   Node* src_start = array_element_address(src, intcon(0), T_BYTE);
7867   assert(src_start, "source array is null");
7868   Node* dest_start = array_element_address(dest, intcon(0), T_BYTE);
7869   assert(dest_start, "destination array is null");
7870 
7871   Node* call = make_runtime_call(RC_LEAF,
7872                                  OptoRuntime::base64_decodeBlock_Type(),
7873                                  stubAddr, stubName, TypePtr::BOTTOM,
7874                                  src_start, src_offset, len, dest_start, dest_offset, isURL, isMIME);
7875   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
7876   set_result(result);
7877   return true;
7878 }
7879 
7880 bool LibraryCallKit::inline_poly1305_processBlocks() {
7881   address stubAddr;
7882   const char *stubName;
7883   assert(UsePoly1305Intrinsics, "need Poly intrinsics support");
7884   assert(callee()->signature()->size() == 5, "poly1305_processBlocks has %d parameters", callee()->signature()->size());
7885   stubAddr = StubRoutines::poly1305_processBlocks();
7886   stubName = "poly1305_processBlocks";
7887 
7888   if (!stubAddr) return false;
7889   null_check_receiver();  // null-check receiver
7890   if (stopped())  return true;
7891 
7892   Node* input = argument(1);
7893   Node* input_offset = argument(2);
7894   Node* len = argument(3);
7895   Node* alimbs = argument(4);
7896   Node* rlimbs = argument(5);
7897 
7898   input = must_be_not_null(input, true);
7899   alimbs = must_be_not_null(alimbs, true);
7900   rlimbs = must_be_not_null(rlimbs, true);
7901 
7902   Node* input_start = array_element_address(input, input_offset, T_BYTE);
7903   assert(input_start, "input array is null");
7904   Node* acc_start = array_element_address(alimbs, intcon(0), T_LONG);
7905   assert(acc_start, "acc array is null");
7906   Node* r_start = array_element_address(rlimbs, intcon(0), T_LONG);
7907   assert(r_start, "r array is null");
7908 
7909   Node* call = make_runtime_call(RC_LEAF | RC_NO_FP,
7910                                  OptoRuntime::poly1305_processBlocks_Type(),
7911                                  stubAddr, stubName, TypePtr::BOTTOM,
7912                                  input_start, len, acc_start, r_start);
7913   return true;
7914 }
7915 
7916 bool LibraryCallKit::inline_intpoly_montgomeryMult_P256() {
7917   address stubAddr;
7918   const char *stubName;
7919   assert(UseIntPolyIntrinsics, "need intpoly intrinsics support");
7920   assert(callee()->signature()->size() == 3, "intpoly_montgomeryMult_P256 has %d parameters", callee()->signature()->size());
7921   stubAddr = StubRoutines::intpoly_montgomeryMult_P256();
7922   stubName = "intpoly_montgomeryMult_P256";
7923 
7924   if (!stubAddr) return false;
7925   null_check_receiver();  // null-check receiver
7926   if (stopped())  return true;
7927 
7928   Node* a = argument(1);
7929   Node* b = argument(2);
7930   Node* r = argument(3);
7931 
7932   a = must_be_not_null(a, true);
7933   b = must_be_not_null(b, true);
7934   r = must_be_not_null(r, true);
7935 
7936   Node* a_start = array_element_address(a, intcon(0), T_LONG);
7937   assert(a_start, "a array is null");
7938   Node* b_start = array_element_address(b, intcon(0), T_LONG);
7939   assert(b_start, "b array is null");
7940   Node* r_start = array_element_address(r, intcon(0), T_LONG);
7941   assert(r_start, "r array is null");
7942 
7943   Node* call = make_runtime_call(RC_LEAF | RC_NO_FP,
7944                                  OptoRuntime::intpoly_montgomeryMult_P256_Type(),
7945                                  stubAddr, stubName, TypePtr::BOTTOM,
7946                                  a_start, b_start, r_start);
7947   return true;
7948 }
7949 
7950 bool LibraryCallKit::inline_intpoly_assign() {
7951   assert(UseIntPolyIntrinsics, "need intpoly intrinsics support");
7952   assert(callee()->signature()->size() == 3, "intpoly_assign has %d parameters", callee()->signature()->size());
7953   const char *stubName = "intpoly_assign";
7954   address stubAddr = StubRoutines::intpoly_assign();
7955   if (!stubAddr) return false;
7956 
7957   Node* set = argument(0);
7958   Node* a = argument(1);
7959   Node* b = argument(2);
7960   Node* arr_length = load_array_length(a);
7961 
7962   a = must_be_not_null(a, true);
7963   b = must_be_not_null(b, true);
7964 
7965   Node* a_start = array_element_address(a, intcon(0), T_LONG);
7966   assert(a_start, "a array is null");
7967   Node* b_start = array_element_address(b, intcon(0), T_LONG);
7968   assert(b_start, "b array is null");
7969 
7970   Node* call = make_runtime_call(RC_LEAF | RC_NO_FP,
7971                                  OptoRuntime::intpoly_assign_Type(),
7972                                  stubAddr, stubName, TypePtr::BOTTOM,
7973                                  set, a_start, b_start, arr_length);
7974   return true;
7975 }
7976 
7977 //------------------------------inline_digestBase_implCompress-----------------------
7978 //
7979 // Calculate MD5 for single-block byte[] array.
7980 // void com.sun.security.provider.MD5.implCompress(byte[] buf, int ofs)
7981 //
7982 // Calculate SHA (i.e., SHA-1) for single-block byte[] array.
7983 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs)
7984 //
7985 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array.
7986 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs)
7987 //
7988 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array.
7989 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs)
7990 //
7991 // Calculate SHA3 (i.e., SHA3-224 or SHA3-256 or SHA3-384 or SHA3-512) for single-block byte[] array.
7992 // void com.sun.security.provider.SHA3.implCompress(byte[] buf, int ofs)
7993 //
7994 bool LibraryCallKit::inline_digestBase_implCompress(vmIntrinsics::ID id) {
7995   assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters");
7996 
7997   Node* digestBase_obj = argument(0);
7998   Node* src            = argument(1); // type oop
7999   Node* ofs            = argument(2); // type int
8000 
8001   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
8002   if (src_type == nullptr || src_type->elem() == Type::BOTTOM) {
8003     // failed array check
8004     return false;
8005   }
8006   // Figure out the size and type of the elements we will be copying.
8007   BasicType src_elem = src_type->elem()->array_element_basic_type();
8008   if (src_elem != T_BYTE) {
8009     return false;
8010   }
8011   // 'src_start' points to src array + offset
8012   src = must_be_not_null(src, true);
8013   Node* src_start = array_element_address(src, ofs, src_elem);
8014   Node* state = nullptr;
8015   Node* block_size = nullptr;
8016   address stubAddr;
8017   const char *stubName;
8018 
8019   switch(id) {
8020   case vmIntrinsics::_md5_implCompress:
8021     assert(UseMD5Intrinsics, "need MD5 instruction support");
8022     state = get_state_from_digest_object(digestBase_obj, T_INT);
8023     stubAddr = StubRoutines::md5_implCompress();
8024     stubName = "md5_implCompress";
8025     break;
8026   case vmIntrinsics::_sha_implCompress:
8027     assert(UseSHA1Intrinsics, "need SHA1 instruction support");
8028     state = get_state_from_digest_object(digestBase_obj, T_INT);
8029     stubAddr = StubRoutines::sha1_implCompress();
8030     stubName = "sha1_implCompress";
8031     break;
8032   case vmIntrinsics::_sha2_implCompress:
8033     assert(UseSHA256Intrinsics, "need SHA256 instruction support");
8034     state = get_state_from_digest_object(digestBase_obj, T_INT);
8035     stubAddr = StubRoutines::sha256_implCompress();
8036     stubName = "sha256_implCompress";
8037     break;
8038   case vmIntrinsics::_sha5_implCompress:
8039     assert(UseSHA512Intrinsics, "need SHA512 instruction support");
8040     state = get_state_from_digest_object(digestBase_obj, T_LONG);
8041     stubAddr = StubRoutines::sha512_implCompress();
8042     stubName = "sha512_implCompress";
8043     break;
8044   case vmIntrinsics::_sha3_implCompress:
8045     assert(UseSHA3Intrinsics, "need SHA3 instruction support");
8046     state = get_state_from_digest_object(digestBase_obj, T_LONG);
8047     stubAddr = StubRoutines::sha3_implCompress();
8048     stubName = "sha3_implCompress";
8049     block_size = get_block_size_from_digest_object(digestBase_obj);
8050     if (block_size == nullptr) return false;
8051     break;
8052   default:
8053     fatal_unexpected_iid(id);
8054     return false;
8055   }
8056   if (state == nullptr) return false;
8057 
8058   assert(stubAddr != nullptr, "Stub %s is not generated", stubName);
8059   if (stubAddr == nullptr) return false;
8060 
8061   // Call the stub.
8062   Node* call;
8063   if (block_size == nullptr) {
8064     call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(false),
8065                              stubAddr, stubName, TypePtr::BOTTOM,
8066                              src_start, state);
8067   } else {
8068     call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(true),
8069                              stubAddr, stubName, TypePtr::BOTTOM,
8070                              src_start, state, block_size);
8071   }
8072 
8073   return true;
8074 }
8075 
8076 //------------------------------inline_double_keccak
8077 bool LibraryCallKit::inline_double_keccak() {
8078   address stubAddr;
8079   const char *stubName;
8080   assert(UseSHA3Intrinsics, "need SHA3 intrinsics support");
8081   assert(callee()->signature()->size() == 2, "double_keccak has 2 parameters");
8082 
8083   stubAddr = StubRoutines::double_keccak();
8084   stubName = "double_keccak";
8085   if (!stubAddr) return false;
8086 
8087   Node* status0        = argument(0);
8088   Node* status1        = argument(1);
8089 
8090   status0 = must_be_not_null(status0, true);
8091   status1 = must_be_not_null(status1, true);
8092 
8093   Node* status0_start  = array_element_address(status0, intcon(0), T_LONG);
8094   assert(status0_start, "status0 is null");
8095   Node* status1_start  = array_element_address(status1, intcon(0), T_LONG);
8096   assert(status1_start, "status1 is null");
8097   Node* double_keccak = make_runtime_call(RC_LEAF|RC_NO_FP,
8098                                   OptoRuntime::double_keccak_Type(),
8099                                   stubAddr, stubName, TypePtr::BOTTOM,
8100                                   status0_start, status1_start);
8101   // return an int
8102   Node* retvalue = _gvn.transform(new ProjNode(double_keccak, TypeFunc::Parms));
8103   set_result(retvalue);
8104   return true;
8105 }
8106 
8107 
8108 //------------------------------inline_digestBase_implCompressMB-----------------------
8109 //
8110 // Calculate MD5/SHA/SHA2/SHA5/SHA3 for multi-block byte[] array.
8111 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
8112 //
8113 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) {
8114   assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics || UseSHA3Intrinsics,
8115          "need MD5/SHA1/SHA256/SHA512/SHA3 instruction support");
8116   assert((uint)predicate < 5, "sanity");
8117   assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters");
8118 
8119   Node* digestBase_obj = argument(0); // The receiver was checked for null already.
8120   Node* src            = argument(1); // byte[] array
8121   Node* ofs            = argument(2); // type int
8122   Node* limit          = argument(3); // type int
8123 
8124   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
8125   if (src_type == nullptr || src_type->elem() == Type::BOTTOM) {
8126     // failed array check
8127     return false;
8128   }
8129   // Figure out the size and type of the elements we will be copying.
8130   BasicType src_elem = src_type->elem()->array_element_basic_type();
8131   if (src_elem != T_BYTE) {
8132     return false;
8133   }
8134   // 'src_start' points to src array + offset
8135   src = must_be_not_null(src, false);
8136   Node* src_start = array_element_address(src, ofs, src_elem);
8137 
8138   const char* klass_digestBase_name = nullptr;
8139   const char* stub_name = nullptr;
8140   address     stub_addr = nullptr;
8141   BasicType elem_type = T_INT;
8142 
8143   switch (predicate) {
8144   case 0:
8145     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_md5_implCompress)) {
8146       klass_digestBase_name = "sun/security/provider/MD5";
8147       stub_name = "md5_implCompressMB";
8148       stub_addr = StubRoutines::md5_implCompressMB();
8149     }
8150     break;
8151   case 1:
8152     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha_implCompress)) {
8153       klass_digestBase_name = "sun/security/provider/SHA";
8154       stub_name = "sha1_implCompressMB";
8155       stub_addr = StubRoutines::sha1_implCompressMB();
8156     }
8157     break;
8158   case 2:
8159     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha2_implCompress)) {
8160       klass_digestBase_name = "sun/security/provider/SHA2";
8161       stub_name = "sha256_implCompressMB";
8162       stub_addr = StubRoutines::sha256_implCompressMB();
8163     }
8164     break;
8165   case 3:
8166     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha5_implCompress)) {
8167       klass_digestBase_name = "sun/security/provider/SHA5";
8168       stub_name = "sha512_implCompressMB";
8169       stub_addr = StubRoutines::sha512_implCompressMB();
8170       elem_type = T_LONG;
8171     }
8172     break;
8173   case 4:
8174     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha3_implCompress)) {
8175       klass_digestBase_name = "sun/security/provider/SHA3";
8176       stub_name = "sha3_implCompressMB";
8177       stub_addr = StubRoutines::sha3_implCompressMB();
8178       elem_type = T_LONG;
8179     }
8180     break;
8181   default:
8182     fatal("unknown DigestBase intrinsic predicate: %d", predicate);
8183   }
8184   if (klass_digestBase_name != nullptr) {
8185     assert(stub_addr != nullptr, "Stub is generated");
8186     if (stub_addr == nullptr) return false;
8187 
8188     // get DigestBase klass to lookup for SHA klass
8189     const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr();
8190     assert(tinst != nullptr, "digestBase_obj is not instance???");
8191     assert(tinst->is_loaded(), "DigestBase is not loaded");
8192 
8193     ciKlass* klass_digestBase = tinst->instance_klass()->find_klass(ciSymbol::make(klass_digestBase_name));
8194     assert(klass_digestBase->is_loaded(), "predicate checks that this class is loaded");
8195     ciInstanceKlass* instklass_digestBase = klass_digestBase->as_instance_klass();
8196     return inline_digestBase_implCompressMB(digestBase_obj, instklass_digestBase, elem_type, stub_addr, stub_name, src_start, ofs, limit);
8197   }
8198   return false;
8199 }
8200 
8201 //------------------------------inline_digestBase_implCompressMB-----------------------
8202 bool LibraryCallKit::inline_digestBase_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_digestBase,
8203                                                       BasicType elem_type, address stubAddr, const char *stubName,
8204                                                       Node* src_start, Node* ofs, Node* limit) {
8205   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_digestBase);
8206   const TypeOopPtr* xtype = aklass->cast_to_exactness(false)->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull);
8207   Node* digest_obj = new CheckCastPPNode(control(), digestBase_obj, xtype);
8208   digest_obj = _gvn.transform(digest_obj);
8209 
8210   Node* state = get_state_from_digest_object(digest_obj, elem_type);
8211   if (state == nullptr) return false;
8212 
8213   Node* block_size = nullptr;
8214   if (strcmp("sha3_implCompressMB", stubName) == 0) {
8215     block_size = get_block_size_from_digest_object(digest_obj);
8216     if (block_size == nullptr) return false;
8217   }
8218 
8219   // Call the stub.
8220   Node* call;
8221   if (block_size == nullptr) {
8222     call = make_runtime_call(RC_LEAF|RC_NO_FP,
8223                              OptoRuntime::digestBase_implCompressMB_Type(false),
8224                              stubAddr, stubName, TypePtr::BOTTOM,
8225                              src_start, state, ofs, limit);
8226   } else {
8227      call = make_runtime_call(RC_LEAF|RC_NO_FP,
8228                              OptoRuntime::digestBase_implCompressMB_Type(true),
8229                              stubAddr, stubName, TypePtr::BOTTOM,
8230                              src_start, state, block_size, ofs, limit);
8231   }
8232 
8233   // return ofs (int)
8234   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
8235   set_result(result);
8236 
8237   return true;
8238 }
8239 
8240 //------------------------------inline_galoisCounterMode_AESCrypt-----------------------
8241 bool LibraryCallKit::inline_galoisCounterMode_AESCrypt() {
8242   assert(UseAES, "need AES instruction support");
8243   address stubAddr = nullptr;
8244   const char *stubName = nullptr;
8245   stubAddr = StubRoutines::galoisCounterMode_AESCrypt();
8246   stubName = "galoisCounterMode_AESCrypt";
8247 
8248   if (stubAddr == nullptr) return false;
8249 
8250   Node* in      = argument(0);
8251   Node* inOfs   = argument(1);
8252   Node* len     = argument(2);
8253   Node* ct      = argument(3);
8254   Node* ctOfs   = argument(4);
8255   Node* out     = argument(5);
8256   Node* outOfs  = argument(6);
8257   Node* gctr_object = argument(7);
8258   Node* ghash_object = argument(8);
8259 
8260   // (1) in, ct and out are arrays.
8261   const TypeAryPtr* in_type = in->Value(&_gvn)->isa_aryptr();
8262   const TypeAryPtr* ct_type = ct->Value(&_gvn)->isa_aryptr();
8263   const TypeAryPtr* out_type = out->Value(&_gvn)->isa_aryptr();
8264   assert( in_type != nullptr &&  in_type->elem() != Type::BOTTOM &&
8265           ct_type != nullptr &&  ct_type->elem() != Type::BOTTOM &&
8266          out_type != nullptr && out_type->elem() != Type::BOTTOM, "args are strange");
8267 
8268   // checks are the responsibility of the caller
8269   Node* in_start = in;
8270   Node* ct_start = ct;
8271   Node* out_start = out;
8272   if (inOfs != nullptr || ctOfs != nullptr || outOfs != nullptr) {
8273     assert(inOfs != nullptr && ctOfs != nullptr && outOfs != nullptr, "");
8274     in_start = array_element_address(in, inOfs, T_BYTE);
8275     ct_start = array_element_address(ct, ctOfs, T_BYTE);
8276     out_start = array_element_address(out, outOfs, T_BYTE);
8277   }
8278 
8279   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
8280   // (because of the predicated logic executed earlier).
8281   // so we cast it here safely.
8282   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
8283   Node* embeddedCipherObj = load_field_from_object(gctr_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
8284   Node* counter = load_field_from_object(gctr_object, "counter", "[B");
8285   Node* subkeyHtbl = load_field_from_object(ghash_object, "subkeyHtbl", "[J");
8286   Node* state = load_field_from_object(ghash_object, "state", "[J");
8287 
8288   if (embeddedCipherObj == nullptr || counter == nullptr || subkeyHtbl == nullptr || state == nullptr) {
8289     return false;
8290   }
8291   // cast it to what we know it will be at runtime
8292   const TypeInstPtr* tinst = _gvn.type(gctr_object)->isa_instptr();
8293   assert(tinst != nullptr, "GCTR obj is null");
8294   assert(tinst->is_loaded(), "GCTR obj is not loaded");
8295   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
8296   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
8297   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
8298   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
8299   const TypeOopPtr* xtype = aklass->as_instance_type();
8300   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
8301   aescrypt_object = _gvn.transform(aescrypt_object);
8302   // we need to get the start of the aescrypt_object's expanded key array
8303   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
8304   if (k_start == nullptr) return false;
8305   // similarly, get the start address of the r vector
8306   Node* cnt_start = array_element_address(counter, intcon(0), T_BYTE);
8307   Node* state_start = array_element_address(state, intcon(0), T_LONG);
8308   Node* subkeyHtbl_start = array_element_address(subkeyHtbl, intcon(0), T_LONG);
8309 
8310 
8311   // Call the stub, passing params
8312   Node* gcmCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
8313                                OptoRuntime::galoisCounterMode_aescrypt_Type(),
8314                                stubAddr, stubName, TypePtr::BOTTOM,
8315                                in_start, len, ct_start, out_start, k_start, state_start, subkeyHtbl_start, cnt_start);
8316 
8317   // return cipher length (int)
8318   Node* retvalue = _gvn.transform(new ProjNode(gcmCrypt, TypeFunc::Parms));
8319   set_result(retvalue);
8320 
8321   return true;
8322 }
8323 
8324 //----------------------------inline_galoisCounterMode_AESCrypt_predicate----------------------------
8325 // Return node representing slow path of predicate check.
8326 // the pseudo code we want to emulate with this predicate is:
8327 // for encryption:
8328 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
8329 // for decryption:
8330 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
8331 //    note cipher==plain is more conservative than the original java code but that's OK
8332 //
8333 
8334 Node* LibraryCallKit::inline_galoisCounterMode_AESCrypt_predicate() {
8335   // The receiver was checked for null already.
8336   Node* objGCTR = argument(7);
8337   // Load embeddedCipher field of GCTR object.
8338   Node* embeddedCipherObj = load_field_from_object(objGCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
8339   assert(embeddedCipherObj != nullptr, "embeddedCipherObj is null");
8340 
8341   // get AESCrypt klass for instanceOf check
8342   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
8343   // will have same classloader as CipherBlockChaining object
8344   const TypeInstPtr* tinst = _gvn.type(objGCTR)->isa_instptr();
8345   assert(tinst != nullptr, "GCTR obj is null");
8346   assert(tinst->is_loaded(), "GCTR obj is not loaded");
8347 
8348   // we want to do an instanceof comparison against the AESCrypt class
8349   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
8350   if (!klass_AESCrypt->is_loaded()) {
8351     // if AESCrypt is not even loaded, we never take the intrinsic fast path
8352     Node* ctrl = control();
8353     set_control(top()); // no regular fast path
8354     return ctrl;
8355   }
8356 
8357   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
8358   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
8359   Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
8360   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
8361   Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN);
8362 
8363   return instof_false; // even if it is null
8364 }
8365 
8366 //------------------------------get_state_from_digest_object-----------------------
8367 Node * LibraryCallKit::get_state_from_digest_object(Node *digest_object, BasicType elem_type) {
8368   const char* state_type;
8369   switch (elem_type) {
8370     case T_BYTE: state_type = "[B"; break;
8371     case T_INT:  state_type = "[I"; break;
8372     case T_LONG: state_type = "[J"; break;
8373     default: ShouldNotReachHere();
8374   }
8375   Node* digest_state = load_field_from_object(digest_object, "state", state_type);
8376   assert (digest_state != nullptr, "wrong version of sun.security.provider.MD5/SHA/SHA2/SHA5/SHA3");
8377   if (digest_state == nullptr) return (Node *) nullptr;
8378 
8379   // now have the array, need to get the start address of the state array
8380   Node* state = array_element_address(digest_state, intcon(0), elem_type);
8381   return state;
8382 }
8383 
8384 //------------------------------get_block_size_from_sha3_object----------------------------------
8385 Node * LibraryCallKit::get_block_size_from_digest_object(Node *digest_object) {
8386   Node* block_size = load_field_from_object(digest_object, "blockSize", "I");
8387   assert (block_size != nullptr, "sanity");
8388   return block_size;
8389 }
8390 
8391 //----------------------------inline_digestBase_implCompressMB_predicate----------------------------
8392 // Return node representing slow path of predicate check.
8393 // the pseudo code we want to emulate with this predicate is:
8394 //    if (digestBaseObj instanceof MD5/SHA/SHA2/SHA5/SHA3) do_intrinsic, else do_javapath
8395 //
8396 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) {
8397   assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics || UseSHA3Intrinsics,
8398          "need MD5/SHA1/SHA256/SHA512/SHA3 instruction support");
8399   assert((uint)predicate < 5, "sanity");
8400 
8401   // The receiver was checked for null already.
8402   Node* digestBaseObj = argument(0);
8403 
8404   // get DigestBase klass for instanceOf check
8405   const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr();
8406   assert(tinst != nullptr, "digestBaseObj is null");
8407   assert(tinst->is_loaded(), "DigestBase is not loaded");
8408 
8409   const char* klass_name = nullptr;
8410   switch (predicate) {
8411   case 0:
8412     if (UseMD5Intrinsics) {
8413       // we want to do an instanceof comparison against the MD5 class
8414       klass_name = "sun/security/provider/MD5";
8415     }
8416     break;
8417   case 1:
8418     if (UseSHA1Intrinsics) {
8419       // we want to do an instanceof comparison against the SHA class
8420       klass_name = "sun/security/provider/SHA";
8421     }
8422     break;
8423   case 2:
8424     if (UseSHA256Intrinsics) {
8425       // we want to do an instanceof comparison against the SHA2 class
8426       klass_name = "sun/security/provider/SHA2";
8427     }
8428     break;
8429   case 3:
8430     if (UseSHA512Intrinsics) {
8431       // we want to do an instanceof comparison against the SHA5 class
8432       klass_name = "sun/security/provider/SHA5";
8433     }
8434     break;
8435   case 4:
8436     if (UseSHA3Intrinsics) {
8437       // we want to do an instanceof comparison against the SHA3 class
8438       klass_name = "sun/security/provider/SHA3";
8439     }
8440     break;
8441   default:
8442     fatal("unknown SHA intrinsic predicate: %d", predicate);
8443   }
8444 
8445   ciKlass* klass = nullptr;
8446   if (klass_name != nullptr) {
8447     klass = tinst->instance_klass()->find_klass(ciSymbol::make(klass_name));
8448   }
8449   if ((klass == nullptr) || !klass->is_loaded()) {
8450     // if none of MD5/SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path
8451     Node* ctrl = control();
8452     set_control(top()); // no intrinsic path
8453     return ctrl;
8454   }
8455   ciInstanceKlass* instklass = klass->as_instance_klass();
8456 
8457   Node* instof = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass)));
8458   Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
8459   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
8460   Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN);
8461 
8462   return instof_false;  // even if it is null
8463 }
8464 
8465 //-------------inline_fma-----------------------------------
8466 bool LibraryCallKit::inline_fma(vmIntrinsics::ID id) {
8467   Node *a = nullptr;
8468   Node *b = nullptr;
8469   Node *c = nullptr;
8470   Node* result = nullptr;
8471   switch (id) {
8472   case vmIntrinsics::_fmaD:
8473     assert(callee()->signature()->size() == 6, "fma has 3 parameters of size 2 each.");
8474     // no receiver since it is static method
8475     a = argument(0);
8476     b = argument(2);
8477     c = argument(4);
8478     result = _gvn.transform(new FmaDNode(a, b, c));
8479     break;
8480   case vmIntrinsics::_fmaF:
8481     assert(callee()->signature()->size() == 3, "fma has 3 parameters of size 1 each.");
8482     a = argument(0);
8483     b = argument(1);
8484     c = argument(2);
8485     result = _gvn.transform(new FmaFNode(a, b, c));
8486     break;
8487   default:
8488     fatal_unexpected_iid(id);  break;
8489   }
8490   set_result(result);
8491   return true;
8492 }
8493 
8494 bool LibraryCallKit::inline_character_compare(vmIntrinsics::ID id) {
8495   // argument(0) is receiver
8496   Node* codePoint = argument(1);
8497   Node* n = nullptr;
8498 
8499   switch (id) {
8500     case vmIntrinsics::_isDigit :
8501       n = new DigitNode(control(), codePoint);
8502       break;
8503     case vmIntrinsics::_isLowerCase :
8504       n = new LowerCaseNode(control(), codePoint);
8505       break;
8506     case vmIntrinsics::_isUpperCase :
8507       n = new UpperCaseNode(control(), codePoint);
8508       break;
8509     case vmIntrinsics::_isWhitespace :
8510       n = new WhitespaceNode(control(), codePoint);
8511       break;
8512     default:
8513       fatal_unexpected_iid(id);
8514   }
8515 
8516   set_result(_gvn.transform(n));
8517   return true;
8518 }
8519 
8520 bool LibraryCallKit::inline_profileBoolean() {
8521   Node* counts = argument(1);
8522   const TypeAryPtr* ary = nullptr;
8523   ciArray* aobj = nullptr;
8524   if (counts->is_Con()
8525       && (ary = counts->bottom_type()->isa_aryptr()) != nullptr
8526       && (aobj = ary->const_oop()->as_array()) != nullptr
8527       && (aobj->length() == 2)) {
8528     // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively.
8529     jint false_cnt = aobj->element_value(0).as_int();
8530     jint  true_cnt = aobj->element_value(1).as_int();
8531 
8532     if (C->log() != nullptr) {
8533       C->log()->elem("observe source='profileBoolean' false='%d' true='%d'",
8534                      false_cnt, true_cnt);
8535     }
8536 
8537     if (false_cnt + true_cnt == 0) {
8538       // According to profile, never executed.
8539       uncommon_trap_exact(Deoptimization::Reason_intrinsic,
8540                           Deoptimization::Action_reinterpret);
8541       return true;
8542     }
8543 
8544     // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt)
8545     // is a number of each value occurrences.
8546     Node* result = argument(0);
8547     if (false_cnt == 0 || true_cnt == 0) {
8548       // According to profile, one value has been never seen.
8549       int expected_val = (false_cnt == 0) ? 1 : 0;
8550 
8551       Node* cmp  = _gvn.transform(new CmpINode(result, intcon(expected_val)));
8552       Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
8553 
8554       IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN);
8555       Node* fast_path = _gvn.transform(new IfTrueNode(check));
8556       Node* slow_path = _gvn.transform(new IfFalseNode(check));
8557 
8558       { // Slow path: uncommon trap for never seen value and then reexecute
8559         // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows
8560         // the value has been seen at least once.
8561         PreserveJVMState pjvms(this);
8562         PreserveReexecuteState preexecs(this);
8563         jvms()->set_should_reexecute(true);
8564 
8565         set_control(slow_path);
8566         set_i_o(i_o());
8567 
8568         uncommon_trap_exact(Deoptimization::Reason_intrinsic,
8569                             Deoptimization::Action_reinterpret);
8570       }
8571       // The guard for never seen value enables sharpening of the result and
8572       // returning a constant. It allows to eliminate branches on the same value
8573       // later on.
8574       set_control(fast_path);
8575       result = intcon(expected_val);
8576     }
8577     // Stop profiling.
8578     // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode.
8579     // By replacing method body with profile data (represented as ProfileBooleanNode
8580     // on IR level) we effectively disable profiling.
8581     // It enables full speed execution once optimized code is generated.
8582     Node* profile = _gvn.transform(new ProfileBooleanNode(result, false_cnt, true_cnt));
8583     C->record_for_igvn(profile);
8584     set_result(profile);
8585     return true;
8586   } else {
8587     // Continue profiling.
8588     // Profile data isn't available at the moment. So, execute method's bytecode version.
8589     // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod
8590     // is compiled and counters aren't available since corresponding MethodHandle
8591     // isn't a compile-time constant.
8592     return false;
8593   }
8594 }
8595 
8596 bool LibraryCallKit::inline_isCompileConstant() {
8597   Node* n = argument(0);
8598   set_result(n->is_Con() ? intcon(1) : intcon(0));
8599   return true;
8600 }
8601 
8602 //------------------------------- inline_getObjectSize --------------------------------------
8603 //
8604 // Calculate the runtime size of the object/array.
8605 //   native long sun.instrument.InstrumentationImpl.getObjectSize0(long nativeAgent, Object objectToSize);
8606 //
8607 bool LibraryCallKit::inline_getObjectSize() {
8608   Node* obj = argument(3);
8609   Node* klass_node = load_object_klass(obj);
8610 
8611   jint  layout_con = Klass::_lh_neutral_value;
8612   Node* layout_val = get_layout_helper(klass_node, layout_con);
8613   int   layout_is_con = (layout_val == nullptr);
8614 
8615   if (layout_is_con) {
8616     // Layout helper is constant, can figure out things at compile time.
8617 
8618     if (Klass::layout_helper_is_instance(layout_con)) {
8619       // Instance case:  layout_con contains the size itself.
8620       Node *size = longcon(Klass::layout_helper_size_in_bytes(layout_con));
8621       set_result(size);
8622     } else {
8623       // Array case: size is round(header + element_size*arraylength).
8624       // Since arraylength is different for every array instance, we have to
8625       // compute the whole thing at runtime.
8626 
8627       Node* arr_length = load_array_length(obj);
8628 
8629       int round_mask = MinObjAlignmentInBytes - 1;
8630       int hsize  = Klass::layout_helper_header_size(layout_con);
8631       int eshift = Klass::layout_helper_log2_element_size(layout_con);
8632 
8633       if ((round_mask & ~right_n_bits(eshift)) == 0) {
8634         round_mask = 0;  // strength-reduce it if it goes away completely
8635       }
8636       assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded");
8637       Node* header_size = intcon(hsize + round_mask);
8638 
8639       Node* lengthx = ConvI2X(arr_length);
8640       Node* headerx = ConvI2X(header_size);
8641 
8642       Node* abody = lengthx;
8643       if (eshift != 0) {
8644         abody = _gvn.transform(new LShiftXNode(lengthx, intcon(eshift)));
8645       }
8646       Node* size = _gvn.transform( new AddXNode(headerx, abody) );
8647       if (round_mask != 0) {
8648         size = _gvn.transform( new AndXNode(size, MakeConX(~round_mask)) );
8649       }
8650       size = ConvX2L(size);
8651       set_result(size);
8652     }
8653   } else {
8654     // Layout helper is not constant, need to test for array-ness at runtime.
8655 
8656     enum { _instance_path = 1, _array_path, PATH_LIMIT };
8657     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
8658     PhiNode* result_val = new PhiNode(result_reg, TypeLong::LONG);
8659     record_for_igvn(result_reg);
8660 
8661     Node* array_ctl = generate_array_guard(klass_node, nullptr, &obj);
8662     if (array_ctl != nullptr) {
8663       // Array case: size is round(header + element_size*arraylength).
8664       // Since arraylength is different for every array instance, we have to
8665       // compute the whole thing at runtime.
8666 
8667       PreserveJVMState pjvms(this);
8668       set_control(array_ctl);
8669       Node* arr_length = load_array_length(obj);
8670 
8671       int round_mask = MinObjAlignmentInBytes - 1;
8672       Node* mask = intcon(round_mask);
8673 
8674       Node* hss = intcon(Klass::_lh_header_size_shift);
8675       Node* hsm = intcon(Klass::_lh_header_size_mask);
8676       Node* header_size = _gvn.transform(new URShiftINode(layout_val, hss));
8677       header_size = _gvn.transform(new AndINode(header_size, hsm));
8678       header_size = _gvn.transform(new AddINode(header_size, mask));
8679 
8680       // There is no need to mask or shift this value.
8681       // The semantics of LShiftINode include an implicit mask to 0x1F.
8682       assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
8683       Node* elem_shift = layout_val;
8684 
8685       Node* lengthx = ConvI2X(arr_length);
8686       Node* headerx = ConvI2X(header_size);
8687 
8688       Node* abody = _gvn.transform(new LShiftXNode(lengthx, elem_shift));
8689       Node* size = _gvn.transform(new AddXNode(headerx, abody));
8690       if (round_mask != 0) {
8691         size = _gvn.transform(new AndXNode(size, MakeConX(~round_mask)));
8692       }
8693       size = ConvX2L(size);
8694 
8695       result_reg->init_req(_array_path, control());
8696       result_val->init_req(_array_path, size);
8697     }
8698 
8699     if (!stopped()) {
8700       // Instance case: the layout helper gives us instance size almost directly,
8701       // but we need to mask out the _lh_instance_slow_path_bit.
8702       Node* size = ConvI2X(layout_val);
8703       assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
8704       Node* mask = MakeConX(~(intptr_t) right_n_bits(LogBytesPerLong));
8705       size = _gvn.transform(new AndXNode(size, mask));
8706       size = ConvX2L(size);
8707 
8708       result_reg->init_req(_instance_path, control());
8709       result_val->init_req(_instance_path, size);
8710     }
8711 
8712     set_result(result_reg, result_val);
8713   }
8714 
8715   return true;
8716 }
8717 
8718 //------------------------------- inline_blackhole --------------------------------------
8719 //
8720 // Make sure all arguments to this node are alive.
8721 // This matches methods that were requested to be blackholed through compile commands.
8722 //
8723 bool LibraryCallKit::inline_blackhole() {
8724   assert(callee()->is_static(), "Should have been checked before: only static methods here");
8725   assert(callee()->is_empty(), "Should have been checked before: only empty methods here");
8726   assert(callee()->holder()->is_loaded(), "Should have been checked before: only methods for loaded classes here");
8727 
8728   // Blackhole node pinches only the control, not memory. This allows
8729   // the blackhole to be pinned in the loop that computes blackholed
8730   // values, but have no other side effects, like breaking the optimizations
8731   // across the blackhole.
8732 
8733   Node* bh = _gvn.transform(new BlackholeNode(control()));
8734   set_control(_gvn.transform(new ProjNode(bh, TypeFunc::Control)));
8735 
8736   // Bind call arguments as blackhole arguments to keep them alive
8737   uint nargs = callee()->arg_size();
8738   for (uint i = 0; i < nargs; i++) {
8739     bh->add_req(argument(i));
8740   }
8741 
8742   return true;
8743 }
8744 
8745 Node* LibraryCallKit::unbox_fp16_value(const TypeInstPtr* float16_box_type, ciField* field, Node* box) {
8746   const TypeInstPtr* box_type = _gvn.type(box)->isa_instptr();
8747   if (box_type == nullptr || box_type->instance_klass() != float16_box_type->instance_klass()) {
8748     return nullptr; // box klass is not Float16
8749   }
8750 
8751   // Null check; get notnull casted pointer
8752   Node* null_ctl = top();
8753   Node* not_null_box = null_check_oop(box, &null_ctl, true);
8754   // If not_null_box is dead, only null-path is taken
8755   if (stopped()) {
8756     set_control(null_ctl);
8757     return nullptr;
8758   }
8759   assert(not_null_box->bottom_type()->is_instptr()->maybe_null() == false, "");
8760   const TypePtr* adr_type = C->alias_type(field)->adr_type();
8761   Node* adr = basic_plus_adr(not_null_box, field->offset_in_bytes());
8762   return access_load_at(not_null_box, adr, adr_type, TypeInt::SHORT, T_SHORT, IN_HEAP);
8763 }
8764 
8765 Node* LibraryCallKit::box_fp16_value(const TypeInstPtr* float16_box_type, ciField* field, Node* value) {
8766   PreserveReexecuteState preexecs(this);
8767   jvms()->set_should_reexecute(true);
8768 
8769   const TypeKlassPtr* klass_type = float16_box_type->as_klass_type();
8770   Node* klass_node = makecon(klass_type);
8771   Node* box = new_instance(klass_node);
8772 
8773   Node* value_field = basic_plus_adr(box, field->offset_in_bytes());
8774   const TypePtr* value_adr_type = value_field->bottom_type()->is_ptr();
8775 
8776   Node* field_store = _gvn.transform(access_store_at(box,
8777                                                      value_field,
8778                                                      value_adr_type,
8779                                                      value,
8780                                                      TypeInt::SHORT,
8781                                                      T_SHORT,
8782                                                      IN_HEAP));
8783   set_memory(field_store, value_adr_type);
8784   return box;
8785 }
8786 
8787 bool LibraryCallKit::inline_fp16_operations(vmIntrinsics::ID id, int num_args) {
8788   if (!Matcher::match_rule_supported(Op_ReinterpretS2HF) ||
8789       !Matcher::match_rule_supported(Op_ReinterpretHF2S)) {
8790     return false;
8791   }
8792 
8793   const TypeInstPtr* box_type = _gvn.type(argument(0))->isa_instptr();
8794   if (box_type == nullptr || box_type->const_oop() == nullptr) {
8795     return false;
8796   }
8797 
8798   ciInstanceKlass* float16_klass = box_type->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
8799   const TypeInstPtr* float16_box_type = TypeInstPtr::make_exact(TypePtr::NotNull, float16_klass);
8800   ciField* field = float16_klass->get_field_by_name(ciSymbols::value_name(),
8801                                                     ciSymbols::short_signature(),
8802                                                     false);
8803   assert(field != nullptr, "");
8804 
8805   // Transformed nodes
8806   Node* fld1 = nullptr;
8807   Node* fld2 = nullptr;
8808   Node* fld3 = nullptr;
8809   switch(num_args) {
8810     case 3:
8811       fld3 = unbox_fp16_value(float16_box_type, field, argument(3));
8812       if (fld3 == nullptr) {
8813         return false;
8814       }
8815       fld3 = _gvn.transform(new ReinterpretS2HFNode(fld3));
8816     // fall-through
8817     case 2:
8818       fld2 = unbox_fp16_value(float16_box_type, field, argument(2));
8819       if (fld2 == nullptr) {
8820         return false;
8821       }
8822       fld2 = _gvn.transform(new ReinterpretS2HFNode(fld2));
8823     // fall-through
8824     case 1:
8825       fld1 = unbox_fp16_value(float16_box_type, field, argument(1));
8826       if (fld1 == nullptr) {
8827         return false;
8828       }
8829       fld1 = _gvn.transform(new ReinterpretS2HFNode(fld1));
8830       break;
8831     default: fatal("Unsupported number of arguments %d", num_args);
8832   }
8833 
8834   Node* result = nullptr;
8835   switch (id) {
8836     // Unary operations
8837     case vmIntrinsics::_sqrt_float16:
8838       result = _gvn.transform(new SqrtHFNode(C, control(), fld1));
8839       break;
8840     // Ternary operations
8841     case vmIntrinsics::_fma_float16:
8842       result = _gvn.transform(new FmaHFNode(fld1, fld2, fld3));
8843       break;
8844     default:
8845       fatal_unexpected_iid(id);
8846       break;
8847   }
8848   result = _gvn.transform(new ReinterpretHF2SNode(result));
8849   set_result(box_fp16_value(float16_box_type, field, result));
8850   return true;
8851 }
8852