1 /* 2 * Copyright (c) 1999, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "asm/macroAssembler.hpp" 26 #include "ci/ciSymbols.hpp" 27 #include "ci/ciUtilities.inline.hpp" 28 #include "classfile/vmIntrinsics.hpp" 29 #include "compiler/compileBroker.hpp" 30 #include "compiler/compileLog.hpp" 31 #include "gc/shared/barrierSet.hpp" 32 #include "jfr/support/jfrIntrinsics.hpp" 33 #include "memory/resourceArea.hpp" 34 #include "oops/klass.inline.hpp" 35 #include "oops/objArrayKlass.hpp" 36 #include "opto/addnode.hpp" 37 #include "opto/arraycopynode.hpp" 38 #include "opto/c2compiler.hpp" 39 #include "opto/castnode.hpp" 40 #include "opto/cfgnode.hpp" 41 #include "opto/convertnode.hpp" 42 #include "opto/countbitsnode.hpp" 43 #include "opto/idealKit.hpp" 44 #include "opto/library_call.hpp" 45 #include "opto/mathexactnode.hpp" 46 #include "opto/mulnode.hpp" 47 #include "opto/narrowptrnode.hpp" 48 #include "opto/opaquenode.hpp" 49 #include "opto/parse.hpp" 50 #include "opto/rootnode.hpp" 51 #include "opto/runtime.hpp" 52 #include "opto/subnode.hpp" 53 #include "opto/vectornode.hpp" 54 #include "prims/jvmtiExport.hpp" 55 #include "prims/jvmtiThreadState.hpp" 56 #include "prims/unsafe.hpp" 57 #include "runtime/jniHandles.inline.hpp" 58 #include "runtime/objectMonitor.hpp" 59 #include "runtime/sharedRuntime.hpp" 60 #include "runtime/stubRoutines.hpp" 61 #include "utilities/macros.hpp" 62 #include "utilities/powerOfTwo.hpp" 63 64 //---------------------------make_vm_intrinsic---------------------------- 65 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) { 66 vmIntrinsicID id = m->intrinsic_id(); 67 assert(id != vmIntrinsics::_none, "must be a VM intrinsic"); 68 69 if (!m->is_loaded()) { 70 // Do not attempt to inline unloaded methods. 71 return nullptr; 72 } 73 74 C2Compiler* compiler = (C2Compiler*)CompilerThread::current()->compiler(); 75 bool is_available = false; 76 77 { 78 // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag 79 // the compiler must transition to '_thread_in_vm' state because both 80 // methods access VM-internal data. 81 VM_ENTRY_MARK; 82 methodHandle mh(THREAD, m->get_Method()); 83 is_available = compiler != nullptr && compiler->is_intrinsic_available(mh, C->directive()); 84 if (is_available && is_virtual) { 85 is_available = vmIntrinsics::does_virtual_dispatch(id); 86 } 87 } 88 89 if (is_available) { 90 assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility"); 91 assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?"); 92 return new LibraryIntrinsic(m, is_virtual, 93 vmIntrinsics::predicates_needed(id), 94 vmIntrinsics::does_virtual_dispatch(id), 95 id); 96 } else { 97 return nullptr; 98 } 99 } 100 101 JVMState* LibraryIntrinsic::generate(JVMState* jvms) { 102 LibraryCallKit kit(jvms, this); 103 Compile* C = kit.C; 104 int nodes = C->unique(); 105 #ifndef PRODUCT 106 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 107 char buf[1000]; 108 const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf)); 109 tty->print_cr("Intrinsic %s", str); 110 } 111 #endif 112 ciMethod* callee = kit.callee(); 113 const int bci = kit.bci(); 114 #ifdef ASSERT 115 Node* ctrl = kit.control(); 116 #endif 117 // Try to inline the intrinsic. 118 if (callee->check_intrinsic_candidate() && 119 kit.try_to_inline(_last_predicate)) { 120 const char *inline_msg = is_virtual() ? "(intrinsic, virtual)" 121 : "(intrinsic)"; 122 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg); 123 C->inline_printer()->record(callee, jvms, InliningResult::SUCCESS, inline_msg); 124 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked); 125 if (C->log()) { 126 C->log()->elem("intrinsic id='%s'%s nodes='%d'", 127 vmIntrinsics::name_at(intrinsic_id()), 128 (is_virtual() ? " virtual='1'" : ""), 129 C->unique() - nodes); 130 } 131 // Push the result from the inlined method onto the stack. 132 kit.push_result(); 133 return kit.transfer_exceptions_into_jvms(); 134 } 135 136 // The intrinsic bailed out 137 assert(ctrl == kit.control(), "Control flow was added although the intrinsic bailed out"); 138 assert(jvms->map() == kit.map(), "Out of sync JVM state"); 139 if (jvms->has_method()) { 140 // Not a root compile. 141 const char* msg; 142 if (callee->intrinsic_candidate()) { 143 msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)"; 144 } else { 145 msg = is_virtual() ? "failed to inline (intrinsic, virtual), method not annotated" 146 : "failed to inline (intrinsic), method not annotated"; 147 } 148 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::FAILURE, msg); 149 C->inline_printer()->record(callee, jvms, InliningResult::FAILURE, msg); 150 } else { 151 // Root compile 152 ResourceMark rm; 153 stringStream msg_stream; 154 msg_stream.print("Did not generate intrinsic %s%s at bci:%d in", 155 vmIntrinsics::name_at(intrinsic_id()), 156 is_virtual() ? " (virtual)" : "", bci); 157 const char *msg = msg_stream.freeze(); 158 log_debug(jit, inlining)("%s", msg); 159 if (C->print_intrinsics() || C->print_inlining()) { 160 tty->print("%s", msg); 161 } 162 } 163 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed); 164 165 return nullptr; 166 } 167 168 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) { 169 LibraryCallKit kit(jvms, this); 170 Compile* C = kit.C; 171 int nodes = C->unique(); 172 _last_predicate = predicate; 173 #ifndef PRODUCT 174 assert(is_predicated() && predicate < predicates_count(), "sanity"); 175 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 176 char buf[1000]; 177 const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf)); 178 tty->print_cr("Predicate for intrinsic %s", str); 179 } 180 #endif 181 ciMethod* callee = kit.callee(); 182 const int bci = kit.bci(); 183 184 Node* slow_ctl = kit.try_to_predicate(predicate); 185 if (!kit.failing()) { 186 const char *inline_msg = is_virtual() ? "(intrinsic, virtual, predicate)" 187 : "(intrinsic, predicate)"; 188 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg); 189 C->inline_printer()->record(callee, jvms, InliningResult::SUCCESS, inline_msg); 190 191 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked); 192 if (C->log()) { 193 C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'", 194 vmIntrinsics::name_at(intrinsic_id()), 195 (is_virtual() ? " virtual='1'" : ""), 196 C->unique() - nodes); 197 } 198 return slow_ctl; // Could be null if the check folds. 199 } 200 201 // The intrinsic bailed out 202 if (jvms->has_method()) { 203 // Not a root compile. 204 const char* msg = "failed to generate predicate for intrinsic"; 205 CompileTask::print_inlining_ul(kit.callee(), jvms->depth() - 1, bci, InliningResult::FAILURE, msg); 206 C->inline_printer()->record(kit.callee(), jvms, InliningResult::FAILURE, msg); 207 } else { 208 // Root compile 209 ResourceMark rm; 210 stringStream msg_stream; 211 msg_stream.print("Did not generate intrinsic %s%s at bci:%d in", 212 vmIntrinsics::name_at(intrinsic_id()), 213 is_virtual() ? " (virtual)" : "", bci); 214 const char *msg = msg_stream.freeze(); 215 log_debug(jit, inlining)("%s", msg); 216 C->inline_printer()->record(kit.callee(), jvms, InliningResult::FAILURE, msg); 217 } 218 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed); 219 return nullptr; 220 } 221 222 bool LibraryCallKit::try_to_inline(int predicate) { 223 // Handle symbolic names for otherwise undistinguished boolean switches: 224 const bool is_store = true; 225 const bool is_compress = true; 226 const bool is_static = true; 227 const bool is_volatile = true; 228 229 if (!jvms()->has_method()) { 230 // Root JVMState has a null method. 231 assert(map()->memory()->Opcode() == Op_Parm, ""); 232 // Insert the memory aliasing node 233 set_all_memory(reset_memory()); 234 } 235 assert(merged_memory(), ""); 236 237 switch (intrinsic_id()) { 238 case vmIntrinsics::_hashCode: return inline_native_hashcode(intrinsic()->is_virtual(), !is_static); 239 case vmIntrinsics::_identityHashCode: return inline_native_hashcode(/*!virtual*/ false, is_static); 240 case vmIntrinsics::_getClass: return inline_native_getClass(); 241 242 case vmIntrinsics::_ceil: 243 case vmIntrinsics::_floor: 244 case vmIntrinsics::_rint: 245 case vmIntrinsics::_dsin: 246 case vmIntrinsics::_dcos: 247 case vmIntrinsics::_dtan: 248 case vmIntrinsics::_dsinh: 249 case vmIntrinsics::_dtanh: 250 case vmIntrinsics::_dcbrt: 251 case vmIntrinsics::_dabs: 252 case vmIntrinsics::_fabs: 253 case vmIntrinsics::_iabs: 254 case vmIntrinsics::_labs: 255 case vmIntrinsics::_datan2: 256 case vmIntrinsics::_dsqrt: 257 case vmIntrinsics::_dsqrt_strict: 258 case vmIntrinsics::_dexp: 259 case vmIntrinsics::_dlog: 260 case vmIntrinsics::_dlog10: 261 case vmIntrinsics::_dpow: 262 case vmIntrinsics::_dcopySign: 263 case vmIntrinsics::_fcopySign: 264 case vmIntrinsics::_dsignum: 265 case vmIntrinsics::_roundF: 266 case vmIntrinsics::_roundD: 267 case vmIntrinsics::_fsignum: return inline_math_native(intrinsic_id()); 268 269 case vmIntrinsics::_notify: 270 case vmIntrinsics::_notifyAll: 271 return inline_notify(intrinsic_id()); 272 273 case vmIntrinsics::_addExactI: return inline_math_addExactI(false /* add */); 274 case vmIntrinsics::_addExactL: return inline_math_addExactL(false /* add */); 275 case vmIntrinsics::_decrementExactI: return inline_math_subtractExactI(true /* decrement */); 276 case vmIntrinsics::_decrementExactL: return inline_math_subtractExactL(true /* decrement */); 277 case vmIntrinsics::_incrementExactI: return inline_math_addExactI(true /* increment */); 278 case vmIntrinsics::_incrementExactL: return inline_math_addExactL(true /* increment */); 279 case vmIntrinsics::_multiplyExactI: return inline_math_multiplyExactI(); 280 case vmIntrinsics::_multiplyExactL: return inline_math_multiplyExactL(); 281 case vmIntrinsics::_multiplyHigh: return inline_math_multiplyHigh(); 282 case vmIntrinsics::_unsignedMultiplyHigh: return inline_math_unsignedMultiplyHigh(); 283 case vmIntrinsics::_negateExactI: return inline_math_negateExactI(); 284 case vmIntrinsics::_negateExactL: return inline_math_negateExactL(); 285 case vmIntrinsics::_subtractExactI: return inline_math_subtractExactI(false /* subtract */); 286 case vmIntrinsics::_subtractExactL: return inline_math_subtractExactL(false /* subtract */); 287 288 case vmIntrinsics::_arraycopy: return inline_arraycopy(); 289 290 case vmIntrinsics::_arraySort: return inline_array_sort(); 291 case vmIntrinsics::_arrayPartition: return inline_array_partition(); 292 293 case vmIntrinsics::_compareToL: return inline_string_compareTo(StrIntrinsicNode::LL); 294 case vmIntrinsics::_compareToU: return inline_string_compareTo(StrIntrinsicNode::UU); 295 case vmIntrinsics::_compareToLU: return inline_string_compareTo(StrIntrinsicNode::LU); 296 case vmIntrinsics::_compareToUL: return inline_string_compareTo(StrIntrinsicNode::UL); 297 298 case vmIntrinsics::_indexOfL: return inline_string_indexOf(StrIntrinsicNode::LL); 299 case vmIntrinsics::_indexOfU: return inline_string_indexOf(StrIntrinsicNode::UU); 300 case vmIntrinsics::_indexOfUL: return inline_string_indexOf(StrIntrinsicNode::UL); 301 case vmIntrinsics::_indexOfIL: return inline_string_indexOfI(StrIntrinsicNode::LL); 302 case vmIntrinsics::_indexOfIU: return inline_string_indexOfI(StrIntrinsicNode::UU); 303 case vmIntrinsics::_indexOfIUL: return inline_string_indexOfI(StrIntrinsicNode::UL); 304 case vmIntrinsics::_indexOfU_char: return inline_string_indexOfChar(StrIntrinsicNode::U); 305 case vmIntrinsics::_indexOfL_char: return inline_string_indexOfChar(StrIntrinsicNode::L); 306 307 case vmIntrinsics::_equalsL: return inline_string_equals(StrIntrinsicNode::LL); 308 309 case vmIntrinsics::_vectorizedHashCode: return inline_vectorizedHashCode(); 310 311 case vmIntrinsics::_toBytesStringU: return inline_string_toBytesU(); 312 case vmIntrinsics::_getCharsStringU: return inline_string_getCharsU(); 313 case vmIntrinsics::_getCharStringU: return inline_string_char_access(!is_store); 314 case vmIntrinsics::_putCharStringU: return inline_string_char_access( is_store); 315 316 case vmIntrinsics::_compressStringC: 317 case vmIntrinsics::_compressStringB: return inline_string_copy( is_compress); 318 case vmIntrinsics::_inflateStringC: 319 case vmIntrinsics::_inflateStringB: return inline_string_copy(!is_compress); 320 321 case vmIntrinsics::_getReference: return inline_unsafe_access(!is_store, T_OBJECT, Relaxed, false); 322 case vmIntrinsics::_getBoolean: return inline_unsafe_access(!is_store, T_BOOLEAN, Relaxed, false); 323 case vmIntrinsics::_getByte: return inline_unsafe_access(!is_store, T_BYTE, Relaxed, false); 324 case vmIntrinsics::_getShort: return inline_unsafe_access(!is_store, T_SHORT, Relaxed, false); 325 case vmIntrinsics::_getChar: return inline_unsafe_access(!is_store, T_CHAR, Relaxed, false); 326 case vmIntrinsics::_getInt: return inline_unsafe_access(!is_store, T_INT, Relaxed, false); 327 case vmIntrinsics::_getLong: return inline_unsafe_access(!is_store, T_LONG, Relaxed, false); 328 case vmIntrinsics::_getFloat: return inline_unsafe_access(!is_store, T_FLOAT, Relaxed, false); 329 case vmIntrinsics::_getDouble: return inline_unsafe_access(!is_store, T_DOUBLE, Relaxed, false); 330 331 case vmIntrinsics::_putReference: return inline_unsafe_access( is_store, T_OBJECT, Relaxed, false); 332 case vmIntrinsics::_putBoolean: return inline_unsafe_access( is_store, T_BOOLEAN, Relaxed, false); 333 case vmIntrinsics::_putByte: return inline_unsafe_access( is_store, T_BYTE, Relaxed, false); 334 case vmIntrinsics::_putShort: return inline_unsafe_access( is_store, T_SHORT, Relaxed, false); 335 case vmIntrinsics::_putChar: return inline_unsafe_access( is_store, T_CHAR, Relaxed, false); 336 case vmIntrinsics::_putInt: return inline_unsafe_access( is_store, T_INT, Relaxed, false); 337 case vmIntrinsics::_putLong: return inline_unsafe_access( is_store, T_LONG, Relaxed, false); 338 case vmIntrinsics::_putFloat: return inline_unsafe_access( is_store, T_FLOAT, Relaxed, false); 339 case vmIntrinsics::_putDouble: return inline_unsafe_access( is_store, T_DOUBLE, Relaxed, false); 340 341 case vmIntrinsics::_getReferenceVolatile: return inline_unsafe_access(!is_store, T_OBJECT, Volatile, false); 342 case vmIntrinsics::_getBooleanVolatile: return inline_unsafe_access(!is_store, T_BOOLEAN, Volatile, false); 343 case vmIntrinsics::_getByteVolatile: return inline_unsafe_access(!is_store, T_BYTE, Volatile, false); 344 case vmIntrinsics::_getShortVolatile: return inline_unsafe_access(!is_store, T_SHORT, Volatile, false); 345 case vmIntrinsics::_getCharVolatile: return inline_unsafe_access(!is_store, T_CHAR, Volatile, false); 346 case vmIntrinsics::_getIntVolatile: return inline_unsafe_access(!is_store, T_INT, Volatile, false); 347 case vmIntrinsics::_getLongVolatile: return inline_unsafe_access(!is_store, T_LONG, Volatile, false); 348 case vmIntrinsics::_getFloatVolatile: return inline_unsafe_access(!is_store, T_FLOAT, Volatile, false); 349 case vmIntrinsics::_getDoubleVolatile: return inline_unsafe_access(!is_store, T_DOUBLE, Volatile, false); 350 351 case vmIntrinsics::_putReferenceVolatile: return inline_unsafe_access( is_store, T_OBJECT, Volatile, false); 352 case vmIntrinsics::_putBooleanVolatile: return inline_unsafe_access( is_store, T_BOOLEAN, Volatile, false); 353 case vmIntrinsics::_putByteVolatile: return inline_unsafe_access( is_store, T_BYTE, Volatile, false); 354 case vmIntrinsics::_putShortVolatile: return inline_unsafe_access( is_store, T_SHORT, Volatile, false); 355 case vmIntrinsics::_putCharVolatile: return inline_unsafe_access( is_store, T_CHAR, Volatile, false); 356 case vmIntrinsics::_putIntVolatile: return inline_unsafe_access( is_store, T_INT, Volatile, false); 357 case vmIntrinsics::_putLongVolatile: return inline_unsafe_access( is_store, T_LONG, Volatile, false); 358 case vmIntrinsics::_putFloatVolatile: return inline_unsafe_access( is_store, T_FLOAT, Volatile, false); 359 case vmIntrinsics::_putDoubleVolatile: return inline_unsafe_access( is_store, T_DOUBLE, Volatile, false); 360 361 case vmIntrinsics::_getShortUnaligned: return inline_unsafe_access(!is_store, T_SHORT, Relaxed, true); 362 case vmIntrinsics::_getCharUnaligned: return inline_unsafe_access(!is_store, T_CHAR, Relaxed, true); 363 case vmIntrinsics::_getIntUnaligned: return inline_unsafe_access(!is_store, T_INT, Relaxed, true); 364 case vmIntrinsics::_getLongUnaligned: return inline_unsafe_access(!is_store, T_LONG, Relaxed, true); 365 366 case vmIntrinsics::_putShortUnaligned: return inline_unsafe_access( is_store, T_SHORT, Relaxed, true); 367 case vmIntrinsics::_putCharUnaligned: return inline_unsafe_access( is_store, T_CHAR, Relaxed, true); 368 case vmIntrinsics::_putIntUnaligned: return inline_unsafe_access( is_store, T_INT, Relaxed, true); 369 case vmIntrinsics::_putLongUnaligned: return inline_unsafe_access( is_store, T_LONG, Relaxed, true); 370 371 case vmIntrinsics::_getReferenceAcquire: return inline_unsafe_access(!is_store, T_OBJECT, Acquire, false); 372 case vmIntrinsics::_getBooleanAcquire: return inline_unsafe_access(!is_store, T_BOOLEAN, Acquire, false); 373 case vmIntrinsics::_getByteAcquire: return inline_unsafe_access(!is_store, T_BYTE, Acquire, false); 374 case vmIntrinsics::_getShortAcquire: return inline_unsafe_access(!is_store, T_SHORT, Acquire, false); 375 case vmIntrinsics::_getCharAcquire: return inline_unsafe_access(!is_store, T_CHAR, Acquire, false); 376 case vmIntrinsics::_getIntAcquire: return inline_unsafe_access(!is_store, T_INT, Acquire, false); 377 case vmIntrinsics::_getLongAcquire: return inline_unsafe_access(!is_store, T_LONG, Acquire, false); 378 case vmIntrinsics::_getFloatAcquire: return inline_unsafe_access(!is_store, T_FLOAT, Acquire, false); 379 case vmIntrinsics::_getDoubleAcquire: return inline_unsafe_access(!is_store, T_DOUBLE, Acquire, false); 380 381 case vmIntrinsics::_putReferenceRelease: return inline_unsafe_access( is_store, T_OBJECT, Release, false); 382 case vmIntrinsics::_putBooleanRelease: return inline_unsafe_access( is_store, T_BOOLEAN, Release, false); 383 case vmIntrinsics::_putByteRelease: return inline_unsafe_access( is_store, T_BYTE, Release, false); 384 case vmIntrinsics::_putShortRelease: return inline_unsafe_access( is_store, T_SHORT, Release, false); 385 case vmIntrinsics::_putCharRelease: return inline_unsafe_access( is_store, T_CHAR, Release, false); 386 case vmIntrinsics::_putIntRelease: return inline_unsafe_access( is_store, T_INT, Release, false); 387 case vmIntrinsics::_putLongRelease: return inline_unsafe_access( is_store, T_LONG, Release, false); 388 case vmIntrinsics::_putFloatRelease: return inline_unsafe_access( is_store, T_FLOAT, Release, false); 389 case vmIntrinsics::_putDoubleRelease: return inline_unsafe_access( is_store, T_DOUBLE, Release, false); 390 391 case vmIntrinsics::_getReferenceOpaque: return inline_unsafe_access(!is_store, T_OBJECT, Opaque, false); 392 case vmIntrinsics::_getBooleanOpaque: return inline_unsafe_access(!is_store, T_BOOLEAN, Opaque, false); 393 case vmIntrinsics::_getByteOpaque: return inline_unsafe_access(!is_store, T_BYTE, Opaque, false); 394 case vmIntrinsics::_getShortOpaque: return inline_unsafe_access(!is_store, T_SHORT, Opaque, false); 395 case vmIntrinsics::_getCharOpaque: return inline_unsafe_access(!is_store, T_CHAR, Opaque, false); 396 case vmIntrinsics::_getIntOpaque: return inline_unsafe_access(!is_store, T_INT, Opaque, false); 397 case vmIntrinsics::_getLongOpaque: return inline_unsafe_access(!is_store, T_LONG, Opaque, false); 398 case vmIntrinsics::_getFloatOpaque: return inline_unsafe_access(!is_store, T_FLOAT, Opaque, false); 399 case vmIntrinsics::_getDoubleOpaque: return inline_unsafe_access(!is_store, T_DOUBLE, Opaque, false); 400 401 case vmIntrinsics::_putReferenceOpaque: return inline_unsafe_access( is_store, T_OBJECT, Opaque, false); 402 case vmIntrinsics::_putBooleanOpaque: return inline_unsafe_access( is_store, T_BOOLEAN, Opaque, false); 403 case vmIntrinsics::_putByteOpaque: return inline_unsafe_access( is_store, T_BYTE, Opaque, false); 404 case vmIntrinsics::_putShortOpaque: return inline_unsafe_access( is_store, T_SHORT, Opaque, false); 405 case vmIntrinsics::_putCharOpaque: return inline_unsafe_access( is_store, T_CHAR, Opaque, false); 406 case vmIntrinsics::_putIntOpaque: return inline_unsafe_access( is_store, T_INT, Opaque, false); 407 case vmIntrinsics::_putLongOpaque: return inline_unsafe_access( is_store, T_LONG, Opaque, false); 408 case vmIntrinsics::_putFloatOpaque: return inline_unsafe_access( is_store, T_FLOAT, Opaque, false); 409 case vmIntrinsics::_putDoubleOpaque: return inline_unsafe_access( is_store, T_DOUBLE, Opaque, false); 410 411 case vmIntrinsics::_compareAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap, Volatile); 412 case vmIntrinsics::_compareAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap, Volatile); 413 case vmIntrinsics::_compareAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap, Volatile); 414 case vmIntrinsics::_compareAndSetInt: return inline_unsafe_load_store(T_INT, LS_cmp_swap, Volatile); 415 case vmIntrinsics::_compareAndSetLong: return inline_unsafe_load_store(T_LONG, LS_cmp_swap, Volatile); 416 417 case vmIntrinsics::_weakCompareAndSetReferencePlain: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Relaxed); 418 case vmIntrinsics::_weakCompareAndSetReferenceAcquire: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Acquire); 419 case vmIntrinsics::_weakCompareAndSetReferenceRelease: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Release); 420 case vmIntrinsics::_weakCompareAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Volatile); 421 case vmIntrinsics::_weakCompareAndSetBytePlain: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Relaxed); 422 case vmIntrinsics::_weakCompareAndSetByteAcquire: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Acquire); 423 case vmIntrinsics::_weakCompareAndSetByteRelease: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Release); 424 case vmIntrinsics::_weakCompareAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Volatile); 425 case vmIntrinsics::_weakCompareAndSetShortPlain: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Relaxed); 426 case vmIntrinsics::_weakCompareAndSetShortAcquire: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Acquire); 427 case vmIntrinsics::_weakCompareAndSetShortRelease: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Release); 428 case vmIntrinsics::_weakCompareAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Volatile); 429 case vmIntrinsics::_weakCompareAndSetIntPlain: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Relaxed); 430 case vmIntrinsics::_weakCompareAndSetIntAcquire: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Acquire); 431 case vmIntrinsics::_weakCompareAndSetIntRelease: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Release); 432 case vmIntrinsics::_weakCompareAndSetInt: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Volatile); 433 case vmIntrinsics::_weakCompareAndSetLongPlain: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Relaxed); 434 case vmIntrinsics::_weakCompareAndSetLongAcquire: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Acquire); 435 case vmIntrinsics::_weakCompareAndSetLongRelease: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Release); 436 case vmIntrinsics::_weakCompareAndSetLong: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Volatile); 437 438 case vmIntrinsics::_compareAndExchangeReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Volatile); 439 case vmIntrinsics::_compareAndExchangeReferenceAcquire: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Acquire); 440 case vmIntrinsics::_compareAndExchangeReferenceRelease: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Release); 441 case vmIntrinsics::_compareAndExchangeByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Volatile); 442 case vmIntrinsics::_compareAndExchangeByteAcquire: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Acquire); 443 case vmIntrinsics::_compareAndExchangeByteRelease: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Release); 444 case vmIntrinsics::_compareAndExchangeShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Volatile); 445 case vmIntrinsics::_compareAndExchangeShortAcquire: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Acquire); 446 case vmIntrinsics::_compareAndExchangeShortRelease: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Release); 447 case vmIntrinsics::_compareAndExchangeInt: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Volatile); 448 case vmIntrinsics::_compareAndExchangeIntAcquire: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Acquire); 449 case vmIntrinsics::_compareAndExchangeIntRelease: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Release); 450 case vmIntrinsics::_compareAndExchangeLong: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Volatile); 451 case vmIntrinsics::_compareAndExchangeLongAcquire: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Acquire); 452 case vmIntrinsics::_compareAndExchangeLongRelease: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Release); 453 454 case vmIntrinsics::_getAndAddByte: return inline_unsafe_load_store(T_BYTE, LS_get_add, Volatile); 455 case vmIntrinsics::_getAndAddShort: return inline_unsafe_load_store(T_SHORT, LS_get_add, Volatile); 456 case vmIntrinsics::_getAndAddInt: return inline_unsafe_load_store(T_INT, LS_get_add, Volatile); 457 case vmIntrinsics::_getAndAddLong: return inline_unsafe_load_store(T_LONG, LS_get_add, Volatile); 458 459 case vmIntrinsics::_getAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_get_set, Volatile); 460 case vmIntrinsics::_getAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_get_set, Volatile); 461 case vmIntrinsics::_getAndSetInt: return inline_unsafe_load_store(T_INT, LS_get_set, Volatile); 462 case vmIntrinsics::_getAndSetLong: return inline_unsafe_load_store(T_LONG, LS_get_set, Volatile); 463 case vmIntrinsics::_getAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_get_set, Volatile); 464 465 case vmIntrinsics::_loadFence: 466 case vmIntrinsics::_storeFence: 467 case vmIntrinsics::_storeStoreFence: 468 case vmIntrinsics::_fullFence: return inline_unsafe_fence(intrinsic_id()); 469 470 case vmIntrinsics::_onSpinWait: return inline_onspinwait(); 471 472 case vmIntrinsics::_currentCarrierThread: return inline_native_currentCarrierThread(); 473 case vmIntrinsics::_currentThread: return inline_native_currentThread(); 474 case vmIntrinsics::_setCurrentThread: return inline_native_setCurrentThread(); 475 476 case vmIntrinsics::_scopedValueCache: return inline_native_scopedValueCache(); 477 case vmIntrinsics::_setScopedValueCache: return inline_native_setScopedValueCache(); 478 479 case vmIntrinsics::_Continuation_pin: return inline_native_Continuation_pinning(false); 480 case vmIntrinsics::_Continuation_unpin: return inline_native_Continuation_pinning(true); 481 482 #if INCLUDE_JVMTI 483 case vmIntrinsics::_notifyJvmtiVThreadStart: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_start()), 484 "notifyJvmtiStart", true, false); 485 case vmIntrinsics::_notifyJvmtiVThreadEnd: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_end()), 486 "notifyJvmtiEnd", false, true); 487 case vmIntrinsics::_notifyJvmtiVThreadMount: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_mount()), 488 "notifyJvmtiMount", false, false); 489 case vmIntrinsics::_notifyJvmtiVThreadUnmount: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_unmount()), 490 "notifyJvmtiUnmount", false, false); 491 case vmIntrinsics::_notifyJvmtiVThreadDisableSuspend: return inline_native_notify_jvmti_sync(); 492 #endif 493 494 #ifdef JFR_HAVE_INTRINSICS 495 case vmIntrinsics::_counterTime: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, JfrTime::time_function()), "counterTime"); 496 case vmIntrinsics::_getEventWriter: return inline_native_getEventWriter(); 497 case vmIntrinsics::_jvm_commit: return inline_native_jvm_commit(); 498 #endif 499 case vmIntrinsics::_currentTimeMillis: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis"); 500 case vmIntrinsics::_nanoTime: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime"); 501 case vmIntrinsics::_writeback0: return inline_unsafe_writeback0(); 502 case vmIntrinsics::_writebackPreSync0: return inline_unsafe_writebackSync0(true); 503 case vmIntrinsics::_writebackPostSync0: return inline_unsafe_writebackSync0(false); 504 case vmIntrinsics::_allocateInstance: return inline_unsafe_allocate(); 505 case vmIntrinsics::_copyMemory: return inline_unsafe_copyMemory(); 506 case vmIntrinsics::_setMemory: return inline_unsafe_setMemory(); 507 case vmIntrinsics::_getLength: return inline_native_getLength(); 508 case vmIntrinsics::_copyOf: return inline_array_copyOf(false); 509 case vmIntrinsics::_copyOfRange: return inline_array_copyOf(true); 510 case vmIntrinsics::_equalsB: return inline_array_equals(StrIntrinsicNode::LL); 511 case vmIntrinsics::_equalsC: return inline_array_equals(StrIntrinsicNode::UU); 512 case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex(T_INT); 513 case vmIntrinsics::_Preconditions_checkLongIndex: return inline_preconditions_checkIndex(T_LONG); 514 case vmIntrinsics::_clone: return inline_native_clone(intrinsic()->is_virtual()); 515 516 case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true); 517 case vmIntrinsics::_newArray: return inline_unsafe_newArray(false); 518 519 case vmIntrinsics::_isAssignableFrom: return inline_native_subtype_check(); 520 521 case vmIntrinsics::_isInstance: 522 case vmIntrinsics::_isHidden: 523 case vmIntrinsics::_getSuperclass: return inline_native_Class_query(intrinsic_id()); 524 525 case vmIntrinsics::_floatToRawIntBits: 526 case vmIntrinsics::_floatToIntBits: 527 case vmIntrinsics::_intBitsToFloat: 528 case vmIntrinsics::_doubleToRawLongBits: 529 case vmIntrinsics::_doubleToLongBits: 530 case vmIntrinsics::_longBitsToDouble: 531 case vmIntrinsics::_floatToFloat16: 532 case vmIntrinsics::_float16ToFloat: return inline_fp_conversions(intrinsic_id()); 533 case vmIntrinsics::_sqrt_float16: return inline_fp16_operations(intrinsic_id(), 1); 534 case vmIntrinsics::_fma_float16: return inline_fp16_operations(intrinsic_id(), 3); 535 case vmIntrinsics::_floatIsFinite: 536 case vmIntrinsics::_floatIsInfinite: 537 case vmIntrinsics::_doubleIsFinite: 538 case vmIntrinsics::_doubleIsInfinite: return inline_fp_range_check(intrinsic_id()); 539 540 case vmIntrinsics::_numberOfLeadingZeros_i: 541 case vmIntrinsics::_numberOfLeadingZeros_l: 542 case vmIntrinsics::_numberOfTrailingZeros_i: 543 case vmIntrinsics::_numberOfTrailingZeros_l: 544 case vmIntrinsics::_bitCount_i: 545 case vmIntrinsics::_bitCount_l: 546 case vmIntrinsics::_reverse_i: 547 case vmIntrinsics::_reverse_l: 548 case vmIntrinsics::_reverseBytes_i: 549 case vmIntrinsics::_reverseBytes_l: 550 case vmIntrinsics::_reverseBytes_s: 551 case vmIntrinsics::_reverseBytes_c: return inline_number_methods(intrinsic_id()); 552 553 case vmIntrinsics::_compress_i: 554 case vmIntrinsics::_compress_l: 555 case vmIntrinsics::_expand_i: 556 case vmIntrinsics::_expand_l: return inline_bitshuffle_methods(intrinsic_id()); 557 558 case vmIntrinsics::_compareUnsigned_i: 559 case vmIntrinsics::_compareUnsigned_l: return inline_compare_unsigned(intrinsic_id()); 560 561 case vmIntrinsics::_divideUnsigned_i: 562 case vmIntrinsics::_divideUnsigned_l: 563 case vmIntrinsics::_remainderUnsigned_i: 564 case vmIntrinsics::_remainderUnsigned_l: return inline_divmod_methods(intrinsic_id()); 565 566 case vmIntrinsics::_getCallerClass: return inline_native_Reflection_getCallerClass(); 567 568 case vmIntrinsics::_Reference_get0: return inline_reference_get0(); 569 case vmIntrinsics::_Reference_refersTo0: return inline_reference_refersTo0(false); 570 case vmIntrinsics::_PhantomReference_refersTo0: return inline_reference_refersTo0(true); 571 case vmIntrinsics::_Reference_clear0: return inline_reference_clear0(false); 572 case vmIntrinsics::_PhantomReference_clear0: return inline_reference_clear0(true); 573 574 case vmIntrinsics::_Class_cast: return inline_Class_cast(); 575 576 case vmIntrinsics::_aescrypt_encryptBlock: 577 case vmIntrinsics::_aescrypt_decryptBlock: return inline_aescrypt_Block(intrinsic_id()); 578 579 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 580 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 581 return inline_cipherBlockChaining_AESCrypt(intrinsic_id()); 582 583 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 584 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 585 return inline_electronicCodeBook_AESCrypt(intrinsic_id()); 586 587 case vmIntrinsics::_counterMode_AESCrypt: 588 return inline_counterMode_AESCrypt(intrinsic_id()); 589 590 case vmIntrinsics::_galoisCounterMode_AESCrypt: 591 return inline_galoisCounterMode_AESCrypt(); 592 593 case vmIntrinsics::_md5_implCompress: 594 case vmIntrinsics::_sha_implCompress: 595 case vmIntrinsics::_sha2_implCompress: 596 case vmIntrinsics::_sha5_implCompress: 597 case vmIntrinsics::_sha3_implCompress: 598 return inline_digestBase_implCompress(intrinsic_id()); 599 case vmIntrinsics::_double_keccak: 600 return inline_double_keccak(); 601 602 case vmIntrinsics::_digestBase_implCompressMB: 603 return inline_digestBase_implCompressMB(predicate); 604 605 case vmIntrinsics::_multiplyToLen: 606 return inline_multiplyToLen(); 607 608 case vmIntrinsics::_squareToLen: 609 return inline_squareToLen(); 610 611 case vmIntrinsics::_mulAdd: 612 return inline_mulAdd(); 613 614 case vmIntrinsics::_montgomeryMultiply: 615 return inline_montgomeryMultiply(); 616 case vmIntrinsics::_montgomerySquare: 617 return inline_montgomerySquare(); 618 619 case vmIntrinsics::_bigIntegerRightShiftWorker: 620 return inline_bigIntegerShift(true); 621 case vmIntrinsics::_bigIntegerLeftShiftWorker: 622 return inline_bigIntegerShift(false); 623 624 case vmIntrinsics::_vectorizedMismatch: 625 return inline_vectorizedMismatch(); 626 627 case vmIntrinsics::_ghash_processBlocks: 628 return inline_ghash_processBlocks(); 629 case vmIntrinsics::_chacha20Block: 630 return inline_chacha20Block(); 631 case vmIntrinsics::_kyberNtt: 632 return inline_kyberNtt(); 633 case vmIntrinsics::_kyberInverseNtt: 634 return inline_kyberInverseNtt(); 635 case vmIntrinsics::_kyberNttMult: 636 return inline_kyberNttMult(); 637 case vmIntrinsics::_kyberAddPoly_2: 638 return inline_kyberAddPoly_2(); 639 case vmIntrinsics::_kyberAddPoly_3: 640 return inline_kyberAddPoly_3(); 641 case vmIntrinsics::_kyber12To16: 642 return inline_kyber12To16(); 643 case vmIntrinsics::_kyberBarrettReduce: 644 return inline_kyberBarrettReduce(); 645 case vmIntrinsics::_dilithiumAlmostNtt: 646 return inline_dilithiumAlmostNtt(); 647 case vmIntrinsics::_dilithiumAlmostInverseNtt: 648 return inline_dilithiumAlmostInverseNtt(); 649 case vmIntrinsics::_dilithiumNttMult: 650 return inline_dilithiumNttMult(); 651 case vmIntrinsics::_dilithiumMontMulByConstant: 652 return inline_dilithiumMontMulByConstant(); 653 case vmIntrinsics::_dilithiumDecomposePoly: 654 return inline_dilithiumDecomposePoly(); 655 case vmIntrinsics::_base64_encodeBlock: 656 return inline_base64_encodeBlock(); 657 case vmIntrinsics::_base64_decodeBlock: 658 return inline_base64_decodeBlock(); 659 case vmIntrinsics::_poly1305_processBlocks: 660 return inline_poly1305_processBlocks(); 661 case vmIntrinsics::_intpoly_montgomeryMult_P256: 662 return inline_intpoly_montgomeryMult_P256(); 663 case vmIntrinsics::_intpoly_assign: 664 return inline_intpoly_assign(); 665 case vmIntrinsics::_encodeISOArray: 666 case vmIntrinsics::_encodeByteISOArray: 667 return inline_encodeISOArray(false); 668 case vmIntrinsics::_encodeAsciiArray: 669 return inline_encodeISOArray(true); 670 671 case vmIntrinsics::_updateCRC32: 672 return inline_updateCRC32(); 673 case vmIntrinsics::_updateBytesCRC32: 674 return inline_updateBytesCRC32(); 675 case vmIntrinsics::_updateByteBufferCRC32: 676 return inline_updateByteBufferCRC32(); 677 678 case vmIntrinsics::_updateBytesCRC32C: 679 return inline_updateBytesCRC32C(); 680 case vmIntrinsics::_updateDirectByteBufferCRC32C: 681 return inline_updateDirectByteBufferCRC32C(); 682 683 case vmIntrinsics::_updateBytesAdler32: 684 return inline_updateBytesAdler32(); 685 case vmIntrinsics::_updateByteBufferAdler32: 686 return inline_updateByteBufferAdler32(); 687 688 case vmIntrinsics::_profileBoolean: 689 return inline_profileBoolean(); 690 case vmIntrinsics::_isCompileConstant: 691 return inline_isCompileConstant(); 692 693 case vmIntrinsics::_countPositives: 694 return inline_countPositives(); 695 696 case vmIntrinsics::_fmaD: 697 case vmIntrinsics::_fmaF: 698 return inline_fma(intrinsic_id()); 699 700 case vmIntrinsics::_isDigit: 701 case vmIntrinsics::_isLowerCase: 702 case vmIntrinsics::_isUpperCase: 703 case vmIntrinsics::_isWhitespace: 704 return inline_character_compare(intrinsic_id()); 705 706 case vmIntrinsics::_min: 707 case vmIntrinsics::_max: 708 case vmIntrinsics::_min_strict: 709 case vmIntrinsics::_max_strict: 710 case vmIntrinsics::_minL: 711 case vmIntrinsics::_maxL: 712 case vmIntrinsics::_minF: 713 case vmIntrinsics::_maxF: 714 case vmIntrinsics::_minD: 715 case vmIntrinsics::_maxD: 716 case vmIntrinsics::_minF_strict: 717 case vmIntrinsics::_maxF_strict: 718 case vmIntrinsics::_minD_strict: 719 case vmIntrinsics::_maxD_strict: 720 return inline_min_max(intrinsic_id()); 721 722 case vmIntrinsics::_VectorUnaryOp: 723 return inline_vector_nary_operation(1); 724 case vmIntrinsics::_VectorBinaryOp: 725 return inline_vector_nary_operation(2); 726 case vmIntrinsics::_VectorUnaryLibOp: 727 return inline_vector_call(1); 728 case vmIntrinsics::_VectorBinaryLibOp: 729 return inline_vector_call(2); 730 case vmIntrinsics::_VectorTernaryOp: 731 return inline_vector_nary_operation(3); 732 case vmIntrinsics::_VectorFromBitsCoerced: 733 return inline_vector_frombits_coerced(); 734 case vmIntrinsics::_VectorMaskOp: 735 return inline_vector_mask_operation(); 736 case vmIntrinsics::_VectorLoadOp: 737 return inline_vector_mem_operation(/*is_store=*/false); 738 case vmIntrinsics::_VectorLoadMaskedOp: 739 return inline_vector_mem_masked_operation(/*is_store*/false); 740 case vmIntrinsics::_VectorStoreOp: 741 return inline_vector_mem_operation(/*is_store=*/true); 742 case vmIntrinsics::_VectorStoreMaskedOp: 743 return inline_vector_mem_masked_operation(/*is_store=*/true); 744 case vmIntrinsics::_VectorGatherOp: 745 return inline_vector_gather_scatter(/*is_scatter*/ false); 746 case vmIntrinsics::_VectorScatterOp: 747 return inline_vector_gather_scatter(/*is_scatter*/ true); 748 case vmIntrinsics::_VectorReductionCoerced: 749 return inline_vector_reduction(); 750 case vmIntrinsics::_VectorTest: 751 return inline_vector_test(); 752 case vmIntrinsics::_VectorBlend: 753 return inline_vector_blend(); 754 case vmIntrinsics::_VectorRearrange: 755 return inline_vector_rearrange(); 756 case vmIntrinsics::_VectorSelectFrom: 757 return inline_vector_select_from(); 758 case vmIntrinsics::_VectorCompare: 759 return inline_vector_compare(); 760 case vmIntrinsics::_VectorBroadcastInt: 761 return inline_vector_broadcast_int(); 762 case vmIntrinsics::_VectorConvert: 763 return inline_vector_convert(); 764 case vmIntrinsics::_VectorInsert: 765 return inline_vector_insert(); 766 case vmIntrinsics::_VectorExtract: 767 return inline_vector_extract(); 768 case vmIntrinsics::_VectorCompressExpand: 769 return inline_vector_compress_expand(); 770 case vmIntrinsics::_VectorSelectFromTwoVectorOp: 771 return inline_vector_select_from_two_vectors(); 772 case vmIntrinsics::_IndexVector: 773 return inline_index_vector(); 774 case vmIntrinsics::_IndexPartiallyInUpperRange: 775 return inline_index_partially_in_upper_range(); 776 777 case vmIntrinsics::_getObjectSize: 778 return inline_getObjectSize(); 779 780 case vmIntrinsics::_blackhole: 781 return inline_blackhole(); 782 783 default: 784 // If you get here, it may be that someone has added a new intrinsic 785 // to the list in vmIntrinsics.hpp without implementing it here. 786 #ifndef PRODUCT 787 if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) { 788 tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)", 789 vmIntrinsics::name_at(intrinsic_id()), vmIntrinsics::as_int(intrinsic_id())); 790 } 791 #endif 792 return false; 793 } 794 } 795 796 Node* LibraryCallKit::try_to_predicate(int predicate) { 797 if (!jvms()->has_method()) { 798 // Root JVMState has a null method. 799 assert(map()->memory()->Opcode() == Op_Parm, ""); 800 // Insert the memory aliasing node 801 set_all_memory(reset_memory()); 802 } 803 assert(merged_memory(), ""); 804 805 switch (intrinsic_id()) { 806 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 807 return inline_cipherBlockChaining_AESCrypt_predicate(false); 808 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 809 return inline_cipherBlockChaining_AESCrypt_predicate(true); 810 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 811 return inline_electronicCodeBook_AESCrypt_predicate(false); 812 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 813 return inline_electronicCodeBook_AESCrypt_predicate(true); 814 case vmIntrinsics::_counterMode_AESCrypt: 815 return inline_counterMode_AESCrypt_predicate(); 816 case vmIntrinsics::_digestBase_implCompressMB: 817 return inline_digestBase_implCompressMB_predicate(predicate); 818 case vmIntrinsics::_galoisCounterMode_AESCrypt: 819 return inline_galoisCounterMode_AESCrypt_predicate(); 820 821 default: 822 // If you get here, it may be that someone has added a new intrinsic 823 // to the list in vmIntrinsics.hpp without implementing it here. 824 #ifndef PRODUCT 825 if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) { 826 tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)", 827 vmIntrinsics::name_at(intrinsic_id()), vmIntrinsics::as_int(intrinsic_id())); 828 } 829 #endif 830 Node* slow_ctl = control(); 831 set_control(top()); // No fast path intrinsic 832 return slow_ctl; 833 } 834 } 835 836 //------------------------------set_result------------------------------- 837 // Helper function for finishing intrinsics. 838 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) { 839 record_for_igvn(region); 840 set_control(_gvn.transform(region)); 841 set_result( _gvn.transform(value)); 842 assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity"); 843 } 844 845 //------------------------------generate_guard--------------------------- 846 // Helper function for generating guarded fast-slow graph structures. 847 // The given 'test', if true, guards a slow path. If the test fails 848 // then a fast path can be taken. (We generally hope it fails.) 849 // In all cases, GraphKit::control() is updated to the fast path. 850 // The returned value represents the control for the slow path. 851 // The return value is never 'top'; it is either a valid control 852 // or null if it is obvious that the slow path can never be taken. 853 // Also, if region and the slow control are not null, the slow edge 854 // is appended to the region. 855 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) { 856 if (stopped()) { 857 // Already short circuited. 858 return nullptr; 859 } 860 861 // Build an if node and its projections. 862 // If test is true we take the slow path, which we assume is uncommon. 863 if (_gvn.type(test) == TypeInt::ZERO) { 864 // The slow branch is never taken. No need to build this guard. 865 return nullptr; 866 } 867 868 IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN); 869 870 Node* if_slow = _gvn.transform(new IfTrueNode(iff)); 871 if (if_slow == top()) { 872 // The slow branch is never taken. No need to build this guard. 873 return nullptr; 874 } 875 876 if (region != nullptr) 877 region->add_req(if_slow); 878 879 Node* if_fast = _gvn.transform(new IfFalseNode(iff)); 880 set_control(if_fast); 881 882 return if_slow; 883 } 884 885 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) { 886 return generate_guard(test, region, PROB_UNLIKELY_MAG(3)); 887 } 888 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) { 889 return generate_guard(test, region, PROB_FAIR); 890 } 891 892 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region, 893 Node* *pos_index) { 894 if (stopped()) 895 return nullptr; // already stopped 896 if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint] 897 return nullptr; // index is already adequately typed 898 Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0))); 899 Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt)); 900 Node* is_neg = generate_guard(bol_lt, region, PROB_MIN); 901 if (is_neg != nullptr && pos_index != nullptr) { 902 // Emulate effect of Parse::adjust_map_after_if. 903 Node* ccast = new CastIINode(control(), index, TypeInt::POS); 904 (*pos_index) = _gvn.transform(ccast); 905 } 906 return is_neg; 907 } 908 909 // Make sure that 'position' is a valid limit index, in [0..length]. 910 // There are two equivalent plans for checking this: 911 // A. (offset + copyLength) unsigned<= arrayLength 912 // B. offset <= (arrayLength - copyLength) 913 // We require that all of the values above, except for the sum and 914 // difference, are already known to be non-negative. 915 // Plan A is robust in the face of overflow, if offset and copyLength 916 // are both hugely positive. 917 // 918 // Plan B is less direct and intuitive, but it does not overflow at 919 // all, since the difference of two non-negatives is always 920 // representable. Whenever Java methods must perform the equivalent 921 // check they generally use Plan B instead of Plan A. 922 // For the moment we use Plan A. 923 inline Node* LibraryCallKit::generate_limit_guard(Node* offset, 924 Node* subseq_length, 925 Node* array_length, 926 RegionNode* region) { 927 if (stopped()) 928 return nullptr; // already stopped 929 bool zero_offset = _gvn.type(offset) == TypeInt::ZERO; 930 if (zero_offset && subseq_length->eqv_uncast(array_length)) 931 return nullptr; // common case of whole-array copy 932 Node* last = subseq_length; 933 if (!zero_offset) // last += offset 934 last = _gvn.transform(new AddINode(last, offset)); 935 Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last)); 936 Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt)); 937 Node* is_over = generate_guard(bol_lt, region, PROB_MIN); 938 return is_over; 939 } 940 941 // Emit range checks for the given String.value byte array 942 void LibraryCallKit::generate_string_range_check(Node* array, 943 Node* offset, 944 Node* count, 945 bool char_count, 946 bool halt_on_oob) { 947 if (stopped()) { 948 return; // already stopped 949 } 950 RegionNode* bailout = new RegionNode(1); 951 record_for_igvn(bailout); 952 if (char_count) { 953 // Convert char count to byte count 954 count = _gvn.transform(new LShiftINode(count, intcon(1))); 955 } 956 957 // Offset and count must not be negative 958 generate_negative_guard(offset, bailout); 959 generate_negative_guard(count, bailout); 960 // Offset + count must not exceed length of array 961 generate_limit_guard(offset, count, load_array_length(array), bailout); 962 963 if (bailout->req() > 1) { 964 if (halt_on_oob) { 965 bailout = _gvn.transform(bailout)->as_Region(); 966 Node* frame = _gvn.transform(new ParmNode(C->start(), TypeFunc::FramePtr)); 967 Node* halt = _gvn.transform(new HaltNode(bailout, frame, "unexpected guard failure in intrinsic")); 968 C->root()->add_req(halt); 969 } else { 970 PreserveJVMState pjvms(this); 971 set_control(_gvn.transform(bailout)); 972 uncommon_trap(Deoptimization::Reason_intrinsic, 973 Deoptimization::Action_maybe_recompile); 974 } 975 } 976 } 977 978 Node* LibraryCallKit::current_thread_helper(Node*& tls_output, ByteSize handle_offset, 979 bool is_immutable) { 980 ciKlass* thread_klass = env()->Thread_klass(); 981 const Type* thread_type 982 = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull); 983 984 Node* thread = _gvn.transform(new ThreadLocalNode()); 985 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(handle_offset)); 986 tls_output = thread; 987 988 Node* thread_obj_handle 989 = (is_immutable 990 ? LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(), 991 TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered) 992 : make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered)); 993 thread_obj_handle = _gvn.transform(thread_obj_handle); 994 995 DecoratorSet decorators = IN_NATIVE; 996 if (is_immutable) { 997 decorators |= C2_IMMUTABLE_MEMORY; 998 } 999 return access_load(thread_obj_handle, thread_type, T_OBJECT, decorators); 1000 } 1001 1002 //--------------------------generate_current_thread-------------------- 1003 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) { 1004 return current_thread_helper(tls_output, JavaThread::threadObj_offset(), 1005 /*is_immutable*/false); 1006 } 1007 1008 //--------------------------generate_virtual_thread-------------------- 1009 Node* LibraryCallKit::generate_virtual_thread(Node* tls_output) { 1010 return current_thread_helper(tls_output, JavaThread::vthread_offset(), 1011 !C->method()->changes_current_thread()); 1012 } 1013 1014 //------------------------------make_string_method_node------------------------ 1015 // Helper method for String intrinsic functions. This version is called with 1016 // str1 and str2 pointing to byte[] nodes containing Latin1 or UTF16 encoded 1017 // characters (depending on 'is_byte'). cnt1 and cnt2 are pointing to Int nodes 1018 // containing the lengths of str1 and str2. 1019 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae) { 1020 Node* result = nullptr; 1021 switch (opcode) { 1022 case Op_StrIndexOf: 1023 result = new StrIndexOfNode(control(), memory(TypeAryPtr::BYTES), 1024 str1_start, cnt1, str2_start, cnt2, ae); 1025 break; 1026 case Op_StrComp: 1027 result = new StrCompNode(control(), memory(TypeAryPtr::BYTES), 1028 str1_start, cnt1, str2_start, cnt2, ae); 1029 break; 1030 case Op_StrEquals: 1031 // We already know that cnt1 == cnt2 here (checked in 'inline_string_equals'). 1032 // Use the constant length if there is one because optimized match rule may exist. 1033 result = new StrEqualsNode(control(), memory(TypeAryPtr::BYTES), 1034 str1_start, str2_start, cnt2->is_Con() ? cnt2 : cnt1, ae); 1035 break; 1036 default: 1037 ShouldNotReachHere(); 1038 return nullptr; 1039 } 1040 1041 // All these intrinsics have checks. 1042 C->set_has_split_ifs(true); // Has chance for split-if optimization 1043 clear_upper_avx(); 1044 1045 return _gvn.transform(result); 1046 } 1047 1048 //------------------------------inline_string_compareTo------------------------ 1049 bool LibraryCallKit::inline_string_compareTo(StrIntrinsicNode::ArgEnc ae) { 1050 Node* arg1 = argument(0); 1051 Node* arg2 = argument(1); 1052 1053 arg1 = must_be_not_null(arg1, true); 1054 arg2 = must_be_not_null(arg2, true); 1055 1056 // Get start addr and length of first argument 1057 Node* arg1_start = array_element_address(arg1, intcon(0), T_BYTE); 1058 Node* arg1_cnt = load_array_length(arg1); 1059 1060 // Get start addr and length of second argument 1061 Node* arg2_start = array_element_address(arg2, intcon(0), T_BYTE); 1062 Node* arg2_cnt = load_array_length(arg2); 1063 1064 Node* result = make_string_method_node(Op_StrComp, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae); 1065 set_result(result); 1066 return true; 1067 } 1068 1069 //------------------------------inline_string_equals------------------------ 1070 bool LibraryCallKit::inline_string_equals(StrIntrinsicNode::ArgEnc ae) { 1071 Node* arg1 = argument(0); 1072 Node* arg2 = argument(1); 1073 1074 // paths (plus control) merge 1075 RegionNode* region = new RegionNode(3); 1076 Node* phi = new PhiNode(region, TypeInt::BOOL); 1077 1078 if (!stopped()) { 1079 1080 arg1 = must_be_not_null(arg1, true); 1081 arg2 = must_be_not_null(arg2, true); 1082 1083 // Get start addr and length of first argument 1084 Node* arg1_start = array_element_address(arg1, intcon(0), T_BYTE); 1085 Node* arg1_cnt = load_array_length(arg1); 1086 1087 // Get start addr and length of second argument 1088 Node* arg2_start = array_element_address(arg2, intcon(0), T_BYTE); 1089 Node* arg2_cnt = load_array_length(arg2); 1090 1091 // Check for arg1_cnt != arg2_cnt 1092 Node* cmp = _gvn.transform(new CmpINode(arg1_cnt, arg2_cnt)); 1093 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne)); 1094 Node* if_ne = generate_slow_guard(bol, nullptr); 1095 if (if_ne != nullptr) { 1096 phi->init_req(2, intcon(0)); 1097 region->init_req(2, if_ne); 1098 } 1099 1100 // Check for count == 0 is done by assembler code for StrEquals. 1101 1102 if (!stopped()) { 1103 Node* equals = make_string_method_node(Op_StrEquals, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae); 1104 phi->init_req(1, equals); 1105 region->init_req(1, control()); 1106 } 1107 } 1108 1109 // post merge 1110 set_control(_gvn.transform(region)); 1111 record_for_igvn(region); 1112 1113 set_result(_gvn.transform(phi)); 1114 return true; 1115 } 1116 1117 //------------------------------inline_array_equals---------------------------- 1118 bool LibraryCallKit::inline_array_equals(StrIntrinsicNode::ArgEnc ae) { 1119 assert(ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::LL, "unsupported array types"); 1120 Node* arg1 = argument(0); 1121 Node* arg2 = argument(1); 1122 1123 const TypeAryPtr* mtype = (ae == StrIntrinsicNode::UU) ? TypeAryPtr::CHARS : TypeAryPtr::BYTES; 1124 set_result(_gvn.transform(new AryEqNode(control(), memory(mtype), arg1, arg2, ae))); 1125 clear_upper_avx(); 1126 1127 return true; 1128 } 1129 1130 1131 //------------------------------inline_countPositives------------------------------ 1132 // int java.lang.StringCoding#countPositives0(byte[] ba, int off, int len) 1133 bool LibraryCallKit::inline_countPositives() { 1134 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1135 return false; 1136 } 1137 1138 assert(callee()->signature()->size() == 3, "countPositives has 3 parameters"); 1139 // no receiver since it is static method 1140 Node* ba = argument(0); 1141 Node* offset = argument(1); 1142 Node* len = argument(2); 1143 1144 if (VerifyIntrinsicChecks) { 1145 ba = must_be_not_null(ba, true); 1146 generate_string_range_check(ba, offset, len, false, true); 1147 if (stopped()) { 1148 return true; 1149 } 1150 } 1151 1152 Node* ba_start = array_element_address(ba, offset, T_BYTE); 1153 Node* result = new CountPositivesNode(control(), memory(TypeAryPtr::BYTES), ba_start, len); 1154 set_result(_gvn.transform(result)); 1155 clear_upper_avx(); 1156 return true; 1157 } 1158 1159 bool LibraryCallKit::inline_preconditions_checkIndex(BasicType bt) { 1160 Node* index = argument(0); 1161 Node* length = bt == T_INT ? argument(1) : argument(2); 1162 if (too_many_traps(Deoptimization::Reason_intrinsic) || too_many_traps(Deoptimization::Reason_range_check)) { 1163 return false; 1164 } 1165 1166 // check that length is positive 1167 Node* len_pos_cmp = _gvn.transform(CmpNode::make(length, integercon(0, bt), bt)); 1168 Node* len_pos_bol = _gvn.transform(new BoolNode(len_pos_cmp, BoolTest::ge)); 1169 1170 { 1171 BuildCutout unless(this, len_pos_bol, PROB_MAX); 1172 uncommon_trap(Deoptimization::Reason_intrinsic, 1173 Deoptimization::Action_make_not_entrant); 1174 } 1175 1176 if (stopped()) { 1177 // Length is known to be always negative during compilation and the IR graph so far constructed is good so return success 1178 return true; 1179 } 1180 1181 // length is now known positive, add a cast node to make this explicit 1182 jlong upper_bound = _gvn.type(length)->is_integer(bt)->hi_as_long(); 1183 Node* casted_length = ConstraintCastNode::make_cast_for_basic_type( 1184 control(), length, TypeInteger::make(0, upper_bound, Type::WidenMax, bt), 1185 ConstraintCastNode::RegularDependency, bt); 1186 casted_length = _gvn.transform(casted_length); 1187 replace_in_map(length, casted_length); 1188 length = casted_length; 1189 1190 // Use an unsigned comparison for the range check itself 1191 Node* rc_cmp = _gvn.transform(CmpNode::make(index, length, bt, true)); 1192 BoolTest::mask btest = BoolTest::lt; 1193 Node* rc_bool = _gvn.transform(new BoolNode(rc_cmp, btest)); 1194 RangeCheckNode* rc = new RangeCheckNode(control(), rc_bool, PROB_MAX, COUNT_UNKNOWN); 1195 _gvn.set_type(rc, rc->Value(&_gvn)); 1196 if (!rc_bool->is_Con()) { 1197 record_for_igvn(rc); 1198 } 1199 set_control(_gvn.transform(new IfTrueNode(rc))); 1200 { 1201 PreserveJVMState pjvms(this); 1202 set_control(_gvn.transform(new IfFalseNode(rc))); 1203 uncommon_trap(Deoptimization::Reason_range_check, 1204 Deoptimization::Action_make_not_entrant); 1205 } 1206 1207 if (stopped()) { 1208 // Range check is known to always fail during compilation and the IR graph so far constructed is good so return success 1209 return true; 1210 } 1211 1212 // index is now known to be >= 0 and < length, cast it 1213 Node* result = ConstraintCastNode::make_cast_for_basic_type( 1214 control(), index, TypeInteger::make(0, upper_bound, Type::WidenMax, bt), 1215 ConstraintCastNode::RegularDependency, bt); 1216 result = _gvn.transform(result); 1217 set_result(result); 1218 replace_in_map(index, result); 1219 return true; 1220 } 1221 1222 //------------------------------inline_string_indexOf------------------------ 1223 bool LibraryCallKit::inline_string_indexOf(StrIntrinsicNode::ArgEnc ae) { 1224 if (!Matcher::match_rule_supported(Op_StrIndexOf)) { 1225 return false; 1226 } 1227 Node* src = argument(0); 1228 Node* tgt = argument(1); 1229 1230 // Make the merge point 1231 RegionNode* result_rgn = new RegionNode(4); 1232 Node* result_phi = new PhiNode(result_rgn, TypeInt::INT); 1233 1234 src = must_be_not_null(src, true); 1235 tgt = must_be_not_null(tgt, true); 1236 1237 // Get start addr and length of source string 1238 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 1239 Node* src_count = load_array_length(src); 1240 1241 // Get start addr and length of substring 1242 Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE); 1243 Node* tgt_count = load_array_length(tgt); 1244 1245 Node* result = nullptr; 1246 bool call_opt_stub = (StubRoutines::_string_indexof_array[ae] != nullptr); 1247 1248 if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) { 1249 // Divide src size by 2 if String is UTF16 encoded 1250 src_count = _gvn.transform(new RShiftINode(src_count, intcon(1))); 1251 } 1252 if (ae == StrIntrinsicNode::UU) { 1253 // Divide substring size by 2 if String is UTF16 encoded 1254 tgt_count = _gvn.transform(new RShiftINode(tgt_count, intcon(1))); 1255 } 1256 1257 if (call_opt_stub) { 1258 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::string_IndexOf_Type(), 1259 StubRoutines::_string_indexof_array[ae], 1260 "stringIndexOf", TypePtr::BOTTOM, src_start, 1261 src_count, tgt_start, tgt_count); 1262 result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 1263 } else { 1264 result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, 1265 result_rgn, result_phi, ae); 1266 } 1267 if (result != nullptr) { 1268 result_phi->init_req(3, result); 1269 result_rgn->init_req(3, control()); 1270 } 1271 set_control(_gvn.transform(result_rgn)); 1272 record_for_igvn(result_rgn); 1273 set_result(_gvn.transform(result_phi)); 1274 1275 return true; 1276 } 1277 1278 //-----------------------------inline_string_indexOfI----------------------- 1279 bool LibraryCallKit::inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae) { 1280 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1281 return false; 1282 } 1283 if (!Matcher::match_rule_supported(Op_StrIndexOf)) { 1284 return false; 1285 } 1286 1287 assert(callee()->signature()->size() == 5, "String.indexOf() has 5 arguments"); 1288 Node* src = argument(0); // byte[] 1289 Node* src_count = argument(1); // char count 1290 Node* tgt = argument(2); // byte[] 1291 Node* tgt_count = argument(3); // char count 1292 Node* from_index = argument(4); // char index 1293 1294 src = must_be_not_null(src, true); 1295 tgt = must_be_not_null(tgt, true); 1296 1297 // Multiply byte array index by 2 if String is UTF16 encoded 1298 Node* src_offset = (ae == StrIntrinsicNode::LL) ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1))); 1299 src_count = _gvn.transform(new SubINode(src_count, from_index)); 1300 Node* src_start = array_element_address(src, src_offset, T_BYTE); 1301 Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE); 1302 1303 // Range checks 1304 generate_string_range_check(src, src_offset, src_count, ae != StrIntrinsicNode::LL); 1305 generate_string_range_check(tgt, intcon(0), tgt_count, ae == StrIntrinsicNode::UU); 1306 if (stopped()) { 1307 return true; 1308 } 1309 1310 RegionNode* region = new RegionNode(5); 1311 Node* phi = new PhiNode(region, TypeInt::INT); 1312 Node* result = nullptr; 1313 1314 bool call_opt_stub = (StubRoutines::_string_indexof_array[ae] != nullptr); 1315 1316 if (call_opt_stub) { 1317 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::string_IndexOf_Type(), 1318 StubRoutines::_string_indexof_array[ae], 1319 "stringIndexOf", TypePtr::BOTTOM, src_start, 1320 src_count, tgt_start, tgt_count); 1321 result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 1322 } else { 1323 result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, 1324 region, phi, ae); 1325 } 1326 if (result != nullptr) { 1327 // The result is index relative to from_index if substring was found, -1 otherwise. 1328 // Generate code which will fold into cmove. 1329 Node* cmp = _gvn.transform(new CmpINode(result, intcon(0))); 1330 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt)); 1331 1332 Node* if_lt = generate_slow_guard(bol, nullptr); 1333 if (if_lt != nullptr) { 1334 // result == -1 1335 phi->init_req(3, result); 1336 region->init_req(3, if_lt); 1337 } 1338 if (!stopped()) { 1339 result = _gvn.transform(new AddINode(result, from_index)); 1340 phi->init_req(4, result); 1341 region->init_req(4, control()); 1342 } 1343 } 1344 1345 set_control(_gvn.transform(region)); 1346 record_for_igvn(region); 1347 set_result(_gvn.transform(phi)); 1348 clear_upper_avx(); 1349 1350 return true; 1351 } 1352 1353 // Create StrIndexOfNode with fast path checks 1354 Node* LibraryCallKit::make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count, 1355 RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae) { 1356 // Check for substr count > string count 1357 Node* cmp = _gvn.transform(new CmpINode(tgt_count, src_count)); 1358 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt)); 1359 Node* if_gt = generate_slow_guard(bol, nullptr); 1360 if (if_gt != nullptr) { 1361 phi->init_req(1, intcon(-1)); 1362 region->init_req(1, if_gt); 1363 } 1364 if (!stopped()) { 1365 // Check for substr count == 0 1366 cmp = _gvn.transform(new CmpINode(tgt_count, intcon(0))); 1367 bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 1368 Node* if_zero = generate_slow_guard(bol, nullptr); 1369 if (if_zero != nullptr) { 1370 phi->init_req(2, intcon(0)); 1371 region->init_req(2, if_zero); 1372 } 1373 } 1374 if (!stopped()) { 1375 return make_string_method_node(Op_StrIndexOf, src_start, src_count, tgt_start, tgt_count, ae); 1376 } 1377 return nullptr; 1378 } 1379 1380 //-----------------------------inline_string_indexOfChar----------------------- 1381 bool LibraryCallKit::inline_string_indexOfChar(StrIntrinsicNode::ArgEnc ae) { 1382 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1383 return false; 1384 } 1385 if (!Matcher::match_rule_supported(Op_StrIndexOfChar)) { 1386 return false; 1387 } 1388 assert(callee()->signature()->size() == 4, "String.indexOfChar() has 4 arguments"); 1389 Node* src = argument(0); // byte[] 1390 Node* int_ch = argument(1); 1391 Node* from_index = argument(2); 1392 Node* max = argument(3); 1393 1394 src = must_be_not_null(src, true); 1395 1396 Node* src_offset = ae == StrIntrinsicNode::L ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1))); 1397 Node* src_start = array_element_address(src, src_offset, T_BYTE); 1398 Node* src_count = _gvn.transform(new SubINode(max, from_index)); 1399 1400 // Range checks 1401 generate_string_range_check(src, src_offset, src_count, ae == StrIntrinsicNode::U); 1402 1403 // Check for int_ch >= 0 1404 Node* int_ch_cmp = _gvn.transform(new CmpINode(int_ch, intcon(0))); 1405 Node* int_ch_bol = _gvn.transform(new BoolNode(int_ch_cmp, BoolTest::ge)); 1406 { 1407 BuildCutout unless(this, int_ch_bol, PROB_MAX); 1408 uncommon_trap(Deoptimization::Reason_intrinsic, 1409 Deoptimization::Action_maybe_recompile); 1410 } 1411 if (stopped()) { 1412 return true; 1413 } 1414 1415 RegionNode* region = new RegionNode(3); 1416 Node* phi = new PhiNode(region, TypeInt::INT); 1417 1418 Node* result = new StrIndexOfCharNode(control(), memory(TypeAryPtr::BYTES), src_start, src_count, int_ch, ae); 1419 C->set_has_split_ifs(true); // Has chance for split-if optimization 1420 _gvn.transform(result); 1421 1422 Node* cmp = _gvn.transform(new CmpINode(result, intcon(0))); 1423 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt)); 1424 1425 Node* if_lt = generate_slow_guard(bol, nullptr); 1426 if (if_lt != nullptr) { 1427 // result == -1 1428 phi->init_req(2, result); 1429 region->init_req(2, if_lt); 1430 } 1431 if (!stopped()) { 1432 result = _gvn.transform(new AddINode(result, from_index)); 1433 phi->init_req(1, result); 1434 region->init_req(1, control()); 1435 } 1436 set_control(_gvn.transform(region)); 1437 record_for_igvn(region); 1438 set_result(_gvn.transform(phi)); 1439 clear_upper_avx(); 1440 1441 return true; 1442 } 1443 //---------------------------inline_string_copy--------------------- 1444 // compressIt == true --> generate a compressed copy operation (compress char[]/byte[] to byte[]) 1445 // int StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) 1446 // int StringUTF16.compress(byte[] src, int srcOff, byte[] dst, int dstOff, int len) 1447 // compressIt == false --> generate an inflated copy operation (inflate byte[] to char[]/byte[]) 1448 // void StringLatin1.inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len) 1449 // void StringLatin1.inflate(byte[] src, int srcOff, byte[] dst, int dstOff, int len) 1450 bool LibraryCallKit::inline_string_copy(bool compress) { 1451 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1452 return false; 1453 } 1454 int nargs = 5; // 2 oops, 3 ints 1455 assert(callee()->signature()->size() == nargs, "string copy has 5 arguments"); 1456 1457 Node* src = argument(0); 1458 Node* src_offset = argument(1); 1459 Node* dst = argument(2); 1460 Node* dst_offset = argument(3); 1461 Node* length = argument(4); 1462 1463 // Check for allocation before we add nodes that would confuse 1464 // tightly_coupled_allocation() 1465 AllocateArrayNode* alloc = tightly_coupled_allocation(dst); 1466 1467 // Figure out the size and type of the elements we will be copying. 1468 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 1469 const TypeAryPtr* dst_type = dst->Value(&_gvn)->isa_aryptr(); 1470 if (src_type == nullptr || dst_type == nullptr) { 1471 return false; 1472 } 1473 BasicType src_elem = src_type->elem()->array_element_basic_type(); 1474 BasicType dst_elem = dst_type->elem()->array_element_basic_type(); 1475 assert((compress && dst_elem == T_BYTE && (src_elem == T_BYTE || src_elem == T_CHAR)) || 1476 (!compress && src_elem == T_BYTE && (dst_elem == T_BYTE || dst_elem == T_CHAR)), 1477 "Unsupported array types for inline_string_copy"); 1478 1479 src = must_be_not_null(src, true); 1480 dst = must_be_not_null(dst, true); 1481 1482 // Convert char[] offsets to byte[] offsets 1483 bool convert_src = (compress && src_elem == T_BYTE); 1484 bool convert_dst = (!compress && dst_elem == T_BYTE); 1485 if (convert_src) { 1486 src_offset = _gvn.transform(new LShiftINode(src_offset, intcon(1))); 1487 } else if (convert_dst) { 1488 dst_offset = _gvn.transform(new LShiftINode(dst_offset, intcon(1))); 1489 } 1490 1491 // Range checks 1492 generate_string_range_check(src, src_offset, length, convert_src); 1493 generate_string_range_check(dst, dst_offset, length, convert_dst); 1494 if (stopped()) { 1495 return true; 1496 } 1497 1498 Node* src_start = array_element_address(src, src_offset, src_elem); 1499 Node* dst_start = array_element_address(dst, dst_offset, dst_elem); 1500 // 'src_start' points to src array + scaled offset 1501 // 'dst_start' points to dst array + scaled offset 1502 Node* count = nullptr; 1503 if (compress) { 1504 count = compress_string(src_start, TypeAryPtr::get_array_body_type(src_elem), dst_start, length); 1505 } else { 1506 inflate_string(src_start, dst_start, TypeAryPtr::get_array_body_type(dst_elem), length); 1507 } 1508 1509 if (alloc != nullptr) { 1510 if (alloc->maybe_set_complete(&_gvn)) { 1511 // "You break it, you buy it." 1512 InitializeNode* init = alloc->initialization(); 1513 assert(init->is_complete(), "we just did this"); 1514 init->set_complete_with_arraycopy(); 1515 assert(dst->is_CheckCastPP(), "sanity"); 1516 assert(dst->in(0)->in(0) == init, "dest pinned"); 1517 } 1518 // Do not let stores that initialize this object be reordered with 1519 // a subsequent store that would make this object accessible by 1520 // other threads. 1521 // Record what AllocateNode this StoreStore protects so that 1522 // escape analysis can go from the MemBarStoreStoreNode to the 1523 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1524 // based on the escape status of the AllocateNode. 1525 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1526 } 1527 if (compress) { 1528 set_result(_gvn.transform(count)); 1529 } 1530 clear_upper_avx(); 1531 1532 return true; 1533 } 1534 1535 #ifdef _LP64 1536 #define XTOP ,top() /*additional argument*/ 1537 #else //_LP64 1538 #define XTOP /*no additional argument*/ 1539 #endif //_LP64 1540 1541 //------------------------inline_string_toBytesU-------------------------- 1542 // public static byte[] StringUTF16.toBytes(char[] value, int off, int len) 1543 bool LibraryCallKit::inline_string_toBytesU() { 1544 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1545 return false; 1546 } 1547 // Get the arguments. 1548 Node* value = argument(0); 1549 Node* offset = argument(1); 1550 Node* length = argument(2); 1551 1552 Node* newcopy = nullptr; 1553 1554 // Set the original stack and the reexecute bit for the interpreter to reexecute 1555 // the bytecode that invokes StringUTF16.toBytes() if deoptimization happens. 1556 { PreserveReexecuteState preexecs(this); 1557 jvms()->set_should_reexecute(true); 1558 1559 // Check if a null path was taken unconditionally. 1560 value = null_check(value); 1561 1562 RegionNode* bailout = new RegionNode(1); 1563 record_for_igvn(bailout); 1564 1565 // Range checks 1566 generate_negative_guard(offset, bailout); 1567 generate_negative_guard(length, bailout); 1568 generate_limit_guard(offset, length, load_array_length(value), bailout); 1569 // Make sure that resulting byte[] length does not overflow Integer.MAX_VALUE 1570 generate_limit_guard(length, intcon(0), intcon(max_jint/2), bailout); 1571 1572 if (bailout->req() > 1) { 1573 PreserveJVMState pjvms(this); 1574 set_control(_gvn.transform(bailout)); 1575 uncommon_trap(Deoptimization::Reason_intrinsic, 1576 Deoptimization::Action_maybe_recompile); 1577 } 1578 if (stopped()) { 1579 return true; 1580 } 1581 1582 Node* size = _gvn.transform(new LShiftINode(length, intcon(1))); 1583 Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_BYTE))); 1584 newcopy = new_array(klass_node, size, 0); // no arguments to push 1585 AllocateArrayNode* alloc = tightly_coupled_allocation(newcopy); 1586 guarantee(alloc != nullptr, "created above"); 1587 1588 // Calculate starting addresses. 1589 Node* src_start = array_element_address(value, offset, T_CHAR); 1590 Node* dst_start = basic_plus_adr(newcopy, arrayOopDesc::base_offset_in_bytes(T_BYTE)); 1591 1592 // Check if dst array address is aligned to HeapWordSize 1593 bool aligned = (arrayOopDesc::base_offset_in_bytes(T_BYTE) % HeapWordSize == 0); 1594 // If true, then check if src array address is aligned to HeapWordSize 1595 if (aligned) { 1596 const TypeInt* toffset = gvn().type(offset)->is_int(); 1597 aligned = toffset->is_con() && ((arrayOopDesc::base_offset_in_bytes(T_CHAR) + 1598 toffset->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0); 1599 } 1600 1601 // Figure out which arraycopy runtime method to call (disjoint, uninitialized). 1602 const char* copyfunc_name = "arraycopy"; 1603 address copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true); 1604 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 1605 OptoRuntime::fast_arraycopy_Type(), 1606 copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM, 1607 src_start, dst_start, ConvI2X(length) XTOP); 1608 // Do not let reads from the cloned object float above the arraycopy. 1609 if (alloc->maybe_set_complete(&_gvn)) { 1610 // "You break it, you buy it." 1611 InitializeNode* init = alloc->initialization(); 1612 assert(init->is_complete(), "we just did this"); 1613 init->set_complete_with_arraycopy(); 1614 assert(newcopy->is_CheckCastPP(), "sanity"); 1615 assert(newcopy->in(0)->in(0) == init, "dest pinned"); 1616 } 1617 // Do not let stores that initialize this object be reordered with 1618 // a subsequent store that would make this object accessible by 1619 // other threads. 1620 // Record what AllocateNode this StoreStore protects so that 1621 // escape analysis can go from the MemBarStoreStoreNode to the 1622 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1623 // based on the escape status of the AllocateNode. 1624 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1625 } // original reexecute is set back here 1626 1627 C->set_has_split_ifs(true); // Has chance for split-if optimization 1628 if (!stopped()) { 1629 set_result(newcopy); 1630 } 1631 clear_upper_avx(); 1632 1633 return true; 1634 } 1635 1636 //------------------------inline_string_getCharsU-------------------------- 1637 // public void StringUTF16.getChars(byte[] src, int srcBegin, int srcEnd, char dst[], int dstBegin) 1638 bool LibraryCallKit::inline_string_getCharsU() { 1639 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1640 return false; 1641 } 1642 1643 // Get the arguments. 1644 Node* src = argument(0); 1645 Node* src_begin = argument(1); 1646 Node* src_end = argument(2); // exclusive offset (i < src_end) 1647 Node* dst = argument(3); 1648 Node* dst_begin = argument(4); 1649 1650 // Check for allocation before we add nodes that would confuse 1651 // tightly_coupled_allocation() 1652 AllocateArrayNode* alloc = tightly_coupled_allocation(dst); 1653 1654 // Check if a null path was taken unconditionally. 1655 src = null_check(src); 1656 dst = null_check(dst); 1657 if (stopped()) { 1658 return true; 1659 } 1660 1661 // Get length and convert char[] offset to byte[] offset 1662 Node* length = _gvn.transform(new SubINode(src_end, src_begin)); 1663 src_begin = _gvn.transform(new LShiftINode(src_begin, intcon(1))); 1664 1665 // Range checks 1666 generate_string_range_check(src, src_begin, length, true); 1667 generate_string_range_check(dst, dst_begin, length, false); 1668 if (stopped()) { 1669 return true; 1670 } 1671 1672 if (!stopped()) { 1673 // Calculate starting addresses. 1674 Node* src_start = array_element_address(src, src_begin, T_BYTE); 1675 Node* dst_start = array_element_address(dst, dst_begin, T_CHAR); 1676 1677 // Check if array addresses are aligned to HeapWordSize 1678 const TypeInt* tsrc = gvn().type(src_begin)->is_int(); 1679 const TypeInt* tdst = gvn().type(dst_begin)->is_int(); 1680 bool aligned = tsrc->is_con() && ((arrayOopDesc::base_offset_in_bytes(T_BYTE) + tsrc->get_con() * type2aelembytes(T_BYTE)) % HeapWordSize == 0) && 1681 tdst->is_con() && ((arrayOopDesc::base_offset_in_bytes(T_CHAR) + tdst->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0); 1682 1683 // Figure out which arraycopy runtime method to call (disjoint, uninitialized). 1684 const char* copyfunc_name = "arraycopy"; 1685 address copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true); 1686 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 1687 OptoRuntime::fast_arraycopy_Type(), 1688 copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM, 1689 src_start, dst_start, ConvI2X(length) XTOP); 1690 // Do not let reads from the cloned object float above the arraycopy. 1691 if (alloc != nullptr) { 1692 if (alloc->maybe_set_complete(&_gvn)) { 1693 // "You break it, you buy it." 1694 InitializeNode* init = alloc->initialization(); 1695 assert(init->is_complete(), "we just did this"); 1696 init->set_complete_with_arraycopy(); 1697 assert(dst->is_CheckCastPP(), "sanity"); 1698 assert(dst->in(0)->in(0) == init, "dest pinned"); 1699 } 1700 // Do not let stores that initialize this object be reordered with 1701 // a subsequent store that would make this object accessible by 1702 // other threads. 1703 // Record what AllocateNode this StoreStore protects so that 1704 // escape analysis can go from the MemBarStoreStoreNode to the 1705 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1706 // based on the escape status of the AllocateNode. 1707 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1708 } else { 1709 insert_mem_bar(Op_MemBarCPUOrder); 1710 } 1711 } 1712 1713 C->set_has_split_ifs(true); // Has chance for split-if optimization 1714 return true; 1715 } 1716 1717 //----------------------inline_string_char_access---------------------------- 1718 // Store/Load char to/from byte[] array. 1719 // static void StringUTF16.putChar(byte[] val, int index, int c) 1720 // static char StringUTF16.getChar(byte[] val, int index) 1721 bool LibraryCallKit::inline_string_char_access(bool is_store) { 1722 Node* value = argument(0); 1723 Node* index = argument(1); 1724 Node* ch = is_store ? argument(2) : nullptr; 1725 1726 // This intrinsic accesses byte[] array as char[] array. Computing the offsets 1727 // correctly requires matched array shapes. 1728 assert (arrayOopDesc::base_offset_in_bytes(T_CHAR) == arrayOopDesc::base_offset_in_bytes(T_BYTE), 1729 "sanity: byte[] and char[] bases agree"); 1730 assert (type2aelembytes(T_CHAR) == type2aelembytes(T_BYTE)*2, 1731 "sanity: byte[] and char[] scales agree"); 1732 1733 // Bail when getChar over constants is requested: constant folding would 1734 // reject folding mismatched char access over byte[]. A normal inlining for getChar 1735 // Java method would constant fold nicely instead. 1736 if (!is_store && value->is_Con() && index->is_Con()) { 1737 return false; 1738 } 1739 1740 // Save state and restore on bailout 1741 SavedState old_state(this); 1742 1743 value = must_be_not_null(value, true); 1744 1745 Node* adr = array_element_address(value, index, T_CHAR); 1746 if (adr->is_top()) { 1747 return false; 1748 } 1749 old_state.discard(); 1750 if (is_store) { 1751 access_store_at(value, adr, TypeAryPtr::BYTES, ch, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED); 1752 } else { 1753 ch = access_load_at(value, adr, TypeAryPtr::BYTES, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD | C2_UNKNOWN_CONTROL_LOAD); 1754 set_result(ch); 1755 } 1756 return true; 1757 } 1758 1759 1760 //------------------------------inline_math----------------------------------- 1761 // public static double Math.abs(double) 1762 // public static double Math.sqrt(double) 1763 // public static double Math.log(double) 1764 // public static double Math.log10(double) 1765 // public static double Math.round(double) 1766 bool LibraryCallKit::inline_double_math(vmIntrinsics::ID id) { 1767 Node* arg = argument(0); 1768 Node* n = nullptr; 1769 switch (id) { 1770 case vmIntrinsics::_dabs: n = new AbsDNode( arg); break; 1771 case vmIntrinsics::_dsqrt: 1772 case vmIntrinsics::_dsqrt_strict: 1773 n = new SqrtDNode(C, control(), arg); break; 1774 case vmIntrinsics::_ceil: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_ceil); break; 1775 case vmIntrinsics::_floor: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_floor); break; 1776 case vmIntrinsics::_rint: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_rint); break; 1777 case vmIntrinsics::_roundD: n = new RoundDNode(arg); break; 1778 case vmIntrinsics::_dcopySign: n = CopySignDNode::make(_gvn, arg, argument(2)); break; 1779 case vmIntrinsics::_dsignum: n = SignumDNode::make(_gvn, arg); break; 1780 default: fatal_unexpected_iid(id); break; 1781 } 1782 set_result(_gvn.transform(n)); 1783 return true; 1784 } 1785 1786 //------------------------------inline_math----------------------------------- 1787 // public static float Math.abs(float) 1788 // public static int Math.abs(int) 1789 // public static long Math.abs(long) 1790 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) { 1791 Node* arg = argument(0); 1792 Node* n = nullptr; 1793 switch (id) { 1794 case vmIntrinsics::_fabs: n = new AbsFNode( arg); break; 1795 case vmIntrinsics::_iabs: n = new AbsINode( arg); break; 1796 case vmIntrinsics::_labs: n = new AbsLNode( arg); break; 1797 case vmIntrinsics::_fcopySign: n = new CopySignFNode(arg, argument(1)); break; 1798 case vmIntrinsics::_fsignum: n = SignumFNode::make(_gvn, arg); break; 1799 case vmIntrinsics::_roundF: n = new RoundFNode(arg); break; 1800 default: fatal_unexpected_iid(id); break; 1801 } 1802 set_result(_gvn.transform(n)); 1803 return true; 1804 } 1805 1806 //------------------------------runtime_math----------------------------- 1807 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) { 1808 assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(), 1809 "must be (DD)D or (D)D type"); 1810 1811 // Inputs 1812 Node* a = argument(0); 1813 Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? argument(2) : nullptr; 1814 1815 const TypePtr* no_memory_effects = nullptr; 1816 Node* trig = make_runtime_call(RC_LEAF | RC_PURE, call_type, funcAddr, funcName, 1817 no_memory_effects, 1818 a, top(), b, b ? top() : nullptr); 1819 Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0)); 1820 #ifdef ASSERT 1821 Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1)); 1822 assert(value_top == top(), "second value must be top"); 1823 #endif 1824 1825 set_result(value); 1826 return true; 1827 } 1828 1829 //------------------------------inline_math_pow----------------------------- 1830 bool LibraryCallKit::inline_math_pow() { 1831 Node* exp = argument(2); 1832 const TypeD* d = _gvn.type(exp)->isa_double_constant(); 1833 if (d != nullptr) { 1834 if (d->getd() == 2.0) { 1835 // Special case: pow(x, 2.0) => x * x 1836 Node* base = argument(0); 1837 set_result(_gvn.transform(new MulDNode(base, base))); 1838 return true; 1839 } else if (d->getd() == 0.5 && Matcher::match_rule_supported(Op_SqrtD)) { 1840 // Special case: pow(x, 0.5) => sqrt(x) 1841 Node* base = argument(0); 1842 Node* zero = _gvn.zerocon(T_DOUBLE); 1843 1844 RegionNode* region = new RegionNode(3); 1845 Node* phi = new PhiNode(region, Type::DOUBLE); 1846 1847 Node* cmp = _gvn.transform(new CmpDNode(base, zero)); 1848 // According to the API specs, pow(-0.0, 0.5) = 0.0 and sqrt(-0.0) = -0.0. 1849 // So pow(-0.0, 0.5) shouldn't be replaced with sqrt(-0.0). 1850 // -0.0/+0.0 are both excluded since floating-point comparison doesn't distinguish -0.0 from +0.0. 1851 Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::le)); 1852 1853 Node* if_pow = generate_slow_guard(test, nullptr); 1854 Node* value_sqrt = _gvn.transform(new SqrtDNode(C, control(), base)); 1855 phi->init_req(1, value_sqrt); 1856 region->init_req(1, control()); 1857 1858 if (if_pow != nullptr) { 1859 set_control(if_pow); 1860 address target = StubRoutines::dpow() != nullptr ? StubRoutines::dpow() : 1861 CAST_FROM_FN_PTR(address, SharedRuntime::dpow); 1862 const TypePtr* no_memory_effects = nullptr; 1863 Node* trig = make_runtime_call(RC_LEAF, OptoRuntime::Math_DD_D_Type(), target, "POW", 1864 no_memory_effects, base, top(), exp, top()); 1865 Node* value_pow = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0)); 1866 #ifdef ASSERT 1867 Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1)); 1868 assert(value_top == top(), "second value must be top"); 1869 #endif 1870 phi->init_req(2, value_pow); 1871 region->init_req(2, _gvn.transform(new ProjNode(trig, TypeFunc::Control))); 1872 } 1873 1874 C->set_has_split_ifs(true); // Has chance for split-if optimization 1875 set_control(_gvn.transform(region)); 1876 record_for_igvn(region); 1877 set_result(_gvn.transform(phi)); 1878 1879 return true; 1880 } 1881 } 1882 1883 return StubRoutines::dpow() != nullptr ? 1884 runtime_math(OptoRuntime::Math_DD_D_Type(), StubRoutines::dpow(), "dpow") : 1885 runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW"); 1886 } 1887 1888 //------------------------------inline_math_native----------------------------- 1889 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) { 1890 switch (id) { 1891 case vmIntrinsics::_dsin: 1892 return StubRoutines::dsin() != nullptr ? 1893 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dsin(), "dsin") : 1894 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin), "SIN"); 1895 case vmIntrinsics::_dcos: 1896 return StubRoutines::dcos() != nullptr ? 1897 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dcos(), "dcos") : 1898 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos), "COS"); 1899 case vmIntrinsics::_dtan: 1900 return StubRoutines::dtan() != nullptr ? 1901 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtan(), "dtan") : 1902 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "TAN"); 1903 case vmIntrinsics::_dsinh: 1904 return StubRoutines::dsinh() != nullptr ? 1905 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dsinh(), "dsinh") : false; 1906 case vmIntrinsics::_dtanh: 1907 return StubRoutines::dtanh() != nullptr ? 1908 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtanh(), "dtanh") : false; 1909 case vmIntrinsics::_dcbrt: 1910 return StubRoutines::dcbrt() != nullptr ? 1911 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dcbrt(), "dcbrt") : false; 1912 case vmIntrinsics::_dexp: 1913 return StubRoutines::dexp() != nullptr ? 1914 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dexp(), "dexp") : 1915 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP"); 1916 case vmIntrinsics::_dlog: 1917 return StubRoutines::dlog() != nullptr ? 1918 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog(), "dlog") : 1919 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog), "LOG"); 1920 case vmIntrinsics::_dlog10: 1921 return StubRoutines::dlog10() != nullptr ? 1922 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog10(), "dlog10") : 1923 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), "LOG10"); 1924 1925 case vmIntrinsics::_roundD: return Matcher::match_rule_supported(Op_RoundD) ? inline_double_math(id) : false; 1926 case vmIntrinsics::_ceil: 1927 case vmIntrinsics::_floor: 1928 case vmIntrinsics::_rint: return Matcher::match_rule_supported(Op_RoundDoubleMode) ? inline_double_math(id) : false; 1929 1930 case vmIntrinsics::_dsqrt: 1931 case vmIntrinsics::_dsqrt_strict: 1932 return Matcher::match_rule_supported(Op_SqrtD) ? inline_double_math(id) : false; 1933 case vmIntrinsics::_dabs: return Matcher::has_match_rule(Op_AbsD) ? inline_double_math(id) : false; 1934 case vmIntrinsics::_fabs: return Matcher::match_rule_supported(Op_AbsF) ? inline_math(id) : false; 1935 case vmIntrinsics::_iabs: return Matcher::match_rule_supported(Op_AbsI) ? inline_math(id) : false; 1936 case vmIntrinsics::_labs: return Matcher::match_rule_supported(Op_AbsL) ? inline_math(id) : false; 1937 1938 case vmIntrinsics::_dpow: return inline_math_pow(); 1939 case vmIntrinsics::_dcopySign: return inline_double_math(id); 1940 case vmIntrinsics::_fcopySign: return inline_math(id); 1941 case vmIntrinsics::_dsignum: return Matcher::match_rule_supported(Op_SignumD) ? inline_double_math(id) : false; 1942 case vmIntrinsics::_fsignum: return Matcher::match_rule_supported(Op_SignumF) ? inline_math(id) : false; 1943 case vmIntrinsics::_roundF: return Matcher::match_rule_supported(Op_RoundF) ? inline_math(id) : false; 1944 1945 // These intrinsics are not yet correctly implemented 1946 case vmIntrinsics::_datan2: 1947 return false; 1948 1949 default: 1950 fatal_unexpected_iid(id); 1951 return false; 1952 } 1953 } 1954 1955 //----------------------------inline_notify-----------------------------------* 1956 bool LibraryCallKit::inline_notify(vmIntrinsics::ID id) { 1957 const TypeFunc* ftype = OptoRuntime::monitor_notify_Type(); 1958 address func; 1959 if (id == vmIntrinsics::_notify) { 1960 func = OptoRuntime::monitor_notify_Java(); 1961 } else { 1962 func = OptoRuntime::monitor_notifyAll_Java(); 1963 } 1964 Node* call = make_runtime_call(RC_NO_LEAF, ftype, func, nullptr, TypeRawPtr::BOTTOM, argument(0)); 1965 make_slow_call_ex(call, env()->Throwable_klass(), false); 1966 return true; 1967 } 1968 1969 1970 //----------------------------inline_min_max----------------------------------- 1971 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) { 1972 Node* a = nullptr; 1973 Node* b = nullptr; 1974 Node* n = nullptr; 1975 switch (id) { 1976 case vmIntrinsics::_min: 1977 case vmIntrinsics::_max: 1978 case vmIntrinsics::_minF: 1979 case vmIntrinsics::_maxF: 1980 case vmIntrinsics::_minF_strict: 1981 case vmIntrinsics::_maxF_strict: 1982 case vmIntrinsics::_min_strict: 1983 case vmIntrinsics::_max_strict: 1984 assert(callee()->signature()->size() == 2, "minF/maxF has 2 parameters of size 1 each."); 1985 a = argument(0); 1986 b = argument(1); 1987 break; 1988 case vmIntrinsics::_minD: 1989 case vmIntrinsics::_maxD: 1990 case vmIntrinsics::_minD_strict: 1991 case vmIntrinsics::_maxD_strict: 1992 assert(callee()->signature()->size() == 4, "minD/maxD has 2 parameters of size 2 each."); 1993 a = argument(0); 1994 b = argument(2); 1995 break; 1996 case vmIntrinsics::_minL: 1997 case vmIntrinsics::_maxL: 1998 assert(callee()->signature()->size() == 4, "minL/maxL has 2 parameters of size 2 each."); 1999 a = argument(0); 2000 b = argument(2); 2001 break; 2002 default: 2003 fatal_unexpected_iid(id); 2004 break; 2005 } 2006 2007 switch (id) { 2008 case vmIntrinsics::_min: 2009 case vmIntrinsics::_min_strict: 2010 n = new MinINode(a, b); 2011 break; 2012 case vmIntrinsics::_max: 2013 case vmIntrinsics::_max_strict: 2014 n = new MaxINode(a, b); 2015 break; 2016 case vmIntrinsics::_minF: 2017 case vmIntrinsics::_minF_strict: 2018 n = new MinFNode(a, b); 2019 break; 2020 case vmIntrinsics::_maxF: 2021 case vmIntrinsics::_maxF_strict: 2022 n = new MaxFNode(a, b); 2023 break; 2024 case vmIntrinsics::_minD: 2025 case vmIntrinsics::_minD_strict: 2026 n = new MinDNode(a, b); 2027 break; 2028 case vmIntrinsics::_maxD: 2029 case vmIntrinsics::_maxD_strict: 2030 n = new MaxDNode(a, b); 2031 break; 2032 case vmIntrinsics::_minL: 2033 n = new MinLNode(_gvn.C, a, b); 2034 break; 2035 case vmIntrinsics::_maxL: 2036 n = new MaxLNode(_gvn.C, a, b); 2037 break; 2038 default: 2039 fatal_unexpected_iid(id); 2040 break; 2041 } 2042 2043 set_result(_gvn.transform(n)); 2044 return true; 2045 } 2046 2047 bool LibraryCallKit::inline_math_mathExact(Node* math, Node* test) { 2048 if (builtin_throw_too_many_traps(Deoptimization::Reason_intrinsic, 2049 env()->ArithmeticException_instance())) { 2050 // It has been already too many times, but we cannot use builtin_throw (e.g. we care about backtraces), 2051 // so let's bail out intrinsic rather than risking deopting again. 2052 return false; 2053 } 2054 2055 Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) ); 2056 IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN); 2057 Node* fast_path = _gvn.transform( new IfFalseNode(check)); 2058 Node* slow_path = _gvn.transform( new IfTrueNode(check) ); 2059 2060 { 2061 PreserveJVMState pjvms(this); 2062 PreserveReexecuteState preexecs(this); 2063 jvms()->set_should_reexecute(true); 2064 2065 set_control(slow_path); 2066 set_i_o(i_o()); 2067 2068 builtin_throw(Deoptimization::Reason_intrinsic, 2069 env()->ArithmeticException_instance(), 2070 /*allow_too_many_traps*/ false); 2071 } 2072 2073 set_control(fast_path); 2074 set_result(math); 2075 return true; 2076 } 2077 2078 template <typename OverflowOp> 2079 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) { 2080 typedef typename OverflowOp::MathOp MathOp; 2081 2082 MathOp* mathOp = new MathOp(arg1, arg2); 2083 Node* operation = _gvn.transform( mathOp ); 2084 Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) ); 2085 return inline_math_mathExact(operation, ofcheck); 2086 } 2087 2088 bool LibraryCallKit::inline_math_addExactI(bool is_increment) { 2089 return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1)); 2090 } 2091 2092 bool LibraryCallKit::inline_math_addExactL(bool is_increment) { 2093 return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2)); 2094 } 2095 2096 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) { 2097 return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1)); 2098 } 2099 2100 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) { 2101 return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2)); 2102 } 2103 2104 bool LibraryCallKit::inline_math_negateExactI() { 2105 return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0)); 2106 } 2107 2108 bool LibraryCallKit::inline_math_negateExactL() { 2109 return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0)); 2110 } 2111 2112 bool LibraryCallKit::inline_math_multiplyExactI() { 2113 return inline_math_overflow<OverflowMulINode>(argument(0), argument(1)); 2114 } 2115 2116 bool LibraryCallKit::inline_math_multiplyExactL() { 2117 return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2)); 2118 } 2119 2120 bool LibraryCallKit::inline_math_multiplyHigh() { 2121 set_result(_gvn.transform(new MulHiLNode(argument(0), argument(2)))); 2122 return true; 2123 } 2124 2125 bool LibraryCallKit::inline_math_unsignedMultiplyHigh() { 2126 set_result(_gvn.transform(new UMulHiLNode(argument(0), argument(2)))); 2127 return true; 2128 } 2129 2130 inline int 2131 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset, BasicType type) { 2132 const TypePtr* base_type = TypePtr::NULL_PTR; 2133 if (base != nullptr) base_type = _gvn.type(base)->isa_ptr(); 2134 if (base_type == nullptr) { 2135 // Unknown type. 2136 return Type::AnyPtr; 2137 } else if (_gvn.type(base->uncast()) == TypePtr::NULL_PTR) { 2138 // Since this is a null+long form, we have to switch to a rawptr. 2139 base = _gvn.transform(new CastX2PNode(offset)); 2140 offset = MakeConX(0); 2141 return Type::RawPtr; 2142 } else if (base_type->base() == Type::RawPtr) { 2143 return Type::RawPtr; 2144 } else if (base_type->isa_oopptr()) { 2145 // Base is never null => always a heap address. 2146 if (!TypePtr::NULL_PTR->higher_equal(base_type)) { 2147 return Type::OopPtr; 2148 } 2149 // Offset is small => always a heap address. 2150 const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t(); 2151 if (offset_type != nullptr && 2152 base_type->offset() == 0 && // (should always be?) 2153 offset_type->_lo >= 0 && 2154 !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) { 2155 return Type::OopPtr; 2156 } else if (type == T_OBJECT) { 2157 // off heap access to an oop doesn't make any sense. Has to be on 2158 // heap. 2159 return Type::OopPtr; 2160 } 2161 // Otherwise, it might either be oop+off or null+addr. 2162 return Type::AnyPtr; 2163 } else { 2164 // No information: 2165 return Type::AnyPtr; 2166 } 2167 } 2168 2169 Node* LibraryCallKit::make_unsafe_address(Node*& base, Node* offset, BasicType type, bool can_cast) { 2170 Node* uncasted_base = base; 2171 int kind = classify_unsafe_addr(uncasted_base, offset, type); 2172 if (kind == Type::RawPtr) { 2173 return basic_plus_adr(top(), uncasted_base, offset); 2174 } else if (kind == Type::AnyPtr) { 2175 assert(base == uncasted_base, "unexpected base change"); 2176 if (can_cast) { 2177 if (!_gvn.type(base)->speculative_maybe_null() && 2178 !too_many_traps(Deoptimization::Reason_speculate_null_check)) { 2179 // According to profiling, this access is always on 2180 // heap. Casting the base to not null and thus avoiding membars 2181 // around the access should allow better optimizations 2182 Node* null_ctl = top(); 2183 base = null_check_oop(base, &null_ctl, true, true, true); 2184 assert(null_ctl->is_top(), "no null control here"); 2185 return basic_plus_adr(base, offset); 2186 } else if (_gvn.type(base)->speculative_always_null() && 2187 !too_many_traps(Deoptimization::Reason_speculate_null_assert)) { 2188 // According to profiling, this access is always off 2189 // heap. 2190 base = null_assert(base); 2191 Node* raw_base = _gvn.transform(new CastX2PNode(offset)); 2192 offset = MakeConX(0); 2193 return basic_plus_adr(top(), raw_base, offset); 2194 } 2195 } 2196 // We don't know if it's an on heap or off heap access. Fall back 2197 // to raw memory access. 2198 Node* raw = _gvn.transform(new CheckCastPPNode(control(), base, TypeRawPtr::BOTTOM)); 2199 return basic_plus_adr(top(), raw, offset); 2200 } else { 2201 assert(base == uncasted_base, "unexpected base change"); 2202 // We know it's an on heap access so base can't be null 2203 if (TypePtr::NULL_PTR->higher_equal(_gvn.type(base))) { 2204 base = must_be_not_null(base, true); 2205 } 2206 return basic_plus_adr(base, offset); 2207 } 2208 } 2209 2210 //--------------------------inline_number_methods----------------------------- 2211 // inline int Integer.numberOfLeadingZeros(int) 2212 // inline int Long.numberOfLeadingZeros(long) 2213 // 2214 // inline int Integer.numberOfTrailingZeros(int) 2215 // inline int Long.numberOfTrailingZeros(long) 2216 // 2217 // inline int Integer.bitCount(int) 2218 // inline int Long.bitCount(long) 2219 // 2220 // inline char Character.reverseBytes(char) 2221 // inline short Short.reverseBytes(short) 2222 // inline int Integer.reverseBytes(int) 2223 // inline long Long.reverseBytes(long) 2224 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) { 2225 Node* arg = argument(0); 2226 Node* n = nullptr; 2227 switch (id) { 2228 case vmIntrinsics::_numberOfLeadingZeros_i: n = new CountLeadingZerosINode( arg); break; 2229 case vmIntrinsics::_numberOfLeadingZeros_l: n = new CountLeadingZerosLNode( arg); break; 2230 case vmIntrinsics::_numberOfTrailingZeros_i: n = new CountTrailingZerosINode(arg); break; 2231 case vmIntrinsics::_numberOfTrailingZeros_l: n = new CountTrailingZerosLNode(arg); break; 2232 case vmIntrinsics::_bitCount_i: n = new PopCountINode( arg); break; 2233 case vmIntrinsics::_bitCount_l: n = new PopCountLNode( arg); break; 2234 case vmIntrinsics::_reverseBytes_c: n = new ReverseBytesUSNode( arg); break; 2235 case vmIntrinsics::_reverseBytes_s: n = new ReverseBytesSNode( arg); break; 2236 case vmIntrinsics::_reverseBytes_i: n = new ReverseBytesINode( arg); break; 2237 case vmIntrinsics::_reverseBytes_l: n = new ReverseBytesLNode( arg); break; 2238 case vmIntrinsics::_reverse_i: n = new ReverseINode( arg); break; 2239 case vmIntrinsics::_reverse_l: n = new ReverseLNode( arg); break; 2240 default: fatal_unexpected_iid(id); break; 2241 } 2242 set_result(_gvn.transform(n)); 2243 return true; 2244 } 2245 2246 //--------------------------inline_bitshuffle_methods----------------------------- 2247 // inline int Integer.compress(int, int) 2248 // inline int Integer.expand(int, int) 2249 // inline long Long.compress(long, long) 2250 // inline long Long.expand(long, long) 2251 bool LibraryCallKit::inline_bitshuffle_methods(vmIntrinsics::ID id) { 2252 Node* n = nullptr; 2253 switch (id) { 2254 case vmIntrinsics::_compress_i: n = new CompressBitsNode(argument(0), argument(1), TypeInt::INT); break; 2255 case vmIntrinsics::_expand_i: n = new ExpandBitsNode(argument(0), argument(1), TypeInt::INT); break; 2256 case vmIntrinsics::_compress_l: n = new CompressBitsNode(argument(0), argument(2), TypeLong::LONG); break; 2257 case vmIntrinsics::_expand_l: n = new ExpandBitsNode(argument(0), argument(2), TypeLong::LONG); break; 2258 default: fatal_unexpected_iid(id); break; 2259 } 2260 set_result(_gvn.transform(n)); 2261 return true; 2262 } 2263 2264 //--------------------------inline_number_methods----------------------------- 2265 // inline int Integer.compareUnsigned(int, int) 2266 // inline int Long.compareUnsigned(long, long) 2267 bool LibraryCallKit::inline_compare_unsigned(vmIntrinsics::ID id) { 2268 Node* arg1 = argument(0); 2269 Node* arg2 = (id == vmIntrinsics::_compareUnsigned_l) ? argument(2) : argument(1); 2270 Node* n = nullptr; 2271 switch (id) { 2272 case vmIntrinsics::_compareUnsigned_i: n = new CmpU3Node(arg1, arg2); break; 2273 case vmIntrinsics::_compareUnsigned_l: n = new CmpUL3Node(arg1, arg2); break; 2274 default: fatal_unexpected_iid(id); break; 2275 } 2276 set_result(_gvn.transform(n)); 2277 return true; 2278 } 2279 2280 //--------------------------inline_unsigned_divmod_methods----------------------------- 2281 // inline int Integer.divideUnsigned(int, int) 2282 // inline int Integer.remainderUnsigned(int, int) 2283 // inline long Long.divideUnsigned(long, long) 2284 // inline long Long.remainderUnsigned(long, long) 2285 bool LibraryCallKit::inline_divmod_methods(vmIntrinsics::ID id) { 2286 Node* n = nullptr; 2287 switch (id) { 2288 case vmIntrinsics::_divideUnsigned_i: { 2289 zero_check_int(argument(1)); 2290 // Compile-time detect of null-exception 2291 if (stopped()) { 2292 return true; // keep the graph constructed so far 2293 } 2294 n = new UDivINode(control(), argument(0), argument(1)); 2295 break; 2296 } 2297 case vmIntrinsics::_divideUnsigned_l: { 2298 zero_check_long(argument(2)); 2299 // Compile-time detect of null-exception 2300 if (stopped()) { 2301 return true; // keep the graph constructed so far 2302 } 2303 n = new UDivLNode(control(), argument(0), argument(2)); 2304 break; 2305 } 2306 case vmIntrinsics::_remainderUnsigned_i: { 2307 zero_check_int(argument(1)); 2308 // Compile-time detect of null-exception 2309 if (stopped()) { 2310 return true; // keep the graph constructed so far 2311 } 2312 n = new UModINode(control(), argument(0), argument(1)); 2313 break; 2314 } 2315 case vmIntrinsics::_remainderUnsigned_l: { 2316 zero_check_long(argument(2)); 2317 // Compile-time detect of null-exception 2318 if (stopped()) { 2319 return true; // keep the graph constructed so far 2320 } 2321 n = new UModLNode(control(), argument(0), argument(2)); 2322 break; 2323 } 2324 default: fatal_unexpected_iid(id); break; 2325 } 2326 set_result(_gvn.transform(n)); 2327 return true; 2328 } 2329 2330 //----------------------------inline_unsafe_access---------------------------- 2331 2332 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) { 2333 // Attempt to infer a sharper value type from the offset and base type. 2334 ciKlass* sharpened_klass = nullptr; 2335 2336 // See if it is an instance field, with an object type. 2337 if (alias_type->field() != nullptr) { 2338 if (alias_type->field()->type()->is_klass()) { 2339 sharpened_klass = alias_type->field()->type()->as_klass(); 2340 } 2341 } 2342 2343 const TypeOopPtr* result = nullptr; 2344 // See if it is a narrow oop array. 2345 if (adr_type->isa_aryptr()) { 2346 if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) { 2347 const TypeOopPtr* elem_type = adr_type->is_aryptr()->elem()->make_oopptr(); 2348 if (elem_type != nullptr && elem_type->is_loaded()) { 2349 // Sharpen the value type. 2350 result = elem_type; 2351 } 2352 } 2353 } 2354 2355 // The sharpened class might be unloaded if there is no class loader 2356 // contraint in place. 2357 if (result == nullptr && sharpened_klass != nullptr && sharpened_klass->is_loaded()) { 2358 // Sharpen the value type. 2359 result = TypeOopPtr::make_from_klass(sharpened_klass); 2360 } 2361 if (result != nullptr) { 2362 #ifndef PRODUCT 2363 if (C->print_intrinsics() || C->print_inlining()) { 2364 tty->print(" from base type: "); adr_type->dump(); tty->cr(); 2365 tty->print(" sharpened value: "); result->dump(); tty->cr(); 2366 } 2367 #endif 2368 } 2369 return result; 2370 } 2371 2372 DecoratorSet LibraryCallKit::mo_decorator_for_access_kind(AccessKind kind) { 2373 switch (kind) { 2374 case Relaxed: 2375 return MO_UNORDERED; 2376 case Opaque: 2377 return MO_RELAXED; 2378 case Acquire: 2379 return MO_ACQUIRE; 2380 case Release: 2381 return MO_RELEASE; 2382 case Volatile: 2383 return MO_SEQ_CST; 2384 default: 2385 ShouldNotReachHere(); 2386 return 0; 2387 } 2388 } 2389 2390 LibraryCallKit::SavedState::SavedState(LibraryCallKit* kit) : 2391 _kit(kit), 2392 _sp(kit->sp()), 2393 _jvms(kit->jvms()), 2394 _map(kit->clone_map()), 2395 _discarded(false) 2396 { 2397 for (DUIterator_Fast imax, i = kit->control()->fast_outs(imax); i < imax; i++) { 2398 Node* out = kit->control()->fast_out(i); 2399 if (out->is_CFG()) { 2400 _ctrl_succ.push(out); 2401 } 2402 } 2403 } 2404 2405 LibraryCallKit::SavedState::~SavedState() { 2406 if (_discarded) { 2407 _kit->destruct_map_clone(_map); 2408 return; 2409 } 2410 _kit->jvms()->set_map(_map); 2411 _kit->jvms()->set_sp(_sp); 2412 _map->set_jvms(_kit->jvms()); 2413 _kit->set_map(_map); 2414 _kit->set_sp(_sp); 2415 for (DUIterator_Fast imax, i = _kit->control()->fast_outs(imax); i < imax; i++) { 2416 Node* out = _kit->control()->fast_out(i); 2417 if (out->is_CFG() && out->in(0) == _kit->control() && out != _kit->map() && !_ctrl_succ.member(out)) { 2418 _kit->_gvn.hash_delete(out); 2419 out->set_req(0, _kit->C->top()); 2420 _kit->C->record_for_igvn(out); 2421 --i; --imax; 2422 _kit->_gvn.hash_find_insert(out); 2423 } 2424 } 2425 } 2426 2427 void LibraryCallKit::SavedState::discard() { 2428 _discarded = true; 2429 } 2430 2431 bool LibraryCallKit::inline_unsafe_access(bool is_store, const BasicType type, const AccessKind kind, const bool unaligned) { 2432 if (callee()->is_static()) return false; // caller must have the capability! 2433 DecoratorSet decorators = C2_UNSAFE_ACCESS; 2434 guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads"); 2435 guarantee( is_store || kind != Release, "Release accesses can be produced only for stores"); 2436 assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type"); 2437 2438 if (is_reference_type(type)) { 2439 decorators |= ON_UNKNOWN_OOP_REF; 2440 } 2441 2442 if (unaligned) { 2443 decorators |= C2_UNALIGNED; 2444 } 2445 2446 #ifndef PRODUCT 2447 { 2448 ResourceMark rm; 2449 // Check the signatures. 2450 ciSignature* sig = callee()->signature(); 2451 #ifdef ASSERT 2452 if (!is_store) { 2453 // Object getReference(Object base, int/long offset), etc. 2454 BasicType rtype = sig->return_type()->basic_type(); 2455 assert(rtype == type, "getter must return the expected value"); 2456 assert(sig->count() == 2, "oop getter has 2 arguments"); 2457 assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object"); 2458 assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct"); 2459 } else { 2460 // void putReference(Object base, int/long offset, Object x), etc. 2461 assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value"); 2462 assert(sig->count() == 3, "oop putter has 3 arguments"); 2463 assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object"); 2464 assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct"); 2465 BasicType vtype = sig->type_at(sig->count()-1)->basic_type(); 2466 assert(vtype == type, "putter must accept the expected value"); 2467 } 2468 #endif // ASSERT 2469 } 2470 #endif //PRODUCT 2471 2472 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 2473 2474 Node* receiver = argument(0); // type: oop 2475 2476 // Build address expression. 2477 Node* heap_base_oop = top(); 2478 2479 // The base is either a Java object or a value produced by Unsafe.staticFieldBase 2480 Node* base = argument(1); // type: oop 2481 // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset 2482 Node* offset = argument(2); // type: long 2483 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset 2484 // to be plain byte offsets, which are also the same as those accepted 2485 // by oopDesc::field_addr. 2486 assert(Unsafe_field_offset_to_byte_offset(11) == 11, 2487 "fieldOffset must be byte-scaled"); 2488 // 32-bit machines ignore the high half! 2489 offset = ConvL2X(offset); 2490 2491 // Save state and restore on bailout 2492 SavedState old_state(this); 2493 2494 Node* adr = make_unsafe_address(base, offset, type, kind == Relaxed); 2495 assert(!stopped(), "Inlining of unsafe access failed: address construction stopped unexpectedly"); 2496 2497 if (_gvn.type(base->uncast())->isa_ptr() == TypePtr::NULL_PTR) { 2498 if (type != T_OBJECT) { 2499 decorators |= IN_NATIVE; // off-heap primitive access 2500 } else { 2501 return false; // off-heap oop accesses are not supported 2502 } 2503 } else { 2504 heap_base_oop = base; // on-heap or mixed access 2505 } 2506 2507 // Can base be null? Otherwise, always on-heap access. 2508 bool can_access_non_heap = TypePtr::NULL_PTR->higher_equal(_gvn.type(base)); 2509 2510 if (!can_access_non_heap) { 2511 decorators |= IN_HEAP; 2512 } 2513 2514 Node* val = is_store ? argument(4) : nullptr; 2515 2516 const TypePtr* adr_type = _gvn.type(adr)->isa_ptr(); 2517 if (adr_type == TypePtr::NULL_PTR) { 2518 return false; // off-heap access with zero address 2519 } 2520 2521 // Try to categorize the address. 2522 Compile::AliasType* alias_type = C->alias_type(adr_type); 2523 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here"); 2524 2525 if (alias_type->adr_type() == TypeInstPtr::KLASS || 2526 alias_type->adr_type() == TypeAryPtr::RANGE) { 2527 return false; // not supported 2528 } 2529 2530 bool mismatched = false; 2531 BasicType bt = alias_type->basic_type(); 2532 if (bt != T_ILLEGAL) { 2533 assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access"); 2534 if (bt == T_BYTE && adr_type->isa_aryptr()) { 2535 // Alias type doesn't differentiate between byte[] and boolean[]). 2536 // Use address type to get the element type. 2537 bt = adr_type->is_aryptr()->elem()->array_element_basic_type(); 2538 } 2539 if (is_reference_type(bt, true)) { 2540 // accessing an array field with getReference is not a mismatch 2541 bt = T_OBJECT; 2542 } 2543 if ((bt == T_OBJECT) != (type == T_OBJECT)) { 2544 // Don't intrinsify mismatched object accesses 2545 return false; 2546 } 2547 mismatched = (bt != type); 2548 } else if (alias_type->adr_type()->isa_oopptr()) { 2549 mismatched = true; // conservatively mark all "wide" on-heap accesses as mismatched 2550 } 2551 2552 old_state.discard(); 2553 assert(!mismatched || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched"); 2554 2555 if (mismatched) { 2556 decorators |= C2_MISMATCHED; 2557 } 2558 2559 // First guess at the value type. 2560 const Type *value_type = Type::get_const_basic_type(type); 2561 2562 // Figure out the memory ordering. 2563 decorators |= mo_decorator_for_access_kind(kind); 2564 2565 if (!is_store && type == T_OBJECT) { 2566 const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type); 2567 if (tjp != nullptr) { 2568 value_type = tjp; 2569 } 2570 } 2571 2572 receiver = null_check(receiver); 2573 if (stopped()) { 2574 return true; 2575 } 2576 // Heap pointers get a null-check from the interpreter, 2577 // as a courtesy. However, this is not guaranteed by Unsafe, 2578 // and it is not possible to fully distinguish unintended nulls 2579 // from intended ones in this API. 2580 2581 if (!is_store) { 2582 Node* p = nullptr; 2583 // Try to constant fold a load from a constant field 2584 ciField* field = alias_type->field(); 2585 if (heap_base_oop != top() && field != nullptr && field->is_constant() && !mismatched) { 2586 // final or stable field 2587 p = make_constant_from_field(field, heap_base_oop); 2588 } 2589 2590 if (p == nullptr) { // Could not constant fold the load 2591 p = access_load_at(heap_base_oop, adr, adr_type, value_type, type, decorators); 2592 // Normalize the value returned by getBoolean in the following cases 2593 if (type == T_BOOLEAN && 2594 (mismatched || 2595 heap_base_oop == top() || // - heap_base_oop is null or 2596 (can_access_non_heap && field == nullptr)) // - heap_base_oop is potentially null 2597 // and the unsafe access is made to large offset 2598 // (i.e., larger than the maximum offset necessary for any 2599 // field access) 2600 ) { 2601 IdealKit ideal = IdealKit(this); 2602 #define __ ideal. 2603 IdealVariable normalized_result(ideal); 2604 __ declarations_done(); 2605 __ set(normalized_result, p); 2606 __ if_then(p, BoolTest::ne, ideal.ConI(0)); 2607 __ set(normalized_result, ideal.ConI(1)); 2608 ideal.end_if(); 2609 final_sync(ideal); 2610 p = __ value(normalized_result); 2611 #undef __ 2612 } 2613 } 2614 if (type == T_ADDRESS) { 2615 p = gvn().transform(new CastP2XNode(nullptr, p)); 2616 p = ConvX2UL(p); 2617 } 2618 // The load node has the control of the preceding MemBarCPUOrder. All 2619 // following nodes will have the control of the MemBarCPUOrder inserted at 2620 // the end of this method. So, pushing the load onto the stack at a later 2621 // point is fine. 2622 set_result(p); 2623 } else { 2624 if (bt == T_ADDRESS) { 2625 // Repackage the long as a pointer. 2626 val = ConvL2X(val); 2627 val = gvn().transform(new CastX2PNode(val)); 2628 } 2629 access_store_at(heap_base_oop, adr, adr_type, val, value_type, type, decorators); 2630 } 2631 2632 return true; 2633 } 2634 2635 //----------------------------inline_unsafe_load_store---------------------------- 2636 // This method serves a couple of different customers (depending on LoadStoreKind): 2637 // 2638 // LS_cmp_swap: 2639 // 2640 // boolean compareAndSetReference(Object o, long offset, Object expected, Object x); 2641 // boolean compareAndSetInt( Object o, long offset, int expected, int x); 2642 // boolean compareAndSetLong( Object o, long offset, long expected, long x); 2643 // 2644 // LS_cmp_swap_weak: 2645 // 2646 // boolean weakCompareAndSetReference( Object o, long offset, Object expected, Object x); 2647 // boolean weakCompareAndSetReferencePlain( Object o, long offset, Object expected, Object x); 2648 // boolean weakCompareAndSetReferenceAcquire(Object o, long offset, Object expected, Object x); 2649 // boolean weakCompareAndSetReferenceRelease(Object o, long offset, Object expected, Object x); 2650 // 2651 // boolean weakCompareAndSetInt( Object o, long offset, int expected, int x); 2652 // boolean weakCompareAndSetIntPlain( Object o, long offset, int expected, int x); 2653 // boolean weakCompareAndSetIntAcquire( Object o, long offset, int expected, int x); 2654 // boolean weakCompareAndSetIntRelease( Object o, long offset, int expected, int x); 2655 // 2656 // boolean weakCompareAndSetLong( Object o, long offset, long expected, long x); 2657 // boolean weakCompareAndSetLongPlain( Object o, long offset, long expected, long x); 2658 // boolean weakCompareAndSetLongAcquire( Object o, long offset, long expected, long x); 2659 // boolean weakCompareAndSetLongRelease( Object o, long offset, long expected, long x); 2660 // 2661 // LS_cmp_exchange: 2662 // 2663 // Object compareAndExchangeReferenceVolatile(Object o, long offset, Object expected, Object x); 2664 // Object compareAndExchangeReferenceAcquire( Object o, long offset, Object expected, Object x); 2665 // Object compareAndExchangeReferenceRelease( Object o, long offset, Object expected, Object x); 2666 // 2667 // Object compareAndExchangeIntVolatile( Object o, long offset, Object expected, Object x); 2668 // Object compareAndExchangeIntAcquire( Object o, long offset, Object expected, Object x); 2669 // Object compareAndExchangeIntRelease( Object o, long offset, Object expected, Object x); 2670 // 2671 // Object compareAndExchangeLongVolatile( Object o, long offset, Object expected, Object x); 2672 // Object compareAndExchangeLongAcquire( Object o, long offset, Object expected, Object x); 2673 // Object compareAndExchangeLongRelease( Object o, long offset, Object expected, Object x); 2674 // 2675 // LS_get_add: 2676 // 2677 // int getAndAddInt( Object o, long offset, int delta) 2678 // long getAndAddLong(Object o, long offset, long delta) 2679 // 2680 // LS_get_set: 2681 // 2682 // int getAndSet(Object o, long offset, int newValue) 2683 // long getAndSet(Object o, long offset, long newValue) 2684 // Object getAndSet(Object o, long offset, Object newValue) 2685 // 2686 bool LibraryCallKit::inline_unsafe_load_store(const BasicType type, const LoadStoreKind kind, const AccessKind access_kind) { 2687 // This basic scheme here is the same as inline_unsafe_access, but 2688 // differs in enough details that combining them would make the code 2689 // overly confusing. (This is a true fact! I originally combined 2690 // them, but even I was confused by it!) As much code/comments as 2691 // possible are retained from inline_unsafe_access though to make 2692 // the correspondences clearer. - dl 2693 2694 if (callee()->is_static()) return false; // caller must have the capability! 2695 2696 DecoratorSet decorators = C2_UNSAFE_ACCESS; 2697 decorators |= mo_decorator_for_access_kind(access_kind); 2698 2699 #ifndef PRODUCT 2700 BasicType rtype; 2701 { 2702 ResourceMark rm; 2703 // Check the signatures. 2704 ciSignature* sig = callee()->signature(); 2705 rtype = sig->return_type()->basic_type(); 2706 switch(kind) { 2707 case LS_get_add: 2708 case LS_get_set: { 2709 // Check the signatures. 2710 #ifdef ASSERT 2711 assert(rtype == type, "get and set must return the expected type"); 2712 assert(sig->count() == 3, "get and set has 3 arguments"); 2713 assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object"); 2714 assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long"); 2715 assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta"); 2716 assert(access_kind == Volatile, "mo is not passed to intrinsic nodes in current implementation"); 2717 #endif // ASSERT 2718 break; 2719 } 2720 case LS_cmp_swap: 2721 case LS_cmp_swap_weak: { 2722 // Check the signatures. 2723 #ifdef ASSERT 2724 assert(rtype == T_BOOLEAN, "CAS must return boolean"); 2725 assert(sig->count() == 4, "CAS has 4 arguments"); 2726 assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object"); 2727 assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long"); 2728 #endif // ASSERT 2729 break; 2730 } 2731 case LS_cmp_exchange: { 2732 // Check the signatures. 2733 #ifdef ASSERT 2734 assert(rtype == type, "CAS must return the expected type"); 2735 assert(sig->count() == 4, "CAS has 4 arguments"); 2736 assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object"); 2737 assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long"); 2738 #endif // ASSERT 2739 break; 2740 } 2741 default: 2742 ShouldNotReachHere(); 2743 } 2744 } 2745 #endif //PRODUCT 2746 2747 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 2748 2749 // Get arguments: 2750 Node* receiver = nullptr; 2751 Node* base = nullptr; 2752 Node* offset = nullptr; 2753 Node* oldval = nullptr; 2754 Node* newval = nullptr; 2755 switch(kind) { 2756 case LS_cmp_swap: 2757 case LS_cmp_swap_weak: 2758 case LS_cmp_exchange: { 2759 const bool two_slot_type = type2size[type] == 2; 2760 receiver = argument(0); // type: oop 2761 base = argument(1); // type: oop 2762 offset = argument(2); // type: long 2763 oldval = argument(4); // type: oop, int, or long 2764 newval = argument(two_slot_type ? 6 : 5); // type: oop, int, or long 2765 break; 2766 } 2767 case LS_get_add: 2768 case LS_get_set: { 2769 receiver = argument(0); // type: oop 2770 base = argument(1); // type: oop 2771 offset = argument(2); // type: long 2772 oldval = nullptr; 2773 newval = argument(4); // type: oop, int, or long 2774 break; 2775 } 2776 default: 2777 ShouldNotReachHere(); 2778 } 2779 2780 // Build field offset expression. 2781 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset 2782 // to be plain byte offsets, which are also the same as those accepted 2783 // by oopDesc::field_addr. 2784 assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled"); 2785 // 32-bit machines ignore the high half of long offsets 2786 offset = ConvL2X(offset); 2787 // Save state and restore on bailout 2788 SavedState old_state(this); 2789 Node* adr = make_unsafe_address(base, offset,type, false); 2790 const TypePtr *adr_type = _gvn.type(adr)->isa_ptr(); 2791 2792 Compile::AliasType* alias_type = C->alias_type(adr_type); 2793 BasicType bt = alias_type->basic_type(); 2794 if (bt != T_ILLEGAL && 2795 (is_reference_type(bt) != (type == T_OBJECT))) { 2796 // Don't intrinsify mismatched object accesses. 2797 return false; 2798 } 2799 2800 old_state.discard(); 2801 2802 // For CAS, unlike inline_unsafe_access, there seems no point in 2803 // trying to refine types. Just use the coarse types here. 2804 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here"); 2805 const Type *value_type = Type::get_const_basic_type(type); 2806 2807 switch (kind) { 2808 case LS_get_set: 2809 case LS_cmp_exchange: { 2810 if (type == T_OBJECT) { 2811 const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type); 2812 if (tjp != nullptr) { 2813 value_type = tjp; 2814 } 2815 } 2816 break; 2817 } 2818 case LS_cmp_swap: 2819 case LS_cmp_swap_weak: 2820 case LS_get_add: 2821 break; 2822 default: 2823 ShouldNotReachHere(); 2824 } 2825 2826 // Null check receiver. 2827 receiver = null_check(receiver); 2828 if (stopped()) { 2829 return true; 2830 } 2831 2832 int alias_idx = C->get_alias_index(adr_type); 2833 2834 if (is_reference_type(type)) { 2835 decorators |= IN_HEAP | ON_UNKNOWN_OOP_REF; 2836 2837 // Transformation of a value which could be null pointer (CastPP #null) 2838 // could be delayed during Parse (for example, in adjust_map_after_if()). 2839 // Execute transformation here to avoid barrier generation in such case. 2840 if (_gvn.type(newval) == TypePtr::NULL_PTR) 2841 newval = _gvn.makecon(TypePtr::NULL_PTR); 2842 2843 if (oldval != nullptr && _gvn.type(oldval) == TypePtr::NULL_PTR) { 2844 // Refine the value to a null constant, when it is known to be null 2845 oldval = _gvn.makecon(TypePtr::NULL_PTR); 2846 } 2847 } 2848 2849 Node* result = nullptr; 2850 switch (kind) { 2851 case LS_cmp_exchange: { 2852 result = access_atomic_cmpxchg_val_at(base, adr, adr_type, alias_idx, 2853 oldval, newval, value_type, type, decorators); 2854 break; 2855 } 2856 case LS_cmp_swap_weak: 2857 decorators |= C2_WEAK_CMPXCHG; 2858 case LS_cmp_swap: { 2859 result = access_atomic_cmpxchg_bool_at(base, adr, adr_type, alias_idx, 2860 oldval, newval, value_type, type, decorators); 2861 break; 2862 } 2863 case LS_get_set: { 2864 result = access_atomic_xchg_at(base, adr, adr_type, alias_idx, 2865 newval, value_type, type, decorators); 2866 break; 2867 } 2868 case LS_get_add: { 2869 result = access_atomic_add_at(base, adr, adr_type, alias_idx, 2870 newval, value_type, type, decorators); 2871 break; 2872 } 2873 default: 2874 ShouldNotReachHere(); 2875 } 2876 2877 assert(type2size[result->bottom_type()->basic_type()] == type2size[rtype], "result type should match"); 2878 set_result(result); 2879 return true; 2880 } 2881 2882 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) { 2883 // Regardless of form, don't allow previous ld/st to move down, 2884 // then issue acquire, release, or volatile mem_bar. 2885 insert_mem_bar(Op_MemBarCPUOrder); 2886 switch(id) { 2887 case vmIntrinsics::_loadFence: 2888 insert_mem_bar(Op_LoadFence); 2889 return true; 2890 case vmIntrinsics::_storeFence: 2891 insert_mem_bar(Op_StoreFence); 2892 return true; 2893 case vmIntrinsics::_storeStoreFence: 2894 insert_mem_bar(Op_StoreStoreFence); 2895 return true; 2896 case vmIntrinsics::_fullFence: 2897 insert_mem_bar(Op_MemBarVolatile); 2898 return true; 2899 default: 2900 fatal_unexpected_iid(id); 2901 return false; 2902 } 2903 } 2904 2905 bool LibraryCallKit::inline_onspinwait() { 2906 insert_mem_bar(Op_OnSpinWait); 2907 return true; 2908 } 2909 2910 bool LibraryCallKit::klass_needs_init_guard(Node* kls) { 2911 if (!kls->is_Con()) { 2912 return true; 2913 } 2914 const TypeInstKlassPtr* klsptr = kls->bottom_type()->isa_instklassptr(); 2915 if (klsptr == nullptr) { 2916 return true; 2917 } 2918 ciInstanceKlass* ik = klsptr->instance_klass(); 2919 // don't need a guard for a klass that is already initialized 2920 return !ik->is_initialized(); 2921 } 2922 2923 //----------------------------inline_unsafe_writeback0------------------------- 2924 // public native void Unsafe.writeback0(long address) 2925 bool LibraryCallKit::inline_unsafe_writeback0() { 2926 if (!Matcher::has_match_rule(Op_CacheWB)) { 2927 return false; 2928 } 2929 #ifndef PRODUCT 2930 assert(Matcher::has_match_rule(Op_CacheWBPreSync), "found match rule for CacheWB but not CacheWBPreSync"); 2931 assert(Matcher::has_match_rule(Op_CacheWBPostSync), "found match rule for CacheWB but not CacheWBPostSync"); 2932 ciSignature* sig = callee()->signature(); 2933 assert(sig->type_at(0)->basic_type() == T_LONG, "Unsafe_writeback0 address is long!"); 2934 #endif 2935 null_check_receiver(); // null-check, then ignore 2936 Node *addr = argument(1); 2937 addr = new CastX2PNode(addr); 2938 addr = _gvn.transform(addr); 2939 Node *flush = new CacheWBNode(control(), memory(TypeRawPtr::BOTTOM), addr); 2940 flush = _gvn.transform(flush); 2941 set_memory(flush, TypeRawPtr::BOTTOM); 2942 return true; 2943 } 2944 2945 //----------------------------inline_unsafe_writeback0------------------------- 2946 // public native void Unsafe.writeback0(long address) 2947 bool LibraryCallKit::inline_unsafe_writebackSync0(bool is_pre) { 2948 if (is_pre && !Matcher::has_match_rule(Op_CacheWBPreSync)) { 2949 return false; 2950 } 2951 if (!is_pre && !Matcher::has_match_rule(Op_CacheWBPostSync)) { 2952 return false; 2953 } 2954 #ifndef PRODUCT 2955 assert(Matcher::has_match_rule(Op_CacheWB), 2956 (is_pre ? "found match rule for CacheWBPreSync but not CacheWB" 2957 : "found match rule for CacheWBPostSync but not CacheWB")); 2958 2959 #endif 2960 null_check_receiver(); // null-check, then ignore 2961 Node *sync; 2962 if (is_pre) { 2963 sync = new CacheWBPreSyncNode(control(), memory(TypeRawPtr::BOTTOM)); 2964 } else { 2965 sync = new CacheWBPostSyncNode(control(), memory(TypeRawPtr::BOTTOM)); 2966 } 2967 sync = _gvn.transform(sync); 2968 set_memory(sync, TypeRawPtr::BOTTOM); 2969 return true; 2970 } 2971 2972 //----------------------------inline_unsafe_allocate--------------------------- 2973 // public native Object Unsafe.allocateInstance(Class<?> cls); 2974 bool LibraryCallKit::inline_unsafe_allocate() { 2975 2976 #if INCLUDE_JVMTI 2977 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 2978 return false; 2979 } 2980 #endif //INCLUDE_JVMTI 2981 2982 if (callee()->is_static()) return false; // caller must have the capability! 2983 2984 null_check_receiver(); // null-check, then ignore 2985 Node* cls = null_check(argument(1)); 2986 if (stopped()) return true; 2987 2988 Node* kls = load_klass_from_mirror(cls, false, nullptr, 0); 2989 kls = null_check(kls); 2990 if (stopped()) return true; // argument was like int.class 2991 2992 #if INCLUDE_JVMTI 2993 // Don't try to access new allocated obj in the intrinsic. 2994 // It causes perfomance issues even when jvmti event VmObjectAlloc is disabled. 2995 // Deoptimize and allocate in interpreter instead. 2996 Node* addr = makecon(TypeRawPtr::make((address) &JvmtiExport::_should_notify_object_alloc)); 2997 Node* should_post_vm_object_alloc = make_load(this->control(), addr, TypeInt::INT, T_INT, MemNode::unordered); 2998 Node* chk = _gvn.transform(new CmpINode(should_post_vm_object_alloc, intcon(0))); 2999 Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::eq)); 3000 { 3001 BuildCutout unless(this, tst, PROB_MAX); 3002 uncommon_trap(Deoptimization::Reason_intrinsic, 3003 Deoptimization::Action_make_not_entrant); 3004 } 3005 if (stopped()) { 3006 return true; 3007 } 3008 #endif //INCLUDE_JVMTI 3009 3010 Node* test = nullptr; 3011 if (LibraryCallKit::klass_needs_init_guard(kls)) { 3012 // Note: The argument might still be an illegal value like 3013 // Serializable.class or Object[].class. The runtime will handle it. 3014 // But we must make an explicit check for initialization. 3015 Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset())); 3016 // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler 3017 // can generate code to load it as unsigned byte. 3018 Node* inst = make_load(nullptr, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::acquire); 3019 Node* bits = intcon(InstanceKlass::fully_initialized); 3020 test = _gvn.transform(new SubINode(inst, bits)); 3021 // The 'test' is non-zero if we need to take a slow path. 3022 } 3023 3024 Node* obj = new_instance(kls, test); 3025 set_result(obj); 3026 return true; 3027 } 3028 3029 //------------------------inline_native_time_funcs-------------- 3030 // inline code for System.currentTimeMillis() and System.nanoTime() 3031 // these have the same type and signature 3032 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) { 3033 const TypeFunc* tf = OptoRuntime::void_long_Type(); 3034 const TypePtr* no_memory_effects = nullptr; 3035 Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects); 3036 Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0)); 3037 #ifdef ASSERT 3038 Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1)); 3039 assert(value_top == top(), "second value must be top"); 3040 #endif 3041 set_result(value); 3042 return true; 3043 } 3044 3045 3046 #if INCLUDE_JVMTI 3047 3048 // When notifications are disabled then just update the VTMS transition bit and return. 3049 // Otherwise, the bit is updated in the given function call implementing JVMTI notification protocol. 3050 bool LibraryCallKit::inline_native_notify_jvmti_funcs(address funcAddr, const char* funcName, bool is_start, bool is_end) { 3051 if (!DoJVMTIVirtualThreadTransitions) { 3052 return true; 3053 } 3054 Node* vt_oop = _gvn.transform(must_be_not_null(argument(0), true)); // VirtualThread this argument 3055 IdealKit ideal(this); 3056 3057 Node* ONE = ideal.ConI(1); 3058 Node* hide = is_start ? ideal.ConI(0) : (is_end ? ideal.ConI(1) : _gvn.transform(argument(1))); 3059 Node* addr = makecon(TypeRawPtr::make((address)&JvmtiVTMSTransitionDisabler::_VTMS_notify_jvmti_events)); 3060 Node* notify_jvmti_enabled = ideal.load(ideal.ctrl(), addr, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw); 3061 3062 ideal.if_then(notify_jvmti_enabled, BoolTest::eq, ONE); { 3063 sync_kit(ideal); 3064 // if notifyJvmti enabled then make a call to the given SharedRuntime function 3065 const TypeFunc* tf = OptoRuntime::notify_jvmti_vthread_Type(); 3066 make_runtime_call(RC_NO_LEAF, tf, funcAddr, funcName, TypePtr::BOTTOM, vt_oop, hide); 3067 ideal.sync_kit(this); 3068 } ideal.else_(); { 3069 // set hide value to the VTMS transition bit in current JavaThread and VirtualThread object 3070 Node* thread = ideal.thread(); 3071 Node* jt_addr = basic_plus_adr(thread, in_bytes(JavaThread::is_in_VTMS_transition_offset())); 3072 Node* vt_addr = basic_plus_adr(vt_oop, java_lang_Thread::is_in_VTMS_transition_offset()); 3073 3074 sync_kit(ideal); 3075 access_store_at(nullptr, jt_addr, _gvn.type(jt_addr)->is_ptr(), hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED); 3076 access_store_at(nullptr, vt_addr, _gvn.type(vt_addr)->is_ptr(), hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED); 3077 3078 ideal.sync_kit(this); 3079 } ideal.end_if(); 3080 final_sync(ideal); 3081 3082 return true; 3083 } 3084 3085 // Always update the is_disable_suspend bit. 3086 bool LibraryCallKit::inline_native_notify_jvmti_sync() { 3087 if (!DoJVMTIVirtualThreadTransitions) { 3088 return true; 3089 } 3090 IdealKit ideal(this); 3091 3092 { 3093 // unconditionally update the is_disable_suspend bit in current JavaThread 3094 Node* thread = ideal.thread(); 3095 Node* arg = _gvn.transform(argument(0)); // argument for notification 3096 Node* addr = basic_plus_adr(thread, in_bytes(JavaThread::is_disable_suspend_offset())); 3097 const TypePtr *addr_type = _gvn.type(addr)->isa_ptr(); 3098 3099 sync_kit(ideal); 3100 access_store_at(nullptr, addr, addr_type, arg, _gvn.type(arg), T_BOOLEAN, IN_NATIVE | MO_UNORDERED); 3101 ideal.sync_kit(this); 3102 } 3103 final_sync(ideal); 3104 3105 return true; 3106 } 3107 3108 #endif // INCLUDE_JVMTI 3109 3110 #ifdef JFR_HAVE_INTRINSICS 3111 3112 /** 3113 * if oop->klass != null 3114 * // normal class 3115 * epoch = _epoch_state ? 2 : 1 3116 * if oop->klass->trace_id & ((epoch << META_SHIFT) | epoch)) != epoch { 3117 * ... // enter slow path when the klass is first recorded or the epoch of JFR shifts 3118 * } 3119 * id = oop->klass->trace_id >> TRACE_ID_SHIFT // normal class path 3120 * else 3121 * // primitive class 3122 * if oop->array_klass != null 3123 * id = (oop->array_klass->trace_id >> TRACE_ID_SHIFT) + 1 // primitive class path 3124 * else 3125 * id = LAST_TYPE_ID + 1 // void class path 3126 * if (!signaled) 3127 * signaled = true 3128 */ 3129 bool LibraryCallKit::inline_native_classID() { 3130 Node* cls = argument(0); 3131 3132 IdealKit ideal(this); 3133 #define __ ideal. 3134 IdealVariable result(ideal); __ declarations_done(); 3135 Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), 3136 basic_plus_adr(cls, java_lang_Class::klass_offset()), 3137 TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL)); 3138 3139 3140 __ if_then(kls, BoolTest::ne, null()); { 3141 Node* kls_trace_id_addr = basic_plus_adr(kls, in_bytes(KLASS_TRACE_ID_OFFSET)); 3142 Node* kls_trace_id_raw = ideal.load(ideal.ctrl(), kls_trace_id_addr,TypeLong::LONG, T_LONG, Compile::AliasIdxRaw); 3143 3144 Node* epoch_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::epoch_address())); 3145 Node* epoch = ideal.load(ideal.ctrl(), epoch_address, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw); 3146 epoch = _gvn.transform(new LShiftLNode(longcon(1), epoch)); 3147 Node* mask = _gvn.transform(new LShiftLNode(epoch, intcon(META_SHIFT))); 3148 mask = _gvn.transform(new OrLNode(mask, epoch)); 3149 Node* kls_trace_id_raw_and_mask = _gvn.transform(new AndLNode(kls_trace_id_raw, mask)); 3150 3151 float unlikely = PROB_UNLIKELY(0.999); 3152 __ if_then(kls_trace_id_raw_and_mask, BoolTest::ne, epoch, unlikely); { 3153 sync_kit(ideal); 3154 make_runtime_call(RC_LEAF, 3155 OptoRuntime::class_id_load_barrier_Type(), 3156 CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::load_barrier), 3157 "class id load barrier", 3158 TypePtr::BOTTOM, 3159 kls); 3160 ideal.sync_kit(this); 3161 } __ end_if(); 3162 3163 ideal.set(result, _gvn.transform(new URShiftLNode(kls_trace_id_raw, ideal.ConI(TRACE_ID_SHIFT)))); 3164 } __ else_(); { 3165 Node* array_kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), 3166 basic_plus_adr(cls, java_lang_Class::array_klass_offset()), 3167 TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL)); 3168 __ if_then(array_kls, BoolTest::ne, null()); { 3169 Node* array_kls_trace_id_addr = basic_plus_adr(array_kls, in_bytes(KLASS_TRACE_ID_OFFSET)); 3170 Node* array_kls_trace_id_raw = ideal.load(ideal.ctrl(), array_kls_trace_id_addr, TypeLong::LONG, T_LONG, Compile::AliasIdxRaw); 3171 Node* array_kls_trace_id = _gvn.transform(new URShiftLNode(array_kls_trace_id_raw, ideal.ConI(TRACE_ID_SHIFT))); 3172 ideal.set(result, _gvn.transform(new AddLNode(array_kls_trace_id, longcon(1)))); 3173 } __ else_(); { 3174 // void class case 3175 ideal.set(result, _gvn.transform(longcon(LAST_TYPE_ID + 1))); 3176 } __ end_if(); 3177 3178 Node* signaled_flag_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::signal_address())); 3179 Node* signaled = ideal.load(ideal.ctrl(), signaled_flag_address, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw, true, MemNode::acquire); 3180 __ if_then(signaled, BoolTest::ne, ideal.ConI(1)); { 3181 ideal.store(ideal.ctrl(), signaled_flag_address, ideal.ConI(1), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::release, true); 3182 } __ end_if(); 3183 } __ end_if(); 3184 3185 final_sync(ideal); 3186 set_result(ideal.value(result)); 3187 #undef __ 3188 return true; 3189 } 3190 3191 //------------------------inline_native_jvm_commit------------------ 3192 bool LibraryCallKit::inline_native_jvm_commit() { 3193 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 3194 3195 // Save input memory and i_o state. 3196 Node* input_memory_state = reset_memory(); 3197 set_all_memory(input_memory_state); 3198 Node* input_io_state = i_o(); 3199 3200 // TLS. 3201 Node* tls_ptr = _gvn.transform(new ThreadLocalNode()); 3202 // Jfr java buffer. 3203 Node* java_buffer_offset = _gvn.transform(new AddPNode(top(), tls_ptr, _gvn.transform(MakeConX(in_bytes(JAVA_BUFFER_OFFSET_JFR))))); 3204 Node* java_buffer = _gvn.transform(new LoadPNode(control(), input_memory_state, java_buffer_offset, TypePtr::BOTTOM, TypeRawPtr::NOTNULL, MemNode::unordered)); 3205 Node* java_buffer_pos_offset = _gvn.transform(new AddPNode(top(), java_buffer, _gvn.transform(MakeConX(in_bytes(JFR_BUFFER_POS_OFFSET))))); 3206 3207 // Load the current value of the notified field in the JfrThreadLocal. 3208 Node* notified_offset = basic_plus_adr(top(), tls_ptr, in_bytes(NOTIFY_OFFSET_JFR)); 3209 Node* notified = make_load(control(), notified_offset, TypeInt::BOOL, T_BOOLEAN, MemNode::unordered); 3210 3211 // Test for notification. 3212 Node* notified_cmp = _gvn.transform(new CmpINode(notified, _gvn.intcon(1))); 3213 Node* test_notified = _gvn.transform(new BoolNode(notified_cmp, BoolTest::eq)); 3214 IfNode* iff_notified = create_and_map_if(control(), test_notified, PROB_MIN, COUNT_UNKNOWN); 3215 3216 // True branch, is notified. 3217 Node* is_notified = _gvn.transform(new IfTrueNode(iff_notified)); 3218 set_control(is_notified); 3219 3220 // Reset notified state. 3221 store_to_memory(control(), notified_offset, _gvn.intcon(0), T_BOOLEAN, MemNode::unordered); 3222 Node* notified_reset_memory = reset_memory(); 3223 3224 // Iff notified, the return address of the commit method is the current position of the backing java buffer. This is used to reset the event writer. 3225 Node* current_pos_X = _gvn.transform(new LoadXNode(control(), input_memory_state, java_buffer_pos_offset, TypeRawPtr::NOTNULL, TypeX_X, MemNode::unordered)); 3226 // Convert the machine-word to a long. 3227 Node* current_pos = _gvn.transform(ConvX2L(current_pos_X)); 3228 3229 // False branch, not notified. 3230 Node* not_notified = _gvn.transform(new IfFalseNode(iff_notified)); 3231 set_control(not_notified); 3232 set_all_memory(input_memory_state); 3233 3234 // Arg is the next position as a long. 3235 Node* arg = argument(0); 3236 // Convert long to machine-word. 3237 Node* next_pos_X = _gvn.transform(ConvL2X(arg)); 3238 3239 // Store the next_position to the underlying jfr java buffer. 3240 store_to_memory(control(), java_buffer_pos_offset, next_pos_X, LP64_ONLY(T_LONG) NOT_LP64(T_INT), MemNode::release); 3241 3242 Node* commit_memory = reset_memory(); 3243 set_all_memory(commit_memory); 3244 3245 // Now load the flags from off the java buffer and decide if the buffer is a lease. If so, it needs to be returned post-commit. 3246 Node* java_buffer_flags_offset = _gvn.transform(new AddPNode(top(), java_buffer, _gvn.transform(MakeConX(in_bytes(JFR_BUFFER_FLAGS_OFFSET))))); 3247 Node* flags = make_load(control(), java_buffer_flags_offset, TypeInt::UBYTE, T_BYTE, MemNode::unordered); 3248 Node* lease_constant = _gvn.transform(_gvn.intcon(4)); 3249 3250 // And flags with lease constant. 3251 Node* lease = _gvn.transform(new AndINode(flags, lease_constant)); 3252 3253 // Branch on lease to conditionalize returning the leased java buffer. 3254 Node* lease_cmp = _gvn.transform(new CmpINode(lease, lease_constant)); 3255 Node* test_lease = _gvn.transform(new BoolNode(lease_cmp, BoolTest::eq)); 3256 IfNode* iff_lease = create_and_map_if(control(), test_lease, PROB_MIN, COUNT_UNKNOWN); 3257 3258 // False branch, not a lease. 3259 Node* not_lease = _gvn.transform(new IfFalseNode(iff_lease)); 3260 3261 // True branch, is lease. 3262 Node* is_lease = _gvn.transform(new IfTrueNode(iff_lease)); 3263 set_control(is_lease); 3264 3265 // Make a runtime call, which can safepoint, to return the leased buffer. This updates both the JfrThreadLocal and the Java event writer oop. 3266 Node* call_return_lease = make_runtime_call(RC_NO_LEAF, 3267 OptoRuntime::void_void_Type(), 3268 SharedRuntime::jfr_return_lease(), 3269 "return_lease", TypePtr::BOTTOM); 3270 Node* call_return_lease_control = _gvn.transform(new ProjNode(call_return_lease, TypeFunc::Control)); 3271 3272 RegionNode* lease_compare_rgn = new RegionNode(PATH_LIMIT); 3273 record_for_igvn(lease_compare_rgn); 3274 PhiNode* lease_compare_mem = new PhiNode(lease_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3275 record_for_igvn(lease_compare_mem); 3276 PhiNode* lease_compare_io = new PhiNode(lease_compare_rgn, Type::ABIO); 3277 record_for_igvn(lease_compare_io); 3278 PhiNode* lease_result_value = new PhiNode(lease_compare_rgn, TypeLong::LONG); 3279 record_for_igvn(lease_result_value); 3280 3281 // Update control and phi nodes. 3282 lease_compare_rgn->init_req(_true_path, call_return_lease_control); 3283 lease_compare_rgn->init_req(_false_path, not_lease); 3284 3285 lease_compare_mem->init_req(_true_path, _gvn.transform(reset_memory())); 3286 lease_compare_mem->init_req(_false_path, commit_memory); 3287 3288 lease_compare_io->init_req(_true_path, i_o()); 3289 lease_compare_io->init_req(_false_path, input_io_state); 3290 3291 lease_result_value->init_req(_true_path, _gvn.longcon(0)); // if the lease was returned, return 0L. 3292 lease_result_value->init_req(_false_path, arg); // if not lease, return new updated position. 3293 3294 RegionNode* result_rgn = new RegionNode(PATH_LIMIT); 3295 PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM); 3296 PhiNode* result_io = new PhiNode(result_rgn, Type::ABIO); 3297 PhiNode* result_value = new PhiNode(result_rgn, TypeLong::LONG); 3298 3299 // Update control and phi nodes. 3300 result_rgn->init_req(_true_path, is_notified); 3301 result_rgn->init_req(_false_path, _gvn.transform(lease_compare_rgn)); 3302 3303 result_mem->init_req(_true_path, notified_reset_memory); 3304 result_mem->init_req(_false_path, _gvn.transform(lease_compare_mem)); 3305 3306 result_io->init_req(_true_path, input_io_state); 3307 result_io->init_req(_false_path, _gvn.transform(lease_compare_io)); 3308 3309 result_value->init_req(_true_path, current_pos); 3310 result_value->init_req(_false_path, _gvn.transform(lease_result_value)); 3311 3312 // Set output state. 3313 set_control(_gvn.transform(result_rgn)); 3314 set_all_memory(_gvn.transform(result_mem)); 3315 set_i_o(_gvn.transform(result_io)); 3316 set_result(result_rgn, result_value); 3317 return true; 3318 } 3319 3320 /* 3321 * The intrinsic is a model of this pseudo-code: 3322 * 3323 * JfrThreadLocal* const tl = Thread::jfr_thread_local() 3324 * jobject h_event_writer = tl->java_event_writer(); 3325 * if (h_event_writer == nullptr) { 3326 * return nullptr; 3327 * } 3328 * oop threadObj = Thread::threadObj(); 3329 * oop vthread = java_lang_Thread::vthread(threadObj); 3330 * traceid tid; 3331 * bool pinVirtualThread; 3332 * bool excluded; 3333 * if (vthread != threadObj) { // i.e. current thread is virtual 3334 * tid = java_lang_Thread::tid(vthread); 3335 * u2 vthread_epoch_raw = java_lang_Thread::jfr_epoch(vthread); 3336 * pinVirtualThread = VMContinuations; 3337 * excluded = vthread_epoch_raw & excluded_mask; 3338 * if (!excluded) { 3339 * traceid current_epoch = JfrTraceIdEpoch::current_generation(); 3340 * u2 vthread_epoch = vthread_epoch_raw & epoch_mask; 3341 * if (vthread_epoch != current_epoch) { 3342 * write_checkpoint(); 3343 * } 3344 * } 3345 * } else { 3346 * tid = java_lang_Thread::tid(threadObj); 3347 * u2 thread_epoch_raw = java_lang_Thread::jfr_epoch(threadObj); 3348 * pinVirtualThread = false; 3349 * excluded = thread_epoch_raw & excluded_mask; 3350 * } 3351 * oop event_writer = JNIHandles::resolve_non_null(h_event_writer); 3352 * traceid tid_in_event_writer = getField(event_writer, "threadID"); 3353 * if (tid_in_event_writer != tid) { 3354 * setField(event_writer, "pinVirtualThread", pinVirtualThread); 3355 * setField(event_writer, "excluded", excluded); 3356 * setField(event_writer, "threadID", tid); 3357 * } 3358 * return event_writer 3359 */ 3360 bool LibraryCallKit::inline_native_getEventWriter() { 3361 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 3362 3363 // Save input memory and i_o state. 3364 Node* input_memory_state = reset_memory(); 3365 set_all_memory(input_memory_state); 3366 Node* input_io_state = i_o(); 3367 3368 // The most significant bit of the u2 is used to denote thread exclusion 3369 Node* excluded_shift = _gvn.intcon(15); 3370 Node* excluded_mask = _gvn.intcon(1 << 15); 3371 // The epoch generation is the range [1-32767] 3372 Node* epoch_mask = _gvn.intcon(32767); 3373 3374 // TLS 3375 Node* tls_ptr = _gvn.transform(new ThreadLocalNode()); 3376 3377 // Load the address of java event writer jobject handle from the jfr_thread_local structure. 3378 Node* jobj_ptr = basic_plus_adr(top(), tls_ptr, in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR)); 3379 3380 // Load the eventwriter jobject handle. 3381 Node* jobj = make_load(control(), jobj_ptr, TypeRawPtr::BOTTOM, T_ADDRESS, MemNode::unordered); 3382 3383 // Null check the jobject handle. 3384 Node* jobj_cmp_null = _gvn.transform(new CmpPNode(jobj, null())); 3385 Node* test_jobj_not_equal_null = _gvn.transform(new BoolNode(jobj_cmp_null, BoolTest::ne)); 3386 IfNode* iff_jobj_not_equal_null = create_and_map_if(control(), test_jobj_not_equal_null, PROB_MAX, COUNT_UNKNOWN); 3387 3388 // False path, jobj is null. 3389 Node* jobj_is_null = _gvn.transform(new IfFalseNode(iff_jobj_not_equal_null)); 3390 3391 // True path, jobj is not null. 3392 Node* jobj_is_not_null = _gvn.transform(new IfTrueNode(iff_jobj_not_equal_null)); 3393 3394 set_control(jobj_is_not_null); 3395 3396 // Load the threadObj for the CarrierThread. 3397 Node* threadObj = generate_current_thread(tls_ptr); 3398 3399 // Load the vthread. 3400 Node* vthread = generate_virtual_thread(tls_ptr); 3401 3402 // If vthread != threadObj, this is a virtual thread. 3403 Node* vthread_cmp_threadObj = _gvn.transform(new CmpPNode(vthread, threadObj)); 3404 Node* test_vthread_not_equal_threadObj = _gvn.transform(new BoolNode(vthread_cmp_threadObj, BoolTest::ne)); 3405 IfNode* iff_vthread_not_equal_threadObj = 3406 create_and_map_if(jobj_is_not_null, test_vthread_not_equal_threadObj, PROB_FAIR, COUNT_UNKNOWN); 3407 3408 // False branch, fallback to threadObj. 3409 Node* vthread_equal_threadObj = _gvn.transform(new IfFalseNode(iff_vthread_not_equal_threadObj)); 3410 set_control(vthread_equal_threadObj); 3411 3412 // Load the tid field from the vthread object. 3413 Node* thread_obj_tid = load_field_from_object(threadObj, "tid", "J"); 3414 3415 // Load the raw epoch value from the threadObj. 3416 Node* threadObj_epoch_offset = basic_plus_adr(threadObj, java_lang_Thread::jfr_epoch_offset()); 3417 Node* threadObj_epoch_raw = access_load_at(threadObj, threadObj_epoch_offset, 3418 _gvn.type(threadObj_epoch_offset)->isa_ptr(), 3419 TypeInt::CHAR, T_CHAR, 3420 IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD); 3421 3422 // Mask off the excluded information from the epoch. 3423 Node * threadObj_is_excluded = _gvn.transform(new AndINode(threadObj_epoch_raw, excluded_mask)); 3424 3425 // True branch, this is a virtual thread. 3426 Node* vthread_not_equal_threadObj = _gvn.transform(new IfTrueNode(iff_vthread_not_equal_threadObj)); 3427 set_control(vthread_not_equal_threadObj); 3428 3429 // Load the tid field from the vthread object. 3430 Node* vthread_tid = load_field_from_object(vthread, "tid", "J"); 3431 3432 // Continuation support determines if a virtual thread should be pinned. 3433 Node* global_addr = makecon(TypeRawPtr::make((address)&VMContinuations)); 3434 Node* continuation_support = make_load(control(), global_addr, TypeInt::BOOL, T_BOOLEAN, MemNode::unordered); 3435 3436 // Load the raw epoch value from the vthread. 3437 Node* vthread_epoch_offset = basic_plus_adr(vthread, java_lang_Thread::jfr_epoch_offset()); 3438 Node* vthread_epoch_raw = access_load_at(vthread, vthread_epoch_offset, _gvn.type(vthread_epoch_offset)->is_ptr(), 3439 TypeInt::CHAR, T_CHAR, 3440 IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD); 3441 3442 // Mask off the excluded information from the epoch. 3443 Node * vthread_is_excluded = _gvn.transform(new AndINode(vthread_epoch_raw, _gvn.transform(excluded_mask))); 3444 3445 // Branch on excluded to conditionalize updating the epoch for the virtual thread. 3446 Node* is_excluded_cmp = _gvn.transform(new CmpINode(vthread_is_excluded, _gvn.transform(excluded_mask))); 3447 Node* test_not_excluded = _gvn.transform(new BoolNode(is_excluded_cmp, BoolTest::ne)); 3448 IfNode* iff_not_excluded = create_and_map_if(control(), test_not_excluded, PROB_MAX, COUNT_UNKNOWN); 3449 3450 // False branch, vthread is excluded, no need to write epoch info. 3451 Node* excluded = _gvn.transform(new IfFalseNode(iff_not_excluded)); 3452 3453 // True branch, vthread is included, update epoch info. 3454 Node* included = _gvn.transform(new IfTrueNode(iff_not_excluded)); 3455 set_control(included); 3456 3457 // Get epoch value. 3458 Node* epoch = _gvn.transform(new AndINode(vthread_epoch_raw, _gvn.transform(epoch_mask))); 3459 3460 // Load the current epoch generation. The value is unsigned 16-bit, so we type it as T_CHAR. 3461 Node* epoch_generation_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::epoch_generation_address())); 3462 Node* current_epoch_generation = make_load(control(), epoch_generation_address, TypeInt::CHAR, T_CHAR, MemNode::unordered); 3463 3464 // Compare the epoch in the vthread to the current epoch generation. 3465 Node* const epoch_cmp = _gvn.transform(new CmpUNode(current_epoch_generation, epoch)); 3466 Node* test_epoch_not_equal = _gvn.transform(new BoolNode(epoch_cmp, BoolTest::ne)); 3467 IfNode* iff_epoch_not_equal = create_and_map_if(control(), test_epoch_not_equal, PROB_FAIR, COUNT_UNKNOWN); 3468 3469 // False path, epoch is equal, checkpoint information is valid. 3470 Node* epoch_is_equal = _gvn.transform(new IfFalseNode(iff_epoch_not_equal)); 3471 3472 // True path, epoch is not equal, write a checkpoint for the vthread. 3473 Node* epoch_is_not_equal = _gvn.transform(new IfTrueNode(iff_epoch_not_equal)); 3474 3475 set_control(epoch_is_not_equal); 3476 3477 // Make a runtime call, which can safepoint, to write a checkpoint for the vthread for this epoch. 3478 // The call also updates the native thread local thread id and the vthread with the current epoch. 3479 Node* call_write_checkpoint = make_runtime_call(RC_NO_LEAF, 3480 OptoRuntime::jfr_write_checkpoint_Type(), 3481 SharedRuntime::jfr_write_checkpoint(), 3482 "write_checkpoint", TypePtr::BOTTOM); 3483 Node* call_write_checkpoint_control = _gvn.transform(new ProjNode(call_write_checkpoint, TypeFunc::Control)); 3484 3485 // vthread epoch != current epoch 3486 RegionNode* epoch_compare_rgn = new RegionNode(PATH_LIMIT); 3487 record_for_igvn(epoch_compare_rgn); 3488 PhiNode* epoch_compare_mem = new PhiNode(epoch_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3489 record_for_igvn(epoch_compare_mem); 3490 PhiNode* epoch_compare_io = new PhiNode(epoch_compare_rgn, Type::ABIO); 3491 record_for_igvn(epoch_compare_io); 3492 3493 // Update control and phi nodes. 3494 epoch_compare_rgn->init_req(_true_path, call_write_checkpoint_control); 3495 epoch_compare_rgn->init_req(_false_path, epoch_is_equal); 3496 epoch_compare_mem->init_req(_true_path, _gvn.transform(reset_memory())); 3497 epoch_compare_mem->init_req(_false_path, input_memory_state); 3498 epoch_compare_io->init_req(_true_path, i_o()); 3499 epoch_compare_io->init_req(_false_path, input_io_state); 3500 3501 // excluded != true 3502 RegionNode* exclude_compare_rgn = new RegionNode(PATH_LIMIT); 3503 record_for_igvn(exclude_compare_rgn); 3504 PhiNode* exclude_compare_mem = new PhiNode(exclude_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3505 record_for_igvn(exclude_compare_mem); 3506 PhiNode* exclude_compare_io = new PhiNode(exclude_compare_rgn, Type::ABIO); 3507 record_for_igvn(exclude_compare_io); 3508 3509 // Update control and phi nodes. 3510 exclude_compare_rgn->init_req(_true_path, _gvn.transform(epoch_compare_rgn)); 3511 exclude_compare_rgn->init_req(_false_path, excluded); 3512 exclude_compare_mem->init_req(_true_path, _gvn.transform(epoch_compare_mem)); 3513 exclude_compare_mem->init_req(_false_path, input_memory_state); 3514 exclude_compare_io->init_req(_true_path, _gvn.transform(epoch_compare_io)); 3515 exclude_compare_io->init_req(_false_path, input_io_state); 3516 3517 // vthread != threadObj 3518 RegionNode* vthread_compare_rgn = new RegionNode(PATH_LIMIT); 3519 record_for_igvn(vthread_compare_rgn); 3520 PhiNode* vthread_compare_mem = new PhiNode(vthread_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3521 PhiNode* vthread_compare_io = new PhiNode(vthread_compare_rgn, Type::ABIO); 3522 record_for_igvn(vthread_compare_io); 3523 PhiNode* tid = new PhiNode(vthread_compare_rgn, TypeLong::LONG); 3524 record_for_igvn(tid); 3525 PhiNode* exclusion = new PhiNode(vthread_compare_rgn, TypeInt::CHAR); 3526 record_for_igvn(exclusion); 3527 PhiNode* pinVirtualThread = new PhiNode(vthread_compare_rgn, TypeInt::BOOL); 3528 record_for_igvn(pinVirtualThread); 3529 3530 // Update control and phi nodes. 3531 vthread_compare_rgn->init_req(_true_path, _gvn.transform(exclude_compare_rgn)); 3532 vthread_compare_rgn->init_req(_false_path, vthread_equal_threadObj); 3533 vthread_compare_mem->init_req(_true_path, _gvn.transform(exclude_compare_mem)); 3534 vthread_compare_mem->init_req(_false_path, input_memory_state); 3535 vthread_compare_io->init_req(_true_path, _gvn.transform(exclude_compare_io)); 3536 vthread_compare_io->init_req(_false_path, input_io_state); 3537 tid->init_req(_true_path, _gvn.transform(vthread_tid)); 3538 tid->init_req(_false_path, _gvn.transform(thread_obj_tid)); 3539 exclusion->init_req(_true_path, _gvn.transform(vthread_is_excluded)); 3540 exclusion->init_req(_false_path, _gvn.transform(threadObj_is_excluded)); 3541 pinVirtualThread->init_req(_true_path, _gvn.transform(continuation_support)); 3542 pinVirtualThread->init_req(_false_path, _gvn.intcon(0)); 3543 3544 // Update branch state. 3545 set_control(_gvn.transform(vthread_compare_rgn)); 3546 set_all_memory(_gvn.transform(vthread_compare_mem)); 3547 set_i_o(_gvn.transform(vthread_compare_io)); 3548 3549 // Load the event writer oop by dereferencing the jobject handle. 3550 ciKlass* klass_EventWriter = env()->find_system_klass(ciSymbol::make("jdk/jfr/internal/event/EventWriter")); 3551 assert(klass_EventWriter->is_loaded(), "invariant"); 3552 ciInstanceKlass* const instklass_EventWriter = klass_EventWriter->as_instance_klass(); 3553 const TypeKlassPtr* const aklass = TypeKlassPtr::make(instklass_EventWriter); 3554 const TypeOopPtr* const xtype = aklass->as_instance_type(); 3555 Node* jobj_untagged = _gvn.transform(new AddPNode(top(), jobj, _gvn.MakeConX(-JNIHandles::TypeTag::global))); 3556 Node* event_writer = access_load(jobj_untagged, xtype, T_OBJECT, IN_NATIVE | C2_CONTROL_DEPENDENT_LOAD); 3557 3558 // Load the current thread id from the event writer object. 3559 Node* const event_writer_tid = load_field_from_object(event_writer, "threadID", "J"); 3560 // Get the field offset to, conditionally, store an updated tid value later. 3561 Node* const event_writer_tid_field = field_address_from_object(event_writer, "threadID", "J", false); 3562 // Get the field offset to, conditionally, store an updated exclusion value later. 3563 Node* const event_writer_excluded_field = field_address_from_object(event_writer, "excluded", "Z", false); 3564 // Get the field offset to, conditionally, store an updated pinVirtualThread value later. 3565 Node* const event_writer_pin_field = field_address_from_object(event_writer, "pinVirtualThread", "Z", false); 3566 3567 RegionNode* event_writer_tid_compare_rgn = new RegionNode(PATH_LIMIT); 3568 record_for_igvn(event_writer_tid_compare_rgn); 3569 PhiNode* event_writer_tid_compare_mem = new PhiNode(event_writer_tid_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3570 record_for_igvn(event_writer_tid_compare_mem); 3571 PhiNode* event_writer_tid_compare_io = new PhiNode(event_writer_tid_compare_rgn, Type::ABIO); 3572 record_for_igvn(event_writer_tid_compare_io); 3573 3574 // Compare the current tid from the thread object to what is currently stored in the event writer object. 3575 Node* const tid_cmp = _gvn.transform(new CmpLNode(event_writer_tid, _gvn.transform(tid))); 3576 Node* test_tid_not_equal = _gvn.transform(new BoolNode(tid_cmp, BoolTest::ne)); 3577 IfNode* iff_tid_not_equal = create_and_map_if(_gvn.transform(vthread_compare_rgn), test_tid_not_equal, PROB_FAIR, COUNT_UNKNOWN); 3578 3579 // False path, tids are the same. 3580 Node* tid_is_equal = _gvn.transform(new IfFalseNode(iff_tid_not_equal)); 3581 3582 // True path, tid is not equal, need to update the tid in the event writer. 3583 Node* tid_is_not_equal = _gvn.transform(new IfTrueNode(iff_tid_not_equal)); 3584 record_for_igvn(tid_is_not_equal); 3585 3586 // Store the pin state to the event writer. 3587 store_to_memory(tid_is_not_equal, event_writer_pin_field, _gvn.transform(pinVirtualThread), T_BOOLEAN, MemNode::unordered); 3588 3589 // Store the exclusion state to the event writer. 3590 Node* excluded_bool = _gvn.transform(new URShiftINode(_gvn.transform(exclusion), excluded_shift)); 3591 store_to_memory(tid_is_not_equal, event_writer_excluded_field, excluded_bool, T_BOOLEAN, MemNode::unordered); 3592 3593 // Store the tid to the event writer. 3594 store_to_memory(tid_is_not_equal, event_writer_tid_field, tid, T_LONG, MemNode::unordered); 3595 3596 // Update control and phi nodes. 3597 event_writer_tid_compare_rgn->init_req(_true_path, tid_is_not_equal); 3598 event_writer_tid_compare_rgn->init_req(_false_path, tid_is_equal); 3599 event_writer_tid_compare_mem->init_req(_true_path, _gvn.transform(reset_memory())); 3600 event_writer_tid_compare_mem->init_req(_false_path, _gvn.transform(vthread_compare_mem)); 3601 event_writer_tid_compare_io->init_req(_true_path, _gvn.transform(i_o())); 3602 event_writer_tid_compare_io->init_req(_false_path, _gvn.transform(vthread_compare_io)); 3603 3604 // Result of top level CFG, Memory, IO and Value. 3605 RegionNode* result_rgn = new RegionNode(PATH_LIMIT); 3606 PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM); 3607 PhiNode* result_io = new PhiNode(result_rgn, Type::ABIO); 3608 PhiNode* result_value = new PhiNode(result_rgn, TypeInstPtr::BOTTOM); 3609 3610 // Result control. 3611 result_rgn->init_req(_true_path, _gvn.transform(event_writer_tid_compare_rgn)); 3612 result_rgn->init_req(_false_path, jobj_is_null); 3613 3614 // Result memory. 3615 result_mem->init_req(_true_path, _gvn.transform(event_writer_tid_compare_mem)); 3616 result_mem->init_req(_false_path, _gvn.transform(input_memory_state)); 3617 3618 // Result IO. 3619 result_io->init_req(_true_path, _gvn.transform(event_writer_tid_compare_io)); 3620 result_io->init_req(_false_path, _gvn.transform(input_io_state)); 3621 3622 // Result value. 3623 result_value->init_req(_true_path, _gvn.transform(event_writer)); // return event writer oop 3624 result_value->init_req(_false_path, null()); // return null 3625 3626 // Set output state. 3627 set_control(_gvn.transform(result_rgn)); 3628 set_all_memory(_gvn.transform(result_mem)); 3629 set_i_o(_gvn.transform(result_io)); 3630 set_result(result_rgn, result_value); 3631 return true; 3632 } 3633 3634 /* 3635 * The intrinsic is a model of this pseudo-code: 3636 * 3637 * JfrThreadLocal* const tl = thread->jfr_thread_local(); 3638 * if (carrierThread != thread) { // is virtual thread 3639 * const u2 vthread_epoch_raw = java_lang_Thread::jfr_epoch(thread); 3640 * bool excluded = vthread_epoch_raw & excluded_mask; 3641 * Atomic::store(&tl->_contextual_tid, java_lang_Thread::tid(thread)); 3642 * Atomic::store(&tl->_contextual_thread_excluded, is_excluded); 3643 * if (!excluded) { 3644 * const u2 vthread_epoch = vthread_epoch_raw & epoch_mask; 3645 * Atomic::store(&tl->_vthread_epoch, vthread_epoch); 3646 * } 3647 * Atomic::release_store(&tl->_vthread, true); 3648 * return; 3649 * } 3650 * Atomic::release_store(&tl->_vthread, false); 3651 */ 3652 void LibraryCallKit::extend_setCurrentThread(Node* jt, Node* thread) { 3653 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 3654 3655 Node* input_memory_state = reset_memory(); 3656 set_all_memory(input_memory_state); 3657 3658 // The most significant bit of the u2 is used to denote thread exclusion 3659 Node* excluded_mask = _gvn.intcon(1 << 15); 3660 // The epoch generation is the range [1-32767] 3661 Node* epoch_mask = _gvn.intcon(32767); 3662 3663 Node* const carrierThread = generate_current_thread(jt); 3664 // If thread != carrierThread, this is a virtual thread. 3665 Node* thread_cmp_carrierThread = _gvn.transform(new CmpPNode(thread, carrierThread)); 3666 Node* test_thread_not_equal_carrierThread = _gvn.transform(new BoolNode(thread_cmp_carrierThread, BoolTest::ne)); 3667 IfNode* iff_thread_not_equal_carrierThread = 3668 create_and_map_if(control(), test_thread_not_equal_carrierThread, PROB_FAIR, COUNT_UNKNOWN); 3669 3670 Node* vthread_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_OFFSET_JFR)); 3671 3672 // False branch, is carrierThread. 3673 Node* thread_equal_carrierThread = _gvn.transform(new IfFalseNode(iff_thread_not_equal_carrierThread)); 3674 // Store release 3675 Node* vthread_false_memory = store_to_memory(thread_equal_carrierThread, vthread_offset, _gvn.intcon(0), T_BOOLEAN, MemNode::release, true); 3676 3677 set_all_memory(input_memory_state); 3678 3679 // True branch, is virtual thread. 3680 Node* thread_not_equal_carrierThread = _gvn.transform(new IfTrueNode(iff_thread_not_equal_carrierThread)); 3681 set_control(thread_not_equal_carrierThread); 3682 3683 // Load the raw epoch value from the vthread. 3684 Node* epoch_offset = basic_plus_adr(thread, java_lang_Thread::jfr_epoch_offset()); 3685 Node* epoch_raw = access_load_at(thread, epoch_offset, _gvn.type(epoch_offset)->is_ptr(), TypeInt::CHAR, T_CHAR, 3686 IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD); 3687 3688 // Mask off the excluded information from the epoch. 3689 Node * const is_excluded = _gvn.transform(new AndINode(epoch_raw, _gvn.transform(excluded_mask))); 3690 3691 // Load the tid field from the thread. 3692 Node* tid = load_field_from_object(thread, "tid", "J"); 3693 3694 // Store the vthread tid to the jfr thread local. 3695 Node* thread_id_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_ID_OFFSET_JFR)); 3696 Node* tid_memory = store_to_memory(control(), thread_id_offset, tid, T_LONG, MemNode::unordered, true); 3697 3698 // Branch is_excluded to conditionalize updating the epoch . 3699 Node* excluded_cmp = _gvn.transform(new CmpINode(is_excluded, _gvn.transform(excluded_mask))); 3700 Node* test_excluded = _gvn.transform(new BoolNode(excluded_cmp, BoolTest::eq)); 3701 IfNode* iff_excluded = create_and_map_if(control(), test_excluded, PROB_MIN, COUNT_UNKNOWN); 3702 3703 // True branch, vthread is excluded, no need to write epoch info. 3704 Node* excluded = _gvn.transform(new IfTrueNode(iff_excluded)); 3705 set_control(excluded); 3706 Node* vthread_is_excluded = _gvn.intcon(1); 3707 3708 // False branch, vthread is included, update epoch info. 3709 Node* included = _gvn.transform(new IfFalseNode(iff_excluded)); 3710 set_control(included); 3711 Node* vthread_is_included = _gvn.intcon(0); 3712 3713 // Get epoch value. 3714 Node* epoch = _gvn.transform(new AndINode(epoch_raw, _gvn.transform(epoch_mask))); 3715 3716 // Store the vthread epoch to the jfr thread local. 3717 Node* vthread_epoch_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_EPOCH_OFFSET_JFR)); 3718 Node* included_memory = store_to_memory(control(), vthread_epoch_offset, epoch, T_CHAR, MemNode::unordered, true); 3719 3720 RegionNode* excluded_rgn = new RegionNode(PATH_LIMIT); 3721 record_for_igvn(excluded_rgn); 3722 PhiNode* excluded_mem = new PhiNode(excluded_rgn, Type::MEMORY, TypePtr::BOTTOM); 3723 record_for_igvn(excluded_mem); 3724 PhiNode* exclusion = new PhiNode(excluded_rgn, TypeInt::BOOL); 3725 record_for_igvn(exclusion); 3726 3727 // Merge the excluded control and memory. 3728 excluded_rgn->init_req(_true_path, excluded); 3729 excluded_rgn->init_req(_false_path, included); 3730 excluded_mem->init_req(_true_path, tid_memory); 3731 excluded_mem->init_req(_false_path, included_memory); 3732 exclusion->init_req(_true_path, _gvn.transform(vthread_is_excluded)); 3733 exclusion->init_req(_false_path, _gvn.transform(vthread_is_included)); 3734 3735 // Set intermediate state. 3736 set_control(_gvn.transform(excluded_rgn)); 3737 set_all_memory(excluded_mem); 3738 3739 // Store the vthread exclusion state to the jfr thread local. 3740 Node* thread_local_excluded_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_EXCLUDED_OFFSET_JFR)); 3741 store_to_memory(control(), thread_local_excluded_offset, _gvn.transform(exclusion), T_BOOLEAN, MemNode::unordered, true); 3742 3743 // Store release 3744 Node * vthread_true_memory = store_to_memory(control(), vthread_offset, _gvn.intcon(1), T_BOOLEAN, MemNode::release, true); 3745 3746 RegionNode* thread_compare_rgn = new RegionNode(PATH_LIMIT); 3747 record_for_igvn(thread_compare_rgn); 3748 PhiNode* thread_compare_mem = new PhiNode(thread_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3749 record_for_igvn(thread_compare_mem); 3750 PhiNode* vthread = new PhiNode(thread_compare_rgn, TypeInt::BOOL); 3751 record_for_igvn(vthread); 3752 3753 // Merge the thread_compare control and memory. 3754 thread_compare_rgn->init_req(_true_path, control()); 3755 thread_compare_rgn->init_req(_false_path, thread_equal_carrierThread); 3756 thread_compare_mem->init_req(_true_path, vthread_true_memory); 3757 thread_compare_mem->init_req(_false_path, vthread_false_memory); 3758 3759 // Set output state. 3760 set_control(_gvn.transform(thread_compare_rgn)); 3761 set_all_memory(_gvn.transform(thread_compare_mem)); 3762 } 3763 3764 #endif // JFR_HAVE_INTRINSICS 3765 3766 //------------------------inline_native_currentCarrierThread------------------ 3767 bool LibraryCallKit::inline_native_currentCarrierThread() { 3768 Node* junk = nullptr; 3769 set_result(generate_current_thread(junk)); 3770 return true; 3771 } 3772 3773 //------------------------inline_native_currentThread------------------ 3774 bool LibraryCallKit::inline_native_currentThread() { 3775 Node* junk = nullptr; 3776 set_result(generate_virtual_thread(junk)); 3777 return true; 3778 } 3779 3780 //------------------------inline_native_setVthread------------------ 3781 bool LibraryCallKit::inline_native_setCurrentThread() { 3782 assert(C->method()->changes_current_thread(), 3783 "method changes current Thread but is not annotated ChangesCurrentThread"); 3784 Node* arr = argument(1); 3785 Node* thread = _gvn.transform(new ThreadLocalNode()); 3786 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::vthread_offset())); 3787 Node* thread_obj_handle 3788 = make_load(nullptr, p, p->bottom_type()->is_ptr(), T_OBJECT, MemNode::unordered); 3789 thread_obj_handle = _gvn.transform(thread_obj_handle); 3790 const TypePtr *adr_type = _gvn.type(thread_obj_handle)->isa_ptr(); 3791 access_store_at(nullptr, thread_obj_handle, adr_type, arr, _gvn.type(arr), T_OBJECT, IN_NATIVE | MO_UNORDERED); 3792 3793 // Change the _monitor_owner_id of the JavaThread 3794 Node* tid = load_field_from_object(arr, "tid", "J"); 3795 Node* monitor_owner_id_offset = basic_plus_adr(thread, in_bytes(JavaThread::monitor_owner_id_offset())); 3796 store_to_memory(control(), monitor_owner_id_offset, tid, T_LONG, MemNode::unordered, true); 3797 3798 JFR_ONLY(extend_setCurrentThread(thread, arr);) 3799 return true; 3800 } 3801 3802 const Type* LibraryCallKit::scopedValueCache_type() { 3803 ciKlass* objects_klass = ciObjArrayKlass::make(env()->Object_klass()); 3804 const TypeOopPtr* etype = TypeOopPtr::make_from_klass(env()->Object_klass()); 3805 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS); 3806 3807 // Because we create the scopedValue cache lazily we have to make the 3808 // type of the result BotPTR. 3809 bool xk = etype->klass_is_exact(); 3810 const Type* objects_type = TypeAryPtr::make(TypePtr::BotPTR, arr0, objects_klass, xk, 0); 3811 return objects_type; 3812 } 3813 3814 Node* LibraryCallKit::scopedValueCache_helper() { 3815 Node* thread = _gvn.transform(new ThreadLocalNode()); 3816 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::scopedValueCache_offset())); 3817 // We cannot use immutable_memory() because we might flip onto a 3818 // different carrier thread, at which point we'll need to use that 3819 // carrier thread's cache. 3820 // return _gvn.transform(LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(), 3821 // TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered)); 3822 return make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered); 3823 } 3824 3825 //------------------------inline_native_scopedValueCache------------------ 3826 bool LibraryCallKit::inline_native_scopedValueCache() { 3827 Node* cache_obj_handle = scopedValueCache_helper(); 3828 const Type* objects_type = scopedValueCache_type(); 3829 set_result(access_load(cache_obj_handle, objects_type, T_OBJECT, IN_NATIVE)); 3830 3831 return true; 3832 } 3833 3834 //------------------------inline_native_setScopedValueCache------------------ 3835 bool LibraryCallKit::inline_native_setScopedValueCache() { 3836 Node* arr = argument(0); 3837 Node* cache_obj_handle = scopedValueCache_helper(); 3838 const Type* objects_type = scopedValueCache_type(); 3839 3840 const TypePtr *adr_type = _gvn.type(cache_obj_handle)->isa_ptr(); 3841 access_store_at(nullptr, cache_obj_handle, adr_type, arr, objects_type, T_OBJECT, IN_NATIVE | MO_UNORDERED); 3842 3843 return true; 3844 } 3845 3846 //------------------------inline_native_Continuation_pin and unpin----------- 3847 3848 // Shared implementation routine for both pin and unpin. 3849 bool LibraryCallKit::inline_native_Continuation_pinning(bool unpin) { 3850 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 3851 3852 // Save input memory. 3853 Node* input_memory_state = reset_memory(); 3854 set_all_memory(input_memory_state); 3855 3856 // TLS 3857 Node* tls_ptr = _gvn.transform(new ThreadLocalNode()); 3858 Node* last_continuation_offset = basic_plus_adr(top(), tls_ptr, in_bytes(JavaThread::cont_entry_offset())); 3859 Node* last_continuation = make_load(control(), last_continuation_offset, last_continuation_offset->get_ptr_type(), T_ADDRESS, MemNode::unordered); 3860 3861 // Null check the last continuation object. 3862 Node* continuation_cmp_null = _gvn.transform(new CmpPNode(last_continuation, null())); 3863 Node* test_continuation_not_equal_null = _gvn.transform(new BoolNode(continuation_cmp_null, BoolTest::ne)); 3864 IfNode* iff_continuation_not_equal_null = create_and_map_if(control(), test_continuation_not_equal_null, PROB_MAX, COUNT_UNKNOWN); 3865 3866 // False path, last continuation is null. 3867 Node* continuation_is_null = _gvn.transform(new IfFalseNode(iff_continuation_not_equal_null)); 3868 3869 // True path, last continuation is not null. 3870 Node* continuation_is_not_null = _gvn.transform(new IfTrueNode(iff_continuation_not_equal_null)); 3871 3872 set_control(continuation_is_not_null); 3873 3874 // Load the pin count from the last continuation. 3875 Node* pin_count_offset = basic_plus_adr(top(), last_continuation, in_bytes(ContinuationEntry::pin_count_offset())); 3876 Node* pin_count = make_load(control(), pin_count_offset, TypeInt::INT, T_INT, MemNode::unordered); 3877 3878 // The loaded pin count is compared against a context specific rhs for over/underflow detection. 3879 Node* pin_count_rhs; 3880 if (unpin) { 3881 pin_count_rhs = _gvn.intcon(0); 3882 } else { 3883 pin_count_rhs = _gvn.intcon(UINT32_MAX); 3884 } 3885 Node* pin_count_cmp = _gvn.transform(new CmpUNode(_gvn.transform(pin_count), pin_count_rhs)); 3886 Node* test_pin_count_over_underflow = _gvn.transform(new BoolNode(pin_count_cmp, BoolTest::eq)); 3887 IfNode* iff_pin_count_over_underflow = create_and_map_if(control(), test_pin_count_over_underflow, PROB_MIN, COUNT_UNKNOWN); 3888 3889 // True branch, pin count over/underflow. 3890 Node* pin_count_over_underflow = _gvn.transform(new IfTrueNode(iff_pin_count_over_underflow)); 3891 { 3892 // Trap (but not deoptimize (Action_none)) and continue in the interpreter 3893 // which will throw IllegalStateException for pin count over/underflow. 3894 // No memory changed so far - we can use memory create by reset_memory() 3895 // at the beginning of this intrinsic. No need to call reset_memory() again. 3896 PreserveJVMState pjvms(this); 3897 set_control(pin_count_over_underflow); 3898 uncommon_trap(Deoptimization::Reason_intrinsic, 3899 Deoptimization::Action_none); 3900 assert(stopped(), "invariant"); 3901 } 3902 3903 // False branch, no pin count over/underflow. Increment or decrement pin count and store back. 3904 Node* valid_pin_count = _gvn.transform(new IfFalseNode(iff_pin_count_over_underflow)); 3905 set_control(valid_pin_count); 3906 3907 Node* next_pin_count; 3908 if (unpin) { 3909 next_pin_count = _gvn.transform(new SubINode(pin_count, _gvn.intcon(1))); 3910 } else { 3911 next_pin_count = _gvn.transform(new AddINode(pin_count, _gvn.intcon(1))); 3912 } 3913 3914 store_to_memory(control(), pin_count_offset, next_pin_count, T_INT, MemNode::unordered); 3915 3916 // Result of top level CFG and Memory. 3917 RegionNode* result_rgn = new RegionNode(PATH_LIMIT); 3918 record_for_igvn(result_rgn); 3919 PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM); 3920 record_for_igvn(result_mem); 3921 3922 result_rgn->init_req(_true_path, _gvn.transform(valid_pin_count)); 3923 result_rgn->init_req(_false_path, _gvn.transform(continuation_is_null)); 3924 result_mem->init_req(_true_path, _gvn.transform(reset_memory())); 3925 result_mem->init_req(_false_path, _gvn.transform(input_memory_state)); 3926 3927 // Set output state. 3928 set_control(_gvn.transform(result_rgn)); 3929 set_all_memory(_gvn.transform(result_mem)); 3930 3931 return true; 3932 } 3933 3934 //---------------------------load_mirror_from_klass---------------------------- 3935 // Given a klass oop, load its java mirror (a java.lang.Class oop). 3936 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) { 3937 Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset())); 3938 Node* load = make_load(nullptr, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered); 3939 // mirror = ((OopHandle)mirror)->resolve(); 3940 return access_load(load, TypeInstPtr::MIRROR, T_OBJECT, IN_NATIVE); 3941 } 3942 3943 //-----------------------load_klass_from_mirror_common------------------------- 3944 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop. 3945 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE), 3946 // and branch to the given path on the region. 3947 // If never_see_null, take an uncommon trap on null, so we can optimistically 3948 // compile for the non-null case. 3949 // If the region is null, force never_see_null = true. 3950 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror, 3951 bool never_see_null, 3952 RegionNode* region, 3953 int null_path, 3954 int offset) { 3955 if (region == nullptr) never_see_null = true; 3956 Node* p = basic_plus_adr(mirror, offset); 3957 const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL; 3958 Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type)); 3959 Node* null_ctl = top(); 3960 kls = null_check_oop(kls, &null_ctl, never_see_null); 3961 if (region != nullptr) { 3962 // Set region->in(null_path) if the mirror is a primitive (e.g, int.class). 3963 region->init_req(null_path, null_ctl); 3964 } else { 3965 assert(null_ctl == top(), "no loose ends"); 3966 } 3967 return kls; 3968 } 3969 3970 //--------------------(inline_native_Class_query helpers)--------------------- 3971 // Use this for JVM_ACC_INTERFACE. 3972 // Fall through if (mods & mask) == bits, take the guard otherwise. 3973 Node* LibraryCallKit::generate_klass_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region, 3974 ByteSize offset, const Type* type, BasicType bt) { 3975 // Branch around if the given klass has the given modifier bit set. 3976 // Like generate_guard, adds a new path onto the region. 3977 Node* modp = basic_plus_adr(kls, in_bytes(offset)); 3978 Node* mods = make_load(nullptr, modp, type, bt, MemNode::unordered); 3979 Node* mask = intcon(modifier_mask); 3980 Node* bits = intcon(modifier_bits); 3981 Node* mbit = _gvn.transform(new AndINode(mods, mask)); 3982 Node* cmp = _gvn.transform(new CmpINode(mbit, bits)); 3983 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne)); 3984 return generate_fair_guard(bol, region); 3985 } 3986 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) { 3987 return generate_klass_flags_guard(kls, JVM_ACC_INTERFACE, 0, region, 3988 Klass::access_flags_offset(), TypeInt::CHAR, T_CHAR); 3989 } 3990 3991 // Use this for testing if Klass is_hidden, has_finalizer, and is_cloneable_fast. 3992 Node* LibraryCallKit::generate_misc_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) { 3993 return generate_klass_flags_guard(kls, modifier_mask, modifier_bits, region, 3994 Klass::misc_flags_offset(), TypeInt::UBYTE, T_BOOLEAN); 3995 } 3996 3997 Node* LibraryCallKit::generate_hidden_class_guard(Node* kls, RegionNode* region) { 3998 return generate_misc_flags_guard(kls, KlassFlags::_misc_is_hidden_class, 0, region); 3999 } 4000 4001 //-------------------------inline_native_Class_query------------------- 4002 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) { 4003 const Type* return_type = TypeInt::BOOL; 4004 Node* prim_return_value = top(); // what happens if it's a primitive class? 4005 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 4006 bool expect_prim = false; // most of these guys expect to work on refs 4007 4008 enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT }; 4009 4010 Node* mirror = argument(0); 4011 Node* obj = top(); 4012 4013 switch (id) { 4014 case vmIntrinsics::_isInstance: 4015 // nothing is an instance of a primitive type 4016 prim_return_value = intcon(0); 4017 obj = argument(1); 4018 break; 4019 case vmIntrinsics::_isHidden: 4020 prim_return_value = intcon(0); 4021 break; 4022 case vmIntrinsics::_getSuperclass: 4023 prim_return_value = null(); 4024 return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR); 4025 break; 4026 default: 4027 fatal_unexpected_iid(id); 4028 break; 4029 } 4030 4031 const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr(); 4032 if (mirror_con == nullptr) return false; // cannot happen? 4033 4034 #ifndef PRODUCT 4035 if (C->print_intrinsics() || C->print_inlining()) { 4036 ciType* k = mirror_con->java_mirror_type(); 4037 if (k) { 4038 tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id())); 4039 k->print_name(); 4040 tty->cr(); 4041 } 4042 } 4043 #endif 4044 4045 // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive). 4046 RegionNode* region = new RegionNode(PATH_LIMIT); 4047 record_for_igvn(region); 4048 PhiNode* phi = new PhiNode(region, return_type); 4049 4050 // The mirror will never be null of Reflection.getClassAccessFlags, however 4051 // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE 4052 // if it is. See bug 4774291. 4053 4054 // For Reflection.getClassAccessFlags(), the null check occurs in 4055 // the wrong place; see inline_unsafe_access(), above, for a similar 4056 // situation. 4057 mirror = null_check(mirror); 4058 // If mirror or obj is dead, only null-path is taken. 4059 if (stopped()) return true; 4060 4061 if (expect_prim) never_see_null = false; // expect nulls (meaning prims) 4062 4063 // Now load the mirror's klass metaobject, and null-check it. 4064 // Side-effects region with the control path if the klass is null. 4065 Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path); 4066 // If kls is null, we have a primitive mirror. 4067 phi->init_req(_prim_path, prim_return_value); 4068 if (stopped()) { set_result(region, phi); return true; } 4069 bool safe_for_replace = (region->in(_prim_path) == top()); 4070 4071 Node* p; // handy temp 4072 Node* null_ctl; 4073 4074 // Now that we have the non-null klass, we can perform the real query. 4075 // For constant classes, the query will constant-fold in LoadNode::Value. 4076 Node* query_value = top(); 4077 switch (id) { 4078 case vmIntrinsics::_isInstance: 4079 // nothing is an instance of a primitive type 4080 query_value = gen_instanceof(obj, kls, safe_for_replace); 4081 break; 4082 4083 case vmIntrinsics::_isHidden: 4084 // (To verify this code sequence, check the asserts in JVM_IsHiddenClass.) 4085 if (generate_hidden_class_guard(kls, region) != nullptr) 4086 // A guard was added. If the guard is taken, it was an hidden class. 4087 phi->add_req(intcon(1)); 4088 // If we fall through, it's a plain class. 4089 query_value = intcon(0); 4090 break; 4091 4092 4093 case vmIntrinsics::_getSuperclass: 4094 // The rules here are somewhat unfortunate, but we can still do better 4095 // with random logic than with a JNI call. 4096 // Interfaces store null or Object as _super, but must report null. 4097 // Arrays store an intermediate super as _super, but must report Object. 4098 // Other types can report the actual _super. 4099 // (To verify this code sequence, check the asserts in JVM_IsInterface.) 4100 if (generate_interface_guard(kls, region) != nullptr) 4101 // A guard was added. If the guard is taken, it was an interface. 4102 phi->add_req(null()); 4103 if (generate_array_guard(kls, region) != nullptr) 4104 // A guard was added. If the guard is taken, it was an array. 4105 phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror()))); 4106 // If we fall through, it's a plain class. Get its _super. 4107 p = basic_plus_adr(kls, in_bytes(Klass::super_offset())); 4108 kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL)); 4109 null_ctl = top(); 4110 kls = null_check_oop(kls, &null_ctl); 4111 if (null_ctl != top()) { 4112 // If the guard is taken, Object.superClass is null (both klass and mirror). 4113 region->add_req(null_ctl); 4114 phi ->add_req(null()); 4115 } 4116 if (!stopped()) { 4117 query_value = load_mirror_from_klass(kls); 4118 } 4119 break; 4120 4121 default: 4122 fatal_unexpected_iid(id); 4123 break; 4124 } 4125 4126 // Fall-through is the normal case of a query to a real class. 4127 phi->init_req(1, query_value); 4128 region->init_req(1, control()); 4129 4130 C->set_has_split_ifs(true); // Has chance for split-if optimization 4131 set_result(region, phi); 4132 return true; 4133 } 4134 4135 //-------------------------inline_Class_cast------------------- 4136 bool LibraryCallKit::inline_Class_cast() { 4137 Node* mirror = argument(0); // Class 4138 Node* obj = argument(1); 4139 const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr(); 4140 if (mirror_con == nullptr) { 4141 return false; // dead path (mirror->is_top()). 4142 } 4143 if (obj == nullptr || obj->is_top()) { 4144 return false; // dead path 4145 } 4146 const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr(); 4147 4148 // First, see if Class.cast() can be folded statically. 4149 // java_mirror_type() returns non-null for compile-time Class constants. 4150 ciType* tm = mirror_con->java_mirror_type(); 4151 if (tm != nullptr && tm->is_klass() && 4152 tp != nullptr) { 4153 if (!tp->is_loaded()) { 4154 // Don't use intrinsic when class is not loaded. 4155 return false; 4156 } else { 4157 int static_res = C->static_subtype_check(TypeKlassPtr::make(tm->as_klass(), Type::trust_interfaces), tp->as_klass_type()); 4158 if (static_res == Compile::SSC_always_true) { 4159 // isInstance() is true - fold the code. 4160 set_result(obj); 4161 return true; 4162 } else if (static_res == Compile::SSC_always_false) { 4163 // Don't use intrinsic, have to throw ClassCastException. 4164 // If the reference is null, the non-intrinsic bytecode will 4165 // be optimized appropriately. 4166 return false; 4167 } 4168 } 4169 } 4170 4171 // Bailout intrinsic and do normal inlining if exception path is frequent. 4172 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 4173 return false; 4174 } 4175 4176 // Generate dynamic checks. 4177 // Class.cast() is java implementation of _checkcast bytecode. 4178 // Do checkcast (Parse::do_checkcast()) optimizations here. 4179 4180 mirror = null_check(mirror); 4181 // If mirror is dead, only null-path is taken. 4182 if (stopped()) { 4183 return true; 4184 } 4185 4186 // Not-subtype or the mirror's klass ptr is null (in case it is a primitive). 4187 enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT }; 4188 RegionNode* region = new RegionNode(PATH_LIMIT); 4189 record_for_igvn(region); 4190 4191 // Now load the mirror's klass metaobject, and null-check it. 4192 // If kls is null, we have a primitive mirror and 4193 // nothing is an instance of a primitive type. 4194 Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path); 4195 4196 Node* res = top(); 4197 if (!stopped()) { 4198 Node* bad_type_ctrl = top(); 4199 // Do checkcast optimizations. 4200 res = gen_checkcast(obj, kls, &bad_type_ctrl); 4201 region->init_req(_bad_type_path, bad_type_ctrl); 4202 } 4203 if (region->in(_prim_path) != top() || 4204 region->in(_bad_type_path) != top()) { 4205 // Let Interpreter throw ClassCastException. 4206 PreserveJVMState pjvms(this); 4207 set_control(_gvn.transform(region)); 4208 uncommon_trap(Deoptimization::Reason_intrinsic, 4209 Deoptimization::Action_maybe_recompile); 4210 } 4211 if (!stopped()) { 4212 set_result(res); 4213 } 4214 return true; 4215 } 4216 4217 4218 //--------------------------inline_native_subtype_check------------------------ 4219 // This intrinsic takes the JNI calls out of the heart of 4220 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc. 4221 bool LibraryCallKit::inline_native_subtype_check() { 4222 // Pull both arguments off the stack. 4223 Node* args[2]; // two java.lang.Class mirrors: superc, subc 4224 args[0] = argument(0); 4225 args[1] = argument(1); 4226 Node* klasses[2]; // corresponding Klasses: superk, subk 4227 klasses[0] = klasses[1] = top(); 4228 4229 enum { 4230 // A full decision tree on {superc is prim, subc is prim}: 4231 _prim_0_path = 1, // {P,N} => false 4232 // {P,P} & superc!=subc => false 4233 _prim_same_path, // {P,P} & superc==subc => true 4234 _prim_1_path, // {N,P} => false 4235 _ref_subtype_path, // {N,N} & subtype check wins => true 4236 _both_ref_path, // {N,N} & subtype check loses => false 4237 PATH_LIMIT 4238 }; 4239 4240 RegionNode* region = new RegionNode(PATH_LIMIT); 4241 Node* phi = new PhiNode(region, TypeInt::BOOL); 4242 record_for_igvn(region); 4243 4244 const TypePtr* adr_type = TypeRawPtr::BOTTOM; // memory type of loads 4245 const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL; 4246 int class_klass_offset = java_lang_Class::klass_offset(); 4247 4248 // First null-check both mirrors and load each mirror's klass metaobject. 4249 int which_arg; 4250 for (which_arg = 0; which_arg <= 1; which_arg++) { 4251 Node* arg = args[which_arg]; 4252 arg = null_check(arg); 4253 if (stopped()) break; 4254 args[which_arg] = arg; 4255 4256 Node* p = basic_plus_adr(arg, class_klass_offset); 4257 Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type); 4258 klasses[which_arg] = _gvn.transform(kls); 4259 } 4260 4261 // Having loaded both klasses, test each for null. 4262 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 4263 for (which_arg = 0; which_arg <= 1; which_arg++) { 4264 Node* kls = klasses[which_arg]; 4265 Node* null_ctl = top(); 4266 kls = null_check_oop(kls, &null_ctl, never_see_null); 4267 int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path); 4268 region->init_req(prim_path, null_ctl); 4269 if (stopped()) break; 4270 klasses[which_arg] = kls; 4271 } 4272 4273 if (!stopped()) { 4274 // now we have two reference types, in klasses[0..1] 4275 Node* subk = klasses[1]; // the argument to isAssignableFrom 4276 Node* superk = klasses[0]; // the receiver 4277 region->set_req(_both_ref_path, gen_subtype_check(subk, superk)); 4278 // now we have a successful reference subtype check 4279 region->set_req(_ref_subtype_path, control()); 4280 } 4281 4282 // If both operands are primitive (both klasses null), then 4283 // we must return true when they are identical primitives. 4284 // It is convenient to test this after the first null klass check. 4285 set_control(region->in(_prim_0_path)); // go back to first null check 4286 if (!stopped()) { 4287 // Since superc is primitive, make a guard for the superc==subc case. 4288 Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1])); 4289 Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq)); 4290 generate_guard(bol_eq, region, PROB_FAIR); 4291 if (region->req() == PATH_LIMIT+1) { 4292 // A guard was added. If the added guard is taken, superc==subc. 4293 region->swap_edges(PATH_LIMIT, _prim_same_path); 4294 region->del_req(PATH_LIMIT); 4295 } 4296 region->set_req(_prim_0_path, control()); // Not equal after all. 4297 } 4298 4299 // these are the only paths that produce 'true': 4300 phi->set_req(_prim_same_path, intcon(1)); 4301 phi->set_req(_ref_subtype_path, intcon(1)); 4302 4303 // pull together the cases: 4304 assert(region->req() == PATH_LIMIT, "sane region"); 4305 for (uint i = 1; i < region->req(); i++) { 4306 Node* ctl = region->in(i); 4307 if (ctl == nullptr || ctl == top()) { 4308 region->set_req(i, top()); 4309 phi ->set_req(i, top()); 4310 } else if (phi->in(i) == nullptr) { 4311 phi->set_req(i, intcon(0)); // all other paths produce 'false' 4312 } 4313 } 4314 4315 set_control(_gvn.transform(region)); 4316 set_result(_gvn.transform(phi)); 4317 return true; 4318 } 4319 4320 //---------------------generate_array_guard_common------------------------ 4321 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region, 4322 bool obj_array, bool not_array, Node** obj) { 4323 4324 if (stopped()) { 4325 return nullptr; 4326 } 4327 4328 // If obj_array/non_array==false/false: 4329 // Branch around if the given klass is in fact an array (either obj or prim). 4330 // If obj_array/non_array==false/true: 4331 // Branch around if the given klass is not an array klass of any kind. 4332 // If obj_array/non_array==true/true: 4333 // Branch around if the kls is not an oop array (kls is int[], String, etc.) 4334 // If obj_array/non_array==true/false: 4335 // Branch around if the kls is an oop array (Object[] or subtype) 4336 // 4337 // Like generate_guard, adds a new path onto the region. 4338 jint layout_con = 0; 4339 Node* layout_val = get_layout_helper(kls, layout_con); 4340 if (layout_val == nullptr) { 4341 bool query = (obj_array 4342 ? Klass::layout_helper_is_objArray(layout_con) 4343 : Klass::layout_helper_is_array(layout_con)); 4344 if (query == not_array) { 4345 return nullptr; // never a branch 4346 } else { // always a branch 4347 Node* always_branch = control(); 4348 if (region != nullptr) 4349 region->add_req(always_branch); 4350 set_control(top()); 4351 return always_branch; 4352 } 4353 } 4354 // Now test the correct condition. 4355 jint nval = (obj_array 4356 ? (jint)(Klass::_lh_array_tag_type_value 4357 << Klass::_lh_array_tag_shift) 4358 : Klass::_lh_neutral_value); 4359 Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval))); 4360 BoolTest::mask btest = BoolTest::lt; // correct for testing is_[obj]array 4361 // invert the test if we are looking for a non-array 4362 if (not_array) btest = BoolTest(btest).negate(); 4363 Node* bol = _gvn.transform(new BoolNode(cmp, btest)); 4364 Node* ctrl = generate_fair_guard(bol, region); 4365 Node* is_array_ctrl = not_array ? control() : ctrl; 4366 if (obj != nullptr && is_array_ctrl != nullptr && is_array_ctrl != top()) { 4367 // Keep track of the fact that 'obj' is an array to prevent 4368 // array specific accesses from floating above the guard. 4369 *obj = _gvn.transform(new CastPPNode(is_array_ctrl, *obj, TypeAryPtr::BOTTOM)); 4370 } 4371 return ctrl; 4372 } 4373 4374 4375 //-----------------------inline_native_newArray-------------------------- 4376 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length); 4377 // private native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size); 4378 bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) { 4379 Node* mirror; 4380 Node* count_val; 4381 if (uninitialized) { 4382 null_check_receiver(); 4383 mirror = argument(1); 4384 count_val = argument(2); 4385 } else { 4386 mirror = argument(0); 4387 count_val = argument(1); 4388 } 4389 4390 mirror = null_check(mirror); 4391 // If mirror or obj is dead, only null-path is taken. 4392 if (stopped()) return true; 4393 4394 enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT }; 4395 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 4396 PhiNode* result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL); 4397 PhiNode* result_io = new PhiNode(result_reg, Type::ABIO); 4398 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 4399 4400 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 4401 Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null, 4402 result_reg, _slow_path); 4403 Node* normal_ctl = control(); 4404 Node* no_array_ctl = result_reg->in(_slow_path); 4405 4406 // Generate code for the slow case. We make a call to newArray(). 4407 set_control(no_array_ctl); 4408 if (!stopped()) { 4409 // Either the input type is void.class, or else the 4410 // array klass has not yet been cached. Either the 4411 // ensuing call will throw an exception, or else it 4412 // will cache the array klass for next time. 4413 PreserveJVMState pjvms(this); 4414 CallJavaNode* slow_call = nullptr; 4415 if (uninitialized) { 4416 // Generate optimized virtual call (holder class 'Unsafe' is final) 4417 slow_call = generate_method_call(vmIntrinsics::_allocateUninitializedArray, false, false, true); 4418 } else { 4419 slow_call = generate_method_call_static(vmIntrinsics::_newArray, true); 4420 } 4421 Node* slow_result = set_results_for_java_call(slow_call); 4422 // this->control() comes from set_results_for_java_call 4423 result_reg->set_req(_slow_path, control()); 4424 result_val->set_req(_slow_path, slow_result); 4425 result_io ->set_req(_slow_path, i_o()); 4426 result_mem->set_req(_slow_path, reset_memory()); 4427 } 4428 4429 set_control(normal_ctl); 4430 if (!stopped()) { 4431 // Normal case: The array type has been cached in the java.lang.Class. 4432 // The following call works fine even if the array type is polymorphic. 4433 // It could be a dynamic mix of int[], boolean[], Object[], etc. 4434 Node* obj = new_array(klass_node, count_val, 0); // no arguments to push 4435 result_reg->init_req(_normal_path, control()); 4436 result_val->init_req(_normal_path, obj); 4437 result_io ->init_req(_normal_path, i_o()); 4438 result_mem->init_req(_normal_path, reset_memory()); 4439 4440 if (uninitialized) { 4441 // Mark the allocation so that zeroing is skipped 4442 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(obj); 4443 alloc->maybe_set_complete(&_gvn); 4444 } 4445 } 4446 4447 // Return the combined state. 4448 set_i_o( _gvn.transform(result_io) ); 4449 set_all_memory( _gvn.transform(result_mem)); 4450 4451 C->set_has_split_ifs(true); // Has chance for split-if optimization 4452 set_result(result_reg, result_val); 4453 return true; 4454 } 4455 4456 //----------------------inline_native_getLength-------------------------- 4457 // public static native int java.lang.reflect.Array.getLength(Object array); 4458 bool LibraryCallKit::inline_native_getLength() { 4459 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false; 4460 4461 Node* array = null_check(argument(0)); 4462 // If array is dead, only null-path is taken. 4463 if (stopped()) return true; 4464 4465 // Deoptimize if it is a non-array. 4466 Node* non_array = generate_non_array_guard(load_object_klass(array), nullptr, &array); 4467 4468 if (non_array != nullptr) { 4469 PreserveJVMState pjvms(this); 4470 set_control(non_array); 4471 uncommon_trap(Deoptimization::Reason_intrinsic, 4472 Deoptimization::Action_maybe_recompile); 4473 } 4474 4475 // If control is dead, only non-array-path is taken. 4476 if (stopped()) return true; 4477 4478 // The works fine even if the array type is polymorphic. 4479 // It could be a dynamic mix of int[], boolean[], Object[], etc. 4480 Node* result = load_array_length(array); 4481 4482 C->set_has_split_ifs(true); // Has chance for split-if optimization 4483 set_result(result); 4484 return true; 4485 } 4486 4487 //------------------------inline_array_copyOf---------------------------- 4488 // public static <T,U> T[] java.util.Arrays.copyOf( U[] original, int newLength, Class<? extends T[]> newType); 4489 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from, int to, Class<? extends T[]> newType); 4490 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) { 4491 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false; 4492 4493 // Get the arguments. 4494 Node* original = argument(0); 4495 Node* start = is_copyOfRange? argument(1): intcon(0); 4496 Node* end = is_copyOfRange? argument(2): argument(1); 4497 Node* array_type_mirror = is_copyOfRange? argument(3): argument(2); 4498 4499 Node* newcopy = nullptr; 4500 4501 // Set the original stack and the reexecute bit for the interpreter to reexecute 4502 // the bytecode that invokes Arrays.copyOf if deoptimization happens. 4503 { PreserveReexecuteState preexecs(this); 4504 jvms()->set_should_reexecute(true); 4505 4506 array_type_mirror = null_check(array_type_mirror); 4507 original = null_check(original); 4508 4509 // Check if a null path was taken unconditionally. 4510 if (stopped()) return true; 4511 4512 Node* orig_length = load_array_length(original); 4513 4514 Node* klass_node = load_klass_from_mirror(array_type_mirror, false, nullptr, 0); 4515 klass_node = null_check(klass_node); 4516 4517 RegionNode* bailout = new RegionNode(1); 4518 record_for_igvn(bailout); 4519 4520 // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc. 4521 // Bail out if that is so. 4522 Node* not_objArray = generate_non_objArray_guard(klass_node, bailout); 4523 if (not_objArray != nullptr) { 4524 // Improve the klass node's type from the new optimistic assumption: 4525 ciKlass* ak = ciArrayKlass::make(env()->Object_klass()); 4526 const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/); 4527 Node* cast = new CastPPNode(control(), klass_node, akls); 4528 klass_node = _gvn.transform(cast); 4529 } 4530 4531 // Bail out if either start or end is negative. 4532 generate_negative_guard(start, bailout, &start); 4533 generate_negative_guard(end, bailout, &end); 4534 4535 Node* length = end; 4536 if (_gvn.type(start) != TypeInt::ZERO) { 4537 length = _gvn.transform(new SubINode(end, start)); 4538 } 4539 4540 // Bail out if length is negative (i.e., if start > end). 4541 // Without this the new_array would throw 4542 // NegativeArraySizeException but IllegalArgumentException is what 4543 // should be thrown 4544 generate_negative_guard(length, bailout, &length); 4545 4546 // Bail out if start is larger than the original length 4547 Node* orig_tail = _gvn.transform(new SubINode(orig_length, start)); 4548 generate_negative_guard(orig_tail, bailout, &orig_tail); 4549 4550 if (bailout->req() > 1) { 4551 PreserveJVMState pjvms(this); 4552 set_control(_gvn.transform(bailout)); 4553 uncommon_trap(Deoptimization::Reason_intrinsic, 4554 Deoptimization::Action_maybe_recompile); 4555 } 4556 4557 if (!stopped()) { 4558 // How many elements will we copy from the original? 4559 // The answer is MinI(orig_tail, length). 4560 Node* moved = _gvn.transform(new MinINode(orig_tail, length)); 4561 4562 // Generate a direct call to the right arraycopy function(s). 4563 // We know the copy is disjoint but we might not know if the 4564 // oop stores need checking. 4565 // Extreme case: Arrays.copyOf((Integer[])x, 10, String[].class). 4566 // This will fail a store-check if x contains any non-nulls. 4567 4568 // ArrayCopyNode:Ideal may transform the ArrayCopyNode to 4569 // loads/stores but it is legal only if we're sure the 4570 // Arrays.copyOf would succeed. So we need all input arguments 4571 // to the copyOf to be validated, including that the copy to the 4572 // new array won't trigger an ArrayStoreException. That subtype 4573 // check can be optimized if we know something on the type of 4574 // the input array from type speculation. 4575 if (_gvn.type(klass_node)->singleton()) { 4576 const TypeKlassPtr* subk = _gvn.type(load_object_klass(original))->is_klassptr(); 4577 const TypeKlassPtr* superk = _gvn.type(klass_node)->is_klassptr(); 4578 4579 int test = C->static_subtype_check(superk, subk); 4580 if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) { 4581 const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr(); 4582 if (t_original->speculative_type() != nullptr) { 4583 original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true); 4584 } 4585 } 4586 } 4587 4588 bool validated = false; 4589 // Reason_class_check rather than Reason_intrinsic because we 4590 // want to intrinsify even if this traps. 4591 if (!too_many_traps(Deoptimization::Reason_class_check)) { 4592 Node* not_subtype_ctrl = gen_subtype_check(original, klass_node); 4593 4594 if (not_subtype_ctrl != top()) { 4595 PreserveJVMState pjvms(this); 4596 set_control(not_subtype_ctrl); 4597 uncommon_trap(Deoptimization::Reason_class_check, 4598 Deoptimization::Action_make_not_entrant); 4599 assert(stopped(), "Should be stopped"); 4600 } 4601 validated = true; 4602 } 4603 4604 if (!stopped()) { 4605 newcopy = new_array(klass_node, length, 0); // no arguments to push 4606 4607 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true, true, 4608 load_object_klass(original), klass_node); 4609 if (!is_copyOfRange) { 4610 ac->set_copyof(validated); 4611 } else { 4612 ac->set_copyofrange(validated); 4613 } 4614 Node* n = _gvn.transform(ac); 4615 if (n == ac) { 4616 ac->connect_outputs(this); 4617 } else { 4618 assert(validated, "shouldn't transform if all arguments not validated"); 4619 set_all_memory(n); 4620 } 4621 } 4622 } 4623 } // original reexecute is set back here 4624 4625 C->set_has_split_ifs(true); // Has chance for split-if optimization 4626 if (!stopped()) { 4627 set_result(newcopy); 4628 } 4629 return true; 4630 } 4631 4632 4633 //----------------------generate_virtual_guard--------------------------- 4634 // Helper for hashCode and clone. Peeks inside the vtable to avoid a call. 4635 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass, 4636 RegionNode* slow_region) { 4637 ciMethod* method = callee(); 4638 int vtable_index = method->vtable_index(); 4639 assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index, 4640 "bad index %d", vtable_index); 4641 // Get the Method* out of the appropriate vtable entry. 4642 int entry_offset = in_bytes(Klass::vtable_start_offset()) + 4643 vtable_index*vtableEntry::size_in_bytes() + 4644 in_bytes(vtableEntry::method_offset()); 4645 Node* entry_addr = basic_plus_adr(obj_klass, entry_offset); 4646 Node* target_call = make_load(nullptr, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered); 4647 4648 // Compare the target method with the expected method (e.g., Object.hashCode). 4649 const TypePtr* native_call_addr = TypeMetadataPtr::make(method); 4650 4651 Node* native_call = makecon(native_call_addr); 4652 Node* chk_native = _gvn.transform(new CmpPNode(target_call, native_call)); 4653 Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne)); 4654 4655 return generate_slow_guard(test_native, slow_region); 4656 } 4657 4658 //-----------------------generate_method_call---------------------------- 4659 // Use generate_method_call to make a slow-call to the real 4660 // method if the fast path fails. An alternative would be to 4661 // use a stub like OptoRuntime::slow_arraycopy_Java. 4662 // This only works for expanding the current library call, 4663 // not another intrinsic. (E.g., don't use this for making an 4664 // arraycopy call inside of the copyOf intrinsic.) 4665 CallJavaNode* 4666 LibraryCallKit::generate_method_call(vmIntrinsicID method_id, bool is_virtual, bool is_static, bool res_not_null) { 4667 // When compiling the intrinsic method itself, do not use this technique. 4668 guarantee(callee() != C->method(), "cannot make slow-call to self"); 4669 4670 ciMethod* method = callee(); 4671 // ensure the JVMS we have will be correct for this call 4672 guarantee(method_id == method->intrinsic_id(), "must match"); 4673 4674 const TypeFunc* tf = TypeFunc::make(method); 4675 if (res_not_null) { 4676 assert(tf->return_type() == T_OBJECT, ""); 4677 const TypeTuple* range = tf->range(); 4678 const Type** fields = TypeTuple::fields(range->cnt()); 4679 fields[TypeFunc::Parms] = range->field_at(TypeFunc::Parms)->filter_speculative(TypePtr::NOTNULL); 4680 const TypeTuple* new_range = TypeTuple::make(range->cnt(), fields); 4681 tf = TypeFunc::make(tf->domain(), new_range); 4682 } 4683 CallJavaNode* slow_call; 4684 if (is_static) { 4685 assert(!is_virtual, ""); 4686 slow_call = new CallStaticJavaNode(C, tf, 4687 SharedRuntime::get_resolve_static_call_stub(), method); 4688 } else if (is_virtual) { 4689 assert(!gvn().type(argument(0))->maybe_null(), "should not be null"); 4690 int vtable_index = Method::invalid_vtable_index; 4691 if (UseInlineCaches) { 4692 // Suppress the vtable call 4693 } else { 4694 // hashCode and clone are not a miranda methods, 4695 // so the vtable index is fixed. 4696 // No need to use the linkResolver to get it. 4697 vtable_index = method->vtable_index(); 4698 assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index, 4699 "bad index %d", vtable_index); 4700 } 4701 slow_call = new CallDynamicJavaNode(tf, 4702 SharedRuntime::get_resolve_virtual_call_stub(), 4703 method, vtable_index); 4704 } else { // neither virtual nor static: opt_virtual 4705 assert(!gvn().type(argument(0))->maybe_null(), "should not be null"); 4706 slow_call = new CallStaticJavaNode(C, tf, 4707 SharedRuntime::get_resolve_opt_virtual_call_stub(), method); 4708 slow_call->set_optimized_virtual(true); 4709 } 4710 if (CallGenerator::is_inlined_method_handle_intrinsic(this->method(), bci(), callee())) { 4711 // To be able to issue a direct call (optimized virtual or virtual) 4712 // and skip a call to MH.linkTo*/invokeBasic adapter, additional information 4713 // about the method being invoked should be attached to the call site to 4714 // make resolution logic work (see SharedRuntime::resolve_{virtual,opt_virtual}_call_C). 4715 slow_call->set_override_symbolic_info(true); 4716 } 4717 set_arguments_for_java_call(slow_call); 4718 set_edges_for_java_call(slow_call); 4719 return slow_call; 4720 } 4721 4722 4723 /** 4724 * Build special case code for calls to hashCode on an object. This call may 4725 * be virtual (invokevirtual) or bound (invokespecial). For each case we generate 4726 * slightly different code. 4727 */ 4728 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) { 4729 assert(is_static == callee()->is_static(), "correct intrinsic selection"); 4730 assert(!(is_virtual && is_static), "either virtual, special, or static"); 4731 4732 enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT }; 4733 4734 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 4735 PhiNode* result_val = new PhiNode(result_reg, TypeInt::INT); 4736 PhiNode* result_io = new PhiNode(result_reg, Type::ABIO); 4737 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 4738 Node* obj = nullptr; 4739 if (!is_static) { 4740 // Check for hashing null object 4741 obj = null_check_receiver(); 4742 if (stopped()) return true; // unconditionally null 4743 result_reg->init_req(_null_path, top()); 4744 result_val->init_req(_null_path, top()); 4745 } else { 4746 // Do a null check, and return zero if null. 4747 // System.identityHashCode(null) == 0 4748 obj = argument(0); 4749 Node* null_ctl = top(); 4750 obj = null_check_oop(obj, &null_ctl); 4751 result_reg->init_req(_null_path, null_ctl); 4752 result_val->init_req(_null_path, _gvn.intcon(0)); 4753 } 4754 4755 // Unconditionally null? Then return right away. 4756 if (stopped()) { 4757 set_control( result_reg->in(_null_path)); 4758 if (!stopped()) 4759 set_result(result_val->in(_null_path)); 4760 return true; 4761 } 4762 4763 // We only go to the fast case code if we pass a number of guards. The 4764 // paths which do not pass are accumulated in the slow_region. 4765 RegionNode* slow_region = new RegionNode(1); 4766 record_for_igvn(slow_region); 4767 4768 // If this is a virtual call, we generate a funny guard. We pull out 4769 // the vtable entry corresponding to hashCode() from the target object. 4770 // If the target method which we are calling happens to be the native 4771 // Object hashCode() method, we pass the guard. We do not need this 4772 // guard for non-virtual calls -- the caller is known to be the native 4773 // Object hashCode(). 4774 if (is_virtual) { 4775 // After null check, get the object's klass. 4776 Node* obj_klass = load_object_klass(obj); 4777 generate_virtual_guard(obj_klass, slow_region); 4778 } 4779 4780 // Get the header out of the object, use LoadMarkNode when available 4781 Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes()); 4782 // The control of the load must be null. Otherwise, the load can move before 4783 // the null check after castPP removal. 4784 Node* no_ctrl = nullptr; 4785 Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered); 4786 4787 if (!UseObjectMonitorTable) { 4788 // Test the header to see if it is safe to read w.r.t. locking. 4789 Node *lock_mask = _gvn.MakeConX(markWord::lock_mask_in_place); 4790 Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask)); 4791 if (LockingMode == LM_LIGHTWEIGHT) { 4792 Node *monitor_val = _gvn.MakeConX(markWord::monitor_value); 4793 Node *chk_monitor = _gvn.transform(new CmpXNode(lmasked_header, monitor_val)); 4794 Node *test_monitor = _gvn.transform(new BoolNode(chk_monitor, BoolTest::eq)); 4795 4796 generate_slow_guard(test_monitor, slow_region); 4797 } else { 4798 Node *unlocked_val = _gvn.MakeConX(markWord::unlocked_value); 4799 Node *chk_unlocked = _gvn.transform(new CmpXNode(lmasked_header, unlocked_val)); 4800 Node *test_not_unlocked = _gvn.transform(new BoolNode(chk_unlocked, BoolTest::ne)); 4801 4802 generate_slow_guard(test_not_unlocked, slow_region); 4803 } 4804 } 4805 4806 // Get the hash value and check to see that it has been properly assigned. 4807 // We depend on hash_mask being at most 32 bits and avoid the use of 4808 // hash_mask_in_place because it could be larger than 32 bits in a 64-bit 4809 // vm: see markWord.hpp. 4810 Node *hash_mask = _gvn.intcon(markWord::hash_mask); 4811 Node *hash_shift = _gvn.intcon(markWord::hash_shift); 4812 Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift)); 4813 // This hack lets the hash bits live anywhere in the mark object now, as long 4814 // as the shift drops the relevant bits into the low 32 bits. Note that 4815 // Java spec says that HashCode is an int so there's no point in capturing 4816 // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build). 4817 hshifted_header = ConvX2I(hshifted_header); 4818 Node *hash_val = _gvn.transform(new AndINode(hshifted_header, hash_mask)); 4819 4820 Node *no_hash_val = _gvn.intcon(markWord::no_hash); 4821 Node *chk_assigned = _gvn.transform(new CmpINode( hash_val, no_hash_val)); 4822 Node *test_assigned = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq)); 4823 4824 generate_slow_guard(test_assigned, slow_region); 4825 4826 Node* init_mem = reset_memory(); 4827 // fill in the rest of the null path: 4828 result_io ->init_req(_null_path, i_o()); 4829 result_mem->init_req(_null_path, init_mem); 4830 4831 result_val->init_req(_fast_path, hash_val); 4832 result_reg->init_req(_fast_path, control()); 4833 result_io ->init_req(_fast_path, i_o()); 4834 result_mem->init_req(_fast_path, init_mem); 4835 4836 // Generate code for the slow case. We make a call to hashCode(). 4837 set_control(_gvn.transform(slow_region)); 4838 if (!stopped()) { 4839 // No need for PreserveJVMState, because we're using up the present state. 4840 set_all_memory(init_mem); 4841 vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode; 4842 CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static, false); 4843 Node* slow_result = set_results_for_java_call(slow_call); 4844 // this->control() comes from set_results_for_java_call 4845 result_reg->init_req(_slow_path, control()); 4846 result_val->init_req(_slow_path, slow_result); 4847 result_io ->set_req(_slow_path, i_o()); 4848 result_mem ->set_req(_slow_path, reset_memory()); 4849 } 4850 4851 // Return the combined state. 4852 set_i_o( _gvn.transform(result_io) ); 4853 set_all_memory( _gvn.transform(result_mem)); 4854 4855 set_result(result_reg, result_val); 4856 return true; 4857 } 4858 4859 //---------------------------inline_native_getClass---------------------------- 4860 // public final native Class<?> java.lang.Object.getClass(); 4861 // 4862 // Build special case code for calls to getClass on an object. 4863 bool LibraryCallKit::inline_native_getClass() { 4864 Node* obj = null_check_receiver(); 4865 if (stopped()) return true; 4866 set_result(load_mirror_from_klass(load_object_klass(obj))); 4867 return true; 4868 } 4869 4870 //-----------------inline_native_Reflection_getCallerClass--------------------- 4871 // public static native Class<?> sun.reflect.Reflection.getCallerClass(); 4872 // 4873 // In the presence of deep enough inlining, getCallerClass() becomes a no-op. 4874 // 4875 // NOTE: This code must perform the same logic as JVM_GetCallerClass 4876 // in that it must skip particular security frames and checks for 4877 // caller sensitive methods. 4878 bool LibraryCallKit::inline_native_Reflection_getCallerClass() { 4879 #ifndef PRODUCT 4880 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4881 tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass"); 4882 } 4883 #endif 4884 4885 if (!jvms()->has_method()) { 4886 #ifndef PRODUCT 4887 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4888 tty->print_cr(" Bailing out because intrinsic was inlined at top level"); 4889 } 4890 #endif 4891 return false; 4892 } 4893 4894 // Walk back up the JVM state to find the caller at the required 4895 // depth. 4896 JVMState* caller_jvms = jvms(); 4897 4898 // Cf. JVM_GetCallerClass 4899 // NOTE: Start the loop at depth 1 because the current JVM state does 4900 // not include the Reflection.getCallerClass() frame. 4901 for (int n = 1; caller_jvms != nullptr; caller_jvms = caller_jvms->caller(), n++) { 4902 ciMethod* m = caller_jvms->method(); 4903 switch (n) { 4904 case 0: 4905 fatal("current JVM state does not include the Reflection.getCallerClass frame"); 4906 break; 4907 case 1: 4908 // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass). 4909 if (!m->caller_sensitive()) { 4910 #ifndef PRODUCT 4911 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4912 tty->print_cr(" Bailing out: CallerSensitive annotation expected at frame %d", n); 4913 } 4914 #endif 4915 return false; // bail-out; let JVM_GetCallerClass do the work 4916 } 4917 break; 4918 default: 4919 if (!m->is_ignored_by_security_stack_walk()) { 4920 // We have reached the desired frame; return the holder class. 4921 // Acquire method holder as java.lang.Class and push as constant. 4922 ciInstanceKlass* caller_klass = caller_jvms->method()->holder(); 4923 ciInstance* caller_mirror = caller_klass->java_mirror(); 4924 set_result(makecon(TypeInstPtr::make(caller_mirror))); 4925 4926 #ifndef PRODUCT 4927 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4928 tty->print_cr(" Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth()); 4929 tty->print_cr(" JVM state at this point:"); 4930 for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) { 4931 ciMethod* m = jvms()->of_depth(i)->method(); 4932 tty->print_cr(" %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8()); 4933 } 4934 } 4935 #endif 4936 return true; 4937 } 4938 break; 4939 } 4940 } 4941 4942 #ifndef PRODUCT 4943 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4944 tty->print_cr(" Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth()); 4945 tty->print_cr(" JVM state at this point:"); 4946 for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) { 4947 ciMethod* m = jvms()->of_depth(i)->method(); 4948 tty->print_cr(" %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8()); 4949 } 4950 } 4951 #endif 4952 4953 return false; // bail-out; let JVM_GetCallerClass do the work 4954 } 4955 4956 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) { 4957 Node* arg = argument(0); 4958 Node* result = nullptr; 4959 4960 switch (id) { 4961 case vmIntrinsics::_floatToRawIntBits: result = new MoveF2INode(arg); break; 4962 case vmIntrinsics::_intBitsToFloat: result = new MoveI2FNode(arg); break; 4963 case vmIntrinsics::_doubleToRawLongBits: result = new MoveD2LNode(arg); break; 4964 case vmIntrinsics::_longBitsToDouble: result = new MoveL2DNode(arg); break; 4965 case vmIntrinsics::_floatToFloat16: result = new ConvF2HFNode(arg); break; 4966 case vmIntrinsics::_float16ToFloat: result = new ConvHF2FNode(arg); break; 4967 4968 case vmIntrinsics::_doubleToLongBits: { 4969 // two paths (plus control) merge in a wood 4970 RegionNode *r = new RegionNode(3); 4971 Node *phi = new PhiNode(r, TypeLong::LONG); 4972 4973 Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg)); 4974 // Build the boolean node 4975 Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne)); 4976 4977 // Branch either way. 4978 // NaN case is less traveled, which makes all the difference. 4979 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN); 4980 Node *opt_isnan = _gvn.transform(ifisnan); 4981 assert( opt_isnan->is_If(), "Expect an IfNode"); 4982 IfNode *opt_ifisnan = (IfNode*)opt_isnan; 4983 Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan)); 4984 4985 set_control(iftrue); 4986 4987 static const jlong nan_bits = CONST64(0x7ff8000000000000); 4988 Node *slow_result = longcon(nan_bits); // return NaN 4989 phi->init_req(1, _gvn.transform( slow_result )); 4990 r->init_req(1, iftrue); 4991 4992 // Else fall through 4993 Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan)); 4994 set_control(iffalse); 4995 4996 phi->init_req(2, _gvn.transform(new MoveD2LNode(arg))); 4997 r->init_req(2, iffalse); 4998 4999 // Post merge 5000 set_control(_gvn.transform(r)); 5001 record_for_igvn(r); 5002 5003 C->set_has_split_ifs(true); // Has chance for split-if optimization 5004 result = phi; 5005 assert(result->bottom_type()->isa_long(), "must be"); 5006 break; 5007 } 5008 5009 case vmIntrinsics::_floatToIntBits: { 5010 // two paths (plus control) merge in a wood 5011 RegionNode *r = new RegionNode(3); 5012 Node *phi = new PhiNode(r, TypeInt::INT); 5013 5014 Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg)); 5015 // Build the boolean node 5016 Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne)); 5017 5018 // Branch either way. 5019 // NaN case is less traveled, which makes all the difference. 5020 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN); 5021 Node *opt_isnan = _gvn.transform(ifisnan); 5022 assert( opt_isnan->is_If(), "Expect an IfNode"); 5023 IfNode *opt_ifisnan = (IfNode*)opt_isnan; 5024 Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan)); 5025 5026 set_control(iftrue); 5027 5028 static const jint nan_bits = 0x7fc00000; 5029 Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN 5030 phi->init_req(1, _gvn.transform( slow_result )); 5031 r->init_req(1, iftrue); 5032 5033 // Else fall through 5034 Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan)); 5035 set_control(iffalse); 5036 5037 phi->init_req(2, _gvn.transform(new MoveF2INode(arg))); 5038 r->init_req(2, iffalse); 5039 5040 // Post merge 5041 set_control(_gvn.transform(r)); 5042 record_for_igvn(r); 5043 5044 C->set_has_split_ifs(true); // Has chance for split-if optimization 5045 result = phi; 5046 assert(result->bottom_type()->isa_int(), "must be"); 5047 break; 5048 } 5049 5050 default: 5051 fatal_unexpected_iid(id); 5052 break; 5053 } 5054 set_result(_gvn.transform(result)); 5055 return true; 5056 } 5057 5058 bool LibraryCallKit::inline_fp_range_check(vmIntrinsics::ID id) { 5059 Node* arg = argument(0); 5060 Node* result = nullptr; 5061 5062 switch (id) { 5063 case vmIntrinsics::_floatIsInfinite: 5064 result = new IsInfiniteFNode(arg); 5065 break; 5066 case vmIntrinsics::_floatIsFinite: 5067 result = new IsFiniteFNode(arg); 5068 break; 5069 case vmIntrinsics::_doubleIsInfinite: 5070 result = new IsInfiniteDNode(arg); 5071 break; 5072 case vmIntrinsics::_doubleIsFinite: 5073 result = new IsFiniteDNode(arg); 5074 break; 5075 default: 5076 fatal_unexpected_iid(id); 5077 break; 5078 } 5079 set_result(_gvn.transform(result)); 5080 return true; 5081 } 5082 5083 //----------------------inline_unsafe_copyMemory------------------------- 5084 // public native void Unsafe.copyMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes); 5085 5086 static bool has_wide_mem(PhaseGVN& gvn, Node* addr, Node* base) { 5087 const TypeAryPtr* addr_t = gvn.type(addr)->isa_aryptr(); 5088 const Type* base_t = gvn.type(base); 5089 5090 bool in_native = (base_t == TypePtr::NULL_PTR); 5091 bool in_heap = !TypePtr::NULL_PTR->higher_equal(base_t); 5092 bool is_mixed = !in_heap && !in_native; 5093 5094 if (is_mixed) { 5095 return true; // mixed accesses can touch both on-heap and off-heap memory 5096 } 5097 if (in_heap) { 5098 bool is_prim_array = (addr_t != nullptr) && (addr_t->elem() != Type::BOTTOM); 5099 if (!is_prim_array) { 5100 // Though Unsafe.copyMemory() ensures at runtime for on-heap accesses that base is a primitive array, 5101 // there's not enough type information available to determine proper memory slice for it. 5102 return true; 5103 } 5104 } 5105 return false; 5106 } 5107 5108 bool LibraryCallKit::inline_unsafe_copyMemory() { 5109 if (callee()->is_static()) return false; // caller must have the capability! 5110 null_check_receiver(); // null-check receiver 5111 if (stopped()) return true; 5112 5113 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 5114 5115 Node* src_base = argument(1); // type: oop 5116 Node* src_off = ConvL2X(argument(2)); // type: long 5117 Node* dst_base = argument(4); // type: oop 5118 Node* dst_off = ConvL2X(argument(5)); // type: long 5119 Node* size = ConvL2X(argument(7)); // type: long 5120 5121 assert(Unsafe_field_offset_to_byte_offset(11) == 11, 5122 "fieldOffset must be byte-scaled"); 5123 5124 Node* src_addr = make_unsafe_address(src_base, src_off); 5125 Node* dst_addr = make_unsafe_address(dst_base, dst_off); 5126 5127 Node* thread = _gvn.transform(new ThreadLocalNode()); 5128 Node* doing_unsafe_access_addr = basic_plus_adr(top(), thread, in_bytes(JavaThread::doing_unsafe_access_offset())); 5129 BasicType doing_unsafe_access_bt = T_BYTE; 5130 assert((sizeof(bool) * CHAR_BIT) == 8, "not implemented"); 5131 5132 // update volatile field 5133 store_to_memory(control(), doing_unsafe_access_addr, intcon(1), doing_unsafe_access_bt, MemNode::unordered); 5134 5135 int flags = RC_LEAF | RC_NO_FP; 5136 5137 const TypePtr* dst_type = TypePtr::BOTTOM; 5138 5139 // Adjust memory effects of the runtime call based on input values. 5140 if (!has_wide_mem(_gvn, src_addr, src_base) && 5141 !has_wide_mem(_gvn, dst_addr, dst_base)) { 5142 dst_type = _gvn.type(dst_addr)->is_ptr(); // narrow out memory 5143 5144 const TypePtr* src_type = _gvn.type(src_addr)->is_ptr(); 5145 if (C->get_alias_index(src_type) == C->get_alias_index(dst_type)) { 5146 flags |= RC_NARROW_MEM; // narrow in memory 5147 } 5148 } 5149 5150 // Call it. Note that the length argument is not scaled. 5151 make_runtime_call(flags, 5152 OptoRuntime::fast_arraycopy_Type(), 5153 StubRoutines::unsafe_arraycopy(), 5154 "unsafe_arraycopy", 5155 dst_type, 5156 src_addr, dst_addr, size XTOP); 5157 5158 store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, MemNode::unordered); 5159 5160 return true; 5161 } 5162 5163 // unsafe_setmemory(void *base, ulong offset, size_t length, char fill_value); 5164 // Fill 'length' bytes starting from 'base[offset]' with 'fill_value' 5165 bool LibraryCallKit::inline_unsafe_setMemory() { 5166 if (callee()->is_static()) return false; // caller must have the capability! 5167 null_check_receiver(); // null-check receiver 5168 if (stopped()) return true; 5169 5170 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 5171 5172 Node* dst_base = argument(1); // type: oop 5173 Node* dst_off = ConvL2X(argument(2)); // type: long 5174 Node* size = ConvL2X(argument(4)); // type: long 5175 Node* byte = argument(6); // type: byte 5176 5177 assert(Unsafe_field_offset_to_byte_offset(11) == 11, 5178 "fieldOffset must be byte-scaled"); 5179 5180 Node* dst_addr = make_unsafe_address(dst_base, dst_off); 5181 5182 Node* thread = _gvn.transform(new ThreadLocalNode()); 5183 Node* doing_unsafe_access_addr = basic_plus_adr(top(), thread, in_bytes(JavaThread::doing_unsafe_access_offset())); 5184 BasicType doing_unsafe_access_bt = T_BYTE; 5185 assert((sizeof(bool) * CHAR_BIT) == 8, "not implemented"); 5186 5187 // update volatile field 5188 store_to_memory(control(), doing_unsafe_access_addr, intcon(1), doing_unsafe_access_bt, MemNode::unordered); 5189 5190 int flags = RC_LEAF | RC_NO_FP; 5191 5192 const TypePtr* dst_type = TypePtr::BOTTOM; 5193 5194 // Adjust memory effects of the runtime call based on input values. 5195 if (!has_wide_mem(_gvn, dst_addr, dst_base)) { 5196 dst_type = _gvn.type(dst_addr)->is_ptr(); // narrow out memory 5197 5198 flags |= RC_NARROW_MEM; // narrow in memory 5199 } 5200 5201 // Call it. Note that the length argument is not scaled. 5202 make_runtime_call(flags, 5203 OptoRuntime::unsafe_setmemory_Type(), 5204 StubRoutines::unsafe_setmemory(), 5205 "unsafe_setmemory", 5206 dst_type, 5207 dst_addr, size XTOP, byte); 5208 5209 store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, MemNode::unordered); 5210 5211 return true; 5212 } 5213 5214 #undef XTOP 5215 5216 //------------------------clone_coping----------------------------------- 5217 // Helper function for inline_native_clone. 5218 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array) { 5219 assert(obj_size != nullptr, ""); 5220 Node* raw_obj = alloc_obj->in(1); 5221 assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), ""); 5222 5223 AllocateNode* alloc = nullptr; 5224 if (ReduceBulkZeroing && 5225 // If we are implementing an array clone without knowing its source type 5226 // (can happen when compiling the array-guarded branch of a reflective 5227 // Object.clone() invocation), initialize the array within the allocation. 5228 // This is needed because some GCs (e.g. ZGC) might fall back in this case 5229 // to a runtime clone call that assumes fully initialized source arrays. 5230 (!is_array || obj->get_ptr_type()->isa_aryptr() != nullptr)) { 5231 // We will be completely responsible for initializing this object - 5232 // mark Initialize node as complete. 5233 alloc = AllocateNode::Ideal_allocation(alloc_obj); 5234 // The object was just allocated - there should be no any stores! 5235 guarantee(alloc != nullptr && alloc->maybe_set_complete(&_gvn), ""); 5236 // Mark as complete_with_arraycopy so that on AllocateNode 5237 // expansion, we know this AllocateNode is initialized by an array 5238 // copy and a StoreStore barrier exists after the array copy. 5239 alloc->initialization()->set_complete_with_arraycopy(); 5240 } 5241 5242 Node* size = _gvn.transform(obj_size); 5243 access_clone(obj, alloc_obj, size, is_array); 5244 5245 // Do not let reads from the cloned object float above the arraycopy. 5246 if (alloc != nullptr) { 5247 // Do not let stores that initialize this object be reordered with 5248 // a subsequent store that would make this object accessible by 5249 // other threads. 5250 // Record what AllocateNode this StoreStore protects so that 5251 // escape analysis can go from the MemBarStoreStoreNode to the 5252 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 5253 // based on the escape status of the AllocateNode. 5254 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 5255 } else { 5256 insert_mem_bar(Op_MemBarCPUOrder); 5257 } 5258 } 5259 5260 //------------------------inline_native_clone---------------------------- 5261 // protected native Object java.lang.Object.clone(); 5262 // 5263 // Here are the simple edge cases: 5264 // null receiver => normal trap 5265 // virtual and clone was overridden => slow path to out-of-line clone 5266 // not cloneable or finalizer => slow path to out-of-line Object.clone 5267 // 5268 // The general case has two steps, allocation and copying. 5269 // Allocation has two cases, and uses GraphKit::new_instance or new_array. 5270 // 5271 // Copying also has two cases, oop arrays and everything else. 5272 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy). 5273 // Everything else uses the tight inline loop supplied by CopyArrayNode. 5274 // 5275 // These steps fold up nicely if and when the cloned object's klass 5276 // can be sharply typed as an object array, a type array, or an instance. 5277 // 5278 bool LibraryCallKit::inline_native_clone(bool is_virtual) { 5279 PhiNode* result_val; 5280 5281 // Set the reexecute bit for the interpreter to reexecute 5282 // the bytecode that invokes Object.clone if deoptimization happens. 5283 { PreserveReexecuteState preexecs(this); 5284 jvms()->set_should_reexecute(true); 5285 5286 Node* obj = null_check_receiver(); 5287 if (stopped()) return true; 5288 5289 const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr(); 5290 5291 // If we are going to clone an instance, we need its exact type to 5292 // know the number and types of fields to convert the clone to 5293 // loads/stores. Maybe a speculative type can help us. 5294 if (!obj_type->klass_is_exact() && 5295 obj_type->speculative_type() != nullptr && 5296 obj_type->speculative_type()->is_instance_klass()) { 5297 ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass(); 5298 if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem && 5299 !spec_ik->has_injected_fields()) { 5300 if (!obj_type->isa_instptr() || 5301 obj_type->is_instptr()->instance_klass()->has_subklass()) { 5302 obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false); 5303 } 5304 } 5305 } 5306 5307 // Conservatively insert a memory barrier on all memory slices. 5308 // Do not let writes into the original float below the clone. 5309 insert_mem_bar(Op_MemBarCPUOrder); 5310 5311 // paths into result_reg: 5312 enum { 5313 _slow_path = 1, // out-of-line call to clone method (virtual or not) 5314 _objArray_path, // plain array allocation, plus arrayof_oop_arraycopy 5315 _array_path, // plain array allocation, plus arrayof_long_arraycopy 5316 _instance_path, // plain instance allocation, plus arrayof_long_arraycopy 5317 PATH_LIMIT 5318 }; 5319 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 5320 result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL); 5321 PhiNode* result_i_o = new PhiNode(result_reg, Type::ABIO); 5322 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 5323 record_for_igvn(result_reg); 5324 5325 Node* obj_klass = load_object_klass(obj); 5326 Node* array_obj = obj; 5327 Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)nullptr, &array_obj); 5328 if (array_ctl != nullptr) { 5329 // It's an array. 5330 PreserveJVMState pjvms(this); 5331 set_control(array_ctl); 5332 Node* obj_length = load_array_length(array_obj); 5333 Node* array_size = nullptr; // Size of the array without object alignment padding. 5334 Node* alloc_obj = new_array(obj_klass, obj_length, 0, &array_size, /*deoptimize_on_exception=*/true); 5335 5336 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 5337 if (bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, false, BarrierSetC2::Parsing)) { 5338 // If it is an oop array, it requires very special treatment, 5339 // because gc barriers are required when accessing the array. 5340 Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)nullptr); 5341 if (is_obja != nullptr) { 5342 PreserveJVMState pjvms2(this); 5343 set_control(is_obja); 5344 // Generate a direct call to the right arraycopy function(s). 5345 // Clones are always tightly coupled. 5346 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, array_obj, intcon(0), alloc_obj, intcon(0), obj_length, true, false); 5347 ac->set_clone_oop_array(); 5348 Node* n = _gvn.transform(ac); 5349 assert(n == ac, "cannot disappear"); 5350 ac->connect_outputs(this, /*deoptimize_on_exception=*/true); 5351 5352 result_reg->init_req(_objArray_path, control()); 5353 result_val->init_req(_objArray_path, alloc_obj); 5354 result_i_o ->set_req(_objArray_path, i_o()); 5355 result_mem ->set_req(_objArray_path, reset_memory()); 5356 } 5357 } 5358 // Otherwise, there are no barriers to worry about. 5359 // (We can dispense with card marks if we know the allocation 5360 // comes out of eden (TLAB)... In fact, ReduceInitialCardMarks 5361 // causes the non-eden paths to take compensating steps to 5362 // simulate a fresh allocation, so that no further 5363 // card marks are required in compiled code to initialize 5364 // the object.) 5365 5366 if (!stopped()) { 5367 copy_to_clone(array_obj, alloc_obj, array_size, true); 5368 5369 // Present the results of the copy. 5370 result_reg->init_req(_array_path, control()); 5371 result_val->init_req(_array_path, alloc_obj); 5372 result_i_o ->set_req(_array_path, i_o()); 5373 result_mem ->set_req(_array_path, reset_memory()); 5374 } 5375 } 5376 5377 // We only go to the instance fast case code if we pass a number of guards. 5378 // The paths which do not pass are accumulated in the slow_region. 5379 RegionNode* slow_region = new RegionNode(1); 5380 record_for_igvn(slow_region); 5381 if (!stopped()) { 5382 // It's an instance (we did array above). Make the slow-path tests. 5383 // If this is a virtual call, we generate a funny guard. We grab 5384 // the vtable entry corresponding to clone() from the target object. 5385 // If the target method which we are calling happens to be the 5386 // Object clone() method, we pass the guard. We do not need this 5387 // guard for non-virtual calls; the caller is known to be the native 5388 // Object clone(). 5389 if (is_virtual) { 5390 generate_virtual_guard(obj_klass, slow_region); 5391 } 5392 5393 // The object must be easily cloneable and must not have a finalizer. 5394 // Both of these conditions may be checked in a single test. 5395 // We could optimize the test further, but we don't care. 5396 generate_misc_flags_guard(obj_klass, 5397 // Test both conditions: 5398 KlassFlags::_misc_is_cloneable_fast | KlassFlags::_misc_has_finalizer, 5399 // Must be cloneable but not finalizer: 5400 KlassFlags::_misc_is_cloneable_fast, 5401 slow_region); 5402 } 5403 5404 if (!stopped()) { 5405 // It's an instance, and it passed the slow-path tests. 5406 PreserveJVMState pjvms(this); 5407 Node* obj_size = nullptr; // Total object size, including object alignment padding. 5408 // Need to deoptimize on exception from allocation since Object.clone intrinsic 5409 // is reexecuted if deoptimization occurs and there could be problems when merging 5410 // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false). 5411 Node* alloc_obj = new_instance(obj_klass, nullptr, &obj_size, /*deoptimize_on_exception=*/true); 5412 5413 copy_to_clone(obj, alloc_obj, obj_size, false); 5414 5415 // Present the results of the slow call. 5416 result_reg->init_req(_instance_path, control()); 5417 result_val->init_req(_instance_path, alloc_obj); 5418 result_i_o ->set_req(_instance_path, i_o()); 5419 result_mem ->set_req(_instance_path, reset_memory()); 5420 } 5421 5422 // Generate code for the slow case. We make a call to clone(). 5423 set_control(_gvn.transform(slow_region)); 5424 if (!stopped()) { 5425 PreserveJVMState pjvms(this); 5426 CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual, false, true); 5427 // We need to deoptimize on exception (see comment above) 5428 Node* slow_result = set_results_for_java_call(slow_call, false, /* deoptimize */ true); 5429 // this->control() comes from set_results_for_java_call 5430 result_reg->init_req(_slow_path, control()); 5431 result_val->init_req(_slow_path, slow_result); 5432 result_i_o ->set_req(_slow_path, i_o()); 5433 result_mem ->set_req(_slow_path, reset_memory()); 5434 } 5435 5436 // Return the combined state. 5437 set_control( _gvn.transform(result_reg)); 5438 set_i_o( _gvn.transform(result_i_o)); 5439 set_all_memory( _gvn.transform(result_mem)); 5440 } // original reexecute is set back here 5441 5442 set_result(_gvn.transform(result_val)); 5443 return true; 5444 } 5445 5446 // If we have a tightly coupled allocation, the arraycopy may take care 5447 // of the array initialization. If one of the guards we insert between 5448 // the allocation and the arraycopy causes a deoptimization, an 5449 // uninitialized array will escape the compiled method. To prevent that 5450 // we set the JVM state for uncommon traps between the allocation and 5451 // the arraycopy to the state before the allocation so, in case of 5452 // deoptimization, we'll reexecute the allocation and the 5453 // initialization. 5454 JVMState* LibraryCallKit::arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp) { 5455 if (alloc != nullptr) { 5456 ciMethod* trap_method = alloc->jvms()->method(); 5457 int trap_bci = alloc->jvms()->bci(); 5458 5459 if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) && 5460 !C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_null_check)) { 5461 // Make sure there's no store between the allocation and the 5462 // arraycopy otherwise visible side effects could be rexecuted 5463 // in case of deoptimization and cause incorrect execution. 5464 bool no_interfering_store = true; 5465 Node* mem = alloc->in(TypeFunc::Memory); 5466 if (mem->is_MergeMem()) { 5467 for (MergeMemStream mms(merged_memory(), mem->as_MergeMem()); mms.next_non_empty2(); ) { 5468 Node* n = mms.memory(); 5469 if (n != mms.memory2() && !(n->is_Proj() && n->in(0) == alloc->initialization())) { 5470 assert(n->is_Store(), "what else?"); 5471 no_interfering_store = false; 5472 break; 5473 } 5474 } 5475 } else { 5476 for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) { 5477 Node* n = mms.memory(); 5478 if (n != mem && !(n->is_Proj() && n->in(0) == alloc->initialization())) { 5479 assert(n->is_Store(), "what else?"); 5480 no_interfering_store = false; 5481 break; 5482 } 5483 } 5484 } 5485 5486 if (no_interfering_store) { 5487 SafePointNode* sfpt = create_safepoint_with_state_before_array_allocation(alloc); 5488 5489 JVMState* saved_jvms = jvms(); 5490 saved_reexecute_sp = _reexecute_sp; 5491 5492 set_jvms(sfpt->jvms()); 5493 _reexecute_sp = jvms()->sp(); 5494 5495 return saved_jvms; 5496 } 5497 } 5498 } 5499 return nullptr; 5500 } 5501 5502 // Clone the JVMState of the array allocation and create a new safepoint with it. Re-push the array length to the stack 5503 // such that uncommon traps can be emitted to re-execute the array allocation in the interpreter. 5504 SafePointNode* LibraryCallKit::create_safepoint_with_state_before_array_allocation(const AllocateArrayNode* alloc) const { 5505 JVMState* old_jvms = alloc->jvms()->clone_shallow(C); 5506 uint size = alloc->req(); 5507 SafePointNode* sfpt = new SafePointNode(size, old_jvms); 5508 old_jvms->set_map(sfpt); 5509 for (uint i = 0; i < size; i++) { 5510 sfpt->init_req(i, alloc->in(i)); 5511 } 5512 // re-push array length for deoptimization 5513 sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), alloc->in(AllocateNode::ALength)); 5514 old_jvms->set_sp(old_jvms->sp()+1); 5515 old_jvms->set_monoff(old_jvms->monoff()+1); 5516 old_jvms->set_scloff(old_jvms->scloff()+1); 5517 old_jvms->set_endoff(old_jvms->endoff()+1); 5518 old_jvms->set_should_reexecute(true); 5519 5520 sfpt->set_i_o(map()->i_o()); 5521 sfpt->set_memory(map()->memory()); 5522 sfpt->set_control(map()->control()); 5523 return sfpt; 5524 } 5525 5526 // In case of a deoptimization, we restart execution at the 5527 // allocation, allocating a new array. We would leave an uninitialized 5528 // array in the heap that GCs wouldn't expect. Move the allocation 5529 // after the traps so we don't allocate the array if we 5530 // deoptimize. This is possible because tightly_coupled_allocation() 5531 // guarantees there's no observer of the allocated array at this point 5532 // and the control flow is simple enough. 5533 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms_before_guards, 5534 int saved_reexecute_sp, uint new_idx) { 5535 if (saved_jvms_before_guards != nullptr && !stopped()) { 5536 replace_unrelated_uncommon_traps_with_alloc_state(alloc, saved_jvms_before_guards); 5537 5538 assert(alloc != nullptr, "only with a tightly coupled allocation"); 5539 // restore JVM state to the state at the arraycopy 5540 saved_jvms_before_guards->map()->set_control(map()->control()); 5541 assert(saved_jvms_before_guards->map()->memory() == map()->memory(), "memory state changed?"); 5542 assert(saved_jvms_before_guards->map()->i_o() == map()->i_o(), "IO state changed?"); 5543 // If we've improved the types of some nodes (null check) while 5544 // emitting the guards, propagate them to the current state 5545 map()->replaced_nodes().apply(saved_jvms_before_guards->map(), new_idx); 5546 set_jvms(saved_jvms_before_guards); 5547 _reexecute_sp = saved_reexecute_sp; 5548 5549 // Remove the allocation from above the guards 5550 CallProjections callprojs; 5551 alloc->extract_projections(&callprojs, true); 5552 InitializeNode* init = alloc->initialization(); 5553 Node* alloc_mem = alloc->in(TypeFunc::Memory); 5554 C->gvn_replace_by(callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O)); 5555 C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem); 5556 5557 // The CastIINode created in GraphKit::new_array (in AllocateArrayNode::make_ideal_length) must stay below 5558 // the allocation (i.e. is only valid if the allocation succeeds): 5559 // 1) replace CastIINode with AllocateArrayNode's length here 5560 // 2) Create CastIINode again once allocation has moved (see below) at the end of this method 5561 // 5562 // Multiple identical CastIINodes might exist here. Each GraphKit::load_array_length() call will generate 5563 // new separate CastIINode (arraycopy guard checks or any array length use between array allocation and ararycopy) 5564 Node* init_control = init->proj_out(TypeFunc::Control); 5565 Node* alloc_length = alloc->Ideal_length(); 5566 #ifdef ASSERT 5567 Node* prev_cast = nullptr; 5568 #endif 5569 for (uint i = 0; i < init_control->outcnt(); i++) { 5570 Node* init_out = init_control->raw_out(i); 5571 if (init_out->is_CastII() && init_out->in(TypeFunc::Control) == init_control && init_out->in(1) == alloc_length) { 5572 #ifdef ASSERT 5573 if (prev_cast == nullptr) { 5574 prev_cast = init_out; 5575 } else { 5576 if (prev_cast->cmp(*init_out) == false) { 5577 prev_cast->dump(); 5578 init_out->dump(); 5579 assert(false, "not equal CastIINode"); 5580 } 5581 } 5582 #endif 5583 C->gvn_replace_by(init_out, alloc_length); 5584 } 5585 } 5586 C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0)); 5587 5588 // move the allocation here (after the guards) 5589 _gvn.hash_delete(alloc); 5590 alloc->set_req(TypeFunc::Control, control()); 5591 alloc->set_req(TypeFunc::I_O, i_o()); 5592 Node *mem = reset_memory(); 5593 set_all_memory(mem); 5594 alloc->set_req(TypeFunc::Memory, mem); 5595 set_control(init->proj_out_or_null(TypeFunc::Control)); 5596 set_i_o(callprojs.fallthrough_ioproj); 5597 5598 // Update memory as done in GraphKit::set_output_for_allocation() 5599 const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength)); 5600 const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type(); 5601 if (ary_type->isa_aryptr() && length_type != nullptr) { 5602 ary_type = ary_type->is_aryptr()->cast_to_size(length_type); 5603 } 5604 const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot); 5605 int elemidx = C->get_alias_index(telemref); 5606 set_memory(init->proj_out_or_null(TypeFunc::Memory), Compile::AliasIdxRaw); 5607 set_memory(init->proj_out_or_null(TypeFunc::Memory), elemidx); 5608 5609 Node* allocx = _gvn.transform(alloc); 5610 assert(allocx == alloc, "where has the allocation gone?"); 5611 assert(dest->is_CheckCastPP(), "not an allocation result?"); 5612 5613 _gvn.hash_delete(dest); 5614 dest->set_req(0, control()); 5615 Node* destx = _gvn.transform(dest); 5616 assert(destx == dest, "where has the allocation result gone?"); 5617 5618 array_ideal_length(alloc, ary_type, true); 5619 } 5620 } 5621 5622 // Unrelated UCTs between the array allocation and the array copy, which are considered safe by tightly_coupled_allocation(), 5623 // need to be replaced by an UCT with a state before the array allocation (including the array length). This is necessary 5624 // because we could hit one of these UCTs (which are executed before the emitted array copy guards and the actual array 5625 // allocation which is moved down in arraycopy_move_allocation_here()). When later resuming execution in the interpreter, 5626 // we would have wrongly skipped the array allocation. To prevent this, we resume execution at the array allocation in 5627 // the interpreter similar to what we are doing for the newly emitted guards for the array copy. 5628 void LibraryCallKit::replace_unrelated_uncommon_traps_with_alloc_state(AllocateArrayNode* alloc, 5629 JVMState* saved_jvms_before_guards) { 5630 if (saved_jvms_before_guards->map()->control()->is_IfProj()) { 5631 // There is at least one unrelated uncommon trap which needs to be replaced. 5632 SafePointNode* sfpt = create_safepoint_with_state_before_array_allocation(alloc); 5633 5634 JVMState* saved_jvms = jvms(); 5635 const int saved_reexecute_sp = _reexecute_sp; 5636 set_jvms(sfpt->jvms()); 5637 _reexecute_sp = jvms()->sp(); 5638 5639 replace_unrelated_uncommon_traps_with_alloc_state(saved_jvms_before_guards); 5640 5641 // Restore state 5642 set_jvms(saved_jvms); 5643 _reexecute_sp = saved_reexecute_sp; 5644 } 5645 } 5646 5647 // Replace the unrelated uncommon traps with new uncommon trap nodes by reusing the action and reason. The new uncommon 5648 // traps will have the state of the array allocation. Let the old uncommon trap nodes die. 5649 void LibraryCallKit::replace_unrelated_uncommon_traps_with_alloc_state(JVMState* saved_jvms_before_guards) { 5650 Node* if_proj = saved_jvms_before_guards->map()->control(); // Start the search right before the newly emitted guards 5651 while (if_proj->is_IfProj()) { 5652 CallStaticJavaNode* uncommon_trap = get_uncommon_trap_from_success_proj(if_proj); 5653 if (uncommon_trap != nullptr) { 5654 create_new_uncommon_trap(uncommon_trap); 5655 } 5656 assert(if_proj->in(0)->is_If(), "must be If"); 5657 if_proj = if_proj->in(0)->in(0); 5658 } 5659 assert(if_proj->is_Proj() && if_proj->in(0)->is_Initialize(), 5660 "must have reached control projection of init node"); 5661 } 5662 5663 void LibraryCallKit::create_new_uncommon_trap(CallStaticJavaNode* uncommon_trap_call) { 5664 const int trap_request = uncommon_trap_call->uncommon_trap_request(); 5665 assert(trap_request != 0, "no valid UCT trap request"); 5666 PreserveJVMState pjvms(this); 5667 set_control(uncommon_trap_call->in(0)); 5668 uncommon_trap(Deoptimization::trap_request_reason(trap_request), 5669 Deoptimization::trap_request_action(trap_request)); 5670 assert(stopped(), "Should be stopped"); 5671 _gvn.hash_delete(uncommon_trap_call); 5672 uncommon_trap_call->set_req(0, top()); // not used anymore, kill it 5673 } 5674 5675 // Common checks for array sorting intrinsics arguments. 5676 // Returns `true` if checks passed. 5677 bool LibraryCallKit::check_array_sort_arguments(Node* elementType, Node* obj, BasicType& bt) { 5678 // check address of the class 5679 if (elementType == nullptr || elementType->is_top()) { 5680 return false; // dead path 5681 } 5682 const TypeInstPtr* elem_klass = gvn().type(elementType)->isa_instptr(); 5683 if (elem_klass == nullptr) { 5684 return false; // dead path 5685 } 5686 // java_mirror_type() returns non-null for compile-time Class constants only 5687 ciType* elem_type = elem_klass->java_mirror_type(); 5688 if (elem_type == nullptr) { 5689 return false; 5690 } 5691 bt = elem_type->basic_type(); 5692 // Disable the intrinsic if the CPU does not support SIMD sort 5693 if (!Matcher::supports_simd_sort(bt)) { 5694 return false; 5695 } 5696 // check address of the array 5697 if (obj == nullptr || obj->is_top()) { 5698 return false; // dead path 5699 } 5700 const TypeAryPtr* obj_t = _gvn.type(obj)->isa_aryptr(); 5701 if (obj_t == nullptr || obj_t->elem() == Type::BOTTOM) { 5702 return false; // failed input validation 5703 } 5704 return true; 5705 } 5706 5707 //------------------------------inline_array_partition----------------------- 5708 bool LibraryCallKit::inline_array_partition() { 5709 address stubAddr = StubRoutines::select_array_partition_function(); 5710 if (stubAddr == nullptr) { 5711 return false; // Intrinsic's stub is not implemented on this platform 5712 } 5713 assert(callee()->signature()->size() == 9, "arrayPartition has 8 parameters (one long)"); 5714 5715 // no receiver because it is a static method 5716 Node* elementType = argument(0); 5717 Node* obj = argument(1); 5718 Node* offset = argument(2); // long 5719 Node* fromIndex = argument(4); 5720 Node* toIndex = argument(5); 5721 Node* indexPivot1 = argument(6); 5722 Node* indexPivot2 = argument(7); 5723 // PartitionOperation: argument(8) is ignored 5724 5725 Node* pivotIndices = nullptr; 5726 BasicType bt = T_ILLEGAL; 5727 5728 if (!check_array_sort_arguments(elementType, obj, bt)) { 5729 return false; 5730 } 5731 null_check(obj); 5732 // If obj is dead, only null-path is taken. 5733 if (stopped()) { 5734 return true; 5735 } 5736 // Set the original stack and the reexecute bit for the interpreter to reexecute 5737 // the bytecode that invokes DualPivotQuicksort.partition() if deoptimization happens. 5738 { PreserveReexecuteState preexecs(this); 5739 jvms()->set_should_reexecute(true); 5740 5741 Node* obj_adr = make_unsafe_address(obj, offset); 5742 5743 // create the pivotIndices array of type int and size = 2 5744 Node* size = intcon(2); 5745 Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_INT))); 5746 pivotIndices = new_array(klass_node, size, 0); // no arguments to push 5747 AllocateArrayNode* alloc = tightly_coupled_allocation(pivotIndices); 5748 guarantee(alloc != nullptr, "created above"); 5749 Node* pivotIndices_adr = basic_plus_adr(pivotIndices, arrayOopDesc::base_offset_in_bytes(T_INT)); 5750 5751 // pass the basic type enum to the stub 5752 Node* elemType = intcon(bt); 5753 5754 // Call the stub 5755 const char *stubName = "array_partition_stub"; 5756 make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::array_partition_Type(), 5757 stubAddr, stubName, TypePtr::BOTTOM, 5758 obj_adr, elemType, fromIndex, toIndex, pivotIndices_adr, 5759 indexPivot1, indexPivot2); 5760 5761 } // original reexecute is set back here 5762 5763 if (!stopped()) { 5764 set_result(pivotIndices); 5765 } 5766 5767 return true; 5768 } 5769 5770 5771 //------------------------------inline_array_sort----------------------- 5772 bool LibraryCallKit::inline_array_sort() { 5773 address stubAddr = StubRoutines::select_arraysort_function(); 5774 if (stubAddr == nullptr) { 5775 return false; // Intrinsic's stub is not implemented on this platform 5776 } 5777 assert(callee()->signature()->size() == 7, "arraySort has 6 parameters (one long)"); 5778 5779 // no receiver because it is a static method 5780 Node* elementType = argument(0); 5781 Node* obj = argument(1); 5782 Node* offset = argument(2); // long 5783 Node* fromIndex = argument(4); 5784 Node* toIndex = argument(5); 5785 // SortOperation: argument(6) is ignored 5786 5787 BasicType bt = T_ILLEGAL; 5788 5789 if (!check_array_sort_arguments(elementType, obj, bt)) { 5790 return false; 5791 } 5792 null_check(obj); 5793 // If obj is dead, only null-path is taken. 5794 if (stopped()) { 5795 return true; 5796 } 5797 Node* obj_adr = make_unsafe_address(obj, offset); 5798 5799 // pass the basic type enum to the stub 5800 Node* elemType = intcon(bt); 5801 5802 // Call the stub. 5803 const char *stubName = "arraysort_stub"; 5804 make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::array_sort_Type(), 5805 stubAddr, stubName, TypePtr::BOTTOM, 5806 obj_adr, elemType, fromIndex, toIndex); 5807 5808 return true; 5809 } 5810 5811 5812 //------------------------------inline_arraycopy----------------------- 5813 // public static native void java.lang.System.arraycopy(Object src, int srcPos, 5814 // Object dest, int destPos, 5815 // int length); 5816 bool LibraryCallKit::inline_arraycopy() { 5817 // Get the arguments. 5818 Node* src = argument(0); // type: oop 5819 Node* src_offset = argument(1); // type: int 5820 Node* dest = argument(2); // type: oop 5821 Node* dest_offset = argument(3); // type: int 5822 Node* length = argument(4); // type: int 5823 5824 uint new_idx = C->unique(); 5825 5826 // Check for allocation before we add nodes that would confuse 5827 // tightly_coupled_allocation() 5828 AllocateArrayNode* alloc = tightly_coupled_allocation(dest); 5829 5830 int saved_reexecute_sp = -1; 5831 JVMState* saved_jvms_before_guards = arraycopy_restore_alloc_state(alloc, saved_reexecute_sp); 5832 // See arraycopy_restore_alloc_state() comment 5833 // if alloc == null we don't have to worry about a tightly coupled allocation so we can emit all needed guards 5834 // if saved_jvms_before_guards is not null (then alloc is not null) then we can handle guards and a tightly coupled allocation 5835 // if saved_jvms_before_guards is null and alloc is not null, we can't emit any guards 5836 bool can_emit_guards = (alloc == nullptr || saved_jvms_before_guards != nullptr); 5837 5838 // The following tests must be performed 5839 // (1) src and dest are arrays. 5840 // (2) src and dest arrays must have elements of the same BasicType 5841 // (3) src and dest must not be null. 5842 // (4) src_offset must not be negative. 5843 // (5) dest_offset must not be negative. 5844 // (6) length must not be negative. 5845 // (7) src_offset + length must not exceed length of src. 5846 // (8) dest_offset + length must not exceed length of dest. 5847 // (9) each element of an oop array must be assignable 5848 5849 // (3) src and dest must not be null. 5850 // always do this here because we need the JVM state for uncommon traps 5851 Node* null_ctl = top(); 5852 src = saved_jvms_before_guards != nullptr ? null_check_oop(src, &null_ctl, true, true) : null_check(src, T_ARRAY); 5853 assert(null_ctl->is_top(), "no null control here"); 5854 dest = null_check(dest, T_ARRAY); 5855 5856 if (!can_emit_guards) { 5857 // if saved_jvms_before_guards is null and alloc is not null, we don't emit any 5858 // guards but the arraycopy node could still take advantage of a 5859 // tightly allocated allocation. tightly_coupled_allocation() is 5860 // called again to make sure it takes the null check above into 5861 // account: the null check is mandatory and if it caused an 5862 // uncommon trap to be emitted then the allocation can't be 5863 // considered tightly coupled in this context. 5864 alloc = tightly_coupled_allocation(dest); 5865 } 5866 5867 bool validated = false; 5868 5869 const Type* src_type = _gvn.type(src); 5870 const Type* dest_type = _gvn.type(dest); 5871 const TypeAryPtr* top_src = src_type->isa_aryptr(); 5872 const TypeAryPtr* top_dest = dest_type->isa_aryptr(); 5873 5874 // Do we have the type of src? 5875 bool has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM); 5876 // Do we have the type of dest? 5877 bool has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM); 5878 // Is the type for src from speculation? 5879 bool src_spec = false; 5880 // Is the type for dest from speculation? 5881 bool dest_spec = false; 5882 5883 if ((!has_src || !has_dest) && can_emit_guards) { 5884 // We don't have sufficient type information, let's see if 5885 // speculative types can help. We need to have types for both src 5886 // and dest so that it pays off. 5887 5888 // Do we already have or could we have type information for src 5889 bool could_have_src = has_src; 5890 // Do we already have or could we have type information for dest 5891 bool could_have_dest = has_dest; 5892 5893 ciKlass* src_k = nullptr; 5894 if (!has_src) { 5895 src_k = src_type->speculative_type_not_null(); 5896 if (src_k != nullptr && src_k->is_array_klass()) { 5897 could_have_src = true; 5898 } 5899 } 5900 5901 ciKlass* dest_k = nullptr; 5902 if (!has_dest) { 5903 dest_k = dest_type->speculative_type_not_null(); 5904 if (dest_k != nullptr && dest_k->is_array_klass()) { 5905 could_have_dest = true; 5906 } 5907 } 5908 5909 if (could_have_src && could_have_dest) { 5910 // This is going to pay off so emit the required guards 5911 if (!has_src) { 5912 src = maybe_cast_profiled_obj(src, src_k, true); 5913 src_type = _gvn.type(src); 5914 top_src = src_type->isa_aryptr(); 5915 has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM); 5916 src_spec = true; 5917 } 5918 if (!has_dest) { 5919 dest = maybe_cast_profiled_obj(dest, dest_k, true); 5920 dest_type = _gvn.type(dest); 5921 top_dest = dest_type->isa_aryptr(); 5922 has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM); 5923 dest_spec = true; 5924 } 5925 } 5926 } 5927 5928 if (has_src && has_dest && can_emit_guards) { 5929 BasicType src_elem = top_src->isa_aryptr()->elem()->array_element_basic_type(); 5930 BasicType dest_elem = top_dest->isa_aryptr()->elem()->array_element_basic_type(); 5931 if (is_reference_type(src_elem, true)) src_elem = T_OBJECT; 5932 if (is_reference_type(dest_elem, true)) dest_elem = T_OBJECT; 5933 5934 if (src_elem == dest_elem && src_elem == T_OBJECT) { 5935 // If both arrays are object arrays then having the exact types 5936 // for both will remove the need for a subtype check at runtime 5937 // before the call and may make it possible to pick a faster copy 5938 // routine (without a subtype check on every element) 5939 // Do we have the exact type of src? 5940 bool could_have_src = src_spec; 5941 // Do we have the exact type of dest? 5942 bool could_have_dest = dest_spec; 5943 ciKlass* src_k = nullptr; 5944 ciKlass* dest_k = nullptr; 5945 if (!src_spec) { 5946 src_k = src_type->speculative_type_not_null(); 5947 if (src_k != nullptr && src_k->is_array_klass()) { 5948 could_have_src = true; 5949 } 5950 } 5951 if (!dest_spec) { 5952 dest_k = dest_type->speculative_type_not_null(); 5953 if (dest_k != nullptr && dest_k->is_array_klass()) { 5954 could_have_dest = true; 5955 } 5956 } 5957 if (could_have_src && could_have_dest) { 5958 // If we can have both exact types, emit the missing guards 5959 if (could_have_src && !src_spec) { 5960 src = maybe_cast_profiled_obj(src, src_k, true); 5961 } 5962 if (could_have_dest && !dest_spec) { 5963 dest = maybe_cast_profiled_obj(dest, dest_k, true); 5964 } 5965 } 5966 } 5967 } 5968 5969 ciMethod* trap_method = method(); 5970 int trap_bci = bci(); 5971 if (saved_jvms_before_guards != nullptr) { 5972 trap_method = alloc->jvms()->method(); 5973 trap_bci = alloc->jvms()->bci(); 5974 } 5975 5976 bool negative_length_guard_generated = false; 5977 5978 if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) && 5979 can_emit_guards && 5980 !src->is_top() && !dest->is_top()) { 5981 // validate arguments: enables transformation the ArrayCopyNode 5982 validated = true; 5983 5984 RegionNode* slow_region = new RegionNode(1); 5985 record_for_igvn(slow_region); 5986 5987 // (1) src and dest are arrays. 5988 generate_non_array_guard(load_object_klass(src), slow_region, &src); 5989 generate_non_array_guard(load_object_klass(dest), slow_region, &dest); 5990 5991 // (2) src and dest arrays must have elements of the same BasicType 5992 // done at macro expansion or at Ideal transformation time 5993 5994 // (4) src_offset must not be negative. 5995 generate_negative_guard(src_offset, slow_region); 5996 5997 // (5) dest_offset must not be negative. 5998 generate_negative_guard(dest_offset, slow_region); 5999 6000 // (7) src_offset + length must not exceed length of src. 6001 generate_limit_guard(src_offset, length, 6002 load_array_length(src), 6003 slow_region); 6004 6005 // (8) dest_offset + length must not exceed length of dest. 6006 generate_limit_guard(dest_offset, length, 6007 load_array_length(dest), 6008 slow_region); 6009 6010 // (6) length must not be negative. 6011 // This is also checked in generate_arraycopy() during macro expansion, but 6012 // we also have to check it here for the case where the ArrayCopyNode will 6013 // be eliminated by Escape Analysis. 6014 if (EliminateAllocations) { 6015 generate_negative_guard(length, slow_region); 6016 negative_length_guard_generated = true; 6017 } 6018 6019 // (9) each element of an oop array must be assignable 6020 Node* dest_klass = load_object_klass(dest); 6021 if (src != dest) { 6022 Node* not_subtype_ctrl = gen_subtype_check(src, dest_klass); 6023 6024 if (not_subtype_ctrl != top()) { 6025 PreserveJVMState pjvms(this); 6026 set_control(not_subtype_ctrl); 6027 uncommon_trap(Deoptimization::Reason_intrinsic, 6028 Deoptimization::Action_make_not_entrant); 6029 assert(stopped(), "Should be stopped"); 6030 } 6031 } 6032 { 6033 PreserveJVMState pjvms(this); 6034 set_control(_gvn.transform(slow_region)); 6035 uncommon_trap(Deoptimization::Reason_intrinsic, 6036 Deoptimization::Action_make_not_entrant); 6037 assert(stopped(), "Should be stopped"); 6038 } 6039 6040 const TypeKlassPtr* dest_klass_t = _gvn.type(dest_klass)->is_klassptr(); 6041 const Type *toop = dest_klass_t->cast_to_exactness(false)->as_instance_type(); 6042 src = _gvn.transform(new CheckCastPPNode(control(), src, toop)); 6043 arraycopy_move_allocation_here(alloc, dest, saved_jvms_before_guards, saved_reexecute_sp, new_idx); 6044 } 6045 6046 if (stopped()) { 6047 return true; 6048 } 6049 6050 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != nullptr, negative_length_guard_generated, 6051 // Create LoadRange and LoadKlass nodes for use during macro expansion here 6052 // so the compiler has a chance to eliminate them: during macro expansion, 6053 // we have to set their control (CastPP nodes are eliminated). 6054 load_object_klass(src), load_object_klass(dest), 6055 load_array_length(src), load_array_length(dest)); 6056 6057 ac->set_arraycopy(validated); 6058 6059 Node* n = _gvn.transform(ac); 6060 if (n == ac) { 6061 ac->connect_outputs(this); 6062 } else { 6063 assert(validated, "shouldn't transform if all arguments not validated"); 6064 set_all_memory(n); 6065 } 6066 clear_upper_avx(); 6067 6068 6069 return true; 6070 } 6071 6072 6073 // Helper function which determines if an arraycopy immediately follows 6074 // an allocation, with no intervening tests or other escapes for the object. 6075 AllocateArrayNode* 6076 LibraryCallKit::tightly_coupled_allocation(Node* ptr) { 6077 if (stopped()) return nullptr; // no fast path 6078 if (!C->do_aliasing()) return nullptr; // no MergeMems around 6079 6080 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr); 6081 if (alloc == nullptr) return nullptr; 6082 6083 Node* rawmem = memory(Compile::AliasIdxRaw); 6084 // Is the allocation's memory state untouched? 6085 if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) { 6086 // Bail out if there have been raw-memory effects since the allocation. 6087 // (Example: There might have been a call or safepoint.) 6088 return nullptr; 6089 } 6090 rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw); 6091 if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) { 6092 return nullptr; 6093 } 6094 6095 // There must be no unexpected observers of this allocation. 6096 for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) { 6097 Node* obs = ptr->fast_out(i); 6098 if (obs != this->map()) { 6099 return nullptr; 6100 } 6101 } 6102 6103 // This arraycopy must unconditionally follow the allocation of the ptr. 6104 Node* alloc_ctl = ptr->in(0); 6105 Node* ctl = control(); 6106 while (ctl != alloc_ctl) { 6107 // There may be guards which feed into the slow_region. 6108 // Any other control flow means that we might not get a chance 6109 // to finish initializing the allocated object. 6110 // Various low-level checks bottom out in uncommon traps. These 6111 // are considered safe since we've already checked above that 6112 // there is no unexpected observer of this allocation. 6113 if (get_uncommon_trap_from_success_proj(ctl) != nullptr) { 6114 assert(ctl->in(0)->is_If(), "must be If"); 6115 ctl = ctl->in(0)->in(0); 6116 } else { 6117 return nullptr; 6118 } 6119 } 6120 6121 // If we get this far, we have an allocation which immediately 6122 // precedes the arraycopy, and we can take over zeroing the new object. 6123 // The arraycopy will finish the initialization, and provide 6124 // a new control state to which we will anchor the destination pointer. 6125 6126 return alloc; 6127 } 6128 6129 CallStaticJavaNode* LibraryCallKit::get_uncommon_trap_from_success_proj(Node* node) { 6130 if (node->is_IfProj()) { 6131 Node* other_proj = node->as_IfProj()->other_if_proj(); 6132 for (DUIterator_Fast jmax, j = other_proj->fast_outs(jmax); j < jmax; j++) { 6133 Node* obs = other_proj->fast_out(j); 6134 if (obs->in(0) == other_proj && obs->is_CallStaticJava() && 6135 (obs->as_CallStaticJava()->entry_point() == OptoRuntime::uncommon_trap_blob()->entry_point())) { 6136 return obs->as_CallStaticJava(); 6137 } 6138 } 6139 } 6140 return nullptr; 6141 } 6142 6143 //-------------inline_encodeISOArray----------------------------------- 6144 // int sun.nio.cs.ISO_8859_1.Encoder#encodeISOArray0(byte[] sa, int sp, byte[] da, int dp, int len) 6145 // int java.lang.StringCoding#encodeISOArray0(byte[] sa, int sp, byte[] da, int dp, int len) 6146 // int java.lang.StringCoding#encodeAsciiArray0(char[] sa, int sp, byte[] da, int dp, int len) 6147 // encode char[] to byte[] in ISO_8859_1 or ASCII 6148 bool LibraryCallKit::inline_encodeISOArray(bool ascii) { 6149 assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters"); 6150 // no receiver since it is static method 6151 Node *src = argument(0); 6152 Node *src_offset = argument(1); 6153 Node *dst = argument(2); 6154 Node *dst_offset = argument(3); 6155 Node *length = argument(4); 6156 6157 // Cast source & target arrays to not-null 6158 if (VerifyIntrinsicChecks) { 6159 src = must_be_not_null(src, true); 6160 dst = must_be_not_null(dst, true); 6161 if (stopped()) { 6162 return true; 6163 } 6164 } 6165 6166 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6167 const TypeAryPtr* dst_type = dst->Value(&_gvn)->isa_aryptr(); 6168 if (src_type == nullptr || src_type->elem() == Type::BOTTOM || 6169 dst_type == nullptr || dst_type->elem() == Type::BOTTOM) { 6170 // failed array check 6171 return false; 6172 } 6173 6174 // Figure out the size and type of the elements we will be copying. 6175 BasicType src_elem = src_type->elem()->array_element_basic_type(); 6176 BasicType dst_elem = dst_type->elem()->array_element_basic_type(); 6177 if (!((src_elem == T_CHAR) || (src_elem== T_BYTE)) || dst_elem != T_BYTE) { 6178 return false; 6179 } 6180 6181 // Check source & target bounds 6182 if (VerifyIntrinsicChecks) { 6183 generate_string_range_check(src, src_offset, length, src_elem == T_BYTE, true); 6184 generate_string_range_check(dst, dst_offset, length, false, true); 6185 if (stopped()) { 6186 return true; 6187 } 6188 } 6189 6190 Node* src_start = array_element_address(src, src_offset, T_CHAR); 6191 Node* dst_start = array_element_address(dst, dst_offset, dst_elem); 6192 // 'src_start' points to src array + scaled offset 6193 // 'dst_start' points to dst array + scaled offset 6194 6195 const TypeAryPtr* mtype = TypeAryPtr::BYTES; 6196 Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length, ascii); 6197 enc = _gvn.transform(enc); 6198 Node* res_mem = _gvn.transform(new SCMemProjNode(enc)); 6199 set_memory(res_mem, mtype); 6200 set_result(enc); 6201 clear_upper_avx(); 6202 6203 return true; 6204 } 6205 6206 //-------------inline_multiplyToLen----------------------------------- 6207 bool LibraryCallKit::inline_multiplyToLen() { 6208 assert(UseMultiplyToLenIntrinsic, "not implemented on this platform"); 6209 6210 address stubAddr = StubRoutines::multiplyToLen(); 6211 if (stubAddr == nullptr) { 6212 return false; // Intrinsic's stub is not implemented on this platform 6213 } 6214 const char* stubName = "multiplyToLen"; 6215 6216 assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters"); 6217 6218 // no receiver because it is a static method 6219 Node* x = argument(0); 6220 Node* xlen = argument(1); 6221 Node* y = argument(2); 6222 Node* ylen = argument(3); 6223 Node* z = argument(4); 6224 6225 x = must_be_not_null(x, true); 6226 y = must_be_not_null(y, true); 6227 6228 const TypeAryPtr* x_type = x->Value(&_gvn)->isa_aryptr(); 6229 const TypeAryPtr* y_type = y->Value(&_gvn)->isa_aryptr(); 6230 if (x_type == nullptr || x_type->elem() == Type::BOTTOM || 6231 y_type == nullptr || y_type->elem() == Type::BOTTOM) { 6232 // failed array check 6233 return false; 6234 } 6235 6236 BasicType x_elem = x_type->elem()->array_element_basic_type(); 6237 BasicType y_elem = y_type->elem()->array_element_basic_type(); 6238 if (x_elem != T_INT || y_elem != T_INT) { 6239 return false; 6240 } 6241 6242 Node* x_start = array_element_address(x, intcon(0), x_elem); 6243 Node* y_start = array_element_address(y, intcon(0), y_elem); 6244 // 'x_start' points to x array + scaled xlen 6245 // 'y_start' points to y array + scaled ylen 6246 6247 Node* z_start = array_element_address(z, intcon(0), T_INT); 6248 6249 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 6250 OptoRuntime::multiplyToLen_Type(), 6251 stubAddr, stubName, TypePtr::BOTTOM, 6252 x_start, xlen, y_start, ylen, z_start); 6253 6254 C->set_has_split_ifs(true); // Has chance for split-if optimization 6255 set_result(z); 6256 return true; 6257 } 6258 6259 //-------------inline_squareToLen------------------------------------ 6260 bool LibraryCallKit::inline_squareToLen() { 6261 assert(UseSquareToLenIntrinsic, "not implemented on this platform"); 6262 6263 address stubAddr = StubRoutines::squareToLen(); 6264 if (stubAddr == nullptr) { 6265 return false; // Intrinsic's stub is not implemented on this platform 6266 } 6267 const char* stubName = "squareToLen"; 6268 6269 assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters"); 6270 6271 Node* x = argument(0); 6272 Node* len = argument(1); 6273 Node* z = argument(2); 6274 Node* zlen = argument(3); 6275 6276 x = must_be_not_null(x, true); 6277 z = must_be_not_null(z, true); 6278 6279 const TypeAryPtr* x_type = x->Value(&_gvn)->isa_aryptr(); 6280 const TypeAryPtr* z_type = z->Value(&_gvn)->isa_aryptr(); 6281 if (x_type == nullptr || x_type->elem() == Type::BOTTOM || 6282 z_type == nullptr || z_type->elem() == Type::BOTTOM) { 6283 // failed array check 6284 return false; 6285 } 6286 6287 BasicType x_elem = x_type->elem()->array_element_basic_type(); 6288 BasicType z_elem = z_type->elem()->array_element_basic_type(); 6289 if (x_elem != T_INT || z_elem != T_INT) { 6290 return false; 6291 } 6292 6293 6294 Node* x_start = array_element_address(x, intcon(0), x_elem); 6295 Node* z_start = array_element_address(z, intcon(0), z_elem); 6296 6297 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 6298 OptoRuntime::squareToLen_Type(), 6299 stubAddr, stubName, TypePtr::BOTTOM, 6300 x_start, len, z_start, zlen); 6301 6302 set_result(z); 6303 return true; 6304 } 6305 6306 //-------------inline_mulAdd------------------------------------------ 6307 bool LibraryCallKit::inline_mulAdd() { 6308 assert(UseMulAddIntrinsic, "not implemented on this platform"); 6309 6310 address stubAddr = StubRoutines::mulAdd(); 6311 if (stubAddr == nullptr) { 6312 return false; // Intrinsic's stub is not implemented on this platform 6313 } 6314 const char* stubName = "mulAdd"; 6315 6316 assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters"); 6317 6318 Node* out = argument(0); 6319 Node* in = argument(1); 6320 Node* offset = argument(2); 6321 Node* len = argument(3); 6322 Node* k = argument(4); 6323 6324 in = must_be_not_null(in, true); 6325 out = must_be_not_null(out, true); 6326 6327 const TypeAryPtr* out_type = out->Value(&_gvn)->isa_aryptr(); 6328 const TypeAryPtr* in_type = in->Value(&_gvn)->isa_aryptr(); 6329 if (out_type == nullptr || out_type->elem() == Type::BOTTOM || 6330 in_type == nullptr || in_type->elem() == Type::BOTTOM) { 6331 // failed array check 6332 return false; 6333 } 6334 6335 BasicType out_elem = out_type->elem()->array_element_basic_type(); 6336 BasicType in_elem = in_type->elem()->array_element_basic_type(); 6337 if (out_elem != T_INT || in_elem != T_INT) { 6338 return false; 6339 } 6340 6341 Node* outlen = load_array_length(out); 6342 Node* new_offset = _gvn.transform(new SubINode(outlen, offset)); 6343 Node* out_start = array_element_address(out, intcon(0), out_elem); 6344 Node* in_start = array_element_address(in, intcon(0), in_elem); 6345 6346 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 6347 OptoRuntime::mulAdd_Type(), 6348 stubAddr, stubName, TypePtr::BOTTOM, 6349 out_start,in_start, new_offset, len, k); 6350 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6351 set_result(result); 6352 return true; 6353 } 6354 6355 //-------------inline_montgomeryMultiply----------------------------------- 6356 bool LibraryCallKit::inline_montgomeryMultiply() { 6357 address stubAddr = StubRoutines::montgomeryMultiply(); 6358 if (stubAddr == nullptr) { 6359 return false; // Intrinsic's stub is not implemented on this platform 6360 } 6361 6362 assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform"); 6363 const char* stubName = "montgomery_multiply"; 6364 6365 assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters"); 6366 6367 Node* a = argument(0); 6368 Node* b = argument(1); 6369 Node* n = argument(2); 6370 Node* len = argument(3); 6371 Node* inv = argument(4); 6372 Node* m = argument(6); 6373 6374 const TypeAryPtr* a_type = a->Value(&_gvn)->isa_aryptr(); 6375 const TypeAryPtr* b_type = b->Value(&_gvn)->isa_aryptr(); 6376 const TypeAryPtr* n_type = n->Value(&_gvn)->isa_aryptr(); 6377 const TypeAryPtr* m_type = m->Value(&_gvn)->isa_aryptr(); 6378 if (a_type == nullptr || a_type->elem() == Type::BOTTOM || 6379 b_type == nullptr || b_type->elem() == Type::BOTTOM || 6380 n_type == nullptr || n_type->elem() == Type::BOTTOM || 6381 m_type == nullptr || m_type->elem() == Type::BOTTOM) { 6382 // failed array check 6383 return false; 6384 } 6385 6386 BasicType a_elem = a_type->elem()->array_element_basic_type(); 6387 BasicType b_elem = b_type->elem()->array_element_basic_type(); 6388 BasicType n_elem = n_type->elem()->array_element_basic_type(); 6389 BasicType m_elem = m_type->elem()->array_element_basic_type(); 6390 if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) { 6391 return false; 6392 } 6393 6394 // Make the call 6395 { 6396 Node* a_start = array_element_address(a, intcon(0), a_elem); 6397 Node* b_start = array_element_address(b, intcon(0), b_elem); 6398 Node* n_start = array_element_address(n, intcon(0), n_elem); 6399 Node* m_start = array_element_address(m, intcon(0), m_elem); 6400 6401 Node* call = make_runtime_call(RC_LEAF, 6402 OptoRuntime::montgomeryMultiply_Type(), 6403 stubAddr, stubName, TypePtr::BOTTOM, 6404 a_start, b_start, n_start, len, inv, top(), 6405 m_start); 6406 set_result(m); 6407 } 6408 6409 return true; 6410 } 6411 6412 bool LibraryCallKit::inline_montgomerySquare() { 6413 address stubAddr = StubRoutines::montgomerySquare(); 6414 if (stubAddr == nullptr) { 6415 return false; // Intrinsic's stub is not implemented on this platform 6416 } 6417 6418 assert(UseMontgomerySquareIntrinsic, "not implemented on this platform"); 6419 const char* stubName = "montgomery_square"; 6420 6421 assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters"); 6422 6423 Node* a = argument(0); 6424 Node* n = argument(1); 6425 Node* len = argument(2); 6426 Node* inv = argument(3); 6427 Node* m = argument(5); 6428 6429 const TypeAryPtr* a_type = a->Value(&_gvn)->isa_aryptr(); 6430 const TypeAryPtr* n_type = n->Value(&_gvn)->isa_aryptr(); 6431 const TypeAryPtr* m_type = m->Value(&_gvn)->isa_aryptr(); 6432 if (a_type == nullptr || a_type->elem() == Type::BOTTOM || 6433 n_type == nullptr || n_type->elem() == Type::BOTTOM || 6434 m_type == nullptr || m_type->elem() == Type::BOTTOM) { 6435 // failed array check 6436 return false; 6437 } 6438 6439 BasicType a_elem = a_type->elem()->array_element_basic_type(); 6440 BasicType n_elem = n_type->elem()->array_element_basic_type(); 6441 BasicType m_elem = m_type->elem()->array_element_basic_type(); 6442 if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) { 6443 return false; 6444 } 6445 6446 // Make the call 6447 { 6448 Node* a_start = array_element_address(a, intcon(0), a_elem); 6449 Node* n_start = array_element_address(n, intcon(0), n_elem); 6450 Node* m_start = array_element_address(m, intcon(0), m_elem); 6451 6452 Node* call = make_runtime_call(RC_LEAF, 6453 OptoRuntime::montgomerySquare_Type(), 6454 stubAddr, stubName, TypePtr::BOTTOM, 6455 a_start, n_start, len, inv, top(), 6456 m_start); 6457 set_result(m); 6458 } 6459 6460 return true; 6461 } 6462 6463 bool LibraryCallKit::inline_bigIntegerShift(bool isRightShift) { 6464 address stubAddr = nullptr; 6465 const char* stubName = nullptr; 6466 6467 stubAddr = isRightShift? StubRoutines::bigIntegerRightShift(): StubRoutines::bigIntegerLeftShift(); 6468 if (stubAddr == nullptr) { 6469 return false; // Intrinsic's stub is not implemented on this platform 6470 } 6471 6472 stubName = isRightShift? "bigIntegerRightShiftWorker" : "bigIntegerLeftShiftWorker"; 6473 6474 assert(callee()->signature()->size() == 5, "expected 5 arguments"); 6475 6476 Node* newArr = argument(0); 6477 Node* oldArr = argument(1); 6478 Node* newIdx = argument(2); 6479 Node* shiftCount = argument(3); 6480 Node* numIter = argument(4); 6481 6482 const TypeAryPtr* newArr_type = newArr->Value(&_gvn)->isa_aryptr(); 6483 const TypeAryPtr* oldArr_type = oldArr->Value(&_gvn)->isa_aryptr(); 6484 if (newArr_type == nullptr || newArr_type->elem() == Type::BOTTOM || 6485 oldArr_type == nullptr || oldArr_type->elem() == Type::BOTTOM) { 6486 return false; 6487 } 6488 6489 BasicType newArr_elem = newArr_type->elem()->array_element_basic_type(); 6490 BasicType oldArr_elem = oldArr_type->elem()->array_element_basic_type(); 6491 if (newArr_elem != T_INT || oldArr_elem != T_INT) { 6492 return false; 6493 } 6494 6495 // Make the call 6496 { 6497 Node* newArr_start = array_element_address(newArr, intcon(0), newArr_elem); 6498 Node* oldArr_start = array_element_address(oldArr, intcon(0), oldArr_elem); 6499 6500 Node* call = make_runtime_call(RC_LEAF, 6501 OptoRuntime::bigIntegerShift_Type(), 6502 stubAddr, 6503 stubName, 6504 TypePtr::BOTTOM, 6505 newArr_start, 6506 oldArr_start, 6507 newIdx, 6508 shiftCount, 6509 numIter); 6510 } 6511 6512 return true; 6513 } 6514 6515 //-------------inline_vectorizedMismatch------------------------------ 6516 bool LibraryCallKit::inline_vectorizedMismatch() { 6517 assert(UseVectorizedMismatchIntrinsic, "not implemented on this platform"); 6518 6519 assert(callee()->signature()->size() == 8, "vectorizedMismatch has 6 parameters"); 6520 Node* obja = argument(0); // Object 6521 Node* aoffset = argument(1); // long 6522 Node* objb = argument(3); // Object 6523 Node* boffset = argument(4); // long 6524 Node* length = argument(6); // int 6525 Node* scale = argument(7); // int 6526 6527 const TypeAryPtr* obja_t = _gvn.type(obja)->isa_aryptr(); 6528 const TypeAryPtr* objb_t = _gvn.type(objb)->isa_aryptr(); 6529 if (obja_t == nullptr || obja_t->elem() == Type::BOTTOM || 6530 objb_t == nullptr || objb_t->elem() == Type::BOTTOM || 6531 scale == top()) { 6532 return false; // failed input validation 6533 } 6534 6535 Node* obja_adr = make_unsafe_address(obja, aoffset); 6536 Node* objb_adr = make_unsafe_address(objb, boffset); 6537 6538 // Partial inlining handling for inputs smaller than ArrayOperationPartialInlineSize bytes in size. 6539 // 6540 // inline_limit = ArrayOperationPartialInlineSize / element_size; 6541 // if (length <= inline_limit) { 6542 // inline_path: 6543 // vmask = VectorMaskGen length 6544 // vload1 = LoadVectorMasked obja, vmask 6545 // vload2 = LoadVectorMasked objb, vmask 6546 // result1 = VectorCmpMasked vload1, vload2, vmask 6547 // } else { 6548 // call_stub_path: 6549 // result2 = call vectorizedMismatch_stub(obja, objb, length, scale) 6550 // } 6551 // exit_block: 6552 // return Phi(result1, result2); 6553 // 6554 enum { inline_path = 1, // input is small enough to process it all at once 6555 stub_path = 2, // input is too large; call into the VM 6556 PATH_LIMIT = 3 6557 }; 6558 6559 Node* exit_block = new RegionNode(PATH_LIMIT); 6560 Node* result_phi = new PhiNode(exit_block, TypeInt::INT); 6561 Node* memory_phi = new PhiNode(exit_block, Type::MEMORY, TypePtr::BOTTOM); 6562 6563 Node* call_stub_path = control(); 6564 6565 BasicType elem_bt = T_ILLEGAL; 6566 6567 const TypeInt* scale_t = _gvn.type(scale)->is_int(); 6568 if (scale_t->is_con()) { 6569 switch (scale_t->get_con()) { 6570 case 0: elem_bt = T_BYTE; break; 6571 case 1: elem_bt = T_SHORT; break; 6572 case 2: elem_bt = T_INT; break; 6573 case 3: elem_bt = T_LONG; break; 6574 6575 default: elem_bt = T_ILLEGAL; break; // not supported 6576 } 6577 } 6578 6579 int inline_limit = 0; 6580 bool do_partial_inline = false; 6581 6582 if (elem_bt != T_ILLEGAL && ArrayOperationPartialInlineSize > 0) { 6583 inline_limit = ArrayOperationPartialInlineSize / type2aelembytes(elem_bt); 6584 do_partial_inline = inline_limit >= 16; 6585 } 6586 6587 if (do_partial_inline) { 6588 assert(elem_bt != T_ILLEGAL, "sanity"); 6589 6590 if (Matcher::match_rule_supported_vector(Op_VectorMaskGen, inline_limit, elem_bt) && 6591 Matcher::match_rule_supported_vector(Op_LoadVectorMasked, inline_limit, elem_bt) && 6592 Matcher::match_rule_supported_vector(Op_VectorCmpMasked, inline_limit, elem_bt)) { 6593 6594 const TypeVect* vt = TypeVect::make(elem_bt, inline_limit); 6595 Node* cmp_length = _gvn.transform(new CmpINode(length, intcon(inline_limit))); 6596 Node* bol_gt = _gvn.transform(new BoolNode(cmp_length, BoolTest::gt)); 6597 6598 call_stub_path = generate_guard(bol_gt, nullptr, PROB_MIN); 6599 6600 if (!stopped()) { 6601 Node* casted_length = _gvn.transform(new CastIINode(control(), length, TypeInt::make(0, inline_limit, Type::WidenMin))); 6602 6603 const TypePtr* obja_adr_t = _gvn.type(obja_adr)->isa_ptr(); 6604 const TypePtr* objb_adr_t = _gvn.type(objb_adr)->isa_ptr(); 6605 Node* obja_adr_mem = memory(C->get_alias_index(obja_adr_t)); 6606 Node* objb_adr_mem = memory(C->get_alias_index(objb_adr_t)); 6607 6608 Node* vmask = _gvn.transform(VectorMaskGenNode::make(ConvI2X(casted_length), elem_bt)); 6609 Node* vload_obja = _gvn.transform(new LoadVectorMaskedNode(control(), obja_adr_mem, obja_adr, obja_adr_t, vt, vmask)); 6610 Node* vload_objb = _gvn.transform(new LoadVectorMaskedNode(control(), objb_adr_mem, objb_adr, objb_adr_t, vt, vmask)); 6611 Node* result = _gvn.transform(new VectorCmpMaskedNode(vload_obja, vload_objb, vmask, TypeInt::INT)); 6612 6613 exit_block->init_req(inline_path, control()); 6614 memory_phi->init_req(inline_path, map()->memory()); 6615 result_phi->init_req(inline_path, result); 6616 6617 C->set_max_vector_size(MAX2((uint)ArrayOperationPartialInlineSize, C->max_vector_size())); 6618 clear_upper_avx(); 6619 } 6620 } 6621 } 6622 6623 if (call_stub_path != nullptr) { 6624 set_control(call_stub_path); 6625 6626 Node* call = make_runtime_call(RC_LEAF, 6627 OptoRuntime::vectorizedMismatch_Type(), 6628 StubRoutines::vectorizedMismatch(), "vectorizedMismatch", TypePtr::BOTTOM, 6629 obja_adr, objb_adr, length, scale); 6630 6631 exit_block->init_req(stub_path, control()); 6632 memory_phi->init_req(stub_path, map()->memory()); 6633 result_phi->init_req(stub_path, _gvn.transform(new ProjNode(call, TypeFunc::Parms))); 6634 } 6635 6636 exit_block = _gvn.transform(exit_block); 6637 memory_phi = _gvn.transform(memory_phi); 6638 result_phi = _gvn.transform(result_phi); 6639 6640 record_for_igvn(exit_block); 6641 record_for_igvn(memory_phi); 6642 record_for_igvn(result_phi); 6643 6644 set_control(exit_block); 6645 set_all_memory(memory_phi); 6646 set_result(result_phi); 6647 6648 return true; 6649 } 6650 6651 //------------------------------inline_vectorizedHashcode---------------------------- 6652 bool LibraryCallKit::inline_vectorizedHashCode() { 6653 assert(UseVectorizedHashCodeIntrinsic, "not implemented on this platform"); 6654 6655 assert(callee()->signature()->size() == 5, "vectorizedHashCode has 5 parameters"); 6656 Node* array = argument(0); 6657 Node* offset = argument(1); 6658 Node* length = argument(2); 6659 Node* initialValue = argument(3); 6660 Node* basic_type = argument(4); 6661 6662 if (basic_type == top()) { 6663 return false; // failed input validation 6664 } 6665 6666 const TypeInt* basic_type_t = _gvn.type(basic_type)->is_int(); 6667 if (!basic_type_t->is_con()) { 6668 return false; // Only intrinsify if mode argument is constant 6669 } 6670 6671 array = must_be_not_null(array, true); 6672 6673 BasicType bt = (BasicType)basic_type_t->get_con(); 6674 6675 // Resolve address of first element 6676 Node* array_start = array_element_address(array, offset, bt); 6677 6678 set_result(_gvn.transform(new VectorizedHashCodeNode(control(), memory(TypeAryPtr::get_array_body_type(bt)), 6679 array_start, length, initialValue, basic_type))); 6680 clear_upper_avx(); 6681 6682 return true; 6683 } 6684 6685 /** 6686 * Calculate CRC32 for byte. 6687 * int java.util.zip.CRC32.update(int crc, int b) 6688 */ 6689 bool LibraryCallKit::inline_updateCRC32() { 6690 assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions support"); 6691 assert(callee()->signature()->size() == 2, "update has 2 parameters"); 6692 // no receiver since it is static method 6693 Node* crc = argument(0); // type: int 6694 Node* b = argument(1); // type: int 6695 6696 /* 6697 * int c = ~ crc; 6698 * b = timesXtoThe32[(b ^ c) & 0xFF]; 6699 * b = b ^ (c >>> 8); 6700 * crc = ~b; 6701 */ 6702 6703 Node* M1 = intcon(-1); 6704 crc = _gvn.transform(new XorINode(crc, M1)); 6705 Node* result = _gvn.transform(new XorINode(crc, b)); 6706 result = _gvn.transform(new AndINode(result, intcon(0xFF))); 6707 6708 Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr())); 6709 Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2))); 6710 Node* adr = basic_plus_adr(top(), base, ConvI2X(offset)); 6711 result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered); 6712 6713 crc = _gvn.transform(new URShiftINode(crc, intcon(8))); 6714 result = _gvn.transform(new XorINode(crc, result)); 6715 result = _gvn.transform(new XorINode(result, M1)); 6716 set_result(result); 6717 return true; 6718 } 6719 6720 /** 6721 * Calculate CRC32 for byte[] array. 6722 * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len) 6723 */ 6724 bool LibraryCallKit::inline_updateBytesCRC32() { 6725 assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions support"); 6726 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 6727 // no receiver since it is static method 6728 Node* crc = argument(0); // type: int 6729 Node* src = argument(1); // type: oop 6730 Node* offset = argument(2); // type: int 6731 Node* length = argument(3); // type: int 6732 6733 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6734 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 6735 // failed array check 6736 return false; 6737 } 6738 6739 // Figure out the size and type of the elements we will be copying. 6740 BasicType src_elem = src_type->elem()->array_element_basic_type(); 6741 if (src_elem != T_BYTE) { 6742 return false; 6743 } 6744 6745 // 'src_start' points to src array + scaled offset 6746 src = must_be_not_null(src, true); 6747 Node* src_start = array_element_address(src, offset, src_elem); 6748 6749 // We assume that range check is done by caller. 6750 // TODO: generate range check (offset+length < src.length) in debug VM. 6751 6752 // Call the stub. 6753 address stubAddr = StubRoutines::updateBytesCRC32(); 6754 const char *stubName = "updateBytesCRC32"; 6755 6756 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(), 6757 stubAddr, stubName, TypePtr::BOTTOM, 6758 crc, src_start, length); 6759 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6760 set_result(result); 6761 return true; 6762 } 6763 6764 /** 6765 * Calculate CRC32 for ByteBuffer. 6766 * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len) 6767 */ 6768 bool LibraryCallKit::inline_updateByteBufferCRC32() { 6769 assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions support"); 6770 assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long"); 6771 // no receiver since it is static method 6772 Node* crc = argument(0); // type: int 6773 Node* src = argument(1); // type: long 6774 Node* offset = argument(3); // type: int 6775 Node* length = argument(4); // type: int 6776 6777 src = ConvL2X(src); // adjust Java long to machine word 6778 Node* base = _gvn.transform(new CastX2PNode(src)); 6779 offset = ConvI2X(offset); 6780 6781 // 'src_start' points to src array + scaled offset 6782 Node* src_start = basic_plus_adr(top(), base, offset); 6783 6784 // Call the stub. 6785 address stubAddr = StubRoutines::updateBytesCRC32(); 6786 const char *stubName = "updateBytesCRC32"; 6787 6788 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(), 6789 stubAddr, stubName, TypePtr::BOTTOM, 6790 crc, src_start, length); 6791 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6792 set_result(result); 6793 return true; 6794 } 6795 6796 //------------------------------get_table_from_crc32c_class----------------------- 6797 Node * LibraryCallKit::get_table_from_crc32c_class(ciInstanceKlass *crc32c_class) { 6798 Node* table = load_field_from_object(nullptr, "byteTable", "[I", /*decorators*/ IN_HEAP, /*is_static*/ true, crc32c_class); 6799 assert (table != nullptr, "wrong version of java.util.zip.CRC32C"); 6800 6801 return table; 6802 } 6803 6804 //------------------------------inline_updateBytesCRC32C----------------------- 6805 // 6806 // Calculate CRC32C for byte[] array. 6807 // int java.util.zip.CRC32C.updateBytes(int crc, byte[] buf, int off, int end) 6808 // 6809 bool LibraryCallKit::inline_updateBytesCRC32C() { 6810 assert(UseCRC32CIntrinsics, "need CRC32C instruction support"); 6811 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 6812 assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded"); 6813 // no receiver since it is a static method 6814 Node* crc = argument(0); // type: int 6815 Node* src = argument(1); // type: oop 6816 Node* offset = argument(2); // type: int 6817 Node* end = argument(3); // type: int 6818 6819 Node* length = _gvn.transform(new SubINode(end, offset)); 6820 6821 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6822 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 6823 // failed array check 6824 return false; 6825 } 6826 6827 // Figure out the size and type of the elements we will be copying. 6828 BasicType src_elem = src_type->elem()->array_element_basic_type(); 6829 if (src_elem != T_BYTE) { 6830 return false; 6831 } 6832 6833 // 'src_start' points to src array + scaled offset 6834 src = must_be_not_null(src, true); 6835 Node* src_start = array_element_address(src, offset, src_elem); 6836 6837 // static final int[] byteTable in class CRC32C 6838 Node* table = get_table_from_crc32c_class(callee()->holder()); 6839 table = must_be_not_null(table, true); 6840 Node* table_start = array_element_address(table, intcon(0), T_INT); 6841 6842 // We assume that range check is done by caller. 6843 // TODO: generate range check (offset+length < src.length) in debug VM. 6844 6845 // Call the stub. 6846 address stubAddr = StubRoutines::updateBytesCRC32C(); 6847 const char *stubName = "updateBytesCRC32C"; 6848 6849 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(), 6850 stubAddr, stubName, TypePtr::BOTTOM, 6851 crc, src_start, length, table_start); 6852 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6853 set_result(result); 6854 return true; 6855 } 6856 6857 //------------------------------inline_updateDirectByteBufferCRC32C----------------------- 6858 // 6859 // Calculate CRC32C for DirectByteBuffer. 6860 // int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end) 6861 // 6862 bool LibraryCallKit::inline_updateDirectByteBufferCRC32C() { 6863 assert(UseCRC32CIntrinsics, "need CRC32C instruction support"); 6864 assert(callee()->signature()->size() == 5, "updateDirectByteBuffer has 4 parameters and one is long"); 6865 assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded"); 6866 // no receiver since it is a static method 6867 Node* crc = argument(0); // type: int 6868 Node* src = argument(1); // type: long 6869 Node* offset = argument(3); // type: int 6870 Node* end = argument(4); // type: int 6871 6872 Node* length = _gvn.transform(new SubINode(end, offset)); 6873 6874 src = ConvL2X(src); // adjust Java long to machine word 6875 Node* base = _gvn.transform(new CastX2PNode(src)); 6876 offset = ConvI2X(offset); 6877 6878 // 'src_start' points to src array + scaled offset 6879 Node* src_start = basic_plus_adr(top(), base, offset); 6880 6881 // static final int[] byteTable in class CRC32C 6882 Node* table = get_table_from_crc32c_class(callee()->holder()); 6883 table = must_be_not_null(table, true); 6884 Node* table_start = array_element_address(table, intcon(0), T_INT); 6885 6886 // Call the stub. 6887 address stubAddr = StubRoutines::updateBytesCRC32C(); 6888 const char *stubName = "updateBytesCRC32C"; 6889 6890 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(), 6891 stubAddr, stubName, TypePtr::BOTTOM, 6892 crc, src_start, length, table_start); 6893 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6894 set_result(result); 6895 return true; 6896 } 6897 6898 //------------------------------inline_updateBytesAdler32---------------------- 6899 // 6900 // Calculate Adler32 checksum for byte[] array. 6901 // int java.util.zip.Adler32.updateBytes(int crc, byte[] buf, int off, int len) 6902 // 6903 bool LibraryCallKit::inline_updateBytesAdler32() { 6904 assert(UseAdler32Intrinsics, "Adler32 Intrinsic support need"); // check if we actually need to check this flag or check a different one 6905 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 6906 assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded"); 6907 // no receiver since it is static method 6908 Node* crc = argument(0); // type: int 6909 Node* src = argument(1); // type: oop 6910 Node* offset = argument(2); // type: int 6911 Node* length = argument(3); // type: int 6912 6913 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6914 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 6915 // failed array check 6916 return false; 6917 } 6918 6919 // Figure out the size and type of the elements we will be copying. 6920 BasicType src_elem = src_type->elem()->array_element_basic_type(); 6921 if (src_elem != T_BYTE) { 6922 return false; 6923 } 6924 6925 // 'src_start' points to src array + scaled offset 6926 Node* src_start = array_element_address(src, offset, src_elem); 6927 6928 // We assume that range check is done by caller. 6929 // TODO: generate range check (offset+length < src.length) in debug VM. 6930 6931 // Call the stub. 6932 address stubAddr = StubRoutines::updateBytesAdler32(); 6933 const char *stubName = "updateBytesAdler32"; 6934 6935 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(), 6936 stubAddr, stubName, TypePtr::BOTTOM, 6937 crc, src_start, length); 6938 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6939 set_result(result); 6940 return true; 6941 } 6942 6943 //------------------------------inline_updateByteBufferAdler32--------------- 6944 // 6945 // Calculate Adler32 checksum for DirectByteBuffer. 6946 // int java.util.zip.Adler32.updateByteBuffer(int crc, long buf, int off, int len) 6947 // 6948 bool LibraryCallKit::inline_updateByteBufferAdler32() { 6949 assert(UseAdler32Intrinsics, "Adler32 Intrinsic support need"); // check if we actually need to check this flag or check a different one 6950 assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long"); 6951 assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded"); 6952 // no receiver since it is static method 6953 Node* crc = argument(0); // type: int 6954 Node* src = argument(1); // type: long 6955 Node* offset = argument(3); // type: int 6956 Node* length = argument(4); // type: int 6957 6958 src = ConvL2X(src); // adjust Java long to machine word 6959 Node* base = _gvn.transform(new CastX2PNode(src)); 6960 offset = ConvI2X(offset); 6961 6962 // 'src_start' points to src array + scaled offset 6963 Node* src_start = basic_plus_adr(top(), base, offset); 6964 6965 // Call the stub. 6966 address stubAddr = StubRoutines::updateBytesAdler32(); 6967 const char *stubName = "updateBytesAdler32"; 6968 6969 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(), 6970 stubAddr, stubName, TypePtr::BOTTOM, 6971 crc, src_start, length); 6972 6973 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6974 set_result(result); 6975 return true; 6976 } 6977 6978 //----------------------------inline_reference_get0---------------------------- 6979 // public T java.lang.ref.Reference.get(); 6980 bool LibraryCallKit::inline_reference_get0() { 6981 const int referent_offset = java_lang_ref_Reference::referent_offset(); 6982 6983 // Get the argument: 6984 Node* reference_obj = null_check_receiver(); 6985 if (stopped()) return true; 6986 6987 DecoratorSet decorators = IN_HEAP | ON_WEAK_OOP_REF; 6988 Node* result = load_field_from_object(reference_obj, "referent", "Ljava/lang/Object;", 6989 decorators, /*is_static*/ false, nullptr); 6990 if (result == nullptr) return false; 6991 6992 // Add memory barrier to prevent commoning reads from this field 6993 // across safepoint since GC can change its value. 6994 insert_mem_bar(Op_MemBarCPUOrder); 6995 6996 set_result(result); 6997 return true; 6998 } 6999 7000 //----------------------------inline_reference_refersTo0---------------------------- 7001 // bool java.lang.ref.Reference.refersTo0(); 7002 // bool java.lang.ref.PhantomReference.refersTo0(); 7003 bool LibraryCallKit::inline_reference_refersTo0(bool is_phantom) { 7004 // Get arguments: 7005 Node* reference_obj = null_check_receiver(); 7006 Node* other_obj = argument(1); 7007 if (stopped()) return true; 7008 7009 DecoratorSet decorators = IN_HEAP | AS_NO_KEEPALIVE; 7010 decorators |= (is_phantom ? ON_PHANTOM_OOP_REF : ON_WEAK_OOP_REF); 7011 Node* referent = load_field_from_object(reference_obj, "referent", "Ljava/lang/Object;", 7012 decorators, /*is_static*/ false, nullptr); 7013 if (referent == nullptr) return false; 7014 7015 // Add memory barrier to prevent commoning reads from this field 7016 // across safepoint since GC can change its value. 7017 insert_mem_bar(Op_MemBarCPUOrder); 7018 7019 Node* cmp = _gvn.transform(new CmpPNode(referent, other_obj)); 7020 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 7021 IfNode* if_node = create_and_map_if(control(), bol, PROB_FAIR, COUNT_UNKNOWN); 7022 7023 RegionNode* region = new RegionNode(3); 7024 PhiNode* phi = new PhiNode(region, TypeInt::BOOL); 7025 7026 Node* if_true = _gvn.transform(new IfTrueNode(if_node)); 7027 region->init_req(1, if_true); 7028 phi->init_req(1, intcon(1)); 7029 7030 Node* if_false = _gvn.transform(new IfFalseNode(if_node)); 7031 region->init_req(2, if_false); 7032 phi->init_req(2, intcon(0)); 7033 7034 set_control(_gvn.transform(region)); 7035 record_for_igvn(region); 7036 set_result(_gvn.transform(phi)); 7037 return true; 7038 } 7039 7040 //----------------------------inline_reference_clear0---------------------------- 7041 // void java.lang.ref.Reference.clear0(); 7042 // void java.lang.ref.PhantomReference.clear0(); 7043 bool LibraryCallKit::inline_reference_clear0(bool is_phantom) { 7044 // This matches the implementation in JVM_ReferenceClear, see the comments there. 7045 7046 // Get arguments 7047 Node* reference_obj = null_check_receiver(); 7048 if (stopped()) return true; 7049 7050 // Common access parameters 7051 DecoratorSet decorators = IN_HEAP | AS_NO_KEEPALIVE; 7052 decorators |= (is_phantom ? ON_PHANTOM_OOP_REF : ON_WEAK_OOP_REF); 7053 Node* referent_field_addr = basic_plus_adr(reference_obj, java_lang_ref_Reference::referent_offset()); 7054 const TypePtr* referent_field_addr_type = _gvn.type(referent_field_addr)->isa_ptr(); 7055 const Type* val_type = TypeOopPtr::make_from_klass(env()->Object_klass()); 7056 7057 Node* referent = access_load_at(reference_obj, 7058 referent_field_addr, 7059 referent_field_addr_type, 7060 val_type, 7061 T_OBJECT, 7062 decorators); 7063 7064 IdealKit ideal(this); 7065 #define __ ideal. 7066 __ if_then(referent, BoolTest::ne, null()); 7067 sync_kit(ideal); 7068 access_store_at(reference_obj, 7069 referent_field_addr, 7070 referent_field_addr_type, 7071 null(), 7072 val_type, 7073 T_OBJECT, 7074 decorators); 7075 __ sync_kit(this); 7076 __ end_if(); 7077 final_sync(ideal); 7078 #undef __ 7079 7080 return true; 7081 } 7082 7083 Node* LibraryCallKit::load_field_from_object(Node* fromObj, const char* fieldName, const char* fieldTypeString, 7084 DecoratorSet decorators, bool is_static, 7085 ciInstanceKlass* fromKls) { 7086 if (fromKls == nullptr) { 7087 const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr(); 7088 assert(tinst != nullptr, "obj is null"); 7089 assert(tinst->is_loaded(), "obj is not loaded"); 7090 fromKls = tinst->instance_klass(); 7091 } else { 7092 assert(is_static, "only for static field access"); 7093 } 7094 ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName), 7095 ciSymbol::make(fieldTypeString), 7096 is_static); 7097 7098 assert(field != nullptr, "undefined field %s %s %s", fieldTypeString, fromKls->name()->as_utf8(), fieldName); 7099 if (field == nullptr) return (Node *) nullptr; 7100 7101 if (is_static) { 7102 const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror()); 7103 fromObj = makecon(tip); 7104 } 7105 7106 // Next code copied from Parse::do_get_xxx(): 7107 7108 // Compute address and memory type. 7109 int offset = field->offset_in_bytes(); 7110 bool is_vol = field->is_volatile(); 7111 ciType* field_klass = field->type(); 7112 assert(field_klass->is_loaded(), "should be loaded"); 7113 const TypePtr* adr_type = C->alias_type(field)->adr_type(); 7114 Node *adr = basic_plus_adr(fromObj, fromObj, offset); 7115 assert(C->get_alias_index(adr_type) == C->get_alias_index(_gvn.type(adr)->isa_ptr()), 7116 "slice of address and input slice don't match"); 7117 BasicType bt = field->layout_type(); 7118 7119 // Build the resultant type of the load 7120 const Type *type; 7121 if (bt == T_OBJECT) { 7122 type = TypeOopPtr::make_from_klass(field_klass->as_klass()); 7123 } else { 7124 type = Type::get_const_basic_type(bt); 7125 } 7126 7127 if (is_vol) { 7128 decorators |= MO_SEQ_CST; 7129 } 7130 7131 return access_load_at(fromObj, adr, adr_type, type, bt, decorators); 7132 } 7133 7134 Node * LibraryCallKit::field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, 7135 bool is_exact /* true */, bool is_static /* false */, 7136 ciInstanceKlass * fromKls /* nullptr */) { 7137 if (fromKls == nullptr) { 7138 const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr(); 7139 assert(tinst != nullptr, "obj is null"); 7140 assert(tinst->is_loaded(), "obj is not loaded"); 7141 assert(!is_exact || tinst->klass_is_exact(), "klass not exact"); 7142 fromKls = tinst->instance_klass(); 7143 } 7144 else { 7145 assert(is_static, "only for static field access"); 7146 } 7147 ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName), 7148 ciSymbol::make(fieldTypeString), 7149 is_static); 7150 7151 assert(field != nullptr, "undefined field"); 7152 assert(!field->is_volatile(), "not defined for volatile fields"); 7153 7154 if (is_static) { 7155 const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror()); 7156 fromObj = makecon(tip); 7157 } 7158 7159 // Next code copied from Parse::do_get_xxx(): 7160 7161 // Compute address and memory type. 7162 int offset = field->offset_in_bytes(); 7163 Node *adr = basic_plus_adr(fromObj, fromObj, offset); 7164 7165 return adr; 7166 } 7167 7168 //------------------------------inline_aescrypt_Block----------------------- 7169 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) { 7170 address stubAddr = nullptr; 7171 const char *stubName; 7172 assert(UseAES, "need AES instruction support"); 7173 7174 switch(id) { 7175 case vmIntrinsics::_aescrypt_encryptBlock: 7176 stubAddr = StubRoutines::aescrypt_encryptBlock(); 7177 stubName = "aescrypt_encryptBlock"; 7178 break; 7179 case vmIntrinsics::_aescrypt_decryptBlock: 7180 stubAddr = StubRoutines::aescrypt_decryptBlock(); 7181 stubName = "aescrypt_decryptBlock"; 7182 break; 7183 default: 7184 break; 7185 } 7186 if (stubAddr == nullptr) return false; 7187 7188 Node* aescrypt_object = argument(0); 7189 Node* src = argument(1); 7190 Node* src_offset = argument(2); 7191 Node* dest = argument(3); 7192 Node* dest_offset = argument(4); 7193 7194 src = must_be_not_null(src, true); 7195 dest = must_be_not_null(dest, true); 7196 7197 // (1) src and dest are arrays. 7198 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7199 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 7200 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 7201 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 7202 7203 // for the quick and dirty code we will skip all the checks. 7204 // we are just trying to get the call to be generated. 7205 Node* src_start = src; 7206 Node* dest_start = dest; 7207 if (src_offset != nullptr || dest_offset != nullptr) { 7208 assert(src_offset != nullptr && dest_offset != nullptr, ""); 7209 src_start = array_element_address(src, src_offset, T_BYTE); 7210 dest_start = array_element_address(dest, dest_offset, T_BYTE); 7211 } 7212 7213 // now need to get the start of its expanded key array 7214 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 7215 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 7216 if (k_start == nullptr) return false; 7217 7218 // Call the stub. 7219 make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(), 7220 stubAddr, stubName, TypePtr::BOTTOM, 7221 src_start, dest_start, k_start); 7222 7223 return true; 7224 } 7225 7226 //------------------------------inline_cipherBlockChaining_AESCrypt----------------------- 7227 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) { 7228 address stubAddr = nullptr; 7229 const char *stubName = nullptr; 7230 7231 assert(UseAES, "need AES instruction support"); 7232 7233 switch(id) { 7234 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 7235 stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt(); 7236 stubName = "cipherBlockChaining_encryptAESCrypt"; 7237 break; 7238 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 7239 stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt(); 7240 stubName = "cipherBlockChaining_decryptAESCrypt"; 7241 break; 7242 default: 7243 break; 7244 } 7245 if (stubAddr == nullptr) return false; 7246 7247 Node* cipherBlockChaining_object = argument(0); 7248 Node* src = argument(1); 7249 Node* src_offset = argument(2); 7250 Node* len = argument(3); 7251 Node* dest = argument(4); 7252 Node* dest_offset = argument(5); 7253 7254 src = must_be_not_null(src, false); 7255 dest = must_be_not_null(dest, false); 7256 7257 // (1) src and dest are arrays. 7258 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7259 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 7260 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 7261 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 7262 7263 // checks are the responsibility of the caller 7264 Node* src_start = src; 7265 Node* dest_start = dest; 7266 if (src_offset != nullptr || dest_offset != nullptr) { 7267 assert(src_offset != nullptr && dest_offset != nullptr, ""); 7268 src_start = array_element_address(src, src_offset, T_BYTE); 7269 dest_start = array_element_address(dest, dest_offset, T_BYTE); 7270 } 7271 7272 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 7273 // (because of the predicated logic executed earlier). 7274 // so we cast it here safely. 7275 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 7276 7277 Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7278 if (embeddedCipherObj == nullptr) return false; 7279 7280 // cast it to what we know it will be at runtime 7281 const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr(); 7282 assert(tinst != nullptr, "CBC obj is null"); 7283 assert(tinst->is_loaded(), "CBC obj is not loaded"); 7284 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7285 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 7286 7287 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7288 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 7289 const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 7290 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 7291 aescrypt_object = _gvn.transform(aescrypt_object); 7292 7293 // we need to get the start of the aescrypt_object's expanded key array 7294 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 7295 if (k_start == nullptr) return false; 7296 7297 // similarly, get the start address of the r vector 7298 Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B"); 7299 if (objRvec == nullptr) return false; 7300 Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE); 7301 7302 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 7303 Node* cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 7304 OptoRuntime::cipherBlockChaining_aescrypt_Type(), 7305 stubAddr, stubName, TypePtr::BOTTOM, 7306 src_start, dest_start, k_start, r_start, len); 7307 7308 // return cipher length (int) 7309 Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms)); 7310 set_result(retvalue); 7311 return true; 7312 } 7313 7314 //------------------------------inline_electronicCodeBook_AESCrypt----------------------- 7315 bool LibraryCallKit::inline_electronicCodeBook_AESCrypt(vmIntrinsics::ID id) { 7316 address stubAddr = nullptr; 7317 const char *stubName = nullptr; 7318 7319 assert(UseAES, "need AES instruction support"); 7320 7321 switch (id) { 7322 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 7323 stubAddr = StubRoutines::electronicCodeBook_encryptAESCrypt(); 7324 stubName = "electronicCodeBook_encryptAESCrypt"; 7325 break; 7326 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 7327 stubAddr = StubRoutines::electronicCodeBook_decryptAESCrypt(); 7328 stubName = "electronicCodeBook_decryptAESCrypt"; 7329 break; 7330 default: 7331 break; 7332 } 7333 7334 if (stubAddr == nullptr) return false; 7335 7336 Node* electronicCodeBook_object = argument(0); 7337 Node* src = argument(1); 7338 Node* src_offset = argument(2); 7339 Node* len = argument(3); 7340 Node* dest = argument(4); 7341 Node* dest_offset = argument(5); 7342 7343 // (1) src and dest are arrays. 7344 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7345 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 7346 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 7347 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 7348 7349 // checks are the responsibility of the caller 7350 Node* src_start = src; 7351 Node* dest_start = dest; 7352 if (src_offset != nullptr || dest_offset != nullptr) { 7353 assert(src_offset != nullptr && dest_offset != nullptr, ""); 7354 src_start = array_element_address(src, src_offset, T_BYTE); 7355 dest_start = array_element_address(dest, dest_offset, T_BYTE); 7356 } 7357 7358 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 7359 // (because of the predicated logic executed earlier). 7360 // so we cast it here safely. 7361 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 7362 7363 Node* embeddedCipherObj = load_field_from_object(electronicCodeBook_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7364 if (embeddedCipherObj == nullptr) return false; 7365 7366 // cast it to what we know it will be at runtime 7367 const TypeInstPtr* tinst = _gvn.type(electronicCodeBook_object)->isa_instptr(); 7368 assert(tinst != nullptr, "ECB obj is null"); 7369 assert(tinst->is_loaded(), "ECB obj is not loaded"); 7370 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7371 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 7372 7373 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7374 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 7375 const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 7376 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 7377 aescrypt_object = _gvn.transform(aescrypt_object); 7378 7379 // we need to get the start of the aescrypt_object's expanded key array 7380 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 7381 if (k_start == nullptr) return false; 7382 7383 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 7384 Node* ecbCrypt = make_runtime_call(RC_LEAF | RC_NO_FP, 7385 OptoRuntime::electronicCodeBook_aescrypt_Type(), 7386 stubAddr, stubName, TypePtr::BOTTOM, 7387 src_start, dest_start, k_start, len); 7388 7389 // return cipher length (int) 7390 Node* retvalue = _gvn.transform(new ProjNode(ecbCrypt, TypeFunc::Parms)); 7391 set_result(retvalue); 7392 return true; 7393 } 7394 7395 //------------------------------inline_counterMode_AESCrypt----------------------- 7396 bool LibraryCallKit::inline_counterMode_AESCrypt(vmIntrinsics::ID id) { 7397 assert(UseAES, "need AES instruction support"); 7398 if (!UseAESCTRIntrinsics) return false; 7399 7400 address stubAddr = nullptr; 7401 const char *stubName = nullptr; 7402 if (id == vmIntrinsics::_counterMode_AESCrypt) { 7403 stubAddr = StubRoutines::counterMode_AESCrypt(); 7404 stubName = "counterMode_AESCrypt"; 7405 } 7406 if (stubAddr == nullptr) return false; 7407 7408 Node* counterMode_object = argument(0); 7409 Node* src = argument(1); 7410 Node* src_offset = argument(2); 7411 Node* len = argument(3); 7412 Node* dest = argument(4); 7413 Node* dest_offset = argument(5); 7414 7415 // (1) src and dest are arrays. 7416 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7417 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 7418 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 7419 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 7420 7421 // checks are the responsibility of the caller 7422 Node* src_start = src; 7423 Node* dest_start = dest; 7424 if (src_offset != nullptr || dest_offset != nullptr) { 7425 assert(src_offset != nullptr && dest_offset != nullptr, ""); 7426 src_start = array_element_address(src, src_offset, T_BYTE); 7427 dest_start = array_element_address(dest, dest_offset, T_BYTE); 7428 } 7429 7430 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 7431 // (because of the predicated logic executed earlier). 7432 // so we cast it here safely. 7433 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 7434 Node* embeddedCipherObj = load_field_from_object(counterMode_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7435 if (embeddedCipherObj == nullptr) return false; 7436 // cast it to what we know it will be at runtime 7437 const TypeInstPtr* tinst = _gvn.type(counterMode_object)->isa_instptr(); 7438 assert(tinst != nullptr, "CTR obj is null"); 7439 assert(tinst->is_loaded(), "CTR obj is not loaded"); 7440 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7441 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 7442 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7443 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 7444 const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 7445 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 7446 aescrypt_object = _gvn.transform(aescrypt_object); 7447 // we need to get the start of the aescrypt_object's expanded key array 7448 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 7449 if (k_start == nullptr) return false; 7450 // similarly, get the start address of the r vector 7451 Node* obj_counter = load_field_from_object(counterMode_object, "counter", "[B"); 7452 if (obj_counter == nullptr) return false; 7453 Node* cnt_start = array_element_address(obj_counter, intcon(0), T_BYTE); 7454 7455 Node* saved_encCounter = load_field_from_object(counterMode_object, "encryptedCounter", "[B"); 7456 if (saved_encCounter == nullptr) return false; 7457 Node* saved_encCounter_start = array_element_address(saved_encCounter, intcon(0), T_BYTE); 7458 Node* used = field_address_from_object(counterMode_object, "used", "I", /*is_exact*/ false); 7459 7460 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 7461 Node* ctrCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 7462 OptoRuntime::counterMode_aescrypt_Type(), 7463 stubAddr, stubName, TypePtr::BOTTOM, 7464 src_start, dest_start, k_start, cnt_start, len, saved_encCounter_start, used); 7465 7466 // return cipher length (int) 7467 Node* retvalue = _gvn.transform(new ProjNode(ctrCrypt, TypeFunc::Parms)); 7468 set_result(retvalue); 7469 return true; 7470 } 7471 7472 //------------------------------get_key_start_from_aescrypt_object----------------------- 7473 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) { 7474 #if defined(PPC64) || defined(S390) || defined(RISCV64) 7475 // MixColumns for decryption can be reduced by preprocessing MixColumns with round keys. 7476 // Intel's extension is based on this optimization and AESCrypt generates round keys by preprocessing MixColumns. 7477 // However, ppc64 vncipher processes MixColumns and requires the same round keys with encryption. 7478 // The ppc64 and riscv64 stubs of encryption and decryption use the same round keys (sessionK[0]). 7479 Node* objSessionK = load_field_from_object(aescrypt_object, "sessionK", "[[I"); 7480 assert (objSessionK != nullptr, "wrong version of com.sun.crypto.provider.AESCrypt"); 7481 if (objSessionK == nullptr) { 7482 return (Node *) nullptr; 7483 } 7484 Node* objAESCryptKey = load_array_element(objSessionK, intcon(0), TypeAryPtr::OOPS, /* set_ctrl */ true); 7485 #else 7486 Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I"); 7487 #endif // PPC64 7488 assert (objAESCryptKey != nullptr, "wrong version of com.sun.crypto.provider.AESCrypt"); 7489 if (objAESCryptKey == nullptr) return (Node *) nullptr; 7490 7491 // now have the array, need to get the start address of the K array 7492 Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT); 7493 return k_start; 7494 } 7495 7496 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate---------------------------- 7497 // Return node representing slow path of predicate check. 7498 // the pseudo code we want to emulate with this predicate is: 7499 // for encryption: 7500 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 7501 // for decryption: 7502 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 7503 // note cipher==plain is more conservative than the original java code but that's OK 7504 // 7505 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) { 7506 // The receiver was checked for null already. 7507 Node* objCBC = argument(0); 7508 7509 Node* src = argument(1); 7510 Node* dest = argument(4); 7511 7512 // Load embeddedCipher field of CipherBlockChaining object. 7513 Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7514 7515 // get AESCrypt klass for instanceOf check 7516 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 7517 // will have same classloader as CipherBlockChaining object 7518 const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr(); 7519 assert(tinst != nullptr, "CBCobj is null"); 7520 assert(tinst->is_loaded(), "CBCobj is not loaded"); 7521 7522 // we want to do an instanceof comparison against the AESCrypt class 7523 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7524 if (!klass_AESCrypt->is_loaded()) { 7525 // if AESCrypt is not even loaded, we never take the intrinsic fast path 7526 Node* ctrl = control(); 7527 set_control(top()); // no regular fast path 7528 return ctrl; 7529 } 7530 7531 src = must_be_not_null(src, true); 7532 dest = must_be_not_null(dest, true); 7533 7534 // Resolve oops to stable for CmpP below. 7535 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7536 7537 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 7538 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 7539 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 7540 7541 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 7542 7543 // for encryption, we are done 7544 if (!decrypting) 7545 return instof_false; // even if it is null 7546 7547 // for decryption, we need to add a further check to avoid 7548 // taking the intrinsic path when cipher and plain are the same 7549 // see the original java code for why. 7550 RegionNode* region = new RegionNode(3); 7551 region->init_req(1, instof_false); 7552 7553 Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest)); 7554 Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq)); 7555 Node* src_dest_conjoint = generate_guard(bool_src_dest, nullptr, PROB_MIN); 7556 region->init_req(2, src_dest_conjoint); 7557 7558 record_for_igvn(region); 7559 return _gvn.transform(region); 7560 } 7561 7562 //----------------------------inline_electronicCodeBook_AESCrypt_predicate---------------------------- 7563 // Return node representing slow path of predicate check. 7564 // the pseudo code we want to emulate with this predicate is: 7565 // for encryption: 7566 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 7567 // for decryption: 7568 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 7569 // note cipher==plain is more conservative than the original java code but that's OK 7570 // 7571 Node* LibraryCallKit::inline_electronicCodeBook_AESCrypt_predicate(bool decrypting) { 7572 // The receiver was checked for null already. 7573 Node* objECB = argument(0); 7574 7575 // Load embeddedCipher field of ElectronicCodeBook object. 7576 Node* embeddedCipherObj = load_field_from_object(objECB, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7577 7578 // get AESCrypt klass for instanceOf check 7579 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 7580 // will have same classloader as ElectronicCodeBook object 7581 const TypeInstPtr* tinst = _gvn.type(objECB)->isa_instptr(); 7582 assert(tinst != nullptr, "ECBobj is null"); 7583 assert(tinst->is_loaded(), "ECBobj is not loaded"); 7584 7585 // we want to do an instanceof comparison against the AESCrypt class 7586 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7587 if (!klass_AESCrypt->is_loaded()) { 7588 // if AESCrypt is not even loaded, we never take the intrinsic fast path 7589 Node* ctrl = control(); 7590 set_control(top()); // no regular fast path 7591 return ctrl; 7592 } 7593 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7594 7595 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 7596 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 7597 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 7598 7599 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 7600 7601 // for encryption, we are done 7602 if (!decrypting) 7603 return instof_false; // even if it is null 7604 7605 // for decryption, we need to add a further check to avoid 7606 // taking the intrinsic path when cipher and plain are the same 7607 // see the original java code for why. 7608 RegionNode* region = new RegionNode(3); 7609 region->init_req(1, instof_false); 7610 Node* src = argument(1); 7611 Node* dest = argument(4); 7612 Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest)); 7613 Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq)); 7614 Node* src_dest_conjoint = generate_guard(bool_src_dest, nullptr, PROB_MIN); 7615 region->init_req(2, src_dest_conjoint); 7616 7617 record_for_igvn(region); 7618 return _gvn.transform(region); 7619 } 7620 7621 //----------------------------inline_counterMode_AESCrypt_predicate---------------------------- 7622 // Return node representing slow path of predicate check. 7623 // the pseudo code we want to emulate with this predicate is: 7624 // for encryption: 7625 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 7626 // for decryption: 7627 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 7628 // note cipher==plain is more conservative than the original java code but that's OK 7629 // 7630 7631 Node* LibraryCallKit::inline_counterMode_AESCrypt_predicate() { 7632 // The receiver was checked for null already. 7633 Node* objCTR = argument(0); 7634 7635 // Load embeddedCipher field of CipherBlockChaining object. 7636 Node* embeddedCipherObj = load_field_from_object(objCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7637 7638 // get AESCrypt klass for instanceOf check 7639 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 7640 // will have same classloader as CipherBlockChaining object 7641 const TypeInstPtr* tinst = _gvn.type(objCTR)->isa_instptr(); 7642 assert(tinst != nullptr, "CTRobj is null"); 7643 assert(tinst->is_loaded(), "CTRobj is not loaded"); 7644 7645 // we want to do an instanceof comparison against the AESCrypt class 7646 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7647 if (!klass_AESCrypt->is_loaded()) { 7648 // if AESCrypt is not even loaded, we never take the intrinsic fast path 7649 Node* ctrl = control(); 7650 set_control(top()); // no regular fast path 7651 return ctrl; 7652 } 7653 7654 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7655 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 7656 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 7657 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 7658 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 7659 7660 return instof_false; // even if it is null 7661 } 7662 7663 //------------------------------inline_ghash_processBlocks 7664 bool LibraryCallKit::inline_ghash_processBlocks() { 7665 address stubAddr; 7666 const char *stubName; 7667 assert(UseGHASHIntrinsics, "need GHASH intrinsics support"); 7668 7669 stubAddr = StubRoutines::ghash_processBlocks(); 7670 stubName = "ghash_processBlocks"; 7671 7672 Node* data = argument(0); 7673 Node* offset = argument(1); 7674 Node* len = argument(2); 7675 Node* state = argument(3); 7676 Node* subkeyH = argument(4); 7677 7678 state = must_be_not_null(state, true); 7679 subkeyH = must_be_not_null(subkeyH, true); 7680 data = must_be_not_null(data, true); 7681 7682 Node* state_start = array_element_address(state, intcon(0), T_LONG); 7683 assert(state_start, "state is null"); 7684 Node* subkeyH_start = array_element_address(subkeyH, intcon(0), T_LONG); 7685 assert(subkeyH_start, "subkeyH is null"); 7686 Node* data_start = array_element_address(data, offset, T_BYTE); 7687 assert(data_start, "data is null"); 7688 7689 Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP, 7690 OptoRuntime::ghash_processBlocks_Type(), 7691 stubAddr, stubName, TypePtr::BOTTOM, 7692 state_start, subkeyH_start, data_start, len); 7693 return true; 7694 } 7695 7696 //------------------------------inline_chacha20Block 7697 bool LibraryCallKit::inline_chacha20Block() { 7698 address stubAddr; 7699 const char *stubName; 7700 assert(UseChaCha20Intrinsics, "need ChaCha20 intrinsics support"); 7701 7702 stubAddr = StubRoutines::chacha20Block(); 7703 stubName = "chacha20Block"; 7704 7705 Node* state = argument(0); 7706 Node* result = argument(1); 7707 7708 state = must_be_not_null(state, true); 7709 result = must_be_not_null(result, true); 7710 7711 Node* state_start = array_element_address(state, intcon(0), T_INT); 7712 assert(state_start, "state is null"); 7713 Node* result_start = array_element_address(result, intcon(0), T_BYTE); 7714 assert(result_start, "result is null"); 7715 7716 Node* cc20Blk = make_runtime_call(RC_LEAF|RC_NO_FP, 7717 OptoRuntime::chacha20Block_Type(), 7718 stubAddr, stubName, TypePtr::BOTTOM, 7719 state_start, result_start); 7720 // return key stream length (int) 7721 Node* retvalue = _gvn.transform(new ProjNode(cc20Blk, TypeFunc::Parms)); 7722 set_result(retvalue); 7723 return true; 7724 } 7725 7726 //------------------------------inline_kyberNtt 7727 bool LibraryCallKit::inline_kyberNtt() { 7728 address stubAddr; 7729 const char *stubName; 7730 assert(UseKyberIntrinsics, "need Kyber intrinsics support"); 7731 assert(callee()->signature()->size() == 2, "kyberNtt has 2 parameters"); 7732 7733 stubAddr = StubRoutines::kyberNtt(); 7734 stubName = "kyberNtt"; 7735 if (!stubAddr) return false; 7736 7737 Node* coeffs = argument(0); 7738 Node* ntt_zetas = argument(1); 7739 7740 coeffs = must_be_not_null(coeffs, true); 7741 ntt_zetas = must_be_not_null(ntt_zetas, true); 7742 7743 Node* coeffs_start = array_element_address(coeffs, intcon(0), T_SHORT); 7744 assert(coeffs_start, "coeffs is null"); 7745 Node* ntt_zetas_start = array_element_address(ntt_zetas, intcon(0), T_SHORT); 7746 assert(ntt_zetas_start, "ntt_zetas is null"); 7747 Node* kyberNtt = make_runtime_call(RC_LEAF|RC_NO_FP, 7748 OptoRuntime::kyberNtt_Type(), 7749 stubAddr, stubName, TypePtr::BOTTOM, 7750 coeffs_start, ntt_zetas_start); 7751 // return an int 7752 Node* retvalue = _gvn.transform(new ProjNode(kyberNtt, TypeFunc::Parms)); 7753 set_result(retvalue); 7754 return true; 7755 } 7756 7757 //------------------------------inline_kyberInverseNtt 7758 bool LibraryCallKit::inline_kyberInverseNtt() { 7759 address stubAddr; 7760 const char *stubName; 7761 assert(UseKyberIntrinsics, "need Kyber intrinsics support"); 7762 assert(callee()->signature()->size() == 2, "kyberInverseNtt has 2 parameters"); 7763 7764 stubAddr = StubRoutines::kyberInverseNtt(); 7765 stubName = "kyberInverseNtt"; 7766 if (!stubAddr) return false; 7767 7768 Node* coeffs = argument(0); 7769 Node* zetas = argument(1); 7770 7771 coeffs = must_be_not_null(coeffs, true); 7772 zetas = must_be_not_null(zetas, true); 7773 7774 Node* coeffs_start = array_element_address(coeffs, intcon(0), T_SHORT); 7775 assert(coeffs_start, "coeffs is null"); 7776 Node* zetas_start = array_element_address(zetas, intcon(0), T_SHORT); 7777 assert(zetas_start, "inverseNtt_zetas is null"); 7778 Node* kyberInverseNtt = make_runtime_call(RC_LEAF|RC_NO_FP, 7779 OptoRuntime::kyberInverseNtt_Type(), 7780 stubAddr, stubName, TypePtr::BOTTOM, 7781 coeffs_start, zetas_start); 7782 7783 // return an int 7784 Node* retvalue = _gvn.transform(new ProjNode(kyberInverseNtt, TypeFunc::Parms)); 7785 set_result(retvalue); 7786 return true; 7787 } 7788 7789 //------------------------------inline_kyberNttMult 7790 bool LibraryCallKit::inline_kyberNttMult() { 7791 address stubAddr; 7792 const char *stubName; 7793 assert(UseKyberIntrinsics, "need Kyber intrinsics support"); 7794 assert(callee()->signature()->size() == 4, "kyberNttMult has 4 parameters"); 7795 7796 stubAddr = StubRoutines::kyberNttMult(); 7797 stubName = "kyberNttMult"; 7798 if (!stubAddr) return false; 7799 7800 Node* result = argument(0); 7801 Node* ntta = argument(1); 7802 Node* nttb = argument(2); 7803 Node* zetas = argument(3); 7804 7805 result = must_be_not_null(result, true); 7806 ntta = must_be_not_null(ntta, true); 7807 nttb = must_be_not_null(nttb, true); 7808 zetas = must_be_not_null(zetas, true); 7809 7810 Node* result_start = array_element_address(result, intcon(0), T_SHORT); 7811 assert(result_start, "result is null"); 7812 Node* ntta_start = array_element_address(ntta, intcon(0), T_SHORT); 7813 assert(ntta_start, "ntta is null"); 7814 Node* nttb_start = array_element_address(nttb, intcon(0), T_SHORT); 7815 assert(nttb_start, "nttb is null"); 7816 Node* zetas_start = array_element_address(zetas, intcon(0), T_SHORT); 7817 assert(zetas_start, "nttMult_zetas is null"); 7818 Node* kyberNttMult = make_runtime_call(RC_LEAF|RC_NO_FP, 7819 OptoRuntime::kyberNttMult_Type(), 7820 stubAddr, stubName, TypePtr::BOTTOM, 7821 result_start, ntta_start, nttb_start, 7822 zetas_start); 7823 7824 // return an int 7825 Node* retvalue = _gvn.transform(new ProjNode(kyberNttMult, TypeFunc::Parms)); 7826 set_result(retvalue); 7827 7828 return true; 7829 } 7830 7831 //------------------------------inline_kyberAddPoly_2 7832 bool LibraryCallKit::inline_kyberAddPoly_2() { 7833 address stubAddr; 7834 const char *stubName; 7835 assert(UseKyberIntrinsics, "need Kyber intrinsics support"); 7836 assert(callee()->signature()->size() == 3, "kyberAddPoly_2 has 3 parameters"); 7837 7838 stubAddr = StubRoutines::kyberAddPoly_2(); 7839 stubName = "kyberAddPoly_2"; 7840 if (!stubAddr) return false; 7841 7842 Node* result = argument(0); 7843 Node* a = argument(1); 7844 Node* b = argument(2); 7845 7846 result = must_be_not_null(result, true); 7847 a = must_be_not_null(a, true); 7848 b = must_be_not_null(b, true); 7849 7850 Node* result_start = array_element_address(result, intcon(0), T_SHORT); 7851 assert(result_start, "result is null"); 7852 Node* a_start = array_element_address(a, intcon(0), T_SHORT); 7853 assert(a_start, "a is null"); 7854 Node* b_start = array_element_address(b, intcon(0), T_SHORT); 7855 assert(b_start, "b is null"); 7856 Node* kyberAddPoly_2 = make_runtime_call(RC_LEAF|RC_NO_FP, 7857 OptoRuntime::kyberAddPoly_2_Type(), 7858 stubAddr, stubName, TypePtr::BOTTOM, 7859 result_start, a_start, b_start); 7860 // return an int 7861 Node* retvalue = _gvn.transform(new ProjNode(kyberAddPoly_2, TypeFunc::Parms)); 7862 set_result(retvalue); 7863 return true; 7864 } 7865 7866 //------------------------------inline_kyberAddPoly_3 7867 bool LibraryCallKit::inline_kyberAddPoly_3() { 7868 address stubAddr; 7869 const char *stubName; 7870 assert(UseKyberIntrinsics, "need Kyber intrinsics support"); 7871 assert(callee()->signature()->size() == 4, "kyberAddPoly_3 has 4 parameters"); 7872 7873 stubAddr = StubRoutines::kyberAddPoly_3(); 7874 stubName = "kyberAddPoly_3"; 7875 if (!stubAddr) return false; 7876 7877 Node* result = argument(0); 7878 Node* a = argument(1); 7879 Node* b = argument(2); 7880 Node* c = argument(3); 7881 7882 result = must_be_not_null(result, true); 7883 a = must_be_not_null(a, true); 7884 b = must_be_not_null(b, true); 7885 c = must_be_not_null(c, true); 7886 7887 Node* result_start = array_element_address(result, intcon(0), T_SHORT); 7888 assert(result_start, "result is null"); 7889 Node* a_start = array_element_address(a, intcon(0), T_SHORT); 7890 assert(a_start, "a is null"); 7891 Node* b_start = array_element_address(b, intcon(0), T_SHORT); 7892 assert(b_start, "b is null"); 7893 Node* c_start = array_element_address(c, intcon(0), T_SHORT); 7894 assert(c_start, "c is null"); 7895 Node* kyberAddPoly_3 = make_runtime_call(RC_LEAF|RC_NO_FP, 7896 OptoRuntime::kyberAddPoly_3_Type(), 7897 stubAddr, stubName, TypePtr::BOTTOM, 7898 result_start, a_start, b_start, c_start); 7899 // return an int 7900 Node* retvalue = _gvn.transform(new ProjNode(kyberAddPoly_3, TypeFunc::Parms)); 7901 set_result(retvalue); 7902 return true; 7903 } 7904 7905 //------------------------------inline_kyber12To16 7906 bool LibraryCallKit::inline_kyber12To16() { 7907 address stubAddr; 7908 const char *stubName; 7909 assert(UseKyberIntrinsics, "need Kyber intrinsics support"); 7910 assert(callee()->signature()->size() == 4, "kyber12To16 has 4 parameters"); 7911 7912 stubAddr = StubRoutines::kyber12To16(); 7913 stubName = "kyber12To16"; 7914 if (!stubAddr) return false; 7915 7916 Node* condensed = argument(0); 7917 Node* condensedOffs = argument(1); 7918 Node* parsed = argument(2); 7919 Node* parsedLength = argument(3); 7920 7921 condensed = must_be_not_null(condensed, true); 7922 parsed = must_be_not_null(parsed, true); 7923 7924 Node* condensed_start = array_element_address(condensed, intcon(0), T_BYTE); 7925 assert(condensed_start, "condensed is null"); 7926 Node* parsed_start = array_element_address(parsed, intcon(0), T_SHORT); 7927 assert(parsed_start, "parsed is null"); 7928 Node* kyber12To16 = make_runtime_call(RC_LEAF|RC_NO_FP, 7929 OptoRuntime::kyber12To16_Type(), 7930 stubAddr, stubName, TypePtr::BOTTOM, 7931 condensed_start, condensedOffs, parsed_start, parsedLength); 7932 // return an int 7933 Node* retvalue = _gvn.transform(new ProjNode(kyber12To16, TypeFunc::Parms)); 7934 set_result(retvalue); 7935 return true; 7936 7937 } 7938 7939 //------------------------------inline_kyberBarrettReduce 7940 bool LibraryCallKit::inline_kyberBarrettReduce() { 7941 address stubAddr; 7942 const char *stubName; 7943 assert(UseKyberIntrinsics, "need Kyber intrinsics support"); 7944 assert(callee()->signature()->size() == 1, "kyberBarrettReduce has 1 parameters"); 7945 7946 stubAddr = StubRoutines::kyberBarrettReduce(); 7947 stubName = "kyberBarrettReduce"; 7948 if (!stubAddr) return false; 7949 7950 Node* coeffs = argument(0); 7951 7952 coeffs = must_be_not_null(coeffs, true); 7953 7954 Node* coeffs_start = array_element_address(coeffs, intcon(0), T_SHORT); 7955 assert(coeffs_start, "coeffs is null"); 7956 Node* kyberBarrettReduce = make_runtime_call(RC_LEAF|RC_NO_FP, 7957 OptoRuntime::kyberBarrettReduce_Type(), 7958 stubAddr, stubName, TypePtr::BOTTOM, 7959 coeffs_start); 7960 // return an int 7961 Node* retvalue = _gvn.transform(new ProjNode(kyberBarrettReduce, TypeFunc::Parms)); 7962 set_result(retvalue); 7963 return true; 7964 } 7965 7966 //------------------------------inline_dilithiumAlmostNtt 7967 bool LibraryCallKit::inline_dilithiumAlmostNtt() { 7968 address stubAddr; 7969 const char *stubName; 7970 assert(UseDilithiumIntrinsics, "need Dilithium intrinsics support"); 7971 assert(callee()->signature()->size() == 2, "dilithiumAlmostNtt has 2 parameters"); 7972 7973 stubAddr = StubRoutines::dilithiumAlmostNtt(); 7974 stubName = "dilithiumAlmostNtt"; 7975 if (!stubAddr) return false; 7976 7977 Node* coeffs = argument(0); 7978 Node* ntt_zetas = argument(1); 7979 7980 coeffs = must_be_not_null(coeffs, true); 7981 ntt_zetas = must_be_not_null(ntt_zetas, true); 7982 7983 Node* coeffs_start = array_element_address(coeffs, intcon(0), T_INT); 7984 assert(coeffs_start, "coeffs is null"); 7985 Node* ntt_zetas_start = array_element_address(ntt_zetas, intcon(0), T_INT); 7986 assert(ntt_zetas_start, "ntt_zetas is null"); 7987 Node* dilithiumAlmostNtt = make_runtime_call(RC_LEAF|RC_NO_FP, 7988 OptoRuntime::dilithiumAlmostNtt_Type(), 7989 stubAddr, stubName, TypePtr::BOTTOM, 7990 coeffs_start, ntt_zetas_start); 7991 // return an int 7992 Node* retvalue = _gvn.transform(new ProjNode(dilithiumAlmostNtt, TypeFunc::Parms)); 7993 set_result(retvalue); 7994 return true; 7995 } 7996 7997 //------------------------------inline_dilithiumAlmostInverseNtt 7998 bool LibraryCallKit::inline_dilithiumAlmostInverseNtt() { 7999 address stubAddr; 8000 const char *stubName; 8001 assert(UseDilithiumIntrinsics, "need Dilithium intrinsics support"); 8002 assert(callee()->signature()->size() == 2, "dilithiumAlmostInverseNtt has 2 parameters"); 8003 8004 stubAddr = StubRoutines::dilithiumAlmostInverseNtt(); 8005 stubName = "dilithiumAlmostInverseNtt"; 8006 if (!stubAddr) return false; 8007 8008 Node* coeffs = argument(0); 8009 Node* zetas = argument(1); 8010 8011 coeffs = must_be_not_null(coeffs, true); 8012 zetas = must_be_not_null(zetas, true); 8013 8014 Node* coeffs_start = array_element_address(coeffs, intcon(0), T_INT); 8015 assert(coeffs_start, "coeffs is null"); 8016 Node* zetas_start = array_element_address(zetas, intcon(0), T_INT); 8017 assert(zetas_start, "inverseNtt_zetas is null"); 8018 Node* dilithiumAlmostInverseNtt = make_runtime_call(RC_LEAF|RC_NO_FP, 8019 OptoRuntime::dilithiumAlmostInverseNtt_Type(), 8020 stubAddr, stubName, TypePtr::BOTTOM, 8021 coeffs_start, zetas_start); 8022 // return an int 8023 Node* retvalue = _gvn.transform(new ProjNode(dilithiumAlmostInverseNtt, TypeFunc::Parms)); 8024 set_result(retvalue); 8025 return true; 8026 } 8027 8028 //------------------------------inline_dilithiumNttMult 8029 bool LibraryCallKit::inline_dilithiumNttMult() { 8030 address stubAddr; 8031 const char *stubName; 8032 assert(UseDilithiumIntrinsics, "need Dilithium intrinsics support"); 8033 assert(callee()->signature()->size() == 3, "dilithiumNttMult has 3 parameters"); 8034 8035 stubAddr = StubRoutines::dilithiumNttMult(); 8036 stubName = "dilithiumNttMult"; 8037 if (!stubAddr) return false; 8038 8039 Node* result = argument(0); 8040 Node* ntta = argument(1); 8041 Node* nttb = argument(2); 8042 Node* zetas = argument(3); 8043 8044 result = must_be_not_null(result, true); 8045 ntta = must_be_not_null(ntta, true); 8046 nttb = must_be_not_null(nttb, true); 8047 zetas = must_be_not_null(zetas, true); 8048 8049 Node* result_start = array_element_address(result, intcon(0), T_INT); 8050 assert(result_start, "result is null"); 8051 Node* ntta_start = array_element_address(ntta, intcon(0), T_INT); 8052 assert(ntta_start, "ntta is null"); 8053 Node* nttb_start = array_element_address(nttb, intcon(0), T_INT); 8054 assert(nttb_start, "nttb is null"); 8055 Node* dilithiumNttMult = make_runtime_call(RC_LEAF|RC_NO_FP, 8056 OptoRuntime::dilithiumNttMult_Type(), 8057 stubAddr, stubName, TypePtr::BOTTOM, 8058 result_start, ntta_start, nttb_start); 8059 8060 // return an int 8061 Node* retvalue = _gvn.transform(new ProjNode(dilithiumNttMult, TypeFunc::Parms)); 8062 set_result(retvalue); 8063 8064 return true; 8065 } 8066 8067 //------------------------------inline_dilithiumMontMulByConstant 8068 bool LibraryCallKit::inline_dilithiumMontMulByConstant() { 8069 address stubAddr; 8070 const char *stubName; 8071 assert(UseDilithiumIntrinsics, "need Dilithium intrinsics support"); 8072 assert(callee()->signature()->size() == 2, "dilithiumMontMulByConstant has 2 parameters"); 8073 8074 stubAddr = StubRoutines::dilithiumMontMulByConstant(); 8075 stubName = "dilithiumMontMulByConstant"; 8076 if (!stubAddr) return false; 8077 8078 Node* coeffs = argument(0); 8079 Node* constant = argument(1); 8080 8081 coeffs = must_be_not_null(coeffs, true); 8082 8083 Node* coeffs_start = array_element_address(coeffs, intcon(0), T_INT); 8084 assert(coeffs_start, "coeffs is null"); 8085 Node* dilithiumMontMulByConstant = make_runtime_call(RC_LEAF|RC_NO_FP, 8086 OptoRuntime::dilithiumMontMulByConstant_Type(), 8087 stubAddr, stubName, TypePtr::BOTTOM, 8088 coeffs_start, constant); 8089 8090 // return an int 8091 Node* retvalue = _gvn.transform(new ProjNode(dilithiumMontMulByConstant, TypeFunc::Parms)); 8092 set_result(retvalue); 8093 return true; 8094 } 8095 8096 8097 //------------------------------inline_dilithiumDecomposePoly 8098 bool LibraryCallKit::inline_dilithiumDecomposePoly() { 8099 address stubAddr; 8100 const char *stubName; 8101 assert(UseDilithiumIntrinsics, "need Dilithium intrinsics support"); 8102 assert(callee()->signature()->size() == 5, "dilithiumDecomposePoly has 5 parameters"); 8103 8104 stubAddr = StubRoutines::dilithiumDecomposePoly(); 8105 stubName = "dilithiumDecomposePoly"; 8106 if (!stubAddr) return false; 8107 8108 Node* input = argument(0); 8109 Node* lowPart = argument(1); 8110 Node* highPart = argument(2); 8111 Node* twoGamma2 = argument(3); 8112 Node* multiplier = argument(4); 8113 8114 input = must_be_not_null(input, true); 8115 lowPart = must_be_not_null(lowPart, true); 8116 highPart = must_be_not_null(highPart, true); 8117 8118 Node* input_start = array_element_address(input, intcon(0), T_INT); 8119 assert(input_start, "input is null"); 8120 Node* lowPart_start = array_element_address(lowPart, intcon(0), T_INT); 8121 assert(lowPart_start, "lowPart is null"); 8122 Node* highPart_start = array_element_address(highPart, intcon(0), T_INT); 8123 assert(highPart_start, "highPart is null"); 8124 8125 Node* dilithiumDecomposePoly = make_runtime_call(RC_LEAF|RC_NO_FP, 8126 OptoRuntime::dilithiumDecomposePoly_Type(), 8127 stubAddr, stubName, TypePtr::BOTTOM, 8128 input_start, lowPart_start, highPart_start, 8129 twoGamma2, multiplier); 8130 8131 // return an int 8132 Node* retvalue = _gvn.transform(new ProjNode(dilithiumDecomposePoly, TypeFunc::Parms)); 8133 set_result(retvalue); 8134 return true; 8135 } 8136 8137 bool LibraryCallKit::inline_base64_encodeBlock() { 8138 address stubAddr; 8139 const char *stubName; 8140 assert(UseBASE64Intrinsics, "need Base64 intrinsics support"); 8141 assert(callee()->signature()->size() == 6, "base64_encodeBlock has 6 parameters"); 8142 stubAddr = StubRoutines::base64_encodeBlock(); 8143 stubName = "encodeBlock"; 8144 8145 if (!stubAddr) return false; 8146 Node* base64obj = argument(0); 8147 Node* src = argument(1); 8148 Node* offset = argument(2); 8149 Node* len = argument(3); 8150 Node* dest = argument(4); 8151 Node* dp = argument(5); 8152 Node* isURL = argument(6); 8153 8154 src = must_be_not_null(src, true); 8155 dest = must_be_not_null(dest, true); 8156 8157 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 8158 assert(src_start, "source array is null"); 8159 Node* dest_start = array_element_address(dest, intcon(0), T_BYTE); 8160 assert(dest_start, "destination array is null"); 8161 8162 Node* base64 = make_runtime_call(RC_LEAF, 8163 OptoRuntime::base64_encodeBlock_Type(), 8164 stubAddr, stubName, TypePtr::BOTTOM, 8165 src_start, offset, len, dest_start, dp, isURL); 8166 return true; 8167 } 8168 8169 bool LibraryCallKit::inline_base64_decodeBlock() { 8170 address stubAddr; 8171 const char *stubName; 8172 assert(UseBASE64Intrinsics, "need Base64 intrinsics support"); 8173 assert(callee()->signature()->size() == 7, "base64_decodeBlock has 7 parameters"); 8174 stubAddr = StubRoutines::base64_decodeBlock(); 8175 stubName = "decodeBlock"; 8176 8177 if (!stubAddr) return false; 8178 Node* base64obj = argument(0); 8179 Node* src = argument(1); 8180 Node* src_offset = argument(2); 8181 Node* len = argument(3); 8182 Node* dest = argument(4); 8183 Node* dest_offset = argument(5); 8184 Node* isURL = argument(6); 8185 Node* isMIME = argument(7); 8186 8187 src = must_be_not_null(src, true); 8188 dest = must_be_not_null(dest, true); 8189 8190 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 8191 assert(src_start, "source array is null"); 8192 Node* dest_start = array_element_address(dest, intcon(0), T_BYTE); 8193 assert(dest_start, "destination array is null"); 8194 8195 Node* call = make_runtime_call(RC_LEAF, 8196 OptoRuntime::base64_decodeBlock_Type(), 8197 stubAddr, stubName, TypePtr::BOTTOM, 8198 src_start, src_offset, len, dest_start, dest_offset, isURL, isMIME); 8199 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 8200 set_result(result); 8201 return true; 8202 } 8203 8204 bool LibraryCallKit::inline_poly1305_processBlocks() { 8205 address stubAddr; 8206 const char *stubName; 8207 assert(UsePoly1305Intrinsics, "need Poly intrinsics support"); 8208 assert(callee()->signature()->size() == 5, "poly1305_processBlocks has %d parameters", callee()->signature()->size()); 8209 stubAddr = StubRoutines::poly1305_processBlocks(); 8210 stubName = "poly1305_processBlocks"; 8211 8212 if (!stubAddr) return false; 8213 null_check_receiver(); // null-check receiver 8214 if (stopped()) return true; 8215 8216 Node* input = argument(1); 8217 Node* input_offset = argument(2); 8218 Node* len = argument(3); 8219 Node* alimbs = argument(4); 8220 Node* rlimbs = argument(5); 8221 8222 input = must_be_not_null(input, true); 8223 alimbs = must_be_not_null(alimbs, true); 8224 rlimbs = must_be_not_null(rlimbs, true); 8225 8226 Node* input_start = array_element_address(input, input_offset, T_BYTE); 8227 assert(input_start, "input array is null"); 8228 Node* acc_start = array_element_address(alimbs, intcon(0), T_LONG); 8229 assert(acc_start, "acc array is null"); 8230 Node* r_start = array_element_address(rlimbs, intcon(0), T_LONG); 8231 assert(r_start, "r array is null"); 8232 8233 Node* call = make_runtime_call(RC_LEAF | RC_NO_FP, 8234 OptoRuntime::poly1305_processBlocks_Type(), 8235 stubAddr, stubName, TypePtr::BOTTOM, 8236 input_start, len, acc_start, r_start); 8237 return true; 8238 } 8239 8240 bool LibraryCallKit::inline_intpoly_montgomeryMult_P256() { 8241 address stubAddr; 8242 const char *stubName; 8243 assert(UseIntPolyIntrinsics, "need intpoly intrinsics support"); 8244 assert(callee()->signature()->size() == 3, "intpoly_montgomeryMult_P256 has %d parameters", callee()->signature()->size()); 8245 stubAddr = StubRoutines::intpoly_montgomeryMult_P256(); 8246 stubName = "intpoly_montgomeryMult_P256"; 8247 8248 if (!stubAddr) return false; 8249 null_check_receiver(); // null-check receiver 8250 if (stopped()) return true; 8251 8252 Node* a = argument(1); 8253 Node* b = argument(2); 8254 Node* r = argument(3); 8255 8256 a = must_be_not_null(a, true); 8257 b = must_be_not_null(b, true); 8258 r = must_be_not_null(r, true); 8259 8260 Node* a_start = array_element_address(a, intcon(0), T_LONG); 8261 assert(a_start, "a array is null"); 8262 Node* b_start = array_element_address(b, intcon(0), T_LONG); 8263 assert(b_start, "b array is null"); 8264 Node* r_start = array_element_address(r, intcon(0), T_LONG); 8265 assert(r_start, "r array is null"); 8266 8267 Node* call = make_runtime_call(RC_LEAF | RC_NO_FP, 8268 OptoRuntime::intpoly_montgomeryMult_P256_Type(), 8269 stubAddr, stubName, TypePtr::BOTTOM, 8270 a_start, b_start, r_start); 8271 return true; 8272 } 8273 8274 bool LibraryCallKit::inline_intpoly_assign() { 8275 assert(UseIntPolyIntrinsics, "need intpoly intrinsics support"); 8276 assert(callee()->signature()->size() == 3, "intpoly_assign has %d parameters", callee()->signature()->size()); 8277 const char *stubName = "intpoly_assign"; 8278 address stubAddr = StubRoutines::intpoly_assign(); 8279 if (!stubAddr) return false; 8280 8281 Node* set = argument(0); 8282 Node* a = argument(1); 8283 Node* b = argument(2); 8284 Node* arr_length = load_array_length(a); 8285 8286 a = must_be_not_null(a, true); 8287 b = must_be_not_null(b, true); 8288 8289 Node* a_start = array_element_address(a, intcon(0), T_LONG); 8290 assert(a_start, "a array is null"); 8291 Node* b_start = array_element_address(b, intcon(0), T_LONG); 8292 assert(b_start, "b array is null"); 8293 8294 Node* call = make_runtime_call(RC_LEAF | RC_NO_FP, 8295 OptoRuntime::intpoly_assign_Type(), 8296 stubAddr, stubName, TypePtr::BOTTOM, 8297 set, a_start, b_start, arr_length); 8298 return true; 8299 } 8300 8301 //------------------------------inline_digestBase_implCompress----------------------- 8302 // 8303 // Calculate MD5 for single-block byte[] array. 8304 // void com.sun.security.provider.MD5.implCompress(byte[] buf, int ofs) 8305 // 8306 // Calculate SHA (i.e., SHA-1) for single-block byte[] array. 8307 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs) 8308 // 8309 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array. 8310 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs) 8311 // 8312 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array. 8313 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs) 8314 // 8315 // Calculate SHA3 (i.e., SHA3-224 or SHA3-256 or SHA3-384 or SHA3-512) for single-block byte[] array. 8316 // void com.sun.security.provider.SHA3.implCompress(byte[] buf, int ofs) 8317 // 8318 bool LibraryCallKit::inline_digestBase_implCompress(vmIntrinsics::ID id) { 8319 assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters"); 8320 8321 Node* digestBase_obj = argument(0); 8322 Node* src = argument(1); // type oop 8323 Node* ofs = argument(2); // type int 8324 8325 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 8326 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 8327 // failed array check 8328 return false; 8329 } 8330 // Figure out the size and type of the elements we will be copying. 8331 BasicType src_elem = src_type->elem()->array_element_basic_type(); 8332 if (src_elem != T_BYTE) { 8333 return false; 8334 } 8335 // 'src_start' points to src array + offset 8336 src = must_be_not_null(src, true); 8337 Node* src_start = array_element_address(src, ofs, src_elem); 8338 Node* state = nullptr; 8339 Node* block_size = nullptr; 8340 address stubAddr; 8341 const char *stubName; 8342 8343 switch(id) { 8344 case vmIntrinsics::_md5_implCompress: 8345 assert(UseMD5Intrinsics, "need MD5 instruction support"); 8346 state = get_state_from_digest_object(digestBase_obj, T_INT); 8347 stubAddr = StubRoutines::md5_implCompress(); 8348 stubName = "md5_implCompress"; 8349 break; 8350 case vmIntrinsics::_sha_implCompress: 8351 assert(UseSHA1Intrinsics, "need SHA1 instruction support"); 8352 state = get_state_from_digest_object(digestBase_obj, T_INT); 8353 stubAddr = StubRoutines::sha1_implCompress(); 8354 stubName = "sha1_implCompress"; 8355 break; 8356 case vmIntrinsics::_sha2_implCompress: 8357 assert(UseSHA256Intrinsics, "need SHA256 instruction support"); 8358 state = get_state_from_digest_object(digestBase_obj, T_INT); 8359 stubAddr = StubRoutines::sha256_implCompress(); 8360 stubName = "sha256_implCompress"; 8361 break; 8362 case vmIntrinsics::_sha5_implCompress: 8363 assert(UseSHA512Intrinsics, "need SHA512 instruction support"); 8364 state = get_state_from_digest_object(digestBase_obj, T_LONG); 8365 stubAddr = StubRoutines::sha512_implCompress(); 8366 stubName = "sha512_implCompress"; 8367 break; 8368 case vmIntrinsics::_sha3_implCompress: 8369 assert(UseSHA3Intrinsics, "need SHA3 instruction support"); 8370 state = get_state_from_digest_object(digestBase_obj, T_LONG); 8371 stubAddr = StubRoutines::sha3_implCompress(); 8372 stubName = "sha3_implCompress"; 8373 block_size = get_block_size_from_digest_object(digestBase_obj); 8374 if (block_size == nullptr) return false; 8375 break; 8376 default: 8377 fatal_unexpected_iid(id); 8378 return false; 8379 } 8380 if (state == nullptr) return false; 8381 8382 assert(stubAddr != nullptr, "Stub %s is not generated", stubName); 8383 if (stubAddr == nullptr) return false; 8384 8385 // Call the stub. 8386 Node* call; 8387 if (block_size == nullptr) { 8388 call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(false), 8389 stubAddr, stubName, TypePtr::BOTTOM, 8390 src_start, state); 8391 } else { 8392 call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(true), 8393 stubAddr, stubName, TypePtr::BOTTOM, 8394 src_start, state, block_size); 8395 } 8396 8397 return true; 8398 } 8399 8400 //------------------------------inline_double_keccak 8401 bool LibraryCallKit::inline_double_keccak() { 8402 address stubAddr; 8403 const char *stubName; 8404 assert(UseSHA3Intrinsics, "need SHA3 intrinsics support"); 8405 assert(callee()->signature()->size() == 2, "double_keccak has 2 parameters"); 8406 8407 stubAddr = StubRoutines::double_keccak(); 8408 stubName = "double_keccak"; 8409 if (!stubAddr) return false; 8410 8411 Node* status0 = argument(0); 8412 Node* status1 = argument(1); 8413 8414 status0 = must_be_not_null(status0, true); 8415 status1 = must_be_not_null(status1, true); 8416 8417 Node* status0_start = array_element_address(status0, intcon(0), T_LONG); 8418 assert(status0_start, "status0 is null"); 8419 Node* status1_start = array_element_address(status1, intcon(0), T_LONG); 8420 assert(status1_start, "status1 is null"); 8421 Node* double_keccak = make_runtime_call(RC_LEAF|RC_NO_FP, 8422 OptoRuntime::double_keccak_Type(), 8423 stubAddr, stubName, TypePtr::BOTTOM, 8424 status0_start, status1_start); 8425 // return an int 8426 Node* retvalue = _gvn.transform(new ProjNode(double_keccak, TypeFunc::Parms)); 8427 set_result(retvalue); 8428 return true; 8429 } 8430 8431 8432 //------------------------------inline_digestBase_implCompressMB----------------------- 8433 // 8434 // Calculate MD5/SHA/SHA2/SHA5/SHA3 for multi-block byte[] array. 8435 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit) 8436 // 8437 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) { 8438 assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics || UseSHA3Intrinsics, 8439 "need MD5/SHA1/SHA256/SHA512/SHA3 instruction support"); 8440 assert((uint)predicate < 5, "sanity"); 8441 assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters"); 8442 8443 Node* digestBase_obj = argument(0); // The receiver was checked for null already. 8444 Node* src = argument(1); // byte[] array 8445 Node* ofs = argument(2); // type int 8446 Node* limit = argument(3); // type int 8447 8448 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 8449 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 8450 // failed array check 8451 return false; 8452 } 8453 // Figure out the size and type of the elements we will be copying. 8454 BasicType src_elem = src_type->elem()->array_element_basic_type(); 8455 if (src_elem != T_BYTE) { 8456 return false; 8457 } 8458 // 'src_start' points to src array + offset 8459 src = must_be_not_null(src, false); 8460 Node* src_start = array_element_address(src, ofs, src_elem); 8461 8462 const char* klass_digestBase_name = nullptr; 8463 const char* stub_name = nullptr; 8464 address stub_addr = nullptr; 8465 BasicType elem_type = T_INT; 8466 8467 switch (predicate) { 8468 case 0: 8469 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_md5_implCompress)) { 8470 klass_digestBase_name = "sun/security/provider/MD5"; 8471 stub_name = "md5_implCompressMB"; 8472 stub_addr = StubRoutines::md5_implCompressMB(); 8473 } 8474 break; 8475 case 1: 8476 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha_implCompress)) { 8477 klass_digestBase_name = "sun/security/provider/SHA"; 8478 stub_name = "sha1_implCompressMB"; 8479 stub_addr = StubRoutines::sha1_implCompressMB(); 8480 } 8481 break; 8482 case 2: 8483 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha2_implCompress)) { 8484 klass_digestBase_name = "sun/security/provider/SHA2"; 8485 stub_name = "sha256_implCompressMB"; 8486 stub_addr = StubRoutines::sha256_implCompressMB(); 8487 } 8488 break; 8489 case 3: 8490 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha5_implCompress)) { 8491 klass_digestBase_name = "sun/security/provider/SHA5"; 8492 stub_name = "sha512_implCompressMB"; 8493 stub_addr = StubRoutines::sha512_implCompressMB(); 8494 elem_type = T_LONG; 8495 } 8496 break; 8497 case 4: 8498 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha3_implCompress)) { 8499 klass_digestBase_name = "sun/security/provider/SHA3"; 8500 stub_name = "sha3_implCompressMB"; 8501 stub_addr = StubRoutines::sha3_implCompressMB(); 8502 elem_type = T_LONG; 8503 } 8504 break; 8505 default: 8506 fatal("unknown DigestBase intrinsic predicate: %d", predicate); 8507 } 8508 if (klass_digestBase_name != nullptr) { 8509 assert(stub_addr != nullptr, "Stub is generated"); 8510 if (stub_addr == nullptr) return false; 8511 8512 // get DigestBase klass to lookup for SHA klass 8513 const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr(); 8514 assert(tinst != nullptr, "digestBase_obj is not instance???"); 8515 assert(tinst->is_loaded(), "DigestBase is not loaded"); 8516 8517 ciKlass* klass_digestBase = tinst->instance_klass()->find_klass(ciSymbol::make(klass_digestBase_name)); 8518 assert(klass_digestBase->is_loaded(), "predicate checks that this class is loaded"); 8519 ciInstanceKlass* instklass_digestBase = klass_digestBase->as_instance_klass(); 8520 return inline_digestBase_implCompressMB(digestBase_obj, instklass_digestBase, elem_type, stub_addr, stub_name, src_start, ofs, limit); 8521 } 8522 return false; 8523 } 8524 8525 //------------------------------inline_digestBase_implCompressMB----------------------- 8526 bool LibraryCallKit::inline_digestBase_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_digestBase, 8527 BasicType elem_type, address stubAddr, const char *stubName, 8528 Node* src_start, Node* ofs, Node* limit) { 8529 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_digestBase); 8530 const TypeOopPtr* xtype = aklass->cast_to_exactness(false)->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 8531 Node* digest_obj = new CheckCastPPNode(control(), digestBase_obj, xtype); 8532 digest_obj = _gvn.transform(digest_obj); 8533 8534 Node* state = get_state_from_digest_object(digest_obj, elem_type); 8535 if (state == nullptr) return false; 8536 8537 Node* block_size = nullptr; 8538 if (strcmp("sha3_implCompressMB", stubName) == 0) { 8539 block_size = get_block_size_from_digest_object(digest_obj); 8540 if (block_size == nullptr) return false; 8541 } 8542 8543 // Call the stub. 8544 Node* call; 8545 if (block_size == nullptr) { 8546 call = make_runtime_call(RC_LEAF|RC_NO_FP, 8547 OptoRuntime::digestBase_implCompressMB_Type(false), 8548 stubAddr, stubName, TypePtr::BOTTOM, 8549 src_start, state, ofs, limit); 8550 } else { 8551 call = make_runtime_call(RC_LEAF|RC_NO_FP, 8552 OptoRuntime::digestBase_implCompressMB_Type(true), 8553 stubAddr, stubName, TypePtr::BOTTOM, 8554 src_start, state, block_size, ofs, limit); 8555 } 8556 8557 // return ofs (int) 8558 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 8559 set_result(result); 8560 8561 return true; 8562 } 8563 8564 //------------------------------inline_galoisCounterMode_AESCrypt----------------------- 8565 bool LibraryCallKit::inline_galoisCounterMode_AESCrypt() { 8566 assert(UseAES, "need AES instruction support"); 8567 address stubAddr = nullptr; 8568 const char *stubName = nullptr; 8569 stubAddr = StubRoutines::galoisCounterMode_AESCrypt(); 8570 stubName = "galoisCounterMode_AESCrypt"; 8571 8572 if (stubAddr == nullptr) return false; 8573 8574 Node* in = argument(0); 8575 Node* inOfs = argument(1); 8576 Node* len = argument(2); 8577 Node* ct = argument(3); 8578 Node* ctOfs = argument(4); 8579 Node* out = argument(5); 8580 Node* outOfs = argument(6); 8581 Node* gctr_object = argument(7); 8582 Node* ghash_object = argument(8); 8583 8584 // (1) in, ct and out are arrays. 8585 const TypeAryPtr* in_type = in->Value(&_gvn)->isa_aryptr(); 8586 const TypeAryPtr* ct_type = ct->Value(&_gvn)->isa_aryptr(); 8587 const TypeAryPtr* out_type = out->Value(&_gvn)->isa_aryptr(); 8588 assert( in_type != nullptr && in_type->elem() != Type::BOTTOM && 8589 ct_type != nullptr && ct_type->elem() != Type::BOTTOM && 8590 out_type != nullptr && out_type->elem() != Type::BOTTOM, "args are strange"); 8591 8592 // checks are the responsibility of the caller 8593 Node* in_start = in; 8594 Node* ct_start = ct; 8595 Node* out_start = out; 8596 if (inOfs != nullptr || ctOfs != nullptr || outOfs != nullptr) { 8597 assert(inOfs != nullptr && ctOfs != nullptr && outOfs != nullptr, ""); 8598 in_start = array_element_address(in, inOfs, T_BYTE); 8599 ct_start = array_element_address(ct, ctOfs, T_BYTE); 8600 out_start = array_element_address(out, outOfs, T_BYTE); 8601 } 8602 8603 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 8604 // (because of the predicated logic executed earlier). 8605 // so we cast it here safely. 8606 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 8607 Node* embeddedCipherObj = load_field_from_object(gctr_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 8608 Node* counter = load_field_from_object(gctr_object, "counter", "[B"); 8609 Node* subkeyHtbl = load_field_from_object(ghash_object, "subkeyHtbl", "[J"); 8610 Node* state = load_field_from_object(ghash_object, "state", "[J"); 8611 8612 if (embeddedCipherObj == nullptr || counter == nullptr || subkeyHtbl == nullptr || state == nullptr) { 8613 return false; 8614 } 8615 // cast it to what we know it will be at runtime 8616 const TypeInstPtr* tinst = _gvn.type(gctr_object)->isa_instptr(); 8617 assert(tinst != nullptr, "GCTR obj is null"); 8618 assert(tinst->is_loaded(), "GCTR obj is not loaded"); 8619 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 8620 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 8621 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 8622 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 8623 const TypeOopPtr* xtype = aklass->as_instance_type(); 8624 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 8625 aescrypt_object = _gvn.transform(aescrypt_object); 8626 // we need to get the start of the aescrypt_object's expanded key array 8627 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 8628 if (k_start == nullptr) return false; 8629 // similarly, get the start address of the r vector 8630 Node* cnt_start = array_element_address(counter, intcon(0), T_BYTE); 8631 Node* state_start = array_element_address(state, intcon(0), T_LONG); 8632 Node* subkeyHtbl_start = array_element_address(subkeyHtbl, intcon(0), T_LONG); 8633 8634 8635 // Call the stub, passing params 8636 Node* gcmCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 8637 OptoRuntime::galoisCounterMode_aescrypt_Type(), 8638 stubAddr, stubName, TypePtr::BOTTOM, 8639 in_start, len, ct_start, out_start, k_start, state_start, subkeyHtbl_start, cnt_start); 8640 8641 // return cipher length (int) 8642 Node* retvalue = _gvn.transform(new ProjNode(gcmCrypt, TypeFunc::Parms)); 8643 set_result(retvalue); 8644 8645 return true; 8646 } 8647 8648 //----------------------------inline_galoisCounterMode_AESCrypt_predicate---------------------------- 8649 // Return node representing slow path of predicate check. 8650 // the pseudo code we want to emulate with this predicate is: 8651 // for encryption: 8652 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 8653 // for decryption: 8654 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 8655 // note cipher==plain is more conservative than the original java code but that's OK 8656 // 8657 8658 Node* LibraryCallKit::inline_galoisCounterMode_AESCrypt_predicate() { 8659 // The receiver was checked for null already. 8660 Node* objGCTR = argument(7); 8661 // Load embeddedCipher field of GCTR object. 8662 Node* embeddedCipherObj = load_field_from_object(objGCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 8663 assert(embeddedCipherObj != nullptr, "embeddedCipherObj is null"); 8664 8665 // get AESCrypt klass for instanceOf check 8666 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 8667 // will have same classloader as CipherBlockChaining object 8668 const TypeInstPtr* tinst = _gvn.type(objGCTR)->isa_instptr(); 8669 assert(tinst != nullptr, "GCTR obj is null"); 8670 assert(tinst->is_loaded(), "GCTR obj is not loaded"); 8671 8672 // we want to do an instanceof comparison against the AESCrypt class 8673 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 8674 if (!klass_AESCrypt->is_loaded()) { 8675 // if AESCrypt is not even loaded, we never take the intrinsic fast path 8676 Node* ctrl = control(); 8677 set_control(top()); // no regular fast path 8678 return ctrl; 8679 } 8680 8681 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 8682 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 8683 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 8684 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 8685 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 8686 8687 return instof_false; // even if it is null 8688 } 8689 8690 //------------------------------get_state_from_digest_object----------------------- 8691 Node * LibraryCallKit::get_state_from_digest_object(Node *digest_object, BasicType elem_type) { 8692 const char* state_type; 8693 switch (elem_type) { 8694 case T_BYTE: state_type = "[B"; break; 8695 case T_INT: state_type = "[I"; break; 8696 case T_LONG: state_type = "[J"; break; 8697 default: ShouldNotReachHere(); 8698 } 8699 Node* digest_state = load_field_from_object(digest_object, "state", state_type); 8700 assert (digest_state != nullptr, "wrong version of sun.security.provider.MD5/SHA/SHA2/SHA5/SHA3"); 8701 if (digest_state == nullptr) return (Node *) nullptr; 8702 8703 // now have the array, need to get the start address of the state array 8704 Node* state = array_element_address(digest_state, intcon(0), elem_type); 8705 return state; 8706 } 8707 8708 //------------------------------get_block_size_from_sha3_object---------------------------------- 8709 Node * LibraryCallKit::get_block_size_from_digest_object(Node *digest_object) { 8710 Node* block_size = load_field_from_object(digest_object, "blockSize", "I"); 8711 assert (block_size != nullptr, "sanity"); 8712 return block_size; 8713 } 8714 8715 //----------------------------inline_digestBase_implCompressMB_predicate---------------------------- 8716 // Return node representing slow path of predicate check. 8717 // the pseudo code we want to emulate with this predicate is: 8718 // if (digestBaseObj instanceof MD5/SHA/SHA2/SHA5/SHA3) do_intrinsic, else do_javapath 8719 // 8720 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) { 8721 assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics || UseSHA3Intrinsics, 8722 "need MD5/SHA1/SHA256/SHA512/SHA3 instruction support"); 8723 assert((uint)predicate < 5, "sanity"); 8724 8725 // The receiver was checked for null already. 8726 Node* digestBaseObj = argument(0); 8727 8728 // get DigestBase klass for instanceOf check 8729 const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr(); 8730 assert(tinst != nullptr, "digestBaseObj is null"); 8731 assert(tinst->is_loaded(), "DigestBase is not loaded"); 8732 8733 const char* klass_name = nullptr; 8734 switch (predicate) { 8735 case 0: 8736 if (UseMD5Intrinsics) { 8737 // we want to do an instanceof comparison against the MD5 class 8738 klass_name = "sun/security/provider/MD5"; 8739 } 8740 break; 8741 case 1: 8742 if (UseSHA1Intrinsics) { 8743 // we want to do an instanceof comparison against the SHA class 8744 klass_name = "sun/security/provider/SHA"; 8745 } 8746 break; 8747 case 2: 8748 if (UseSHA256Intrinsics) { 8749 // we want to do an instanceof comparison against the SHA2 class 8750 klass_name = "sun/security/provider/SHA2"; 8751 } 8752 break; 8753 case 3: 8754 if (UseSHA512Intrinsics) { 8755 // we want to do an instanceof comparison against the SHA5 class 8756 klass_name = "sun/security/provider/SHA5"; 8757 } 8758 break; 8759 case 4: 8760 if (UseSHA3Intrinsics) { 8761 // we want to do an instanceof comparison against the SHA3 class 8762 klass_name = "sun/security/provider/SHA3"; 8763 } 8764 break; 8765 default: 8766 fatal("unknown SHA intrinsic predicate: %d", predicate); 8767 } 8768 8769 ciKlass* klass = nullptr; 8770 if (klass_name != nullptr) { 8771 klass = tinst->instance_klass()->find_klass(ciSymbol::make(klass_name)); 8772 } 8773 if ((klass == nullptr) || !klass->is_loaded()) { 8774 // if none of MD5/SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path 8775 Node* ctrl = control(); 8776 set_control(top()); // no intrinsic path 8777 return ctrl; 8778 } 8779 ciInstanceKlass* instklass = klass->as_instance_klass(); 8780 8781 Node* instof = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass))); 8782 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 8783 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 8784 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 8785 8786 return instof_false; // even if it is null 8787 } 8788 8789 //-------------inline_fma----------------------------------- 8790 bool LibraryCallKit::inline_fma(vmIntrinsics::ID id) { 8791 Node *a = nullptr; 8792 Node *b = nullptr; 8793 Node *c = nullptr; 8794 Node* result = nullptr; 8795 switch (id) { 8796 case vmIntrinsics::_fmaD: 8797 assert(callee()->signature()->size() == 6, "fma has 3 parameters of size 2 each."); 8798 // no receiver since it is static method 8799 a = argument(0); 8800 b = argument(2); 8801 c = argument(4); 8802 result = _gvn.transform(new FmaDNode(a, b, c)); 8803 break; 8804 case vmIntrinsics::_fmaF: 8805 assert(callee()->signature()->size() == 3, "fma has 3 parameters of size 1 each."); 8806 a = argument(0); 8807 b = argument(1); 8808 c = argument(2); 8809 result = _gvn.transform(new FmaFNode(a, b, c)); 8810 break; 8811 default: 8812 fatal_unexpected_iid(id); break; 8813 } 8814 set_result(result); 8815 return true; 8816 } 8817 8818 bool LibraryCallKit::inline_character_compare(vmIntrinsics::ID id) { 8819 // argument(0) is receiver 8820 Node* codePoint = argument(1); 8821 Node* n = nullptr; 8822 8823 switch (id) { 8824 case vmIntrinsics::_isDigit : 8825 n = new DigitNode(control(), codePoint); 8826 break; 8827 case vmIntrinsics::_isLowerCase : 8828 n = new LowerCaseNode(control(), codePoint); 8829 break; 8830 case vmIntrinsics::_isUpperCase : 8831 n = new UpperCaseNode(control(), codePoint); 8832 break; 8833 case vmIntrinsics::_isWhitespace : 8834 n = new WhitespaceNode(control(), codePoint); 8835 break; 8836 default: 8837 fatal_unexpected_iid(id); 8838 } 8839 8840 set_result(_gvn.transform(n)); 8841 return true; 8842 } 8843 8844 bool LibraryCallKit::inline_profileBoolean() { 8845 Node* counts = argument(1); 8846 const TypeAryPtr* ary = nullptr; 8847 ciArray* aobj = nullptr; 8848 if (counts->is_Con() 8849 && (ary = counts->bottom_type()->isa_aryptr()) != nullptr 8850 && (aobj = ary->const_oop()->as_array()) != nullptr 8851 && (aobj->length() == 2)) { 8852 // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively. 8853 jint false_cnt = aobj->element_value(0).as_int(); 8854 jint true_cnt = aobj->element_value(1).as_int(); 8855 8856 if (C->log() != nullptr) { 8857 C->log()->elem("observe source='profileBoolean' false='%d' true='%d'", 8858 false_cnt, true_cnt); 8859 } 8860 8861 if (false_cnt + true_cnt == 0) { 8862 // According to profile, never executed. 8863 uncommon_trap_exact(Deoptimization::Reason_intrinsic, 8864 Deoptimization::Action_reinterpret); 8865 return true; 8866 } 8867 8868 // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt) 8869 // is a number of each value occurrences. 8870 Node* result = argument(0); 8871 if (false_cnt == 0 || true_cnt == 0) { 8872 // According to profile, one value has been never seen. 8873 int expected_val = (false_cnt == 0) ? 1 : 0; 8874 8875 Node* cmp = _gvn.transform(new CmpINode(result, intcon(expected_val))); 8876 Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 8877 8878 IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN); 8879 Node* fast_path = _gvn.transform(new IfTrueNode(check)); 8880 Node* slow_path = _gvn.transform(new IfFalseNode(check)); 8881 8882 { // Slow path: uncommon trap for never seen value and then reexecute 8883 // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows 8884 // the value has been seen at least once. 8885 PreserveJVMState pjvms(this); 8886 PreserveReexecuteState preexecs(this); 8887 jvms()->set_should_reexecute(true); 8888 8889 set_control(slow_path); 8890 set_i_o(i_o()); 8891 8892 uncommon_trap_exact(Deoptimization::Reason_intrinsic, 8893 Deoptimization::Action_reinterpret); 8894 } 8895 // The guard for never seen value enables sharpening of the result and 8896 // returning a constant. It allows to eliminate branches on the same value 8897 // later on. 8898 set_control(fast_path); 8899 result = intcon(expected_val); 8900 } 8901 // Stop profiling. 8902 // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode. 8903 // By replacing method body with profile data (represented as ProfileBooleanNode 8904 // on IR level) we effectively disable profiling. 8905 // It enables full speed execution once optimized code is generated. 8906 Node* profile = _gvn.transform(new ProfileBooleanNode(result, false_cnt, true_cnt)); 8907 C->record_for_igvn(profile); 8908 set_result(profile); 8909 return true; 8910 } else { 8911 // Continue profiling. 8912 // Profile data isn't available at the moment. So, execute method's bytecode version. 8913 // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod 8914 // is compiled and counters aren't available since corresponding MethodHandle 8915 // isn't a compile-time constant. 8916 return false; 8917 } 8918 } 8919 8920 bool LibraryCallKit::inline_isCompileConstant() { 8921 Node* n = argument(0); 8922 set_result(n->is_Con() ? intcon(1) : intcon(0)); 8923 return true; 8924 } 8925 8926 //------------------------------- inline_getObjectSize -------------------------------------- 8927 // 8928 // Calculate the runtime size of the object/array. 8929 // native long sun.instrument.InstrumentationImpl.getObjectSize0(long nativeAgent, Object objectToSize); 8930 // 8931 bool LibraryCallKit::inline_getObjectSize() { 8932 Node* obj = argument(3); 8933 Node* klass_node = load_object_klass(obj); 8934 8935 jint layout_con = Klass::_lh_neutral_value; 8936 Node* layout_val = get_layout_helper(klass_node, layout_con); 8937 int layout_is_con = (layout_val == nullptr); 8938 8939 if (layout_is_con) { 8940 // Layout helper is constant, can figure out things at compile time. 8941 8942 if (Klass::layout_helper_is_instance(layout_con)) { 8943 // Instance case: layout_con contains the size itself. 8944 Node *size = longcon(Klass::layout_helper_size_in_bytes(layout_con)); 8945 set_result(size); 8946 } else { 8947 // Array case: size is round(header + element_size*arraylength). 8948 // Since arraylength is different for every array instance, we have to 8949 // compute the whole thing at runtime. 8950 8951 Node* arr_length = load_array_length(obj); 8952 8953 int round_mask = MinObjAlignmentInBytes - 1; 8954 int hsize = Klass::layout_helper_header_size(layout_con); 8955 int eshift = Klass::layout_helper_log2_element_size(layout_con); 8956 8957 if ((round_mask & ~right_n_bits(eshift)) == 0) { 8958 round_mask = 0; // strength-reduce it if it goes away completely 8959 } 8960 assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded"); 8961 Node* header_size = intcon(hsize + round_mask); 8962 8963 Node* lengthx = ConvI2X(arr_length); 8964 Node* headerx = ConvI2X(header_size); 8965 8966 Node* abody = lengthx; 8967 if (eshift != 0) { 8968 abody = _gvn.transform(new LShiftXNode(lengthx, intcon(eshift))); 8969 } 8970 Node* size = _gvn.transform( new AddXNode(headerx, abody) ); 8971 if (round_mask != 0) { 8972 size = _gvn.transform( new AndXNode(size, MakeConX(~round_mask)) ); 8973 } 8974 size = ConvX2L(size); 8975 set_result(size); 8976 } 8977 } else { 8978 // Layout helper is not constant, need to test for array-ness at runtime. 8979 8980 enum { _instance_path = 1, _array_path, PATH_LIMIT }; 8981 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 8982 PhiNode* result_val = new PhiNode(result_reg, TypeLong::LONG); 8983 record_for_igvn(result_reg); 8984 8985 Node* array_ctl = generate_array_guard(klass_node, nullptr, &obj); 8986 if (array_ctl != nullptr) { 8987 // Array case: size is round(header + element_size*arraylength). 8988 // Since arraylength is different for every array instance, we have to 8989 // compute the whole thing at runtime. 8990 8991 PreserveJVMState pjvms(this); 8992 set_control(array_ctl); 8993 Node* arr_length = load_array_length(obj); 8994 8995 int round_mask = MinObjAlignmentInBytes - 1; 8996 Node* mask = intcon(round_mask); 8997 8998 Node* hss = intcon(Klass::_lh_header_size_shift); 8999 Node* hsm = intcon(Klass::_lh_header_size_mask); 9000 Node* header_size = _gvn.transform(new URShiftINode(layout_val, hss)); 9001 header_size = _gvn.transform(new AndINode(header_size, hsm)); 9002 header_size = _gvn.transform(new AddINode(header_size, mask)); 9003 9004 // There is no need to mask or shift this value. 9005 // The semantics of LShiftINode include an implicit mask to 0x1F. 9006 assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place"); 9007 Node* elem_shift = layout_val; 9008 9009 Node* lengthx = ConvI2X(arr_length); 9010 Node* headerx = ConvI2X(header_size); 9011 9012 Node* abody = _gvn.transform(new LShiftXNode(lengthx, elem_shift)); 9013 Node* size = _gvn.transform(new AddXNode(headerx, abody)); 9014 if (round_mask != 0) { 9015 size = _gvn.transform(new AndXNode(size, MakeConX(~round_mask))); 9016 } 9017 size = ConvX2L(size); 9018 9019 result_reg->init_req(_array_path, control()); 9020 result_val->init_req(_array_path, size); 9021 } 9022 9023 if (!stopped()) { 9024 // Instance case: the layout helper gives us instance size almost directly, 9025 // but we need to mask out the _lh_instance_slow_path_bit. 9026 Node* size = ConvI2X(layout_val); 9027 assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit"); 9028 Node* mask = MakeConX(~(intptr_t) right_n_bits(LogBytesPerLong)); 9029 size = _gvn.transform(new AndXNode(size, mask)); 9030 size = ConvX2L(size); 9031 9032 result_reg->init_req(_instance_path, control()); 9033 result_val->init_req(_instance_path, size); 9034 } 9035 9036 set_result(result_reg, result_val); 9037 } 9038 9039 return true; 9040 } 9041 9042 //------------------------------- inline_blackhole -------------------------------------- 9043 // 9044 // Make sure all arguments to this node are alive. 9045 // This matches methods that were requested to be blackholed through compile commands. 9046 // 9047 bool LibraryCallKit::inline_blackhole() { 9048 assert(callee()->is_static(), "Should have been checked before: only static methods here"); 9049 assert(callee()->is_empty(), "Should have been checked before: only empty methods here"); 9050 assert(callee()->holder()->is_loaded(), "Should have been checked before: only methods for loaded classes here"); 9051 9052 // Blackhole node pinches only the control, not memory. This allows 9053 // the blackhole to be pinned in the loop that computes blackholed 9054 // values, but have no other side effects, like breaking the optimizations 9055 // across the blackhole. 9056 9057 Node* bh = _gvn.transform(new BlackholeNode(control())); 9058 set_control(_gvn.transform(new ProjNode(bh, TypeFunc::Control))); 9059 9060 // Bind call arguments as blackhole arguments to keep them alive 9061 uint nargs = callee()->arg_size(); 9062 for (uint i = 0; i < nargs; i++) { 9063 bh->add_req(argument(i)); 9064 } 9065 9066 return true; 9067 } 9068 9069 Node* LibraryCallKit::unbox_fp16_value(const TypeInstPtr* float16_box_type, ciField* field, Node* box) { 9070 const TypeInstPtr* box_type = _gvn.type(box)->isa_instptr(); 9071 if (box_type == nullptr || box_type->instance_klass() != float16_box_type->instance_klass()) { 9072 return nullptr; // box klass is not Float16 9073 } 9074 9075 // Null check; get notnull casted pointer 9076 Node* null_ctl = top(); 9077 Node* not_null_box = null_check_oop(box, &null_ctl, true); 9078 // If not_null_box is dead, only null-path is taken 9079 if (stopped()) { 9080 set_control(null_ctl); 9081 return nullptr; 9082 } 9083 assert(not_null_box->bottom_type()->is_instptr()->maybe_null() == false, ""); 9084 const TypePtr* adr_type = C->alias_type(field)->adr_type(); 9085 Node* adr = basic_plus_adr(not_null_box, field->offset_in_bytes()); 9086 return access_load_at(not_null_box, adr, adr_type, TypeInt::SHORT, T_SHORT, IN_HEAP); 9087 } 9088 9089 Node* LibraryCallKit::box_fp16_value(const TypeInstPtr* float16_box_type, ciField* field, Node* value) { 9090 PreserveReexecuteState preexecs(this); 9091 jvms()->set_should_reexecute(true); 9092 9093 const TypeKlassPtr* klass_type = float16_box_type->as_klass_type(); 9094 Node* klass_node = makecon(klass_type); 9095 Node* box = new_instance(klass_node); 9096 9097 Node* value_field = basic_plus_adr(box, field->offset_in_bytes()); 9098 const TypePtr* value_adr_type = value_field->bottom_type()->is_ptr(); 9099 9100 Node* field_store = _gvn.transform(access_store_at(box, 9101 value_field, 9102 value_adr_type, 9103 value, 9104 TypeInt::SHORT, 9105 T_SHORT, 9106 IN_HEAP)); 9107 set_memory(field_store, value_adr_type); 9108 return box; 9109 } 9110 9111 bool LibraryCallKit::inline_fp16_operations(vmIntrinsics::ID id, int num_args) { 9112 if (!Matcher::match_rule_supported(Op_ReinterpretS2HF) || 9113 !Matcher::match_rule_supported(Op_ReinterpretHF2S)) { 9114 return false; 9115 } 9116 9117 const TypeInstPtr* box_type = _gvn.type(argument(0))->isa_instptr(); 9118 if (box_type == nullptr || box_type->const_oop() == nullptr) { 9119 return false; 9120 } 9121 9122 ciInstanceKlass* float16_klass = box_type->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass(); 9123 const TypeInstPtr* float16_box_type = TypeInstPtr::make_exact(TypePtr::NotNull, float16_klass); 9124 ciField* field = float16_klass->get_field_by_name(ciSymbols::value_name(), 9125 ciSymbols::short_signature(), 9126 false); 9127 assert(field != nullptr, ""); 9128 9129 // Transformed nodes 9130 Node* fld1 = nullptr; 9131 Node* fld2 = nullptr; 9132 Node* fld3 = nullptr; 9133 switch(num_args) { 9134 case 3: 9135 fld3 = unbox_fp16_value(float16_box_type, field, argument(3)); 9136 if (fld3 == nullptr) { 9137 return false; 9138 } 9139 fld3 = _gvn.transform(new ReinterpretS2HFNode(fld3)); 9140 // fall-through 9141 case 2: 9142 fld2 = unbox_fp16_value(float16_box_type, field, argument(2)); 9143 if (fld2 == nullptr) { 9144 return false; 9145 } 9146 fld2 = _gvn.transform(new ReinterpretS2HFNode(fld2)); 9147 // fall-through 9148 case 1: 9149 fld1 = unbox_fp16_value(float16_box_type, field, argument(1)); 9150 if (fld1 == nullptr) { 9151 return false; 9152 } 9153 fld1 = _gvn.transform(new ReinterpretS2HFNode(fld1)); 9154 break; 9155 default: fatal("Unsupported number of arguments %d", num_args); 9156 } 9157 9158 Node* result = nullptr; 9159 switch (id) { 9160 // Unary operations 9161 case vmIntrinsics::_sqrt_float16: 9162 result = _gvn.transform(new SqrtHFNode(C, control(), fld1)); 9163 break; 9164 // Ternary operations 9165 case vmIntrinsics::_fma_float16: 9166 result = _gvn.transform(new FmaHFNode(fld1, fld2, fld3)); 9167 break; 9168 default: 9169 fatal_unexpected_iid(id); 9170 break; 9171 } 9172 result = _gvn.transform(new ReinterpretHF2SNode(result)); 9173 set_result(box_fp16_value(float16_box_type, field, result)); 9174 return true; 9175 } 9176