1 /* 2 * Copyright (c) 1999, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "asm/macroAssembler.hpp" 26 #include "ci/ciUtilities.inline.hpp" 27 #include "ci/ciSymbols.hpp" 28 #include "classfile/vmIntrinsics.hpp" 29 #include "compiler/compileBroker.hpp" 30 #include "compiler/compileLog.hpp" 31 #include "gc/shared/barrierSet.hpp" 32 #include "jfr/support/jfrIntrinsics.hpp" 33 #include "memory/resourceArea.hpp" 34 #include "oops/klass.inline.hpp" 35 #include "oops/objArrayKlass.hpp" 36 #include "opto/addnode.hpp" 37 #include "opto/arraycopynode.hpp" 38 #include "opto/c2compiler.hpp" 39 #include "opto/castnode.hpp" 40 #include "opto/cfgnode.hpp" 41 #include "opto/convertnode.hpp" 42 #include "opto/countbitsnode.hpp" 43 #include "opto/idealKit.hpp" 44 #include "opto/library_call.hpp" 45 #include "opto/mathexactnode.hpp" 46 #include "opto/mulnode.hpp" 47 #include "opto/narrowptrnode.hpp" 48 #include "opto/opaquenode.hpp" 49 #include "opto/parse.hpp" 50 #include "opto/runtime.hpp" 51 #include "opto/rootnode.hpp" 52 #include "opto/subnode.hpp" 53 #include "opto/vectornode.hpp" 54 #include "prims/jvmtiExport.hpp" 55 #include "prims/jvmtiThreadState.hpp" 56 #include "prims/unsafe.hpp" 57 #include "runtime/jniHandles.inline.hpp" 58 #include "runtime/objectMonitor.hpp" 59 #include "runtime/sharedRuntime.hpp" 60 #include "runtime/stubRoutines.hpp" 61 #include "utilities/macros.hpp" 62 #include "utilities/powerOfTwo.hpp" 63 64 //---------------------------make_vm_intrinsic---------------------------- 65 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) { 66 vmIntrinsicID id = m->intrinsic_id(); 67 assert(id != vmIntrinsics::_none, "must be a VM intrinsic"); 68 69 if (!m->is_loaded()) { 70 // Do not attempt to inline unloaded methods. 71 return nullptr; 72 } 73 74 C2Compiler* compiler = (C2Compiler*)CompilerThread::current()->compiler(); 75 bool is_available = false; 76 77 { 78 // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag 79 // the compiler must transition to '_thread_in_vm' state because both 80 // methods access VM-internal data. 81 VM_ENTRY_MARK; 82 methodHandle mh(THREAD, m->get_Method()); 83 is_available = compiler != nullptr && compiler->is_intrinsic_available(mh, C->directive()); 84 if (is_available && is_virtual) { 85 is_available = vmIntrinsics::does_virtual_dispatch(id); 86 } 87 } 88 89 if (is_available) { 90 assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility"); 91 assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?"); 92 return new LibraryIntrinsic(m, is_virtual, 93 vmIntrinsics::predicates_needed(id), 94 vmIntrinsics::does_virtual_dispatch(id), 95 id); 96 } else { 97 return nullptr; 98 } 99 } 100 101 JVMState* LibraryIntrinsic::generate(JVMState* jvms) { 102 LibraryCallKit kit(jvms, this); 103 Compile* C = kit.C; 104 int nodes = C->unique(); 105 #ifndef PRODUCT 106 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 107 char buf[1000]; 108 const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf)); 109 tty->print_cr("Intrinsic %s", str); 110 } 111 #endif 112 ciMethod* callee = kit.callee(); 113 const int bci = kit.bci(); 114 #ifdef ASSERT 115 Node* ctrl = kit.control(); 116 #endif 117 // Try to inline the intrinsic. 118 if (callee->check_intrinsic_candidate() && 119 kit.try_to_inline(_last_predicate)) { 120 const char *inline_msg = is_virtual() ? "(intrinsic, virtual)" 121 : "(intrinsic)"; 122 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg); 123 C->inline_printer()->record(callee, jvms, InliningResult::SUCCESS, inline_msg); 124 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked); 125 if (C->log()) { 126 C->log()->elem("intrinsic id='%s'%s nodes='%d'", 127 vmIntrinsics::name_at(intrinsic_id()), 128 (is_virtual() ? " virtual='1'" : ""), 129 C->unique() - nodes); 130 } 131 // Push the result from the inlined method onto the stack. 132 kit.push_result(); 133 return kit.transfer_exceptions_into_jvms(); 134 } 135 136 // The intrinsic bailed out 137 assert(ctrl == kit.control(), "Control flow was added although the intrinsic bailed out"); 138 if (jvms->has_method()) { 139 // Not a root compile. 140 const char* msg; 141 if (callee->intrinsic_candidate()) { 142 msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)"; 143 } else { 144 msg = is_virtual() ? "failed to inline (intrinsic, virtual), method not annotated" 145 : "failed to inline (intrinsic), method not annotated"; 146 } 147 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::FAILURE, msg); 148 C->inline_printer()->record(callee, jvms, InliningResult::FAILURE, msg); 149 } else { 150 // Root compile 151 ResourceMark rm; 152 stringStream msg_stream; 153 msg_stream.print("Did not generate intrinsic %s%s at bci:%d in", 154 vmIntrinsics::name_at(intrinsic_id()), 155 is_virtual() ? " (virtual)" : "", bci); 156 const char *msg = msg_stream.freeze(); 157 log_debug(jit, inlining)("%s", msg); 158 if (C->print_intrinsics() || C->print_inlining()) { 159 tty->print("%s", msg); 160 } 161 } 162 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed); 163 164 return nullptr; 165 } 166 167 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) { 168 LibraryCallKit kit(jvms, this); 169 Compile* C = kit.C; 170 int nodes = C->unique(); 171 _last_predicate = predicate; 172 #ifndef PRODUCT 173 assert(is_predicated() && predicate < predicates_count(), "sanity"); 174 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 175 char buf[1000]; 176 const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf)); 177 tty->print_cr("Predicate for intrinsic %s", str); 178 } 179 #endif 180 ciMethod* callee = kit.callee(); 181 const int bci = kit.bci(); 182 183 Node* slow_ctl = kit.try_to_predicate(predicate); 184 if (!kit.failing()) { 185 const char *inline_msg = is_virtual() ? "(intrinsic, virtual, predicate)" 186 : "(intrinsic, predicate)"; 187 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg); 188 C->inline_printer()->record(callee, jvms, InliningResult::SUCCESS, inline_msg); 189 190 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked); 191 if (C->log()) { 192 C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'", 193 vmIntrinsics::name_at(intrinsic_id()), 194 (is_virtual() ? " virtual='1'" : ""), 195 C->unique() - nodes); 196 } 197 return slow_ctl; // Could be null if the check folds. 198 } 199 200 // The intrinsic bailed out 201 if (jvms->has_method()) { 202 // Not a root compile. 203 const char* msg = "failed to generate predicate for intrinsic"; 204 CompileTask::print_inlining_ul(kit.callee(), jvms->depth() - 1, bci, InliningResult::FAILURE, msg); 205 C->inline_printer()->record(kit.callee(), jvms, InliningResult::FAILURE, msg); 206 } else { 207 // Root compile 208 ResourceMark rm; 209 stringStream msg_stream; 210 msg_stream.print("Did not generate intrinsic %s%s at bci:%d in", 211 vmIntrinsics::name_at(intrinsic_id()), 212 is_virtual() ? " (virtual)" : "", bci); 213 const char *msg = msg_stream.freeze(); 214 log_debug(jit, inlining)("%s", msg); 215 C->inline_printer()->record(kit.callee(), jvms, InliningResult::FAILURE, msg); 216 } 217 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed); 218 return nullptr; 219 } 220 221 bool LibraryCallKit::try_to_inline(int predicate) { 222 // Handle symbolic names for otherwise undistinguished boolean switches: 223 const bool is_store = true; 224 const bool is_compress = true; 225 const bool is_static = true; 226 const bool is_volatile = true; 227 228 if (!jvms()->has_method()) { 229 // Root JVMState has a null method. 230 assert(map()->memory()->Opcode() == Op_Parm, ""); 231 // Insert the memory aliasing node 232 set_all_memory(reset_memory()); 233 } 234 assert(merged_memory(), ""); 235 236 switch (intrinsic_id()) { 237 case vmIntrinsics::_hashCode: return inline_native_hashcode(intrinsic()->is_virtual(), !is_static); 238 case vmIntrinsics::_identityHashCode: return inline_native_hashcode(/*!virtual*/ false, is_static); 239 case vmIntrinsics::_getClass: return inline_native_getClass(); 240 241 case vmIntrinsics::_ceil: 242 case vmIntrinsics::_floor: 243 case vmIntrinsics::_rint: 244 case vmIntrinsics::_dsin: 245 case vmIntrinsics::_dcos: 246 case vmIntrinsics::_dtan: 247 case vmIntrinsics::_dtanh: 248 case vmIntrinsics::_dabs: 249 case vmIntrinsics::_fabs: 250 case vmIntrinsics::_iabs: 251 case vmIntrinsics::_labs: 252 case vmIntrinsics::_datan2: 253 case vmIntrinsics::_dsqrt: 254 case vmIntrinsics::_dsqrt_strict: 255 case vmIntrinsics::_dexp: 256 case vmIntrinsics::_dlog: 257 case vmIntrinsics::_dlog10: 258 case vmIntrinsics::_dpow: 259 case vmIntrinsics::_dcopySign: 260 case vmIntrinsics::_fcopySign: 261 case vmIntrinsics::_dsignum: 262 case vmIntrinsics::_roundF: 263 case vmIntrinsics::_roundD: 264 case vmIntrinsics::_fsignum: return inline_math_native(intrinsic_id()); 265 266 case vmIntrinsics::_notify: 267 case vmIntrinsics::_notifyAll: 268 return inline_notify(intrinsic_id()); 269 270 case vmIntrinsics::_addExactI: return inline_math_addExactI(false /* add */); 271 case vmIntrinsics::_addExactL: return inline_math_addExactL(false /* add */); 272 case vmIntrinsics::_decrementExactI: return inline_math_subtractExactI(true /* decrement */); 273 case vmIntrinsics::_decrementExactL: return inline_math_subtractExactL(true /* decrement */); 274 case vmIntrinsics::_incrementExactI: return inline_math_addExactI(true /* increment */); 275 case vmIntrinsics::_incrementExactL: return inline_math_addExactL(true /* increment */); 276 case vmIntrinsics::_multiplyExactI: return inline_math_multiplyExactI(); 277 case vmIntrinsics::_multiplyExactL: return inline_math_multiplyExactL(); 278 case vmIntrinsics::_multiplyHigh: return inline_math_multiplyHigh(); 279 case vmIntrinsics::_unsignedMultiplyHigh: return inline_math_unsignedMultiplyHigh(); 280 case vmIntrinsics::_negateExactI: return inline_math_negateExactI(); 281 case vmIntrinsics::_negateExactL: return inline_math_negateExactL(); 282 case vmIntrinsics::_subtractExactI: return inline_math_subtractExactI(false /* subtract */); 283 case vmIntrinsics::_subtractExactL: return inline_math_subtractExactL(false /* subtract */); 284 285 case vmIntrinsics::_arraycopy: return inline_arraycopy(); 286 287 case vmIntrinsics::_arraySort: return inline_array_sort(); 288 case vmIntrinsics::_arrayPartition: return inline_array_partition(); 289 290 case vmIntrinsics::_compareToL: return inline_string_compareTo(StrIntrinsicNode::LL); 291 case vmIntrinsics::_compareToU: return inline_string_compareTo(StrIntrinsicNode::UU); 292 case vmIntrinsics::_compareToLU: return inline_string_compareTo(StrIntrinsicNode::LU); 293 case vmIntrinsics::_compareToUL: return inline_string_compareTo(StrIntrinsicNode::UL); 294 295 case vmIntrinsics::_indexOfL: return inline_string_indexOf(StrIntrinsicNode::LL); 296 case vmIntrinsics::_indexOfU: return inline_string_indexOf(StrIntrinsicNode::UU); 297 case vmIntrinsics::_indexOfUL: return inline_string_indexOf(StrIntrinsicNode::UL); 298 case vmIntrinsics::_indexOfIL: return inline_string_indexOfI(StrIntrinsicNode::LL); 299 case vmIntrinsics::_indexOfIU: return inline_string_indexOfI(StrIntrinsicNode::UU); 300 case vmIntrinsics::_indexOfIUL: return inline_string_indexOfI(StrIntrinsicNode::UL); 301 case vmIntrinsics::_indexOfU_char: return inline_string_indexOfChar(StrIntrinsicNode::U); 302 case vmIntrinsics::_indexOfL_char: return inline_string_indexOfChar(StrIntrinsicNode::L); 303 304 case vmIntrinsics::_equalsL: return inline_string_equals(StrIntrinsicNode::LL); 305 306 case vmIntrinsics::_vectorizedHashCode: return inline_vectorizedHashCode(); 307 308 case vmIntrinsics::_toBytesStringU: return inline_string_toBytesU(); 309 case vmIntrinsics::_getCharsStringU: return inline_string_getCharsU(); 310 case vmIntrinsics::_getCharStringU: return inline_string_char_access(!is_store); 311 case vmIntrinsics::_putCharStringU: return inline_string_char_access( is_store); 312 313 case vmIntrinsics::_compressStringC: 314 case vmIntrinsics::_compressStringB: return inline_string_copy( is_compress); 315 case vmIntrinsics::_inflateStringC: 316 case vmIntrinsics::_inflateStringB: return inline_string_copy(!is_compress); 317 318 case vmIntrinsics::_getReference: return inline_unsafe_access(!is_store, T_OBJECT, Relaxed, false); 319 case vmIntrinsics::_getBoolean: return inline_unsafe_access(!is_store, T_BOOLEAN, Relaxed, false); 320 case vmIntrinsics::_getByte: return inline_unsafe_access(!is_store, T_BYTE, Relaxed, false); 321 case vmIntrinsics::_getShort: return inline_unsafe_access(!is_store, T_SHORT, Relaxed, false); 322 case vmIntrinsics::_getChar: return inline_unsafe_access(!is_store, T_CHAR, Relaxed, false); 323 case vmIntrinsics::_getInt: return inline_unsafe_access(!is_store, T_INT, Relaxed, false); 324 case vmIntrinsics::_getLong: return inline_unsafe_access(!is_store, T_LONG, Relaxed, false); 325 case vmIntrinsics::_getFloat: return inline_unsafe_access(!is_store, T_FLOAT, Relaxed, false); 326 case vmIntrinsics::_getDouble: return inline_unsafe_access(!is_store, T_DOUBLE, Relaxed, false); 327 328 case vmIntrinsics::_putReference: return inline_unsafe_access( is_store, T_OBJECT, Relaxed, false); 329 case vmIntrinsics::_putBoolean: return inline_unsafe_access( is_store, T_BOOLEAN, Relaxed, false); 330 case vmIntrinsics::_putByte: return inline_unsafe_access( is_store, T_BYTE, Relaxed, false); 331 case vmIntrinsics::_putShort: return inline_unsafe_access( is_store, T_SHORT, Relaxed, false); 332 case vmIntrinsics::_putChar: return inline_unsafe_access( is_store, T_CHAR, Relaxed, false); 333 case vmIntrinsics::_putInt: return inline_unsafe_access( is_store, T_INT, Relaxed, false); 334 case vmIntrinsics::_putLong: return inline_unsafe_access( is_store, T_LONG, Relaxed, false); 335 case vmIntrinsics::_putFloat: return inline_unsafe_access( is_store, T_FLOAT, Relaxed, false); 336 case vmIntrinsics::_putDouble: return inline_unsafe_access( is_store, T_DOUBLE, Relaxed, false); 337 338 case vmIntrinsics::_getReferenceVolatile: return inline_unsafe_access(!is_store, T_OBJECT, Volatile, false); 339 case vmIntrinsics::_getBooleanVolatile: return inline_unsafe_access(!is_store, T_BOOLEAN, Volatile, false); 340 case vmIntrinsics::_getByteVolatile: return inline_unsafe_access(!is_store, T_BYTE, Volatile, false); 341 case vmIntrinsics::_getShortVolatile: return inline_unsafe_access(!is_store, T_SHORT, Volatile, false); 342 case vmIntrinsics::_getCharVolatile: return inline_unsafe_access(!is_store, T_CHAR, Volatile, false); 343 case vmIntrinsics::_getIntVolatile: return inline_unsafe_access(!is_store, T_INT, Volatile, false); 344 case vmIntrinsics::_getLongVolatile: return inline_unsafe_access(!is_store, T_LONG, Volatile, false); 345 case vmIntrinsics::_getFloatVolatile: return inline_unsafe_access(!is_store, T_FLOAT, Volatile, false); 346 case vmIntrinsics::_getDoubleVolatile: return inline_unsafe_access(!is_store, T_DOUBLE, Volatile, false); 347 348 case vmIntrinsics::_putReferenceVolatile: return inline_unsafe_access( is_store, T_OBJECT, Volatile, false); 349 case vmIntrinsics::_putBooleanVolatile: return inline_unsafe_access( is_store, T_BOOLEAN, Volatile, false); 350 case vmIntrinsics::_putByteVolatile: return inline_unsafe_access( is_store, T_BYTE, Volatile, false); 351 case vmIntrinsics::_putShortVolatile: return inline_unsafe_access( is_store, T_SHORT, Volatile, false); 352 case vmIntrinsics::_putCharVolatile: return inline_unsafe_access( is_store, T_CHAR, Volatile, false); 353 case vmIntrinsics::_putIntVolatile: return inline_unsafe_access( is_store, T_INT, Volatile, false); 354 case vmIntrinsics::_putLongVolatile: return inline_unsafe_access( is_store, T_LONG, Volatile, false); 355 case vmIntrinsics::_putFloatVolatile: return inline_unsafe_access( is_store, T_FLOAT, Volatile, false); 356 case vmIntrinsics::_putDoubleVolatile: return inline_unsafe_access( is_store, T_DOUBLE, Volatile, false); 357 358 case vmIntrinsics::_getShortUnaligned: return inline_unsafe_access(!is_store, T_SHORT, Relaxed, true); 359 case vmIntrinsics::_getCharUnaligned: return inline_unsafe_access(!is_store, T_CHAR, Relaxed, true); 360 case vmIntrinsics::_getIntUnaligned: return inline_unsafe_access(!is_store, T_INT, Relaxed, true); 361 case vmIntrinsics::_getLongUnaligned: return inline_unsafe_access(!is_store, T_LONG, Relaxed, true); 362 363 case vmIntrinsics::_putShortUnaligned: return inline_unsafe_access( is_store, T_SHORT, Relaxed, true); 364 case vmIntrinsics::_putCharUnaligned: return inline_unsafe_access( is_store, T_CHAR, Relaxed, true); 365 case vmIntrinsics::_putIntUnaligned: return inline_unsafe_access( is_store, T_INT, Relaxed, true); 366 case vmIntrinsics::_putLongUnaligned: return inline_unsafe_access( is_store, T_LONG, Relaxed, true); 367 368 case vmIntrinsics::_getReferenceAcquire: return inline_unsafe_access(!is_store, T_OBJECT, Acquire, false); 369 case vmIntrinsics::_getBooleanAcquire: return inline_unsafe_access(!is_store, T_BOOLEAN, Acquire, false); 370 case vmIntrinsics::_getByteAcquire: return inline_unsafe_access(!is_store, T_BYTE, Acquire, false); 371 case vmIntrinsics::_getShortAcquire: return inline_unsafe_access(!is_store, T_SHORT, Acquire, false); 372 case vmIntrinsics::_getCharAcquire: return inline_unsafe_access(!is_store, T_CHAR, Acquire, false); 373 case vmIntrinsics::_getIntAcquire: return inline_unsafe_access(!is_store, T_INT, Acquire, false); 374 case vmIntrinsics::_getLongAcquire: return inline_unsafe_access(!is_store, T_LONG, Acquire, false); 375 case vmIntrinsics::_getFloatAcquire: return inline_unsafe_access(!is_store, T_FLOAT, Acquire, false); 376 case vmIntrinsics::_getDoubleAcquire: return inline_unsafe_access(!is_store, T_DOUBLE, Acquire, false); 377 378 case vmIntrinsics::_putReferenceRelease: return inline_unsafe_access( is_store, T_OBJECT, Release, false); 379 case vmIntrinsics::_putBooleanRelease: return inline_unsafe_access( is_store, T_BOOLEAN, Release, false); 380 case vmIntrinsics::_putByteRelease: return inline_unsafe_access( is_store, T_BYTE, Release, false); 381 case vmIntrinsics::_putShortRelease: return inline_unsafe_access( is_store, T_SHORT, Release, false); 382 case vmIntrinsics::_putCharRelease: return inline_unsafe_access( is_store, T_CHAR, Release, false); 383 case vmIntrinsics::_putIntRelease: return inline_unsafe_access( is_store, T_INT, Release, false); 384 case vmIntrinsics::_putLongRelease: return inline_unsafe_access( is_store, T_LONG, Release, false); 385 case vmIntrinsics::_putFloatRelease: return inline_unsafe_access( is_store, T_FLOAT, Release, false); 386 case vmIntrinsics::_putDoubleRelease: return inline_unsafe_access( is_store, T_DOUBLE, Release, false); 387 388 case vmIntrinsics::_getReferenceOpaque: return inline_unsafe_access(!is_store, T_OBJECT, Opaque, false); 389 case vmIntrinsics::_getBooleanOpaque: return inline_unsafe_access(!is_store, T_BOOLEAN, Opaque, false); 390 case vmIntrinsics::_getByteOpaque: return inline_unsafe_access(!is_store, T_BYTE, Opaque, false); 391 case vmIntrinsics::_getShortOpaque: return inline_unsafe_access(!is_store, T_SHORT, Opaque, false); 392 case vmIntrinsics::_getCharOpaque: return inline_unsafe_access(!is_store, T_CHAR, Opaque, false); 393 case vmIntrinsics::_getIntOpaque: return inline_unsafe_access(!is_store, T_INT, Opaque, false); 394 case vmIntrinsics::_getLongOpaque: return inline_unsafe_access(!is_store, T_LONG, Opaque, false); 395 case vmIntrinsics::_getFloatOpaque: return inline_unsafe_access(!is_store, T_FLOAT, Opaque, false); 396 case vmIntrinsics::_getDoubleOpaque: return inline_unsafe_access(!is_store, T_DOUBLE, Opaque, false); 397 398 case vmIntrinsics::_putReferenceOpaque: return inline_unsafe_access( is_store, T_OBJECT, Opaque, false); 399 case vmIntrinsics::_putBooleanOpaque: return inline_unsafe_access( is_store, T_BOOLEAN, Opaque, false); 400 case vmIntrinsics::_putByteOpaque: return inline_unsafe_access( is_store, T_BYTE, Opaque, false); 401 case vmIntrinsics::_putShortOpaque: return inline_unsafe_access( is_store, T_SHORT, Opaque, false); 402 case vmIntrinsics::_putCharOpaque: return inline_unsafe_access( is_store, T_CHAR, Opaque, false); 403 case vmIntrinsics::_putIntOpaque: return inline_unsafe_access( is_store, T_INT, Opaque, false); 404 case vmIntrinsics::_putLongOpaque: return inline_unsafe_access( is_store, T_LONG, Opaque, false); 405 case vmIntrinsics::_putFloatOpaque: return inline_unsafe_access( is_store, T_FLOAT, Opaque, false); 406 case vmIntrinsics::_putDoubleOpaque: return inline_unsafe_access( is_store, T_DOUBLE, Opaque, false); 407 408 case vmIntrinsics::_compareAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap, Volatile); 409 case vmIntrinsics::_compareAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap, Volatile); 410 case vmIntrinsics::_compareAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap, Volatile); 411 case vmIntrinsics::_compareAndSetInt: return inline_unsafe_load_store(T_INT, LS_cmp_swap, Volatile); 412 case vmIntrinsics::_compareAndSetLong: return inline_unsafe_load_store(T_LONG, LS_cmp_swap, Volatile); 413 414 case vmIntrinsics::_weakCompareAndSetReferencePlain: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Relaxed); 415 case vmIntrinsics::_weakCompareAndSetReferenceAcquire: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Acquire); 416 case vmIntrinsics::_weakCompareAndSetReferenceRelease: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Release); 417 case vmIntrinsics::_weakCompareAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Volatile); 418 case vmIntrinsics::_weakCompareAndSetBytePlain: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Relaxed); 419 case vmIntrinsics::_weakCompareAndSetByteAcquire: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Acquire); 420 case vmIntrinsics::_weakCompareAndSetByteRelease: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Release); 421 case vmIntrinsics::_weakCompareAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Volatile); 422 case vmIntrinsics::_weakCompareAndSetShortPlain: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Relaxed); 423 case vmIntrinsics::_weakCompareAndSetShortAcquire: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Acquire); 424 case vmIntrinsics::_weakCompareAndSetShortRelease: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Release); 425 case vmIntrinsics::_weakCompareAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Volatile); 426 case vmIntrinsics::_weakCompareAndSetIntPlain: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Relaxed); 427 case vmIntrinsics::_weakCompareAndSetIntAcquire: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Acquire); 428 case vmIntrinsics::_weakCompareAndSetIntRelease: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Release); 429 case vmIntrinsics::_weakCompareAndSetInt: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Volatile); 430 case vmIntrinsics::_weakCompareAndSetLongPlain: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Relaxed); 431 case vmIntrinsics::_weakCompareAndSetLongAcquire: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Acquire); 432 case vmIntrinsics::_weakCompareAndSetLongRelease: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Release); 433 case vmIntrinsics::_weakCompareAndSetLong: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Volatile); 434 435 case vmIntrinsics::_compareAndExchangeReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Volatile); 436 case vmIntrinsics::_compareAndExchangeReferenceAcquire: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Acquire); 437 case vmIntrinsics::_compareAndExchangeReferenceRelease: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Release); 438 case vmIntrinsics::_compareAndExchangeByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Volatile); 439 case vmIntrinsics::_compareAndExchangeByteAcquire: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Acquire); 440 case vmIntrinsics::_compareAndExchangeByteRelease: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Release); 441 case vmIntrinsics::_compareAndExchangeShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Volatile); 442 case vmIntrinsics::_compareAndExchangeShortAcquire: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Acquire); 443 case vmIntrinsics::_compareAndExchangeShortRelease: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Release); 444 case vmIntrinsics::_compareAndExchangeInt: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Volatile); 445 case vmIntrinsics::_compareAndExchangeIntAcquire: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Acquire); 446 case vmIntrinsics::_compareAndExchangeIntRelease: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Release); 447 case vmIntrinsics::_compareAndExchangeLong: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Volatile); 448 case vmIntrinsics::_compareAndExchangeLongAcquire: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Acquire); 449 case vmIntrinsics::_compareAndExchangeLongRelease: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Release); 450 451 case vmIntrinsics::_getAndAddByte: return inline_unsafe_load_store(T_BYTE, LS_get_add, Volatile); 452 case vmIntrinsics::_getAndAddShort: return inline_unsafe_load_store(T_SHORT, LS_get_add, Volatile); 453 case vmIntrinsics::_getAndAddInt: return inline_unsafe_load_store(T_INT, LS_get_add, Volatile); 454 case vmIntrinsics::_getAndAddLong: return inline_unsafe_load_store(T_LONG, LS_get_add, Volatile); 455 456 case vmIntrinsics::_getAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_get_set, Volatile); 457 case vmIntrinsics::_getAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_get_set, Volatile); 458 case vmIntrinsics::_getAndSetInt: return inline_unsafe_load_store(T_INT, LS_get_set, Volatile); 459 case vmIntrinsics::_getAndSetLong: return inline_unsafe_load_store(T_LONG, LS_get_set, Volatile); 460 case vmIntrinsics::_getAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_get_set, Volatile); 461 462 case vmIntrinsics::_loadFence: 463 case vmIntrinsics::_storeFence: 464 case vmIntrinsics::_storeStoreFence: 465 case vmIntrinsics::_fullFence: return inline_unsafe_fence(intrinsic_id()); 466 467 case vmIntrinsics::_onSpinWait: return inline_onspinwait(); 468 469 case vmIntrinsics::_currentCarrierThread: return inline_native_currentCarrierThread(); 470 case vmIntrinsics::_currentThread: return inline_native_currentThread(); 471 case vmIntrinsics::_setCurrentThread: return inline_native_setCurrentThread(); 472 473 case vmIntrinsics::_scopedValueCache: return inline_native_scopedValueCache(); 474 case vmIntrinsics::_setScopedValueCache: return inline_native_setScopedValueCache(); 475 476 case vmIntrinsics::_Continuation_pin: return inline_native_Continuation_pinning(false); 477 case vmIntrinsics::_Continuation_unpin: return inline_native_Continuation_pinning(true); 478 479 #if INCLUDE_JVMTI 480 case vmIntrinsics::_notifyJvmtiVThreadStart: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_start()), 481 "notifyJvmtiStart", true, false); 482 case vmIntrinsics::_notifyJvmtiVThreadEnd: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_end()), 483 "notifyJvmtiEnd", false, true); 484 case vmIntrinsics::_notifyJvmtiVThreadMount: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_mount()), 485 "notifyJvmtiMount", false, false); 486 case vmIntrinsics::_notifyJvmtiVThreadUnmount: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_unmount()), 487 "notifyJvmtiUnmount", false, false); 488 case vmIntrinsics::_notifyJvmtiVThreadDisableSuspend: return inline_native_notify_jvmti_sync(); 489 #endif 490 491 #ifdef JFR_HAVE_INTRINSICS 492 case vmIntrinsics::_counterTime: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, JfrTime::time_function()), "counterTime"); 493 case vmIntrinsics::_getEventWriter: return inline_native_getEventWriter(); 494 case vmIntrinsics::_jvm_commit: return inline_native_jvm_commit(); 495 #endif 496 case vmIntrinsics::_currentTimeMillis: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis"); 497 case vmIntrinsics::_nanoTime: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime"); 498 case vmIntrinsics::_writeback0: return inline_unsafe_writeback0(); 499 case vmIntrinsics::_writebackPreSync0: return inline_unsafe_writebackSync0(true); 500 case vmIntrinsics::_writebackPostSync0: return inline_unsafe_writebackSync0(false); 501 case vmIntrinsics::_allocateInstance: return inline_unsafe_allocate(); 502 case vmIntrinsics::_copyMemory: return inline_unsafe_copyMemory(); 503 case vmIntrinsics::_setMemory: return inline_unsafe_setMemory(); 504 case vmIntrinsics::_getLength: return inline_native_getLength(); 505 case vmIntrinsics::_copyOf: return inline_array_copyOf(false); 506 case vmIntrinsics::_copyOfRange: return inline_array_copyOf(true); 507 case vmIntrinsics::_equalsB: return inline_array_equals(StrIntrinsicNode::LL); 508 case vmIntrinsics::_equalsC: return inline_array_equals(StrIntrinsicNode::UU); 509 case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex(T_INT); 510 case vmIntrinsics::_Preconditions_checkLongIndex: return inline_preconditions_checkIndex(T_LONG); 511 case vmIntrinsics::_clone: return inline_native_clone(intrinsic()->is_virtual()); 512 513 case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true); 514 case vmIntrinsics::_newArray: return inline_unsafe_newArray(false); 515 516 case vmIntrinsics::_isAssignableFrom: return inline_native_subtype_check(); 517 518 case vmIntrinsics::_isInstance: 519 case vmIntrinsics::_isHidden: 520 case vmIntrinsics::_getSuperclass: 521 case vmIntrinsics::_getClassAccessFlags: return inline_native_Class_query(intrinsic_id()); 522 523 case vmIntrinsics::_floatToRawIntBits: 524 case vmIntrinsics::_floatToIntBits: 525 case vmIntrinsics::_intBitsToFloat: 526 case vmIntrinsics::_doubleToRawLongBits: 527 case vmIntrinsics::_doubleToLongBits: 528 case vmIntrinsics::_longBitsToDouble: 529 case vmIntrinsics::_floatToFloat16: 530 case vmIntrinsics::_float16ToFloat: return inline_fp_conversions(intrinsic_id()); 531 case vmIntrinsics::_sqrt_float16: return inline_fp16_operations(intrinsic_id(), 1); 532 case vmIntrinsics::_fma_float16: return inline_fp16_operations(intrinsic_id(), 3); 533 case vmIntrinsics::_floatIsFinite: 534 case vmIntrinsics::_floatIsInfinite: 535 case vmIntrinsics::_doubleIsFinite: 536 case vmIntrinsics::_doubleIsInfinite: return inline_fp_range_check(intrinsic_id()); 537 538 case vmIntrinsics::_numberOfLeadingZeros_i: 539 case vmIntrinsics::_numberOfLeadingZeros_l: 540 case vmIntrinsics::_numberOfTrailingZeros_i: 541 case vmIntrinsics::_numberOfTrailingZeros_l: 542 case vmIntrinsics::_bitCount_i: 543 case vmIntrinsics::_bitCount_l: 544 case vmIntrinsics::_reverse_i: 545 case vmIntrinsics::_reverse_l: 546 case vmIntrinsics::_reverseBytes_i: 547 case vmIntrinsics::_reverseBytes_l: 548 case vmIntrinsics::_reverseBytes_s: 549 case vmIntrinsics::_reverseBytes_c: return inline_number_methods(intrinsic_id()); 550 551 case vmIntrinsics::_compress_i: 552 case vmIntrinsics::_compress_l: 553 case vmIntrinsics::_expand_i: 554 case vmIntrinsics::_expand_l: return inline_bitshuffle_methods(intrinsic_id()); 555 556 case vmIntrinsics::_compareUnsigned_i: 557 case vmIntrinsics::_compareUnsigned_l: return inline_compare_unsigned(intrinsic_id()); 558 559 case vmIntrinsics::_divideUnsigned_i: 560 case vmIntrinsics::_divideUnsigned_l: 561 case vmIntrinsics::_remainderUnsigned_i: 562 case vmIntrinsics::_remainderUnsigned_l: return inline_divmod_methods(intrinsic_id()); 563 564 case vmIntrinsics::_getCallerClass: return inline_native_Reflection_getCallerClass(); 565 566 case vmIntrinsics::_Reference_get: return inline_reference_get(); 567 case vmIntrinsics::_Reference_refersTo0: return inline_reference_refersTo0(false); 568 case vmIntrinsics::_PhantomReference_refersTo0: return inline_reference_refersTo0(true); 569 case vmIntrinsics::_Reference_clear0: return inline_reference_clear0(false); 570 case vmIntrinsics::_PhantomReference_clear0: return inline_reference_clear0(true); 571 572 case vmIntrinsics::_Class_cast: return inline_Class_cast(); 573 574 case vmIntrinsics::_aescrypt_encryptBlock: 575 case vmIntrinsics::_aescrypt_decryptBlock: return inline_aescrypt_Block(intrinsic_id()); 576 577 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 578 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 579 return inline_cipherBlockChaining_AESCrypt(intrinsic_id()); 580 581 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 582 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 583 return inline_electronicCodeBook_AESCrypt(intrinsic_id()); 584 585 case vmIntrinsics::_counterMode_AESCrypt: 586 return inline_counterMode_AESCrypt(intrinsic_id()); 587 588 case vmIntrinsics::_galoisCounterMode_AESCrypt: 589 return inline_galoisCounterMode_AESCrypt(); 590 591 case vmIntrinsics::_md5_implCompress: 592 case vmIntrinsics::_sha_implCompress: 593 case vmIntrinsics::_sha2_implCompress: 594 case vmIntrinsics::_sha5_implCompress: 595 case vmIntrinsics::_sha3_implCompress: 596 return inline_digestBase_implCompress(intrinsic_id()); 597 case vmIntrinsics::_double_keccak: 598 return inline_double_keccak(); 599 600 case vmIntrinsics::_digestBase_implCompressMB: 601 return inline_digestBase_implCompressMB(predicate); 602 603 case vmIntrinsics::_multiplyToLen: 604 return inline_multiplyToLen(); 605 606 case vmIntrinsics::_squareToLen: 607 return inline_squareToLen(); 608 609 case vmIntrinsics::_mulAdd: 610 return inline_mulAdd(); 611 612 case vmIntrinsics::_montgomeryMultiply: 613 return inline_montgomeryMultiply(); 614 case vmIntrinsics::_montgomerySquare: 615 return inline_montgomerySquare(); 616 617 case vmIntrinsics::_bigIntegerRightShiftWorker: 618 return inline_bigIntegerShift(true); 619 case vmIntrinsics::_bigIntegerLeftShiftWorker: 620 return inline_bigIntegerShift(false); 621 622 case vmIntrinsics::_vectorizedMismatch: 623 return inline_vectorizedMismatch(); 624 625 case vmIntrinsics::_ghash_processBlocks: 626 return inline_ghash_processBlocks(); 627 case vmIntrinsics::_chacha20Block: 628 return inline_chacha20Block(); 629 case vmIntrinsics::_dilithiumAlmostNtt: 630 return inline_dilithiumAlmostNtt(); 631 case vmIntrinsics::_dilithiumAlmostInverseNtt: 632 return inline_dilithiumAlmostInverseNtt(); 633 case vmIntrinsics::_dilithiumNttMult: 634 return inline_dilithiumNttMult(); 635 case vmIntrinsics::_dilithiumMontMulByConstant: 636 return inline_dilithiumMontMulByConstant(); 637 case vmIntrinsics::_dilithiumDecomposePoly: 638 return inline_dilithiumDecomposePoly(); 639 case vmIntrinsics::_base64_encodeBlock: 640 return inline_base64_encodeBlock(); 641 case vmIntrinsics::_base64_decodeBlock: 642 return inline_base64_decodeBlock(); 643 case vmIntrinsics::_poly1305_processBlocks: 644 return inline_poly1305_processBlocks(); 645 case vmIntrinsics::_intpoly_montgomeryMult_P256: 646 return inline_intpoly_montgomeryMult_P256(); 647 case vmIntrinsics::_intpoly_assign: 648 return inline_intpoly_assign(); 649 case vmIntrinsics::_encodeISOArray: 650 case vmIntrinsics::_encodeByteISOArray: 651 return inline_encodeISOArray(false); 652 case vmIntrinsics::_encodeAsciiArray: 653 return inline_encodeISOArray(true); 654 655 case vmIntrinsics::_updateCRC32: 656 return inline_updateCRC32(); 657 case vmIntrinsics::_updateBytesCRC32: 658 return inline_updateBytesCRC32(); 659 case vmIntrinsics::_updateByteBufferCRC32: 660 return inline_updateByteBufferCRC32(); 661 662 case vmIntrinsics::_updateBytesCRC32C: 663 return inline_updateBytesCRC32C(); 664 case vmIntrinsics::_updateDirectByteBufferCRC32C: 665 return inline_updateDirectByteBufferCRC32C(); 666 667 case vmIntrinsics::_updateBytesAdler32: 668 return inline_updateBytesAdler32(); 669 case vmIntrinsics::_updateByteBufferAdler32: 670 return inline_updateByteBufferAdler32(); 671 672 case vmIntrinsics::_profileBoolean: 673 return inline_profileBoolean(); 674 case vmIntrinsics::_isCompileConstant: 675 return inline_isCompileConstant(); 676 677 case vmIntrinsics::_countPositives: 678 return inline_countPositives(); 679 680 case vmIntrinsics::_fmaD: 681 case vmIntrinsics::_fmaF: 682 return inline_fma(intrinsic_id()); 683 684 case vmIntrinsics::_isDigit: 685 case vmIntrinsics::_isLowerCase: 686 case vmIntrinsics::_isUpperCase: 687 case vmIntrinsics::_isWhitespace: 688 return inline_character_compare(intrinsic_id()); 689 690 case vmIntrinsics::_min: 691 case vmIntrinsics::_max: 692 case vmIntrinsics::_min_strict: 693 case vmIntrinsics::_max_strict: 694 case vmIntrinsics::_minL: 695 case vmIntrinsics::_maxL: 696 case vmIntrinsics::_minF: 697 case vmIntrinsics::_maxF: 698 case vmIntrinsics::_minD: 699 case vmIntrinsics::_maxD: 700 case vmIntrinsics::_minF_strict: 701 case vmIntrinsics::_maxF_strict: 702 case vmIntrinsics::_minD_strict: 703 case vmIntrinsics::_maxD_strict: 704 return inline_min_max(intrinsic_id()); 705 706 case vmIntrinsics::_VectorUnaryOp: 707 return inline_vector_nary_operation(1); 708 case vmIntrinsics::_VectorBinaryOp: 709 return inline_vector_nary_operation(2); 710 case vmIntrinsics::_VectorTernaryOp: 711 return inline_vector_nary_operation(3); 712 case vmIntrinsics::_VectorFromBitsCoerced: 713 return inline_vector_frombits_coerced(); 714 case vmIntrinsics::_VectorMaskOp: 715 return inline_vector_mask_operation(); 716 case vmIntrinsics::_VectorLoadOp: 717 return inline_vector_mem_operation(/*is_store=*/false); 718 case vmIntrinsics::_VectorLoadMaskedOp: 719 return inline_vector_mem_masked_operation(/*is_store*/false); 720 case vmIntrinsics::_VectorStoreOp: 721 return inline_vector_mem_operation(/*is_store=*/true); 722 case vmIntrinsics::_VectorStoreMaskedOp: 723 return inline_vector_mem_masked_operation(/*is_store=*/true); 724 case vmIntrinsics::_VectorGatherOp: 725 return inline_vector_gather_scatter(/*is_scatter*/ false); 726 case vmIntrinsics::_VectorScatterOp: 727 return inline_vector_gather_scatter(/*is_scatter*/ true); 728 case vmIntrinsics::_VectorReductionCoerced: 729 return inline_vector_reduction(); 730 case vmIntrinsics::_VectorTest: 731 return inline_vector_test(); 732 case vmIntrinsics::_VectorBlend: 733 return inline_vector_blend(); 734 case vmIntrinsics::_VectorRearrange: 735 return inline_vector_rearrange(); 736 case vmIntrinsics::_VectorSelectFrom: 737 return inline_vector_select_from(); 738 case vmIntrinsics::_VectorCompare: 739 return inline_vector_compare(); 740 case vmIntrinsics::_VectorBroadcastInt: 741 return inline_vector_broadcast_int(); 742 case vmIntrinsics::_VectorConvert: 743 return inline_vector_convert(); 744 case vmIntrinsics::_VectorInsert: 745 return inline_vector_insert(); 746 case vmIntrinsics::_VectorExtract: 747 return inline_vector_extract(); 748 case vmIntrinsics::_VectorCompressExpand: 749 return inline_vector_compress_expand(); 750 case vmIntrinsics::_VectorSelectFromTwoVectorOp: 751 return inline_vector_select_from_two_vectors(); 752 case vmIntrinsics::_IndexVector: 753 return inline_index_vector(); 754 case vmIntrinsics::_IndexPartiallyInUpperRange: 755 return inline_index_partially_in_upper_range(); 756 757 case vmIntrinsics::_getObjectSize: 758 return inline_getObjectSize(); 759 760 case vmIntrinsics::_blackhole: 761 return inline_blackhole(); 762 763 default: 764 // If you get here, it may be that someone has added a new intrinsic 765 // to the list in vmIntrinsics.hpp without implementing it here. 766 #ifndef PRODUCT 767 if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) { 768 tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)", 769 vmIntrinsics::name_at(intrinsic_id()), vmIntrinsics::as_int(intrinsic_id())); 770 } 771 #endif 772 return false; 773 } 774 } 775 776 Node* LibraryCallKit::try_to_predicate(int predicate) { 777 if (!jvms()->has_method()) { 778 // Root JVMState has a null method. 779 assert(map()->memory()->Opcode() == Op_Parm, ""); 780 // Insert the memory aliasing node 781 set_all_memory(reset_memory()); 782 } 783 assert(merged_memory(), ""); 784 785 switch (intrinsic_id()) { 786 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 787 return inline_cipherBlockChaining_AESCrypt_predicate(false); 788 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 789 return inline_cipherBlockChaining_AESCrypt_predicate(true); 790 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 791 return inline_electronicCodeBook_AESCrypt_predicate(false); 792 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 793 return inline_electronicCodeBook_AESCrypt_predicate(true); 794 case vmIntrinsics::_counterMode_AESCrypt: 795 return inline_counterMode_AESCrypt_predicate(); 796 case vmIntrinsics::_digestBase_implCompressMB: 797 return inline_digestBase_implCompressMB_predicate(predicate); 798 case vmIntrinsics::_galoisCounterMode_AESCrypt: 799 return inline_galoisCounterMode_AESCrypt_predicate(); 800 801 default: 802 // If you get here, it may be that someone has added a new intrinsic 803 // to the list in vmIntrinsics.hpp without implementing it here. 804 #ifndef PRODUCT 805 if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) { 806 tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)", 807 vmIntrinsics::name_at(intrinsic_id()), vmIntrinsics::as_int(intrinsic_id())); 808 } 809 #endif 810 Node* slow_ctl = control(); 811 set_control(top()); // No fast path intrinsic 812 return slow_ctl; 813 } 814 } 815 816 //------------------------------set_result------------------------------- 817 // Helper function for finishing intrinsics. 818 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) { 819 record_for_igvn(region); 820 set_control(_gvn.transform(region)); 821 set_result( _gvn.transform(value)); 822 assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity"); 823 } 824 825 //------------------------------generate_guard--------------------------- 826 // Helper function for generating guarded fast-slow graph structures. 827 // The given 'test', if true, guards a slow path. If the test fails 828 // then a fast path can be taken. (We generally hope it fails.) 829 // In all cases, GraphKit::control() is updated to the fast path. 830 // The returned value represents the control for the slow path. 831 // The return value is never 'top'; it is either a valid control 832 // or null if it is obvious that the slow path can never be taken. 833 // Also, if region and the slow control are not null, the slow edge 834 // is appended to the region. 835 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) { 836 if (stopped()) { 837 // Already short circuited. 838 return nullptr; 839 } 840 841 // Build an if node and its projections. 842 // If test is true we take the slow path, which we assume is uncommon. 843 if (_gvn.type(test) == TypeInt::ZERO) { 844 // The slow branch is never taken. No need to build this guard. 845 return nullptr; 846 } 847 848 IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN); 849 850 Node* if_slow = _gvn.transform(new IfTrueNode(iff)); 851 if (if_slow == top()) { 852 // The slow branch is never taken. No need to build this guard. 853 return nullptr; 854 } 855 856 if (region != nullptr) 857 region->add_req(if_slow); 858 859 Node* if_fast = _gvn.transform(new IfFalseNode(iff)); 860 set_control(if_fast); 861 862 return if_slow; 863 } 864 865 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) { 866 return generate_guard(test, region, PROB_UNLIKELY_MAG(3)); 867 } 868 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) { 869 return generate_guard(test, region, PROB_FAIR); 870 } 871 872 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region, 873 Node* *pos_index) { 874 if (stopped()) 875 return nullptr; // already stopped 876 if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint] 877 return nullptr; // index is already adequately typed 878 Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0))); 879 Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt)); 880 Node* is_neg = generate_guard(bol_lt, region, PROB_MIN); 881 if (is_neg != nullptr && pos_index != nullptr) { 882 // Emulate effect of Parse::adjust_map_after_if. 883 Node* ccast = new CastIINode(control(), index, TypeInt::POS); 884 (*pos_index) = _gvn.transform(ccast); 885 } 886 return is_neg; 887 } 888 889 // Make sure that 'position' is a valid limit index, in [0..length]. 890 // There are two equivalent plans for checking this: 891 // A. (offset + copyLength) unsigned<= arrayLength 892 // B. offset <= (arrayLength - copyLength) 893 // We require that all of the values above, except for the sum and 894 // difference, are already known to be non-negative. 895 // Plan A is robust in the face of overflow, if offset and copyLength 896 // are both hugely positive. 897 // 898 // Plan B is less direct and intuitive, but it does not overflow at 899 // all, since the difference of two non-negatives is always 900 // representable. Whenever Java methods must perform the equivalent 901 // check they generally use Plan B instead of Plan A. 902 // For the moment we use Plan A. 903 inline Node* LibraryCallKit::generate_limit_guard(Node* offset, 904 Node* subseq_length, 905 Node* array_length, 906 RegionNode* region) { 907 if (stopped()) 908 return nullptr; // already stopped 909 bool zero_offset = _gvn.type(offset) == TypeInt::ZERO; 910 if (zero_offset && subseq_length->eqv_uncast(array_length)) 911 return nullptr; // common case of whole-array copy 912 Node* last = subseq_length; 913 if (!zero_offset) // last += offset 914 last = _gvn.transform(new AddINode(last, offset)); 915 Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last)); 916 Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt)); 917 Node* is_over = generate_guard(bol_lt, region, PROB_MIN); 918 return is_over; 919 } 920 921 // Emit range checks for the given String.value byte array 922 void LibraryCallKit::generate_string_range_check(Node* array, Node* offset, Node* count, bool char_count) { 923 if (stopped()) { 924 return; // already stopped 925 } 926 RegionNode* bailout = new RegionNode(1); 927 record_for_igvn(bailout); 928 if (char_count) { 929 // Convert char count to byte count 930 count = _gvn.transform(new LShiftINode(count, intcon(1))); 931 } 932 933 // Offset and count must not be negative 934 generate_negative_guard(offset, bailout); 935 generate_negative_guard(count, bailout); 936 // Offset + count must not exceed length of array 937 generate_limit_guard(offset, count, load_array_length(array), bailout); 938 939 if (bailout->req() > 1) { 940 PreserveJVMState pjvms(this); 941 set_control(_gvn.transform(bailout)); 942 uncommon_trap(Deoptimization::Reason_intrinsic, 943 Deoptimization::Action_maybe_recompile); 944 } 945 } 946 947 Node* LibraryCallKit::current_thread_helper(Node*& tls_output, ByteSize handle_offset, 948 bool is_immutable) { 949 ciKlass* thread_klass = env()->Thread_klass(); 950 const Type* thread_type 951 = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull); 952 953 Node* thread = _gvn.transform(new ThreadLocalNode()); 954 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(handle_offset)); 955 tls_output = thread; 956 957 Node* thread_obj_handle 958 = (is_immutable 959 ? LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(), 960 TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered) 961 : make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered)); 962 thread_obj_handle = _gvn.transform(thread_obj_handle); 963 964 DecoratorSet decorators = IN_NATIVE; 965 if (is_immutable) { 966 decorators |= C2_IMMUTABLE_MEMORY; 967 } 968 return access_load(thread_obj_handle, thread_type, T_OBJECT, decorators); 969 } 970 971 //--------------------------generate_current_thread-------------------- 972 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) { 973 return current_thread_helper(tls_output, JavaThread::threadObj_offset(), 974 /*is_immutable*/false); 975 } 976 977 //--------------------------generate_virtual_thread-------------------- 978 Node* LibraryCallKit::generate_virtual_thread(Node* tls_output) { 979 return current_thread_helper(tls_output, JavaThread::vthread_offset(), 980 !C->method()->changes_current_thread()); 981 } 982 983 //------------------------------make_string_method_node------------------------ 984 // Helper method for String intrinsic functions. This version is called with 985 // str1 and str2 pointing to byte[] nodes containing Latin1 or UTF16 encoded 986 // characters (depending on 'is_byte'). cnt1 and cnt2 are pointing to Int nodes 987 // containing the lengths of str1 and str2. 988 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae) { 989 Node* result = nullptr; 990 switch (opcode) { 991 case Op_StrIndexOf: 992 result = new StrIndexOfNode(control(), memory(TypeAryPtr::BYTES), 993 str1_start, cnt1, str2_start, cnt2, ae); 994 break; 995 case Op_StrComp: 996 result = new StrCompNode(control(), memory(TypeAryPtr::BYTES), 997 str1_start, cnt1, str2_start, cnt2, ae); 998 break; 999 case Op_StrEquals: 1000 // We already know that cnt1 == cnt2 here (checked in 'inline_string_equals'). 1001 // Use the constant length if there is one because optimized match rule may exist. 1002 result = new StrEqualsNode(control(), memory(TypeAryPtr::BYTES), 1003 str1_start, str2_start, cnt2->is_Con() ? cnt2 : cnt1, ae); 1004 break; 1005 default: 1006 ShouldNotReachHere(); 1007 return nullptr; 1008 } 1009 1010 // All these intrinsics have checks. 1011 C->set_has_split_ifs(true); // Has chance for split-if optimization 1012 clear_upper_avx(); 1013 1014 return _gvn.transform(result); 1015 } 1016 1017 //------------------------------inline_string_compareTo------------------------ 1018 bool LibraryCallKit::inline_string_compareTo(StrIntrinsicNode::ArgEnc ae) { 1019 Node* arg1 = argument(0); 1020 Node* arg2 = argument(1); 1021 1022 arg1 = must_be_not_null(arg1, true); 1023 arg2 = must_be_not_null(arg2, true); 1024 1025 // Get start addr and length of first argument 1026 Node* arg1_start = array_element_address(arg1, intcon(0), T_BYTE); 1027 Node* arg1_cnt = load_array_length(arg1); 1028 1029 // Get start addr and length of second argument 1030 Node* arg2_start = array_element_address(arg2, intcon(0), T_BYTE); 1031 Node* arg2_cnt = load_array_length(arg2); 1032 1033 Node* result = make_string_method_node(Op_StrComp, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae); 1034 set_result(result); 1035 return true; 1036 } 1037 1038 //------------------------------inline_string_equals------------------------ 1039 bool LibraryCallKit::inline_string_equals(StrIntrinsicNode::ArgEnc ae) { 1040 Node* arg1 = argument(0); 1041 Node* arg2 = argument(1); 1042 1043 // paths (plus control) merge 1044 RegionNode* region = new RegionNode(3); 1045 Node* phi = new PhiNode(region, TypeInt::BOOL); 1046 1047 if (!stopped()) { 1048 1049 arg1 = must_be_not_null(arg1, true); 1050 arg2 = must_be_not_null(arg2, true); 1051 1052 // Get start addr and length of first argument 1053 Node* arg1_start = array_element_address(arg1, intcon(0), T_BYTE); 1054 Node* arg1_cnt = load_array_length(arg1); 1055 1056 // Get start addr and length of second argument 1057 Node* arg2_start = array_element_address(arg2, intcon(0), T_BYTE); 1058 Node* arg2_cnt = load_array_length(arg2); 1059 1060 // Check for arg1_cnt != arg2_cnt 1061 Node* cmp = _gvn.transform(new CmpINode(arg1_cnt, arg2_cnt)); 1062 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne)); 1063 Node* if_ne = generate_slow_guard(bol, nullptr); 1064 if (if_ne != nullptr) { 1065 phi->init_req(2, intcon(0)); 1066 region->init_req(2, if_ne); 1067 } 1068 1069 // Check for count == 0 is done by assembler code for StrEquals. 1070 1071 if (!stopped()) { 1072 Node* equals = make_string_method_node(Op_StrEquals, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae); 1073 phi->init_req(1, equals); 1074 region->init_req(1, control()); 1075 } 1076 } 1077 1078 // post merge 1079 set_control(_gvn.transform(region)); 1080 record_for_igvn(region); 1081 1082 set_result(_gvn.transform(phi)); 1083 return true; 1084 } 1085 1086 //------------------------------inline_array_equals---------------------------- 1087 bool LibraryCallKit::inline_array_equals(StrIntrinsicNode::ArgEnc ae) { 1088 assert(ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::LL, "unsupported array types"); 1089 Node* arg1 = argument(0); 1090 Node* arg2 = argument(1); 1091 1092 const TypeAryPtr* mtype = (ae == StrIntrinsicNode::UU) ? TypeAryPtr::CHARS : TypeAryPtr::BYTES; 1093 set_result(_gvn.transform(new AryEqNode(control(), memory(mtype), arg1, arg2, ae))); 1094 clear_upper_avx(); 1095 1096 return true; 1097 } 1098 1099 1100 //------------------------------inline_countPositives------------------------------ 1101 bool LibraryCallKit::inline_countPositives() { 1102 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1103 return false; 1104 } 1105 1106 assert(callee()->signature()->size() == 3, "countPositives has 3 parameters"); 1107 // no receiver since it is static method 1108 Node* ba = argument(0); 1109 Node* offset = argument(1); 1110 Node* len = argument(2); 1111 1112 ba = must_be_not_null(ba, true); 1113 1114 // Range checks 1115 generate_string_range_check(ba, offset, len, false); 1116 if (stopped()) { 1117 return true; 1118 } 1119 Node* ba_start = array_element_address(ba, offset, T_BYTE); 1120 Node* result = new CountPositivesNode(control(), memory(TypeAryPtr::BYTES), ba_start, len); 1121 set_result(_gvn.transform(result)); 1122 clear_upper_avx(); 1123 return true; 1124 } 1125 1126 bool LibraryCallKit::inline_preconditions_checkIndex(BasicType bt) { 1127 Node* index = argument(0); 1128 Node* length = bt == T_INT ? argument(1) : argument(2); 1129 if (too_many_traps(Deoptimization::Reason_intrinsic) || too_many_traps(Deoptimization::Reason_range_check)) { 1130 return false; 1131 } 1132 1133 // check that length is positive 1134 Node* len_pos_cmp = _gvn.transform(CmpNode::make(length, integercon(0, bt), bt)); 1135 Node* len_pos_bol = _gvn.transform(new BoolNode(len_pos_cmp, BoolTest::ge)); 1136 1137 { 1138 BuildCutout unless(this, len_pos_bol, PROB_MAX); 1139 uncommon_trap(Deoptimization::Reason_intrinsic, 1140 Deoptimization::Action_make_not_entrant); 1141 } 1142 1143 if (stopped()) { 1144 // Length is known to be always negative during compilation and the IR graph so far constructed is good so return success 1145 return true; 1146 } 1147 1148 // length is now known positive, add a cast node to make this explicit 1149 jlong upper_bound = _gvn.type(length)->is_integer(bt)->hi_as_long(); 1150 Node* casted_length = ConstraintCastNode::make_cast_for_basic_type( 1151 control(), length, TypeInteger::make(0, upper_bound, Type::WidenMax, bt), 1152 ConstraintCastNode::RegularDependency, bt); 1153 casted_length = _gvn.transform(casted_length); 1154 replace_in_map(length, casted_length); 1155 length = casted_length; 1156 1157 // Use an unsigned comparison for the range check itself 1158 Node* rc_cmp = _gvn.transform(CmpNode::make(index, length, bt, true)); 1159 BoolTest::mask btest = BoolTest::lt; 1160 Node* rc_bool = _gvn.transform(new BoolNode(rc_cmp, btest)); 1161 RangeCheckNode* rc = new RangeCheckNode(control(), rc_bool, PROB_MAX, COUNT_UNKNOWN); 1162 _gvn.set_type(rc, rc->Value(&_gvn)); 1163 if (!rc_bool->is_Con()) { 1164 record_for_igvn(rc); 1165 } 1166 set_control(_gvn.transform(new IfTrueNode(rc))); 1167 { 1168 PreserveJVMState pjvms(this); 1169 set_control(_gvn.transform(new IfFalseNode(rc))); 1170 uncommon_trap(Deoptimization::Reason_range_check, 1171 Deoptimization::Action_make_not_entrant); 1172 } 1173 1174 if (stopped()) { 1175 // Range check is known to always fail during compilation and the IR graph so far constructed is good so return success 1176 return true; 1177 } 1178 1179 // index is now known to be >= 0 and < length, cast it 1180 Node* result = ConstraintCastNode::make_cast_for_basic_type( 1181 control(), index, TypeInteger::make(0, upper_bound, Type::WidenMax, bt), 1182 ConstraintCastNode::RegularDependency, bt); 1183 result = _gvn.transform(result); 1184 set_result(result); 1185 replace_in_map(index, result); 1186 return true; 1187 } 1188 1189 //------------------------------inline_string_indexOf------------------------ 1190 bool LibraryCallKit::inline_string_indexOf(StrIntrinsicNode::ArgEnc ae) { 1191 if (!Matcher::match_rule_supported(Op_StrIndexOf)) { 1192 return false; 1193 } 1194 Node* src = argument(0); 1195 Node* tgt = argument(1); 1196 1197 // Make the merge point 1198 RegionNode* result_rgn = new RegionNode(4); 1199 Node* result_phi = new PhiNode(result_rgn, TypeInt::INT); 1200 1201 src = must_be_not_null(src, true); 1202 tgt = must_be_not_null(tgt, true); 1203 1204 // Get start addr and length of source string 1205 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 1206 Node* src_count = load_array_length(src); 1207 1208 // Get start addr and length of substring 1209 Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE); 1210 Node* tgt_count = load_array_length(tgt); 1211 1212 Node* result = nullptr; 1213 bool call_opt_stub = (StubRoutines::_string_indexof_array[ae] != nullptr); 1214 1215 if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) { 1216 // Divide src size by 2 if String is UTF16 encoded 1217 src_count = _gvn.transform(new RShiftINode(src_count, intcon(1))); 1218 } 1219 if (ae == StrIntrinsicNode::UU) { 1220 // Divide substring size by 2 if String is UTF16 encoded 1221 tgt_count = _gvn.transform(new RShiftINode(tgt_count, intcon(1))); 1222 } 1223 1224 if (call_opt_stub) { 1225 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::string_IndexOf_Type(), 1226 StubRoutines::_string_indexof_array[ae], 1227 "stringIndexOf", TypePtr::BOTTOM, src_start, 1228 src_count, tgt_start, tgt_count); 1229 result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 1230 } else { 1231 result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, 1232 result_rgn, result_phi, ae); 1233 } 1234 if (result != nullptr) { 1235 result_phi->init_req(3, result); 1236 result_rgn->init_req(3, control()); 1237 } 1238 set_control(_gvn.transform(result_rgn)); 1239 record_for_igvn(result_rgn); 1240 set_result(_gvn.transform(result_phi)); 1241 1242 return true; 1243 } 1244 1245 //-----------------------------inline_string_indexOfI----------------------- 1246 bool LibraryCallKit::inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae) { 1247 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1248 return false; 1249 } 1250 if (!Matcher::match_rule_supported(Op_StrIndexOf)) { 1251 return false; 1252 } 1253 1254 assert(callee()->signature()->size() == 5, "String.indexOf() has 5 arguments"); 1255 Node* src = argument(0); // byte[] 1256 Node* src_count = argument(1); // char count 1257 Node* tgt = argument(2); // byte[] 1258 Node* tgt_count = argument(3); // char count 1259 Node* from_index = argument(4); // char index 1260 1261 src = must_be_not_null(src, true); 1262 tgt = must_be_not_null(tgt, true); 1263 1264 // Multiply byte array index by 2 if String is UTF16 encoded 1265 Node* src_offset = (ae == StrIntrinsicNode::LL) ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1))); 1266 src_count = _gvn.transform(new SubINode(src_count, from_index)); 1267 Node* src_start = array_element_address(src, src_offset, T_BYTE); 1268 Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE); 1269 1270 // Range checks 1271 generate_string_range_check(src, src_offset, src_count, ae != StrIntrinsicNode::LL); 1272 generate_string_range_check(tgt, intcon(0), tgt_count, ae == StrIntrinsicNode::UU); 1273 if (stopped()) { 1274 return true; 1275 } 1276 1277 RegionNode* region = new RegionNode(5); 1278 Node* phi = new PhiNode(region, TypeInt::INT); 1279 Node* result = nullptr; 1280 1281 bool call_opt_stub = (StubRoutines::_string_indexof_array[ae] != nullptr); 1282 1283 if (call_opt_stub) { 1284 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::string_IndexOf_Type(), 1285 StubRoutines::_string_indexof_array[ae], 1286 "stringIndexOf", TypePtr::BOTTOM, src_start, 1287 src_count, tgt_start, tgt_count); 1288 result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 1289 } else { 1290 result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, 1291 region, phi, ae); 1292 } 1293 if (result != nullptr) { 1294 // The result is index relative to from_index if substring was found, -1 otherwise. 1295 // Generate code which will fold into cmove. 1296 Node* cmp = _gvn.transform(new CmpINode(result, intcon(0))); 1297 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt)); 1298 1299 Node* if_lt = generate_slow_guard(bol, nullptr); 1300 if (if_lt != nullptr) { 1301 // result == -1 1302 phi->init_req(3, result); 1303 region->init_req(3, if_lt); 1304 } 1305 if (!stopped()) { 1306 result = _gvn.transform(new AddINode(result, from_index)); 1307 phi->init_req(4, result); 1308 region->init_req(4, control()); 1309 } 1310 } 1311 1312 set_control(_gvn.transform(region)); 1313 record_for_igvn(region); 1314 set_result(_gvn.transform(phi)); 1315 clear_upper_avx(); 1316 1317 return true; 1318 } 1319 1320 // Create StrIndexOfNode with fast path checks 1321 Node* LibraryCallKit::make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count, 1322 RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae) { 1323 // Check for substr count > string count 1324 Node* cmp = _gvn.transform(new CmpINode(tgt_count, src_count)); 1325 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt)); 1326 Node* if_gt = generate_slow_guard(bol, nullptr); 1327 if (if_gt != nullptr) { 1328 phi->init_req(1, intcon(-1)); 1329 region->init_req(1, if_gt); 1330 } 1331 if (!stopped()) { 1332 // Check for substr count == 0 1333 cmp = _gvn.transform(new CmpINode(tgt_count, intcon(0))); 1334 bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 1335 Node* if_zero = generate_slow_guard(bol, nullptr); 1336 if (if_zero != nullptr) { 1337 phi->init_req(2, intcon(0)); 1338 region->init_req(2, if_zero); 1339 } 1340 } 1341 if (!stopped()) { 1342 return make_string_method_node(Op_StrIndexOf, src_start, src_count, tgt_start, tgt_count, ae); 1343 } 1344 return nullptr; 1345 } 1346 1347 //-----------------------------inline_string_indexOfChar----------------------- 1348 bool LibraryCallKit::inline_string_indexOfChar(StrIntrinsicNode::ArgEnc ae) { 1349 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1350 return false; 1351 } 1352 if (!Matcher::match_rule_supported(Op_StrIndexOfChar)) { 1353 return false; 1354 } 1355 assert(callee()->signature()->size() == 4, "String.indexOfChar() has 4 arguments"); 1356 Node* src = argument(0); // byte[] 1357 Node* int_ch = argument(1); 1358 Node* from_index = argument(2); 1359 Node* max = argument(3); 1360 1361 src = must_be_not_null(src, true); 1362 1363 Node* src_offset = ae == StrIntrinsicNode::L ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1))); 1364 Node* src_start = array_element_address(src, src_offset, T_BYTE); 1365 Node* src_count = _gvn.transform(new SubINode(max, from_index)); 1366 1367 // Range checks 1368 generate_string_range_check(src, src_offset, src_count, ae == StrIntrinsicNode::U); 1369 1370 // Check for int_ch >= 0 1371 Node* int_ch_cmp = _gvn.transform(new CmpINode(int_ch, intcon(0))); 1372 Node* int_ch_bol = _gvn.transform(new BoolNode(int_ch_cmp, BoolTest::ge)); 1373 { 1374 BuildCutout unless(this, int_ch_bol, PROB_MAX); 1375 uncommon_trap(Deoptimization::Reason_intrinsic, 1376 Deoptimization::Action_maybe_recompile); 1377 } 1378 if (stopped()) { 1379 return true; 1380 } 1381 1382 RegionNode* region = new RegionNode(3); 1383 Node* phi = new PhiNode(region, TypeInt::INT); 1384 1385 Node* result = new StrIndexOfCharNode(control(), memory(TypeAryPtr::BYTES), src_start, src_count, int_ch, ae); 1386 C->set_has_split_ifs(true); // Has chance for split-if optimization 1387 _gvn.transform(result); 1388 1389 Node* cmp = _gvn.transform(new CmpINode(result, intcon(0))); 1390 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt)); 1391 1392 Node* if_lt = generate_slow_guard(bol, nullptr); 1393 if (if_lt != nullptr) { 1394 // result == -1 1395 phi->init_req(2, result); 1396 region->init_req(2, if_lt); 1397 } 1398 if (!stopped()) { 1399 result = _gvn.transform(new AddINode(result, from_index)); 1400 phi->init_req(1, result); 1401 region->init_req(1, control()); 1402 } 1403 set_control(_gvn.transform(region)); 1404 record_for_igvn(region); 1405 set_result(_gvn.transform(phi)); 1406 clear_upper_avx(); 1407 1408 return true; 1409 } 1410 //---------------------------inline_string_copy--------------------- 1411 // compressIt == true --> generate a compressed copy operation (compress char[]/byte[] to byte[]) 1412 // int StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) 1413 // int StringUTF16.compress(byte[] src, int srcOff, byte[] dst, int dstOff, int len) 1414 // compressIt == false --> generate an inflated copy operation (inflate byte[] to char[]/byte[]) 1415 // void StringLatin1.inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len) 1416 // void StringLatin1.inflate(byte[] src, int srcOff, byte[] dst, int dstOff, int len) 1417 bool LibraryCallKit::inline_string_copy(bool compress) { 1418 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1419 return false; 1420 } 1421 int nargs = 5; // 2 oops, 3 ints 1422 assert(callee()->signature()->size() == nargs, "string copy has 5 arguments"); 1423 1424 Node* src = argument(0); 1425 Node* src_offset = argument(1); 1426 Node* dst = argument(2); 1427 Node* dst_offset = argument(3); 1428 Node* length = argument(4); 1429 1430 // Check for allocation before we add nodes that would confuse 1431 // tightly_coupled_allocation() 1432 AllocateArrayNode* alloc = tightly_coupled_allocation(dst); 1433 1434 // Figure out the size and type of the elements we will be copying. 1435 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 1436 const TypeAryPtr* dst_type = dst->Value(&_gvn)->isa_aryptr(); 1437 if (src_type == nullptr || dst_type == nullptr) { 1438 return false; 1439 } 1440 BasicType src_elem = src_type->elem()->array_element_basic_type(); 1441 BasicType dst_elem = dst_type->elem()->array_element_basic_type(); 1442 assert((compress && dst_elem == T_BYTE && (src_elem == T_BYTE || src_elem == T_CHAR)) || 1443 (!compress && src_elem == T_BYTE && (dst_elem == T_BYTE || dst_elem == T_CHAR)), 1444 "Unsupported array types for inline_string_copy"); 1445 1446 src = must_be_not_null(src, true); 1447 dst = must_be_not_null(dst, true); 1448 1449 // Convert char[] offsets to byte[] offsets 1450 bool convert_src = (compress && src_elem == T_BYTE); 1451 bool convert_dst = (!compress && dst_elem == T_BYTE); 1452 if (convert_src) { 1453 src_offset = _gvn.transform(new LShiftINode(src_offset, intcon(1))); 1454 } else if (convert_dst) { 1455 dst_offset = _gvn.transform(new LShiftINode(dst_offset, intcon(1))); 1456 } 1457 1458 // Range checks 1459 generate_string_range_check(src, src_offset, length, convert_src); 1460 generate_string_range_check(dst, dst_offset, length, convert_dst); 1461 if (stopped()) { 1462 return true; 1463 } 1464 1465 Node* src_start = array_element_address(src, src_offset, src_elem); 1466 Node* dst_start = array_element_address(dst, dst_offset, dst_elem); 1467 // 'src_start' points to src array + scaled offset 1468 // 'dst_start' points to dst array + scaled offset 1469 Node* count = nullptr; 1470 if (compress) { 1471 count = compress_string(src_start, TypeAryPtr::get_array_body_type(src_elem), dst_start, length); 1472 } else { 1473 inflate_string(src_start, dst_start, TypeAryPtr::get_array_body_type(dst_elem), length); 1474 } 1475 1476 if (alloc != nullptr) { 1477 if (alloc->maybe_set_complete(&_gvn)) { 1478 // "You break it, you buy it." 1479 InitializeNode* init = alloc->initialization(); 1480 assert(init->is_complete(), "we just did this"); 1481 init->set_complete_with_arraycopy(); 1482 assert(dst->is_CheckCastPP(), "sanity"); 1483 assert(dst->in(0)->in(0) == init, "dest pinned"); 1484 } 1485 // Do not let stores that initialize this object be reordered with 1486 // a subsequent store that would make this object accessible by 1487 // other threads. 1488 // Record what AllocateNode this StoreStore protects so that 1489 // escape analysis can go from the MemBarStoreStoreNode to the 1490 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1491 // based on the escape status of the AllocateNode. 1492 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1493 } 1494 if (compress) { 1495 set_result(_gvn.transform(count)); 1496 } 1497 clear_upper_avx(); 1498 1499 return true; 1500 } 1501 1502 #ifdef _LP64 1503 #define XTOP ,top() /*additional argument*/ 1504 #else //_LP64 1505 #define XTOP /*no additional argument*/ 1506 #endif //_LP64 1507 1508 //------------------------inline_string_toBytesU-------------------------- 1509 // public static byte[] StringUTF16.toBytes(char[] value, int off, int len) 1510 bool LibraryCallKit::inline_string_toBytesU() { 1511 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1512 return false; 1513 } 1514 // Get the arguments. 1515 Node* value = argument(0); 1516 Node* offset = argument(1); 1517 Node* length = argument(2); 1518 1519 Node* newcopy = nullptr; 1520 1521 // Set the original stack and the reexecute bit for the interpreter to reexecute 1522 // the bytecode that invokes StringUTF16.toBytes() if deoptimization happens. 1523 { PreserveReexecuteState preexecs(this); 1524 jvms()->set_should_reexecute(true); 1525 1526 // Check if a null path was taken unconditionally. 1527 value = null_check(value); 1528 1529 RegionNode* bailout = new RegionNode(1); 1530 record_for_igvn(bailout); 1531 1532 // Range checks 1533 generate_negative_guard(offset, bailout); 1534 generate_negative_guard(length, bailout); 1535 generate_limit_guard(offset, length, load_array_length(value), bailout); 1536 // Make sure that resulting byte[] length does not overflow Integer.MAX_VALUE 1537 generate_limit_guard(length, intcon(0), intcon(max_jint/2), bailout); 1538 1539 if (bailout->req() > 1) { 1540 PreserveJVMState pjvms(this); 1541 set_control(_gvn.transform(bailout)); 1542 uncommon_trap(Deoptimization::Reason_intrinsic, 1543 Deoptimization::Action_maybe_recompile); 1544 } 1545 if (stopped()) { 1546 return true; 1547 } 1548 1549 Node* size = _gvn.transform(new LShiftINode(length, intcon(1))); 1550 Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_BYTE))); 1551 newcopy = new_array(klass_node, size, 0); // no arguments to push 1552 AllocateArrayNode* alloc = tightly_coupled_allocation(newcopy); 1553 guarantee(alloc != nullptr, "created above"); 1554 1555 // Calculate starting addresses. 1556 Node* src_start = array_element_address(value, offset, T_CHAR); 1557 Node* dst_start = basic_plus_adr(newcopy, arrayOopDesc::base_offset_in_bytes(T_BYTE)); 1558 1559 // Check if src array address is aligned to HeapWordSize (dst is always aligned) 1560 const TypeInt* toffset = gvn().type(offset)->is_int(); 1561 bool aligned = toffset->is_con() && ((toffset->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0); 1562 1563 // Figure out which arraycopy runtime method to call (disjoint, uninitialized). 1564 const char* copyfunc_name = "arraycopy"; 1565 address copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true); 1566 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 1567 OptoRuntime::fast_arraycopy_Type(), 1568 copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM, 1569 src_start, dst_start, ConvI2X(length) XTOP); 1570 // Do not let reads from the cloned object float above the arraycopy. 1571 if (alloc->maybe_set_complete(&_gvn)) { 1572 // "You break it, you buy it." 1573 InitializeNode* init = alloc->initialization(); 1574 assert(init->is_complete(), "we just did this"); 1575 init->set_complete_with_arraycopy(); 1576 assert(newcopy->is_CheckCastPP(), "sanity"); 1577 assert(newcopy->in(0)->in(0) == init, "dest pinned"); 1578 } 1579 // Do not let stores that initialize this object be reordered with 1580 // a subsequent store that would make this object accessible by 1581 // other threads. 1582 // Record what AllocateNode this StoreStore protects so that 1583 // escape analysis can go from the MemBarStoreStoreNode to the 1584 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1585 // based on the escape status of the AllocateNode. 1586 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1587 } // original reexecute is set back here 1588 1589 C->set_has_split_ifs(true); // Has chance for split-if optimization 1590 if (!stopped()) { 1591 set_result(newcopy); 1592 } 1593 clear_upper_avx(); 1594 1595 return true; 1596 } 1597 1598 //------------------------inline_string_getCharsU-------------------------- 1599 // public void StringUTF16.getChars(byte[] src, int srcBegin, int srcEnd, char dst[], int dstBegin) 1600 bool LibraryCallKit::inline_string_getCharsU() { 1601 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1602 return false; 1603 } 1604 1605 // Get the arguments. 1606 Node* src = argument(0); 1607 Node* src_begin = argument(1); 1608 Node* src_end = argument(2); // exclusive offset (i < src_end) 1609 Node* dst = argument(3); 1610 Node* dst_begin = argument(4); 1611 1612 // Check for allocation before we add nodes that would confuse 1613 // tightly_coupled_allocation() 1614 AllocateArrayNode* alloc = tightly_coupled_allocation(dst); 1615 1616 // Check if a null path was taken unconditionally. 1617 src = null_check(src); 1618 dst = null_check(dst); 1619 if (stopped()) { 1620 return true; 1621 } 1622 1623 // Get length and convert char[] offset to byte[] offset 1624 Node* length = _gvn.transform(new SubINode(src_end, src_begin)); 1625 src_begin = _gvn.transform(new LShiftINode(src_begin, intcon(1))); 1626 1627 // Range checks 1628 generate_string_range_check(src, src_begin, length, true); 1629 generate_string_range_check(dst, dst_begin, length, false); 1630 if (stopped()) { 1631 return true; 1632 } 1633 1634 if (!stopped()) { 1635 // Calculate starting addresses. 1636 Node* src_start = array_element_address(src, src_begin, T_BYTE); 1637 Node* dst_start = array_element_address(dst, dst_begin, T_CHAR); 1638 1639 // Check if array addresses are aligned to HeapWordSize 1640 const TypeInt* tsrc = gvn().type(src_begin)->is_int(); 1641 const TypeInt* tdst = gvn().type(dst_begin)->is_int(); 1642 bool aligned = tsrc->is_con() && ((tsrc->get_con() * type2aelembytes(T_BYTE)) % HeapWordSize == 0) && 1643 tdst->is_con() && ((tdst->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0); 1644 1645 // Figure out which arraycopy runtime method to call (disjoint, uninitialized). 1646 const char* copyfunc_name = "arraycopy"; 1647 address copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true); 1648 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 1649 OptoRuntime::fast_arraycopy_Type(), 1650 copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM, 1651 src_start, dst_start, ConvI2X(length) XTOP); 1652 // Do not let reads from the cloned object float above the arraycopy. 1653 if (alloc != nullptr) { 1654 if (alloc->maybe_set_complete(&_gvn)) { 1655 // "You break it, you buy it." 1656 InitializeNode* init = alloc->initialization(); 1657 assert(init->is_complete(), "we just did this"); 1658 init->set_complete_with_arraycopy(); 1659 assert(dst->is_CheckCastPP(), "sanity"); 1660 assert(dst->in(0)->in(0) == init, "dest pinned"); 1661 } 1662 // Do not let stores that initialize this object be reordered with 1663 // a subsequent store that would make this object accessible by 1664 // other threads. 1665 // Record what AllocateNode this StoreStore protects so that 1666 // escape analysis can go from the MemBarStoreStoreNode to the 1667 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1668 // based on the escape status of the AllocateNode. 1669 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1670 } else { 1671 insert_mem_bar(Op_MemBarCPUOrder); 1672 } 1673 } 1674 1675 C->set_has_split_ifs(true); // Has chance for split-if optimization 1676 return true; 1677 } 1678 1679 //----------------------inline_string_char_access---------------------------- 1680 // Store/Load char to/from byte[] array. 1681 // static void StringUTF16.putChar(byte[] val, int index, int c) 1682 // static char StringUTF16.getChar(byte[] val, int index) 1683 bool LibraryCallKit::inline_string_char_access(bool is_store) { 1684 Node* value = argument(0); 1685 Node* index = argument(1); 1686 Node* ch = is_store ? argument(2) : nullptr; 1687 1688 // This intrinsic accesses byte[] array as char[] array. Computing the offsets 1689 // correctly requires matched array shapes. 1690 assert (arrayOopDesc::base_offset_in_bytes(T_CHAR) == arrayOopDesc::base_offset_in_bytes(T_BYTE), 1691 "sanity: byte[] and char[] bases agree"); 1692 assert (type2aelembytes(T_CHAR) == type2aelembytes(T_BYTE)*2, 1693 "sanity: byte[] and char[] scales agree"); 1694 1695 // Bail when getChar over constants is requested: constant folding would 1696 // reject folding mismatched char access over byte[]. A normal inlining for getChar 1697 // Java method would constant fold nicely instead. 1698 if (!is_store && value->is_Con() && index->is_Con()) { 1699 return false; 1700 } 1701 1702 // Save state and restore on bailout 1703 uint old_sp = sp(); 1704 SafePointNode* old_map = clone_map(); 1705 1706 value = must_be_not_null(value, true); 1707 1708 Node* adr = array_element_address(value, index, T_CHAR); 1709 if (adr->is_top()) { 1710 set_map(old_map); 1711 set_sp(old_sp); 1712 return false; 1713 } 1714 destruct_map_clone(old_map); 1715 if (is_store) { 1716 access_store_at(value, adr, TypeAryPtr::BYTES, ch, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED); 1717 } else { 1718 ch = access_load_at(value, adr, TypeAryPtr::BYTES, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD | C2_UNKNOWN_CONTROL_LOAD); 1719 set_result(ch); 1720 } 1721 return true; 1722 } 1723 1724 //--------------------------round_double_node-------------------------------- 1725 // Round a double node if necessary. 1726 Node* LibraryCallKit::round_double_node(Node* n) { 1727 if (Matcher::strict_fp_requires_explicit_rounding) { 1728 #ifdef IA32 1729 if (UseSSE < 2) { 1730 n = _gvn.transform(new RoundDoubleNode(nullptr, n)); 1731 } 1732 #else 1733 Unimplemented(); 1734 #endif // IA32 1735 } 1736 return n; 1737 } 1738 1739 //------------------------------inline_math----------------------------------- 1740 // public static double Math.abs(double) 1741 // public static double Math.sqrt(double) 1742 // public static double Math.log(double) 1743 // public static double Math.log10(double) 1744 // public static double Math.round(double) 1745 bool LibraryCallKit::inline_double_math(vmIntrinsics::ID id) { 1746 Node* arg = round_double_node(argument(0)); 1747 Node* n = nullptr; 1748 switch (id) { 1749 case vmIntrinsics::_dabs: n = new AbsDNode( arg); break; 1750 case vmIntrinsics::_dsqrt: 1751 case vmIntrinsics::_dsqrt_strict: 1752 n = new SqrtDNode(C, control(), arg); break; 1753 case vmIntrinsics::_ceil: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_ceil); break; 1754 case vmIntrinsics::_floor: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_floor); break; 1755 case vmIntrinsics::_rint: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_rint); break; 1756 case vmIntrinsics::_roundD: n = new RoundDNode(arg); break; 1757 case vmIntrinsics::_dcopySign: n = CopySignDNode::make(_gvn, arg, round_double_node(argument(2))); break; 1758 case vmIntrinsics::_dsignum: n = SignumDNode::make(_gvn, arg); break; 1759 default: fatal_unexpected_iid(id); break; 1760 } 1761 set_result(_gvn.transform(n)); 1762 return true; 1763 } 1764 1765 //------------------------------inline_math----------------------------------- 1766 // public static float Math.abs(float) 1767 // public static int Math.abs(int) 1768 // public static long Math.abs(long) 1769 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) { 1770 Node* arg = argument(0); 1771 Node* n = nullptr; 1772 switch (id) { 1773 case vmIntrinsics::_fabs: n = new AbsFNode( arg); break; 1774 case vmIntrinsics::_iabs: n = new AbsINode( arg); break; 1775 case vmIntrinsics::_labs: n = new AbsLNode( arg); break; 1776 case vmIntrinsics::_fcopySign: n = new CopySignFNode(arg, argument(1)); break; 1777 case vmIntrinsics::_fsignum: n = SignumFNode::make(_gvn, arg); break; 1778 case vmIntrinsics::_roundF: n = new RoundFNode(arg); break; 1779 default: fatal_unexpected_iid(id); break; 1780 } 1781 set_result(_gvn.transform(n)); 1782 return true; 1783 } 1784 1785 //------------------------------runtime_math----------------------------- 1786 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) { 1787 assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(), 1788 "must be (DD)D or (D)D type"); 1789 1790 // Inputs 1791 Node* a = round_double_node(argument(0)); 1792 Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : nullptr; 1793 1794 const TypePtr* no_memory_effects = nullptr; 1795 Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName, 1796 no_memory_effects, 1797 a, top(), b, b ? top() : nullptr); 1798 Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0)); 1799 #ifdef ASSERT 1800 Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1)); 1801 assert(value_top == top(), "second value must be top"); 1802 #endif 1803 1804 set_result(value); 1805 return true; 1806 } 1807 1808 //------------------------------inline_math_pow----------------------------- 1809 bool LibraryCallKit::inline_math_pow() { 1810 Node* exp = round_double_node(argument(2)); 1811 const TypeD* d = _gvn.type(exp)->isa_double_constant(); 1812 if (d != nullptr) { 1813 if (d->getd() == 2.0) { 1814 // Special case: pow(x, 2.0) => x * x 1815 Node* base = round_double_node(argument(0)); 1816 set_result(_gvn.transform(new MulDNode(base, base))); 1817 return true; 1818 } else if (d->getd() == 0.5 && Matcher::match_rule_supported(Op_SqrtD)) { 1819 // Special case: pow(x, 0.5) => sqrt(x) 1820 Node* base = round_double_node(argument(0)); 1821 Node* zero = _gvn.zerocon(T_DOUBLE); 1822 1823 RegionNode* region = new RegionNode(3); 1824 Node* phi = new PhiNode(region, Type::DOUBLE); 1825 1826 Node* cmp = _gvn.transform(new CmpDNode(base, zero)); 1827 // According to the API specs, pow(-0.0, 0.5) = 0.0 and sqrt(-0.0) = -0.0. 1828 // So pow(-0.0, 0.5) shouldn't be replaced with sqrt(-0.0). 1829 // -0.0/+0.0 are both excluded since floating-point comparison doesn't distinguish -0.0 from +0.0. 1830 Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::le)); 1831 1832 Node* if_pow = generate_slow_guard(test, nullptr); 1833 Node* value_sqrt = _gvn.transform(new SqrtDNode(C, control(), base)); 1834 phi->init_req(1, value_sqrt); 1835 region->init_req(1, control()); 1836 1837 if (if_pow != nullptr) { 1838 set_control(if_pow); 1839 address target = StubRoutines::dpow() != nullptr ? StubRoutines::dpow() : 1840 CAST_FROM_FN_PTR(address, SharedRuntime::dpow); 1841 const TypePtr* no_memory_effects = nullptr; 1842 Node* trig = make_runtime_call(RC_LEAF, OptoRuntime::Math_DD_D_Type(), target, "POW", 1843 no_memory_effects, base, top(), exp, top()); 1844 Node* value_pow = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0)); 1845 #ifdef ASSERT 1846 Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1)); 1847 assert(value_top == top(), "second value must be top"); 1848 #endif 1849 phi->init_req(2, value_pow); 1850 region->init_req(2, _gvn.transform(new ProjNode(trig, TypeFunc::Control))); 1851 } 1852 1853 C->set_has_split_ifs(true); // Has chance for split-if optimization 1854 set_control(_gvn.transform(region)); 1855 record_for_igvn(region); 1856 set_result(_gvn.transform(phi)); 1857 1858 return true; 1859 } 1860 } 1861 1862 return StubRoutines::dpow() != nullptr ? 1863 runtime_math(OptoRuntime::Math_DD_D_Type(), StubRoutines::dpow(), "dpow") : 1864 runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW"); 1865 } 1866 1867 //------------------------------inline_math_native----------------------------- 1868 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) { 1869 switch (id) { 1870 case vmIntrinsics::_dsin: 1871 return StubRoutines::dsin() != nullptr ? 1872 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dsin(), "dsin") : 1873 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin), "SIN"); 1874 case vmIntrinsics::_dcos: 1875 return StubRoutines::dcos() != nullptr ? 1876 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dcos(), "dcos") : 1877 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos), "COS"); 1878 case vmIntrinsics::_dtan: 1879 return StubRoutines::dtan() != nullptr ? 1880 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtan(), "dtan") : 1881 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "TAN"); 1882 case vmIntrinsics::_dtanh: 1883 return StubRoutines::dtanh() != nullptr ? 1884 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtanh(), "dtanh") : false; 1885 case vmIntrinsics::_dexp: 1886 return StubRoutines::dexp() != nullptr ? 1887 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dexp(), "dexp") : 1888 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP"); 1889 case vmIntrinsics::_dlog: 1890 return StubRoutines::dlog() != nullptr ? 1891 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog(), "dlog") : 1892 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog), "LOG"); 1893 case vmIntrinsics::_dlog10: 1894 return StubRoutines::dlog10() != nullptr ? 1895 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog10(), "dlog10") : 1896 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), "LOG10"); 1897 1898 case vmIntrinsics::_roundD: return Matcher::match_rule_supported(Op_RoundD) ? inline_double_math(id) : false; 1899 case vmIntrinsics::_ceil: 1900 case vmIntrinsics::_floor: 1901 case vmIntrinsics::_rint: return Matcher::match_rule_supported(Op_RoundDoubleMode) ? inline_double_math(id) : false; 1902 1903 case vmIntrinsics::_dsqrt: 1904 case vmIntrinsics::_dsqrt_strict: 1905 return Matcher::match_rule_supported(Op_SqrtD) ? inline_double_math(id) : false; 1906 case vmIntrinsics::_dabs: return Matcher::has_match_rule(Op_AbsD) ? inline_double_math(id) : false; 1907 case vmIntrinsics::_fabs: return Matcher::match_rule_supported(Op_AbsF) ? inline_math(id) : false; 1908 case vmIntrinsics::_iabs: return Matcher::match_rule_supported(Op_AbsI) ? inline_math(id) : false; 1909 case vmIntrinsics::_labs: return Matcher::match_rule_supported(Op_AbsL) ? inline_math(id) : false; 1910 1911 case vmIntrinsics::_dpow: return inline_math_pow(); 1912 case vmIntrinsics::_dcopySign: return inline_double_math(id); 1913 case vmIntrinsics::_fcopySign: return inline_math(id); 1914 case vmIntrinsics::_dsignum: return Matcher::match_rule_supported(Op_SignumD) ? inline_double_math(id) : false; 1915 case vmIntrinsics::_fsignum: return Matcher::match_rule_supported(Op_SignumF) ? inline_math(id) : false; 1916 case vmIntrinsics::_roundF: return Matcher::match_rule_supported(Op_RoundF) ? inline_math(id) : false; 1917 1918 // These intrinsics are not yet correctly implemented 1919 case vmIntrinsics::_datan2: 1920 return false; 1921 1922 default: 1923 fatal_unexpected_iid(id); 1924 return false; 1925 } 1926 } 1927 1928 //----------------------------inline_notify-----------------------------------* 1929 bool LibraryCallKit::inline_notify(vmIntrinsics::ID id) { 1930 const TypeFunc* ftype = OptoRuntime::monitor_notify_Type(); 1931 address func; 1932 if (id == vmIntrinsics::_notify) { 1933 func = OptoRuntime::monitor_notify_Java(); 1934 } else { 1935 func = OptoRuntime::monitor_notifyAll_Java(); 1936 } 1937 Node* call = make_runtime_call(RC_NO_LEAF, ftype, func, nullptr, TypeRawPtr::BOTTOM, argument(0)); 1938 make_slow_call_ex(call, env()->Throwable_klass(), false); 1939 return true; 1940 } 1941 1942 1943 //----------------------------inline_min_max----------------------------------- 1944 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) { 1945 Node* a = nullptr; 1946 Node* b = nullptr; 1947 Node* n = nullptr; 1948 switch (id) { 1949 case vmIntrinsics::_min: 1950 case vmIntrinsics::_max: 1951 case vmIntrinsics::_minF: 1952 case vmIntrinsics::_maxF: 1953 case vmIntrinsics::_minF_strict: 1954 case vmIntrinsics::_maxF_strict: 1955 case vmIntrinsics::_min_strict: 1956 case vmIntrinsics::_max_strict: 1957 assert(callee()->signature()->size() == 2, "minF/maxF has 2 parameters of size 1 each."); 1958 a = argument(0); 1959 b = argument(1); 1960 break; 1961 case vmIntrinsics::_minD: 1962 case vmIntrinsics::_maxD: 1963 case vmIntrinsics::_minD_strict: 1964 case vmIntrinsics::_maxD_strict: 1965 assert(callee()->signature()->size() == 4, "minD/maxD has 2 parameters of size 2 each."); 1966 a = round_double_node(argument(0)); 1967 b = round_double_node(argument(2)); 1968 break; 1969 case vmIntrinsics::_minL: 1970 case vmIntrinsics::_maxL: 1971 assert(callee()->signature()->size() == 4, "minL/maxL has 2 parameters of size 2 each."); 1972 a = argument(0); 1973 b = argument(2); 1974 break; 1975 default: 1976 fatal_unexpected_iid(id); 1977 break; 1978 } 1979 1980 switch (id) { 1981 case vmIntrinsics::_min: 1982 case vmIntrinsics::_min_strict: 1983 n = new MinINode(a, b); 1984 break; 1985 case vmIntrinsics::_max: 1986 case vmIntrinsics::_max_strict: 1987 n = new MaxINode(a, b); 1988 break; 1989 case vmIntrinsics::_minF: 1990 case vmIntrinsics::_minF_strict: 1991 n = new MinFNode(a, b); 1992 break; 1993 case vmIntrinsics::_maxF: 1994 case vmIntrinsics::_maxF_strict: 1995 n = new MaxFNode(a, b); 1996 break; 1997 case vmIntrinsics::_minD: 1998 case vmIntrinsics::_minD_strict: 1999 n = new MinDNode(a, b); 2000 break; 2001 case vmIntrinsics::_maxD: 2002 case vmIntrinsics::_maxD_strict: 2003 n = new MaxDNode(a, b); 2004 break; 2005 case vmIntrinsics::_minL: 2006 n = new MinLNode(_gvn.C, a, b); 2007 break; 2008 case vmIntrinsics::_maxL: 2009 n = new MaxLNode(_gvn.C, a, b); 2010 break; 2011 default: 2012 fatal_unexpected_iid(id); 2013 break; 2014 } 2015 2016 set_result(_gvn.transform(n)); 2017 return true; 2018 } 2019 2020 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) { 2021 Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) ); 2022 IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN); 2023 Node* fast_path = _gvn.transform( new IfFalseNode(check)); 2024 Node* slow_path = _gvn.transform( new IfTrueNode(check) ); 2025 2026 { 2027 PreserveJVMState pjvms(this); 2028 PreserveReexecuteState preexecs(this); 2029 jvms()->set_should_reexecute(true); 2030 2031 set_control(slow_path); 2032 set_i_o(i_o()); 2033 2034 uncommon_trap(Deoptimization::Reason_intrinsic, 2035 Deoptimization::Action_none); 2036 } 2037 2038 set_control(fast_path); 2039 set_result(math); 2040 } 2041 2042 template <typename OverflowOp> 2043 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) { 2044 typedef typename OverflowOp::MathOp MathOp; 2045 2046 MathOp* mathOp = new MathOp(arg1, arg2); 2047 Node* operation = _gvn.transform( mathOp ); 2048 Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) ); 2049 inline_math_mathExact(operation, ofcheck); 2050 return true; 2051 } 2052 2053 bool LibraryCallKit::inline_math_addExactI(bool is_increment) { 2054 return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1)); 2055 } 2056 2057 bool LibraryCallKit::inline_math_addExactL(bool is_increment) { 2058 return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2)); 2059 } 2060 2061 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) { 2062 return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1)); 2063 } 2064 2065 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) { 2066 return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2)); 2067 } 2068 2069 bool LibraryCallKit::inline_math_negateExactI() { 2070 return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0)); 2071 } 2072 2073 bool LibraryCallKit::inline_math_negateExactL() { 2074 return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0)); 2075 } 2076 2077 bool LibraryCallKit::inline_math_multiplyExactI() { 2078 return inline_math_overflow<OverflowMulINode>(argument(0), argument(1)); 2079 } 2080 2081 bool LibraryCallKit::inline_math_multiplyExactL() { 2082 return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2)); 2083 } 2084 2085 bool LibraryCallKit::inline_math_multiplyHigh() { 2086 set_result(_gvn.transform(new MulHiLNode(argument(0), argument(2)))); 2087 return true; 2088 } 2089 2090 bool LibraryCallKit::inline_math_unsignedMultiplyHigh() { 2091 set_result(_gvn.transform(new UMulHiLNode(argument(0), argument(2)))); 2092 return true; 2093 } 2094 2095 inline int 2096 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset, BasicType type) { 2097 const TypePtr* base_type = TypePtr::NULL_PTR; 2098 if (base != nullptr) base_type = _gvn.type(base)->isa_ptr(); 2099 if (base_type == nullptr) { 2100 // Unknown type. 2101 return Type::AnyPtr; 2102 } else if (_gvn.type(base->uncast()) == TypePtr::NULL_PTR) { 2103 // Since this is a null+long form, we have to switch to a rawptr. 2104 base = _gvn.transform(new CastX2PNode(offset)); 2105 offset = MakeConX(0); 2106 return Type::RawPtr; 2107 } else if (base_type->base() == Type::RawPtr) { 2108 return Type::RawPtr; 2109 } else if (base_type->isa_oopptr()) { 2110 // Base is never null => always a heap address. 2111 if (!TypePtr::NULL_PTR->higher_equal(base_type)) { 2112 return Type::OopPtr; 2113 } 2114 // Offset is small => always a heap address. 2115 const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t(); 2116 if (offset_type != nullptr && 2117 base_type->offset() == 0 && // (should always be?) 2118 offset_type->_lo >= 0 && 2119 !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) { 2120 return Type::OopPtr; 2121 } else if (type == T_OBJECT) { 2122 // off heap access to an oop doesn't make any sense. Has to be on 2123 // heap. 2124 return Type::OopPtr; 2125 } 2126 // Otherwise, it might either be oop+off or null+addr. 2127 return Type::AnyPtr; 2128 } else { 2129 // No information: 2130 return Type::AnyPtr; 2131 } 2132 } 2133 2134 Node* LibraryCallKit::make_unsafe_address(Node*& base, Node* offset, BasicType type, bool can_cast) { 2135 Node* uncasted_base = base; 2136 int kind = classify_unsafe_addr(uncasted_base, offset, type); 2137 if (kind == Type::RawPtr) { 2138 return basic_plus_adr(top(), uncasted_base, offset); 2139 } else if (kind == Type::AnyPtr) { 2140 assert(base == uncasted_base, "unexpected base change"); 2141 if (can_cast) { 2142 if (!_gvn.type(base)->speculative_maybe_null() && 2143 !too_many_traps(Deoptimization::Reason_speculate_null_check)) { 2144 // According to profiling, this access is always on 2145 // heap. Casting the base to not null and thus avoiding membars 2146 // around the access should allow better optimizations 2147 Node* null_ctl = top(); 2148 base = null_check_oop(base, &null_ctl, true, true, true); 2149 assert(null_ctl->is_top(), "no null control here"); 2150 return basic_plus_adr(base, offset); 2151 } else if (_gvn.type(base)->speculative_always_null() && 2152 !too_many_traps(Deoptimization::Reason_speculate_null_assert)) { 2153 // According to profiling, this access is always off 2154 // heap. 2155 base = null_assert(base); 2156 Node* raw_base = _gvn.transform(new CastX2PNode(offset)); 2157 offset = MakeConX(0); 2158 return basic_plus_adr(top(), raw_base, offset); 2159 } 2160 } 2161 // We don't know if it's an on heap or off heap access. Fall back 2162 // to raw memory access. 2163 Node* raw = _gvn.transform(new CheckCastPPNode(control(), base, TypeRawPtr::BOTTOM)); 2164 return basic_plus_adr(top(), raw, offset); 2165 } else { 2166 assert(base == uncasted_base, "unexpected base change"); 2167 // We know it's an on heap access so base can't be null 2168 if (TypePtr::NULL_PTR->higher_equal(_gvn.type(base))) { 2169 base = must_be_not_null(base, true); 2170 } 2171 return basic_plus_adr(base, offset); 2172 } 2173 } 2174 2175 //--------------------------inline_number_methods----------------------------- 2176 // inline int Integer.numberOfLeadingZeros(int) 2177 // inline int Long.numberOfLeadingZeros(long) 2178 // 2179 // inline int Integer.numberOfTrailingZeros(int) 2180 // inline int Long.numberOfTrailingZeros(long) 2181 // 2182 // inline int Integer.bitCount(int) 2183 // inline int Long.bitCount(long) 2184 // 2185 // inline char Character.reverseBytes(char) 2186 // inline short Short.reverseBytes(short) 2187 // inline int Integer.reverseBytes(int) 2188 // inline long Long.reverseBytes(long) 2189 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) { 2190 Node* arg = argument(0); 2191 Node* n = nullptr; 2192 switch (id) { 2193 case vmIntrinsics::_numberOfLeadingZeros_i: n = new CountLeadingZerosINode( arg); break; 2194 case vmIntrinsics::_numberOfLeadingZeros_l: n = new CountLeadingZerosLNode( arg); break; 2195 case vmIntrinsics::_numberOfTrailingZeros_i: n = new CountTrailingZerosINode(arg); break; 2196 case vmIntrinsics::_numberOfTrailingZeros_l: n = new CountTrailingZerosLNode(arg); break; 2197 case vmIntrinsics::_bitCount_i: n = new PopCountINode( arg); break; 2198 case vmIntrinsics::_bitCount_l: n = new PopCountLNode( arg); break; 2199 case vmIntrinsics::_reverseBytes_c: n = new ReverseBytesUSNode( arg); break; 2200 case vmIntrinsics::_reverseBytes_s: n = new ReverseBytesSNode( arg); break; 2201 case vmIntrinsics::_reverseBytes_i: n = new ReverseBytesINode( arg); break; 2202 case vmIntrinsics::_reverseBytes_l: n = new ReverseBytesLNode( arg); break; 2203 case vmIntrinsics::_reverse_i: n = new ReverseINode( arg); break; 2204 case vmIntrinsics::_reverse_l: n = new ReverseLNode( arg); break; 2205 default: fatal_unexpected_iid(id); break; 2206 } 2207 set_result(_gvn.transform(n)); 2208 return true; 2209 } 2210 2211 //--------------------------inline_bitshuffle_methods----------------------------- 2212 // inline int Integer.compress(int, int) 2213 // inline int Integer.expand(int, int) 2214 // inline long Long.compress(long, long) 2215 // inline long Long.expand(long, long) 2216 bool LibraryCallKit::inline_bitshuffle_methods(vmIntrinsics::ID id) { 2217 Node* n = nullptr; 2218 switch (id) { 2219 case vmIntrinsics::_compress_i: n = new CompressBitsNode(argument(0), argument(1), TypeInt::INT); break; 2220 case vmIntrinsics::_expand_i: n = new ExpandBitsNode(argument(0), argument(1), TypeInt::INT); break; 2221 case vmIntrinsics::_compress_l: n = new CompressBitsNode(argument(0), argument(2), TypeLong::LONG); break; 2222 case vmIntrinsics::_expand_l: n = new ExpandBitsNode(argument(0), argument(2), TypeLong::LONG); break; 2223 default: fatal_unexpected_iid(id); break; 2224 } 2225 set_result(_gvn.transform(n)); 2226 return true; 2227 } 2228 2229 //--------------------------inline_number_methods----------------------------- 2230 // inline int Integer.compareUnsigned(int, int) 2231 // inline int Long.compareUnsigned(long, long) 2232 bool LibraryCallKit::inline_compare_unsigned(vmIntrinsics::ID id) { 2233 Node* arg1 = argument(0); 2234 Node* arg2 = (id == vmIntrinsics::_compareUnsigned_l) ? argument(2) : argument(1); 2235 Node* n = nullptr; 2236 switch (id) { 2237 case vmIntrinsics::_compareUnsigned_i: n = new CmpU3Node(arg1, arg2); break; 2238 case vmIntrinsics::_compareUnsigned_l: n = new CmpUL3Node(arg1, arg2); break; 2239 default: fatal_unexpected_iid(id); break; 2240 } 2241 set_result(_gvn.transform(n)); 2242 return true; 2243 } 2244 2245 //--------------------------inline_unsigned_divmod_methods----------------------------- 2246 // inline int Integer.divideUnsigned(int, int) 2247 // inline int Integer.remainderUnsigned(int, int) 2248 // inline long Long.divideUnsigned(long, long) 2249 // inline long Long.remainderUnsigned(long, long) 2250 bool LibraryCallKit::inline_divmod_methods(vmIntrinsics::ID id) { 2251 Node* n = nullptr; 2252 switch (id) { 2253 case vmIntrinsics::_divideUnsigned_i: { 2254 zero_check_int(argument(1)); 2255 // Compile-time detect of null-exception 2256 if (stopped()) { 2257 return true; // keep the graph constructed so far 2258 } 2259 n = new UDivINode(control(), argument(0), argument(1)); 2260 break; 2261 } 2262 case vmIntrinsics::_divideUnsigned_l: { 2263 zero_check_long(argument(2)); 2264 // Compile-time detect of null-exception 2265 if (stopped()) { 2266 return true; // keep the graph constructed so far 2267 } 2268 n = new UDivLNode(control(), argument(0), argument(2)); 2269 break; 2270 } 2271 case vmIntrinsics::_remainderUnsigned_i: { 2272 zero_check_int(argument(1)); 2273 // Compile-time detect of null-exception 2274 if (stopped()) { 2275 return true; // keep the graph constructed so far 2276 } 2277 n = new UModINode(control(), argument(0), argument(1)); 2278 break; 2279 } 2280 case vmIntrinsics::_remainderUnsigned_l: { 2281 zero_check_long(argument(2)); 2282 // Compile-time detect of null-exception 2283 if (stopped()) { 2284 return true; // keep the graph constructed so far 2285 } 2286 n = new UModLNode(control(), argument(0), argument(2)); 2287 break; 2288 } 2289 default: fatal_unexpected_iid(id); break; 2290 } 2291 set_result(_gvn.transform(n)); 2292 return true; 2293 } 2294 2295 //----------------------------inline_unsafe_access---------------------------- 2296 2297 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) { 2298 // Attempt to infer a sharper value type from the offset and base type. 2299 ciKlass* sharpened_klass = nullptr; 2300 2301 // See if it is an instance field, with an object type. 2302 if (alias_type->field() != nullptr) { 2303 if (alias_type->field()->type()->is_klass()) { 2304 sharpened_klass = alias_type->field()->type()->as_klass(); 2305 } 2306 } 2307 2308 const TypeOopPtr* result = nullptr; 2309 // See if it is a narrow oop array. 2310 if (adr_type->isa_aryptr()) { 2311 if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) { 2312 const TypeOopPtr* elem_type = adr_type->is_aryptr()->elem()->make_oopptr(); 2313 if (elem_type != nullptr && elem_type->is_loaded()) { 2314 // Sharpen the value type. 2315 result = elem_type; 2316 } 2317 } 2318 } 2319 2320 // The sharpened class might be unloaded if there is no class loader 2321 // contraint in place. 2322 if (result == nullptr && sharpened_klass != nullptr && sharpened_klass->is_loaded()) { 2323 // Sharpen the value type. 2324 result = TypeOopPtr::make_from_klass(sharpened_klass); 2325 } 2326 if (result != nullptr) { 2327 #ifndef PRODUCT 2328 if (C->print_intrinsics() || C->print_inlining()) { 2329 tty->print(" from base type: "); adr_type->dump(); tty->cr(); 2330 tty->print(" sharpened value: "); result->dump(); tty->cr(); 2331 } 2332 #endif 2333 } 2334 return result; 2335 } 2336 2337 DecoratorSet LibraryCallKit::mo_decorator_for_access_kind(AccessKind kind) { 2338 switch (kind) { 2339 case Relaxed: 2340 return MO_UNORDERED; 2341 case Opaque: 2342 return MO_RELAXED; 2343 case Acquire: 2344 return MO_ACQUIRE; 2345 case Release: 2346 return MO_RELEASE; 2347 case Volatile: 2348 return MO_SEQ_CST; 2349 default: 2350 ShouldNotReachHere(); 2351 return 0; 2352 } 2353 } 2354 2355 bool LibraryCallKit::inline_unsafe_access(bool is_store, const BasicType type, const AccessKind kind, const bool unaligned) { 2356 if (callee()->is_static()) return false; // caller must have the capability! 2357 DecoratorSet decorators = C2_UNSAFE_ACCESS; 2358 guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads"); 2359 guarantee( is_store || kind != Release, "Release accesses can be produced only for stores"); 2360 assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type"); 2361 2362 if (is_reference_type(type)) { 2363 decorators |= ON_UNKNOWN_OOP_REF; 2364 } 2365 2366 if (unaligned) { 2367 decorators |= C2_UNALIGNED; 2368 } 2369 2370 #ifndef PRODUCT 2371 { 2372 ResourceMark rm; 2373 // Check the signatures. 2374 ciSignature* sig = callee()->signature(); 2375 #ifdef ASSERT 2376 if (!is_store) { 2377 // Object getReference(Object base, int/long offset), etc. 2378 BasicType rtype = sig->return_type()->basic_type(); 2379 assert(rtype == type, "getter must return the expected value"); 2380 assert(sig->count() == 2, "oop getter has 2 arguments"); 2381 assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object"); 2382 assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct"); 2383 } else { 2384 // void putReference(Object base, int/long offset, Object x), etc. 2385 assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value"); 2386 assert(sig->count() == 3, "oop putter has 3 arguments"); 2387 assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object"); 2388 assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct"); 2389 BasicType vtype = sig->type_at(sig->count()-1)->basic_type(); 2390 assert(vtype == type, "putter must accept the expected value"); 2391 } 2392 #endif // ASSERT 2393 } 2394 #endif //PRODUCT 2395 2396 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 2397 2398 Node* receiver = argument(0); // type: oop 2399 2400 // Build address expression. 2401 Node* heap_base_oop = top(); 2402 2403 // The base is either a Java object or a value produced by Unsafe.staticFieldBase 2404 Node* base = argument(1); // type: oop 2405 // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset 2406 Node* offset = argument(2); // type: long 2407 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset 2408 // to be plain byte offsets, which are also the same as those accepted 2409 // by oopDesc::field_addr. 2410 assert(Unsafe_field_offset_to_byte_offset(11) == 11, 2411 "fieldOffset must be byte-scaled"); 2412 // 32-bit machines ignore the high half! 2413 offset = ConvL2X(offset); 2414 2415 // Save state and restore on bailout 2416 uint old_sp = sp(); 2417 SafePointNode* old_map = clone_map(); 2418 2419 Node* adr = make_unsafe_address(base, offset, type, kind == Relaxed); 2420 assert(!stopped(), "Inlining of unsafe access failed: address construction stopped unexpectedly"); 2421 2422 if (_gvn.type(base->uncast())->isa_ptr() == TypePtr::NULL_PTR) { 2423 if (type != T_OBJECT) { 2424 decorators |= IN_NATIVE; // off-heap primitive access 2425 } else { 2426 set_map(old_map); 2427 set_sp(old_sp); 2428 return false; // off-heap oop accesses are not supported 2429 } 2430 } else { 2431 heap_base_oop = base; // on-heap or mixed access 2432 } 2433 2434 // Can base be null? Otherwise, always on-heap access. 2435 bool can_access_non_heap = TypePtr::NULL_PTR->higher_equal(_gvn.type(base)); 2436 2437 if (!can_access_non_heap) { 2438 decorators |= IN_HEAP; 2439 } 2440 2441 Node* val = is_store ? argument(4) : nullptr; 2442 2443 const TypePtr* adr_type = _gvn.type(adr)->isa_ptr(); 2444 if (adr_type == TypePtr::NULL_PTR) { 2445 set_map(old_map); 2446 set_sp(old_sp); 2447 return false; // off-heap access with zero address 2448 } 2449 2450 // Try to categorize the address. 2451 Compile::AliasType* alias_type = C->alias_type(adr_type); 2452 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here"); 2453 2454 if (alias_type->adr_type() == TypeInstPtr::KLASS || 2455 alias_type->adr_type() == TypeAryPtr::RANGE) { 2456 set_map(old_map); 2457 set_sp(old_sp); 2458 return false; // not supported 2459 } 2460 2461 bool mismatched = false; 2462 BasicType bt = alias_type->basic_type(); 2463 if (bt != T_ILLEGAL) { 2464 assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access"); 2465 if (bt == T_BYTE && adr_type->isa_aryptr()) { 2466 // Alias type doesn't differentiate between byte[] and boolean[]). 2467 // Use address type to get the element type. 2468 bt = adr_type->is_aryptr()->elem()->array_element_basic_type(); 2469 } 2470 if (is_reference_type(bt, true)) { 2471 // accessing an array field with getReference is not a mismatch 2472 bt = T_OBJECT; 2473 } 2474 if ((bt == T_OBJECT) != (type == T_OBJECT)) { 2475 // Don't intrinsify mismatched object accesses 2476 set_map(old_map); 2477 set_sp(old_sp); 2478 return false; 2479 } 2480 mismatched = (bt != type); 2481 } else if (alias_type->adr_type()->isa_oopptr()) { 2482 mismatched = true; // conservatively mark all "wide" on-heap accesses as mismatched 2483 } 2484 2485 destruct_map_clone(old_map); 2486 assert(!mismatched || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched"); 2487 2488 if (mismatched) { 2489 decorators |= C2_MISMATCHED; 2490 } 2491 2492 // First guess at the value type. 2493 const Type *value_type = Type::get_const_basic_type(type); 2494 2495 // Figure out the memory ordering. 2496 decorators |= mo_decorator_for_access_kind(kind); 2497 2498 if (!is_store && type == T_OBJECT) { 2499 const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type); 2500 if (tjp != nullptr) { 2501 value_type = tjp; 2502 } 2503 } 2504 2505 receiver = null_check(receiver); 2506 if (stopped()) { 2507 return true; 2508 } 2509 // Heap pointers get a null-check from the interpreter, 2510 // as a courtesy. However, this is not guaranteed by Unsafe, 2511 // and it is not possible to fully distinguish unintended nulls 2512 // from intended ones in this API. 2513 2514 if (!is_store) { 2515 Node* p = nullptr; 2516 // Try to constant fold a load from a constant field 2517 ciField* field = alias_type->field(); 2518 if (heap_base_oop != top() && field != nullptr && field->is_constant() && !mismatched) { 2519 // final or stable field 2520 p = make_constant_from_field(field, heap_base_oop); 2521 } 2522 2523 if (p == nullptr) { // Could not constant fold the load 2524 p = access_load_at(heap_base_oop, adr, adr_type, value_type, type, decorators); 2525 // Normalize the value returned by getBoolean in the following cases 2526 if (type == T_BOOLEAN && 2527 (mismatched || 2528 heap_base_oop == top() || // - heap_base_oop is null or 2529 (can_access_non_heap && field == nullptr)) // - heap_base_oop is potentially null 2530 // and the unsafe access is made to large offset 2531 // (i.e., larger than the maximum offset necessary for any 2532 // field access) 2533 ) { 2534 IdealKit ideal = IdealKit(this); 2535 #define __ ideal. 2536 IdealVariable normalized_result(ideal); 2537 __ declarations_done(); 2538 __ set(normalized_result, p); 2539 __ if_then(p, BoolTest::ne, ideal.ConI(0)); 2540 __ set(normalized_result, ideal.ConI(1)); 2541 ideal.end_if(); 2542 final_sync(ideal); 2543 p = __ value(normalized_result); 2544 #undef __ 2545 } 2546 } 2547 if (type == T_ADDRESS) { 2548 p = gvn().transform(new CastP2XNode(nullptr, p)); 2549 p = ConvX2UL(p); 2550 } 2551 // The load node has the control of the preceding MemBarCPUOrder. All 2552 // following nodes will have the control of the MemBarCPUOrder inserted at 2553 // the end of this method. So, pushing the load onto the stack at a later 2554 // point is fine. 2555 set_result(p); 2556 } else { 2557 if (bt == T_ADDRESS) { 2558 // Repackage the long as a pointer. 2559 val = ConvL2X(val); 2560 val = gvn().transform(new CastX2PNode(val)); 2561 } 2562 access_store_at(heap_base_oop, adr, adr_type, val, value_type, type, decorators); 2563 } 2564 2565 return true; 2566 } 2567 2568 //----------------------------inline_unsafe_load_store---------------------------- 2569 // This method serves a couple of different customers (depending on LoadStoreKind): 2570 // 2571 // LS_cmp_swap: 2572 // 2573 // boolean compareAndSetReference(Object o, long offset, Object expected, Object x); 2574 // boolean compareAndSetInt( Object o, long offset, int expected, int x); 2575 // boolean compareAndSetLong( Object o, long offset, long expected, long x); 2576 // 2577 // LS_cmp_swap_weak: 2578 // 2579 // boolean weakCompareAndSetReference( Object o, long offset, Object expected, Object x); 2580 // boolean weakCompareAndSetReferencePlain( Object o, long offset, Object expected, Object x); 2581 // boolean weakCompareAndSetReferenceAcquire(Object o, long offset, Object expected, Object x); 2582 // boolean weakCompareAndSetReferenceRelease(Object o, long offset, Object expected, Object x); 2583 // 2584 // boolean weakCompareAndSetInt( Object o, long offset, int expected, int x); 2585 // boolean weakCompareAndSetIntPlain( Object o, long offset, int expected, int x); 2586 // boolean weakCompareAndSetIntAcquire( Object o, long offset, int expected, int x); 2587 // boolean weakCompareAndSetIntRelease( Object o, long offset, int expected, int x); 2588 // 2589 // boolean weakCompareAndSetLong( Object o, long offset, long expected, long x); 2590 // boolean weakCompareAndSetLongPlain( Object o, long offset, long expected, long x); 2591 // boolean weakCompareAndSetLongAcquire( Object o, long offset, long expected, long x); 2592 // boolean weakCompareAndSetLongRelease( Object o, long offset, long expected, long x); 2593 // 2594 // LS_cmp_exchange: 2595 // 2596 // Object compareAndExchangeReferenceVolatile(Object o, long offset, Object expected, Object x); 2597 // Object compareAndExchangeReferenceAcquire( Object o, long offset, Object expected, Object x); 2598 // Object compareAndExchangeReferenceRelease( Object o, long offset, Object expected, Object x); 2599 // 2600 // Object compareAndExchangeIntVolatile( Object o, long offset, Object expected, Object x); 2601 // Object compareAndExchangeIntAcquire( Object o, long offset, Object expected, Object x); 2602 // Object compareAndExchangeIntRelease( Object o, long offset, Object expected, Object x); 2603 // 2604 // Object compareAndExchangeLongVolatile( Object o, long offset, Object expected, Object x); 2605 // Object compareAndExchangeLongAcquire( Object o, long offset, Object expected, Object x); 2606 // Object compareAndExchangeLongRelease( Object o, long offset, Object expected, Object x); 2607 // 2608 // LS_get_add: 2609 // 2610 // int getAndAddInt( Object o, long offset, int delta) 2611 // long getAndAddLong(Object o, long offset, long delta) 2612 // 2613 // LS_get_set: 2614 // 2615 // int getAndSet(Object o, long offset, int newValue) 2616 // long getAndSet(Object o, long offset, long newValue) 2617 // Object getAndSet(Object o, long offset, Object newValue) 2618 // 2619 bool LibraryCallKit::inline_unsafe_load_store(const BasicType type, const LoadStoreKind kind, const AccessKind access_kind) { 2620 // This basic scheme here is the same as inline_unsafe_access, but 2621 // differs in enough details that combining them would make the code 2622 // overly confusing. (This is a true fact! I originally combined 2623 // them, but even I was confused by it!) As much code/comments as 2624 // possible are retained from inline_unsafe_access though to make 2625 // the correspondences clearer. - dl 2626 2627 if (callee()->is_static()) return false; // caller must have the capability! 2628 2629 DecoratorSet decorators = C2_UNSAFE_ACCESS; 2630 decorators |= mo_decorator_for_access_kind(access_kind); 2631 2632 #ifndef PRODUCT 2633 BasicType rtype; 2634 { 2635 ResourceMark rm; 2636 // Check the signatures. 2637 ciSignature* sig = callee()->signature(); 2638 rtype = sig->return_type()->basic_type(); 2639 switch(kind) { 2640 case LS_get_add: 2641 case LS_get_set: { 2642 // Check the signatures. 2643 #ifdef ASSERT 2644 assert(rtype == type, "get and set must return the expected type"); 2645 assert(sig->count() == 3, "get and set has 3 arguments"); 2646 assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object"); 2647 assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long"); 2648 assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta"); 2649 assert(access_kind == Volatile, "mo is not passed to intrinsic nodes in current implementation"); 2650 #endif // ASSERT 2651 break; 2652 } 2653 case LS_cmp_swap: 2654 case LS_cmp_swap_weak: { 2655 // Check the signatures. 2656 #ifdef ASSERT 2657 assert(rtype == T_BOOLEAN, "CAS must return boolean"); 2658 assert(sig->count() == 4, "CAS has 4 arguments"); 2659 assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object"); 2660 assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long"); 2661 #endif // ASSERT 2662 break; 2663 } 2664 case LS_cmp_exchange: { 2665 // Check the signatures. 2666 #ifdef ASSERT 2667 assert(rtype == type, "CAS must return the expected type"); 2668 assert(sig->count() == 4, "CAS has 4 arguments"); 2669 assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object"); 2670 assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long"); 2671 #endif // ASSERT 2672 break; 2673 } 2674 default: 2675 ShouldNotReachHere(); 2676 } 2677 } 2678 #endif //PRODUCT 2679 2680 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 2681 2682 // Get arguments: 2683 Node* receiver = nullptr; 2684 Node* base = nullptr; 2685 Node* offset = nullptr; 2686 Node* oldval = nullptr; 2687 Node* newval = nullptr; 2688 switch(kind) { 2689 case LS_cmp_swap: 2690 case LS_cmp_swap_weak: 2691 case LS_cmp_exchange: { 2692 const bool two_slot_type = type2size[type] == 2; 2693 receiver = argument(0); // type: oop 2694 base = argument(1); // type: oop 2695 offset = argument(2); // type: long 2696 oldval = argument(4); // type: oop, int, or long 2697 newval = argument(two_slot_type ? 6 : 5); // type: oop, int, or long 2698 break; 2699 } 2700 case LS_get_add: 2701 case LS_get_set: { 2702 receiver = argument(0); // type: oop 2703 base = argument(1); // type: oop 2704 offset = argument(2); // type: long 2705 oldval = nullptr; 2706 newval = argument(4); // type: oop, int, or long 2707 break; 2708 } 2709 default: 2710 ShouldNotReachHere(); 2711 } 2712 2713 // Build field offset expression. 2714 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset 2715 // to be plain byte offsets, which are also the same as those accepted 2716 // by oopDesc::field_addr. 2717 assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled"); 2718 // 32-bit machines ignore the high half of long offsets 2719 offset = ConvL2X(offset); 2720 // Save state and restore on bailout 2721 uint old_sp = sp(); 2722 SafePointNode* old_map = clone_map(); 2723 Node* adr = make_unsafe_address(base, offset,type, false); 2724 const TypePtr *adr_type = _gvn.type(adr)->isa_ptr(); 2725 2726 Compile::AliasType* alias_type = C->alias_type(adr_type); 2727 BasicType bt = alias_type->basic_type(); 2728 if (bt != T_ILLEGAL && 2729 (is_reference_type(bt) != (type == T_OBJECT))) { 2730 // Don't intrinsify mismatched object accesses. 2731 set_map(old_map); 2732 set_sp(old_sp); 2733 return false; 2734 } 2735 2736 destruct_map_clone(old_map); 2737 2738 // For CAS, unlike inline_unsafe_access, there seems no point in 2739 // trying to refine types. Just use the coarse types here. 2740 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here"); 2741 const Type *value_type = Type::get_const_basic_type(type); 2742 2743 switch (kind) { 2744 case LS_get_set: 2745 case LS_cmp_exchange: { 2746 if (type == T_OBJECT) { 2747 const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type); 2748 if (tjp != nullptr) { 2749 value_type = tjp; 2750 } 2751 } 2752 break; 2753 } 2754 case LS_cmp_swap: 2755 case LS_cmp_swap_weak: 2756 case LS_get_add: 2757 break; 2758 default: 2759 ShouldNotReachHere(); 2760 } 2761 2762 // Null check receiver. 2763 receiver = null_check(receiver); 2764 if (stopped()) { 2765 return true; 2766 } 2767 2768 int alias_idx = C->get_alias_index(adr_type); 2769 2770 if (is_reference_type(type)) { 2771 decorators |= IN_HEAP | ON_UNKNOWN_OOP_REF; 2772 2773 // Transformation of a value which could be null pointer (CastPP #null) 2774 // could be delayed during Parse (for example, in adjust_map_after_if()). 2775 // Execute transformation here to avoid barrier generation in such case. 2776 if (_gvn.type(newval) == TypePtr::NULL_PTR) 2777 newval = _gvn.makecon(TypePtr::NULL_PTR); 2778 2779 if (oldval != nullptr && _gvn.type(oldval) == TypePtr::NULL_PTR) { 2780 // Refine the value to a null constant, when it is known to be null 2781 oldval = _gvn.makecon(TypePtr::NULL_PTR); 2782 } 2783 } 2784 2785 Node* result = nullptr; 2786 switch (kind) { 2787 case LS_cmp_exchange: { 2788 result = access_atomic_cmpxchg_val_at(base, adr, adr_type, alias_idx, 2789 oldval, newval, value_type, type, decorators); 2790 break; 2791 } 2792 case LS_cmp_swap_weak: 2793 decorators |= C2_WEAK_CMPXCHG; 2794 case LS_cmp_swap: { 2795 result = access_atomic_cmpxchg_bool_at(base, adr, adr_type, alias_idx, 2796 oldval, newval, value_type, type, decorators); 2797 break; 2798 } 2799 case LS_get_set: { 2800 result = access_atomic_xchg_at(base, adr, adr_type, alias_idx, 2801 newval, value_type, type, decorators); 2802 break; 2803 } 2804 case LS_get_add: { 2805 result = access_atomic_add_at(base, adr, adr_type, alias_idx, 2806 newval, value_type, type, decorators); 2807 break; 2808 } 2809 default: 2810 ShouldNotReachHere(); 2811 } 2812 2813 assert(type2size[result->bottom_type()->basic_type()] == type2size[rtype], "result type should match"); 2814 set_result(result); 2815 return true; 2816 } 2817 2818 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) { 2819 // Regardless of form, don't allow previous ld/st to move down, 2820 // then issue acquire, release, or volatile mem_bar. 2821 insert_mem_bar(Op_MemBarCPUOrder); 2822 switch(id) { 2823 case vmIntrinsics::_loadFence: 2824 insert_mem_bar(Op_LoadFence); 2825 return true; 2826 case vmIntrinsics::_storeFence: 2827 insert_mem_bar(Op_StoreFence); 2828 return true; 2829 case vmIntrinsics::_storeStoreFence: 2830 insert_mem_bar(Op_StoreStoreFence); 2831 return true; 2832 case vmIntrinsics::_fullFence: 2833 insert_mem_bar(Op_MemBarVolatile); 2834 return true; 2835 default: 2836 fatal_unexpected_iid(id); 2837 return false; 2838 } 2839 } 2840 2841 bool LibraryCallKit::inline_onspinwait() { 2842 insert_mem_bar(Op_OnSpinWait); 2843 return true; 2844 } 2845 2846 bool LibraryCallKit::klass_needs_init_guard(Node* kls) { 2847 if (!kls->is_Con()) { 2848 return true; 2849 } 2850 const TypeInstKlassPtr* klsptr = kls->bottom_type()->isa_instklassptr(); 2851 if (klsptr == nullptr) { 2852 return true; 2853 } 2854 ciInstanceKlass* ik = klsptr->instance_klass(); 2855 // don't need a guard for a klass that is already initialized 2856 return !ik->is_initialized(); 2857 } 2858 2859 //----------------------------inline_unsafe_writeback0------------------------- 2860 // public native void Unsafe.writeback0(long address) 2861 bool LibraryCallKit::inline_unsafe_writeback0() { 2862 if (!Matcher::has_match_rule(Op_CacheWB)) { 2863 return false; 2864 } 2865 #ifndef PRODUCT 2866 assert(Matcher::has_match_rule(Op_CacheWBPreSync), "found match rule for CacheWB but not CacheWBPreSync"); 2867 assert(Matcher::has_match_rule(Op_CacheWBPostSync), "found match rule for CacheWB but not CacheWBPostSync"); 2868 ciSignature* sig = callee()->signature(); 2869 assert(sig->type_at(0)->basic_type() == T_LONG, "Unsafe_writeback0 address is long!"); 2870 #endif 2871 null_check_receiver(); // null-check, then ignore 2872 Node *addr = argument(1); 2873 addr = new CastX2PNode(addr); 2874 addr = _gvn.transform(addr); 2875 Node *flush = new CacheWBNode(control(), memory(TypeRawPtr::BOTTOM), addr); 2876 flush = _gvn.transform(flush); 2877 set_memory(flush, TypeRawPtr::BOTTOM); 2878 return true; 2879 } 2880 2881 //----------------------------inline_unsafe_writeback0------------------------- 2882 // public native void Unsafe.writeback0(long address) 2883 bool LibraryCallKit::inline_unsafe_writebackSync0(bool is_pre) { 2884 if (is_pre && !Matcher::has_match_rule(Op_CacheWBPreSync)) { 2885 return false; 2886 } 2887 if (!is_pre && !Matcher::has_match_rule(Op_CacheWBPostSync)) { 2888 return false; 2889 } 2890 #ifndef PRODUCT 2891 assert(Matcher::has_match_rule(Op_CacheWB), 2892 (is_pre ? "found match rule for CacheWBPreSync but not CacheWB" 2893 : "found match rule for CacheWBPostSync but not CacheWB")); 2894 2895 #endif 2896 null_check_receiver(); // null-check, then ignore 2897 Node *sync; 2898 if (is_pre) { 2899 sync = new CacheWBPreSyncNode(control(), memory(TypeRawPtr::BOTTOM)); 2900 } else { 2901 sync = new CacheWBPostSyncNode(control(), memory(TypeRawPtr::BOTTOM)); 2902 } 2903 sync = _gvn.transform(sync); 2904 set_memory(sync, TypeRawPtr::BOTTOM); 2905 return true; 2906 } 2907 2908 //----------------------------inline_unsafe_allocate--------------------------- 2909 // public native Object Unsafe.allocateInstance(Class<?> cls); 2910 bool LibraryCallKit::inline_unsafe_allocate() { 2911 2912 #if INCLUDE_JVMTI 2913 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 2914 return false; 2915 } 2916 #endif //INCLUDE_JVMTI 2917 2918 if (callee()->is_static()) return false; // caller must have the capability! 2919 2920 null_check_receiver(); // null-check, then ignore 2921 Node* cls = null_check(argument(1)); 2922 if (stopped()) return true; 2923 2924 Node* kls = load_klass_from_mirror(cls, false, nullptr, 0); 2925 kls = null_check(kls); 2926 if (stopped()) return true; // argument was like int.class 2927 2928 #if INCLUDE_JVMTI 2929 // Don't try to access new allocated obj in the intrinsic. 2930 // It causes perfomance issues even when jvmti event VmObjectAlloc is disabled. 2931 // Deoptimize and allocate in interpreter instead. 2932 Node* addr = makecon(TypeRawPtr::make((address) &JvmtiExport::_should_notify_object_alloc)); 2933 Node* should_post_vm_object_alloc = make_load(this->control(), addr, TypeInt::INT, T_INT, MemNode::unordered); 2934 Node* chk = _gvn.transform(new CmpINode(should_post_vm_object_alloc, intcon(0))); 2935 Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::eq)); 2936 { 2937 BuildCutout unless(this, tst, PROB_MAX); 2938 uncommon_trap(Deoptimization::Reason_intrinsic, 2939 Deoptimization::Action_make_not_entrant); 2940 } 2941 if (stopped()) { 2942 return true; 2943 } 2944 #endif //INCLUDE_JVMTI 2945 2946 Node* test = nullptr; 2947 if (LibraryCallKit::klass_needs_init_guard(kls)) { 2948 // Note: The argument might still be an illegal value like 2949 // Serializable.class or Object[].class. The runtime will handle it. 2950 // But we must make an explicit check for initialization. 2951 Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset())); 2952 // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler 2953 // can generate code to load it as unsigned byte. 2954 Node* inst = make_load(nullptr, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::acquire); 2955 Node* bits = intcon(InstanceKlass::fully_initialized); 2956 test = _gvn.transform(new SubINode(inst, bits)); 2957 // The 'test' is non-zero if we need to take a slow path. 2958 } 2959 2960 Node* obj = new_instance(kls, test); 2961 set_result(obj); 2962 return true; 2963 } 2964 2965 //------------------------inline_native_time_funcs-------------- 2966 // inline code for System.currentTimeMillis() and System.nanoTime() 2967 // these have the same type and signature 2968 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) { 2969 const TypeFunc* tf = OptoRuntime::void_long_Type(); 2970 const TypePtr* no_memory_effects = nullptr; 2971 Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects); 2972 Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0)); 2973 #ifdef ASSERT 2974 Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1)); 2975 assert(value_top == top(), "second value must be top"); 2976 #endif 2977 set_result(value); 2978 return true; 2979 } 2980 2981 2982 #if INCLUDE_JVMTI 2983 2984 // When notifications are disabled then just update the VTMS transition bit and return. 2985 // Otherwise, the bit is updated in the given function call implementing JVMTI notification protocol. 2986 bool LibraryCallKit::inline_native_notify_jvmti_funcs(address funcAddr, const char* funcName, bool is_start, bool is_end) { 2987 if (!DoJVMTIVirtualThreadTransitions) { 2988 return true; 2989 } 2990 Node* vt_oop = _gvn.transform(must_be_not_null(argument(0), true)); // VirtualThread this argument 2991 IdealKit ideal(this); 2992 2993 Node* ONE = ideal.ConI(1); 2994 Node* hide = is_start ? ideal.ConI(0) : (is_end ? ideal.ConI(1) : _gvn.transform(argument(1))); 2995 Node* addr = makecon(TypeRawPtr::make((address)&JvmtiVTMSTransitionDisabler::_VTMS_notify_jvmti_events)); 2996 Node* notify_jvmti_enabled = ideal.load(ideal.ctrl(), addr, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw); 2997 2998 ideal.if_then(notify_jvmti_enabled, BoolTest::eq, ONE); { 2999 sync_kit(ideal); 3000 // if notifyJvmti enabled then make a call to the given SharedRuntime function 3001 const TypeFunc* tf = OptoRuntime::notify_jvmti_vthread_Type(); 3002 make_runtime_call(RC_NO_LEAF, tf, funcAddr, funcName, TypePtr::BOTTOM, vt_oop, hide); 3003 ideal.sync_kit(this); 3004 } ideal.else_(); { 3005 // set hide value to the VTMS transition bit in current JavaThread and VirtualThread object 3006 Node* thread = ideal.thread(); 3007 Node* jt_addr = basic_plus_adr(thread, in_bytes(JavaThread::is_in_VTMS_transition_offset())); 3008 Node* vt_addr = basic_plus_adr(vt_oop, java_lang_Thread::is_in_VTMS_transition_offset()); 3009 3010 sync_kit(ideal); 3011 access_store_at(nullptr, jt_addr, _gvn.type(jt_addr)->is_ptr(), hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED); 3012 access_store_at(nullptr, vt_addr, _gvn.type(vt_addr)->is_ptr(), hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED); 3013 3014 ideal.sync_kit(this); 3015 } ideal.end_if(); 3016 final_sync(ideal); 3017 3018 return true; 3019 } 3020 3021 // Always update the is_disable_suspend bit. 3022 bool LibraryCallKit::inline_native_notify_jvmti_sync() { 3023 if (!DoJVMTIVirtualThreadTransitions) { 3024 return true; 3025 } 3026 IdealKit ideal(this); 3027 3028 { 3029 // unconditionally update the is_disable_suspend bit in current JavaThread 3030 Node* thread = ideal.thread(); 3031 Node* arg = _gvn.transform(argument(0)); // argument for notification 3032 Node* addr = basic_plus_adr(thread, in_bytes(JavaThread::is_disable_suspend_offset())); 3033 const TypePtr *addr_type = _gvn.type(addr)->isa_ptr(); 3034 3035 sync_kit(ideal); 3036 access_store_at(nullptr, addr, addr_type, arg, _gvn.type(arg), T_BOOLEAN, IN_NATIVE | MO_UNORDERED); 3037 ideal.sync_kit(this); 3038 } 3039 final_sync(ideal); 3040 3041 return true; 3042 } 3043 3044 #endif // INCLUDE_JVMTI 3045 3046 #ifdef JFR_HAVE_INTRINSICS 3047 3048 /** 3049 * if oop->klass != null 3050 * // normal class 3051 * epoch = _epoch_state ? 2 : 1 3052 * if oop->klass->trace_id & ((epoch << META_SHIFT) | epoch)) != epoch { 3053 * ... // enter slow path when the klass is first recorded or the epoch of JFR shifts 3054 * } 3055 * id = oop->klass->trace_id >> TRACE_ID_SHIFT // normal class path 3056 * else 3057 * // primitive class 3058 * if oop->array_klass != null 3059 * id = (oop->array_klass->trace_id >> TRACE_ID_SHIFT) + 1 // primitive class path 3060 * else 3061 * id = LAST_TYPE_ID + 1 // void class path 3062 * if (!signaled) 3063 * signaled = true 3064 */ 3065 bool LibraryCallKit::inline_native_classID() { 3066 Node* cls = argument(0); 3067 3068 IdealKit ideal(this); 3069 #define __ ideal. 3070 IdealVariable result(ideal); __ declarations_done(); 3071 Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), 3072 basic_plus_adr(cls, java_lang_Class::klass_offset()), 3073 TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL)); 3074 3075 3076 __ if_then(kls, BoolTest::ne, null()); { 3077 Node* kls_trace_id_addr = basic_plus_adr(kls, in_bytes(KLASS_TRACE_ID_OFFSET)); 3078 Node* kls_trace_id_raw = ideal.load(ideal.ctrl(), kls_trace_id_addr,TypeLong::LONG, T_LONG, Compile::AliasIdxRaw); 3079 3080 Node* epoch_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::epoch_address())); 3081 Node* epoch = ideal.load(ideal.ctrl(), epoch_address, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw); 3082 epoch = _gvn.transform(new LShiftLNode(longcon(1), epoch)); 3083 Node* mask = _gvn.transform(new LShiftLNode(epoch, intcon(META_SHIFT))); 3084 mask = _gvn.transform(new OrLNode(mask, epoch)); 3085 Node* kls_trace_id_raw_and_mask = _gvn.transform(new AndLNode(kls_trace_id_raw, mask)); 3086 3087 float unlikely = PROB_UNLIKELY(0.999); 3088 __ if_then(kls_trace_id_raw_and_mask, BoolTest::ne, epoch, unlikely); { 3089 sync_kit(ideal); 3090 make_runtime_call(RC_LEAF, 3091 OptoRuntime::class_id_load_barrier_Type(), 3092 CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::load_barrier), 3093 "class id load barrier", 3094 TypePtr::BOTTOM, 3095 kls); 3096 ideal.sync_kit(this); 3097 } __ end_if(); 3098 3099 ideal.set(result, _gvn.transform(new URShiftLNode(kls_trace_id_raw, ideal.ConI(TRACE_ID_SHIFT)))); 3100 } __ else_(); { 3101 Node* array_kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), 3102 basic_plus_adr(cls, java_lang_Class::array_klass_offset()), 3103 TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL)); 3104 __ if_then(array_kls, BoolTest::ne, null()); { 3105 Node* array_kls_trace_id_addr = basic_plus_adr(array_kls, in_bytes(KLASS_TRACE_ID_OFFSET)); 3106 Node* array_kls_trace_id_raw = ideal.load(ideal.ctrl(), array_kls_trace_id_addr, TypeLong::LONG, T_LONG, Compile::AliasIdxRaw); 3107 Node* array_kls_trace_id = _gvn.transform(new URShiftLNode(array_kls_trace_id_raw, ideal.ConI(TRACE_ID_SHIFT))); 3108 ideal.set(result, _gvn.transform(new AddLNode(array_kls_trace_id, longcon(1)))); 3109 } __ else_(); { 3110 // void class case 3111 ideal.set(result, _gvn.transform(longcon(LAST_TYPE_ID + 1))); 3112 } __ end_if(); 3113 3114 Node* signaled_flag_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::signal_address())); 3115 Node* signaled = ideal.load(ideal.ctrl(), signaled_flag_address, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw, true, MemNode::acquire); 3116 __ if_then(signaled, BoolTest::ne, ideal.ConI(1)); { 3117 ideal.store(ideal.ctrl(), signaled_flag_address, ideal.ConI(1), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::release, true); 3118 } __ end_if(); 3119 } __ end_if(); 3120 3121 final_sync(ideal); 3122 set_result(ideal.value(result)); 3123 #undef __ 3124 return true; 3125 } 3126 3127 //------------------------inline_native_jvm_commit------------------ 3128 bool LibraryCallKit::inline_native_jvm_commit() { 3129 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 3130 3131 // Save input memory and i_o state. 3132 Node* input_memory_state = reset_memory(); 3133 set_all_memory(input_memory_state); 3134 Node* input_io_state = i_o(); 3135 3136 // TLS. 3137 Node* tls_ptr = _gvn.transform(new ThreadLocalNode()); 3138 // Jfr java buffer. 3139 Node* java_buffer_offset = _gvn.transform(new AddPNode(top(), tls_ptr, _gvn.transform(MakeConX(in_bytes(JAVA_BUFFER_OFFSET_JFR))))); 3140 Node* java_buffer = _gvn.transform(new LoadPNode(control(), input_memory_state, java_buffer_offset, TypePtr::BOTTOM, TypeRawPtr::NOTNULL, MemNode::unordered)); 3141 Node* java_buffer_pos_offset = _gvn.transform(new AddPNode(top(), java_buffer, _gvn.transform(MakeConX(in_bytes(JFR_BUFFER_POS_OFFSET))))); 3142 3143 // Load the current value of the notified field in the JfrThreadLocal. 3144 Node* notified_offset = basic_plus_adr(top(), tls_ptr, in_bytes(NOTIFY_OFFSET_JFR)); 3145 Node* notified = make_load(control(), notified_offset, TypeInt::BOOL, T_BOOLEAN, MemNode::unordered); 3146 3147 // Test for notification. 3148 Node* notified_cmp = _gvn.transform(new CmpINode(notified, _gvn.intcon(1))); 3149 Node* test_notified = _gvn.transform(new BoolNode(notified_cmp, BoolTest::eq)); 3150 IfNode* iff_notified = create_and_map_if(control(), test_notified, PROB_MIN, COUNT_UNKNOWN); 3151 3152 // True branch, is notified. 3153 Node* is_notified = _gvn.transform(new IfTrueNode(iff_notified)); 3154 set_control(is_notified); 3155 3156 // Reset notified state. 3157 Node* notified_reset_memory = store_to_memory(control(), notified_offset, _gvn.intcon(0), T_BOOLEAN, MemNode::unordered); 3158 3159 // Iff notified, the return address of the commit method is the current position of the backing java buffer. This is used to reset the event writer. 3160 Node* current_pos_X = _gvn.transform(new LoadXNode(control(), input_memory_state, java_buffer_pos_offset, TypeRawPtr::NOTNULL, TypeX_X, MemNode::unordered)); 3161 // Convert the machine-word to a long. 3162 Node* current_pos = _gvn.transform(ConvX2L(current_pos_X)); 3163 3164 // False branch, not notified. 3165 Node* not_notified = _gvn.transform(new IfFalseNode(iff_notified)); 3166 set_control(not_notified); 3167 set_all_memory(input_memory_state); 3168 3169 // Arg is the next position as a long. 3170 Node* arg = argument(0); 3171 // Convert long to machine-word. 3172 Node* next_pos_X = _gvn.transform(ConvL2X(arg)); 3173 3174 // Store the next_position to the underlying jfr java buffer. 3175 Node* commit_memory; 3176 #ifdef _LP64 3177 commit_memory = store_to_memory(control(), java_buffer_pos_offset, next_pos_X, T_LONG, MemNode::release); 3178 #else 3179 commit_memory = store_to_memory(control(), java_buffer_pos_offset, next_pos_X, T_INT, MemNode::release); 3180 #endif 3181 3182 // Now load the flags from off the java buffer and decide if the buffer is a lease. If so, it needs to be returned post-commit. 3183 Node* java_buffer_flags_offset = _gvn.transform(new AddPNode(top(), java_buffer, _gvn.transform(MakeConX(in_bytes(JFR_BUFFER_FLAGS_OFFSET))))); 3184 Node* flags = make_load(control(), java_buffer_flags_offset, TypeInt::UBYTE, T_BYTE, MemNode::unordered); 3185 Node* lease_constant = _gvn.transform(_gvn.intcon(4)); 3186 3187 // And flags with lease constant. 3188 Node* lease = _gvn.transform(new AndINode(flags, lease_constant)); 3189 3190 // Branch on lease to conditionalize returning the leased java buffer. 3191 Node* lease_cmp = _gvn.transform(new CmpINode(lease, lease_constant)); 3192 Node* test_lease = _gvn.transform(new BoolNode(lease_cmp, BoolTest::eq)); 3193 IfNode* iff_lease = create_and_map_if(control(), test_lease, PROB_MIN, COUNT_UNKNOWN); 3194 3195 // False branch, not a lease. 3196 Node* not_lease = _gvn.transform(new IfFalseNode(iff_lease)); 3197 3198 // True branch, is lease. 3199 Node* is_lease = _gvn.transform(new IfTrueNode(iff_lease)); 3200 set_control(is_lease); 3201 3202 // Make a runtime call, which can safepoint, to return the leased buffer. This updates both the JfrThreadLocal and the Java event writer oop. 3203 Node* call_return_lease = make_runtime_call(RC_NO_LEAF, 3204 OptoRuntime::void_void_Type(), 3205 SharedRuntime::jfr_return_lease(), 3206 "return_lease", TypePtr::BOTTOM); 3207 Node* call_return_lease_control = _gvn.transform(new ProjNode(call_return_lease, TypeFunc::Control)); 3208 3209 RegionNode* lease_compare_rgn = new RegionNode(PATH_LIMIT); 3210 record_for_igvn(lease_compare_rgn); 3211 PhiNode* lease_compare_mem = new PhiNode(lease_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3212 record_for_igvn(lease_compare_mem); 3213 PhiNode* lease_compare_io = new PhiNode(lease_compare_rgn, Type::ABIO); 3214 record_for_igvn(lease_compare_io); 3215 PhiNode* lease_result_value = new PhiNode(lease_compare_rgn, TypeLong::LONG); 3216 record_for_igvn(lease_result_value); 3217 3218 // Update control and phi nodes. 3219 lease_compare_rgn->init_req(_true_path, call_return_lease_control); 3220 lease_compare_rgn->init_req(_false_path, not_lease); 3221 3222 lease_compare_mem->init_req(_true_path, _gvn.transform(reset_memory())); 3223 lease_compare_mem->init_req(_false_path, commit_memory); 3224 3225 lease_compare_io->init_req(_true_path, i_o()); 3226 lease_compare_io->init_req(_false_path, input_io_state); 3227 3228 lease_result_value->init_req(_true_path, null()); // if the lease was returned, return 0. 3229 lease_result_value->init_req(_false_path, arg); // if not lease, return new updated position. 3230 3231 RegionNode* result_rgn = new RegionNode(PATH_LIMIT); 3232 PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM); 3233 PhiNode* result_io = new PhiNode(result_rgn, Type::ABIO); 3234 PhiNode* result_value = new PhiNode(result_rgn, TypeLong::LONG); 3235 3236 // Update control and phi nodes. 3237 result_rgn->init_req(_true_path, is_notified); 3238 result_rgn->init_req(_false_path, _gvn.transform(lease_compare_rgn)); 3239 3240 result_mem->init_req(_true_path, notified_reset_memory); 3241 result_mem->init_req(_false_path, _gvn.transform(lease_compare_mem)); 3242 3243 result_io->init_req(_true_path, input_io_state); 3244 result_io->init_req(_false_path, _gvn.transform(lease_compare_io)); 3245 3246 result_value->init_req(_true_path, current_pos); 3247 result_value->init_req(_false_path, _gvn.transform(lease_result_value)); 3248 3249 // Set output state. 3250 set_control(_gvn.transform(result_rgn)); 3251 set_all_memory(_gvn.transform(result_mem)); 3252 set_i_o(_gvn.transform(result_io)); 3253 set_result(result_rgn, result_value); 3254 return true; 3255 } 3256 3257 /* 3258 * The intrinsic is a model of this pseudo-code: 3259 * 3260 * JfrThreadLocal* const tl = Thread::jfr_thread_local() 3261 * jobject h_event_writer = tl->java_event_writer(); 3262 * if (h_event_writer == nullptr) { 3263 * return nullptr; 3264 * } 3265 * oop threadObj = Thread::threadObj(); 3266 * oop vthread = java_lang_Thread::vthread(threadObj); 3267 * traceid tid; 3268 * bool pinVirtualThread; 3269 * bool excluded; 3270 * if (vthread != threadObj) { // i.e. current thread is virtual 3271 * tid = java_lang_Thread::tid(vthread); 3272 * u2 vthread_epoch_raw = java_lang_Thread::jfr_epoch(vthread); 3273 * pinVirtualThread = VMContinuations; 3274 * excluded = vthread_epoch_raw & excluded_mask; 3275 * if (!excluded) { 3276 * traceid current_epoch = JfrTraceIdEpoch::current_generation(); 3277 * u2 vthread_epoch = vthread_epoch_raw & epoch_mask; 3278 * if (vthread_epoch != current_epoch) { 3279 * write_checkpoint(); 3280 * } 3281 * } 3282 * } else { 3283 * tid = java_lang_Thread::tid(threadObj); 3284 * u2 thread_epoch_raw = java_lang_Thread::jfr_epoch(threadObj); 3285 * pinVirtualThread = false; 3286 * excluded = thread_epoch_raw & excluded_mask; 3287 * } 3288 * oop event_writer = JNIHandles::resolve_non_null(h_event_writer); 3289 * traceid tid_in_event_writer = getField(event_writer, "threadID"); 3290 * if (tid_in_event_writer != tid) { 3291 * setField(event_writer, "pinVirtualThread", pinVirtualThread); 3292 * setField(event_writer, "excluded", excluded); 3293 * setField(event_writer, "threadID", tid); 3294 * } 3295 * return event_writer 3296 */ 3297 bool LibraryCallKit::inline_native_getEventWriter() { 3298 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 3299 3300 // Save input memory and i_o state. 3301 Node* input_memory_state = reset_memory(); 3302 set_all_memory(input_memory_state); 3303 Node* input_io_state = i_o(); 3304 3305 // The most significant bit of the u2 is used to denote thread exclusion 3306 Node* excluded_shift = _gvn.intcon(15); 3307 Node* excluded_mask = _gvn.intcon(1 << 15); 3308 // The epoch generation is the range [1-32767] 3309 Node* epoch_mask = _gvn.intcon(32767); 3310 3311 // TLS 3312 Node* tls_ptr = _gvn.transform(new ThreadLocalNode()); 3313 3314 // Load the address of java event writer jobject handle from the jfr_thread_local structure. 3315 Node* jobj_ptr = basic_plus_adr(top(), tls_ptr, in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR)); 3316 3317 // Load the eventwriter jobject handle. 3318 Node* jobj = make_load(control(), jobj_ptr, TypeRawPtr::BOTTOM, T_ADDRESS, MemNode::unordered); 3319 3320 // Null check the jobject handle. 3321 Node* jobj_cmp_null = _gvn.transform(new CmpPNode(jobj, null())); 3322 Node* test_jobj_not_equal_null = _gvn.transform(new BoolNode(jobj_cmp_null, BoolTest::ne)); 3323 IfNode* iff_jobj_not_equal_null = create_and_map_if(control(), test_jobj_not_equal_null, PROB_MAX, COUNT_UNKNOWN); 3324 3325 // False path, jobj is null. 3326 Node* jobj_is_null = _gvn.transform(new IfFalseNode(iff_jobj_not_equal_null)); 3327 3328 // True path, jobj is not null. 3329 Node* jobj_is_not_null = _gvn.transform(new IfTrueNode(iff_jobj_not_equal_null)); 3330 3331 set_control(jobj_is_not_null); 3332 3333 // Load the threadObj for the CarrierThread. 3334 Node* threadObj = generate_current_thread(tls_ptr); 3335 3336 // Load the vthread. 3337 Node* vthread = generate_virtual_thread(tls_ptr); 3338 3339 // If vthread != threadObj, this is a virtual thread. 3340 Node* vthread_cmp_threadObj = _gvn.transform(new CmpPNode(vthread, threadObj)); 3341 Node* test_vthread_not_equal_threadObj = _gvn.transform(new BoolNode(vthread_cmp_threadObj, BoolTest::ne)); 3342 IfNode* iff_vthread_not_equal_threadObj = 3343 create_and_map_if(jobj_is_not_null, test_vthread_not_equal_threadObj, PROB_FAIR, COUNT_UNKNOWN); 3344 3345 // False branch, fallback to threadObj. 3346 Node* vthread_equal_threadObj = _gvn.transform(new IfFalseNode(iff_vthread_not_equal_threadObj)); 3347 set_control(vthread_equal_threadObj); 3348 3349 // Load the tid field from the vthread object. 3350 Node* thread_obj_tid = load_field_from_object(threadObj, "tid", "J"); 3351 3352 // Load the raw epoch value from the threadObj. 3353 Node* threadObj_epoch_offset = basic_plus_adr(threadObj, java_lang_Thread::jfr_epoch_offset()); 3354 Node* threadObj_epoch_raw = access_load_at(threadObj, threadObj_epoch_offset, 3355 _gvn.type(threadObj_epoch_offset)->isa_ptr(), 3356 TypeInt::CHAR, T_CHAR, 3357 IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD); 3358 3359 // Mask off the excluded information from the epoch. 3360 Node * threadObj_is_excluded = _gvn.transform(new AndINode(threadObj_epoch_raw, excluded_mask)); 3361 3362 // True branch, this is a virtual thread. 3363 Node* vthread_not_equal_threadObj = _gvn.transform(new IfTrueNode(iff_vthread_not_equal_threadObj)); 3364 set_control(vthread_not_equal_threadObj); 3365 3366 // Load the tid field from the vthread object. 3367 Node* vthread_tid = load_field_from_object(vthread, "tid", "J"); 3368 3369 // Continuation support determines if a virtual thread should be pinned. 3370 Node* global_addr = makecon(TypeRawPtr::make((address)&VMContinuations)); 3371 Node* continuation_support = make_load(control(), global_addr, TypeInt::BOOL, T_BOOLEAN, MemNode::unordered); 3372 3373 // Load the raw epoch value from the vthread. 3374 Node* vthread_epoch_offset = basic_plus_adr(vthread, java_lang_Thread::jfr_epoch_offset()); 3375 Node* vthread_epoch_raw = access_load_at(vthread, vthread_epoch_offset, _gvn.type(vthread_epoch_offset)->is_ptr(), 3376 TypeInt::CHAR, T_CHAR, 3377 IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD); 3378 3379 // Mask off the excluded information from the epoch. 3380 Node * vthread_is_excluded = _gvn.transform(new AndINode(vthread_epoch_raw, _gvn.transform(excluded_mask))); 3381 3382 // Branch on excluded to conditionalize updating the epoch for the virtual thread. 3383 Node* is_excluded_cmp = _gvn.transform(new CmpINode(vthread_is_excluded, _gvn.transform(excluded_mask))); 3384 Node* test_not_excluded = _gvn.transform(new BoolNode(is_excluded_cmp, BoolTest::ne)); 3385 IfNode* iff_not_excluded = create_and_map_if(control(), test_not_excluded, PROB_MAX, COUNT_UNKNOWN); 3386 3387 // False branch, vthread is excluded, no need to write epoch info. 3388 Node* excluded = _gvn.transform(new IfFalseNode(iff_not_excluded)); 3389 3390 // True branch, vthread is included, update epoch info. 3391 Node* included = _gvn.transform(new IfTrueNode(iff_not_excluded)); 3392 set_control(included); 3393 3394 // Get epoch value. 3395 Node* epoch = _gvn.transform(new AndINode(vthread_epoch_raw, _gvn.transform(epoch_mask))); 3396 3397 // Load the current epoch generation. The value is unsigned 16-bit, so we type it as T_CHAR. 3398 Node* epoch_generation_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::epoch_generation_address())); 3399 Node* current_epoch_generation = make_load(control(), epoch_generation_address, TypeInt::CHAR, T_CHAR, MemNode::unordered); 3400 3401 // Compare the epoch in the vthread to the current epoch generation. 3402 Node* const epoch_cmp = _gvn.transform(new CmpUNode(current_epoch_generation, epoch)); 3403 Node* test_epoch_not_equal = _gvn.transform(new BoolNode(epoch_cmp, BoolTest::ne)); 3404 IfNode* iff_epoch_not_equal = create_and_map_if(control(), test_epoch_not_equal, PROB_FAIR, COUNT_UNKNOWN); 3405 3406 // False path, epoch is equal, checkpoint information is valid. 3407 Node* epoch_is_equal = _gvn.transform(new IfFalseNode(iff_epoch_not_equal)); 3408 3409 // True path, epoch is not equal, write a checkpoint for the vthread. 3410 Node* epoch_is_not_equal = _gvn.transform(new IfTrueNode(iff_epoch_not_equal)); 3411 3412 set_control(epoch_is_not_equal); 3413 3414 // Make a runtime call, which can safepoint, to write a checkpoint for the vthread for this epoch. 3415 // The call also updates the native thread local thread id and the vthread with the current epoch. 3416 Node* call_write_checkpoint = make_runtime_call(RC_NO_LEAF, 3417 OptoRuntime::jfr_write_checkpoint_Type(), 3418 SharedRuntime::jfr_write_checkpoint(), 3419 "write_checkpoint", TypePtr::BOTTOM); 3420 Node* call_write_checkpoint_control = _gvn.transform(new ProjNode(call_write_checkpoint, TypeFunc::Control)); 3421 3422 // vthread epoch != current epoch 3423 RegionNode* epoch_compare_rgn = new RegionNode(PATH_LIMIT); 3424 record_for_igvn(epoch_compare_rgn); 3425 PhiNode* epoch_compare_mem = new PhiNode(epoch_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3426 record_for_igvn(epoch_compare_mem); 3427 PhiNode* epoch_compare_io = new PhiNode(epoch_compare_rgn, Type::ABIO); 3428 record_for_igvn(epoch_compare_io); 3429 3430 // Update control and phi nodes. 3431 epoch_compare_rgn->init_req(_true_path, call_write_checkpoint_control); 3432 epoch_compare_rgn->init_req(_false_path, epoch_is_equal); 3433 epoch_compare_mem->init_req(_true_path, _gvn.transform(reset_memory())); 3434 epoch_compare_mem->init_req(_false_path, input_memory_state); 3435 epoch_compare_io->init_req(_true_path, i_o()); 3436 epoch_compare_io->init_req(_false_path, input_io_state); 3437 3438 // excluded != true 3439 RegionNode* exclude_compare_rgn = new RegionNode(PATH_LIMIT); 3440 record_for_igvn(exclude_compare_rgn); 3441 PhiNode* exclude_compare_mem = new PhiNode(exclude_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3442 record_for_igvn(exclude_compare_mem); 3443 PhiNode* exclude_compare_io = new PhiNode(exclude_compare_rgn, Type::ABIO); 3444 record_for_igvn(exclude_compare_io); 3445 3446 // Update control and phi nodes. 3447 exclude_compare_rgn->init_req(_true_path, _gvn.transform(epoch_compare_rgn)); 3448 exclude_compare_rgn->init_req(_false_path, excluded); 3449 exclude_compare_mem->init_req(_true_path, _gvn.transform(epoch_compare_mem)); 3450 exclude_compare_mem->init_req(_false_path, input_memory_state); 3451 exclude_compare_io->init_req(_true_path, _gvn.transform(epoch_compare_io)); 3452 exclude_compare_io->init_req(_false_path, input_io_state); 3453 3454 // vthread != threadObj 3455 RegionNode* vthread_compare_rgn = new RegionNode(PATH_LIMIT); 3456 record_for_igvn(vthread_compare_rgn); 3457 PhiNode* vthread_compare_mem = new PhiNode(vthread_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3458 PhiNode* vthread_compare_io = new PhiNode(vthread_compare_rgn, Type::ABIO); 3459 record_for_igvn(vthread_compare_io); 3460 PhiNode* tid = new PhiNode(vthread_compare_rgn, TypeLong::LONG); 3461 record_for_igvn(tid); 3462 PhiNode* exclusion = new PhiNode(vthread_compare_rgn, TypeInt::CHAR); 3463 record_for_igvn(exclusion); 3464 PhiNode* pinVirtualThread = new PhiNode(vthread_compare_rgn, TypeInt::BOOL); 3465 record_for_igvn(pinVirtualThread); 3466 3467 // Update control and phi nodes. 3468 vthread_compare_rgn->init_req(_true_path, _gvn.transform(exclude_compare_rgn)); 3469 vthread_compare_rgn->init_req(_false_path, vthread_equal_threadObj); 3470 vthread_compare_mem->init_req(_true_path, _gvn.transform(exclude_compare_mem)); 3471 vthread_compare_mem->init_req(_false_path, input_memory_state); 3472 vthread_compare_io->init_req(_true_path, _gvn.transform(exclude_compare_io)); 3473 vthread_compare_io->init_req(_false_path, input_io_state); 3474 tid->init_req(_true_path, _gvn.transform(vthread_tid)); 3475 tid->init_req(_false_path, _gvn.transform(thread_obj_tid)); 3476 exclusion->init_req(_true_path, _gvn.transform(vthread_is_excluded)); 3477 exclusion->init_req(_false_path, _gvn.transform(threadObj_is_excluded)); 3478 pinVirtualThread->init_req(_true_path, _gvn.transform(continuation_support)); 3479 pinVirtualThread->init_req(_false_path, _gvn.intcon(0)); 3480 3481 // Update branch state. 3482 set_control(_gvn.transform(vthread_compare_rgn)); 3483 set_all_memory(_gvn.transform(vthread_compare_mem)); 3484 set_i_o(_gvn.transform(vthread_compare_io)); 3485 3486 // Load the event writer oop by dereferencing the jobject handle. 3487 ciKlass* klass_EventWriter = env()->find_system_klass(ciSymbol::make("jdk/jfr/internal/event/EventWriter")); 3488 assert(klass_EventWriter->is_loaded(), "invariant"); 3489 ciInstanceKlass* const instklass_EventWriter = klass_EventWriter->as_instance_klass(); 3490 const TypeKlassPtr* const aklass = TypeKlassPtr::make(instklass_EventWriter); 3491 const TypeOopPtr* const xtype = aklass->as_instance_type(); 3492 Node* jobj_untagged = _gvn.transform(new AddPNode(top(), jobj, _gvn.MakeConX(-JNIHandles::TypeTag::global))); 3493 Node* event_writer = access_load(jobj_untagged, xtype, T_OBJECT, IN_NATIVE | C2_CONTROL_DEPENDENT_LOAD); 3494 3495 // Load the current thread id from the event writer object. 3496 Node* const event_writer_tid = load_field_from_object(event_writer, "threadID", "J"); 3497 // Get the field offset to, conditionally, store an updated tid value later. 3498 Node* const event_writer_tid_field = field_address_from_object(event_writer, "threadID", "J", false); 3499 // Get the field offset to, conditionally, store an updated exclusion value later. 3500 Node* const event_writer_excluded_field = field_address_from_object(event_writer, "excluded", "Z", false); 3501 // Get the field offset to, conditionally, store an updated pinVirtualThread value later. 3502 Node* const event_writer_pin_field = field_address_from_object(event_writer, "pinVirtualThread", "Z", false); 3503 3504 RegionNode* event_writer_tid_compare_rgn = new RegionNode(PATH_LIMIT); 3505 record_for_igvn(event_writer_tid_compare_rgn); 3506 PhiNode* event_writer_tid_compare_mem = new PhiNode(event_writer_tid_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3507 record_for_igvn(event_writer_tid_compare_mem); 3508 PhiNode* event_writer_tid_compare_io = new PhiNode(event_writer_tid_compare_rgn, Type::ABIO); 3509 record_for_igvn(event_writer_tid_compare_io); 3510 3511 // Compare the current tid from the thread object to what is currently stored in the event writer object. 3512 Node* const tid_cmp = _gvn.transform(new CmpLNode(event_writer_tid, _gvn.transform(tid))); 3513 Node* test_tid_not_equal = _gvn.transform(new BoolNode(tid_cmp, BoolTest::ne)); 3514 IfNode* iff_tid_not_equal = create_and_map_if(_gvn.transform(vthread_compare_rgn), test_tid_not_equal, PROB_FAIR, COUNT_UNKNOWN); 3515 3516 // False path, tids are the same. 3517 Node* tid_is_equal = _gvn.transform(new IfFalseNode(iff_tid_not_equal)); 3518 3519 // True path, tid is not equal, need to update the tid in the event writer. 3520 Node* tid_is_not_equal = _gvn.transform(new IfTrueNode(iff_tid_not_equal)); 3521 record_for_igvn(tid_is_not_equal); 3522 3523 // Store the pin state to the event writer. 3524 store_to_memory(tid_is_not_equal, event_writer_pin_field, _gvn.transform(pinVirtualThread), T_BOOLEAN, MemNode::unordered); 3525 3526 // Store the exclusion state to the event writer. 3527 Node* excluded_bool = _gvn.transform(new URShiftINode(_gvn.transform(exclusion), excluded_shift)); 3528 store_to_memory(tid_is_not_equal, event_writer_excluded_field, excluded_bool, T_BOOLEAN, MemNode::unordered); 3529 3530 // Store the tid to the event writer. 3531 store_to_memory(tid_is_not_equal, event_writer_tid_field, tid, T_LONG, MemNode::unordered); 3532 3533 // Update control and phi nodes. 3534 event_writer_tid_compare_rgn->init_req(_true_path, tid_is_not_equal); 3535 event_writer_tid_compare_rgn->init_req(_false_path, tid_is_equal); 3536 event_writer_tid_compare_mem->init_req(_true_path, _gvn.transform(reset_memory())); 3537 event_writer_tid_compare_mem->init_req(_false_path, _gvn.transform(vthread_compare_mem)); 3538 event_writer_tid_compare_io->init_req(_true_path, _gvn.transform(i_o())); 3539 event_writer_tid_compare_io->init_req(_false_path, _gvn.transform(vthread_compare_io)); 3540 3541 // Result of top level CFG, Memory, IO and Value. 3542 RegionNode* result_rgn = new RegionNode(PATH_LIMIT); 3543 PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM); 3544 PhiNode* result_io = new PhiNode(result_rgn, Type::ABIO); 3545 PhiNode* result_value = new PhiNode(result_rgn, TypeInstPtr::BOTTOM); 3546 3547 // Result control. 3548 result_rgn->init_req(_true_path, _gvn.transform(event_writer_tid_compare_rgn)); 3549 result_rgn->init_req(_false_path, jobj_is_null); 3550 3551 // Result memory. 3552 result_mem->init_req(_true_path, _gvn.transform(event_writer_tid_compare_mem)); 3553 result_mem->init_req(_false_path, _gvn.transform(input_memory_state)); 3554 3555 // Result IO. 3556 result_io->init_req(_true_path, _gvn.transform(event_writer_tid_compare_io)); 3557 result_io->init_req(_false_path, _gvn.transform(input_io_state)); 3558 3559 // Result value. 3560 result_value->init_req(_true_path, _gvn.transform(event_writer)); // return event writer oop 3561 result_value->init_req(_false_path, null()); // return null 3562 3563 // Set output state. 3564 set_control(_gvn.transform(result_rgn)); 3565 set_all_memory(_gvn.transform(result_mem)); 3566 set_i_o(_gvn.transform(result_io)); 3567 set_result(result_rgn, result_value); 3568 return true; 3569 } 3570 3571 /* 3572 * The intrinsic is a model of this pseudo-code: 3573 * 3574 * JfrThreadLocal* const tl = thread->jfr_thread_local(); 3575 * if (carrierThread != thread) { // is virtual thread 3576 * const u2 vthread_epoch_raw = java_lang_Thread::jfr_epoch(thread); 3577 * bool excluded = vthread_epoch_raw & excluded_mask; 3578 * Atomic::store(&tl->_contextual_tid, java_lang_Thread::tid(thread)); 3579 * Atomic::store(&tl->_contextual_thread_excluded, is_excluded); 3580 * if (!excluded) { 3581 * const u2 vthread_epoch = vthread_epoch_raw & epoch_mask; 3582 * Atomic::store(&tl->_vthread_epoch, vthread_epoch); 3583 * } 3584 * Atomic::release_store(&tl->_vthread, true); 3585 * return; 3586 * } 3587 * Atomic::release_store(&tl->_vthread, false); 3588 */ 3589 void LibraryCallKit::extend_setCurrentThread(Node* jt, Node* thread) { 3590 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 3591 3592 Node* input_memory_state = reset_memory(); 3593 set_all_memory(input_memory_state); 3594 3595 // The most significant bit of the u2 is used to denote thread exclusion 3596 Node* excluded_mask = _gvn.intcon(1 << 15); 3597 // The epoch generation is the range [1-32767] 3598 Node* epoch_mask = _gvn.intcon(32767); 3599 3600 Node* const carrierThread = generate_current_thread(jt); 3601 // If thread != carrierThread, this is a virtual thread. 3602 Node* thread_cmp_carrierThread = _gvn.transform(new CmpPNode(thread, carrierThread)); 3603 Node* test_thread_not_equal_carrierThread = _gvn.transform(new BoolNode(thread_cmp_carrierThread, BoolTest::ne)); 3604 IfNode* iff_thread_not_equal_carrierThread = 3605 create_and_map_if(control(), test_thread_not_equal_carrierThread, PROB_FAIR, COUNT_UNKNOWN); 3606 3607 Node* vthread_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_OFFSET_JFR)); 3608 3609 // False branch, is carrierThread. 3610 Node* thread_equal_carrierThread = _gvn.transform(new IfFalseNode(iff_thread_not_equal_carrierThread)); 3611 // Store release 3612 Node* vthread_false_memory = store_to_memory(thread_equal_carrierThread, vthread_offset, _gvn.intcon(0), T_BOOLEAN, MemNode::release, true); 3613 3614 set_all_memory(input_memory_state); 3615 3616 // True branch, is virtual thread. 3617 Node* thread_not_equal_carrierThread = _gvn.transform(new IfTrueNode(iff_thread_not_equal_carrierThread)); 3618 set_control(thread_not_equal_carrierThread); 3619 3620 // Load the raw epoch value from the vthread. 3621 Node* epoch_offset = basic_plus_adr(thread, java_lang_Thread::jfr_epoch_offset()); 3622 Node* epoch_raw = access_load_at(thread, epoch_offset, _gvn.type(epoch_offset)->is_ptr(), TypeInt::CHAR, T_CHAR, 3623 IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD); 3624 3625 // Mask off the excluded information from the epoch. 3626 Node * const is_excluded = _gvn.transform(new AndINode(epoch_raw, _gvn.transform(excluded_mask))); 3627 3628 // Load the tid field from the thread. 3629 Node* tid = load_field_from_object(thread, "tid", "J"); 3630 3631 // Store the vthread tid to the jfr thread local. 3632 Node* thread_id_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_ID_OFFSET_JFR)); 3633 Node* tid_memory = store_to_memory(control(), thread_id_offset, tid, T_LONG, MemNode::unordered, true); 3634 3635 // Branch is_excluded to conditionalize updating the epoch . 3636 Node* excluded_cmp = _gvn.transform(new CmpINode(is_excluded, _gvn.transform(excluded_mask))); 3637 Node* test_excluded = _gvn.transform(new BoolNode(excluded_cmp, BoolTest::eq)); 3638 IfNode* iff_excluded = create_and_map_if(control(), test_excluded, PROB_MIN, COUNT_UNKNOWN); 3639 3640 // True branch, vthread is excluded, no need to write epoch info. 3641 Node* excluded = _gvn.transform(new IfTrueNode(iff_excluded)); 3642 set_control(excluded); 3643 Node* vthread_is_excluded = _gvn.intcon(1); 3644 3645 // False branch, vthread is included, update epoch info. 3646 Node* included = _gvn.transform(new IfFalseNode(iff_excluded)); 3647 set_control(included); 3648 Node* vthread_is_included = _gvn.intcon(0); 3649 3650 // Get epoch value. 3651 Node* epoch = _gvn.transform(new AndINode(epoch_raw, _gvn.transform(epoch_mask))); 3652 3653 // Store the vthread epoch to the jfr thread local. 3654 Node* vthread_epoch_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_EPOCH_OFFSET_JFR)); 3655 Node* included_memory = store_to_memory(control(), vthread_epoch_offset, epoch, T_CHAR, MemNode::unordered, true); 3656 3657 RegionNode* excluded_rgn = new RegionNode(PATH_LIMIT); 3658 record_for_igvn(excluded_rgn); 3659 PhiNode* excluded_mem = new PhiNode(excluded_rgn, Type::MEMORY, TypePtr::BOTTOM); 3660 record_for_igvn(excluded_mem); 3661 PhiNode* exclusion = new PhiNode(excluded_rgn, TypeInt::BOOL); 3662 record_for_igvn(exclusion); 3663 3664 // Merge the excluded control and memory. 3665 excluded_rgn->init_req(_true_path, excluded); 3666 excluded_rgn->init_req(_false_path, included); 3667 excluded_mem->init_req(_true_path, tid_memory); 3668 excluded_mem->init_req(_false_path, included_memory); 3669 exclusion->init_req(_true_path, _gvn.transform(vthread_is_excluded)); 3670 exclusion->init_req(_false_path, _gvn.transform(vthread_is_included)); 3671 3672 // Set intermediate state. 3673 set_control(_gvn.transform(excluded_rgn)); 3674 set_all_memory(excluded_mem); 3675 3676 // Store the vthread exclusion state to the jfr thread local. 3677 Node* thread_local_excluded_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_EXCLUDED_OFFSET_JFR)); 3678 store_to_memory(control(), thread_local_excluded_offset, _gvn.transform(exclusion), T_BOOLEAN, MemNode::unordered, true); 3679 3680 // Store release 3681 Node * vthread_true_memory = store_to_memory(control(), vthread_offset, _gvn.intcon(1), T_BOOLEAN, MemNode::release, true); 3682 3683 RegionNode* thread_compare_rgn = new RegionNode(PATH_LIMIT); 3684 record_for_igvn(thread_compare_rgn); 3685 PhiNode* thread_compare_mem = new PhiNode(thread_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3686 record_for_igvn(thread_compare_mem); 3687 PhiNode* vthread = new PhiNode(thread_compare_rgn, TypeInt::BOOL); 3688 record_for_igvn(vthread); 3689 3690 // Merge the thread_compare control and memory. 3691 thread_compare_rgn->init_req(_true_path, control()); 3692 thread_compare_rgn->init_req(_false_path, thread_equal_carrierThread); 3693 thread_compare_mem->init_req(_true_path, vthread_true_memory); 3694 thread_compare_mem->init_req(_false_path, vthread_false_memory); 3695 3696 // Set output state. 3697 set_control(_gvn.transform(thread_compare_rgn)); 3698 set_all_memory(_gvn.transform(thread_compare_mem)); 3699 } 3700 3701 #endif // JFR_HAVE_INTRINSICS 3702 3703 //------------------------inline_native_currentCarrierThread------------------ 3704 bool LibraryCallKit::inline_native_currentCarrierThread() { 3705 Node* junk = nullptr; 3706 set_result(generate_current_thread(junk)); 3707 return true; 3708 } 3709 3710 //------------------------inline_native_currentThread------------------ 3711 bool LibraryCallKit::inline_native_currentThread() { 3712 Node* junk = nullptr; 3713 set_result(generate_virtual_thread(junk)); 3714 return true; 3715 } 3716 3717 //------------------------inline_native_setVthread------------------ 3718 bool LibraryCallKit::inline_native_setCurrentThread() { 3719 assert(C->method()->changes_current_thread(), 3720 "method changes current Thread but is not annotated ChangesCurrentThread"); 3721 Node* arr = argument(1); 3722 Node* thread = _gvn.transform(new ThreadLocalNode()); 3723 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::vthread_offset())); 3724 Node* thread_obj_handle 3725 = make_load(nullptr, p, p->bottom_type()->is_ptr(), T_OBJECT, MemNode::unordered); 3726 thread_obj_handle = _gvn.transform(thread_obj_handle); 3727 const TypePtr *adr_type = _gvn.type(thread_obj_handle)->isa_ptr(); 3728 access_store_at(nullptr, thread_obj_handle, adr_type, arr, _gvn.type(arr), T_OBJECT, IN_NATIVE | MO_UNORDERED); 3729 3730 // Change the _monitor_owner_id of the JavaThread 3731 Node* tid = load_field_from_object(arr, "tid", "J"); 3732 Node* monitor_owner_id_offset = basic_plus_adr(thread, in_bytes(JavaThread::monitor_owner_id_offset())); 3733 store_to_memory(control(), monitor_owner_id_offset, tid, T_LONG, MemNode::unordered, true); 3734 3735 JFR_ONLY(extend_setCurrentThread(thread, arr);) 3736 return true; 3737 } 3738 3739 const Type* LibraryCallKit::scopedValueCache_type() { 3740 ciKlass* objects_klass = ciObjArrayKlass::make(env()->Object_klass()); 3741 const TypeOopPtr* etype = TypeOopPtr::make_from_klass(env()->Object_klass()); 3742 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS); 3743 3744 // Because we create the scopedValue cache lazily we have to make the 3745 // type of the result BotPTR. 3746 bool xk = etype->klass_is_exact(); 3747 const Type* objects_type = TypeAryPtr::make(TypePtr::BotPTR, arr0, objects_klass, xk, 0); 3748 return objects_type; 3749 } 3750 3751 Node* LibraryCallKit::scopedValueCache_helper() { 3752 Node* thread = _gvn.transform(new ThreadLocalNode()); 3753 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::scopedValueCache_offset())); 3754 // We cannot use immutable_memory() because we might flip onto a 3755 // different carrier thread, at which point we'll need to use that 3756 // carrier thread's cache. 3757 // return _gvn.transform(LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(), 3758 // TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered)); 3759 return make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered); 3760 } 3761 3762 //------------------------inline_native_scopedValueCache------------------ 3763 bool LibraryCallKit::inline_native_scopedValueCache() { 3764 Node* cache_obj_handle = scopedValueCache_helper(); 3765 const Type* objects_type = scopedValueCache_type(); 3766 set_result(access_load(cache_obj_handle, objects_type, T_OBJECT, IN_NATIVE)); 3767 3768 return true; 3769 } 3770 3771 //------------------------inline_native_setScopedValueCache------------------ 3772 bool LibraryCallKit::inline_native_setScopedValueCache() { 3773 Node* arr = argument(0); 3774 Node* cache_obj_handle = scopedValueCache_helper(); 3775 const Type* objects_type = scopedValueCache_type(); 3776 3777 const TypePtr *adr_type = _gvn.type(cache_obj_handle)->isa_ptr(); 3778 access_store_at(nullptr, cache_obj_handle, adr_type, arr, objects_type, T_OBJECT, IN_NATIVE | MO_UNORDERED); 3779 3780 return true; 3781 } 3782 3783 //------------------------inline_native_Continuation_pin and unpin----------- 3784 3785 // Shared implementation routine for both pin and unpin. 3786 bool LibraryCallKit::inline_native_Continuation_pinning(bool unpin) { 3787 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 3788 3789 // Save input memory. 3790 Node* input_memory_state = reset_memory(); 3791 set_all_memory(input_memory_state); 3792 3793 // TLS 3794 Node* tls_ptr = _gvn.transform(new ThreadLocalNode()); 3795 Node* last_continuation_offset = basic_plus_adr(top(), tls_ptr, in_bytes(JavaThread::cont_entry_offset())); 3796 Node* last_continuation = make_load(control(), last_continuation_offset, last_continuation_offset->get_ptr_type(), T_ADDRESS, MemNode::unordered); 3797 3798 // Null check the last continuation object. 3799 Node* continuation_cmp_null = _gvn.transform(new CmpPNode(last_continuation, null())); 3800 Node* test_continuation_not_equal_null = _gvn.transform(new BoolNode(continuation_cmp_null, BoolTest::ne)); 3801 IfNode* iff_continuation_not_equal_null = create_and_map_if(control(), test_continuation_not_equal_null, PROB_MAX, COUNT_UNKNOWN); 3802 3803 // False path, last continuation is null. 3804 Node* continuation_is_null = _gvn.transform(new IfFalseNode(iff_continuation_not_equal_null)); 3805 3806 // True path, last continuation is not null. 3807 Node* continuation_is_not_null = _gvn.transform(new IfTrueNode(iff_continuation_not_equal_null)); 3808 3809 set_control(continuation_is_not_null); 3810 3811 // Load the pin count from the last continuation. 3812 Node* pin_count_offset = basic_plus_adr(top(), last_continuation, in_bytes(ContinuationEntry::pin_count_offset())); 3813 Node* pin_count = make_load(control(), pin_count_offset, TypeInt::INT, T_INT, MemNode::unordered); 3814 3815 // The loaded pin count is compared against a context specific rhs for over/underflow detection. 3816 Node* pin_count_rhs; 3817 if (unpin) { 3818 pin_count_rhs = _gvn.intcon(0); 3819 } else { 3820 pin_count_rhs = _gvn.intcon(UINT32_MAX); 3821 } 3822 Node* pin_count_cmp = _gvn.transform(new CmpUNode(_gvn.transform(pin_count), pin_count_rhs)); 3823 Node* test_pin_count_over_underflow = _gvn.transform(new BoolNode(pin_count_cmp, BoolTest::eq)); 3824 IfNode* iff_pin_count_over_underflow = create_and_map_if(control(), test_pin_count_over_underflow, PROB_MIN, COUNT_UNKNOWN); 3825 3826 // True branch, pin count over/underflow. 3827 Node* pin_count_over_underflow = _gvn.transform(new IfTrueNode(iff_pin_count_over_underflow)); 3828 { 3829 // Trap (but not deoptimize (Action_none)) and continue in the interpreter 3830 // which will throw IllegalStateException for pin count over/underflow. 3831 // No memory changed so far - we can use memory create by reset_memory() 3832 // at the beginning of this intrinsic. No need to call reset_memory() again. 3833 PreserveJVMState pjvms(this); 3834 set_control(pin_count_over_underflow); 3835 uncommon_trap(Deoptimization::Reason_intrinsic, 3836 Deoptimization::Action_none); 3837 assert(stopped(), "invariant"); 3838 } 3839 3840 // False branch, no pin count over/underflow. Increment or decrement pin count and store back. 3841 Node* valid_pin_count = _gvn.transform(new IfFalseNode(iff_pin_count_over_underflow)); 3842 set_control(valid_pin_count); 3843 3844 Node* next_pin_count; 3845 if (unpin) { 3846 next_pin_count = _gvn.transform(new SubINode(pin_count, _gvn.intcon(1))); 3847 } else { 3848 next_pin_count = _gvn.transform(new AddINode(pin_count, _gvn.intcon(1))); 3849 } 3850 3851 store_to_memory(control(), pin_count_offset, next_pin_count, T_INT, MemNode::unordered); 3852 3853 // Result of top level CFG and Memory. 3854 RegionNode* result_rgn = new RegionNode(PATH_LIMIT); 3855 record_for_igvn(result_rgn); 3856 PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM); 3857 record_for_igvn(result_mem); 3858 3859 result_rgn->init_req(_true_path, _gvn.transform(valid_pin_count)); 3860 result_rgn->init_req(_false_path, _gvn.transform(continuation_is_null)); 3861 result_mem->init_req(_true_path, _gvn.transform(reset_memory())); 3862 result_mem->init_req(_false_path, _gvn.transform(input_memory_state)); 3863 3864 // Set output state. 3865 set_control(_gvn.transform(result_rgn)); 3866 set_all_memory(_gvn.transform(result_mem)); 3867 3868 return true; 3869 } 3870 3871 //---------------------------load_mirror_from_klass---------------------------- 3872 // Given a klass oop, load its java mirror (a java.lang.Class oop). 3873 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) { 3874 Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset())); 3875 Node* load = make_load(nullptr, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered); 3876 // mirror = ((OopHandle)mirror)->resolve(); 3877 return access_load(load, TypeInstPtr::MIRROR, T_OBJECT, IN_NATIVE); 3878 } 3879 3880 //-----------------------load_klass_from_mirror_common------------------------- 3881 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop. 3882 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE), 3883 // and branch to the given path on the region. 3884 // If never_see_null, take an uncommon trap on null, so we can optimistically 3885 // compile for the non-null case. 3886 // If the region is null, force never_see_null = true. 3887 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror, 3888 bool never_see_null, 3889 RegionNode* region, 3890 int null_path, 3891 int offset) { 3892 if (region == nullptr) never_see_null = true; 3893 Node* p = basic_plus_adr(mirror, offset); 3894 const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL; 3895 Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type)); 3896 Node* null_ctl = top(); 3897 kls = null_check_oop(kls, &null_ctl, never_see_null); 3898 if (region != nullptr) { 3899 // Set region->in(null_path) if the mirror is a primitive (e.g, int.class). 3900 region->init_req(null_path, null_ctl); 3901 } else { 3902 assert(null_ctl == top(), "no loose ends"); 3903 } 3904 return kls; 3905 } 3906 3907 //--------------------(inline_native_Class_query helpers)--------------------- 3908 // Use this for JVM_ACC_INTERFACE. 3909 // Fall through if (mods & mask) == bits, take the guard otherwise. 3910 Node* LibraryCallKit::generate_klass_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region, 3911 ByteSize offset, const Type* type, BasicType bt) { 3912 // Branch around if the given klass has the given modifier bit set. 3913 // Like generate_guard, adds a new path onto the region. 3914 Node* modp = basic_plus_adr(kls, in_bytes(offset)); 3915 Node* mods = make_load(nullptr, modp, type, bt, MemNode::unordered); 3916 Node* mask = intcon(modifier_mask); 3917 Node* bits = intcon(modifier_bits); 3918 Node* mbit = _gvn.transform(new AndINode(mods, mask)); 3919 Node* cmp = _gvn.transform(new CmpINode(mbit, bits)); 3920 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne)); 3921 return generate_fair_guard(bol, region); 3922 } 3923 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) { 3924 return generate_klass_flags_guard(kls, JVM_ACC_INTERFACE, 0, region, 3925 Klass::access_flags_offset(), TypeInt::CHAR, T_CHAR); 3926 } 3927 3928 // Use this for testing if Klass is_hidden, has_finalizer, and is_cloneable_fast. 3929 Node* LibraryCallKit::generate_misc_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) { 3930 return generate_klass_flags_guard(kls, modifier_mask, modifier_bits, region, 3931 Klass::misc_flags_offset(), TypeInt::UBYTE, T_BOOLEAN); 3932 } 3933 3934 Node* LibraryCallKit::generate_hidden_class_guard(Node* kls, RegionNode* region) { 3935 return generate_misc_flags_guard(kls, KlassFlags::_misc_is_hidden_class, 0, region); 3936 } 3937 3938 //-------------------------inline_native_Class_query------------------- 3939 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) { 3940 const Type* return_type = TypeInt::BOOL; 3941 Node* prim_return_value = top(); // what happens if it's a primitive class? 3942 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 3943 bool expect_prim = false; // most of these guys expect to work on refs 3944 3945 enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT }; 3946 3947 Node* mirror = argument(0); 3948 Node* obj = top(); 3949 3950 switch (id) { 3951 case vmIntrinsics::_isInstance: 3952 // nothing is an instance of a primitive type 3953 prim_return_value = intcon(0); 3954 obj = argument(1); 3955 break; 3956 case vmIntrinsics::_isHidden: 3957 prim_return_value = intcon(0); 3958 break; 3959 case vmIntrinsics::_getSuperclass: 3960 prim_return_value = null(); 3961 return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR); 3962 break; 3963 case vmIntrinsics::_getClassAccessFlags: 3964 prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC); 3965 return_type = TypeInt::CHAR; 3966 break; 3967 default: 3968 fatal_unexpected_iid(id); 3969 break; 3970 } 3971 3972 const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr(); 3973 if (mirror_con == nullptr) return false; // cannot happen? 3974 3975 #ifndef PRODUCT 3976 if (C->print_intrinsics() || C->print_inlining()) { 3977 ciType* k = mirror_con->java_mirror_type(); 3978 if (k) { 3979 tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id())); 3980 k->print_name(); 3981 tty->cr(); 3982 } 3983 } 3984 #endif 3985 3986 // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive). 3987 RegionNode* region = new RegionNode(PATH_LIMIT); 3988 record_for_igvn(region); 3989 PhiNode* phi = new PhiNode(region, return_type); 3990 3991 // The mirror will never be null of Reflection.getClassAccessFlags, however 3992 // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE 3993 // if it is. See bug 4774291. 3994 3995 // For Reflection.getClassAccessFlags(), the null check occurs in 3996 // the wrong place; see inline_unsafe_access(), above, for a similar 3997 // situation. 3998 mirror = null_check(mirror); 3999 // If mirror or obj is dead, only null-path is taken. 4000 if (stopped()) return true; 4001 4002 if (expect_prim) never_see_null = false; // expect nulls (meaning prims) 4003 4004 // Now load the mirror's klass metaobject, and null-check it. 4005 // Side-effects region with the control path if the klass is null. 4006 Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path); 4007 // If kls is null, we have a primitive mirror. 4008 phi->init_req(_prim_path, prim_return_value); 4009 if (stopped()) { set_result(region, phi); return true; } 4010 bool safe_for_replace = (region->in(_prim_path) == top()); 4011 4012 Node* p; // handy temp 4013 Node* null_ctl; 4014 4015 // Now that we have the non-null klass, we can perform the real query. 4016 // For constant classes, the query will constant-fold in LoadNode::Value. 4017 Node* query_value = top(); 4018 switch (id) { 4019 case vmIntrinsics::_isInstance: 4020 // nothing is an instance of a primitive type 4021 query_value = gen_instanceof(obj, kls, safe_for_replace); 4022 break; 4023 4024 case vmIntrinsics::_isHidden: 4025 // (To verify this code sequence, check the asserts in JVM_IsHiddenClass.) 4026 if (generate_hidden_class_guard(kls, region) != nullptr) 4027 // A guard was added. If the guard is taken, it was an hidden class. 4028 phi->add_req(intcon(1)); 4029 // If we fall through, it's a plain class. 4030 query_value = intcon(0); 4031 break; 4032 4033 4034 case vmIntrinsics::_getSuperclass: 4035 // The rules here are somewhat unfortunate, but we can still do better 4036 // with random logic than with a JNI call. 4037 // Interfaces store null or Object as _super, but must report null. 4038 // Arrays store an intermediate super as _super, but must report Object. 4039 // Other types can report the actual _super. 4040 // (To verify this code sequence, check the asserts in JVM_IsInterface.) 4041 if (generate_interface_guard(kls, region) != nullptr) 4042 // A guard was added. If the guard is taken, it was an interface. 4043 phi->add_req(null()); 4044 if (generate_array_guard(kls, region) != nullptr) 4045 // A guard was added. If the guard is taken, it was an array. 4046 phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror()))); 4047 // If we fall through, it's a plain class. Get its _super. 4048 p = basic_plus_adr(kls, in_bytes(Klass::super_offset())); 4049 kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL)); 4050 null_ctl = top(); 4051 kls = null_check_oop(kls, &null_ctl); 4052 if (null_ctl != top()) { 4053 // If the guard is taken, Object.superClass is null (both klass and mirror). 4054 region->add_req(null_ctl); 4055 phi ->add_req(null()); 4056 } 4057 if (!stopped()) { 4058 query_value = load_mirror_from_klass(kls); 4059 } 4060 break; 4061 4062 case vmIntrinsics::_getClassAccessFlags: 4063 p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset())); 4064 query_value = make_load(nullptr, p, TypeInt::CHAR, T_CHAR, MemNode::unordered); 4065 break; 4066 4067 default: 4068 fatal_unexpected_iid(id); 4069 break; 4070 } 4071 4072 // Fall-through is the normal case of a query to a real class. 4073 phi->init_req(1, query_value); 4074 region->init_req(1, control()); 4075 4076 C->set_has_split_ifs(true); // Has chance for split-if optimization 4077 set_result(region, phi); 4078 return true; 4079 } 4080 4081 //-------------------------inline_Class_cast------------------- 4082 bool LibraryCallKit::inline_Class_cast() { 4083 Node* mirror = argument(0); // Class 4084 Node* obj = argument(1); 4085 const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr(); 4086 if (mirror_con == nullptr) { 4087 return false; // dead path (mirror->is_top()). 4088 } 4089 if (obj == nullptr || obj->is_top()) { 4090 return false; // dead path 4091 } 4092 const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr(); 4093 4094 // First, see if Class.cast() can be folded statically. 4095 // java_mirror_type() returns non-null for compile-time Class constants. 4096 ciType* tm = mirror_con->java_mirror_type(); 4097 if (tm != nullptr && tm->is_klass() && 4098 tp != nullptr) { 4099 if (!tp->is_loaded()) { 4100 // Don't use intrinsic when class is not loaded. 4101 return false; 4102 } else { 4103 int static_res = C->static_subtype_check(TypeKlassPtr::make(tm->as_klass(), Type::trust_interfaces), tp->as_klass_type()); 4104 if (static_res == Compile::SSC_always_true) { 4105 // isInstance() is true - fold the code. 4106 set_result(obj); 4107 return true; 4108 } else if (static_res == Compile::SSC_always_false) { 4109 // Don't use intrinsic, have to throw ClassCastException. 4110 // If the reference is null, the non-intrinsic bytecode will 4111 // be optimized appropriately. 4112 return false; 4113 } 4114 } 4115 } 4116 4117 // Bailout intrinsic and do normal inlining if exception path is frequent. 4118 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 4119 return false; 4120 } 4121 4122 // Generate dynamic checks. 4123 // Class.cast() is java implementation of _checkcast bytecode. 4124 // Do checkcast (Parse::do_checkcast()) optimizations here. 4125 4126 mirror = null_check(mirror); 4127 // If mirror is dead, only null-path is taken. 4128 if (stopped()) { 4129 return true; 4130 } 4131 4132 // Not-subtype or the mirror's klass ptr is null (in case it is a primitive). 4133 enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT }; 4134 RegionNode* region = new RegionNode(PATH_LIMIT); 4135 record_for_igvn(region); 4136 4137 // Now load the mirror's klass metaobject, and null-check it. 4138 // If kls is null, we have a primitive mirror and 4139 // nothing is an instance of a primitive type. 4140 Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path); 4141 4142 Node* res = top(); 4143 if (!stopped()) { 4144 Node* bad_type_ctrl = top(); 4145 // Do checkcast optimizations. 4146 res = gen_checkcast(obj, kls, &bad_type_ctrl); 4147 region->init_req(_bad_type_path, bad_type_ctrl); 4148 } 4149 if (region->in(_prim_path) != top() || 4150 region->in(_bad_type_path) != top()) { 4151 // Let Interpreter throw ClassCastException. 4152 PreserveJVMState pjvms(this); 4153 set_control(_gvn.transform(region)); 4154 uncommon_trap(Deoptimization::Reason_intrinsic, 4155 Deoptimization::Action_maybe_recompile); 4156 } 4157 if (!stopped()) { 4158 set_result(res); 4159 } 4160 return true; 4161 } 4162 4163 4164 //--------------------------inline_native_subtype_check------------------------ 4165 // This intrinsic takes the JNI calls out of the heart of 4166 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc. 4167 bool LibraryCallKit::inline_native_subtype_check() { 4168 // Pull both arguments off the stack. 4169 Node* args[2]; // two java.lang.Class mirrors: superc, subc 4170 args[0] = argument(0); 4171 args[1] = argument(1); 4172 Node* klasses[2]; // corresponding Klasses: superk, subk 4173 klasses[0] = klasses[1] = top(); 4174 4175 enum { 4176 // A full decision tree on {superc is prim, subc is prim}: 4177 _prim_0_path = 1, // {P,N} => false 4178 // {P,P} & superc!=subc => false 4179 _prim_same_path, // {P,P} & superc==subc => true 4180 _prim_1_path, // {N,P} => false 4181 _ref_subtype_path, // {N,N} & subtype check wins => true 4182 _both_ref_path, // {N,N} & subtype check loses => false 4183 PATH_LIMIT 4184 }; 4185 4186 RegionNode* region = new RegionNode(PATH_LIMIT); 4187 Node* phi = new PhiNode(region, TypeInt::BOOL); 4188 record_for_igvn(region); 4189 4190 const TypePtr* adr_type = TypeRawPtr::BOTTOM; // memory type of loads 4191 const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL; 4192 int class_klass_offset = java_lang_Class::klass_offset(); 4193 4194 // First null-check both mirrors and load each mirror's klass metaobject. 4195 int which_arg; 4196 for (which_arg = 0; which_arg <= 1; which_arg++) { 4197 Node* arg = args[which_arg]; 4198 arg = null_check(arg); 4199 if (stopped()) break; 4200 args[which_arg] = arg; 4201 4202 Node* p = basic_plus_adr(arg, class_klass_offset); 4203 Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type); 4204 klasses[which_arg] = _gvn.transform(kls); 4205 } 4206 4207 // Having loaded both klasses, test each for null. 4208 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 4209 for (which_arg = 0; which_arg <= 1; which_arg++) { 4210 Node* kls = klasses[which_arg]; 4211 Node* null_ctl = top(); 4212 kls = null_check_oop(kls, &null_ctl, never_see_null); 4213 int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path); 4214 region->init_req(prim_path, null_ctl); 4215 if (stopped()) break; 4216 klasses[which_arg] = kls; 4217 } 4218 4219 if (!stopped()) { 4220 // now we have two reference types, in klasses[0..1] 4221 Node* subk = klasses[1]; // the argument to isAssignableFrom 4222 Node* superk = klasses[0]; // the receiver 4223 region->set_req(_both_ref_path, gen_subtype_check(subk, superk)); 4224 // now we have a successful reference subtype check 4225 region->set_req(_ref_subtype_path, control()); 4226 } 4227 4228 // If both operands are primitive (both klasses null), then 4229 // we must return true when they are identical primitives. 4230 // It is convenient to test this after the first null klass check. 4231 set_control(region->in(_prim_0_path)); // go back to first null check 4232 if (!stopped()) { 4233 // Since superc is primitive, make a guard for the superc==subc case. 4234 Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1])); 4235 Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq)); 4236 generate_guard(bol_eq, region, PROB_FAIR); 4237 if (region->req() == PATH_LIMIT+1) { 4238 // A guard was added. If the added guard is taken, superc==subc. 4239 region->swap_edges(PATH_LIMIT, _prim_same_path); 4240 region->del_req(PATH_LIMIT); 4241 } 4242 region->set_req(_prim_0_path, control()); // Not equal after all. 4243 } 4244 4245 // these are the only paths that produce 'true': 4246 phi->set_req(_prim_same_path, intcon(1)); 4247 phi->set_req(_ref_subtype_path, intcon(1)); 4248 4249 // pull together the cases: 4250 assert(region->req() == PATH_LIMIT, "sane region"); 4251 for (uint i = 1; i < region->req(); i++) { 4252 Node* ctl = region->in(i); 4253 if (ctl == nullptr || ctl == top()) { 4254 region->set_req(i, top()); 4255 phi ->set_req(i, top()); 4256 } else if (phi->in(i) == nullptr) { 4257 phi->set_req(i, intcon(0)); // all other paths produce 'false' 4258 } 4259 } 4260 4261 set_control(_gvn.transform(region)); 4262 set_result(_gvn.transform(phi)); 4263 return true; 4264 } 4265 4266 //---------------------generate_array_guard_common------------------------ 4267 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region, 4268 bool obj_array, bool not_array, Node** obj) { 4269 4270 if (stopped()) { 4271 return nullptr; 4272 } 4273 4274 // If obj_array/non_array==false/false: 4275 // Branch around if the given klass is in fact an array (either obj or prim). 4276 // If obj_array/non_array==false/true: 4277 // Branch around if the given klass is not an array klass of any kind. 4278 // If obj_array/non_array==true/true: 4279 // Branch around if the kls is not an oop array (kls is int[], String, etc.) 4280 // If obj_array/non_array==true/false: 4281 // Branch around if the kls is an oop array (Object[] or subtype) 4282 // 4283 // Like generate_guard, adds a new path onto the region. 4284 jint layout_con = 0; 4285 Node* layout_val = get_layout_helper(kls, layout_con); 4286 if (layout_val == nullptr) { 4287 bool query = (obj_array 4288 ? Klass::layout_helper_is_objArray(layout_con) 4289 : Klass::layout_helper_is_array(layout_con)); 4290 if (query == not_array) { 4291 return nullptr; // never a branch 4292 } else { // always a branch 4293 Node* always_branch = control(); 4294 if (region != nullptr) 4295 region->add_req(always_branch); 4296 set_control(top()); 4297 return always_branch; 4298 } 4299 } 4300 // Now test the correct condition. 4301 jint nval = (obj_array 4302 ? (jint)(Klass::_lh_array_tag_type_value 4303 << Klass::_lh_array_tag_shift) 4304 : Klass::_lh_neutral_value); 4305 Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval))); 4306 BoolTest::mask btest = BoolTest::lt; // correct for testing is_[obj]array 4307 // invert the test if we are looking for a non-array 4308 if (not_array) btest = BoolTest(btest).negate(); 4309 Node* bol = _gvn.transform(new BoolNode(cmp, btest)); 4310 Node* ctrl = generate_fair_guard(bol, region); 4311 Node* is_array_ctrl = not_array ? control() : ctrl; 4312 if (obj != nullptr && is_array_ctrl != nullptr && is_array_ctrl != top()) { 4313 // Keep track of the fact that 'obj' is an array to prevent 4314 // array specific accesses from floating above the guard. 4315 Node* cast = _gvn.transform(new CastPPNode(is_array_ctrl, *obj, TypeAryPtr::BOTTOM)); 4316 // Check for top because in rare cases, the type system can determine that 4317 // the object can't be an array but the layout helper check is not folded. 4318 if (!cast->is_top()) { 4319 *obj = cast; 4320 } 4321 } 4322 return ctrl; 4323 } 4324 4325 4326 //-----------------------inline_native_newArray-------------------------- 4327 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length); 4328 // private native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size); 4329 bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) { 4330 Node* mirror; 4331 Node* count_val; 4332 if (uninitialized) { 4333 null_check_receiver(); 4334 mirror = argument(1); 4335 count_val = argument(2); 4336 } else { 4337 mirror = argument(0); 4338 count_val = argument(1); 4339 } 4340 4341 mirror = null_check(mirror); 4342 // If mirror or obj is dead, only null-path is taken. 4343 if (stopped()) return true; 4344 4345 enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT }; 4346 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 4347 PhiNode* result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL); 4348 PhiNode* result_io = new PhiNode(result_reg, Type::ABIO); 4349 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 4350 4351 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 4352 Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null, 4353 result_reg, _slow_path); 4354 Node* normal_ctl = control(); 4355 Node* no_array_ctl = result_reg->in(_slow_path); 4356 4357 // Generate code for the slow case. We make a call to newArray(). 4358 set_control(no_array_ctl); 4359 if (!stopped()) { 4360 // Either the input type is void.class, or else the 4361 // array klass has not yet been cached. Either the 4362 // ensuing call will throw an exception, or else it 4363 // will cache the array klass for next time. 4364 PreserveJVMState pjvms(this); 4365 CallJavaNode* slow_call = nullptr; 4366 if (uninitialized) { 4367 // Generate optimized virtual call (holder class 'Unsafe' is final) 4368 slow_call = generate_method_call(vmIntrinsics::_allocateUninitializedArray, false, false, true); 4369 } else { 4370 slow_call = generate_method_call_static(vmIntrinsics::_newArray, true); 4371 } 4372 Node* slow_result = set_results_for_java_call(slow_call); 4373 // this->control() comes from set_results_for_java_call 4374 result_reg->set_req(_slow_path, control()); 4375 result_val->set_req(_slow_path, slow_result); 4376 result_io ->set_req(_slow_path, i_o()); 4377 result_mem->set_req(_slow_path, reset_memory()); 4378 } 4379 4380 set_control(normal_ctl); 4381 if (!stopped()) { 4382 // Normal case: The array type has been cached in the java.lang.Class. 4383 // The following call works fine even if the array type is polymorphic. 4384 // It could be a dynamic mix of int[], boolean[], Object[], etc. 4385 Node* obj = new_array(klass_node, count_val, 0); // no arguments to push 4386 result_reg->init_req(_normal_path, control()); 4387 result_val->init_req(_normal_path, obj); 4388 result_io ->init_req(_normal_path, i_o()); 4389 result_mem->init_req(_normal_path, reset_memory()); 4390 4391 if (uninitialized) { 4392 // Mark the allocation so that zeroing is skipped 4393 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(obj); 4394 alloc->maybe_set_complete(&_gvn); 4395 } 4396 } 4397 4398 // Return the combined state. 4399 set_i_o( _gvn.transform(result_io) ); 4400 set_all_memory( _gvn.transform(result_mem)); 4401 4402 C->set_has_split_ifs(true); // Has chance for split-if optimization 4403 set_result(result_reg, result_val); 4404 return true; 4405 } 4406 4407 //----------------------inline_native_getLength-------------------------- 4408 // public static native int java.lang.reflect.Array.getLength(Object array); 4409 bool LibraryCallKit::inline_native_getLength() { 4410 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false; 4411 4412 Node* array = null_check(argument(0)); 4413 // If array is dead, only null-path is taken. 4414 if (stopped()) return true; 4415 4416 // Deoptimize if it is a non-array. 4417 Node* non_array = generate_non_array_guard(load_object_klass(array), nullptr, &array); 4418 4419 if (non_array != nullptr) { 4420 PreserveJVMState pjvms(this); 4421 set_control(non_array); 4422 uncommon_trap(Deoptimization::Reason_intrinsic, 4423 Deoptimization::Action_maybe_recompile); 4424 } 4425 4426 // If control is dead, only non-array-path is taken. 4427 if (stopped()) return true; 4428 4429 // The works fine even if the array type is polymorphic. 4430 // It could be a dynamic mix of int[], boolean[], Object[], etc. 4431 Node* result = load_array_length(array); 4432 4433 C->set_has_split_ifs(true); // Has chance for split-if optimization 4434 set_result(result); 4435 return true; 4436 } 4437 4438 //------------------------inline_array_copyOf---------------------------- 4439 // public static <T,U> T[] java.util.Arrays.copyOf( U[] original, int newLength, Class<? extends T[]> newType); 4440 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from, int to, Class<? extends T[]> newType); 4441 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) { 4442 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false; 4443 4444 // Get the arguments. 4445 Node* original = argument(0); 4446 Node* start = is_copyOfRange? argument(1): intcon(0); 4447 Node* end = is_copyOfRange? argument(2): argument(1); 4448 Node* array_type_mirror = is_copyOfRange? argument(3): argument(2); 4449 4450 Node* newcopy = nullptr; 4451 4452 // Set the original stack and the reexecute bit for the interpreter to reexecute 4453 // the bytecode that invokes Arrays.copyOf if deoptimization happens. 4454 { PreserveReexecuteState preexecs(this); 4455 jvms()->set_should_reexecute(true); 4456 4457 array_type_mirror = null_check(array_type_mirror); 4458 original = null_check(original); 4459 4460 // Check if a null path was taken unconditionally. 4461 if (stopped()) return true; 4462 4463 Node* orig_length = load_array_length(original); 4464 4465 Node* klass_node = load_klass_from_mirror(array_type_mirror, false, nullptr, 0); 4466 klass_node = null_check(klass_node); 4467 4468 RegionNode* bailout = new RegionNode(1); 4469 record_for_igvn(bailout); 4470 4471 // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc. 4472 // Bail out if that is so. 4473 Node* not_objArray = generate_non_objArray_guard(klass_node, bailout); 4474 if (not_objArray != nullptr) { 4475 // Improve the klass node's type from the new optimistic assumption: 4476 ciKlass* ak = ciArrayKlass::make(env()->Object_klass()); 4477 const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/); 4478 Node* cast = new CastPPNode(control(), klass_node, akls); 4479 klass_node = _gvn.transform(cast); 4480 } 4481 4482 // Bail out if either start or end is negative. 4483 generate_negative_guard(start, bailout, &start); 4484 generate_negative_guard(end, bailout, &end); 4485 4486 Node* length = end; 4487 if (_gvn.type(start) != TypeInt::ZERO) { 4488 length = _gvn.transform(new SubINode(end, start)); 4489 } 4490 4491 // Bail out if length is negative (i.e., if start > end). 4492 // Without this the new_array would throw 4493 // NegativeArraySizeException but IllegalArgumentException is what 4494 // should be thrown 4495 generate_negative_guard(length, bailout, &length); 4496 4497 // Bail out if start is larger than the original length 4498 Node* orig_tail = _gvn.transform(new SubINode(orig_length, start)); 4499 generate_negative_guard(orig_tail, bailout, &orig_tail); 4500 4501 if (bailout->req() > 1) { 4502 PreserveJVMState pjvms(this); 4503 set_control(_gvn.transform(bailout)); 4504 uncommon_trap(Deoptimization::Reason_intrinsic, 4505 Deoptimization::Action_maybe_recompile); 4506 } 4507 4508 if (!stopped()) { 4509 // How many elements will we copy from the original? 4510 // The answer is MinI(orig_tail, length). 4511 Node* moved = _gvn.transform(new MinINode(orig_tail, length)); 4512 4513 // Generate a direct call to the right arraycopy function(s). 4514 // We know the copy is disjoint but we might not know if the 4515 // oop stores need checking. 4516 // Extreme case: Arrays.copyOf((Integer[])x, 10, String[].class). 4517 // This will fail a store-check if x contains any non-nulls. 4518 4519 // ArrayCopyNode:Ideal may transform the ArrayCopyNode to 4520 // loads/stores but it is legal only if we're sure the 4521 // Arrays.copyOf would succeed. So we need all input arguments 4522 // to the copyOf to be validated, including that the copy to the 4523 // new array won't trigger an ArrayStoreException. That subtype 4524 // check can be optimized if we know something on the type of 4525 // the input array from type speculation. 4526 if (_gvn.type(klass_node)->singleton()) { 4527 const TypeKlassPtr* subk = _gvn.type(load_object_klass(original))->is_klassptr(); 4528 const TypeKlassPtr* superk = _gvn.type(klass_node)->is_klassptr(); 4529 4530 int test = C->static_subtype_check(superk, subk); 4531 if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) { 4532 const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr(); 4533 if (t_original->speculative_type() != nullptr) { 4534 original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true); 4535 } 4536 } 4537 } 4538 4539 bool validated = false; 4540 // Reason_class_check rather than Reason_intrinsic because we 4541 // want to intrinsify even if this traps. 4542 if (!too_many_traps(Deoptimization::Reason_class_check)) { 4543 Node* not_subtype_ctrl = gen_subtype_check(original, klass_node); 4544 4545 if (not_subtype_ctrl != top()) { 4546 PreserveJVMState pjvms(this); 4547 set_control(not_subtype_ctrl); 4548 uncommon_trap(Deoptimization::Reason_class_check, 4549 Deoptimization::Action_make_not_entrant); 4550 assert(stopped(), "Should be stopped"); 4551 } 4552 validated = true; 4553 } 4554 4555 if (!stopped()) { 4556 newcopy = new_array(klass_node, length, 0); // no arguments to push 4557 4558 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true, true, 4559 load_object_klass(original), klass_node); 4560 if (!is_copyOfRange) { 4561 ac->set_copyof(validated); 4562 } else { 4563 ac->set_copyofrange(validated); 4564 } 4565 Node* n = _gvn.transform(ac); 4566 if (n == ac) { 4567 ac->connect_outputs(this); 4568 } else { 4569 assert(validated, "shouldn't transform if all arguments not validated"); 4570 set_all_memory(n); 4571 } 4572 } 4573 } 4574 } // original reexecute is set back here 4575 4576 C->set_has_split_ifs(true); // Has chance for split-if optimization 4577 if (!stopped()) { 4578 set_result(newcopy); 4579 } 4580 return true; 4581 } 4582 4583 4584 //----------------------generate_virtual_guard--------------------------- 4585 // Helper for hashCode and clone. Peeks inside the vtable to avoid a call. 4586 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass, 4587 RegionNode* slow_region) { 4588 ciMethod* method = callee(); 4589 int vtable_index = method->vtable_index(); 4590 assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index, 4591 "bad index %d", vtable_index); 4592 // Get the Method* out of the appropriate vtable entry. 4593 int entry_offset = in_bytes(Klass::vtable_start_offset()) + 4594 vtable_index*vtableEntry::size_in_bytes() + 4595 in_bytes(vtableEntry::method_offset()); 4596 Node* entry_addr = basic_plus_adr(obj_klass, entry_offset); 4597 Node* target_call = make_load(nullptr, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered); 4598 4599 // Compare the target method with the expected method (e.g., Object.hashCode). 4600 const TypePtr* native_call_addr = TypeMetadataPtr::make(method); 4601 4602 Node* native_call = makecon(native_call_addr); 4603 Node* chk_native = _gvn.transform(new CmpPNode(target_call, native_call)); 4604 Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne)); 4605 4606 return generate_slow_guard(test_native, slow_region); 4607 } 4608 4609 //-----------------------generate_method_call---------------------------- 4610 // Use generate_method_call to make a slow-call to the real 4611 // method if the fast path fails. An alternative would be to 4612 // use a stub like OptoRuntime::slow_arraycopy_Java. 4613 // This only works for expanding the current library call, 4614 // not another intrinsic. (E.g., don't use this for making an 4615 // arraycopy call inside of the copyOf intrinsic.) 4616 CallJavaNode* 4617 LibraryCallKit::generate_method_call(vmIntrinsicID method_id, bool is_virtual, bool is_static, bool res_not_null) { 4618 // When compiling the intrinsic method itself, do not use this technique. 4619 guarantee(callee() != C->method(), "cannot make slow-call to self"); 4620 4621 ciMethod* method = callee(); 4622 // ensure the JVMS we have will be correct for this call 4623 guarantee(method_id == method->intrinsic_id(), "must match"); 4624 4625 const TypeFunc* tf = TypeFunc::make(method); 4626 if (res_not_null) { 4627 assert(tf->return_type() == T_OBJECT, ""); 4628 const TypeTuple* range = tf->range(); 4629 const Type** fields = TypeTuple::fields(range->cnt()); 4630 fields[TypeFunc::Parms] = range->field_at(TypeFunc::Parms)->filter_speculative(TypePtr::NOTNULL); 4631 const TypeTuple* new_range = TypeTuple::make(range->cnt(), fields); 4632 tf = TypeFunc::make(tf->domain(), new_range); 4633 } 4634 CallJavaNode* slow_call; 4635 if (is_static) { 4636 assert(!is_virtual, ""); 4637 slow_call = new CallStaticJavaNode(C, tf, 4638 SharedRuntime::get_resolve_static_call_stub(), method); 4639 } else if (is_virtual) { 4640 assert(!gvn().type(argument(0))->maybe_null(), "should not be null"); 4641 int vtable_index = Method::invalid_vtable_index; 4642 if (UseInlineCaches) { 4643 // Suppress the vtable call 4644 } else { 4645 // hashCode and clone are not a miranda methods, 4646 // so the vtable index is fixed. 4647 // No need to use the linkResolver to get it. 4648 vtable_index = method->vtable_index(); 4649 assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index, 4650 "bad index %d", vtable_index); 4651 } 4652 slow_call = new CallDynamicJavaNode(tf, 4653 SharedRuntime::get_resolve_virtual_call_stub(), 4654 method, vtable_index); 4655 } else { // neither virtual nor static: opt_virtual 4656 assert(!gvn().type(argument(0))->maybe_null(), "should not be null"); 4657 slow_call = new CallStaticJavaNode(C, tf, 4658 SharedRuntime::get_resolve_opt_virtual_call_stub(), method); 4659 slow_call->set_optimized_virtual(true); 4660 } 4661 if (CallGenerator::is_inlined_method_handle_intrinsic(this->method(), bci(), callee())) { 4662 // To be able to issue a direct call (optimized virtual or virtual) 4663 // and skip a call to MH.linkTo*/invokeBasic adapter, additional information 4664 // about the method being invoked should be attached to the call site to 4665 // make resolution logic work (see SharedRuntime::resolve_{virtual,opt_virtual}_call_C). 4666 slow_call->set_override_symbolic_info(true); 4667 } 4668 set_arguments_for_java_call(slow_call); 4669 set_edges_for_java_call(slow_call); 4670 return slow_call; 4671 } 4672 4673 4674 /** 4675 * Build special case code for calls to hashCode on an object. This call may 4676 * be virtual (invokevirtual) or bound (invokespecial). For each case we generate 4677 * slightly different code. 4678 */ 4679 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) { 4680 assert(is_static == callee()->is_static(), "correct intrinsic selection"); 4681 assert(!(is_virtual && is_static), "either virtual, special, or static"); 4682 4683 enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT }; 4684 4685 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 4686 PhiNode* result_val = new PhiNode(result_reg, TypeInt::INT); 4687 PhiNode* result_io = new PhiNode(result_reg, Type::ABIO); 4688 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 4689 Node* obj = nullptr; 4690 if (!is_static) { 4691 // Check for hashing null object 4692 obj = null_check_receiver(); 4693 if (stopped()) return true; // unconditionally null 4694 result_reg->init_req(_null_path, top()); 4695 result_val->init_req(_null_path, top()); 4696 } else { 4697 // Do a null check, and return zero if null. 4698 // System.identityHashCode(null) == 0 4699 obj = argument(0); 4700 Node* null_ctl = top(); 4701 obj = null_check_oop(obj, &null_ctl); 4702 result_reg->init_req(_null_path, null_ctl); 4703 result_val->init_req(_null_path, _gvn.intcon(0)); 4704 } 4705 4706 // Unconditionally null? Then return right away. 4707 if (stopped()) { 4708 set_control( result_reg->in(_null_path)); 4709 if (!stopped()) 4710 set_result(result_val->in(_null_path)); 4711 return true; 4712 } 4713 4714 // We only go to the fast case code if we pass a number of guards. The 4715 // paths which do not pass are accumulated in the slow_region. 4716 RegionNode* slow_region = new RegionNode(1); 4717 record_for_igvn(slow_region); 4718 4719 // If this is a virtual call, we generate a funny guard. We pull out 4720 // the vtable entry corresponding to hashCode() from the target object. 4721 // If the target method which we are calling happens to be the native 4722 // Object hashCode() method, we pass the guard. We do not need this 4723 // guard for non-virtual calls -- the caller is known to be the native 4724 // Object hashCode(). 4725 if (is_virtual) { 4726 // After null check, get the object's klass. 4727 Node* obj_klass = load_object_klass(obj); 4728 generate_virtual_guard(obj_klass, slow_region); 4729 } 4730 4731 // Get the header out of the object, use LoadMarkNode when available 4732 Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes()); 4733 // The control of the load must be null. Otherwise, the load can move before 4734 // the null check after castPP removal. 4735 Node* no_ctrl = nullptr; 4736 Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered); 4737 4738 if (!UseObjectMonitorTable) { 4739 // Test the header to see if it is safe to read w.r.t. locking. 4740 Node *lock_mask = _gvn.MakeConX(markWord::lock_mask_in_place); 4741 Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask)); 4742 if (LockingMode == LM_LIGHTWEIGHT) { 4743 Node *monitor_val = _gvn.MakeConX(markWord::monitor_value); 4744 Node *chk_monitor = _gvn.transform(new CmpXNode(lmasked_header, monitor_val)); 4745 Node *test_monitor = _gvn.transform(new BoolNode(chk_monitor, BoolTest::eq)); 4746 4747 generate_slow_guard(test_monitor, slow_region); 4748 } else { 4749 Node *unlocked_val = _gvn.MakeConX(markWord::unlocked_value); 4750 Node *chk_unlocked = _gvn.transform(new CmpXNode(lmasked_header, unlocked_val)); 4751 Node *test_not_unlocked = _gvn.transform(new BoolNode(chk_unlocked, BoolTest::ne)); 4752 4753 generate_slow_guard(test_not_unlocked, slow_region); 4754 } 4755 } 4756 4757 // Get the hash value and check to see that it has been properly assigned. 4758 // We depend on hash_mask being at most 32 bits and avoid the use of 4759 // hash_mask_in_place because it could be larger than 32 bits in a 64-bit 4760 // vm: see markWord.hpp. 4761 Node *hash_mask = _gvn.intcon(markWord::hash_mask); 4762 Node *hash_shift = _gvn.intcon(markWord::hash_shift); 4763 Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift)); 4764 // This hack lets the hash bits live anywhere in the mark object now, as long 4765 // as the shift drops the relevant bits into the low 32 bits. Note that 4766 // Java spec says that HashCode is an int so there's no point in capturing 4767 // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build). 4768 hshifted_header = ConvX2I(hshifted_header); 4769 Node *hash_val = _gvn.transform(new AndINode(hshifted_header, hash_mask)); 4770 4771 Node *no_hash_val = _gvn.intcon(markWord::no_hash); 4772 Node *chk_assigned = _gvn.transform(new CmpINode( hash_val, no_hash_val)); 4773 Node *test_assigned = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq)); 4774 4775 generate_slow_guard(test_assigned, slow_region); 4776 4777 Node* init_mem = reset_memory(); 4778 // fill in the rest of the null path: 4779 result_io ->init_req(_null_path, i_o()); 4780 result_mem->init_req(_null_path, init_mem); 4781 4782 result_val->init_req(_fast_path, hash_val); 4783 result_reg->init_req(_fast_path, control()); 4784 result_io ->init_req(_fast_path, i_o()); 4785 result_mem->init_req(_fast_path, init_mem); 4786 4787 // Generate code for the slow case. We make a call to hashCode(). 4788 set_control(_gvn.transform(slow_region)); 4789 if (!stopped()) { 4790 // No need for PreserveJVMState, because we're using up the present state. 4791 set_all_memory(init_mem); 4792 vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode; 4793 CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static, false); 4794 Node* slow_result = set_results_for_java_call(slow_call); 4795 // this->control() comes from set_results_for_java_call 4796 result_reg->init_req(_slow_path, control()); 4797 result_val->init_req(_slow_path, slow_result); 4798 result_io ->set_req(_slow_path, i_o()); 4799 result_mem ->set_req(_slow_path, reset_memory()); 4800 } 4801 4802 // Return the combined state. 4803 set_i_o( _gvn.transform(result_io) ); 4804 set_all_memory( _gvn.transform(result_mem)); 4805 4806 set_result(result_reg, result_val); 4807 return true; 4808 } 4809 4810 //---------------------------inline_native_getClass---------------------------- 4811 // public final native Class<?> java.lang.Object.getClass(); 4812 // 4813 // Build special case code for calls to getClass on an object. 4814 bool LibraryCallKit::inline_native_getClass() { 4815 Node* obj = null_check_receiver(); 4816 if (stopped()) return true; 4817 set_result(load_mirror_from_klass(load_object_klass(obj))); 4818 return true; 4819 } 4820 4821 //-----------------inline_native_Reflection_getCallerClass--------------------- 4822 // public static native Class<?> sun.reflect.Reflection.getCallerClass(); 4823 // 4824 // In the presence of deep enough inlining, getCallerClass() becomes a no-op. 4825 // 4826 // NOTE: This code must perform the same logic as JVM_GetCallerClass 4827 // in that it must skip particular security frames and checks for 4828 // caller sensitive methods. 4829 bool LibraryCallKit::inline_native_Reflection_getCallerClass() { 4830 #ifndef PRODUCT 4831 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4832 tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass"); 4833 } 4834 #endif 4835 4836 if (!jvms()->has_method()) { 4837 #ifndef PRODUCT 4838 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4839 tty->print_cr(" Bailing out because intrinsic was inlined at top level"); 4840 } 4841 #endif 4842 return false; 4843 } 4844 4845 // Walk back up the JVM state to find the caller at the required 4846 // depth. 4847 JVMState* caller_jvms = jvms(); 4848 4849 // Cf. JVM_GetCallerClass 4850 // NOTE: Start the loop at depth 1 because the current JVM state does 4851 // not include the Reflection.getCallerClass() frame. 4852 for (int n = 1; caller_jvms != nullptr; caller_jvms = caller_jvms->caller(), n++) { 4853 ciMethod* m = caller_jvms->method(); 4854 switch (n) { 4855 case 0: 4856 fatal("current JVM state does not include the Reflection.getCallerClass frame"); 4857 break; 4858 case 1: 4859 // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass). 4860 if (!m->caller_sensitive()) { 4861 #ifndef PRODUCT 4862 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4863 tty->print_cr(" Bailing out: CallerSensitive annotation expected at frame %d", n); 4864 } 4865 #endif 4866 return false; // bail-out; let JVM_GetCallerClass do the work 4867 } 4868 break; 4869 default: 4870 if (!m->is_ignored_by_security_stack_walk()) { 4871 // We have reached the desired frame; return the holder class. 4872 // Acquire method holder as java.lang.Class and push as constant. 4873 ciInstanceKlass* caller_klass = caller_jvms->method()->holder(); 4874 ciInstance* caller_mirror = caller_klass->java_mirror(); 4875 set_result(makecon(TypeInstPtr::make(caller_mirror))); 4876 4877 #ifndef PRODUCT 4878 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4879 tty->print_cr(" Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth()); 4880 tty->print_cr(" JVM state at this point:"); 4881 for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) { 4882 ciMethod* m = jvms()->of_depth(i)->method(); 4883 tty->print_cr(" %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8()); 4884 } 4885 } 4886 #endif 4887 return true; 4888 } 4889 break; 4890 } 4891 } 4892 4893 #ifndef PRODUCT 4894 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4895 tty->print_cr(" Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth()); 4896 tty->print_cr(" JVM state at this point:"); 4897 for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) { 4898 ciMethod* m = jvms()->of_depth(i)->method(); 4899 tty->print_cr(" %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8()); 4900 } 4901 } 4902 #endif 4903 4904 return false; // bail-out; let JVM_GetCallerClass do the work 4905 } 4906 4907 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) { 4908 Node* arg = argument(0); 4909 Node* result = nullptr; 4910 4911 switch (id) { 4912 case vmIntrinsics::_floatToRawIntBits: result = new MoveF2INode(arg); break; 4913 case vmIntrinsics::_intBitsToFloat: result = new MoveI2FNode(arg); break; 4914 case vmIntrinsics::_doubleToRawLongBits: result = new MoveD2LNode(arg); break; 4915 case vmIntrinsics::_longBitsToDouble: result = new MoveL2DNode(arg); break; 4916 case vmIntrinsics::_floatToFloat16: result = new ConvF2HFNode(arg); break; 4917 case vmIntrinsics::_float16ToFloat: result = new ConvHF2FNode(arg); break; 4918 4919 case vmIntrinsics::_doubleToLongBits: { 4920 // two paths (plus control) merge in a wood 4921 RegionNode *r = new RegionNode(3); 4922 Node *phi = new PhiNode(r, TypeLong::LONG); 4923 4924 Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg)); 4925 // Build the boolean node 4926 Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne)); 4927 4928 // Branch either way. 4929 // NaN case is less traveled, which makes all the difference. 4930 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN); 4931 Node *opt_isnan = _gvn.transform(ifisnan); 4932 assert( opt_isnan->is_If(), "Expect an IfNode"); 4933 IfNode *opt_ifisnan = (IfNode*)opt_isnan; 4934 Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan)); 4935 4936 set_control(iftrue); 4937 4938 static const jlong nan_bits = CONST64(0x7ff8000000000000); 4939 Node *slow_result = longcon(nan_bits); // return NaN 4940 phi->init_req(1, _gvn.transform( slow_result )); 4941 r->init_req(1, iftrue); 4942 4943 // Else fall through 4944 Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan)); 4945 set_control(iffalse); 4946 4947 phi->init_req(2, _gvn.transform(new MoveD2LNode(arg))); 4948 r->init_req(2, iffalse); 4949 4950 // Post merge 4951 set_control(_gvn.transform(r)); 4952 record_for_igvn(r); 4953 4954 C->set_has_split_ifs(true); // Has chance for split-if optimization 4955 result = phi; 4956 assert(result->bottom_type()->isa_long(), "must be"); 4957 break; 4958 } 4959 4960 case vmIntrinsics::_floatToIntBits: { 4961 // two paths (plus control) merge in a wood 4962 RegionNode *r = new RegionNode(3); 4963 Node *phi = new PhiNode(r, TypeInt::INT); 4964 4965 Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg)); 4966 // Build the boolean node 4967 Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne)); 4968 4969 // Branch either way. 4970 // NaN case is less traveled, which makes all the difference. 4971 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN); 4972 Node *opt_isnan = _gvn.transform(ifisnan); 4973 assert( opt_isnan->is_If(), "Expect an IfNode"); 4974 IfNode *opt_ifisnan = (IfNode*)opt_isnan; 4975 Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan)); 4976 4977 set_control(iftrue); 4978 4979 static const jint nan_bits = 0x7fc00000; 4980 Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN 4981 phi->init_req(1, _gvn.transform( slow_result )); 4982 r->init_req(1, iftrue); 4983 4984 // Else fall through 4985 Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan)); 4986 set_control(iffalse); 4987 4988 phi->init_req(2, _gvn.transform(new MoveF2INode(arg))); 4989 r->init_req(2, iffalse); 4990 4991 // Post merge 4992 set_control(_gvn.transform(r)); 4993 record_for_igvn(r); 4994 4995 C->set_has_split_ifs(true); // Has chance for split-if optimization 4996 result = phi; 4997 assert(result->bottom_type()->isa_int(), "must be"); 4998 break; 4999 } 5000 5001 default: 5002 fatal_unexpected_iid(id); 5003 break; 5004 } 5005 set_result(_gvn.transform(result)); 5006 return true; 5007 } 5008 5009 bool LibraryCallKit::inline_fp_range_check(vmIntrinsics::ID id) { 5010 Node* arg = argument(0); 5011 Node* result = nullptr; 5012 5013 switch (id) { 5014 case vmIntrinsics::_floatIsInfinite: 5015 result = new IsInfiniteFNode(arg); 5016 break; 5017 case vmIntrinsics::_floatIsFinite: 5018 result = new IsFiniteFNode(arg); 5019 break; 5020 case vmIntrinsics::_doubleIsInfinite: 5021 result = new IsInfiniteDNode(arg); 5022 break; 5023 case vmIntrinsics::_doubleIsFinite: 5024 result = new IsFiniteDNode(arg); 5025 break; 5026 default: 5027 fatal_unexpected_iid(id); 5028 break; 5029 } 5030 set_result(_gvn.transform(result)); 5031 return true; 5032 } 5033 5034 //----------------------inline_unsafe_copyMemory------------------------- 5035 // public native void Unsafe.copyMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes); 5036 5037 static bool has_wide_mem(PhaseGVN& gvn, Node* addr, Node* base) { 5038 const TypeAryPtr* addr_t = gvn.type(addr)->isa_aryptr(); 5039 const Type* base_t = gvn.type(base); 5040 5041 bool in_native = (base_t == TypePtr::NULL_PTR); 5042 bool in_heap = !TypePtr::NULL_PTR->higher_equal(base_t); 5043 bool is_mixed = !in_heap && !in_native; 5044 5045 if (is_mixed) { 5046 return true; // mixed accesses can touch both on-heap and off-heap memory 5047 } 5048 if (in_heap) { 5049 bool is_prim_array = (addr_t != nullptr) && (addr_t->elem() != Type::BOTTOM); 5050 if (!is_prim_array) { 5051 // Though Unsafe.copyMemory() ensures at runtime for on-heap accesses that base is a primitive array, 5052 // there's not enough type information available to determine proper memory slice for it. 5053 return true; 5054 } 5055 } 5056 return false; 5057 } 5058 5059 bool LibraryCallKit::inline_unsafe_copyMemory() { 5060 if (callee()->is_static()) return false; // caller must have the capability! 5061 null_check_receiver(); // null-check receiver 5062 if (stopped()) return true; 5063 5064 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 5065 5066 Node* src_base = argument(1); // type: oop 5067 Node* src_off = ConvL2X(argument(2)); // type: long 5068 Node* dst_base = argument(4); // type: oop 5069 Node* dst_off = ConvL2X(argument(5)); // type: long 5070 Node* size = ConvL2X(argument(7)); // type: long 5071 5072 assert(Unsafe_field_offset_to_byte_offset(11) == 11, 5073 "fieldOffset must be byte-scaled"); 5074 5075 Node* src_addr = make_unsafe_address(src_base, src_off); 5076 Node* dst_addr = make_unsafe_address(dst_base, dst_off); 5077 5078 Node* thread = _gvn.transform(new ThreadLocalNode()); 5079 Node* doing_unsafe_access_addr = basic_plus_adr(top(), thread, in_bytes(JavaThread::doing_unsafe_access_offset())); 5080 BasicType doing_unsafe_access_bt = T_BYTE; 5081 assert((sizeof(bool) * CHAR_BIT) == 8, "not implemented"); 5082 5083 // update volatile field 5084 store_to_memory(control(), doing_unsafe_access_addr, intcon(1), doing_unsafe_access_bt, MemNode::unordered); 5085 5086 int flags = RC_LEAF | RC_NO_FP; 5087 5088 const TypePtr* dst_type = TypePtr::BOTTOM; 5089 5090 // Adjust memory effects of the runtime call based on input values. 5091 if (!has_wide_mem(_gvn, src_addr, src_base) && 5092 !has_wide_mem(_gvn, dst_addr, dst_base)) { 5093 dst_type = _gvn.type(dst_addr)->is_ptr(); // narrow out memory 5094 5095 const TypePtr* src_type = _gvn.type(src_addr)->is_ptr(); 5096 if (C->get_alias_index(src_type) == C->get_alias_index(dst_type)) { 5097 flags |= RC_NARROW_MEM; // narrow in memory 5098 } 5099 } 5100 5101 // Call it. Note that the length argument is not scaled. 5102 make_runtime_call(flags, 5103 OptoRuntime::fast_arraycopy_Type(), 5104 StubRoutines::unsafe_arraycopy(), 5105 "unsafe_arraycopy", 5106 dst_type, 5107 src_addr, dst_addr, size XTOP); 5108 5109 store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, MemNode::unordered); 5110 5111 return true; 5112 } 5113 5114 // unsafe_setmemory(void *base, ulong offset, size_t length, char fill_value); 5115 // Fill 'length' bytes starting from 'base[offset]' with 'fill_value' 5116 bool LibraryCallKit::inline_unsafe_setMemory() { 5117 if (callee()->is_static()) return false; // caller must have the capability! 5118 null_check_receiver(); // null-check receiver 5119 if (stopped()) return true; 5120 5121 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 5122 5123 Node* dst_base = argument(1); // type: oop 5124 Node* dst_off = ConvL2X(argument(2)); // type: long 5125 Node* size = ConvL2X(argument(4)); // type: long 5126 Node* byte = argument(6); // type: byte 5127 5128 assert(Unsafe_field_offset_to_byte_offset(11) == 11, 5129 "fieldOffset must be byte-scaled"); 5130 5131 Node* dst_addr = make_unsafe_address(dst_base, dst_off); 5132 5133 Node* thread = _gvn.transform(new ThreadLocalNode()); 5134 Node* doing_unsafe_access_addr = basic_plus_adr(top(), thread, in_bytes(JavaThread::doing_unsafe_access_offset())); 5135 BasicType doing_unsafe_access_bt = T_BYTE; 5136 assert((sizeof(bool) * CHAR_BIT) == 8, "not implemented"); 5137 5138 // update volatile field 5139 store_to_memory(control(), doing_unsafe_access_addr, intcon(1), doing_unsafe_access_bt, MemNode::unordered); 5140 5141 int flags = RC_LEAF | RC_NO_FP; 5142 5143 const TypePtr* dst_type = TypePtr::BOTTOM; 5144 5145 // Adjust memory effects of the runtime call based on input values. 5146 if (!has_wide_mem(_gvn, dst_addr, dst_base)) { 5147 dst_type = _gvn.type(dst_addr)->is_ptr(); // narrow out memory 5148 5149 flags |= RC_NARROW_MEM; // narrow in memory 5150 } 5151 5152 // Call it. Note that the length argument is not scaled. 5153 make_runtime_call(flags, 5154 OptoRuntime::unsafe_setmemory_Type(), 5155 StubRoutines::unsafe_setmemory(), 5156 "unsafe_setmemory", 5157 dst_type, 5158 dst_addr, size XTOP, byte); 5159 5160 store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, MemNode::unordered); 5161 5162 return true; 5163 } 5164 5165 #undef XTOP 5166 5167 //------------------------clone_coping----------------------------------- 5168 // Helper function for inline_native_clone. 5169 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array) { 5170 assert(obj_size != nullptr, ""); 5171 Node* raw_obj = alloc_obj->in(1); 5172 assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), ""); 5173 5174 AllocateNode* alloc = nullptr; 5175 if (ReduceBulkZeroing && 5176 // If we are implementing an array clone without knowing its source type 5177 // (can happen when compiling the array-guarded branch of a reflective 5178 // Object.clone() invocation), initialize the array within the allocation. 5179 // This is needed because some GCs (e.g. ZGC) might fall back in this case 5180 // to a runtime clone call that assumes fully initialized source arrays. 5181 (!is_array || obj->get_ptr_type()->isa_aryptr() != nullptr)) { 5182 // We will be completely responsible for initializing this object - 5183 // mark Initialize node as complete. 5184 alloc = AllocateNode::Ideal_allocation(alloc_obj); 5185 // The object was just allocated - there should be no any stores! 5186 guarantee(alloc != nullptr && alloc->maybe_set_complete(&_gvn), ""); 5187 // Mark as complete_with_arraycopy so that on AllocateNode 5188 // expansion, we know this AllocateNode is initialized by an array 5189 // copy and a StoreStore barrier exists after the array copy. 5190 alloc->initialization()->set_complete_with_arraycopy(); 5191 } 5192 5193 Node* size = _gvn.transform(obj_size); 5194 access_clone(obj, alloc_obj, size, is_array); 5195 5196 // Do not let reads from the cloned object float above the arraycopy. 5197 if (alloc != nullptr) { 5198 // Do not let stores that initialize this object be reordered with 5199 // a subsequent store that would make this object accessible by 5200 // other threads. 5201 // Record what AllocateNode this StoreStore protects so that 5202 // escape analysis can go from the MemBarStoreStoreNode to the 5203 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 5204 // based on the escape status of the AllocateNode. 5205 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 5206 } else { 5207 insert_mem_bar(Op_MemBarCPUOrder); 5208 } 5209 } 5210 5211 //------------------------inline_native_clone---------------------------- 5212 // protected native Object java.lang.Object.clone(); 5213 // 5214 // Here are the simple edge cases: 5215 // null receiver => normal trap 5216 // virtual and clone was overridden => slow path to out-of-line clone 5217 // not cloneable or finalizer => slow path to out-of-line Object.clone 5218 // 5219 // The general case has two steps, allocation and copying. 5220 // Allocation has two cases, and uses GraphKit::new_instance or new_array. 5221 // 5222 // Copying also has two cases, oop arrays and everything else. 5223 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy). 5224 // Everything else uses the tight inline loop supplied by CopyArrayNode. 5225 // 5226 // These steps fold up nicely if and when the cloned object's klass 5227 // can be sharply typed as an object array, a type array, or an instance. 5228 // 5229 bool LibraryCallKit::inline_native_clone(bool is_virtual) { 5230 PhiNode* result_val; 5231 5232 // Set the reexecute bit for the interpreter to reexecute 5233 // the bytecode that invokes Object.clone if deoptimization happens. 5234 { PreserveReexecuteState preexecs(this); 5235 jvms()->set_should_reexecute(true); 5236 5237 Node* obj = null_check_receiver(); 5238 if (stopped()) return true; 5239 5240 const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr(); 5241 5242 // If we are going to clone an instance, we need its exact type to 5243 // know the number and types of fields to convert the clone to 5244 // loads/stores. Maybe a speculative type can help us. 5245 if (!obj_type->klass_is_exact() && 5246 obj_type->speculative_type() != nullptr && 5247 obj_type->speculative_type()->is_instance_klass()) { 5248 ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass(); 5249 if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem && 5250 !spec_ik->has_injected_fields()) { 5251 if (!obj_type->isa_instptr() || 5252 obj_type->is_instptr()->instance_klass()->has_subklass()) { 5253 obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false); 5254 } 5255 } 5256 } 5257 5258 // Conservatively insert a memory barrier on all memory slices. 5259 // Do not let writes into the original float below the clone. 5260 insert_mem_bar(Op_MemBarCPUOrder); 5261 5262 // paths into result_reg: 5263 enum { 5264 _slow_path = 1, // out-of-line call to clone method (virtual or not) 5265 _objArray_path, // plain array allocation, plus arrayof_oop_arraycopy 5266 _array_path, // plain array allocation, plus arrayof_long_arraycopy 5267 _instance_path, // plain instance allocation, plus arrayof_long_arraycopy 5268 PATH_LIMIT 5269 }; 5270 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 5271 result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL); 5272 PhiNode* result_i_o = new PhiNode(result_reg, Type::ABIO); 5273 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 5274 record_for_igvn(result_reg); 5275 5276 Node* obj_klass = load_object_klass(obj); 5277 Node* array_obj = obj; 5278 Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)nullptr, &array_obj); 5279 if (array_ctl != nullptr) { 5280 // It's an array. 5281 PreserveJVMState pjvms(this); 5282 set_control(array_ctl); 5283 Node* obj_length = load_array_length(array_obj); 5284 Node* array_size = nullptr; // Size of the array without object alignment padding. 5285 Node* alloc_obj = new_array(obj_klass, obj_length, 0, &array_size, /*deoptimize_on_exception=*/true); 5286 5287 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 5288 if (bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, false, BarrierSetC2::Parsing)) { 5289 // If it is an oop array, it requires very special treatment, 5290 // because gc barriers are required when accessing the array. 5291 Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)nullptr); 5292 if (is_obja != nullptr) { 5293 PreserveJVMState pjvms2(this); 5294 set_control(is_obja); 5295 // Generate a direct call to the right arraycopy function(s). 5296 // Clones are always tightly coupled. 5297 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, array_obj, intcon(0), alloc_obj, intcon(0), obj_length, true, false); 5298 ac->set_clone_oop_array(); 5299 Node* n = _gvn.transform(ac); 5300 assert(n == ac, "cannot disappear"); 5301 ac->connect_outputs(this, /*deoptimize_on_exception=*/true); 5302 5303 result_reg->init_req(_objArray_path, control()); 5304 result_val->init_req(_objArray_path, alloc_obj); 5305 result_i_o ->set_req(_objArray_path, i_o()); 5306 result_mem ->set_req(_objArray_path, reset_memory()); 5307 } 5308 } 5309 // Otherwise, there are no barriers to worry about. 5310 // (We can dispense with card marks if we know the allocation 5311 // comes out of eden (TLAB)... In fact, ReduceInitialCardMarks 5312 // causes the non-eden paths to take compensating steps to 5313 // simulate a fresh allocation, so that no further 5314 // card marks are required in compiled code to initialize 5315 // the object.) 5316 5317 if (!stopped()) { 5318 copy_to_clone(array_obj, alloc_obj, array_size, true); 5319 5320 // Present the results of the copy. 5321 result_reg->init_req(_array_path, control()); 5322 result_val->init_req(_array_path, alloc_obj); 5323 result_i_o ->set_req(_array_path, i_o()); 5324 result_mem ->set_req(_array_path, reset_memory()); 5325 } 5326 } 5327 5328 // We only go to the instance fast case code if we pass a number of guards. 5329 // The paths which do not pass are accumulated in the slow_region. 5330 RegionNode* slow_region = new RegionNode(1); 5331 record_for_igvn(slow_region); 5332 if (!stopped()) { 5333 // It's an instance (we did array above). Make the slow-path tests. 5334 // If this is a virtual call, we generate a funny guard. We grab 5335 // the vtable entry corresponding to clone() from the target object. 5336 // If the target method which we are calling happens to be the 5337 // Object clone() method, we pass the guard. We do not need this 5338 // guard for non-virtual calls; the caller is known to be the native 5339 // Object clone(). 5340 if (is_virtual) { 5341 generate_virtual_guard(obj_klass, slow_region); 5342 } 5343 5344 // The object must be easily cloneable and must not have a finalizer. 5345 // Both of these conditions may be checked in a single test. 5346 // We could optimize the test further, but we don't care. 5347 generate_misc_flags_guard(obj_klass, 5348 // Test both conditions: 5349 KlassFlags::_misc_is_cloneable_fast | KlassFlags::_misc_has_finalizer, 5350 // Must be cloneable but not finalizer: 5351 KlassFlags::_misc_is_cloneable_fast, 5352 slow_region); 5353 } 5354 5355 if (!stopped()) { 5356 // It's an instance, and it passed the slow-path tests. 5357 PreserveJVMState pjvms(this); 5358 Node* obj_size = nullptr; // Total object size, including object alignment padding. 5359 // Need to deoptimize on exception from allocation since Object.clone intrinsic 5360 // is reexecuted if deoptimization occurs and there could be problems when merging 5361 // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false). 5362 Node* alloc_obj = new_instance(obj_klass, nullptr, &obj_size, /*deoptimize_on_exception=*/true); 5363 5364 copy_to_clone(obj, alloc_obj, obj_size, false); 5365 5366 // Present the results of the slow call. 5367 result_reg->init_req(_instance_path, control()); 5368 result_val->init_req(_instance_path, alloc_obj); 5369 result_i_o ->set_req(_instance_path, i_o()); 5370 result_mem ->set_req(_instance_path, reset_memory()); 5371 } 5372 5373 // Generate code for the slow case. We make a call to clone(). 5374 set_control(_gvn.transform(slow_region)); 5375 if (!stopped()) { 5376 PreserveJVMState pjvms(this); 5377 CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual, false, true); 5378 // We need to deoptimize on exception (see comment above) 5379 Node* slow_result = set_results_for_java_call(slow_call, false, /* deoptimize */ true); 5380 // this->control() comes from set_results_for_java_call 5381 result_reg->init_req(_slow_path, control()); 5382 result_val->init_req(_slow_path, slow_result); 5383 result_i_o ->set_req(_slow_path, i_o()); 5384 result_mem ->set_req(_slow_path, reset_memory()); 5385 } 5386 5387 // Return the combined state. 5388 set_control( _gvn.transform(result_reg)); 5389 set_i_o( _gvn.transform(result_i_o)); 5390 set_all_memory( _gvn.transform(result_mem)); 5391 } // original reexecute is set back here 5392 5393 set_result(_gvn.transform(result_val)); 5394 return true; 5395 } 5396 5397 // If we have a tightly coupled allocation, the arraycopy may take care 5398 // of the array initialization. If one of the guards we insert between 5399 // the allocation and the arraycopy causes a deoptimization, an 5400 // uninitialized array will escape the compiled method. To prevent that 5401 // we set the JVM state for uncommon traps between the allocation and 5402 // the arraycopy to the state before the allocation so, in case of 5403 // deoptimization, we'll reexecute the allocation and the 5404 // initialization. 5405 JVMState* LibraryCallKit::arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp) { 5406 if (alloc != nullptr) { 5407 ciMethod* trap_method = alloc->jvms()->method(); 5408 int trap_bci = alloc->jvms()->bci(); 5409 5410 if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) && 5411 !C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_null_check)) { 5412 // Make sure there's no store between the allocation and the 5413 // arraycopy otherwise visible side effects could be rexecuted 5414 // in case of deoptimization and cause incorrect execution. 5415 bool no_interfering_store = true; 5416 Node* mem = alloc->in(TypeFunc::Memory); 5417 if (mem->is_MergeMem()) { 5418 for (MergeMemStream mms(merged_memory(), mem->as_MergeMem()); mms.next_non_empty2(); ) { 5419 Node* n = mms.memory(); 5420 if (n != mms.memory2() && !(n->is_Proj() && n->in(0) == alloc->initialization())) { 5421 assert(n->is_Store(), "what else?"); 5422 no_interfering_store = false; 5423 break; 5424 } 5425 } 5426 } else { 5427 for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) { 5428 Node* n = mms.memory(); 5429 if (n != mem && !(n->is_Proj() && n->in(0) == alloc->initialization())) { 5430 assert(n->is_Store(), "what else?"); 5431 no_interfering_store = false; 5432 break; 5433 } 5434 } 5435 } 5436 5437 if (no_interfering_store) { 5438 SafePointNode* sfpt = create_safepoint_with_state_before_array_allocation(alloc); 5439 5440 JVMState* saved_jvms = jvms(); 5441 saved_reexecute_sp = _reexecute_sp; 5442 5443 set_jvms(sfpt->jvms()); 5444 _reexecute_sp = jvms()->sp(); 5445 5446 return saved_jvms; 5447 } 5448 } 5449 } 5450 return nullptr; 5451 } 5452 5453 // Clone the JVMState of the array allocation and create a new safepoint with it. Re-push the array length to the stack 5454 // such that uncommon traps can be emitted to re-execute the array allocation in the interpreter. 5455 SafePointNode* LibraryCallKit::create_safepoint_with_state_before_array_allocation(const AllocateArrayNode* alloc) const { 5456 JVMState* old_jvms = alloc->jvms()->clone_shallow(C); 5457 uint size = alloc->req(); 5458 SafePointNode* sfpt = new SafePointNode(size, old_jvms); 5459 old_jvms->set_map(sfpt); 5460 for (uint i = 0; i < size; i++) { 5461 sfpt->init_req(i, alloc->in(i)); 5462 } 5463 // re-push array length for deoptimization 5464 sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), alloc->in(AllocateNode::ALength)); 5465 old_jvms->set_sp(old_jvms->sp()+1); 5466 old_jvms->set_monoff(old_jvms->monoff()+1); 5467 old_jvms->set_scloff(old_jvms->scloff()+1); 5468 old_jvms->set_endoff(old_jvms->endoff()+1); 5469 old_jvms->set_should_reexecute(true); 5470 5471 sfpt->set_i_o(map()->i_o()); 5472 sfpt->set_memory(map()->memory()); 5473 sfpt->set_control(map()->control()); 5474 return sfpt; 5475 } 5476 5477 // In case of a deoptimization, we restart execution at the 5478 // allocation, allocating a new array. We would leave an uninitialized 5479 // array in the heap that GCs wouldn't expect. Move the allocation 5480 // after the traps so we don't allocate the array if we 5481 // deoptimize. This is possible because tightly_coupled_allocation() 5482 // guarantees there's no observer of the allocated array at this point 5483 // and the control flow is simple enough. 5484 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms_before_guards, 5485 int saved_reexecute_sp, uint new_idx) { 5486 if (saved_jvms_before_guards != nullptr && !stopped()) { 5487 replace_unrelated_uncommon_traps_with_alloc_state(alloc, saved_jvms_before_guards); 5488 5489 assert(alloc != nullptr, "only with a tightly coupled allocation"); 5490 // restore JVM state to the state at the arraycopy 5491 saved_jvms_before_guards->map()->set_control(map()->control()); 5492 assert(saved_jvms_before_guards->map()->memory() == map()->memory(), "memory state changed?"); 5493 assert(saved_jvms_before_guards->map()->i_o() == map()->i_o(), "IO state changed?"); 5494 // If we've improved the types of some nodes (null check) while 5495 // emitting the guards, propagate them to the current state 5496 map()->replaced_nodes().apply(saved_jvms_before_guards->map(), new_idx); 5497 set_jvms(saved_jvms_before_guards); 5498 _reexecute_sp = saved_reexecute_sp; 5499 5500 // Remove the allocation from above the guards 5501 CallProjections callprojs; 5502 alloc->extract_projections(&callprojs, true); 5503 InitializeNode* init = alloc->initialization(); 5504 Node* alloc_mem = alloc->in(TypeFunc::Memory); 5505 C->gvn_replace_by(callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O)); 5506 C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem); 5507 5508 // The CastIINode created in GraphKit::new_array (in AllocateArrayNode::make_ideal_length) must stay below 5509 // the allocation (i.e. is only valid if the allocation succeeds): 5510 // 1) replace CastIINode with AllocateArrayNode's length here 5511 // 2) Create CastIINode again once allocation has moved (see below) at the end of this method 5512 // 5513 // Multiple identical CastIINodes might exist here. Each GraphKit::load_array_length() call will generate 5514 // new separate CastIINode (arraycopy guard checks or any array length use between array allocation and ararycopy) 5515 Node* init_control = init->proj_out(TypeFunc::Control); 5516 Node* alloc_length = alloc->Ideal_length(); 5517 #ifdef ASSERT 5518 Node* prev_cast = nullptr; 5519 #endif 5520 for (uint i = 0; i < init_control->outcnt(); i++) { 5521 Node* init_out = init_control->raw_out(i); 5522 if (init_out->is_CastII() && init_out->in(TypeFunc::Control) == init_control && init_out->in(1) == alloc_length) { 5523 #ifdef ASSERT 5524 if (prev_cast == nullptr) { 5525 prev_cast = init_out; 5526 } else { 5527 if (prev_cast->cmp(*init_out) == false) { 5528 prev_cast->dump(); 5529 init_out->dump(); 5530 assert(false, "not equal CastIINode"); 5531 } 5532 } 5533 #endif 5534 C->gvn_replace_by(init_out, alloc_length); 5535 } 5536 } 5537 C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0)); 5538 5539 // move the allocation here (after the guards) 5540 _gvn.hash_delete(alloc); 5541 alloc->set_req(TypeFunc::Control, control()); 5542 alloc->set_req(TypeFunc::I_O, i_o()); 5543 Node *mem = reset_memory(); 5544 set_all_memory(mem); 5545 alloc->set_req(TypeFunc::Memory, mem); 5546 set_control(init->proj_out_or_null(TypeFunc::Control)); 5547 set_i_o(callprojs.fallthrough_ioproj); 5548 5549 // Update memory as done in GraphKit::set_output_for_allocation() 5550 const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength)); 5551 const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type(); 5552 if (ary_type->isa_aryptr() && length_type != nullptr) { 5553 ary_type = ary_type->is_aryptr()->cast_to_size(length_type); 5554 } 5555 const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot); 5556 int elemidx = C->get_alias_index(telemref); 5557 set_memory(init->proj_out_or_null(TypeFunc::Memory), Compile::AliasIdxRaw); 5558 set_memory(init->proj_out_or_null(TypeFunc::Memory), elemidx); 5559 5560 Node* allocx = _gvn.transform(alloc); 5561 assert(allocx == alloc, "where has the allocation gone?"); 5562 assert(dest->is_CheckCastPP(), "not an allocation result?"); 5563 5564 _gvn.hash_delete(dest); 5565 dest->set_req(0, control()); 5566 Node* destx = _gvn.transform(dest); 5567 assert(destx == dest, "where has the allocation result gone?"); 5568 5569 array_ideal_length(alloc, ary_type, true); 5570 } 5571 } 5572 5573 // Unrelated UCTs between the array allocation and the array copy, which are considered safe by tightly_coupled_allocation(), 5574 // need to be replaced by an UCT with a state before the array allocation (including the array length). This is necessary 5575 // because we could hit one of these UCTs (which are executed before the emitted array copy guards and the actual array 5576 // allocation which is moved down in arraycopy_move_allocation_here()). When later resuming execution in the interpreter, 5577 // we would have wrongly skipped the array allocation. To prevent this, we resume execution at the array allocation in 5578 // the interpreter similar to what we are doing for the newly emitted guards for the array copy. 5579 void LibraryCallKit::replace_unrelated_uncommon_traps_with_alloc_state(AllocateArrayNode* alloc, 5580 JVMState* saved_jvms_before_guards) { 5581 if (saved_jvms_before_guards->map()->control()->is_IfProj()) { 5582 // There is at least one unrelated uncommon trap which needs to be replaced. 5583 SafePointNode* sfpt = create_safepoint_with_state_before_array_allocation(alloc); 5584 5585 JVMState* saved_jvms = jvms(); 5586 const int saved_reexecute_sp = _reexecute_sp; 5587 set_jvms(sfpt->jvms()); 5588 _reexecute_sp = jvms()->sp(); 5589 5590 replace_unrelated_uncommon_traps_with_alloc_state(saved_jvms_before_guards); 5591 5592 // Restore state 5593 set_jvms(saved_jvms); 5594 _reexecute_sp = saved_reexecute_sp; 5595 } 5596 } 5597 5598 // Replace the unrelated uncommon traps with new uncommon trap nodes by reusing the action and reason. The new uncommon 5599 // traps will have the state of the array allocation. Let the old uncommon trap nodes die. 5600 void LibraryCallKit::replace_unrelated_uncommon_traps_with_alloc_state(JVMState* saved_jvms_before_guards) { 5601 Node* if_proj = saved_jvms_before_guards->map()->control(); // Start the search right before the newly emitted guards 5602 while (if_proj->is_IfProj()) { 5603 CallStaticJavaNode* uncommon_trap = get_uncommon_trap_from_success_proj(if_proj); 5604 if (uncommon_trap != nullptr) { 5605 create_new_uncommon_trap(uncommon_trap); 5606 } 5607 assert(if_proj->in(0)->is_If(), "must be If"); 5608 if_proj = if_proj->in(0)->in(0); 5609 } 5610 assert(if_proj->is_Proj() && if_proj->in(0)->is_Initialize(), 5611 "must have reached control projection of init node"); 5612 } 5613 5614 void LibraryCallKit::create_new_uncommon_trap(CallStaticJavaNode* uncommon_trap_call) { 5615 const int trap_request = uncommon_trap_call->uncommon_trap_request(); 5616 assert(trap_request != 0, "no valid UCT trap request"); 5617 PreserveJVMState pjvms(this); 5618 set_control(uncommon_trap_call->in(0)); 5619 uncommon_trap(Deoptimization::trap_request_reason(trap_request), 5620 Deoptimization::trap_request_action(trap_request)); 5621 assert(stopped(), "Should be stopped"); 5622 _gvn.hash_delete(uncommon_trap_call); 5623 uncommon_trap_call->set_req(0, top()); // not used anymore, kill it 5624 } 5625 5626 // Common checks for array sorting intrinsics arguments. 5627 // Returns `true` if checks passed. 5628 bool LibraryCallKit::check_array_sort_arguments(Node* elementType, Node* obj, BasicType& bt) { 5629 // check address of the class 5630 if (elementType == nullptr || elementType->is_top()) { 5631 return false; // dead path 5632 } 5633 const TypeInstPtr* elem_klass = gvn().type(elementType)->isa_instptr(); 5634 if (elem_klass == nullptr) { 5635 return false; // dead path 5636 } 5637 // java_mirror_type() returns non-null for compile-time Class constants only 5638 ciType* elem_type = elem_klass->java_mirror_type(); 5639 if (elem_type == nullptr) { 5640 return false; 5641 } 5642 bt = elem_type->basic_type(); 5643 // Disable the intrinsic if the CPU does not support SIMD sort 5644 if (!Matcher::supports_simd_sort(bt)) { 5645 return false; 5646 } 5647 // check address of the array 5648 if (obj == nullptr || obj->is_top()) { 5649 return false; // dead path 5650 } 5651 const TypeAryPtr* obj_t = _gvn.type(obj)->isa_aryptr(); 5652 if (obj_t == nullptr || obj_t->elem() == Type::BOTTOM) { 5653 return false; // failed input validation 5654 } 5655 return true; 5656 } 5657 5658 //------------------------------inline_array_partition----------------------- 5659 bool LibraryCallKit::inline_array_partition() { 5660 address stubAddr = StubRoutines::select_array_partition_function(); 5661 if (stubAddr == nullptr) { 5662 return false; // Intrinsic's stub is not implemented on this platform 5663 } 5664 assert(callee()->signature()->size() == 9, "arrayPartition has 8 parameters (one long)"); 5665 5666 // no receiver because it is a static method 5667 Node* elementType = argument(0); 5668 Node* obj = argument(1); 5669 Node* offset = argument(2); // long 5670 Node* fromIndex = argument(4); 5671 Node* toIndex = argument(5); 5672 Node* indexPivot1 = argument(6); 5673 Node* indexPivot2 = argument(7); 5674 // PartitionOperation: argument(8) is ignored 5675 5676 Node* pivotIndices = nullptr; 5677 BasicType bt = T_ILLEGAL; 5678 5679 if (!check_array_sort_arguments(elementType, obj, bt)) { 5680 return false; 5681 } 5682 null_check(obj); 5683 // If obj is dead, only null-path is taken. 5684 if (stopped()) { 5685 return true; 5686 } 5687 // Set the original stack and the reexecute bit for the interpreter to reexecute 5688 // the bytecode that invokes DualPivotQuicksort.partition() if deoptimization happens. 5689 { PreserveReexecuteState preexecs(this); 5690 jvms()->set_should_reexecute(true); 5691 5692 Node* obj_adr = make_unsafe_address(obj, offset); 5693 5694 // create the pivotIndices array of type int and size = 2 5695 Node* size = intcon(2); 5696 Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_INT))); 5697 pivotIndices = new_array(klass_node, size, 0); // no arguments to push 5698 AllocateArrayNode* alloc = tightly_coupled_allocation(pivotIndices); 5699 guarantee(alloc != nullptr, "created above"); 5700 Node* pivotIndices_adr = basic_plus_adr(pivotIndices, arrayOopDesc::base_offset_in_bytes(T_INT)); 5701 5702 // pass the basic type enum to the stub 5703 Node* elemType = intcon(bt); 5704 5705 // Call the stub 5706 const char *stubName = "array_partition_stub"; 5707 make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::array_partition_Type(), 5708 stubAddr, stubName, TypePtr::BOTTOM, 5709 obj_adr, elemType, fromIndex, toIndex, pivotIndices_adr, 5710 indexPivot1, indexPivot2); 5711 5712 } // original reexecute is set back here 5713 5714 if (!stopped()) { 5715 set_result(pivotIndices); 5716 } 5717 5718 return true; 5719 } 5720 5721 5722 //------------------------------inline_array_sort----------------------- 5723 bool LibraryCallKit::inline_array_sort() { 5724 address stubAddr = StubRoutines::select_arraysort_function(); 5725 if (stubAddr == nullptr) { 5726 return false; // Intrinsic's stub is not implemented on this platform 5727 } 5728 assert(callee()->signature()->size() == 7, "arraySort has 6 parameters (one long)"); 5729 5730 // no receiver because it is a static method 5731 Node* elementType = argument(0); 5732 Node* obj = argument(1); 5733 Node* offset = argument(2); // long 5734 Node* fromIndex = argument(4); 5735 Node* toIndex = argument(5); 5736 // SortOperation: argument(6) is ignored 5737 5738 BasicType bt = T_ILLEGAL; 5739 5740 if (!check_array_sort_arguments(elementType, obj, bt)) { 5741 return false; 5742 } 5743 null_check(obj); 5744 // If obj is dead, only null-path is taken. 5745 if (stopped()) { 5746 return true; 5747 } 5748 Node* obj_adr = make_unsafe_address(obj, offset); 5749 5750 // pass the basic type enum to the stub 5751 Node* elemType = intcon(bt); 5752 5753 // Call the stub. 5754 const char *stubName = "arraysort_stub"; 5755 make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::array_sort_Type(), 5756 stubAddr, stubName, TypePtr::BOTTOM, 5757 obj_adr, elemType, fromIndex, toIndex); 5758 5759 return true; 5760 } 5761 5762 5763 //------------------------------inline_arraycopy----------------------- 5764 // public static native void java.lang.System.arraycopy(Object src, int srcPos, 5765 // Object dest, int destPos, 5766 // int length); 5767 bool LibraryCallKit::inline_arraycopy() { 5768 // Get the arguments. 5769 Node* src = argument(0); // type: oop 5770 Node* src_offset = argument(1); // type: int 5771 Node* dest = argument(2); // type: oop 5772 Node* dest_offset = argument(3); // type: int 5773 Node* length = argument(4); // type: int 5774 5775 uint new_idx = C->unique(); 5776 5777 // Check for allocation before we add nodes that would confuse 5778 // tightly_coupled_allocation() 5779 AllocateArrayNode* alloc = tightly_coupled_allocation(dest); 5780 5781 int saved_reexecute_sp = -1; 5782 JVMState* saved_jvms_before_guards = arraycopy_restore_alloc_state(alloc, saved_reexecute_sp); 5783 // See arraycopy_restore_alloc_state() comment 5784 // if alloc == null we don't have to worry about a tightly coupled allocation so we can emit all needed guards 5785 // if saved_jvms_before_guards is not null (then alloc is not null) then we can handle guards and a tightly coupled allocation 5786 // if saved_jvms_before_guards is null and alloc is not null, we can't emit any guards 5787 bool can_emit_guards = (alloc == nullptr || saved_jvms_before_guards != nullptr); 5788 5789 // The following tests must be performed 5790 // (1) src and dest are arrays. 5791 // (2) src and dest arrays must have elements of the same BasicType 5792 // (3) src and dest must not be null. 5793 // (4) src_offset must not be negative. 5794 // (5) dest_offset must not be negative. 5795 // (6) length must not be negative. 5796 // (7) src_offset + length must not exceed length of src. 5797 // (8) dest_offset + length must not exceed length of dest. 5798 // (9) each element of an oop array must be assignable 5799 5800 // (3) src and dest must not be null. 5801 // always do this here because we need the JVM state for uncommon traps 5802 Node* null_ctl = top(); 5803 src = saved_jvms_before_guards != nullptr ? null_check_oop(src, &null_ctl, true, true) : null_check(src, T_ARRAY); 5804 assert(null_ctl->is_top(), "no null control here"); 5805 dest = null_check(dest, T_ARRAY); 5806 5807 if (!can_emit_guards) { 5808 // if saved_jvms_before_guards is null and alloc is not null, we don't emit any 5809 // guards but the arraycopy node could still take advantage of a 5810 // tightly allocated allocation. tightly_coupled_allocation() is 5811 // called again to make sure it takes the null check above into 5812 // account: the null check is mandatory and if it caused an 5813 // uncommon trap to be emitted then the allocation can't be 5814 // considered tightly coupled in this context. 5815 alloc = tightly_coupled_allocation(dest); 5816 } 5817 5818 bool validated = false; 5819 5820 const Type* src_type = _gvn.type(src); 5821 const Type* dest_type = _gvn.type(dest); 5822 const TypeAryPtr* top_src = src_type->isa_aryptr(); 5823 const TypeAryPtr* top_dest = dest_type->isa_aryptr(); 5824 5825 // Do we have the type of src? 5826 bool has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM); 5827 // Do we have the type of dest? 5828 bool has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM); 5829 // Is the type for src from speculation? 5830 bool src_spec = false; 5831 // Is the type for dest from speculation? 5832 bool dest_spec = false; 5833 5834 if ((!has_src || !has_dest) && can_emit_guards) { 5835 // We don't have sufficient type information, let's see if 5836 // speculative types can help. We need to have types for both src 5837 // and dest so that it pays off. 5838 5839 // Do we already have or could we have type information for src 5840 bool could_have_src = has_src; 5841 // Do we already have or could we have type information for dest 5842 bool could_have_dest = has_dest; 5843 5844 ciKlass* src_k = nullptr; 5845 if (!has_src) { 5846 src_k = src_type->speculative_type_not_null(); 5847 if (src_k != nullptr && src_k->is_array_klass()) { 5848 could_have_src = true; 5849 } 5850 } 5851 5852 ciKlass* dest_k = nullptr; 5853 if (!has_dest) { 5854 dest_k = dest_type->speculative_type_not_null(); 5855 if (dest_k != nullptr && dest_k->is_array_klass()) { 5856 could_have_dest = true; 5857 } 5858 } 5859 5860 if (could_have_src && could_have_dest) { 5861 // This is going to pay off so emit the required guards 5862 if (!has_src) { 5863 src = maybe_cast_profiled_obj(src, src_k, true); 5864 src_type = _gvn.type(src); 5865 top_src = src_type->isa_aryptr(); 5866 has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM); 5867 src_spec = true; 5868 } 5869 if (!has_dest) { 5870 dest = maybe_cast_profiled_obj(dest, dest_k, true); 5871 dest_type = _gvn.type(dest); 5872 top_dest = dest_type->isa_aryptr(); 5873 has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM); 5874 dest_spec = true; 5875 } 5876 } 5877 } 5878 5879 if (has_src && has_dest && can_emit_guards) { 5880 BasicType src_elem = top_src->isa_aryptr()->elem()->array_element_basic_type(); 5881 BasicType dest_elem = top_dest->isa_aryptr()->elem()->array_element_basic_type(); 5882 if (is_reference_type(src_elem, true)) src_elem = T_OBJECT; 5883 if (is_reference_type(dest_elem, true)) dest_elem = T_OBJECT; 5884 5885 if (src_elem == dest_elem && src_elem == T_OBJECT) { 5886 // If both arrays are object arrays then having the exact types 5887 // for both will remove the need for a subtype check at runtime 5888 // before the call and may make it possible to pick a faster copy 5889 // routine (without a subtype check on every element) 5890 // Do we have the exact type of src? 5891 bool could_have_src = src_spec; 5892 // Do we have the exact type of dest? 5893 bool could_have_dest = dest_spec; 5894 ciKlass* src_k = nullptr; 5895 ciKlass* dest_k = nullptr; 5896 if (!src_spec) { 5897 src_k = src_type->speculative_type_not_null(); 5898 if (src_k != nullptr && src_k->is_array_klass()) { 5899 could_have_src = true; 5900 } 5901 } 5902 if (!dest_spec) { 5903 dest_k = dest_type->speculative_type_not_null(); 5904 if (dest_k != nullptr && dest_k->is_array_klass()) { 5905 could_have_dest = true; 5906 } 5907 } 5908 if (could_have_src && could_have_dest) { 5909 // If we can have both exact types, emit the missing guards 5910 if (could_have_src && !src_spec) { 5911 src = maybe_cast_profiled_obj(src, src_k, true); 5912 } 5913 if (could_have_dest && !dest_spec) { 5914 dest = maybe_cast_profiled_obj(dest, dest_k, true); 5915 } 5916 } 5917 } 5918 } 5919 5920 ciMethod* trap_method = method(); 5921 int trap_bci = bci(); 5922 if (saved_jvms_before_guards != nullptr) { 5923 trap_method = alloc->jvms()->method(); 5924 trap_bci = alloc->jvms()->bci(); 5925 } 5926 5927 bool negative_length_guard_generated = false; 5928 5929 if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) && 5930 can_emit_guards && 5931 !src->is_top() && !dest->is_top()) { 5932 // validate arguments: enables transformation the ArrayCopyNode 5933 validated = true; 5934 5935 RegionNode* slow_region = new RegionNode(1); 5936 record_for_igvn(slow_region); 5937 5938 // (1) src and dest are arrays. 5939 generate_non_array_guard(load_object_klass(src), slow_region, &src); 5940 generate_non_array_guard(load_object_klass(dest), slow_region, &dest); 5941 5942 // (2) src and dest arrays must have elements of the same BasicType 5943 // done at macro expansion or at Ideal transformation time 5944 5945 // (4) src_offset must not be negative. 5946 generate_negative_guard(src_offset, slow_region); 5947 5948 // (5) dest_offset must not be negative. 5949 generate_negative_guard(dest_offset, slow_region); 5950 5951 // (7) src_offset + length must not exceed length of src. 5952 generate_limit_guard(src_offset, length, 5953 load_array_length(src), 5954 slow_region); 5955 5956 // (8) dest_offset + length must not exceed length of dest. 5957 generate_limit_guard(dest_offset, length, 5958 load_array_length(dest), 5959 slow_region); 5960 5961 // (6) length must not be negative. 5962 // This is also checked in generate_arraycopy() during macro expansion, but 5963 // we also have to check it here for the case where the ArrayCopyNode will 5964 // be eliminated by Escape Analysis. 5965 if (EliminateAllocations) { 5966 generate_negative_guard(length, slow_region); 5967 negative_length_guard_generated = true; 5968 } 5969 5970 // (9) each element of an oop array must be assignable 5971 Node* dest_klass = load_object_klass(dest); 5972 if (src != dest) { 5973 Node* not_subtype_ctrl = gen_subtype_check(src, dest_klass); 5974 5975 if (not_subtype_ctrl != top()) { 5976 PreserveJVMState pjvms(this); 5977 set_control(not_subtype_ctrl); 5978 uncommon_trap(Deoptimization::Reason_intrinsic, 5979 Deoptimization::Action_make_not_entrant); 5980 assert(stopped(), "Should be stopped"); 5981 } 5982 } 5983 { 5984 PreserveJVMState pjvms(this); 5985 set_control(_gvn.transform(slow_region)); 5986 uncommon_trap(Deoptimization::Reason_intrinsic, 5987 Deoptimization::Action_make_not_entrant); 5988 assert(stopped(), "Should be stopped"); 5989 } 5990 5991 const TypeKlassPtr* dest_klass_t = _gvn.type(dest_klass)->is_klassptr(); 5992 const Type *toop = dest_klass_t->cast_to_exactness(false)->as_instance_type(); 5993 src = _gvn.transform(new CheckCastPPNode(control(), src, toop)); 5994 arraycopy_move_allocation_here(alloc, dest, saved_jvms_before_guards, saved_reexecute_sp, new_idx); 5995 } 5996 5997 if (stopped()) { 5998 return true; 5999 } 6000 6001 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != nullptr, negative_length_guard_generated, 6002 // Create LoadRange and LoadKlass nodes for use during macro expansion here 6003 // so the compiler has a chance to eliminate them: during macro expansion, 6004 // we have to set their control (CastPP nodes are eliminated). 6005 load_object_klass(src), load_object_klass(dest), 6006 load_array_length(src), load_array_length(dest)); 6007 6008 ac->set_arraycopy(validated); 6009 6010 Node* n = _gvn.transform(ac); 6011 if (n == ac) { 6012 ac->connect_outputs(this); 6013 } else { 6014 assert(validated, "shouldn't transform if all arguments not validated"); 6015 set_all_memory(n); 6016 } 6017 clear_upper_avx(); 6018 6019 6020 return true; 6021 } 6022 6023 6024 // Helper function which determines if an arraycopy immediately follows 6025 // an allocation, with no intervening tests or other escapes for the object. 6026 AllocateArrayNode* 6027 LibraryCallKit::tightly_coupled_allocation(Node* ptr) { 6028 if (stopped()) return nullptr; // no fast path 6029 if (!C->do_aliasing()) return nullptr; // no MergeMems around 6030 6031 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr); 6032 if (alloc == nullptr) return nullptr; 6033 6034 Node* rawmem = memory(Compile::AliasIdxRaw); 6035 // Is the allocation's memory state untouched? 6036 if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) { 6037 // Bail out if there have been raw-memory effects since the allocation. 6038 // (Example: There might have been a call or safepoint.) 6039 return nullptr; 6040 } 6041 rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw); 6042 if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) { 6043 return nullptr; 6044 } 6045 6046 // There must be no unexpected observers of this allocation. 6047 for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) { 6048 Node* obs = ptr->fast_out(i); 6049 if (obs != this->map()) { 6050 return nullptr; 6051 } 6052 } 6053 6054 // This arraycopy must unconditionally follow the allocation of the ptr. 6055 Node* alloc_ctl = ptr->in(0); 6056 Node* ctl = control(); 6057 while (ctl != alloc_ctl) { 6058 // There may be guards which feed into the slow_region. 6059 // Any other control flow means that we might not get a chance 6060 // to finish initializing the allocated object. 6061 // Various low-level checks bottom out in uncommon traps. These 6062 // are considered safe since we've already checked above that 6063 // there is no unexpected observer of this allocation. 6064 if (get_uncommon_trap_from_success_proj(ctl) != nullptr) { 6065 assert(ctl->in(0)->is_If(), "must be If"); 6066 ctl = ctl->in(0)->in(0); 6067 } else { 6068 return nullptr; 6069 } 6070 } 6071 6072 // If we get this far, we have an allocation which immediately 6073 // precedes the arraycopy, and we can take over zeroing the new object. 6074 // The arraycopy will finish the initialization, and provide 6075 // a new control state to which we will anchor the destination pointer. 6076 6077 return alloc; 6078 } 6079 6080 CallStaticJavaNode* LibraryCallKit::get_uncommon_trap_from_success_proj(Node* node) { 6081 if (node->is_IfProj()) { 6082 Node* other_proj = node->as_IfProj()->other_if_proj(); 6083 for (DUIterator_Fast jmax, j = other_proj->fast_outs(jmax); j < jmax; j++) { 6084 Node* obs = other_proj->fast_out(j); 6085 if (obs->in(0) == other_proj && obs->is_CallStaticJava() && 6086 (obs->as_CallStaticJava()->entry_point() == OptoRuntime::uncommon_trap_blob()->entry_point())) { 6087 return obs->as_CallStaticJava(); 6088 } 6089 } 6090 } 6091 return nullptr; 6092 } 6093 6094 //-------------inline_encodeISOArray----------------------------------- 6095 // encode char[] to byte[] in ISO_8859_1 or ASCII 6096 bool LibraryCallKit::inline_encodeISOArray(bool ascii) { 6097 assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters"); 6098 // no receiver since it is static method 6099 Node *src = argument(0); 6100 Node *src_offset = argument(1); 6101 Node *dst = argument(2); 6102 Node *dst_offset = argument(3); 6103 Node *length = argument(4); 6104 6105 src = must_be_not_null(src, true); 6106 dst = must_be_not_null(dst, true); 6107 6108 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6109 const TypeAryPtr* dst_type = dst->Value(&_gvn)->isa_aryptr(); 6110 if (src_type == nullptr || src_type->elem() == Type::BOTTOM || 6111 dst_type == nullptr || dst_type->elem() == Type::BOTTOM) { 6112 // failed array check 6113 return false; 6114 } 6115 6116 // Figure out the size and type of the elements we will be copying. 6117 BasicType src_elem = src_type->elem()->array_element_basic_type(); 6118 BasicType dst_elem = dst_type->elem()->array_element_basic_type(); 6119 if (!((src_elem == T_CHAR) || (src_elem== T_BYTE)) || dst_elem != T_BYTE) { 6120 return false; 6121 } 6122 6123 Node* src_start = array_element_address(src, src_offset, T_CHAR); 6124 Node* dst_start = array_element_address(dst, dst_offset, dst_elem); 6125 // 'src_start' points to src array + scaled offset 6126 // 'dst_start' points to dst array + scaled offset 6127 6128 const TypeAryPtr* mtype = TypeAryPtr::BYTES; 6129 Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length, ascii); 6130 enc = _gvn.transform(enc); 6131 Node* res_mem = _gvn.transform(new SCMemProjNode(enc)); 6132 set_memory(res_mem, mtype); 6133 set_result(enc); 6134 clear_upper_avx(); 6135 6136 return true; 6137 } 6138 6139 //-------------inline_multiplyToLen----------------------------------- 6140 bool LibraryCallKit::inline_multiplyToLen() { 6141 assert(UseMultiplyToLenIntrinsic, "not implemented on this platform"); 6142 6143 address stubAddr = StubRoutines::multiplyToLen(); 6144 if (stubAddr == nullptr) { 6145 return false; // Intrinsic's stub is not implemented on this platform 6146 } 6147 const char* stubName = "multiplyToLen"; 6148 6149 assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters"); 6150 6151 // no receiver because it is a static method 6152 Node* x = argument(0); 6153 Node* xlen = argument(1); 6154 Node* y = argument(2); 6155 Node* ylen = argument(3); 6156 Node* z = argument(4); 6157 6158 x = must_be_not_null(x, true); 6159 y = must_be_not_null(y, true); 6160 6161 const TypeAryPtr* x_type = x->Value(&_gvn)->isa_aryptr(); 6162 const TypeAryPtr* y_type = y->Value(&_gvn)->isa_aryptr(); 6163 if (x_type == nullptr || x_type->elem() == Type::BOTTOM || 6164 y_type == nullptr || y_type->elem() == Type::BOTTOM) { 6165 // failed array check 6166 return false; 6167 } 6168 6169 BasicType x_elem = x_type->elem()->array_element_basic_type(); 6170 BasicType y_elem = y_type->elem()->array_element_basic_type(); 6171 if (x_elem != T_INT || y_elem != T_INT) { 6172 return false; 6173 } 6174 6175 Node* x_start = array_element_address(x, intcon(0), x_elem); 6176 Node* y_start = array_element_address(y, intcon(0), y_elem); 6177 // 'x_start' points to x array + scaled xlen 6178 // 'y_start' points to y array + scaled ylen 6179 6180 Node* z_start = array_element_address(z, intcon(0), T_INT); 6181 6182 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 6183 OptoRuntime::multiplyToLen_Type(), 6184 stubAddr, stubName, TypePtr::BOTTOM, 6185 x_start, xlen, y_start, ylen, z_start); 6186 6187 C->set_has_split_ifs(true); // Has chance for split-if optimization 6188 set_result(z); 6189 return true; 6190 } 6191 6192 //-------------inline_squareToLen------------------------------------ 6193 bool LibraryCallKit::inline_squareToLen() { 6194 assert(UseSquareToLenIntrinsic, "not implemented on this platform"); 6195 6196 address stubAddr = StubRoutines::squareToLen(); 6197 if (stubAddr == nullptr) { 6198 return false; // Intrinsic's stub is not implemented on this platform 6199 } 6200 const char* stubName = "squareToLen"; 6201 6202 assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters"); 6203 6204 Node* x = argument(0); 6205 Node* len = argument(1); 6206 Node* z = argument(2); 6207 Node* zlen = argument(3); 6208 6209 x = must_be_not_null(x, true); 6210 z = must_be_not_null(z, true); 6211 6212 const TypeAryPtr* x_type = x->Value(&_gvn)->isa_aryptr(); 6213 const TypeAryPtr* z_type = z->Value(&_gvn)->isa_aryptr(); 6214 if (x_type == nullptr || x_type->elem() == Type::BOTTOM || 6215 z_type == nullptr || z_type->elem() == Type::BOTTOM) { 6216 // failed array check 6217 return false; 6218 } 6219 6220 BasicType x_elem = x_type->elem()->array_element_basic_type(); 6221 BasicType z_elem = z_type->elem()->array_element_basic_type(); 6222 if (x_elem != T_INT || z_elem != T_INT) { 6223 return false; 6224 } 6225 6226 6227 Node* x_start = array_element_address(x, intcon(0), x_elem); 6228 Node* z_start = array_element_address(z, intcon(0), z_elem); 6229 6230 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 6231 OptoRuntime::squareToLen_Type(), 6232 stubAddr, stubName, TypePtr::BOTTOM, 6233 x_start, len, z_start, zlen); 6234 6235 set_result(z); 6236 return true; 6237 } 6238 6239 //-------------inline_mulAdd------------------------------------------ 6240 bool LibraryCallKit::inline_mulAdd() { 6241 assert(UseMulAddIntrinsic, "not implemented on this platform"); 6242 6243 address stubAddr = StubRoutines::mulAdd(); 6244 if (stubAddr == nullptr) { 6245 return false; // Intrinsic's stub is not implemented on this platform 6246 } 6247 const char* stubName = "mulAdd"; 6248 6249 assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters"); 6250 6251 Node* out = argument(0); 6252 Node* in = argument(1); 6253 Node* offset = argument(2); 6254 Node* len = argument(3); 6255 Node* k = argument(4); 6256 6257 in = must_be_not_null(in, true); 6258 out = must_be_not_null(out, true); 6259 6260 const TypeAryPtr* out_type = out->Value(&_gvn)->isa_aryptr(); 6261 const TypeAryPtr* in_type = in->Value(&_gvn)->isa_aryptr(); 6262 if (out_type == nullptr || out_type->elem() == Type::BOTTOM || 6263 in_type == nullptr || in_type->elem() == Type::BOTTOM) { 6264 // failed array check 6265 return false; 6266 } 6267 6268 BasicType out_elem = out_type->elem()->array_element_basic_type(); 6269 BasicType in_elem = in_type->elem()->array_element_basic_type(); 6270 if (out_elem != T_INT || in_elem != T_INT) { 6271 return false; 6272 } 6273 6274 Node* outlen = load_array_length(out); 6275 Node* new_offset = _gvn.transform(new SubINode(outlen, offset)); 6276 Node* out_start = array_element_address(out, intcon(0), out_elem); 6277 Node* in_start = array_element_address(in, intcon(0), in_elem); 6278 6279 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 6280 OptoRuntime::mulAdd_Type(), 6281 stubAddr, stubName, TypePtr::BOTTOM, 6282 out_start,in_start, new_offset, len, k); 6283 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6284 set_result(result); 6285 return true; 6286 } 6287 6288 //-------------inline_montgomeryMultiply----------------------------------- 6289 bool LibraryCallKit::inline_montgomeryMultiply() { 6290 address stubAddr = StubRoutines::montgomeryMultiply(); 6291 if (stubAddr == nullptr) { 6292 return false; // Intrinsic's stub is not implemented on this platform 6293 } 6294 6295 assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform"); 6296 const char* stubName = "montgomery_multiply"; 6297 6298 assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters"); 6299 6300 Node* a = argument(0); 6301 Node* b = argument(1); 6302 Node* n = argument(2); 6303 Node* len = argument(3); 6304 Node* inv = argument(4); 6305 Node* m = argument(6); 6306 6307 const TypeAryPtr* a_type = a->Value(&_gvn)->isa_aryptr(); 6308 const TypeAryPtr* b_type = b->Value(&_gvn)->isa_aryptr(); 6309 const TypeAryPtr* n_type = n->Value(&_gvn)->isa_aryptr(); 6310 const TypeAryPtr* m_type = m->Value(&_gvn)->isa_aryptr(); 6311 if (a_type == nullptr || a_type->elem() == Type::BOTTOM || 6312 b_type == nullptr || b_type->elem() == Type::BOTTOM || 6313 n_type == nullptr || n_type->elem() == Type::BOTTOM || 6314 m_type == nullptr || m_type->elem() == Type::BOTTOM) { 6315 // failed array check 6316 return false; 6317 } 6318 6319 BasicType a_elem = a_type->elem()->array_element_basic_type(); 6320 BasicType b_elem = b_type->elem()->array_element_basic_type(); 6321 BasicType n_elem = n_type->elem()->array_element_basic_type(); 6322 BasicType m_elem = m_type->elem()->array_element_basic_type(); 6323 if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) { 6324 return false; 6325 } 6326 6327 // Make the call 6328 { 6329 Node* a_start = array_element_address(a, intcon(0), a_elem); 6330 Node* b_start = array_element_address(b, intcon(0), b_elem); 6331 Node* n_start = array_element_address(n, intcon(0), n_elem); 6332 Node* m_start = array_element_address(m, intcon(0), m_elem); 6333 6334 Node* call = make_runtime_call(RC_LEAF, 6335 OptoRuntime::montgomeryMultiply_Type(), 6336 stubAddr, stubName, TypePtr::BOTTOM, 6337 a_start, b_start, n_start, len, inv, top(), 6338 m_start); 6339 set_result(m); 6340 } 6341 6342 return true; 6343 } 6344 6345 bool LibraryCallKit::inline_montgomerySquare() { 6346 address stubAddr = StubRoutines::montgomerySquare(); 6347 if (stubAddr == nullptr) { 6348 return false; // Intrinsic's stub is not implemented on this platform 6349 } 6350 6351 assert(UseMontgomerySquareIntrinsic, "not implemented on this platform"); 6352 const char* stubName = "montgomery_square"; 6353 6354 assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters"); 6355 6356 Node* a = argument(0); 6357 Node* n = argument(1); 6358 Node* len = argument(2); 6359 Node* inv = argument(3); 6360 Node* m = argument(5); 6361 6362 const TypeAryPtr* a_type = a->Value(&_gvn)->isa_aryptr(); 6363 const TypeAryPtr* n_type = n->Value(&_gvn)->isa_aryptr(); 6364 const TypeAryPtr* m_type = m->Value(&_gvn)->isa_aryptr(); 6365 if (a_type == nullptr || a_type->elem() == Type::BOTTOM || 6366 n_type == nullptr || n_type->elem() == Type::BOTTOM || 6367 m_type == nullptr || m_type->elem() == Type::BOTTOM) { 6368 // failed array check 6369 return false; 6370 } 6371 6372 BasicType a_elem = a_type->elem()->array_element_basic_type(); 6373 BasicType n_elem = n_type->elem()->array_element_basic_type(); 6374 BasicType m_elem = m_type->elem()->array_element_basic_type(); 6375 if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) { 6376 return false; 6377 } 6378 6379 // Make the call 6380 { 6381 Node* a_start = array_element_address(a, intcon(0), a_elem); 6382 Node* n_start = array_element_address(n, intcon(0), n_elem); 6383 Node* m_start = array_element_address(m, intcon(0), m_elem); 6384 6385 Node* call = make_runtime_call(RC_LEAF, 6386 OptoRuntime::montgomerySquare_Type(), 6387 stubAddr, stubName, TypePtr::BOTTOM, 6388 a_start, n_start, len, inv, top(), 6389 m_start); 6390 set_result(m); 6391 } 6392 6393 return true; 6394 } 6395 6396 bool LibraryCallKit::inline_bigIntegerShift(bool isRightShift) { 6397 address stubAddr = nullptr; 6398 const char* stubName = nullptr; 6399 6400 stubAddr = isRightShift? StubRoutines::bigIntegerRightShift(): StubRoutines::bigIntegerLeftShift(); 6401 if (stubAddr == nullptr) { 6402 return false; // Intrinsic's stub is not implemented on this platform 6403 } 6404 6405 stubName = isRightShift? "bigIntegerRightShiftWorker" : "bigIntegerLeftShiftWorker"; 6406 6407 assert(callee()->signature()->size() == 5, "expected 5 arguments"); 6408 6409 Node* newArr = argument(0); 6410 Node* oldArr = argument(1); 6411 Node* newIdx = argument(2); 6412 Node* shiftCount = argument(3); 6413 Node* numIter = argument(4); 6414 6415 const TypeAryPtr* newArr_type = newArr->Value(&_gvn)->isa_aryptr(); 6416 const TypeAryPtr* oldArr_type = oldArr->Value(&_gvn)->isa_aryptr(); 6417 if (newArr_type == nullptr || newArr_type->elem() == Type::BOTTOM || 6418 oldArr_type == nullptr || oldArr_type->elem() == Type::BOTTOM) { 6419 return false; 6420 } 6421 6422 BasicType newArr_elem = newArr_type->elem()->array_element_basic_type(); 6423 BasicType oldArr_elem = oldArr_type->elem()->array_element_basic_type(); 6424 if (newArr_elem != T_INT || oldArr_elem != T_INT) { 6425 return false; 6426 } 6427 6428 // Make the call 6429 { 6430 Node* newArr_start = array_element_address(newArr, intcon(0), newArr_elem); 6431 Node* oldArr_start = array_element_address(oldArr, intcon(0), oldArr_elem); 6432 6433 Node* call = make_runtime_call(RC_LEAF, 6434 OptoRuntime::bigIntegerShift_Type(), 6435 stubAddr, 6436 stubName, 6437 TypePtr::BOTTOM, 6438 newArr_start, 6439 oldArr_start, 6440 newIdx, 6441 shiftCount, 6442 numIter); 6443 } 6444 6445 return true; 6446 } 6447 6448 //-------------inline_vectorizedMismatch------------------------------ 6449 bool LibraryCallKit::inline_vectorizedMismatch() { 6450 assert(UseVectorizedMismatchIntrinsic, "not implemented on this platform"); 6451 6452 assert(callee()->signature()->size() == 8, "vectorizedMismatch has 6 parameters"); 6453 Node* obja = argument(0); // Object 6454 Node* aoffset = argument(1); // long 6455 Node* objb = argument(3); // Object 6456 Node* boffset = argument(4); // long 6457 Node* length = argument(6); // int 6458 Node* scale = argument(7); // int 6459 6460 const TypeAryPtr* obja_t = _gvn.type(obja)->isa_aryptr(); 6461 const TypeAryPtr* objb_t = _gvn.type(objb)->isa_aryptr(); 6462 if (obja_t == nullptr || obja_t->elem() == Type::BOTTOM || 6463 objb_t == nullptr || objb_t->elem() == Type::BOTTOM || 6464 scale == top()) { 6465 return false; // failed input validation 6466 } 6467 6468 Node* obja_adr = make_unsafe_address(obja, aoffset); 6469 Node* objb_adr = make_unsafe_address(objb, boffset); 6470 6471 // Partial inlining handling for inputs smaller than ArrayOperationPartialInlineSize bytes in size. 6472 // 6473 // inline_limit = ArrayOperationPartialInlineSize / element_size; 6474 // if (length <= inline_limit) { 6475 // inline_path: 6476 // vmask = VectorMaskGen length 6477 // vload1 = LoadVectorMasked obja, vmask 6478 // vload2 = LoadVectorMasked objb, vmask 6479 // result1 = VectorCmpMasked vload1, vload2, vmask 6480 // } else { 6481 // call_stub_path: 6482 // result2 = call vectorizedMismatch_stub(obja, objb, length, scale) 6483 // } 6484 // exit_block: 6485 // return Phi(result1, result2); 6486 // 6487 enum { inline_path = 1, // input is small enough to process it all at once 6488 stub_path = 2, // input is too large; call into the VM 6489 PATH_LIMIT = 3 6490 }; 6491 6492 Node* exit_block = new RegionNode(PATH_LIMIT); 6493 Node* result_phi = new PhiNode(exit_block, TypeInt::INT); 6494 Node* memory_phi = new PhiNode(exit_block, Type::MEMORY, TypePtr::BOTTOM); 6495 6496 Node* call_stub_path = control(); 6497 6498 BasicType elem_bt = T_ILLEGAL; 6499 6500 const TypeInt* scale_t = _gvn.type(scale)->is_int(); 6501 if (scale_t->is_con()) { 6502 switch (scale_t->get_con()) { 6503 case 0: elem_bt = T_BYTE; break; 6504 case 1: elem_bt = T_SHORT; break; 6505 case 2: elem_bt = T_INT; break; 6506 case 3: elem_bt = T_LONG; break; 6507 6508 default: elem_bt = T_ILLEGAL; break; // not supported 6509 } 6510 } 6511 6512 int inline_limit = 0; 6513 bool do_partial_inline = false; 6514 6515 if (elem_bt != T_ILLEGAL && ArrayOperationPartialInlineSize > 0) { 6516 inline_limit = ArrayOperationPartialInlineSize / type2aelembytes(elem_bt); 6517 do_partial_inline = inline_limit >= 16; 6518 } 6519 6520 if (do_partial_inline) { 6521 assert(elem_bt != T_ILLEGAL, "sanity"); 6522 6523 if (Matcher::match_rule_supported_vector(Op_VectorMaskGen, inline_limit, elem_bt) && 6524 Matcher::match_rule_supported_vector(Op_LoadVectorMasked, inline_limit, elem_bt) && 6525 Matcher::match_rule_supported_vector(Op_VectorCmpMasked, inline_limit, elem_bt)) { 6526 6527 const TypeVect* vt = TypeVect::make(elem_bt, inline_limit); 6528 Node* cmp_length = _gvn.transform(new CmpINode(length, intcon(inline_limit))); 6529 Node* bol_gt = _gvn.transform(new BoolNode(cmp_length, BoolTest::gt)); 6530 6531 call_stub_path = generate_guard(bol_gt, nullptr, PROB_MIN); 6532 6533 if (!stopped()) { 6534 Node* casted_length = _gvn.transform(new CastIINode(control(), length, TypeInt::make(0, inline_limit, Type::WidenMin))); 6535 6536 const TypePtr* obja_adr_t = _gvn.type(obja_adr)->isa_ptr(); 6537 const TypePtr* objb_adr_t = _gvn.type(objb_adr)->isa_ptr(); 6538 Node* obja_adr_mem = memory(C->get_alias_index(obja_adr_t)); 6539 Node* objb_adr_mem = memory(C->get_alias_index(objb_adr_t)); 6540 6541 Node* vmask = _gvn.transform(VectorMaskGenNode::make(ConvI2X(casted_length), elem_bt)); 6542 Node* vload_obja = _gvn.transform(new LoadVectorMaskedNode(control(), obja_adr_mem, obja_adr, obja_adr_t, vt, vmask)); 6543 Node* vload_objb = _gvn.transform(new LoadVectorMaskedNode(control(), objb_adr_mem, objb_adr, objb_adr_t, vt, vmask)); 6544 Node* result = _gvn.transform(new VectorCmpMaskedNode(vload_obja, vload_objb, vmask, TypeInt::INT)); 6545 6546 exit_block->init_req(inline_path, control()); 6547 memory_phi->init_req(inline_path, map()->memory()); 6548 result_phi->init_req(inline_path, result); 6549 6550 C->set_max_vector_size(MAX2((uint)ArrayOperationPartialInlineSize, C->max_vector_size())); 6551 clear_upper_avx(); 6552 } 6553 } 6554 } 6555 6556 if (call_stub_path != nullptr) { 6557 set_control(call_stub_path); 6558 6559 Node* call = make_runtime_call(RC_LEAF, 6560 OptoRuntime::vectorizedMismatch_Type(), 6561 StubRoutines::vectorizedMismatch(), "vectorizedMismatch", TypePtr::BOTTOM, 6562 obja_adr, objb_adr, length, scale); 6563 6564 exit_block->init_req(stub_path, control()); 6565 memory_phi->init_req(stub_path, map()->memory()); 6566 result_phi->init_req(stub_path, _gvn.transform(new ProjNode(call, TypeFunc::Parms))); 6567 } 6568 6569 exit_block = _gvn.transform(exit_block); 6570 memory_phi = _gvn.transform(memory_phi); 6571 result_phi = _gvn.transform(result_phi); 6572 6573 set_control(exit_block); 6574 set_all_memory(memory_phi); 6575 set_result(result_phi); 6576 6577 return true; 6578 } 6579 6580 //------------------------------inline_vectorizedHashcode---------------------------- 6581 bool LibraryCallKit::inline_vectorizedHashCode() { 6582 assert(UseVectorizedHashCodeIntrinsic, "not implemented on this platform"); 6583 6584 assert(callee()->signature()->size() == 5, "vectorizedHashCode has 5 parameters"); 6585 Node* array = argument(0); 6586 Node* offset = argument(1); 6587 Node* length = argument(2); 6588 Node* initialValue = argument(3); 6589 Node* basic_type = argument(4); 6590 6591 if (basic_type == top()) { 6592 return false; // failed input validation 6593 } 6594 6595 const TypeInt* basic_type_t = _gvn.type(basic_type)->is_int(); 6596 if (!basic_type_t->is_con()) { 6597 return false; // Only intrinsify if mode argument is constant 6598 } 6599 6600 array = must_be_not_null(array, true); 6601 6602 BasicType bt = (BasicType)basic_type_t->get_con(); 6603 6604 // Resolve address of first element 6605 Node* array_start = array_element_address(array, offset, bt); 6606 6607 set_result(_gvn.transform(new VectorizedHashCodeNode(control(), memory(TypeAryPtr::get_array_body_type(bt)), 6608 array_start, length, initialValue, basic_type))); 6609 clear_upper_avx(); 6610 6611 return true; 6612 } 6613 6614 /** 6615 * Calculate CRC32 for byte. 6616 * int java.util.zip.CRC32.update(int crc, int b) 6617 */ 6618 bool LibraryCallKit::inline_updateCRC32() { 6619 assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions support"); 6620 assert(callee()->signature()->size() == 2, "update has 2 parameters"); 6621 // no receiver since it is static method 6622 Node* crc = argument(0); // type: int 6623 Node* b = argument(1); // type: int 6624 6625 /* 6626 * int c = ~ crc; 6627 * b = timesXtoThe32[(b ^ c) & 0xFF]; 6628 * b = b ^ (c >>> 8); 6629 * crc = ~b; 6630 */ 6631 6632 Node* M1 = intcon(-1); 6633 crc = _gvn.transform(new XorINode(crc, M1)); 6634 Node* result = _gvn.transform(new XorINode(crc, b)); 6635 result = _gvn.transform(new AndINode(result, intcon(0xFF))); 6636 6637 Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr())); 6638 Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2))); 6639 Node* adr = basic_plus_adr(top(), base, ConvI2X(offset)); 6640 result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered); 6641 6642 crc = _gvn.transform(new URShiftINode(crc, intcon(8))); 6643 result = _gvn.transform(new XorINode(crc, result)); 6644 result = _gvn.transform(new XorINode(result, M1)); 6645 set_result(result); 6646 return true; 6647 } 6648 6649 /** 6650 * Calculate CRC32 for byte[] array. 6651 * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len) 6652 */ 6653 bool LibraryCallKit::inline_updateBytesCRC32() { 6654 assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions support"); 6655 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 6656 // no receiver since it is static method 6657 Node* crc = argument(0); // type: int 6658 Node* src = argument(1); // type: oop 6659 Node* offset = argument(2); // type: int 6660 Node* length = argument(3); // type: int 6661 6662 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6663 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 6664 // failed array check 6665 return false; 6666 } 6667 6668 // Figure out the size and type of the elements we will be copying. 6669 BasicType src_elem = src_type->elem()->array_element_basic_type(); 6670 if (src_elem != T_BYTE) { 6671 return false; 6672 } 6673 6674 // 'src_start' points to src array + scaled offset 6675 src = must_be_not_null(src, true); 6676 Node* src_start = array_element_address(src, offset, src_elem); 6677 6678 // We assume that range check is done by caller. 6679 // TODO: generate range check (offset+length < src.length) in debug VM. 6680 6681 // Call the stub. 6682 address stubAddr = StubRoutines::updateBytesCRC32(); 6683 const char *stubName = "updateBytesCRC32"; 6684 6685 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(), 6686 stubAddr, stubName, TypePtr::BOTTOM, 6687 crc, src_start, length); 6688 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6689 set_result(result); 6690 return true; 6691 } 6692 6693 /** 6694 * Calculate CRC32 for ByteBuffer. 6695 * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len) 6696 */ 6697 bool LibraryCallKit::inline_updateByteBufferCRC32() { 6698 assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions support"); 6699 assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long"); 6700 // no receiver since it is static method 6701 Node* crc = argument(0); // type: int 6702 Node* src = argument(1); // type: long 6703 Node* offset = argument(3); // type: int 6704 Node* length = argument(4); // type: int 6705 6706 src = ConvL2X(src); // adjust Java long to machine word 6707 Node* base = _gvn.transform(new CastX2PNode(src)); 6708 offset = ConvI2X(offset); 6709 6710 // 'src_start' points to src array + scaled offset 6711 Node* src_start = basic_plus_adr(top(), base, offset); 6712 6713 // Call the stub. 6714 address stubAddr = StubRoutines::updateBytesCRC32(); 6715 const char *stubName = "updateBytesCRC32"; 6716 6717 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(), 6718 stubAddr, stubName, TypePtr::BOTTOM, 6719 crc, src_start, length); 6720 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6721 set_result(result); 6722 return true; 6723 } 6724 6725 //------------------------------get_table_from_crc32c_class----------------------- 6726 Node * LibraryCallKit::get_table_from_crc32c_class(ciInstanceKlass *crc32c_class) { 6727 Node* table = load_field_from_object(nullptr, "byteTable", "[I", /*decorators*/ IN_HEAP, /*is_static*/ true, crc32c_class); 6728 assert (table != nullptr, "wrong version of java.util.zip.CRC32C"); 6729 6730 return table; 6731 } 6732 6733 //------------------------------inline_updateBytesCRC32C----------------------- 6734 // 6735 // Calculate CRC32C for byte[] array. 6736 // int java.util.zip.CRC32C.updateBytes(int crc, byte[] buf, int off, int end) 6737 // 6738 bool LibraryCallKit::inline_updateBytesCRC32C() { 6739 assert(UseCRC32CIntrinsics, "need CRC32C instruction support"); 6740 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 6741 assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded"); 6742 // no receiver since it is a static method 6743 Node* crc = argument(0); // type: int 6744 Node* src = argument(1); // type: oop 6745 Node* offset = argument(2); // type: int 6746 Node* end = argument(3); // type: int 6747 6748 Node* length = _gvn.transform(new SubINode(end, offset)); 6749 6750 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6751 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 6752 // failed array check 6753 return false; 6754 } 6755 6756 // Figure out the size and type of the elements we will be copying. 6757 BasicType src_elem = src_type->elem()->array_element_basic_type(); 6758 if (src_elem != T_BYTE) { 6759 return false; 6760 } 6761 6762 // 'src_start' points to src array + scaled offset 6763 src = must_be_not_null(src, true); 6764 Node* src_start = array_element_address(src, offset, src_elem); 6765 6766 // static final int[] byteTable in class CRC32C 6767 Node* table = get_table_from_crc32c_class(callee()->holder()); 6768 table = must_be_not_null(table, true); 6769 Node* table_start = array_element_address(table, intcon(0), T_INT); 6770 6771 // We assume that range check is done by caller. 6772 // TODO: generate range check (offset+length < src.length) in debug VM. 6773 6774 // Call the stub. 6775 address stubAddr = StubRoutines::updateBytesCRC32C(); 6776 const char *stubName = "updateBytesCRC32C"; 6777 6778 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(), 6779 stubAddr, stubName, TypePtr::BOTTOM, 6780 crc, src_start, length, table_start); 6781 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6782 set_result(result); 6783 return true; 6784 } 6785 6786 //------------------------------inline_updateDirectByteBufferCRC32C----------------------- 6787 // 6788 // Calculate CRC32C for DirectByteBuffer. 6789 // int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end) 6790 // 6791 bool LibraryCallKit::inline_updateDirectByteBufferCRC32C() { 6792 assert(UseCRC32CIntrinsics, "need CRC32C instruction support"); 6793 assert(callee()->signature()->size() == 5, "updateDirectByteBuffer has 4 parameters and one is long"); 6794 assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded"); 6795 // no receiver since it is a static method 6796 Node* crc = argument(0); // type: int 6797 Node* src = argument(1); // type: long 6798 Node* offset = argument(3); // type: int 6799 Node* end = argument(4); // type: int 6800 6801 Node* length = _gvn.transform(new SubINode(end, offset)); 6802 6803 src = ConvL2X(src); // adjust Java long to machine word 6804 Node* base = _gvn.transform(new CastX2PNode(src)); 6805 offset = ConvI2X(offset); 6806 6807 // 'src_start' points to src array + scaled offset 6808 Node* src_start = basic_plus_adr(top(), base, offset); 6809 6810 // static final int[] byteTable in class CRC32C 6811 Node* table = get_table_from_crc32c_class(callee()->holder()); 6812 table = must_be_not_null(table, true); 6813 Node* table_start = array_element_address(table, intcon(0), T_INT); 6814 6815 // Call the stub. 6816 address stubAddr = StubRoutines::updateBytesCRC32C(); 6817 const char *stubName = "updateBytesCRC32C"; 6818 6819 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(), 6820 stubAddr, stubName, TypePtr::BOTTOM, 6821 crc, src_start, length, table_start); 6822 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6823 set_result(result); 6824 return true; 6825 } 6826 6827 //------------------------------inline_updateBytesAdler32---------------------- 6828 // 6829 // Calculate Adler32 checksum for byte[] array. 6830 // int java.util.zip.Adler32.updateBytes(int crc, byte[] buf, int off, int len) 6831 // 6832 bool LibraryCallKit::inline_updateBytesAdler32() { 6833 assert(UseAdler32Intrinsics, "Adler32 Intrinsic support need"); // check if we actually need to check this flag or check a different one 6834 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 6835 assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded"); 6836 // no receiver since it is static method 6837 Node* crc = argument(0); // type: int 6838 Node* src = argument(1); // type: oop 6839 Node* offset = argument(2); // type: int 6840 Node* length = argument(3); // type: int 6841 6842 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6843 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 6844 // failed array check 6845 return false; 6846 } 6847 6848 // Figure out the size and type of the elements we will be copying. 6849 BasicType src_elem = src_type->elem()->array_element_basic_type(); 6850 if (src_elem != T_BYTE) { 6851 return false; 6852 } 6853 6854 // 'src_start' points to src array + scaled offset 6855 Node* src_start = array_element_address(src, offset, src_elem); 6856 6857 // We assume that range check is done by caller. 6858 // TODO: generate range check (offset+length < src.length) in debug VM. 6859 6860 // Call the stub. 6861 address stubAddr = StubRoutines::updateBytesAdler32(); 6862 const char *stubName = "updateBytesAdler32"; 6863 6864 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(), 6865 stubAddr, stubName, TypePtr::BOTTOM, 6866 crc, src_start, length); 6867 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6868 set_result(result); 6869 return true; 6870 } 6871 6872 //------------------------------inline_updateByteBufferAdler32--------------- 6873 // 6874 // Calculate Adler32 checksum for DirectByteBuffer. 6875 // int java.util.zip.Adler32.updateByteBuffer(int crc, long buf, int off, int len) 6876 // 6877 bool LibraryCallKit::inline_updateByteBufferAdler32() { 6878 assert(UseAdler32Intrinsics, "Adler32 Intrinsic support need"); // check if we actually need to check this flag or check a different one 6879 assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long"); 6880 assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded"); 6881 // no receiver since it is static method 6882 Node* crc = argument(0); // type: int 6883 Node* src = argument(1); // type: long 6884 Node* offset = argument(3); // type: int 6885 Node* length = argument(4); // type: int 6886 6887 src = ConvL2X(src); // adjust Java long to machine word 6888 Node* base = _gvn.transform(new CastX2PNode(src)); 6889 offset = ConvI2X(offset); 6890 6891 // 'src_start' points to src array + scaled offset 6892 Node* src_start = basic_plus_adr(top(), base, offset); 6893 6894 // Call the stub. 6895 address stubAddr = StubRoutines::updateBytesAdler32(); 6896 const char *stubName = "updateBytesAdler32"; 6897 6898 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(), 6899 stubAddr, stubName, TypePtr::BOTTOM, 6900 crc, src_start, length); 6901 6902 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6903 set_result(result); 6904 return true; 6905 } 6906 6907 //----------------------------inline_reference_get---------------------------- 6908 // public T java.lang.ref.Reference.get(); 6909 bool LibraryCallKit::inline_reference_get() { 6910 const int referent_offset = java_lang_ref_Reference::referent_offset(); 6911 6912 // Get the argument: 6913 Node* reference_obj = null_check_receiver(); 6914 if (stopped()) return true; 6915 6916 DecoratorSet decorators = IN_HEAP | ON_WEAK_OOP_REF; 6917 Node* result = load_field_from_object(reference_obj, "referent", "Ljava/lang/Object;", 6918 decorators, /*is_static*/ false, nullptr); 6919 if (result == nullptr) return false; 6920 6921 // Add memory barrier to prevent commoning reads from this field 6922 // across safepoint since GC can change its value. 6923 insert_mem_bar(Op_MemBarCPUOrder); 6924 6925 set_result(result); 6926 return true; 6927 } 6928 6929 //----------------------------inline_reference_refersTo0---------------------------- 6930 // bool java.lang.ref.Reference.refersTo0(); 6931 // bool java.lang.ref.PhantomReference.refersTo0(); 6932 bool LibraryCallKit::inline_reference_refersTo0(bool is_phantom) { 6933 // Get arguments: 6934 Node* reference_obj = null_check_receiver(); 6935 Node* other_obj = argument(1); 6936 if (stopped()) return true; 6937 6938 DecoratorSet decorators = IN_HEAP | AS_NO_KEEPALIVE; 6939 decorators |= (is_phantom ? ON_PHANTOM_OOP_REF : ON_WEAK_OOP_REF); 6940 Node* referent = load_field_from_object(reference_obj, "referent", "Ljava/lang/Object;", 6941 decorators, /*is_static*/ false, nullptr); 6942 if (referent == nullptr) return false; 6943 6944 // Add memory barrier to prevent commoning reads from this field 6945 // across safepoint since GC can change its value. 6946 insert_mem_bar(Op_MemBarCPUOrder); 6947 6948 Node* cmp = _gvn.transform(new CmpPNode(referent, other_obj)); 6949 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 6950 IfNode* if_node = create_and_map_if(control(), bol, PROB_FAIR, COUNT_UNKNOWN); 6951 6952 RegionNode* region = new RegionNode(3); 6953 PhiNode* phi = new PhiNode(region, TypeInt::BOOL); 6954 6955 Node* if_true = _gvn.transform(new IfTrueNode(if_node)); 6956 region->init_req(1, if_true); 6957 phi->init_req(1, intcon(1)); 6958 6959 Node* if_false = _gvn.transform(new IfFalseNode(if_node)); 6960 region->init_req(2, if_false); 6961 phi->init_req(2, intcon(0)); 6962 6963 set_control(_gvn.transform(region)); 6964 record_for_igvn(region); 6965 set_result(_gvn.transform(phi)); 6966 return true; 6967 } 6968 6969 //----------------------------inline_reference_clear0---------------------------- 6970 // void java.lang.ref.Reference.clear0(); 6971 // void java.lang.ref.PhantomReference.clear0(); 6972 bool LibraryCallKit::inline_reference_clear0(bool is_phantom) { 6973 // This matches the implementation in JVM_ReferenceClear, see the comments there. 6974 6975 // Get arguments 6976 Node* reference_obj = null_check_receiver(); 6977 if (stopped()) return true; 6978 6979 // Common access parameters 6980 DecoratorSet decorators = IN_HEAP | AS_NO_KEEPALIVE; 6981 decorators |= (is_phantom ? ON_PHANTOM_OOP_REF : ON_WEAK_OOP_REF); 6982 Node* referent_field_addr = basic_plus_adr(reference_obj, java_lang_ref_Reference::referent_offset()); 6983 const TypePtr* referent_field_addr_type = _gvn.type(referent_field_addr)->isa_ptr(); 6984 const Type* val_type = TypeOopPtr::make_from_klass(env()->Object_klass()); 6985 6986 Node* referent = access_load_at(reference_obj, 6987 referent_field_addr, 6988 referent_field_addr_type, 6989 val_type, 6990 T_OBJECT, 6991 decorators); 6992 6993 IdealKit ideal(this); 6994 #define __ ideal. 6995 __ if_then(referent, BoolTest::ne, null()); 6996 sync_kit(ideal); 6997 access_store_at(reference_obj, 6998 referent_field_addr, 6999 referent_field_addr_type, 7000 null(), 7001 val_type, 7002 T_OBJECT, 7003 decorators); 7004 __ sync_kit(this); 7005 __ end_if(); 7006 final_sync(ideal); 7007 #undef __ 7008 7009 return true; 7010 } 7011 7012 Node* LibraryCallKit::load_field_from_object(Node* fromObj, const char* fieldName, const char* fieldTypeString, 7013 DecoratorSet decorators, bool is_static, 7014 ciInstanceKlass* fromKls) { 7015 if (fromKls == nullptr) { 7016 const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr(); 7017 assert(tinst != nullptr, "obj is null"); 7018 assert(tinst->is_loaded(), "obj is not loaded"); 7019 fromKls = tinst->instance_klass(); 7020 } else { 7021 assert(is_static, "only for static field access"); 7022 } 7023 ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName), 7024 ciSymbol::make(fieldTypeString), 7025 is_static); 7026 7027 assert(field != nullptr, "undefined field %s %s %s", fieldTypeString, fromKls->name()->as_utf8(), fieldName); 7028 if (field == nullptr) return (Node *) nullptr; 7029 7030 if (is_static) { 7031 const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror()); 7032 fromObj = makecon(tip); 7033 } 7034 7035 // Next code copied from Parse::do_get_xxx(): 7036 7037 // Compute address and memory type. 7038 int offset = field->offset_in_bytes(); 7039 bool is_vol = field->is_volatile(); 7040 ciType* field_klass = field->type(); 7041 assert(field_klass->is_loaded(), "should be loaded"); 7042 const TypePtr* adr_type = C->alias_type(field)->adr_type(); 7043 Node *adr = basic_plus_adr(fromObj, fromObj, offset); 7044 assert(C->get_alias_index(adr_type) == C->get_alias_index(_gvn.type(adr)->isa_ptr()), 7045 "slice of address and input slice don't match"); 7046 BasicType bt = field->layout_type(); 7047 7048 // Build the resultant type of the load 7049 const Type *type; 7050 if (bt == T_OBJECT) { 7051 type = TypeOopPtr::make_from_klass(field_klass->as_klass()); 7052 } else { 7053 type = Type::get_const_basic_type(bt); 7054 } 7055 7056 if (is_vol) { 7057 decorators |= MO_SEQ_CST; 7058 } 7059 7060 return access_load_at(fromObj, adr, adr_type, type, bt, decorators); 7061 } 7062 7063 Node * LibraryCallKit::field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, 7064 bool is_exact /* true */, bool is_static /* false */, 7065 ciInstanceKlass * fromKls /* nullptr */) { 7066 if (fromKls == nullptr) { 7067 const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr(); 7068 assert(tinst != nullptr, "obj is null"); 7069 assert(tinst->is_loaded(), "obj is not loaded"); 7070 assert(!is_exact || tinst->klass_is_exact(), "klass not exact"); 7071 fromKls = tinst->instance_klass(); 7072 } 7073 else { 7074 assert(is_static, "only for static field access"); 7075 } 7076 ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName), 7077 ciSymbol::make(fieldTypeString), 7078 is_static); 7079 7080 assert(field != nullptr, "undefined field"); 7081 assert(!field->is_volatile(), "not defined for volatile fields"); 7082 7083 if (is_static) { 7084 const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror()); 7085 fromObj = makecon(tip); 7086 } 7087 7088 // Next code copied from Parse::do_get_xxx(): 7089 7090 // Compute address and memory type. 7091 int offset = field->offset_in_bytes(); 7092 Node *adr = basic_plus_adr(fromObj, fromObj, offset); 7093 7094 return adr; 7095 } 7096 7097 //------------------------------inline_aescrypt_Block----------------------- 7098 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) { 7099 address stubAddr = nullptr; 7100 const char *stubName; 7101 assert(UseAES, "need AES instruction support"); 7102 7103 switch(id) { 7104 case vmIntrinsics::_aescrypt_encryptBlock: 7105 stubAddr = StubRoutines::aescrypt_encryptBlock(); 7106 stubName = "aescrypt_encryptBlock"; 7107 break; 7108 case vmIntrinsics::_aescrypt_decryptBlock: 7109 stubAddr = StubRoutines::aescrypt_decryptBlock(); 7110 stubName = "aescrypt_decryptBlock"; 7111 break; 7112 default: 7113 break; 7114 } 7115 if (stubAddr == nullptr) return false; 7116 7117 Node* aescrypt_object = argument(0); 7118 Node* src = argument(1); 7119 Node* src_offset = argument(2); 7120 Node* dest = argument(3); 7121 Node* dest_offset = argument(4); 7122 7123 src = must_be_not_null(src, true); 7124 dest = must_be_not_null(dest, true); 7125 7126 // (1) src and dest are arrays. 7127 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7128 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 7129 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 7130 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 7131 7132 // for the quick and dirty code we will skip all the checks. 7133 // we are just trying to get the call to be generated. 7134 Node* src_start = src; 7135 Node* dest_start = dest; 7136 if (src_offset != nullptr || dest_offset != nullptr) { 7137 assert(src_offset != nullptr && dest_offset != nullptr, ""); 7138 src_start = array_element_address(src, src_offset, T_BYTE); 7139 dest_start = array_element_address(dest, dest_offset, T_BYTE); 7140 } 7141 7142 // now need to get the start of its expanded key array 7143 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 7144 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 7145 if (k_start == nullptr) return false; 7146 7147 // Call the stub. 7148 make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(), 7149 stubAddr, stubName, TypePtr::BOTTOM, 7150 src_start, dest_start, k_start); 7151 7152 return true; 7153 } 7154 7155 //------------------------------inline_cipherBlockChaining_AESCrypt----------------------- 7156 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) { 7157 address stubAddr = nullptr; 7158 const char *stubName = nullptr; 7159 7160 assert(UseAES, "need AES instruction support"); 7161 7162 switch(id) { 7163 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 7164 stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt(); 7165 stubName = "cipherBlockChaining_encryptAESCrypt"; 7166 break; 7167 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 7168 stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt(); 7169 stubName = "cipherBlockChaining_decryptAESCrypt"; 7170 break; 7171 default: 7172 break; 7173 } 7174 if (stubAddr == nullptr) return false; 7175 7176 Node* cipherBlockChaining_object = argument(0); 7177 Node* src = argument(1); 7178 Node* src_offset = argument(2); 7179 Node* len = argument(3); 7180 Node* dest = argument(4); 7181 Node* dest_offset = argument(5); 7182 7183 src = must_be_not_null(src, false); 7184 dest = must_be_not_null(dest, false); 7185 7186 // (1) src and dest are arrays. 7187 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7188 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 7189 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 7190 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 7191 7192 // checks are the responsibility of the caller 7193 Node* src_start = src; 7194 Node* dest_start = dest; 7195 if (src_offset != nullptr || dest_offset != nullptr) { 7196 assert(src_offset != nullptr && dest_offset != nullptr, ""); 7197 src_start = array_element_address(src, src_offset, T_BYTE); 7198 dest_start = array_element_address(dest, dest_offset, T_BYTE); 7199 } 7200 7201 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 7202 // (because of the predicated logic executed earlier). 7203 // so we cast it here safely. 7204 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 7205 7206 Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7207 if (embeddedCipherObj == nullptr) return false; 7208 7209 // cast it to what we know it will be at runtime 7210 const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr(); 7211 assert(tinst != nullptr, "CBC obj is null"); 7212 assert(tinst->is_loaded(), "CBC obj is not loaded"); 7213 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7214 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 7215 7216 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7217 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 7218 const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 7219 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 7220 aescrypt_object = _gvn.transform(aescrypt_object); 7221 7222 // we need to get the start of the aescrypt_object's expanded key array 7223 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 7224 if (k_start == nullptr) return false; 7225 7226 // similarly, get the start address of the r vector 7227 Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B"); 7228 if (objRvec == nullptr) return false; 7229 Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE); 7230 7231 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 7232 Node* cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 7233 OptoRuntime::cipherBlockChaining_aescrypt_Type(), 7234 stubAddr, stubName, TypePtr::BOTTOM, 7235 src_start, dest_start, k_start, r_start, len); 7236 7237 // return cipher length (int) 7238 Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms)); 7239 set_result(retvalue); 7240 return true; 7241 } 7242 7243 //------------------------------inline_electronicCodeBook_AESCrypt----------------------- 7244 bool LibraryCallKit::inline_electronicCodeBook_AESCrypt(vmIntrinsics::ID id) { 7245 address stubAddr = nullptr; 7246 const char *stubName = nullptr; 7247 7248 assert(UseAES, "need AES instruction support"); 7249 7250 switch (id) { 7251 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 7252 stubAddr = StubRoutines::electronicCodeBook_encryptAESCrypt(); 7253 stubName = "electronicCodeBook_encryptAESCrypt"; 7254 break; 7255 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 7256 stubAddr = StubRoutines::electronicCodeBook_decryptAESCrypt(); 7257 stubName = "electronicCodeBook_decryptAESCrypt"; 7258 break; 7259 default: 7260 break; 7261 } 7262 7263 if (stubAddr == nullptr) return false; 7264 7265 Node* electronicCodeBook_object = argument(0); 7266 Node* src = argument(1); 7267 Node* src_offset = argument(2); 7268 Node* len = argument(3); 7269 Node* dest = argument(4); 7270 Node* dest_offset = argument(5); 7271 7272 // (1) src and dest are arrays. 7273 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7274 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 7275 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 7276 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 7277 7278 // checks are the responsibility of the caller 7279 Node* src_start = src; 7280 Node* dest_start = dest; 7281 if (src_offset != nullptr || dest_offset != nullptr) { 7282 assert(src_offset != nullptr && dest_offset != nullptr, ""); 7283 src_start = array_element_address(src, src_offset, T_BYTE); 7284 dest_start = array_element_address(dest, dest_offset, T_BYTE); 7285 } 7286 7287 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 7288 // (because of the predicated logic executed earlier). 7289 // so we cast it here safely. 7290 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 7291 7292 Node* embeddedCipherObj = load_field_from_object(electronicCodeBook_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7293 if (embeddedCipherObj == nullptr) return false; 7294 7295 // cast it to what we know it will be at runtime 7296 const TypeInstPtr* tinst = _gvn.type(electronicCodeBook_object)->isa_instptr(); 7297 assert(tinst != nullptr, "ECB obj is null"); 7298 assert(tinst->is_loaded(), "ECB obj is not loaded"); 7299 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7300 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 7301 7302 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7303 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 7304 const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 7305 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 7306 aescrypt_object = _gvn.transform(aescrypt_object); 7307 7308 // we need to get the start of the aescrypt_object's expanded key array 7309 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 7310 if (k_start == nullptr) return false; 7311 7312 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 7313 Node* ecbCrypt = make_runtime_call(RC_LEAF | RC_NO_FP, 7314 OptoRuntime::electronicCodeBook_aescrypt_Type(), 7315 stubAddr, stubName, TypePtr::BOTTOM, 7316 src_start, dest_start, k_start, len); 7317 7318 // return cipher length (int) 7319 Node* retvalue = _gvn.transform(new ProjNode(ecbCrypt, TypeFunc::Parms)); 7320 set_result(retvalue); 7321 return true; 7322 } 7323 7324 //------------------------------inline_counterMode_AESCrypt----------------------- 7325 bool LibraryCallKit::inline_counterMode_AESCrypt(vmIntrinsics::ID id) { 7326 assert(UseAES, "need AES instruction support"); 7327 if (!UseAESCTRIntrinsics) return false; 7328 7329 address stubAddr = nullptr; 7330 const char *stubName = nullptr; 7331 if (id == vmIntrinsics::_counterMode_AESCrypt) { 7332 stubAddr = StubRoutines::counterMode_AESCrypt(); 7333 stubName = "counterMode_AESCrypt"; 7334 } 7335 if (stubAddr == nullptr) return false; 7336 7337 Node* counterMode_object = argument(0); 7338 Node* src = argument(1); 7339 Node* src_offset = argument(2); 7340 Node* len = argument(3); 7341 Node* dest = argument(4); 7342 Node* dest_offset = argument(5); 7343 7344 // (1) src and dest are arrays. 7345 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7346 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 7347 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 7348 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 7349 7350 // checks are the responsibility of the caller 7351 Node* src_start = src; 7352 Node* dest_start = dest; 7353 if (src_offset != nullptr || dest_offset != nullptr) { 7354 assert(src_offset != nullptr && dest_offset != nullptr, ""); 7355 src_start = array_element_address(src, src_offset, T_BYTE); 7356 dest_start = array_element_address(dest, dest_offset, T_BYTE); 7357 } 7358 7359 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 7360 // (because of the predicated logic executed earlier). 7361 // so we cast it here safely. 7362 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 7363 Node* embeddedCipherObj = load_field_from_object(counterMode_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7364 if (embeddedCipherObj == nullptr) return false; 7365 // cast it to what we know it will be at runtime 7366 const TypeInstPtr* tinst = _gvn.type(counterMode_object)->isa_instptr(); 7367 assert(tinst != nullptr, "CTR obj is null"); 7368 assert(tinst->is_loaded(), "CTR obj is not loaded"); 7369 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7370 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 7371 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7372 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 7373 const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 7374 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 7375 aescrypt_object = _gvn.transform(aescrypt_object); 7376 // we need to get the start of the aescrypt_object's expanded key array 7377 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 7378 if (k_start == nullptr) return false; 7379 // similarly, get the start address of the r vector 7380 Node* obj_counter = load_field_from_object(counterMode_object, "counter", "[B"); 7381 if (obj_counter == nullptr) return false; 7382 Node* cnt_start = array_element_address(obj_counter, intcon(0), T_BYTE); 7383 7384 Node* saved_encCounter = load_field_from_object(counterMode_object, "encryptedCounter", "[B"); 7385 if (saved_encCounter == nullptr) return false; 7386 Node* saved_encCounter_start = array_element_address(saved_encCounter, intcon(0), T_BYTE); 7387 Node* used = field_address_from_object(counterMode_object, "used", "I", /*is_exact*/ false); 7388 7389 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 7390 Node* ctrCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 7391 OptoRuntime::counterMode_aescrypt_Type(), 7392 stubAddr, stubName, TypePtr::BOTTOM, 7393 src_start, dest_start, k_start, cnt_start, len, saved_encCounter_start, used); 7394 7395 // return cipher length (int) 7396 Node* retvalue = _gvn.transform(new ProjNode(ctrCrypt, TypeFunc::Parms)); 7397 set_result(retvalue); 7398 return true; 7399 } 7400 7401 //------------------------------get_key_start_from_aescrypt_object----------------------- 7402 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) { 7403 #if defined(PPC64) || defined(S390) || defined(RISCV64) 7404 // MixColumns for decryption can be reduced by preprocessing MixColumns with round keys. 7405 // Intel's extension is based on this optimization and AESCrypt generates round keys by preprocessing MixColumns. 7406 // However, ppc64 vncipher processes MixColumns and requires the same round keys with encryption. 7407 // The ppc64 and riscv64 stubs of encryption and decryption use the same round keys (sessionK[0]). 7408 Node* objSessionK = load_field_from_object(aescrypt_object, "sessionK", "[[I"); 7409 assert (objSessionK != nullptr, "wrong version of com.sun.crypto.provider.AESCrypt"); 7410 if (objSessionK == nullptr) { 7411 return (Node *) nullptr; 7412 } 7413 Node* objAESCryptKey = load_array_element(objSessionK, intcon(0), TypeAryPtr::OOPS, /* set_ctrl */ true); 7414 #else 7415 Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I"); 7416 #endif // PPC64 7417 assert (objAESCryptKey != nullptr, "wrong version of com.sun.crypto.provider.AESCrypt"); 7418 if (objAESCryptKey == nullptr) return (Node *) nullptr; 7419 7420 // now have the array, need to get the start address of the K array 7421 Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT); 7422 return k_start; 7423 } 7424 7425 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate---------------------------- 7426 // Return node representing slow path of predicate check. 7427 // the pseudo code we want to emulate with this predicate is: 7428 // for encryption: 7429 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 7430 // for decryption: 7431 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 7432 // note cipher==plain is more conservative than the original java code but that's OK 7433 // 7434 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) { 7435 // The receiver was checked for null already. 7436 Node* objCBC = argument(0); 7437 7438 Node* src = argument(1); 7439 Node* dest = argument(4); 7440 7441 // Load embeddedCipher field of CipherBlockChaining object. 7442 Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7443 7444 // get AESCrypt klass for instanceOf check 7445 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 7446 // will have same classloader as CipherBlockChaining object 7447 const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr(); 7448 assert(tinst != nullptr, "CBCobj is null"); 7449 assert(tinst->is_loaded(), "CBCobj is not loaded"); 7450 7451 // we want to do an instanceof comparison against the AESCrypt class 7452 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7453 if (!klass_AESCrypt->is_loaded()) { 7454 // if AESCrypt is not even loaded, we never take the intrinsic fast path 7455 Node* ctrl = control(); 7456 set_control(top()); // no regular fast path 7457 return ctrl; 7458 } 7459 7460 src = must_be_not_null(src, true); 7461 dest = must_be_not_null(dest, true); 7462 7463 // Resolve oops to stable for CmpP below. 7464 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7465 7466 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 7467 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 7468 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 7469 7470 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 7471 7472 // for encryption, we are done 7473 if (!decrypting) 7474 return instof_false; // even if it is null 7475 7476 // for decryption, we need to add a further check to avoid 7477 // taking the intrinsic path when cipher and plain are the same 7478 // see the original java code for why. 7479 RegionNode* region = new RegionNode(3); 7480 region->init_req(1, instof_false); 7481 7482 Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest)); 7483 Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq)); 7484 Node* src_dest_conjoint = generate_guard(bool_src_dest, nullptr, PROB_MIN); 7485 region->init_req(2, src_dest_conjoint); 7486 7487 record_for_igvn(region); 7488 return _gvn.transform(region); 7489 } 7490 7491 //----------------------------inline_electronicCodeBook_AESCrypt_predicate---------------------------- 7492 // Return node representing slow path of predicate check. 7493 // the pseudo code we want to emulate with this predicate is: 7494 // for encryption: 7495 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 7496 // for decryption: 7497 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 7498 // note cipher==plain is more conservative than the original java code but that's OK 7499 // 7500 Node* LibraryCallKit::inline_electronicCodeBook_AESCrypt_predicate(bool decrypting) { 7501 // The receiver was checked for null already. 7502 Node* objECB = argument(0); 7503 7504 // Load embeddedCipher field of ElectronicCodeBook object. 7505 Node* embeddedCipherObj = load_field_from_object(objECB, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7506 7507 // get AESCrypt klass for instanceOf check 7508 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 7509 // will have same classloader as ElectronicCodeBook object 7510 const TypeInstPtr* tinst = _gvn.type(objECB)->isa_instptr(); 7511 assert(tinst != nullptr, "ECBobj is null"); 7512 assert(tinst->is_loaded(), "ECBobj is not loaded"); 7513 7514 // we want to do an instanceof comparison against the AESCrypt class 7515 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7516 if (!klass_AESCrypt->is_loaded()) { 7517 // if AESCrypt is not even loaded, we never take the intrinsic fast path 7518 Node* ctrl = control(); 7519 set_control(top()); // no regular fast path 7520 return ctrl; 7521 } 7522 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7523 7524 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 7525 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 7526 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 7527 7528 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 7529 7530 // for encryption, we are done 7531 if (!decrypting) 7532 return instof_false; // even if it is null 7533 7534 // for decryption, we need to add a further check to avoid 7535 // taking the intrinsic path when cipher and plain are the same 7536 // see the original java code for why. 7537 RegionNode* region = new RegionNode(3); 7538 region->init_req(1, instof_false); 7539 Node* src = argument(1); 7540 Node* dest = argument(4); 7541 Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest)); 7542 Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq)); 7543 Node* src_dest_conjoint = generate_guard(bool_src_dest, nullptr, PROB_MIN); 7544 region->init_req(2, src_dest_conjoint); 7545 7546 record_for_igvn(region); 7547 return _gvn.transform(region); 7548 } 7549 7550 //----------------------------inline_counterMode_AESCrypt_predicate---------------------------- 7551 // Return node representing slow path of predicate check. 7552 // the pseudo code we want to emulate with this predicate is: 7553 // for encryption: 7554 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 7555 // for decryption: 7556 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 7557 // note cipher==plain is more conservative than the original java code but that's OK 7558 // 7559 7560 Node* LibraryCallKit::inline_counterMode_AESCrypt_predicate() { 7561 // The receiver was checked for null already. 7562 Node* objCTR = argument(0); 7563 7564 // Load embeddedCipher field of CipherBlockChaining object. 7565 Node* embeddedCipherObj = load_field_from_object(objCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7566 7567 // get AESCrypt klass for instanceOf check 7568 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 7569 // will have same classloader as CipherBlockChaining object 7570 const TypeInstPtr* tinst = _gvn.type(objCTR)->isa_instptr(); 7571 assert(tinst != nullptr, "CTRobj is null"); 7572 assert(tinst->is_loaded(), "CTRobj is not loaded"); 7573 7574 // we want to do an instanceof comparison against the AESCrypt class 7575 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7576 if (!klass_AESCrypt->is_loaded()) { 7577 // if AESCrypt is not even loaded, we never take the intrinsic fast path 7578 Node* ctrl = control(); 7579 set_control(top()); // no regular fast path 7580 return ctrl; 7581 } 7582 7583 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7584 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 7585 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 7586 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 7587 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 7588 7589 return instof_false; // even if it is null 7590 } 7591 7592 //------------------------------inline_ghash_processBlocks 7593 bool LibraryCallKit::inline_ghash_processBlocks() { 7594 address stubAddr; 7595 const char *stubName; 7596 assert(UseGHASHIntrinsics, "need GHASH intrinsics support"); 7597 7598 stubAddr = StubRoutines::ghash_processBlocks(); 7599 stubName = "ghash_processBlocks"; 7600 7601 Node* data = argument(0); 7602 Node* offset = argument(1); 7603 Node* len = argument(2); 7604 Node* state = argument(3); 7605 Node* subkeyH = argument(4); 7606 7607 state = must_be_not_null(state, true); 7608 subkeyH = must_be_not_null(subkeyH, true); 7609 data = must_be_not_null(data, true); 7610 7611 Node* state_start = array_element_address(state, intcon(0), T_LONG); 7612 assert(state_start, "state is null"); 7613 Node* subkeyH_start = array_element_address(subkeyH, intcon(0), T_LONG); 7614 assert(subkeyH_start, "subkeyH is null"); 7615 Node* data_start = array_element_address(data, offset, T_BYTE); 7616 assert(data_start, "data is null"); 7617 7618 Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP, 7619 OptoRuntime::ghash_processBlocks_Type(), 7620 stubAddr, stubName, TypePtr::BOTTOM, 7621 state_start, subkeyH_start, data_start, len); 7622 return true; 7623 } 7624 7625 //------------------------------inline_chacha20Block 7626 bool LibraryCallKit::inline_chacha20Block() { 7627 address stubAddr; 7628 const char *stubName; 7629 assert(UseChaCha20Intrinsics, "need ChaCha20 intrinsics support"); 7630 7631 stubAddr = StubRoutines::chacha20Block(); 7632 stubName = "chacha20Block"; 7633 7634 Node* state = argument(0); 7635 Node* result = argument(1); 7636 7637 state = must_be_not_null(state, true); 7638 result = must_be_not_null(result, true); 7639 7640 Node* state_start = array_element_address(state, intcon(0), T_INT); 7641 assert(state_start, "state is null"); 7642 Node* result_start = array_element_address(result, intcon(0), T_BYTE); 7643 assert(result_start, "result is null"); 7644 7645 Node* cc20Blk = make_runtime_call(RC_LEAF|RC_NO_FP, 7646 OptoRuntime::chacha20Block_Type(), 7647 stubAddr, stubName, TypePtr::BOTTOM, 7648 state_start, result_start); 7649 // return key stream length (int) 7650 Node* retvalue = _gvn.transform(new ProjNode(cc20Blk, TypeFunc::Parms)); 7651 set_result(retvalue); 7652 return true; 7653 } 7654 7655 //------------------------------inline_dilithiumAlmostNtt 7656 bool LibraryCallKit::inline_dilithiumAlmostNtt() { 7657 address stubAddr; 7658 const char *stubName; 7659 assert(UseDilithiumIntrinsics, "need Dilithium intrinsics support"); 7660 assert(callee()->signature()->size() == 2, "dilithiumAlmostNtt has 2 parameters"); 7661 7662 stubAddr = StubRoutines::dilithiumAlmostNtt(); 7663 stubName = "dilithiumAlmostNtt"; 7664 if (!stubAddr) return false; 7665 7666 Node* coeffs = argument(0); 7667 Node* ntt_zetas = argument(1); 7668 7669 coeffs = must_be_not_null(coeffs, true); 7670 ntt_zetas = must_be_not_null(ntt_zetas, true); 7671 7672 Node* coeffs_start = array_element_address(coeffs, intcon(0), T_INT); 7673 assert(coeffs_start, "coeffs is null"); 7674 Node* ntt_zetas_start = array_element_address(ntt_zetas, intcon(0), T_INT); 7675 assert(ntt_zetas_start, "ntt_zetas is null"); 7676 Node* dilithiumAlmostNtt = make_runtime_call(RC_LEAF|RC_NO_FP, 7677 OptoRuntime::dilithiumAlmostNtt_Type(), 7678 stubAddr, stubName, TypePtr::BOTTOM, 7679 coeffs_start, ntt_zetas_start); 7680 // return an int 7681 Node* retvalue = _gvn.transform(new ProjNode(dilithiumAlmostNtt, TypeFunc::Parms)); 7682 set_result(retvalue); 7683 return true; 7684 } 7685 7686 //------------------------------inline_dilithiumAlmostInverseNtt 7687 bool LibraryCallKit::inline_dilithiumAlmostInverseNtt() { 7688 address stubAddr; 7689 const char *stubName; 7690 assert(UseDilithiumIntrinsics, "need Dilithium intrinsics support"); 7691 assert(callee()->signature()->size() == 2, "dilithiumAlmostInverseNtt has 2 parameters"); 7692 7693 stubAddr = StubRoutines::dilithiumAlmostInverseNtt(); 7694 stubName = "dilithiumAlmostInverseNtt"; 7695 if (!stubAddr) return false; 7696 7697 Node* coeffs = argument(0); 7698 Node* zetas = argument(1); 7699 7700 coeffs = must_be_not_null(coeffs, true); 7701 zetas = must_be_not_null(zetas, true); 7702 7703 Node* coeffs_start = array_element_address(coeffs, intcon(0), T_INT); 7704 assert(coeffs_start, "coeffs is null"); 7705 Node* zetas_start = array_element_address(zetas, intcon(0), T_INT); 7706 assert(zetas_start, "inverseNtt_zetas is null"); 7707 Node* dilithiumAlmostInverseNtt = make_runtime_call(RC_LEAF|RC_NO_FP, 7708 OptoRuntime::dilithiumAlmostInverseNtt_Type(), 7709 stubAddr, stubName, TypePtr::BOTTOM, 7710 coeffs_start, zetas_start); 7711 7712 // return an int 7713 Node* retvalue = _gvn.transform(new ProjNode(dilithiumAlmostInverseNtt, TypeFunc::Parms)); 7714 set_result(retvalue); 7715 return true; 7716 } 7717 7718 //------------------------------inline_dilithiumNttMult 7719 bool LibraryCallKit::inline_dilithiumNttMult() { 7720 address stubAddr; 7721 const char *stubName; 7722 assert(UseDilithiumIntrinsics, "need Dilithium intrinsics support"); 7723 assert(callee()->signature()->size() == 3, "dilithiumNttMult has 3 parameters"); 7724 7725 stubAddr = StubRoutines::dilithiumNttMult(); 7726 stubName = "dilithiumNttMult"; 7727 if (!stubAddr) return false; 7728 7729 Node* result = argument(0); 7730 Node* ntta = argument(1); 7731 Node* nttb = argument(2); 7732 7733 result = must_be_not_null(result, true); 7734 ntta = must_be_not_null(ntta, true); 7735 nttb = must_be_not_null(nttb, true); 7736 7737 Node* result_start = array_element_address(result, intcon(0), T_INT); 7738 assert(result_start, "result is null"); 7739 Node* ntta_start = array_element_address(ntta, intcon(0), T_INT); 7740 assert(ntta_start, "ntta is null"); 7741 Node* nttb_start = array_element_address(nttb, intcon(0), T_INT); 7742 assert(nttb_start, "nttb is null"); 7743 Node* dilithiumNttMult = make_runtime_call(RC_LEAF|RC_NO_FP, 7744 OptoRuntime::dilithiumNttMult_Type(), 7745 stubAddr, stubName, TypePtr::BOTTOM, 7746 result_start, ntta_start, nttb_start); 7747 7748 // return an int 7749 Node* retvalue = _gvn.transform(new ProjNode(dilithiumNttMult, TypeFunc::Parms)); 7750 set_result(retvalue); 7751 7752 return true; 7753 } 7754 7755 //------------------------------inline_dilithiumMontMulByConstant 7756 bool LibraryCallKit::inline_dilithiumMontMulByConstant() { 7757 address stubAddr; 7758 const char *stubName; 7759 assert(UseDilithiumIntrinsics, "need Dilithium intrinsics support"); 7760 assert(callee()->signature()->size() == 2, "dilithiumMontMulByConstant has 2 parameters"); 7761 7762 stubAddr = StubRoutines::dilithiumMontMulByConstant(); 7763 stubName = "dilithiumMontMulByConstant"; 7764 if (!stubAddr) return false; 7765 7766 Node* coeffs = argument(0); 7767 Node* constant = argument(1); 7768 7769 coeffs = must_be_not_null(coeffs, true); 7770 7771 Node* coeffs_start = array_element_address(coeffs, intcon(0), T_INT); 7772 assert(coeffs_start, "coeffs is null"); 7773 Node* dilithiumMontMulByConstant = make_runtime_call(RC_LEAF|RC_NO_FP, 7774 OptoRuntime::dilithiumMontMulByConstant_Type(), 7775 stubAddr, stubName, TypePtr::BOTTOM, 7776 coeffs_start, constant); 7777 7778 // return an int 7779 Node* retvalue = _gvn.transform(new ProjNode(dilithiumMontMulByConstant, TypeFunc::Parms)); 7780 set_result(retvalue); 7781 return true; 7782 } 7783 7784 7785 //------------------------------inline_dilithiumDecomposePoly 7786 bool LibraryCallKit::inline_dilithiumDecomposePoly() { 7787 address stubAddr; 7788 const char *stubName; 7789 assert(UseDilithiumIntrinsics, "need Dilithium intrinsics support"); 7790 assert(callee()->signature()->size() == 5, "dilithiumDecomposePoly has 5 parameters"); 7791 7792 stubAddr = StubRoutines::dilithiumDecomposePoly(); 7793 stubName = "dilithiumDecomposePoly"; 7794 if (!stubAddr) return false; 7795 7796 Node* input = argument(0); 7797 Node* lowPart = argument(1); 7798 Node* highPart = argument(2); 7799 Node* twoGamma2 = argument(3); 7800 Node* multiplier = argument(4); 7801 7802 input = must_be_not_null(input, true); 7803 lowPart = must_be_not_null(lowPart, true); 7804 highPart = must_be_not_null(highPart, true); 7805 7806 Node* input_start = array_element_address(input, intcon(0), T_INT); 7807 assert(input_start, "input is null"); 7808 Node* lowPart_start = array_element_address(lowPart, intcon(0), T_INT); 7809 assert(lowPart_start, "lowPart is null"); 7810 Node* highPart_start = array_element_address(highPart, intcon(0), T_INT); 7811 assert(highPart_start, "highPart is null"); 7812 7813 Node* dilithiumDecomposePoly = make_runtime_call(RC_LEAF|RC_NO_FP, 7814 OptoRuntime::dilithiumDecomposePoly_Type(), 7815 stubAddr, stubName, TypePtr::BOTTOM, 7816 input_start, lowPart_start, highPart_start, 7817 twoGamma2, multiplier); 7818 7819 // return an int 7820 Node* retvalue = _gvn.transform(new ProjNode(dilithiumDecomposePoly, TypeFunc::Parms)); 7821 set_result(retvalue); 7822 return true; 7823 } 7824 7825 bool LibraryCallKit::inline_base64_encodeBlock() { 7826 address stubAddr; 7827 const char *stubName; 7828 assert(UseBASE64Intrinsics, "need Base64 intrinsics support"); 7829 assert(callee()->signature()->size() == 6, "base64_encodeBlock has 6 parameters"); 7830 stubAddr = StubRoutines::base64_encodeBlock(); 7831 stubName = "encodeBlock"; 7832 7833 if (!stubAddr) return false; 7834 Node* base64obj = argument(0); 7835 Node* src = argument(1); 7836 Node* offset = argument(2); 7837 Node* len = argument(3); 7838 Node* dest = argument(4); 7839 Node* dp = argument(5); 7840 Node* isURL = argument(6); 7841 7842 src = must_be_not_null(src, true); 7843 dest = must_be_not_null(dest, true); 7844 7845 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 7846 assert(src_start, "source array is null"); 7847 Node* dest_start = array_element_address(dest, intcon(0), T_BYTE); 7848 assert(dest_start, "destination array is null"); 7849 7850 Node* base64 = make_runtime_call(RC_LEAF, 7851 OptoRuntime::base64_encodeBlock_Type(), 7852 stubAddr, stubName, TypePtr::BOTTOM, 7853 src_start, offset, len, dest_start, dp, isURL); 7854 return true; 7855 } 7856 7857 bool LibraryCallKit::inline_base64_decodeBlock() { 7858 address stubAddr; 7859 const char *stubName; 7860 assert(UseBASE64Intrinsics, "need Base64 intrinsics support"); 7861 assert(callee()->signature()->size() == 7, "base64_decodeBlock has 7 parameters"); 7862 stubAddr = StubRoutines::base64_decodeBlock(); 7863 stubName = "decodeBlock"; 7864 7865 if (!stubAddr) return false; 7866 Node* base64obj = argument(0); 7867 Node* src = argument(1); 7868 Node* src_offset = argument(2); 7869 Node* len = argument(3); 7870 Node* dest = argument(4); 7871 Node* dest_offset = argument(5); 7872 Node* isURL = argument(6); 7873 Node* isMIME = argument(7); 7874 7875 src = must_be_not_null(src, true); 7876 dest = must_be_not_null(dest, true); 7877 7878 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 7879 assert(src_start, "source array is null"); 7880 Node* dest_start = array_element_address(dest, intcon(0), T_BYTE); 7881 assert(dest_start, "destination array is null"); 7882 7883 Node* call = make_runtime_call(RC_LEAF, 7884 OptoRuntime::base64_decodeBlock_Type(), 7885 stubAddr, stubName, TypePtr::BOTTOM, 7886 src_start, src_offset, len, dest_start, dest_offset, isURL, isMIME); 7887 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 7888 set_result(result); 7889 return true; 7890 } 7891 7892 bool LibraryCallKit::inline_poly1305_processBlocks() { 7893 address stubAddr; 7894 const char *stubName; 7895 assert(UsePoly1305Intrinsics, "need Poly intrinsics support"); 7896 assert(callee()->signature()->size() == 5, "poly1305_processBlocks has %d parameters", callee()->signature()->size()); 7897 stubAddr = StubRoutines::poly1305_processBlocks(); 7898 stubName = "poly1305_processBlocks"; 7899 7900 if (!stubAddr) return false; 7901 null_check_receiver(); // null-check receiver 7902 if (stopped()) return true; 7903 7904 Node* input = argument(1); 7905 Node* input_offset = argument(2); 7906 Node* len = argument(3); 7907 Node* alimbs = argument(4); 7908 Node* rlimbs = argument(5); 7909 7910 input = must_be_not_null(input, true); 7911 alimbs = must_be_not_null(alimbs, true); 7912 rlimbs = must_be_not_null(rlimbs, true); 7913 7914 Node* input_start = array_element_address(input, input_offset, T_BYTE); 7915 assert(input_start, "input array is null"); 7916 Node* acc_start = array_element_address(alimbs, intcon(0), T_LONG); 7917 assert(acc_start, "acc array is null"); 7918 Node* r_start = array_element_address(rlimbs, intcon(0), T_LONG); 7919 assert(r_start, "r array is null"); 7920 7921 Node* call = make_runtime_call(RC_LEAF | RC_NO_FP, 7922 OptoRuntime::poly1305_processBlocks_Type(), 7923 stubAddr, stubName, TypePtr::BOTTOM, 7924 input_start, len, acc_start, r_start); 7925 return true; 7926 } 7927 7928 bool LibraryCallKit::inline_intpoly_montgomeryMult_P256() { 7929 address stubAddr; 7930 const char *stubName; 7931 assert(UseIntPolyIntrinsics, "need intpoly intrinsics support"); 7932 assert(callee()->signature()->size() == 3, "intpoly_montgomeryMult_P256 has %d parameters", callee()->signature()->size()); 7933 stubAddr = StubRoutines::intpoly_montgomeryMult_P256(); 7934 stubName = "intpoly_montgomeryMult_P256"; 7935 7936 if (!stubAddr) return false; 7937 null_check_receiver(); // null-check receiver 7938 if (stopped()) return true; 7939 7940 Node* a = argument(1); 7941 Node* b = argument(2); 7942 Node* r = argument(3); 7943 7944 a = must_be_not_null(a, true); 7945 b = must_be_not_null(b, true); 7946 r = must_be_not_null(r, true); 7947 7948 Node* a_start = array_element_address(a, intcon(0), T_LONG); 7949 assert(a_start, "a array is null"); 7950 Node* b_start = array_element_address(b, intcon(0), T_LONG); 7951 assert(b_start, "b array is null"); 7952 Node* r_start = array_element_address(r, intcon(0), T_LONG); 7953 assert(r_start, "r array is null"); 7954 7955 Node* call = make_runtime_call(RC_LEAF | RC_NO_FP, 7956 OptoRuntime::intpoly_montgomeryMult_P256_Type(), 7957 stubAddr, stubName, TypePtr::BOTTOM, 7958 a_start, b_start, r_start); 7959 return true; 7960 } 7961 7962 bool LibraryCallKit::inline_intpoly_assign() { 7963 assert(UseIntPolyIntrinsics, "need intpoly intrinsics support"); 7964 assert(callee()->signature()->size() == 3, "intpoly_assign has %d parameters", callee()->signature()->size()); 7965 const char *stubName = "intpoly_assign"; 7966 address stubAddr = StubRoutines::intpoly_assign(); 7967 if (!stubAddr) return false; 7968 7969 Node* set = argument(0); 7970 Node* a = argument(1); 7971 Node* b = argument(2); 7972 Node* arr_length = load_array_length(a); 7973 7974 a = must_be_not_null(a, true); 7975 b = must_be_not_null(b, true); 7976 7977 Node* a_start = array_element_address(a, intcon(0), T_LONG); 7978 assert(a_start, "a array is null"); 7979 Node* b_start = array_element_address(b, intcon(0), T_LONG); 7980 assert(b_start, "b array is null"); 7981 7982 Node* call = make_runtime_call(RC_LEAF | RC_NO_FP, 7983 OptoRuntime::intpoly_assign_Type(), 7984 stubAddr, stubName, TypePtr::BOTTOM, 7985 set, a_start, b_start, arr_length); 7986 return true; 7987 } 7988 7989 //------------------------------inline_digestBase_implCompress----------------------- 7990 // 7991 // Calculate MD5 for single-block byte[] array. 7992 // void com.sun.security.provider.MD5.implCompress(byte[] buf, int ofs) 7993 // 7994 // Calculate SHA (i.e., SHA-1) for single-block byte[] array. 7995 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs) 7996 // 7997 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array. 7998 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs) 7999 // 8000 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array. 8001 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs) 8002 // 8003 // Calculate SHA3 (i.e., SHA3-224 or SHA3-256 or SHA3-384 or SHA3-512) for single-block byte[] array. 8004 // void com.sun.security.provider.SHA3.implCompress(byte[] buf, int ofs) 8005 // 8006 bool LibraryCallKit::inline_digestBase_implCompress(vmIntrinsics::ID id) { 8007 assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters"); 8008 8009 Node* digestBase_obj = argument(0); 8010 Node* src = argument(1); // type oop 8011 Node* ofs = argument(2); // type int 8012 8013 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 8014 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 8015 // failed array check 8016 return false; 8017 } 8018 // Figure out the size and type of the elements we will be copying. 8019 BasicType src_elem = src_type->elem()->array_element_basic_type(); 8020 if (src_elem != T_BYTE) { 8021 return false; 8022 } 8023 // 'src_start' points to src array + offset 8024 src = must_be_not_null(src, true); 8025 Node* src_start = array_element_address(src, ofs, src_elem); 8026 Node* state = nullptr; 8027 Node* block_size = nullptr; 8028 address stubAddr; 8029 const char *stubName; 8030 8031 switch(id) { 8032 case vmIntrinsics::_md5_implCompress: 8033 assert(UseMD5Intrinsics, "need MD5 instruction support"); 8034 state = get_state_from_digest_object(digestBase_obj, T_INT); 8035 stubAddr = StubRoutines::md5_implCompress(); 8036 stubName = "md5_implCompress"; 8037 break; 8038 case vmIntrinsics::_sha_implCompress: 8039 assert(UseSHA1Intrinsics, "need SHA1 instruction support"); 8040 state = get_state_from_digest_object(digestBase_obj, T_INT); 8041 stubAddr = StubRoutines::sha1_implCompress(); 8042 stubName = "sha1_implCompress"; 8043 break; 8044 case vmIntrinsics::_sha2_implCompress: 8045 assert(UseSHA256Intrinsics, "need SHA256 instruction support"); 8046 state = get_state_from_digest_object(digestBase_obj, T_INT); 8047 stubAddr = StubRoutines::sha256_implCompress(); 8048 stubName = "sha256_implCompress"; 8049 break; 8050 case vmIntrinsics::_sha5_implCompress: 8051 assert(UseSHA512Intrinsics, "need SHA512 instruction support"); 8052 state = get_state_from_digest_object(digestBase_obj, T_LONG); 8053 stubAddr = StubRoutines::sha512_implCompress(); 8054 stubName = "sha512_implCompress"; 8055 break; 8056 case vmIntrinsics::_sha3_implCompress: 8057 assert(UseSHA3Intrinsics, "need SHA3 instruction support"); 8058 state = get_state_from_digest_object(digestBase_obj, T_LONG); 8059 stubAddr = StubRoutines::sha3_implCompress(); 8060 stubName = "sha3_implCompress"; 8061 block_size = get_block_size_from_digest_object(digestBase_obj); 8062 if (block_size == nullptr) return false; 8063 break; 8064 default: 8065 fatal_unexpected_iid(id); 8066 return false; 8067 } 8068 if (state == nullptr) return false; 8069 8070 assert(stubAddr != nullptr, "Stub %s is not generated", stubName); 8071 if (stubAddr == nullptr) return false; 8072 8073 // Call the stub. 8074 Node* call; 8075 if (block_size == nullptr) { 8076 call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(false), 8077 stubAddr, stubName, TypePtr::BOTTOM, 8078 src_start, state); 8079 } else { 8080 call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(true), 8081 stubAddr, stubName, TypePtr::BOTTOM, 8082 src_start, state, block_size); 8083 } 8084 8085 return true; 8086 } 8087 8088 //------------------------------inline_double_keccak 8089 bool LibraryCallKit::inline_double_keccak() { 8090 address stubAddr; 8091 const char *stubName; 8092 assert(UseSHA3Intrinsics, "need SHA3 intrinsics support"); 8093 assert(callee()->signature()->size() == 2, "double_keccak has 2 parameters"); 8094 8095 stubAddr = StubRoutines::double_keccak(); 8096 stubName = "double_keccak"; 8097 if (!stubAddr) return false; 8098 8099 Node* status0 = argument(0); 8100 Node* status1 = argument(1); 8101 8102 status0 = must_be_not_null(status0, true); 8103 status1 = must_be_not_null(status1, true); 8104 8105 Node* status0_start = array_element_address(status0, intcon(0), T_LONG); 8106 assert(status0_start, "status0 is null"); 8107 Node* status1_start = array_element_address(status1, intcon(0), T_LONG); 8108 assert(status1_start, "status1 is null"); 8109 Node* double_keccak = make_runtime_call(RC_LEAF|RC_NO_FP, 8110 OptoRuntime::double_keccak_Type(), 8111 stubAddr, stubName, TypePtr::BOTTOM, 8112 status0_start, status1_start); 8113 // return an int 8114 Node* retvalue = _gvn.transform(new ProjNode(double_keccak, TypeFunc::Parms)); 8115 set_result(retvalue); 8116 return true; 8117 } 8118 8119 8120 //------------------------------inline_digestBase_implCompressMB----------------------- 8121 // 8122 // Calculate MD5/SHA/SHA2/SHA5/SHA3 for multi-block byte[] array. 8123 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit) 8124 // 8125 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) { 8126 assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics || UseSHA3Intrinsics, 8127 "need MD5/SHA1/SHA256/SHA512/SHA3 instruction support"); 8128 assert((uint)predicate < 5, "sanity"); 8129 assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters"); 8130 8131 Node* digestBase_obj = argument(0); // The receiver was checked for null already. 8132 Node* src = argument(1); // byte[] array 8133 Node* ofs = argument(2); // type int 8134 Node* limit = argument(3); // type int 8135 8136 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 8137 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 8138 // failed array check 8139 return false; 8140 } 8141 // Figure out the size and type of the elements we will be copying. 8142 BasicType src_elem = src_type->elem()->array_element_basic_type(); 8143 if (src_elem != T_BYTE) { 8144 return false; 8145 } 8146 // 'src_start' points to src array + offset 8147 src = must_be_not_null(src, false); 8148 Node* src_start = array_element_address(src, ofs, src_elem); 8149 8150 const char* klass_digestBase_name = nullptr; 8151 const char* stub_name = nullptr; 8152 address stub_addr = nullptr; 8153 BasicType elem_type = T_INT; 8154 8155 switch (predicate) { 8156 case 0: 8157 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_md5_implCompress)) { 8158 klass_digestBase_name = "sun/security/provider/MD5"; 8159 stub_name = "md5_implCompressMB"; 8160 stub_addr = StubRoutines::md5_implCompressMB(); 8161 } 8162 break; 8163 case 1: 8164 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha_implCompress)) { 8165 klass_digestBase_name = "sun/security/provider/SHA"; 8166 stub_name = "sha1_implCompressMB"; 8167 stub_addr = StubRoutines::sha1_implCompressMB(); 8168 } 8169 break; 8170 case 2: 8171 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha2_implCompress)) { 8172 klass_digestBase_name = "sun/security/provider/SHA2"; 8173 stub_name = "sha256_implCompressMB"; 8174 stub_addr = StubRoutines::sha256_implCompressMB(); 8175 } 8176 break; 8177 case 3: 8178 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha5_implCompress)) { 8179 klass_digestBase_name = "sun/security/provider/SHA5"; 8180 stub_name = "sha512_implCompressMB"; 8181 stub_addr = StubRoutines::sha512_implCompressMB(); 8182 elem_type = T_LONG; 8183 } 8184 break; 8185 case 4: 8186 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha3_implCompress)) { 8187 klass_digestBase_name = "sun/security/provider/SHA3"; 8188 stub_name = "sha3_implCompressMB"; 8189 stub_addr = StubRoutines::sha3_implCompressMB(); 8190 elem_type = T_LONG; 8191 } 8192 break; 8193 default: 8194 fatal("unknown DigestBase intrinsic predicate: %d", predicate); 8195 } 8196 if (klass_digestBase_name != nullptr) { 8197 assert(stub_addr != nullptr, "Stub is generated"); 8198 if (stub_addr == nullptr) return false; 8199 8200 // get DigestBase klass to lookup for SHA klass 8201 const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr(); 8202 assert(tinst != nullptr, "digestBase_obj is not instance???"); 8203 assert(tinst->is_loaded(), "DigestBase is not loaded"); 8204 8205 ciKlass* klass_digestBase = tinst->instance_klass()->find_klass(ciSymbol::make(klass_digestBase_name)); 8206 assert(klass_digestBase->is_loaded(), "predicate checks that this class is loaded"); 8207 ciInstanceKlass* instklass_digestBase = klass_digestBase->as_instance_klass(); 8208 return inline_digestBase_implCompressMB(digestBase_obj, instklass_digestBase, elem_type, stub_addr, stub_name, src_start, ofs, limit); 8209 } 8210 return false; 8211 } 8212 8213 //------------------------------inline_digestBase_implCompressMB----------------------- 8214 bool LibraryCallKit::inline_digestBase_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_digestBase, 8215 BasicType elem_type, address stubAddr, const char *stubName, 8216 Node* src_start, Node* ofs, Node* limit) { 8217 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_digestBase); 8218 const TypeOopPtr* xtype = aklass->cast_to_exactness(false)->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 8219 Node* digest_obj = new CheckCastPPNode(control(), digestBase_obj, xtype); 8220 digest_obj = _gvn.transform(digest_obj); 8221 8222 Node* state = get_state_from_digest_object(digest_obj, elem_type); 8223 if (state == nullptr) return false; 8224 8225 Node* block_size = nullptr; 8226 if (strcmp("sha3_implCompressMB", stubName) == 0) { 8227 block_size = get_block_size_from_digest_object(digest_obj); 8228 if (block_size == nullptr) return false; 8229 } 8230 8231 // Call the stub. 8232 Node* call; 8233 if (block_size == nullptr) { 8234 call = make_runtime_call(RC_LEAF|RC_NO_FP, 8235 OptoRuntime::digestBase_implCompressMB_Type(false), 8236 stubAddr, stubName, TypePtr::BOTTOM, 8237 src_start, state, ofs, limit); 8238 } else { 8239 call = make_runtime_call(RC_LEAF|RC_NO_FP, 8240 OptoRuntime::digestBase_implCompressMB_Type(true), 8241 stubAddr, stubName, TypePtr::BOTTOM, 8242 src_start, state, block_size, ofs, limit); 8243 } 8244 8245 // return ofs (int) 8246 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 8247 set_result(result); 8248 8249 return true; 8250 } 8251 8252 //------------------------------inline_galoisCounterMode_AESCrypt----------------------- 8253 bool LibraryCallKit::inline_galoisCounterMode_AESCrypt() { 8254 assert(UseAES, "need AES instruction support"); 8255 address stubAddr = nullptr; 8256 const char *stubName = nullptr; 8257 stubAddr = StubRoutines::galoisCounterMode_AESCrypt(); 8258 stubName = "galoisCounterMode_AESCrypt"; 8259 8260 if (stubAddr == nullptr) return false; 8261 8262 Node* in = argument(0); 8263 Node* inOfs = argument(1); 8264 Node* len = argument(2); 8265 Node* ct = argument(3); 8266 Node* ctOfs = argument(4); 8267 Node* out = argument(5); 8268 Node* outOfs = argument(6); 8269 Node* gctr_object = argument(7); 8270 Node* ghash_object = argument(8); 8271 8272 // (1) in, ct and out are arrays. 8273 const TypeAryPtr* in_type = in->Value(&_gvn)->isa_aryptr(); 8274 const TypeAryPtr* ct_type = ct->Value(&_gvn)->isa_aryptr(); 8275 const TypeAryPtr* out_type = out->Value(&_gvn)->isa_aryptr(); 8276 assert( in_type != nullptr && in_type->elem() != Type::BOTTOM && 8277 ct_type != nullptr && ct_type->elem() != Type::BOTTOM && 8278 out_type != nullptr && out_type->elem() != Type::BOTTOM, "args are strange"); 8279 8280 // checks are the responsibility of the caller 8281 Node* in_start = in; 8282 Node* ct_start = ct; 8283 Node* out_start = out; 8284 if (inOfs != nullptr || ctOfs != nullptr || outOfs != nullptr) { 8285 assert(inOfs != nullptr && ctOfs != nullptr && outOfs != nullptr, ""); 8286 in_start = array_element_address(in, inOfs, T_BYTE); 8287 ct_start = array_element_address(ct, ctOfs, T_BYTE); 8288 out_start = array_element_address(out, outOfs, T_BYTE); 8289 } 8290 8291 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 8292 // (because of the predicated logic executed earlier). 8293 // so we cast it here safely. 8294 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 8295 Node* embeddedCipherObj = load_field_from_object(gctr_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 8296 Node* counter = load_field_from_object(gctr_object, "counter", "[B"); 8297 Node* subkeyHtbl = load_field_from_object(ghash_object, "subkeyHtbl", "[J"); 8298 Node* state = load_field_from_object(ghash_object, "state", "[J"); 8299 8300 if (embeddedCipherObj == nullptr || counter == nullptr || subkeyHtbl == nullptr || state == nullptr) { 8301 return false; 8302 } 8303 // cast it to what we know it will be at runtime 8304 const TypeInstPtr* tinst = _gvn.type(gctr_object)->isa_instptr(); 8305 assert(tinst != nullptr, "GCTR obj is null"); 8306 assert(tinst->is_loaded(), "GCTR obj is not loaded"); 8307 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 8308 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 8309 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 8310 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 8311 const TypeOopPtr* xtype = aklass->as_instance_type(); 8312 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 8313 aescrypt_object = _gvn.transform(aescrypt_object); 8314 // we need to get the start of the aescrypt_object's expanded key array 8315 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 8316 if (k_start == nullptr) return false; 8317 // similarly, get the start address of the r vector 8318 Node* cnt_start = array_element_address(counter, intcon(0), T_BYTE); 8319 Node* state_start = array_element_address(state, intcon(0), T_LONG); 8320 Node* subkeyHtbl_start = array_element_address(subkeyHtbl, intcon(0), T_LONG); 8321 8322 8323 // Call the stub, passing params 8324 Node* gcmCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 8325 OptoRuntime::galoisCounterMode_aescrypt_Type(), 8326 stubAddr, stubName, TypePtr::BOTTOM, 8327 in_start, len, ct_start, out_start, k_start, state_start, subkeyHtbl_start, cnt_start); 8328 8329 // return cipher length (int) 8330 Node* retvalue = _gvn.transform(new ProjNode(gcmCrypt, TypeFunc::Parms)); 8331 set_result(retvalue); 8332 8333 return true; 8334 } 8335 8336 //----------------------------inline_galoisCounterMode_AESCrypt_predicate---------------------------- 8337 // Return node representing slow path of predicate check. 8338 // the pseudo code we want to emulate with this predicate is: 8339 // for encryption: 8340 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 8341 // for decryption: 8342 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 8343 // note cipher==plain is more conservative than the original java code but that's OK 8344 // 8345 8346 Node* LibraryCallKit::inline_galoisCounterMode_AESCrypt_predicate() { 8347 // The receiver was checked for null already. 8348 Node* objGCTR = argument(7); 8349 // Load embeddedCipher field of GCTR object. 8350 Node* embeddedCipherObj = load_field_from_object(objGCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 8351 assert(embeddedCipherObj != nullptr, "embeddedCipherObj is null"); 8352 8353 // get AESCrypt klass for instanceOf check 8354 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 8355 // will have same classloader as CipherBlockChaining object 8356 const TypeInstPtr* tinst = _gvn.type(objGCTR)->isa_instptr(); 8357 assert(tinst != nullptr, "GCTR obj is null"); 8358 assert(tinst->is_loaded(), "GCTR obj is not loaded"); 8359 8360 // we want to do an instanceof comparison against the AESCrypt class 8361 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 8362 if (!klass_AESCrypt->is_loaded()) { 8363 // if AESCrypt is not even loaded, we never take the intrinsic fast path 8364 Node* ctrl = control(); 8365 set_control(top()); // no regular fast path 8366 return ctrl; 8367 } 8368 8369 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 8370 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 8371 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 8372 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 8373 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 8374 8375 return instof_false; // even if it is null 8376 } 8377 8378 //------------------------------get_state_from_digest_object----------------------- 8379 Node * LibraryCallKit::get_state_from_digest_object(Node *digest_object, BasicType elem_type) { 8380 const char* state_type; 8381 switch (elem_type) { 8382 case T_BYTE: state_type = "[B"; break; 8383 case T_INT: state_type = "[I"; break; 8384 case T_LONG: state_type = "[J"; break; 8385 default: ShouldNotReachHere(); 8386 } 8387 Node* digest_state = load_field_from_object(digest_object, "state", state_type); 8388 assert (digest_state != nullptr, "wrong version of sun.security.provider.MD5/SHA/SHA2/SHA5/SHA3"); 8389 if (digest_state == nullptr) return (Node *) nullptr; 8390 8391 // now have the array, need to get the start address of the state array 8392 Node* state = array_element_address(digest_state, intcon(0), elem_type); 8393 return state; 8394 } 8395 8396 //------------------------------get_block_size_from_sha3_object---------------------------------- 8397 Node * LibraryCallKit::get_block_size_from_digest_object(Node *digest_object) { 8398 Node* block_size = load_field_from_object(digest_object, "blockSize", "I"); 8399 assert (block_size != nullptr, "sanity"); 8400 return block_size; 8401 } 8402 8403 //----------------------------inline_digestBase_implCompressMB_predicate---------------------------- 8404 // Return node representing slow path of predicate check. 8405 // the pseudo code we want to emulate with this predicate is: 8406 // if (digestBaseObj instanceof MD5/SHA/SHA2/SHA5/SHA3) do_intrinsic, else do_javapath 8407 // 8408 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) { 8409 assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics || UseSHA3Intrinsics, 8410 "need MD5/SHA1/SHA256/SHA512/SHA3 instruction support"); 8411 assert((uint)predicate < 5, "sanity"); 8412 8413 // The receiver was checked for null already. 8414 Node* digestBaseObj = argument(0); 8415 8416 // get DigestBase klass for instanceOf check 8417 const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr(); 8418 assert(tinst != nullptr, "digestBaseObj is null"); 8419 assert(tinst->is_loaded(), "DigestBase is not loaded"); 8420 8421 const char* klass_name = nullptr; 8422 switch (predicate) { 8423 case 0: 8424 if (UseMD5Intrinsics) { 8425 // we want to do an instanceof comparison against the MD5 class 8426 klass_name = "sun/security/provider/MD5"; 8427 } 8428 break; 8429 case 1: 8430 if (UseSHA1Intrinsics) { 8431 // we want to do an instanceof comparison against the SHA class 8432 klass_name = "sun/security/provider/SHA"; 8433 } 8434 break; 8435 case 2: 8436 if (UseSHA256Intrinsics) { 8437 // we want to do an instanceof comparison against the SHA2 class 8438 klass_name = "sun/security/provider/SHA2"; 8439 } 8440 break; 8441 case 3: 8442 if (UseSHA512Intrinsics) { 8443 // we want to do an instanceof comparison against the SHA5 class 8444 klass_name = "sun/security/provider/SHA5"; 8445 } 8446 break; 8447 case 4: 8448 if (UseSHA3Intrinsics) { 8449 // we want to do an instanceof comparison against the SHA3 class 8450 klass_name = "sun/security/provider/SHA3"; 8451 } 8452 break; 8453 default: 8454 fatal("unknown SHA intrinsic predicate: %d", predicate); 8455 } 8456 8457 ciKlass* klass = nullptr; 8458 if (klass_name != nullptr) { 8459 klass = tinst->instance_klass()->find_klass(ciSymbol::make(klass_name)); 8460 } 8461 if ((klass == nullptr) || !klass->is_loaded()) { 8462 // if none of MD5/SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path 8463 Node* ctrl = control(); 8464 set_control(top()); // no intrinsic path 8465 return ctrl; 8466 } 8467 ciInstanceKlass* instklass = klass->as_instance_klass(); 8468 8469 Node* instof = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass))); 8470 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 8471 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 8472 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 8473 8474 return instof_false; // even if it is null 8475 } 8476 8477 //-------------inline_fma----------------------------------- 8478 bool LibraryCallKit::inline_fma(vmIntrinsics::ID id) { 8479 Node *a = nullptr; 8480 Node *b = nullptr; 8481 Node *c = nullptr; 8482 Node* result = nullptr; 8483 switch (id) { 8484 case vmIntrinsics::_fmaD: 8485 assert(callee()->signature()->size() == 6, "fma has 3 parameters of size 2 each."); 8486 // no receiver since it is static method 8487 a = round_double_node(argument(0)); 8488 b = round_double_node(argument(2)); 8489 c = round_double_node(argument(4)); 8490 result = _gvn.transform(new FmaDNode(a, b, c)); 8491 break; 8492 case vmIntrinsics::_fmaF: 8493 assert(callee()->signature()->size() == 3, "fma has 3 parameters of size 1 each."); 8494 a = argument(0); 8495 b = argument(1); 8496 c = argument(2); 8497 result = _gvn.transform(new FmaFNode(a, b, c)); 8498 break; 8499 default: 8500 fatal_unexpected_iid(id); break; 8501 } 8502 set_result(result); 8503 return true; 8504 } 8505 8506 bool LibraryCallKit::inline_character_compare(vmIntrinsics::ID id) { 8507 // argument(0) is receiver 8508 Node* codePoint = argument(1); 8509 Node* n = nullptr; 8510 8511 switch (id) { 8512 case vmIntrinsics::_isDigit : 8513 n = new DigitNode(control(), codePoint); 8514 break; 8515 case vmIntrinsics::_isLowerCase : 8516 n = new LowerCaseNode(control(), codePoint); 8517 break; 8518 case vmIntrinsics::_isUpperCase : 8519 n = new UpperCaseNode(control(), codePoint); 8520 break; 8521 case vmIntrinsics::_isWhitespace : 8522 n = new WhitespaceNode(control(), codePoint); 8523 break; 8524 default: 8525 fatal_unexpected_iid(id); 8526 } 8527 8528 set_result(_gvn.transform(n)); 8529 return true; 8530 } 8531 8532 bool LibraryCallKit::inline_profileBoolean() { 8533 Node* counts = argument(1); 8534 const TypeAryPtr* ary = nullptr; 8535 ciArray* aobj = nullptr; 8536 if (counts->is_Con() 8537 && (ary = counts->bottom_type()->isa_aryptr()) != nullptr 8538 && (aobj = ary->const_oop()->as_array()) != nullptr 8539 && (aobj->length() == 2)) { 8540 // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively. 8541 jint false_cnt = aobj->element_value(0).as_int(); 8542 jint true_cnt = aobj->element_value(1).as_int(); 8543 8544 if (C->log() != nullptr) { 8545 C->log()->elem("observe source='profileBoolean' false='%d' true='%d'", 8546 false_cnt, true_cnt); 8547 } 8548 8549 if (false_cnt + true_cnt == 0) { 8550 // According to profile, never executed. 8551 uncommon_trap_exact(Deoptimization::Reason_intrinsic, 8552 Deoptimization::Action_reinterpret); 8553 return true; 8554 } 8555 8556 // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt) 8557 // is a number of each value occurrences. 8558 Node* result = argument(0); 8559 if (false_cnt == 0 || true_cnt == 0) { 8560 // According to profile, one value has been never seen. 8561 int expected_val = (false_cnt == 0) ? 1 : 0; 8562 8563 Node* cmp = _gvn.transform(new CmpINode(result, intcon(expected_val))); 8564 Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 8565 8566 IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN); 8567 Node* fast_path = _gvn.transform(new IfTrueNode(check)); 8568 Node* slow_path = _gvn.transform(new IfFalseNode(check)); 8569 8570 { // Slow path: uncommon trap for never seen value and then reexecute 8571 // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows 8572 // the value has been seen at least once. 8573 PreserveJVMState pjvms(this); 8574 PreserveReexecuteState preexecs(this); 8575 jvms()->set_should_reexecute(true); 8576 8577 set_control(slow_path); 8578 set_i_o(i_o()); 8579 8580 uncommon_trap_exact(Deoptimization::Reason_intrinsic, 8581 Deoptimization::Action_reinterpret); 8582 } 8583 // The guard for never seen value enables sharpening of the result and 8584 // returning a constant. It allows to eliminate branches on the same value 8585 // later on. 8586 set_control(fast_path); 8587 result = intcon(expected_val); 8588 } 8589 // Stop profiling. 8590 // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode. 8591 // By replacing method body with profile data (represented as ProfileBooleanNode 8592 // on IR level) we effectively disable profiling. 8593 // It enables full speed execution once optimized code is generated. 8594 Node* profile = _gvn.transform(new ProfileBooleanNode(result, false_cnt, true_cnt)); 8595 C->record_for_igvn(profile); 8596 set_result(profile); 8597 return true; 8598 } else { 8599 // Continue profiling. 8600 // Profile data isn't available at the moment. So, execute method's bytecode version. 8601 // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod 8602 // is compiled and counters aren't available since corresponding MethodHandle 8603 // isn't a compile-time constant. 8604 return false; 8605 } 8606 } 8607 8608 bool LibraryCallKit::inline_isCompileConstant() { 8609 Node* n = argument(0); 8610 set_result(n->is_Con() ? intcon(1) : intcon(0)); 8611 return true; 8612 } 8613 8614 //------------------------------- inline_getObjectSize -------------------------------------- 8615 // 8616 // Calculate the runtime size of the object/array. 8617 // native long sun.instrument.InstrumentationImpl.getObjectSize0(long nativeAgent, Object objectToSize); 8618 // 8619 bool LibraryCallKit::inline_getObjectSize() { 8620 Node* obj = argument(3); 8621 Node* klass_node = load_object_klass(obj); 8622 8623 jint layout_con = Klass::_lh_neutral_value; 8624 Node* layout_val = get_layout_helper(klass_node, layout_con); 8625 int layout_is_con = (layout_val == nullptr); 8626 8627 if (layout_is_con) { 8628 // Layout helper is constant, can figure out things at compile time. 8629 8630 if (Klass::layout_helper_is_instance(layout_con)) { 8631 // Instance case: layout_con contains the size itself. 8632 Node *size = longcon(Klass::layout_helper_size_in_bytes(layout_con)); 8633 set_result(size); 8634 } else { 8635 // Array case: size is round(header + element_size*arraylength). 8636 // Since arraylength is different for every array instance, we have to 8637 // compute the whole thing at runtime. 8638 8639 Node* arr_length = load_array_length(obj); 8640 8641 int round_mask = MinObjAlignmentInBytes - 1; 8642 int hsize = Klass::layout_helper_header_size(layout_con); 8643 int eshift = Klass::layout_helper_log2_element_size(layout_con); 8644 8645 if ((round_mask & ~right_n_bits(eshift)) == 0) { 8646 round_mask = 0; // strength-reduce it if it goes away completely 8647 } 8648 assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded"); 8649 Node* header_size = intcon(hsize + round_mask); 8650 8651 Node* lengthx = ConvI2X(arr_length); 8652 Node* headerx = ConvI2X(header_size); 8653 8654 Node* abody = lengthx; 8655 if (eshift != 0) { 8656 abody = _gvn.transform(new LShiftXNode(lengthx, intcon(eshift))); 8657 } 8658 Node* size = _gvn.transform( new AddXNode(headerx, abody) ); 8659 if (round_mask != 0) { 8660 size = _gvn.transform( new AndXNode(size, MakeConX(~round_mask)) ); 8661 } 8662 size = ConvX2L(size); 8663 set_result(size); 8664 } 8665 } else { 8666 // Layout helper is not constant, need to test for array-ness at runtime. 8667 8668 enum { _instance_path = 1, _array_path, PATH_LIMIT }; 8669 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 8670 PhiNode* result_val = new PhiNode(result_reg, TypeLong::LONG); 8671 record_for_igvn(result_reg); 8672 8673 Node* array_ctl = generate_array_guard(klass_node, nullptr, &obj); 8674 if (array_ctl != nullptr) { 8675 // Array case: size is round(header + element_size*arraylength). 8676 // Since arraylength is different for every array instance, we have to 8677 // compute the whole thing at runtime. 8678 8679 PreserveJVMState pjvms(this); 8680 set_control(array_ctl); 8681 Node* arr_length = load_array_length(obj); 8682 8683 int round_mask = MinObjAlignmentInBytes - 1; 8684 Node* mask = intcon(round_mask); 8685 8686 Node* hss = intcon(Klass::_lh_header_size_shift); 8687 Node* hsm = intcon(Klass::_lh_header_size_mask); 8688 Node* header_size = _gvn.transform(new URShiftINode(layout_val, hss)); 8689 header_size = _gvn.transform(new AndINode(header_size, hsm)); 8690 header_size = _gvn.transform(new AddINode(header_size, mask)); 8691 8692 // There is no need to mask or shift this value. 8693 // The semantics of LShiftINode include an implicit mask to 0x1F. 8694 assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place"); 8695 Node* elem_shift = layout_val; 8696 8697 Node* lengthx = ConvI2X(arr_length); 8698 Node* headerx = ConvI2X(header_size); 8699 8700 Node* abody = _gvn.transform(new LShiftXNode(lengthx, elem_shift)); 8701 Node* size = _gvn.transform(new AddXNode(headerx, abody)); 8702 if (round_mask != 0) { 8703 size = _gvn.transform(new AndXNode(size, MakeConX(~round_mask))); 8704 } 8705 size = ConvX2L(size); 8706 8707 result_reg->init_req(_array_path, control()); 8708 result_val->init_req(_array_path, size); 8709 } 8710 8711 if (!stopped()) { 8712 // Instance case: the layout helper gives us instance size almost directly, 8713 // but we need to mask out the _lh_instance_slow_path_bit. 8714 Node* size = ConvI2X(layout_val); 8715 assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit"); 8716 Node* mask = MakeConX(~(intptr_t) right_n_bits(LogBytesPerLong)); 8717 size = _gvn.transform(new AndXNode(size, mask)); 8718 size = ConvX2L(size); 8719 8720 result_reg->init_req(_instance_path, control()); 8721 result_val->init_req(_instance_path, size); 8722 } 8723 8724 set_result(result_reg, result_val); 8725 } 8726 8727 return true; 8728 } 8729 8730 //------------------------------- inline_blackhole -------------------------------------- 8731 // 8732 // Make sure all arguments to this node are alive. 8733 // This matches methods that were requested to be blackholed through compile commands. 8734 // 8735 bool LibraryCallKit::inline_blackhole() { 8736 assert(callee()->is_static(), "Should have been checked before: only static methods here"); 8737 assert(callee()->is_empty(), "Should have been checked before: only empty methods here"); 8738 assert(callee()->holder()->is_loaded(), "Should have been checked before: only methods for loaded classes here"); 8739 8740 // Blackhole node pinches only the control, not memory. This allows 8741 // the blackhole to be pinned in the loop that computes blackholed 8742 // values, but have no other side effects, like breaking the optimizations 8743 // across the blackhole. 8744 8745 Node* bh = _gvn.transform(new BlackholeNode(control())); 8746 set_control(_gvn.transform(new ProjNode(bh, TypeFunc::Control))); 8747 8748 // Bind call arguments as blackhole arguments to keep them alive 8749 uint nargs = callee()->arg_size(); 8750 for (uint i = 0; i < nargs; i++) { 8751 bh->add_req(argument(i)); 8752 } 8753 8754 return true; 8755 } 8756 8757 Node* LibraryCallKit::unbox_fp16_value(const TypeInstPtr* float16_box_type, ciField* field, Node* box) { 8758 const TypeInstPtr* box_type = _gvn.type(box)->isa_instptr(); 8759 if (box_type == nullptr || box_type->instance_klass() != float16_box_type->instance_klass()) { 8760 return nullptr; // box klass is not Float16 8761 } 8762 8763 // Null check; get notnull casted pointer 8764 Node* null_ctl = top(); 8765 Node* not_null_box = null_check_oop(box, &null_ctl, true); 8766 // If not_null_box is dead, only null-path is taken 8767 if (stopped()) { 8768 set_control(null_ctl); 8769 return nullptr; 8770 } 8771 assert(not_null_box->bottom_type()->is_instptr()->maybe_null() == false, ""); 8772 const TypePtr* adr_type = C->alias_type(field)->adr_type(); 8773 Node* adr = basic_plus_adr(not_null_box, field->offset_in_bytes()); 8774 return access_load_at(not_null_box, adr, adr_type, TypeInt::SHORT, T_SHORT, IN_HEAP); 8775 } 8776 8777 Node* LibraryCallKit::box_fp16_value(const TypeInstPtr* float16_box_type, ciField* field, Node* value) { 8778 PreserveReexecuteState preexecs(this); 8779 jvms()->set_should_reexecute(true); 8780 8781 const TypeKlassPtr* klass_type = float16_box_type->as_klass_type(); 8782 Node* klass_node = makecon(klass_type); 8783 Node* box = new_instance(klass_node); 8784 8785 Node* value_field = basic_plus_adr(box, field->offset_in_bytes()); 8786 const TypePtr* value_adr_type = value_field->bottom_type()->is_ptr(); 8787 8788 Node* field_store = _gvn.transform(access_store_at(box, 8789 value_field, 8790 value_adr_type, 8791 value, 8792 TypeInt::SHORT, 8793 T_SHORT, 8794 IN_HEAP)); 8795 set_memory(field_store, value_adr_type); 8796 return box; 8797 } 8798 8799 bool LibraryCallKit::inline_fp16_operations(vmIntrinsics::ID id, int num_args) { 8800 if (!Matcher::match_rule_supported(Op_ReinterpretS2HF) || 8801 !Matcher::match_rule_supported(Op_ReinterpretHF2S)) { 8802 return false; 8803 } 8804 8805 const TypeInstPtr* box_type = _gvn.type(argument(0))->isa_instptr(); 8806 if (box_type == nullptr || box_type->const_oop() == nullptr) { 8807 return false; 8808 } 8809 8810 ciInstanceKlass* float16_klass = box_type->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass(); 8811 const TypeInstPtr* float16_box_type = TypeInstPtr::make_exact(TypePtr::NotNull, float16_klass); 8812 ciField* field = float16_klass->get_field_by_name(ciSymbols::value_name(), 8813 ciSymbols::short_signature(), 8814 false); 8815 assert(field != nullptr, ""); 8816 8817 // Transformed nodes 8818 Node* fld1 = nullptr; 8819 Node* fld2 = nullptr; 8820 Node* fld3 = nullptr; 8821 switch(num_args) { 8822 case 3: 8823 fld3 = unbox_fp16_value(float16_box_type, field, argument(3)); 8824 if (fld3 == nullptr) { 8825 return false; 8826 } 8827 fld3 = _gvn.transform(new ReinterpretS2HFNode(fld3)); 8828 // fall-through 8829 case 2: 8830 fld2 = unbox_fp16_value(float16_box_type, field, argument(2)); 8831 if (fld2 == nullptr) { 8832 return false; 8833 } 8834 fld2 = _gvn.transform(new ReinterpretS2HFNode(fld2)); 8835 // fall-through 8836 case 1: 8837 fld1 = unbox_fp16_value(float16_box_type, field, argument(1)); 8838 if (fld1 == nullptr) { 8839 return false; 8840 } 8841 fld1 = _gvn.transform(new ReinterpretS2HFNode(fld1)); 8842 break; 8843 default: fatal("Unsupported number of arguments %d", num_args); 8844 } 8845 8846 Node* result = nullptr; 8847 switch (id) { 8848 // Unary operations 8849 case vmIntrinsics::_sqrt_float16: 8850 result = _gvn.transform(new SqrtHFNode(C, control(), fld1)); 8851 break; 8852 // Ternary operations 8853 case vmIntrinsics::_fma_float16: 8854 result = _gvn.transform(new FmaHFNode(fld1, fld2, fld3)); 8855 break; 8856 default: 8857 fatal_unexpected_iid(id); 8858 break; 8859 } 8860 result = _gvn.transform(new ReinterpretHF2SNode(result)); 8861 set_result(box_fp16_value(float16_box_type, field, result)); 8862 return true; 8863 } 8864