1 /*
   2  * Copyright (c) 1999, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "asm/macroAssembler.hpp"
  26 #include "ci/ciUtilities.inline.hpp"
  27 #include "ci/ciSymbols.hpp"
  28 #include "classfile/vmIntrinsics.hpp"
  29 #include "compiler/compileBroker.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "gc/shared/barrierSet.hpp"
  32 #include "jfr/support/jfrIntrinsics.hpp"
  33 #include "memory/resourceArea.hpp"
  34 #include "oops/klass.inline.hpp"
  35 #include "oops/objArrayKlass.hpp"
  36 #include "opto/addnode.hpp"
  37 #include "opto/arraycopynode.hpp"
  38 #include "opto/c2compiler.hpp"
  39 #include "opto/castnode.hpp"
  40 #include "opto/cfgnode.hpp"
  41 #include "opto/convertnode.hpp"
  42 #include "opto/countbitsnode.hpp"
  43 #include "opto/idealKit.hpp"
  44 #include "opto/library_call.hpp"
  45 #include "opto/mathexactnode.hpp"
  46 #include "opto/mulnode.hpp"
  47 #include "opto/narrowptrnode.hpp"
  48 #include "opto/opaquenode.hpp"
  49 #include "opto/parse.hpp"
  50 #include "opto/runtime.hpp"
  51 #include "opto/rootnode.hpp"
  52 #include "opto/subnode.hpp"
  53 #include "opto/vectornode.hpp"
  54 #include "prims/jvmtiExport.hpp"
  55 #include "prims/jvmtiThreadState.hpp"
  56 #include "prims/unsafe.hpp"
  57 #include "runtime/jniHandles.inline.hpp"
  58 #include "runtime/objectMonitor.hpp"
  59 #include "runtime/sharedRuntime.hpp"
  60 #include "runtime/stubRoutines.hpp"
  61 #include "utilities/macros.hpp"
  62 #include "utilities/powerOfTwo.hpp"
  63 
  64 //---------------------------make_vm_intrinsic----------------------------
  65 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
  66   vmIntrinsicID id = m->intrinsic_id();
  67   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
  68 
  69   if (!m->is_loaded()) {
  70     // Do not attempt to inline unloaded methods.
  71     return nullptr;
  72   }
  73 
  74   C2Compiler* compiler = (C2Compiler*)CompilerThread::current()->compiler();
  75   bool is_available = false;
  76 
  77   {
  78     // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag
  79     // the compiler must transition to '_thread_in_vm' state because both
  80     // methods access VM-internal data.
  81     VM_ENTRY_MARK;
  82     methodHandle mh(THREAD, m->get_Method());
  83     is_available = compiler != nullptr && compiler->is_intrinsic_available(mh, C->directive());
  84     if (is_available && is_virtual) {
  85       is_available = vmIntrinsics::does_virtual_dispatch(id);
  86     }
  87   }
  88 
  89   if (is_available) {
  90     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
  91     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
  92     return new LibraryIntrinsic(m, is_virtual,
  93                                 vmIntrinsics::predicates_needed(id),
  94                                 vmIntrinsics::does_virtual_dispatch(id),
  95                                 id);
  96   } else {
  97     return nullptr;
  98   }
  99 }
 100 
 101 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
 102   LibraryCallKit kit(jvms, this);
 103   Compile* C = kit.C;
 104   int nodes = C->unique();
 105 #ifndef PRODUCT
 106   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 107     char buf[1000];
 108     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 109     tty->print_cr("Intrinsic %s", str);
 110   }
 111 #endif
 112   ciMethod* callee = kit.callee();
 113   const int bci    = kit.bci();
 114 #ifdef ASSERT
 115   Node* ctrl = kit.control();
 116 #endif
 117   // Try to inline the intrinsic.
 118   if (callee->check_intrinsic_candidate() &&
 119       kit.try_to_inline(_last_predicate)) {
 120     const char *inline_msg = is_virtual() ? "(intrinsic, virtual)"
 121                                           : "(intrinsic)";
 122     CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg);
 123     C->inline_printer()->record(callee, jvms, InliningResult::SUCCESS, inline_msg);
 124     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 125     if (C->log()) {
 126       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 127                      vmIntrinsics::name_at(intrinsic_id()),
 128                      (is_virtual() ? " virtual='1'" : ""),
 129                      C->unique() - nodes);
 130     }
 131     // Push the result from the inlined method onto the stack.
 132     kit.push_result();
 133     return kit.transfer_exceptions_into_jvms();
 134   }
 135 
 136   // The intrinsic bailed out
 137   assert(ctrl == kit.control(), "Control flow was added although the intrinsic bailed out");
 138   if (jvms->has_method()) {
 139     // Not a root compile.
 140     const char* msg;
 141     if (callee->intrinsic_candidate()) {
 142       msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
 143     } else {
 144       msg = is_virtual() ? "failed to inline (intrinsic, virtual), method not annotated"
 145                          : "failed to inline (intrinsic), method not annotated";
 146     }
 147     CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::FAILURE, msg);
 148     C->inline_printer()->record(callee, jvms, InliningResult::FAILURE, msg);
 149   } else {
 150     // Root compile
 151     ResourceMark rm;
 152     stringStream msg_stream;
 153     msg_stream.print("Did not generate intrinsic %s%s at bci:%d in",
 154                      vmIntrinsics::name_at(intrinsic_id()),
 155                      is_virtual() ? " (virtual)" : "", bci);
 156     const char *msg = msg_stream.freeze();
 157     log_debug(jit, inlining)("%s", msg);
 158     if (C->print_intrinsics() || C->print_inlining()) {
 159       tty->print("%s", msg);
 160     }
 161   }
 162   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 163 
 164   return nullptr;
 165 }
 166 
 167 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) {
 168   LibraryCallKit kit(jvms, this);
 169   Compile* C = kit.C;
 170   int nodes = C->unique();
 171   _last_predicate = predicate;
 172 #ifndef PRODUCT
 173   assert(is_predicated() && predicate < predicates_count(), "sanity");
 174   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 175     char buf[1000];
 176     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 177     tty->print_cr("Predicate for intrinsic %s", str);
 178   }
 179 #endif
 180   ciMethod* callee = kit.callee();
 181   const int bci    = kit.bci();
 182 
 183   Node* slow_ctl = kit.try_to_predicate(predicate);
 184   if (!kit.failing()) {
 185     const char *inline_msg = is_virtual() ? "(intrinsic, virtual, predicate)"
 186                                           : "(intrinsic, predicate)";
 187     CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg);
 188     C->inline_printer()->record(callee, jvms, InliningResult::SUCCESS, inline_msg);
 189 
 190     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 191     if (C->log()) {
 192       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
 193                      vmIntrinsics::name_at(intrinsic_id()),
 194                      (is_virtual() ? " virtual='1'" : ""),
 195                      C->unique() - nodes);
 196     }
 197     return slow_ctl; // Could be null if the check folds.
 198   }
 199 
 200   // The intrinsic bailed out
 201   if (jvms->has_method()) {
 202     // Not a root compile.
 203     const char* msg = "failed to generate predicate for intrinsic";
 204     CompileTask::print_inlining_ul(kit.callee(), jvms->depth() - 1, bci, InliningResult::FAILURE, msg);
 205     C->inline_printer()->record(kit.callee(), jvms, InliningResult::FAILURE, msg);
 206   } else {
 207     // Root compile
 208     ResourceMark rm;
 209     stringStream msg_stream;
 210     msg_stream.print("Did not generate intrinsic %s%s at bci:%d in",
 211                      vmIntrinsics::name_at(intrinsic_id()),
 212                      is_virtual() ? " (virtual)" : "", bci);
 213     const char *msg = msg_stream.freeze();
 214     log_debug(jit, inlining)("%s", msg);
 215     C->inline_printer()->record(kit.callee(), jvms, InliningResult::FAILURE, msg);
 216   }
 217   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 218   return nullptr;
 219 }
 220 
 221 bool LibraryCallKit::try_to_inline(int predicate) {
 222   // Handle symbolic names for otherwise undistinguished boolean switches:
 223   const bool is_store       = true;
 224   const bool is_compress    = true;
 225   const bool is_static      = true;
 226   const bool is_volatile    = true;
 227 
 228   if (!jvms()->has_method()) {
 229     // Root JVMState has a null method.
 230     assert(map()->memory()->Opcode() == Op_Parm, "");
 231     // Insert the memory aliasing node
 232     set_all_memory(reset_memory());
 233   }
 234   assert(merged_memory(), "");
 235 
 236   switch (intrinsic_id()) {
 237   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 238   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
 239   case vmIntrinsics::_getClass:                 return inline_native_getClass();
 240 
 241   case vmIntrinsics::_ceil:
 242   case vmIntrinsics::_floor:
 243   case vmIntrinsics::_rint:
 244   case vmIntrinsics::_dsin:
 245   case vmIntrinsics::_dcos:
 246   case vmIntrinsics::_dtan:
 247   case vmIntrinsics::_dtanh:
 248   case vmIntrinsics::_dabs:
 249   case vmIntrinsics::_fabs:
 250   case vmIntrinsics::_iabs:
 251   case vmIntrinsics::_labs:
 252   case vmIntrinsics::_datan2:
 253   case vmIntrinsics::_dsqrt:
 254   case vmIntrinsics::_dsqrt_strict:
 255   case vmIntrinsics::_dexp:
 256   case vmIntrinsics::_dlog:
 257   case vmIntrinsics::_dlog10:
 258   case vmIntrinsics::_dpow:
 259   case vmIntrinsics::_dcopySign:
 260   case vmIntrinsics::_fcopySign:
 261   case vmIntrinsics::_dsignum:
 262   case vmIntrinsics::_roundF:
 263   case vmIntrinsics::_roundD:
 264   case vmIntrinsics::_fsignum:                  return inline_math_native(intrinsic_id());
 265 
 266   case vmIntrinsics::_notify:
 267   case vmIntrinsics::_notifyAll:
 268     return inline_notify(intrinsic_id());
 269 
 270   case vmIntrinsics::_addExactI:                return inline_math_addExactI(false /* add */);
 271   case vmIntrinsics::_addExactL:                return inline_math_addExactL(false /* add */);
 272   case vmIntrinsics::_decrementExactI:          return inline_math_subtractExactI(true /* decrement */);
 273   case vmIntrinsics::_decrementExactL:          return inline_math_subtractExactL(true /* decrement */);
 274   case vmIntrinsics::_incrementExactI:          return inline_math_addExactI(true /* increment */);
 275   case vmIntrinsics::_incrementExactL:          return inline_math_addExactL(true /* increment */);
 276   case vmIntrinsics::_multiplyExactI:           return inline_math_multiplyExactI();
 277   case vmIntrinsics::_multiplyExactL:           return inline_math_multiplyExactL();
 278   case vmIntrinsics::_multiplyHigh:             return inline_math_multiplyHigh();
 279   case vmIntrinsics::_unsignedMultiplyHigh:     return inline_math_unsignedMultiplyHigh();
 280   case vmIntrinsics::_negateExactI:             return inline_math_negateExactI();
 281   case vmIntrinsics::_negateExactL:             return inline_math_negateExactL();
 282   case vmIntrinsics::_subtractExactI:           return inline_math_subtractExactI(false /* subtract */);
 283   case vmIntrinsics::_subtractExactL:           return inline_math_subtractExactL(false /* subtract */);
 284 
 285   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
 286 
 287   case vmIntrinsics::_arraySort:                return inline_array_sort();
 288   case vmIntrinsics::_arrayPartition:           return inline_array_partition();
 289 
 290   case vmIntrinsics::_compareToL:               return inline_string_compareTo(StrIntrinsicNode::LL);
 291   case vmIntrinsics::_compareToU:               return inline_string_compareTo(StrIntrinsicNode::UU);
 292   case vmIntrinsics::_compareToLU:              return inline_string_compareTo(StrIntrinsicNode::LU);
 293   case vmIntrinsics::_compareToUL:              return inline_string_compareTo(StrIntrinsicNode::UL);
 294 
 295   case vmIntrinsics::_indexOfL:                 return inline_string_indexOf(StrIntrinsicNode::LL);
 296   case vmIntrinsics::_indexOfU:                 return inline_string_indexOf(StrIntrinsicNode::UU);
 297   case vmIntrinsics::_indexOfUL:                return inline_string_indexOf(StrIntrinsicNode::UL);
 298   case vmIntrinsics::_indexOfIL:                return inline_string_indexOfI(StrIntrinsicNode::LL);
 299   case vmIntrinsics::_indexOfIU:                return inline_string_indexOfI(StrIntrinsicNode::UU);
 300   case vmIntrinsics::_indexOfIUL:               return inline_string_indexOfI(StrIntrinsicNode::UL);
 301   case vmIntrinsics::_indexOfU_char:            return inline_string_indexOfChar(StrIntrinsicNode::U);
 302   case vmIntrinsics::_indexOfL_char:            return inline_string_indexOfChar(StrIntrinsicNode::L);
 303 
 304   case vmIntrinsics::_equalsL:                  return inline_string_equals(StrIntrinsicNode::LL);
 305 
 306   case vmIntrinsics::_vectorizedHashCode:       return inline_vectorizedHashCode();
 307 
 308   case vmIntrinsics::_toBytesStringU:           return inline_string_toBytesU();
 309   case vmIntrinsics::_getCharsStringU:          return inline_string_getCharsU();
 310   case vmIntrinsics::_getCharStringU:           return inline_string_char_access(!is_store);
 311   case vmIntrinsics::_putCharStringU:           return inline_string_char_access( is_store);
 312 
 313   case vmIntrinsics::_compressStringC:
 314   case vmIntrinsics::_compressStringB:          return inline_string_copy( is_compress);
 315   case vmIntrinsics::_inflateStringC:
 316   case vmIntrinsics::_inflateStringB:           return inline_string_copy(!is_compress);
 317 
 318   case vmIntrinsics::_getReference:             return inline_unsafe_access(!is_store, T_OBJECT,   Relaxed, false);
 319   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_store, T_BOOLEAN,  Relaxed, false);
 320   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_store, T_BYTE,     Relaxed, false);
 321   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_store, T_SHORT,    Relaxed, false);
 322   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_store, T_CHAR,     Relaxed, false);
 323   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_store, T_INT,      Relaxed, false);
 324   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_store, T_LONG,     Relaxed, false);
 325   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_store, T_FLOAT,    Relaxed, false);
 326   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_store, T_DOUBLE,   Relaxed, false);
 327 
 328   case vmIntrinsics::_putReference:             return inline_unsafe_access( is_store, T_OBJECT,   Relaxed, false);
 329   case vmIntrinsics::_putBoolean:               return inline_unsafe_access( is_store, T_BOOLEAN,  Relaxed, false);
 330   case vmIntrinsics::_putByte:                  return inline_unsafe_access( is_store, T_BYTE,     Relaxed, false);
 331   case vmIntrinsics::_putShort:                 return inline_unsafe_access( is_store, T_SHORT,    Relaxed, false);
 332   case vmIntrinsics::_putChar:                  return inline_unsafe_access( is_store, T_CHAR,     Relaxed, false);
 333   case vmIntrinsics::_putInt:                   return inline_unsafe_access( is_store, T_INT,      Relaxed, false);
 334   case vmIntrinsics::_putLong:                  return inline_unsafe_access( is_store, T_LONG,     Relaxed, false);
 335   case vmIntrinsics::_putFloat:                 return inline_unsafe_access( is_store, T_FLOAT,    Relaxed, false);
 336   case vmIntrinsics::_putDouble:                return inline_unsafe_access( is_store, T_DOUBLE,   Relaxed, false);
 337 
 338   case vmIntrinsics::_getReferenceVolatile:     return inline_unsafe_access(!is_store, T_OBJECT,   Volatile, false);
 339   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_store, T_BOOLEAN,  Volatile, false);
 340   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_store, T_BYTE,     Volatile, false);
 341   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_store, T_SHORT,    Volatile, false);
 342   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_store, T_CHAR,     Volatile, false);
 343   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_store, T_INT,      Volatile, false);
 344   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_store, T_LONG,     Volatile, false);
 345   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_store, T_FLOAT,    Volatile, false);
 346   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_store, T_DOUBLE,   Volatile, false);
 347 
 348   case vmIntrinsics::_putReferenceVolatile:     return inline_unsafe_access( is_store, T_OBJECT,   Volatile, false);
 349   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access( is_store, T_BOOLEAN,  Volatile, false);
 350   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access( is_store, T_BYTE,     Volatile, false);
 351   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access( is_store, T_SHORT,    Volatile, false);
 352   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access( is_store, T_CHAR,     Volatile, false);
 353   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access( is_store, T_INT,      Volatile, false);
 354   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access( is_store, T_LONG,     Volatile, false);
 355   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access( is_store, T_FLOAT,    Volatile, false);
 356   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access( is_store, T_DOUBLE,   Volatile, false);
 357 
 358   case vmIntrinsics::_getShortUnaligned:        return inline_unsafe_access(!is_store, T_SHORT,    Relaxed, true);
 359   case vmIntrinsics::_getCharUnaligned:         return inline_unsafe_access(!is_store, T_CHAR,     Relaxed, true);
 360   case vmIntrinsics::_getIntUnaligned:          return inline_unsafe_access(!is_store, T_INT,      Relaxed, true);
 361   case vmIntrinsics::_getLongUnaligned:         return inline_unsafe_access(!is_store, T_LONG,     Relaxed, true);
 362 
 363   case vmIntrinsics::_putShortUnaligned:        return inline_unsafe_access( is_store, T_SHORT,    Relaxed, true);
 364   case vmIntrinsics::_putCharUnaligned:         return inline_unsafe_access( is_store, T_CHAR,     Relaxed, true);
 365   case vmIntrinsics::_putIntUnaligned:          return inline_unsafe_access( is_store, T_INT,      Relaxed, true);
 366   case vmIntrinsics::_putLongUnaligned:         return inline_unsafe_access( is_store, T_LONG,     Relaxed, true);
 367 
 368   case vmIntrinsics::_getReferenceAcquire:      return inline_unsafe_access(!is_store, T_OBJECT,   Acquire, false);
 369   case vmIntrinsics::_getBooleanAcquire:        return inline_unsafe_access(!is_store, T_BOOLEAN,  Acquire, false);
 370   case vmIntrinsics::_getByteAcquire:           return inline_unsafe_access(!is_store, T_BYTE,     Acquire, false);
 371   case vmIntrinsics::_getShortAcquire:          return inline_unsafe_access(!is_store, T_SHORT,    Acquire, false);
 372   case vmIntrinsics::_getCharAcquire:           return inline_unsafe_access(!is_store, T_CHAR,     Acquire, false);
 373   case vmIntrinsics::_getIntAcquire:            return inline_unsafe_access(!is_store, T_INT,      Acquire, false);
 374   case vmIntrinsics::_getLongAcquire:           return inline_unsafe_access(!is_store, T_LONG,     Acquire, false);
 375   case vmIntrinsics::_getFloatAcquire:          return inline_unsafe_access(!is_store, T_FLOAT,    Acquire, false);
 376   case vmIntrinsics::_getDoubleAcquire:         return inline_unsafe_access(!is_store, T_DOUBLE,   Acquire, false);
 377 
 378   case vmIntrinsics::_putReferenceRelease:      return inline_unsafe_access( is_store, T_OBJECT,   Release, false);
 379   case vmIntrinsics::_putBooleanRelease:        return inline_unsafe_access( is_store, T_BOOLEAN,  Release, false);
 380   case vmIntrinsics::_putByteRelease:           return inline_unsafe_access( is_store, T_BYTE,     Release, false);
 381   case vmIntrinsics::_putShortRelease:          return inline_unsafe_access( is_store, T_SHORT,    Release, false);
 382   case vmIntrinsics::_putCharRelease:           return inline_unsafe_access( is_store, T_CHAR,     Release, false);
 383   case vmIntrinsics::_putIntRelease:            return inline_unsafe_access( is_store, T_INT,      Release, false);
 384   case vmIntrinsics::_putLongRelease:           return inline_unsafe_access( is_store, T_LONG,     Release, false);
 385   case vmIntrinsics::_putFloatRelease:          return inline_unsafe_access( is_store, T_FLOAT,    Release, false);
 386   case vmIntrinsics::_putDoubleRelease:         return inline_unsafe_access( is_store, T_DOUBLE,   Release, false);
 387 
 388   case vmIntrinsics::_getReferenceOpaque:       return inline_unsafe_access(!is_store, T_OBJECT,   Opaque, false);
 389   case vmIntrinsics::_getBooleanOpaque:         return inline_unsafe_access(!is_store, T_BOOLEAN,  Opaque, false);
 390   case vmIntrinsics::_getByteOpaque:            return inline_unsafe_access(!is_store, T_BYTE,     Opaque, false);
 391   case vmIntrinsics::_getShortOpaque:           return inline_unsafe_access(!is_store, T_SHORT,    Opaque, false);
 392   case vmIntrinsics::_getCharOpaque:            return inline_unsafe_access(!is_store, T_CHAR,     Opaque, false);
 393   case vmIntrinsics::_getIntOpaque:             return inline_unsafe_access(!is_store, T_INT,      Opaque, false);
 394   case vmIntrinsics::_getLongOpaque:            return inline_unsafe_access(!is_store, T_LONG,     Opaque, false);
 395   case vmIntrinsics::_getFloatOpaque:           return inline_unsafe_access(!is_store, T_FLOAT,    Opaque, false);
 396   case vmIntrinsics::_getDoubleOpaque:          return inline_unsafe_access(!is_store, T_DOUBLE,   Opaque, false);
 397 
 398   case vmIntrinsics::_putReferenceOpaque:       return inline_unsafe_access( is_store, T_OBJECT,   Opaque, false);
 399   case vmIntrinsics::_putBooleanOpaque:         return inline_unsafe_access( is_store, T_BOOLEAN,  Opaque, false);
 400   case vmIntrinsics::_putByteOpaque:            return inline_unsafe_access( is_store, T_BYTE,     Opaque, false);
 401   case vmIntrinsics::_putShortOpaque:           return inline_unsafe_access( is_store, T_SHORT,    Opaque, false);
 402   case vmIntrinsics::_putCharOpaque:            return inline_unsafe_access( is_store, T_CHAR,     Opaque, false);
 403   case vmIntrinsics::_putIntOpaque:             return inline_unsafe_access( is_store, T_INT,      Opaque, false);
 404   case vmIntrinsics::_putLongOpaque:            return inline_unsafe_access( is_store, T_LONG,     Opaque, false);
 405   case vmIntrinsics::_putFloatOpaque:           return inline_unsafe_access( is_store, T_FLOAT,    Opaque, false);
 406   case vmIntrinsics::_putDoubleOpaque:          return inline_unsafe_access( is_store, T_DOUBLE,   Opaque, false);
 407 
 408   case vmIntrinsics::_compareAndSetReference:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap,      Volatile);
 409   case vmIntrinsics::_compareAndSetByte:        return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap,      Volatile);
 410   case vmIntrinsics::_compareAndSetShort:       return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap,      Volatile);
 411   case vmIntrinsics::_compareAndSetInt:         return inline_unsafe_load_store(T_INT,    LS_cmp_swap,      Volatile);
 412   case vmIntrinsics::_compareAndSetLong:        return inline_unsafe_load_store(T_LONG,   LS_cmp_swap,      Volatile);
 413 
 414   case vmIntrinsics::_weakCompareAndSetReferencePlain:     return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Relaxed);
 415   case vmIntrinsics::_weakCompareAndSetReferenceAcquire:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Acquire);
 416   case vmIntrinsics::_weakCompareAndSetReferenceRelease:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Release);
 417   case vmIntrinsics::_weakCompareAndSetReference:          return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Volatile);
 418   case vmIntrinsics::_weakCompareAndSetBytePlain:          return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Relaxed);
 419   case vmIntrinsics::_weakCompareAndSetByteAcquire:        return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Acquire);
 420   case vmIntrinsics::_weakCompareAndSetByteRelease:        return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Release);
 421   case vmIntrinsics::_weakCompareAndSetByte:               return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Volatile);
 422   case vmIntrinsics::_weakCompareAndSetShortPlain:         return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Relaxed);
 423   case vmIntrinsics::_weakCompareAndSetShortAcquire:       return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Acquire);
 424   case vmIntrinsics::_weakCompareAndSetShortRelease:       return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Release);
 425   case vmIntrinsics::_weakCompareAndSetShort:              return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Volatile);
 426   case vmIntrinsics::_weakCompareAndSetIntPlain:           return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Relaxed);
 427   case vmIntrinsics::_weakCompareAndSetIntAcquire:         return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Acquire);
 428   case vmIntrinsics::_weakCompareAndSetIntRelease:         return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Release);
 429   case vmIntrinsics::_weakCompareAndSetInt:                return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Volatile);
 430   case vmIntrinsics::_weakCompareAndSetLongPlain:          return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Relaxed);
 431   case vmIntrinsics::_weakCompareAndSetLongAcquire:        return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Acquire);
 432   case vmIntrinsics::_weakCompareAndSetLongRelease:        return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Release);
 433   case vmIntrinsics::_weakCompareAndSetLong:               return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Volatile);
 434 
 435   case vmIntrinsics::_compareAndExchangeReference:         return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Volatile);
 436   case vmIntrinsics::_compareAndExchangeReferenceAcquire:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Acquire);
 437   case vmIntrinsics::_compareAndExchangeReferenceRelease:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Release);
 438   case vmIntrinsics::_compareAndExchangeByte:              return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Volatile);
 439   case vmIntrinsics::_compareAndExchangeByteAcquire:       return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Acquire);
 440   case vmIntrinsics::_compareAndExchangeByteRelease:       return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Release);
 441   case vmIntrinsics::_compareAndExchangeShort:             return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Volatile);
 442   case vmIntrinsics::_compareAndExchangeShortAcquire:      return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Acquire);
 443   case vmIntrinsics::_compareAndExchangeShortRelease:      return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Release);
 444   case vmIntrinsics::_compareAndExchangeInt:               return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Volatile);
 445   case vmIntrinsics::_compareAndExchangeIntAcquire:        return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Acquire);
 446   case vmIntrinsics::_compareAndExchangeIntRelease:        return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Release);
 447   case vmIntrinsics::_compareAndExchangeLong:              return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Volatile);
 448   case vmIntrinsics::_compareAndExchangeLongAcquire:       return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Acquire);
 449   case vmIntrinsics::_compareAndExchangeLongRelease:       return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Release);
 450 
 451   case vmIntrinsics::_getAndAddByte:                    return inline_unsafe_load_store(T_BYTE,   LS_get_add,       Volatile);
 452   case vmIntrinsics::_getAndAddShort:                   return inline_unsafe_load_store(T_SHORT,  LS_get_add,       Volatile);
 453   case vmIntrinsics::_getAndAddInt:                     return inline_unsafe_load_store(T_INT,    LS_get_add,       Volatile);
 454   case vmIntrinsics::_getAndAddLong:                    return inline_unsafe_load_store(T_LONG,   LS_get_add,       Volatile);
 455 
 456   case vmIntrinsics::_getAndSetByte:                    return inline_unsafe_load_store(T_BYTE,   LS_get_set,       Volatile);
 457   case vmIntrinsics::_getAndSetShort:                   return inline_unsafe_load_store(T_SHORT,  LS_get_set,       Volatile);
 458   case vmIntrinsics::_getAndSetInt:                     return inline_unsafe_load_store(T_INT,    LS_get_set,       Volatile);
 459   case vmIntrinsics::_getAndSetLong:                    return inline_unsafe_load_store(T_LONG,   LS_get_set,       Volatile);
 460   case vmIntrinsics::_getAndSetReference:               return inline_unsafe_load_store(T_OBJECT, LS_get_set,       Volatile);
 461 
 462   case vmIntrinsics::_loadFence:
 463   case vmIntrinsics::_storeFence:
 464   case vmIntrinsics::_storeStoreFence:
 465   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
 466 
 467   case vmIntrinsics::_onSpinWait:               return inline_onspinwait();
 468 
 469   case vmIntrinsics::_currentCarrierThread:     return inline_native_currentCarrierThread();
 470   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
 471   case vmIntrinsics::_setCurrentThread:         return inline_native_setCurrentThread();
 472 
 473   case vmIntrinsics::_scopedValueCache:          return inline_native_scopedValueCache();
 474   case vmIntrinsics::_setScopedValueCache:       return inline_native_setScopedValueCache();
 475 
 476   case vmIntrinsics::_Continuation_pin:          return inline_native_Continuation_pinning(false);
 477   case vmIntrinsics::_Continuation_unpin:        return inline_native_Continuation_pinning(true);
 478 
 479 #if INCLUDE_JVMTI
 480   case vmIntrinsics::_notifyJvmtiVThreadStart:   return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_start()),
 481                                                                                          "notifyJvmtiStart", true, false);
 482   case vmIntrinsics::_notifyJvmtiVThreadEnd:     return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_end()),
 483                                                                                          "notifyJvmtiEnd", false, true);
 484   case vmIntrinsics::_notifyJvmtiVThreadMount:   return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_mount()),
 485                                                                                          "notifyJvmtiMount", false, false);
 486   case vmIntrinsics::_notifyJvmtiVThreadUnmount: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_unmount()),
 487                                                                                          "notifyJvmtiUnmount", false, false);
 488   case vmIntrinsics::_notifyJvmtiVThreadDisableSuspend: return inline_native_notify_jvmti_sync();
 489 #endif
 490 
 491 #ifdef JFR_HAVE_INTRINSICS
 492   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, JfrTime::time_function()), "counterTime");
 493   case vmIntrinsics::_getEventWriter:           return inline_native_getEventWriter();
 494   case vmIntrinsics::_jvm_commit:               return inline_native_jvm_commit();
 495 #endif
 496   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 497   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 498   case vmIntrinsics::_writeback0:               return inline_unsafe_writeback0();
 499   case vmIntrinsics::_writebackPreSync0:        return inline_unsafe_writebackSync0(true);
 500   case vmIntrinsics::_writebackPostSync0:       return inline_unsafe_writebackSync0(false);
 501   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 502   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 503   case vmIntrinsics::_setMemory:                return inline_unsafe_setMemory();
 504   case vmIntrinsics::_getLength:                return inline_native_getLength();
 505   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 506   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 507   case vmIntrinsics::_equalsB:                  return inline_array_equals(StrIntrinsicNode::LL);
 508   case vmIntrinsics::_equalsC:                  return inline_array_equals(StrIntrinsicNode::UU);
 509   case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex(T_INT);
 510   case vmIntrinsics::_Preconditions_checkLongIndex: return inline_preconditions_checkIndex(T_LONG);
 511   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 512 
 513   case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true);
 514   case vmIntrinsics::_newArray:                   return inline_unsafe_newArray(false);
 515 
 516   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 517 
 518   case vmIntrinsics::_isInstance:
 519   case vmIntrinsics::_isHidden:
 520   case vmIntrinsics::_getSuperclass:
 521   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 522 
 523   case vmIntrinsics::_floatToRawIntBits:
 524   case vmIntrinsics::_floatToIntBits:
 525   case vmIntrinsics::_intBitsToFloat:
 526   case vmIntrinsics::_doubleToRawLongBits:
 527   case vmIntrinsics::_doubleToLongBits:
 528   case vmIntrinsics::_longBitsToDouble:
 529   case vmIntrinsics::_floatToFloat16:
 530   case vmIntrinsics::_float16ToFloat:           return inline_fp_conversions(intrinsic_id());
 531   case vmIntrinsics::_sqrt_float16:             return inline_fp16_operations(intrinsic_id(), 1);
 532   case vmIntrinsics::_fma_float16:              return inline_fp16_operations(intrinsic_id(), 3);
 533   case vmIntrinsics::_floatIsFinite:
 534   case vmIntrinsics::_floatIsInfinite:
 535   case vmIntrinsics::_doubleIsFinite:
 536   case vmIntrinsics::_doubleIsInfinite:         return inline_fp_range_check(intrinsic_id());
 537 
 538   case vmIntrinsics::_numberOfLeadingZeros_i:
 539   case vmIntrinsics::_numberOfLeadingZeros_l:
 540   case vmIntrinsics::_numberOfTrailingZeros_i:
 541   case vmIntrinsics::_numberOfTrailingZeros_l:
 542   case vmIntrinsics::_bitCount_i:
 543   case vmIntrinsics::_bitCount_l:
 544   case vmIntrinsics::_reverse_i:
 545   case vmIntrinsics::_reverse_l:
 546   case vmIntrinsics::_reverseBytes_i:
 547   case vmIntrinsics::_reverseBytes_l:
 548   case vmIntrinsics::_reverseBytes_s:
 549   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
 550 
 551   case vmIntrinsics::_compress_i:
 552   case vmIntrinsics::_compress_l:
 553   case vmIntrinsics::_expand_i:
 554   case vmIntrinsics::_expand_l:                 return inline_bitshuffle_methods(intrinsic_id());
 555 
 556   case vmIntrinsics::_compareUnsigned_i:
 557   case vmIntrinsics::_compareUnsigned_l:        return inline_compare_unsigned(intrinsic_id());
 558 
 559   case vmIntrinsics::_divideUnsigned_i:
 560   case vmIntrinsics::_divideUnsigned_l:
 561   case vmIntrinsics::_remainderUnsigned_i:
 562   case vmIntrinsics::_remainderUnsigned_l:      return inline_divmod_methods(intrinsic_id());
 563 
 564   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
 565 
 566   case vmIntrinsics::_Reference_get:            return inline_reference_get();
 567   case vmIntrinsics::_Reference_refersTo0:      return inline_reference_refersTo0(false);
 568   case vmIntrinsics::_PhantomReference_refersTo0: return inline_reference_refersTo0(true);
 569   case vmIntrinsics::_Reference_clear0:         return inline_reference_clear0(false);
 570   case vmIntrinsics::_PhantomReference_clear0:  return inline_reference_clear0(true);
 571 
 572   case vmIntrinsics::_Class_cast:               return inline_Class_cast();
 573 
 574   case vmIntrinsics::_aescrypt_encryptBlock:
 575   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
 576 
 577   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 578   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 579     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
 580 
 581   case vmIntrinsics::_electronicCodeBook_encryptAESCrypt:
 582   case vmIntrinsics::_electronicCodeBook_decryptAESCrypt:
 583     return inline_electronicCodeBook_AESCrypt(intrinsic_id());
 584 
 585   case vmIntrinsics::_counterMode_AESCrypt:
 586     return inline_counterMode_AESCrypt(intrinsic_id());
 587 
 588   case vmIntrinsics::_galoisCounterMode_AESCrypt:
 589     return inline_galoisCounterMode_AESCrypt();
 590 
 591   case vmIntrinsics::_md5_implCompress:
 592   case vmIntrinsics::_sha_implCompress:
 593   case vmIntrinsics::_sha2_implCompress:
 594   case vmIntrinsics::_sha5_implCompress:
 595   case vmIntrinsics::_sha3_implCompress:
 596     return inline_digestBase_implCompress(intrinsic_id());
 597 
 598   case vmIntrinsics::_digestBase_implCompressMB:
 599     return inline_digestBase_implCompressMB(predicate);
 600 
 601   case vmIntrinsics::_multiplyToLen:
 602     return inline_multiplyToLen();
 603 
 604   case vmIntrinsics::_squareToLen:
 605     return inline_squareToLen();
 606 
 607   case vmIntrinsics::_mulAdd:
 608     return inline_mulAdd();
 609 
 610   case vmIntrinsics::_montgomeryMultiply:
 611     return inline_montgomeryMultiply();
 612   case vmIntrinsics::_montgomerySquare:
 613     return inline_montgomerySquare();
 614 
 615   case vmIntrinsics::_bigIntegerRightShiftWorker:
 616     return inline_bigIntegerShift(true);
 617   case vmIntrinsics::_bigIntegerLeftShiftWorker:
 618     return inline_bigIntegerShift(false);
 619 
 620   case vmIntrinsics::_vectorizedMismatch:
 621     return inline_vectorizedMismatch();
 622 
 623   case vmIntrinsics::_ghash_processBlocks:
 624     return inline_ghash_processBlocks();
 625   case vmIntrinsics::_chacha20Block:
 626     return inline_chacha20Block();
 627   case vmIntrinsics::_base64_encodeBlock:
 628     return inline_base64_encodeBlock();
 629   case vmIntrinsics::_base64_decodeBlock:
 630     return inline_base64_decodeBlock();
 631   case vmIntrinsics::_poly1305_processBlocks:
 632     return inline_poly1305_processBlocks();
 633   case vmIntrinsics::_intpoly_montgomeryMult_P256:
 634     return inline_intpoly_montgomeryMult_P256();
 635   case vmIntrinsics::_intpoly_assign:
 636     return inline_intpoly_assign();
 637   case vmIntrinsics::_encodeISOArray:
 638   case vmIntrinsics::_encodeByteISOArray:
 639     return inline_encodeISOArray(false);
 640   case vmIntrinsics::_encodeAsciiArray:
 641     return inline_encodeISOArray(true);
 642 
 643   case vmIntrinsics::_updateCRC32:
 644     return inline_updateCRC32();
 645   case vmIntrinsics::_updateBytesCRC32:
 646     return inline_updateBytesCRC32();
 647   case vmIntrinsics::_updateByteBufferCRC32:
 648     return inline_updateByteBufferCRC32();
 649 
 650   case vmIntrinsics::_updateBytesCRC32C:
 651     return inline_updateBytesCRC32C();
 652   case vmIntrinsics::_updateDirectByteBufferCRC32C:
 653     return inline_updateDirectByteBufferCRC32C();
 654 
 655   case vmIntrinsics::_updateBytesAdler32:
 656     return inline_updateBytesAdler32();
 657   case vmIntrinsics::_updateByteBufferAdler32:
 658     return inline_updateByteBufferAdler32();
 659 
 660   case vmIntrinsics::_profileBoolean:
 661     return inline_profileBoolean();
 662   case vmIntrinsics::_isCompileConstant:
 663     return inline_isCompileConstant();
 664 
 665   case vmIntrinsics::_countPositives:
 666     return inline_countPositives();
 667 
 668   case vmIntrinsics::_fmaD:
 669   case vmIntrinsics::_fmaF:
 670     return inline_fma(intrinsic_id());
 671 
 672   case vmIntrinsics::_isDigit:
 673   case vmIntrinsics::_isLowerCase:
 674   case vmIntrinsics::_isUpperCase:
 675   case vmIntrinsics::_isWhitespace:
 676     return inline_character_compare(intrinsic_id());
 677 
 678   case vmIntrinsics::_min:
 679   case vmIntrinsics::_max:
 680   case vmIntrinsics::_min_strict:
 681   case vmIntrinsics::_max_strict:
 682     return inline_min_max(intrinsic_id());
 683 
 684   case vmIntrinsics::_maxF:
 685   case vmIntrinsics::_minF:
 686   case vmIntrinsics::_maxD:
 687   case vmIntrinsics::_minD:
 688   case vmIntrinsics::_maxF_strict:
 689   case vmIntrinsics::_minF_strict:
 690   case vmIntrinsics::_maxD_strict:
 691   case vmIntrinsics::_minD_strict:
 692       return inline_fp_min_max(intrinsic_id());
 693 
 694   case vmIntrinsics::_VectorUnaryOp:
 695     return inline_vector_nary_operation(1);
 696   case vmIntrinsics::_VectorBinaryOp:
 697     return inline_vector_nary_operation(2);
 698   case vmIntrinsics::_VectorTernaryOp:
 699     return inline_vector_nary_operation(3);
 700   case vmIntrinsics::_VectorFromBitsCoerced:
 701     return inline_vector_frombits_coerced();
 702   case vmIntrinsics::_VectorMaskOp:
 703     return inline_vector_mask_operation();
 704   case vmIntrinsics::_VectorLoadOp:
 705     return inline_vector_mem_operation(/*is_store=*/false);
 706   case vmIntrinsics::_VectorLoadMaskedOp:
 707     return inline_vector_mem_masked_operation(/*is_store*/false);
 708   case vmIntrinsics::_VectorStoreOp:
 709     return inline_vector_mem_operation(/*is_store=*/true);
 710   case vmIntrinsics::_VectorStoreMaskedOp:
 711     return inline_vector_mem_masked_operation(/*is_store=*/true);
 712   case vmIntrinsics::_VectorGatherOp:
 713     return inline_vector_gather_scatter(/*is_scatter*/ false);
 714   case vmIntrinsics::_VectorScatterOp:
 715     return inline_vector_gather_scatter(/*is_scatter*/ true);
 716   case vmIntrinsics::_VectorReductionCoerced:
 717     return inline_vector_reduction();
 718   case vmIntrinsics::_VectorTest:
 719     return inline_vector_test();
 720   case vmIntrinsics::_VectorBlend:
 721     return inline_vector_blend();
 722   case vmIntrinsics::_VectorRearrange:
 723     return inline_vector_rearrange();
 724   case vmIntrinsics::_VectorSelectFrom:
 725     return inline_vector_select_from();
 726   case vmIntrinsics::_VectorCompare:
 727     return inline_vector_compare();
 728   case vmIntrinsics::_VectorBroadcastInt:
 729     return inline_vector_broadcast_int();
 730   case vmIntrinsics::_VectorConvert:
 731     return inline_vector_convert();
 732   case vmIntrinsics::_VectorInsert:
 733     return inline_vector_insert();
 734   case vmIntrinsics::_VectorExtract:
 735     return inline_vector_extract();
 736   case vmIntrinsics::_VectorCompressExpand:
 737     return inline_vector_compress_expand();
 738   case vmIntrinsics::_VectorSelectFromTwoVectorOp:
 739     return inline_vector_select_from_two_vectors();
 740   case vmIntrinsics::_IndexVector:
 741     return inline_index_vector();
 742   case vmIntrinsics::_IndexPartiallyInUpperRange:
 743     return inline_index_partially_in_upper_range();
 744 
 745   case vmIntrinsics::_getObjectSize:
 746     return inline_getObjectSize();
 747 
 748   case vmIntrinsics::_blackhole:
 749     return inline_blackhole();
 750 
 751   default:
 752     // If you get here, it may be that someone has added a new intrinsic
 753     // to the list in vmIntrinsics.hpp without implementing it here.
 754 #ifndef PRODUCT
 755     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 756       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 757                     vmIntrinsics::name_at(intrinsic_id()), vmIntrinsics::as_int(intrinsic_id()));
 758     }
 759 #endif
 760     return false;
 761   }
 762 }
 763 
 764 Node* LibraryCallKit::try_to_predicate(int predicate) {
 765   if (!jvms()->has_method()) {
 766     // Root JVMState has a null method.
 767     assert(map()->memory()->Opcode() == Op_Parm, "");
 768     // Insert the memory aliasing node
 769     set_all_memory(reset_memory());
 770   }
 771   assert(merged_memory(), "");
 772 
 773   switch (intrinsic_id()) {
 774   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 775     return inline_cipherBlockChaining_AESCrypt_predicate(false);
 776   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 777     return inline_cipherBlockChaining_AESCrypt_predicate(true);
 778   case vmIntrinsics::_electronicCodeBook_encryptAESCrypt:
 779     return inline_electronicCodeBook_AESCrypt_predicate(false);
 780   case vmIntrinsics::_electronicCodeBook_decryptAESCrypt:
 781     return inline_electronicCodeBook_AESCrypt_predicate(true);
 782   case vmIntrinsics::_counterMode_AESCrypt:
 783     return inline_counterMode_AESCrypt_predicate();
 784   case vmIntrinsics::_digestBase_implCompressMB:
 785     return inline_digestBase_implCompressMB_predicate(predicate);
 786   case vmIntrinsics::_galoisCounterMode_AESCrypt:
 787     return inline_galoisCounterMode_AESCrypt_predicate();
 788 
 789   default:
 790     // If you get here, it may be that someone has added a new intrinsic
 791     // to the list in vmIntrinsics.hpp without implementing it here.
 792 #ifndef PRODUCT
 793     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 794       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
 795                     vmIntrinsics::name_at(intrinsic_id()), vmIntrinsics::as_int(intrinsic_id()));
 796     }
 797 #endif
 798     Node* slow_ctl = control();
 799     set_control(top()); // No fast path intrinsic
 800     return slow_ctl;
 801   }
 802 }
 803 
 804 //------------------------------set_result-------------------------------
 805 // Helper function for finishing intrinsics.
 806 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
 807   record_for_igvn(region);
 808   set_control(_gvn.transform(region));
 809   set_result( _gvn.transform(value));
 810   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
 811 }
 812 
 813 //------------------------------generate_guard---------------------------
 814 // Helper function for generating guarded fast-slow graph structures.
 815 // The given 'test', if true, guards a slow path.  If the test fails
 816 // then a fast path can be taken.  (We generally hope it fails.)
 817 // In all cases, GraphKit::control() is updated to the fast path.
 818 // The returned value represents the control for the slow path.
 819 // The return value is never 'top'; it is either a valid control
 820 // or null if it is obvious that the slow path can never be taken.
 821 // Also, if region and the slow control are not null, the slow edge
 822 // is appended to the region.
 823 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
 824   if (stopped()) {
 825     // Already short circuited.
 826     return nullptr;
 827   }
 828 
 829   // Build an if node and its projections.
 830   // If test is true we take the slow path, which we assume is uncommon.
 831   if (_gvn.type(test) == TypeInt::ZERO) {
 832     // The slow branch is never taken.  No need to build this guard.
 833     return nullptr;
 834   }
 835 
 836   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
 837 
 838   Node* if_slow = _gvn.transform(new IfTrueNode(iff));
 839   if (if_slow == top()) {
 840     // The slow branch is never taken.  No need to build this guard.
 841     return nullptr;
 842   }
 843 
 844   if (region != nullptr)
 845     region->add_req(if_slow);
 846 
 847   Node* if_fast = _gvn.transform(new IfFalseNode(iff));
 848   set_control(if_fast);
 849 
 850   return if_slow;
 851 }
 852 
 853 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
 854   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
 855 }
 856 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
 857   return generate_guard(test, region, PROB_FAIR);
 858 }
 859 
 860 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
 861                                                      Node* *pos_index) {
 862   if (stopped())
 863     return nullptr;                // already stopped
 864   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
 865     return nullptr;                // index is already adequately typed
 866   Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0)));
 867   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
 868   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
 869   if (is_neg != nullptr && pos_index != nullptr) {
 870     // Emulate effect of Parse::adjust_map_after_if.
 871     Node* ccast = new CastIINode(control(), index, TypeInt::POS);
 872     (*pos_index) = _gvn.transform(ccast);
 873   }
 874   return is_neg;
 875 }
 876 
 877 // Make sure that 'position' is a valid limit index, in [0..length].
 878 // There are two equivalent plans for checking this:
 879 //   A. (offset + copyLength)  unsigned<=  arrayLength
 880 //   B. offset  <=  (arrayLength - copyLength)
 881 // We require that all of the values above, except for the sum and
 882 // difference, are already known to be non-negative.
 883 // Plan A is robust in the face of overflow, if offset and copyLength
 884 // are both hugely positive.
 885 //
 886 // Plan B is less direct and intuitive, but it does not overflow at
 887 // all, since the difference of two non-negatives is always
 888 // representable.  Whenever Java methods must perform the equivalent
 889 // check they generally use Plan B instead of Plan A.
 890 // For the moment we use Plan A.
 891 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
 892                                                   Node* subseq_length,
 893                                                   Node* array_length,
 894                                                   RegionNode* region) {
 895   if (stopped())
 896     return nullptr;                // already stopped
 897   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
 898   if (zero_offset && subseq_length->eqv_uncast(array_length))
 899     return nullptr;                // common case of whole-array copy
 900   Node* last = subseq_length;
 901   if (!zero_offset)             // last += offset
 902     last = _gvn.transform(new AddINode(last, offset));
 903   Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last));
 904   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
 905   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
 906   return is_over;
 907 }
 908 
 909 // Emit range checks for the given String.value byte array
 910 void LibraryCallKit::generate_string_range_check(Node* array, Node* offset, Node* count, bool char_count) {
 911   if (stopped()) {
 912     return; // already stopped
 913   }
 914   RegionNode* bailout = new RegionNode(1);
 915   record_for_igvn(bailout);
 916   if (char_count) {
 917     // Convert char count to byte count
 918     count = _gvn.transform(new LShiftINode(count, intcon(1)));
 919   }
 920 
 921   // Offset and count must not be negative
 922   generate_negative_guard(offset, bailout);
 923   generate_negative_guard(count, bailout);
 924   // Offset + count must not exceed length of array
 925   generate_limit_guard(offset, count, load_array_length(array), bailout);
 926 
 927   if (bailout->req() > 1) {
 928     PreserveJVMState pjvms(this);
 929     set_control(_gvn.transform(bailout));
 930     uncommon_trap(Deoptimization::Reason_intrinsic,
 931                   Deoptimization::Action_maybe_recompile);
 932   }
 933 }
 934 
 935 Node* LibraryCallKit::current_thread_helper(Node*& tls_output, ByteSize handle_offset,
 936                                             bool is_immutable) {
 937   ciKlass* thread_klass = env()->Thread_klass();
 938   const Type* thread_type
 939     = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
 940 
 941   Node* thread = _gvn.transform(new ThreadLocalNode());
 942   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(handle_offset));
 943   tls_output = thread;
 944 
 945   Node* thread_obj_handle
 946     = (is_immutable
 947       ? LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(),
 948         TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered)
 949       : make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered));
 950   thread_obj_handle = _gvn.transform(thread_obj_handle);
 951 
 952   DecoratorSet decorators = IN_NATIVE;
 953   if (is_immutable) {
 954     decorators |= C2_IMMUTABLE_MEMORY;
 955   }
 956   return access_load(thread_obj_handle, thread_type, T_OBJECT, decorators);
 957 }
 958 
 959 //--------------------------generate_current_thread--------------------
 960 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
 961   return current_thread_helper(tls_output, JavaThread::threadObj_offset(),
 962                                /*is_immutable*/false);
 963 }
 964 
 965 //--------------------------generate_virtual_thread--------------------
 966 Node* LibraryCallKit::generate_virtual_thread(Node* tls_output) {
 967   return current_thread_helper(tls_output, JavaThread::vthread_offset(),
 968                                !C->method()->changes_current_thread());
 969 }
 970 
 971 //------------------------------make_string_method_node------------------------
 972 // Helper method for String intrinsic functions. This version is called with
 973 // str1 and str2 pointing to byte[] nodes containing Latin1 or UTF16 encoded
 974 // characters (depending on 'is_byte'). cnt1 and cnt2 are pointing to Int nodes
 975 // containing the lengths of str1 and str2.
 976 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae) {
 977   Node* result = nullptr;
 978   switch (opcode) {
 979   case Op_StrIndexOf:
 980     result = new StrIndexOfNode(control(), memory(TypeAryPtr::BYTES),
 981                                 str1_start, cnt1, str2_start, cnt2, ae);
 982     break;
 983   case Op_StrComp:
 984     result = new StrCompNode(control(), memory(TypeAryPtr::BYTES),
 985                              str1_start, cnt1, str2_start, cnt2, ae);
 986     break;
 987   case Op_StrEquals:
 988     // We already know that cnt1 == cnt2 here (checked in 'inline_string_equals').
 989     // Use the constant length if there is one because optimized match rule may exist.
 990     result = new StrEqualsNode(control(), memory(TypeAryPtr::BYTES),
 991                                str1_start, str2_start, cnt2->is_Con() ? cnt2 : cnt1, ae);
 992     break;
 993   default:
 994     ShouldNotReachHere();
 995     return nullptr;
 996   }
 997 
 998   // All these intrinsics have checks.
 999   C->set_has_split_ifs(true); // Has chance for split-if optimization
1000   clear_upper_avx();
1001 
1002   return _gvn.transform(result);
1003 }
1004 
1005 //------------------------------inline_string_compareTo------------------------
1006 bool LibraryCallKit::inline_string_compareTo(StrIntrinsicNode::ArgEnc ae) {
1007   Node* arg1 = argument(0);
1008   Node* arg2 = argument(1);
1009 
1010   arg1 = must_be_not_null(arg1, true);
1011   arg2 = must_be_not_null(arg2, true);
1012 
1013   // Get start addr and length of first argument
1014   Node* arg1_start  = array_element_address(arg1, intcon(0), T_BYTE);
1015   Node* arg1_cnt    = load_array_length(arg1);
1016 
1017   // Get start addr and length of second argument
1018   Node* arg2_start  = array_element_address(arg2, intcon(0), T_BYTE);
1019   Node* arg2_cnt    = load_array_length(arg2);
1020 
1021   Node* result = make_string_method_node(Op_StrComp, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae);
1022   set_result(result);
1023   return true;
1024 }
1025 
1026 //------------------------------inline_string_equals------------------------
1027 bool LibraryCallKit::inline_string_equals(StrIntrinsicNode::ArgEnc ae) {
1028   Node* arg1 = argument(0);
1029   Node* arg2 = argument(1);
1030 
1031   // paths (plus control) merge
1032   RegionNode* region = new RegionNode(3);
1033   Node* phi = new PhiNode(region, TypeInt::BOOL);
1034 
1035   if (!stopped()) {
1036 
1037     arg1 = must_be_not_null(arg1, true);
1038     arg2 = must_be_not_null(arg2, true);
1039 
1040     // Get start addr and length of first argument
1041     Node* arg1_start  = array_element_address(arg1, intcon(0), T_BYTE);
1042     Node* arg1_cnt    = load_array_length(arg1);
1043 
1044     // Get start addr and length of second argument
1045     Node* arg2_start  = array_element_address(arg2, intcon(0), T_BYTE);
1046     Node* arg2_cnt    = load_array_length(arg2);
1047 
1048     // Check for arg1_cnt != arg2_cnt
1049     Node* cmp = _gvn.transform(new CmpINode(arg1_cnt, arg2_cnt));
1050     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
1051     Node* if_ne = generate_slow_guard(bol, nullptr);
1052     if (if_ne != nullptr) {
1053       phi->init_req(2, intcon(0));
1054       region->init_req(2, if_ne);
1055     }
1056 
1057     // Check for count == 0 is done by assembler code for StrEquals.
1058 
1059     if (!stopped()) {
1060       Node* equals = make_string_method_node(Op_StrEquals, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae);
1061       phi->init_req(1, equals);
1062       region->init_req(1, control());
1063     }
1064   }
1065 
1066   // post merge
1067   set_control(_gvn.transform(region));
1068   record_for_igvn(region);
1069 
1070   set_result(_gvn.transform(phi));
1071   return true;
1072 }
1073 
1074 //------------------------------inline_array_equals----------------------------
1075 bool LibraryCallKit::inline_array_equals(StrIntrinsicNode::ArgEnc ae) {
1076   assert(ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::LL, "unsupported array types");
1077   Node* arg1 = argument(0);
1078   Node* arg2 = argument(1);
1079 
1080   const TypeAryPtr* mtype = (ae == StrIntrinsicNode::UU) ? TypeAryPtr::CHARS : TypeAryPtr::BYTES;
1081   set_result(_gvn.transform(new AryEqNode(control(), memory(mtype), arg1, arg2, ae)));
1082   clear_upper_avx();
1083 
1084   return true;
1085 }
1086 
1087 
1088 //------------------------------inline_countPositives------------------------------
1089 bool LibraryCallKit::inline_countPositives() {
1090   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1091     return false;
1092   }
1093 
1094   assert(callee()->signature()->size() == 3, "countPositives has 3 parameters");
1095   // no receiver since it is static method
1096   Node* ba         = argument(0);
1097   Node* offset     = argument(1);
1098   Node* len        = argument(2);
1099 
1100   ba = must_be_not_null(ba, true);
1101 
1102   // Range checks
1103   generate_string_range_check(ba, offset, len, false);
1104   if (stopped()) {
1105     return true;
1106   }
1107   Node* ba_start = array_element_address(ba, offset, T_BYTE);
1108   Node* result = new CountPositivesNode(control(), memory(TypeAryPtr::BYTES), ba_start, len);
1109   set_result(_gvn.transform(result));
1110   clear_upper_avx();
1111   return true;
1112 }
1113 
1114 bool LibraryCallKit::inline_preconditions_checkIndex(BasicType bt) {
1115   Node* index = argument(0);
1116   Node* length = bt == T_INT ? argument(1) : argument(2);
1117   if (too_many_traps(Deoptimization::Reason_intrinsic) || too_many_traps(Deoptimization::Reason_range_check)) {
1118     return false;
1119   }
1120 
1121   // check that length is positive
1122   Node* len_pos_cmp = _gvn.transform(CmpNode::make(length, integercon(0, bt), bt));
1123   Node* len_pos_bol = _gvn.transform(new BoolNode(len_pos_cmp, BoolTest::ge));
1124 
1125   {
1126     BuildCutout unless(this, len_pos_bol, PROB_MAX);
1127     uncommon_trap(Deoptimization::Reason_intrinsic,
1128                   Deoptimization::Action_make_not_entrant);
1129   }
1130 
1131   if (stopped()) {
1132     // Length is known to be always negative during compilation and the IR graph so far constructed is good so return success
1133     return true;
1134   }
1135 
1136   // length is now known positive, add a cast node to make this explicit
1137   jlong upper_bound = _gvn.type(length)->is_integer(bt)->hi_as_long();
1138   Node* casted_length = ConstraintCastNode::make_cast_for_basic_type(
1139       control(), length, TypeInteger::make(0, upper_bound, Type::WidenMax, bt),
1140       ConstraintCastNode::RegularDependency, bt);
1141   casted_length = _gvn.transform(casted_length);
1142   replace_in_map(length, casted_length);
1143   length = casted_length;
1144 
1145   // Use an unsigned comparison for the range check itself
1146   Node* rc_cmp = _gvn.transform(CmpNode::make(index, length, bt, true));
1147   BoolTest::mask btest = BoolTest::lt;
1148   Node* rc_bool = _gvn.transform(new BoolNode(rc_cmp, btest));
1149   RangeCheckNode* rc = new RangeCheckNode(control(), rc_bool, PROB_MAX, COUNT_UNKNOWN);
1150   _gvn.set_type(rc, rc->Value(&_gvn));
1151   if (!rc_bool->is_Con()) {
1152     record_for_igvn(rc);
1153   }
1154   set_control(_gvn.transform(new IfTrueNode(rc)));
1155   {
1156     PreserveJVMState pjvms(this);
1157     set_control(_gvn.transform(new IfFalseNode(rc)));
1158     uncommon_trap(Deoptimization::Reason_range_check,
1159                   Deoptimization::Action_make_not_entrant);
1160   }
1161 
1162   if (stopped()) {
1163     // Range check is known to always fail during compilation and the IR graph so far constructed is good so return success
1164     return true;
1165   }
1166 
1167   // index is now known to be >= 0 and < length, cast it
1168   Node* result = ConstraintCastNode::make_cast_for_basic_type(
1169       control(), index, TypeInteger::make(0, upper_bound, Type::WidenMax, bt),
1170       ConstraintCastNode::RegularDependency, bt);
1171   result = _gvn.transform(result);
1172   set_result(result);
1173   replace_in_map(index, result);
1174   return true;
1175 }
1176 
1177 //------------------------------inline_string_indexOf------------------------
1178 bool LibraryCallKit::inline_string_indexOf(StrIntrinsicNode::ArgEnc ae) {
1179   if (!Matcher::match_rule_supported(Op_StrIndexOf)) {
1180     return false;
1181   }
1182   Node* src = argument(0);
1183   Node* tgt = argument(1);
1184 
1185   // Make the merge point
1186   RegionNode* result_rgn = new RegionNode(4);
1187   Node*       result_phi = new PhiNode(result_rgn, TypeInt::INT);
1188 
1189   src = must_be_not_null(src, true);
1190   tgt = must_be_not_null(tgt, true);
1191 
1192   // Get start addr and length of source string
1193   Node* src_start = array_element_address(src, intcon(0), T_BYTE);
1194   Node* src_count = load_array_length(src);
1195 
1196   // Get start addr and length of substring
1197   Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE);
1198   Node* tgt_count = load_array_length(tgt);
1199 
1200   Node* result = nullptr;
1201   bool call_opt_stub = (StubRoutines::_string_indexof_array[ae] != nullptr);
1202 
1203   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
1204     // Divide src size by 2 if String is UTF16 encoded
1205     src_count = _gvn.transform(new RShiftINode(src_count, intcon(1)));
1206   }
1207   if (ae == StrIntrinsicNode::UU) {
1208     // Divide substring size by 2 if String is UTF16 encoded
1209     tgt_count = _gvn.transform(new RShiftINode(tgt_count, intcon(1)));
1210   }
1211 
1212   if (call_opt_stub) {
1213     Node* call = make_runtime_call(RC_LEAF, OptoRuntime::string_IndexOf_Type(),
1214                                    StubRoutines::_string_indexof_array[ae],
1215                                    "stringIndexOf", TypePtr::BOTTOM, src_start,
1216                                    src_count, tgt_start, tgt_count);
1217     result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1218   } else {
1219     result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count,
1220                                result_rgn, result_phi, ae);
1221   }
1222   if (result != nullptr) {
1223     result_phi->init_req(3, result);
1224     result_rgn->init_req(3, control());
1225   }
1226   set_control(_gvn.transform(result_rgn));
1227   record_for_igvn(result_rgn);
1228   set_result(_gvn.transform(result_phi));
1229 
1230   return true;
1231 }
1232 
1233 //-----------------------------inline_string_indexOfI-----------------------
1234 bool LibraryCallKit::inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae) {
1235   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1236     return false;
1237   }
1238   if (!Matcher::match_rule_supported(Op_StrIndexOf)) {
1239     return false;
1240   }
1241 
1242   assert(callee()->signature()->size() == 5, "String.indexOf() has 5 arguments");
1243   Node* src         = argument(0); // byte[]
1244   Node* src_count   = argument(1); // char count
1245   Node* tgt         = argument(2); // byte[]
1246   Node* tgt_count   = argument(3); // char count
1247   Node* from_index  = argument(4); // char index
1248 
1249   src = must_be_not_null(src, true);
1250   tgt = must_be_not_null(tgt, true);
1251 
1252   // Multiply byte array index by 2 if String is UTF16 encoded
1253   Node* src_offset = (ae == StrIntrinsicNode::LL) ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1)));
1254   src_count = _gvn.transform(new SubINode(src_count, from_index));
1255   Node* src_start = array_element_address(src, src_offset, T_BYTE);
1256   Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE);
1257 
1258   // Range checks
1259   generate_string_range_check(src, src_offset, src_count, ae != StrIntrinsicNode::LL);
1260   generate_string_range_check(tgt, intcon(0), tgt_count, ae == StrIntrinsicNode::UU);
1261   if (stopped()) {
1262     return true;
1263   }
1264 
1265   RegionNode* region = new RegionNode(5);
1266   Node* phi = new PhiNode(region, TypeInt::INT);
1267   Node* result = nullptr;
1268 
1269   bool call_opt_stub = (StubRoutines::_string_indexof_array[ae] != nullptr);
1270 
1271   if (call_opt_stub) {
1272     Node* call = make_runtime_call(RC_LEAF, OptoRuntime::string_IndexOf_Type(),
1273                                    StubRoutines::_string_indexof_array[ae],
1274                                    "stringIndexOf", TypePtr::BOTTOM, src_start,
1275                                    src_count, tgt_start, tgt_count);
1276     result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1277   } else {
1278     result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count,
1279                                region, phi, ae);
1280   }
1281   if (result != nullptr) {
1282     // The result is index relative to from_index if substring was found, -1 otherwise.
1283     // Generate code which will fold into cmove.
1284     Node* cmp = _gvn.transform(new CmpINode(result, intcon(0)));
1285     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt));
1286 
1287     Node* if_lt = generate_slow_guard(bol, nullptr);
1288     if (if_lt != nullptr) {
1289       // result == -1
1290       phi->init_req(3, result);
1291       region->init_req(3, if_lt);
1292     }
1293     if (!stopped()) {
1294       result = _gvn.transform(new AddINode(result, from_index));
1295       phi->init_req(4, result);
1296       region->init_req(4, control());
1297     }
1298   }
1299 
1300   set_control(_gvn.transform(region));
1301   record_for_igvn(region);
1302   set_result(_gvn.transform(phi));
1303   clear_upper_avx();
1304 
1305   return true;
1306 }
1307 
1308 // Create StrIndexOfNode with fast path checks
1309 Node* LibraryCallKit::make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count,
1310                                         RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae) {
1311   // Check for substr count > string count
1312   Node* cmp = _gvn.transform(new CmpINode(tgt_count, src_count));
1313   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt));
1314   Node* if_gt = generate_slow_guard(bol, nullptr);
1315   if (if_gt != nullptr) {
1316     phi->init_req(1, intcon(-1));
1317     region->init_req(1, if_gt);
1318   }
1319   if (!stopped()) {
1320     // Check for substr count == 0
1321     cmp = _gvn.transform(new CmpINode(tgt_count, intcon(0)));
1322     bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
1323     Node* if_zero = generate_slow_guard(bol, nullptr);
1324     if (if_zero != nullptr) {
1325       phi->init_req(2, intcon(0));
1326       region->init_req(2, if_zero);
1327     }
1328   }
1329   if (!stopped()) {
1330     return make_string_method_node(Op_StrIndexOf, src_start, src_count, tgt_start, tgt_count, ae);
1331   }
1332   return nullptr;
1333 }
1334 
1335 //-----------------------------inline_string_indexOfChar-----------------------
1336 bool LibraryCallKit::inline_string_indexOfChar(StrIntrinsicNode::ArgEnc ae) {
1337   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1338     return false;
1339   }
1340   if (!Matcher::match_rule_supported(Op_StrIndexOfChar)) {
1341     return false;
1342   }
1343   assert(callee()->signature()->size() == 4, "String.indexOfChar() has 4 arguments");
1344   Node* src         = argument(0); // byte[]
1345   Node* int_ch      = argument(1);
1346   Node* from_index  = argument(2);
1347   Node* max         = argument(3);
1348 
1349   src = must_be_not_null(src, true);
1350 
1351   Node* src_offset = ae == StrIntrinsicNode::L ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1)));
1352   Node* src_start = array_element_address(src, src_offset, T_BYTE);
1353   Node* src_count = _gvn.transform(new SubINode(max, from_index));
1354 
1355   // Range checks
1356   generate_string_range_check(src, src_offset, src_count, ae == StrIntrinsicNode::U);
1357 
1358   // Check for int_ch >= 0
1359   Node* int_ch_cmp = _gvn.transform(new CmpINode(int_ch, intcon(0)));
1360   Node* int_ch_bol = _gvn.transform(new BoolNode(int_ch_cmp, BoolTest::ge));
1361   {
1362     BuildCutout unless(this, int_ch_bol, PROB_MAX);
1363     uncommon_trap(Deoptimization::Reason_intrinsic,
1364                   Deoptimization::Action_maybe_recompile);
1365   }
1366   if (stopped()) {
1367     return true;
1368   }
1369 
1370   RegionNode* region = new RegionNode(3);
1371   Node* phi = new PhiNode(region, TypeInt::INT);
1372 
1373   Node* result = new StrIndexOfCharNode(control(), memory(TypeAryPtr::BYTES), src_start, src_count, int_ch, ae);
1374   C->set_has_split_ifs(true); // Has chance for split-if optimization
1375   _gvn.transform(result);
1376 
1377   Node* cmp = _gvn.transform(new CmpINode(result, intcon(0)));
1378   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt));
1379 
1380   Node* if_lt = generate_slow_guard(bol, nullptr);
1381   if (if_lt != nullptr) {
1382     // result == -1
1383     phi->init_req(2, result);
1384     region->init_req(2, if_lt);
1385   }
1386   if (!stopped()) {
1387     result = _gvn.transform(new AddINode(result, from_index));
1388     phi->init_req(1, result);
1389     region->init_req(1, control());
1390   }
1391   set_control(_gvn.transform(region));
1392   record_for_igvn(region);
1393   set_result(_gvn.transform(phi));
1394   clear_upper_avx();
1395 
1396   return true;
1397 }
1398 //---------------------------inline_string_copy---------------------
1399 // compressIt == true --> generate a compressed copy operation (compress char[]/byte[] to byte[])
1400 //   int StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len)
1401 //   int StringUTF16.compress(byte[] src, int srcOff, byte[] dst, int dstOff, int len)
1402 // compressIt == false --> generate an inflated copy operation (inflate byte[] to char[]/byte[])
1403 //   void StringLatin1.inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len)
1404 //   void StringLatin1.inflate(byte[] src, int srcOff, byte[] dst, int dstOff, int len)
1405 bool LibraryCallKit::inline_string_copy(bool compress) {
1406   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1407     return false;
1408   }
1409   int nargs = 5;  // 2 oops, 3 ints
1410   assert(callee()->signature()->size() == nargs, "string copy has 5 arguments");
1411 
1412   Node* src         = argument(0);
1413   Node* src_offset  = argument(1);
1414   Node* dst         = argument(2);
1415   Node* dst_offset  = argument(3);
1416   Node* length      = argument(4);
1417 
1418   // Check for allocation before we add nodes that would confuse
1419   // tightly_coupled_allocation()
1420   AllocateArrayNode* alloc = tightly_coupled_allocation(dst);
1421 
1422   // Figure out the size and type of the elements we will be copying.
1423   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
1424   const TypeAryPtr* dst_type = dst->Value(&_gvn)->isa_aryptr();
1425   if (src_type == nullptr || dst_type == nullptr) {
1426     return false;
1427   }
1428   BasicType src_elem = src_type->elem()->array_element_basic_type();
1429   BasicType dst_elem = dst_type->elem()->array_element_basic_type();
1430   assert((compress && dst_elem == T_BYTE && (src_elem == T_BYTE || src_elem == T_CHAR)) ||
1431          (!compress && src_elem == T_BYTE && (dst_elem == T_BYTE || dst_elem == T_CHAR)),
1432          "Unsupported array types for inline_string_copy");
1433 
1434   src = must_be_not_null(src, true);
1435   dst = must_be_not_null(dst, true);
1436 
1437   // Convert char[] offsets to byte[] offsets
1438   bool convert_src = (compress && src_elem == T_BYTE);
1439   bool convert_dst = (!compress && dst_elem == T_BYTE);
1440   if (convert_src) {
1441     src_offset = _gvn.transform(new LShiftINode(src_offset, intcon(1)));
1442   } else if (convert_dst) {
1443     dst_offset = _gvn.transform(new LShiftINode(dst_offset, intcon(1)));
1444   }
1445 
1446   // Range checks
1447   generate_string_range_check(src, src_offset, length, convert_src);
1448   generate_string_range_check(dst, dst_offset, length, convert_dst);
1449   if (stopped()) {
1450     return true;
1451   }
1452 
1453   Node* src_start = array_element_address(src, src_offset, src_elem);
1454   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
1455   // 'src_start' points to src array + scaled offset
1456   // 'dst_start' points to dst array + scaled offset
1457   Node* count = nullptr;
1458   if (compress) {
1459     count = compress_string(src_start, TypeAryPtr::get_array_body_type(src_elem), dst_start, length);
1460   } else {
1461     inflate_string(src_start, dst_start, TypeAryPtr::get_array_body_type(dst_elem), length);
1462   }
1463 
1464   if (alloc != nullptr) {
1465     if (alloc->maybe_set_complete(&_gvn)) {
1466       // "You break it, you buy it."
1467       InitializeNode* init = alloc->initialization();
1468       assert(init->is_complete(), "we just did this");
1469       init->set_complete_with_arraycopy();
1470       assert(dst->is_CheckCastPP(), "sanity");
1471       assert(dst->in(0)->in(0) == init, "dest pinned");
1472     }
1473     // Do not let stores that initialize this object be reordered with
1474     // a subsequent store that would make this object accessible by
1475     // other threads.
1476     // Record what AllocateNode this StoreStore protects so that
1477     // escape analysis can go from the MemBarStoreStoreNode to the
1478     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1479     // based on the escape status of the AllocateNode.
1480     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
1481   }
1482   if (compress) {
1483     set_result(_gvn.transform(count));
1484   }
1485   clear_upper_avx();
1486 
1487   return true;
1488 }
1489 
1490 #ifdef _LP64
1491 #define XTOP ,top() /*additional argument*/
1492 #else  //_LP64
1493 #define XTOP        /*no additional argument*/
1494 #endif //_LP64
1495 
1496 //------------------------inline_string_toBytesU--------------------------
1497 // public static byte[] StringUTF16.toBytes(char[] value, int off, int len)
1498 bool LibraryCallKit::inline_string_toBytesU() {
1499   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1500     return false;
1501   }
1502   // Get the arguments.
1503   Node* value     = argument(0);
1504   Node* offset    = argument(1);
1505   Node* length    = argument(2);
1506 
1507   Node* newcopy = nullptr;
1508 
1509   // Set the original stack and the reexecute bit for the interpreter to reexecute
1510   // the bytecode that invokes StringUTF16.toBytes() if deoptimization happens.
1511   { PreserveReexecuteState preexecs(this);
1512     jvms()->set_should_reexecute(true);
1513 
1514     // Check if a null path was taken unconditionally.
1515     value = null_check(value);
1516 
1517     RegionNode* bailout = new RegionNode(1);
1518     record_for_igvn(bailout);
1519 
1520     // Range checks
1521     generate_negative_guard(offset, bailout);
1522     generate_negative_guard(length, bailout);
1523     generate_limit_guard(offset, length, load_array_length(value), bailout);
1524     // Make sure that resulting byte[] length does not overflow Integer.MAX_VALUE
1525     generate_limit_guard(length, intcon(0), intcon(max_jint/2), bailout);
1526 
1527     if (bailout->req() > 1) {
1528       PreserveJVMState pjvms(this);
1529       set_control(_gvn.transform(bailout));
1530       uncommon_trap(Deoptimization::Reason_intrinsic,
1531                     Deoptimization::Action_maybe_recompile);
1532     }
1533     if (stopped()) {
1534       return true;
1535     }
1536 
1537     Node* size = _gvn.transform(new LShiftINode(length, intcon(1)));
1538     Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_BYTE)));
1539     newcopy = new_array(klass_node, size, 0);  // no arguments to push
1540     AllocateArrayNode* alloc = tightly_coupled_allocation(newcopy);
1541     guarantee(alloc != nullptr, "created above");
1542 
1543     // Calculate starting addresses.
1544     Node* src_start = array_element_address(value, offset, T_CHAR);
1545     Node* dst_start = basic_plus_adr(newcopy, arrayOopDesc::base_offset_in_bytes(T_BYTE));
1546 
1547     // Check if src array address is aligned to HeapWordSize (dst is always aligned)
1548     const TypeInt* toffset = gvn().type(offset)->is_int();
1549     bool aligned = toffset->is_con() && ((toffset->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0);
1550 
1551     // Figure out which arraycopy runtime method to call (disjoint, uninitialized).
1552     const char* copyfunc_name = "arraycopy";
1553     address     copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true);
1554     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
1555                       OptoRuntime::fast_arraycopy_Type(),
1556                       copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM,
1557                       src_start, dst_start, ConvI2X(length) XTOP);
1558     // Do not let reads from the cloned object float above the arraycopy.
1559     if (alloc->maybe_set_complete(&_gvn)) {
1560       // "You break it, you buy it."
1561       InitializeNode* init = alloc->initialization();
1562       assert(init->is_complete(), "we just did this");
1563       init->set_complete_with_arraycopy();
1564       assert(newcopy->is_CheckCastPP(), "sanity");
1565       assert(newcopy->in(0)->in(0) == init, "dest pinned");
1566     }
1567     // Do not let stores that initialize this object be reordered with
1568     // a subsequent store that would make this object accessible by
1569     // other threads.
1570     // Record what AllocateNode this StoreStore protects so that
1571     // escape analysis can go from the MemBarStoreStoreNode to the
1572     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1573     // based on the escape status of the AllocateNode.
1574     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
1575   } // original reexecute is set back here
1576 
1577   C->set_has_split_ifs(true); // Has chance for split-if optimization
1578   if (!stopped()) {
1579     set_result(newcopy);
1580   }
1581   clear_upper_avx();
1582 
1583   return true;
1584 }
1585 
1586 //------------------------inline_string_getCharsU--------------------------
1587 // public void StringUTF16.getChars(byte[] src, int srcBegin, int srcEnd, char dst[], int dstBegin)
1588 bool LibraryCallKit::inline_string_getCharsU() {
1589   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1590     return false;
1591   }
1592 
1593   // Get the arguments.
1594   Node* src       = argument(0);
1595   Node* src_begin = argument(1);
1596   Node* src_end   = argument(2); // exclusive offset (i < src_end)
1597   Node* dst       = argument(3);
1598   Node* dst_begin = argument(4);
1599 
1600   // Check for allocation before we add nodes that would confuse
1601   // tightly_coupled_allocation()
1602   AllocateArrayNode* alloc = tightly_coupled_allocation(dst);
1603 
1604   // Check if a null path was taken unconditionally.
1605   src = null_check(src);
1606   dst = null_check(dst);
1607   if (stopped()) {
1608     return true;
1609   }
1610 
1611   // Get length and convert char[] offset to byte[] offset
1612   Node* length = _gvn.transform(new SubINode(src_end, src_begin));
1613   src_begin = _gvn.transform(new LShiftINode(src_begin, intcon(1)));
1614 
1615   // Range checks
1616   generate_string_range_check(src, src_begin, length, true);
1617   generate_string_range_check(dst, dst_begin, length, false);
1618   if (stopped()) {
1619     return true;
1620   }
1621 
1622   if (!stopped()) {
1623     // Calculate starting addresses.
1624     Node* src_start = array_element_address(src, src_begin, T_BYTE);
1625     Node* dst_start = array_element_address(dst, dst_begin, T_CHAR);
1626 
1627     // Check if array addresses are aligned to HeapWordSize
1628     const TypeInt* tsrc = gvn().type(src_begin)->is_int();
1629     const TypeInt* tdst = gvn().type(dst_begin)->is_int();
1630     bool aligned = tsrc->is_con() && ((tsrc->get_con() * type2aelembytes(T_BYTE)) % HeapWordSize == 0) &&
1631                    tdst->is_con() && ((tdst->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0);
1632 
1633     // Figure out which arraycopy runtime method to call (disjoint, uninitialized).
1634     const char* copyfunc_name = "arraycopy";
1635     address     copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true);
1636     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
1637                       OptoRuntime::fast_arraycopy_Type(),
1638                       copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM,
1639                       src_start, dst_start, ConvI2X(length) XTOP);
1640     // Do not let reads from the cloned object float above the arraycopy.
1641     if (alloc != nullptr) {
1642       if (alloc->maybe_set_complete(&_gvn)) {
1643         // "You break it, you buy it."
1644         InitializeNode* init = alloc->initialization();
1645         assert(init->is_complete(), "we just did this");
1646         init->set_complete_with_arraycopy();
1647         assert(dst->is_CheckCastPP(), "sanity");
1648         assert(dst->in(0)->in(0) == init, "dest pinned");
1649       }
1650       // Do not let stores that initialize this object be reordered with
1651       // a subsequent store that would make this object accessible by
1652       // other threads.
1653       // Record what AllocateNode this StoreStore protects so that
1654       // escape analysis can go from the MemBarStoreStoreNode to the
1655       // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1656       // based on the escape status of the AllocateNode.
1657       insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
1658     } else {
1659       insert_mem_bar(Op_MemBarCPUOrder);
1660     }
1661   }
1662 
1663   C->set_has_split_ifs(true); // Has chance for split-if optimization
1664   return true;
1665 }
1666 
1667 //----------------------inline_string_char_access----------------------------
1668 // Store/Load char to/from byte[] array.
1669 // static void StringUTF16.putChar(byte[] val, int index, int c)
1670 // static char StringUTF16.getChar(byte[] val, int index)
1671 bool LibraryCallKit::inline_string_char_access(bool is_store) {
1672   Node* value  = argument(0);
1673   Node* index  = argument(1);
1674   Node* ch = is_store ? argument(2) : nullptr;
1675 
1676   // This intrinsic accesses byte[] array as char[] array. Computing the offsets
1677   // correctly requires matched array shapes.
1678   assert (arrayOopDesc::base_offset_in_bytes(T_CHAR) == arrayOopDesc::base_offset_in_bytes(T_BYTE),
1679           "sanity: byte[] and char[] bases agree");
1680   assert (type2aelembytes(T_CHAR) == type2aelembytes(T_BYTE)*2,
1681           "sanity: byte[] and char[] scales agree");
1682 
1683   // Bail when getChar over constants is requested: constant folding would
1684   // reject folding mismatched char access over byte[]. A normal inlining for getChar
1685   // Java method would constant fold nicely instead.
1686   if (!is_store && value->is_Con() && index->is_Con()) {
1687     return false;
1688   }
1689 
1690   // Save state and restore on bailout
1691   uint old_sp = sp();
1692   SafePointNode* old_map = clone_map();
1693 
1694   value = must_be_not_null(value, true);
1695 
1696   Node* adr = array_element_address(value, index, T_CHAR);
1697   if (adr->is_top()) {
1698     set_map(old_map);
1699     set_sp(old_sp);
1700     return false;
1701   }
1702   destruct_map_clone(old_map);
1703   if (is_store) {
1704     access_store_at(value, adr, TypeAryPtr::BYTES, ch, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED);
1705   } else {
1706     ch = access_load_at(value, adr, TypeAryPtr::BYTES, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD | C2_UNKNOWN_CONTROL_LOAD);
1707     set_result(ch);
1708   }
1709   return true;
1710 }
1711 
1712 //--------------------------round_double_node--------------------------------
1713 // Round a double node if necessary.
1714 Node* LibraryCallKit::round_double_node(Node* n) {
1715   if (Matcher::strict_fp_requires_explicit_rounding) {
1716 #ifdef IA32
1717     if (UseSSE < 2) {
1718       n = _gvn.transform(new RoundDoubleNode(nullptr, n));
1719     }
1720 #else
1721     Unimplemented();
1722 #endif // IA32
1723   }
1724   return n;
1725 }
1726 
1727 //------------------------------inline_math-----------------------------------
1728 // public static double Math.abs(double)
1729 // public static double Math.sqrt(double)
1730 // public static double Math.log(double)
1731 // public static double Math.log10(double)
1732 // public static double Math.round(double)
1733 bool LibraryCallKit::inline_double_math(vmIntrinsics::ID id) {
1734   Node* arg = round_double_node(argument(0));
1735   Node* n = nullptr;
1736   switch (id) {
1737   case vmIntrinsics::_dabs:   n = new AbsDNode(                arg);  break;
1738   case vmIntrinsics::_dsqrt:
1739   case vmIntrinsics::_dsqrt_strict:
1740                               n = new SqrtDNode(C, control(),  arg);  break;
1741   case vmIntrinsics::_ceil:   n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_ceil); break;
1742   case vmIntrinsics::_floor:  n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_floor); break;
1743   case vmIntrinsics::_rint:   n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_rint); break;
1744   case vmIntrinsics::_roundD: n = new RoundDNode(arg); break;
1745   case vmIntrinsics::_dcopySign: n = CopySignDNode::make(_gvn, arg, round_double_node(argument(2))); break;
1746   case vmIntrinsics::_dsignum: n = SignumDNode::make(_gvn, arg); break;
1747   default:  fatal_unexpected_iid(id);  break;
1748   }
1749   set_result(_gvn.transform(n));
1750   return true;
1751 }
1752 
1753 //------------------------------inline_math-----------------------------------
1754 // public static float Math.abs(float)
1755 // public static int Math.abs(int)
1756 // public static long Math.abs(long)
1757 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1758   Node* arg = argument(0);
1759   Node* n = nullptr;
1760   switch (id) {
1761   case vmIntrinsics::_fabs:   n = new AbsFNode(                arg);  break;
1762   case vmIntrinsics::_iabs:   n = new AbsINode(                arg);  break;
1763   case vmIntrinsics::_labs:   n = new AbsLNode(                arg);  break;
1764   case vmIntrinsics::_fcopySign: n = new CopySignFNode(arg, argument(1)); break;
1765   case vmIntrinsics::_fsignum: n = SignumFNode::make(_gvn, arg); break;
1766   case vmIntrinsics::_roundF: n = new RoundFNode(arg); break;
1767   default:  fatal_unexpected_iid(id);  break;
1768   }
1769   set_result(_gvn.transform(n));
1770   return true;
1771 }
1772 
1773 //------------------------------runtime_math-----------------------------
1774 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1775   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1776          "must be (DD)D or (D)D type");
1777 
1778   // Inputs
1779   Node* a = round_double_node(argument(0));
1780   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : nullptr;
1781 
1782   const TypePtr* no_memory_effects = nullptr;
1783   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1784                                  no_memory_effects,
1785                                  a, top(), b, b ? top() : nullptr);
1786   Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0));
1787 #ifdef ASSERT
1788   Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1));
1789   assert(value_top == top(), "second value must be top");
1790 #endif
1791 
1792   set_result(value);
1793   return true;
1794 }
1795 
1796 //------------------------------inline_math_pow-----------------------------
1797 bool LibraryCallKit::inline_math_pow() {
1798   Node* exp = round_double_node(argument(2));
1799   const TypeD* d = _gvn.type(exp)->isa_double_constant();
1800   if (d != nullptr) {
1801     if (d->getd() == 2.0) {
1802       // Special case: pow(x, 2.0) => x * x
1803       Node* base = round_double_node(argument(0));
1804       set_result(_gvn.transform(new MulDNode(base, base)));
1805       return true;
1806     } else if (d->getd() == 0.5 && Matcher::match_rule_supported(Op_SqrtD)) {
1807       // Special case: pow(x, 0.5) => sqrt(x)
1808       Node* base = round_double_node(argument(0));
1809       Node* zero = _gvn.zerocon(T_DOUBLE);
1810 
1811       RegionNode* region = new RegionNode(3);
1812       Node* phi = new PhiNode(region, Type::DOUBLE);
1813 
1814       Node* cmp  = _gvn.transform(new CmpDNode(base, zero));
1815       // According to the API specs, pow(-0.0, 0.5) = 0.0 and sqrt(-0.0) = -0.0.
1816       // So pow(-0.0, 0.5) shouldn't be replaced with sqrt(-0.0).
1817       // -0.0/+0.0 are both excluded since floating-point comparison doesn't distinguish -0.0 from +0.0.
1818       Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::le));
1819 
1820       Node* if_pow = generate_slow_guard(test, nullptr);
1821       Node* value_sqrt = _gvn.transform(new SqrtDNode(C, control(), base));
1822       phi->init_req(1, value_sqrt);
1823       region->init_req(1, control());
1824 
1825       if (if_pow != nullptr) {
1826         set_control(if_pow);
1827         address target = StubRoutines::dpow() != nullptr ? StubRoutines::dpow() :
1828                                                         CAST_FROM_FN_PTR(address, SharedRuntime::dpow);
1829         const TypePtr* no_memory_effects = nullptr;
1830         Node* trig = make_runtime_call(RC_LEAF, OptoRuntime::Math_DD_D_Type(), target, "POW",
1831                                        no_memory_effects, base, top(), exp, top());
1832         Node* value_pow = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0));
1833 #ifdef ASSERT
1834         Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1));
1835         assert(value_top == top(), "second value must be top");
1836 #endif
1837         phi->init_req(2, value_pow);
1838         region->init_req(2, _gvn.transform(new ProjNode(trig, TypeFunc::Control)));
1839       }
1840 
1841       C->set_has_split_ifs(true); // Has chance for split-if optimization
1842       set_control(_gvn.transform(region));
1843       record_for_igvn(region);
1844       set_result(_gvn.transform(phi));
1845 
1846       return true;
1847     }
1848   }
1849 
1850   return StubRoutines::dpow() != nullptr ?
1851     runtime_math(OptoRuntime::Math_DD_D_Type(), StubRoutines::dpow(),  "dpow") :
1852     runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow),  "POW");
1853 }
1854 
1855 //------------------------------inline_math_native-----------------------------
1856 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1857   switch (id) {
1858   case vmIntrinsics::_dsin:
1859     return StubRoutines::dsin() != nullptr ?
1860       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dsin(), "dsin") :
1861       runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin),   "SIN");
1862   case vmIntrinsics::_dcos:
1863     return StubRoutines::dcos() != nullptr ?
1864       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dcos(), "dcos") :
1865       runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos),   "COS");
1866   case vmIntrinsics::_dtan:
1867     return StubRoutines::dtan() != nullptr ?
1868       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtan(), "dtan") :
1869       runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "TAN");
1870   case vmIntrinsics::_dtanh:
1871     return StubRoutines::dtanh() != nullptr ?
1872       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtanh(), "dtanh") : false;
1873   case vmIntrinsics::_dexp:
1874     return StubRoutines::dexp() != nullptr ?
1875       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dexp(),  "dexp") :
1876       runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp),  "EXP");
1877   case vmIntrinsics::_dlog:
1878     return StubRoutines::dlog() != nullptr ?
1879       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog(), "dlog") :
1880       runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog),   "LOG");
1881   case vmIntrinsics::_dlog10:
1882     return StubRoutines::dlog10() != nullptr ?
1883       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog10(), "dlog10") :
1884       runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), "LOG10");
1885 
1886   case vmIntrinsics::_roundD: return Matcher::match_rule_supported(Op_RoundD) ? inline_double_math(id) : false;
1887   case vmIntrinsics::_ceil:
1888   case vmIntrinsics::_floor:
1889   case vmIntrinsics::_rint:   return Matcher::match_rule_supported(Op_RoundDoubleMode) ? inline_double_math(id) : false;
1890 
1891   case vmIntrinsics::_dsqrt:
1892   case vmIntrinsics::_dsqrt_strict:
1893                               return Matcher::match_rule_supported(Op_SqrtD) ? inline_double_math(id) : false;
1894   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_double_math(id) : false;
1895   case vmIntrinsics::_fabs:   return Matcher::match_rule_supported(Op_AbsF)   ? inline_math(id) : false;
1896   case vmIntrinsics::_iabs:   return Matcher::match_rule_supported(Op_AbsI)   ? inline_math(id) : false;
1897   case vmIntrinsics::_labs:   return Matcher::match_rule_supported(Op_AbsL)   ? inline_math(id) : false;
1898 
1899   case vmIntrinsics::_dpow:      return inline_math_pow();
1900   case vmIntrinsics::_dcopySign: return inline_double_math(id);
1901   case vmIntrinsics::_fcopySign: return inline_math(id);
1902   case vmIntrinsics::_dsignum: return Matcher::match_rule_supported(Op_SignumD) ? inline_double_math(id) : false;
1903   case vmIntrinsics::_fsignum: return Matcher::match_rule_supported(Op_SignumF) ? inline_math(id) : false;
1904   case vmIntrinsics::_roundF: return Matcher::match_rule_supported(Op_RoundF) ? inline_math(id) : false;
1905 
1906    // These intrinsics are not yet correctly implemented
1907   case vmIntrinsics::_datan2:
1908     return false;
1909 
1910   default:
1911     fatal_unexpected_iid(id);
1912     return false;
1913   }
1914 }
1915 
1916 //----------------------------inline_notify-----------------------------------*
1917 bool LibraryCallKit::inline_notify(vmIntrinsics::ID id) {
1918   const TypeFunc* ftype = OptoRuntime::monitor_notify_Type();
1919   address func;
1920   if (id == vmIntrinsics::_notify) {
1921     func = OptoRuntime::monitor_notify_Java();
1922   } else {
1923     func = OptoRuntime::monitor_notifyAll_Java();
1924   }
1925   Node* call = make_runtime_call(RC_NO_LEAF, ftype, func, nullptr, TypeRawPtr::BOTTOM, argument(0));
1926   make_slow_call_ex(call, env()->Throwable_klass(), false);
1927   return true;
1928 }
1929 
1930 
1931 //----------------------------inline_min_max-----------------------------------
1932 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
1933   set_result(generate_min_max(id, argument(0), argument(1)));
1934   return true;
1935 }
1936 
1937 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) {
1938   Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) );
1939   IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
1940   Node* fast_path = _gvn.transform( new IfFalseNode(check));
1941   Node* slow_path = _gvn.transform( new IfTrueNode(check) );
1942 
1943   {
1944     PreserveJVMState pjvms(this);
1945     PreserveReexecuteState preexecs(this);
1946     jvms()->set_should_reexecute(true);
1947 
1948     set_control(slow_path);
1949     set_i_o(i_o());
1950 
1951     uncommon_trap(Deoptimization::Reason_intrinsic,
1952                   Deoptimization::Action_none);
1953   }
1954 
1955   set_control(fast_path);
1956   set_result(math);
1957 }
1958 
1959 template <typename OverflowOp>
1960 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) {
1961   typedef typename OverflowOp::MathOp MathOp;
1962 
1963   MathOp* mathOp = new MathOp(arg1, arg2);
1964   Node* operation = _gvn.transform( mathOp );
1965   Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) );
1966   inline_math_mathExact(operation, ofcheck);
1967   return true;
1968 }
1969 
1970 bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
1971   return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1));
1972 }
1973 
1974 bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
1975   return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2));
1976 }
1977 
1978 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
1979   return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1));
1980 }
1981 
1982 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
1983   return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2));
1984 }
1985 
1986 bool LibraryCallKit::inline_math_negateExactI() {
1987   return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0));
1988 }
1989 
1990 bool LibraryCallKit::inline_math_negateExactL() {
1991   return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0));
1992 }
1993 
1994 bool LibraryCallKit::inline_math_multiplyExactI() {
1995   return inline_math_overflow<OverflowMulINode>(argument(0), argument(1));
1996 }
1997 
1998 bool LibraryCallKit::inline_math_multiplyExactL() {
1999   return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2));
2000 }
2001 
2002 bool LibraryCallKit::inline_math_multiplyHigh() {
2003   set_result(_gvn.transform(new MulHiLNode(argument(0), argument(2))));
2004   return true;
2005 }
2006 
2007 bool LibraryCallKit::inline_math_unsignedMultiplyHigh() {
2008   set_result(_gvn.transform(new UMulHiLNode(argument(0), argument(2))));
2009   return true;
2010 }
2011 
2012 Node*
2013 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
2014   Node* result_val = nullptr;
2015   switch (id) {
2016   case vmIntrinsics::_min:
2017   case vmIntrinsics::_min_strict:
2018     result_val = _gvn.transform(new MinINode(x0, y0));
2019     break;
2020   case vmIntrinsics::_max:
2021   case vmIntrinsics::_max_strict:
2022     result_val = _gvn.transform(new MaxINode(x0, y0));
2023     break;
2024   default:
2025     fatal_unexpected_iid(id);
2026     break;
2027   }
2028   return result_val;
2029 }
2030 
2031 inline int
2032 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset, BasicType type) {
2033   const TypePtr* base_type = TypePtr::NULL_PTR;
2034   if (base != nullptr)  base_type = _gvn.type(base)->isa_ptr();
2035   if (base_type == nullptr) {
2036     // Unknown type.
2037     return Type::AnyPtr;
2038   } else if (_gvn.type(base->uncast()) == TypePtr::NULL_PTR) {
2039     // Since this is a null+long form, we have to switch to a rawptr.
2040     base   = _gvn.transform(new CastX2PNode(offset));
2041     offset = MakeConX(0);
2042     return Type::RawPtr;
2043   } else if (base_type->base() == Type::RawPtr) {
2044     return Type::RawPtr;
2045   } else if (base_type->isa_oopptr()) {
2046     // Base is never null => always a heap address.
2047     if (!TypePtr::NULL_PTR->higher_equal(base_type)) {
2048       return Type::OopPtr;
2049     }
2050     // Offset is small => always a heap address.
2051     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2052     if (offset_type != nullptr &&
2053         base_type->offset() == 0 &&     // (should always be?)
2054         offset_type->_lo >= 0 &&
2055         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2056       return Type::OopPtr;
2057     } else if (type == T_OBJECT) {
2058       // off heap access to an oop doesn't make any sense. Has to be on
2059       // heap.
2060       return Type::OopPtr;
2061     }
2062     // Otherwise, it might either be oop+off or null+addr.
2063     return Type::AnyPtr;
2064   } else {
2065     // No information:
2066     return Type::AnyPtr;
2067   }
2068 }
2069 
2070 Node* LibraryCallKit::make_unsafe_address(Node*& base, Node* offset, BasicType type, bool can_cast) {
2071   Node* uncasted_base = base;
2072   int kind = classify_unsafe_addr(uncasted_base, offset, type);
2073   if (kind == Type::RawPtr) {
2074     return basic_plus_adr(top(), uncasted_base, offset);
2075   } else if (kind == Type::AnyPtr) {
2076     assert(base == uncasted_base, "unexpected base change");
2077     if (can_cast) {
2078       if (!_gvn.type(base)->speculative_maybe_null() &&
2079           !too_many_traps(Deoptimization::Reason_speculate_null_check)) {
2080         // According to profiling, this access is always on
2081         // heap. Casting the base to not null and thus avoiding membars
2082         // around the access should allow better optimizations
2083         Node* null_ctl = top();
2084         base = null_check_oop(base, &null_ctl, true, true, true);
2085         assert(null_ctl->is_top(), "no null control here");
2086         return basic_plus_adr(base, offset);
2087       } else if (_gvn.type(base)->speculative_always_null() &&
2088                  !too_many_traps(Deoptimization::Reason_speculate_null_assert)) {
2089         // According to profiling, this access is always off
2090         // heap.
2091         base = null_assert(base);
2092         Node* raw_base = _gvn.transform(new CastX2PNode(offset));
2093         offset = MakeConX(0);
2094         return basic_plus_adr(top(), raw_base, offset);
2095       }
2096     }
2097     // We don't know if it's an on heap or off heap access. Fall back
2098     // to raw memory access.
2099     Node* raw = _gvn.transform(new CheckCastPPNode(control(), base, TypeRawPtr::BOTTOM));
2100     return basic_plus_adr(top(), raw, offset);
2101   } else {
2102     assert(base == uncasted_base, "unexpected base change");
2103     // We know it's an on heap access so base can't be null
2104     if (TypePtr::NULL_PTR->higher_equal(_gvn.type(base))) {
2105       base = must_be_not_null(base, true);
2106     }
2107     return basic_plus_adr(base, offset);
2108   }
2109 }
2110 
2111 //--------------------------inline_number_methods-----------------------------
2112 // inline int     Integer.numberOfLeadingZeros(int)
2113 // inline int        Long.numberOfLeadingZeros(long)
2114 //
2115 // inline int     Integer.numberOfTrailingZeros(int)
2116 // inline int        Long.numberOfTrailingZeros(long)
2117 //
2118 // inline int     Integer.bitCount(int)
2119 // inline int        Long.bitCount(long)
2120 //
2121 // inline char  Character.reverseBytes(char)
2122 // inline short     Short.reverseBytes(short)
2123 // inline int     Integer.reverseBytes(int)
2124 // inline long       Long.reverseBytes(long)
2125 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2126   Node* arg = argument(0);
2127   Node* n = nullptr;
2128   switch (id) {
2129   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new CountLeadingZerosINode( arg); break;
2130   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new CountLeadingZerosLNode( arg); break;
2131   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new CountTrailingZerosINode(arg); break;
2132   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new CountTrailingZerosLNode(arg); break;
2133   case vmIntrinsics::_bitCount_i:               n = new PopCountINode(          arg); break;
2134   case vmIntrinsics::_bitCount_l:               n = new PopCountLNode(          arg); break;
2135   case vmIntrinsics::_reverseBytes_c:           n = new ReverseBytesUSNode(     arg); break;
2136   case vmIntrinsics::_reverseBytes_s:           n = new ReverseBytesSNode(      arg); break;
2137   case vmIntrinsics::_reverseBytes_i:           n = new ReverseBytesINode(      arg); break;
2138   case vmIntrinsics::_reverseBytes_l:           n = new ReverseBytesLNode(      arg); break;
2139   case vmIntrinsics::_reverse_i:                n = new ReverseINode(           arg); break;
2140   case vmIntrinsics::_reverse_l:                n = new ReverseLNode(           arg); break;
2141   default:  fatal_unexpected_iid(id);  break;
2142   }
2143   set_result(_gvn.transform(n));
2144   return true;
2145 }
2146 
2147 //--------------------------inline_bitshuffle_methods-----------------------------
2148 // inline int Integer.compress(int, int)
2149 // inline int Integer.expand(int, int)
2150 // inline long Long.compress(long, long)
2151 // inline long Long.expand(long, long)
2152 bool LibraryCallKit::inline_bitshuffle_methods(vmIntrinsics::ID id) {
2153   Node* n = nullptr;
2154   switch (id) {
2155     case vmIntrinsics::_compress_i:  n = new CompressBitsNode(argument(0), argument(1), TypeInt::INT); break;
2156     case vmIntrinsics::_expand_i:    n = new ExpandBitsNode(argument(0),  argument(1), TypeInt::INT); break;
2157     case vmIntrinsics::_compress_l:  n = new CompressBitsNode(argument(0), argument(2), TypeLong::LONG); break;
2158     case vmIntrinsics::_expand_l:    n = new ExpandBitsNode(argument(0), argument(2), TypeLong::LONG); break;
2159     default:  fatal_unexpected_iid(id);  break;
2160   }
2161   set_result(_gvn.transform(n));
2162   return true;
2163 }
2164 
2165 //--------------------------inline_number_methods-----------------------------
2166 // inline int Integer.compareUnsigned(int, int)
2167 // inline int    Long.compareUnsigned(long, long)
2168 bool LibraryCallKit::inline_compare_unsigned(vmIntrinsics::ID id) {
2169   Node* arg1 = argument(0);
2170   Node* arg2 = (id == vmIntrinsics::_compareUnsigned_l) ? argument(2) : argument(1);
2171   Node* n = nullptr;
2172   switch (id) {
2173     case vmIntrinsics::_compareUnsigned_i:   n = new CmpU3Node(arg1, arg2);  break;
2174     case vmIntrinsics::_compareUnsigned_l:   n = new CmpUL3Node(arg1, arg2); break;
2175     default:  fatal_unexpected_iid(id);  break;
2176   }
2177   set_result(_gvn.transform(n));
2178   return true;
2179 }
2180 
2181 //--------------------------inline_unsigned_divmod_methods-----------------------------
2182 // inline int Integer.divideUnsigned(int, int)
2183 // inline int Integer.remainderUnsigned(int, int)
2184 // inline long Long.divideUnsigned(long, long)
2185 // inline long Long.remainderUnsigned(long, long)
2186 bool LibraryCallKit::inline_divmod_methods(vmIntrinsics::ID id) {
2187   Node* n = nullptr;
2188   switch (id) {
2189     case vmIntrinsics::_divideUnsigned_i: {
2190       zero_check_int(argument(1));
2191       // Compile-time detect of null-exception
2192       if (stopped()) {
2193         return true; // keep the graph constructed so far
2194       }
2195       n = new UDivINode(control(), argument(0), argument(1));
2196       break;
2197     }
2198     case vmIntrinsics::_divideUnsigned_l: {
2199       zero_check_long(argument(2));
2200       // Compile-time detect of null-exception
2201       if (stopped()) {
2202         return true; // keep the graph constructed so far
2203       }
2204       n = new UDivLNode(control(), argument(0), argument(2));
2205       break;
2206     }
2207     case vmIntrinsics::_remainderUnsigned_i: {
2208       zero_check_int(argument(1));
2209       // Compile-time detect of null-exception
2210       if (stopped()) {
2211         return true; // keep the graph constructed so far
2212       }
2213       n = new UModINode(control(), argument(0), argument(1));
2214       break;
2215     }
2216     case vmIntrinsics::_remainderUnsigned_l: {
2217       zero_check_long(argument(2));
2218       // Compile-time detect of null-exception
2219       if (stopped()) {
2220         return true; // keep the graph constructed so far
2221       }
2222       n = new UModLNode(control(), argument(0), argument(2));
2223       break;
2224     }
2225     default:  fatal_unexpected_iid(id);  break;
2226   }
2227   set_result(_gvn.transform(n));
2228   return true;
2229 }
2230 
2231 //----------------------------inline_unsafe_access----------------------------
2232 
2233 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) {
2234   // Attempt to infer a sharper value type from the offset and base type.
2235   ciKlass* sharpened_klass = nullptr;
2236 
2237   // See if it is an instance field, with an object type.
2238   if (alias_type->field() != nullptr) {
2239     if (alias_type->field()->type()->is_klass()) {
2240       sharpened_klass = alias_type->field()->type()->as_klass();
2241     }
2242   }
2243 
2244   const TypeOopPtr* result = nullptr;
2245   // See if it is a narrow oop array.
2246   if (adr_type->isa_aryptr()) {
2247     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2248       const TypeOopPtr* elem_type = adr_type->is_aryptr()->elem()->make_oopptr();
2249       if (elem_type != nullptr && elem_type->is_loaded()) {
2250         // Sharpen the value type.
2251         result = elem_type;
2252       }
2253     }
2254   }
2255 
2256   // The sharpened class might be unloaded if there is no class loader
2257   // contraint in place.
2258   if (result == nullptr && sharpened_klass != nullptr && sharpened_klass->is_loaded()) {
2259     // Sharpen the value type.
2260     result = TypeOopPtr::make_from_klass(sharpened_klass);
2261   }
2262   if (result != nullptr) {
2263 #ifndef PRODUCT
2264     if (C->print_intrinsics() || C->print_inlining()) {
2265       tty->print("  from base type:  ");  adr_type->dump(); tty->cr();
2266       tty->print("  sharpened value: ");  result->dump();    tty->cr();
2267     }
2268 #endif
2269   }
2270   return result;
2271 }
2272 
2273 DecoratorSet LibraryCallKit::mo_decorator_for_access_kind(AccessKind kind) {
2274   switch (kind) {
2275       case Relaxed:
2276         return MO_UNORDERED;
2277       case Opaque:
2278         return MO_RELAXED;
2279       case Acquire:
2280         return MO_ACQUIRE;
2281       case Release:
2282         return MO_RELEASE;
2283       case Volatile:
2284         return MO_SEQ_CST;
2285       default:
2286         ShouldNotReachHere();
2287         return 0;
2288   }
2289 }
2290 
2291 bool LibraryCallKit::inline_unsafe_access(bool is_store, const BasicType type, const AccessKind kind, const bool unaligned) {
2292   if (callee()->is_static())  return false;  // caller must have the capability!
2293   DecoratorSet decorators = C2_UNSAFE_ACCESS;
2294   guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads");
2295   guarantee( is_store || kind != Release, "Release accesses can be produced only for stores");
2296   assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type");
2297 
2298   if (is_reference_type(type)) {
2299     decorators |= ON_UNKNOWN_OOP_REF;
2300   }
2301 
2302   if (unaligned) {
2303     decorators |= C2_UNALIGNED;
2304   }
2305 
2306 #ifndef PRODUCT
2307   {
2308     ResourceMark rm;
2309     // Check the signatures.
2310     ciSignature* sig = callee()->signature();
2311 #ifdef ASSERT
2312     if (!is_store) {
2313       // Object getReference(Object base, int/long offset), etc.
2314       BasicType rtype = sig->return_type()->basic_type();
2315       assert(rtype == type, "getter must return the expected value");
2316       assert(sig->count() == 2, "oop getter has 2 arguments");
2317       assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2318       assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2319     } else {
2320       // void putReference(Object base, int/long offset, Object x), etc.
2321       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2322       assert(sig->count() == 3, "oop putter has 3 arguments");
2323       assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2324       assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2325       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2326       assert(vtype == type, "putter must accept the expected value");
2327     }
2328 #endif // ASSERT
2329  }
2330 #endif //PRODUCT
2331 
2332   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2333 
2334   Node* receiver = argument(0);  // type: oop
2335 
2336   // Build address expression.
2337   Node* heap_base_oop = top();
2338 
2339   // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2340   Node* base = argument(1);  // type: oop
2341   // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2342   Node* offset = argument(2);  // type: long
2343   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2344   // to be plain byte offsets, which are also the same as those accepted
2345   // by oopDesc::field_addr.
2346   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2347          "fieldOffset must be byte-scaled");
2348   // 32-bit machines ignore the high half!
2349   offset = ConvL2X(offset);
2350 
2351   // Save state and restore on bailout
2352   uint old_sp = sp();
2353   SafePointNode* old_map = clone_map();
2354 
2355   Node* adr = make_unsafe_address(base, offset, type, kind == Relaxed);
2356   assert(!stopped(), "Inlining of unsafe access failed: address construction stopped unexpectedly");
2357 
2358   if (_gvn.type(base->uncast())->isa_ptr() == TypePtr::NULL_PTR) {
2359     if (type != T_OBJECT) {
2360       decorators |= IN_NATIVE; // off-heap primitive access
2361     } else {
2362       set_map(old_map);
2363       set_sp(old_sp);
2364       return false; // off-heap oop accesses are not supported
2365     }
2366   } else {
2367     heap_base_oop = base; // on-heap or mixed access
2368   }
2369 
2370   // Can base be null? Otherwise, always on-heap access.
2371   bool can_access_non_heap = TypePtr::NULL_PTR->higher_equal(_gvn.type(base));
2372 
2373   if (!can_access_non_heap) {
2374     decorators |= IN_HEAP;
2375   }
2376 
2377   Node* val = is_store ? argument(4) : nullptr;
2378 
2379   const TypePtr* adr_type = _gvn.type(adr)->isa_ptr();
2380   if (adr_type == TypePtr::NULL_PTR) {
2381     set_map(old_map);
2382     set_sp(old_sp);
2383     return false; // off-heap access with zero address
2384   }
2385 
2386   // Try to categorize the address.
2387   Compile::AliasType* alias_type = C->alias_type(adr_type);
2388   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2389 
2390   if (alias_type->adr_type() == TypeInstPtr::KLASS ||
2391       alias_type->adr_type() == TypeAryPtr::RANGE) {
2392     set_map(old_map);
2393     set_sp(old_sp);
2394     return false; // not supported
2395   }
2396 
2397   bool mismatched = false;
2398   BasicType bt = alias_type->basic_type();
2399   if (bt != T_ILLEGAL) {
2400     assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access");
2401     if (bt == T_BYTE && adr_type->isa_aryptr()) {
2402       // Alias type doesn't differentiate between byte[] and boolean[]).
2403       // Use address type to get the element type.
2404       bt = adr_type->is_aryptr()->elem()->array_element_basic_type();
2405     }
2406     if (is_reference_type(bt, true)) {
2407       // accessing an array field with getReference is not a mismatch
2408       bt = T_OBJECT;
2409     }
2410     if ((bt == T_OBJECT) != (type == T_OBJECT)) {
2411       // Don't intrinsify mismatched object accesses
2412       set_map(old_map);
2413       set_sp(old_sp);
2414       return false;
2415     }
2416     mismatched = (bt != type);
2417   } else if (alias_type->adr_type()->isa_oopptr()) {
2418     mismatched = true; // conservatively mark all "wide" on-heap accesses as mismatched
2419   }
2420 
2421   destruct_map_clone(old_map);
2422   assert(!mismatched || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched");
2423 
2424   if (mismatched) {
2425     decorators |= C2_MISMATCHED;
2426   }
2427 
2428   // First guess at the value type.
2429   const Type *value_type = Type::get_const_basic_type(type);
2430 
2431   // Figure out the memory ordering.
2432   decorators |= mo_decorator_for_access_kind(kind);
2433 
2434   if (!is_store && type == T_OBJECT) {
2435     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2436     if (tjp != nullptr) {
2437       value_type = tjp;
2438     }
2439   }
2440 
2441   receiver = null_check(receiver);
2442   if (stopped()) {
2443     return true;
2444   }
2445   // Heap pointers get a null-check from the interpreter,
2446   // as a courtesy.  However, this is not guaranteed by Unsafe,
2447   // and it is not possible to fully distinguish unintended nulls
2448   // from intended ones in this API.
2449 
2450   if (!is_store) {
2451     Node* p = nullptr;
2452     // Try to constant fold a load from a constant field
2453     ciField* field = alias_type->field();
2454     if (heap_base_oop != top() && field != nullptr && field->is_constant() && !mismatched) {
2455       // final or stable field
2456       p = make_constant_from_field(field, heap_base_oop);
2457     }
2458 
2459     if (p == nullptr) { // Could not constant fold the load
2460       p = access_load_at(heap_base_oop, adr, adr_type, value_type, type, decorators);
2461       // Normalize the value returned by getBoolean in the following cases
2462       if (type == T_BOOLEAN &&
2463           (mismatched ||
2464            heap_base_oop == top() ||                  // - heap_base_oop is null or
2465            (can_access_non_heap && field == nullptr)) // - heap_base_oop is potentially null
2466                                                       //   and the unsafe access is made to large offset
2467                                                       //   (i.e., larger than the maximum offset necessary for any
2468                                                       //   field access)
2469             ) {
2470           IdealKit ideal = IdealKit(this);
2471 #define __ ideal.
2472           IdealVariable normalized_result(ideal);
2473           __ declarations_done();
2474           __ set(normalized_result, p);
2475           __ if_then(p, BoolTest::ne, ideal.ConI(0));
2476           __ set(normalized_result, ideal.ConI(1));
2477           ideal.end_if();
2478           final_sync(ideal);
2479           p = __ value(normalized_result);
2480 #undef __
2481       }
2482     }
2483     if (type == T_ADDRESS) {
2484       p = gvn().transform(new CastP2XNode(nullptr, p));
2485       p = ConvX2UL(p);
2486     }
2487     // The load node has the control of the preceding MemBarCPUOrder.  All
2488     // following nodes will have the control of the MemBarCPUOrder inserted at
2489     // the end of this method.  So, pushing the load onto the stack at a later
2490     // point is fine.
2491     set_result(p);
2492   } else {
2493     if (bt == T_ADDRESS) {
2494       // Repackage the long as a pointer.
2495       val = ConvL2X(val);
2496       val = gvn().transform(new CastX2PNode(val));
2497     }
2498     access_store_at(heap_base_oop, adr, adr_type, val, value_type, type, decorators);
2499   }
2500 
2501   return true;
2502 }
2503 
2504 //----------------------------inline_unsafe_load_store----------------------------
2505 // This method serves a couple of different customers (depending on LoadStoreKind):
2506 //
2507 // LS_cmp_swap:
2508 //
2509 //   boolean compareAndSetReference(Object o, long offset, Object expected, Object x);
2510 //   boolean compareAndSetInt(   Object o, long offset, int    expected, int    x);
2511 //   boolean compareAndSetLong(  Object o, long offset, long   expected, long   x);
2512 //
2513 // LS_cmp_swap_weak:
2514 //
2515 //   boolean weakCompareAndSetReference(       Object o, long offset, Object expected, Object x);
2516 //   boolean weakCompareAndSetReferencePlain(  Object o, long offset, Object expected, Object x);
2517 //   boolean weakCompareAndSetReferenceAcquire(Object o, long offset, Object expected, Object x);
2518 //   boolean weakCompareAndSetReferenceRelease(Object o, long offset, Object expected, Object x);
2519 //
2520 //   boolean weakCompareAndSetInt(          Object o, long offset, int    expected, int    x);
2521 //   boolean weakCompareAndSetIntPlain(     Object o, long offset, int    expected, int    x);
2522 //   boolean weakCompareAndSetIntAcquire(   Object o, long offset, int    expected, int    x);
2523 //   boolean weakCompareAndSetIntRelease(   Object o, long offset, int    expected, int    x);
2524 //
2525 //   boolean weakCompareAndSetLong(         Object o, long offset, long   expected, long   x);
2526 //   boolean weakCompareAndSetLongPlain(    Object o, long offset, long   expected, long   x);
2527 //   boolean weakCompareAndSetLongAcquire(  Object o, long offset, long   expected, long   x);
2528 //   boolean weakCompareAndSetLongRelease(  Object o, long offset, long   expected, long   x);
2529 //
2530 // LS_cmp_exchange:
2531 //
2532 //   Object compareAndExchangeReferenceVolatile(Object o, long offset, Object expected, Object x);
2533 //   Object compareAndExchangeReferenceAcquire( Object o, long offset, Object expected, Object x);
2534 //   Object compareAndExchangeReferenceRelease( Object o, long offset, Object expected, Object x);
2535 //
2536 //   Object compareAndExchangeIntVolatile(   Object o, long offset, Object expected, Object x);
2537 //   Object compareAndExchangeIntAcquire(    Object o, long offset, Object expected, Object x);
2538 //   Object compareAndExchangeIntRelease(    Object o, long offset, Object expected, Object x);
2539 //
2540 //   Object compareAndExchangeLongVolatile(  Object o, long offset, Object expected, Object x);
2541 //   Object compareAndExchangeLongAcquire(   Object o, long offset, Object expected, Object x);
2542 //   Object compareAndExchangeLongRelease(   Object o, long offset, Object expected, Object x);
2543 //
2544 // LS_get_add:
2545 //
2546 //   int  getAndAddInt( Object o, long offset, int  delta)
2547 //   long getAndAddLong(Object o, long offset, long delta)
2548 //
2549 // LS_get_set:
2550 //
2551 //   int    getAndSet(Object o, long offset, int    newValue)
2552 //   long   getAndSet(Object o, long offset, long   newValue)
2553 //   Object getAndSet(Object o, long offset, Object newValue)
2554 //
2555 bool LibraryCallKit::inline_unsafe_load_store(const BasicType type, const LoadStoreKind kind, const AccessKind access_kind) {
2556   // This basic scheme here is the same as inline_unsafe_access, but
2557   // differs in enough details that combining them would make the code
2558   // overly confusing.  (This is a true fact! I originally combined
2559   // them, but even I was confused by it!) As much code/comments as
2560   // possible are retained from inline_unsafe_access though to make
2561   // the correspondences clearer. - dl
2562 
2563   if (callee()->is_static())  return false;  // caller must have the capability!
2564 
2565   DecoratorSet decorators = C2_UNSAFE_ACCESS;
2566   decorators |= mo_decorator_for_access_kind(access_kind);
2567 
2568 #ifndef PRODUCT
2569   BasicType rtype;
2570   {
2571     ResourceMark rm;
2572     // Check the signatures.
2573     ciSignature* sig = callee()->signature();
2574     rtype = sig->return_type()->basic_type();
2575     switch(kind) {
2576       case LS_get_add:
2577       case LS_get_set: {
2578       // Check the signatures.
2579 #ifdef ASSERT
2580       assert(rtype == type, "get and set must return the expected type");
2581       assert(sig->count() == 3, "get and set has 3 arguments");
2582       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
2583       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
2584       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
2585       assert(access_kind == Volatile, "mo is not passed to intrinsic nodes in current implementation");
2586 #endif // ASSERT
2587         break;
2588       }
2589       case LS_cmp_swap:
2590       case LS_cmp_swap_weak: {
2591       // Check the signatures.
2592 #ifdef ASSERT
2593       assert(rtype == T_BOOLEAN, "CAS must return boolean");
2594       assert(sig->count() == 4, "CAS has 4 arguments");
2595       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2596       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2597 #endif // ASSERT
2598         break;
2599       }
2600       case LS_cmp_exchange: {
2601       // Check the signatures.
2602 #ifdef ASSERT
2603       assert(rtype == type, "CAS must return the expected type");
2604       assert(sig->count() == 4, "CAS has 4 arguments");
2605       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2606       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2607 #endif // ASSERT
2608         break;
2609       }
2610       default:
2611         ShouldNotReachHere();
2612     }
2613   }
2614 #endif //PRODUCT
2615 
2616   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2617 
2618   // Get arguments:
2619   Node* receiver = nullptr;
2620   Node* base     = nullptr;
2621   Node* offset   = nullptr;
2622   Node* oldval   = nullptr;
2623   Node* newval   = nullptr;
2624   switch(kind) {
2625     case LS_cmp_swap:
2626     case LS_cmp_swap_weak:
2627     case LS_cmp_exchange: {
2628       const bool two_slot_type = type2size[type] == 2;
2629       receiver = argument(0);  // type: oop
2630       base     = argument(1);  // type: oop
2631       offset   = argument(2);  // type: long
2632       oldval   = argument(4);  // type: oop, int, or long
2633       newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
2634       break;
2635     }
2636     case LS_get_add:
2637     case LS_get_set: {
2638       receiver = argument(0);  // type: oop
2639       base     = argument(1);  // type: oop
2640       offset   = argument(2);  // type: long
2641       oldval   = nullptr;
2642       newval   = argument(4);  // type: oop, int, or long
2643       break;
2644     }
2645     default:
2646       ShouldNotReachHere();
2647   }
2648 
2649   // Build field offset expression.
2650   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2651   // to be plain byte offsets, which are also the same as those accepted
2652   // by oopDesc::field_addr.
2653   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2654   // 32-bit machines ignore the high half of long offsets
2655   offset = ConvL2X(offset);
2656   // Save state and restore on bailout
2657   uint old_sp = sp();
2658   SafePointNode* old_map = clone_map();
2659   Node* adr = make_unsafe_address(base, offset,type, false);
2660   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2661 
2662   Compile::AliasType* alias_type = C->alias_type(adr_type);
2663   BasicType bt = alias_type->basic_type();
2664   if (bt != T_ILLEGAL &&
2665       (is_reference_type(bt) != (type == T_OBJECT))) {
2666     // Don't intrinsify mismatched object accesses.
2667     set_map(old_map);
2668     set_sp(old_sp);
2669     return false;
2670   }
2671 
2672   destruct_map_clone(old_map);
2673 
2674   // For CAS, unlike inline_unsafe_access, there seems no point in
2675   // trying to refine types. Just use the coarse types here.
2676   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2677   const Type *value_type = Type::get_const_basic_type(type);
2678 
2679   switch (kind) {
2680     case LS_get_set:
2681     case LS_cmp_exchange: {
2682       if (type == T_OBJECT) {
2683         const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2684         if (tjp != nullptr) {
2685           value_type = tjp;
2686         }
2687       }
2688       break;
2689     }
2690     case LS_cmp_swap:
2691     case LS_cmp_swap_weak:
2692     case LS_get_add:
2693       break;
2694     default:
2695       ShouldNotReachHere();
2696   }
2697 
2698   // Null check receiver.
2699   receiver = null_check(receiver);
2700   if (stopped()) {
2701     return true;
2702   }
2703 
2704   int alias_idx = C->get_alias_index(adr_type);
2705 
2706   if (is_reference_type(type)) {
2707     decorators |= IN_HEAP | ON_UNKNOWN_OOP_REF;
2708 
2709     // Transformation of a value which could be null pointer (CastPP #null)
2710     // could be delayed during Parse (for example, in adjust_map_after_if()).
2711     // Execute transformation here to avoid barrier generation in such case.
2712     if (_gvn.type(newval) == TypePtr::NULL_PTR)
2713       newval = _gvn.makecon(TypePtr::NULL_PTR);
2714 
2715     if (oldval != nullptr && _gvn.type(oldval) == TypePtr::NULL_PTR) {
2716       // Refine the value to a null constant, when it is known to be null
2717       oldval = _gvn.makecon(TypePtr::NULL_PTR);
2718     }
2719   }
2720 
2721   Node* result = nullptr;
2722   switch (kind) {
2723     case LS_cmp_exchange: {
2724       result = access_atomic_cmpxchg_val_at(base, adr, adr_type, alias_idx,
2725                                             oldval, newval, value_type, type, decorators);
2726       break;
2727     }
2728     case LS_cmp_swap_weak:
2729       decorators |= C2_WEAK_CMPXCHG;
2730     case LS_cmp_swap: {
2731       result = access_atomic_cmpxchg_bool_at(base, adr, adr_type, alias_idx,
2732                                              oldval, newval, value_type, type, decorators);
2733       break;
2734     }
2735     case LS_get_set: {
2736       result = access_atomic_xchg_at(base, adr, adr_type, alias_idx,
2737                                      newval, value_type, type, decorators);
2738       break;
2739     }
2740     case LS_get_add: {
2741       result = access_atomic_add_at(base, adr, adr_type, alias_idx,
2742                                     newval, value_type, type, decorators);
2743       break;
2744     }
2745     default:
2746       ShouldNotReachHere();
2747   }
2748 
2749   assert(type2size[result->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
2750   set_result(result);
2751   return true;
2752 }
2753 
2754 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
2755   // Regardless of form, don't allow previous ld/st to move down,
2756   // then issue acquire, release, or volatile mem_bar.
2757   insert_mem_bar(Op_MemBarCPUOrder);
2758   switch(id) {
2759     case vmIntrinsics::_loadFence:
2760       insert_mem_bar(Op_LoadFence);
2761       return true;
2762     case vmIntrinsics::_storeFence:
2763       insert_mem_bar(Op_StoreFence);
2764       return true;
2765     case vmIntrinsics::_storeStoreFence:
2766       insert_mem_bar(Op_StoreStoreFence);
2767       return true;
2768     case vmIntrinsics::_fullFence:
2769       insert_mem_bar(Op_MemBarVolatile);
2770       return true;
2771     default:
2772       fatal_unexpected_iid(id);
2773       return false;
2774   }
2775 }
2776 
2777 bool LibraryCallKit::inline_onspinwait() {
2778   insert_mem_bar(Op_OnSpinWait);
2779   return true;
2780 }
2781 
2782 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
2783   if (!kls->is_Con()) {
2784     return true;
2785   }
2786   const TypeInstKlassPtr* klsptr = kls->bottom_type()->isa_instklassptr();
2787   if (klsptr == nullptr) {
2788     return true;
2789   }
2790   ciInstanceKlass* ik = klsptr->instance_klass();
2791   // don't need a guard for a klass that is already initialized
2792   return !ik->is_initialized();
2793 }
2794 
2795 //----------------------------inline_unsafe_writeback0-------------------------
2796 // public native void Unsafe.writeback0(long address)
2797 bool LibraryCallKit::inline_unsafe_writeback0() {
2798   if (!Matcher::has_match_rule(Op_CacheWB)) {
2799     return false;
2800   }
2801 #ifndef PRODUCT
2802   assert(Matcher::has_match_rule(Op_CacheWBPreSync), "found match rule for CacheWB but not CacheWBPreSync");
2803   assert(Matcher::has_match_rule(Op_CacheWBPostSync), "found match rule for CacheWB but not CacheWBPostSync");
2804   ciSignature* sig = callee()->signature();
2805   assert(sig->type_at(0)->basic_type() == T_LONG, "Unsafe_writeback0 address is long!");
2806 #endif
2807   null_check_receiver();  // null-check, then ignore
2808   Node *addr = argument(1);
2809   addr = new CastX2PNode(addr);
2810   addr = _gvn.transform(addr);
2811   Node *flush = new CacheWBNode(control(), memory(TypeRawPtr::BOTTOM), addr);
2812   flush = _gvn.transform(flush);
2813   set_memory(flush, TypeRawPtr::BOTTOM);
2814   return true;
2815 }
2816 
2817 //----------------------------inline_unsafe_writeback0-------------------------
2818 // public native void Unsafe.writeback0(long address)
2819 bool LibraryCallKit::inline_unsafe_writebackSync0(bool is_pre) {
2820   if (is_pre && !Matcher::has_match_rule(Op_CacheWBPreSync)) {
2821     return false;
2822   }
2823   if (!is_pre && !Matcher::has_match_rule(Op_CacheWBPostSync)) {
2824     return false;
2825   }
2826 #ifndef PRODUCT
2827   assert(Matcher::has_match_rule(Op_CacheWB),
2828          (is_pre ? "found match rule for CacheWBPreSync but not CacheWB"
2829                 : "found match rule for CacheWBPostSync but not CacheWB"));
2830 
2831 #endif
2832   null_check_receiver();  // null-check, then ignore
2833   Node *sync;
2834   if (is_pre) {
2835     sync = new CacheWBPreSyncNode(control(), memory(TypeRawPtr::BOTTOM));
2836   } else {
2837     sync = new CacheWBPostSyncNode(control(), memory(TypeRawPtr::BOTTOM));
2838   }
2839   sync = _gvn.transform(sync);
2840   set_memory(sync, TypeRawPtr::BOTTOM);
2841   return true;
2842 }
2843 
2844 //----------------------------inline_unsafe_allocate---------------------------
2845 // public native Object Unsafe.allocateInstance(Class<?> cls);
2846 bool LibraryCallKit::inline_unsafe_allocate() {
2847 
2848 #if INCLUDE_JVMTI
2849   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
2850     return false;
2851   }
2852 #endif //INCLUDE_JVMTI
2853 
2854   if (callee()->is_static())  return false;  // caller must have the capability!
2855 
2856   null_check_receiver();  // null-check, then ignore
2857   Node* cls = null_check(argument(1));
2858   if (stopped())  return true;
2859 
2860   Node* kls = load_klass_from_mirror(cls, false, nullptr, 0);
2861   kls = null_check(kls);
2862   if (stopped())  return true;  // argument was like int.class
2863 
2864 #if INCLUDE_JVMTI
2865     // Don't try to access new allocated obj in the intrinsic.
2866     // It causes perfomance issues even when jvmti event VmObjectAlloc is disabled.
2867     // Deoptimize and allocate in interpreter instead.
2868     Node* addr = makecon(TypeRawPtr::make((address) &JvmtiExport::_should_notify_object_alloc));
2869     Node* should_post_vm_object_alloc = make_load(this->control(), addr, TypeInt::INT, T_INT, MemNode::unordered);
2870     Node* chk = _gvn.transform(new CmpINode(should_post_vm_object_alloc, intcon(0)));
2871     Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::eq));
2872     {
2873       BuildCutout unless(this, tst, PROB_MAX);
2874       uncommon_trap(Deoptimization::Reason_intrinsic,
2875                     Deoptimization::Action_make_not_entrant);
2876     }
2877     if (stopped()) {
2878       return true;
2879     }
2880 #endif //INCLUDE_JVMTI
2881 
2882   Node* test = nullptr;
2883   if (LibraryCallKit::klass_needs_init_guard(kls)) {
2884     // Note:  The argument might still be an illegal value like
2885     // Serializable.class or Object[].class.   The runtime will handle it.
2886     // But we must make an explicit check for initialization.
2887     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
2888     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
2889     // can generate code to load it as unsigned byte.
2890     Node* inst = make_load(nullptr, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::acquire);
2891     Node* bits = intcon(InstanceKlass::fully_initialized);
2892     test = _gvn.transform(new SubINode(inst, bits));
2893     // The 'test' is non-zero if we need to take a slow path.
2894   }
2895 
2896   Node* obj = new_instance(kls, test);
2897   set_result(obj);
2898   return true;
2899 }
2900 
2901 //------------------------inline_native_time_funcs--------------
2902 // inline code for System.currentTimeMillis() and System.nanoTime()
2903 // these have the same type and signature
2904 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
2905   const TypeFunc* tf = OptoRuntime::void_long_Type();
2906   const TypePtr* no_memory_effects = nullptr;
2907   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
2908   Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0));
2909 #ifdef ASSERT
2910   Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1));
2911   assert(value_top == top(), "second value must be top");
2912 #endif
2913   set_result(value);
2914   return true;
2915 }
2916 
2917 
2918 #if INCLUDE_JVMTI
2919 
2920 // When notifications are disabled then just update the VTMS transition bit and return.
2921 // Otherwise, the bit is updated in the given function call implementing JVMTI notification protocol.
2922 bool LibraryCallKit::inline_native_notify_jvmti_funcs(address funcAddr, const char* funcName, bool is_start, bool is_end) {
2923   if (!DoJVMTIVirtualThreadTransitions) {
2924     return true;
2925   }
2926   Node* vt_oop = _gvn.transform(must_be_not_null(argument(0), true)); // VirtualThread this argument
2927   IdealKit ideal(this);
2928 
2929   Node* ONE = ideal.ConI(1);
2930   Node* hide = is_start ? ideal.ConI(0) : (is_end ? ideal.ConI(1) : _gvn.transform(argument(1)));
2931   Node* addr = makecon(TypeRawPtr::make((address)&JvmtiVTMSTransitionDisabler::_VTMS_notify_jvmti_events));
2932   Node* notify_jvmti_enabled = ideal.load(ideal.ctrl(), addr, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw);
2933 
2934   ideal.if_then(notify_jvmti_enabled, BoolTest::eq, ONE); {
2935     sync_kit(ideal);
2936     // if notifyJvmti enabled then make a call to the given SharedRuntime function
2937     const TypeFunc* tf = OptoRuntime::notify_jvmti_vthread_Type();
2938     make_runtime_call(RC_NO_LEAF, tf, funcAddr, funcName, TypePtr::BOTTOM, vt_oop, hide);
2939     ideal.sync_kit(this);
2940   } ideal.else_(); {
2941     // set hide value to the VTMS transition bit in current JavaThread and VirtualThread object
2942     Node* thread = ideal.thread();
2943     Node* jt_addr = basic_plus_adr(thread, in_bytes(JavaThread::is_in_VTMS_transition_offset()));
2944     Node* vt_addr = basic_plus_adr(vt_oop, java_lang_Thread::is_in_VTMS_transition_offset());
2945 
2946     sync_kit(ideal);
2947     access_store_at(nullptr, jt_addr, _gvn.type(jt_addr)->is_ptr(), hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED);
2948     access_store_at(nullptr, vt_addr, _gvn.type(vt_addr)->is_ptr(), hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED);
2949 
2950     ideal.sync_kit(this);
2951   } ideal.end_if();
2952   final_sync(ideal);
2953 
2954   return true;
2955 }
2956 
2957 // Always update the is_disable_suspend bit.
2958 bool LibraryCallKit::inline_native_notify_jvmti_sync() {
2959   if (!DoJVMTIVirtualThreadTransitions) {
2960     return true;
2961   }
2962   IdealKit ideal(this);
2963 
2964   {
2965     // unconditionally update the is_disable_suspend bit in current JavaThread
2966     Node* thread = ideal.thread();
2967     Node* arg = _gvn.transform(argument(0)); // argument for notification
2968     Node* addr = basic_plus_adr(thread, in_bytes(JavaThread::is_disable_suspend_offset()));
2969     const TypePtr *addr_type = _gvn.type(addr)->isa_ptr();
2970 
2971     sync_kit(ideal);
2972     access_store_at(nullptr, addr, addr_type, arg, _gvn.type(arg), T_BOOLEAN, IN_NATIVE | MO_UNORDERED);
2973     ideal.sync_kit(this);
2974   }
2975   final_sync(ideal);
2976 
2977   return true;
2978 }
2979 
2980 #endif // INCLUDE_JVMTI
2981 
2982 #ifdef JFR_HAVE_INTRINSICS
2983 
2984 /**
2985  * if oop->klass != null
2986  *   // normal class
2987  *   epoch = _epoch_state ? 2 : 1
2988  *   if oop->klass->trace_id & ((epoch << META_SHIFT) | epoch)) != epoch {
2989  *     ... // enter slow path when the klass is first recorded or the epoch of JFR shifts
2990  *   }
2991  *   id = oop->klass->trace_id >> TRACE_ID_SHIFT // normal class path
2992  * else
2993  *   // primitive class
2994  *   if oop->array_klass != null
2995  *     id = (oop->array_klass->trace_id >> TRACE_ID_SHIFT) + 1 // primitive class path
2996  *   else
2997  *     id = LAST_TYPE_ID + 1 // void class path
2998  *   if (!signaled)
2999  *     signaled = true
3000  */
3001 bool LibraryCallKit::inline_native_classID() {
3002   Node* cls = argument(0);
3003 
3004   IdealKit ideal(this);
3005 #define __ ideal.
3006   IdealVariable result(ideal); __ declarations_done();
3007   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(),
3008                                                  basic_plus_adr(cls, java_lang_Class::klass_offset()),
3009                                                  TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL));
3010 
3011 
3012   __ if_then(kls, BoolTest::ne, null()); {
3013     Node* kls_trace_id_addr = basic_plus_adr(kls, in_bytes(KLASS_TRACE_ID_OFFSET));
3014     Node* kls_trace_id_raw = ideal.load(ideal.ctrl(), kls_trace_id_addr,TypeLong::LONG, T_LONG, Compile::AliasIdxRaw);
3015 
3016     Node* epoch_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::epoch_address()));
3017     Node* epoch = ideal.load(ideal.ctrl(), epoch_address, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw);
3018     epoch = _gvn.transform(new LShiftLNode(longcon(1), epoch));
3019     Node* mask = _gvn.transform(new LShiftLNode(epoch, intcon(META_SHIFT)));
3020     mask = _gvn.transform(new OrLNode(mask, epoch));
3021     Node* kls_trace_id_raw_and_mask = _gvn.transform(new AndLNode(kls_trace_id_raw, mask));
3022 
3023     float unlikely  = PROB_UNLIKELY(0.999);
3024     __ if_then(kls_trace_id_raw_and_mask, BoolTest::ne, epoch, unlikely); {
3025       sync_kit(ideal);
3026       make_runtime_call(RC_LEAF,
3027                         OptoRuntime::class_id_load_barrier_Type(),
3028                         CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::load_barrier),
3029                         "class id load barrier",
3030                         TypePtr::BOTTOM,
3031                         kls);
3032       ideal.sync_kit(this);
3033     } __ end_if();
3034 
3035     ideal.set(result,  _gvn.transform(new URShiftLNode(kls_trace_id_raw, ideal.ConI(TRACE_ID_SHIFT))));
3036   } __ else_(); {
3037     Node* array_kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(),
3038                                                    basic_plus_adr(cls, java_lang_Class::array_klass_offset()),
3039                                                    TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL));
3040     __ if_then(array_kls, BoolTest::ne, null()); {
3041       Node* array_kls_trace_id_addr = basic_plus_adr(array_kls, in_bytes(KLASS_TRACE_ID_OFFSET));
3042       Node* array_kls_trace_id_raw = ideal.load(ideal.ctrl(), array_kls_trace_id_addr, TypeLong::LONG, T_LONG, Compile::AliasIdxRaw);
3043       Node* array_kls_trace_id = _gvn.transform(new URShiftLNode(array_kls_trace_id_raw, ideal.ConI(TRACE_ID_SHIFT)));
3044       ideal.set(result, _gvn.transform(new AddLNode(array_kls_trace_id, longcon(1))));
3045     } __ else_(); {
3046       // void class case
3047       ideal.set(result, _gvn.transform(longcon(LAST_TYPE_ID + 1)));
3048     } __ end_if();
3049 
3050     Node* signaled_flag_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::signal_address()));
3051     Node* signaled = ideal.load(ideal.ctrl(), signaled_flag_address, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw, true, MemNode::acquire);
3052     __ if_then(signaled, BoolTest::ne, ideal.ConI(1)); {
3053       ideal.store(ideal.ctrl(), signaled_flag_address, ideal.ConI(1), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::release, true);
3054     } __ end_if();
3055   } __ end_if();
3056 
3057   final_sync(ideal);
3058   set_result(ideal.value(result));
3059 #undef __
3060   return true;
3061 }
3062 
3063 //------------------------inline_native_jvm_commit------------------
3064 bool LibraryCallKit::inline_native_jvm_commit() {
3065   enum { _true_path = 1, _false_path = 2, PATH_LIMIT };
3066 
3067   // Save input memory and i_o state.
3068   Node* input_memory_state = reset_memory();
3069   set_all_memory(input_memory_state);
3070   Node* input_io_state = i_o();
3071 
3072   // TLS.
3073   Node* tls_ptr = _gvn.transform(new ThreadLocalNode());
3074   // Jfr java buffer.
3075   Node* java_buffer_offset = _gvn.transform(new AddPNode(top(), tls_ptr, _gvn.transform(MakeConX(in_bytes(JAVA_BUFFER_OFFSET_JFR)))));
3076   Node* java_buffer = _gvn.transform(new LoadPNode(control(), input_memory_state, java_buffer_offset, TypePtr::BOTTOM, TypeRawPtr::NOTNULL, MemNode::unordered));
3077   Node* java_buffer_pos_offset = _gvn.transform(new AddPNode(top(), java_buffer, _gvn.transform(MakeConX(in_bytes(JFR_BUFFER_POS_OFFSET)))));
3078 
3079   // Load the current value of the notified field in the JfrThreadLocal.
3080   Node* notified_offset = basic_plus_adr(top(), tls_ptr, in_bytes(NOTIFY_OFFSET_JFR));
3081   Node* notified = make_load(control(), notified_offset, TypeInt::BOOL, T_BOOLEAN, MemNode::unordered);
3082 
3083   // Test for notification.
3084   Node* notified_cmp = _gvn.transform(new CmpINode(notified, _gvn.intcon(1)));
3085   Node* test_notified = _gvn.transform(new BoolNode(notified_cmp, BoolTest::eq));
3086   IfNode* iff_notified = create_and_map_if(control(), test_notified, PROB_MIN, COUNT_UNKNOWN);
3087 
3088   // True branch, is notified.
3089   Node* is_notified = _gvn.transform(new IfTrueNode(iff_notified));
3090   set_control(is_notified);
3091 
3092   // Reset notified state.
3093   Node* notified_reset_memory = store_to_memory(control(), notified_offset, _gvn.intcon(0), T_BOOLEAN, MemNode::unordered);
3094 
3095   // Iff notified, the return address of the commit method is the current position of the backing java buffer. This is used to reset the event writer.
3096   Node* current_pos_X = _gvn.transform(new LoadXNode(control(), input_memory_state, java_buffer_pos_offset, TypeRawPtr::NOTNULL, TypeX_X, MemNode::unordered));
3097   // Convert the machine-word to a long.
3098   Node* current_pos = _gvn.transform(ConvX2L(current_pos_X));
3099 
3100   // False branch, not notified.
3101   Node* not_notified = _gvn.transform(new IfFalseNode(iff_notified));
3102   set_control(not_notified);
3103   set_all_memory(input_memory_state);
3104 
3105   // Arg is the next position as a long.
3106   Node* arg = argument(0);
3107   // Convert long to machine-word.
3108   Node* next_pos_X = _gvn.transform(ConvL2X(arg));
3109 
3110   // Store the next_position to the underlying jfr java buffer.
3111   Node* commit_memory;
3112 #ifdef _LP64
3113   commit_memory = store_to_memory(control(), java_buffer_pos_offset, next_pos_X, T_LONG, MemNode::release);
3114 #else
3115   commit_memory = store_to_memory(control(), java_buffer_pos_offset, next_pos_X, T_INT, MemNode::release);
3116 #endif
3117 
3118   // Now load the flags from off the java buffer and decide if the buffer is a lease. If so, it needs to be returned post-commit.
3119   Node* java_buffer_flags_offset = _gvn.transform(new AddPNode(top(), java_buffer, _gvn.transform(MakeConX(in_bytes(JFR_BUFFER_FLAGS_OFFSET)))));
3120   Node* flags = make_load(control(), java_buffer_flags_offset, TypeInt::UBYTE, T_BYTE, MemNode::unordered);
3121   Node* lease_constant = _gvn.transform(_gvn.intcon(4));
3122 
3123   // And flags with lease constant.
3124   Node* lease = _gvn.transform(new AndINode(flags, lease_constant));
3125 
3126   // Branch on lease to conditionalize returning the leased java buffer.
3127   Node* lease_cmp = _gvn.transform(new CmpINode(lease, lease_constant));
3128   Node* test_lease = _gvn.transform(new BoolNode(lease_cmp, BoolTest::eq));
3129   IfNode* iff_lease = create_and_map_if(control(), test_lease, PROB_MIN, COUNT_UNKNOWN);
3130 
3131   // False branch, not a lease.
3132   Node* not_lease = _gvn.transform(new IfFalseNode(iff_lease));
3133 
3134   // True branch, is lease.
3135   Node* is_lease = _gvn.transform(new IfTrueNode(iff_lease));
3136   set_control(is_lease);
3137 
3138   // Make a runtime call, which can safepoint, to return the leased buffer. This updates both the JfrThreadLocal and the Java event writer oop.
3139   Node* call_return_lease = make_runtime_call(RC_NO_LEAF,
3140                                               OptoRuntime::void_void_Type(),
3141                                               SharedRuntime::jfr_return_lease(),
3142                                               "return_lease", TypePtr::BOTTOM);
3143   Node* call_return_lease_control = _gvn.transform(new ProjNode(call_return_lease, TypeFunc::Control));
3144 
3145   RegionNode* lease_compare_rgn = new RegionNode(PATH_LIMIT);
3146   record_for_igvn(lease_compare_rgn);
3147   PhiNode* lease_compare_mem = new PhiNode(lease_compare_rgn, Type::MEMORY, TypePtr::BOTTOM);
3148   record_for_igvn(lease_compare_mem);
3149   PhiNode* lease_compare_io = new PhiNode(lease_compare_rgn, Type::ABIO);
3150   record_for_igvn(lease_compare_io);
3151   PhiNode* lease_result_value = new PhiNode(lease_compare_rgn, TypeLong::LONG);
3152   record_for_igvn(lease_result_value);
3153 
3154   // Update control and phi nodes.
3155   lease_compare_rgn->init_req(_true_path, call_return_lease_control);
3156   lease_compare_rgn->init_req(_false_path, not_lease);
3157 
3158   lease_compare_mem->init_req(_true_path, _gvn.transform(reset_memory()));
3159   lease_compare_mem->init_req(_false_path, commit_memory);
3160 
3161   lease_compare_io->init_req(_true_path, i_o());
3162   lease_compare_io->init_req(_false_path, input_io_state);
3163 
3164   lease_result_value->init_req(_true_path, null()); // if the lease was returned, return 0.
3165   lease_result_value->init_req(_false_path, arg); // if not lease, return new updated position.
3166 
3167   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3168   PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM);
3169   PhiNode* result_io = new PhiNode(result_rgn, Type::ABIO);
3170   PhiNode* result_value = new PhiNode(result_rgn, TypeLong::LONG);
3171 
3172   // Update control and phi nodes.
3173   result_rgn->init_req(_true_path, is_notified);
3174   result_rgn->init_req(_false_path, _gvn.transform(lease_compare_rgn));
3175 
3176   result_mem->init_req(_true_path, notified_reset_memory);
3177   result_mem->init_req(_false_path, _gvn.transform(lease_compare_mem));
3178 
3179   result_io->init_req(_true_path, input_io_state);
3180   result_io->init_req(_false_path, _gvn.transform(lease_compare_io));
3181 
3182   result_value->init_req(_true_path, current_pos);
3183   result_value->init_req(_false_path, _gvn.transform(lease_result_value));
3184 
3185   // Set output state.
3186   set_control(_gvn.transform(result_rgn));
3187   set_all_memory(_gvn.transform(result_mem));
3188   set_i_o(_gvn.transform(result_io));
3189   set_result(result_rgn, result_value);
3190   return true;
3191 }
3192 
3193 /*
3194  * The intrinsic is a model of this pseudo-code:
3195  *
3196  * JfrThreadLocal* const tl = Thread::jfr_thread_local()
3197  * jobject h_event_writer = tl->java_event_writer();
3198  * if (h_event_writer == nullptr) {
3199  *   return nullptr;
3200  * }
3201  * oop threadObj = Thread::threadObj();
3202  * oop vthread = java_lang_Thread::vthread(threadObj);
3203  * traceid tid;
3204  * bool pinVirtualThread;
3205  * bool excluded;
3206  * if (vthread != threadObj) {  // i.e. current thread is virtual
3207  *   tid = java_lang_Thread::tid(vthread);
3208  *   u2 vthread_epoch_raw = java_lang_Thread::jfr_epoch(vthread);
3209  *   pinVirtualThread = VMContinuations;
3210  *   excluded = vthread_epoch_raw & excluded_mask;
3211  *   if (!excluded) {
3212  *     traceid current_epoch = JfrTraceIdEpoch::current_generation();
3213  *     u2 vthread_epoch = vthread_epoch_raw & epoch_mask;
3214  *     if (vthread_epoch != current_epoch) {
3215  *       write_checkpoint();
3216  *     }
3217  *   }
3218  * } else {
3219  *   tid = java_lang_Thread::tid(threadObj);
3220  *   u2 thread_epoch_raw = java_lang_Thread::jfr_epoch(threadObj);
3221  *   pinVirtualThread = false;
3222  *   excluded = thread_epoch_raw & excluded_mask;
3223  * }
3224  * oop event_writer = JNIHandles::resolve_non_null(h_event_writer);
3225  * traceid tid_in_event_writer = getField(event_writer, "threadID");
3226  * if (tid_in_event_writer != tid) {
3227  *   setField(event_writer, "pinVirtualThread", pinVirtualThread);
3228  *   setField(event_writer, "excluded", excluded);
3229  *   setField(event_writer, "threadID", tid);
3230  * }
3231  * return event_writer
3232  */
3233 bool LibraryCallKit::inline_native_getEventWriter() {
3234   enum { _true_path = 1, _false_path = 2, PATH_LIMIT };
3235 
3236   // Save input memory and i_o state.
3237   Node* input_memory_state = reset_memory();
3238   set_all_memory(input_memory_state);
3239   Node* input_io_state = i_o();
3240 
3241   // The most significant bit of the u2 is used to denote thread exclusion
3242   Node* excluded_shift = _gvn.intcon(15);
3243   Node* excluded_mask = _gvn.intcon(1 << 15);
3244   // The epoch generation is the range [1-32767]
3245   Node* epoch_mask = _gvn.intcon(32767);
3246 
3247   // TLS
3248   Node* tls_ptr = _gvn.transform(new ThreadLocalNode());
3249 
3250   // Load the address of java event writer jobject handle from the jfr_thread_local structure.
3251   Node* jobj_ptr = basic_plus_adr(top(), tls_ptr, in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR));
3252 
3253   // Load the eventwriter jobject handle.
3254   Node* jobj = make_load(control(), jobj_ptr, TypeRawPtr::BOTTOM, T_ADDRESS, MemNode::unordered);
3255 
3256   // Null check the jobject handle.
3257   Node* jobj_cmp_null = _gvn.transform(new CmpPNode(jobj, null()));
3258   Node* test_jobj_not_equal_null = _gvn.transform(new BoolNode(jobj_cmp_null, BoolTest::ne));
3259   IfNode* iff_jobj_not_equal_null = create_and_map_if(control(), test_jobj_not_equal_null, PROB_MAX, COUNT_UNKNOWN);
3260 
3261   // False path, jobj is null.
3262   Node* jobj_is_null = _gvn.transform(new IfFalseNode(iff_jobj_not_equal_null));
3263 
3264   // True path, jobj is not null.
3265   Node* jobj_is_not_null = _gvn.transform(new IfTrueNode(iff_jobj_not_equal_null));
3266 
3267   set_control(jobj_is_not_null);
3268 
3269   // Load the threadObj for the CarrierThread.
3270   Node* threadObj = generate_current_thread(tls_ptr);
3271 
3272   // Load the vthread.
3273   Node* vthread = generate_virtual_thread(tls_ptr);
3274 
3275   // If vthread != threadObj, this is a virtual thread.
3276   Node* vthread_cmp_threadObj = _gvn.transform(new CmpPNode(vthread, threadObj));
3277   Node* test_vthread_not_equal_threadObj = _gvn.transform(new BoolNode(vthread_cmp_threadObj, BoolTest::ne));
3278   IfNode* iff_vthread_not_equal_threadObj =
3279     create_and_map_if(jobj_is_not_null, test_vthread_not_equal_threadObj, PROB_FAIR, COUNT_UNKNOWN);
3280 
3281   // False branch, fallback to threadObj.
3282   Node* vthread_equal_threadObj = _gvn.transform(new IfFalseNode(iff_vthread_not_equal_threadObj));
3283   set_control(vthread_equal_threadObj);
3284 
3285   // Load the tid field from the vthread object.
3286   Node* thread_obj_tid = load_field_from_object(threadObj, "tid", "J");
3287 
3288   // Load the raw epoch value from the threadObj.
3289   Node* threadObj_epoch_offset = basic_plus_adr(threadObj, java_lang_Thread::jfr_epoch_offset());
3290   Node* threadObj_epoch_raw = access_load_at(threadObj, threadObj_epoch_offset,
3291                                              _gvn.type(threadObj_epoch_offset)->isa_ptr(),
3292                                              TypeInt::CHAR, T_CHAR,
3293                                              IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD);
3294 
3295   // Mask off the excluded information from the epoch.
3296   Node * threadObj_is_excluded = _gvn.transform(new AndINode(threadObj_epoch_raw, excluded_mask));
3297 
3298   // True branch, this is a virtual thread.
3299   Node* vthread_not_equal_threadObj = _gvn.transform(new IfTrueNode(iff_vthread_not_equal_threadObj));
3300   set_control(vthread_not_equal_threadObj);
3301 
3302   // Load the tid field from the vthread object.
3303   Node* vthread_tid = load_field_from_object(vthread, "tid", "J");
3304 
3305   // Continuation support determines if a virtual thread should be pinned.
3306   Node* global_addr = makecon(TypeRawPtr::make((address)&VMContinuations));
3307   Node* continuation_support = make_load(control(), global_addr, TypeInt::BOOL, T_BOOLEAN, MemNode::unordered);
3308 
3309   // Load the raw epoch value from the vthread.
3310   Node* vthread_epoch_offset = basic_plus_adr(vthread, java_lang_Thread::jfr_epoch_offset());
3311   Node* vthread_epoch_raw = access_load_at(vthread, vthread_epoch_offset, _gvn.type(vthread_epoch_offset)->is_ptr(),
3312                                            TypeInt::CHAR, T_CHAR,
3313                                            IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD);
3314 
3315   // Mask off the excluded information from the epoch.
3316   Node * vthread_is_excluded = _gvn.transform(new AndINode(vthread_epoch_raw, _gvn.transform(excluded_mask)));
3317 
3318   // Branch on excluded to conditionalize updating the epoch for the virtual thread.
3319   Node* is_excluded_cmp = _gvn.transform(new CmpINode(vthread_is_excluded, _gvn.transform(excluded_mask)));
3320   Node* test_not_excluded = _gvn.transform(new BoolNode(is_excluded_cmp, BoolTest::ne));
3321   IfNode* iff_not_excluded = create_and_map_if(control(), test_not_excluded, PROB_MAX, COUNT_UNKNOWN);
3322 
3323   // False branch, vthread is excluded, no need to write epoch info.
3324   Node* excluded = _gvn.transform(new IfFalseNode(iff_not_excluded));
3325 
3326   // True branch, vthread is included, update epoch info.
3327   Node* included = _gvn.transform(new IfTrueNode(iff_not_excluded));
3328   set_control(included);
3329 
3330   // Get epoch value.
3331   Node* epoch = _gvn.transform(new AndINode(vthread_epoch_raw, _gvn.transform(epoch_mask)));
3332 
3333   // Load the current epoch generation. The value is unsigned 16-bit, so we type it as T_CHAR.
3334   Node* epoch_generation_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::epoch_generation_address()));
3335   Node* current_epoch_generation = make_load(control(), epoch_generation_address, TypeInt::CHAR, T_CHAR, MemNode::unordered);
3336 
3337   // Compare the epoch in the vthread to the current epoch generation.
3338   Node* const epoch_cmp = _gvn.transform(new CmpUNode(current_epoch_generation, epoch));
3339   Node* test_epoch_not_equal = _gvn.transform(new BoolNode(epoch_cmp, BoolTest::ne));
3340   IfNode* iff_epoch_not_equal = create_and_map_if(control(), test_epoch_not_equal, PROB_FAIR, COUNT_UNKNOWN);
3341 
3342   // False path, epoch is equal, checkpoint information is valid.
3343   Node* epoch_is_equal = _gvn.transform(new IfFalseNode(iff_epoch_not_equal));
3344 
3345   // True path, epoch is not equal, write a checkpoint for the vthread.
3346   Node* epoch_is_not_equal = _gvn.transform(new IfTrueNode(iff_epoch_not_equal));
3347 
3348   set_control(epoch_is_not_equal);
3349 
3350   // Make a runtime call, which can safepoint, to write a checkpoint for the vthread for this epoch.
3351   // The call also updates the native thread local thread id and the vthread with the current epoch.
3352   Node* call_write_checkpoint = make_runtime_call(RC_NO_LEAF,
3353                                                   OptoRuntime::jfr_write_checkpoint_Type(),
3354                                                   SharedRuntime::jfr_write_checkpoint(),
3355                                                   "write_checkpoint", TypePtr::BOTTOM);
3356   Node* call_write_checkpoint_control = _gvn.transform(new ProjNode(call_write_checkpoint, TypeFunc::Control));
3357 
3358   // vthread epoch != current epoch
3359   RegionNode* epoch_compare_rgn = new RegionNode(PATH_LIMIT);
3360   record_for_igvn(epoch_compare_rgn);
3361   PhiNode* epoch_compare_mem = new PhiNode(epoch_compare_rgn, Type::MEMORY, TypePtr::BOTTOM);
3362   record_for_igvn(epoch_compare_mem);
3363   PhiNode* epoch_compare_io = new PhiNode(epoch_compare_rgn, Type::ABIO);
3364   record_for_igvn(epoch_compare_io);
3365 
3366   // Update control and phi nodes.
3367   epoch_compare_rgn->init_req(_true_path, call_write_checkpoint_control);
3368   epoch_compare_rgn->init_req(_false_path, epoch_is_equal);
3369   epoch_compare_mem->init_req(_true_path, _gvn.transform(reset_memory()));
3370   epoch_compare_mem->init_req(_false_path, input_memory_state);
3371   epoch_compare_io->init_req(_true_path, i_o());
3372   epoch_compare_io->init_req(_false_path, input_io_state);
3373 
3374   // excluded != true
3375   RegionNode* exclude_compare_rgn = new RegionNode(PATH_LIMIT);
3376   record_for_igvn(exclude_compare_rgn);
3377   PhiNode* exclude_compare_mem = new PhiNode(exclude_compare_rgn, Type::MEMORY, TypePtr::BOTTOM);
3378   record_for_igvn(exclude_compare_mem);
3379   PhiNode* exclude_compare_io = new PhiNode(exclude_compare_rgn, Type::ABIO);
3380   record_for_igvn(exclude_compare_io);
3381 
3382   // Update control and phi nodes.
3383   exclude_compare_rgn->init_req(_true_path, _gvn.transform(epoch_compare_rgn));
3384   exclude_compare_rgn->init_req(_false_path, excluded);
3385   exclude_compare_mem->init_req(_true_path, _gvn.transform(epoch_compare_mem));
3386   exclude_compare_mem->init_req(_false_path, input_memory_state);
3387   exclude_compare_io->init_req(_true_path, _gvn.transform(epoch_compare_io));
3388   exclude_compare_io->init_req(_false_path, input_io_state);
3389 
3390   // vthread != threadObj
3391   RegionNode* vthread_compare_rgn = new RegionNode(PATH_LIMIT);
3392   record_for_igvn(vthread_compare_rgn);
3393   PhiNode* vthread_compare_mem = new PhiNode(vthread_compare_rgn, Type::MEMORY, TypePtr::BOTTOM);
3394   PhiNode* vthread_compare_io = new PhiNode(vthread_compare_rgn, Type::ABIO);
3395   record_for_igvn(vthread_compare_io);
3396   PhiNode* tid = new PhiNode(vthread_compare_rgn, TypeLong::LONG);
3397   record_for_igvn(tid);
3398   PhiNode* exclusion = new PhiNode(vthread_compare_rgn, TypeInt::CHAR);
3399   record_for_igvn(exclusion);
3400   PhiNode* pinVirtualThread = new PhiNode(vthread_compare_rgn, TypeInt::BOOL);
3401   record_for_igvn(pinVirtualThread);
3402 
3403   // Update control and phi nodes.
3404   vthread_compare_rgn->init_req(_true_path, _gvn.transform(exclude_compare_rgn));
3405   vthread_compare_rgn->init_req(_false_path, vthread_equal_threadObj);
3406   vthread_compare_mem->init_req(_true_path, _gvn.transform(exclude_compare_mem));
3407   vthread_compare_mem->init_req(_false_path, input_memory_state);
3408   vthread_compare_io->init_req(_true_path, _gvn.transform(exclude_compare_io));
3409   vthread_compare_io->init_req(_false_path, input_io_state);
3410   tid->init_req(_true_path, _gvn.transform(vthread_tid));
3411   tid->init_req(_false_path, _gvn.transform(thread_obj_tid));
3412   exclusion->init_req(_true_path, _gvn.transform(vthread_is_excluded));
3413   exclusion->init_req(_false_path, _gvn.transform(threadObj_is_excluded));
3414   pinVirtualThread->init_req(_true_path, _gvn.transform(continuation_support));
3415   pinVirtualThread->init_req(_false_path, _gvn.intcon(0));
3416 
3417   // Update branch state.
3418   set_control(_gvn.transform(vthread_compare_rgn));
3419   set_all_memory(_gvn.transform(vthread_compare_mem));
3420   set_i_o(_gvn.transform(vthread_compare_io));
3421 
3422   // Load the event writer oop by dereferencing the jobject handle.
3423   ciKlass* klass_EventWriter = env()->find_system_klass(ciSymbol::make("jdk/jfr/internal/event/EventWriter"));
3424   assert(klass_EventWriter->is_loaded(), "invariant");
3425   ciInstanceKlass* const instklass_EventWriter = klass_EventWriter->as_instance_klass();
3426   const TypeKlassPtr* const aklass = TypeKlassPtr::make(instklass_EventWriter);
3427   const TypeOopPtr* const xtype = aklass->as_instance_type();
3428   Node* jobj_untagged = _gvn.transform(new AddPNode(top(), jobj, _gvn.MakeConX(-JNIHandles::TypeTag::global)));
3429   Node* event_writer = access_load(jobj_untagged, xtype, T_OBJECT, IN_NATIVE | C2_CONTROL_DEPENDENT_LOAD);
3430 
3431   // Load the current thread id from the event writer object.
3432   Node* const event_writer_tid = load_field_from_object(event_writer, "threadID", "J");
3433   // Get the field offset to, conditionally, store an updated tid value later.
3434   Node* const event_writer_tid_field = field_address_from_object(event_writer, "threadID", "J", false);
3435   // Get the field offset to, conditionally, store an updated exclusion value later.
3436   Node* const event_writer_excluded_field = field_address_from_object(event_writer, "excluded", "Z", false);
3437   // Get the field offset to, conditionally, store an updated pinVirtualThread value later.
3438   Node* const event_writer_pin_field = field_address_from_object(event_writer, "pinVirtualThread", "Z", false);
3439 
3440   RegionNode* event_writer_tid_compare_rgn = new RegionNode(PATH_LIMIT);
3441   record_for_igvn(event_writer_tid_compare_rgn);
3442   PhiNode* event_writer_tid_compare_mem = new PhiNode(event_writer_tid_compare_rgn, Type::MEMORY, TypePtr::BOTTOM);
3443   record_for_igvn(event_writer_tid_compare_mem);
3444   PhiNode* event_writer_tid_compare_io = new PhiNode(event_writer_tid_compare_rgn, Type::ABIO);
3445   record_for_igvn(event_writer_tid_compare_io);
3446 
3447   // Compare the current tid from the thread object to what is currently stored in the event writer object.
3448   Node* const tid_cmp = _gvn.transform(new CmpLNode(event_writer_tid, _gvn.transform(tid)));
3449   Node* test_tid_not_equal = _gvn.transform(new BoolNode(tid_cmp, BoolTest::ne));
3450   IfNode* iff_tid_not_equal = create_and_map_if(_gvn.transform(vthread_compare_rgn), test_tid_not_equal, PROB_FAIR, COUNT_UNKNOWN);
3451 
3452   // False path, tids are the same.
3453   Node* tid_is_equal = _gvn.transform(new IfFalseNode(iff_tid_not_equal));
3454 
3455   // True path, tid is not equal, need to update the tid in the event writer.
3456   Node* tid_is_not_equal = _gvn.transform(new IfTrueNode(iff_tid_not_equal));
3457   record_for_igvn(tid_is_not_equal);
3458 
3459   // Store the pin state to the event writer.
3460   store_to_memory(tid_is_not_equal, event_writer_pin_field, _gvn.transform(pinVirtualThread), T_BOOLEAN, MemNode::unordered);
3461 
3462   // Store the exclusion state to the event writer.
3463   Node* excluded_bool = _gvn.transform(new URShiftINode(_gvn.transform(exclusion), excluded_shift));
3464   store_to_memory(tid_is_not_equal, event_writer_excluded_field, excluded_bool, T_BOOLEAN, MemNode::unordered);
3465 
3466   // Store the tid to the event writer.
3467   store_to_memory(tid_is_not_equal, event_writer_tid_field, tid, T_LONG, MemNode::unordered);
3468 
3469   // Update control and phi nodes.
3470   event_writer_tid_compare_rgn->init_req(_true_path, tid_is_not_equal);
3471   event_writer_tid_compare_rgn->init_req(_false_path, tid_is_equal);
3472   event_writer_tid_compare_mem->init_req(_true_path, _gvn.transform(reset_memory()));
3473   event_writer_tid_compare_mem->init_req(_false_path, _gvn.transform(vthread_compare_mem));
3474   event_writer_tid_compare_io->init_req(_true_path, _gvn.transform(i_o()));
3475   event_writer_tid_compare_io->init_req(_false_path, _gvn.transform(vthread_compare_io));
3476 
3477   // Result of top level CFG, Memory, IO and Value.
3478   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3479   PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM);
3480   PhiNode* result_io = new PhiNode(result_rgn, Type::ABIO);
3481   PhiNode* result_value = new PhiNode(result_rgn, TypeInstPtr::BOTTOM);
3482 
3483   // Result control.
3484   result_rgn->init_req(_true_path, _gvn.transform(event_writer_tid_compare_rgn));
3485   result_rgn->init_req(_false_path, jobj_is_null);
3486 
3487   // Result memory.
3488   result_mem->init_req(_true_path, _gvn.transform(event_writer_tid_compare_mem));
3489   result_mem->init_req(_false_path, _gvn.transform(input_memory_state));
3490 
3491   // Result IO.
3492   result_io->init_req(_true_path, _gvn.transform(event_writer_tid_compare_io));
3493   result_io->init_req(_false_path, _gvn.transform(input_io_state));
3494 
3495   // Result value.
3496   result_value->init_req(_true_path, _gvn.transform(event_writer)); // return event writer oop
3497   result_value->init_req(_false_path, null()); // return null
3498 
3499   // Set output state.
3500   set_control(_gvn.transform(result_rgn));
3501   set_all_memory(_gvn.transform(result_mem));
3502   set_i_o(_gvn.transform(result_io));
3503   set_result(result_rgn, result_value);
3504   return true;
3505 }
3506 
3507 /*
3508  * The intrinsic is a model of this pseudo-code:
3509  *
3510  * JfrThreadLocal* const tl = thread->jfr_thread_local();
3511  * if (carrierThread != thread) { // is virtual thread
3512  *   const u2 vthread_epoch_raw = java_lang_Thread::jfr_epoch(thread);
3513  *   bool excluded = vthread_epoch_raw & excluded_mask;
3514  *   Atomic::store(&tl->_contextual_tid, java_lang_Thread::tid(thread));
3515  *   Atomic::store(&tl->_contextual_thread_excluded, is_excluded);
3516  *   if (!excluded) {
3517  *     const u2 vthread_epoch = vthread_epoch_raw & epoch_mask;
3518  *     Atomic::store(&tl->_vthread_epoch, vthread_epoch);
3519  *   }
3520  *   Atomic::release_store(&tl->_vthread, true);
3521  *   return;
3522  * }
3523  * Atomic::release_store(&tl->_vthread, false);
3524  */
3525 void LibraryCallKit::extend_setCurrentThread(Node* jt, Node* thread) {
3526   enum { _true_path = 1, _false_path = 2, PATH_LIMIT };
3527 
3528   Node* input_memory_state = reset_memory();
3529   set_all_memory(input_memory_state);
3530 
3531   // The most significant bit of the u2 is used to denote thread exclusion
3532   Node* excluded_mask = _gvn.intcon(1 << 15);
3533   // The epoch generation is the range [1-32767]
3534   Node* epoch_mask = _gvn.intcon(32767);
3535 
3536   Node* const carrierThread = generate_current_thread(jt);
3537   // If thread != carrierThread, this is a virtual thread.
3538   Node* thread_cmp_carrierThread = _gvn.transform(new CmpPNode(thread, carrierThread));
3539   Node* test_thread_not_equal_carrierThread = _gvn.transform(new BoolNode(thread_cmp_carrierThread, BoolTest::ne));
3540   IfNode* iff_thread_not_equal_carrierThread =
3541     create_and_map_if(control(), test_thread_not_equal_carrierThread, PROB_FAIR, COUNT_UNKNOWN);
3542 
3543   Node* vthread_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_OFFSET_JFR));
3544 
3545   // False branch, is carrierThread.
3546   Node* thread_equal_carrierThread = _gvn.transform(new IfFalseNode(iff_thread_not_equal_carrierThread));
3547   // Store release
3548   Node* vthread_false_memory = store_to_memory(thread_equal_carrierThread, vthread_offset, _gvn.intcon(0), T_BOOLEAN, MemNode::release, true);
3549 
3550   set_all_memory(input_memory_state);
3551 
3552   // True branch, is virtual thread.
3553   Node* thread_not_equal_carrierThread = _gvn.transform(new IfTrueNode(iff_thread_not_equal_carrierThread));
3554   set_control(thread_not_equal_carrierThread);
3555 
3556   // Load the raw epoch value from the vthread.
3557   Node* epoch_offset = basic_plus_adr(thread, java_lang_Thread::jfr_epoch_offset());
3558   Node* epoch_raw = access_load_at(thread, epoch_offset, _gvn.type(epoch_offset)->is_ptr(), TypeInt::CHAR, T_CHAR,
3559                                    IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD);
3560 
3561   // Mask off the excluded information from the epoch.
3562   Node * const is_excluded = _gvn.transform(new AndINode(epoch_raw, _gvn.transform(excluded_mask)));
3563 
3564   // Load the tid field from the thread.
3565   Node* tid = load_field_from_object(thread, "tid", "J");
3566 
3567   // Store the vthread tid to the jfr thread local.
3568   Node* thread_id_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_ID_OFFSET_JFR));
3569   Node* tid_memory = store_to_memory(control(), thread_id_offset, tid, T_LONG, MemNode::unordered, true);
3570 
3571   // Branch is_excluded to conditionalize updating the epoch .
3572   Node* excluded_cmp = _gvn.transform(new CmpINode(is_excluded, _gvn.transform(excluded_mask)));
3573   Node* test_excluded = _gvn.transform(new BoolNode(excluded_cmp, BoolTest::eq));
3574   IfNode* iff_excluded = create_and_map_if(control(), test_excluded, PROB_MIN, COUNT_UNKNOWN);
3575 
3576   // True branch, vthread is excluded, no need to write epoch info.
3577   Node* excluded = _gvn.transform(new IfTrueNode(iff_excluded));
3578   set_control(excluded);
3579   Node* vthread_is_excluded = _gvn.intcon(1);
3580 
3581   // False branch, vthread is included, update epoch info.
3582   Node* included = _gvn.transform(new IfFalseNode(iff_excluded));
3583   set_control(included);
3584   Node* vthread_is_included = _gvn.intcon(0);
3585 
3586   // Get epoch value.
3587   Node* epoch = _gvn.transform(new AndINode(epoch_raw, _gvn.transform(epoch_mask)));
3588 
3589   // Store the vthread epoch to the jfr thread local.
3590   Node* vthread_epoch_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_EPOCH_OFFSET_JFR));
3591   Node* included_memory = store_to_memory(control(), vthread_epoch_offset, epoch, T_CHAR, MemNode::unordered, true);
3592 
3593   RegionNode* excluded_rgn = new RegionNode(PATH_LIMIT);
3594   record_for_igvn(excluded_rgn);
3595   PhiNode* excluded_mem = new PhiNode(excluded_rgn, Type::MEMORY, TypePtr::BOTTOM);
3596   record_for_igvn(excluded_mem);
3597   PhiNode* exclusion = new PhiNode(excluded_rgn, TypeInt::BOOL);
3598   record_for_igvn(exclusion);
3599 
3600   // Merge the excluded control and memory.
3601   excluded_rgn->init_req(_true_path, excluded);
3602   excluded_rgn->init_req(_false_path, included);
3603   excluded_mem->init_req(_true_path, tid_memory);
3604   excluded_mem->init_req(_false_path, included_memory);
3605   exclusion->init_req(_true_path, _gvn.transform(vthread_is_excluded));
3606   exclusion->init_req(_false_path, _gvn.transform(vthread_is_included));
3607 
3608   // Set intermediate state.
3609   set_control(_gvn.transform(excluded_rgn));
3610   set_all_memory(excluded_mem);
3611 
3612   // Store the vthread exclusion state to the jfr thread local.
3613   Node* thread_local_excluded_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_EXCLUDED_OFFSET_JFR));
3614   store_to_memory(control(), thread_local_excluded_offset, _gvn.transform(exclusion), T_BOOLEAN, MemNode::unordered, true);
3615 
3616   // Store release
3617   Node * vthread_true_memory = store_to_memory(control(), vthread_offset, _gvn.intcon(1), T_BOOLEAN, MemNode::release, true);
3618 
3619   RegionNode* thread_compare_rgn = new RegionNode(PATH_LIMIT);
3620   record_for_igvn(thread_compare_rgn);
3621   PhiNode* thread_compare_mem = new PhiNode(thread_compare_rgn, Type::MEMORY, TypePtr::BOTTOM);
3622   record_for_igvn(thread_compare_mem);
3623   PhiNode* vthread = new PhiNode(thread_compare_rgn, TypeInt::BOOL);
3624   record_for_igvn(vthread);
3625 
3626   // Merge the thread_compare control and memory.
3627   thread_compare_rgn->init_req(_true_path, control());
3628   thread_compare_rgn->init_req(_false_path, thread_equal_carrierThread);
3629   thread_compare_mem->init_req(_true_path, vthread_true_memory);
3630   thread_compare_mem->init_req(_false_path, vthread_false_memory);
3631 
3632   // Set output state.
3633   set_control(_gvn.transform(thread_compare_rgn));
3634   set_all_memory(_gvn.transform(thread_compare_mem));
3635 }
3636 
3637 #endif // JFR_HAVE_INTRINSICS
3638 
3639 //------------------------inline_native_currentCarrierThread------------------
3640 bool LibraryCallKit::inline_native_currentCarrierThread() {
3641   Node* junk = nullptr;
3642   set_result(generate_current_thread(junk));
3643   return true;
3644 }
3645 
3646 //------------------------inline_native_currentThread------------------
3647 bool LibraryCallKit::inline_native_currentThread() {
3648   Node* junk = nullptr;
3649   set_result(generate_virtual_thread(junk));
3650   return true;
3651 }
3652 
3653 //------------------------inline_native_setVthread------------------
3654 bool LibraryCallKit::inline_native_setCurrentThread() {
3655   assert(C->method()->changes_current_thread(),
3656          "method changes current Thread but is not annotated ChangesCurrentThread");
3657   Node* arr = argument(1);
3658   Node* thread = _gvn.transform(new ThreadLocalNode());
3659   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::vthread_offset()));
3660   Node* thread_obj_handle
3661     = make_load(nullptr, p, p->bottom_type()->is_ptr(), T_OBJECT, MemNode::unordered);
3662   thread_obj_handle = _gvn.transform(thread_obj_handle);
3663   const TypePtr *adr_type = _gvn.type(thread_obj_handle)->isa_ptr();
3664   access_store_at(nullptr, thread_obj_handle, adr_type, arr, _gvn.type(arr), T_OBJECT, IN_NATIVE | MO_UNORDERED);
3665 
3666   // Change the _monitor_owner_id of the JavaThread
3667   Node* tid = load_field_from_object(arr, "tid", "J");
3668   Node* monitor_owner_id_offset = basic_plus_adr(thread, in_bytes(JavaThread::monitor_owner_id_offset()));
3669   store_to_memory(control(), monitor_owner_id_offset, tid, T_LONG, MemNode::unordered, true);
3670 
3671   JFR_ONLY(extend_setCurrentThread(thread, arr);)
3672   return true;
3673 }
3674 
3675 const Type* LibraryCallKit::scopedValueCache_type() {
3676   ciKlass* objects_klass = ciObjArrayKlass::make(env()->Object_klass());
3677   const TypeOopPtr* etype = TypeOopPtr::make_from_klass(env()->Object_klass());
3678   const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3679 
3680   // Because we create the scopedValue cache lazily we have to make the
3681   // type of the result BotPTR.
3682   bool xk = etype->klass_is_exact();
3683   const Type* objects_type = TypeAryPtr::make(TypePtr::BotPTR, arr0, objects_klass, xk, 0);
3684   return objects_type;
3685 }
3686 
3687 Node* LibraryCallKit::scopedValueCache_helper() {
3688   Node* thread = _gvn.transform(new ThreadLocalNode());
3689   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::scopedValueCache_offset()));
3690   // We cannot use immutable_memory() because we might flip onto a
3691   // different carrier thread, at which point we'll need to use that
3692   // carrier thread's cache.
3693   // return _gvn.transform(LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(),
3694   //       TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered));
3695   return make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered);
3696 }
3697 
3698 //------------------------inline_native_scopedValueCache------------------
3699 bool LibraryCallKit::inline_native_scopedValueCache() {
3700   Node* cache_obj_handle = scopedValueCache_helper();
3701   const Type* objects_type = scopedValueCache_type();
3702   set_result(access_load(cache_obj_handle, objects_type, T_OBJECT, IN_NATIVE));
3703 
3704   return true;
3705 }
3706 
3707 //------------------------inline_native_setScopedValueCache------------------
3708 bool LibraryCallKit::inline_native_setScopedValueCache() {
3709   Node* arr = argument(0);
3710   Node* cache_obj_handle = scopedValueCache_helper();
3711   const Type* objects_type = scopedValueCache_type();
3712 
3713   const TypePtr *adr_type = _gvn.type(cache_obj_handle)->isa_ptr();
3714   access_store_at(nullptr, cache_obj_handle, adr_type, arr, objects_type, T_OBJECT, IN_NATIVE | MO_UNORDERED);
3715 
3716   return true;
3717 }
3718 
3719 //------------------------inline_native_Continuation_pin and unpin-----------
3720 
3721 // Shared implementation routine for both pin and unpin.
3722 bool LibraryCallKit::inline_native_Continuation_pinning(bool unpin) {
3723   enum { _true_path = 1, _false_path = 2, PATH_LIMIT };
3724 
3725   // Save input memory.
3726   Node* input_memory_state = reset_memory();
3727   set_all_memory(input_memory_state);
3728 
3729   // TLS
3730   Node* tls_ptr = _gvn.transform(new ThreadLocalNode());
3731   Node* last_continuation_offset = basic_plus_adr(top(), tls_ptr, in_bytes(JavaThread::cont_entry_offset()));
3732   Node* last_continuation = make_load(control(), last_continuation_offset, last_continuation_offset->get_ptr_type(), T_ADDRESS, MemNode::unordered);
3733 
3734   // Null check the last continuation object.
3735   Node* continuation_cmp_null = _gvn.transform(new CmpPNode(last_continuation, null()));
3736   Node* test_continuation_not_equal_null = _gvn.transform(new BoolNode(continuation_cmp_null, BoolTest::ne));
3737   IfNode* iff_continuation_not_equal_null = create_and_map_if(control(), test_continuation_not_equal_null, PROB_MAX, COUNT_UNKNOWN);
3738 
3739   // False path, last continuation is null.
3740   Node* continuation_is_null = _gvn.transform(new IfFalseNode(iff_continuation_not_equal_null));
3741 
3742   // True path, last continuation is not null.
3743   Node* continuation_is_not_null = _gvn.transform(new IfTrueNode(iff_continuation_not_equal_null));
3744 
3745   set_control(continuation_is_not_null);
3746 
3747   // Load the pin count from the last continuation.
3748   Node* pin_count_offset = basic_plus_adr(top(), last_continuation, in_bytes(ContinuationEntry::pin_count_offset()));
3749   Node* pin_count = make_load(control(), pin_count_offset, TypeInt::INT, T_INT, MemNode::unordered);
3750 
3751   // The loaded pin count is compared against a context specific rhs for over/underflow detection.
3752   Node* pin_count_rhs;
3753   if (unpin) {
3754     pin_count_rhs = _gvn.intcon(0);
3755   } else {
3756     pin_count_rhs = _gvn.intcon(UINT32_MAX);
3757   }
3758   Node* pin_count_cmp = _gvn.transform(new CmpUNode(_gvn.transform(pin_count), pin_count_rhs));
3759   Node* test_pin_count_over_underflow = _gvn.transform(new BoolNode(pin_count_cmp, BoolTest::eq));
3760   IfNode* iff_pin_count_over_underflow = create_and_map_if(control(), test_pin_count_over_underflow, PROB_MIN, COUNT_UNKNOWN);
3761 
3762   // True branch, pin count over/underflow.
3763   Node* pin_count_over_underflow = _gvn.transform(new IfTrueNode(iff_pin_count_over_underflow));
3764   {
3765     // Trap (but not deoptimize (Action_none)) and continue in the interpreter
3766     // which will throw IllegalStateException for pin count over/underflow.
3767     // No memory changed so far - we can use memory create by reset_memory()
3768     // at the beginning of this intrinsic. No need to call reset_memory() again.
3769     PreserveJVMState pjvms(this);
3770     set_control(pin_count_over_underflow);
3771     uncommon_trap(Deoptimization::Reason_intrinsic,
3772                   Deoptimization::Action_none);
3773     assert(stopped(), "invariant");
3774   }
3775 
3776   // False branch, no pin count over/underflow. Increment or decrement pin count and store back.
3777   Node* valid_pin_count = _gvn.transform(new IfFalseNode(iff_pin_count_over_underflow));
3778   set_control(valid_pin_count);
3779 
3780   Node* next_pin_count;
3781   if (unpin) {
3782     next_pin_count = _gvn.transform(new SubINode(pin_count, _gvn.intcon(1)));
3783   } else {
3784     next_pin_count = _gvn.transform(new AddINode(pin_count, _gvn.intcon(1)));
3785   }
3786 
3787   store_to_memory(control(), pin_count_offset, next_pin_count, T_INT, MemNode::unordered);
3788 
3789   // Result of top level CFG and Memory.
3790   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3791   record_for_igvn(result_rgn);
3792   PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM);
3793   record_for_igvn(result_mem);
3794 
3795   result_rgn->init_req(_true_path, _gvn.transform(valid_pin_count));
3796   result_rgn->init_req(_false_path, _gvn.transform(continuation_is_null));
3797   result_mem->init_req(_true_path, _gvn.transform(reset_memory()));
3798   result_mem->init_req(_false_path, _gvn.transform(input_memory_state));
3799 
3800   // Set output state.
3801   set_control(_gvn.transform(result_rgn));
3802   set_all_memory(_gvn.transform(result_mem));
3803 
3804   return true;
3805 }
3806 
3807 //---------------------------load_mirror_from_klass----------------------------
3808 // Given a klass oop, load its java mirror (a java.lang.Class oop).
3809 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3810   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3811   Node* load = make_load(nullptr, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3812   // mirror = ((OopHandle)mirror)->resolve();
3813   return access_load(load, TypeInstPtr::MIRROR, T_OBJECT, IN_NATIVE);
3814 }
3815 
3816 //-----------------------load_klass_from_mirror_common-------------------------
3817 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3818 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3819 // and branch to the given path on the region.
3820 // If never_see_null, take an uncommon trap on null, so we can optimistically
3821 // compile for the non-null case.
3822 // If the region is null, force never_see_null = true.
3823 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3824                                                     bool never_see_null,
3825                                                     RegionNode* region,
3826                                                     int null_path,
3827                                                     int offset) {
3828   if (region == nullptr)  never_see_null = true;
3829   Node* p = basic_plus_adr(mirror, offset);
3830   const TypeKlassPtr*  kls_type = TypeInstKlassPtr::OBJECT_OR_NULL;
3831   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
3832   Node* null_ctl = top();
3833   kls = null_check_oop(kls, &null_ctl, never_see_null);
3834   if (region != nullptr) {
3835     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
3836     region->init_req(null_path, null_ctl);
3837   } else {
3838     assert(null_ctl == top(), "no loose ends");
3839   }
3840   return kls;
3841 }
3842 
3843 //--------------------(inline_native_Class_query helpers)---------------------
3844 // Use this for JVM_ACC_INTERFACE.
3845 // Fall through if (mods & mask) == bits, take the guard otherwise.
3846 Node* LibraryCallKit::generate_klass_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region,
3847                                                  ByteSize offset, const Type* type, BasicType bt) {
3848   // Branch around if the given klass has the given modifier bit set.
3849   // Like generate_guard, adds a new path onto the region.
3850   Node* modp = basic_plus_adr(kls, in_bytes(offset));
3851   Node* mods = make_load(nullptr, modp, type, bt, MemNode::unordered);
3852   Node* mask = intcon(modifier_mask);
3853   Node* bits = intcon(modifier_bits);
3854   Node* mbit = _gvn.transform(new AndINode(mods, mask));
3855   Node* cmp  = _gvn.transform(new CmpINode(mbit, bits));
3856   Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
3857   return generate_fair_guard(bol, region);
3858 }
3859 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3860   return generate_klass_flags_guard(kls, JVM_ACC_INTERFACE, 0, region,
3861                                     Klass::access_flags_offset(), TypeInt::CHAR, T_CHAR);
3862 }
3863 
3864 // Use this for testing if Klass is_hidden, has_finalizer, and is_cloneable_fast.
3865 Node* LibraryCallKit::generate_misc_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3866   return generate_klass_flags_guard(kls, modifier_mask, modifier_bits, region,
3867                                     Klass::misc_flags_offset(), TypeInt::UBYTE, T_BOOLEAN);
3868 }
3869 
3870 Node* LibraryCallKit::generate_hidden_class_guard(Node* kls, RegionNode* region) {
3871   return generate_misc_flags_guard(kls, KlassFlags::_misc_is_hidden_class, 0, region);
3872 }
3873 
3874 //-------------------------inline_native_Class_query-------------------
3875 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3876   const Type* return_type = TypeInt::BOOL;
3877   Node* prim_return_value = top();  // what happens if it's a primitive class?
3878   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3879   bool expect_prim = false;     // most of these guys expect to work on refs
3880 
3881   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3882 
3883   Node* mirror = argument(0);
3884   Node* obj    = top();
3885 
3886   switch (id) {
3887   case vmIntrinsics::_isInstance:
3888     // nothing is an instance of a primitive type
3889     prim_return_value = intcon(0);
3890     obj = argument(1);
3891     break;
3892   case vmIntrinsics::_isHidden:
3893     prim_return_value = intcon(0);
3894     break;
3895   case vmIntrinsics::_getSuperclass:
3896     prim_return_value = null();
3897     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3898     break;
3899   case vmIntrinsics::_getClassAccessFlags:
3900     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3901     return_type = TypeInt::CHAR;
3902     break;
3903   default:
3904     fatal_unexpected_iid(id);
3905     break;
3906   }
3907 
3908   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3909   if (mirror_con == nullptr)  return false;  // cannot happen?
3910 
3911 #ifndef PRODUCT
3912   if (C->print_intrinsics() || C->print_inlining()) {
3913     ciType* k = mirror_con->java_mirror_type();
3914     if (k) {
3915       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
3916       k->print_name();
3917       tty->cr();
3918     }
3919   }
3920 #endif
3921 
3922   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
3923   RegionNode* region = new RegionNode(PATH_LIMIT);
3924   record_for_igvn(region);
3925   PhiNode* phi = new PhiNode(region, return_type);
3926 
3927   // The mirror will never be null of Reflection.getClassAccessFlags, however
3928   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
3929   // if it is. See bug 4774291.
3930 
3931   // For Reflection.getClassAccessFlags(), the null check occurs in
3932   // the wrong place; see inline_unsafe_access(), above, for a similar
3933   // situation.
3934   mirror = null_check(mirror);
3935   // If mirror or obj is dead, only null-path is taken.
3936   if (stopped())  return true;
3937 
3938   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
3939 
3940   // Now load the mirror's klass metaobject, and null-check it.
3941   // Side-effects region with the control path if the klass is null.
3942   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
3943   // If kls is null, we have a primitive mirror.
3944   phi->init_req(_prim_path, prim_return_value);
3945   if (stopped()) { set_result(region, phi); return true; }
3946   bool safe_for_replace = (region->in(_prim_path) == top());
3947 
3948   Node* p;  // handy temp
3949   Node* null_ctl;
3950 
3951   // Now that we have the non-null klass, we can perform the real query.
3952   // For constant classes, the query will constant-fold in LoadNode::Value.
3953   Node* query_value = top();
3954   switch (id) {
3955   case vmIntrinsics::_isInstance:
3956     // nothing is an instance of a primitive type
3957     query_value = gen_instanceof(obj, kls, safe_for_replace);
3958     break;
3959 
3960   case vmIntrinsics::_isHidden:
3961     // (To verify this code sequence, check the asserts in JVM_IsHiddenClass.)
3962     if (generate_hidden_class_guard(kls, region) != nullptr)
3963       // A guard was added.  If the guard is taken, it was an hidden class.
3964       phi->add_req(intcon(1));
3965     // If we fall through, it's a plain class.
3966     query_value = intcon(0);
3967     break;
3968 
3969 
3970   case vmIntrinsics::_getSuperclass:
3971     // The rules here are somewhat unfortunate, but we can still do better
3972     // with random logic than with a JNI call.
3973     // Interfaces store null or Object as _super, but must report null.
3974     // Arrays store an intermediate super as _super, but must report Object.
3975     // Other types can report the actual _super.
3976     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3977     if (generate_interface_guard(kls, region) != nullptr)
3978       // A guard was added.  If the guard is taken, it was an interface.
3979       phi->add_req(null());
3980     if (generate_array_guard(kls, region) != nullptr)
3981       // A guard was added.  If the guard is taken, it was an array.
3982       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
3983     // If we fall through, it's a plain class.  Get its _super.
3984     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
3985     kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL));
3986     null_ctl = top();
3987     kls = null_check_oop(kls, &null_ctl);
3988     if (null_ctl != top()) {
3989       // If the guard is taken, Object.superClass is null (both klass and mirror).
3990       region->add_req(null_ctl);
3991       phi   ->add_req(null());
3992     }
3993     if (!stopped()) {
3994       query_value = load_mirror_from_klass(kls);
3995     }
3996     break;
3997 
3998   case vmIntrinsics::_getClassAccessFlags:
3999     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
4000     query_value = make_load(nullptr, p, TypeInt::CHAR, T_CHAR, MemNode::unordered);
4001     break;
4002 
4003   default:
4004     fatal_unexpected_iid(id);
4005     break;
4006   }
4007 
4008   // Fall-through is the normal case of a query to a real class.
4009   phi->init_req(1, query_value);
4010   region->init_req(1, control());
4011 
4012   C->set_has_split_ifs(true); // Has chance for split-if optimization
4013   set_result(region, phi);
4014   return true;
4015 }
4016 
4017 //-------------------------inline_Class_cast-------------------
4018 bool LibraryCallKit::inline_Class_cast() {
4019   Node* mirror = argument(0); // Class
4020   Node* obj    = argument(1);
4021   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
4022   if (mirror_con == nullptr) {
4023     return false;  // dead path (mirror->is_top()).
4024   }
4025   if (obj == nullptr || obj->is_top()) {
4026     return false;  // dead path
4027   }
4028   const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr();
4029 
4030   // First, see if Class.cast() can be folded statically.
4031   // java_mirror_type() returns non-null for compile-time Class constants.
4032   ciType* tm = mirror_con->java_mirror_type();
4033   if (tm != nullptr && tm->is_klass() &&
4034       tp != nullptr) {
4035     if (!tp->is_loaded()) {
4036       // Don't use intrinsic when class is not loaded.
4037       return false;
4038     } else {
4039       int static_res = C->static_subtype_check(TypeKlassPtr::make(tm->as_klass(), Type::trust_interfaces), tp->as_klass_type());
4040       if (static_res == Compile::SSC_always_true) {
4041         // isInstance() is true - fold the code.
4042         set_result(obj);
4043         return true;
4044       } else if (static_res == Compile::SSC_always_false) {
4045         // Don't use intrinsic, have to throw ClassCastException.
4046         // If the reference is null, the non-intrinsic bytecode will
4047         // be optimized appropriately.
4048         return false;
4049       }
4050     }
4051   }
4052 
4053   // Bailout intrinsic and do normal inlining if exception path is frequent.
4054   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
4055     return false;
4056   }
4057 
4058   // Generate dynamic checks.
4059   // Class.cast() is java implementation of _checkcast bytecode.
4060   // Do checkcast (Parse::do_checkcast()) optimizations here.
4061 
4062   mirror = null_check(mirror);
4063   // If mirror is dead, only null-path is taken.
4064   if (stopped()) {
4065     return true;
4066   }
4067 
4068   // Not-subtype or the mirror's klass ptr is null (in case it is a primitive).
4069   enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT };
4070   RegionNode* region = new RegionNode(PATH_LIMIT);
4071   record_for_igvn(region);
4072 
4073   // Now load the mirror's klass metaobject, and null-check it.
4074   // If kls is null, we have a primitive mirror and
4075   // nothing is an instance of a primitive type.
4076   Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path);
4077 
4078   Node* res = top();
4079   if (!stopped()) {
4080     Node* bad_type_ctrl = top();
4081     // Do checkcast optimizations.
4082     res = gen_checkcast(obj, kls, &bad_type_ctrl);
4083     region->init_req(_bad_type_path, bad_type_ctrl);
4084   }
4085   if (region->in(_prim_path) != top() ||
4086       region->in(_bad_type_path) != top()) {
4087     // Let Interpreter throw ClassCastException.
4088     PreserveJVMState pjvms(this);
4089     set_control(_gvn.transform(region));
4090     uncommon_trap(Deoptimization::Reason_intrinsic,
4091                   Deoptimization::Action_maybe_recompile);
4092   }
4093   if (!stopped()) {
4094     set_result(res);
4095   }
4096   return true;
4097 }
4098 
4099 
4100 //--------------------------inline_native_subtype_check------------------------
4101 // This intrinsic takes the JNI calls out of the heart of
4102 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
4103 bool LibraryCallKit::inline_native_subtype_check() {
4104   // Pull both arguments off the stack.
4105   Node* args[2];                // two java.lang.Class mirrors: superc, subc
4106   args[0] = argument(0);
4107   args[1] = argument(1);
4108   Node* klasses[2];             // corresponding Klasses: superk, subk
4109   klasses[0] = klasses[1] = top();
4110 
4111   enum {
4112     // A full decision tree on {superc is prim, subc is prim}:
4113     _prim_0_path = 1,           // {P,N} => false
4114                                 // {P,P} & superc!=subc => false
4115     _prim_same_path,            // {P,P} & superc==subc => true
4116     _prim_1_path,               // {N,P} => false
4117     _ref_subtype_path,          // {N,N} & subtype check wins => true
4118     _both_ref_path,             // {N,N} & subtype check loses => false
4119     PATH_LIMIT
4120   };
4121 
4122   RegionNode* region = new RegionNode(PATH_LIMIT);
4123   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
4124   record_for_igvn(region);
4125 
4126   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
4127   const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL;
4128   int class_klass_offset = java_lang_Class::klass_offset();
4129 
4130   // First null-check both mirrors and load each mirror's klass metaobject.
4131   int which_arg;
4132   for (which_arg = 0; which_arg <= 1; which_arg++) {
4133     Node* arg = args[which_arg];
4134     arg = null_check(arg);
4135     if (stopped())  break;
4136     args[which_arg] = arg;
4137 
4138     Node* p = basic_plus_adr(arg, class_klass_offset);
4139     Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
4140     klasses[which_arg] = _gvn.transform(kls);
4141   }
4142 
4143   // Having loaded both klasses, test each for null.
4144   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
4145   for (which_arg = 0; which_arg <= 1; which_arg++) {
4146     Node* kls = klasses[which_arg];
4147     Node* null_ctl = top();
4148     kls = null_check_oop(kls, &null_ctl, never_see_null);
4149     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
4150     region->init_req(prim_path, null_ctl);
4151     if (stopped())  break;
4152     klasses[which_arg] = kls;
4153   }
4154 
4155   if (!stopped()) {
4156     // now we have two reference types, in klasses[0..1]
4157     Node* subk   = klasses[1];  // the argument to isAssignableFrom
4158     Node* superk = klasses[0];  // the receiver
4159     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
4160     // now we have a successful reference subtype check
4161     region->set_req(_ref_subtype_path, control());
4162   }
4163 
4164   // If both operands are primitive (both klasses null), then
4165   // we must return true when they are identical primitives.
4166   // It is convenient to test this after the first null klass check.
4167   set_control(region->in(_prim_0_path)); // go back to first null check
4168   if (!stopped()) {
4169     // Since superc is primitive, make a guard for the superc==subc case.
4170     Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1]));
4171     Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq));
4172     generate_guard(bol_eq, region, PROB_FAIR);
4173     if (region->req() == PATH_LIMIT+1) {
4174       // A guard was added.  If the added guard is taken, superc==subc.
4175       region->swap_edges(PATH_LIMIT, _prim_same_path);
4176       region->del_req(PATH_LIMIT);
4177     }
4178     region->set_req(_prim_0_path, control()); // Not equal after all.
4179   }
4180 
4181   // these are the only paths that produce 'true':
4182   phi->set_req(_prim_same_path,   intcon(1));
4183   phi->set_req(_ref_subtype_path, intcon(1));
4184 
4185   // pull together the cases:
4186   assert(region->req() == PATH_LIMIT, "sane region");
4187   for (uint i = 1; i < region->req(); i++) {
4188     Node* ctl = region->in(i);
4189     if (ctl == nullptr || ctl == top()) {
4190       region->set_req(i, top());
4191       phi   ->set_req(i, top());
4192     } else if (phi->in(i) == nullptr) {
4193       phi->set_req(i, intcon(0)); // all other paths produce 'false'
4194     }
4195   }
4196 
4197   set_control(_gvn.transform(region));
4198   set_result(_gvn.transform(phi));
4199   return true;
4200 }
4201 
4202 //---------------------generate_array_guard_common------------------------
4203 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
4204                                                   bool obj_array, bool not_array, Node** obj) {
4205 
4206   if (stopped()) {
4207     return nullptr;
4208   }
4209 
4210   // If obj_array/non_array==false/false:
4211   // Branch around if the given klass is in fact an array (either obj or prim).
4212   // If obj_array/non_array==false/true:
4213   // Branch around if the given klass is not an array klass of any kind.
4214   // If obj_array/non_array==true/true:
4215   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
4216   // If obj_array/non_array==true/false:
4217   // Branch around if the kls is an oop array (Object[] or subtype)
4218   //
4219   // Like generate_guard, adds a new path onto the region.
4220   jint  layout_con = 0;
4221   Node* layout_val = get_layout_helper(kls, layout_con);
4222   if (layout_val == nullptr) {
4223     bool query = (obj_array
4224                   ? Klass::layout_helper_is_objArray(layout_con)
4225                   : Klass::layout_helper_is_array(layout_con));
4226     if (query == not_array) {
4227       return nullptr;                       // never a branch
4228     } else {                             // always a branch
4229       Node* always_branch = control();
4230       if (region != nullptr)
4231         region->add_req(always_branch);
4232       set_control(top());
4233       return always_branch;
4234     }
4235   }
4236   // Now test the correct condition.
4237   jint  nval = (obj_array
4238                 ? (jint)(Klass::_lh_array_tag_type_value
4239                    <<    Klass::_lh_array_tag_shift)
4240                 : Klass::_lh_neutral_value);
4241   Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval)));
4242   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
4243   // invert the test if we are looking for a non-array
4244   if (not_array)  btest = BoolTest(btest).negate();
4245   Node* bol = _gvn.transform(new BoolNode(cmp, btest));
4246   Node* ctrl = generate_fair_guard(bol, region);
4247   Node* is_array_ctrl = not_array ? control() : ctrl;
4248   if (obj != nullptr && is_array_ctrl != nullptr && is_array_ctrl != top()) {
4249     // Keep track of the fact that 'obj' is an array to prevent
4250     // array specific accesses from floating above the guard.
4251     Node* cast = _gvn.transform(new CastPPNode(is_array_ctrl, *obj, TypeAryPtr::BOTTOM));
4252     // Check for top because in rare cases, the type system can determine that
4253     // the object can't be an array but the layout helper check is not folded.
4254     if (!cast->is_top()) {
4255       *obj = cast;
4256     }
4257   }
4258   return ctrl;
4259 }
4260 
4261 
4262 //-----------------------inline_native_newArray--------------------------
4263 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
4264 // private        native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size);
4265 bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) {
4266   Node* mirror;
4267   Node* count_val;
4268   if (uninitialized) {
4269     null_check_receiver();
4270     mirror    = argument(1);
4271     count_val = argument(2);
4272   } else {
4273     mirror    = argument(0);
4274     count_val = argument(1);
4275   }
4276 
4277   mirror = null_check(mirror);
4278   // If mirror or obj is dead, only null-path is taken.
4279   if (stopped())  return true;
4280 
4281   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
4282   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4283   PhiNode*    result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
4284   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
4285   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4286 
4287   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
4288   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
4289                                                   result_reg, _slow_path);
4290   Node* normal_ctl   = control();
4291   Node* no_array_ctl = result_reg->in(_slow_path);
4292 
4293   // Generate code for the slow case.  We make a call to newArray().
4294   set_control(no_array_ctl);
4295   if (!stopped()) {
4296     // Either the input type is void.class, or else the
4297     // array klass has not yet been cached.  Either the
4298     // ensuing call will throw an exception, or else it
4299     // will cache the array klass for next time.
4300     PreserveJVMState pjvms(this);
4301     CallJavaNode* slow_call = nullptr;
4302     if (uninitialized) {
4303       // Generate optimized virtual call (holder class 'Unsafe' is final)
4304       slow_call = generate_method_call(vmIntrinsics::_allocateUninitializedArray, false, false, true);
4305     } else {
4306       slow_call = generate_method_call_static(vmIntrinsics::_newArray, true);
4307     }
4308     Node* slow_result = set_results_for_java_call(slow_call);
4309     // this->control() comes from set_results_for_java_call
4310     result_reg->set_req(_slow_path, control());
4311     result_val->set_req(_slow_path, slow_result);
4312     result_io ->set_req(_slow_path, i_o());
4313     result_mem->set_req(_slow_path, reset_memory());
4314   }
4315 
4316   set_control(normal_ctl);
4317   if (!stopped()) {
4318     // Normal case:  The array type has been cached in the java.lang.Class.
4319     // The following call works fine even if the array type is polymorphic.
4320     // It could be a dynamic mix of int[], boolean[], Object[], etc.
4321     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
4322     result_reg->init_req(_normal_path, control());
4323     result_val->init_req(_normal_path, obj);
4324     result_io ->init_req(_normal_path, i_o());
4325     result_mem->init_req(_normal_path, reset_memory());
4326 
4327     if (uninitialized) {
4328       // Mark the allocation so that zeroing is skipped
4329       AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(obj);
4330       alloc->maybe_set_complete(&_gvn);
4331     }
4332   }
4333 
4334   // Return the combined state.
4335   set_i_o(        _gvn.transform(result_io)  );
4336   set_all_memory( _gvn.transform(result_mem));
4337 
4338   C->set_has_split_ifs(true); // Has chance for split-if optimization
4339   set_result(result_reg, result_val);
4340   return true;
4341 }
4342 
4343 //----------------------inline_native_getLength--------------------------
4344 // public static native int java.lang.reflect.Array.getLength(Object array);
4345 bool LibraryCallKit::inline_native_getLength() {
4346   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
4347 
4348   Node* array = null_check(argument(0));
4349   // If array is dead, only null-path is taken.
4350   if (stopped())  return true;
4351 
4352   // Deoptimize if it is a non-array.
4353   Node* non_array = generate_non_array_guard(load_object_klass(array), nullptr, &array);
4354 
4355   if (non_array != nullptr) {
4356     PreserveJVMState pjvms(this);
4357     set_control(non_array);
4358     uncommon_trap(Deoptimization::Reason_intrinsic,
4359                   Deoptimization::Action_maybe_recompile);
4360   }
4361 
4362   // If control is dead, only non-array-path is taken.
4363   if (stopped())  return true;
4364 
4365   // The works fine even if the array type is polymorphic.
4366   // It could be a dynamic mix of int[], boolean[], Object[], etc.
4367   Node* result = load_array_length(array);
4368 
4369   C->set_has_split_ifs(true);  // Has chance for split-if optimization
4370   set_result(result);
4371   return true;
4372 }
4373 
4374 //------------------------inline_array_copyOf----------------------------
4375 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
4376 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
4377 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
4378   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
4379 
4380   // Get the arguments.
4381   Node* original          = argument(0);
4382   Node* start             = is_copyOfRange? argument(1): intcon(0);
4383   Node* end               = is_copyOfRange? argument(2): argument(1);
4384   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
4385 
4386   Node* newcopy = nullptr;
4387 
4388   // Set the original stack and the reexecute bit for the interpreter to reexecute
4389   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
4390   { PreserveReexecuteState preexecs(this);
4391     jvms()->set_should_reexecute(true);
4392 
4393     array_type_mirror = null_check(array_type_mirror);
4394     original          = null_check(original);
4395 
4396     // Check if a null path was taken unconditionally.
4397     if (stopped())  return true;
4398 
4399     Node* orig_length = load_array_length(original);
4400 
4401     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, nullptr, 0);
4402     klass_node = null_check(klass_node);
4403 
4404     RegionNode* bailout = new RegionNode(1);
4405     record_for_igvn(bailout);
4406 
4407     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
4408     // Bail out if that is so.
4409     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
4410     if (not_objArray != nullptr) {
4411       // Improve the klass node's type from the new optimistic assumption:
4412       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
4413       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
4414       Node* cast = new CastPPNode(control(), klass_node, akls);
4415       klass_node = _gvn.transform(cast);
4416     }
4417 
4418     // Bail out if either start or end is negative.
4419     generate_negative_guard(start, bailout, &start);
4420     generate_negative_guard(end,   bailout, &end);
4421 
4422     Node* length = end;
4423     if (_gvn.type(start) != TypeInt::ZERO) {
4424       length = _gvn.transform(new SubINode(end, start));
4425     }
4426 
4427     // Bail out if length is negative (i.e., if start > end).
4428     // Without this the new_array would throw
4429     // NegativeArraySizeException but IllegalArgumentException is what
4430     // should be thrown
4431     generate_negative_guard(length, bailout, &length);
4432 
4433     // Bail out if start is larger than the original length
4434     Node* orig_tail = _gvn.transform(new SubINode(orig_length, start));
4435     generate_negative_guard(orig_tail, bailout, &orig_tail);
4436 
4437     if (bailout->req() > 1) {
4438       PreserveJVMState pjvms(this);
4439       set_control(_gvn.transform(bailout));
4440       uncommon_trap(Deoptimization::Reason_intrinsic,
4441                     Deoptimization::Action_maybe_recompile);
4442     }
4443 
4444     if (!stopped()) {
4445       // How many elements will we copy from the original?
4446       // The answer is MinI(orig_tail, length).
4447       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
4448 
4449       // Generate a direct call to the right arraycopy function(s).
4450       // We know the copy is disjoint but we might not know if the
4451       // oop stores need checking.
4452       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
4453       // This will fail a store-check if x contains any non-nulls.
4454 
4455       // ArrayCopyNode:Ideal may transform the ArrayCopyNode to
4456       // loads/stores but it is legal only if we're sure the
4457       // Arrays.copyOf would succeed. So we need all input arguments
4458       // to the copyOf to be validated, including that the copy to the
4459       // new array won't trigger an ArrayStoreException. That subtype
4460       // check can be optimized if we know something on the type of
4461       // the input array from type speculation.
4462       if (_gvn.type(klass_node)->singleton()) {
4463         const TypeKlassPtr* subk = _gvn.type(load_object_klass(original))->is_klassptr();
4464         const TypeKlassPtr* superk = _gvn.type(klass_node)->is_klassptr();
4465 
4466         int test = C->static_subtype_check(superk, subk);
4467         if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) {
4468           const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr();
4469           if (t_original->speculative_type() != nullptr) {
4470             original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true);
4471           }
4472         }
4473       }
4474 
4475       bool validated = false;
4476       // Reason_class_check rather than Reason_intrinsic because we
4477       // want to intrinsify even if this traps.
4478       if (!too_many_traps(Deoptimization::Reason_class_check)) {
4479         Node* not_subtype_ctrl = gen_subtype_check(original, klass_node);
4480 
4481         if (not_subtype_ctrl != top()) {
4482           PreserveJVMState pjvms(this);
4483           set_control(not_subtype_ctrl);
4484           uncommon_trap(Deoptimization::Reason_class_check,
4485                         Deoptimization::Action_make_not_entrant);
4486           assert(stopped(), "Should be stopped");
4487         }
4488         validated = true;
4489       }
4490 
4491       if (!stopped()) {
4492         newcopy = new_array(klass_node, length, 0);  // no arguments to push
4493 
4494         ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true, true,
4495                                                 load_object_klass(original), klass_node);
4496         if (!is_copyOfRange) {
4497           ac->set_copyof(validated);
4498         } else {
4499           ac->set_copyofrange(validated);
4500         }
4501         Node* n = _gvn.transform(ac);
4502         if (n == ac) {
4503           ac->connect_outputs(this);
4504         } else {
4505           assert(validated, "shouldn't transform if all arguments not validated");
4506           set_all_memory(n);
4507         }
4508       }
4509     }
4510   } // original reexecute is set back here
4511 
4512   C->set_has_split_ifs(true); // Has chance for split-if optimization
4513   if (!stopped()) {
4514     set_result(newcopy);
4515   }
4516   return true;
4517 }
4518 
4519 
4520 //----------------------generate_virtual_guard---------------------------
4521 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
4522 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
4523                                              RegionNode* slow_region) {
4524   ciMethod* method = callee();
4525   int vtable_index = method->vtable_index();
4526   assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4527          "bad index %d", vtable_index);
4528   // Get the Method* out of the appropriate vtable entry.
4529   int entry_offset  = in_bytes(Klass::vtable_start_offset()) +
4530                      vtable_index*vtableEntry::size_in_bytes() +
4531                      in_bytes(vtableEntry::method_offset());
4532   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
4533   Node* target_call = make_load(nullptr, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered);
4534 
4535   // Compare the target method with the expected method (e.g., Object.hashCode).
4536   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
4537 
4538   Node* native_call = makecon(native_call_addr);
4539   Node* chk_native  = _gvn.transform(new CmpPNode(target_call, native_call));
4540   Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne));
4541 
4542   return generate_slow_guard(test_native, slow_region);
4543 }
4544 
4545 //-----------------------generate_method_call----------------------------
4546 // Use generate_method_call to make a slow-call to the real
4547 // method if the fast path fails.  An alternative would be to
4548 // use a stub like OptoRuntime::slow_arraycopy_Java.
4549 // This only works for expanding the current library call,
4550 // not another intrinsic.  (E.g., don't use this for making an
4551 // arraycopy call inside of the copyOf intrinsic.)
4552 CallJavaNode*
4553 LibraryCallKit::generate_method_call(vmIntrinsicID method_id, bool is_virtual, bool is_static, bool res_not_null) {
4554   // When compiling the intrinsic method itself, do not use this technique.
4555   guarantee(callee() != C->method(), "cannot make slow-call to self");
4556 
4557   ciMethod* method = callee();
4558   // ensure the JVMS we have will be correct for this call
4559   guarantee(method_id == method->intrinsic_id(), "must match");
4560 
4561   const TypeFunc* tf = TypeFunc::make(method);
4562   if (res_not_null) {
4563     assert(tf->return_type() == T_OBJECT, "");
4564     const TypeTuple* range = tf->range();
4565     const Type** fields = TypeTuple::fields(range->cnt());
4566     fields[TypeFunc::Parms] = range->field_at(TypeFunc::Parms)->filter_speculative(TypePtr::NOTNULL);
4567     const TypeTuple* new_range = TypeTuple::make(range->cnt(), fields);
4568     tf = TypeFunc::make(tf->domain(), new_range);
4569   }
4570   CallJavaNode* slow_call;
4571   if (is_static) {
4572     assert(!is_virtual, "");
4573     slow_call = new CallStaticJavaNode(C, tf,
4574                            SharedRuntime::get_resolve_static_call_stub(), method);
4575   } else if (is_virtual) {
4576     assert(!gvn().type(argument(0))->maybe_null(), "should not be null");
4577     int vtable_index = Method::invalid_vtable_index;
4578     if (UseInlineCaches) {
4579       // Suppress the vtable call
4580     } else {
4581       // hashCode and clone are not a miranda methods,
4582       // so the vtable index is fixed.
4583       // No need to use the linkResolver to get it.
4584        vtable_index = method->vtable_index();
4585        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4586               "bad index %d", vtable_index);
4587     }
4588     slow_call = new CallDynamicJavaNode(tf,
4589                           SharedRuntime::get_resolve_virtual_call_stub(),
4590                           method, vtable_index);
4591   } else {  // neither virtual nor static:  opt_virtual
4592     assert(!gvn().type(argument(0))->maybe_null(), "should not be null");
4593     slow_call = new CallStaticJavaNode(C, tf,
4594                                 SharedRuntime::get_resolve_opt_virtual_call_stub(), method);
4595     slow_call->set_optimized_virtual(true);
4596   }
4597   if (CallGenerator::is_inlined_method_handle_intrinsic(this->method(), bci(), callee())) {
4598     // To be able to issue a direct call (optimized virtual or virtual)
4599     // and skip a call to MH.linkTo*/invokeBasic adapter, additional information
4600     // about the method being invoked should be attached to the call site to
4601     // make resolution logic work (see SharedRuntime::resolve_{virtual,opt_virtual}_call_C).
4602     slow_call->set_override_symbolic_info(true);
4603   }
4604   set_arguments_for_java_call(slow_call);
4605   set_edges_for_java_call(slow_call);
4606   return slow_call;
4607 }
4608 
4609 
4610 /**
4611  * Build special case code for calls to hashCode on an object. This call may
4612  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
4613  * slightly different code.
4614  */
4615 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
4616   assert(is_static == callee()->is_static(), "correct intrinsic selection");
4617   assert(!(is_virtual && is_static), "either virtual, special, or static");
4618 
4619   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
4620 
4621   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4622   PhiNode*    result_val = new PhiNode(result_reg, TypeInt::INT);
4623   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
4624   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4625   Node* obj = nullptr;
4626   if (!is_static) {
4627     // Check for hashing null object
4628     obj = null_check_receiver();
4629     if (stopped())  return true;        // unconditionally null
4630     result_reg->init_req(_null_path, top());
4631     result_val->init_req(_null_path, top());
4632   } else {
4633     // Do a null check, and return zero if null.
4634     // System.identityHashCode(null) == 0
4635     obj = argument(0);
4636     Node* null_ctl = top();
4637     obj = null_check_oop(obj, &null_ctl);
4638     result_reg->init_req(_null_path, null_ctl);
4639     result_val->init_req(_null_path, _gvn.intcon(0));
4640   }
4641 
4642   // Unconditionally null?  Then return right away.
4643   if (stopped()) {
4644     set_control( result_reg->in(_null_path));
4645     if (!stopped())
4646       set_result(result_val->in(_null_path));
4647     return true;
4648   }
4649 
4650   // We only go to the fast case code if we pass a number of guards.  The
4651   // paths which do not pass are accumulated in the slow_region.
4652   RegionNode* slow_region = new RegionNode(1);
4653   record_for_igvn(slow_region);
4654 
4655   // If this is a virtual call, we generate a funny guard.  We pull out
4656   // the vtable entry corresponding to hashCode() from the target object.
4657   // If the target method which we are calling happens to be the native
4658   // Object hashCode() method, we pass the guard.  We do not need this
4659   // guard for non-virtual calls -- the caller is known to be the native
4660   // Object hashCode().
4661   if (is_virtual) {
4662     // After null check, get the object's klass.
4663     Node* obj_klass = load_object_klass(obj);
4664     generate_virtual_guard(obj_klass, slow_region);
4665   }
4666 
4667   // Get the header out of the object, use LoadMarkNode when available
4668   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
4669   // The control of the load must be null. Otherwise, the load can move before
4670   // the null check after castPP removal.
4671   Node* no_ctrl = nullptr;
4672   Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
4673 
4674   if (!UseObjectMonitorTable) {
4675     // Test the header to see if it is safe to read w.r.t. locking.
4676     Node *lock_mask      = _gvn.MakeConX(markWord::lock_mask_in_place);
4677     Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask));
4678     if (LockingMode == LM_LIGHTWEIGHT) {
4679       Node *monitor_val   = _gvn.MakeConX(markWord::monitor_value);
4680       Node *chk_monitor   = _gvn.transform(new CmpXNode(lmasked_header, monitor_val));
4681       Node *test_monitor  = _gvn.transform(new BoolNode(chk_monitor, BoolTest::eq));
4682 
4683       generate_slow_guard(test_monitor, slow_region);
4684     } else {
4685       Node *unlocked_val      = _gvn.MakeConX(markWord::unlocked_value);
4686       Node *chk_unlocked      = _gvn.transform(new CmpXNode(lmasked_header, unlocked_val));
4687       Node *test_not_unlocked = _gvn.transform(new BoolNode(chk_unlocked, BoolTest::ne));
4688 
4689       generate_slow_guard(test_not_unlocked, slow_region);
4690     }
4691   }
4692 
4693   // Get the hash value and check to see that it has been properly assigned.
4694   // We depend on hash_mask being at most 32 bits and avoid the use of
4695   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
4696   // vm: see markWord.hpp.
4697   Node *hash_mask      = _gvn.intcon(markWord::hash_mask);
4698   Node *hash_shift     = _gvn.intcon(markWord::hash_shift);
4699   Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift));
4700   // This hack lets the hash bits live anywhere in the mark object now, as long
4701   // as the shift drops the relevant bits into the low 32 bits.  Note that
4702   // Java spec says that HashCode is an int so there's no point in capturing
4703   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
4704   hshifted_header      = ConvX2I(hshifted_header);
4705   Node *hash_val       = _gvn.transform(new AndINode(hshifted_header, hash_mask));
4706 
4707   Node *no_hash_val    = _gvn.intcon(markWord::no_hash);
4708   Node *chk_assigned   = _gvn.transform(new CmpINode( hash_val, no_hash_val));
4709   Node *test_assigned  = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq));
4710 
4711   generate_slow_guard(test_assigned, slow_region);
4712 
4713   Node* init_mem = reset_memory();
4714   // fill in the rest of the null path:
4715   result_io ->init_req(_null_path, i_o());
4716   result_mem->init_req(_null_path, init_mem);
4717 
4718   result_val->init_req(_fast_path, hash_val);
4719   result_reg->init_req(_fast_path, control());
4720   result_io ->init_req(_fast_path, i_o());
4721   result_mem->init_req(_fast_path, init_mem);
4722 
4723   // Generate code for the slow case.  We make a call to hashCode().
4724   set_control(_gvn.transform(slow_region));
4725   if (!stopped()) {
4726     // No need for PreserveJVMState, because we're using up the present state.
4727     set_all_memory(init_mem);
4728     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
4729     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static, false);
4730     Node* slow_result = set_results_for_java_call(slow_call);
4731     // this->control() comes from set_results_for_java_call
4732     result_reg->init_req(_slow_path, control());
4733     result_val->init_req(_slow_path, slow_result);
4734     result_io  ->set_req(_slow_path, i_o());
4735     result_mem ->set_req(_slow_path, reset_memory());
4736   }
4737 
4738   // Return the combined state.
4739   set_i_o(        _gvn.transform(result_io)  );
4740   set_all_memory( _gvn.transform(result_mem));
4741 
4742   set_result(result_reg, result_val);
4743   return true;
4744 }
4745 
4746 //---------------------------inline_native_getClass----------------------------
4747 // public final native Class<?> java.lang.Object.getClass();
4748 //
4749 // Build special case code for calls to getClass on an object.
4750 bool LibraryCallKit::inline_native_getClass() {
4751   Node* obj = null_check_receiver();
4752   if (stopped())  return true;
4753   set_result(load_mirror_from_klass(load_object_klass(obj)));
4754   return true;
4755 }
4756 
4757 //-----------------inline_native_Reflection_getCallerClass---------------------
4758 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
4759 //
4760 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
4761 //
4762 // NOTE: This code must perform the same logic as JVM_GetCallerClass
4763 // in that it must skip particular security frames and checks for
4764 // caller sensitive methods.
4765 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
4766 #ifndef PRODUCT
4767   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4768     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
4769   }
4770 #endif
4771 
4772   if (!jvms()->has_method()) {
4773 #ifndef PRODUCT
4774     if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4775       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
4776     }
4777 #endif
4778     return false;
4779   }
4780 
4781   // Walk back up the JVM state to find the caller at the required
4782   // depth.
4783   JVMState* caller_jvms = jvms();
4784 
4785   // Cf. JVM_GetCallerClass
4786   // NOTE: Start the loop at depth 1 because the current JVM state does
4787   // not include the Reflection.getCallerClass() frame.
4788   for (int n = 1; caller_jvms != nullptr; caller_jvms = caller_jvms->caller(), n++) {
4789     ciMethod* m = caller_jvms->method();
4790     switch (n) {
4791     case 0:
4792       fatal("current JVM state does not include the Reflection.getCallerClass frame");
4793       break;
4794     case 1:
4795       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
4796       if (!m->caller_sensitive()) {
4797 #ifndef PRODUCT
4798         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4799           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
4800         }
4801 #endif
4802         return false;  // bail-out; let JVM_GetCallerClass do the work
4803       }
4804       break;
4805     default:
4806       if (!m->is_ignored_by_security_stack_walk()) {
4807         // We have reached the desired frame; return the holder class.
4808         // Acquire method holder as java.lang.Class and push as constant.
4809         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
4810         ciInstance* caller_mirror = caller_klass->java_mirror();
4811         set_result(makecon(TypeInstPtr::make(caller_mirror)));
4812 
4813 #ifndef PRODUCT
4814         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4815           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
4816           tty->print_cr("  JVM state at this point:");
4817           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4818             ciMethod* m = jvms()->of_depth(i)->method();
4819             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4820           }
4821         }
4822 #endif
4823         return true;
4824       }
4825       break;
4826     }
4827   }
4828 
4829 #ifndef PRODUCT
4830   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4831     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
4832     tty->print_cr("  JVM state at this point:");
4833     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4834       ciMethod* m = jvms()->of_depth(i)->method();
4835       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4836     }
4837   }
4838 #endif
4839 
4840   return false;  // bail-out; let JVM_GetCallerClass do the work
4841 }
4842 
4843 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
4844   Node* arg = argument(0);
4845   Node* result = nullptr;
4846 
4847   switch (id) {
4848   case vmIntrinsics::_floatToRawIntBits:    result = new MoveF2INode(arg);  break;
4849   case vmIntrinsics::_intBitsToFloat:       result = new MoveI2FNode(arg);  break;
4850   case vmIntrinsics::_doubleToRawLongBits:  result = new MoveD2LNode(arg);  break;
4851   case vmIntrinsics::_longBitsToDouble:     result = new MoveL2DNode(arg);  break;
4852   case vmIntrinsics::_floatToFloat16:       result = new ConvF2HFNode(arg); break;
4853   case vmIntrinsics::_float16ToFloat:       result = new ConvHF2FNode(arg); break;
4854 
4855   case vmIntrinsics::_doubleToLongBits: {
4856     // two paths (plus control) merge in a wood
4857     RegionNode *r = new RegionNode(3);
4858     Node *phi = new PhiNode(r, TypeLong::LONG);
4859 
4860     Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg));
4861     // Build the boolean node
4862     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4863 
4864     // Branch either way.
4865     // NaN case is less traveled, which makes all the difference.
4866     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4867     Node *opt_isnan = _gvn.transform(ifisnan);
4868     assert( opt_isnan->is_If(), "Expect an IfNode");
4869     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4870     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4871 
4872     set_control(iftrue);
4873 
4874     static const jlong nan_bits = CONST64(0x7ff8000000000000);
4875     Node *slow_result = longcon(nan_bits); // return NaN
4876     phi->init_req(1, _gvn.transform( slow_result ));
4877     r->init_req(1, iftrue);
4878 
4879     // Else fall through
4880     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4881     set_control(iffalse);
4882 
4883     phi->init_req(2, _gvn.transform(new MoveD2LNode(arg)));
4884     r->init_req(2, iffalse);
4885 
4886     // Post merge
4887     set_control(_gvn.transform(r));
4888     record_for_igvn(r);
4889 
4890     C->set_has_split_ifs(true); // Has chance for split-if optimization
4891     result = phi;
4892     assert(result->bottom_type()->isa_long(), "must be");
4893     break;
4894   }
4895 
4896   case vmIntrinsics::_floatToIntBits: {
4897     // two paths (plus control) merge in a wood
4898     RegionNode *r = new RegionNode(3);
4899     Node *phi = new PhiNode(r, TypeInt::INT);
4900 
4901     Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg));
4902     // Build the boolean node
4903     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4904 
4905     // Branch either way.
4906     // NaN case is less traveled, which makes all the difference.
4907     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4908     Node *opt_isnan = _gvn.transform(ifisnan);
4909     assert( opt_isnan->is_If(), "Expect an IfNode");
4910     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4911     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4912 
4913     set_control(iftrue);
4914 
4915     static const jint nan_bits = 0x7fc00000;
4916     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
4917     phi->init_req(1, _gvn.transform( slow_result ));
4918     r->init_req(1, iftrue);
4919 
4920     // Else fall through
4921     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4922     set_control(iffalse);
4923 
4924     phi->init_req(2, _gvn.transform(new MoveF2INode(arg)));
4925     r->init_req(2, iffalse);
4926 
4927     // Post merge
4928     set_control(_gvn.transform(r));
4929     record_for_igvn(r);
4930 
4931     C->set_has_split_ifs(true); // Has chance for split-if optimization
4932     result = phi;
4933     assert(result->bottom_type()->isa_int(), "must be");
4934     break;
4935   }
4936 
4937   default:
4938     fatal_unexpected_iid(id);
4939     break;
4940   }
4941   set_result(_gvn.transform(result));
4942   return true;
4943 }
4944 
4945 bool LibraryCallKit::inline_fp_range_check(vmIntrinsics::ID id) {
4946   Node* arg = argument(0);
4947   Node* result = nullptr;
4948 
4949   switch (id) {
4950   case vmIntrinsics::_floatIsInfinite:
4951     result = new IsInfiniteFNode(arg);
4952     break;
4953   case vmIntrinsics::_floatIsFinite:
4954     result = new IsFiniteFNode(arg);
4955     break;
4956   case vmIntrinsics::_doubleIsInfinite:
4957     result = new IsInfiniteDNode(arg);
4958     break;
4959   case vmIntrinsics::_doubleIsFinite:
4960     result = new IsFiniteDNode(arg);
4961     break;
4962   default:
4963     fatal_unexpected_iid(id);
4964     break;
4965   }
4966   set_result(_gvn.transform(result));
4967   return true;
4968 }
4969 
4970 //----------------------inline_unsafe_copyMemory-------------------------
4971 // public native void Unsafe.copyMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
4972 
4973 static bool has_wide_mem(PhaseGVN& gvn, Node* addr, Node* base) {
4974   const TypeAryPtr* addr_t = gvn.type(addr)->isa_aryptr();
4975   const Type*       base_t = gvn.type(base);
4976 
4977   bool in_native = (base_t == TypePtr::NULL_PTR);
4978   bool in_heap   = !TypePtr::NULL_PTR->higher_equal(base_t);
4979   bool is_mixed  = !in_heap && !in_native;
4980 
4981   if (is_mixed) {
4982     return true; // mixed accesses can touch both on-heap and off-heap memory
4983   }
4984   if (in_heap) {
4985     bool is_prim_array = (addr_t != nullptr) && (addr_t->elem() != Type::BOTTOM);
4986     if (!is_prim_array) {
4987       // Though Unsafe.copyMemory() ensures at runtime for on-heap accesses that base is a primitive array,
4988       // there's not enough type information available to determine proper memory slice for it.
4989       return true;
4990     }
4991   }
4992   return false;
4993 }
4994 
4995 bool LibraryCallKit::inline_unsafe_copyMemory() {
4996   if (callee()->is_static())  return false;  // caller must have the capability!
4997   null_check_receiver();  // null-check receiver
4998   if (stopped())  return true;
4999 
5000   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
5001 
5002   Node* src_base =         argument(1);  // type: oop
5003   Node* src_off  = ConvL2X(argument(2)); // type: long
5004   Node* dst_base =         argument(4);  // type: oop
5005   Node* dst_off  = ConvL2X(argument(5)); // type: long
5006   Node* size     = ConvL2X(argument(7)); // type: long
5007 
5008   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
5009          "fieldOffset must be byte-scaled");
5010 
5011   Node* src_addr = make_unsafe_address(src_base, src_off);
5012   Node* dst_addr = make_unsafe_address(dst_base, dst_off);
5013 
5014   Node* thread = _gvn.transform(new ThreadLocalNode());
5015   Node* doing_unsafe_access_addr = basic_plus_adr(top(), thread, in_bytes(JavaThread::doing_unsafe_access_offset()));
5016   BasicType doing_unsafe_access_bt = T_BYTE;
5017   assert((sizeof(bool) * CHAR_BIT) == 8, "not implemented");
5018 
5019   // update volatile field
5020   store_to_memory(control(), doing_unsafe_access_addr, intcon(1), doing_unsafe_access_bt, MemNode::unordered);
5021 
5022   int flags = RC_LEAF | RC_NO_FP;
5023 
5024   const TypePtr* dst_type = TypePtr::BOTTOM;
5025 
5026   // Adjust memory effects of the runtime call based on input values.
5027   if (!has_wide_mem(_gvn, src_addr, src_base) &&
5028       !has_wide_mem(_gvn, dst_addr, dst_base)) {
5029     dst_type = _gvn.type(dst_addr)->is_ptr(); // narrow out memory
5030 
5031     const TypePtr* src_type = _gvn.type(src_addr)->is_ptr();
5032     if (C->get_alias_index(src_type) == C->get_alias_index(dst_type)) {
5033       flags |= RC_NARROW_MEM; // narrow in memory
5034     }
5035   }
5036 
5037   // Call it.  Note that the length argument is not scaled.
5038   make_runtime_call(flags,
5039                     OptoRuntime::fast_arraycopy_Type(),
5040                     StubRoutines::unsafe_arraycopy(),
5041                     "unsafe_arraycopy",
5042                     dst_type,
5043                     src_addr, dst_addr, size XTOP);
5044 
5045   store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, MemNode::unordered);
5046 
5047   return true;
5048 }
5049 
5050 // unsafe_setmemory(void *base, ulong offset, size_t length, char fill_value);
5051 // Fill 'length' bytes starting from 'base[offset]' with 'fill_value'
5052 bool LibraryCallKit::inline_unsafe_setMemory() {
5053   if (callee()->is_static())  return false;  // caller must have the capability!
5054   null_check_receiver();  // null-check receiver
5055   if (stopped())  return true;
5056 
5057   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
5058 
5059   Node* dst_base =         argument(1);  // type: oop
5060   Node* dst_off  = ConvL2X(argument(2)); // type: long
5061   Node* size     = ConvL2X(argument(4)); // type: long
5062   Node* byte     =         argument(6);  // type: byte
5063 
5064   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
5065          "fieldOffset must be byte-scaled");
5066 
5067   Node* dst_addr = make_unsafe_address(dst_base, dst_off);
5068 
5069   Node* thread = _gvn.transform(new ThreadLocalNode());
5070   Node* doing_unsafe_access_addr = basic_plus_adr(top(), thread, in_bytes(JavaThread::doing_unsafe_access_offset()));
5071   BasicType doing_unsafe_access_bt = T_BYTE;
5072   assert((sizeof(bool) * CHAR_BIT) == 8, "not implemented");
5073 
5074   // update volatile field
5075   store_to_memory(control(), doing_unsafe_access_addr, intcon(1), doing_unsafe_access_bt, MemNode::unordered);
5076 
5077   int flags = RC_LEAF | RC_NO_FP;
5078 
5079   const TypePtr* dst_type = TypePtr::BOTTOM;
5080 
5081   // Adjust memory effects of the runtime call based on input values.
5082   if (!has_wide_mem(_gvn, dst_addr, dst_base)) {
5083     dst_type = _gvn.type(dst_addr)->is_ptr(); // narrow out memory
5084 
5085     flags |= RC_NARROW_MEM; // narrow in memory
5086   }
5087 
5088   // Call it.  Note that the length argument is not scaled.
5089   make_runtime_call(flags,
5090                     OptoRuntime::unsafe_setmemory_Type(),
5091                     StubRoutines::unsafe_setmemory(),
5092                     "unsafe_setmemory",
5093                     dst_type,
5094                     dst_addr, size XTOP, byte);
5095 
5096   store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, MemNode::unordered);
5097 
5098   return true;
5099 }
5100 
5101 #undef XTOP
5102 
5103 //------------------------clone_coping-----------------------------------
5104 // Helper function for inline_native_clone.
5105 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array) {
5106   assert(obj_size != nullptr, "");
5107   Node* raw_obj = alloc_obj->in(1);
5108   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
5109 
5110   AllocateNode* alloc = nullptr;
5111   if (ReduceBulkZeroing &&
5112       // If we are implementing an array clone without knowing its source type
5113       // (can happen when compiling the array-guarded branch of a reflective
5114       // Object.clone() invocation), initialize the array within the allocation.
5115       // This is needed because some GCs (e.g. ZGC) might fall back in this case
5116       // to a runtime clone call that assumes fully initialized source arrays.
5117       (!is_array || obj->get_ptr_type()->isa_aryptr() != nullptr)) {
5118     // We will be completely responsible for initializing this object -
5119     // mark Initialize node as complete.
5120     alloc = AllocateNode::Ideal_allocation(alloc_obj);
5121     // The object was just allocated - there should be no any stores!
5122     guarantee(alloc != nullptr && alloc->maybe_set_complete(&_gvn), "");
5123     // Mark as complete_with_arraycopy so that on AllocateNode
5124     // expansion, we know this AllocateNode is initialized by an array
5125     // copy and a StoreStore barrier exists after the array copy.
5126     alloc->initialization()->set_complete_with_arraycopy();
5127   }
5128 
5129   Node* size = _gvn.transform(obj_size);
5130   access_clone(obj, alloc_obj, size, is_array);
5131 
5132   // Do not let reads from the cloned object float above the arraycopy.
5133   if (alloc != nullptr) {
5134     // Do not let stores that initialize this object be reordered with
5135     // a subsequent store that would make this object accessible by
5136     // other threads.
5137     // Record what AllocateNode this StoreStore protects so that
5138     // escape analysis can go from the MemBarStoreStoreNode to the
5139     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
5140     // based on the escape status of the AllocateNode.
5141     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
5142   } else {
5143     insert_mem_bar(Op_MemBarCPUOrder);
5144   }
5145 }
5146 
5147 //------------------------inline_native_clone----------------------------
5148 // protected native Object java.lang.Object.clone();
5149 //
5150 // Here are the simple edge cases:
5151 //  null receiver => normal trap
5152 //  virtual and clone was overridden => slow path to out-of-line clone
5153 //  not cloneable or finalizer => slow path to out-of-line Object.clone
5154 //
5155 // The general case has two steps, allocation and copying.
5156 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
5157 //
5158 // Copying also has two cases, oop arrays and everything else.
5159 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
5160 // Everything else uses the tight inline loop supplied by CopyArrayNode.
5161 //
5162 // These steps fold up nicely if and when the cloned object's klass
5163 // can be sharply typed as an object array, a type array, or an instance.
5164 //
5165 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
5166   PhiNode* result_val;
5167 
5168   // Set the reexecute bit for the interpreter to reexecute
5169   // the bytecode that invokes Object.clone if deoptimization happens.
5170   { PreserveReexecuteState preexecs(this);
5171     jvms()->set_should_reexecute(true);
5172 
5173     Node* obj = null_check_receiver();
5174     if (stopped())  return true;
5175 
5176     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
5177 
5178     // If we are going to clone an instance, we need its exact type to
5179     // know the number and types of fields to convert the clone to
5180     // loads/stores. Maybe a speculative type can help us.
5181     if (!obj_type->klass_is_exact() &&
5182         obj_type->speculative_type() != nullptr &&
5183         obj_type->speculative_type()->is_instance_klass()) {
5184       ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass();
5185       if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem &&
5186           !spec_ik->has_injected_fields()) {
5187         if (!obj_type->isa_instptr() ||
5188             obj_type->is_instptr()->instance_klass()->has_subklass()) {
5189           obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false);
5190         }
5191       }
5192     }
5193 
5194     // Conservatively insert a memory barrier on all memory slices.
5195     // Do not let writes into the original float below the clone.
5196     insert_mem_bar(Op_MemBarCPUOrder);
5197 
5198     // paths into result_reg:
5199     enum {
5200       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
5201       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
5202       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
5203       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
5204       PATH_LIMIT
5205     };
5206     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
5207     result_val             = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
5208     PhiNode*    result_i_o = new PhiNode(result_reg, Type::ABIO);
5209     PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
5210     record_for_igvn(result_reg);
5211 
5212     Node* obj_klass = load_object_klass(obj);
5213     Node* array_obj = obj;
5214     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)nullptr, &array_obj);
5215     if (array_ctl != nullptr) {
5216       // It's an array.
5217       PreserveJVMState pjvms(this);
5218       set_control(array_ctl);
5219       Node* obj_length = load_array_length(array_obj);
5220       Node* array_size = nullptr; // Size of the array without object alignment padding.
5221       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &array_size, /*deoptimize_on_exception=*/true);
5222 
5223       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
5224       if (bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, false, BarrierSetC2::Parsing)) {
5225         // If it is an oop array, it requires very special treatment,
5226         // because gc barriers are required when accessing the array.
5227         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)nullptr);
5228         if (is_obja != nullptr) {
5229           PreserveJVMState pjvms2(this);
5230           set_control(is_obja);
5231           // Generate a direct call to the right arraycopy function(s).
5232           // Clones are always tightly coupled.
5233           ArrayCopyNode* ac = ArrayCopyNode::make(this, true, array_obj, intcon(0), alloc_obj, intcon(0), obj_length, true, false);
5234           ac->set_clone_oop_array();
5235           Node* n = _gvn.transform(ac);
5236           assert(n == ac, "cannot disappear");
5237           ac->connect_outputs(this, /*deoptimize_on_exception=*/true);
5238 
5239           result_reg->init_req(_objArray_path, control());
5240           result_val->init_req(_objArray_path, alloc_obj);
5241           result_i_o ->set_req(_objArray_path, i_o());
5242           result_mem ->set_req(_objArray_path, reset_memory());
5243         }
5244       }
5245       // Otherwise, there are no barriers to worry about.
5246       // (We can dispense with card marks if we know the allocation
5247       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
5248       //  causes the non-eden paths to take compensating steps to
5249       //  simulate a fresh allocation, so that no further
5250       //  card marks are required in compiled code to initialize
5251       //  the object.)
5252 
5253       if (!stopped()) {
5254         copy_to_clone(array_obj, alloc_obj, array_size, true);
5255 
5256         // Present the results of the copy.
5257         result_reg->init_req(_array_path, control());
5258         result_val->init_req(_array_path, alloc_obj);
5259         result_i_o ->set_req(_array_path, i_o());
5260         result_mem ->set_req(_array_path, reset_memory());
5261       }
5262     }
5263 
5264     // We only go to the instance fast case code if we pass a number of guards.
5265     // The paths which do not pass are accumulated in the slow_region.
5266     RegionNode* slow_region = new RegionNode(1);
5267     record_for_igvn(slow_region);
5268     if (!stopped()) {
5269       // It's an instance (we did array above).  Make the slow-path tests.
5270       // If this is a virtual call, we generate a funny guard.  We grab
5271       // the vtable entry corresponding to clone() from the target object.
5272       // If the target method which we are calling happens to be the
5273       // Object clone() method, we pass the guard.  We do not need this
5274       // guard for non-virtual calls; the caller is known to be the native
5275       // Object clone().
5276       if (is_virtual) {
5277         generate_virtual_guard(obj_klass, slow_region);
5278       }
5279 
5280       // The object must be easily cloneable and must not have a finalizer.
5281       // Both of these conditions may be checked in a single test.
5282       // We could optimize the test further, but we don't care.
5283       generate_misc_flags_guard(obj_klass,
5284                                 // Test both conditions:
5285                                 KlassFlags::_misc_is_cloneable_fast | KlassFlags::_misc_has_finalizer,
5286                                 // Must be cloneable but not finalizer:
5287                                 KlassFlags::_misc_is_cloneable_fast,
5288                                 slow_region);
5289     }
5290 
5291     if (!stopped()) {
5292       // It's an instance, and it passed the slow-path tests.
5293       PreserveJVMState pjvms(this);
5294       Node* obj_size = nullptr; // Total object size, including object alignment padding.
5295       // Need to deoptimize on exception from allocation since Object.clone intrinsic
5296       // is reexecuted if deoptimization occurs and there could be problems when merging
5297       // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false).
5298       Node* alloc_obj = new_instance(obj_klass, nullptr, &obj_size, /*deoptimize_on_exception=*/true);
5299 
5300       copy_to_clone(obj, alloc_obj, obj_size, false);
5301 
5302       // Present the results of the slow call.
5303       result_reg->init_req(_instance_path, control());
5304       result_val->init_req(_instance_path, alloc_obj);
5305       result_i_o ->set_req(_instance_path, i_o());
5306       result_mem ->set_req(_instance_path, reset_memory());
5307     }
5308 
5309     // Generate code for the slow case.  We make a call to clone().
5310     set_control(_gvn.transform(slow_region));
5311     if (!stopped()) {
5312       PreserveJVMState pjvms(this);
5313       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual, false, true);
5314       // We need to deoptimize on exception (see comment above)
5315       Node* slow_result = set_results_for_java_call(slow_call, false, /* deoptimize */ true);
5316       // this->control() comes from set_results_for_java_call
5317       result_reg->init_req(_slow_path, control());
5318       result_val->init_req(_slow_path, slow_result);
5319       result_i_o ->set_req(_slow_path, i_o());
5320       result_mem ->set_req(_slow_path, reset_memory());
5321     }
5322 
5323     // Return the combined state.
5324     set_control(    _gvn.transform(result_reg));
5325     set_i_o(        _gvn.transform(result_i_o));
5326     set_all_memory( _gvn.transform(result_mem));
5327   } // original reexecute is set back here
5328 
5329   set_result(_gvn.transform(result_val));
5330   return true;
5331 }
5332 
5333 // If we have a tightly coupled allocation, the arraycopy may take care
5334 // of the array initialization. If one of the guards we insert between
5335 // the allocation and the arraycopy causes a deoptimization, an
5336 // uninitialized array will escape the compiled method. To prevent that
5337 // we set the JVM state for uncommon traps between the allocation and
5338 // the arraycopy to the state before the allocation so, in case of
5339 // deoptimization, we'll reexecute the allocation and the
5340 // initialization.
5341 JVMState* LibraryCallKit::arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp) {
5342   if (alloc != nullptr) {
5343     ciMethod* trap_method = alloc->jvms()->method();
5344     int trap_bci = alloc->jvms()->bci();
5345 
5346     if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
5347         !C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_null_check)) {
5348       // Make sure there's no store between the allocation and the
5349       // arraycopy otherwise visible side effects could be rexecuted
5350       // in case of deoptimization and cause incorrect execution.
5351       bool no_interfering_store = true;
5352       Node* mem = alloc->in(TypeFunc::Memory);
5353       if (mem->is_MergeMem()) {
5354         for (MergeMemStream mms(merged_memory(), mem->as_MergeMem()); mms.next_non_empty2(); ) {
5355           Node* n = mms.memory();
5356           if (n != mms.memory2() && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
5357             assert(n->is_Store(), "what else?");
5358             no_interfering_store = false;
5359             break;
5360           }
5361         }
5362       } else {
5363         for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
5364           Node* n = mms.memory();
5365           if (n != mem && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
5366             assert(n->is_Store(), "what else?");
5367             no_interfering_store = false;
5368             break;
5369           }
5370         }
5371       }
5372 
5373       if (no_interfering_store) {
5374         SafePointNode* sfpt = create_safepoint_with_state_before_array_allocation(alloc);
5375 
5376         JVMState* saved_jvms = jvms();
5377         saved_reexecute_sp = _reexecute_sp;
5378 
5379         set_jvms(sfpt->jvms());
5380         _reexecute_sp = jvms()->sp();
5381 
5382         return saved_jvms;
5383       }
5384     }
5385   }
5386   return nullptr;
5387 }
5388 
5389 // Clone the JVMState of the array allocation and create a new safepoint with it. Re-push the array length to the stack
5390 // such that uncommon traps can be emitted to re-execute the array allocation in the interpreter.
5391 SafePointNode* LibraryCallKit::create_safepoint_with_state_before_array_allocation(const AllocateArrayNode* alloc) const {
5392   JVMState* old_jvms = alloc->jvms()->clone_shallow(C);
5393   uint size = alloc->req();
5394   SafePointNode* sfpt = new SafePointNode(size, old_jvms);
5395   old_jvms->set_map(sfpt);
5396   for (uint i = 0; i < size; i++) {
5397     sfpt->init_req(i, alloc->in(i));
5398   }
5399   // re-push array length for deoptimization
5400   sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), alloc->in(AllocateNode::ALength));
5401   old_jvms->set_sp(old_jvms->sp()+1);
5402   old_jvms->set_monoff(old_jvms->monoff()+1);
5403   old_jvms->set_scloff(old_jvms->scloff()+1);
5404   old_jvms->set_endoff(old_jvms->endoff()+1);
5405   old_jvms->set_should_reexecute(true);
5406 
5407   sfpt->set_i_o(map()->i_o());
5408   sfpt->set_memory(map()->memory());
5409   sfpt->set_control(map()->control());
5410   return sfpt;
5411 }
5412 
5413 // In case of a deoptimization, we restart execution at the
5414 // allocation, allocating a new array. We would leave an uninitialized
5415 // array in the heap that GCs wouldn't expect. Move the allocation
5416 // after the traps so we don't allocate the array if we
5417 // deoptimize. This is possible because tightly_coupled_allocation()
5418 // guarantees there's no observer of the allocated array at this point
5419 // and the control flow is simple enough.
5420 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms_before_guards,
5421                                                     int saved_reexecute_sp, uint new_idx) {
5422   if (saved_jvms_before_guards != nullptr && !stopped()) {
5423     replace_unrelated_uncommon_traps_with_alloc_state(alloc, saved_jvms_before_guards);
5424 
5425     assert(alloc != nullptr, "only with a tightly coupled allocation");
5426     // restore JVM state to the state at the arraycopy
5427     saved_jvms_before_guards->map()->set_control(map()->control());
5428     assert(saved_jvms_before_guards->map()->memory() == map()->memory(), "memory state changed?");
5429     assert(saved_jvms_before_guards->map()->i_o() == map()->i_o(), "IO state changed?");
5430     // If we've improved the types of some nodes (null check) while
5431     // emitting the guards, propagate them to the current state
5432     map()->replaced_nodes().apply(saved_jvms_before_guards->map(), new_idx);
5433     set_jvms(saved_jvms_before_guards);
5434     _reexecute_sp = saved_reexecute_sp;
5435 
5436     // Remove the allocation from above the guards
5437     CallProjections callprojs;
5438     alloc->extract_projections(&callprojs, true);
5439     InitializeNode* init = alloc->initialization();
5440     Node* alloc_mem = alloc->in(TypeFunc::Memory);
5441     C->gvn_replace_by(callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O));
5442     C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem);
5443 
5444     // The CastIINode created in GraphKit::new_array (in AllocateArrayNode::make_ideal_length) must stay below
5445     // the allocation (i.e. is only valid if the allocation succeeds):
5446     // 1) replace CastIINode with AllocateArrayNode's length here
5447     // 2) Create CastIINode again once allocation has moved (see below) at the end of this method
5448     //
5449     // Multiple identical CastIINodes might exist here. Each GraphKit::load_array_length() call will generate
5450     // new separate CastIINode (arraycopy guard checks or any array length use between array allocation and ararycopy)
5451     Node* init_control = init->proj_out(TypeFunc::Control);
5452     Node* alloc_length = alloc->Ideal_length();
5453 #ifdef ASSERT
5454     Node* prev_cast = nullptr;
5455 #endif
5456     for (uint i = 0; i < init_control->outcnt(); i++) {
5457       Node* init_out = init_control->raw_out(i);
5458       if (init_out->is_CastII() && init_out->in(TypeFunc::Control) == init_control && init_out->in(1) == alloc_length) {
5459 #ifdef ASSERT
5460         if (prev_cast == nullptr) {
5461           prev_cast = init_out;
5462         } else {
5463           if (prev_cast->cmp(*init_out) == false) {
5464             prev_cast->dump();
5465             init_out->dump();
5466             assert(false, "not equal CastIINode");
5467           }
5468         }
5469 #endif
5470         C->gvn_replace_by(init_out, alloc_length);
5471       }
5472     }
5473     C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0));
5474 
5475     // move the allocation here (after the guards)
5476     _gvn.hash_delete(alloc);
5477     alloc->set_req(TypeFunc::Control, control());
5478     alloc->set_req(TypeFunc::I_O, i_o());
5479     Node *mem = reset_memory();
5480     set_all_memory(mem);
5481     alloc->set_req(TypeFunc::Memory, mem);
5482     set_control(init->proj_out_or_null(TypeFunc::Control));
5483     set_i_o(callprojs.fallthrough_ioproj);
5484 
5485     // Update memory as done in GraphKit::set_output_for_allocation()
5486     const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength));
5487     const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type();
5488     if (ary_type->isa_aryptr() && length_type != nullptr) {
5489       ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
5490     }
5491     const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot);
5492     int            elemidx  = C->get_alias_index(telemref);
5493     set_memory(init->proj_out_or_null(TypeFunc::Memory), Compile::AliasIdxRaw);
5494     set_memory(init->proj_out_or_null(TypeFunc::Memory), elemidx);
5495 
5496     Node* allocx = _gvn.transform(alloc);
5497     assert(allocx == alloc, "where has the allocation gone?");
5498     assert(dest->is_CheckCastPP(), "not an allocation result?");
5499 
5500     _gvn.hash_delete(dest);
5501     dest->set_req(0, control());
5502     Node* destx = _gvn.transform(dest);
5503     assert(destx == dest, "where has the allocation result gone?");
5504 
5505     array_ideal_length(alloc, ary_type, true);
5506   }
5507 }
5508 
5509 // Unrelated UCTs between the array allocation and the array copy, which are considered safe by tightly_coupled_allocation(),
5510 // need to be replaced by an UCT with a state before the array allocation (including the array length). This is necessary
5511 // because we could hit one of these UCTs (which are executed before the emitted array copy guards and the actual array
5512 // allocation which is moved down in arraycopy_move_allocation_here()). When later resuming execution in the interpreter,
5513 // we would have wrongly skipped the array allocation. To prevent this, we resume execution at the array allocation in
5514 // the interpreter similar to what we are doing for the newly emitted guards for the array copy.
5515 void LibraryCallKit::replace_unrelated_uncommon_traps_with_alloc_state(AllocateArrayNode* alloc,
5516                                                                        JVMState* saved_jvms_before_guards) {
5517   if (saved_jvms_before_guards->map()->control()->is_IfProj()) {
5518     // There is at least one unrelated uncommon trap which needs to be replaced.
5519     SafePointNode* sfpt = create_safepoint_with_state_before_array_allocation(alloc);
5520 
5521     JVMState* saved_jvms = jvms();
5522     const int saved_reexecute_sp = _reexecute_sp;
5523     set_jvms(sfpt->jvms());
5524     _reexecute_sp = jvms()->sp();
5525 
5526     replace_unrelated_uncommon_traps_with_alloc_state(saved_jvms_before_guards);
5527 
5528     // Restore state
5529     set_jvms(saved_jvms);
5530     _reexecute_sp = saved_reexecute_sp;
5531   }
5532 }
5533 
5534 // Replace the unrelated uncommon traps with new uncommon trap nodes by reusing the action and reason. The new uncommon
5535 // traps will have the state of the array allocation. Let the old uncommon trap nodes die.
5536 void LibraryCallKit::replace_unrelated_uncommon_traps_with_alloc_state(JVMState* saved_jvms_before_guards) {
5537   Node* if_proj = saved_jvms_before_guards->map()->control(); // Start the search right before the newly emitted guards
5538   while (if_proj->is_IfProj()) {
5539     CallStaticJavaNode* uncommon_trap = get_uncommon_trap_from_success_proj(if_proj);
5540     if (uncommon_trap != nullptr) {
5541       create_new_uncommon_trap(uncommon_trap);
5542     }
5543     assert(if_proj->in(0)->is_If(), "must be If");
5544     if_proj = if_proj->in(0)->in(0);
5545   }
5546   assert(if_proj->is_Proj() && if_proj->in(0)->is_Initialize(),
5547          "must have reached control projection of init node");
5548 }
5549 
5550 void LibraryCallKit::create_new_uncommon_trap(CallStaticJavaNode* uncommon_trap_call) {
5551   const int trap_request = uncommon_trap_call->uncommon_trap_request();
5552   assert(trap_request != 0, "no valid UCT trap request");
5553   PreserveJVMState pjvms(this);
5554   set_control(uncommon_trap_call->in(0));
5555   uncommon_trap(Deoptimization::trap_request_reason(trap_request),
5556                 Deoptimization::trap_request_action(trap_request));
5557   assert(stopped(), "Should be stopped");
5558   _gvn.hash_delete(uncommon_trap_call);
5559   uncommon_trap_call->set_req(0, top()); // not used anymore, kill it
5560 }
5561 
5562 // Common checks for array sorting intrinsics arguments.
5563 // Returns `true` if checks passed.
5564 bool LibraryCallKit::check_array_sort_arguments(Node* elementType, Node* obj, BasicType& bt) {
5565   // check address of the class
5566   if (elementType == nullptr || elementType->is_top()) {
5567     return false;  // dead path
5568   }
5569   const TypeInstPtr* elem_klass = gvn().type(elementType)->isa_instptr();
5570   if (elem_klass == nullptr) {
5571     return false;  // dead path
5572   }
5573   // java_mirror_type() returns non-null for compile-time Class constants only
5574   ciType* elem_type = elem_klass->java_mirror_type();
5575   if (elem_type == nullptr) {
5576     return false;
5577   }
5578   bt = elem_type->basic_type();
5579   // Disable the intrinsic if the CPU does not support SIMD sort
5580   if (!Matcher::supports_simd_sort(bt)) {
5581     return false;
5582   }
5583   // check address of the array
5584   if (obj == nullptr || obj->is_top()) {
5585     return false;  // dead path
5586   }
5587   const TypeAryPtr* obj_t = _gvn.type(obj)->isa_aryptr();
5588   if (obj_t == nullptr || obj_t->elem() == Type::BOTTOM) {
5589     return false; // failed input validation
5590   }
5591   return true;
5592 }
5593 
5594 //------------------------------inline_array_partition-----------------------
5595 bool LibraryCallKit::inline_array_partition() {
5596   address stubAddr = StubRoutines::select_array_partition_function();
5597   if (stubAddr == nullptr) {
5598     return false; // Intrinsic's stub is not implemented on this platform
5599   }
5600   assert(callee()->signature()->size() == 9, "arrayPartition has 8 parameters (one long)");
5601 
5602   // no receiver because it is a static method
5603   Node* elementType     = argument(0);
5604   Node* obj             = argument(1);
5605   Node* offset          = argument(2); // long
5606   Node* fromIndex       = argument(4);
5607   Node* toIndex         = argument(5);
5608   Node* indexPivot1     = argument(6);
5609   Node* indexPivot2     = argument(7);
5610   // PartitionOperation:  argument(8) is ignored
5611 
5612   Node* pivotIndices = nullptr;
5613   BasicType bt = T_ILLEGAL;
5614 
5615   if (!check_array_sort_arguments(elementType, obj, bt)) {
5616     return false;
5617   }
5618   null_check(obj);
5619   // If obj is dead, only null-path is taken.
5620   if (stopped()) {
5621     return true;
5622   }
5623   // Set the original stack and the reexecute bit for the interpreter to reexecute
5624   // the bytecode that invokes DualPivotQuicksort.partition() if deoptimization happens.
5625   { PreserveReexecuteState preexecs(this);
5626     jvms()->set_should_reexecute(true);
5627 
5628     Node* obj_adr = make_unsafe_address(obj, offset);
5629 
5630     // create the pivotIndices array of type int and size = 2
5631     Node* size = intcon(2);
5632     Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_INT)));
5633     pivotIndices = new_array(klass_node, size, 0);  // no arguments to push
5634     AllocateArrayNode* alloc = tightly_coupled_allocation(pivotIndices);
5635     guarantee(alloc != nullptr, "created above");
5636     Node* pivotIndices_adr = basic_plus_adr(pivotIndices, arrayOopDesc::base_offset_in_bytes(T_INT));
5637 
5638     // pass the basic type enum to the stub
5639     Node* elemType = intcon(bt);
5640 
5641     // Call the stub
5642     const char *stubName = "array_partition_stub";
5643     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::array_partition_Type(),
5644                       stubAddr, stubName, TypePtr::BOTTOM,
5645                       obj_adr, elemType, fromIndex, toIndex, pivotIndices_adr,
5646                       indexPivot1, indexPivot2);
5647 
5648   } // original reexecute is set back here
5649 
5650   if (!stopped()) {
5651     set_result(pivotIndices);
5652   }
5653 
5654   return true;
5655 }
5656 
5657 
5658 //------------------------------inline_array_sort-----------------------
5659 bool LibraryCallKit::inline_array_sort() {
5660   address stubAddr = StubRoutines::select_arraysort_function();
5661   if (stubAddr == nullptr) {
5662     return false; // Intrinsic's stub is not implemented on this platform
5663   }
5664   assert(callee()->signature()->size() == 7, "arraySort has 6 parameters (one long)");
5665 
5666   // no receiver because it is a static method
5667   Node* elementType     = argument(0);
5668   Node* obj             = argument(1);
5669   Node* offset          = argument(2); // long
5670   Node* fromIndex       = argument(4);
5671   Node* toIndex         = argument(5);
5672   // SortOperation:       argument(6) is ignored
5673 
5674   BasicType bt = T_ILLEGAL;
5675 
5676   if (!check_array_sort_arguments(elementType, obj, bt)) {
5677     return false;
5678   }
5679   null_check(obj);
5680   // If obj is dead, only null-path is taken.
5681   if (stopped()) {
5682     return true;
5683   }
5684   Node* obj_adr = make_unsafe_address(obj, offset);
5685 
5686   // pass the basic type enum to the stub
5687   Node* elemType = intcon(bt);
5688 
5689   // Call the stub.
5690   const char *stubName = "arraysort_stub";
5691   make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::array_sort_Type(),
5692                     stubAddr, stubName, TypePtr::BOTTOM,
5693                     obj_adr, elemType, fromIndex, toIndex);
5694 
5695   return true;
5696 }
5697 
5698 
5699 //------------------------------inline_arraycopy-----------------------
5700 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
5701 //                                                      Object dest, int destPos,
5702 //                                                      int length);
5703 bool LibraryCallKit::inline_arraycopy() {
5704   // Get the arguments.
5705   Node* src         = argument(0);  // type: oop
5706   Node* src_offset  = argument(1);  // type: int
5707   Node* dest        = argument(2);  // type: oop
5708   Node* dest_offset = argument(3);  // type: int
5709   Node* length      = argument(4);  // type: int
5710 
5711   uint new_idx = C->unique();
5712 
5713   // Check for allocation before we add nodes that would confuse
5714   // tightly_coupled_allocation()
5715   AllocateArrayNode* alloc = tightly_coupled_allocation(dest);
5716 
5717   int saved_reexecute_sp = -1;
5718   JVMState* saved_jvms_before_guards = arraycopy_restore_alloc_state(alloc, saved_reexecute_sp);
5719   // See arraycopy_restore_alloc_state() comment
5720   // if alloc == null we don't have to worry about a tightly coupled allocation so we can emit all needed guards
5721   // if saved_jvms_before_guards is not null (then alloc is not null) then we can handle guards and a tightly coupled allocation
5722   // if saved_jvms_before_guards is null and alloc is not null, we can't emit any guards
5723   bool can_emit_guards = (alloc == nullptr || saved_jvms_before_guards != nullptr);
5724 
5725   // The following tests must be performed
5726   // (1) src and dest are arrays.
5727   // (2) src and dest arrays must have elements of the same BasicType
5728   // (3) src and dest must not be null.
5729   // (4) src_offset must not be negative.
5730   // (5) dest_offset must not be negative.
5731   // (6) length must not be negative.
5732   // (7) src_offset + length must not exceed length of src.
5733   // (8) dest_offset + length must not exceed length of dest.
5734   // (9) each element of an oop array must be assignable
5735 
5736   // (3) src and dest must not be null.
5737   // always do this here because we need the JVM state for uncommon traps
5738   Node* null_ctl = top();
5739   src  = saved_jvms_before_guards != nullptr ? null_check_oop(src, &null_ctl, true, true) : null_check(src, T_ARRAY);
5740   assert(null_ctl->is_top(), "no null control here");
5741   dest = null_check(dest, T_ARRAY);
5742 
5743   if (!can_emit_guards) {
5744     // if saved_jvms_before_guards is null and alloc is not null, we don't emit any
5745     // guards but the arraycopy node could still take advantage of a
5746     // tightly allocated allocation. tightly_coupled_allocation() is
5747     // called again to make sure it takes the null check above into
5748     // account: the null check is mandatory and if it caused an
5749     // uncommon trap to be emitted then the allocation can't be
5750     // considered tightly coupled in this context.
5751     alloc = tightly_coupled_allocation(dest);
5752   }
5753 
5754   bool validated = false;
5755 
5756   const Type* src_type  = _gvn.type(src);
5757   const Type* dest_type = _gvn.type(dest);
5758   const TypeAryPtr* top_src  = src_type->isa_aryptr();
5759   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5760 
5761   // Do we have the type of src?
5762   bool has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM);
5763   // Do we have the type of dest?
5764   bool has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM);
5765   // Is the type for src from speculation?
5766   bool src_spec = false;
5767   // Is the type for dest from speculation?
5768   bool dest_spec = false;
5769 
5770   if ((!has_src || !has_dest) && can_emit_guards) {
5771     // We don't have sufficient type information, let's see if
5772     // speculative types can help. We need to have types for both src
5773     // and dest so that it pays off.
5774 
5775     // Do we already have or could we have type information for src
5776     bool could_have_src = has_src;
5777     // Do we already have or could we have type information for dest
5778     bool could_have_dest = has_dest;
5779 
5780     ciKlass* src_k = nullptr;
5781     if (!has_src) {
5782       src_k = src_type->speculative_type_not_null();
5783       if (src_k != nullptr && src_k->is_array_klass()) {
5784         could_have_src = true;
5785       }
5786     }
5787 
5788     ciKlass* dest_k = nullptr;
5789     if (!has_dest) {
5790       dest_k = dest_type->speculative_type_not_null();
5791       if (dest_k != nullptr && dest_k->is_array_klass()) {
5792         could_have_dest = true;
5793       }
5794     }
5795 
5796     if (could_have_src && could_have_dest) {
5797       // This is going to pay off so emit the required guards
5798       if (!has_src) {
5799         src = maybe_cast_profiled_obj(src, src_k, true);
5800         src_type  = _gvn.type(src);
5801         top_src  = src_type->isa_aryptr();
5802         has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM);
5803         src_spec = true;
5804       }
5805       if (!has_dest) {
5806         dest = maybe_cast_profiled_obj(dest, dest_k, true);
5807         dest_type  = _gvn.type(dest);
5808         top_dest  = dest_type->isa_aryptr();
5809         has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM);
5810         dest_spec = true;
5811       }
5812     }
5813   }
5814 
5815   if (has_src && has_dest && can_emit_guards) {
5816     BasicType src_elem = top_src->isa_aryptr()->elem()->array_element_basic_type();
5817     BasicType dest_elem = top_dest->isa_aryptr()->elem()->array_element_basic_type();
5818     if (is_reference_type(src_elem, true)) src_elem = T_OBJECT;
5819     if (is_reference_type(dest_elem, true)) dest_elem = T_OBJECT;
5820 
5821     if (src_elem == dest_elem && src_elem == T_OBJECT) {
5822       // If both arrays are object arrays then having the exact types
5823       // for both will remove the need for a subtype check at runtime
5824       // before the call and may make it possible to pick a faster copy
5825       // routine (without a subtype check on every element)
5826       // Do we have the exact type of src?
5827       bool could_have_src = src_spec;
5828       // Do we have the exact type of dest?
5829       bool could_have_dest = dest_spec;
5830       ciKlass* src_k = nullptr;
5831       ciKlass* dest_k = nullptr;
5832       if (!src_spec) {
5833         src_k = src_type->speculative_type_not_null();
5834         if (src_k != nullptr && src_k->is_array_klass()) {
5835           could_have_src = true;
5836         }
5837       }
5838       if (!dest_spec) {
5839         dest_k = dest_type->speculative_type_not_null();
5840         if (dest_k != nullptr && dest_k->is_array_klass()) {
5841           could_have_dest = true;
5842         }
5843       }
5844       if (could_have_src && could_have_dest) {
5845         // If we can have both exact types, emit the missing guards
5846         if (could_have_src && !src_spec) {
5847           src = maybe_cast_profiled_obj(src, src_k, true);
5848         }
5849         if (could_have_dest && !dest_spec) {
5850           dest = maybe_cast_profiled_obj(dest, dest_k, true);
5851         }
5852       }
5853     }
5854   }
5855 
5856   ciMethod* trap_method = method();
5857   int trap_bci = bci();
5858   if (saved_jvms_before_guards != nullptr) {
5859     trap_method = alloc->jvms()->method();
5860     trap_bci = alloc->jvms()->bci();
5861   }
5862 
5863   bool negative_length_guard_generated = false;
5864 
5865   if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
5866       can_emit_guards &&
5867       !src->is_top() && !dest->is_top()) {
5868     // validate arguments: enables transformation the ArrayCopyNode
5869     validated = true;
5870 
5871     RegionNode* slow_region = new RegionNode(1);
5872     record_for_igvn(slow_region);
5873 
5874     // (1) src and dest are arrays.
5875     generate_non_array_guard(load_object_klass(src), slow_region, &src);
5876     generate_non_array_guard(load_object_klass(dest), slow_region, &dest);
5877 
5878     // (2) src and dest arrays must have elements of the same BasicType
5879     // done at macro expansion or at Ideal transformation time
5880 
5881     // (4) src_offset must not be negative.
5882     generate_negative_guard(src_offset, slow_region);
5883 
5884     // (5) dest_offset must not be negative.
5885     generate_negative_guard(dest_offset, slow_region);
5886 
5887     // (7) src_offset + length must not exceed length of src.
5888     generate_limit_guard(src_offset, length,
5889                          load_array_length(src),
5890                          slow_region);
5891 
5892     // (8) dest_offset + length must not exceed length of dest.
5893     generate_limit_guard(dest_offset, length,
5894                          load_array_length(dest),
5895                          slow_region);
5896 
5897     // (6) length must not be negative.
5898     // This is also checked in generate_arraycopy() during macro expansion, but
5899     // we also have to check it here for the case where the ArrayCopyNode will
5900     // be eliminated by Escape Analysis.
5901     if (EliminateAllocations) {
5902       generate_negative_guard(length, slow_region);
5903       negative_length_guard_generated = true;
5904     }
5905 
5906     // (9) each element of an oop array must be assignable
5907     Node* dest_klass = load_object_klass(dest);
5908     if (src != dest) {
5909       Node* not_subtype_ctrl = gen_subtype_check(src, dest_klass);
5910 
5911       if (not_subtype_ctrl != top()) {
5912         PreserveJVMState pjvms(this);
5913         set_control(not_subtype_ctrl);
5914         uncommon_trap(Deoptimization::Reason_intrinsic,
5915                       Deoptimization::Action_make_not_entrant);
5916         assert(stopped(), "Should be stopped");
5917       }
5918     }
5919     {
5920       PreserveJVMState pjvms(this);
5921       set_control(_gvn.transform(slow_region));
5922       uncommon_trap(Deoptimization::Reason_intrinsic,
5923                     Deoptimization::Action_make_not_entrant);
5924       assert(stopped(), "Should be stopped");
5925     }
5926 
5927     const TypeKlassPtr* dest_klass_t = _gvn.type(dest_klass)->is_klassptr();
5928     const Type *toop = dest_klass_t->cast_to_exactness(false)->as_instance_type();
5929     src = _gvn.transform(new CheckCastPPNode(control(), src, toop));
5930     arraycopy_move_allocation_here(alloc, dest, saved_jvms_before_guards, saved_reexecute_sp, new_idx);
5931   }
5932 
5933   if (stopped()) {
5934     return true;
5935   }
5936 
5937   ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != nullptr, negative_length_guard_generated,
5938                                           // Create LoadRange and LoadKlass nodes for use during macro expansion here
5939                                           // so the compiler has a chance to eliminate them: during macro expansion,
5940                                           // we have to set their control (CastPP nodes are eliminated).
5941                                           load_object_klass(src), load_object_klass(dest),
5942                                           load_array_length(src), load_array_length(dest));
5943 
5944   ac->set_arraycopy(validated);
5945 
5946   Node* n = _gvn.transform(ac);
5947   if (n == ac) {
5948     ac->connect_outputs(this);
5949   } else {
5950     assert(validated, "shouldn't transform if all arguments not validated");
5951     set_all_memory(n);
5952   }
5953   clear_upper_avx();
5954 
5955 
5956   return true;
5957 }
5958 
5959 
5960 // Helper function which determines if an arraycopy immediately follows
5961 // an allocation, with no intervening tests or other escapes for the object.
5962 AllocateArrayNode*
5963 LibraryCallKit::tightly_coupled_allocation(Node* ptr) {
5964   if (stopped())             return nullptr;  // no fast path
5965   if (!C->do_aliasing())     return nullptr;  // no MergeMems around
5966 
5967   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr);
5968   if (alloc == nullptr)  return nullptr;
5969 
5970   Node* rawmem = memory(Compile::AliasIdxRaw);
5971   // Is the allocation's memory state untouched?
5972   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
5973     // Bail out if there have been raw-memory effects since the allocation.
5974     // (Example:  There might have been a call or safepoint.)
5975     return nullptr;
5976   }
5977   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
5978   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
5979     return nullptr;
5980   }
5981 
5982   // There must be no unexpected observers of this allocation.
5983   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
5984     Node* obs = ptr->fast_out(i);
5985     if (obs != this->map()) {
5986       return nullptr;
5987     }
5988   }
5989 
5990   // This arraycopy must unconditionally follow the allocation of the ptr.
5991   Node* alloc_ctl = ptr->in(0);
5992   Node* ctl = control();
5993   while (ctl != alloc_ctl) {
5994     // There may be guards which feed into the slow_region.
5995     // Any other control flow means that we might not get a chance
5996     // to finish initializing the allocated object.
5997     // Various low-level checks bottom out in uncommon traps. These
5998     // are considered safe since we've already checked above that
5999     // there is no unexpected observer of this allocation.
6000     if (get_uncommon_trap_from_success_proj(ctl) != nullptr) {
6001       assert(ctl->in(0)->is_If(), "must be If");
6002       ctl = ctl->in(0)->in(0);
6003     } else {
6004       return nullptr;
6005     }
6006   }
6007 
6008   // If we get this far, we have an allocation which immediately
6009   // precedes the arraycopy, and we can take over zeroing the new object.
6010   // The arraycopy will finish the initialization, and provide
6011   // a new control state to which we will anchor the destination pointer.
6012 
6013   return alloc;
6014 }
6015 
6016 CallStaticJavaNode* LibraryCallKit::get_uncommon_trap_from_success_proj(Node* node) {
6017   if (node->is_IfProj()) {
6018     Node* other_proj = node->as_IfProj()->other_if_proj();
6019     for (DUIterator_Fast jmax, j = other_proj->fast_outs(jmax); j < jmax; j++) {
6020       Node* obs = other_proj->fast_out(j);
6021       if (obs->in(0) == other_proj && obs->is_CallStaticJava() &&
6022           (obs->as_CallStaticJava()->entry_point() == OptoRuntime::uncommon_trap_blob()->entry_point())) {
6023         return obs->as_CallStaticJava();
6024       }
6025     }
6026   }
6027   return nullptr;
6028 }
6029 
6030 //-------------inline_encodeISOArray-----------------------------------
6031 // encode char[] to byte[] in ISO_8859_1 or ASCII
6032 bool LibraryCallKit::inline_encodeISOArray(bool ascii) {
6033   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
6034   // no receiver since it is static method
6035   Node *src         = argument(0);
6036   Node *src_offset  = argument(1);
6037   Node *dst         = argument(2);
6038   Node *dst_offset  = argument(3);
6039   Node *length      = argument(4);
6040 
6041   src = must_be_not_null(src, true);
6042   dst = must_be_not_null(dst, true);
6043 
6044   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
6045   const TypeAryPtr* dst_type = dst->Value(&_gvn)->isa_aryptr();
6046   if (src_type == nullptr || src_type->elem() == Type::BOTTOM ||
6047       dst_type == nullptr || dst_type->elem() == Type::BOTTOM) {
6048     // failed array check
6049     return false;
6050   }
6051 
6052   // Figure out the size and type of the elements we will be copying.
6053   BasicType src_elem = src_type->elem()->array_element_basic_type();
6054   BasicType dst_elem = dst_type->elem()->array_element_basic_type();
6055   if (!((src_elem == T_CHAR) || (src_elem== T_BYTE)) || dst_elem != T_BYTE) {
6056     return false;
6057   }
6058 
6059   Node* src_start = array_element_address(src, src_offset, T_CHAR);
6060   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
6061   // 'src_start' points to src array + scaled offset
6062   // 'dst_start' points to dst array + scaled offset
6063 
6064   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
6065   Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length, ascii);
6066   enc = _gvn.transform(enc);
6067   Node* res_mem = _gvn.transform(new SCMemProjNode(enc));
6068   set_memory(res_mem, mtype);
6069   set_result(enc);
6070   clear_upper_avx();
6071 
6072   return true;
6073 }
6074 
6075 //-------------inline_multiplyToLen-----------------------------------
6076 bool LibraryCallKit::inline_multiplyToLen() {
6077   assert(UseMultiplyToLenIntrinsic, "not implemented on this platform");
6078 
6079   address stubAddr = StubRoutines::multiplyToLen();
6080   if (stubAddr == nullptr) {
6081     return false; // Intrinsic's stub is not implemented on this platform
6082   }
6083   const char* stubName = "multiplyToLen";
6084 
6085   assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters");
6086 
6087   // no receiver because it is a static method
6088   Node* x    = argument(0);
6089   Node* xlen = argument(1);
6090   Node* y    = argument(2);
6091   Node* ylen = argument(3);
6092   Node* z    = argument(4);
6093 
6094   x = must_be_not_null(x, true);
6095   y = must_be_not_null(y, true);
6096 
6097   const TypeAryPtr* x_type = x->Value(&_gvn)->isa_aryptr();
6098   const TypeAryPtr* y_type = y->Value(&_gvn)->isa_aryptr();
6099   if (x_type == nullptr || x_type->elem() == Type::BOTTOM ||
6100       y_type == nullptr || y_type->elem() == Type::BOTTOM) {
6101     // failed array check
6102     return false;
6103   }
6104 
6105   BasicType x_elem = x_type->elem()->array_element_basic_type();
6106   BasicType y_elem = y_type->elem()->array_element_basic_type();
6107   if (x_elem != T_INT || y_elem != T_INT) {
6108     return false;
6109   }
6110 
6111   Node* x_start = array_element_address(x, intcon(0), x_elem);
6112   Node* y_start = array_element_address(y, intcon(0), y_elem);
6113   // 'x_start' points to x array + scaled xlen
6114   // 'y_start' points to y array + scaled ylen
6115 
6116   Node* z_start = array_element_address(z, intcon(0), T_INT);
6117 
6118   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
6119                                  OptoRuntime::multiplyToLen_Type(),
6120                                  stubAddr, stubName, TypePtr::BOTTOM,
6121                                  x_start, xlen, y_start, ylen, z_start);
6122 
6123   C->set_has_split_ifs(true); // Has chance for split-if optimization
6124   set_result(z);
6125   return true;
6126 }
6127 
6128 //-------------inline_squareToLen------------------------------------
6129 bool LibraryCallKit::inline_squareToLen() {
6130   assert(UseSquareToLenIntrinsic, "not implemented on this platform");
6131 
6132   address stubAddr = StubRoutines::squareToLen();
6133   if (stubAddr == nullptr) {
6134     return false; // Intrinsic's stub is not implemented on this platform
6135   }
6136   const char* stubName = "squareToLen";
6137 
6138   assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters");
6139 
6140   Node* x    = argument(0);
6141   Node* len  = argument(1);
6142   Node* z    = argument(2);
6143   Node* zlen = argument(3);
6144 
6145   x = must_be_not_null(x, true);
6146   z = must_be_not_null(z, true);
6147 
6148   const TypeAryPtr* x_type = x->Value(&_gvn)->isa_aryptr();
6149   const TypeAryPtr* z_type = z->Value(&_gvn)->isa_aryptr();
6150   if (x_type == nullptr || x_type->elem() == Type::BOTTOM ||
6151       z_type == nullptr || z_type->elem() == Type::BOTTOM) {
6152     // failed array check
6153     return false;
6154   }
6155 
6156   BasicType x_elem = x_type->elem()->array_element_basic_type();
6157   BasicType z_elem = z_type->elem()->array_element_basic_type();
6158   if (x_elem != T_INT || z_elem != T_INT) {
6159     return false;
6160   }
6161 
6162 
6163   Node* x_start = array_element_address(x, intcon(0), x_elem);
6164   Node* z_start = array_element_address(z, intcon(0), z_elem);
6165 
6166   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
6167                                   OptoRuntime::squareToLen_Type(),
6168                                   stubAddr, stubName, TypePtr::BOTTOM,
6169                                   x_start, len, z_start, zlen);
6170 
6171   set_result(z);
6172   return true;
6173 }
6174 
6175 //-------------inline_mulAdd------------------------------------------
6176 bool LibraryCallKit::inline_mulAdd() {
6177   assert(UseMulAddIntrinsic, "not implemented on this platform");
6178 
6179   address stubAddr = StubRoutines::mulAdd();
6180   if (stubAddr == nullptr) {
6181     return false; // Intrinsic's stub is not implemented on this platform
6182   }
6183   const char* stubName = "mulAdd";
6184 
6185   assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters");
6186 
6187   Node* out      = argument(0);
6188   Node* in       = argument(1);
6189   Node* offset   = argument(2);
6190   Node* len      = argument(3);
6191   Node* k        = argument(4);
6192 
6193   in = must_be_not_null(in, true);
6194   out = must_be_not_null(out, true);
6195 
6196   const TypeAryPtr* out_type = out->Value(&_gvn)->isa_aryptr();
6197   const TypeAryPtr* in_type = in->Value(&_gvn)->isa_aryptr();
6198   if (out_type == nullptr || out_type->elem() == Type::BOTTOM ||
6199        in_type == nullptr ||  in_type->elem() == Type::BOTTOM) {
6200     // failed array check
6201     return false;
6202   }
6203 
6204   BasicType out_elem = out_type->elem()->array_element_basic_type();
6205   BasicType in_elem = in_type->elem()->array_element_basic_type();
6206   if (out_elem != T_INT || in_elem != T_INT) {
6207     return false;
6208   }
6209 
6210   Node* outlen = load_array_length(out);
6211   Node* new_offset = _gvn.transform(new SubINode(outlen, offset));
6212   Node* out_start = array_element_address(out, intcon(0), out_elem);
6213   Node* in_start = array_element_address(in, intcon(0), in_elem);
6214 
6215   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
6216                                   OptoRuntime::mulAdd_Type(),
6217                                   stubAddr, stubName, TypePtr::BOTTOM,
6218                                   out_start,in_start, new_offset, len, k);
6219   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6220   set_result(result);
6221   return true;
6222 }
6223 
6224 //-------------inline_montgomeryMultiply-----------------------------------
6225 bool LibraryCallKit::inline_montgomeryMultiply() {
6226   address stubAddr = StubRoutines::montgomeryMultiply();
6227   if (stubAddr == nullptr) {
6228     return false; // Intrinsic's stub is not implemented on this platform
6229   }
6230 
6231   assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform");
6232   const char* stubName = "montgomery_multiply";
6233 
6234   assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters");
6235 
6236   Node* a    = argument(0);
6237   Node* b    = argument(1);
6238   Node* n    = argument(2);
6239   Node* len  = argument(3);
6240   Node* inv  = argument(4);
6241   Node* m    = argument(6);
6242 
6243   const TypeAryPtr* a_type = a->Value(&_gvn)->isa_aryptr();
6244   const TypeAryPtr* b_type = b->Value(&_gvn)->isa_aryptr();
6245   const TypeAryPtr* n_type = n->Value(&_gvn)->isa_aryptr();
6246   const TypeAryPtr* m_type = m->Value(&_gvn)->isa_aryptr();
6247   if (a_type == nullptr || a_type->elem() == Type::BOTTOM ||
6248       b_type == nullptr || b_type->elem() == Type::BOTTOM ||
6249       n_type == nullptr || n_type->elem() == Type::BOTTOM ||
6250       m_type == nullptr || m_type->elem() == Type::BOTTOM) {
6251     // failed array check
6252     return false;
6253   }
6254 
6255   BasicType a_elem = a_type->elem()->array_element_basic_type();
6256   BasicType b_elem = b_type->elem()->array_element_basic_type();
6257   BasicType n_elem = n_type->elem()->array_element_basic_type();
6258   BasicType m_elem = m_type->elem()->array_element_basic_type();
6259   if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
6260     return false;
6261   }
6262 
6263   // Make the call
6264   {
6265     Node* a_start = array_element_address(a, intcon(0), a_elem);
6266     Node* b_start = array_element_address(b, intcon(0), b_elem);
6267     Node* n_start = array_element_address(n, intcon(0), n_elem);
6268     Node* m_start = array_element_address(m, intcon(0), m_elem);
6269 
6270     Node* call = make_runtime_call(RC_LEAF,
6271                                    OptoRuntime::montgomeryMultiply_Type(),
6272                                    stubAddr, stubName, TypePtr::BOTTOM,
6273                                    a_start, b_start, n_start, len, inv, top(),
6274                                    m_start);
6275     set_result(m);
6276   }
6277 
6278   return true;
6279 }
6280 
6281 bool LibraryCallKit::inline_montgomerySquare() {
6282   address stubAddr = StubRoutines::montgomerySquare();
6283   if (stubAddr == nullptr) {
6284     return false; // Intrinsic's stub is not implemented on this platform
6285   }
6286 
6287   assert(UseMontgomerySquareIntrinsic, "not implemented on this platform");
6288   const char* stubName = "montgomery_square";
6289 
6290   assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters");
6291 
6292   Node* a    = argument(0);
6293   Node* n    = argument(1);
6294   Node* len  = argument(2);
6295   Node* inv  = argument(3);
6296   Node* m    = argument(5);
6297 
6298   const TypeAryPtr* a_type = a->Value(&_gvn)->isa_aryptr();
6299   const TypeAryPtr* n_type = n->Value(&_gvn)->isa_aryptr();
6300   const TypeAryPtr* m_type = m->Value(&_gvn)->isa_aryptr();
6301   if (a_type == nullptr || a_type->elem() == Type::BOTTOM ||
6302       n_type == nullptr || n_type->elem() == Type::BOTTOM ||
6303       m_type == nullptr || m_type->elem() == Type::BOTTOM) {
6304     // failed array check
6305     return false;
6306   }
6307 
6308   BasicType a_elem = a_type->elem()->array_element_basic_type();
6309   BasicType n_elem = n_type->elem()->array_element_basic_type();
6310   BasicType m_elem = m_type->elem()->array_element_basic_type();
6311   if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
6312     return false;
6313   }
6314 
6315   // Make the call
6316   {
6317     Node* a_start = array_element_address(a, intcon(0), a_elem);
6318     Node* n_start = array_element_address(n, intcon(0), n_elem);
6319     Node* m_start = array_element_address(m, intcon(0), m_elem);
6320 
6321     Node* call = make_runtime_call(RC_LEAF,
6322                                    OptoRuntime::montgomerySquare_Type(),
6323                                    stubAddr, stubName, TypePtr::BOTTOM,
6324                                    a_start, n_start, len, inv, top(),
6325                                    m_start);
6326     set_result(m);
6327   }
6328 
6329   return true;
6330 }
6331 
6332 bool LibraryCallKit::inline_bigIntegerShift(bool isRightShift) {
6333   address stubAddr = nullptr;
6334   const char* stubName = nullptr;
6335 
6336   stubAddr = isRightShift? StubRoutines::bigIntegerRightShift(): StubRoutines::bigIntegerLeftShift();
6337   if (stubAddr == nullptr) {
6338     return false; // Intrinsic's stub is not implemented on this platform
6339   }
6340 
6341   stubName = isRightShift? "bigIntegerRightShiftWorker" : "bigIntegerLeftShiftWorker";
6342 
6343   assert(callee()->signature()->size() == 5, "expected 5 arguments");
6344 
6345   Node* newArr = argument(0);
6346   Node* oldArr = argument(1);
6347   Node* newIdx = argument(2);
6348   Node* shiftCount = argument(3);
6349   Node* numIter = argument(4);
6350 
6351   const TypeAryPtr* newArr_type = newArr->Value(&_gvn)->isa_aryptr();
6352   const TypeAryPtr* oldArr_type = oldArr->Value(&_gvn)->isa_aryptr();
6353   if (newArr_type == nullptr || newArr_type->elem() == Type::BOTTOM ||
6354       oldArr_type == nullptr || oldArr_type->elem() == Type::BOTTOM) {
6355     return false;
6356   }
6357 
6358   BasicType newArr_elem = newArr_type->elem()->array_element_basic_type();
6359   BasicType oldArr_elem = oldArr_type->elem()->array_element_basic_type();
6360   if (newArr_elem != T_INT || oldArr_elem != T_INT) {
6361     return false;
6362   }
6363 
6364   // Make the call
6365   {
6366     Node* newArr_start = array_element_address(newArr, intcon(0), newArr_elem);
6367     Node* oldArr_start = array_element_address(oldArr, intcon(0), oldArr_elem);
6368 
6369     Node* call = make_runtime_call(RC_LEAF,
6370                                    OptoRuntime::bigIntegerShift_Type(),
6371                                    stubAddr,
6372                                    stubName,
6373                                    TypePtr::BOTTOM,
6374                                    newArr_start,
6375                                    oldArr_start,
6376                                    newIdx,
6377                                    shiftCount,
6378                                    numIter);
6379   }
6380 
6381   return true;
6382 }
6383 
6384 //-------------inline_vectorizedMismatch------------------------------
6385 bool LibraryCallKit::inline_vectorizedMismatch() {
6386   assert(UseVectorizedMismatchIntrinsic, "not implemented on this platform");
6387 
6388   assert(callee()->signature()->size() == 8, "vectorizedMismatch has 6 parameters");
6389   Node* obja    = argument(0); // Object
6390   Node* aoffset = argument(1); // long
6391   Node* objb    = argument(3); // Object
6392   Node* boffset = argument(4); // long
6393   Node* length  = argument(6); // int
6394   Node* scale   = argument(7); // int
6395 
6396   const TypeAryPtr* obja_t = _gvn.type(obja)->isa_aryptr();
6397   const TypeAryPtr* objb_t = _gvn.type(objb)->isa_aryptr();
6398   if (obja_t == nullptr || obja_t->elem() == Type::BOTTOM ||
6399       objb_t == nullptr || objb_t->elem() == Type::BOTTOM ||
6400       scale == top()) {
6401     return false; // failed input validation
6402   }
6403 
6404   Node* obja_adr = make_unsafe_address(obja, aoffset);
6405   Node* objb_adr = make_unsafe_address(objb, boffset);
6406 
6407   // Partial inlining handling for inputs smaller than ArrayOperationPartialInlineSize bytes in size.
6408   //
6409   //    inline_limit = ArrayOperationPartialInlineSize / element_size;
6410   //    if (length <= inline_limit) {
6411   //      inline_path:
6412   //        vmask   = VectorMaskGen length
6413   //        vload1  = LoadVectorMasked obja, vmask
6414   //        vload2  = LoadVectorMasked objb, vmask
6415   //        result1 = VectorCmpMasked vload1, vload2, vmask
6416   //    } else {
6417   //      call_stub_path:
6418   //        result2 = call vectorizedMismatch_stub(obja, objb, length, scale)
6419   //    }
6420   //    exit_block:
6421   //      return Phi(result1, result2);
6422   //
6423   enum { inline_path = 1,  // input is small enough to process it all at once
6424          stub_path   = 2,  // input is too large; call into the VM
6425          PATH_LIMIT  = 3
6426   };
6427 
6428   Node* exit_block = new RegionNode(PATH_LIMIT);
6429   Node* result_phi = new PhiNode(exit_block, TypeInt::INT);
6430   Node* memory_phi = new PhiNode(exit_block, Type::MEMORY, TypePtr::BOTTOM);
6431 
6432   Node* call_stub_path = control();
6433 
6434   BasicType elem_bt = T_ILLEGAL;
6435 
6436   const TypeInt* scale_t = _gvn.type(scale)->is_int();
6437   if (scale_t->is_con()) {
6438     switch (scale_t->get_con()) {
6439       case 0: elem_bt = T_BYTE;  break;
6440       case 1: elem_bt = T_SHORT; break;
6441       case 2: elem_bt = T_INT;   break;
6442       case 3: elem_bt = T_LONG;  break;
6443 
6444       default: elem_bt = T_ILLEGAL; break; // not supported
6445     }
6446   }
6447 
6448   int inline_limit = 0;
6449   bool do_partial_inline = false;
6450 
6451   if (elem_bt != T_ILLEGAL && ArrayOperationPartialInlineSize > 0) {
6452     inline_limit = ArrayOperationPartialInlineSize / type2aelembytes(elem_bt);
6453     do_partial_inline = inline_limit >= 16;
6454   }
6455 
6456   if (do_partial_inline) {
6457     assert(elem_bt != T_ILLEGAL, "sanity");
6458 
6459     if (Matcher::match_rule_supported_vector(Op_VectorMaskGen,    inline_limit, elem_bt) &&
6460         Matcher::match_rule_supported_vector(Op_LoadVectorMasked, inline_limit, elem_bt) &&
6461         Matcher::match_rule_supported_vector(Op_VectorCmpMasked,  inline_limit, elem_bt)) {
6462 
6463       const TypeVect* vt = TypeVect::make(elem_bt, inline_limit);
6464       Node* cmp_length = _gvn.transform(new CmpINode(length, intcon(inline_limit)));
6465       Node* bol_gt     = _gvn.transform(new BoolNode(cmp_length, BoolTest::gt));
6466 
6467       call_stub_path = generate_guard(bol_gt, nullptr, PROB_MIN);
6468 
6469       if (!stopped()) {
6470         Node* casted_length = _gvn.transform(new CastIINode(control(), length, TypeInt::make(0, inline_limit, Type::WidenMin)));
6471 
6472         const TypePtr* obja_adr_t = _gvn.type(obja_adr)->isa_ptr();
6473         const TypePtr* objb_adr_t = _gvn.type(objb_adr)->isa_ptr();
6474         Node* obja_adr_mem = memory(C->get_alias_index(obja_adr_t));
6475         Node* objb_adr_mem = memory(C->get_alias_index(objb_adr_t));
6476 
6477         Node* vmask      = _gvn.transform(VectorMaskGenNode::make(ConvI2X(casted_length), elem_bt));
6478         Node* vload_obja = _gvn.transform(new LoadVectorMaskedNode(control(), obja_adr_mem, obja_adr, obja_adr_t, vt, vmask));
6479         Node* vload_objb = _gvn.transform(new LoadVectorMaskedNode(control(), objb_adr_mem, objb_adr, objb_adr_t, vt, vmask));
6480         Node* result     = _gvn.transform(new VectorCmpMaskedNode(vload_obja, vload_objb, vmask, TypeInt::INT));
6481 
6482         exit_block->init_req(inline_path, control());
6483         memory_phi->init_req(inline_path, map()->memory());
6484         result_phi->init_req(inline_path, result);
6485 
6486         C->set_max_vector_size(MAX2((uint)ArrayOperationPartialInlineSize, C->max_vector_size()));
6487         clear_upper_avx();
6488       }
6489     }
6490   }
6491 
6492   if (call_stub_path != nullptr) {
6493     set_control(call_stub_path);
6494 
6495     Node* call = make_runtime_call(RC_LEAF,
6496                                    OptoRuntime::vectorizedMismatch_Type(),
6497                                    StubRoutines::vectorizedMismatch(), "vectorizedMismatch", TypePtr::BOTTOM,
6498                                    obja_adr, objb_adr, length, scale);
6499 
6500     exit_block->init_req(stub_path, control());
6501     memory_phi->init_req(stub_path, map()->memory());
6502     result_phi->init_req(stub_path, _gvn.transform(new ProjNode(call, TypeFunc::Parms)));
6503   }
6504 
6505   exit_block = _gvn.transform(exit_block);
6506   memory_phi = _gvn.transform(memory_phi);
6507   result_phi = _gvn.transform(result_phi);
6508 
6509   set_control(exit_block);
6510   set_all_memory(memory_phi);
6511   set_result(result_phi);
6512 
6513   return true;
6514 }
6515 
6516 //------------------------------inline_vectorizedHashcode----------------------------
6517 bool LibraryCallKit::inline_vectorizedHashCode() {
6518   assert(UseVectorizedHashCodeIntrinsic, "not implemented on this platform");
6519 
6520   assert(callee()->signature()->size() == 5, "vectorizedHashCode has 5 parameters");
6521   Node* array          = argument(0);
6522   Node* offset         = argument(1);
6523   Node* length         = argument(2);
6524   Node* initialValue   = argument(3);
6525   Node* basic_type     = argument(4);
6526 
6527   if (basic_type == top()) {
6528     return false; // failed input validation
6529   }
6530 
6531   const TypeInt* basic_type_t = _gvn.type(basic_type)->is_int();
6532   if (!basic_type_t->is_con()) {
6533     return false; // Only intrinsify if mode argument is constant
6534   }
6535 
6536   array = must_be_not_null(array, true);
6537 
6538   BasicType bt = (BasicType)basic_type_t->get_con();
6539 
6540   // Resolve address of first element
6541   Node* array_start = array_element_address(array, offset, bt);
6542 
6543   set_result(_gvn.transform(new VectorizedHashCodeNode(control(), memory(TypeAryPtr::get_array_body_type(bt)),
6544     array_start, length, initialValue, basic_type)));
6545   clear_upper_avx();
6546 
6547   return true;
6548 }
6549 
6550 /**
6551  * Calculate CRC32 for byte.
6552  * int java.util.zip.CRC32.update(int crc, int b)
6553  */
6554 bool LibraryCallKit::inline_updateCRC32() {
6555   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
6556   assert(callee()->signature()->size() == 2, "update has 2 parameters");
6557   // no receiver since it is static method
6558   Node* crc  = argument(0); // type: int
6559   Node* b    = argument(1); // type: int
6560 
6561   /*
6562    *    int c = ~ crc;
6563    *    b = timesXtoThe32[(b ^ c) & 0xFF];
6564    *    b = b ^ (c >>> 8);
6565    *    crc = ~b;
6566    */
6567 
6568   Node* M1 = intcon(-1);
6569   crc = _gvn.transform(new XorINode(crc, M1));
6570   Node* result = _gvn.transform(new XorINode(crc, b));
6571   result = _gvn.transform(new AndINode(result, intcon(0xFF)));
6572 
6573   Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
6574   Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2)));
6575   Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
6576   result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
6577 
6578   crc = _gvn.transform(new URShiftINode(crc, intcon(8)));
6579   result = _gvn.transform(new XorINode(crc, result));
6580   result = _gvn.transform(new XorINode(result, M1));
6581   set_result(result);
6582   return true;
6583 }
6584 
6585 /**
6586  * Calculate CRC32 for byte[] array.
6587  * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
6588  */
6589 bool LibraryCallKit::inline_updateBytesCRC32() {
6590   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
6591   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
6592   // no receiver since it is static method
6593   Node* crc     = argument(0); // type: int
6594   Node* src     = argument(1); // type: oop
6595   Node* offset  = argument(2); // type: int
6596   Node* length  = argument(3); // type: int
6597 
6598   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
6599   if (src_type == nullptr || src_type->elem() == Type::BOTTOM) {
6600     // failed array check
6601     return false;
6602   }
6603 
6604   // Figure out the size and type of the elements we will be copying.
6605   BasicType src_elem = src_type->elem()->array_element_basic_type();
6606   if (src_elem != T_BYTE) {
6607     return false;
6608   }
6609 
6610   // 'src_start' points to src array + scaled offset
6611   src = must_be_not_null(src, true);
6612   Node* src_start = array_element_address(src, offset, src_elem);
6613 
6614   // We assume that range check is done by caller.
6615   // TODO: generate range check (offset+length < src.length) in debug VM.
6616 
6617   // Call the stub.
6618   address stubAddr = StubRoutines::updateBytesCRC32();
6619   const char *stubName = "updateBytesCRC32";
6620 
6621   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
6622                                  stubAddr, stubName, TypePtr::BOTTOM,
6623                                  crc, src_start, length);
6624   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6625   set_result(result);
6626   return true;
6627 }
6628 
6629 /**
6630  * Calculate CRC32 for ByteBuffer.
6631  * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
6632  */
6633 bool LibraryCallKit::inline_updateByteBufferCRC32() {
6634   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
6635   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
6636   // no receiver since it is static method
6637   Node* crc     = argument(0); // type: int
6638   Node* src     = argument(1); // type: long
6639   Node* offset  = argument(3); // type: int
6640   Node* length  = argument(4); // type: int
6641 
6642   src = ConvL2X(src);  // adjust Java long to machine word
6643   Node* base = _gvn.transform(new CastX2PNode(src));
6644   offset = ConvI2X(offset);
6645 
6646   // 'src_start' points to src array + scaled offset
6647   Node* src_start = basic_plus_adr(top(), base, offset);
6648 
6649   // Call the stub.
6650   address stubAddr = StubRoutines::updateBytesCRC32();
6651   const char *stubName = "updateBytesCRC32";
6652 
6653   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
6654                                  stubAddr, stubName, TypePtr::BOTTOM,
6655                                  crc, src_start, length);
6656   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6657   set_result(result);
6658   return true;
6659 }
6660 
6661 //------------------------------get_table_from_crc32c_class-----------------------
6662 Node * LibraryCallKit::get_table_from_crc32c_class(ciInstanceKlass *crc32c_class) {
6663   Node* table = load_field_from_object(nullptr, "byteTable", "[I", /*decorators*/ IN_HEAP, /*is_static*/ true, crc32c_class);
6664   assert (table != nullptr, "wrong version of java.util.zip.CRC32C");
6665 
6666   return table;
6667 }
6668 
6669 //------------------------------inline_updateBytesCRC32C-----------------------
6670 //
6671 // Calculate CRC32C for byte[] array.
6672 // int java.util.zip.CRC32C.updateBytes(int crc, byte[] buf, int off, int end)
6673 //
6674 bool LibraryCallKit::inline_updateBytesCRC32C() {
6675   assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
6676   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
6677   assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
6678   // no receiver since it is a static method
6679   Node* crc     = argument(0); // type: int
6680   Node* src     = argument(1); // type: oop
6681   Node* offset  = argument(2); // type: int
6682   Node* end     = argument(3); // type: int
6683 
6684   Node* length = _gvn.transform(new SubINode(end, offset));
6685 
6686   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
6687   if (src_type == nullptr || src_type->elem() == Type::BOTTOM) {
6688     // failed array check
6689     return false;
6690   }
6691 
6692   // Figure out the size and type of the elements we will be copying.
6693   BasicType src_elem = src_type->elem()->array_element_basic_type();
6694   if (src_elem != T_BYTE) {
6695     return false;
6696   }
6697 
6698   // 'src_start' points to src array + scaled offset
6699   src = must_be_not_null(src, true);
6700   Node* src_start = array_element_address(src, offset, src_elem);
6701 
6702   // static final int[] byteTable in class CRC32C
6703   Node* table = get_table_from_crc32c_class(callee()->holder());
6704   table = must_be_not_null(table, true);
6705   Node* table_start = array_element_address(table, intcon(0), T_INT);
6706 
6707   // We assume that range check is done by caller.
6708   // TODO: generate range check (offset+length < src.length) in debug VM.
6709 
6710   // Call the stub.
6711   address stubAddr = StubRoutines::updateBytesCRC32C();
6712   const char *stubName = "updateBytesCRC32C";
6713 
6714   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
6715                                  stubAddr, stubName, TypePtr::BOTTOM,
6716                                  crc, src_start, length, table_start);
6717   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6718   set_result(result);
6719   return true;
6720 }
6721 
6722 //------------------------------inline_updateDirectByteBufferCRC32C-----------------------
6723 //
6724 // Calculate CRC32C for DirectByteBuffer.
6725 // int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end)
6726 //
6727 bool LibraryCallKit::inline_updateDirectByteBufferCRC32C() {
6728   assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
6729   assert(callee()->signature()->size() == 5, "updateDirectByteBuffer has 4 parameters and one is long");
6730   assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
6731   // no receiver since it is a static method
6732   Node* crc     = argument(0); // type: int
6733   Node* src     = argument(1); // type: long
6734   Node* offset  = argument(3); // type: int
6735   Node* end     = argument(4); // type: int
6736 
6737   Node* length = _gvn.transform(new SubINode(end, offset));
6738 
6739   src = ConvL2X(src);  // adjust Java long to machine word
6740   Node* base = _gvn.transform(new CastX2PNode(src));
6741   offset = ConvI2X(offset);
6742 
6743   // 'src_start' points to src array + scaled offset
6744   Node* src_start = basic_plus_adr(top(), base, offset);
6745 
6746   // static final int[] byteTable in class CRC32C
6747   Node* table = get_table_from_crc32c_class(callee()->holder());
6748   table = must_be_not_null(table, true);
6749   Node* table_start = array_element_address(table, intcon(0), T_INT);
6750 
6751   // Call the stub.
6752   address stubAddr = StubRoutines::updateBytesCRC32C();
6753   const char *stubName = "updateBytesCRC32C";
6754 
6755   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
6756                                  stubAddr, stubName, TypePtr::BOTTOM,
6757                                  crc, src_start, length, table_start);
6758   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6759   set_result(result);
6760   return true;
6761 }
6762 
6763 //------------------------------inline_updateBytesAdler32----------------------
6764 //
6765 // Calculate Adler32 checksum for byte[] array.
6766 // int java.util.zip.Adler32.updateBytes(int crc, byte[] buf, int off, int len)
6767 //
6768 bool LibraryCallKit::inline_updateBytesAdler32() {
6769   assert(UseAdler32Intrinsics, "Adler32 Intrinsic support need"); // check if we actually need to check this flag or check a different one
6770   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
6771   assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
6772   // no receiver since it is static method
6773   Node* crc     = argument(0); // type: int
6774   Node* src     = argument(1); // type: oop
6775   Node* offset  = argument(2); // type: int
6776   Node* length  = argument(3); // type: int
6777 
6778   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
6779   if (src_type == nullptr || src_type->elem() == Type::BOTTOM) {
6780     // failed array check
6781     return false;
6782   }
6783 
6784   // Figure out the size and type of the elements we will be copying.
6785   BasicType src_elem = src_type->elem()->array_element_basic_type();
6786   if (src_elem != T_BYTE) {
6787     return false;
6788   }
6789 
6790   // 'src_start' points to src array + scaled offset
6791   Node* src_start = array_element_address(src, offset, src_elem);
6792 
6793   // We assume that range check is done by caller.
6794   // TODO: generate range check (offset+length < src.length) in debug VM.
6795 
6796   // Call the stub.
6797   address stubAddr = StubRoutines::updateBytesAdler32();
6798   const char *stubName = "updateBytesAdler32";
6799 
6800   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
6801                                  stubAddr, stubName, TypePtr::BOTTOM,
6802                                  crc, src_start, length);
6803   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6804   set_result(result);
6805   return true;
6806 }
6807 
6808 //------------------------------inline_updateByteBufferAdler32---------------
6809 //
6810 // Calculate Adler32 checksum for DirectByteBuffer.
6811 // int java.util.zip.Adler32.updateByteBuffer(int crc, long buf, int off, int len)
6812 //
6813 bool LibraryCallKit::inline_updateByteBufferAdler32() {
6814   assert(UseAdler32Intrinsics, "Adler32 Intrinsic support need"); // check if we actually need to check this flag or check a different one
6815   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
6816   assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
6817   // no receiver since it is static method
6818   Node* crc     = argument(0); // type: int
6819   Node* src     = argument(1); // type: long
6820   Node* offset  = argument(3); // type: int
6821   Node* length  = argument(4); // type: int
6822 
6823   src = ConvL2X(src);  // adjust Java long to machine word
6824   Node* base = _gvn.transform(new CastX2PNode(src));
6825   offset = ConvI2X(offset);
6826 
6827   // 'src_start' points to src array + scaled offset
6828   Node* src_start = basic_plus_adr(top(), base, offset);
6829 
6830   // Call the stub.
6831   address stubAddr = StubRoutines::updateBytesAdler32();
6832   const char *stubName = "updateBytesAdler32";
6833 
6834   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
6835                                  stubAddr, stubName, TypePtr::BOTTOM,
6836                                  crc, src_start, length);
6837 
6838   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6839   set_result(result);
6840   return true;
6841 }
6842 
6843 //----------------------------inline_reference_get----------------------------
6844 // public T java.lang.ref.Reference.get();
6845 bool LibraryCallKit::inline_reference_get() {
6846   const int referent_offset = java_lang_ref_Reference::referent_offset();
6847 
6848   // Get the argument:
6849   Node* reference_obj = null_check_receiver();
6850   if (stopped()) return true;
6851 
6852   DecoratorSet decorators = IN_HEAP | ON_WEAK_OOP_REF;
6853   Node* result = load_field_from_object(reference_obj, "referent", "Ljava/lang/Object;",
6854                                         decorators, /*is_static*/ false, nullptr);
6855   if (result == nullptr) return false;
6856 
6857   // Add memory barrier to prevent commoning reads from this field
6858   // across safepoint since GC can change its value.
6859   insert_mem_bar(Op_MemBarCPUOrder);
6860 
6861   set_result(result);
6862   return true;
6863 }
6864 
6865 //----------------------------inline_reference_refersTo0----------------------------
6866 // bool java.lang.ref.Reference.refersTo0();
6867 // bool java.lang.ref.PhantomReference.refersTo0();
6868 bool LibraryCallKit::inline_reference_refersTo0(bool is_phantom) {
6869   // Get arguments:
6870   Node* reference_obj = null_check_receiver();
6871   Node* other_obj = argument(1);
6872   if (stopped()) return true;
6873 
6874   DecoratorSet decorators = IN_HEAP | AS_NO_KEEPALIVE;
6875   decorators |= (is_phantom ? ON_PHANTOM_OOP_REF : ON_WEAK_OOP_REF);
6876   Node* referent = load_field_from_object(reference_obj, "referent", "Ljava/lang/Object;",
6877                                           decorators, /*is_static*/ false, nullptr);
6878   if (referent == nullptr) return false;
6879 
6880   // Add memory barrier to prevent commoning reads from this field
6881   // across safepoint since GC can change its value.
6882   insert_mem_bar(Op_MemBarCPUOrder);
6883 
6884   Node* cmp = _gvn.transform(new CmpPNode(referent, other_obj));
6885   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
6886   IfNode* if_node = create_and_map_if(control(), bol, PROB_FAIR, COUNT_UNKNOWN);
6887 
6888   RegionNode* region = new RegionNode(3);
6889   PhiNode* phi = new PhiNode(region, TypeInt::BOOL);
6890 
6891   Node* if_true = _gvn.transform(new IfTrueNode(if_node));
6892   region->init_req(1, if_true);
6893   phi->init_req(1, intcon(1));
6894 
6895   Node* if_false = _gvn.transform(new IfFalseNode(if_node));
6896   region->init_req(2, if_false);
6897   phi->init_req(2, intcon(0));
6898 
6899   set_control(_gvn.transform(region));
6900   record_for_igvn(region);
6901   set_result(_gvn.transform(phi));
6902   return true;
6903 }
6904 
6905 //----------------------------inline_reference_clear0----------------------------
6906 // void java.lang.ref.Reference.clear0();
6907 // void java.lang.ref.PhantomReference.clear0();
6908 bool LibraryCallKit::inline_reference_clear0(bool is_phantom) {
6909   // This matches the implementation in JVM_ReferenceClear, see the comments there.
6910 
6911   // Get arguments
6912   Node* reference_obj = null_check_receiver();
6913   if (stopped()) return true;
6914 
6915   // Common access parameters
6916   DecoratorSet decorators = IN_HEAP | AS_NO_KEEPALIVE;
6917   decorators |= (is_phantom ? ON_PHANTOM_OOP_REF : ON_WEAK_OOP_REF);
6918   Node* referent_field_addr = basic_plus_adr(reference_obj, java_lang_ref_Reference::referent_offset());
6919   const TypePtr* referent_field_addr_type = _gvn.type(referent_field_addr)->isa_ptr();
6920   const Type* val_type = TypeOopPtr::make_from_klass(env()->Object_klass());
6921 
6922   Node* referent = access_load_at(reference_obj,
6923                                   referent_field_addr,
6924                                   referent_field_addr_type,
6925                                   val_type,
6926                                   T_OBJECT,
6927                                   decorators);
6928 
6929   IdealKit ideal(this);
6930 #define __ ideal.
6931   __ if_then(referent, BoolTest::ne, null());
6932     sync_kit(ideal);
6933     access_store_at(reference_obj,
6934                     referent_field_addr,
6935                     referent_field_addr_type,
6936                     null(),
6937                     val_type,
6938                     T_OBJECT,
6939                     decorators);
6940     __ sync_kit(this);
6941   __ end_if();
6942   final_sync(ideal);
6943 #undef __
6944 
6945   return true;
6946 }
6947 
6948 Node* LibraryCallKit::load_field_from_object(Node* fromObj, const char* fieldName, const char* fieldTypeString,
6949                                              DecoratorSet decorators, bool is_static,
6950                                              ciInstanceKlass* fromKls) {
6951   if (fromKls == nullptr) {
6952     const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
6953     assert(tinst != nullptr, "obj is null");
6954     assert(tinst->is_loaded(), "obj is not loaded");
6955     fromKls = tinst->instance_klass();
6956   } else {
6957     assert(is_static, "only for static field access");
6958   }
6959   ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
6960                                               ciSymbol::make(fieldTypeString),
6961                                               is_static);
6962 
6963   assert(field != nullptr, "undefined field %s %s %s", fieldTypeString, fromKls->name()->as_utf8(), fieldName);
6964   if (field == nullptr) return (Node *) nullptr;
6965 
6966   if (is_static) {
6967     const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
6968     fromObj = makecon(tip);
6969   }
6970 
6971   // Next code  copied from Parse::do_get_xxx():
6972 
6973   // Compute address and memory type.
6974   int offset  = field->offset_in_bytes();
6975   bool is_vol = field->is_volatile();
6976   ciType* field_klass = field->type();
6977   assert(field_klass->is_loaded(), "should be loaded");
6978   const TypePtr* adr_type = C->alias_type(field)->adr_type();
6979   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
6980   assert(C->get_alias_index(adr_type) == C->get_alias_index(_gvn.type(adr)->isa_ptr()),
6981     "slice of address and input slice don't match");
6982   BasicType bt = field->layout_type();
6983 
6984   // Build the resultant type of the load
6985   const Type *type;
6986   if (bt == T_OBJECT) {
6987     type = TypeOopPtr::make_from_klass(field_klass->as_klass());
6988   } else {
6989     type = Type::get_const_basic_type(bt);
6990   }
6991 
6992   if (is_vol) {
6993     decorators |= MO_SEQ_CST;
6994   }
6995 
6996   return access_load_at(fromObj, adr, adr_type, type, bt, decorators);
6997 }
6998 
6999 Node * LibraryCallKit::field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
7000                                                  bool is_exact /* true */, bool is_static /* false */,
7001                                                  ciInstanceKlass * fromKls /* nullptr */) {
7002   if (fromKls == nullptr) {
7003     const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
7004     assert(tinst != nullptr, "obj is null");
7005     assert(tinst->is_loaded(), "obj is not loaded");
7006     assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
7007     fromKls = tinst->instance_klass();
7008   }
7009   else {
7010     assert(is_static, "only for static field access");
7011   }
7012   ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
7013     ciSymbol::make(fieldTypeString),
7014     is_static);
7015 
7016   assert(field != nullptr, "undefined field");
7017   assert(!field->is_volatile(), "not defined for volatile fields");
7018 
7019   if (is_static) {
7020     const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
7021     fromObj = makecon(tip);
7022   }
7023 
7024   // Next code  copied from Parse::do_get_xxx():
7025 
7026   // Compute address and memory type.
7027   int offset = field->offset_in_bytes();
7028   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
7029 
7030   return adr;
7031 }
7032 
7033 //------------------------------inline_aescrypt_Block-----------------------
7034 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
7035   address stubAddr = nullptr;
7036   const char *stubName;
7037   assert(UseAES, "need AES instruction support");
7038 
7039   switch(id) {
7040   case vmIntrinsics::_aescrypt_encryptBlock:
7041     stubAddr = StubRoutines::aescrypt_encryptBlock();
7042     stubName = "aescrypt_encryptBlock";
7043     break;
7044   case vmIntrinsics::_aescrypt_decryptBlock:
7045     stubAddr = StubRoutines::aescrypt_decryptBlock();
7046     stubName = "aescrypt_decryptBlock";
7047     break;
7048   default:
7049     break;
7050   }
7051   if (stubAddr == nullptr) return false;
7052 
7053   Node* aescrypt_object = argument(0);
7054   Node* src             = argument(1);
7055   Node* src_offset      = argument(2);
7056   Node* dest            = argument(3);
7057   Node* dest_offset     = argument(4);
7058 
7059   src = must_be_not_null(src, true);
7060   dest = must_be_not_null(dest, true);
7061 
7062   // (1) src and dest are arrays.
7063   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
7064   const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr();
7065   assert( src_type != nullptr &&  src_type->elem() != Type::BOTTOM &&
7066          dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange");
7067 
7068   // for the quick and dirty code we will skip all the checks.
7069   // we are just trying to get the call to be generated.
7070   Node* src_start  = src;
7071   Node* dest_start = dest;
7072   if (src_offset != nullptr || dest_offset != nullptr) {
7073     assert(src_offset != nullptr && dest_offset != nullptr, "");
7074     src_start  = array_element_address(src,  src_offset,  T_BYTE);
7075     dest_start = array_element_address(dest, dest_offset, T_BYTE);
7076   }
7077 
7078   // now need to get the start of its expanded key array
7079   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
7080   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
7081   if (k_start == nullptr) return false;
7082 
7083   // Call the stub.
7084   make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
7085                     stubAddr, stubName, TypePtr::BOTTOM,
7086                     src_start, dest_start, k_start);
7087 
7088   return true;
7089 }
7090 
7091 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
7092 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
7093   address stubAddr = nullptr;
7094   const char *stubName = nullptr;
7095 
7096   assert(UseAES, "need AES instruction support");
7097 
7098   switch(id) {
7099   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
7100     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
7101     stubName = "cipherBlockChaining_encryptAESCrypt";
7102     break;
7103   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
7104     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
7105     stubName = "cipherBlockChaining_decryptAESCrypt";
7106     break;
7107   default:
7108     break;
7109   }
7110   if (stubAddr == nullptr) return false;
7111 
7112   Node* cipherBlockChaining_object = argument(0);
7113   Node* src                        = argument(1);
7114   Node* src_offset                 = argument(2);
7115   Node* len                        = argument(3);
7116   Node* dest                       = argument(4);
7117   Node* dest_offset                = argument(5);
7118 
7119   src = must_be_not_null(src, false);
7120   dest = must_be_not_null(dest, false);
7121 
7122   // (1) src and dest are arrays.
7123   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
7124   const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr();
7125   assert( src_type != nullptr &&  src_type->elem() != Type::BOTTOM &&
7126          dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange");
7127 
7128   // checks are the responsibility of the caller
7129   Node* src_start  = src;
7130   Node* dest_start = dest;
7131   if (src_offset != nullptr || dest_offset != nullptr) {
7132     assert(src_offset != nullptr && dest_offset != nullptr, "");
7133     src_start  = array_element_address(src,  src_offset,  T_BYTE);
7134     dest_start = array_element_address(dest, dest_offset, T_BYTE);
7135   }
7136 
7137   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
7138   // (because of the predicated logic executed earlier).
7139   // so we cast it here safely.
7140   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
7141 
7142   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
7143   if (embeddedCipherObj == nullptr) return false;
7144 
7145   // cast it to what we know it will be at runtime
7146   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
7147   assert(tinst != nullptr, "CBC obj is null");
7148   assert(tinst->is_loaded(), "CBC obj is not loaded");
7149   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
7150   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
7151 
7152   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
7153   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
7154   const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull);
7155   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
7156   aescrypt_object = _gvn.transform(aescrypt_object);
7157 
7158   // we need to get the start of the aescrypt_object's expanded key array
7159   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
7160   if (k_start == nullptr) return false;
7161 
7162   // similarly, get the start address of the r vector
7163   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B");
7164   if (objRvec == nullptr) return false;
7165   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
7166 
7167   // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
7168   Node* cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
7169                                      OptoRuntime::cipherBlockChaining_aescrypt_Type(),
7170                                      stubAddr, stubName, TypePtr::BOTTOM,
7171                                      src_start, dest_start, k_start, r_start, len);
7172 
7173   // return cipher length (int)
7174   Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms));
7175   set_result(retvalue);
7176   return true;
7177 }
7178 
7179 //------------------------------inline_electronicCodeBook_AESCrypt-----------------------
7180 bool LibraryCallKit::inline_electronicCodeBook_AESCrypt(vmIntrinsics::ID id) {
7181   address stubAddr = nullptr;
7182   const char *stubName = nullptr;
7183 
7184   assert(UseAES, "need AES instruction support");
7185 
7186   switch (id) {
7187   case vmIntrinsics::_electronicCodeBook_encryptAESCrypt:
7188     stubAddr = StubRoutines::electronicCodeBook_encryptAESCrypt();
7189     stubName = "electronicCodeBook_encryptAESCrypt";
7190     break;
7191   case vmIntrinsics::_electronicCodeBook_decryptAESCrypt:
7192     stubAddr = StubRoutines::electronicCodeBook_decryptAESCrypt();
7193     stubName = "electronicCodeBook_decryptAESCrypt";
7194     break;
7195   default:
7196     break;
7197   }
7198 
7199   if (stubAddr == nullptr) return false;
7200 
7201   Node* electronicCodeBook_object = argument(0);
7202   Node* src                       = argument(1);
7203   Node* src_offset                = argument(2);
7204   Node* len                       = argument(3);
7205   Node* dest                      = argument(4);
7206   Node* dest_offset               = argument(5);
7207 
7208   // (1) src and dest are arrays.
7209   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
7210   const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr();
7211   assert( src_type != nullptr &&  src_type->elem() != Type::BOTTOM &&
7212          dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange");
7213 
7214   // checks are the responsibility of the caller
7215   Node* src_start = src;
7216   Node* dest_start = dest;
7217   if (src_offset != nullptr || dest_offset != nullptr) {
7218     assert(src_offset != nullptr && dest_offset != nullptr, "");
7219     src_start = array_element_address(src, src_offset, T_BYTE);
7220     dest_start = array_element_address(dest, dest_offset, T_BYTE);
7221   }
7222 
7223   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
7224   // (because of the predicated logic executed earlier).
7225   // so we cast it here safely.
7226   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
7227 
7228   Node* embeddedCipherObj = load_field_from_object(electronicCodeBook_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
7229   if (embeddedCipherObj == nullptr) return false;
7230 
7231   // cast it to what we know it will be at runtime
7232   const TypeInstPtr* tinst = _gvn.type(electronicCodeBook_object)->isa_instptr();
7233   assert(tinst != nullptr, "ECB obj is null");
7234   assert(tinst->is_loaded(), "ECB obj is not loaded");
7235   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
7236   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
7237 
7238   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
7239   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
7240   const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull);
7241   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
7242   aescrypt_object = _gvn.transform(aescrypt_object);
7243 
7244   // we need to get the start of the aescrypt_object's expanded key array
7245   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
7246   if (k_start == nullptr) return false;
7247 
7248   // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
7249   Node* ecbCrypt = make_runtime_call(RC_LEAF | RC_NO_FP,
7250                                      OptoRuntime::electronicCodeBook_aescrypt_Type(),
7251                                      stubAddr, stubName, TypePtr::BOTTOM,
7252                                      src_start, dest_start, k_start, len);
7253 
7254   // return cipher length (int)
7255   Node* retvalue = _gvn.transform(new ProjNode(ecbCrypt, TypeFunc::Parms));
7256   set_result(retvalue);
7257   return true;
7258 }
7259 
7260 //------------------------------inline_counterMode_AESCrypt-----------------------
7261 bool LibraryCallKit::inline_counterMode_AESCrypt(vmIntrinsics::ID id) {
7262   assert(UseAES, "need AES instruction support");
7263   if (!UseAESCTRIntrinsics) return false;
7264 
7265   address stubAddr = nullptr;
7266   const char *stubName = nullptr;
7267   if (id == vmIntrinsics::_counterMode_AESCrypt) {
7268     stubAddr = StubRoutines::counterMode_AESCrypt();
7269     stubName = "counterMode_AESCrypt";
7270   }
7271   if (stubAddr == nullptr) return false;
7272 
7273   Node* counterMode_object = argument(0);
7274   Node* src = argument(1);
7275   Node* src_offset = argument(2);
7276   Node* len = argument(3);
7277   Node* dest = argument(4);
7278   Node* dest_offset = argument(5);
7279 
7280   // (1) src and dest are arrays.
7281   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
7282   const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr();
7283   assert( src_type != nullptr &&  src_type->elem() != Type::BOTTOM &&
7284          dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange");
7285 
7286   // checks are the responsibility of the caller
7287   Node* src_start = src;
7288   Node* dest_start = dest;
7289   if (src_offset != nullptr || dest_offset != nullptr) {
7290     assert(src_offset != nullptr && dest_offset != nullptr, "");
7291     src_start = array_element_address(src, src_offset, T_BYTE);
7292     dest_start = array_element_address(dest, dest_offset, T_BYTE);
7293   }
7294 
7295   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
7296   // (because of the predicated logic executed earlier).
7297   // so we cast it here safely.
7298   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
7299   Node* embeddedCipherObj = load_field_from_object(counterMode_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
7300   if (embeddedCipherObj == nullptr) return false;
7301   // cast it to what we know it will be at runtime
7302   const TypeInstPtr* tinst = _gvn.type(counterMode_object)->isa_instptr();
7303   assert(tinst != nullptr, "CTR obj is null");
7304   assert(tinst->is_loaded(), "CTR obj is not loaded");
7305   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
7306   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
7307   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
7308   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
7309   const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull);
7310   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
7311   aescrypt_object = _gvn.transform(aescrypt_object);
7312   // we need to get the start of the aescrypt_object's expanded key array
7313   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
7314   if (k_start == nullptr) return false;
7315   // similarly, get the start address of the r vector
7316   Node* obj_counter = load_field_from_object(counterMode_object, "counter", "[B");
7317   if (obj_counter == nullptr) return false;
7318   Node* cnt_start = array_element_address(obj_counter, intcon(0), T_BYTE);
7319 
7320   Node* saved_encCounter = load_field_from_object(counterMode_object, "encryptedCounter", "[B");
7321   if (saved_encCounter == nullptr) return false;
7322   Node* saved_encCounter_start = array_element_address(saved_encCounter, intcon(0), T_BYTE);
7323   Node* used = field_address_from_object(counterMode_object, "used", "I", /*is_exact*/ false);
7324 
7325   // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
7326   Node* ctrCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
7327                                      OptoRuntime::counterMode_aescrypt_Type(),
7328                                      stubAddr, stubName, TypePtr::BOTTOM,
7329                                      src_start, dest_start, k_start, cnt_start, len, saved_encCounter_start, used);
7330 
7331   // return cipher length (int)
7332   Node* retvalue = _gvn.transform(new ProjNode(ctrCrypt, TypeFunc::Parms));
7333   set_result(retvalue);
7334   return true;
7335 }
7336 
7337 //------------------------------get_key_start_from_aescrypt_object-----------------------
7338 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
7339 #if defined(PPC64) || defined(S390) || defined(RISCV64)
7340   // MixColumns for decryption can be reduced by preprocessing MixColumns with round keys.
7341   // Intel's extension is based on this optimization and AESCrypt generates round keys by preprocessing MixColumns.
7342   // However, ppc64 vncipher processes MixColumns and requires the same round keys with encryption.
7343   // The ppc64 and riscv64 stubs of encryption and decryption use the same round keys (sessionK[0]).
7344   Node* objSessionK = load_field_from_object(aescrypt_object, "sessionK", "[[I");
7345   assert (objSessionK != nullptr, "wrong version of com.sun.crypto.provider.AESCrypt");
7346   if (objSessionK == nullptr) {
7347     return (Node *) nullptr;
7348   }
7349   Node* objAESCryptKey = load_array_element(objSessionK, intcon(0), TypeAryPtr::OOPS, /* set_ctrl */ true);
7350 #else
7351   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I");
7352 #endif // PPC64
7353   assert (objAESCryptKey != nullptr, "wrong version of com.sun.crypto.provider.AESCrypt");
7354   if (objAESCryptKey == nullptr) return (Node *) nullptr;
7355 
7356   // now have the array, need to get the start address of the K array
7357   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
7358   return k_start;
7359 }
7360 
7361 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
7362 // Return node representing slow path of predicate check.
7363 // the pseudo code we want to emulate with this predicate is:
7364 // for encryption:
7365 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
7366 // for decryption:
7367 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
7368 //    note cipher==plain is more conservative than the original java code but that's OK
7369 //
7370 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
7371   // The receiver was checked for null already.
7372   Node* objCBC = argument(0);
7373 
7374   Node* src = argument(1);
7375   Node* dest = argument(4);
7376 
7377   // Load embeddedCipher field of CipherBlockChaining object.
7378   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
7379 
7380   // get AESCrypt klass for instanceOf check
7381   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
7382   // will have same classloader as CipherBlockChaining object
7383   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
7384   assert(tinst != nullptr, "CBCobj is null");
7385   assert(tinst->is_loaded(), "CBCobj is not loaded");
7386 
7387   // we want to do an instanceof comparison against the AESCrypt class
7388   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
7389   if (!klass_AESCrypt->is_loaded()) {
7390     // if AESCrypt is not even loaded, we never take the intrinsic fast path
7391     Node* ctrl = control();
7392     set_control(top()); // no regular fast path
7393     return ctrl;
7394   }
7395 
7396   src = must_be_not_null(src, true);
7397   dest = must_be_not_null(dest, true);
7398 
7399   // Resolve oops to stable for CmpP below.
7400   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
7401 
7402   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
7403   Node* cmp_instof  = _gvn.transform(new CmpINode(instof, intcon(1)));
7404   Node* bool_instof  = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
7405 
7406   Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN);
7407 
7408   // for encryption, we are done
7409   if (!decrypting)
7410     return instof_false;  // even if it is null
7411 
7412   // for decryption, we need to add a further check to avoid
7413   // taking the intrinsic path when cipher and plain are the same
7414   // see the original java code for why.
7415   RegionNode* region = new RegionNode(3);
7416   region->init_req(1, instof_false);
7417 
7418   Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest));
7419   Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq));
7420   Node* src_dest_conjoint = generate_guard(bool_src_dest, nullptr, PROB_MIN);
7421   region->init_req(2, src_dest_conjoint);
7422 
7423   record_for_igvn(region);
7424   return _gvn.transform(region);
7425 }
7426 
7427 //----------------------------inline_electronicCodeBook_AESCrypt_predicate----------------------------
7428 // Return node representing slow path of predicate check.
7429 // the pseudo code we want to emulate with this predicate is:
7430 // for encryption:
7431 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
7432 // for decryption:
7433 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
7434 //    note cipher==plain is more conservative than the original java code but that's OK
7435 //
7436 Node* LibraryCallKit::inline_electronicCodeBook_AESCrypt_predicate(bool decrypting) {
7437   // The receiver was checked for null already.
7438   Node* objECB = argument(0);
7439 
7440   // Load embeddedCipher field of ElectronicCodeBook object.
7441   Node* embeddedCipherObj = load_field_from_object(objECB, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
7442 
7443   // get AESCrypt klass for instanceOf check
7444   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
7445   // will have same classloader as ElectronicCodeBook object
7446   const TypeInstPtr* tinst = _gvn.type(objECB)->isa_instptr();
7447   assert(tinst != nullptr, "ECBobj is null");
7448   assert(tinst->is_loaded(), "ECBobj is not loaded");
7449 
7450   // we want to do an instanceof comparison against the AESCrypt class
7451   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
7452   if (!klass_AESCrypt->is_loaded()) {
7453     // if AESCrypt is not even loaded, we never take the intrinsic fast path
7454     Node* ctrl = control();
7455     set_control(top()); // no regular fast path
7456     return ctrl;
7457   }
7458   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
7459 
7460   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
7461   Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
7462   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
7463 
7464   Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN);
7465 
7466   // for encryption, we are done
7467   if (!decrypting)
7468     return instof_false;  // even if it is null
7469 
7470   // for decryption, we need to add a further check to avoid
7471   // taking the intrinsic path when cipher and plain are the same
7472   // see the original java code for why.
7473   RegionNode* region = new RegionNode(3);
7474   region->init_req(1, instof_false);
7475   Node* src = argument(1);
7476   Node* dest = argument(4);
7477   Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest));
7478   Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq));
7479   Node* src_dest_conjoint = generate_guard(bool_src_dest, nullptr, PROB_MIN);
7480   region->init_req(2, src_dest_conjoint);
7481 
7482   record_for_igvn(region);
7483   return _gvn.transform(region);
7484 }
7485 
7486 //----------------------------inline_counterMode_AESCrypt_predicate----------------------------
7487 // Return node representing slow path of predicate check.
7488 // the pseudo code we want to emulate with this predicate is:
7489 // for encryption:
7490 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
7491 // for decryption:
7492 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
7493 //    note cipher==plain is more conservative than the original java code but that's OK
7494 //
7495 
7496 Node* LibraryCallKit::inline_counterMode_AESCrypt_predicate() {
7497   // The receiver was checked for null already.
7498   Node* objCTR = argument(0);
7499 
7500   // Load embeddedCipher field of CipherBlockChaining object.
7501   Node* embeddedCipherObj = load_field_from_object(objCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
7502 
7503   // get AESCrypt klass for instanceOf check
7504   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
7505   // will have same classloader as CipherBlockChaining object
7506   const TypeInstPtr* tinst = _gvn.type(objCTR)->isa_instptr();
7507   assert(tinst != nullptr, "CTRobj is null");
7508   assert(tinst->is_loaded(), "CTRobj is not loaded");
7509 
7510   // we want to do an instanceof comparison against the AESCrypt class
7511   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
7512   if (!klass_AESCrypt->is_loaded()) {
7513     // if AESCrypt is not even loaded, we never take the intrinsic fast path
7514     Node* ctrl = control();
7515     set_control(top()); // no regular fast path
7516     return ctrl;
7517   }
7518 
7519   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
7520   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
7521   Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
7522   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
7523   Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN);
7524 
7525   return instof_false; // even if it is null
7526 }
7527 
7528 //------------------------------inline_ghash_processBlocks
7529 bool LibraryCallKit::inline_ghash_processBlocks() {
7530   address stubAddr;
7531   const char *stubName;
7532   assert(UseGHASHIntrinsics, "need GHASH intrinsics support");
7533 
7534   stubAddr = StubRoutines::ghash_processBlocks();
7535   stubName = "ghash_processBlocks";
7536 
7537   Node* data           = argument(0);
7538   Node* offset         = argument(1);
7539   Node* len            = argument(2);
7540   Node* state          = argument(3);
7541   Node* subkeyH        = argument(4);
7542 
7543   state = must_be_not_null(state, true);
7544   subkeyH = must_be_not_null(subkeyH, true);
7545   data = must_be_not_null(data, true);
7546 
7547   Node* state_start  = array_element_address(state, intcon(0), T_LONG);
7548   assert(state_start, "state is null");
7549   Node* subkeyH_start  = array_element_address(subkeyH, intcon(0), T_LONG);
7550   assert(subkeyH_start, "subkeyH is null");
7551   Node* data_start  = array_element_address(data, offset, T_BYTE);
7552   assert(data_start, "data is null");
7553 
7554   Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP,
7555                                   OptoRuntime::ghash_processBlocks_Type(),
7556                                   stubAddr, stubName, TypePtr::BOTTOM,
7557                                   state_start, subkeyH_start, data_start, len);
7558   return true;
7559 }
7560 
7561 //------------------------------inline_chacha20Block
7562 bool LibraryCallKit::inline_chacha20Block() {
7563   address stubAddr;
7564   const char *stubName;
7565   assert(UseChaCha20Intrinsics, "need ChaCha20 intrinsics support");
7566 
7567   stubAddr = StubRoutines::chacha20Block();
7568   stubName = "chacha20Block";
7569 
7570   Node* state          = argument(0);
7571   Node* result         = argument(1);
7572 
7573   state = must_be_not_null(state, true);
7574   result = must_be_not_null(result, true);
7575 
7576   Node* state_start  = array_element_address(state, intcon(0), T_INT);
7577   assert(state_start, "state is null");
7578   Node* result_start  = array_element_address(result, intcon(0), T_BYTE);
7579   assert(result_start, "result is null");
7580 
7581   Node* cc20Blk = make_runtime_call(RC_LEAF|RC_NO_FP,
7582                                   OptoRuntime::chacha20Block_Type(),
7583                                   stubAddr, stubName, TypePtr::BOTTOM,
7584                                   state_start, result_start);
7585   // return key stream length (int)
7586   Node* retvalue = _gvn.transform(new ProjNode(cc20Blk, TypeFunc::Parms));
7587   set_result(retvalue);
7588   return true;
7589 }
7590 
7591 bool LibraryCallKit::inline_base64_encodeBlock() {
7592   address stubAddr;
7593   const char *stubName;
7594   assert(UseBASE64Intrinsics, "need Base64 intrinsics support");
7595   assert(callee()->signature()->size() == 6, "base64_encodeBlock has 6 parameters");
7596   stubAddr = StubRoutines::base64_encodeBlock();
7597   stubName = "encodeBlock";
7598 
7599   if (!stubAddr) return false;
7600   Node* base64obj = argument(0);
7601   Node* src = argument(1);
7602   Node* offset = argument(2);
7603   Node* len = argument(3);
7604   Node* dest = argument(4);
7605   Node* dp = argument(5);
7606   Node* isURL = argument(6);
7607 
7608   src = must_be_not_null(src, true);
7609   dest = must_be_not_null(dest, true);
7610 
7611   Node* src_start = array_element_address(src, intcon(0), T_BYTE);
7612   assert(src_start, "source array is null");
7613   Node* dest_start = array_element_address(dest, intcon(0), T_BYTE);
7614   assert(dest_start, "destination array is null");
7615 
7616   Node* base64 = make_runtime_call(RC_LEAF,
7617                                    OptoRuntime::base64_encodeBlock_Type(),
7618                                    stubAddr, stubName, TypePtr::BOTTOM,
7619                                    src_start, offset, len, dest_start, dp, isURL);
7620   return true;
7621 }
7622 
7623 bool LibraryCallKit::inline_base64_decodeBlock() {
7624   address stubAddr;
7625   const char *stubName;
7626   assert(UseBASE64Intrinsics, "need Base64 intrinsics support");
7627   assert(callee()->signature()->size() == 7, "base64_decodeBlock has 7 parameters");
7628   stubAddr = StubRoutines::base64_decodeBlock();
7629   stubName = "decodeBlock";
7630 
7631   if (!stubAddr) return false;
7632   Node* base64obj = argument(0);
7633   Node* src = argument(1);
7634   Node* src_offset = argument(2);
7635   Node* len = argument(3);
7636   Node* dest = argument(4);
7637   Node* dest_offset = argument(5);
7638   Node* isURL = argument(6);
7639   Node* isMIME = argument(7);
7640 
7641   src = must_be_not_null(src, true);
7642   dest = must_be_not_null(dest, true);
7643 
7644   Node* src_start = array_element_address(src, intcon(0), T_BYTE);
7645   assert(src_start, "source array is null");
7646   Node* dest_start = array_element_address(dest, intcon(0), T_BYTE);
7647   assert(dest_start, "destination array is null");
7648 
7649   Node* call = make_runtime_call(RC_LEAF,
7650                                  OptoRuntime::base64_decodeBlock_Type(),
7651                                  stubAddr, stubName, TypePtr::BOTTOM,
7652                                  src_start, src_offset, len, dest_start, dest_offset, isURL, isMIME);
7653   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
7654   set_result(result);
7655   return true;
7656 }
7657 
7658 bool LibraryCallKit::inline_poly1305_processBlocks() {
7659   address stubAddr;
7660   const char *stubName;
7661   assert(UsePoly1305Intrinsics, "need Poly intrinsics support");
7662   assert(callee()->signature()->size() == 5, "poly1305_processBlocks has %d parameters", callee()->signature()->size());
7663   stubAddr = StubRoutines::poly1305_processBlocks();
7664   stubName = "poly1305_processBlocks";
7665 
7666   if (!stubAddr) return false;
7667   null_check_receiver();  // null-check receiver
7668   if (stopped())  return true;
7669 
7670   Node* input = argument(1);
7671   Node* input_offset = argument(2);
7672   Node* len = argument(3);
7673   Node* alimbs = argument(4);
7674   Node* rlimbs = argument(5);
7675 
7676   input = must_be_not_null(input, true);
7677   alimbs = must_be_not_null(alimbs, true);
7678   rlimbs = must_be_not_null(rlimbs, true);
7679 
7680   Node* input_start = array_element_address(input, input_offset, T_BYTE);
7681   assert(input_start, "input array is null");
7682   Node* acc_start = array_element_address(alimbs, intcon(0), T_LONG);
7683   assert(acc_start, "acc array is null");
7684   Node* r_start = array_element_address(rlimbs, intcon(0), T_LONG);
7685   assert(r_start, "r array is null");
7686 
7687   Node* call = make_runtime_call(RC_LEAF | RC_NO_FP,
7688                                  OptoRuntime::poly1305_processBlocks_Type(),
7689                                  stubAddr, stubName, TypePtr::BOTTOM,
7690                                  input_start, len, acc_start, r_start);
7691   return true;
7692 }
7693 
7694 bool LibraryCallKit::inline_intpoly_montgomeryMult_P256() {
7695   address stubAddr;
7696   const char *stubName;
7697   assert(UseIntPolyIntrinsics, "need intpoly intrinsics support");
7698   assert(callee()->signature()->size() == 3, "intpoly_montgomeryMult_P256 has %d parameters", callee()->signature()->size());
7699   stubAddr = StubRoutines::intpoly_montgomeryMult_P256();
7700   stubName = "intpoly_montgomeryMult_P256";
7701 
7702   if (!stubAddr) return false;
7703   null_check_receiver();  // null-check receiver
7704   if (stopped())  return true;
7705 
7706   Node* a = argument(1);
7707   Node* b = argument(2);
7708   Node* r = argument(3);
7709 
7710   a = must_be_not_null(a, true);
7711   b = must_be_not_null(b, true);
7712   r = must_be_not_null(r, true);
7713 
7714   Node* a_start = array_element_address(a, intcon(0), T_LONG);
7715   assert(a_start, "a array is null");
7716   Node* b_start = array_element_address(b, intcon(0), T_LONG);
7717   assert(b_start, "b array is null");
7718   Node* r_start = array_element_address(r, intcon(0), T_LONG);
7719   assert(r_start, "r array is null");
7720 
7721   Node* call = make_runtime_call(RC_LEAF | RC_NO_FP,
7722                                  OptoRuntime::intpoly_montgomeryMult_P256_Type(),
7723                                  stubAddr, stubName, TypePtr::BOTTOM,
7724                                  a_start, b_start, r_start);
7725   return true;
7726 }
7727 
7728 bool LibraryCallKit::inline_intpoly_assign() {
7729   assert(UseIntPolyIntrinsics, "need intpoly intrinsics support");
7730   assert(callee()->signature()->size() == 3, "intpoly_assign has %d parameters", callee()->signature()->size());
7731   const char *stubName = "intpoly_assign";
7732   address stubAddr = StubRoutines::intpoly_assign();
7733   if (!stubAddr) return false;
7734 
7735   Node* set = argument(0);
7736   Node* a = argument(1);
7737   Node* b = argument(2);
7738   Node* arr_length = load_array_length(a);
7739 
7740   a = must_be_not_null(a, true);
7741   b = must_be_not_null(b, true);
7742 
7743   Node* a_start = array_element_address(a, intcon(0), T_LONG);
7744   assert(a_start, "a array is null");
7745   Node* b_start = array_element_address(b, intcon(0), T_LONG);
7746   assert(b_start, "b array is null");
7747 
7748   Node* call = make_runtime_call(RC_LEAF | RC_NO_FP,
7749                                  OptoRuntime::intpoly_assign_Type(),
7750                                  stubAddr, stubName, TypePtr::BOTTOM,
7751                                  set, a_start, b_start, arr_length);
7752   return true;
7753 }
7754 
7755 //------------------------------inline_digestBase_implCompress-----------------------
7756 //
7757 // Calculate MD5 for single-block byte[] array.
7758 // void com.sun.security.provider.MD5.implCompress(byte[] buf, int ofs)
7759 //
7760 // Calculate SHA (i.e., SHA-1) for single-block byte[] array.
7761 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs)
7762 //
7763 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array.
7764 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs)
7765 //
7766 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array.
7767 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs)
7768 //
7769 // Calculate SHA3 (i.e., SHA3-224 or SHA3-256 or SHA3-384 or SHA3-512) for single-block byte[] array.
7770 // void com.sun.security.provider.SHA3.implCompress(byte[] buf, int ofs)
7771 //
7772 bool LibraryCallKit::inline_digestBase_implCompress(vmIntrinsics::ID id) {
7773   assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters");
7774 
7775   Node* digestBase_obj = argument(0);
7776   Node* src            = argument(1); // type oop
7777   Node* ofs            = argument(2); // type int
7778 
7779   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
7780   if (src_type == nullptr || src_type->elem() == Type::BOTTOM) {
7781     // failed array check
7782     return false;
7783   }
7784   // Figure out the size and type of the elements we will be copying.
7785   BasicType src_elem = src_type->elem()->array_element_basic_type();
7786   if (src_elem != T_BYTE) {
7787     return false;
7788   }
7789   // 'src_start' points to src array + offset
7790   src = must_be_not_null(src, true);
7791   Node* src_start = array_element_address(src, ofs, src_elem);
7792   Node* state = nullptr;
7793   Node* block_size = nullptr;
7794   address stubAddr;
7795   const char *stubName;
7796 
7797   switch(id) {
7798   case vmIntrinsics::_md5_implCompress:
7799     assert(UseMD5Intrinsics, "need MD5 instruction support");
7800     state = get_state_from_digest_object(digestBase_obj, T_INT);
7801     stubAddr = StubRoutines::md5_implCompress();
7802     stubName = "md5_implCompress";
7803     break;
7804   case vmIntrinsics::_sha_implCompress:
7805     assert(UseSHA1Intrinsics, "need SHA1 instruction support");
7806     state = get_state_from_digest_object(digestBase_obj, T_INT);
7807     stubAddr = StubRoutines::sha1_implCompress();
7808     stubName = "sha1_implCompress";
7809     break;
7810   case vmIntrinsics::_sha2_implCompress:
7811     assert(UseSHA256Intrinsics, "need SHA256 instruction support");
7812     state = get_state_from_digest_object(digestBase_obj, T_INT);
7813     stubAddr = StubRoutines::sha256_implCompress();
7814     stubName = "sha256_implCompress";
7815     break;
7816   case vmIntrinsics::_sha5_implCompress:
7817     assert(UseSHA512Intrinsics, "need SHA512 instruction support");
7818     state = get_state_from_digest_object(digestBase_obj, T_LONG);
7819     stubAddr = StubRoutines::sha512_implCompress();
7820     stubName = "sha512_implCompress";
7821     break;
7822   case vmIntrinsics::_sha3_implCompress:
7823     assert(UseSHA3Intrinsics, "need SHA3 instruction support");
7824     state = get_state_from_digest_object(digestBase_obj, T_LONG);
7825     stubAddr = StubRoutines::sha3_implCompress();
7826     stubName = "sha3_implCompress";
7827     block_size = get_block_size_from_digest_object(digestBase_obj);
7828     if (block_size == nullptr) return false;
7829     break;
7830   default:
7831     fatal_unexpected_iid(id);
7832     return false;
7833   }
7834   if (state == nullptr) return false;
7835 
7836   assert(stubAddr != nullptr, "Stub %s is not generated", stubName);
7837   if (stubAddr == nullptr) return false;
7838 
7839   // Call the stub.
7840   Node* call;
7841   if (block_size == nullptr) {
7842     call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(false),
7843                              stubAddr, stubName, TypePtr::BOTTOM,
7844                              src_start, state);
7845   } else {
7846     call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(true),
7847                              stubAddr, stubName, TypePtr::BOTTOM,
7848                              src_start, state, block_size);
7849   }
7850 
7851   return true;
7852 }
7853 
7854 //------------------------------inline_digestBase_implCompressMB-----------------------
7855 //
7856 // Calculate MD5/SHA/SHA2/SHA5/SHA3 for multi-block byte[] array.
7857 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
7858 //
7859 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) {
7860   assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics || UseSHA3Intrinsics,
7861          "need MD5/SHA1/SHA256/SHA512/SHA3 instruction support");
7862   assert((uint)predicate < 5, "sanity");
7863   assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters");
7864 
7865   Node* digestBase_obj = argument(0); // The receiver was checked for null already.
7866   Node* src            = argument(1); // byte[] array
7867   Node* ofs            = argument(2); // type int
7868   Node* limit          = argument(3); // type int
7869 
7870   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
7871   if (src_type == nullptr || src_type->elem() == Type::BOTTOM) {
7872     // failed array check
7873     return false;
7874   }
7875   // Figure out the size and type of the elements we will be copying.
7876   BasicType src_elem = src_type->elem()->array_element_basic_type();
7877   if (src_elem != T_BYTE) {
7878     return false;
7879   }
7880   // 'src_start' points to src array + offset
7881   src = must_be_not_null(src, false);
7882   Node* src_start = array_element_address(src, ofs, src_elem);
7883 
7884   const char* klass_digestBase_name = nullptr;
7885   const char* stub_name = nullptr;
7886   address     stub_addr = nullptr;
7887   BasicType elem_type = T_INT;
7888 
7889   switch (predicate) {
7890   case 0:
7891     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_md5_implCompress)) {
7892       klass_digestBase_name = "sun/security/provider/MD5";
7893       stub_name = "md5_implCompressMB";
7894       stub_addr = StubRoutines::md5_implCompressMB();
7895     }
7896     break;
7897   case 1:
7898     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha_implCompress)) {
7899       klass_digestBase_name = "sun/security/provider/SHA";
7900       stub_name = "sha1_implCompressMB";
7901       stub_addr = StubRoutines::sha1_implCompressMB();
7902     }
7903     break;
7904   case 2:
7905     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha2_implCompress)) {
7906       klass_digestBase_name = "sun/security/provider/SHA2";
7907       stub_name = "sha256_implCompressMB";
7908       stub_addr = StubRoutines::sha256_implCompressMB();
7909     }
7910     break;
7911   case 3:
7912     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha5_implCompress)) {
7913       klass_digestBase_name = "sun/security/provider/SHA5";
7914       stub_name = "sha512_implCompressMB";
7915       stub_addr = StubRoutines::sha512_implCompressMB();
7916       elem_type = T_LONG;
7917     }
7918     break;
7919   case 4:
7920     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha3_implCompress)) {
7921       klass_digestBase_name = "sun/security/provider/SHA3";
7922       stub_name = "sha3_implCompressMB";
7923       stub_addr = StubRoutines::sha3_implCompressMB();
7924       elem_type = T_LONG;
7925     }
7926     break;
7927   default:
7928     fatal("unknown DigestBase intrinsic predicate: %d", predicate);
7929   }
7930   if (klass_digestBase_name != nullptr) {
7931     assert(stub_addr != nullptr, "Stub is generated");
7932     if (stub_addr == nullptr) return false;
7933 
7934     // get DigestBase klass to lookup for SHA klass
7935     const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr();
7936     assert(tinst != nullptr, "digestBase_obj is not instance???");
7937     assert(tinst->is_loaded(), "DigestBase is not loaded");
7938 
7939     ciKlass* klass_digestBase = tinst->instance_klass()->find_klass(ciSymbol::make(klass_digestBase_name));
7940     assert(klass_digestBase->is_loaded(), "predicate checks that this class is loaded");
7941     ciInstanceKlass* instklass_digestBase = klass_digestBase->as_instance_klass();
7942     return inline_digestBase_implCompressMB(digestBase_obj, instklass_digestBase, elem_type, stub_addr, stub_name, src_start, ofs, limit);
7943   }
7944   return false;
7945 }
7946 
7947 //------------------------------inline_digestBase_implCompressMB-----------------------
7948 bool LibraryCallKit::inline_digestBase_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_digestBase,
7949                                                       BasicType elem_type, address stubAddr, const char *stubName,
7950                                                       Node* src_start, Node* ofs, Node* limit) {
7951   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_digestBase);
7952   const TypeOopPtr* xtype = aklass->cast_to_exactness(false)->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull);
7953   Node* digest_obj = new CheckCastPPNode(control(), digestBase_obj, xtype);
7954   digest_obj = _gvn.transform(digest_obj);
7955 
7956   Node* state = get_state_from_digest_object(digest_obj, elem_type);
7957   if (state == nullptr) return false;
7958 
7959   Node* block_size = nullptr;
7960   if (strcmp("sha3_implCompressMB", stubName) == 0) {
7961     block_size = get_block_size_from_digest_object(digest_obj);
7962     if (block_size == nullptr) return false;
7963   }
7964 
7965   // Call the stub.
7966   Node* call;
7967   if (block_size == nullptr) {
7968     call = make_runtime_call(RC_LEAF|RC_NO_FP,
7969                              OptoRuntime::digestBase_implCompressMB_Type(false),
7970                              stubAddr, stubName, TypePtr::BOTTOM,
7971                              src_start, state, ofs, limit);
7972   } else {
7973      call = make_runtime_call(RC_LEAF|RC_NO_FP,
7974                              OptoRuntime::digestBase_implCompressMB_Type(true),
7975                              stubAddr, stubName, TypePtr::BOTTOM,
7976                              src_start, state, block_size, ofs, limit);
7977   }
7978 
7979   // return ofs (int)
7980   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
7981   set_result(result);
7982 
7983   return true;
7984 }
7985 
7986 //------------------------------inline_galoisCounterMode_AESCrypt-----------------------
7987 bool LibraryCallKit::inline_galoisCounterMode_AESCrypt() {
7988   assert(UseAES, "need AES instruction support");
7989   address stubAddr = nullptr;
7990   const char *stubName = nullptr;
7991   stubAddr = StubRoutines::galoisCounterMode_AESCrypt();
7992   stubName = "galoisCounterMode_AESCrypt";
7993 
7994   if (stubAddr == nullptr) return false;
7995 
7996   Node* in      = argument(0);
7997   Node* inOfs   = argument(1);
7998   Node* len     = argument(2);
7999   Node* ct      = argument(3);
8000   Node* ctOfs   = argument(4);
8001   Node* out     = argument(5);
8002   Node* outOfs  = argument(6);
8003   Node* gctr_object = argument(7);
8004   Node* ghash_object = argument(8);
8005 
8006   // (1) in, ct and out are arrays.
8007   const TypeAryPtr* in_type = in->Value(&_gvn)->isa_aryptr();
8008   const TypeAryPtr* ct_type = ct->Value(&_gvn)->isa_aryptr();
8009   const TypeAryPtr* out_type = out->Value(&_gvn)->isa_aryptr();
8010   assert( in_type != nullptr &&  in_type->elem() != Type::BOTTOM &&
8011           ct_type != nullptr &&  ct_type->elem() != Type::BOTTOM &&
8012          out_type != nullptr && out_type->elem() != Type::BOTTOM, "args are strange");
8013 
8014   // checks are the responsibility of the caller
8015   Node* in_start = in;
8016   Node* ct_start = ct;
8017   Node* out_start = out;
8018   if (inOfs != nullptr || ctOfs != nullptr || outOfs != nullptr) {
8019     assert(inOfs != nullptr && ctOfs != nullptr && outOfs != nullptr, "");
8020     in_start = array_element_address(in, inOfs, T_BYTE);
8021     ct_start = array_element_address(ct, ctOfs, T_BYTE);
8022     out_start = array_element_address(out, outOfs, T_BYTE);
8023   }
8024 
8025   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
8026   // (because of the predicated logic executed earlier).
8027   // so we cast it here safely.
8028   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
8029   Node* embeddedCipherObj = load_field_from_object(gctr_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
8030   Node* counter = load_field_from_object(gctr_object, "counter", "[B");
8031   Node* subkeyHtbl = load_field_from_object(ghash_object, "subkeyHtbl", "[J");
8032   Node* state = load_field_from_object(ghash_object, "state", "[J");
8033 
8034   if (embeddedCipherObj == nullptr || counter == nullptr || subkeyHtbl == nullptr || state == nullptr) {
8035     return false;
8036   }
8037   // cast it to what we know it will be at runtime
8038   const TypeInstPtr* tinst = _gvn.type(gctr_object)->isa_instptr();
8039   assert(tinst != nullptr, "GCTR obj is null");
8040   assert(tinst->is_loaded(), "GCTR obj is not loaded");
8041   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
8042   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
8043   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
8044   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
8045   const TypeOopPtr* xtype = aklass->as_instance_type();
8046   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
8047   aescrypt_object = _gvn.transform(aescrypt_object);
8048   // we need to get the start of the aescrypt_object's expanded key array
8049   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
8050   if (k_start == nullptr) return false;
8051   // similarly, get the start address of the r vector
8052   Node* cnt_start = array_element_address(counter, intcon(0), T_BYTE);
8053   Node* state_start = array_element_address(state, intcon(0), T_LONG);
8054   Node* subkeyHtbl_start = array_element_address(subkeyHtbl, intcon(0), T_LONG);
8055 
8056 
8057   // Call the stub, passing params
8058   Node* gcmCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
8059                                OptoRuntime::galoisCounterMode_aescrypt_Type(),
8060                                stubAddr, stubName, TypePtr::BOTTOM,
8061                                in_start, len, ct_start, out_start, k_start, state_start, subkeyHtbl_start, cnt_start);
8062 
8063   // return cipher length (int)
8064   Node* retvalue = _gvn.transform(new ProjNode(gcmCrypt, TypeFunc::Parms));
8065   set_result(retvalue);
8066 
8067   return true;
8068 }
8069 
8070 //----------------------------inline_galoisCounterMode_AESCrypt_predicate----------------------------
8071 // Return node representing slow path of predicate check.
8072 // the pseudo code we want to emulate with this predicate is:
8073 // for encryption:
8074 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
8075 // for decryption:
8076 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
8077 //    note cipher==plain is more conservative than the original java code but that's OK
8078 //
8079 
8080 Node* LibraryCallKit::inline_galoisCounterMode_AESCrypt_predicate() {
8081   // The receiver was checked for null already.
8082   Node* objGCTR = argument(7);
8083   // Load embeddedCipher field of GCTR object.
8084   Node* embeddedCipherObj = load_field_from_object(objGCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
8085   assert(embeddedCipherObj != nullptr, "embeddedCipherObj is null");
8086 
8087   // get AESCrypt klass for instanceOf check
8088   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
8089   // will have same classloader as CipherBlockChaining object
8090   const TypeInstPtr* tinst = _gvn.type(objGCTR)->isa_instptr();
8091   assert(tinst != nullptr, "GCTR obj is null");
8092   assert(tinst->is_loaded(), "GCTR obj is not loaded");
8093 
8094   // we want to do an instanceof comparison against the AESCrypt class
8095   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
8096   if (!klass_AESCrypt->is_loaded()) {
8097     // if AESCrypt is not even loaded, we never take the intrinsic fast path
8098     Node* ctrl = control();
8099     set_control(top()); // no regular fast path
8100     return ctrl;
8101   }
8102 
8103   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
8104   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
8105   Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
8106   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
8107   Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN);
8108 
8109   return instof_false; // even if it is null
8110 }
8111 
8112 //------------------------------get_state_from_digest_object-----------------------
8113 Node * LibraryCallKit::get_state_from_digest_object(Node *digest_object, BasicType elem_type) {
8114   const char* state_type;
8115   switch (elem_type) {
8116     case T_BYTE: state_type = "[B"; break;
8117     case T_INT:  state_type = "[I"; break;
8118     case T_LONG: state_type = "[J"; break;
8119     default: ShouldNotReachHere();
8120   }
8121   Node* digest_state = load_field_from_object(digest_object, "state", state_type);
8122   assert (digest_state != nullptr, "wrong version of sun.security.provider.MD5/SHA/SHA2/SHA5/SHA3");
8123   if (digest_state == nullptr) return (Node *) nullptr;
8124 
8125   // now have the array, need to get the start address of the state array
8126   Node* state = array_element_address(digest_state, intcon(0), elem_type);
8127   return state;
8128 }
8129 
8130 //------------------------------get_block_size_from_sha3_object----------------------------------
8131 Node * LibraryCallKit::get_block_size_from_digest_object(Node *digest_object) {
8132   Node* block_size = load_field_from_object(digest_object, "blockSize", "I");
8133   assert (block_size != nullptr, "sanity");
8134   return block_size;
8135 }
8136 
8137 //----------------------------inline_digestBase_implCompressMB_predicate----------------------------
8138 // Return node representing slow path of predicate check.
8139 // the pseudo code we want to emulate with this predicate is:
8140 //    if (digestBaseObj instanceof MD5/SHA/SHA2/SHA5/SHA3) do_intrinsic, else do_javapath
8141 //
8142 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) {
8143   assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics || UseSHA3Intrinsics,
8144          "need MD5/SHA1/SHA256/SHA512/SHA3 instruction support");
8145   assert((uint)predicate < 5, "sanity");
8146 
8147   // The receiver was checked for null already.
8148   Node* digestBaseObj = argument(0);
8149 
8150   // get DigestBase klass for instanceOf check
8151   const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr();
8152   assert(tinst != nullptr, "digestBaseObj is null");
8153   assert(tinst->is_loaded(), "DigestBase is not loaded");
8154 
8155   const char* klass_name = nullptr;
8156   switch (predicate) {
8157   case 0:
8158     if (UseMD5Intrinsics) {
8159       // we want to do an instanceof comparison against the MD5 class
8160       klass_name = "sun/security/provider/MD5";
8161     }
8162     break;
8163   case 1:
8164     if (UseSHA1Intrinsics) {
8165       // we want to do an instanceof comparison against the SHA class
8166       klass_name = "sun/security/provider/SHA";
8167     }
8168     break;
8169   case 2:
8170     if (UseSHA256Intrinsics) {
8171       // we want to do an instanceof comparison against the SHA2 class
8172       klass_name = "sun/security/provider/SHA2";
8173     }
8174     break;
8175   case 3:
8176     if (UseSHA512Intrinsics) {
8177       // we want to do an instanceof comparison against the SHA5 class
8178       klass_name = "sun/security/provider/SHA5";
8179     }
8180     break;
8181   case 4:
8182     if (UseSHA3Intrinsics) {
8183       // we want to do an instanceof comparison against the SHA3 class
8184       klass_name = "sun/security/provider/SHA3";
8185     }
8186     break;
8187   default:
8188     fatal("unknown SHA intrinsic predicate: %d", predicate);
8189   }
8190 
8191   ciKlass* klass = nullptr;
8192   if (klass_name != nullptr) {
8193     klass = tinst->instance_klass()->find_klass(ciSymbol::make(klass_name));
8194   }
8195   if ((klass == nullptr) || !klass->is_loaded()) {
8196     // if none of MD5/SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path
8197     Node* ctrl = control();
8198     set_control(top()); // no intrinsic path
8199     return ctrl;
8200   }
8201   ciInstanceKlass* instklass = klass->as_instance_klass();
8202 
8203   Node* instof = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass)));
8204   Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
8205   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
8206   Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN);
8207 
8208   return instof_false;  // even if it is null
8209 }
8210 
8211 //-------------inline_fma-----------------------------------
8212 bool LibraryCallKit::inline_fma(vmIntrinsics::ID id) {
8213   Node *a = nullptr;
8214   Node *b = nullptr;
8215   Node *c = nullptr;
8216   Node* result = nullptr;
8217   switch (id) {
8218   case vmIntrinsics::_fmaD:
8219     assert(callee()->signature()->size() == 6, "fma has 3 parameters of size 2 each.");
8220     // no receiver since it is static method
8221     a = round_double_node(argument(0));
8222     b = round_double_node(argument(2));
8223     c = round_double_node(argument(4));
8224     result = _gvn.transform(new FmaDNode(a, b, c));
8225     break;
8226   case vmIntrinsics::_fmaF:
8227     assert(callee()->signature()->size() == 3, "fma has 3 parameters of size 1 each.");
8228     a = argument(0);
8229     b = argument(1);
8230     c = argument(2);
8231     result = _gvn.transform(new FmaFNode(a, b, c));
8232     break;
8233   default:
8234     fatal_unexpected_iid(id);  break;
8235   }
8236   set_result(result);
8237   return true;
8238 }
8239 
8240 bool LibraryCallKit::inline_character_compare(vmIntrinsics::ID id) {
8241   // argument(0) is receiver
8242   Node* codePoint = argument(1);
8243   Node* n = nullptr;
8244 
8245   switch (id) {
8246     case vmIntrinsics::_isDigit :
8247       n = new DigitNode(control(), codePoint);
8248       break;
8249     case vmIntrinsics::_isLowerCase :
8250       n = new LowerCaseNode(control(), codePoint);
8251       break;
8252     case vmIntrinsics::_isUpperCase :
8253       n = new UpperCaseNode(control(), codePoint);
8254       break;
8255     case vmIntrinsics::_isWhitespace :
8256       n = new WhitespaceNode(control(), codePoint);
8257       break;
8258     default:
8259       fatal_unexpected_iid(id);
8260   }
8261 
8262   set_result(_gvn.transform(n));
8263   return true;
8264 }
8265 
8266 //------------------------------inline_fp_min_max------------------------------
8267 bool LibraryCallKit::inline_fp_min_max(vmIntrinsics::ID id) {
8268 /* DISABLED BECAUSE METHOD DATA ISN'T COLLECTED PER CALL-SITE, SEE JDK-8015416.
8269 
8270   // The intrinsic should be used only when the API branches aren't predictable,
8271   // the last one performing the most important comparison. The following heuristic
8272   // uses the branch statistics to eventually bail out if necessary.
8273 
8274   ciMethodData *md = callee()->method_data();
8275 
8276   if ( md != nullptr && md->is_mature() && md->invocation_count() > 0 ) {
8277     ciCallProfile cp = caller()->call_profile_at_bci(bci());
8278 
8279     if ( ((double)cp.count()) / ((double)md->invocation_count()) < 0.8 ) {
8280       // Bail out if the call-site didn't contribute enough to the statistics.
8281       return false;
8282     }
8283 
8284     uint taken = 0, not_taken = 0;
8285 
8286     for (ciProfileData *p = md->first_data(); md->is_valid(p); p = md->next_data(p)) {
8287       if (p->is_BranchData()) {
8288         taken = ((ciBranchData*)p)->taken();
8289         not_taken = ((ciBranchData*)p)->not_taken();
8290       }
8291     }
8292 
8293     double balance = (((double)taken) - ((double)not_taken)) / ((double)md->invocation_count());
8294     balance = balance < 0 ? -balance : balance;
8295     if ( balance > 0.2 ) {
8296       // Bail out if the most important branch is predictable enough.
8297       return false;
8298     }
8299   }
8300 */
8301 
8302   Node *a = nullptr;
8303   Node *b = nullptr;
8304   Node *n = nullptr;
8305   switch (id) {
8306   case vmIntrinsics::_maxF:
8307   case vmIntrinsics::_minF:
8308   case vmIntrinsics::_maxF_strict:
8309   case vmIntrinsics::_minF_strict:
8310     assert(callee()->signature()->size() == 2, "minF/maxF has 2 parameters of size 1 each.");
8311     a = argument(0);
8312     b = argument(1);
8313     break;
8314   case vmIntrinsics::_maxD:
8315   case vmIntrinsics::_minD:
8316   case vmIntrinsics::_maxD_strict:
8317   case vmIntrinsics::_minD_strict:
8318     assert(callee()->signature()->size() == 4, "minD/maxD has 2 parameters of size 2 each.");
8319     a = round_double_node(argument(0));
8320     b = round_double_node(argument(2));
8321     break;
8322   default:
8323     fatal_unexpected_iid(id);
8324     break;
8325   }
8326   switch (id) {
8327   case vmIntrinsics::_maxF:
8328   case vmIntrinsics::_maxF_strict:
8329     n = new MaxFNode(a, b);
8330     break;
8331   case vmIntrinsics::_minF:
8332   case vmIntrinsics::_minF_strict:
8333     n = new MinFNode(a, b);
8334     break;
8335   case vmIntrinsics::_maxD:
8336   case vmIntrinsics::_maxD_strict:
8337     n = new MaxDNode(a, b);
8338     break;
8339   case vmIntrinsics::_minD:
8340   case vmIntrinsics::_minD_strict:
8341     n = new MinDNode(a, b);
8342     break;
8343   default:
8344     fatal_unexpected_iid(id);
8345     break;
8346   }
8347   set_result(_gvn.transform(n));
8348   return true;
8349 }
8350 
8351 bool LibraryCallKit::inline_profileBoolean() {
8352   Node* counts = argument(1);
8353   const TypeAryPtr* ary = nullptr;
8354   ciArray* aobj = nullptr;
8355   if (counts->is_Con()
8356       && (ary = counts->bottom_type()->isa_aryptr()) != nullptr
8357       && (aobj = ary->const_oop()->as_array()) != nullptr
8358       && (aobj->length() == 2)) {
8359     // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively.
8360     jint false_cnt = aobj->element_value(0).as_int();
8361     jint  true_cnt = aobj->element_value(1).as_int();
8362 
8363     if (C->log() != nullptr) {
8364       C->log()->elem("observe source='profileBoolean' false='%d' true='%d'",
8365                      false_cnt, true_cnt);
8366     }
8367 
8368     if (false_cnt + true_cnt == 0) {
8369       // According to profile, never executed.
8370       uncommon_trap_exact(Deoptimization::Reason_intrinsic,
8371                           Deoptimization::Action_reinterpret);
8372       return true;
8373     }
8374 
8375     // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt)
8376     // is a number of each value occurrences.
8377     Node* result = argument(0);
8378     if (false_cnt == 0 || true_cnt == 0) {
8379       // According to profile, one value has been never seen.
8380       int expected_val = (false_cnt == 0) ? 1 : 0;
8381 
8382       Node* cmp  = _gvn.transform(new CmpINode(result, intcon(expected_val)));
8383       Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
8384 
8385       IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN);
8386       Node* fast_path = _gvn.transform(new IfTrueNode(check));
8387       Node* slow_path = _gvn.transform(new IfFalseNode(check));
8388 
8389       { // Slow path: uncommon trap for never seen value and then reexecute
8390         // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows
8391         // the value has been seen at least once.
8392         PreserveJVMState pjvms(this);
8393         PreserveReexecuteState preexecs(this);
8394         jvms()->set_should_reexecute(true);
8395 
8396         set_control(slow_path);
8397         set_i_o(i_o());
8398 
8399         uncommon_trap_exact(Deoptimization::Reason_intrinsic,
8400                             Deoptimization::Action_reinterpret);
8401       }
8402       // The guard for never seen value enables sharpening of the result and
8403       // returning a constant. It allows to eliminate branches on the same value
8404       // later on.
8405       set_control(fast_path);
8406       result = intcon(expected_val);
8407     }
8408     // Stop profiling.
8409     // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode.
8410     // By replacing method body with profile data (represented as ProfileBooleanNode
8411     // on IR level) we effectively disable profiling.
8412     // It enables full speed execution once optimized code is generated.
8413     Node* profile = _gvn.transform(new ProfileBooleanNode(result, false_cnt, true_cnt));
8414     C->record_for_igvn(profile);
8415     set_result(profile);
8416     return true;
8417   } else {
8418     // Continue profiling.
8419     // Profile data isn't available at the moment. So, execute method's bytecode version.
8420     // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod
8421     // is compiled and counters aren't available since corresponding MethodHandle
8422     // isn't a compile-time constant.
8423     return false;
8424   }
8425 }
8426 
8427 bool LibraryCallKit::inline_isCompileConstant() {
8428   Node* n = argument(0);
8429   set_result(n->is_Con() ? intcon(1) : intcon(0));
8430   return true;
8431 }
8432 
8433 //------------------------------- inline_getObjectSize --------------------------------------
8434 //
8435 // Calculate the runtime size of the object/array.
8436 //   native long sun.instrument.InstrumentationImpl.getObjectSize0(long nativeAgent, Object objectToSize);
8437 //
8438 bool LibraryCallKit::inline_getObjectSize() {
8439   Node* obj = argument(3);
8440   Node* klass_node = load_object_klass(obj);
8441 
8442   jint  layout_con = Klass::_lh_neutral_value;
8443   Node* layout_val = get_layout_helper(klass_node, layout_con);
8444   int   layout_is_con = (layout_val == nullptr);
8445 
8446   if (layout_is_con) {
8447     // Layout helper is constant, can figure out things at compile time.
8448 
8449     if (Klass::layout_helper_is_instance(layout_con)) {
8450       // Instance case:  layout_con contains the size itself.
8451       Node *size = longcon(Klass::layout_helper_size_in_bytes(layout_con));
8452       set_result(size);
8453     } else {
8454       // Array case: size is round(header + element_size*arraylength).
8455       // Since arraylength is different for every array instance, we have to
8456       // compute the whole thing at runtime.
8457 
8458       Node* arr_length = load_array_length(obj);
8459 
8460       int round_mask = MinObjAlignmentInBytes - 1;
8461       int hsize  = Klass::layout_helper_header_size(layout_con);
8462       int eshift = Klass::layout_helper_log2_element_size(layout_con);
8463 
8464       if ((round_mask & ~right_n_bits(eshift)) == 0) {
8465         round_mask = 0;  // strength-reduce it if it goes away completely
8466       }
8467       assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded");
8468       Node* header_size = intcon(hsize + round_mask);
8469 
8470       Node* lengthx = ConvI2X(arr_length);
8471       Node* headerx = ConvI2X(header_size);
8472 
8473       Node* abody = lengthx;
8474       if (eshift != 0) {
8475         abody = _gvn.transform(new LShiftXNode(lengthx, intcon(eshift)));
8476       }
8477       Node* size = _gvn.transform( new AddXNode(headerx, abody) );
8478       if (round_mask != 0) {
8479         size = _gvn.transform( new AndXNode(size, MakeConX(~round_mask)) );
8480       }
8481       size = ConvX2L(size);
8482       set_result(size);
8483     }
8484   } else {
8485     // Layout helper is not constant, need to test for array-ness at runtime.
8486 
8487     enum { _instance_path = 1, _array_path, PATH_LIMIT };
8488     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
8489     PhiNode* result_val = new PhiNode(result_reg, TypeLong::LONG);
8490     record_for_igvn(result_reg);
8491 
8492     Node* array_ctl = generate_array_guard(klass_node, nullptr, &obj);
8493     if (array_ctl != nullptr) {
8494       // Array case: size is round(header + element_size*arraylength).
8495       // Since arraylength is different for every array instance, we have to
8496       // compute the whole thing at runtime.
8497 
8498       PreserveJVMState pjvms(this);
8499       set_control(array_ctl);
8500       Node* arr_length = load_array_length(obj);
8501 
8502       int round_mask = MinObjAlignmentInBytes - 1;
8503       Node* mask = intcon(round_mask);
8504 
8505       Node* hss = intcon(Klass::_lh_header_size_shift);
8506       Node* hsm = intcon(Klass::_lh_header_size_mask);
8507       Node* header_size = _gvn.transform(new URShiftINode(layout_val, hss));
8508       header_size = _gvn.transform(new AndINode(header_size, hsm));
8509       header_size = _gvn.transform(new AddINode(header_size, mask));
8510 
8511       // There is no need to mask or shift this value.
8512       // The semantics of LShiftINode include an implicit mask to 0x1F.
8513       assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
8514       Node* elem_shift = layout_val;
8515 
8516       Node* lengthx = ConvI2X(arr_length);
8517       Node* headerx = ConvI2X(header_size);
8518 
8519       Node* abody = _gvn.transform(new LShiftXNode(lengthx, elem_shift));
8520       Node* size = _gvn.transform(new AddXNode(headerx, abody));
8521       if (round_mask != 0) {
8522         size = _gvn.transform(new AndXNode(size, MakeConX(~round_mask)));
8523       }
8524       size = ConvX2L(size);
8525 
8526       result_reg->init_req(_array_path, control());
8527       result_val->init_req(_array_path, size);
8528     }
8529 
8530     if (!stopped()) {
8531       // Instance case: the layout helper gives us instance size almost directly,
8532       // but we need to mask out the _lh_instance_slow_path_bit.
8533       Node* size = ConvI2X(layout_val);
8534       assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
8535       Node* mask = MakeConX(~(intptr_t) right_n_bits(LogBytesPerLong));
8536       size = _gvn.transform(new AndXNode(size, mask));
8537       size = ConvX2L(size);
8538 
8539       result_reg->init_req(_instance_path, control());
8540       result_val->init_req(_instance_path, size);
8541     }
8542 
8543     set_result(result_reg, result_val);
8544   }
8545 
8546   return true;
8547 }
8548 
8549 //------------------------------- inline_blackhole --------------------------------------
8550 //
8551 // Make sure all arguments to this node are alive.
8552 // This matches methods that were requested to be blackholed through compile commands.
8553 //
8554 bool LibraryCallKit::inline_blackhole() {
8555   assert(callee()->is_static(), "Should have been checked before: only static methods here");
8556   assert(callee()->is_empty(), "Should have been checked before: only empty methods here");
8557   assert(callee()->holder()->is_loaded(), "Should have been checked before: only methods for loaded classes here");
8558 
8559   // Blackhole node pinches only the control, not memory. This allows
8560   // the blackhole to be pinned in the loop that computes blackholed
8561   // values, but have no other side effects, like breaking the optimizations
8562   // across the blackhole.
8563 
8564   Node* bh = _gvn.transform(new BlackholeNode(control()));
8565   set_control(_gvn.transform(new ProjNode(bh, TypeFunc::Control)));
8566 
8567   // Bind call arguments as blackhole arguments to keep them alive
8568   uint nargs = callee()->arg_size();
8569   for (uint i = 0; i < nargs; i++) {
8570     bh->add_req(argument(i));
8571   }
8572 
8573   return true;
8574 }
8575 
8576 Node* LibraryCallKit::unbox_fp16_value(const TypeInstPtr* float16_box_type, ciField* field, Node* box) {
8577   const TypeInstPtr* box_type = _gvn.type(box)->isa_instptr();
8578   if (box_type == nullptr || box_type->instance_klass() != float16_box_type->instance_klass()) {
8579     return nullptr; // box klass is not Float16
8580   }
8581 
8582   // Null check; get notnull casted pointer
8583   Node* null_ctl = top();
8584   Node* not_null_box = null_check_oop(box, &null_ctl, true);
8585   // If not_null_box is dead, only null-path is taken
8586   if (stopped()) {
8587     set_control(null_ctl);
8588     return nullptr;
8589   }
8590   assert(not_null_box->bottom_type()->is_instptr()->maybe_null() == false, "");
8591   const TypePtr* adr_type = C->alias_type(field)->adr_type();
8592   Node* adr = basic_plus_adr(not_null_box, field->offset_in_bytes());
8593   return access_load_at(not_null_box, adr, adr_type, TypeInt::SHORT, T_SHORT, IN_HEAP);
8594 }
8595 
8596 Node* LibraryCallKit::box_fp16_value(const TypeInstPtr* float16_box_type, ciField* field, Node* value) {
8597   PreserveReexecuteState preexecs(this);
8598   jvms()->set_should_reexecute(true);
8599 
8600   const TypeKlassPtr* klass_type = float16_box_type->as_klass_type();
8601   Node* klass_node = makecon(klass_type);
8602   Node* box = new_instance(klass_node);
8603 
8604   Node* value_field = basic_plus_adr(box, field->offset_in_bytes());
8605   const TypePtr* value_adr_type = value_field->bottom_type()->is_ptr();
8606 
8607   Node* field_store = _gvn.transform(access_store_at(box,
8608                                                      value_field,
8609                                                      value_adr_type,
8610                                                      value,
8611                                                      TypeInt::SHORT,
8612                                                      T_SHORT,
8613                                                      IN_HEAP));
8614   set_memory(field_store, value_adr_type);
8615   return box;
8616 }
8617 
8618 bool LibraryCallKit::inline_fp16_operations(vmIntrinsics::ID id, int num_args) {
8619   if (!Matcher::match_rule_supported(Op_ReinterpretS2HF) ||
8620       !Matcher::match_rule_supported(Op_ReinterpretHF2S)) {
8621     return false;
8622   }
8623 
8624   const TypeInstPtr* box_type = _gvn.type(argument(0))->isa_instptr();
8625   if (box_type == nullptr || box_type->const_oop() == nullptr) {
8626     return false;
8627   }
8628 
8629   ciInstanceKlass* float16_klass = box_type->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
8630   const TypeInstPtr* float16_box_type = TypeInstPtr::make_exact(TypePtr::NotNull, float16_klass);
8631   ciField* field = float16_klass->get_field_by_name(ciSymbols::value_name(),
8632                                                     ciSymbols::short_signature(),
8633                                                     false);
8634   assert(field != nullptr, "");
8635 
8636   // Transformed nodes
8637   Node* fld1 = nullptr;
8638   Node* fld2 = nullptr;
8639   Node* fld3 = nullptr;
8640   switch(num_args) {
8641     case 3:
8642       fld3 = unbox_fp16_value(float16_box_type, field, argument(3));
8643       if (fld3 == nullptr) {
8644         return false;
8645       }
8646       fld3 = _gvn.transform(new ReinterpretS2HFNode(fld3));
8647     // fall-through
8648     case 2:
8649       fld2 = unbox_fp16_value(float16_box_type, field, argument(2));
8650       if (fld2 == nullptr) {
8651         return false;
8652       }
8653       fld2 = _gvn.transform(new ReinterpretS2HFNode(fld2));
8654     // fall-through
8655     case 1:
8656       fld1 = unbox_fp16_value(float16_box_type, field, argument(1));
8657       if (fld1 == nullptr) {
8658         return false;
8659       }
8660       fld1 = _gvn.transform(new ReinterpretS2HFNode(fld1));
8661       break;
8662     default: fatal("Unsupported number of arguments %d", num_args);
8663   }
8664 
8665   Node* result = nullptr;
8666   switch (id) {
8667     // Unary operations
8668     case vmIntrinsics::_sqrt_float16:
8669       result = _gvn.transform(new SqrtHFNode(C, control(), fld1));
8670       break;
8671     // Ternary operations
8672     case vmIntrinsics::_fma_float16:
8673       result = _gvn.transform(new FmaHFNode(fld1, fld2, fld3));
8674       break;
8675     default:
8676       fatal_unexpected_iid(id);
8677       break;
8678   }
8679   result = _gvn.transform(new ReinterpretHF2SNode(result));
8680   set_result(box_fp16_value(float16_box_type, field, result));
8681   return true;
8682 }
8683