1 /* 2 * Copyright (c) 1999, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/macroAssembler.hpp" 27 #include "ci/ciUtilities.inline.hpp" 28 #include "classfile/vmIntrinsics.hpp" 29 #include "compiler/compileBroker.hpp" 30 #include "compiler/compileLog.hpp" 31 #include "gc/shared/barrierSet.hpp" 32 #include "jfr/support/jfrIntrinsics.hpp" 33 #include "memory/resourceArea.hpp" 34 #include "oops/klass.inline.hpp" 35 #include "oops/objArrayKlass.hpp" 36 #include "opto/addnode.hpp" 37 #include "opto/arraycopynode.hpp" 38 #include "opto/c2compiler.hpp" 39 #include "opto/castnode.hpp" 40 #include "opto/cfgnode.hpp" 41 #include "opto/convertnode.hpp" 42 #include "opto/countbitsnode.hpp" 43 #include "opto/idealKit.hpp" 44 #include "opto/library_call.hpp" 45 #include "opto/mathexactnode.hpp" 46 #include "opto/mulnode.hpp" 47 #include "opto/narrowptrnode.hpp" 48 #include "opto/opaquenode.hpp" 49 #include "opto/parse.hpp" 50 #include "opto/runtime.hpp" 51 #include "opto/rootnode.hpp" 52 #include "opto/subnode.hpp" 53 #include "opto/vectornode.hpp" 54 #include "prims/jvmtiExport.hpp" 55 #include "prims/jvmtiThreadState.hpp" 56 #include "prims/unsafe.hpp" 57 #include "runtime/jniHandles.inline.hpp" 58 #include "runtime/objectMonitor.hpp" 59 #include "runtime/sharedRuntime.hpp" 60 #include "runtime/stubRoutines.hpp" 61 #include "utilities/macros.hpp" 62 #include "utilities/powerOfTwo.hpp" 63 64 //---------------------------make_vm_intrinsic---------------------------- 65 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) { 66 vmIntrinsicID id = m->intrinsic_id(); 67 assert(id != vmIntrinsics::_none, "must be a VM intrinsic"); 68 69 if (!m->is_loaded()) { 70 // Do not attempt to inline unloaded methods. 71 return nullptr; 72 } 73 74 C2Compiler* compiler = (C2Compiler*)CompilerThread::current()->compiler(); 75 bool is_available = false; 76 77 { 78 // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag 79 // the compiler must transition to '_thread_in_vm' state because both 80 // methods access VM-internal data. 81 VM_ENTRY_MARK; 82 methodHandle mh(THREAD, m->get_Method()); 83 is_available = compiler != nullptr && compiler->is_intrinsic_available(mh, C->directive()); 84 if (is_available && is_virtual) { 85 is_available = vmIntrinsics::does_virtual_dispatch(id); 86 } 87 } 88 89 if (is_available) { 90 assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility"); 91 assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?"); 92 return new LibraryIntrinsic(m, is_virtual, 93 vmIntrinsics::predicates_needed(id), 94 vmIntrinsics::does_virtual_dispatch(id), 95 id); 96 } else { 97 return nullptr; 98 } 99 } 100 101 JVMState* LibraryIntrinsic::generate(JVMState* jvms) { 102 LibraryCallKit kit(jvms, this); 103 Compile* C = kit.C; 104 int nodes = C->unique(); 105 #ifndef PRODUCT 106 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 107 char buf[1000]; 108 const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf)); 109 tty->print_cr("Intrinsic %s", str); 110 } 111 #endif 112 ciMethod* callee = kit.callee(); 113 const int bci = kit.bci(); 114 #ifdef ASSERT 115 Node* ctrl = kit.control(); 116 #endif 117 // Try to inline the intrinsic. 118 if (callee->check_intrinsic_candidate() && 119 kit.try_to_inline(_last_predicate)) { 120 const char *inline_msg = is_virtual() ? "(intrinsic, virtual)" 121 : "(intrinsic)"; 122 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg); 123 if (C->print_intrinsics() || C->print_inlining()) { 124 C->print_inlining(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg); 125 } 126 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked); 127 if (C->log()) { 128 C->log()->elem("intrinsic id='%s'%s nodes='%d'", 129 vmIntrinsics::name_at(intrinsic_id()), 130 (is_virtual() ? " virtual='1'" : ""), 131 C->unique() - nodes); 132 } 133 // Push the result from the inlined method onto the stack. 134 kit.push_result(); 135 C->print_inlining_update(this); 136 return kit.transfer_exceptions_into_jvms(); 137 } 138 139 // The intrinsic bailed out 140 assert(ctrl == kit.control(), "Control flow was added although the intrinsic bailed out"); 141 if (jvms->has_method()) { 142 // Not a root compile. 143 const char* msg; 144 if (callee->intrinsic_candidate()) { 145 msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)"; 146 } else { 147 msg = is_virtual() ? "failed to inline (intrinsic, virtual), method not annotated" 148 : "failed to inline (intrinsic), method not annotated"; 149 } 150 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::FAILURE, msg); 151 if (C->print_intrinsics() || C->print_inlining()) { 152 C->print_inlining(callee, jvms->depth() - 1, bci, InliningResult::FAILURE, msg); 153 } 154 } else { 155 // Root compile 156 ResourceMark rm; 157 stringStream msg_stream; 158 msg_stream.print("Did not generate intrinsic %s%s at bci:%d in", 159 vmIntrinsics::name_at(intrinsic_id()), 160 is_virtual() ? " (virtual)" : "", bci); 161 const char *msg = msg_stream.freeze(); 162 log_debug(jit, inlining)("%s", msg); 163 if (C->print_intrinsics() || C->print_inlining()) { 164 tty->print("%s", msg); 165 } 166 } 167 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed); 168 C->print_inlining_update(this); 169 170 return nullptr; 171 } 172 173 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) { 174 LibraryCallKit kit(jvms, this); 175 Compile* C = kit.C; 176 int nodes = C->unique(); 177 _last_predicate = predicate; 178 #ifndef PRODUCT 179 assert(is_predicated() && predicate < predicates_count(), "sanity"); 180 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 181 char buf[1000]; 182 const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf)); 183 tty->print_cr("Predicate for intrinsic %s", str); 184 } 185 #endif 186 ciMethod* callee = kit.callee(); 187 const int bci = kit.bci(); 188 189 Node* slow_ctl = kit.try_to_predicate(predicate); 190 if (!kit.failing()) { 191 const char *inline_msg = is_virtual() ? "(intrinsic, virtual, predicate)" 192 : "(intrinsic, predicate)"; 193 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg); 194 if (C->print_intrinsics() || C->print_inlining()) { 195 C->print_inlining(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg); 196 } 197 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked); 198 if (C->log()) { 199 C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'", 200 vmIntrinsics::name_at(intrinsic_id()), 201 (is_virtual() ? " virtual='1'" : ""), 202 C->unique() - nodes); 203 } 204 return slow_ctl; // Could be null if the check folds. 205 } 206 207 // The intrinsic bailed out 208 if (jvms->has_method()) { 209 // Not a root compile. 210 const char* msg = "failed to generate predicate for intrinsic"; 211 CompileTask::print_inlining_ul(kit.callee(), jvms->depth() - 1, bci, InliningResult::FAILURE, msg); 212 if (C->print_intrinsics() || C->print_inlining()) { 213 C->print_inlining(kit.callee(), jvms->depth() - 1, bci, InliningResult::FAILURE, msg); 214 } 215 } else { 216 // Root compile 217 ResourceMark rm; 218 stringStream msg_stream; 219 msg_stream.print("Did not generate intrinsic %s%s at bci:%d in", 220 vmIntrinsics::name_at(intrinsic_id()), 221 is_virtual() ? " (virtual)" : "", bci); 222 const char *msg = msg_stream.freeze(); 223 log_debug(jit, inlining)("%s", msg); 224 if (C->print_intrinsics() || C->print_inlining()) { 225 C->print_inlining_stream()->print("%s", msg); 226 } 227 } 228 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed); 229 return nullptr; 230 } 231 232 bool LibraryCallKit::try_to_inline(int predicate) { 233 // Handle symbolic names for otherwise undistinguished boolean switches: 234 const bool is_store = true; 235 const bool is_compress = true; 236 const bool is_static = true; 237 const bool is_volatile = true; 238 239 if (!jvms()->has_method()) { 240 // Root JVMState has a null method. 241 assert(map()->memory()->Opcode() == Op_Parm, ""); 242 // Insert the memory aliasing node 243 set_all_memory(reset_memory()); 244 } 245 assert(merged_memory(), ""); 246 247 switch (intrinsic_id()) { 248 case vmIntrinsics::_hashCode: return inline_native_hashcode(intrinsic()->is_virtual(), !is_static); 249 case vmIntrinsics::_identityHashCode: return inline_native_hashcode(/*!virtual*/ false, is_static); 250 case vmIntrinsics::_getClass: return inline_native_getClass(); 251 252 case vmIntrinsics::_ceil: 253 case vmIntrinsics::_floor: 254 case vmIntrinsics::_rint: 255 case vmIntrinsics::_dsin: 256 case vmIntrinsics::_dcos: 257 case vmIntrinsics::_dtan: 258 case vmIntrinsics::_dtanh: 259 case vmIntrinsics::_dabs: 260 case vmIntrinsics::_fabs: 261 case vmIntrinsics::_iabs: 262 case vmIntrinsics::_labs: 263 case vmIntrinsics::_datan2: 264 case vmIntrinsics::_dsqrt: 265 case vmIntrinsics::_dsqrt_strict: 266 case vmIntrinsics::_dexp: 267 case vmIntrinsics::_dlog: 268 case vmIntrinsics::_dlog10: 269 case vmIntrinsics::_dpow: 270 case vmIntrinsics::_dcopySign: 271 case vmIntrinsics::_fcopySign: 272 case vmIntrinsics::_dsignum: 273 case vmIntrinsics::_roundF: 274 case vmIntrinsics::_roundD: 275 case vmIntrinsics::_fsignum: return inline_math_native(intrinsic_id()); 276 277 case vmIntrinsics::_notify: 278 case vmIntrinsics::_notifyAll: 279 return inline_notify(intrinsic_id()); 280 281 case vmIntrinsics::_addExactI: return inline_math_addExactI(false /* add */); 282 case vmIntrinsics::_addExactL: return inline_math_addExactL(false /* add */); 283 case vmIntrinsics::_decrementExactI: return inline_math_subtractExactI(true /* decrement */); 284 case vmIntrinsics::_decrementExactL: return inline_math_subtractExactL(true /* decrement */); 285 case vmIntrinsics::_incrementExactI: return inline_math_addExactI(true /* increment */); 286 case vmIntrinsics::_incrementExactL: return inline_math_addExactL(true /* increment */); 287 case vmIntrinsics::_multiplyExactI: return inline_math_multiplyExactI(); 288 case vmIntrinsics::_multiplyExactL: return inline_math_multiplyExactL(); 289 case vmIntrinsics::_multiplyHigh: return inline_math_multiplyHigh(); 290 case vmIntrinsics::_unsignedMultiplyHigh: return inline_math_unsignedMultiplyHigh(); 291 case vmIntrinsics::_negateExactI: return inline_math_negateExactI(); 292 case vmIntrinsics::_negateExactL: return inline_math_negateExactL(); 293 case vmIntrinsics::_subtractExactI: return inline_math_subtractExactI(false /* subtract */); 294 case vmIntrinsics::_subtractExactL: return inline_math_subtractExactL(false /* subtract */); 295 296 case vmIntrinsics::_arraycopy: return inline_arraycopy(); 297 298 case vmIntrinsics::_arraySort: return inline_array_sort(); 299 case vmIntrinsics::_arrayPartition: return inline_array_partition(); 300 301 case vmIntrinsics::_compareToL: return inline_string_compareTo(StrIntrinsicNode::LL); 302 case vmIntrinsics::_compareToU: return inline_string_compareTo(StrIntrinsicNode::UU); 303 case vmIntrinsics::_compareToLU: return inline_string_compareTo(StrIntrinsicNode::LU); 304 case vmIntrinsics::_compareToUL: return inline_string_compareTo(StrIntrinsicNode::UL); 305 306 case vmIntrinsics::_indexOfL: return inline_string_indexOf(StrIntrinsicNode::LL); 307 case vmIntrinsics::_indexOfU: return inline_string_indexOf(StrIntrinsicNode::UU); 308 case vmIntrinsics::_indexOfUL: return inline_string_indexOf(StrIntrinsicNode::UL); 309 case vmIntrinsics::_indexOfIL: return inline_string_indexOfI(StrIntrinsicNode::LL); 310 case vmIntrinsics::_indexOfIU: return inline_string_indexOfI(StrIntrinsicNode::UU); 311 case vmIntrinsics::_indexOfIUL: return inline_string_indexOfI(StrIntrinsicNode::UL); 312 case vmIntrinsics::_indexOfU_char: return inline_string_indexOfChar(StrIntrinsicNode::U); 313 case vmIntrinsics::_indexOfL_char: return inline_string_indexOfChar(StrIntrinsicNode::L); 314 315 case vmIntrinsics::_equalsL: return inline_string_equals(StrIntrinsicNode::LL); 316 317 case vmIntrinsics::_vectorizedHashCode: return inline_vectorizedHashCode(); 318 319 case vmIntrinsics::_toBytesStringU: return inline_string_toBytesU(); 320 case vmIntrinsics::_getCharsStringU: return inline_string_getCharsU(); 321 case vmIntrinsics::_getCharStringU: return inline_string_char_access(!is_store); 322 case vmIntrinsics::_putCharStringU: return inline_string_char_access( is_store); 323 324 case vmIntrinsics::_compressStringC: 325 case vmIntrinsics::_compressStringB: return inline_string_copy( is_compress); 326 case vmIntrinsics::_inflateStringC: 327 case vmIntrinsics::_inflateStringB: return inline_string_copy(!is_compress); 328 329 case vmIntrinsics::_getReference: return inline_unsafe_access(!is_store, T_OBJECT, Relaxed, false); 330 case vmIntrinsics::_getBoolean: return inline_unsafe_access(!is_store, T_BOOLEAN, Relaxed, false); 331 case vmIntrinsics::_getByte: return inline_unsafe_access(!is_store, T_BYTE, Relaxed, false); 332 case vmIntrinsics::_getShort: return inline_unsafe_access(!is_store, T_SHORT, Relaxed, false); 333 case vmIntrinsics::_getChar: return inline_unsafe_access(!is_store, T_CHAR, Relaxed, false); 334 case vmIntrinsics::_getInt: return inline_unsafe_access(!is_store, T_INT, Relaxed, false); 335 case vmIntrinsics::_getLong: return inline_unsafe_access(!is_store, T_LONG, Relaxed, false); 336 case vmIntrinsics::_getFloat: return inline_unsafe_access(!is_store, T_FLOAT, Relaxed, false); 337 case vmIntrinsics::_getDouble: return inline_unsafe_access(!is_store, T_DOUBLE, Relaxed, false); 338 339 case vmIntrinsics::_putReference: return inline_unsafe_access( is_store, T_OBJECT, Relaxed, false); 340 case vmIntrinsics::_putBoolean: return inline_unsafe_access( is_store, T_BOOLEAN, Relaxed, false); 341 case vmIntrinsics::_putByte: return inline_unsafe_access( is_store, T_BYTE, Relaxed, false); 342 case vmIntrinsics::_putShort: return inline_unsafe_access( is_store, T_SHORT, Relaxed, false); 343 case vmIntrinsics::_putChar: return inline_unsafe_access( is_store, T_CHAR, Relaxed, false); 344 case vmIntrinsics::_putInt: return inline_unsafe_access( is_store, T_INT, Relaxed, false); 345 case vmIntrinsics::_putLong: return inline_unsafe_access( is_store, T_LONG, Relaxed, false); 346 case vmIntrinsics::_putFloat: return inline_unsafe_access( is_store, T_FLOAT, Relaxed, false); 347 case vmIntrinsics::_putDouble: return inline_unsafe_access( is_store, T_DOUBLE, Relaxed, false); 348 349 case vmIntrinsics::_getReferenceVolatile: return inline_unsafe_access(!is_store, T_OBJECT, Volatile, false); 350 case vmIntrinsics::_getBooleanVolatile: return inline_unsafe_access(!is_store, T_BOOLEAN, Volatile, false); 351 case vmIntrinsics::_getByteVolatile: return inline_unsafe_access(!is_store, T_BYTE, Volatile, false); 352 case vmIntrinsics::_getShortVolatile: return inline_unsafe_access(!is_store, T_SHORT, Volatile, false); 353 case vmIntrinsics::_getCharVolatile: return inline_unsafe_access(!is_store, T_CHAR, Volatile, false); 354 case vmIntrinsics::_getIntVolatile: return inline_unsafe_access(!is_store, T_INT, Volatile, false); 355 case vmIntrinsics::_getLongVolatile: return inline_unsafe_access(!is_store, T_LONG, Volatile, false); 356 case vmIntrinsics::_getFloatVolatile: return inline_unsafe_access(!is_store, T_FLOAT, Volatile, false); 357 case vmIntrinsics::_getDoubleVolatile: return inline_unsafe_access(!is_store, T_DOUBLE, Volatile, false); 358 359 case vmIntrinsics::_putReferenceVolatile: return inline_unsafe_access( is_store, T_OBJECT, Volatile, false); 360 case vmIntrinsics::_putBooleanVolatile: return inline_unsafe_access( is_store, T_BOOLEAN, Volatile, false); 361 case vmIntrinsics::_putByteVolatile: return inline_unsafe_access( is_store, T_BYTE, Volatile, false); 362 case vmIntrinsics::_putShortVolatile: return inline_unsafe_access( is_store, T_SHORT, Volatile, false); 363 case vmIntrinsics::_putCharVolatile: return inline_unsafe_access( is_store, T_CHAR, Volatile, false); 364 case vmIntrinsics::_putIntVolatile: return inline_unsafe_access( is_store, T_INT, Volatile, false); 365 case vmIntrinsics::_putLongVolatile: return inline_unsafe_access( is_store, T_LONG, Volatile, false); 366 case vmIntrinsics::_putFloatVolatile: return inline_unsafe_access( is_store, T_FLOAT, Volatile, false); 367 case vmIntrinsics::_putDoubleVolatile: return inline_unsafe_access( is_store, T_DOUBLE, Volatile, false); 368 369 case vmIntrinsics::_getShortUnaligned: return inline_unsafe_access(!is_store, T_SHORT, Relaxed, true); 370 case vmIntrinsics::_getCharUnaligned: return inline_unsafe_access(!is_store, T_CHAR, Relaxed, true); 371 case vmIntrinsics::_getIntUnaligned: return inline_unsafe_access(!is_store, T_INT, Relaxed, true); 372 case vmIntrinsics::_getLongUnaligned: return inline_unsafe_access(!is_store, T_LONG, Relaxed, true); 373 374 case vmIntrinsics::_putShortUnaligned: return inline_unsafe_access( is_store, T_SHORT, Relaxed, true); 375 case vmIntrinsics::_putCharUnaligned: return inline_unsafe_access( is_store, T_CHAR, Relaxed, true); 376 case vmIntrinsics::_putIntUnaligned: return inline_unsafe_access( is_store, T_INT, Relaxed, true); 377 case vmIntrinsics::_putLongUnaligned: return inline_unsafe_access( is_store, T_LONG, Relaxed, true); 378 379 case vmIntrinsics::_getReferenceAcquire: return inline_unsafe_access(!is_store, T_OBJECT, Acquire, false); 380 case vmIntrinsics::_getBooleanAcquire: return inline_unsafe_access(!is_store, T_BOOLEAN, Acquire, false); 381 case vmIntrinsics::_getByteAcquire: return inline_unsafe_access(!is_store, T_BYTE, Acquire, false); 382 case vmIntrinsics::_getShortAcquire: return inline_unsafe_access(!is_store, T_SHORT, Acquire, false); 383 case vmIntrinsics::_getCharAcquire: return inline_unsafe_access(!is_store, T_CHAR, Acquire, false); 384 case vmIntrinsics::_getIntAcquire: return inline_unsafe_access(!is_store, T_INT, Acquire, false); 385 case vmIntrinsics::_getLongAcquire: return inline_unsafe_access(!is_store, T_LONG, Acquire, false); 386 case vmIntrinsics::_getFloatAcquire: return inline_unsafe_access(!is_store, T_FLOAT, Acquire, false); 387 case vmIntrinsics::_getDoubleAcquire: return inline_unsafe_access(!is_store, T_DOUBLE, Acquire, false); 388 389 case vmIntrinsics::_putReferenceRelease: return inline_unsafe_access( is_store, T_OBJECT, Release, false); 390 case vmIntrinsics::_putBooleanRelease: return inline_unsafe_access( is_store, T_BOOLEAN, Release, false); 391 case vmIntrinsics::_putByteRelease: return inline_unsafe_access( is_store, T_BYTE, Release, false); 392 case vmIntrinsics::_putShortRelease: return inline_unsafe_access( is_store, T_SHORT, Release, false); 393 case vmIntrinsics::_putCharRelease: return inline_unsafe_access( is_store, T_CHAR, Release, false); 394 case vmIntrinsics::_putIntRelease: return inline_unsafe_access( is_store, T_INT, Release, false); 395 case vmIntrinsics::_putLongRelease: return inline_unsafe_access( is_store, T_LONG, Release, false); 396 case vmIntrinsics::_putFloatRelease: return inline_unsafe_access( is_store, T_FLOAT, Release, false); 397 case vmIntrinsics::_putDoubleRelease: return inline_unsafe_access( is_store, T_DOUBLE, Release, false); 398 399 case vmIntrinsics::_getReferenceOpaque: return inline_unsafe_access(!is_store, T_OBJECT, Opaque, false); 400 case vmIntrinsics::_getBooleanOpaque: return inline_unsafe_access(!is_store, T_BOOLEAN, Opaque, false); 401 case vmIntrinsics::_getByteOpaque: return inline_unsafe_access(!is_store, T_BYTE, Opaque, false); 402 case vmIntrinsics::_getShortOpaque: return inline_unsafe_access(!is_store, T_SHORT, Opaque, false); 403 case vmIntrinsics::_getCharOpaque: return inline_unsafe_access(!is_store, T_CHAR, Opaque, false); 404 case vmIntrinsics::_getIntOpaque: return inline_unsafe_access(!is_store, T_INT, Opaque, false); 405 case vmIntrinsics::_getLongOpaque: return inline_unsafe_access(!is_store, T_LONG, Opaque, false); 406 case vmIntrinsics::_getFloatOpaque: return inline_unsafe_access(!is_store, T_FLOAT, Opaque, false); 407 case vmIntrinsics::_getDoubleOpaque: return inline_unsafe_access(!is_store, T_DOUBLE, Opaque, false); 408 409 case vmIntrinsics::_putReferenceOpaque: return inline_unsafe_access( is_store, T_OBJECT, Opaque, false); 410 case vmIntrinsics::_putBooleanOpaque: return inline_unsafe_access( is_store, T_BOOLEAN, Opaque, false); 411 case vmIntrinsics::_putByteOpaque: return inline_unsafe_access( is_store, T_BYTE, Opaque, false); 412 case vmIntrinsics::_putShortOpaque: return inline_unsafe_access( is_store, T_SHORT, Opaque, false); 413 case vmIntrinsics::_putCharOpaque: return inline_unsafe_access( is_store, T_CHAR, Opaque, false); 414 case vmIntrinsics::_putIntOpaque: return inline_unsafe_access( is_store, T_INT, Opaque, false); 415 case vmIntrinsics::_putLongOpaque: return inline_unsafe_access( is_store, T_LONG, Opaque, false); 416 case vmIntrinsics::_putFloatOpaque: return inline_unsafe_access( is_store, T_FLOAT, Opaque, false); 417 case vmIntrinsics::_putDoubleOpaque: return inline_unsafe_access( is_store, T_DOUBLE, Opaque, false); 418 419 case vmIntrinsics::_compareAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap, Volatile); 420 case vmIntrinsics::_compareAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap, Volatile); 421 case vmIntrinsics::_compareAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap, Volatile); 422 case vmIntrinsics::_compareAndSetInt: return inline_unsafe_load_store(T_INT, LS_cmp_swap, Volatile); 423 case vmIntrinsics::_compareAndSetLong: return inline_unsafe_load_store(T_LONG, LS_cmp_swap, Volatile); 424 425 case vmIntrinsics::_weakCompareAndSetReferencePlain: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Relaxed); 426 case vmIntrinsics::_weakCompareAndSetReferenceAcquire: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Acquire); 427 case vmIntrinsics::_weakCompareAndSetReferenceRelease: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Release); 428 case vmIntrinsics::_weakCompareAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Volatile); 429 case vmIntrinsics::_weakCompareAndSetBytePlain: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Relaxed); 430 case vmIntrinsics::_weakCompareAndSetByteAcquire: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Acquire); 431 case vmIntrinsics::_weakCompareAndSetByteRelease: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Release); 432 case vmIntrinsics::_weakCompareAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Volatile); 433 case vmIntrinsics::_weakCompareAndSetShortPlain: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Relaxed); 434 case vmIntrinsics::_weakCompareAndSetShortAcquire: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Acquire); 435 case vmIntrinsics::_weakCompareAndSetShortRelease: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Release); 436 case vmIntrinsics::_weakCompareAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Volatile); 437 case vmIntrinsics::_weakCompareAndSetIntPlain: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Relaxed); 438 case vmIntrinsics::_weakCompareAndSetIntAcquire: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Acquire); 439 case vmIntrinsics::_weakCompareAndSetIntRelease: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Release); 440 case vmIntrinsics::_weakCompareAndSetInt: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Volatile); 441 case vmIntrinsics::_weakCompareAndSetLongPlain: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Relaxed); 442 case vmIntrinsics::_weakCompareAndSetLongAcquire: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Acquire); 443 case vmIntrinsics::_weakCompareAndSetLongRelease: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Release); 444 case vmIntrinsics::_weakCompareAndSetLong: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Volatile); 445 446 case vmIntrinsics::_compareAndExchangeReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Volatile); 447 case vmIntrinsics::_compareAndExchangeReferenceAcquire: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Acquire); 448 case vmIntrinsics::_compareAndExchangeReferenceRelease: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Release); 449 case vmIntrinsics::_compareAndExchangeByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Volatile); 450 case vmIntrinsics::_compareAndExchangeByteAcquire: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Acquire); 451 case vmIntrinsics::_compareAndExchangeByteRelease: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Release); 452 case vmIntrinsics::_compareAndExchangeShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Volatile); 453 case vmIntrinsics::_compareAndExchangeShortAcquire: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Acquire); 454 case vmIntrinsics::_compareAndExchangeShortRelease: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Release); 455 case vmIntrinsics::_compareAndExchangeInt: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Volatile); 456 case vmIntrinsics::_compareAndExchangeIntAcquire: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Acquire); 457 case vmIntrinsics::_compareAndExchangeIntRelease: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Release); 458 case vmIntrinsics::_compareAndExchangeLong: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Volatile); 459 case vmIntrinsics::_compareAndExchangeLongAcquire: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Acquire); 460 case vmIntrinsics::_compareAndExchangeLongRelease: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Release); 461 462 case vmIntrinsics::_getAndAddByte: return inline_unsafe_load_store(T_BYTE, LS_get_add, Volatile); 463 case vmIntrinsics::_getAndAddShort: return inline_unsafe_load_store(T_SHORT, LS_get_add, Volatile); 464 case vmIntrinsics::_getAndAddInt: return inline_unsafe_load_store(T_INT, LS_get_add, Volatile); 465 case vmIntrinsics::_getAndAddLong: return inline_unsafe_load_store(T_LONG, LS_get_add, Volatile); 466 467 case vmIntrinsics::_getAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_get_set, Volatile); 468 case vmIntrinsics::_getAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_get_set, Volatile); 469 case vmIntrinsics::_getAndSetInt: return inline_unsafe_load_store(T_INT, LS_get_set, Volatile); 470 case vmIntrinsics::_getAndSetLong: return inline_unsafe_load_store(T_LONG, LS_get_set, Volatile); 471 case vmIntrinsics::_getAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_get_set, Volatile); 472 473 case vmIntrinsics::_loadFence: 474 case vmIntrinsics::_storeFence: 475 case vmIntrinsics::_storeStoreFence: 476 case vmIntrinsics::_fullFence: return inline_unsafe_fence(intrinsic_id()); 477 478 case vmIntrinsics::_onSpinWait: return inline_onspinwait(); 479 480 case vmIntrinsics::_currentCarrierThread: return inline_native_currentCarrierThread(); 481 case vmIntrinsics::_currentThread: return inline_native_currentThread(); 482 case vmIntrinsics::_setCurrentThread: return inline_native_setCurrentThread(); 483 484 case vmIntrinsics::_scopedValueCache: return inline_native_scopedValueCache(); 485 case vmIntrinsics::_setScopedValueCache: return inline_native_setScopedValueCache(); 486 487 case vmIntrinsics::_Continuation_pin: return inline_native_Continuation_pinning(false); 488 case vmIntrinsics::_Continuation_unpin: return inline_native_Continuation_pinning(true); 489 490 #if INCLUDE_JVMTI 491 case vmIntrinsics::_notifyJvmtiVThreadStart: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_start()), 492 "notifyJvmtiStart", true, false); 493 case vmIntrinsics::_notifyJvmtiVThreadEnd: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_end()), 494 "notifyJvmtiEnd", false, true); 495 case vmIntrinsics::_notifyJvmtiVThreadMount: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_mount()), 496 "notifyJvmtiMount", false, false); 497 case vmIntrinsics::_notifyJvmtiVThreadUnmount: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_unmount()), 498 "notifyJvmtiUnmount", false, false); 499 case vmIntrinsics::_notifyJvmtiVThreadDisableSuspend: return inline_native_notify_jvmti_sync(); 500 #endif 501 502 #ifdef JFR_HAVE_INTRINSICS 503 case vmIntrinsics::_counterTime: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, JfrTime::time_function()), "counterTime"); 504 case vmIntrinsics::_getEventWriter: return inline_native_getEventWriter(); 505 case vmIntrinsics::_jvm_commit: return inline_native_jvm_commit(); 506 #endif 507 case vmIntrinsics::_currentTimeMillis: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis"); 508 case vmIntrinsics::_nanoTime: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime"); 509 case vmIntrinsics::_writeback0: return inline_unsafe_writeback0(); 510 case vmIntrinsics::_writebackPreSync0: return inline_unsafe_writebackSync0(true); 511 case vmIntrinsics::_writebackPostSync0: return inline_unsafe_writebackSync0(false); 512 case vmIntrinsics::_allocateInstance: return inline_unsafe_allocate(); 513 case vmIntrinsics::_copyMemory: return inline_unsafe_copyMemory(); 514 case vmIntrinsics::_setMemory: return inline_unsafe_setMemory(); 515 case vmIntrinsics::_getLength: return inline_native_getLength(); 516 case vmIntrinsics::_copyOf: return inline_array_copyOf(false); 517 case vmIntrinsics::_copyOfRange: return inline_array_copyOf(true); 518 case vmIntrinsics::_equalsB: return inline_array_equals(StrIntrinsicNode::LL); 519 case vmIntrinsics::_equalsC: return inline_array_equals(StrIntrinsicNode::UU); 520 case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex(T_INT); 521 case vmIntrinsics::_Preconditions_checkLongIndex: return inline_preconditions_checkIndex(T_LONG); 522 case vmIntrinsics::_clone: return inline_native_clone(intrinsic()->is_virtual()); 523 524 case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true); 525 case vmIntrinsics::_newArray: return inline_unsafe_newArray(false); 526 527 case vmIntrinsics::_isAssignableFrom: return inline_native_subtype_check(); 528 529 case vmIntrinsics::_isInstance: 530 case vmIntrinsics::_getModifiers: 531 case vmIntrinsics::_isInterface: 532 case vmIntrinsics::_isArray: 533 case vmIntrinsics::_isPrimitive: 534 case vmIntrinsics::_isHidden: 535 case vmIntrinsics::_getSuperclass: 536 case vmIntrinsics::_getClassAccessFlags: return inline_native_Class_query(intrinsic_id()); 537 538 case vmIntrinsics::_floatToRawIntBits: 539 case vmIntrinsics::_floatToIntBits: 540 case vmIntrinsics::_intBitsToFloat: 541 case vmIntrinsics::_doubleToRawLongBits: 542 case vmIntrinsics::_doubleToLongBits: 543 case vmIntrinsics::_longBitsToDouble: 544 case vmIntrinsics::_floatToFloat16: 545 case vmIntrinsics::_float16ToFloat: return inline_fp_conversions(intrinsic_id()); 546 547 case vmIntrinsics::_floatIsFinite: 548 case vmIntrinsics::_floatIsInfinite: 549 case vmIntrinsics::_doubleIsFinite: 550 case vmIntrinsics::_doubleIsInfinite: return inline_fp_range_check(intrinsic_id()); 551 552 case vmIntrinsics::_numberOfLeadingZeros_i: 553 case vmIntrinsics::_numberOfLeadingZeros_l: 554 case vmIntrinsics::_numberOfTrailingZeros_i: 555 case vmIntrinsics::_numberOfTrailingZeros_l: 556 case vmIntrinsics::_bitCount_i: 557 case vmIntrinsics::_bitCount_l: 558 case vmIntrinsics::_reverse_i: 559 case vmIntrinsics::_reverse_l: 560 case vmIntrinsics::_reverseBytes_i: 561 case vmIntrinsics::_reverseBytes_l: 562 case vmIntrinsics::_reverseBytes_s: 563 case vmIntrinsics::_reverseBytes_c: return inline_number_methods(intrinsic_id()); 564 565 case vmIntrinsics::_compress_i: 566 case vmIntrinsics::_compress_l: 567 case vmIntrinsics::_expand_i: 568 case vmIntrinsics::_expand_l: return inline_bitshuffle_methods(intrinsic_id()); 569 570 case vmIntrinsics::_compareUnsigned_i: 571 case vmIntrinsics::_compareUnsigned_l: return inline_compare_unsigned(intrinsic_id()); 572 573 case vmIntrinsics::_divideUnsigned_i: 574 case vmIntrinsics::_divideUnsigned_l: 575 case vmIntrinsics::_remainderUnsigned_i: 576 case vmIntrinsics::_remainderUnsigned_l: return inline_divmod_methods(intrinsic_id()); 577 578 case vmIntrinsics::_getCallerClass: return inline_native_Reflection_getCallerClass(); 579 580 case vmIntrinsics::_Reference_get: return inline_reference_get(); 581 case vmIntrinsics::_Reference_refersTo0: return inline_reference_refersTo0(false); 582 case vmIntrinsics::_PhantomReference_refersTo0: return inline_reference_refersTo0(true); 583 case vmIntrinsics::_Reference_clear0: return inline_reference_clear0(false); 584 case vmIntrinsics::_PhantomReference_clear0: return inline_reference_clear0(true); 585 586 case vmIntrinsics::_Class_cast: return inline_Class_cast(); 587 588 case vmIntrinsics::_aescrypt_encryptBlock: 589 case vmIntrinsics::_aescrypt_decryptBlock: return inline_aescrypt_Block(intrinsic_id()); 590 591 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 592 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 593 return inline_cipherBlockChaining_AESCrypt(intrinsic_id()); 594 595 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 596 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 597 return inline_electronicCodeBook_AESCrypt(intrinsic_id()); 598 599 case vmIntrinsics::_counterMode_AESCrypt: 600 return inline_counterMode_AESCrypt(intrinsic_id()); 601 602 case vmIntrinsics::_galoisCounterMode_AESCrypt: 603 return inline_galoisCounterMode_AESCrypt(); 604 605 case vmIntrinsics::_md5_implCompress: 606 case vmIntrinsics::_sha_implCompress: 607 case vmIntrinsics::_sha2_implCompress: 608 case vmIntrinsics::_sha5_implCompress: 609 case vmIntrinsics::_sha3_implCompress: 610 return inline_digestBase_implCompress(intrinsic_id()); 611 612 case vmIntrinsics::_digestBase_implCompressMB: 613 return inline_digestBase_implCompressMB(predicate); 614 615 case vmIntrinsics::_multiplyToLen: 616 return inline_multiplyToLen(); 617 618 case vmIntrinsics::_squareToLen: 619 return inline_squareToLen(); 620 621 case vmIntrinsics::_mulAdd: 622 return inline_mulAdd(); 623 624 case vmIntrinsics::_montgomeryMultiply: 625 return inline_montgomeryMultiply(); 626 case vmIntrinsics::_montgomerySquare: 627 return inline_montgomerySquare(); 628 629 case vmIntrinsics::_bigIntegerRightShiftWorker: 630 return inline_bigIntegerShift(true); 631 case vmIntrinsics::_bigIntegerLeftShiftWorker: 632 return inline_bigIntegerShift(false); 633 634 case vmIntrinsics::_vectorizedMismatch: 635 return inline_vectorizedMismatch(); 636 637 case vmIntrinsics::_ghash_processBlocks: 638 return inline_ghash_processBlocks(); 639 case vmIntrinsics::_chacha20Block: 640 return inline_chacha20Block(); 641 case vmIntrinsics::_base64_encodeBlock: 642 return inline_base64_encodeBlock(); 643 case vmIntrinsics::_base64_decodeBlock: 644 return inline_base64_decodeBlock(); 645 case vmIntrinsics::_poly1305_processBlocks: 646 return inline_poly1305_processBlocks(); 647 case vmIntrinsics::_intpoly_montgomeryMult_P256: 648 return inline_intpoly_montgomeryMult_P256(); 649 case vmIntrinsics::_intpoly_assign: 650 return inline_intpoly_assign(); 651 case vmIntrinsics::_encodeISOArray: 652 case vmIntrinsics::_encodeByteISOArray: 653 return inline_encodeISOArray(false); 654 case vmIntrinsics::_encodeAsciiArray: 655 return inline_encodeISOArray(true); 656 657 case vmIntrinsics::_updateCRC32: 658 return inline_updateCRC32(); 659 case vmIntrinsics::_updateBytesCRC32: 660 return inline_updateBytesCRC32(); 661 case vmIntrinsics::_updateByteBufferCRC32: 662 return inline_updateByteBufferCRC32(); 663 664 case vmIntrinsics::_updateBytesCRC32C: 665 return inline_updateBytesCRC32C(); 666 case vmIntrinsics::_updateDirectByteBufferCRC32C: 667 return inline_updateDirectByteBufferCRC32C(); 668 669 case vmIntrinsics::_updateBytesAdler32: 670 return inline_updateBytesAdler32(); 671 case vmIntrinsics::_updateByteBufferAdler32: 672 return inline_updateByteBufferAdler32(); 673 674 case vmIntrinsics::_profileBoolean: 675 return inline_profileBoolean(); 676 case vmIntrinsics::_isCompileConstant: 677 return inline_isCompileConstant(); 678 679 case vmIntrinsics::_countPositives: 680 return inline_countPositives(); 681 682 case vmIntrinsics::_fmaD: 683 case vmIntrinsics::_fmaF: 684 return inline_fma(intrinsic_id()); 685 686 case vmIntrinsics::_isDigit: 687 case vmIntrinsics::_isLowerCase: 688 case vmIntrinsics::_isUpperCase: 689 case vmIntrinsics::_isWhitespace: 690 return inline_character_compare(intrinsic_id()); 691 692 case vmIntrinsics::_min: 693 case vmIntrinsics::_max: 694 case vmIntrinsics::_min_strict: 695 case vmIntrinsics::_max_strict: 696 return inline_min_max(intrinsic_id()); 697 698 case vmIntrinsics::_maxF: 699 case vmIntrinsics::_minF: 700 case vmIntrinsics::_maxD: 701 case vmIntrinsics::_minD: 702 case vmIntrinsics::_maxF_strict: 703 case vmIntrinsics::_minF_strict: 704 case vmIntrinsics::_maxD_strict: 705 case vmIntrinsics::_minD_strict: 706 return inline_fp_min_max(intrinsic_id()); 707 708 case vmIntrinsics::_VectorUnaryOp: 709 return inline_vector_nary_operation(1); 710 case vmIntrinsics::_VectorBinaryOp: 711 return inline_vector_nary_operation(2); 712 case vmIntrinsics::_VectorTernaryOp: 713 return inline_vector_nary_operation(3); 714 case vmIntrinsics::_VectorFromBitsCoerced: 715 return inline_vector_frombits_coerced(); 716 case vmIntrinsics::_VectorMaskOp: 717 return inline_vector_mask_operation(); 718 case vmIntrinsics::_VectorLoadOp: 719 return inline_vector_mem_operation(/*is_store=*/false); 720 case vmIntrinsics::_VectorLoadMaskedOp: 721 return inline_vector_mem_masked_operation(/*is_store*/false); 722 case vmIntrinsics::_VectorStoreOp: 723 return inline_vector_mem_operation(/*is_store=*/true); 724 case vmIntrinsics::_VectorStoreMaskedOp: 725 return inline_vector_mem_masked_operation(/*is_store=*/true); 726 case vmIntrinsics::_VectorGatherOp: 727 return inline_vector_gather_scatter(/*is_scatter*/ false); 728 case vmIntrinsics::_VectorScatterOp: 729 return inline_vector_gather_scatter(/*is_scatter*/ true); 730 case vmIntrinsics::_VectorReductionCoerced: 731 return inline_vector_reduction(); 732 case vmIntrinsics::_VectorTest: 733 return inline_vector_test(); 734 case vmIntrinsics::_VectorBlend: 735 return inline_vector_blend(); 736 case vmIntrinsics::_VectorRearrange: 737 return inline_vector_rearrange(); 738 case vmIntrinsics::_VectorSelectFrom: 739 return inline_vector_select_from(); 740 case vmIntrinsics::_VectorCompare: 741 return inline_vector_compare(); 742 case vmIntrinsics::_VectorBroadcastInt: 743 return inline_vector_broadcast_int(); 744 case vmIntrinsics::_VectorConvert: 745 return inline_vector_convert(); 746 case vmIntrinsics::_VectorInsert: 747 return inline_vector_insert(); 748 case vmIntrinsics::_VectorExtract: 749 return inline_vector_extract(); 750 case vmIntrinsics::_VectorCompressExpand: 751 return inline_vector_compress_expand(); 752 case vmIntrinsics::_VectorSelectFromTwoVectorOp: 753 return inline_vector_select_from_two_vectors(); 754 case vmIntrinsics::_IndexVector: 755 return inline_index_vector(); 756 case vmIntrinsics::_IndexPartiallyInUpperRange: 757 return inline_index_partially_in_upper_range(); 758 759 case vmIntrinsics::_getObjectSize: 760 return inline_getObjectSize(); 761 762 case vmIntrinsics::_blackhole: 763 return inline_blackhole(); 764 765 default: 766 // If you get here, it may be that someone has added a new intrinsic 767 // to the list in vmIntrinsics.hpp without implementing it here. 768 #ifndef PRODUCT 769 if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) { 770 tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)", 771 vmIntrinsics::name_at(intrinsic_id()), vmIntrinsics::as_int(intrinsic_id())); 772 } 773 #endif 774 return false; 775 } 776 } 777 778 Node* LibraryCallKit::try_to_predicate(int predicate) { 779 if (!jvms()->has_method()) { 780 // Root JVMState has a null method. 781 assert(map()->memory()->Opcode() == Op_Parm, ""); 782 // Insert the memory aliasing node 783 set_all_memory(reset_memory()); 784 } 785 assert(merged_memory(), ""); 786 787 switch (intrinsic_id()) { 788 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 789 return inline_cipherBlockChaining_AESCrypt_predicate(false); 790 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 791 return inline_cipherBlockChaining_AESCrypt_predicate(true); 792 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 793 return inline_electronicCodeBook_AESCrypt_predicate(false); 794 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 795 return inline_electronicCodeBook_AESCrypt_predicate(true); 796 case vmIntrinsics::_counterMode_AESCrypt: 797 return inline_counterMode_AESCrypt_predicate(); 798 case vmIntrinsics::_digestBase_implCompressMB: 799 return inline_digestBase_implCompressMB_predicate(predicate); 800 case vmIntrinsics::_galoisCounterMode_AESCrypt: 801 return inline_galoisCounterMode_AESCrypt_predicate(); 802 803 default: 804 // If you get here, it may be that someone has added a new intrinsic 805 // to the list in vmIntrinsics.hpp without implementing it here. 806 #ifndef PRODUCT 807 if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) { 808 tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)", 809 vmIntrinsics::name_at(intrinsic_id()), vmIntrinsics::as_int(intrinsic_id())); 810 } 811 #endif 812 Node* slow_ctl = control(); 813 set_control(top()); // No fast path intrinsic 814 return slow_ctl; 815 } 816 } 817 818 //------------------------------set_result------------------------------- 819 // Helper function for finishing intrinsics. 820 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) { 821 record_for_igvn(region); 822 set_control(_gvn.transform(region)); 823 set_result( _gvn.transform(value)); 824 assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity"); 825 } 826 827 //------------------------------generate_guard--------------------------- 828 // Helper function for generating guarded fast-slow graph structures. 829 // The given 'test', if true, guards a slow path. If the test fails 830 // then a fast path can be taken. (We generally hope it fails.) 831 // In all cases, GraphKit::control() is updated to the fast path. 832 // The returned value represents the control for the slow path. 833 // The return value is never 'top'; it is either a valid control 834 // or null if it is obvious that the slow path can never be taken. 835 // Also, if region and the slow control are not null, the slow edge 836 // is appended to the region. 837 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) { 838 if (stopped()) { 839 // Already short circuited. 840 return nullptr; 841 } 842 843 // Build an if node and its projections. 844 // If test is true we take the slow path, which we assume is uncommon. 845 if (_gvn.type(test) == TypeInt::ZERO) { 846 // The slow branch is never taken. No need to build this guard. 847 return nullptr; 848 } 849 850 IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN); 851 852 Node* if_slow = _gvn.transform(new IfTrueNode(iff)); 853 if (if_slow == top()) { 854 // The slow branch is never taken. No need to build this guard. 855 return nullptr; 856 } 857 858 if (region != nullptr) 859 region->add_req(if_slow); 860 861 Node* if_fast = _gvn.transform(new IfFalseNode(iff)); 862 set_control(if_fast); 863 864 return if_slow; 865 } 866 867 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) { 868 return generate_guard(test, region, PROB_UNLIKELY_MAG(3)); 869 } 870 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) { 871 return generate_guard(test, region, PROB_FAIR); 872 } 873 874 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region, 875 Node* *pos_index) { 876 if (stopped()) 877 return nullptr; // already stopped 878 if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint] 879 return nullptr; // index is already adequately typed 880 Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0))); 881 Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt)); 882 Node* is_neg = generate_guard(bol_lt, region, PROB_MIN); 883 if (is_neg != nullptr && pos_index != nullptr) { 884 // Emulate effect of Parse::adjust_map_after_if. 885 Node* ccast = new CastIINode(control(), index, TypeInt::POS); 886 (*pos_index) = _gvn.transform(ccast); 887 } 888 return is_neg; 889 } 890 891 // Make sure that 'position' is a valid limit index, in [0..length]. 892 // There are two equivalent plans for checking this: 893 // A. (offset + copyLength) unsigned<= arrayLength 894 // B. offset <= (arrayLength - copyLength) 895 // We require that all of the values above, except for the sum and 896 // difference, are already known to be non-negative. 897 // Plan A is robust in the face of overflow, if offset and copyLength 898 // are both hugely positive. 899 // 900 // Plan B is less direct and intuitive, but it does not overflow at 901 // all, since the difference of two non-negatives is always 902 // representable. Whenever Java methods must perform the equivalent 903 // check they generally use Plan B instead of Plan A. 904 // For the moment we use Plan A. 905 inline Node* LibraryCallKit::generate_limit_guard(Node* offset, 906 Node* subseq_length, 907 Node* array_length, 908 RegionNode* region) { 909 if (stopped()) 910 return nullptr; // already stopped 911 bool zero_offset = _gvn.type(offset) == TypeInt::ZERO; 912 if (zero_offset && subseq_length->eqv_uncast(array_length)) 913 return nullptr; // common case of whole-array copy 914 Node* last = subseq_length; 915 if (!zero_offset) // last += offset 916 last = _gvn.transform(new AddINode(last, offset)); 917 Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last)); 918 Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt)); 919 Node* is_over = generate_guard(bol_lt, region, PROB_MIN); 920 return is_over; 921 } 922 923 // Emit range checks for the given String.value byte array 924 void LibraryCallKit::generate_string_range_check(Node* array, Node* offset, Node* count, bool char_count) { 925 if (stopped()) { 926 return; // already stopped 927 } 928 RegionNode* bailout = new RegionNode(1); 929 record_for_igvn(bailout); 930 if (char_count) { 931 // Convert char count to byte count 932 count = _gvn.transform(new LShiftINode(count, intcon(1))); 933 } 934 935 // Offset and count must not be negative 936 generate_negative_guard(offset, bailout); 937 generate_negative_guard(count, bailout); 938 // Offset + count must not exceed length of array 939 generate_limit_guard(offset, count, load_array_length(array), bailout); 940 941 if (bailout->req() > 1) { 942 PreserveJVMState pjvms(this); 943 set_control(_gvn.transform(bailout)); 944 uncommon_trap(Deoptimization::Reason_intrinsic, 945 Deoptimization::Action_maybe_recompile); 946 } 947 } 948 949 Node* LibraryCallKit::current_thread_helper(Node*& tls_output, ByteSize handle_offset, 950 bool is_immutable) { 951 ciKlass* thread_klass = env()->Thread_klass(); 952 const Type* thread_type 953 = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull); 954 955 Node* thread = _gvn.transform(new ThreadLocalNode()); 956 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(handle_offset)); 957 tls_output = thread; 958 959 Node* thread_obj_handle 960 = (is_immutable 961 ? LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(), 962 TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered) 963 : make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered)); 964 thread_obj_handle = _gvn.transform(thread_obj_handle); 965 966 DecoratorSet decorators = IN_NATIVE; 967 if (is_immutable) { 968 decorators |= C2_IMMUTABLE_MEMORY; 969 } 970 return access_load(thread_obj_handle, thread_type, T_OBJECT, decorators); 971 } 972 973 //--------------------------generate_current_thread-------------------- 974 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) { 975 return current_thread_helper(tls_output, JavaThread::threadObj_offset(), 976 /*is_immutable*/false); 977 } 978 979 //--------------------------generate_virtual_thread-------------------- 980 Node* LibraryCallKit::generate_virtual_thread(Node* tls_output) { 981 return current_thread_helper(tls_output, JavaThread::vthread_offset(), 982 !C->method()->changes_current_thread()); 983 } 984 985 //------------------------------make_string_method_node------------------------ 986 // Helper method for String intrinsic functions. This version is called with 987 // str1 and str2 pointing to byte[] nodes containing Latin1 or UTF16 encoded 988 // characters (depending on 'is_byte'). cnt1 and cnt2 are pointing to Int nodes 989 // containing the lengths of str1 and str2. 990 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae) { 991 Node* result = nullptr; 992 switch (opcode) { 993 case Op_StrIndexOf: 994 result = new StrIndexOfNode(control(), memory(TypeAryPtr::BYTES), 995 str1_start, cnt1, str2_start, cnt2, ae); 996 break; 997 case Op_StrComp: 998 result = new StrCompNode(control(), memory(TypeAryPtr::BYTES), 999 str1_start, cnt1, str2_start, cnt2, ae); 1000 break; 1001 case Op_StrEquals: 1002 // We already know that cnt1 == cnt2 here (checked in 'inline_string_equals'). 1003 // Use the constant length if there is one because optimized match rule may exist. 1004 result = new StrEqualsNode(control(), memory(TypeAryPtr::BYTES), 1005 str1_start, str2_start, cnt2->is_Con() ? cnt2 : cnt1, ae); 1006 break; 1007 default: 1008 ShouldNotReachHere(); 1009 return nullptr; 1010 } 1011 1012 // All these intrinsics have checks. 1013 C->set_has_split_ifs(true); // Has chance for split-if optimization 1014 clear_upper_avx(); 1015 1016 return _gvn.transform(result); 1017 } 1018 1019 //------------------------------inline_string_compareTo------------------------ 1020 bool LibraryCallKit::inline_string_compareTo(StrIntrinsicNode::ArgEnc ae) { 1021 Node* arg1 = argument(0); 1022 Node* arg2 = argument(1); 1023 1024 arg1 = must_be_not_null(arg1, true); 1025 arg2 = must_be_not_null(arg2, true); 1026 1027 // Get start addr and length of first argument 1028 Node* arg1_start = array_element_address(arg1, intcon(0), T_BYTE); 1029 Node* arg1_cnt = load_array_length(arg1); 1030 1031 // Get start addr and length of second argument 1032 Node* arg2_start = array_element_address(arg2, intcon(0), T_BYTE); 1033 Node* arg2_cnt = load_array_length(arg2); 1034 1035 Node* result = make_string_method_node(Op_StrComp, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae); 1036 set_result(result); 1037 return true; 1038 } 1039 1040 //------------------------------inline_string_equals------------------------ 1041 bool LibraryCallKit::inline_string_equals(StrIntrinsicNode::ArgEnc ae) { 1042 Node* arg1 = argument(0); 1043 Node* arg2 = argument(1); 1044 1045 // paths (plus control) merge 1046 RegionNode* region = new RegionNode(3); 1047 Node* phi = new PhiNode(region, TypeInt::BOOL); 1048 1049 if (!stopped()) { 1050 1051 arg1 = must_be_not_null(arg1, true); 1052 arg2 = must_be_not_null(arg2, true); 1053 1054 // Get start addr and length of first argument 1055 Node* arg1_start = array_element_address(arg1, intcon(0), T_BYTE); 1056 Node* arg1_cnt = load_array_length(arg1); 1057 1058 // Get start addr and length of second argument 1059 Node* arg2_start = array_element_address(arg2, intcon(0), T_BYTE); 1060 Node* arg2_cnt = load_array_length(arg2); 1061 1062 // Check for arg1_cnt != arg2_cnt 1063 Node* cmp = _gvn.transform(new CmpINode(arg1_cnt, arg2_cnt)); 1064 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne)); 1065 Node* if_ne = generate_slow_guard(bol, nullptr); 1066 if (if_ne != nullptr) { 1067 phi->init_req(2, intcon(0)); 1068 region->init_req(2, if_ne); 1069 } 1070 1071 // Check for count == 0 is done by assembler code for StrEquals. 1072 1073 if (!stopped()) { 1074 Node* equals = make_string_method_node(Op_StrEquals, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae); 1075 phi->init_req(1, equals); 1076 region->init_req(1, control()); 1077 } 1078 } 1079 1080 // post merge 1081 set_control(_gvn.transform(region)); 1082 record_for_igvn(region); 1083 1084 set_result(_gvn.transform(phi)); 1085 return true; 1086 } 1087 1088 //------------------------------inline_array_equals---------------------------- 1089 bool LibraryCallKit::inline_array_equals(StrIntrinsicNode::ArgEnc ae) { 1090 assert(ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::LL, "unsupported array types"); 1091 Node* arg1 = argument(0); 1092 Node* arg2 = argument(1); 1093 1094 const TypeAryPtr* mtype = (ae == StrIntrinsicNode::UU) ? TypeAryPtr::CHARS : TypeAryPtr::BYTES; 1095 set_result(_gvn.transform(new AryEqNode(control(), memory(mtype), arg1, arg2, ae))); 1096 clear_upper_avx(); 1097 1098 return true; 1099 } 1100 1101 1102 //------------------------------inline_countPositives------------------------------ 1103 bool LibraryCallKit::inline_countPositives() { 1104 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1105 return false; 1106 } 1107 1108 assert(callee()->signature()->size() == 3, "countPositives has 3 parameters"); 1109 // no receiver since it is static method 1110 Node* ba = argument(0); 1111 Node* offset = argument(1); 1112 Node* len = argument(2); 1113 1114 ba = must_be_not_null(ba, true); 1115 1116 // Range checks 1117 generate_string_range_check(ba, offset, len, false); 1118 if (stopped()) { 1119 return true; 1120 } 1121 Node* ba_start = array_element_address(ba, offset, T_BYTE); 1122 Node* result = new CountPositivesNode(control(), memory(TypeAryPtr::BYTES), ba_start, len); 1123 set_result(_gvn.transform(result)); 1124 clear_upper_avx(); 1125 return true; 1126 } 1127 1128 bool LibraryCallKit::inline_preconditions_checkIndex(BasicType bt) { 1129 Node* index = argument(0); 1130 Node* length = bt == T_INT ? argument(1) : argument(2); 1131 if (too_many_traps(Deoptimization::Reason_intrinsic) || too_many_traps(Deoptimization::Reason_range_check)) { 1132 return false; 1133 } 1134 1135 // check that length is positive 1136 Node* len_pos_cmp = _gvn.transform(CmpNode::make(length, integercon(0, bt), bt)); 1137 Node* len_pos_bol = _gvn.transform(new BoolNode(len_pos_cmp, BoolTest::ge)); 1138 1139 { 1140 BuildCutout unless(this, len_pos_bol, PROB_MAX); 1141 uncommon_trap(Deoptimization::Reason_intrinsic, 1142 Deoptimization::Action_make_not_entrant); 1143 } 1144 1145 if (stopped()) { 1146 // Length is known to be always negative during compilation and the IR graph so far constructed is good so return success 1147 return true; 1148 } 1149 1150 // length is now known positive, add a cast node to make this explicit 1151 jlong upper_bound = _gvn.type(length)->is_integer(bt)->hi_as_long(); 1152 Node* casted_length = ConstraintCastNode::make_cast_for_basic_type( 1153 control(), length, TypeInteger::make(0, upper_bound, Type::WidenMax, bt), 1154 ConstraintCastNode::RegularDependency, bt); 1155 casted_length = _gvn.transform(casted_length); 1156 replace_in_map(length, casted_length); 1157 length = casted_length; 1158 1159 // Use an unsigned comparison for the range check itself 1160 Node* rc_cmp = _gvn.transform(CmpNode::make(index, length, bt, true)); 1161 BoolTest::mask btest = BoolTest::lt; 1162 Node* rc_bool = _gvn.transform(new BoolNode(rc_cmp, btest)); 1163 RangeCheckNode* rc = new RangeCheckNode(control(), rc_bool, PROB_MAX, COUNT_UNKNOWN); 1164 _gvn.set_type(rc, rc->Value(&_gvn)); 1165 if (!rc_bool->is_Con()) { 1166 record_for_igvn(rc); 1167 } 1168 set_control(_gvn.transform(new IfTrueNode(rc))); 1169 { 1170 PreserveJVMState pjvms(this); 1171 set_control(_gvn.transform(new IfFalseNode(rc))); 1172 uncommon_trap(Deoptimization::Reason_range_check, 1173 Deoptimization::Action_make_not_entrant); 1174 } 1175 1176 if (stopped()) { 1177 // Range check is known to always fail during compilation and the IR graph so far constructed is good so return success 1178 return true; 1179 } 1180 1181 // index is now known to be >= 0 and < length, cast it 1182 Node* result = ConstraintCastNode::make_cast_for_basic_type( 1183 control(), index, TypeInteger::make(0, upper_bound, Type::WidenMax, bt), 1184 ConstraintCastNode::RegularDependency, bt); 1185 result = _gvn.transform(result); 1186 set_result(result); 1187 replace_in_map(index, result); 1188 return true; 1189 } 1190 1191 //------------------------------inline_string_indexOf------------------------ 1192 bool LibraryCallKit::inline_string_indexOf(StrIntrinsicNode::ArgEnc ae) { 1193 if (!Matcher::match_rule_supported(Op_StrIndexOf)) { 1194 return false; 1195 } 1196 Node* src = argument(0); 1197 Node* tgt = argument(1); 1198 1199 // Make the merge point 1200 RegionNode* result_rgn = new RegionNode(4); 1201 Node* result_phi = new PhiNode(result_rgn, TypeInt::INT); 1202 1203 src = must_be_not_null(src, true); 1204 tgt = must_be_not_null(tgt, true); 1205 1206 // Get start addr and length of source string 1207 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 1208 Node* src_count = load_array_length(src); 1209 1210 // Get start addr and length of substring 1211 Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE); 1212 Node* tgt_count = load_array_length(tgt); 1213 1214 Node* result = nullptr; 1215 bool call_opt_stub = (StubRoutines::_string_indexof_array[ae] != nullptr); 1216 1217 if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) { 1218 // Divide src size by 2 if String is UTF16 encoded 1219 src_count = _gvn.transform(new RShiftINode(src_count, intcon(1))); 1220 } 1221 if (ae == StrIntrinsicNode::UU) { 1222 // Divide substring size by 2 if String is UTF16 encoded 1223 tgt_count = _gvn.transform(new RShiftINode(tgt_count, intcon(1))); 1224 } 1225 1226 if (call_opt_stub) { 1227 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::string_IndexOf_Type(), 1228 StubRoutines::_string_indexof_array[ae], 1229 "stringIndexOf", TypePtr::BOTTOM, src_start, 1230 src_count, tgt_start, tgt_count); 1231 result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 1232 } else { 1233 result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, 1234 result_rgn, result_phi, ae); 1235 } 1236 if (result != nullptr) { 1237 result_phi->init_req(3, result); 1238 result_rgn->init_req(3, control()); 1239 } 1240 set_control(_gvn.transform(result_rgn)); 1241 record_for_igvn(result_rgn); 1242 set_result(_gvn.transform(result_phi)); 1243 1244 return true; 1245 } 1246 1247 //-----------------------------inline_string_indexOfI----------------------- 1248 bool LibraryCallKit::inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae) { 1249 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1250 return false; 1251 } 1252 if (!Matcher::match_rule_supported(Op_StrIndexOf)) { 1253 return false; 1254 } 1255 1256 assert(callee()->signature()->size() == 5, "String.indexOf() has 5 arguments"); 1257 Node* src = argument(0); // byte[] 1258 Node* src_count = argument(1); // char count 1259 Node* tgt = argument(2); // byte[] 1260 Node* tgt_count = argument(3); // char count 1261 Node* from_index = argument(4); // char index 1262 1263 src = must_be_not_null(src, true); 1264 tgt = must_be_not_null(tgt, true); 1265 1266 // Multiply byte array index by 2 if String is UTF16 encoded 1267 Node* src_offset = (ae == StrIntrinsicNode::LL) ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1))); 1268 src_count = _gvn.transform(new SubINode(src_count, from_index)); 1269 Node* src_start = array_element_address(src, src_offset, T_BYTE); 1270 Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE); 1271 1272 // Range checks 1273 generate_string_range_check(src, src_offset, src_count, ae != StrIntrinsicNode::LL); 1274 generate_string_range_check(tgt, intcon(0), tgt_count, ae == StrIntrinsicNode::UU); 1275 if (stopped()) { 1276 return true; 1277 } 1278 1279 RegionNode* region = new RegionNode(5); 1280 Node* phi = new PhiNode(region, TypeInt::INT); 1281 Node* result = nullptr; 1282 1283 bool call_opt_stub = (StubRoutines::_string_indexof_array[ae] != nullptr); 1284 1285 if (call_opt_stub) { 1286 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::string_IndexOf_Type(), 1287 StubRoutines::_string_indexof_array[ae], 1288 "stringIndexOf", TypePtr::BOTTOM, src_start, 1289 src_count, tgt_start, tgt_count); 1290 result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 1291 } else { 1292 result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, 1293 region, phi, ae); 1294 } 1295 if (result != nullptr) { 1296 // The result is index relative to from_index if substring was found, -1 otherwise. 1297 // Generate code which will fold into cmove. 1298 Node* cmp = _gvn.transform(new CmpINode(result, intcon(0))); 1299 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt)); 1300 1301 Node* if_lt = generate_slow_guard(bol, nullptr); 1302 if (if_lt != nullptr) { 1303 // result == -1 1304 phi->init_req(3, result); 1305 region->init_req(3, if_lt); 1306 } 1307 if (!stopped()) { 1308 result = _gvn.transform(new AddINode(result, from_index)); 1309 phi->init_req(4, result); 1310 region->init_req(4, control()); 1311 } 1312 } 1313 1314 set_control(_gvn.transform(region)); 1315 record_for_igvn(region); 1316 set_result(_gvn.transform(phi)); 1317 clear_upper_avx(); 1318 1319 return true; 1320 } 1321 1322 // Create StrIndexOfNode with fast path checks 1323 Node* LibraryCallKit::make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count, 1324 RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae) { 1325 // Check for substr count > string count 1326 Node* cmp = _gvn.transform(new CmpINode(tgt_count, src_count)); 1327 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt)); 1328 Node* if_gt = generate_slow_guard(bol, nullptr); 1329 if (if_gt != nullptr) { 1330 phi->init_req(1, intcon(-1)); 1331 region->init_req(1, if_gt); 1332 } 1333 if (!stopped()) { 1334 // Check for substr count == 0 1335 cmp = _gvn.transform(new CmpINode(tgt_count, intcon(0))); 1336 bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 1337 Node* if_zero = generate_slow_guard(bol, nullptr); 1338 if (if_zero != nullptr) { 1339 phi->init_req(2, intcon(0)); 1340 region->init_req(2, if_zero); 1341 } 1342 } 1343 if (!stopped()) { 1344 return make_string_method_node(Op_StrIndexOf, src_start, src_count, tgt_start, tgt_count, ae); 1345 } 1346 return nullptr; 1347 } 1348 1349 //-----------------------------inline_string_indexOfChar----------------------- 1350 bool LibraryCallKit::inline_string_indexOfChar(StrIntrinsicNode::ArgEnc ae) { 1351 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1352 return false; 1353 } 1354 if (!Matcher::match_rule_supported(Op_StrIndexOfChar)) { 1355 return false; 1356 } 1357 assert(callee()->signature()->size() == 4, "String.indexOfChar() has 4 arguments"); 1358 Node* src = argument(0); // byte[] 1359 Node* int_ch = argument(1); 1360 Node* from_index = argument(2); 1361 Node* max = argument(3); 1362 1363 src = must_be_not_null(src, true); 1364 1365 Node* src_offset = ae == StrIntrinsicNode::L ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1))); 1366 Node* src_start = array_element_address(src, src_offset, T_BYTE); 1367 Node* src_count = _gvn.transform(new SubINode(max, from_index)); 1368 1369 // Range checks 1370 generate_string_range_check(src, src_offset, src_count, ae == StrIntrinsicNode::U); 1371 1372 // Check for int_ch >= 0 1373 Node* int_ch_cmp = _gvn.transform(new CmpINode(int_ch, intcon(0))); 1374 Node* int_ch_bol = _gvn.transform(new BoolNode(int_ch_cmp, BoolTest::ge)); 1375 { 1376 BuildCutout unless(this, int_ch_bol, PROB_MAX); 1377 uncommon_trap(Deoptimization::Reason_intrinsic, 1378 Deoptimization::Action_maybe_recompile); 1379 } 1380 if (stopped()) { 1381 return true; 1382 } 1383 1384 RegionNode* region = new RegionNode(3); 1385 Node* phi = new PhiNode(region, TypeInt::INT); 1386 1387 Node* result = new StrIndexOfCharNode(control(), memory(TypeAryPtr::BYTES), src_start, src_count, int_ch, ae); 1388 C->set_has_split_ifs(true); // Has chance for split-if optimization 1389 _gvn.transform(result); 1390 1391 Node* cmp = _gvn.transform(new CmpINode(result, intcon(0))); 1392 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt)); 1393 1394 Node* if_lt = generate_slow_guard(bol, nullptr); 1395 if (if_lt != nullptr) { 1396 // result == -1 1397 phi->init_req(2, result); 1398 region->init_req(2, if_lt); 1399 } 1400 if (!stopped()) { 1401 result = _gvn.transform(new AddINode(result, from_index)); 1402 phi->init_req(1, result); 1403 region->init_req(1, control()); 1404 } 1405 set_control(_gvn.transform(region)); 1406 record_for_igvn(region); 1407 set_result(_gvn.transform(phi)); 1408 clear_upper_avx(); 1409 1410 return true; 1411 } 1412 //---------------------------inline_string_copy--------------------- 1413 // compressIt == true --> generate a compressed copy operation (compress char[]/byte[] to byte[]) 1414 // int StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) 1415 // int StringUTF16.compress(byte[] src, int srcOff, byte[] dst, int dstOff, int len) 1416 // compressIt == false --> generate an inflated copy operation (inflate byte[] to char[]/byte[]) 1417 // void StringLatin1.inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len) 1418 // void StringLatin1.inflate(byte[] src, int srcOff, byte[] dst, int dstOff, int len) 1419 bool LibraryCallKit::inline_string_copy(bool compress) { 1420 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1421 return false; 1422 } 1423 int nargs = 5; // 2 oops, 3 ints 1424 assert(callee()->signature()->size() == nargs, "string copy has 5 arguments"); 1425 1426 Node* src = argument(0); 1427 Node* src_offset = argument(1); 1428 Node* dst = argument(2); 1429 Node* dst_offset = argument(3); 1430 Node* length = argument(4); 1431 1432 // Check for allocation before we add nodes that would confuse 1433 // tightly_coupled_allocation() 1434 AllocateArrayNode* alloc = tightly_coupled_allocation(dst); 1435 1436 // Figure out the size and type of the elements we will be copying. 1437 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 1438 const TypeAryPtr* dst_type = dst->Value(&_gvn)->isa_aryptr(); 1439 if (src_type == nullptr || dst_type == nullptr) { 1440 return false; 1441 } 1442 BasicType src_elem = src_type->elem()->array_element_basic_type(); 1443 BasicType dst_elem = dst_type->elem()->array_element_basic_type(); 1444 assert((compress && dst_elem == T_BYTE && (src_elem == T_BYTE || src_elem == T_CHAR)) || 1445 (!compress && src_elem == T_BYTE && (dst_elem == T_BYTE || dst_elem == T_CHAR)), 1446 "Unsupported array types for inline_string_copy"); 1447 1448 src = must_be_not_null(src, true); 1449 dst = must_be_not_null(dst, true); 1450 1451 // Convert char[] offsets to byte[] offsets 1452 bool convert_src = (compress && src_elem == T_BYTE); 1453 bool convert_dst = (!compress && dst_elem == T_BYTE); 1454 if (convert_src) { 1455 src_offset = _gvn.transform(new LShiftINode(src_offset, intcon(1))); 1456 } else if (convert_dst) { 1457 dst_offset = _gvn.transform(new LShiftINode(dst_offset, intcon(1))); 1458 } 1459 1460 // Range checks 1461 generate_string_range_check(src, src_offset, length, convert_src); 1462 generate_string_range_check(dst, dst_offset, length, convert_dst); 1463 if (stopped()) { 1464 return true; 1465 } 1466 1467 Node* src_start = array_element_address(src, src_offset, src_elem); 1468 Node* dst_start = array_element_address(dst, dst_offset, dst_elem); 1469 // 'src_start' points to src array + scaled offset 1470 // 'dst_start' points to dst array + scaled offset 1471 Node* count = nullptr; 1472 if (compress) { 1473 count = compress_string(src_start, TypeAryPtr::get_array_body_type(src_elem), dst_start, length); 1474 } else { 1475 inflate_string(src_start, dst_start, TypeAryPtr::get_array_body_type(dst_elem), length); 1476 } 1477 1478 if (alloc != nullptr) { 1479 if (alloc->maybe_set_complete(&_gvn)) { 1480 // "You break it, you buy it." 1481 InitializeNode* init = alloc->initialization(); 1482 assert(init->is_complete(), "we just did this"); 1483 init->set_complete_with_arraycopy(); 1484 assert(dst->is_CheckCastPP(), "sanity"); 1485 assert(dst->in(0)->in(0) == init, "dest pinned"); 1486 } 1487 // Do not let stores that initialize this object be reordered with 1488 // a subsequent store that would make this object accessible by 1489 // other threads. 1490 // Record what AllocateNode this StoreStore protects so that 1491 // escape analysis can go from the MemBarStoreStoreNode to the 1492 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1493 // based on the escape status of the AllocateNode. 1494 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1495 } 1496 if (compress) { 1497 set_result(_gvn.transform(count)); 1498 } 1499 clear_upper_avx(); 1500 1501 return true; 1502 } 1503 1504 #ifdef _LP64 1505 #define XTOP ,top() /*additional argument*/ 1506 #else //_LP64 1507 #define XTOP /*no additional argument*/ 1508 #endif //_LP64 1509 1510 //------------------------inline_string_toBytesU-------------------------- 1511 // public static byte[] StringUTF16.toBytes(char[] value, int off, int len) 1512 bool LibraryCallKit::inline_string_toBytesU() { 1513 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1514 return false; 1515 } 1516 // Get the arguments. 1517 Node* value = argument(0); 1518 Node* offset = argument(1); 1519 Node* length = argument(2); 1520 1521 Node* newcopy = nullptr; 1522 1523 // Set the original stack and the reexecute bit for the interpreter to reexecute 1524 // the bytecode that invokes StringUTF16.toBytes() if deoptimization happens. 1525 { PreserveReexecuteState preexecs(this); 1526 jvms()->set_should_reexecute(true); 1527 1528 // Check if a null path was taken unconditionally. 1529 value = null_check(value); 1530 1531 RegionNode* bailout = new RegionNode(1); 1532 record_for_igvn(bailout); 1533 1534 // Range checks 1535 generate_negative_guard(offset, bailout); 1536 generate_negative_guard(length, bailout); 1537 generate_limit_guard(offset, length, load_array_length(value), bailout); 1538 // Make sure that resulting byte[] length does not overflow Integer.MAX_VALUE 1539 generate_limit_guard(length, intcon(0), intcon(max_jint/2), bailout); 1540 1541 if (bailout->req() > 1) { 1542 PreserveJVMState pjvms(this); 1543 set_control(_gvn.transform(bailout)); 1544 uncommon_trap(Deoptimization::Reason_intrinsic, 1545 Deoptimization::Action_maybe_recompile); 1546 } 1547 if (stopped()) { 1548 return true; 1549 } 1550 1551 Node* size = _gvn.transform(new LShiftINode(length, intcon(1))); 1552 Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_BYTE))); 1553 newcopy = new_array(klass_node, size, 0); // no arguments to push 1554 AllocateArrayNode* alloc = tightly_coupled_allocation(newcopy); 1555 guarantee(alloc != nullptr, "created above"); 1556 1557 // Calculate starting addresses. 1558 Node* src_start = array_element_address(value, offset, T_CHAR); 1559 Node* dst_start = basic_plus_adr(newcopy, arrayOopDesc::base_offset_in_bytes(T_BYTE)); 1560 1561 // Check if src array address is aligned to HeapWordSize (dst is always aligned) 1562 const TypeInt* toffset = gvn().type(offset)->is_int(); 1563 bool aligned = toffset->is_con() && ((toffset->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0); 1564 1565 // Figure out which arraycopy runtime method to call (disjoint, uninitialized). 1566 const char* copyfunc_name = "arraycopy"; 1567 address copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true); 1568 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 1569 OptoRuntime::fast_arraycopy_Type(), 1570 copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM, 1571 src_start, dst_start, ConvI2X(length) XTOP); 1572 // Do not let reads from the cloned object float above the arraycopy. 1573 if (alloc->maybe_set_complete(&_gvn)) { 1574 // "You break it, you buy it." 1575 InitializeNode* init = alloc->initialization(); 1576 assert(init->is_complete(), "we just did this"); 1577 init->set_complete_with_arraycopy(); 1578 assert(newcopy->is_CheckCastPP(), "sanity"); 1579 assert(newcopy->in(0)->in(0) == init, "dest pinned"); 1580 } 1581 // Do not let stores that initialize this object be reordered with 1582 // a subsequent store that would make this object accessible by 1583 // other threads. 1584 // Record what AllocateNode this StoreStore protects so that 1585 // escape analysis can go from the MemBarStoreStoreNode to the 1586 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1587 // based on the escape status of the AllocateNode. 1588 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1589 } // original reexecute is set back here 1590 1591 C->set_has_split_ifs(true); // Has chance for split-if optimization 1592 if (!stopped()) { 1593 set_result(newcopy); 1594 } 1595 clear_upper_avx(); 1596 1597 return true; 1598 } 1599 1600 //------------------------inline_string_getCharsU-------------------------- 1601 // public void StringUTF16.getChars(byte[] src, int srcBegin, int srcEnd, char dst[], int dstBegin) 1602 bool LibraryCallKit::inline_string_getCharsU() { 1603 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1604 return false; 1605 } 1606 1607 // Get the arguments. 1608 Node* src = argument(0); 1609 Node* src_begin = argument(1); 1610 Node* src_end = argument(2); // exclusive offset (i < src_end) 1611 Node* dst = argument(3); 1612 Node* dst_begin = argument(4); 1613 1614 // Check for allocation before we add nodes that would confuse 1615 // tightly_coupled_allocation() 1616 AllocateArrayNode* alloc = tightly_coupled_allocation(dst); 1617 1618 // Check if a null path was taken unconditionally. 1619 src = null_check(src); 1620 dst = null_check(dst); 1621 if (stopped()) { 1622 return true; 1623 } 1624 1625 // Get length and convert char[] offset to byte[] offset 1626 Node* length = _gvn.transform(new SubINode(src_end, src_begin)); 1627 src_begin = _gvn.transform(new LShiftINode(src_begin, intcon(1))); 1628 1629 // Range checks 1630 generate_string_range_check(src, src_begin, length, true); 1631 generate_string_range_check(dst, dst_begin, length, false); 1632 if (stopped()) { 1633 return true; 1634 } 1635 1636 if (!stopped()) { 1637 // Calculate starting addresses. 1638 Node* src_start = array_element_address(src, src_begin, T_BYTE); 1639 Node* dst_start = array_element_address(dst, dst_begin, T_CHAR); 1640 1641 // Check if array addresses are aligned to HeapWordSize 1642 const TypeInt* tsrc = gvn().type(src_begin)->is_int(); 1643 const TypeInt* tdst = gvn().type(dst_begin)->is_int(); 1644 bool aligned = tsrc->is_con() && ((tsrc->get_con() * type2aelembytes(T_BYTE)) % HeapWordSize == 0) && 1645 tdst->is_con() && ((tdst->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0); 1646 1647 // Figure out which arraycopy runtime method to call (disjoint, uninitialized). 1648 const char* copyfunc_name = "arraycopy"; 1649 address copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true); 1650 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 1651 OptoRuntime::fast_arraycopy_Type(), 1652 copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM, 1653 src_start, dst_start, ConvI2X(length) XTOP); 1654 // Do not let reads from the cloned object float above the arraycopy. 1655 if (alloc != nullptr) { 1656 if (alloc->maybe_set_complete(&_gvn)) { 1657 // "You break it, you buy it." 1658 InitializeNode* init = alloc->initialization(); 1659 assert(init->is_complete(), "we just did this"); 1660 init->set_complete_with_arraycopy(); 1661 assert(dst->is_CheckCastPP(), "sanity"); 1662 assert(dst->in(0)->in(0) == init, "dest pinned"); 1663 } 1664 // Do not let stores that initialize this object be reordered with 1665 // a subsequent store that would make this object accessible by 1666 // other threads. 1667 // Record what AllocateNode this StoreStore protects so that 1668 // escape analysis can go from the MemBarStoreStoreNode to the 1669 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1670 // based on the escape status of the AllocateNode. 1671 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1672 } else { 1673 insert_mem_bar(Op_MemBarCPUOrder); 1674 } 1675 } 1676 1677 C->set_has_split_ifs(true); // Has chance for split-if optimization 1678 return true; 1679 } 1680 1681 //----------------------inline_string_char_access---------------------------- 1682 // Store/Load char to/from byte[] array. 1683 // static void StringUTF16.putChar(byte[] val, int index, int c) 1684 // static char StringUTF16.getChar(byte[] val, int index) 1685 bool LibraryCallKit::inline_string_char_access(bool is_store) { 1686 Node* value = argument(0); 1687 Node* index = argument(1); 1688 Node* ch = is_store ? argument(2) : nullptr; 1689 1690 // This intrinsic accesses byte[] array as char[] array. Computing the offsets 1691 // correctly requires matched array shapes. 1692 assert (arrayOopDesc::base_offset_in_bytes(T_CHAR) == arrayOopDesc::base_offset_in_bytes(T_BYTE), 1693 "sanity: byte[] and char[] bases agree"); 1694 assert (type2aelembytes(T_CHAR) == type2aelembytes(T_BYTE)*2, 1695 "sanity: byte[] and char[] scales agree"); 1696 1697 // Bail when getChar over constants is requested: constant folding would 1698 // reject folding mismatched char access over byte[]. A normal inlining for getChar 1699 // Java method would constant fold nicely instead. 1700 if (!is_store && value->is_Con() && index->is_Con()) { 1701 return false; 1702 } 1703 1704 // Save state and restore on bailout 1705 uint old_sp = sp(); 1706 SafePointNode* old_map = clone_map(); 1707 1708 value = must_be_not_null(value, true); 1709 1710 Node* adr = array_element_address(value, index, T_CHAR); 1711 if (adr->is_top()) { 1712 set_map(old_map); 1713 set_sp(old_sp); 1714 return false; 1715 } 1716 destruct_map_clone(old_map); 1717 if (is_store) { 1718 access_store_at(value, adr, TypeAryPtr::BYTES, ch, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED); 1719 } else { 1720 ch = access_load_at(value, adr, TypeAryPtr::BYTES, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD | C2_UNKNOWN_CONTROL_LOAD); 1721 set_result(ch); 1722 } 1723 return true; 1724 } 1725 1726 //--------------------------round_double_node-------------------------------- 1727 // Round a double node if necessary. 1728 Node* LibraryCallKit::round_double_node(Node* n) { 1729 if (Matcher::strict_fp_requires_explicit_rounding) { 1730 #ifdef IA32 1731 if (UseSSE < 2) { 1732 n = _gvn.transform(new RoundDoubleNode(nullptr, n)); 1733 } 1734 #else 1735 Unimplemented(); 1736 #endif // IA32 1737 } 1738 return n; 1739 } 1740 1741 //------------------------------inline_math----------------------------------- 1742 // public static double Math.abs(double) 1743 // public static double Math.sqrt(double) 1744 // public static double Math.log(double) 1745 // public static double Math.log10(double) 1746 // public static double Math.round(double) 1747 bool LibraryCallKit::inline_double_math(vmIntrinsics::ID id) { 1748 Node* arg = round_double_node(argument(0)); 1749 Node* n = nullptr; 1750 switch (id) { 1751 case vmIntrinsics::_dabs: n = new AbsDNode( arg); break; 1752 case vmIntrinsics::_dsqrt: 1753 case vmIntrinsics::_dsqrt_strict: 1754 n = new SqrtDNode(C, control(), arg); break; 1755 case vmIntrinsics::_ceil: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_ceil); break; 1756 case vmIntrinsics::_floor: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_floor); break; 1757 case vmIntrinsics::_rint: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_rint); break; 1758 case vmIntrinsics::_roundD: n = new RoundDNode(arg); break; 1759 case vmIntrinsics::_dcopySign: n = CopySignDNode::make(_gvn, arg, round_double_node(argument(2))); break; 1760 case vmIntrinsics::_dsignum: n = SignumDNode::make(_gvn, arg); break; 1761 default: fatal_unexpected_iid(id); break; 1762 } 1763 set_result(_gvn.transform(n)); 1764 return true; 1765 } 1766 1767 //------------------------------inline_math----------------------------------- 1768 // public static float Math.abs(float) 1769 // public static int Math.abs(int) 1770 // public static long Math.abs(long) 1771 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) { 1772 Node* arg = argument(0); 1773 Node* n = nullptr; 1774 switch (id) { 1775 case vmIntrinsics::_fabs: n = new AbsFNode( arg); break; 1776 case vmIntrinsics::_iabs: n = new AbsINode( arg); break; 1777 case vmIntrinsics::_labs: n = new AbsLNode( arg); break; 1778 case vmIntrinsics::_fcopySign: n = new CopySignFNode(arg, argument(1)); break; 1779 case vmIntrinsics::_fsignum: n = SignumFNode::make(_gvn, arg); break; 1780 case vmIntrinsics::_roundF: n = new RoundFNode(arg); break; 1781 default: fatal_unexpected_iid(id); break; 1782 } 1783 set_result(_gvn.transform(n)); 1784 return true; 1785 } 1786 1787 //------------------------------runtime_math----------------------------- 1788 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) { 1789 assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(), 1790 "must be (DD)D or (D)D type"); 1791 1792 // Inputs 1793 Node* a = round_double_node(argument(0)); 1794 Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : nullptr; 1795 1796 const TypePtr* no_memory_effects = nullptr; 1797 Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName, 1798 no_memory_effects, 1799 a, top(), b, b ? top() : nullptr); 1800 Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0)); 1801 #ifdef ASSERT 1802 Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1)); 1803 assert(value_top == top(), "second value must be top"); 1804 #endif 1805 1806 set_result(value); 1807 return true; 1808 } 1809 1810 //------------------------------inline_math_pow----------------------------- 1811 bool LibraryCallKit::inline_math_pow() { 1812 Node* exp = round_double_node(argument(2)); 1813 const TypeD* d = _gvn.type(exp)->isa_double_constant(); 1814 if (d != nullptr) { 1815 if (d->getd() == 2.0) { 1816 // Special case: pow(x, 2.0) => x * x 1817 Node* base = round_double_node(argument(0)); 1818 set_result(_gvn.transform(new MulDNode(base, base))); 1819 return true; 1820 } else if (d->getd() == 0.5 && Matcher::match_rule_supported(Op_SqrtD)) { 1821 // Special case: pow(x, 0.5) => sqrt(x) 1822 Node* base = round_double_node(argument(0)); 1823 Node* zero = _gvn.zerocon(T_DOUBLE); 1824 1825 RegionNode* region = new RegionNode(3); 1826 Node* phi = new PhiNode(region, Type::DOUBLE); 1827 1828 Node* cmp = _gvn.transform(new CmpDNode(base, zero)); 1829 // According to the API specs, pow(-0.0, 0.5) = 0.0 and sqrt(-0.0) = -0.0. 1830 // So pow(-0.0, 0.5) shouldn't be replaced with sqrt(-0.0). 1831 // -0.0/+0.0 are both excluded since floating-point comparison doesn't distinguish -0.0 from +0.0. 1832 Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::le)); 1833 1834 Node* if_pow = generate_slow_guard(test, nullptr); 1835 Node* value_sqrt = _gvn.transform(new SqrtDNode(C, control(), base)); 1836 phi->init_req(1, value_sqrt); 1837 region->init_req(1, control()); 1838 1839 if (if_pow != nullptr) { 1840 set_control(if_pow); 1841 address target = StubRoutines::dpow() != nullptr ? StubRoutines::dpow() : 1842 CAST_FROM_FN_PTR(address, SharedRuntime::dpow); 1843 const TypePtr* no_memory_effects = nullptr; 1844 Node* trig = make_runtime_call(RC_LEAF, OptoRuntime::Math_DD_D_Type(), target, "POW", 1845 no_memory_effects, base, top(), exp, top()); 1846 Node* value_pow = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0)); 1847 #ifdef ASSERT 1848 Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1)); 1849 assert(value_top == top(), "second value must be top"); 1850 #endif 1851 phi->init_req(2, value_pow); 1852 region->init_req(2, _gvn.transform(new ProjNode(trig, TypeFunc::Control))); 1853 } 1854 1855 C->set_has_split_ifs(true); // Has chance for split-if optimization 1856 set_control(_gvn.transform(region)); 1857 record_for_igvn(region); 1858 set_result(_gvn.transform(phi)); 1859 1860 return true; 1861 } 1862 } 1863 1864 return StubRoutines::dpow() != nullptr ? 1865 runtime_math(OptoRuntime::Math_DD_D_Type(), StubRoutines::dpow(), "dpow") : 1866 runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW"); 1867 } 1868 1869 //------------------------------inline_math_native----------------------------- 1870 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) { 1871 switch (id) { 1872 case vmIntrinsics::_dsin: 1873 return StubRoutines::dsin() != nullptr ? 1874 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dsin(), "dsin") : 1875 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin), "SIN"); 1876 case vmIntrinsics::_dcos: 1877 return StubRoutines::dcos() != nullptr ? 1878 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dcos(), "dcos") : 1879 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos), "COS"); 1880 case vmIntrinsics::_dtan: 1881 return StubRoutines::dtan() != nullptr ? 1882 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtan(), "dtan") : 1883 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "TAN"); 1884 case vmIntrinsics::_dtanh: 1885 return StubRoutines::dtanh() != nullptr ? 1886 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtanh(), "dtanh") : false; 1887 case vmIntrinsics::_dexp: 1888 return StubRoutines::dexp() != nullptr ? 1889 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dexp(), "dexp") : 1890 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP"); 1891 case vmIntrinsics::_dlog: 1892 return StubRoutines::dlog() != nullptr ? 1893 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog(), "dlog") : 1894 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog), "LOG"); 1895 case vmIntrinsics::_dlog10: 1896 return StubRoutines::dlog10() != nullptr ? 1897 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog10(), "dlog10") : 1898 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), "LOG10"); 1899 1900 case vmIntrinsics::_roundD: return Matcher::match_rule_supported(Op_RoundD) ? inline_double_math(id) : false; 1901 case vmIntrinsics::_ceil: 1902 case vmIntrinsics::_floor: 1903 case vmIntrinsics::_rint: return Matcher::match_rule_supported(Op_RoundDoubleMode) ? inline_double_math(id) : false; 1904 1905 case vmIntrinsics::_dsqrt: 1906 case vmIntrinsics::_dsqrt_strict: 1907 return Matcher::match_rule_supported(Op_SqrtD) ? inline_double_math(id) : false; 1908 case vmIntrinsics::_dabs: return Matcher::has_match_rule(Op_AbsD) ? inline_double_math(id) : false; 1909 case vmIntrinsics::_fabs: return Matcher::match_rule_supported(Op_AbsF) ? inline_math(id) : false; 1910 case vmIntrinsics::_iabs: return Matcher::match_rule_supported(Op_AbsI) ? inline_math(id) : false; 1911 case vmIntrinsics::_labs: return Matcher::match_rule_supported(Op_AbsL) ? inline_math(id) : false; 1912 1913 case vmIntrinsics::_dpow: return inline_math_pow(); 1914 case vmIntrinsics::_dcopySign: return inline_double_math(id); 1915 case vmIntrinsics::_fcopySign: return inline_math(id); 1916 case vmIntrinsics::_dsignum: return Matcher::match_rule_supported(Op_SignumD) ? inline_double_math(id) : false; 1917 case vmIntrinsics::_fsignum: return Matcher::match_rule_supported(Op_SignumF) ? inline_math(id) : false; 1918 case vmIntrinsics::_roundF: return Matcher::match_rule_supported(Op_RoundF) ? inline_math(id) : false; 1919 1920 // These intrinsics are not yet correctly implemented 1921 case vmIntrinsics::_datan2: 1922 return false; 1923 1924 default: 1925 fatal_unexpected_iid(id); 1926 return false; 1927 } 1928 } 1929 1930 //----------------------------inline_notify-----------------------------------* 1931 bool LibraryCallKit::inline_notify(vmIntrinsics::ID id) { 1932 const TypeFunc* ftype = OptoRuntime::monitor_notify_Type(); 1933 address func; 1934 if (id == vmIntrinsics::_notify) { 1935 func = OptoRuntime::monitor_notify_Java(); 1936 } else { 1937 func = OptoRuntime::monitor_notifyAll_Java(); 1938 } 1939 Node* call = make_runtime_call(RC_NO_LEAF, ftype, func, nullptr, TypeRawPtr::BOTTOM, argument(0)); 1940 make_slow_call_ex(call, env()->Throwable_klass(), false); 1941 return true; 1942 } 1943 1944 1945 //----------------------------inline_min_max----------------------------------- 1946 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) { 1947 set_result(generate_min_max(id, argument(0), argument(1))); 1948 return true; 1949 } 1950 1951 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) { 1952 Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) ); 1953 IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN); 1954 Node* fast_path = _gvn.transform( new IfFalseNode(check)); 1955 Node* slow_path = _gvn.transform( new IfTrueNode(check) ); 1956 1957 { 1958 PreserveJVMState pjvms(this); 1959 PreserveReexecuteState preexecs(this); 1960 jvms()->set_should_reexecute(true); 1961 1962 set_control(slow_path); 1963 set_i_o(i_o()); 1964 1965 uncommon_trap(Deoptimization::Reason_intrinsic, 1966 Deoptimization::Action_none); 1967 } 1968 1969 set_control(fast_path); 1970 set_result(math); 1971 } 1972 1973 template <typename OverflowOp> 1974 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) { 1975 typedef typename OverflowOp::MathOp MathOp; 1976 1977 MathOp* mathOp = new MathOp(arg1, arg2); 1978 Node* operation = _gvn.transform( mathOp ); 1979 Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) ); 1980 inline_math_mathExact(operation, ofcheck); 1981 return true; 1982 } 1983 1984 bool LibraryCallKit::inline_math_addExactI(bool is_increment) { 1985 return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1)); 1986 } 1987 1988 bool LibraryCallKit::inline_math_addExactL(bool is_increment) { 1989 return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2)); 1990 } 1991 1992 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) { 1993 return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1)); 1994 } 1995 1996 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) { 1997 return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2)); 1998 } 1999 2000 bool LibraryCallKit::inline_math_negateExactI() { 2001 return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0)); 2002 } 2003 2004 bool LibraryCallKit::inline_math_negateExactL() { 2005 return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0)); 2006 } 2007 2008 bool LibraryCallKit::inline_math_multiplyExactI() { 2009 return inline_math_overflow<OverflowMulINode>(argument(0), argument(1)); 2010 } 2011 2012 bool LibraryCallKit::inline_math_multiplyExactL() { 2013 return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2)); 2014 } 2015 2016 bool LibraryCallKit::inline_math_multiplyHigh() { 2017 set_result(_gvn.transform(new MulHiLNode(argument(0), argument(2)))); 2018 return true; 2019 } 2020 2021 bool LibraryCallKit::inline_math_unsignedMultiplyHigh() { 2022 set_result(_gvn.transform(new UMulHiLNode(argument(0), argument(2)))); 2023 return true; 2024 } 2025 2026 Node* 2027 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) { 2028 Node* result_val = nullptr; 2029 switch (id) { 2030 case vmIntrinsics::_min: 2031 case vmIntrinsics::_min_strict: 2032 result_val = _gvn.transform(new MinINode(x0, y0)); 2033 break; 2034 case vmIntrinsics::_max: 2035 case vmIntrinsics::_max_strict: 2036 result_val = _gvn.transform(new MaxINode(x0, y0)); 2037 break; 2038 default: 2039 fatal_unexpected_iid(id); 2040 break; 2041 } 2042 return result_val; 2043 } 2044 2045 inline int 2046 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset, BasicType type) { 2047 const TypePtr* base_type = TypePtr::NULL_PTR; 2048 if (base != nullptr) base_type = _gvn.type(base)->isa_ptr(); 2049 if (base_type == nullptr) { 2050 // Unknown type. 2051 return Type::AnyPtr; 2052 } else if (_gvn.type(base->uncast()) == TypePtr::NULL_PTR) { 2053 // Since this is a null+long form, we have to switch to a rawptr. 2054 base = _gvn.transform(new CastX2PNode(offset)); 2055 offset = MakeConX(0); 2056 return Type::RawPtr; 2057 } else if (base_type->base() == Type::RawPtr) { 2058 return Type::RawPtr; 2059 } else if (base_type->isa_oopptr()) { 2060 // Base is never null => always a heap address. 2061 if (!TypePtr::NULL_PTR->higher_equal(base_type)) { 2062 return Type::OopPtr; 2063 } 2064 // Offset is small => always a heap address. 2065 const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t(); 2066 if (offset_type != nullptr && 2067 base_type->offset() == 0 && // (should always be?) 2068 offset_type->_lo >= 0 && 2069 !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) { 2070 return Type::OopPtr; 2071 } else if (type == T_OBJECT) { 2072 // off heap access to an oop doesn't make any sense. Has to be on 2073 // heap. 2074 return Type::OopPtr; 2075 } 2076 // Otherwise, it might either be oop+off or null+addr. 2077 return Type::AnyPtr; 2078 } else { 2079 // No information: 2080 return Type::AnyPtr; 2081 } 2082 } 2083 2084 Node* LibraryCallKit::make_unsafe_address(Node*& base, Node* offset, BasicType type, bool can_cast) { 2085 Node* uncasted_base = base; 2086 int kind = classify_unsafe_addr(uncasted_base, offset, type); 2087 if (kind == Type::RawPtr) { 2088 return basic_plus_adr(top(), uncasted_base, offset); 2089 } else if (kind == Type::AnyPtr) { 2090 assert(base == uncasted_base, "unexpected base change"); 2091 if (can_cast) { 2092 if (!_gvn.type(base)->speculative_maybe_null() && 2093 !too_many_traps(Deoptimization::Reason_speculate_null_check)) { 2094 // According to profiling, this access is always on 2095 // heap. Casting the base to not null and thus avoiding membars 2096 // around the access should allow better optimizations 2097 Node* null_ctl = top(); 2098 base = null_check_oop(base, &null_ctl, true, true, true); 2099 assert(null_ctl->is_top(), "no null control here"); 2100 return basic_plus_adr(base, offset); 2101 } else if (_gvn.type(base)->speculative_always_null() && 2102 !too_many_traps(Deoptimization::Reason_speculate_null_assert)) { 2103 // According to profiling, this access is always off 2104 // heap. 2105 base = null_assert(base); 2106 Node* raw_base = _gvn.transform(new CastX2PNode(offset)); 2107 offset = MakeConX(0); 2108 return basic_plus_adr(top(), raw_base, offset); 2109 } 2110 } 2111 // We don't know if it's an on heap or off heap access. Fall back 2112 // to raw memory access. 2113 Node* raw = _gvn.transform(new CheckCastPPNode(control(), base, TypeRawPtr::BOTTOM)); 2114 return basic_plus_adr(top(), raw, offset); 2115 } else { 2116 assert(base == uncasted_base, "unexpected base change"); 2117 // We know it's an on heap access so base can't be null 2118 if (TypePtr::NULL_PTR->higher_equal(_gvn.type(base))) { 2119 base = must_be_not_null(base, true); 2120 } 2121 return basic_plus_adr(base, offset); 2122 } 2123 } 2124 2125 //--------------------------inline_number_methods----------------------------- 2126 // inline int Integer.numberOfLeadingZeros(int) 2127 // inline int Long.numberOfLeadingZeros(long) 2128 // 2129 // inline int Integer.numberOfTrailingZeros(int) 2130 // inline int Long.numberOfTrailingZeros(long) 2131 // 2132 // inline int Integer.bitCount(int) 2133 // inline int Long.bitCount(long) 2134 // 2135 // inline char Character.reverseBytes(char) 2136 // inline short Short.reverseBytes(short) 2137 // inline int Integer.reverseBytes(int) 2138 // inline long Long.reverseBytes(long) 2139 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) { 2140 Node* arg = argument(0); 2141 Node* n = nullptr; 2142 switch (id) { 2143 case vmIntrinsics::_numberOfLeadingZeros_i: n = new CountLeadingZerosINode( arg); break; 2144 case vmIntrinsics::_numberOfLeadingZeros_l: n = new CountLeadingZerosLNode( arg); break; 2145 case vmIntrinsics::_numberOfTrailingZeros_i: n = new CountTrailingZerosINode(arg); break; 2146 case vmIntrinsics::_numberOfTrailingZeros_l: n = new CountTrailingZerosLNode(arg); break; 2147 case vmIntrinsics::_bitCount_i: n = new PopCountINode( arg); break; 2148 case vmIntrinsics::_bitCount_l: n = new PopCountLNode( arg); break; 2149 case vmIntrinsics::_reverseBytes_c: n = new ReverseBytesUSNode(nullptr, arg); break; 2150 case vmIntrinsics::_reverseBytes_s: n = new ReverseBytesSNode( nullptr, arg); break; 2151 case vmIntrinsics::_reverseBytes_i: n = new ReverseBytesINode( nullptr, arg); break; 2152 case vmIntrinsics::_reverseBytes_l: n = new ReverseBytesLNode( nullptr, arg); break; 2153 case vmIntrinsics::_reverse_i: n = new ReverseINode(nullptr, arg); break; 2154 case vmIntrinsics::_reverse_l: n = new ReverseLNode(nullptr, arg); break; 2155 default: fatal_unexpected_iid(id); break; 2156 } 2157 set_result(_gvn.transform(n)); 2158 return true; 2159 } 2160 2161 //--------------------------inline_bitshuffle_methods----------------------------- 2162 // inline int Integer.compress(int, int) 2163 // inline int Integer.expand(int, int) 2164 // inline long Long.compress(long, long) 2165 // inline long Long.expand(long, long) 2166 bool LibraryCallKit::inline_bitshuffle_methods(vmIntrinsics::ID id) { 2167 Node* n = nullptr; 2168 switch (id) { 2169 case vmIntrinsics::_compress_i: n = new CompressBitsNode(argument(0), argument(1), TypeInt::INT); break; 2170 case vmIntrinsics::_expand_i: n = new ExpandBitsNode(argument(0), argument(1), TypeInt::INT); break; 2171 case vmIntrinsics::_compress_l: n = new CompressBitsNode(argument(0), argument(2), TypeLong::LONG); break; 2172 case vmIntrinsics::_expand_l: n = new ExpandBitsNode(argument(0), argument(2), TypeLong::LONG); break; 2173 default: fatal_unexpected_iid(id); break; 2174 } 2175 set_result(_gvn.transform(n)); 2176 return true; 2177 } 2178 2179 //--------------------------inline_number_methods----------------------------- 2180 // inline int Integer.compareUnsigned(int, int) 2181 // inline int Long.compareUnsigned(long, long) 2182 bool LibraryCallKit::inline_compare_unsigned(vmIntrinsics::ID id) { 2183 Node* arg1 = argument(0); 2184 Node* arg2 = (id == vmIntrinsics::_compareUnsigned_l) ? argument(2) : argument(1); 2185 Node* n = nullptr; 2186 switch (id) { 2187 case vmIntrinsics::_compareUnsigned_i: n = new CmpU3Node(arg1, arg2); break; 2188 case vmIntrinsics::_compareUnsigned_l: n = new CmpUL3Node(arg1, arg2); break; 2189 default: fatal_unexpected_iid(id); break; 2190 } 2191 set_result(_gvn.transform(n)); 2192 return true; 2193 } 2194 2195 //--------------------------inline_unsigned_divmod_methods----------------------------- 2196 // inline int Integer.divideUnsigned(int, int) 2197 // inline int Integer.remainderUnsigned(int, int) 2198 // inline long Long.divideUnsigned(long, long) 2199 // inline long Long.remainderUnsigned(long, long) 2200 bool LibraryCallKit::inline_divmod_methods(vmIntrinsics::ID id) { 2201 Node* n = nullptr; 2202 switch (id) { 2203 case vmIntrinsics::_divideUnsigned_i: { 2204 zero_check_int(argument(1)); 2205 // Compile-time detect of null-exception 2206 if (stopped()) { 2207 return true; // keep the graph constructed so far 2208 } 2209 n = new UDivINode(control(), argument(0), argument(1)); 2210 break; 2211 } 2212 case vmIntrinsics::_divideUnsigned_l: { 2213 zero_check_long(argument(2)); 2214 // Compile-time detect of null-exception 2215 if (stopped()) { 2216 return true; // keep the graph constructed so far 2217 } 2218 n = new UDivLNode(control(), argument(0), argument(2)); 2219 break; 2220 } 2221 case vmIntrinsics::_remainderUnsigned_i: { 2222 zero_check_int(argument(1)); 2223 // Compile-time detect of null-exception 2224 if (stopped()) { 2225 return true; // keep the graph constructed so far 2226 } 2227 n = new UModINode(control(), argument(0), argument(1)); 2228 break; 2229 } 2230 case vmIntrinsics::_remainderUnsigned_l: { 2231 zero_check_long(argument(2)); 2232 // Compile-time detect of null-exception 2233 if (stopped()) { 2234 return true; // keep the graph constructed so far 2235 } 2236 n = new UModLNode(control(), argument(0), argument(2)); 2237 break; 2238 } 2239 default: fatal_unexpected_iid(id); break; 2240 } 2241 set_result(_gvn.transform(n)); 2242 return true; 2243 } 2244 2245 //----------------------------inline_unsafe_access---------------------------- 2246 2247 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) { 2248 // Attempt to infer a sharper value type from the offset and base type. 2249 ciKlass* sharpened_klass = nullptr; 2250 2251 // See if it is an instance field, with an object type. 2252 if (alias_type->field() != nullptr) { 2253 if (alias_type->field()->type()->is_klass()) { 2254 sharpened_klass = alias_type->field()->type()->as_klass(); 2255 } 2256 } 2257 2258 const TypeOopPtr* result = nullptr; 2259 // See if it is a narrow oop array. 2260 if (adr_type->isa_aryptr()) { 2261 if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) { 2262 const TypeOopPtr* elem_type = adr_type->is_aryptr()->elem()->make_oopptr(); 2263 if (elem_type != nullptr && elem_type->is_loaded()) { 2264 // Sharpen the value type. 2265 result = elem_type; 2266 } 2267 } 2268 } 2269 2270 // The sharpened class might be unloaded if there is no class loader 2271 // contraint in place. 2272 if (result == nullptr && sharpened_klass != nullptr && sharpened_klass->is_loaded()) { 2273 // Sharpen the value type. 2274 result = TypeOopPtr::make_from_klass(sharpened_klass); 2275 } 2276 if (result != nullptr) { 2277 #ifndef PRODUCT 2278 if (C->print_intrinsics() || C->print_inlining()) { 2279 tty->print(" from base type: "); adr_type->dump(); tty->cr(); 2280 tty->print(" sharpened value: "); result->dump(); tty->cr(); 2281 } 2282 #endif 2283 } 2284 return result; 2285 } 2286 2287 DecoratorSet LibraryCallKit::mo_decorator_for_access_kind(AccessKind kind) { 2288 switch (kind) { 2289 case Relaxed: 2290 return MO_UNORDERED; 2291 case Opaque: 2292 return MO_RELAXED; 2293 case Acquire: 2294 return MO_ACQUIRE; 2295 case Release: 2296 return MO_RELEASE; 2297 case Volatile: 2298 return MO_SEQ_CST; 2299 default: 2300 ShouldNotReachHere(); 2301 return 0; 2302 } 2303 } 2304 2305 bool LibraryCallKit::inline_unsafe_access(bool is_store, const BasicType type, const AccessKind kind, const bool unaligned) { 2306 if (callee()->is_static()) return false; // caller must have the capability! 2307 DecoratorSet decorators = C2_UNSAFE_ACCESS; 2308 guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads"); 2309 guarantee( is_store || kind != Release, "Release accesses can be produced only for stores"); 2310 assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type"); 2311 2312 if (is_reference_type(type)) { 2313 decorators |= ON_UNKNOWN_OOP_REF; 2314 } 2315 2316 if (unaligned) { 2317 decorators |= C2_UNALIGNED; 2318 } 2319 2320 #ifndef PRODUCT 2321 { 2322 ResourceMark rm; 2323 // Check the signatures. 2324 ciSignature* sig = callee()->signature(); 2325 #ifdef ASSERT 2326 if (!is_store) { 2327 // Object getReference(Object base, int/long offset), etc. 2328 BasicType rtype = sig->return_type()->basic_type(); 2329 assert(rtype == type, "getter must return the expected value"); 2330 assert(sig->count() == 2, "oop getter has 2 arguments"); 2331 assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object"); 2332 assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct"); 2333 } else { 2334 // void putReference(Object base, int/long offset, Object x), etc. 2335 assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value"); 2336 assert(sig->count() == 3, "oop putter has 3 arguments"); 2337 assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object"); 2338 assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct"); 2339 BasicType vtype = sig->type_at(sig->count()-1)->basic_type(); 2340 assert(vtype == type, "putter must accept the expected value"); 2341 } 2342 #endif // ASSERT 2343 } 2344 #endif //PRODUCT 2345 2346 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 2347 2348 Node* receiver = argument(0); // type: oop 2349 2350 // Build address expression. 2351 Node* heap_base_oop = top(); 2352 2353 // The base is either a Java object or a value produced by Unsafe.staticFieldBase 2354 Node* base = argument(1); // type: oop 2355 // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset 2356 Node* offset = argument(2); // type: long 2357 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset 2358 // to be plain byte offsets, which are also the same as those accepted 2359 // by oopDesc::field_addr. 2360 assert(Unsafe_field_offset_to_byte_offset(11) == 11, 2361 "fieldOffset must be byte-scaled"); 2362 // 32-bit machines ignore the high half! 2363 offset = ConvL2X(offset); 2364 2365 // Save state and restore on bailout 2366 uint old_sp = sp(); 2367 SafePointNode* old_map = clone_map(); 2368 2369 Node* adr = make_unsafe_address(base, offset, type, kind == Relaxed); 2370 assert(!stopped(), "Inlining of unsafe access failed: address construction stopped unexpectedly"); 2371 2372 if (_gvn.type(base->uncast())->isa_ptr() == TypePtr::NULL_PTR) { 2373 if (type != T_OBJECT) { 2374 decorators |= IN_NATIVE; // off-heap primitive access 2375 } else { 2376 set_map(old_map); 2377 set_sp(old_sp); 2378 return false; // off-heap oop accesses are not supported 2379 } 2380 } else { 2381 heap_base_oop = base; // on-heap or mixed access 2382 } 2383 2384 // Can base be null? Otherwise, always on-heap access. 2385 bool can_access_non_heap = TypePtr::NULL_PTR->higher_equal(_gvn.type(base)); 2386 2387 if (!can_access_non_heap) { 2388 decorators |= IN_HEAP; 2389 } 2390 2391 Node* val = is_store ? argument(4) : nullptr; 2392 2393 const TypePtr* adr_type = _gvn.type(adr)->isa_ptr(); 2394 if (adr_type == TypePtr::NULL_PTR) { 2395 set_map(old_map); 2396 set_sp(old_sp); 2397 return false; // off-heap access with zero address 2398 } 2399 2400 // Try to categorize the address. 2401 Compile::AliasType* alias_type = C->alias_type(adr_type); 2402 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here"); 2403 2404 if (alias_type->adr_type() == TypeInstPtr::KLASS || 2405 alias_type->adr_type() == TypeAryPtr::RANGE) { 2406 set_map(old_map); 2407 set_sp(old_sp); 2408 return false; // not supported 2409 } 2410 2411 bool mismatched = false; 2412 BasicType bt = alias_type->basic_type(); 2413 if (bt != T_ILLEGAL) { 2414 assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access"); 2415 if (bt == T_BYTE && adr_type->isa_aryptr()) { 2416 // Alias type doesn't differentiate between byte[] and boolean[]). 2417 // Use address type to get the element type. 2418 bt = adr_type->is_aryptr()->elem()->array_element_basic_type(); 2419 } 2420 if (is_reference_type(bt, true)) { 2421 // accessing an array field with getReference is not a mismatch 2422 bt = T_OBJECT; 2423 } 2424 if ((bt == T_OBJECT) != (type == T_OBJECT)) { 2425 // Don't intrinsify mismatched object accesses 2426 set_map(old_map); 2427 set_sp(old_sp); 2428 return false; 2429 } 2430 mismatched = (bt != type); 2431 } else if (alias_type->adr_type()->isa_oopptr()) { 2432 mismatched = true; // conservatively mark all "wide" on-heap accesses as mismatched 2433 } 2434 2435 destruct_map_clone(old_map); 2436 assert(!mismatched || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched"); 2437 2438 if (mismatched) { 2439 decorators |= C2_MISMATCHED; 2440 } 2441 2442 // First guess at the value type. 2443 const Type *value_type = Type::get_const_basic_type(type); 2444 2445 // Figure out the memory ordering. 2446 decorators |= mo_decorator_for_access_kind(kind); 2447 2448 if (!is_store && type == T_OBJECT) { 2449 const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type); 2450 if (tjp != nullptr) { 2451 value_type = tjp; 2452 } 2453 } 2454 2455 receiver = null_check(receiver); 2456 if (stopped()) { 2457 return true; 2458 } 2459 // Heap pointers get a null-check from the interpreter, 2460 // as a courtesy. However, this is not guaranteed by Unsafe, 2461 // and it is not possible to fully distinguish unintended nulls 2462 // from intended ones in this API. 2463 2464 if (!is_store) { 2465 Node* p = nullptr; 2466 // Try to constant fold a load from a constant field 2467 ciField* field = alias_type->field(); 2468 if (heap_base_oop != top() && field != nullptr && field->is_constant() && !mismatched) { 2469 // final or stable field 2470 p = make_constant_from_field(field, heap_base_oop); 2471 } 2472 2473 if (p == nullptr) { // Could not constant fold the load 2474 p = access_load_at(heap_base_oop, adr, adr_type, value_type, type, decorators); 2475 // Normalize the value returned by getBoolean in the following cases 2476 if (type == T_BOOLEAN && 2477 (mismatched || 2478 heap_base_oop == top() || // - heap_base_oop is null or 2479 (can_access_non_heap && field == nullptr)) // - heap_base_oop is potentially null 2480 // and the unsafe access is made to large offset 2481 // (i.e., larger than the maximum offset necessary for any 2482 // field access) 2483 ) { 2484 IdealKit ideal = IdealKit(this); 2485 #define __ ideal. 2486 IdealVariable normalized_result(ideal); 2487 __ declarations_done(); 2488 __ set(normalized_result, p); 2489 __ if_then(p, BoolTest::ne, ideal.ConI(0)); 2490 __ set(normalized_result, ideal.ConI(1)); 2491 ideal.end_if(); 2492 final_sync(ideal); 2493 p = __ value(normalized_result); 2494 #undef __ 2495 } 2496 } 2497 if (type == T_ADDRESS) { 2498 p = gvn().transform(new CastP2XNode(nullptr, p)); 2499 p = ConvX2UL(p); 2500 } 2501 // The load node has the control of the preceding MemBarCPUOrder. All 2502 // following nodes will have the control of the MemBarCPUOrder inserted at 2503 // the end of this method. So, pushing the load onto the stack at a later 2504 // point is fine. 2505 set_result(p); 2506 } else { 2507 if (bt == T_ADDRESS) { 2508 // Repackage the long as a pointer. 2509 val = ConvL2X(val); 2510 val = gvn().transform(new CastX2PNode(val)); 2511 } 2512 access_store_at(heap_base_oop, adr, adr_type, val, value_type, type, decorators); 2513 } 2514 2515 return true; 2516 } 2517 2518 //----------------------------inline_unsafe_load_store---------------------------- 2519 // This method serves a couple of different customers (depending on LoadStoreKind): 2520 // 2521 // LS_cmp_swap: 2522 // 2523 // boolean compareAndSetReference(Object o, long offset, Object expected, Object x); 2524 // boolean compareAndSetInt( Object o, long offset, int expected, int x); 2525 // boolean compareAndSetLong( Object o, long offset, long expected, long x); 2526 // 2527 // LS_cmp_swap_weak: 2528 // 2529 // boolean weakCompareAndSetReference( Object o, long offset, Object expected, Object x); 2530 // boolean weakCompareAndSetReferencePlain( Object o, long offset, Object expected, Object x); 2531 // boolean weakCompareAndSetReferenceAcquire(Object o, long offset, Object expected, Object x); 2532 // boolean weakCompareAndSetReferenceRelease(Object o, long offset, Object expected, Object x); 2533 // 2534 // boolean weakCompareAndSetInt( Object o, long offset, int expected, int x); 2535 // boolean weakCompareAndSetIntPlain( Object o, long offset, int expected, int x); 2536 // boolean weakCompareAndSetIntAcquire( Object o, long offset, int expected, int x); 2537 // boolean weakCompareAndSetIntRelease( Object o, long offset, int expected, int x); 2538 // 2539 // boolean weakCompareAndSetLong( Object o, long offset, long expected, long x); 2540 // boolean weakCompareAndSetLongPlain( Object o, long offset, long expected, long x); 2541 // boolean weakCompareAndSetLongAcquire( Object o, long offset, long expected, long x); 2542 // boolean weakCompareAndSetLongRelease( Object o, long offset, long expected, long x); 2543 // 2544 // LS_cmp_exchange: 2545 // 2546 // Object compareAndExchangeReferenceVolatile(Object o, long offset, Object expected, Object x); 2547 // Object compareAndExchangeReferenceAcquire( Object o, long offset, Object expected, Object x); 2548 // Object compareAndExchangeReferenceRelease( Object o, long offset, Object expected, Object x); 2549 // 2550 // Object compareAndExchangeIntVolatile( Object o, long offset, Object expected, Object x); 2551 // Object compareAndExchangeIntAcquire( Object o, long offset, Object expected, Object x); 2552 // Object compareAndExchangeIntRelease( Object o, long offset, Object expected, Object x); 2553 // 2554 // Object compareAndExchangeLongVolatile( Object o, long offset, Object expected, Object x); 2555 // Object compareAndExchangeLongAcquire( Object o, long offset, Object expected, Object x); 2556 // Object compareAndExchangeLongRelease( Object o, long offset, Object expected, Object x); 2557 // 2558 // LS_get_add: 2559 // 2560 // int getAndAddInt( Object o, long offset, int delta) 2561 // long getAndAddLong(Object o, long offset, long delta) 2562 // 2563 // LS_get_set: 2564 // 2565 // int getAndSet(Object o, long offset, int newValue) 2566 // long getAndSet(Object o, long offset, long newValue) 2567 // Object getAndSet(Object o, long offset, Object newValue) 2568 // 2569 bool LibraryCallKit::inline_unsafe_load_store(const BasicType type, const LoadStoreKind kind, const AccessKind access_kind) { 2570 // This basic scheme here is the same as inline_unsafe_access, but 2571 // differs in enough details that combining them would make the code 2572 // overly confusing. (This is a true fact! I originally combined 2573 // them, but even I was confused by it!) As much code/comments as 2574 // possible are retained from inline_unsafe_access though to make 2575 // the correspondences clearer. - dl 2576 2577 if (callee()->is_static()) return false; // caller must have the capability! 2578 2579 DecoratorSet decorators = C2_UNSAFE_ACCESS; 2580 decorators |= mo_decorator_for_access_kind(access_kind); 2581 2582 #ifndef PRODUCT 2583 BasicType rtype; 2584 { 2585 ResourceMark rm; 2586 // Check the signatures. 2587 ciSignature* sig = callee()->signature(); 2588 rtype = sig->return_type()->basic_type(); 2589 switch(kind) { 2590 case LS_get_add: 2591 case LS_get_set: { 2592 // Check the signatures. 2593 #ifdef ASSERT 2594 assert(rtype == type, "get and set must return the expected type"); 2595 assert(sig->count() == 3, "get and set has 3 arguments"); 2596 assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object"); 2597 assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long"); 2598 assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta"); 2599 assert(access_kind == Volatile, "mo is not passed to intrinsic nodes in current implementation"); 2600 #endif // ASSERT 2601 break; 2602 } 2603 case LS_cmp_swap: 2604 case LS_cmp_swap_weak: { 2605 // Check the signatures. 2606 #ifdef ASSERT 2607 assert(rtype == T_BOOLEAN, "CAS must return boolean"); 2608 assert(sig->count() == 4, "CAS has 4 arguments"); 2609 assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object"); 2610 assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long"); 2611 #endif // ASSERT 2612 break; 2613 } 2614 case LS_cmp_exchange: { 2615 // Check the signatures. 2616 #ifdef ASSERT 2617 assert(rtype == type, "CAS must return the expected type"); 2618 assert(sig->count() == 4, "CAS has 4 arguments"); 2619 assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object"); 2620 assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long"); 2621 #endif // ASSERT 2622 break; 2623 } 2624 default: 2625 ShouldNotReachHere(); 2626 } 2627 } 2628 #endif //PRODUCT 2629 2630 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 2631 2632 // Get arguments: 2633 Node* receiver = nullptr; 2634 Node* base = nullptr; 2635 Node* offset = nullptr; 2636 Node* oldval = nullptr; 2637 Node* newval = nullptr; 2638 switch(kind) { 2639 case LS_cmp_swap: 2640 case LS_cmp_swap_weak: 2641 case LS_cmp_exchange: { 2642 const bool two_slot_type = type2size[type] == 2; 2643 receiver = argument(0); // type: oop 2644 base = argument(1); // type: oop 2645 offset = argument(2); // type: long 2646 oldval = argument(4); // type: oop, int, or long 2647 newval = argument(two_slot_type ? 6 : 5); // type: oop, int, or long 2648 break; 2649 } 2650 case LS_get_add: 2651 case LS_get_set: { 2652 receiver = argument(0); // type: oop 2653 base = argument(1); // type: oop 2654 offset = argument(2); // type: long 2655 oldval = nullptr; 2656 newval = argument(4); // type: oop, int, or long 2657 break; 2658 } 2659 default: 2660 ShouldNotReachHere(); 2661 } 2662 2663 // Build field offset expression. 2664 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset 2665 // to be plain byte offsets, which are also the same as those accepted 2666 // by oopDesc::field_addr. 2667 assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled"); 2668 // 32-bit machines ignore the high half of long offsets 2669 offset = ConvL2X(offset); 2670 // Save state and restore on bailout 2671 uint old_sp = sp(); 2672 SafePointNode* old_map = clone_map(); 2673 Node* adr = make_unsafe_address(base, offset,type, false); 2674 const TypePtr *adr_type = _gvn.type(adr)->isa_ptr(); 2675 2676 Compile::AliasType* alias_type = C->alias_type(adr_type); 2677 BasicType bt = alias_type->basic_type(); 2678 if (bt != T_ILLEGAL && 2679 (is_reference_type(bt) != (type == T_OBJECT))) { 2680 // Don't intrinsify mismatched object accesses. 2681 set_map(old_map); 2682 set_sp(old_sp); 2683 return false; 2684 } 2685 2686 destruct_map_clone(old_map); 2687 2688 // For CAS, unlike inline_unsafe_access, there seems no point in 2689 // trying to refine types. Just use the coarse types here. 2690 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here"); 2691 const Type *value_type = Type::get_const_basic_type(type); 2692 2693 switch (kind) { 2694 case LS_get_set: 2695 case LS_cmp_exchange: { 2696 if (type == T_OBJECT) { 2697 const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type); 2698 if (tjp != nullptr) { 2699 value_type = tjp; 2700 } 2701 } 2702 break; 2703 } 2704 case LS_cmp_swap: 2705 case LS_cmp_swap_weak: 2706 case LS_get_add: 2707 break; 2708 default: 2709 ShouldNotReachHere(); 2710 } 2711 2712 // Null check receiver. 2713 receiver = null_check(receiver); 2714 if (stopped()) { 2715 return true; 2716 } 2717 2718 int alias_idx = C->get_alias_index(adr_type); 2719 2720 if (is_reference_type(type)) { 2721 decorators |= IN_HEAP | ON_UNKNOWN_OOP_REF; 2722 2723 // Transformation of a value which could be null pointer (CastPP #null) 2724 // could be delayed during Parse (for example, in adjust_map_after_if()). 2725 // Execute transformation here to avoid barrier generation in such case. 2726 if (_gvn.type(newval) == TypePtr::NULL_PTR) 2727 newval = _gvn.makecon(TypePtr::NULL_PTR); 2728 2729 if (oldval != nullptr && _gvn.type(oldval) == TypePtr::NULL_PTR) { 2730 // Refine the value to a null constant, when it is known to be null 2731 oldval = _gvn.makecon(TypePtr::NULL_PTR); 2732 } 2733 } 2734 2735 Node* result = nullptr; 2736 switch (kind) { 2737 case LS_cmp_exchange: { 2738 result = access_atomic_cmpxchg_val_at(base, adr, adr_type, alias_idx, 2739 oldval, newval, value_type, type, decorators); 2740 break; 2741 } 2742 case LS_cmp_swap_weak: 2743 decorators |= C2_WEAK_CMPXCHG; 2744 case LS_cmp_swap: { 2745 result = access_atomic_cmpxchg_bool_at(base, adr, adr_type, alias_idx, 2746 oldval, newval, value_type, type, decorators); 2747 break; 2748 } 2749 case LS_get_set: { 2750 result = access_atomic_xchg_at(base, adr, adr_type, alias_idx, 2751 newval, value_type, type, decorators); 2752 break; 2753 } 2754 case LS_get_add: { 2755 result = access_atomic_add_at(base, adr, adr_type, alias_idx, 2756 newval, value_type, type, decorators); 2757 break; 2758 } 2759 default: 2760 ShouldNotReachHere(); 2761 } 2762 2763 assert(type2size[result->bottom_type()->basic_type()] == type2size[rtype], "result type should match"); 2764 set_result(result); 2765 return true; 2766 } 2767 2768 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) { 2769 // Regardless of form, don't allow previous ld/st to move down, 2770 // then issue acquire, release, or volatile mem_bar. 2771 insert_mem_bar(Op_MemBarCPUOrder); 2772 switch(id) { 2773 case vmIntrinsics::_loadFence: 2774 insert_mem_bar(Op_LoadFence); 2775 return true; 2776 case vmIntrinsics::_storeFence: 2777 insert_mem_bar(Op_StoreFence); 2778 return true; 2779 case vmIntrinsics::_storeStoreFence: 2780 insert_mem_bar(Op_StoreStoreFence); 2781 return true; 2782 case vmIntrinsics::_fullFence: 2783 insert_mem_bar(Op_MemBarVolatile); 2784 return true; 2785 default: 2786 fatal_unexpected_iid(id); 2787 return false; 2788 } 2789 } 2790 2791 bool LibraryCallKit::inline_onspinwait() { 2792 insert_mem_bar(Op_OnSpinWait); 2793 return true; 2794 } 2795 2796 bool LibraryCallKit::klass_needs_init_guard(Node* kls) { 2797 if (!kls->is_Con()) { 2798 return true; 2799 } 2800 const TypeInstKlassPtr* klsptr = kls->bottom_type()->isa_instklassptr(); 2801 if (klsptr == nullptr) { 2802 return true; 2803 } 2804 ciInstanceKlass* ik = klsptr->instance_klass(); 2805 // don't need a guard for a klass that is already initialized 2806 return !ik->is_initialized(); 2807 } 2808 2809 //----------------------------inline_unsafe_writeback0------------------------- 2810 // public native void Unsafe.writeback0(long address) 2811 bool LibraryCallKit::inline_unsafe_writeback0() { 2812 if (!Matcher::has_match_rule(Op_CacheWB)) { 2813 return false; 2814 } 2815 #ifndef PRODUCT 2816 assert(Matcher::has_match_rule(Op_CacheWBPreSync), "found match rule for CacheWB but not CacheWBPreSync"); 2817 assert(Matcher::has_match_rule(Op_CacheWBPostSync), "found match rule for CacheWB but not CacheWBPostSync"); 2818 ciSignature* sig = callee()->signature(); 2819 assert(sig->type_at(0)->basic_type() == T_LONG, "Unsafe_writeback0 address is long!"); 2820 #endif 2821 null_check_receiver(); // null-check, then ignore 2822 Node *addr = argument(1); 2823 addr = new CastX2PNode(addr); 2824 addr = _gvn.transform(addr); 2825 Node *flush = new CacheWBNode(control(), memory(TypeRawPtr::BOTTOM), addr); 2826 flush = _gvn.transform(flush); 2827 set_memory(flush, TypeRawPtr::BOTTOM); 2828 return true; 2829 } 2830 2831 //----------------------------inline_unsafe_writeback0------------------------- 2832 // public native void Unsafe.writeback0(long address) 2833 bool LibraryCallKit::inline_unsafe_writebackSync0(bool is_pre) { 2834 if (is_pre && !Matcher::has_match_rule(Op_CacheWBPreSync)) { 2835 return false; 2836 } 2837 if (!is_pre && !Matcher::has_match_rule(Op_CacheWBPostSync)) { 2838 return false; 2839 } 2840 #ifndef PRODUCT 2841 assert(Matcher::has_match_rule(Op_CacheWB), 2842 (is_pre ? "found match rule for CacheWBPreSync but not CacheWB" 2843 : "found match rule for CacheWBPostSync but not CacheWB")); 2844 2845 #endif 2846 null_check_receiver(); // null-check, then ignore 2847 Node *sync; 2848 if (is_pre) { 2849 sync = new CacheWBPreSyncNode(control(), memory(TypeRawPtr::BOTTOM)); 2850 } else { 2851 sync = new CacheWBPostSyncNode(control(), memory(TypeRawPtr::BOTTOM)); 2852 } 2853 sync = _gvn.transform(sync); 2854 set_memory(sync, TypeRawPtr::BOTTOM); 2855 return true; 2856 } 2857 2858 //----------------------------inline_unsafe_allocate--------------------------- 2859 // public native Object Unsafe.allocateInstance(Class<?> cls); 2860 bool LibraryCallKit::inline_unsafe_allocate() { 2861 2862 #if INCLUDE_JVMTI 2863 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 2864 return false; 2865 } 2866 #endif //INCLUDE_JVMTI 2867 2868 if (callee()->is_static()) return false; // caller must have the capability! 2869 2870 null_check_receiver(); // null-check, then ignore 2871 Node* cls = null_check(argument(1)); 2872 if (stopped()) return true; 2873 2874 Node* kls = load_klass_from_mirror(cls, false, nullptr, 0); 2875 kls = null_check(kls); 2876 if (stopped()) return true; // argument was like int.class 2877 2878 #if INCLUDE_JVMTI 2879 // Don't try to access new allocated obj in the intrinsic. 2880 // It causes perfomance issues even when jvmti event VmObjectAlloc is disabled. 2881 // Deoptimize and allocate in interpreter instead. 2882 Node* addr = makecon(TypeRawPtr::make((address) &JvmtiExport::_should_notify_object_alloc)); 2883 Node* should_post_vm_object_alloc = make_load(this->control(), addr, TypeInt::INT, T_INT, MemNode::unordered); 2884 Node* chk = _gvn.transform(new CmpINode(should_post_vm_object_alloc, intcon(0))); 2885 Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::eq)); 2886 { 2887 BuildCutout unless(this, tst, PROB_MAX); 2888 uncommon_trap(Deoptimization::Reason_intrinsic, 2889 Deoptimization::Action_make_not_entrant); 2890 } 2891 if (stopped()) { 2892 return true; 2893 } 2894 #endif //INCLUDE_JVMTI 2895 2896 Node* test = nullptr; 2897 if (LibraryCallKit::klass_needs_init_guard(kls)) { 2898 // Note: The argument might still be an illegal value like 2899 // Serializable.class or Object[].class. The runtime will handle it. 2900 // But we must make an explicit check for initialization. 2901 Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset())); 2902 // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler 2903 // can generate code to load it as unsigned byte. 2904 Node* inst = make_load(nullptr, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::acquire); 2905 Node* bits = intcon(InstanceKlass::fully_initialized); 2906 test = _gvn.transform(new SubINode(inst, bits)); 2907 // The 'test' is non-zero if we need to take a slow path. 2908 } 2909 2910 Node* obj = new_instance(kls, test); 2911 set_result(obj); 2912 return true; 2913 } 2914 2915 //------------------------inline_native_time_funcs-------------- 2916 // inline code for System.currentTimeMillis() and System.nanoTime() 2917 // these have the same type and signature 2918 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) { 2919 const TypeFunc* tf = OptoRuntime::void_long_Type(); 2920 const TypePtr* no_memory_effects = nullptr; 2921 Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects); 2922 Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0)); 2923 #ifdef ASSERT 2924 Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1)); 2925 assert(value_top == top(), "second value must be top"); 2926 #endif 2927 set_result(value); 2928 return true; 2929 } 2930 2931 2932 #if INCLUDE_JVMTI 2933 2934 // When notifications are disabled then just update the VTMS transition bit and return. 2935 // Otherwise, the bit is updated in the given function call implementing JVMTI notification protocol. 2936 bool LibraryCallKit::inline_native_notify_jvmti_funcs(address funcAddr, const char* funcName, bool is_start, bool is_end) { 2937 if (!DoJVMTIVirtualThreadTransitions) { 2938 return true; 2939 } 2940 Node* vt_oop = _gvn.transform(must_be_not_null(argument(0), true)); // VirtualThread this argument 2941 IdealKit ideal(this); 2942 2943 Node* ONE = ideal.ConI(1); 2944 Node* hide = is_start ? ideal.ConI(0) : (is_end ? ideal.ConI(1) : _gvn.transform(argument(1))); 2945 Node* addr = makecon(TypeRawPtr::make((address)&JvmtiVTMSTransitionDisabler::_VTMS_notify_jvmti_events)); 2946 Node* notify_jvmti_enabled = ideal.load(ideal.ctrl(), addr, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw); 2947 2948 ideal.if_then(notify_jvmti_enabled, BoolTest::eq, ONE); { 2949 sync_kit(ideal); 2950 // if notifyJvmti enabled then make a call to the given SharedRuntime function 2951 const TypeFunc* tf = OptoRuntime::notify_jvmti_vthread_Type(); 2952 make_runtime_call(RC_NO_LEAF, tf, funcAddr, funcName, TypePtr::BOTTOM, vt_oop, hide); 2953 ideal.sync_kit(this); 2954 } ideal.else_(); { 2955 // set hide value to the VTMS transition bit in current JavaThread and VirtualThread object 2956 Node* thread = ideal.thread(); 2957 Node* jt_addr = basic_plus_adr(thread, in_bytes(JavaThread::is_in_VTMS_transition_offset())); 2958 Node* vt_addr = basic_plus_adr(vt_oop, java_lang_Thread::is_in_VTMS_transition_offset()); 2959 2960 sync_kit(ideal); 2961 access_store_at(nullptr, jt_addr, _gvn.type(jt_addr)->is_ptr(), hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED); 2962 access_store_at(nullptr, vt_addr, _gvn.type(vt_addr)->is_ptr(), hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED); 2963 2964 ideal.sync_kit(this); 2965 } ideal.end_if(); 2966 final_sync(ideal); 2967 2968 return true; 2969 } 2970 2971 // Always update the is_disable_suspend bit. 2972 bool LibraryCallKit::inline_native_notify_jvmti_sync() { 2973 if (!DoJVMTIVirtualThreadTransitions) { 2974 return true; 2975 } 2976 IdealKit ideal(this); 2977 2978 { 2979 // unconditionally update the is_disable_suspend bit in current JavaThread 2980 Node* thread = ideal.thread(); 2981 Node* arg = _gvn.transform(argument(0)); // argument for notification 2982 Node* addr = basic_plus_adr(thread, in_bytes(JavaThread::is_disable_suspend_offset())); 2983 const TypePtr *addr_type = _gvn.type(addr)->isa_ptr(); 2984 2985 sync_kit(ideal); 2986 access_store_at(nullptr, addr, addr_type, arg, _gvn.type(arg), T_BOOLEAN, IN_NATIVE | MO_UNORDERED); 2987 ideal.sync_kit(this); 2988 } 2989 final_sync(ideal); 2990 2991 return true; 2992 } 2993 2994 #endif // INCLUDE_JVMTI 2995 2996 #ifdef JFR_HAVE_INTRINSICS 2997 2998 /** 2999 * if oop->klass != null 3000 * // normal class 3001 * epoch = _epoch_state ? 2 : 1 3002 * if oop->klass->trace_id & ((epoch << META_SHIFT) | epoch)) != epoch { 3003 * ... // enter slow path when the klass is first recorded or the epoch of JFR shifts 3004 * } 3005 * id = oop->klass->trace_id >> TRACE_ID_SHIFT // normal class path 3006 * else 3007 * // primitive class 3008 * if oop->array_klass != null 3009 * id = (oop->array_klass->trace_id >> TRACE_ID_SHIFT) + 1 // primitive class path 3010 * else 3011 * id = LAST_TYPE_ID + 1 // void class path 3012 * if (!signaled) 3013 * signaled = true 3014 */ 3015 bool LibraryCallKit::inline_native_classID() { 3016 Node* cls = argument(0); 3017 3018 IdealKit ideal(this); 3019 #define __ ideal. 3020 IdealVariable result(ideal); __ declarations_done(); 3021 Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), 3022 basic_plus_adr(cls, java_lang_Class::klass_offset()), 3023 TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL)); 3024 3025 3026 __ if_then(kls, BoolTest::ne, null()); { 3027 Node* kls_trace_id_addr = basic_plus_adr(kls, in_bytes(KLASS_TRACE_ID_OFFSET)); 3028 Node* kls_trace_id_raw = ideal.load(ideal.ctrl(), kls_trace_id_addr,TypeLong::LONG, T_LONG, Compile::AliasIdxRaw); 3029 3030 Node* epoch_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::epoch_address())); 3031 Node* epoch = ideal.load(ideal.ctrl(), epoch_address, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw); 3032 epoch = _gvn.transform(new LShiftLNode(longcon(1), epoch)); 3033 Node* mask = _gvn.transform(new LShiftLNode(epoch, intcon(META_SHIFT))); 3034 mask = _gvn.transform(new OrLNode(mask, epoch)); 3035 Node* kls_trace_id_raw_and_mask = _gvn.transform(new AndLNode(kls_trace_id_raw, mask)); 3036 3037 float unlikely = PROB_UNLIKELY(0.999); 3038 __ if_then(kls_trace_id_raw_and_mask, BoolTest::ne, epoch, unlikely); { 3039 sync_kit(ideal); 3040 make_runtime_call(RC_LEAF, 3041 OptoRuntime::class_id_load_barrier_Type(), 3042 CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::load_barrier), 3043 "class id load barrier", 3044 TypePtr::BOTTOM, 3045 kls); 3046 ideal.sync_kit(this); 3047 } __ end_if(); 3048 3049 ideal.set(result, _gvn.transform(new URShiftLNode(kls_trace_id_raw, ideal.ConI(TRACE_ID_SHIFT)))); 3050 } __ else_(); { 3051 Node* array_kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), 3052 basic_plus_adr(cls, java_lang_Class::array_klass_offset()), 3053 TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL)); 3054 __ if_then(array_kls, BoolTest::ne, null()); { 3055 Node* array_kls_trace_id_addr = basic_plus_adr(array_kls, in_bytes(KLASS_TRACE_ID_OFFSET)); 3056 Node* array_kls_trace_id_raw = ideal.load(ideal.ctrl(), array_kls_trace_id_addr, TypeLong::LONG, T_LONG, Compile::AliasIdxRaw); 3057 Node* array_kls_trace_id = _gvn.transform(new URShiftLNode(array_kls_trace_id_raw, ideal.ConI(TRACE_ID_SHIFT))); 3058 ideal.set(result, _gvn.transform(new AddLNode(array_kls_trace_id, longcon(1)))); 3059 } __ else_(); { 3060 // void class case 3061 ideal.set(result, _gvn.transform(longcon(LAST_TYPE_ID + 1))); 3062 } __ end_if(); 3063 3064 Node* signaled_flag_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::signal_address())); 3065 Node* signaled = ideal.load(ideal.ctrl(), signaled_flag_address, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw, true, MemNode::acquire); 3066 __ if_then(signaled, BoolTest::ne, ideal.ConI(1)); { 3067 ideal.store(ideal.ctrl(), signaled_flag_address, ideal.ConI(1), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::release, true); 3068 } __ end_if(); 3069 } __ end_if(); 3070 3071 final_sync(ideal); 3072 set_result(ideal.value(result)); 3073 #undef __ 3074 return true; 3075 } 3076 3077 //------------------------inline_native_jvm_commit------------------ 3078 bool LibraryCallKit::inline_native_jvm_commit() { 3079 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 3080 3081 // Save input memory and i_o state. 3082 Node* input_memory_state = reset_memory(); 3083 set_all_memory(input_memory_state); 3084 Node* input_io_state = i_o(); 3085 3086 // TLS. 3087 Node* tls_ptr = _gvn.transform(new ThreadLocalNode()); 3088 // Jfr java buffer. 3089 Node* java_buffer_offset = _gvn.transform(new AddPNode(top(), tls_ptr, _gvn.transform(MakeConX(in_bytes(JAVA_BUFFER_OFFSET_JFR))))); 3090 Node* java_buffer = _gvn.transform(new LoadPNode(control(), input_memory_state, java_buffer_offset, TypePtr::BOTTOM, TypeRawPtr::NOTNULL, MemNode::unordered)); 3091 Node* java_buffer_pos_offset = _gvn.transform(new AddPNode(top(), java_buffer, _gvn.transform(MakeConX(in_bytes(JFR_BUFFER_POS_OFFSET))))); 3092 3093 // Load the current value of the notified field in the JfrThreadLocal. 3094 Node* notified_offset = basic_plus_adr(top(), tls_ptr, in_bytes(NOTIFY_OFFSET_JFR)); 3095 Node* notified = make_load(control(), notified_offset, TypeInt::BOOL, T_BOOLEAN, MemNode::unordered); 3096 3097 // Test for notification. 3098 Node* notified_cmp = _gvn.transform(new CmpINode(notified, _gvn.intcon(1))); 3099 Node* test_notified = _gvn.transform(new BoolNode(notified_cmp, BoolTest::eq)); 3100 IfNode* iff_notified = create_and_map_if(control(), test_notified, PROB_MIN, COUNT_UNKNOWN); 3101 3102 // True branch, is notified. 3103 Node* is_notified = _gvn.transform(new IfTrueNode(iff_notified)); 3104 set_control(is_notified); 3105 3106 // Reset notified state. 3107 Node* notified_reset_memory = store_to_memory(control(), notified_offset, _gvn.intcon(0), T_BOOLEAN, MemNode::unordered); 3108 3109 // Iff notified, the return address of the commit method is the current position of the backing java buffer. This is used to reset the event writer. 3110 Node* current_pos_X = _gvn.transform(new LoadXNode(control(), input_memory_state, java_buffer_pos_offset, TypeRawPtr::NOTNULL, TypeX_X, MemNode::unordered)); 3111 // Convert the machine-word to a long. 3112 Node* current_pos = _gvn.transform(ConvX2L(current_pos_X)); 3113 3114 // False branch, not notified. 3115 Node* not_notified = _gvn.transform(new IfFalseNode(iff_notified)); 3116 set_control(not_notified); 3117 set_all_memory(input_memory_state); 3118 3119 // Arg is the next position as a long. 3120 Node* arg = argument(0); 3121 // Convert long to machine-word. 3122 Node* next_pos_X = _gvn.transform(ConvL2X(arg)); 3123 3124 // Store the next_position to the underlying jfr java buffer. 3125 Node* commit_memory; 3126 #ifdef _LP64 3127 commit_memory = store_to_memory(control(), java_buffer_pos_offset, next_pos_X, T_LONG, MemNode::release); 3128 #else 3129 commit_memory = store_to_memory(control(), java_buffer_pos_offset, next_pos_X, T_INT, MemNode::release); 3130 #endif 3131 3132 // Now load the flags from off the java buffer and decide if the buffer is a lease. If so, it needs to be returned post-commit. 3133 Node* java_buffer_flags_offset = _gvn.transform(new AddPNode(top(), java_buffer, _gvn.transform(MakeConX(in_bytes(JFR_BUFFER_FLAGS_OFFSET))))); 3134 Node* flags = make_load(control(), java_buffer_flags_offset, TypeInt::UBYTE, T_BYTE, MemNode::unordered); 3135 Node* lease_constant = _gvn.transform(_gvn.intcon(4)); 3136 3137 // And flags with lease constant. 3138 Node* lease = _gvn.transform(new AndINode(flags, lease_constant)); 3139 3140 // Branch on lease to conditionalize returning the leased java buffer. 3141 Node* lease_cmp = _gvn.transform(new CmpINode(lease, lease_constant)); 3142 Node* test_lease = _gvn.transform(new BoolNode(lease_cmp, BoolTest::eq)); 3143 IfNode* iff_lease = create_and_map_if(control(), test_lease, PROB_MIN, COUNT_UNKNOWN); 3144 3145 // False branch, not a lease. 3146 Node* not_lease = _gvn.transform(new IfFalseNode(iff_lease)); 3147 3148 // True branch, is lease. 3149 Node* is_lease = _gvn.transform(new IfTrueNode(iff_lease)); 3150 set_control(is_lease); 3151 3152 // Make a runtime call, which can safepoint, to return the leased buffer. This updates both the JfrThreadLocal and the Java event writer oop. 3153 Node* call_return_lease = make_runtime_call(RC_NO_LEAF, 3154 OptoRuntime::void_void_Type(), 3155 SharedRuntime::jfr_return_lease(), 3156 "return_lease", TypePtr::BOTTOM); 3157 Node* call_return_lease_control = _gvn.transform(new ProjNode(call_return_lease, TypeFunc::Control)); 3158 3159 RegionNode* lease_compare_rgn = new RegionNode(PATH_LIMIT); 3160 record_for_igvn(lease_compare_rgn); 3161 PhiNode* lease_compare_mem = new PhiNode(lease_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3162 record_for_igvn(lease_compare_mem); 3163 PhiNode* lease_compare_io = new PhiNode(lease_compare_rgn, Type::ABIO); 3164 record_for_igvn(lease_compare_io); 3165 PhiNode* lease_result_value = new PhiNode(lease_compare_rgn, TypeLong::LONG); 3166 record_for_igvn(lease_result_value); 3167 3168 // Update control and phi nodes. 3169 lease_compare_rgn->init_req(_true_path, call_return_lease_control); 3170 lease_compare_rgn->init_req(_false_path, not_lease); 3171 3172 lease_compare_mem->init_req(_true_path, _gvn.transform(reset_memory())); 3173 lease_compare_mem->init_req(_false_path, commit_memory); 3174 3175 lease_compare_io->init_req(_true_path, i_o()); 3176 lease_compare_io->init_req(_false_path, input_io_state); 3177 3178 lease_result_value->init_req(_true_path, null()); // if the lease was returned, return 0. 3179 lease_result_value->init_req(_false_path, arg); // if not lease, return new updated position. 3180 3181 RegionNode* result_rgn = new RegionNode(PATH_LIMIT); 3182 PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM); 3183 PhiNode* result_io = new PhiNode(result_rgn, Type::ABIO); 3184 PhiNode* result_value = new PhiNode(result_rgn, TypeLong::LONG); 3185 3186 // Update control and phi nodes. 3187 result_rgn->init_req(_true_path, is_notified); 3188 result_rgn->init_req(_false_path, _gvn.transform(lease_compare_rgn)); 3189 3190 result_mem->init_req(_true_path, notified_reset_memory); 3191 result_mem->init_req(_false_path, _gvn.transform(lease_compare_mem)); 3192 3193 result_io->init_req(_true_path, input_io_state); 3194 result_io->init_req(_false_path, _gvn.transform(lease_compare_io)); 3195 3196 result_value->init_req(_true_path, current_pos); 3197 result_value->init_req(_false_path, _gvn.transform(lease_result_value)); 3198 3199 // Set output state. 3200 set_control(_gvn.transform(result_rgn)); 3201 set_all_memory(_gvn.transform(result_mem)); 3202 set_i_o(_gvn.transform(result_io)); 3203 set_result(result_rgn, result_value); 3204 return true; 3205 } 3206 3207 /* 3208 * The intrinsic is a model of this pseudo-code: 3209 * 3210 * JfrThreadLocal* const tl = Thread::jfr_thread_local() 3211 * jobject h_event_writer = tl->java_event_writer(); 3212 * if (h_event_writer == nullptr) { 3213 * return nullptr; 3214 * } 3215 * oop threadObj = Thread::threadObj(); 3216 * oop vthread = java_lang_Thread::vthread(threadObj); 3217 * traceid tid; 3218 * bool pinVirtualThread; 3219 * bool excluded; 3220 * if (vthread != threadObj) { // i.e. current thread is virtual 3221 * tid = java_lang_Thread::tid(vthread); 3222 * u2 vthread_epoch_raw = java_lang_Thread::jfr_epoch(vthread); 3223 * pinVirtualThread = VMContinuations; 3224 * excluded = vthread_epoch_raw & excluded_mask; 3225 * if (!excluded) { 3226 * traceid current_epoch = JfrTraceIdEpoch::current_generation(); 3227 * u2 vthread_epoch = vthread_epoch_raw & epoch_mask; 3228 * if (vthread_epoch != current_epoch) { 3229 * write_checkpoint(); 3230 * } 3231 * } 3232 * } else { 3233 * tid = java_lang_Thread::tid(threadObj); 3234 * u2 thread_epoch_raw = java_lang_Thread::jfr_epoch(threadObj); 3235 * pinVirtualThread = false; 3236 * excluded = thread_epoch_raw & excluded_mask; 3237 * } 3238 * oop event_writer = JNIHandles::resolve_non_null(h_event_writer); 3239 * traceid tid_in_event_writer = getField(event_writer, "threadID"); 3240 * if (tid_in_event_writer != tid) { 3241 * setField(event_writer, "pinVirtualThread", pinVirtualThread); 3242 * setField(event_writer, "excluded", excluded); 3243 * setField(event_writer, "threadID", tid); 3244 * } 3245 * return event_writer 3246 */ 3247 bool LibraryCallKit::inline_native_getEventWriter() { 3248 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 3249 3250 // Save input memory and i_o state. 3251 Node* input_memory_state = reset_memory(); 3252 set_all_memory(input_memory_state); 3253 Node* input_io_state = i_o(); 3254 3255 // The most significant bit of the u2 is used to denote thread exclusion 3256 Node* excluded_shift = _gvn.intcon(15); 3257 Node* excluded_mask = _gvn.intcon(1 << 15); 3258 // The epoch generation is the range [1-32767] 3259 Node* epoch_mask = _gvn.intcon(32767); 3260 3261 // TLS 3262 Node* tls_ptr = _gvn.transform(new ThreadLocalNode()); 3263 3264 // Load the address of java event writer jobject handle from the jfr_thread_local structure. 3265 Node* jobj_ptr = basic_plus_adr(top(), tls_ptr, in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR)); 3266 3267 // Load the eventwriter jobject handle. 3268 Node* jobj = make_load(control(), jobj_ptr, TypeRawPtr::BOTTOM, T_ADDRESS, MemNode::unordered); 3269 3270 // Null check the jobject handle. 3271 Node* jobj_cmp_null = _gvn.transform(new CmpPNode(jobj, null())); 3272 Node* test_jobj_not_equal_null = _gvn.transform(new BoolNode(jobj_cmp_null, BoolTest::ne)); 3273 IfNode* iff_jobj_not_equal_null = create_and_map_if(control(), test_jobj_not_equal_null, PROB_MAX, COUNT_UNKNOWN); 3274 3275 // False path, jobj is null. 3276 Node* jobj_is_null = _gvn.transform(new IfFalseNode(iff_jobj_not_equal_null)); 3277 3278 // True path, jobj is not null. 3279 Node* jobj_is_not_null = _gvn.transform(new IfTrueNode(iff_jobj_not_equal_null)); 3280 3281 set_control(jobj_is_not_null); 3282 3283 // Load the threadObj for the CarrierThread. 3284 Node* threadObj = generate_current_thread(tls_ptr); 3285 3286 // Load the vthread. 3287 Node* vthread = generate_virtual_thread(tls_ptr); 3288 3289 // If vthread != threadObj, this is a virtual thread. 3290 Node* vthread_cmp_threadObj = _gvn.transform(new CmpPNode(vthread, threadObj)); 3291 Node* test_vthread_not_equal_threadObj = _gvn.transform(new BoolNode(vthread_cmp_threadObj, BoolTest::ne)); 3292 IfNode* iff_vthread_not_equal_threadObj = 3293 create_and_map_if(jobj_is_not_null, test_vthread_not_equal_threadObj, PROB_FAIR, COUNT_UNKNOWN); 3294 3295 // False branch, fallback to threadObj. 3296 Node* vthread_equal_threadObj = _gvn.transform(new IfFalseNode(iff_vthread_not_equal_threadObj)); 3297 set_control(vthread_equal_threadObj); 3298 3299 // Load the tid field from the vthread object. 3300 Node* thread_obj_tid = load_field_from_object(threadObj, "tid", "J"); 3301 3302 // Load the raw epoch value from the threadObj. 3303 Node* threadObj_epoch_offset = basic_plus_adr(threadObj, java_lang_Thread::jfr_epoch_offset()); 3304 Node* threadObj_epoch_raw = access_load_at(threadObj, threadObj_epoch_offset, 3305 _gvn.type(threadObj_epoch_offset)->isa_ptr(), 3306 TypeInt::CHAR, T_CHAR, 3307 IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD); 3308 3309 // Mask off the excluded information from the epoch. 3310 Node * threadObj_is_excluded = _gvn.transform(new AndINode(threadObj_epoch_raw, excluded_mask)); 3311 3312 // True branch, this is a virtual thread. 3313 Node* vthread_not_equal_threadObj = _gvn.transform(new IfTrueNode(iff_vthread_not_equal_threadObj)); 3314 set_control(vthread_not_equal_threadObj); 3315 3316 // Load the tid field from the vthread object. 3317 Node* vthread_tid = load_field_from_object(vthread, "tid", "J"); 3318 3319 // Continuation support determines if a virtual thread should be pinned. 3320 Node* global_addr = makecon(TypeRawPtr::make((address)&VMContinuations)); 3321 Node* continuation_support = make_load(control(), global_addr, TypeInt::BOOL, T_BOOLEAN, MemNode::unordered); 3322 3323 // Load the raw epoch value from the vthread. 3324 Node* vthread_epoch_offset = basic_plus_adr(vthread, java_lang_Thread::jfr_epoch_offset()); 3325 Node* vthread_epoch_raw = access_load_at(vthread, vthread_epoch_offset, _gvn.type(vthread_epoch_offset)->is_ptr(), 3326 TypeInt::CHAR, T_CHAR, 3327 IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD); 3328 3329 // Mask off the excluded information from the epoch. 3330 Node * vthread_is_excluded = _gvn.transform(new AndINode(vthread_epoch_raw, _gvn.transform(excluded_mask))); 3331 3332 // Branch on excluded to conditionalize updating the epoch for the virtual thread. 3333 Node* is_excluded_cmp = _gvn.transform(new CmpINode(vthread_is_excluded, _gvn.transform(excluded_mask))); 3334 Node* test_not_excluded = _gvn.transform(new BoolNode(is_excluded_cmp, BoolTest::ne)); 3335 IfNode* iff_not_excluded = create_and_map_if(control(), test_not_excluded, PROB_MAX, COUNT_UNKNOWN); 3336 3337 // False branch, vthread is excluded, no need to write epoch info. 3338 Node* excluded = _gvn.transform(new IfFalseNode(iff_not_excluded)); 3339 3340 // True branch, vthread is included, update epoch info. 3341 Node* included = _gvn.transform(new IfTrueNode(iff_not_excluded)); 3342 set_control(included); 3343 3344 // Get epoch value. 3345 Node* epoch = _gvn.transform(new AndINode(vthread_epoch_raw, _gvn.transform(epoch_mask))); 3346 3347 // Load the current epoch generation. The value is unsigned 16-bit, so we type it as T_CHAR. 3348 Node* epoch_generation_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::epoch_generation_address())); 3349 Node* current_epoch_generation = make_load(control(), epoch_generation_address, TypeInt::CHAR, T_CHAR, MemNode::unordered); 3350 3351 // Compare the epoch in the vthread to the current epoch generation. 3352 Node* const epoch_cmp = _gvn.transform(new CmpUNode(current_epoch_generation, epoch)); 3353 Node* test_epoch_not_equal = _gvn.transform(new BoolNode(epoch_cmp, BoolTest::ne)); 3354 IfNode* iff_epoch_not_equal = create_and_map_if(control(), test_epoch_not_equal, PROB_FAIR, COUNT_UNKNOWN); 3355 3356 // False path, epoch is equal, checkpoint information is valid. 3357 Node* epoch_is_equal = _gvn.transform(new IfFalseNode(iff_epoch_not_equal)); 3358 3359 // True path, epoch is not equal, write a checkpoint for the vthread. 3360 Node* epoch_is_not_equal = _gvn.transform(new IfTrueNode(iff_epoch_not_equal)); 3361 3362 set_control(epoch_is_not_equal); 3363 3364 // Make a runtime call, which can safepoint, to write a checkpoint for the vthread for this epoch. 3365 // The call also updates the native thread local thread id and the vthread with the current epoch. 3366 Node* call_write_checkpoint = make_runtime_call(RC_NO_LEAF, 3367 OptoRuntime::jfr_write_checkpoint_Type(), 3368 SharedRuntime::jfr_write_checkpoint(), 3369 "write_checkpoint", TypePtr::BOTTOM); 3370 Node* call_write_checkpoint_control = _gvn.transform(new ProjNode(call_write_checkpoint, TypeFunc::Control)); 3371 3372 // vthread epoch != current epoch 3373 RegionNode* epoch_compare_rgn = new RegionNode(PATH_LIMIT); 3374 record_for_igvn(epoch_compare_rgn); 3375 PhiNode* epoch_compare_mem = new PhiNode(epoch_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3376 record_for_igvn(epoch_compare_mem); 3377 PhiNode* epoch_compare_io = new PhiNode(epoch_compare_rgn, Type::ABIO); 3378 record_for_igvn(epoch_compare_io); 3379 3380 // Update control and phi nodes. 3381 epoch_compare_rgn->init_req(_true_path, call_write_checkpoint_control); 3382 epoch_compare_rgn->init_req(_false_path, epoch_is_equal); 3383 epoch_compare_mem->init_req(_true_path, _gvn.transform(reset_memory())); 3384 epoch_compare_mem->init_req(_false_path, input_memory_state); 3385 epoch_compare_io->init_req(_true_path, i_o()); 3386 epoch_compare_io->init_req(_false_path, input_io_state); 3387 3388 // excluded != true 3389 RegionNode* exclude_compare_rgn = new RegionNode(PATH_LIMIT); 3390 record_for_igvn(exclude_compare_rgn); 3391 PhiNode* exclude_compare_mem = new PhiNode(exclude_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3392 record_for_igvn(exclude_compare_mem); 3393 PhiNode* exclude_compare_io = new PhiNode(exclude_compare_rgn, Type::ABIO); 3394 record_for_igvn(exclude_compare_io); 3395 3396 // Update control and phi nodes. 3397 exclude_compare_rgn->init_req(_true_path, _gvn.transform(epoch_compare_rgn)); 3398 exclude_compare_rgn->init_req(_false_path, excluded); 3399 exclude_compare_mem->init_req(_true_path, _gvn.transform(epoch_compare_mem)); 3400 exclude_compare_mem->init_req(_false_path, input_memory_state); 3401 exclude_compare_io->init_req(_true_path, _gvn.transform(epoch_compare_io)); 3402 exclude_compare_io->init_req(_false_path, input_io_state); 3403 3404 // vthread != threadObj 3405 RegionNode* vthread_compare_rgn = new RegionNode(PATH_LIMIT); 3406 record_for_igvn(vthread_compare_rgn); 3407 PhiNode* vthread_compare_mem = new PhiNode(vthread_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3408 PhiNode* vthread_compare_io = new PhiNode(vthread_compare_rgn, Type::ABIO); 3409 record_for_igvn(vthread_compare_io); 3410 PhiNode* tid = new PhiNode(vthread_compare_rgn, TypeLong::LONG); 3411 record_for_igvn(tid); 3412 PhiNode* exclusion = new PhiNode(vthread_compare_rgn, TypeInt::CHAR); 3413 record_for_igvn(exclusion); 3414 PhiNode* pinVirtualThread = new PhiNode(vthread_compare_rgn, TypeInt::BOOL); 3415 record_for_igvn(pinVirtualThread); 3416 3417 // Update control and phi nodes. 3418 vthread_compare_rgn->init_req(_true_path, _gvn.transform(exclude_compare_rgn)); 3419 vthread_compare_rgn->init_req(_false_path, vthread_equal_threadObj); 3420 vthread_compare_mem->init_req(_true_path, _gvn.transform(exclude_compare_mem)); 3421 vthread_compare_mem->init_req(_false_path, input_memory_state); 3422 vthread_compare_io->init_req(_true_path, _gvn.transform(exclude_compare_io)); 3423 vthread_compare_io->init_req(_false_path, input_io_state); 3424 tid->init_req(_true_path, _gvn.transform(vthread_tid)); 3425 tid->init_req(_false_path, _gvn.transform(thread_obj_tid)); 3426 exclusion->init_req(_true_path, _gvn.transform(vthread_is_excluded)); 3427 exclusion->init_req(_false_path, _gvn.transform(threadObj_is_excluded)); 3428 pinVirtualThread->init_req(_true_path, _gvn.transform(continuation_support)); 3429 pinVirtualThread->init_req(_false_path, _gvn.intcon(0)); 3430 3431 // Update branch state. 3432 set_control(_gvn.transform(vthread_compare_rgn)); 3433 set_all_memory(_gvn.transform(vthread_compare_mem)); 3434 set_i_o(_gvn.transform(vthread_compare_io)); 3435 3436 // Load the event writer oop by dereferencing the jobject handle. 3437 ciKlass* klass_EventWriter = env()->find_system_klass(ciSymbol::make("jdk/jfr/internal/event/EventWriter")); 3438 assert(klass_EventWriter->is_loaded(), "invariant"); 3439 ciInstanceKlass* const instklass_EventWriter = klass_EventWriter->as_instance_klass(); 3440 const TypeKlassPtr* const aklass = TypeKlassPtr::make(instklass_EventWriter); 3441 const TypeOopPtr* const xtype = aklass->as_instance_type(); 3442 Node* jobj_untagged = _gvn.transform(new AddPNode(top(), jobj, _gvn.MakeConX(-JNIHandles::TypeTag::global))); 3443 Node* event_writer = access_load(jobj_untagged, xtype, T_OBJECT, IN_NATIVE | C2_CONTROL_DEPENDENT_LOAD); 3444 3445 // Load the current thread id from the event writer object. 3446 Node* const event_writer_tid = load_field_from_object(event_writer, "threadID", "J"); 3447 // Get the field offset to, conditionally, store an updated tid value later. 3448 Node* const event_writer_tid_field = field_address_from_object(event_writer, "threadID", "J", false); 3449 // Get the field offset to, conditionally, store an updated exclusion value later. 3450 Node* const event_writer_excluded_field = field_address_from_object(event_writer, "excluded", "Z", false); 3451 // Get the field offset to, conditionally, store an updated pinVirtualThread value later. 3452 Node* const event_writer_pin_field = field_address_from_object(event_writer, "pinVirtualThread", "Z", false); 3453 3454 RegionNode* event_writer_tid_compare_rgn = new RegionNode(PATH_LIMIT); 3455 record_for_igvn(event_writer_tid_compare_rgn); 3456 PhiNode* event_writer_tid_compare_mem = new PhiNode(event_writer_tid_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3457 record_for_igvn(event_writer_tid_compare_mem); 3458 PhiNode* event_writer_tid_compare_io = new PhiNode(event_writer_tid_compare_rgn, Type::ABIO); 3459 record_for_igvn(event_writer_tid_compare_io); 3460 3461 // Compare the current tid from the thread object to what is currently stored in the event writer object. 3462 Node* const tid_cmp = _gvn.transform(new CmpLNode(event_writer_tid, _gvn.transform(tid))); 3463 Node* test_tid_not_equal = _gvn.transform(new BoolNode(tid_cmp, BoolTest::ne)); 3464 IfNode* iff_tid_not_equal = create_and_map_if(_gvn.transform(vthread_compare_rgn), test_tid_not_equal, PROB_FAIR, COUNT_UNKNOWN); 3465 3466 // False path, tids are the same. 3467 Node* tid_is_equal = _gvn.transform(new IfFalseNode(iff_tid_not_equal)); 3468 3469 // True path, tid is not equal, need to update the tid in the event writer. 3470 Node* tid_is_not_equal = _gvn.transform(new IfTrueNode(iff_tid_not_equal)); 3471 record_for_igvn(tid_is_not_equal); 3472 3473 // Store the pin state to the event writer. 3474 store_to_memory(tid_is_not_equal, event_writer_pin_field, _gvn.transform(pinVirtualThread), T_BOOLEAN, MemNode::unordered); 3475 3476 // Store the exclusion state to the event writer. 3477 Node* excluded_bool = _gvn.transform(new URShiftINode(_gvn.transform(exclusion), excluded_shift)); 3478 store_to_memory(tid_is_not_equal, event_writer_excluded_field, excluded_bool, T_BOOLEAN, MemNode::unordered); 3479 3480 // Store the tid to the event writer. 3481 store_to_memory(tid_is_not_equal, event_writer_tid_field, tid, T_LONG, MemNode::unordered); 3482 3483 // Update control and phi nodes. 3484 event_writer_tid_compare_rgn->init_req(_true_path, tid_is_not_equal); 3485 event_writer_tid_compare_rgn->init_req(_false_path, tid_is_equal); 3486 event_writer_tid_compare_mem->init_req(_true_path, _gvn.transform(reset_memory())); 3487 event_writer_tid_compare_mem->init_req(_false_path, _gvn.transform(vthread_compare_mem)); 3488 event_writer_tid_compare_io->init_req(_true_path, _gvn.transform(i_o())); 3489 event_writer_tid_compare_io->init_req(_false_path, _gvn.transform(vthread_compare_io)); 3490 3491 // Result of top level CFG, Memory, IO and Value. 3492 RegionNode* result_rgn = new RegionNode(PATH_LIMIT); 3493 PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM); 3494 PhiNode* result_io = new PhiNode(result_rgn, Type::ABIO); 3495 PhiNode* result_value = new PhiNode(result_rgn, TypeInstPtr::BOTTOM); 3496 3497 // Result control. 3498 result_rgn->init_req(_true_path, _gvn.transform(event_writer_tid_compare_rgn)); 3499 result_rgn->init_req(_false_path, jobj_is_null); 3500 3501 // Result memory. 3502 result_mem->init_req(_true_path, _gvn.transform(event_writer_tid_compare_mem)); 3503 result_mem->init_req(_false_path, _gvn.transform(input_memory_state)); 3504 3505 // Result IO. 3506 result_io->init_req(_true_path, _gvn.transform(event_writer_tid_compare_io)); 3507 result_io->init_req(_false_path, _gvn.transform(input_io_state)); 3508 3509 // Result value. 3510 result_value->init_req(_true_path, _gvn.transform(event_writer)); // return event writer oop 3511 result_value->init_req(_false_path, null()); // return null 3512 3513 // Set output state. 3514 set_control(_gvn.transform(result_rgn)); 3515 set_all_memory(_gvn.transform(result_mem)); 3516 set_i_o(_gvn.transform(result_io)); 3517 set_result(result_rgn, result_value); 3518 return true; 3519 } 3520 3521 /* 3522 * The intrinsic is a model of this pseudo-code: 3523 * 3524 * JfrThreadLocal* const tl = thread->jfr_thread_local(); 3525 * if (carrierThread != thread) { // is virtual thread 3526 * const u2 vthread_epoch_raw = java_lang_Thread::jfr_epoch(thread); 3527 * bool excluded = vthread_epoch_raw & excluded_mask; 3528 * Atomic::store(&tl->_contextual_tid, java_lang_Thread::tid(thread)); 3529 * Atomic::store(&tl->_contextual_thread_excluded, is_excluded); 3530 * if (!excluded) { 3531 * const u2 vthread_epoch = vthread_epoch_raw & epoch_mask; 3532 * Atomic::store(&tl->_vthread_epoch, vthread_epoch); 3533 * } 3534 * Atomic::release_store(&tl->_vthread, true); 3535 * return; 3536 * } 3537 * Atomic::release_store(&tl->_vthread, false); 3538 */ 3539 void LibraryCallKit::extend_setCurrentThread(Node* jt, Node* thread) { 3540 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 3541 3542 Node* input_memory_state = reset_memory(); 3543 set_all_memory(input_memory_state); 3544 3545 // The most significant bit of the u2 is used to denote thread exclusion 3546 Node* excluded_mask = _gvn.intcon(1 << 15); 3547 // The epoch generation is the range [1-32767] 3548 Node* epoch_mask = _gvn.intcon(32767); 3549 3550 Node* const carrierThread = generate_current_thread(jt); 3551 // If thread != carrierThread, this is a virtual thread. 3552 Node* thread_cmp_carrierThread = _gvn.transform(new CmpPNode(thread, carrierThread)); 3553 Node* test_thread_not_equal_carrierThread = _gvn.transform(new BoolNode(thread_cmp_carrierThread, BoolTest::ne)); 3554 IfNode* iff_thread_not_equal_carrierThread = 3555 create_and_map_if(control(), test_thread_not_equal_carrierThread, PROB_FAIR, COUNT_UNKNOWN); 3556 3557 Node* vthread_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_OFFSET_JFR)); 3558 3559 // False branch, is carrierThread. 3560 Node* thread_equal_carrierThread = _gvn.transform(new IfFalseNode(iff_thread_not_equal_carrierThread)); 3561 // Store release 3562 Node* vthread_false_memory = store_to_memory(thread_equal_carrierThread, vthread_offset, _gvn.intcon(0), T_BOOLEAN, MemNode::release, true); 3563 3564 set_all_memory(input_memory_state); 3565 3566 // True branch, is virtual thread. 3567 Node* thread_not_equal_carrierThread = _gvn.transform(new IfTrueNode(iff_thread_not_equal_carrierThread)); 3568 set_control(thread_not_equal_carrierThread); 3569 3570 // Load the raw epoch value from the vthread. 3571 Node* epoch_offset = basic_plus_adr(thread, java_lang_Thread::jfr_epoch_offset()); 3572 Node* epoch_raw = access_load_at(thread, epoch_offset, _gvn.type(epoch_offset)->is_ptr(), TypeInt::CHAR, T_CHAR, 3573 IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD); 3574 3575 // Mask off the excluded information from the epoch. 3576 Node * const is_excluded = _gvn.transform(new AndINode(epoch_raw, _gvn.transform(excluded_mask))); 3577 3578 // Load the tid field from the thread. 3579 Node* tid = load_field_from_object(thread, "tid", "J"); 3580 3581 // Store the vthread tid to the jfr thread local. 3582 Node* thread_id_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_ID_OFFSET_JFR)); 3583 Node* tid_memory = store_to_memory(control(), thread_id_offset, tid, T_LONG, MemNode::unordered, true); 3584 3585 // Branch is_excluded to conditionalize updating the epoch . 3586 Node* excluded_cmp = _gvn.transform(new CmpINode(is_excluded, _gvn.transform(excluded_mask))); 3587 Node* test_excluded = _gvn.transform(new BoolNode(excluded_cmp, BoolTest::eq)); 3588 IfNode* iff_excluded = create_and_map_if(control(), test_excluded, PROB_MIN, COUNT_UNKNOWN); 3589 3590 // True branch, vthread is excluded, no need to write epoch info. 3591 Node* excluded = _gvn.transform(new IfTrueNode(iff_excluded)); 3592 set_control(excluded); 3593 Node* vthread_is_excluded = _gvn.intcon(1); 3594 3595 // False branch, vthread is included, update epoch info. 3596 Node* included = _gvn.transform(new IfFalseNode(iff_excluded)); 3597 set_control(included); 3598 Node* vthread_is_included = _gvn.intcon(0); 3599 3600 // Get epoch value. 3601 Node* epoch = _gvn.transform(new AndINode(epoch_raw, _gvn.transform(epoch_mask))); 3602 3603 // Store the vthread epoch to the jfr thread local. 3604 Node* vthread_epoch_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_EPOCH_OFFSET_JFR)); 3605 Node* included_memory = store_to_memory(control(), vthread_epoch_offset, epoch, T_CHAR, MemNode::unordered, true); 3606 3607 RegionNode* excluded_rgn = new RegionNode(PATH_LIMIT); 3608 record_for_igvn(excluded_rgn); 3609 PhiNode* excluded_mem = new PhiNode(excluded_rgn, Type::MEMORY, TypePtr::BOTTOM); 3610 record_for_igvn(excluded_mem); 3611 PhiNode* exclusion = new PhiNode(excluded_rgn, TypeInt::BOOL); 3612 record_for_igvn(exclusion); 3613 3614 // Merge the excluded control and memory. 3615 excluded_rgn->init_req(_true_path, excluded); 3616 excluded_rgn->init_req(_false_path, included); 3617 excluded_mem->init_req(_true_path, tid_memory); 3618 excluded_mem->init_req(_false_path, included_memory); 3619 exclusion->init_req(_true_path, _gvn.transform(vthread_is_excluded)); 3620 exclusion->init_req(_false_path, _gvn.transform(vthread_is_included)); 3621 3622 // Set intermediate state. 3623 set_control(_gvn.transform(excluded_rgn)); 3624 set_all_memory(excluded_mem); 3625 3626 // Store the vthread exclusion state to the jfr thread local. 3627 Node* thread_local_excluded_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_EXCLUDED_OFFSET_JFR)); 3628 store_to_memory(control(), thread_local_excluded_offset, _gvn.transform(exclusion), T_BOOLEAN, MemNode::unordered, true); 3629 3630 // Store release 3631 Node * vthread_true_memory = store_to_memory(control(), vthread_offset, _gvn.intcon(1), T_BOOLEAN, MemNode::release, true); 3632 3633 RegionNode* thread_compare_rgn = new RegionNode(PATH_LIMIT); 3634 record_for_igvn(thread_compare_rgn); 3635 PhiNode* thread_compare_mem = new PhiNode(thread_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3636 record_for_igvn(thread_compare_mem); 3637 PhiNode* vthread = new PhiNode(thread_compare_rgn, TypeInt::BOOL); 3638 record_for_igvn(vthread); 3639 3640 // Merge the thread_compare control and memory. 3641 thread_compare_rgn->init_req(_true_path, control()); 3642 thread_compare_rgn->init_req(_false_path, thread_equal_carrierThread); 3643 thread_compare_mem->init_req(_true_path, vthread_true_memory); 3644 thread_compare_mem->init_req(_false_path, vthread_false_memory); 3645 3646 // Set output state. 3647 set_control(_gvn.transform(thread_compare_rgn)); 3648 set_all_memory(_gvn.transform(thread_compare_mem)); 3649 } 3650 3651 #endif // JFR_HAVE_INTRINSICS 3652 3653 //------------------------inline_native_currentCarrierThread------------------ 3654 bool LibraryCallKit::inline_native_currentCarrierThread() { 3655 Node* junk = nullptr; 3656 set_result(generate_current_thread(junk)); 3657 return true; 3658 } 3659 3660 //------------------------inline_native_currentThread------------------ 3661 bool LibraryCallKit::inline_native_currentThread() { 3662 Node* junk = nullptr; 3663 set_result(generate_virtual_thread(junk)); 3664 return true; 3665 } 3666 3667 //------------------------inline_native_setVthread------------------ 3668 bool LibraryCallKit::inline_native_setCurrentThread() { 3669 assert(C->method()->changes_current_thread(), 3670 "method changes current Thread but is not annotated ChangesCurrentThread"); 3671 Node* arr = argument(1); 3672 Node* thread = _gvn.transform(new ThreadLocalNode()); 3673 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::vthread_offset())); 3674 Node* thread_obj_handle 3675 = make_load(nullptr, p, p->bottom_type()->is_ptr(), T_OBJECT, MemNode::unordered); 3676 thread_obj_handle = _gvn.transform(thread_obj_handle); 3677 const TypePtr *adr_type = _gvn.type(thread_obj_handle)->isa_ptr(); 3678 access_store_at(nullptr, thread_obj_handle, adr_type, arr, _gvn.type(arr), T_OBJECT, IN_NATIVE | MO_UNORDERED); 3679 3680 // Change the _monitor_owner_id of the JavaThread 3681 Node* tid = load_field_from_object(arr, "tid", "J"); 3682 Node* monitor_owner_id_offset = basic_plus_adr(thread, in_bytes(JavaThread::monitor_owner_id_offset())); 3683 store_to_memory(control(), monitor_owner_id_offset, tid, T_LONG, MemNode::unordered, true); 3684 3685 JFR_ONLY(extend_setCurrentThread(thread, arr);) 3686 return true; 3687 } 3688 3689 const Type* LibraryCallKit::scopedValueCache_type() { 3690 ciKlass* objects_klass = ciObjArrayKlass::make(env()->Object_klass()); 3691 const TypeOopPtr* etype = TypeOopPtr::make_from_klass(env()->Object_klass()); 3692 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS); 3693 3694 // Because we create the scopedValue cache lazily we have to make the 3695 // type of the result BotPTR. 3696 bool xk = etype->klass_is_exact(); 3697 const Type* objects_type = TypeAryPtr::make(TypePtr::BotPTR, arr0, objects_klass, xk, 0); 3698 return objects_type; 3699 } 3700 3701 Node* LibraryCallKit::scopedValueCache_helper() { 3702 Node* thread = _gvn.transform(new ThreadLocalNode()); 3703 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::scopedValueCache_offset())); 3704 // We cannot use immutable_memory() because we might flip onto a 3705 // different carrier thread, at which point we'll need to use that 3706 // carrier thread's cache. 3707 // return _gvn.transform(LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(), 3708 // TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered)); 3709 return make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered); 3710 } 3711 3712 //------------------------inline_native_scopedValueCache------------------ 3713 bool LibraryCallKit::inline_native_scopedValueCache() { 3714 Node* cache_obj_handle = scopedValueCache_helper(); 3715 const Type* objects_type = scopedValueCache_type(); 3716 set_result(access_load(cache_obj_handle, objects_type, T_OBJECT, IN_NATIVE)); 3717 3718 return true; 3719 } 3720 3721 //------------------------inline_native_setScopedValueCache------------------ 3722 bool LibraryCallKit::inline_native_setScopedValueCache() { 3723 Node* arr = argument(0); 3724 Node* cache_obj_handle = scopedValueCache_helper(); 3725 const Type* objects_type = scopedValueCache_type(); 3726 3727 const TypePtr *adr_type = _gvn.type(cache_obj_handle)->isa_ptr(); 3728 access_store_at(nullptr, cache_obj_handle, adr_type, arr, objects_type, T_OBJECT, IN_NATIVE | MO_UNORDERED); 3729 3730 return true; 3731 } 3732 3733 //------------------------inline_native_Continuation_pin and unpin----------- 3734 3735 // Shared implementation routine for both pin and unpin. 3736 bool LibraryCallKit::inline_native_Continuation_pinning(bool unpin) { 3737 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 3738 3739 // Save input memory. 3740 Node* input_memory_state = reset_memory(); 3741 set_all_memory(input_memory_state); 3742 3743 // TLS 3744 Node* tls_ptr = _gvn.transform(new ThreadLocalNode()); 3745 Node* last_continuation_offset = basic_plus_adr(top(), tls_ptr, in_bytes(JavaThread::cont_entry_offset())); 3746 Node* last_continuation = make_load(control(), last_continuation_offset, last_continuation_offset->get_ptr_type(), T_ADDRESS, MemNode::unordered); 3747 3748 // Null check the last continuation object. 3749 Node* continuation_cmp_null = _gvn.transform(new CmpPNode(last_continuation, null())); 3750 Node* test_continuation_not_equal_null = _gvn.transform(new BoolNode(continuation_cmp_null, BoolTest::ne)); 3751 IfNode* iff_continuation_not_equal_null = create_and_map_if(control(), test_continuation_not_equal_null, PROB_MAX, COUNT_UNKNOWN); 3752 3753 // False path, last continuation is null. 3754 Node* continuation_is_null = _gvn.transform(new IfFalseNode(iff_continuation_not_equal_null)); 3755 3756 // True path, last continuation is not null. 3757 Node* continuation_is_not_null = _gvn.transform(new IfTrueNode(iff_continuation_not_equal_null)); 3758 3759 set_control(continuation_is_not_null); 3760 3761 // Load the pin count from the last continuation. 3762 Node* pin_count_offset = basic_plus_adr(top(), last_continuation, in_bytes(ContinuationEntry::pin_count_offset())); 3763 Node* pin_count = make_load(control(), pin_count_offset, TypeInt::INT, T_INT, MemNode::unordered); 3764 3765 // The loaded pin count is compared against a context specific rhs for over/underflow detection. 3766 Node* pin_count_rhs; 3767 if (unpin) { 3768 pin_count_rhs = _gvn.intcon(0); 3769 } else { 3770 pin_count_rhs = _gvn.intcon(UINT32_MAX); 3771 } 3772 Node* pin_count_cmp = _gvn.transform(new CmpUNode(_gvn.transform(pin_count), pin_count_rhs)); 3773 Node* test_pin_count_over_underflow = _gvn.transform(new BoolNode(pin_count_cmp, BoolTest::eq)); 3774 IfNode* iff_pin_count_over_underflow = create_and_map_if(control(), test_pin_count_over_underflow, PROB_MIN, COUNT_UNKNOWN); 3775 3776 // False branch, no pin count over/underflow. Increment or decrement pin count and store back. 3777 Node* valid_pin_count = _gvn.transform(new IfFalseNode(iff_pin_count_over_underflow)); 3778 set_control(valid_pin_count); 3779 3780 Node* next_pin_count; 3781 if (unpin) { 3782 next_pin_count = _gvn.transform(new SubINode(pin_count, _gvn.intcon(1))); 3783 } else { 3784 next_pin_count = _gvn.transform(new AddINode(pin_count, _gvn.intcon(1))); 3785 } 3786 3787 Node* updated_pin_count_memory = store_to_memory(control(), pin_count_offset, next_pin_count, T_INT, MemNode::unordered); 3788 3789 // True branch, pin count over/underflow. 3790 Node* pin_count_over_underflow = _gvn.transform(new IfTrueNode(iff_pin_count_over_underflow)); 3791 { 3792 // Trap (but not deoptimize (Action_none)) and continue in the interpreter 3793 // which will throw IllegalStateException for pin count over/underflow. 3794 PreserveJVMState pjvms(this); 3795 set_control(pin_count_over_underflow); 3796 set_all_memory(input_memory_state); 3797 uncommon_trap_exact(Deoptimization::Reason_intrinsic, 3798 Deoptimization::Action_none); 3799 assert(stopped(), "invariant"); 3800 } 3801 3802 // Result of top level CFG and Memory. 3803 RegionNode* result_rgn = new RegionNode(PATH_LIMIT); 3804 record_for_igvn(result_rgn); 3805 PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM); 3806 record_for_igvn(result_mem); 3807 3808 result_rgn->init_req(_true_path, _gvn.transform(valid_pin_count)); 3809 result_rgn->init_req(_false_path, _gvn.transform(continuation_is_null)); 3810 result_mem->init_req(_true_path, _gvn.transform(updated_pin_count_memory)); 3811 result_mem->init_req(_false_path, _gvn.transform(input_memory_state)); 3812 3813 // Set output state. 3814 set_control(_gvn.transform(result_rgn)); 3815 set_all_memory(_gvn.transform(result_mem)); 3816 3817 return true; 3818 } 3819 3820 //---------------------------load_mirror_from_klass---------------------------- 3821 // Given a klass oop, load its java mirror (a java.lang.Class oop). 3822 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) { 3823 Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset())); 3824 Node* load = make_load(nullptr, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered); 3825 // mirror = ((OopHandle)mirror)->resolve(); 3826 return access_load(load, TypeInstPtr::MIRROR, T_OBJECT, IN_NATIVE); 3827 } 3828 3829 //-----------------------load_klass_from_mirror_common------------------------- 3830 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop. 3831 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE), 3832 // and branch to the given path on the region. 3833 // If never_see_null, take an uncommon trap on null, so we can optimistically 3834 // compile for the non-null case. 3835 // If the region is null, force never_see_null = true. 3836 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror, 3837 bool never_see_null, 3838 RegionNode* region, 3839 int null_path, 3840 int offset) { 3841 if (region == nullptr) never_see_null = true; 3842 Node* p = basic_plus_adr(mirror, offset); 3843 const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL; 3844 Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type)); 3845 Node* null_ctl = top(); 3846 kls = null_check_oop(kls, &null_ctl, never_see_null); 3847 if (region != nullptr) { 3848 // Set region->in(null_path) if the mirror is a primitive (e.g, int.class). 3849 region->init_req(null_path, null_ctl); 3850 } else { 3851 assert(null_ctl == top(), "no loose ends"); 3852 } 3853 return kls; 3854 } 3855 3856 //--------------------(inline_native_Class_query helpers)--------------------- 3857 // Use this for JVM_ACC_INTERFACE. 3858 // Fall through if (mods & mask) == bits, take the guard otherwise. 3859 Node* LibraryCallKit::generate_klass_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region, 3860 ByteSize offset, const Type* type, BasicType bt) { 3861 // Branch around if the given klass has the given modifier bit set. 3862 // Like generate_guard, adds a new path onto the region. 3863 Node* modp = basic_plus_adr(kls, in_bytes(offset)); 3864 Node* mods = make_load(nullptr, modp, type, bt, MemNode::unordered); 3865 Node* mask = intcon(modifier_mask); 3866 Node* bits = intcon(modifier_bits); 3867 Node* mbit = _gvn.transform(new AndINode(mods, mask)); 3868 Node* cmp = _gvn.transform(new CmpINode(mbit, bits)); 3869 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne)); 3870 return generate_fair_guard(bol, region); 3871 } 3872 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) { 3873 return generate_klass_flags_guard(kls, JVM_ACC_INTERFACE, 0, region, 3874 Klass::access_flags_offset(), TypeInt::CHAR, T_CHAR); 3875 } 3876 3877 // Use this for testing if Klass is_hidden, has_finalizer, and is_cloneable_fast. 3878 Node* LibraryCallKit::generate_misc_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) { 3879 return generate_klass_flags_guard(kls, modifier_mask, modifier_bits, region, 3880 Klass::misc_flags_offset(), TypeInt::UBYTE, T_BOOLEAN); 3881 } 3882 3883 Node* LibraryCallKit::generate_hidden_class_guard(Node* kls, RegionNode* region) { 3884 return generate_misc_flags_guard(kls, KlassFlags::_misc_is_hidden_class, 0, region); 3885 } 3886 3887 //-------------------------inline_native_Class_query------------------- 3888 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) { 3889 const Type* return_type = TypeInt::BOOL; 3890 Node* prim_return_value = top(); // what happens if it's a primitive class? 3891 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 3892 bool expect_prim = false; // most of these guys expect to work on refs 3893 3894 enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT }; 3895 3896 Node* mirror = argument(0); 3897 Node* obj = top(); 3898 3899 switch (id) { 3900 case vmIntrinsics::_isInstance: 3901 // nothing is an instance of a primitive type 3902 prim_return_value = intcon(0); 3903 obj = argument(1); 3904 break; 3905 case vmIntrinsics::_getModifiers: 3906 prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC); 3907 return_type = TypeInt::CHAR; 3908 break; 3909 case vmIntrinsics::_isInterface: 3910 prim_return_value = intcon(0); 3911 break; 3912 case vmIntrinsics::_isArray: 3913 prim_return_value = intcon(0); 3914 expect_prim = true; // cf. ObjectStreamClass.getClassSignature 3915 break; 3916 case vmIntrinsics::_isPrimitive: 3917 prim_return_value = intcon(1); 3918 expect_prim = true; // obviously 3919 break; 3920 case vmIntrinsics::_isHidden: 3921 prim_return_value = intcon(0); 3922 break; 3923 case vmIntrinsics::_getSuperclass: 3924 prim_return_value = null(); 3925 return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR); 3926 break; 3927 case vmIntrinsics::_getClassAccessFlags: 3928 prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC); 3929 return_type = TypeInt::CHAR; 3930 break; 3931 default: 3932 fatal_unexpected_iid(id); 3933 break; 3934 } 3935 3936 const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr(); 3937 if (mirror_con == nullptr) return false; // cannot happen? 3938 3939 #ifndef PRODUCT 3940 if (C->print_intrinsics() || C->print_inlining()) { 3941 ciType* k = mirror_con->java_mirror_type(); 3942 if (k) { 3943 tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id())); 3944 k->print_name(); 3945 tty->cr(); 3946 } 3947 } 3948 #endif 3949 3950 // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive). 3951 RegionNode* region = new RegionNode(PATH_LIMIT); 3952 record_for_igvn(region); 3953 PhiNode* phi = new PhiNode(region, return_type); 3954 3955 // The mirror will never be null of Reflection.getClassAccessFlags, however 3956 // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE 3957 // if it is. See bug 4774291. 3958 3959 // For Reflection.getClassAccessFlags(), the null check occurs in 3960 // the wrong place; see inline_unsafe_access(), above, for a similar 3961 // situation. 3962 mirror = null_check(mirror); 3963 // If mirror or obj is dead, only null-path is taken. 3964 if (stopped()) return true; 3965 3966 if (expect_prim) never_see_null = false; // expect nulls (meaning prims) 3967 3968 // Now load the mirror's klass metaobject, and null-check it. 3969 // Side-effects region with the control path if the klass is null. 3970 Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path); 3971 // If kls is null, we have a primitive mirror. 3972 phi->init_req(_prim_path, prim_return_value); 3973 if (stopped()) { set_result(region, phi); return true; } 3974 bool safe_for_replace = (region->in(_prim_path) == top()); 3975 3976 Node* p; // handy temp 3977 Node* null_ctl; 3978 3979 // Now that we have the non-null klass, we can perform the real query. 3980 // For constant classes, the query will constant-fold in LoadNode::Value. 3981 Node* query_value = top(); 3982 switch (id) { 3983 case vmIntrinsics::_isInstance: 3984 // nothing is an instance of a primitive type 3985 query_value = gen_instanceof(obj, kls, safe_for_replace); 3986 break; 3987 3988 case vmIntrinsics::_getModifiers: 3989 p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset())); 3990 query_value = make_load(nullptr, p, TypeInt::CHAR, T_CHAR, MemNode::unordered); 3991 break; 3992 3993 case vmIntrinsics::_isInterface: 3994 // (To verify this code sequence, check the asserts in JVM_IsInterface.) 3995 if (generate_interface_guard(kls, region) != nullptr) 3996 // A guard was added. If the guard is taken, it was an interface. 3997 phi->add_req(intcon(1)); 3998 // If we fall through, it's a plain class. 3999 query_value = intcon(0); 4000 break; 4001 4002 case vmIntrinsics::_isArray: 4003 // (To verify this code sequence, check the asserts in JVM_IsArrayClass.) 4004 if (generate_array_guard(kls, region) != nullptr) 4005 // A guard was added. If the guard is taken, it was an array. 4006 phi->add_req(intcon(1)); 4007 // If we fall through, it's a plain class. 4008 query_value = intcon(0); 4009 break; 4010 4011 case vmIntrinsics::_isPrimitive: 4012 query_value = intcon(0); // "normal" path produces false 4013 break; 4014 4015 case vmIntrinsics::_isHidden: 4016 // (To verify this code sequence, check the asserts in JVM_IsHiddenClass.) 4017 if (generate_hidden_class_guard(kls, region) != nullptr) 4018 // A guard was added. If the guard is taken, it was an hidden class. 4019 phi->add_req(intcon(1)); 4020 // If we fall through, it's a plain class. 4021 query_value = intcon(0); 4022 break; 4023 4024 4025 case vmIntrinsics::_getSuperclass: 4026 // The rules here are somewhat unfortunate, but we can still do better 4027 // with random logic than with a JNI call. 4028 // Interfaces store null or Object as _super, but must report null. 4029 // Arrays store an intermediate super as _super, but must report Object. 4030 // Other types can report the actual _super. 4031 // (To verify this code sequence, check the asserts in JVM_IsInterface.) 4032 if (generate_interface_guard(kls, region) != nullptr) 4033 // A guard was added. If the guard is taken, it was an interface. 4034 phi->add_req(null()); 4035 if (generate_array_guard(kls, region) != nullptr) 4036 // A guard was added. If the guard is taken, it was an array. 4037 phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror()))); 4038 // If we fall through, it's a plain class. Get its _super. 4039 p = basic_plus_adr(kls, in_bytes(Klass::super_offset())); 4040 kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL)); 4041 null_ctl = top(); 4042 kls = null_check_oop(kls, &null_ctl); 4043 if (null_ctl != top()) { 4044 // If the guard is taken, Object.superClass is null (both klass and mirror). 4045 region->add_req(null_ctl); 4046 phi ->add_req(null()); 4047 } 4048 if (!stopped()) { 4049 query_value = load_mirror_from_klass(kls); 4050 } 4051 break; 4052 4053 case vmIntrinsics::_getClassAccessFlags: 4054 p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset())); 4055 query_value = make_load(nullptr, p, TypeInt::CHAR, T_CHAR, MemNode::unordered); 4056 break; 4057 4058 default: 4059 fatal_unexpected_iid(id); 4060 break; 4061 } 4062 4063 // Fall-through is the normal case of a query to a real class. 4064 phi->init_req(1, query_value); 4065 region->init_req(1, control()); 4066 4067 C->set_has_split_ifs(true); // Has chance for split-if optimization 4068 set_result(region, phi); 4069 return true; 4070 } 4071 4072 //-------------------------inline_Class_cast------------------- 4073 bool LibraryCallKit::inline_Class_cast() { 4074 Node* mirror = argument(0); // Class 4075 Node* obj = argument(1); 4076 const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr(); 4077 if (mirror_con == nullptr) { 4078 return false; // dead path (mirror->is_top()). 4079 } 4080 if (obj == nullptr || obj->is_top()) { 4081 return false; // dead path 4082 } 4083 const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr(); 4084 4085 // First, see if Class.cast() can be folded statically. 4086 // java_mirror_type() returns non-null for compile-time Class constants. 4087 ciType* tm = mirror_con->java_mirror_type(); 4088 if (tm != nullptr && tm->is_klass() && 4089 tp != nullptr) { 4090 if (!tp->is_loaded()) { 4091 // Don't use intrinsic when class is not loaded. 4092 return false; 4093 } else { 4094 int static_res = C->static_subtype_check(TypeKlassPtr::make(tm->as_klass(), Type::trust_interfaces), tp->as_klass_type()); 4095 if (static_res == Compile::SSC_always_true) { 4096 // isInstance() is true - fold the code. 4097 set_result(obj); 4098 return true; 4099 } else if (static_res == Compile::SSC_always_false) { 4100 // Don't use intrinsic, have to throw ClassCastException. 4101 // If the reference is null, the non-intrinsic bytecode will 4102 // be optimized appropriately. 4103 return false; 4104 } 4105 } 4106 } 4107 4108 // Bailout intrinsic and do normal inlining if exception path is frequent. 4109 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 4110 return false; 4111 } 4112 4113 // Generate dynamic checks. 4114 // Class.cast() is java implementation of _checkcast bytecode. 4115 // Do checkcast (Parse::do_checkcast()) optimizations here. 4116 4117 mirror = null_check(mirror); 4118 // If mirror is dead, only null-path is taken. 4119 if (stopped()) { 4120 return true; 4121 } 4122 4123 // Not-subtype or the mirror's klass ptr is null (in case it is a primitive). 4124 enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT }; 4125 RegionNode* region = new RegionNode(PATH_LIMIT); 4126 record_for_igvn(region); 4127 4128 // Now load the mirror's klass metaobject, and null-check it. 4129 // If kls is null, we have a primitive mirror and 4130 // nothing is an instance of a primitive type. 4131 Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path); 4132 4133 Node* res = top(); 4134 if (!stopped()) { 4135 Node* bad_type_ctrl = top(); 4136 // Do checkcast optimizations. 4137 res = gen_checkcast(obj, kls, &bad_type_ctrl); 4138 region->init_req(_bad_type_path, bad_type_ctrl); 4139 } 4140 if (region->in(_prim_path) != top() || 4141 region->in(_bad_type_path) != top()) { 4142 // Let Interpreter throw ClassCastException. 4143 PreserveJVMState pjvms(this); 4144 set_control(_gvn.transform(region)); 4145 uncommon_trap(Deoptimization::Reason_intrinsic, 4146 Deoptimization::Action_maybe_recompile); 4147 } 4148 if (!stopped()) { 4149 set_result(res); 4150 } 4151 return true; 4152 } 4153 4154 4155 //--------------------------inline_native_subtype_check------------------------ 4156 // This intrinsic takes the JNI calls out of the heart of 4157 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc. 4158 bool LibraryCallKit::inline_native_subtype_check() { 4159 // Pull both arguments off the stack. 4160 Node* args[2]; // two java.lang.Class mirrors: superc, subc 4161 args[0] = argument(0); 4162 args[1] = argument(1); 4163 Node* klasses[2]; // corresponding Klasses: superk, subk 4164 klasses[0] = klasses[1] = top(); 4165 4166 enum { 4167 // A full decision tree on {superc is prim, subc is prim}: 4168 _prim_0_path = 1, // {P,N} => false 4169 // {P,P} & superc!=subc => false 4170 _prim_same_path, // {P,P} & superc==subc => true 4171 _prim_1_path, // {N,P} => false 4172 _ref_subtype_path, // {N,N} & subtype check wins => true 4173 _both_ref_path, // {N,N} & subtype check loses => false 4174 PATH_LIMIT 4175 }; 4176 4177 RegionNode* region = new RegionNode(PATH_LIMIT); 4178 Node* phi = new PhiNode(region, TypeInt::BOOL); 4179 record_for_igvn(region); 4180 4181 const TypePtr* adr_type = TypeRawPtr::BOTTOM; // memory type of loads 4182 const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL; 4183 int class_klass_offset = java_lang_Class::klass_offset(); 4184 4185 // First null-check both mirrors and load each mirror's klass metaobject. 4186 int which_arg; 4187 for (which_arg = 0; which_arg <= 1; which_arg++) { 4188 Node* arg = args[which_arg]; 4189 arg = null_check(arg); 4190 if (stopped()) break; 4191 args[which_arg] = arg; 4192 4193 Node* p = basic_plus_adr(arg, class_klass_offset); 4194 Node* kls = LoadKlassNode::make(_gvn, nullptr, immutable_memory(), p, adr_type, kls_type); 4195 klasses[which_arg] = _gvn.transform(kls); 4196 } 4197 4198 // Having loaded both klasses, test each for null. 4199 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 4200 for (which_arg = 0; which_arg <= 1; which_arg++) { 4201 Node* kls = klasses[which_arg]; 4202 Node* null_ctl = top(); 4203 kls = null_check_oop(kls, &null_ctl, never_see_null); 4204 int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path); 4205 region->init_req(prim_path, null_ctl); 4206 if (stopped()) break; 4207 klasses[which_arg] = kls; 4208 } 4209 4210 if (!stopped()) { 4211 // now we have two reference types, in klasses[0..1] 4212 Node* subk = klasses[1]; // the argument to isAssignableFrom 4213 Node* superk = klasses[0]; // the receiver 4214 region->set_req(_both_ref_path, gen_subtype_check(subk, superk)); 4215 // now we have a successful reference subtype check 4216 region->set_req(_ref_subtype_path, control()); 4217 } 4218 4219 // If both operands are primitive (both klasses null), then 4220 // we must return true when they are identical primitives. 4221 // It is convenient to test this after the first null klass check. 4222 set_control(region->in(_prim_0_path)); // go back to first null check 4223 if (!stopped()) { 4224 // Since superc is primitive, make a guard for the superc==subc case. 4225 Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1])); 4226 Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq)); 4227 generate_guard(bol_eq, region, PROB_FAIR); 4228 if (region->req() == PATH_LIMIT+1) { 4229 // A guard was added. If the added guard is taken, superc==subc. 4230 region->swap_edges(PATH_LIMIT, _prim_same_path); 4231 region->del_req(PATH_LIMIT); 4232 } 4233 region->set_req(_prim_0_path, control()); // Not equal after all. 4234 } 4235 4236 // these are the only paths that produce 'true': 4237 phi->set_req(_prim_same_path, intcon(1)); 4238 phi->set_req(_ref_subtype_path, intcon(1)); 4239 4240 // pull together the cases: 4241 assert(region->req() == PATH_LIMIT, "sane region"); 4242 for (uint i = 1; i < region->req(); i++) { 4243 Node* ctl = region->in(i); 4244 if (ctl == nullptr || ctl == top()) { 4245 region->set_req(i, top()); 4246 phi ->set_req(i, top()); 4247 } else if (phi->in(i) == nullptr) { 4248 phi->set_req(i, intcon(0)); // all other paths produce 'false' 4249 } 4250 } 4251 4252 set_control(_gvn.transform(region)); 4253 set_result(_gvn.transform(phi)); 4254 return true; 4255 } 4256 4257 //---------------------generate_array_guard_common------------------------ 4258 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region, 4259 bool obj_array, bool not_array, Node** obj) { 4260 4261 if (stopped()) { 4262 return nullptr; 4263 } 4264 4265 // If obj_array/non_array==false/false: 4266 // Branch around if the given klass is in fact an array (either obj or prim). 4267 // If obj_array/non_array==false/true: 4268 // Branch around if the given klass is not an array klass of any kind. 4269 // If obj_array/non_array==true/true: 4270 // Branch around if the kls is not an oop array (kls is int[], String, etc.) 4271 // If obj_array/non_array==true/false: 4272 // Branch around if the kls is an oop array (Object[] or subtype) 4273 // 4274 // Like generate_guard, adds a new path onto the region. 4275 jint layout_con = 0; 4276 Node* layout_val = get_layout_helper(kls, layout_con); 4277 if (layout_val == nullptr) { 4278 bool query = (obj_array 4279 ? Klass::layout_helper_is_objArray(layout_con) 4280 : Klass::layout_helper_is_array(layout_con)); 4281 if (query == not_array) { 4282 return nullptr; // never a branch 4283 } else { // always a branch 4284 Node* always_branch = control(); 4285 if (region != nullptr) 4286 region->add_req(always_branch); 4287 set_control(top()); 4288 return always_branch; 4289 } 4290 } 4291 // Now test the correct condition. 4292 jint nval = (obj_array 4293 ? (jint)(Klass::_lh_array_tag_type_value 4294 << Klass::_lh_array_tag_shift) 4295 : Klass::_lh_neutral_value); 4296 Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval))); 4297 BoolTest::mask btest = BoolTest::lt; // correct for testing is_[obj]array 4298 // invert the test if we are looking for a non-array 4299 if (not_array) btest = BoolTest(btest).negate(); 4300 Node* bol = _gvn.transform(new BoolNode(cmp, btest)); 4301 Node* ctrl = generate_fair_guard(bol, region); 4302 Node* is_array_ctrl = not_array ? control() : ctrl; 4303 if (obj != nullptr && is_array_ctrl != nullptr && is_array_ctrl != top()) { 4304 // Keep track of the fact that 'obj' is an array to prevent 4305 // array specific accesses from floating above the guard. 4306 *obj = _gvn.transform(new CastPPNode(is_array_ctrl, *obj, TypeAryPtr::BOTTOM)); 4307 } 4308 return ctrl; 4309 } 4310 4311 4312 //-----------------------inline_native_newArray-------------------------- 4313 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length); 4314 // private native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size); 4315 bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) { 4316 Node* mirror; 4317 Node* count_val; 4318 if (uninitialized) { 4319 null_check_receiver(); 4320 mirror = argument(1); 4321 count_val = argument(2); 4322 } else { 4323 mirror = argument(0); 4324 count_val = argument(1); 4325 } 4326 4327 mirror = null_check(mirror); 4328 // If mirror or obj is dead, only null-path is taken. 4329 if (stopped()) return true; 4330 4331 enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT }; 4332 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 4333 PhiNode* result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL); 4334 PhiNode* result_io = new PhiNode(result_reg, Type::ABIO); 4335 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 4336 4337 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 4338 Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null, 4339 result_reg, _slow_path); 4340 Node* normal_ctl = control(); 4341 Node* no_array_ctl = result_reg->in(_slow_path); 4342 4343 // Generate code for the slow case. We make a call to newArray(). 4344 set_control(no_array_ctl); 4345 if (!stopped()) { 4346 // Either the input type is void.class, or else the 4347 // array klass has not yet been cached. Either the 4348 // ensuing call will throw an exception, or else it 4349 // will cache the array klass for next time. 4350 PreserveJVMState pjvms(this); 4351 CallJavaNode* slow_call = nullptr; 4352 if (uninitialized) { 4353 // Generate optimized virtual call (holder class 'Unsafe' is final) 4354 slow_call = generate_method_call(vmIntrinsics::_allocateUninitializedArray, false, false, true); 4355 } else { 4356 slow_call = generate_method_call_static(vmIntrinsics::_newArray, true); 4357 } 4358 Node* slow_result = set_results_for_java_call(slow_call); 4359 // this->control() comes from set_results_for_java_call 4360 result_reg->set_req(_slow_path, control()); 4361 result_val->set_req(_slow_path, slow_result); 4362 result_io ->set_req(_slow_path, i_o()); 4363 result_mem->set_req(_slow_path, reset_memory()); 4364 } 4365 4366 set_control(normal_ctl); 4367 if (!stopped()) { 4368 // Normal case: The array type has been cached in the java.lang.Class. 4369 // The following call works fine even if the array type is polymorphic. 4370 // It could be a dynamic mix of int[], boolean[], Object[], etc. 4371 Node* obj = new_array(klass_node, count_val, 0); // no arguments to push 4372 result_reg->init_req(_normal_path, control()); 4373 result_val->init_req(_normal_path, obj); 4374 result_io ->init_req(_normal_path, i_o()); 4375 result_mem->init_req(_normal_path, reset_memory()); 4376 4377 if (uninitialized) { 4378 // Mark the allocation so that zeroing is skipped 4379 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(obj); 4380 alloc->maybe_set_complete(&_gvn); 4381 } 4382 } 4383 4384 // Return the combined state. 4385 set_i_o( _gvn.transform(result_io) ); 4386 set_all_memory( _gvn.transform(result_mem)); 4387 4388 C->set_has_split_ifs(true); // Has chance for split-if optimization 4389 set_result(result_reg, result_val); 4390 return true; 4391 } 4392 4393 //----------------------inline_native_getLength-------------------------- 4394 // public static native int java.lang.reflect.Array.getLength(Object array); 4395 bool LibraryCallKit::inline_native_getLength() { 4396 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false; 4397 4398 Node* array = null_check(argument(0)); 4399 // If array is dead, only null-path is taken. 4400 if (stopped()) return true; 4401 4402 // Deoptimize if it is a non-array. 4403 Node* non_array = generate_non_array_guard(load_object_klass(array), nullptr, &array); 4404 4405 if (non_array != nullptr) { 4406 PreserveJVMState pjvms(this); 4407 set_control(non_array); 4408 uncommon_trap(Deoptimization::Reason_intrinsic, 4409 Deoptimization::Action_maybe_recompile); 4410 } 4411 4412 // If control is dead, only non-array-path is taken. 4413 if (stopped()) return true; 4414 4415 // The works fine even if the array type is polymorphic. 4416 // It could be a dynamic mix of int[], boolean[], Object[], etc. 4417 Node* result = load_array_length(array); 4418 4419 C->set_has_split_ifs(true); // Has chance for split-if optimization 4420 set_result(result); 4421 return true; 4422 } 4423 4424 //------------------------inline_array_copyOf---------------------------- 4425 // public static <T,U> T[] java.util.Arrays.copyOf( U[] original, int newLength, Class<? extends T[]> newType); 4426 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from, int to, Class<? extends T[]> newType); 4427 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) { 4428 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false; 4429 4430 // Get the arguments. 4431 Node* original = argument(0); 4432 Node* start = is_copyOfRange? argument(1): intcon(0); 4433 Node* end = is_copyOfRange? argument(2): argument(1); 4434 Node* array_type_mirror = is_copyOfRange? argument(3): argument(2); 4435 4436 Node* newcopy = nullptr; 4437 4438 // Set the original stack and the reexecute bit for the interpreter to reexecute 4439 // the bytecode that invokes Arrays.copyOf if deoptimization happens. 4440 { PreserveReexecuteState preexecs(this); 4441 jvms()->set_should_reexecute(true); 4442 4443 array_type_mirror = null_check(array_type_mirror); 4444 original = null_check(original); 4445 4446 // Check if a null path was taken unconditionally. 4447 if (stopped()) return true; 4448 4449 Node* orig_length = load_array_length(original); 4450 4451 Node* klass_node = load_klass_from_mirror(array_type_mirror, false, nullptr, 0); 4452 klass_node = null_check(klass_node); 4453 4454 RegionNode* bailout = new RegionNode(1); 4455 record_for_igvn(bailout); 4456 4457 // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc. 4458 // Bail out if that is so. 4459 Node* not_objArray = generate_non_objArray_guard(klass_node, bailout); 4460 if (not_objArray != nullptr) { 4461 // Improve the klass node's type from the new optimistic assumption: 4462 ciKlass* ak = ciArrayKlass::make(env()->Object_klass()); 4463 const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/); 4464 Node* cast = new CastPPNode(control(), klass_node, akls); 4465 klass_node = _gvn.transform(cast); 4466 } 4467 4468 // Bail out if either start or end is negative. 4469 generate_negative_guard(start, bailout, &start); 4470 generate_negative_guard(end, bailout, &end); 4471 4472 Node* length = end; 4473 if (_gvn.type(start) != TypeInt::ZERO) { 4474 length = _gvn.transform(new SubINode(end, start)); 4475 } 4476 4477 // Bail out if length is negative (i.e., if start > end). 4478 // Without this the new_array would throw 4479 // NegativeArraySizeException but IllegalArgumentException is what 4480 // should be thrown 4481 generate_negative_guard(length, bailout, &length); 4482 4483 // Bail out if start is larger than the original length 4484 Node* orig_tail = _gvn.transform(new SubINode(orig_length, start)); 4485 generate_negative_guard(orig_tail, bailout, &orig_tail); 4486 4487 if (bailout->req() > 1) { 4488 PreserveJVMState pjvms(this); 4489 set_control(_gvn.transform(bailout)); 4490 uncommon_trap(Deoptimization::Reason_intrinsic, 4491 Deoptimization::Action_maybe_recompile); 4492 } 4493 4494 if (!stopped()) { 4495 // How many elements will we copy from the original? 4496 // The answer is MinI(orig_tail, length). 4497 Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length); 4498 4499 // Generate a direct call to the right arraycopy function(s). 4500 // We know the copy is disjoint but we might not know if the 4501 // oop stores need checking. 4502 // Extreme case: Arrays.copyOf((Integer[])x, 10, String[].class). 4503 // This will fail a store-check if x contains any non-nulls. 4504 4505 // ArrayCopyNode:Ideal may transform the ArrayCopyNode to 4506 // loads/stores but it is legal only if we're sure the 4507 // Arrays.copyOf would succeed. So we need all input arguments 4508 // to the copyOf to be validated, including that the copy to the 4509 // new array won't trigger an ArrayStoreException. That subtype 4510 // check can be optimized if we know something on the type of 4511 // the input array from type speculation. 4512 if (_gvn.type(klass_node)->singleton()) { 4513 const TypeKlassPtr* subk = _gvn.type(load_object_klass(original))->is_klassptr(); 4514 const TypeKlassPtr* superk = _gvn.type(klass_node)->is_klassptr(); 4515 4516 int test = C->static_subtype_check(superk, subk); 4517 if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) { 4518 const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr(); 4519 if (t_original->speculative_type() != nullptr) { 4520 original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true); 4521 } 4522 } 4523 } 4524 4525 bool validated = false; 4526 // Reason_class_check rather than Reason_intrinsic because we 4527 // want to intrinsify even if this traps. 4528 if (!too_many_traps(Deoptimization::Reason_class_check)) { 4529 Node* not_subtype_ctrl = gen_subtype_check(original, klass_node); 4530 4531 if (not_subtype_ctrl != top()) { 4532 PreserveJVMState pjvms(this); 4533 set_control(not_subtype_ctrl); 4534 uncommon_trap(Deoptimization::Reason_class_check, 4535 Deoptimization::Action_make_not_entrant); 4536 assert(stopped(), "Should be stopped"); 4537 } 4538 validated = true; 4539 } 4540 4541 if (!stopped()) { 4542 newcopy = new_array(klass_node, length, 0); // no arguments to push 4543 4544 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true, true, 4545 load_object_klass(original), klass_node); 4546 if (!is_copyOfRange) { 4547 ac->set_copyof(validated); 4548 } else { 4549 ac->set_copyofrange(validated); 4550 } 4551 Node* n = _gvn.transform(ac); 4552 if (n == ac) { 4553 ac->connect_outputs(this); 4554 } else { 4555 assert(validated, "shouldn't transform if all arguments not validated"); 4556 set_all_memory(n); 4557 } 4558 } 4559 } 4560 } // original reexecute is set back here 4561 4562 C->set_has_split_ifs(true); // Has chance for split-if optimization 4563 if (!stopped()) { 4564 set_result(newcopy); 4565 } 4566 return true; 4567 } 4568 4569 4570 //----------------------generate_virtual_guard--------------------------- 4571 // Helper for hashCode and clone. Peeks inside the vtable to avoid a call. 4572 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass, 4573 RegionNode* slow_region) { 4574 ciMethod* method = callee(); 4575 int vtable_index = method->vtable_index(); 4576 assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index, 4577 "bad index %d", vtable_index); 4578 // Get the Method* out of the appropriate vtable entry. 4579 int entry_offset = in_bytes(Klass::vtable_start_offset()) + 4580 vtable_index*vtableEntry::size_in_bytes() + 4581 in_bytes(vtableEntry::method_offset()); 4582 Node* entry_addr = basic_plus_adr(obj_klass, entry_offset); 4583 Node* target_call = make_load(nullptr, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered); 4584 4585 // Compare the target method with the expected method (e.g., Object.hashCode). 4586 const TypePtr* native_call_addr = TypeMetadataPtr::make(method); 4587 4588 Node* native_call = makecon(native_call_addr); 4589 Node* chk_native = _gvn.transform(new CmpPNode(target_call, native_call)); 4590 Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne)); 4591 4592 return generate_slow_guard(test_native, slow_region); 4593 } 4594 4595 //-----------------------generate_method_call---------------------------- 4596 // Use generate_method_call to make a slow-call to the real 4597 // method if the fast path fails. An alternative would be to 4598 // use a stub like OptoRuntime::slow_arraycopy_Java. 4599 // This only works for expanding the current library call, 4600 // not another intrinsic. (E.g., don't use this for making an 4601 // arraycopy call inside of the copyOf intrinsic.) 4602 CallJavaNode* 4603 LibraryCallKit::generate_method_call(vmIntrinsicID method_id, bool is_virtual, bool is_static, bool res_not_null) { 4604 // When compiling the intrinsic method itself, do not use this technique. 4605 guarantee(callee() != C->method(), "cannot make slow-call to self"); 4606 4607 ciMethod* method = callee(); 4608 // ensure the JVMS we have will be correct for this call 4609 guarantee(method_id == method->intrinsic_id(), "must match"); 4610 4611 const TypeFunc* tf = TypeFunc::make(method); 4612 if (res_not_null) { 4613 assert(tf->return_type() == T_OBJECT, ""); 4614 const TypeTuple* range = tf->range(); 4615 const Type** fields = TypeTuple::fields(range->cnt()); 4616 fields[TypeFunc::Parms] = range->field_at(TypeFunc::Parms)->filter_speculative(TypePtr::NOTNULL); 4617 const TypeTuple* new_range = TypeTuple::make(range->cnt(), fields); 4618 tf = TypeFunc::make(tf->domain(), new_range); 4619 } 4620 CallJavaNode* slow_call; 4621 if (is_static) { 4622 assert(!is_virtual, ""); 4623 slow_call = new CallStaticJavaNode(C, tf, 4624 SharedRuntime::get_resolve_static_call_stub(), method); 4625 } else if (is_virtual) { 4626 assert(!gvn().type(argument(0))->maybe_null(), "should not be null"); 4627 int vtable_index = Method::invalid_vtable_index; 4628 if (UseInlineCaches) { 4629 // Suppress the vtable call 4630 } else { 4631 // hashCode and clone are not a miranda methods, 4632 // so the vtable index is fixed. 4633 // No need to use the linkResolver to get it. 4634 vtable_index = method->vtable_index(); 4635 assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index, 4636 "bad index %d", vtable_index); 4637 } 4638 slow_call = new CallDynamicJavaNode(tf, 4639 SharedRuntime::get_resolve_virtual_call_stub(), 4640 method, vtable_index); 4641 } else { // neither virtual nor static: opt_virtual 4642 assert(!gvn().type(argument(0))->maybe_null(), "should not be null"); 4643 slow_call = new CallStaticJavaNode(C, tf, 4644 SharedRuntime::get_resolve_opt_virtual_call_stub(), method); 4645 slow_call->set_optimized_virtual(true); 4646 } 4647 if (CallGenerator::is_inlined_method_handle_intrinsic(this->method(), bci(), callee())) { 4648 // To be able to issue a direct call (optimized virtual or virtual) 4649 // and skip a call to MH.linkTo*/invokeBasic adapter, additional information 4650 // about the method being invoked should be attached to the call site to 4651 // make resolution logic work (see SharedRuntime::resolve_{virtual,opt_virtual}_call_C). 4652 slow_call->set_override_symbolic_info(true); 4653 } 4654 set_arguments_for_java_call(slow_call); 4655 set_edges_for_java_call(slow_call); 4656 return slow_call; 4657 } 4658 4659 4660 /** 4661 * Build special case code for calls to hashCode on an object. This call may 4662 * be virtual (invokevirtual) or bound (invokespecial). For each case we generate 4663 * slightly different code. 4664 */ 4665 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) { 4666 assert(is_static == callee()->is_static(), "correct intrinsic selection"); 4667 assert(!(is_virtual && is_static), "either virtual, special, or static"); 4668 4669 enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT }; 4670 4671 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 4672 PhiNode* result_val = new PhiNode(result_reg, TypeInt::INT); 4673 PhiNode* result_io = new PhiNode(result_reg, Type::ABIO); 4674 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 4675 Node* obj = nullptr; 4676 if (!is_static) { 4677 // Check for hashing null object 4678 obj = null_check_receiver(); 4679 if (stopped()) return true; // unconditionally null 4680 result_reg->init_req(_null_path, top()); 4681 result_val->init_req(_null_path, top()); 4682 } else { 4683 // Do a null check, and return zero if null. 4684 // System.identityHashCode(null) == 0 4685 obj = argument(0); 4686 Node* null_ctl = top(); 4687 obj = null_check_oop(obj, &null_ctl); 4688 result_reg->init_req(_null_path, null_ctl); 4689 result_val->init_req(_null_path, _gvn.intcon(0)); 4690 } 4691 4692 // Unconditionally null? Then return right away. 4693 if (stopped()) { 4694 set_control( result_reg->in(_null_path)); 4695 if (!stopped()) 4696 set_result(result_val->in(_null_path)); 4697 return true; 4698 } 4699 4700 // We only go to the fast case code if we pass a number of guards. The 4701 // paths which do not pass are accumulated in the slow_region. 4702 RegionNode* slow_region = new RegionNode(1); 4703 record_for_igvn(slow_region); 4704 4705 // If this is a virtual call, we generate a funny guard. We pull out 4706 // the vtable entry corresponding to hashCode() from the target object. 4707 // If the target method which we are calling happens to be the native 4708 // Object hashCode() method, we pass the guard. We do not need this 4709 // guard for non-virtual calls -- the caller is known to be the native 4710 // Object hashCode(). 4711 if (is_virtual) { 4712 // After null check, get the object's klass. 4713 Node* obj_klass = load_object_klass(obj); 4714 generate_virtual_guard(obj_klass, slow_region); 4715 } 4716 4717 // Get the header out of the object, use LoadMarkNode when available 4718 Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes()); 4719 // The control of the load must be null. Otherwise, the load can move before 4720 // the null check after castPP removal. 4721 Node* no_ctrl = nullptr; 4722 Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered); 4723 4724 if (!UseObjectMonitorTable) { 4725 // Test the header to see if it is safe to read w.r.t. locking. 4726 Node *lock_mask = _gvn.MakeConX(markWord::lock_mask_in_place); 4727 Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask)); 4728 if (LockingMode == LM_LIGHTWEIGHT) { 4729 Node *monitor_val = _gvn.MakeConX(markWord::monitor_value); 4730 Node *chk_monitor = _gvn.transform(new CmpXNode(lmasked_header, monitor_val)); 4731 Node *test_monitor = _gvn.transform(new BoolNode(chk_monitor, BoolTest::eq)); 4732 4733 generate_slow_guard(test_monitor, slow_region); 4734 } else { 4735 Node *unlocked_val = _gvn.MakeConX(markWord::unlocked_value); 4736 Node *chk_unlocked = _gvn.transform(new CmpXNode(lmasked_header, unlocked_val)); 4737 Node *test_not_unlocked = _gvn.transform(new BoolNode(chk_unlocked, BoolTest::ne)); 4738 4739 generate_slow_guard(test_not_unlocked, slow_region); 4740 } 4741 } 4742 4743 // Get the hash value and check to see that it has been properly assigned. 4744 // We depend on hash_mask being at most 32 bits and avoid the use of 4745 // hash_mask_in_place because it could be larger than 32 bits in a 64-bit 4746 // vm: see markWord.hpp. 4747 Node *hash_mask = _gvn.intcon(markWord::hash_mask); 4748 Node *hash_shift = _gvn.intcon(markWord::hash_shift); 4749 Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift)); 4750 // This hack lets the hash bits live anywhere in the mark object now, as long 4751 // as the shift drops the relevant bits into the low 32 bits. Note that 4752 // Java spec says that HashCode is an int so there's no point in capturing 4753 // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build). 4754 hshifted_header = ConvX2I(hshifted_header); 4755 Node *hash_val = _gvn.transform(new AndINode(hshifted_header, hash_mask)); 4756 4757 Node *no_hash_val = _gvn.intcon(markWord::no_hash); 4758 Node *chk_assigned = _gvn.transform(new CmpINode( hash_val, no_hash_val)); 4759 Node *test_assigned = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq)); 4760 4761 generate_slow_guard(test_assigned, slow_region); 4762 4763 Node* init_mem = reset_memory(); 4764 // fill in the rest of the null path: 4765 result_io ->init_req(_null_path, i_o()); 4766 result_mem->init_req(_null_path, init_mem); 4767 4768 result_val->init_req(_fast_path, hash_val); 4769 result_reg->init_req(_fast_path, control()); 4770 result_io ->init_req(_fast_path, i_o()); 4771 result_mem->init_req(_fast_path, init_mem); 4772 4773 // Generate code for the slow case. We make a call to hashCode(). 4774 set_control(_gvn.transform(slow_region)); 4775 if (!stopped()) { 4776 // No need for PreserveJVMState, because we're using up the present state. 4777 set_all_memory(init_mem); 4778 vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode; 4779 CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static, false); 4780 Node* slow_result = set_results_for_java_call(slow_call); 4781 // this->control() comes from set_results_for_java_call 4782 result_reg->init_req(_slow_path, control()); 4783 result_val->init_req(_slow_path, slow_result); 4784 result_io ->set_req(_slow_path, i_o()); 4785 result_mem ->set_req(_slow_path, reset_memory()); 4786 } 4787 4788 // Return the combined state. 4789 set_i_o( _gvn.transform(result_io) ); 4790 set_all_memory( _gvn.transform(result_mem)); 4791 4792 set_result(result_reg, result_val); 4793 return true; 4794 } 4795 4796 //---------------------------inline_native_getClass---------------------------- 4797 // public final native Class<?> java.lang.Object.getClass(); 4798 // 4799 // Build special case code for calls to getClass on an object. 4800 bool LibraryCallKit::inline_native_getClass() { 4801 Node* obj = null_check_receiver(); 4802 if (stopped()) return true; 4803 set_result(load_mirror_from_klass(load_object_klass(obj))); 4804 return true; 4805 } 4806 4807 //-----------------inline_native_Reflection_getCallerClass--------------------- 4808 // public static native Class<?> sun.reflect.Reflection.getCallerClass(); 4809 // 4810 // In the presence of deep enough inlining, getCallerClass() becomes a no-op. 4811 // 4812 // NOTE: This code must perform the same logic as JVM_GetCallerClass 4813 // in that it must skip particular security frames and checks for 4814 // caller sensitive methods. 4815 bool LibraryCallKit::inline_native_Reflection_getCallerClass() { 4816 #ifndef PRODUCT 4817 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4818 tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass"); 4819 } 4820 #endif 4821 4822 if (!jvms()->has_method()) { 4823 #ifndef PRODUCT 4824 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4825 tty->print_cr(" Bailing out because intrinsic was inlined at top level"); 4826 } 4827 #endif 4828 return false; 4829 } 4830 4831 // Walk back up the JVM state to find the caller at the required 4832 // depth. 4833 JVMState* caller_jvms = jvms(); 4834 4835 // Cf. JVM_GetCallerClass 4836 // NOTE: Start the loop at depth 1 because the current JVM state does 4837 // not include the Reflection.getCallerClass() frame. 4838 for (int n = 1; caller_jvms != nullptr; caller_jvms = caller_jvms->caller(), n++) { 4839 ciMethod* m = caller_jvms->method(); 4840 switch (n) { 4841 case 0: 4842 fatal("current JVM state does not include the Reflection.getCallerClass frame"); 4843 break; 4844 case 1: 4845 // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass). 4846 if (!m->caller_sensitive()) { 4847 #ifndef PRODUCT 4848 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4849 tty->print_cr(" Bailing out: CallerSensitive annotation expected at frame %d", n); 4850 } 4851 #endif 4852 return false; // bail-out; let JVM_GetCallerClass do the work 4853 } 4854 break; 4855 default: 4856 if (!m->is_ignored_by_security_stack_walk()) { 4857 // We have reached the desired frame; return the holder class. 4858 // Acquire method holder as java.lang.Class and push as constant. 4859 ciInstanceKlass* caller_klass = caller_jvms->method()->holder(); 4860 ciInstance* caller_mirror = caller_klass->java_mirror(); 4861 set_result(makecon(TypeInstPtr::make(caller_mirror))); 4862 4863 #ifndef PRODUCT 4864 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4865 tty->print_cr(" Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth()); 4866 tty->print_cr(" JVM state at this point:"); 4867 for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) { 4868 ciMethod* m = jvms()->of_depth(i)->method(); 4869 tty->print_cr(" %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8()); 4870 } 4871 } 4872 #endif 4873 return true; 4874 } 4875 break; 4876 } 4877 } 4878 4879 #ifndef PRODUCT 4880 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4881 tty->print_cr(" Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth()); 4882 tty->print_cr(" JVM state at this point:"); 4883 for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) { 4884 ciMethod* m = jvms()->of_depth(i)->method(); 4885 tty->print_cr(" %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8()); 4886 } 4887 } 4888 #endif 4889 4890 return false; // bail-out; let JVM_GetCallerClass do the work 4891 } 4892 4893 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) { 4894 Node* arg = argument(0); 4895 Node* result = nullptr; 4896 4897 switch (id) { 4898 case vmIntrinsics::_floatToRawIntBits: result = new MoveF2INode(arg); break; 4899 case vmIntrinsics::_intBitsToFloat: result = new MoveI2FNode(arg); break; 4900 case vmIntrinsics::_doubleToRawLongBits: result = new MoveD2LNode(arg); break; 4901 case vmIntrinsics::_longBitsToDouble: result = new MoveL2DNode(arg); break; 4902 case vmIntrinsics::_floatToFloat16: result = new ConvF2HFNode(arg); break; 4903 case vmIntrinsics::_float16ToFloat: result = new ConvHF2FNode(arg); break; 4904 4905 case vmIntrinsics::_doubleToLongBits: { 4906 // two paths (plus control) merge in a wood 4907 RegionNode *r = new RegionNode(3); 4908 Node *phi = new PhiNode(r, TypeLong::LONG); 4909 4910 Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg)); 4911 // Build the boolean node 4912 Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne)); 4913 4914 // Branch either way. 4915 // NaN case is less traveled, which makes all the difference. 4916 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN); 4917 Node *opt_isnan = _gvn.transform(ifisnan); 4918 assert( opt_isnan->is_If(), "Expect an IfNode"); 4919 IfNode *opt_ifisnan = (IfNode*)opt_isnan; 4920 Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan)); 4921 4922 set_control(iftrue); 4923 4924 static const jlong nan_bits = CONST64(0x7ff8000000000000); 4925 Node *slow_result = longcon(nan_bits); // return NaN 4926 phi->init_req(1, _gvn.transform( slow_result )); 4927 r->init_req(1, iftrue); 4928 4929 // Else fall through 4930 Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan)); 4931 set_control(iffalse); 4932 4933 phi->init_req(2, _gvn.transform(new MoveD2LNode(arg))); 4934 r->init_req(2, iffalse); 4935 4936 // Post merge 4937 set_control(_gvn.transform(r)); 4938 record_for_igvn(r); 4939 4940 C->set_has_split_ifs(true); // Has chance for split-if optimization 4941 result = phi; 4942 assert(result->bottom_type()->isa_long(), "must be"); 4943 break; 4944 } 4945 4946 case vmIntrinsics::_floatToIntBits: { 4947 // two paths (plus control) merge in a wood 4948 RegionNode *r = new RegionNode(3); 4949 Node *phi = new PhiNode(r, TypeInt::INT); 4950 4951 Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg)); 4952 // Build the boolean node 4953 Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne)); 4954 4955 // Branch either way. 4956 // NaN case is less traveled, which makes all the difference. 4957 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN); 4958 Node *opt_isnan = _gvn.transform(ifisnan); 4959 assert( opt_isnan->is_If(), "Expect an IfNode"); 4960 IfNode *opt_ifisnan = (IfNode*)opt_isnan; 4961 Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan)); 4962 4963 set_control(iftrue); 4964 4965 static const jint nan_bits = 0x7fc00000; 4966 Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN 4967 phi->init_req(1, _gvn.transform( slow_result )); 4968 r->init_req(1, iftrue); 4969 4970 // Else fall through 4971 Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan)); 4972 set_control(iffalse); 4973 4974 phi->init_req(2, _gvn.transform(new MoveF2INode(arg))); 4975 r->init_req(2, iffalse); 4976 4977 // Post merge 4978 set_control(_gvn.transform(r)); 4979 record_for_igvn(r); 4980 4981 C->set_has_split_ifs(true); // Has chance for split-if optimization 4982 result = phi; 4983 assert(result->bottom_type()->isa_int(), "must be"); 4984 break; 4985 } 4986 4987 default: 4988 fatal_unexpected_iid(id); 4989 break; 4990 } 4991 set_result(_gvn.transform(result)); 4992 return true; 4993 } 4994 4995 bool LibraryCallKit::inline_fp_range_check(vmIntrinsics::ID id) { 4996 Node* arg = argument(0); 4997 Node* result = nullptr; 4998 4999 switch (id) { 5000 case vmIntrinsics::_floatIsInfinite: 5001 result = new IsInfiniteFNode(arg); 5002 break; 5003 case vmIntrinsics::_floatIsFinite: 5004 result = new IsFiniteFNode(arg); 5005 break; 5006 case vmIntrinsics::_doubleIsInfinite: 5007 result = new IsInfiniteDNode(arg); 5008 break; 5009 case vmIntrinsics::_doubleIsFinite: 5010 result = new IsFiniteDNode(arg); 5011 break; 5012 default: 5013 fatal_unexpected_iid(id); 5014 break; 5015 } 5016 set_result(_gvn.transform(result)); 5017 return true; 5018 } 5019 5020 //----------------------inline_unsafe_copyMemory------------------------- 5021 // public native void Unsafe.copyMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes); 5022 5023 static bool has_wide_mem(PhaseGVN& gvn, Node* addr, Node* base) { 5024 const TypeAryPtr* addr_t = gvn.type(addr)->isa_aryptr(); 5025 const Type* base_t = gvn.type(base); 5026 5027 bool in_native = (base_t == TypePtr::NULL_PTR); 5028 bool in_heap = !TypePtr::NULL_PTR->higher_equal(base_t); 5029 bool is_mixed = !in_heap && !in_native; 5030 5031 if (is_mixed) { 5032 return true; // mixed accesses can touch both on-heap and off-heap memory 5033 } 5034 if (in_heap) { 5035 bool is_prim_array = (addr_t != nullptr) && (addr_t->elem() != Type::BOTTOM); 5036 if (!is_prim_array) { 5037 // Though Unsafe.copyMemory() ensures at runtime for on-heap accesses that base is a primitive array, 5038 // there's not enough type information available to determine proper memory slice for it. 5039 return true; 5040 } 5041 } 5042 return false; 5043 } 5044 5045 bool LibraryCallKit::inline_unsafe_copyMemory() { 5046 if (callee()->is_static()) return false; // caller must have the capability! 5047 null_check_receiver(); // null-check receiver 5048 if (stopped()) return true; 5049 5050 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 5051 5052 Node* src_base = argument(1); // type: oop 5053 Node* src_off = ConvL2X(argument(2)); // type: long 5054 Node* dst_base = argument(4); // type: oop 5055 Node* dst_off = ConvL2X(argument(5)); // type: long 5056 Node* size = ConvL2X(argument(7)); // type: long 5057 5058 assert(Unsafe_field_offset_to_byte_offset(11) == 11, 5059 "fieldOffset must be byte-scaled"); 5060 5061 Node* src_addr = make_unsafe_address(src_base, src_off); 5062 Node* dst_addr = make_unsafe_address(dst_base, dst_off); 5063 5064 Node* thread = _gvn.transform(new ThreadLocalNode()); 5065 Node* doing_unsafe_access_addr = basic_plus_adr(top(), thread, in_bytes(JavaThread::doing_unsafe_access_offset())); 5066 BasicType doing_unsafe_access_bt = T_BYTE; 5067 assert((sizeof(bool) * CHAR_BIT) == 8, "not implemented"); 5068 5069 // update volatile field 5070 store_to_memory(control(), doing_unsafe_access_addr, intcon(1), doing_unsafe_access_bt, MemNode::unordered); 5071 5072 int flags = RC_LEAF | RC_NO_FP; 5073 5074 const TypePtr* dst_type = TypePtr::BOTTOM; 5075 5076 // Adjust memory effects of the runtime call based on input values. 5077 if (!has_wide_mem(_gvn, src_addr, src_base) && 5078 !has_wide_mem(_gvn, dst_addr, dst_base)) { 5079 dst_type = _gvn.type(dst_addr)->is_ptr(); // narrow out memory 5080 5081 const TypePtr* src_type = _gvn.type(src_addr)->is_ptr(); 5082 if (C->get_alias_index(src_type) == C->get_alias_index(dst_type)) { 5083 flags |= RC_NARROW_MEM; // narrow in memory 5084 } 5085 } 5086 5087 // Call it. Note that the length argument is not scaled. 5088 make_runtime_call(flags, 5089 OptoRuntime::fast_arraycopy_Type(), 5090 StubRoutines::unsafe_arraycopy(), 5091 "unsafe_arraycopy", 5092 dst_type, 5093 src_addr, dst_addr, size XTOP); 5094 5095 store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, MemNode::unordered); 5096 5097 return true; 5098 } 5099 5100 // unsafe_setmemory(void *base, ulong offset, size_t length, char fill_value); 5101 // Fill 'length' bytes starting from 'base[offset]' with 'fill_value' 5102 bool LibraryCallKit::inline_unsafe_setMemory() { 5103 if (callee()->is_static()) return false; // caller must have the capability! 5104 null_check_receiver(); // null-check receiver 5105 if (stopped()) return true; 5106 5107 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 5108 5109 Node* dst_base = argument(1); // type: oop 5110 Node* dst_off = ConvL2X(argument(2)); // type: long 5111 Node* size = ConvL2X(argument(4)); // type: long 5112 Node* byte = argument(6); // type: byte 5113 5114 assert(Unsafe_field_offset_to_byte_offset(11) == 11, 5115 "fieldOffset must be byte-scaled"); 5116 5117 Node* dst_addr = make_unsafe_address(dst_base, dst_off); 5118 5119 Node* thread = _gvn.transform(new ThreadLocalNode()); 5120 Node* doing_unsafe_access_addr = basic_plus_adr(top(), thread, in_bytes(JavaThread::doing_unsafe_access_offset())); 5121 BasicType doing_unsafe_access_bt = T_BYTE; 5122 assert((sizeof(bool) * CHAR_BIT) == 8, "not implemented"); 5123 5124 // update volatile field 5125 store_to_memory(control(), doing_unsafe_access_addr, intcon(1), doing_unsafe_access_bt, MemNode::unordered); 5126 5127 int flags = RC_LEAF | RC_NO_FP; 5128 5129 const TypePtr* dst_type = TypePtr::BOTTOM; 5130 5131 // Adjust memory effects of the runtime call based on input values. 5132 if (!has_wide_mem(_gvn, dst_addr, dst_base)) { 5133 dst_type = _gvn.type(dst_addr)->is_ptr(); // narrow out memory 5134 5135 flags |= RC_NARROW_MEM; // narrow in memory 5136 } 5137 5138 // Call it. Note that the length argument is not scaled. 5139 make_runtime_call(flags, 5140 OptoRuntime::make_setmemory_Type(), 5141 StubRoutines::unsafe_setmemory(), 5142 "unsafe_setmemory", 5143 dst_type, 5144 dst_addr, size XTOP, byte); 5145 5146 store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, MemNode::unordered); 5147 5148 return true; 5149 } 5150 5151 #undef XTOP 5152 5153 //------------------------clone_coping----------------------------------- 5154 // Helper function for inline_native_clone. 5155 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array) { 5156 assert(obj_size != nullptr, ""); 5157 Node* raw_obj = alloc_obj->in(1); 5158 assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), ""); 5159 5160 AllocateNode* alloc = nullptr; 5161 if (ReduceBulkZeroing && 5162 // If we are implementing an array clone without knowing its source type 5163 // (can happen when compiling the array-guarded branch of a reflective 5164 // Object.clone() invocation), initialize the array within the allocation. 5165 // This is needed because some GCs (e.g. ZGC) might fall back in this case 5166 // to a runtime clone call that assumes fully initialized source arrays. 5167 (!is_array || obj->get_ptr_type()->isa_aryptr() != nullptr)) { 5168 // We will be completely responsible for initializing this object - 5169 // mark Initialize node as complete. 5170 alloc = AllocateNode::Ideal_allocation(alloc_obj); 5171 // The object was just allocated - there should be no any stores! 5172 guarantee(alloc != nullptr && alloc->maybe_set_complete(&_gvn), ""); 5173 // Mark as complete_with_arraycopy so that on AllocateNode 5174 // expansion, we know this AllocateNode is initialized by an array 5175 // copy and a StoreStore barrier exists after the array copy. 5176 alloc->initialization()->set_complete_with_arraycopy(); 5177 } 5178 5179 Node* size = _gvn.transform(obj_size); 5180 access_clone(obj, alloc_obj, size, is_array); 5181 5182 // Do not let reads from the cloned object float above the arraycopy. 5183 if (alloc != nullptr) { 5184 // Do not let stores that initialize this object be reordered with 5185 // a subsequent store that would make this object accessible by 5186 // other threads. 5187 // Record what AllocateNode this StoreStore protects so that 5188 // escape analysis can go from the MemBarStoreStoreNode to the 5189 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 5190 // based on the escape status of the AllocateNode. 5191 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 5192 } else { 5193 insert_mem_bar(Op_MemBarCPUOrder); 5194 } 5195 } 5196 5197 //------------------------inline_native_clone---------------------------- 5198 // protected native Object java.lang.Object.clone(); 5199 // 5200 // Here are the simple edge cases: 5201 // null receiver => normal trap 5202 // virtual and clone was overridden => slow path to out-of-line clone 5203 // not cloneable or finalizer => slow path to out-of-line Object.clone 5204 // 5205 // The general case has two steps, allocation and copying. 5206 // Allocation has two cases, and uses GraphKit::new_instance or new_array. 5207 // 5208 // Copying also has two cases, oop arrays and everything else. 5209 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy). 5210 // Everything else uses the tight inline loop supplied by CopyArrayNode. 5211 // 5212 // These steps fold up nicely if and when the cloned object's klass 5213 // can be sharply typed as an object array, a type array, or an instance. 5214 // 5215 bool LibraryCallKit::inline_native_clone(bool is_virtual) { 5216 PhiNode* result_val; 5217 5218 // Set the reexecute bit for the interpreter to reexecute 5219 // the bytecode that invokes Object.clone if deoptimization happens. 5220 { PreserveReexecuteState preexecs(this); 5221 jvms()->set_should_reexecute(true); 5222 5223 Node* obj = null_check_receiver(); 5224 if (stopped()) return true; 5225 5226 const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr(); 5227 5228 // If we are going to clone an instance, we need its exact type to 5229 // know the number and types of fields to convert the clone to 5230 // loads/stores. Maybe a speculative type can help us. 5231 if (!obj_type->klass_is_exact() && 5232 obj_type->speculative_type() != nullptr && 5233 obj_type->speculative_type()->is_instance_klass()) { 5234 ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass(); 5235 if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem && 5236 !spec_ik->has_injected_fields()) { 5237 if (!obj_type->isa_instptr() || 5238 obj_type->is_instptr()->instance_klass()->has_subklass()) { 5239 obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false); 5240 } 5241 } 5242 } 5243 5244 // Conservatively insert a memory barrier on all memory slices. 5245 // Do not let writes into the original float below the clone. 5246 insert_mem_bar(Op_MemBarCPUOrder); 5247 5248 // paths into result_reg: 5249 enum { 5250 _slow_path = 1, // out-of-line call to clone method (virtual or not) 5251 _objArray_path, // plain array allocation, plus arrayof_oop_arraycopy 5252 _array_path, // plain array allocation, plus arrayof_long_arraycopy 5253 _instance_path, // plain instance allocation, plus arrayof_long_arraycopy 5254 PATH_LIMIT 5255 }; 5256 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 5257 result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL); 5258 PhiNode* result_i_o = new PhiNode(result_reg, Type::ABIO); 5259 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 5260 record_for_igvn(result_reg); 5261 5262 Node* obj_klass = load_object_klass(obj); 5263 Node* array_obj = obj; 5264 Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)nullptr, &array_obj); 5265 if (array_ctl != nullptr) { 5266 // It's an array. 5267 PreserveJVMState pjvms(this); 5268 set_control(array_ctl); 5269 Node* obj_length = load_array_length(array_obj); 5270 Node* array_size = nullptr; // Size of the array without object alignment padding. 5271 Node* alloc_obj = new_array(obj_klass, obj_length, 0, &array_size, /*deoptimize_on_exception=*/true); 5272 5273 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 5274 if (bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, false, BarrierSetC2::Parsing)) { 5275 // If it is an oop array, it requires very special treatment, 5276 // because gc barriers are required when accessing the array. 5277 Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)nullptr); 5278 if (is_obja != nullptr) { 5279 PreserveJVMState pjvms2(this); 5280 set_control(is_obja); 5281 // Generate a direct call to the right arraycopy function(s). 5282 // Clones are always tightly coupled. 5283 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, array_obj, intcon(0), alloc_obj, intcon(0), obj_length, true, false); 5284 ac->set_clone_oop_array(); 5285 Node* n = _gvn.transform(ac); 5286 assert(n == ac, "cannot disappear"); 5287 ac->connect_outputs(this, /*deoptimize_on_exception=*/true); 5288 5289 result_reg->init_req(_objArray_path, control()); 5290 result_val->init_req(_objArray_path, alloc_obj); 5291 result_i_o ->set_req(_objArray_path, i_o()); 5292 result_mem ->set_req(_objArray_path, reset_memory()); 5293 } 5294 } 5295 // Otherwise, there are no barriers to worry about. 5296 // (We can dispense with card marks if we know the allocation 5297 // comes out of eden (TLAB)... In fact, ReduceInitialCardMarks 5298 // causes the non-eden paths to take compensating steps to 5299 // simulate a fresh allocation, so that no further 5300 // card marks are required in compiled code to initialize 5301 // the object.) 5302 5303 if (!stopped()) { 5304 copy_to_clone(array_obj, alloc_obj, array_size, true); 5305 5306 // Present the results of the copy. 5307 result_reg->init_req(_array_path, control()); 5308 result_val->init_req(_array_path, alloc_obj); 5309 result_i_o ->set_req(_array_path, i_o()); 5310 result_mem ->set_req(_array_path, reset_memory()); 5311 } 5312 } 5313 5314 // We only go to the instance fast case code if we pass a number of guards. 5315 // The paths which do not pass are accumulated in the slow_region. 5316 RegionNode* slow_region = new RegionNode(1); 5317 record_for_igvn(slow_region); 5318 if (!stopped()) { 5319 // It's an instance (we did array above). Make the slow-path tests. 5320 // If this is a virtual call, we generate a funny guard. We grab 5321 // the vtable entry corresponding to clone() from the target object. 5322 // If the target method which we are calling happens to be the 5323 // Object clone() method, we pass the guard. We do not need this 5324 // guard for non-virtual calls; the caller is known to be the native 5325 // Object clone(). 5326 if (is_virtual) { 5327 generate_virtual_guard(obj_klass, slow_region); 5328 } 5329 5330 // The object must be easily cloneable and must not have a finalizer. 5331 // Both of these conditions may be checked in a single test. 5332 // We could optimize the test further, but we don't care. 5333 generate_misc_flags_guard(obj_klass, 5334 // Test both conditions: 5335 KlassFlags::_misc_is_cloneable_fast | KlassFlags::_misc_has_finalizer, 5336 // Must be cloneable but not finalizer: 5337 KlassFlags::_misc_is_cloneable_fast, 5338 slow_region); 5339 } 5340 5341 if (!stopped()) { 5342 // It's an instance, and it passed the slow-path tests. 5343 PreserveJVMState pjvms(this); 5344 Node* obj_size = nullptr; // Total object size, including object alignment padding. 5345 // Need to deoptimize on exception from allocation since Object.clone intrinsic 5346 // is reexecuted if deoptimization occurs and there could be problems when merging 5347 // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false). 5348 Node* alloc_obj = new_instance(obj_klass, nullptr, &obj_size, /*deoptimize_on_exception=*/true); 5349 5350 copy_to_clone(obj, alloc_obj, obj_size, false); 5351 5352 // Present the results of the slow call. 5353 result_reg->init_req(_instance_path, control()); 5354 result_val->init_req(_instance_path, alloc_obj); 5355 result_i_o ->set_req(_instance_path, i_o()); 5356 result_mem ->set_req(_instance_path, reset_memory()); 5357 } 5358 5359 // Generate code for the slow case. We make a call to clone(). 5360 set_control(_gvn.transform(slow_region)); 5361 if (!stopped()) { 5362 PreserveJVMState pjvms(this); 5363 CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual, false, true); 5364 // We need to deoptimize on exception (see comment above) 5365 Node* slow_result = set_results_for_java_call(slow_call, false, /* deoptimize */ true); 5366 // this->control() comes from set_results_for_java_call 5367 result_reg->init_req(_slow_path, control()); 5368 result_val->init_req(_slow_path, slow_result); 5369 result_i_o ->set_req(_slow_path, i_o()); 5370 result_mem ->set_req(_slow_path, reset_memory()); 5371 } 5372 5373 // Return the combined state. 5374 set_control( _gvn.transform(result_reg)); 5375 set_i_o( _gvn.transform(result_i_o)); 5376 set_all_memory( _gvn.transform(result_mem)); 5377 } // original reexecute is set back here 5378 5379 set_result(_gvn.transform(result_val)); 5380 return true; 5381 } 5382 5383 // If we have a tightly coupled allocation, the arraycopy may take care 5384 // of the array initialization. If one of the guards we insert between 5385 // the allocation and the arraycopy causes a deoptimization, an 5386 // uninitialized array will escape the compiled method. To prevent that 5387 // we set the JVM state for uncommon traps between the allocation and 5388 // the arraycopy to the state before the allocation so, in case of 5389 // deoptimization, we'll reexecute the allocation and the 5390 // initialization. 5391 JVMState* LibraryCallKit::arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp) { 5392 if (alloc != nullptr) { 5393 ciMethod* trap_method = alloc->jvms()->method(); 5394 int trap_bci = alloc->jvms()->bci(); 5395 5396 if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) && 5397 !C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_null_check)) { 5398 // Make sure there's no store between the allocation and the 5399 // arraycopy otherwise visible side effects could be rexecuted 5400 // in case of deoptimization and cause incorrect execution. 5401 bool no_interfering_store = true; 5402 Node* mem = alloc->in(TypeFunc::Memory); 5403 if (mem->is_MergeMem()) { 5404 for (MergeMemStream mms(merged_memory(), mem->as_MergeMem()); mms.next_non_empty2(); ) { 5405 Node* n = mms.memory(); 5406 if (n != mms.memory2() && !(n->is_Proj() && n->in(0) == alloc->initialization())) { 5407 assert(n->is_Store(), "what else?"); 5408 no_interfering_store = false; 5409 break; 5410 } 5411 } 5412 } else { 5413 for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) { 5414 Node* n = mms.memory(); 5415 if (n != mem && !(n->is_Proj() && n->in(0) == alloc->initialization())) { 5416 assert(n->is_Store(), "what else?"); 5417 no_interfering_store = false; 5418 break; 5419 } 5420 } 5421 } 5422 5423 if (no_interfering_store) { 5424 SafePointNode* sfpt = create_safepoint_with_state_before_array_allocation(alloc); 5425 5426 JVMState* saved_jvms = jvms(); 5427 saved_reexecute_sp = _reexecute_sp; 5428 5429 set_jvms(sfpt->jvms()); 5430 _reexecute_sp = jvms()->sp(); 5431 5432 return saved_jvms; 5433 } 5434 } 5435 } 5436 return nullptr; 5437 } 5438 5439 // Clone the JVMState of the array allocation and create a new safepoint with it. Re-push the array length to the stack 5440 // such that uncommon traps can be emitted to re-execute the array allocation in the interpreter. 5441 SafePointNode* LibraryCallKit::create_safepoint_with_state_before_array_allocation(const AllocateArrayNode* alloc) const { 5442 JVMState* old_jvms = alloc->jvms()->clone_shallow(C); 5443 uint size = alloc->req(); 5444 SafePointNode* sfpt = new SafePointNode(size, old_jvms); 5445 old_jvms->set_map(sfpt); 5446 for (uint i = 0; i < size; i++) { 5447 sfpt->init_req(i, alloc->in(i)); 5448 } 5449 // re-push array length for deoptimization 5450 sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), alloc->in(AllocateNode::ALength)); 5451 old_jvms->set_sp(old_jvms->sp()+1); 5452 old_jvms->set_monoff(old_jvms->monoff()+1); 5453 old_jvms->set_scloff(old_jvms->scloff()+1); 5454 old_jvms->set_endoff(old_jvms->endoff()+1); 5455 old_jvms->set_should_reexecute(true); 5456 5457 sfpt->set_i_o(map()->i_o()); 5458 sfpt->set_memory(map()->memory()); 5459 sfpt->set_control(map()->control()); 5460 return sfpt; 5461 } 5462 5463 // In case of a deoptimization, we restart execution at the 5464 // allocation, allocating a new array. We would leave an uninitialized 5465 // array in the heap that GCs wouldn't expect. Move the allocation 5466 // after the traps so we don't allocate the array if we 5467 // deoptimize. This is possible because tightly_coupled_allocation() 5468 // guarantees there's no observer of the allocated array at this point 5469 // and the control flow is simple enough. 5470 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms_before_guards, 5471 int saved_reexecute_sp, uint new_idx) { 5472 if (saved_jvms_before_guards != nullptr && !stopped()) { 5473 replace_unrelated_uncommon_traps_with_alloc_state(alloc, saved_jvms_before_guards); 5474 5475 assert(alloc != nullptr, "only with a tightly coupled allocation"); 5476 // restore JVM state to the state at the arraycopy 5477 saved_jvms_before_guards->map()->set_control(map()->control()); 5478 assert(saved_jvms_before_guards->map()->memory() == map()->memory(), "memory state changed?"); 5479 assert(saved_jvms_before_guards->map()->i_o() == map()->i_o(), "IO state changed?"); 5480 // If we've improved the types of some nodes (null check) while 5481 // emitting the guards, propagate them to the current state 5482 map()->replaced_nodes().apply(saved_jvms_before_guards->map(), new_idx); 5483 set_jvms(saved_jvms_before_guards); 5484 _reexecute_sp = saved_reexecute_sp; 5485 5486 // Remove the allocation from above the guards 5487 CallProjections callprojs; 5488 alloc->extract_projections(&callprojs, true); 5489 InitializeNode* init = alloc->initialization(); 5490 Node* alloc_mem = alloc->in(TypeFunc::Memory); 5491 C->gvn_replace_by(callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O)); 5492 C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem); 5493 5494 // The CastIINode created in GraphKit::new_array (in AllocateArrayNode::make_ideal_length) must stay below 5495 // the allocation (i.e. is only valid if the allocation succeeds): 5496 // 1) replace CastIINode with AllocateArrayNode's length here 5497 // 2) Create CastIINode again once allocation has moved (see below) at the end of this method 5498 // 5499 // Multiple identical CastIINodes might exist here. Each GraphKit::load_array_length() call will generate 5500 // new separate CastIINode (arraycopy guard checks or any array length use between array allocation and ararycopy) 5501 Node* init_control = init->proj_out(TypeFunc::Control); 5502 Node* alloc_length = alloc->Ideal_length(); 5503 #ifdef ASSERT 5504 Node* prev_cast = nullptr; 5505 #endif 5506 for (uint i = 0; i < init_control->outcnt(); i++) { 5507 Node* init_out = init_control->raw_out(i); 5508 if (init_out->is_CastII() && init_out->in(TypeFunc::Control) == init_control && init_out->in(1) == alloc_length) { 5509 #ifdef ASSERT 5510 if (prev_cast == nullptr) { 5511 prev_cast = init_out; 5512 } else { 5513 if (prev_cast->cmp(*init_out) == false) { 5514 prev_cast->dump(); 5515 init_out->dump(); 5516 assert(false, "not equal CastIINode"); 5517 } 5518 } 5519 #endif 5520 C->gvn_replace_by(init_out, alloc_length); 5521 } 5522 } 5523 C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0)); 5524 5525 // move the allocation here (after the guards) 5526 _gvn.hash_delete(alloc); 5527 alloc->set_req(TypeFunc::Control, control()); 5528 alloc->set_req(TypeFunc::I_O, i_o()); 5529 Node *mem = reset_memory(); 5530 set_all_memory(mem); 5531 alloc->set_req(TypeFunc::Memory, mem); 5532 set_control(init->proj_out_or_null(TypeFunc::Control)); 5533 set_i_o(callprojs.fallthrough_ioproj); 5534 5535 // Update memory as done in GraphKit::set_output_for_allocation() 5536 const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength)); 5537 const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type(); 5538 if (ary_type->isa_aryptr() && length_type != nullptr) { 5539 ary_type = ary_type->is_aryptr()->cast_to_size(length_type); 5540 } 5541 const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot); 5542 int elemidx = C->get_alias_index(telemref); 5543 set_memory(init->proj_out_or_null(TypeFunc::Memory), Compile::AliasIdxRaw); 5544 set_memory(init->proj_out_or_null(TypeFunc::Memory), elemidx); 5545 5546 Node* allocx = _gvn.transform(alloc); 5547 assert(allocx == alloc, "where has the allocation gone?"); 5548 assert(dest->is_CheckCastPP(), "not an allocation result?"); 5549 5550 _gvn.hash_delete(dest); 5551 dest->set_req(0, control()); 5552 Node* destx = _gvn.transform(dest); 5553 assert(destx == dest, "where has the allocation result gone?"); 5554 5555 array_ideal_length(alloc, ary_type, true); 5556 } 5557 } 5558 5559 // Unrelated UCTs between the array allocation and the array copy, which are considered safe by tightly_coupled_allocation(), 5560 // need to be replaced by an UCT with a state before the array allocation (including the array length). This is necessary 5561 // because we could hit one of these UCTs (which are executed before the emitted array copy guards and the actual array 5562 // allocation which is moved down in arraycopy_move_allocation_here()). When later resuming execution in the interpreter, 5563 // we would have wrongly skipped the array allocation. To prevent this, we resume execution at the array allocation in 5564 // the interpreter similar to what we are doing for the newly emitted guards for the array copy. 5565 void LibraryCallKit::replace_unrelated_uncommon_traps_with_alloc_state(AllocateArrayNode* alloc, 5566 JVMState* saved_jvms_before_guards) { 5567 if (saved_jvms_before_guards->map()->control()->is_IfProj()) { 5568 // There is at least one unrelated uncommon trap which needs to be replaced. 5569 SafePointNode* sfpt = create_safepoint_with_state_before_array_allocation(alloc); 5570 5571 JVMState* saved_jvms = jvms(); 5572 const int saved_reexecute_sp = _reexecute_sp; 5573 set_jvms(sfpt->jvms()); 5574 _reexecute_sp = jvms()->sp(); 5575 5576 replace_unrelated_uncommon_traps_with_alloc_state(saved_jvms_before_guards); 5577 5578 // Restore state 5579 set_jvms(saved_jvms); 5580 _reexecute_sp = saved_reexecute_sp; 5581 } 5582 } 5583 5584 // Replace the unrelated uncommon traps with new uncommon trap nodes by reusing the action and reason. The new uncommon 5585 // traps will have the state of the array allocation. Let the old uncommon trap nodes die. 5586 void LibraryCallKit::replace_unrelated_uncommon_traps_with_alloc_state(JVMState* saved_jvms_before_guards) { 5587 Node* if_proj = saved_jvms_before_guards->map()->control(); // Start the search right before the newly emitted guards 5588 while (if_proj->is_IfProj()) { 5589 CallStaticJavaNode* uncommon_trap = get_uncommon_trap_from_success_proj(if_proj); 5590 if (uncommon_trap != nullptr) { 5591 create_new_uncommon_trap(uncommon_trap); 5592 } 5593 assert(if_proj->in(0)->is_If(), "must be If"); 5594 if_proj = if_proj->in(0)->in(0); 5595 } 5596 assert(if_proj->is_Proj() && if_proj->in(0)->is_Initialize(), 5597 "must have reached control projection of init node"); 5598 } 5599 5600 void LibraryCallKit::create_new_uncommon_trap(CallStaticJavaNode* uncommon_trap_call) { 5601 const int trap_request = uncommon_trap_call->uncommon_trap_request(); 5602 assert(trap_request != 0, "no valid UCT trap request"); 5603 PreserveJVMState pjvms(this); 5604 set_control(uncommon_trap_call->in(0)); 5605 uncommon_trap(Deoptimization::trap_request_reason(trap_request), 5606 Deoptimization::trap_request_action(trap_request)); 5607 assert(stopped(), "Should be stopped"); 5608 _gvn.hash_delete(uncommon_trap_call); 5609 uncommon_trap_call->set_req(0, top()); // not used anymore, kill it 5610 } 5611 5612 // Common checks for array sorting intrinsics arguments. 5613 // Returns `true` if checks passed. 5614 bool LibraryCallKit::check_array_sort_arguments(Node* elementType, Node* obj, BasicType& bt) { 5615 // check address of the class 5616 if (elementType == nullptr || elementType->is_top()) { 5617 return false; // dead path 5618 } 5619 const TypeInstPtr* elem_klass = gvn().type(elementType)->isa_instptr(); 5620 if (elem_klass == nullptr) { 5621 return false; // dead path 5622 } 5623 // java_mirror_type() returns non-null for compile-time Class constants only 5624 ciType* elem_type = elem_klass->java_mirror_type(); 5625 if (elem_type == nullptr) { 5626 return false; 5627 } 5628 bt = elem_type->basic_type(); 5629 // Disable the intrinsic if the CPU does not support SIMD sort 5630 if (!Matcher::supports_simd_sort(bt)) { 5631 return false; 5632 } 5633 // check address of the array 5634 if (obj == nullptr || obj->is_top()) { 5635 return false; // dead path 5636 } 5637 const TypeAryPtr* obj_t = _gvn.type(obj)->isa_aryptr(); 5638 if (obj_t == nullptr || obj_t->elem() == Type::BOTTOM) { 5639 return false; // failed input validation 5640 } 5641 return true; 5642 } 5643 5644 //------------------------------inline_array_partition----------------------- 5645 bool LibraryCallKit::inline_array_partition() { 5646 address stubAddr = StubRoutines::select_array_partition_function(); 5647 if (stubAddr == nullptr) { 5648 return false; // Intrinsic's stub is not implemented on this platform 5649 } 5650 assert(callee()->signature()->size() == 9, "arrayPartition has 8 parameters (one long)"); 5651 5652 // no receiver because it is a static method 5653 Node* elementType = argument(0); 5654 Node* obj = argument(1); 5655 Node* offset = argument(2); // long 5656 Node* fromIndex = argument(4); 5657 Node* toIndex = argument(5); 5658 Node* indexPivot1 = argument(6); 5659 Node* indexPivot2 = argument(7); 5660 // PartitionOperation: argument(8) is ignored 5661 5662 Node* pivotIndices = nullptr; 5663 BasicType bt = T_ILLEGAL; 5664 5665 if (!check_array_sort_arguments(elementType, obj, bt)) { 5666 return false; 5667 } 5668 null_check(obj); 5669 // If obj is dead, only null-path is taken. 5670 if (stopped()) { 5671 return true; 5672 } 5673 // Set the original stack and the reexecute bit for the interpreter to reexecute 5674 // the bytecode that invokes DualPivotQuicksort.partition() if deoptimization happens. 5675 { PreserveReexecuteState preexecs(this); 5676 jvms()->set_should_reexecute(true); 5677 5678 Node* obj_adr = make_unsafe_address(obj, offset); 5679 5680 // create the pivotIndices array of type int and size = 2 5681 Node* size = intcon(2); 5682 Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_INT))); 5683 pivotIndices = new_array(klass_node, size, 0); // no arguments to push 5684 AllocateArrayNode* alloc = tightly_coupled_allocation(pivotIndices); 5685 guarantee(alloc != nullptr, "created above"); 5686 Node* pivotIndices_adr = basic_plus_adr(pivotIndices, arrayOopDesc::base_offset_in_bytes(T_INT)); 5687 5688 // pass the basic type enum to the stub 5689 Node* elemType = intcon(bt); 5690 5691 // Call the stub 5692 const char *stubName = "array_partition_stub"; 5693 make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::array_partition_Type(), 5694 stubAddr, stubName, TypePtr::BOTTOM, 5695 obj_adr, elemType, fromIndex, toIndex, pivotIndices_adr, 5696 indexPivot1, indexPivot2); 5697 5698 } // original reexecute is set back here 5699 5700 if (!stopped()) { 5701 set_result(pivotIndices); 5702 } 5703 5704 return true; 5705 } 5706 5707 5708 //------------------------------inline_array_sort----------------------- 5709 bool LibraryCallKit::inline_array_sort() { 5710 address stubAddr = StubRoutines::select_arraysort_function(); 5711 if (stubAddr == nullptr) { 5712 return false; // Intrinsic's stub is not implemented on this platform 5713 } 5714 assert(callee()->signature()->size() == 7, "arraySort has 6 parameters (one long)"); 5715 5716 // no receiver because it is a static method 5717 Node* elementType = argument(0); 5718 Node* obj = argument(1); 5719 Node* offset = argument(2); // long 5720 Node* fromIndex = argument(4); 5721 Node* toIndex = argument(5); 5722 // SortOperation: argument(6) is ignored 5723 5724 BasicType bt = T_ILLEGAL; 5725 5726 if (!check_array_sort_arguments(elementType, obj, bt)) { 5727 return false; 5728 } 5729 null_check(obj); 5730 // If obj is dead, only null-path is taken. 5731 if (stopped()) { 5732 return true; 5733 } 5734 Node* obj_adr = make_unsafe_address(obj, offset); 5735 5736 // pass the basic type enum to the stub 5737 Node* elemType = intcon(bt); 5738 5739 // Call the stub. 5740 const char *stubName = "arraysort_stub"; 5741 make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::array_sort_Type(), 5742 stubAddr, stubName, TypePtr::BOTTOM, 5743 obj_adr, elemType, fromIndex, toIndex); 5744 5745 return true; 5746 } 5747 5748 5749 //------------------------------inline_arraycopy----------------------- 5750 // public static native void java.lang.System.arraycopy(Object src, int srcPos, 5751 // Object dest, int destPos, 5752 // int length); 5753 bool LibraryCallKit::inline_arraycopy() { 5754 // Get the arguments. 5755 Node* src = argument(0); // type: oop 5756 Node* src_offset = argument(1); // type: int 5757 Node* dest = argument(2); // type: oop 5758 Node* dest_offset = argument(3); // type: int 5759 Node* length = argument(4); // type: int 5760 5761 uint new_idx = C->unique(); 5762 5763 // Check for allocation before we add nodes that would confuse 5764 // tightly_coupled_allocation() 5765 AllocateArrayNode* alloc = tightly_coupled_allocation(dest); 5766 5767 int saved_reexecute_sp = -1; 5768 JVMState* saved_jvms_before_guards = arraycopy_restore_alloc_state(alloc, saved_reexecute_sp); 5769 // See arraycopy_restore_alloc_state() comment 5770 // if alloc == null we don't have to worry about a tightly coupled allocation so we can emit all needed guards 5771 // if saved_jvms_before_guards is not null (then alloc is not null) then we can handle guards and a tightly coupled allocation 5772 // if saved_jvms_before_guards is null and alloc is not null, we can't emit any guards 5773 bool can_emit_guards = (alloc == nullptr || saved_jvms_before_guards != nullptr); 5774 5775 // The following tests must be performed 5776 // (1) src and dest are arrays. 5777 // (2) src and dest arrays must have elements of the same BasicType 5778 // (3) src and dest must not be null. 5779 // (4) src_offset must not be negative. 5780 // (5) dest_offset must not be negative. 5781 // (6) length must not be negative. 5782 // (7) src_offset + length must not exceed length of src. 5783 // (8) dest_offset + length must not exceed length of dest. 5784 // (9) each element of an oop array must be assignable 5785 5786 // (3) src and dest must not be null. 5787 // always do this here because we need the JVM state for uncommon traps 5788 Node* null_ctl = top(); 5789 src = saved_jvms_before_guards != nullptr ? null_check_oop(src, &null_ctl, true, true) : null_check(src, T_ARRAY); 5790 assert(null_ctl->is_top(), "no null control here"); 5791 dest = null_check(dest, T_ARRAY); 5792 5793 if (!can_emit_guards) { 5794 // if saved_jvms_before_guards is null and alloc is not null, we don't emit any 5795 // guards but the arraycopy node could still take advantage of a 5796 // tightly allocated allocation. tightly_coupled_allocation() is 5797 // called again to make sure it takes the null check above into 5798 // account: the null check is mandatory and if it caused an 5799 // uncommon trap to be emitted then the allocation can't be 5800 // considered tightly coupled in this context. 5801 alloc = tightly_coupled_allocation(dest); 5802 } 5803 5804 bool validated = false; 5805 5806 const Type* src_type = _gvn.type(src); 5807 const Type* dest_type = _gvn.type(dest); 5808 const TypeAryPtr* top_src = src_type->isa_aryptr(); 5809 const TypeAryPtr* top_dest = dest_type->isa_aryptr(); 5810 5811 // Do we have the type of src? 5812 bool has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM); 5813 // Do we have the type of dest? 5814 bool has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM); 5815 // Is the type for src from speculation? 5816 bool src_spec = false; 5817 // Is the type for dest from speculation? 5818 bool dest_spec = false; 5819 5820 if ((!has_src || !has_dest) && can_emit_guards) { 5821 // We don't have sufficient type information, let's see if 5822 // speculative types can help. We need to have types for both src 5823 // and dest so that it pays off. 5824 5825 // Do we already have or could we have type information for src 5826 bool could_have_src = has_src; 5827 // Do we already have or could we have type information for dest 5828 bool could_have_dest = has_dest; 5829 5830 ciKlass* src_k = nullptr; 5831 if (!has_src) { 5832 src_k = src_type->speculative_type_not_null(); 5833 if (src_k != nullptr && src_k->is_array_klass()) { 5834 could_have_src = true; 5835 } 5836 } 5837 5838 ciKlass* dest_k = nullptr; 5839 if (!has_dest) { 5840 dest_k = dest_type->speculative_type_not_null(); 5841 if (dest_k != nullptr && dest_k->is_array_klass()) { 5842 could_have_dest = true; 5843 } 5844 } 5845 5846 if (could_have_src && could_have_dest) { 5847 // This is going to pay off so emit the required guards 5848 if (!has_src) { 5849 src = maybe_cast_profiled_obj(src, src_k, true); 5850 src_type = _gvn.type(src); 5851 top_src = src_type->isa_aryptr(); 5852 has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM); 5853 src_spec = true; 5854 } 5855 if (!has_dest) { 5856 dest = maybe_cast_profiled_obj(dest, dest_k, true); 5857 dest_type = _gvn.type(dest); 5858 top_dest = dest_type->isa_aryptr(); 5859 has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM); 5860 dest_spec = true; 5861 } 5862 } 5863 } 5864 5865 if (has_src && has_dest && can_emit_guards) { 5866 BasicType src_elem = top_src->isa_aryptr()->elem()->array_element_basic_type(); 5867 BasicType dest_elem = top_dest->isa_aryptr()->elem()->array_element_basic_type(); 5868 if (is_reference_type(src_elem, true)) src_elem = T_OBJECT; 5869 if (is_reference_type(dest_elem, true)) dest_elem = T_OBJECT; 5870 5871 if (src_elem == dest_elem && src_elem == T_OBJECT) { 5872 // If both arrays are object arrays then having the exact types 5873 // for both will remove the need for a subtype check at runtime 5874 // before the call and may make it possible to pick a faster copy 5875 // routine (without a subtype check on every element) 5876 // Do we have the exact type of src? 5877 bool could_have_src = src_spec; 5878 // Do we have the exact type of dest? 5879 bool could_have_dest = dest_spec; 5880 ciKlass* src_k = nullptr; 5881 ciKlass* dest_k = nullptr; 5882 if (!src_spec) { 5883 src_k = src_type->speculative_type_not_null(); 5884 if (src_k != nullptr && src_k->is_array_klass()) { 5885 could_have_src = true; 5886 } 5887 } 5888 if (!dest_spec) { 5889 dest_k = dest_type->speculative_type_not_null(); 5890 if (dest_k != nullptr && dest_k->is_array_klass()) { 5891 could_have_dest = true; 5892 } 5893 } 5894 if (could_have_src && could_have_dest) { 5895 // If we can have both exact types, emit the missing guards 5896 if (could_have_src && !src_spec) { 5897 src = maybe_cast_profiled_obj(src, src_k, true); 5898 } 5899 if (could_have_dest && !dest_spec) { 5900 dest = maybe_cast_profiled_obj(dest, dest_k, true); 5901 } 5902 } 5903 } 5904 } 5905 5906 ciMethod* trap_method = method(); 5907 int trap_bci = bci(); 5908 if (saved_jvms_before_guards != nullptr) { 5909 trap_method = alloc->jvms()->method(); 5910 trap_bci = alloc->jvms()->bci(); 5911 } 5912 5913 bool negative_length_guard_generated = false; 5914 5915 if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) && 5916 can_emit_guards && 5917 !src->is_top() && !dest->is_top()) { 5918 // validate arguments: enables transformation the ArrayCopyNode 5919 validated = true; 5920 5921 RegionNode* slow_region = new RegionNode(1); 5922 record_for_igvn(slow_region); 5923 5924 // (1) src and dest are arrays. 5925 generate_non_array_guard(load_object_klass(src), slow_region, &src); 5926 generate_non_array_guard(load_object_klass(dest), slow_region, &dest); 5927 5928 // (2) src and dest arrays must have elements of the same BasicType 5929 // done at macro expansion or at Ideal transformation time 5930 5931 // (4) src_offset must not be negative. 5932 generate_negative_guard(src_offset, slow_region); 5933 5934 // (5) dest_offset must not be negative. 5935 generate_negative_guard(dest_offset, slow_region); 5936 5937 // (7) src_offset + length must not exceed length of src. 5938 generate_limit_guard(src_offset, length, 5939 load_array_length(src), 5940 slow_region); 5941 5942 // (8) dest_offset + length must not exceed length of dest. 5943 generate_limit_guard(dest_offset, length, 5944 load_array_length(dest), 5945 slow_region); 5946 5947 // (6) length must not be negative. 5948 // This is also checked in generate_arraycopy() during macro expansion, but 5949 // we also have to check it here for the case where the ArrayCopyNode will 5950 // be eliminated by Escape Analysis. 5951 if (EliminateAllocations) { 5952 generate_negative_guard(length, slow_region); 5953 negative_length_guard_generated = true; 5954 } 5955 5956 // (9) each element of an oop array must be assignable 5957 Node* dest_klass = load_object_klass(dest); 5958 if (src != dest) { 5959 Node* not_subtype_ctrl = gen_subtype_check(src, dest_klass); 5960 5961 if (not_subtype_ctrl != top()) { 5962 PreserveJVMState pjvms(this); 5963 set_control(not_subtype_ctrl); 5964 uncommon_trap(Deoptimization::Reason_intrinsic, 5965 Deoptimization::Action_make_not_entrant); 5966 assert(stopped(), "Should be stopped"); 5967 } 5968 } 5969 { 5970 PreserveJVMState pjvms(this); 5971 set_control(_gvn.transform(slow_region)); 5972 uncommon_trap(Deoptimization::Reason_intrinsic, 5973 Deoptimization::Action_make_not_entrant); 5974 assert(stopped(), "Should be stopped"); 5975 } 5976 5977 const TypeKlassPtr* dest_klass_t = _gvn.type(dest_klass)->is_klassptr(); 5978 const Type *toop = dest_klass_t->cast_to_exactness(false)->as_instance_type(); 5979 src = _gvn.transform(new CheckCastPPNode(control(), src, toop)); 5980 arraycopy_move_allocation_here(alloc, dest, saved_jvms_before_guards, saved_reexecute_sp, new_idx); 5981 } 5982 5983 if (stopped()) { 5984 return true; 5985 } 5986 5987 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != nullptr, negative_length_guard_generated, 5988 // Create LoadRange and LoadKlass nodes for use during macro expansion here 5989 // so the compiler has a chance to eliminate them: during macro expansion, 5990 // we have to set their control (CastPP nodes are eliminated). 5991 load_object_klass(src), load_object_klass(dest), 5992 load_array_length(src), load_array_length(dest)); 5993 5994 ac->set_arraycopy(validated); 5995 5996 Node* n = _gvn.transform(ac); 5997 if (n == ac) { 5998 ac->connect_outputs(this); 5999 } else { 6000 assert(validated, "shouldn't transform if all arguments not validated"); 6001 set_all_memory(n); 6002 } 6003 clear_upper_avx(); 6004 6005 6006 return true; 6007 } 6008 6009 6010 // Helper function which determines if an arraycopy immediately follows 6011 // an allocation, with no intervening tests or other escapes for the object. 6012 AllocateArrayNode* 6013 LibraryCallKit::tightly_coupled_allocation(Node* ptr) { 6014 if (stopped()) return nullptr; // no fast path 6015 if (!C->do_aliasing()) return nullptr; // no MergeMems around 6016 6017 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr); 6018 if (alloc == nullptr) return nullptr; 6019 6020 Node* rawmem = memory(Compile::AliasIdxRaw); 6021 // Is the allocation's memory state untouched? 6022 if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) { 6023 // Bail out if there have been raw-memory effects since the allocation. 6024 // (Example: There might have been a call or safepoint.) 6025 return nullptr; 6026 } 6027 rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw); 6028 if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) { 6029 return nullptr; 6030 } 6031 6032 // There must be no unexpected observers of this allocation. 6033 for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) { 6034 Node* obs = ptr->fast_out(i); 6035 if (obs != this->map()) { 6036 return nullptr; 6037 } 6038 } 6039 6040 // This arraycopy must unconditionally follow the allocation of the ptr. 6041 Node* alloc_ctl = ptr->in(0); 6042 Node* ctl = control(); 6043 while (ctl != alloc_ctl) { 6044 // There may be guards which feed into the slow_region. 6045 // Any other control flow means that we might not get a chance 6046 // to finish initializing the allocated object. 6047 // Various low-level checks bottom out in uncommon traps. These 6048 // are considered safe since we've already checked above that 6049 // there is no unexpected observer of this allocation. 6050 if (get_uncommon_trap_from_success_proj(ctl) != nullptr) { 6051 assert(ctl->in(0)->is_If(), "must be If"); 6052 ctl = ctl->in(0)->in(0); 6053 } else { 6054 return nullptr; 6055 } 6056 } 6057 6058 // If we get this far, we have an allocation which immediately 6059 // precedes the arraycopy, and we can take over zeroing the new object. 6060 // The arraycopy will finish the initialization, and provide 6061 // a new control state to which we will anchor the destination pointer. 6062 6063 return alloc; 6064 } 6065 6066 CallStaticJavaNode* LibraryCallKit::get_uncommon_trap_from_success_proj(Node* node) { 6067 if (node->is_IfProj()) { 6068 Node* other_proj = node->as_IfProj()->other_if_proj(); 6069 for (DUIterator_Fast jmax, j = other_proj->fast_outs(jmax); j < jmax; j++) { 6070 Node* obs = other_proj->fast_out(j); 6071 if (obs->in(0) == other_proj && obs->is_CallStaticJava() && 6072 (obs->as_CallStaticJava()->entry_point() == OptoRuntime::uncommon_trap_blob()->entry_point())) { 6073 return obs->as_CallStaticJava(); 6074 } 6075 } 6076 } 6077 return nullptr; 6078 } 6079 6080 //-------------inline_encodeISOArray----------------------------------- 6081 // encode char[] to byte[] in ISO_8859_1 or ASCII 6082 bool LibraryCallKit::inline_encodeISOArray(bool ascii) { 6083 assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters"); 6084 // no receiver since it is static method 6085 Node *src = argument(0); 6086 Node *src_offset = argument(1); 6087 Node *dst = argument(2); 6088 Node *dst_offset = argument(3); 6089 Node *length = argument(4); 6090 6091 src = must_be_not_null(src, true); 6092 dst = must_be_not_null(dst, true); 6093 6094 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6095 const TypeAryPtr* dst_type = dst->Value(&_gvn)->isa_aryptr(); 6096 if (src_type == nullptr || src_type->elem() == Type::BOTTOM || 6097 dst_type == nullptr || dst_type->elem() == Type::BOTTOM) { 6098 // failed array check 6099 return false; 6100 } 6101 6102 // Figure out the size and type of the elements we will be copying. 6103 BasicType src_elem = src_type->elem()->array_element_basic_type(); 6104 BasicType dst_elem = dst_type->elem()->array_element_basic_type(); 6105 if (!((src_elem == T_CHAR) || (src_elem== T_BYTE)) || dst_elem != T_BYTE) { 6106 return false; 6107 } 6108 6109 Node* src_start = array_element_address(src, src_offset, T_CHAR); 6110 Node* dst_start = array_element_address(dst, dst_offset, dst_elem); 6111 // 'src_start' points to src array + scaled offset 6112 // 'dst_start' points to dst array + scaled offset 6113 6114 const TypeAryPtr* mtype = TypeAryPtr::BYTES; 6115 Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length, ascii); 6116 enc = _gvn.transform(enc); 6117 Node* res_mem = _gvn.transform(new SCMemProjNode(enc)); 6118 set_memory(res_mem, mtype); 6119 set_result(enc); 6120 clear_upper_avx(); 6121 6122 return true; 6123 } 6124 6125 //-------------inline_multiplyToLen----------------------------------- 6126 bool LibraryCallKit::inline_multiplyToLen() { 6127 assert(UseMultiplyToLenIntrinsic, "not implemented on this platform"); 6128 6129 address stubAddr = StubRoutines::multiplyToLen(); 6130 if (stubAddr == nullptr) { 6131 return false; // Intrinsic's stub is not implemented on this platform 6132 } 6133 const char* stubName = "multiplyToLen"; 6134 6135 assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters"); 6136 6137 // no receiver because it is a static method 6138 Node* x = argument(0); 6139 Node* xlen = argument(1); 6140 Node* y = argument(2); 6141 Node* ylen = argument(3); 6142 Node* z = argument(4); 6143 6144 x = must_be_not_null(x, true); 6145 y = must_be_not_null(y, true); 6146 6147 const TypeAryPtr* x_type = x->Value(&_gvn)->isa_aryptr(); 6148 const TypeAryPtr* y_type = y->Value(&_gvn)->isa_aryptr(); 6149 if (x_type == nullptr || x_type->elem() == Type::BOTTOM || 6150 y_type == nullptr || y_type->elem() == Type::BOTTOM) { 6151 // failed array check 6152 return false; 6153 } 6154 6155 BasicType x_elem = x_type->elem()->array_element_basic_type(); 6156 BasicType y_elem = y_type->elem()->array_element_basic_type(); 6157 if (x_elem != T_INT || y_elem != T_INT) { 6158 return false; 6159 } 6160 6161 Node* x_start = array_element_address(x, intcon(0), x_elem); 6162 Node* y_start = array_element_address(y, intcon(0), y_elem); 6163 // 'x_start' points to x array + scaled xlen 6164 // 'y_start' points to y array + scaled ylen 6165 6166 Node* z_start = array_element_address(z, intcon(0), T_INT); 6167 6168 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 6169 OptoRuntime::multiplyToLen_Type(), 6170 stubAddr, stubName, TypePtr::BOTTOM, 6171 x_start, xlen, y_start, ylen, z_start); 6172 6173 C->set_has_split_ifs(true); // Has chance for split-if optimization 6174 set_result(z); 6175 return true; 6176 } 6177 6178 //-------------inline_squareToLen------------------------------------ 6179 bool LibraryCallKit::inline_squareToLen() { 6180 assert(UseSquareToLenIntrinsic, "not implemented on this platform"); 6181 6182 address stubAddr = StubRoutines::squareToLen(); 6183 if (stubAddr == nullptr) { 6184 return false; // Intrinsic's stub is not implemented on this platform 6185 } 6186 const char* stubName = "squareToLen"; 6187 6188 assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters"); 6189 6190 Node* x = argument(0); 6191 Node* len = argument(1); 6192 Node* z = argument(2); 6193 Node* zlen = argument(3); 6194 6195 x = must_be_not_null(x, true); 6196 z = must_be_not_null(z, true); 6197 6198 const TypeAryPtr* x_type = x->Value(&_gvn)->isa_aryptr(); 6199 const TypeAryPtr* z_type = z->Value(&_gvn)->isa_aryptr(); 6200 if (x_type == nullptr || x_type->elem() == Type::BOTTOM || 6201 z_type == nullptr || z_type->elem() == Type::BOTTOM) { 6202 // failed array check 6203 return false; 6204 } 6205 6206 BasicType x_elem = x_type->elem()->array_element_basic_type(); 6207 BasicType z_elem = z_type->elem()->array_element_basic_type(); 6208 if (x_elem != T_INT || z_elem != T_INT) { 6209 return false; 6210 } 6211 6212 6213 Node* x_start = array_element_address(x, intcon(0), x_elem); 6214 Node* z_start = array_element_address(z, intcon(0), z_elem); 6215 6216 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 6217 OptoRuntime::squareToLen_Type(), 6218 stubAddr, stubName, TypePtr::BOTTOM, 6219 x_start, len, z_start, zlen); 6220 6221 set_result(z); 6222 return true; 6223 } 6224 6225 //-------------inline_mulAdd------------------------------------------ 6226 bool LibraryCallKit::inline_mulAdd() { 6227 assert(UseMulAddIntrinsic, "not implemented on this platform"); 6228 6229 address stubAddr = StubRoutines::mulAdd(); 6230 if (stubAddr == nullptr) { 6231 return false; // Intrinsic's stub is not implemented on this platform 6232 } 6233 const char* stubName = "mulAdd"; 6234 6235 assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters"); 6236 6237 Node* out = argument(0); 6238 Node* in = argument(1); 6239 Node* offset = argument(2); 6240 Node* len = argument(3); 6241 Node* k = argument(4); 6242 6243 in = must_be_not_null(in, true); 6244 out = must_be_not_null(out, true); 6245 6246 const TypeAryPtr* out_type = out->Value(&_gvn)->isa_aryptr(); 6247 const TypeAryPtr* in_type = in->Value(&_gvn)->isa_aryptr(); 6248 if (out_type == nullptr || out_type->elem() == Type::BOTTOM || 6249 in_type == nullptr || in_type->elem() == Type::BOTTOM) { 6250 // failed array check 6251 return false; 6252 } 6253 6254 BasicType out_elem = out_type->elem()->array_element_basic_type(); 6255 BasicType in_elem = in_type->elem()->array_element_basic_type(); 6256 if (out_elem != T_INT || in_elem != T_INT) { 6257 return false; 6258 } 6259 6260 Node* outlen = load_array_length(out); 6261 Node* new_offset = _gvn.transform(new SubINode(outlen, offset)); 6262 Node* out_start = array_element_address(out, intcon(0), out_elem); 6263 Node* in_start = array_element_address(in, intcon(0), in_elem); 6264 6265 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 6266 OptoRuntime::mulAdd_Type(), 6267 stubAddr, stubName, TypePtr::BOTTOM, 6268 out_start,in_start, new_offset, len, k); 6269 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6270 set_result(result); 6271 return true; 6272 } 6273 6274 //-------------inline_montgomeryMultiply----------------------------------- 6275 bool LibraryCallKit::inline_montgomeryMultiply() { 6276 address stubAddr = StubRoutines::montgomeryMultiply(); 6277 if (stubAddr == nullptr) { 6278 return false; // Intrinsic's stub is not implemented on this platform 6279 } 6280 6281 assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform"); 6282 const char* stubName = "montgomery_multiply"; 6283 6284 assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters"); 6285 6286 Node* a = argument(0); 6287 Node* b = argument(1); 6288 Node* n = argument(2); 6289 Node* len = argument(3); 6290 Node* inv = argument(4); 6291 Node* m = argument(6); 6292 6293 const TypeAryPtr* a_type = a->Value(&_gvn)->isa_aryptr(); 6294 const TypeAryPtr* b_type = b->Value(&_gvn)->isa_aryptr(); 6295 const TypeAryPtr* n_type = n->Value(&_gvn)->isa_aryptr(); 6296 const TypeAryPtr* m_type = m->Value(&_gvn)->isa_aryptr(); 6297 if (a_type == nullptr || a_type->elem() == Type::BOTTOM || 6298 b_type == nullptr || b_type->elem() == Type::BOTTOM || 6299 n_type == nullptr || n_type->elem() == Type::BOTTOM || 6300 m_type == nullptr || m_type->elem() == Type::BOTTOM) { 6301 // failed array check 6302 return false; 6303 } 6304 6305 BasicType a_elem = a_type->elem()->array_element_basic_type(); 6306 BasicType b_elem = b_type->elem()->array_element_basic_type(); 6307 BasicType n_elem = n_type->elem()->array_element_basic_type(); 6308 BasicType m_elem = m_type->elem()->array_element_basic_type(); 6309 if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) { 6310 return false; 6311 } 6312 6313 // Make the call 6314 { 6315 Node* a_start = array_element_address(a, intcon(0), a_elem); 6316 Node* b_start = array_element_address(b, intcon(0), b_elem); 6317 Node* n_start = array_element_address(n, intcon(0), n_elem); 6318 Node* m_start = array_element_address(m, intcon(0), m_elem); 6319 6320 Node* call = make_runtime_call(RC_LEAF, 6321 OptoRuntime::montgomeryMultiply_Type(), 6322 stubAddr, stubName, TypePtr::BOTTOM, 6323 a_start, b_start, n_start, len, inv, top(), 6324 m_start); 6325 set_result(m); 6326 } 6327 6328 return true; 6329 } 6330 6331 bool LibraryCallKit::inline_montgomerySquare() { 6332 address stubAddr = StubRoutines::montgomerySquare(); 6333 if (stubAddr == nullptr) { 6334 return false; // Intrinsic's stub is not implemented on this platform 6335 } 6336 6337 assert(UseMontgomerySquareIntrinsic, "not implemented on this platform"); 6338 const char* stubName = "montgomery_square"; 6339 6340 assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters"); 6341 6342 Node* a = argument(0); 6343 Node* n = argument(1); 6344 Node* len = argument(2); 6345 Node* inv = argument(3); 6346 Node* m = argument(5); 6347 6348 const TypeAryPtr* a_type = a->Value(&_gvn)->isa_aryptr(); 6349 const TypeAryPtr* n_type = n->Value(&_gvn)->isa_aryptr(); 6350 const TypeAryPtr* m_type = m->Value(&_gvn)->isa_aryptr(); 6351 if (a_type == nullptr || a_type->elem() == Type::BOTTOM || 6352 n_type == nullptr || n_type->elem() == Type::BOTTOM || 6353 m_type == nullptr || m_type->elem() == Type::BOTTOM) { 6354 // failed array check 6355 return false; 6356 } 6357 6358 BasicType a_elem = a_type->elem()->array_element_basic_type(); 6359 BasicType n_elem = n_type->elem()->array_element_basic_type(); 6360 BasicType m_elem = m_type->elem()->array_element_basic_type(); 6361 if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) { 6362 return false; 6363 } 6364 6365 // Make the call 6366 { 6367 Node* a_start = array_element_address(a, intcon(0), a_elem); 6368 Node* n_start = array_element_address(n, intcon(0), n_elem); 6369 Node* m_start = array_element_address(m, intcon(0), m_elem); 6370 6371 Node* call = make_runtime_call(RC_LEAF, 6372 OptoRuntime::montgomerySquare_Type(), 6373 stubAddr, stubName, TypePtr::BOTTOM, 6374 a_start, n_start, len, inv, top(), 6375 m_start); 6376 set_result(m); 6377 } 6378 6379 return true; 6380 } 6381 6382 bool LibraryCallKit::inline_bigIntegerShift(bool isRightShift) { 6383 address stubAddr = nullptr; 6384 const char* stubName = nullptr; 6385 6386 stubAddr = isRightShift? StubRoutines::bigIntegerRightShift(): StubRoutines::bigIntegerLeftShift(); 6387 if (stubAddr == nullptr) { 6388 return false; // Intrinsic's stub is not implemented on this platform 6389 } 6390 6391 stubName = isRightShift? "bigIntegerRightShiftWorker" : "bigIntegerLeftShiftWorker"; 6392 6393 assert(callee()->signature()->size() == 5, "expected 5 arguments"); 6394 6395 Node* newArr = argument(0); 6396 Node* oldArr = argument(1); 6397 Node* newIdx = argument(2); 6398 Node* shiftCount = argument(3); 6399 Node* numIter = argument(4); 6400 6401 const TypeAryPtr* newArr_type = newArr->Value(&_gvn)->isa_aryptr(); 6402 const TypeAryPtr* oldArr_type = oldArr->Value(&_gvn)->isa_aryptr(); 6403 if (newArr_type == nullptr || newArr_type->elem() == Type::BOTTOM || 6404 oldArr_type == nullptr || oldArr_type->elem() == Type::BOTTOM) { 6405 return false; 6406 } 6407 6408 BasicType newArr_elem = newArr_type->elem()->array_element_basic_type(); 6409 BasicType oldArr_elem = oldArr_type->elem()->array_element_basic_type(); 6410 if (newArr_elem != T_INT || oldArr_elem != T_INT) { 6411 return false; 6412 } 6413 6414 // Make the call 6415 { 6416 Node* newArr_start = array_element_address(newArr, intcon(0), newArr_elem); 6417 Node* oldArr_start = array_element_address(oldArr, intcon(0), oldArr_elem); 6418 6419 Node* call = make_runtime_call(RC_LEAF, 6420 OptoRuntime::bigIntegerShift_Type(), 6421 stubAddr, 6422 stubName, 6423 TypePtr::BOTTOM, 6424 newArr_start, 6425 oldArr_start, 6426 newIdx, 6427 shiftCount, 6428 numIter); 6429 } 6430 6431 return true; 6432 } 6433 6434 //-------------inline_vectorizedMismatch------------------------------ 6435 bool LibraryCallKit::inline_vectorizedMismatch() { 6436 assert(UseVectorizedMismatchIntrinsic, "not implemented on this platform"); 6437 6438 assert(callee()->signature()->size() == 8, "vectorizedMismatch has 6 parameters"); 6439 Node* obja = argument(0); // Object 6440 Node* aoffset = argument(1); // long 6441 Node* objb = argument(3); // Object 6442 Node* boffset = argument(4); // long 6443 Node* length = argument(6); // int 6444 Node* scale = argument(7); // int 6445 6446 const TypeAryPtr* obja_t = _gvn.type(obja)->isa_aryptr(); 6447 const TypeAryPtr* objb_t = _gvn.type(objb)->isa_aryptr(); 6448 if (obja_t == nullptr || obja_t->elem() == Type::BOTTOM || 6449 objb_t == nullptr || objb_t->elem() == Type::BOTTOM || 6450 scale == top()) { 6451 return false; // failed input validation 6452 } 6453 6454 Node* obja_adr = make_unsafe_address(obja, aoffset); 6455 Node* objb_adr = make_unsafe_address(objb, boffset); 6456 6457 // Partial inlining handling for inputs smaller than ArrayOperationPartialInlineSize bytes in size. 6458 // 6459 // inline_limit = ArrayOperationPartialInlineSize / element_size; 6460 // if (length <= inline_limit) { 6461 // inline_path: 6462 // vmask = VectorMaskGen length 6463 // vload1 = LoadVectorMasked obja, vmask 6464 // vload2 = LoadVectorMasked objb, vmask 6465 // result1 = VectorCmpMasked vload1, vload2, vmask 6466 // } else { 6467 // call_stub_path: 6468 // result2 = call vectorizedMismatch_stub(obja, objb, length, scale) 6469 // } 6470 // exit_block: 6471 // return Phi(result1, result2); 6472 // 6473 enum { inline_path = 1, // input is small enough to process it all at once 6474 stub_path = 2, // input is too large; call into the VM 6475 PATH_LIMIT = 3 6476 }; 6477 6478 Node* exit_block = new RegionNode(PATH_LIMIT); 6479 Node* result_phi = new PhiNode(exit_block, TypeInt::INT); 6480 Node* memory_phi = new PhiNode(exit_block, Type::MEMORY, TypePtr::BOTTOM); 6481 6482 Node* call_stub_path = control(); 6483 6484 BasicType elem_bt = T_ILLEGAL; 6485 6486 const TypeInt* scale_t = _gvn.type(scale)->is_int(); 6487 if (scale_t->is_con()) { 6488 switch (scale_t->get_con()) { 6489 case 0: elem_bt = T_BYTE; break; 6490 case 1: elem_bt = T_SHORT; break; 6491 case 2: elem_bt = T_INT; break; 6492 case 3: elem_bt = T_LONG; break; 6493 6494 default: elem_bt = T_ILLEGAL; break; // not supported 6495 } 6496 } 6497 6498 int inline_limit = 0; 6499 bool do_partial_inline = false; 6500 6501 if (elem_bt != T_ILLEGAL && ArrayOperationPartialInlineSize > 0) { 6502 inline_limit = ArrayOperationPartialInlineSize / type2aelembytes(elem_bt); 6503 do_partial_inline = inline_limit >= 16; 6504 } 6505 6506 if (do_partial_inline) { 6507 assert(elem_bt != T_ILLEGAL, "sanity"); 6508 6509 if (Matcher::match_rule_supported_vector(Op_VectorMaskGen, inline_limit, elem_bt) && 6510 Matcher::match_rule_supported_vector(Op_LoadVectorMasked, inline_limit, elem_bt) && 6511 Matcher::match_rule_supported_vector(Op_VectorCmpMasked, inline_limit, elem_bt)) { 6512 6513 const TypeVect* vt = TypeVect::make(elem_bt, inline_limit); 6514 Node* cmp_length = _gvn.transform(new CmpINode(length, intcon(inline_limit))); 6515 Node* bol_gt = _gvn.transform(new BoolNode(cmp_length, BoolTest::gt)); 6516 6517 call_stub_path = generate_guard(bol_gt, nullptr, PROB_MIN); 6518 6519 if (!stopped()) { 6520 Node* casted_length = _gvn.transform(new CastIINode(control(), length, TypeInt::make(0, inline_limit, Type::WidenMin))); 6521 6522 const TypePtr* obja_adr_t = _gvn.type(obja_adr)->isa_ptr(); 6523 const TypePtr* objb_adr_t = _gvn.type(objb_adr)->isa_ptr(); 6524 Node* obja_adr_mem = memory(C->get_alias_index(obja_adr_t)); 6525 Node* objb_adr_mem = memory(C->get_alias_index(objb_adr_t)); 6526 6527 Node* vmask = _gvn.transform(VectorMaskGenNode::make(ConvI2X(casted_length), elem_bt)); 6528 Node* vload_obja = _gvn.transform(new LoadVectorMaskedNode(control(), obja_adr_mem, obja_adr, obja_adr_t, vt, vmask)); 6529 Node* vload_objb = _gvn.transform(new LoadVectorMaskedNode(control(), objb_adr_mem, objb_adr, objb_adr_t, vt, vmask)); 6530 Node* result = _gvn.transform(new VectorCmpMaskedNode(vload_obja, vload_objb, vmask, TypeInt::INT)); 6531 6532 exit_block->init_req(inline_path, control()); 6533 memory_phi->init_req(inline_path, map()->memory()); 6534 result_phi->init_req(inline_path, result); 6535 6536 C->set_max_vector_size(MAX2((uint)ArrayOperationPartialInlineSize, C->max_vector_size())); 6537 clear_upper_avx(); 6538 } 6539 } 6540 } 6541 6542 if (call_stub_path != nullptr) { 6543 set_control(call_stub_path); 6544 6545 Node* call = make_runtime_call(RC_LEAF, 6546 OptoRuntime::vectorizedMismatch_Type(), 6547 StubRoutines::vectorizedMismatch(), "vectorizedMismatch", TypePtr::BOTTOM, 6548 obja_adr, objb_adr, length, scale); 6549 6550 exit_block->init_req(stub_path, control()); 6551 memory_phi->init_req(stub_path, map()->memory()); 6552 result_phi->init_req(stub_path, _gvn.transform(new ProjNode(call, TypeFunc::Parms))); 6553 } 6554 6555 exit_block = _gvn.transform(exit_block); 6556 memory_phi = _gvn.transform(memory_phi); 6557 result_phi = _gvn.transform(result_phi); 6558 6559 set_control(exit_block); 6560 set_all_memory(memory_phi); 6561 set_result(result_phi); 6562 6563 return true; 6564 } 6565 6566 //------------------------------inline_vectorizedHashcode---------------------------- 6567 bool LibraryCallKit::inline_vectorizedHashCode() { 6568 assert(UseVectorizedHashCodeIntrinsic, "not implemented on this platform"); 6569 6570 assert(callee()->signature()->size() == 5, "vectorizedHashCode has 5 parameters"); 6571 Node* array = argument(0); 6572 Node* offset = argument(1); 6573 Node* length = argument(2); 6574 Node* initialValue = argument(3); 6575 Node* basic_type = argument(4); 6576 6577 if (basic_type == top()) { 6578 return false; // failed input validation 6579 } 6580 6581 const TypeInt* basic_type_t = _gvn.type(basic_type)->is_int(); 6582 if (!basic_type_t->is_con()) { 6583 return false; // Only intrinsify if mode argument is constant 6584 } 6585 6586 array = must_be_not_null(array, true); 6587 6588 BasicType bt = (BasicType)basic_type_t->get_con(); 6589 6590 // Resolve address of first element 6591 Node* array_start = array_element_address(array, offset, bt); 6592 6593 set_result(_gvn.transform(new VectorizedHashCodeNode(control(), memory(TypeAryPtr::get_array_body_type(bt)), 6594 array_start, length, initialValue, basic_type))); 6595 clear_upper_avx(); 6596 6597 return true; 6598 } 6599 6600 /** 6601 * Calculate CRC32 for byte. 6602 * int java.util.zip.CRC32.update(int crc, int b) 6603 */ 6604 bool LibraryCallKit::inline_updateCRC32() { 6605 assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support"); 6606 assert(callee()->signature()->size() == 2, "update has 2 parameters"); 6607 // no receiver since it is static method 6608 Node* crc = argument(0); // type: int 6609 Node* b = argument(1); // type: int 6610 6611 /* 6612 * int c = ~ crc; 6613 * b = timesXtoThe32[(b ^ c) & 0xFF]; 6614 * b = b ^ (c >>> 8); 6615 * crc = ~b; 6616 */ 6617 6618 Node* M1 = intcon(-1); 6619 crc = _gvn.transform(new XorINode(crc, M1)); 6620 Node* result = _gvn.transform(new XorINode(crc, b)); 6621 result = _gvn.transform(new AndINode(result, intcon(0xFF))); 6622 6623 Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr())); 6624 Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2))); 6625 Node* adr = basic_plus_adr(top(), base, ConvI2X(offset)); 6626 result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered); 6627 6628 crc = _gvn.transform(new URShiftINode(crc, intcon(8))); 6629 result = _gvn.transform(new XorINode(crc, result)); 6630 result = _gvn.transform(new XorINode(result, M1)); 6631 set_result(result); 6632 return true; 6633 } 6634 6635 /** 6636 * Calculate CRC32 for byte[] array. 6637 * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len) 6638 */ 6639 bool LibraryCallKit::inline_updateBytesCRC32() { 6640 assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support"); 6641 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 6642 // no receiver since it is static method 6643 Node* crc = argument(0); // type: int 6644 Node* src = argument(1); // type: oop 6645 Node* offset = argument(2); // type: int 6646 Node* length = argument(3); // type: int 6647 6648 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6649 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 6650 // failed array check 6651 return false; 6652 } 6653 6654 // Figure out the size and type of the elements we will be copying. 6655 BasicType src_elem = src_type->elem()->array_element_basic_type(); 6656 if (src_elem != T_BYTE) { 6657 return false; 6658 } 6659 6660 // 'src_start' points to src array + scaled offset 6661 src = must_be_not_null(src, true); 6662 Node* src_start = array_element_address(src, offset, src_elem); 6663 6664 // We assume that range check is done by caller. 6665 // TODO: generate range check (offset+length < src.length) in debug VM. 6666 6667 // Call the stub. 6668 address stubAddr = StubRoutines::updateBytesCRC32(); 6669 const char *stubName = "updateBytesCRC32"; 6670 6671 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(), 6672 stubAddr, stubName, TypePtr::BOTTOM, 6673 crc, src_start, length); 6674 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6675 set_result(result); 6676 return true; 6677 } 6678 6679 /** 6680 * Calculate CRC32 for ByteBuffer. 6681 * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len) 6682 */ 6683 bool LibraryCallKit::inline_updateByteBufferCRC32() { 6684 assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support"); 6685 assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long"); 6686 // no receiver since it is static method 6687 Node* crc = argument(0); // type: int 6688 Node* src = argument(1); // type: long 6689 Node* offset = argument(3); // type: int 6690 Node* length = argument(4); // type: int 6691 6692 src = ConvL2X(src); // adjust Java long to machine word 6693 Node* base = _gvn.transform(new CastX2PNode(src)); 6694 offset = ConvI2X(offset); 6695 6696 // 'src_start' points to src array + scaled offset 6697 Node* src_start = basic_plus_adr(top(), base, offset); 6698 6699 // Call the stub. 6700 address stubAddr = StubRoutines::updateBytesCRC32(); 6701 const char *stubName = "updateBytesCRC32"; 6702 6703 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(), 6704 stubAddr, stubName, TypePtr::BOTTOM, 6705 crc, src_start, length); 6706 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6707 set_result(result); 6708 return true; 6709 } 6710 6711 //------------------------------get_table_from_crc32c_class----------------------- 6712 Node * LibraryCallKit::get_table_from_crc32c_class(ciInstanceKlass *crc32c_class) { 6713 Node* table = load_field_from_object(nullptr, "byteTable", "[I", /*decorators*/ IN_HEAP, /*is_static*/ true, crc32c_class); 6714 assert (table != nullptr, "wrong version of java.util.zip.CRC32C"); 6715 6716 return table; 6717 } 6718 6719 //------------------------------inline_updateBytesCRC32C----------------------- 6720 // 6721 // Calculate CRC32C for byte[] array. 6722 // int java.util.zip.CRC32C.updateBytes(int crc, byte[] buf, int off, int end) 6723 // 6724 bool LibraryCallKit::inline_updateBytesCRC32C() { 6725 assert(UseCRC32CIntrinsics, "need CRC32C instruction support"); 6726 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 6727 assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded"); 6728 // no receiver since it is a static method 6729 Node* crc = argument(0); // type: int 6730 Node* src = argument(1); // type: oop 6731 Node* offset = argument(2); // type: int 6732 Node* end = argument(3); // type: int 6733 6734 Node* length = _gvn.transform(new SubINode(end, offset)); 6735 6736 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6737 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 6738 // failed array check 6739 return false; 6740 } 6741 6742 // Figure out the size and type of the elements we will be copying. 6743 BasicType src_elem = src_type->elem()->array_element_basic_type(); 6744 if (src_elem != T_BYTE) { 6745 return false; 6746 } 6747 6748 // 'src_start' points to src array + scaled offset 6749 src = must_be_not_null(src, true); 6750 Node* src_start = array_element_address(src, offset, src_elem); 6751 6752 // static final int[] byteTable in class CRC32C 6753 Node* table = get_table_from_crc32c_class(callee()->holder()); 6754 table = must_be_not_null(table, true); 6755 Node* table_start = array_element_address(table, intcon(0), T_INT); 6756 6757 // We assume that range check is done by caller. 6758 // TODO: generate range check (offset+length < src.length) in debug VM. 6759 6760 // Call the stub. 6761 address stubAddr = StubRoutines::updateBytesCRC32C(); 6762 const char *stubName = "updateBytesCRC32C"; 6763 6764 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(), 6765 stubAddr, stubName, TypePtr::BOTTOM, 6766 crc, src_start, length, table_start); 6767 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6768 set_result(result); 6769 return true; 6770 } 6771 6772 //------------------------------inline_updateDirectByteBufferCRC32C----------------------- 6773 // 6774 // Calculate CRC32C for DirectByteBuffer. 6775 // int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end) 6776 // 6777 bool LibraryCallKit::inline_updateDirectByteBufferCRC32C() { 6778 assert(UseCRC32CIntrinsics, "need CRC32C instruction support"); 6779 assert(callee()->signature()->size() == 5, "updateDirectByteBuffer has 4 parameters and one is long"); 6780 assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded"); 6781 // no receiver since it is a static method 6782 Node* crc = argument(0); // type: int 6783 Node* src = argument(1); // type: long 6784 Node* offset = argument(3); // type: int 6785 Node* end = argument(4); // type: int 6786 6787 Node* length = _gvn.transform(new SubINode(end, offset)); 6788 6789 src = ConvL2X(src); // adjust Java long to machine word 6790 Node* base = _gvn.transform(new CastX2PNode(src)); 6791 offset = ConvI2X(offset); 6792 6793 // 'src_start' points to src array + scaled offset 6794 Node* src_start = basic_plus_adr(top(), base, offset); 6795 6796 // static final int[] byteTable in class CRC32C 6797 Node* table = get_table_from_crc32c_class(callee()->holder()); 6798 table = must_be_not_null(table, true); 6799 Node* table_start = array_element_address(table, intcon(0), T_INT); 6800 6801 // Call the stub. 6802 address stubAddr = StubRoutines::updateBytesCRC32C(); 6803 const char *stubName = "updateBytesCRC32C"; 6804 6805 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(), 6806 stubAddr, stubName, TypePtr::BOTTOM, 6807 crc, src_start, length, table_start); 6808 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6809 set_result(result); 6810 return true; 6811 } 6812 6813 //------------------------------inline_updateBytesAdler32---------------------- 6814 // 6815 // Calculate Adler32 checksum for byte[] array. 6816 // int java.util.zip.Adler32.updateBytes(int crc, byte[] buf, int off, int len) 6817 // 6818 bool LibraryCallKit::inline_updateBytesAdler32() { 6819 assert(UseAdler32Intrinsics, "Adler32 Intrinsic support need"); // check if we actually need to check this flag or check a different one 6820 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 6821 assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded"); 6822 // no receiver since it is static method 6823 Node* crc = argument(0); // type: int 6824 Node* src = argument(1); // type: oop 6825 Node* offset = argument(2); // type: int 6826 Node* length = argument(3); // type: int 6827 6828 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6829 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 6830 // failed array check 6831 return false; 6832 } 6833 6834 // Figure out the size and type of the elements we will be copying. 6835 BasicType src_elem = src_type->elem()->array_element_basic_type(); 6836 if (src_elem != T_BYTE) { 6837 return false; 6838 } 6839 6840 // 'src_start' points to src array + scaled offset 6841 Node* src_start = array_element_address(src, offset, src_elem); 6842 6843 // We assume that range check is done by caller. 6844 // TODO: generate range check (offset+length < src.length) in debug VM. 6845 6846 // Call the stub. 6847 address stubAddr = StubRoutines::updateBytesAdler32(); 6848 const char *stubName = "updateBytesAdler32"; 6849 6850 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(), 6851 stubAddr, stubName, TypePtr::BOTTOM, 6852 crc, src_start, length); 6853 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6854 set_result(result); 6855 return true; 6856 } 6857 6858 //------------------------------inline_updateByteBufferAdler32--------------- 6859 // 6860 // Calculate Adler32 checksum for DirectByteBuffer. 6861 // int java.util.zip.Adler32.updateByteBuffer(int crc, long buf, int off, int len) 6862 // 6863 bool LibraryCallKit::inline_updateByteBufferAdler32() { 6864 assert(UseAdler32Intrinsics, "Adler32 Intrinsic support need"); // check if we actually need to check this flag or check a different one 6865 assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long"); 6866 assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded"); 6867 // no receiver since it is static method 6868 Node* crc = argument(0); // type: int 6869 Node* src = argument(1); // type: long 6870 Node* offset = argument(3); // type: int 6871 Node* length = argument(4); // type: int 6872 6873 src = ConvL2X(src); // adjust Java long to machine word 6874 Node* base = _gvn.transform(new CastX2PNode(src)); 6875 offset = ConvI2X(offset); 6876 6877 // 'src_start' points to src array + scaled offset 6878 Node* src_start = basic_plus_adr(top(), base, offset); 6879 6880 // Call the stub. 6881 address stubAddr = StubRoutines::updateBytesAdler32(); 6882 const char *stubName = "updateBytesAdler32"; 6883 6884 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(), 6885 stubAddr, stubName, TypePtr::BOTTOM, 6886 crc, src_start, length); 6887 6888 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6889 set_result(result); 6890 return true; 6891 } 6892 6893 //----------------------------inline_reference_get---------------------------- 6894 // public T java.lang.ref.Reference.get(); 6895 bool LibraryCallKit::inline_reference_get() { 6896 const int referent_offset = java_lang_ref_Reference::referent_offset(); 6897 6898 // Get the argument: 6899 Node* reference_obj = null_check_receiver(); 6900 if (stopped()) return true; 6901 6902 DecoratorSet decorators = IN_HEAP | ON_WEAK_OOP_REF; 6903 Node* result = load_field_from_object(reference_obj, "referent", "Ljava/lang/Object;", 6904 decorators, /*is_static*/ false, nullptr); 6905 if (result == nullptr) return false; 6906 6907 // Add memory barrier to prevent commoning reads from this field 6908 // across safepoint since GC can change its value. 6909 insert_mem_bar(Op_MemBarCPUOrder); 6910 6911 set_result(result); 6912 return true; 6913 } 6914 6915 //----------------------------inline_reference_refersTo0---------------------------- 6916 // bool java.lang.ref.Reference.refersTo0(); 6917 // bool java.lang.ref.PhantomReference.refersTo0(); 6918 bool LibraryCallKit::inline_reference_refersTo0(bool is_phantom) { 6919 // Get arguments: 6920 Node* reference_obj = null_check_receiver(); 6921 Node* other_obj = argument(1); 6922 if (stopped()) return true; 6923 6924 DecoratorSet decorators = IN_HEAP | AS_NO_KEEPALIVE; 6925 decorators |= (is_phantom ? ON_PHANTOM_OOP_REF : ON_WEAK_OOP_REF); 6926 Node* referent = load_field_from_object(reference_obj, "referent", "Ljava/lang/Object;", 6927 decorators, /*is_static*/ false, nullptr); 6928 if (referent == nullptr) return false; 6929 6930 // Add memory barrier to prevent commoning reads from this field 6931 // across safepoint since GC can change its value. 6932 insert_mem_bar(Op_MemBarCPUOrder); 6933 6934 Node* cmp = _gvn.transform(new CmpPNode(referent, other_obj)); 6935 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 6936 IfNode* if_node = create_and_map_if(control(), bol, PROB_FAIR, COUNT_UNKNOWN); 6937 6938 RegionNode* region = new RegionNode(3); 6939 PhiNode* phi = new PhiNode(region, TypeInt::BOOL); 6940 6941 Node* if_true = _gvn.transform(new IfTrueNode(if_node)); 6942 region->init_req(1, if_true); 6943 phi->init_req(1, intcon(1)); 6944 6945 Node* if_false = _gvn.transform(new IfFalseNode(if_node)); 6946 region->init_req(2, if_false); 6947 phi->init_req(2, intcon(0)); 6948 6949 set_control(_gvn.transform(region)); 6950 record_for_igvn(region); 6951 set_result(_gvn.transform(phi)); 6952 return true; 6953 } 6954 6955 //----------------------------inline_reference_clear0---------------------------- 6956 // void java.lang.ref.Reference.clear0(); 6957 // void java.lang.ref.PhantomReference.clear0(); 6958 bool LibraryCallKit::inline_reference_clear0(bool is_phantom) { 6959 // This matches the implementation in JVM_ReferenceClear, see the comments there. 6960 6961 // Get arguments 6962 Node* reference_obj = null_check_receiver(); 6963 if (stopped()) return true; 6964 6965 // Common access parameters 6966 DecoratorSet decorators = IN_HEAP | AS_NO_KEEPALIVE; 6967 decorators |= (is_phantom ? ON_PHANTOM_OOP_REF : ON_WEAK_OOP_REF); 6968 Node* referent_field_addr = basic_plus_adr(reference_obj, java_lang_ref_Reference::referent_offset()); 6969 const TypePtr* referent_field_addr_type = _gvn.type(referent_field_addr)->isa_ptr(); 6970 const Type* val_type = TypeOopPtr::make_from_klass(env()->Object_klass()); 6971 6972 Node* referent = access_load_at(reference_obj, 6973 referent_field_addr, 6974 referent_field_addr_type, 6975 val_type, 6976 T_OBJECT, 6977 decorators); 6978 6979 IdealKit ideal(this); 6980 #define __ ideal. 6981 __ if_then(referent, BoolTest::ne, null()); 6982 sync_kit(ideal); 6983 access_store_at(reference_obj, 6984 referent_field_addr, 6985 referent_field_addr_type, 6986 null(), 6987 val_type, 6988 T_OBJECT, 6989 decorators); 6990 __ sync_kit(this); 6991 __ end_if(); 6992 final_sync(ideal); 6993 #undef __ 6994 6995 return true; 6996 } 6997 6998 Node* LibraryCallKit::load_field_from_object(Node* fromObj, const char* fieldName, const char* fieldTypeString, 6999 DecoratorSet decorators, bool is_static, 7000 ciInstanceKlass* fromKls) { 7001 if (fromKls == nullptr) { 7002 const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr(); 7003 assert(tinst != nullptr, "obj is null"); 7004 assert(tinst->is_loaded(), "obj is not loaded"); 7005 fromKls = tinst->instance_klass(); 7006 } else { 7007 assert(is_static, "only for static field access"); 7008 } 7009 ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName), 7010 ciSymbol::make(fieldTypeString), 7011 is_static); 7012 7013 assert(field != nullptr, "undefined field %s %s %s", fieldTypeString, fromKls->name()->as_utf8(), fieldName); 7014 if (field == nullptr) return (Node *) nullptr; 7015 7016 if (is_static) { 7017 const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror()); 7018 fromObj = makecon(tip); 7019 } 7020 7021 // Next code copied from Parse::do_get_xxx(): 7022 7023 // Compute address and memory type. 7024 int offset = field->offset_in_bytes(); 7025 bool is_vol = field->is_volatile(); 7026 ciType* field_klass = field->type(); 7027 assert(field_klass->is_loaded(), "should be loaded"); 7028 const TypePtr* adr_type = C->alias_type(field)->adr_type(); 7029 Node *adr = basic_plus_adr(fromObj, fromObj, offset); 7030 assert(C->get_alias_index(adr_type) == C->get_alias_index(_gvn.type(adr)->isa_ptr()), 7031 "slice of address and input slice don't match"); 7032 BasicType bt = field->layout_type(); 7033 7034 // Build the resultant type of the load 7035 const Type *type; 7036 if (bt == T_OBJECT) { 7037 type = TypeOopPtr::make_from_klass(field_klass->as_klass()); 7038 } else { 7039 type = Type::get_const_basic_type(bt); 7040 } 7041 7042 if (is_vol) { 7043 decorators |= MO_SEQ_CST; 7044 } 7045 7046 return access_load_at(fromObj, adr, adr_type, type, bt, decorators); 7047 } 7048 7049 Node * LibraryCallKit::field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, 7050 bool is_exact /* true */, bool is_static /* false */, 7051 ciInstanceKlass * fromKls /* nullptr */) { 7052 if (fromKls == nullptr) { 7053 const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr(); 7054 assert(tinst != nullptr, "obj is null"); 7055 assert(tinst->is_loaded(), "obj is not loaded"); 7056 assert(!is_exact || tinst->klass_is_exact(), "klass not exact"); 7057 fromKls = tinst->instance_klass(); 7058 } 7059 else { 7060 assert(is_static, "only for static field access"); 7061 } 7062 ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName), 7063 ciSymbol::make(fieldTypeString), 7064 is_static); 7065 7066 assert(field != nullptr, "undefined field"); 7067 assert(!field->is_volatile(), "not defined for volatile fields"); 7068 7069 if (is_static) { 7070 const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror()); 7071 fromObj = makecon(tip); 7072 } 7073 7074 // Next code copied from Parse::do_get_xxx(): 7075 7076 // Compute address and memory type. 7077 int offset = field->offset_in_bytes(); 7078 Node *adr = basic_plus_adr(fromObj, fromObj, offset); 7079 7080 return adr; 7081 } 7082 7083 //------------------------------inline_aescrypt_Block----------------------- 7084 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) { 7085 address stubAddr = nullptr; 7086 const char *stubName; 7087 assert(UseAES, "need AES instruction support"); 7088 7089 switch(id) { 7090 case vmIntrinsics::_aescrypt_encryptBlock: 7091 stubAddr = StubRoutines::aescrypt_encryptBlock(); 7092 stubName = "aescrypt_encryptBlock"; 7093 break; 7094 case vmIntrinsics::_aescrypt_decryptBlock: 7095 stubAddr = StubRoutines::aescrypt_decryptBlock(); 7096 stubName = "aescrypt_decryptBlock"; 7097 break; 7098 default: 7099 break; 7100 } 7101 if (stubAddr == nullptr) return false; 7102 7103 Node* aescrypt_object = argument(0); 7104 Node* src = argument(1); 7105 Node* src_offset = argument(2); 7106 Node* dest = argument(3); 7107 Node* dest_offset = argument(4); 7108 7109 src = must_be_not_null(src, true); 7110 dest = must_be_not_null(dest, true); 7111 7112 // (1) src and dest are arrays. 7113 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7114 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 7115 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 7116 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 7117 7118 // for the quick and dirty code we will skip all the checks. 7119 // we are just trying to get the call to be generated. 7120 Node* src_start = src; 7121 Node* dest_start = dest; 7122 if (src_offset != nullptr || dest_offset != nullptr) { 7123 assert(src_offset != nullptr && dest_offset != nullptr, ""); 7124 src_start = array_element_address(src, src_offset, T_BYTE); 7125 dest_start = array_element_address(dest, dest_offset, T_BYTE); 7126 } 7127 7128 // now need to get the start of its expanded key array 7129 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 7130 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 7131 if (k_start == nullptr) return false; 7132 7133 // Call the stub. 7134 make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(), 7135 stubAddr, stubName, TypePtr::BOTTOM, 7136 src_start, dest_start, k_start); 7137 7138 return true; 7139 } 7140 7141 //------------------------------inline_cipherBlockChaining_AESCrypt----------------------- 7142 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) { 7143 address stubAddr = nullptr; 7144 const char *stubName = nullptr; 7145 7146 assert(UseAES, "need AES instruction support"); 7147 7148 switch(id) { 7149 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 7150 stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt(); 7151 stubName = "cipherBlockChaining_encryptAESCrypt"; 7152 break; 7153 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 7154 stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt(); 7155 stubName = "cipherBlockChaining_decryptAESCrypt"; 7156 break; 7157 default: 7158 break; 7159 } 7160 if (stubAddr == nullptr) return false; 7161 7162 Node* cipherBlockChaining_object = argument(0); 7163 Node* src = argument(1); 7164 Node* src_offset = argument(2); 7165 Node* len = argument(3); 7166 Node* dest = argument(4); 7167 Node* dest_offset = argument(5); 7168 7169 src = must_be_not_null(src, false); 7170 dest = must_be_not_null(dest, false); 7171 7172 // (1) src and dest are arrays. 7173 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7174 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 7175 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 7176 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 7177 7178 // checks are the responsibility of the caller 7179 Node* src_start = src; 7180 Node* dest_start = dest; 7181 if (src_offset != nullptr || dest_offset != nullptr) { 7182 assert(src_offset != nullptr && dest_offset != nullptr, ""); 7183 src_start = array_element_address(src, src_offset, T_BYTE); 7184 dest_start = array_element_address(dest, dest_offset, T_BYTE); 7185 } 7186 7187 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 7188 // (because of the predicated logic executed earlier). 7189 // so we cast it here safely. 7190 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 7191 7192 Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7193 if (embeddedCipherObj == nullptr) return false; 7194 7195 // cast it to what we know it will be at runtime 7196 const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr(); 7197 assert(tinst != nullptr, "CBC obj is null"); 7198 assert(tinst->is_loaded(), "CBC obj is not loaded"); 7199 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7200 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 7201 7202 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7203 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 7204 const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 7205 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 7206 aescrypt_object = _gvn.transform(aescrypt_object); 7207 7208 // we need to get the start of the aescrypt_object's expanded key array 7209 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 7210 if (k_start == nullptr) return false; 7211 7212 // similarly, get the start address of the r vector 7213 Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B"); 7214 if (objRvec == nullptr) return false; 7215 Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE); 7216 7217 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 7218 Node* cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 7219 OptoRuntime::cipherBlockChaining_aescrypt_Type(), 7220 stubAddr, stubName, TypePtr::BOTTOM, 7221 src_start, dest_start, k_start, r_start, len); 7222 7223 // return cipher length (int) 7224 Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms)); 7225 set_result(retvalue); 7226 return true; 7227 } 7228 7229 //------------------------------inline_electronicCodeBook_AESCrypt----------------------- 7230 bool LibraryCallKit::inline_electronicCodeBook_AESCrypt(vmIntrinsics::ID id) { 7231 address stubAddr = nullptr; 7232 const char *stubName = nullptr; 7233 7234 assert(UseAES, "need AES instruction support"); 7235 7236 switch (id) { 7237 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 7238 stubAddr = StubRoutines::electronicCodeBook_encryptAESCrypt(); 7239 stubName = "electronicCodeBook_encryptAESCrypt"; 7240 break; 7241 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 7242 stubAddr = StubRoutines::electronicCodeBook_decryptAESCrypt(); 7243 stubName = "electronicCodeBook_decryptAESCrypt"; 7244 break; 7245 default: 7246 break; 7247 } 7248 7249 if (stubAddr == nullptr) return false; 7250 7251 Node* electronicCodeBook_object = argument(0); 7252 Node* src = argument(1); 7253 Node* src_offset = argument(2); 7254 Node* len = argument(3); 7255 Node* dest = argument(4); 7256 Node* dest_offset = argument(5); 7257 7258 // (1) src and dest are arrays. 7259 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7260 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 7261 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 7262 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 7263 7264 // checks are the responsibility of the caller 7265 Node* src_start = src; 7266 Node* dest_start = dest; 7267 if (src_offset != nullptr || dest_offset != nullptr) { 7268 assert(src_offset != nullptr && dest_offset != nullptr, ""); 7269 src_start = array_element_address(src, src_offset, T_BYTE); 7270 dest_start = array_element_address(dest, dest_offset, T_BYTE); 7271 } 7272 7273 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 7274 // (because of the predicated logic executed earlier). 7275 // so we cast it here safely. 7276 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 7277 7278 Node* embeddedCipherObj = load_field_from_object(electronicCodeBook_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7279 if (embeddedCipherObj == nullptr) return false; 7280 7281 // cast it to what we know it will be at runtime 7282 const TypeInstPtr* tinst = _gvn.type(electronicCodeBook_object)->isa_instptr(); 7283 assert(tinst != nullptr, "ECB obj is null"); 7284 assert(tinst->is_loaded(), "ECB obj is not loaded"); 7285 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7286 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 7287 7288 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7289 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 7290 const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 7291 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 7292 aescrypt_object = _gvn.transform(aescrypt_object); 7293 7294 // we need to get the start of the aescrypt_object's expanded key array 7295 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 7296 if (k_start == nullptr) return false; 7297 7298 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 7299 Node* ecbCrypt = make_runtime_call(RC_LEAF | RC_NO_FP, 7300 OptoRuntime::electronicCodeBook_aescrypt_Type(), 7301 stubAddr, stubName, TypePtr::BOTTOM, 7302 src_start, dest_start, k_start, len); 7303 7304 // return cipher length (int) 7305 Node* retvalue = _gvn.transform(new ProjNode(ecbCrypt, TypeFunc::Parms)); 7306 set_result(retvalue); 7307 return true; 7308 } 7309 7310 //------------------------------inline_counterMode_AESCrypt----------------------- 7311 bool LibraryCallKit::inline_counterMode_AESCrypt(vmIntrinsics::ID id) { 7312 assert(UseAES, "need AES instruction support"); 7313 if (!UseAESCTRIntrinsics) return false; 7314 7315 address stubAddr = nullptr; 7316 const char *stubName = nullptr; 7317 if (id == vmIntrinsics::_counterMode_AESCrypt) { 7318 stubAddr = StubRoutines::counterMode_AESCrypt(); 7319 stubName = "counterMode_AESCrypt"; 7320 } 7321 if (stubAddr == nullptr) return false; 7322 7323 Node* counterMode_object = argument(0); 7324 Node* src = argument(1); 7325 Node* src_offset = argument(2); 7326 Node* len = argument(3); 7327 Node* dest = argument(4); 7328 Node* dest_offset = argument(5); 7329 7330 // (1) src and dest are arrays. 7331 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7332 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 7333 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 7334 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 7335 7336 // checks are the responsibility of the caller 7337 Node* src_start = src; 7338 Node* dest_start = dest; 7339 if (src_offset != nullptr || dest_offset != nullptr) { 7340 assert(src_offset != nullptr && dest_offset != nullptr, ""); 7341 src_start = array_element_address(src, src_offset, T_BYTE); 7342 dest_start = array_element_address(dest, dest_offset, T_BYTE); 7343 } 7344 7345 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 7346 // (because of the predicated logic executed earlier). 7347 // so we cast it here safely. 7348 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 7349 Node* embeddedCipherObj = load_field_from_object(counterMode_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7350 if (embeddedCipherObj == nullptr) return false; 7351 // cast it to what we know it will be at runtime 7352 const TypeInstPtr* tinst = _gvn.type(counterMode_object)->isa_instptr(); 7353 assert(tinst != nullptr, "CTR obj is null"); 7354 assert(tinst->is_loaded(), "CTR obj is not loaded"); 7355 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7356 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 7357 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7358 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 7359 const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 7360 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 7361 aescrypt_object = _gvn.transform(aescrypt_object); 7362 // we need to get the start of the aescrypt_object's expanded key array 7363 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 7364 if (k_start == nullptr) return false; 7365 // similarly, get the start address of the r vector 7366 Node* obj_counter = load_field_from_object(counterMode_object, "counter", "[B"); 7367 if (obj_counter == nullptr) return false; 7368 Node* cnt_start = array_element_address(obj_counter, intcon(0), T_BYTE); 7369 7370 Node* saved_encCounter = load_field_from_object(counterMode_object, "encryptedCounter", "[B"); 7371 if (saved_encCounter == nullptr) return false; 7372 Node* saved_encCounter_start = array_element_address(saved_encCounter, intcon(0), T_BYTE); 7373 Node* used = field_address_from_object(counterMode_object, "used", "I", /*is_exact*/ false); 7374 7375 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 7376 Node* ctrCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 7377 OptoRuntime::counterMode_aescrypt_Type(), 7378 stubAddr, stubName, TypePtr::BOTTOM, 7379 src_start, dest_start, k_start, cnt_start, len, saved_encCounter_start, used); 7380 7381 // return cipher length (int) 7382 Node* retvalue = _gvn.transform(new ProjNode(ctrCrypt, TypeFunc::Parms)); 7383 set_result(retvalue); 7384 return true; 7385 } 7386 7387 //------------------------------get_key_start_from_aescrypt_object----------------------- 7388 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) { 7389 #if defined(PPC64) || defined(S390) || defined(RISCV64) 7390 // MixColumns for decryption can be reduced by preprocessing MixColumns with round keys. 7391 // Intel's extension is based on this optimization and AESCrypt generates round keys by preprocessing MixColumns. 7392 // However, ppc64 vncipher processes MixColumns and requires the same round keys with encryption. 7393 // The ppc64 and riscv64 stubs of encryption and decryption use the same round keys (sessionK[0]). 7394 Node* objSessionK = load_field_from_object(aescrypt_object, "sessionK", "[[I"); 7395 assert (objSessionK != nullptr, "wrong version of com.sun.crypto.provider.AESCrypt"); 7396 if (objSessionK == nullptr) { 7397 return (Node *) nullptr; 7398 } 7399 Node* objAESCryptKey = load_array_element(objSessionK, intcon(0), TypeAryPtr::OOPS, /* set_ctrl */ true); 7400 #else 7401 Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I"); 7402 #endif // PPC64 7403 assert (objAESCryptKey != nullptr, "wrong version of com.sun.crypto.provider.AESCrypt"); 7404 if (objAESCryptKey == nullptr) return (Node *) nullptr; 7405 7406 // now have the array, need to get the start address of the K array 7407 Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT); 7408 return k_start; 7409 } 7410 7411 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate---------------------------- 7412 // Return node representing slow path of predicate check. 7413 // the pseudo code we want to emulate with this predicate is: 7414 // for encryption: 7415 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 7416 // for decryption: 7417 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 7418 // note cipher==plain is more conservative than the original java code but that's OK 7419 // 7420 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) { 7421 // The receiver was checked for null already. 7422 Node* objCBC = argument(0); 7423 7424 Node* src = argument(1); 7425 Node* dest = argument(4); 7426 7427 // Load embeddedCipher field of CipherBlockChaining object. 7428 Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7429 7430 // get AESCrypt klass for instanceOf check 7431 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 7432 // will have same classloader as CipherBlockChaining object 7433 const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr(); 7434 assert(tinst != nullptr, "CBCobj is null"); 7435 assert(tinst->is_loaded(), "CBCobj is not loaded"); 7436 7437 // we want to do an instanceof comparison against the AESCrypt class 7438 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7439 if (!klass_AESCrypt->is_loaded()) { 7440 // if AESCrypt is not even loaded, we never take the intrinsic fast path 7441 Node* ctrl = control(); 7442 set_control(top()); // no regular fast path 7443 return ctrl; 7444 } 7445 7446 src = must_be_not_null(src, true); 7447 dest = must_be_not_null(dest, true); 7448 7449 // Resolve oops to stable for CmpP below. 7450 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7451 7452 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 7453 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 7454 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 7455 7456 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 7457 7458 // for encryption, we are done 7459 if (!decrypting) 7460 return instof_false; // even if it is null 7461 7462 // for decryption, we need to add a further check to avoid 7463 // taking the intrinsic path when cipher and plain are the same 7464 // see the original java code for why. 7465 RegionNode* region = new RegionNode(3); 7466 region->init_req(1, instof_false); 7467 7468 Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest)); 7469 Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq)); 7470 Node* src_dest_conjoint = generate_guard(bool_src_dest, nullptr, PROB_MIN); 7471 region->init_req(2, src_dest_conjoint); 7472 7473 record_for_igvn(region); 7474 return _gvn.transform(region); 7475 } 7476 7477 //----------------------------inline_electronicCodeBook_AESCrypt_predicate---------------------------- 7478 // Return node representing slow path of predicate check. 7479 // the pseudo code we want to emulate with this predicate is: 7480 // for encryption: 7481 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 7482 // for decryption: 7483 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 7484 // note cipher==plain is more conservative than the original java code but that's OK 7485 // 7486 Node* LibraryCallKit::inline_electronicCodeBook_AESCrypt_predicate(bool decrypting) { 7487 // The receiver was checked for null already. 7488 Node* objECB = argument(0); 7489 7490 // Load embeddedCipher field of ElectronicCodeBook object. 7491 Node* embeddedCipherObj = load_field_from_object(objECB, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7492 7493 // get AESCrypt klass for instanceOf check 7494 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 7495 // will have same classloader as ElectronicCodeBook object 7496 const TypeInstPtr* tinst = _gvn.type(objECB)->isa_instptr(); 7497 assert(tinst != nullptr, "ECBobj is null"); 7498 assert(tinst->is_loaded(), "ECBobj is not loaded"); 7499 7500 // we want to do an instanceof comparison against the AESCrypt class 7501 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7502 if (!klass_AESCrypt->is_loaded()) { 7503 // if AESCrypt is not even loaded, we never take the intrinsic fast path 7504 Node* ctrl = control(); 7505 set_control(top()); // no regular fast path 7506 return ctrl; 7507 } 7508 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7509 7510 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 7511 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 7512 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 7513 7514 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 7515 7516 // for encryption, we are done 7517 if (!decrypting) 7518 return instof_false; // even if it is null 7519 7520 // for decryption, we need to add a further check to avoid 7521 // taking the intrinsic path when cipher and plain are the same 7522 // see the original java code for why. 7523 RegionNode* region = new RegionNode(3); 7524 region->init_req(1, instof_false); 7525 Node* src = argument(1); 7526 Node* dest = argument(4); 7527 Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest)); 7528 Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq)); 7529 Node* src_dest_conjoint = generate_guard(bool_src_dest, nullptr, PROB_MIN); 7530 region->init_req(2, src_dest_conjoint); 7531 7532 record_for_igvn(region); 7533 return _gvn.transform(region); 7534 } 7535 7536 //----------------------------inline_counterMode_AESCrypt_predicate---------------------------- 7537 // Return node representing slow path of predicate check. 7538 // the pseudo code we want to emulate with this predicate is: 7539 // for encryption: 7540 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 7541 // for decryption: 7542 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 7543 // note cipher==plain is more conservative than the original java code but that's OK 7544 // 7545 7546 Node* LibraryCallKit::inline_counterMode_AESCrypt_predicate() { 7547 // The receiver was checked for null already. 7548 Node* objCTR = argument(0); 7549 7550 // Load embeddedCipher field of CipherBlockChaining object. 7551 Node* embeddedCipherObj = load_field_from_object(objCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7552 7553 // get AESCrypt klass for instanceOf check 7554 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 7555 // will have same classloader as CipherBlockChaining object 7556 const TypeInstPtr* tinst = _gvn.type(objCTR)->isa_instptr(); 7557 assert(tinst != nullptr, "CTRobj is null"); 7558 assert(tinst->is_loaded(), "CTRobj is not loaded"); 7559 7560 // we want to do an instanceof comparison against the AESCrypt class 7561 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7562 if (!klass_AESCrypt->is_loaded()) { 7563 // if AESCrypt is not even loaded, we never take the intrinsic fast path 7564 Node* ctrl = control(); 7565 set_control(top()); // no regular fast path 7566 return ctrl; 7567 } 7568 7569 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7570 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 7571 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 7572 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 7573 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 7574 7575 return instof_false; // even if it is null 7576 } 7577 7578 //------------------------------inline_ghash_processBlocks 7579 bool LibraryCallKit::inline_ghash_processBlocks() { 7580 address stubAddr; 7581 const char *stubName; 7582 assert(UseGHASHIntrinsics, "need GHASH intrinsics support"); 7583 7584 stubAddr = StubRoutines::ghash_processBlocks(); 7585 stubName = "ghash_processBlocks"; 7586 7587 Node* data = argument(0); 7588 Node* offset = argument(1); 7589 Node* len = argument(2); 7590 Node* state = argument(3); 7591 Node* subkeyH = argument(4); 7592 7593 state = must_be_not_null(state, true); 7594 subkeyH = must_be_not_null(subkeyH, true); 7595 data = must_be_not_null(data, true); 7596 7597 Node* state_start = array_element_address(state, intcon(0), T_LONG); 7598 assert(state_start, "state is null"); 7599 Node* subkeyH_start = array_element_address(subkeyH, intcon(0), T_LONG); 7600 assert(subkeyH_start, "subkeyH is null"); 7601 Node* data_start = array_element_address(data, offset, T_BYTE); 7602 assert(data_start, "data is null"); 7603 7604 Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP, 7605 OptoRuntime::ghash_processBlocks_Type(), 7606 stubAddr, stubName, TypePtr::BOTTOM, 7607 state_start, subkeyH_start, data_start, len); 7608 return true; 7609 } 7610 7611 //------------------------------inline_chacha20Block 7612 bool LibraryCallKit::inline_chacha20Block() { 7613 address stubAddr; 7614 const char *stubName; 7615 assert(UseChaCha20Intrinsics, "need ChaCha20 intrinsics support"); 7616 7617 stubAddr = StubRoutines::chacha20Block(); 7618 stubName = "chacha20Block"; 7619 7620 Node* state = argument(0); 7621 Node* result = argument(1); 7622 7623 state = must_be_not_null(state, true); 7624 result = must_be_not_null(result, true); 7625 7626 Node* state_start = array_element_address(state, intcon(0), T_INT); 7627 assert(state_start, "state is null"); 7628 Node* result_start = array_element_address(result, intcon(0), T_BYTE); 7629 assert(result_start, "result is null"); 7630 7631 Node* cc20Blk = make_runtime_call(RC_LEAF|RC_NO_FP, 7632 OptoRuntime::chacha20Block_Type(), 7633 stubAddr, stubName, TypePtr::BOTTOM, 7634 state_start, result_start); 7635 // return key stream length (int) 7636 Node* retvalue = _gvn.transform(new ProjNode(cc20Blk, TypeFunc::Parms)); 7637 set_result(retvalue); 7638 return true; 7639 } 7640 7641 bool LibraryCallKit::inline_base64_encodeBlock() { 7642 address stubAddr; 7643 const char *stubName; 7644 assert(UseBASE64Intrinsics, "need Base64 intrinsics support"); 7645 assert(callee()->signature()->size() == 6, "base64_encodeBlock has 6 parameters"); 7646 stubAddr = StubRoutines::base64_encodeBlock(); 7647 stubName = "encodeBlock"; 7648 7649 if (!stubAddr) return false; 7650 Node* base64obj = argument(0); 7651 Node* src = argument(1); 7652 Node* offset = argument(2); 7653 Node* len = argument(3); 7654 Node* dest = argument(4); 7655 Node* dp = argument(5); 7656 Node* isURL = argument(6); 7657 7658 src = must_be_not_null(src, true); 7659 dest = must_be_not_null(dest, true); 7660 7661 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 7662 assert(src_start, "source array is null"); 7663 Node* dest_start = array_element_address(dest, intcon(0), T_BYTE); 7664 assert(dest_start, "destination array is null"); 7665 7666 Node* base64 = make_runtime_call(RC_LEAF, 7667 OptoRuntime::base64_encodeBlock_Type(), 7668 stubAddr, stubName, TypePtr::BOTTOM, 7669 src_start, offset, len, dest_start, dp, isURL); 7670 return true; 7671 } 7672 7673 bool LibraryCallKit::inline_base64_decodeBlock() { 7674 address stubAddr; 7675 const char *stubName; 7676 assert(UseBASE64Intrinsics, "need Base64 intrinsics support"); 7677 assert(callee()->signature()->size() == 7, "base64_decodeBlock has 7 parameters"); 7678 stubAddr = StubRoutines::base64_decodeBlock(); 7679 stubName = "decodeBlock"; 7680 7681 if (!stubAddr) return false; 7682 Node* base64obj = argument(0); 7683 Node* src = argument(1); 7684 Node* src_offset = argument(2); 7685 Node* len = argument(3); 7686 Node* dest = argument(4); 7687 Node* dest_offset = argument(5); 7688 Node* isURL = argument(6); 7689 Node* isMIME = argument(7); 7690 7691 src = must_be_not_null(src, true); 7692 dest = must_be_not_null(dest, true); 7693 7694 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 7695 assert(src_start, "source array is null"); 7696 Node* dest_start = array_element_address(dest, intcon(0), T_BYTE); 7697 assert(dest_start, "destination array is null"); 7698 7699 Node* call = make_runtime_call(RC_LEAF, 7700 OptoRuntime::base64_decodeBlock_Type(), 7701 stubAddr, stubName, TypePtr::BOTTOM, 7702 src_start, src_offset, len, dest_start, dest_offset, isURL, isMIME); 7703 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 7704 set_result(result); 7705 return true; 7706 } 7707 7708 bool LibraryCallKit::inline_poly1305_processBlocks() { 7709 address stubAddr; 7710 const char *stubName; 7711 assert(UsePoly1305Intrinsics, "need Poly intrinsics support"); 7712 assert(callee()->signature()->size() == 5, "poly1305_processBlocks has %d parameters", callee()->signature()->size()); 7713 stubAddr = StubRoutines::poly1305_processBlocks(); 7714 stubName = "poly1305_processBlocks"; 7715 7716 if (!stubAddr) return false; 7717 null_check_receiver(); // null-check receiver 7718 if (stopped()) return true; 7719 7720 Node* input = argument(1); 7721 Node* input_offset = argument(2); 7722 Node* len = argument(3); 7723 Node* alimbs = argument(4); 7724 Node* rlimbs = argument(5); 7725 7726 input = must_be_not_null(input, true); 7727 alimbs = must_be_not_null(alimbs, true); 7728 rlimbs = must_be_not_null(rlimbs, true); 7729 7730 Node* input_start = array_element_address(input, input_offset, T_BYTE); 7731 assert(input_start, "input array is null"); 7732 Node* acc_start = array_element_address(alimbs, intcon(0), T_LONG); 7733 assert(acc_start, "acc array is null"); 7734 Node* r_start = array_element_address(rlimbs, intcon(0), T_LONG); 7735 assert(r_start, "r array is null"); 7736 7737 Node* call = make_runtime_call(RC_LEAF | RC_NO_FP, 7738 OptoRuntime::poly1305_processBlocks_Type(), 7739 stubAddr, stubName, TypePtr::BOTTOM, 7740 input_start, len, acc_start, r_start); 7741 return true; 7742 } 7743 7744 bool LibraryCallKit::inline_intpoly_montgomeryMult_P256() { 7745 address stubAddr; 7746 const char *stubName; 7747 assert(UseIntPolyIntrinsics, "need intpoly intrinsics support"); 7748 assert(callee()->signature()->size() == 3, "intpoly_montgomeryMult_P256 has %d parameters", callee()->signature()->size()); 7749 stubAddr = StubRoutines::intpoly_montgomeryMult_P256(); 7750 stubName = "intpoly_montgomeryMult_P256"; 7751 7752 if (!stubAddr) return false; 7753 null_check_receiver(); // null-check receiver 7754 if (stopped()) return true; 7755 7756 Node* a = argument(1); 7757 Node* b = argument(2); 7758 Node* r = argument(3); 7759 7760 a = must_be_not_null(a, true); 7761 b = must_be_not_null(b, true); 7762 r = must_be_not_null(r, true); 7763 7764 Node* a_start = array_element_address(a, intcon(0), T_LONG); 7765 assert(a_start, "a array is null"); 7766 Node* b_start = array_element_address(b, intcon(0), T_LONG); 7767 assert(b_start, "b array is null"); 7768 Node* r_start = array_element_address(r, intcon(0), T_LONG); 7769 assert(r_start, "r array is null"); 7770 7771 Node* call = make_runtime_call(RC_LEAF | RC_NO_FP, 7772 OptoRuntime::intpoly_montgomeryMult_P256_Type(), 7773 stubAddr, stubName, TypePtr::BOTTOM, 7774 a_start, b_start, r_start); 7775 return true; 7776 } 7777 7778 bool LibraryCallKit::inline_intpoly_assign() { 7779 assert(UseIntPolyIntrinsics, "need intpoly intrinsics support"); 7780 assert(callee()->signature()->size() == 3, "intpoly_assign has %d parameters", callee()->signature()->size()); 7781 const char *stubName = "intpoly_assign"; 7782 address stubAddr = StubRoutines::intpoly_assign(); 7783 if (!stubAddr) return false; 7784 7785 Node* set = argument(0); 7786 Node* a = argument(1); 7787 Node* b = argument(2); 7788 Node* arr_length = load_array_length(a); 7789 7790 a = must_be_not_null(a, true); 7791 b = must_be_not_null(b, true); 7792 7793 Node* a_start = array_element_address(a, intcon(0), T_LONG); 7794 assert(a_start, "a array is null"); 7795 Node* b_start = array_element_address(b, intcon(0), T_LONG); 7796 assert(b_start, "b array is null"); 7797 7798 Node* call = make_runtime_call(RC_LEAF | RC_NO_FP, 7799 OptoRuntime::intpoly_assign_Type(), 7800 stubAddr, stubName, TypePtr::BOTTOM, 7801 set, a_start, b_start, arr_length); 7802 return true; 7803 } 7804 7805 //------------------------------inline_digestBase_implCompress----------------------- 7806 // 7807 // Calculate MD5 for single-block byte[] array. 7808 // void com.sun.security.provider.MD5.implCompress(byte[] buf, int ofs) 7809 // 7810 // Calculate SHA (i.e., SHA-1) for single-block byte[] array. 7811 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs) 7812 // 7813 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array. 7814 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs) 7815 // 7816 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array. 7817 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs) 7818 // 7819 // Calculate SHA3 (i.e., SHA3-224 or SHA3-256 or SHA3-384 or SHA3-512) for single-block byte[] array. 7820 // void com.sun.security.provider.SHA3.implCompress(byte[] buf, int ofs) 7821 // 7822 bool LibraryCallKit::inline_digestBase_implCompress(vmIntrinsics::ID id) { 7823 assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters"); 7824 7825 Node* digestBase_obj = argument(0); 7826 Node* src = argument(1); // type oop 7827 Node* ofs = argument(2); // type int 7828 7829 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7830 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 7831 // failed array check 7832 return false; 7833 } 7834 // Figure out the size and type of the elements we will be copying. 7835 BasicType src_elem = src_type->elem()->array_element_basic_type(); 7836 if (src_elem != T_BYTE) { 7837 return false; 7838 } 7839 // 'src_start' points to src array + offset 7840 src = must_be_not_null(src, true); 7841 Node* src_start = array_element_address(src, ofs, src_elem); 7842 Node* state = nullptr; 7843 Node* block_size = nullptr; 7844 address stubAddr; 7845 const char *stubName; 7846 7847 switch(id) { 7848 case vmIntrinsics::_md5_implCompress: 7849 assert(UseMD5Intrinsics, "need MD5 instruction support"); 7850 state = get_state_from_digest_object(digestBase_obj, T_INT); 7851 stubAddr = StubRoutines::md5_implCompress(); 7852 stubName = "md5_implCompress"; 7853 break; 7854 case vmIntrinsics::_sha_implCompress: 7855 assert(UseSHA1Intrinsics, "need SHA1 instruction support"); 7856 state = get_state_from_digest_object(digestBase_obj, T_INT); 7857 stubAddr = StubRoutines::sha1_implCompress(); 7858 stubName = "sha1_implCompress"; 7859 break; 7860 case vmIntrinsics::_sha2_implCompress: 7861 assert(UseSHA256Intrinsics, "need SHA256 instruction support"); 7862 state = get_state_from_digest_object(digestBase_obj, T_INT); 7863 stubAddr = StubRoutines::sha256_implCompress(); 7864 stubName = "sha256_implCompress"; 7865 break; 7866 case vmIntrinsics::_sha5_implCompress: 7867 assert(UseSHA512Intrinsics, "need SHA512 instruction support"); 7868 state = get_state_from_digest_object(digestBase_obj, T_LONG); 7869 stubAddr = StubRoutines::sha512_implCompress(); 7870 stubName = "sha512_implCompress"; 7871 break; 7872 case vmIntrinsics::_sha3_implCompress: 7873 assert(UseSHA3Intrinsics, "need SHA3 instruction support"); 7874 state = get_state_from_digest_object(digestBase_obj, T_LONG); 7875 stubAddr = StubRoutines::sha3_implCompress(); 7876 stubName = "sha3_implCompress"; 7877 block_size = get_block_size_from_digest_object(digestBase_obj); 7878 if (block_size == nullptr) return false; 7879 break; 7880 default: 7881 fatal_unexpected_iid(id); 7882 return false; 7883 } 7884 if (state == nullptr) return false; 7885 7886 assert(stubAddr != nullptr, "Stub %s is not generated", stubName); 7887 if (stubAddr == nullptr) return false; 7888 7889 // Call the stub. 7890 Node* call; 7891 if (block_size == nullptr) { 7892 call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(false), 7893 stubAddr, stubName, TypePtr::BOTTOM, 7894 src_start, state); 7895 } else { 7896 call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(true), 7897 stubAddr, stubName, TypePtr::BOTTOM, 7898 src_start, state, block_size); 7899 } 7900 7901 return true; 7902 } 7903 7904 //------------------------------inline_digestBase_implCompressMB----------------------- 7905 // 7906 // Calculate MD5/SHA/SHA2/SHA5/SHA3 for multi-block byte[] array. 7907 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit) 7908 // 7909 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) { 7910 assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics || UseSHA3Intrinsics, 7911 "need MD5/SHA1/SHA256/SHA512/SHA3 instruction support"); 7912 assert((uint)predicate < 5, "sanity"); 7913 assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters"); 7914 7915 Node* digestBase_obj = argument(0); // The receiver was checked for null already. 7916 Node* src = argument(1); // byte[] array 7917 Node* ofs = argument(2); // type int 7918 Node* limit = argument(3); // type int 7919 7920 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7921 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 7922 // failed array check 7923 return false; 7924 } 7925 // Figure out the size and type of the elements we will be copying. 7926 BasicType src_elem = src_type->elem()->array_element_basic_type(); 7927 if (src_elem != T_BYTE) { 7928 return false; 7929 } 7930 // 'src_start' points to src array + offset 7931 src = must_be_not_null(src, false); 7932 Node* src_start = array_element_address(src, ofs, src_elem); 7933 7934 const char* klass_digestBase_name = nullptr; 7935 const char* stub_name = nullptr; 7936 address stub_addr = nullptr; 7937 BasicType elem_type = T_INT; 7938 7939 switch (predicate) { 7940 case 0: 7941 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_md5_implCompress)) { 7942 klass_digestBase_name = "sun/security/provider/MD5"; 7943 stub_name = "md5_implCompressMB"; 7944 stub_addr = StubRoutines::md5_implCompressMB(); 7945 } 7946 break; 7947 case 1: 7948 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha_implCompress)) { 7949 klass_digestBase_name = "sun/security/provider/SHA"; 7950 stub_name = "sha1_implCompressMB"; 7951 stub_addr = StubRoutines::sha1_implCompressMB(); 7952 } 7953 break; 7954 case 2: 7955 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha2_implCompress)) { 7956 klass_digestBase_name = "sun/security/provider/SHA2"; 7957 stub_name = "sha256_implCompressMB"; 7958 stub_addr = StubRoutines::sha256_implCompressMB(); 7959 } 7960 break; 7961 case 3: 7962 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha5_implCompress)) { 7963 klass_digestBase_name = "sun/security/provider/SHA5"; 7964 stub_name = "sha512_implCompressMB"; 7965 stub_addr = StubRoutines::sha512_implCompressMB(); 7966 elem_type = T_LONG; 7967 } 7968 break; 7969 case 4: 7970 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha3_implCompress)) { 7971 klass_digestBase_name = "sun/security/provider/SHA3"; 7972 stub_name = "sha3_implCompressMB"; 7973 stub_addr = StubRoutines::sha3_implCompressMB(); 7974 elem_type = T_LONG; 7975 } 7976 break; 7977 default: 7978 fatal("unknown DigestBase intrinsic predicate: %d", predicate); 7979 } 7980 if (klass_digestBase_name != nullptr) { 7981 assert(stub_addr != nullptr, "Stub is generated"); 7982 if (stub_addr == nullptr) return false; 7983 7984 // get DigestBase klass to lookup for SHA klass 7985 const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr(); 7986 assert(tinst != nullptr, "digestBase_obj is not instance???"); 7987 assert(tinst->is_loaded(), "DigestBase is not loaded"); 7988 7989 ciKlass* klass_digestBase = tinst->instance_klass()->find_klass(ciSymbol::make(klass_digestBase_name)); 7990 assert(klass_digestBase->is_loaded(), "predicate checks that this class is loaded"); 7991 ciInstanceKlass* instklass_digestBase = klass_digestBase->as_instance_klass(); 7992 return inline_digestBase_implCompressMB(digestBase_obj, instklass_digestBase, elem_type, stub_addr, stub_name, src_start, ofs, limit); 7993 } 7994 return false; 7995 } 7996 7997 //------------------------------inline_digestBase_implCompressMB----------------------- 7998 bool LibraryCallKit::inline_digestBase_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_digestBase, 7999 BasicType elem_type, address stubAddr, const char *stubName, 8000 Node* src_start, Node* ofs, Node* limit) { 8001 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_digestBase); 8002 const TypeOopPtr* xtype = aklass->cast_to_exactness(false)->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 8003 Node* digest_obj = new CheckCastPPNode(control(), digestBase_obj, xtype); 8004 digest_obj = _gvn.transform(digest_obj); 8005 8006 Node* state = get_state_from_digest_object(digest_obj, elem_type); 8007 if (state == nullptr) return false; 8008 8009 Node* block_size = nullptr; 8010 if (strcmp("sha3_implCompressMB", stubName) == 0) { 8011 block_size = get_block_size_from_digest_object(digest_obj); 8012 if (block_size == nullptr) return false; 8013 } 8014 8015 // Call the stub. 8016 Node* call; 8017 if (block_size == nullptr) { 8018 call = make_runtime_call(RC_LEAF|RC_NO_FP, 8019 OptoRuntime::digestBase_implCompressMB_Type(false), 8020 stubAddr, stubName, TypePtr::BOTTOM, 8021 src_start, state, ofs, limit); 8022 } else { 8023 call = make_runtime_call(RC_LEAF|RC_NO_FP, 8024 OptoRuntime::digestBase_implCompressMB_Type(true), 8025 stubAddr, stubName, TypePtr::BOTTOM, 8026 src_start, state, block_size, ofs, limit); 8027 } 8028 8029 // return ofs (int) 8030 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 8031 set_result(result); 8032 8033 return true; 8034 } 8035 8036 //------------------------------inline_galoisCounterMode_AESCrypt----------------------- 8037 bool LibraryCallKit::inline_galoisCounterMode_AESCrypt() { 8038 assert(UseAES, "need AES instruction support"); 8039 address stubAddr = nullptr; 8040 const char *stubName = nullptr; 8041 stubAddr = StubRoutines::galoisCounterMode_AESCrypt(); 8042 stubName = "galoisCounterMode_AESCrypt"; 8043 8044 if (stubAddr == nullptr) return false; 8045 8046 Node* in = argument(0); 8047 Node* inOfs = argument(1); 8048 Node* len = argument(2); 8049 Node* ct = argument(3); 8050 Node* ctOfs = argument(4); 8051 Node* out = argument(5); 8052 Node* outOfs = argument(6); 8053 Node* gctr_object = argument(7); 8054 Node* ghash_object = argument(8); 8055 8056 // (1) in, ct and out are arrays. 8057 const TypeAryPtr* in_type = in->Value(&_gvn)->isa_aryptr(); 8058 const TypeAryPtr* ct_type = ct->Value(&_gvn)->isa_aryptr(); 8059 const TypeAryPtr* out_type = out->Value(&_gvn)->isa_aryptr(); 8060 assert( in_type != nullptr && in_type->elem() != Type::BOTTOM && 8061 ct_type != nullptr && ct_type->elem() != Type::BOTTOM && 8062 out_type != nullptr && out_type->elem() != Type::BOTTOM, "args are strange"); 8063 8064 // checks are the responsibility of the caller 8065 Node* in_start = in; 8066 Node* ct_start = ct; 8067 Node* out_start = out; 8068 if (inOfs != nullptr || ctOfs != nullptr || outOfs != nullptr) { 8069 assert(inOfs != nullptr && ctOfs != nullptr && outOfs != nullptr, ""); 8070 in_start = array_element_address(in, inOfs, T_BYTE); 8071 ct_start = array_element_address(ct, ctOfs, T_BYTE); 8072 out_start = array_element_address(out, outOfs, T_BYTE); 8073 } 8074 8075 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 8076 // (because of the predicated logic executed earlier). 8077 // so we cast it here safely. 8078 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 8079 Node* embeddedCipherObj = load_field_from_object(gctr_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 8080 Node* counter = load_field_from_object(gctr_object, "counter", "[B"); 8081 Node* subkeyHtbl = load_field_from_object(ghash_object, "subkeyHtbl", "[J"); 8082 Node* state = load_field_from_object(ghash_object, "state", "[J"); 8083 8084 if (embeddedCipherObj == nullptr || counter == nullptr || subkeyHtbl == nullptr || state == nullptr) { 8085 return false; 8086 } 8087 // cast it to what we know it will be at runtime 8088 const TypeInstPtr* tinst = _gvn.type(gctr_object)->isa_instptr(); 8089 assert(tinst != nullptr, "GCTR obj is null"); 8090 assert(tinst->is_loaded(), "GCTR obj is not loaded"); 8091 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 8092 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 8093 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 8094 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 8095 const TypeOopPtr* xtype = aklass->as_instance_type(); 8096 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 8097 aescrypt_object = _gvn.transform(aescrypt_object); 8098 // we need to get the start of the aescrypt_object's expanded key array 8099 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 8100 if (k_start == nullptr) return false; 8101 // similarly, get the start address of the r vector 8102 Node* cnt_start = array_element_address(counter, intcon(0), T_BYTE); 8103 Node* state_start = array_element_address(state, intcon(0), T_LONG); 8104 Node* subkeyHtbl_start = array_element_address(subkeyHtbl, intcon(0), T_LONG); 8105 8106 8107 // Call the stub, passing params 8108 Node* gcmCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 8109 OptoRuntime::galoisCounterMode_aescrypt_Type(), 8110 stubAddr, stubName, TypePtr::BOTTOM, 8111 in_start, len, ct_start, out_start, k_start, state_start, subkeyHtbl_start, cnt_start); 8112 8113 // return cipher length (int) 8114 Node* retvalue = _gvn.transform(new ProjNode(gcmCrypt, TypeFunc::Parms)); 8115 set_result(retvalue); 8116 8117 return true; 8118 } 8119 8120 //----------------------------inline_galoisCounterMode_AESCrypt_predicate---------------------------- 8121 // Return node representing slow path of predicate check. 8122 // the pseudo code we want to emulate with this predicate is: 8123 // for encryption: 8124 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 8125 // for decryption: 8126 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 8127 // note cipher==plain is more conservative than the original java code but that's OK 8128 // 8129 8130 Node* LibraryCallKit::inline_galoisCounterMode_AESCrypt_predicate() { 8131 // The receiver was checked for null already. 8132 Node* objGCTR = argument(7); 8133 // Load embeddedCipher field of GCTR object. 8134 Node* embeddedCipherObj = load_field_from_object(objGCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 8135 assert(embeddedCipherObj != nullptr, "embeddedCipherObj is null"); 8136 8137 // get AESCrypt klass for instanceOf check 8138 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 8139 // will have same classloader as CipherBlockChaining object 8140 const TypeInstPtr* tinst = _gvn.type(objGCTR)->isa_instptr(); 8141 assert(tinst != nullptr, "GCTR obj is null"); 8142 assert(tinst->is_loaded(), "GCTR obj is not loaded"); 8143 8144 // we want to do an instanceof comparison against the AESCrypt class 8145 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 8146 if (!klass_AESCrypt->is_loaded()) { 8147 // if AESCrypt is not even loaded, we never take the intrinsic fast path 8148 Node* ctrl = control(); 8149 set_control(top()); // no regular fast path 8150 return ctrl; 8151 } 8152 8153 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 8154 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 8155 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 8156 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 8157 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 8158 8159 return instof_false; // even if it is null 8160 } 8161 8162 //------------------------------get_state_from_digest_object----------------------- 8163 Node * LibraryCallKit::get_state_from_digest_object(Node *digest_object, BasicType elem_type) { 8164 const char* state_type; 8165 switch (elem_type) { 8166 case T_BYTE: state_type = "[B"; break; 8167 case T_INT: state_type = "[I"; break; 8168 case T_LONG: state_type = "[J"; break; 8169 default: ShouldNotReachHere(); 8170 } 8171 Node* digest_state = load_field_from_object(digest_object, "state", state_type); 8172 assert (digest_state != nullptr, "wrong version of sun.security.provider.MD5/SHA/SHA2/SHA5/SHA3"); 8173 if (digest_state == nullptr) return (Node *) nullptr; 8174 8175 // now have the array, need to get the start address of the state array 8176 Node* state = array_element_address(digest_state, intcon(0), elem_type); 8177 return state; 8178 } 8179 8180 //------------------------------get_block_size_from_sha3_object---------------------------------- 8181 Node * LibraryCallKit::get_block_size_from_digest_object(Node *digest_object) { 8182 Node* block_size = load_field_from_object(digest_object, "blockSize", "I"); 8183 assert (block_size != nullptr, "sanity"); 8184 return block_size; 8185 } 8186 8187 //----------------------------inline_digestBase_implCompressMB_predicate---------------------------- 8188 // Return node representing slow path of predicate check. 8189 // the pseudo code we want to emulate with this predicate is: 8190 // if (digestBaseObj instanceof MD5/SHA/SHA2/SHA5/SHA3) do_intrinsic, else do_javapath 8191 // 8192 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) { 8193 assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics || UseSHA3Intrinsics, 8194 "need MD5/SHA1/SHA256/SHA512/SHA3 instruction support"); 8195 assert((uint)predicate < 5, "sanity"); 8196 8197 // The receiver was checked for null already. 8198 Node* digestBaseObj = argument(0); 8199 8200 // get DigestBase klass for instanceOf check 8201 const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr(); 8202 assert(tinst != nullptr, "digestBaseObj is null"); 8203 assert(tinst->is_loaded(), "DigestBase is not loaded"); 8204 8205 const char* klass_name = nullptr; 8206 switch (predicate) { 8207 case 0: 8208 if (UseMD5Intrinsics) { 8209 // we want to do an instanceof comparison against the MD5 class 8210 klass_name = "sun/security/provider/MD5"; 8211 } 8212 break; 8213 case 1: 8214 if (UseSHA1Intrinsics) { 8215 // we want to do an instanceof comparison against the SHA class 8216 klass_name = "sun/security/provider/SHA"; 8217 } 8218 break; 8219 case 2: 8220 if (UseSHA256Intrinsics) { 8221 // we want to do an instanceof comparison against the SHA2 class 8222 klass_name = "sun/security/provider/SHA2"; 8223 } 8224 break; 8225 case 3: 8226 if (UseSHA512Intrinsics) { 8227 // we want to do an instanceof comparison against the SHA5 class 8228 klass_name = "sun/security/provider/SHA5"; 8229 } 8230 break; 8231 case 4: 8232 if (UseSHA3Intrinsics) { 8233 // we want to do an instanceof comparison against the SHA3 class 8234 klass_name = "sun/security/provider/SHA3"; 8235 } 8236 break; 8237 default: 8238 fatal("unknown SHA intrinsic predicate: %d", predicate); 8239 } 8240 8241 ciKlass* klass = nullptr; 8242 if (klass_name != nullptr) { 8243 klass = tinst->instance_klass()->find_klass(ciSymbol::make(klass_name)); 8244 } 8245 if ((klass == nullptr) || !klass->is_loaded()) { 8246 // if none of MD5/SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path 8247 Node* ctrl = control(); 8248 set_control(top()); // no intrinsic path 8249 return ctrl; 8250 } 8251 ciInstanceKlass* instklass = klass->as_instance_klass(); 8252 8253 Node* instof = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass))); 8254 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 8255 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 8256 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 8257 8258 return instof_false; // even if it is null 8259 } 8260 8261 //-------------inline_fma----------------------------------- 8262 bool LibraryCallKit::inline_fma(vmIntrinsics::ID id) { 8263 Node *a = nullptr; 8264 Node *b = nullptr; 8265 Node *c = nullptr; 8266 Node* result = nullptr; 8267 switch (id) { 8268 case vmIntrinsics::_fmaD: 8269 assert(callee()->signature()->size() == 6, "fma has 3 parameters of size 2 each."); 8270 // no receiver since it is static method 8271 a = round_double_node(argument(0)); 8272 b = round_double_node(argument(2)); 8273 c = round_double_node(argument(4)); 8274 result = _gvn.transform(new FmaDNode(control(), a, b, c)); 8275 break; 8276 case vmIntrinsics::_fmaF: 8277 assert(callee()->signature()->size() == 3, "fma has 3 parameters of size 1 each."); 8278 a = argument(0); 8279 b = argument(1); 8280 c = argument(2); 8281 result = _gvn.transform(new FmaFNode(control(), a, b, c)); 8282 break; 8283 default: 8284 fatal_unexpected_iid(id); break; 8285 } 8286 set_result(result); 8287 return true; 8288 } 8289 8290 bool LibraryCallKit::inline_character_compare(vmIntrinsics::ID id) { 8291 // argument(0) is receiver 8292 Node* codePoint = argument(1); 8293 Node* n = nullptr; 8294 8295 switch (id) { 8296 case vmIntrinsics::_isDigit : 8297 n = new DigitNode(control(), codePoint); 8298 break; 8299 case vmIntrinsics::_isLowerCase : 8300 n = new LowerCaseNode(control(), codePoint); 8301 break; 8302 case vmIntrinsics::_isUpperCase : 8303 n = new UpperCaseNode(control(), codePoint); 8304 break; 8305 case vmIntrinsics::_isWhitespace : 8306 n = new WhitespaceNode(control(), codePoint); 8307 break; 8308 default: 8309 fatal_unexpected_iid(id); 8310 } 8311 8312 set_result(_gvn.transform(n)); 8313 return true; 8314 } 8315 8316 //------------------------------inline_fp_min_max------------------------------ 8317 bool LibraryCallKit::inline_fp_min_max(vmIntrinsics::ID id) { 8318 /* DISABLED BECAUSE METHOD DATA ISN'T COLLECTED PER CALL-SITE, SEE JDK-8015416. 8319 8320 // The intrinsic should be used only when the API branches aren't predictable, 8321 // the last one performing the most important comparison. The following heuristic 8322 // uses the branch statistics to eventually bail out if necessary. 8323 8324 ciMethodData *md = callee()->method_data(); 8325 8326 if ( md != nullptr && md->is_mature() && md->invocation_count() > 0 ) { 8327 ciCallProfile cp = caller()->call_profile_at_bci(bci()); 8328 8329 if ( ((double)cp.count()) / ((double)md->invocation_count()) < 0.8 ) { 8330 // Bail out if the call-site didn't contribute enough to the statistics. 8331 return false; 8332 } 8333 8334 uint taken = 0, not_taken = 0; 8335 8336 for (ciProfileData *p = md->first_data(); md->is_valid(p); p = md->next_data(p)) { 8337 if (p->is_BranchData()) { 8338 taken = ((ciBranchData*)p)->taken(); 8339 not_taken = ((ciBranchData*)p)->not_taken(); 8340 } 8341 } 8342 8343 double balance = (((double)taken) - ((double)not_taken)) / ((double)md->invocation_count()); 8344 balance = balance < 0 ? -balance : balance; 8345 if ( balance > 0.2 ) { 8346 // Bail out if the most important branch is predictable enough. 8347 return false; 8348 } 8349 } 8350 */ 8351 8352 Node *a = nullptr; 8353 Node *b = nullptr; 8354 Node *n = nullptr; 8355 switch (id) { 8356 case vmIntrinsics::_maxF: 8357 case vmIntrinsics::_minF: 8358 case vmIntrinsics::_maxF_strict: 8359 case vmIntrinsics::_minF_strict: 8360 assert(callee()->signature()->size() == 2, "minF/maxF has 2 parameters of size 1 each."); 8361 a = argument(0); 8362 b = argument(1); 8363 break; 8364 case vmIntrinsics::_maxD: 8365 case vmIntrinsics::_minD: 8366 case vmIntrinsics::_maxD_strict: 8367 case vmIntrinsics::_minD_strict: 8368 assert(callee()->signature()->size() == 4, "minD/maxD has 2 parameters of size 2 each."); 8369 a = round_double_node(argument(0)); 8370 b = round_double_node(argument(2)); 8371 break; 8372 default: 8373 fatal_unexpected_iid(id); 8374 break; 8375 } 8376 switch (id) { 8377 case vmIntrinsics::_maxF: 8378 case vmIntrinsics::_maxF_strict: 8379 n = new MaxFNode(a, b); 8380 break; 8381 case vmIntrinsics::_minF: 8382 case vmIntrinsics::_minF_strict: 8383 n = new MinFNode(a, b); 8384 break; 8385 case vmIntrinsics::_maxD: 8386 case vmIntrinsics::_maxD_strict: 8387 n = new MaxDNode(a, b); 8388 break; 8389 case vmIntrinsics::_minD: 8390 case vmIntrinsics::_minD_strict: 8391 n = new MinDNode(a, b); 8392 break; 8393 default: 8394 fatal_unexpected_iid(id); 8395 break; 8396 } 8397 set_result(_gvn.transform(n)); 8398 return true; 8399 } 8400 8401 bool LibraryCallKit::inline_profileBoolean() { 8402 Node* counts = argument(1); 8403 const TypeAryPtr* ary = nullptr; 8404 ciArray* aobj = nullptr; 8405 if (counts->is_Con() 8406 && (ary = counts->bottom_type()->isa_aryptr()) != nullptr 8407 && (aobj = ary->const_oop()->as_array()) != nullptr 8408 && (aobj->length() == 2)) { 8409 // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively. 8410 jint false_cnt = aobj->element_value(0).as_int(); 8411 jint true_cnt = aobj->element_value(1).as_int(); 8412 8413 if (C->log() != nullptr) { 8414 C->log()->elem("observe source='profileBoolean' false='%d' true='%d'", 8415 false_cnt, true_cnt); 8416 } 8417 8418 if (false_cnt + true_cnt == 0) { 8419 // According to profile, never executed. 8420 uncommon_trap_exact(Deoptimization::Reason_intrinsic, 8421 Deoptimization::Action_reinterpret); 8422 return true; 8423 } 8424 8425 // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt) 8426 // is a number of each value occurrences. 8427 Node* result = argument(0); 8428 if (false_cnt == 0 || true_cnt == 0) { 8429 // According to profile, one value has been never seen. 8430 int expected_val = (false_cnt == 0) ? 1 : 0; 8431 8432 Node* cmp = _gvn.transform(new CmpINode(result, intcon(expected_val))); 8433 Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 8434 8435 IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN); 8436 Node* fast_path = _gvn.transform(new IfTrueNode(check)); 8437 Node* slow_path = _gvn.transform(new IfFalseNode(check)); 8438 8439 { // Slow path: uncommon trap for never seen value and then reexecute 8440 // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows 8441 // the value has been seen at least once. 8442 PreserveJVMState pjvms(this); 8443 PreserveReexecuteState preexecs(this); 8444 jvms()->set_should_reexecute(true); 8445 8446 set_control(slow_path); 8447 set_i_o(i_o()); 8448 8449 uncommon_trap_exact(Deoptimization::Reason_intrinsic, 8450 Deoptimization::Action_reinterpret); 8451 } 8452 // The guard for never seen value enables sharpening of the result and 8453 // returning a constant. It allows to eliminate branches on the same value 8454 // later on. 8455 set_control(fast_path); 8456 result = intcon(expected_val); 8457 } 8458 // Stop profiling. 8459 // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode. 8460 // By replacing method body with profile data (represented as ProfileBooleanNode 8461 // on IR level) we effectively disable profiling. 8462 // It enables full speed execution once optimized code is generated. 8463 Node* profile = _gvn.transform(new ProfileBooleanNode(result, false_cnt, true_cnt)); 8464 C->record_for_igvn(profile); 8465 set_result(profile); 8466 return true; 8467 } else { 8468 // Continue profiling. 8469 // Profile data isn't available at the moment. So, execute method's bytecode version. 8470 // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod 8471 // is compiled and counters aren't available since corresponding MethodHandle 8472 // isn't a compile-time constant. 8473 return false; 8474 } 8475 } 8476 8477 bool LibraryCallKit::inline_isCompileConstant() { 8478 Node* n = argument(0); 8479 set_result(n->is_Con() ? intcon(1) : intcon(0)); 8480 return true; 8481 } 8482 8483 //------------------------------- inline_getObjectSize -------------------------------------- 8484 // 8485 // Calculate the runtime size of the object/array. 8486 // native long sun.instrument.InstrumentationImpl.getObjectSize0(long nativeAgent, Object objectToSize); 8487 // 8488 bool LibraryCallKit::inline_getObjectSize() { 8489 Node* obj = argument(3); 8490 Node* klass_node = load_object_klass(obj); 8491 8492 jint layout_con = Klass::_lh_neutral_value; 8493 Node* layout_val = get_layout_helper(klass_node, layout_con); 8494 int layout_is_con = (layout_val == nullptr); 8495 8496 if (layout_is_con) { 8497 // Layout helper is constant, can figure out things at compile time. 8498 8499 if (Klass::layout_helper_is_instance(layout_con)) { 8500 // Instance case: layout_con contains the size itself. 8501 Node *size = longcon(Klass::layout_helper_size_in_bytes(layout_con)); 8502 set_result(size); 8503 } else { 8504 // Array case: size is round(header + element_size*arraylength). 8505 // Since arraylength is different for every array instance, we have to 8506 // compute the whole thing at runtime. 8507 8508 Node* arr_length = load_array_length(obj); 8509 8510 int round_mask = MinObjAlignmentInBytes - 1; 8511 int hsize = Klass::layout_helper_header_size(layout_con); 8512 int eshift = Klass::layout_helper_log2_element_size(layout_con); 8513 8514 if ((round_mask & ~right_n_bits(eshift)) == 0) { 8515 round_mask = 0; // strength-reduce it if it goes away completely 8516 } 8517 assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded"); 8518 Node* header_size = intcon(hsize + round_mask); 8519 8520 Node* lengthx = ConvI2X(arr_length); 8521 Node* headerx = ConvI2X(header_size); 8522 8523 Node* abody = lengthx; 8524 if (eshift != 0) { 8525 abody = _gvn.transform(new LShiftXNode(lengthx, intcon(eshift))); 8526 } 8527 Node* size = _gvn.transform( new AddXNode(headerx, abody) ); 8528 if (round_mask != 0) { 8529 size = _gvn.transform( new AndXNode(size, MakeConX(~round_mask)) ); 8530 } 8531 size = ConvX2L(size); 8532 set_result(size); 8533 } 8534 } else { 8535 // Layout helper is not constant, need to test for array-ness at runtime. 8536 8537 enum { _instance_path = 1, _array_path, PATH_LIMIT }; 8538 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 8539 PhiNode* result_val = new PhiNode(result_reg, TypeLong::LONG); 8540 record_for_igvn(result_reg); 8541 8542 Node* array_ctl = generate_array_guard(klass_node, nullptr, &obj); 8543 if (array_ctl != nullptr) { 8544 // Array case: size is round(header + element_size*arraylength). 8545 // Since arraylength is different for every array instance, we have to 8546 // compute the whole thing at runtime. 8547 8548 PreserveJVMState pjvms(this); 8549 set_control(array_ctl); 8550 Node* arr_length = load_array_length(obj); 8551 8552 int round_mask = MinObjAlignmentInBytes - 1; 8553 Node* mask = intcon(round_mask); 8554 8555 Node* hss = intcon(Klass::_lh_header_size_shift); 8556 Node* hsm = intcon(Klass::_lh_header_size_mask); 8557 Node* header_size = _gvn.transform(new URShiftINode(layout_val, hss)); 8558 header_size = _gvn.transform(new AndINode(header_size, hsm)); 8559 header_size = _gvn.transform(new AddINode(header_size, mask)); 8560 8561 // There is no need to mask or shift this value. 8562 // The semantics of LShiftINode include an implicit mask to 0x1F. 8563 assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place"); 8564 Node* elem_shift = layout_val; 8565 8566 Node* lengthx = ConvI2X(arr_length); 8567 Node* headerx = ConvI2X(header_size); 8568 8569 Node* abody = _gvn.transform(new LShiftXNode(lengthx, elem_shift)); 8570 Node* size = _gvn.transform(new AddXNode(headerx, abody)); 8571 if (round_mask != 0) { 8572 size = _gvn.transform(new AndXNode(size, MakeConX(~round_mask))); 8573 } 8574 size = ConvX2L(size); 8575 8576 result_reg->init_req(_array_path, control()); 8577 result_val->init_req(_array_path, size); 8578 } 8579 8580 if (!stopped()) { 8581 // Instance case: the layout helper gives us instance size almost directly, 8582 // but we need to mask out the _lh_instance_slow_path_bit. 8583 Node* size = ConvI2X(layout_val); 8584 assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit"); 8585 Node* mask = MakeConX(~(intptr_t) right_n_bits(LogBytesPerLong)); 8586 size = _gvn.transform(new AndXNode(size, mask)); 8587 size = ConvX2L(size); 8588 8589 result_reg->init_req(_instance_path, control()); 8590 result_val->init_req(_instance_path, size); 8591 } 8592 8593 set_result(result_reg, result_val); 8594 } 8595 8596 return true; 8597 } 8598 8599 //------------------------------- inline_blackhole -------------------------------------- 8600 // 8601 // Make sure all arguments to this node are alive. 8602 // This matches methods that were requested to be blackholed through compile commands. 8603 // 8604 bool LibraryCallKit::inline_blackhole() { 8605 assert(callee()->is_static(), "Should have been checked before: only static methods here"); 8606 assert(callee()->is_empty(), "Should have been checked before: only empty methods here"); 8607 assert(callee()->holder()->is_loaded(), "Should have been checked before: only methods for loaded classes here"); 8608 8609 // Blackhole node pinches only the control, not memory. This allows 8610 // the blackhole to be pinned in the loop that computes blackholed 8611 // values, but have no other side effects, like breaking the optimizations 8612 // across the blackhole. 8613 8614 Node* bh = _gvn.transform(new BlackholeNode(control())); 8615 set_control(_gvn.transform(new ProjNode(bh, TypeFunc::Control))); 8616 8617 // Bind call arguments as blackhole arguments to keep them alive 8618 uint nargs = callee()->arg_size(); 8619 for (uint i = 0; i < nargs; i++) { 8620 bh->add_req(argument(i)); 8621 } 8622 8623 return true; 8624 }