1 /* 2 * Copyright (c) 1999, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/macroAssembler.hpp" 27 #include "ci/ciUtilities.inline.hpp" 28 #include "classfile/vmIntrinsics.hpp" 29 #include "compiler/compileBroker.hpp" 30 #include "compiler/compileLog.hpp" 31 #include "gc/shared/barrierSet.hpp" 32 #include "jfr/support/jfrIntrinsics.hpp" 33 #include "memory/resourceArea.hpp" 34 #include "oops/klass.inline.hpp" 35 #include "oops/objArrayKlass.hpp" 36 #include "opto/addnode.hpp" 37 #include "opto/arraycopynode.hpp" 38 #include "opto/c2compiler.hpp" 39 #include "opto/castnode.hpp" 40 #include "opto/cfgnode.hpp" 41 #include "opto/convertnode.hpp" 42 #include "opto/countbitsnode.hpp" 43 #include "opto/idealKit.hpp" 44 #include "opto/library_call.hpp" 45 #include "opto/mathexactnode.hpp" 46 #include "opto/mulnode.hpp" 47 #include "opto/narrowptrnode.hpp" 48 #include "opto/opaquenode.hpp" 49 #include "opto/parse.hpp" 50 #include "opto/runtime.hpp" 51 #include "opto/rootnode.hpp" 52 #include "opto/subnode.hpp" 53 #include "prims/jvmtiExport.hpp" 54 #include "prims/jvmtiThreadState.hpp" 55 #include "prims/unsafe.hpp" 56 #include "runtime/jniHandles.inline.hpp" 57 #include "runtime/objectMonitor.hpp" 58 #include "runtime/sharedRuntime.hpp" 59 #include "runtime/stubRoutines.hpp" 60 #include "utilities/macros.hpp" 61 #include "utilities/powerOfTwo.hpp" 62 63 //---------------------------make_vm_intrinsic---------------------------- 64 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) { 65 vmIntrinsicID id = m->intrinsic_id(); 66 assert(id != vmIntrinsics::_none, "must be a VM intrinsic"); 67 68 if (!m->is_loaded()) { 69 // Do not attempt to inline unloaded methods. 70 return nullptr; 71 } 72 73 C2Compiler* compiler = (C2Compiler*)CompilerThread::current()->compiler(); 74 bool is_available = false; 75 76 { 77 // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag 78 // the compiler must transition to '_thread_in_vm' state because both 79 // methods access VM-internal data. 80 VM_ENTRY_MARK; 81 methodHandle mh(THREAD, m->get_Method()); 82 is_available = compiler != nullptr && compiler->is_intrinsic_available(mh, C->directive()); 83 if (is_available && is_virtual) { 84 is_available = vmIntrinsics::does_virtual_dispatch(id); 85 } 86 } 87 88 if (is_available) { 89 assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility"); 90 assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?"); 91 return new LibraryIntrinsic(m, is_virtual, 92 vmIntrinsics::predicates_needed(id), 93 vmIntrinsics::does_virtual_dispatch(id), 94 id); 95 } else { 96 return nullptr; 97 } 98 } 99 100 JVMState* LibraryIntrinsic::generate(JVMState* jvms) { 101 LibraryCallKit kit(jvms, this); 102 Compile* C = kit.C; 103 int nodes = C->unique(); 104 #ifndef PRODUCT 105 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 106 char buf[1000]; 107 const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf)); 108 tty->print_cr("Intrinsic %s", str); 109 } 110 #endif 111 ciMethod* callee = kit.callee(); 112 const int bci = kit.bci(); 113 #ifdef ASSERT 114 Node* ctrl = kit.control(); 115 #endif 116 // Try to inline the intrinsic. 117 if (callee->check_intrinsic_candidate() && 118 kit.try_to_inline(_last_predicate)) { 119 const char *inline_msg = is_virtual() ? "(intrinsic, virtual)" 120 : "(intrinsic)"; 121 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg); 122 if (C->print_intrinsics() || C->print_inlining()) { 123 C->print_inlining(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg); 124 } 125 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked); 126 if (C->log()) { 127 C->log()->elem("intrinsic id='%s'%s nodes='%d'", 128 vmIntrinsics::name_at(intrinsic_id()), 129 (is_virtual() ? " virtual='1'" : ""), 130 C->unique() - nodes); 131 } 132 // Push the result from the inlined method onto the stack. 133 kit.push_result(); 134 C->print_inlining_update(this); 135 return kit.transfer_exceptions_into_jvms(); 136 } 137 138 // The intrinsic bailed out 139 assert(ctrl == kit.control(), "Control flow was added although the intrinsic bailed out"); 140 if (jvms->has_method()) { 141 // Not a root compile. 142 const char* msg; 143 if (callee->intrinsic_candidate()) { 144 msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)"; 145 } else { 146 msg = is_virtual() ? "failed to inline (intrinsic, virtual), method not annotated" 147 : "failed to inline (intrinsic), method not annotated"; 148 } 149 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::FAILURE, msg); 150 if (C->print_intrinsics() || C->print_inlining()) { 151 C->print_inlining(callee, jvms->depth() - 1, bci, InliningResult::FAILURE, msg); 152 } 153 } else { 154 // Root compile 155 ResourceMark rm; 156 stringStream msg_stream; 157 msg_stream.print("Did not generate intrinsic %s%s at bci:%d in", 158 vmIntrinsics::name_at(intrinsic_id()), 159 is_virtual() ? " (virtual)" : "", bci); 160 const char *msg = msg_stream.freeze(); 161 log_debug(jit, inlining)("%s", msg); 162 if (C->print_intrinsics() || C->print_inlining()) { 163 tty->print("%s", msg); 164 } 165 } 166 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed); 167 C->print_inlining_update(this); 168 169 return nullptr; 170 } 171 172 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) { 173 LibraryCallKit kit(jvms, this); 174 Compile* C = kit.C; 175 int nodes = C->unique(); 176 _last_predicate = predicate; 177 #ifndef PRODUCT 178 assert(is_predicated() && predicate < predicates_count(), "sanity"); 179 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 180 char buf[1000]; 181 const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf)); 182 tty->print_cr("Predicate for intrinsic %s", str); 183 } 184 #endif 185 ciMethod* callee = kit.callee(); 186 const int bci = kit.bci(); 187 188 Node* slow_ctl = kit.try_to_predicate(predicate); 189 if (!kit.failing()) { 190 const char *inline_msg = is_virtual() ? "(intrinsic, virtual, predicate)" 191 : "(intrinsic, predicate)"; 192 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg); 193 if (C->print_intrinsics() || C->print_inlining()) { 194 C->print_inlining(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg); 195 } 196 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked); 197 if (C->log()) { 198 C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'", 199 vmIntrinsics::name_at(intrinsic_id()), 200 (is_virtual() ? " virtual='1'" : ""), 201 C->unique() - nodes); 202 } 203 return slow_ctl; // Could be null if the check folds. 204 } 205 206 // The intrinsic bailed out 207 if (jvms->has_method()) { 208 // Not a root compile. 209 const char* msg = "failed to generate predicate for intrinsic"; 210 CompileTask::print_inlining_ul(kit.callee(), jvms->depth() - 1, bci, InliningResult::FAILURE, msg); 211 if (C->print_intrinsics() || C->print_inlining()) { 212 C->print_inlining(kit.callee(), jvms->depth() - 1, bci, InliningResult::FAILURE, msg); 213 } 214 } else { 215 // Root compile 216 ResourceMark rm; 217 stringStream msg_stream; 218 msg_stream.print("Did not generate intrinsic %s%s at bci:%d in", 219 vmIntrinsics::name_at(intrinsic_id()), 220 is_virtual() ? " (virtual)" : "", bci); 221 const char *msg = msg_stream.freeze(); 222 log_debug(jit, inlining)("%s", msg); 223 if (C->print_intrinsics() || C->print_inlining()) { 224 C->print_inlining_stream()->print("%s", msg); 225 } 226 } 227 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed); 228 return nullptr; 229 } 230 231 bool LibraryCallKit::try_to_inline(int predicate) { 232 // Handle symbolic names for otherwise undistinguished boolean switches: 233 const bool is_store = true; 234 const bool is_compress = true; 235 const bool is_static = true; 236 const bool is_volatile = true; 237 238 if (!jvms()->has_method()) { 239 // Root JVMState has a null method. 240 assert(map()->memory()->Opcode() == Op_Parm, ""); 241 // Insert the memory aliasing node 242 set_all_memory(reset_memory()); 243 } 244 assert(merged_memory(), ""); 245 246 switch (intrinsic_id()) { 247 case vmIntrinsics::_hashCode: return inline_native_hashcode(intrinsic()->is_virtual(), !is_static); 248 case vmIntrinsics::_identityHashCode: return inline_native_hashcode(/*!virtual*/ false, is_static); 249 case vmIntrinsics::_getClass: return inline_native_getClass(); 250 251 case vmIntrinsics::_ceil: 252 case vmIntrinsics::_floor: 253 case vmIntrinsics::_rint: 254 case vmIntrinsics::_dsin: 255 case vmIntrinsics::_dcos: 256 case vmIntrinsics::_dtan: 257 case vmIntrinsics::_dtanh: 258 case vmIntrinsics::_dabs: 259 case vmIntrinsics::_fabs: 260 case vmIntrinsics::_iabs: 261 case vmIntrinsics::_labs: 262 case vmIntrinsics::_datan2: 263 case vmIntrinsics::_dsqrt: 264 case vmIntrinsics::_dsqrt_strict: 265 case vmIntrinsics::_dexp: 266 case vmIntrinsics::_dlog: 267 case vmIntrinsics::_dlog10: 268 case vmIntrinsics::_dpow: 269 case vmIntrinsics::_dcopySign: 270 case vmIntrinsics::_fcopySign: 271 case vmIntrinsics::_dsignum: 272 case vmIntrinsics::_roundF: 273 case vmIntrinsics::_roundD: 274 case vmIntrinsics::_fsignum: return inline_math_native(intrinsic_id()); 275 276 case vmIntrinsics::_notify: 277 case vmIntrinsics::_notifyAll: 278 return inline_notify(intrinsic_id()); 279 280 case vmIntrinsics::_addExactI: return inline_math_addExactI(false /* add */); 281 case vmIntrinsics::_addExactL: return inline_math_addExactL(false /* add */); 282 case vmIntrinsics::_decrementExactI: return inline_math_subtractExactI(true /* decrement */); 283 case vmIntrinsics::_decrementExactL: return inline_math_subtractExactL(true /* decrement */); 284 case vmIntrinsics::_incrementExactI: return inline_math_addExactI(true /* increment */); 285 case vmIntrinsics::_incrementExactL: return inline_math_addExactL(true /* increment */); 286 case vmIntrinsics::_multiplyExactI: return inline_math_multiplyExactI(); 287 case vmIntrinsics::_multiplyExactL: return inline_math_multiplyExactL(); 288 case vmIntrinsics::_multiplyHigh: return inline_math_multiplyHigh(); 289 case vmIntrinsics::_unsignedMultiplyHigh: return inline_math_unsignedMultiplyHigh(); 290 case vmIntrinsics::_negateExactI: return inline_math_negateExactI(); 291 case vmIntrinsics::_negateExactL: return inline_math_negateExactL(); 292 case vmIntrinsics::_subtractExactI: return inline_math_subtractExactI(false /* subtract */); 293 case vmIntrinsics::_subtractExactL: return inline_math_subtractExactL(false /* subtract */); 294 295 case vmIntrinsics::_arraycopy: return inline_arraycopy(); 296 297 case vmIntrinsics::_arraySort: return inline_array_sort(); 298 case vmIntrinsics::_arrayPartition: return inline_array_partition(); 299 300 case vmIntrinsics::_compareToL: return inline_string_compareTo(StrIntrinsicNode::LL); 301 case vmIntrinsics::_compareToU: return inline_string_compareTo(StrIntrinsicNode::UU); 302 case vmIntrinsics::_compareToLU: return inline_string_compareTo(StrIntrinsicNode::LU); 303 case vmIntrinsics::_compareToUL: return inline_string_compareTo(StrIntrinsicNode::UL); 304 305 case vmIntrinsics::_indexOfL: return inline_string_indexOf(StrIntrinsicNode::LL); 306 case vmIntrinsics::_indexOfU: return inline_string_indexOf(StrIntrinsicNode::UU); 307 case vmIntrinsics::_indexOfUL: return inline_string_indexOf(StrIntrinsicNode::UL); 308 case vmIntrinsics::_indexOfIL: return inline_string_indexOfI(StrIntrinsicNode::LL); 309 case vmIntrinsics::_indexOfIU: return inline_string_indexOfI(StrIntrinsicNode::UU); 310 case vmIntrinsics::_indexOfIUL: return inline_string_indexOfI(StrIntrinsicNode::UL); 311 case vmIntrinsics::_indexOfU_char: return inline_string_indexOfChar(StrIntrinsicNode::U); 312 case vmIntrinsics::_indexOfL_char: return inline_string_indexOfChar(StrIntrinsicNode::L); 313 314 case vmIntrinsics::_equalsL: return inline_string_equals(StrIntrinsicNode::LL); 315 316 case vmIntrinsics::_vectorizedHashCode: return inline_vectorizedHashCode(); 317 318 case vmIntrinsics::_toBytesStringU: return inline_string_toBytesU(); 319 case vmIntrinsics::_getCharsStringU: return inline_string_getCharsU(); 320 case vmIntrinsics::_getCharStringU: return inline_string_char_access(!is_store); 321 case vmIntrinsics::_putCharStringU: return inline_string_char_access( is_store); 322 323 case vmIntrinsics::_compressStringC: 324 case vmIntrinsics::_compressStringB: return inline_string_copy( is_compress); 325 case vmIntrinsics::_inflateStringC: 326 case vmIntrinsics::_inflateStringB: return inline_string_copy(!is_compress); 327 328 case vmIntrinsics::_getReference: return inline_unsafe_access(!is_store, T_OBJECT, Relaxed, false); 329 case vmIntrinsics::_getBoolean: return inline_unsafe_access(!is_store, T_BOOLEAN, Relaxed, false); 330 case vmIntrinsics::_getByte: return inline_unsafe_access(!is_store, T_BYTE, Relaxed, false); 331 case vmIntrinsics::_getShort: return inline_unsafe_access(!is_store, T_SHORT, Relaxed, false); 332 case vmIntrinsics::_getChar: return inline_unsafe_access(!is_store, T_CHAR, Relaxed, false); 333 case vmIntrinsics::_getInt: return inline_unsafe_access(!is_store, T_INT, Relaxed, false); 334 case vmIntrinsics::_getLong: return inline_unsafe_access(!is_store, T_LONG, Relaxed, false); 335 case vmIntrinsics::_getFloat: return inline_unsafe_access(!is_store, T_FLOAT, Relaxed, false); 336 case vmIntrinsics::_getDouble: return inline_unsafe_access(!is_store, T_DOUBLE, Relaxed, false); 337 338 case vmIntrinsics::_putReference: return inline_unsafe_access( is_store, T_OBJECT, Relaxed, false); 339 case vmIntrinsics::_putBoolean: return inline_unsafe_access( is_store, T_BOOLEAN, Relaxed, false); 340 case vmIntrinsics::_putByte: return inline_unsafe_access( is_store, T_BYTE, Relaxed, false); 341 case vmIntrinsics::_putShort: return inline_unsafe_access( is_store, T_SHORT, Relaxed, false); 342 case vmIntrinsics::_putChar: return inline_unsafe_access( is_store, T_CHAR, Relaxed, false); 343 case vmIntrinsics::_putInt: return inline_unsafe_access( is_store, T_INT, Relaxed, false); 344 case vmIntrinsics::_putLong: return inline_unsafe_access( is_store, T_LONG, Relaxed, false); 345 case vmIntrinsics::_putFloat: return inline_unsafe_access( is_store, T_FLOAT, Relaxed, false); 346 case vmIntrinsics::_putDouble: return inline_unsafe_access( is_store, T_DOUBLE, Relaxed, false); 347 348 case vmIntrinsics::_getReferenceVolatile: return inline_unsafe_access(!is_store, T_OBJECT, Volatile, false); 349 case vmIntrinsics::_getBooleanVolatile: return inline_unsafe_access(!is_store, T_BOOLEAN, Volatile, false); 350 case vmIntrinsics::_getByteVolatile: return inline_unsafe_access(!is_store, T_BYTE, Volatile, false); 351 case vmIntrinsics::_getShortVolatile: return inline_unsafe_access(!is_store, T_SHORT, Volatile, false); 352 case vmIntrinsics::_getCharVolatile: return inline_unsafe_access(!is_store, T_CHAR, Volatile, false); 353 case vmIntrinsics::_getIntVolatile: return inline_unsafe_access(!is_store, T_INT, Volatile, false); 354 case vmIntrinsics::_getLongVolatile: return inline_unsafe_access(!is_store, T_LONG, Volatile, false); 355 case vmIntrinsics::_getFloatVolatile: return inline_unsafe_access(!is_store, T_FLOAT, Volatile, false); 356 case vmIntrinsics::_getDoubleVolatile: return inline_unsafe_access(!is_store, T_DOUBLE, Volatile, false); 357 358 case vmIntrinsics::_putReferenceVolatile: return inline_unsafe_access( is_store, T_OBJECT, Volatile, false); 359 case vmIntrinsics::_putBooleanVolatile: return inline_unsafe_access( is_store, T_BOOLEAN, Volatile, false); 360 case vmIntrinsics::_putByteVolatile: return inline_unsafe_access( is_store, T_BYTE, Volatile, false); 361 case vmIntrinsics::_putShortVolatile: return inline_unsafe_access( is_store, T_SHORT, Volatile, false); 362 case vmIntrinsics::_putCharVolatile: return inline_unsafe_access( is_store, T_CHAR, Volatile, false); 363 case vmIntrinsics::_putIntVolatile: return inline_unsafe_access( is_store, T_INT, Volatile, false); 364 case vmIntrinsics::_putLongVolatile: return inline_unsafe_access( is_store, T_LONG, Volatile, false); 365 case vmIntrinsics::_putFloatVolatile: return inline_unsafe_access( is_store, T_FLOAT, Volatile, false); 366 case vmIntrinsics::_putDoubleVolatile: return inline_unsafe_access( is_store, T_DOUBLE, Volatile, false); 367 368 case vmIntrinsics::_getShortUnaligned: return inline_unsafe_access(!is_store, T_SHORT, Relaxed, true); 369 case vmIntrinsics::_getCharUnaligned: return inline_unsafe_access(!is_store, T_CHAR, Relaxed, true); 370 case vmIntrinsics::_getIntUnaligned: return inline_unsafe_access(!is_store, T_INT, Relaxed, true); 371 case vmIntrinsics::_getLongUnaligned: return inline_unsafe_access(!is_store, T_LONG, Relaxed, true); 372 373 case vmIntrinsics::_putShortUnaligned: return inline_unsafe_access( is_store, T_SHORT, Relaxed, true); 374 case vmIntrinsics::_putCharUnaligned: return inline_unsafe_access( is_store, T_CHAR, Relaxed, true); 375 case vmIntrinsics::_putIntUnaligned: return inline_unsafe_access( is_store, T_INT, Relaxed, true); 376 case vmIntrinsics::_putLongUnaligned: return inline_unsafe_access( is_store, T_LONG, Relaxed, true); 377 378 case vmIntrinsics::_getReferenceAcquire: return inline_unsafe_access(!is_store, T_OBJECT, Acquire, false); 379 case vmIntrinsics::_getBooleanAcquire: return inline_unsafe_access(!is_store, T_BOOLEAN, Acquire, false); 380 case vmIntrinsics::_getByteAcquire: return inline_unsafe_access(!is_store, T_BYTE, Acquire, false); 381 case vmIntrinsics::_getShortAcquire: return inline_unsafe_access(!is_store, T_SHORT, Acquire, false); 382 case vmIntrinsics::_getCharAcquire: return inline_unsafe_access(!is_store, T_CHAR, Acquire, false); 383 case vmIntrinsics::_getIntAcquire: return inline_unsafe_access(!is_store, T_INT, Acquire, false); 384 case vmIntrinsics::_getLongAcquire: return inline_unsafe_access(!is_store, T_LONG, Acquire, false); 385 case vmIntrinsics::_getFloatAcquire: return inline_unsafe_access(!is_store, T_FLOAT, Acquire, false); 386 case vmIntrinsics::_getDoubleAcquire: return inline_unsafe_access(!is_store, T_DOUBLE, Acquire, false); 387 388 case vmIntrinsics::_putReferenceRelease: return inline_unsafe_access( is_store, T_OBJECT, Release, false); 389 case vmIntrinsics::_putBooleanRelease: return inline_unsafe_access( is_store, T_BOOLEAN, Release, false); 390 case vmIntrinsics::_putByteRelease: return inline_unsafe_access( is_store, T_BYTE, Release, false); 391 case vmIntrinsics::_putShortRelease: return inline_unsafe_access( is_store, T_SHORT, Release, false); 392 case vmIntrinsics::_putCharRelease: return inline_unsafe_access( is_store, T_CHAR, Release, false); 393 case vmIntrinsics::_putIntRelease: return inline_unsafe_access( is_store, T_INT, Release, false); 394 case vmIntrinsics::_putLongRelease: return inline_unsafe_access( is_store, T_LONG, Release, false); 395 case vmIntrinsics::_putFloatRelease: return inline_unsafe_access( is_store, T_FLOAT, Release, false); 396 case vmIntrinsics::_putDoubleRelease: return inline_unsafe_access( is_store, T_DOUBLE, Release, false); 397 398 case vmIntrinsics::_getReferenceOpaque: return inline_unsafe_access(!is_store, T_OBJECT, Opaque, false); 399 case vmIntrinsics::_getBooleanOpaque: return inline_unsafe_access(!is_store, T_BOOLEAN, Opaque, false); 400 case vmIntrinsics::_getByteOpaque: return inline_unsafe_access(!is_store, T_BYTE, Opaque, false); 401 case vmIntrinsics::_getShortOpaque: return inline_unsafe_access(!is_store, T_SHORT, Opaque, false); 402 case vmIntrinsics::_getCharOpaque: return inline_unsafe_access(!is_store, T_CHAR, Opaque, false); 403 case vmIntrinsics::_getIntOpaque: return inline_unsafe_access(!is_store, T_INT, Opaque, false); 404 case vmIntrinsics::_getLongOpaque: return inline_unsafe_access(!is_store, T_LONG, Opaque, false); 405 case vmIntrinsics::_getFloatOpaque: return inline_unsafe_access(!is_store, T_FLOAT, Opaque, false); 406 case vmIntrinsics::_getDoubleOpaque: return inline_unsafe_access(!is_store, T_DOUBLE, Opaque, false); 407 408 case vmIntrinsics::_putReferenceOpaque: return inline_unsafe_access( is_store, T_OBJECT, Opaque, false); 409 case vmIntrinsics::_putBooleanOpaque: return inline_unsafe_access( is_store, T_BOOLEAN, Opaque, false); 410 case vmIntrinsics::_putByteOpaque: return inline_unsafe_access( is_store, T_BYTE, Opaque, false); 411 case vmIntrinsics::_putShortOpaque: return inline_unsafe_access( is_store, T_SHORT, Opaque, false); 412 case vmIntrinsics::_putCharOpaque: return inline_unsafe_access( is_store, T_CHAR, Opaque, false); 413 case vmIntrinsics::_putIntOpaque: return inline_unsafe_access( is_store, T_INT, Opaque, false); 414 case vmIntrinsics::_putLongOpaque: return inline_unsafe_access( is_store, T_LONG, Opaque, false); 415 case vmIntrinsics::_putFloatOpaque: return inline_unsafe_access( is_store, T_FLOAT, Opaque, false); 416 case vmIntrinsics::_putDoubleOpaque: return inline_unsafe_access( is_store, T_DOUBLE, Opaque, false); 417 418 case vmIntrinsics::_compareAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap, Volatile); 419 case vmIntrinsics::_compareAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap, Volatile); 420 case vmIntrinsics::_compareAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap, Volatile); 421 case vmIntrinsics::_compareAndSetInt: return inline_unsafe_load_store(T_INT, LS_cmp_swap, Volatile); 422 case vmIntrinsics::_compareAndSetLong: return inline_unsafe_load_store(T_LONG, LS_cmp_swap, Volatile); 423 424 case vmIntrinsics::_weakCompareAndSetReferencePlain: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Relaxed); 425 case vmIntrinsics::_weakCompareAndSetReferenceAcquire: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Acquire); 426 case vmIntrinsics::_weakCompareAndSetReferenceRelease: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Release); 427 case vmIntrinsics::_weakCompareAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Volatile); 428 case vmIntrinsics::_weakCompareAndSetBytePlain: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Relaxed); 429 case vmIntrinsics::_weakCompareAndSetByteAcquire: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Acquire); 430 case vmIntrinsics::_weakCompareAndSetByteRelease: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Release); 431 case vmIntrinsics::_weakCompareAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Volatile); 432 case vmIntrinsics::_weakCompareAndSetShortPlain: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Relaxed); 433 case vmIntrinsics::_weakCompareAndSetShortAcquire: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Acquire); 434 case vmIntrinsics::_weakCompareAndSetShortRelease: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Release); 435 case vmIntrinsics::_weakCompareAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Volatile); 436 case vmIntrinsics::_weakCompareAndSetIntPlain: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Relaxed); 437 case vmIntrinsics::_weakCompareAndSetIntAcquire: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Acquire); 438 case vmIntrinsics::_weakCompareAndSetIntRelease: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Release); 439 case vmIntrinsics::_weakCompareAndSetInt: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Volatile); 440 case vmIntrinsics::_weakCompareAndSetLongPlain: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Relaxed); 441 case vmIntrinsics::_weakCompareAndSetLongAcquire: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Acquire); 442 case vmIntrinsics::_weakCompareAndSetLongRelease: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Release); 443 case vmIntrinsics::_weakCompareAndSetLong: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Volatile); 444 445 case vmIntrinsics::_compareAndExchangeReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Volatile); 446 case vmIntrinsics::_compareAndExchangeReferenceAcquire: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Acquire); 447 case vmIntrinsics::_compareAndExchangeReferenceRelease: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Release); 448 case vmIntrinsics::_compareAndExchangeByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Volatile); 449 case vmIntrinsics::_compareAndExchangeByteAcquire: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Acquire); 450 case vmIntrinsics::_compareAndExchangeByteRelease: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Release); 451 case vmIntrinsics::_compareAndExchangeShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Volatile); 452 case vmIntrinsics::_compareAndExchangeShortAcquire: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Acquire); 453 case vmIntrinsics::_compareAndExchangeShortRelease: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Release); 454 case vmIntrinsics::_compareAndExchangeInt: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Volatile); 455 case vmIntrinsics::_compareAndExchangeIntAcquire: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Acquire); 456 case vmIntrinsics::_compareAndExchangeIntRelease: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Release); 457 case vmIntrinsics::_compareAndExchangeLong: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Volatile); 458 case vmIntrinsics::_compareAndExchangeLongAcquire: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Acquire); 459 case vmIntrinsics::_compareAndExchangeLongRelease: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Release); 460 461 case vmIntrinsics::_getAndAddByte: return inline_unsafe_load_store(T_BYTE, LS_get_add, Volatile); 462 case vmIntrinsics::_getAndAddShort: return inline_unsafe_load_store(T_SHORT, LS_get_add, Volatile); 463 case vmIntrinsics::_getAndAddInt: return inline_unsafe_load_store(T_INT, LS_get_add, Volatile); 464 case vmIntrinsics::_getAndAddLong: return inline_unsafe_load_store(T_LONG, LS_get_add, Volatile); 465 466 case vmIntrinsics::_getAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_get_set, Volatile); 467 case vmIntrinsics::_getAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_get_set, Volatile); 468 case vmIntrinsics::_getAndSetInt: return inline_unsafe_load_store(T_INT, LS_get_set, Volatile); 469 case vmIntrinsics::_getAndSetLong: return inline_unsafe_load_store(T_LONG, LS_get_set, Volatile); 470 case vmIntrinsics::_getAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_get_set, Volatile); 471 472 case vmIntrinsics::_loadFence: 473 case vmIntrinsics::_storeFence: 474 case vmIntrinsics::_storeStoreFence: 475 case vmIntrinsics::_fullFence: return inline_unsafe_fence(intrinsic_id()); 476 477 case vmIntrinsics::_onSpinWait: return inline_onspinwait(); 478 479 case vmIntrinsics::_currentCarrierThread: return inline_native_currentCarrierThread(); 480 case vmIntrinsics::_currentThread: return inline_native_currentThread(); 481 case vmIntrinsics::_setCurrentThread: return inline_native_setCurrentThread(); 482 483 case vmIntrinsics::_scopedValueCache: return inline_native_scopedValueCache(); 484 case vmIntrinsics::_setScopedValueCache: return inline_native_setScopedValueCache(); 485 486 case vmIntrinsics::_Continuation_pin: return inline_native_Continuation_pinning(false); 487 case vmIntrinsics::_Continuation_unpin: return inline_native_Continuation_pinning(true); 488 489 #if INCLUDE_JVMTI 490 case vmIntrinsics::_notifyJvmtiVThreadStart: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_start()), 491 "notifyJvmtiStart", true, false); 492 case vmIntrinsics::_notifyJvmtiVThreadEnd: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_end()), 493 "notifyJvmtiEnd", false, true); 494 case vmIntrinsics::_notifyJvmtiVThreadMount: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_mount()), 495 "notifyJvmtiMount", false, false); 496 case vmIntrinsics::_notifyJvmtiVThreadUnmount: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_unmount()), 497 "notifyJvmtiUnmount", false, false); 498 case vmIntrinsics::_notifyJvmtiVThreadHideFrames: return inline_native_notify_jvmti_hide(); 499 case vmIntrinsics::_notifyJvmtiVThreadDisableSuspend: return inline_native_notify_jvmti_sync(); 500 #endif 501 502 #ifdef JFR_HAVE_INTRINSICS 503 case vmIntrinsics::_counterTime: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, JfrTime::time_function()), "counterTime"); 504 case vmIntrinsics::_getEventWriter: return inline_native_getEventWriter(); 505 case vmIntrinsics::_jvm_commit: return inline_native_jvm_commit(); 506 #endif 507 case vmIntrinsics::_currentTimeMillis: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis"); 508 case vmIntrinsics::_nanoTime: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime"); 509 case vmIntrinsics::_writeback0: return inline_unsafe_writeback0(); 510 case vmIntrinsics::_writebackPreSync0: return inline_unsafe_writebackSync0(true); 511 case vmIntrinsics::_writebackPostSync0: return inline_unsafe_writebackSync0(false); 512 case vmIntrinsics::_allocateInstance: return inline_unsafe_allocate(); 513 case vmIntrinsics::_copyMemory: return inline_unsafe_copyMemory(); 514 case vmIntrinsics::_setMemory: return inline_unsafe_setMemory(); 515 case vmIntrinsics::_getLength: return inline_native_getLength(); 516 case vmIntrinsics::_copyOf: return inline_array_copyOf(false); 517 case vmIntrinsics::_copyOfRange: return inline_array_copyOf(true); 518 case vmIntrinsics::_equalsB: return inline_array_equals(StrIntrinsicNode::LL); 519 case vmIntrinsics::_equalsC: return inline_array_equals(StrIntrinsicNode::UU); 520 case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex(T_INT); 521 case vmIntrinsics::_Preconditions_checkLongIndex: return inline_preconditions_checkIndex(T_LONG); 522 case vmIntrinsics::_clone: return inline_native_clone(intrinsic()->is_virtual()); 523 524 case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true); 525 case vmIntrinsics::_newArray: return inline_unsafe_newArray(false); 526 527 case vmIntrinsics::_isAssignableFrom: return inline_native_subtype_check(); 528 529 case vmIntrinsics::_isInstance: 530 case vmIntrinsics::_getModifiers: 531 case vmIntrinsics::_isInterface: 532 case vmIntrinsics::_isArray: 533 case vmIntrinsics::_isPrimitive: 534 case vmIntrinsics::_isHidden: 535 case vmIntrinsics::_getSuperclass: 536 case vmIntrinsics::_getClassAccessFlags: return inline_native_Class_query(intrinsic_id()); 537 538 case vmIntrinsics::_floatToRawIntBits: 539 case vmIntrinsics::_floatToIntBits: 540 case vmIntrinsics::_intBitsToFloat: 541 case vmIntrinsics::_doubleToRawLongBits: 542 case vmIntrinsics::_doubleToLongBits: 543 case vmIntrinsics::_longBitsToDouble: 544 case vmIntrinsics::_floatToFloat16: 545 case vmIntrinsics::_float16ToFloat: return inline_fp_conversions(intrinsic_id()); 546 547 case vmIntrinsics::_floatIsFinite: 548 case vmIntrinsics::_floatIsInfinite: 549 case vmIntrinsics::_doubleIsFinite: 550 case vmIntrinsics::_doubleIsInfinite: return inline_fp_range_check(intrinsic_id()); 551 552 case vmIntrinsics::_numberOfLeadingZeros_i: 553 case vmIntrinsics::_numberOfLeadingZeros_l: 554 case vmIntrinsics::_numberOfTrailingZeros_i: 555 case vmIntrinsics::_numberOfTrailingZeros_l: 556 case vmIntrinsics::_bitCount_i: 557 case vmIntrinsics::_bitCount_l: 558 case vmIntrinsics::_reverse_i: 559 case vmIntrinsics::_reverse_l: 560 case vmIntrinsics::_reverseBytes_i: 561 case vmIntrinsics::_reverseBytes_l: 562 case vmIntrinsics::_reverseBytes_s: 563 case vmIntrinsics::_reverseBytes_c: return inline_number_methods(intrinsic_id()); 564 565 case vmIntrinsics::_compress_i: 566 case vmIntrinsics::_compress_l: 567 case vmIntrinsics::_expand_i: 568 case vmIntrinsics::_expand_l: return inline_bitshuffle_methods(intrinsic_id()); 569 570 case vmIntrinsics::_compareUnsigned_i: 571 case vmIntrinsics::_compareUnsigned_l: return inline_compare_unsigned(intrinsic_id()); 572 573 case vmIntrinsics::_divideUnsigned_i: 574 case vmIntrinsics::_divideUnsigned_l: 575 case vmIntrinsics::_remainderUnsigned_i: 576 case vmIntrinsics::_remainderUnsigned_l: return inline_divmod_methods(intrinsic_id()); 577 578 case vmIntrinsics::_getCallerClass: return inline_native_Reflection_getCallerClass(); 579 580 case vmIntrinsics::_Reference_get: return inline_reference_get(); 581 case vmIntrinsics::_Reference_refersTo0: return inline_reference_refersTo0(false); 582 case vmIntrinsics::_PhantomReference_refersTo0: return inline_reference_refersTo0(true); 583 584 case vmIntrinsics::_Class_cast: return inline_Class_cast(); 585 586 case vmIntrinsics::_aescrypt_encryptBlock: 587 case vmIntrinsics::_aescrypt_decryptBlock: return inline_aescrypt_Block(intrinsic_id()); 588 589 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 590 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 591 return inline_cipherBlockChaining_AESCrypt(intrinsic_id()); 592 593 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 594 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 595 return inline_electronicCodeBook_AESCrypt(intrinsic_id()); 596 597 case vmIntrinsics::_counterMode_AESCrypt: 598 return inline_counterMode_AESCrypt(intrinsic_id()); 599 600 case vmIntrinsics::_galoisCounterMode_AESCrypt: 601 return inline_galoisCounterMode_AESCrypt(); 602 603 case vmIntrinsics::_md5_implCompress: 604 case vmIntrinsics::_sha_implCompress: 605 case vmIntrinsics::_sha2_implCompress: 606 case vmIntrinsics::_sha5_implCompress: 607 case vmIntrinsics::_sha3_implCompress: 608 return inline_digestBase_implCompress(intrinsic_id()); 609 610 case vmIntrinsics::_digestBase_implCompressMB: 611 return inline_digestBase_implCompressMB(predicate); 612 613 case vmIntrinsics::_multiplyToLen: 614 return inline_multiplyToLen(); 615 616 case vmIntrinsics::_squareToLen: 617 return inline_squareToLen(); 618 619 case vmIntrinsics::_mulAdd: 620 return inline_mulAdd(); 621 622 case vmIntrinsics::_montgomeryMultiply: 623 return inline_montgomeryMultiply(); 624 case vmIntrinsics::_montgomerySquare: 625 return inline_montgomerySquare(); 626 627 case vmIntrinsics::_bigIntegerRightShiftWorker: 628 return inline_bigIntegerShift(true); 629 case vmIntrinsics::_bigIntegerLeftShiftWorker: 630 return inline_bigIntegerShift(false); 631 632 case vmIntrinsics::_vectorizedMismatch: 633 return inline_vectorizedMismatch(); 634 635 case vmIntrinsics::_ghash_processBlocks: 636 return inline_ghash_processBlocks(); 637 case vmIntrinsics::_chacha20Block: 638 return inline_chacha20Block(); 639 case vmIntrinsics::_base64_encodeBlock: 640 return inline_base64_encodeBlock(); 641 case vmIntrinsics::_base64_decodeBlock: 642 return inline_base64_decodeBlock(); 643 case vmIntrinsics::_poly1305_processBlocks: 644 return inline_poly1305_processBlocks(); 645 case vmIntrinsics::_intpoly_montgomeryMult_P256: 646 return inline_intpoly_montgomeryMult_P256(); 647 case vmIntrinsics::_intpoly_assign: 648 return inline_intpoly_assign(); 649 case vmIntrinsics::_encodeISOArray: 650 case vmIntrinsics::_encodeByteISOArray: 651 return inline_encodeISOArray(false); 652 case vmIntrinsics::_encodeAsciiArray: 653 return inline_encodeISOArray(true); 654 655 case vmIntrinsics::_updateCRC32: 656 return inline_updateCRC32(); 657 case vmIntrinsics::_updateBytesCRC32: 658 return inline_updateBytesCRC32(); 659 case vmIntrinsics::_updateByteBufferCRC32: 660 return inline_updateByteBufferCRC32(); 661 662 case vmIntrinsics::_updateBytesCRC32C: 663 return inline_updateBytesCRC32C(); 664 case vmIntrinsics::_updateDirectByteBufferCRC32C: 665 return inline_updateDirectByteBufferCRC32C(); 666 667 case vmIntrinsics::_updateBytesAdler32: 668 return inline_updateBytesAdler32(); 669 case vmIntrinsics::_updateByteBufferAdler32: 670 return inline_updateByteBufferAdler32(); 671 672 case vmIntrinsics::_profileBoolean: 673 return inline_profileBoolean(); 674 case vmIntrinsics::_isCompileConstant: 675 return inline_isCompileConstant(); 676 677 case vmIntrinsics::_countPositives: 678 return inline_countPositives(); 679 680 case vmIntrinsics::_fmaD: 681 case vmIntrinsics::_fmaF: 682 return inline_fma(intrinsic_id()); 683 684 case vmIntrinsics::_isDigit: 685 case vmIntrinsics::_isLowerCase: 686 case vmIntrinsics::_isUpperCase: 687 case vmIntrinsics::_isWhitespace: 688 return inline_character_compare(intrinsic_id()); 689 690 case vmIntrinsics::_min: 691 case vmIntrinsics::_max: 692 case vmIntrinsics::_min_strict: 693 case vmIntrinsics::_max_strict: 694 return inline_min_max(intrinsic_id()); 695 696 case vmIntrinsics::_maxF: 697 case vmIntrinsics::_minF: 698 case vmIntrinsics::_maxD: 699 case vmIntrinsics::_minD: 700 case vmIntrinsics::_maxF_strict: 701 case vmIntrinsics::_minF_strict: 702 case vmIntrinsics::_maxD_strict: 703 case vmIntrinsics::_minD_strict: 704 return inline_fp_min_max(intrinsic_id()); 705 706 case vmIntrinsics::_VectorUnaryOp: 707 return inline_vector_nary_operation(1); 708 case vmIntrinsics::_VectorBinaryOp: 709 return inline_vector_nary_operation(2); 710 case vmIntrinsics::_VectorTernaryOp: 711 return inline_vector_nary_operation(3); 712 case vmIntrinsics::_VectorFromBitsCoerced: 713 return inline_vector_frombits_coerced(); 714 case vmIntrinsics::_VectorShuffleIota: 715 return inline_vector_shuffle_iota(); 716 case vmIntrinsics::_VectorMaskOp: 717 return inline_vector_mask_operation(); 718 case vmIntrinsics::_VectorShuffleToVector: 719 return inline_vector_shuffle_to_vector(); 720 case vmIntrinsics::_VectorWrapShuffleIndexes: 721 return inline_vector_wrap_shuffle_indexes(); 722 case vmIntrinsics::_VectorLoadOp: 723 return inline_vector_mem_operation(/*is_store=*/false); 724 case vmIntrinsics::_VectorLoadMaskedOp: 725 return inline_vector_mem_masked_operation(/*is_store*/false); 726 case vmIntrinsics::_VectorStoreOp: 727 return inline_vector_mem_operation(/*is_store=*/true); 728 case vmIntrinsics::_VectorStoreMaskedOp: 729 return inline_vector_mem_masked_operation(/*is_store=*/true); 730 case vmIntrinsics::_VectorGatherOp: 731 return inline_vector_gather_scatter(/*is_scatter*/ false); 732 case vmIntrinsics::_VectorScatterOp: 733 return inline_vector_gather_scatter(/*is_scatter*/ true); 734 case vmIntrinsics::_VectorReductionCoerced: 735 return inline_vector_reduction(); 736 case vmIntrinsics::_VectorTest: 737 return inline_vector_test(); 738 case vmIntrinsics::_VectorBlend: 739 return inline_vector_blend(); 740 case vmIntrinsics::_VectorRearrange: 741 return inline_vector_rearrange(); 742 case vmIntrinsics::_VectorSelectFrom: 743 return inline_vector_select_from(); 744 case vmIntrinsics::_VectorCompare: 745 return inline_vector_compare(); 746 case vmIntrinsics::_VectorBroadcastInt: 747 return inline_vector_broadcast_int(); 748 case vmIntrinsics::_VectorConvert: 749 return inline_vector_convert(); 750 case vmIntrinsics::_VectorInsert: 751 return inline_vector_insert(); 752 case vmIntrinsics::_VectorExtract: 753 return inline_vector_extract(); 754 case vmIntrinsics::_VectorCompressExpand: 755 return inline_vector_compress_expand(); 756 case vmIntrinsics::_IndexVector: 757 return inline_index_vector(); 758 case vmIntrinsics::_IndexPartiallyInUpperRange: 759 return inline_index_partially_in_upper_range(); 760 761 case vmIntrinsics::_getObjectSize: 762 return inline_getObjectSize(); 763 764 case vmIntrinsics::_blackhole: 765 return inline_blackhole(); 766 767 default: 768 // If you get here, it may be that someone has added a new intrinsic 769 // to the list in vmIntrinsics.hpp without implementing it here. 770 #ifndef PRODUCT 771 if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) { 772 tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)", 773 vmIntrinsics::name_at(intrinsic_id()), vmIntrinsics::as_int(intrinsic_id())); 774 } 775 #endif 776 return false; 777 } 778 } 779 780 Node* LibraryCallKit::try_to_predicate(int predicate) { 781 if (!jvms()->has_method()) { 782 // Root JVMState has a null method. 783 assert(map()->memory()->Opcode() == Op_Parm, ""); 784 // Insert the memory aliasing node 785 set_all_memory(reset_memory()); 786 } 787 assert(merged_memory(), ""); 788 789 switch (intrinsic_id()) { 790 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 791 return inline_cipherBlockChaining_AESCrypt_predicate(false); 792 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 793 return inline_cipherBlockChaining_AESCrypt_predicate(true); 794 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 795 return inline_electronicCodeBook_AESCrypt_predicate(false); 796 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 797 return inline_electronicCodeBook_AESCrypt_predicate(true); 798 case vmIntrinsics::_counterMode_AESCrypt: 799 return inline_counterMode_AESCrypt_predicate(); 800 case vmIntrinsics::_digestBase_implCompressMB: 801 return inline_digestBase_implCompressMB_predicate(predicate); 802 case vmIntrinsics::_galoisCounterMode_AESCrypt: 803 return inline_galoisCounterMode_AESCrypt_predicate(); 804 805 default: 806 // If you get here, it may be that someone has added a new intrinsic 807 // to the list in vmIntrinsics.hpp without implementing it here. 808 #ifndef PRODUCT 809 if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) { 810 tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)", 811 vmIntrinsics::name_at(intrinsic_id()), vmIntrinsics::as_int(intrinsic_id())); 812 } 813 #endif 814 Node* slow_ctl = control(); 815 set_control(top()); // No fast path intrinsic 816 return slow_ctl; 817 } 818 } 819 820 //------------------------------set_result------------------------------- 821 // Helper function for finishing intrinsics. 822 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) { 823 record_for_igvn(region); 824 set_control(_gvn.transform(region)); 825 set_result( _gvn.transform(value)); 826 assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity"); 827 } 828 829 //------------------------------generate_guard--------------------------- 830 // Helper function for generating guarded fast-slow graph structures. 831 // The given 'test', if true, guards a slow path. If the test fails 832 // then a fast path can be taken. (We generally hope it fails.) 833 // In all cases, GraphKit::control() is updated to the fast path. 834 // The returned value represents the control for the slow path. 835 // The return value is never 'top'; it is either a valid control 836 // or null if it is obvious that the slow path can never be taken. 837 // Also, if region and the slow control are not null, the slow edge 838 // is appended to the region. 839 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) { 840 if (stopped()) { 841 // Already short circuited. 842 return nullptr; 843 } 844 845 // Build an if node and its projections. 846 // If test is true we take the slow path, which we assume is uncommon. 847 if (_gvn.type(test) == TypeInt::ZERO) { 848 // The slow branch is never taken. No need to build this guard. 849 return nullptr; 850 } 851 852 IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN); 853 854 Node* if_slow = _gvn.transform(new IfTrueNode(iff)); 855 if (if_slow == top()) { 856 // The slow branch is never taken. No need to build this guard. 857 return nullptr; 858 } 859 860 if (region != nullptr) 861 region->add_req(if_slow); 862 863 Node* if_fast = _gvn.transform(new IfFalseNode(iff)); 864 set_control(if_fast); 865 866 return if_slow; 867 } 868 869 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) { 870 return generate_guard(test, region, PROB_UNLIKELY_MAG(3)); 871 } 872 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) { 873 return generate_guard(test, region, PROB_FAIR); 874 } 875 876 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region, 877 Node* *pos_index) { 878 if (stopped()) 879 return nullptr; // already stopped 880 if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint] 881 return nullptr; // index is already adequately typed 882 Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0))); 883 Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt)); 884 Node* is_neg = generate_guard(bol_lt, region, PROB_MIN); 885 if (is_neg != nullptr && pos_index != nullptr) { 886 // Emulate effect of Parse::adjust_map_after_if. 887 Node* ccast = new CastIINode(control(), index, TypeInt::POS); 888 (*pos_index) = _gvn.transform(ccast); 889 } 890 return is_neg; 891 } 892 893 // Make sure that 'position' is a valid limit index, in [0..length]. 894 // There are two equivalent plans for checking this: 895 // A. (offset + copyLength) unsigned<= arrayLength 896 // B. offset <= (arrayLength - copyLength) 897 // We require that all of the values above, except for the sum and 898 // difference, are already known to be non-negative. 899 // Plan A is robust in the face of overflow, if offset and copyLength 900 // are both hugely positive. 901 // 902 // Plan B is less direct and intuitive, but it does not overflow at 903 // all, since the difference of two non-negatives is always 904 // representable. Whenever Java methods must perform the equivalent 905 // check they generally use Plan B instead of Plan A. 906 // For the moment we use Plan A. 907 inline Node* LibraryCallKit::generate_limit_guard(Node* offset, 908 Node* subseq_length, 909 Node* array_length, 910 RegionNode* region) { 911 if (stopped()) 912 return nullptr; // already stopped 913 bool zero_offset = _gvn.type(offset) == TypeInt::ZERO; 914 if (zero_offset && subseq_length->eqv_uncast(array_length)) 915 return nullptr; // common case of whole-array copy 916 Node* last = subseq_length; 917 if (!zero_offset) // last += offset 918 last = _gvn.transform(new AddINode(last, offset)); 919 Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last)); 920 Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt)); 921 Node* is_over = generate_guard(bol_lt, region, PROB_MIN); 922 return is_over; 923 } 924 925 // Emit range checks for the given String.value byte array 926 void LibraryCallKit::generate_string_range_check(Node* array, Node* offset, Node* count, bool char_count) { 927 if (stopped()) { 928 return; // already stopped 929 } 930 RegionNode* bailout = new RegionNode(1); 931 record_for_igvn(bailout); 932 if (char_count) { 933 // Convert char count to byte count 934 count = _gvn.transform(new LShiftINode(count, intcon(1))); 935 } 936 937 // Offset and count must not be negative 938 generate_negative_guard(offset, bailout); 939 generate_negative_guard(count, bailout); 940 // Offset + count must not exceed length of array 941 generate_limit_guard(offset, count, load_array_length(array), bailout); 942 943 if (bailout->req() > 1) { 944 PreserveJVMState pjvms(this); 945 set_control(_gvn.transform(bailout)); 946 uncommon_trap(Deoptimization::Reason_intrinsic, 947 Deoptimization::Action_maybe_recompile); 948 } 949 } 950 951 Node* LibraryCallKit::current_thread_helper(Node*& tls_output, ByteSize handle_offset, 952 bool is_immutable) { 953 ciKlass* thread_klass = env()->Thread_klass(); 954 const Type* thread_type 955 = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull); 956 957 Node* thread = _gvn.transform(new ThreadLocalNode()); 958 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(handle_offset)); 959 tls_output = thread; 960 961 Node* thread_obj_handle 962 = (is_immutable 963 ? LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(), 964 TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered) 965 : make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered)); 966 thread_obj_handle = _gvn.transform(thread_obj_handle); 967 968 DecoratorSet decorators = IN_NATIVE; 969 if (is_immutable) { 970 decorators |= C2_IMMUTABLE_MEMORY; 971 } 972 return access_load(thread_obj_handle, thread_type, T_OBJECT, decorators); 973 } 974 975 //--------------------------generate_current_thread-------------------- 976 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) { 977 return current_thread_helper(tls_output, JavaThread::threadObj_offset(), 978 /*is_immutable*/false); 979 } 980 981 //--------------------------generate_virtual_thread-------------------- 982 Node* LibraryCallKit::generate_virtual_thread(Node* tls_output) { 983 return current_thread_helper(tls_output, JavaThread::vthread_offset(), 984 !C->method()->changes_current_thread()); 985 } 986 987 //------------------------------make_string_method_node------------------------ 988 // Helper method for String intrinsic functions. This version is called with 989 // str1 and str2 pointing to byte[] nodes containing Latin1 or UTF16 encoded 990 // characters (depending on 'is_byte'). cnt1 and cnt2 are pointing to Int nodes 991 // containing the lengths of str1 and str2. 992 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae) { 993 Node* result = nullptr; 994 switch (opcode) { 995 case Op_StrIndexOf: 996 result = new StrIndexOfNode(control(), memory(TypeAryPtr::BYTES), 997 str1_start, cnt1, str2_start, cnt2, ae); 998 break; 999 case Op_StrComp: 1000 result = new StrCompNode(control(), memory(TypeAryPtr::BYTES), 1001 str1_start, cnt1, str2_start, cnt2, ae); 1002 break; 1003 case Op_StrEquals: 1004 // We already know that cnt1 == cnt2 here (checked in 'inline_string_equals'). 1005 // Use the constant length if there is one because optimized match rule may exist. 1006 result = new StrEqualsNode(control(), memory(TypeAryPtr::BYTES), 1007 str1_start, str2_start, cnt2->is_Con() ? cnt2 : cnt1, ae); 1008 break; 1009 default: 1010 ShouldNotReachHere(); 1011 return nullptr; 1012 } 1013 1014 // All these intrinsics have checks. 1015 C->set_has_split_ifs(true); // Has chance for split-if optimization 1016 clear_upper_avx(); 1017 1018 return _gvn.transform(result); 1019 } 1020 1021 //------------------------------inline_string_compareTo------------------------ 1022 bool LibraryCallKit::inline_string_compareTo(StrIntrinsicNode::ArgEnc ae) { 1023 Node* arg1 = argument(0); 1024 Node* arg2 = argument(1); 1025 1026 arg1 = must_be_not_null(arg1, true); 1027 arg2 = must_be_not_null(arg2, true); 1028 1029 // Get start addr and length of first argument 1030 Node* arg1_start = array_element_address(arg1, intcon(0), T_BYTE); 1031 Node* arg1_cnt = load_array_length(arg1); 1032 1033 // Get start addr and length of second argument 1034 Node* arg2_start = array_element_address(arg2, intcon(0), T_BYTE); 1035 Node* arg2_cnt = load_array_length(arg2); 1036 1037 Node* result = make_string_method_node(Op_StrComp, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae); 1038 set_result(result); 1039 return true; 1040 } 1041 1042 //------------------------------inline_string_equals------------------------ 1043 bool LibraryCallKit::inline_string_equals(StrIntrinsicNode::ArgEnc ae) { 1044 Node* arg1 = argument(0); 1045 Node* arg2 = argument(1); 1046 1047 // paths (plus control) merge 1048 RegionNode* region = new RegionNode(3); 1049 Node* phi = new PhiNode(region, TypeInt::BOOL); 1050 1051 if (!stopped()) { 1052 1053 arg1 = must_be_not_null(arg1, true); 1054 arg2 = must_be_not_null(arg2, true); 1055 1056 // Get start addr and length of first argument 1057 Node* arg1_start = array_element_address(arg1, intcon(0), T_BYTE); 1058 Node* arg1_cnt = load_array_length(arg1); 1059 1060 // Get start addr and length of second argument 1061 Node* arg2_start = array_element_address(arg2, intcon(0), T_BYTE); 1062 Node* arg2_cnt = load_array_length(arg2); 1063 1064 // Check for arg1_cnt != arg2_cnt 1065 Node* cmp = _gvn.transform(new CmpINode(arg1_cnt, arg2_cnt)); 1066 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne)); 1067 Node* if_ne = generate_slow_guard(bol, nullptr); 1068 if (if_ne != nullptr) { 1069 phi->init_req(2, intcon(0)); 1070 region->init_req(2, if_ne); 1071 } 1072 1073 // Check for count == 0 is done by assembler code for StrEquals. 1074 1075 if (!stopped()) { 1076 Node* equals = make_string_method_node(Op_StrEquals, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae); 1077 phi->init_req(1, equals); 1078 region->init_req(1, control()); 1079 } 1080 } 1081 1082 // post merge 1083 set_control(_gvn.transform(region)); 1084 record_for_igvn(region); 1085 1086 set_result(_gvn.transform(phi)); 1087 return true; 1088 } 1089 1090 //------------------------------inline_array_equals---------------------------- 1091 bool LibraryCallKit::inline_array_equals(StrIntrinsicNode::ArgEnc ae) { 1092 assert(ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::LL, "unsupported array types"); 1093 Node* arg1 = argument(0); 1094 Node* arg2 = argument(1); 1095 1096 const TypeAryPtr* mtype = (ae == StrIntrinsicNode::UU) ? TypeAryPtr::CHARS : TypeAryPtr::BYTES; 1097 set_result(_gvn.transform(new AryEqNode(control(), memory(mtype), arg1, arg2, ae))); 1098 clear_upper_avx(); 1099 1100 return true; 1101 } 1102 1103 1104 //------------------------------inline_countPositives------------------------------ 1105 bool LibraryCallKit::inline_countPositives() { 1106 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1107 return false; 1108 } 1109 1110 assert(callee()->signature()->size() == 3, "countPositives has 3 parameters"); 1111 // no receiver since it is static method 1112 Node* ba = argument(0); 1113 Node* offset = argument(1); 1114 Node* len = argument(2); 1115 1116 ba = must_be_not_null(ba, true); 1117 1118 // Range checks 1119 generate_string_range_check(ba, offset, len, false); 1120 if (stopped()) { 1121 return true; 1122 } 1123 Node* ba_start = array_element_address(ba, offset, T_BYTE); 1124 Node* result = new CountPositivesNode(control(), memory(TypeAryPtr::BYTES), ba_start, len); 1125 set_result(_gvn.transform(result)); 1126 clear_upper_avx(); 1127 return true; 1128 } 1129 1130 bool LibraryCallKit::inline_preconditions_checkIndex(BasicType bt) { 1131 Node* index = argument(0); 1132 Node* length = bt == T_INT ? argument(1) : argument(2); 1133 if (too_many_traps(Deoptimization::Reason_intrinsic) || too_many_traps(Deoptimization::Reason_range_check)) { 1134 return false; 1135 } 1136 1137 // check that length is positive 1138 Node* len_pos_cmp = _gvn.transform(CmpNode::make(length, integercon(0, bt), bt)); 1139 Node* len_pos_bol = _gvn.transform(new BoolNode(len_pos_cmp, BoolTest::ge)); 1140 1141 { 1142 BuildCutout unless(this, len_pos_bol, PROB_MAX); 1143 uncommon_trap(Deoptimization::Reason_intrinsic, 1144 Deoptimization::Action_make_not_entrant); 1145 } 1146 1147 if (stopped()) { 1148 // Length is known to be always negative during compilation and the IR graph so far constructed is good so return success 1149 return true; 1150 } 1151 1152 // length is now known positive, add a cast node to make this explicit 1153 jlong upper_bound = _gvn.type(length)->is_integer(bt)->hi_as_long(); 1154 Node* casted_length = ConstraintCastNode::make_cast_for_basic_type( 1155 control(), length, TypeInteger::make(0, upper_bound, Type::WidenMax, bt), 1156 ConstraintCastNode::RegularDependency, bt); 1157 casted_length = _gvn.transform(casted_length); 1158 replace_in_map(length, casted_length); 1159 length = casted_length; 1160 1161 // Use an unsigned comparison for the range check itself 1162 Node* rc_cmp = _gvn.transform(CmpNode::make(index, length, bt, true)); 1163 BoolTest::mask btest = BoolTest::lt; 1164 Node* rc_bool = _gvn.transform(new BoolNode(rc_cmp, btest)); 1165 RangeCheckNode* rc = new RangeCheckNode(control(), rc_bool, PROB_MAX, COUNT_UNKNOWN); 1166 _gvn.set_type(rc, rc->Value(&_gvn)); 1167 if (!rc_bool->is_Con()) { 1168 record_for_igvn(rc); 1169 } 1170 set_control(_gvn.transform(new IfTrueNode(rc))); 1171 { 1172 PreserveJVMState pjvms(this); 1173 set_control(_gvn.transform(new IfFalseNode(rc))); 1174 uncommon_trap(Deoptimization::Reason_range_check, 1175 Deoptimization::Action_make_not_entrant); 1176 } 1177 1178 if (stopped()) { 1179 // Range check is known to always fail during compilation and the IR graph so far constructed is good so return success 1180 return true; 1181 } 1182 1183 // index is now known to be >= 0 and < length, cast it 1184 Node* result = ConstraintCastNode::make_cast_for_basic_type( 1185 control(), index, TypeInteger::make(0, upper_bound, Type::WidenMax, bt), 1186 ConstraintCastNode::RegularDependency, bt); 1187 result = _gvn.transform(result); 1188 set_result(result); 1189 replace_in_map(index, result); 1190 return true; 1191 } 1192 1193 //------------------------------inline_string_indexOf------------------------ 1194 bool LibraryCallKit::inline_string_indexOf(StrIntrinsicNode::ArgEnc ae) { 1195 if (!Matcher::match_rule_supported(Op_StrIndexOf)) { 1196 return false; 1197 } 1198 Node* src = argument(0); 1199 Node* tgt = argument(1); 1200 1201 // Make the merge point 1202 RegionNode* result_rgn = new RegionNode(4); 1203 Node* result_phi = new PhiNode(result_rgn, TypeInt::INT); 1204 1205 src = must_be_not_null(src, true); 1206 tgt = must_be_not_null(tgt, true); 1207 1208 // Get start addr and length of source string 1209 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 1210 Node* src_count = load_array_length(src); 1211 1212 // Get start addr and length of substring 1213 Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE); 1214 Node* tgt_count = load_array_length(tgt); 1215 1216 Node* result = nullptr; 1217 bool call_opt_stub = (StubRoutines::_string_indexof_array[ae] != nullptr); 1218 1219 if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) { 1220 // Divide src size by 2 if String is UTF16 encoded 1221 src_count = _gvn.transform(new RShiftINode(src_count, intcon(1))); 1222 } 1223 if (ae == StrIntrinsicNode::UU) { 1224 // Divide substring size by 2 if String is UTF16 encoded 1225 tgt_count = _gvn.transform(new RShiftINode(tgt_count, intcon(1))); 1226 } 1227 1228 if (call_opt_stub) { 1229 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::string_IndexOf_Type(), 1230 StubRoutines::_string_indexof_array[ae], 1231 "stringIndexOf", TypePtr::BOTTOM, src_start, 1232 src_count, tgt_start, tgt_count); 1233 result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 1234 } else { 1235 result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, 1236 result_rgn, result_phi, ae); 1237 } 1238 if (result != nullptr) { 1239 result_phi->init_req(3, result); 1240 result_rgn->init_req(3, control()); 1241 } 1242 set_control(_gvn.transform(result_rgn)); 1243 record_for_igvn(result_rgn); 1244 set_result(_gvn.transform(result_phi)); 1245 1246 return true; 1247 } 1248 1249 //-----------------------------inline_string_indexOfI----------------------- 1250 bool LibraryCallKit::inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae) { 1251 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1252 return false; 1253 } 1254 if (!Matcher::match_rule_supported(Op_StrIndexOf)) { 1255 return false; 1256 } 1257 1258 assert(callee()->signature()->size() == 5, "String.indexOf() has 5 arguments"); 1259 Node* src = argument(0); // byte[] 1260 Node* src_count = argument(1); // char count 1261 Node* tgt = argument(2); // byte[] 1262 Node* tgt_count = argument(3); // char count 1263 Node* from_index = argument(4); // char index 1264 1265 src = must_be_not_null(src, true); 1266 tgt = must_be_not_null(tgt, true); 1267 1268 // Multiply byte array index by 2 if String is UTF16 encoded 1269 Node* src_offset = (ae == StrIntrinsicNode::LL) ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1))); 1270 src_count = _gvn.transform(new SubINode(src_count, from_index)); 1271 Node* src_start = array_element_address(src, src_offset, T_BYTE); 1272 Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE); 1273 1274 // Range checks 1275 generate_string_range_check(src, src_offset, src_count, ae != StrIntrinsicNode::LL); 1276 generate_string_range_check(tgt, intcon(0), tgt_count, ae == StrIntrinsicNode::UU); 1277 if (stopped()) { 1278 return true; 1279 } 1280 1281 RegionNode* region = new RegionNode(5); 1282 Node* phi = new PhiNode(region, TypeInt::INT); 1283 Node* result = nullptr; 1284 1285 bool call_opt_stub = (StubRoutines::_string_indexof_array[ae] != nullptr); 1286 1287 if (call_opt_stub) { 1288 assert(arrayOopDesc::base_offset_in_bytes(T_BYTE) >= 16, "Needed for indexOf"); 1289 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::string_IndexOf_Type(), 1290 StubRoutines::_string_indexof_array[ae], 1291 "stringIndexOf", TypePtr::BOTTOM, src_start, 1292 src_count, tgt_start, tgt_count); 1293 result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 1294 } else { 1295 result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, 1296 region, phi, ae); 1297 } 1298 if (result != nullptr) { 1299 // The result is index relative to from_index if substring was found, -1 otherwise. 1300 // Generate code which will fold into cmove. 1301 Node* cmp = _gvn.transform(new CmpINode(result, intcon(0))); 1302 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt)); 1303 1304 Node* if_lt = generate_slow_guard(bol, nullptr); 1305 if (if_lt != nullptr) { 1306 // result == -1 1307 phi->init_req(3, result); 1308 region->init_req(3, if_lt); 1309 } 1310 if (!stopped()) { 1311 result = _gvn.transform(new AddINode(result, from_index)); 1312 phi->init_req(4, result); 1313 region->init_req(4, control()); 1314 } 1315 } 1316 1317 set_control(_gvn.transform(region)); 1318 record_for_igvn(region); 1319 set_result(_gvn.transform(phi)); 1320 clear_upper_avx(); 1321 1322 return true; 1323 } 1324 1325 // Create StrIndexOfNode with fast path checks 1326 Node* LibraryCallKit::make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count, 1327 RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae) { 1328 // Check for substr count > string count 1329 Node* cmp = _gvn.transform(new CmpINode(tgt_count, src_count)); 1330 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt)); 1331 Node* if_gt = generate_slow_guard(bol, nullptr); 1332 if (if_gt != nullptr) { 1333 phi->init_req(1, intcon(-1)); 1334 region->init_req(1, if_gt); 1335 } 1336 if (!stopped()) { 1337 // Check for substr count == 0 1338 cmp = _gvn.transform(new CmpINode(tgt_count, intcon(0))); 1339 bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 1340 Node* if_zero = generate_slow_guard(bol, nullptr); 1341 if (if_zero != nullptr) { 1342 phi->init_req(2, intcon(0)); 1343 region->init_req(2, if_zero); 1344 } 1345 } 1346 if (!stopped()) { 1347 return make_string_method_node(Op_StrIndexOf, src_start, src_count, tgt_start, tgt_count, ae); 1348 } 1349 return nullptr; 1350 } 1351 1352 //-----------------------------inline_string_indexOfChar----------------------- 1353 bool LibraryCallKit::inline_string_indexOfChar(StrIntrinsicNode::ArgEnc ae) { 1354 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1355 return false; 1356 } 1357 if (!Matcher::match_rule_supported(Op_StrIndexOfChar)) { 1358 return false; 1359 } 1360 assert(callee()->signature()->size() == 4, "String.indexOfChar() has 4 arguments"); 1361 Node* src = argument(0); // byte[] 1362 Node* int_ch = argument(1); 1363 Node* from_index = argument(2); 1364 Node* max = argument(3); 1365 1366 src = must_be_not_null(src, true); 1367 1368 Node* src_offset = ae == StrIntrinsicNode::L ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1))); 1369 Node* src_start = array_element_address(src, src_offset, T_BYTE); 1370 Node* src_count = _gvn.transform(new SubINode(max, from_index)); 1371 1372 // Range checks 1373 generate_string_range_check(src, src_offset, src_count, ae == StrIntrinsicNode::U); 1374 1375 // Check for int_ch >= 0 1376 Node* int_ch_cmp = _gvn.transform(new CmpINode(int_ch, intcon(0))); 1377 Node* int_ch_bol = _gvn.transform(new BoolNode(int_ch_cmp, BoolTest::ge)); 1378 { 1379 BuildCutout unless(this, int_ch_bol, PROB_MAX); 1380 uncommon_trap(Deoptimization::Reason_intrinsic, 1381 Deoptimization::Action_maybe_recompile); 1382 } 1383 if (stopped()) { 1384 return true; 1385 } 1386 1387 RegionNode* region = new RegionNode(3); 1388 Node* phi = new PhiNode(region, TypeInt::INT); 1389 1390 Node* result = new StrIndexOfCharNode(control(), memory(TypeAryPtr::BYTES), src_start, src_count, int_ch, ae); 1391 C->set_has_split_ifs(true); // Has chance for split-if optimization 1392 _gvn.transform(result); 1393 1394 Node* cmp = _gvn.transform(new CmpINode(result, intcon(0))); 1395 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt)); 1396 1397 Node* if_lt = generate_slow_guard(bol, nullptr); 1398 if (if_lt != nullptr) { 1399 // result == -1 1400 phi->init_req(2, result); 1401 region->init_req(2, if_lt); 1402 } 1403 if (!stopped()) { 1404 result = _gvn.transform(new AddINode(result, from_index)); 1405 phi->init_req(1, result); 1406 region->init_req(1, control()); 1407 } 1408 set_control(_gvn.transform(region)); 1409 record_for_igvn(region); 1410 set_result(_gvn.transform(phi)); 1411 clear_upper_avx(); 1412 1413 return true; 1414 } 1415 //---------------------------inline_string_copy--------------------- 1416 // compressIt == true --> generate a compressed copy operation (compress char[]/byte[] to byte[]) 1417 // int StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) 1418 // int StringUTF16.compress(byte[] src, int srcOff, byte[] dst, int dstOff, int len) 1419 // compressIt == false --> generate an inflated copy operation (inflate byte[] to char[]/byte[]) 1420 // void StringLatin1.inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len) 1421 // void StringLatin1.inflate(byte[] src, int srcOff, byte[] dst, int dstOff, int len) 1422 bool LibraryCallKit::inline_string_copy(bool compress) { 1423 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1424 return false; 1425 } 1426 int nargs = 5; // 2 oops, 3 ints 1427 assert(callee()->signature()->size() == nargs, "string copy has 5 arguments"); 1428 1429 Node* src = argument(0); 1430 Node* src_offset = argument(1); 1431 Node* dst = argument(2); 1432 Node* dst_offset = argument(3); 1433 Node* length = argument(4); 1434 1435 // Check for allocation before we add nodes that would confuse 1436 // tightly_coupled_allocation() 1437 AllocateArrayNode* alloc = tightly_coupled_allocation(dst); 1438 1439 // Figure out the size and type of the elements we will be copying. 1440 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 1441 const TypeAryPtr* dst_type = dst->Value(&_gvn)->isa_aryptr(); 1442 if (src_type == nullptr || dst_type == nullptr) { 1443 return false; 1444 } 1445 BasicType src_elem = src_type->elem()->array_element_basic_type(); 1446 BasicType dst_elem = dst_type->elem()->array_element_basic_type(); 1447 assert((compress && dst_elem == T_BYTE && (src_elem == T_BYTE || src_elem == T_CHAR)) || 1448 (!compress && src_elem == T_BYTE && (dst_elem == T_BYTE || dst_elem == T_CHAR)), 1449 "Unsupported array types for inline_string_copy"); 1450 1451 src = must_be_not_null(src, true); 1452 dst = must_be_not_null(dst, true); 1453 1454 // Convert char[] offsets to byte[] offsets 1455 bool convert_src = (compress && src_elem == T_BYTE); 1456 bool convert_dst = (!compress && dst_elem == T_BYTE); 1457 if (convert_src) { 1458 src_offset = _gvn.transform(new LShiftINode(src_offset, intcon(1))); 1459 } else if (convert_dst) { 1460 dst_offset = _gvn.transform(new LShiftINode(dst_offset, intcon(1))); 1461 } 1462 1463 // Range checks 1464 generate_string_range_check(src, src_offset, length, convert_src); 1465 generate_string_range_check(dst, dst_offset, length, convert_dst); 1466 if (stopped()) { 1467 return true; 1468 } 1469 1470 Node* src_start = array_element_address(src, src_offset, src_elem); 1471 Node* dst_start = array_element_address(dst, dst_offset, dst_elem); 1472 // 'src_start' points to src array + scaled offset 1473 // 'dst_start' points to dst array + scaled offset 1474 Node* count = nullptr; 1475 if (compress) { 1476 count = compress_string(src_start, TypeAryPtr::get_array_body_type(src_elem), dst_start, length); 1477 } else { 1478 inflate_string(src_start, dst_start, TypeAryPtr::get_array_body_type(dst_elem), length); 1479 } 1480 1481 if (alloc != nullptr) { 1482 if (alloc->maybe_set_complete(&_gvn)) { 1483 // "You break it, you buy it." 1484 InitializeNode* init = alloc->initialization(); 1485 assert(init->is_complete(), "we just did this"); 1486 init->set_complete_with_arraycopy(); 1487 assert(dst->is_CheckCastPP(), "sanity"); 1488 assert(dst->in(0)->in(0) == init, "dest pinned"); 1489 } 1490 // Do not let stores that initialize this object be reordered with 1491 // a subsequent store that would make this object accessible by 1492 // other threads. 1493 // Record what AllocateNode this StoreStore protects so that 1494 // escape analysis can go from the MemBarStoreStoreNode to the 1495 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1496 // based on the escape status of the AllocateNode. 1497 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1498 } 1499 if (compress) { 1500 set_result(_gvn.transform(count)); 1501 } 1502 clear_upper_avx(); 1503 1504 return true; 1505 } 1506 1507 #ifdef _LP64 1508 #define XTOP ,top() /*additional argument*/ 1509 #else //_LP64 1510 #define XTOP /*no additional argument*/ 1511 #endif //_LP64 1512 1513 //------------------------inline_string_toBytesU-------------------------- 1514 // public static byte[] StringUTF16.toBytes(char[] value, int off, int len) 1515 bool LibraryCallKit::inline_string_toBytesU() { 1516 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1517 return false; 1518 } 1519 // Get the arguments. 1520 Node* value = argument(0); 1521 Node* offset = argument(1); 1522 Node* length = argument(2); 1523 1524 Node* newcopy = nullptr; 1525 1526 // Set the original stack and the reexecute bit for the interpreter to reexecute 1527 // the bytecode that invokes StringUTF16.toBytes() if deoptimization happens. 1528 { PreserveReexecuteState preexecs(this); 1529 jvms()->set_should_reexecute(true); 1530 1531 // Check if a null path was taken unconditionally. 1532 value = null_check(value); 1533 1534 RegionNode* bailout = new RegionNode(1); 1535 record_for_igvn(bailout); 1536 1537 // Range checks 1538 generate_negative_guard(offset, bailout); 1539 generate_negative_guard(length, bailout); 1540 generate_limit_guard(offset, length, load_array_length(value), bailout); 1541 // Make sure that resulting byte[] length does not overflow Integer.MAX_VALUE 1542 generate_limit_guard(length, intcon(0), intcon(max_jint/2), bailout); 1543 1544 if (bailout->req() > 1) { 1545 PreserveJVMState pjvms(this); 1546 set_control(_gvn.transform(bailout)); 1547 uncommon_trap(Deoptimization::Reason_intrinsic, 1548 Deoptimization::Action_maybe_recompile); 1549 } 1550 if (stopped()) { 1551 return true; 1552 } 1553 1554 Node* size = _gvn.transform(new LShiftINode(length, intcon(1))); 1555 Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_BYTE))); 1556 newcopy = new_array(klass_node, size, 0); // no arguments to push 1557 AllocateArrayNode* alloc = tightly_coupled_allocation(newcopy); 1558 guarantee(alloc != nullptr, "created above"); 1559 1560 // Calculate starting addresses. 1561 Node* src_start = array_element_address(value, offset, T_CHAR); 1562 Node* dst_start = basic_plus_adr(newcopy, arrayOopDesc::base_offset_in_bytes(T_BYTE)); 1563 1564 // Check if src array address is aligned to HeapWordSize (dst is always aligned) 1565 const TypeInt* toffset = gvn().type(offset)->is_int(); 1566 bool aligned = toffset->is_con() && ((toffset->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0); 1567 1568 // Figure out which arraycopy runtime method to call (disjoint, uninitialized). 1569 const char* copyfunc_name = "arraycopy"; 1570 address copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true); 1571 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 1572 OptoRuntime::fast_arraycopy_Type(), 1573 copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM, 1574 src_start, dst_start, ConvI2X(length) XTOP); 1575 // Do not let reads from the cloned object float above the arraycopy. 1576 if (alloc->maybe_set_complete(&_gvn)) { 1577 // "You break it, you buy it." 1578 InitializeNode* init = alloc->initialization(); 1579 assert(init->is_complete(), "we just did this"); 1580 init->set_complete_with_arraycopy(); 1581 assert(newcopy->is_CheckCastPP(), "sanity"); 1582 assert(newcopy->in(0)->in(0) == init, "dest pinned"); 1583 } 1584 // Do not let stores that initialize this object be reordered with 1585 // a subsequent store that would make this object accessible by 1586 // other threads. 1587 // Record what AllocateNode this StoreStore protects so that 1588 // escape analysis can go from the MemBarStoreStoreNode to the 1589 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1590 // based on the escape status of the AllocateNode. 1591 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1592 } // original reexecute is set back here 1593 1594 C->set_has_split_ifs(true); // Has chance for split-if optimization 1595 if (!stopped()) { 1596 set_result(newcopy); 1597 } 1598 clear_upper_avx(); 1599 1600 return true; 1601 } 1602 1603 //------------------------inline_string_getCharsU-------------------------- 1604 // public void StringUTF16.getChars(byte[] src, int srcBegin, int srcEnd, char dst[], int dstBegin) 1605 bool LibraryCallKit::inline_string_getCharsU() { 1606 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1607 return false; 1608 } 1609 1610 // Get the arguments. 1611 Node* src = argument(0); 1612 Node* src_begin = argument(1); 1613 Node* src_end = argument(2); // exclusive offset (i < src_end) 1614 Node* dst = argument(3); 1615 Node* dst_begin = argument(4); 1616 1617 // Check for allocation before we add nodes that would confuse 1618 // tightly_coupled_allocation() 1619 AllocateArrayNode* alloc = tightly_coupled_allocation(dst); 1620 1621 // Check if a null path was taken unconditionally. 1622 src = null_check(src); 1623 dst = null_check(dst); 1624 if (stopped()) { 1625 return true; 1626 } 1627 1628 // Get length and convert char[] offset to byte[] offset 1629 Node* length = _gvn.transform(new SubINode(src_end, src_begin)); 1630 src_begin = _gvn.transform(new LShiftINode(src_begin, intcon(1))); 1631 1632 // Range checks 1633 generate_string_range_check(src, src_begin, length, true); 1634 generate_string_range_check(dst, dst_begin, length, false); 1635 if (stopped()) { 1636 return true; 1637 } 1638 1639 if (!stopped()) { 1640 // Calculate starting addresses. 1641 Node* src_start = array_element_address(src, src_begin, T_BYTE); 1642 Node* dst_start = array_element_address(dst, dst_begin, T_CHAR); 1643 1644 // Check if array addresses are aligned to HeapWordSize 1645 const TypeInt* tsrc = gvn().type(src_begin)->is_int(); 1646 const TypeInt* tdst = gvn().type(dst_begin)->is_int(); 1647 bool aligned = tsrc->is_con() && ((tsrc->get_con() * type2aelembytes(T_BYTE)) % HeapWordSize == 0) && 1648 tdst->is_con() && ((tdst->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0); 1649 1650 // Figure out which arraycopy runtime method to call (disjoint, uninitialized). 1651 const char* copyfunc_name = "arraycopy"; 1652 address copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true); 1653 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 1654 OptoRuntime::fast_arraycopy_Type(), 1655 copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM, 1656 src_start, dst_start, ConvI2X(length) XTOP); 1657 // Do not let reads from the cloned object float above the arraycopy. 1658 if (alloc != nullptr) { 1659 if (alloc->maybe_set_complete(&_gvn)) { 1660 // "You break it, you buy it." 1661 InitializeNode* init = alloc->initialization(); 1662 assert(init->is_complete(), "we just did this"); 1663 init->set_complete_with_arraycopy(); 1664 assert(dst->is_CheckCastPP(), "sanity"); 1665 assert(dst->in(0)->in(0) == init, "dest pinned"); 1666 } 1667 // Do not let stores that initialize this object be reordered with 1668 // a subsequent store that would make this object accessible by 1669 // other threads. 1670 // Record what AllocateNode this StoreStore protects so that 1671 // escape analysis can go from the MemBarStoreStoreNode to the 1672 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1673 // based on the escape status of the AllocateNode. 1674 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1675 } else { 1676 insert_mem_bar(Op_MemBarCPUOrder); 1677 } 1678 } 1679 1680 C->set_has_split_ifs(true); // Has chance for split-if optimization 1681 return true; 1682 } 1683 1684 //----------------------inline_string_char_access---------------------------- 1685 // Store/Load char to/from byte[] array. 1686 // static void StringUTF16.putChar(byte[] val, int index, int c) 1687 // static char StringUTF16.getChar(byte[] val, int index) 1688 bool LibraryCallKit::inline_string_char_access(bool is_store) { 1689 Node* value = argument(0); 1690 Node* index = argument(1); 1691 Node* ch = is_store ? argument(2) : nullptr; 1692 1693 // This intrinsic accesses byte[] array as char[] array. Computing the offsets 1694 // correctly requires matched array shapes. 1695 assert (arrayOopDesc::base_offset_in_bytes(T_CHAR) == arrayOopDesc::base_offset_in_bytes(T_BYTE), 1696 "sanity: byte[] and char[] bases agree"); 1697 assert (type2aelembytes(T_CHAR) == type2aelembytes(T_BYTE)*2, 1698 "sanity: byte[] and char[] scales agree"); 1699 1700 // Bail when getChar over constants is requested: constant folding would 1701 // reject folding mismatched char access over byte[]. A normal inlining for getChar 1702 // Java method would constant fold nicely instead. 1703 if (!is_store && value->is_Con() && index->is_Con()) { 1704 return false; 1705 } 1706 1707 // Save state and restore on bailout 1708 uint old_sp = sp(); 1709 SafePointNode* old_map = clone_map(); 1710 1711 value = must_be_not_null(value, true); 1712 1713 Node* adr = array_element_address(value, index, T_CHAR); 1714 if (adr->is_top()) { 1715 set_map(old_map); 1716 set_sp(old_sp); 1717 return false; 1718 } 1719 destruct_map_clone(old_map); 1720 if (is_store) { 1721 access_store_at(value, adr, TypeAryPtr::BYTES, ch, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED); 1722 } else { 1723 ch = access_load_at(value, adr, TypeAryPtr::BYTES, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD | C2_UNKNOWN_CONTROL_LOAD); 1724 set_result(ch); 1725 } 1726 return true; 1727 } 1728 1729 //--------------------------round_double_node-------------------------------- 1730 // Round a double node if necessary. 1731 Node* LibraryCallKit::round_double_node(Node* n) { 1732 if (Matcher::strict_fp_requires_explicit_rounding) { 1733 #ifdef IA32 1734 if (UseSSE < 2) { 1735 n = _gvn.transform(new RoundDoubleNode(nullptr, n)); 1736 } 1737 #else 1738 Unimplemented(); 1739 #endif // IA32 1740 } 1741 return n; 1742 } 1743 1744 //------------------------------inline_math----------------------------------- 1745 // public static double Math.abs(double) 1746 // public static double Math.sqrt(double) 1747 // public static double Math.log(double) 1748 // public static double Math.log10(double) 1749 // public static double Math.round(double) 1750 bool LibraryCallKit::inline_double_math(vmIntrinsics::ID id) { 1751 Node* arg = round_double_node(argument(0)); 1752 Node* n = nullptr; 1753 switch (id) { 1754 case vmIntrinsics::_dabs: n = new AbsDNode( arg); break; 1755 case vmIntrinsics::_dsqrt: 1756 case vmIntrinsics::_dsqrt_strict: 1757 n = new SqrtDNode(C, control(), arg); break; 1758 case vmIntrinsics::_ceil: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_ceil); break; 1759 case vmIntrinsics::_floor: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_floor); break; 1760 case vmIntrinsics::_rint: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_rint); break; 1761 case vmIntrinsics::_roundD: n = new RoundDNode(arg); break; 1762 case vmIntrinsics::_dcopySign: n = CopySignDNode::make(_gvn, arg, round_double_node(argument(2))); break; 1763 case vmIntrinsics::_dsignum: n = SignumDNode::make(_gvn, arg); break; 1764 default: fatal_unexpected_iid(id); break; 1765 } 1766 set_result(_gvn.transform(n)); 1767 return true; 1768 } 1769 1770 //------------------------------inline_math----------------------------------- 1771 // public static float Math.abs(float) 1772 // public static int Math.abs(int) 1773 // public static long Math.abs(long) 1774 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) { 1775 Node* arg = argument(0); 1776 Node* n = nullptr; 1777 switch (id) { 1778 case vmIntrinsics::_fabs: n = new AbsFNode( arg); break; 1779 case vmIntrinsics::_iabs: n = new AbsINode( arg); break; 1780 case vmIntrinsics::_labs: n = new AbsLNode( arg); break; 1781 case vmIntrinsics::_fcopySign: n = new CopySignFNode(arg, argument(1)); break; 1782 case vmIntrinsics::_fsignum: n = SignumFNode::make(_gvn, arg); break; 1783 case vmIntrinsics::_roundF: n = new RoundFNode(arg); break; 1784 default: fatal_unexpected_iid(id); break; 1785 } 1786 set_result(_gvn.transform(n)); 1787 return true; 1788 } 1789 1790 //------------------------------runtime_math----------------------------- 1791 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) { 1792 assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(), 1793 "must be (DD)D or (D)D type"); 1794 1795 // Inputs 1796 Node* a = round_double_node(argument(0)); 1797 Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : nullptr; 1798 1799 const TypePtr* no_memory_effects = nullptr; 1800 Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName, 1801 no_memory_effects, 1802 a, top(), b, b ? top() : nullptr); 1803 Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0)); 1804 #ifdef ASSERT 1805 Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1)); 1806 assert(value_top == top(), "second value must be top"); 1807 #endif 1808 1809 set_result(value); 1810 return true; 1811 } 1812 1813 //------------------------------inline_math_pow----------------------------- 1814 bool LibraryCallKit::inline_math_pow() { 1815 Node* exp = round_double_node(argument(2)); 1816 const TypeD* d = _gvn.type(exp)->isa_double_constant(); 1817 if (d != nullptr) { 1818 if (d->getd() == 2.0) { 1819 // Special case: pow(x, 2.0) => x * x 1820 Node* base = round_double_node(argument(0)); 1821 set_result(_gvn.transform(new MulDNode(base, base))); 1822 return true; 1823 } else if (d->getd() == 0.5 && Matcher::match_rule_supported(Op_SqrtD)) { 1824 // Special case: pow(x, 0.5) => sqrt(x) 1825 Node* base = round_double_node(argument(0)); 1826 Node* zero = _gvn.zerocon(T_DOUBLE); 1827 1828 RegionNode* region = new RegionNode(3); 1829 Node* phi = new PhiNode(region, Type::DOUBLE); 1830 1831 Node* cmp = _gvn.transform(new CmpDNode(base, zero)); 1832 // According to the API specs, pow(-0.0, 0.5) = 0.0 and sqrt(-0.0) = -0.0. 1833 // So pow(-0.0, 0.5) shouldn't be replaced with sqrt(-0.0). 1834 // -0.0/+0.0 are both excluded since floating-point comparison doesn't distinguish -0.0 from +0.0. 1835 Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::le)); 1836 1837 Node* if_pow = generate_slow_guard(test, nullptr); 1838 Node* value_sqrt = _gvn.transform(new SqrtDNode(C, control(), base)); 1839 phi->init_req(1, value_sqrt); 1840 region->init_req(1, control()); 1841 1842 if (if_pow != nullptr) { 1843 set_control(if_pow); 1844 address target = StubRoutines::dpow() != nullptr ? StubRoutines::dpow() : 1845 CAST_FROM_FN_PTR(address, SharedRuntime::dpow); 1846 const TypePtr* no_memory_effects = nullptr; 1847 Node* trig = make_runtime_call(RC_LEAF, OptoRuntime::Math_DD_D_Type(), target, "POW", 1848 no_memory_effects, base, top(), exp, top()); 1849 Node* value_pow = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0)); 1850 #ifdef ASSERT 1851 Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1)); 1852 assert(value_top == top(), "second value must be top"); 1853 #endif 1854 phi->init_req(2, value_pow); 1855 region->init_req(2, _gvn.transform(new ProjNode(trig, TypeFunc::Control))); 1856 } 1857 1858 C->set_has_split_ifs(true); // Has chance for split-if optimization 1859 set_control(_gvn.transform(region)); 1860 record_for_igvn(region); 1861 set_result(_gvn.transform(phi)); 1862 1863 return true; 1864 } 1865 } 1866 1867 return StubRoutines::dpow() != nullptr ? 1868 runtime_math(OptoRuntime::Math_DD_D_Type(), StubRoutines::dpow(), "dpow") : 1869 runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW"); 1870 } 1871 1872 //------------------------------inline_math_native----------------------------- 1873 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) { 1874 switch (id) { 1875 case vmIntrinsics::_dsin: 1876 return StubRoutines::dsin() != nullptr ? 1877 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dsin(), "dsin") : 1878 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin), "SIN"); 1879 case vmIntrinsics::_dcos: 1880 return StubRoutines::dcos() != nullptr ? 1881 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dcos(), "dcos") : 1882 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos), "COS"); 1883 case vmIntrinsics::_dtan: 1884 return StubRoutines::dtan() != nullptr ? 1885 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtan(), "dtan") : 1886 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "TAN"); 1887 case vmIntrinsics::_dtanh: 1888 return StubRoutines::dtanh() != nullptr ? 1889 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtanh(), "dtanh") : false; 1890 case vmIntrinsics::_dexp: 1891 return StubRoutines::dexp() != nullptr ? 1892 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dexp(), "dexp") : 1893 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP"); 1894 case vmIntrinsics::_dlog: 1895 return StubRoutines::dlog() != nullptr ? 1896 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog(), "dlog") : 1897 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog), "LOG"); 1898 case vmIntrinsics::_dlog10: 1899 return StubRoutines::dlog10() != nullptr ? 1900 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog10(), "dlog10") : 1901 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), "LOG10"); 1902 1903 case vmIntrinsics::_roundD: return Matcher::match_rule_supported(Op_RoundD) ? inline_double_math(id) : false; 1904 case vmIntrinsics::_ceil: 1905 case vmIntrinsics::_floor: 1906 case vmIntrinsics::_rint: return Matcher::match_rule_supported(Op_RoundDoubleMode) ? inline_double_math(id) : false; 1907 1908 case vmIntrinsics::_dsqrt: 1909 case vmIntrinsics::_dsqrt_strict: 1910 return Matcher::match_rule_supported(Op_SqrtD) ? inline_double_math(id) : false; 1911 case vmIntrinsics::_dabs: return Matcher::has_match_rule(Op_AbsD) ? inline_double_math(id) : false; 1912 case vmIntrinsics::_fabs: return Matcher::match_rule_supported(Op_AbsF) ? inline_math(id) : false; 1913 case vmIntrinsics::_iabs: return Matcher::match_rule_supported(Op_AbsI) ? inline_math(id) : false; 1914 case vmIntrinsics::_labs: return Matcher::match_rule_supported(Op_AbsL) ? inline_math(id) : false; 1915 1916 case vmIntrinsics::_dpow: return inline_math_pow(); 1917 case vmIntrinsics::_dcopySign: return inline_double_math(id); 1918 case vmIntrinsics::_fcopySign: return inline_math(id); 1919 case vmIntrinsics::_dsignum: return Matcher::match_rule_supported(Op_SignumD) ? inline_double_math(id) : false; 1920 case vmIntrinsics::_fsignum: return Matcher::match_rule_supported(Op_SignumF) ? inline_math(id) : false; 1921 case vmIntrinsics::_roundF: return Matcher::match_rule_supported(Op_RoundF) ? inline_math(id) : false; 1922 1923 // These intrinsics are not yet correctly implemented 1924 case vmIntrinsics::_datan2: 1925 return false; 1926 1927 default: 1928 fatal_unexpected_iid(id); 1929 return false; 1930 } 1931 } 1932 1933 //----------------------------inline_notify-----------------------------------* 1934 bool LibraryCallKit::inline_notify(vmIntrinsics::ID id) { 1935 const TypeFunc* ftype = OptoRuntime::monitor_notify_Type(); 1936 address func; 1937 if (id == vmIntrinsics::_notify) { 1938 func = OptoRuntime::monitor_notify_Java(); 1939 } else { 1940 func = OptoRuntime::monitor_notifyAll_Java(); 1941 } 1942 Node* call = make_runtime_call(RC_NO_LEAF, ftype, func, nullptr, TypeRawPtr::BOTTOM, argument(0)); 1943 make_slow_call_ex(call, env()->Throwable_klass(), false); 1944 return true; 1945 } 1946 1947 1948 //----------------------------inline_min_max----------------------------------- 1949 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) { 1950 set_result(generate_min_max(id, argument(0), argument(1))); 1951 return true; 1952 } 1953 1954 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) { 1955 Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) ); 1956 IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN); 1957 Node* fast_path = _gvn.transform( new IfFalseNode(check)); 1958 Node* slow_path = _gvn.transform( new IfTrueNode(check) ); 1959 1960 { 1961 PreserveJVMState pjvms(this); 1962 PreserveReexecuteState preexecs(this); 1963 jvms()->set_should_reexecute(true); 1964 1965 set_control(slow_path); 1966 set_i_o(i_o()); 1967 1968 uncommon_trap(Deoptimization::Reason_intrinsic, 1969 Deoptimization::Action_none); 1970 } 1971 1972 set_control(fast_path); 1973 set_result(math); 1974 } 1975 1976 template <typename OverflowOp> 1977 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) { 1978 typedef typename OverflowOp::MathOp MathOp; 1979 1980 MathOp* mathOp = new MathOp(arg1, arg2); 1981 Node* operation = _gvn.transform( mathOp ); 1982 Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) ); 1983 inline_math_mathExact(operation, ofcheck); 1984 return true; 1985 } 1986 1987 bool LibraryCallKit::inline_math_addExactI(bool is_increment) { 1988 return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1)); 1989 } 1990 1991 bool LibraryCallKit::inline_math_addExactL(bool is_increment) { 1992 return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2)); 1993 } 1994 1995 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) { 1996 return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1)); 1997 } 1998 1999 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) { 2000 return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2)); 2001 } 2002 2003 bool LibraryCallKit::inline_math_negateExactI() { 2004 return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0)); 2005 } 2006 2007 bool LibraryCallKit::inline_math_negateExactL() { 2008 return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0)); 2009 } 2010 2011 bool LibraryCallKit::inline_math_multiplyExactI() { 2012 return inline_math_overflow<OverflowMulINode>(argument(0), argument(1)); 2013 } 2014 2015 bool LibraryCallKit::inline_math_multiplyExactL() { 2016 return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2)); 2017 } 2018 2019 bool LibraryCallKit::inline_math_multiplyHigh() { 2020 set_result(_gvn.transform(new MulHiLNode(argument(0), argument(2)))); 2021 return true; 2022 } 2023 2024 bool LibraryCallKit::inline_math_unsignedMultiplyHigh() { 2025 set_result(_gvn.transform(new UMulHiLNode(argument(0), argument(2)))); 2026 return true; 2027 } 2028 2029 Node* 2030 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) { 2031 Node* result_val = nullptr; 2032 switch (id) { 2033 case vmIntrinsics::_min: 2034 case vmIntrinsics::_min_strict: 2035 result_val = _gvn.transform(new MinINode(x0, y0)); 2036 break; 2037 case vmIntrinsics::_max: 2038 case vmIntrinsics::_max_strict: 2039 result_val = _gvn.transform(new MaxINode(x0, y0)); 2040 break; 2041 default: 2042 fatal_unexpected_iid(id); 2043 break; 2044 } 2045 return result_val; 2046 } 2047 2048 inline int 2049 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset, BasicType type) { 2050 const TypePtr* base_type = TypePtr::NULL_PTR; 2051 if (base != nullptr) base_type = _gvn.type(base)->isa_ptr(); 2052 if (base_type == nullptr) { 2053 // Unknown type. 2054 return Type::AnyPtr; 2055 } else if (_gvn.type(base->uncast()) == TypePtr::NULL_PTR) { 2056 // Since this is a null+long form, we have to switch to a rawptr. 2057 base = _gvn.transform(new CastX2PNode(offset)); 2058 offset = MakeConX(0); 2059 return Type::RawPtr; 2060 } else if (base_type->base() == Type::RawPtr) { 2061 return Type::RawPtr; 2062 } else if (base_type->isa_oopptr()) { 2063 // Base is never null => always a heap address. 2064 if (!TypePtr::NULL_PTR->higher_equal(base_type)) { 2065 return Type::OopPtr; 2066 } 2067 // Offset is small => always a heap address. 2068 const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t(); 2069 if (offset_type != nullptr && 2070 base_type->offset() == 0 && // (should always be?) 2071 offset_type->_lo >= 0 && 2072 !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) { 2073 return Type::OopPtr; 2074 } else if (type == T_OBJECT) { 2075 // off heap access to an oop doesn't make any sense. Has to be on 2076 // heap. 2077 return Type::OopPtr; 2078 } 2079 // Otherwise, it might either be oop+off or null+addr. 2080 return Type::AnyPtr; 2081 } else { 2082 // No information: 2083 return Type::AnyPtr; 2084 } 2085 } 2086 2087 Node* LibraryCallKit::make_unsafe_address(Node*& base, Node* offset, BasicType type, bool can_cast) { 2088 Node* uncasted_base = base; 2089 int kind = classify_unsafe_addr(uncasted_base, offset, type); 2090 if (kind == Type::RawPtr) { 2091 return basic_plus_adr(top(), uncasted_base, offset); 2092 } else if (kind == Type::AnyPtr) { 2093 assert(base == uncasted_base, "unexpected base change"); 2094 if (can_cast) { 2095 if (!_gvn.type(base)->speculative_maybe_null() && 2096 !too_many_traps(Deoptimization::Reason_speculate_null_check)) { 2097 // According to profiling, this access is always on 2098 // heap. Casting the base to not null and thus avoiding membars 2099 // around the access should allow better optimizations 2100 Node* null_ctl = top(); 2101 base = null_check_oop(base, &null_ctl, true, true, true); 2102 assert(null_ctl->is_top(), "no null control here"); 2103 return basic_plus_adr(base, offset); 2104 } else if (_gvn.type(base)->speculative_always_null() && 2105 !too_many_traps(Deoptimization::Reason_speculate_null_assert)) { 2106 // According to profiling, this access is always off 2107 // heap. 2108 base = null_assert(base); 2109 Node* raw_base = _gvn.transform(new CastX2PNode(offset)); 2110 offset = MakeConX(0); 2111 return basic_plus_adr(top(), raw_base, offset); 2112 } 2113 } 2114 // We don't know if it's an on heap or off heap access. Fall back 2115 // to raw memory access. 2116 Node* raw = _gvn.transform(new CheckCastPPNode(control(), base, TypeRawPtr::BOTTOM)); 2117 return basic_plus_adr(top(), raw, offset); 2118 } else { 2119 assert(base == uncasted_base, "unexpected base change"); 2120 // We know it's an on heap access so base can't be null 2121 if (TypePtr::NULL_PTR->higher_equal(_gvn.type(base))) { 2122 base = must_be_not_null(base, true); 2123 } 2124 return basic_plus_adr(base, offset); 2125 } 2126 } 2127 2128 //--------------------------inline_number_methods----------------------------- 2129 // inline int Integer.numberOfLeadingZeros(int) 2130 // inline int Long.numberOfLeadingZeros(long) 2131 // 2132 // inline int Integer.numberOfTrailingZeros(int) 2133 // inline int Long.numberOfTrailingZeros(long) 2134 // 2135 // inline int Integer.bitCount(int) 2136 // inline int Long.bitCount(long) 2137 // 2138 // inline char Character.reverseBytes(char) 2139 // inline short Short.reverseBytes(short) 2140 // inline int Integer.reverseBytes(int) 2141 // inline long Long.reverseBytes(long) 2142 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) { 2143 Node* arg = argument(0); 2144 Node* n = nullptr; 2145 switch (id) { 2146 case vmIntrinsics::_numberOfLeadingZeros_i: n = new CountLeadingZerosINode( arg); break; 2147 case vmIntrinsics::_numberOfLeadingZeros_l: n = new CountLeadingZerosLNode( arg); break; 2148 case vmIntrinsics::_numberOfTrailingZeros_i: n = new CountTrailingZerosINode(arg); break; 2149 case vmIntrinsics::_numberOfTrailingZeros_l: n = new CountTrailingZerosLNode(arg); break; 2150 case vmIntrinsics::_bitCount_i: n = new PopCountINode( arg); break; 2151 case vmIntrinsics::_bitCount_l: n = new PopCountLNode( arg); break; 2152 case vmIntrinsics::_reverseBytes_c: n = new ReverseBytesUSNode(nullptr, arg); break; 2153 case vmIntrinsics::_reverseBytes_s: n = new ReverseBytesSNode( nullptr, arg); break; 2154 case vmIntrinsics::_reverseBytes_i: n = new ReverseBytesINode( nullptr, arg); break; 2155 case vmIntrinsics::_reverseBytes_l: n = new ReverseBytesLNode( nullptr, arg); break; 2156 case vmIntrinsics::_reverse_i: n = new ReverseINode(nullptr, arg); break; 2157 case vmIntrinsics::_reverse_l: n = new ReverseLNode(nullptr, arg); break; 2158 default: fatal_unexpected_iid(id); break; 2159 } 2160 set_result(_gvn.transform(n)); 2161 return true; 2162 } 2163 2164 //--------------------------inline_bitshuffle_methods----------------------------- 2165 // inline int Integer.compress(int, int) 2166 // inline int Integer.expand(int, int) 2167 // inline long Long.compress(long, long) 2168 // inline long Long.expand(long, long) 2169 bool LibraryCallKit::inline_bitshuffle_methods(vmIntrinsics::ID id) { 2170 Node* n = nullptr; 2171 switch (id) { 2172 case vmIntrinsics::_compress_i: n = new CompressBitsNode(argument(0), argument(1), TypeInt::INT); break; 2173 case vmIntrinsics::_expand_i: n = new ExpandBitsNode(argument(0), argument(1), TypeInt::INT); break; 2174 case vmIntrinsics::_compress_l: n = new CompressBitsNode(argument(0), argument(2), TypeLong::LONG); break; 2175 case vmIntrinsics::_expand_l: n = new ExpandBitsNode(argument(0), argument(2), TypeLong::LONG); break; 2176 default: fatal_unexpected_iid(id); break; 2177 } 2178 set_result(_gvn.transform(n)); 2179 return true; 2180 } 2181 2182 //--------------------------inline_number_methods----------------------------- 2183 // inline int Integer.compareUnsigned(int, int) 2184 // inline int Long.compareUnsigned(long, long) 2185 bool LibraryCallKit::inline_compare_unsigned(vmIntrinsics::ID id) { 2186 Node* arg1 = argument(0); 2187 Node* arg2 = (id == vmIntrinsics::_compareUnsigned_l) ? argument(2) : argument(1); 2188 Node* n = nullptr; 2189 switch (id) { 2190 case vmIntrinsics::_compareUnsigned_i: n = new CmpU3Node(arg1, arg2); break; 2191 case vmIntrinsics::_compareUnsigned_l: n = new CmpUL3Node(arg1, arg2); break; 2192 default: fatal_unexpected_iid(id); break; 2193 } 2194 set_result(_gvn.transform(n)); 2195 return true; 2196 } 2197 2198 //--------------------------inline_unsigned_divmod_methods----------------------------- 2199 // inline int Integer.divideUnsigned(int, int) 2200 // inline int Integer.remainderUnsigned(int, int) 2201 // inline long Long.divideUnsigned(long, long) 2202 // inline long Long.remainderUnsigned(long, long) 2203 bool LibraryCallKit::inline_divmod_methods(vmIntrinsics::ID id) { 2204 Node* n = nullptr; 2205 switch (id) { 2206 case vmIntrinsics::_divideUnsigned_i: { 2207 zero_check_int(argument(1)); 2208 // Compile-time detect of null-exception 2209 if (stopped()) { 2210 return true; // keep the graph constructed so far 2211 } 2212 n = new UDivINode(control(), argument(0), argument(1)); 2213 break; 2214 } 2215 case vmIntrinsics::_divideUnsigned_l: { 2216 zero_check_long(argument(2)); 2217 // Compile-time detect of null-exception 2218 if (stopped()) { 2219 return true; // keep the graph constructed so far 2220 } 2221 n = new UDivLNode(control(), argument(0), argument(2)); 2222 break; 2223 } 2224 case vmIntrinsics::_remainderUnsigned_i: { 2225 zero_check_int(argument(1)); 2226 // Compile-time detect of null-exception 2227 if (stopped()) { 2228 return true; // keep the graph constructed so far 2229 } 2230 n = new UModINode(control(), argument(0), argument(1)); 2231 break; 2232 } 2233 case vmIntrinsics::_remainderUnsigned_l: { 2234 zero_check_long(argument(2)); 2235 // Compile-time detect of null-exception 2236 if (stopped()) { 2237 return true; // keep the graph constructed so far 2238 } 2239 n = new UModLNode(control(), argument(0), argument(2)); 2240 break; 2241 } 2242 default: fatal_unexpected_iid(id); break; 2243 } 2244 set_result(_gvn.transform(n)); 2245 return true; 2246 } 2247 2248 //----------------------------inline_unsafe_access---------------------------- 2249 2250 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) { 2251 // Attempt to infer a sharper value type from the offset and base type. 2252 ciKlass* sharpened_klass = nullptr; 2253 2254 // See if it is an instance field, with an object type. 2255 if (alias_type->field() != nullptr) { 2256 if (alias_type->field()->type()->is_klass()) { 2257 sharpened_klass = alias_type->field()->type()->as_klass(); 2258 } 2259 } 2260 2261 const TypeOopPtr* result = nullptr; 2262 // See if it is a narrow oop array. 2263 if (adr_type->isa_aryptr()) { 2264 if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) { 2265 const TypeOopPtr* elem_type = adr_type->is_aryptr()->elem()->make_oopptr(); 2266 if (elem_type != nullptr && elem_type->is_loaded()) { 2267 // Sharpen the value type. 2268 result = elem_type; 2269 } 2270 } 2271 } 2272 2273 // The sharpened class might be unloaded if there is no class loader 2274 // contraint in place. 2275 if (result == nullptr && sharpened_klass != nullptr && sharpened_klass->is_loaded()) { 2276 // Sharpen the value type. 2277 result = TypeOopPtr::make_from_klass(sharpened_klass); 2278 } 2279 if (result != nullptr) { 2280 #ifndef PRODUCT 2281 if (C->print_intrinsics() || C->print_inlining()) { 2282 tty->print(" from base type: "); adr_type->dump(); tty->cr(); 2283 tty->print(" sharpened value: "); result->dump(); tty->cr(); 2284 } 2285 #endif 2286 } 2287 return result; 2288 } 2289 2290 DecoratorSet LibraryCallKit::mo_decorator_for_access_kind(AccessKind kind) { 2291 switch (kind) { 2292 case Relaxed: 2293 return MO_UNORDERED; 2294 case Opaque: 2295 return MO_RELAXED; 2296 case Acquire: 2297 return MO_ACQUIRE; 2298 case Release: 2299 return MO_RELEASE; 2300 case Volatile: 2301 return MO_SEQ_CST; 2302 default: 2303 ShouldNotReachHere(); 2304 return 0; 2305 } 2306 } 2307 2308 bool LibraryCallKit::inline_unsafe_access(bool is_store, const BasicType type, const AccessKind kind, const bool unaligned) { 2309 if (callee()->is_static()) return false; // caller must have the capability! 2310 DecoratorSet decorators = C2_UNSAFE_ACCESS; 2311 guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads"); 2312 guarantee( is_store || kind != Release, "Release accesses can be produced only for stores"); 2313 assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type"); 2314 2315 if (is_reference_type(type)) { 2316 decorators |= ON_UNKNOWN_OOP_REF; 2317 } 2318 2319 if (unaligned) { 2320 decorators |= C2_UNALIGNED; 2321 } 2322 2323 #ifndef PRODUCT 2324 { 2325 ResourceMark rm; 2326 // Check the signatures. 2327 ciSignature* sig = callee()->signature(); 2328 #ifdef ASSERT 2329 if (!is_store) { 2330 // Object getReference(Object base, int/long offset), etc. 2331 BasicType rtype = sig->return_type()->basic_type(); 2332 assert(rtype == type, "getter must return the expected value"); 2333 assert(sig->count() == 2, "oop getter has 2 arguments"); 2334 assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object"); 2335 assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct"); 2336 } else { 2337 // void putReference(Object base, int/long offset, Object x), etc. 2338 assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value"); 2339 assert(sig->count() == 3, "oop putter has 3 arguments"); 2340 assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object"); 2341 assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct"); 2342 BasicType vtype = sig->type_at(sig->count()-1)->basic_type(); 2343 assert(vtype == type, "putter must accept the expected value"); 2344 } 2345 #endif // ASSERT 2346 } 2347 #endif //PRODUCT 2348 2349 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 2350 2351 Node* receiver = argument(0); // type: oop 2352 2353 // Build address expression. 2354 Node* heap_base_oop = top(); 2355 2356 // The base is either a Java object or a value produced by Unsafe.staticFieldBase 2357 Node* base = argument(1); // type: oop 2358 // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset 2359 Node* offset = argument(2); // type: long 2360 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset 2361 // to be plain byte offsets, which are also the same as those accepted 2362 // by oopDesc::field_addr. 2363 assert(Unsafe_field_offset_to_byte_offset(11) == 11, 2364 "fieldOffset must be byte-scaled"); 2365 // 32-bit machines ignore the high half! 2366 offset = ConvL2X(offset); 2367 2368 // Save state and restore on bailout 2369 uint old_sp = sp(); 2370 SafePointNode* old_map = clone_map(); 2371 2372 Node* adr = make_unsafe_address(base, offset, type, kind == Relaxed); 2373 assert(!stopped(), "Inlining of unsafe access failed: address construction stopped unexpectedly"); 2374 2375 if (_gvn.type(base->uncast())->isa_ptr() == TypePtr::NULL_PTR) { 2376 if (type != T_OBJECT) { 2377 decorators |= IN_NATIVE; // off-heap primitive access 2378 } else { 2379 set_map(old_map); 2380 set_sp(old_sp); 2381 return false; // off-heap oop accesses are not supported 2382 } 2383 } else { 2384 heap_base_oop = base; // on-heap or mixed access 2385 } 2386 2387 // Can base be null? Otherwise, always on-heap access. 2388 bool can_access_non_heap = TypePtr::NULL_PTR->higher_equal(_gvn.type(base)); 2389 2390 if (!can_access_non_heap) { 2391 decorators |= IN_HEAP; 2392 } 2393 2394 Node* val = is_store ? argument(4) : nullptr; 2395 2396 const TypePtr* adr_type = _gvn.type(adr)->isa_ptr(); 2397 if (adr_type == TypePtr::NULL_PTR) { 2398 set_map(old_map); 2399 set_sp(old_sp); 2400 return false; // off-heap access with zero address 2401 } 2402 2403 // Try to categorize the address. 2404 Compile::AliasType* alias_type = C->alias_type(adr_type); 2405 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here"); 2406 2407 if (alias_type->adr_type() == TypeInstPtr::KLASS || 2408 alias_type->adr_type() == TypeAryPtr::RANGE) { 2409 set_map(old_map); 2410 set_sp(old_sp); 2411 return false; // not supported 2412 } 2413 2414 bool mismatched = false; 2415 BasicType bt = alias_type->basic_type(); 2416 if (bt != T_ILLEGAL) { 2417 assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access"); 2418 if (bt == T_BYTE && adr_type->isa_aryptr()) { 2419 // Alias type doesn't differentiate between byte[] and boolean[]). 2420 // Use address type to get the element type. 2421 bt = adr_type->is_aryptr()->elem()->array_element_basic_type(); 2422 } 2423 if (is_reference_type(bt, true)) { 2424 // accessing an array field with getReference is not a mismatch 2425 bt = T_OBJECT; 2426 } 2427 if ((bt == T_OBJECT) != (type == T_OBJECT)) { 2428 // Don't intrinsify mismatched object accesses 2429 set_map(old_map); 2430 set_sp(old_sp); 2431 return false; 2432 } 2433 mismatched = (bt != type); 2434 } else if (alias_type->adr_type()->isa_oopptr()) { 2435 mismatched = true; // conservatively mark all "wide" on-heap accesses as mismatched 2436 } 2437 2438 destruct_map_clone(old_map); 2439 assert(!mismatched || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched"); 2440 2441 if (mismatched) { 2442 decorators |= C2_MISMATCHED; 2443 } 2444 2445 // First guess at the value type. 2446 const Type *value_type = Type::get_const_basic_type(type); 2447 2448 // Figure out the memory ordering. 2449 decorators |= mo_decorator_for_access_kind(kind); 2450 2451 if (!is_store && type == T_OBJECT) { 2452 const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type); 2453 if (tjp != nullptr) { 2454 value_type = tjp; 2455 } 2456 } 2457 2458 receiver = null_check(receiver); 2459 if (stopped()) { 2460 return true; 2461 } 2462 // Heap pointers get a null-check from the interpreter, 2463 // as a courtesy. However, this is not guaranteed by Unsafe, 2464 // and it is not possible to fully distinguish unintended nulls 2465 // from intended ones in this API. 2466 2467 if (!is_store) { 2468 Node* p = nullptr; 2469 // Try to constant fold a load from a constant field 2470 ciField* field = alias_type->field(); 2471 if (heap_base_oop != top() && field != nullptr && field->is_constant() && !mismatched) { 2472 // final or stable field 2473 p = make_constant_from_field(field, heap_base_oop); 2474 } 2475 2476 if (p == nullptr) { // Could not constant fold the load 2477 p = access_load_at(heap_base_oop, adr, adr_type, value_type, type, decorators); 2478 // Normalize the value returned by getBoolean in the following cases 2479 if (type == T_BOOLEAN && 2480 (mismatched || 2481 heap_base_oop == top() || // - heap_base_oop is null or 2482 (can_access_non_heap && field == nullptr)) // - heap_base_oop is potentially null 2483 // and the unsafe access is made to large offset 2484 // (i.e., larger than the maximum offset necessary for any 2485 // field access) 2486 ) { 2487 IdealKit ideal = IdealKit(this); 2488 #define __ ideal. 2489 IdealVariable normalized_result(ideal); 2490 __ declarations_done(); 2491 __ set(normalized_result, p); 2492 __ if_then(p, BoolTest::ne, ideal.ConI(0)); 2493 __ set(normalized_result, ideal.ConI(1)); 2494 ideal.end_if(); 2495 final_sync(ideal); 2496 p = __ value(normalized_result); 2497 #undef __ 2498 } 2499 } 2500 if (type == T_ADDRESS) { 2501 p = gvn().transform(new CastP2XNode(nullptr, p)); 2502 p = ConvX2UL(p); 2503 } 2504 // The load node has the control of the preceding MemBarCPUOrder. All 2505 // following nodes will have the control of the MemBarCPUOrder inserted at 2506 // the end of this method. So, pushing the load onto the stack at a later 2507 // point is fine. 2508 set_result(p); 2509 } else { 2510 if (bt == T_ADDRESS) { 2511 // Repackage the long as a pointer. 2512 val = ConvL2X(val); 2513 val = gvn().transform(new CastX2PNode(val)); 2514 } 2515 access_store_at(heap_base_oop, adr, adr_type, val, value_type, type, decorators); 2516 } 2517 2518 return true; 2519 } 2520 2521 //----------------------------inline_unsafe_load_store---------------------------- 2522 // This method serves a couple of different customers (depending on LoadStoreKind): 2523 // 2524 // LS_cmp_swap: 2525 // 2526 // boolean compareAndSetReference(Object o, long offset, Object expected, Object x); 2527 // boolean compareAndSetInt( Object o, long offset, int expected, int x); 2528 // boolean compareAndSetLong( Object o, long offset, long expected, long x); 2529 // 2530 // LS_cmp_swap_weak: 2531 // 2532 // boolean weakCompareAndSetReference( Object o, long offset, Object expected, Object x); 2533 // boolean weakCompareAndSetReferencePlain( Object o, long offset, Object expected, Object x); 2534 // boolean weakCompareAndSetReferenceAcquire(Object o, long offset, Object expected, Object x); 2535 // boolean weakCompareAndSetReferenceRelease(Object o, long offset, Object expected, Object x); 2536 // 2537 // boolean weakCompareAndSetInt( Object o, long offset, int expected, int x); 2538 // boolean weakCompareAndSetIntPlain( Object o, long offset, int expected, int x); 2539 // boolean weakCompareAndSetIntAcquire( Object o, long offset, int expected, int x); 2540 // boolean weakCompareAndSetIntRelease( Object o, long offset, int expected, int x); 2541 // 2542 // boolean weakCompareAndSetLong( Object o, long offset, long expected, long x); 2543 // boolean weakCompareAndSetLongPlain( Object o, long offset, long expected, long x); 2544 // boolean weakCompareAndSetLongAcquire( Object o, long offset, long expected, long x); 2545 // boolean weakCompareAndSetLongRelease( Object o, long offset, long expected, long x); 2546 // 2547 // LS_cmp_exchange: 2548 // 2549 // Object compareAndExchangeReferenceVolatile(Object o, long offset, Object expected, Object x); 2550 // Object compareAndExchangeReferenceAcquire( Object o, long offset, Object expected, Object x); 2551 // Object compareAndExchangeReferenceRelease( Object o, long offset, Object expected, Object x); 2552 // 2553 // Object compareAndExchangeIntVolatile( Object o, long offset, Object expected, Object x); 2554 // Object compareAndExchangeIntAcquire( Object o, long offset, Object expected, Object x); 2555 // Object compareAndExchangeIntRelease( Object o, long offset, Object expected, Object x); 2556 // 2557 // Object compareAndExchangeLongVolatile( Object o, long offset, Object expected, Object x); 2558 // Object compareAndExchangeLongAcquire( Object o, long offset, Object expected, Object x); 2559 // Object compareAndExchangeLongRelease( Object o, long offset, Object expected, Object x); 2560 // 2561 // LS_get_add: 2562 // 2563 // int getAndAddInt( Object o, long offset, int delta) 2564 // long getAndAddLong(Object o, long offset, long delta) 2565 // 2566 // LS_get_set: 2567 // 2568 // int getAndSet(Object o, long offset, int newValue) 2569 // long getAndSet(Object o, long offset, long newValue) 2570 // Object getAndSet(Object o, long offset, Object newValue) 2571 // 2572 bool LibraryCallKit::inline_unsafe_load_store(const BasicType type, const LoadStoreKind kind, const AccessKind access_kind) { 2573 // This basic scheme here is the same as inline_unsafe_access, but 2574 // differs in enough details that combining them would make the code 2575 // overly confusing. (This is a true fact! I originally combined 2576 // them, but even I was confused by it!) As much code/comments as 2577 // possible are retained from inline_unsafe_access though to make 2578 // the correspondences clearer. - dl 2579 2580 if (callee()->is_static()) return false; // caller must have the capability! 2581 2582 DecoratorSet decorators = C2_UNSAFE_ACCESS; 2583 decorators |= mo_decorator_for_access_kind(access_kind); 2584 2585 #ifndef PRODUCT 2586 BasicType rtype; 2587 { 2588 ResourceMark rm; 2589 // Check the signatures. 2590 ciSignature* sig = callee()->signature(); 2591 rtype = sig->return_type()->basic_type(); 2592 switch(kind) { 2593 case LS_get_add: 2594 case LS_get_set: { 2595 // Check the signatures. 2596 #ifdef ASSERT 2597 assert(rtype == type, "get and set must return the expected type"); 2598 assert(sig->count() == 3, "get and set has 3 arguments"); 2599 assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object"); 2600 assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long"); 2601 assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta"); 2602 assert(access_kind == Volatile, "mo is not passed to intrinsic nodes in current implementation"); 2603 #endif // ASSERT 2604 break; 2605 } 2606 case LS_cmp_swap: 2607 case LS_cmp_swap_weak: { 2608 // Check the signatures. 2609 #ifdef ASSERT 2610 assert(rtype == T_BOOLEAN, "CAS must return boolean"); 2611 assert(sig->count() == 4, "CAS has 4 arguments"); 2612 assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object"); 2613 assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long"); 2614 #endif // ASSERT 2615 break; 2616 } 2617 case LS_cmp_exchange: { 2618 // Check the signatures. 2619 #ifdef ASSERT 2620 assert(rtype == type, "CAS must return the expected type"); 2621 assert(sig->count() == 4, "CAS has 4 arguments"); 2622 assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object"); 2623 assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long"); 2624 #endif // ASSERT 2625 break; 2626 } 2627 default: 2628 ShouldNotReachHere(); 2629 } 2630 } 2631 #endif //PRODUCT 2632 2633 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 2634 2635 // Get arguments: 2636 Node* receiver = nullptr; 2637 Node* base = nullptr; 2638 Node* offset = nullptr; 2639 Node* oldval = nullptr; 2640 Node* newval = nullptr; 2641 switch(kind) { 2642 case LS_cmp_swap: 2643 case LS_cmp_swap_weak: 2644 case LS_cmp_exchange: { 2645 const bool two_slot_type = type2size[type] == 2; 2646 receiver = argument(0); // type: oop 2647 base = argument(1); // type: oop 2648 offset = argument(2); // type: long 2649 oldval = argument(4); // type: oop, int, or long 2650 newval = argument(two_slot_type ? 6 : 5); // type: oop, int, or long 2651 break; 2652 } 2653 case LS_get_add: 2654 case LS_get_set: { 2655 receiver = argument(0); // type: oop 2656 base = argument(1); // type: oop 2657 offset = argument(2); // type: long 2658 oldval = nullptr; 2659 newval = argument(4); // type: oop, int, or long 2660 break; 2661 } 2662 default: 2663 ShouldNotReachHere(); 2664 } 2665 2666 // Build field offset expression. 2667 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset 2668 // to be plain byte offsets, which are also the same as those accepted 2669 // by oopDesc::field_addr. 2670 assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled"); 2671 // 32-bit machines ignore the high half of long offsets 2672 offset = ConvL2X(offset); 2673 // Save state and restore on bailout 2674 uint old_sp = sp(); 2675 SafePointNode* old_map = clone_map(); 2676 Node* adr = make_unsafe_address(base, offset,type, false); 2677 const TypePtr *adr_type = _gvn.type(adr)->isa_ptr(); 2678 2679 Compile::AliasType* alias_type = C->alias_type(adr_type); 2680 BasicType bt = alias_type->basic_type(); 2681 if (bt != T_ILLEGAL && 2682 (is_reference_type(bt) != (type == T_OBJECT))) { 2683 // Don't intrinsify mismatched object accesses. 2684 set_map(old_map); 2685 set_sp(old_sp); 2686 return false; 2687 } 2688 2689 destruct_map_clone(old_map); 2690 2691 // For CAS, unlike inline_unsafe_access, there seems no point in 2692 // trying to refine types. Just use the coarse types here. 2693 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here"); 2694 const Type *value_type = Type::get_const_basic_type(type); 2695 2696 switch (kind) { 2697 case LS_get_set: 2698 case LS_cmp_exchange: { 2699 if (type == T_OBJECT) { 2700 const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type); 2701 if (tjp != nullptr) { 2702 value_type = tjp; 2703 } 2704 } 2705 break; 2706 } 2707 case LS_cmp_swap: 2708 case LS_cmp_swap_weak: 2709 case LS_get_add: 2710 break; 2711 default: 2712 ShouldNotReachHere(); 2713 } 2714 2715 // Null check receiver. 2716 receiver = null_check(receiver); 2717 if (stopped()) { 2718 return true; 2719 } 2720 2721 int alias_idx = C->get_alias_index(adr_type); 2722 2723 if (is_reference_type(type)) { 2724 decorators |= IN_HEAP | ON_UNKNOWN_OOP_REF; 2725 2726 // Transformation of a value which could be null pointer (CastPP #null) 2727 // could be delayed during Parse (for example, in adjust_map_after_if()). 2728 // Execute transformation here to avoid barrier generation in such case. 2729 if (_gvn.type(newval) == TypePtr::NULL_PTR) 2730 newval = _gvn.makecon(TypePtr::NULL_PTR); 2731 2732 if (oldval != nullptr && _gvn.type(oldval) == TypePtr::NULL_PTR) { 2733 // Refine the value to a null constant, when it is known to be null 2734 oldval = _gvn.makecon(TypePtr::NULL_PTR); 2735 } 2736 } 2737 2738 Node* result = nullptr; 2739 switch (kind) { 2740 case LS_cmp_exchange: { 2741 result = access_atomic_cmpxchg_val_at(base, adr, adr_type, alias_idx, 2742 oldval, newval, value_type, type, decorators); 2743 break; 2744 } 2745 case LS_cmp_swap_weak: 2746 decorators |= C2_WEAK_CMPXCHG; 2747 case LS_cmp_swap: { 2748 result = access_atomic_cmpxchg_bool_at(base, adr, adr_type, alias_idx, 2749 oldval, newval, value_type, type, decorators); 2750 break; 2751 } 2752 case LS_get_set: { 2753 result = access_atomic_xchg_at(base, adr, adr_type, alias_idx, 2754 newval, value_type, type, decorators); 2755 break; 2756 } 2757 case LS_get_add: { 2758 result = access_atomic_add_at(base, adr, adr_type, alias_idx, 2759 newval, value_type, type, decorators); 2760 break; 2761 } 2762 default: 2763 ShouldNotReachHere(); 2764 } 2765 2766 assert(type2size[result->bottom_type()->basic_type()] == type2size[rtype], "result type should match"); 2767 set_result(result); 2768 return true; 2769 } 2770 2771 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) { 2772 // Regardless of form, don't allow previous ld/st to move down, 2773 // then issue acquire, release, or volatile mem_bar. 2774 insert_mem_bar(Op_MemBarCPUOrder); 2775 switch(id) { 2776 case vmIntrinsics::_loadFence: 2777 insert_mem_bar(Op_LoadFence); 2778 return true; 2779 case vmIntrinsics::_storeFence: 2780 insert_mem_bar(Op_StoreFence); 2781 return true; 2782 case vmIntrinsics::_storeStoreFence: 2783 insert_mem_bar(Op_StoreStoreFence); 2784 return true; 2785 case vmIntrinsics::_fullFence: 2786 insert_mem_bar(Op_MemBarVolatile); 2787 return true; 2788 default: 2789 fatal_unexpected_iid(id); 2790 return false; 2791 } 2792 } 2793 2794 bool LibraryCallKit::inline_onspinwait() { 2795 insert_mem_bar(Op_OnSpinWait); 2796 return true; 2797 } 2798 2799 bool LibraryCallKit::klass_needs_init_guard(Node* kls) { 2800 if (!kls->is_Con()) { 2801 return true; 2802 } 2803 const TypeInstKlassPtr* klsptr = kls->bottom_type()->isa_instklassptr(); 2804 if (klsptr == nullptr) { 2805 return true; 2806 } 2807 ciInstanceKlass* ik = klsptr->instance_klass(); 2808 // don't need a guard for a klass that is already initialized 2809 return !ik->is_initialized(); 2810 } 2811 2812 //----------------------------inline_unsafe_writeback0------------------------- 2813 // public native void Unsafe.writeback0(long address) 2814 bool LibraryCallKit::inline_unsafe_writeback0() { 2815 if (!Matcher::has_match_rule(Op_CacheWB)) { 2816 return false; 2817 } 2818 #ifndef PRODUCT 2819 assert(Matcher::has_match_rule(Op_CacheWBPreSync), "found match rule for CacheWB but not CacheWBPreSync"); 2820 assert(Matcher::has_match_rule(Op_CacheWBPostSync), "found match rule for CacheWB but not CacheWBPostSync"); 2821 ciSignature* sig = callee()->signature(); 2822 assert(sig->type_at(0)->basic_type() == T_LONG, "Unsafe_writeback0 address is long!"); 2823 #endif 2824 null_check_receiver(); // null-check, then ignore 2825 Node *addr = argument(1); 2826 addr = new CastX2PNode(addr); 2827 addr = _gvn.transform(addr); 2828 Node *flush = new CacheWBNode(control(), memory(TypeRawPtr::BOTTOM), addr); 2829 flush = _gvn.transform(flush); 2830 set_memory(flush, TypeRawPtr::BOTTOM); 2831 return true; 2832 } 2833 2834 //----------------------------inline_unsafe_writeback0------------------------- 2835 // public native void Unsafe.writeback0(long address) 2836 bool LibraryCallKit::inline_unsafe_writebackSync0(bool is_pre) { 2837 if (is_pre && !Matcher::has_match_rule(Op_CacheWBPreSync)) { 2838 return false; 2839 } 2840 if (!is_pre && !Matcher::has_match_rule(Op_CacheWBPostSync)) { 2841 return false; 2842 } 2843 #ifndef PRODUCT 2844 assert(Matcher::has_match_rule(Op_CacheWB), 2845 (is_pre ? "found match rule for CacheWBPreSync but not CacheWB" 2846 : "found match rule for CacheWBPostSync but not CacheWB")); 2847 2848 #endif 2849 null_check_receiver(); // null-check, then ignore 2850 Node *sync; 2851 if (is_pre) { 2852 sync = new CacheWBPreSyncNode(control(), memory(TypeRawPtr::BOTTOM)); 2853 } else { 2854 sync = new CacheWBPostSyncNode(control(), memory(TypeRawPtr::BOTTOM)); 2855 } 2856 sync = _gvn.transform(sync); 2857 set_memory(sync, TypeRawPtr::BOTTOM); 2858 return true; 2859 } 2860 2861 //----------------------------inline_unsafe_allocate--------------------------- 2862 // public native Object Unsafe.allocateInstance(Class<?> cls); 2863 bool LibraryCallKit::inline_unsafe_allocate() { 2864 2865 #if INCLUDE_JVMTI 2866 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 2867 return false; 2868 } 2869 #endif //INCLUDE_JVMTI 2870 2871 if (callee()->is_static()) return false; // caller must have the capability! 2872 2873 null_check_receiver(); // null-check, then ignore 2874 Node* cls = null_check(argument(1)); 2875 if (stopped()) return true; 2876 2877 Node* kls = load_klass_from_mirror(cls, false, nullptr, 0); 2878 kls = null_check(kls); 2879 if (stopped()) return true; // argument was like int.class 2880 2881 #if INCLUDE_JVMTI 2882 // Don't try to access new allocated obj in the intrinsic. 2883 // It causes perfomance issues even when jvmti event VmObjectAlloc is disabled. 2884 // Deoptimize and allocate in interpreter instead. 2885 Node* addr = makecon(TypeRawPtr::make((address) &JvmtiExport::_should_notify_object_alloc)); 2886 Node* should_post_vm_object_alloc = make_load(this->control(), addr, TypeInt::INT, T_INT, MemNode::unordered); 2887 Node* chk = _gvn.transform(new CmpINode(should_post_vm_object_alloc, intcon(0))); 2888 Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::eq)); 2889 { 2890 BuildCutout unless(this, tst, PROB_MAX); 2891 uncommon_trap(Deoptimization::Reason_intrinsic, 2892 Deoptimization::Action_make_not_entrant); 2893 } 2894 if (stopped()) { 2895 return true; 2896 } 2897 #endif //INCLUDE_JVMTI 2898 2899 Node* test = nullptr; 2900 if (LibraryCallKit::klass_needs_init_guard(kls)) { 2901 // Note: The argument might still be an illegal value like 2902 // Serializable.class or Object[].class. The runtime will handle it. 2903 // But we must make an explicit check for initialization. 2904 Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset())); 2905 // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler 2906 // can generate code to load it as unsigned byte. 2907 Node* inst = make_load(nullptr, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::acquire); 2908 Node* bits = intcon(InstanceKlass::fully_initialized); 2909 test = _gvn.transform(new SubINode(inst, bits)); 2910 // The 'test' is non-zero if we need to take a slow path. 2911 } 2912 2913 Node* obj = new_instance(kls, test); 2914 set_result(obj); 2915 return true; 2916 } 2917 2918 //------------------------inline_native_time_funcs-------------- 2919 // inline code for System.currentTimeMillis() and System.nanoTime() 2920 // these have the same type and signature 2921 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) { 2922 const TypeFunc* tf = OptoRuntime::void_long_Type(); 2923 const TypePtr* no_memory_effects = nullptr; 2924 Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects); 2925 Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0)); 2926 #ifdef ASSERT 2927 Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1)); 2928 assert(value_top == top(), "second value must be top"); 2929 #endif 2930 set_result(value); 2931 return true; 2932 } 2933 2934 2935 #if INCLUDE_JVMTI 2936 2937 // When notifications are disabled then just update the VTMS transition bit and return. 2938 // Otherwise, the bit is updated in the given function call implementing JVMTI notification protocol. 2939 bool LibraryCallKit::inline_native_notify_jvmti_funcs(address funcAddr, const char* funcName, bool is_start, bool is_end) { 2940 if (!DoJVMTIVirtualThreadTransitions) { 2941 return true; 2942 } 2943 Node* vt_oop = _gvn.transform(must_be_not_null(argument(0), true)); // VirtualThread this argument 2944 IdealKit ideal(this); 2945 2946 Node* ONE = ideal.ConI(1); 2947 Node* hide = is_start ? ideal.ConI(0) : (is_end ? ideal.ConI(1) : _gvn.transform(argument(1))); 2948 Node* addr = makecon(TypeRawPtr::make((address)&JvmtiVTMSTransitionDisabler::_VTMS_notify_jvmti_events)); 2949 Node* notify_jvmti_enabled = ideal.load(ideal.ctrl(), addr, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw); 2950 2951 ideal.if_then(notify_jvmti_enabled, BoolTest::eq, ONE); { 2952 sync_kit(ideal); 2953 // if notifyJvmti enabled then make a call to the given SharedRuntime function 2954 const TypeFunc* tf = OptoRuntime::notify_jvmti_vthread_Type(); 2955 make_runtime_call(RC_NO_LEAF, tf, funcAddr, funcName, TypePtr::BOTTOM, vt_oop, hide); 2956 ideal.sync_kit(this); 2957 } ideal.else_(); { 2958 // set hide value to the VTMS transition bit in current JavaThread and VirtualThread object 2959 Node* thread = ideal.thread(); 2960 Node* jt_addr = basic_plus_adr(thread, in_bytes(JavaThread::is_in_VTMS_transition_offset())); 2961 Node* vt_addr = basic_plus_adr(vt_oop, java_lang_Thread::is_in_VTMS_transition_offset()); 2962 const TypePtr *addr_type = _gvn.type(addr)->isa_ptr(); 2963 2964 sync_kit(ideal); 2965 access_store_at(nullptr, jt_addr, addr_type, hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED); 2966 access_store_at(nullptr, vt_addr, addr_type, hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED); 2967 2968 ideal.sync_kit(this); 2969 } ideal.end_if(); 2970 final_sync(ideal); 2971 2972 return true; 2973 } 2974 2975 // Always update the temporary VTMS transition bit. 2976 bool LibraryCallKit::inline_native_notify_jvmti_hide() { 2977 if (!DoJVMTIVirtualThreadTransitions) { 2978 return true; 2979 } 2980 IdealKit ideal(this); 2981 2982 { 2983 // unconditionally update the temporary VTMS transition bit in current JavaThread 2984 Node* thread = ideal.thread(); 2985 Node* hide = _gvn.transform(argument(0)); // hide argument for temporary VTMS transition notification 2986 Node* addr = basic_plus_adr(thread, in_bytes(JavaThread::is_in_tmp_VTMS_transition_offset())); 2987 const TypePtr *addr_type = _gvn.type(addr)->isa_ptr(); 2988 2989 sync_kit(ideal); 2990 access_store_at(nullptr, addr, addr_type, hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED); 2991 ideal.sync_kit(this); 2992 } 2993 final_sync(ideal); 2994 2995 return true; 2996 } 2997 2998 // Always update the is_disable_suspend bit. 2999 bool LibraryCallKit::inline_native_notify_jvmti_sync() { 3000 if (!DoJVMTIVirtualThreadTransitions) { 3001 return true; 3002 } 3003 IdealKit ideal(this); 3004 3005 { 3006 // unconditionally update the is_disable_suspend bit in current JavaThread 3007 Node* thread = ideal.thread(); 3008 Node* arg = _gvn.transform(argument(0)); // argument for notification 3009 Node* addr = basic_plus_adr(thread, in_bytes(JavaThread::is_disable_suspend_offset())); 3010 const TypePtr *addr_type = _gvn.type(addr)->isa_ptr(); 3011 3012 sync_kit(ideal); 3013 access_store_at(nullptr, addr, addr_type, arg, _gvn.type(arg), T_BOOLEAN, IN_NATIVE | MO_UNORDERED); 3014 ideal.sync_kit(this); 3015 } 3016 final_sync(ideal); 3017 3018 return true; 3019 } 3020 3021 #endif // INCLUDE_JVMTI 3022 3023 #ifdef JFR_HAVE_INTRINSICS 3024 3025 /** 3026 * if oop->klass != null 3027 * // normal class 3028 * epoch = _epoch_state ? 2 : 1 3029 * if oop->klass->trace_id & ((epoch << META_SHIFT) | epoch)) != epoch { 3030 * ... // enter slow path when the klass is first recorded or the epoch of JFR shifts 3031 * } 3032 * id = oop->klass->trace_id >> TRACE_ID_SHIFT // normal class path 3033 * else 3034 * // primitive class 3035 * if oop->array_klass != null 3036 * id = (oop->array_klass->trace_id >> TRACE_ID_SHIFT) + 1 // primitive class path 3037 * else 3038 * id = LAST_TYPE_ID + 1 // void class path 3039 * if (!signaled) 3040 * signaled = true 3041 */ 3042 bool LibraryCallKit::inline_native_classID() { 3043 Node* cls = argument(0); 3044 3045 IdealKit ideal(this); 3046 #define __ ideal. 3047 IdealVariable result(ideal); __ declarations_done(); 3048 Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), 3049 basic_plus_adr(cls, java_lang_Class::klass_offset()), 3050 TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL)); 3051 3052 3053 __ if_then(kls, BoolTest::ne, null()); { 3054 Node* kls_trace_id_addr = basic_plus_adr(kls, in_bytes(KLASS_TRACE_ID_OFFSET)); 3055 Node* kls_trace_id_raw = ideal.load(ideal.ctrl(), kls_trace_id_addr,TypeLong::LONG, T_LONG, Compile::AliasIdxRaw); 3056 3057 Node* epoch_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::epoch_address())); 3058 Node* epoch = ideal.load(ideal.ctrl(), epoch_address, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw); 3059 epoch = _gvn.transform(new LShiftLNode(longcon(1), epoch)); 3060 Node* mask = _gvn.transform(new LShiftLNode(epoch, intcon(META_SHIFT))); 3061 mask = _gvn.transform(new OrLNode(mask, epoch)); 3062 Node* kls_trace_id_raw_and_mask = _gvn.transform(new AndLNode(kls_trace_id_raw, mask)); 3063 3064 float unlikely = PROB_UNLIKELY(0.999); 3065 __ if_then(kls_trace_id_raw_and_mask, BoolTest::ne, epoch, unlikely); { 3066 sync_kit(ideal); 3067 make_runtime_call(RC_LEAF, 3068 OptoRuntime::class_id_load_barrier_Type(), 3069 CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::load_barrier), 3070 "class id load barrier", 3071 TypePtr::BOTTOM, 3072 kls); 3073 ideal.sync_kit(this); 3074 } __ end_if(); 3075 3076 ideal.set(result, _gvn.transform(new URShiftLNode(kls_trace_id_raw, ideal.ConI(TRACE_ID_SHIFT)))); 3077 } __ else_(); { 3078 Node* array_kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), 3079 basic_plus_adr(cls, java_lang_Class::array_klass_offset()), 3080 TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL)); 3081 __ if_then(array_kls, BoolTest::ne, null()); { 3082 Node* array_kls_trace_id_addr = basic_plus_adr(array_kls, in_bytes(KLASS_TRACE_ID_OFFSET)); 3083 Node* array_kls_trace_id_raw = ideal.load(ideal.ctrl(), array_kls_trace_id_addr, TypeLong::LONG, T_LONG, Compile::AliasIdxRaw); 3084 Node* array_kls_trace_id = _gvn.transform(new URShiftLNode(array_kls_trace_id_raw, ideal.ConI(TRACE_ID_SHIFT))); 3085 ideal.set(result, _gvn.transform(new AddLNode(array_kls_trace_id, longcon(1)))); 3086 } __ else_(); { 3087 // void class case 3088 ideal.set(result, _gvn.transform(longcon(LAST_TYPE_ID + 1))); 3089 } __ end_if(); 3090 3091 Node* signaled_flag_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::signal_address())); 3092 Node* signaled = ideal.load(ideal.ctrl(), signaled_flag_address, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw, true, MemNode::acquire); 3093 __ if_then(signaled, BoolTest::ne, ideal.ConI(1)); { 3094 ideal.store(ideal.ctrl(), signaled_flag_address, ideal.ConI(1), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::release, true); 3095 } __ end_if(); 3096 } __ end_if(); 3097 3098 final_sync(ideal); 3099 set_result(ideal.value(result)); 3100 #undef __ 3101 return true; 3102 } 3103 3104 //------------------------inline_native_jvm_commit------------------ 3105 bool LibraryCallKit::inline_native_jvm_commit() { 3106 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 3107 3108 // Save input memory and i_o state. 3109 Node* input_memory_state = reset_memory(); 3110 set_all_memory(input_memory_state); 3111 Node* input_io_state = i_o(); 3112 3113 // TLS. 3114 Node* tls_ptr = _gvn.transform(new ThreadLocalNode()); 3115 // Jfr java buffer. 3116 Node* java_buffer_offset = _gvn.transform(new AddPNode(top(), tls_ptr, _gvn.transform(MakeConX(in_bytes(JAVA_BUFFER_OFFSET_JFR))))); 3117 Node* java_buffer = _gvn.transform(new LoadPNode(control(), input_memory_state, java_buffer_offset, TypePtr::BOTTOM, TypeRawPtr::NOTNULL, MemNode::unordered)); 3118 Node* java_buffer_pos_offset = _gvn.transform(new AddPNode(top(), java_buffer, _gvn.transform(MakeConX(in_bytes(JFR_BUFFER_POS_OFFSET))))); 3119 3120 // Load the current value of the notified field in the JfrThreadLocal. 3121 Node* notified_offset = basic_plus_adr(top(), tls_ptr, in_bytes(NOTIFY_OFFSET_JFR)); 3122 Node* notified = make_load(control(), notified_offset, TypeInt::BOOL, T_BOOLEAN, MemNode::unordered); 3123 3124 // Test for notification. 3125 Node* notified_cmp = _gvn.transform(new CmpINode(notified, _gvn.intcon(1))); 3126 Node* test_notified = _gvn.transform(new BoolNode(notified_cmp, BoolTest::eq)); 3127 IfNode* iff_notified = create_and_map_if(control(), test_notified, PROB_MIN, COUNT_UNKNOWN); 3128 3129 // True branch, is notified. 3130 Node* is_notified = _gvn.transform(new IfTrueNode(iff_notified)); 3131 set_control(is_notified); 3132 3133 // Reset notified state. 3134 Node* notified_reset_memory = store_to_memory(control(), notified_offset, _gvn.intcon(0), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::unordered); 3135 3136 // Iff notified, the return address of the commit method is the current position of the backing java buffer. This is used to reset the event writer. 3137 Node* current_pos_X = _gvn.transform(new LoadXNode(control(), input_memory_state, java_buffer_pos_offset, TypeRawPtr::NOTNULL, TypeX_X, MemNode::unordered)); 3138 // Convert the machine-word to a long. 3139 Node* current_pos = _gvn.transform(ConvX2L(current_pos_X)); 3140 3141 // False branch, not notified. 3142 Node* not_notified = _gvn.transform(new IfFalseNode(iff_notified)); 3143 set_control(not_notified); 3144 set_all_memory(input_memory_state); 3145 3146 // Arg is the next position as a long. 3147 Node* arg = argument(0); 3148 // Convert long to machine-word. 3149 Node* next_pos_X = _gvn.transform(ConvL2X(arg)); 3150 3151 // Store the next_position to the underlying jfr java buffer. 3152 Node* commit_memory; 3153 #ifdef _LP64 3154 commit_memory = store_to_memory(control(), java_buffer_pos_offset, next_pos_X, T_LONG, Compile::AliasIdxRaw, MemNode::release); 3155 #else 3156 commit_memory = store_to_memory(control(), java_buffer_pos_offset, next_pos_X, T_INT, Compile::AliasIdxRaw, MemNode::release); 3157 #endif 3158 3159 // Now load the flags from off the java buffer and decide if the buffer is a lease. If so, it needs to be returned post-commit. 3160 Node* java_buffer_flags_offset = _gvn.transform(new AddPNode(top(), java_buffer, _gvn.transform(MakeConX(in_bytes(JFR_BUFFER_FLAGS_OFFSET))))); 3161 Node* flags = make_load(control(), java_buffer_flags_offset, TypeInt::UBYTE, T_BYTE, MemNode::unordered); 3162 Node* lease_constant = _gvn.transform(_gvn.intcon(4)); 3163 3164 // And flags with lease constant. 3165 Node* lease = _gvn.transform(new AndINode(flags, lease_constant)); 3166 3167 // Branch on lease to conditionalize returning the leased java buffer. 3168 Node* lease_cmp = _gvn.transform(new CmpINode(lease, lease_constant)); 3169 Node* test_lease = _gvn.transform(new BoolNode(lease_cmp, BoolTest::eq)); 3170 IfNode* iff_lease = create_and_map_if(control(), test_lease, PROB_MIN, COUNT_UNKNOWN); 3171 3172 // False branch, not a lease. 3173 Node* not_lease = _gvn.transform(new IfFalseNode(iff_lease)); 3174 3175 // True branch, is lease. 3176 Node* is_lease = _gvn.transform(new IfTrueNode(iff_lease)); 3177 set_control(is_lease); 3178 3179 // Make a runtime call, which can safepoint, to return the leased buffer. This updates both the JfrThreadLocal and the Java event writer oop. 3180 Node* call_return_lease = make_runtime_call(RC_NO_LEAF, 3181 OptoRuntime::void_void_Type(), 3182 SharedRuntime::jfr_return_lease(), 3183 "return_lease", TypePtr::BOTTOM); 3184 Node* call_return_lease_control = _gvn.transform(new ProjNode(call_return_lease, TypeFunc::Control)); 3185 3186 RegionNode* lease_compare_rgn = new RegionNode(PATH_LIMIT); 3187 record_for_igvn(lease_compare_rgn); 3188 PhiNode* lease_compare_mem = new PhiNode(lease_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3189 record_for_igvn(lease_compare_mem); 3190 PhiNode* lease_compare_io = new PhiNode(lease_compare_rgn, Type::ABIO); 3191 record_for_igvn(lease_compare_io); 3192 PhiNode* lease_result_value = new PhiNode(lease_compare_rgn, TypeLong::LONG); 3193 record_for_igvn(lease_result_value); 3194 3195 // Update control and phi nodes. 3196 lease_compare_rgn->init_req(_true_path, call_return_lease_control); 3197 lease_compare_rgn->init_req(_false_path, not_lease); 3198 3199 lease_compare_mem->init_req(_true_path, _gvn.transform(reset_memory())); 3200 lease_compare_mem->init_req(_false_path, commit_memory); 3201 3202 lease_compare_io->init_req(_true_path, i_o()); 3203 lease_compare_io->init_req(_false_path, input_io_state); 3204 3205 lease_result_value->init_req(_true_path, null()); // if the lease was returned, return 0. 3206 lease_result_value->init_req(_false_path, arg); // if not lease, return new updated position. 3207 3208 RegionNode* result_rgn = new RegionNode(PATH_LIMIT); 3209 PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM); 3210 PhiNode* result_io = new PhiNode(result_rgn, Type::ABIO); 3211 PhiNode* result_value = new PhiNode(result_rgn, TypeLong::LONG); 3212 3213 // Update control and phi nodes. 3214 result_rgn->init_req(_true_path, is_notified); 3215 result_rgn->init_req(_false_path, _gvn.transform(lease_compare_rgn)); 3216 3217 result_mem->init_req(_true_path, notified_reset_memory); 3218 result_mem->init_req(_false_path, _gvn.transform(lease_compare_mem)); 3219 3220 result_io->init_req(_true_path, input_io_state); 3221 result_io->init_req(_false_path, _gvn.transform(lease_compare_io)); 3222 3223 result_value->init_req(_true_path, current_pos); 3224 result_value->init_req(_false_path, _gvn.transform(lease_result_value)); 3225 3226 // Set output state. 3227 set_control(_gvn.transform(result_rgn)); 3228 set_all_memory(_gvn.transform(result_mem)); 3229 set_i_o(_gvn.transform(result_io)); 3230 set_result(result_rgn, result_value); 3231 return true; 3232 } 3233 3234 /* 3235 * The intrinsic is a model of this pseudo-code: 3236 * 3237 * JfrThreadLocal* const tl = Thread::jfr_thread_local() 3238 * jobject h_event_writer = tl->java_event_writer(); 3239 * if (h_event_writer == nullptr) { 3240 * return nullptr; 3241 * } 3242 * oop threadObj = Thread::threadObj(); 3243 * oop vthread = java_lang_Thread::vthread(threadObj); 3244 * traceid tid; 3245 * bool pinVirtualThread; 3246 * bool excluded; 3247 * if (vthread != threadObj) { // i.e. current thread is virtual 3248 * tid = java_lang_Thread::tid(vthread); 3249 * u2 vthread_epoch_raw = java_lang_Thread::jfr_epoch(vthread); 3250 * pinVirtualThread = VMContinuations; 3251 * excluded = vthread_epoch_raw & excluded_mask; 3252 * if (!excluded) { 3253 * traceid current_epoch = JfrTraceIdEpoch::current_generation(); 3254 * u2 vthread_epoch = vthread_epoch_raw & epoch_mask; 3255 * if (vthread_epoch != current_epoch) { 3256 * write_checkpoint(); 3257 * } 3258 * } 3259 * } else { 3260 * tid = java_lang_Thread::tid(threadObj); 3261 * u2 thread_epoch_raw = java_lang_Thread::jfr_epoch(threadObj); 3262 * pinVirtualThread = false; 3263 * excluded = thread_epoch_raw & excluded_mask; 3264 * } 3265 * oop event_writer = JNIHandles::resolve_non_null(h_event_writer); 3266 * traceid tid_in_event_writer = getField(event_writer, "threadID"); 3267 * if (tid_in_event_writer != tid) { 3268 * setField(event_writer, "pinVirtualThread", pinVirtualThread); 3269 * setField(event_writer, "excluded", excluded); 3270 * setField(event_writer, "threadID", tid); 3271 * } 3272 * return event_writer 3273 */ 3274 bool LibraryCallKit::inline_native_getEventWriter() { 3275 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 3276 3277 // Save input memory and i_o state. 3278 Node* input_memory_state = reset_memory(); 3279 set_all_memory(input_memory_state); 3280 Node* input_io_state = i_o(); 3281 3282 Node* excluded_mask = _gvn.intcon(32768); 3283 Node* epoch_mask = _gvn.intcon(32767); 3284 3285 // TLS 3286 Node* tls_ptr = _gvn.transform(new ThreadLocalNode()); 3287 3288 // Load the address of java event writer jobject handle from the jfr_thread_local structure. 3289 Node* jobj_ptr = basic_plus_adr(top(), tls_ptr, in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR)); 3290 3291 // Load the eventwriter jobject handle. 3292 Node* jobj = make_load(control(), jobj_ptr, TypeRawPtr::BOTTOM, T_ADDRESS, MemNode::unordered); 3293 3294 // Null check the jobject handle. 3295 Node* jobj_cmp_null = _gvn.transform(new CmpPNode(jobj, null())); 3296 Node* test_jobj_not_equal_null = _gvn.transform(new BoolNode(jobj_cmp_null, BoolTest::ne)); 3297 IfNode* iff_jobj_not_equal_null = create_and_map_if(control(), test_jobj_not_equal_null, PROB_MAX, COUNT_UNKNOWN); 3298 3299 // False path, jobj is null. 3300 Node* jobj_is_null = _gvn.transform(new IfFalseNode(iff_jobj_not_equal_null)); 3301 3302 // True path, jobj is not null. 3303 Node* jobj_is_not_null = _gvn.transform(new IfTrueNode(iff_jobj_not_equal_null)); 3304 3305 set_control(jobj_is_not_null); 3306 3307 // Load the threadObj for the CarrierThread. 3308 Node* threadObj = generate_current_thread(tls_ptr); 3309 3310 // Load the vthread. 3311 Node* vthread = generate_virtual_thread(tls_ptr); 3312 3313 // If vthread != threadObj, this is a virtual thread. 3314 Node* vthread_cmp_threadObj = _gvn.transform(new CmpPNode(vthread, threadObj)); 3315 Node* test_vthread_not_equal_threadObj = _gvn.transform(new BoolNode(vthread_cmp_threadObj, BoolTest::ne)); 3316 IfNode* iff_vthread_not_equal_threadObj = 3317 create_and_map_if(jobj_is_not_null, test_vthread_not_equal_threadObj, PROB_FAIR, COUNT_UNKNOWN); 3318 3319 // False branch, fallback to threadObj. 3320 Node* vthread_equal_threadObj = _gvn.transform(new IfFalseNode(iff_vthread_not_equal_threadObj)); 3321 set_control(vthread_equal_threadObj); 3322 3323 // Load the tid field from the vthread object. 3324 Node* thread_obj_tid = load_field_from_object(threadObj, "tid", "J"); 3325 3326 // Load the raw epoch value from the threadObj. 3327 Node* threadObj_epoch_offset = basic_plus_adr(threadObj, java_lang_Thread::jfr_epoch_offset()); 3328 Node* threadObj_epoch_raw = access_load_at(threadObj, threadObj_epoch_offset, TypeRawPtr::BOTTOM, TypeInt::CHAR, T_CHAR, 3329 IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD); 3330 3331 // Mask off the excluded information from the epoch. 3332 Node * threadObj_is_excluded = _gvn.transform(new AndINode(threadObj_epoch_raw, excluded_mask)); 3333 3334 // True branch, this is a virtual thread. 3335 Node* vthread_not_equal_threadObj = _gvn.transform(new IfTrueNode(iff_vthread_not_equal_threadObj)); 3336 set_control(vthread_not_equal_threadObj); 3337 3338 // Load the tid field from the vthread object. 3339 Node* vthread_tid = load_field_from_object(vthread, "tid", "J"); 3340 3341 // Continuation support determines if a virtual thread should be pinned. 3342 Node* global_addr = makecon(TypeRawPtr::make((address)&VMContinuations)); 3343 Node* continuation_support = make_load(control(), global_addr, TypeInt::BOOL, T_BOOLEAN, MemNode::unordered); 3344 3345 // Load the raw epoch value from the vthread. 3346 Node* vthread_epoch_offset = basic_plus_adr(vthread, java_lang_Thread::jfr_epoch_offset()); 3347 Node* vthread_epoch_raw = access_load_at(vthread, vthread_epoch_offset, TypeRawPtr::BOTTOM, TypeInt::CHAR, T_CHAR, 3348 IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD); 3349 3350 // Mask off the excluded information from the epoch. 3351 Node * vthread_is_excluded = _gvn.transform(new AndINode(vthread_epoch_raw, _gvn.transform(excluded_mask))); 3352 3353 // Branch on excluded to conditionalize updating the epoch for the virtual thread. 3354 Node* is_excluded_cmp = _gvn.transform(new CmpINode(vthread_is_excluded, _gvn.transform(excluded_mask))); 3355 Node* test_not_excluded = _gvn.transform(new BoolNode(is_excluded_cmp, BoolTest::ne)); 3356 IfNode* iff_not_excluded = create_and_map_if(control(), test_not_excluded, PROB_MAX, COUNT_UNKNOWN); 3357 3358 // False branch, vthread is excluded, no need to write epoch info. 3359 Node* excluded = _gvn.transform(new IfFalseNode(iff_not_excluded)); 3360 3361 // True branch, vthread is included, update epoch info. 3362 Node* included = _gvn.transform(new IfTrueNode(iff_not_excluded)); 3363 set_control(included); 3364 3365 // Get epoch value. 3366 Node* epoch = _gvn.transform(new AndINode(vthread_epoch_raw, _gvn.transform(epoch_mask))); 3367 3368 // Load the current epoch generation. The value is unsigned 16-bit, so we type it as T_CHAR. 3369 Node* epoch_generation_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::epoch_generation_address())); 3370 Node* current_epoch_generation = make_load(control(), epoch_generation_address, TypeInt::CHAR, T_CHAR, MemNode::unordered); 3371 3372 // Compare the epoch in the vthread to the current epoch generation. 3373 Node* const epoch_cmp = _gvn.transform(new CmpUNode(current_epoch_generation, epoch)); 3374 Node* test_epoch_not_equal = _gvn.transform(new BoolNode(epoch_cmp, BoolTest::ne)); 3375 IfNode* iff_epoch_not_equal = create_and_map_if(control(), test_epoch_not_equal, PROB_FAIR, COUNT_UNKNOWN); 3376 3377 // False path, epoch is equal, checkpoint information is valid. 3378 Node* epoch_is_equal = _gvn.transform(new IfFalseNode(iff_epoch_not_equal)); 3379 3380 // True path, epoch is not equal, write a checkpoint for the vthread. 3381 Node* epoch_is_not_equal = _gvn.transform(new IfTrueNode(iff_epoch_not_equal)); 3382 3383 set_control(epoch_is_not_equal); 3384 3385 // Make a runtime call, which can safepoint, to write a checkpoint for the vthread for this epoch. 3386 // The call also updates the native thread local thread id and the vthread with the current epoch. 3387 Node* call_write_checkpoint = make_runtime_call(RC_NO_LEAF, 3388 OptoRuntime::jfr_write_checkpoint_Type(), 3389 SharedRuntime::jfr_write_checkpoint(), 3390 "write_checkpoint", TypePtr::BOTTOM); 3391 Node* call_write_checkpoint_control = _gvn.transform(new ProjNode(call_write_checkpoint, TypeFunc::Control)); 3392 3393 // vthread epoch != current epoch 3394 RegionNode* epoch_compare_rgn = new RegionNode(PATH_LIMIT); 3395 record_for_igvn(epoch_compare_rgn); 3396 PhiNode* epoch_compare_mem = new PhiNode(epoch_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3397 record_for_igvn(epoch_compare_mem); 3398 PhiNode* epoch_compare_io = new PhiNode(epoch_compare_rgn, Type::ABIO); 3399 record_for_igvn(epoch_compare_io); 3400 3401 // Update control and phi nodes. 3402 epoch_compare_rgn->init_req(_true_path, call_write_checkpoint_control); 3403 epoch_compare_rgn->init_req(_false_path, epoch_is_equal); 3404 epoch_compare_mem->init_req(_true_path, _gvn.transform(reset_memory())); 3405 epoch_compare_mem->init_req(_false_path, input_memory_state); 3406 epoch_compare_io->init_req(_true_path, i_o()); 3407 epoch_compare_io->init_req(_false_path, input_io_state); 3408 3409 // excluded != true 3410 RegionNode* exclude_compare_rgn = new RegionNode(PATH_LIMIT); 3411 record_for_igvn(exclude_compare_rgn); 3412 PhiNode* exclude_compare_mem = new PhiNode(exclude_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3413 record_for_igvn(exclude_compare_mem); 3414 PhiNode* exclude_compare_io = new PhiNode(exclude_compare_rgn, Type::ABIO); 3415 record_for_igvn(exclude_compare_io); 3416 3417 // Update control and phi nodes. 3418 exclude_compare_rgn->init_req(_true_path, _gvn.transform(epoch_compare_rgn)); 3419 exclude_compare_rgn->init_req(_false_path, excluded); 3420 exclude_compare_mem->init_req(_true_path, _gvn.transform(epoch_compare_mem)); 3421 exclude_compare_mem->init_req(_false_path, input_memory_state); 3422 exclude_compare_io->init_req(_true_path, _gvn.transform(epoch_compare_io)); 3423 exclude_compare_io->init_req(_false_path, input_io_state); 3424 3425 // vthread != threadObj 3426 RegionNode* vthread_compare_rgn = new RegionNode(PATH_LIMIT); 3427 record_for_igvn(vthread_compare_rgn); 3428 PhiNode* vthread_compare_mem = new PhiNode(vthread_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3429 PhiNode* vthread_compare_io = new PhiNode(vthread_compare_rgn, Type::ABIO); 3430 record_for_igvn(vthread_compare_io); 3431 PhiNode* tid = new PhiNode(vthread_compare_rgn, TypeLong::LONG); 3432 record_for_igvn(tid); 3433 PhiNode* exclusion = new PhiNode(vthread_compare_rgn, TypeInt::BOOL); 3434 record_for_igvn(exclusion); 3435 PhiNode* pinVirtualThread = new PhiNode(vthread_compare_rgn, TypeInt::BOOL); 3436 record_for_igvn(pinVirtualThread); 3437 3438 // Update control and phi nodes. 3439 vthread_compare_rgn->init_req(_true_path, _gvn.transform(exclude_compare_rgn)); 3440 vthread_compare_rgn->init_req(_false_path, vthread_equal_threadObj); 3441 vthread_compare_mem->init_req(_true_path, _gvn.transform(exclude_compare_mem)); 3442 vthread_compare_mem->init_req(_false_path, input_memory_state); 3443 vthread_compare_io->init_req(_true_path, _gvn.transform(exclude_compare_io)); 3444 vthread_compare_io->init_req(_false_path, input_io_state); 3445 tid->init_req(_true_path, _gvn.transform(vthread_tid)); 3446 tid->init_req(_false_path, _gvn.transform(thread_obj_tid)); 3447 exclusion->init_req(_true_path, _gvn.transform(vthread_is_excluded)); 3448 exclusion->init_req(_false_path, _gvn.transform(threadObj_is_excluded)); 3449 pinVirtualThread->init_req(_true_path, _gvn.transform(continuation_support)); 3450 pinVirtualThread->init_req(_false_path, _gvn.intcon(0)); 3451 3452 // Update branch state. 3453 set_control(_gvn.transform(vthread_compare_rgn)); 3454 set_all_memory(_gvn.transform(vthread_compare_mem)); 3455 set_i_o(_gvn.transform(vthread_compare_io)); 3456 3457 // Load the event writer oop by dereferencing the jobject handle. 3458 ciKlass* klass_EventWriter = env()->find_system_klass(ciSymbol::make("jdk/jfr/internal/event/EventWriter")); 3459 assert(klass_EventWriter->is_loaded(), "invariant"); 3460 ciInstanceKlass* const instklass_EventWriter = klass_EventWriter->as_instance_klass(); 3461 const TypeKlassPtr* const aklass = TypeKlassPtr::make(instklass_EventWriter); 3462 const TypeOopPtr* const xtype = aklass->as_instance_type(); 3463 Node* jobj_untagged = _gvn.transform(new AddPNode(top(), jobj, _gvn.MakeConX(-JNIHandles::TypeTag::global))); 3464 Node* event_writer = access_load(jobj_untagged, xtype, T_OBJECT, IN_NATIVE | C2_CONTROL_DEPENDENT_LOAD); 3465 3466 // Load the current thread id from the event writer object. 3467 Node* const event_writer_tid = load_field_from_object(event_writer, "threadID", "J"); 3468 // Get the field offset to, conditionally, store an updated tid value later. 3469 Node* const event_writer_tid_field = field_address_from_object(event_writer, "threadID", "J", false); 3470 const TypePtr* event_writer_tid_field_type = _gvn.type(event_writer_tid_field)->isa_ptr(); 3471 // Get the field offset to, conditionally, store an updated exclusion value later. 3472 Node* const event_writer_excluded_field = field_address_from_object(event_writer, "excluded", "Z", false); 3473 const TypePtr* event_writer_excluded_field_type = _gvn.type(event_writer_excluded_field)->isa_ptr(); 3474 // Get the field offset to, conditionally, store an updated pinVirtualThread value later. 3475 Node* const event_writer_pin_field = field_address_from_object(event_writer, "pinVirtualThread", "Z", false); 3476 const TypePtr* event_writer_pin_field_type = _gvn.type(event_writer_pin_field)->isa_ptr(); 3477 3478 RegionNode* event_writer_tid_compare_rgn = new RegionNode(PATH_LIMIT); 3479 record_for_igvn(event_writer_tid_compare_rgn); 3480 PhiNode* event_writer_tid_compare_mem = new PhiNode(event_writer_tid_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3481 record_for_igvn(event_writer_tid_compare_mem); 3482 PhiNode* event_writer_tid_compare_io = new PhiNode(event_writer_tid_compare_rgn, Type::ABIO); 3483 record_for_igvn(event_writer_tid_compare_io); 3484 3485 // Compare the current tid from the thread object to what is currently stored in the event writer object. 3486 Node* const tid_cmp = _gvn.transform(new CmpLNode(event_writer_tid, _gvn.transform(tid))); 3487 Node* test_tid_not_equal = _gvn.transform(new BoolNode(tid_cmp, BoolTest::ne)); 3488 IfNode* iff_tid_not_equal = create_and_map_if(_gvn.transform(vthread_compare_rgn), test_tid_not_equal, PROB_FAIR, COUNT_UNKNOWN); 3489 3490 // False path, tids are the same. 3491 Node* tid_is_equal = _gvn.transform(new IfFalseNode(iff_tid_not_equal)); 3492 3493 // True path, tid is not equal, need to update the tid in the event writer. 3494 Node* tid_is_not_equal = _gvn.transform(new IfTrueNode(iff_tid_not_equal)); 3495 record_for_igvn(tid_is_not_equal); 3496 3497 // Store the pin state to the event writer. 3498 store_to_memory(tid_is_not_equal, event_writer_pin_field, _gvn.transform(pinVirtualThread), T_BOOLEAN, event_writer_pin_field_type, MemNode::unordered); 3499 3500 // Store the exclusion state to the event writer. 3501 store_to_memory(tid_is_not_equal, event_writer_excluded_field, _gvn.transform(exclusion), T_BOOLEAN, event_writer_excluded_field_type, MemNode::unordered); 3502 3503 // Store the tid to the event writer. 3504 store_to_memory(tid_is_not_equal, event_writer_tid_field, tid, T_LONG, event_writer_tid_field_type, MemNode::unordered); 3505 3506 // Update control and phi nodes. 3507 event_writer_tid_compare_rgn->init_req(_true_path, tid_is_not_equal); 3508 event_writer_tid_compare_rgn->init_req(_false_path, tid_is_equal); 3509 event_writer_tid_compare_mem->init_req(_true_path, _gvn.transform(reset_memory())); 3510 event_writer_tid_compare_mem->init_req(_false_path, _gvn.transform(vthread_compare_mem)); 3511 event_writer_tid_compare_io->init_req(_true_path, _gvn.transform(i_o())); 3512 event_writer_tid_compare_io->init_req(_false_path, _gvn.transform(vthread_compare_io)); 3513 3514 // Result of top level CFG, Memory, IO and Value. 3515 RegionNode* result_rgn = new RegionNode(PATH_LIMIT); 3516 PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM); 3517 PhiNode* result_io = new PhiNode(result_rgn, Type::ABIO); 3518 PhiNode* result_value = new PhiNode(result_rgn, TypeInstPtr::BOTTOM); 3519 3520 // Result control. 3521 result_rgn->init_req(_true_path, _gvn.transform(event_writer_tid_compare_rgn)); 3522 result_rgn->init_req(_false_path, jobj_is_null); 3523 3524 // Result memory. 3525 result_mem->init_req(_true_path, _gvn.transform(event_writer_tid_compare_mem)); 3526 result_mem->init_req(_false_path, _gvn.transform(input_memory_state)); 3527 3528 // Result IO. 3529 result_io->init_req(_true_path, _gvn.transform(event_writer_tid_compare_io)); 3530 result_io->init_req(_false_path, _gvn.transform(input_io_state)); 3531 3532 // Result value. 3533 result_value->init_req(_true_path, _gvn.transform(event_writer)); // return event writer oop 3534 result_value->init_req(_false_path, null()); // return null 3535 3536 // Set output state. 3537 set_control(_gvn.transform(result_rgn)); 3538 set_all_memory(_gvn.transform(result_mem)); 3539 set_i_o(_gvn.transform(result_io)); 3540 set_result(result_rgn, result_value); 3541 return true; 3542 } 3543 3544 /* 3545 * The intrinsic is a model of this pseudo-code: 3546 * 3547 * JfrThreadLocal* const tl = thread->jfr_thread_local(); 3548 * if (carrierThread != thread) { // is virtual thread 3549 * const u2 vthread_epoch_raw = java_lang_Thread::jfr_epoch(thread); 3550 * bool excluded = vthread_epoch_raw & excluded_mask; 3551 * Atomic::store(&tl->_contextual_tid, java_lang_Thread::tid(thread)); 3552 * Atomic::store(&tl->_contextual_thread_excluded, is_excluded); 3553 * if (!excluded) { 3554 * const u2 vthread_epoch = vthread_epoch_raw & epoch_mask; 3555 * Atomic::store(&tl->_vthread_epoch, vthread_epoch); 3556 * } 3557 * Atomic::release_store(&tl->_vthread, true); 3558 * return; 3559 * } 3560 * Atomic::release_store(&tl->_vthread, false); 3561 */ 3562 void LibraryCallKit::extend_setCurrentThread(Node* jt, Node* thread) { 3563 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 3564 3565 Node* input_memory_state = reset_memory(); 3566 set_all_memory(input_memory_state); 3567 3568 Node* excluded_mask = _gvn.intcon(32768); 3569 Node* epoch_mask = _gvn.intcon(32767); 3570 3571 Node* const carrierThread = generate_current_thread(jt); 3572 // If thread != carrierThread, this is a virtual thread. 3573 Node* thread_cmp_carrierThread = _gvn.transform(new CmpPNode(thread, carrierThread)); 3574 Node* test_thread_not_equal_carrierThread = _gvn.transform(new BoolNode(thread_cmp_carrierThread, BoolTest::ne)); 3575 IfNode* iff_thread_not_equal_carrierThread = 3576 create_and_map_if(control(), test_thread_not_equal_carrierThread, PROB_FAIR, COUNT_UNKNOWN); 3577 3578 Node* vthread_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_OFFSET_JFR)); 3579 3580 // False branch, is carrierThread. 3581 Node* thread_equal_carrierThread = _gvn.transform(new IfFalseNode(iff_thread_not_equal_carrierThread)); 3582 // Store release 3583 Node* vthread_false_memory = store_to_memory(thread_equal_carrierThread, vthread_offset, _gvn.intcon(0), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::release, true); 3584 3585 set_all_memory(input_memory_state); 3586 3587 // True branch, is virtual thread. 3588 Node* thread_not_equal_carrierThread = _gvn.transform(new IfTrueNode(iff_thread_not_equal_carrierThread)); 3589 set_control(thread_not_equal_carrierThread); 3590 3591 // Load the raw epoch value from the vthread. 3592 Node* epoch_offset = basic_plus_adr(thread, java_lang_Thread::jfr_epoch_offset()); 3593 Node* epoch_raw = access_load_at(thread, epoch_offset, TypeRawPtr::BOTTOM, TypeInt::CHAR, T_CHAR, 3594 IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD); 3595 3596 // Mask off the excluded information from the epoch. 3597 Node * const is_excluded = _gvn.transform(new AndINode(epoch_raw, _gvn.transform(excluded_mask))); 3598 3599 // Load the tid field from the thread. 3600 Node* tid = load_field_from_object(thread, "tid", "J"); 3601 3602 // Store the vthread tid to the jfr thread local. 3603 Node* thread_id_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_ID_OFFSET_JFR)); 3604 Node* tid_memory = store_to_memory(control(), thread_id_offset, tid, T_LONG, Compile::AliasIdxRaw, MemNode::unordered, true); 3605 3606 // Branch is_excluded to conditionalize updating the epoch . 3607 Node* excluded_cmp = _gvn.transform(new CmpINode(is_excluded, _gvn.transform(excluded_mask))); 3608 Node* test_excluded = _gvn.transform(new BoolNode(excluded_cmp, BoolTest::eq)); 3609 IfNode* iff_excluded = create_and_map_if(control(), test_excluded, PROB_MIN, COUNT_UNKNOWN); 3610 3611 // True branch, vthread is excluded, no need to write epoch info. 3612 Node* excluded = _gvn.transform(new IfTrueNode(iff_excluded)); 3613 set_control(excluded); 3614 Node* vthread_is_excluded = _gvn.intcon(1); 3615 3616 // False branch, vthread is included, update epoch info. 3617 Node* included = _gvn.transform(new IfFalseNode(iff_excluded)); 3618 set_control(included); 3619 Node* vthread_is_included = _gvn.intcon(0); 3620 3621 // Get epoch value. 3622 Node* epoch = _gvn.transform(new AndINode(epoch_raw, _gvn.transform(epoch_mask))); 3623 3624 // Store the vthread epoch to the jfr thread local. 3625 Node* vthread_epoch_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_EPOCH_OFFSET_JFR)); 3626 Node* included_memory = store_to_memory(control(), vthread_epoch_offset, epoch, T_CHAR, Compile::AliasIdxRaw, MemNode::unordered, true); 3627 3628 RegionNode* excluded_rgn = new RegionNode(PATH_LIMIT); 3629 record_for_igvn(excluded_rgn); 3630 PhiNode* excluded_mem = new PhiNode(excluded_rgn, Type::MEMORY, TypePtr::BOTTOM); 3631 record_for_igvn(excluded_mem); 3632 PhiNode* exclusion = new PhiNode(excluded_rgn, TypeInt::BOOL); 3633 record_for_igvn(exclusion); 3634 3635 // Merge the excluded control and memory. 3636 excluded_rgn->init_req(_true_path, excluded); 3637 excluded_rgn->init_req(_false_path, included); 3638 excluded_mem->init_req(_true_path, tid_memory); 3639 excluded_mem->init_req(_false_path, included_memory); 3640 exclusion->init_req(_true_path, _gvn.transform(vthread_is_excluded)); 3641 exclusion->init_req(_false_path, _gvn.transform(vthread_is_included)); 3642 3643 // Set intermediate state. 3644 set_control(_gvn.transform(excluded_rgn)); 3645 set_all_memory(excluded_mem); 3646 3647 // Store the vthread exclusion state to the jfr thread local. 3648 Node* thread_local_excluded_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_EXCLUDED_OFFSET_JFR)); 3649 store_to_memory(control(), thread_local_excluded_offset, _gvn.transform(exclusion), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::unordered, true); 3650 3651 // Store release 3652 Node * vthread_true_memory = store_to_memory(control(), vthread_offset, _gvn.intcon(1), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::release, true); 3653 3654 RegionNode* thread_compare_rgn = new RegionNode(PATH_LIMIT); 3655 record_for_igvn(thread_compare_rgn); 3656 PhiNode* thread_compare_mem = new PhiNode(thread_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3657 record_for_igvn(thread_compare_mem); 3658 PhiNode* vthread = new PhiNode(thread_compare_rgn, TypeInt::BOOL); 3659 record_for_igvn(vthread); 3660 3661 // Merge the thread_compare control and memory. 3662 thread_compare_rgn->init_req(_true_path, control()); 3663 thread_compare_rgn->init_req(_false_path, thread_equal_carrierThread); 3664 thread_compare_mem->init_req(_true_path, vthread_true_memory); 3665 thread_compare_mem->init_req(_false_path, vthread_false_memory); 3666 3667 // Set output state. 3668 set_control(_gvn.transform(thread_compare_rgn)); 3669 set_all_memory(_gvn.transform(thread_compare_mem)); 3670 } 3671 3672 #endif // JFR_HAVE_INTRINSICS 3673 3674 //------------------------inline_native_currentCarrierThread------------------ 3675 bool LibraryCallKit::inline_native_currentCarrierThread() { 3676 Node* junk = nullptr; 3677 set_result(generate_current_thread(junk)); 3678 return true; 3679 } 3680 3681 //------------------------inline_native_currentThread------------------ 3682 bool LibraryCallKit::inline_native_currentThread() { 3683 Node* junk = nullptr; 3684 set_result(generate_virtual_thread(junk)); 3685 return true; 3686 } 3687 3688 //------------------------inline_native_setVthread------------------ 3689 bool LibraryCallKit::inline_native_setCurrentThread() { 3690 assert(C->method()->changes_current_thread(), 3691 "method changes current Thread but is not annotated ChangesCurrentThread"); 3692 Node* arr = argument(1); 3693 Node* thread = _gvn.transform(new ThreadLocalNode()); 3694 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::vthread_offset())); 3695 Node* thread_obj_handle 3696 = make_load(nullptr, p, p->bottom_type()->is_ptr(), T_OBJECT, MemNode::unordered); 3697 thread_obj_handle = _gvn.transform(thread_obj_handle); 3698 const TypePtr *adr_type = _gvn.type(thread_obj_handle)->isa_ptr(); 3699 access_store_at(nullptr, thread_obj_handle, adr_type, arr, _gvn.type(arr), T_OBJECT, IN_NATIVE | MO_UNORDERED); 3700 JFR_ONLY(extend_setCurrentThread(thread, arr);) 3701 return true; 3702 } 3703 3704 const Type* LibraryCallKit::scopedValueCache_type() { 3705 ciKlass* objects_klass = ciObjArrayKlass::make(env()->Object_klass()); 3706 const TypeOopPtr* etype = TypeOopPtr::make_from_klass(env()->Object_klass()); 3707 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS); 3708 3709 // Because we create the scopedValue cache lazily we have to make the 3710 // type of the result BotPTR. 3711 bool xk = etype->klass_is_exact(); 3712 const Type* objects_type = TypeAryPtr::make(TypePtr::BotPTR, arr0, objects_klass, xk, 0); 3713 return objects_type; 3714 } 3715 3716 Node* LibraryCallKit::scopedValueCache_helper() { 3717 Node* thread = _gvn.transform(new ThreadLocalNode()); 3718 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::scopedValueCache_offset())); 3719 // We cannot use immutable_memory() because we might flip onto a 3720 // different carrier thread, at which point we'll need to use that 3721 // carrier thread's cache. 3722 // return _gvn.transform(LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(), 3723 // TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered)); 3724 return make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered); 3725 } 3726 3727 //------------------------inline_native_scopedValueCache------------------ 3728 bool LibraryCallKit::inline_native_scopedValueCache() { 3729 Node* cache_obj_handle = scopedValueCache_helper(); 3730 const Type* objects_type = scopedValueCache_type(); 3731 set_result(access_load(cache_obj_handle, objects_type, T_OBJECT, IN_NATIVE)); 3732 3733 return true; 3734 } 3735 3736 //------------------------inline_native_setScopedValueCache------------------ 3737 bool LibraryCallKit::inline_native_setScopedValueCache() { 3738 Node* arr = argument(0); 3739 Node* cache_obj_handle = scopedValueCache_helper(); 3740 const Type* objects_type = scopedValueCache_type(); 3741 3742 const TypePtr *adr_type = _gvn.type(cache_obj_handle)->isa_ptr(); 3743 access_store_at(nullptr, cache_obj_handle, adr_type, arr, objects_type, T_OBJECT, IN_NATIVE | MO_UNORDERED); 3744 3745 return true; 3746 } 3747 3748 //------------------------inline_native_Continuation_pin and unpin----------- 3749 3750 // Shared implementation routine for both pin and unpin. 3751 bool LibraryCallKit::inline_native_Continuation_pinning(bool unpin) { 3752 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 3753 3754 // Save input memory. 3755 Node* input_memory_state = reset_memory(); 3756 set_all_memory(input_memory_state); 3757 3758 // TLS 3759 Node* tls_ptr = _gvn.transform(new ThreadLocalNode()); 3760 Node* last_continuation_offset = basic_plus_adr(top(), tls_ptr, in_bytes(JavaThread::cont_entry_offset())); 3761 Node* last_continuation = make_load(control(), last_continuation_offset, last_continuation_offset->get_ptr_type(), T_ADDRESS, MemNode::unordered); 3762 3763 // Null check the last continuation object. 3764 Node* continuation_cmp_null = _gvn.transform(new CmpPNode(last_continuation, null())); 3765 Node* test_continuation_not_equal_null = _gvn.transform(new BoolNode(continuation_cmp_null, BoolTest::ne)); 3766 IfNode* iff_continuation_not_equal_null = create_and_map_if(control(), test_continuation_not_equal_null, PROB_MAX, COUNT_UNKNOWN); 3767 3768 // False path, last continuation is null. 3769 Node* continuation_is_null = _gvn.transform(new IfFalseNode(iff_continuation_not_equal_null)); 3770 3771 // True path, last continuation is not null. 3772 Node* continuation_is_not_null = _gvn.transform(new IfTrueNode(iff_continuation_not_equal_null)); 3773 3774 set_control(continuation_is_not_null); 3775 3776 // Load the pin count from the last continuation. 3777 Node* pin_count_offset = basic_plus_adr(top(), last_continuation, in_bytes(ContinuationEntry::pin_count_offset())); 3778 Node* pin_count = make_load(control(), pin_count_offset, TypeInt::INT, T_INT, MemNode::unordered); 3779 3780 // The loaded pin count is compared against a context specific rhs for over/underflow detection. 3781 Node* pin_count_rhs; 3782 if (unpin) { 3783 pin_count_rhs = _gvn.intcon(0); 3784 } else { 3785 pin_count_rhs = _gvn.intcon(UINT32_MAX); 3786 } 3787 Node* pin_count_cmp = _gvn.transform(new CmpUNode(_gvn.transform(pin_count), pin_count_rhs)); 3788 Node* test_pin_count_over_underflow = _gvn.transform(new BoolNode(pin_count_cmp, BoolTest::eq)); 3789 IfNode* iff_pin_count_over_underflow = create_and_map_if(control(), test_pin_count_over_underflow, PROB_MIN, COUNT_UNKNOWN); 3790 3791 // False branch, no pin count over/underflow. Increment or decrement pin count and store back. 3792 Node* valid_pin_count = _gvn.transform(new IfFalseNode(iff_pin_count_over_underflow)); 3793 set_control(valid_pin_count); 3794 3795 Node* next_pin_count; 3796 if (unpin) { 3797 next_pin_count = _gvn.transform(new SubINode(pin_count, _gvn.intcon(1))); 3798 } else { 3799 next_pin_count = _gvn.transform(new AddINode(pin_count, _gvn.intcon(1))); 3800 } 3801 3802 Node* updated_pin_count_memory = store_to_memory(control(), pin_count_offset, next_pin_count, T_INT, Compile::AliasIdxRaw, MemNode::unordered); 3803 3804 // True branch, pin count over/underflow. 3805 Node* pin_count_over_underflow = _gvn.transform(new IfTrueNode(iff_pin_count_over_underflow)); 3806 { 3807 // Trap (but not deoptimize (Action_none)) and continue in the interpreter 3808 // which will throw IllegalStateException for pin count over/underflow. 3809 PreserveJVMState pjvms(this); 3810 set_control(pin_count_over_underflow); 3811 set_all_memory(input_memory_state); 3812 uncommon_trap_exact(Deoptimization::Reason_intrinsic, 3813 Deoptimization::Action_none); 3814 assert(stopped(), "invariant"); 3815 } 3816 3817 // Result of top level CFG and Memory. 3818 RegionNode* result_rgn = new RegionNode(PATH_LIMIT); 3819 record_for_igvn(result_rgn); 3820 PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM); 3821 record_for_igvn(result_mem); 3822 3823 result_rgn->init_req(_true_path, _gvn.transform(valid_pin_count)); 3824 result_rgn->init_req(_false_path, _gvn.transform(continuation_is_null)); 3825 result_mem->init_req(_true_path, _gvn.transform(updated_pin_count_memory)); 3826 result_mem->init_req(_false_path, _gvn.transform(input_memory_state)); 3827 3828 // Set output state. 3829 set_control(_gvn.transform(result_rgn)); 3830 set_all_memory(_gvn.transform(result_mem)); 3831 3832 return true; 3833 } 3834 3835 //---------------------------load_mirror_from_klass---------------------------- 3836 // Given a klass oop, load its java mirror (a java.lang.Class oop). 3837 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) { 3838 Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset())); 3839 Node* load = make_load(nullptr, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered); 3840 // mirror = ((OopHandle)mirror)->resolve(); 3841 return access_load(load, TypeInstPtr::MIRROR, T_OBJECT, IN_NATIVE); 3842 } 3843 3844 //-----------------------load_klass_from_mirror_common------------------------- 3845 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop. 3846 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE), 3847 // and branch to the given path on the region. 3848 // If never_see_null, take an uncommon trap on null, so we can optimistically 3849 // compile for the non-null case. 3850 // If the region is null, force never_see_null = true. 3851 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror, 3852 bool never_see_null, 3853 RegionNode* region, 3854 int null_path, 3855 int offset) { 3856 if (region == nullptr) never_see_null = true; 3857 Node* p = basic_plus_adr(mirror, offset); 3858 const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL; 3859 Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type)); 3860 Node* null_ctl = top(); 3861 kls = null_check_oop(kls, &null_ctl, never_see_null); 3862 if (region != nullptr) { 3863 // Set region->in(null_path) if the mirror is a primitive (e.g, int.class). 3864 region->init_req(null_path, null_ctl); 3865 } else { 3866 assert(null_ctl == top(), "no loose ends"); 3867 } 3868 return kls; 3869 } 3870 3871 //--------------------(inline_native_Class_query helpers)--------------------- 3872 // Use this for JVM_ACC_INTERFACE. 3873 // Fall through if (mods & mask) == bits, take the guard otherwise. 3874 Node* LibraryCallKit::generate_klass_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region, 3875 ByteSize offset, const Type* type, BasicType bt) { 3876 // Branch around if the given klass has the given modifier bit set. 3877 // Like generate_guard, adds a new path onto the region. 3878 Node* modp = basic_plus_adr(kls, in_bytes(offset)); 3879 Node* mods = make_load(nullptr, modp, type, bt, MemNode::unordered); 3880 Node* mask = intcon(modifier_mask); 3881 Node* bits = intcon(modifier_bits); 3882 Node* mbit = _gvn.transform(new AndINode(mods, mask)); 3883 Node* cmp = _gvn.transform(new CmpINode(mbit, bits)); 3884 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne)); 3885 return generate_fair_guard(bol, region); 3886 } 3887 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) { 3888 return generate_klass_flags_guard(kls, JVM_ACC_INTERFACE, 0, region, 3889 Klass::access_flags_offset(), TypeInt::INT, T_INT); 3890 } 3891 3892 // Use this for testing if Klass is_hidden, has_finalizer, and is_cloneable_fast. 3893 Node* LibraryCallKit::generate_misc_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) { 3894 return generate_klass_flags_guard(kls, modifier_mask, modifier_bits, region, 3895 Klass::misc_flags_offset(), TypeInt::UBYTE, T_BOOLEAN); 3896 } 3897 3898 Node* LibraryCallKit::generate_hidden_class_guard(Node* kls, RegionNode* region) { 3899 return generate_misc_flags_guard(kls, KlassFlags::_misc_is_hidden_class, 0, region); 3900 } 3901 3902 //-------------------------inline_native_Class_query------------------- 3903 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) { 3904 const Type* return_type = TypeInt::BOOL; 3905 Node* prim_return_value = top(); // what happens if it's a primitive class? 3906 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 3907 bool expect_prim = false; // most of these guys expect to work on refs 3908 3909 enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT }; 3910 3911 Node* mirror = argument(0); 3912 Node* obj = top(); 3913 3914 switch (id) { 3915 case vmIntrinsics::_isInstance: 3916 // nothing is an instance of a primitive type 3917 prim_return_value = intcon(0); 3918 obj = argument(1); 3919 break; 3920 case vmIntrinsics::_getModifiers: 3921 prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC); 3922 assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line"); 3923 return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin); 3924 break; 3925 case vmIntrinsics::_isInterface: 3926 prim_return_value = intcon(0); 3927 break; 3928 case vmIntrinsics::_isArray: 3929 prim_return_value = intcon(0); 3930 expect_prim = true; // cf. ObjectStreamClass.getClassSignature 3931 break; 3932 case vmIntrinsics::_isPrimitive: 3933 prim_return_value = intcon(1); 3934 expect_prim = true; // obviously 3935 break; 3936 case vmIntrinsics::_isHidden: 3937 prim_return_value = intcon(0); 3938 break; 3939 case vmIntrinsics::_getSuperclass: 3940 prim_return_value = null(); 3941 return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR); 3942 break; 3943 case vmIntrinsics::_getClassAccessFlags: 3944 prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC); 3945 return_type = TypeInt::INT; // not bool! 6297094 3946 break; 3947 default: 3948 fatal_unexpected_iid(id); 3949 break; 3950 } 3951 3952 const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr(); 3953 if (mirror_con == nullptr) return false; // cannot happen? 3954 3955 #ifndef PRODUCT 3956 if (C->print_intrinsics() || C->print_inlining()) { 3957 ciType* k = mirror_con->java_mirror_type(); 3958 if (k) { 3959 tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id())); 3960 k->print_name(); 3961 tty->cr(); 3962 } 3963 } 3964 #endif 3965 3966 // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive). 3967 RegionNode* region = new RegionNode(PATH_LIMIT); 3968 record_for_igvn(region); 3969 PhiNode* phi = new PhiNode(region, return_type); 3970 3971 // The mirror will never be null of Reflection.getClassAccessFlags, however 3972 // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE 3973 // if it is. See bug 4774291. 3974 3975 // For Reflection.getClassAccessFlags(), the null check occurs in 3976 // the wrong place; see inline_unsafe_access(), above, for a similar 3977 // situation. 3978 mirror = null_check(mirror); 3979 // If mirror or obj is dead, only null-path is taken. 3980 if (stopped()) return true; 3981 3982 if (expect_prim) never_see_null = false; // expect nulls (meaning prims) 3983 3984 // Now load the mirror's klass metaobject, and null-check it. 3985 // Side-effects region with the control path if the klass is null. 3986 Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path); 3987 // If kls is null, we have a primitive mirror. 3988 phi->init_req(_prim_path, prim_return_value); 3989 if (stopped()) { set_result(region, phi); return true; } 3990 bool safe_for_replace = (region->in(_prim_path) == top()); 3991 3992 Node* p; // handy temp 3993 Node* null_ctl; 3994 3995 // Now that we have the non-null klass, we can perform the real query. 3996 // For constant classes, the query will constant-fold in LoadNode::Value. 3997 Node* query_value = top(); 3998 switch (id) { 3999 case vmIntrinsics::_isInstance: 4000 // nothing is an instance of a primitive type 4001 query_value = gen_instanceof(obj, kls, safe_for_replace); 4002 break; 4003 4004 case vmIntrinsics::_getModifiers: 4005 p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset())); 4006 query_value = make_load(nullptr, p, TypeInt::INT, T_INT, MemNode::unordered); 4007 break; 4008 4009 case vmIntrinsics::_isInterface: 4010 // (To verify this code sequence, check the asserts in JVM_IsInterface.) 4011 if (generate_interface_guard(kls, region) != nullptr) 4012 // A guard was added. If the guard is taken, it was an interface. 4013 phi->add_req(intcon(1)); 4014 // If we fall through, it's a plain class. 4015 query_value = intcon(0); 4016 break; 4017 4018 case vmIntrinsics::_isArray: 4019 // (To verify this code sequence, check the asserts in JVM_IsArrayClass.) 4020 if (generate_array_guard(kls, region) != nullptr) 4021 // A guard was added. If the guard is taken, it was an array. 4022 phi->add_req(intcon(1)); 4023 // If we fall through, it's a plain class. 4024 query_value = intcon(0); 4025 break; 4026 4027 case vmIntrinsics::_isPrimitive: 4028 query_value = intcon(0); // "normal" path produces false 4029 break; 4030 4031 case vmIntrinsics::_isHidden: 4032 // (To verify this code sequence, check the asserts in JVM_IsHiddenClass.) 4033 if (generate_hidden_class_guard(kls, region) != nullptr) 4034 // A guard was added. If the guard is taken, it was an hidden class. 4035 phi->add_req(intcon(1)); 4036 // If we fall through, it's a plain class. 4037 query_value = intcon(0); 4038 break; 4039 4040 4041 case vmIntrinsics::_getSuperclass: 4042 // The rules here are somewhat unfortunate, but we can still do better 4043 // with random logic than with a JNI call. 4044 // Interfaces store null or Object as _super, but must report null. 4045 // Arrays store an intermediate super as _super, but must report Object. 4046 // Other types can report the actual _super. 4047 // (To verify this code sequence, check the asserts in JVM_IsInterface.) 4048 if (generate_interface_guard(kls, region) != nullptr) 4049 // A guard was added. If the guard is taken, it was an interface. 4050 phi->add_req(null()); 4051 if (generate_array_guard(kls, region) != nullptr) 4052 // A guard was added. If the guard is taken, it was an array. 4053 phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror()))); 4054 // If we fall through, it's a plain class. Get its _super. 4055 p = basic_plus_adr(kls, in_bytes(Klass::super_offset())); 4056 kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL)); 4057 null_ctl = top(); 4058 kls = null_check_oop(kls, &null_ctl); 4059 if (null_ctl != top()) { 4060 // If the guard is taken, Object.superClass is null (both klass and mirror). 4061 region->add_req(null_ctl); 4062 phi ->add_req(null()); 4063 } 4064 if (!stopped()) { 4065 query_value = load_mirror_from_klass(kls); 4066 } 4067 break; 4068 4069 case vmIntrinsics::_getClassAccessFlags: 4070 p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset())); 4071 query_value = make_load(nullptr, p, TypeInt::INT, T_INT, MemNode::unordered); 4072 break; 4073 4074 default: 4075 fatal_unexpected_iid(id); 4076 break; 4077 } 4078 4079 // Fall-through is the normal case of a query to a real class. 4080 phi->init_req(1, query_value); 4081 region->init_req(1, control()); 4082 4083 C->set_has_split_ifs(true); // Has chance for split-if optimization 4084 set_result(region, phi); 4085 return true; 4086 } 4087 4088 //-------------------------inline_Class_cast------------------- 4089 bool LibraryCallKit::inline_Class_cast() { 4090 Node* mirror = argument(0); // Class 4091 Node* obj = argument(1); 4092 const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr(); 4093 if (mirror_con == nullptr) { 4094 return false; // dead path (mirror->is_top()). 4095 } 4096 if (obj == nullptr || obj->is_top()) { 4097 return false; // dead path 4098 } 4099 const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr(); 4100 4101 // First, see if Class.cast() can be folded statically. 4102 // java_mirror_type() returns non-null for compile-time Class constants. 4103 ciType* tm = mirror_con->java_mirror_type(); 4104 if (tm != nullptr && tm->is_klass() && 4105 tp != nullptr) { 4106 if (!tp->is_loaded()) { 4107 // Don't use intrinsic when class is not loaded. 4108 return false; 4109 } else { 4110 int static_res = C->static_subtype_check(TypeKlassPtr::make(tm->as_klass(), Type::trust_interfaces), tp->as_klass_type()); 4111 if (static_res == Compile::SSC_always_true) { 4112 // isInstance() is true - fold the code. 4113 set_result(obj); 4114 return true; 4115 } else if (static_res == Compile::SSC_always_false) { 4116 // Don't use intrinsic, have to throw ClassCastException. 4117 // If the reference is null, the non-intrinsic bytecode will 4118 // be optimized appropriately. 4119 return false; 4120 } 4121 } 4122 } 4123 4124 // Bailout intrinsic and do normal inlining if exception path is frequent. 4125 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 4126 return false; 4127 } 4128 4129 // Generate dynamic checks. 4130 // Class.cast() is java implementation of _checkcast bytecode. 4131 // Do checkcast (Parse::do_checkcast()) optimizations here. 4132 4133 mirror = null_check(mirror); 4134 // If mirror is dead, only null-path is taken. 4135 if (stopped()) { 4136 return true; 4137 } 4138 4139 // Not-subtype or the mirror's klass ptr is null (in case it is a primitive). 4140 enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT }; 4141 RegionNode* region = new RegionNode(PATH_LIMIT); 4142 record_for_igvn(region); 4143 4144 // Now load the mirror's klass metaobject, and null-check it. 4145 // If kls is null, we have a primitive mirror and 4146 // nothing is an instance of a primitive type. 4147 Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path); 4148 4149 Node* res = top(); 4150 if (!stopped()) { 4151 Node* bad_type_ctrl = top(); 4152 // Do checkcast optimizations. 4153 res = gen_checkcast(obj, kls, &bad_type_ctrl); 4154 region->init_req(_bad_type_path, bad_type_ctrl); 4155 } 4156 if (region->in(_prim_path) != top() || 4157 region->in(_bad_type_path) != top()) { 4158 // Let Interpreter throw ClassCastException. 4159 PreserveJVMState pjvms(this); 4160 set_control(_gvn.transform(region)); 4161 uncommon_trap(Deoptimization::Reason_intrinsic, 4162 Deoptimization::Action_maybe_recompile); 4163 } 4164 if (!stopped()) { 4165 set_result(res); 4166 } 4167 return true; 4168 } 4169 4170 4171 //--------------------------inline_native_subtype_check------------------------ 4172 // This intrinsic takes the JNI calls out of the heart of 4173 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc. 4174 bool LibraryCallKit::inline_native_subtype_check() { 4175 // Pull both arguments off the stack. 4176 Node* args[2]; // two java.lang.Class mirrors: superc, subc 4177 args[0] = argument(0); 4178 args[1] = argument(1); 4179 Node* klasses[2]; // corresponding Klasses: superk, subk 4180 klasses[0] = klasses[1] = top(); 4181 4182 enum { 4183 // A full decision tree on {superc is prim, subc is prim}: 4184 _prim_0_path = 1, // {P,N} => false 4185 // {P,P} & superc!=subc => false 4186 _prim_same_path, // {P,P} & superc==subc => true 4187 _prim_1_path, // {N,P} => false 4188 _ref_subtype_path, // {N,N} & subtype check wins => true 4189 _both_ref_path, // {N,N} & subtype check loses => false 4190 PATH_LIMIT 4191 }; 4192 4193 RegionNode* region = new RegionNode(PATH_LIMIT); 4194 Node* phi = new PhiNode(region, TypeInt::BOOL); 4195 record_for_igvn(region); 4196 4197 const TypePtr* adr_type = TypeRawPtr::BOTTOM; // memory type of loads 4198 const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL; 4199 int class_klass_offset = java_lang_Class::klass_offset(); 4200 4201 // First null-check both mirrors and load each mirror's klass metaobject. 4202 int which_arg; 4203 for (which_arg = 0; which_arg <= 1; which_arg++) { 4204 Node* arg = args[which_arg]; 4205 arg = null_check(arg); 4206 if (stopped()) break; 4207 args[which_arg] = arg; 4208 4209 Node* p = basic_plus_adr(arg, class_klass_offset); 4210 Node* kls = LoadKlassNode::make(_gvn, nullptr, immutable_memory(), p, adr_type, kls_type); 4211 klasses[which_arg] = _gvn.transform(kls); 4212 } 4213 4214 // Having loaded both klasses, test each for null. 4215 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 4216 for (which_arg = 0; which_arg <= 1; which_arg++) { 4217 Node* kls = klasses[which_arg]; 4218 Node* null_ctl = top(); 4219 kls = null_check_oop(kls, &null_ctl, never_see_null); 4220 int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path); 4221 region->init_req(prim_path, null_ctl); 4222 if (stopped()) break; 4223 klasses[which_arg] = kls; 4224 } 4225 4226 if (!stopped()) { 4227 // now we have two reference types, in klasses[0..1] 4228 Node* subk = klasses[1]; // the argument to isAssignableFrom 4229 Node* superk = klasses[0]; // the receiver 4230 region->set_req(_both_ref_path, gen_subtype_check(subk, superk)); 4231 // now we have a successful reference subtype check 4232 region->set_req(_ref_subtype_path, control()); 4233 } 4234 4235 // If both operands are primitive (both klasses null), then 4236 // we must return true when they are identical primitives. 4237 // It is convenient to test this after the first null klass check. 4238 set_control(region->in(_prim_0_path)); // go back to first null check 4239 if (!stopped()) { 4240 // Since superc is primitive, make a guard for the superc==subc case. 4241 Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1])); 4242 Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq)); 4243 generate_guard(bol_eq, region, PROB_FAIR); 4244 if (region->req() == PATH_LIMIT+1) { 4245 // A guard was added. If the added guard is taken, superc==subc. 4246 region->swap_edges(PATH_LIMIT, _prim_same_path); 4247 region->del_req(PATH_LIMIT); 4248 } 4249 region->set_req(_prim_0_path, control()); // Not equal after all. 4250 } 4251 4252 // these are the only paths that produce 'true': 4253 phi->set_req(_prim_same_path, intcon(1)); 4254 phi->set_req(_ref_subtype_path, intcon(1)); 4255 4256 // pull together the cases: 4257 assert(region->req() == PATH_LIMIT, "sane region"); 4258 for (uint i = 1; i < region->req(); i++) { 4259 Node* ctl = region->in(i); 4260 if (ctl == nullptr || ctl == top()) { 4261 region->set_req(i, top()); 4262 phi ->set_req(i, top()); 4263 } else if (phi->in(i) == nullptr) { 4264 phi->set_req(i, intcon(0)); // all other paths produce 'false' 4265 } 4266 } 4267 4268 set_control(_gvn.transform(region)); 4269 set_result(_gvn.transform(phi)); 4270 return true; 4271 } 4272 4273 //---------------------generate_array_guard_common------------------------ 4274 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region, 4275 bool obj_array, bool not_array) { 4276 4277 if (stopped()) { 4278 return nullptr; 4279 } 4280 4281 // If obj_array/non_array==false/false: 4282 // Branch around if the given klass is in fact an array (either obj or prim). 4283 // If obj_array/non_array==false/true: 4284 // Branch around if the given klass is not an array klass of any kind. 4285 // If obj_array/non_array==true/true: 4286 // Branch around if the kls is not an oop array (kls is int[], String, etc.) 4287 // If obj_array/non_array==true/false: 4288 // Branch around if the kls is an oop array (Object[] or subtype) 4289 // 4290 // Like generate_guard, adds a new path onto the region. 4291 jint layout_con = 0; 4292 Node* layout_val = get_layout_helper(kls, layout_con); 4293 if (layout_val == nullptr) { 4294 bool query = (obj_array 4295 ? Klass::layout_helper_is_objArray(layout_con) 4296 : Klass::layout_helper_is_array(layout_con)); 4297 if (query == not_array) { 4298 return nullptr; // never a branch 4299 } else { // always a branch 4300 Node* always_branch = control(); 4301 if (region != nullptr) 4302 region->add_req(always_branch); 4303 set_control(top()); 4304 return always_branch; 4305 } 4306 } 4307 // Now test the correct condition. 4308 jint nval = (obj_array 4309 ? (jint)(Klass::_lh_array_tag_type_value 4310 << Klass::_lh_array_tag_shift) 4311 : Klass::_lh_neutral_value); 4312 Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval))); 4313 BoolTest::mask btest = BoolTest::lt; // correct for testing is_[obj]array 4314 // invert the test if we are looking for a non-array 4315 if (not_array) btest = BoolTest(btest).negate(); 4316 Node* bol = _gvn.transform(new BoolNode(cmp, btest)); 4317 return generate_fair_guard(bol, region); 4318 } 4319 4320 4321 //-----------------------inline_native_newArray-------------------------- 4322 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length); 4323 // private native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size); 4324 bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) { 4325 Node* mirror; 4326 Node* count_val; 4327 if (uninitialized) { 4328 null_check_receiver(); 4329 mirror = argument(1); 4330 count_val = argument(2); 4331 } else { 4332 mirror = argument(0); 4333 count_val = argument(1); 4334 } 4335 4336 mirror = null_check(mirror); 4337 // If mirror or obj is dead, only null-path is taken. 4338 if (stopped()) return true; 4339 4340 enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT }; 4341 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 4342 PhiNode* result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL); 4343 PhiNode* result_io = new PhiNode(result_reg, Type::ABIO); 4344 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 4345 4346 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 4347 Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null, 4348 result_reg, _slow_path); 4349 Node* normal_ctl = control(); 4350 Node* no_array_ctl = result_reg->in(_slow_path); 4351 4352 // Generate code for the slow case. We make a call to newArray(). 4353 set_control(no_array_ctl); 4354 if (!stopped()) { 4355 // Either the input type is void.class, or else the 4356 // array klass has not yet been cached. Either the 4357 // ensuing call will throw an exception, or else it 4358 // will cache the array klass for next time. 4359 PreserveJVMState pjvms(this); 4360 CallJavaNode* slow_call = nullptr; 4361 if (uninitialized) { 4362 // Generate optimized virtual call (holder class 'Unsafe' is final) 4363 slow_call = generate_method_call(vmIntrinsics::_allocateUninitializedArray, false, false, true); 4364 } else { 4365 slow_call = generate_method_call_static(vmIntrinsics::_newArray, true); 4366 } 4367 Node* slow_result = set_results_for_java_call(slow_call); 4368 // this->control() comes from set_results_for_java_call 4369 result_reg->set_req(_slow_path, control()); 4370 result_val->set_req(_slow_path, slow_result); 4371 result_io ->set_req(_slow_path, i_o()); 4372 result_mem->set_req(_slow_path, reset_memory()); 4373 } 4374 4375 set_control(normal_ctl); 4376 if (!stopped()) { 4377 // Normal case: The array type has been cached in the java.lang.Class. 4378 // The following call works fine even if the array type is polymorphic. 4379 // It could be a dynamic mix of int[], boolean[], Object[], etc. 4380 Node* obj = new_array(klass_node, count_val, 0); // no arguments to push 4381 result_reg->init_req(_normal_path, control()); 4382 result_val->init_req(_normal_path, obj); 4383 result_io ->init_req(_normal_path, i_o()); 4384 result_mem->init_req(_normal_path, reset_memory()); 4385 4386 if (uninitialized) { 4387 // Mark the allocation so that zeroing is skipped 4388 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(obj); 4389 alloc->maybe_set_complete(&_gvn); 4390 } 4391 } 4392 4393 // Return the combined state. 4394 set_i_o( _gvn.transform(result_io) ); 4395 set_all_memory( _gvn.transform(result_mem)); 4396 4397 C->set_has_split_ifs(true); // Has chance for split-if optimization 4398 set_result(result_reg, result_val); 4399 return true; 4400 } 4401 4402 //----------------------inline_native_getLength-------------------------- 4403 // public static native int java.lang.reflect.Array.getLength(Object array); 4404 bool LibraryCallKit::inline_native_getLength() { 4405 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false; 4406 4407 Node* array = null_check(argument(0)); 4408 // If array is dead, only null-path is taken. 4409 if (stopped()) return true; 4410 4411 // Deoptimize if it is a non-array. 4412 Node* non_array = generate_non_array_guard(load_object_klass(array), nullptr); 4413 4414 if (non_array != nullptr) { 4415 PreserveJVMState pjvms(this); 4416 set_control(non_array); 4417 uncommon_trap(Deoptimization::Reason_intrinsic, 4418 Deoptimization::Action_maybe_recompile); 4419 } 4420 4421 // If control is dead, only non-array-path is taken. 4422 if (stopped()) return true; 4423 4424 // The works fine even if the array type is polymorphic. 4425 // It could be a dynamic mix of int[], boolean[], Object[], etc. 4426 Node* result = load_array_length(array); 4427 4428 C->set_has_split_ifs(true); // Has chance for split-if optimization 4429 set_result(result); 4430 return true; 4431 } 4432 4433 //------------------------inline_array_copyOf---------------------------- 4434 // public static <T,U> T[] java.util.Arrays.copyOf( U[] original, int newLength, Class<? extends T[]> newType); 4435 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from, int to, Class<? extends T[]> newType); 4436 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) { 4437 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false; 4438 4439 // Get the arguments. 4440 Node* original = argument(0); 4441 Node* start = is_copyOfRange? argument(1): intcon(0); 4442 Node* end = is_copyOfRange? argument(2): argument(1); 4443 Node* array_type_mirror = is_copyOfRange? argument(3): argument(2); 4444 4445 Node* newcopy = nullptr; 4446 4447 // Set the original stack and the reexecute bit for the interpreter to reexecute 4448 // the bytecode that invokes Arrays.copyOf if deoptimization happens. 4449 { PreserveReexecuteState preexecs(this); 4450 jvms()->set_should_reexecute(true); 4451 4452 array_type_mirror = null_check(array_type_mirror); 4453 original = null_check(original); 4454 4455 // Check if a null path was taken unconditionally. 4456 if (stopped()) return true; 4457 4458 Node* orig_length = load_array_length(original); 4459 4460 Node* klass_node = load_klass_from_mirror(array_type_mirror, false, nullptr, 0); 4461 klass_node = null_check(klass_node); 4462 4463 RegionNode* bailout = new RegionNode(1); 4464 record_for_igvn(bailout); 4465 4466 // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc. 4467 // Bail out if that is so. 4468 Node* not_objArray = generate_non_objArray_guard(klass_node, bailout); 4469 if (not_objArray != nullptr) { 4470 // Improve the klass node's type from the new optimistic assumption: 4471 ciKlass* ak = ciArrayKlass::make(env()->Object_klass()); 4472 const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/); 4473 Node* cast = new CastPPNode(control(), klass_node, akls); 4474 klass_node = _gvn.transform(cast); 4475 } 4476 4477 // Bail out if either start or end is negative. 4478 generate_negative_guard(start, bailout, &start); 4479 generate_negative_guard(end, bailout, &end); 4480 4481 Node* length = end; 4482 if (_gvn.type(start) != TypeInt::ZERO) { 4483 length = _gvn.transform(new SubINode(end, start)); 4484 } 4485 4486 // Bail out if length is negative (i.e., if start > end). 4487 // Without this the new_array would throw 4488 // NegativeArraySizeException but IllegalArgumentException is what 4489 // should be thrown 4490 generate_negative_guard(length, bailout, &length); 4491 4492 // Bail out if start is larger than the original length 4493 Node* orig_tail = _gvn.transform(new SubINode(orig_length, start)); 4494 generate_negative_guard(orig_tail, bailout, &orig_tail); 4495 4496 if (bailout->req() > 1) { 4497 PreserveJVMState pjvms(this); 4498 set_control(_gvn.transform(bailout)); 4499 uncommon_trap(Deoptimization::Reason_intrinsic, 4500 Deoptimization::Action_maybe_recompile); 4501 } 4502 4503 if (!stopped()) { 4504 // How many elements will we copy from the original? 4505 // The answer is MinI(orig_tail, length). 4506 Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length); 4507 4508 // Generate a direct call to the right arraycopy function(s). 4509 // We know the copy is disjoint but we might not know if the 4510 // oop stores need checking. 4511 // Extreme case: Arrays.copyOf((Integer[])x, 10, String[].class). 4512 // This will fail a store-check if x contains any non-nulls. 4513 4514 // ArrayCopyNode:Ideal may transform the ArrayCopyNode to 4515 // loads/stores but it is legal only if we're sure the 4516 // Arrays.copyOf would succeed. So we need all input arguments 4517 // to the copyOf to be validated, including that the copy to the 4518 // new array won't trigger an ArrayStoreException. That subtype 4519 // check can be optimized if we know something on the type of 4520 // the input array from type speculation. 4521 if (_gvn.type(klass_node)->singleton()) { 4522 const TypeKlassPtr* subk = _gvn.type(load_object_klass(original))->is_klassptr(); 4523 const TypeKlassPtr* superk = _gvn.type(klass_node)->is_klassptr(); 4524 4525 int test = C->static_subtype_check(superk, subk); 4526 if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) { 4527 const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr(); 4528 if (t_original->speculative_type() != nullptr) { 4529 original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true); 4530 } 4531 } 4532 } 4533 4534 bool validated = false; 4535 // Reason_class_check rather than Reason_intrinsic because we 4536 // want to intrinsify even if this traps. 4537 if (!too_many_traps(Deoptimization::Reason_class_check)) { 4538 Node* not_subtype_ctrl = gen_subtype_check(original, klass_node); 4539 4540 if (not_subtype_ctrl != top()) { 4541 PreserveJVMState pjvms(this); 4542 set_control(not_subtype_ctrl); 4543 uncommon_trap(Deoptimization::Reason_class_check, 4544 Deoptimization::Action_make_not_entrant); 4545 assert(stopped(), "Should be stopped"); 4546 } 4547 validated = true; 4548 } 4549 4550 if (!stopped()) { 4551 newcopy = new_array(klass_node, length, 0); // no arguments to push 4552 4553 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true, true, 4554 load_object_klass(original), klass_node); 4555 if (!is_copyOfRange) { 4556 ac->set_copyof(validated); 4557 } else { 4558 ac->set_copyofrange(validated); 4559 } 4560 Node* n = _gvn.transform(ac); 4561 if (n == ac) { 4562 ac->connect_outputs(this); 4563 } else { 4564 assert(validated, "shouldn't transform if all arguments not validated"); 4565 set_all_memory(n); 4566 } 4567 } 4568 } 4569 } // original reexecute is set back here 4570 4571 C->set_has_split_ifs(true); // Has chance for split-if optimization 4572 if (!stopped()) { 4573 set_result(newcopy); 4574 } 4575 return true; 4576 } 4577 4578 4579 //----------------------generate_virtual_guard--------------------------- 4580 // Helper for hashCode and clone. Peeks inside the vtable to avoid a call. 4581 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass, 4582 RegionNode* slow_region) { 4583 ciMethod* method = callee(); 4584 int vtable_index = method->vtable_index(); 4585 assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index, 4586 "bad index %d", vtable_index); 4587 // Get the Method* out of the appropriate vtable entry. 4588 int entry_offset = in_bytes(Klass::vtable_start_offset()) + 4589 vtable_index*vtableEntry::size_in_bytes() + 4590 in_bytes(vtableEntry::method_offset()); 4591 Node* entry_addr = basic_plus_adr(obj_klass, entry_offset); 4592 Node* target_call = make_load(nullptr, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered); 4593 4594 // Compare the target method with the expected method (e.g., Object.hashCode). 4595 const TypePtr* native_call_addr = TypeMetadataPtr::make(method); 4596 4597 Node* native_call = makecon(native_call_addr); 4598 Node* chk_native = _gvn.transform(new CmpPNode(target_call, native_call)); 4599 Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne)); 4600 4601 return generate_slow_guard(test_native, slow_region); 4602 } 4603 4604 //-----------------------generate_method_call---------------------------- 4605 // Use generate_method_call to make a slow-call to the real 4606 // method if the fast path fails. An alternative would be to 4607 // use a stub like OptoRuntime::slow_arraycopy_Java. 4608 // This only works for expanding the current library call, 4609 // not another intrinsic. (E.g., don't use this for making an 4610 // arraycopy call inside of the copyOf intrinsic.) 4611 CallJavaNode* 4612 LibraryCallKit::generate_method_call(vmIntrinsicID method_id, bool is_virtual, bool is_static, bool res_not_null) { 4613 // When compiling the intrinsic method itself, do not use this technique. 4614 guarantee(callee() != C->method(), "cannot make slow-call to self"); 4615 4616 ciMethod* method = callee(); 4617 // ensure the JVMS we have will be correct for this call 4618 guarantee(method_id == method->intrinsic_id(), "must match"); 4619 4620 const TypeFunc* tf = TypeFunc::make(method); 4621 if (res_not_null) { 4622 assert(tf->return_type() == T_OBJECT, ""); 4623 const TypeTuple* range = tf->range(); 4624 const Type** fields = TypeTuple::fields(range->cnt()); 4625 fields[TypeFunc::Parms] = range->field_at(TypeFunc::Parms)->filter_speculative(TypePtr::NOTNULL); 4626 const TypeTuple* new_range = TypeTuple::make(range->cnt(), fields); 4627 tf = TypeFunc::make(tf->domain(), new_range); 4628 } 4629 CallJavaNode* slow_call; 4630 if (is_static) { 4631 assert(!is_virtual, ""); 4632 slow_call = new CallStaticJavaNode(C, tf, 4633 SharedRuntime::get_resolve_static_call_stub(), method); 4634 } else if (is_virtual) { 4635 assert(!gvn().type(argument(0))->maybe_null(), "should not be null"); 4636 int vtable_index = Method::invalid_vtable_index; 4637 if (UseInlineCaches) { 4638 // Suppress the vtable call 4639 } else { 4640 // hashCode and clone are not a miranda methods, 4641 // so the vtable index is fixed. 4642 // No need to use the linkResolver to get it. 4643 vtable_index = method->vtable_index(); 4644 assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index, 4645 "bad index %d", vtable_index); 4646 } 4647 slow_call = new CallDynamicJavaNode(tf, 4648 SharedRuntime::get_resolve_virtual_call_stub(), 4649 method, vtable_index); 4650 } else { // neither virtual nor static: opt_virtual 4651 assert(!gvn().type(argument(0))->maybe_null(), "should not be null"); 4652 slow_call = new CallStaticJavaNode(C, tf, 4653 SharedRuntime::get_resolve_opt_virtual_call_stub(), method); 4654 slow_call->set_optimized_virtual(true); 4655 } 4656 if (CallGenerator::is_inlined_method_handle_intrinsic(this->method(), bci(), callee())) { 4657 // To be able to issue a direct call (optimized virtual or virtual) 4658 // and skip a call to MH.linkTo*/invokeBasic adapter, additional information 4659 // about the method being invoked should be attached to the call site to 4660 // make resolution logic work (see SharedRuntime::resolve_{virtual,opt_virtual}_call_C). 4661 slow_call->set_override_symbolic_info(true); 4662 } 4663 set_arguments_for_java_call(slow_call); 4664 set_edges_for_java_call(slow_call); 4665 return slow_call; 4666 } 4667 4668 4669 /** 4670 * Build special case code for calls to hashCode on an object. This call may 4671 * be virtual (invokevirtual) or bound (invokespecial). For each case we generate 4672 * slightly different code. 4673 */ 4674 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) { 4675 assert(is_static == callee()->is_static(), "correct intrinsic selection"); 4676 assert(!(is_virtual && is_static), "either virtual, special, or static"); 4677 4678 enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT }; 4679 4680 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 4681 PhiNode* result_val = new PhiNode(result_reg, TypeInt::INT); 4682 PhiNode* result_io = new PhiNode(result_reg, Type::ABIO); 4683 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 4684 Node* obj = nullptr; 4685 if (!is_static) { 4686 // Check for hashing null object 4687 obj = null_check_receiver(); 4688 if (stopped()) return true; // unconditionally null 4689 result_reg->init_req(_null_path, top()); 4690 result_val->init_req(_null_path, top()); 4691 } else { 4692 // Do a null check, and return zero if null. 4693 // System.identityHashCode(null) == 0 4694 obj = argument(0); 4695 Node* null_ctl = top(); 4696 obj = null_check_oop(obj, &null_ctl); 4697 result_reg->init_req(_null_path, null_ctl); 4698 result_val->init_req(_null_path, _gvn.intcon(0)); 4699 } 4700 4701 // Unconditionally null? Then return right away. 4702 if (stopped()) { 4703 set_control( result_reg->in(_null_path)); 4704 if (!stopped()) 4705 set_result(result_val->in(_null_path)); 4706 return true; 4707 } 4708 4709 // We only go to the fast case code if we pass a number of guards. The 4710 // paths which do not pass are accumulated in the slow_region. 4711 RegionNode* slow_region = new RegionNode(1); 4712 record_for_igvn(slow_region); 4713 4714 // If this is a virtual call, we generate a funny guard. We pull out 4715 // the vtable entry corresponding to hashCode() from the target object. 4716 // If the target method which we are calling happens to be the native 4717 // Object hashCode() method, we pass the guard. We do not need this 4718 // guard for non-virtual calls -- the caller is known to be the native 4719 // Object hashCode(). 4720 if (is_virtual) { 4721 // After null check, get the object's klass. 4722 Node* obj_klass = load_object_klass(obj); 4723 generate_virtual_guard(obj_klass, slow_region); 4724 } 4725 4726 // Get the header out of the object, use LoadMarkNode when available 4727 Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes()); 4728 // The control of the load must be null. Otherwise, the load can move before 4729 // the null check after castPP removal. 4730 Node* no_ctrl = nullptr; 4731 Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered); 4732 4733 if (!UseObjectMonitorTable) { 4734 // Test the header to see if it is safe to read w.r.t. locking. 4735 Node *lock_mask = _gvn.MakeConX(markWord::lock_mask_in_place); 4736 Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask)); 4737 if (LockingMode == LM_LIGHTWEIGHT) { 4738 Node *monitor_val = _gvn.MakeConX(markWord::monitor_value); 4739 Node *chk_monitor = _gvn.transform(new CmpXNode(lmasked_header, monitor_val)); 4740 Node *test_monitor = _gvn.transform(new BoolNode(chk_monitor, BoolTest::eq)); 4741 4742 generate_slow_guard(test_monitor, slow_region); 4743 } else { 4744 Node *unlocked_val = _gvn.MakeConX(markWord::unlocked_value); 4745 Node *chk_unlocked = _gvn.transform(new CmpXNode(lmasked_header, unlocked_val)); 4746 Node *test_not_unlocked = _gvn.transform(new BoolNode(chk_unlocked, BoolTest::ne)); 4747 4748 generate_slow_guard(test_not_unlocked, slow_region); 4749 } 4750 } 4751 4752 // Get the hash value and check to see that it has been properly assigned. 4753 // We depend on hash_mask being at most 32 bits and avoid the use of 4754 // hash_mask_in_place because it could be larger than 32 bits in a 64-bit 4755 // vm: see markWord.hpp. 4756 Node *hash_mask = _gvn.intcon(markWord::hash_mask); 4757 Node *hash_shift = _gvn.intcon(markWord::hash_shift); 4758 Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift)); 4759 // This hack lets the hash bits live anywhere in the mark object now, as long 4760 // as the shift drops the relevant bits into the low 32 bits. Note that 4761 // Java spec says that HashCode is an int so there's no point in capturing 4762 // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build). 4763 hshifted_header = ConvX2I(hshifted_header); 4764 Node *hash_val = _gvn.transform(new AndINode(hshifted_header, hash_mask)); 4765 4766 Node *no_hash_val = _gvn.intcon(markWord::no_hash); 4767 Node *chk_assigned = _gvn.transform(new CmpINode( hash_val, no_hash_val)); 4768 Node *test_assigned = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq)); 4769 4770 generate_slow_guard(test_assigned, slow_region); 4771 4772 Node* init_mem = reset_memory(); 4773 // fill in the rest of the null path: 4774 result_io ->init_req(_null_path, i_o()); 4775 result_mem->init_req(_null_path, init_mem); 4776 4777 result_val->init_req(_fast_path, hash_val); 4778 result_reg->init_req(_fast_path, control()); 4779 result_io ->init_req(_fast_path, i_o()); 4780 result_mem->init_req(_fast_path, init_mem); 4781 4782 // Generate code for the slow case. We make a call to hashCode(). 4783 set_control(_gvn.transform(slow_region)); 4784 if (!stopped()) { 4785 // No need for PreserveJVMState, because we're using up the present state. 4786 set_all_memory(init_mem); 4787 vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode; 4788 CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static, false); 4789 Node* slow_result = set_results_for_java_call(slow_call); 4790 // this->control() comes from set_results_for_java_call 4791 result_reg->init_req(_slow_path, control()); 4792 result_val->init_req(_slow_path, slow_result); 4793 result_io ->set_req(_slow_path, i_o()); 4794 result_mem ->set_req(_slow_path, reset_memory()); 4795 } 4796 4797 // Return the combined state. 4798 set_i_o( _gvn.transform(result_io) ); 4799 set_all_memory( _gvn.transform(result_mem)); 4800 4801 set_result(result_reg, result_val); 4802 return true; 4803 } 4804 4805 //---------------------------inline_native_getClass---------------------------- 4806 // public final native Class<?> java.lang.Object.getClass(); 4807 // 4808 // Build special case code for calls to getClass on an object. 4809 bool LibraryCallKit::inline_native_getClass() { 4810 Node* obj = null_check_receiver(); 4811 if (stopped()) return true; 4812 set_result(load_mirror_from_klass(load_object_klass(obj))); 4813 return true; 4814 } 4815 4816 //-----------------inline_native_Reflection_getCallerClass--------------------- 4817 // public static native Class<?> sun.reflect.Reflection.getCallerClass(); 4818 // 4819 // In the presence of deep enough inlining, getCallerClass() becomes a no-op. 4820 // 4821 // NOTE: This code must perform the same logic as JVM_GetCallerClass 4822 // in that it must skip particular security frames and checks for 4823 // caller sensitive methods. 4824 bool LibraryCallKit::inline_native_Reflection_getCallerClass() { 4825 #ifndef PRODUCT 4826 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4827 tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass"); 4828 } 4829 #endif 4830 4831 if (!jvms()->has_method()) { 4832 #ifndef PRODUCT 4833 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4834 tty->print_cr(" Bailing out because intrinsic was inlined at top level"); 4835 } 4836 #endif 4837 return false; 4838 } 4839 4840 // Walk back up the JVM state to find the caller at the required 4841 // depth. 4842 JVMState* caller_jvms = jvms(); 4843 4844 // Cf. JVM_GetCallerClass 4845 // NOTE: Start the loop at depth 1 because the current JVM state does 4846 // not include the Reflection.getCallerClass() frame. 4847 for (int n = 1; caller_jvms != nullptr; caller_jvms = caller_jvms->caller(), n++) { 4848 ciMethod* m = caller_jvms->method(); 4849 switch (n) { 4850 case 0: 4851 fatal("current JVM state does not include the Reflection.getCallerClass frame"); 4852 break; 4853 case 1: 4854 // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass). 4855 if (!m->caller_sensitive()) { 4856 #ifndef PRODUCT 4857 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4858 tty->print_cr(" Bailing out: CallerSensitive annotation expected at frame %d", n); 4859 } 4860 #endif 4861 return false; // bail-out; let JVM_GetCallerClass do the work 4862 } 4863 break; 4864 default: 4865 if (!m->is_ignored_by_security_stack_walk()) { 4866 // We have reached the desired frame; return the holder class. 4867 // Acquire method holder as java.lang.Class and push as constant. 4868 ciInstanceKlass* caller_klass = caller_jvms->method()->holder(); 4869 ciInstance* caller_mirror = caller_klass->java_mirror(); 4870 set_result(makecon(TypeInstPtr::make(caller_mirror))); 4871 4872 #ifndef PRODUCT 4873 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4874 tty->print_cr(" Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth()); 4875 tty->print_cr(" JVM state at this point:"); 4876 for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) { 4877 ciMethod* m = jvms()->of_depth(i)->method(); 4878 tty->print_cr(" %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8()); 4879 } 4880 } 4881 #endif 4882 return true; 4883 } 4884 break; 4885 } 4886 } 4887 4888 #ifndef PRODUCT 4889 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4890 tty->print_cr(" Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth()); 4891 tty->print_cr(" JVM state at this point:"); 4892 for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) { 4893 ciMethod* m = jvms()->of_depth(i)->method(); 4894 tty->print_cr(" %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8()); 4895 } 4896 } 4897 #endif 4898 4899 return false; // bail-out; let JVM_GetCallerClass do the work 4900 } 4901 4902 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) { 4903 Node* arg = argument(0); 4904 Node* result = nullptr; 4905 4906 switch (id) { 4907 case vmIntrinsics::_floatToRawIntBits: result = new MoveF2INode(arg); break; 4908 case vmIntrinsics::_intBitsToFloat: result = new MoveI2FNode(arg); break; 4909 case vmIntrinsics::_doubleToRawLongBits: result = new MoveD2LNode(arg); break; 4910 case vmIntrinsics::_longBitsToDouble: result = new MoveL2DNode(arg); break; 4911 case vmIntrinsics::_floatToFloat16: result = new ConvF2HFNode(arg); break; 4912 case vmIntrinsics::_float16ToFloat: result = new ConvHF2FNode(arg); break; 4913 4914 case vmIntrinsics::_doubleToLongBits: { 4915 // two paths (plus control) merge in a wood 4916 RegionNode *r = new RegionNode(3); 4917 Node *phi = new PhiNode(r, TypeLong::LONG); 4918 4919 Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg)); 4920 // Build the boolean node 4921 Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne)); 4922 4923 // Branch either way. 4924 // NaN case is less traveled, which makes all the difference. 4925 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN); 4926 Node *opt_isnan = _gvn.transform(ifisnan); 4927 assert( opt_isnan->is_If(), "Expect an IfNode"); 4928 IfNode *opt_ifisnan = (IfNode*)opt_isnan; 4929 Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan)); 4930 4931 set_control(iftrue); 4932 4933 static const jlong nan_bits = CONST64(0x7ff8000000000000); 4934 Node *slow_result = longcon(nan_bits); // return NaN 4935 phi->init_req(1, _gvn.transform( slow_result )); 4936 r->init_req(1, iftrue); 4937 4938 // Else fall through 4939 Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan)); 4940 set_control(iffalse); 4941 4942 phi->init_req(2, _gvn.transform(new MoveD2LNode(arg))); 4943 r->init_req(2, iffalse); 4944 4945 // Post merge 4946 set_control(_gvn.transform(r)); 4947 record_for_igvn(r); 4948 4949 C->set_has_split_ifs(true); // Has chance for split-if optimization 4950 result = phi; 4951 assert(result->bottom_type()->isa_long(), "must be"); 4952 break; 4953 } 4954 4955 case vmIntrinsics::_floatToIntBits: { 4956 // two paths (plus control) merge in a wood 4957 RegionNode *r = new RegionNode(3); 4958 Node *phi = new PhiNode(r, TypeInt::INT); 4959 4960 Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg)); 4961 // Build the boolean node 4962 Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne)); 4963 4964 // Branch either way. 4965 // NaN case is less traveled, which makes all the difference. 4966 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN); 4967 Node *opt_isnan = _gvn.transform(ifisnan); 4968 assert( opt_isnan->is_If(), "Expect an IfNode"); 4969 IfNode *opt_ifisnan = (IfNode*)opt_isnan; 4970 Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan)); 4971 4972 set_control(iftrue); 4973 4974 static const jint nan_bits = 0x7fc00000; 4975 Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN 4976 phi->init_req(1, _gvn.transform( slow_result )); 4977 r->init_req(1, iftrue); 4978 4979 // Else fall through 4980 Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan)); 4981 set_control(iffalse); 4982 4983 phi->init_req(2, _gvn.transform(new MoveF2INode(arg))); 4984 r->init_req(2, iffalse); 4985 4986 // Post merge 4987 set_control(_gvn.transform(r)); 4988 record_for_igvn(r); 4989 4990 C->set_has_split_ifs(true); // Has chance for split-if optimization 4991 result = phi; 4992 assert(result->bottom_type()->isa_int(), "must be"); 4993 break; 4994 } 4995 4996 default: 4997 fatal_unexpected_iid(id); 4998 break; 4999 } 5000 set_result(_gvn.transform(result)); 5001 return true; 5002 } 5003 5004 bool LibraryCallKit::inline_fp_range_check(vmIntrinsics::ID id) { 5005 Node* arg = argument(0); 5006 Node* result = nullptr; 5007 5008 switch (id) { 5009 case vmIntrinsics::_floatIsInfinite: 5010 result = new IsInfiniteFNode(arg); 5011 break; 5012 case vmIntrinsics::_floatIsFinite: 5013 result = new IsFiniteFNode(arg); 5014 break; 5015 case vmIntrinsics::_doubleIsInfinite: 5016 result = new IsInfiniteDNode(arg); 5017 break; 5018 case vmIntrinsics::_doubleIsFinite: 5019 result = new IsFiniteDNode(arg); 5020 break; 5021 default: 5022 fatal_unexpected_iid(id); 5023 break; 5024 } 5025 set_result(_gvn.transform(result)); 5026 return true; 5027 } 5028 5029 //----------------------inline_unsafe_copyMemory------------------------- 5030 // public native void Unsafe.copyMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes); 5031 5032 static bool has_wide_mem(PhaseGVN& gvn, Node* addr, Node* base) { 5033 const TypeAryPtr* addr_t = gvn.type(addr)->isa_aryptr(); 5034 const Type* base_t = gvn.type(base); 5035 5036 bool in_native = (base_t == TypePtr::NULL_PTR); 5037 bool in_heap = !TypePtr::NULL_PTR->higher_equal(base_t); 5038 bool is_mixed = !in_heap && !in_native; 5039 5040 if (is_mixed) { 5041 return true; // mixed accesses can touch both on-heap and off-heap memory 5042 } 5043 if (in_heap) { 5044 bool is_prim_array = (addr_t != nullptr) && (addr_t->elem() != Type::BOTTOM); 5045 if (!is_prim_array) { 5046 // Though Unsafe.copyMemory() ensures at runtime for on-heap accesses that base is a primitive array, 5047 // there's not enough type information available to determine proper memory slice for it. 5048 return true; 5049 } 5050 } 5051 return false; 5052 } 5053 5054 bool LibraryCallKit::inline_unsafe_copyMemory() { 5055 if (callee()->is_static()) return false; // caller must have the capability! 5056 null_check_receiver(); // null-check receiver 5057 if (stopped()) return true; 5058 5059 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 5060 5061 Node* src_base = argument(1); // type: oop 5062 Node* src_off = ConvL2X(argument(2)); // type: long 5063 Node* dst_base = argument(4); // type: oop 5064 Node* dst_off = ConvL2X(argument(5)); // type: long 5065 Node* size = ConvL2X(argument(7)); // type: long 5066 5067 assert(Unsafe_field_offset_to_byte_offset(11) == 11, 5068 "fieldOffset must be byte-scaled"); 5069 5070 Node* src_addr = make_unsafe_address(src_base, src_off); 5071 Node* dst_addr = make_unsafe_address(dst_base, dst_off); 5072 5073 Node* thread = _gvn.transform(new ThreadLocalNode()); 5074 Node* doing_unsafe_access_addr = basic_plus_adr(top(), thread, in_bytes(JavaThread::doing_unsafe_access_offset())); 5075 BasicType doing_unsafe_access_bt = T_BYTE; 5076 assert((sizeof(bool) * CHAR_BIT) == 8, "not implemented"); 5077 5078 // update volatile field 5079 store_to_memory(control(), doing_unsafe_access_addr, intcon(1), doing_unsafe_access_bt, Compile::AliasIdxRaw, MemNode::unordered); 5080 5081 int flags = RC_LEAF | RC_NO_FP; 5082 5083 const TypePtr* dst_type = TypePtr::BOTTOM; 5084 5085 // Adjust memory effects of the runtime call based on input values. 5086 if (!has_wide_mem(_gvn, src_addr, src_base) && 5087 !has_wide_mem(_gvn, dst_addr, dst_base)) { 5088 dst_type = _gvn.type(dst_addr)->is_ptr(); // narrow out memory 5089 5090 const TypePtr* src_type = _gvn.type(src_addr)->is_ptr(); 5091 if (C->get_alias_index(src_type) == C->get_alias_index(dst_type)) { 5092 flags |= RC_NARROW_MEM; // narrow in memory 5093 } 5094 } 5095 5096 // Call it. Note that the length argument is not scaled. 5097 make_runtime_call(flags, 5098 OptoRuntime::fast_arraycopy_Type(), 5099 StubRoutines::unsafe_arraycopy(), 5100 "unsafe_arraycopy", 5101 dst_type, 5102 src_addr, dst_addr, size XTOP); 5103 5104 store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, Compile::AliasIdxRaw, MemNode::unordered); 5105 5106 return true; 5107 } 5108 5109 // unsafe_setmemory(void *base, ulong offset, size_t length, char fill_value); 5110 // Fill 'length' bytes starting from 'base[offset]' with 'fill_value' 5111 bool LibraryCallKit::inline_unsafe_setMemory() { 5112 if (callee()->is_static()) return false; // caller must have the capability! 5113 null_check_receiver(); // null-check receiver 5114 if (stopped()) return true; 5115 5116 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 5117 5118 Node* dst_base = argument(1); // type: oop 5119 Node* dst_off = ConvL2X(argument(2)); // type: long 5120 Node* size = ConvL2X(argument(4)); // type: long 5121 Node* byte = argument(6); // type: byte 5122 5123 assert(Unsafe_field_offset_to_byte_offset(11) == 11, 5124 "fieldOffset must be byte-scaled"); 5125 5126 Node* dst_addr = make_unsafe_address(dst_base, dst_off); 5127 5128 Node* thread = _gvn.transform(new ThreadLocalNode()); 5129 Node* doing_unsafe_access_addr = basic_plus_adr(top(), thread, in_bytes(JavaThread::doing_unsafe_access_offset())); 5130 BasicType doing_unsafe_access_bt = T_BYTE; 5131 assert((sizeof(bool) * CHAR_BIT) == 8, "not implemented"); 5132 5133 // update volatile field 5134 store_to_memory(control(), doing_unsafe_access_addr, intcon(1), doing_unsafe_access_bt, Compile::AliasIdxRaw, MemNode::unordered); 5135 5136 int flags = RC_LEAF | RC_NO_FP; 5137 5138 const TypePtr* dst_type = TypePtr::BOTTOM; 5139 5140 // Adjust memory effects of the runtime call based on input values. 5141 if (!has_wide_mem(_gvn, dst_addr, dst_base)) { 5142 dst_type = _gvn.type(dst_addr)->is_ptr(); // narrow out memory 5143 5144 flags |= RC_NARROW_MEM; // narrow in memory 5145 } 5146 5147 // Call it. Note that the length argument is not scaled. 5148 make_runtime_call(flags, 5149 OptoRuntime::make_setmemory_Type(), 5150 StubRoutines::unsafe_setmemory(), 5151 "unsafe_setmemory", 5152 dst_type, 5153 dst_addr, size XTOP, byte); 5154 5155 store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, Compile::AliasIdxRaw, MemNode::unordered); 5156 5157 return true; 5158 } 5159 5160 #undef XTOP 5161 5162 //------------------------clone_coping----------------------------------- 5163 // Helper function for inline_native_clone. 5164 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array) { 5165 assert(obj_size != nullptr, ""); 5166 Node* raw_obj = alloc_obj->in(1); 5167 assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), ""); 5168 5169 AllocateNode* alloc = nullptr; 5170 if (ReduceBulkZeroing && 5171 // If we are implementing an array clone without knowing its source type 5172 // (can happen when compiling the array-guarded branch of a reflective 5173 // Object.clone() invocation), initialize the array within the allocation. 5174 // This is needed because some GCs (e.g. ZGC) might fall back in this case 5175 // to a runtime clone call that assumes fully initialized source arrays. 5176 (!is_array || obj->get_ptr_type()->isa_aryptr() != nullptr)) { 5177 // We will be completely responsible for initializing this object - 5178 // mark Initialize node as complete. 5179 alloc = AllocateNode::Ideal_allocation(alloc_obj); 5180 // The object was just allocated - there should be no any stores! 5181 guarantee(alloc != nullptr && alloc->maybe_set_complete(&_gvn), ""); 5182 // Mark as complete_with_arraycopy so that on AllocateNode 5183 // expansion, we know this AllocateNode is initialized by an array 5184 // copy and a StoreStore barrier exists after the array copy. 5185 alloc->initialization()->set_complete_with_arraycopy(); 5186 } 5187 5188 Node* size = _gvn.transform(obj_size); 5189 access_clone(obj, alloc_obj, size, is_array); 5190 5191 // Do not let reads from the cloned object float above the arraycopy. 5192 if (alloc != nullptr) { 5193 // Do not let stores that initialize this object be reordered with 5194 // a subsequent store that would make this object accessible by 5195 // other threads. 5196 // Record what AllocateNode this StoreStore protects so that 5197 // escape analysis can go from the MemBarStoreStoreNode to the 5198 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 5199 // based on the escape status of the AllocateNode. 5200 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 5201 } else { 5202 insert_mem_bar(Op_MemBarCPUOrder); 5203 } 5204 } 5205 5206 //------------------------inline_native_clone---------------------------- 5207 // protected native Object java.lang.Object.clone(); 5208 // 5209 // Here are the simple edge cases: 5210 // null receiver => normal trap 5211 // virtual and clone was overridden => slow path to out-of-line clone 5212 // not cloneable or finalizer => slow path to out-of-line Object.clone 5213 // 5214 // The general case has two steps, allocation and copying. 5215 // Allocation has two cases, and uses GraphKit::new_instance or new_array. 5216 // 5217 // Copying also has two cases, oop arrays and everything else. 5218 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy). 5219 // Everything else uses the tight inline loop supplied by CopyArrayNode. 5220 // 5221 // These steps fold up nicely if and when the cloned object's klass 5222 // can be sharply typed as an object array, a type array, or an instance. 5223 // 5224 bool LibraryCallKit::inline_native_clone(bool is_virtual) { 5225 PhiNode* result_val; 5226 5227 // Set the reexecute bit for the interpreter to reexecute 5228 // the bytecode that invokes Object.clone if deoptimization happens. 5229 { PreserveReexecuteState preexecs(this); 5230 jvms()->set_should_reexecute(true); 5231 5232 Node* obj = null_check_receiver(); 5233 if (stopped()) return true; 5234 5235 const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr(); 5236 5237 // If we are going to clone an instance, we need its exact type to 5238 // know the number and types of fields to convert the clone to 5239 // loads/stores. Maybe a speculative type can help us. 5240 if (!obj_type->klass_is_exact() && 5241 obj_type->speculative_type() != nullptr && 5242 obj_type->speculative_type()->is_instance_klass()) { 5243 ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass(); 5244 if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem && 5245 !spec_ik->has_injected_fields()) { 5246 if (!obj_type->isa_instptr() || 5247 obj_type->is_instptr()->instance_klass()->has_subklass()) { 5248 obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false); 5249 } 5250 } 5251 } 5252 5253 // Conservatively insert a memory barrier on all memory slices. 5254 // Do not let writes into the original float below the clone. 5255 insert_mem_bar(Op_MemBarCPUOrder); 5256 5257 // paths into result_reg: 5258 enum { 5259 _slow_path = 1, // out-of-line call to clone method (virtual or not) 5260 _objArray_path, // plain array allocation, plus arrayof_oop_arraycopy 5261 _array_path, // plain array allocation, plus arrayof_long_arraycopy 5262 _instance_path, // plain instance allocation, plus arrayof_long_arraycopy 5263 PATH_LIMIT 5264 }; 5265 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 5266 result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL); 5267 PhiNode* result_i_o = new PhiNode(result_reg, Type::ABIO); 5268 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 5269 record_for_igvn(result_reg); 5270 5271 Node* obj_klass = load_object_klass(obj); 5272 Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)nullptr); 5273 if (array_ctl != nullptr) { 5274 // It's an array. 5275 PreserveJVMState pjvms(this); 5276 set_control(array_ctl); 5277 Node* obj_length = load_array_length(obj); 5278 Node* array_size = nullptr; // Size of the array without object alignment padding. 5279 Node* alloc_obj = new_array(obj_klass, obj_length, 0, &array_size, /*deoptimize_on_exception=*/true); 5280 5281 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 5282 if (bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, false, BarrierSetC2::Parsing)) { 5283 // If it is an oop array, it requires very special treatment, 5284 // because gc barriers are required when accessing the array. 5285 Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)nullptr); 5286 if (is_obja != nullptr) { 5287 PreserveJVMState pjvms2(this); 5288 set_control(is_obja); 5289 // Generate a direct call to the right arraycopy function(s). 5290 // Clones are always tightly coupled. 5291 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, obj, intcon(0), alloc_obj, intcon(0), obj_length, true, false); 5292 ac->set_clone_oop_array(); 5293 Node* n = _gvn.transform(ac); 5294 assert(n == ac, "cannot disappear"); 5295 ac->connect_outputs(this, /*deoptimize_on_exception=*/true); 5296 5297 result_reg->init_req(_objArray_path, control()); 5298 result_val->init_req(_objArray_path, alloc_obj); 5299 result_i_o ->set_req(_objArray_path, i_o()); 5300 result_mem ->set_req(_objArray_path, reset_memory()); 5301 } 5302 } 5303 // Otherwise, there are no barriers to worry about. 5304 // (We can dispense with card marks if we know the allocation 5305 // comes out of eden (TLAB)... In fact, ReduceInitialCardMarks 5306 // causes the non-eden paths to take compensating steps to 5307 // simulate a fresh allocation, so that no further 5308 // card marks are required in compiled code to initialize 5309 // the object.) 5310 5311 if (!stopped()) { 5312 copy_to_clone(obj, alloc_obj, array_size, true); 5313 5314 // Present the results of the copy. 5315 result_reg->init_req(_array_path, control()); 5316 result_val->init_req(_array_path, alloc_obj); 5317 result_i_o ->set_req(_array_path, i_o()); 5318 result_mem ->set_req(_array_path, reset_memory()); 5319 } 5320 } 5321 5322 // We only go to the instance fast case code if we pass a number of guards. 5323 // The paths which do not pass are accumulated in the slow_region. 5324 RegionNode* slow_region = new RegionNode(1); 5325 record_for_igvn(slow_region); 5326 if (!stopped()) { 5327 // It's an instance (we did array above). Make the slow-path tests. 5328 // If this is a virtual call, we generate a funny guard. We grab 5329 // the vtable entry corresponding to clone() from the target object. 5330 // If the target method which we are calling happens to be the 5331 // Object clone() method, we pass the guard. We do not need this 5332 // guard for non-virtual calls; the caller is known to be the native 5333 // Object clone(). 5334 if (is_virtual) { 5335 generate_virtual_guard(obj_klass, slow_region); 5336 } 5337 5338 // The object must be easily cloneable and must not have a finalizer. 5339 // Both of these conditions may be checked in a single test. 5340 // We could optimize the test further, but we don't care. 5341 generate_misc_flags_guard(obj_klass, 5342 // Test both conditions: 5343 KlassFlags::_misc_is_cloneable_fast | KlassFlags::_misc_has_finalizer, 5344 // Must be cloneable but not finalizer: 5345 KlassFlags::_misc_is_cloneable_fast, 5346 slow_region); 5347 } 5348 5349 if (!stopped()) { 5350 // It's an instance, and it passed the slow-path tests. 5351 PreserveJVMState pjvms(this); 5352 Node* obj_size = nullptr; // Total object size, including object alignment padding. 5353 // Need to deoptimize on exception from allocation since Object.clone intrinsic 5354 // is reexecuted if deoptimization occurs and there could be problems when merging 5355 // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false). 5356 Node* alloc_obj = new_instance(obj_klass, nullptr, &obj_size, /*deoptimize_on_exception=*/true); 5357 5358 copy_to_clone(obj, alloc_obj, obj_size, false); 5359 5360 // Present the results of the slow call. 5361 result_reg->init_req(_instance_path, control()); 5362 result_val->init_req(_instance_path, alloc_obj); 5363 result_i_o ->set_req(_instance_path, i_o()); 5364 result_mem ->set_req(_instance_path, reset_memory()); 5365 } 5366 5367 // Generate code for the slow case. We make a call to clone(). 5368 set_control(_gvn.transform(slow_region)); 5369 if (!stopped()) { 5370 PreserveJVMState pjvms(this); 5371 CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual, false, true); 5372 // We need to deoptimize on exception (see comment above) 5373 Node* slow_result = set_results_for_java_call(slow_call, false, /* deoptimize */ true); 5374 // this->control() comes from set_results_for_java_call 5375 result_reg->init_req(_slow_path, control()); 5376 result_val->init_req(_slow_path, slow_result); 5377 result_i_o ->set_req(_slow_path, i_o()); 5378 result_mem ->set_req(_slow_path, reset_memory()); 5379 } 5380 5381 // Return the combined state. 5382 set_control( _gvn.transform(result_reg)); 5383 set_i_o( _gvn.transform(result_i_o)); 5384 set_all_memory( _gvn.transform(result_mem)); 5385 } // original reexecute is set back here 5386 5387 set_result(_gvn.transform(result_val)); 5388 return true; 5389 } 5390 5391 // If we have a tightly coupled allocation, the arraycopy may take care 5392 // of the array initialization. If one of the guards we insert between 5393 // the allocation and the arraycopy causes a deoptimization, an 5394 // uninitialized array will escape the compiled method. To prevent that 5395 // we set the JVM state for uncommon traps between the allocation and 5396 // the arraycopy to the state before the allocation so, in case of 5397 // deoptimization, we'll reexecute the allocation and the 5398 // initialization. 5399 JVMState* LibraryCallKit::arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp) { 5400 if (alloc != nullptr) { 5401 ciMethod* trap_method = alloc->jvms()->method(); 5402 int trap_bci = alloc->jvms()->bci(); 5403 5404 if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) && 5405 !C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_null_check)) { 5406 // Make sure there's no store between the allocation and the 5407 // arraycopy otherwise visible side effects could be rexecuted 5408 // in case of deoptimization and cause incorrect execution. 5409 bool no_interfering_store = true; 5410 Node* mem = alloc->in(TypeFunc::Memory); 5411 if (mem->is_MergeMem()) { 5412 for (MergeMemStream mms(merged_memory(), mem->as_MergeMem()); mms.next_non_empty2(); ) { 5413 Node* n = mms.memory(); 5414 if (n != mms.memory2() && !(n->is_Proj() && n->in(0) == alloc->initialization())) { 5415 assert(n->is_Store(), "what else?"); 5416 no_interfering_store = false; 5417 break; 5418 } 5419 } 5420 } else { 5421 for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) { 5422 Node* n = mms.memory(); 5423 if (n != mem && !(n->is_Proj() && n->in(0) == alloc->initialization())) { 5424 assert(n->is_Store(), "what else?"); 5425 no_interfering_store = false; 5426 break; 5427 } 5428 } 5429 } 5430 5431 if (no_interfering_store) { 5432 SafePointNode* sfpt = create_safepoint_with_state_before_array_allocation(alloc); 5433 5434 JVMState* saved_jvms = jvms(); 5435 saved_reexecute_sp = _reexecute_sp; 5436 5437 set_jvms(sfpt->jvms()); 5438 _reexecute_sp = jvms()->sp(); 5439 5440 return saved_jvms; 5441 } 5442 } 5443 } 5444 return nullptr; 5445 } 5446 5447 // Clone the JVMState of the array allocation and create a new safepoint with it. Re-push the array length to the stack 5448 // such that uncommon traps can be emitted to re-execute the array allocation in the interpreter. 5449 SafePointNode* LibraryCallKit::create_safepoint_with_state_before_array_allocation(const AllocateArrayNode* alloc) const { 5450 JVMState* old_jvms = alloc->jvms()->clone_shallow(C); 5451 uint size = alloc->req(); 5452 SafePointNode* sfpt = new SafePointNode(size, old_jvms); 5453 old_jvms->set_map(sfpt); 5454 for (uint i = 0; i < size; i++) { 5455 sfpt->init_req(i, alloc->in(i)); 5456 } 5457 // re-push array length for deoptimization 5458 sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), alloc->in(AllocateNode::ALength)); 5459 old_jvms->set_sp(old_jvms->sp()+1); 5460 old_jvms->set_monoff(old_jvms->monoff()+1); 5461 old_jvms->set_scloff(old_jvms->scloff()+1); 5462 old_jvms->set_endoff(old_jvms->endoff()+1); 5463 old_jvms->set_should_reexecute(true); 5464 5465 sfpt->set_i_o(map()->i_o()); 5466 sfpt->set_memory(map()->memory()); 5467 sfpt->set_control(map()->control()); 5468 return sfpt; 5469 } 5470 5471 // In case of a deoptimization, we restart execution at the 5472 // allocation, allocating a new array. We would leave an uninitialized 5473 // array in the heap that GCs wouldn't expect. Move the allocation 5474 // after the traps so we don't allocate the array if we 5475 // deoptimize. This is possible because tightly_coupled_allocation() 5476 // guarantees there's no observer of the allocated array at this point 5477 // and the control flow is simple enough. 5478 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms_before_guards, 5479 int saved_reexecute_sp, uint new_idx) { 5480 if (saved_jvms_before_guards != nullptr && !stopped()) { 5481 replace_unrelated_uncommon_traps_with_alloc_state(alloc, saved_jvms_before_guards); 5482 5483 assert(alloc != nullptr, "only with a tightly coupled allocation"); 5484 // restore JVM state to the state at the arraycopy 5485 saved_jvms_before_guards->map()->set_control(map()->control()); 5486 assert(saved_jvms_before_guards->map()->memory() == map()->memory(), "memory state changed?"); 5487 assert(saved_jvms_before_guards->map()->i_o() == map()->i_o(), "IO state changed?"); 5488 // If we've improved the types of some nodes (null check) while 5489 // emitting the guards, propagate them to the current state 5490 map()->replaced_nodes().apply(saved_jvms_before_guards->map(), new_idx); 5491 set_jvms(saved_jvms_before_guards); 5492 _reexecute_sp = saved_reexecute_sp; 5493 5494 // Remove the allocation from above the guards 5495 CallProjections callprojs; 5496 alloc->extract_projections(&callprojs, true); 5497 InitializeNode* init = alloc->initialization(); 5498 Node* alloc_mem = alloc->in(TypeFunc::Memory); 5499 C->gvn_replace_by(callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O)); 5500 C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem); 5501 5502 // The CastIINode created in GraphKit::new_array (in AllocateArrayNode::make_ideal_length) must stay below 5503 // the allocation (i.e. is only valid if the allocation succeeds): 5504 // 1) replace CastIINode with AllocateArrayNode's length here 5505 // 2) Create CastIINode again once allocation has moved (see below) at the end of this method 5506 // 5507 // Multiple identical CastIINodes might exist here. Each GraphKit::load_array_length() call will generate 5508 // new separate CastIINode (arraycopy guard checks or any array length use between array allocation and ararycopy) 5509 Node* init_control = init->proj_out(TypeFunc::Control); 5510 Node* alloc_length = alloc->Ideal_length(); 5511 #ifdef ASSERT 5512 Node* prev_cast = nullptr; 5513 #endif 5514 for (uint i = 0; i < init_control->outcnt(); i++) { 5515 Node* init_out = init_control->raw_out(i); 5516 if (init_out->is_CastII() && init_out->in(TypeFunc::Control) == init_control && init_out->in(1) == alloc_length) { 5517 #ifdef ASSERT 5518 if (prev_cast == nullptr) { 5519 prev_cast = init_out; 5520 } else { 5521 if (prev_cast->cmp(*init_out) == false) { 5522 prev_cast->dump(); 5523 init_out->dump(); 5524 assert(false, "not equal CastIINode"); 5525 } 5526 } 5527 #endif 5528 C->gvn_replace_by(init_out, alloc_length); 5529 } 5530 } 5531 C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0)); 5532 5533 // move the allocation here (after the guards) 5534 _gvn.hash_delete(alloc); 5535 alloc->set_req(TypeFunc::Control, control()); 5536 alloc->set_req(TypeFunc::I_O, i_o()); 5537 Node *mem = reset_memory(); 5538 set_all_memory(mem); 5539 alloc->set_req(TypeFunc::Memory, mem); 5540 set_control(init->proj_out_or_null(TypeFunc::Control)); 5541 set_i_o(callprojs.fallthrough_ioproj); 5542 5543 // Update memory as done in GraphKit::set_output_for_allocation() 5544 const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength)); 5545 const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type(); 5546 if (ary_type->isa_aryptr() && length_type != nullptr) { 5547 ary_type = ary_type->is_aryptr()->cast_to_size(length_type); 5548 } 5549 const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot); 5550 int elemidx = C->get_alias_index(telemref); 5551 set_memory(init->proj_out_or_null(TypeFunc::Memory), Compile::AliasIdxRaw); 5552 set_memory(init->proj_out_or_null(TypeFunc::Memory), elemidx); 5553 5554 Node* allocx = _gvn.transform(alloc); 5555 assert(allocx == alloc, "where has the allocation gone?"); 5556 assert(dest->is_CheckCastPP(), "not an allocation result?"); 5557 5558 _gvn.hash_delete(dest); 5559 dest->set_req(0, control()); 5560 Node* destx = _gvn.transform(dest); 5561 assert(destx == dest, "where has the allocation result gone?"); 5562 5563 array_ideal_length(alloc, ary_type, true); 5564 } 5565 } 5566 5567 // Unrelated UCTs between the array allocation and the array copy, which are considered safe by tightly_coupled_allocation(), 5568 // need to be replaced by an UCT with a state before the array allocation (including the array length). This is necessary 5569 // because we could hit one of these UCTs (which are executed before the emitted array copy guards and the actual array 5570 // allocation which is moved down in arraycopy_move_allocation_here()). When later resuming execution in the interpreter, 5571 // we would have wrongly skipped the array allocation. To prevent this, we resume execution at the array allocation in 5572 // the interpreter similar to what we are doing for the newly emitted guards for the array copy. 5573 void LibraryCallKit::replace_unrelated_uncommon_traps_with_alloc_state(AllocateArrayNode* alloc, 5574 JVMState* saved_jvms_before_guards) { 5575 if (saved_jvms_before_guards->map()->control()->is_IfProj()) { 5576 // There is at least one unrelated uncommon trap which needs to be replaced. 5577 SafePointNode* sfpt = create_safepoint_with_state_before_array_allocation(alloc); 5578 5579 JVMState* saved_jvms = jvms(); 5580 const int saved_reexecute_sp = _reexecute_sp; 5581 set_jvms(sfpt->jvms()); 5582 _reexecute_sp = jvms()->sp(); 5583 5584 replace_unrelated_uncommon_traps_with_alloc_state(saved_jvms_before_guards); 5585 5586 // Restore state 5587 set_jvms(saved_jvms); 5588 _reexecute_sp = saved_reexecute_sp; 5589 } 5590 } 5591 5592 // Replace the unrelated uncommon traps with new uncommon trap nodes by reusing the action and reason. The new uncommon 5593 // traps will have the state of the array allocation. Let the old uncommon trap nodes die. 5594 void LibraryCallKit::replace_unrelated_uncommon_traps_with_alloc_state(JVMState* saved_jvms_before_guards) { 5595 Node* if_proj = saved_jvms_before_guards->map()->control(); // Start the search right before the newly emitted guards 5596 while (if_proj->is_IfProj()) { 5597 CallStaticJavaNode* uncommon_trap = get_uncommon_trap_from_success_proj(if_proj); 5598 if (uncommon_trap != nullptr) { 5599 create_new_uncommon_trap(uncommon_trap); 5600 } 5601 assert(if_proj->in(0)->is_If(), "must be If"); 5602 if_proj = if_proj->in(0)->in(0); 5603 } 5604 assert(if_proj->is_Proj() && if_proj->in(0)->is_Initialize(), 5605 "must have reached control projection of init node"); 5606 } 5607 5608 void LibraryCallKit::create_new_uncommon_trap(CallStaticJavaNode* uncommon_trap_call) { 5609 const int trap_request = uncommon_trap_call->uncommon_trap_request(); 5610 assert(trap_request != 0, "no valid UCT trap request"); 5611 PreserveJVMState pjvms(this); 5612 set_control(uncommon_trap_call->in(0)); 5613 uncommon_trap(Deoptimization::trap_request_reason(trap_request), 5614 Deoptimization::trap_request_action(trap_request)); 5615 assert(stopped(), "Should be stopped"); 5616 _gvn.hash_delete(uncommon_trap_call); 5617 uncommon_trap_call->set_req(0, top()); // not used anymore, kill it 5618 } 5619 5620 // Common checks for array sorting intrinsics arguments. 5621 // Returns `true` if checks passed. 5622 bool LibraryCallKit::check_array_sort_arguments(Node* elementType, Node* obj, BasicType& bt) { 5623 // check address of the class 5624 if (elementType == nullptr || elementType->is_top()) { 5625 return false; // dead path 5626 } 5627 const TypeInstPtr* elem_klass = gvn().type(elementType)->isa_instptr(); 5628 if (elem_klass == nullptr) { 5629 return false; // dead path 5630 } 5631 // java_mirror_type() returns non-null for compile-time Class constants only 5632 ciType* elem_type = elem_klass->java_mirror_type(); 5633 if (elem_type == nullptr) { 5634 return false; 5635 } 5636 bt = elem_type->basic_type(); 5637 // Disable the intrinsic if the CPU does not support SIMD sort 5638 if (!Matcher::supports_simd_sort(bt)) { 5639 return false; 5640 } 5641 // check address of the array 5642 if (obj == nullptr || obj->is_top()) { 5643 return false; // dead path 5644 } 5645 const TypeAryPtr* obj_t = _gvn.type(obj)->isa_aryptr(); 5646 if (obj_t == nullptr || obj_t->elem() == Type::BOTTOM) { 5647 return false; // failed input validation 5648 } 5649 return true; 5650 } 5651 5652 //------------------------------inline_array_partition----------------------- 5653 bool LibraryCallKit::inline_array_partition() { 5654 address stubAddr = StubRoutines::select_array_partition_function(); 5655 if (stubAddr == nullptr) { 5656 return false; // Intrinsic's stub is not implemented on this platform 5657 } 5658 assert(callee()->signature()->size() == 9, "arrayPartition has 8 parameters (one long)"); 5659 5660 // no receiver because it is a static method 5661 Node* elementType = argument(0); 5662 Node* obj = argument(1); 5663 Node* offset = argument(2); // long 5664 Node* fromIndex = argument(4); 5665 Node* toIndex = argument(5); 5666 Node* indexPivot1 = argument(6); 5667 Node* indexPivot2 = argument(7); 5668 // PartitionOperation: argument(8) is ignored 5669 5670 Node* pivotIndices = nullptr; 5671 BasicType bt = T_ILLEGAL; 5672 5673 if (!check_array_sort_arguments(elementType, obj, bt)) { 5674 return false; 5675 } 5676 null_check(obj); 5677 // If obj is dead, only null-path is taken. 5678 if (stopped()) { 5679 return true; 5680 } 5681 // Set the original stack and the reexecute bit for the interpreter to reexecute 5682 // the bytecode that invokes DualPivotQuicksort.partition() if deoptimization happens. 5683 { PreserveReexecuteState preexecs(this); 5684 jvms()->set_should_reexecute(true); 5685 5686 Node* obj_adr = make_unsafe_address(obj, offset); 5687 5688 // create the pivotIndices array of type int and size = 2 5689 Node* size = intcon(2); 5690 Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_INT))); 5691 pivotIndices = new_array(klass_node, size, 0); // no arguments to push 5692 AllocateArrayNode* alloc = tightly_coupled_allocation(pivotIndices); 5693 guarantee(alloc != nullptr, "created above"); 5694 Node* pivotIndices_adr = basic_plus_adr(pivotIndices, arrayOopDesc::base_offset_in_bytes(T_INT)); 5695 5696 // pass the basic type enum to the stub 5697 Node* elemType = intcon(bt); 5698 5699 // Call the stub 5700 const char *stubName = "array_partition_stub"; 5701 make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::array_partition_Type(), 5702 stubAddr, stubName, TypePtr::BOTTOM, 5703 obj_adr, elemType, fromIndex, toIndex, pivotIndices_adr, 5704 indexPivot1, indexPivot2); 5705 5706 } // original reexecute is set back here 5707 5708 if (!stopped()) { 5709 set_result(pivotIndices); 5710 } 5711 5712 return true; 5713 } 5714 5715 5716 //------------------------------inline_array_sort----------------------- 5717 bool LibraryCallKit::inline_array_sort() { 5718 address stubAddr = StubRoutines::select_arraysort_function(); 5719 if (stubAddr == nullptr) { 5720 return false; // Intrinsic's stub is not implemented on this platform 5721 } 5722 assert(callee()->signature()->size() == 7, "arraySort has 6 parameters (one long)"); 5723 5724 // no receiver because it is a static method 5725 Node* elementType = argument(0); 5726 Node* obj = argument(1); 5727 Node* offset = argument(2); // long 5728 Node* fromIndex = argument(4); 5729 Node* toIndex = argument(5); 5730 // SortOperation: argument(6) is ignored 5731 5732 BasicType bt = T_ILLEGAL; 5733 5734 if (!check_array_sort_arguments(elementType, obj, bt)) { 5735 return false; 5736 } 5737 null_check(obj); 5738 // If obj is dead, only null-path is taken. 5739 if (stopped()) { 5740 return true; 5741 } 5742 Node* obj_adr = make_unsafe_address(obj, offset); 5743 5744 // pass the basic type enum to the stub 5745 Node* elemType = intcon(bt); 5746 5747 // Call the stub. 5748 const char *stubName = "arraysort_stub"; 5749 make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::array_sort_Type(), 5750 stubAddr, stubName, TypePtr::BOTTOM, 5751 obj_adr, elemType, fromIndex, toIndex); 5752 5753 return true; 5754 } 5755 5756 5757 //------------------------------inline_arraycopy----------------------- 5758 // public static native void java.lang.System.arraycopy(Object src, int srcPos, 5759 // Object dest, int destPos, 5760 // int length); 5761 bool LibraryCallKit::inline_arraycopy() { 5762 // Get the arguments. 5763 Node* src = argument(0); // type: oop 5764 Node* src_offset = argument(1); // type: int 5765 Node* dest = argument(2); // type: oop 5766 Node* dest_offset = argument(3); // type: int 5767 Node* length = argument(4); // type: int 5768 5769 uint new_idx = C->unique(); 5770 5771 // Check for allocation before we add nodes that would confuse 5772 // tightly_coupled_allocation() 5773 AllocateArrayNode* alloc = tightly_coupled_allocation(dest); 5774 5775 int saved_reexecute_sp = -1; 5776 JVMState* saved_jvms_before_guards = arraycopy_restore_alloc_state(alloc, saved_reexecute_sp); 5777 // See arraycopy_restore_alloc_state() comment 5778 // if alloc == null we don't have to worry about a tightly coupled allocation so we can emit all needed guards 5779 // if saved_jvms_before_guards is not null (then alloc is not null) then we can handle guards and a tightly coupled allocation 5780 // if saved_jvms_before_guards is null and alloc is not null, we can't emit any guards 5781 bool can_emit_guards = (alloc == nullptr || saved_jvms_before_guards != nullptr); 5782 5783 // The following tests must be performed 5784 // (1) src and dest are arrays. 5785 // (2) src and dest arrays must have elements of the same BasicType 5786 // (3) src and dest must not be null. 5787 // (4) src_offset must not be negative. 5788 // (5) dest_offset must not be negative. 5789 // (6) length must not be negative. 5790 // (7) src_offset + length must not exceed length of src. 5791 // (8) dest_offset + length must not exceed length of dest. 5792 // (9) each element of an oop array must be assignable 5793 5794 // (3) src and dest must not be null. 5795 // always do this here because we need the JVM state for uncommon traps 5796 Node* null_ctl = top(); 5797 src = saved_jvms_before_guards != nullptr ? null_check_oop(src, &null_ctl, true, true) : null_check(src, T_ARRAY); 5798 assert(null_ctl->is_top(), "no null control here"); 5799 dest = null_check(dest, T_ARRAY); 5800 5801 if (!can_emit_guards) { 5802 // if saved_jvms_before_guards is null and alloc is not null, we don't emit any 5803 // guards but the arraycopy node could still take advantage of a 5804 // tightly allocated allocation. tightly_coupled_allocation() is 5805 // called again to make sure it takes the null check above into 5806 // account: the null check is mandatory and if it caused an 5807 // uncommon trap to be emitted then the allocation can't be 5808 // considered tightly coupled in this context. 5809 alloc = tightly_coupled_allocation(dest); 5810 } 5811 5812 bool validated = false; 5813 5814 const Type* src_type = _gvn.type(src); 5815 const Type* dest_type = _gvn.type(dest); 5816 const TypeAryPtr* top_src = src_type->isa_aryptr(); 5817 const TypeAryPtr* top_dest = dest_type->isa_aryptr(); 5818 5819 // Do we have the type of src? 5820 bool has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM); 5821 // Do we have the type of dest? 5822 bool has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM); 5823 // Is the type for src from speculation? 5824 bool src_spec = false; 5825 // Is the type for dest from speculation? 5826 bool dest_spec = false; 5827 5828 if ((!has_src || !has_dest) && can_emit_guards) { 5829 // We don't have sufficient type information, let's see if 5830 // speculative types can help. We need to have types for both src 5831 // and dest so that it pays off. 5832 5833 // Do we already have or could we have type information for src 5834 bool could_have_src = has_src; 5835 // Do we already have or could we have type information for dest 5836 bool could_have_dest = has_dest; 5837 5838 ciKlass* src_k = nullptr; 5839 if (!has_src) { 5840 src_k = src_type->speculative_type_not_null(); 5841 if (src_k != nullptr && src_k->is_array_klass()) { 5842 could_have_src = true; 5843 } 5844 } 5845 5846 ciKlass* dest_k = nullptr; 5847 if (!has_dest) { 5848 dest_k = dest_type->speculative_type_not_null(); 5849 if (dest_k != nullptr && dest_k->is_array_klass()) { 5850 could_have_dest = true; 5851 } 5852 } 5853 5854 if (could_have_src && could_have_dest) { 5855 // This is going to pay off so emit the required guards 5856 if (!has_src) { 5857 src = maybe_cast_profiled_obj(src, src_k, true); 5858 src_type = _gvn.type(src); 5859 top_src = src_type->isa_aryptr(); 5860 has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM); 5861 src_spec = true; 5862 } 5863 if (!has_dest) { 5864 dest = maybe_cast_profiled_obj(dest, dest_k, true); 5865 dest_type = _gvn.type(dest); 5866 top_dest = dest_type->isa_aryptr(); 5867 has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM); 5868 dest_spec = true; 5869 } 5870 } 5871 } 5872 5873 if (has_src && has_dest && can_emit_guards) { 5874 BasicType src_elem = top_src->isa_aryptr()->elem()->array_element_basic_type(); 5875 BasicType dest_elem = top_dest->isa_aryptr()->elem()->array_element_basic_type(); 5876 if (is_reference_type(src_elem, true)) src_elem = T_OBJECT; 5877 if (is_reference_type(dest_elem, true)) dest_elem = T_OBJECT; 5878 5879 if (src_elem == dest_elem && src_elem == T_OBJECT) { 5880 // If both arrays are object arrays then having the exact types 5881 // for both will remove the need for a subtype check at runtime 5882 // before the call and may make it possible to pick a faster copy 5883 // routine (without a subtype check on every element) 5884 // Do we have the exact type of src? 5885 bool could_have_src = src_spec; 5886 // Do we have the exact type of dest? 5887 bool could_have_dest = dest_spec; 5888 ciKlass* src_k = nullptr; 5889 ciKlass* dest_k = nullptr; 5890 if (!src_spec) { 5891 src_k = src_type->speculative_type_not_null(); 5892 if (src_k != nullptr && src_k->is_array_klass()) { 5893 could_have_src = true; 5894 } 5895 } 5896 if (!dest_spec) { 5897 dest_k = dest_type->speculative_type_not_null(); 5898 if (dest_k != nullptr && dest_k->is_array_klass()) { 5899 could_have_dest = true; 5900 } 5901 } 5902 if (could_have_src && could_have_dest) { 5903 // If we can have both exact types, emit the missing guards 5904 if (could_have_src && !src_spec) { 5905 src = maybe_cast_profiled_obj(src, src_k, true); 5906 } 5907 if (could_have_dest && !dest_spec) { 5908 dest = maybe_cast_profiled_obj(dest, dest_k, true); 5909 } 5910 } 5911 } 5912 } 5913 5914 ciMethod* trap_method = method(); 5915 int trap_bci = bci(); 5916 if (saved_jvms_before_guards != nullptr) { 5917 trap_method = alloc->jvms()->method(); 5918 trap_bci = alloc->jvms()->bci(); 5919 } 5920 5921 bool negative_length_guard_generated = false; 5922 5923 if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) && 5924 can_emit_guards && 5925 !src->is_top() && !dest->is_top()) { 5926 // validate arguments: enables transformation the ArrayCopyNode 5927 validated = true; 5928 5929 RegionNode* slow_region = new RegionNode(1); 5930 record_for_igvn(slow_region); 5931 5932 // (1) src and dest are arrays. 5933 generate_non_array_guard(load_object_klass(src), slow_region); 5934 generate_non_array_guard(load_object_klass(dest), slow_region); 5935 5936 // (2) src and dest arrays must have elements of the same BasicType 5937 // done at macro expansion or at Ideal transformation time 5938 5939 // (4) src_offset must not be negative. 5940 generate_negative_guard(src_offset, slow_region); 5941 5942 // (5) dest_offset must not be negative. 5943 generate_negative_guard(dest_offset, slow_region); 5944 5945 // (7) src_offset + length must not exceed length of src. 5946 generate_limit_guard(src_offset, length, 5947 load_array_length(src), 5948 slow_region); 5949 5950 // (8) dest_offset + length must not exceed length of dest. 5951 generate_limit_guard(dest_offset, length, 5952 load_array_length(dest), 5953 slow_region); 5954 5955 // (6) length must not be negative. 5956 // This is also checked in generate_arraycopy() during macro expansion, but 5957 // we also have to check it here for the case where the ArrayCopyNode will 5958 // be eliminated by Escape Analysis. 5959 if (EliminateAllocations) { 5960 generate_negative_guard(length, slow_region); 5961 negative_length_guard_generated = true; 5962 } 5963 5964 // (9) each element of an oop array must be assignable 5965 Node* dest_klass = load_object_klass(dest); 5966 if (src != dest) { 5967 Node* not_subtype_ctrl = gen_subtype_check(src, dest_klass); 5968 5969 if (not_subtype_ctrl != top()) { 5970 PreserveJVMState pjvms(this); 5971 set_control(not_subtype_ctrl); 5972 uncommon_trap(Deoptimization::Reason_intrinsic, 5973 Deoptimization::Action_make_not_entrant); 5974 assert(stopped(), "Should be stopped"); 5975 } 5976 } 5977 { 5978 PreserveJVMState pjvms(this); 5979 set_control(_gvn.transform(slow_region)); 5980 uncommon_trap(Deoptimization::Reason_intrinsic, 5981 Deoptimization::Action_make_not_entrant); 5982 assert(stopped(), "Should be stopped"); 5983 } 5984 5985 const TypeKlassPtr* dest_klass_t = _gvn.type(dest_klass)->is_klassptr(); 5986 const Type *toop = dest_klass_t->cast_to_exactness(false)->as_instance_type(); 5987 src = _gvn.transform(new CheckCastPPNode(control(), src, toop)); 5988 arraycopy_move_allocation_here(alloc, dest, saved_jvms_before_guards, saved_reexecute_sp, new_idx); 5989 } 5990 5991 if (stopped()) { 5992 return true; 5993 } 5994 5995 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != nullptr, negative_length_guard_generated, 5996 // Create LoadRange and LoadKlass nodes for use during macro expansion here 5997 // so the compiler has a chance to eliminate them: during macro expansion, 5998 // we have to set their control (CastPP nodes are eliminated). 5999 load_object_klass(src), load_object_klass(dest), 6000 load_array_length(src), load_array_length(dest)); 6001 6002 ac->set_arraycopy(validated); 6003 6004 Node* n = _gvn.transform(ac); 6005 if (n == ac) { 6006 ac->connect_outputs(this); 6007 } else { 6008 assert(validated, "shouldn't transform if all arguments not validated"); 6009 set_all_memory(n); 6010 } 6011 clear_upper_avx(); 6012 6013 6014 return true; 6015 } 6016 6017 6018 // Helper function which determines if an arraycopy immediately follows 6019 // an allocation, with no intervening tests or other escapes for the object. 6020 AllocateArrayNode* 6021 LibraryCallKit::tightly_coupled_allocation(Node* ptr) { 6022 if (stopped()) return nullptr; // no fast path 6023 if (!C->do_aliasing()) return nullptr; // no MergeMems around 6024 6025 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr); 6026 if (alloc == nullptr) return nullptr; 6027 6028 Node* rawmem = memory(Compile::AliasIdxRaw); 6029 // Is the allocation's memory state untouched? 6030 if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) { 6031 // Bail out if there have been raw-memory effects since the allocation. 6032 // (Example: There might have been a call or safepoint.) 6033 return nullptr; 6034 } 6035 rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw); 6036 if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) { 6037 return nullptr; 6038 } 6039 6040 // There must be no unexpected observers of this allocation. 6041 for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) { 6042 Node* obs = ptr->fast_out(i); 6043 if (obs != this->map()) { 6044 return nullptr; 6045 } 6046 } 6047 6048 // This arraycopy must unconditionally follow the allocation of the ptr. 6049 Node* alloc_ctl = ptr->in(0); 6050 Node* ctl = control(); 6051 while (ctl != alloc_ctl) { 6052 // There may be guards which feed into the slow_region. 6053 // Any other control flow means that we might not get a chance 6054 // to finish initializing the allocated object. 6055 // Various low-level checks bottom out in uncommon traps. These 6056 // are considered safe since we've already checked above that 6057 // there is no unexpected observer of this allocation. 6058 if (get_uncommon_trap_from_success_proj(ctl) != nullptr) { 6059 assert(ctl->in(0)->is_If(), "must be If"); 6060 ctl = ctl->in(0)->in(0); 6061 } else { 6062 return nullptr; 6063 } 6064 } 6065 6066 // If we get this far, we have an allocation which immediately 6067 // precedes the arraycopy, and we can take over zeroing the new object. 6068 // The arraycopy will finish the initialization, and provide 6069 // a new control state to which we will anchor the destination pointer. 6070 6071 return alloc; 6072 } 6073 6074 CallStaticJavaNode* LibraryCallKit::get_uncommon_trap_from_success_proj(Node* node) { 6075 if (node->is_IfProj()) { 6076 Node* other_proj = node->as_IfProj()->other_if_proj(); 6077 for (DUIterator_Fast jmax, j = other_proj->fast_outs(jmax); j < jmax; j++) { 6078 Node* obs = other_proj->fast_out(j); 6079 if (obs->in(0) == other_proj && obs->is_CallStaticJava() && 6080 (obs->as_CallStaticJava()->entry_point() == OptoRuntime::uncommon_trap_blob()->entry_point())) { 6081 return obs->as_CallStaticJava(); 6082 } 6083 } 6084 } 6085 return nullptr; 6086 } 6087 6088 //-------------inline_encodeISOArray----------------------------------- 6089 // encode char[] to byte[] in ISO_8859_1 or ASCII 6090 bool LibraryCallKit::inline_encodeISOArray(bool ascii) { 6091 assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters"); 6092 // no receiver since it is static method 6093 Node *src = argument(0); 6094 Node *src_offset = argument(1); 6095 Node *dst = argument(2); 6096 Node *dst_offset = argument(3); 6097 Node *length = argument(4); 6098 6099 src = must_be_not_null(src, true); 6100 dst = must_be_not_null(dst, true); 6101 6102 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6103 const TypeAryPtr* dst_type = dst->Value(&_gvn)->isa_aryptr(); 6104 if (src_type == nullptr || src_type->elem() == Type::BOTTOM || 6105 dst_type == nullptr || dst_type->elem() == Type::BOTTOM) { 6106 // failed array check 6107 return false; 6108 } 6109 6110 // Figure out the size and type of the elements we will be copying. 6111 BasicType src_elem = src_type->elem()->array_element_basic_type(); 6112 BasicType dst_elem = dst_type->elem()->array_element_basic_type(); 6113 if (!((src_elem == T_CHAR) || (src_elem== T_BYTE)) || dst_elem != T_BYTE) { 6114 return false; 6115 } 6116 6117 Node* src_start = array_element_address(src, src_offset, T_CHAR); 6118 Node* dst_start = array_element_address(dst, dst_offset, dst_elem); 6119 // 'src_start' points to src array + scaled offset 6120 // 'dst_start' points to dst array + scaled offset 6121 6122 const TypeAryPtr* mtype = TypeAryPtr::BYTES; 6123 Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length, ascii); 6124 enc = _gvn.transform(enc); 6125 Node* res_mem = _gvn.transform(new SCMemProjNode(enc)); 6126 set_memory(res_mem, mtype); 6127 set_result(enc); 6128 clear_upper_avx(); 6129 6130 return true; 6131 } 6132 6133 //-------------inline_multiplyToLen----------------------------------- 6134 bool LibraryCallKit::inline_multiplyToLen() { 6135 assert(UseMultiplyToLenIntrinsic, "not implemented on this platform"); 6136 6137 address stubAddr = StubRoutines::multiplyToLen(); 6138 if (stubAddr == nullptr) { 6139 return false; // Intrinsic's stub is not implemented on this platform 6140 } 6141 const char* stubName = "multiplyToLen"; 6142 6143 assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters"); 6144 6145 // no receiver because it is a static method 6146 Node* x = argument(0); 6147 Node* xlen = argument(1); 6148 Node* y = argument(2); 6149 Node* ylen = argument(3); 6150 Node* z = argument(4); 6151 6152 x = must_be_not_null(x, true); 6153 y = must_be_not_null(y, true); 6154 6155 const TypeAryPtr* x_type = x->Value(&_gvn)->isa_aryptr(); 6156 const TypeAryPtr* y_type = y->Value(&_gvn)->isa_aryptr(); 6157 if (x_type == nullptr || x_type->elem() == Type::BOTTOM || 6158 y_type == nullptr || y_type->elem() == Type::BOTTOM) { 6159 // failed array check 6160 return false; 6161 } 6162 6163 BasicType x_elem = x_type->elem()->array_element_basic_type(); 6164 BasicType y_elem = y_type->elem()->array_element_basic_type(); 6165 if (x_elem != T_INT || y_elem != T_INT) { 6166 return false; 6167 } 6168 6169 Node* x_start = array_element_address(x, intcon(0), x_elem); 6170 Node* y_start = array_element_address(y, intcon(0), y_elem); 6171 // 'x_start' points to x array + scaled xlen 6172 // 'y_start' points to y array + scaled ylen 6173 6174 Node* z_start = array_element_address(z, intcon(0), T_INT); 6175 6176 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 6177 OptoRuntime::multiplyToLen_Type(), 6178 stubAddr, stubName, TypePtr::BOTTOM, 6179 x_start, xlen, y_start, ylen, z_start); 6180 6181 C->set_has_split_ifs(true); // Has chance for split-if optimization 6182 set_result(z); 6183 return true; 6184 } 6185 6186 //-------------inline_squareToLen------------------------------------ 6187 bool LibraryCallKit::inline_squareToLen() { 6188 assert(UseSquareToLenIntrinsic, "not implemented on this platform"); 6189 6190 address stubAddr = StubRoutines::squareToLen(); 6191 if (stubAddr == nullptr) { 6192 return false; // Intrinsic's stub is not implemented on this platform 6193 } 6194 const char* stubName = "squareToLen"; 6195 6196 assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters"); 6197 6198 Node* x = argument(0); 6199 Node* len = argument(1); 6200 Node* z = argument(2); 6201 Node* zlen = argument(3); 6202 6203 x = must_be_not_null(x, true); 6204 z = must_be_not_null(z, true); 6205 6206 const TypeAryPtr* x_type = x->Value(&_gvn)->isa_aryptr(); 6207 const TypeAryPtr* z_type = z->Value(&_gvn)->isa_aryptr(); 6208 if (x_type == nullptr || x_type->elem() == Type::BOTTOM || 6209 z_type == nullptr || z_type->elem() == Type::BOTTOM) { 6210 // failed array check 6211 return false; 6212 } 6213 6214 BasicType x_elem = x_type->elem()->array_element_basic_type(); 6215 BasicType z_elem = z_type->elem()->array_element_basic_type(); 6216 if (x_elem != T_INT || z_elem != T_INT) { 6217 return false; 6218 } 6219 6220 6221 Node* x_start = array_element_address(x, intcon(0), x_elem); 6222 Node* z_start = array_element_address(z, intcon(0), z_elem); 6223 6224 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 6225 OptoRuntime::squareToLen_Type(), 6226 stubAddr, stubName, TypePtr::BOTTOM, 6227 x_start, len, z_start, zlen); 6228 6229 set_result(z); 6230 return true; 6231 } 6232 6233 //-------------inline_mulAdd------------------------------------------ 6234 bool LibraryCallKit::inline_mulAdd() { 6235 assert(UseMulAddIntrinsic, "not implemented on this platform"); 6236 6237 address stubAddr = StubRoutines::mulAdd(); 6238 if (stubAddr == nullptr) { 6239 return false; // Intrinsic's stub is not implemented on this platform 6240 } 6241 const char* stubName = "mulAdd"; 6242 6243 assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters"); 6244 6245 Node* out = argument(0); 6246 Node* in = argument(1); 6247 Node* offset = argument(2); 6248 Node* len = argument(3); 6249 Node* k = argument(4); 6250 6251 in = must_be_not_null(in, true); 6252 out = must_be_not_null(out, true); 6253 6254 const TypeAryPtr* out_type = out->Value(&_gvn)->isa_aryptr(); 6255 const TypeAryPtr* in_type = in->Value(&_gvn)->isa_aryptr(); 6256 if (out_type == nullptr || out_type->elem() == Type::BOTTOM || 6257 in_type == nullptr || in_type->elem() == Type::BOTTOM) { 6258 // failed array check 6259 return false; 6260 } 6261 6262 BasicType out_elem = out_type->elem()->array_element_basic_type(); 6263 BasicType in_elem = in_type->elem()->array_element_basic_type(); 6264 if (out_elem != T_INT || in_elem != T_INT) { 6265 return false; 6266 } 6267 6268 Node* outlen = load_array_length(out); 6269 Node* new_offset = _gvn.transform(new SubINode(outlen, offset)); 6270 Node* out_start = array_element_address(out, intcon(0), out_elem); 6271 Node* in_start = array_element_address(in, intcon(0), in_elem); 6272 6273 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 6274 OptoRuntime::mulAdd_Type(), 6275 stubAddr, stubName, TypePtr::BOTTOM, 6276 out_start,in_start, new_offset, len, k); 6277 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6278 set_result(result); 6279 return true; 6280 } 6281 6282 //-------------inline_montgomeryMultiply----------------------------------- 6283 bool LibraryCallKit::inline_montgomeryMultiply() { 6284 address stubAddr = StubRoutines::montgomeryMultiply(); 6285 if (stubAddr == nullptr) { 6286 return false; // Intrinsic's stub is not implemented on this platform 6287 } 6288 6289 assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform"); 6290 const char* stubName = "montgomery_multiply"; 6291 6292 assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters"); 6293 6294 Node* a = argument(0); 6295 Node* b = argument(1); 6296 Node* n = argument(2); 6297 Node* len = argument(3); 6298 Node* inv = argument(4); 6299 Node* m = argument(6); 6300 6301 const TypeAryPtr* a_type = a->Value(&_gvn)->isa_aryptr(); 6302 const TypeAryPtr* b_type = b->Value(&_gvn)->isa_aryptr(); 6303 const TypeAryPtr* n_type = n->Value(&_gvn)->isa_aryptr(); 6304 const TypeAryPtr* m_type = m->Value(&_gvn)->isa_aryptr(); 6305 if (a_type == nullptr || a_type->elem() == Type::BOTTOM || 6306 b_type == nullptr || b_type->elem() == Type::BOTTOM || 6307 n_type == nullptr || n_type->elem() == Type::BOTTOM || 6308 m_type == nullptr || m_type->elem() == Type::BOTTOM) { 6309 // failed array check 6310 return false; 6311 } 6312 6313 BasicType a_elem = a_type->elem()->array_element_basic_type(); 6314 BasicType b_elem = b_type->elem()->array_element_basic_type(); 6315 BasicType n_elem = n_type->elem()->array_element_basic_type(); 6316 BasicType m_elem = m_type->elem()->array_element_basic_type(); 6317 if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) { 6318 return false; 6319 } 6320 6321 // Make the call 6322 { 6323 Node* a_start = array_element_address(a, intcon(0), a_elem); 6324 Node* b_start = array_element_address(b, intcon(0), b_elem); 6325 Node* n_start = array_element_address(n, intcon(0), n_elem); 6326 Node* m_start = array_element_address(m, intcon(0), m_elem); 6327 6328 Node* call = make_runtime_call(RC_LEAF, 6329 OptoRuntime::montgomeryMultiply_Type(), 6330 stubAddr, stubName, TypePtr::BOTTOM, 6331 a_start, b_start, n_start, len, inv, top(), 6332 m_start); 6333 set_result(m); 6334 } 6335 6336 return true; 6337 } 6338 6339 bool LibraryCallKit::inline_montgomerySquare() { 6340 address stubAddr = StubRoutines::montgomerySquare(); 6341 if (stubAddr == nullptr) { 6342 return false; // Intrinsic's stub is not implemented on this platform 6343 } 6344 6345 assert(UseMontgomerySquareIntrinsic, "not implemented on this platform"); 6346 const char* stubName = "montgomery_square"; 6347 6348 assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters"); 6349 6350 Node* a = argument(0); 6351 Node* n = argument(1); 6352 Node* len = argument(2); 6353 Node* inv = argument(3); 6354 Node* m = argument(5); 6355 6356 const TypeAryPtr* a_type = a->Value(&_gvn)->isa_aryptr(); 6357 const TypeAryPtr* n_type = n->Value(&_gvn)->isa_aryptr(); 6358 const TypeAryPtr* m_type = m->Value(&_gvn)->isa_aryptr(); 6359 if (a_type == nullptr || a_type->elem() == Type::BOTTOM || 6360 n_type == nullptr || n_type->elem() == Type::BOTTOM || 6361 m_type == nullptr || m_type->elem() == Type::BOTTOM) { 6362 // failed array check 6363 return false; 6364 } 6365 6366 BasicType a_elem = a_type->elem()->array_element_basic_type(); 6367 BasicType n_elem = n_type->elem()->array_element_basic_type(); 6368 BasicType m_elem = m_type->elem()->array_element_basic_type(); 6369 if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) { 6370 return false; 6371 } 6372 6373 // Make the call 6374 { 6375 Node* a_start = array_element_address(a, intcon(0), a_elem); 6376 Node* n_start = array_element_address(n, intcon(0), n_elem); 6377 Node* m_start = array_element_address(m, intcon(0), m_elem); 6378 6379 Node* call = make_runtime_call(RC_LEAF, 6380 OptoRuntime::montgomerySquare_Type(), 6381 stubAddr, stubName, TypePtr::BOTTOM, 6382 a_start, n_start, len, inv, top(), 6383 m_start); 6384 set_result(m); 6385 } 6386 6387 return true; 6388 } 6389 6390 bool LibraryCallKit::inline_bigIntegerShift(bool isRightShift) { 6391 address stubAddr = nullptr; 6392 const char* stubName = nullptr; 6393 6394 stubAddr = isRightShift? StubRoutines::bigIntegerRightShift(): StubRoutines::bigIntegerLeftShift(); 6395 if (stubAddr == nullptr) { 6396 return false; // Intrinsic's stub is not implemented on this platform 6397 } 6398 6399 stubName = isRightShift? "bigIntegerRightShiftWorker" : "bigIntegerLeftShiftWorker"; 6400 6401 assert(callee()->signature()->size() == 5, "expected 5 arguments"); 6402 6403 Node* newArr = argument(0); 6404 Node* oldArr = argument(1); 6405 Node* newIdx = argument(2); 6406 Node* shiftCount = argument(3); 6407 Node* numIter = argument(4); 6408 6409 const TypeAryPtr* newArr_type = newArr->Value(&_gvn)->isa_aryptr(); 6410 const TypeAryPtr* oldArr_type = oldArr->Value(&_gvn)->isa_aryptr(); 6411 if (newArr_type == nullptr || newArr_type->elem() == Type::BOTTOM || 6412 oldArr_type == nullptr || oldArr_type->elem() == Type::BOTTOM) { 6413 return false; 6414 } 6415 6416 BasicType newArr_elem = newArr_type->elem()->array_element_basic_type(); 6417 BasicType oldArr_elem = oldArr_type->elem()->array_element_basic_type(); 6418 if (newArr_elem != T_INT || oldArr_elem != T_INT) { 6419 return false; 6420 } 6421 6422 // Make the call 6423 { 6424 Node* newArr_start = array_element_address(newArr, intcon(0), newArr_elem); 6425 Node* oldArr_start = array_element_address(oldArr, intcon(0), oldArr_elem); 6426 6427 Node* call = make_runtime_call(RC_LEAF, 6428 OptoRuntime::bigIntegerShift_Type(), 6429 stubAddr, 6430 stubName, 6431 TypePtr::BOTTOM, 6432 newArr_start, 6433 oldArr_start, 6434 newIdx, 6435 shiftCount, 6436 numIter); 6437 } 6438 6439 return true; 6440 } 6441 6442 //-------------inline_vectorizedMismatch------------------------------ 6443 bool LibraryCallKit::inline_vectorizedMismatch() { 6444 assert(UseVectorizedMismatchIntrinsic, "not implemented on this platform"); 6445 6446 assert(callee()->signature()->size() == 8, "vectorizedMismatch has 6 parameters"); 6447 Node* obja = argument(0); // Object 6448 Node* aoffset = argument(1); // long 6449 Node* objb = argument(3); // Object 6450 Node* boffset = argument(4); // long 6451 Node* length = argument(6); // int 6452 Node* scale = argument(7); // int 6453 6454 const TypeAryPtr* obja_t = _gvn.type(obja)->isa_aryptr(); 6455 const TypeAryPtr* objb_t = _gvn.type(objb)->isa_aryptr(); 6456 if (obja_t == nullptr || obja_t->elem() == Type::BOTTOM || 6457 objb_t == nullptr || objb_t->elem() == Type::BOTTOM || 6458 scale == top()) { 6459 return false; // failed input validation 6460 } 6461 6462 Node* obja_adr = make_unsafe_address(obja, aoffset); 6463 Node* objb_adr = make_unsafe_address(objb, boffset); 6464 6465 // Partial inlining handling for inputs smaller than ArrayOperationPartialInlineSize bytes in size. 6466 // 6467 // inline_limit = ArrayOperationPartialInlineSize / element_size; 6468 // if (length <= inline_limit) { 6469 // inline_path: 6470 // vmask = VectorMaskGen length 6471 // vload1 = LoadVectorMasked obja, vmask 6472 // vload2 = LoadVectorMasked objb, vmask 6473 // result1 = VectorCmpMasked vload1, vload2, vmask 6474 // } else { 6475 // call_stub_path: 6476 // result2 = call vectorizedMismatch_stub(obja, objb, length, scale) 6477 // } 6478 // exit_block: 6479 // return Phi(result1, result2); 6480 // 6481 enum { inline_path = 1, // input is small enough to process it all at once 6482 stub_path = 2, // input is too large; call into the VM 6483 PATH_LIMIT = 3 6484 }; 6485 6486 Node* exit_block = new RegionNode(PATH_LIMIT); 6487 Node* result_phi = new PhiNode(exit_block, TypeInt::INT); 6488 Node* memory_phi = new PhiNode(exit_block, Type::MEMORY, TypePtr::BOTTOM); 6489 6490 Node* call_stub_path = control(); 6491 6492 BasicType elem_bt = T_ILLEGAL; 6493 6494 const TypeInt* scale_t = _gvn.type(scale)->is_int(); 6495 if (scale_t->is_con()) { 6496 switch (scale_t->get_con()) { 6497 case 0: elem_bt = T_BYTE; break; 6498 case 1: elem_bt = T_SHORT; break; 6499 case 2: elem_bt = T_INT; break; 6500 case 3: elem_bt = T_LONG; break; 6501 6502 default: elem_bt = T_ILLEGAL; break; // not supported 6503 } 6504 } 6505 6506 int inline_limit = 0; 6507 bool do_partial_inline = false; 6508 6509 if (elem_bt != T_ILLEGAL && ArrayOperationPartialInlineSize > 0) { 6510 inline_limit = ArrayOperationPartialInlineSize / type2aelembytes(elem_bt); 6511 do_partial_inline = inline_limit >= 16; 6512 } 6513 6514 if (do_partial_inline) { 6515 assert(elem_bt != T_ILLEGAL, "sanity"); 6516 6517 if (Matcher::match_rule_supported_vector(Op_VectorMaskGen, inline_limit, elem_bt) && 6518 Matcher::match_rule_supported_vector(Op_LoadVectorMasked, inline_limit, elem_bt) && 6519 Matcher::match_rule_supported_vector(Op_VectorCmpMasked, inline_limit, elem_bt)) { 6520 6521 const TypeVect* vt = TypeVect::make(elem_bt, inline_limit); 6522 Node* cmp_length = _gvn.transform(new CmpINode(length, intcon(inline_limit))); 6523 Node* bol_gt = _gvn.transform(new BoolNode(cmp_length, BoolTest::gt)); 6524 6525 call_stub_path = generate_guard(bol_gt, nullptr, PROB_MIN); 6526 6527 if (!stopped()) { 6528 Node* casted_length = _gvn.transform(new CastIINode(control(), length, TypeInt::make(0, inline_limit, Type::WidenMin))); 6529 6530 const TypePtr* obja_adr_t = _gvn.type(obja_adr)->isa_ptr(); 6531 const TypePtr* objb_adr_t = _gvn.type(objb_adr)->isa_ptr(); 6532 Node* obja_adr_mem = memory(C->get_alias_index(obja_adr_t)); 6533 Node* objb_adr_mem = memory(C->get_alias_index(objb_adr_t)); 6534 6535 Node* vmask = _gvn.transform(VectorMaskGenNode::make(ConvI2X(casted_length), elem_bt)); 6536 Node* vload_obja = _gvn.transform(new LoadVectorMaskedNode(control(), obja_adr_mem, obja_adr, obja_adr_t, vt, vmask)); 6537 Node* vload_objb = _gvn.transform(new LoadVectorMaskedNode(control(), objb_adr_mem, objb_adr, objb_adr_t, vt, vmask)); 6538 Node* result = _gvn.transform(new VectorCmpMaskedNode(vload_obja, vload_objb, vmask, TypeInt::INT)); 6539 6540 exit_block->init_req(inline_path, control()); 6541 memory_phi->init_req(inline_path, map()->memory()); 6542 result_phi->init_req(inline_path, result); 6543 6544 C->set_max_vector_size(MAX2((uint)ArrayOperationPartialInlineSize, C->max_vector_size())); 6545 clear_upper_avx(); 6546 } 6547 } 6548 } 6549 6550 if (call_stub_path != nullptr) { 6551 set_control(call_stub_path); 6552 6553 Node* call = make_runtime_call(RC_LEAF, 6554 OptoRuntime::vectorizedMismatch_Type(), 6555 StubRoutines::vectorizedMismatch(), "vectorizedMismatch", TypePtr::BOTTOM, 6556 obja_adr, objb_adr, length, scale); 6557 6558 exit_block->init_req(stub_path, control()); 6559 memory_phi->init_req(stub_path, map()->memory()); 6560 result_phi->init_req(stub_path, _gvn.transform(new ProjNode(call, TypeFunc::Parms))); 6561 } 6562 6563 exit_block = _gvn.transform(exit_block); 6564 memory_phi = _gvn.transform(memory_phi); 6565 result_phi = _gvn.transform(result_phi); 6566 6567 set_control(exit_block); 6568 set_all_memory(memory_phi); 6569 set_result(result_phi); 6570 6571 return true; 6572 } 6573 6574 //------------------------------inline_vectorizedHashcode---------------------------- 6575 bool LibraryCallKit::inline_vectorizedHashCode() { 6576 assert(UseVectorizedHashCodeIntrinsic, "not implemented on this platform"); 6577 6578 assert(callee()->signature()->size() == 5, "vectorizedHashCode has 5 parameters"); 6579 Node* array = argument(0); 6580 Node* offset = argument(1); 6581 Node* length = argument(2); 6582 Node* initialValue = argument(3); 6583 Node* basic_type = argument(4); 6584 6585 if (basic_type == top()) { 6586 return false; // failed input validation 6587 } 6588 6589 const TypeInt* basic_type_t = _gvn.type(basic_type)->is_int(); 6590 if (!basic_type_t->is_con()) { 6591 return false; // Only intrinsify if mode argument is constant 6592 } 6593 6594 array = must_be_not_null(array, true); 6595 6596 BasicType bt = (BasicType)basic_type_t->get_con(); 6597 6598 // Resolve address of first element 6599 Node* array_start = array_element_address(array, offset, bt); 6600 6601 set_result(_gvn.transform(new VectorizedHashCodeNode(control(), memory(TypeAryPtr::get_array_body_type(bt)), 6602 array_start, length, initialValue, basic_type))); 6603 clear_upper_avx(); 6604 6605 return true; 6606 } 6607 6608 /** 6609 * Calculate CRC32 for byte. 6610 * int java.util.zip.CRC32.update(int crc, int b) 6611 */ 6612 bool LibraryCallKit::inline_updateCRC32() { 6613 assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support"); 6614 assert(callee()->signature()->size() == 2, "update has 2 parameters"); 6615 // no receiver since it is static method 6616 Node* crc = argument(0); // type: int 6617 Node* b = argument(1); // type: int 6618 6619 /* 6620 * int c = ~ crc; 6621 * b = timesXtoThe32[(b ^ c) & 0xFF]; 6622 * b = b ^ (c >>> 8); 6623 * crc = ~b; 6624 */ 6625 6626 Node* M1 = intcon(-1); 6627 crc = _gvn.transform(new XorINode(crc, M1)); 6628 Node* result = _gvn.transform(new XorINode(crc, b)); 6629 result = _gvn.transform(new AndINode(result, intcon(0xFF))); 6630 6631 Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr())); 6632 Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2))); 6633 Node* adr = basic_plus_adr(top(), base, ConvI2X(offset)); 6634 result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered); 6635 6636 crc = _gvn.transform(new URShiftINode(crc, intcon(8))); 6637 result = _gvn.transform(new XorINode(crc, result)); 6638 result = _gvn.transform(new XorINode(result, M1)); 6639 set_result(result); 6640 return true; 6641 } 6642 6643 /** 6644 * Calculate CRC32 for byte[] array. 6645 * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len) 6646 */ 6647 bool LibraryCallKit::inline_updateBytesCRC32() { 6648 assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support"); 6649 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 6650 // no receiver since it is static method 6651 Node* crc = argument(0); // type: int 6652 Node* src = argument(1); // type: oop 6653 Node* offset = argument(2); // type: int 6654 Node* length = argument(3); // type: int 6655 6656 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6657 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 6658 // failed array check 6659 return false; 6660 } 6661 6662 // Figure out the size and type of the elements we will be copying. 6663 BasicType src_elem = src_type->elem()->array_element_basic_type(); 6664 if (src_elem != T_BYTE) { 6665 return false; 6666 } 6667 6668 // 'src_start' points to src array + scaled offset 6669 src = must_be_not_null(src, true); 6670 Node* src_start = array_element_address(src, offset, src_elem); 6671 6672 // We assume that range check is done by caller. 6673 // TODO: generate range check (offset+length < src.length) in debug VM. 6674 6675 // Call the stub. 6676 address stubAddr = StubRoutines::updateBytesCRC32(); 6677 const char *stubName = "updateBytesCRC32"; 6678 6679 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(), 6680 stubAddr, stubName, TypePtr::BOTTOM, 6681 crc, src_start, length); 6682 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6683 set_result(result); 6684 return true; 6685 } 6686 6687 /** 6688 * Calculate CRC32 for ByteBuffer. 6689 * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len) 6690 */ 6691 bool LibraryCallKit::inline_updateByteBufferCRC32() { 6692 assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support"); 6693 assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long"); 6694 // no receiver since it is static method 6695 Node* crc = argument(0); // type: int 6696 Node* src = argument(1); // type: long 6697 Node* offset = argument(3); // type: int 6698 Node* length = argument(4); // type: int 6699 6700 src = ConvL2X(src); // adjust Java long to machine word 6701 Node* base = _gvn.transform(new CastX2PNode(src)); 6702 offset = ConvI2X(offset); 6703 6704 // 'src_start' points to src array + scaled offset 6705 Node* src_start = basic_plus_adr(top(), base, offset); 6706 6707 // Call the stub. 6708 address stubAddr = StubRoutines::updateBytesCRC32(); 6709 const char *stubName = "updateBytesCRC32"; 6710 6711 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(), 6712 stubAddr, stubName, TypePtr::BOTTOM, 6713 crc, src_start, length); 6714 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6715 set_result(result); 6716 return true; 6717 } 6718 6719 //------------------------------get_table_from_crc32c_class----------------------- 6720 Node * LibraryCallKit::get_table_from_crc32c_class(ciInstanceKlass *crc32c_class) { 6721 Node* table = load_field_from_object(nullptr, "byteTable", "[I", /*decorators*/ IN_HEAP, /*is_static*/ true, crc32c_class); 6722 assert (table != nullptr, "wrong version of java.util.zip.CRC32C"); 6723 6724 return table; 6725 } 6726 6727 //------------------------------inline_updateBytesCRC32C----------------------- 6728 // 6729 // Calculate CRC32C for byte[] array. 6730 // int java.util.zip.CRC32C.updateBytes(int crc, byte[] buf, int off, int end) 6731 // 6732 bool LibraryCallKit::inline_updateBytesCRC32C() { 6733 assert(UseCRC32CIntrinsics, "need CRC32C instruction support"); 6734 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 6735 assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded"); 6736 // no receiver since it is a static method 6737 Node* crc = argument(0); // type: int 6738 Node* src = argument(1); // type: oop 6739 Node* offset = argument(2); // type: int 6740 Node* end = argument(3); // type: int 6741 6742 Node* length = _gvn.transform(new SubINode(end, offset)); 6743 6744 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6745 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 6746 // failed array check 6747 return false; 6748 } 6749 6750 // Figure out the size and type of the elements we will be copying. 6751 BasicType src_elem = src_type->elem()->array_element_basic_type(); 6752 if (src_elem != T_BYTE) { 6753 return false; 6754 } 6755 6756 // 'src_start' points to src array + scaled offset 6757 src = must_be_not_null(src, true); 6758 Node* src_start = array_element_address(src, offset, src_elem); 6759 6760 // static final int[] byteTable in class CRC32C 6761 Node* table = get_table_from_crc32c_class(callee()->holder()); 6762 table = must_be_not_null(table, true); 6763 Node* table_start = array_element_address(table, intcon(0), T_INT); 6764 6765 // We assume that range check is done by caller. 6766 // TODO: generate range check (offset+length < src.length) in debug VM. 6767 6768 // Call the stub. 6769 address stubAddr = StubRoutines::updateBytesCRC32C(); 6770 const char *stubName = "updateBytesCRC32C"; 6771 6772 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(), 6773 stubAddr, stubName, TypePtr::BOTTOM, 6774 crc, src_start, length, table_start); 6775 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6776 set_result(result); 6777 return true; 6778 } 6779 6780 //------------------------------inline_updateDirectByteBufferCRC32C----------------------- 6781 // 6782 // Calculate CRC32C for DirectByteBuffer. 6783 // int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end) 6784 // 6785 bool LibraryCallKit::inline_updateDirectByteBufferCRC32C() { 6786 assert(UseCRC32CIntrinsics, "need CRC32C instruction support"); 6787 assert(callee()->signature()->size() == 5, "updateDirectByteBuffer has 4 parameters and one is long"); 6788 assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded"); 6789 // no receiver since it is a static method 6790 Node* crc = argument(0); // type: int 6791 Node* src = argument(1); // type: long 6792 Node* offset = argument(3); // type: int 6793 Node* end = argument(4); // type: int 6794 6795 Node* length = _gvn.transform(new SubINode(end, offset)); 6796 6797 src = ConvL2X(src); // adjust Java long to machine word 6798 Node* base = _gvn.transform(new CastX2PNode(src)); 6799 offset = ConvI2X(offset); 6800 6801 // 'src_start' points to src array + scaled offset 6802 Node* src_start = basic_plus_adr(top(), base, offset); 6803 6804 // static final int[] byteTable in class CRC32C 6805 Node* table = get_table_from_crc32c_class(callee()->holder()); 6806 table = must_be_not_null(table, true); 6807 Node* table_start = array_element_address(table, intcon(0), T_INT); 6808 6809 // Call the stub. 6810 address stubAddr = StubRoutines::updateBytesCRC32C(); 6811 const char *stubName = "updateBytesCRC32C"; 6812 6813 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(), 6814 stubAddr, stubName, TypePtr::BOTTOM, 6815 crc, src_start, length, table_start); 6816 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6817 set_result(result); 6818 return true; 6819 } 6820 6821 //------------------------------inline_updateBytesAdler32---------------------- 6822 // 6823 // Calculate Adler32 checksum for byte[] array. 6824 // int java.util.zip.Adler32.updateBytes(int crc, byte[] buf, int off, int len) 6825 // 6826 bool LibraryCallKit::inline_updateBytesAdler32() { 6827 assert(UseAdler32Intrinsics, "Adler32 Intrinsic support need"); // check if we actually need to check this flag or check a different one 6828 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 6829 assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded"); 6830 // no receiver since it is static method 6831 Node* crc = argument(0); // type: int 6832 Node* src = argument(1); // type: oop 6833 Node* offset = argument(2); // type: int 6834 Node* length = argument(3); // type: int 6835 6836 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6837 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 6838 // failed array check 6839 return false; 6840 } 6841 6842 // Figure out the size and type of the elements we will be copying. 6843 BasicType src_elem = src_type->elem()->array_element_basic_type(); 6844 if (src_elem != T_BYTE) { 6845 return false; 6846 } 6847 6848 // 'src_start' points to src array + scaled offset 6849 Node* src_start = array_element_address(src, offset, src_elem); 6850 6851 // We assume that range check is done by caller. 6852 // TODO: generate range check (offset+length < src.length) in debug VM. 6853 6854 // Call the stub. 6855 address stubAddr = StubRoutines::updateBytesAdler32(); 6856 const char *stubName = "updateBytesAdler32"; 6857 6858 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(), 6859 stubAddr, stubName, TypePtr::BOTTOM, 6860 crc, src_start, length); 6861 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6862 set_result(result); 6863 return true; 6864 } 6865 6866 //------------------------------inline_updateByteBufferAdler32--------------- 6867 // 6868 // Calculate Adler32 checksum for DirectByteBuffer. 6869 // int java.util.zip.Adler32.updateByteBuffer(int crc, long buf, int off, int len) 6870 // 6871 bool LibraryCallKit::inline_updateByteBufferAdler32() { 6872 assert(UseAdler32Intrinsics, "Adler32 Intrinsic support need"); // check if we actually need to check this flag or check a different one 6873 assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long"); 6874 assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded"); 6875 // no receiver since it is static method 6876 Node* crc = argument(0); // type: int 6877 Node* src = argument(1); // type: long 6878 Node* offset = argument(3); // type: int 6879 Node* length = argument(4); // type: int 6880 6881 src = ConvL2X(src); // adjust Java long to machine word 6882 Node* base = _gvn.transform(new CastX2PNode(src)); 6883 offset = ConvI2X(offset); 6884 6885 // 'src_start' points to src array + scaled offset 6886 Node* src_start = basic_plus_adr(top(), base, offset); 6887 6888 // Call the stub. 6889 address stubAddr = StubRoutines::updateBytesAdler32(); 6890 const char *stubName = "updateBytesAdler32"; 6891 6892 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(), 6893 stubAddr, stubName, TypePtr::BOTTOM, 6894 crc, src_start, length); 6895 6896 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6897 set_result(result); 6898 return true; 6899 } 6900 6901 //----------------------------inline_reference_get---------------------------- 6902 // public T java.lang.ref.Reference.get(); 6903 bool LibraryCallKit::inline_reference_get() { 6904 const int referent_offset = java_lang_ref_Reference::referent_offset(); 6905 6906 // Get the argument: 6907 Node* reference_obj = null_check_receiver(); 6908 if (stopped()) return true; 6909 6910 DecoratorSet decorators = IN_HEAP | ON_WEAK_OOP_REF; 6911 Node* result = load_field_from_object(reference_obj, "referent", "Ljava/lang/Object;", 6912 decorators, /*is_static*/ false, nullptr); 6913 if (result == nullptr) return false; 6914 6915 // Add memory barrier to prevent commoning reads from this field 6916 // across safepoint since GC can change its value. 6917 insert_mem_bar(Op_MemBarCPUOrder); 6918 6919 set_result(result); 6920 return true; 6921 } 6922 6923 //----------------------------inline_reference_refersTo0---------------------------- 6924 // bool java.lang.ref.Reference.refersTo0(); 6925 // bool java.lang.ref.PhantomReference.refersTo0(); 6926 bool LibraryCallKit::inline_reference_refersTo0(bool is_phantom) { 6927 // Get arguments: 6928 Node* reference_obj = null_check_receiver(); 6929 Node* other_obj = argument(1); 6930 if (stopped()) return true; 6931 6932 DecoratorSet decorators = IN_HEAP | AS_NO_KEEPALIVE; 6933 decorators |= (is_phantom ? ON_PHANTOM_OOP_REF : ON_WEAK_OOP_REF); 6934 Node* referent = load_field_from_object(reference_obj, "referent", "Ljava/lang/Object;", 6935 decorators, /*is_static*/ false, nullptr); 6936 if (referent == nullptr) return false; 6937 6938 // Add memory barrier to prevent commoning reads from this field 6939 // across safepoint since GC can change its value. 6940 insert_mem_bar(Op_MemBarCPUOrder); 6941 6942 Node* cmp = _gvn.transform(new CmpPNode(referent, other_obj)); 6943 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 6944 IfNode* if_node = create_and_map_if(control(), bol, PROB_FAIR, COUNT_UNKNOWN); 6945 6946 RegionNode* region = new RegionNode(3); 6947 PhiNode* phi = new PhiNode(region, TypeInt::BOOL); 6948 6949 Node* if_true = _gvn.transform(new IfTrueNode(if_node)); 6950 region->init_req(1, if_true); 6951 phi->init_req(1, intcon(1)); 6952 6953 Node* if_false = _gvn.transform(new IfFalseNode(if_node)); 6954 region->init_req(2, if_false); 6955 phi->init_req(2, intcon(0)); 6956 6957 set_control(_gvn.transform(region)); 6958 record_for_igvn(region); 6959 set_result(_gvn.transform(phi)); 6960 return true; 6961 } 6962 6963 6964 Node* LibraryCallKit::load_field_from_object(Node* fromObj, const char* fieldName, const char* fieldTypeString, 6965 DecoratorSet decorators, bool is_static, 6966 ciInstanceKlass* fromKls) { 6967 if (fromKls == nullptr) { 6968 const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr(); 6969 assert(tinst != nullptr, "obj is null"); 6970 assert(tinst->is_loaded(), "obj is not loaded"); 6971 fromKls = tinst->instance_klass(); 6972 } else { 6973 assert(is_static, "only for static field access"); 6974 } 6975 ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName), 6976 ciSymbol::make(fieldTypeString), 6977 is_static); 6978 6979 assert(field != nullptr, "undefined field %s %s %s", fieldTypeString, fromKls->name()->as_utf8(), fieldName); 6980 if (field == nullptr) return (Node *) nullptr; 6981 6982 if (is_static) { 6983 const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror()); 6984 fromObj = makecon(tip); 6985 } 6986 6987 // Next code copied from Parse::do_get_xxx(): 6988 6989 // Compute address and memory type. 6990 int offset = field->offset_in_bytes(); 6991 bool is_vol = field->is_volatile(); 6992 ciType* field_klass = field->type(); 6993 assert(field_klass->is_loaded(), "should be loaded"); 6994 const TypePtr* adr_type = C->alias_type(field)->adr_type(); 6995 Node *adr = basic_plus_adr(fromObj, fromObj, offset); 6996 BasicType bt = field->layout_type(); 6997 6998 // Build the resultant type of the load 6999 const Type *type; 7000 if (bt == T_OBJECT) { 7001 type = TypeOopPtr::make_from_klass(field_klass->as_klass()); 7002 } else { 7003 type = Type::get_const_basic_type(bt); 7004 } 7005 7006 if (is_vol) { 7007 decorators |= MO_SEQ_CST; 7008 } 7009 7010 return access_load_at(fromObj, adr, adr_type, type, bt, decorators); 7011 } 7012 7013 Node * LibraryCallKit::field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, 7014 bool is_exact /* true */, bool is_static /* false */, 7015 ciInstanceKlass * fromKls /* nullptr */) { 7016 if (fromKls == nullptr) { 7017 const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr(); 7018 assert(tinst != nullptr, "obj is null"); 7019 assert(tinst->is_loaded(), "obj is not loaded"); 7020 assert(!is_exact || tinst->klass_is_exact(), "klass not exact"); 7021 fromKls = tinst->instance_klass(); 7022 } 7023 else { 7024 assert(is_static, "only for static field access"); 7025 } 7026 ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName), 7027 ciSymbol::make(fieldTypeString), 7028 is_static); 7029 7030 assert(field != nullptr, "undefined field"); 7031 assert(!field->is_volatile(), "not defined for volatile fields"); 7032 7033 if (is_static) { 7034 const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror()); 7035 fromObj = makecon(tip); 7036 } 7037 7038 // Next code copied from Parse::do_get_xxx(): 7039 7040 // Compute address and memory type. 7041 int offset = field->offset_in_bytes(); 7042 Node *adr = basic_plus_adr(fromObj, fromObj, offset); 7043 7044 return adr; 7045 } 7046 7047 //------------------------------inline_aescrypt_Block----------------------- 7048 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) { 7049 address stubAddr = nullptr; 7050 const char *stubName; 7051 assert(UseAES, "need AES instruction support"); 7052 7053 switch(id) { 7054 case vmIntrinsics::_aescrypt_encryptBlock: 7055 stubAddr = StubRoutines::aescrypt_encryptBlock(); 7056 stubName = "aescrypt_encryptBlock"; 7057 break; 7058 case vmIntrinsics::_aescrypt_decryptBlock: 7059 stubAddr = StubRoutines::aescrypt_decryptBlock(); 7060 stubName = "aescrypt_decryptBlock"; 7061 break; 7062 default: 7063 break; 7064 } 7065 if (stubAddr == nullptr) return false; 7066 7067 Node* aescrypt_object = argument(0); 7068 Node* src = argument(1); 7069 Node* src_offset = argument(2); 7070 Node* dest = argument(3); 7071 Node* dest_offset = argument(4); 7072 7073 src = must_be_not_null(src, true); 7074 dest = must_be_not_null(dest, true); 7075 7076 // (1) src and dest are arrays. 7077 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7078 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 7079 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 7080 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 7081 7082 // for the quick and dirty code we will skip all the checks. 7083 // we are just trying to get the call to be generated. 7084 Node* src_start = src; 7085 Node* dest_start = dest; 7086 if (src_offset != nullptr || dest_offset != nullptr) { 7087 assert(src_offset != nullptr && dest_offset != nullptr, ""); 7088 src_start = array_element_address(src, src_offset, T_BYTE); 7089 dest_start = array_element_address(dest, dest_offset, T_BYTE); 7090 } 7091 7092 // now need to get the start of its expanded key array 7093 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 7094 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 7095 if (k_start == nullptr) return false; 7096 7097 // Call the stub. 7098 make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(), 7099 stubAddr, stubName, TypePtr::BOTTOM, 7100 src_start, dest_start, k_start); 7101 7102 return true; 7103 } 7104 7105 //------------------------------inline_cipherBlockChaining_AESCrypt----------------------- 7106 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) { 7107 address stubAddr = nullptr; 7108 const char *stubName = nullptr; 7109 7110 assert(UseAES, "need AES instruction support"); 7111 7112 switch(id) { 7113 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 7114 stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt(); 7115 stubName = "cipherBlockChaining_encryptAESCrypt"; 7116 break; 7117 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 7118 stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt(); 7119 stubName = "cipherBlockChaining_decryptAESCrypt"; 7120 break; 7121 default: 7122 break; 7123 } 7124 if (stubAddr == nullptr) return false; 7125 7126 Node* cipherBlockChaining_object = argument(0); 7127 Node* src = argument(1); 7128 Node* src_offset = argument(2); 7129 Node* len = argument(3); 7130 Node* dest = argument(4); 7131 Node* dest_offset = argument(5); 7132 7133 src = must_be_not_null(src, false); 7134 dest = must_be_not_null(dest, false); 7135 7136 // (1) src and dest are arrays. 7137 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7138 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 7139 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 7140 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 7141 7142 // checks are the responsibility of the caller 7143 Node* src_start = src; 7144 Node* dest_start = dest; 7145 if (src_offset != nullptr || dest_offset != nullptr) { 7146 assert(src_offset != nullptr && dest_offset != nullptr, ""); 7147 src_start = array_element_address(src, src_offset, T_BYTE); 7148 dest_start = array_element_address(dest, dest_offset, T_BYTE); 7149 } 7150 7151 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 7152 // (because of the predicated logic executed earlier). 7153 // so we cast it here safely. 7154 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 7155 7156 Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7157 if (embeddedCipherObj == nullptr) return false; 7158 7159 // cast it to what we know it will be at runtime 7160 const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr(); 7161 assert(tinst != nullptr, "CBC obj is null"); 7162 assert(tinst->is_loaded(), "CBC obj is not loaded"); 7163 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7164 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 7165 7166 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7167 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 7168 const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 7169 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 7170 aescrypt_object = _gvn.transform(aescrypt_object); 7171 7172 // we need to get the start of the aescrypt_object's expanded key array 7173 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 7174 if (k_start == nullptr) return false; 7175 7176 // similarly, get the start address of the r vector 7177 Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B"); 7178 if (objRvec == nullptr) return false; 7179 Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE); 7180 7181 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 7182 Node* cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 7183 OptoRuntime::cipherBlockChaining_aescrypt_Type(), 7184 stubAddr, stubName, TypePtr::BOTTOM, 7185 src_start, dest_start, k_start, r_start, len); 7186 7187 // return cipher length (int) 7188 Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms)); 7189 set_result(retvalue); 7190 return true; 7191 } 7192 7193 //------------------------------inline_electronicCodeBook_AESCrypt----------------------- 7194 bool LibraryCallKit::inline_electronicCodeBook_AESCrypt(vmIntrinsics::ID id) { 7195 address stubAddr = nullptr; 7196 const char *stubName = nullptr; 7197 7198 assert(UseAES, "need AES instruction support"); 7199 7200 switch (id) { 7201 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 7202 stubAddr = StubRoutines::electronicCodeBook_encryptAESCrypt(); 7203 stubName = "electronicCodeBook_encryptAESCrypt"; 7204 break; 7205 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 7206 stubAddr = StubRoutines::electronicCodeBook_decryptAESCrypt(); 7207 stubName = "electronicCodeBook_decryptAESCrypt"; 7208 break; 7209 default: 7210 break; 7211 } 7212 7213 if (stubAddr == nullptr) return false; 7214 7215 Node* electronicCodeBook_object = argument(0); 7216 Node* src = argument(1); 7217 Node* src_offset = argument(2); 7218 Node* len = argument(3); 7219 Node* dest = argument(4); 7220 Node* dest_offset = argument(5); 7221 7222 // (1) src and dest are arrays. 7223 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7224 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 7225 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 7226 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 7227 7228 // checks are the responsibility of the caller 7229 Node* src_start = src; 7230 Node* dest_start = dest; 7231 if (src_offset != nullptr || dest_offset != nullptr) { 7232 assert(src_offset != nullptr && dest_offset != nullptr, ""); 7233 src_start = array_element_address(src, src_offset, T_BYTE); 7234 dest_start = array_element_address(dest, dest_offset, T_BYTE); 7235 } 7236 7237 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 7238 // (because of the predicated logic executed earlier). 7239 // so we cast it here safely. 7240 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 7241 7242 Node* embeddedCipherObj = load_field_from_object(electronicCodeBook_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7243 if (embeddedCipherObj == nullptr) return false; 7244 7245 // cast it to what we know it will be at runtime 7246 const TypeInstPtr* tinst = _gvn.type(electronicCodeBook_object)->isa_instptr(); 7247 assert(tinst != nullptr, "ECB obj is null"); 7248 assert(tinst->is_loaded(), "ECB obj is not loaded"); 7249 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7250 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 7251 7252 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7253 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 7254 const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 7255 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 7256 aescrypt_object = _gvn.transform(aescrypt_object); 7257 7258 // we need to get the start of the aescrypt_object's expanded key array 7259 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 7260 if (k_start == nullptr) return false; 7261 7262 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 7263 Node* ecbCrypt = make_runtime_call(RC_LEAF | RC_NO_FP, 7264 OptoRuntime::electronicCodeBook_aescrypt_Type(), 7265 stubAddr, stubName, TypePtr::BOTTOM, 7266 src_start, dest_start, k_start, len); 7267 7268 // return cipher length (int) 7269 Node* retvalue = _gvn.transform(new ProjNode(ecbCrypt, TypeFunc::Parms)); 7270 set_result(retvalue); 7271 return true; 7272 } 7273 7274 //------------------------------inline_counterMode_AESCrypt----------------------- 7275 bool LibraryCallKit::inline_counterMode_AESCrypt(vmIntrinsics::ID id) { 7276 assert(UseAES, "need AES instruction support"); 7277 if (!UseAESCTRIntrinsics) return false; 7278 7279 address stubAddr = nullptr; 7280 const char *stubName = nullptr; 7281 if (id == vmIntrinsics::_counterMode_AESCrypt) { 7282 stubAddr = StubRoutines::counterMode_AESCrypt(); 7283 stubName = "counterMode_AESCrypt"; 7284 } 7285 if (stubAddr == nullptr) return false; 7286 7287 Node* counterMode_object = argument(0); 7288 Node* src = argument(1); 7289 Node* src_offset = argument(2); 7290 Node* len = argument(3); 7291 Node* dest = argument(4); 7292 Node* dest_offset = argument(5); 7293 7294 // (1) src and dest are arrays. 7295 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7296 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 7297 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 7298 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 7299 7300 // checks are the responsibility of the caller 7301 Node* src_start = src; 7302 Node* dest_start = dest; 7303 if (src_offset != nullptr || dest_offset != nullptr) { 7304 assert(src_offset != nullptr && dest_offset != nullptr, ""); 7305 src_start = array_element_address(src, src_offset, T_BYTE); 7306 dest_start = array_element_address(dest, dest_offset, T_BYTE); 7307 } 7308 7309 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 7310 // (because of the predicated logic executed earlier). 7311 // so we cast it here safely. 7312 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 7313 Node* embeddedCipherObj = load_field_from_object(counterMode_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7314 if (embeddedCipherObj == nullptr) return false; 7315 // cast it to what we know it will be at runtime 7316 const TypeInstPtr* tinst = _gvn.type(counterMode_object)->isa_instptr(); 7317 assert(tinst != nullptr, "CTR obj is null"); 7318 assert(tinst->is_loaded(), "CTR obj is not loaded"); 7319 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7320 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 7321 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7322 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 7323 const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 7324 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 7325 aescrypt_object = _gvn.transform(aescrypt_object); 7326 // we need to get the start of the aescrypt_object's expanded key array 7327 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 7328 if (k_start == nullptr) return false; 7329 // similarly, get the start address of the r vector 7330 Node* obj_counter = load_field_from_object(counterMode_object, "counter", "[B"); 7331 if (obj_counter == nullptr) return false; 7332 Node* cnt_start = array_element_address(obj_counter, intcon(0), T_BYTE); 7333 7334 Node* saved_encCounter = load_field_from_object(counterMode_object, "encryptedCounter", "[B"); 7335 if (saved_encCounter == nullptr) return false; 7336 Node* saved_encCounter_start = array_element_address(saved_encCounter, intcon(0), T_BYTE); 7337 Node* used = field_address_from_object(counterMode_object, "used", "I", /*is_exact*/ false); 7338 7339 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 7340 Node* ctrCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 7341 OptoRuntime::counterMode_aescrypt_Type(), 7342 stubAddr, stubName, TypePtr::BOTTOM, 7343 src_start, dest_start, k_start, cnt_start, len, saved_encCounter_start, used); 7344 7345 // return cipher length (int) 7346 Node* retvalue = _gvn.transform(new ProjNode(ctrCrypt, TypeFunc::Parms)); 7347 set_result(retvalue); 7348 return true; 7349 } 7350 7351 //------------------------------get_key_start_from_aescrypt_object----------------------- 7352 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) { 7353 #if defined(PPC64) || defined(S390) 7354 // MixColumns for decryption can be reduced by preprocessing MixColumns with round keys. 7355 // Intel's extension is based on this optimization and AESCrypt generates round keys by preprocessing MixColumns. 7356 // However, ppc64 vncipher processes MixColumns and requires the same round keys with encryption. 7357 // The ppc64 stubs of encryption and decryption use the same round keys (sessionK[0]). 7358 Node* objSessionK = load_field_from_object(aescrypt_object, "sessionK", "[[I"); 7359 assert (objSessionK != nullptr, "wrong version of com.sun.crypto.provider.AESCrypt"); 7360 if (objSessionK == nullptr) { 7361 return (Node *) nullptr; 7362 } 7363 Node* objAESCryptKey = load_array_element(objSessionK, intcon(0), TypeAryPtr::OOPS, /* set_ctrl */ true); 7364 #else 7365 Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I"); 7366 #endif // PPC64 7367 assert (objAESCryptKey != nullptr, "wrong version of com.sun.crypto.provider.AESCrypt"); 7368 if (objAESCryptKey == nullptr) return (Node *) nullptr; 7369 7370 // now have the array, need to get the start address of the K array 7371 Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT); 7372 return k_start; 7373 } 7374 7375 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate---------------------------- 7376 // Return node representing slow path of predicate check. 7377 // the pseudo code we want to emulate with this predicate is: 7378 // for encryption: 7379 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 7380 // for decryption: 7381 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 7382 // note cipher==plain is more conservative than the original java code but that's OK 7383 // 7384 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) { 7385 // The receiver was checked for null already. 7386 Node* objCBC = argument(0); 7387 7388 Node* src = argument(1); 7389 Node* dest = argument(4); 7390 7391 // Load embeddedCipher field of CipherBlockChaining object. 7392 Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7393 7394 // get AESCrypt klass for instanceOf check 7395 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 7396 // will have same classloader as CipherBlockChaining object 7397 const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr(); 7398 assert(tinst != nullptr, "CBCobj is null"); 7399 assert(tinst->is_loaded(), "CBCobj is not loaded"); 7400 7401 // we want to do an instanceof comparison against the AESCrypt class 7402 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7403 if (!klass_AESCrypt->is_loaded()) { 7404 // if AESCrypt is not even loaded, we never take the intrinsic fast path 7405 Node* ctrl = control(); 7406 set_control(top()); // no regular fast path 7407 return ctrl; 7408 } 7409 7410 src = must_be_not_null(src, true); 7411 dest = must_be_not_null(dest, true); 7412 7413 // Resolve oops to stable for CmpP below. 7414 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7415 7416 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 7417 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 7418 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 7419 7420 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 7421 7422 // for encryption, we are done 7423 if (!decrypting) 7424 return instof_false; // even if it is null 7425 7426 // for decryption, we need to add a further check to avoid 7427 // taking the intrinsic path when cipher and plain are the same 7428 // see the original java code for why. 7429 RegionNode* region = new RegionNode(3); 7430 region->init_req(1, instof_false); 7431 7432 Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest)); 7433 Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq)); 7434 Node* src_dest_conjoint = generate_guard(bool_src_dest, nullptr, PROB_MIN); 7435 region->init_req(2, src_dest_conjoint); 7436 7437 record_for_igvn(region); 7438 return _gvn.transform(region); 7439 } 7440 7441 //----------------------------inline_electronicCodeBook_AESCrypt_predicate---------------------------- 7442 // Return node representing slow path of predicate check. 7443 // the pseudo code we want to emulate with this predicate is: 7444 // for encryption: 7445 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 7446 // for decryption: 7447 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 7448 // note cipher==plain is more conservative than the original java code but that's OK 7449 // 7450 Node* LibraryCallKit::inline_electronicCodeBook_AESCrypt_predicate(bool decrypting) { 7451 // The receiver was checked for null already. 7452 Node* objECB = argument(0); 7453 7454 // Load embeddedCipher field of ElectronicCodeBook object. 7455 Node* embeddedCipherObj = load_field_from_object(objECB, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7456 7457 // get AESCrypt klass for instanceOf check 7458 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 7459 // will have same classloader as ElectronicCodeBook object 7460 const TypeInstPtr* tinst = _gvn.type(objECB)->isa_instptr(); 7461 assert(tinst != nullptr, "ECBobj is null"); 7462 assert(tinst->is_loaded(), "ECBobj is not loaded"); 7463 7464 // we want to do an instanceof comparison against the AESCrypt class 7465 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7466 if (!klass_AESCrypt->is_loaded()) { 7467 // if AESCrypt is not even loaded, we never take the intrinsic fast path 7468 Node* ctrl = control(); 7469 set_control(top()); // no regular fast path 7470 return ctrl; 7471 } 7472 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7473 7474 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 7475 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 7476 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 7477 7478 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 7479 7480 // for encryption, we are done 7481 if (!decrypting) 7482 return instof_false; // even if it is null 7483 7484 // for decryption, we need to add a further check to avoid 7485 // taking the intrinsic path when cipher and plain are the same 7486 // see the original java code for why. 7487 RegionNode* region = new RegionNode(3); 7488 region->init_req(1, instof_false); 7489 Node* src = argument(1); 7490 Node* dest = argument(4); 7491 Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest)); 7492 Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq)); 7493 Node* src_dest_conjoint = generate_guard(bool_src_dest, nullptr, PROB_MIN); 7494 region->init_req(2, src_dest_conjoint); 7495 7496 record_for_igvn(region); 7497 return _gvn.transform(region); 7498 } 7499 7500 //----------------------------inline_counterMode_AESCrypt_predicate---------------------------- 7501 // Return node representing slow path of predicate check. 7502 // the pseudo code we want to emulate with this predicate is: 7503 // for encryption: 7504 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 7505 // for decryption: 7506 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 7507 // note cipher==plain is more conservative than the original java code but that's OK 7508 // 7509 7510 Node* LibraryCallKit::inline_counterMode_AESCrypt_predicate() { 7511 // The receiver was checked for null already. 7512 Node* objCTR = argument(0); 7513 7514 // Load embeddedCipher field of CipherBlockChaining object. 7515 Node* embeddedCipherObj = load_field_from_object(objCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7516 7517 // get AESCrypt klass for instanceOf check 7518 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 7519 // will have same classloader as CipherBlockChaining object 7520 const TypeInstPtr* tinst = _gvn.type(objCTR)->isa_instptr(); 7521 assert(tinst != nullptr, "CTRobj is null"); 7522 assert(tinst->is_loaded(), "CTRobj is not loaded"); 7523 7524 // we want to do an instanceof comparison against the AESCrypt class 7525 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7526 if (!klass_AESCrypt->is_loaded()) { 7527 // if AESCrypt is not even loaded, we never take the intrinsic fast path 7528 Node* ctrl = control(); 7529 set_control(top()); // no regular fast path 7530 return ctrl; 7531 } 7532 7533 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7534 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 7535 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 7536 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 7537 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 7538 7539 return instof_false; // even if it is null 7540 } 7541 7542 //------------------------------inline_ghash_processBlocks 7543 bool LibraryCallKit::inline_ghash_processBlocks() { 7544 address stubAddr; 7545 const char *stubName; 7546 assert(UseGHASHIntrinsics, "need GHASH intrinsics support"); 7547 7548 stubAddr = StubRoutines::ghash_processBlocks(); 7549 stubName = "ghash_processBlocks"; 7550 7551 Node* data = argument(0); 7552 Node* offset = argument(1); 7553 Node* len = argument(2); 7554 Node* state = argument(3); 7555 Node* subkeyH = argument(4); 7556 7557 state = must_be_not_null(state, true); 7558 subkeyH = must_be_not_null(subkeyH, true); 7559 data = must_be_not_null(data, true); 7560 7561 Node* state_start = array_element_address(state, intcon(0), T_LONG); 7562 assert(state_start, "state is null"); 7563 Node* subkeyH_start = array_element_address(subkeyH, intcon(0), T_LONG); 7564 assert(subkeyH_start, "subkeyH is null"); 7565 Node* data_start = array_element_address(data, offset, T_BYTE); 7566 assert(data_start, "data is null"); 7567 7568 Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP, 7569 OptoRuntime::ghash_processBlocks_Type(), 7570 stubAddr, stubName, TypePtr::BOTTOM, 7571 state_start, subkeyH_start, data_start, len); 7572 return true; 7573 } 7574 7575 //------------------------------inline_chacha20Block 7576 bool LibraryCallKit::inline_chacha20Block() { 7577 address stubAddr; 7578 const char *stubName; 7579 assert(UseChaCha20Intrinsics, "need ChaCha20 intrinsics support"); 7580 7581 stubAddr = StubRoutines::chacha20Block(); 7582 stubName = "chacha20Block"; 7583 7584 Node* state = argument(0); 7585 Node* result = argument(1); 7586 7587 state = must_be_not_null(state, true); 7588 result = must_be_not_null(result, true); 7589 7590 Node* state_start = array_element_address(state, intcon(0), T_INT); 7591 assert(state_start, "state is null"); 7592 Node* result_start = array_element_address(result, intcon(0), T_BYTE); 7593 assert(result_start, "result is null"); 7594 7595 Node* cc20Blk = make_runtime_call(RC_LEAF|RC_NO_FP, 7596 OptoRuntime::chacha20Block_Type(), 7597 stubAddr, stubName, TypePtr::BOTTOM, 7598 state_start, result_start); 7599 // return key stream length (int) 7600 Node* retvalue = _gvn.transform(new ProjNode(cc20Blk, TypeFunc::Parms)); 7601 set_result(retvalue); 7602 return true; 7603 } 7604 7605 bool LibraryCallKit::inline_base64_encodeBlock() { 7606 address stubAddr; 7607 const char *stubName; 7608 assert(UseBASE64Intrinsics, "need Base64 intrinsics support"); 7609 assert(callee()->signature()->size() == 6, "base64_encodeBlock has 6 parameters"); 7610 stubAddr = StubRoutines::base64_encodeBlock(); 7611 stubName = "encodeBlock"; 7612 7613 if (!stubAddr) return false; 7614 Node* base64obj = argument(0); 7615 Node* src = argument(1); 7616 Node* offset = argument(2); 7617 Node* len = argument(3); 7618 Node* dest = argument(4); 7619 Node* dp = argument(5); 7620 Node* isURL = argument(6); 7621 7622 src = must_be_not_null(src, true); 7623 dest = must_be_not_null(dest, true); 7624 7625 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 7626 assert(src_start, "source array is null"); 7627 Node* dest_start = array_element_address(dest, intcon(0), T_BYTE); 7628 assert(dest_start, "destination array is null"); 7629 7630 Node* base64 = make_runtime_call(RC_LEAF, 7631 OptoRuntime::base64_encodeBlock_Type(), 7632 stubAddr, stubName, TypePtr::BOTTOM, 7633 src_start, offset, len, dest_start, dp, isURL); 7634 return true; 7635 } 7636 7637 bool LibraryCallKit::inline_base64_decodeBlock() { 7638 address stubAddr; 7639 const char *stubName; 7640 assert(UseBASE64Intrinsics, "need Base64 intrinsics support"); 7641 assert(callee()->signature()->size() == 7, "base64_decodeBlock has 7 parameters"); 7642 stubAddr = StubRoutines::base64_decodeBlock(); 7643 stubName = "decodeBlock"; 7644 7645 if (!stubAddr) return false; 7646 Node* base64obj = argument(0); 7647 Node* src = argument(1); 7648 Node* src_offset = argument(2); 7649 Node* len = argument(3); 7650 Node* dest = argument(4); 7651 Node* dest_offset = argument(5); 7652 Node* isURL = argument(6); 7653 Node* isMIME = argument(7); 7654 7655 src = must_be_not_null(src, true); 7656 dest = must_be_not_null(dest, true); 7657 7658 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 7659 assert(src_start, "source array is null"); 7660 Node* dest_start = array_element_address(dest, intcon(0), T_BYTE); 7661 assert(dest_start, "destination array is null"); 7662 7663 Node* call = make_runtime_call(RC_LEAF, 7664 OptoRuntime::base64_decodeBlock_Type(), 7665 stubAddr, stubName, TypePtr::BOTTOM, 7666 src_start, src_offset, len, dest_start, dest_offset, isURL, isMIME); 7667 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 7668 set_result(result); 7669 return true; 7670 } 7671 7672 bool LibraryCallKit::inline_poly1305_processBlocks() { 7673 address stubAddr; 7674 const char *stubName; 7675 assert(UsePoly1305Intrinsics, "need Poly intrinsics support"); 7676 assert(callee()->signature()->size() == 5, "poly1305_processBlocks has %d parameters", callee()->signature()->size()); 7677 stubAddr = StubRoutines::poly1305_processBlocks(); 7678 stubName = "poly1305_processBlocks"; 7679 7680 if (!stubAddr) return false; 7681 null_check_receiver(); // null-check receiver 7682 if (stopped()) return true; 7683 7684 Node* input = argument(1); 7685 Node* input_offset = argument(2); 7686 Node* len = argument(3); 7687 Node* alimbs = argument(4); 7688 Node* rlimbs = argument(5); 7689 7690 input = must_be_not_null(input, true); 7691 alimbs = must_be_not_null(alimbs, true); 7692 rlimbs = must_be_not_null(rlimbs, true); 7693 7694 Node* input_start = array_element_address(input, input_offset, T_BYTE); 7695 assert(input_start, "input array is null"); 7696 Node* acc_start = array_element_address(alimbs, intcon(0), T_LONG); 7697 assert(acc_start, "acc array is null"); 7698 Node* r_start = array_element_address(rlimbs, intcon(0), T_LONG); 7699 assert(r_start, "r array is null"); 7700 7701 Node* call = make_runtime_call(RC_LEAF | RC_NO_FP, 7702 OptoRuntime::poly1305_processBlocks_Type(), 7703 stubAddr, stubName, TypePtr::BOTTOM, 7704 input_start, len, acc_start, r_start); 7705 return true; 7706 } 7707 7708 bool LibraryCallKit::inline_intpoly_montgomeryMult_P256() { 7709 address stubAddr; 7710 const char *stubName; 7711 assert(UseIntPolyIntrinsics, "need intpoly intrinsics support"); 7712 assert(callee()->signature()->size() == 3, "intpoly_montgomeryMult_P256 has %d parameters", callee()->signature()->size()); 7713 stubAddr = StubRoutines::intpoly_montgomeryMult_P256(); 7714 stubName = "intpoly_montgomeryMult_P256"; 7715 7716 if (!stubAddr) return false; 7717 null_check_receiver(); // null-check receiver 7718 if (stopped()) return true; 7719 7720 Node* a = argument(1); 7721 Node* b = argument(2); 7722 Node* r = argument(3); 7723 7724 a = must_be_not_null(a, true); 7725 b = must_be_not_null(b, true); 7726 r = must_be_not_null(r, true); 7727 7728 Node* a_start = array_element_address(a, intcon(0), T_LONG); 7729 assert(a_start, "a array is NULL"); 7730 Node* b_start = array_element_address(b, intcon(0), T_LONG); 7731 assert(b_start, "b array is NULL"); 7732 Node* r_start = array_element_address(r, intcon(0), T_LONG); 7733 assert(r_start, "r array is NULL"); 7734 7735 Node* call = make_runtime_call(RC_LEAF | RC_NO_FP, 7736 OptoRuntime::intpoly_montgomeryMult_P256_Type(), 7737 stubAddr, stubName, TypePtr::BOTTOM, 7738 a_start, b_start, r_start); 7739 return true; 7740 } 7741 7742 bool LibraryCallKit::inline_intpoly_assign() { 7743 assert(UseIntPolyIntrinsics, "need intpoly intrinsics support"); 7744 assert(callee()->signature()->size() == 3, "intpoly_assign has %d parameters", callee()->signature()->size()); 7745 const char *stubName = "intpoly_assign"; 7746 address stubAddr = StubRoutines::intpoly_assign(); 7747 if (!stubAddr) return false; 7748 7749 Node* set = argument(0); 7750 Node* a = argument(1); 7751 Node* b = argument(2); 7752 Node* arr_length = load_array_length(a); 7753 7754 a = must_be_not_null(a, true); 7755 b = must_be_not_null(b, true); 7756 7757 Node* a_start = array_element_address(a, intcon(0), T_LONG); 7758 assert(a_start, "a array is NULL"); 7759 Node* b_start = array_element_address(b, intcon(0), T_LONG); 7760 assert(b_start, "b array is NULL"); 7761 7762 Node* call = make_runtime_call(RC_LEAF | RC_NO_FP, 7763 OptoRuntime::intpoly_assign_Type(), 7764 stubAddr, stubName, TypePtr::BOTTOM, 7765 set, a_start, b_start, arr_length); 7766 return true; 7767 } 7768 7769 //------------------------------inline_digestBase_implCompress----------------------- 7770 // 7771 // Calculate MD5 for single-block byte[] array. 7772 // void com.sun.security.provider.MD5.implCompress(byte[] buf, int ofs) 7773 // 7774 // Calculate SHA (i.e., SHA-1) for single-block byte[] array. 7775 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs) 7776 // 7777 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array. 7778 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs) 7779 // 7780 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array. 7781 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs) 7782 // 7783 // Calculate SHA3 (i.e., SHA3-224 or SHA3-256 or SHA3-384 or SHA3-512) for single-block byte[] array. 7784 // void com.sun.security.provider.SHA3.implCompress(byte[] buf, int ofs) 7785 // 7786 bool LibraryCallKit::inline_digestBase_implCompress(vmIntrinsics::ID id) { 7787 assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters"); 7788 7789 Node* digestBase_obj = argument(0); 7790 Node* src = argument(1); // type oop 7791 Node* ofs = argument(2); // type int 7792 7793 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7794 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 7795 // failed array check 7796 return false; 7797 } 7798 // Figure out the size and type of the elements we will be copying. 7799 BasicType src_elem = src_type->elem()->array_element_basic_type(); 7800 if (src_elem != T_BYTE) { 7801 return false; 7802 } 7803 // 'src_start' points to src array + offset 7804 src = must_be_not_null(src, true); 7805 Node* src_start = array_element_address(src, ofs, src_elem); 7806 Node* state = nullptr; 7807 Node* block_size = nullptr; 7808 address stubAddr; 7809 const char *stubName; 7810 7811 switch(id) { 7812 case vmIntrinsics::_md5_implCompress: 7813 assert(UseMD5Intrinsics, "need MD5 instruction support"); 7814 state = get_state_from_digest_object(digestBase_obj, T_INT); 7815 stubAddr = StubRoutines::md5_implCompress(); 7816 stubName = "md5_implCompress"; 7817 break; 7818 case vmIntrinsics::_sha_implCompress: 7819 assert(UseSHA1Intrinsics, "need SHA1 instruction support"); 7820 state = get_state_from_digest_object(digestBase_obj, T_INT); 7821 stubAddr = StubRoutines::sha1_implCompress(); 7822 stubName = "sha1_implCompress"; 7823 break; 7824 case vmIntrinsics::_sha2_implCompress: 7825 assert(UseSHA256Intrinsics, "need SHA256 instruction support"); 7826 state = get_state_from_digest_object(digestBase_obj, T_INT); 7827 stubAddr = StubRoutines::sha256_implCompress(); 7828 stubName = "sha256_implCompress"; 7829 break; 7830 case vmIntrinsics::_sha5_implCompress: 7831 assert(UseSHA512Intrinsics, "need SHA512 instruction support"); 7832 state = get_state_from_digest_object(digestBase_obj, T_LONG); 7833 stubAddr = StubRoutines::sha512_implCompress(); 7834 stubName = "sha512_implCompress"; 7835 break; 7836 case vmIntrinsics::_sha3_implCompress: 7837 assert(UseSHA3Intrinsics, "need SHA3 instruction support"); 7838 state = get_state_from_digest_object(digestBase_obj, T_LONG); 7839 stubAddr = StubRoutines::sha3_implCompress(); 7840 stubName = "sha3_implCompress"; 7841 block_size = get_block_size_from_digest_object(digestBase_obj); 7842 if (block_size == nullptr) return false; 7843 break; 7844 default: 7845 fatal_unexpected_iid(id); 7846 return false; 7847 } 7848 if (state == nullptr) return false; 7849 7850 assert(stubAddr != nullptr, "Stub %s is not generated", stubName); 7851 if (stubAddr == nullptr) return false; 7852 7853 // Call the stub. 7854 Node* call; 7855 if (block_size == nullptr) { 7856 call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(false), 7857 stubAddr, stubName, TypePtr::BOTTOM, 7858 src_start, state); 7859 } else { 7860 call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(true), 7861 stubAddr, stubName, TypePtr::BOTTOM, 7862 src_start, state, block_size); 7863 } 7864 7865 return true; 7866 } 7867 7868 //------------------------------inline_digestBase_implCompressMB----------------------- 7869 // 7870 // Calculate MD5/SHA/SHA2/SHA5/SHA3 for multi-block byte[] array. 7871 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit) 7872 // 7873 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) { 7874 assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics || UseSHA3Intrinsics, 7875 "need MD5/SHA1/SHA256/SHA512/SHA3 instruction support"); 7876 assert((uint)predicate < 5, "sanity"); 7877 assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters"); 7878 7879 Node* digestBase_obj = argument(0); // The receiver was checked for null already. 7880 Node* src = argument(1); // byte[] array 7881 Node* ofs = argument(2); // type int 7882 Node* limit = argument(3); // type int 7883 7884 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7885 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 7886 // failed array check 7887 return false; 7888 } 7889 // Figure out the size and type of the elements we will be copying. 7890 BasicType src_elem = src_type->elem()->array_element_basic_type(); 7891 if (src_elem != T_BYTE) { 7892 return false; 7893 } 7894 // 'src_start' points to src array + offset 7895 src = must_be_not_null(src, false); 7896 Node* src_start = array_element_address(src, ofs, src_elem); 7897 7898 const char* klass_digestBase_name = nullptr; 7899 const char* stub_name = nullptr; 7900 address stub_addr = nullptr; 7901 BasicType elem_type = T_INT; 7902 7903 switch (predicate) { 7904 case 0: 7905 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_md5_implCompress)) { 7906 klass_digestBase_name = "sun/security/provider/MD5"; 7907 stub_name = "md5_implCompressMB"; 7908 stub_addr = StubRoutines::md5_implCompressMB(); 7909 } 7910 break; 7911 case 1: 7912 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha_implCompress)) { 7913 klass_digestBase_name = "sun/security/provider/SHA"; 7914 stub_name = "sha1_implCompressMB"; 7915 stub_addr = StubRoutines::sha1_implCompressMB(); 7916 } 7917 break; 7918 case 2: 7919 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha2_implCompress)) { 7920 klass_digestBase_name = "sun/security/provider/SHA2"; 7921 stub_name = "sha256_implCompressMB"; 7922 stub_addr = StubRoutines::sha256_implCompressMB(); 7923 } 7924 break; 7925 case 3: 7926 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha5_implCompress)) { 7927 klass_digestBase_name = "sun/security/provider/SHA5"; 7928 stub_name = "sha512_implCompressMB"; 7929 stub_addr = StubRoutines::sha512_implCompressMB(); 7930 elem_type = T_LONG; 7931 } 7932 break; 7933 case 4: 7934 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha3_implCompress)) { 7935 klass_digestBase_name = "sun/security/provider/SHA3"; 7936 stub_name = "sha3_implCompressMB"; 7937 stub_addr = StubRoutines::sha3_implCompressMB(); 7938 elem_type = T_LONG; 7939 } 7940 break; 7941 default: 7942 fatal("unknown DigestBase intrinsic predicate: %d", predicate); 7943 } 7944 if (klass_digestBase_name != nullptr) { 7945 assert(stub_addr != nullptr, "Stub is generated"); 7946 if (stub_addr == nullptr) return false; 7947 7948 // get DigestBase klass to lookup for SHA klass 7949 const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr(); 7950 assert(tinst != nullptr, "digestBase_obj is not instance???"); 7951 assert(tinst->is_loaded(), "DigestBase is not loaded"); 7952 7953 ciKlass* klass_digestBase = tinst->instance_klass()->find_klass(ciSymbol::make(klass_digestBase_name)); 7954 assert(klass_digestBase->is_loaded(), "predicate checks that this class is loaded"); 7955 ciInstanceKlass* instklass_digestBase = klass_digestBase->as_instance_klass(); 7956 return inline_digestBase_implCompressMB(digestBase_obj, instklass_digestBase, elem_type, stub_addr, stub_name, src_start, ofs, limit); 7957 } 7958 return false; 7959 } 7960 7961 //------------------------------inline_digestBase_implCompressMB----------------------- 7962 bool LibraryCallKit::inline_digestBase_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_digestBase, 7963 BasicType elem_type, address stubAddr, const char *stubName, 7964 Node* src_start, Node* ofs, Node* limit) { 7965 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_digestBase); 7966 const TypeOopPtr* xtype = aklass->cast_to_exactness(false)->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 7967 Node* digest_obj = new CheckCastPPNode(control(), digestBase_obj, xtype); 7968 digest_obj = _gvn.transform(digest_obj); 7969 7970 Node* state = get_state_from_digest_object(digest_obj, elem_type); 7971 if (state == nullptr) return false; 7972 7973 Node* block_size = nullptr; 7974 if (strcmp("sha3_implCompressMB", stubName) == 0) { 7975 block_size = get_block_size_from_digest_object(digest_obj); 7976 if (block_size == nullptr) return false; 7977 } 7978 7979 // Call the stub. 7980 Node* call; 7981 if (block_size == nullptr) { 7982 call = make_runtime_call(RC_LEAF|RC_NO_FP, 7983 OptoRuntime::digestBase_implCompressMB_Type(false), 7984 stubAddr, stubName, TypePtr::BOTTOM, 7985 src_start, state, ofs, limit); 7986 } else { 7987 call = make_runtime_call(RC_LEAF|RC_NO_FP, 7988 OptoRuntime::digestBase_implCompressMB_Type(true), 7989 stubAddr, stubName, TypePtr::BOTTOM, 7990 src_start, state, block_size, ofs, limit); 7991 } 7992 7993 // return ofs (int) 7994 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 7995 set_result(result); 7996 7997 return true; 7998 } 7999 8000 //------------------------------inline_galoisCounterMode_AESCrypt----------------------- 8001 bool LibraryCallKit::inline_galoisCounterMode_AESCrypt() { 8002 assert(UseAES, "need AES instruction support"); 8003 address stubAddr = nullptr; 8004 const char *stubName = nullptr; 8005 stubAddr = StubRoutines::galoisCounterMode_AESCrypt(); 8006 stubName = "galoisCounterMode_AESCrypt"; 8007 8008 if (stubAddr == nullptr) return false; 8009 8010 Node* in = argument(0); 8011 Node* inOfs = argument(1); 8012 Node* len = argument(2); 8013 Node* ct = argument(3); 8014 Node* ctOfs = argument(4); 8015 Node* out = argument(5); 8016 Node* outOfs = argument(6); 8017 Node* gctr_object = argument(7); 8018 Node* ghash_object = argument(8); 8019 8020 // (1) in, ct and out are arrays. 8021 const TypeAryPtr* in_type = in->Value(&_gvn)->isa_aryptr(); 8022 const TypeAryPtr* ct_type = ct->Value(&_gvn)->isa_aryptr(); 8023 const TypeAryPtr* out_type = out->Value(&_gvn)->isa_aryptr(); 8024 assert( in_type != nullptr && in_type->elem() != Type::BOTTOM && 8025 ct_type != nullptr && ct_type->elem() != Type::BOTTOM && 8026 out_type != nullptr && out_type->elem() != Type::BOTTOM, "args are strange"); 8027 8028 // checks are the responsibility of the caller 8029 Node* in_start = in; 8030 Node* ct_start = ct; 8031 Node* out_start = out; 8032 if (inOfs != nullptr || ctOfs != nullptr || outOfs != nullptr) { 8033 assert(inOfs != nullptr && ctOfs != nullptr && outOfs != nullptr, ""); 8034 in_start = array_element_address(in, inOfs, T_BYTE); 8035 ct_start = array_element_address(ct, ctOfs, T_BYTE); 8036 out_start = array_element_address(out, outOfs, T_BYTE); 8037 } 8038 8039 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 8040 // (because of the predicated logic executed earlier). 8041 // so we cast it here safely. 8042 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 8043 Node* embeddedCipherObj = load_field_from_object(gctr_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 8044 Node* counter = load_field_from_object(gctr_object, "counter", "[B"); 8045 Node* subkeyHtbl = load_field_from_object(ghash_object, "subkeyHtbl", "[J"); 8046 Node* state = load_field_from_object(ghash_object, "state", "[J"); 8047 8048 if (embeddedCipherObj == nullptr || counter == nullptr || subkeyHtbl == nullptr || state == nullptr) { 8049 return false; 8050 } 8051 // cast it to what we know it will be at runtime 8052 const TypeInstPtr* tinst = _gvn.type(gctr_object)->isa_instptr(); 8053 assert(tinst != nullptr, "GCTR obj is null"); 8054 assert(tinst->is_loaded(), "GCTR obj is not loaded"); 8055 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 8056 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 8057 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 8058 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 8059 const TypeOopPtr* xtype = aklass->as_instance_type(); 8060 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 8061 aescrypt_object = _gvn.transform(aescrypt_object); 8062 // we need to get the start of the aescrypt_object's expanded key array 8063 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 8064 if (k_start == nullptr) return false; 8065 // similarly, get the start address of the r vector 8066 Node* cnt_start = array_element_address(counter, intcon(0), T_BYTE); 8067 Node* state_start = array_element_address(state, intcon(0), T_LONG); 8068 Node* subkeyHtbl_start = array_element_address(subkeyHtbl, intcon(0), T_LONG); 8069 8070 8071 // Call the stub, passing params 8072 Node* gcmCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 8073 OptoRuntime::galoisCounterMode_aescrypt_Type(), 8074 stubAddr, stubName, TypePtr::BOTTOM, 8075 in_start, len, ct_start, out_start, k_start, state_start, subkeyHtbl_start, cnt_start); 8076 8077 // return cipher length (int) 8078 Node* retvalue = _gvn.transform(new ProjNode(gcmCrypt, TypeFunc::Parms)); 8079 set_result(retvalue); 8080 8081 return true; 8082 } 8083 8084 //----------------------------inline_galoisCounterMode_AESCrypt_predicate---------------------------- 8085 // Return node representing slow path of predicate check. 8086 // the pseudo code we want to emulate with this predicate is: 8087 // for encryption: 8088 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 8089 // for decryption: 8090 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 8091 // note cipher==plain is more conservative than the original java code but that's OK 8092 // 8093 8094 Node* LibraryCallKit::inline_galoisCounterMode_AESCrypt_predicate() { 8095 // The receiver was checked for null already. 8096 Node* objGCTR = argument(7); 8097 // Load embeddedCipher field of GCTR object. 8098 Node* embeddedCipherObj = load_field_from_object(objGCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 8099 assert(embeddedCipherObj != nullptr, "embeddedCipherObj is null"); 8100 8101 // get AESCrypt klass for instanceOf check 8102 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 8103 // will have same classloader as CipherBlockChaining object 8104 const TypeInstPtr* tinst = _gvn.type(objGCTR)->isa_instptr(); 8105 assert(tinst != nullptr, "GCTR obj is null"); 8106 assert(tinst->is_loaded(), "GCTR obj is not loaded"); 8107 8108 // we want to do an instanceof comparison against the AESCrypt class 8109 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 8110 if (!klass_AESCrypt->is_loaded()) { 8111 // if AESCrypt is not even loaded, we never take the intrinsic fast path 8112 Node* ctrl = control(); 8113 set_control(top()); // no regular fast path 8114 return ctrl; 8115 } 8116 8117 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 8118 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 8119 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 8120 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 8121 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 8122 8123 return instof_false; // even if it is null 8124 } 8125 8126 //------------------------------get_state_from_digest_object----------------------- 8127 Node * LibraryCallKit::get_state_from_digest_object(Node *digest_object, BasicType elem_type) { 8128 const char* state_type; 8129 switch (elem_type) { 8130 case T_BYTE: state_type = "[B"; break; 8131 case T_INT: state_type = "[I"; break; 8132 case T_LONG: state_type = "[J"; break; 8133 default: ShouldNotReachHere(); 8134 } 8135 Node* digest_state = load_field_from_object(digest_object, "state", state_type); 8136 assert (digest_state != nullptr, "wrong version of sun.security.provider.MD5/SHA/SHA2/SHA5/SHA3"); 8137 if (digest_state == nullptr) return (Node *) nullptr; 8138 8139 // now have the array, need to get the start address of the state array 8140 Node* state = array_element_address(digest_state, intcon(0), elem_type); 8141 return state; 8142 } 8143 8144 //------------------------------get_block_size_from_sha3_object---------------------------------- 8145 Node * LibraryCallKit::get_block_size_from_digest_object(Node *digest_object) { 8146 Node* block_size = load_field_from_object(digest_object, "blockSize", "I"); 8147 assert (block_size != nullptr, "sanity"); 8148 return block_size; 8149 } 8150 8151 //----------------------------inline_digestBase_implCompressMB_predicate---------------------------- 8152 // Return node representing slow path of predicate check. 8153 // the pseudo code we want to emulate with this predicate is: 8154 // if (digestBaseObj instanceof MD5/SHA/SHA2/SHA5/SHA3) do_intrinsic, else do_javapath 8155 // 8156 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) { 8157 assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics || UseSHA3Intrinsics, 8158 "need MD5/SHA1/SHA256/SHA512/SHA3 instruction support"); 8159 assert((uint)predicate < 5, "sanity"); 8160 8161 // The receiver was checked for null already. 8162 Node* digestBaseObj = argument(0); 8163 8164 // get DigestBase klass for instanceOf check 8165 const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr(); 8166 assert(tinst != nullptr, "digestBaseObj is null"); 8167 assert(tinst->is_loaded(), "DigestBase is not loaded"); 8168 8169 const char* klass_name = nullptr; 8170 switch (predicate) { 8171 case 0: 8172 if (UseMD5Intrinsics) { 8173 // we want to do an instanceof comparison against the MD5 class 8174 klass_name = "sun/security/provider/MD5"; 8175 } 8176 break; 8177 case 1: 8178 if (UseSHA1Intrinsics) { 8179 // we want to do an instanceof comparison against the SHA class 8180 klass_name = "sun/security/provider/SHA"; 8181 } 8182 break; 8183 case 2: 8184 if (UseSHA256Intrinsics) { 8185 // we want to do an instanceof comparison against the SHA2 class 8186 klass_name = "sun/security/provider/SHA2"; 8187 } 8188 break; 8189 case 3: 8190 if (UseSHA512Intrinsics) { 8191 // we want to do an instanceof comparison against the SHA5 class 8192 klass_name = "sun/security/provider/SHA5"; 8193 } 8194 break; 8195 case 4: 8196 if (UseSHA3Intrinsics) { 8197 // we want to do an instanceof comparison against the SHA3 class 8198 klass_name = "sun/security/provider/SHA3"; 8199 } 8200 break; 8201 default: 8202 fatal("unknown SHA intrinsic predicate: %d", predicate); 8203 } 8204 8205 ciKlass* klass = nullptr; 8206 if (klass_name != nullptr) { 8207 klass = tinst->instance_klass()->find_klass(ciSymbol::make(klass_name)); 8208 } 8209 if ((klass == nullptr) || !klass->is_loaded()) { 8210 // if none of MD5/SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path 8211 Node* ctrl = control(); 8212 set_control(top()); // no intrinsic path 8213 return ctrl; 8214 } 8215 ciInstanceKlass* instklass = klass->as_instance_klass(); 8216 8217 Node* instof = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass))); 8218 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 8219 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 8220 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 8221 8222 return instof_false; // even if it is null 8223 } 8224 8225 //-------------inline_fma----------------------------------- 8226 bool LibraryCallKit::inline_fma(vmIntrinsics::ID id) { 8227 Node *a = nullptr; 8228 Node *b = nullptr; 8229 Node *c = nullptr; 8230 Node* result = nullptr; 8231 switch (id) { 8232 case vmIntrinsics::_fmaD: 8233 assert(callee()->signature()->size() == 6, "fma has 3 parameters of size 2 each."); 8234 // no receiver since it is static method 8235 a = round_double_node(argument(0)); 8236 b = round_double_node(argument(2)); 8237 c = round_double_node(argument(4)); 8238 result = _gvn.transform(new FmaDNode(control(), a, b, c)); 8239 break; 8240 case vmIntrinsics::_fmaF: 8241 assert(callee()->signature()->size() == 3, "fma has 3 parameters of size 1 each."); 8242 a = argument(0); 8243 b = argument(1); 8244 c = argument(2); 8245 result = _gvn.transform(new FmaFNode(control(), a, b, c)); 8246 break; 8247 default: 8248 fatal_unexpected_iid(id); break; 8249 } 8250 set_result(result); 8251 return true; 8252 } 8253 8254 bool LibraryCallKit::inline_character_compare(vmIntrinsics::ID id) { 8255 // argument(0) is receiver 8256 Node* codePoint = argument(1); 8257 Node* n = nullptr; 8258 8259 switch (id) { 8260 case vmIntrinsics::_isDigit : 8261 n = new DigitNode(control(), codePoint); 8262 break; 8263 case vmIntrinsics::_isLowerCase : 8264 n = new LowerCaseNode(control(), codePoint); 8265 break; 8266 case vmIntrinsics::_isUpperCase : 8267 n = new UpperCaseNode(control(), codePoint); 8268 break; 8269 case vmIntrinsics::_isWhitespace : 8270 n = new WhitespaceNode(control(), codePoint); 8271 break; 8272 default: 8273 fatal_unexpected_iid(id); 8274 } 8275 8276 set_result(_gvn.transform(n)); 8277 return true; 8278 } 8279 8280 //------------------------------inline_fp_min_max------------------------------ 8281 bool LibraryCallKit::inline_fp_min_max(vmIntrinsics::ID id) { 8282 /* DISABLED BECAUSE METHOD DATA ISN'T COLLECTED PER CALL-SITE, SEE JDK-8015416. 8283 8284 // The intrinsic should be used only when the API branches aren't predictable, 8285 // the last one performing the most important comparison. The following heuristic 8286 // uses the branch statistics to eventually bail out if necessary. 8287 8288 ciMethodData *md = callee()->method_data(); 8289 8290 if ( md != nullptr && md->is_mature() && md->invocation_count() > 0 ) { 8291 ciCallProfile cp = caller()->call_profile_at_bci(bci()); 8292 8293 if ( ((double)cp.count()) / ((double)md->invocation_count()) < 0.8 ) { 8294 // Bail out if the call-site didn't contribute enough to the statistics. 8295 return false; 8296 } 8297 8298 uint taken = 0, not_taken = 0; 8299 8300 for (ciProfileData *p = md->first_data(); md->is_valid(p); p = md->next_data(p)) { 8301 if (p->is_BranchData()) { 8302 taken = ((ciBranchData*)p)->taken(); 8303 not_taken = ((ciBranchData*)p)->not_taken(); 8304 } 8305 } 8306 8307 double balance = (((double)taken) - ((double)not_taken)) / ((double)md->invocation_count()); 8308 balance = balance < 0 ? -balance : balance; 8309 if ( balance > 0.2 ) { 8310 // Bail out if the most important branch is predictable enough. 8311 return false; 8312 } 8313 } 8314 */ 8315 8316 Node *a = nullptr; 8317 Node *b = nullptr; 8318 Node *n = nullptr; 8319 switch (id) { 8320 case vmIntrinsics::_maxF: 8321 case vmIntrinsics::_minF: 8322 case vmIntrinsics::_maxF_strict: 8323 case vmIntrinsics::_minF_strict: 8324 assert(callee()->signature()->size() == 2, "minF/maxF has 2 parameters of size 1 each."); 8325 a = argument(0); 8326 b = argument(1); 8327 break; 8328 case vmIntrinsics::_maxD: 8329 case vmIntrinsics::_minD: 8330 case vmIntrinsics::_maxD_strict: 8331 case vmIntrinsics::_minD_strict: 8332 assert(callee()->signature()->size() == 4, "minD/maxD has 2 parameters of size 2 each."); 8333 a = round_double_node(argument(0)); 8334 b = round_double_node(argument(2)); 8335 break; 8336 default: 8337 fatal_unexpected_iid(id); 8338 break; 8339 } 8340 switch (id) { 8341 case vmIntrinsics::_maxF: 8342 case vmIntrinsics::_maxF_strict: 8343 n = new MaxFNode(a, b); 8344 break; 8345 case vmIntrinsics::_minF: 8346 case vmIntrinsics::_minF_strict: 8347 n = new MinFNode(a, b); 8348 break; 8349 case vmIntrinsics::_maxD: 8350 case vmIntrinsics::_maxD_strict: 8351 n = new MaxDNode(a, b); 8352 break; 8353 case vmIntrinsics::_minD: 8354 case vmIntrinsics::_minD_strict: 8355 n = new MinDNode(a, b); 8356 break; 8357 default: 8358 fatal_unexpected_iid(id); 8359 break; 8360 } 8361 set_result(_gvn.transform(n)); 8362 return true; 8363 } 8364 8365 bool LibraryCallKit::inline_profileBoolean() { 8366 Node* counts = argument(1); 8367 const TypeAryPtr* ary = nullptr; 8368 ciArray* aobj = nullptr; 8369 if (counts->is_Con() 8370 && (ary = counts->bottom_type()->isa_aryptr()) != nullptr 8371 && (aobj = ary->const_oop()->as_array()) != nullptr 8372 && (aobj->length() == 2)) { 8373 // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively. 8374 jint false_cnt = aobj->element_value(0).as_int(); 8375 jint true_cnt = aobj->element_value(1).as_int(); 8376 8377 if (C->log() != nullptr) { 8378 C->log()->elem("observe source='profileBoolean' false='%d' true='%d'", 8379 false_cnt, true_cnt); 8380 } 8381 8382 if (false_cnt + true_cnt == 0) { 8383 // According to profile, never executed. 8384 uncommon_trap_exact(Deoptimization::Reason_intrinsic, 8385 Deoptimization::Action_reinterpret); 8386 return true; 8387 } 8388 8389 // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt) 8390 // is a number of each value occurrences. 8391 Node* result = argument(0); 8392 if (false_cnt == 0 || true_cnt == 0) { 8393 // According to profile, one value has been never seen. 8394 int expected_val = (false_cnt == 0) ? 1 : 0; 8395 8396 Node* cmp = _gvn.transform(new CmpINode(result, intcon(expected_val))); 8397 Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 8398 8399 IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN); 8400 Node* fast_path = _gvn.transform(new IfTrueNode(check)); 8401 Node* slow_path = _gvn.transform(new IfFalseNode(check)); 8402 8403 { // Slow path: uncommon trap for never seen value and then reexecute 8404 // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows 8405 // the value has been seen at least once. 8406 PreserveJVMState pjvms(this); 8407 PreserveReexecuteState preexecs(this); 8408 jvms()->set_should_reexecute(true); 8409 8410 set_control(slow_path); 8411 set_i_o(i_o()); 8412 8413 uncommon_trap_exact(Deoptimization::Reason_intrinsic, 8414 Deoptimization::Action_reinterpret); 8415 } 8416 // The guard for never seen value enables sharpening of the result and 8417 // returning a constant. It allows to eliminate branches on the same value 8418 // later on. 8419 set_control(fast_path); 8420 result = intcon(expected_val); 8421 } 8422 // Stop profiling. 8423 // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode. 8424 // By replacing method body with profile data (represented as ProfileBooleanNode 8425 // on IR level) we effectively disable profiling. 8426 // It enables full speed execution once optimized code is generated. 8427 Node* profile = _gvn.transform(new ProfileBooleanNode(result, false_cnt, true_cnt)); 8428 C->record_for_igvn(profile); 8429 set_result(profile); 8430 return true; 8431 } else { 8432 // Continue profiling. 8433 // Profile data isn't available at the moment. So, execute method's bytecode version. 8434 // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod 8435 // is compiled and counters aren't available since corresponding MethodHandle 8436 // isn't a compile-time constant. 8437 return false; 8438 } 8439 } 8440 8441 bool LibraryCallKit::inline_isCompileConstant() { 8442 Node* n = argument(0); 8443 set_result(n->is_Con() ? intcon(1) : intcon(0)); 8444 return true; 8445 } 8446 8447 //------------------------------- inline_getObjectSize -------------------------------------- 8448 // 8449 // Calculate the runtime size of the object/array. 8450 // native long sun.instrument.InstrumentationImpl.getObjectSize0(long nativeAgent, Object objectToSize); 8451 // 8452 bool LibraryCallKit::inline_getObjectSize() { 8453 Node* obj = argument(3); 8454 Node* klass_node = load_object_klass(obj); 8455 8456 jint layout_con = Klass::_lh_neutral_value; 8457 Node* layout_val = get_layout_helper(klass_node, layout_con); 8458 int layout_is_con = (layout_val == nullptr); 8459 8460 if (layout_is_con) { 8461 // Layout helper is constant, can figure out things at compile time. 8462 8463 if (Klass::layout_helper_is_instance(layout_con)) { 8464 // Instance case: layout_con contains the size itself. 8465 Node *size = longcon(Klass::layout_helper_size_in_bytes(layout_con)); 8466 set_result(size); 8467 } else { 8468 // Array case: size is round(header + element_size*arraylength). 8469 // Since arraylength is different for every array instance, we have to 8470 // compute the whole thing at runtime. 8471 8472 Node* arr_length = load_array_length(obj); 8473 8474 int round_mask = MinObjAlignmentInBytes - 1; 8475 int hsize = Klass::layout_helper_header_size(layout_con); 8476 int eshift = Klass::layout_helper_log2_element_size(layout_con); 8477 8478 if ((round_mask & ~right_n_bits(eshift)) == 0) { 8479 round_mask = 0; // strength-reduce it if it goes away completely 8480 } 8481 assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded"); 8482 Node* header_size = intcon(hsize + round_mask); 8483 8484 Node* lengthx = ConvI2X(arr_length); 8485 Node* headerx = ConvI2X(header_size); 8486 8487 Node* abody = lengthx; 8488 if (eshift != 0) { 8489 abody = _gvn.transform(new LShiftXNode(lengthx, intcon(eshift))); 8490 } 8491 Node* size = _gvn.transform( new AddXNode(headerx, abody) ); 8492 if (round_mask != 0) { 8493 size = _gvn.transform( new AndXNode(size, MakeConX(~round_mask)) ); 8494 } 8495 size = ConvX2L(size); 8496 set_result(size); 8497 } 8498 } else { 8499 // Layout helper is not constant, need to test for array-ness at runtime. 8500 8501 enum { _instance_path = 1, _array_path, PATH_LIMIT }; 8502 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 8503 PhiNode* result_val = new PhiNode(result_reg, TypeLong::LONG); 8504 record_for_igvn(result_reg); 8505 8506 Node* array_ctl = generate_array_guard(klass_node, nullptr); 8507 if (array_ctl != nullptr) { 8508 // Array case: size is round(header + element_size*arraylength). 8509 // Since arraylength is different for every array instance, we have to 8510 // compute the whole thing at runtime. 8511 8512 PreserveJVMState pjvms(this); 8513 set_control(array_ctl); 8514 Node* arr_length = load_array_length(obj); 8515 8516 int round_mask = MinObjAlignmentInBytes - 1; 8517 Node* mask = intcon(round_mask); 8518 8519 Node* hss = intcon(Klass::_lh_header_size_shift); 8520 Node* hsm = intcon(Klass::_lh_header_size_mask); 8521 Node* header_size = _gvn.transform(new URShiftINode(layout_val, hss)); 8522 header_size = _gvn.transform(new AndINode(header_size, hsm)); 8523 header_size = _gvn.transform(new AddINode(header_size, mask)); 8524 8525 // There is no need to mask or shift this value. 8526 // The semantics of LShiftINode include an implicit mask to 0x1F. 8527 assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place"); 8528 Node* elem_shift = layout_val; 8529 8530 Node* lengthx = ConvI2X(arr_length); 8531 Node* headerx = ConvI2X(header_size); 8532 8533 Node* abody = _gvn.transform(new LShiftXNode(lengthx, elem_shift)); 8534 Node* size = _gvn.transform(new AddXNode(headerx, abody)); 8535 if (round_mask != 0) { 8536 size = _gvn.transform(new AndXNode(size, MakeConX(~round_mask))); 8537 } 8538 size = ConvX2L(size); 8539 8540 result_reg->init_req(_array_path, control()); 8541 result_val->init_req(_array_path, size); 8542 } 8543 8544 if (!stopped()) { 8545 // Instance case: the layout helper gives us instance size almost directly, 8546 // but we need to mask out the _lh_instance_slow_path_bit. 8547 Node* size = ConvI2X(layout_val); 8548 assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit"); 8549 Node* mask = MakeConX(~(intptr_t) right_n_bits(LogBytesPerLong)); 8550 size = _gvn.transform(new AndXNode(size, mask)); 8551 size = ConvX2L(size); 8552 8553 result_reg->init_req(_instance_path, control()); 8554 result_val->init_req(_instance_path, size); 8555 } 8556 8557 set_result(result_reg, result_val); 8558 } 8559 8560 return true; 8561 } 8562 8563 //------------------------------- inline_blackhole -------------------------------------- 8564 // 8565 // Make sure all arguments to this node are alive. 8566 // This matches methods that were requested to be blackholed through compile commands. 8567 // 8568 bool LibraryCallKit::inline_blackhole() { 8569 assert(callee()->is_static(), "Should have been checked before: only static methods here"); 8570 assert(callee()->is_empty(), "Should have been checked before: only empty methods here"); 8571 assert(callee()->holder()->is_loaded(), "Should have been checked before: only methods for loaded classes here"); 8572 8573 // Blackhole node pinches only the control, not memory. This allows 8574 // the blackhole to be pinned in the loop that computes blackholed 8575 // values, but have no other side effects, like breaking the optimizations 8576 // across the blackhole. 8577 8578 Node* bh = _gvn.transform(new BlackholeNode(control())); 8579 set_control(_gvn.transform(new ProjNode(bh, TypeFunc::Control))); 8580 8581 // Bind call arguments as blackhole arguments to keep them alive 8582 uint nargs = callee()->arg_size(); 8583 for (uint i = 0; i < nargs; i++) { 8584 bh->add_req(argument(i)); 8585 } 8586 8587 return true; 8588 }