1 /* 2 * Copyright (c) 1999, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "asm/macroAssembler.hpp" 26 #include "ci/ciUtilities.inline.hpp" 27 #include "ci/ciSymbols.hpp" 28 #include "classfile/vmIntrinsics.hpp" 29 #include "compiler/compileBroker.hpp" 30 #include "compiler/compileLog.hpp" 31 #include "gc/shared/barrierSet.hpp" 32 #include "jfr/support/jfrIntrinsics.hpp" 33 #include "memory/resourceArea.hpp" 34 #include "oops/klass.inline.hpp" 35 #include "oops/objArrayKlass.hpp" 36 #include "opto/addnode.hpp" 37 #include "opto/arraycopynode.hpp" 38 #include "opto/c2compiler.hpp" 39 #include "opto/castnode.hpp" 40 #include "opto/cfgnode.hpp" 41 #include "opto/convertnode.hpp" 42 #include "opto/countbitsnode.hpp" 43 #include "opto/idealKit.hpp" 44 #include "opto/library_call.hpp" 45 #include "opto/mathexactnode.hpp" 46 #include "opto/mulnode.hpp" 47 #include "opto/narrowptrnode.hpp" 48 #include "opto/opaquenode.hpp" 49 #include "opto/parse.hpp" 50 #include "opto/runtime.hpp" 51 #include "opto/rootnode.hpp" 52 #include "opto/subnode.hpp" 53 #include "opto/vectornode.hpp" 54 #include "prims/jvmtiExport.hpp" 55 #include "prims/jvmtiThreadState.hpp" 56 #include "prims/unsafe.hpp" 57 #include "runtime/jniHandles.inline.hpp" 58 #include "runtime/objectMonitor.hpp" 59 #include "runtime/sharedRuntime.hpp" 60 #include "runtime/stubRoutines.hpp" 61 #include "utilities/macros.hpp" 62 #include "utilities/powerOfTwo.hpp" 63 64 //---------------------------make_vm_intrinsic---------------------------- 65 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) { 66 vmIntrinsicID id = m->intrinsic_id(); 67 assert(id != vmIntrinsics::_none, "must be a VM intrinsic"); 68 69 if (!m->is_loaded()) { 70 // Do not attempt to inline unloaded methods. 71 return nullptr; 72 } 73 74 C2Compiler* compiler = (C2Compiler*)CompilerThread::current()->compiler(); 75 bool is_available = false; 76 77 { 78 // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag 79 // the compiler must transition to '_thread_in_vm' state because both 80 // methods access VM-internal data. 81 VM_ENTRY_MARK; 82 methodHandle mh(THREAD, m->get_Method()); 83 is_available = compiler != nullptr && compiler->is_intrinsic_available(mh, C->directive()); 84 if (is_available && is_virtual) { 85 is_available = vmIntrinsics::does_virtual_dispatch(id); 86 } 87 } 88 89 if (is_available) { 90 assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility"); 91 assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?"); 92 return new LibraryIntrinsic(m, is_virtual, 93 vmIntrinsics::predicates_needed(id), 94 vmIntrinsics::does_virtual_dispatch(id), 95 id); 96 } else { 97 return nullptr; 98 } 99 } 100 101 JVMState* LibraryIntrinsic::generate(JVMState* jvms) { 102 LibraryCallKit kit(jvms, this); 103 Compile* C = kit.C; 104 int nodes = C->unique(); 105 #ifndef PRODUCT 106 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 107 char buf[1000]; 108 const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf)); 109 tty->print_cr("Intrinsic %s", str); 110 } 111 #endif 112 ciMethod* callee = kit.callee(); 113 const int bci = kit.bci(); 114 #ifdef ASSERT 115 Node* ctrl = kit.control(); 116 #endif 117 // Try to inline the intrinsic. 118 if (callee->check_intrinsic_candidate() && 119 kit.try_to_inline(_last_predicate)) { 120 const char *inline_msg = is_virtual() ? "(intrinsic, virtual)" 121 : "(intrinsic)"; 122 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg); 123 C->inline_printer()->record(callee, jvms, InliningResult::SUCCESS, inline_msg); 124 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked); 125 if (C->log()) { 126 C->log()->elem("intrinsic id='%s'%s nodes='%d'", 127 vmIntrinsics::name_at(intrinsic_id()), 128 (is_virtual() ? " virtual='1'" : ""), 129 C->unique() - nodes); 130 } 131 // Push the result from the inlined method onto the stack. 132 kit.push_result(); 133 return kit.transfer_exceptions_into_jvms(); 134 } 135 136 // The intrinsic bailed out 137 assert(ctrl == kit.control(), "Control flow was added although the intrinsic bailed out"); 138 if (jvms->has_method()) { 139 // Not a root compile. 140 const char* msg; 141 if (callee->intrinsic_candidate()) { 142 msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)"; 143 } else { 144 msg = is_virtual() ? "failed to inline (intrinsic, virtual), method not annotated" 145 : "failed to inline (intrinsic), method not annotated"; 146 } 147 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::FAILURE, msg); 148 C->inline_printer()->record(callee, jvms, InliningResult::FAILURE, msg); 149 } else { 150 // Root compile 151 ResourceMark rm; 152 stringStream msg_stream; 153 msg_stream.print("Did not generate intrinsic %s%s at bci:%d in", 154 vmIntrinsics::name_at(intrinsic_id()), 155 is_virtual() ? " (virtual)" : "", bci); 156 const char *msg = msg_stream.freeze(); 157 log_debug(jit, inlining)("%s", msg); 158 if (C->print_intrinsics() || C->print_inlining()) { 159 tty->print("%s", msg); 160 } 161 } 162 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed); 163 164 return nullptr; 165 } 166 167 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) { 168 LibraryCallKit kit(jvms, this); 169 Compile* C = kit.C; 170 int nodes = C->unique(); 171 _last_predicate = predicate; 172 #ifndef PRODUCT 173 assert(is_predicated() && predicate < predicates_count(), "sanity"); 174 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 175 char buf[1000]; 176 const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf)); 177 tty->print_cr("Predicate for intrinsic %s", str); 178 } 179 #endif 180 ciMethod* callee = kit.callee(); 181 const int bci = kit.bci(); 182 183 Node* slow_ctl = kit.try_to_predicate(predicate); 184 if (!kit.failing()) { 185 const char *inline_msg = is_virtual() ? "(intrinsic, virtual, predicate)" 186 : "(intrinsic, predicate)"; 187 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg); 188 C->inline_printer()->record(callee, jvms, InliningResult::SUCCESS, inline_msg); 189 190 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked); 191 if (C->log()) { 192 C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'", 193 vmIntrinsics::name_at(intrinsic_id()), 194 (is_virtual() ? " virtual='1'" : ""), 195 C->unique() - nodes); 196 } 197 return slow_ctl; // Could be null if the check folds. 198 } 199 200 // The intrinsic bailed out 201 if (jvms->has_method()) { 202 // Not a root compile. 203 const char* msg = "failed to generate predicate for intrinsic"; 204 CompileTask::print_inlining_ul(kit.callee(), jvms->depth() - 1, bci, InliningResult::FAILURE, msg); 205 C->inline_printer()->record(kit.callee(), jvms, InliningResult::FAILURE, msg); 206 } else { 207 // Root compile 208 ResourceMark rm; 209 stringStream msg_stream; 210 msg_stream.print("Did not generate intrinsic %s%s at bci:%d in", 211 vmIntrinsics::name_at(intrinsic_id()), 212 is_virtual() ? " (virtual)" : "", bci); 213 const char *msg = msg_stream.freeze(); 214 log_debug(jit, inlining)("%s", msg); 215 C->inline_printer()->record(kit.callee(), jvms, InliningResult::FAILURE, msg); 216 } 217 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed); 218 return nullptr; 219 } 220 221 bool LibraryCallKit::try_to_inline(int predicate) { 222 // Handle symbolic names for otherwise undistinguished boolean switches: 223 const bool is_store = true; 224 const bool is_compress = true; 225 const bool is_static = true; 226 const bool is_volatile = true; 227 228 if (!jvms()->has_method()) { 229 // Root JVMState has a null method. 230 assert(map()->memory()->Opcode() == Op_Parm, ""); 231 // Insert the memory aliasing node 232 set_all_memory(reset_memory()); 233 } 234 assert(merged_memory(), ""); 235 236 switch (intrinsic_id()) { 237 case vmIntrinsics::_hashCode: return inline_native_hashcode(intrinsic()->is_virtual(), !is_static); 238 case vmIntrinsics::_identityHashCode: return inline_native_hashcode(/*!virtual*/ false, is_static); 239 case vmIntrinsics::_getClass: return inline_native_getClass(); 240 241 case vmIntrinsics::_ceil: 242 case vmIntrinsics::_floor: 243 case vmIntrinsics::_rint: 244 case vmIntrinsics::_dsin: 245 case vmIntrinsics::_dcos: 246 case vmIntrinsics::_dtan: 247 case vmIntrinsics::_dtanh: 248 case vmIntrinsics::_dabs: 249 case vmIntrinsics::_fabs: 250 case vmIntrinsics::_iabs: 251 case vmIntrinsics::_labs: 252 case vmIntrinsics::_datan2: 253 case vmIntrinsics::_dsqrt: 254 case vmIntrinsics::_dsqrt_strict: 255 case vmIntrinsics::_dexp: 256 case vmIntrinsics::_dlog: 257 case vmIntrinsics::_dlog10: 258 case vmIntrinsics::_dpow: 259 case vmIntrinsics::_dcopySign: 260 case vmIntrinsics::_fcopySign: 261 case vmIntrinsics::_dsignum: 262 case vmIntrinsics::_roundF: 263 case vmIntrinsics::_roundD: 264 case vmIntrinsics::_fsignum: return inline_math_native(intrinsic_id()); 265 266 case vmIntrinsics::_notify: 267 case vmIntrinsics::_notifyAll: 268 return inline_notify(intrinsic_id()); 269 270 case vmIntrinsics::_addExactI: return inline_math_addExactI(false /* add */); 271 case vmIntrinsics::_addExactL: return inline_math_addExactL(false /* add */); 272 case vmIntrinsics::_decrementExactI: return inline_math_subtractExactI(true /* decrement */); 273 case vmIntrinsics::_decrementExactL: return inline_math_subtractExactL(true /* decrement */); 274 case vmIntrinsics::_incrementExactI: return inline_math_addExactI(true /* increment */); 275 case vmIntrinsics::_incrementExactL: return inline_math_addExactL(true /* increment */); 276 case vmIntrinsics::_multiplyExactI: return inline_math_multiplyExactI(); 277 case vmIntrinsics::_multiplyExactL: return inline_math_multiplyExactL(); 278 case vmIntrinsics::_multiplyHigh: return inline_math_multiplyHigh(); 279 case vmIntrinsics::_unsignedMultiplyHigh: return inline_math_unsignedMultiplyHigh(); 280 case vmIntrinsics::_negateExactI: return inline_math_negateExactI(); 281 case vmIntrinsics::_negateExactL: return inline_math_negateExactL(); 282 case vmIntrinsics::_subtractExactI: return inline_math_subtractExactI(false /* subtract */); 283 case vmIntrinsics::_subtractExactL: return inline_math_subtractExactL(false /* subtract */); 284 285 case vmIntrinsics::_arraycopy: return inline_arraycopy(); 286 287 case vmIntrinsics::_arraySort: return inline_array_sort(); 288 case vmIntrinsics::_arrayPartition: return inline_array_partition(); 289 290 case vmIntrinsics::_compareToL: return inline_string_compareTo(StrIntrinsicNode::LL); 291 case vmIntrinsics::_compareToU: return inline_string_compareTo(StrIntrinsicNode::UU); 292 case vmIntrinsics::_compareToLU: return inline_string_compareTo(StrIntrinsicNode::LU); 293 case vmIntrinsics::_compareToUL: return inline_string_compareTo(StrIntrinsicNode::UL); 294 295 case vmIntrinsics::_indexOfL: return inline_string_indexOf(StrIntrinsicNode::LL); 296 case vmIntrinsics::_indexOfU: return inline_string_indexOf(StrIntrinsicNode::UU); 297 case vmIntrinsics::_indexOfUL: return inline_string_indexOf(StrIntrinsicNode::UL); 298 case vmIntrinsics::_indexOfIL: return inline_string_indexOfI(StrIntrinsicNode::LL); 299 case vmIntrinsics::_indexOfIU: return inline_string_indexOfI(StrIntrinsicNode::UU); 300 case vmIntrinsics::_indexOfIUL: return inline_string_indexOfI(StrIntrinsicNode::UL); 301 case vmIntrinsics::_indexOfU_char: return inline_string_indexOfChar(StrIntrinsicNode::U); 302 case vmIntrinsics::_indexOfL_char: return inline_string_indexOfChar(StrIntrinsicNode::L); 303 304 case vmIntrinsics::_equalsL: return inline_string_equals(StrIntrinsicNode::LL); 305 306 case vmIntrinsics::_vectorizedHashCode: return inline_vectorizedHashCode(); 307 308 case vmIntrinsics::_toBytesStringU: return inline_string_toBytesU(); 309 case vmIntrinsics::_getCharsStringU: return inline_string_getCharsU(); 310 case vmIntrinsics::_getCharStringU: return inline_string_char_access(!is_store); 311 case vmIntrinsics::_putCharStringU: return inline_string_char_access( is_store); 312 313 case vmIntrinsics::_compressStringC: 314 case vmIntrinsics::_compressStringB: return inline_string_copy( is_compress); 315 case vmIntrinsics::_inflateStringC: 316 case vmIntrinsics::_inflateStringB: return inline_string_copy(!is_compress); 317 318 case vmIntrinsics::_getReference: return inline_unsafe_access(!is_store, T_OBJECT, Relaxed, false); 319 case vmIntrinsics::_getBoolean: return inline_unsafe_access(!is_store, T_BOOLEAN, Relaxed, false); 320 case vmIntrinsics::_getByte: return inline_unsafe_access(!is_store, T_BYTE, Relaxed, false); 321 case vmIntrinsics::_getShort: return inline_unsafe_access(!is_store, T_SHORT, Relaxed, false); 322 case vmIntrinsics::_getChar: return inline_unsafe_access(!is_store, T_CHAR, Relaxed, false); 323 case vmIntrinsics::_getInt: return inline_unsafe_access(!is_store, T_INT, Relaxed, false); 324 case vmIntrinsics::_getLong: return inline_unsafe_access(!is_store, T_LONG, Relaxed, false); 325 case vmIntrinsics::_getFloat: return inline_unsafe_access(!is_store, T_FLOAT, Relaxed, false); 326 case vmIntrinsics::_getDouble: return inline_unsafe_access(!is_store, T_DOUBLE, Relaxed, false); 327 328 case vmIntrinsics::_putReference: return inline_unsafe_access( is_store, T_OBJECT, Relaxed, false); 329 case vmIntrinsics::_putBoolean: return inline_unsafe_access( is_store, T_BOOLEAN, Relaxed, false); 330 case vmIntrinsics::_putByte: return inline_unsafe_access( is_store, T_BYTE, Relaxed, false); 331 case vmIntrinsics::_putShort: return inline_unsafe_access( is_store, T_SHORT, Relaxed, false); 332 case vmIntrinsics::_putChar: return inline_unsafe_access( is_store, T_CHAR, Relaxed, false); 333 case vmIntrinsics::_putInt: return inline_unsafe_access( is_store, T_INT, Relaxed, false); 334 case vmIntrinsics::_putLong: return inline_unsafe_access( is_store, T_LONG, Relaxed, false); 335 case vmIntrinsics::_putFloat: return inline_unsafe_access( is_store, T_FLOAT, Relaxed, false); 336 case vmIntrinsics::_putDouble: return inline_unsafe_access( is_store, T_DOUBLE, Relaxed, false); 337 338 case vmIntrinsics::_getReferenceVolatile: return inline_unsafe_access(!is_store, T_OBJECT, Volatile, false); 339 case vmIntrinsics::_getBooleanVolatile: return inline_unsafe_access(!is_store, T_BOOLEAN, Volatile, false); 340 case vmIntrinsics::_getByteVolatile: return inline_unsafe_access(!is_store, T_BYTE, Volatile, false); 341 case vmIntrinsics::_getShortVolatile: return inline_unsafe_access(!is_store, T_SHORT, Volatile, false); 342 case vmIntrinsics::_getCharVolatile: return inline_unsafe_access(!is_store, T_CHAR, Volatile, false); 343 case vmIntrinsics::_getIntVolatile: return inline_unsafe_access(!is_store, T_INT, Volatile, false); 344 case vmIntrinsics::_getLongVolatile: return inline_unsafe_access(!is_store, T_LONG, Volatile, false); 345 case vmIntrinsics::_getFloatVolatile: return inline_unsafe_access(!is_store, T_FLOAT, Volatile, false); 346 case vmIntrinsics::_getDoubleVolatile: return inline_unsafe_access(!is_store, T_DOUBLE, Volatile, false); 347 348 case vmIntrinsics::_putReferenceVolatile: return inline_unsafe_access( is_store, T_OBJECT, Volatile, false); 349 case vmIntrinsics::_putBooleanVolatile: return inline_unsafe_access( is_store, T_BOOLEAN, Volatile, false); 350 case vmIntrinsics::_putByteVolatile: return inline_unsafe_access( is_store, T_BYTE, Volatile, false); 351 case vmIntrinsics::_putShortVolatile: return inline_unsafe_access( is_store, T_SHORT, Volatile, false); 352 case vmIntrinsics::_putCharVolatile: return inline_unsafe_access( is_store, T_CHAR, Volatile, false); 353 case vmIntrinsics::_putIntVolatile: return inline_unsafe_access( is_store, T_INT, Volatile, false); 354 case vmIntrinsics::_putLongVolatile: return inline_unsafe_access( is_store, T_LONG, Volatile, false); 355 case vmIntrinsics::_putFloatVolatile: return inline_unsafe_access( is_store, T_FLOAT, Volatile, false); 356 case vmIntrinsics::_putDoubleVolatile: return inline_unsafe_access( is_store, T_DOUBLE, Volatile, false); 357 358 case vmIntrinsics::_getShortUnaligned: return inline_unsafe_access(!is_store, T_SHORT, Relaxed, true); 359 case vmIntrinsics::_getCharUnaligned: return inline_unsafe_access(!is_store, T_CHAR, Relaxed, true); 360 case vmIntrinsics::_getIntUnaligned: return inline_unsafe_access(!is_store, T_INT, Relaxed, true); 361 case vmIntrinsics::_getLongUnaligned: return inline_unsafe_access(!is_store, T_LONG, Relaxed, true); 362 363 case vmIntrinsics::_putShortUnaligned: return inline_unsafe_access( is_store, T_SHORT, Relaxed, true); 364 case vmIntrinsics::_putCharUnaligned: return inline_unsafe_access( is_store, T_CHAR, Relaxed, true); 365 case vmIntrinsics::_putIntUnaligned: return inline_unsafe_access( is_store, T_INT, Relaxed, true); 366 case vmIntrinsics::_putLongUnaligned: return inline_unsafe_access( is_store, T_LONG, Relaxed, true); 367 368 case vmIntrinsics::_getReferenceAcquire: return inline_unsafe_access(!is_store, T_OBJECT, Acquire, false); 369 case vmIntrinsics::_getBooleanAcquire: return inline_unsafe_access(!is_store, T_BOOLEAN, Acquire, false); 370 case vmIntrinsics::_getByteAcquire: return inline_unsafe_access(!is_store, T_BYTE, Acquire, false); 371 case vmIntrinsics::_getShortAcquire: return inline_unsafe_access(!is_store, T_SHORT, Acquire, false); 372 case vmIntrinsics::_getCharAcquire: return inline_unsafe_access(!is_store, T_CHAR, Acquire, false); 373 case vmIntrinsics::_getIntAcquire: return inline_unsafe_access(!is_store, T_INT, Acquire, false); 374 case vmIntrinsics::_getLongAcquire: return inline_unsafe_access(!is_store, T_LONG, Acquire, false); 375 case vmIntrinsics::_getFloatAcquire: return inline_unsafe_access(!is_store, T_FLOAT, Acquire, false); 376 case vmIntrinsics::_getDoubleAcquire: return inline_unsafe_access(!is_store, T_DOUBLE, Acquire, false); 377 378 case vmIntrinsics::_putReferenceRelease: return inline_unsafe_access( is_store, T_OBJECT, Release, false); 379 case vmIntrinsics::_putBooleanRelease: return inline_unsafe_access( is_store, T_BOOLEAN, Release, false); 380 case vmIntrinsics::_putByteRelease: return inline_unsafe_access( is_store, T_BYTE, Release, false); 381 case vmIntrinsics::_putShortRelease: return inline_unsafe_access( is_store, T_SHORT, Release, false); 382 case vmIntrinsics::_putCharRelease: return inline_unsafe_access( is_store, T_CHAR, Release, false); 383 case vmIntrinsics::_putIntRelease: return inline_unsafe_access( is_store, T_INT, Release, false); 384 case vmIntrinsics::_putLongRelease: return inline_unsafe_access( is_store, T_LONG, Release, false); 385 case vmIntrinsics::_putFloatRelease: return inline_unsafe_access( is_store, T_FLOAT, Release, false); 386 case vmIntrinsics::_putDoubleRelease: return inline_unsafe_access( is_store, T_DOUBLE, Release, false); 387 388 case vmIntrinsics::_getReferenceOpaque: return inline_unsafe_access(!is_store, T_OBJECT, Opaque, false); 389 case vmIntrinsics::_getBooleanOpaque: return inline_unsafe_access(!is_store, T_BOOLEAN, Opaque, false); 390 case vmIntrinsics::_getByteOpaque: return inline_unsafe_access(!is_store, T_BYTE, Opaque, false); 391 case vmIntrinsics::_getShortOpaque: return inline_unsafe_access(!is_store, T_SHORT, Opaque, false); 392 case vmIntrinsics::_getCharOpaque: return inline_unsafe_access(!is_store, T_CHAR, Opaque, false); 393 case vmIntrinsics::_getIntOpaque: return inline_unsafe_access(!is_store, T_INT, Opaque, false); 394 case vmIntrinsics::_getLongOpaque: return inline_unsafe_access(!is_store, T_LONG, Opaque, false); 395 case vmIntrinsics::_getFloatOpaque: return inline_unsafe_access(!is_store, T_FLOAT, Opaque, false); 396 case vmIntrinsics::_getDoubleOpaque: return inline_unsafe_access(!is_store, T_DOUBLE, Opaque, false); 397 398 case vmIntrinsics::_putReferenceOpaque: return inline_unsafe_access( is_store, T_OBJECT, Opaque, false); 399 case vmIntrinsics::_putBooleanOpaque: return inline_unsafe_access( is_store, T_BOOLEAN, Opaque, false); 400 case vmIntrinsics::_putByteOpaque: return inline_unsafe_access( is_store, T_BYTE, Opaque, false); 401 case vmIntrinsics::_putShortOpaque: return inline_unsafe_access( is_store, T_SHORT, Opaque, false); 402 case vmIntrinsics::_putCharOpaque: return inline_unsafe_access( is_store, T_CHAR, Opaque, false); 403 case vmIntrinsics::_putIntOpaque: return inline_unsafe_access( is_store, T_INT, Opaque, false); 404 case vmIntrinsics::_putLongOpaque: return inline_unsafe_access( is_store, T_LONG, Opaque, false); 405 case vmIntrinsics::_putFloatOpaque: return inline_unsafe_access( is_store, T_FLOAT, Opaque, false); 406 case vmIntrinsics::_putDoubleOpaque: return inline_unsafe_access( is_store, T_DOUBLE, Opaque, false); 407 408 case vmIntrinsics::_compareAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap, Volatile); 409 case vmIntrinsics::_compareAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap, Volatile); 410 case vmIntrinsics::_compareAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap, Volatile); 411 case vmIntrinsics::_compareAndSetInt: return inline_unsafe_load_store(T_INT, LS_cmp_swap, Volatile); 412 case vmIntrinsics::_compareAndSetLong: return inline_unsafe_load_store(T_LONG, LS_cmp_swap, Volatile); 413 414 case vmIntrinsics::_weakCompareAndSetReferencePlain: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Relaxed); 415 case vmIntrinsics::_weakCompareAndSetReferenceAcquire: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Acquire); 416 case vmIntrinsics::_weakCompareAndSetReferenceRelease: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Release); 417 case vmIntrinsics::_weakCompareAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Volatile); 418 case vmIntrinsics::_weakCompareAndSetBytePlain: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Relaxed); 419 case vmIntrinsics::_weakCompareAndSetByteAcquire: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Acquire); 420 case vmIntrinsics::_weakCompareAndSetByteRelease: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Release); 421 case vmIntrinsics::_weakCompareAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Volatile); 422 case vmIntrinsics::_weakCompareAndSetShortPlain: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Relaxed); 423 case vmIntrinsics::_weakCompareAndSetShortAcquire: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Acquire); 424 case vmIntrinsics::_weakCompareAndSetShortRelease: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Release); 425 case vmIntrinsics::_weakCompareAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Volatile); 426 case vmIntrinsics::_weakCompareAndSetIntPlain: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Relaxed); 427 case vmIntrinsics::_weakCompareAndSetIntAcquire: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Acquire); 428 case vmIntrinsics::_weakCompareAndSetIntRelease: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Release); 429 case vmIntrinsics::_weakCompareAndSetInt: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Volatile); 430 case vmIntrinsics::_weakCompareAndSetLongPlain: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Relaxed); 431 case vmIntrinsics::_weakCompareAndSetLongAcquire: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Acquire); 432 case vmIntrinsics::_weakCompareAndSetLongRelease: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Release); 433 case vmIntrinsics::_weakCompareAndSetLong: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Volatile); 434 435 case vmIntrinsics::_compareAndExchangeReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Volatile); 436 case vmIntrinsics::_compareAndExchangeReferenceAcquire: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Acquire); 437 case vmIntrinsics::_compareAndExchangeReferenceRelease: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Release); 438 case vmIntrinsics::_compareAndExchangeByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Volatile); 439 case vmIntrinsics::_compareAndExchangeByteAcquire: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Acquire); 440 case vmIntrinsics::_compareAndExchangeByteRelease: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Release); 441 case vmIntrinsics::_compareAndExchangeShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Volatile); 442 case vmIntrinsics::_compareAndExchangeShortAcquire: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Acquire); 443 case vmIntrinsics::_compareAndExchangeShortRelease: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Release); 444 case vmIntrinsics::_compareAndExchangeInt: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Volatile); 445 case vmIntrinsics::_compareAndExchangeIntAcquire: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Acquire); 446 case vmIntrinsics::_compareAndExchangeIntRelease: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Release); 447 case vmIntrinsics::_compareAndExchangeLong: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Volatile); 448 case vmIntrinsics::_compareAndExchangeLongAcquire: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Acquire); 449 case vmIntrinsics::_compareAndExchangeLongRelease: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Release); 450 451 case vmIntrinsics::_getAndAddByte: return inline_unsafe_load_store(T_BYTE, LS_get_add, Volatile); 452 case vmIntrinsics::_getAndAddShort: return inline_unsafe_load_store(T_SHORT, LS_get_add, Volatile); 453 case vmIntrinsics::_getAndAddInt: return inline_unsafe_load_store(T_INT, LS_get_add, Volatile); 454 case vmIntrinsics::_getAndAddLong: return inline_unsafe_load_store(T_LONG, LS_get_add, Volatile); 455 456 case vmIntrinsics::_getAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_get_set, Volatile); 457 case vmIntrinsics::_getAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_get_set, Volatile); 458 case vmIntrinsics::_getAndSetInt: return inline_unsafe_load_store(T_INT, LS_get_set, Volatile); 459 case vmIntrinsics::_getAndSetLong: return inline_unsafe_load_store(T_LONG, LS_get_set, Volatile); 460 case vmIntrinsics::_getAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_get_set, Volatile); 461 462 case vmIntrinsics::_loadFence: 463 case vmIntrinsics::_storeFence: 464 case vmIntrinsics::_storeStoreFence: 465 case vmIntrinsics::_fullFence: return inline_unsafe_fence(intrinsic_id()); 466 467 case vmIntrinsics::_onSpinWait: return inline_onspinwait(); 468 469 case vmIntrinsics::_currentCarrierThread: return inline_native_currentCarrierThread(); 470 case vmIntrinsics::_currentThread: return inline_native_currentThread(); 471 case vmIntrinsics::_setCurrentThread: return inline_native_setCurrentThread(); 472 473 case vmIntrinsics::_scopedValueCache: return inline_native_scopedValueCache(); 474 case vmIntrinsics::_setScopedValueCache: return inline_native_setScopedValueCache(); 475 476 case vmIntrinsics::_Continuation_pin: return inline_native_Continuation_pinning(false); 477 case vmIntrinsics::_Continuation_unpin: return inline_native_Continuation_pinning(true); 478 479 #if INCLUDE_JVMTI 480 case vmIntrinsics::_notifyJvmtiVThreadStart: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_start()), 481 "notifyJvmtiStart", true, false); 482 case vmIntrinsics::_notifyJvmtiVThreadEnd: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_end()), 483 "notifyJvmtiEnd", false, true); 484 case vmIntrinsics::_notifyJvmtiVThreadMount: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_mount()), 485 "notifyJvmtiMount", false, false); 486 case vmIntrinsics::_notifyJvmtiVThreadUnmount: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_unmount()), 487 "notifyJvmtiUnmount", false, false); 488 case vmIntrinsics::_notifyJvmtiVThreadDisableSuspend: return inline_native_notify_jvmti_sync(); 489 #endif 490 491 #ifdef JFR_HAVE_INTRINSICS 492 case vmIntrinsics::_counterTime: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, JfrTime::time_function()), "counterTime"); 493 case vmIntrinsics::_getEventWriter: return inline_native_getEventWriter(); 494 case vmIntrinsics::_jvm_commit: return inline_native_jvm_commit(); 495 #endif 496 case vmIntrinsics::_currentTimeMillis: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis"); 497 case vmIntrinsics::_nanoTime: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime"); 498 case vmIntrinsics::_writeback0: return inline_unsafe_writeback0(); 499 case vmIntrinsics::_writebackPreSync0: return inline_unsafe_writebackSync0(true); 500 case vmIntrinsics::_writebackPostSync0: return inline_unsafe_writebackSync0(false); 501 case vmIntrinsics::_allocateInstance: return inline_unsafe_allocate(); 502 case vmIntrinsics::_copyMemory: return inline_unsafe_copyMemory(); 503 case vmIntrinsics::_setMemory: return inline_unsafe_setMemory(); 504 case vmIntrinsics::_getLength: return inline_native_getLength(); 505 case vmIntrinsics::_copyOf: return inline_array_copyOf(false); 506 case vmIntrinsics::_copyOfRange: return inline_array_copyOf(true); 507 case vmIntrinsics::_equalsB: return inline_array_equals(StrIntrinsicNode::LL); 508 case vmIntrinsics::_equalsC: return inline_array_equals(StrIntrinsicNode::UU); 509 case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex(T_INT); 510 case vmIntrinsics::_Preconditions_checkLongIndex: return inline_preconditions_checkIndex(T_LONG); 511 case vmIntrinsics::_clone: return inline_native_clone(intrinsic()->is_virtual()); 512 513 case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true); 514 case vmIntrinsics::_newArray: return inline_unsafe_newArray(false); 515 516 case vmIntrinsics::_isAssignableFrom: return inline_native_subtype_check(); 517 518 case vmIntrinsics::_isInstance: 519 case vmIntrinsics::_isHidden: 520 case vmIntrinsics::_getSuperclass: 521 case vmIntrinsics::_getClassAccessFlags: return inline_native_Class_query(intrinsic_id()); 522 523 case vmIntrinsics::_floatToRawIntBits: 524 case vmIntrinsics::_floatToIntBits: 525 case vmIntrinsics::_intBitsToFloat: 526 case vmIntrinsics::_doubleToRawLongBits: 527 case vmIntrinsics::_doubleToLongBits: 528 case vmIntrinsics::_longBitsToDouble: 529 case vmIntrinsics::_floatToFloat16: 530 case vmIntrinsics::_float16ToFloat: return inline_fp_conversions(intrinsic_id()); 531 case vmIntrinsics::_sqrt_float16: return inline_fp16_operations(intrinsic_id(), 1); 532 case vmIntrinsics::_fma_float16: return inline_fp16_operations(intrinsic_id(), 3); 533 case vmIntrinsics::_floatIsFinite: 534 case vmIntrinsics::_floatIsInfinite: 535 case vmIntrinsics::_doubleIsFinite: 536 case vmIntrinsics::_doubleIsInfinite: return inline_fp_range_check(intrinsic_id()); 537 538 case vmIntrinsics::_numberOfLeadingZeros_i: 539 case vmIntrinsics::_numberOfLeadingZeros_l: 540 case vmIntrinsics::_numberOfTrailingZeros_i: 541 case vmIntrinsics::_numberOfTrailingZeros_l: 542 case vmIntrinsics::_bitCount_i: 543 case vmIntrinsics::_bitCount_l: 544 case vmIntrinsics::_reverse_i: 545 case vmIntrinsics::_reverse_l: 546 case vmIntrinsics::_reverseBytes_i: 547 case vmIntrinsics::_reverseBytes_l: 548 case vmIntrinsics::_reverseBytes_s: 549 case vmIntrinsics::_reverseBytes_c: return inline_number_methods(intrinsic_id()); 550 551 case vmIntrinsics::_compress_i: 552 case vmIntrinsics::_compress_l: 553 case vmIntrinsics::_expand_i: 554 case vmIntrinsics::_expand_l: return inline_bitshuffle_methods(intrinsic_id()); 555 556 case vmIntrinsics::_compareUnsigned_i: 557 case vmIntrinsics::_compareUnsigned_l: return inline_compare_unsigned(intrinsic_id()); 558 559 case vmIntrinsics::_divideUnsigned_i: 560 case vmIntrinsics::_divideUnsigned_l: 561 case vmIntrinsics::_remainderUnsigned_i: 562 case vmIntrinsics::_remainderUnsigned_l: return inline_divmod_methods(intrinsic_id()); 563 564 case vmIntrinsics::_getCallerClass: return inline_native_Reflection_getCallerClass(); 565 566 case vmIntrinsics::_Reference_get: return inline_reference_get(); 567 case vmIntrinsics::_Reference_refersTo0: return inline_reference_refersTo0(false); 568 case vmIntrinsics::_PhantomReference_refersTo0: return inline_reference_refersTo0(true); 569 case vmIntrinsics::_Reference_clear0: return inline_reference_clear0(false); 570 case vmIntrinsics::_PhantomReference_clear0: return inline_reference_clear0(true); 571 572 case vmIntrinsics::_Class_cast: return inline_Class_cast(); 573 574 case vmIntrinsics::_aescrypt_encryptBlock: 575 case vmIntrinsics::_aescrypt_decryptBlock: return inline_aescrypt_Block(intrinsic_id()); 576 577 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 578 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 579 return inline_cipherBlockChaining_AESCrypt(intrinsic_id()); 580 581 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 582 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 583 return inline_electronicCodeBook_AESCrypt(intrinsic_id()); 584 585 case vmIntrinsics::_counterMode_AESCrypt: 586 return inline_counterMode_AESCrypt(intrinsic_id()); 587 588 case vmIntrinsics::_galoisCounterMode_AESCrypt: 589 return inline_galoisCounterMode_AESCrypt(); 590 591 case vmIntrinsics::_md5_implCompress: 592 case vmIntrinsics::_sha_implCompress: 593 case vmIntrinsics::_sha2_implCompress: 594 case vmIntrinsics::_sha5_implCompress: 595 case vmIntrinsics::_sha3_implCompress: 596 return inline_digestBase_implCompress(intrinsic_id()); 597 case vmIntrinsics::_double_keccak: 598 return inline_double_keccak(); 599 600 case vmIntrinsics::_digestBase_implCompressMB: 601 return inline_digestBase_implCompressMB(predicate); 602 603 case vmIntrinsics::_multiplyToLen: 604 return inline_multiplyToLen(); 605 606 case vmIntrinsics::_squareToLen: 607 return inline_squareToLen(); 608 609 case vmIntrinsics::_mulAdd: 610 return inline_mulAdd(); 611 612 case vmIntrinsics::_montgomeryMultiply: 613 return inline_montgomeryMultiply(); 614 case vmIntrinsics::_montgomerySquare: 615 return inline_montgomerySquare(); 616 617 case vmIntrinsics::_bigIntegerRightShiftWorker: 618 return inline_bigIntegerShift(true); 619 case vmIntrinsics::_bigIntegerLeftShiftWorker: 620 return inline_bigIntegerShift(false); 621 622 case vmIntrinsics::_vectorizedMismatch: 623 return inline_vectorizedMismatch(); 624 625 case vmIntrinsics::_ghash_processBlocks: 626 return inline_ghash_processBlocks(); 627 case vmIntrinsics::_chacha20Block: 628 return inline_chacha20Block(); 629 case vmIntrinsics::_dilithiumAlmostNtt: 630 return inline_dilithiumAlmostNtt(); 631 case vmIntrinsics::_dilithiumAlmostInverseNtt: 632 return inline_dilithiumAlmostInverseNtt(); 633 case vmIntrinsics::_dilithiumNttMult: 634 return inline_dilithiumNttMult(); 635 case vmIntrinsics::_dilithiumMontMulByConstant: 636 return inline_dilithiumMontMulByConstant(); 637 case vmIntrinsics::_dilithiumDecomposePoly: 638 return inline_dilithiumDecomposePoly(); 639 case vmIntrinsics::_base64_encodeBlock: 640 return inline_base64_encodeBlock(); 641 case vmIntrinsics::_base64_decodeBlock: 642 return inline_base64_decodeBlock(); 643 case vmIntrinsics::_poly1305_processBlocks: 644 return inline_poly1305_processBlocks(); 645 case vmIntrinsics::_intpoly_montgomeryMult_P256: 646 return inline_intpoly_montgomeryMult_P256(); 647 case vmIntrinsics::_intpoly_assign: 648 return inline_intpoly_assign(); 649 case vmIntrinsics::_encodeISOArray: 650 case vmIntrinsics::_encodeByteISOArray: 651 return inline_encodeISOArray(false); 652 case vmIntrinsics::_encodeAsciiArray: 653 return inline_encodeISOArray(true); 654 655 case vmIntrinsics::_updateCRC32: 656 return inline_updateCRC32(); 657 case vmIntrinsics::_updateBytesCRC32: 658 return inline_updateBytesCRC32(); 659 case vmIntrinsics::_updateByteBufferCRC32: 660 return inline_updateByteBufferCRC32(); 661 662 case vmIntrinsics::_updateBytesCRC32C: 663 return inline_updateBytesCRC32C(); 664 case vmIntrinsics::_updateDirectByteBufferCRC32C: 665 return inline_updateDirectByteBufferCRC32C(); 666 667 case vmIntrinsics::_updateBytesAdler32: 668 return inline_updateBytesAdler32(); 669 case vmIntrinsics::_updateByteBufferAdler32: 670 return inline_updateByteBufferAdler32(); 671 672 case vmIntrinsics::_profileBoolean: 673 return inline_profileBoolean(); 674 case vmIntrinsics::_isCompileConstant: 675 return inline_isCompileConstant(); 676 677 case vmIntrinsics::_countPositives: 678 return inline_countPositives(); 679 680 case vmIntrinsics::_fmaD: 681 case vmIntrinsics::_fmaF: 682 return inline_fma(intrinsic_id()); 683 684 case vmIntrinsics::_isDigit: 685 case vmIntrinsics::_isLowerCase: 686 case vmIntrinsics::_isUpperCase: 687 case vmIntrinsics::_isWhitespace: 688 return inline_character_compare(intrinsic_id()); 689 690 case vmIntrinsics::_min: 691 case vmIntrinsics::_max: 692 case vmIntrinsics::_min_strict: 693 case vmIntrinsics::_max_strict: 694 case vmIntrinsics::_minL: 695 case vmIntrinsics::_maxL: 696 case vmIntrinsics::_minF: 697 case vmIntrinsics::_maxF: 698 case vmIntrinsics::_minD: 699 case vmIntrinsics::_maxD: 700 case vmIntrinsics::_minF_strict: 701 case vmIntrinsics::_maxF_strict: 702 case vmIntrinsics::_minD_strict: 703 case vmIntrinsics::_maxD_strict: 704 return inline_min_max(intrinsic_id()); 705 706 case vmIntrinsics::_VectorUnaryOp: 707 return inline_vector_nary_operation(1); 708 case vmIntrinsics::_VectorBinaryOp: 709 return inline_vector_nary_operation(2); 710 case vmIntrinsics::_VectorTernaryOp: 711 return inline_vector_nary_operation(3); 712 case vmIntrinsics::_VectorFromBitsCoerced: 713 return inline_vector_frombits_coerced(); 714 case vmIntrinsics::_VectorMaskOp: 715 return inline_vector_mask_operation(); 716 case vmIntrinsics::_VectorLoadOp: 717 return inline_vector_mem_operation(/*is_store=*/false); 718 case vmIntrinsics::_VectorLoadMaskedOp: 719 return inline_vector_mem_masked_operation(/*is_store*/false); 720 case vmIntrinsics::_VectorStoreOp: 721 return inline_vector_mem_operation(/*is_store=*/true); 722 case vmIntrinsics::_VectorStoreMaskedOp: 723 return inline_vector_mem_masked_operation(/*is_store=*/true); 724 case vmIntrinsics::_VectorGatherOp: 725 return inline_vector_gather_scatter(/*is_scatter*/ false); 726 case vmIntrinsics::_VectorScatterOp: 727 return inline_vector_gather_scatter(/*is_scatter*/ true); 728 case vmIntrinsics::_VectorReductionCoerced: 729 return inline_vector_reduction(); 730 case vmIntrinsics::_VectorTest: 731 return inline_vector_test(); 732 case vmIntrinsics::_VectorBlend: 733 return inline_vector_blend(); 734 case vmIntrinsics::_VectorRearrange: 735 return inline_vector_rearrange(); 736 case vmIntrinsics::_VectorSelectFrom: 737 return inline_vector_select_from(); 738 case vmIntrinsics::_VectorCompare: 739 return inline_vector_compare(); 740 case vmIntrinsics::_VectorBroadcastInt: 741 return inline_vector_broadcast_int(); 742 case vmIntrinsics::_VectorConvert: 743 return inline_vector_convert(); 744 case vmIntrinsics::_VectorInsert: 745 return inline_vector_insert(); 746 case vmIntrinsics::_VectorExtract: 747 return inline_vector_extract(); 748 case vmIntrinsics::_VectorCompressExpand: 749 return inline_vector_compress_expand(); 750 case vmIntrinsics::_VectorSelectFromTwoVectorOp: 751 return inline_vector_select_from_two_vectors(); 752 case vmIntrinsics::_IndexVector: 753 return inline_index_vector(); 754 case vmIntrinsics::_IndexPartiallyInUpperRange: 755 return inline_index_partially_in_upper_range(); 756 757 case vmIntrinsics::_getObjectSize: 758 return inline_getObjectSize(); 759 760 case vmIntrinsics::_blackhole: 761 return inline_blackhole(); 762 763 default: 764 // If you get here, it may be that someone has added a new intrinsic 765 // to the list in vmIntrinsics.hpp without implementing it here. 766 #ifndef PRODUCT 767 if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) { 768 tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)", 769 vmIntrinsics::name_at(intrinsic_id()), vmIntrinsics::as_int(intrinsic_id())); 770 } 771 #endif 772 return false; 773 } 774 } 775 776 Node* LibraryCallKit::try_to_predicate(int predicate) { 777 if (!jvms()->has_method()) { 778 // Root JVMState has a null method. 779 assert(map()->memory()->Opcode() == Op_Parm, ""); 780 // Insert the memory aliasing node 781 set_all_memory(reset_memory()); 782 } 783 assert(merged_memory(), ""); 784 785 switch (intrinsic_id()) { 786 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 787 return inline_cipherBlockChaining_AESCrypt_predicate(false); 788 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 789 return inline_cipherBlockChaining_AESCrypt_predicate(true); 790 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 791 return inline_electronicCodeBook_AESCrypt_predicate(false); 792 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 793 return inline_electronicCodeBook_AESCrypt_predicate(true); 794 case vmIntrinsics::_counterMode_AESCrypt: 795 return inline_counterMode_AESCrypt_predicate(); 796 case vmIntrinsics::_digestBase_implCompressMB: 797 return inline_digestBase_implCompressMB_predicate(predicate); 798 case vmIntrinsics::_galoisCounterMode_AESCrypt: 799 return inline_galoisCounterMode_AESCrypt_predicate(); 800 801 default: 802 // If you get here, it may be that someone has added a new intrinsic 803 // to the list in vmIntrinsics.hpp without implementing it here. 804 #ifndef PRODUCT 805 if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) { 806 tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)", 807 vmIntrinsics::name_at(intrinsic_id()), vmIntrinsics::as_int(intrinsic_id())); 808 } 809 #endif 810 Node* slow_ctl = control(); 811 set_control(top()); // No fast path intrinsic 812 return slow_ctl; 813 } 814 } 815 816 //------------------------------set_result------------------------------- 817 // Helper function for finishing intrinsics. 818 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) { 819 record_for_igvn(region); 820 set_control(_gvn.transform(region)); 821 set_result( _gvn.transform(value)); 822 assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity"); 823 } 824 825 //------------------------------generate_guard--------------------------- 826 // Helper function for generating guarded fast-slow graph structures. 827 // The given 'test', if true, guards a slow path. If the test fails 828 // then a fast path can be taken. (We generally hope it fails.) 829 // In all cases, GraphKit::control() is updated to the fast path. 830 // The returned value represents the control for the slow path. 831 // The return value is never 'top'; it is either a valid control 832 // or null if it is obvious that the slow path can never be taken. 833 // Also, if region and the slow control are not null, the slow edge 834 // is appended to the region. 835 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) { 836 if (stopped()) { 837 // Already short circuited. 838 return nullptr; 839 } 840 841 // Build an if node and its projections. 842 // If test is true we take the slow path, which we assume is uncommon. 843 if (_gvn.type(test) == TypeInt::ZERO) { 844 // The slow branch is never taken. No need to build this guard. 845 return nullptr; 846 } 847 848 IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN); 849 850 Node* if_slow = _gvn.transform(new IfTrueNode(iff)); 851 if (if_slow == top()) { 852 // The slow branch is never taken. No need to build this guard. 853 return nullptr; 854 } 855 856 if (region != nullptr) 857 region->add_req(if_slow); 858 859 Node* if_fast = _gvn.transform(new IfFalseNode(iff)); 860 set_control(if_fast); 861 862 return if_slow; 863 } 864 865 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) { 866 return generate_guard(test, region, PROB_UNLIKELY_MAG(3)); 867 } 868 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) { 869 return generate_guard(test, region, PROB_FAIR); 870 } 871 872 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region, 873 Node* *pos_index) { 874 if (stopped()) 875 return nullptr; // already stopped 876 if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint] 877 return nullptr; // index is already adequately typed 878 Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0))); 879 Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt)); 880 Node* is_neg = generate_guard(bol_lt, region, PROB_MIN); 881 if (is_neg != nullptr && pos_index != nullptr) { 882 // Emulate effect of Parse::adjust_map_after_if. 883 Node* ccast = new CastIINode(control(), index, TypeInt::POS); 884 (*pos_index) = _gvn.transform(ccast); 885 } 886 return is_neg; 887 } 888 889 // Make sure that 'position' is a valid limit index, in [0..length]. 890 // There are two equivalent plans for checking this: 891 // A. (offset + copyLength) unsigned<= arrayLength 892 // B. offset <= (arrayLength - copyLength) 893 // We require that all of the values above, except for the sum and 894 // difference, are already known to be non-negative. 895 // Plan A is robust in the face of overflow, if offset and copyLength 896 // are both hugely positive. 897 // 898 // Plan B is less direct and intuitive, but it does not overflow at 899 // all, since the difference of two non-negatives is always 900 // representable. Whenever Java methods must perform the equivalent 901 // check they generally use Plan B instead of Plan A. 902 // For the moment we use Plan A. 903 inline Node* LibraryCallKit::generate_limit_guard(Node* offset, 904 Node* subseq_length, 905 Node* array_length, 906 RegionNode* region) { 907 if (stopped()) 908 return nullptr; // already stopped 909 bool zero_offset = _gvn.type(offset) == TypeInt::ZERO; 910 if (zero_offset && subseq_length->eqv_uncast(array_length)) 911 return nullptr; // common case of whole-array copy 912 Node* last = subseq_length; 913 if (!zero_offset) // last += offset 914 last = _gvn.transform(new AddINode(last, offset)); 915 Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last)); 916 Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt)); 917 Node* is_over = generate_guard(bol_lt, region, PROB_MIN); 918 return is_over; 919 } 920 921 // Emit range checks for the given String.value byte array 922 void LibraryCallKit::generate_string_range_check(Node* array, Node* offset, Node* count, bool char_count) { 923 if (stopped()) { 924 return; // already stopped 925 } 926 RegionNode* bailout = new RegionNode(1); 927 record_for_igvn(bailout); 928 if (char_count) { 929 // Convert char count to byte count 930 count = _gvn.transform(new LShiftINode(count, intcon(1))); 931 } 932 933 // Offset and count must not be negative 934 generate_negative_guard(offset, bailout); 935 generate_negative_guard(count, bailout); 936 // Offset + count must not exceed length of array 937 generate_limit_guard(offset, count, load_array_length(array), bailout); 938 939 if (bailout->req() > 1) { 940 PreserveJVMState pjvms(this); 941 set_control(_gvn.transform(bailout)); 942 uncommon_trap(Deoptimization::Reason_intrinsic, 943 Deoptimization::Action_maybe_recompile); 944 } 945 } 946 947 Node* LibraryCallKit::current_thread_helper(Node*& tls_output, ByteSize handle_offset, 948 bool is_immutable) { 949 ciKlass* thread_klass = env()->Thread_klass(); 950 const Type* thread_type 951 = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull); 952 953 Node* thread = _gvn.transform(new ThreadLocalNode()); 954 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(handle_offset)); 955 tls_output = thread; 956 957 Node* thread_obj_handle 958 = (is_immutable 959 ? LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(), 960 TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered) 961 : make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered)); 962 thread_obj_handle = _gvn.transform(thread_obj_handle); 963 964 DecoratorSet decorators = IN_NATIVE; 965 if (is_immutable) { 966 decorators |= C2_IMMUTABLE_MEMORY; 967 } 968 return access_load(thread_obj_handle, thread_type, T_OBJECT, decorators); 969 } 970 971 //--------------------------generate_current_thread-------------------- 972 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) { 973 return current_thread_helper(tls_output, JavaThread::threadObj_offset(), 974 /*is_immutable*/false); 975 } 976 977 //--------------------------generate_virtual_thread-------------------- 978 Node* LibraryCallKit::generate_virtual_thread(Node* tls_output) { 979 return current_thread_helper(tls_output, JavaThread::vthread_offset(), 980 !C->method()->changes_current_thread()); 981 } 982 983 //------------------------------make_string_method_node------------------------ 984 // Helper method for String intrinsic functions. This version is called with 985 // str1 and str2 pointing to byte[] nodes containing Latin1 or UTF16 encoded 986 // characters (depending on 'is_byte'). cnt1 and cnt2 are pointing to Int nodes 987 // containing the lengths of str1 and str2. 988 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae) { 989 Node* result = nullptr; 990 switch (opcode) { 991 case Op_StrIndexOf: 992 result = new StrIndexOfNode(control(), memory(TypeAryPtr::BYTES), 993 str1_start, cnt1, str2_start, cnt2, ae); 994 break; 995 case Op_StrComp: 996 result = new StrCompNode(control(), memory(TypeAryPtr::BYTES), 997 str1_start, cnt1, str2_start, cnt2, ae); 998 break; 999 case Op_StrEquals: 1000 // We already know that cnt1 == cnt2 here (checked in 'inline_string_equals'). 1001 // Use the constant length if there is one because optimized match rule may exist. 1002 result = new StrEqualsNode(control(), memory(TypeAryPtr::BYTES), 1003 str1_start, str2_start, cnt2->is_Con() ? cnt2 : cnt1, ae); 1004 break; 1005 default: 1006 ShouldNotReachHere(); 1007 return nullptr; 1008 } 1009 1010 // All these intrinsics have checks. 1011 C->set_has_split_ifs(true); // Has chance for split-if optimization 1012 clear_upper_avx(); 1013 1014 return _gvn.transform(result); 1015 } 1016 1017 //------------------------------inline_string_compareTo------------------------ 1018 bool LibraryCallKit::inline_string_compareTo(StrIntrinsicNode::ArgEnc ae) { 1019 Node* arg1 = argument(0); 1020 Node* arg2 = argument(1); 1021 1022 arg1 = must_be_not_null(arg1, true); 1023 arg2 = must_be_not_null(arg2, true); 1024 1025 // Get start addr and length of first argument 1026 Node* arg1_start = array_element_address(arg1, intcon(0), T_BYTE); 1027 Node* arg1_cnt = load_array_length(arg1); 1028 1029 // Get start addr and length of second argument 1030 Node* arg2_start = array_element_address(arg2, intcon(0), T_BYTE); 1031 Node* arg2_cnt = load_array_length(arg2); 1032 1033 Node* result = make_string_method_node(Op_StrComp, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae); 1034 set_result(result); 1035 return true; 1036 } 1037 1038 //------------------------------inline_string_equals------------------------ 1039 bool LibraryCallKit::inline_string_equals(StrIntrinsicNode::ArgEnc ae) { 1040 Node* arg1 = argument(0); 1041 Node* arg2 = argument(1); 1042 1043 // paths (plus control) merge 1044 RegionNode* region = new RegionNode(3); 1045 Node* phi = new PhiNode(region, TypeInt::BOOL); 1046 1047 if (!stopped()) { 1048 1049 arg1 = must_be_not_null(arg1, true); 1050 arg2 = must_be_not_null(arg2, true); 1051 1052 // Get start addr and length of first argument 1053 Node* arg1_start = array_element_address(arg1, intcon(0), T_BYTE); 1054 Node* arg1_cnt = load_array_length(arg1); 1055 1056 // Get start addr and length of second argument 1057 Node* arg2_start = array_element_address(arg2, intcon(0), T_BYTE); 1058 Node* arg2_cnt = load_array_length(arg2); 1059 1060 // Check for arg1_cnt != arg2_cnt 1061 Node* cmp = _gvn.transform(new CmpINode(arg1_cnt, arg2_cnt)); 1062 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne)); 1063 Node* if_ne = generate_slow_guard(bol, nullptr); 1064 if (if_ne != nullptr) { 1065 phi->init_req(2, intcon(0)); 1066 region->init_req(2, if_ne); 1067 } 1068 1069 // Check for count == 0 is done by assembler code for StrEquals. 1070 1071 if (!stopped()) { 1072 Node* equals = make_string_method_node(Op_StrEquals, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae); 1073 phi->init_req(1, equals); 1074 region->init_req(1, control()); 1075 } 1076 } 1077 1078 // post merge 1079 set_control(_gvn.transform(region)); 1080 record_for_igvn(region); 1081 1082 set_result(_gvn.transform(phi)); 1083 return true; 1084 } 1085 1086 //------------------------------inline_array_equals---------------------------- 1087 bool LibraryCallKit::inline_array_equals(StrIntrinsicNode::ArgEnc ae) { 1088 assert(ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::LL, "unsupported array types"); 1089 Node* arg1 = argument(0); 1090 Node* arg2 = argument(1); 1091 1092 const TypeAryPtr* mtype = (ae == StrIntrinsicNode::UU) ? TypeAryPtr::CHARS : TypeAryPtr::BYTES; 1093 set_result(_gvn.transform(new AryEqNode(control(), memory(mtype), arg1, arg2, ae))); 1094 clear_upper_avx(); 1095 1096 return true; 1097 } 1098 1099 1100 //------------------------------inline_countPositives------------------------------ 1101 bool LibraryCallKit::inline_countPositives() { 1102 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1103 return false; 1104 } 1105 1106 assert(callee()->signature()->size() == 3, "countPositives has 3 parameters"); 1107 // no receiver since it is static method 1108 Node* ba = argument(0); 1109 Node* offset = argument(1); 1110 Node* len = argument(2); 1111 1112 ba = must_be_not_null(ba, true); 1113 1114 // Range checks 1115 generate_string_range_check(ba, offset, len, false); 1116 if (stopped()) { 1117 return true; 1118 } 1119 Node* ba_start = array_element_address(ba, offset, T_BYTE); 1120 Node* result = new CountPositivesNode(control(), memory(TypeAryPtr::BYTES), ba_start, len); 1121 set_result(_gvn.transform(result)); 1122 clear_upper_avx(); 1123 return true; 1124 } 1125 1126 bool LibraryCallKit::inline_preconditions_checkIndex(BasicType bt) { 1127 Node* index = argument(0); 1128 Node* length = bt == T_INT ? argument(1) : argument(2); 1129 if (too_many_traps(Deoptimization::Reason_intrinsic) || too_many_traps(Deoptimization::Reason_range_check)) { 1130 return false; 1131 } 1132 1133 // check that length is positive 1134 Node* len_pos_cmp = _gvn.transform(CmpNode::make(length, integercon(0, bt), bt)); 1135 Node* len_pos_bol = _gvn.transform(new BoolNode(len_pos_cmp, BoolTest::ge)); 1136 1137 { 1138 BuildCutout unless(this, len_pos_bol, PROB_MAX); 1139 uncommon_trap(Deoptimization::Reason_intrinsic, 1140 Deoptimization::Action_make_not_entrant); 1141 } 1142 1143 if (stopped()) { 1144 // Length is known to be always negative during compilation and the IR graph so far constructed is good so return success 1145 return true; 1146 } 1147 1148 // length is now known positive, add a cast node to make this explicit 1149 jlong upper_bound = _gvn.type(length)->is_integer(bt)->hi_as_long(); 1150 Node* casted_length = ConstraintCastNode::make_cast_for_basic_type( 1151 control(), length, TypeInteger::make(0, upper_bound, Type::WidenMax, bt), 1152 ConstraintCastNode::RegularDependency, bt); 1153 casted_length = _gvn.transform(casted_length); 1154 replace_in_map(length, casted_length); 1155 length = casted_length; 1156 1157 // Use an unsigned comparison for the range check itself 1158 Node* rc_cmp = _gvn.transform(CmpNode::make(index, length, bt, true)); 1159 BoolTest::mask btest = BoolTest::lt; 1160 Node* rc_bool = _gvn.transform(new BoolNode(rc_cmp, btest)); 1161 RangeCheckNode* rc = new RangeCheckNode(control(), rc_bool, PROB_MAX, COUNT_UNKNOWN); 1162 _gvn.set_type(rc, rc->Value(&_gvn)); 1163 if (!rc_bool->is_Con()) { 1164 record_for_igvn(rc); 1165 } 1166 set_control(_gvn.transform(new IfTrueNode(rc))); 1167 { 1168 PreserveJVMState pjvms(this); 1169 set_control(_gvn.transform(new IfFalseNode(rc))); 1170 uncommon_trap(Deoptimization::Reason_range_check, 1171 Deoptimization::Action_make_not_entrant); 1172 } 1173 1174 if (stopped()) { 1175 // Range check is known to always fail during compilation and the IR graph so far constructed is good so return success 1176 return true; 1177 } 1178 1179 // index is now known to be >= 0 and < length, cast it 1180 Node* result = ConstraintCastNode::make_cast_for_basic_type( 1181 control(), index, TypeInteger::make(0, upper_bound, Type::WidenMax, bt), 1182 ConstraintCastNode::RegularDependency, bt); 1183 result = _gvn.transform(result); 1184 set_result(result); 1185 replace_in_map(index, result); 1186 return true; 1187 } 1188 1189 //------------------------------inline_string_indexOf------------------------ 1190 bool LibraryCallKit::inline_string_indexOf(StrIntrinsicNode::ArgEnc ae) { 1191 if (!Matcher::match_rule_supported(Op_StrIndexOf)) { 1192 return false; 1193 } 1194 Node* src = argument(0); 1195 Node* tgt = argument(1); 1196 1197 // Make the merge point 1198 RegionNode* result_rgn = new RegionNode(4); 1199 Node* result_phi = new PhiNode(result_rgn, TypeInt::INT); 1200 1201 src = must_be_not_null(src, true); 1202 tgt = must_be_not_null(tgt, true); 1203 1204 // Get start addr and length of source string 1205 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 1206 Node* src_count = load_array_length(src); 1207 1208 // Get start addr and length of substring 1209 Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE); 1210 Node* tgt_count = load_array_length(tgt); 1211 1212 Node* result = nullptr; 1213 bool call_opt_stub = (StubRoutines::_string_indexof_array[ae] != nullptr); 1214 1215 if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) { 1216 // Divide src size by 2 if String is UTF16 encoded 1217 src_count = _gvn.transform(new RShiftINode(src_count, intcon(1))); 1218 } 1219 if (ae == StrIntrinsicNode::UU) { 1220 // Divide substring size by 2 if String is UTF16 encoded 1221 tgt_count = _gvn.transform(new RShiftINode(tgt_count, intcon(1))); 1222 } 1223 1224 if (call_opt_stub) { 1225 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::string_IndexOf_Type(), 1226 StubRoutines::_string_indexof_array[ae], 1227 "stringIndexOf", TypePtr::BOTTOM, src_start, 1228 src_count, tgt_start, tgt_count); 1229 result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 1230 } else { 1231 result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, 1232 result_rgn, result_phi, ae); 1233 } 1234 if (result != nullptr) { 1235 result_phi->init_req(3, result); 1236 result_rgn->init_req(3, control()); 1237 } 1238 set_control(_gvn.transform(result_rgn)); 1239 record_for_igvn(result_rgn); 1240 set_result(_gvn.transform(result_phi)); 1241 1242 return true; 1243 } 1244 1245 //-----------------------------inline_string_indexOfI----------------------- 1246 bool LibraryCallKit::inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae) { 1247 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1248 return false; 1249 } 1250 if (!Matcher::match_rule_supported(Op_StrIndexOf)) { 1251 return false; 1252 } 1253 1254 assert(callee()->signature()->size() == 5, "String.indexOf() has 5 arguments"); 1255 Node* src = argument(0); // byte[] 1256 Node* src_count = argument(1); // char count 1257 Node* tgt = argument(2); // byte[] 1258 Node* tgt_count = argument(3); // char count 1259 Node* from_index = argument(4); // char index 1260 1261 src = must_be_not_null(src, true); 1262 tgt = must_be_not_null(tgt, true); 1263 1264 // Multiply byte array index by 2 if String is UTF16 encoded 1265 Node* src_offset = (ae == StrIntrinsicNode::LL) ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1))); 1266 src_count = _gvn.transform(new SubINode(src_count, from_index)); 1267 Node* src_start = array_element_address(src, src_offset, T_BYTE); 1268 Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE); 1269 1270 // Range checks 1271 generate_string_range_check(src, src_offset, src_count, ae != StrIntrinsicNode::LL); 1272 generate_string_range_check(tgt, intcon(0), tgt_count, ae == StrIntrinsicNode::UU); 1273 if (stopped()) { 1274 return true; 1275 } 1276 1277 RegionNode* region = new RegionNode(5); 1278 Node* phi = new PhiNode(region, TypeInt::INT); 1279 Node* result = nullptr; 1280 1281 bool call_opt_stub = (StubRoutines::_string_indexof_array[ae] != nullptr); 1282 1283 if (call_opt_stub) { 1284 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::string_IndexOf_Type(), 1285 StubRoutines::_string_indexof_array[ae], 1286 "stringIndexOf", TypePtr::BOTTOM, src_start, 1287 src_count, tgt_start, tgt_count); 1288 result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 1289 } else { 1290 result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, 1291 region, phi, ae); 1292 } 1293 if (result != nullptr) { 1294 // The result is index relative to from_index if substring was found, -1 otherwise. 1295 // Generate code which will fold into cmove. 1296 Node* cmp = _gvn.transform(new CmpINode(result, intcon(0))); 1297 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt)); 1298 1299 Node* if_lt = generate_slow_guard(bol, nullptr); 1300 if (if_lt != nullptr) { 1301 // result == -1 1302 phi->init_req(3, result); 1303 region->init_req(3, if_lt); 1304 } 1305 if (!stopped()) { 1306 result = _gvn.transform(new AddINode(result, from_index)); 1307 phi->init_req(4, result); 1308 region->init_req(4, control()); 1309 } 1310 } 1311 1312 set_control(_gvn.transform(region)); 1313 record_for_igvn(region); 1314 set_result(_gvn.transform(phi)); 1315 clear_upper_avx(); 1316 1317 return true; 1318 } 1319 1320 // Create StrIndexOfNode with fast path checks 1321 Node* LibraryCallKit::make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count, 1322 RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae) { 1323 // Check for substr count > string count 1324 Node* cmp = _gvn.transform(new CmpINode(tgt_count, src_count)); 1325 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt)); 1326 Node* if_gt = generate_slow_guard(bol, nullptr); 1327 if (if_gt != nullptr) { 1328 phi->init_req(1, intcon(-1)); 1329 region->init_req(1, if_gt); 1330 } 1331 if (!stopped()) { 1332 // Check for substr count == 0 1333 cmp = _gvn.transform(new CmpINode(tgt_count, intcon(0))); 1334 bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 1335 Node* if_zero = generate_slow_guard(bol, nullptr); 1336 if (if_zero != nullptr) { 1337 phi->init_req(2, intcon(0)); 1338 region->init_req(2, if_zero); 1339 } 1340 } 1341 if (!stopped()) { 1342 return make_string_method_node(Op_StrIndexOf, src_start, src_count, tgt_start, tgt_count, ae); 1343 } 1344 return nullptr; 1345 } 1346 1347 //-----------------------------inline_string_indexOfChar----------------------- 1348 bool LibraryCallKit::inline_string_indexOfChar(StrIntrinsicNode::ArgEnc ae) { 1349 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1350 return false; 1351 } 1352 if (!Matcher::match_rule_supported(Op_StrIndexOfChar)) { 1353 return false; 1354 } 1355 assert(callee()->signature()->size() == 4, "String.indexOfChar() has 4 arguments"); 1356 Node* src = argument(0); // byte[] 1357 Node* int_ch = argument(1); 1358 Node* from_index = argument(2); 1359 Node* max = argument(3); 1360 1361 src = must_be_not_null(src, true); 1362 1363 Node* src_offset = ae == StrIntrinsicNode::L ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1))); 1364 Node* src_start = array_element_address(src, src_offset, T_BYTE); 1365 Node* src_count = _gvn.transform(new SubINode(max, from_index)); 1366 1367 // Range checks 1368 generate_string_range_check(src, src_offset, src_count, ae == StrIntrinsicNode::U); 1369 1370 // Check for int_ch >= 0 1371 Node* int_ch_cmp = _gvn.transform(new CmpINode(int_ch, intcon(0))); 1372 Node* int_ch_bol = _gvn.transform(new BoolNode(int_ch_cmp, BoolTest::ge)); 1373 { 1374 BuildCutout unless(this, int_ch_bol, PROB_MAX); 1375 uncommon_trap(Deoptimization::Reason_intrinsic, 1376 Deoptimization::Action_maybe_recompile); 1377 } 1378 if (stopped()) { 1379 return true; 1380 } 1381 1382 RegionNode* region = new RegionNode(3); 1383 Node* phi = new PhiNode(region, TypeInt::INT); 1384 1385 Node* result = new StrIndexOfCharNode(control(), memory(TypeAryPtr::BYTES), src_start, src_count, int_ch, ae); 1386 C->set_has_split_ifs(true); // Has chance for split-if optimization 1387 _gvn.transform(result); 1388 1389 Node* cmp = _gvn.transform(new CmpINode(result, intcon(0))); 1390 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt)); 1391 1392 Node* if_lt = generate_slow_guard(bol, nullptr); 1393 if (if_lt != nullptr) { 1394 // result == -1 1395 phi->init_req(2, result); 1396 region->init_req(2, if_lt); 1397 } 1398 if (!stopped()) { 1399 result = _gvn.transform(new AddINode(result, from_index)); 1400 phi->init_req(1, result); 1401 region->init_req(1, control()); 1402 } 1403 set_control(_gvn.transform(region)); 1404 record_for_igvn(region); 1405 set_result(_gvn.transform(phi)); 1406 clear_upper_avx(); 1407 1408 return true; 1409 } 1410 //---------------------------inline_string_copy--------------------- 1411 // compressIt == true --> generate a compressed copy operation (compress char[]/byte[] to byte[]) 1412 // int StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) 1413 // int StringUTF16.compress(byte[] src, int srcOff, byte[] dst, int dstOff, int len) 1414 // compressIt == false --> generate an inflated copy operation (inflate byte[] to char[]/byte[]) 1415 // void StringLatin1.inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len) 1416 // void StringLatin1.inflate(byte[] src, int srcOff, byte[] dst, int dstOff, int len) 1417 bool LibraryCallKit::inline_string_copy(bool compress) { 1418 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1419 return false; 1420 } 1421 int nargs = 5; // 2 oops, 3 ints 1422 assert(callee()->signature()->size() == nargs, "string copy has 5 arguments"); 1423 1424 Node* src = argument(0); 1425 Node* src_offset = argument(1); 1426 Node* dst = argument(2); 1427 Node* dst_offset = argument(3); 1428 Node* length = argument(4); 1429 1430 // Check for allocation before we add nodes that would confuse 1431 // tightly_coupled_allocation() 1432 AllocateArrayNode* alloc = tightly_coupled_allocation(dst); 1433 1434 // Figure out the size and type of the elements we will be copying. 1435 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 1436 const TypeAryPtr* dst_type = dst->Value(&_gvn)->isa_aryptr(); 1437 if (src_type == nullptr || dst_type == nullptr) { 1438 return false; 1439 } 1440 BasicType src_elem = src_type->elem()->array_element_basic_type(); 1441 BasicType dst_elem = dst_type->elem()->array_element_basic_type(); 1442 assert((compress && dst_elem == T_BYTE && (src_elem == T_BYTE || src_elem == T_CHAR)) || 1443 (!compress && src_elem == T_BYTE && (dst_elem == T_BYTE || dst_elem == T_CHAR)), 1444 "Unsupported array types for inline_string_copy"); 1445 1446 src = must_be_not_null(src, true); 1447 dst = must_be_not_null(dst, true); 1448 1449 // Convert char[] offsets to byte[] offsets 1450 bool convert_src = (compress && src_elem == T_BYTE); 1451 bool convert_dst = (!compress && dst_elem == T_BYTE); 1452 if (convert_src) { 1453 src_offset = _gvn.transform(new LShiftINode(src_offset, intcon(1))); 1454 } else if (convert_dst) { 1455 dst_offset = _gvn.transform(new LShiftINode(dst_offset, intcon(1))); 1456 } 1457 1458 // Range checks 1459 generate_string_range_check(src, src_offset, length, convert_src); 1460 generate_string_range_check(dst, dst_offset, length, convert_dst); 1461 if (stopped()) { 1462 return true; 1463 } 1464 1465 Node* src_start = array_element_address(src, src_offset, src_elem); 1466 Node* dst_start = array_element_address(dst, dst_offset, dst_elem); 1467 // 'src_start' points to src array + scaled offset 1468 // 'dst_start' points to dst array + scaled offset 1469 Node* count = nullptr; 1470 if (compress) { 1471 count = compress_string(src_start, TypeAryPtr::get_array_body_type(src_elem), dst_start, length); 1472 } else { 1473 inflate_string(src_start, dst_start, TypeAryPtr::get_array_body_type(dst_elem), length); 1474 } 1475 1476 if (alloc != nullptr) { 1477 if (alloc->maybe_set_complete(&_gvn)) { 1478 // "You break it, you buy it." 1479 InitializeNode* init = alloc->initialization(); 1480 assert(init->is_complete(), "we just did this"); 1481 init->set_complete_with_arraycopy(); 1482 assert(dst->is_CheckCastPP(), "sanity"); 1483 assert(dst->in(0)->in(0) == init, "dest pinned"); 1484 } 1485 // Do not let stores that initialize this object be reordered with 1486 // a subsequent store that would make this object accessible by 1487 // other threads. 1488 // Record what AllocateNode this StoreStore protects so that 1489 // escape analysis can go from the MemBarStoreStoreNode to the 1490 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1491 // based on the escape status of the AllocateNode. 1492 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1493 } 1494 if (compress) { 1495 set_result(_gvn.transform(count)); 1496 } 1497 clear_upper_avx(); 1498 1499 return true; 1500 } 1501 1502 #ifdef _LP64 1503 #define XTOP ,top() /*additional argument*/ 1504 #else //_LP64 1505 #define XTOP /*no additional argument*/ 1506 #endif //_LP64 1507 1508 //------------------------inline_string_toBytesU-------------------------- 1509 // public static byte[] StringUTF16.toBytes(char[] value, int off, int len) 1510 bool LibraryCallKit::inline_string_toBytesU() { 1511 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1512 return false; 1513 } 1514 // Get the arguments. 1515 Node* value = argument(0); 1516 Node* offset = argument(1); 1517 Node* length = argument(2); 1518 1519 Node* newcopy = nullptr; 1520 1521 // Set the original stack and the reexecute bit for the interpreter to reexecute 1522 // the bytecode that invokes StringUTF16.toBytes() if deoptimization happens. 1523 { PreserveReexecuteState preexecs(this); 1524 jvms()->set_should_reexecute(true); 1525 1526 // Check if a null path was taken unconditionally. 1527 value = null_check(value); 1528 1529 RegionNode* bailout = new RegionNode(1); 1530 record_for_igvn(bailout); 1531 1532 // Range checks 1533 generate_negative_guard(offset, bailout); 1534 generate_negative_guard(length, bailout); 1535 generate_limit_guard(offset, length, load_array_length(value), bailout); 1536 // Make sure that resulting byte[] length does not overflow Integer.MAX_VALUE 1537 generate_limit_guard(length, intcon(0), intcon(max_jint/2), bailout); 1538 1539 if (bailout->req() > 1) { 1540 PreserveJVMState pjvms(this); 1541 set_control(_gvn.transform(bailout)); 1542 uncommon_trap(Deoptimization::Reason_intrinsic, 1543 Deoptimization::Action_maybe_recompile); 1544 } 1545 if (stopped()) { 1546 return true; 1547 } 1548 1549 Node* size = _gvn.transform(new LShiftINode(length, intcon(1))); 1550 Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_BYTE))); 1551 newcopy = new_array(klass_node, size, 0); // no arguments to push 1552 AllocateArrayNode* alloc = tightly_coupled_allocation(newcopy); 1553 guarantee(alloc != nullptr, "created above"); 1554 1555 // Calculate starting addresses. 1556 Node* src_start = array_element_address(value, offset, T_CHAR); 1557 Node* dst_start = basic_plus_adr(newcopy, arrayOopDesc::base_offset_in_bytes(T_BYTE)); 1558 1559 // Check if src array address is aligned to HeapWordSize (dst is always aligned) 1560 const TypeInt* toffset = gvn().type(offset)->is_int(); 1561 bool aligned = toffset->is_con() && ((toffset->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0); 1562 1563 // Figure out which arraycopy runtime method to call (disjoint, uninitialized). 1564 const char* copyfunc_name = "arraycopy"; 1565 address copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true); 1566 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 1567 OptoRuntime::fast_arraycopy_Type(), 1568 copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM, 1569 src_start, dst_start, ConvI2X(length) XTOP); 1570 // Do not let reads from the cloned object float above the arraycopy. 1571 if (alloc->maybe_set_complete(&_gvn)) { 1572 // "You break it, you buy it." 1573 InitializeNode* init = alloc->initialization(); 1574 assert(init->is_complete(), "we just did this"); 1575 init->set_complete_with_arraycopy(); 1576 assert(newcopy->is_CheckCastPP(), "sanity"); 1577 assert(newcopy->in(0)->in(0) == init, "dest pinned"); 1578 } 1579 // Do not let stores that initialize this object be reordered with 1580 // a subsequent store that would make this object accessible by 1581 // other threads. 1582 // Record what AllocateNode this StoreStore protects so that 1583 // escape analysis can go from the MemBarStoreStoreNode to the 1584 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1585 // based on the escape status of the AllocateNode. 1586 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1587 } // original reexecute is set back here 1588 1589 C->set_has_split_ifs(true); // Has chance for split-if optimization 1590 if (!stopped()) { 1591 set_result(newcopy); 1592 } 1593 clear_upper_avx(); 1594 1595 return true; 1596 } 1597 1598 //------------------------inline_string_getCharsU-------------------------- 1599 // public void StringUTF16.getChars(byte[] src, int srcBegin, int srcEnd, char dst[], int dstBegin) 1600 bool LibraryCallKit::inline_string_getCharsU() { 1601 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1602 return false; 1603 } 1604 1605 // Get the arguments. 1606 Node* src = argument(0); 1607 Node* src_begin = argument(1); 1608 Node* src_end = argument(2); // exclusive offset (i < src_end) 1609 Node* dst = argument(3); 1610 Node* dst_begin = argument(4); 1611 1612 // Check for allocation before we add nodes that would confuse 1613 // tightly_coupled_allocation() 1614 AllocateArrayNode* alloc = tightly_coupled_allocation(dst); 1615 1616 // Check if a null path was taken unconditionally. 1617 src = null_check(src); 1618 dst = null_check(dst); 1619 if (stopped()) { 1620 return true; 1621 } 1622 1623 // Get length and convert char[] offset to byte[] offset 1624 Node* length = _gvn.transform(new SubINode(src_end, src_begin)); 1625 src_begin = _gvn.transform(new LShiftINode(src_begin, intcon(1))); 1626 1627 // Range checks 1628 generate_string_range_check(src, src_begin, length, true); 1629 generate_string_range_check(dst, dst_begin, length, false); 1630 if (stopped()) { 1631 return true; 1632 } 1633 1634 if (!stopped()) { 1635 // Calculate starting addresses. 1636 Node* src_start = array_element_address(src, src_begin, T_BYTE); 1637 Node* dst_start = array_element_address(dst, dst_begin, T_CHAR); 1638 1639 // Check if array addresses are aligned to HeapWordSize 1640 const TypeInt* tsrc = gvn().type(src_begin)->is_int(); 1641 const TypeInt* tdst = gvn().type(dst_begin)->is_int(); 1642 bool aligned = tsrc->is_con() && ((tsrc->get_con() * type2aelembytes(T_BYTE)) % HeapWordSize == 0) && 1643 tdst->is_con() && ((tdst->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0); 1644 1645 // Figure out which arraycopy runtime method to call (disjoint, uninitialized). 1646 const char* copyfunc_name = "arraycopy"; 1647 address copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true); 1648 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 1649 OptoRuntime::fast_arraycopy_Type(), 1650 copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM, 1651 src_start, dst_start, ConvI2X(length) XTOP); 1652 // Do not let reads from the cloned object float above the arraycopy. 1653 if (alloc != nullptr) { 1654 if (alloc->maybe_set_complete(&_gvn)) { 1655 // "You break it, you buy it." 1656 InitializeNode* init = alloc->initialization(); 1657 assert(init->is_complete(), "we just did this"); 1658 init->set_complete_with_arraycopy(); 1659 assert(dst->is_CheckCastPP(), "sanity"); 1660 assert(dst->in(0)->in(0) == init, "dest pinned"); 1661 } 1662 // Do not let stores that initialize this object be reordered with 1663 // a subsequent store that would make this object accessible by 1664 // other threads. 1665 // Record what AllocateNode this StoreStore protects so that 1666 // escape analysis can go from the MemBarStoreStoreNode to the 1667 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1668 // based on the escape status of the AllocateNode. 1669 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1670 } else { 1671 insert_mem_bar(Op_MemBarCPUOrder); 1672 } 1673 } 1674 1675 C->set_has_split_ifs(true); // Has chance for split-if optimization 1676 return true; 1677 } 1678 1679 //----------------------inline_string_char_access---------------------------- 1680 // Store/Load char to/from byte[] array. 1681 // static void StringUTF16.putChar(byte[] val, int index, int c) 1682 // static char StringUTF16.getChar(byte[] val, int index) 1683 bool LibraryCallKit::inline_string_char_access(bool is_store) { 1684 Node* value = argument(0); 1685 Node* index = argument(1); 1686 Node* ch = is_store ? argument(2) : nullptr; 1687 1688 // This intrinsic accesses byte[] array as char[] array. Computing the offsets 1689 // correctly requires matched array shapes. 1690 assert (arrayOopDesc::base_offset_in_bytes(T_CHAR) == arrayOopDesc::base_offset_in_bytes(T_BYTE), 1691 "sanity: byte[] and char[] bases agree"); 1692 assert (type2aelembytes(T_CHAR) == type2aelembytes(T_BYTE)*2, 1693 "sanity: byte[] and char[] scales agree"); 1694 1695 // Bail when getChar over constants is requested: constant folding would 1696 // reject folding mismatched char access over byte[]. A normal inlining for getChar 1697 // Java method would constant fold nicely instead. 1698 if (!is_store && value->is_Con() && index->is_Con()) { 1699 return false; 1700 } 1701 1702 // Save state and restore on bailout 1703 uint old_sp = sp(); 1704 SafePointNode* old_map = clone_map(); 1705 1706 value = must_be_not_null(value, true); 1707 1708 Node* adr = array_element_address(value, index, T_CHAR); 1709 if (adr->is_top()) { 1710 set_map(old_map); 1711 set_sp(old_sp); 1712 return false; 1713 } 1714 destruct_map_clone(old_map); 1715 if (is_store) { 1716 access_store_at(value, adr, TypeAryPtr::BYTES, ch, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED); 1717 } else { 1718 ch = access_load_at(value, adr, TypeAryPtr::BYTES, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD | C2_UNKNOWN_CONTROL_LOAD); 1719 set_result(ch); 1720 } 1721 return true; 1722 } 1723 1724 1725 //------------------------------inline_math----------------------------------- 1726 // public static double Math.abs(double) 1727 // public static double Math.sqrt(double) 1728 // public static double Math.log(double) 1729 // public static double Math.log10(double) 1730 // public static double Math.round(double) 1731 bool LibraryCallKit::inline_double_math(vmIntrinsics::ID id) { 1732 Node* arg = argument(0); 1733 Node* n = nullptr; 1734 switch (id) { 1735 case vmIntrinsics::_dabs: n = new AbsDNode( arg); break; 1736 case vmIntrinsics::_dsqrt: 1737 case vmIntrinsics::_dsqrt_strict: 1738 n = new SqrtDNode(C, control(), arg); break; 1739 case vmIntrinsics::_ceil: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_ceil); break; 1740 case vmIntrinsics::_floor: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_floor); break; 1741 case vmIntrinsics::_rint: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_rint); break; 1742 case vmIntrinsics::_roundD: n = new RoundDNode(arg); break; 1743 case vmIntrinsics::_dcopySign: n = CopySignDNode::make(_gvn, arg, argument(2)); break; 1744 case vmIntrinsics::_dsignum: n = SignumDNode::make(_gvn, arg); break; 1745 default: fatal_unexpected_iid(id); break; 1746 } 1747 set_result(_gvn.transform(n)); 1748 return true; 1749 } 1750 1751 //------------------------------inline_math----------------------------------- 1752 // public static float Math.abs(float) 1753 // public static int Math.abs(int) 1754 // public static long Math.abs(long) 1755 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) { 1756 Node* arg = argument(0); 1757 Node* n = nullptr; 1758 switch (id) { 1759 case vmIntrinsics::_fabs: n = new AbsFNode( arg); break; 1760 case vmIntrinsics::_iabs: n = new AbsINode( arg); break; 1761 case vmIntrinsics::_labs: n = new AbsLNode( arg); break; 1762 case vmIntrinsics::_fcopySign: n = new CopySignFNode(arg, argument(1)); break; 1763 case vmIntrinsics::_fsignum: n = SignumFNode::make(_gvn, arg); break; 1764 case vmIntrinsics::_roundF: n = new RoundFNode(arg); break; 1765 default: fatal_unexpected_iid(id); break; 1766 } 1767 set_result(_gvn.transform(n)); 1768 return true; 1769 } 1770 1771 //------------------------------runtime_math----------------------------- 1772 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) { 1773 assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(), 1774 "must be (DD)D or (D)D type"); 1775 1776 // Inputs 1777 Node* a = argument(0); 1778 Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? argument(2) : nullptr; 1779 1780 const TypePtr* no_memory_effects = nullptr; 1781 Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName, 1782 no_memory_effects, 1783 a, top(), b, b ? top() : nullptr); 1784 Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0)); 1785 #ifdef ASSERT 1786 Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1)); 1787 assert(value_top == top(), "second value must be top"); 1788 #endif 1789 1790 set_result(value); 1791 return true; 1792 } 1793 1794 //------------------------------inline_math_pow----------------------------- 1795 bool LibraryCallKit::inline_math_pow() { 1796 Node* exp = argument(2); 1797 const TypeD* d = _gvn.type(exp)->isa_double_constant(); 1798 if (d != nullptr) { 1799 if (d->getd() == 2.0) { 1800 // Special case: pow(x, 2.0) => x * x 1801 Node* base = argument(0); 1802 set_result(_gvn.transform(new MulDNode(base, base))); 1803 return true; 1804 } else if (d->getd() == 0.5 && Matcher::match_rule_supported(Op_SqrtD)) { 1805 // Special case: pow(x, 0.5) => sqrt(x) 1806 Node* base = argument(0); 1807 Node* zero = _gvn.zerocon(T_DOUBLE); 1808 1809 RegionNode* region = new RegionNode(3); 1810 Node* phi = new PhiNode(region, Type::DOUBLE); 1811 1812 Node* cmp = _gvn.transform(new CmpDNode(base, zero)); 1813 // According to the API specs, pow(-0.0, 0.5) = 0.0 and sqrt(-0.0) = -0.0. 1814 // So pow(-0.0, 0.5) shouldn't be replaced with sqrt(-0.0). 1815 // -0.0/+0.0 are both excluded since floating-point comparison doesn't distinguish -0.0 from +0.0. 1816 Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::le)); 1817 1818 Node* if_pow = generate_slow_guard(test, nullptr); 1819 Node* value_sqrt = _gvn.transform(new SqrtDNode(C, control(), base)); 1820 phi->init_req(1, value_sqrt); 1821 region->init_req(1, control()); 1822 1823 if (if_pow != nullptr) { 1824 set_control(if_pow); 1825 address target = StubRoutines::dpow() != nullptr ? StubRoutines::dpow() : 1826 CAST_FROM_FN_PTR(address, SharedRuntime::dpow); 1827 const TypePtr* no_memory_effects = nullptr; 1828 Node* trig = make_runtime_call(RC_LEAF, OptoRuntime::Math_DD_D_Type(), target, "POW", 1829 no_memory_effects, base, top(), exp, top()); 1830 Node* value_pow = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0)); 1831 #ifdef ASSERT 1832 Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1)); 1833 assert(value_top == top(), "second value must be top"); 1834 #endif 1835 phi->init_req(2, value_pow); 1836 region->init_req(2, _gvn.transform(new ProjNode(trig, TypeFunc::Control))); 1837 } 1838 1839 C->set_has_split_ifs(true); // Has chance for split-if optimization 1840 set_control(_gvn.transform(region)); 1841 record_for_igvn(region); 1842 set_result(_gvn.transform(phi)); 1843 1844 return true; 1845 } 1846 } 1847 1848 return StubRoutines::dpow() != nullptr ? 1849 runtime_math(OptoRuntime::Math_DD_D_Type(), StubRoutines::dpow(), "dpow") : 1850 runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW"); 1851 } 1852 1853 //------------------------------inline_math_native----------------------------- 1854 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) { 1855 switch (id) { 1856 case vmIntrinsics::_dsin: 1857 return StubRoutines::dsin() != nullptr ? 1858 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dsin(), "dsin") : 1859 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin), "SIN"); 1860 case vmIntrinsics::_dcos: 1861 return StubRoutines::dcos() != nullptr ? 1862 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dcos(), "dcos") : 1863 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos), "COS"); 1864 case vmIntrinsics::_dtan: 1865 return StubRoutines::dtan() != nullptr ? 1866 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtan(), "dtan") : 1867 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "TAN"); 1868 case vmIntrinsics::_dtanh: 1869 return StubRoutines::dtanh() != nullptr ? 1870 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtanh(), "dtanh") : false; 1871 case vmIntrinsics::_dexp: 1872 return StubRoutines::dexp() != nullptr ? 1873 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dexp(), "dexp") : 1874 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP"); 1875 case vmIntrinsics::_dlog: 1876 return StubRoutines::dlog() != nullptr ? 1877 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog(), "dlog") : 1878 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog), "LOG"); 1879 case vmIntrinsics::_dlog10: 1880 return StubRoutines::dlog10() != nullptr ? 1881 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog10(), "dlog10") : 1882 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), "LOG10"); 1883 1884 case vmIntrinsics::_roundD: return Matcher::match_rule_supported(Op_RoundD) ? inline_double_math(id) : false; 1885 case vmIntrinsics::_ceil: 1886 case vmIntrinsics::_floor: 1887 case vmIntrinsics::_rint: return Matcher::match_rule_supported(Op_RoundDoubleMode) ? inline_double_math(id) : false; 1888 1889 case vmIntrinsics::_dsqrt: 1890 case vmIntrinsics::_dsqrt_strict: 1891 return Matcher::match_rule_supported(Op_SqrtD) ? inline_double_math(id) : false; 1892 case vmIntrinsics::_dabs: return Matcher::has_match_rule(Op_AbsD) ? inline_double_math(id) : false; 1893 case vmIntrinsics::_fabs: return Matcher::match_rule_supported(Op_AbsF) ? inline_math(id) : false; 1894 case vmIntrinsics::_iabs: return Matcher::match_rule_supported(Op_AbsI) ? inline_math(id) : false; 1895 case vmIntrinsics::_labs: return Matcher::match_rule_supported(Op_AbsL) ? inline_math(id) : false; 1896 1897 case vmIntrinsics::_dpow: return inline_math_pow(); 1898 case vmIntrinsics::_dcopySign: return inline_double_math(id); 1899 case vmIntrinsics::_fcopySign: return inline_math(id); 1900 case vmIntrinsics::_dsignum: return Matcher::match_rule_supported(Op_SignumD) ? inline_double_math(id) : false; 1901 case vmIntrinsics::_fsignum: return Matcher::match_rule_supported(Op_SignumF) ? inline_math(id) : false; 1902 case vmIntrinsics::_roundF: return Matcher::match_rule_supported(Op_RoundF) ? inline_math(id) : false; 1903 1904 // These intrinsics are not yet correctly implemented 1905 case vmIntrinsics::_datan2: 1906 return false; 1907 1908 default: 1909 fatal_unexpected_iid(id); 1910 return false; 1911 } 1912 } 1913 1914 //----------------------------inline_notify-----------------------------------* 1915 bool LibraryCallKit::inline_notify(vmIntrinsics::ID id) { 1916 const TypeFunc* ftype = OptoRuntime::monitor_notify_Type(); 1917 address func; 1918 if (id == vmIntrinsics::_notify) { 1919 func = OptoRuntime::monitor_notify_Java(); 1920 } else { 1921 func = OptoRuntime::monitor_notifyAll_Java(); 1922 } 1923 Node* call = make_runtime_call(RC_NO_LEAF, ftype, func, nullptr, TypeRawPtr::BOTTOM, argument(0)); 1924 make_slow_call_ex(call, env()->Throwable_klass(), false); 1925 return true; 1926 } 1927 1928 1929 //----------------------------inline_min_max----------------------------------- 1930 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) { 1931 Node* a = nullptr; 1932 Node* b = nullptr; 1933 Node* n = nullptr; 1934 switch (id) { 1935 case vmIntrinsics::_min: 1936 case vmIntrinsics::_max: 1937 case vmIntrinsics::_minF: 1938 case vmIntrinsics::_maxF: 1939 case vmIntrinsics::_minF_strict: 1940 case vmIntrinsics::_maxF_strict: 1941 case vmIntrinsics::_min_strict: 1942 case vmIntrinsics::_max_strict: 1943 assert(callee()->signature()->size() == 2, "minF/maxF has 2 parameters of size 1 each."); 1944 a = argument(0); 1945 b = argument(1); 1946 break; 1947 case vmIntrinsics::_minD: 1948 case vmIntrinsics::_maxD: 1949 case vmIntrinsics::_minD_strict: 1950 case vmIntrinsics::_maxD_strict: 1951 assert(callee()->signature()->size() == 4, "minD/maxD has 2 parameters of size 2 each."); 1952 a = argument(0); 1953 b = argument(2); 1954 break; 1955 case vmIntrinsics::_minL: 1956 case vmIntrinsics::_maxL: 1957 assert(callee()->signature()->size() == 4, "minL/maxL has 2 parameters of size 2 each."); 1958 a = argument(0); 1959 b = argument(2); 1960 break; 1961 default: 1962 fatal_unexpected_iid(id); 1963 break; 1964 } 1965 1966 switch (id) { 1967 case vmIntrinsics::_min: 1968 case vmIntrinsics::_min_strict: 1969 n = new MinINode(a, b); 1970 break; 1971 case vmIntrinsics::_max: 1972 case vmIntrinsics::_max_strict: 1973 n = new MaxINode(a, b); 1974 break; 1975 case vmIntrinsics::_minF: 1976 case vmIntrinsics::_minF_strict: 1977 n = new MinFNode(a, b); 1978 break; 1979 case vmIntrinsics::_maxF: 1980 case vmIntrinsics::_maxF_strict: 1981 n = new MaxFNode(a, b); 1982 break; 1983 case vmIntrinsics::_minD: 1984 case vmIntrinsics::_minD_strict: 1985 n = new MinDNode(a, b); 1986 break; 1987 case vmIntrinsics::_maxD: 1988 case vmIntrinsics::_maxD_strict: 1989 n = new MaxDNode(a, b); 1990 break; 1991 case vmIntrinsics::_minL: 1992 n = new MinLNode(_gvn.C, a, b); 1993 break; 1994 case vmIntrinsics::_maxL: 1995 n = new MaxLNode(_gvn.C, a, b); 1996 break; 1997 default: 1998 fatal_unexpected_iid(id); 1999 break; 2000 } 2001 2002 set_result(_gvn.transform(n)); 2003 return true; 2004 } 2005 2006 bool LibraryCallKit::inline_math_mathExact(Node* math, Node* test) { 2007 if (builtin_throw_too_many_traps(Deoptimization::Reason_intrinsic, 2008 env()->ArithmeticException_instance())) { 2009 // It has been already too many times, but we cannot use builtin_throw (e.g. we care about backtraces), 2010 // so let's bail out intrinsic rather than risking deopting again. 2011 return false; 2012 } 2013 2014 Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) ); 2015 IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN); 2016 Node* fast_path = _gvn.transform( new IfFalseNode(check)); 2017 Node* slow_path = _gvn.transform( new IfTrueNode(check) ); 2018 2019 { 2020 PreserveJVMState pjvms(this); 2021 PreserveReexecuteState preexecs(this); 2022 jvms()->set_should_reexecute(true); 2023 2024 set_control(slow_path); 2025 set_i_o(i_o()); 2026 2027 builtin_throw(Deoptimization::Reason_intrinsic, 2028 env()->ArithmeticException_instance(), 2029 /*allow_too_many_traps*/ false); 2030 } 2031 2032 set_control(fast_path); 2033 set_result(math); 2034 return true; 2035 } 2036 2037 template <typename OverflowOp> 2038 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) { 2039 typedef typename OverflowOp::MathOp MathOp; 2040 2041 MathOp* mathOp = new MathOp(arg1, arg2); 2042 Node* operation = _gvn.transform( mathOp ); 2043 Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) ); 2044 return inline_math_mathExact(operation, ofcheck); 2045 } 2046 2047 bool LibraryCallKit::inline_math_addExactI(bool is_increment) { 2048 return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1)); 2049 } 2050 2051 bool LibraryCallKit::inline_math_addExactL(bool is_increment) { 2052 return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2)); 2053 } 2054 2055 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) { 2056 return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1)); 2057 } 2058 2059 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) { 2060 return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2)); 2061 } 2062 2063 bool LibraryCallKit::inline_math_negateExactI() { 2064 return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0)); 2065 } 2066 2067 bool LibraryCallKit::inline_math_negateExactL() { 2068 return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0)); 2069 } 2070 2071 bool LibraryCallKit::inline_math_multiplyExactI() { 2072 return inline_math_overflow<OverflowMulINode>(argument(0), argument(1)); 2073 } 2074 2075 bool LibraryCallKit::inline_math_multiplyExactL() { 2076 return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2)); 2077 } 2078 2079 bool LibraryCallKit::inline_math_multiplyHigh() { 2080 set_result(_gvn.transform(new MulHiLNode(argument(0), argument(2)))); 2081 return true; 2082 } 2083 2084 bool LibraryCallKit::inline_math_unsignedMultiplyHigh() { 2085 set_result(_gvn.transform(new UMulHiLNode(argument(0), argument(2)))); 2086 return true; 2087 } 2088 2089 inline int 2090 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset, BasicType type) { 2091 const TypePtr* base_type = TypePtr::NULL_PTR; 2092 if (base != nullptr) base_type = _gvn.type(base)->isa_ptr(); 2093 if (base_type == nullptr) { 2094 // Unknown type. 2095 return Type::AnyPtr; 2096 } else if (_gvn.type(base->uncast()) == TypePtr::NULL_PTR) { 2097 // Since this is a null+long form, we have to switch to a rawptr. 2098 base = _gvn.transform(new CastX2PNode(offset)); 2099 offset = MakeConX(0); 2100 return Type::RawPtr; 2101 } else if (base_type->base() == Type::RawPtr) { 2102 return Type::RawPtr; 2103 } else if (base_type->isa_oopptr()) { 2104 // Base is never null => always a heap address. 2105 if (!TypePtr::NULL_PTR->higher_equal(base_type)) { 2106 return Type::OopPtr; 2107 } 2108 // Offset is small => always a heap address. 2109 const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t(); 2110 if (offset_type != nullptr && 2111 base_type->offset() == 0 && // (should always be?) 2112 offset_type->_lo >= 0 && 2113 !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) { 2114 return Type::OopPtr; 2115 } else if (type == T_OBJECT) { 2116 // off heap access to an oop doesn't make any sense. Has to be on 2117 // heap. 2118 return Type::OopPtr; 2119 } 2120 // Otherwise, it might either be oop+off or null+addr. 2121 return Type::AnyPtr; 2122 } else { 2123 // No information: 2124 return Type::AnyPtr; 2125 } 2126 } 2127 2128 Node* LibraryCallKit::make_unsafe_address(Node*& base, Node* offset, BasicType type, bool can_cast) { 2129 Node* uncasted_base = base; 2130 int kind = classify_unsafe_addr(uncasted_base, offset, type); 2131 if (kind == Type::RawPtr) { 2132 return basic_plus_adr(top(), uncasted_base, offset); 2133 } else if (kind == Type::AnyPtr) { 2134 assert(base == uncasted_base, "unexpected base change"); 2135 if (can_cast) { 2136 if (!_gvn.type(base)->speculative_maybe_null() && 2137 !too_many_traps(Deoptimization::Reason_speculate_null_check)) { 2138 // According to profiling, this access is always on 2139 // heap. Casting the base to not null and thus avoiding membars 2140 // around the access should allow better optimizations 2141 Node* null_ctl = top(); 2142 base = null_check_oop(base, &null_ctl, true, true, true); 2143 assert(null_ctl->is_top(), "no null control here"); 2144 return basic_plus_adr(base, offset); 2145 } else if (_gvn.type(base)->speculative_always_null() && 2146 !too_many_traps(Deoptimization::Reason_speculate_null_assert)) { 2147 // According to profiling, this access is always off 2148 // heap. 2149 base = null_assert(base); 2150 Node* raw_base = _gvn.transform(new CastX2PNode(offset)); 2151 offset = MakeConX(0); 2152 return basic_plus_adr(top(), raw_base, offset); 2153 } 2154 } 2155 // We don't know if it's an on heap or off heap access. Fall back 2156 // to raw memory access. 2157 Node* raw = _gvn.transform(new CheckCastPPNode(control(), base, TypeRawPtr::BOTTOM)); 2158 return basic_plus_adr(top(), raw, offset); 2159 } else { 2160 assert(base == uncasted_base, "unexpected base change"); 2161 // We know it's an on heap access so base can't be null 2162 if (TypePtr::NULL_PTR->higher_equal(_gvn.type(base))) { 2163 base = must_be_not_null(base, true); 2164 } 2165 return basic_plus_adr(base, offset); 2166 } 2167 } 2168 2169 //--------------------------inline_number_methods----------------------------- 2170 // inline int Integer.numberOfLeadingZeros(int) 2171 // inline int Long.numberOfLeadingZeros(long) 2172 // 2173 // inline int Integer.numberOfTrailingZeros(int) 2174 // inline int Long.numberOfTrailingZeros(long) 2175 // 2176 // inline int Integer.bitCount(int) 2177 // inline int Long.bitCount(long) 2178 // 2179 // inline char Character.reverseBytes(char) 2180 // inline short Short.reverseBytes(short) 2181 // inline int Integer.reverseBytes(int) 2182 // inline long Long.reverseBytes(long) 2183 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) { 2184 Node* arg = argument(0); 2185 Node* n = nullptr; 2186 switch (id) { 2187 case vmIntrinsics::_numberOfLeadingZeros_i: n = new CountLeadingZerosINode( arg); break; 2188 case vmIntrinsics::_numberOfLeadingZeros_l: n = new CountLeadingZerosLNode( arg); break; 2189 case vmIntrinsics::_numberOfTrailingZeros_i: n = new CountTrailingZerosINode(arg); break; 2190 case vmIntrinsics::_numberOfTrailingZeros_l: n = new CountTrailingZerosLNode(arg); break; 2191 case vmIntrinsics::_bitCount_i: n = new PopCountINode( arg); break; 2192 case vmIntrinsics::_bitCount_l: n = new PopCountLNode( arg); break; 2193 case vmIntrinsics::_reverseBytes_c: n = new ReverseBytesUSNode( arg); break; 2194 case vmIntrinsics::_reverseBytes_s: n = new ReverseBytesSNode( arg); break; 2195 case vmIntrinsics::_reverseBytes_i: n = new ReverseBytesINode( arg); break; 2196 case vmIntrinsics::_reverseBytes_l: n = new ReverseBytesLNode( arg); break; 2197 case vmIntrinsics::_reverse_i: n = new ReverseINode( arg); break; 2198 case vmIntrinsics::_reverse_l: n = new ReverseLNode( arg); break; 2199 default: fatal_unexpected_iid(id); break; 2200 } 2201 set_result(_gvn.transform(n)); 2202 return true; 2203 } 2204 2205 //--------------------------inline_bitshuffle_methods----------------------------- 2206 // inline int Integer.compress(int, int) 2207 // inline int Integer.expand(int, int) 2208 // inline long Long.compress(long, long) 2209 // inline long Long.expand(long, long) 2210 bool LibraryCallKit::inline_bitshuffle_methods(vmIntrinsics::ID id) { 2211 Node* n = nullptr; 2212 switch (id) { 2213 case vmIntrinsics::_compress_i: n = new CompressBitsNode(argument(0), argument(1), TypeInt::INT); break; 2214 case vmIntrinsics::_expand_i: n = new ExpandBitsNode(argument(0), argument(1), TypeInt::INT); break; 2215 case vmIntrinsics::_compress_l: n = new CompressBitsNode(argument(0), argument(2), TypeLong::LONG); break; 2216 case vmIntrinsics::_expand_l: n = new ExpandBitsNode(argument(0), argument(2), TypeLong::LONG); break; 2217 default: fatal_unexpected_iid(id); break; 2218 } 2219 set_result(_gvn.transform(n)); 2220 return true; 2221 } 2222 2223 //--------------------------inline_number_methods----------------------------- 2224 // inline int Integer.compareUnsigned(int, int) 2225 // inline int Long.compareUnsigned(long, long) 2226 bool LibraryCallKit::inline_compare_unsigned(vmIntrinsics::ID id) { 2227 Node* arg1 = argument(0); 2228 Node* arg2 = (id == vmIntrinsics::_compareUnsigned_l) ? argument(2) : argument(1); 2229 Node* n = nullptr; 2230 switch (id) { 2231 case vmIntrinsics::_compareUnsigned_i: n = new CmpU3Node(arg1, arg2); break; 2232 case vmIntrinsics::_compareUnsigned_l: n = new CmpUL3Node(arg1, arg2); break; 2233 default: fatal_unexpected_iid(id); break; 2234 } 2235 set_result(_gvn.transform(n)); 2236 return true; 2237 } 2238 2239 //--------------------------inline_unsigned_divmod_methods----------------------------- 2240 // inline int Integer.divideUnsigned(int, int) 2241 // inline int Integer.remainderUnsigned(int, int) 2242 // inline long Long.divideUnsigned(long, long) 2243 // inline long Long.remainderUnsigned(long, long) 2244 bool LibraryCallKit::inline_divmod_methods(vmIntrinsics::ID id) { 2245 Node* n = nullptr; 2246 switch (id) { 2247 case vmIntrinsics::_divideUnsigned_i: { 2248 zero_check_int(argument(1)); 2249 // Compile-time detect of null-exception 2250 if (stopped()) { 2251 return true; // keep the graph constructed so far 2252 } 2253 n = new UDivINode(control(), argument(0), argument(1)); 2254 break; 2255 } 2256 case vmIntrinsics::_divideUnsigned_l: { 2257 zero_check_long(argument(2)); 2258 // Compile-time detect of null-exception 2259 if (stopped()) { 2260 return true; // keep the graph constructed so far 2261 } 2262 n = new UDivLNode(control(), argument(0), argument(2)); 2263 break; 2264 } 2265 case vmIntrinsics::_remainderUnsigned_i: { 2266 zero_check_int(argument(1)); 2267 // Compile-time detect of null-exception 2268 if (stopped()) { 2269 return true; // keep the graph constructed so far 2270 } 2271 n = new UModINode(control(), argument(0), argument(1)); 2272 break; 2273 } 2274 case vmIntrinsics::_remainderUnsigned_l: { 2275 zero_check_long(argument(2)); 2276 // Compile-time detect of null-exception 2277 if (stopped()) { 2278 return true; // keep the graph constructed so far 2279 } 2280 n = new UModLNode(control(), argument(0), argument(2)); 2281 break; 2282 } 2283 default: fatal_unexpected_iid(id); break; 2284 } 2285 set_result(_gvn.transform(n)); 2286 return true; 2287 } 2288 2289 //----------------------------inline_unsafe_access---------------------------- 2290 2291 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) { 2292 // Attempt to infer a sharper value type from the offset and base type. 2293 ciKlass* sharpened_klass = nullptr; 2294 2295 // See if it is an instance field, with an object type. 2296 if (alias_type->field() != nullptr) { 2297 if (alias_type->field()->type()->is_klass()) { 2298 sharpened_klass = alias_type->field()->type()->as_klass(); 2299 } 2300 } 2301 2302 const TypeOopPtr* result = nullptr; 2303 // See if it is a narrow oop array. 2304 if (adr_type->isa_aryptr()) { 2305 if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) { 2306 const TypeOopPtr* elem_type = adr_type->is_aryptr()->elem()->make_oopptr(); 2307 if (elem_type != nullptr && elem_type->is_loaded()) { 2308 // Sharpen the value type. 2309 result = elem_type; 2310 } 2311 } 2312 } 2313 2314 // The sharpened class might be unloaded if there is no class loader 2315 // contraint in place. 2316 if (result == nullptr && sharpened_klass != nullptr && sharpened_klass->is_loaded()) { 2317 // Sharpen the value type. 2318 result = TypeOopPtr::make_from_klass(sharpened_klass); 2319 } 2320 if (result != nullptr) { 2321 #ifndef PRODUCT 2322 if (C->print_intrinsics() || C->print_inlining()) { 2323 tty->print(" from base type: "); adr_type->dump(); tty->cr(); 2324 tty->print(" sharpened value: "); result->dump(); tty->cr(); 2325 } 2326 #endif 2327 } 2328 return result; 2329 } 2330 2331 DecoratorSet LibraryCallKit::mo_decorator_for_access_kind(AccessKind kind) { 2332 switch (kind) { 2333 case Relaxed: 2334 return MO_UNORDERED; 2335 case Opaque: 2336 return MO_RELAXED; 2337 case Acquire: 2338 return MO_ACQUIRE; 2339 case Release: 2340 return MO_RELEASE; 2341 case Volatile: 2342 return MO_SEQ_CST; 2343 default: 2344 ShouldNotReachHere(); 2345 return 0; 2346 } 2347 } 2348 2349 bool LibraryCallKit::inline_unsafe_access(bool is_store, const BasicType type, const AccessKind kind, const bool unaligned) { 2350 if (callee()->is_static()) return false; // caller must have the capability! 2351 DecoratorSet decorators = C2_UNSAFE_ACCESS; 2352 guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads"); 2353 guarantee( is_store || kind != Release, "Release accesses can be produced only for stores"); 2354 assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type"); 2355 2356 if (is_reference_type(type)) { 2357 decorators |= ON_UNKNOWN_OOP_REF; 2358 } 2359 2360 if (unaligned) { 2361 decorators |= C2_UNALIGNED; 2362 } 2363 2364 #ifndef PRODUCT 2365 { 2366 ResourceMark rm; 2367 // Check the signatures. 2368 ciSignature* sig = callee()->signature(); 2369 #ifdef ASSERT 2370 if (!is_store) { 2371 // Object getReference(Object base, int/long offset), etc. 2372 BasicType rtype = sig->return_type()->basic_type(); 2373 assert(rtype == type, "getter must return the expected value"); 2374 assert(sig->count() == 2, "oop getter has 2 arguments"); 2375 assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object"); 2376 assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct"); 2377 } else { 2378 // void putReference(Object base, int/long offset, Object x), etc. 2379 assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value"); 2380 assert(sig->count() == 3, "oop putter has 3 arguments"); 2381 assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object"); 2382 assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct"); 2383 BasicType vtype = sig->type_at(sig->count()-1)->basic_type(); 2384 assert(vtype == type, "putter must accept the expected value"); 2385 } 2386 #endif // ASSERT 2387 } 2388 #endif //PRODUCT 2389 2390 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 2391 2392 Node* receiver = argument(0); // type: oop 2393 2394 // Build address expression. 2395 Node* heap_base_oop = top(); 2396 2397 // The base is either a Java object or a value produced by Unsafe.staticFieldBase 2398 Node* base = argument(1); // type: oop 2399 // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset 2400 Node* offset = argument(2); // type: long 2401 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset 2402 // to be plain byte offsets, which are also the same as those accepted 2403 // by oopDesc::field_addr. 2404 assert(Unsafe_field_offset_to_byte_offset(11) == 11, 2405 "fieldOffset must be byte-scaled"); 2406 // 32-bit machines ignore the high half! 2407 offset = ConvL2X(offset); 2408 2409 // Save state and restore on bailout 2410 uint old_sp = sp(); 2411 SafePointNode* old_map = clone_map(); 2412 2413 Node* adr = make_unsafe_address(base, offset, type, kind == Relaxed); 2414 assert(!stopped(), "Inlining of unsafe access failed: address construction stopped unexpectedly"); 2415 2416 if (_gvn.type(base->uncast())->isa_ptr() == TypePtr::NULL_PTR) { 2417 if (type != T_OBJECT) { 2418 decorators |= IN_NATIVE; // off-heap primitive access 2419 } else { 2420 set_map(old_map); 2421 set_sp(old_sp); 2422 return false; // off-heap oop accesses are not supported 2423 } 2424 } else { 2425 heap_base_oop = base; // on-heap or mixed access 2426 } 2427 2428 // Can base be null? Otherwise, always on-heap access. 2429 bool can_access_non_heap = TypePtr::NULL_PTR->higher_equal(_gvn.type(base)); 2430 2431 if (!can_access_non_heap) { 2432 decorators |= IN_HEAP; 2433 } 2434 2435 Node* val = is_store ? argument(4) : nullptr; 2436 2437 const TypePtr* adr_type = _gvn.type(adr)->isa_ptr(); 2438 if (adr_type == TypePtr::NULL_PTR) { 2439 set_map(old_map); 2440 set_sp(old_sp); 2441 return false; // off-heap access with zero address 2442 } 2443 2444 // Try to categorize the address. 2445 Compile::AliasType* alias_type = C->alias_type(adr_type); 2446 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here"); 2447 2448 if (alias_type->adr_type() == TypeInstPtr::KLASS || 2449 alias_type->adr_type() == TypeAryPtr::RANGE) { 2450 set_map(old_map); 2451 set_sp(old_sp); 2452 return false; // not supported 2453 } 2454 2455 bool mismatched = false; 2456 BasicType bt = alias_type->basic_type(); 2457 if (bt != T_ILLEGAL) { 2458 assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access"); 2459 if (bt == T_BYTE && adr_type->isa_aryptr()) { 2460 // Alias type doesn't differentiate between byte[] and boolean[]). 2461 // Use address type to get the element type. 2462 bt = adr_type->is_aryptr()->elem()->array_element_basic_type(); 2463 } 2464 if (is_reference_type(bt, true)) { 2465 // accessing an array field with getReference is not a mismatch 2466 bt = T_OBJECT; 2467 } 2468 if ((bt == T_OBJECT) != (type == T_OBJECT)) { 2469 // Don't intrinsify mismatched object accesses 2470 set_map(old_map); 2471 set_sp(old_sp); 2472 return false; 2473 } 2474 mismatched = (bt != type); 2475 } else if (alias_type->adr_type()->isa_oopptr()) { 2476 mismatched = true; // conservatively mark all "wide" on-heap accesses as mismatched 2477 } 2478 2479 destruct_map_clone(old_map); 2480 assert(!mismatched || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched"); 2481 2482 if (mismatched) { 2483 decorators |= C2_MISMATCHED; 2484 } 2485 2486 // First guess at the value type. 2487 const Type *value_type = Type::get_const_basic_type(type); 2488 2489 // Figure out the memory ordering. 2490 decorators |= mo_decorator_for_access_kind(kind); 2491 2492 if (!is_store && type == T_OBJECT) { 2493 const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type); 2494 if (tjp != nullptr) { 2495 value_type = tjp; 2496 } 2497 } 2498 2499 receiver = null_check(receiver); 2500 if (stopped()) { 2501 return true; 2502 } 2503 // Heap pointers get a null-check from the interpreter, 2504 // as a courtesy. However, this is not guaranteed by Unsafe, 2505 // and it is not possible to fully distinguish unintended nulls 2506 // from intended ones in this API. 2507 2508 if (!is_store) { 2509 Node* p = nullptr; 2510 // Try to constant fold a load from a constant field 2511 ciField* field = alias_type->field(); 2512 if (heap_base_oop != top() && field != nullptr && field->is_constant() && !mismatched) { 2513 // final or stable field 2514 p = make_constant_from_field(field, heap_base_oop); 2515 } 2516 2517 if (p == nullptr) { // Could not constant fold the load 2518 p = access_load_at(heap_base_oop, adr, adr_type, value_type, type, decorators); 2519 // Normalize the value returned by getBoolean in the following cases 2520 if (type == T_BOOLEAN && 2521 (mismatched || 2522 heap_base_oop == top() || // - heap_base_oop is null or 2523 (can_access_non_heap && field == nullptr)) // - heap_base_oop is potentially null 2524 // and the unsafe access is made to large offset 2525 // (i.e., larger than the maximum offset necessary for any 2526 // field access) 2527 ) { 2528 IdealKit ideal = IdealKit(this); 2529 #define __ ideal. 2530 IdealVariable normalized_result(ideal); 2531 __ declarations_done(); 2532 __ set(normalized_result, p); 2533 __ if_then(p, BoolTest::ne, ideal.ConI(0)); 2534 __ set(normalized_result, ideal.ConI(1)); 2535 ideal.end_if(); 2536 final_sync(ideal); 2537 p = __ value(normalized_result); 2538 #undef __ 2539 } 2540 } 2541 if (type == T_ADDRESS) { 2542 p = gvn().transform(new CastP2XNode(nullptr, p)); 2543 p = ConvX2UL(p); 2544 } 2545 // The load node has the control of the preceding MemBarCPUOrder. All 2546 // following nodes will have the control of the MemBarCPUOrder inserted at 2547 // the end of this method. So, pushing the load onto the stack at a later 2548 // point is fine. 2549 set_result(p); 2550 } else { 2551 if (bt == T_ADDRESS) { 2552 // Repackage the long as a pointer. 2553 val = ConvL2X(val); 2554 val = gvn().transform(new CastX2PNode(val)); 2555 } 2556 access_store_at(heap_base_oop, adr, adr_type, val, value_type, type, decorators); 2557 } 2558 2559 return true; 2560 } 2561 2562 //----------------------------inline_unsafe_load_store---------------------------- 2563 // This method serves a couple of different customers (depending on LoadStoreKind): 2564 // 2565 // LS_cmp_swap: 2566 // 2567 // boolean compareAndSetReference(Object o, long offset, Object expected, Object x); 2568 // boolean compareAndSetInt( Object o, long offset, int expected, int x); 2569 // boolean compareAndSetLong( Object o, long offset, long expected, long x); 2570 // 2571 // LS_cmp_swap_weak: 2572 // 2573 // boolean weakCompareAndSetReference( Object o, long offset, Object expected, Object x); 2574 // boolean weakCompareAndSetReferencePlain( Object o, long offset, Object expected, Object x); 2575 // boolean weakCompareAndSetReferenceAcquire(Object o, long offset, Object expected, Object x); 2576 // boolean weakCompareAndSetReferenceRelease(Object o, long offset, Object expected, Object x); 2577 // 2578 // boolean weakCompareAndSetInt( Object o, long offset, int expected, int x); 2579 // boolean weakCompareAndSetIntPlain( Object o, long offset, int expected, int x); 2580 // boolean weakCompareAndSetIntAcquire( Object o, long offset, int expected, int x); 2581 // boolean weakCompareAndSetIntRelease( Object o, long offset, int expected, int x); 2582 // 2583 // boolean weakCompareAndSetLong( Object o, long offset, long expected, long x); 2584 // boolean weakCompareAndSetLongPlain( Object o, long offset, long expected, long x); 2585 // boolean weakCompareAndSetLongAcquire( Object o, long offset, long expected, long x); 2586 // boolean weakCompareAndSetLongRelease( Object o, long offset, long expected, long x); 2587 // 2588 // LS_cmp_exchange: 2589 // 2590 // Object compareAndExchangeReferenceVolatile(Object o, long offset, Object expected, Object x); 2591 // Object compareAndExchangeReferenceAcquire( Object o, long offset, Object expected, Object x); 2592 // Object compareAndExchangeReferenceRelease( Object o, long offset, Object expected, Object x); 2593 // 2594 // Object compareAndExchangeIntVolatile( Object o, long offset, Object expected, Object x); 2595 // Object compareAndExchangeIntAcquire( Object o, long offset, Object expected, Object x); 2596 // Object compareAndExchangeIntRelease( Object o, long offset, Object expected, Object x); 2597 // 2598 // Object compareAndExchangeLongVolatile( Object o, long offset, Object expected, Object x); 2599 // Object compareAndExchangeLongAcquire( Object o, long offset, Object expected, Object x); 2600 // Object compareAndExchangeLongRelease( Object o, long offset, Object expected, Object x); 2601 // 2602 // LS_get_add: 2603 // 2604 // int getAndAddInt( Object o, long offset, int delta) 2605 // long getAndAddLong(Object o, long offset, long delta) 2606 // 2607 // LS_get_set: 2608 // 2609 // int getAndSet(Object o, long offset, int newValue) 2610 // long getAndSet(Object o, long offset, long newValue) 2611 // Object getAndSet(Object o, long offset, Object newValue) 2612 // 2613 bool LibraryCallKit::inline_unsafe_load_store(const BasicType type, const LoadStoreKind kind, const AccessKind access_kind) { 2614 // This basic scheme here is the same as inline_unsafe_access, but 2615 // differs in enough details that combining them would make the code 2616 // overly confusing. (This is a true fact! I originally combined 2617 // them, but even I was confused by it!) As much code/comments as 2618 // possible are retained from inline_unsafe_access though to make 2619 // the correspondences clearer. - dl 2620 2621 if (callee()->is_static()) return false; // caller must have the capability! 2622 2623 DecoratorSet decorators = C2_UNSAFE_ACCESS; 2624 decorators |= mo_decorator_for_access_kind(access_kind); 2625 2626 #ifndef PRODUCT 2627 BasicType rtype; 2628 { 2629 ResourceMark rm; 2630 // Check the signatures. 2631 ciSignature* sig = callee()->signature(); 2632 rtype = sig->return_type()->basic_type(); 2633 switch(kind) { 2634 case LS_get_add: 2635 case LS_get_set: { 2636 // Check the signatures. 2637 #ifdef ASSERT 2638 assert(rtype == type, "get and set must return the expected type"); 2639 assert(sig->count() == 3, "get and set has 3 arguments"); 2640 assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object"); 2641 assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long"); 2642 assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta"); 2643 assert(access_kind == Volatile, "mo is not passed to intrinsic nodes in current implementation"); 2644 #endif // ASSERT 2645 break; 2646 } 2647 case LS_cmp_swap: 2648 case LS_cmp_swap_weak: { 2649 // Check the signatures. 2650 #ifdef ASSERT 2651 assert(rtype == T_BOOLEAN, "CAS must return boolean"); 2652 assert(sig->count() == 4, "CAS has 4 arguments"); 2653 assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object"); 2654 assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long"); 2655 #endif // ASSERT 2656 break; 2657 } 2658 case LS_cmp_exchange: { 2659 // Check the signatures. 2660 #ifdef ASSERT 2661 assert(rtype == type, "CAS must return the expected type"); 2662 assert(sig->count() == 4, "CAS has 4 arguments"); 2663 assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object"); 2664 assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long"); 2665 #endif // ASSERT 2666 break; 2667 } 2668 default: 2669 ShouldNotReachHere(); 2670 } 2671 } 2672 #endif //PRODUCT 2673 2674 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 2675 2676 // Get arguments: 2677 Node* receiver = nullptr; 2678 Node* base = nullptr; 2679 Node* offset = nullptr; 2680 Node* oldval = nullptr; 2681 Node* newval = nullptr; 2682 switch(kind) { 2683 case LS_cmp_swap: 2684 case LS_cmp_swap_weak: 2685 case LS_cmp_exchange: { 2686 const bool two_slot_type = type2size[type] == 2; 2687 receiver = argument(0); // type: oop 2688 base = argument(1); // type: oop 2689 offset = argument(2); // type: long 2690 oldval = argument(4); // type: oop, int, or long 2691 newval = argument(two_slot_type ? 6 : 5); // type: oop, int, or long 2692 break; 2693 } 2694 case LS_get_add: 2695 case LS_get_set: { 2696 receiver = argument(0); // type: oop 2697 base = argument(1); // type: oop 2698 offset = argument(2); // type: long 2699 oldval = nullptr; 2700 newval = argument(4); // type: oop, int, or long 2701 break; 2702 } 2703 default: 2704 ShouldNotReachHere(); 2705 } 2706 2707 // Build field offset expression. 2708 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset 2709 // to be plain byte offsets, which are also the same as those accepted 2710 // by oopDesc::field_addr. 2711 assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled"); 2712 // 32-bit machines ignore the high half of long offsets 2713 offset = ConvL2X(offset); 2714 // Save state and restore on bailout 2715 uint old_sp = sp(); 2716 SafePointNode* old_map = clone_map(); 2717 Node* adr = make_unsafe_address(base, offset,type, false); 2718 const TypePtr *adr_type = _gvn.type(adr)->isa_ptr(); 2719 2720 Compile::AliasType* alias_type = C->alias_type(adr_type); 2721 BasicType bt = alias_type->basic_type(); 2722 if (bt != T_ILLEGAL && 2723 (is_reference_type(bt) != (type == T_OBJECT))) { 2724 // Don't intrinsify mismatched object accesses. 2725 set_map(old_map); 2726 set_sp(old_sp); 2727 return false; 2728 } 2729 2730 destruct_map_clone(old_map); 2731 2732 // For CAS, unlike inline_unsafe_access, there seems no point in 2733 // trying to refine types. Just use the coarse types here. 2734 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here"); 2735 const Type *value_type = Type::get_const_basic_type(type); 2736 2737 switch (kind) { 2738 case LS_get_set: 2739 case LS_cmp_exchange: { 2740 if (type == T_OBJECT) { 2741 const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type); 2742 if (tjp != nullptr) { 2743 value_type = tjp; 2744 } 2745 } 2746 break; 2747 } 2748 case LS_cmp_swap: 2749 case LS_cmp_swap_weak: 2750 case LS_get_add: 2751 break; 2752 default: 2753 ShouldNotReachHere(); 2754 } 2755 2756 // Null check receiver. 2757 receiver = null_check(receiver); 2758 if (stopped()) { 2759 return true; 2760 } 2761 2762 int alias_idx = C->get_alias_index(adr_type); 2763 2764 if (is_reference_type(type)) { 2765 decorators |= IN_HEAP | ON_UNKNOWN_OOP_REF; 2766 2767 // Transformation of a value which could be null pointer (CastPP #null) 2768 // could be delayed during Parse (for example, in adjust_map_after_if()). 2769 // Execute transformation here to avoid barrier generation in such case. 2770 if (_gvn.type(newval) == TypePtr::NULL_PTR) 2771 newval = _gvn.makecon(TypePtr::NULL_PTR); 2772 2773 if (oldval != nullptr && _gvn.type(oldval) == TypePtr::NULL_PTR) { 2774 // Refine the value to a null constant, when it is known to be null 2775 oldval = _gvn.makecon(TypePtr::NULL_PTR); 2776 } 2777 } 2778 2779 Node* result = nullptr; 2780 switch (kind) { 2781 case LS_cmp_exchange: { 2782 result = access_atomic_cmpxchg_val_at(base, adr, adr_type, alias_idx, 2783 oldval, newval, value_type, type, decorators); 2784 break; 2785 } 2786 case LS_cmp_swap_weak: 2787 decorators |= C2_WEAK_CMPXCHG; 2788 case LS_cmp_swap: { 2789 result = access_atomic_cmpxchg_bool_at(base, adr, adr_type, alias_idx, 2790 oldval, newval, value_type, type, decorators); 2791 break; 2792 } 2793 case LS_get_set: { 2794 result = access_atomic_xchg_at(base, adr, adr_type, alias_idx, 2795 newval, value_type, type, decorators); 2796 break; 2797 } 2798 case LS_get_add: { 2799 result = access_atomic_add_at(base, adr, adr_type, alias_idx, 2800 newval, value_type, type, decorators); 2801 break; 2802 } 2803 default: 2804 ShouldNotReachHere(); 2805 } 2806 2807 assert(type2size[result->bottom_type()->basic_type()] == type2size[rtype], "result type should match"); 2808 set_result(result); 2809 return true; 2810 } 2811 2812 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) { 2813 // Regardless of form, don't allow previous ld/st to move down, 2814 // then issue acquire, release, or volatile mem_bar. 2815 insert_mem_bar(Op_MemBarCPUOrder); 2816 switch(id) { 2817 case vmIntrinsics::_loadFence: 2818 insert_mem_bar(Op_LoadFence); 2819 return true; 2820 case vmIntrinsics::_storeFence: 2821 insert_mem_bar(Op_StoreFence); 2822 return true; 2823 case vmIntrinsics::_storeStoreFence: 2824 insert_mem_bar(Op_StoreStoreFence); 2825 return true; 2826 case vmIntrinsics::_fullFence: 2827 insert_mem_bar(Op_MemBarVolatile); 2828 return true; 2829 default: 2830 fatal_unexpected_iid(id); 2831 return false; 2832 } 2833 } 2834 2835 bool LibraryCallKit::inline_onspinwait() { 2836 insert_mem_bar(Op_OnSpinWait); 2837 return true; 2838 } 2839 2840 bool LibraryCallKit::klass_needs_init_guard(Node* kls) { 2841 if (!kls->is_Con()) { 2842 return true; 2843 } 2844 const TypeInstKlassPtr* klsptr = kls->bottom_type()->isa_instklassptr(); 2845 if (klsptr == nullptr) { 2846 return true; 2847 } 2848 ciInstanceKlass* ik = klsptr->instance_klass(); 2849 // don't need a guard for a klass that is already initialized 2850 return !ik->is_initialized(); 2851 } 2852 2853 //----------------------------inline_unsafe_writeback0------------------------- 2854 // public native void Unsafe.writeback0(long address) 2855 bool LibraryCallKit::inline_unsafe_writeback0() { 2856 if (!Matcher::has_match_rule(Op_CacheWB)) { 2857 return false; 2858 } 2859 #ifndef PRODUCT 2860 assert(Matcher::has_match_rule(Op_CacheWBPreSync), "found match rule for CacheWB but not CacheWBPreSync"); 2861 assert(Matcher::has_match_rule(Op_CacheWBPostSync), "found match rule for CacheWB but not CacheWBPostSync"); 2862 ciSignature* sig = callee()->signature(); 2863 assert(sig->type_at(0)->basic_type() == T_LONG, "Unsafe_writeback0 address is long!"); 2864 #endif 2865 null_check_receiver(); // null-check, then ignore 2866 Node *addr = argument(1); 2867 addr = new CastX2PNode(addr); 2868 addr = _gvn.transform(addr); 2869 Node *flush = new CacheWBNode(control(), memory(TypeRawPtr::BOTTOM), addr); 2870 flush = _gvn.transform(flush); 2871 set_memory(flush, TypeRawPtr::BOTTOM); 2872 return true; 2873 } 2874 2875 //----------------------------inline_unsafe_writeback0------------------------- 2876 // public native void Unsafe.writeback0(long address) 2877 bool LibraryCallKit::inline_unsafe_writebackSync0(bool is_pre) { 2878 if (is_pre && !Matcher::has_match_rule(Op_CacheWBPreSync)) { 2879 return false; 2880 } 2881 if (!is_pre && !Matcher::has_match_rule(Op_CacheWBPostSync)) { 2882 return false; 2883 } 2884 #ifndef PRODUCT 2885 assert(Matcher::has_match_rule(Op_CacheWB), 2886 (is_pre ? "found match rule for CacheWBPreSync but not CacheWB" 2887 : "found match rule for CacheWBPostSync but not CacheWB")); 2888 2889 #endif 2890 null_check_receiver(); // null-check, then ignore 2891 Node *sync; 2892 if (is_pre) { 2893 sync = new CacheWBPreSyncNode(control(), memory(TypeRawPtr::BOTTOM)); 2894 } else { 2895 sync = new CacheWBPostSyncNode(control(), memory(TypeRawPtr::BOTTOM)); 2896 } 2897 sync = _gvn.transform(sync); 2898 set_memory(sync, TypeRawPtr::BOTTOM); 2899 return true; 2900 } 2901 2902 //----------------------------inline_unsafe_allocate--------------------------- 2903 // public native Object Unsafe.allocateInstance(Class<?> cls); 2904 bool LibraryCallKit::inline_unsafe_allocate() { 2905 2906 #if INCLUDE_JVMTI 2907 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 2908 return false; 2909 } 2910 #endif //INCLUDE_JVMTI 2911 2912 if (callee()->is_static()) return false; // caller must have the capability! 2913 2914 null_check_receiver(); // null-check, then ignore 2915 Node* cls = null_check(argument(1)); 2916 if (stopped()) return true; 2917 2918 Node* kls = load_klass_from_mirror(cls, false, nullptr, 0); 2919 kls = null_check(kls); 2920 if (stopped()) return true; // argument was like int.class 2921 2922 #if INCLUDE_JVMTI 2923 // Don't try to access new allocated obj in the intrinsic. 2924 // It causes perfomance issues even when jvmti event VmObjectAlloc is disabled. 2925 // Deoptimize and allocate in interpreter instead. 2926 Node* addr = makecon(TypeRawPtr::make((address) &JvmtiExport::_should_notify_object_alloc)); 2927 Node* should_post_vm_object_alloc = make_load(this->control(), addr, TypeInt::INT, T_INT, MemNode::unordered); 2928 Node* chk = _gvn.transform(new CmpINode(should_post_vm_object_alloc, intcon(0))); 2929 Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::eq)); 2930 { 2931 BuildCutout unless(this, tst, PROB_MAX); 2932 uncommon_trap(Deoptimization::Reason_intrinsic, 2933 Deoptimization::Action_make_not_entrant); 2934 } 2935 if (stopped()) { 2936 return true; 2937 } 2938 #endif //INCLUDE_JVMTI 2939 2940 Node* test = nullptr; 2941 if (LibraryCallKit::klass_needs_init_guard(kls)) { 2942 // Note: The argument might still be an illegal value like 2943 // Serializable.class or Object[].class. The runtime will handle it. 2944 // But we must make an explicit check for initialization. 2945 Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset())); 2946 // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler 2947 // can generate code to load it as unsigned byte. 2948 Node* inst = make_load(nullptr, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::acquire); 2949 Node* bits = intcon(InstanceKlass::fully_initialized); 2950 test = _gvn.transform(new SubINode(inst, bits)); 2951 // The 'test' is non-zero if we need to take a slow path. 2952 } 2953 2954 Node* obj = new_instance(kls, test); 2955 set_result(obj); 2956 return true; 2957 } 2958 2959 //------------------------inline_native_time_funcs-------------- 2960 // inline code for System.currentTimeMillis() and System.nanoTime() 2961 // these have the same type and signature 2962 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) { 2963 const TypeFunc* tf = OptoRuntime::void_long_Type(); 2964 const TypePtr* no_memory_effects = nullptr; 2965 Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects); 2966 Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0)); 2967 #ifdef ASSERT 2968 Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1)); 2969 assert(value_top == top(), "second value must be top"); 2970 #endif 2971 set_result(value); 2972 return true; 2973 } 2974 2975 2976 #if INCLUDE_JVMTI 2977 2978 // When notifications are disabled then just update the VTMS transition bit and return. 2979 // Otherwise, the bit is updated in the given function call implementing JVMTI notification protocol. 2980 bool LibraryCallKit::inline_native_notify_jvmti_funcs(address funcAddr, const char* funcName, bool is_start, bool is_end) { 2981 if (!DoJVMTIVirtualThreadTransitions) { 2982 return true; 2983 } 2984 Node* vt_oop = _gvn.transform(must_be_not_null(argument(0), true)); // VirtualThread this argument 2985 IdealKit ideal(this); 2986 2987 Node* ONE = ideal.ConI(1); 2988 Node* hide = is_start ? ideal.ConI(0) : (is_end ? ideal.ConI(1) : _gvn.transform(argument(1))); 2989 Node* addr = makecon(TypeRawPtr::make((address)&JvmtiVTMSTransitionDisabler::_VTMS_notify_jvmti_events)); 2990 Node* notify_jvmti_enabled = ideal.load(ideal.ctrl(), addr, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw); 2991 2992 ideal.if_then(notify_jvmti_enabled, BoolTest::eq, ONE); { 2993 sync_kit(ideal); 2994 // if notifyJvmti enabled then make a call to the given SharedRuntime function 2995 const TypeFunc* tf = OptoRuntime::notify_jvmti_vthread_Type(); 2996 make_runtime_call(RC_NO_LEAF, tf, funcAddr, funcName, TypePtr::BOTTOM, vt_oop, hide); 2997 ideal.sync_kit(this); 2998 } ideal.else_(); { 2999 // set hide value to the VTMS transition bit in current JavaThread and VirtualThread object 3000 Node* thread = ideal.thread(); 3001 Node* jt_addr = basic_plus_adr(thread, in_bytes(JavaThread::is_in_VTMS_transition_offset())); 3002 Node* vt_addr = basic_plus_adr(vt_oop, java_lang_Thread::is_in_VTMS_transition_offset()); 3003 3004 sync_kit(ideal); 3005 access_store_at(nullptr, jt_addr, _gvn.type(jt_addr)->is_ptr(), hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED); 3006 access_store_at(nullptr, vt_addr, _gvn.type(vt_addr)->is_ptr(), hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED); 3007 3008 ideal.sync_kit(this); 3009 } ideal.end_if(); 3010 final_sync(ideal); 3011 3012 return true; 3013 } 3014 3015 // Always update the is_disable_suspend bit. 3016 bool LibraryCallKit::inline_native_notify_jvmti_sync() { 3017 if (!DoJVMTIVirtualThreadTransitions) { 3018 return true; 3019 } 3020 IdealKit ideal(this); 3021 3022 { 3023 // unconditionally update the is_disable_suspend bit in current JavaThread 3024 Node* thread = ideal.thread(); 3025 Node* arg = _gvn.transform(argument(0)); // argument for notification 3026 Node* addr = basic_plus_adr(thread, in_bytes(JavaThread::is_disable_suspend_offset())); 3027 const TypePtr *addr_type = _gvn.type(addr)->isa_ptr(); 3028 3029 sync_kit(ideal); 3030 access_store_at(nullptr, addr, addr_type, arg, _gvn.type(arg), T_BOOLEAN, IN_NATIVE | MO_UNORDERED); 3031 ideal.sync_kit(this); 3032 } 3033 final_sync(ideal); 3034 3035 return true; 3036 } 3037 3038 #endif // INCLUDE_JVMTI 3039 3040 #ifdef JFR_HAVE_INTRINSICS 3041 3042 /** 3043 * if oop->klass != null 3044 * // normal class 3045 * epoch = _epoch_state ? 2 : 1 3046 * if oop->klass->trace_id & ((epoch << META_SHIFT) | epoch)) != epoch { 3047 * ... // enter slow path when the klass is first recorded or the epoch of JFR shifts 3048 * } 3049 * id = oop->klass->trace_id >> TRACE_ID_SHIFT // normal class path 3050 * else 3051 * // primitive class 3052 * if oop->array_klass != null 3053 * id = (oop->array_klass->trace_id >> TRACE_ID_SHIFT) + 1 // primitive class path 3054 * else 3055 * id = LAST_TYPE_ID + 1 // void class path 3056 * if (!signaled) 3057 * signaled = true 3058 */ 3059 bool LibraryCallKit::inline_native_classID() { 3060 Node* cls = argument(0); 3061 3062 IdealKit ideal(this); 3063 #define __ ideal. 3064 IdealVariable result(ideal); __ declarations_done(); 3065 Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), 3066 basic_plus_adr(cls, java_lang_Class::klass_offset()), 3067 TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL)); 3068 3069 3070 __ if_then(kls, BoolTest::ne, null()); { 3071 Node* kls_trace_id_addr = basic_plus_adr(kls, in_bytes(KLASS_TRACE_ID_OFFSET)); 3072 Node* kls_trace_id_raw = ideal.load(ideal.ctrl(), kls_trace_id_addr,TypeLong::LONG, T_LONG, Compile::AliasIdxRaw); 3073 3074 Node* epoch_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::epoch_address())); 3075 Node* epoch = ideal.load(ideal.ctrl(), epoch_address, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw); 3076 epoch = _gvn.transform(new LShiftLNode(longcon(1), epoch)); 3077 Node* mask = _gvn.transform(new LShiftLNode(epoch, intcon(META_SHIFT))); 3078 mask = _gvn.transform(new OrLNode(mask, epoch)); 3079 Node* kls_trace_id_raw_and_mask = _gvn.transform(new AndLNode(kls_trace_id_raw, mask)); 3080 3081 float unlikely = PROB_UNLIKELY(0.999); 3082 __ if_then(kls_trace_id_raw_and_mask, BoolTest::ne, epoch, unlikely); { 3083 sync_kit(ideal); 3084 make_runtime_call(RC_LEAF, 3085 OptoRuntime::class_id_load_barrier_Type(), 3086 CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::load_barrier), 3087 "class id load barrier", 3088 TypePtr::BOTTOM, 3089 kls); 3090 ideal.sync_kit(this); 3091 } __ end_if(); 3092 3093 ideal.set(result, _gvn.transform(new URShiftLNode(kls_trace_id_raw, ideal.ConI(TRACE_ID_SHIFT)))); 3094 } __ else_(); { 3095 Node* array_kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), 3096 basic_plus_adr(cls, java_lang_Class::array_klass_offset()), 3097 TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL)); 3098 __ if_then(array_kls, BoolTest::ne, null()); { 3099 Node* array_kls_trace_id_addr = basic_plus_adr(array_kls, in_bytes(KLASS_TRACE_ID_OFFSET)); 3100 Node* array_kls_trace_id_raw = ideal.load(ideal.ctrl(), array_kls_trace_id_addr, TypeLong::LONG, T_LONG, Compile::AliasIdxRaw); 3101 Node* array_kls_trace_id = _gvn.transform(new URShiftLNode(array_kls_trace_id_raw, ideal.ConI(TRACE_ID_SHIFT))); 3102 ideal.set(result, _gvn.transform(new AddLNode(array_kls_trace_id, longcon(1)))); 3103 } __ else_(); { 3104 // void class case 3105 ideal.set(result, _gvn.transform(longcon(LAST_TYPE_ID + 1))); 3106 } __ end_if(); 3107 3108 Node* signaled_flag_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::signal_address())); 3109 Node* signaled = ideal.load(ideal.ctrl(), signaled_flag_address, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw, true, MemNode::acquire); 3110 __ if_then(signaled, BoolTest::ne, ideal.ConI(1)); { 3111 ideal.store(ideal.ctrl(), signaled_flag_address, ideal.ConI(1), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::release, true); 3112 } __ end_if(); 3113 } __ end_if(); 3114 3115 final_sync(ideal); 3116 set_result(ideal.value(result)); 3117 #undef __ 3118 return true; 3119 } 3120 3121 //------------------------inline_native_jvm_commit------------------ 3122 bool LibraryCallKit::inline_native_jvm_commit() { 3123 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 3124 3125 // Save input memory and i_o state. 3126 Node* input_memory_state = reset_memory(); 3127 set_all_memory(input_memory_state); 3128 Node* input_io_state = i_o(); 3129 3130 // TLS. 3131 Node* tls_ptr = _gvn.transform(new ThreadLocalNode()); 3132 // Jfr java buffer. 3133 Node* java_buffer_offset = _gvn.transform(new AddPNode(top(), tls_ptr, _gvn.transform(MakeConX(in_bytes(JAVA_BUFFER_OFFSET_JFR))))); 3134 Node* java_buffer = _gvn.transform(new LoadPNode(control(), input_memory_state, java_buffer_offset, TypePtr::BOTTOM, TypeRawPtr::NOTNULL, MemNode::unordered)); 3135 Node* java_buffer_pos_offset = _gvn.transform(new AddPNode(top(), java_buffer, _gvn.transform(MakeConX(in_bytes(JFR_BUFFER_POS_OFFSET))))); 3136 3137 // Load the current value of the notified field in the JfrThreadLocal. 3138 Node* notified_offset = basic_plus_adr(top(), tls_ptr, in_bytes(NOTIFY_OFFSET_JFR)); 3139 Node* notified = make_load(control(), notified_offset, TypeInt::BOOL, T_BOOLEAN, MemNode::unordered); 3140 3141 // Test for notification. 3142 Node* notified_cmp = _gvn.transform(new CmpINode(notified, _gvn.intcon(1))); 3143 Node* test_notified = _gvn.transform(new BoolNode(notified_cmp, BoolTest::eq)); 3144 IfNode* iff_notified = create_and_map_if(control(), test_notified, PROB_MIN, COUNT_UNKNOWN); 3145 3146 // True branch, is notified. 3147 Node* is_notified = _gvn.transform(new IfTrueNode(iff_notified)); 3148 set_control(is_notified); 3149 3150 // Reset notified state. 3151 store_to_memory(control(), notified_offset, _gvn.intcon(0), T_BOOLEAN, MemNode::unordered); 3152 Node* notified_reset_memory = reset_memory(); 3153 3154 // Iff notified, the return address of the commit method is the current position of the backing java buffer. This is used to reset the event writer. 3155 Node* current_pos_X = _gvn.transform(new LoadXNode(control(), input_memory_state, java_buffer_pos_offset, TypeRawPtr::NOTNULL, TypeX_X, MemNode::unordered)); 3156 // Convert the machine-word to a long. 3157 Node* current_pos = _gvn.transform(ConvX2L(current_pos_X)); 3158 3159 // False branch, not notified. 3160 Node* not_notified = _gvn.transform(new IfFalseNode(iff_notified)); 3161 set_control(not_notified); 3162 set_all_memory(input_memory_state); 3163 3164 // Arg is the next position as a long. 3165 Node* arg = argument(0); 3166 // Convert long to machine-word. 3167 Node* next_pos_X = _gvn.transform(ConvL2X(arg)); 3168 3169 // Store the next_position to the underlying jfr java buffer. 3170 store_to_memory(control(), java_buffer_pos_offset, next_pos_X, LP64_ONLY(T_LONG) NOT_LP64(T_INT), MemNode::release); 3171 3172 Node* commit_memory = reset_memory(); 3173 set_all_memory(commit_memory); 3174 3175 // Now load the flags from off the java buffer and decide if the buffer is a lease. If so, it needs to be returned post-commit. 3176 Node* java_buffer_flags_offset = _gvn.transform(new AddPNode(top(), java_buffer, _gvn.transform(MakeConX(in_bytes(JFR_BUFFER_FLAGS_OFFSET))))); 3177 Node* flags = make_load(control(), java_buffer_flags_offset, TypeInt::UBYTE, T_BYTE, MemNode::unordered); 3178 Node* lease_constant = _gvn.transform(_gvn.intcon(4)); 3179 3180 // And flags with lease constant. 3181 Node* lease = _gvn.transform(new AndINode(flags, lease_constant)); 3182 3183 // Branch on lease to conditionalize returning the leased java buffer. 3184 Node* lease_cmp = _gvn.transform(new CmpINode(lease, lease_constant)); 3185 Node* test_lease = _gvn.transform(new BoolNode(lease_cmp, BoolTest::eq)); 3186 IfNode* iff_lease = create_and_map_if(control(), test_lease, PROB_MIN, COUNT_UNKNOWN); 3187 3188 // False branch, not a lease. 3189 Node* not_lease = _gvn.transform(new IfFalseNode(iff_lease)); 3190 3191 // True branch, is lease. 3192 Node* is_lease = _gvn.transform(new IfTrueNode(iff_lease)); 3193 set_control(is_lease); 3194 3195 // Make a runtime call, which can safepoint, to return the leased buffer. This updates both the JfrThreadLocal and the Java event writer oop. 3196 Node* call_return_lease = make_runtime_call(RC_NO_LEAF, 3197 OptoRuntime::void_void_Type(), 3198 SharedRuntime::jfr_return_lease(), 3199 "return_lease", TypePtr::BOTTOM); 3200 Node* call_return_lease_control = _gvn.transform(new ProjNode(call_return_lease, TypeFunc::Control)); 3201 3202 RegionNode* lease_compare_rgn = new RegionNode(PATH_LIMIT); 3203 record_for_igvn(lease_compare_rgn); 3204 PhiNode* lease_compare_mem = new PhiNode(lease_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3205 record_for_igvn(lease_compare_mem); 3206 PhiNode* lease_compare_io = new PhiNode(lease_compare_rgn, Type::ABIO); 3207 record_for_igvn(lease_compare_io); 3208 PhiNode* lease_result_value = new PhiNode(lease_compare_rgn, TypeLong::LONG); 3209 record_for_igvn(lease_result_value); 3210 3211 // Update control and phi nodes. 3212 lease_compare_rgn->init_req(_true_path, call_return_lease_control); 3213 lease_compare_rgn->init_req(_false_path, not_lease); 3214 3215 lease_compare_mem->init_req(_true_path, _gvn.transform(reset_memory())); 3216 lease_compare_mem->init_req(_false_path, commit_memory); 3217 3218 lease_compare_io->init_req(_true_path, i_o()); 3219 lease_compare_io->init_req(_false_path, input_io_state); 3220 3221 lease_result_value->init_req(_true_path, null()); // if the lease was returned, return 0. 3222 lease_result_value->init_req(_false_path, arg); // if not lease, return new updated position. 3223 3224 RegionNode* result_rgn = new RegionNode(PATH_LIMIT); 3225 PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM); 3226 PhiNode* result_io = new PhiNode(result_rgn, Type::ABIO); 3227 PhiNode* result_value = new PhiNode(result_rgn, TypeLong::LONG); 3228 3229 // Update control and phi nodes. 3230 result_rgn->init_req(_true_path, is_notified); 3231 result_rgn->init_req(_false_path, _gvn.transform(lease_compare_rgn)); 3232 3233 result_mem->init_req(_true_path, notified_reset_memory); 3234 result_mem->init_req(_false_path, _gvn.transform(lease_compare_mem)); 3235 3236 result_io->init_req(_true_path, input_io_state); 3237 result_io->init_req(_false_path, _gvn.transform(lease_compare_io)); 3238 3239 result_value->init_req(_true_path, current_pos); 3240 result_value->init_req(_false_path, _gvn.transform(lease_result_value)); 3241 3242 // Set output state. 3243 set_control(_gvn.transform(result_rgn)); 3244 set_all_memory(_gvn.transform(result_mem)); 3245 set_i_o(_gvn.transform(result_io)); 3246 set_result(result_rgn, result_value); 3247 return true; 3248 } 3249 3250 /* 3251 * The intrinsic is a model of this pseudo-code: 3252 * 3253 * JfrThreadLocal* const tl = Thread::jfr_thread_local() 3254 * jobject h_event_writer = tl->java_event_writer(); 3255 * if (h_event_writer == nullptr) { 3256 * return nullptr; 3257 * } 3258 * oop threadObj = Thread::threadObj(); 3259 * oop vthread = java_lang_Thread::vthread(threadObj); 3260 * traceid tid; 3261 * bool pinVirtualThread; 3262 * bool excluded; 3263 * if (vthread != threadObj) { // i.e. current thread is virtual 3264 * tid = java_lang_Thread::tid(vthread); 3265 * u2 vthread_epoch_raw = java_lang_Thread::jfr_epoch(vthread); 3266 * pinVirtualThread = VMContinuations; 3267 * excluded = vthread_epoch_raw & excluded_mask; 3268 * if (!excluded) { 3269 * traceid current_epoch = JfrTraceIdEpoch::current_generation(); 3270 * u2 vthread_epoch = vthread_epoch_raw & epoch_mask; 3271 * if (vthread_epoch != current_epoch) { 3272 * write_checkpoint(); 3273 * } 3274 * } 3275 * } else { 3276 * tid = java_lang_Thread::tid(threadObj); 3277 * u2 thread_epoch_raw = java_lang_Thread::jfr_epoch(threadObj); 3278 * pinVirtualThread = false; 3279 * excluded = thread_epoch_raw & excluded_mask; 3280 * } 3281 * oop event_writer = JNIHandles::resolve_non_null(h_event_writer); 3282 * traceid tid_in_event_writer = getField(event_writer, "threadID"); 3283 * if (tid_in_event_writer != tid) { 3284 * setField(event_writer, "pinVirtualThread", pinVirtualThread); 3285 * setField(event_writer, "excluded", excluded); 3286 * setField(event_writer, "threadID", tid); 3287 * } 3288 * return event_writer 3289 */ 3290 bool LibraryCallKit::inline_native_getEventWriter() { 3291 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 3292 3293 // Save input memory and i_o state. 3294 Node* input_memory_state = reset_memory(); 3295 set_all_memory(input_memory_state); 3296 Node* input_io_state = i_o(); 3297 3298 // The most significant bit of the u2 is used to denote thread exclusion 3299 Node* excluded_shift = _gvn.intcon(15); 3300 Node* excluded_mask = _gvn.intcon(1 << 15); 3301 // The epoch generation is the range [1-32767] 3302 Node* epoch_mask = _gvn.intcon(32767); 3303 3304 // TLS 3305 Node* tls_ptr = _gvn.transform(new ThreadLocalNode()); 3306 3307 // Load the address of java event writer jobject handle from the jfr_thread_local structure. 3308 Node* jobj_ptr = basic_plus_adr(top(), tls_ptr, in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR)); 3309 3310 // Load the eventwriter jobject handle. 3311 Node* jobj = make_load(control(), jobj_ptr, TypeRawPtr::BOTTOM, T_ADDRESS, MemNode::unordered); 3312 3313 // Null check the jobject handle. 3314 Node* jobj_cmp_null = _gvn.transform(new CmpPNode(jobj, null())); 3315 Node* test_jobj_not_equal_null = _gvn.transform(new BoolNode(jobj_cmp_null, BoolTest::ne)); 3316 IfNode* iff_jobj_not_equal_null = create_and_map_if(control(), test_jobj_not_equal_null, PROB_MAX, COUNT_UNKNOWN); 3317 3318 // False path, jobj is null. 3319 Node* jobj_is_null = _gvn.transform(new IfFalseNode(iff_jobj_not_equal_null)); 3320 3321 // True path, jobj is not null. 3322 Node* jobj_is_not_null = _gvn.transform(new IfTrueNode(iff_jobj_not_equal_null)); 3323 3324 set_control(jobj_is_not_null); 3325 3326 // Load the threadObj for the CarrierThread. 3327 Node* threadObj = generate_current_thread(tls_ptr); 3328 3329 // Load the vthread. 3330 Node* vthread = generate_virtual_thread(tls_ptr); 3331 3332 // If vthread != threadObj, this is a virtual thread. 3333 Node* vthread_cmp_threadObj = _gvn.transform(new CmpPNode(vthread, threadObj)); 3334 Node* test_vthread_not_equal_threadObj = _gvn.transform(new BoolNode(vthread_cmp_threadObj, BoolTest::ne)); 3335 IfNode* iff_vthread_not_equal_threadObj = 3336 create_and_map_if(jobj_is_not_null, test_vthread_not_equal_threadObj, PROB_FAIR, COUNT_UNKNOWN); 3337 3338 // False branch, fallback to threadObj. 3339 Node* vthread_equal_threadObj = _gvn.transform(new IfFalseNode(iff_vthread_not_equal_threadObj)); 3340 set_control(vthread_equal_threadObj); 3341 3342 // Load the tid field from the vthread object. 3343 Node* thread_obj_tid = load_field_from_object(threadObj, "tid", "J"); 3344 3345 // Load the raw epoch value from the threadObj. 3346 Node* threadObj_epoch_offset = basic_plus_adr(threadObj, java_lang_Thread::jfr_epoch_offset()); 3347 Node* threadObj_epoch_raw = access_load_at(threadObj, threadObj_epoch_offset, 3348 _gvn.type(threadObj_epoch_offset)->isa_ptr(), 3349 TypeInt::CHAR, T_CHAR, 3350 IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD); 3351 3352 // Mask off the excluded information from the epoch. 3353 Node * threadObj_is_excluded = _gvn.transform(new AndINode(threadObj_epoch_raw, excluded_mask)); 3354 3355 // True branch, this is a virtual thread. 3356 Node* vthread_not_equal_threadObj = _gvn.transform(new IfTrueNode(iff_vthread_not_equal_threadObj)); 3357 set_control(vthread_not_equal_threadObj); 3358 3359 // Load the tid field from the vthread object. 3360 Node* vthread_tid = load_field_from_object(vthread, "tid", "J"); 3361 3362 // Continuation support determines if a virtual thread should be pinned. 3363 Node* global_addr = makecon(TypeRawPtr::make((address)&VMContinuations)); 3364 Node* continuation_support = make_load(control(), global_addr, TypeInt::BOOL, T_BOOLEAN, MemNode::unordered); 3365 3366 // Load the raw epoch value from the vthread. 3367 Node* vthread_epoch_offset = basic_plus_adr(vthread, java_lang_Thread::jfr_epoch_offset()); 3368 Node* vthread_epoch_raw = access_load_at(vthread, vthread_epoch_offset, _gvn.type(vthread_epoch_offset)->is_ptr(), 3369 TypeInt::CHAR, T_CHAR, 3370 IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD); 3371 3372 // Mask off the excluded information from the epoch. 3373 Node * vthread_is_excluded = _gvn.transform(new AndINode(vthread_epoch_raw, _gvn.transform(excluded_mask))); 3374 3375 // Branch on excluded to conditionalize updating the epoch for the virtual thread. 3376 Node* is_excluded_cmp = _gvn.transform(new CmpINode(vthread_is_excluded, _gvn.transform(excluded_mask))); 3377 Node* test_not_excluded = _gvn.transform(new BoolNode(is_excluded_cmp, BoolTest::ne)); 3378 IfNode* iff_not_excluded = create_and_map_if(control(), test_not_excluded, PROB_MAX, COUNT_UNKNOWN); 3379 3380 // False branch, vthread is excluded, no need to write epoch info. 3381 Node* excluded = _gvn.transform(new IfFalseNode(iff_not_excluded)); 3382 3383 // True branch, vthread is included, update epoch info. 3384 Node* included = _gvn.transform(new IfTrueNode(iff_not_excluded)); 3385 set_control(included); 3386 3387 // Get epoch value. 3388 Node* epoch = _gvn.transform(new AndINode(vthread_epoch_raw, _gvn.transform(epoch_mask))); 3389 3390 // Load the current epoch generation. The value is unsigned 16-bit, so we type it as T_CHAR. 3391 Node* epoch_generation_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::epoch_generation_address())); 3392 Node* current_epoch_generation = make_load(control(), epoch_generation_address, TypeInt::CHAR, T_CHAR, MemNode::unordered); 3393 3394 // Compare the epoch in the vthread to the current epoch generation. 3395 Node* const epoch_cmp = _gvn.transform(new CmpUNode(current_epoch_generation, epoch)); 3396 Node* test_epoch_not_equal = _gvn.transform(new BoolNode(epoch_cmp, BoolTest::ne)); 3397 IfNode* iff_epoch_not_equal = create_and_map_if(control(), test_epoch_not_equal, PROB_FAIR, COUNT_UNKNOWN); 3398 3399 // False path, epoch is equal, checkpoint information is valid. 3400 Node* epoch_is_equal = _gvn.transform(new IfFalseNode(iff_epoch_not_equal)); 3401 3402 // True path, epoch is not equal, write a checkpoint for the vthread. 3403 Node* epoch_is_not_equal = _gvn.transform(new IfTrueNode(iff_epoch_not_equal)); 3404 3405 set_control(epoch_is_not_equal); 3406 3407 // Make a runtime call, which can safepoint, to write a checkpoint for the vthread for this epoch. 3408 // The call also updates the native thread local thread id and the vthread with the current epoch. 3409 Node* call_write_checkpoint = make_runtime_call(RC_NO_LEAF, 3410 OptoRuntime::jfr_write_checkpoint_Type(), 3411 SharedRuntime::jfr_write_checkpoint(), 3412 "write_checkpoint", TypePtr::BOTTOM); 3413 Node* call_write_checkpoint_control = _gvn.transform(new ProjNode(call_write_checkpoint, TypeFunc::Control)); 3414 3415 // vthread epoch != current epoch 3416 RegionNode* epoch_compare_rgn = new RegionNode(PATH_LIMIT); 3417 record_for_igvn(epoch_compare_rgn); 3418 PhiNode* epoch_compare_mem = new PhiNode(epoch_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3419 record_for_igvn(epoch_compare_mem); 3420 PhiNode* epoch_compare_io = new PhiNode(epoch_compare_rgn, Type::ABIO); 3421 record_for_igvn(epoch_compare_io); 3422 3423 // Update control and phi nodes. 3424 epoch_compare_rgn->init_req(_true_path, call_write_checkpoint_control); 3425 epoch_compare_rgn->init_req(_false_path, epoch_is_equal); 3426 epoch_compare_mem->init_req(_true_path, _gvn.transform(reset_memory())); 3427 epoch_compare_mem->init_req(_false_path, input_memory_state); 3428 epoch_compare_io->init_req(_true_path, i_o()); 3429 epoch_compare_io->init_req(_false_path, input_io_state); 3430 3431 // excluded != true 3432 RegionNode* exclude_compare_rgn = new RegionNode(PATH_LIMIT); 3433 record_for_igvn(exclude_compare_rgn); 3434 PhiNode* exclude_compare_mem = new PhiNode(exclude_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3435 record_for_igvn(exclude_compare_mem); 3436 PhiNode* exclude_compare_io = new PhiNode(exclude_compare_rgn, Type::ABIO); 3437 record_for_igvn(exclude_compare_io); 3438 3439 // Update control and phi nodes. 3440 exclude_compare_rgn->init_req(_true_path, _gvn.transform(epoch_compare_rgn)); 3441 exclude_compare_rgn->init_req(_false_path, excluded); 3442 exclude_compare_mem->init_req(_true_path, _gvn.transform(epoch_compare_mem)); 3443 exclude_compare_mem->init_req(_false_path, input_memory_state); 3444 exclude_compare_io->init_req(_true_path, _gvn.transform(epoch_compare_io)); 3445 exclude_compare_io->init_req(_false_path, input_io_state); 3446 3447 // vthread != threadObj 3448 RegionNode* vthread_compare_rgn = new RegionNode(PATH_LIMIT); 3449 record_for_igvn(vthread_compare_rgn); 3450 PhiNode* vthread_compare_mem = new PhiNode(vthread_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3451 PhiNode* vthread_compare_io = new PhiNode(vthread_compare_rgn, Type::ABIO); 3452 record_for_igvn(vthread_compare_io); 3453 PhiNode* tid = new PhiNode(vthread_compare_rgn, TypeLong::LONG); 3454 record_for_igvn(tid); 3455 PhiNode* exclusion = new PhiNode(vthread_compare_rgn, TypeInt::CHAR); 3456 record_for_igvn(exclusion); 3457 PhiNode* pinVirtualThread = new PhiNode(vthread_compare_rgn, TypeInt::BOOL); 3458 record_for_igvn(pinVirtualThread); 3459 3460 // Update control and phi nodes. 3461 vthread_compare_rgn->init_req(_true_path, _gvn.transform(exclude_compare_rgn)); 3462 vthread_compare_rgn->init_req(_false_path, vthread_equal_threadObj); 3463 vthread_compare_mem->init_req(_true_path, _gvn.transform(exclude_compare_mem)); 3464 vthread_compare_mem->init_req(_false_path, input_memory_state); 3465 vthread_compare_io->init_req(_true_path, _gvn.transform(exclude_compare_io)); 3466 vthread_compare_io->init_req(_false_path, input_io_state); 3467 tid->init_req(_true_path, _gvn.transform(vthread_tid)); 3468 tid->init_req(_false_path, _gvn.transform(thread_obj_tid)); 3469 exclusion->init_req(_true_path, _gvn.transform(vthread_is_excluded)); 3470 exclusion->init_req(_false_path, _gvn.transform(threadObj_is_excluded)); 3471 pinVirtualThread->init_req(_true_path, _gvn.transform(continuation_support)); 3472 pinVirtualThread->init_req(_false_path, _gvn.intcon(0)); 3473 3474 // Update branch state. 3475 set_control(_gvn.transform(vthread_compare_rgn)); 3476 set_all_memory(_gvn.transform(vthread_compare_mem)); 3477 set_i_o(_gvn.transform(vthread_compare_io)); 3478 3479 // Load the event writer oop by dereferencing the jobject handle. 3480 ciKlass* klass_EventWriter = env()->find_system_klass(ciSymbol::make("jdk/jfr/internal/event/EventWriter")); 3481 assert(klass_EventWriter->is_loaded(), "invariant"); 3482 ciInstanceKlass* const instklass_EventWriter = klass_EventWriter->as_instance_klass(); 3483 const TypeKlassPtr* const aklass = TypeKlassPtr::make(instklass_EventWriter); 3484 const TypeOopPtr* const xtype = aklass->as_instance_type(); 3485 Node* jobj_untagged = _gvn.transform(new AddPNode(top(), jobj, _gvn.MakeConX(-JNIHandles::TypeTag::global))); 3486 Node* event_writer = access_load(jobj_untagged, xtype, T_OBJECT, IN_NATIVE | C2_CONTROL_DEPENDENT_LOAD); 3487 3488 // Load the current thread id from the event writer object. 3489 Node* const event_writer_tid = load_field_from_object(event_writer, "threadID", "J"); 3490 // Get the field offset to, conditionally, store an updated tid value later. 3491 Node* const event_writer_tid_field = field_address_from_object(event_writer, "threadID", "J", false); 3492 // Get the field offset to, conditionally, store an updated exclusion value later. 3493 Node* const event_writer_excluded_field = field_address_from_object(event_writer, "excluded", "Z", false); 3494 // Get the field offset to, conditionally, store an updated pinVirtualThread value later. 3495 Node* const event_writer_pin_field = field_address_from_object(event_writer, "pinVirtualThread", "Z", false); 3496 3497 RegionNode* event_writer_tid_compare_rgn = new RegionNode(PATH_LIMIT); 3498 record_for_igvn(event_writer_tid_compare_rgn); 3499 PhiNode* event_writer_tid_compare_mem = new PhiNode(event_writer_tid_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3500 record_for_igvn(event_writer_tid_compare_mem); 3501 PhiNode* event_writer_tid_compare_io = new PhiNode(event_writer_tid_compare_rgn, Type::ABIO); 3502 record_for_igvn(event_writer_tid_compare_io); 3503 3504 // Compare the current tid from the thread object to what is currently stored in the event writer object. 3505 Node* const tid_cmp = _gvn.transform(new CmpLNode(event_writer_tid, _gvn.transform(tid))); 3506 Node* test_tid_not_equal = _gvn.transform(new BoolNode(tid_cmp, BoolTest::ne)); 3507 IfNode* iff_tid_not_equal = create_and_map_if(_gvn.transform(vthread_compare_rgn), test_tid_not_equal, PROB_FAIR, COUNT_UNKNOWN); 3508 3509 // False path, tids are the same. 3510 Node* tid_is_equal = _gvn.transform(new IfFalseNode(iff_tid_not_equal)); 3511 3512 // True path, tid is not equal, need to update the tid in the event writer. 3513 Node* tid_is_not_equal = _gvn.transform(new IfTrueNode(iff_tid_not_equal)); 3514 record_for_igvn(tid_is_not_equal); 3515 3516 // Store the pin state to the event writer. 3517 store_to_memory(tid_is_not_equal, event_writer_pin_field, _gvn.transform(pinVirtualThread), T_BOOLEAN, MemNode::unordered); 3518 3519 // Store the exclusion state to the event writer. 3520 Node* excluded_bool = _gvn.transform(new URShiftINode(_gvn.transform(exclusion), excluded_shift)); 3521 store_to_memory(tid_is_not_equal, event_writer_excluded_field, excluded_bool, T_BOOLEAN, MemNode::unordered); 3522 3523 // Store the tid to the event writer. 3524 store_to_memory(tid_is_not_equal, event_writer_tid_field, tid, T_LONG, MemNode::unordered); 3525 3526 // Update control and phi nodes. 3527 event_writer_tid_compare_rgn->init_req(_true_path, tid_is_not_equal); 3528 event_writer_tid_compare_rgn->init_req(_false_path, tid_is_equal); 3529 event_writer_tid_compare_mem->init_req(_true_path, _gvn.transform(reset_memory())); 3530 event_writer_tid_compare_mem->init_req(_false_path, _gvn.transform(vthread_compare_mem)); 3531 event_writer_tid_compare_io->init_req(_true_path, _gvn.transform(i_o())); 3532 event_writer_tid_compare_io->init_req(_false_path, _gvn.transform(vthread_compare_io)); 3533 3534 // Result of top level CFG, Memory, IO and Value. 3535 RegionNode* result_rgn = new RegionNode(PATH_LIMIT); 3536 PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM); 3537 PhiNode* result_io = new PhiNode(result_rgn, Type::ABIO); 3538 PhiNode* result_value = new PhiNode(result_rgn, TypeInstPtr::BOTTOM); 3539 3540 // Result control. 3541 result_rgn->init_req(_true_path, _gvn.transform(event_writer_tid_compare_rgn)); 3542 result_rgn->init_req(_false_path, jobj_is_null); 3543 3544 // Result memory. 3545 result_mem->init_req(_true_path, _gvn.transform(event_writer_tid_compare_mem)); 3546 result_mem->init_req(_false_path, _gvn.transform(input_memory_state)); 3547 3548 // Result IO. 3549 result_io->init_req(_true_path, _gvn.transform(event_writer_tid_compare_io)); 3550 result_io->init_req(_false_path, _gvn.transform(input_io_state)); 3551 3552 // Result value. 3553 result_value->init_req(_true_path, _gvn.transform(event_writer)); // return event writer oop 3554 result_value->init_req(_false_path, null()); // return null 3555 3556 // Set output state. 3557 set_control(_gvn.transform(result_rgn)); 3558 set_all_memory(_gvn.transform(result_mem)); 3559 set_i_o(_gvn.transform(result_io)); 3560 set_result(result_rgn, result_value); 3561 return true; 3562 } 3563 3564 /* 3565 * The intrinsic is a model of this pseudo-code: 3566 * 3567 * JfrThreadLocal* const tl = thread->jfr_thread_local(); 3568 * if (carrierThread != thread) { // is virtual thread 3569 * const u2 vthread_epoch_raw = java_lang_Thread::jfr_epoch(thread); 3570 * bool excluded = vthread_epoch_raw & excluded_mask; 3571 * Atomic::store(&tl->_contextual_tid, java_lang_Thread::tid(thread)); 3572 * Atomic::store(&tl->_contextual_thread_excluded, is_excluded); 3573 * if (!excluded) { 3574 * const u2 vthread_epoch = vthread_epoch_raw & epoch_mask; 3575 * Atomic::store(&tl->_vthread_epoch, vthread_epoch); 3576 * } 3577 * Atomic::release_store(&tl->_vthread, true); 3578 * return; 3579 * } 3580 * Atomic::release_store(&tl->_vthread, false); 3581 */ 3582 void LibraryCallKit::extend_setCurrentThread(Node* jt, Node* thread) { 3583 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 3584 3585 Node* input_memory_state = reset_memory(); 3586 set_all_memory(input_memory_state); 3587 3588 // The most significant bit of the u2 is used to denote thread exclusion 3589 Node* excluded_mask = _gvn.intcon(1 << 15); 3590 // The epoch generation is the range [1-32767] 3591 Node* epoch_mask = _gvn.intcon(32767); 3592 3593 Node* const carrierThread = generate_current_thread(jt); 3594 // If thread != carrierThread, this is a virtual thread. 3595 Node* thread_cmp_carrierThread = _gvn.transform(new CmpPNode(thread, carrierThread)); 3596 Node* test_thread_not_equal_carrierThread = _gvn.transform(new BoolNode(thread_cmp_carrierThread, BoolTest::ne)); 3597 IfNode* iff_thread_not_equal_carrierThread = 3598 create_and_map_if(control(), test_thread_not_equal_carrierThread, PROB_FAIR, COUNT_UNKNOWN); 3599 3600 Node* vthread_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_OFFSET_JFR)); 3601 3602 // False branch, is carrierThread. 3603 Node* thread_equal_carrierThread = _gvn.transform(new IfFalseNode(iff_thread_not_equal_carrierThread)); 3604 // Store release 3605 Node* vthread_false_memory = store_to_memory(thread_equal_carrierThread, vthread_offset, _gvn.intcon(0), T_BOOLEAN, MemNode::release, true); 3606 3607 set_all_memory(input_memory_state); 3608 3609 // True branch, is virtual thread. 3610 Node* thread_not_equal_carrierThread = _gvn.transform(new IfTrueNode(iff_thread_not_equal_carrierThread)); 3611 set_control(thread_not_equal_carrierThread); 3612 3613 // Load the raw epoch value from the vthread. 3614 Node* epoch_offset = basic_plus_adr(thread, java_lang_Thread::jfr_epoch_offset()); 3615 Node* epoch_raw = access_load_at(thread, epoch_offset, _gvn.type(epoch_offset)->is_ptr(), TypeInt::CHAR, T_CHAR, 3616 IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD); 3617 3618 // Mask off the excluded information from the epoch. 3619 Node * const is_excluded = _gvn.transform(new AndINode(epoch_raw, _gvn.transform(excluded_mask))); 3620 3621 // Load the tid field from the thread. 3622 Node* tid = load_field_from_object(thread, "tid", "J"); 3623 3624 // Store the vthread tid to the jfr thread local. 3625 Node* thread_id_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_ID_OFFSET_JFR)); 3626 Node* tid_memory = store_to_memory(control(), thread_id_offset, tid, T_LONG, MemNode::unordered, true); 3627 3628 // Branch is_excluded to conditionalize updating the epoch . 3629 Node* excluded_cmp = _gvn.transform(new CmpINode(is_excluded, _gvn.transform(excluded_mask))); 3630 Node* test_excluded = _gvn.transform(new BoolNode(excluded_cmp, BoolTest::eq)); 3631 IfNode* iff_excluded = create_and_map_if(control(), test_excluded, PROB_MIN, COUNT_UNKNOWN); 3632 3633 // True branch, vthread is excluded, no need to write epoch info. 3634 Node* excluded = _gvn.transform(new IfTrueNode(iff_excluded)); 3635 set_control(excluded); 3636 Node* vthread_is_excluded = _gvn.intcon(1); 3637 3638 // False branch, vthread is included, update epoch info. 3639 Node* included = _gvn.transform(new IfFalseNode(iff_excluded)); 3640 set_control(included); 3641 Node* vthread_is_included = _gvn.intcon(0); 3642 3643 // Get epoch value. 3644 Node* epoch = _gvn.transform(new AndINode(epoch_raw, _gvn.transform(epoch_mask))); 3645 3646 // Store the vthread epoch to the jfr thread local. 3647 Node* vthread_epoch_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_EPOCH_OFFSET_JFR)); 3648 Node* included_memory = store_to_memory(control(), vthread_epoch_offset, epoch, T_CHAR, MemNode::unordered, true); 3649 3650 RegionNode* excluded_rgn = new RegionNode(PATH_LIMIT); 3651 record_for_igvn(excluded_rgn); 3652 PhiNode* excluded_mem = new PhiNode(excluded_rgn, Type::MEMORY, TypePtr::BOTTOM); 3653 record_for_igvn(excluded_mem); 3654 PhiNode* exclusion = new PhiNode(excluded_rgn, TypeInt::BOOL); 3655 record_for_igvn(exclusion); 3656 3657 // Merge the excluded control and memory. 3658 excluded_rgn->init_req(_true_path, excluded); 3659 excluded_rgn->init_req(_false_path, included); 3660 excluded_mem->init_req(_true_path, tid_memory); 3661 excluded_mem->init_req(_false_path, included_memory); 3662 exclusion->init_req(_true_path, _gvn.transform(vthread_is_excluded)); 3663 exclusion->init_req(_false_path, _gvn.transform(vthread_is_included)); 3664 3665 // Set intermediate state. 3666 set_control(_gvn.transform(excluded_rgn)); 3667 set_all_memory(excluded_mem); 3668 3669 // Store the vthread exclusion state to the jfr thread local. 3670 Node* thread_local_excluded_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_EXCLUDED_OFFSET_JFR)); 3671 store_to_memory(control(), thread_local_excluded_offset, _gvn.transform(exclusion), T_BOOLEAN, MemNode::unordered, true); 3672 3673 // Store release 3674 Node * vthread_true_memory = store_to_memory(control(), vthread_offset, _gvn.intcon(1), T_BOOLEAN, MemNode::release, true); 3675 3676 RegionNode* thread_compare_rgn = new RegionNode(PATH_LIMIT); 3677 record_for_igvn(thread_compare_rgn); 3678 PhiNode* thread_compare_mem = new PhiNode(thread_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3679 record_for_igvn(thread_compare_mem); 3680 PhiNode* vthread = new PhiNode(thread_compare_rgn, TypeInt::BOOL); 3681 record_for_igvn(vthread); 3682 3683 // Merge the thread_compare control and memory. 3684 thread_compare_rgn->init_req(_true_path, control()); 3685 thread_compare_rgn->init_req(_false_path, thread_equal_carrierThread); 3686 thread_compare_mem->init_req(_true_path, vthread_true_memory); 3687 thread_compare_mem->init_req(_false_path, vthread_false_memory); 3688 3689 // Set output state. 3690 set_control(_gvn.transform(thread_compare_rgn)); 3691 set_all_memory(_gvn.transform(thread_compare_mem)); 3692 } 3693 3694 #endif // JFR_HAVE_INTRINSICS 3695 3696 //------------------------inline_native_currentCarrierThread------------------ 3697 bool LibraryCallKit::inline_native_currentCarrierThread() { 3698 Node* junk = nullptr; 3699 set_result(generate_current_thread(junk)); 3700 return true; 3701 } 3702 3703 //------------------------inline_native_currentThread------------------ 3704 bool LibraryCallKit::inline_native_currentThread() { 3705 Node* junk = nullptr; 3706 set_result(generate_virtual_thread(junk)); 3707 return true; 3708 } 3709 3710 //------------------------inline_native_setVthread------------------ 3711 bool LibraryCallKit::inline_native_setCurrentThread() { 3712 assert(C->method()->changes_current_thread(), 3713 "method changes current Thread but is not annotated ChangesCurrentThread"); 3714 Node* arr = argument(1); 3715 Node* thread = _gvn.transform(new ThreadLocalNode()); 3716 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::vthread_offset())); 3717 Node* thread_obj_handle 3718 = make_load(nullptr, p, p->bottom_type()->is_ptr(), T_OBJECT, MemNode::unordered); 3719 thread_obj_handle = _gvn.transform(thread_obj_handle); 3720 const TypePtr *adr_type = _gvn.type(thread_obj_handle)->isa_ptr(); 3721 access_store_at(nullptr, thread_obj_handle, adr_type, arr, _gvn.type(arr), T_OBJECT, IN_NATIVE | MO_UNORDERED); 3722 3723 // Change the _monitor_owner_id of the JavaThread 3724 Node* tid = load_field_from_object(arr, "tid", "J"); 3725 Node* monitor_owner_id_offset = basic_plus_adr(thread, in_bytes(JavaThread::monitor_owner_id_offset())); 3726 store_to_memory(control(), monitor_owner_id_offset, tid, T_LONG, MemNode::unordered, true); 3727 3728 JFR_ONLY(extend_setCurrentThread(thread, arr);) 3729 return true; 3730 } 3731 3732 const Type* LibraryCallKit::scopedValueCache_type() { 3733 ciKlass* objects_klass = ciObjArrayKlass::make(env()->Object_klass()); 3734 const TypeOopPtr* etype = TypeOopPtr::make_from_klass(env()->Object_klass()); 3735 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS); 3736 3737 // Because we create the scopedValue cache lazily we have to make the 3738 // type of the result BotPTR. 3739 bool xk = etype->klass_is_exact(); 3740 const Type* objects_type = TypeAryPtr::make(TypePtr::BotPTR, arr0, objects_klass, xk, 0); 3741 return objects_type; 3742 } 3743 3744 Node* LibraryCallKit::scopedValueCache_helper() { 3745 Node* thread = _gvn.transform(new ThreadLocalNode()); 3746 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::scopedValueCache_offset())); 3747 // We cannot use immutable_memory() because we might flip onto a 3748 // different carrier thread, at which point we'll need to use that 3749 // carrier thread's cache. 3750 // return _gvn.transform(LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(), 3751 // TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered)); 3752 return make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered); 3753 } 3754 3755 //------------------------inline_native_scopedValueCache------------------ 3756 bool LibraryCallKit::inline_native_scopedValueCache() { 3757 Node* cache_obj_handle = scopedValueCache_helper(); 3758 const Type* objects_type = scopedValueCache_type(); 3759 set_result(access_load(cache_obj_handle, objects_type, T_OBJECT, IN_NATIVE)); 3760 3761 return true; 3762 } 3763 3764 //------------------------inline_native_setScopedValueCache------------------ 3765 bool LibraryCallKit::inline_native_setScopedValueCache() { 3766 Node* arr = argument(0); 3767 Node* cache_obj_handle = scopedValueCache_helper(); 3768 const Type* objects_type = scopedValueCache_type(); 3769 3770 const TypePtr *adr_type = _gvn.type(cache_obj_handle)->isa_ptr(); 3771 access_store_at(nullptr, cache_obj_handle, adr_type, arr, objects_type, T_OBJECT, IN_NATIVE | MO_UNORDERED); 3772 3773 return true; 3774 } 3775 3776 //------------------------inline_native_Continuation_pin and unpin----------- 3777 3778 // Shared implementation routine for both pin and unpin. 3779 bool LibraryCallKit::inline_native_Continuation_pinning(bool unpin) { 3780 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 3781 3782 // Save input memory. 3783 Node* input_memory_state = reset_memory(); 3784 set_all_memory(input_memory_state); 3785 3786 // TLS 3787 Node* tls_ptr = _gvn.transform(new ThreadLocalNode()); 3788 Node* last_continuation_offset = basic_plus_adr(top(), tls_ptr, in_bytes(JavaThread::cont_entry_offset())); 3789 Node* last_continuation = make_load(control(), last_continuation_offset, last_continuation_offset->get_ptr_type(), T_ADDRESS, MemNode::unordered); 3790 3791 // Null check the last continuation object. 3792 Node* continuation_cmp_null = _gvn.transform(new CmpPNode(last_continuation, null())); 3793 Node* test_continuation_not_equal_null = _gvn.transform(new BoolNode(continuation_cmp_null, BoolTest::ne)); 3794 IfNode* iff_continuation_not_equal_null = create_and_map_if(control(), test_continuation_not_equal_null, PROB_MAX, COUNT_UNKNOWN); 3795 3796 // False path, last continuation is null. 3797 Node* continuation_is_null = _gvn.transform(new IfFalseNode(iff_continuation_not_equal_null)); 3798 3799 // True path, last continuation is not null. 3800 Node* continuation_is_not_null = _gvn.transform(new IfTrueNode(iff_continuation_not_equal_null)); 3801 3802 set_control(continuation_is_not_null); 3803 3804 // Load the pin count from the last continuation. 3805 Node* pin_count_offset = basic_plus_adr(top(), last_continuation, in_bytes(ContinuationEntry::pin_count_offset())); 3806 Node* pin_count = make_load(control(), pin_count_offset, TypeInt::INT, T_INT, MemNode::unordered); 3807 3808 // The loaded pin count is compared against a context specific rhs for over/underflow detection. 3809 Node* pin_count_rhs; 3810 if (unpin) { 3811 pin_count_rhs = _gvn.intcon(0); 3812 } else { 3813 pin_count_rhs = _gvn.intcon(UINT32_MAX); 3814 } 3815 Node* pin_count_cmp = _gvn.transform(new CmpUNode(_gvn.transform(pin_count), pin_count_rhs)); 3816 Node* test_pin_count_over_underflow = _gvn.transform(new BoolNode(pin_count_cmp, BoolTest::eq)); 3817 IfNode* iff_pin_count_over_underflow = create_and_map_if(control(), test_pin_count_over_underflow, PROB_MIN, COUNT_UNKNOWN); 3818 3819 // True branch, pin count over/underflow. 3820 Node* pin_count_over_underflow = _gvn.transform(new IfTrueNode(iff_pin_count_over_underflow)); 3821 { 3822 // Trap (but not deoptimize (Action_none)) and continue in the interpreter 3823 // which will throw IllegalStateException for pin count over/underflow. 3824 // No memory changed so far - we can use memory create by reset_memory() 3825 // at the beginning of this intrinsic. No need to call reset_memory() again. 3826 PreserveJVMState pjvms(this); 3827 set_control(pin_count_over_underflow); 3828 uncommon_trap(Deoptimization::Reason_intrinsic, 3829 Deoptimization::Action_none); 3830 assert(stopped(), "invariant"); 3831 } 3832 3833 // False branch, no pin count over/underflow. Increment or decrement pin count and store back. 3834 Node* valid_pin_count = _gvn.transform(new IfFalseNode(iff_pin_count_over_underflow)); 3835 set_control(valid_pin_count); 3836 3837 Node* next_pin_count; 3838 if (unpin) { 3839 next_pin_count = _gvn.transform(new SubINode(pin_count, _gvn.intcon(1))); 3840 } else { 3841 next_pin_count = _gvn.transform(new AddINode(pin_count, _gvn.intcon(1))); 3842 } 3843 3844 store_to_memory(control(), pin_count_offset, next_pin_count, T_INT, MemNode::unordered); 3845 3846 // Result of top level CFG and Memory. 3847 RegionNode* result_rgn = new RegionNode(PATH_LIMIT); 3848 record_for_igvn(result_rgn); 3849 PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM); 3850 record_for_igvn(result_mem); 3851 3852 result_rgn->init_req(_true_path, _gvn.transform(valid_pin_count)); 3853 result_rgn->init_req(_false_path, _gvn.transform(continuation_is_null)); 3854 result_mem->init_req(_true_path, _gvn.transform(reset_memory())); 3855 result_mem->init_req(_false_path, _gvn.transform(input_memory_state)); 3856 3857 // Set output state. 3858 set_control(_gvn.transform(result_rgn)); 3859 set_all_memory(_gvn.transform(result_mem)); 3860 3861 return true; 3862 } 3863 3864 //---------------------------load_mirror_from_klass---------------------------- 3865 // Given a klass oop, load its java mirror (a java.lang.Class oop). 3866 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) { 3867 Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset())); 3868 Node* load = make_load(nullptr, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered); 3869 // mirror = ((OopHandle)mirror)->resolve(); 3870 return access_load(load, TypeInstPtr::MIRROR, T_OBJECT, IN_NATIVE); 3871 } 3872 3873 //-----------------------load_klass_from_mirror_common------------------------- 3874 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop. 3875 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE), 3876 // and branch to the given path on the region. 3877 // If never_see_null, take an uncommon trap on null, so we can optimistically 3878 // compile for the non-null case. 3879 // If the region is null, force never_see_null = true. 3880 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror, 3881 bool never_see_null, 3882 RegionNode* region, 3883 int null_path, 3884 int offset) { 3885 if (region == nullptr) never_see_null = true; 3886 Node* p = basic_plus_adr(mirror, offset); 3887 const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL; 3888 Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type)); 3889 Node* null_ctl = top(); 3890 kls = null_check_oop(kls, &null_ctl, never_see_null); 3891 if (region != nullptr) { 3892 // Set region->in(null_path) if the mirror is a primitive (e.g, int.class). 3893 region->init_req(null_path, null_ctl); 3894 } else { 3895 assert(null_ctl == top(), "no loose ends"); 3896 } 3897 return kls; 3898 } 3899 3900 //--------------------(inline_native_Class_query helpers)--------------------- 3901 // Use this for JVM_ACC_INTERFACE. 3902 // Fall through if (mods & mask) == bits, take the guard otherwise. 3903 Node* LibraryCallKit::generate_klass_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region, 3904 ByteSize offset, const Type* type, BasicType bt) { 3905 // Branch around if the given klass has the given modifier bit set. 3906 // Like generate_guard, adds a new path onto the region. 3907 Node* modp = basic_plus_adr(kls, in_bytes(offset)); 3908 Node* mods = make_load(nullptr, modp, type, bt, MemNode::unordered); 3909 Node* mask = intcon(modifier_mask); 3910 Node* bits = intcon(modifier_bits); 3911 Node* mbit = _gvn.transform(new AndINode(mods, mask)); 3912 Node* cmp = _gvn.transform(new CmpINode(mbit, bits)); 3913 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne)); 3914 return generate_fair_guard(bol, region); 3915 } 3916 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) { 3917 return generate_klass_flags_guard(kls, JVM_ACC_INTERFACE, 0, region, 3918 Klass::access_flags_offset(), TypeInt::CHAR, T_CHAR); 3919 } 3920 3921 // Use this for testing if Klass is_hidden, has_finalizer, and is_cloneable_fast. 3922 Node* LibraryCallKit::generate_misc_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) { 3923 return generate_klass_flags_guard(kls, modifier_mask, modifier_bits, region, 3924 Klass::misc_flags_offset(), TypeInt::UBYTE, T_BOOLEAN); 3925 } 3926 3927 Node* LibraryCallKit::generate_hidden_class_guard(Node* kls, RegionNode* region) { 3928 return generate_misc_flags_guard(kls, KlassFlags::_misc_is_hidden_class, 0, region); 3929 } 3930 3931 //-------------------------inline_native_Class_query------------------- 3932 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) { 3933 const Type* return_type = TypeInt::BOOL; 3934 Node* prim_return_value = top(); // what happens if it's a primitive class? 3935 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 3936 bool expect_prim = false; // most of these guys expect to work on refs 3937 3938 enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT }; 3939 3940 Node* mirror = argument(0); 3941 Node* obj = top(); 3942 3943 switch (id) { 3944 case vmIntrinsics::_isInstance: 3945 // nothing is an instance of a primitive type 3946 prim_return_value = intcon(0); 3947 obj = argument(1); 3948 break; 3949 case vmIntrinsics::_isHidden: 3950 prim_return_value = intcon(0); 3951 break; 3952 case vmIntrinsics::_getSuperclass: 3953 prim_return_value = null(); 3954 return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR); 3955 break; 3956 case vmIntrinsics::_getClassAccessFlags: 3957 prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC); 3958 return_type = TypeInt::CHAR; 3959 break; 3960 default: 3961 fatal_unexpected_iid(id); 3962 break; 3963 } 3964 3965 const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr(); 3966 if (mirror_con == nullptr) return false; // cannot happen? 3967 3968 #ifndef PRODUCT 3969 if (C->print_intrinsics() || C->print_inlining()) { 3970 ciType* k = mirror_con->java_mirror_type(); 3971 if (k) { 3972 tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id())); 3973 k->print_name(); 3974 tty->cr(); 3975 } 3976 } 3977 #endif 3978 3979 // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive). 3980 RegionNode* region = new RegionNode(PATH_LIMIT); 3981 record_for_igvn(region); 3982 PhiNode* phi = new PhiNode(region, return_type); 3983 3984 // The mirror will never be null of Reflection.getClassAccessFlags, however 3985 // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE 3986 // if it is. See bug 4774291. 3987 3988 // For Reflection.getClassAccessFlags(), the null check occurs in 3989 // the wrong place; see inline_unsafe_access(), above, for a similar 3990 // situation. 3991 mirror = null_check(mirror); 3992 // If mirror or obj is dead, only null-path is taken. 3993 if (stopped()) return true; 3994 3995 if (expect_prim) never_see_null = false; // expect nulls (meaning prims) 3996 3997 // Now load the mirror's klass metaobject, and null-check it. 3998 // Side-effects region with the control path if the klass is null. 3999 Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path); 4000 // If kls is null, we have a primitive mirror. 4001 phi->init_req(_prim_path, prim_return_value); 4002 if (stopped()) { set_result(region, phi); return true; } 4003 bool safe_for_replace = (region->in(_prim_path) == top()); 4004 4005 Node* p; // handy temp 4006 Node* null_ctl; 4007 4008 // Now that we have the non-null klass, we can perform the real query. 4009 // For constant classes, the query will constant-fold in LoadNode::Value. 4010 Node* query_value = top(); 4011 switch (id) { 4012 case vmIntrinsics::_isInstance: 4013 // nothing is an instance of a primitive type 4014 query_value = gen_instanceof(obj, kls, safe_for_replace); 4015 break; 4016 4017 case vmIntrinsics::_isHidden: 4018 // (To verify this code sequence, check the asserts in JVM_IsHiddenClass.) 4019 if (generate_hidden_class_guard(kls, region) != nullptr) 4020 // A guard was added. If the guard is taken, it was an hidden class. 4021 phi->add_req(intcon(1)); 4022 // If we fall through, it's a plain class. 4023 query_value = intcon(0); 4024 break; 4025 4026 4027 case vmIntrinsics::_getSuperclass: 4028 // The rules here are somewhat unfortunate, but we can still do better 4029 // with random logic than with a JNI call. 4030 // Interfaces store null or Object as _super, but must report null. 4031 // Arrays store an intermediate super as _super, but must report Object. 4032 // Other types can report the actual _super. 4033 // (To verify this code sequence, check the asserts in JVM_IsInterface.) 4034 if (generate_interface_guard(kls, region) != nullptr) 4035 // A guard was added. If the guard is taken, it was an interface. 4036 phi->add_req(null()); 4037 if (generate_array_guard(kls, region) != nullptr) 4038 // A guard was added. If the guard is taken, it was an array. 4039 phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror()))); 4040 // If we fall through, it's a plain class. Get its _super. 4041 p = basic_plus_adr(kls, in_bytes(Klass::super_offset())); 4042 kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL)); 4043 null_ctl = top(); 4044 kls = null_check_oop(kls, &null_ctl); 4045 if (null_ctl != top()) { 4046 // If the guard is taken, Object.superClass is null (both klass and mirror). 4047 region->add_req(null_ctl); 4048 phi ->add_req(null()); 4049 } 4050 if (!stopped()) { 4051 query_value = load_mirror_from_klass(kls); 4052 } 4053 break; 4054 4055 case vmIntrinsics::_getClassAccessFlags: 4056 p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset())); 4057 query_value = make_load(nullptr, p, TypeInt::CHAR, T_CHAR, MemNode::unordered); 4058 break; 4059 4060 default: 4061 fatal_unexpected_iid(id); 4062 break; 4063 } 4064 4065 // Fall-through is the normal case of a query to a real class. 4066 phi->init_req(1, query_value); 4067 region->init_req(1, control()); 4068 4069 C->set_has_split_ifs(true); // Has chance for split-if optimization 4070 set_result(region, phi); 4071 return true; 4072 } 4073 4074 //-------------------------inline_Class_cast------------------- 4075 bool LibraryCallKit::inline_Class_cast() { 4076 Node* mirror = argument(0); // Class 4077 Node* obj = argument(1); 4078 const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr(); 4079 if (mirror_con == nullptr) { 4080 return false; // dead path (mirror->is_top()). 4081 } 4082 if (obj == nullptr || obj->is_top()) { 4083 return false; // dead path 4084 } 4085 const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr(); 4086 4087 // First, see if Class.cast() can be folded statically. 4088 // java_mirror_type() returns non-null for compile-time Class constants. 4089 ciType* tm = mirror_con->java_mirror_type(); 4090 if (tm != nullptr && tm->is_klass() && 4091 tp != nullptr) { 4092 if (!tp->is_loaded()) { 4093 // Don't use intrinsic when class is not loaded. 4094 return false; 4095 } else { 4096 int static_res = C->static_subtype_check(TypeKlassPtr::make(tm->as_klass(), Type::trust_interfaces), tp->as_klass_type()); 4097 if (static_res == Compile::SSC_always_true) { 4098 // isInstance() is true - fold the code. 4099 set_result(obj); 4100 return true; 4101 } else if (static_res == Compile::SSC_always_false) { 4102 // Don't use intrinsic, have to throw ClassCastException. 4103 // If the reference is null, the non-intrinsic bytecode will 4104 // be optimized appropriately. 4105 return false; 4106 } 4107 } 4108 } 4109 4110 // Bailout intrinsic and do normal inlining if exception path is frequent. 4111 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 4112 return false; 4113 } 4114 4115 // Generate dynamic checks. 4116 // Class.cast() is java implementation of _checkcast bytecode. 4117 // Do checkcast (Parse::do_checkcast()) optimizations here. 4118 4119 mirror = null_check(mirror); 4120 // If mirror is dead, only null-path is taken. 4121 if (stopped()) { 4122 return true; 4123 } 4124 4125 // Not-subtype or the mirror's klass ptr is null (in case it is a primitive). 4126 enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT }; 4127 RegionNode* region = new RegionNode(PATH_LIMIT); 4128 record_for_igvn(region); 4129 4130 // Now load the mirror's klass metaobject, and null-check it. 4131 // If kls is null, we have a primitive mirror and 4132 // nothing is an instance of a primitive type. 4133 Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path); 4134 4135 Node* res = top(); 4136 if (!stopped()) { 4137 Node* bad_type_ctrl = top(); 4138 // Do checkcast optimizations. 4139 res = gen_checkcast(obj, kls, &bad_type_ctrl); 4140 region->init_req(_bad_type_path, bad_type_ctrl); 4141 } 4142 if (region->in(_prim_path) != top() || 4143 region->in(_bad_type_path) != top()) { 4144 // Let Interpreter throw ClassCastException. 4145 PreserveJVMState pjvms(this); 4146 set_control(_gvn.transform(region)); 4147 uncommon_trap(Deoptimization::Reason_intrinsic, 4148 Deoptimization::Action_maybe_recompile); 4149 } 4150 if (!stopped()) { 4151 set_result(res); 4152 } 4153 return true; 4154 } 4155 4156 4157 //--------------------------inline_native_subtype_check------------------------ 4158 // This intrinsic takes the JNI calls out of the heart of 4159 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc. 4160 bool LibraryCallKit::inline_native_subtype_check() { 4161 // Pull both arguments off the stack. 4162 Node* args[2]; // two java.lang.Class mirrors: superc, subc 4163 args[0] = argument(0); 4164 args[1] = argument(1); 4165 Node* klasses[2]; // corresponding Klasses: superk, subk 4166 klasses[0] = klasses[1] = top(); 4167 4168 enum { 4169 // A full decision tree on {superc is prim, subc is prim}: 4170 _prim_0_path = 1, // {P,N} => false 4171 // {P,P} & superc!=subc => false 4172 _prim_same_path, // {P,P} & superc==subc => true 4173 _prim_1_path, // {N,P} => false 4174 _ref_subtype_path, // {N,N} & subtype check wins => true 4175 _both_ref_path, // {N,N} & subtype check loses => false 4176 PATH_LIMIT 4177 }; 4178 4179 RegionNode* region = new RegionNode(PATH_LIMIT); 4180 Node* phi = new PhiNode(region, TypeInt::BOOL); 4181 record_for_igvn(region); 4182 4183 const TypePtr* adr_type = TypeRawPtr::BOTTOM; // memory type of loads 4184 const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL; 4185 int class_klass_offset = java_lang_Class::klass_offset(); 4186 4187 // First null-check both mirrors and load each mirror's klass metaobject. 4188 int which_arg; 4189 for (which_arg = 0; which_arg <= 1; which_arg++) { 4190 Node* arg = args[which_arg]; 4191 arg = null_check(arg); 4192 if (stopped()) break; 4193 args[which_arg] = arg; 4194 4195 Node* p = basic_plus_adr(arg, class_klass_offset); 4196 Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type); 4197 klasses[which_arg] = _gvn.transform(kls); 4198 } 4199 4200 // Having loaded both klasses, test each for null. 4201 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 4202 for (which_arg = 0; which_arg <= 1; which_arg++) { 4203 Node* kls = klasses[which_arg]; 4204 Node* null_ctl = top(); 4205 kls = null_check_oop(kls, &null_ctl, never_see_null); 4206 int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path); 4207 region->init_req(prim_path, null_ctl); 4208 if (stopped()) break; 4209 klasses[which_arg] = kls; 4210 } 4211 4212 if (!stopped()) { 4213 // now we have two reference types, in klasses[0..1] 4214 Node* subk = klasses[1]; // the argument to isAssignableFrom 4215 Node* superk = klasses[0]; // the receiver 4216 region->set_req(_both_ref_path, gen_subtype_check(subk, superk)); 4217 // now we have a successful reference subtype check 4218 region->set_req(_ref_subtype_path, control()); 4219 } 4220 4221 // If both operands are primitive (both klasses null), then 4222 // we must return true when they are identical primitives. 4223 // It is convenient to test this after the first null klass check. 4224 set_control(region->in(_prim_0_path)); // go back to first null check 4225 if (!stopped()) { 4226 // Since superc is primitive, make a guard for the superc==subc case. 4227 Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1])); 4228 Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq)); 4229 generate_guard(bol_eq, region, PROB_FAIR); 4230 if (region->req() == PATH_LIMIT+1) { 4231 // A guard was added. If the added guard is taken, superc==subc. 4232 region->swap_edges(PATH_LIMIT, _prim_same_path); 4233 region->del_req(PATH_LIMIT); 4234 } 4235 region->set_req(_prim_0_path, control()); // Not equal after all. 4236 } 4237 4238 // these are the only paths that produce 'true': 4239 phi->set_req(_prim_same_path, intcon(1)); 4240 phi->set_req(_ref_subtype_path, intcon(1)); 4241 4242 // pull together the cases: 4243 assert(region->req() == PATH_LIMIT, "sane region"); 4244 for (uint i = 1; i < region->req(); i++) { 4245 Node* ctl = region->in(i); 4246 if (ctl == nullptr || ctl == top()) { 4247 region->set_req(i, top()); 4248 phi ->set_req(i, top()); 4249 } else if (phi->in(i) == nullptr) { 4250 phi->set_req(i, intcon(0)); // all other paths produce 'false' 4251 } 4252 } 4253 4254 set_control(_gvn.transform(region)); 4255 set_result(_gvn.transform(phi)); 4256 return true; 4257 } 4258 4259 //---------------------generate_array_guard_common------------------------ 4260 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region, 4261 bool obj_array, bool not_array, Node** obj) { 4262 4263 if (stopped()) { 4264 return nullptr; 4265 } 4266 4267 // If obj_array/non_array==false/false: 4268 // Branch around if the given klass is in fact an array (either obj or prim). 4269 // If obj_array/non_array==false/true: 4270 // Branch around if the given klass is not an array klass of any kind. 4271 // If obj_array/non_array==true/true: 4272 // Branch around if the kls is not an oop array (kls is int[], String, etc.) 4273 // If obj_array/non_array==true/false: 4274 // Branch around if the kls is an oop array (Object[] or subtype) 4275 // 4276 // Like generate_guard, adds a new path onto the region. 4277 jint layout_con = 0; 4278 Node* layout_val = get_layout_helper(kls, layout_con); 4279 if (layout_val == nullptr) { 4280 bool query = (obj_array 4281 ? Klass::layout_helper_is_objArray(layout_con) 4282 : Klass::layout_helper_is_array(layout_con)); 4283 if (query == not_array) { 4284 return nullptr; // never a branch 4285 } else { // always a branch 4286 Node* always_branch = control(); 4287 if (region != nullptr) 4288 region->add_req(always_branch); 4289 set_control(top()); 4290 return always_branch; 4291 } 4292 } 4293 // Now test the correct condition. 4294 jint nval = (obj_array 4295 ? (jint)(Klass::_lh_array_tag_type_value 4296 << Klass::_lh_array_tag_shift) 4297 : Klass::_lh_neutral_value); 4298 Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval))); 4299 BoolTest::mask btest = BoolTest::lt; // correct for testing is_[obj]array 4300 // invert the test if we are looking for a non-array 4301 if (not_array) btest = BoolTest(btest).negate(); 4302 Node* bol = _gvn.transform(new BoolNode(cmp, btest)); 4303 Node* ctrl = generate_fair_guard(bol, region); 4304 Node* is_array_ctrl = not_array ? control() : ctrl; 4305 if (obj != nullptr && is_array_ctrl != nullptr && is_array_ctrl != top()) { 4306 // Keep track of the fact that 'obj' is an array to prevent 4307 // array specific accesses from floating above the guard. 4308 *obj = _gvn.transform(new CastPPNode(is_array_ctrl, *obj, TypeAryPtr::BOTTOM)); 4309 } 4310 return ctrl; 4311 } 4312 4313 4314 //-----------------------inline_native_newArray-------------------------- 4315 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length); 4316 // private native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size); 4317 bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) { 4318 Node* mirror; 4319 Node* count_val; 4320 if (uninitialized) { 4321 null_check_receiver(); 4322 mirror = argument(1); 4323 count_val = argument(2); 4324 } else { 4325 mirror = argument(0); 4326 count_val = argument(1); 4327 } 4328 4329 mirror = null_check(mirror); 4330 // If mirror or obj is dead, only null-path is taken. 4331 if (stopped()) return true; 4332 4333 enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT }; 4334 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 4335 PhiNode* result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL); 4336 PhiNode* result_io = new PhiNode(result_reg, Type::ABIO); 4337 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 4338 4339 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 4340 Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null, 4341 result_reg, _slow_path); 4342 Node* normal_ctl = control(); 4343 Node* no_array_ctl = result_reg->in(_slow_path); 4344 4345 // Generate code for the slow case. We make a call to newArray(). 4346 set_control(no_array_ctl); 4347 if (!stopped()) { 4348 // Either the input type is void.class, or else the 4349 // array klass has not yet been cached. Either the 4350 // ensuing call will throw an exception, or else it 4351 // will cache the array klass for next time. 4352 PreserveJVMState pjvms(this); 4353 CallJavaNode* slow_call = nullptr; 4354 if (uninitialized) { 4355 // Generate optimized virtual call (holder class 'Unsafe' is final) 4356 slow_call = generate_method_call(vmIntrinsics::_allocateUninitializedArray, false, false, true); 4357 } else { 4358 slow_call = generate_method_call_static(vmIntrinsics::_newArray, true); 4359 } 4360 Node* slow_result = set_results_for_java_call(slow_call); 4361 // this->control() comes from set_results_for_java_call 4362 result_reg->set_req(_slow_path, control()); 4363 result_val->set_req(_slow_path, slow_result); 4364 result_io ->set_req(_slow_path, i_o()); 4365 result_mem->set_req(_slow_path, reset_memory()); 4366 } 4367 4368 set_control(normal_ctl); 4369 if (!stopped()) { 4370 // Normal case: The array type has been cached in the java.lang.Class. 4371 // The following call works fine even if the array type is polymorphic. 4372 // It could be a dynamic mix of int[], boolean[], Object[], etc. 4373 Node* obj = new_array(klass_node, count_val, 0); // no arguments to push 4374 result_reg->init_req(_normal_path, control()); 4375 result_val->init_req(_normal_path, obj); 4376 result_io ->init_req(_normal_path, i_o()); 4377 result_mem->init_req(_normal_path, reset_memory()); 4378 4379 if (uninitialized) { 4380 // Mark the allocation so that zeroing is skipped 4381 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(obj); 4382 alloc->maybe_set_complete(&_gvn); 4383 } 4384 } 4385 4386 // Return the combined state. 4387 set_i_o( _gvn.transform(result_io) ); 4388 set_all_memory( _gvn.transform(result_mem)); 4389 4390 C->set_has_split_ifs(true); // Has chance for split-if optimization 4391 set_result(result_reg, result_val); 4392 return true; 4393 } 4394 4395 //----------------------inline_native_getLength-------------------------- 4396 // public static native int java.lang.reflect.Array.getLength(Object array); 4397 bool LibraryCallKit::inline_native_getLength() { 4398 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false; 4399 4400 Node* array = null_check(argument(0)); 4401 // If array is dead, only null-path is taken. 4402 if (stopped()) return true; 4403 4404 // Deoptimize if it is a non-array. 4405 Node* non_array = generate_non_array_guard(load_object_klass(array), nullptr, &array); 4406 4407 if (non_array != nullptr) { 4408 PreserveJVMState pjvms(this); 4409 set_control(non_array); 4410 uncommon_trap(Deoptimization::Reason_intrinsic, 4411 Deoptimization::Action_maybe_recompile); 4412 } 4413 4414 // If control is dead, only non-array-path is taken. 4415 if (stopped()) return true; 4416 4417 // The works fine even if the array type is polymorphic. 4418 // It could be a dynamic mix of int[], boolean[], Object[], etc. 4419 Node* result = load_array_length(array); 4420 4421 C->set_has_split_ifs(true); // Has chance for split-if optimization 4422 set_result(result); 4423 return true; 4424 } 4425 4426 //------------------------inline_array_copyOf---------------------------- 4427 // public static <T,U> T[] java.util.Arrays.copyOf( U[] original, int newLength, Class<? extends T[]> newType); 4428 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from, int to, Class<? extends T[]> newType); 4429 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) { 4430 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false; 4431 4432 // Get the arguments. 4433 Node* original = argument(0); 4434 Node* start = is_copyOfRange? argument(1): intcon(0); 4435 Node* end = is_copyOfRange? argument(2): argument(1); 4436 Node* array_type_mirror = is_copyOfRange? argument(3): argument(2); 4437 4438 Node* newcopy = nullptr; 4439 4440 // Set the original stack and the reexecute bit for the interpreter to reexecute 4441 // the bytecode that invokes Arrays.copyOf if deoptimization happens. 4442 { PreserveReexecuteState preexecs(this); 4443 jvms()->set_should_reexecute(true); 4444 4445 array_type_mirror = null_check(array_type_mirror); 4446 original = null_check(original); 4447 4448 // Check if a null path was taken unconditionally. 4449 if (stopped()) return true; 4450 4451 Node* orig_length = load_array_length(original); 4452 4453 Node* klass_node = load_klass_from_mirror(array_type_mirror, false, nullptr, 0); 4454 klass_node = null_check(klass_node); 4455 4456 RegionNode* bailout = new RegionNode(1); 4457 record_for_igvn(bailout); 4458 4459 // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc. 4460 // Bail out if that is so. 4461 Node* not_objArray = generate_non_objArray_guard(klass_node, bailout); 4462 if (not_objArray != nullptr) { 4463 // Improve the klass node's type from the new optimistic assumption: 4464 ciKlass* ak = ciArrayKlass::make(env()->Object_klass()); 4465 const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/); 4466 Node* cast = new CastPPNode(control(), klass_node, akls); 4467 klass_node = _gvn.transform(cast); 4468 } 4469 4470 // Bail out if either start or end is negative. 4471 generate_negative_guard(start, bailout, &start); 4472 generate_negative_guard(end, bailout, &end); 4473 4474 Node* length = end; 4475 if (_gvn.type(start) != TypeInt::ZERO) { 4476 length = _gvn.transform(new SubINode(end, start)); 4477 } 4478 4479 // Bail out if length is negative (i.e., if start > end). 4480 // Without this the new_array would throw 4481 // NegativeArraySizeException but IllegalArgumentException is what 4482 // should be thrown 4483 generate_negative_guard(length, bailout, &length); 4484 4485 // Bail out if start is larger than the original length 4486 Node* orig_tail = _gvn.transform(new SubINode(orig_length, start)); 4487 generate_negative_guard(orig_tail, bailout, &orig_tail); 4488 4489 if (bailout->req() > 1) { 4490 PreserveJVMState pjvms(this); 4491 set_control(_gvn.transform(bailout)); 4492 uncommon_trap(Deoptimization::Reason_intrinsic, 4493 Deoptimization::Action_maybe_recompile); 4494 } 4495 4496 if (!stopped()) { 4497 // How many elements will we copy from the original? 4498 // The answer is MinI(orig_tail, length). 4499 Node* moved = _gvn.transform(new MinINode(orig_tail, length)); 4500 4501 // Generate a direct call to the right arraycopy function(s). 4502 // We know the copy is disjoint but we might not know if the 4503 // oop stores need checking. 4504 // Extreme case: Arrays.copyOf((Integer[])x, 10, String[].class). 4505 // This will fail a store-check if x contains any non-nulls. 4506 4507 // ArrayCopyNode:Ideal may transform the ArrayCopyNode to 4508 // loads/stores but it is legal only if we're sure the 4509 // Arrays.copyOf would succeed. So we need all input arguments 4510 // to the copyOf to be validated, including that the copy to the 4511 // new array won't trigger an ArrayStoreException. That subtype 4512 // check can be optimized if we know something on the type of 4513 // the input array from type speculation. 4514 if (_gvn.type(klass_node)->singleton()) { 4515 const TypeKlassPtr* subk = _gvn.type(load_object_klass(original))->is_klassptr(); 4516 const TypeKlassPtr* superk = _gvn.type(klass_node)->is_klassptr(); 4517 4518 int test = C->static_subtype_check(superk, subk); 4519 if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) { 4520 const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr(); 4521 if (t_original->speculative_type() != nullptr) { 4522 original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true); 4523 } 4524 } 4525 } 4526 4527 bool validated = false; 4528 // Reason_class_check rather than Reason_intrinsic because we 4529 // want to intrinsify even if this traps. 4530 if (!too_many_traps(Deoptimization::Reason_class_check)) { 4531 Node* not_subtype_ctrl = gen_subtype_check(original, klass_node); 4532 4533 if (not_subtype_ctrl != top()) { 4534 PreserveJVMState pjvms(this); 4535 set_control(not_subtype_ctrl); 4536 uncommon_trap(Deoptimization::Reason_class_check, 4537 Deoptimization::Action_make_not_entrant); 4538 assert(stopped(), "Should be stopped"); 4539 } 4540 validated = true; 4541 } 4542 4543 if (!stopped()) { 4544 newcopy = new_array(klass_node, length, 0); // no arguments to push 4545 4546 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true, true, 4547 load_object_klass(original), klass_node); 4548 if (!is_copyOfRange) { 4549 ac->set_copyof(validated); 4550 } else { 4551 ac->set_copyofrange(validated); 4552 } 4553 Node* n = _gvn.transform(ac); 4554 if (n == ac) { 4555 ac->connect_outputs(this); 4556 } else { 4557 assert(validated, "shouldn't transform if all arguments not validated"); 4558 set_all_memory(n); 4559 } 4560 } 4561 } 4562 } // original reexecute is set back here 4563 4564 C->set_has_split_ifs(true); // Has chance for split-if optimization 4565 if (!stopped()) { 4566 set_result(newcopy); 4567 } 4568 return true; 4569 } 4570 4571 4572 //----------------------generate_virtual_guard--------------------------- 4573 // Helper for hashCode and clone. Peeks inside the vtable to avoid a call. 4574 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass, 4575 RegionNode* slow_region) { 4576 ciMethod* method = callee(); 4577 int vtable_index = method->vtable_index(); 4578 assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index, 4579 "bad index %d", vtable_index); 4580 // Get the Method* out of the appropriate vtable entry. 4581 int entry_offset = in_bytes(Klass::vtable_start_offset()) + 4582 vtable_index*vtableEntry::size_in_bytes() + 4583 in_bytes(vtableEntry::method_offset()); 4584 Node* entry_addr = basic_plus_adr(obj_klass, entry_offset); 4585 Node* target_call = make_load(nullptr, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered); 4586 4587 // Compare the target method with the expected method (e.g., Object.hashCode). 4588 const TypePtr* native_call_addr = TypeMetadataPtr::make(method); 4589 4590 Node* native_call = makecon(native_call_addr); 4591 Node* chk_native = _gvn.transform(new CmpPNode(target_call, native_call)); 4592 Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne)); 4593 4594 return generate_slow_guard(test_native, slow_region); 4595 } 4596 4597 //-----------------------generate_method_call---------------------------- 4598 // Use generate_method_call to make a slow-call to the real 4599 // method if the fast path fails. An alternative would be to 4600 // use a stub like OptoRuntime::slow_arraycopy_Java. 4601 // This only works for expanding the current library call, 4602 // not another intrinsic. (E.g., don't use this for making an 4603 // arraycopy call inside of the copyOf intrinsic.) 4604 CallJavaNode* 4605 LibraryCallKit::generate_method_call(vmIntrinsicID method_id, bool is_virtual, bool is_static, bool res_not_null) { 4606 // When compiling the intrinsic method itself, do not use this technique. 4607 guarantee(callee() != C->method(), "cannot make slow-call to self"); 4608 4609 ciMethod* method = callee(); 4610 // ensure the JVMS we have will be correct for this call 4611 guarantee(method_id == method->intrinsic_id(), "must match"); 4612 4613 const TypeFunc* tf = TypeFunc::make(method); 4614 if (res_not_null) { 4615 assert(tf->return_type() == T_OBJECT, ""); 4616 const TypeTuple* range = tf->range(); 4617 const Type** fields = TypeTuple::fields(range->cnt()); 4618 fields[TypeFunc::Parms] = range->field_at(TypeFunc::Parms)->filter_speculative(TypePtr::NOTNULL); 4619 const TypeTuple* new_range = TypeTuple::make(range->cnt(), fields); 4620 tf = TypeFunc::make(tf->domain(), new_range); 4621 } 4622 CallJavaNode* slow_call; 4623 if (is_static) { 4624 assert(!is_virtual, ""); 4625 slow_call = new CallStaticJavaNode(C, tf, 4626 SharedRuntime::get_resolve_static_call_stub(), method); 4627 } else if (is_virtual) { 4628 assert(!gvn().type(argument(0))->maybe_null(), "should not be null"); 4629 int vtable_index = Method::invalid_vtable_index; 4630 if (UseInlineCaches) { 4631 // Suppress the vtable call 4632 } else { 4633 // hashCode and clone are not a miranda methods, 4634 // so the vtable index is fixed. 4635 // No need to use the linkResolver to get it. 4636 vtable_index = method->vtable_index(); 4637 assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index, 4638 "bad index %d", vtable_index); 4639 } 4640 slow_call = new CallDynamicJavaNode(tf, 4641 SharedRuntime::get_resolve_virtual_call_stub(), 4642 method, vtable_index); 4643 } else { // neither virtual nor static: opt_virtual 4644 assert(!gvn().type(argument(0))->maybe_null(), "should not be null"); 4645 slow_call = new CallStaticJavaNode(C, tf, 4646 SharedRuntime::get_resolve_opt_virtual_call_stub(), method); 4647 slow_call->set_optimized_virtual(true); 4648 } 4649 if (CallGenerator::is_inlined_method_handle_intrinsic(this->method(), bci(), callee())) { 4650 // To be able to issue a direct call (optimized virtual or virtual) 4651 // and skip a call to MH.linkTo*/invokeBasic adapter, additional information 4652 // about the method being invoked should be attached to the call site to 4653 // make resolution logic work (see SharedRuntime::resolve_{virtual,opt_virtual}_call_C). 4654 slow_call->set_override_symbolic_info(true); 4655 } 4656 set_arguments_for_java_call(slow_call); 4657 set_edges_for_java_call(slow_call); 4658 return slow_call; 4659 } 4660 4661 4662 /** 4663 * Build special case code for calls to hashCode on an object. This call may 4664 * be virtual (invokevirtual) or bound (invokespecial). For each case we generate 4665 * slightly different code. 4666 */ 4667 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) { 4668 assert(is_static == callee()->is_static(), "correct intrinsic selection"); 4669 assert(!(is_virtual && is_static), "either virtual, special, or static"); 4670 4671 enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT }; 4672 4673 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 4674 PhiNode* result_val = new PhiNode(result_reg, TypeInt::INT); 4675 PhiNode* result_io = new PhiNode(result_reg, Type::ABIO); 4676 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 4677 Node* obj = nullptr; 4678 if (!is_static) { 4679 // Check for hashing null object 4680 obj = null_check_receiver(); 4681 if (stopped()) return true; // unconditionally null 4682 result_reg->init_req(_null_path, top()); 4683 result_val->init_req(_null_path, top()); 4684 } else { 4685 // Do a null check, and return zero if null. 4686 // System.identityHashCode(null) == 0 4687 obj = argument(0); 4688 Node* null_ctl = top(); 4689 obj = null_check_oop(obj, &null_ctl); 4690 result_reg->init_req(_null_path, null_ctl); 4691 result_val->init_req(_null_path, _gvn.intcon(0)); 4692 } 4693 4694 // Unconditionally null? Then return right away. 4695 if (stopped()) { 4696 set_control( result_reg->in(_null_path)); 4697 if (!stopped()) 4698 set_result(result_val->in(_null_path)); 4699 return true; 4700 } 4701 4702 // We only go to the fast case code if we pass a number of guards. The 4703 // paths which do not pass are accumulated in the slow_region. 4704 RegionNode* slow_region = new RegionNode(1); 4705 record_for_igvn(slow_region); 4706 4707 // If this is a virtual call, we generate a funny guard. We pull out 4708 // the vtable entry corresponding to hashCode() from the target object. 4709 // If the target method which we are calling happens to be the native 4710 // Object hashCode() method, we pass the guard. We do not need this 4711 // guard for non-virtual calls -- the caller is known to be the native 4712 // Object hashCode(). 4713 if (is_virtual) { 4714 // After null check, get the object's klass. 4715 Node* obj_klass = load_object_klass(obj); 4716 generate_virtual_guard(obj_klass, slow_region); 4717 } 4718 4719 // Get the header out of the object, use LoadMarkNode when available 4720 Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes()); 4721 // The control of the load must be null. Otherwise, the load can move before 4722 // the null check after castPP removal. 4723 Node* no_ctrl = nullptr; 4724 Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered); 4725 4726 if (!UseObjectMonitorTable) { 4727 // Test the header to see if it is safe to read w.r.t. locking. 4728 Node *lock_mask = _gvn.MakeConX(markWord::lock_mask_in_place); 4729 Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask)); 4730 if (LockingMode == LM_LIGHTWEIGHT) { 4731 Node *monitor_val = _gvn.MakeConX(markWord::monitor_value); 4732 Node *chk_monitor = _gvn.transform(new CmpXNode(lmasked_header, monitor_val)); 4733 Node *test_monitor = _gvn.transform(new BoolNode(chk_monitor, BoolTest::eq)); 4734 4735 generate_slow_guard(test_monitor, slow_region); 4736 } else { 4737 Node *unlocked_val = _gvn.MakeConX(markWord::unlocked_value); 4738 Node *chk_unlocked = _gvn.transform(new CmpXNode(lmasked_header, unlocked_val)); 4739 Node *test_not_unlocked = _gvn.transform(new BoolNode(chk_unlocked, BoolTest::ne)); 4740 4741 generate_slow_guard(test_not_unlocked, slow_region); 4742 } 4743 } 4744 4745 // Get the hash value and check to see that it has been properly assigned. 4746 // We depend on hash_mask being at most 32 bits and avoid the use of 4747 // hash_mask_in_place because it could be larger than 32 bits in a 64-bit 4748 // vm: see markWord.hpp. 4749 Node *hash_mask = _gvn.intcon(markWord::hash_mask); 4750 Node *hash_shift = _gvn.intcon(markWord::hash_shift); 4751 Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift)); 4752 // This hack lets the hash bits live anywhere in the mark object now, as long 4753 // as the shift drops the relevant bits into the low 32 bits. Note that 4754 // Java spec says that HashCode is an int so there's no point in capturing 4755 // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build). 4756 hshifted_header = ConvX2I(hshifted_header); 4757 Node *hash_val = _gvn.transform(new AndINode(hshifted_header, hash_mask)); 4758 4759 Node *no_hash_val = _gvn.intcon(markWord::no_hash); 4760 Node *chk_assigned = _gvn.transform(new CmpINode( hash_val, no_hash_val)); 4761 Node *test_assigned = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq)); 4762 4763 generate_slow_guard(test_assigned, slow_region); 4764 4765 Node* init_mem = reset_memory(); 4766 // fill in the rest of the null path: 4767 result_io ->init_req(_null_path, i_o()); 4768 result_mem->init_req(_null_path, init_mem); 4769 4770 result_val->init_req(_fast_path, hash_val); 4771 result_reg->init_req(_fast_path, control()); 4772 result_io ->init_req(_fast_path, i_o()); 4773 result_mem->init_req(_fast_path, init_mem); 4774 4775 // Generate code for the slow case. We make a call to hashCode(). 4776 set_control(_gvn.transform(slow_region)); 4777 if (!stopped()) { 4778 // No need for PreserveJVMState, because we're using up the present state. 4779 set_all_memory(init_mem); 4780 vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode; 4781 CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static, false); 4782 Node* slow_result = set_results_for_java_call(slow_call); 4783 // this->control() comes from set_results_for_java_call 4784 result_reg->init_req(_slow_path, control()); 4785 result_val->init_req(_slow_path, slow_result); 4786 result_io ->set_req(_slow_path, i_o()); 4787 result_mem ->set_req(_slow_path, reset_memory()); 4788 } 4789 4790 // Return the combined state. 4791 set_i_o( _gvn.transform(result_io) ); 4792 set_all_memory( _gvn.transform(result_mem)); 4793 4794 set_result(result_reg, result_val); 4795 return true; 4796 } 4797 4798 //---------------------------inline_native_getClass---------------------------- 4799 // public final native Class<?> java.lang.Object.getClass(); 4800 // 4801 // Build special case code for calls to getClass on an object. 4802 bool LibraryCallKit::inline_native_getClass() { 4803 Node* obj = null_check_receiver(); 4804 if (stopped()) return true; 4805 set_result(load_mirror_from_klass(load_object_klass(obj))); 4806 return true; 4807 } 4808 4809 //-----------------inline_native_Reflection_getCallerClass--------------------- 4810 // public static native Class<?> sun.reflect.Reflection.getCallerClass(); 4811 // 4812 // In the presence of deep enough inlining, getCallerClass() becomes a no-op. 4813 // 4814 // NOTE: This code must perform the same logic as JVM_GetCallerClass 4815 // in that it must skip particular security frames and checks for 4816 // caller sensitive methods. 4817 bool LibraryCallKit::inline_native_Reflection_getCallerClass() { 4818 #ifndef PRODUCT 4819 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4820 tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass"); 4821 } 4822 #endif 4823 4824 if (!jvms()->has_method()) { 4825 #ifndef PRODUCT 4826 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4827 tty->print_cr(" Bailing out because intrinsic was inlined at top level"); 4828 } 4829 #endif 4830 return false; 4831 } 4832 4833 // Walk back up the JVM state to find the caller at the required 4834 // depth. 4835 JVMState* caller_jvms = jvms(); 4836 4837 // Cf. JVM_GetCallerClass 4838 // NOTE: Start the loop at depth 1 because the current JVM state does 4839 // not include the Reflection.getCallerClass() frame. 4840 for (int n = 1; caller_jvms != nullptr; caller_jvms = caller_jvms->caller(), n++) { 4841 ciMethod* m = caller_jvms->method(); 4842 switch (n) { 4843 case 0: 4844 fatal("current JVM state does not include the Reflection.getCallerClass frame"); 4845 break; 4846 case 1: 4847 // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass). 4848 if (!m->caller_sensitive()) { 4849 #ifndef PRODUCT 4850 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4851 tty->print_cr(" Bailing out: CallerSensitive annotation expected at frame %d", n); 4852 } 4853 #endif 4854 return false; // bail-out; let JVM_GetCallerClass do the work 4855 } 4856 break; 4857 default: 4858 if (!m->is_ignored_by_security_stack_walk()) { 4859 // We have reached the desired frame; return the holder class. 4860 // Acquire method holder as java.lang.Class and push as constant. 4861 ciInstanceKlass* caller_klass = caller_jvms->method()->holder(); 4862 ciInstance* caller_mirror = caller_klass->java_mirror(); 4863 set_result(makecon(TypeInstPtr::make(caller_mirror))); 4864 4865 #ifndef PRODUCT 4866 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4867 tty->print_cr(" Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth()); 4868 tty->print_cr(" JVM state at this point:"); 4869 for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) { 4870 ciMethod* m = jvms()->of_depth(i)->method(); 4871 tty->print_cr(" %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8()); 4872 } 4873 } 4874 #endif 4875 return true; 4876 } 4877 break; 4878 } 4879 } 4880 4881 #ifndef PRODUCT 4882 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4883 tty->print_cr(" Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth()); 4884 tty->print_cr(" JVM state at this point:"); 4885 for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) { 4886 ciMethod* m = jvms()->of_depth(i)->method(); 4887 tty->print_cr(" %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8()); 4888 } 4889 } 4890 #endif 4891 4892 return false; // bail-out; let JVM_GetCallerClass do the work 4893 } 4894 4895 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) { 4896 Node* arg = argument(0); 4897 Node* result = nullptr; 4898 4899 switch (id) { 4900 case vmIntrinsics::_floatToRawIntBits: result = new MoveF2INode(arg); break; 4901 case vmIntrinsics::_intBitsToFloat: result = new MoveI2FNode(arg); break; 4902 case vmIntrinsics::_doubleToRawLongBits: result = new MoveD2LNode(arg); break; 4903 case vmIntrinsics::_longBitsToDouble: result = new MoveL2DNode(arg); break; 4904 case vmIntrinsics::_floatToFloat16: result = new ConvF2HFNode(arg); break; 4905 case vmIntrinsics::_float16ToFloat: result = new ConvHF2FNode(arg); break; 4906 4907 case vmIntrinsics::_doubleToLongBits: { 4908 // two paths (plus control) merge in a wood 4909 RegionNode *r = new RegionNode(3); 4910 Node *phi = new PhiNode(r, TypeLong::LONG); 4911 4912 Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg)); 4913 // Build the boolean node 4914 Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne)); 4915 4916 // Branch either way. 4917 // NaN case is less traveled, which makes all the difference. 4918 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN); 4919 Node *opt_isnan = _gvn.transform(ifisnan); 4920 assert( opt_isnan->is_If(), "Expect an IfNode"); 4921 IfNode *opt_ifisnan = (IfNode*)opt_isnan; 4922 Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan)); 4923 4924 set_control(iftrue); 4925 4926 static const jlong nan_bits = CONST64(0x7ff8000000000000); 4927 Node *slow_result = longcon(nan_bits); // return NaN 4928 phi->init_req(1, _gvn.transform( slow_result )); 4929 r->init_req(1, iftrue); 4930 4931 // Else fall through 4932 Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan)); 4933 set_control(iffalse); 4934 4935 phi->init_req(2, _gvn.transform(new MoveD2LNode(arg))); 4936 r->init_req(2, iffalse); 4937 4938 // Post merge 4939 set_control(_gvn.transform(r)); 4940 record_for_igvn(r); 4941 4942 C->set_has_split_ifs(true); // Has chance for split-if optimization 4943 result = phi; 4944 assert(result->bottom_type()->isa_long(), "must be"); 4945 break; 4946 } 4947 4948 case vmIntrinsics::_floatToIntBits: { 4949 // two paths (plus control) merge in a wood 4950 RegionNode *r = new RegionNode(3); 4951 Node *phi = new PhiNode(r, TypeInt::INT); 4952 4953 Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg)); 4954 // Build the boolean node 4955 Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne)); 4956 4957 // Branch either way. 4958 // NaN case is less traveled, which makes all the difference. 4959 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN); 4960 Node *opt_isnan = _gvn.transform(ifisnan); 4961 assert( opt_isnan->is_If(), "Expect an IfNode"); 4962 IfNode *opt_ifisnan = (IfNode*)opt_isnan; 4963 Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan)); 4964 4965 set_control(iftrue); 4966 4967 static const jint nan_bits = 0x7fc00000; 4968 Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN 4969 phi->init_req(1, _gvn.transform( slow_result )); 4970 r->init_req(1, iftrue); 4971 4972 // Else fall through 4973 Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan)); 4974 set_control(iffalse); 4975 4976 phi->init_req(2, _gvn.transform(new MoveF2INode(arg))); 4977 r->init_req(2, iffalse); 4978 4979 // Post merge 4980 set_control(_gvn.transform(r)); 4981 record_for_igvn(r); 4982 4983 C->set_has_split_ifs(true); // Has chance for split-if optimization 4984 result = phi; 4985 assert(result->bottom_type()->isa_int(), "must be"); 4986 break; 4987 } 4988 4989 default: 4990 fatal_unexpected_iid(id); 4991 break; 4992 } 4993 set_result(_gvn.transform(result)); 4994 return true; 4995 } 4996 4997 bool LibraryCallKit::inline_fp_range_check(vmIntrinsics::ID id) { 4998 Node* arg = argument(0); 4999 Node* result = nullptr; 5000 5001 switch (id) { 5002 case vmIntrinsics::_floatIsInfinite: 5003 result = new IsInfiniteFNode(arg); 5004 break; 5005 case vmIntrinsics::_floatIsFinite: 5006 result = new IsFiniteFNode(arg); 5007 break; 5008 case vmIntrinsics::_doubleIsInfinite: 5009 result = new IsInfiniteDNode(arg); 5010 break; 5011 case vmIntrinsics::_doubleIsFinite: 5012 result = new IsFiniteDNode(arg); 5013 break; 5014 default: 5015 fatal_unexpected_iid(id); 5016 break; 5017 } 5018 set_result(_gvn.transform(result)); 5019 return true; 5020 } 5021 5022 //----------------------inline_unsafe_copyMemory------------------------- 5023 // public native void Unsafe.copyMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes); 5024 5025 static bool has_wide_mem(PhaseGVN& gvn, Node* addr, Node* base) { 5026 const TypeAryPtr* addr_t = gvn.type(addr)->isa_aryptr(); 5027 const Type* base_t = gvn.type(base); 5028 5029 bool in_native = (base_t == TypePtr::NULL_PTR); 5030 bool in_heap = !TypePtr::NULL_PTR->higher_equal(base_t); 5031 bool is_mixed = !in_heap && !in_native; 5032 5033 if (is_mixed) { 5034 return true; // mixed accesses can touch both on-heap and off-heap memory 5035 } 5036 if (in_heap) { 5037 bool is_prim_array = (addr_t != nullptr) && (addr_t->elem() != Type::BOTTOM); 5038 if (!is_prim_array) { 5039 // Though Unsafe.copyMemory() ensures at runtime for on-heap accesses that base is a primitive array, 5040 // there's not enough type information available to determine proper memory slice for it. 5041 return true; 5042 } 5043 } 5044 return false; 5045 } 5046 5047 bool LibraryCallKit::inline_unsafe_copyMemory() { 5048 if (callee()->is_static()) return false; // caller must have the capability! 5049 null_check_receiver(); // null-check receiver 5050 if (stopped()) return true; 5051 5052 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 5053 5054 Node* src_base = argument(1); // type: oop 5055 Node* src_off = ConvL2X(argument(2)); // type: long 5056 Node* dst_base = argument(4); // type: oop 5057 Node* dst_off = ConvL2X(argument(5)); // type: long 5058 Node* size = ConvL2X(argument(7)); // type: long 5059 5060 assert(Unsafe_field_offset_to_byte_offset(11) == 11, 5061 "fieldOffset must be byte-scaled"); 5062 5063 Node* src_addr = make_unsafe_address(src_base, src_off); 5064 Node* dst_addr = make_unsafe_address(dst_base, dst_off); 5065 5066 Node* thread = _gvn.transform(new ThreadLocalNode()); 5067 Node* doing_unsafe_access_addr = basic_plus_adr(top(), thread, in_bytes(JavaThread::doing_unsafe_access_offset())); 5068 BasicType doing_unsafe_access_bt = T_BYTE; 5069 assert((sizeof(bool) * CHAR_BIT) == 8, "not implemented"); 5070 5071 // update volatile field 5072 store_to_memory(control(), doing_unsafe_access_addr, intcon(1), doing_unsafe_access_bt, MemNode::unordered); 5073 5074 int flags = RC_LEAF | RC_NO_FP; 5075 5076 const TypePtr* dst_type = TypePtr::BOTTOM; 5077 5078 // Adjust memory effects of the runtime call based on input values. 5079 if (!has_wide_mem(_gvn, src_addr, src_base) && 5080 !has_wide_mem(_gvn, dst_addr, dst_base)) { 5081 dst_type = _gvn.type(dst_addr)->is_ptr(); // narrow out memory 5082 5083 const TypePtr* src_type = _gvn.type(src_addr)->is_ptr(); 5084 if (C->get_alias_index(src_type) == C->get_alias_index(dst_type)) { 5085 flags |= RC_NARROW_MEM; // narrow in memory 5086 } 5087 } 5088 5089 // Call it. Note that the length argument is not scaled. 5090 make_runtime_call(flags, 5091 OptoRuntime::fast_arraycopy_Type(), 5092 StubRoutines::unsafe_arraycopy(), 5093 "unsafe_arraycopy", 5094 dst_type, 5095 src_addr, dst_addr, size XTOP); 5096 5097 store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, MemNode::unordered); 5098 5099 return true; 5100 } 5101 5102 // unsafe_setmemory(void *base, ulong offset, size_t length, char fill_value); 5103 // Fill 'length' bytes starting from 'base[offset]' with 'fill_value' 5104 bool LibraryCallKit::inline_unsafe_setMemory() { 5105 if (callee()->is_static()) return false; // caller must have the capability! 5106 null_check_receiver(); // null-check receiver 5107 if (stopped()) return true; 5108 5109 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 5110 5111 Node* dst_base = argument(1); // type: oop 5112 Node* dst_off = ConvL2X(argument(2)); // type: long 5113 Node* size = ConvL2X(argument(4)); // type: long 5114 Node* byte = argument(6); // type: byte 5115 5116 assert(Unsafe_field_offset_to_byte_offset(11) == 11, 5117 "fieldOffset must be byte-scaled"); 5118 5119 Node* dst_addr = make_unsafe_address(dst_base, dst_off); 5120 5121 Node* thread = _gvn.transform(new ThreadLocalNode()); 5122 Node* doing_unsafe_access_addr = basic_plus_adr(top(), thread, in_bytes(JavaThread::doing_unsafe_access_offset())); 5123 BasicType doing_unsafe_access_bt = T_BYTE; 5124 assert((sizeof(bool) * CHAR_BIT) == 8, "not implemented"); 5125 5126 // update volatile field 5127 store_to_memory(control(), doing_unsafe_access_addr, intcon(1), doing_unsafe_access_bt, MemNode::unordered); 5128 5129 int flags = RC_LEAF | RC_NO_FP; 5130 5131 const TypePtr* dst_type = TypePtr::BOTTOM; 5132 5133 // Adjust memory effects of the runtime call based on input values. 5134 if (!has_wide_mem(_gvn, dst_addr, dst_base)) { 5135 dst_type = _gvn.type(dst_addr)->is_ptr(); // narrow out memory 5136 5137 flags |= RC_NARROW_MEM; // narrow in memory 5138 } 5139 5140 // Call it. Note that the length argument is not scaled. 5141 make_runtime_call(flags, 5142 OptoRuntime::unsafe_setmemory_Type(), 5143 StubRoutines::unsafe_setmemory(), 5144 "unsafe_setmemory", 5145 dst_type, 5146 dst_addr, size XTOP, byte); 5147 5148 store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, MemNode::unordered); 5149 5150 return true; 5151 } 5152 5153 #undef XTOP 5154 5155 //------------------------clone_coping----------------------------------- 5156 // Helper function for inline_native_clone. 5157 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array) { 5158 assert(obj_size != nullptr, ""); 5159 Node* raw_obj = alloc_obj->in(1); 5160 assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), ""); 5161 5162 AllocateNode* alloc = nullptr; 5163 if (ReduceBulkZeroing && 5164 // If we are implementing an array clone without knowing its source type 5165 // (can happen when compiling the array-guarded branch of a reflective 5166 // Object.clone() invocation), initialize the array within the allocation. 5167 // This is needed because some GCs (e.g. ZGC) might fall back in this case 5168 // to a runtime clone call that assumes fully initialized source arrays. 5169 (!is_array || obj->get_ptr_type()->isa_aryptr() != nullptr)) { 5170 // We will be completely responsible for initializing this object - 5171 // mark Initialize node as complete. 5172 alloc = AllocateNode::Ideal_allocation(alloc_obj); 5173 // The object was just allocated - there should be no any stores! 5174 guarantee(alloc != nullptr && alloc->maybe_set_complete(&_gvn), ""); 5175 // Mark as complete_with_arraycopy so that on AllocateNode 5176 // expansion, we know this AllocateNode is initialized by an array 5177 // copy and a StoreStore barrier exists after the array copy. 5178 alloc->initialization()->set_complete_with_arraycopy(); 5179 } 5180 5181 Node* size = _gvn.transform(obj_size); 5182 access_clone(obj, alloc_obj, size, is_array); 5183 5184 // Do not let reads from the cloned object float above the arraycopy. 5185 if (alloc != nullptr) { 5186 // Do not let stores that initialize this object be reordered with 5187 // a subsequent store that would make this object accessible by 5188 // other threads. 5189 // Record what AllocateNode this StoreStore protects so that 5190 // escape analysis can go from the MemBarStoreStoreNode to the 5191 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 5192 // based on the escape status of the AllocateNode. 5193 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 5194 } else { 5195 insert_mem_bar(Op_MemBarCPUOrder); 5196 } 5197 } 5198 5199 //------------------------inline_native_clone---------------------------- 5200 // protected native Object java.lang.Object.clone(); 5201 // 5202 // Here are the simple edge cases: 5203 // null receiver => normal trap 5204 // virtual and clone was overridden => slow path to out-of-line clone 5205 // not cloneable or finalizer => slow path to out-of-line Object.clone 5206 // 5207 // The general case has two steps, allocation and copying. 5208 // Allocation has two cases, and uses GraphKit::new_instance or new_array. 5209 // 5210 // Copying also has two cases, oop arrays and everything else. 5211 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy). 5212 // Everything else uses the tight inline loop supplied by CopyArrayNode. 5213 // 5214 // These steps fold up nicely if and when the cloned object's klass 5215 // can be sharply typed as an object array, a type array, or an instance. 5216 // 5217 bool LibraryCallKit::inline_native_clone(bool is_virtual) { 5218 PhiNode* result_val; 5219 5220 // Set the reexecute bit for the interpreter to reexecute 5221 // the bytecode that invokes Object.clone if deoptimization happens. 5222 { PreserveReexecuteState preexecs(this); 5223 jvms()->set_should_reexecute(true); 5224 5225 Node* obj = null_check_receiver(); 5226 if (stopped()) return true; 5227 5228 const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr(); 5229 5230 // If we are going to clone an instance, we need its exact type to 5231 // know the number and types of fields to convert the clone to 5232 // loads/stores. Maybe a speculative type can help us. 5233 if (!obj_type->klass_is_exact() && 5234 obj_type->speculative_type() != nullptr && 5235 obj_type->speculative_type()->is_instance_klass()) { 5236 ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass(); 5237 if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem && 5238 !spec_ik->has_injected_fields()) { 5239 if (!obj_type->isa_instptr() || 5240 obj_type->is_instptr()->instance_klass()->has_subklass()) { 5241 obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false); 5242 } 5243 } 5244 } 5245 5246 // Conservatively insert a memory barrier on all memory slices. 5247 // Do not let writes into the original float below the clone. 5248 insert_mem_bar(Op_MemBarCPUOrder); 5249 5250 // paths into result_reg: 5251 enum { 5252 _slow_path = 1, // out-of-line call to clone method (virtual or not) 5253 _objArray_path, // plain array allocation, plus arrayof_oop_arraycopy 5254 _array_path, // plain array allocation, plus arrayof_long_arraycopy 5255 _instance_path, // plain instance allocation, plus arrayof_long_arraycopy 5256 PATH_LIMIT 5257 }; 5258 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 5259 result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL); 5260 PhiNode* result_i_o = new PhiNode(result_reg, Type::ABIO); 5261 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 5262 record_for_igvn(result_reg); 5263 5264 Node* obj_klass = load_object_klass(obj); 5265 Node* array_obj = obj; 5266 Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)nullptr, &array_obj); 5267 if (array_ctl != nullptr) { 5268 // It's an array. 5269 PreserveJVMState pjvms(this); 5270 set_control(array_ctl); 5271 Node* obj_length = load_array_length(array_obj); 5272 Node* array_size = nullptr; // Size of the array without object alignment padding. 5273 Node* alloc_obj = new_array(obj_klass, obj_length, 0, &array_size, /*deoptimize_on_exception=*/true); 5274 5275 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 5276 if (bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, false, BarrierSetC2::Parsing)) { 5277 // If it is an oop array, it requires very special treatment, 5278 // because gc barriers are required when accessing the array. 5279 Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)nullptr); 5280 if (is_obja != nullptr) { 5281 PreserveJVMState pjvms2(this); 5282 set_control(is_obja); 5283 // Generate a direct call to the right arraycopy function(s). 5284 // Clones are always tightly coupled. 5285 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, array_obj, intcon(0), alloc_obj, intcon(0), obj_length, true, false); 5286 ac->set_clone_oop_array(); 5287 Node* n = _gvn.transform(ac); 5288 assert(n == ac, "cannot disappear"); 5289 ac->connect_outputs(this, /*deoptimize_on_exception=*/true); 5290 5291 result_reg->init_req(_objArray_path, control()); 5292 result_val->init_req(_objArray_path, alloc_obj); 5293 result_i_o ->set_req(_objArray_path, i_o()); 5294 result_mem ->set_req(_objArray_path, reset_memory()); 5295 } 5296 } 5297 // Otherwise, there are no barriers to worry about. 5298 // (We can dispense with card marks if we know the allocation 5299 // comes out of eden (TLAB)... In fact, ReduceInitialCardMarks 5300 // causes the non-eden paths to take compensating steps to 5301 // simulate a fresh allocation, so that no further 5302 // card marks are required in compiled code to initialize 5303 // the object.) 5304 5305 if (!stopped()) { 5306 copy_to_clone(array_obj, alloc_obj, array_size, true); 5307 5308 // Present the results of the copy. 5309 result_reg->init_req(_array_path, control()); 5310 result_val->init_req(_array_path, alloc_obj); 5311 result_i_o ->set_req(_array_path, i_o()); 5312 result_mem ->set_req(_array_path, reset_memory()); 5313 } 5314 } 5315 5316 // We only go to the instance fast case code if we pass a number of guards. 5317 // The paths which do not pass are accumulated in the slow_region. 5318 RegionNode* slow_region = new RegionNode(1); 5319 record_for_igvn(slow_region); 5320 if (!stopped()) { 5321 // It's an instance (we did array above). Make the slow-path tests. 5322 // If this is a virtual call, we generate a funny guard. We grab 5323 // the vtable entry corresponding to clone() from the target object. 5324 // If the target method which we are calling happens to be the 5325 // Object clone() method, we pass the guard. We do not need this 5326 // guard for non-virtual calls; the caller is known to be the native 5327 // Object clone(). 5328 if (is_virtual) { 5329 generate_virtual_guard(obj_klass, slow_region); 5330 } 5331 5332 // The object must be easily cloneable and must not have a finalizer. 5333 // Both of these conditions may be checked in a single test. 5334 // We could optimize the test further, but we don't care. 5335 generate_misc_flags_guard(obj_klass, 5336 // Test both conditions: 5337 KlassFlags::_misc_is_cloneable_fast | KlassFlags::_misc_has_finalizer, 5338 // Must be cloneable but not finalizer: 5339 KlassFlags::_misc_is_cloneable_fast, 5340 slow_region); 5341 } 5342 5343 if (!stopped()) { 5344 // It's an instance, and it passed the slow-path tests. 5345 PreserveJVMState pjvms(this); 5346 Node* obj_size = nullptr; // Total object size, including object alignment padding. 5347 // Need to deoptimize on exception from allocation since Object.clone intrinsic 5348 // is reexecuted if deoptimization occurs and there could be problems when merging 5349 // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false). 5350 Node* alloc_obj = new_instance(obj_klass, nullptr, &obj_size, /*deoptimize_on_exception=*/true); 5351 5352 copy_to_clone(obj, alloc_obj, obj_size, false); 5353 5354 // Present the results of the slow call. 5355 result_reg->init_req(_instance_path, control()); 5356 result_val->init_req(_instance_path, alloc_obj); 5357 result_i_o ->set_req(_instance_path, i_o()); 5358 result_mem ->set_req(_instance_path, reset_memory()); 5359 } 5360 5361 // Generate code for the slow case. We make a call to clone(). 5362 set_control(_gvn.transform(slow_region)); 5363 if (!stopped()) { 5364 PreserveJVMState pjvms(this); 5365 CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual, false, true); 5366 // We need to deoptimize on exception (see comment above) 5367 Node* slow_result = set_results_for_java_call(slow_call, false, /* deoptimize */ true); 5368 // this->control() comes from set_results_for_java_call 5369 result_reg->init_req(_slow_path, control()); 5370 result_val->init_req(_slow_path, slow_result); 5371 result_i_o ->set_req(_slow_path, i_o()); 5372 result_mem ->set_req(_slow_path, reset_memory()); 5373 } 5374 5375 // Return the combined state. 5376 set_control( _gvn.transform(result_reg)); 5377 set_i_o( _gvn.transform(result_i_o)); 5378 set_all_memory( _gvn.transform(result_mem)); 5379 } // original reexecute is set back here 5380 5381 set_result(_gvn.transform(result_val)); 5382 return true; 5383 } 5384 5385 // If we have a tightly coupled allocation, the arraycopy may take care 5386 // of the array initialization. If one of the guards we insert between 5387 // the allocation and the arraycopy causes a deoptimization, an 5388 // uninitialized array will escape the compiled method. To prevent that 5389 // we set the JVM state for uncommon traps between the allocation and 5390 // the arraycopy to the state before the allocation so, in case of 5391 // deoptimization, we'll reexecute the allocation and the 5392 // initialization. 5393 JVMState* LibraryCallKit::arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp) { 5394 if (alloc != nullptr) { 5395 ciMethod* trap_method = alloc->jvms()->method(); 5396 int trap_bci = alloc->jvms()->bci(); 5397 5398 if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) && 5399 !C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_null_check)) { 5400 // Make sure there's no store between the allocation and the 5401 // arraycopy otherwise visible side effects could be rexecuted 5402 // in case of deoptimization and cause incorrect execution. 5403 bool no_interfering_store = true; 5404 Node* mem = alloc->in(TypeFunc::Memory); 5405 if (mem->is_MergeMem()) { 5406 for (MergeMemStream mms(merged_memory(), mem->as_MergeMem()); mms.next_non_empty2(); ) { 5407 Node* n = mms.memory(); 5408 if (n != mms.memory2() && !(n->is_Proj() && n->in(0) == alloc->initialization())) { 5409 assert(n->is_Store(), "what else?"); 5410 no_interfering_store = false; 5411 break; 5412 } 5413 } 5414 } else { 5415 for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) { 5416 Node* n = mms.memory(); 5417 if (n != mem && !(n->is_Proj() && n->in(0) == alloc->initialization())) { 5418 assert(n->is_Store(), "what else?"); 5419 no_interfering_store = false; 5420 break; 5421 } 5422 } 5423 } 5424 5425 if (no_interfering_store) { 5426 SafePointNode* sfpt = create_safepoint_with_state_before_array_allocation(alloc); 5427 5428 JVMState* saved_jvms = jvms(); 5429 saved_reexecute_sp = _reexecute_sp; 5430 5431 set_jvms(sfpt->jvms()); 5432 _reexecute_sp = jvms()->sp(); 5433 5434 return saved_jvms; 5435 } 5436 } 5437 } 5438 return nullptr; 5439 } 5440 5441 // Clone the JVMState of the array allocation and create a new safepoint with it. Re-push the array length to the stack 5442 // such that uncommon traps can be emitted to re-execute the array allocation in the interpreter. 5443 SafePointNode* LibraryCallKit::create_safepoint_with_state_before_array_allocation(const AllocateArrayNode* alloc) const { 5444 JVMState* old_jvms = alloc->jvms()->clone_shallow(C); 5445 uint size = alloc->req(); 5446 SafePointNode* sfpt = new SafePointNode(size, old_jvms); 5447 old_jvms->set_map(sfpt); 5448 for (uint i = 0; i < size; i++) { 5449 sfpt->init_req(i, alloc->in(i)); 5450 } 5451 // re-push array length for deoptimization 5452 sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), alloc->in(AllocateNode::ALength)); 5453 old_jvms->set_sp(old_jvms->sp()+1); 5454 old_jvms->set_monoff(old_jvms->monoff()+1); 5455 old_jvms->set_scloff(old_jvms->scloff()+1); 5456 old_jvms->set_endoff(old_jvms->endoff()+1); 5457 old_jvms->set_should_reexecute(true); 5458 5459 sfpt->set_i_o(map()->i_o()); 5460 sfpt->set_memory(map()->memory()); 5461 sfpt->set_control(map()->control()); 5462 return sfpt; 5463 } 5464 5465 // In case of a deoptimization, we restart execution at the 5466 // allocation, allocating a new array. We would leave an uninitialized 5467 // array in the heap that GCs wouldn't expect. Move the allocation 5468 // after the traps so we don't allocate the array if we 5469 // deoptimize. This is possible because tightly_coupled_allocation() 5470 // guarantees there's no observer of the allocated array at this point 5471 // and the control flow is simple enough. 5472 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms_before_guards, 5473 int saved_reexecute_sp, uint new_idx) { 5474 if (saved_jvms_before_guards != nullptr && !stopped()) { 5475 replace_unrelated_uncommon_traps_with_alloc_state(alloc, saved_jvms_before_guards); 5476 5477 assert(alloc != nullptr, "only with a tightly coupled allocation"); 5478 // restore JVM state to the state at the arraycopy 5479 saved_jvms_before_guards->map()->set_control(map()->control()); 5480 assert(saved_jvms_before_guards->map()->memory() == map()->memory(), "memory state changed?"); 5481 assert(saved_jvms_before_guards->map()->i_o() == map()->i_o(), "IO state changed?"); 5482 // If we've improved the types of some nodes (null check) while 5483 // emitting the guards, propagate them to the current state 5484 map()->replaced_nodes().apply(saved_jvms_before_guards->map(), new_idx); 5485 set_jvms(saved_jvms_before_guards); 5486 _reexecute_sp = saved_reexecute_sp; 5487 5488 // Remove the allocation from above the guards 5489 CallProjections callprojs; 5490 alloc->extract_projections(&callprojs, true); 5491 InitializeNode* init = alloc->initialization(); 5492 Node* alloc_mem = alloc->in(TypeFunc::Memory); 5493 C->gvn_replace_by(callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O)); 5494 C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem); 5495 5496 // The CastIINode created in GraphKit::new_array (in AllocateArrayNode::make_ideal_length) must stay below 5497 // the allocation (i.e. is only valid if the allocation succeeds): 5498 // 1) replace CastIINode with AllocateArrayNode's length here 5499 // 2) Create CastIINode again once allocation has moved (see below) at the end of this method 5500 // 5501 // Multiple identical CastIINodes might exist here. Each GraphKit::load_array_length() call will generate 5502 // new separate CastIINode (arraycopy guard checks or any array length use between array allocation and ararycopy) 5503 Node* init_control = init->proj_out(TypeFunc::Control); 5504 Node* alloc_length = alloc->Ideal_length(); 5505 #ifdef ASSERT 5506 Node* prev_cast = nullptr; 5507 #endif 5508 for (uint i = 0; i < init_control->outcnt(); i++) { 5509 Node* init_out = init_control->raw_out(i); 5510 if (init_out->is_CastII() && init_out->in(TypeFunc::Control) == init_control && init_out->in(1) == alloc_length) { 5511 #ifdef ASSERT 5512 if (prev_cast == nullptr) { 5513 prev_cast = init_out; 5514 } else { 5515 if (prev_cast->cmp(*init_out) == false) { 5516 prev_cast->dump(); 5517 init_out->dump(); 5518 assert(false, "not equal CastIINode"); 5519 } 5520 } 5521 #endif 5522 C->gvn_replace_by(init_out, alloc_length); 5523 } 5524 } 5525 C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0)); 5526 5527 // move the allocation here (after the guards) 5528 _gvn.hash_delete(alloc); 5529 alloc->set_req(TypeFunc::Control, control()); 5530 alloc->set_req(TypeFunc::I_O, i_o()); 5531 Node *mem = reset_memory(); 5532 set_all_memory(mem); 5533 alloc->set_req(TypeFunc::Memory, mem); 5534 set_control(init->proj_out_or_null(TypeFunc::Control)); 5535 set_i_o(callprojs.fallthrough_ioproj); 5536 5537 // Update memory as done in GraphKit::set_output_for_allocation() 5538 const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength)); 5539 const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type(); 5540 if (ary_type->isa_aryptr() && length_type != nullptr) { 5541 ary_type = ary_type->is_aryptr()->cast_to_size(length_type); 5542 } 5543 const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot); 5544 int elemidx = C->get_alias_index(telemref); 5545 set_memory(init->proj_out_or_null(TypeFunc::Memory), Compile::AliasIdxRaw); 5546 set_memory(init->proj_out_or_null(TypeFunc::Memory), elemidx); 5547 5548 Node* allocx = _gvn.transform(alloc); 5549 assert(allocx == alloc, "where has the allocation gone?"); 5550 assert(dest->is_CheckCastPP(), "not an allocation result?"); 5551 5552 _gvn.hash_delete(dest); 5553 dest->set_req(0, control()); 5554 Node* destx = _gvn.transform(dest); 5555 assert(destx == dest, "where has the allocation result gone?"); 5556 5557 array_ideal_length(alloc, ary_type, true); 5558 } 5559 } 5560 5561 // Unrelated UCTs between the array allocation and the array copy, which are considered safe by tightly_coupled_allocation(), 5562 // need to be replaced by an UCT with a state before the array allocation (including the array length). This is necessary 5563 // because we could hit one of these UCTs (which are executed before the emitted array copy guards and the actual array 5564 // allocation which is moved down in arraycopy_move_allocation_here()). When later resuming execution in the interpreter, 5565 // we would have wrongly skipped the array allocation. To prevent this, we resume execution at the array allocation in 5566 // the interpreter similar to what we are doing for the newly emitted guards for the array copy. 5567 void LibraryCallKit::replace_unrelated_uncommon_traps_with_alloc_state(AllocateArrayNode* alloc, 5568 JVMState* saved_jvms_before_guards) { 5569 if (saved_jvms_before_guards->map()->control()->is_IfProj()) { 5570 // There is at least one unrelated uncommon trap which needs to be replaced. 5571 SafePointNode* sfpt = create_safepoint_with_state_before_array_allocation(alloc); 5572 5573 JVMState* saved_jvms = jvms(); 5574 const int saved_reexecute_sp = _reexecute_sp; 5575 set_jvms(sfpt->jvms()); 5576 _reexecute_sp = jvms()->sp(); 5577 5578 replace_unrelated_uncommon_traps_with_alloc_state(saved_jvms_before_guards); 5579 5580 // Restore state 5581 set_jvms(saved_jvms); 5582 _reexecute_sp = saved_reexecute_sp; 5583 } 5584 } 5585 5586 // Replace the unrelated uncommon traps with new uncommon trap nodes by reusing the action and reason. The new uncommon 5587 // traps will have the state of the array allocation. Let the old uncommon trap nodes die. 5588 void LibraryCallKit::replace_unrelated_uncommon_traps_with_alloc_state(JVMState* saved_jvms_before_guards) { 5589 Node* if_proj = saved_jvms_before_guards->map()->control(); // Start the search right before the newly emitted guards 5590 while (if_proj->is_IfProj()) { 5591 CallStaticJavaNode* uncommon_trap = get_uncommon_trap_from_success_proj(if_proj); 5592 if (uncommon_trap != nullptr) { 5593 create_new_uncommon_trap(uncommon_trap); 5594 } 5595 assert(if_proj->in(0)->is_If(), "must be If"); 5596 if_proj = if_proj->in(0)->in(0); 5597 } 5598 assert(if_proj->is_Proj() && if_proj->in(0)->is_Initialize(), 5599 "must have reached control projection of init node"); 5600 } 5601 5602 void LibraryCallKit::create_new_uncommon_trap(CallStaticJavaNode* uncommon_trap_call) { 5603 const int trap_request = uncommon_trap_call->uncommon_trap_request(); 5604 assert(trap_request != 0, "no valid UCT trap request"); 5605 PreserveJVMState pjvms(this); 5606 set_control(uncommon_trap_call->in(0)); 5607 uncommon_trap(Deoptimization::trap_request_reason(trap_request), 5608 Deoptimization::trap_request_action(trap_request)); 5609 assert(stopped(), "Should be stopped"); 5610 _gvn.hash_delete(uncommon_trap_call); 5611 uncommon_trap_call->set_req(0, top()); // not used anymore, kill it 5612 } 5613 5614 // Common checks for array sorting intrinsics arguments. 5615 // Returns `true` if checks passed. 5616 bool LibraryCallKit::check_array_sort_arguments(Node* elementType, Node* obj, BasicType& bt) { 5617 // check address of the class 5618 if (elementType == nullptr || elementType->is_top()) { 5619 return false; // dead path 5620 } 5621 const TypeInstPtr* elem_klass = gvn().type(elementType)->isa_instptr(); 5622 if (elem_klass == nullptr) { 5623 return false; // dead path 5624 } 5625 // java_mirror_type() returns non-null for compile-time Class constants only 5626 ciType* elem_type = elem_klass->java_mirror_type(); 5627 if (elem_type == nullptr) { 5628 return false; 5629 } 5630 bt = elem_type->basic_type(); 5631 // Disable the intrinsic if the CPU does not support SIMD sort 5632 if (!Matcher::supports_simd_sort(bt)) { 5633 return false; 5634 } 5635 // check address of the array 5636 if (obj == nullptr || obj->is_top()) { 5637 return false; // dead path 5638 } 5639 const TypeAryPtr* obj_t = _gvn.type(obj)->isa_aryptr(); 5640 if (obj_t == nullptr || obj_t->elem() == Type::BOTTOM) { 5641 return false; // failed input validation 5642 } 5643 return true; 5644 } 5645 5646 //------------------------------inline_array_partition----------------------- 5647 bool LibraryCallKit::inline_array_partition() { 5648 address stubAddr = StubRoutines::select_array_partition_function(); 5649 if (stubAddr == nullptr) { 5650 return false; // Intrinsic's stub is not implemented on this platform 5651 } 5652 assert(callee()->signature()->size() == 9, "arrayPartition has 8 parameters (one long)"); 5653 5654 // no receiver because it is a static method 5655 Node* elementType = argument(0); 5656 Node* obj = argument(1); 5657 Node* offset = argument(2); // long 5658 Node* fromIndex = argument(4); 5659 Node* toIndex = argument(5); 5660 Node* indexPivot1 = argument(6); 5661 Node* indexPivot2 = argument(7); 5662 // PartitionOperation: argument(8) is ignored 5663 5664 Node* pivotIndices = nullptr; 5665 BasicType bt = T_ILLEGAL; 5666 5667 if (!check_array_sort_arguments(elementType, obj, bt)) { 5668 return false; 5669 } 5670 null_check(obj); 5671 // If obj is dead, only null-path is taken. 5672 if (stopped()) { 5673 return true; 5674 } 5675 // Set the original stack and the reexecute bit for the interpreter to reexecute 5676 // the bytecode that invokes DualPivotQuicksort.partition() if deoptimization happens. 5677 { PreserveReexecuteState preexecs(this); 5678 jvms()->set_should_reexecute(true); 5679 5680 Node* obj_adr = make_unsafe_address(obj, offset); 5681 5682 // create the pivotIndices array of type int and size = 2 5683 Node* size = intcon(2); 5684 Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_INT))); 5685 pivotIndices = new_array(klass_node, size, 0); // no arguments to push 5686 AllocateArrayNode* alloc = tightly_coupled_allocation(pivotIndices); 5687 guarantee(alloc != nullptr, "created above"); 5688 Node* pivotIndices_adr = basic_plus_adr(pivotIndices, arrayOopDesc::base_offset_in_bytes(T_INT)); 5689 5690 // pass the basic type enum to the stub 5691 Node* elemType = intcon(bt); 5692 5693 // Call the stub 5694 const char *stubName = "array_partition_stub"; 5695 make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::array_partition_Type(), 5696 stubAddr, stubName, TypePtr::BOTTOM, 5697 obj_adr, elemType, fromIndex, toIndex, pivotIndices_adr, 5698 indexPivot1, indexPivot2); 5699 5700 } // original reexecute is set back here 5701 5702 if (!stopped()) { 5703 set_result(pivotIndices); 5704 } 5705 5706 return true; 5707 } 5708 5709 5710 //------------------------------inline_array_sort----------------------- 5711 bool LibraryCallKit::inline_array_sort() { 5712 address stubAddr = StubRoutines::select_arraysort_function(); 5713 if (stubAddr == nullptr) { 5714 return false; // Intrinsic's stub is not implemented on this platform 5715 } 5716 assert(callee()->signature()->size() == 7, "arraySort has 6 parameters (one long)"); 5717 5718 // no receiver because it is a static method 5719 Node* elementType = argument(0); 5720 Node* obj = argument(1); 5721 Node* offset = argument(2); // long 5722 Node* fromIndex = argument(4); 5723 Node* toIndex = argument(5); 5724 // SortOperation: argument(6) is ignored 5725 5726 BasicType bt = T_ILLEGAL; 5727 5728 if (!check_array_sort_arguments(elementType, obj, bt)) { 5729 return false; 5730 } 5731 null_check(obj); 5732 // If obj is dead, only null-path is taken. 5733 if (stopped()) { 5734 return true; 5735 } 5736 Node* obj_adr = make_unsafe_address(obj, offset); 5737 5738 // pass the basic type enum to the stub 5739 Node* elemType = intcon(bt); 5740 5741 // Call the stub. 5742 const char *stubName = "arraysort_stub"; 5743 make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::array_sort_Type(), 5744 stubAddr, stubName, TypePtr::BOTTOM, 5745 obj_adr, elemType, fromIndex, toIndex); 5746 5747 return true; 5748 } 5749 5750 5751 //------------------------------inline_arraycopy----------------------- 5752 // public static native void java.lang.System.arraycopy(Object src, int srcPos, 5753 // Object dest, int destPos, 5754 // int length); 5755 bool LibraryCallKit::inline_arraycopy() { 5756 // Get the arguments. 5757 Node* src = argument(0); // type: oop 5758 Node* src_offset = argument(1); // type: int 5759 Node* dest = argument(2); // type: oop 5760 Node* dest_offset = argument(3); // type: int 5761 Node* length = argument(4); // type: int 5762 5763 uint new_idx = C->unique(); 5764 5765 // Check for allocation before we add nodes that would confuse 5766 // tightly_coupled_allocation() 5767 AllocateArrayNode* alloc = tightly_coupled_allocation(dest); 5768 5769 int saved_reexecute_sp = -1; 5770 JVMState* saved_jvms_before_guards = arraycopy_restore_alloc_state(alloc, saved_reexecute_sp); 5771 // See arraycopy_restore_alloc_state() comment 5772 // if alloc == null we don't have to worry about a tightly coupled allocation so we can emit all needed guards 5773 // if saved_jvms_before_guards is not null (then alloc is not null) then we can handle guards and a tightly coupled allocation 5774 // if saved_jvms_before_guards is null and alloc is not null, we can't emit any guards 5775 bool can_emit_guards = (alloc == nullptr || saved_jvms_before_guards != nullptr); 5776 5777 // The following tests must be performed 5778 // (1) src and dest are arrays. 5779 // (2) src and dest arrays must have elements of the same BasicType 5780 // (3) src and dest must not be null. 5781 // (4) src_offset must not be negative. 5782 // (5) dest_offset must not be negative. 5783 // (6) length must not be negative. 5784 // (7) src_offset + length must not exceed length of src. 5785 // (8) dest_offset + length must not exceed length of dest. 5786 // (9) each element of an oop array must be assignable 5787 5788 // (3) src and dest must not be null. 5789 // always do this here because we need the JVM state for uncommon traps 5790 Node* null_ctl = top(); 5791 src = saved_jvms_before_guards != nullptr ? null_check_oop(src, &null_ctl, true, true) : null_check(src, T_ARRAY); 5792 assert(null_ctl->is_top(), "no null control here"); 5793 dest = null_check(dest, T_ARRAY); 5794 5795 if (!can_emit_guards) { 5796 // if saved_jvms_before_guards is null and alloc is not null, we don't emit any 5797 // guards but the arraycopy node could still take advantage of a 5798 // tightly allocated allocation. tightly_coupled_allocation() is 5799 // called again to make sure it takes the null check above into 5800 // account: the null check is mandatory and if it caused an 5801 // uncommon trap to be emitted then the allocation can't be 5802 // considered tightly coupled in this context. 5803 alloc = tightly_coupled_allocation(dest); 5804 } 5805 5806 bool validated = false; 5807 5808 const Type* src_type = _gvn.type(src); 5809 const Type* dest_type = _gvn.type(dest); 5810 const TypeAryPtr* top_src = src_type->isa_aryptr(); 5811 const TypeAryPtr* top_dest = dest_type->isa_aryptr(); 5812 5813 // Do we have the type of src? 5814 bool has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM); 5815 // Do we have the type of dest? 5816 bool has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM); 5817 // Is the type for src from speculation? 5818 bool src_spec = false; 5819 // Is the type for dest from speculation? 5820 bool dest_spec = false; 5821 5822 if ((!has_src || !has_dest) && can_emit_guards) { 5823 // We don't have sufficient type information, let's see if 5824 // speculative types can help. We need to have types for both src 5825 // and dest so that it pays off. 5826 5827 // Do we already have or could we have type information for src 5828 bool could_have_src = has_src; 5829 // Do we already have or could we have type information for dest 5830 bool could_have_dest = has_dest; 5831 5832 ciKlass* src_k = nullptr; 5833 if (!has_src) { 5834 src_k = src_type->speculative_type_not_null(); 5835 if (src_k != nullptr && src_k->is_array_klass()) { 5836 could_have_src = true; 5837 } 5838 } 5839 5840 ciKlass* dest_k = nullptr; 5841 if (!has_dest) { 5842 dest_k = dest_type->speculative_type_not_null(); 5843 if (dest_k != nullptr && dest_k->is_array_klass()) { 5844 could_have_dest = true; 5845 } 5846 } 5847 5848 if (could_have_src && could_have_dest) { 5849 // This is going to pay off so emit the required guards 5850 if (!has_src) { 5851 src = maybe_cast_profiled_obj(src, src_k, true); 5852 src_type = _gvn.type(src); 5853 top_src = src_type->isa_aryptr(); 5854 has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM); 5855 src_spec = true; 5856 } 5857 if (!has_dest) { 5858 dest = maybe_cast_profiled_obj(dest, dest_k, true); 5859 dest_type = _gvn.type(dest); 5860 top_dest = dest_type->isa_aryptr(); 5861 has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM); 5862 dest_spec = true; 5863 } 5864 } 5865 } 5866 5867 if (has_src && has_dest && can_emit_guards) { 5868 BasicType src_elem = top_src->isa_aryptr()->elem()->array_element_basic_type(); 5869 BasicType dest_elem = top_dest->isa_aryptr()->elem()->array_element_basic_type(); 5870 if (is_reference_type(src_elem, true)) src_elem = T_OBJECT; 5871 if (is_reference_type(dest_elem, true)) dest_elem = T_OBJECT; 5872 5873 if (src_elem == dest_elem && src_elem == T_OBJECT) { 5874 // If both arrays are object arrays then having the exact types 5875 // for both will remove the need for a subtype check at runtime 5876 // before the call and may make it possible to pick a faster copy 5877 // routine (without a subtype check on every element) 5878 // Do we have the exact type of src? 5879 bool could_have_src = src_spec; 5880 // Do we have the exact type of dest? 5881 bool could_have_dest = dest_spec; 5882 ciKlass* src_k = nullptr; 5883 ciKlass* dest_k = nullptr; 5884 if (!src_spec) { 5885 src_k = src_type->speculative_type_not_null(); 5886 if (src_k != nullptr && src_k->is_array_klass()) { 5887 could_have_src = true; 5888 } 5889 } 5890 if (!dest_spec) { 5891 dest_k = dest_type->speculative_type_not_null(); 5892 if (dest_k != nullptr && dest_k->is_array_klass()) { 5893 could_have_dest = true; 5894 } 5895 } 5896 if (could_have_src && could_have_dest) { 5897 // If we can have both exact types, emit the missing guards 5898 if (could_have_src && !src_spec) { 5899 src = maybe_cast_profiled_obj(src, src_k, true); 5900 } 5901 if (could_have_dest && !dest_spec) { 5902 dest = maybe_cast_profiled_obj(dest, dest_k, true); 5903 } 5904 } 5905 } 5906 } 5907 5908 ciMethod* trap_method = method(); 5909 int trap_bci = bci(); 5910 if (saved_jvms_before_guards != nullptr) { 5911 trap_method = alloc->jvms()->method(); 5912 trap_bci = alloc->jvms()->bci(); 5913 } 5914 5915 bool negative_length_guard_generated = false; 5916 5917 if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) && 5918 can_emit_guards && 5919 !src->is_top() && !dest->is_top()) { 5920 // validate arguments: enables transformation the ArrayCopyNode 5921 validated = true; 5922 5923 RegionNode* slow_region = new RegionNode(1); 5924 record_for_igvn(slow_region); 5925 5926 // (1) src and dest are arrays. 5927 generate_non_array_guard(load_object_klass(src), slow_region, &src); 5928 generate_non_array_guard(load_object_klass(dest), slow_region, &dest); 5929 5930 // (2) src and dest arrays must have elements of the same BasicType 5931 // done at macro expansion or at Ideal transformation time 5932 5933 // (4) src_offset must not be negative. 5934 generate_negative_guard(src_offset, slow_region); 5935 5936 // (5) dest_offset must not be negative. 5937 generate_negative_guard(dest_offset, slow_region); 5938 5939 // (7) src_offset + length must not exceed length of src. 5940 generate_limit_guard(src_offset, length, 5941 load_array_length(src), 5942 slow_region); 5943 5944 // (8) dest_offset + length must not exceed length of dest. 5945 generate_limit_guard(dest_offset, length, 5946 load_array_length(dest), 5947 slow_region); 5948 5949 // (6) length must not be negative. 5950 // This is also checked in generate_arraycopy() during macro expansion, but 5951 // we also have to check it here for the case where the ArrayCopyNode will 5952 // be eliminated by Escape Analysis. 5953 if (EliminateAllocations) { 5954 generate_negative_guard(length, slow_region); 5955 negative_length_guard_generated = true; 5956 } 5957 5958 // (9) each element of an oop array must be assignable 5959 Node* dest_klass = load_object_klass(dest); 5960 if (src != dest) { 5961 Node* not_subtype_ctrl = gen_subtype_check(src, dest_klass); 5962 5963 if (not_subtype_ctrl != top()) { 5964 PreserveJVMState pjvms(this); 5965 set_control(not_subtype_ctrl); 5966 uncommon_trap(Deoptimization::Reason_intrinsic, 5967 Deoptimization::Action_make_not_entrant); 5968 assert(stopped(), "Should be stopped"); 5969 } 5970 } 5971 { 5972 PreserveJVMState pjvms(this); 5973 set_control(_gvn.transform(slow_region)); 5974 uncommon_trap(Deoptimization::Reason_intrinsic, 5975 Deoptimization::Action_make_not_entrant); 5976 assert(stopped(), "Should be stopped"); 5977 } 5978 5979 const TypeKlassPtr* dest_klass_t = _gvn.type(dest_klass)->is_klassptr(); 5980 const Type *toop = dest_klass_t->cast_to_exactness(false)->as_instance_type(); 5981 src = _gvn.transform(new CheckCastPPNode(control(), src, toop)); 5982 arraycopy_move_allocation_here(alloc, dest, saved_jvms_before_guards, saved_reexecute_sp, new_idx); 5983 } 5984 5985 if (stopped()) { 5986 return true; 5987 } 5988 5989 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != nullptr, negative_length_guard_generated, 5990 // Create LoadRange and LoadKlass nodes for use during macro expansion here 5991 // so the compiler has a chance to eliminate them: during macro expansion, 5992 // we have to set their control (CastPP nodes are eliminated). 5993 load_object_klass(src), load_object_klass(dest), 5994 load_array_length(src), load_array_length(dest)); 5995 5996 ac->set_arraycopy(validated); 5997 5998 Node* n = _gvn.transform(ac); 5999 if (n == ac) { 6000 ac->connect_outputs(this); 6001 } else { 6002 assert(validated, "shouldn't transform if all arguments not validated"); 6003 set_all_memory(n); 6004 } 6005 clear_upper_avx(); 6006 6007 6008 return true; 6009 } 6010 6011 6012 // Helper function which determines if an arraycopy immediately follows 6013 // an allocation, with no intervening tests or other escapes for the object. 6014 AllocateArrayNode* 6015 LibraryCallKit::tightly_coupled_allocation(Node* ptr) { 6016 if (stopped()) return nullptr; // no fast path 6017 if (!C->do_aliasing()) return nullptr; // no MergeMems around 6018 6019 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr); 6020 if (alloc == nullptr) return nullptr; 6021 6022 Node* rawmem = memory(Compile::AliasIdxRaw); 6023 // Is the allocation's memory state untouched? 6024 if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) { 6025 // Bail out if there have been raw-memory effects since the allocation. 6026 // (Example: There might have been a call or safepoint.) 6027 return nullptr; 6028 } 6029 rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw); 6030 if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) { 6031 return nullptr; 6032 } 6033 6034 // There must be no unexpected observers of this allocation. 6035 for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) { 6036 Node* obs = ptr->fast_out(i); 6037 if (obs != this->map()) { 6038 return nullptr; 6039 } 6040 } 6041 6042 // This arraycopy must unconditionally follow the allocation of the ptr. 6043 Node* alloc_ctl = ptr->in(0); 6044 Node* ctl = control(); 6045 while (ctl != alloc_ctl) { 6046 // There may be guards which feed into the slow_region. 6047 // Any other control flow means that we might not get a chance 6048 // to finish initializing the allocated object. 6049 // Various low-level checks bottom out in uncommon traps. These 6050 // are considered safe since we've already checked above that 6051 // there is no unexpected observer of this allocation. 6052 if (get_uncommon_trap_from_success_proj(ctl) != nullptr) { 6053 assert(ctl->in(0)->is_If(), "must be If"); 6054 ctl = ctl->in(0)->in(0); 6055 } else { 6056 return nullptr; 6057 } 6058 } 6059 6060 // If we get this far, we have an allocation which immediately 6061 // precedes the arraycopy, and we can take over zeroing the new object. 6062 // The arraycopy will finish the initialization, and provide 6063 // a new control state to which we will anchor the destination pointer. 6064 6065 return alloc; 6066 } 6067 6068 CallStaticJavaNode* LibraryCallKit::get_uncommon_trap_from_success_proj(Node* node) { 6069 if (node->is_IfProj()) { 6070 Node* other_proj = node->as_IfProj()->other_if_proj(); 6071 for (DUIterator_Fast jmax, j = other_proj->fast_outs(jmax); j < jmax; j++) { 6072 Node* obs = other_proj->fast_out(j); 6073 if (obs->in(0) == other_proj && obs->is_CallStaticJava() && 6074 (obs->as_CallStaticJava()->entry_point() == OptoRuntime::uncommon_trap_blob()->entry_point())) { 6075 return obs->as_CallStaticJava(); 6076 } 6077 } 6078 } 6079 return nullptr; 6080 } 6081 6082 //-------------inline_encodeISOArray----------------------------------- 6083 // encode char[] to byte[] in ISO_8859_1 or ASCII 6084 bool LibraryCallKit::inline_encodeISOArray(bool ascii) { 6085 assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters"); 6086 // no receiver since it is static method 6087 Node *src = argument(0); 6088 Node *src_offset = argument(1); 6089 Node *dst = argument(2); 6090 Node *dst_offset = argument(3); 6091 Node *length = argument(4); 6092 6093 src = must_be_not_null(src, true); 6094 dst = must_be_not_null(dst, true); 6095 6096 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6097 const TypeAryPtr* dst_type = dst->Value(&_gvn)->isa_aryptr(); 6098 if (src_type == nullptr || src_type->elem() == Type::BOTTOM || 6099 dst_type == nullptr || dst_type->elem() == Type::BOTTOM) { 6100 // failed array check 6101 return false; 6102 } 6103 6104 // Figure out the size and type of the elements we will be copying. 6105 BasicType src_elem = src_type->elem()->array_element_basic_type(); 6106 BasicType dst_elem = dst_type->elem()->array_element_basic_type(); 6107 if (!((src_elem == T_CHAR) || (src_elem== T_BYTE)) || dst_elem != T_BYTE) { 6108 return false; 6109 } 6110 6111 Node* src_start = array_element_address(src, src_offset, T_CHAR); 6112 Node* dst_start = array_element_address(dst, dst_offset, dst_elem); 6113 // 'src_start' points to src array + scaled offset 6114 // 'dst_start' points to dst array + scaled offset 6115 6116 const TypeAryPtr* mtype = TypeAryPtr::BYTES; 6117 Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length, ascii); 6118 enc = _gvn.transform(enc); 6119 Node* res_mem = _gvn.transform(new SCMemProjNode(enc)); 6120 set_memory(res_mem, mtype); 6121 set_result(enc); 6122 clear_upper_avx(); 6123 6124 return true; 6125 } 6126 6127 //-------------inline_multiplyToLen----------------------------------- 6128 bool LibraryCallKit::inline_multiplyToLen() { 6129 assert(UseMultiplyToLenIntrinsic, "not implemented on this platform"); 6130 6131 address stubAddr = StubRoutines::multiplyToLen(); 6132 if (stubAddr == nullptr) { 6133 return false; // Intrinsic's stub is not implemented on this platform 6134 } 6135 const char* stubName = "multiplyToLen"; 6136 6137 assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters"); 6138 6139 // no receiver because it is a static method 6140 Node* x = argument(0); 6141 Node* xlen = argument(1); 6142 Node* y = argument(2); 6143 Node* ylen = argument(3); 6144 Node* z = argument(4); 6145 6146 x = must_be_not_null(x, true); 6147 y = must_be_not_null(y, true); 6148 6149 const TypeAryPtr* x_type = x->Value(&_gvn)->isa_aryptr(); 6150 const TypeAryPtr* y_type = y->Value(&_gvn)->isa_aryptr(); 6151 if (x_type == nullptr || x_type->elem() == Type::BOTTOM || 6152 y_type == nullptr || y_type->elem() == Type::BOTTOM) { 6153 // failed array check 6154 return false; 6155 } 6156 6157 BasicType x_elem = x_type->elem()->array_element_basic_type(); 6158 BasicType y_elem = y_type->elem()->array_element_basic_type(); 6159 if (x_elem != T_INT || y_elem != T_INT) { 6160 return false; 6161 } 6162 6163 Node* x_start = array_element_address(x, intcon(0), x_elem); 6164 Node* y_start = array_element_address(y, intcon(0), y_elem); 6165 // 'x_start' points to x array + scaled xlen 6166 // 'y_start' points to y array + scaled ylen 6167 6168 Node* z_start = array_element_address(z, intcon(0), T_INT); 6169 6170 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 6171 OptoRuntime::multiplyToLen_Type(), 6172 stubAddr, stubName, TypePtr::BOTTOM, 6173 x_start, xlen, y_start, ylen, z_start); 6174 6175 C->set_has_split_ifs(true); // Has chance for split-if optimization 6176 set_result(z); 6177 return true; 6178 } 6179 6180 //-------------inline_squareToLen------------------------------------ 6181 bool LibraryCallKit::inline_squareToLen() { 6182 assert(UseSquareToLenIntrinsic, "not implemented on this platform"); 6183 6184 address stubAddr = StubRoutines::squareToLen(); 6185 if (stubAddr == nullptr) { 6186 return false; // Intrinsic's stub is not implemented on this platform 6187 } 6188 const char* stubName = "squareToLen"; 6189 6190 assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters"); 6191 6192 Node* x = argument(0); 6193 Node* len = argument(1); 6194 Node* z = argument(2); 6195 Node* zlen = argument(3); 6196 6197 x = must_be_not_null(x, true); 6198 z = must_be_not_null(z, true); 6199 6200 const TypeAryPtr* x_type = x->Value(&_gvn)->isa_aryptr(); 6201 const TypeAryPtr* z_type = z->Value(&_gvn)->isa_aryptr(); 6202 if (x_type == nullptr || x_type->elem() == Type::BOTTOM || 6203 z_type == nullptr || z_type->elem() == Type::BOTTOM) { 6204 // failed array check 6205 return false; 6206 } 6207 6208 BasicType x_elem = x_type->elem()->array_element_basic_type(); 6209 BasicType z_elem = z_type->elem()->array_element_basic_type(); 6210 if (x_elem != T_INT || z_elem != T_INT) { 6211 return false; 6212 } 6213 6214 6215 Node* x_start = array_element_address(x, intcon(0), x_elem); 6216 Node* z_start = array_element_address(z, intcon(0), z_elem); 6217 6218 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 6219 OptoRuntime::squareToLen_Type(), 6220 stubAddr, stubName, TypePtr::BOTTOM, 6221 x_start, len, z_start, zlen); 6222 6223 set_result(z); 6224 return true; 6225 } 6226 6227 //-------------inline_mulAdd------------------------------------------ 6228 bool LibraryCallKit::inline_mulAdd() { 6229 assert(UseMulAddIntrinsic, "not implemented on this platform"); 6230 6231 address stubAddr = StubRoutines::mulAdd(); 6232 if (stubAddr == nullptr) { 6233 return false; // Intrinsic's stub is not implemented on this platform 6234 } 6235 const char* stubName = "mulAdd"; 6236 6237 assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters"); 6238 6239 Node* out = argument(0); 6240 Node* in = argument(1); 6241 Node* offset = argument(2); 6242 Node* len = argument(3); 6243 Node* k = argument(4); 6244 6245 in = must_be_not_null(in, true); 6246 out = must_be_not_null(out, true); 6247 6248 const TypeAryPtr* out_type = out->Value(&_gvn)->isa_aryptr(); 6249 const TypeAryPtr* in_type = in->Value(&_gvn)->isa_aryptr(); 6250 if (out_type == nullptr || out_type->elem() == Type::BOTTOM || 6251 in_type == nullptr || in_type->elem() == Type::BOTTOM) { 6252 // failed array check 6253 return false; 6254 } 6255 6256 BasicType out_elem = out_type->elem()->array_element_basic_type(); 6257 BasicType in_elem = in_type->elem()->array_element_basic_type(); 6258 if (out_elem != T_INT || in_elem != T_INT) { 6259 return false; 6260 } 6261 6262 Node* outlen = load_array_length(out); 6263 Node* new_offset = _gvn.transform(new SubINode(outlen, offset)); 6264 Node* out_start = array_element_address(out, intcon(0), out_elem); 6265 Node* in_start = array_element_address(in, intcon(0), in_elem); 6266 6267 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 6268 OptoRuntime::mulAdd_Type(), 6269 stubAddr, stubName, TypePtr::BOTTOM, 6270 out_start,in_start, new_offset, len, k); 6271 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6272 set_result(result); 6273 return true; 6274 } 6275 6276 //-------------inline_montgomeryMultiply----------------------------------- 6277 bool LibraryCallKit::inline_montgomeryMultiply() { 6278 address stubAddr = StubRoutines::montgomeryMultiply(); 6279 if (stubAddr == nullptr) { 6280 return false; // Intrinsic's stub is not implemented on this platform 6281 } 6282 6283 assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform"); 6284 const char* stubName = "montgomery_multiply"; 6285 6286 assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters"); 6287 6288 Node* a = argument(0); 6289 Node* b = argument(1); 6290 Node* n = argument(2); 6291 Node* len = argument(3); 6292 Node* inv = argument(4); 6293 Node* m = argument(6); 6294 6295 const TypeAryPtr* a_type = a->Value(&_gvn)->isa_aryptr(); 6296 const TypeAryPtr* b_type = b->Value(&_gvn)->isa_aryptr(); 6297 const TypeAryPtr* n_type = n->Value(&_gvn)->isa_aryptr(); 6298 const TypeAryPtr* m_type = m->Value(&_gvn)->isa_aryptr(); 6299 if (a_type == nullptr || a_type->elem() == Type::BOTTOM || 6300 b_type == nullptr || b_type->elem() == Type::BOTTOM || 6301 n_type == nullptr || n_type->elem() == Type::BOTTOM || 6302 m_type == nullptr || m_type->elem() == Type::BOTTOM) { 6303 // failed array check 6304 return false; 6305 } 6306 6307 BasicType a_elem = a_type->elem()->array_element_basic_type(); 6308 BasicType b_elem = b_type->elem()->array_element_basic_type(); 6309 BasicType n_elem = n_type->elem()->array_element_basic_type(); 6310 BasicType m_elem = m_type->elem()->array_element_basic_type(); 6311 if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) { 6312 return false; 6313 } 6314 6315 // Make the call 6316 { 6317 Node* a_start = array_element_address(a, intcon(0), a_elem); 6318 Node* b_start = array_element_address(b, intcon(0), b_elem); 6319 Node* n_start = array_element_address(n, intcon(0), n_elem); 6320 Node* m_start = array_element_address(m, intcon(0), m_elem); 6321 6322 Node* call = make_runtime_call(RC_LEAF, 6323 OptoRuntime::montgomeryMultiply_Type(), 6324 stubAddr, stubName, TypePtr::BOTTOM, 6325 a_start, b_start, n_start, len, inv, top(), 6326 m_start); 6327 set_result(m); 6328 } 6329 6330 return true; 6331 } 6332 6333 bool LibraryCallKit::inline_montgomerySquare() { 6334 address stubAddr = StubRoutines::montgomerySquare(); 6335 if (stubAddr == nullptr) { 6336 return false; // Intrinsic's stub is not implemented on this platform 6337 } 6338 6339 assert(UseMontgomerySquareIntrinsic, "not implemented on this platform"); 6340 const char* stubName = "montgomery_square"; 6341 6342 assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters"); 6343 6344 Node* a = argument(0); 6345 Node* n = argument(1); 6346 Node* len = argument(2); 6347 Node* inv = argument(3); 6348 Node* m = argument(5); 6349 6350 const TypeAryPtr* a_type = a->Value(&_gvn)->isa_aryptr(); 6351 const TypeAryPtr* n_type = n->Value(&_gvn)->isa_aryptr(); 6352 const TypeAryPtr* m_type = m->Value(&_gvn)->isa_aryptr(); 6353 if (a_type == nullptr || a_type->elem() == Type::BOTTOM || 6354 n_type == nullptr || n_type->elem() == Type::BOTTOM || 6355 m_type == nullptr || m_type->elem() == Type::BOTTOM) { 6356 // failed array check 6357 return false; 6358 } 6359 6360 BasicType a_elem = a_type->elem()->array_element_basic_type(); 6361 BasicType n_elem = n_type->elem()->array_element_basic_type(); 6362 BasicType m_elem = m_type->elem()->array_element_basic_type(); 6363 if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) { 6364 return false; 6365 } 6366 6367 // Make the call 6368 { 6369 Node* a_start = array_element_address(a, intcon(0), a_elem); 6370 Node* n_start = array_element_address(n, intcon(0), n_elem); 6371 Node* m_start = array_element_address(m, intcon(0), m_elem); 6372 6373 Node* call = make_runtime_call(RC_LEAF, 6374 OptoRuntime::montgomerySquare_Type(), 6375 stubAddr, stubName, TypePtr::BOTTOM, 6376 a_start, n_start, len, inv, top(), 6377 m_start); 6378 set_result(m); 6379 } 6380 6381 return true; 6382 } 6383 6384 bool LibraryCallKit::inline_bigIntegerShift(bool isRightShift) { 6385 address stubAddr = nullptr; 6386 const char* stubName = nullptr; 6387 6388 stubAddr = isRightShift? StubRoutines::bigIntegerRightShift(): StubRoutines::bigIntegerLeftShift(); 6389 if (stubAddr == nullptr) { 6390 return false; // Intrinsic's stub is not implemented on this platform 6391 } 6392 6393 stubName = isRightShift? "bigIntegerRightShiftWorker" : "bigIntegerLeftShiftWorker"; 6394 6395 assert(callee()->signature()->size() == 5, "expected 5 arguments"); 6396 6397 Node* newArr = argument(0); 6398 Node* oldArr = argument(1); 6399 Node* newIdx = argument(2); 6400 Node* shiftCount = argument(3); 6401 Node* numIter = argument(4); 6402 6403 const TypeAryPtr* newArr_type = newArr->Value(&_gvn)->isa_aryptr(); 6404 const TypeAryPtr* oldArr_type = oldArr->Value(&_gvn)->isa_aryptr(); 6405 if (newArr_type == nullptr || newArr_type->elem() == Type::BOTTOM || 6406 oldArr_type == nullptr || oldArr_type->elem() == Type::BOTTOM) { 6407 return false; 6408 } 6409 6410 BasicType newArr_elem = newArr_type->elem()->array_element_basic_type(); 6411 BasicType oldArr_elem = oldArr_type->elem()->array_element_basic_type(); 6412 if (newArr_elem != T_INT || oldArr_elem != T_INT) { 6413 return false; 6414 } 6415 6416 // Make the call 6417 { 6418 Node* newArr_start = array_element_address(newArr, intcon(0), newArr_elem); 6419 Node* oldArr_start = array_element_address(oldArr, intcon(0), oldArr_elem); 6420 6421 Node* call = make_runtime_call(RC_LEAF, 6422 OptoRuntime::bigIntegerShift_Type(), 6423 stubAddr, 6424 stubName, 6425 TypePtr::BOTTOM, 6426 newArr_start, 6427 oldArr_start, 6428 newIdx, 6429 shiftCount, 6430 numIter); 6431 } 6432 6433 return true; 6434 } 6435 6436 //-------------inline_vectorizedMismatch------------------------------ 6437 bool LibraryCallKit::inline_vectorizedMismatch() { 6438 assert(UseVectorizedMismatchIntrinsic, "not implemented on this platform"); 6439 6440 assert(callee()->signature()->size() == 8, "vectorizedMismatch has 6 parameters"); 6441 Node* obja = argument(0); // Object 6442 Node* aoffset = argument(1); // long 6443 Node* objb = argument(3); // Object 6444 Node* boffset = argument(4); // long 6445 Node* length = argument(6); // int 6446 Node* scale = argument(7); // int 6447 6448 const TypeAryPtr* obja_t = _gvn.type(obja)->isa_aryptr(); 6449 const TypeAryPtr* objb_t = _gvn.type(objb)->isa_aryptr(); 6450 if (obja_t == nullptr || obja_t->elem() == Type::BOTTOM || 6451 objb_t == nullptr || objb_t->elem() == Type::BOTTOM || 6452 scale == top()) { 6453 return false; // failed input validation 6454 } 6455 6456 Node* obja_adr = make_unsafe_address(obja, aoffset); 6457 Node* objb_adr = make_unsafe_address(objb, boffset); 6458 6459 // Partial inlining handling for inputs smaller than ArrayOperationPartialInlineSize bytes in size. 6460 // 6461 // inline_limit = ArrayOperationPartialInlineSize / element_size; 6462 // if (length <= inline_limit) { 6463 // inline_path: 6464 // vmask = VectorMaskGen length 6465 // vload1 = LoadVectorMasked obja, vmask 6466 // vload2 = LoadVectorMasked objb, vmask 6467 // result1 = VectorCmpMasked vload1, vload2, vmask 6468 // } else { 6469 // call_stub_path: 6470 // result2 = call vectorizedMismatch_stub(obja, objb, length, scale) 6471 // } 6472 // exit_block: 6473 // return Phi(result1, result2); 6474 // 6475 enum { inline_path = 1, // input is small enough to process it all at once 6476 stub_path = 2, // input is too large; call into the VM 6477 PATH_LIMIT = 3 6478 }; 6479 6480 Node* exit_block = new RegionNode(PATH_LIMIT); 6481 Node* result_phi = new PhiNode(exit_block, TypeInt::INT); 6482 Node* memory_phi = new PhiNode(exit_block, Type::MEMORY, TypePtr::BOTTOM); 6483 6484 Node* call_stub_path = control(); 6485 6486 BasicType elem_bt = T_ILLEGAL; 6487 6488 const TypeInt* scale_t = _gvn.type(scale)->is_int(); 6489 if (scale_t->is_con()) { 6490 switch (scale_t->get_con()) { 6491 case 0: elem_bt = T_BYTE; break; 6492 case 1: elem_bt = T_SHORT; break; 6493 case 2: elem_bt = T_INT; break; 6494 case 3: elem_bt = T_LONG; break; 6495 6496 default: elem_bt = T_ILLEGAL; break; // not supported 6497 } 6498 } 6499 6500 int inline_limit = 0; 6501 bool do_partial_inline = false; 6502 6503 if (elem_bt != T_ILLEGAL && ArrayOperationPartialInlineSize > 0) { 6504 inline_limit = ArrayOperationPartialInlineSize / type2aelembytes(elem_bt); 6505 do_partial_inline = inline_limit >= 16; 6506 } 6507 6508 if (do_partial_inline) { 6509 assert(elem_bt != T_ILLEGAL, "sanity"); 6510 6511 if (Matcher::match_rule_supported_vector(Op_VectorMaskGen, inline_limit, elem_bt) && 6512 Matcher::match_rule_supported_vector(Op_LoadVectorMasked, inline_limit, elem_bt) && 6513 Matcher::match_rule_supported_vector(Op_VectorCmpMasked, inline_limit, elem_bt)) { 6514 6515 const TypeVect* vt = TypeVect::make(elem_bt, inline_limit); 6516 Node* cmp_length = _gvn.transform(new CmpINode(length, intcon(inline_limit))); 6517 Node* bol_gt = _gvn.transform(new BoolNode(cmp_length, BoolTest::gt)); 6518 6519 call_stub_path = generate_guard(bol_gt, nullptr, PROB_MIN); 6520 6521 if (!stopped()) { 6522 Node* casted_length = _gvn.transform(new CastIINode(control(), length, TypeInt::make(0, inline_limit, Type::WidenMin))); 6523 6524 const TypePtr* obja_adr_t = _gvn.type(obja_adr)->isa_ptr(); 6525 const TypePtr* objb_adr_t = _gvn.type(objb_adr)->isa_ptr(); 6526 Node* obja_adr_mem = memory(C->get_alias_index(obja_adr_t)); 6527 Node* objb_adr_mem = memory(C->get_alias_index(objb_adr_t)); 6528 6529 Node* vmask = _gvn.transform(VectorMaskGenNode::make(ConvI2X(casted_length), elem_bt)); 6530 Node* vload_obja = _gvn.transform(new LoadVectorMaskedNode(control(), obja_adr_mem, obja_adr, obja_adr_t, vt, vmask)); 6531 Node* vload_objb = _gvn.transform(new LoadVectorMaskedNode(control(), objb_adr_mem, objb_adr, objb_adr_t, vt, vmask)); 6532 Node* result = _gvn.transform(new VectorCmpMaskedNode(vload_obja, vload_objb, vmask, TypeInt::INT)); 6533 6534 exit_block->init_req(inline_path, control()); 6535 memory_phi->init_req(inline_path, map()->memory()); 6536 result_phi->init_req(inline_path, result); 6537 6538 C->set_max_vector_size(MAX2((uint)ArrayOperationPartialInlineSize, C->max_vector_size())); 6539 clear_upper_avx(); 6540 } 6541 } 6542 } 6543 6544 if (call_stub_path != nullptr) { 6545 set_control(call_stub_path); 6546 6547 Node* call = make_runtime_call(RC_LEAF, 6548 OptoRuntime::vectorizedMismatch_Type(), 6549 StubRoutines::vectorizedMismatch(), "vectorizedMismatch", TypePtr::BOTTOM, 6550 obja_adr, objb_adr, length, scale); 6551 6552 exit_block->init_req(stub_path, control()); 6553 memory_phi->init_req(stub_path, map()->memory()); 6554 result_phi->init_req(stub_path, _gvn.transform(new ProjNode(call, TypeFunc::Parms))); 6555 } 6556 6557 exit_block = _gvn.transform(exit_block); 6558 memory_phi = _gvn.transform(memory_phi); 6559 result_phi = _gvn.transform(result_phi); 6560 6561 set_control(exit_block); 6562 set_all_memory(memory_phi); 6563 set_result(result_phi); 6564 6565 return true; 6566 } 6567 6568 //------------------------------inline_vectorizedHashcode---------------------------- 6569 bool LibraryCallKit::inline_vectorizedHashCode() { 6570 assert(UseVectorizedHashCodeIntrinsic, "not implemented on this platform"); 6571 6572 assert(callee()->signature()->size() == 5, "vectorizedHashCode has 5 parameters"); 6573 Node* array = argument(0); 6574 Node* offset = argument(1); 6575 Node* length = argument(2); 6576 Node* initialValue = argument(3); 6577 Node* basic_type = argument(4); 6578 6579 if (basic_type == top()) { 6580 return false; // failed input validation 6581 } 6582 6583 const TypeInt* basic_type_t = _gvn.type(basic_type)->is_int(); 6584 if (!basic_type_t->is_con()) { 6585 return false; // Only intrinsify if mode argument is constant 6586 } 6587 6588 array = must_be_not_null(array, true); 6589 6590 BasicType bt = (BasicType)basic_type_t->get_con(); 6591 6592 // Resolve address of first element 6593 Node* array_start = array_element_address(array, offset, bt); 6594 6595 set_result(_gvn.transform(new VectorizedHashCodeNode(control(), memory(TypeAryPtr::get_array_body_type(bt)), 6596 array_start, length, initialValue, basic_type))); 6597 clear_upper_avx(); 6598 6599 return true; 6600 } 6601 6602 /** 6603 * Calculate CRC32 for byte. 6604 * int java.util.zip.CRC32.update(int crc, int b) 6605 */ 6606 bool LibraryCallKit::inline_updateCRC32() { 6607 assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions support"); 6608 assert(callee()->signature()->size() == 2, "update has 2 parameters"); 6609 // no receiver since it is static method 6610 Node* crc = argument(0); // type: int 6611 Node* b = argument(1); // type: int 6612 6613 /* 6614 * int c = ~ crc; 6615 * b = timesXtoThe32[(b ^ c) & 0xFF]; 6616 * b = b ^ (c >>> 8); 6617 * crc = ~b; 6618 */ 6619 6620 Node* M1 = intcon(-1); 6621 crc = _gvn.transform(new XorINode(crc, M1)); 6622 Node* result = _gvn.transform(new XorINode(crc, b)); 6623 result = _gvn.transform(new AndINode(result, intcon(0xFF))); 6624 6625 Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr())); 6626 Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2))); 6627 Node* adr = basic_plus_adr(top(), base, ConvI2X(offset)); 6628 result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered); 6629 6630 crc = _gvn.transform(new URShiftINode(crc, intcon(8))); 6631 result = _gvn.transform(new XorINode(crc, result)); 6632 result = _gvn.transform(new XorINode(result, M1)); 6633 set_result(result); 6634 return true; 6635 } 6636 6637 /** 6638 * Calculate CRC32 for byte[] array. 6639 * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len) 6640 */ 6641 bool LibraryCallKit::inline_updateBytesCRC32() { 6642 assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions support"); 6643 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 6644 // no receiver since it is static method 6645 Node* crc = argument(0); // type: int 6646 Node* src = argument(1); // type: oop 6647 Node* offset = argument(2); // type: int 6648 Node* length = argument(3); // type: int 6649 6650 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6651 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 6652 // failed array check 6653 return false; 6654 } 6655 6656 // Figure out the size and type of the elements we will be copying. 6657 BasicType src_elem = src_type->elem()->array_element_basic_type(); 6658 if (src_elem != T_BYTE) { 6659 return false; 6660 } 6661 6662 // 'src_start' points to src array + scaled offset 6663 src = must_be_not_null(src, true); 6664 Node* src_start = array_element_address(src, offset, src_elem); 6665 6666 // We assume that range check is done by caller. 6667 // TODO: generate range check (offset+length < src.length) in debug VM. 6668 6669 // Call the stub. 6670 address stubAddr = StubRoutines::updateBytesCRC32(); 6671 const char *stubName = "updateBytesCRC32"; 6672 6673 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(), 6674 stubAddr, stubName, TypePtr::BOTTOM, 6675 crc, src_start, length); 6676 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6677 set_result(result); 6678 return true; 6679 } 6680 6681 /** 6682 * Calculate CRC32 for ByteBuffer. 6683 * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len) 6684 */ 6685 bool LibraryCallKit::inline_updateByteBufferCRC32() { 6686 assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions support"); 6687 assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long"); 6688 // no receiver since it is static method 6689 Node* crc = argument(0); // type: int 6690 Node* src = argument(1); // type: long 6691 Node* offset = argument(3); // type: int 6692 Node* length = argument(4); // type: int 6693 6694 src = ConvL2X(src); // adjust Java long to machine word 6695 Node* base = _gvn.transform(new CastX2PNode(src)); 6696 offset = ConvI2X(offset); 6697 6698 // 'src_start' points to src array + scaled offset 6699 Node* src_start = basic_plus_adr(top(), base, offset); 6700 6701 // Call the stub. 6702 address stubAddr = StubRoutines::updateBytesCRC32(); 6703 const char *stubName = "updateBytesCRC32"; 6704 6705 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(), 6706 stubAddr, stubName, TypePtr::BOTTOM, 6707 crc, src_start, length); 6708 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6709 set_result(result); 6710 return true; 6711 } 6712 6713 //------------------------------get_table_from_crc32c_class----------------------- 6714 Node * LibraryCallKit::get_table_from_crc32c_class(ciInstanceKlass *crc32c_class) { 6715 Node* table = load_field_from_object(nullptr, "byteTable", "[I", /*decorators*/ IN_HEAP, /*is_static*/ true, crc32c_class); 6716 assert (table != nullptr, "wrong version of java.util.zip.CRC32C"); 6717 6718 return table; 6719 } 6720 6721 //------------------------------inline_updateBytesCRC32C----------------------- 6722 // 6723 // Calculate CRC32C for byte[] array. 6724 // int java.util.zip.CRC32C.updateBytes(int crc, byte[] buf, int off, int end) 6725 // 6726 bool LibraryCallKit::inline_updateBytesCRC32C() { 6727 assert(UseCRC32CIntrinsics, "need CRC32C instruction support"); 6728 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 6729 assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded"); 6730 // no receiver since it is a static method 6731 Node* crc = argument(0); // type: int 6732 Node* src = argument(1); // type: oop 6733 Node* offset = argument(2); // type: int 6734 Node* end = argument(3); // type: int 6735 6736 Node* length = _gvn.transform(new SubINode(end, offset)); 6737 6738 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6739 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 6740 // failed array check 6741 return false; 6742 } 6743 6744 // Figure out the size and type of the elements we will be copying. 6745 BasicType src_elem = src_type->elem()->array_element_basic_type(); 6746 if (src_elem != T_BYTE) { 6747 return false; 6748 } 6749 6750 // 'src_start' points to src array + scaled offset 6751 src = must_be_not_null(src, true); 6752 Node* src_start = array_element_address(src, offset, src_elem); 6753 6754 // static final int[] byteTable in class CRC32C 6755 Node* table = get_table_from_crc32c_class(callee()->holder()); 6756 table = must_be_not_null(table, true); 6757 Node* table_start = array_element_address(table, intcon(0), T_INT); 6758 6759 // We assume that range check is done by caller. 6760 // TODO: generate range check (offset+length < src.length) in debug VM. 6761 6762 // Call the stub. 6763 address stubAddr = StubRoutines::updateBytesCRC32C(); 6764 const char *stubName = "updateBytesCRC32C"; 6765 6766 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(), 6767 stubAddr, stubName, TypePtr::BOTTOM, 6768 crc, src_start, length, table_start); 6769 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6770 set_result(result); 6771 return true; 6772 } 6773 6774 //------------------------------inline_updateDirectByteBufferCRC32C----------------------- 6775 // 6776 // Calculate CRC32C for DirectByteBuffer. 6777 // int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end) 6778 // 6779 bool LibraryCallKit::inline_updateDirectByteBufferCRC32C() { 6780 assert(UseCRC32CIntrinsics, "need CRC32C instruction support"); 6781 assert(callee()->signature()->size() == 5, "updateDirectByteBuffer has 4 parameters and one is long"); 6782 assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded"); 6783 // no receiver since it is a static method 6784 Node* crc = argument(0); // type: int 6785 Node* src = argument(1); // type: long 6786 Node* offset = argument(3); // type: int 6787 Node* end = argument(4); // type: int 6788 6789 Node* length = _gvn.transform(new SubINode(end, offset)); 6790 6791 src = ConvL2X(src); // adjust Java long to machine word 6792 Node* base = _gvn.transform(new CastX2PNode(src)); 6793 offset = ConvI2X(offset); 6794 6795 // 'src_start' points to src array + scaled offset 6796 Node* src_start = basic_plus_adr(top(), base, offset); 6797 6798 // static final int[] byteTable in class CRC32C 6799 Node* table = get_table_from_crc32c_class(callee()->holder()); 6800 table = must_be_not_null(table, true); 6801 Node* table_start = array_element_address(table, intcon(0), T_INT); 6802 6803 // Call the stub. 6804 address stubAddr = StubRoutines::updateBytesCRC32C(); 6805 const char *stubName = "updateBytesCRC32C"; 6806 6807 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(), 6808 stubAddr, stubName, TypePtr::BOTTOM, 6809 crc, src_start, length, table_start); 6810 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6811 set_result(result); 6812 return true; 6813 } 6814 6815 //------------------------------inline_updateBytesAdler32---------------------- 6816 // 6817 // Calculate Adler32 checksum for byte[] array. 6818 // int java.util.zip.Adler32.updateBytes(int crc, byte[] buf, int off, int len) 6819 // 6820 bool LibraryCallKit::inline_updateBytesAdler32() { 6821 assert(UseAdler32Intrinsics, "Adler32 Intrinsic support need"); // check if we actually need to check this flag or check a different one 6822 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 6823 assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded"); 6824 // no receiver since it is static method 6825 Node* crc = argument(0); // type: int 6826 Node* src = argument(1); // type: oop 6827 Node* offset = argument(2); // type: int 6828 Node* length = argument(3); // type: int 6829 6830 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6831 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 6832 // failed array check 6833 return false; 6834 } 6835 6836 // Figure out the size and type of the elements we will be copying. 6837 BasicType src_elem = src_type->elem()->array_element_basic_type(); 6838 if (src_elem != T_BYTE) { 6839 return false; 6840 } 6841 6842 // 'src_start' points to src array + scaled offset 6843 Node* src_start = array_element_address(src, offset, src_elem); 6844 6845 // We assume that range check is done by caller. 6846 // TODO: generate range check (offset+length < src.length) in debug VM. 6847 6848 // Call the stub. 6849 address stubAddr = StubRoutines::updateBytesAdler32(); 6850 const char *stubName = "updateBytesAdler32"; 6851 6852 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(), 6853 stubAddr, stubName, TypePtr::BOTTOM, 6854 crc, src_start, length); 6855 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6856 set_result(result); 6857 return true; 6858 } 6859 6860 //------------------------------inline_updateByteBufferAdler32--------------- 6861 // 6862 // Calculate Adler32 checksum for DirectByteBuffer. 6863 // int java.util.zip.Adler32.updateByteBuffer(int crc, long buf, int off, int len) 6864 // 6865 bool LibraryCallKit::inline_updateByteBufferAdler32() { 6866 assert(UseAdler32Intrinsics, "Adler32 Intrinsic support need"); // check if we actually need to check this flag or check a different one 6867 assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long"); 6868 assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded"); 6869 // no receiver since it is static method 6870 Node* crc = argument(0); // type: int 6871 Node* src = argument(1); // type: long 6872 Node* offset = argument(3); // type: int 6873 Node* length = argument(4); // type: int 6874 6875 src = ConvL2X(src); // adjust Java long to machine word 6876 Node* base = _gvn.transform(new CastX2PNode(src)); 6877 offset = ConvI2X(offset); 6878 6879 // 'src_start' points to src array + scaled offset 6880 Node* src_start = basic_plus_adr(top(), base, offset); 6881 6882 // Call the stub. 6883 address stubAddr = StubRoutines::updateBytesAdler32(); 6884 const char *stubName = "updateBytesAdler32"; 6885 6886 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(), 6887 stubAddr, stubName, TypePtr::BOTTOM, 6888 crc, src_start, length); 6889 6890 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6891 set_result(result); 6892 return true; 6893 } 6894 6895 //----------------------------inline_reference_get---------------------------- 6896 // public T java.lang.ref.Reference.get(); 6897 bool LibraryCallKit::inline_reference_get() { 6898 const int referent_offset = java_lang_ref_Reference::referent_offset(); 6899 6900 // Get the argument: 6901 Node* reference_obj = null_check_receiver(); 6902 if (stopped()) return true; 6903 6904 DecoratorSet decorators = IN_HEAP | ON_WEAK_OOP_REF; 6905 Node* result = load_field_from_object(reference_obj, "referent", "Ljava/lang/Object;", 6906 decorators, /*is_static*/ false, nullptr); 6907 if (result == nullptr) return false; 6908 6909 // Add memory barrier to prevent commoning reads from this field 6910 // across safepoint since GC can change its value. 6911 insert_mem_bar(Op_MemBarCPUOrder); 6912 6913 set_result(result); 6914 return true; 6915 } 6916 6917 //----------------------------inline_reference_refersTo0---------------------------- 6918 // bool java.lang.ref.Reference.refersTo0(); 6919 // bool java.lang.ref.PhantomReference.refersTo0(); 6920 bool LibraryCallKit::inline_reference_refersTo0(bool is_phantom) { 6921 // Get arguments: 6922 Node* reference_obj = null_check_receiver(); 6923 Node* other_obj = argument(1); 6924 if (stopped()) return true; 6925 6926 DecoratorSet decorators = IN_HEAP | AS_NO_KEEPALIVE; 6927 decorators |= (is_phantom ? ON_PHANTOM_OOP_REF : ON_WEAK_OOP_REF); 6928 Node* referent = load_field_from_object(reference_obj, "referent", "Ljava/lang/Object;", 6929 decorators, /*is_static*/ false, nullptr); 6930 if (referent == nullptr) return false; 6931 6932 // Add memory barrier to prevent commoning reads from this field 6933 // across safepoint since GC can change its value. 6934 insert_mem_bar(Op_MemBarCPUOrder); 6935 6936 Node* cmp = _gvn.transform(new CmpPNode(referent, other_obj)); 6937 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 6938 IfNode* if_node = create_and_map_if(control(), bol, PROB_FAIR, COUNT_UNKNOWN); 6939 6940 RegionNode* region = new RegionNode(3); 6941 PhiNode* phi = new PhiNode(region, TypeInt::BOOL); 6942 6943 Node* if_true = _gvn.transform(new IfTrueNode(if_node)); 6944 region->init_req(1, if_true); 6945 phi->init_req(1, intcon(1)); 6946 6947 Node* if_false = _gvn.transform(new IfFalseNode(if_node)); 6948 region->init_req(2, if_false); 6949 phi->init_req(2, intcon(0)); 6950 6951 set_control(_gvn.transform(region)); 6952 record_for_igvn(region); 6953 set_result(_gvn.transform(phi)); 6954 return true; 6955 } 6956 6957 //----------------------------inline_reference_clear0---------------------------- 6958 // void java.lang.ref.Reference.clear0(); 6959 // void java.lang.ref.PhantomReference.clear0(); 6960 bool LibraryCallKit::inline_reference_clear0(bool is_phantom) { 6961 // This matches the implementation in JVM_ReferenceClear, see the comments there. 6962 6963 // Get arguments 6964 Node* reference_obj = null_check_receiver(); 6965 if (stopped()) return true; 6966 6967 // Common access parameters 6968 DecoratorSet decorators = IN_HEAP | AS_NO_KEEPALIVE; 6969 decorators |= (is_phantom ? ON_PHANTOM_OOP_REF : ON_WEAK_OOP_REF); 6970 Node* referent_field_addr = basic_plus_adr(reference_obj, java_lang_ref_Reference::referent_offset()); 6971 const TypePtr* referent_field_addr_type = _gvn.type(referent_field_addr)->isa_ptr(); 6972 const Type* val_type = TypeOopPtr::make_from_klass(env()->Object_klass()); 6973 6974 Node* referent = access_load_at(reference_obj, 6975 referent_field_addr, 6976 referent_field_addr_type, 6977 val_type, 6978 T_OBJECT, 6979 decorators); 6980 6981 IdealKit ideal(this); 6982 #define __ ideal. 6983 __ if_then(referent, BoolTest::ne, null()); 6984 sync_kit(ideal); 6985 access_store_at(reference_obj, 6986 referent_field_addr, 6987 referent_field_addr_type, 6988 null(), 6989 val_type, 6990 T_OBJECT, 6991 decorators); 6992 __ sync_kit(this); 6993 __ end_if(); 6994 final_sync(ideal); 6995 #undef __ 6996 6997 return true; 6998 } 6999 7000 Node* LibraryCallKit::load_field_from_object(Node* fromObj, const char* fieldName, const char* fieldTypeString, 7001 DecoratorSet decorators, bool is_static, 7002 ciInstanceKlass* fromKls) { 7003 if (fromKls == nullptr) { 7004 const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr(); 7005 assert(tinst != nullptr, "obj is null"); 7006 assert(tinst->is_loaded(), "obj is not loaded"); 7007 fromKls = tinst->instance_klass(); 7008 } else { 7009 assert(is_static, "only for static field access"); 7010 } 7011 ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName), 7012 ciSymbol::make(fieldTypeString), 7013 is_static); 7014 7015 assert(field != nullptr, "undefined field %s %s %s", fieldTypeString, fromKls->name()->as_utf8(), fieldName); 7016 if (field == nullptr) return (Node *) nullptr; 7017 7018 if (is_static) { 7019 const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror()); 7020 fromObj = makecon(tip); 7021 } 7022 7023 // Next code copied from Parse::do_get_xxx(): 7024 7025 // Compute address and memory type. 7026 int offset = field->offset_in_bytes(); 7027 bool is_vol = field->is_volatile(); 7028 ciType* field_klass = field->type(); 7029 assert(field_klass->is_loaded(), "should be loaded"); 7030 const TypePtr* adr_type = C->alias_type(field)->adr_type(); 7031 Node *adr = basic_plus_adr(fromObj, fromObj, offset); 7032 assert(C->get_alias_index(adr_type) == C->get_alias_index(_gvn.type(adr)->isa_ptr()), 7033 "slice of address and input slice don't match"); 7034 BasicType bt = field->layout_type(); 7035 7036 // Build the resultant type of the load 7037 const Type *type; 7038 if (bt == T_OBJECT) { 7039 type = TypeOopPtr::make_from_klass(field_klass->as_klass()); 7040 } else { 7041 type = Type::get_const_basic_type(bt); 7042 } 7043 7044 if (is_vol) { 7045 decorators |= MO_SEQ_CST; 7046 } 7047 7048 return access_load_at(fromObj, adr, adr_type, type, bt, decorators); 7049 } 7050 7051 Node * LibraryCallKit::field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, 7052 bool is_exact /* true */, bool is_static /* false */, 7053 ciInstanceKlass * fromKls /* nullptr */) { 7054 if (fromKls == nullptr) { 7055 const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr(); 7056 assert(tinst != nullptr, "obj is null"); 7057 assert(tinst->is_loaded(), "obj is not loaded"); 7058 assert(!is_exact || tinst->klass_is_exact(), "klass not exact"); 7059 fromKls = tinst->instance_klass(); 7060 } 7061 else { 7062 assert(is_static, "only for static field access"); 7063 } 7064 ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName), 7065 ciSymbol::make(fieldTypeString), 7066 is_static); 7067 7068 assert(field != nullptr, "undefined field"); 7069 assert(!field->is_volatile(), "not defined for volatile fields"); 7070 7071 if (is_static) { 7072 const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror()); 7073 fromObj = makecon(tip); 7074 } 7075 7076 // Next code copied from Parse::do_get_xxx(): 7077 7078 // Compute address and memory type. 7079 int offset = field->offset_in_bytes(); 7080 Node *adr = basic_plus_adr(fromObj, fromObj, offset); 7081 7082 return adr; 7083 } 7084 7085 //------------------------------inline_aescrypt_Block----------------------- 7086 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) { 7087 address stubAddr = nullptr; 7088 const char *stubName; 7089 assert(UseAES, "need AES instruction support"); 7090 7091 switch(id) { 7092 case vmIntrinsics::_aescrypt_encryptBlock: 7093 stubAddr = StubRoutines::aescrypt_encryptBlock(); 7094 stubName = "aescrypt_encryptBlock"; 7095 break; 7096 case vmIntrinsics::_aescrypt_decryptBlock: 7097 stubAddr = StubRoutines::aescrypt_decryptBlock(); 7098 stubName = "aescrypt_decryptBlock"; 7099 break; 7100 default: 7101 break; 7102 } 7103 if (stubAddr == nullptr) return false; 7104 7105 Node* aescrypt_object = argument(0); 7106 Node* src = argument(1); 7107 Node* src_offset = argument(2); 7108 Node* dest = argument(3); 7109 Node* dest_offset = argument(4); 7110 7111 src = must_be_not_null(src, true); 7112 dest = must_be_not_null(dest, true); 7113 7114 // (1) src and dest are arrays. 7115 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7116 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 7117 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 7118 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 7119 7120 // for the quick and dirty code we will skip all the checks. 7121 // we are just trying to get the call to be generated. 7122 Node* src_start = src; 7123 Node* dest_start = dest; 7124 if (src_offset != nullptr || dest_offset != nullptr) { 7125 assert(src_offset != nullptr && dest_offset != nullptr, ""); 7126 src_start = array_element_address(src, src_offset, T_BYTE); 7127 dest_start = array_element_address(dest, dest_offset, T_BYTE); 7128 } 7129 7130 // now need to get the start of its expanded key array 7131 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 7132 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 7133 if (k_start == nullptr) return false; 7134 7135 // Call the stub. 7136 make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(), 7137 stubAddr, stubName, TypePtr::BOTTOM, 7138 src_start, dest_start, k_start); 7139 7140 return true; 7141 } 7142 7143 //------------------------------inline_cipherBlockChaining_AESCrypt----------------------- 7144 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) { 7145 address stubAddr = nullptr; 7146 const char *stubName = nullptr; 7147 7148 assert(UseAES, "need AES instruction support"); 7149 7150 switch(id) { 7151 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 7152 stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt(); 7153 stubName = "cipherBlockChaining_encryptAESCrypt"; 7154 break; 7155 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 7156 stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt(); 7157 stubName = "cipherBlockChaining_decryptAESCrypt"; 7158 break; 7159 default: 7160 break; 7161 } 7162 if (stubAddr == nullptr) return false; 7163 7164 Node* cipherBlockChaining_object = argument(0); 7165 Node* src = argument(1); 7166 Node* src_offset = argument(2); 7167 Node* len = argument(3); 7168 Node* dest = argument(4); 7169 Node* dest_offset = argument(5); 7170 7171 src = must_be_not_null(src, false); 7172 dest = must_be_not_null(dest, false); 7173 7174 // (1) src and dest are arrays. 7175 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7176 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 7177 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 7178 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 7179 7180 // checks are the responsibility of the caller 7181 Node* src_start = src; 7182 Node* dest_start = dest; 7183 if (src_offset != nullptr || dest_offset != nullptr) { 7184 assert(src_offset != nullptr && dest_offset != nullptr, ""); 7185 src_start = array_element_address(src, src_offset, T_BYTE); 7186 dest_start = array_element_address(dest, dest_offset, T_BYTE); 7187 } 7188 7189 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 7190 // (because of the predicated logic executed earlier). 7191 // so we cast it here safely. 7192 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 7193 7194 Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7195 if (embeddedCipherObj == nullptr) return false; 7196 7197 // cast it to what we know it will be at runtime 7198 const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr(); 7199 assert(tinst != nullptr, "CBC obj is null"); 7200 assert(tinst->is_loaded(), "CBC obj is not loaded"); 7201 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7202 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 7203 7204 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7205 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 7206 const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 7207 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 7208 aescrypt_object = _gvn.transform(aescrypt_object); 7209 7210 // we need to get the start of the aescrypt_object's expanded key array 7211 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 7212 if (k_start == nullptr) return false; 7213 7214 // similarly, get the start address of the r vector 7215 Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B"); 7216 if (objRvec == nullptr) return false; 7217 Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE); 7218 7219 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 7220 Node* cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 7221 OptoRuntime::cipherBlockChaining_aescrypt_Type(), 7222 stubAddr, stubName, TypePtr::BOTTOM, 7223 src_start, dest_start, k_start, r_start, len); 7224 7225 // return cipher length (int) 7226 Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms)); 7227 set_result(retvalue); 7228 return true; 7229 } 7230 7231 //------------------------------inline_electronicCodeBook_AESCrypt----------------------- 7232 bool LibraryCallKit::inline_electronicCodeBook_AESCrypt(vmIntrinsics::ID id) { 7233 address stubAddr = nullptr; 7234 const char *stubName = nullptr; 7235 7236 assert(UseAES, "need AES instruction support"); 7237 7238 switch (id) { 7239 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 7240 stubAddr = StubRoutines::electronicCodeBook_encryptAESCrypt(); 7241 stubName = "electronicCodeBook_encryptAESCrypt"; 7242 break; 7243 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 7244 stubAddr = StubRoutines::electronicCodeBook_decryptAESCrypt(); 7245 stubName = "electronicCodeBook_decryptAESCrypt"; 7246 break; 7247 default: 7248 break; 7249 } 7250 7251 if (stubAddr == nullptr) return false; 7252 7253 Node* electronicCodeBook_object = argument(0); 7254 Node* src = argument(1); 7255 Node* src_offset = argument(2); 7256 Node* len = argument(3); 7257 Node* dest = argument(4); 7258 Node* dest_offset = argument(5); 7259 7260 // (1) src and dest are arrays. 7261 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7262 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 7263 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 7264 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 7265 7266 // checks are the responsibility of the caller 7267 Node* src_start = src; 7268 Node* dest_start = dest; 7269 if (src_offset != nullptr || dest_offset != nullptr) { 7270 assert(src_offset != nullptr && dest_offset != nullptr, ""); 7271 src_start = array_element_address(src, src_offset, T_BYTE); 7272 dest_start = array_element_address(dest, dest_offset, T_BYTE); 7273 } 7274 7275 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 7276 // (because of the predicated logic executed earlier). 7277 // so we cast it here safely. 7278 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 7279 7280 Node* embeddedCipherObj = load_field_from_object(electronicCodeBook_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7281 if (embeddedCipherObj == nullptr) return false; 7282 7283 // cast it to what we know it will be at runtime 7284 const TypeInstPtr* tinst = _gvn.type(electronicCodeBook_object)->isa_instptr(); 7285 assert(tinst != nullptr, "ECB obj is null"); 7286 assert(tinst->is_loaded(), "ECB obj is not loaded"); 7287 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7288 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 7289 7290 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7291 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 7292 const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 7293 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 7294 aescrypt_object = _gvn.transform(aescrypt_object); 7295 7296 // we need to get the start of the aescrypt_object's expanded key array 7297 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 7298 if (k_start == nullptr) return false; 7299 7300 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 7301 Node* ecbCrypt = make_runtime_call(RC_LEAF | RC_NO_FP, 7302 OptoRuntime::electronicCodeBook_aescrypt_Type(), 7303 stubAddr, stubName, TypePtr::BOTTOM, 7304 src_start, dest_start, k_start, len); 7305 7306 // return cipher length (int) 7307 Node* retvalue = _gvn.transform(new ProjNode(ecbCrypt, TypeFunc::Parms)); 7308 set_result(retvalue); 7309 return true; 7310 } 7311 7312 //------------------------------inline_counterMode_AESCrypt----------------------- 7313 bool LibraryCallKit::inline_counterMode_AESCrypt(vmIntrinsics::ID id) { 7314 assert(UseAES, "need AES instruction support"); 7315 if (!UseAESCTRIntrinsics) return false; 7316 7317 address stubAddr = nullptr; 7318 const char *stubName = nullptr; 7319 if (id == vmIntrinsics::_counterMode_AESCrypt) { 7320 stubAddr = StubRoutines::counterMode_AESCrypt(); 7321 stubName = "counterMode_AESCrypt"; 7322 } 7323 if (stubAddr == nullptr) return false; 7324 7325 Node* counterMode_object = argument(0); 7326 Node* src = argument(1); 7327 Node* src_offset = argument(2); 7328 Node* len = argument(3); 7329 Node* dest = argument(4); 7330 Node* dest_offset = argument(5); 7331 7332 // (1) src and dest are arrays. 7333 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7334 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 7335 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 7336 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 7337 7338 // checks are the responsibility of the caller 7339 Node* src_start = src; 7340 Node* dest_start = dest; 7341 if (src_offset != nullptr || dest_offset != nullptr) { 7342 assert(src_offset != nullptr && dest_offset != nullptr, ""); 7343 src_start = array_element_address(src, src_offset, T_BYTE); 7344 dest_start = array_element_address(dest, dest_offset, T_BYTE); 7345 } 7346 7347 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 7348 // (because of the predicated logic executed earlier). 7349 // so we cast it here safely. 7350 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 7351 Node* embeddedCipherObj = load_field_from_object(counterMode_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7352 if (embeddedCipherObj == nullptr) return false; 7353 // cast it to what we know it will be at runtime 7354 const TypeInstPtr* tinst = _gvn.type(counterMode_object)->isa_instptr(); 7355 assert(tinst != nullptr, "CTR obj is null"); 7356 assert(tinst->is_loaded(), "CTR obj is not loaded"); 7357 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7358 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 7359 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7360 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 7361 const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 7362 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 7363 aescrypt_object = _gvn.transform(aescrypt_object); 7364 // we need to get the start of the aescrypt_object's expanded key array 7365 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 7366 if (k_start == nullptr) return false; 7367 // similarly, get the start address of the r vector 7368 Node* obj_counter = load_field_from_object(counterMode_object, "counter", "[B"); 7369 if (obj_counter == nullptr) return false; 7370 Node* cnt_start = array_element_address(obj_counter, intcon(0), T_BYTE); 7371 7372 Node* saved_encCounter = load_field_from_object(counterMode_object, "encryptedCounter", "[B"); 7373 if (saved_encCounter == nullptr) return false; 7374 Node* saved_encCounter_start = array_element_address(saved_encCounter, intcon(0), T_BYTE); 7375 Node* used = field_address_from_object(counterMode_object, "used", "I", /*is_exact*/ false); 7376 7377 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 7378 Node* ctrCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 7379 OptoRuntime::counterMode_aescrypt_Type(), 7380 stubAddr, stubName, TypePtr::BOTTOM, 7381 src_start, dest_start, k_start, cnt_start, len, saved_encCounter_start, used); 7382 7383 // return cipher length (int) 7384 Node* retvalue = _gvn.transform(new ProjNode(ctrCrypt, TypeFunc::Parms)); 7385 set_result(retvalue); 7386 return true; 7387 } 7388 7389 //------------------------------get_key_start_from_aescrypt_object----------------------- 7390 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) { 7391 #if defined(PPC64) || defined(S390) || defined(RISCV64) 7392 // MixColumns for decryption can be reduced by preprocessing MixColumns with round keys. 7393 // Intel's extension is based on this optimization and AESCrypt generates round keys by preprocessing MixColumns. 7394 // However, ppc64 vncipher processes MixColumns and requires the same round keys with encryption. 7395 // The ppc64 and riscv64 stubs of encryption and decryption use the same round keys (sessionK[0]). 7396 Node* objSessionK = load_field_from_object(aescrypt_object, "sessionK", "[[I"); 7397 assert (objSessionK != nullptr, "wrong version of com.sun.crypto.provider.AESCrypt"); 7398 if (objSessionK == nullptr) { 7399 return (Node *) nullptr; 7400 } 7401 Node* objAESCryptKey = load_array_element(objSessionK, intcon(0), TypeAryPtr::OOPS, /* set_ctrl */ true); 7402 #else 7403 Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I"); 7404 #endif // PPC64 7405 assert (objAESCryptKey != nullptr, "wrong version of com.sun.crypto.provider.AESCrypt"); 7406 if (objAESCryptKey == nullptr) return (Node *) nullptr; 7407 7408 // now have the array, need to get the start address of the K array 7409 Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT); 7410 return k_start; 7411 } 7412 7413 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate---------------------------- 7414 // Return node representing slow path of predicate check. 7415 // the pseudo code we want to emulate with this predicate is: 7416 // for encryption: 7417 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 7418 // for decryption: 7419 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 7420 // note cipher==plain is more conservative than the original java code but that's OK 7421 // 7422 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) { 7423 // The receiver was checked for null already. 7424 Node* objCBC = argument(0); 7425 7426 Node* src = argument(1); 7427 Node* dest = argument(4); 7428 7429 // Load embeddedCipher field of CipherBlockChaining object. 7430 Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7431 7432 // get AESCrypt klass for instanceOf check 7433 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 7434 // will have same classloader as CipherBlockChaining object 7435 const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr(); 7436 assert(tinst != nullptr, "CBCobj is null"); 7437 assert(tinst->is_loaded(), "CBCobj is not loaded"); 7438 7439 // we want to do an instanceof comparison against the AESCrypt class 7440 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7441 if (!klass_AESCrypt->is_loaded()) { 7442 // if AESCrypt is not even loaded, we never take the intrinsic fast path 7443 Node* ctrl = control(); 7444 set_control(top()); // no regular fast path 7445 return ctrl; 7446 } 7447 7448 src = must_be_not_null(src, true); 7449 dest = must_be_not_null(dest, true); 7450 7451 // Resolve oops to stable for CmpP below. 7452 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7453 7454 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 7455 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 7456 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 7457 7458 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 7459 7460 // for encryption, we are done 7461 if (!decrypting) 7462 return instof_false; // even if it is null 7463 7464 // for decryption, we need to add a further check to avoid 7465 // taking the intrinsic path when cipher and plain are the same 7466 // see the original java code for why. 7467 RegionNode* region = new RegionNode(3); 7468 region->init_req(1, instof_false); 7469 7470 Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest)); 7471 Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq)); 7472 Node* src_dest_conjoint = generate_guard(bool_src_dest, nullptr, PROB_MIN); 7473 region->init_req(2, src_dest_conjoint); 7474 7475 record_for_igvn(region); 7476 return _gvn.transform(region); 7477 } 7478 7479 //----------------------------inline_electronicCodeBook_AESCrypt_predicate---------------------------- 7480 // Return node representing slow path of predicate check. 7481 // the pseudo code we want to emulate with this predicate is: 7482 // for encryption: 7483 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 7484 // for decryption: 7485 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 7486 // note cipher==plain is more conservative than the original java code but that's OK 7487 // 7488 Node* LibraryCallKit::inline_electronicCodeBook_AESCrypt_predicate(bool decrypting) { 7489 // The receiver was checked for null already. 7490 Node* objECB = argument(0); 7491 7492 // Load embeddedCipher field of ElectronicCodeBook object. 7493 Node* embeddedCipherObj = load_field_from_object(objECB, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7494 7495 // get AESCrypt klass for instanceOf check 7496 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 7497 // will have same classloader as ElectronicCodeBook object 7498 const TypeInstPtr* tinst = _gvn.type(objECB)->isa_instptr(); 7499 assert(tinst != nullptr, "ECBobj is null"); 7500 assert(tinst->is_loaded(), "ECBobj is not loaded"); 7501 7502 // we want to do an instanceof comparison against the AESCrypt class 7503 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7504 if (!klass_AESCrypt->is_loaded()) { 7505 // if AESCrypt is not even loaded, we never take the intrinsic fast path 7506 Node* ctrl = control(); 7507 set_control(top()); // no regular fast path 7508 return ctrl; 7509 } 7510 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7511 7512 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 7513 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 7514 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 7515 7516 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 7517 7518 // for encryption, we are done 7519 if (!decrypting) 7520 return instof_false; // even if it is null 7521 7522 // for decryption, we need to add a further check to avoid 7523 // taking the intrinsic path when cipher and plain are the same 7524 // see the original java code for why. 7525 RegionNode* region = new RegionNode(3); 7526 region->init_req(1, instof_false); 7527 Node* src = argument(1); 7528 Node* dest = argument(4); 7529 Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest)); 7530 Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq)); 7531 Node* src_dest_conjoint = generate_guard(bool_src_dest, nullptr, PROB_MIN); 7532 region->init_req(2, src_dest_conjoint); 7533 7534 record_for_igvn(region); 7535 return _gvn.transform(region); 7536 } 7537 7538 //----------------------------inline_counterMode_AESCrypt_predicate---------------------------- 7539 // Return node representing slow path of predicate check. 7540 // the pseudo code we want to emulate with this predicate is: 7541 // for encryption: 7542 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 7543 // for decryption: 7544 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 7545 // note cipher==plain is more conservative than the original java code but that's OK 7546 // 7547 7548 Node* LibraryCallKit::inline_counterMode_AESCrypt_predicate() { 7549 // The receiver was checked for null already. 7550 Node* objCTR = argument(0); 7551 7552 // Load embeddedCipher field of CipherBlockChaining object. 7553 Node* embeddedCipherObj = load_field_from_object(objCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7554 7555 // get AESCrypt klass for instanceOf check 7556 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 7557 // will have same classloader as CipherBlockChaining object 7558 const TypeInstPtr* tinst = _gvn.type(objCTR)->isa_instptr(); 7559 assert(tinst != nullptr, "CTRobj is null"); 7560 assert(tinst->is_loaded(), "CTRobj is not loaded"); 7561 7562 // we want to do an instanceof comparison against the AESCrypt class 7563 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7564 if (!klass_AESCrypt->is_loaded()) { 7565 // if AESCrypt is not even loaded, we never take the intrinsic fast path 7566 Node* ctrl = control(); 7567 set_control(top()); // no regular fast path 7568 return ctrl; 7569 } 7570 7571 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7572 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 7573 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 7574 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 7575 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 7576 7577 return instof_false; // even if it is null 7578 } 7579 7580 //------------------------------inline_ghash_processBlocks 7581 bool LibraryCallKit::inline_ghash_processBlocks() { 7582 address stubAddr; 7583 const char *stubName; 7584 assert(UseGHASHIntrinsics, "need GHASH intrinsics support"); 7585 7586 stubAddr = StubRoutines::ghash_processBlocks(); 7587 stubName = "ghash_processBlocks"; 7588 7589 Node* data = argument(0); 7590 Node* offset = argument(1); 7591 Node* len = argument(2); 7592 Node* state = argument(3); 7593 Node* subkeyH = argument(4); 7594 7595 state = must_be_not_null(state, true); 7596 subkeyH = must_be_not_null(subkeyH, true); 7597 data = must_be_not_null(data, true); 7598 7599 Node* state_start = array_element_address(state, intcon(0), T_LONG); 7600 assert(state_start, "state is null"); 7601 Node* subkeyH_start = array_element_address(subkeyH, intcon(0), T_LONG); 7602 assert(subkeyH_start, "subkeyH is null"); 7603 Node* data_start = array_element_address(data, offset, T_BYTE); 7604 assert(data_start, "data is null"); 7605 7606 Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP, 7607 OptoRuntime::ghash_processBlocks_Type(), 7608 stubAddr, stubName, TypePtr::BOTTOM, 7609 state_start, subkeyH_start, data_start, len); 7610 return true; 7611 } 7612 7613 //------------------------------inline_chacha20Block 7614 bool LibraryCallKit::inline_chacha20Block() { 7615 address stubAddr; 7616 const char *stubName; 7617 assert(UseChaCha20Intrinsics, "need ChaCha20 intrinsics support"); 7618 7619 stubAddr = StubRoutines::chacha20Block(); 7620 stubName = "chacha20Block"; 7621 7622 Node* state = argument(0); 7623 Node* result = argument(1); 7624 7625 state = must_be_not_null(state, true); 7626 result = must_be_not_null(result, true); 7627 7628 Node* state_start = array_element_address(state, intcon(0), T_INT); 7629 assert(state_start, "state is null"); 7630 Node* result_start = array_element_address(result, intcon(0), T_BYTE); 7631 assert(result_start, "result is null"); 7632 7633 Node* cc20Blk = make_runtime_call(RC_LEAF|RC_NO_FP, 7634 OptoRuntime::chacha20Block_Type(), 7635 stubAddr, stubName, TypePtr::BOTTOM, 7636 state_start, result_start); 7637 // return key stream length (int) 7638 Node* retvalue = _gvn.transform(new ProjNode(cc20Blk, TypeFunc::Parms)); 7639 set_result(retvalue); 7640 return true; 7641 } 7642 7643 //------------------------------inline_dilithiumAlmostNtt 7644 bool LibraryCallKit::inline_dilithiumAlmostNtt() { 7645 address stubAddr; 7646 const char *stubName; 7647 assert(UseDilithiumIntrinsics, "need Dilithium intrinsics support"); 7648 assert(callee()->signature()->size() == 2, "dilithiumAlmostNtt has 2 parameters"); 7649 7650 stubAddr = StubRoutines::dilithiumAlmostNtt(); 7651 stubName = "dilithiumAlmostNtt"; 7652 if (!stubAddr) return false; 7653 7654 Node* coeffs = argument(0); 7655 Node* ntt_zetas = argument(1); 7656 7657 coeffs = must_be_not_null(coeffs, true); 7658 ntt_zetas = must_be_not_null(ntt_zetas, true); 7659 7660 Node* coeffs_start = array_element_address(coeffs, intcon(0), T_INT); 7661 assert(coeffs_start, "coeffs is null"); 7662 Node* ntt_zetas_start = array_element_address(ntt_zetas, intcon(0), T_INT); 7663 assert(ntt_zetas_start, "ntt_zetas is null"); 7664 Node* dilithiumAlmostNtt = make_runtime_call(RC_LEAF|RC_NO_FP, 7665 OptoRuntime::dilithiumAlmostNtt_Type(), 7666 stubAddr, stubName, TypePtr::BOTTOM, 7667 coeffs_start, ntt_zetas_start); 7668 // return an int 7669 Node* retvalue = _gvn.transform(new ProjNode(dilithiumAlmostNtt, TypeFunc::Parms)); 7670 set_result(retvalue); 7671 return true; 7672 } 7673 7674 //------------------------------inline_dilithiumAlmostInverseNtt 7675 bool LibraryCallKit::inline_dilithiumAlmostInverseNtt() { 7676 address stubAddr; 7677 const char *stubName; 7678 assert(UseDilithiumIntrinsics, "need Dilithium intrinsics support"); 7679 assert(callee()->signature()->size() == 2, "dilithiumAlmostInverseNtt has 2 parameters"); 7680 7681 stubAddr = StubRoutines::dilithiumAlmostInverseNtt(); 7682 stubName = "dilithiumAlmostInverseNtt"; 7683 if (!stubAddr) return false; 7684 7685 Node* coeffs = argument(0); 7686 Node* zetas = argument(1); 7687 7688 coeffs = must_be_not_null(coeffs, true); 7689 zetas = must_be_not_null(zetas, true); 7690 7691 Node* coeffs_start = array_element_address(coeffs, intcon(0), T_INT); 7692 assert(coeffs_start, "coeffs is null"); 7693 Node* zetas_start = array_element_address(zetas, intcon(0), T_INT); 7694 assert(zetas_start, "inverseNtt_zetas is null"); 7695 Node* dilithiumAlmostInverseNtt = make_runtime_call(RC_LEAF|RC_NO_FP, 7696 OptoRuntime::dilithiumAlmostInverseNtt_Type(), 7697 stubAddr, stubName, TypePtr::BOTTOM, 7698 coeffs_start, zetas_start); 7699 7700 // return an int 7701 Node* retvalue = _gvn.transform(new ProjNode(dilithiumAlmostInverseNtt, TypeFunc::Parms)); 7702 set_result(retvalue); 7703 return true; 7704 } 7705 7706 //------------------------------inline_dilithiumNttMult 7707 bool LibraryCallKit::inline_dilithiumNttMult() { 7708 address stubAddr; 7709 const char *stubName; 7710 assert(UseDilithiumIntrinsics, "need Dilithium intrinsics support"); 7711 assert(callee()->signature()->size() == 3, "dilithiumNttMult has 3 parameters"); 7712 7713 stubAddr = StubRoutines::dilithiumNttMult(); 7714 stubName = "dilithiumNttMult"; 7715 if (!stubAddr) return false; 7716 7717 Node* result = argument(0); 7718 Node* ntta = argument(1); 7719 Node* nttb = argument(2); 7720 7721 result = must_be_not_null(result, true); 7722 ntta = must_be_not_null(ntta, true); 7723 nttb = must_be_not_null(nttb, true); 7724 7725 Node* result_start = array_element_address(result, intcon(0), T_INT); 7726 assert(result_start, "result is null"); 7727 Node* ntta_start = array_element_address(ntta, intcon(0), T_INT); 7728 assert(ntta_start, "ntta is null"); 7729 Node* nttb_start = array_element_address(nttb, intcon(0), T_INT); 7730 assert(nttb_start, "nttb is null"); 7731 Node* dilithiumNttMult = make_runtime_call(RC_LEAF|RC_NO_FP, 7732 OptoRuntime::dilithiumNttMult_Type(), 7733 stubAddr, stubName, TypePtr::BOTTOM, 7734 result_start, ntta_start, nttb_start); 7735 7736 // return an int 7737 Node* retvalue = _gvn.transform(new ProjNode(dilithiumNttMult, TypeFunc::Parms)); 7738 set_result(retvalue); 7739 7740 return true; 7741 } 7742 7743 //------------------------------inline_dilithiumMontMulByConstant 7744 bool LibraryCallKit::inline_dilithiumMontMulByConstant() { 7745 address stubAddr; 7746 const char *stubName; 7747 assert(UseDilithiumIntrinsics, "need Dilithium intrinsics support"); 7748 assert(callee()->signature()->size() == 2, "dilithiumMontMulByConstant has 2 parameters"); 7749 7750 stubAddr = StubRoutines::dilithiumMontMulByConstant(); 7751 stubName = "dilithiumMontMulByConstant"; 7752 if (!stubAddr) return false; 7753 7754 Node* coeffs = argument(0); 7755 Node* constant = argument(1); 7756 7757 coeffs = must_be_not_null(coeffs, true); 7758 7759 Node* coeffs_start = array_element_address(coeffs, intcon(0), T_INT); 7760 assert(coeffs_start, "coeffs is null"); 7761 Node* dilithiumMontMulByConstant = make_runtime_call(RC_LEAF|RC_NO_FP, 7762 OptoRuntime::dilithiumMontMulByConstant_Type(), 7763 stubAddr, stubName, TypePtr::BOTTOM, 7764 coeffs_start, constant); 7765 7766 // return an int 7767 Node* retvalue = _gvn.transform(new ProjNode(dilithiumMontMulByConstant, TypeFunc::Parms)); 7768 set_result(retvalue); 7769 return true; 7770 } 7771 7772 7773 //------------------------------inline_dilithiumDecomposePoly 7774 bool LibraryCallKit::inline_dilithiumDecomposePoly() { 7775 address stubAddr; 7776 const char *stubName; 7777 assert(UseDilithiumIntrinsics, "need Dilithium intrinsics support"); 7778 assert(callee()->signature()->size() == 5, "dilithiumDecomposePoly has 5 parameters"); 7779 7780 stubAddr = StubRoutines::dilithiumDecomposePoly(); 7781 stubName = "dilithiumDecomposePoly"; 7782 if (!stubAddr) return false; 7783 7784 Node* input = argument(0); 7785 Node* lowPart = argument(1); 7786 Node* highPart = argument(2); 7787 Node* twoGamma2 = argument(3); 7788 Node* multiplier = argument(4); 7789 7790 input = must_be_not_null(input, true); 7791 lowPart = must_be_not_null(lowPart, true); 7792 highPart = must_be_not_null(highPart, true); 7793 7794 Node* input_start = array_element_address(input, intcon(0), T_INT); 7795 assert(input_start, "input is null"); 7796 Node* lowPart_start = array_element_address(lowPart, intcon(0), T_INT); 7797 assert(lowPart_start, "lowPart is null"); 7798 Node* highPart_start = array_element_address(highPart, intcon(0), T_INT); 7799 assert(highPart_start, "highPart is null"); 7800 7801 Node* dilithiumDecomposePoly = make_runtime_call(RC_LEAF|RC_NO_FP, 7802 OptoRuntime::dilithiumDecomposePoly_Type(), 7803 stubAddr, stubName, TypePtr::BOTTOM, 7804 input_start, lowPart_start, highPart_start, 7805 twoGamma2, multiplier); 7806 7807 // return an int 7808 Node* retvalue = _gvn.transform(new ProjNode(dilithiumDecomposePoly, TypeFunc::Parms)); 7809 set_result(retvalue); 7810 return true; 7811 } 7812 7813 bool LibraryCallKit::inline_base64_encodeBlock() { 7814 address stubAddr; 7815 const char *stubName; 7816 assert(UseBASE64Intrinsics, "need Base64 intrinsics support"); 7817 assert(callee()->signature()->size() == 6, "base64_encodeBlock has 6 parameters"); 7818 stubAddr = StubRoutines::base64_encodeBlock(); 7819 stubName = "encodeBlock"; 7820 7821 if (!stubAddr) return false; 7822 Node* base64obj = argument(0); 7823 Node* src = argument(1); 7824 Node* offset = argument(2); 7825 Node* len = argument(3); 7826 Node* dest = argument(4); 7827 Node* dp = argument(5); 7828 Node* isURL = argument(6); 7829 7830 src = must_be_not_null(src, true); 7831 dest = must_be_not_null(dest, true); 7832 7833 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 7834 assert(src_start, "source array is null"); 7835 Node* dest_start = array_element_address(dest, intcon(0), T_BYTE); 7836 assert(dest_start, "destination array is null"); 7837 7838 Node* base64 = make_runtime_call(RC_LEAF, 7839 OptoRuntime::base64_encodeBlock_Type(), 7840 stubAddr, stubName, TypePtr::BOTTOM, 7841 src_start, offset, len, dest_start, dp, isURL); 7842 return true; 7843 } 7844 7845 bool LibraryCallKit::inline_base64_decodeBlock() { 7846 address stubAddr; 7847 const char *stubName; 7848 assert(UseBASE64Intrinsics, "need Base64 intrinsics support"); 7849 assert(callee()->signature()->size() == 7, "base64_decodeBlock has 7 parameters"); 7850 stubAddr = StubRoutines::base64_decodeBlock(); 7851 stubName = "decodeBlock"; 7852 7853 if (!stubAddr) return false; 7854 Node* base64obj = argument(0); 7855 Node* src = argument(1); 7856 Node* src_offset = argument(2); 7857 Node* len = argument(3); 7858 Node* dest = argument(4); 7859 Node* dest_offset = argument(5); 7860 Node* isURL = argument(6); 7861 Node* isMIME = argument(7); 7862 7863 src = must_be_not_null(src, true); 7864 dest = must_be_not_null(dest, true); 7865 7866 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 7867 assert(src_start, "source array is null"); 7868 Node* dest_start = array_element_address(dest, intcon(0), T_BYTE); 7869 assert(dest_start, "destination array is null"); 7870 7871 Node* call = make_runtime_call(RC_LEAF, 7872 OptoRuntime::base64_decodeBlock_Type(), 7873 stubAddr, stubName, TypePtr::BOTTOM, 7874 src_start, src_offset, len, dest_start, dest_offset, isURL, isMIME); 7875 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 7876 set_result(result); 7877 return true; 7878 } 7879 7880 bool LibraryCallKit::inline_poly1305_processBlocks() { 7881 address stubAddr; 7882 const char *stubName; 7883 assert(UsePoly1305Intrinsics, "need Poly intrinsics support"); 7884 assert(callee()->signature()->size() == 5, "poly1305_processBlocks has %d parameters", callee()->signature()->size()); 7885 stubAddr = StubRoutines::poly1305_processBlocks(); 7886 stubName = "poly1305_processBlocks"; 7887 7888 if (!stubAddr) return false; 7889 null_check_receiver(); // null-check receiver 7890 if (stopped()) return true; 7891 7892 Node* input = argument(1); 7893 Node* input_offset = argument(2); 7894 Node* len = argument(3); 7895 Node* alimbs = argument(4); 7896 Node* rlimbs = argument(5); 7897 7898 input = must_be_not_null(input, true); 7899 alimbs = must_be_not_null(alimbs, true); 7900 rlimbs = must_be_not_null(rlimbs, true); 7901 7902 Node* input_start = array_element_address(input, input_offset, T_BYTE); 7903 assert(input_start, "input array is null"); 7904 Node* acc_start = array_element_address(alimbs, intcon(0), T_LONG); 7905 assert(acc_start, "acc array is null"); 7906 Node* r_start = array_element_address(rlimbs, intcon(0), T_LONG); 7907 assert(r_start, "r array is null"); 7908 7909 Node* call = make_runtime_call(RC_LEAF | RC_NO_FP, 7910 OptoRuntime::poly1305_processBlocks_Type(), 7911 stubAddr, stubName, TypePtr::BOTTOM, 7912 input_start, len, acc_start, r_start); 7913 return true; 7914 } 7915 7916 bool LibraryCallKit::inline_intpoly_montgomeryMult_P256() { 7917 address stubAddr; 7918 const char *stubName; 7919 assert(UseIntPolyIntrinsics, "need intpoly intrinsics support"); 7920 assert(callee()->signature()->size() == 3, "intpoly_montgomeryMult_P256 has %d parameters", callee()->signature()->size()); 7921 stubAddr = StubRoutines::intpoly_montgomeryMult_P256(); 7922 stubName = "intpoly_montgomeryMult_P256"; 7923 7924 if (!stubAddr) return false; 7925 null_check_receiver(); // null-check receiver 7926 if (stopped()) return true; 7927 7928 Node* a = argument(1); 7929 Node* b = argument(2); 7930 Node* r = argument(3); 7931 7932 a = must_be_not_null(a, true); 7933 b = must_be_not_null(b, true); 7934 r = must_be_not_null(r, true); 7935 7936 Node* a_start = array_element_address(a, intcon(0), T_LONG); 7937 assert(a_start, "a array is null"); 7938 Node* b_start = array_element_address(b, intcon(0), T_LONG); 7939 assert(b_start, "b array is null"); 7940 Node* r_start = array_element_address(r, intcon(0), T_LONG); 7941 assert(r_start, "r array is null"); 7942 7943 Node* call = make_runtime_call(RC_LEAF | RC_NO_FP, 7944 OptoRuntime::intpoly_montgomeryMult_P256_Type(), 7945 stubAddr, stubName, TypePtr::BOTTOM, 7946 a_start, b_start, r_start); 7947 return true; 7948 } 7949 7950 bool LibraryCallKit::inline_intpoly_assign() { 7951 assert(UseIntPolyIntrinsics, "need intpoly intrinsics support"); 7952 assert(callee()->signature()->size() == 3, "intpoly_assign has %d parameters", callee()->signature()->size()); 7953 const char *stubName = "intpoly_assign"; 7954 address stubAddr = StubRoutines::intpoly_assign(); 7955 if (!stubAddr) return false; 7956 7957 Node* set = argument(0); 7958 Node* a = argument(1); 7959 Node* b = argument(2); 7960 Node* arr_length = load_array_length(a); 7961 7962 a = must_be_not_null(a, true); 7963 b = must_be_not_null(b, true); 7964 7965 Node* a_start = array_element_address(a, intcon(0), T_LONG); 7966 assert(a_start, "a array is null"); 7967 Node* b_start = array_element_address(b, intcon(0), T_LONG); 7968 assert(b_start, "b array is null"); 7969 7970 Node* call = make_runtime_call(RC_LEAF | RC_NO_FP, 7971 OptoRuntime::intpoly_assign_Type(), 7972 stubAddr, stubName, TypePtr::BOTTOM, 7973 set, a_start, b_start, arr_length); 7974 return true; 7975 } 7976 7977 //------------------------------inline_digestBase_implCompress----------------------- 7978 // 7979 // Calculate MD5 for single-block byte[] array. 7980 // void com.sun.security.provider.MD5.implCompress(byte[] buf, int ofs) 7981 // 7982 // Calculate SHA (i.e., SHA-1) for single-block byte[] array. 7983 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs) 7984 // 7985 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array. 7986 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs) 7987 // 7988 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array. 7989 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs) 7990 // 7991 // Calculate SHA3 (i.e., SHA3-224 or SHA3-256 or SHA3-384 or SHA3-512) for single-block byte[] array. 7992 // void com.sun.security.provider.SHA3.implCompress(byte[] buf, int ofs) 7993 // 7994 bool LibraryCallKit::inline_digestBase_implCompress(vmIntrinsics::ID id) { 7995 assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters"); 7996 7997 Node* digestBase_obj = argument(0); 7998 Node* src = argument(1); // type oop 7999 Node* ofs = argument(2); // type int 8000 8001 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 8002 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 8003 // failed array check 8004 return false; 8005 } 8006 // Figure out the size and type of the elements we will be copying. 8007 BasicType src_elem = src_type->elem()->array_element_basic_type(); 8008 if (src_elem != T_BYTE) { 8009 return false; 8010 } 8011 // 'src_start' points to src array + offset 8012 src = must_be_not_null(src, true); 8013 Node* src_start = array_element_address(src, ofs, src_elem); 8014 Node* state = nullptr; 8015 Node* block_size = nullptr; 8016 address stubAddr; 8017 const char *stubName; 8018 8019 switch(id) { 8020 case vmIntrinsics::_md5_implCompress: 8021 assert(UseMD5Intrinsics, "need MD5 instruction support"); 8022 state = get_state_from_digest_object(digestBase_obj, T_INT); 8023 stubAddr = StubRoutines::md5_implCompress(); 8024 stubName = "md5_implCompress"; 8025 break; 8026 case vmIntrinsics::_sha_implCompress: 8027 assert(UseSHA1Intrinsics, "need SHA1 instruction support"); 8028 state = get_state_from_digest_object(digestBase_obj, T_INT); 8029 stubAddr = StubRoutines::sha1_implCompress(); 8030 stubName = "sha1_implCompress"; 8031 break; 8032 case vmIntrinsics::_sha2_implCompress: 8033 assert(UseSHA256Intrinsics, "need SHA256 instruction support"); 8034 state = get_state_from_digest_object(digestBase_obj, T_INT); 8035 stubAddr = StubRoutines::sha256_implCompress(); 8036 stubName = "sha256_implCompress"; 8037 break; 8038 case vmIntrinsics::_sha5_implCompress: 8039 assert(UseSHA512Intrinsics, "need SHA512 instruction support"); 8040 state = get_state_from_digest_object(digestBase_obj, T_LONG); 8041 stubAddr = StubRoutines::sha512_implCompress(); 8042 stubName = "sha512_implCompress"; 8043 break; 8044 case vmIntrinsics::_sha3_implCompress: 8045 assert(UseSHA3Intrinsics, "need SHA3 instruction support"); 8046 state = get_state_from_digest_object(digestBase_obj, T_LONG); 8047 stubAddr = StubRoutines::sha3_implCompress(); 8048 stubName = "sha3_implCompress"; 8049 block_size = get_block_size_from_digest_object(digestBase_obj); 8050 if (block_size == nullptr) return false; 8051 break; 8052 default: 8053 fatal_unexpected_iid(id); 8054 return false; 8055 } 8056 if (state == nullptr) return false; 8057 8058 assert(stubAddr != nullptr, "Stub %s is not generated", stubName); 8059 if (stubAddr == nullptr) return false; 8060 8061 // Call the stub. 8062 Node* call; 8063 if (block_size == nullptr) { 8064 call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(false), 8065 stubAddr, stubName, TypePtr::BOTTOM, 8066 src_start, state); 8067 } else { 8068 call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(true), 8069 stubAddr, stubName, TypePtr::BOTTOM, 8070 src_start, state, block_size); 8071 } 8072 8073 return true; 8074 } 8075 8076 //------------------------------inline_double_keccak 8077 bool LibraryCallKit::inline_double_keccak() { 8078 address stubAddr; 8079 const char *stubName; 8080 assert(UseSHA3Intrinsics, "need SHA3 intrinsics support"); 8081 assert(callee()->signature()->size() == 2, "double_keccak has 2 parameters"); 8082 8083 stubAddr = StubRoutines::double_keccak(); 8084 stubName = "double_keccak"; 8085 if (!stubAddr) return false; 8086 8087 Node* status0 = argument(0); 8088 Node* status1 = argument(1); 8089 8090 status0 = must_be_not_null(status0, true); 8091 status1 = must_be_not_null(status1, true); 8092 8093 Node* status0_start = array_element_address(status0, intcon(0), T_LONG); 8094 assert(status0_start, "status0 is null"); 8095 Node* status1_start = array_element_address(status1, intcon(0), T_LONG); 8096 assert(status1_start, "status1 is null"); 8097 Node* double_keccak = make_runtime_call(RC_LEAF|RC_NO_FP, 8098 OptoRuntime::double_keccak_Type(), 8099 stubAddr, stubName, TypePtr::BOTTOM, 8100 status0_start, status1_start); 8101 // return an int 8102 Node* retvalue = _gvn.transform(new ProjNode(double_keccak, TypeFunc::Parms)); 8103 set_result(retvalue); 8104 return true; 8105 } 8106 8107 8108 //------------------------------inline_digestBase_implCompressMB----------------------- 8109 // 8110 // Calculate MD5/SHA/SHA2/SHA5/SHA3 for multi-block byte[] array. 8111 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit) 8112 // 8113 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) { 8114 assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics || UseSHA3Intrinsics, 8115 "need MD5/SHA1/SHA256/SHA512/SHA3 instruction support"); 8116 assert((uint)predicate < 5, "sanity"); 8117 assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters"); 8118 8119 Node* digestBase_obj = argument(0); // The receiver was checked for null already. 8120 Node* src = argument(1); // byte[] array 8121 Node* ofs = argument(2); // type int 8122 Node* limit = argument(3); // type int 8123 8124 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 8125 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 8126 // failed array check 8127 return false; 8128 } 8129 // Figure out the size and type of the elements we will be copying. 8130 BasicType src_elem = src_type->elem()->array_element_basic_type(); 8131 if (src_elem != T_BYTE) { 8132 return false; 8133 } 8134 // 'src_start' points to src array + offset 8135 src = must_be_not_null(src, false); 8136 Node* src_start = array_element_address(src, ofs, src_elem); 8137 8138 const char* klass_digestBase_name = nullptr; 8139 const char* stub_name = nullptr; 8140 address stub_addr = nullptr; 8141 BasicType elem_type = T_INT; 8142 8143 switch (predicate) { 8144 case 0: 8145 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_md5_implCompress)) { 8146 klass_digestBase_name = "sun/security/provider/MD5"; 8147 stub_name = "md5_implCompressMB"; 8148 stub_addr = StubRoutines::md5_implCompressMB(); 8149 } 8150 break; 8151 case 1: 8152 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha_implCompress)) { 8153 klass_digestBase_name = "sun/security/provider/SHA"; 8154 stub_name = "sha1_implCompressMB"; 8155 stub_addr = StubRoutines::sha1_implCompressMB(); 8156 } 8157 break; 8158 case 2: 8159 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha2_implCompress)) { 8160 klass_digestBase_name = "sun/security/provider/SHA2"; 8161 stub_name = "sha256_implCompressMB"; 8162 stub_addr = StubRoutines::sha256_implCompressMB(); 8163 } 8164 break; 8165 case 3: 8166 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha5_implCompress)) { 8167 klass_digestBase_name = "sun/security/provider/SHA5"; 8168 stub_name = "sha512_implCompressMB"; 8169 stub_addr = StubRoutines::sha512_implCompressMB(); 8170 elem_type = T_LONG; 8171 } 8172 break; 8173 case 4: 8174 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha3_implCompress)) { 8175 klass_digestBase_name = "sun/security/provider/SHA3"; 8176 stub_name = "sha3_implCompressMB"; 8177 stub_addr = StubRoutines::sha3_implCompressMB(); 8178 elem_type = T_LONG; 8179 } 8180 break; 8181 default: 8182 fatal("unknown DigestBase intrinsic predicate: %d", predicate); 8183 } 8184 if (klass_digestBase_name != nullptr) { 8185 assert(stub_addr != nullptr, "Stub is generated"); 8186 if (stub_addr == nullptr) return false; 8187 8188 // get DigestBase klass to lookup for SHA klass 8189 const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr(); 8190 assert(tinst != nullptr, "digestBase_obj is not instance???"); 8191 assert(tinst->is_loaded(), "DigestBase is not loaded"); 8192 8193 ciKlass* klass_digestBase = tinst->instance_klass()->find_klass(ciSymbol::make(klass_digestBase_name)); 8194 assert(klass_digestBase->is_loaded(), "predicate checks that this class is loaded"); 8195 ciInstanceKlass* instklass_digestBase = klass_digestBase->as_instance_klass(); 8196 return inline_digestBase_implCompressMB(digestBase_obj, instklass_digestBase, elem_type, stub_addr, stub_name, src_start, ofs, limit); 8197 } 8198 return false; 8199 } 8200 8201 //------------------------------inline_digestBase_implCompressMB----------------------- 8202 bool LibraryCallKit::inline_digestBase_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_digestBase, 8203 BasicType elem_type, address stubAddr, const char *stubName, 8204 Node* src_start, Node* ofs, Node* limit) { 8205 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_digestBase); 8206 const TypeOopPtr* xtype = aklass->cast_to_exactness(false)->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 8207 Node* digest_obj = new CheckCastPPNode(control(), digestBase_obj, xtype); 8208 digest_obj = _gvn.transform(digest_obj); 8209 8210 Node* state = get_state_from_digest_object(digest_obj, elem_type); 8211 if (state == nullptr) return false; 8212 8213 Node* block_size = nullptr; 8214 if (strcmp("sha3_implCompressMB", stubName) == 0) { 8215 block_size = get_block_size_from_digest_object(digest_obj); 8216 if (block_size == nullptr) return false; 8217 } 8218 8219 // Call the stub. 8220 Node* call; 8221 if (block_size == nullptr) { 8222 call = make_runtime_call(RC_LEAF|RC_NO_FP, 8223 OptoRuntime::digestBase_implCompressMB_Type(false), 8224 stubAddr, stubName, TypePtr::BOTTOM, 8225 src_start, state, ofs, limit); 8226 } else { 8227 call = make_runtime_call(RC_LEAF|RC_NO_FP, 8228 OptoRuntime::digestBase_implCompressMB_Type(true), 8229 stubAddr, stubName, TypePtr::BOTTOM, 8230 src_start, state, block_size, ofs, limit); 8231 } 8232 8233 // return ofs (int) 8234 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 8235 set_result(result); 8236 8237 return true; 8238 } 8239 8240 //------------------------------inline_galoisCounterMode_AESCrypt----------------------- 8241 bool LibraryCallKit::inline_galoisCounterMode_AESCrypt() { 8242 assert(UseAES, "need AES instruction support"); 8243 address stubAddr = nullptr; 8244 const char *stubName = nullptr; 8245 stubAddr = StubRoutines::galoisCounterMode_AESCrypt(); 8246 stubName = "galoisCounterMode_AESCrypt"; 8247 8248 if (stubAddr == nullptr) return false; 8249 8250 Node* in = argument(0); 8251 Node* inOfs = argument(1); 8252 Node* len = argument(2); 8253 Node* ct = argument(3); 8254 Node* ctOfs = argument(4); 8255 Node* out = argument(5); 8256 Node* outOfs = argument(6); 8257 Node* gctr_object = argument(7); 8258 Node* ghash_object = argument(8); 8259 8260 // (1) in, ct and out are arrays. 8261 const TypeAryPtr* in_type = in->Value(&_gvn)->isa_aryptr(); 8262 const TypeAryPtr* ct_type = ct->Value(&_gvn)->isa_aryptr(); 8263 const TypeAryPtr* out_type = out->Value(&_gvn)->isa_aryptr(); 8264 assert( in_type != nullptr && in_type->elem() != Type::BOTTOM && 8265 ct_type != nullptr && ct_type->elem() != Type::BOTTOM && 8266 out_type != nullptr && out_type->elem() != Type::BOTTOM, "args are strange"); 8267 8268 // checks are the responsibility of the caller 8269 Node* in_start = in; 8270 Node* ct_start = ct; 8271 Node* out_start = out; 8272 if (inOfs != nullptr || ctOfs != nullptr || outOfs != nullptr) { 8273 assert(inOfs != nullptr && ctOfs != nullptr && outOfs != nullptr, ""); 8274 in_start = array_element_address(in, inOfs, T_BYTE); 8275 ct_start = array_element_address(ct, ctOfs, T_BYTE); 8276 out_start = array_element_address(out, outOfs, T_BYTE); 8277 } 8278 8279 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 8280 // (because of the predicated logic executed earlier). 8281 // so we cast it here safely. 8282 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 8283 Node* embeddedCipherObj = load_field_from_object(gctr_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 8284 Node* counter = load_field_from_object(gctr_object, "counter", "[B"); 8285 Node* subkeyHtbl = load_field_from_object(ghash_object, "subkeyHtbl", "[J"); 8286 Node* state = load_field_from_object(ghash_object, "state", "[J"); 8287 8288 if (embeddedCipherObj == nullptr || counter == nullptr || subkeyHtbl == nullptr || state == nullptr) { 8289 return false; 8290 } 8291 // cast it to what we know it will be at runtime 8292 const TypeInstPtr* tinst = _gvn.type(gctr_object)->isa_instptr(); 8293 assert(tinst != nullptr, "GCTR obj is null"); 8294 assert(tinst->is_loaded(), "GCTR obj is not loaded"); 8295 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 8296 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 8297 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 8298 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 8299 const TypeOopPtr* xtype = aklass->as_instance_type(); 8300 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 8301 aescrypt_object = _gvn.transform(aescrypt_object); 8302 // we need to get the start of the aescrypt_object's expanded key array 8303 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 8304 if (k_start == nullptr) return false; 8305 // similarly, get the start address of the r vector 8306 Node* cnt_start = array_element_address(counter, intcon(0), T_BYTE); 8307 Node* state_start = array_element_address(state, intcon(0), T_LONG); 8308 Node* subkeyHtbl_start = array_element_address(subkeyHtbl, intcon(0), T_LONG); 8309 8310 8311 // Call the stub, passing params 8312 Node* gcmCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 8313 OptoRuntime::galoisCounterMode_aescrypt_Type(), 8314 stubAddr, stubName, TypePtr::BOTTOM, 8315 in_start, len, ct_start, out_start, k_start, state_start, subkeyHtbl_start, cnt_start); 8316 8317 // return cipher length (int) 8318 Node* retvalue = _gvn.transform(new ProjNode(gcmCrypt, TypeFunc::Parms)); 8319 set_result(retvalue); 8320 8321 return true; 8322 } 8323 8324 //----------------------------inline_galoisCounterMode_AESCrypt_predicate---------------------------- 8325 // Return node representing slow path of predicate check. 8326 // the pseudo code we want to emulate with this predicate is: 8327 // for encryption: 8328 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 8329 // for decryption: 8330 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 8331 // note cipher==plain is more conservative than the original java code but that's OK 8332 // 8333 8334 Node* LibraryCallKit::inline_galoisCounterMode_AESCrypt_predicate() { 8335 // The receiver was checked for null already. 8336 Node* objGCTR = argument(7); 8337 // Load embeddedCipher field of GCTR object. 8338 Node* embeddedCipherObj = load_field_from_object(objGCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 8339 assert(embeddedCipherObj != nullptr, "embeddedCipherObj is null"); 8340 8341 // get AESCrypt klass for instanceOf check 8342 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 8343 // will have same classloader as CipherBlockChaining object 8344 const TypeInstPtr* tinst = _gvn.type(objGCTR)->isa_instptr(); 8345 assert(tinst != nullptr, "GCTR obj is null"); 8346 assert(tinst->is_loaded(), "GCTR obj is not loaded"); 8347 8348 // we want to do an instanceof comparison against the AESCrypt class 8349 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 8350 if (!klass_AESCrypt->is_loaded()) { 8351 // if AESCrypt is not even loaded, we never take the intrinsic fast path 8352 Node* ctrl = control(); 8353 set_control(top()); // no regular fast path 8354 return ctrl; 8355 } 8356 8357 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 8358 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 8359 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 8360 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 8361 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 8362 8363 return instof_false; // even if it is null 8364 } 8365 8366 //------------------------------get_state_from_digest_object----------------------- 8367 Node * LibraryCallKit::get_state_from_digest_object(Node *digest_object, BasicType elem_type) { 8368 const char* state_type; 8369 switch (elem_type) { 8370 case T_BYTE: state_type = "[B"; break; 8371 case T_INT: state_type = "[I"; break; 8372 case T_LONG: state_type = "[J"; break; 8373 default: ShouldNotReachHere(); 8374 } 8375 Node* digest_state = load_field_from_object(digest_object, "state", state_type); 8376 assert (digest_state != nullptr, "wrong version of sun.security.provider.MD5/SHA/SHA2/SHA5/SHA3"); 8377 if (digest_state == nullptr) return (Node *) nullptr; 8378 8379 // now have the array, need to get the start address of the state array 8380 Node* state = array_element_address(digest_state, intcon(0), elem_type); 8381 return state; 8382 } 8383 8384 //------------------------------get_block_size_from_sha3_object---------------------------------- 8385 Node * LibraryCallKit::get_block_size_from_digest_object(Node *digest_object) { 8386 Node* block_size = load_field_from_object(digest_object, "blockSize", "I"); 8387 assert (block_size != nullptr, "sanity"); 8388 return block_size; 8389 } 8390 8391 //----------------------------inline_digestBase_implCompressMB_predicate---------------------------- 8392 // Return node representing slow path of predicate check. 8393 // the pseudo code we want to emulate with this predicate is: 8394 // if (digestBaseObj instanceof MD5/SHA/SHA2/SHA5/SHA3) do_intrinsic, else do_javapath 8395 // 8396 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) { 8397 assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics || UseSHA3Intrinsics, 8398 "need MD5/SHA1/SHA256/SHA512/SHA3 instruction support"); 8399 assert((uint)predicate < 5, "sanity"); 8400 8401 // The receiver was checked for null already. 8402 Node* digestBaseObj = argument(0); 8403 8404 // get DigestBase klass for instanceOf check 8405 const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr(); 8406 assert(tinst != nullptr, "digestBaseObj is null"); 8407 assert(tinst->is_loaded(), "DigestBase is not loaded"); 8408 8409 const char* klass_name = nullptr; 8410 switch (predicate) { 8411 case 0: 8412 if (UseMD5Intrinsics) { 8413 // we want to do an instanceof comparison against the MD5 class 8414 klass_name = "sun/security/provider/MD5"; 8415 } 8416 break; 8417 case 1: 8418 if (UseSHA1Intrinsics) { 8419 // we want to do an instanceof comparison against the SHA class 8420 klass_name = "sun/security/provider/SHA"; 8421 } 8422 break; 8423 case 2: 8424 if (UseSHA256Intrinsics) { 8425 // we want to do an instanceof comparison against the SHA2 class 8426 klass_name = "sun/security/provider/SHA2"; 8427 } 8428 break; 8429 case 3: 8430 if (UseSHA512Intrinsics) { 8431 // we want to do an instanceof comparison against the SHA5 class 8432 klass_name = "sun/security/provider/SHA5"; 8433 } 8434 break; 8435 case 4: 8436 if (UseSHA3Intrinsics) { 8437 // we want to do an instanceof comparison against the SHA3 class 8438 klass_name = "sun/security/provider/SHA3"; 8439 } 8440 break; 8441 default: 8442 fatal("unknown SHA intrinsic predicate: %d", predicate); 8443 } 8444 8445 ciKlass* klass = nullptr; 8446 if (klass_name != nullptr) { 8447 klass = tinst->instance_klass()->find_klass(ciSymbol::make(klass_name)); 8448 } 8449 if ((klass == nullptr) || !klass->is_loaded()) { 8450 // if none of MD5/SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path 8451 Node* ctrl = control(); 8452 set_control(top()); // no intrinsic path 8453 return ctrl; 8454 } 8455 ciInstanceKlass* instklass = klass->as_instance_klass(); 8456 8457 Node* instof = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass))); 8458 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 8459 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 8460 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 8461 8462 return instof_false; // even if it is null 8463 } 8464 8465 //-------------inline_fma----------------------------------- 8466 bool LibraryCallKit::inline_fma(vmIntrinsics::ID id) { 8467 Node *a = nullptr; 8468 Node *b = nullptr; 8469 Node *c = nullptr; 8470 Node* result = nullptr; 8471 switch (id) { 8472 case vmIntrinsics::_fmaD: 8473 assert(callee()->signature()->size() == 6, "fma has 3 parameters of size 2 each."); 8474 // no receiver since it is static method 8475 a = argument(0); 8476 b = argument(2); 8477 c = argument(4); 8478 result = _gvn.transform(new FmaDNode(a, b, c)); 8479 break; 8480 case vmIntrinsics::_fmaF: 8481 assert(callee()->signature()->size() == 3, "fma has 3 parameters of size 1 each."); 8482 a = argument(0); 8483 b = argument(1); 8484 c = argument(2); 8485 result = _gvn.transform(new FmaFNode(a, b, c)); 8486 break; 8487 default: 8488 fatal_unexpected_iid(id); break; 8489 } 8490 set_result(result); 8491 return true; 8492 } 8493 8494 bool LibraryCallKit::inline_character_compare(vmIntrinsics::ID id) { 8495 // argument(0) is receiver 8496 Node* codePoint = argument(1); 8497 Node* n = nullptr; 8498 8499 switch (id) { 8500 case vmIntrinsics::_isDigit : 8501 n = new DigitNode(control(), codePoint); 8502 break; 8503 case vmIntrinsics::_isLowerCase : 8504 n = new LowerCaseNode(control(), codePoint); 8505 break; 8506 case vmIntrinsics::_isUpperCase : 8507 n = new UpperCaseNode(control(), codePoint); 8508 break; 8509 case vmIntrinsics::_isWhitespace : 8510 n = new WhitespaceNode(control(), codePoint); 8511 break; 8512 default: 8513 fatal_unexpected_iid(id); 8514 } 8515 8516 set_result(_gvn.transform(n)); 8517 return true; 8518 } 8519 8520 bool LibraryCallKit::inline_profileBoolean() { 8521 Node* counts = argument(1); 8522 const TypeAryPtr* ary = nullptr; 8523 ciArray* aobj = nullptr; 8524 if (counts->is_Con() 8525 && (ary = counts->bottom_type()->isa_aryptr()) != nullptr 8526 && (aobj = ary->const_oop()->as_array()) != nullptr 8527 && (aobj->length() == 2)) { 8528 // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively. 8529 jint false_cnt = aobj->element_value(0).as_int(); 8530 jint true_cnt = aobj->element_value(1).as_int(); 8531 8532 if (C->log() != nullptr) { 8533 C->log()->elem("observe source='profileBoolean' false='%d' true='%d'", 8534 false_cnt, true_cnt); 8535 } 8536 8537 if (false_cnt + true_cnt == 0) { 8538 // According to profile, never executed. 8539 uncommon_trap_exact(Deoptimization::Reason_intrinsic, 8540 Deoptimization::Action_reinterpret); 8541 return true; 8542 } 8543 8544 // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt) 8545 // is a number of each value occurrences. 8546 Node* result = argument(0); 8547 if (false_cnt == 0 || true_cnt == 0) { 8548 // According to profile, one value has been never seen. 8549 int expected_val = (false_cnt == 0) ? 1 : 0; 8550 8551 Node* cmp = _gvn.transform(new CmpINode(result, intcon(expected_val))); 8552 Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 8553 8554 IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN); 8555 Node* fast_path = _gvn.transform(new IfTrueNode(check)); 8556 Node* slow_path = _gvn.transform(new IfFalseNode(check)); 8557 8558 { // Slow path: uncommon trap for never seen value and then reexecute 8559 // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows 8560 // the value has been seen at least once. 8561 PreserveJVMState pjvms(this); 8562 PreserveReexecuteState preexecs(this); 8563 jvms()->set_should_reexecute(true); 8564 8565 set_control(slow_path); 8566 set_i_o(i_o()); 8567 8568 uncommon_trap_exact(Deoptimization::Reason_intrinsic, 8569 Deoptimization::Action_reinterpret); 8570 } 8571 // The guard for never seen value enables sharpening of the result and 8572 // returning a constant. It allows to eliminate branches on the same value 8573 // later on. 8574 set_control(fast_path); 8575 result = intcon(expected_val); 8576 } 8577 // Stop profiling. 8578 // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode. 8579 // By replacing method body with profile data (represented as ProfileBooleanNode 8580 // on IR level) we effectively disable profiling. 8581 // It enables full speed execution once optimized code is generated. 8582 Node* profile = _gvn.transform(new ProfileBooleanNode(result, false_cnt, true_cnt)); 8583 C->record_for_igvn(profile); 8584 set_result(profile); 8585 return true; 8586 } else { 8587 // Continue profiling. 8588 // Profile data isn't available at the moment. So, execute method's bytecode version. 8589 // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod 8590 // is compiled and counters aren't available since corresponding MethodHandle 8591 // isn't a compile-time constant. 8592 return false; 8593 } 8594 } 8595 8596 bool LibraryCallKit::inline_isCompileConstant() { 8597 Node* n = argument(0); 8598 set_result(n->is_Con() ? intcon(1) : intcon(0)); 8599 return true; 8600 } 8601 8602 //------------------------------- inline_getObjectSize -------------------------------------- 8603 // 8604 // Calculate the runtime size of the object/array. 8605 // native long sun.instrument.InstrumentationImpl.getObjectSize0(long nativeAgent, Object objectToSize); 8606 // 8607 bool LibraryCallKit::inline_getObjectSize() { 8608 Node* obj = argument(3); 8609 Node* klass_node = load_object_klass(obj); 8610 8611 jint layout_con = Klass::_lh_neutral_value; 8612 Node* layout_val = get_layout_helper(klass_node, layout_con); 8613 int layout_is_con = (layout_val == nullptr); 8614 8615 if (layout_is_con) { 8616 // Layout helper is constant, can figure out things at compile time. 8617 8618 if (Klass::layout_helper_is_instance(layout_con)) { 8619 // Instance case: layout_con contains the size itself. 8620 Node *size = longcon(Klass::layout_helper_size_in_bytes(layout_con)); 8621 set_result(size); 8622 } else { 8623 // Array case: size is round(header + element_size*arraylength). 8624 // Since arraylength is different for every array instance, we have to 8625 // compute the whole thing at runtime. 8626 8627 Node* arr_length = load_array_length(obj); 8628 8629 int round_mask = MinObjAlignmentInBytes - 1; 8630 int hsize = Klass::layout_helper_header_size(layout_con); 8631 int eshift = Klass::layout_helper_log2_element_size(layout_con); 8632 8633 if ((round_mask & ~right_n_bits(eshift)) == 0) { 8634 round_mask = 0; // strength-reduce it if it goes away completely 8635 } 8636 assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded"); 8637 Node* header_size = intcon(hsize + round_mask); 8638 8639 Node* lengthx = ConvI2X(arr_length); 8640 Node* headerx = ConvI2X(header_size); 8641 8642 Node* abody = lengthx; 8643 if (eshift != 0) { 8644 abody = _gvn.transform(new LShiftXNode(lengthx, intcon(eshift))); 8645 } 8646 Node* size = _gvn.transform( new AddXNode(headerx, abody) ); 8647 if (round_mask != 0) { 8648 size = _gvn.transform( new AndXNode(size, MakeConX(~round_mask)) ); 8649 } 8650 size = ConvX2L(size); 8651 set_result(size); 8652 } 8653 } else { 8654 // Layout helper is not constant, need to test for array-ness at runtime. 8655 8656 enum { _instance_path = 1, _array_path, PATH_LIMIT }; 8657 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 8658 PhiNode* result_val = new PhiNode(result_reg, TypeLong::LONG); 8659 record_for_igvn(result_reg); 8660 8661 Node* array_ctl = generate_array_guard(klass_node, nullptr, &obj); 8662 if (array_ctl != nullptr) { 8663 // Array case: size is round(header + element_size*arraylength). 8664 // Since arraylength is different for every array instance, we have to 8665 // compute the whole thing at runtime. 8666 8667 PreserveJVMState pjvms(this); 8668 set_control(array_ctl); 8669 Node* arr_length = load_array_length(obj); 8670 8671 int round_mask = MinObjAlignmentInBytes - 1; 8672 Node* mask = intcon(round_mask); 8673 8674 Node* hss = intcon(Klass::_lh_header_size_shift); 8675 Node* hsm = intcon(Klass::_lh_header_size_mask); 8676 Node* header_size = _gvn.transform(new URShiftINode(layout_val, hss)); 8677 header_size = _gvn.transform(new AndINode(header_size, hsm)); 8678 header_size = _gvn.transform(new AddINode(header_size, mask)); 8679 8680 // There is no need to mask or shift this value. 8681 // The semantics of LShiftINode include an implicit mask to 0x1F. 8682 assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place"); 8683 Node* elem_shift = layout_val; 8684 8685 Node* lengthx = ConvI2X(arr_length); 8686 Node* headerx = ConvI2X(header_size); 8687 8688 Node* abody = _gvn.transform(new LShiftXNode(lengthx, elem_shift)); 8689 Node* size = _gvn.transform(new AddXNode(headerx, abody)); 8690 if (round_mask != 0) { 8691 size = _gvn.transform(new AndXNode(size, MakeConX(~round_mask))); 8692 } 8693 size = ConvX2L(size); 8694 8695 result_reg->init_req(_array_path, control()); 8696 result_val->init_req(_array_path, size); 8697 } 8698 8699 if (!stopped()) { 8700 // Instance case: the layout helper gives us instance size almost directly, 8701 // but we need to mask out the _lh_instance_slow_path_bit. 8702 Node* size = ConvI2X(layout_val); 8703 assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit"); 8704 Node* mask = MakeConX(~(intptr_t) right_n_bits(LogBytesPerLong)); 8705 size = _gvn.transform(new AndXNode(size, mask)); 8706 size = ConvX2L(size); 8707 8708 result_reg->init_req(_instance_path, control()); 8709 result_val->init_req(_instance_path, size); 8710 } 8711 8712 set_result(result_reg, result_val); 8713 } 8714 8715 return true; 8716 } 8717 8718 //------------------------------- inline_blackhole -------------------------------------- 8719 // 8720 // Make sure all arguments to this node are alive. 8721 // This matches methods that were requested to be blackholed through compile commands. 8722 // 8723 bool LibraryCallKit::inline_blackhole() { 8724 assert(callee()->is_static(), "Should have been checked before: only static methods here"); 8725 assert(callee()->is_empty(), "Should have been checked before: only empty methods here"); 8726 assert(callee()->holder()->is_loaded(), "Should have been checked before: only methods for loaded classes here"); 8727 8728 // Blackhole node pinches only the control, not memory. This allows 8729 // the blackhole to be pinned in the loop that computes blackholed 8730 // values, but have no other side effects, like breaking the optimizations 8731 // across the blackhole. 8732 8733 Node* bh = _gvn.transform(new BlackholeNode(control())); 8734 set_control(_gvn.transform(new ProjNode(bh, TypeFunc::Control))); 8735 8736 // Bind call arguments as blackhole arguments to keep them alive 8737 uint nargs = callee()->arg_size(); 8738 for (uint i = 0; i < nargs; i++) { 8739 bh->add_req(argument(i)); 8740 } 8741 8742 return true; 8743 } 8744 8745 Node* LibraryCallKit::unbox_fp16_value(const TypeInstPtr* float16_box_type, ciField* field, Node* box) { 8746 const TypeInstPtr* box_type = _gvn.type(box)->isa_instptr(); 8747 if (box_type == nullptr || box_type->instance_klass() != float16_box_type->instance_klass()) { 8748 return nullptr; // box klass is not Float16 8749 } 8750 8751 // Null check; get notnull casted pointer 8752 Node* null_ctl = top(); 8753 Node* not_null_box = null_check_oop(box, &null_ctl, true); 8754 // If not_null_box is dead, only null-path is taken 8755 if (stopped()) { 8756 set_control(null_ctl); 8757 return nullptr; 8758 } 8759 assert(not_null_box->bottom_type()->is_instptr()->maybe_null() == false, ""); 8760 const TypePtr* adr_type = C->alias_type(field)->adr_type(); 8761 Node* adr = basic_plus_adr(not_null_box, field->offset_in_bytes()); 8762 return access_load_at(not_null_box, adr, adr_type, TypeInt::SHORT, T_SHORT, IN_HEAP); 8763 } 8764 8765 Node* LibraryCallKit::box_fp16_value(const TypeInstPtr* float16_box_type, ciField* field, Node* value) { 8766 PreserveReexecuteState preexecs(this); 8767 jvms()->set_should_reexecute(true); 8768 8769 const TypeKlassPtr* klass_type = float16_box_type->as_klass_type(); 8770 Node* klass_node = makecon(klass_type); 8771 Node* box = new_instance(klass_node); 8772 8773 Node* value_field = basic_plus_adr(box, field->offset_in_bytes()); 8774 const TypePtr* value_adr_type = value_field->bottom_type()->is_ptr(); 8775 8776 Node* field_store = _gvn.transform(access_store_at(box, 8777 value_field, 8778 value_adr_type, 8779 value, 8780 TypeInt::SHORT, 8781 T_SHORT, 8782 IN_HEAP)); 8783 set_memory(field_store, value_adr_type); 8784 return box; 8785 } 8786 8787 bool LibraryCallKit::inline_fp16_operations(vmIntrinsics::ID id, int num_args) { 8788 if (!Matcher::match_rule_supported(Op_ReinterpretS2HF) || 8789 !Matcher::match_rule_supported(Op_ReinterpretHF2S)) { 8790 return false; 8791 } 8792 8793 const TypeInstPtr* box_type = _gvn.type(argument(0))->isa_instptr(); 8794 if (box_type == nullptr || box_type->const_oop() == nullptr) { 8795 return false; 8796 } 8797 8798 ciInstanceKlass* float16_klass = box_type->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass(); 8799 const TypeInstPtr* float16_box_type = TypeInstPtr::make_exact(TypePtr::NotNull, float16_klass); 8800 ciField* field = float16_klass->get_field_by_name(ciSymbols::value_name(), 8801 ciSymbols::short_signature(), 8802 false); 8803 assert(field != nullptr, ""); 8804 8805 // Transformed nodes 8806 Node* fld1 = nullptr; 8807 Node* fld2 = nullptr; 8808 Node* fld3 = nullptr; 8809 switch(num_args) { 8810 case 3: 8811 fld3 = unbox_fp16_value(float16_box_type, field, argument(3)); 8812 if (fld3 == nullptr) { 8813 return false; 8814 } 8815 fld3 = _gvn.transform(new ReinterpretS2HFNode(fld3)); 8816 // fall-through 8817 case 2: 8818 fld2 = unbox_fp16_value(float16_box_type, field, argument(2)); 8819 if (fld2 == nullptr) { 8820 return false; 8821 } 8822 fld2 = _gvn.transform(new ReinterpretS2HFNode(fld2)); 8823 // fall-through 8824 case 1: 8825 fld1 = unbox_fp16_value(float16_box_type, field, argument(1)); 8826 if (fld1 == nullptr) { 8827 return false; 8828 } 8829 fld1 = _gvn.transform(new ReinterpretS2HFNode(fld1)); 8830 break; 8831 default: fatal("Unsupported number of arguments %d", num_args); 8832 } 8833 8834 Node* result = nullptr; 8835 switch (id) { 8836 // Unary operations 8837 case vmIntrinsics::_sqrt_float16: 8838 result = _gvn.transform(new SqrtHFNode(C, control(), fld1)); 8839 break; 8840 // Ternary operations 8841 case vmIntrinsics::_fma_float16: 8842 result = _gvn.transform(new FmaHFNode(fld1, fld2, fld3)); 8843 break; 8844 default: 8845 fatal_unexpected_iid(id); 8846 break; 8847 } 8848 result = _gvn.transform(new ReinterpretHF2SNode(result)); 8849 set_result(box_fp16_value(float16_box_type, field, result)); 8850 return true; 8851 } 8852