1 /* 2 * Copyright (c) 1999, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "asm/macroAssembler.hpp" 26 #include "ci/ciUtilities.inline.hpp" 27 #include "ci/ciSymbols.hpp" 28 #include "classfile/vmIntrinsics.hpp" 29 #include "compiler/compileBroker.hpp" 30 #include "compiler/compileLog.hpp" 31 #include "gc/shared/barrierSet.hpp" 32 #include "jfr/support/jfrIntrinsics.hpp" 33 #include "memory/resourceArea.hpp" 34 #include "oops/klass.inline.hpp" 35 #include "oops/objArrayKlass.hpp" 36 #include "opto/addnode.hpp" 37 #include "opto/arraycopynode.hpp" 38 #include "opto/c2compiler.hpp" 39 #include "opto/castnode.hpp" 40 #include "opto/cfgnode.hpp" 41 #include "opto/convertnode.hpp" 42 #include "opto/countbitsnode.hpp" 43 #include "opto/idealKit.hpp" 44 #include "opto/library_call.hpp" 45 #include "opto/mathexactnode.hpp" 46 #include "opto/mulnode.hpp" 47 #include "opto/narrowptrnode.hpp" 48 #include "opto/opaquenode.hpp" 49 #include "opto/parse.hpp" 50 #include "opto/runtime.hpp" 51 #include "opto/rootnode.hpp" 52 #include "opto/subnode.hpp" 53 #include "opto/vectornode.hpp" 54 #include "prims/jvmtiExport.hpp" 55 #include "prims/jvmtiThreadState.hpp" 56 #include "prims/unsafe.hpp" 57 #include "runtime/jniHandles.inline.hpp" 58 #include "runtime/objectMonitor.hpp" 59 #include "runtime/sharedRuntime.hpp" 60 #include "runtime/stubRoutines.hpp" 61 #include "utilities/macros.hpp" 62 #include "utilities/powerOfTwo.hpp" 63 64 //---------------------------make_vm_intrinsic---------------------------- 65 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) { 66 vmIntrinsicID id = m->intrinsic_id(); 67 assert(id != vmIntrinsics::_none, "must be a VM intrinsic"); 68 69 if (!m->is_loaded()) { 70 // Do not attempt to inline unloaded methods. 71 return nullptr; 72 } 73 74 C2Compiler* compiler = (C2Compiler*)CompilerThread::current()->compiler(); 75 bool is_available = false; 76 77 { 78 // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag 79 // the compiler must transition to '_thread_in_vm' state because both 80 // methods access VM-internal data. 81 VM_ENTRY_MARK; 82 methodHandle mh(THREAD, m->get_Method()); 83 is_available = compiler != nullptr && compiler->is_intrinsic_available(mh, C->directive()); 84 if (is_available && is_virtual) { 85 is_available = vmIntrinsics::does_virtual_dispatch(id); 86 } 87 } 88 89 if (is_available) { 90 assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility"); 91 assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?"); 92 return new LibraryIntrinsic(m, is_virtual, 93 vmIntrinsics::predicates_needed(id), 94 vmIntrinsics::does_virtual_dispatch(id), 95 id); 96 } else { 97 return nullptr; 98 } 99 } 100 101 JVMState* LibraryIntrinsic::generate(JVMState* jvms) { 102 LibraryCallKit kit(jvms, this); 103 Compile* C = kit.C; 104 int nodes = C->unique(); 105 #ifndef PRODUCT 106 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 107 char buf[1000]; 108 const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf)); 109 tty->print_cr("Intrinsic %s", str); 110 } 111 #endif 112 ciMethod* callee = kit.callee(); 113 const int bci = kit.bci(); 114 #ifdef ASSERT 115 Node* ctrl = kit.control(); 116 #endif 117 // Try to inline the intrinsic. 118 if (callee->check_intrinsic_candidate() && 119 kit.try_to_inline(_last_predicate)) { 120 const char *inline_msg = is_virtual() ? "(intrinsic, virtual)" 121 : "(intrinsic)"; 122 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg); 123 C->inline_printer()->record(callee, jvms, InliningResult::SUCCESS, inline_msg); 124 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked); 125 if (C->log()) { 126 C->log()->elem("intrinsic id='%s'%s nodes='%d'", 127 vmIntrinsics::name_at(intrinsic_id()), 128 (is_virtual() ? " virtual='1'" : ""), 129 C->unique() - nodes); 130 } 131 // Push the result from the inlined method onto the stack. 132 kit.push_result(); 133 return kit.transfer_exceptions_into_jvms(); 134 } 135 136 // The intrinsic bailed out 137 assert(ctrl == kit.control(), "Control flow was added although the intrinsic bailed out"); 138 if (jvms->has_method()) { 139 // Not a root compile. 140 const char* msg; 141 if (callee->intrinsic_candidate()) { 142 msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)"; 143 } else { 144 msg = is_virtual() ? "failed to inline (intrinsic, virtual), method not annotated" 145 : "failed to inline (intrinsic), method not annotated"; 146 } 147 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::FAILURE, msg); 148 C->inline_printer()->record(callee, jvms, InliningResult::FAILURE, msg); 149 } else { 150 // Root compile 151 ResourceMark rm; 152 stringStream msg_stream; 153 msg_stream.print("Did not generate intrinsic %s%s at bci:%d in", 154 vmIntrinsics::name_at(intrinsic_id()), 155 is_virtual() ? " (virtual)" : "", bci); 156 const char *msg = msg_stream.freeze(); 157 log_debug(jit, inlining)("%s", msg); 158 if (C->print_intrinsics() || C->print_inlining()) { 159 tty->print("%s", msg); 160 } 161 } 162 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed); 163 164 return nullptr; 165 } 166 167 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) { 168 LibraryCallKit kit(jvms, this); 169 Compile* C = kit.C; 170 int nodes = C->unique(); 171 _last_predicate = predicate; 172 #ifndef PRODUCT 173 assert(is_predicated() && predicate < predicates_count(), "sanity"); 174 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 175 char buf[1000]; 176 const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf)); 177 tty->print_cr("Predicate for intrinsic %s", str); 178 } 179 #endif 180 ciMethod* callee = kit.callee(); 181 const int bci = kit.bci(); 182 183 Node* slow_ctl = kit.try_to_predicate(predicate); 184 if (!kit.failing()) { 185 const char *inline_msg = is_virtual() ? "(intrinsic, virtual, predicate)" 186 : "(intrinsic, predicate)"; 187 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg); 188 C->inline_printer()->record(callee, jvms, InliningResult::SUCCESS, inline_msg); 189 190 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked); 191 if (C->log()) { 192 C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'", 193 vmIntrinsics::name_at(intrinsic_id()), 194 (is_virtual() ? " virtual='1'" : ""), 195 C->unique() - nodes); 196 } 197 return slow_ctl; // Could be null if the check folds. 198 } 199 200 // The intrinsic bailed out 201 if (jvms->has_method()) { 202 // Not a root compile. 203 const char* msg = "failed to generate predicate for intrinsic"; 204 CompileTask::print_inlining_ul(kit.callee(), jvms->depth() - 1, bci, InliningResult::FAILURE, msg); 205 C->inline_printer()->record(kit.callee(), jvms, InliningResult::FAILURE, msg); 206 } else { 207 // Root compile 208 ResourceMark rm; 209 stringStream msg_stream; 210 msg_stream.print("Did not generate intrinsic %s%s at bci:%d in", 211 vmIntrinsics::name_at(intrinsic_id()), 212 is_virtual() ? " (virtual)" : "", bci); 213 const char *msg = msg_stream.freeze(); 214 log_debug(jit, inlining)("%s", msg); 215 C->inline_printer()->record(kit.callee(), jvms, InliningResult::FAILURE, msg); 216 } 217 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed); 218 return nullptr; 219 } 220 221 bool LibraryCallKit::try_to_inline(int predicate) { 222 // Handle symbolic names for otherwise undistinguished boolean switches: 223 const bool is_store = true; 224 const bool is_compress = true; 225 const bool is_static = true; 226 const bool is_volatile = true; 227 228 if (!jvms()->has_method()) { 229 // Root JVMState has a null method. 230 assert(map()->memory()->Opcode() == Op_Parm, ""); 231 // Insert the memory aliasing node 232 set_all_memory(reset_memory()); 233 } 234 assert(merged_memory(), ""); 235 236 switch (intrinsic_id()) { 237 case vmIntrinsics::_hashCode: return inline_native_hashcode(intrinsic()->is_virtual(), !is_static); 238 case vmIntrinsics::_identityHashCode: return inline_native_hashcode(/*!virtual*/ false, is_static); 239 case vmIntrinsics::_getClass: return inline_native_getClass(); 240 241 case vmIntrinsics::_ceil: 242 case vmIntrinsics::_floor: 243 case vmIntrinsics::_rint: 244 case vmIntrinsics::_dsin: 245 case vmIntrinsics::_dcos: 246 case vmIntrinsics::_dtan: 247 case vmIntrinsics::_dtanh: 248 case vmIntrinsics::_dcbrt: 249 case vmIntrinsics::_dabs: 250 case vmIntrinsics::_fabs: 251 case vmIntrinsics::_iabs: 252 case vmIntrinsics::_labs: 253 case vmIntrinsics::_datan2: 254 case vmIntrinsics::_dsqrt: 255 case vmIntrinsics::_dsqrt_strict: 256 case vmIntrinsics::_dexp: 257 case vmIntrinsics::_dlog: 258 case vmIntrinsics::_dlog10: 259 case vmIntrinsics::_dpow: 260 case vmIntrinsics::_dcopySign: 261 case vmIntrinsics::_fcopySign: 262 case vmIntrinsics::_dsignum: 263 case vmIntrinsics::_roundF: 264 case vmIntrinsics::_roundD: 265 case vmIntrinsics::_fsignum: return inline_math_native(intrinsic_id()); 266 267 case vmIntrinsics::_notify: 268 case vmIntrinsics::_notifyAll: 269 return inline_notify(intrinsic_id()); 270 271 case vmIntrinsics::_addExactI: return inline_math_addExactI(false /* add */); 272 case vmIntrinsics::_addExactL: return inline_math_addExactL(false /* add */); 273 case vmIntrinsics::_decrementExactI: return inline_math_subtractExactI(true /* decrement */); 274 case vmIntrinsics::_decrementExactL: return inline_math_subtractExactL(true /* decrement */); 275 case vmIntrinsics::_incrementExactI: return inline_math_addExactI(true /* increment */); 276 case vmIntrinsics::_incrementExactL: return inline_math_addExactL(true /* increment */); 277 case vmIntrinsics::_multiplyExactI: return inline_math_multiplyExactI(); 278 case vmIntrinsics::_multiplyExactL: return inline_math_multiplyExactL(); 279 case vmIntrinsics::_multiplyHigh: return inline_math_multiplyHigh(); 280 case vmIntrinsics::_unsignedMultiplyHigh: return inline_math_unsignedMultiplyHigh(); 281 case vmIntrinsics::_negateExactI: return inline_math_negateExactI(); 282 case vmIntrinsics::_negateExactL: return inline_math_negateExactL(); 283 case vmIntrinsics::_subtractExactI: return inline_math_subtractExactI(false /* subtract */); 284 case vmIntrinsics::_subtractExactL: return inline_math_subtractExactL(false /* subtract */); 285 286 case vmIntrinsics::_arraycopy: return inline_arraycopy(); 287 288 case vmIntrinsics::_arraySort: return inline_array_sort(); 289 case vmIntrinsics::_arrayPartition: return inline_array_partition(); 290 291 case vmIntrinsics::_compareToL: return inline_string_compareTo(StrIntrinsicNode::LL); 292 case vmIntrinsics::_compareToU: return inline_string_compareTo(StrIntrinsicNode::UU); 293 case vmIntrinsics::_compareToLU: return inline_string_compareTo(StrIntrinsicNode::LU); 294 case vmIntrinsics::_compareToUL: return inline_string_compareTo(StrIntrinsicNode::UL); 295 296 case vmIntrinsics::_indexOfL: return inline_string_indexOf(StrIntrinsicNode::LL); 297 case vmIntrinsics::_indexOfU: return inline_string_indexOf(StrIntrinsicNode::UU); 298 case vmIntrinsics::_indexOfUL: return inline_string_indexOf(StrIntrinsicNode::UL); 299 case vmIntrinsics::_indexOfIL: return inline_string_indexOfI(StrIntrinsicNode::LL); 300 case vmIntrinsics::_indexOfIU: return inline_string_indexOfI(StrIntrinsicNode::UU); 301 case vmIntrinsics::_indexOfIUL: return inline_string_indexOfI(StrIntrinsicNode::UL); 302 case vmIntrinsics::_indexOfU_char: return inline_string_indexOfChar(StrIntrinsicNode::U); 303 case vmIntrinsics::_indexOfL_char: return inline_string_indexOfChar(StrIntrinsicNode::L); 304 305 case vmIntrinsics::_equalsL: return inline_string_equals(StrIntrinsicNode::LL); 306 307 case vmIntrinsics::_vectorizedHashCode: return inline_vectorizedHashCode(); 308 309 case vmIntrinsics::_toBytesStringU: return inline_string_toBytesU(); 310 case vmIntrinsics::_getCharsStringU: return inline_string_getCharsU(); 311 case vmIntrinsics::_getCharStringU: return inline_string_char_access(!is_store); 312 case vmIntrinsics::_putCharStringU: return inline_string_char_access( is_store); 313 314 case vmIntrinsics::_compressStringC: 315 case vmIntrinsics::_compressStringB: return inline_string_copy( is_compress); 316 case vmIntrinsics::_inflateStringC: 317 case vmIntrinsics::_inflateStringB: return inline_string_copy(!is_compress); 318 319 case vmIntrinsics::_getReference: return inline_unsafe_access(!is_store, T_OBJECT, Relaxed, false); 320 case vmIntrinsics::_getBoolean: return inline_unsafe_access(!is_store, T_BOOLEAN, Relaxed, false); 321 case vmIntrinsics::_getByte: return inline_unsafe_access(!is_store, T_BYTE, Relaxed, false); 322 case vmIntrinsics::_getShort: return inline_unsafe_access(!is_store, T_SHORT, Relaxed, false); 323 case vmIntrinsics::_getChar: return inline_unsafe_access(!is_store, T_CHAR, Relaxed, false); 324 case vmIntrinsics::_getInt: return inline_unsafe_access(!is_store, T_INT, Relaxed, false); 325 case vmIntrinsics::_getLong: return inline_unsafe_access(!is_store, T_LONG, Relaxed, false); 326 case vmIntrinsics::_getFloat: return inline_unsafe_access(!is_store, T_FLOAT, Relaxed, false); 327 case vmIntrinsics::_getDouble: return inline_unsafe_access(!is_store, T_DOUBLE, Relaxed, false); 328 329 case vmIntrinsics::_putReference: return inline_unsafe_access( is_store, T_OBJECT, Relaxed, false); 330 case vmIntrinsics::_putBoolean: return inline_unsafe_access( is_store, T_BOOLEAN, Relaxed, false); 331 case vmIntrinsics::_putByte: return inline_unsafe_access( is_store, T_BYTE, Relaxed, false); 332 case vmIntrinsics::_putShort: return inline_unsafe_access( is_store, T_SHORT, Relaxed, false); 333 case vmIntrinsics::_putChar: return inline_unsafe_access( is_store, T_CHAR, Relaxed, false); 334 case vmIntrinsics::_putInt: return inline_unsafe_access( is_store, T_INT, Relaxed, false); 335 case vmIntrinsics::_putLong: return inline_unsafe_access( is_store, T_LONG, Relaxed, false); 336 case vmIntrinsics::_putFloat: return inline_unsafe_access( is_store, T_FLOAT, Relaxed, false); 337 case vmIntrinsics::_putDouble: return inline_unsafe_access( is_store, T_DOUBLE, Relaxed, false); 338 339 case vmIntrinsics::_getReferenceVolatile: return inline_unsafe_access(!is_store, T_OBJECT, Volatile, false); 340 case vmIntrinsics::_getBooleanVolatile: return inline_unsafe_access(!is_store, T_BOOLEAN, Volatile, false); 341 case vmIntrinsics::_getByteVolatile: return inline_unsafe_access(!is_store, T_BYTE, Volatile, false); 342 case vmIntrinsics::_getShortVolatile: return inline_unsafe_access(!is_store, T_SHORT, Volatile, false); 343 case vmIntrinsics::_getCharVolatile: return inline_unsafe_access(!is_store, T_CHAR, Volatile, false); 344 case vmIntrinsics::_getIntVolatile: return inline_unsafe_access(!is_store, T_INT, Volatile, false); 345 case vmIntrinsics::_getLongVolatile: return inline_unsafe_access(!is_store, T_LONG, Volatile, false); 346 case vmIntrinsics::_getFloatVolatile: return inline_unsafe_access(!is_store, T_FLOAT, Volatile, false); 347 case vmIntrinsics::_getDoubleVolatile: return inline_unsafe_access(!is_store, T_DOUBLE, Volatile, false); 348 349 case vmIntrinsics::_putReferenceVolatile: return inline_unsafe_access( is_store, T_OBJECT, Volatile, false); 350 case vmIntrinsics::_putBooleanVolatile: return inline_unsafe_access( is_store, T_BOOLEAN, Volatile, false); 351 case vmIntrinsics::_putByteVolatile: return inline_unsafe_access( is_store, T_BYTE, Volatile, false); 352 case vmIntrinsics::_putShortVolatile: return inline_unsafe_access( is_store, T_SHORT, Volatile, false); 353 case vmIntrinsics::_putCharVolatile: return inline_unsafe_access( is_store, T_CHAR, Volatile, false); 354 case vmIntrinsics::_putIntVolatile: return inline_unsafe_access( is_store, T_INT, Volatile, false); 355 case vmIntrinsics::_putLongVolatile: return inline_unsafe_access( is_store, T_LONG, Volatile, false); 356 case vmIntrinsics::_putFloatVolatile: return inline_unsafe_access( is_store, T_FLOAT, Volatile, false); 357 case vmIntrinsics::_putDoubleVolatile: return inline_unsafe_access( is_store, T_DOUBLE, Volatile, false); 358 359 case vmIntrinsics::_getShortUnaligned: return inline_unsafe_access(!is_store, T_SHORT, Relaxed, true); 360 case vmIntrinsics::_getCharUnaligned: return inline_unsafe_access(!is_store, T_CHAR, Relaxed, true); 361 case vmIntrinsics::_getIntUnaligned: return inline_unsafe_access(!is_store, T_INT, Relaxed, true); 362 case vmIntrinsics::_getLongUnaligned: return inline_unsafe_access(!is_store, T_LONG, Relaxed, true); 363 364 case vmIntrinsics::_putShortUnaligned: return inline_unsafe_access( is_store, T_SHORT, Relaxed, true); 365 case vmIntrinsics::_putCharUnaligned: return inline_unsafe_access( is_store, T_CHAR, Relaxed, true); 366 case vmIntrinsics::_putIntUnaligned: return inline_unsafe_access( is_store, T_INT, Relaxed, true); 367 case vmIntrinsics::_putLongUnaligned: return inline_unsafe_access( is_store, T_LONG, Relaxed, true); 368 369 case vmIntrinsics::_getReferenceAcquire: return inline_unsafe_access(!is_store, T_OBJECT, Acquire, false); 370 case vmIntrinsics::_getBooleanAcquire: return inline_unsafe_access(!is_store, T_BOOLEAN, Acquire, false); 371 case vmIntrinsics::_getByteAcquire: return inline_unsafe_access(!is_store, T_BYTE, Acquire, false); 372 case vmIntrinsics::_getShortAcquire: return inline_unsafe_access(!is_store, T_SHORT, Acquire, false); 373 case vmIntrinsics::_getCharAcquire: return inline_unsafe_access(!is_store, T_CHAR, Acquire, false); 374 case vmIntrinsics::_getIntAcquire: return inline_unsafe_access(!is_store, T_INT, Acquire, false); 375 case vmIntrinsics::_getLongAcquire: return inline_unsafe_access(!is_store, T_LONG, Acquire, false); 376 case vmIntrinsics::_getFloatAcquire: return inline_unsafe_access(!is_store, T_FLOAT, Acquire, false); 377 case vmIntrinsics::_getDoubleAcquire: return inline_unsafe_access(!is_store, T_DOUBLE, Acquire, false); 378 379 case vmIntrinsics::_putReferenceRelease: return inline_unsafe_access( is_store, T_OBJECT, Release, false); 380 case vmIntrinsics::_putBooleanRelease: return inline_unsafe_access( is_store, T_BOOLEAN, Release, false); 381 case vmIntrinsics::_putByteRelease: return inline_unsafe_access( is_store, T_BYTE, Release, false); 382 case vmIntrinsics::_putShortRelease: return inline_unsafe_access( is_store, T_SHORT, Release, false); 383 case vmIntrinsics::_putCharRelease: return inline_unsafe_access( is_store, T_CHAR, Release, false); 384 case vmIntrinsics::_putIntRelease: return inline_unsafe_access( is_store, T_INT, Release, false); 385 case vmIntrinsics::_putLongRelease: return inline_unsafe_access( is_store, T_LONG, Release, false); 386 case vmIntrinsics::_putFloatRelease: return inline_unsafe_access( is_store, T_FLOAT, Release, false); 387 case vmIntrinsics::_putDoubleRelease: return inline_unsafe_access( is_store, T_DOUBLE, Release, false); 388 389 case vmIntrinsics::_getReferenceOpaque: return inline_unsafe_access(!is_store, T_OBJECT, Opaque, false); 390 case vmIntrinsics::_getBooleanOpaque: return inline_unsafe_access(!is_store, T_BOOLEAN, Opaque, false); 391 case vmIntrinsics::_getByteOpaque: return inline_unsafe_access(!is_store, T_BYTE, Opaque, false); 392 case vmIntrinsics::_getShortOpaque: return inline_unsafe_access(!is_store, T_SHORT, Opaque, false); 393 case vmIntrinsics::_getCharOpaque: return inline_unsafe_access(!is_store, T_CHAR, Opaque, false); 394 case vmIntrinsics::_getIntOpaque: return inline_unsafe_access(!is_store, T_INT, Opaque, false); 395 case vmIntrinsics::_getLongOpaque: return inline_unsafe_access(!is_store, T_LONG, Opaque, false); 396 case vmIntrinsics::_getFloatOpaque: return inline_unsafe_access(!is_store, T_FLOAT, Opaque, false); 397 case vmIntrinsics::_getDoubleOpaque: return inline_unsafe_access(!is_store, T_DOUBLE, Opaque, false); 398 399 case vmIntrinsics::_putReferenceOpaque: return inline_unsafe_access( is_store, T_OBJECT, Opaque, false); 400 case vmIntrinsics::_putBooleanOpaque: return inline_unsafe_access( is_store, T_BOOLEAN, Opaque, false); 401 case vmIntrinsics::_putByteOpaque: return inline_unsafe_access( is_store, T_BYTE, Opaque, false); 402 case vmIntrinsics::_putShortOpaque: return inline_unsafe_access( is_store, T_SHORT, Opaque, false); 403 case vmIntrinsics::_putCharOpaque: return inline_unsafe_access( is_store, T_CHAR, Opaque, false); 404 case vmIntrinsics::_putIntOpaque: return inline_unsafe_access( is_store, T_INT, Opaque, false); 405 case vmIntrinsics::_putLongOpaque: return inline_unsafe_access( is_store, T_LONG, Opaque, false); 406 case vmIntrinsics::_putFloatOpaque: return inline_unsafe_access( is_store, T_FLOAT, Opaque, false); 407 case vmIntrinsics::_putDoubleOpaque: return inline_unsafe_access( is_store, T_DOUBLE, Opaque, false); 408 409 case vmIntrinsics::_compareAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap, Volatile); 410 case vmIntrinsics::_compareAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap, Volatile); 411 case vmIntrinsics::_compareAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap, Volatile); 412 case vmIntrinsics::_compareAndSetInt: return inline_unsafe_load_store(T_INT, LS_cmp_swap, Volatile); 413 case vmIntrinsics::_compareAndSetLong: return inline_unsafe_load_store(T_LONG, LS_cmp_swap, Volatile); 414 415 case vmIntrinsics::_weakCompareAndSetReferencePlain: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Relaxed); 416 case vmIntrinsics::_weakCompareAndSetReferenceAcquire: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Acquire); 417 case vmIntrinsics::_weakCompareAndSetReferenceRelease: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Release); 418 case vmIntrinsics::_weakCompareAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Volatile); 419 case vmIntrinsics::_weakCompareAndSetBytePlain: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Relaxed); 420 case vmIntrinsics::_weakCompareAndSetByteAcquire: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Acquire); 421 case vmIntrinsics::_weakCompareAndSetByteRelease: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Release); 422 case vmIntrinsics::_weakCompareAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Volatile); 423 case vmIntrinsics::_weakCompareAndSetShortPlain: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Relaxed); 424 case vmIntrinsics::_weakCompareAndSetShortAcquire: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Acquire); 425 case vmIntrinsics::_weakCompareAndSetShortRelease: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Release); 426 case vmIntrinsics::_weakCompareAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Volatile); 427 case vmIntrinsics::_weakCompareAndSetIntPlain: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Relaxed); 428 case vmIntrinsics::_weakCompareAndSetIntAcquire: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Acquire); 429 case vmIntrinsics::_weakCompareAndSetIntRelease: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Release); 430 case vmIntrinsics::_weakCompareAndSetInt: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Volatile); 431 case vmIntrinsics::_weakCompareAndSetLongPlain: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Relaxed); 432 case vmIntrinsics::_weakCompareAndSetLongAcquire: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Acquire); 433 case vmIntrinsics::_weakCompareAndSetLongRelease: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Release); 434 case vmIntrinsics::_weakCompareAndSetLong: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Volatile); 435 436 case vmIntrinsics::_compareAndExchangeReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Volatile); 437 case vmIntrinsics::_compareAndExchangeReferenceAcquire: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Acquire); 438 case vmIntrinsics::_compareAndExchangeReferenceRelease: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Release); 439 case vmIntrinsics::_compareAndExchangeByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Volatile); 440 case vmIntrinsics::_compareAndExchangeByteAcquire: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Acquire); 441 case vmIntrinsics::_compareAndExchangeByteRelease: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Release); 442 case vmIntrinsics::_compareAndExchangeShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Volatile); 443 case vmIntrinsics::_compareAndExchangeShortAcquire: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Acquire); 444 case vmIntrinsics::_compareAndExchangeShortRelease: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Release); 445 case vmIntrinsics::_compareAndExchangeInt: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Volatile); 446 case vmIntrinsics::_compareAndExchangeIntAcquire: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Acquire); 447 case vmIntrinsics::_compareAndExchangeIntRelease: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Release); 448 case vmIntrinsics::_compareAndExchangeLong: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Volatile); 449 case vmIntrinsics::_compareAndExchangeLongAcquire: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Acquire); 450 case vmIntrinsics::_compareAndExchangeLongRelease: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Release); 451 452 case vmIntrinsics::_getAndAddByte: return inline_unsafe_load_store(T_BYTE, LS_get_add, Volatile); 453 case vmIntrinsics::_getAndAddShort: return inline_unsafe_load_store(T_SHORT, LS_get_add, Volatile); 454 case vmIntrinsics::_getAndAddInt: return inline_unsafe_load_store(T_INT, LS_get_add, Volatile); 455 case vmIntrinsics::_getAndAddLong: return inline_unsafe_load_store(T_LONG, LS_get_add, Volatile); 456 457 case vmIntrinsics::_getAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_get_set, Volatile); 458 case vmIntrinsics::_getAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_get_set, Volatile); 459 case vmIntrinsics::_getAndSetInt: return inline_unsafe_load_store(T_INT, LS_get_set, Volatile); 460 case vmIntrinsics::_getAndSetLong: return inline_unsafe_load_store(T_LONG, LS_get_set, Volatile); 461 case vmIntrinsics::_getAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_get_set, Volatile); 462 463 case vmIntrinsics::_loadFence: 464 case vmIntrinsics::_storeFence: 465 case vmIntrinsics::_storeStoreFence: 466 case vmIntrinsics::_fullFence: return inline_unsafe_fence(intrinsic_id()); 467 468 case vmIntrinsics::_onSpinWait: return inline_onspinwait(); 469 470 case vmIntrinsics::_currentCarrierThread: return inline_native_currentCarrierThread(); 471 case vmIntrinsics::_currentThread: return inline_native_currentThread(); 472 case vmIntrinsics::_setCurrentThread: return inline_native_setCurrentThread(); 473 474 case vmIntrinsics::_scopedValueCache: return inline_native_scopedValueCache(); 475 case vmIntrinsics::_setScopedValueCache: return inline_native_setScopedValueCache(); 476 477 case vmIntrinsics::_Continuation_pin: return inline_native_Continuation_pinning(false); 478 case vmIntrinsics::_Continuation_unpin: return inline_native_Continuation_pinning(true); 479 480 #if INCLUDE_JVMTI 481 case vmIntrinsics::_notifyJvmtiVThreadStart: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_start()), 482 "notifyJvmtiStart", true, false); 483 case vmIntrinsics::_notifyJvmtiVThreadEnd: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_end()), 484 "notifyJvmtiEnd", false, true); 485 case vmIntrinsics::_notifyJvmtiVThreadMount: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_mount()), 486 "notifyJvmtiMount", false, false); 487 case vmIntrinsics::_notifyJvmtiVThreadUnmount: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_unmount()), 488 "notifyJvmtiUnmount", false, false); 489 case vmIntrinsics::_notifyJvmtiVThreadDisableSuspend: return inline_native_notify_jvmti_sync(); 490 #endif 491 492 #ifdef JFR_HAVE_INTRINSICS 493 case vmIntrinsics::_counterTime: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, JfrTime::time_function()), "counterTime"); 494 case vmIntrinsics::_getEventWriter: return inline_native_getEventWriter(); 495 case vmIntrinsics::_jvm_commit: return inline_native_jvm_commit(); 496 #endif 497 case vmIntrinsics::_currentTimeMillis: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis"); 498 case vmIntrinsics::_nanoTime: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime"); 499 case vmIntrinsics::_writeback0: return inline_unsafe_writeback0(); 500 case vmIntrinsics::_writebackPreSync0: return inline_unsafe_writebackSync0(true); 501 case vmIntrinsics::_writebackPostSync0: return inline_unsafe_writebackSync0(false); 502 case vmIntrinsics::_allocateInstance: return inline_unsafe_allocate(); 503 case vmIntrinsics::_copyMemory: return inline_unsafe_copyMemory(); 504 case vmIntrinsics::_setMemory: return inline_unsafe_setMemory(); 505 case vmIntrinsics::_getLength: return inline_native_getLength(); 506 case vmIntrinsics::_copyOf: return inline_array_copyOf(false); 507 case vmIntrinsics::_copyOfRange: return inline_array_copyOf(true); 508 case vmIntrinsics::_equalsB: return inline_array_equals(StrIntrinsicNode::LL); 509 case vmIntrinsics::_equalsC: return inline_array_equals(StrIntrinsicNode::UU); 510 case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex(T_INT); 511 case vmIntrinsics::_Preconditions_checkLongIndex: return inline_preconditions_checkIndex(T_LONG); 512 case vmIntrinsics::_clone: return inline_native_clone(intrinsic()->is_virtual()); 513 514 case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true); 515 case vmIntrinsics::_newArray: return inline_unsafe_newArray(false); 516 517 case vmIntrinsics::_isAssignableFrom: return inline_native_subtype_check(); 518 519 case vmIntrinsics::_isInstance: 520 case vmIntrinsics::_isHidden: 521 case vmIntrinsics::_getSuperclass: 522 case vmIntrinsics::_getClassAccessFlags: return inline_native_Class_query(intrinsic_id()); 523 524 case vmIntrinsics::_floatToRawIntBits: 525 case vmIntrinsics::_floatToIntBits: 526 case vmIntrinsics::_intBitsToFloat: 527 case vmIntrinsics::_doubleToRawLongBits: 528 case vmIntrinsics::_doubleToLongBits: 529 case vmIntrinsics::_longBitsToDouble: 530 case vmIntrinsics::_floatToFloat16: 531 case vmIntrinsics::_float16ToFloat: return inline_fp_conversions(intrinsic_id()); 532 case vmIntrinsics::_sqrt_float16: return inline_fp16_operations(intrinsic_id(), 1); 533 case vmIntrinsics::_fma_float16: return inline_fp16_operations(intrinsic_id(), 3); 534 case vmIntrinsics::_floatIsFinite: 535 case vmIntrinsics::_floatIsInfinite: 536 case vmIntrinsics::_doubleIsFinite: 537 case vmIntrinsics::_doubleIsInfinite: return inline_fp_range_check(intrinsic_id()); 538 539 case vmIntrinsics::_numberOfLeadingZeros_i: 540 case vmIntrinsics::_numberOfLeadingZeros_l: 541 case vmIntrinsics::_numberOfTrailingZeros_i: 542 case vmIntrinsics::_numberOfTrailingZeros_l: 543 case vmIntrinsics::_bitCount_i: 544 case vmIntrinsics::_bitCount_l: 545 case vmIntrinsics::_reverse_i: 546 case vmIntrinsics::_reverse_l: 547 case vmIntrinsics::_reverseBytes_i: 548 case vmIntrinsics::_reverseBytes_l: 549 case vmIntrinsics::_reverseBytes_s: 550 case vmIntrinsics::_reverseBytes_c: return inline_number_methods(intrinsic_id()); 551 552 case vmIntrinsics::_compress_i: 553 case vmIntrinsics::_compress_l: 554 case vmIntrinsics::_expand_i: 555 case vmIntrinsics::_expand_l: return inline_bitshuffle_methods(intrinsic_id()); 556 557 case vmIntrinsics::_compareUnsigned_i: 558 case vmIntrinsics::_compareUnsigned_l: return inline_compare_unsigned(intrinsic_id()); 559 560 case vmIntrinsics::_divideUnsigned_i: 561 case vmIntrinsics::_divideUnsigned_l: 562 case vmIntrinsics::_remainderUnsigned_i: 563 case vmIntrinsics::_remainderUnsigned_l: return inline_divmod_methods(intrinsic_id()); 564 565 case vmIntrinsics::_getCallerClass: return inline_native_Reflection_getCallerClass(); 566 567 case vmIntrinsics::_Reference_get: return inline_reference_get(); 568 case vmIntrinsics::_Reference_refersTo0: return inline_reference_refersTo0(false); 569 case vmIntrinsics::_PhantomReference_refersTo0: return inline_reference_refersTo0(true); 570 case vmIntrinsics::_Reference_clear0: return inline_reference_clear0(false); 571 case vmIntrinsics::_PhantomReference_clear0: return inline_reference_clear0(true); 572 573 case vmIntrinsics::_Class_cast: return inline_Class_cast(); 574 575 case vmIntrinsics::_aescrypt_encryptBlock: 576 case vmIntrinsics::_aescrypt_decryptBlock: return inline_aescrypt_Block(intrinsic_id()); 577 578 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 579 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 580 return inline_cipherBlockChaining_AESCrypt(intrinsic_id()); 581 582 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 583 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 584 return inline_electronicCodeBook_AESCrypt(intrinsic_id()); 585 586 case vmIntrinsics::_counterMode_AESCrypt: 587 return inline_counterMode_AESCrypt(intrinsic_id()); 588 589 case vmIntrinsics::_galoisCounterMode_AESCrypt: 590 return inline_galoisCounterMode_AESCrypt(); 591 592 case vmIntrinsics::_md5_implCompress: 593 case vmIntrinsics::_sha_implCompress: 594 case vmIntrinsics::_sha2_implCompress: 595 case vmIntrinsics::_sha5_implCompress: 596 case vmIntrinsics::_sha3_implCompress: 597 return inline_digestBase_implCompress(intrinsic_id()); 598 case vmIntrinsics::_double_keccak: 599 return inline_double_keccak(); 600 601 case vmIntrinsics::_digestBase_implCompressMB: 602 return inline_digestBase_implCompressMB(predicate); 603 604 case vmIntrinsics::_multiplyToLen: 605 return inline_multiplyToLen(); 606 607 case vmIntrinsics::_squareToLen: 608 return inline_squareToLen(); 609 610 case vmIntrinsics::_mulAdd: 611 return inline_mulAdd(); 612 613 case vmIntrinsics::_montgomeryMultiply: 614 return inline_montgomeryMultiply(); 615 case vmIntrinsics::_montgomerySquare: 616 return inline_montgomerySquare(); 617 618 case vmIntrinsics::_bigIntegerRightShiftWorker: 619 return inline_bigIntegerShift(true); 620 case vmIntrinsics::_bigIntegerLeftShiftWorker: 621 return inline_bigIntegerShift(false); 622 623 case vmIntrinsics::_vectorizedMismatch: 624 return inline_vectorizedMismatch(); 625 626 case vmIntrinsics::_ghash_processBlocks: 627 return inline_ghash_processBlocks(); 628 case vmIntrinsics::_chacha20Block: 629 return inline_chacha20Block(); 630 case vmIntrinsics::_kyberNtt: 631 return inline_kyberNtt(); 632 case vmIntrinsics::_kyberInverseNtt: 633 return inline_kyberInverseNtt(); 634 case vmIntrinsics::_kyberNttMult: 635 return inline_kyberNttMult(); 636 case vmIntrinsics::_kyberAddPoly_2: 637 return inline_kyberAddPoly_2(); 638 case vmIntrinsics::_kyberAddPoly_3: 639 return inline_kyberAddPoly_3(); 640 case vmIntrinsics::_kyber12To16: 641 return inline_kyber12To16(); 642 case vmIntrinsics::_kyberBarrettReduce: 643 return inline_kyberBarrettReduce(); 644 case vmIntrinsics::_dilithiumAlmostNtt: 645 return inline_dilithiumAlmostNtt(); 646 case vmIntrinsics::_dilithiumAlmostInverseNtt: 647 return inline_dilithiumAlmostInverseNtt(); 648 case vmIntrinsics::_dilithiumNttMult: 649 return inline_dilithiumNttMult(); 650 case vmIntrinsics::_dilithiumMontMulByConstant: 651 return inline_dilithiumMontMulByConstant(); 652 case vmIntrinsics::_dilithiumDecomposePoly: 653 return inline_dilithiumDecomposePoly(); 654 case vmIntrinsics::_base64_encodeBlock: 655 return inline_base64_encodeBlock(); 656 case vmIntrinsics::_base64_decodeBlock: 657 return inline_base64_decodeBlock(); 658 case vmIntrinsics::_poly1305_processBlocks: 659 return inline_poly1305_processBlocks(); 660 case vmIntrinsics::_intpoly_montgomeryMult_P256: 661 return inline_intpoly_montgomeryMult_P256(); 662 case vmIntrinsics::_intpoly_assign: 663 return inline_intpoly_assign(); 664 case vmIntrinsics::_encodeISOArray: 665 case vmIntrinsics::_encodeByteISOArray: 666 return inline_encodeISOArray(false); 667 case vmIntrinsics::_encodeAsciiArray: 668 return inline_encodeISOArray(true); 669 670 case vmIntrinsics::_updateCRC32: 671 return inline_updateCRC32(); 672 case vmIntrinsics::_updateBytesCRC32: 673 return inline_updateBytesCRC32(); 674 case vmIntrinsics::_updateByteBufferCRC32: 675 return inline_updateByteBufferCRC32(); 676 677 case vmIntrinsics::_updateBytesCRC32C: 678 return inline_updateBytesCRC32C(); 679 case vmIntrinsics::_updateDirectByteBufferCRC32C: 680 return inline_updateDirectByteBufferCRC32C(); 681 682 case vmIntrinsics::_updateBytesAdler32: 683 return inline_updateBytesAdler32(); 684 case vmIntrinsics::_updateByteBufferAdler32: 685 return inline_updateByteBufferAdler32(); 686 687 case vmIntrinsics::_profileBoolean: 688 return inline_profileBoolean(); 689 case vmIntrinsics::_isCompileConstant: 690 return inline_isCompileConstant(); 691 692 case vmIntrinsics::_countPositives: 693 return inline_countPositives(); 694 695 case vmIntrinsics::_fmaD: 696 case vmIntrinsics::_fmaF: 697 return inline_fma(intrinsic_id()); 698 699 case vmIntrinsics::_isDigit: 700 case vmIntrinsics::_isLowerCase: 701 case vmIntrinsics::_isUpperCase: 702 case vmIntrinsics::_isWhitespace: 703 return inline_character_compare(intrinsic_id()); 704 705 case vmIntrinsics::_min: 706 case vmIntrinsics::_max: 707 case vmIntrinsics::_min_strict: 708 case vmIntrinsics::_max_strict: 709 case vmIntrinsics::_minL: 710 case vmIntrinsics::_maxL: 711 case vmIntrinsics::_minF: 712 case vmIntrinsics::_maxF: 713 case vmIntrinsics::_minD: 714 case vmIntrinsics::_maxD: 715 case vmIntrinsics::_minF_strict: 716 case vmIntrinsics::_maxF_strict: 717 case vmIntrinsics::_minD_strict: 718 case vmIntrinsics::_maxD_strict: 719 return inline_min_max(intrinsic_id()); 720 721 case vmIntrinsics::_VectorUnaryOp: 722 return inline_vector_nary_operation(1); 723 case vmIntrinsics::_VectorBinaryOp: 724 return inline_vector_nary_operation(2); 725 case vmIntrinsics::_VectorUnaryLibOp: 726 return inline_vector_call(1); 727 case vmIntrinsics::_VectorBinaryLibOp: 728 return inline_vector_call(2); 729 case vmIntrinsics::_VectorTernaryOp: 730 return inline_vector_nary_operation(3); 731 case vmIntrinsics::_VectorFromBitsCoerced: 732 return inline_vector_frombits_coerced(); 733 case vmIntrinsics::_VectorMaskOp: 734 return inline_vector_mask_operation(); 735 case vmIntrinsics::_VectorLoadOp: 736 return inline_vector_mem_operation(/*is_store=*/false); 737 case vmIntrinsics::_VectorLoadMaskedOp: 738 return inline_vector_mem_masked_operation(/*is_store*/false); 739 case vmIntrinsics::_VectorStoreOp: 740 return inline_vector_mem_operation(/*is_store=*/true); 741 case vmIntrinsics::_VectorStoreMaskedOp: 742 return inline_vector_mem_masked_operation(/*is_store=*/true); 743 case vmIntrinsics::_VectorGatherOp: 744 return inline_vector_gather_scatter(/*is_scatter*/ false); 745 case vmIntrinsics::_VectorScatterOp: 746 return inline_vector_gather_scatter(/*is_scatter*/ true); 747 case vmIntrinsics::_VectorReductionCoerced: 748 return inline_vector_reduction(); 749 case vmIntrinsics::_VectorTest: 750 return inline_vector_test(); 751 case vmIntrinsics::_VectorBlend: 752 return inline_vector_blend(); 753 case vmIntrinsics::_VectorRearrange: 754 return inline_vector_rearrange(); 755 case vmIntrinsics::_VectorSelectFrom: 756 return inline_vector_select_from(); 757 case vmIntrinsics::_VectorCompare: 758 return inline_vector_compare(); 759 case vmIntrinsics::_VectorBroadcastInt: 760 return inline_vector_broadcast_int(); 761 case vmIntrinsics::_VectorConvert: 762 return inline_vector_convert(); 763 case vmIntrinsics::_VectorInsert: 764 return inline_vector_insert(); 765 case vmIntrinsics::_VectorExtract: 766 return inline_vector_extract(); 767 case vmIntrinsics::_VectorCompressExpand: 768 return inline_vector_compress_expand(); 769 case vmIntrinsics::_VectorSelectFromTwoVectorOp: 770 return inline_vector_select_from_two_vectors(); 771 case vmIntrinsics::_IndexVector: 772 return inline_index_vector(); 773 case vmIntrinsics::_IndexPartiallyInUpperRange: 774 return inline_index_partially_in_upper_range(); 775 776 case vmIntrinsics::_getObjectSize: 777 return inline_getObjectSize(); 778 779 case vmIntrinsics::_blackhole: 780 return inline_blackhole(); 781 782 default: 783 // If you get here, it may be that someone has added a new intrinsic 784 // to the list in vmIntrinsics.hpp without implementing it here. 785 #ifndef PRODUCT 786 if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) { 787 tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)", 788 vmIntrinsics::name_at(intrinsic_id()), vmIntrinsics::as_int(intrinsic_id())); 789 } 790 #endif 791 return false; 792 } 793 } 794 795 Node* LibraryCallKit::try_to_predicate(int predicate) { 796 if (!jvms()->has_method()) { 797 // Root JVMState has a null method. 798 assert(map()->memory()->Opcode() == Op_Parm, ""); 799 // Insert the memory aliasing node 800 set_all_memory(reset_memory()); 801 } 802 assert(merged_memory(), ""); 803 804 switch (intrinsic_id()) { 805 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 806 return inline_cipherBlockChaining_AESCrypt_predicate(false); 807 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 808 return inline_cipherBlockChaining_AESCrypt_predicate(true); 809 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 810 return inline_electronicCodeBook_AESCrypt_predicate(false); 811 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 812 return inline_electronicCodeBook_AESCrypt_predicate(true); 813 case vmIntrinsics::_counterMode_AESCrypt: 814 return inline_counterMode_AESCrypt_predicate(); 815 case vmIntrinsics::_digestBase_implCompressMB: 816 return inline_digestBase_implCompressMB_predicate(predicate); 817 case vmIntrinsics::_galoisCounterMode_AESCrypt: 818 return inline_galoisCounterMode_AESCrypt_predicate(); 819 820 default: 821 // If you get here, it may be that someone has added a new intrinsic 822 // to the list in vmIntrinsics.hpp without implementing it here. 823 #ifndef PRODUCT 824 if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) { 825 tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)", 826 vmIntrinsics::name_at(intrinsic_id()), vmIntrinsics::as_int(intrinsic_id())); 827 } 828 #endif 829 Node* slow_ctl = control(); 830 set_control(top()); // No fast path intrinsic 831 return slow_ctl; 832 } 833 } 834 835 //------------------------------set_result------------------------------- 836 // Helper function for finishing intrinsics. 837 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) { 838 record_for_igvn(region); 839 set_control(_gvn.transform(region)); 840 set_result( _gvn.transform(value)); 841 assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity"); 842 } 843 844 //------------------------------generate_guard--------------------------- 845 // Helper function for generating guarded fast-slow graph structures. 846 // The given 'test', if true, guards a slow path. If the test fails 847 // then a fast path can be taken. (We generally hope it fails.) 848 // In all cases, GraphKit::control() is updated to the fast path. 849 // The returned value represents the control for the slow path. 850 // The return value is never 'top'; it is either a valid control 851 // or null if it is obvious that the slow path can never be taken. 852 // Also, if region and the slow control are not null, the slow edge 853 // is appended to the region. 854 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) { 855 if (stopped()) { 856 // Already short circuited. 857 return nullptr; 858 } 859 860 // Build an if node and its projections. 861 // If test is true we take the slow path, which we assume is uncommon. 862 if (_gvn.type(test) == TypeInt::ZERO) { 863 // The slow branch is never taken. No need to build this guard. 864 return nullptr; 865 } 866 867 IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN); 868 869 Node* if_slow = _gvn.transform(new IfTrueNode(iff)); 870 if (if_slow == top()) { 871 // The slow branch is never taken. No need to build this guard. 872 return nullptr; 873 } 874 875 if (region != nullptr) 876 region->add_req(if_slow); 877 878 Node* if_fast = _gvn.transform(new IfFalseNode(iff)); 879 set_control(if_fast); 880 881 return if_slow; 882 } 883 884 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) { 885 return generate_guard(test, region, PROB_UNLIKELY_MAG(3)); 886 } 887 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) { 888 return generate_guard(test, region, PROB_FAIR); 889 } 890 891 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region, 892 Node* *pos_index) { 893 if (stopped()) 894 return nullptr; // already stopped 895 if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint] 896 return nullptr; // index is already adequately typed 897 Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0))); 898 Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt)); 899 Node* is_neg = generate_guard(bol_lt, region, PROB_MIN); 900 if (is_neg != nullptr && pos_index != nullptr) { 901 // Emulate effect of Parse::adjust_map_after_if. 902 Node* ccast = new CastIINode(control(), index, TypeInt::POS); 903 (*pos_index) = _gvn.transform(ccast); 904 } 905 return is_neg; 906 } 907 908 // Make sure that 'position' is a valid limit index, in [0..length]. 909 // There are two equivalent plans for checking this: 910 // A. (offset + copyLength) unsigned<= arrayLength 911 // B. offset <= (arrayLength - copyLength) 912 // We require that all of the values above, except for the sum and 913 // difference, are already known to be non-negative. 914 // Plan A is robust in the face of overflow, if offset and copyLength 915 // are both hugely positive. 916 // 917 // Plan B is less direct and intuitive, but it does not overflow at 918 // all, since the difference of two non-negatives is always 919 // representable. Whenever Java methods must perform the equivalent 920 // check they generally use Plan B instead of Plan A. 921 // For the moment we use Plan A. 922 inline Node* LibraryCallKit::generate_limit_guard(Node* offset, 923 Node* subseq_length, 924 Node* array_length, 925 RegionNode* region) { 926 if (stopped()) 927 return nullptr; // already stopped 928 bool zero_offset = _gvn.type(offset) == TypeInt::ZERO; 929 if (zero_offset && subseq_length->eqv_uncast(array_length)) 930 return nullptr; // common case of whole-array copy 931 Node* last = subseq_length; 932 if (!zero_offset) // last += offset 933 last = _gvn.transform(new AddINode(last, offset)); 934 Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last)); 935 Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt)); 936 Node* is_over = generate_guard(bol_lt, region, PROB_MIN); 937 return is_over; 938 } 939 940 // Emit range checks for the given String.value byte array 941 void LibraryCallKit::generate_string_range_check(Node* array, Node* offset, Node* count, bool char_count) { 942 if (stopped()) { 943 return; // already stopped 944 } 945 RegionNode* bailout = new RegionNode(1); 946 record_for_igvn(bailout); 947 if (char_count) { 948 // Convert char count to byte count 949 count = _gvn.transform(new LShiftINode(count, intcon(1))); 950 } 951 952 // Offset and count must not be negative 953 generate_negative_guard(offset, bailout); 954 generate_negative_guard(count, bailout); 955 // Offset + count must not exceed length of array 956 generate_limit_guard(offset, count, load_array_length(array), bailout); 957 958 if (bailout->req() > 1) { 959 PreserveJVMState pjvms(this); 960 set_control(_gvn.transform(bailout)); 961 uncommon_trap(Deoptimization::Reason_intrinsic, 962 Deoptimization::Action_maybe_recompile); 963 } 964 } 965 966 Node* LibraryCallKit::current_thread_helper(Node*& tls_output, ByteSize handle_offset, 967 bool is_immutable) { 968 ciKlass* thread_klass = env()->Thread_klass(); 969 const Type* thread_type 970 = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull); 971 972 Node* thread = _gvn.transform(new ThreadLocalNode()); 973 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(handle_offset)); 974 tls_output = thread; 975 976 Node* thread_obj_handle 977 = (is_immutable 978 ? LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(), 979 TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered) 980 : make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered)); 981 thread_obj_handle = _gvn.transform(thread_obj_handle); 982 983 DecoratorSet decorators = IN_NATIVE; 984 if (is_immutable) { 985 decorators |= C2_IMMUTABLE_MEMORY; 986 } 987 return access_load(thread_obj_handle, thread_type, T_OBJECT, decorators); 988 } 989 990 //--------------------------generate_current_thread-------------------- 991 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) { 992 return current_thread_helper(tls_output, JavaThread::threadObj_offset(), 993 /*is_immutable*/false); 994 } 995 996 //--------------------------generate_virtual_thread-------------------- 997 Node* LibraryCallKit::generate_virtual_thread(Node* tls_output) { 998 return current_thread_helper(tls_output, JavaThread::vthread_offset(), 999 !C->method()->changes_current_thread()); 1000 } 1001 1002 //------------------------------make_string_method_node------------------------ 1003 // Helper method for String intrinsic functions. This version is called with 1004 // str1 and str2 pointing to byte[] nodes containing Latin1 or UTF16 encoded 1005 // characters (depending on 'is_byte'). cnt1 and cnt2 are pointing to Int nodes 1006 // containing the lengths of str1 and str2. 1007 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae) { 1008 Node* result = nullptr; 1009 switch (opcode) { 1010 case Op_StrIndexOf: 1011 result = new StrIndexOfNode(control(), memory(TypeAryPtr::BYTES), 1012 str1_start, cnt1, str2_start, cnt2, ae); 1013 break; 1014 case Op_StrComp: 1015 result = new StrCompNode(control(), memory(TypeAryPtr::BYTES), 1016 str1_start, cnt1, str2_start, cnt2, ae); 1017 break; 1018 case Op_StrEquals: 1019 // We already know that cnt1 == cnt2 here (checked in 'inline_string_equals'). 1020 // Use the constant length if there is one because optimized match rule may exist. 1021 result = new StrEqualsNode(control(), memory(TypeAryPtr::BYTES), 1022 str1_start, str2_start, cnt2->is_Con() ? cnt2 : cnt1, ae); 1023 break; 1024 default: 1025 ShouldNotReachHere(); 1026 return nullptr; 1027 } 1028 1029 // All these intrinsics have checks. 1030 C->set_has_split_ifs(true); // Has chance for split-if optimization 1031 clear_upper_avx(); 1032 1033 return _gvn.transform(result); 1034 } 1035 1036 //------------------------------inline_string_compareTo------------------------ 1037 bool LibraryCallKit::inline_string_compareTo(StrIntrinsicNode::ArgEnc ae) { 1038 Node* arg1 = argument(0); 1039 Node* arg2 = argument(1); 1040 1041 arg1 = must_be_not_null(arg1, true); 1042 arg2 = must_be_not_null(arg2, true); 1043 1044 // Get start addr and length of first argument 1045 Node* arg1_start = array_element_address(arg1, intcon(0), T_BYTE); 1046 Node* arg1_cnt = load_array_length(arg1); 1047 1048 // Get start addr and length of second argument 1049 Node* arg2_start = array_element_address(arg2, intcon(0), T_BYTE); 1050 Node* arg2_cnt = load_array_length(arg2); 1051 1052 Node* result = make_string_method_node(Op_StrComp, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae); 1053 set_result(result); 1054 return true; 1055 } 1056 1057 //------------------------------inline_string_equals------------------------ 1058 bool LibraryCallKit::inline_string_equals(StrIntrinsicNode::ArgEnc ae) { 1059 Node* arg1 = argument(0); 1060 Node* arg2 = argument(1); 1061 1062 // paths (plus control) merge 1063 RegionNode* region = new RegionNode(3); 1064 Node* phi = new PhiNode(region, TypeInt::BOOL); 1065 1066 if (!stopped()) { 1067 1068 arg1 = must_be_not_null(arg1, true); 1069 arg2 = must_be_not_null(arg2, true); 1070 1071 // Get start addr and length of first argument 1072 Node* arg1_start = array_element_address(arg1, intcon(0), T_BYTE); 1073 Node* arg1_cnt = load_array_length(arg1); 1074 1075 // Get start addr and length of second argument 1076 Node* arg2_start = array_element_address(arg2, intcon(0), T_BYTE); 1077 Node* arg2_cnt = load_array_length(arg2); 1078 1079 // Check for arg1_cnt != arg2_cnt 1080 Node* cmp = _gvn.transform(new CmpINode(arg1_cnt, arg2_cnt)); 1081 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne)); 1082 Node* if_ne = generate_slow_guard(bol, nullptr); 1083 if (if_ne != nullptr) { 1084 phi->init_req(2, intcon(0)); 1085 region->init_req(2, if_ne); 1086 } 1087 1088 // Check for count == 0 is done by assembler code for StrEquals. 1089 1090 if (!stopped()) { 1091 Node* equals = make_string_method_node(Op_StrEquals, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae); 1092 phi->init_req(1, equals); 1093 region->init_req(1, control()); 1094 } 1095 } 1096 1097 // post merge 1098 set_control(_gvn.transform(region)); 1099 record_for_igvn(region); 1100 1101 set_result(_gvn.transform(phi)); 1102 return true; 1103 } 1104 1105 //------------------------------inline_array_equals---------------------------- 1106 bool LibraryCallKit::inline_array_equals(StrIntrinsicNode::ArgEnc ae) { 1107 assert(ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::LL, "unsupported array types"); 1108 Node* arg1 = argument(0); 1109 Node* arg2 = argument(1); 1110 1111 const TypeAryPtr* mtype = (ae == StrIntrinsicNode::UU) ? TypeAryPtr::CHARS : TypeAryPtr::BYTES; 1112 set_result(_gvn.transform(new AryEqNode(control(), memory(mtype), arg1, arg2, ae))); 1113 clear_upper_avx(); 1114 1115 return true; 1116 } 1117 1118 1119 //------------------------------inline_countPositives------------------------------ 1120 bool LibraryCallKit::inline_countPositives() { 1121 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1122 return false; 1123 } 1124 1125 assert(callee()->signature()->size() == 3, "countPositives has 3 parameters"); 1126 // no receiver since it is static method 1127 Node* ba = argument(0); 1128 Node* offset = argument(1); 1129 Node* len = argument(2); 1130 1131 ba = must_be_not_null(ba, true); 1132 1133 // Range checks 1134 generate_string_range_check(ba, offset, len, false); 1135 if (stopped()) { 1136 return true; 1137 } 1138 Node* ba_start = array_element_address(ba, offset, T_BYTE); 1139 Node* result = new CountPositivesNode(control(), memory(TypeAryPtr::BYTES), ba_start, len); 1140 set_result(_gvn.transform(result)); 1141 clear_upper_avx(); 1142 return true; 1143 } 1144 1145 bool LibraryCallKit::inline_preconditions_checkIndex(BasicType bt) { 1146 Node* index = argument(0); 1147 Node* length = bt == T_INT ? argument(1) : argument(2); 1148 if (too_many_traps(Deoptimization::Reason_intrinsic) || too_many_traps(Deoptimization::Reason_range_check)) { 1149 return false; 1150 } 1151 1152 // check that length is positive 1153 Node* len_pos_cmp = _gvn.transform(CmpNode::make(length, integercon(0, bt), bt)); 1154 Node* len_pos_bol = _gvn.transform(new BoolNode(len_pos_cmp, BoolTest::ge)); 1155 1156 { 1157 BuildCutout unless(this, len_pos_bol, PROB_MAX); 1158 uncommon_trap(Deoptimization::Reason_intrinsic, 1159 Deoptimization::Action_make_not_entrant); 1160 } 1161 1162 if (stopped()) { 1163 // Length is known to be always negative during compilation and the IR graph so far constructed is good so return success 1164 return true; 1165 } 1166 1167 // length is now known positive, add a cast node to make this explicit 1168 jlong upper_bound = _gvn.type(length)->is_integer(bt)->hi_as_long(); 1169 Node* casted_length = ConstraintCastNode::make_cast_for_basic_type( 1170 control(), length, TypeInteger::make(0, upper_bound, Type::WidenMax, bt), 1171 ConstraintCastNode::RegularDependency, bt); 1172 casted_length = _gvn.transform(casted_length); 1173 replace_in_map(length, casted_length); 1174 length = casted_length; 1175 1176 // Use an unsigned comparison for the range check itself 1177 Node* rc_cmp = _gvn.transform(CmpNode::make(index, length, bt, true)); 1178 BoolTest::mask btest = BoolTest::lt; 1179 Node* rc_bool = _gvn.transform(new BoolNode(rc_cmp, btest)); 1180 RangeCheckNode* rc = new RangeCheckNode(control(), rc_bool, PROB_MAX, COUNT_UNKNOWN); 1181 _gvn.set_type(rc, rc->Value(&_gvn)); 1182 if (!rc_bool->is_Con()) { 1183 record_for_igvn(rc); 1184 } 1185 set_control(_gvn.transform(new IfTrueNode(rc))); 1186 { 1187 PreserveJVMState pjvms(this); 1188 set_control(_gvn.transform(new IfFalseNode(rc))); 1189 uncommon_trap(Deoptimization::Reason_range_check, 1190 Deoptimization::Action_make_not_entrant); 1191 } 1192 1193 if (stopped()) { 1194 // Range check is known to always fail during compilation and the IR graph so far constructed is good so return success 1195 return true; 1196 } 1197 1198 // index is now known to be >= 0 and < length, cast it 1199 Node* result = ConstraintCastNode::make_cast_for_basic_type( 1200 control(), index, TypeInteger::make(0, upper_bound, Type::WidenMax, bt), 1201 ConstraintCastNode::RegularDependency, bt); 1202 result = _gvn.transform(result); 1203 set_result(result); 1204 replace_in_map(index, result); 1205 return true; 1206 } 1207 1208 //------------------------------inline_string_indexOf------------------------ 1209 bool LibraryCallKit::inline_string_indexOf(StrIntrinsicNode::ArgEnc ae) { 1210 if (!Matcher::match_rule_supported(Op_StrIndexOf)) { 1211 return false; 1212 } 1213 Node* src = argument(0); 1214 Node* tgt = argument(1); 1215 1216 // Make the merge point 1217 RegionNode* result_rgn = new RegionNode(4); 1218 Node* result_phi = new PhiNode(result_rgn, TypeInt::INT); 1219 1220 src = must_be_not_null(src, true); 1221 tgt = must_be_not_null(tgt, true); 1222 1223 // Get start addr and length of source string 1224 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 1225 Node* src_count = load_array_length(src); 1226 1227 // Get start addr and length of substring 1228 Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE); 1229 Node* tgt_count = load_array_length(tgt); 1230 1231 Node* result = nullptr; 1232 bool call_opt_stub = (StubRoutines::_string_indexof_array[ae] != nullptr); 1233 1234 if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) { 1235 // Divide src size by 2 if String is UTF16 encoded 1236 src_count = _gvn.transform(new RShiftINode(src_count, intcon(1))); 1237 } 1238 if (ae == StrIntrinsicNode::UU) { 1239 // Divide substring size by 2 if String is UTF16 encoded 1240 tgt_count = _gvn.transform(new RShiftINode(tgt_count, intcon(1))); 1241 } 1242 1243 if (call_opt_stub) { 1244 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::string_IndexOf_Type(), 1245 StubRoutines::_string_indexof_array[ae], 1246 "stringIndexOf", TypePtr::BOTTOM, src_start, 1247 src_count, tgt_start, tgt_count); 1248 result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 1249 } else { 1250 result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, 1251 result_rgn, result_phi, ae); 1252 } 1253 if (result != nullptr) { 1254 result_phi->init_req(3, result); 1255 result_rgn->init_req(3, control()); 1256 } 1257 set_control(_gvn.transform(result_rgn)); 1258 record_for_igvn(result_rgn); 1259 set_result(_gvn.transform(result_phi)); 1260 1261 return true; 1262 } 1263 1264 //-----------------------------inline_string_indexOfI----------------------- 1265 bool LibraryCallKit::inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae) { 1266 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1267 return false; 1268 } 1269 if (!Matcher::match_rule_supported(Op_StrIndexOf)) { 1270 return false; 1271 } 1272 1273 assert(callee()->signature()->size() == 5, "String.indexOf() has 5 arguments"); 1274 Node* src = argument(0); // byte[] 1275 Node* src_count = argument(1); // char count 1276 Node* tgt = argument(2); // byte[] 1277 Node* tgt_count = argument(3); // char count 1278 Node* from_index = argument(4); // char index 1279 1280 src = must_be_not_null(src, true); 1281 tgt = must_be_not_null(tgt, true); 1282 1283 // Multiply byte array index by 2 if String is UTF16 encoded 1284 Node* src_offset = (ae == StrIntrinsicNode::LL) ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1))); 1285 src_count = _gvn.transform(new SubINode(src_count, from_index)); 1286 Node* src_start = array_element_address(src, src_offset, T_BYTE); 1287 Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE); 1288 1289 // Range checks 1290 generate_string_range_check(src, src_offset, src_count, ae != StrIntrinsicNode::LL); 1291 generate_string_range_check(tgt, intcon(0), tgt_count, ae == StrIntrinsicNode::UU); 1292 if (stopped()) { 1293 return true; 1294 } 1295 1296 RegionNode* region = new RegionNode(5); 1297 Node* phi = new PhiNode(region, TypeInt::INT); 1298 Node* result = nullptr; 1299 1300 bool call_opt_stub = (StubRoutines::_string_indexof_array[ae] != nullptr); 1301 1302 if (call_opt_stub) { 1303 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::string_IndexOf_Type(), 1304 StubRoutines::_string_indexof_array[ae], 1305 "stringIndexOf", TypePtr::BOTTOM, src_start, 1306 src_count, tgt_start, tgt_count); 1307 result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 1308 } else { 1309 result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, 1310 region, phi, ae); 1311 } 1312 if (result != nullptr) { 1313 // The result is index relative to from_index if substring was found, -1 otherwise. 1314 // Generate code which will fold into cmove. 1315 Node* cmp = _gvn.transform(new CmpINode(result, intcon(0))); 1316 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt)); 1317 1318 Node* if_lt = generate_slow_guard(bol, nullptr); 1319 if (if_lt != nullptr) { 1320 // result == -1 1321 phi->init_req(3, result); 1322 region->init_req(3, if_lt); 1323 } 1324 if (!stopped()) { 1325 result = _gvn.transform(new AddINode(result, from_index)); 1326 phi->init_req(4, result); 1327 region->init_req(4, control()); 1328 } 1329 } 1330 1331 set_control(_gvn.transform(region)); 1332 record_for_igvn(region); 1333 set_result(_gvn.transform(phi)); 1334 clear_upper_avx(); 1335 1336 return true; 1337 } 1338 1339 // Create StrIndexOfNode with fast path checks 1340 Node* LibraryCallKit::make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count, 1341 RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae) { 1342 // Check for substr count > string count 1343 Node* cmp = _gvn.transform(new CmpINode(tgt_count, src_count)); 1344 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt)); 1345 Node* if_gt = generate_slow_guard(bol, nullptr); 1346 if (if_gt != nullptr) { 1347 phi->init_req(1, intcon(-1)); 1348 region->init_req(1, if_gt); 1349 } 1350 if (!stopped()) { 1351 // Check for substr count == 0 1352 cmp = _gvn.transform(new CmpINode(tgt_count, intcon(0))); 1353 bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 1354 Node* if_zero = generate_slow_guard(bol, nullptr); 1355 if (if_zero != nullptr) { 1356 phi->init_req(2, intcon(0)); 1357 region->init_req(2, if_zero); 1358 } 1359 } 1360 if (!stopped()) { 1361 return make_string_method_node(Op_StrIndexOf, src_start, src_count, tgt_start, tgt_count, ae); 1362 } 1363 return nullptr; 1364 } 1365 1366 //-----------------------------inline_string_indexOfChar----------------------- 1367 bool LibraryCallKit::inline_string_indexOfChar(StrIntrinsicNode::ArgEnc ae) { 1368 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1369 return false; 1370 } 1371 if (!Matcher::match_rule_supported(Op_StrIndexOfChar)) { 1372 return false; 1373 } 1374 assert(callee()->signature()->size() == 4, "String.indexOfChar() has 4 arguments"); 1375 Node* src = argument(0); // byte[] 1376 Node* int_ch = argument(1); 1377 Node* from_index = argument(2); 1378 Node* max = argument(3); 1379 1380 src = must_be_not_null(src, true); 1381 1382 Node* src_offset = ae == StrIntrinsicNode::L ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1))); 1383 Node* src_start = array_element_address(src, src_offset, T_BYTE); 1384 Node* src_count = _gvn.transform(new SubINode(max, from_index)); 1385 1386 // Range checks 1387 generate_string_range_check(src, src_offset, src_count, ae == StrIntrinsicNode::U); 1388 1389 // Check for int_ch >= 0 1390 Node* int_ch_cmp = _gvn.transform(new CmpINode(int_ch, intcon(0))); 1391 Node* int_ch_bol = _gvn.transform(new BoolNode(int_ch_cmp, BoolTest::ge)); 1392 { 1393 BuildCutout unless(this, int_ch_bol, PROB_MAX); 1394 uncommon_trap(Deoptimization::Reason_intrinsic, 1395 Deoptimization::Action_maybe_recompile); 1396 } 1397 if (stopped()) { 1398 return true; 1399 } 1400 1401 RegionNode* region = new RegionNode(3); 1402 Node* phi = new PhiNode(region, TypeInt::INT); 1403 1404 Node* result = new StrIndexOfCharNode(control(), memory(TypeAryPtr::BYTES), src_start, src_count, int_ch, ae); 1405 C->set_has_split_ifs(true); // Has chance for split-if optimization 1406 _gvn.transform(result); 1407 1408 Node* cmp = _gvn.transform(new CmpINode(result, intcon(0))); 1409 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt)); 1410 1411 Node* if_lt = generate_slow_guard(bol, nullptr); 1412 if (if_lt != nullptr) { 1413 // result == -1 1414 phi->init_req(2, result); 1415 region->init_req(2, if_lt); 1416 } 1417 if (!stopped()) { 1418 result = _gvn.transform(new AddINode(result, from_index)); 1419 phi->init_req(1, result); 1420 region->init_req(1, control()); 1421 } 1422 set_control(_gvn.transform(region)); 1423 record_for_igvn(region); 1424 set_result(_gvn.transform(phi)); 1425 clear_upper_avx(); 1426 1427 return true; 1428 } 1429 //---------------------------inline_string_copy--------------------- 1430 // compressIt == true --> generate a compressed copy operation (compress char[]/byte[] to byte[]) 1431 // int StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) 1432 // int StringUTF16.compress(byte[] src, int srcOff, byte[] dst, int dstOff, int len) 1433 // compressIt == false --> generate an inflated copy operation (inflate byte[] to char[]/byte[]) 1434 // void StringLatin1.inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len) 1435 // void StringLatin1.inflate(byte[] src, int srcOff, byte[] dst, int dstOff, int len) 1436 bool LibraryCallKit::inline_string_copy(bool compress) { 1437 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1438 return false; 1439 } 1440 int nargs = 5; // 2 oops, 3 ints 1441 assert(callee()->signature()->size() == nargs, "string copy has 5 arguments"); 1442 1443 Node* src = argument(0); 1444 Node* src_offset = argument(1); 1445 Node* dst = argument(2); 1446 Node* dst_offset = argument(3); 1447 Node* length = argument(4); 1448 1449 // Check for allocation before we add nodes that would confuse 1450 // tightly_coupled_allocation() 1451 AllocateArrayNode* alloc = tightly_coupled_allocation(dst); 1452 1453 // Figure out the size and type of the elements we will be copying. 1454 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 1455 const TypeAryPtr* dst_type = dst->Value(&_gvn)->isa_aryptr(); 1456 if (src_type == nullptr || dst_type == nullptr) { 1457 return false; 1458 } 1459 BasicType src_elem = src_type->elem()->array_element_basic_type(); 1460 BasicType dst_elem = dst_type->elem()->array_element_basic_type(); 1461 assert((compress && dst_elem == T_BYTE && (src_elem == T_BYTE || src_elem == T_CHAR)) || 1462 (!compress && src_elem == T_BYTE && (dst_elem == T_BYTE || dst_elem == T_CHAR)), 1463 "Unsupported array types for inline_string_copy"); 1464 1465 src = must_be_not_null(src, true); 1466 dst = must_be_not_null(dst, true); 1467 1468 // Convert char[] offsets to byte[] offsets 1469 bool convert_src = (compress && src_elem == T_BYTE); 1470 bool convert_dst = (!compress && dst_elem == T_BYTE); 1471 if (convert_src) { 1472 src_offset = _gvn.transform(new LShiftINode(src_offset, intcon(1))); 1473 } else if (convert_dst) { 1474 dst_offset = _gvn.transform(new LShiftINode(dst_offset, intcon(1))); 1475 } 1476 1477 // Range checks 1478 generate_string_range_check(src, src_offset, length, convert_src); 1479 generate_string_range_check(dst, dst_offset, length, convert_dst); 1480 if (stopped()) { 1481 return true; 1482 } 1483 1484 Node* src_start = array_element_address(src, src_offset, src_elem); 1485 Node* dst_start = array_element_address(dst, dst_offset, dst_elem); 1486 // 'src_start' points to src array + scaled offset 1487 // 'dst_start' points to dst array + scaled offset 1488 Node* count = nullptr; 1489 if (compress) { 1490 count = compress_string(src_start, TypeAryPtr::get_array_body_type(src_elem), dst_start, length); 1491 } else { 1492 inflate_string(src_start, dst_start, TypeAryPtr::get_array_body_type(dst_elem), length); 1493 } 1494 1495 if (alloc != nullptr) { 1496 if (alloc->maybe_set_complete(&_gvn)) { 1497 // "You break it, you buy it." 1498 InitializeNode* init = alloc->initialization(); 1499 assert(init->is_complete(), "we just did this"); 1500 init->set_complete_with_arraycopy(); 1501 assert(dst->is_CheckCastPP(), "sanity"); 1502 assert(dst->in(0)->in(0) == init, "dest pinned"); 1503 } 1504 // Do not let stores that initialize this object be reordered with 1505 // a subsequent store that would make this object accessible by 1506 // other threads. 1507 // Record what AllocateNode this StoreStore protects so that 1508 // escape analysis can go from the MemBarStoreStoreNode to the 1509 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1510 // based on the escape status of the AllocateNode. 1511 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1512 } 1513 if (compress) { 1514 set_result(_gvn.transform(count)); 1515 } 1516 clear_upper_avx(); 1517 1518 return true; 1519 } 1520 1521 #ifdef _LP64 1522 #define XTOP ,top() /*additional argument*/ 1523 #else //_LP64 1524 #define XTOP /*no additional argument*/ 1525 #endif //_LP64 1526 1527 //------------------------inline_string_toBytesU-------------------------- 1528 // public static byte[] StringUTF16.toBytes(char[] value, int off, int len) 1529 bool LibraryCallKit::inline_string_toBytesU() { 1530 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1531 return false; 1532 } 1533 // Get the arguments. 1534 Node* value = argument(0); 1535 Node* offset = argument(1); 1536 Node* length = argument(2); 1537 1538 Node* newcopy = nullptr; 1539 1540 // Set the original stack and the reexecute bit for the interpreter to reexecute 1541 // the bytecode that invokes StringUTF16.toBytes() if deoptimization happens. 1542 { PreserveReexecuteState preexecs(this); 1543 jvms()->set_should_reexecute(true); 1544 1545 // Check if a null path was taken unconditionally. 1546 value = null_check(value); 1547 1548 RegionNode* bailout = new RegionNode(1); 1549 record_for_igvn(bailout); 1550 1551 // Range checks 1552 generate_negative_guard(offset, bailout); 1553 generate_negative_guard(length, bailout); 1554 generate_limit_guard(offset, length, load_array_length(value), bailout); 1555 // Make sure that resulting byte[] length does not overflow Integer.MAX_VALUE 1556 generate_limit_guard(length, intcon(0), intcon(max_jint/2), bailout); 1557 1558 if (bailout->req() > 1) { 1559 PreserveJVMState pjvms(this); 1560 set_control(_gvn.transform(bailout)); 1561 uncommon_trap(Deoptimization::Reason_intrinsic, 1562 Deoptimization::Action_maybe_recompile); 1563 } 1564 if (stopped()) { 1565 return true; 1566 } 1567 1568 Node* size = _gvn.transform(new LShiftINode(length, intcon(1))); 1569 Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_BYTE))); 1570 newcopy = new_array(klass_node, size, 0); // no arguments to push 1571 AllocateArrayNode* alloc = tightly_coupled_allocation(newcopy); 1572 guarantee(alloc != nullptr, "created above"); 1573 1574 // Calculate starting addresses. 1575 Node* src_start = array_element_address(value, offset, T_CHAR); 1576 Node* dst_start = basic_plus_adr(newcopy, arrayOopDesc::base_offset_in_bytes(T_BYTE)); 1577 1578 // Check if src array address is aligned to HeapWordSize (dst is always aligned) 1579 const TypeInt* toffset = gvn().type(offset)->is_int(); 1580 bool aligned = toffset->is_con() && ((toffset->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0); 1581 1582 // Figure out which arraycopy runtime method to call (disjoint, uninitialized). 1583 const char* copyfunc_name = "arraycopy"; 1584 address copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true); 1585 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 1586 OptoRuntime::fast_arraycopy_Type(), 1587 copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM, 1588 src_start, dst_start, ConvI2X(length) XTOP); 1589 // Do not let reads from the cloned object float above the arraycopy. 1590 if (alloc->maybe_set_complete(&_gvn)) { 1591 // "You break it, you buy it." 1592 InitializeNode* init = alloc->initialization(); 1593 assert(init->is_complete(), "we just did this"); 1594 init->set_complete_with_arraycopy(); 1595 assert(newcopy->is_CheckCastPP(), "sanity"); 1596 assert(newcopy->in(0)->in(0) == init, "dest pinned"); 1597 } 1598 // Do not let stores that initialize this object be reordered with 1599 // a subsequent store that would make this object accessible by 1600 // other threads. 1601 // Record what AllocateNode this StoreStore protects so that 1602 // escape analysis can go from the MemBarStoreStoreNode to the 1603 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1604 // based on the escape status of the AllocateNode. 1605 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1606 } // original reexecute is set back here 1607 1608 C->set_has_split_ifs(true); // Has chance for split-if optimization 1609 if (!stopped()) { 1610 set_result(newcopy); 1611 } 1612 clear_upper_avx(); 1613 1614 return true; 1615 } 1616 1617 //------------------------inline_string_getCharsU-------------------------- 1618 // public void StringUTF16.getChars(byte[] src, int srcBegin, int srcEnd, char dst[], int dstBegin) 1619 bool LibraryCallKit::inline_string_getCharsU() { 1620 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1621 return false; 1622 } 1623 1624 // Get the arguments. 1625 Node* src = argument(0); 1626 Node* src_begin = argument(1); 1627 Node* src_end = argument(2); // exclusive offset (i < src_end) 1628 Node* dst = argument(3); 1629 Node* dst_begin = argument(4); 1630 1631 // Check for allocation before we add nodes that would confuse 1632 // tightly_coupled_allocation() 1633 AllocateArrayNode* alloc = tightly_coupled_allocation(dst); 1634 1635 // Check if a null path was taken unconditionally. 1636 src = null_check(src); 1637 dst = null_check(dst); 1638 if (stopped()) { 1639 return true; 1640 } 1641 1642 // Get length and convert char[] offset to byte[] offset 1643 Node* length = _gvn.transform(new SubINode(src_end, src_begin)); 1644 src_begin = _gvn.transform(new LShiftINode(src_begin, intcon(1))); 1645 1646 // Range checks 1647 generate_string_range_check(src, src_begin, length, true); 1648 generate_string_range_check(dst, dst_begin, length, false); 1649 if (stopped()) { 1650 return true; 1651 } 1652 1653 if (!stopped()) { 1654 // Calculate starting addresses. 1655 Node* src_start = array_element_address(src, src_begin, T_BYTE); 1656 Node* dst_start = array_element_address(dst, dst_begin, T_CHAR); 1657 1658 // Check if array addresses are aligned to HeapWordSize 1659 const TypeInt* tsrc = gvn().type(src_begin)->is_int(); 1660 const TypeInt* tdst = gvn().type(dst_begin)->is_int(); 1661 bool aligned = tsrc->is_con() && ((tsrc->get_con() * type2aelembytes(T_BYTE)) % HeapWordSize == 0) && 1662 tdst->is_con() && ((tdst->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0); 1663 1664 // Figure out which arraycopy runtime method to call (disjoint, uninitialized). 1665 const char* copyfunc_name = "arraycopy"; 1666 address copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true); 1667 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 1668 OptoRuntime::fast_arraycopy_Type(), 1669 copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM, 1670 src_start, dst_start, ConvI2X(length) XTOP); 1671 // Do not let reads from the cloned object float above the arraycopy. 1672 if (alloc != nullptr) { 1673 if (alloc->maybe_set_complete(&_gvn)) { 1674 // "You break it, you buy it." 1675 InitializeNode* init = alloc->initialization(); 1676 assert(init->is_complete(), "we just did this"); 1677 init->set_complete_with_arraycopy(); 1678 assert(dst->is_CheckCastPP(), "sanity"); 1679 assert(dst->in(0)->in(0) == init, "dest pinned"); 1680 } 1681 // Do not let stores that initialize this object be reordered with 1682 // a subsequent store that would make this object accessible by 1683 // other threads. 1684 // Record what AllocateNode this StoreStore protects so that 1685 // escape analysis can go from the MemBarStoreStoreNode to the 1686 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1687 // based on the escape status of the AllocateNode. 1688 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1689 } else { 1690 insert_mem_bar(Op_MemBarCPUOrder); 1691 } 1692 } 1693 1694 C->set_has_split_ifs(true); // Has chance for split-if optimization 1695 return true; 1696 } 1697 1698 //----------------------inline_string_char_access---------------------------- 1699 // Store/Load char to/from byte[] array. 1700 // static void StringUTF16.putChar(byte[] val, int index, int c) 1701 // static char StringUTF16.getChar(byte[] val, int index) 1702 bool LibraryCallKit::inline_string_char_access(bool is_store) { 1703 Node* value = argument(0); 1704 Node* index = argument(1); 1705 Node* ch = is_store ? argument(2) : nullptr; 1706 1707 // This intrinsic accesses byte[] array as char[] array. Computing the offsets 1708 // correctly requires matched array shapes. 1709 assert (arrayOopDesc::base_offset_in_bytes(T_CHAR) == arrayOopDesc::base_offset_in_bytes(T_BYTE), 1710 "sanity: byte[] and char[] bases agree"); 1711 assert (type2aelembytes(T_CHAR) == type2aelembytes(T_BYTE)*2, 1712 "sanity: byte[] and char[] scales agree"); 1713 1714 // Bail when getChar over constants is requested: constant folding would 1715 // reject folding mismatched char access over byte[]. A normal inlining for getChar 1716 // Java method would constant fold nicely instead. 1717 if (!is_store && value->is_Con() && index->is_Con()) { 1718 return false; 1719 } 1720 1721 // Save state and restore on bailout 1722 uint old_sp = sp(); 1723 SafePointNode* old_map = clone_map(); 1724 1725 value = must_be_not_null(value, true); 1726 1727 Node* adr = array_element_address(value, index, T_CHAR); 1728 if (adr->is_top()) { 1729 set_map(old_map); 1730 set_sp(old_sp); 1731 return false; 1732 } 1733 destruct_map_clone(old_map); 1734 if (is_store) { 1735 access_store_at(value, adr, TypeAryPtr::BYTES, ch, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED); 1736 } else { 1737 ch = access_load_at(value, adr, TypeAryPtr::BYTES, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD | C2_UNKNOWN_CONTROL_LOAD); 1738 set_result(ch); 1739 } 1740 return true; 1741 } 1742 1743 1744 //------------------------------inline_math----------------------------------- 1745 // public static double Math.abs(double) 1746 // public static double Math.sqrt(double) 1747 // public static double Math.log(double) 1748 // public static double Math.log10(double) 1749 // public static double Math.round(double) 1750 bool LibraryCallKit::inline_double_math(vmIntrinsics::ID id) { 1751 Node* arg = argument(0); 1752 Node* n = nullptr; 1753 switch (id) { 1754 case vmIntrinsics::_dabs: n = new AbsDNode( arg); break; 1755 case vmIntrinsics::_dsqrt: 1756 case vmIntrinsics::_dsqrt_strict: 1757 n = new SqrtDNode(C, control(), arg); break; 1758 case vmIntrinsics::_ceil: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_ceil); break; 1759 case vmIntrinsics::_floor: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_floor); break; 1760 case vmIntrinsics::_rint: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_rint); break; 1761 case vmIntrinsics::_roundD: n = new RoundDNode(arg); break; 1762 case vmIntrinsics::_dcopySign: n = CopySignDNode::make(_gvn, arg, argument(2)); break; 1763 case vmIntrinsics::_dsignum: n = SignumDNode::make(_gvn, arg); break; 1764 default: fatal_unexpected_iid(id); break; 1765 } 1766 set_result(_gvn.transform(n)); 1767 return true; 1768 } 1769 1770 //------------------------------inline_math----------------------------------- 1771 // public static float Math.abs(float) 1772 // public static int Math.abs(int) 1773 // public static long Math.abs(long) 1774 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) { 1775 Node* arg = argument(0); 1776 Node* n = nullptr; 1777 switch (id) { 1778 case vmIntrinsics::_fabs: n = new AbsFNode( arg); break; 1779 case vmIntrinsics::_iabs: n = new AbsINode( arg); break; 1780 case vmIntrinsics::_labs: n = new AbsLNode( arg); break; 1781 case vmIntrinsics::_fcopySign: n = new CopySignFNode(arg, argument(1)); break; 1782 case vmIntrinsics::_fsignum: n = SignumFNode::make(_gvn, arg); break; 1783 case vmIntrinsics::_roundF: n = new RoundFNode(arg); break; 1784 default: fatal_unexpected_iid(id); break; 1785 } 1786 set_result(_gvn.transform(n)); 1787 return true; 1788 } 1789 1790 //------------------------------runtime_math----------------------------- 1791 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) { 1792 assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(), 1793 "must be (DD)D or (D)D type"); 1794 1795 // Inputs 1796 Node* a = argument(0); 1797 Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? argument(2) : nullptr; 1798 1799 const TypePtr* no_memory_effects = nullptr; 1800 Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName, 1801 no_memory_effects, 1802 a, top(), b, b ? top() : nullptr); 1803 Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0)); 1804 #ifdef ASSERT 1805 Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1)); 1806 assert(value_top == top(), "second value must be top"); 1807 #endif 1808 1809 set_result(value); 1810 return true; 1811 } 1812 1813 //------------------------------inline_math_pow----------------------------- 1814 bool LibraryCallKit::inline_math_pow() { 1815 Node* exp = argument(2); 1816 const TypeD* d = _gvn.type(exp)->isa_double_constant(); 1817 if (d != nullptr) { 1818 if (d->getd() == 2.0) { 1819 // Special case: pow(x, 2.0) => x * x 1820 Node* base = argument(0); 1821 set_result(_gvn.transform(new MulDNode(base, base))); 1822 return true; 1823 } else if (d->getd() == 0.5 && Matcher::match_rule_supported(Op_SqrtD)) { 1824 // Special case: pow(x, 0.5) => sqrt(x) 1825 Node* base = argument(0); 1826 Node* zero = _gvn.zerocon(T_DOUBLE); 1827 1828 RegionNode* region = new RegionNode(3); 1829 Node* phi = new PhiNode(region, Type::DOUBLE); 1830 1831 Node* cmp = _gvn.transform(new CmpDNode(base, zero)); 1832 // According to the API specs, pow(-0.0, 0.5) = 0.0 and sqrt(-0.0) = -0.0. 1833 // So pow(-0.0, 0.5) shouldn't be replaced with sqrt(-0.0). 1834 // -0.0/+0.0 are both excluded since floating-point comparison doesn't distinguish -0.0 from +0.0. 1835 Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::le)); 1836 1837 Node* if_pow = generate_slow_guard(test, nullptr); 1838 Node* value_sqrt = _gvn.transform(new SqrtDNode(C, control(), base)); 1839 phi->init_req(1, value_sqrt); 1840 region->init_req(1, control()); 1841 1842 if (if_pow != nullptr) { 1843 set_control(if_pow); 1844 address target = StubRoutines::dpow() != nullptr ? StubRoutines::dpow() : 1845 CAST_FROM_FN_PTR(address, SharedRuntime::dpow); 1846 const TypePtr* no_memory_effects = nullptr; 1847 Node* trig = make_runtime_call(RC_LEAF, OptoRuntime::Math_DD_D_Type(), target, "POW", 1848 no_memory_effects, base, top(), exp, top()); 1849 Node* value_pow = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0)); 1850 #ifdef ASSERT 1851 Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1)); 1852 assert(value_top == top(), "second value must be top"); 1853 #endif 1854 phi->init_req(2, value_pow); 1855 region->init_req(2, _gvn.transform(new ProjNode(trig, TypeFunc::Control))); 1856 } 1857 1858 C->set_has_split_ifs(true); // Has chance for split-if optimization 1859 set_control(_gvn.transform(region)); 1860 record_for_igvn(region); 1861 set_result(_gvn.transform(phi)); 1862 1863 return true; 1864 } 1865 } 1866 1867 return StubRoutines::dpow() != nullptr ? 1868 runtime_math(OptoRuntime::Math_DD_D_Type(), StubRoutines::dpow(), "dpow") : 1869 runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW"); 1870 } 1871 1872 //------------------------------inline_math_native----------------------------- 1873 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) { 1874 switch (id) { 1875 case vmIntrinsics::_dsin: 1876 return StubRoutines::dsin() != nullptr ? 1877 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dsin(), "dsin") : 1878 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin), "SIN"); 1879 case vmIntrinsics::_dcos: 1880 return StubRoutines::dcos() != nullptr ? 1881 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dcos(), "dcos") : 1882 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos), "COS"); 1883 case vmIntrinsics::_dtan: 1884 return StubRoutines::dtan() != nullptr ? 1885 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtan(), "dtan") : 1886 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "TAN"); 1887 case vmIntrinsics::_dtanh: 1888 return StubRoutines::dtanh() != nullptr ? 1889 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtanh(), "dtanh") : false; 1890 case vmIntrinsics::_dcbrt: 1891 return StubRoutines::dcbrt() != nullptr ? 1892 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dcbrt(), "dcbrt") : false; 1893 case vmIntrinsics::_dexp: 1894 return StubRoutines::dexp() != nullptr ? 1895 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dexp(), "dexp") : 1896 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP"); 1897 case vmIntrinsics::_dlog: 1898 return StubRoutines::dlog() != nullptr ? 1899 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog(), "dlog") : 1900 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog), "LOG"); 1901 case vmIntrinsics::_dlog10: 1902 return StubRoutines::dlog10() != nullptr ? 1903 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog10(), "dlog10") : 1904 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), "LOG10"); 1905 1906 case vmIntrinsics::_roundD: return Matcher::match_rule_supported(Op_RoundD) ? inline_double_math(id) : false; 1907 case vmIntrinsics::_ceil: 1908 case vmIntrinsics::_floor: 1909 case vmIntrinsics::_rint: return Matcher::match_rule_supported(Op_RoundDoubleMode) ? inline_double_math(id) : false; 1910 1911 case vmIntrinsics::_dsqrt: 1912 case vmIntrinsics::_dsqrt_strict: 1913 return Matcher::match_rule_supported(Op_SqrtD) ? inline_double_math(id) : false; 1914 case vmIntrinsics::_dabs: return Matcher::has_match_rule(Op_AbsD) ? inline_double_math(id) : false; 1915 case vmIntrinsics::_fabs: return Matcher::match_rule_supported(Op_AbsF) ? inline_math(id) : false; 1916 case vmIntrinsics::_iabs: return Matcher::match_rule_supported(Op_AbsI) ? inline_math(id) : false; 1917 case vmIntrinsics::_labs: return Matcher::match_rule_supported(Op_AbsL) ? inline_math(id) : false; 1918 1919 case vmIntrinsics::_dpow: return inline_math_pow(); 1920 case vmIntrinsics::_dcopySign: return inline_double_math(id); 1921 case vmIntrinsics::_fcopySign: return inline_math(id); 1922 case vmIntrinsics::_dsignum: return Matcher::match_rule_supported(Op_SignumD) ? inline_double_math(id) : false; 1923 case vmIntrinsics::_fsignum: return Matcher::match_rule_supported(Op_SignumF) ? inline_math(id) : false; 1924 case vmIntrinsics::_roundF: return Matcher::match_rule_supported(Op_RoundF) ? inline_math(id) : false; 1925 1926 // These intrinsics are not yet correctly implemented 1927 case vmIntrinsics::_datan2: 1928 return false; 1929 1930 default: 1931 fatal_unexpected_iid(id); 1932 return false; 1933 } 1934 } 1935 1936 //----------------------------inline_notify-----------------------------------* 1937 bool LibraryCallKit::inline_notify(vmIntrinsics::ID id) { 1938 const TypeFunc* ftype = OptoRuntime::monitor_notify_Type(); 1939 address func; 1940 if (id == vmIntrinsics::_notify) { 1941 func = OptoRuntime::monitor_notify_Java(); 1942 } else { 1943 func = OptoRuntime::monitor_notifyAll_Java(); 1944 } 1945 Node* call = make_runtime_call(RC_NO_LEAF, ftype, func, nullptr, TypeRawPtr::BOTTOM, argument(0)); 1946 make_slow_call_ex(call, env()->Throwable_klass(), false); 1947 return true; 1948 } 1949 1950 1951 //----------------------------inline_min_max----------------------------------- 1952 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) { 1953 Node* a = nullptr; 1954 Node* b = nullptr; 1955 Node* n = nullptr; 1956 switch (id) { 1957 case vmIntrinsics::_min: 1958 case vmIntrinsics::_max: 1959 case vmIntrinsics::_minF: 1960 case vmIntrinsics::_maxF: 1961 case vmIntrinsics::_minF_strict: 1962 case vmIntrinsics::_maxF_strict: 1963 case vmIntrinsics::_min_strict: 1964 case vmIntrinsics::_max_strict: 1965 assert(callee()->signature()->size() == 2, "minF/maxF has 2 parameters of size 1 each."); 1966 a = argument(0); 1967 b = argument(1); 1968 break; 1969 case vmIntrinsics::_minD: 1970 case vmIntrinsics::_maxD: 1971 case vmIntrinsics::_minD_strict: 1972 case vmIntrinsics::_maxD_strict: 1973 assert(callee()->signature()->size() == 4, "minD/maxD has 2 parameters of size 2 each."); 1974 a = argument(0); 1975 b = argument(2); 1976 break; 1977 case vmIntrinsics::_minL: 1978 case vmIntrinsics::_maxL: 1979 assert(callee()->signature()->size() == 4, "minL/maxL has 2 parameters of size 2 each."); 1980 a = argument(0); 1981 b = argument(2); 1982 break; 1983 default: 1984 fatal_unexpected_iid(id); 1985 break; 1986 } 1987 1988 switch (id) { 1989 case vmIntrinsics::_min: 1990 case vmIntrinsics::_min_strict: 1991 n = new MinINode(a, b); 1992 break; 1993 case vmIntrinsics::_max: 1994 case vmIntrinsics::_max_strict: 1995 n = new MaxINode(a, b); 1996 break; 1997 case vmIntrinsics::_minF: 1998 case vmIntrinsics::_minF_strict: 1999 n = new MinFNode(a, b); 2000 break; 2001 case vmIntrinsics::_maxF: 2002 case vmIntrinsics::_maxF_strict: 2003 n = new MaxFNode(a, b); 2004 break; 2005 case vmIntrinsics::_minD: 2006 case vmIntrinsics::_minD_strict: 2007 n = new MinDNode(a, b); 2008 break; 2009 case vmIntrinsics::_maxD: 2010 case vmIntrinsics::_maxD_strict: 2011 n = new MaxDNode(a, b); 2012 break; 2013 case vmIntrinsics::_minL: 2014 n = new MinLNode(_gvn.C, a, b); 2015 break; 2016 case vmIntrinsics::_maxL: 2017 n = new MaxLNode(_gvn.C, a, b); 2018 break; 2019 default: 2020 fatal_unexpected_iid(id); 2021 break; 2022 } 2023 2024 set_result(_gvn.transform(n)); 2025 return true; 2026 } 2027 2028 bool LibraryCallKit::inline_math_mathExact(Node* math, Node* test) { 2029 if (builtin_throw_too_many_traps(Deoptimization::Reason_intrinsic, 2030 env()->ArithmeticException_instance())) { 2031 // It has been already too many times, but we cannot use builtin_throw (e.g. we care about backtraces), 2032 // so let's bail out intrinsic rather than risking deopting again. 2033 return false; 2034 } 2035 2036 Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) ); 2037 IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN); 2038 Node* fast_path = _gvn.transform( new IfFalseNode(check)); 2039 Node* slow_path = _gvn.transform( new IfTrueNode(check) ); 2040 2041 { 2042 PreserveJVMState pjvms(this); 2043 PreserveReexecuteState preexecs(this); 2044 jvms()->set_should_reexecute(true); 2045 2046 set_control(slow_path); 2047 set_i_o(i_o()); 2048 2049 builtin_throw(Deoptimization::Reason_intrinsic, 2050 env()->ArithmeticException_instance(), 2051 /*allow_too_many_traps*/ false); 2052 } 2053 2054 set_control(fast_path); 2055 set_result(math); 2056 return true; 2057 } 2058 2059 template <typename OverflowOp> 2060 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) { 2061 typedef typename OverflowOp::MathOp MathOp; 2062 2063 MathOp* mathOp = new MathOp(arg1, arg2); 2064 Node* operation = _gvn.transform( mathOp ); 2065 Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) ); 2066 return inline_math_mathExact(operation, ofcheck); 2067 } 2068 2069 bool LibraryCallKit::inline_math_addExactI(bool is_increment) { 2070 return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1)); 2071 } 2072 2073 bool LibraryCallKit::inline_math_addExactL(bool is_increment) { 2074 return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2)); 2075 } 2076 2077 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) { 2078 return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1)); 2079 } 2080 2081 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) { 2082 return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2)); 2083 } 2084 2085 bool LibraryCallKit::inline_math_negateExactI() { 2086 return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0)); 2087 } 2088 2089 bool LibraryCallKit::inline_math_negateExactL() { 2090 return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0)); 2091 } 2092 2093 bool LibraryCallKit::inline_math_multiplyExactI() { 2094 return inline_math_overflow<OverflowMulINode>(argument(0), argument(1)); 2095 } 2096 2097 bool LibraryCallKit::inline_math_multiplyExactL() { 2098 return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2)); 2099 } 2100 2101 bool LibraryCallKit::inline_math_multiplyHigh() { 2102 set_result(_gvn.transform(new MulHiLNode(argument(0), argument(2)))); 2103 return true; 2104 } 2105 2106 bool LibraryCallKit::inline_math_unsignedMultiplyHigh() { 2107 set_result(_gvn.transform(new UMulHiLNode(argument(0), argument(2)))); 2108 return true; 2109 } 2110 2111 inline int 2112 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset, BasicType type) { 2113 const TypePtr* base_type = TypePtr::NULL_PTR; 2114 if (base != nullptr) base_type = _gvn.type(base)->isa_ptr(); 2115 if (base_type == nullptr) { 2116 // Unknown type. 2117 return Type::AnyPtr; 2118 } else if (_gvn.type(base->uncast()) == TypePtr::NULL_PTR) { 2119 // Since this is a null+long form, we have to switch to a rawptr. 2120 base = _gvn.transform(new CastX2PNode(offset)); 2121 offset = MakeConX(0); 2122 return Type::RawPtr; 2123 } else if (base_type->base() == Type::RawPtr) { 2124 return Type::RawPtr; 2125 } else if (base_type->isa_oopptr()) { 2126 // Base is never null => always a heap address. 2127 if (!TypePtr::NULL_PTR->higher_equal(base_type)) { 2128 return Type::OopPtr; 2129 } 2130 // Offset is small => always a heap address. 2131 const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t(); 2132 if (offset_type != nullptr && 2133 base_type->offset() == 0 && // (should always be?) 2134 offset_type->_lo >= 0 && 2135 !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) { 2136 return Type::OopPtr; 2137 } else if (type == T_OBJECT) { 2138 // off heap access to an oop doesn't make any sense. Has to be on 2139 // heap. 2140 return Type::OopPtr; 2141 } 2142 // Otherwise, it might either be oop+off or null+addr. 2143 return Type::AnyPtr; 2144 } else { 2145 // No information: 2146 return Type::AnyPtr; 2147 } 2148 } 2149 2150 Node* LibraryCallKit::make_unsafe_address(Node*& base, Node* offset, BasicType type, bool can_cast) { 2151 Node* uncasted_base = base; 2152 int kind = classify_unsafe_addr(uncasted_base, offset, type); 2153 if (kind == Type::RawPtr) { 2154 return basic_plus_adr(top(), uncasted_base, offset); 2155 } else if (kind == Type::AnyPtr) { 2156 assert(base == uncasted_base, "unexpected base change"); 2157 if (can_cast) { 2158 if (!_gvn.type(base)->speculative_maybe_null() && 2159 !too_many_traps(Deoptimization::Reason_speculate_null_check)) { 2160 // According to profiling, this access is always on 2161 // heap. Casting the base to not null and thus avoiding membars 2162 // around the access should allow better optimizations 2163 Node* null_ctl = top(); 2164 base = null_check_oop(base, &null_ctl, true, true, true); 2165 assert(null_ctl->is_top(), "no null control here"); 2166 return basic_plus_adr(base, offset); 2167 } else if (_gvn.type(base)->speculative_always_null() && 2168 !too_many_traps(Deoptimization::Reason_speculate_null_assert)) { 2169 // According to profiling, this access is always off 2170 // heap. 2171 base = null_assert(base); 2172 Node* raw_base = _gvn.transform(new CastX2PNode(offset)); 2173 offset = MakeConX(0); 2174 return basic_plus_adr(top(), raw_base, offset); 2175 } 2176 } 2177 // We don't know if it's an on heap or off heap access. Fall back 2178 // to raw memory access. 2179 Node* raw = _gvn.transform(new CheckCastPPNode(control(), base, TypeRawPtr::BOTTOM)); 2180 return basic_plus_adr(top(), raw, offset); 2181 } else { 2182 assert(base == uncasted_base, "unexpected base change"); 2183 // We know it's an on heap access so base can't be null 2184 if (TypePtr::NULL_PTR->higher_equal(_gvn.type(base))) { 2185 base = must_be_not_null(base, true); 2186 } 2187 return basic_plus_adr(base, offset); 2188 } 2189 } 2190 2191 //--------------------------inline_number_methods----------------------------- 2192 // inline int Integer.numberOfLeadingZeros(int) 2193 // inline int Long.numberOfLeadingZeros(long) 2194 // 2195 // inline int Integer.numberOfTrailingZeros(int) 2196 // inline int Long.numberOfTrailingZeros(long) 2197 // 2198 // inline int Integer.bitCount(int) 2199 // inline int Long.bitCount(long) 2200 // 2201 // inline char Character.reverseBytes(char) 2202 // inline short Short.reverseBytes(short) 2203 // inline int Integer.reverseBytes(int) 2204 // inline long Long.reverseBytes(long) 2205 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) { 2206 Node* arg = argument(0); 2207 Node* n = nullptr; 2208 switch (id) { 2209 case vmIntrinsics::_numberOfLeadingZeros_i: n = new CountLeadingZerosINode( arg); break; 2210 case vmIntrinsics::_numberOfLeadingZeros_l: n = new CountLeadingZerosLNode( arg); break; 2211 case vmIntrinsics::_numberOfTrailingZeros_i: n = new CountTrailingZerosINode(arg); break; 2212 case vmIntrinsics::_numberOfTrailingZeros_l: n = new CountTrailingZerosLNode(arg); break; 2213 case vmIntrinsics::_bitCount_i: n = new PopCountINode( arg); break; 2214 case vmIntrinsics::_bitCount_l: n = new PopCountLNode( arg); break; 2215 case vmIntrinsics::_reverseBytes_c: n = new ReverseBytesUSNode( arg); break; 2216 case vmIntrinsics::_reverseBytes_s: n = new ReverseBytesSNode( arg); break; 2217 case vmIntrinsics::_reverseBytes_i: n = new ReverseBytesINode( arg); break; 2218 case vmIntrinsics::_reverseBytes_l: n = new ReverseBytesLNode( arg); break; 2219 case vmIntrinsics::_reverse_i: n = new ReverseINode( arg); break; 2220 case vmIntrinsics::_reverse_l: n = new ReverseLNode( arg); break; 2221 default: fatal_unexpected_iid(id); break; 2222 } 2223 set_result(_gvn.transform(n)); 2224 return true; 2225 } 2226 2227 //--------------------------inline_bitshuffle_methods----------------------------- 2228 // inline int Integer.compress(int, int) 2229 // inline int Integer.expand(int, int) 2230 // inline long Long.compress(long, long) 2231 // inline long Long.expand(long, long) 2232 bool LibraryCallKit::inline_bitshuffle_methods(vmIntrinsics::ID id) { 2233 Node* n = nullptr; 2234 switch (id) { 2235 case vmIntrinsics::_compress_i: n = new CompressBitsNode(argument(0), argument(1), TypeInt::INT); break; 2236 case vmIntrinsics::_expand_i: n = new ExpandBitsNode(argument(0), argument(1), TypeInt::INT); break; 2237 case vmIntrinsics::_compress_l: n = new CompressBitsNode(argument(0), argument(2), TypeLong::LONG); break; 2238 case vmIntrinsics::_expand_l: n = new ExpandBitsNode(argument(0), argument(2), TypeLong::LONG); break; 2239 default: fatal_unexpected_iid(id); break; 2240 } 2241 set_result(_gvn.transform(n)); 2242 return true; 2243 } 2244 2245 //--------------------------inline_number_methods----------------------------- 2246 // inline int Integer.compareUnsigned(int, int) 2247 // inline int Long.compareUnsigned(long, long) 2248 bool LibraryCallKit::inline_compare_unsigned(vmIntrinsics::ID id) { 2249 Node* arg1 = argument(0); 2250 Node* arg2 = (id == vmIntrinsics::_compareUnsigned_l) ? argument(2) : argument(1); 2251 Node* n = nullptr; 2252 switch (id) { 2253 case vmIntrinsics::_compareUnsigned_i: n = new CmpU3Node(arg1, arg2); break; 2254 case vmIntrinsics::_compareUnsigned_l: n = new CmpUL3Node(arg1, arg2); break; 2255 default: fatal_unexpected_iid(id); break; 2256 } 2257 set_result(_gvn.transform(n)); 2258 return true; 2259 } 2260 2261 //--------------------------inline_unsigned_divmod_methods----------------------------- 2262 // inline int Integer.divideUnsigned(int, int) 2263 // inline int Integer.remainderUnsigned(int, int) 2264 // inline long Long.divideUnsigned(long, long) 2265 // inline long Long.remainderUnsigned(long, long) 2266 bool LibraryCallKit::inline_divmod_methods(vmIntrinsics::ID id) { 2267 Node* n = nullptr; 2268 switch (id) { 2269 case vmIntrinsics::_divideUnsigned_i: { 2270 zero_check_int(argument(1)); 2271 // Compile-time detect of null-exception 2272 if (stopped()) { 2273 return true; // keep the graph constructed so far 2274 } 2275 n = new UDivINode(control(), argument(0), argument(1)); 2276 break; 2277 } 2278 case vmIntrinsics::_divideUnsigned_l: { 2279 zero_check_long(argument(2)); 2280 // Compile-time detect of null-exception 2281 if (stopped()) { 2282 return true; // keep the graph constructed so far 2283 } 2284 n = new UDivLNode(control(), argument(0), argument(2)); 2285 break; 2286 } 2287 case vmIntrinsics::_remainderUnsigned_i: { 2288 zero_check_int(argument(1)); 2289 // Compile-time detect of null-exception 2290 if (stopped()) { 2291 return true; // keep the graph constructed so far 2292 } 2293 n = new UModINode(control(), argument(0), argument(1)); 2294 break; 2295 } 2296 case vmIntrinsics::_remainderUnsigned_l: { 2297 zero_check_long(argument(2)); 2298 // Compile-time detect of null-exception 2299 if (stopped()) { 2300 return true; // keep the graph constructed so far 2301 } 2302 n = new UModLNode(control(), argument(0), argument(2)); 2303 break; 2304 } 2305 default: fatal_unexpected_iid(id); break; 2306 } 2307 set_result(_gvn.transform(n)); 2308 return true; 2309 } 2310 2311 //----------------------------inline_unsafe_access---------------------------- 2312 2313 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) { 2314 // Attempt to infer a sharper value type from the offset and base type. 2315 ciKlass* sharpened_klass = nullptr; 2316 2317 // See if it is an instance field, with an object type. 2318 if (alias_type->field() != nullptr) { 2319 if (alias_type->field()->type()->is_klass()) { 2320 sharpened_klass = alias_type->field()->type()->as_klass(); 2321 } 2322 } 2323 2324 const TypeOopPtr* result = nullptr; 2325 // See if it is a narrow oop array. 2326 if (adr_type->isa_aryptr()) { 2327 if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) { 2328 const TypeOopPtr* elem_type = adr_type->is_aryptr()->elem()->make_oopptr(); 2329 if (elem_type != nullptr && elem_type->is_loaded()) { 2330 // Sharpen the value type. 2331 result = elem_type; 2332 } 2333 } 2334 } 2335 2336 // The sharpened class might be unloaded if there is no class loader 2337 // contraint in place. 2338 if (result == nullptr && sharpened_klass != nullptr && sharpened_klass->is_loaded()) { 2339 // Sharpen the value type. 2340 result = TypeOopPtr::make_from_klass(sharpened_klass); 2341 } 2342 if (result != nullptr) { 2343 #ifndef PRODUCT 2344 if (C->print_intrinsics() || C->print_inlining()) { 2345 tty->print(" from base type: "); adr_type->dump(); tty->cr(); 2346 tty->print(" sharpened value: "); result->dump(); tty->cr(); 2347 } 2348 #endif 2349 } 2350 return result; 2351 } 2352 2353 DecoratorSet LibraryCallKit::mo_decorator_for_access_kind(AccessKind kind) { 2354 switch (kind) { 2355 case Relaxed: 2356 return MO_UNORDERED; 2357 case Opaque: 2358 return MO_RELAXED; 2359 case Acquire: 2360 return MO_ACQUIRE; 2361 case Release: 2362 return MO_RELEASE; 2363 case Volatile: 2364 return MO_SEQ_CST; 2365 default: 2366 ShouldNotReachHere(); 2367 return 0; 2368 } 2369 } 2370 2371 bool LibraryCallKit::inline_unsafe_access(bool is_store, const BasicType type, const AccessKind kind, const bool unaligned) { 2372 if (callee()->is_static()) return false; // caller must have the capability! 2373 DecoratorSet decorators = C2_UNSAFE_ACCESS; 2374 guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads"); 2375 guarantee( is_store || kind != Release, "Release accesses can be produced only for stores"); 2376 assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type"); 2377 2378 if (is_reference_type(type)) { 2379 decorators |= ON_UNKNOWN_OOP_REF; 2380 } 2381 2382 if (unaligned) { 2383 decorators |= C2_UNALIGNED; 2384 } 2385 2386 #ifndef PRODUCT 2387 { 2388 ResourceMark rm; 2389 // Check the signatures. 2390 ciSignature* sig = callee()->signature(); 2391 #ifdef ASSERT 2392 if (!is_store) { 2393 // Object getReference(Object base, int/long offset), etc. 2394 BasicType rtype = sig->return_type()->basic_type(); 2395 assert(rtype == type, "getter must return the expected value"); 2396 assert(sig->count() == 2, "oop getter has 2 arguments"); 2397 assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object"); 2398 assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct"); 2399 } else { 2400 // void putReference(Object base, int/long offset, Object x), etc. 2401 assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value"); 2402 assert(sig->count() == 3, "oop putter has 3 arguments"); 2403 assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object"); 2404 assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct"); 2405 BasicType vtype = sig->type_at(sig->count()-1)->basic_type(); 2406 assert(vtype == type, "putter must accept the expected value"); 2407 } 2408 #endif // ASSERT 2409 } 2410 #endif //PRODUCT 2411 2412 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 2413 2414 Node* receiver = argument(0); // type: oop 2415 2416 // Build address expression. 2417 Node* heap_base_oop = top(); 2418 2419 // The base is either a Java object or a value produced by Unsafe.staticFieldBase 2420 Node* base = argument(1); // type: oop 2421 // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset 2422 Node* offset = argument(2); // type: long 2423 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset 2424 // to be plain byte offsets, which are also the same as those accepted 2425 // by oopDesc::field_addr. 2426 assert(Unsafe_field_offset_to_byte_offset(11) == 11, 2427 "fieldOffset must be byte-scaled"); 2428 // 32-bit machines ignore the high half! 2429 offset = ConvL2X(offset); 2430 2431 // Save state and restore on bailout 2432 uint old_sp = sp(); 2433 SafePointNode* old_map = clone_map(); 2434 2435 Node* adr = make_unsafe_address(base, offset, type, kind == Relaxed); 2436 assert(!stopped(), "Inlining of unsafe access failed: address construction stopped unexpectedly"); 2437 2438 if (_gvn.type(base->uncast())->isa_ptr() == TypePtr::NULL_PTR) { 2439 if (type != T_OBJECT) { 2440 decorators |= IN_NATIVE; // off-heap primitive access 2441 } else { 2442 set_map(old_map); 2443 set_sp(old_sp); 2444 return false; // off-heap oop accesses are not supported 2445 } 2446 } else { 2447 heap_base_oop = base; // on-heap or mixed access 2448 } 2449 2450 // Can base be null? Otherwise, always on-heap access. 2451 bool can_access_non_heap = TypePtr::NULL_PTR->higher_equal(_gvn.type(base)); 2452 2453 if (!can_access_non_heap) { 2454 decorators |= IN_HEAP; 2455 } 2456 2457 Node* val = is_store ? argument(4) : nullptr; 2458 2459 const TypePtr* adr_type = _gvn.type(adr)->isa_ptr(); 2460 if (adr_type == TypePtr::NULL_PTR) { 2461 set_map(old_map); 2462 set_sp(old_sp); 2463 return false; // off-heap access with zero address 2464 } 2465 2466 // Try to categorize the address. 2467 Compile::AliasType* alias_type = C->alias_type(adr_type); 2468 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here"); 2469 2470 if (alias_type->adr_type() == TypeInstPtr::KLASS || 2471 alias_type->adr_type() == TypeAryPtr::RANGE) { 2472 set_map(old_map); 2473 set_sp(old_sp); 2474 return false; // not supported 2475 } 2476 2477 bool mismatched = false; 2478 BasicType bt = alias_type->basic_type(); 2479 if (bt != T_ILLEGAL) { 2480 assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access"); 2481 if (bt == T_BYTE && adr_type->isa_aryptr()) { 2482 // Alias type doesn't differentiate between byte[] and boolean[]). 2483 // Use address type to get the element type. 2484 bt = adr_type->is_aryptr()->elem()->array_element_basic_type(); 2485 } 2486 if (is_reference_type(bt, true)) { 2487 // accessing an array field with getReference is not a mismatch 2488 bt = T_OBJECT; 2489 } 2490 if ((bt == T_OBJECT) != (type == T_OBJECT)) { 2491 // Don't intrinsify mismatched object accesses 2492 set_map(old_map); 2493 set_sp(old_sp); 2494 return false; 2495 } 2496 mismatched = (bt != type); 2497 } else if (alias_type->adr_type()->isa_oopptr()) { 2498 mismatched = true; // conservatively mark all "wide" on-heap accesses as mismatched 2499 } 2500 2501 destruct_map_clone(old_map); 2502 assert(!mismatched || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched"); 2503 2504 if (mismatched) { 2505 decorators |= C2_MISMATCHED; 2506 } 2507 2508 // First guess at the value type. 2509 const Type *value_type = Type::get_const_basic_type(type); 2510 2511 // Figure out the memory ordering. 2512 decorators |= mo_decorator_for_access_kind(kind); 2513 2514 if (!is_store && type == T_OBJECT) { 2515 const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type); 2516 if (tjp != nullptr) { 2517 value_type = tjp; 2518 } 2519 } 2520 2521 receiver = null_check(receiver); 2522 if (stopped()) { 2523 return true; 2524 } 2525 // Heap pointers get a null-check from the interpreter, 2526 // as a courtesy. However, this is not guaranteed by Unsafe, 2527 // and it is not possible to fully distinguish unintended nulls 2528 // from intended ones in this API. 2529 2530 if (!is_store) { 2531 Node* p = nullptr; 2532 // Try to constant fold a load from a constant field 2533 ciField* field = alias_type->field(); 2534 if (heap_base_oop != top() && field != nullptr && field->is_constant() && !mismatched) { 2535 // final or stable field 2536 p = make_constant_from_field(field, heap_base_oop); 2537 } 2538 2539 if (p == nullptr) { // Could not constant fold the load 2540 p = access_load_at(heap_base_oop, adr, adr_type, value_type, type, decorators); 2541 // Normalize the value returned by getBoolean in the following cases 2542 if (type == T_BOOLEAN && 2543 (mismatched || 2544 heap_base_oop == top() || // - heap_base_oop is null or 2545 (can_access_non_heap && field == nullptr)) // - heap_base_oop is potentially null 2546 // and the unsafe access is made to large offset 2547 // (i.e., larger than the maximum offset necessary for any 2548 // field access) 2549 ) { 2550 IdealKit ideal = IdealKit(this); 2551 #define __ ideal. 2552 IdealVariable normalized_result(ideal); 2553 __ declarations_done(); 2554 __ set(normalized_result, p); 2555 __ if_then(p, BoolTest::ne, ideal.ConI(0)); 2556 __ set(normalized_result, ideal.ConI(1)); 2557 ideal.end_if(); 2558 final_sync(ideal); 2559 p = __ value(normalized_result); 2560 #undef __ 2561 } 2562 } 2563 if (type == T_ADDRESS) { 2564 p = gvn().transform(new CastP2XNode(nullptr, p)); 2565 p = ConvX2UL(p); 2566 } 2567 // The load node has the control of the preceding MemBarCPUOrder. All 2568 // following nodes will have the control of the MemBarCPUOrder inserted at 2569 // the end of this method. So, pushing the load onto the stack at a later 2570 // point is fine. 2571 set_result(p); 2572 } else { 2573 if (bt == T_ADDRESS) { 2574 // Repackage the long as a pointer. 2575 val = ConvL2X(val); 2576 val = gvn().transform(new CastX2PNode(val)); 2577 } 2578 access_store_at(heap_base_oop, adr, adr_type, val, value_type, type, decorators); 2579 } 2580 2581 return true; 2582 } 2583 2584 //----------------------------inline_unsafe_load_store---------------------------- 2585 // This method serves a couple of different customers (depending on LoadStoreKind): 2586 // 2587 // LS_cmp_swap: 2588 // 2589 // boolean compareAndSetReference(Object o, long offset, Object expected, Object x); 2590 // boolean compareAndSetInt( Object o, long offset, int expected, int x); 2591 // boolean compareAndSetLong( Object o, long offset, long expected, long x); 2592 // 2593 // LS_cmp_swap_weak: 2594 // 2595 // boolean weakCompareAndSetReference( Object o, long offset, Object expected, Object x); 2596 // boolean weakCompareAndSetReferencePlain( Object o, long offset, Object expected, Object x); 2597 // boolean weakCompareAndSetReferenceAcquire(Object o, long offset, Object expected, Object x); 2598 // boolean weakCompareAndSetReferenceRelease(Object o, long offset, Object expected, Object x); 2599 // 2600 // boolean weakCompareAndSetInt( Object o, long offset, int expected, int x); 2601 // boolean weakCompareAndSetIntPlain( Object o, long offset, int expected, int x); 2602 // boolean weakCompareAndSetIntAcquire( Object o, long offset, int expected, int x); 2603 // boolean weakCompareAndSetIntRelease( Object o, long offset, int expected, int x); 2604 // 2605 // boolean weakCompareAndSetLong( Object o, long offset, long expected, long x); 2606 // boolean weakCompareAndSetLongPlain( Object o, long offset, long expected, long x); 2607 // boolean weakCompareAndSetLongAcquire( Object o, long offset, long expected, long x); 2608 // boolean weakCompareAndSetLongRelease( Object o, long offset, long expected, long x); 2609 // 2610 // LS_cmp_exchange: 2611 // 2612 // Object compareAndExchangeReferenceVolatile(Object o, long offset, Object expected, Object x); 2613 // Object compareAndExchangeReferenceAcquire( Object o, long offset, Object expected, Object x); 2614 // Object compareAndExchangeReferenceRelease( Object o, long offset, Object expected, Object x); 2615 // 2616 // Object compareAndExchangeIntVolatile( Object o, long offset, Object expected, Object x); 2617 // Object compareAndExchangeIntAcquire( Object o, long offset, Object expected, Object x); 2618 // Object compareAndExchangeIntRelease( Object o, long offset, Object expected, Object x); 2619 // 2620 // Object compareAndExchangeLongVolatile( Object o, long offset, Object expected, Object x); 2621 // Object compareAndExchangeLongAcquire( Object o, long offset, Object expected, Object x); 2622 // Object compareAndExchangeLongRelease( Object o, long offset, Object expected, Object x); 2623 // 2624 // LS_get_add: 2625 // 2626 // int getAndAddInt( Object o, long offset, int delta) 2627 // long getAndAddLong(Object o, long offset, long delta) 2628 // 2629 // LS_get_set: 2630 // 2631 // int getAndSet(Object o, long offset, int newValue) 2632 // long getAndSet(Object o, long offset, long newValue) 2633 // Object getAndSet(Object o, long offset, Object newValue) 2634 // 2635 bool LibraryCallKit::inline_unsafe_load_store(const BasicType type, const LoadStoreKind kind, const AccessKind access_kind) { 2636 // This basic scheme here is the same as inline_unsafe_access, but 2637 // differs in enough details that combining them would make the code 2638 // overly confusing. (This is a true fact! I originally combined 2639 // them, but even I was confused by it!) As much code/comments as 2640 // possible are retained from inline_unsafe_access though to make 2641 // the correspondences clearer. - dl 2642 2643 if (callee()->is_static()) return false; // caller must have the capability! 2644 2645 DecoratorSet decorators = C2_UNSAFE_ACCESS; 2646 decorators |= mo_decorator_for_access_kind(access_kind); 2647 2648 #ifndef PRODUCT 2649 BasicType rtype; 2650 { 2651 ResourceMark rm; 2652 // Check the signatures. 2653 ciSignature* sig = callee()->signature(); 2654 rtype = sig->return_type()->basic_type(); 2655 switch(kind) { 2656 case LS_get_add: 2657 case LS_get_set: { 2658 // Check the signatures. 2659 #ifdef ASSERT 2660 assert(rtype == type, "get and set must return the expected type"); 2661 assert(sig->count() == 3, "get and set has 3 arguments"); 2662 assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object"); 2663 assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long"); 2664 assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta"); 2665 assert(access_kind == Volatile, "mo is not passed to intrinsic nodes in current implementation"); 2666 #endif // ASSERT 2667 break; 2668 } 2669 case LS_cmp_swap: 2670 case LS_cmp_swap_weak: { 2671 // Check the signatures. 2672 #ifdef ASSERT 2673 assert(rtype == T_BOOLEAN, "CAS must return boolean"); 2674 assert(sig->count() == 4, "CAS has 4 arguments"); 2675 assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object"); 2676 assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long"); 2677 #endif // ASSERT 2678 break; 2679 } 2680 case LS_cmp_exchange: { 2681 // Check the signatures. 2682 #ifdef ASSERT 2683 assert(rtype == type, "CAS must return the expected type"); 2684 assert(sig->count() == 4, "CAS has 4 arguments"); 2685 assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object"); 2686 assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long"); 2687 #endif // ASSERT 2688 break; 2689 } 2690 default: 2691 ShouldNotReachHere(); 2692 } 2693 } 2694 #endif //PRODUCT 2695 2696 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 2697 2698 // Get arguments: 2699 Node* receiver = nullptr; 2700 Node* base = nullptr; 2701 Node* offset = nullptr; 2702 Node* oldval = nullptr; 2703 Node* newval = nullptr; 2704 switch(kind) { 2705 case LS_cmp_swap: 2706 case LS_cmp_swap_weak: 2707 case LS_cmp_exchange: { 2708 const bool two_slot_type = type2size[type] == 2; 2709 receiver = argument(0); // type: oop 2710 base = argument(1); // type: oop 2711 offset = argument(2); // type: long 2712 oldval = argument(4); // type: oop, int, or long 2713 newval = argument(two_slot_type ? 6 : 5); // type: oop, int, or long 2714 break; 2715 } 2716 case LS_get_add: 2717 case LS_get_set: { 2718 receiver = argument(0); // type: oop 2719 base = argument(1); // type: oop 2720 offset = argument(2); // type: long 2721 oldval = nullptr; 2722 newval = argument(4); // type: oop, int, or long 2723 break; 2724 } 2725 default: 2726 ShouldNotReachHere(); 2727 } 2728 2729 // Build field offset expression. 2730 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset 2731 // to be plain byte offsets, which are also the same as those accepted 2732 // by oopDesc::field_addr. 2733 assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled"); 2734 // 32-bit machines ignore the high half of long offsets 2735 offset = ConvL2X(offset); 2736 // Save state and restore on bailout 2737 uint old_sp = sp(); 2738 SafePointNode* old_map = clone_map(); 2739 Node* adr = make_unsafe_address(base, offset,type, false); 2740 const TypePtr *adr_type = _gvn.type(adr)->isa_ptr(); 2741 2742 Compile::AliasType* alias_type = C->alias_type(adr_type); 2743 BasicType bt = alias_type->basic_type(); 2744 if (bt != T_ILLEGAL && 2745 (is_reference_type(bt) != (type == T_OBJECT))) { 2746 // Don't intrinsify mismatched object accesses. 2747 set_map(old_map); 2748 set_sp(old_sp); 2749 return false; 2750 } 2751 2752 destruct_map_clone(old_map); 2753 2754 // For CAS, unlike inline_unsafe_access, there seems no point in 2755 // trying to refine types. Just use the coarse types here. 2756 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here"); 2757 const Type *value_type = Type::get_const_basic_type(type); 2758 2759 switch (kind) { 2760 case LS_get_set: 2761 case LS_cmp_exchange: { 2762 if (type == T_OBJECT) { 2763 const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type); 2764 if (tjp != nullptr) { 2765 value_type = tjp; 2766 } 2767 } 2768 break; 2769 } 2770 case LS_cmp_swap: 2771 case LS_cmp_swap_weak: 2772 case LS_get_add: 2773 break; 2774 default: 2775 ShouldNotReachHere(); 2776 } 2777 2778 // Null check receiver. 2779 receiver = null_check(receiver); 2780 if (stopped()) { 2781 return true; 2782 } 2783 2784 int alias_idx = C->get_alias_index(adr_type); 2785 2786 if (is_reference_type(type)) { 2787 decorators |= IN_HEAP | ON_UNKNOWN_OOP_REF; 2788 2789 // Transformation of a value which could be null pointer (CastPP #null) 2790 // could be delayed during Parse (for example, in adjust_map_after_if()). 2791 // Execute transformation here to avoid barrier generation in such case. 2792 if (_gvn.type(newval) == TypePtr::NULL_PTR) 2793 newval = _gvn.makecon(TypePtr::NULL_PTR); 2794 2795 if (oldval != nullptr && _gvn.type(oldval) == TypePtr::NULL_PTR) { 2796 // Refine the value to a null constant, when it is known to be null 2797 oldval = _gvn.makecon(TypePtr::NULL_PTR); 2798 } 2799 } 2800 2801 Node* result = nullptr; 2802 switch (kind) { 2803 case LS_cmp_exchange: { 2804 result = access_atomic_cmpxchg_val_at(base, adr, adr_type, alias_idx, 2805 oldval, newval, value_type, type, decorators); 2806 break; 2807 } 2808 case LS_cmp_swap_weak: 2809 decorators |= C2_WEAK_CMPXCHG; 2810 case LS_cmp_swap: { 2811 result = access_atomic_cmpxchg_bool_at(base, adr, adr_type, alias_idx, 2812 oldval, newval, value_type, type, decorators); 2813 break; 2814 } 2815 case LS_get_set: { 2816 result = access_atomic_xchg_at(base, adr, adr_type, alias_idx, 2817 newval, value_type, type, decorators); 2818 break; 2819 } 2820 case LS_get_add: { 2821 result = access_atomic_add_at(base, adr, adr_type, alias_idx, 2822 newval, value_type, type, decorators); 2823 break; 2824 } 2825 default: 2826 ShouldNotReachHere(); 2827 } 2828 2829 assert(type2size[result->bottom_type()->basic_type()] == type2size[rtype], "result type should match"); 2830 set_result(result); 2831 return true; 2832 } 2833 2834 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) { 2835 // Regardless of form, don't allow previous ld/st to move down, 2836 // then issue acquire, release, or volatile mem_bar. 2837 insert_mem_bar(Op_MemBarCPUOrder); 2838 switch(id) { 2839 case vmIntrinsics::_loadFence: 2840 insert_mem_bar(Op_LoadFence); 2841 return true; 2842 case vmIntrinsics::_storeFence: 2843 insert_mem_bar(Op_StoreFence); 2844 return true; 2845 case vmIntrinsics::_storeStoreFence: 2846 insert_mem_bar(Op_StoreStoreFence); 2847 return true; 2848 case vmIntrinsics::_fullFence: 2849 insert_mem_bar(Op_MemBarVolatile); 2850 return true; 2851 default: 2852 fatal_unexpected_iid(id); 2853 return false; 2854 } 2855 } 2856 2857 bool LibraryCallKit::inline_onspinwait() { 2858 insert_mem_bar(Op_OnSpinWait); 2859 return true; 2860 } 2861 2862 bool LibraryCallKit::klass_needs_init_guard(Node* kls) { 2863 if (!kls->is_Con()) { 2864 return true; 2865 } 2866 const TypeInstKlassPtr* klsptr = kls->bottom_type()->isa_instklassptr(); 2867 if (klsptr == nullptr) { 2868 return true; 2869 } 2870 ciInstanceKlass* ik = klsptr->instance_klass(); 2871 // don't need a guard for a klass that is already initialized 2872 return !ik->is_initialized(); 2873 } 2874 2875 //----------------------------inline_unsafe_writeback0------------------------- 2876 // public native void Unsafe.writeback0(long address) 2877 bool LibraryCallKit::inline_unsafe_writeback0() { 2878 if (!Matcher::has_match_rule(Op_CacheWB)) { 2879 return false; 2880 } 2881 #ifndef PRODUCT 2882 assert(Matcher::has_match_rule(Op_CacheWBPreSync), "found match rule for CacheWB but not CacheWBPreSync"); 2883 assert(Matcher::has_match_rule(Op_CacheWBPostSync), "found match rule for CacheWB but not CacheWBPostSync"); 2884 ciSignature* sig = callee()->signature(); 2885 assert(sig->type_at(0)->basic_type() == T_LONG, "Unsafe_writeback0 address is long!"); 2886 #endif 2887 null_check_receiver(); // null-check, then ignore 2888 Node *addr = argument(1); 2889 addr = new CastX2PNode(addr); 2890 addr = _gvn.transform(addr); 2891 Node *flush = new CacheWBNode(control(), memory(TypeRawPtr::BOTTOM), addr); 2892 flush = _gvn.transform(flush); 2893 set_memory(flush, TypeRawPtr::BOTTOM); 2894 return true; 2895 } 2896 2897 //----------------------------inline_unsafe_writeback0------------------------- 2898 // public native void Unsafe.writeback0(long address) 2899 bool LibraryCallKit::inline_unsafe_writebackSync0(bool is_pre) { 2900 if (is_pre && !Matcher::has_match_rule(Op_CacheWBPreSync)) { 2901 return false; 2902 } 2903 if (!is_pre && !Matcher::has_match_rule(Op_CacheWBPostSync)) { 2904 return false; 2905 } 2906 #ifndef PRODUCT 2907 assert(Matcher::has_match_rule(Op_CacheWB), 2908 (is_pre ? "found match rule for CacheWBPreSync but not CacheWB" 2909 : "found match rule for CacheWBPostSync but not CacheWB")); 2910 2911 #endif 2912 null_check_receiver(); // null-check, then ignore 2913 Node *sync; 2914 if (is_pre) { 2915 sync = new CacheWBPreSyncNode(control(), memory(TypeRawPtr::BOTTOM)); 2916 } else { 2917 sync = new CacheWBPostSyncNode(control(), memory(TypeRawPtr::BOTTOM)); 2918 } 2919 sync = _gvn.transform(sync); 2920 set_memory(sync, TypeRawPtr::BOTTOM); 2921 return true; 2922 } 2923 2924 //----------------------------inline_unsafe_allocate--------------------------- 2925 // public native Object Unsafe.allocateInstance(Class<?> cls); 2926 bool LibraryCallKit::inline_unsafe_allocate() { 2927 2928 #if INCLUDE_JVMTI 2929 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 2930 return false; 2931 } 2932 #endif //INCLUDE_JVMTI 2933 2934 if (callee()->is_static()) return false; // caller must have the capability! 2935 2936 null_check_receiver(); // null-check, then ignore 2937 Node* cls = null_check(argument(1)); 2938 if (stopped()) return true; 2939 2940 Node* kls = load_klass_from_mirror(cls, false, nullptr, 0); 2941 kls = null_check(kls); 2942 if (stopped()) return true; // argument was like int.class 2943 2944 #if INCLUDE_JVMTI 2945 // Don't try to access new allocated obj in the intrinsic. 2946 // It causes perfomance issues even when jvmti event VmObjectAlloc is disabled. 2947 // Deoptimize and allocate in interpreter instead. 2948 Node* addr = makecon(TypeRawPtr::make((address) &JvmtiExport::_should_notify_object_alloc)); 2949 Node* should_post_vm_object_alloc = make_load(this->control(), addr, TypeInt::INT, T_INT, MemNode::unordered); 2950 Node* chk = _gvn.transform(new CmpINode(should_post_vm_object_alloc, intcon(0))); 2951 Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::eq)); 2952 { 2953 BuildCutout unless(this, tst, PROB_MAX); 2954 uncommon_trap(Deoptimization::Reason_intrinsic, 2955 Deoptimization::Action_make_not_entrant); 2956 } 2957 if (stopped()) { 2958 return true; 2959 } 2960 #endif //INCLUDE_JVMTI 2961 2962 Node* test = nullptr; 2963 if (LibraryCallKit::klass_needs_init_guard(kls)) { 2964 // Note: The argument might still be an illegal value like 2965 // Serializable.class or Object[].class. The runtime will handle it. 2966 // But we must make an explicit check for initialization. 2967 Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset())); 2968 // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler 2969 // can generate code to load it as unsigned byte. 2970 Node* inst = make_load(nullptr, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::acquire); 2971 Node* bits = intcon(InstanceKlass::fully_initialized); 2972 test = _gvn.transform(new SubINode(inst, bits)); 2973 // The 'test' is non-zero if we need to take a slow path. 2974 } 2975 2976 Node* obj = new_instance(kls, test); 2977 set_result(obj); 2978 return true; 2979 } 2980 2981 //------------------------inline_native_time_funcs-------------- 2982 // inline code for System.currentTimeMillis() and System.nanoTime() 2983 // these have the same type and signature 2984 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) { 2985 const TypeFunc* tf = OptoRuntime::void_long_Type(); 2986 const TypePtr* no_memory_effects = nullptr; 2987 Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects); 2988 Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0)); 2989 #ifdef ASSERT 2990 Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1)); 2991 assert(value_top == top(), "second value must be top"); 2992 #endif 2993 set_result(value); 2994 return true; 2995 } 2996 2997 2998 #if INCLUDE_JVMTI 2999 3000 // When notifications are disabled then just update the VTMS transition bit and return. 3001 // Otherwise, the bit is updated in the given function call implementing JVMTI notification protocol. 3002 bool LibraryCallKit::inline_native_notify_jvmti_funcs(address funcAddr, const char* funcName, bool is_start, bool is_end) { 3003 if (!DoJVMTIVirtualThreadTransitions) { 3004 return true; 3005 } 3006 Node* vt_oop = _gvn.transform(must_be_not_null(argument(0), true)); // VirtualThread this argument 3007 IdealKit ideal(this); 3008 3009 Node* ONE = ideal.ConI(1); 3010 Node* hide = is_start ? ideal.ConI(0) : (is_end ? ideal.ConI(1) : _gvn.transform(argument(1))); 3011 Node* addr = makecon(TypeRawPtr::make((address)&JvmtiVTMSTransitionDisabler::_VTMS_notify_jvmti_events)); 3012 Node* notify_jvmti_enabled = ideal.load(ideal.ctrl(), addr, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw); 3013 3014 ideal.if_then(notify_jvmti_enabled, BoolTest::eq, ONE); { 3015 sync_kit(ideal); 3016 // if notifyJvmti enabled then make a call to the given SharedRuntime function 3017 const TypeFunc* tf = OptoRuntime::notify_jvmti_vthread_Type(); 3018 make_runtime_call(RC_NO_LEAF, tf, funcAddr, funcName, TypePtr::BOTTOM, vt_oop, hide); 3019 ideal.sync_kit(this); 3020 } ideal.else_(); { 3021 // set hide value to the VTMS transition bit in current JavaThread and VirtualThread object 3022 Node* thread = ideal.thread(); 3023 Node* jt_addr = basic_plus_adr(thread, in_bytes(JavaThread::is_in_VTMS_transition_offset())); 3024 Node* vt_addr = basic_plus_adr(vt_oop, java_lang_Thread::is_in_VTMS_transition_offset()); 3025 3026 sync_kit(ideal); 3027 access_store_at(nullptr, jt_addr, _gvn.type(jt_addr)->is_ptr(), hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED); 3028 access_store_at(nullptr, vt_addr, _gvn.type(vt_addr)->is_ptr(), hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED); 3029 3030 ideal.sync_kit(this); 3031 } ideal.end_if(); 3032 final_sync(ideal); 3033 3034 return true; 3035 } 3036 3037 // Always update the is_disable_suspend bit. 3038 bool LibraryCallKit::inline_native_notify_jvmti_sync() { 3039 if (!DoJVMTIVirtualThreadTransitions) { 3040 return true; 3041 } 3042 IdealKit ideal(this); 3043 3044 { 3045 // unconditionally update the is_disable_suspend bit in current JavaThread 3046 Node* thread = ideal.thread(); 3047 Node* arg = _gvn.transform(argument(0)); // argument for notification 3048 Node* addr = basic_plus_adr(thread, in_bytes(JavaThread::is_disable_suspend_offset())); 3049 const TypePtr *addr_type = _gvn.type(addr)->isa_ptr(); 3050 3051 sync_kit(ideal); 3052 access_store_at(nullptr, addr, addr_type, arg, _gvn.type(arg), T_BOOLEAN, IN_NATIVE | MO_UNORDERED); 3053 ideal.sync_kit(this); 3054 } 3055 final_sync(ideal); 3056 3057 return true; 3058 } 3059 3060 #endif // INCLUDE_JVMTI 3061 3062 #ifdef JFR_HAVE_INTRINSICS 3063 3064 /** 3065 * if oop->klass != null 3066 * // normal class 3067 * epoch = _epoch_state ? 2 : 1 3068 * if oop->klass->trace_id & ((epoch << META_SHIFT) | epoch)) != epoch { 3069 * ... // enter slow path when the klass is first recorded or the epoch of JFR shifts 3070 * } 3071 * id = oop->klass->trace_id >> TRACE_ID_SHIFT // normal class path 3072 * else 3073 * // primitive class 3074 * if oop->array_klass != null 3075 * id = (oop->array_klass->trace_id >> TRACE_ID_SHIFT) + 1 // primitive class path 3076 * else 3077 * id = LAST_TYPE_ID + 1 // void class path 3078 * if (!signaled) 3079 * signaled = true 3080 */ 3081 bool LibraryCallKit::inline_native_classID() { 3082 Node* cls = argument(0); 3083 3084 IdealKit ideal(this); 3085 #define __ ideal. 3086 IdealVariable result(ideal); __ declarations_done(); 3087 Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), 3088 basic_plus_adr(cls, java_lang_Class::klass_offset()), 3089 TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL)); 3090 3091 3092 __ if_then(kls, BoolTest::ne, null()); { 3093 Node* kls_trace_id_addr = basic_plus_adr(kls, in_bytes(KLASS_TRACE_ID_OFFSET)); 3094 Node* kls_trace_id_raw = ideal.load(ideal.ctrl(), kls_trace_id_addr,TypeLong::LONG, T_LONG, Compile::AliasIdxRaw); 3095 3096 Node* epoch_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::epoch_address())); 3097 Node* epoch = ideal.load(ideal.ctrl(), epoch_address, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw); 3098 epoch = _gvn.transform(new LShiftLNode(longcon(1), epoch)); 3099 Node* mask = _gvn.transform(new LShiftLNode(epoch, intcon(META_SHIFT))); 3100 mask = _gvn.transform(new OrLNode(mask, epoch)); 3101 Node* kls_trace_id_raw_and_mask = _gvn.transform(new AndLNode(kls_trace_id_raw, mask)); 3102 3103 float unlikely = PROB_UNLIKELY(0.999); 3104 __ if_then(kls_trace_id_raw_and_mask, BoolTest::ne, epoch, unlikely); { 3105 sync_kit(ideal); 3106 make_runtime_call(RC_LEAF, 3107 OptoRuntime::class_id_load_barrier_Type(), 3108 CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::load_barrier), 3109 "class id load barrier", 3110 TypePtr::BOTTOM, 3111 kls); 3112 ideal.sync_kit(this); 3113 } __ end_if(); 3114 3115 ideal.set(result, _gvn.transform(new URShiftLNode(kls_trace_id_raw, ideal.ConI(TRACE_ID_SHIFT)))); 3116 } __ else_(); { 3117 Node* array_kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), 3118 basic_plus_adr(cls, java_lang_Class::array_klass_offset()), 3119 TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL)); 3120 __ if_then(array_kls, BoolTest::ne, null()); { 3121 Node* array_kls_trace_id_addr = basic_plus_adr(array_kls, in_bytes(KLASS_TRACE_ID_OFFSET)); 3122 Node* array_kls_trace_id_raw = ideal.load(ideal.ctrl(), array_kls_trace_id_addr, TypeLong::LONG, T_LONG, Compile::AliasIdxRaw); 3123 Node* array_kls_trace_id = _gvn.transform(new URShiftLNode(array_kls_trace_id_raw, ideal.ConI(TRACE_ID_SHIFT))); 3124 ideal.set(result, _gvn.transform(new AddLNode(array_kls_trace_id, longcon(1)))); 3125 } __ else_(); { 3126 // void class case 3127 ideal.set(result, _gvn.transform(longcon(LAST_TYPE_ID + 1))); 3128 } __ end_if(); 3129 3130 Node* signaled_flag_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::signal_address())); 3131 Node* signaled = ideal.load(ideal.ctrl(), signaled_flag_address, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw, true, MemNode::acquire); 3132 __ if_then(signaled, BoolTest::ne, ideal.ConI(1)); { 3133 ideal.store(ideal.ctrl(), signaled_flag_address, ideal.ConI(1), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::release, true); 3134 } __ end_if(); 3135 } __ end_if(); 3136 3137 final_sync(ideal); 3138 set_result(ideal.value(result)); 3139 #undef __ 3140 return true; 3141 } 3142 3143 //------------------------inline_native_jvm_commit------------------ 3144 bool LibraryCallKit::inline_native_jvm_commit() { 3145 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 3146 3147 // Save input memory and i_o state. 3148 Node* input_memory_state = reset_memory(); 3149 set_all_memory(input_memory_state); 3150 Node* input_io_state = i_o(); 3151 3152 // TLS. 3153 Node* tls_ptr = _gvn.transform(new ThreadLocalNode()); 3154 // Jfr java buffer. 3155 Node* java_buffer_offset = _gvn.transform(new AddPNode(top(), tls_ptr, _gvn.transform(MakeConX(in_bytes(JAVA_BUFFER_OFFSET_JFR))))); 3156 Node* java_buffer = _gvn.transform(new LoadPNode(control(), input_memory_state, java_buffer_offset, TypePtr::BOTTOM, TypeRawPtr::NOTNULL, MemNode::unordered)); 3157 Node* java_buffer_pos_offset = _gvn.transform(new AddPNode(top(), java_buffer, _gvn.transform(MakeConX(in_bytes(JFR_BUFFER_POS_OFFSET))))); 3158 3159 // Load the current value of the notified field in the JfrThreadLocal. 3160 Node* notified_offset = basic_plus_adr(top(), tls_ptr, in_bytes(NOTIFY_OFFSET_JFR)); 3161 Node* notified = make_load(control(), notified_offset, TypeInt::BOOL, T_BOOLEAN, MemNode::unordered); 3162 3163 // Test for notification. 3164 Node* notified_cmp = _gvn.transform(new CmpINode(notified, _gvn.intcon(1))); 3165 Node* test_notified = _gvn.transform(new BoolNode(notified_cmp, BoolTest::eq)); 3166 IfNode* iff_notified = create_and_map_if(control(), test_notified, PROB_MIN, COUNT_UNKNOWN); 3167 3168 // True branch, is notified. 3169 Node* is_notified = _gvn.transform(new IfTrueNode(iff_notified)); 3170 set_control(is_notified); 3171 3172 // Reset notified state. 3173 store_to_memory(control(), notified_offset, _gvn.intcon(0), T_BOOLEAN, MemNode::unordered); 3174 Node* notified_reset_memory = reset_memory(); 3175 3176 // Iff notified, the return address of the commit method is the current position of the backing java buffer. This is used to reset the event writer. 3177 Node* current_pos_X = _gvn.transform(new LoadXNode(control(), input_memory_state, java_buffer_pos_offset, TypeRawPtr::NOTNULL, TypeX_X, MemNode::unordered)); 3178 // Convert the machine-word to a long. 3179 Node* current_pos = _gvn.transform(ConvX2L(current_pos_X)); 3180 3181 // False branch, not notified. 3182 Node* not_notified = _gvn.transform(new IfFalseNode(iff_notified)); 3183 set_control(not_notified); 3184 set_all_memory(input_memory_state); 3185 3186 // Arg is the next position as a long. 3187 Node* arg = argument(0); 3188 // Convert long to machine-word. 3189 Node* next_pos_X = _gvn.transform(ConvL2X(arg)); 3190 3191 // Store the next_position to the underlying jfr java buffer. 3192 store_to_memory(control(), java_buffer_pos_offset, next_pos_X, LP64_ONLY(T_LONG) NOT_LP64(T_INT), MemNode::release); 3193 3194 Node* commit_memory = reset_memory(); 3195 set_all_memory(commit_memory); 3196 3197 // Now load the flags from off the java buffer and decide if the buffer is a lease. If so, it needs to be returned post-commit. 3198 Node* java_buffer_flags_offset = _gvn.transform(new AddPNode(top(), java_buffer, _gvn.transform(MakeConX(in_bytes(JFR_BUFFER_FLAGS_OFFSET))))); 3199 Node* flags = make_load(control(), java_buffer_flags_offset, TypeInt::UBYTE, T_BYTE, MemNode::unordered); 3200 Node* lease_constant = _gvn.transform(_gvn.intcon(4)); 3201 3202 // And flags with lease constant. 3203 Node* lease = _gvn.transform(new AndINode(flags, lease_constant)); 3204 3205 // Branch on lease to conditionalize returning the leased java buffer. 3206 Node* lease_cmp = _gvn.transform(new CmpINode(lease, lease_constant)); 3207 Node* test_lease = _gvn.transform(new BoolNode(lease_cmp, BoolTest::eq)); 3208 IfNode* iff_lease = create_and_map_if(control(), test_lease, PROB_MIN, COUNT_UNKNOWN); 3209 3210 // False branch, not a lease. 3211 Node* not_lease = _gvn.transform(new IfFalseNode(iff_lease)); 3212 3213 // True branch, is lease. 3214 Node* is_lease = _gvn.transform(new IfTrueNode(iff_lease)); 3215 set_control(is_lease); 3216 3217 // Make a runtime call, which can safepoint, to return the leased buffer. This updates both the JfrThreadLocal and the Java event writer oop. 3218 Node* call_return_lease = make_runtime_call(RC_NO_LEAF, 3219 OptoRuntime::void_void_Type(), 3220 SharedRuntime::jfr_return_lease(), 3221 "return_lease", TypePtr::BOTTOM); 3222 Node* call_return_lease_control = _gvn.transform(new ProjNode(call_return_lease, TypeFunc::Control)); 3223 3224 RegionNode* lease_compare_rgn = new RegionNode(PATH_LIMIT); 3225 record_for_igvn(lease_compare_rgn); 3226 PhiNode* lease_compare_mem = new PhiNode(lease_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3227 record_for_igvn(lease_compare_mem); 3228 PhiNode* lease_compare_io = new PhiNode(lease_compare_rgn, Type::ABIO); 3229 record_for_igvn(lease_compare_io); 3230 PhiNode* lease_result_value = new PhiNode(lease_compare_rgn, TypeLong::LONG); 3231 record_for_igvn(lease_result_value); 3232 3233 // Update control and phi nodes. 3234 lease_compare_rgn->init_req(_true_path, call_return_lease_control); 3235 lease_compare_rgn->init_req(_false_path, not_lease); 3236 3237 lease_compare_mem->init_req(_true_path, _gvn.transform(reset_memory())); 3238 lease_compare_mem->init_req(_false_path, commit_memory); 3239 3240 lease_compare_io->init_req(_true_path, i_o()); 3241 lease_compare_io->init_req(_false_path, input_io_state); 3242 3243 lease_result_value->init_req(_true_path, null()); // if the lease was returned, return 0. 3244 lease_result_value->init_req(_false_path, arg); // if not lease, return new updated position. 3245 3246 RegionNode* result_rgn = new RegionNode(PATH_LIMIT); 3247 PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM); 3248 PhiNode* result_io = new PhiNode(result_rgn, Type::ABIO); 3249 PhiNode* result_value = new PhiNode(result_rgn, TypeLong::LONG); 3250 3251 // Update control and phi nodes. 3252 result_rgn->init_req(_true_path, is_notified); 3253 result_rgn->init_req(_false_path, _gvn.transform(lease_compare_rgn)); 3254 3255 result_mem->init_req(_true_path, notified_reset_memory); 3256 result_mem->init_req(_false_path, _gvn.transform(lease_compare_mem)); 3257 3258 result_io->init_req(_true_path, input_io_state); 3259 result_io->init_req(_false_path, _gvn.transform(lease_compare_io)); 3260 3261 result_value->init_req(_true_path, current_pos); 3262 result_value->init_req(_false_path, _gvn.transform(lease_result_value)); 3263 3264 // Set output state. 3265 set_control(_gvn.transform(result_rgn)); 3266 set_all_memory(_gvn.transform(result_mem)); 3267 set_i_o(_gvn.transform(result_io)); 3268 set_result(result_rgn, result_value); 3269 return true; 3270 } 3271 3272 /* 3273 * The intrinsic is a model of this pseudo-code: 3274 * 3275 * JfrThreadLocal* const tl = Thread::jfr_thread_local() 3276 * jobject h_event_writer = tl->java_event_writer(); 3277 * if (h_event_writer == nullptr) { 3278 * return nullptr; 3279 * } 3280 * oop threadObj = Thread::threadObj(); 3281 * oop vthread = java_lang_Thread::vthread(threadObj); 3282 * traceid tid; 3283 * bool pinVirtualThread; 3284 * bool excluded; 3285 * if (vthread != threadObj) { // i.e. current thread is virtual 3286 * tid = java_lang_Thread::tid(vthread); 3287 * u2 vthread_epoch_raw = java_lang_Thread::jfr_epoch(vthread); 3288 * pinVirtualThread = VMContinuations; 3289 * excluded = vthread_epoch_raw & excluded_mask; 3290 * if (!excluded) { 3291 * traceid current_epoch = JfrTraceIdEpoch::current_generation(); 3292 * u2 vthread_epoch = vthread_epoch_raw & epoch_mask; 3293 * if (vthread_epoch != current_epoch) { 3294 * write_checkpoint(); 3295 * } 3296 * } 3297 * } else { 3298 * tid = java_lang_Thread::tid(threadObj); 3299 * u2 thread_epoch_raw = java_lang_Thread::jfr_epoch(threadObj); 3300 * pinVirtualThread = false; 3301 * excluded = thread_epoch_raw & excluded_mask; 3302 * } 3303 * oop event_writer = JNIHandles::resolve_non_null(h_event_writer); 3304 * traceid tid_in_event_writer = getField(event_writer, "threadID"); 3305 * if (tid_in_event_writer != tid) { 3306 * setField(event_writer, "pinVirtualThread", pinVirtualThread); 3307 * setField(event_writer, "excluded", excluded); 3308 * setField(event_writer, "threadID", tid); 3309 * } 3310 * return event_writer 3311 */ 3312 bool LibraryCallKit::inline_native_getEventWriter() { 3313 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 3314 3315 // Save input memory and i_o state. 3316 Node* input_memory_state = reset_memory(); 3317 set_all_memory(input_memory_state); 3318 Node* input_io_state = i_o(); 3319 3320 // The most significant bit of the u2 is used to denote thread exclusion 3321 Node* excluded_shift = _gvn.intcon(15); 3322 Node* excluded_mask = _gvn.intcon(1 << 15); 3323 // The epoch generation is the range [1-32767] 3324 Node* epoch_mask = _gvn.intcon(32767); 3325 3326 // TLS 3327 Node* tls_ptr = _gvn.transform(new ThreadLocalNode()); 3328 3329 // Load the address of java event writer jobject handle from the jfr_thread_local structure. 3330 Node* jobj_ptr = basic_plus_adr(top(), tls_ptr, in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR)); 3331 3332 // Load the eventwriter jobject handle. 3333 Node* jobj = make_load(control(), jobj_ptr, TypeRawPtr::BOTTOM, T_ADDRESS, MemNode::unordered); 3334 3335 // Null check the jobject handle. 3336 Node* jobj_cmp_null = _gvn.transform(new CmpPNode(jobj, null())); 3337 Node* test_jobj_not_equal_null = _gvn.transform(new BoolNode(jobj_cmp_null, BoolTest::ne)); 3338 IfNode* iff_jobj_not_equal_null = create_and_map_if(control(), test_jobj_not_equal_null, PROB_MAX, COUNT_UNKNOWN); 3339 3340 // False path, jobj is null. 3341 Node* jobj_is_null = _gvn.transform(new IfFalseNode(iff_jobj_not_equal_null)); 3342 3343 // True path, jobj is not null. 3344 Node* jobj_is_not_null = _gvn.transform(new IfTrueNode(iff_jobj_not_equal_null)); 3345 3346 set_control(jobj_is_not_null); 3347 3348 // Load the threadObj for the CarrierThread. 3349 Node* threadObj = generate_current_thread(tls_ptr); 3350 3351 // Load the vthread. 3352 Node* vthread = generate_virtual_thread(tls_ptr); 3353 3354 // If vthread != threadObj, this is a virtual thread. 3355 Node* vthread_cmp_threadObj = _gvn.transform(new CmpPNode(vthread, threadObj)); 3356 Node* test_vthread_not_equal_threadObj = _gvn.transform(new BoolNode(vthread_cmp_threadObj, BoolTest::ne)); 3357 IfNode* iff_vthread_not_equal_threadObj = 3358 create_and_map_if(jobj_is_not_null, test_vthread_not_equal_threadObj, PROB_FAIR, COUNT_UNKNOWN); 3359 3360 // False branch, fallback to threadObj. 3361 Node* vthread_equal_threadObj = _gvn.transform(new IfFalseNode(iff_vthread_not_equal_threadObj)); 3362 set_control(vthread_equal_threadObj); 3363 3364 // Load the tid field from the vthread object. 3365 Node* thread_obj_tid = load_field_from_object(threadObj, "tid", "J"); 3366 3367 // Load the raw epoch value from the threadObj. 3368 Node* threadObj_epoch_offset = basic_plus_adr(threadObj, java_lang_Thread::jfr_epoch_offset()); 3369 Node* threadObj_epoch_raw = access_load_at(threadObj, threadObj_epoch_offset, 3370 _gvn.type(threadObj_epoch_offset)->isa_ptr(), 3371 TypeInt::CHAR, T_CHAR, 3372 IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD); 3373 3374 // Mask off the excluded information from the epoch. 3375 Node * threadObj_is_excluded = _gvn.transform(new AndINode(threadObj_epoch_raw, excluded_mask)); 3376 3377 // True branch, this is a virtual thread. 3378 Node* vthread_not_equal_threadObj = _gvn.transform(new IfTrueNode(iff_vthread_not_equal_threadObj)); 3379 set_control(vthread_not_equal_threadObj); 3380 3381 // Load the tid field from the vthread object. 3382 Node* vthread_tid = load_field_from_object(vthread, "tid", "J"); 3383 3384 // Continuation support determines if a virtual thread should be pinned. 3385 Node* global_addr = makecon(TypeRawPtr::make((address)&VMContinuations)); 3386 Node* continuation_support = make_load(control(), global_addr, TypeInt::BOOL, T_BOOLEAN, MemNode::unordered); 3387 3388 // Load the raw epoch value from the vthread. 3389 Node* vthread_epoch_offset = basic_plus_adr(vthread, java_lang_Thread::jfr_epoch_offset()); 3390 Node* vthread_epoch_raw = access_load_at(vthread, vthread_epoch_offset, _gvn.type(vthread_epoch_offset)->is_ptr(), 3391 TypeInt::CHAR, T_CHAR, 3392 IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD); 3393 3394 // Mask off the excluded information from the epoch. 3395 Node * vthread_is_excluded = _gvn.transform(new AndINode(vthread_epoch_raw, _gvn.transform(excluded_mask))); 3396 3397 // Branch on excluded to conditionalize updating the epoch for the virtual thread. 3398 Node* is_excluded_cmp = _gvn.transform(new CmpINode(vthread_is_excluded, _gvn.transform(excluded_mask))); 3399 Node* test_not_excluded = _gvn.transform(new BoolNode(is_excluded_cmp, BoolTest::ne)); 3400 IfNode* iff_not_excluded = create_and_map_if(control(), test_not_excluded, PROB_MAX, COUNT_UNKNOWN); 3401 3402 // False branch, vthread is excluded, no need to write epoch info. 3403 Node* excluded = _gvn.transform(new IfFalseNode(iff_not_excluded)); 3404 3405 // True branch, vthread is included, update epoch info. 3406 Node* included = _gvn.transform(new IfTrueNode(iff_not_excluded)); 3407 set_control(included); 3408 3409 // Get epoch value. 3410 Node* epoch = _gvn.transform(new AndINode(vthread_epoch_raw, _gvn.transform(epoch_mask))); 3411 3412 // Load the current epoch generation. The value is unsigned 16-bit, so we type it as T_CHAR. 3413 Node* epoch_generation_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::epoch_generation_address())); 3414 Node* current_epoch_generation = make_load(control(), epoch_generation_address, TypeInt::CHAR, T_CHAR, MemNode::unordered); 3415 3416 // Compare the epoch in the vthread to the current epoch generation. 3417 Node* const epoch_cmp = _gvn.transform(new CmpUNode(current_epoch_generation, epoch)); 3418 Node* test_epoch_not_equal = _gvn.transform(new BoolNode(epoch_cmp, BoolTest::ne)); 3419 IfNode* iff_epoch_not_equal = create_and_map_if(control(), test_epoch_not_equal, PROB_FAIR, COUNT_UNKNOWN); 3420 3421 // False path, epoch is equal, checkpoint information is valid. 3422 Node* epoch_is_equal = _gvn.transform(new IfFalseNode(iff_epoch_not_equal)); 3423 3424 // True path, epoch is not equal, write a checkpoint for the vthread. 3425 Node* epoch_is_not_equal = _gvn.transform(new IfTrueNode(iff_epoch_not_equal)); 3426 3427 set_control(epoch_is_not_equal); 3428 3429 // Make a runtime call, which can safepoint, to write a checkpoint for the vthread for this epoch. 3430 // The call also updates the native thread local thread id and the vthread with the current epoch. 3431 Node* call_write_checkpoint = make_runtime_call(RC_NO_LEAF, 3432 OptoRuntime::jfr_write_checkpoint_Type(), 3433 SharedRuntime::jfr_write_checkpoint(), 3434 "write_checkpoint", TypePtr::BOTTOM); 3435 Node* call_write_checkpoint_control = _gvn.transform(new ProjNode(call_write_checkpoint, TypeFunc::Control)); 3436 3437 // vthread epoch != current epoch 3438 RegionNode* epoch_compare_rgn = new RegionNode(PATH_LIMIT); 3439 record_for_igvn(epoch_compare_rgn); 3440 PhiNode* epoch_compare_mem = new PhiNode(epoch_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3441 record_for_igvn(epoch_compare_mem); 3442 PhiNode* epoch_compare_io = new PhiNode(epoch_compare_rgn, Type::ABIO); 3443 record_for_igvn(epoch_compare_io); 3444 3445 // Update control and phi nodes. 3446 epoch_compare_rgn->init_req(_true_path, call_write_checkpoint_control); 3447 epoch_compare_rgn->init_req(_false_path, epoch_is_equal); 3448 epoch_compare_mem->init_req(_true_path, _gvn.transform(reset_memory())); 3449 epoch_compare_mem->init_req(_false_path, input_memory_state); 3450 epoch_compare_io->init_req(_true_path, i_o()); 3451 epoch_compare_io->init_req(_false_path, input_io_state); 3452 3453 // excluded != true 3454 RegionNode* exclude_compare_rgn = new RegionNode(PATH_LIMIT); 3455 record_for_igvn(exclude_compare_rgn); 3456 PhiNode* exclude_compare_mem = new PhiNode(exclude_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3457 record_for_igvn(exclude_compare_mem); 3458 PhiNode* exclude_compare_io = new PhiNode(exclude_compare_rgn, Type::ABIO); 3459 record_for_igvn(exclude_compare_io); 3460 3461 // Update control and phi nodes. 3462 exclude_compare_rgn->init_req(_true_path, _gvn.transform(epoch_compare_rgn)); 3463 exclude_compare_rgn->init_req(_false_path, excluded); 3464 exclude_compare_mem->init_req(_true_path, _gvn.transform(epoch_compare_mem)); 3465 exclude_compare_mem->init_req(_false_path, input_memory_state); 3466 exclude_compare_io->init_req(_true_path, _gvn.transform(epoch_compare_io)); 3467 exclude_compare_io->init_req(_false_path, input_io_state); 3468 3469 // vthread != threadObj 3470 RegionNode* vthread_compare_rgn = new RegionNode(PATH_LIMIT); 3471 record_for_igvn(vthread_compare_rgn); 3472 PhiNode* vthread_compare_mem = new PhiNode(vthread_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3473 PhiNode* vthread_compare_io = new PhiNode(vthread_compare_rgn, Type::ABIO); 3474 record_for_igvn(vthread_compare_io); 3475 PhiNode* tid = new PhiNode(vthread_compare_rgn, TypeLong::LONG); 3476 record_for_igvn(tid); 3477 PhiNode* exclusion = new PhiNode(vthread_compare_rgn, TypeInt::CHAR); 3478 record_for_igvn(exclusion); 3479 PhiNode* pinVirtualThread = new PhiNode(vthread_compare_rgn, TypeInt::BOOL); 3480 record_for_igvn(pinVirtualThread); 3481 3482 // Update control and phi nodes. 3483 vthread_compare_rgn->init_req(_true_path, _gvn.transform(exclude_compare_rgn)); 3484 vthread_compare_rgn->init_req(_false_path, vthread_equal_threadObj); 3485 vthread_compare_mem->init_req(_true_path, _gvn.transform(exclude_compare_mem)); 3486 vthread_compare_mem->init_req(_false_path, input_memory_state); 3487 vthread_compare_io->init_req(_true_path, _gvn.transform(exclude_compare_io)); 3488 vthread_compare_io->init_req(_false_path, input_io_state); 3489 tid->init_req(_true_path, _gvn.transform(vthread_tid)); 3490 tid->init_req(_false_path, _gvn.transform(thread_obj_tid)); 3491 exclusion->init_req(_true_path, _gvn.transform(vthread_is_excluded)); 3492 exclusion->init_req(_false_path, _gvn.transform(threadObj_is_excluded)); 3493 pinVirtualThread->init_req(_true_path, _gvn.transform(continuation_support)); 3494 pinVirtualThread->init_req(_false_path, _gvn.intcon(0)); 3495 3496 // Update branch state. 3497 set_control(_gvn.transform(vthread_compare_rgn)); 3498 set_all_memory(_gvn.transform(vthread_compare_mem)); 3499 set_i_o(_gvn.transform(vthread_compare_io)); 3500 3501 // Load the event writer oop by dereferencing the jobject handle. 3502 ciKlass* klass_EventWriter = env()->find_system_klass(ciSymbol::make("jdk/jfr/internal/event/EventWriter")); 3503 assert(klass_EventWriter->is_loaded(), "invariant"); 3504 ciInstanceKlass* const instklass_EventWriter = klass_EventWriter->as_instance_klass(); 3505 const TypeKlassPtr* const aklass = TypeKlassPtr::make(instklass_EventWriter); 3506 const TypeOopPtr* const xtype = aklass->as_instance_type(); 3507 Node* jobj_untagged = _gvn.transform(new AddPNode(top(), jobj, _gvn.MakeConX(-JNIHandles::TypeTag::global))); 3508 Node* event_writer = access_load(jobj_untagged, xtype, T_OBJECT, IN_NATIVE | C2_CONTROL_DEPENDENT_LOAD); 3509 3510 // Load the current thread id from the event writer object. 3511 Node* const event_writer_tid = load_field_from_object(event_writer, "threadID", "J"); 3512 // Get the field offset to, conditionally, store an updated tid value later. 3513 Node* const event_writer_tid_field = field_address_from_object(event_writer, "threadID", "J", false); 3514 // Get the field offset to, conditionally, store an updated exclusion value later. 3515 Node* const event_writer_excluded_field = field_address_from_object(event_writer, "excluded", "Z", false); 3516 // Get the field offset to, conditionally, store an updated pinVirtualThread value later. 3517 Node* const event_writer_pin_field = field_address_from_object(event_writer, "pinVirtualThread", "Z", false); 3518 3519 RegionNode* event_writer_tid_compare_rgn = new RegionNode(PATH_LIMIT); 3520 record_for_igvn(event_writer_tid_compare_rgn); 3521 PhiNode* event_writer_tid_compare_mem = new PhiNode(event_writer_tid_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3522 record_for_igvn(event_writer_tid_compare_mem); 3523 PhiNode* event_writer_tid_compare_io = new PhiNode(event_writer_tid_compare_rgn, Type::ABIO); 3524 record_for_igvn(event_writer_tid_compare_io); 3525 3526 // Compare the current tid from the thread object to what is currently stored in the event writer object. 3527 Node* const tid_cmp = _gvn.transform(new CmpLNode(event_writer_tid, _gvn.transform(tid))); 3528 Node* test_tid_not_equal = _gvn.transform(new BoolNode(tid_cmp, BoolTest::ne)); 3529 IfNode* iff_tid_not_equal = create_and_map_if(_gvn.transform(vthread_compare_rgn), test_tid_not_equal, PROB_FAIR, COUNT_UNKNOWN); 3530 3531 // False path, tids are the same. 3532 Node* tid_is_equal = _gvn.transform(new IfFalseNode(iff_tid_not_equal)); 3533 3534 // True path, tid is not equal, need to update the tid in the event writer. 3535 Node* tid_is_not_equal = _gvn.transform(new IfTrueNode(iff_tid_not_equal)); 3536 record_for_igvn(tid_is_not_equal); 3537 3538 // Store the pin state to the event writer. 3539 store_to_memory(tid_is_not_equal, event_writer_pin_field, _gvn.transform(pinVirtualThread), T_BOOLEAN, MemNode::unordered); 3540 3541 // Store the exclusion state to the event writer. 3542 Node* excluded_bool = _gvn.transform(new URShiftINode(_gvn.transform(exclusion), excluded_shift)); 3543 store_to_memory(tid_is_not_equal, event_writer_excluded_field, excluded_bool, T_BOOLEAN, MemNode::unordered); 3544 3545 // Store the tid to the event writer. 3546 store_to_memory(tid_is_not_equal, event_writer_tid_field, tid, T_LONG, MemNode::unordered); 3547 3548 // Update control and phi nodes. 3549 event_writer_tid_compare_rgn->init_req(_true_path, tid_is_not_equal); 3550 event_writer_tid_compare_rgn->init_req(_false_path, tid_is_equal); 3551 event_writer_tid_compare_mem->init_req(_true_path, _gvn.transform(reset_memory())); 3552 event_writer_tid_compare_mem->init_req(_false_path, _gvn.transform(vthread_compare_mem)); 3553 event_writer_tid_compare_io->init_req(_true_path, _gvn.transform(i_o())); 3554 event_writer_tid_compare_io->init_req(_false_path, _gvn.transform(vthread_compare_io)); 3555 3556 // Result of top level CFG, Memory, IO and Value. 3557 RegionNode* result_rgn = new RegionNode(PATH_LIMIT); 3558 PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM); 3559 PhiNode* result_io = new PhiNode(result_rgn, Type::ABIO); 3560 PhiNode* result_value = new PhiNode(result_rgn, TypeInstPtr::BOTTOM); 3561 3562 // Result control. 3563 result_rgn->init_req(_true_path, _gvn.transform(event_writer_tid_compare_rgn)); 3564 result_rgn->init_req(_false_path, jobj_is_null); 3565 3566 // Result memory. 3567 result_mem->init_req(_true_path, _gvn.transform(event_writer_tid_compare_mem)); 3568 result_mem->init_req(_false_path, _gvn.transform(input_memory_state)); 3569 3570 // Result IO. 3571 result_io->init_req(_true_path, _gvn.transform(event_writer_tid_compare_io)); 3572 result_io->init_req(_false_path, _gvn.transform(input_io_state)); 3573 3574 // Result value. 3575 result_value->init_req(_true_path, _gvn.transform(event_writer)); // return event writer oop 3576 result_value->init_req(_false_path, null()); // return null 3577 3578 // Set output state. 3579 set_control(_gvn.transform(result_rgn)); 3580 set_all_memory(_gvn.transform(result_mem)); 3581 set_i_o(_gvn.transform(result_io)); 3582 set_result(result_rgn, result_value); 3583 return true; 3584 } 3585 3586 /* 3587 * The intrinsic is a model of this pseudo-code: 3588 * 3589 * JfrThreadLocal* const tl = thread->jfr_thread_local(); 3590 * if (carrierThread != thread) { // is virtual thread 3591 * const u2 vthread_epoch_raw = java_lang_Thread::jfr_epoch(thread); 3592 * bool excluded = vthread_epoch_raw & excluded_mask; 3593 * Atomic::store(&tl->_contextual_tid, java_lang_Thread::tid(thread)); 3594 * Atomic::store(&tl->_contextual_thread_excluded, is_excluded); 3595 * if (!excluded) { 3596 * const u2 vthread_epoch = vthread_epoch_raw & epoch_mask; 3597 * Atomic::store(&tl->_vthread_epoch, vthread_epoch); 3598 * } 3599 * Atomic::release_store(&tl->_vthread, true); 3600 * return; 3601 * } 3602 * Atomic::release_store(&tl->_vthread, false); 3603 */ 3604 void LibraryCallKit::extend_setCurrentThread(Node* jt, Node* thread) { 3605 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 3606 3607 Node* input_memory_state = reset_memory(); 3608 set_all_memory(input_memory_state); 3609 3610 // The most significant bit of the u2 is used to denote thread exclusion 3611 Node* excluded_mask = _gvn.intcon(1 << 15); 3612 // The epoch generation is the range [1-32767] 3613 Node* epoch_mask = _gvn.intcon(32767); 3614 3615 Node* const carrierThread = generate_current_thread(jt); 3616 // If thread != carrierThread, this is a virtual thread. 3617 Node* thread_cmp_carrierThread = _gvn.transform(new CmpPNode(thread, carrierThread)); 3618 Node* test_thread_not_equal_carrierThread = _gvn.transform(new BoolNode(thread_cmp_carrierThread, BoolTest::ne)); 3619 IfNode* iff_thread_not_equal_carrierThread = 3620 create_and_map_if(control(), test_thread_not_equal_carrierThread, PROB_FAIR, COUNT_UNKNOWN); 3621 3622 Node* vthread_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_OFFSET_JFR)); 3623 3624 // False branch, is carrierThread. 3625 Node* thread_equal_carrierThread = _gvn.transform(new IfFalseNode(iff_thread_not_equal_carrierThread)); 3626 // Store release 3627 Node* vthread_false_memory = store_to_memory(thread_equal_carrierThread, vthread_offset, _gvn.intcon(0), T_BOOLEAN, MemNode::release, true); 3628 3629 set_all_memory(input_memory_state); 3630 3631 // True branch, is virtual thread. 3632 Node* thread_not_equal_carrierThread = _gvn.transform(new IfTrueNode(iff_thread_not_equal_carrierThread)); 3633 set_control(thread_not_equal_carrierThread); 3634 3635 // Load the raw epoch value from the vthread. 3636 Node* epoch_offset = basic_plus_adr(thread, java_lang_Thread::jfr_epoch_offset()); 3637 Node* epoch_raw = access_load_at(thread, epoch_offset, _gvn.type(epoch_offset)->is_ptr(), TypeInt::CHAR, T_CHAR, 3638 IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD); 3639 3640 // Mask off the excluded information from the epoch. 3641 Node * const is_excluded = _gvn.transform(new AndINode(epoch_raw, _gvn.transform(excluded_mask))); 3642 3643 // Load the tid field from the thread. 3644 Node* tid = load_field_from_object(thread, "tid", "J"); 3645 3646 // Store the vthread tid to the jfr thread local. 3647 Node* thread_id_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_ID_OFFSET_JFR)); 3648 Node* tid_memory = store_to_memory(control(), thread_id_offset, tid, T_LONG, MemNode::unordered, true); 3649 3650 // Branch is_excluded to conditionalize updating the epoch . 3651 Node* excluded_cmp = _gvn.transform(new CmpINode(is_excluded, _gvn.transform(excluded_mask))); 3652 Node* test_excluded = _gvn.transform(new BoolNode(excluded_cmp, BoolTest::eq)); 3653 IfNode* iff_excluded = create_and_map_if(control(), test_excluded, PROB_MIN, COUNT_UNKNOWN); 3654 3655 // True branch, vthread is excluded, no need to write epoch info. 3656 Node* excluded = _gvn.transform(new IfTrueNode(iff_excluded)); 3657 set_control(excluded); 3658 Node* vthread_is_excluded = _gvn.intcon(1); 3659 3660 // False branch, vthread is included, update epoch info. 3661 Node* included = _gvn.transform(new IfFalseNode(iff_excluded)); 3662 set_control(included); 3663 Node* vthread_is_included = _gvn.intcon(0); 3664 3665 // Get epoch value. 3666 Node* epoch = _gvn.transform(new AndINode(epoch_raw, _gvn.transform(epoch_mask))); 3667 3668 // Store the vthread epoch to the jfr thread local. 3669 Node* vthread_epoch_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_EPOCH_OFFSET_JFR)); 3670 Node* included_memory = store_to_memory(control(), vthread_epoch_offset, epoch, T_CHAR, MemNode::unordered, true); 3671 3672 RegionNode* excluded_rgn = new RegionNode(PATH_LIMIT); 3673 record_for_igvn(excluded_rgn); 3674 PhiNode* excluded_mem = new PhiNode(excluded_rgn, Type::MEMORY, TypePtr::BOTTOM); 3675 record_for_igvn(excluded_mem); 3676 PhiNode* exclusion = new PhiNode(excluded_rgn, TypeInt::BOOL); 3677 record_for_igvn(exclusion); 3678 3679 // Merge the excluded control and memory. 3680 excluded_rgn->init_req(_true_path, excluded); 3681 excluded_rgn->init_req(_false_path, included); 3682 excluded_mem->init_req(_true_path, tid_memory); 3683 excluded_mem->init_req(_false_path, included_memory); 3684 exclusion->init_req(_true_path, _gvn.transform(vthread_is_excluded)); 3685 exclusion->init_req(_false_path, _gvn.transform(vthread_is_included)); 3686 3687 // Set intermediate state. 3688 set_control(_gvn.transform(excluded_rgn)); 3689 set_all_memory(excluded_mem); 3690 3691 // Store the vthread exclusion state to the jfr thread local. 3692 Node* thread_local_excluded_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_EXCLUDED_OFFSET_JFR)); 3693 store_to_memory(control(), thread_local_excluded_offset, _gvn.transform(exclusion), T_BOOLEAN, MemNode::unordered, true); 3694 3695 // Store release 3696 Node * vthread_true_memory = store_to_memory(control(), vthread_offset, _gvn.intcon(1), T_BOOLEAN, MemNode::release, true); 3697 3698 RegionNode* thread_compare_rgn = new RegionNode(PATH_LIMIT); 3699 record_for_igvn(thread_compare_rgn); 3700 PhiNode* thread_compare_mem = new PhiNode(thread_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3701 record_for_igvn(thread_compare_mem); 3702 PhiNode* vthread = new PhiNode(thread_compare_rgn, TypeInt::BOOL); 3703 record_for_igvn(vthread); 3704 3705 // Merge the thread_compare control and memory. 3706 thread_compare_rgn->init_req(_true_path, control()); 3707 thread_compare_rgn->init_req(_false_path, thread_equal_carrierThread); 3708 thread_compare_mem->init_req(_true_path, vthread_true_memory); 3709 thread_compare_mem->init_req(_false_path, vthread_false_memory); 3710 3711 // Set output state. 3712 set_control(_gvn.transform(thread_compare_rgn)); 3713 set_all_memory(_gvn.transform(thread_compare_mem)); 3714 } 3715 3716 #endif // JFR_HAVE_INTRINSICS 3717 3718 //------------------------inline_native_currentCarrierThread------------------ 3719 bool LibraryCallKit::inline_native_currentCarrierThread() { 3720 Node* junk = nullptr; 3721 set_result(generate_current_thread(junk)); 3722 return true; 3723 } 3724 3725 //------------------------inline_native_currentThread------------------ 3726 bool LibraryCallKit::inline_native_currentThread() { 3727 Node* junk = nullptr; 3728 set_result(generate_virtual_thread(junk)); 3729 return true; 3730 } 3731 3732 //------------------------inline_native_setVthread------------------ 3733 bool LibraryCallKit::inline_native_setCurrentThread() { 3734 assert(C->method()->changes_current_thread(), 3735 "method changes current Thread but is not annotated ChangesCurrentThread"); 3736 Node* arr = argument(1); 3737 Node* thread = _gvn.transform(new ThreadLocalNode()); 3738 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::vthread_offset())); 3739 Node* thread_obj_handle 3740 = make_load(nullptr, p, p->bottom_type()->is_ptr(), T_OBJECT, MemNode::unordered); 3741 thread_obj_handle = _gvn.transform(thread_obj_handle); 3742 const TypePtr *adr_type = _gvn.type(thread_obj_handle)->isa_ptr(); 3743 access_store_at(nullptr, thread_obj_handle, adr_type, arr, _gvn.type(arr), T_OBJECT, IN_NATIVE | MO_UNORDERED); 3744 3745 // Change the _monitor_owner_id of the JavaThread 3746 Node* tid = load_field_from_object(arr, "tid", "J"); 3747 Node* monitor_owner_id_offset = basic_plus_adr(thread, in_bytes(JavaThread::monitor_owner_id_offset())); 3748 store_to_memory(control(), monitor_owner_id_offset, tid, T_LONG, MemNode::unordered, true); 3749 3750 JFR_ONLY(extend_setCurrentThread(thread, arr);) 3751 return true; 3752 } 3753 3754 const Type* LibraryCallKit::scopedValueCache_type() { 3755 ciKlass* objects_klass = ciObjArrayKlass::make(env()->Object_klass()); 3756 const TypeOopPtr* etype = TypeOopPtr::make_from_klass(env()->Object_klass()); 3757 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS); 3758 3759 // Because we create the scopedValue cache lazily we have to make the 3760 // type of the result BotPTR. 3761 bool xk = etype->klass_is_exact(); 3762 const Type* objects_type = TypeAryPtr::make(TypePtr::BotPTR, arr0, objects_klass, xk, 0); 3763 return objects_type; 3764 } 3765 3766 Node* LibraryCallKit::scopedValueCache_helper() { 3767 Node* thread = _gvn.transform(new ThreadLocalNode()); 3768 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::scopedValueCache_offset())); 3769 // We cannot use immutable_memory() because we might flip onto a 3770 // different carrier thread, at which point we'll need to use that 3771 // carrier thread's cache. 3772 // return _gvn.transform(LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(), 3773 // TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered)); 3774 return make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered); 3775 } 3776 3777 //------------------------inline_native_scopedValueCache------------------ 3778 bool LibraryCallKit::inline_native_scopedValueCache() { 3779 Node* cache_obj_handle = scopedValueCache_helper(); 3780 const Type* objects_type = scopedValueCache_type(); 3781 set_result(access_load(cache_obj_handle, objects_type, T_OBJECT, IN_NATIVE)); 3782 3783 return true; 3784 } 3785 3786 //------------------------inline_native_setScopedValueCache------------------ 3787 bool LibraryCallKit::inline_native_setScopedValueCache() { 3788 Node* arr = argument(0); 3789 Node* cache_obj_handle = scopedValueCache_helper(); 3790 const Type* objects_type = scopedValueCache_type(); 3791 3792 const TypePtr *adr_type = _gvn.type(cache_obj_handle)->isa_ptr(); 3793 access_store_at(nullptr, cache_obj_handle, adr_type, arr, objects_type, T_OBJECT, IN_NATIVE | MO_UNORDERED); 3794 3795 return true; 3796 } 3797 3798 //------------------------inline_native_Continuation_pin and unpin----------- 3799 3800 // Shared implementation routine for both pin and unpin. 3801 bool LibraryCallKit::inline_native_Continuation_pinning(bool unpin) { 3802 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 3803 3804 // Save input memory. 3805 Node* input_memory_state = reset_memory(); 3806 set_all_memory(input_memory_state); 3807 3808 // TLS 3809 Node* tls_ptr = _gvn.transform(new ThreadLocalNode()); 3810 Node* last_continuation_offset = basic_plus_adr(top(), tls_ptr, in_bytes(JavaThread::cont_entry_offset())); 3811 Node* last_continuation = make_load(control(), last_continuation_offset, last_continuation_offset->get_ptr_type(), T_ADDRESS, MemNode::unordered); 3812 3813 // Null check the last continuation object. 3814 Node* continuation_cmp_null = _gvn.transform(new CmpPNode(last_continuation, null())); 3815 Node* test_continuation_not_equal_null = _gvn.transform(new BoolNode(continuation_cmp_null, BoolTest::ne)); 3816 IfNode* iff_continuation_not_equal_null = create_and_map_if(control(), test_continuation_not_equal_null, PROB_MAX, COUNT_UNKNOWN); 3817 3818 // False path, last continuation is null. 3819 Node* continuation_is_null = _gvn.transform(new IfFalseNode(iff_continuation_not_equal_null)); 3820 3821 // True path, last continuation is not null. 3822 Node* continuation_is_not_null = _gvn.transform(new IfTrueNode(iff_continuation_not_equal_null)); 3823 3824 set_control(continuation_is_not_null); 3825 3826 // Load the pin count from the last continuation. 3827 Node* pin_count_offset = basic_plus_adr(top(), last_continuation, in_bytes(ContinuationEntry::pin_count_offset())); 3828 Node* pin_count = make_load(control(), pin_count_offset, TypeInt::INT, T_INT, MemNode::unordered); 3829 3830 // The loaded pin count is compared against a context specific rhs for over/underflow detection. 3831 Node* pin_count_rhs; 3832 if (unpin) { 3833 pin_count_rhs = _gvn.intcon(0); 3834 } else { 3835 pin_count_rhs = _gvn.intcon(UINT32_MAX); 3836 } 3837 Node* pin_count_cmp = _gvn.transform(new CmpUNode(_gvn.transform(pin_count), pin_count_rhs)); 3838 Node* test_pin_count_over_underflow = _gvn.transform(new BoolNode(pin_count_cmp, BoolTest::eq)); 3839 IfNode* iff_pin_count_over_underflow = create_and_map_if(control(), test_pin_count_over_underflow, PROB_MIN, COUNT_UNKNOWN); 3840 3841 // True branch, pin count over/underflow. 3842 Node* pin_count_over_underflow = _gvn.transform(new IfTrueNode(iff_pin_count_over_underflow)); 3843 { 3844 // Trap (but not deoptimize (Action_none)) and continue in the interpreter 3845 // which will throw IllegalStateException for pin count over/underflow. 3846 // No memory changed so far - we can use memory create by reset_memory() 3847 // at the beginning of this intrinsic. No need to call reset_memory() again. 3848 PreserveJVMState pjvms(this); 3849 set_control(pin_count_over_underflow); 3850 uncommon_trap(Deoptimization::Reason_intrinsic, 3851 Deoptimization::Action_none); 3852 assert(stopped(), "invariant"); 3853 } 3854 3855 // False branch, no pin count over/underflow. Increment or decrement pin count and store back. 3856 Node* valid_pin_count = _gvn.transform(new IfFalseNode(iff_pin_count_over_underflow)); 3857 set_control(valid_pin_count); 3858 3859 Node* next_pin_count; 3860 if (unpin) { 3861 next_pin_count = _gvn.transform(new SubINode(pin_count, _gvn.intcon(1))); 3862 } else { 3863 next_pin_count = _gvn.transform(new AddINode(pin_count, _gvn.intcon(1))); 3864 } 3865 3866 store_to_memory(control(), pin_count_offset, next_pin_count, T_INT, MemNode::unordered); 3867 3868 // Result of top level CFG and Memory. 3869 RegionNode* result_rgn = new RegionNode(PATH_LIMIT); 3870 record_for_igvn(result_rgn); 3871 PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM); 3872 record_for_igvn(result_mem); 3873 3874 result_rgn->init_req(_true_path, _gvn.transform(valid_pin_count)); 3875 result_rgn->init_req(_false_path, _gvn.transform(continuation_is_null)); 3876 result_mem->init_req(_true_path, _gvn.transform(reset_memory())); 3877 result_mem->init_req(_false_path, _gvn.transform(input_memory_state)); 3878 3879 // Set output state. 3880 set_control(_gvn.transform(result_rgn)); 3881 set_all_memory(_gvn.transform(result_mem)); 3882 3883 return true; 3884 } 3885 3886 //---------------------------load_mirror_from_klass---------------------------- 3887 // Given a klass oop, load its java mirror (a java.lang.Class oop). 3888 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) { 3889 Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset())); 3890 Node* load = make_load(nullptr, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered); 3891 // mirror = ((OopHandle)mirror)->resolve(); 3892 return access_load(load, TypeInstPtr::MIRROR, T_OBJECT, IN_NATIVE); 3893 } 3894 3895 //-----------------------load_klass_from_mirror_common------------------------- 3896 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop. 3897 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE), 3898 // and branch to the given path on the region. 3899 // If never_see_null, take an uncommon trap on null, so we can optimistically 3900 // compile for the non-null case. 3901 // If the region is null, force never_see_null = true. 3902 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror, 3903 bool never_see_null, 3904 RegionNode* region, 3905 int null_path, 3906 int offset) { 3907 if (region == nullptr) never_see_null = true; 3908 Node* p = basic_plus_adr(mirror, offset); 3909 const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL; 3910 Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type)); 3911 Node* null_ctl = top(); 3912 kls = null_check_oop(kls, &null_ctl, never_see_null); 3913 if (region != nullptr) { 3914 // Set region->in(null_path) if the mirror is a primitive (e.g, int.class). 3915 region->init_req(null_path, null_ctl); 3916 } else { 3917 assert(null_ctl == top(), "no loose ends"); 3918 } 3919 return kls; 3920 } 3921 3922 //--------------------(inline_native_Class_query helpers)--------------------- 3923 // Use this for JVM_ACC_INTERFACE. 3924 // Fall through if (mods & mask) == bits, take the guard otherwise. 3925 Node* LibraryCallKit::generate_klass_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region, 3926 ByteSize offset, const Type* type, BasicType bt) { 3927 // Branch around if the given klass has the given modifier bit set. 3928 // Like generate_guard, adds a new path onto the region. 3929 Node* modp = basic_plus_adr(kls, in_bytes(offset)); 3930 Node* mods = make_load(nullptr, modp, type, bt, MemNode::unordered); 3931 Node* mask = intcon(modifier_mask); 3932 Node* bits = intcon(modifier_bits); 3933 Node* mbit = _gvn.transform(new AndINode(mods, mask)); 3934 Node* cmp = _gvn.transform(new CmpINode(mbit, bits)); 3935 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne)); 3936 return generate_fair_guard(bol, region); 3937 } 3938 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) { 3939 return generate_klass_flags_guard(kls, JVM_ACC_INTERFACE, 0, region, 3940 Klass::access_flags_offset(), TypeInt::CHAR, T_CHAR); 3941 } 3942 3943 // Use this for testing if Klass is_hidden, has_finalizer, and is_cloneable_fast. 3944 Node* LibraryCallKit::generate_misc_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) { 3945 return generate_klass_flags_guard(kls, modifier_mask, modifier_bits, region, 3946 Klass::misc_flags_offset(), TypeInt::UBYTE, T_BOOLEAN); 3947 } 3948 3949 Node* LibraryCallKit::generate_hidden_class_guard(Node* kls, RegionNode* region) { 3950 return generate_misc_flags_guard(kls, KlassFlags::_misc_is_hidden_class, 0, region); 3951 } 3952 3953 //-------------------------inline_native_Class_query------------------- 3954 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) { 3955 const Type* return_type = TypeInt::BOOL; 3956 Node* prim_return_value = top(); // what happens if it's a primitive class? 3957 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 3958 bool expect_prim = false; // most of these guys expect to work on refs 3959 3960 enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT }; 3961 3962 Node* mirror = argument(0); 3963 Node* obj = top(); 3964 3965 switch (id) { 3966 case vmIntrinsics::_isInstance: 3967 // nothing is an instance of a primitive type 3968 prim_return_value = intcon(0); 3969 obj = argument(1); 3970 break; 3971 case vmIntrinsics::_isHidden: 3972 prim_return_value = intcon(0); 3973 break; 3974 case vmIntrinsics::_getSuperclass: 3975 prim_return_value = null(); 3976 return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR); 3977 break; 3978 case vmIntrinsics::_getClassAccessFlags: 3979 prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC); 3980 return_type = TypeInt::CHAR; 3981 break; 3982 default: 3983 fatal_unexpected_iid(id); 3984 break; 3985 } 3986 3987 const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr(); 3988 if (mirror_con == nullptr) return false; // cannot happen? 3989 3990 #ifndef PRODUCT 3991 if (C->print_intrinsics() || C->print_inlining()) { 3992 ciType* k = mirror_con->java_mirror_type(); 3993 if (k) { 3994 tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id())); 3995 k->print_name(); 3996 tty->cr(); 3997 } 3998 } 3999 #endif 4000 4001 // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive). 4002 RegionNode* region = new RegionNode(PATH_LIMIT); 4003 record_for_igvn(region); 4004 PhiNode* phi = new PhiNode(region, return_type); 4005 4006 // The mirror will never be null of Reflection.getClassAccessFlags, however 4007 // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE 4008 // if it is. See bug 4774291. 4009 4010 // For Reflection.getClassAccessFlags(), the null check occurs in 4011 // the wrong place; see inline_unsafe_access(), above, for a similar 4012 // situation. 4013 mirror = null_check(mirror); 4014 // If mirror or obj is dead, only null-path is taken. 4015 if (stopped()) return true; 4016 4017 if (expect_prim) never_see_null = false; // expect nulls (meaning prims) 4018 4019 // Now load the mirror's klass metaobject, and null-check it. 4020 // Side-effects region with the control path if the klass is null. 4021 Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path); 4022 // If kls is null, we have a primitive mirror. 4023 phi->init_req(_prim_path, prim_return_value); 4024 if (stopped()) { set_result(region, phi); return true; } 4025 bool safe_for_replace = (region->in(_prim_path) == top()); 4026 4027 Node* p; // handy temp 4028 Node* null_ctl; 4029 4030 // Now that we have the non-null klass, we can perform the real query. 4031 // For constant classes, the query will constant-fold in LoadNode::Value. 4032 Node* query_value = top(); 4033 switch (id) { 4034 case vmIntrinsics::_isInstance: 4035 // nothing is an instance of a primitive type 4036 query_value = gen_instanceof(obj, kls, safe_for_replace); 4037 break; 4038 4039 case vmIntrinsics::_isHidden: 4040 // (To verify this code sequence, check the asserts in JVM_IsHiddenClass.) 4041 if (generate_hidden_class_guard(kls, region) != nullptr) 4042 // A guard was added. If the guard is taken, it was an hidden class. 4043 phi->add_req(intcon(1)); 4044 // If we fall through, it's a plain class. 4045 query_value = intcon(0); 4046 break; 4047 4048 4049 case vmIntrinsics::_getSuperclass: 4050 // The rules here are somewhat unfortunate, but we can still do better 4051 // with random logic than with a JNI call. 4052 // Interfaces store null or Object as _super, but must report null. 4053 // Arrays store an intermediate super as _super, but must report Object. 4054 // Other types can report the actual _super. 4055 // (To verify this code sequence, check the asserts in JVM_IsInterface.) 4056 if (generate_interface_guard(kls, region) != nullptr) 4057 // A guard was added. If the guard is taken, it was an interface. 4058 phi->add_req(null()); 4059 if (generate_array_guard(kls, region) != nullptr) 4060 // A guard was added. If the guard is taken, it was an array. 4061 phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror()))); 4062 // If we fall through, it's a plain class. Get its _super. 4063 p = basic_plus_adr(kls, in_bytes(Klass::super_offset())); 4064 kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL)); 4065 null_ctl = top(); 4066 kls = null_check_oop(kls, &null_ctl); 4067 if (null_ctl != top()) { 4068 // If the guard is taken, Object.superClass is null (both klass and mirror). 4069 region->add_req(null_ctl); 4070 phi ->add_req(null()); 4071 } 4072 if (!stopped()) { 4073 query_value = load_mirror_from_klass(kls); 4074 } 4075 break; 4076 4077 case vmIntrinsics::_getClassAccessFlags: 4078 p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset())); 4079 query_value = make_load(nullptr, p, TypeInt::CHAR, T_CHAR, MemNode::unordered); 4080 break; 4081 4082 default: 4083 fatal_unexpected_iid(id); 4084 break; 4085 } 4086 4087 // Fall-through is the normal case of a query to a real class. 4088 phi->init_req(1, query_value); 4089 region->init_req(1, control()); 4090 4091 C->set_has_split_ifs(true); // Has chance for split-if optimization 4092 set_result(region, phi); 4093 return true; 4094 } 4095 4096 //-------------------------inline_Class_cast------------------- 4097 bool LibraryCallKit::inline_Class_cast() { 4098 Node* mirror = argument(0); // Class 4099 Node* obj = argument(1); 4100 const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr(); 4101 if (mirror_con == nullptr) { 4102 return false; // dead path (mirror->is_top()). 4103 } 4104 if (obj == nullptr || obj->is_top()) { 4105 return false; // dead path 4106 } 4107 const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr(); 4108 4109 // First, see if Class.cast() can be folded statically. 4110 // java_mirror_type() returns non-null for compile-time Class constants. 4111 ciType* tm = mirror_con->java_mirror_type(); 4112 if (tm != nullptr && tm->is_klass() && 4113 tp != nullptr) { 4114 if (!tp->is_loaded()) { 4115 // Don't use intrinsic when class is not loaded. 4116 return false; 4117 } else { 4118 int static_res = C->static_subtype_check(TypeKlassPtr::make(tm->as_klass(), Type::trust_interfaces), tp->as_klass_type()); 4119 if (static_res == Compile::SSC_always_true) { 4120 // isInstance() is true - fold the code. 4121 set_result(obj); 4122 return true; 4123 } else if (static_res == Compile::SSC_always_false) { 4124 // Don't use intrinsic, have to throw ClassCastException. 4125 // If the reference is null, the non-intrinsic bytecode will 4126 // be optimized appropriately. 4127 return false; 4128 } 4129 } 4130 } 4131 4132 // Bailout intrinsic and do normal inlining if exception path is frequent. 4133 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 4134 return false; 4135 } 4136 4137 // Generate dynamic checks. 4138 // Class.cast() is java implementation of _checkcast bytecode. 4139 // Do checkcast (Parse::do_checkcast()) optimizations here. 4140 4141 mirror = null_check(mirror); 4142 // If mirror is dead, only null-path is taken. 4143 if (stopped()) { 4144 return true; 4145 } 4146 4147 // Not-subtype or the mirror's klass ptr is null (in case it is a primitive). 4148 enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT }; 4149 RegionNode* region = new RegionNode(PATH_LIMIT); 4150 record_for_igvn(region); 4151 4152 // Now load the mirror's klass metaobject, and null-check it. 4153 // If kls is null, we have a primitive mirror and 4154 // nothing is an instance of a primitive type. 4155 Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path); 4156 4157 Node* res = top(); 4158 if (!stopped()) { 4159 Node* bad_type_ctrl = top(); 4160 // Do checkcast optimizations. 4161 res = gen_checkcast(obj, kls, &bad_type_ctrl); 4162 region->init_req(_bad_type_path, bad_type_ctrl); 4163 } 4164 if (region->in(_prim_path) != top() || 4165 region->in(_bad_type_path) != top()) { 4166 // Let Interpreter throw ClassCastException. 4167 PreserveJVMState pjvms(this); 4168 set_control(_gvn.transform(region)); 4169 uncommon_trap(Deoptimization::Reason_intrinsic, 4170 Deoptimization::Action_maybe_recompile); 4171 } 4172 if (!stopped()) { 4173 set_result(res); 4174 } 4175 return true; 4176 } 4177 4178 4179 //--------------------------inline_native_subtype_check------------------------ 4180 // This intrinsic takes the JNI calls out of the heart of 4181 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc. 4182 bool LibraryCallKit::inline_native_subtype_check() { 4183 // Pull both arguments off the stack. 4184 Node* args[2]; // two java.lang.Class mirrors: superc, subc 4185 args[0] = argument(0); 4186 args[1] = argument(1); 4187 Node* klasses[2]; // corresponding Klasses: superk, subk 4188 klasses[0] = klasses[1] = top(); 4189 4190 enum { 4191 // A full decision tree on {superc is prim, subc is prim}: 4192 _prim_0_path = 1, // {P,N} => false 4193 // {P,P} & superc!=subc => false 4194 _prim_same_path, // {P,P} & superc==subc => true 4195 _prim_1_path, // {N,P} => false 4196 _ref_subtype_path, // {N,N} & subtype check wins => true 4197 _both_ref_path, // {N,N} & subtype check loses => false 4198 PATH_LIMIT 4199 }; 4200 4201 RegionNode* region = new RegionNode(PATH_LIMIT); 4202 Node* phi = new PhiNode(region, TypeInt::BOOL); 4203 record_for_igvn(region); 4204 4205 const TypePtr* adr_type = TypeRawPtr::BOTTOM; // memory type of loads 4206 const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL; 4207 int class_klass_offset = java_lang_Class::klass_offset(); 4208 4209 // First null-check both mirrors and load each mirror's klass metaobject. 4210 int which_arg; 4211 for (which_arg = 0; which_arg <= 1; which_arg++) { 4212 Node* arg = args[which_arg]; 4213 arg = null_check(arg); 4214 if (stopped()) break; 4215 args[which_arg] = arg; 4216 4217 Node* p = basic_plus_adr(arg, class_klass_offset); 4218 Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type); 4219 klasses[which_arg] = _gvn.transform(kls); 4220 } 4221 4222 // Having loaded both klasses, test each for null. 4223 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 4224 for (which_arg = 0; which_arg <= 1; which_arg++) { 4225 Node* kls = klasses[which_arg]; 4226 Node* null_ctl = top(); 4227 kls = null_check_oop(kls, &null_ctl, never_see_null); 4228 int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path); 4229 region->init_req(prim_path, null_ctl); 4230 if (stopped()) break; 4231 klasses[which_arg] = kls; 4232 } 4233 4234 if (!stopped()) { 4235 // now we have two reference types, in klasses[0..1] 4236 Node* subk = klasses[1]; // the argument to isAssignableFrom 4237 Node* superk = klasses[0]; // the receiver 4238 region->set_req(_both_ref_path, gen_subtype_check(subk, superk)); 4239 // now we have a successful reference subtype check 4240 region->set_req(_ref_subtype_path, control()); 4241 } 4242 4243 // If both operands are primitive (both klasses null), then 4244 // we must return true when they are identical primitives. 4245 // It is convenient to test this after the first null klass check. 4246 set_control(region->in(_prim_0_path)); // go back to first null check 4247 if (!stopped()) { 4248 // Since superc is primitive, make a guard for the superc==subc case. 4249 Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1])); 4250 Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq)); 4251 generate_guard(bol_eq, region, PROB_FAIR); 4252 if (region->req() == PATH_LIMIT+1) { 4253 // A guard was added. If the added guard is taken, superc==subc. 4254 region->swap_edges(PATH_LIMIT, _prim_same_path); 4255 region->del_req(PATH_LIMIT); 4256 } 4257 region->set_req(_prim_0_path, control()); // Not equal after all. 4258 } 4259 4260 // these are the only paths that produce 'true': 4261 phi->set_req(_prim_same_path, intcon(1)); 4262 phi->set_req(_ref_subtype_path, intcon(1)); 4263 4264 // pull together the cases: 4265 assert(region->req() == PATH_LIMIT, "sane region"); 4266 for (uint i = 1; i < region->req(); i++) { 4267 Node* ctl = region->in(i); 4268 if (ctl == nullptr || ctl == top()) { 4269 region->set_req(i, top()); 4270 phi ->set_req(i, top()); 4271 } else if (phi->in(i) == nullptr) { 4272 phi->set_req(i, intcon(0)); // all other paths produce 'false' 4273 } 4274 } 4275 4276 set_control(_gvn.transform(region)); 4277 set_result(_gvn.transform(phi)); 4278 return true; 4279 } 4280 4281 //---------------------generate_array_guard_common------------------------ 4282 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region, 4283 bool obj_array, bool not_array, Node** obj) { 4284 4285 if (stopped()) { 4286 return nullptr; 4287 } 4288 4289 // If obj_array/non_array==false/false: 4290 // Branch around if the given klass is in fact an array (either obj or prim). 4291 // If obj_array/non_array==false/true: 4292 // Branch around if the given klass is not an array klass of any kind. 4293 // If obj_array/non_array==true/true: 4294 // Branch around if the kls is not an oop array (kls is int[], String, etc.) 4295 // If obj_array/non_array==true/false: 4296 // Branch around if the kls is an oop array (Object[] or subtype) 4297 // 4298 // Like generate_guard, adds a new path onto the region. 4299 jint layout_con = 0; 4300 Node* layout_val = get_layout_helper(kls, layout_con); 4301 if (layout_val == nullptr) { 4302 bool query = (obj_array 4303 ? Klass::layout_helper_is_objArray(layout_con) 4304 : Klass::layout_helper_is_array(layout_con)); 4305 if (query == not_array) { 4306 return nullptr; // never a branch 4307 } else { // always a branch 4308 Node* always_branch = control(); 4309 if (region != nullptr) 4310 region->add_req(always_branch); 4311 set_control(top()); 4312 return always_branch; 4313 } 4314 } 4315 // Now test the correct condition. 4316 jint nval = (obj_array 4317 ? (jint)(Klass::_lh_array_tag_type_value 4318 << Klass::_lh_array_tag_shift) 4319 : Klass::_lh_neutral_value); 4320 Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval))); 4321 BoolTest::mask btest = BoolTest::lt; // correct for testing is_[obj]array 4322 // invert the test if we are looking for a non-array 4323 if (not_array) btest = BoolTest(btest).negate(); 4324 Node* bol = _gvn.transform(new BoolNode(cmp, btest)); 4325 Node* ctrl = generate_fair_guard(bol, region); 4326 Node* is_array_ctrl = not_array ? control() : ctrl; 4327 if (obj != nullptr && is_array_ctrl != nullptr && is_array_ctrl != top()) { 4328 // Keep track of the fact that 'obj' is an array to prevent 4329 // array specific accesses from floating above the guard. 4330 *obj = _gvn.transform(new CastPPNode(is_array_ctrl, *obj, TypeAryPtr::BOTTOM)); 4331 } 4332 return ctrl; 4333 } 4334 4335 4336 //-----------------------inline_native_newArray-------------------------- 4337 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length); 4338 // private native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size); 4339 bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) { 4340 Node* mirror; 4341 Node* count_val; 4342 if (uninitialized) { 4343 null_check_receiver(); 4344 mirror = argument(1); 4345 count_val = argument(2); 4346 } else { 4347 mirror = argument(0); 4348 count_val = argument(1); 4349 } 4350 4351 mirror = null_check(mirror); 4352 // If mirror or obj is dead, only null-path is taken. 4353 if (stopped()) return true; 4354 4355 enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT }; 4356 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 4357 PhiNode* result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL); 4358 PhiNode* result_io = new PhiNode(result_reg, Type::ABIO); 4359 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 4360 4361 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 4362 Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null, 4363 result_reg, _slow_path); 4364 Node* normal_ctl = control(); 4365 Node* no_array_ctl = result_reg->in(_slow_path); 4366 4367 // Generate code for the slow case. We make a call to newArray(). 4368 set_control(no_array_ctl); 4369 if (!stopped()) { 4370 // Either the input type is void.class, or else the 4371 // array klass has not yet been cached. Either the 4372 // ensuing call will throw an exception, or else it 4373 // will cache the array klass for next time. 4374 PreserveJVMState pjvms(this); 4375 CallJavaNode* slow_call = nullptr; 4376 if (uninitialized) { 4377 // Generate optimized virtual call (holder class 'Unsafe' is final) 4378 slow_call = generate_method_call(vmIntrinsics::_allocateUninitializedArray, false, false, true); 4379 } else { 4380 slow_call = generate_method_call_static(vmIntrinsics::_newArray, true); 4381 } 4382 Node* slow_result = set_results_for_java_call(slow_call); 4383 // this->control() comes from set_results_for_java_call 4384 result_reg->set_req(_slow_path, control()); 4385 result_val->set_req(_slow_path, slow_result); 4386 result_io ->set_req(_slow_path, i_o()); 4387 result_mem->set_req(_slow_path, reset_memory()); 4388 } 4389 4390 set_control(normal_ctl); 4391 if (!stopped()) { 4392 // Normal case: The array type has been cached in the java.lang.Class. 4393 // The following call works fine even if the array type is polymorphic. 4394 // It could be a dynamic mix of int[], boolean[], Object[], etc. 4395 Node* obj = new_array(klass_node, count_val, 0); // no arguments to push 4396 result_reg->init_req(_normal_path, control()); 4397 result_val->init_req(_normal_path, obj); 4398 result_io ->init_req(_normal_path, i_o()); 4399 result_mem->init_req(_normal_path, reset_memory()); 4400 4401 if (uninitialized) { 4402 // Mark the allocation so that zeroing is skipped 4403 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(obj); 4404 alloc->maybe_set_complete(&_gvn); 4405 } 4406 } 4407 4408 // Return the combined state. 4409 set_i_o( _gvn.transform(result_io) ); 4410 set_all_memory( _gvn.transform(result_mem)); 4411 4412 C->set_has_split_ifs(true); // Has chance for split-if optimization 4413 set_result(result_reg, result_val); 4414 return true; 4415 } 4416 4417 //----------------------inline_native_getLength-------------------------- 4418 // public static native int java.lang.reflect.Array.getLength(Object array); 4419 bool LibraryCallKit::inline_native_getLength() { 4420 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false; 4421 4422 Node* array = null_check(argument(0)); 4423 // If array is dead, only null-path is taken. 4424 if (stopped()) return true; 4425 4426 // Deoptimize if it is a non-array. 4427 Node* non_array = generate_non_array_guard(load_object_klass(array), nullptr, &array); 4428 4429 if (non_array != nullptr) { 4430 PreserveJVMState pjvms(this); 4431 set_control(non_array); 4432 uncommon_trap(Deoptimization::Reason_intrinsic, 4433 Deoptimization::Action_maybe_recompile); 4434 } 4435 4436 // If control is dead, only non-array-path is taken. 4437 if (stopped()) return true; 4438 4439 // The works fine even if the array type is polymorphic. 4440 // It could be a dynamic mix of int[], boolean[], Object[], etc. 4441 Node* result = load_array_length(array); 4442 4443 C->set_has_split_ifs(true); // Has chance for split-if optimization 4444 set_result(result); 4445 return true; 4446 } 4447 4448 //------------------------inline_array_copyOf---------------------------- 4449 // public static <T,U> T[] java.util.Arrays.copyOf( U[] original, int newLength, Class<? extends T[]> newType); 4450 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from, int to, Class<? extends T[]> newType); 4451 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) { 4452 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false; 4453 4454 // Get the arguments. 4455 Node* original = argument(0); 4456 Node* start = is_copyOfRange? argument(1): intcon(0); 4457 Node* end = is_copyOfRange? argument(2): argument(1); 4458 Node* array_type_mirror = is_copyOfRange? argument(3): argument(2); 4459 4460 Node* newcopy = nullptr; 4461 4462 // Set the original stack and the reexecute bit for the interpreter to reexecute 4463 // the bytecode that invokes Arrays.copyOf if deoptimization happens. 4464 { PreserveReexecuteState preexecs(this); 4465 jvms()->set_should_reexecute(true); 4466 4467 array_type_mirror = null_check(array_type_mirror); 4468 original = null_check(original); 4469 4470 // Check if a null path was taken unconditionally. 4471 if (stopped()) return true; 4472 4473 Node* orig_length = load_array_length(original); 4474 4475 Node* klass_node = load_klass_from_mirror(array_type_mirror, false, nullptr, 0); 4476 klass_node = null_check(klass_node); 4477 4478 RegionNode* bailout = new RegionNode(1); 4479 record_for_igvn(bailout); 4480 4481 // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc. 4482 // Bail out if that is so. 4483 Node* not_objArray = generate_non_objArray_guard(klass_node, bailout); 4484 if (not_objArray != nullptr) { 4485 // Improve the klass node's type from the new optimistic assumption: 4486 ciKlass* ak = ciArrayKlass::make(env()->Object_klass()); 4487 const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/); 4488 Node* cast = new CastPPNode(control(), klass_node, akls); 4489 klass_node = _gvn.transform(cast); 4490 } 4491 4492 // Bail out if either start or end is negative. 4493 generate_negative_guard(start, bailout, &start); 4494 generate_negative_guard(end, bailout, &end); 4495 4496 Node* length = end; 4497 if (_gvn.type(start) != TypeInt::ZERO) { 4498 length = _gvn.transform(new SubINode(end, start)); 4499 } 4500 4501 // Bail out if length is negative (i.e., if start > end). 4502 // Without this the new_array would throw 4503 // NegativeArraySizeException but IllegalArgumentException is what 4504 // should be thrown 4505 generate_negative_guard(length, bailout, &length); 4506 4507 // Bail out if start is larger than the original length 4508 Node* orig_tail = _gvn.transform(new SubINode(orig_length, start)); 4509 generate_negative_guard(orig_tail, bailout, &orig_tail); 4510 4511 if (bailout->req() > 1) { 4512 PreserveJVMState pjvms(this); 4513 set_control(_gvn.transform(bailout)); 4514 uncommon_trap(Deoptimization::Reason_intrinsic, 4515 Deoptimization::Action_maybe_recompile); 4516 } 4517 4518 if (!stopped()) { 4519 // How many elements will we copy from the original? 4520 // The answer is MinI(orig_tail, length). 4521 Node* moved = _gvn.transform(new MinINode(orig_tail, length)); 4522 4523 // Generate a direct call to the right arraycopy function(s). 4524 // We know the copy is disjoint but we might not know if the 4525 // oop stores need checking. 4526 // Extreme case: Arrays.copyOf((Integer[])x, 10, String[].class). 4527 // This will fail a store-check if x contains any non-nulls. 4528 4529 // ArrayCopyNode:Ideal may transform the ArrayCopyNode to 4530 // loads/stores but it is legal only if we're sure the 4531 // Arrays.copyOf would succeed. So we need all input arguments 4532 // to the copyOf to be validated, including that the copy to the 4533 // new array won't trigger an ArrayStoreException. That subtype 4534 // check can be optimized if we know something on the type of 4535 // the input array from type speculation. 4536 if (_gvn.type(klass_node)->singleton()) { 4537 const TypeKlassPtr* subk = _gvn.type(load_object_klass(original))->is_klassptr(); 4538 const TypeKlassPtr* superk = _gvn.type(klass_node)->is_klassptr(); 4539 4540 int test = C->static_subtype_check(superk, subk); 4541 if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) { 4542 const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr(); 4543 if (t_original->speculative_type() != nullptr) { 4544 original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true); 4545 } 4546 } 4547 } 4548 4549 bool validated = false; 4550 // Reason_class_check rather than Reason_intrinsic because we 4551 // want to intrinsify even if this traps. 4552 if (!too_many_traps(Deoptimization::Reason_class_check)) { 4553 Node* not_subtype_ctrl = gen_subtype_check(original, klass_node); 4554 4555 if (not_subtype_ctrl != top()) { 4556 PreserveJVMState pjvms(this); 4557 set_control(not_subtype_ctrl); 4558 uncommon_trap(Deoptimization::Reason_class_check, 4559 Deoptimization::Action_make_not_entrant); 4560 assert(stopped(), "Should be stopped"); 4561 } 4562 validated = true; 4563 } 4564 4565 if (!stopped()) { 4566 newcopy = new_array(klass_node, length, 0); // no arguments to push 4567 4568 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true, true, 4569 load_object_klass(original), klass_node); 4570 if (!is_copyOfRange) { 4571 ac->set_copyof(validated); 4572 } else { 4573 ac->set_copyofrange(validated); 4574 } 4575 Node* n = _gvn.transform(ac); 4576 if (n == ac) { 4577 ac->connect_outputs(this); 4578 } else { 4579 assert(validated, "shouldn't transform if all arguments not validated"); 4580 set_all_memory(n); 4581 } 4582 } 4583 } 4584 } // original reexecute is set back here 4585 4586 C->set_has_split_ifs(true); // Has chance for split-if optimization 4587 if (!stopped()) { 4588 set_result(newcopy); 4589 } 4590 return true; 4591 } 4592 4593 4594 //----------------------generate_virtual_guard--------------------------- 4595 // Helper for hashCode and clone. Peeks inside the vtable to avoid a call. 4596 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass, 4597 RegionNode* slow_region) { 4598 ciMethod* method = callee(); 4599 int vtable_index = method->vtable_index(); 4600 assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index, 4601 "bad index %d", vtable_index); 4602 // Get the Method* out of the appropriate vtable entry. 4603 int entry_offset = in_bytes(Klass::vtable_start_offset()) + 4604 vtable_index*vtableEntry::size_in_bytes() + 4605 in_bytes(vtableEntry::method_offset()); 4606 Node* entry_addr = basic_plus_adr(obj_klass, entry_offset); 4607 Node* target_call = make_load(nullptr, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered); 4608 4609 // Compare the target method with the expected method (e.g., Object.hashCode). 4610 const TypePtr* native_call_addr = TypeMetadataPtr::make(method); 4611 4612 Node* native_call = makecon(native_call_addr); 4613 Node* chk_native = _gvn.transform(new CmpPNode(target_call, native_call)); 4614 Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne)); 4615 4616 return generate_slow_guard(test_native, slow_region); 4617 } 4618 4619 //-----------------------generate_method_call---------------------------- 4620 // Use generate_method_call to make a slow-call to the real 4621 // method if the fast path fails. An alternative would be to 4622 // use a stub like OptoRuntime::slow_arraycopy_Java. 4623 // This only works for expanding the current library call, 4624 // not another intrinsic. (E.g., don't use this for making an 4625 // arraycopy call inside of the copyOf intrinsic.) 4626 CallJavaNode* 4627 LibraryCallKit::generate_method_call(vmIntrinsicID method_id, bool is_virtual, bool is_static, bool res_not_null) { 4628 // When compiling the intrinsic method itself, do not use this technique. 4629 guarantee(callee() != C->method(), "cannot make slow-call to self"); 4630 4631 ciMethod* method = callee(); 4632 // ensure the JVMS we have will be correct for this call 4633 guarantee(method_id == method->intrinsic_id(), "must match"); 4634 4635 const TypeFunc* tf = TypeFunc::make(method); 4636 if (res_not_null) { 4637 assert(tf->return_type() == T_OBJECT, ""); 4638 const TypeTuple* range = tf->range(); 4639 const Type** fields = TypeTuple::fields(range->cnt()); 4640 fields[TypeFunc::Parms] = range->field_at(TypeFunc::Parms)->filter_speculative(TypePtr::NOTNULL); 4641 const TypeTuple* new_range = TypeTuple::make(range->cnt(), fields); 4642 tf = TypeFunc::make(tf->domain(), new_range); 4643 } 4644 CallJavaNode* slow_call; 4645 if (is_static) { 4646 assert(!is_virtual, ""); 4647 slow_call = new CallStaticJavaNode(C, tf, 4648 SharedRuntime::get_resolve_static_call_stub(), method); 4649 } else if (is_virtual) { 4650 assert(!gvn().type(argument(0))->maybe_null(), "should not be null"); 4651 int vtable_index = Method::invalid_vtable_index; 4652 if (UseInlineCaches) { 4653 // Suppress the vtable call 4654 } else { 4655 // hashCode and clone are not a miranda methods, 4656 // so the vtable index is fixed. 4657 // No need to use the linkResolver to get it. 4658 vtable_index = method->vtable_index(); 4659 assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index, 4660 "bad index %d", vtable_index); 4661 } 4662 slow_call = new CallDynamicJavaNode(tf, 4663 SharedRuntime::get_resolve_virtual_call_stub(), 4664 method, vtable_index); 4665 } else { // neither virtual nor static: opt_virtual 4666 assert(!gvn().type(argument(0))->maybe_null(), "should not be null"); 4667 slow_call = new CallStaticJavaNode(C, tf, 4668 SharedRuntime::get_resolve_opt_virtual_call_stub(), method); 4669 slow_call->set_optimized_virtual(true); 4670 } 4671 if (CallGenerator::is_inlined_method_handle_intrinsic(this->method(), bci(), callee())) { 4672 // To be able to issue a direct call (optimized virtual or virtual) 4673 // and skip a call to MH.linkTo*/invokeBasic adapter, additional information 4674 // about the method being invoked should be attached to the call site to 4675 // make resolution logic work (see SharedRuntime::resolve_{virtual,opt_virtual}_call_C). 4676 slow_call->set_override_symbolic_info(true); 4677 } 4678 set_arguments_for_java_call(slow_call); 4679 set_edges_for_java_call(slow_call); 4680 return slow_call; 4681 } 4682 4683 4684 /** 4685 * Build special case code for calls to hashCode on an object. This call may 4686 * be virtual (invokevirtual) or bound (invokespecial). For each case we generate 4687 * slightly different code. 4688 */ 4689 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) { 4690 assert(is_static == callee()->is_static(), "correct intrinsic selection"); 4691 assert(!(is_virtual && is_static), "either virtual, special, or static"); 4692 4693 enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT }; 4694 4695 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 4696 PhiNode* result_val = new PhiNode(result_reg, TypeInt::INT); 4697 PhiNode* result_io = new PhiNode(result_reg, Type::ABIO); 4698 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 4699 Node* obj = nullptr; 4700 if (!is_static) { 4701 // Check for hashing null object 4702 obj = null_check_receiver(); 4703 if (stopped()) return true; // unconditionally null 4704 result_reg->init_req(_null_path, top()); 4705 result_val->init_req(_null_path, top()); 4706 } else { 4707 // Do a null check, and return zero if null. 4708 // System.identityHashCode(null) == 0 4709 obj = argument(0); 4710 Node* null_ctl = top(); 4711 obj = null_check_oop(obj, &null_ctl); 4712 result_reg->init_req(_null_path, null_ctl); 4713 result_val->init_req(_null_path, _gvn.intcon(0)); 4714 } 4715 4716 // Unconditionally null? Then return right away. 4717 if (stopped()) { 4718 set_control( result_reg->in(_null_path)); 4719 if (!stopped()) 4720 set_result(result_val->in(_null_path)); 4721 return true; 4722 } 4723 4724 // We only go to the fast case code if we pass a number of guards. The 4725 // paths which do not pass are accumulated in the slow_region. 4726 RegionNode* slow_region = new RegionNode(1); 4727 record_for_igvn(slow_region); 4728 4729 // If this is a virtual call, we generate a funny guard. We pull out 4730 // the vtable entry corresponding to hashCode() from the target object. 4731 // If the target method which we are calling happens to be the native 4732 // Object hashCode() method, we pass the guard. We do not need this 4733 // guard for non-virtual calls -- the caller is known to be the native 4734 // Object hashCode(). 4735 if (is_virtual) { 4736 // After null check, get the object's klass. 4737 Node* obj_klass = load_object_klass(obj); 4738 generate_virtual_guard(obj_klass, slow_region); 4739 } 4740 4741 // Get the header out of the object, use LoadMarkNode when available 4742 Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes()); 4743 // The control of the load must be null. Otherwise, the load can move before 4744 // the null check after castPP removal. 4745 Node* no_ctrl = nullptr; 4746 Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered); 4747 4748 if (!UseObjectMonitorTable) { 4749 // Test the header to see if it is safe to read w.r.t. locking. 4750 Node *lock_mask = _gvn.MakeConX(markWord::lock_mask_in_place); 4751 Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask)); 4752 if (LockingMode == LM_LIGHTWEIGHT) { 4753 Node *monitor_val = _gvn.MakeConX(markWord::monitor_value); 4754 Node *chk_monitor = _gvn.transform(new CmpXNode(lmasked_header, monitor_val)); 4755 Node *test_monitor = _gvn.transform(new BoolNode(chk_monitor, BoolTest::eq)); 4756 4757 generate_slow_guard(test_monitor, slow_region); 4758 } else { 4759 Node *unlocked_val = _gvn.MakeConX(markWord::unlocked_value); 4760 Node *chk_unlocked = _gvn.transform(new CmpXNode(lmasked_header, unlocked_val)); 4761 Node *test_not_unlocked = _gvn.transform(new BoolNode(chk_unlocked, BoolTest::ne)); 4762 4763 generate_slow_guard(test_not_unlocked, slow_region); 4764 } 4765 } 4766 4767 // Get the hash value and check to see that it has been properly assigned. 4768 // We depend on hash_mask being at most 32 bits and avoid the use of 4769 // hash_mask_in_place because it could be larger than 32 bits in a 64-bit 4770 // vm: see markWord.hpp. 4771 Node *hash_mask = _gvn.intcon(markWord::hash_mask); 4772 Node *hash_shift = _gvn.intcon(markWord::hash_shift); 4773 Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift)); 4774 // This hack lets the hash bits live anywhere in the mark object now, as long 4775 // as the shift drops the relevant bits into the low 32 bits. Note that 4776 // Java spec says that HashCode is an int so there's no point in capturing 4777 // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build). 4778 hshifted_header = ConvX2I(hshifted_header); 4779 Node *hash_val = _gvn.transform(new AndINode(hshifted_header, hash_mask)); 4780 4781 Node *no_hash_val = _gvn.intcon(markWord::no_hash); 4782 Node *chk_assigned = _gvn.transform(new CmpINode( hash_val, no_hash_val)); 4783 Node *test_assigned = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq)); 4784 4785 generate_slow_guard(test_assigned, slow_region); 4786 4787 Node* init_mem = reset_memory(); 4788 // fill in the rest of the null path: 4789 result_io ->init_req(_null_path, i_o()); 4790 result_mem->init_req(_null_path, init_mem); 4791 4792 result_val->init_req(_fast_path, hash_val); 4793 result_reg->init_req(_fast_path, control()); 4794 result_io ->init_req(_fast_path, i_o()); 4795 result_mem->init_req(_fast_path, init_mem); 4796 4797 // Generate code for the slow case. We make a call to hashCode(). 4798 set_control(_gvn.transform(slow_region)); 4799 if (!stopped()) { 4800 // No need for PreserveJVMState, because we're using up the present state. 4801 set_all_memory(init_mem); 4802 vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode; 4803 CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static, false); 4804 Node* slow_result = set_results_for_java_call(slow_call); 4805 // this->control() comes from set_results_for_java_call 4806 result_reg->init_req(_slow_path, control()); 4807 result_val->init_req(_slow_path, slow_result); 4808 result_io ->set_req(_slow_path, i_o()); 4809 result_mem ->set_req(_slow_path, reset_memory()); 4810 } 4811 4812 // Return the combined state. 4813 set_i_o( _gvn.transform(result_io) ); 4814 set_all_memory( _gvn.transform(result_mem)); 4815 4816 set_result(result_reg, result_val); 4817 return true; 4818 } 4819 4820 //---------------------------inline_native_getClass---------------------------- 4821 // public final native Class<?> java.lang.Object.getClass(); 4822 // 4823 // Build special case code for calls to getClass on an object. 4824 bool LibraryCallKit::inline_native_getClass() { 4825 Node* obj = null_check_receiver(); 4826 if (stopped()) return true; 4827 set_result(load_mirror_from_klass(load_object_klass(obj))); 4828 return true; 4829 } 4830 4831 //-----------------inline_native_Reflection_getCallerClass--------------------- 4832 // public static native Class<?> sun.reflect.Reflection.getCallerClass(); 4833 // 4834 // In the presence of deep enough inlining, getCallerClass() becomes a no-op. 4835 // 4836 // NOTE: This code must perform the same logic as JVM_GetCallerClass 4837 // in that it must skip particular security frames and checks for 4838 // caller sensitive methods. 4839 bool LibraryCallKit::inline_native_Reflection_getCallerClass() { 4840 #ifndef PRODUCT 4841 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4842 tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass"); 4843 } 4844 #endif 4845 4846 if (!jvms()->has_method()) { 4847 #ifndef PRODUCT 4848 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4849 tty->print_cr(" Bailing out because intrinsic was inlined at top level"); 4850 } 4851 #endif 4852 return false; 4853 } 4854 4855 // Walk back up the JVM state to find the caller at the required 4856 // depth. 4857 JVMState* caller_jvms = jvms(); 4858 4859 // Cf. JVM_GetCallerClass 4860 // NOTE: Start the loop at depth 1 because the current JVM state does 4861 // not include the Reflection.getCallerClass() frame. 4862 for (int n = 1; caller_jvms != nullptr; caller_jvms = caller_jvms->caller(), n++) { 4863 ciMethod* m = caller_jvms->method(); 4864 switch (n) { 4865 case 0: 4866 fatal("current JVM state does not include the Reflection.getCallerClass frame"); 4867 break; 4868 case 1: 4869 // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass). 4870 if (!m->caller_sensitive()) { 4871 #ifndef PRODUCT 4872 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4873 tty->print_cr(" Bailing out: CallerSensitive annotation expected at frame %d", n); 4874 } 4875 #endif 4876 return false; // bail-out; let JVM_GetCallerClass do the work 4877 } 4878 break; 4879 default: 4880 if (!m->is_ignored_by_security_stack_walk()) { 4881 // We have reached the desired frame; return the holder class. 4882 // Acquire method holder as java.lang.Class and push as constant. 4883 ciInstanceKlass* caller_klass = caller_jvms->method()->holder(); 4884 ciInstance* caller_mirror = caller_klass->java_mirror(); 4885 set_result(makecon(TypeInstPtr::make(caller_mirror))); 4886 4887 #ifndef PRODUCT 4888 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4889 tty->print_cr(" Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth()); 4890 tty->print_cr(" JVM state at this point:"); 4891 for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) { 4892 ciMethod* m = jvms()->of_depth(i)->method(); 4893 tty->print_cr(" %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8()); 4894 } 4895 } 4896 #endif 4897 return true; 4898 } 4899 break; 4900 } 4901 } 4902 4903 #ifndef PRODUCT 4904 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4905 tty->print_cr(" Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth()); 4906 tty->print_cr(" JVM state at this point:"); 4907 for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) { 4908 ciMethod* m = jvms()->of_depth(i)->method(); 4909 tty->print_cr(" %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8()); 4910 } 4911 } 4912 #endif 4913 4914 return false; // bail-out; let JVM_GetCallerClass do the work 4915 } 4916 4917 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) { 4918 Node* arg = argument(0); 4919 Node* result = nullptr; 4920 4921 switch (id) { 4922 case vmIntrinsics::_floatToRawIntBits: result = new MoveF2INode(arg); break; 4923 case vmIntrinsics::_intBitsToFloat: result = new MoveI2FNode(arg); break; 4924 case vmIntrinsics::_doubleToRawLongBits: result = new MoveD2LNode(arg); break; 4925 case vmIntrinsics::_longBitsToDouble: result = new MoveL2DNode(arg); break; 4926 case vmIntrinsics::_floatToFloat16: result = new ConvF2HFNode(arg); break; 4927 case vmIntrinsics::_float16ToFloat: result = new ConvHF2FNode(arg); break; 4928 4929 case vmIntrinsics::_doubleToLongBits: { 4930 // two paths (plus control) merge in a wood 4931 RegionNode *r = new RegionNode(3); 4932 Node *phi = new PhiNode(r, TypeLong::LONG); 4933 4934 Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg)); 4935 // Build the boolean node 4936 Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne)); 4937 4938 // Branch either way. 4939 // NaN case is less traveled, which makes all the difference. 4940 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN); 4941 Node *opt_isnan = _gvn.transform(ifisnan); 4942 assert( opt_isnan->is_If(), "Expect an IfNode"); 4943 IfNode *opt_ifisnan = (IfNode*)opt_isnan; 4944 Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan)); 4945 4946 set_control(iftrue); 4947 4948 static const jlong nan_bits = CONST64(0x7ff8000000000000); 4949 Node *slow_result = longcon(nan_bits); // return NaN 4950 phi->init_req(1, _gvn.transform( slow_result )); 4951 r->init_req(1, iftrue); 4952 4953 // Else fall through 4954 Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan)); 4955 set_control(iffalse); 4956 4957 phi->init_req(2, _gvn.transform(new MoveD2LNode(arg))); 4958 r->init_req(2, iffalse); 4959 4960 // Post merge 4961 set_control(_gvn.transform(r)); 4962 record_for_igvn(r); 4963 4964 C->set_has_split_ifs(true); // Has chance for split-if optimization 4965 result = phi; 4966 assert(result->bottom_type()->isa_long(), "must be"); 4967 break; 4968 } 4969 4970 case vmIntrinsics::_floatToIntBits: { 4971 // two paths (plus control) merge in a wood 4972 RegionNode *r = new RegionNode(3); 4973 Node *phi = new PhiNode(r, TypeInt::INT); 4974 4975 Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg)); 4976 // Build the boolean node 4977 Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne)); 4978 4979 // Branch either way. 4980 // NaN case is less traveled, which makes all the difference. 4981 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN); 4982 Node *opt_isnan = _gvn.transform(ifisnan); 4983 assert( opt_isnan->is_If(), "Expect an IfNode"); 4984 IfNode *opt_ifisnan = (IfNode*)opt_isnan; 4985 Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan)); 4986 4987 set_control(iftrue); 4988 4989 static const jint nan_bits = 0x7fc00000; 4990 Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN 4991 phi->init_req(1, _gvn.transform( slow_result )); 4992 r->init_req(1, iftrue); 4993 4994 // Else fall through 4995 Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan)); 4996 set_control(iffalse); 4997 4998 phi->init_req(2, _gvn.transform(new MoveF2INode(arg))); 4999 r->init_req(2, iffalse); 5000 5001 // Post merge 5002 set_control(_gvn.transform(r)); 5003 record_for_igvn(r); 5004 5005 C->set_has_split_ifs(true); // Has chance for split-if optimization 5006 result = phi; 5007 assert(result->bottom_type()->isa_int(), "must be"); 5008 break; 5009 } 5010 5011 default: 5012 fatal_unexpected_iid(id); 5013 break; 5014 } 5015 set_result(_gvn.transform(result)); 5016 return true; 5017 } 5018 5019 bool LibraryCallKit::inline_fp_range_check(vmIntrinsics::ID id) { 5020 Node* arg = argument(0); 5021 Node* result = nullptr; 5022 5023 switch (id) { 5024 case vmIntrinsics::_floatIsInfinite: 5025 result = new IsInfiniteFNode(arg); 5026 break; 5027 case vmIntrinsics::_floatIsFinite: 5028 result = new IsFiniteFNode(arg); 5029 break; 5030 case vmIntrinsics::_doubleIsInfinite: 5031 result = new IsInfiniteDNode(arg); 5032 break; 5033 case vmIntrinsics::_doubleIsFinite: 5034 result = new IsFiniteDNode(arg); 5035 break; 5036 default: 5037 fatal_unexpected_iid(id); 5038 break; 5039 } 5040 set_result(_gvn.transform(result)); 5041 return true; 5042 } 5043 5044 //----------------------inline_unsafe_copyMemory------------------------- 5045 // public native void Unsafe.copyMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes); 5046 5047 static bool has_wide_mem(PhaseGVN& gvn, Node* addr, Node* base) { 5048 const TypeAryPtr* addr_t = gvn.type(addr)->isa_aryptr(); 5049 const Type* base_t = gvn.type(base); 5050 5051 bool in_native = (base_t == TypePtr::NULL_PTR); 5052 bool in_heap = !TypePtr::NULL_PTR->higher_equal(base_t); 5053 bool is_mixed = !in_heap && !in_native; 5054 5055 if (is_mixed) { 5056 return true; // mixed accesses can touch both on-heap and off-heap memory 5057 } 5058 if (in_heap) { 5059 bool is_prim_array = (addr_t != nullptr) && (addr_t->elem() != Type::BOTTOM); 5060 if (!is_prim_array) { 5061 // Though Unsafe.copyMemory() ensures at runtime for on-heap accesses that base is a primitive array, 5062 // there's not enough type information available to determine proper memory slice for it. 5063 return true; 5064 } 5065 } 5066 return false; 5067 } 5068 5069 bool LibraryCallKit::inline_unsafe_copyMemory() { 5070 if (callee()->is_static()) return false; // caller must have the capability! 5071 null_check_receiver(); // null-check receiver 5072 if (stopped()) return true; 5073 5074 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 5075 5076 Node* src_base = argument(1); // type: oop 5077 Node* src_off = ConvL2X(argument(2)); // type: long 5078 Node* dst_base = argument(4); // type: oop 5079 Node* dst_off = ConvL2X(argument(5)); // type: long 5080 Node* size = ConvL2X(argument(7)); // type: long 5081 5082 assert(Unsafe_field_offset_to_byte_offset(11) == 11, 5083 "fieldOffset must be byte-scaled"); 5084 5085 Node* src_addr = make_unsafe_address(src_base, src_off); 5086 Node* dst_addr = make_unsafe_address(dst_base, dst_off); 5087 5088 Node* thread = _gvn.transform(new ThreadLocalNode()); 5089 Node* doing_unsafe_access_addr = basic_plus_adr(top(), thread, in_bytes(JavaThread::doing_unsafe_access_offset())); 5090 BasicType doing_unsafe_access_bt = T_BYTE; 5091 assert((sizeof(bool) * CHAR_BIT) == 8, "not implemented"); 5092 5093 // update volatile field 5094 store_to_memory(control(), doing_unsafe_access_addr, intcon(1), doing_unsafe_access_bt, MemNode::unordered); 5095 5096 int flags = RC_LEAF | RC_NO_FP; 5097 5098 const TypePtr* dst_type = TypePtr::BOTTOM; 5099 5100 // Adjust memory effects of the runtime call based on input values. 5101 if (!has_wide_mem(_gvn, src_addr, src_base) && 5102 !has_wide_mem(_gvn, dst_addr, dst_base)) { 5103 dst_type = _gvn.type(dst_addr)->is_ptr(); // narrow out memory 5104 5105 const TypePtr* src_type = _gvn.type(src_addr)->is_ptr(); 5106 if (C->get_alias_index(src_type) == C->get_alias_index(dst_type)) { 5107 flags |= RC_NARROW_MEM; // narrow in memory 5108 } 5109 } 5110 5111 // Call it. Note that the length argument is not scaled. 5112 make_runtime_call(flags, 5113 OptoRuntime::fast_arraycopy_Type(), 5114 StubRoutines::unsafe_arraycopy(), 5115 "unsafe_arraycopy", 5116 dst_type, 5117 src_addr, dst_addr, size XTOP); 5118 5119 store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, MemNode::unordered); 5120 5121 return true; 5122 } 5123 5124 // unsafe_setmemory(void *base, ulong offset, size_t length, char fill_value); 5125 // Fill 'length' bytes starting from 'base[offset]' with 'fill_value' 5126 bool LibraryCallKit::inline_unsafe_setMemory() { 5127 if (callee()->is_static()) return false; // caller must have the capability! 5128 null_check_receiver(); // null-check receiver 5129 if (stopped()) return true; 5130 5131 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 5132 5133 Node* dst_base = argument(1); // type: oop 5134 Node* dst_off = ConvL2X(argument(2)); // type: long 5135 Node* size = ConvL2X(argument(4)); // type: long 5136 Node* byte = argument(6); // type: byte 5137 5138 assert(Unsafe_field_offset_to_byte_offset(11) == 11, 5139 "fieldOffset must be byte-scaled"); 5140 5141 Node* dst_addr = make_unsafe_address(dst_base, dst_off); 5142 5143 Node* thread = _gvn.transform(new ThreadLocalNode()); 5144 Node* doing_unsafe_access_addr = basic_plus_adr(top(), thread, in_bytes(JavaThread::doing_unsafe_access_offset())); 5145 BasicType doing_unsafe_access_bt = T_BYTE; 5146 assert((sizeof(bool) * CHAR_BIT) == 8, "not implemented"); 5147 5148 // update volatile field 5149 store_to_memory(control(), doing_unsafe_access_addr, intcon(1), doing_unsafe_access_bt, MemNode::unordered); 5150 5151 int flags = RC_LEAF | RC_NO_FP; 5152 5153 const TypePtr* dst_type = TypePtr::BOTTOM; 5154 5155 // Adjust memory effects of the runtime call based on input values. 5156 if (!has_wide_mem(_gvn, dst_addr, dst_base)) { 5157 dst_type = _gvn.type(dst_addr)->is_ptr(); // narrow out memory 5158 5159 flags |= RC_NARROW_MEM; // narrow in memory 5160 } 5161 5162 // Call it. Note that the length argument is not scaled. 5163 make_runtime_call(flags, 5164 OptoRuntime::unsafe_setmemory_Type(), 5165 StubRoutines::unsafe_setmemory(), 5166 "unsafe_setmemory", 5167 dst_type, 5168 dst_addr, size XTOP, byte); 5169 5170 store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, MemNode::unordered); 5171 5172 return true; 5173 } 5174 5175 #undef XTOP 5176 5177 //------------------------clone_coping----------------------------------- 5178 // Helper function for inline_native_clone. 5179 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array) { 5180 assert(obj_size != nullptr, ""); 5181 Node* raw_obj = alloc_obj->in(1); 5182 assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), ""); 5183 5184 AllocateNode* alloc = nullptr; 5185 if (ReduceBulkZeroing && 5186 // If we are implementing an array clone without knowing its source type 5187 // (can happen when compiling the array-guarded branch of a reflective 5188 // Object.clone() invocation), initialize the array within the allocation. 5189 // This is needed because some GCs (e.g. ZGC) might fall back in this case 5190 // to a runtime clone call that assumes fully initialized source arrays. 5191 (!is_array || obj->get_ptr_type()->isa_aryptr() != nullptr)) { 5192 // We will be completely responsible for initializing this object - 5193 // mark Initialize node as complete. 5194 alloc = AllocateNode::Ideal_allocation(alloc_obj); 5195 // The object was just allocated - there should be no any stores! 5196 guarantee(alloc != nullptr && alloc->maybe_set_complete(&_gvn), ""); 5197 // Mark as complete_with_arraycopy so that on AllocateNode 5198 // expansion, we know this AllocateNode is initialized by an array 5199 // copy and a StoreStore barrier exists after the array copy. 5200 alloc->initialization()->set_complete_with_arraycopy(); 5201 } 5202 5203 Node* size = _gvn.transform(obj_size); 5204 access_clone(obj, alloc_obj, size, is_array); 5205 5206 // Do not let reads from the cloned object float above the arraycopy. 5207 if (alloc != nullptr) { 5208 // Do not let stores that initialize this object be reordered with 5209 // a subsequent store that would make this object accessible by 5210 // other threads. 5211 // Record what AllocateNode this StoreStore protects so that 5212 // escape analysis can go from the MemBarStoreStoreNode to the 5213 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 5214 // based on the escape status of the AllocateNode. 5215 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 5216 } else { 5217 insert_mem_bar(Op_MemBarCPUOrder); 5218 } 5219 } 5220 5221 //------------------------inline_native_clone---------------------------- 5222 // protected native Object java.lang.Object.clone(); 5223 // 5224 // Here are the simple edge cases: 5225 // null receiver => normal trap 5226 // virtual and clone was overridden => slow path to out-of-line clone 5227 // not cloneable or finalizer => slow path to out-of-line Object.clone 5228 // 5229 // The general case has two steps, allocation and copying. 5230 // Allocation has two cases, and uses GraphKit::new_instance or new_array. 5231 // 5232 // Copying also has two cases, oop arrays and everything else. 5233 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy). 5234 // Everything else uses the tight inline loop supplied by CopyArrayNode. 5235 // 5236 // These steps fold up nicely if and when the cloned object's klass 5237 // can be sharply typed as an object array, a type array, or an instance. 5238 // 5239 bool LibraryCallKit::inline_native_clone(bool is_virtual) { 5240 PhiNode* result_val; 5241 5242 // Set the reexecute bit for the interpreter to reexecute 5243 // the bytecode that invokes Object.clone if deoptimization happens. 5244 { PreserveReexecuteState preexecs(this); 5245 jvms()->set_should_reexecute(true); 5246 5247 Node* obj = null_check_receiver(); 5248 if (stopped()) return true; 5249 5250 const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr(); 5251 5252 // If we are going to clone an instance, we need its exact type to 5253 // know the number and types of fields to convert the clone to 5254 // loads/stores. Maybe a speculative type can help us. 5255 if (!obj_type->klass_is_exact() && 5256 obj_type->speculative_type() != nullptr && 5257 obj_type->speculative_type()->is_instance_klass()) { 5258 ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass(); 5259 if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem && 5260 !spec_ik->has_injected_fields()) { 5261 if (!obj_type->isa_instptr() || 5262 obj_type->is_instptr()->instance_klass()->has_subklass()) { 5263 obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false); 5264 } 5265 } 5266 } 5267 5268 // Conservatively insert a memory barrier on all memory slices. 5269 // Do not let writes into the original float below the clone. 5270 insert_mem_bar(Op_MemBarCPUOrder); 5271 5272 // paths into result_reg: 5273 enum { 5274 _slow_path = 1, // out-of-line call to clone method (virtual or not) 5275 _objArray_path, // plain array allocation, plus arrayof_oop_arraycopy 5276 _array_path, // plain array allocation, plus arrayof_long_arraycopy 5277 _instance_path, // plain instance allocation, plus arrayof_long_arraycopy 5278 PATH_LIMIT 5279 }; 5280 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 5281 result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL); 5282 PhiNode* result_i_o = new PhiNode(result_reg, Type::ABIO); 5283 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 5284 record_for_igvn(result_reg); 5285 5286 Node* obj_klass = load_object_klass(obj); 5287 Node* array_obj = obj; 5288 Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)nullptr, &array_obj); 5289 if (array_ctl != nullptr) { 5290 // It's an array. 5291 PreserveJVMState pjvms(this); 5292 set_control(array_ctl); 5293 Node* obj_length = load_array_length(array_obj); 5294 Node* array_size = nullptr; // Size of the array without object alignment padding. 5295 Node* alloc_obj = new_array(obj_klass, obj_length, 0, &array_size, /*deoptimize_on_exception=*/true); 5296 5297 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 5298 if (bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, false, BarrierSetC2::Parsing)) { 5299 // If it is an oop array, it requires very special treatment, 5300 // because gc barriers are required when accessing the array. 5301 Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)nullptr); 5302 if (is_obja != nullptr) { 5303 PreserveJVMState pjvms2(this); 5304 set_control(is_obja); 5305 // Generate a direct call to the right arraycopy function(s). 5306 // Clones are always tightly coupled. 5307 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, array_obj, intcon(0), alloc_obj, intcon(0), obj_length, true, false); 5308 ac->set_clone_oop_array(); 5309 Node* n = _gvn.transform(ac); 5310 assert(n == ac, "cannot disappear"); 5311 ac->connect_outputs(this, /*deoptimize_on_exception=*/true); 5312 5313 result_reg->init_req(_objArray_path, control()); 5314 result_val->init_req(_objArray_path, alloc_obj); 5315 result_i_o ->set_req(_objArray_path, i_o()); 5316 result_mem ->set_req(_objArray_path, reset_memory()); 5317 } 5318 } 5319 // Otherwise, there are no barriers to worry about. 5320 // (We can dispense with card marks if we know the allocation 5321 // comes out of eden (TLAB)... In fact, ReduceInitialCardMarks 5322 // causes the non-eden paths to take compensating steps to 5323 // simulate a fresh allocation, so that no further 5324 // card marks are required in compiled code to initialize 5325 // the object.) 5326 5327 if (!stopped()) { 5328 copy_to_clone(array_obj, alloc_obj, array_size, true); 5329 5330 // Present the results of the copy. 5331 result_reg->init_req(_array_path, control()); 5332 result_val->init_req(_array_path, alloc_obj); 5333 result_i_o ->set_req(_array_path, i_o()); 5334 result_mem ->set_req(_array_path, reset_memory()); 5335 } 5336 } 5337 5338 // We only go to the instance fast case code if we pass a number of guards. 5339 // The paths which do not pass are accumulated in the slow_region. 5340 RegionNode* slow_region = new RegionNode(1); 5341 record_for_igvn(slow_region); 5342 if (!stopped()) { 5343 // It's an instance (we did array above). Make the slow-path tests. 5344 // If this is a virtual call, we generate a funny guard. We grab 5345 // the vtable entry corresponding to clone() from the target object. 5346 // If the target method which we are calling happens to be the 5347 // Object clone() method, we pass the guard. We do not need this 5348 // guard for non-virtual calls; the caller is known to be the native 5349 // Object clone(). 5350 if (is_virtual) { 5351 generate_virtual_guard(obj_klass, slow_region); 5352 } 5353 5354 // The object must be easily cloneable and must not have a finalizer. 5355 // Both of these conditions may be checked in a single test. 5356 // We could optimize the test further, but we don't care. 5357 generate_misc_flags_guard(obj_klass, 5358 // Test both conditions: 5359 KlassFlags::_misc_is_cloneable_fast | KlassFlags::_misc_has_finalizer, 5360 // Must be cloneable but not finalizer: 5361 KlassFlags::_misc_is_cloneable_fast, 5362 slow_region); 5363 } 5364 5365 if (!stopped()) { 5366 // It's an instance, and it passed the slow-path tests. 5367 PreserveJVMState pjvms(this); 5368 Node* obj_size = nullptr; // Total object size, including object alignment padding. 5369 // Need to deoptimize on exception from allocation since Object.clone intrinsic 5370 // is reexecuted if deoptimization occurs and there could be problems when merging 5371 // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false). 5372 Node* alloc_obj = new_instance(obj_klass, nullptr, &obj_size, /*deoptimize_on_exception=*/true); 5373 5374 copy_to_clone(obj, alloc_obj, obj_size, false); 5375 5376 // Present the results of the slow call. 5377 result_reg->init_req(_instance_path, control()); 5378 result_val->init_req(_instance_path, alloc_obj); 5379 result_i_o ->set_req(_instance_path, i_o()); 5380 result_mem ->set_req(_instance_path, reset_memory()); 5381 } 5382 5383 // Generate code for the slow case. We make a call to clone(). 5384 set_control(_gvn.transform(slow_region)); 5385 if (!stopped()) { 5386 PreserveJVMState pjvms(this); 5387 CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual, false, true); 5388 // We need to deoptimize on exception (see comment above) 5389 Node* slow_result = set_results_for_java_call(slow_call, false, /* deoptimize */ true); 5390 // this->control() comes from set_results_for_java_call 5391 result_reg->init_req(_slow_path, control()); 5392 result_val->init_req(_slow_path, slow_result); 5393 result_i_o ->set_req(_slow_path, i_o()); 5394 result_mem ->set_req(_slow_path, reset_memory()); 5395 } 5396 5397 // Return the combined state. 5398 set_control( _gvn.transform(result_reg)); 5399 set_i_o( _gvn.transform(result_i_o)); 5400 set_all_memory( _gvn.transform(result_mem)); 5401 } // original reexecute is set back here 5402 5403 set_result(_gvn.transform(result_val)); 5404 return true; 5405 } 5406 5407 // If we have a tightly coupled allocation, the arraycopy may take care 5408 // of the array initialization. If one of the guards we insert between 5409 // the allocation and the arraycopy causes a deoptimization, an 5410 // uninitialized array will escape the compiled method. To prevent that 5411 // we set the JVM state for uncommon traps between the allocation and 5412 // the arraycopy to the state before the allocation so, in case of 5413 // deoptimization, we'll reexecute the allocation and the 5414 // initialization. 5415 JVMState* LibraryCallKit::arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp) { 5416 if (alloc != nullptr) { 5417 ciMethod* trap_method = alloc->jvms()->method(); 5418 int trap_bci = alloc->jvms()->bci(); 5419 5420 if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) && 5421 !C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_null_check)) { 5422 // Make sure there's no store between the allocation and the 5423 // arraycopy otherwise visible side effects could be rexecuted 5424 // in case of deoptimization and cause incorrect execution. 5425 bool no_interfering_store = true; 5426 Node* mem = alloc->in(TypeFunc::Memory); 5427 if (mem->is_MergeMem()) { 5428 for (MergeMemStream mms(merged_memory(), mem->as_MergeMem()); mms.next_non_empty2(); ) { 5429 Node* n = mms.memory(); 5430 if (n != mms.memory2() && !(n->is_Proj() && n->in(0) == alloc->initialization())) { 5431 assert(n->is_Store(), "what else?"); 5432 no_interfering_store = false; 5433 break; 5434 } 5435 } 5436 } else { 5437 for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) { 5438 Node* n = mms.memory(); 5439 if (n != mem && !(n->is_Proj() && n->in(0) == alloc->initialization())) { 5440 assert(n->is_Store(), "what else?"); 5441 no_interfering_store = false; 5442 break; 5443 } 5444 } 5445 } 5446 5447 if (no_interfering_store) { 5448 SafePointNode* sfpt = create_safepoint_with_state_before_array_allocation(alloc); 5449 5450 JVMState* saved_jvms = jvms(); 5451 saved_reexecute_sp = _reexecute_sp; 5452 5453 set_jvms(sfpt->jvms()); 5454 _reexecute_sp = jvms()->sp(); 5455 5456 return saved_jvms; 5457 } 5458 } 5459 } 5460 return nullptr; 5461 } 5462 5463 // Clone the JVMState of the array allocation and create a new safepoint with it. Re-push the array length to the stack 5464 // such that uncommon traps can be emitted to re-execute the array allocation in the interpreter. 5465 SafePointNode* LibraryCallKit::create_safepoint_with_state_before_array_allocation(const AllocateArrayNode* alloc) const { 5466 JVMState* old_jvms = alloc->jvms()->clone_shallow(C); 5467 uint size = alloc->req(); 5468 SafePointNode* sfpt = new SafePointNode(size, old_jvms); 5469 old_jvms->set_map(sfpt); 5470 for (uint i = 0; i < size; i++) { 5471 sfpt->init_req(i, alloc->in(i)); 5472 } 5473 // re-push array length for deoptimization 5474 sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), alloc->in(AllocateNode::ALength)); 5475 old_jvms->set_sp(old_jvms->sp()+1); 5476 old_jvms->set_monoff(old_jvms->monoff()+1); 5477 old_jvms->set_scloff(old_jvms->scloff()+1); 5478 old_jvms->set_endoff(old_jvms->endoff()+1); 5479 old_jvms->set_should_reexecute(true); 5480 5481 sfpt->set_i_o(map()->i_o()); 5482 sfpt->set_memory(map()->memory()); 5483 sfpt->set_control(map()->control()); 5484 return sfpt; 5485 } 5486 5487 // In case of a deoptimization, we restart execution at the 5488 // allocation, allocating a new array. We would leave an uninitialized 5489 // array in the heap that GCs wouldn't expect. Move the allocation 5490 // after the traps so we don't allocate the array if we 5491 // deoptimize. This is possible because tightly_coupled_allocation() 5492 // guarantees there's no observer of the allocated array at this point 5493 // and the control flow is simple enough. 5494 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms_before_guards, 5495 int saved_reexecute_sp, uint new_idx) { 5496 if (saved_jvms_before_guards != nullptr && !stopped()) { 5497 replace_unrelated_uncommon_traps_with_alloc_state(alloc, saved_jvms_before_guards); 5498 5499 assert(alloc != nullptr, "only with a tightly coupled allocation"); 5500 // restore JVM state to the state at the arraycopy 5501 saved_jvms_before_guards->map()->set_control(map()->control()); 5502 assert(saved_jvms_before_guards->map()->memory() == map()->memory(), "memory state changed?"); 5503 assert(saved_jvms_before_guards->map()->i_o() == map()->i_o(), "IO state changed?"); 5504 // If we've improved the types of some nodes (null check) while 5505 // emitting the guards, propagate them to the current state 5506 map()->replaced_nodes().apply(saved_jvms_before_guards->map(), new_idx); 5507 set_jvms(saved_jvms_before_guards); 5508 _reexecute_sp = saved_reexecute_sp; 5509 5510 // Remove the allocation from above the guards 5511 CallProjections callprojs; 5512 alloc->extract_projections(&callprojs, true); 5513 InitializeNode* init = alloc->initialization(); 5514 Node* alloc_mem = alloc->in(TypeFunc::Memory); 5515 C->gvn_replace_by(callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O)); 5516 C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem); 5517 5518 // The CastIINode created in GraphKit::new_array (in AllocateArrayNode::make_ideal_length) must stay below 5519 // the allocation (i.e. is only valid if the allocation succeeds): 5520 // 1) replace CastIINode with AllocateArrayNode's length here 5521 // 2) Create CastIINode again once allocation has moved (see below) at the end of this method 5522 // 5523 // Multiple identical CastIINodes might exist here. Each GraphKit::load_array_length() call will generate 5524 // new separate CastIINode (arraycopy guard checks or any array length use between array allocation and ararycopy) 5525 Node* init_control = init->proj_out(TypeFunc::Control); 5526 Node* alloc_length = alloc->Ideal_length(); 5527 #ifdef ASSERT 5528 Node* prev_cast = nullptr; 5529 #endif 5530 for (uint i = 0; i < init_control->outcnt(); i++) { 5531 Node* init_out = init_control->raw_out(i); 5532 if (init_out->is_CastII() && init_out->in(TypeFunc::Control) == init_control && init_out->in(1) == alloc_length) { 5533 #ifdef ASSERT 5534 if (prev_cast == nullptr) { 5535 prev_cast = init_out; 5536 } else { 5537 if (prev_cast->cmp(*init_out) == false) { 5538 prev_cast->dump(); 5539 init_out->dump(); 5540 assert(false, "not equal CastIINode"); 5541 } 5542 } 5543 #endif 5544 C->gvn_replace_by(init_out, alloc_length); 5545 } 5546 } 5547 C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0)); 5548 5549 // move the allocation here (after the guards) 5550 _gvn.hash_delete(alloc); 5551 alloc->set_req(TypeFunc::Control, control()); 5552 alloc->set_req(TypeFunc::I_O, i_o()); 5553 Node *mem = reset_memory(); 5554 set_all_memory(mem); 5555 alloc->set_req(TypeFunc::Memory, mem); 5556 set_control(init->proj_out_or_null(TypeFunc::Control)); 5557 set_i_o(callprojs.fallthrough_ioproj); 5558 5559 // Update memory as done in GraphKit::set_output_for_allocation() 5560 const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength)); 5561 const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type(); 5562 if (ary_type->isa_aryptr() && length_type != nullptr) { 5563 ary_type = ary_type->is_aryptr()->cast_to_size(length_type); 5564 } 5565 const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot); 5566 int elemidx = C->get_alias_index(telemref); 5567 set_memory(init->proj_out_or_null(TypeFunc::Memory), Compile::AliasIdxRaw); 5568 set_memory(init->proj_out_or_null(TypeFunc::Memory), elemidx); 5569 5570 Node* allocx = _gvn.transform(alloc); 5571 assert(allocx == alloc, "where has the allocation gone?"); 5572 assert(dest->is_CheckCastPP(), "not an allocation result?"); 5573 5574 _gvn.hash_delete(dest); 5575 dest->set_req(0, control()); 5576 Node* destx = _gvn.transform(dest); 5577 assert(destx == dest, "where has the allocation result gone?"); 5578 5579 array_ideal_length(alloc, ary_type, true); 5580 } 5581 } 5582 5583 // Unrelated UCTs between the array allocation and the array copy, which are considered safe by tightly_coupled_allocation(), 5584 // need to be replaced by an UCT with a state before the array allocation (including the array length). This is necessary 5585 // because we could hit one of these UCTs (which are executed before the emitted array copy guards and the actual array 5586 // allocation which is moved down in arraycopy_move_allocation_here()). When later resuming execution in the interpreter, 5587 // we would have wrongly skipped the array allocation. To prevent this, we resume execution at the array allocation in 5588 // the interpreter similar to what we are doing for the newly emitted guards for the array copy. 5589 void LibraryCallKit::replace_unrelated_uncommon_traps_with_alloc_state(AllocateArrayNode* alloc, 5590 JVMState* saved_jvms_before_guards) { 5591 if (saved_jvms_before_guards->map()->control()->is_IfProj()) { 5592 // There is at least one unrelated uncommon trap which needs to be replaced. 5593 SafePointNode* sfpt = create_safepoint_with_state_before_array_allocation(alloc); 5594 5595 JVMState* saved_jvms = jvms(); 5596 const int saved_reexecute_sp = _reexecute_sp; 5597 set_jvms(sfpt->jvms()); 5598 _reexecute_sp = jvms()->sp(); 5599 5600 replace_unrelated_uncommon_traps_with_alloc_state(saved_jvms_before_guards); 5601 5602 // Restore state 5603 set_jvms(saved_jvms); 5604 _reexecute_sp = saved_reexecute_sp; 5605 } 5606 } 5607 5608 // Replace the unrelated uncommon traps with new uncommon trap nodes by reusing the action and reason. The new uncommon 5609 // traps will have the state of the array allocation. Let the old uncommon trap nodes die. 5610 void LibraryCallKit::replace_unrelated_uncommon_traps_with_alloc_state(JVMState* saved_jvms_before_guards) { 5611 Node* if_proj = saved_jvms_before_guards->map()->control(); // Start the search right before the newly emitted guards 5612 while (if_proj->is_IfProj()) { 5613 CallStaticJavaNode* uncommon_trap = get_uncommon_trap_from_success_proj(if_proj); 5614 if (uncommon_trap != nullptr) { 5615 create_new_uncommon_trap(uncommon_trap); 5616 } 5617 assert(if_proj->in(0)->is_If(), "must be If"); 5618 if_proj = if_proj->in(0)->in(0); 5619 } 5620 assert(if_proj->is_Proj() && if_proj->in(0)->is_Initialize(), 5621 "must have reached control projection of init node"); 5622 } 5623 5624 void LibraryCallKit::create_new_uncommon_trap(CallStaticJavaNode* uncommon_trap_call) { 5625 const int trap_request = uncommon_trap_call->uncommon_trap_request(); 5626 assert(trap_request != 0, "no valid UCT trap request"); 5627 PreserveJVMState pjvms(this); 5628 set_control(uncommon_trap_call->in(0)); 5629 uncommon_trap(Deoptimization::trap_request_reason(trap_request), 5630 Deoptimization::trap_request_action(trap_request)); 5631 assert(stopped(), "Should be stopped"); 5632 _gvn.hash_delete(uncommon_trap_call); 5633 uncommon_trap_call->set_req(0, top()); // not used anymore, kill it 5634 } 5635 5636 // Common checks for array sorting intrinsics arguments. 5637 // Returns `true` if checks passed. 5638 bool LibraryCallKit::check_array_sort_arguments(Node* elementType, Node* obj, BasicType& bt) { 5639 // check address of the class 5640 if (elementType == nullptr || elementType->is_top()) { 5641 return false; // dead path 5642 } 5643 const TypeInstPtr* elem_klass = gvn().type(elementType)->isa_instptr(); 5644 if (elem_klass == nullptr) { 5645 return false; // dead path 5646 } 5647 // java_mirror_type() returns non-null for compile-time Class constants only 5648 ciType* elem_type = elem_klass->java_mirror_type(); 5649 if (elem_type == nullptr) { 5650 return false; 5651 } 5652 bt = elem_type->basic_type(); 5653 // Disable the intrinsic if the CPU does not support SIMD sort 5654 if (!Matcher::supports_simd_sort(bt)) { 5655 return false; 5656 } 5657 // check address of the array 5658 if (obj == nullptr || obj->is_top()) { 5659 return false; // dead path 5660 } 5661 const TypeAryPtr* obj_t = _gvn.type(obj)->isa_aryptr(); 5662 if (obj_t == nullptr || obj_t->elem() == Type::BOTTOM) { 5663 return false; // failed input validation 5664 } 5665 return true; 5666 } 5667 5668 //------------------------------inline_array_partition----------------------- 5669 bool LibraryCallKit::inline_array_partition() { 5670 address stubAddr = StubRoutines::select_array_partition_function(); 5671 if (stubAddr == nullptr) { 5672 return false; // Intrinsic's stub is not implemented on this platform 5673 } 5674 assert(callee()->signature()->size() == 9, "arrayPartition has 8 parameters (one long)"); 5675 5676 // no receiver because it is a static method 5677 Node* elementType = argument(0); 5678 Node* obj = argument(1); 5679 Node* offset = argument(2); // long 5680 Node* fromIndex = argument(4); 5681 Node* toIndex = argument(5); 5682 Node* indexPivot1 = argument(6); 5683 Node* indexPivot2 = argument(7); 5684 // PartitionOperation: argument(8) is ignored 5685 5686 Node* pivotIndices = nullptr; 5687 BasicType bt = T_ILLEGAL; 5688 5689 if (!check_array_sort_arguments(elementType, obj, bt)) { 5690 return false; 5691 } 5692 null_check(obj); 5693 // If obj is dead, only null-path is taken. 5694 if (stopped()) { 5695 return true; 5696 } 5697 // Set the original stack and the reexecute bit for the interpreter to reexecute 5698 // the bytecode that invokes DualPivotQuicksort.partition() if deoptimization happens. 5699 { PreserveReexecuteState preexecs(this); 5700 jvms()->set_should_reexecute(true); 5701 5702 Node* obj_adr = make_unsafe_address(obj, offset); 5703 5704 // create the pivotIndices array of type int and size = 2 5705 Node* size = intcon(2); 5706 Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_INT))); 5707 pivotIndices = new_array(klass_node, size, 0); // no arguments to push 5708 AllocateArrayNode* alloc = tightly_coupled_allocation(pivotIndices); 5709 guarantee(alloc != nullptr, "created above"); 5710 Node* pivotIndices_adr = basic_plus_adr(pivotIndices, arrayOopDesc::base_offset_in_bytes(T_INT)); 5711 5712 // pass the basic type enum to the stub 5713 Node* elemType = intcon(bt); 5714 5715 // Call the stub 5716 const char *stubName = "array_partition_stub"; 5717 make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::array_partition_Type(), 5718 stubAddr, stubName, TypePtr::BOTTOM, 5719 obj_adr, elemType, fromIndex, toIndex, pivotIndices_adr, 5720 indexPivot1, indexPivot2); 5721 5722 } // original reexecute is set back here 5723 5724 if (!stopped()) { 5725 set_result(pivotIndices); 5726 } 5727 5728 return true; 5729 } 5730 5731 5732 //------------------------------inline_array_sort----------------------- 5733 bool LibraryCallKit::inline_array_sort() { 5734 address stubAddr = StubRoutines::select_arraysort_function(); 5735 if (stubAddr == nullptr) { 5736 return false; // Intrinsic's stub is not implemented on this platform 5737 } 5738 assert(callee()->signature()->size() == 7, "arraySort has 6 parameters (one long)"); 5739 5740 // no receiver because it is a static method 5741 Node* elementType = argument(0); 5742 Node* obj = argument(1); 5743 Node* offset = argument(2); // long 5744 Node* fromIndex = argument(4); 5745 Node* toIndex = argument(5); 5746 // SortOperation: argument(6) is ignored 5747 5748 BasicType bt = T_ILLEGAL; 5749 5750 if (!check_array_sort_arguments(elementType, obj, bt)) { 5751 return false; 5752 } 5753 null_check(obj); 5754 // If obj is dead, only null-path is taken. 5755 if (stopped()) { 5756 return true; 5757 } 5758 Node* obj_adr = make_unsafe_address(obj, offset); 5759 5760 // pass the basic type enum to the stub 5761 Node* elemType = intcon(bt); 5762 5763 // Call the stub. 5764 const char *stubName = "arraysort_stub"; 5765 make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::array_sort_Type(), 5766 stubAddr, stubName, TypePtr::BOTTOM, 5767 obj_adr, elemType, fromIndex, toIndex); 5768 5769 return true; 5770 } 5771 5772 5773 //------------------------------inline_arraycopy----------------------- 5774 // public static native void java.lang.System.arraycopy(Object src, int srcPos, 5775 // Object dest, int destPos, 5776 // int length); 5777 bool LibraryCallKit::inline_arraycopy() { 5778 // Get the arguments. 5779 Node* src = argument(0); // type: oop 5780 Node* src_offset = argument(1); // type: int 5781 Node* dest = argument(2); // type: oop 5782 Node* dest_offset = argument(3); // type: int 5783 Node* length = argument(4); // type: int 5784 5785 uint new_idx = C->unique(); 5786 5787 // Check for allocation before we add nodes that would confuse 5788 // tightly_coupled_allocation() 5789 AllocateArrayNode* alloc = tightly_coupled_allocation(dest); 5790 5791 int saved_reexecute_sp = -1; 5792 JVMState* saved_jvms_before_guards = arraycopy_restore_alloc_state(alloc, saved_reexecute_sp); 5793 // See arraycopy_restore_alloc_state() comment 5794 // if alloc == null we don't have to worry about a tightly coupled allocation so we can emit all needed guards 5795 // if saved_jvms_before_guards is not null (then alloc is not null) then we can handle guards and a tightly coupled allocation 5796 // if saved_jvms_before_guards is null and alloc is not null, we can't emit any guards 5797 bool can_emit_guards = (alloc == nullptr || saved_jvms_before_guards != nullptr); 5798 5799 // The following tests must be performed 5800 // (1) src and dest are arrays. 5801 // (2) src and dest arrays must have elements of the same BasicType 5802 // (3) src and dest must not be null. 5803 // (4) src_offset must not be negative. 5804 // (5) dest_offset must not be negative. 5805 // (6) length must not be negative. 5806 // (7) src_offset + length must not exceed length of src. 5807 // (8) dest_offset + length must not exceed length of dest. 5808 // (9) each element of an oop array must be assignable 5809 5810 // (3) src and dest must not be null. 5811 // always do this here because we need the JVM state for uncommon traps 5812 Node* null_ctl = top(); 5813 src = saved_jvms_before_guards != nullptr ? null_check_oop(src, &null_ctl, true, true) : null_check(src, T_ARRAY); 5814 assert(null_ctl->is_top(), "no null control here"); 5815 dest = null_check(dest, T_ARRAY); 5816 5817 if (!can_emit_guards) { 5818 // if saved_jvms_before_guards is null and alloc is not null, we don't emit any 5819 // guards but the arraycopy node could still take advantage of a 5820 // tightly allocated allocation. tightly_coupled_allocation() is 5821 // called again to make sure it takes the null check above into 5822 // account: the null check is mandatory and if it caused an 5823 // uncommon trap to be emitted then the allocation can't be 5824 // considered tightly coupled in this context. 5825 alloc = tightly_coupled_allocation(dest); 5826 } 5827 5828 bool validated = false; 5829 5830 const Type* src_type = _gvn.type(src); 5831 const Type* dest_type = _gvn.type(dest); 5832 const TypeAryPtr* top_src = src_type->isa_aryptr(); 5833 const TypeAryPtr* top_dest = dest_type->isa_aryptr(); 5834 5835 // Do we have the type of src? 5836 bool has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM); 5837 // Do we have the type of dest? 5838 bool has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM); 5839 // Is the type for src from speculation? 5840 bool src_spec = false; 5841 // Is the type for dest from speculation? 5842 bool dest_spec = false; 5843 5844 if ((!has_src || !has_dest) && can_emit_guards) { 5845 // We don't have sufficient type information, let's see if 5846 // speculative types can help. We need to have types for both src 5847 // and dest so that it pays off. 5848 5849 // Do we already have or could we have type information for src 5850 bool could_have_src = has_src; 5851 // Do we already have or could we have type information for dest 5852 bool could_have_dest = has_dest; 5853 5854 ciKlass* src_k = nullptr; 5855 if (!has_src) { 5856 src_k = src_type->speculative_type_not_null(); 5857 if (src_k != nullptr && src_k->is_array_klass()) { 5858 could_have_src = true; 5859 } 5860 } 5861 5862 ciKlass* dest_k = nullptr; 5863 if (!has_dest) { 5864 dest_k = dest_type->speculative_type_not_null(); 5865 if (dest_k != nullptr && dest_k->is_array_klass()) { 5866 could_have_dest = true; 5867 } 5868 } 5869 5870 if (could_have_src && could_have_dest) { 5871 // This is going to pay off so emit the required guards 5872 if (!has_src) { 5873 src = maybe_cast_profiled_obj(src, src_k, true); 5874 src_type = _gvn.type(src); 5875 top_src = src_type->isa_aryptr(); 5876 has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM); 5877 src_spec = true; 5878 } 5879 if (!has_dest) { 5880 dest = maybe_cast_profiled_obj(dest, dest_k, true); 5881 dest_type = _gvn.type(dest); 5882 top_dest = dest_type->isa_aryptr(); 5883 has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM); 5884 dest_spec = true; 5885 } 5886 } 5887 } 5888 5889 if (has_src && has_dest && can_emit_guards) { 5890 BasicType src_elem = top_src->isa_aryptr()->elem()->array_element_basic_type(); 5891 BasicType dest_elem = top_dest->isa_aryptr()->elem()->array_element_basic_type(); 5892 if (is_reference_type(src_elem, true)) src_elem = T_OBJECT; 5893 if (is_reference_type(dest_elem, true)) dest_elem = T_OBJECT; 5894 5895 if (src_elem == dest_elem && src_elem == T_OBJECT) { 5896 // If both arrays are object arrays then having the exact types 5897 // for both will remove the need for a subtype check at runtime 5898 // before the call and may make it possible to pick a faster copy 5899 // routine (without a subtype check on every element) 5900 // Do we have the exact type of src? 5901 bool could_have_src = src_spec; 5902 // Do we have the exact type of dest? 5903 bool could_have_dest = dest_spec; 5904 ciKlass* src_k = nullptr; 5905 ciKlass* dest_k = nullptr; 5906 if (!src_spec) { 5907 src_k = src_type->speculative_type_not_null(); 5908 if (src_k != nullptr && src_k->is_array_klass()) { 5909 could_have_src = true; 5910 } 5911 } 5912 if (!dest_spec) { 5913 dest_k = dest_type->speculative_type_not_null(); 5914 if (dest_k != nullptr && dest_k->is_array_klass()) { 5915 could_have_dest = true; 5916 } 5917 } 5918 if (could_have_src && could_have_dest) { 5919 // If we can have both exact types, emit the missing guards 5920 if (could_have_src && !src_spec) { 5921 src = maybe_cast_profiled_obj(src, src_k, true); 5922 } 5923 if (could_have_dest && !dest_spec) { 5924 dest = maybe_cast_profiled_obj(dest, dest_k, true); 5925 } 5926 } 5927 } 5928 } 5929 5930 ciMethod* trap_method = method(); 5931 int trap_bci = bci(); 5932 if (saved_jvms_before_guards != nullptr) { 5933 trap_method = alloc->jvms()->method(); 5934 trap_bci = alloc->jvms()->bci(); 5935 } 5936 5937 bool negative_length_guard_generated = false; 5938 5939 if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) && 5940 can_emit_guards && 5941 !src->is_top() && !dest->is_top()) { 5942 // validate arguments: enables transformation the ArrayCopyNode 5943 validated = true; 5944 5945 RegionNode* slow_region = new RegionNode(1); 5946 record_for_igvn(slow_region); 5947 5948 // (1) src and dest are arrays. 5949 generate_non_array_guard(load_object_klass(src), slow_region, &src); 5950 generate_non_array_guard(load_object_klass(dest), slow_region, &dest); 5951 5952 // (2) src and dest arrays must have elements of the same BasicType 5953 // done at macro expansion or at Ideal transformation time 5954 5955 // (4) src_offset must not be negative. 5956 generate_negative_guard(src_offset, slow_region); 5957 5958 // (5) dest_offset must not be negative. 5959 generate_negative_guard(dest_offset, slow_region); 5960 5961 // (7) src_offset + length must not exceed length of src. 5962 generate_limit_guard(src_offset, length, 5963 load_array_length(src), 5964 slow_region); 5965 5966 // (8) dest_offset + length must not exceed length of dest. 5967 generate_limit_guard(dest_offset, length, 5968 load_array_length(dest), 5969 slow_region); 5970 5971 // (6) length must not be negative. 5972 // This is also checked in generate_arraycopy() during macro expansion, but 5973 // we also have to check it here for the case where the ArrayCopyNode will 5974 // be eliminated by Escape Analysis. 5975 if (EliminateAllocations) { 5976 generate_negative_guard(length, slow_region); 5977 negative_length_guard_generated = true; 5978 } 5979 5980 // (9) each element of an oop array must be assignable 5981 Node* dest_klass = load_object_klass(dest); 5982 if (src != dest) { 5983 Node* not_subtype_ctrl = gen_subtype_check(src, dest_klass); 5984 5985 if (not_subtype_ctrl != top()) { 5986 PreserveJVMState pjvms(this); 5987 set_control(not_subtype_ctrl); 5988 uncommon_trap(Deoptimization::Reason_intrinsic, 5989 Deoptimization::Action_make_not_entrant); 5990 assert(stopped(), "Should be stopped"); 5991 } 5992 } 5993 { 5994 PreserveJVMState pjvms(this); 5995 set_control(_gvn.transform(slow_region)); 5996 uncommon_trap(Deoptimization::Reason_intrinsic, 5997 Deoptimization::Action_make_not_entrant); 5998 assert(stopped(), "Should be stopped"); 5999 } 6000 6001 const TypeKlassPtr* dest_klass_t = _gvn.type(dest_klass)->is_klassptr(); 6002 const Type *toop = dest_klass_t->cast_to_exactness(false)->as_instance_type(); 6003 src = _gvn.transform(new CheckCastPPNode(control(), src, toop)); 6004 arraycopy_move_allocation_here(alloc, dest, saved_jvms_before_guards, saved_reexecute_sp, new_idx); 6005 } 6006 6007 if (stopped()) { 6008 return true; 6009 } 6010 6011 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != nullptr, negative_length_guard_generated, 6012 // Create LoadRange and LoadKlass nodes for use during macro expansion here 6013 // so the compiler has a chance to eliminate them: during macro expansion, 6014 // we have to set their control (CastPP nodes are eliminated). 6015 load_object_klass(src), load_object_klass(dest), 6016 load_array_length(src), load_array_length(dest)); 6017 6018 ac->set_arraycopy(validated); 6019 6020 Node* n = _gvn.transform(ac); 6021 if (n == ac) { 6022 ac->connect_outputs(this); 6023 } else { 6024 assert(validated, "shouldn't transform if all arguments not validated"); 6025 set_all_memory(n); 6026 } 6027 clear_upper_avx(); 6028 6029 6030 return true; 6031 } 6032 6033 6034 // Helper function which determines if an arraycopy immediately follows 6035 // an allocation, with no intervening tests or other escapes for the object. 6036 AllocateArrayNode* 6037 LibraryCallKit::tightly_coupled_allocation(Node* ptr) { 6038 if (stopped()) return nullptr; // no fast path 6039 if (!C->do_aliasing()) return nullptr; // no MergeMems around 6040 6041 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr); 6042 if (alloc == nullptr) return nullptr; 6043 6044 Node* rawmem = memory(Compile::AliasIdxRaw); 6045 // Is the allocation's memory state untouched? 6046 if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) { 6047 // Bail out if there have been raw-memory effects since the allocation. 6048 // (Example: There might have been a call or safepoint.) 6049 return nullptr; 6050 } 6051 rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw); 6052 if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) { 6053 return nullptr; 6054 } 6055 6056 // There must be no unexpected observers of this allocation. 6057 for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) { 6058 Node* obs = ptr->fast_out(i); 6059 if (obs != this->map()) { 6060 return nullptr; 6061 } 6062 } 6063 6064 // This arraycopy must unconditionally follow the allocation of the ptr. 6065 Node* alloc_ctl = ptr->in(0); 6066 Node* ctl = control(); 6067 while (ctl != alloc_ctl) { 6068 // There may be guards which feed into the slow_region. 6069 // Any other control flow means that we might not get a chance 6070 // to finish initializing the allocated object. 6071 // Various low-level checks bottom out in uncommon traps. These 6072 // are considered safe since we've already checked above that 6073 // there is no unexpected observer of this allocation. 6074 if (get_uncommon_trap_from_success_proj(ctl) != nullptr) { 6075 assert(ctl->in(0)->is_If(), "must be If"); 6076 ctl = ctl->in(0)->in(0); 6077 } else { 6078 return nullptr; 6079 } 6080 } 6081 6082 // If we get this far, we have an allocation which immediately 6083 // precedes the arraycopy, and we can take over zeroing the new object. 6084 // The arraycopy will finish the initialization, and provide 6085 // a new control state to which we will anchor the destination pointer. 6086 6087 return alloc; 6088 } 6089 6090 CallStaticJavaNode* LibraryCallKit::get_uncommon_trap_from_success_proj(Node* node) { 6091 if (node->is_IfProj()) { 6092 Node* other_proj = node->as_IfProj()->other_if_proj(); 6093 for (DUIterator_Fast jmax, j = other_proj->fast_outs(jmax); j < jmax; j++) { 6094 Node* obs = other_proj->fast_out(j); 6095 if (obs->in(0) == other_proj && obs->is_CallStaticJava() && 6096 (obs->as_CallStaticJava()->entry_point() == OptoRuntime::uncommon_trap_blob()->entry_point())) { 6097 return obs->as_CallStaticJava(); 6098 } 6099 } 6100 } 6101 return nullptr; 6102 } 6103 6104 //-------------inline_encodeISOArray----------------------------------- 6105 // encode char[] to byte[] in ISO_8859_1 or ASCII 6106 bool LibraryCallKit::inline_encodeISOArray(bool ascii) { 6107 assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters"); 6108 // no receiver since it is static method 6109 Node *src = argument(0); 6110 Node *src_offset = argument(1); 6111 Node *dst = argument(2); 6112 Node *dst_offset = argument(3); 6113 Node *length = argument(4); 6114 6115 src = must_be_not_null(src, true); 6116 dst = must_be_not_null(dst, true); 6117 6118 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6119 const TypeAryPtr* dst_type = dst->Value(&_gvn)->isa_aryptr(); 6120 if (src_type == nullptr || src_type->elem() == Type::BOTTOM || 6121 dst_type == nullptr || dst_type->elem() == Type::BOTTOM) { 6122 // failed array check 6123 return false; 6124 } 6125 6126 // Figure out the size and type of the elements we will be copying. 6127 BasicType src_elem = src_type->elem()->array_element_basic_type(); 6128 BasicType dst_elem = dst_type->elem()->array_element_basic_type(); 6129 if (!((src_elem == T_CHAR) || (src_elem== T_BYTE)) || dst_elem != T_BYTE) { 6130 return false; 6131 } 6132 6133 Node* src_start = array_element_address(src, src_offset, T_CHAR); 6134 Node* dst_start = array_element_address(dst, dst_offset, dst_elem); 6135 // 'src_start' points to src array + scaled offset 6136 // 'dst_start' points to dst array + scaled offset 6137 6138 const TypeAryPtr* mtype = TypeAryPtr::BYTES; 6139 Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length, ascii); 6140 enc = _gvn.transform(enc); 6141 Node* res_mem = _gvn.transform(new SCMemProjNode(enc)); 6142 set_memory(res_mem, mtype); 6143 set_result(enc); 6144 clear_upper_avx(); 6145 6146 return true; 6147 } 6148 6149 //-------------inline_multiplyToLen----------------------------------- 6150 bool LibraryCallKit::inline_multiplyToLen() { 6151 assert(UseMultiplyToLenIntrinsic, "not implemented on this platform"); 6152 6153 address stubAddr = StubRoutines::multiplyToLen(); 6154 if (stubAddr == nullptr) { 6155 return false; // Intrinsic's stub is not implemented on this platform 6156 } 6157 const char* stubName = "multiplyToLen"; 6158 6159 assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters"); 6160 6161 // no receiver because it is a static method 6162 Node* x = argument(0); 6163 Node* xlen = argument(1); 6164 Node* y = argument(2); 6165 Node* ylen = argument(3); 6166 Node* z = argument(4); 6167 6168 x = must_be_not_null(x, true); 6169 y = must_be_not_null(y, true); 6170 6171 const TypeAryPtr* x_type = x->Value(&_gvn)->isa_aryptr(); 6172 const TypeAryPtr* y_type = y->Value(&_gvn)->isa_aryptr(); 6173 if (x_type == nullptr || x_type->elem() == Type::BOTTOM || 6174 y_type == nullptr || y_type->elem() == Type::BOTTOM) { 6175 // failed array check 6176 return false; 6177 } 6178 6179 BasicType x_elem = x_type->elem()->array_element_basic_type(); 6180 BasicType y_elem = y_type->elem()->array_element_basic_type(); 6181 if (x_elem != T_INT || y_elem != T_INT) { 6182 return false; 6183 } 6184 6185 Node* x_start = array_element_address(x, intcon(0), x_elem); 6186 Node* y_start = array_element_address(y, intcon(0), y_elem); 6187 // 'x_start' points to x array + scaled xlen 6188 // 'y_start' points to y array + scaled ylen 6189 6190 Node* z_start = array_element_address(z, intcon(0), T_INT); 6191 6192 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 6193 OptoRuntime::multiplyToLen_Type(), 6194 stubAddr, stubName, TypePtr::BOTTOM, 6195 x_start, xlen, y_start, ylen, z_start); 6196 6197 C->set_has_split_ifs(true); // Has chance for split-if optimization 6198 set_result(z); 6199 return true; 6200 } 6201 6202 //-------------inline_squareToLen------------------------------------ 6203 bool LibraryCallKit::inline_squareToLen() { 6204 assert(UseSquareToLenIntrinsic, "not implemented on this platform"); 6205 6206 address stubAddr = StubRoutines::squareToLen(); 6207 if (stubAddr == nullptr) { 6208 return false; // Intrinsic's stub is not implemented on this platform 6209 } 6210 const char* stubName = "squareToLen"; 6211 6212 assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters"); 6213 6214 Node* x = argument(0); 6215 Node* len = argument(1); 6216 Node* z = argument(2); 6217 Node* zlen = argument(3); 6218 6219 x = must_be_not_null(x, true); 6220 z = must_be_not_null(z, true); 6221 6222 const TypeAryPtr* x_type = x->Value(&_gvn)->isa_aryptr(); 6223 const TypeAryPtr* z_type = z->Value(&_gvn)->isa_aryptr(); 6224 if (x_type == nullptr || x_type->elem() == Type::BOTTOM || 6225 z_type == nullptr || z_type->elem() == Type::BOTTOM) { 6226 // failed array check 6227 return false; 6228 } 6229 6230 BasicType x_elem = x_type->elem()->array_element_basic_type(); 6231 BasicType z_elem = z_type->elem()->array_element_basic_type(); 6232 if (x_elem != T_INT || z_elem != T_INT) { 6233 return false; 6234 } 6235 6236 6237 Node* x_start = array_element_address(x, intcon(0), x_elem); 6238 Node* z_start = array_element_address(z, intcon(0), z_elem); 6239 6240 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 6241 OptoRuntime::squareToLen_Type(), 6242 stubAddr, stubName, TypePtr::BOTTOM, 6243 x_start, len, z_start, zlen); 6244 6245 set_result(z); 6246 return true; 6247 } 6248 6249 //-------------inline_mulAdd------------------------------------------ 6250 bool LibraryCallKit::inline_mulAdd() { 6251 assert(UseMulAddIntrinsic, "not implemented on this platform"); 6252 6253 address stubAddr = StubRoutines::mulAdd(); 6254 if (stubAddr == nullptr) { 6255 return false; // Intrinsic's stub is not implemented on this platform 6256 } 6257 const char* stubName = "mulAdd"; 6258 6259 assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters"); 6260 6261 Node* out = argument(0); 6262 Node* in = argument(1); 6263 Node* offset = argument(2); 6264 Node* len = argument(3); 6265 Node* k = argument(4); 6266 6267 in = must_be_not_null(in, true); 6268 out = must_be_not_null(out, true); 6269 6270 const TypeAryPtr* out_type = out->Value(&_gvn)->isa_aryptr(); 6271 const TypeAryPtr* in_type = in->Value(&_gvn)->isa_aryptr(); 6272 if (out_type == nullptr || out_type->elem() == Type::BOTTOM || 6273 in_type == nullptr || in_type->elem() == Type::BOTTOM) { 6274 // failed array check 6275 return false; 6276 } 6277 6278 BasicType out_elem = out_type->elem()->array_element_basic_type(); 6279 BasicType in_elem = in_type->elem()->array_element_basic_type(); 6280 if (out_elem != T_INT || in_elem != T_INT) { 6281 return false; 6282 } 6283 6284 Node* outlen = load_array_length(out); 6285 Node* new_offset = _gvn.transform(new SubINode(outlen, offset)); 6286 Node* out_start = array_element_address(out, intcon(0), out_elem); 6287 Node* in_start = array_element_address(in, intcon(0), in_elem); 6288 6289 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 6290 OptoRuntime::mulAdd_Type(), 6291 stubAddr, stubName, TypePtr::BOTTOM, 6292 out_start,in_start, new_offset, len, k); 6293 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6294 set_result(result); 6295 return true; 6296 } 6297 6298 //-------------inline_montgomeryMultiply----------------------------------- 6299 bool LibraryCallKit::inline_montgomeryMultiply() { 6300 address stubAddr = StubRoutines::montgomeryMultiply(); 6301 if (stubAddr == nullptr) { 6302 return false; // Intrinsic's stub is not implemented on this platform 6303 } 6304 6305 assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform"); 6306 const char* stubName = "montgomery_multiply"; 6307 6308 assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters"); 6309 6310 Node* a = argument(0); 6311 Node* b = argument(1); 6312 Node* n = argument(2); 6313 Node* len = argument(3); 6314 Node* inv = argument(4); 6315 Node* m = argument(6); 6316 6317 const TypeAryPtr* a_type = a->Value(&_gvn)->isa_aryptr(); 6318 const TypeAryPtr* b_type = b->Value(&_gvn)->isa_aryptr(); 6319 const TypeAryPtr* n_type = n->Value(&_gvn)->isa_aryptr(); 6320 const TypeAryPtr* m_type = m->Value(&_gvn)->isa_aryptr(); 6321 if (a_type == nullptr || a_type->elem() == Type::BOTTOM || 6322 b_type == nullptr || b_type->elem() == Type::BOTTOM || 6323 n_type == nullptr || n_type->elem() == Type::BOTTOM || 6324 m_type == nullptr || m_type->elem() == Type::BOTTOM) { 6325 // failed array check 6326 return false; 6327 } 6328 6329 BasicType a_elem = a_type->elem()->array_element_basic_type(); 6330 BasicType b_elem = b_type->elem()->array_element_basic_type(); 6331 BasicType n_elem = n_type->elem()->array_element_basic_type(); 6332 BasicType m_elem = m_type->elem()->array_element_basic_type(); 6333 if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) { 6334 return false; 6335 } 6336 6337 // Make the call 6338 { 6339 Node* a_start = array_element_address(a, intcon(0), a_elem); 6340 Node* b_start = array_element_address(b, intcon(0), b_elem); 6341 Node* n_start = array_element_address(n, intcon(0), n_elem); 6342 Node* m_start = array_element_address(m, intcon(0), m_elem); 6343 6344 Node* call = make_runtime_call(RC_LEAF, 6345 OptoRuntime::montgomeryMultiply_Type(), 6346 stubAddr, stubName, TypePtr::BOTTOM, 6347 a_start, b_start, n_start, len, inv, top(), 6348 m_start); 6349 set_result(m); 6350 } 6351 6352 return true; 6353 } 6354 6355 bool LibraryCallKit::inline_montgomerySquare() { 6356 address stubAddr = StubRoutines::montgomerySquare(); 6357 if (stubAddr == nullptr) { 6358 return false; // Intrinsic's stub is not implemented on this platform 6359 } 6360 6361 assert(UseMontgomerySquareIntrinsic, "not implemented on this platform"); 6362 const char* stubName = "montgomery_square"; 6363 6364 assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters"); 6365 6366 Node* a = argument(0); 6367 Node* n = argument(1); 6368 Node* len = argument(2); 6369 Node* inv = argument(3); 6370 Node* m = argument(5); 6371 6372 const TypeAryPtr* a_type = a->Value(&_gvn)->isa_aryptr(); 6373 const TypeAryPtr* n_type = n->Value(&_gvn)->isa_aryptr(); 6374 const TypeAryPtr* m_type = m->Value(&_gvn)->isa_aryptr(); 6375 if (a_type == nullptr || a_type->elem() == Type::BOTTOM || 6376 n_type == nullptr || n_type->elem() == Type::BOTTOM || 6377 m_type == nullptr || m_type->elem() == Type::BOTTOM) { 6378 // failed array check 6379 return false; 6380 } 6381 6382 BasicType a_elem = a_type->elem()->array_element_basic_type(); 6383 BasicType n_elem = n_type->elem()->array_element_basic_type(); 6384 BasicType m_elem = m_type->elem()->array_element_basic_type(); 6385 if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) { 6386 return false; 6387 } 6388 6389 // Make the call 6390 { 6391 Node* a_start = array_element_address(a, intcon(0), a_elem); 6392 Node* n_start = array_element_address(n, intcon(0), n_elem); 6393 Node* m_start = array_element_address(m, intcon(0), m_elem); 6394 6395 Node* call = make_runtime_call(RC_LEAF, 6396 OptoRuntime::montgomerySquare_Type(), 6397 stubAddr, stubName, TypePtr::BOTTOM, 6398 a_start, n_start, len, inv, top(), 6399 m_start); 6400 set_result(m); 6401 } 6402 6403 return true; 6404 } 6405 6406 bool LibraryCallKit::inline_bigIntegerShift(bool isRightShift) { 6407 address stubAddr = nullptr; 6408 const char* stubName = nullptr; 6409 6410 stubAddr = isRightShift? StubRoutines::bigIntegerRightShift(): StubRoutines::bigIntegerLeftShift(); 6411 if (stubAddr == nullptr) { 6412 return false; // Intrinsic's stub is not implemented on this platform 6413 } 6414 6415 stubName = isRightShift? "bigIntegerRightShiftWorker" : "bigIntegerLeftShiftWorker"; 6416 6417 assert(callee()->signature()->size() == 5, "expected 5 arguments"); 6418 6419 Node* newArr = argument(0); 6420 Node* oldArr = argument(1); 6421 Node* newIdx = argument(2); 6422 Node* shiftCount = argument(3); 6423 Node* numIter = argument(4); 6424 6425 const TypeAryPtr* newArr_type = newArr->Value(&_gvn)->isa_aryptr(); 6426 const TypeAryPtr* oldArr_type = oldArr->Value(&_gvn)->isa_aryptr(); 6427 if (newArr_type == nullptr || newArr_type->elem() == Type::BOTTOM || 6428 oldArr_type == nullptr || oldArr_type->elem() == Type::BOTTOM) { 6429 return false; 6430 } 6431 6432 BasicType newArr_elem = newArr_type->elem()->array_element_basic_type(); 6433 BasicType oldArr_elem = oldArr_type->elem()->array_element_basic_type(); 6434 if (newArr_elem != T_INT || oldArr_elem != T_INT) { 6435 return false; 6436 } 6437 6438 // Make the call 6439 { 6440 Node* newArr_start = array_element_address(newArr, intcon(0), newArr_elem); 6441 Node* oldArr_start = array_element_address(oldArr, intcon(0), oldArr_elem); 6442 6443 Node* call = make_runtime_call(RC_LEAF, 6444 OptoRuntime::bigIntegerShift_Type(), 6445 stubAddr, 6446 stubName, 6447 TypePtr::BOTTOM, 6448 newArr_start, 6449 oldArr_start, 6450 newIdx, 6451 shiftCount, 6452 numIter); 6453 } 6454 6455 return true; 6456 } 6457 6458 //-------------inline_vectorizedMismatch------------------------------ 6459 bool LibraryCallKit::inline_vectorizedMismatch() { 6460 assert(UseVectorizedMismatchIntrinsic, "not implemented on this platform"); 6461 6462 assert(callee()->signature()->size() == 8, "vectorizedMismatch has 6 parameters"); 6463 Node* obja = argument(0); // Object 6464 Node* aoffset = argument(1); // long 6465 Node* objb = argument(3); // Object 6466 Node* boffset = argument(4); // long 6467 Node* length = argument(6); // int 6468 Node* scale = argument(7); // int 6469 6470 const TypeAryPtr* obja_t = _gvn.type(obja)->isa_aryptr(); 6471 const TypeAryPtr* objb_t = _gvn.type(objb)->isa_aryptr(); 6472 if (obja_t == nullptr || obja_t->elem() == Type::BOTTOM || 6473 objb_t == nullptr || objb_t->elem() == Type::BOTTOM || 6474 scale == top()) { 6475 return false; // failed input validation 6476 } 6477 6478 Node* obja_adr = make_unsafe_address(obja, aoffset); 6479 Node* objb_adr = make_unsafe_address(objb, boffset); 6480 6481 // Partial inlining handling for inputs smaller than ArrayOperationPartialInlineSize bytes in size. 6482 // 6483 // inline_limit = ArrayOperationPartialInlineSize / element_size; 6484 // if (length <= inline_limit) { 6485 // inline_path: 6486 // vmask = VectorMaskGen length 6487 // vload1 = LoadVectorMasked obja, vmask 6488 // vload2 = LoadVectorMasked objb, vmask 6489 // result1 = VectorCmpMasked vload1, vload2, vmask 6490 // } else { 6491 // call_stub_path: 6492 // result2 = call vectorizedMismatch_stub(obja, objb, length, scale) 6493 // } 6494 // exit_block: 6495 // return Phi(result1, result2); 6496 // 6497 enum { inline_path = 1, // input is small enough to process it all at once 6498 stub_path = 2, // input is too large; call into the VM 6499 PATH_LIMIT = 3 6500 }; 6501 6502 Node* exit_block = new RegionNode(PATH_LIMIT); 6503 Node* result_phi = new PhiNode(exit_block, TypeInt::INT); 6504 Node* memory_phi = new PhiNode(exit_block, Type::MEMORY, TypePtr::BOTTOM); 6505 6506 Node* call_stub_path = control(); 6507 6508 BasicType elem_bt = T_ILLEGAL; 6509 6510 const TypeInt* scale_t = _gvn.type(scale)->is_int(); 6511 if (scale_t->is_con()) { 6512 switch (scale_t->get_con()) { 6513 case 0: elem_bt = T_BYTE; break; 6514 case 1: elem_bt = T_SHORT; break; 6515 case 2: elem_bt = T_INT; break; 6516 case 3: elem_bt = T_LONG; break; 6517 6518 default: elem_bt = T_ILLEGAL; break; // not supported 6519 } 6520 } 6521 6522 int inline_limit = 0; 6523 bool do_partial_inline = false; 6524 6525 if (elem_bt != T_ILLEGAL && ArrayOperationPartialInlineSize > 0) { 6526 inline_limit = ArrayOperationPartialInlineSize / type2aelembytes(elem_bt); 6527 do_partial_inline = inline_limit >= 16; 6528 } 6529 6530 if (do_partial_inline) { 6531 assert(elem_bt != T_ILLEGAL, "sanity"); 6532 6533 if (Matcher::match_rule_supported_vector(Op_VectorMaskGen, inline_limit, elem_bt) && 6534 Matcher::match_rule_supported_vector(Op_LoadVectorMasked, inline_limit, elem_bt) && 6535 Matcher::match_rule_supported_vector(Op_VectorCmpMasked, inline_limit, elem_bt)) { 6536 6537 const TypeVect* vt = TypeVect::make(elem_bt, inline_limit); 6538 Node* cmp_length = _gvn.transform(new CmpINode(length, intcon(inline_limit))); 6539 Node* bol_gt = _gvn.transform(new BoolNode(cmp_length, BoolTest::gt)); 6540 6541 call_stub_path = generate_guard(bol_gt, nullptr, PROB_MIN); 6542 6543 if (!stopped()) { 6544 Node* casted_length = _gvn.transform(new CastIINode(control(), length, TypeInt::make(0, inline_limit, Type::WidenMin))); 6545 6546 const TypePtr* obja_adr_t = _gvn.type(obja_adr)->isa_ptr(); 6547 const TypePtr* objb_adr_t = _gvn.type(objb_adr)->isa_ptr(); 6548 Node* obja_adr_mem = memory(C->get_alias_index(obja_adr_t)); 6549 Node* objb_adr_mem = memory(C->get_alias_index(objb_adr_t)); 6550 6551 Node* vmask = _gvn.transform(VectorMaskGenNode::make(ConvI2X(casted_length), elem_bt)); 6552 Node* vload_obja = _gvn.transform(new LoadVectorMaskedNode(control(), obja_adr_mem, obja_adr, obja_adr_t, vt, vmask)); 6553 Node* vload_objb = _gvn.transform(new LoadVectorMaskedNode(control(), objb_adr_mem, objb_adr, objb_adr_t, vt, vmask)); 6554 Node* result = _gvn.transform(new VectorCmpMaskedNode(vload_obja, vload_objb, vmask, TypeInt::INT)); 6555 6556 exit_block->init_req(inline_path, control()); 6557 memory_phi->init_req(inline_path, map()->memory()); 6558 result_phi->init_req(inline_path, result); 6559 6560 C->set_max_vector_size(MAX2((uint)ArrayOperationPartialInlineSize, C->max_vector_size())); 6561 clear_upper_avx(); 6562 } 6563 } 6564 } 6565 6566 if (call_stub_path != nullptr) { 6567 set_control(call_stub_path); 6568 6569 Node* call = make_runtime_call(RC_LEAF, 6570 OptoRuntime::vectorizedMismatch_Type(), 6571 StubRoutines::vectorizedMismatch(), "vectorizedMismatch", TypePtr::BOTTOM, 6572 obja_adr, objb_adr, length, scale); 6573 6574 exit_block->init_req(stub_path, control()); 6575 memory_phi->init_req(stub_path, map()->memory()); 6576 result_phi->init_req(stub_path, _gvn.transform(new ProjNode(call, TypeFunc::Parms))); 6577 } 6578 6579 exit_block = _gvn.transform(exit_block); 6580 memory_phi = _gvn.transform(memory_phi); 6581 result_phi = _gvn.transform(result_phi); 6582 6583 set_control(exit_block); 6584 set_all_memory(memory_phi); 6585 set_result(result_phi); 6586 6587 return true; 6588 } 6589 6590 //------------------------------inline_vectorizedHashcode---------------------------- 6591 bool LibraryCallKit::inline_vectorizedHashCode() { 6592 assert(UseVectorizedHashCodeIntrinsic, "not implemented on this platform"); 6593 6594 assert(callee()->signature()->size() == 5, "vectorizedHashCode has 5 parameters"); 6595 Node* array = argument(0); 6596 Node* offset = argument(1); 6597 Node* length = argument(2); 6598 Node* initialValue = argument(3); 6599 Node* basic_type = argument(4); 6600 6601 if (basic_type == top()) { 6602 return false; // failed input validation 6603 } 6604 6605 const TypeInt* basic_type_t = _gvn.type(basic_type)->is_int(); 6606 if (!basic_type_t->is_con()) { 6607 return false; // Only intrinsify if mode argument is constant 6608 } 6609 6610 array = must_be_not_null(array, true); 6611 6612 BasicType bt = (BasicType)basic_type_t->get_con(); 6613 6614 // Resolve address of first element 6615 Node* array_start = array_element_address(array, offset, bt); 6616 6617 set_result(_gvn.transform(new VectorizedHashCodeNode(control(), memory(TypeAryPtr::get_array_body_type(bt)), 6618 array_start, length, initialValue, basic_type))); 6619 clear_upper_avx(); 6620 6621 return true; 6622 } 6623 6624 /** 6625 * Calculate CRC32 for byte. 6626 * int java.util.zip.CRC32.update(int crc, int b) 6627 */ 6628 bool LibraryCallKit::inline_updateCRC32() { 6629 assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions support"); 6630 assert(callee()->signature()->size() == 2, "update has 2 parameters"); 6631 // no receiver since it is static method 6632 Node* crc = argument(0); // type: int 6633 Node* b = argument(1); // type: int 6634 6635 /* 6636 * int c = ~ crc; 6637 * b = timesXtoThe32[(b ^ c) & 0xFF]; 6638 * b = b ^ (c >>> 8); 6639 * crc = ~b; 6640 */ 6641 6642 Node* M1 = intcon(-1); 6643 crc = _gvn.transform(new XorINode(crc, M1)); 6644 Node* result = _gvn.transform(new XorINode(crc, b)); 6645 result = _gvn.transform(new AndINode(result, intcon(0xFF))); 6646 6647 Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr())); 6648 Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2))); 6649 Node* adr = basic_plus_adr(top(), base, ConvI2X(offset)); 6650 result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered); 6651 6652 crc = _gvn.transform(new URShiftINode(crc, intcon(8))); 6653 result = _gvn.transform(new XorINode(crc, result)); 6654 result = _gvn.transform(new XorINode(result, M1)); 6655 set_result(result); 6656 return true; 6657 } 6658 6659 /** 6660 * Calculate CRC32 for byte[] array. 6661 * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len) 6662 */ 6663 bool LibraryCallKit::inline_updateBytesCRC32() { 6664 assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions support"); 6665 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 6666 // no receiver since it is static method 6667 Node* crc = argument(0); // type: int 6668 Node* src = argument(1); // type: oop 6669 Node* offset = argument(2); // type: int 6670 Node* length = argument(3); // type: int 6671 6672 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6673 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 6674 // failed array check 6675 return false; 6676 } 6677 6678 // Figure out the size and type of the elements we will be copying. 6679 BasicType src_elem = src_type->elem()->array_element_basic_type(); 6680 if (src_elem != T_BYTE) { 6681 return false; 6682 } 6683 6684 // 'src_start' points to src array + scaled offset 6685 src = must_be_not_null(src, true); 6686 Node* src_start = array_element_address(src, offset, src_elem); 6687 6688 // We assume that range check is done by caller. 6689 // TODO: generate range check (offset+length < src.length) in debug VM. 6690 6691 // Call the stub. 6692 address stubAddr = StubRoutines::updateBytesCRC32(); 6693 const char *stubName = "updateBytesCRC32"; 6694 6695 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(), 6696 stubAddr, stubName, TypePtr::BOTTOM, 6697 crc, src_start, length); 6698 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6699 set_result(result); 6700 return true; 6701 } 6702 6703 /** 6704 * Calculate CRC32 for ByteBuffer. 6705 * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len) 6706 */ 6707 bool LibraryCallKit::inline_updateByteBufferCRC32() { 6708 assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions support"); 6709 assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long"); 6710 // no receiver since it is static method 6711 Node* crc = argument(0); // type: int 6712 Node* src = argument(1); // type: long 6713 Node* offset = argument(3); // type: int 6714 Node* length = argument(4); // type: int 6715 6716 src = ConvL2X(src); // adjust Java long to machine word 6717 Node* base = _gvn.transform(new CastX2PNode(src)); 6718 offset = ConvI2X(offset); 6719 6720 // 'src_start' points to src array + scaled offset 6721 Node* src_start = basic_plus_adr(top(), base, offset); 6722 6723 // Call the stub. 6724 address stubAddr = StubRoutines::updateBytesCRC32(); 6725 const char *stubName = "updateBytesCRC32"; 6726 6727 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(), 6728 stubAddr, stubName, TypePtr::BOTTOM, 6729 crc, src_start, length); 6730 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6731 set_result(result); 6732 return true; 6733 } 6734 6735 //------------------------------get_table_from_crc32c_class----------------------- 6736 Node * LibraryCallKit::get_table_from_crc32c_class(ciInstanceKlass *crc32c_class) { 6737 Node* table = load_field_from_object(nullptr, "byteTable", "[I", /*decorators*/ IN_HEAP, /*is_static*/ true, crc32c_class); 6738 assert (table != nullptr, "wrong version of java.util.zip.CRC32C"); 6739 6740 return table; 6741 } 6742 6743 //------------------------------inline_updateBytesCRC32C----------------------- 6744 // 6745 // Calculate CRC32C for byte[] array. 6746 // int java.util.zip.CRC32C.updateBytes(int crc, byte[] buf, int off, int end) 6747 // 6748 bool LibraryCallKit::inline_updateBytesCRC32C() { 6749 assert(UseCRC32CIntrinsics, "need CRC32C instruction support"); 6750 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 6751 assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded"); 6752 // no receiver since it is a static method 6753 Node* crc = argument(0); // type: int 6754 Node* src = argument(1); // type: oop 6755 Node* offset = argument(2); // type: int 6756 Node* end = argument(3); // type: int 6757 6758 Node* length = _gvn.transform(new SubINode(end, offset)); 6759 6760 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6761 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 6762 // failed array check 6763 return false; 6764 } 6765 6766 // Figure out the size and type of the elements we will be copying. 6767 BasicType src_elem = src_type->elem()->array_element_basic_type(); 6768 if (src_elem != T_BYTE) { 6769 return false; 6770 } 6771 6772 // 'src_start' points to src array + scaled offset 6773 src = must_be_not_null(src, true); 6774 Node* src_start = array_element_address(src, offset, src_elem); 6775 6776 // static final int[] byteTable in class CRC32C 6777 Node* table = get_table_from_crc32c_class(callee()->holder()); 6778 table = must_be_not_null(table, true); 6779 Node* table_start = array_element_address(table, intcon(0), T_INT); 6780 6781 // We assume that range check is done by caller. 6782 // TODO: generate range check (offset+length < src.length) in debug VM. 6783 6784 // Call the stub. 6785 address stubAddr = StubRoutines::updateBytesCRC32C(); 6786 const char *stubName = "updateBytesCRC32C"; 6787 6788 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(), 6789 stubAddr, stubName, TypePtr::BOTTOM, 6790 crc, src_start, length, table_start); 6791 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6792 set_result(result); 6793 return true; 6794 } 6795 6796 //------------------------------inline_updateDirectByteBufferCRC32C----------------------- 6797 // 6798 // Calculate CRC32C for DirectByteBuffer. 6799 // int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end) 6800 // 6801 bool LibraryCallKit::inline_updateDirectByteBufferCRC32C() { 6802 assert(UseCRC32CIntrinsics, "need CRC32C instruction support"); 6803 assert(callee()->signature()->size() == 5, "updateDirectByteBuffer has 4 parameters and one is long"); 6804 assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded"); 6805 // no receiver since it is a static method 6806 Node* crc = argument(0); // type: int 6807 Node* src = argument(1); // type: long 6808 Node* offset = argument(3); // type: int 6809 Node* end = argument(4); // type: int 6810 6811 Node* length = _gvn.transform(new SubINode(end, offset)); 6812 6813 src = ConvL2X(src); // adjust Java long to machine word 6814 Node* base = _gvn.transform(new CastX2PNode(src)); 6815 offset = ConvI2X(offset); 6816 6817 // 'src_start' points to src array + scaled offset 6818 Node* src_start = basic_plus_adr(top(), base, offset); 6819 6820 // static final int[] byteTable in class CRC32C 6821 Node* table = get_table_from_crc32c_class(callee()->holder()); 6822 table = must_be_not_null(table, true); 6823 Node* table_start = array_element_address(table, intcon(0), T_INT); 6824 6825 // Call the stub. 6826 address stubAddr = StubRoutines::updateBytesCRC32C(); 6827 const char *stubName = "updateBytesCRC32C"; 6828 6829 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(), 6830 stubAddr, stubName, TypePtr::BOTTOM, 6831 crc, src_start, length, table_start); 6832 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6833 set_result(result); 6834 return true; 6835 } 6836 6837 //------------------------------inline_updateBytesAdler32---------------------- 6838 // 6839 // Calculate Adler32 checksum for byte[] array. 6840 // int java.util.zip.Adler32.updateBytes(int crc, byte[] buf, int off, int len) 6841 // 6842 bool LibraryCallKit::inline_updateBytesAdler32() { 6843 assert(UseAdler32Intrinsics, "Adler32 Intrinsic support need"); // check if we actually need to check this flag or check a different one 6844 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 6845 assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded"); 6846 // no receiver since it is static method 6847 Node* crc = argument(0); // type: int 6848 Node* src = argument(1); // type: oop 6849 Node* offset = argument(2); // type: int 6850 Node* length = argument(3); // type: int 6851 6852 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6853 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 6854 // failed array check 6855 return false; 6856 } 6857 6858 // Figure out the size and type of the elements we will be copying. 6859 BasicType src_elem = src_type->elem()->array_element_basic_type(); 6860 if (src_elem != T_BYTE) { 6861 return false; 6862 } 6863 6864 // 'src_start' points to src array + scaled offset 6865 Node* src_start = array_element_address(src, offset, src_elem); 6866 6867 // We assume that range check is done by caller. 6868 // TODO: generate range check (offset+length < src.length) in debug VM. 6869 6870 // Call the stub. 6871 address stubAddr = StubRoutines::updateBytesAdler32(); 6872 const char *stubName = "updateBytesAdler32"; 6873 6874 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(), 6875 stubAddr, stubName, TypePtr::BOTTOM, 6876 crc, src_start, length); 6877 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6878 set_result(result); 6879 return true; 6880 } 6881 6882 //------------------------------inline_updateByteBufferAdler32--------------- 6883 // 6884 // Calculate Adler32 checksum for DirectByteBuffer. 6885 // int java.util.zip.Adler32.updateByteBuffer(int crc, long buf, int off, int len) 6886 // 6887 bool LibraryCallKit::inline_updateByteBufferAdler32() { 6888 assert(UseAdler32Intrinsics, "Adler32 Intrinsic support need"); // check if we actually need to check this flag or check a different one 6889 assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long"); 6890 assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded"); 6891 // no receiver since it is static method 6892 Node* crc = argument(0); // type: int 6893 Node* src = argument(1); // type: long 6894 Node* offset = argument(3); // type: int 6895 Node* length = argument(4); // type: int 6896 6897 src = ConvL2X(src); // adjust Java long to machine word 6898 Node* base = _gvn.transform(new CastX2PNode(src)); 6899 offset = ConvI2X(offset); 6900 6901 // 'src_start' points to src array + scaled offset 6902 Node* src_start = basic_plus_adr(top(), base, offset); 6903 6904 // Call the stub. 6905 address stubAddr = StubRoutines::updateBytesAdler32(); 6906 const char *stubName = "updateBytesAdler32"; 6907 6908 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(), 6909 stubAddr, stubName, TypePtr::BOTTOM, 6910 crc, src_start, length); 6911 6912 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6913 set_result(result); 6914 return true; 6915 } 6916 6917 //----------------------------inline_reference_get---------------------------- 6918 // public T java.lang.ref.Reference.get(); 6919 bool LibraryCallKit::inline_reference_get() { 6920 const int referent_offset = java_lang_ref_Reference::referent_offset(); 6921 6922 // Get the argument: 6923 Node* reference_obj = null_check_receiver(); 6924 if (stopped()) return true; 6925 6926 DecoratorSet decorators = IN_HEAP | ON_WEAK_OOP_REF; 6927 Node* result = load_field_from_object(reference_obj, "referent", "Ljava/lang/Object;", 6928 decorators, /*is_static*/ false, nullptr); 6929 if (result == nullptr) return false; 6930 6931 // Add memory barrier to prevent commoning reads from this field 6932 // across safepoint since GC can change its value. 6933 insert_mem_bar(Op_MemBarCPUOrder); 6934 6935 set_result(result); 6936 return true; 6937 } 6938 6939 //----------------------------inline_reference_refersTo0---------------------------- 6940 // bool java.lang.ref.Reference.refersTo0(); 6941 // bool java.lang.ref.PhantomReference.refersTo0(); 6942 bool LibraryCallKit::inline_reference_refersTo0(bool is_phantom) { 6943 // Get arguments: 6944 Node* reference_obj = null_check_receiver(); 6945 Node* other_obj = argument(1); 6946 if (stopped()) return true; 6947 6948 DecoratorSet decorators = IN_HEAP | AS_NO_KEEPALIVE; 6949 decorators |= (is_phantom ? ON_PHANTOM_OOP_REF : ON_WEAK_OOP_REF); 6950 Node* referent = load_field_from_object(reference_obj, "referent", "Ljava/lang/Object;", 6951 decorators, /*is_static*/ false, nullptr); 6952 if (referent == nullptr) return false; 6953 6954 // Add memory barrier to prevent commoning reads from this field 6955 // across safepoint since GC can change its value. 6956 insert_mem_bar(Op_MemBarCPUOrder); 6957 6958 Node* cmp = _gvn.transform(new CmpPNode(referent, other_obj)); 6959 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 6960 IfNode* if_node = create_and_map_if(control(), bol, PROB_FAIR, COUNT_UNKNOWN); 6961 6962 RegionNode* region = new RegionNode(3); 6963 PhiNode* phi = new PhiNode(region, TypeInt::BOOL); 6964 6965 Node* if_true = _gvn.transform(new IfTrueNode(if_node)); 6966 region->init_req(1, if_true); 6967 phi->init_req(1, intcon(1)); 6968 6969 Node* if_false = _gvn.transform(new IfFalseNode(if_node)); 6970 region->init_req(2, if_false); 6971 phi->init_req(2, intcon(0)); 6972 6973 set_control(_gvn.transform(region)); 6974 record_for_igvn(region); 6975 set_result(_gvn.transform(phi)); 6976 return true; 6977 } 6978 6979 //----------------------------inline_reference_clear0---------------------------- 6980 // void java.lang.ref.Reference.clear0(); 6981 // void java.lang.ref.PhantomReference.clear0(); 6982 bool LibraryCallKit::inline_reference_clear0(bool is_phantom) { 6983 // This matches the implementation in JVM_ReferenceClear, see the comments there. 6984 6985 // Get arguments 6986 Node* reference_obj = null_check_receiver(); 6987 if (stopped()) return true; 6988 6989 // Common access parameters 6990 DecoratorSet decorators = IN_HEAP | AS_NO_KEEPALIVE; 6991 decorators |= (is_phantom ? ON_PHANTOM_OOP_REF : ON_WEAK_OOP_REF); 6992 Node* referent_field_addr = basic_plus_adr(reference_obj, java_lang_ref_Reference::referent_offset()); 6993 const TypePtr* referent_field_addr_type = _gvn.type(referent_field_addr)->isa_ptr(); 6994 const Type* val_type = TypeOopPtr::make_from_klass(env()->Object_klass()); 6995 6996 Node* referent = access_load_at(reference_obj, 6997 referent_field_addr, 6998 referent_field_addr_type, 6999 val_type, 7000 T_OBJECT, 7001 decorators); 7002 7003 IdealKit ideal(this); 7004 #define __ ideal. 7005 __ if_then(referent, BoolTest::ne, null()); 7006 sync_kit(ideal); 7007 access_store_at(reference_obj, 7008 referent_field_addr, 7009 referent_field_addr_type, 7010 null(), 7011 val_type, 7012 T_OBJECT, 7013 decorators); 7014 __ sync_kit(this); 7015 __ end_if(); 7016 final_sync(ideal); 7017 #undef __ 7018 7019 return true; 7020 } 7021 7022 Node* LibraryCallKit::load_field_from_object(Node* fromObj, const char* fieldName, const char* fieldTypeString, 7023 DecoratorSet decorators, bool is_static, 7024 ciInstanceKlass* fromKls) { 7025 if (fromKls == nullptr) { 7026 const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr(); 7027 assert(tinst != nullptr, "obj is null"); 7028 assert(tinst->is_loaded(), "obj is not loaded"); 7029 fromKls = tinst->instance_klass(); 7030 } else { 7031 assert(is_static, "only for static field access"); 7032 } 7033 ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName), 7034 ciSymbol::make(fieldTypeString), 7035 is_static); 7036 7037 assert(field != nullptr, "undefined field %s %s %s", fieldTypeString, fromKls->name()->as_utf8(), fieldName); 7038 if (field == nullptr) return (Node *) nullptr; 7039 7040 if (is_static) { 7041 const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror()); 7042 fromObj = makecon(tip); 7043 } 7044 7045 // Next code copied from Parse::do_get_xxx(): 7046 7047 // Compute address and memory type. 7048 int offset = field->offset_in_bytes(); 7049 bool is_vol = field->is_volatile(); 7050 ciType* field_klass = field->type(); 7051 assert(field_klass->is_loaded(), "should be loaded"); 7052 const TypePtr* adr_type = C->alias_type(field)->adr_type(); 7053 Node *adr = basic_plus_adr(fromObj, fromObj, offset); 7054 assert(C->get_alias_index(adr_type) == C->get_alias_index(_gvn.type(adr)->isa_ptr()), 7055 "slice of address and input slice don't match"); 7056 BasicType bt = field->layout_type(); 7057 7058 // Build the resultant type of the load 7059 const Type *type; 7060 if (bt == T_OBJECT) { 7061 type = TypeOopPtr::make_from_klass(field_klass->as_klass()); 7062 } else { 7063 type = Type::get_const_basic_type(bt); 7064 } 7065 7066 if (is_vol) { 7067 decorators |= MO_SEQ_CST; 7068 } 7069 7070 return access_load_at(fromObj, adr, adr_type, type, bt, decorators); 7071 } 7072 7073 Node * LibraryCallKit::field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, 7074 bool is_exact /* true */, bool is_static /* false */, 7075 ciInstanceKlass * fromKls /* nullptr */) { 7076 if (fromKls == nullptr) { 7077 const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr(); 7078 assert(tinst != nullptr, "obj is null"); 7079 assert(tinst->is_loaded(), "obj is not loaded"); 7080 assert(!is_exact || tinst->klass_is_exact(), "klass not exact"); 7081 fromKls = tinst->instance_klass(); 7082 } 7083 else { 7084 assert(is_static, "only for static field access"); 7085 } 7086 ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName), 7087 ciSymbol::make(fieldTypeString), 7088 is_static); 7089 7090 assert(field != nullptr, "undefined field"); 7091 assert(!field->is_volatile(), "not defined for volatile fields"); 7092 7093 if (is_static) { 7094 const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror()); 7095 fromObj = makecon(tip); 7096 } 7097 7098 // Next code copied from Parse::do_get_xxx(): 7099 7100 // Compute address and memory type. 7101 int offset = field->offset_in_bytes(); 7102 Node *adr = basic_plus_adr(fromObj, fromObj, offset); 7103 7104 return adr; 7105 } 7106 7107 //------------------------------inline_aescrypt_Block----------------------- 7108 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) { 7109 address stubAddr = nullptr; 7110 const char *stubName; 7111 assert(UseAES, "need AES instruction support"); 7112 7113 switch(id) { 7114 case vmIntrinsics::_aescrypt_encryptBlock: 7115 stubAddr = StubRoutines::aescrypt_encryptBlock(); 7116 stubName = "aescrypt_encryptBlock"; 7117 break; 7118 case vmIntrinsics::_aescrypt_decryptBlock: 7119 stubAddr = StubRoutines::aescrypt_decryptBlock(); 7120 stubName = "aescrypt_decryptBlock"; 7121 break; 7122 default: 7123 break; 7124 } 7125 if (stubAddr == nullptr) return false; 7126 7127 Node* aescrypt_object = argument(0); 7128 Node* src = argument(1); 7129 Node* src_offset = argument(2); 7130 Node* dest = argument(3); 7131 Node* dest_offset = argument(4); 7132 7133 src = must_be_not_null(src, true); 7134 dest = must_be_not_null(dest, true); 7135 7136 // (1) src and dest are arrays. 7137 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7138 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 7139 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 7140 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 7141 7142 // for the quick and dirty code we will skip all the checks. 7143 // we are just trying to get the call to be generated. 7144 Node* src_start = src; 7145 Node* dest_start = dest; 7146 if (src_offset != nullptr || dest_offset != nullptr) { 7147 assert(src_offset != nullptr && dest_offset != nullptr, ""); 7148 src_start = array_element_address(src, src_offset, T_BYTE); 7149 dest_start = array_element_address(dest, dest_offset, T_BYTE); 7150 } 7151 7152 // now need to get the start of its expanded key array 7153 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 7154 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 7155 if (k_start == nullptr) return false; 7156 7157 // Call the stub. 7158 make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(), 7159 stubAddr, stubName, TypePtr::BOTTOM, 7160 src_start, dest_start, k_start); 7161 7162 return true; 7163 } 7164 7165 //------------------------------inline_cipherBlockChaining_AESCrypt----------------------- 7166 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) { 7167 address stubAddr = nullptr; 7168 const char *stubName = nullptr; 7169 7170 assert(UseAES, "need AES instruction support"); 7171 7172 switch(id) { 7173 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 7174 stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt(); 7175 stubName = "cipherBlockChaining_encryptAESCrypt"; 7176 break; 7177 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 7178 stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt(); 7179 stubName = "cipherBlockChaining_decryptAESCrypt"; 7180 break; 7181 default: 7182 break; 7183 } 7184 if (stubAddr == nullptr) return false; 7185 7186 Node* cipherBlockChaining_object = argument(0); 7187 Node* src = argument(1); 7188 Node* src_offset = argument(2); 7189 Node* len = argument(3); 7190 Node* dest = argument(4); 7191 Node* dest_offset = argument(5); 7192 7193 src = must_be_not_null(src, false); 7194 dest = must_be_not_null(dest, false); 7195 7196 // (1) src and dest are arrays. 7197 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7198 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 7199 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 7200 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 7201 7202 // checks are the responsibility of the caller 7203 Node* src_start = src; 7204 Node* dest_start = dest; 7205 if (src_offset != nullptr || dest_offset != nullptr) { 7206 assert(src_offset != nullptr && dest_offset != nullptr, ""); 7207 src_start = array_element_address(src, src_offset, T_BYTE); 7208 dest_start = array_element_address(dest, dest_offset, T_BYTE); 7209 } 7210 7211 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 7212 // (because of the predicated logic executed earlier). 7213 // so we cast it here safely. 7214 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 7215 7216 Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7217 if (embeddedCipherObj == nullptr) return false; 7218 7219 // cast it to what we know it will be at runtime 7220 const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr(); 7221 assert(tinst != nullptr, "CBC obj is null"); 7222 assert(tinst->is_loaded(), "CBC obj is not loaded"); 7223 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7224 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 7225 7226 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7227 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 7228 const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 7229 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 7230 aescrypt_object = _gvn.transform(aescrypt_object); 7231 7232 // we need to get the start of the aescrypt_object's expanded key array 7233 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 7234 if (k_start == nullptr) return false; 7235 7236 // similarly, get the start address of the r vector 7237 Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B"); 7238 if (objRvec == nullptr) return false; 7239 Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE); 7240 7241 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 7242 Node* cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 7243 OptoRuntime::cipherBlockChaining_aescrypt_Type(), 7244 stubAddr, stubName, TypePtr::BOTTOM, 7245 src_start, dest_start, k_start, r_start, len); 7246 7247 // return cipher length (int) 7248 Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms)); 7249 set_result(retvalue); 7250 return true; 7251 } 7252 7253 //------------------------------inline_electronicCodeBook_AESCrypt----------------------- 7254 bool LibraryCallKit::inline_electronicCodeBook_AESCrypt(vmIntrinsics::ID id) { 7255 address stubAddr = nullptr; 7256 const char *stubName = nullptr; 7257 7258 assert(UseAES, "need AES instruction support"); 7259 7260 switch (id) { 7261 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 7262 stubAddr = StubRoutines::electronicCodeBook_encryptAESCrypt(); 7263 stubName = "electronicCodeBook_encryptAESCrypt"; 7264 break; 7265 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 7266 stubAddr = StubRoutines::electronicCodeBook_decryptAESCrypt(); 7267 stubName = "electronicCodeBook_decryptAESCrypt"; 7268 break; 7269 default: 7270 break; 7271 } 7272 7273 if (stubAddr == nullptr) return false; 7274 7275 Node* electronicCodeBook_object = argument(0); 7276 Node* src = argument(1); 7277 Node* src_offset = argument(2); 7278 Node* len = argument(3); 7279 Node* dest = argument(4); 7280 Node* dest_offset = argument(5); 7281 7282 // (1) src and dest are arrays. 7283 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7284 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 7285 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 7286 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 7287 7288 // checks are the responsibility of the caller 7289 Node* src_start = src; 7290 Node* dest_start = dest; 7291 if (src_offset != nullptr || dest_offset != nullptr) { 7292 assert(src_offset != nullptr && dest_offset != nullptr, ""); 7293 src_start = array_element_address(src, src_offset, T_BYTE); 7294 dest_start = array_element_address(dest, dest_offset, T_BYTE); 7295 } 7296 7297 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 7298 // (because of the predicated logic executed earlier). 7299 // so we cast it here safely. 7300 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 7301 7302 Node* embeddedCipherObj = load_field_from_object(electronicCodeBook_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7303 if (embeddedCipherObj == nullptr) return false; 7304 7305 // cast it to what we know it will be at runtime 7306 const TypeInstPtr* tinst = _gvn.type(electronicCodeBook_object)->isa_instptr(); 7307 assert(tinst != nullptr, "ECB obj is null"); 7308 assert(tinst->is_loaded(), "ECB obj is not loaded"); 7309 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7310 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 7311 7312 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7313 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 7314 const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 7315 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 7316 aescrypt_object = _gvn.transform(aescrypt_object); 7317 7318 // we need to get the start of the aescrypt_object's expanded key array 7319 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 7320 if (k_start == nullptr) return false; 7321 7322 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 7323 Node* ecbCrypt = make_runtime_call(RC_LEAF | RC_NO_FP, 7324 OptoRuntime::electronicCodeBook_aescrypt_Type(), 7325 stubAddr, stubName, TypePtr::BOTTOM, 7326 src_start, dest_start, k_start, len); 7327 7328 // return cipher length (int) 7329 Node* retvalue = _gvn.transform(new ProjNode(ecbCrypt, TypeFunc::Parms)); 7330 set_result(retvalue); 7331 return true; 7332 } 7333 7334 //------------------------------inline_counterMode_AESCrypt----------------------- 7335 bool LibraryCallKit::inline_counterMode_AESCrypt(vmIntrinsics::ID id) { 7336 assert(UseAES, "need AES instruction support"); 7337 if (!UseAESCTRIntrinsics) return false; 7338 7339 address stubAddr = nullptr; 7340 const char *stubName = nullptr; 7341 if (id == vmIntrinsics::_counterMode_AESCrypt) { 7342 stubAddr = StubRoutines::counterMode_AESCrypt(); 7343 stubName = "counterMode_AESCrypt"; 7344 } 7345 if (stubAddr == nullptr) return false; 7346 7347 Node* counterMode_object = argument(0); 7348 Node* src = argument(1); 7349 Node* src_offset = argument(2); 7350 Node* len = argument(3); 7351 Node* dest = argument(4); 7352 Node* dest_offset = argument(5); 7353 7354 // (1) src and dest are arrays. 7355 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7356 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 7357 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 7358 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 7359 7360 // checks are the responsibility of the caller 7361 Node* src_start = src; 7362 Node* dest_start = dest; 7363 if (src_offset != nullptr || dest_offset != nullptr) { 7364 assert(src_offset != nullptr && dest_offset != nullptr, ""); 7365 src_start = array_element_address(src, src_offset, T_BYTE); 7366 dest_start = array_element_address(dest, dest_offset, T_BYTE); 7367 } 7368 7369 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 7370 // (because of the predicated logic executed earlier). 7371 // so we cast it here safely. 7372 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 7373 Node* embeddedCipherObj = load_field_from_object(counterMode_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7374 if (embeddedCipherObj == nullptr) return false; 7375 // cast it to what we know it will be at runtime 7376 const TypeInstPtr* tinst = _gvn.type(counterMode_object)->isa_instptr(); 7377 assert(tinst != nullptr, "CTR obj is null"); 7378 assert(tinst->is_loaded(), "CTR obj is not loaded"); 7379 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7380 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 7381 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7382 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 7383 const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 7384 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 7385 aescrypt_object = _gvn.transform(aescrypt_object); 7386 // we need to get the start of the aescrypt_object's expanded key array 7387 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 7388 if (k_start == nullptr) return false; 7389 // similarly, get the start address of the r vector 7390 Node* obj_counter = load_field_from_object(counterMode_object, "counter", "[B"); 7391 if (obj_counter == nullptr) return false; 7392 Node* cnt_start = array_element_address(obj_counter, intcon(0), T_BYTE); 7393 7394 Node* saved_encCounter = load_field_from_object(counterMode_object, "encryptedCounter", "[B"); 7395 if (saved_encCounter == nullptr) return false; 7396 Node* saved_encCounter_start = array_element_address(saved_encCounter, intcon(0), T_BYTE); 7397 Node* used = field_address_from_object(counterMode_object, "used", "I", /*is_exact*/ false); 7398 7399 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 7400 Node* ctrCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 7401 OptoRuntime::counterMode_aescrypt_Type(), 7402 stubAddr, stubName, TypePtr::BOTTOM, 7403 src_start, dest_start, k_start, cnt_start, len, saved_encCounter_start, used); 7404 7405 // return cipher length (int) 7406 Node* retvalue = _gvn.transform(new ProjNode(ctrCrypt, TypeFunc::Parms)); 7407 set_result(retvalue); 7408 return true; 7409 } 7410 7411 //------------------------------get_key_start_from_aescrypt_object----------------------- 7412 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) { 7413 #if defined(PPC64) || defined(S390) || defined(RISCV64) 7414 // MixColumns for decryption can be reduced by preprocessing MixColumns with round keys. 7415 // Intel's extension is based on this optimization and AESCrypt generates round keys by preprocessing MixColumns. 7416 // However, ppc64 vncipher processes MixColumns and requires the same round keys with encryption. 7417 // The ppc64 and riscv64 stubs of encryption and decryption use the same round keys (sessionK[0]). 7418 Node* objSessionK = load_field_from_object(aescrypt_object, "sessionK", "[[I"); 7419 assert (objSessionK != nullptr, "wrong version of com.sun.crypto.provider.AESCrypt"); 7420 if (objSessionK == nullptr) { 7421 return (Node *) nullptr; 7422 } 7423 Node* objAESCryptKey = load_array_element(objSessionK, intcon(0), TypeAryPtr::OOPS, /* set_ctrl */ true); 7424 #else 7425 Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I"); 7426 #endif // PPC64 7427 assert (objAESCryptKey != nullptr, "wrong version of com.sun.crypto.provider.AESCrypt"); 7428 if (objAESCryptKey == nullptr) return (Node *) nullptr; 7429 7430 // now have the array, need to get the start address of the K array 7431 Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT); 7432 return k_start; 7433 } 7434 7435 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate---------------------------- 7436 // Return node representing slow path of predicate check. 7437 // the pseudo code we want to emulate with this predicate is: 7438 // for encryption: 7439 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 7440 // for decryption: 7441 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 7442 // note cipher==plain is more conservative than the original java code but that's OK 7443 // 7444 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) { 7445 // The receiver was checked for null already. 7446 Node* objCBC = argument(0); 7447 7448 Node* src = argument(1); 7449 Node* dest = argument(4); 7450 7451 // Load embeddedCipher field of CipherBlockChaining object. 7452 Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7453 7454 // get AESCrypt klass for instanceOf check 7455 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 7456 // will have same classloader as CipherBlockChaining object 7457 const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr(); 7458 assert(tinst != nullptr, "CBCobj is null"); 7459 assert(tinst->is_loaded(), "CBCobj is not loaded"); 7460 7461 // we want to do an instanceof comparison against the AESCrypt class 7462 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7463 if (!klass_AESCrypt->is_loaded()) { 7464 // if AESCrypt is not even loaded, we never take the intrinsic fast path 7465 Node* ctrl = control(); 7466 set_control(top()); // no regular fast path 7467 return ctrl; 7468 } 7469 7470 src = must_be_not_null(src, true); 7471 dest = must_be_not_null(dest, true); 7472 7473 // Resolve oops to stable for CmpP below. 7474 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7475 7476 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 7477 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 7478 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 7479 7480 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 7481 7482 // for encryption, we are done 7483 if (!decrypting) 7484 return instof_false; // even if it is null 7485 7486 // for decryption, we need to add a further check to avoid 7487 // taking the intrinsic path when cipher and plain are the same 7488 // see the original java code for why. 7489 RegionNode* region = new RegionNode(3); 7490 region->init_req(1, instof_false); 7491 7492 Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest)); 7493 Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq)); 7494 Node* src_dest_conjoint = generate_guard(bool_src_dest, nullptr, PROB_MIN); 7495 region->init_req(2, src_dest_conjoint); 7496 7497 record_for_igvn(region); 7498 return _gvn.transform(region); 7499 } 7500 7501 //----------------------------inline_electronicCodeBook_AESCrypt_predicate---------------------------- 7502 // Return node representing slow path of predicate check. 7503 // the pseudo code we want to emulate with this predicate is: 7504 // for encryption: 7505 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 7506 // for decryption: 7507 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 7508 // note cipher==plain is more conservative than the original java code but that's OK 7509 // 7510 Node* LibraryCallKit::inline_electronicCodeBook_AESCrypt_predicate(bool decrypting) { 7511 // The receiver was checked for null already. 7512 Node* objECB = argument(0); 7513 7514 // Load embeddedCipher field of ElectronicCodeBook object. 7515 Node* embeddedCipherObj = load_field_from_object(objECB, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7516 7517 // get AESCrypt klass for instanceOf check 7518 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 7519 // will have same classloader as ElectronicCodeBook object 7520 const TypeInstPtr* tinst = _gvn.type(objECB)->isa_instptr(); 7521 assert(tinst != nullptr, "ECBobj is null"); 7522 assert(tinst->is_loaded(), "ECBobj is not loaded"); 7523 7524 // we want to do an instanceof comparison against the AESCrypt class 7525 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7526 if (!klass_AESCrypt->is_loaded()) { 7527 // if AESCrypt is not even loaded, we never take the intrinsic fast path 7528 Node* ctrl = control(); 7529 set_control(top()); // no regular fast path 7530 return ctrl; 7531 } 7532 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7533 7534 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 7535 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 7536 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 7537 7538 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 7539 7540 // for encryption, we are done 7541 if (!decrypting) 7542 return instof_false; // even if it is null 7543 7544 // for decryption, we need to add a further check to avoid 7545 // taking the intrinsic path when cipher and plain are the same 7546 // see the original java code for why. 7547 RegionNode* region = new RegionNode(3); 7548 region->init_req(1, instof_false); 7549 Node* src = argument(1); 7550 Node* dest = argument(4); 7551 Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest)); 7552 Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq)); 7553 Node* src_dest_conjoint = generate_guard(bool_src_dest, nullptr, PROB_MIN); 7554 region->init_req(2, src_dest_conjoint); 7555 7556 record_for_igvn(region); 7557 return _gvn.transform(region); 7558 } 7559 7560 //----------------------------inline_counterMode_AESCrypt_predicate---------------------------- 7561 // Return node representing slow path of predicate check. 7562 // the pseudo code we want to emulate with this predicate is: 7563 // for encryption: 7564 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 7565 // for decryption: 7566 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 7567 // note cipher==plain is more conservative than the original java code but that's OK 7568 // 7569 7570 Node* LibraryCallKit::inline_counterMode_AESCrypt_predicate() { 7571 // The receiver was checked for null already. 7572 Node* objCTR = argument(0); 7573 7574 // Load embeddedCipher field of CipherBlockChaining object. 7575 Node* embeddedCipherObj = load_field_from_object(objCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7576 7577 // get AESCrypt klass for instanceOf check 7578 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 7579 // will have same classloader as CipherBlockChaining object 7580 const TypeInstPtr* tinst = _gvn.type(objCTR)->isa_instptr(); 7581 assert(tinst != nullptr, "CTRobj is null"); 7582 assert(tinst->is_loaded(), "CTRobj is not loaded"); 7583 7584 // we want to do an instanceof comparison against the AESCrypt class 7585 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7586 if (!klass_AESCrypt->is_loaded()) { 7587 // if AESCrypt is not even loaded, we never take the intrinsic fast path 7588 Node* ctrl = control(); 7589 set_control(top()); // no regular fast path 7590 return ctrl; 7591 } 7592 7593 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7594 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 7595 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 7596 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 7597 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 7598 7599 return instof_false; // even if it is null 7600 } 7601 7602 //------------------------------inline_ghash_processBlocks 7603 bool LibraryCallKit::inline_ghash_processBlocks() { 7604 address stubAddr; 7605 const char *stubName; 7606 assert(UseGHASHIntrinsics, "need GHASH intrinsics support"); 7607 7608 stubAddr = StubRoutines::ghash_processBlocks(); 7609 stubName = "ghash_processBlocks"; 7610 7611 Node* data = argument(0); 7612 Node* offset = argument(1); 7613 Node* len = argument(2); 7614 Node* state = argument(3); 7615 Node* subkeyH = argument(4); 7616 7617 state = must_be_not_null(state, true); 7618 subkeyH = must_be_not_null(subkeyH, true); 7619 data = must_be_not_null(data, true); 7620 7621 Node* state_start = array_element_address(state, intcon(0), T_LONG); 7622 assert(state_start, "state is null"); 7623 Node* subkeyH_start = array_element_address(subkeyH, intcon(0), T_LONG); 7624 assert(subkeyH_start, "subkeyH is null"); 7625 Node* data_start = array_element_address(data, offset, T_BYTE); 7626 assert(data_start, "data is null"); 7627 7628 Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP, 7629 OptoRuntime::ghash_processBlocks_Type(), 7630 stubAddr, stubName, TypePtr::BOTTOM, 7631 state_start, subkeyH_start, data_start, len); 7632 return true; 7633 } 7634 7635 //------------------------------inline_chacha20Block 7636 bool LibraryCallKit::inline_chacha20Block() { 7637 address stubAddr; 7638 const char *stubName; 7639 assert(UseChaCha20Intrinsics, "need ChaCha20 intrinsics support"); 7640 7641 stubAddr = StubRoutines::chacha20Block(); 7642 stubName = "chacha20Block"; 7643 7644 Node* state = argument(0); 7645 Node* result = argument(1); 7646 7647 state = must_be_not_null(state, true); 7648 result = must_be_not_null(result, true); 7649 7650 Node* state_start = array_element_address(state, intcon(0), T_INT); 7651 assert(state_start, "state is null"); 7652 Node* result_start = array_element_address(result, intcon(0), T_BYTE); 7653 assert(result_start, "result is null"); 7654 7655 Node* cc20Blk = make_runtime_call(RC_LEAF|RC_NO_FP, 7656 OptoRuntime::chacha20Block_Type(), 7657 stubAddr, stubName, TypePtr::BOTTOM, 7658 state_start, result_start); 7659 // return key stream length (int) 7660 Node* retvalue = _gvn.transform(new ProjNode(cc20Blk, TypeFunc::Parms)); 7661 set_result(retvalue); 7662 return true; 7663 } 7664 7665 //------------------------------inline_kyberNtt 7666 bool LibraryCallKit::inline_kyberNtt() { 7667 address stubAddr; 7668 const char *stubName; 7669 assert(UseKyberIntrinsics, "need Kyber intrinsics support"); 7670 assert(callee()->signature()->size() == 2, "kyberNtt has 2 parameters"); 7671 7672 stubAddr = StubRoutines::kyberNtt(); 7673 stubName = "kyberNtt"; 7674 if (!stubAddr) return false; 7675 7676 Node* coeffs = argument(0); 7677 Node* ntt_zetas = argument(1); 7678 7679 coeffs = must_be_not_null(coeffs, true); 7680 ntt_zetas = must_be_not_null(ntt_zetas, true); 7681 7682 Node* coeffs_start = array_element_address(coeffs, intcon(0), T_SHORT); 7683 assert(coeffs_start, "coeffs is null"); 7684 Node* ntt_zetas_start = array_element_address(ntt_zetas, intcon(0), T_SHORT); 7685 assert(ntt_zetas_start, "ntt_zetas is null"); 7686 Node* kyberNtt = make_runtime_call(RC_LEAF|RC_NO_FP, 7687 OptoRuntime::kyberNtt_Type(), 7688 stubAddr, stubName, TypePtr::BOTTOM, 7689 coeffs_start, ntt_zetas_start); 7690 // return an int 7691 Node* retvalue = _gvn.transform(new ProjNode(kyberNtt, TypeFunc::Parms)); 7692 set_result(retvalue); 7693 return true; 7694 } 7695 7696 //------------------------------inline_kyberInverseNtt 7697 bool LibraryCallKit::inline_kyberInverseNtt() { 7698 address stubAddr; 7699 const char *stubName; 7700 assert(UseKyberIntrinsics, "need Kyber intrinsics support"); 7701 assert(callee()->signature()->size() == 2, "kyberInverseNtt has 2 parameters"); 7702 7703 stubAddr = StubRoutines::kyberInverseNtt(); 7704 stubName = "kyberInverseNtt"; 7705 if (!stubAddr) return false; 7706 7707 Node* coeffs = argument(0); 7708 Node* zetas = argument(1); 7709 7710 coeffs = must_be_not_null(coeffs, true); 7711 zetas = must_be_not_null(zetas, true); 7712 7713 Node* coeffs_start = array_element_address(coeffs, intcon(0), T_SHORT); 7714 assert(coeffs_start, "coeffs is null"); 7715 Node* zetas_start = array_element_address(zetas, intcon(0), T_SHORT); 7716 assert(zetas_start, "inverseNtt_zetas is null"); 7717 Node* kyberInverseNtt = make_runtime_call(RC_LEAF|RC_NO_FP, 7718 OptoRuntime::kyberInverseNtt_Type(), 7719 stubAddr, stubName, TypePtr::BOTTOM, 7720 coeffs_start, zetas_start); 7721 7722 // return an int 7723 Node* retvalue = _gvn.transform(new ProjNode(kyberInverseNtt, TypeFunc::Parms)); 7724 set_result(retvalue); 7725 return true; 7726 } 7727 7728 //------------------------------inline_kyberNttMult 7729 bool LibraryCallKit::inline_kyberNttMult() { 7730 address stubAddr; 7731 const char *stubName; 7732 assert(UseKyberIntrinsics, "need Kyber intrinsics support"); 7733 assert(callee()->signature()->size() == 4, "kyberNttMult has 4 parameters"); 7734 7735 stubAddr = StubRoutines::kyberNttMult(); 7736 stubName = "kyberNttMult"; 7737 if (!stubAddr) return false; 7738 7739 Node* result = argument(0); 7740 Node* ntta = argument(1); 7741 Node* nttb = argument(2); 7742 Node* zetas = argument(3); 7743 7744 result = must_be_not_null(result, true); 7745 ntta = must_be_not_null(ntta, true); 7746 nttb = must_be_not_null(nttb, true); 7747 zetas = must_be_not_null(zetas, true); 7748 7749 Node* result_start = array_element_address(result, intcon(0), T_SHORT); 7750 assert(result_start, "result is null"); 7751 Node* ntta_start = array_element_address(ntta, intcon(0), T_SHORT); 7752 assert(ntta_start, "ntta is null"); 7753 Node* nttb_start = array_element_address(nttb, intcon(0), T_SHORT); 7754 assert(nttb_start, "nttb is null"); 7755 Node* zetas_start = array_element_address(zetas, intcon(0), T_SHORT); 7756 assert(zetas_start, "nttMult_zetas is null"); 7757 Node* kyberNttMult = make_runtime_call(RC_LEAF|RC_NO_FP, 7758 OptoRuntime::kyberNttMult_Type(), 7759 stubAddr, stubName, TypePtr::BOTTOM, 7760 result_start, ntta_start, nttb_start, 7761 zetas_start); 7762 7763 // return an int 7764 Node* retvalue = _gvn.transform(new ProjNode(kyberNttMult, TypeFunc::Parms)); 7765 set_result(retvalue); 7766 7767 return true; 7768 } 7769 7770 //------------------------------inline_kyberAddPoly_2 7771 bool LibraryCallKit::inline_kyberAddPoly_2() { 7772 address stubAddr; 7773 const char *stubName; 7774 assert(UseKyberIntrinsics, "need Kyber intrinsics support"); 7775 assert(callee()->signature()->size() == 3, "kyberAddPoly_2 has 3 parameters"); 7776 7777 stubAddr = StubRoutines::kyberAddPoly_2(); 7778 stubName = "kyberAddPoly_2"; 7779 if (!stubAddr) return false; 7780 7781 Node* result = argument(0); 7782 Node* a = argument(1); 7783 Node* b = argument(2); 7784 7785 result = must_be_not_null(result, true); 7786 a = must_be_not_null(a, true); 7787 b = must_be_not_null(b, true); 7788 7789 Node* result_start = array_element_address(result, intcon(0), T_SHORT); 7790 assert(result_start, "result is null"); 7791 Node* a_start = array_element_address(a, intcon(0), T_SHORT); 7792 assert(a_start, "a is null"); 7793 Node* b_start = array_element_address(b, intcon(0), T_SHORT); 7794 assert(b_start, "b is null"); 7795 Node* kyberAddPoly_2 = make_runtime_call(RC_LEAF|RC_NO_FP, 7796 OptoRuntime::kyberAddPoly_2_Type(), 7797 stubAddr, stubName, TypePtr::BOTTOM, 7798 result_start, a_start, b_start); 7799 // return an int 7800 Node* retvalue = _gvn.transform(new ProjNode(kyberAddPoly_2, TypeFunc::Parms)); 7801 set_result(retvalue); 7802 return true; 7803 } 7804 7805 //------------------------------inline_kyberAddPoly_3 7806 bool LibraryCallKit::inline_kyberAddPoly_3() { 7807 address stubAddr; 7808 const char *stubName; 7809 assert(UseKyberIntrinsics, "need Kyber intrinsics support"); 7810 assert(callee()->signature()->size() == 4, "kyberAddPoly_3 has 4 parameters"); 7811 7812 stubAddr = StubRoutines::kyberAddPoly_3(); 7813 stubName = "kyberAddPoly_3"; 7814 if (!stubAddr) return false; 7815 7816 Node* result = argument(0); 7817 Node* a = argument(1); 7818 Node* b = argument(2); 7819 Node* c = argument(3); 7820 7821 result = must_be_not_null(result, true); 7822 a = must_be_not_null(a, true); 7823 b = must_be_not_null(b, true); 7824 c = must_be_not_null(c, true); 7825 7826 Node* result_start = array_element_address(result, intcon(0), T_SHORT); 7827 assert(result_start, "result is null"); 7828 Node* a_start = array_element_address(a, intcon(0), T_SHORT); 7829 assert(a_start, "a is null"); 7830 Node* b_start = array_element_address(b, intcon(0), T_SHORT); 7831 assert(b_start, "b is null"); 7832 Node* c_start = array_element_address(c, intcon(0), T_SHORT); 7833 assert(c_start, "c is null"); 7834 Node* kyberAddPoly_3 = make_runtime_call(RC_LEAF|RC_NO_FP, 7835 OptoRuntime::kyberAddPoly_3_Type(), 7836 stubAddr, stubName, TypePtr::BOTTOM, 7837 result_start, a_start, b_start, c_start); 7838 // return an int 7839 Node* retvalue = _gvn.transform(new ProjNode(kyberAddPoly_3, TypeFunc::Parms)); 7840 set_result(retvalue); 7841 return true; 7842 } 7843 7844 //------------------------------inline_kyber12To16 7845 bool LibraryCallKit::inline_kyber12To16() { 7846 address stubAddr; 7847 const char *stubName; 7848 assert(UseKyberIntrinsics, "need Kyber intrinsics support"); 7849 assert(callee()->signature()->size() == 4, "kyber12To16 has 4 parameters"); 7850 7851 stubAddr = StubRoutines::kyber12To16(); 7852 stubName = "kyber12To16"; 7853 if (!stubAddr) return false; 7854 7855 Node* condensed = argument(0); 7856 Node* condensedOffs = argument(1); 7857 Node* parsed = argument(2); 7858 Node* parsedLength = argument(3); 7859 7860 condensed = must_be_not_null(condensed, true); 7861 parsed = must_be_not_null(parsed, true); 7862 7863 Node* condensed_start = array_element_address(condensed, intcon(0), T_BYTE); 7864 assert(condensed_start, "condensed is null"); 7865 Node* parsed_start = array_element_address(parsed, intcon(0), T_SHORT); 7866 assert(parsed_start, "parsed is null"); 7867 Node* kyber12To16 = make_runtime_call(RC_LEAF|RC_NO_FP, 7868 OptoRuntime::kyber12To16_Type(), 7869 stubAddr, stubName, TypePtr::BOTTOM, 7870 condensed_start, condensedOffs, parsed_start, parsedLength); 7871 // return an int 7872 Node* retvalue = _gvn.transform(new ProjNode(kyber12To16, TypeFunc::Parms)); 7873 set_result(retvalue); 7874 return true; 7875 7876 } 7877 7878 //------------------------------inline_kyberBarrettReduce 7879 bool LibraryCallKit::inline_kyberBarrettReduce() { 7880 address stubAddr; 7881 const char *stubName; 7882 assert(UseKyberIntrinsics, "need Kyber intrinsics support"); 7883 assert(callee()->signature()->size() == 1, "kyberBarrettReduce has 1 parameters"); 7884 7885 stubAddr = StubRoutines::kyberBarrettReduce(); 7886 stubName = "kyberBarrettReduce"; 7887 if (!stubAddr) return false; 7888 7889 Node* coeffs = argument(0); 7890 7891 coeffs = must_be_not_null(coeffs, true); 7892 7893 Node* coeffs_start = array_element_address(coeffs, intcon(0), T_SHORT); 7894 assert(coeffs_start, "coeffs is null"); 7895 Node* kyberBarrettReduce = make_runtime_call(RC_LEAF|RC_NO_FP, 7896 OptoRuntime::kyberBarrettReduce_Type(), 7897 stubAddr, stubName, TypePtr::BOTTOM, 7898 coeffs_start); 7899 // return an int 7900 Node* retvalue = _gvn.transform(new ProjNode(kyberBarrettReduce, TypeFunc::Parms)); 7901 set_result(retvalue); 7902 return true; 7903 } 7904 7905 //------------------------------inline_dilithiumAlmostNtt 7906 bool LibraryCallKit::inline_dilithiumAlmostNtt() { 7907 address stubAddr; 7908 const char *stubName; 7909 assert(UseDilithiumIntrinsics, "need Dilithium intrinsics support"); 7910 assert(callee()->signature()->size() == 2, "dilithiumAlmostNtt has 2 parameters"); 7911 7912 stubAddr = StubRoutines::dilithiumAlmostNtt(); 7913 stubName = "dilithiumAlmostNtt"; 7914 if (!stubAddr) return false; 7915 7916 Node* coeffs = argument(0); 7917 Node* ntt_zetas = argument(1); 7918 7919 coeffs = must_be_not_null(coeffs, true); 7920 ntt_zetas = must_be_not_null(ntt_zetas, true); 7921 7922 Node* coeffs_start = array_element_address(coeffs, intcon(0), T_INT); 7923 assert(coeffs_start, "coeffs is null"); 7924 Node* ntt_zetas_start = array_element_address(ntt_zetas, intcon(0), T_INT); 7925 assert(ntt_zetas_start, "ntt_zetas is null"); 7926 Node* dilithiumAlmostNtt = make_runtime_call(RC_LEAF|RC_NO_FP, 7927 OptoRuntime::dilithiumAlmostNtt_Type(), 7928 stubAddr, stubName, TypePtr::BOTTOM, 7929 coeffs_start, ntt_zetas_start); 7930 // return an int 7931 Node* retvalue = _gvn.transform(new ProjNode(dilithiumAlmostNtt, TypeFunc::Parms)); 7932 set_result(retvalue); 7933 return true; 7934 } 7935 7936 //------------------------------inline_dilithiumAlmostInverseNtt 7937 bool LibraryCallKit::inline_dilithiumAlmostInverseNtt() { 7938 address stubAddr; 7939 const char *stubName; 7940 assert(UseDilithiumIntrinsics, "need Dilithium intrinsics support"); 7941 assert(callee()->signature()->size() == 2, "dilithiumAlmostInverseNtt has 2 parameters"); 7942 7943 stubAddr = StubRoutines::dilithiumAlmostInverseNtt(); 7944 stubName = "dilithiumAlmostInverseNtt"; 7945 if (!stubAddr) return false; 7946 7947 Node* coeffs = argument(0); 7948 Node* zetas = argument(1); 7949 7950 coeffs = must_be_not_null(coeffs, true); 7951 zetas = must_be_not_null(zetas, true); 7952 7953 Node* coeffs_start = array_element_address(coeffs, intcon(0), T_INT); 7954 assert(coeffs_start, "coeffs is null"); 7955 Node* zetas_start = array_element_address(zetas, intcon(0), T_INT); 7956 assert(zetas_start, "inverseNtt_zetas is null"); 7957 Node* dilithiumAlmostInverseNtt = make_runtime_call(RC_LEAF|RC_NO_FP, 7958 OptoRuntime::dilithiumAlmostInverseNtt_Type(), 7959 stubAddr, stubName, TypePtr::BOTTOM, 7960 coeffs_start, zetas_start); 7961 // return an int 7962 Node* retvalue = _gvn.transform(new ProjNode(dilithiumAlmostInverseNtt, TypeFunc::Parms)); 7963 set_result(retvalue); 7964 return true; 7965 } 7966 7967 //------------------------------inline_dilithiumNttMult 7968 bool LibraryCallKit::inline_dilithiumNttMult() { 7969 address stubAddr; 7970 const char *stubName; 7971 assert(UseDilithiumIntrinsics, "need Dilithium intrinsics support"); 7972 assert(callee()->signature()->size() == 3, "dilithiumNttMult has 3 parameters"); 7973 7974 stubAddr = StubRoutines::dilithiumNttMult(); 7975 stubName = "dilithiumNttMult"; 7976 if (!stubAddr) return false; 7977 7978 Node* result = argument(0); 7979 Node* ntta = argument(1); 7980 Node* nttb = argument(2); 7981 Node* zetas = argument(3); 7982 7983 result = must_be_not_null(result, true); 7984 ntta = must_be_not_null(ntta, true); 7985 nttb = must_be_not_null(nttb, true); 7986 zetas = must_be_not_null(zetas, true); 7987 7988 Node* result_start = array_element_address(result, intcon(0), T_INT); 7989 assert(result_start, "result is null"); 7990 Node* ntta_start = array_element_address(ntta, intcon(0), T_INT); 7991 assert(ntta_start, "ntta is null"); 7992 Node* nttb_start = array_element_address(nttb, intcon(0), T_INT); 7993 assert(nttb_start, "nttb is null"); 7994 Node* dilithiumNttMult = make_runtime_call(RC_LEAF|RC_NO_FP, 7995 OptoRuntime::dilithiumNttMult_Type(), 7996 stubAddr, stubName, TypePtr::BOTTOM, 7997 result_start, ntta_start, nttb_start); 7998 7999 // return an int 8000 Node* retvalue = _gvn.transform(new ProjNode(dilithiumNttMult, TypeFunc::Parms)); 8001 set_result(retvalue); 8002 8003 return true; 8004 } 8005 8006 //------------------------------inline_dilithiumMontMulByConstant 8007 bool LibraryCallKit::inline_dilithiumMontMulByConstant() { 8008 address stubAddr; 8009 const char *stubName; 8010 assert(UseDilithiumIntrinsics, "need Dilithium intrinsics support"); 8011 assert(callee()->signature()->size() == 2, "dilithiumMontMulByConstant has 2 parameters"); 8012 8013 stubAddr = StubRoutines::dilithiumMontMulByConstant(); 8014 stubName = "dilithiumMontMulByConstant"; 8015 if (!stubAddr) return false; 8016 8017 Node* coeffs = argument(0); 8018 Node* constant = argument(1); 8019 8020 coeffs = must_be_not_null(coeffs, true); 8021 8022 Node* coeffs_start = array_element_address(coeffs, intcon(0), T_INT); 8023 assert(coeffs_start, "coeffs is null"); 8024 Node* dilithiumMontMulByConstant = make_runtime_call(RC_LEAF|RC_NO_FP, 8025 OptoRuntime::dilithiumMontMulByConstant_Type(), 8026 stubAddr, stubName, TypePtr::BOTTOM, 8027 coeffs_start, constant); 8028 8029 // return an int 8030 Node* retvalue = _gvn.transform(new ProjNode(dilithiumMontMulByConstant, TypeFunc::Parms)); 8031 set_result(retvalue); 8032 return true; 8033 } 8034 8035 8036 //------------------------------inline_dilithiumDecomposePoly 8037 bool LibraryCallKit::inline_dilithiumDecomposePoly() { 8038 address stubAddr; 8039 const char *stubName; 8040 assert(UseDilithiumIntrinsics, "need Dilithium intrinsics support"); 8041 assert(callee()->signature()->size() == 5, "dilithiumDecomposePoly has 5 parameters"); 8042 8043 stubAddr = StubRoutines::dilithiumDecomposePoly(); 8044 stubName = "dilithiumDecomposePoly"; 8045 if (!stubAddr) return false; 8046 8047 Node* input = argument(0); 8048 Node* lowPart = argument(1); 8049 Node* highPart = argument(2); 8050 Node* twoGamma2 = argument(3); 8051 Node* multiplier = argument(4); 8052 8053 input = must_be_not_null(input, true); 8054 lowPart = must_be_not_null(lowPart, true); 8055 highPart = must_be_not_null(highPart, true); 8056 8057 Node* input_start = array_element_address(input, intcon(0), T_INT); 8058 assert(input_start, "input is null"); 8059 Node* lowPart_start = array_element_address(lowPart, intcon(0), T_INT); 8060 assert(lowPart_start, "lowPart is null"); 8061 Node* highPart_start = array_element_address(highPart, intcon(0), T_INT); 8062 assert(highPart_start, "highPart is null"); 8063 8064 Node* dilithiumDecomposePoly = make_runtime_call(RC_LEAF|RC_NO_FP, 8065 OptoRuntime::dilithiumDecomposePoly_Type(), 8066 stubAddr, stubName, TypePtr::BOTTOM, 8067 input_start, lowPart_start, highPart_start, 8068 twoGamma2, multiplier); 8069 8070 // return an int 8071 Node* retvalue = _gvn.transform(new ProjNode(dilithiumDecomposePoly, TypeFunc::Parms)); 8072 set_result(retvalue); 8073 return true; 8074 } 8075 8076 bool LibraryCallKit::inline_base64_encodeBlock() { 8077 address stubAddr; 8078 const char *stubName; 8079 assert(UseBASE64Intrinsics, "need Base64 intrinsics support"); 8080 assert(callee()->signature()->size() == 6, "base64_encodeBlock has 6 parameters"); 8081 stubAddr = StubRoutines::base64_encodeBlock(); 8082 stubName = "encodeBlock"; 8083 8084 if (!stubAddr) return false; 8085 Node* base64obj = argument(0); 8086 Node* src = argument(1); 8087 Node* offset = argument(2); 8088 Node* len = argument(3); 8089 Node* dest = argument(4); 8090 Node* dp = argument(5); 8091 Node* isURL = argument(6); 8092 8093 src = must_be_not_null(src, true); 8094 dest = must_be_not_null(dest, true); 8095 8096 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 8097 assert(src_start, "source array is null"); 8098 Node* dest_start = array_element_address(dest, intcon(0), T_BYTE); 8099 assert(dest_start, "destination array is null"); 8100 8101 Node* base64 = make_runtime_call(RC_LEAF, 8102 OptoRuntime::base64_encodeBlock_Type(), 8103 stubAddr, stubName, TypePtr::BOTTOM, 8104 src_start, offset, len, dest_start, dp, isURL); 8105 return true; 8106 } 8107 8108 bool LibraryCallKit::inline_base64_decodeBlock() { 8109 address stubAddr; 8110 const char *stubName; 8111 assert(UseBASE64Intrinsics, "need Base64 intrinsics support"); 8112 assert(callee()->signature()->size() == 7, "base64_decodeBlock has 7 parameters"); 8113 stubAddr = StubRoutines::base64_decodeBlock(); 8114 stubName = "decodeBlock"; 8115 8116 if (!stubAddr) return false; 8117 Node* base64obj = argument(0); 8118 Node* src = argument(1); 8119 Node* src_offset = argument(2); 8120 Node* len = argument(3); 8121 Node* dest = argument(4); 8122 Node* dest_offset = argument(5); 8123 Node* isURL = argument(6); 8124 Node* isMIME = argument(7); 8125 8126 src = must_be_not_null(src, true); 8127 dest = must_be_not_null(dest, true); 8128 8129 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 8130 assert(src_start, "source array is null"); 8131 Node* dest_start = array_element_address(dest, intcon(0), T_BYTE); 8132 assert(dest_start, "destination array is null"); 8133 8134 Node* call = make_runtime_call(RC_LEAF, 8135 OptoRuntime::base64_decodeBlock_Type(), 8136 stubAddr, stubName, TypePtr::BOTTOM, 8137 src_start, src_offset, len, dest_start, dest_offset, isURL, isMIME); 8138 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 8139 set_result(result); 8140 return true; 8141 } 8142 8143 bool LibraryCallKit::inline_poly1305_processBlocks() { 8144 address stubAddr; 8145 const char *stubName; 8146 assert(UsePoly1305Intrinsics, "need Poly intrinsics support"); 8147 assert(callee()->signature()->size() == 5, "poly1305_processBlocks has %d parameters", callee()->signature()->size()); 8148 stubAddr = StubRoutines::poly1305_processBlocks(); 8149 stubName = "poly1305_processBlocks"; 8150 8151 if (!stubAddr) return false; 8152 null_check_receiver(); // null-check receiver 8153 if (stopped()) return true; 8154 8155 Node* input = argument(1); 8156 Node* input_offset = argument(2); 8157 Node* len = argument(3); 8158 Node* alimbs = argument(4); 8159 Node* rlimbs = argument(5); 8160 8161 input = must_be_not_null(input, true); 8162 alimbs = must_be_not_null(alimbs, true); 8163 rlimbs = must_be_not_null(rlimbs, true); 8164 8165 Node* input_start = array_element_address(input, input_offset, T_BYTE); 8166 assert(input_start, "input array is null"); 8167 Node* acc_start = array_element_address(alimbs, intcon(0), T_LONG); 8168 assert(acc_start, "acc array is null"); 8169 Node* r_start = array_element_address(rlimbs, intcon(0), T_LONG); 8170 assert(r_start, "r array is null"); 8171 8172 Node* call = make_runtime_call(RC_LEAF | RC_NO_FP, 8173 OptoRuntime::poly1305_processBlocks_Type(), 8174 stubAddr, stubName, TypePtr::BOTTOM, 8175 input_start, len, acc_start, r_start); 8176 return true; 8177 } 8178 8179 bool LibraryCallKit::inline_intpoly_montgomeryMult_P256() { 8180 address stubAddr; 8181 const char *stubName; 8182 assert(UseIntPolyIntrinsics, "need intpoly intrinsics support"); 8183 assert(callee()->signature()->size() == 3, "intpoly_montgomeryMult_P256 has %d parameters", callee()->signature()->size()); 8184 stubAddr = StubRoutines::intpoly_montgomeryMult_P256(); 8185 stubName = "intpoly_montgomeryMult_P256"; 8186 8187 if (!stubAddr) return false; 8188 null_check_receiver(); // null-check receiver 8189 if (stopped()) return true; 8190 8191 Node* a = argument(1); 8192 Node* b = argument(2); 8193 Node* r = argument(3); 8194 8195 a = must_be_not_null(a, true); 8196 b = must_be_not_null(b, true); 8197 r = must_be_not_null(r, true); 8198 8199 Node* a_start = array_element_address(a, intcon(0), T_LONG); 8200 assert(a_start, "a array is null"); 8201 Node* b_start = array_element_address(b, intcon(0), T_LONG); 8202 assert(b_start, "b array is null"); 8203 Node* r_start = array_element_address(r, intcon(0), T_LONG); 8204 assert(r_start, "r array is null"); 8205 8206 Node* call = make_runtime_call(RC_LEAF | RC_NO_FP, 8207 OptoRuntime::intpoly_montgomeryMult_P256_Type(), 8208 stubAddr, stubName, TypePtr::BOTTOM, 8209 a_start, b_start, r_start); 8210 return true; 8211 } 8212 8213 bool LibraryCallKit::inline_intpoly_assign() { 8214 assert(UseIntPolyIntrinsics, "need intpoly intrinsics support"); 8215 assert(callee()->signature()->size() == 3, "intpoly_assign has %d parameters", callee()->signature()->size()); 8216 const char *stubName = "intpoly_assign"; 8217 address stubAddr = StubRoutines::intpoly_assign(); 8218 if (!stubAddr) return false; 8219 8220 Node* set = argument(0); 8221 Node* a = argument(1); 8222 Node* b = argument(2); 8223 Node* arr_length = load_array_length(a); 8224 8225 a = must_be_not_null(a, true); 8226 b = must_be_not_null(b, true); 8227 8228 Node* a_start = array_element_address(a, intcon(0), T_LONG); 8229 assert(a_start, "a array is null"); 8230 Node* b_start = array_element_address(b, intcon(0), T_LONG); 8231 assert(b_start, "b array is null"); 8232 8233 Node* call = make_runtime_call(RC_LEAF | RC_NO_FP, 8234 OptoRuntime::intpoly_assign_Type(), 8235 stubAddr, stubName, TypePtr::BOTTOM, 8236 set, a_start, b_start, arr_length); 8237 return true; 8238 } 8239 8240 //------------------------------inline_digestBase_implCompress----------------------- 8241 // 8242 // Calculate MD5 for single-block byte[] array. 8243 // void com.sun.security.provider.MD5.implCompress(byte[] buf, int ofs) 8244 // 8245 // Calculate SHA (i.e., SHA-1) for single-block byte[] array. 8246 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs) 8247 // 8248 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array. 8249 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs) 8250 // 8251 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array. 8252 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs) 8253 // 8254 // Calculate SHA3 (i.e., SHA3-224 or SHA3-256 or SHA3-384 or SHA3-512) for single-block byte[] array. 8255 // void com.sun.security.provider.SHA3.implCompress(byte[] buf, int ofs) 8256 // 8257 bool LibraryCallKit::inline_digestBase_implCompress(vmIntrinsics::ID id) { 8258 assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters"); 8259 8260 Node* digestBase_obj = argument(0); 8261 Node* src = argument(1); // type oop 8262 Node* ofs = argument(2); // type int 8263 8264 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 8265 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 8266 // failed array check 8267 return false; 8268 } 8269 // Figure out the size and type of the elements we will be copying. 8270 BasicType src_elem = src_type->elem()->array_element_basic_type(); 8271 if (src_elem != T_BYTE) { 8272 return false; 8273 } 8274 // 'src_start' points to src array + offset 8275 src = must_be_not_null(src, true); 8276 Node* src_start = array_element_address(src, ofs, src_elem); 8277 Node* state = nullptr; 8278 Node* block_size = nullptr; 8279 address stubAddr; 8280 const char *stubName; 8281 8282 switch(id) { 8283 case vmIntrinsics::_md5_implCompress: 8284 assert(UseMD5Intrinsics, "need MD5 instruction support"); 8285 state = get_state_from_digest_object(digestBase_obj, T_INT); 8286 stubAddr = StubRoutines::md5_implCompress(); 8287 stubName = "md5_implCompress"; 8288 break; 8289 case vmIntrinsics::_sha_implCompress: 8290 assert(UseSHA1Intrinsics, "need SHA1 instruction support"); 8291 state = get_state_from_digest_object(digestBase_obj, T_INT); 8292 stubAddr = StubRoutines::sha1_implCompress(); 8293 stubName = "sha1_implCompress"; 8294 break; 8295 case vmIntrinsics::_sha2_implCompress: 8296 assert(UseSHA256Intrinsics, "need SHA256 instruction support"); 8297 state = get_state_from_digest_object(digestBase_obj, T_INT); 8298 stubAddr = StubRoutines::sha256_implCompress(); 8299 stubName = "sha256_implCompress"; 8300 break; 8301 case vmIntrinsics::_sha5_implCompress: 8302 assert(UseSHA512Intrinsics, "need SHA512 instruction support"); 8303 state = get_state_from_digest_object(digestBase_obj, T_LONG); 8304 stubAddr = StubRoutines::sha512_implCompress(); 8305 stubName = "sha512_implCompress"; 8306 break; 8307 case vmIntrinsics::_sha3_implCompress: 8308 assert(UseSHA3Intrinsics, "need SHA3 instruction support"); 8309 state = get_state_from_digest_object(digestBase_obj, T_LONG); 8310 stubAddr = StubRoutines::sha3_implCompress(); 8311 stubName = "sha3_implCompress"; 8312 block_size = get_block_size_from_digest_object(digestBase_obj); 8313 if (block_size == nullptr) return false; 8314 break; 8315 default: 8316 fatal_unexpected_iid(id); 8317 return false; 8318 } 8319 if (state == nullptr) return false; 8320 8321 assert(stubAddr != nullptr, "Stub %s is not generated", stubName); 8322 if (stubAddr == nullptr) return false; 8323 8324 // Call the stub. 8325 Node* call; 8326 if (block_size == nullptr) { 8327 call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(false), 8328 stubAddr, stubName, TypePtr::BOTTOM, 8329 src_start, state); 8330 } else { 8331 call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(true), 8332 stubAddr, stubName, TypePtr::BOTTOM, 8333 src_start, state, block_size); 8334 } 8335 8336 return true; 8337 } 8338 8339 //------------------------------inline_double_keccak 8340 bool LibraryCallKit::inline_double_keccak() { 8341 address stubAddr; 8342 const char *stubName; 8343 assert(UseSHA3Intrinsics, "need SHA3 intrinsics support"); 8344 assert(callee()->signature()->size() == 2, "double_keccak has 2 parameters"); 8345 8346 stubAddr = StubRoutines::double_keccak(); 8347 stubName = "double_keccak"; 8348 if (!stubAddr) return false; 8349 8350 Node* status0 = argument(0); 8351 Node* status1 = argument(1); 8352 8353 status0 = must_be_not_null(status0, true); 8354 status1 = must_be_not_null(status1, true); 8355 8356 Node* status0_start = array_element_address(status0, intcon(0), T_LONG); 8357 assert(status0_start, "status0 is null"); 8358 Node* status1_start = array_element_address(status1, intcon(0), T_LONG); 8359 assert(status1_start, "status1 is null"); 8360 Node* double_keccak = make_runtime_call(RC_LEAF|RC_NO_FP, 8361 OptoRuntime::double_keccak_Type(), 8362 stubAddr, stubName, TypePtr::BOTTOM, 8363 status0_start, status1_start); 8364 // return an int 8365 Node* retvalue = _gvn.transform(new ProjNode(double_keccak, TypeFunc::Parms)); 8366 set_result(retvalue); 8367 return true; 8368 } 8369 8370 8371 //------------------------------inline_digestBase_implCompressMB----------------------- 8372 // 8373 // Calculate MD5/SHA/SHA2/SHA5/SHA3 for multi-block byte[] array. 8374 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit) 8375 // 8376 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) { 8377 assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics || UseSHA3Intrinsics, 8378 "need MD5/SHA1/SHA256/SHA512/SHA3 instruction support"); 8379 assert((uint)predicate < 5, "sanity"); 8380 assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters"); 8381 8382 Node* digestBase_obj = argument(0); // The receiver was checked for null already. 8383 Node* src = argument(1); // byte[] array 8384 Node* ofs = argument(2); // type int 8385 Node* limit = argument(3); // type int 8386 8387 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 8388 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 8389 // failed array check 8390 return false; 8391 } 8392 // Figure out the size and type of the elements we will be copying. 8393 BasicType src_elem = src_type->elem()->array_element_basic_type(); 8394 if (src_elem != T_BYTE) { 8395 return false; 8396 } 8397 // 'src_start' points to src array + offset 8398 src = must_be_not_null(src, false); 8399 Node* src_start = array_element_address(src, ofs, src_elem); 8400 8401 const char* klass_digestBase_name = nullptr; 8402 const char* stub_name = nullptr; 8403 address stub_addr = nullptr; 8404 BasicType elem_type = T_INT; 8405 8406 switch (predicate) { 8407 case 0: 8408 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_md5_implCompress)) { 8409 klass_digestBase_name = "sun/security/provider/MD5"; 8410 stub_name = "md5_implCompressMB"; 8411 stub_addr = StubRoutines::md5_implCompressMB(); 8412 } 8413 break; 8414 case 1: 8415 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha_implCompress)) { 8416 klass_digestBase_name = "sun/security/provider/SHA"; 8417 stub_name = "sha1_implCompressMB"; 8418 stub_addr = StubRoutines::sha1_implCompressMB(); 8419 } 8420 break; 8421 case 2: 8422 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha2_implCompress)) { 8423 klass_digestBase_name = "sun/security/provider/SHA2"; 8424 stub_name = "sha256_implCompressMB"; 8425 stub_addr = StubRoutines::sha256_implCompressMB(); 8426 } 8427 break; 8428 case 3: 8429 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha5_implCompress)) { 8430 klass_digestBase_name = "sun/security/provider/SHA5"; 8431 stub_name = "sha512_implCompressMB"; 8432 stub_addr = StubRoutines::sha512_implCompressMB(); 8433 elem_type = T_LONG; 8434 } 8435 break; 8436 case 4: 8437 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha3_implCompress)) { 8438 klass_digestBase_name = "sun/security/provider/SHA3"; 8439 stub_name = "sha3_implCompressMB"; 8440 stub_addr = StubRoutines::sha3_implCompressMB(); 8441 elem_type = T_LONG; 8442 } 8443 break; 8444 default: 8445 fatal("unknown DigestBase intrinsic predicate: %d", predicate); 8446 } 8447 if (klass_digestBase_name != nullptr) { 8448 assert(stub_addr != nullptr, "Stub is generated"); 8449 if (stub_addr == nullptr) return false; 8450 8451 // get DigestBase klass to lookup for SHA klass 8452 const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr(); 8453 assert(tinst != nullptr, "digestBase_obj is not instance???"); 8454 assert(tinst->is_loaded(), "DigestBase is not loaded"); 8455 8456 ciKlass* klass_digestBase = tinst->instance_klass()->find_klass(ciSymbol::make(klass_digestBase_name)); 8457 assert(klass_digestBase->is_loaded(), "predicate checks that this class is loaded"); 8458 ciInstanceKlass* instklass_digestBase = klass_digestBase->as_instance_klass(); 8459 return inline_digestBase_implCompressMB(digestBase_obj, instklass_digestBase, elem_type, stub_addr, stub_name, src_start, ofs, limit); 8460 } 8461 return false; 8462 } 8463 8464 //------------------------------inline_digestBase_implCompressMB----------------------- 8465 bool LibraryCallKit::inline_digestBase_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_digestBase, 8466 BasicType elem_type, address stubAddr, const char *stubName, 8467 Node* src_start, Node* ofs, Node* limit) { 8468 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_digestBase); 8469 const TypeOopPtr* xtype = aklass->cast_to_exactness(false)->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 8470 Node* digest_obj = new CheckCastPPNode(control(), digestBase_obj, xtype); 8471 digest_obj = _gvn.transform(digest_obj); 8472 8473 Node* state = get_state_from_digest_object(digest_obj, elem_type); 8474 if (state == nullptr) return false; 8475 8476 Node* block_size = nullptr; 8477 if (strcmp("sha3_implCompressMB", stubName) == 0) { 8478 block_size = get_block_size_from_digest_object(digest_obj); 8479 if (block_size == nullptr) return false; 8480 } 8481 8482 // Call the stub. 8483 Node* call; 8484 if (block_size == nullptr) { 8485 call = make_runtime_call(RC_LEAF|RC_NO_FP, 8486 OptoRuntime::digestBase_implCompressMB_Type(false), 8487 stubAddr, stubName, TypePtr::BOTTOM, 8488 src_start, state, ofs, limit); 8489 } else { 8490 call = make_runtime_call(RC_LEAF|RC_NO_FP, 8491 OptoRuntime::digestBase_implCompressMB_Type(true), 8492 stubAddr, stubName, TypePtr::BOTTOM, 8493 src_start, state, block_size, ofs, limit); 8494 } 8495 8496 // return ofs (int) 8497 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 8498 set_result(result); 8499 8500 return true; 8501 } 8502 8503 //------------------------------inline_galoisCounterMode_AESCrypt----------------------- 8504 bool LibraryCallKit::inline_galoisCounterMode_AESCrypt() { 8505 assert(UseAES, "need AES instruction support"); 8506 address stubAddr = nullptr; 8507 const char *stubName = nullptr; 8508 stubAddr = StubRoutines::galoisCounterMode_AESCrypt(); 8509 stubName = "galoisCounterMode_AESCrypt"; 8510 8511 if (stubAddr == nullptr) return false; 8512 8513 Node* in = argument(0); 8514 Node* inOfs = argument(1); 8515 Node* len = argument(2); 8516 Node* ct = argument(3); 8517 Node* ctOfs = argument(4); 8518 Node* out = argument(5); 8519 Node* outOfs = argument(6); 8520 Node* gctr_object = argument(7); 8521 Node* ghash_object = argument(8); 8522 8523 // (1) in, ct and out are arrays. 8524 const TypeAryPtr* in_type = in->Value(&_gvn)->isa_aryptr(); 8525 const TypeAryPtr* ct_type = ct->Value(&_gvn)->isa_aryptr(); 8526 const TypeAryPtr* out_type = out->Value(&_gvn)->isa_aryptr(); 8527 assert( in_type != nullptr && in_type->elem() != Type::BOTTOM && 8528 ct_type != nullptr && ct_type->elem() != Type::BOTTOM && 8529 out_type != nullptr && out_type->elem() != Type::BOTTOM, "args are strange"); 8530 8531 // checks are the responsibility of the caller 8532 Node* in_start = in; 8533 Node* ct_start = ct; 8534 Node* out_start = out; 8535 if (inOfs != nullptr || ctOfs != nullptr || outOfs != nullptr) { 8536 assert(inOfs != nullptr && ctOfs != nullptr && outOfs != nullptr, ""); 8537 in_start = array_element_address(in, inOfs, T_BYTE); 8538 ct_start = array_element_address(ct, ctOfs, T_BYTE); 8539 out_start = array_element_address(out, outOfs, T_BYTE); 8540 } 8541 8542 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 8543 // (because of the predicated logic executed earlier). 8544 // so we cast it here safely. 8545 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 8546 Node* embeddedCipherObj = load_field_from_object(gctr_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 8547 Node* counter = load_field_from_object(gctr_object, "counter", "[B"); 8548 Node* subkeyHtbl = load_field_from_object(ghash_object, "subkeyHtbl", "[J"); 8549 Node* state = load_field_from_object(ghash_object, "state", "[J"); 8550 8551 if (embeddedCipherObj == nullptr || counter == nullptr || subkeyHtbl == nullptr || state == nullptr) { 8552 return false; 8553 } 8554 // cast it to what we know it will be at runtime 8555 const TypeInstPtr* tinst = _gvn.type(gctr_object)->isa_instptr(); 8556 assert(tinst != nullptr, "GCTR obj is null"); 8557 assert(tinst->is_loaded(), "GCTR obj is not loaded"); 8558 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 8559 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 8560 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 8561 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 8562 const TypeOopPtr* xtype = aklass->as_instance_type(); 8563 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 8564 aescrypt_object = _gvn.transform(aescrypt_object); 8565 // we need to get the start of the aescrypt_object's expanded key array 8566 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 8567 if (k_start == nullptr) return false; 8568 // similarly, get the start address of the r vector 8569 Node* cnt_start = array_element_address(counter, intcon(0), T_BYTE); 8570 Node* state_start = array_element_address(state, intcon(0), T_LONG); 8571 Node* subkeyHtbl_start = array_element_address(subkeyHtbl, intcon(0), T_LONG); 8572 8573 8574 // Call the stub, passing params 8575 Node* gcmCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 8576 OptoRuntime::galoisCounterMode_aescrypt_Type(), 8577 stubAddr, stubName, TypePtr::BOTTOM, 8578 in_start, len, ct_start, out_start, k_start, state_start, subkeyHtbl_start, cnt_start); 8579 8580 // return cipher length (int) 8581 Node* retvalue = _gvn.transform(new ProjNode(gcmCrypt, TypeFunc::Parms)); 8582 set_result(retvalue); 8583 8584 return true; 8585 } 8586 8587 //----------------------------inline_galoisCounterMode_AESCrypt_predicate---------------------------- 8588 // Return node representing slow path of predicate check. 8589 // the pseudo code we want to emulate with this predicate is: 8590 // for encryption: 8591 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 8592 // for decryption: 8593 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 8594 // note cipher==plain is more conservative than the original java code but that's OK 8595 // 8596 8597 Node* LibraryCallKit::inline_galoisCounterMode_AESCrypt_predicate() { 8598 // The receiver was checked for null already. 8599 Node* objGCTR = argument(7); 8600 // Load embeddedCipher field of GCTR object. 8601 Node* embeddedCipherObj = load_field_from_object(objGCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 8602 assert(embeddedCipherObj != nullptr, "embeddedCipherObj is null"); 8603 8604 // get AESCrypt klass for instanceOf check 8605 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 8606 // will have same classloader as CipherBlockChaining object 8607 const TypeInstPtr* tinst = _gvn.type(objGCTR)->isa_instptr(); 8608 assert(tinst != nullptr, "GCTR obj is null"); 8609 assert(tinst->is_loaded(), "GCTR obj is not loaded"); 8610 8611 // we want to do an instanceof comparison against the AESCrypt class 8612 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 8613 if (!klass_AESCrypt->is_loaded()) { 8614 // if AESCrypt is not even loaded, we never take the intrinsic fast path 8615 Node* ctrl = control(); 8616 set_control(top()); // no regular fast path 8617 return ctrl; 8618 } 8619 8620 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 8621 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 8622 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 8623 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 8624 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 8625 8626 return instof_false; // even if it is null 8627 } 8628 8629 //------------------------------get_state_from_digest_object----------------------- 8630 Node * LibraryCallKit::get_state_from_digest_object(Node *digest_object, BasicType elem_type) { 8631 const char* state_type; 8632 switch (elem_type) { 8633 case T_BYTE: state_type = "[B"; break; 8634 case T_INT: state_type = "[I"; break; 8635 case T_LONG: state_type = "[J"; break; 8636 default: ShouldNotReachHere(); 8637 } 8638 Node* digest_state = load_field_from_object(digest_object, "state", state_type); 8639 assert (digest_state != nullptr, "wrong version of sun.security.provider.MD5/SHA/SHA2/SHA5/SHA3"); 8640 if (digest_state == nullptr) return (Node *) nullptr; 8641 8642 // now have the array, need to get the start address of the state array 8643 Node* state = array_element_address(digest_state, intcon(0), elem_type); 8644 return state; 8645 } 8646 8647 //------------------------------get_block_size_from_sha3_object---------------------------------- 8648 Node * LibraryCallKit::get_block_size_from_digest_object(Node *digest_object) { 8649 Node* block_size = load_field_from_object(digest_object, "blockSize", "I"); 8650 assert (block_size != nullptr, "sanity"); 8651 return block_size; 8652 } 8653 8654 //----------------------------inline_digestBase_implCompressMB_predicate---------------------------- 8655 // Return node representing slow path of predicate check. 8656 // the pseudo code we want to emulate with this predicate is: 8657 // if (digestBaseObj instanceof MD5/SHA/SHA2/SHA5/SHA3) do_intrinsic, else do_javapath 8658 // 8659 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) { 8660 assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics || UseSHA3Intrinsics, 8661 "need MD5/SHA1/SHA256/SHA512/SHA3 instruction support"); 8662 assert((uint)predicate < 5, "sanity"); 8663 8664 // The receiver was checked for null already. 8665 Node* digestBaseObj = argument(0); 8666 8667 // get DigestBase klass for instanceOf check 8668 const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr(); 8669 assert(tinst != nullptr, "digestBaseObj is null"); 8670 assert(tinst->is_loaded(), "DigestBase is not loaded"); 8671 8672 const char* klass_name = nullptr; 8673 switch (predicate) { 8674 case 0: 8675 if (UseMD5Intrinsics) { 8676 // we want to do an instanceof comparison against the MD5 class 8677 klass_name = "sun/security/provider/MD5"; 8678 } 8679 break; 8680 case 1: 8681 if (UseSHA1Intrinsics) { 8682 // we want to do an instanceof comparison against the SHA class 8683 klass_name = "sun/security/provider/SHA"; 8684 } 8685 break; 8686 case 2: 8687 if (UseSHA256Intrinsics) { 8688 // we want to do an instanceof comparison against the SHA2 class 8689 klass_name = "sun/security/provider/SHA2"; 8690 } 8691 break; 8692 case 3: 8693 if (UseSHA512Intrinsics) { 8694 // we want to do an instanceof comparison against the SHA5 class 8695 klass_name = "sun/security/provider/SHA5"; 8696 } 8697 break; 8698 case 4: 8699 if (UseSHA3Intrinsics) { 8700 // we want to do an instanceof comparison against the SHA3 class 8701 klass_name = "sun/security/provider/SHA3"; 8702 } 8703 break; 8704 default: 8705 fatal("unknown SHA intrinsic predicate: %d", predicate); 8706 } 8707 8708 ciKlass* klass = nullptr; 8709 if (klass_name != nullptr) { 8710 klass = tinst->instance_klass()->find_klass(ciSymbol::make(klass_name)); 8711 } 8712 if ((klass == nullptr) || !klass->is_loaded()) { 8713 // if none of MD5/SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path 8714 Node* ctrl = control(); 8715 set_control(top()); // no intrinsic path 8716 return ctrl; 8717 } 8718 ciInstanceKlass* instklass = klass->as_instance_klass(); 8719 8720 Node* instof = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass))); 8721 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 8722 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 8723 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 8724 8725 return instof_false; // even if it is null 8726 } 8727 8728 //-------------inline_fma----------------------------------- 8729 bool LibraryCallKit::inline_fma(vmIntrinsics::ID id) { 8730 Node *a = nullptr; 8731 Node *b = nullptr; 8732 Node *c = nullptr; 8733 Node* result = nullptr; 8734 switch (id) { 8735 case vmIntrinsics::_fmaD: 8736 assert(callee()->signature()->size() == 6, "fma has 3 parameters of size 2 each."); 8737 // no receiver since it is static method 8738 a = argument(0); 8739 b = argument(2); 8740 c = argument(4); 8741 result = _gvn.transform(new FmaDNode(a, b, c)); 8742 break; 8743 case vmIntrinsics::_fmaF: 8744 assert(callee()->signature()->size() == 3, "fma has 3 parameters of size 1 each."); 8745 a = argument(0); 8746 b = argument(1); 8747 c = argument(2); 8748 result = _gvn.transform(new FmaFNode(a, b, c)); 8749 break; 8750 default: 8751 fatal_unexpected_iid(id); break; 8752 } 8753 set_result(result); 8754 return true; 8755 } 8756 8757 bool LibraryCallKit::inline_character_compare(vmIntrinsics::ID id) { 8758 // argument(0) is receiver 8759 Node* codePoint = argument(1); 8760 Node* n = nullptr; 8761 8762 switch (id) { 8763 case vmIntrinsics::_isDigit : 8764 n = new DigitNode(control(), codePoint); 8765 break; 8766 case vmIntrinsics::_isLowerCase : 8767 n = new LowerCaseNode(control(), codePoint); 8768 break; 8769 case vmIntrinsics::_isUpperCase : 8770 n = new UpperCaseNode(control(), codePoint); 8771 break; 8772 case vmIntrinsics::_isWhitespace : 8773 n = new WhitespaceNode(control(), codePoint); 8774 break; 8775 default: 8776 fatal_unexpected_iid(id); 8777 } 8778 8779 set_result(_gvn.transform(n)); 8780 return true; 8781 } 8782 8783 bool LibraryCallKit::inline_profileBoolean() { 8784 Node* counts = argument(1); 8785 const TypeAryPtr* ary = nullptr; 8786 ciArray* aobj = nullptr; 8787 if (counts->is_Con() 8788 && (ary = counts->bottom_type()->isa_aryptr()) != nullptr 8789 && (aobj = ary->const_oop()->as_array()) != nullptr 8790 && (aobj->length() == 2)) { 8791 // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively. 8792 jint false_cnt = aobj->element_value(0).as_int(); 8793 jint true_cnt = aobj->element_value(1).as_int(); 8794 8795 if (C->log() != nullptr) { 8796 C->log()->elem("observe source='profileBoolean' false='%d' true='%d'", 8797 false_cnt, true_cnt); 8798 } 8799 8800 if (false_cnt + true_cnt == 0) { 8801 // According to profile, never executed. 8802 uncommon_trap_exact(Deoptimization::Reason_intrinsic, 8803 Deoptimization::Action_reinterpret); 8804 return true; 8805 } 8806 8807 // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt) 8808 // is a number of each value occurrences. 8809 Node* result = argument(0); 8810 if (false_cnt == 0 || true_cnt == 0) { 8811 // According to profile, one value has been never seen. 8812 int expected_val = (false_cnt == 0) ? 1 : 0; 8813 8814 Node* cmp = _gvn.transform(new CmpINode(result, intcon(expected_val))); 8815 Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 8816 8817 IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN); 8818 Node* fast_path = _gvn.transform(new IfTrueNode(check)); 8819 Node* slow_path = _gvn.transform(new IfFalseNode(check)); 8820 8821 { // Slow path: uncommon trap for never seen value and then reexecute 8822 // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows 8823 // the value has been seen at least once. 8824 PreserveJVMState pjvms(this); 8825 PreserveReexecuteState preexecs(this); 8826 jvms()->set_should_reexecute(true); 8827 8828 set_control(slow_path); 8829 set_i_o(i_o()); 8830 8831 uncommon_trap_exact(Deoptimization::Reason_intrinsic, 8832 Deoptimization::Action_reinterpret); 8833 } 8834 // The guard for never seen value enables sharpening of the result and 8835 // returning a constant. It allows to eliminate branches on the same value 8836 // later on. 8837 set_control(fast_path); 8838 result = intcon(expected_val); 8839 } 8840 // Stop profiling. 8841 // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode. 8842 // By replacing method body with profile data (represented as ProfileBooleanNode 8843 // on IR level) we effectively disable profiling. 8844 // It enables full speed execution once optimized code is generated. 8845 Node* profile = _gvn.transform(new ProfileBooleanNode(result, false_cnt, true_cnt)); 8846 C->record_for_igvn(profile); 8847 set_result(profile); 8848 return true; 8849 } else { 8850 // Continue profiling. 8851 // Profile data isn't available at the moment. So, execute method's bytecode version. 8852 // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod 8853 // is compiled and counters aren't available since corresponding MethodHandle 8854 // isn't a compile-time constant. 8855 return false; 8856 } 8857 } 8858 8859 bool LibraryCallKit::inline_isCompileConstant() { 8860 Node* n = argument(0); 8861 set_result(n->is_Con() ? intcon(1) : intcon(0)); 8862 return true; 8863 } 8864 8865 //------------------------------- inline_getObjectSize -------------------------------------- 8866 // 8867 // Calculate the runtime size of the object/array. 8868 // native long sun.instrument.InstrumentationImpl.getObjectSize0(long nativeAgent, Object objectToSize); 8869 // 8870 bool LibraryCallKit::inline_getObjectSize() { 8871 Node* obj = argument(3); 8872 Node* klass_node = load_object_klass(obj); 8873 8874 jint layout_con = Klass::_lh_neutral_value; 8875 Node* layout_val = get_layout_helper(klass_node, layout_con); 8876 int layout_is_con = (layout_val == nullptr); 8877 8878 if (layout_is_con) { 8879 // Layout helper is constant, can figure out things at compile time. 8880 8881 if (Klass::layout_helper_is_instance(layout_con)) { 8882 // Instance case: layout_con contains the size itself. 8883 Node *size = longcon(Klass::layout_helper_size_in_bytes(layout_con)); 8884 set_result(size); 8885 } else { 8886 // Array case: size is round(header + element_size*arraylength). 8887 // Since arraylength is different for every array instance, we have to 8888 // compute the whole thing at runtime. 8889 8890 Node* arr_length = load_array_length(obj); 8891 8892 int round_mask = MinObjAlignmentInBytes - 1; 8893 int hsize = Klass::layout_helper_header_size(layout_con); 8894 int eshift = Klass::layout_helper_log2_element_size(layout_con); 8895 8896 if ((round_mask & ~right_n_bits(eshift)) == 0) { 8897 round_mask = 0; // strength-reduce it if it goes away completely 8898 } 8899 assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded"); 8900 Node* header_size = intcon(hsize + round_mask); 8901 8902 Node* lengthx = ConvI2X(arr_length); 8903 Node* headerx = ConvI2X(header_size); 8904 8905 Node* abody = lengthx; 8906 if (eshift != 0) { 8907 abody = _gvn.transform(new LShiftXNode(lengthx, intcon(eshift))); 8908 } 8909 Node* size = _gvn.transform( new AddXNode(headerx, abody) ); 8910 if (round_mask != 0) { 8911 size = _gvn.transform( new AndXNode(size, MakeConX(~round_mask)) ); 8912 } 8913 size = ConvX2L(size); 8914 set_result(size); 8915 } 8916 } else { 8917 // Layout helper is not constant, need to test for array-ness at runtime. 8918 8919 enum { _instance_path = 1, _array_path, PATH_LIMIT }; 8920 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 8921 PhiNode* result_val = new PhiNode(result_reg, TypeLong::LONG); 8922 record_for_igvn(result_reg); 8923 8924 Node* array_ctl = generate_array_guard(klass_node, nullptr, &obj); 8925 if (array_ctl != nullptr) { 8926 // Array case: size is round(header + element_size*arraylength). 8927 // Since arraylength is different for every array instance, we have to 8928 // compute the whole thing at runtime. 8929 8930 PreserveJVMState pjvms(this); 8931 set_control(array_ctl); 8932 Node* arr_length = load_array_length(obj); 8933 8934 int round_mask = MinObjAlignmentInBytes - 1; 8935 Node* mask = intcon(round_mask); 8936 8937 Node* hss = intcon(Klass::_lh_header_size_shift); 8938 Node* hsm = intcon(Klass::_lh_header_size_mask); 8939 Node* header_size = _gvn.transform(new URShiftINode(layout_val, hss)); 8940 header_size = _gvn.transform(new AndINode(header_size, hsm)); 8941 header_size = _gvn.transform(new AddINode(header_size, mask)); 8942 8943 // There is no need to mask or shift this value. 8944 // The semantics of LShiftINode include an implicit mask to 0x1F. 8945 assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place"); 8946 Node* elem_shift = layout_val; 8947 8948 Node* lengthx = ConvI2X(arr_length); 8949 Node* headerx = ConvI2X(header_size); 8950 8951 Node* abody = _gvn.transform(new LShiftXNode(lengthx, elem_shift)); 8952 Node* size = _gvn.transform(new AddXNode(headerx, abody)); 8953 if (round_mask != 0) { 8954 size = _gvn.transform(new AndXNode(size, MakeConX(~round_mask))); 8955 } 8956 size = ConvX2L(size); 8957 8958 result_reg->init_req(_array_path, control()); 8959 result_val->init_req(_array_path, size); 8960 } 8961 8962 if (!stopped()) { 8963 // Instance case: the layout helper gives us instance size almost directly, 8964 // but we need to mask out the _lh_instance_slow_path_bit. 8965 Node* size = ConvI2X(layout_val); 8966 assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit"); 8967 Node* mask = MakeConX(~(intptr_t) right_n_bits(LogBytesPerLong)); 8968 size = _gvn.transform(new AndXNode(size, mask)); 8969 size = ConvX2L(size); 8970 8971 result_reg->init_req(_instance_path, control()); 8972 result_val->init_req(_instance_path, size); 8973 } 8974 8975 set_result(result_reg, result_val); 8976 } 8977 8978 return true; 8979 } 8980 8981 //------------------------------- inline_blackhole -------------------------------------- 8982 // 8983 // Make sure all arguments to this node are alive. 8984 // This matches methods that were requested to be blackholed through compile commands. 8985 // 8986 bool LibraryCallKit::inline_blackhole() { 8987 assert(callee()->is_static(), "Should have been checked before: only static methods here"); 8988 assert(callee()->is_empty(), "Should have been checked before: only empty methods here"); 8989 assert(callee()->holder()->is_loaded(), "Should have been checked before: only methods for loaded classes here"); 8990 8991 // Blackhole node pinches only the control, not memory. This allows 8992 // the blackhole to be pinned in the loop that computes blackholed 8993 // values, but have no other side effects, like breaking the optimizations 8994 // across the blackhole. 8995 8996 Node* bh = _gvn.transform(new BlackholeNode(control())); 8997 set_control(_gvn.transform(new ProjNode(bh, TypeFunc::Control))); 8998 8999 // Bind call arguments as blackhole arguments to keep them alive 9000 uint nargs = callee()->arg_size(); 9001 for (uint i = 0; i < nargs; i++) { 9002 bh->add_req(argument(i)); 9003 } 9004 9005 return true; 9006 } 9007 9008 Node* LibraryCallKit::unbox_fp16_value(const TypeInstPtr* float16_box_type, ciField* field, Node* box) { 9009 const TypeInstPtr* box_type = _gvn.type(box)->isa_instptr(); 9010 if (box_type == nullptr || box_type->instance_klass() != float16_box_type->instance_klass()) { 9011 return nullptr; // box klass is not Float16 9012 } 9013 9014 // Null check; get notnull casted pointer 9015 Node* null_ctl = top(); 9016 Node* not_null_box = null_check_oop(box, &null_ctl, true); 9017 // If not_null_box is dead, only null-path is taken 9018 if (stopped()) { 9019 set_control(null_ctl); 9020 return nullptr; 9021 } 9022 assert(not_null_box->bottom_type()->is_instptr()->maybe_null() == false, ""); 9023 const TypePtr* adr_type = C->alias_type(field)->adr_type(); 9024 Node* adr = basic_plus_adr(not_null_box, field->offset_in_bytes()); 9025 return access_load_at(not_null_box, adr, adr_type, TypeInt::SHORT, T_SHORT, IN_HEAP); 9026 } 9027 9028 Node* LibraryCallKit::box_fp16_value(const TypeInstPtr* float16_box_type, ciField* field, Node* value) { 9029 PreserveReexecuteState preexecs(this); 9030 jvms()->set_should_reexecute(true); 9031 9032 const TypeKlassPtr* klass_type = float16_box_type->as_klass_type(); 9033 Node* klass_node = makecon(klass_type); 9034 Node* box = new_instance(klass_node); 9035 9036 Node* value_field = basic_plus_adr(box, field->offset_in_bytes()); 9037 const TypePtr* value_adr_type = value_field->bottom_type()->is_ptr(); 9038 9039 Node* field_store = _gvn.transform(access_store_at(box, 9040 value_field, 9041 value_adr_type, 9042 value, 9043 TypeInt::SHORT, 9044 T_SHORT, 9045 IN_HEAP)); 9046 set_memory(field_store, value_adr_type); 9047 return box; 9048 } 9049 9050 bool LibraryCallKit::inline_fp16_operations(vmIntrinsics::ID id, int num_args) { 9051 if (!Matcher::match_rule_supported(Op_ReinterpretS2HF) || 9052 !Matcher::match_rule_supported(Op_ReinterpretHF2S)) { 9053 return false; 9054 } 9055 9056 const TypeInstPtr* box_type = _gvn.type(argument(0))->isa_instptr(); 9057 if (box_type == nullptr || box_type->const_oop() == nullptr) { 9058 return false; 9059 } 9060 9061 ciInstanceKlass* float16_klass = box_type->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass(); 9062 const TypeInstPtr* float16_box_type = TypeInstPtr::make_exact(TypePtr::NotNull, float16_klass); 9063 ciField* field = float16_klass->get_field_by_name(ciSymbols::value_name(), 9064 ciSymbols::short_signature(), 9065 false); 9066 assert(field != nullptr, ""); 9067 9068 // Transformed nodes 9069 Node* fld1 = nullptr; 9070 Node* fld2 = nullptr; 9071 Node* fld3 = nullptr; 9072 switch(num_args) { 9073 case 3: 9074 fld3 = unbox_fp16_value(float16_box_type, field, argument(3)); 9075 if (fld3 == nullptr) { 9076 return false; 9077 } 9078 fld3 = _gvn.transform(new ReinterpretS2HFNode(fld3)); 9079 // fall-through 9080 case 2: 9081 fld2 = unbox_fp16_value(float16_box_type, field, argument(2)); 9082 if (fld2 == nullptr) { 9083 return false; 9084 } 9085 fld2 = _gvn.transform(new ReinterpretS2HFNode(fld2)); 9086 // fall-through 9087 case 1: 9088 fld1 = unbox_fp16_value(float16_box_type, field, argument(1)); 9089 if (fld1 == nullptr) { 9090 return false; 9091 } 9092 fld1 = _gvn.transform(new ReinterpretS2HFNode(fld1)); 9093 break; 9094 default: fatal("Unsupported number of arguments %d", num_args); 9095 } 9096 9097 Node* result = nullptr; 9098 switch (id) { 9099 // Unary operations 9100 case vmIntrinsics::_sqrt_float16: 9101 result = _gvn.transform(new SqrtHFNode(C, control(), fld1)); 9102 break; 9103 // Ternary operations 9104 case vmIntrinsics::_fma_float16: 9105 result = _gvn.transform(new FmaHFNode(fld1, fld2, fld3)); 9106 break; 9107 default: 9108 fatal_unexpected_iid(id); 9109 break; 9110 } 9111 result = _gvn.transform(new ReinterpretHF2SNode(result)); 9112 set_result(box_fp16_value(float16_box_type, field, result)); 9113 return true; 9114 } 9115