1 /*
   2  * Copyright (c) 1998, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciMethodData.hpp"
  27 #include "compiler/compileLog.hpp"
  28 #include "gc/shared/barrierSet.hpp"
  29 #include "gc/shared/c2/barrierSetC2.hpp"
  30 #include "libadt/vectset.hpp"
  31 #include "memory/allocation.inline.hpp"
  32 #include "memory/resourceArea.hpp"
  33 #include "opto/addnode.hpp"
  34 #include "opto/arraycopynode.hpp"
  35 #include "opto/callnode.hpp"
  36 #include "opto/castnode.hpp"
  37 #include "opto/connode.hpp"
  38 #include "opto/convertnode.hpp"
  39 #include "opto/divnode.hpp"
  40 #include "opto/idealGraphPrinter.hpp"
  41 #include "opto/loopnode.hpp"
  42 #include "opto/movenode.hpp"
  43 #include "opto/mulnode.hpp"
  44 #include "opto/opaquenode.hpp"
  45 #include "opto/predicates.hpp"
  46 #include "opto/rootnode.hpp"
  47 #include "opto/runtime.hpp"
  48 #include "opto/vectorization.hpp"
  49 #include "runtime/sharedRuntime.hpp"
  50 #include "utilities/checkedCast.hpp"
  51 #include "utilities/powerOfTwo.hpp"
  52 
  53 //=============================================================================
  54 //--------------------------is_cloop_ind_var-----------------------------------
  55 // Determine if a node is a counted loop induction variable.
  56 // NOTE: The method is declared in "node.hpp".
  57 bool Node::is_cloop_ind_var() const {
  58   return (is_Phi() &&
  59           as_Phi()->region()->is_CountedLoop() &&
  60           as_Phi()->region()->as_CountedLoop()->phi() == this);
  61 }
  62 
  63 //=============================================================================
  64 //------------------------------dump_spec--------------------------------------
  65 // Dump special per-node info
  66 #ifndef PRODUCT
  67 void LoopNode::dump_spec(outputStream *st) const {
  68   RegionNode::dump_spec(st);
  69   if (is_inner_loop()) st->print( "inner " );
  70   if (is_partial_peel_loop()) st->print( "partial_peel " );
  71   if (partial_peel_has_failed()) st->print( "partial_peel_failed " );
  72 }
  73 #endif
  74 
  75 //------------------------------is_valid_counted_loop-------------------------
  76 bool LoopNode::is_valid_counted_loop(BasicType bt) const {
  77   if (is_BaseCountedLoop() && as_BaseCountedLoop()->bt() == bt) {
  78     BaseCountedLoopNode*    l  = as_BaseCountedLoop();
  79     BaseCountedLoopEndNode* le = l->loopexit_or_null();
  80     if (le != nullptr &&
  81         le->proj_out_or_null(1 /* true */) == l->in(LoopNode::LoopBackControl)) {
  82       Node* phi  = l->phi();
  83       Node* exit = le->proj_out_or_null(0 /* false */);
  84       if (exit != nullptr && exit->Opcode() == Op_IfFalse &&
  85           phi != nullptr && phi->is_Phi() &&
  86           phi->in(LoopNode::LoopBackControl) == l->incr() &&
  87           le->loopnode() == l && le->stride_is_con()) {
  88         return true;
  89       }
  90     }
  91   }
  92   return false;
  93 }
  94 
  95 //------------------------------get_early_ctrl---------------------------------
  96 // Compute earliest legal control
  97 Node *PhaseIdealLoop::get_early_ctrl( Node *n ) {
  98   assert( !n->is_Phi() && !n->is_CFG(), "this code only handles data nodes" );
  99   uint i;
 100   Node *early;
 101   if (n->in(0) && !n->is_expensive()) {
 102     early = n->in(0);
 103     if (!early->is_CFG()) // Might be a non-CFG multi-def
 104       early = get_ctrl(early);        // So treat input as a straight data input
 105     i = 1;
 106   } else {
 107     early = get_ctrl(n->in(1));
 108     i = 2;
 109   }
 110   uint e_d = dom_depth(early);
 111   assert( early, "" );
 112   for (; i < n->req(); i++) {
 113     Node *cin = get_ctrl(n->in(i));
 114     assert( cin, "" );
 115     // Keep deepest dominator depth
 116     uint c_d = dom_depth(cin);
 117     if (c_d > e_d) {           // Deeper guy?
 118       early = cin;              // Keep deepest found so far
 119       e_d = c_d;
 120     } else if (c_d == e_d &&    // Same depth?
 121                early != cin) { // If not equal, must use slower algorithm
 122       // If same depth but not equal, one _must_ dominate the other
 123       // and we want the deeper (i.e., dominated) guy.
 124       Node *n1 = early;
 125       Node *n2 = cin;
 126       while (1) {
 127         n1 = idom(n1);          // Walk up until break cycle
 128         n2 = idom(n2);
 129         if (n1 == cin ||        // Walked early up to cin
 130             dom_depth(n2) < c_d)
 131           break;                // early is deeper; keep him
 132         if (n2 == early ||      // Walked cin up to early
 133             dom_depth(n1) < c_d) {
 134           early = cin;          // cin is deeper; keep him
 135           break;
 136         }
 137       }
 138       e_d = dom_depth(early);   // Reset depth register cache
 139     }
 140   }
 141 
 142   // Return earliest legal location
 143   assert(early == find_non_split_ctrl(early), "unexpected early control");
 144 
 145   if (n->is_expensive() && !_verify_only && !_verify_me) {
 146     assert(n->in(0), "should have control input");
 147     early = get_early_ctrl_for_expensive(n, early);
 148   }
 149 
 150   return early;
 151 }
 152 
 153 //------------------------------get_early_ctrl_for_expensive---------------------------------
 154 // Move node up the dominator tree as high as legal while still beneficial
 155 Node *PhaseIdealLoop::get_early_ctrl_for_expensive(Node *n, Node* earliest) {
 156   assert(n->in(0) && n->is_expensive(), "expensive node with control input here");
 157   assert(OptimizeExpensiveOps, "optimization off?");
 158 
 159   Node* ctl = n->in(0);
 160   assert(ctl->is_CFG(), "expensive input 0 must be cfg");
 161   uint min_dom_depth = dom_depth(earliest);
 162 #ifdef ASSERT
 163   if (!is_dominator(ctl, earliest) && !is_dominator(earliest, ctl)) {
 164     dump_bad_graph("Bad graph detected in get_early_ctrl_for_expensive", n, earliest, ctl);
 165     assert(false, "Bad graph detected in get_early_ctrl_for_expensive");
 166   }
 167 #endif
 168   if (dom_depth(ctl) < min_dom_depth) {
 169     return earliest;
 170   }
 171 
 172   while (true) {
 173     Node* next = ctl;
 174     // Moving the node out of a loop on the projection of an If
 175     // confuses Loop Predication. So, once we hit a loop in an If branch
 176     // that doesn't branch to an UNC, we stop. The code that process
 177     // expensive nodes will notice the loop and skip over it to try to
 178     // move the node further up.
 179     if (ctl->is_CountedLoop() && ctl->in(1) != nullptr && ctl->in(1)->in(0) != nullptr && ctl->in(1)->in(0)->is_If()) {
 180       if (!ctl->in(1)->as_Proj()->is_uncommon_trap_if_pattern()) {
 181         break;
 182       }
 183       next = idom(ctl->in(1)->in(0));
 184     } else if (ctl->is_Proj()) {
 185       // We only move it up along a projection if the projection is
 186       // the single control projection for its parent: same code path,
 187       // if it's a If with UNC or fallthrough of a call.
 188       Node* parent_ctl = ctl->in(0);
 189       if (parent_ctl == nullptr) {
 190         break;
 191       } else if (parent_ctl->is_CountedLoopEnd() && parent_ctl->as_CountedLoopEnd()->loopnode() != nullptr) {
 192         next = parent_ctl->as_CountedLoopEnd()->loopnode()->init_control();
 193       } else if (parent_ctl->is_If()) {
 194         if (!ctl->as_Proj()->is_uncommon_trap_if_pattern()) {
 195           break;
 196         }
 197         assert(idom(ctl) == parent_ctl, "strange");
 198         next = idom(parent_ctl);
 199       } else if (ctl->is_CatchProj()) {
 200         if (ctl->as_Proj()->_con != CatchProjNode::fall_through_index) {
 201           break;
 202         }
 203         assert(parent_ctl->in(0)->in(0)->is_Call(), "strange graph");
 204         next = parent_ctl->in(0)->in(0)->in(0);
 205       } else {
 206         // Check if parent control has a single projection (this
 207         // control is the only possible successor of the parent
 208         // control). If so, we can try to move the node above the
 209         // parent control.
 210         int nb_ctl_proj = 0;
 211         for (DUIterator_Fast imax, i = parent_ctl->fast_outs(imax); i < imax; i++) {
 212           Node *p = parent_ctl->fast_out(i);
 213           if (p->is_Proj() && p->is_CFG()) {
 214             nb_ctl_proj++;
 215             if (nb_ctl_proj > 1) {
 216               break;
 217             }
 218           }
 219         }
 220 
 221         if (nb_ctl_proj > 1) {
 222           break;
 223         }
 224         assert(parent_ctl->is_Start() || parent_ctl->is_MemBar() || parent_ctl->is_Call() ||
 225                BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(parent_ctl), "unexpected node");
 226         assert(idom(ctl) == parent_ctl, "strange");
 227         next = idom(parent_ctl);
 228       }
 229     } else {
 230       next = idom(ctl);
 231     }
 232     if (next->is_Root() || next->is_Start() || dom_depth(next) < min_dom_depth) {
 233       break;
 234     }
 235     ctl = next;
 236   }
 237 
 238   if (ctl != n->in(0)) {
 239     _igvn.replace_input_of(n, 0, ctl);
 240     _igvn.hash_insert(n);
 241   }
 242 
 243   return ctl;
 244 }
 245 
 246 
 247 //------------------------------set_early_ctrl---------------------------------
 248 // Set earliest legal control
 249 void PhaseIdealLoop::set_early_ctrl(Node* n, bool update_body) {
 250   Node *early = get_early_ctrl(n);
 251 
 252   // Record earliest legal location
 253   set_ctrl(n, early);
 254   IdealLoopTree *loop = get_loop(early);
 255   if (update_body && loop->_child == nullptr) {
 256     loop->_body.push(n);
 257   }
 258 }
 259 
 260 //------------------------------set_subtree_ctrl-------------------------------
 261 // set missing _ctrl entries on new nodes
 262 void PhaseIdealLoop::set_subtree_ctrl(Node* n, bool update_body) {
 263   // Already set?  Get out.
 264   if (_loop_or_ctrl[n->_idx]) return;
 265   // Recursively set _loop_or_ctrl array to indicate where the Node goes
 266   uint i;
 267   for (i = 0; i < n->req(); ++i) {
 268     Node *m = n->in(i);
 269     if (m && m != C->root()) {
 270       set_subtree_ctrl(m, update_body);
 271     }
 272   }
 273 
 274   // Fixup self
 275   set_early_ctrl(n, update_body);
 276 }
 277 
 278 IdealLoopTree* PhaseIdealLoop::insert_outer_loop(IdealLoopTree* loop, LoopNode* outer_l, Node* outer_ift) {
 279   IdealLoopTree* outer_ilt = new IdealLoopTree(this, outer_l, outer_ift);
 280   IdealLoopTree* parent = loop->_parent;
 281   IdealLoopTree* sibling = parent->_child;
 282   if (sibling == loop) {
 283     parent->_child = outer_ilt;
 284   } else {
 285     while (sibling->_next != loop) {
 286       sibling = sibling->_next;
 287     }
 288     sibling->_next = outer_ilt;
 289   }
 290   outer_ilt->_next = loop->_next;
 291   outer_ilt->_parent = parent;
 292   outer_ilt->_child = loop;
 293   outer_ilt->_nest = loop->_nest;
 294   loop->_parent = outer_ilt;
 295   loop->_next = nullptr;
 296   loop->_nest++;
 297   assert(loop->_nest <= SHRT_MAX, "sanity");
 298   return outer_ilt;
 299 }
 300 
 301 // Create a skeleton strip mined outer loop: a Loop head before the
 302 // inner strip mined loop, a safepoint and an exit condition guarded
 303 // by an opaque node after the inner strip mined loop with a backedge
 304 // to the loop head. The inner strip mined loop is left as it is. Only
 305 // once loop optimizations are over, do we adjust the inner loop exit
 306 // condition to limit its number of iterations, set the outer loop
 307 // exit condition and add Phis to the outer loop head. Some loop
 308 // optimizations that operate on the inner strip mined loop need to be
 309 // aware of the outer strip mined loop: loop unswitching needs to
 310 // clone the outer loop as well as the inner, unrolling needs to only
 311 // clone the inner loop etc. No optimizations need to change the outer
 312 // strip mined loop as it is only a skeleton.
 313 IdealLoopTree* PhaseIdealLoop::create_outer_strip_mined_loop(BoolNode *test, Node *cmp, Node *init_control,
 314                                                              IdealLoopTree* loop, float cl_prob, float le_fcnt,
 315                                                              Node*& entry_control, Node*& iffalse) {
 316   Node* outer_test = _igvn.intcon(0);
 317   set_ctrl(outer_test, C->root());
 318   Node *orig = iffalse;
 319   iffalse = iffalse->clone();
 320   _igvn.register_new_node_with_optimizer(iffalse);
 321   set_idom(iffalse, idom(orig), dom_depth(orig));
 322 
 323   IfNode *outer_le = new OuterStripMinedLoopEndNode(iffalse, outer_test, cl_prob, le_fcnt);
 324   Node *outer_ift = new IfTrueNode (outer_le);
 325   Node* outer_iff = orig;
 326   _igvn.replace_input_of(outer_iff, 0, outer_le);
 327 
 328   LoopNode *outer_l = new OuterStripMinedLoopNode(C, init_control, outer_ift);
 329   entry_control = outer_l;
 330 
 331   IdealLoopTree* outer_ilt = insert_outer_loop(loop, outer_l, outer_ift);
 332 
 333   set_loop(iffalse, outer_ilt);
 334   // When this code runs, loop bodies have not yet been populated.
 335   const bool body_populated = false;
 336   register_control(outer_le, outer_ilt, iffalse, body_populated);
 337   register_control(outer_ift, outer_ilt, outer_le, body_populated);
 338   set_idom(outer_iff, outer_le, dom_depth(outer_le));
 339   _igvn.register_new_node_with_optimizer(outer_l);
 340   set_loop(outer_l, outer_ilt);
 341   set_idom(outer_l, init_control, dom_depth(init_control)+1);
 342 
 343   return outer_ilt;
 344 }
 345 
 346 void PhaseIdealLoop::insert_loop_limit_check_predicate(ParsePredicateSuccessProj* loop_limit_check_parse_proj,
 347                                                        Node* cmp_limit, Node* bol) {
 348   assert(loop_limit_check_parse_proj->in(0)->is_ParsePredicate(), "must be parse predicate");
 349   Node* new_predicate_proj = create_new_if_for_predicate(loop_limit_check_parse_proj, nullptr,
 350                                                          Deoptimization::Reason_loop_limit_check,
 351                                                          Op_If);
 352   Node* iff = new_predicate_proj->in(0);
 353   cmp_limit = _igvn.register_new_node_with_optimizer(cmp_limit);
 354   bol = _igvn.register_new_node_with_optimizer(bol);
 355   set_subtree_ctrl(bol, false);
 356   _igvn.replace_input_of(iff, 1, bol);
 357 
 358 #ifndef PRODUCT
 359   // report that the loop predication has been actually performed
 360   // for this loop
 361   if (TraceLoopLimitCheck) {
 362     tty->print_cr("Counted Loop Limit Check generated:");
 363     debug_only( bol->dump(2); )
 364   }
 365 #endif
 366 }
 367 
 368 Node* PhaseIdealLoop::loop_exit_control(Node* x, IdealLoopTree* loop) {
 369   // Counted loop head must be a good RegionNode with only 3 not null
 370   // control input edges: Self, Entry, LoopBack.
 371   if (x->in(LoopNode::Self) == nullptr || x->req() != 3 || loop->_irreducible) {
 372     return nullptr;
 373   }
 374   Node *init_control = x->in(LoopNode::EntryControl);
 375   Node *back_control = x->in(LoopNode::LoopBackControl);
 376   if (init_control == nullptr || back_control == nullptr) {   // Partially dead
 377     return nullptr;
 378   }
 379   // Must also check for TOP when looking for a dead loop
 380   if (init_control->is_top() || back_control->is_top()) {
 381     return nullptr;
 382   }
 383 
 384   // Allow funny placement of Safepoint
 385   if (back_control->Opcode() == Op_SafePoint) {
 386     back_control = back_control->in(TypeFunc::Control);
 387   }
 388 
 389   // Controlling test for loop
 390   Node *iftrue = back_control;
 391   uint iftrue_op = iftrue->Opcode();
 392   if (iftrue_op != Op_IfTrue &&
 393       iftrue_op != Op_IfFalse) {
 394     // I have a weird back-control.  Probably the loop-exit test is in
 395     // the middle of the loop and I am looking at some trailing control-flow
 396     // merge point.  To fix this I would have to partially peel the loop.
 397     return nullptr; // Obscure back-control
 398   }
 399 
 400   // Get boolean guarding loop-back test
 401   Node *iff = iftrue->in(0);
 402   if (get_loop(iff) != loop || !iff->in(1)->is_Bool()) {
 403     return nullptr;
 404   }
 405   return iftrue;
 406 }
 407 
 408 Node* PhaseIdealLoop::loop_exit_test(Node* back_control, IdealLoopTree* loop, Node*& incr, Node*& limit, BoolTest::mask& bt, float& cl_prob) {
 409   Node* iftrue = back_control;
 410   uint iftrue_op = iftrue->Opcode();
 411   Node* iff = iftrue->in(0);
 412   BoolNode* test = iff->in(1)->as_Bool();
 413   bt = test->_test._test;
 414   cl_prob = iff->as_If()->_prob;
 415   if (iftrue_op == Op_IfFalse) {
 416     bt = BoolTest(bt).negate();
 417     cl_prob = 1.0 - cl_prob;
 418   }
 419   // Get backedge compare
 420   Node* cmp = test->in(1);
 421   if (!cmp->is_Cmp()) {
 422     return nullptr;
 423   }
 424 
 425   // Find the trip-counter increment & limit.  Limit must be loop invariant.
 426   incr  = cmp->in(1);
 427   limit = cmp->in(2);
 428 
 429   // ---------
 430   // need 'loop()' test to tell if limit is loop invariant
 431   // ---------
 432 
 433   if (!is_member(loop, get_ctrl(incr))) { // Swapped trip counter and limit?
 434     Node* tmp = incr;            // Then reverse order into the CmpI
 435     incr = limit;
 436     limit = tmp;
 437     bt = BoolTest(bt).commute(); // And commute the exit test
 438   }
 439   if (is_member(loop, get_ctrl(limit))) { // Limit must be loop-invariant
 440     return nullptr;
 441   }
 442   if (!is_member(loop, get_ctrl(incr))) { // Trip counter must be loop-variant
 443     return nullptr;
 444   }
 445   return cmp;
 446 }
 447 
 448 Node* PhaseIdealLoop::loop_iv_incr(Node* incr, Node* x, IdealLoopTree* loop, Node*& phi_incr) {
 449   if (incr->is_Phi()) {
 450     if (incr->as_Phi()->region() != x || incr->req() != 3) {
 451       return nullptr; // Not simple trip counter expression
 452     }
 453     phi_incr = incr;
 454     incr = phi_incr->in(LoopNode::LoopBackControl); // Assume incr is on backedge of Phi
 455     if (!is_member(loop, get_ctrl(incr))) { // Trip counter must be loop-variant
 456       return nullptr;
 457     }
 458   }
 459   return incr;
 460 }
 461 
 462 Node* PhaseIdealLoop::loop_iv_stride(Node* incr, IdealLoopTree* loop, Node*& xphi) {
 463   assert(incr->Opcode() == Op_AddI || incr->Opcode() == Op_AddL, "caller resp.");
 464   // Get merge point
 465   xphi = incr->in(1);
 466   Node *stride = incr->in(2);
 467   if (!stride->is_Con()) {     // Oops, swap these
 468     if (!xphi->is_Con()) {     // Is the other guy a constant?
 469       return nullptr;          // Nope, unknown stride, bail out
 470     }
 471     Node *tmp = xphi;          // 'incr' is commutative, so ok to swap
 472     xphi = stride;
 473     stride = tmp;
 474   }
 475   return stride;
 476 }
 477 
 478 PhiNode* PhaseIdealLoop::loop_iv_phi(Node* xphi, Node* phi_incr, Node* x, IdealLoopTree* loop) {
 479   if (!xphi->is_Phi()) {
 480     return nullptr; // Too much math on the trip counter
 481   }
 482   if (phi_incr != nullptr && phi_incr != xphi) {
 483     return nullptr;
 484   }
 485   PhiNode *phi = xphi->as_Phi();
 486 
 487   // Phi must be of loop header; backedge must wrap to increment
 488   if (phi->region() != x) {
 489     return nullptr;
 490   }
 491   return phi;
 492 }
 493 
 494 static int check_stride_overflow(jlong final_correction, const TypeInteger* limit_t, BasicType bt) {
 495   if (final_correction > 0) {
 496     if (limit_t->lo_as_long() > (max_signed_integer(bt) - final_correction)) {
 497       return -1;
 498     }
 499     if (limit_t->hi_as_long() > (max_signed_integer(bt) - final_correction)) {
 500       return 1;
 501     }
 502   } else {
 503     if (limit_t->hi_as_long() < (min_signed_integer(bt) - final_correction)) {
 504       return -1;
 505     }
 506     if (limit_t->lo_as_long() < (min_signed_integer(bt) - final_correction)) {
 507       return 1;
 508     }
 509   }
 510   return 0;
 511 }
 512 
 513 static bool condition_stride_ok(BoolTest::mask bt, jlong stride_con) {
 514   // If the condition is inverted and we will be rolling
 515   // through MININT to MAXINT, then bail out.
 516   if (bt == BoolTest::eq || // Bail out, but this loop trips at most twice!
 517       // Odd stride
 518       (bt == BoolTest::ne && stride_con != 1 && stride_con != -1) ||
 519       // Count down loop rolls through MAXINT
 520       ((bt == BoolTest::le || bt == BoolTest::lt) && stride_con < 0) ||
 521       // Count up loop rolls through MININT
 522       ((bt == BoolTest::ge || bt == BoolTest::gt) && stride_con > 0)) {
 523     return false; // Bail out
 524   }
 525   return true;
 526 }
 527 
 528 Node* PhaseIdealLoop::loop_nest_replace_iv(Node* iv_to_replace, Node* inner_iv, Node* outer_phi, Node* inner_head,
 529                                            BasicType bt) {
 530   Node* iv_as_long;
 531   if (bt == T_LONG) {
 532     iv_as_long = new ConvI2LNode(inner_iv, TypeLong::INT);
 533     register_new_node(iv_as_long, inner_head);
 534   } else {
 535     iv_as_long = inner_iv;
 536   }
 537   Node* iv_replacement = AddNode::make(outer_phi, iv_as_long, bt);
 538   register_new_node(iv_replacement, inner_head);
 539   for (DUIterator_Last imin, i = iv_to_replace->last_outs(imin); i >= imin;) {
 540     Node* u = iv_to_replace->last_out(i);
 541 #ifdef ASSERT
 542     if (!is_dominator(inner_head, ctrl_or_self(u))) {
 543       assert(u->is_Phi(), "should be a Phi");
 544       for (uint j = 1; j < u->req(); j++) {
 545         if (u->in(j) == iv_to_replace) {
 546           assert(is_dominator(inner_head, u->in(0)->in(j)), "iv use above loop?");
 547         }
 548       }
 549     }
 550 #endif
 551     _igvn.rehash_node_delayed(u);
 552     int nb = u->replace_edge(iv_to_replace, iv_replacement, &_igvn);
 553     i -= nb;
 554   }
 555   return iv_replacement;
 556 }
 557 
 558 // Add a Parse Predicate with an uncommon trap on the failing/false path. Normal control will continue on the true path.
 559 void PhaseIdealLoop::add_parse_predicate(Deoptimization::DeoptReason reason, Node* inner_head, IdealLoopTree* loop,
 560                                          SafePointNode* sfpt) {
 561   if (!C->too_many_traps(reason)) {
 562     ParsePredicateNode* parse_predicate = new ParsePredicateNode(inner_head->in(LoopNode::EntryControl), reason, &_igvn);
 563     register_control(parse_predicate, loop, inner_head->in(LoopNode::EntryControl));
 564     Node* if_false = new IfFalseNode(parse_predicate);
 565     register_control(if_false, _ltree_root, parse_predicate);
 566     Node* if_true = new IfTrueNode(parse_predicate);
 567     register_control(if_true, loop, parse_predicate);
 568 
 569     int trap_request = Deoptimization::make_trap_request(reason, Deoptimization::Action_maybe_recompile);
 570     address call_addr = OptoRuntime::uncommon_trap_blob()->entry_point();
 571     const TypePtr* no_memory_effects = nullptr;
 572     JVMState* jvms = sfpt->jvms();
 573     CallNode* unc = new CallStaticJavaNode(OptoRuntime::uncommon_trap_Type(), call_addr, "uncommon_trap",
 574                                            no_memory_effects);
 575 
 576     Node* mem = nullptr;
 577     Node* i_o = nullptr;
 578     if (sfpt->is_Call()) {
 579       mem = sfpt->proj_out(TypeFunc::Memory);
 580       i_o = sfpt->proj_out(TypeFunc::I_O);
 581     } else {
 582       mem = sfpt->memory();
 583       i_o = sfpt->i_o();
 584     }
 585 
 586     Node *frame = new ParmNode(C->start(), TypeFunc::FramePtr);
 587     register_new_node(frame, C->start());
 588     Node *ret = new ParmNode(C->start(), TypeFunc::ReturnAdr);
 589     register_new_node(ret, C->start());
 590 
 591     unc->init_req(TypeFunc::Control, if_false);
 592     unc->init_req(TypeFunc::I_O, i_o);
 593     unc->init_req(TypeFunc::Memory, mem); // may gc ptrs
 594     unc->init_req(TypeFunc::FramePtr, frame);
 595     unc->init_req(TypeFunc::ReturnAdr, ret);
 596     unc->init_req(TypeFunc::Parms+0, _igvn.intcon(trap_request));
 597     unc->set_cnt(PROB_UNLIKELY_MAG(4));
 598     unc->copy_call_debug_info(&_igvn, sfpt);
 599 
 600     for (uint i = TypeFunc::Parms; i < unc->req(); i++) {
 601       set_subtree_ctrl(unc->in(i), false);
 602     }
 603     register_control(unc, _ltree_root, if_false);
 604 
 605     Node* ctrl = new ProjNode(unc, TypeFunc::Control);
 606     register_control(ctrl, _ltree_root, unc);
 607     Node* halt = new HaltNode(ctrl, frame, "uncommon trap returned which should never happen" PRODUCT_ONLY(COMMA /*reachable*/false));
 608     register_control(halt, _ltree_root, ctrl);
 609     _igvn.add_input_to(C->root(), halt);
 610 
 611     _igvn.replace_input_of(inner_head, LoopNode::EntryControl, if_true);
 612     set_idom(inner_head, if_true, dom_depth(inner_head));
 613   }
 614 }
 615 
 616 // Find a safepoint node that dominates the back edge. We need a
 617 // SafePointNode so we can use its jvm state to create empty
 618 // predicates.
 619 static bool no_side_effect_since_safepoint(Compile* C, Node* x, Node* mem, MergeMemNode* mm, PhaseIdealLoop* phase) {
 620   SafePointNode* safepoint = nullptr;
 621   for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) {
 622     Node* u = x->fast_out(i);
 623     if (u->is_memory_phi()) {
 624       Node* m = u->in(LoopNode::LoopBackControl);
 625       if (u->adr_type() == TypePtr::BOTTOM) {
 626         if (m->is_MergeMem() && mem->is_MergeMem()) {
 627           if (m != mem DEBUG_ONLY(|| true)) {
 628             // MergeMemStream can modify m, for example to adjust the length to mem.
 629             // This is unfortunate, and probably unnecessary. But as it is, we need
 630             // to add m to the igvn worklist, else we may have a modified node that
 631             // is not on the igvn worklist.
 632             phase->igvn()._worklist.push(m);
 633             for (MergeMemStream mms(m->as_MergeMem(), mem->as_MergeMem()); mms.next_non_empty2(); ) {
 634               if (!mms.is_empty()) {
 635                 if (mms.memory() != mms.memory2()) {
 636                   return false;
 637                 }
 638 #ifdef ASSERT
 639                 if (mms.alias_idx() != Compile::AliasIdxBot) {
 640                   mm->set_memory_at(mms.alias_idx(), mem->as_MergeMem()->base_memory());
 641                 }
 642 #endif
 643               }
 644             }
 645           }
 646         } else if (mem->is_MergeMem()) {
 647           if (m != mem->as_MergeMem()->base_memory()) {
 648             return false;
 649           }
 650         } else {
 651           return false;
 652         }
 653       } else {
 654         if (mem->is_MergeMem()) {
 655           if (m != mem->as_MergeMem()->memory_at(C->get_alias_index(u->adr_type()))) {
 656             return false;
 657           }
 658 #ifdef ASSERT
 659           mm->set_memory_at(C->get_alias_index(u->adr_type()), mem->as_MergeMem()->base_memory());
 660 #endif
 661         } else {
 662           if (m != mem) {
 663             return false;
 664           }
 665         }
 666       }
 667     }
 668   }
 669   return true;
 670 }
 671 
 672 SafePointNode* PhaseIdealLoop::find_safepoint(Node* back_control, Node* x, IdealLoopTree* loop) {
 673   IfNode* exit_test = back_control->in(0)->as_If();
 674   SafePointNode* safepoint = nullptr;
 675   if (exit_test->in(0)->is_SafePoint() && exit_test->in(0)->outcnt() == 1) {
 676     safepoint = exit_test->in(0)->as_SafePoint();
 677   } else {
 678     Node* c = back_control;
 679     while (c != x && c->Opcode() != Op_SafePoint) {
 680       c = idom(c);
 681     }
 682 
 683     if (c->Opcode() == Op_SafePoint) {
 684       safepoint = c->as_SafePoint();
 685     }
 686 
 687     if (safepoint == nullptr) {
 688       return nullptr;
 689     }
 690 
 691     Node* mem = safepoint->in(TypeFunc::Memory);
 692 
 693     // We can only use that safepoint if there's no side effect between the backedge and the safepoint.
 694 
 695     // mm is the memory state at the safepoint (when it's a MergeMem)
 696     // no_side_effect_since_safepoint() goes over the memory state at the backedge. It resets the mm input for each
 697     // component of the memory state it encounters so it points to the base memory. Once no_side_effect_since_safepoint()
 698     // is done, if no side effect after the safepoint was found, mm should transform to the base memory: the states at
 699     // the backedge and safepoint are the same so all components of the memory state at the safepoint should have been
 700     // reset.
 701     MergeMemNode* mm = nullptr;
 702 #ifdef ASSERT
 703     if (mem->is_MergeMem()) {
 704       mm = mem->clone()->as_MergeMem();
 705       _igvn._worklist.push(mm);
 706       for (MergeMemStream mms(mem->as_MergeMem()); mms.next_non_empty(); ) {
 707         // Loop invariant memory state won't be reset by no_side_effect_since_safepoint(). Do it here.
 708         // Escape Analysis can add state to mm that it doesn't add to the backedge memory Phis, breaking verification
 709         // code that relies on mm. Clear that extra state here.
 710         if (mms.alias_idx() != Compile::AliasIdxBot &&
 711             (loop != get_loop(ctrl_or_self(mms.memory())) ||
 712              (mms.adr_type()->isa_oop_ptr() && mms.adr_type()->is_known_instance()))) {
 713           mm->set_memory_at(mms.alias_idx(), mem->as_MergeMem()->base_memory());
 714         }
 715       }
 716     }
 717 #endif
 718     if (!no_side_effect_since_safepoint(C, x, mem, mm, this)) {
 719       safepoint = nullptr;
 720     } else {
 721       assert(mm == nullptr|| _igvn.transform(mm) == mem->as_MergeMem()->base_memory(), "all memory state should have been processed");
 722     }
 723 #ifdef ASSERT
 724     if (mm != nullptr) {
 725       _igvn.remove_dead_node(mm);
 726     }
 727 #endif
 728   }
 729   return safepoint;
 730 }
 731 
 732 // If the loop has the shape of a counted loop but with a long
 733 // induction variable, transform the loop in a loop nest: an inner
 734 // loop that iterates for at most max int iterations with an integer
 735 // induction variable and an outer loop that iterates over the full
 736 // range of long values from the initial loop in (at most) max int
 737 // steps. That is:
 738 //
 739 // x: for (long phi = init; phi < limit; phi += stride) {
 740 //   // phi := Phi(L, init, incr)
 741 //   // incr := AddL(phi, longcon(stride))
 742 //   long incr = phi + stride;
 743 //   ... use phi and incr ...
 744 // }
 745 //
 746 // OR:
 747 //
 748 // x: for (long phi = init; (phi += stride) < limit; ) {
 749 //   // phi := Phi(L, AddL(init, stride), incr)
 750 //   // incr := AddL(phi, longcon(stride))
 751 //   long incr = phi + stride;
 752 //   ... use phi and (phi + stride) ...
 753 // }
 754 //
 755 // ==transform=>
 756 //
 757 // const ulong inner_iters_limit = INT_MAX - stride - 1;  //near 0x7FFFFFF0
 758 // assert(stride <= inner_iters_limit);  // else abort transform
 759 // assert((extralong)limit + stride <= LONG_MAX);  // else deopt
 760 // outer_head: for (long outer_phi = init;;) {
 761 //   // outer_phi := Phi(outer_head, init, AddL(outer_phi, I2L(inner_phi)))
 762 //   ulong inner_iters_max = (ulong) MAX(0, ((extralong)limit + stride - outer_phi));
 763 //   long inner_iters_actual = MIN(inner_iters_limit, inner_iters_max);
 764 //   assert(inner_iters_actual == (int)inner_iters_actual);
 765 //   int inner_phi, inner_incr;
 766 //   x: for (inner_phi = 0;; inner_phi = inner_incr) {
 767 //     // inner_phi := Phi(x, intcon(0), inner_incr)
 768 //     // inner_incr := AddI(inner_phi, intcon(stride))
 769 //     inner_incr = inner_phi + stride;
 770 //     if (inner_incr < inner_iters_actual) {
 771 //       ... use phi=>(outer_phi+inner_phi) ...
 772 //       continue;
 773 //     }
 774 //     else break;
 775 //   }
 776 //   if ((outer_phi+inner_phi) < limit)  //OR (outer_phi+inner_incr) < limit
 777 //     continue;
 778 //   else break;
 779 // }
 780 //
 781 // The same logic is used to transform an int counted loop that contains long range checks into a loop nest of 2 int
 782 // loops with long range checks transformed to int range checks in the inner loop.
 783 bool PhaseIdealLoop::create_loop_nest(IdealLoopTree* loop, Node_List &old_new) {
 784   Node* x = loop->_head;
 785   // Only for inner loops
 786   if (loop->_child != nullptr || !x->is_BaseCountedLoop() || x->as_Loop()->is_loop_nest_outer_loop()) {
 787     return false;
 788   }
 789 
 790   if (x->is_CountedLoop() && !x->as_CountedLoop()->is_main_loop() && !x->as_CountedLoop()->is_normal_loop()) {
 791     return false;
 792   }
 793 
 794   BaseCountedLoopNode* head = x->as_BaseCountedLoop();
 795   BasicType bt = x->as_BaseCountedLoop()->bt();
 796 
 797   check_counted_loop_shape(loop, x, bt);
 798 
 799 #ifndef PRODUCT
 800   if (bt == T_LONG) {
 801     Atomic::inc(&_long_loop_candidates);
 802   }
 803 #endif
 804 
 805   jlong stride_con_long = head->stride_con();
 806   assert(stride_con_long != 0, "missed some peephole opt");
 807   // We can't iterate for more than max int at a time.
 808   if (stride_con_long != (jint)stride_con_long || stride_con_long == min_jint) {
 809     assert(bt == T_LONG, "only for long loops");
 810     return false;
 811   }
 812   jint stride_con = checked_cast<jint>(stride_con_long);
 813   // The number of iterations for the integer count loop: guarantee no
 814   // overflow: max_jint - stride_con max. -1 so there's no need for a
 815   // loop limit check if the exit test is <= or >=.
 816   int iters_limit = max_jint - ABS(stride_con) - 1;
 817 #ifdef ASSERT
 818   if (bt == T_LONG && StressLongCountedLoop > 0) {
 819     iters_limit = iters_limit / StressLongCountedLoop;
 820   }
 821 #endif
 822   // At least 2 iterations so counted loop construction doesn't fail
 823   if (iters_limit/ABS(stride_con) < 2) {
 824     return false;
 825   }
 826 
 827   PhiNode* phi = head->phi()->as_Phi();
 828   Node* incr = head->incr();
 829 
 830   Node* back_control = head->in(LoopNode::LoopBackControl);
 831 
 832   // data nodes on back branch not supported
 833   if (back_control->outcnt() > 1) {
 834     return false;
 835   }
 836 
 837   Node* limit = head->limit();
 838   // We'll need to use the loop limit before the inner loop is entered
 839   if (!is_dominator(get_ctrl(limit), x)) {
 840     return false;
 841   }
 842 
 843   IfNode* exit_test = head->loopexit();
 844 
 845   assert(back_control->Opcode() == Op_IfTrue, "wrong projection for back edge");
 846 
 847   Node_List range_checks;
 848   iters_limit = extract_long_range_checks(loop, stride_con, iters_limit, phi, range_checks);
 849 
 850   if (bt == T_INT) {
 851     // The only purpose of creating a loop nest is to handle long range checks. If there are none, do not proceed further.
 852     if (range_checks.size() == 0) {
 853       return false;
 854     }
 855   }
 856 
 857   // Take what we know about the number of iterations of the long counted loop into account when computing the limit of
 858   // the inner loop.
 859   const Node* init = head->init_trip();
 860   const TypeInteger* lo = _igvn.type(init)->is_integer(bt);
 861   const TypeInteger* hi = _igvn.type(limit)->is_integer(bt);
 862   if (stride_con < 0) {
 863     swap(lo, hi);
 864   }
 865   if (hi->hi_as_long() <= lo->lo_as_long()) {
 866     // not a loop after all
 867     return false;
 868   }
 869 
 870   if (range_checks.size() > 0) {
 871     // This transformation requires peeling one iteration. Also, if it has range checks and they are eliminated by Loop
 872     // Predication, then 2 Hoisted Check Predicates are added for one range check. Finally, transforming a long range
 873     // check requires extra logic to be executed before the loop is entered and for the outer loop. As a result, the
 874     // transformations can't pay off for a small number of iterations: roughly, if the loop runs for 3 iterations, it's
 875     // going to execute as many range checks once transformed with range checks eliminated (1 peeled iteration with
 876     // range checks + 2 predicates per range checks) as it would have not transformed. It also has to pay for the extra
 877     // logic on loop entry and for the outer loop.
 878     loop->compute_trip_count(this);
 879     if (head->is_CountedLoop() && head->as_CountedLoop()->has_exact_trip_count()) {
 880       if (head->as_CountedLoop()->trip_count() <= 3) {
 881         return false;
 882       }
 883     } else {
 884       loop->compute_profile_trip_cnt(this);
 885       if (!head->is_profile_trip_failed() && head->profile_trip_cnt() <= 3) {
 886         return false;
 887       }
 888     }
 889   }
 890 
 891   julong orig_iters = (julong)hi->hi_as_long() - lo->lo_as_long();
 892   iters_limit = checked_cast<int>(MIN2((julong)iters_limit, orig_iters));
 893 
 894   // We need a safepoint to insert Parse Predicates for the inner loop.
 895   SafePointNode* safepoint;
 896   if (bt == T_INT && head->as_CountedLoop()->is_strip_mined()) {
 897     // Loop is strip mined: use the safepoint of the outer strip mined loop
 898     OuterStripMinedLoopNode* outer_loop = head->as_CountedLoop()->outer_loop();
 899     assert(outer_loop != nullptr, "no outer loop");
 900     safepoint = outer_loop->outer_safepoint();
 901     outer_loop->transform_to_counted_loop(&_igvn, this);
 902     exit_test = head->loopexit();
 903   } else {
 904     safepoint = find_safepoint(back_control, x, loop);
 905   }
 906 
 907   Node* exit_branch = exit_test->proj_out(false);
 908   Node* entry_control = head->in(LoopNode::EntryControl);
 909 
 910   // Clone the control flow of the loop to build an outer loop
 911   Node* outer_back_branch = back_control->clone();
 912   Node* outer_exit_test = new IfNode(exit_test->in(0), exit_test->in(1), exit_test->_prob, exit_test->_fcnt);
 913   Node* inner_exit_branch = exit_branch->clone();
 914 
 915   LoopNode* outer_head = new LoopNode(entry_control, outer_back_branch);
 916   IdealLoopTree* outer_ilt = insert_outer_loop(loop, outer_head, outer_back_branch);
 917 
 918   const bool body_populated = true;
 919   register_control(outer_head, outer_ilt, entry_control, body_populated);
 920 
 921   _igvn.register_new_node_with_optimizer(inner_exit_branch);
 922   set_loop(inner_exit_branch, outer_ilt);
 923   set_idom(inner_exit_branch, exit_test, dom_depth(exit_branch));
 924 
 925   outer_exit_test->set_req(0, inner_exit_branch);
 926   register_control(outer_exit_test, outer_ilt, inner_exit_branch, body_populated);
 927 
 928   _igvn.replace_input_of(exit_branch, 0, outer_exit_test);
 929   set_idom(exit_branch, outer_exit_test, dom_depth(exit_branch));
 930 
 931   outer_back_branch->set_req(0, outer_exit_test);
 932   register_control(outer_back_branch, outer_ilt, outer_exit_test, body_populated);
 933 
 934   _igvn.replace_input_of(x, LoopNode::EntryControl, outer_head);
 935   set_idom(x, outer_head, dom_depth(x));
 936 
 937   // add an iv phi to the outer loop and use it to compute the inner
 938   // loop iteration limit
 939   Node* outer_phi = phi->clone();
 940   outer_phi->set_req(0, outer_head);
 941   register_new_node(outer_phi, outer_head);
 942 
 943   Node* inner_iters_max = nullptr;
 944   if (stride_con > 0) {
 945     inner_iters_max = MaxNode::max_diff_with_zero(limit, outer_phi, TypeInteger::bottom(bt), _igvn);
 946   } else {
 947     inner_iters_max = MaxNode::max_diff_with_zero(outer_phi, limit, TypeInteger::bottom(bt), _igvn);
 948   }
 949 
 950   Node* inner_iters_limit = _igvn.integercon(iters_limit, bt);
 951   // inner_iters_max may not fit in a signed integer (iterating from
 952   // Long.MIN_VALUE to Long.MAX_VALUE for instance). Use an unsigned
 953   // min.
 954   const TypeInteger* inner_iters_actual_range = TypeInteger::make(0, iters_limit, Type::WidenMin, bt);
 955   Node* inner_iters_actual = MaxNode::unsigned_min(inner_iters_max, inner_iters_limit, inner_iters_actual_range, _igvn);
 956 
 957   Node* inner_iters_actual_int;
 958   if (bt == T_LONG) {
 959     inner_iters_actual_int = new ConvL2INode(inner_iters_actual);
 960     _igvn.register_new_node_with_optimizer(inner_iters_actual_int);
 961     // When the inner loop is transformed to a counted loop, a loop limit check is not expected to be needed because
 962     // the loop limit is less or equal to max_jint - stride - 1 (if stride is positive but a similar argument exists for
 963     // a negative stride). We add a CastII here to guarantee that, when the counted loop is created in a subsequent loop
 964     // opts pass, an accurate range of values for the limits is found.
 965     const TypeInt* inner_iters_actual_int_range = TypeInt::make(0, iters_limit, Type::WidenMin);
 966     inner_iters_actual_int = new CastIINode(outer_head, inner_iters_actual_int, inner_iters_actual_int_range, ConstraintCastNode::UnconditionalDependency);
 967     _igvn.register_new_node_with_optimizer(inner_iters_actual_int);
 968   } else {
 969     inner_iters_actual_int = inner_iters_actual;
 970   }
 971 
 972   Node* int_zero = _igvn.intcon(0);
 973   set_ctrl(int_zero, C->root());
 974   if (stride_con < 0) {
 975     inner_iters_actual_int = new SubINode(int_zero, inner_iters_actual_int);
 976     _igvn.register_new_node_with_optimizer(inner_iters_actual_int);
 977   }
 978 
 979   // Clone the iv data nodes as an integer iv
 980   Node* int_stride = _igvn.intcon(stride_con);
 981   set_ctrl(int_stride, C->root());
 982   Node* inner_phi = new PhiNode(x->in(0), TypeInt::INT);
 983   Node* inner_incr = new AddINode(inner_phi, int_stride);
 984   Node* inner_cmp = nullptr;
 985   inner_cmp = new CmpINode(inner_incr, inner_iters_actual_int);
 986   Node* inner_bol = new BoolNode(inner_cmp, exit_test->in(1)->as_Bool()->_test._test);
 987   inner_phi->set_req(LoopNode::EntryControl, int_zero);
 988   inner_phi->set_req(LoopNode::LoopBackControl, inner_incr);
 989   register_new_node(inner_phi, x);
 990   register_new_node(inner_incr, x);
 991   register_new_node(inner_cmp, x);
 992   register_new_node(inner_bol, x);
 993 
 994   _igvn.replace_input_of(exit_test, 1, inner_bol);
 995 
 996   // Clone inner loop phis to outer loop
 997   for (uint i = 0; i < head->outcnt(); i++) {
 998     Node* u = head->raw_out(i);
 999     if (u->is_Phi() && u != inner_phi && u != phi) {
1000       assert(u->in(0) == head, "inconsistent");
1001       Node* clone = u->clone();
1002       clone->set_req(0, outer_head);
1003       register_new_node(clone, outer_head);
1004       _igvn.replace_input_of(u, LoopNode::EntryControl, clone);
1005     }
1006   }
1007 
1008   // Replace inner loop long iv phi as inner loop int iv phi + outer
1009   // loop iv phi
1010   Node* iv_add = loop_nest_replace_iv(phi, inner_phi, outer_phi, head, bt);
1011 
1012   set_subtree_ctrl(inner_iters_actual_int, body_populated);
1013 
1014   LoopNode* inner_head = create_inner_head(loop, head, exit_test);
1015 
1016   // Summary of steps from initial loop to loop nest:
1017   //
1018   // == old IR nodes =>
1019   //
1020   // entry_control: {...}
1021   // x:
1022   // for (long phi = init;;) {
1023   //   // phi := Phi(x, init, incr)
1024   //   // incr := AddL(phi, longcon(stride))
1025   //   exit_test:
1026   //   if (phi < limit)
1027   //     back_control: fallthrough;
1028   //   else
1029   //     exit_branch: break;
1030   //   long incr = phi + stride;
1031   //   ... use phi and incr ...
1032   //   phi = incr;
1033   // }
1034   //
1035   // == new IR nodes (just before final peel) =>
1036   //
1037   // entry_control: {...}
1038   // long adjusted_limit = limit + stride;  //because phi_incr != nullptr
1039   // assert(!limit_check_required || (extralong)limit + stride == adjusted_limit);  // else deopt
1040   // ulong inner_iters_limit = max_jint - ABS(stride) - 1;  //near 0x7FFFFFF0
1041   // outer_head:
1042   // for (long outer_phi = init;;) {
1043   //   // outer_phi := phi->clone(), in(0):=outer_head, => Phi(outer_head, init, incr)
1044   //   // REPLACE phi  => AddL(outer_phi, I2L(inner_phi))
1045   //   // REPLACE incr => AddL(outer_phi, I2L(inner_incr))
1046   //   // SO THAT outer_phi := Phi(outer_head, init, AddL(outer_phi, I2L(inner_incr)))
1047   //   ulong inner_iters_max = (ulong) MAX(0, ((extralong)adjusted_limit - outer_phi) * SGN(stride));
1048   //   int inner_iters_actual_int = (int) MIN(inner_iters_limit, inner_iters_max) * SGN(stride);
1049   //   inner_head: x: //in(1) := outer_head
1050   //   int inner_phi;
1051   //   for (inner_phi = 0;;) {
1052   //     // inner_phi := Phi(x, intcon(0), inner_phi + stride)
1053   //     int inner_incr = inner_phi + stride;
1054   //     bool inner_bol = (inner_incr < inner_iters_actual_int);
1055   //     exit_test: //exit_test->in(1) := inner_bol;
1056   //     if (inner_bol) // WAS (phi < limit)
1057   //       back_control: fallthrough;
1058   //     else
1059   //       inner_exit_branch: break;  //exit_branch->clone()
1060   //     ... use phi=>(outer_phi+inner_phi) ...
1061   //     inner_phi = inner_phi + stride;  // inner_incr
1062   //   }
1063   //   outer_exit_test:  //exit_test->clone(), in(0):=inner_exit_branch
1064   //   if ((outer_phi+inner_phi) < limit)  // WAS (phi < limit)
1065   //     outer_back_branch: fallthrough;  //back_control->clone(), in(0):=outer_exit_test
1066   //   else
1067   //     exit_branch: break;  //in(0) := outer_exit_test
1068   // }
1069 
1070   if (bt == T_INT) {
1071     outer_phi = new ConvI2LNode(outer_phi);
1072     register_new_node(outer_phi, outer_head);
1073   }
1074 
1075   transform_long_range_checks(stride_con, range_checks, outer_phi, inner_iters_actual_int,
1076                               inner_phi, iv_add, inner_head);
1077   // Peel one iteration of the loop and use the safepoint at the end
1078   // of the peeled iteration to insert Parse Predicates. If no well
1079   // positioned safepoint peel to guarantee a safepoint in the outer
1080   // loop.
1081   if (safepoint != nullptr || !loop->_has_call) {
1082     old_new.clear();
1083     do_peeling(loop, old_new);
1084   } else {
1085     C->set_major_progress();
1086   }
1087 
1088   if (safepoint != nullptr) {
1089     SafePointNode* cloned_sfpt = old_new[safepoint->_idx]->as_SafePoint();
1090 
1091     if (UseLoopPredicate) {
1092       add_parse_predicate(Deoptimization::Reason_predicate, inner_head, outer_ilt, cloned_sfpt);
1093     }
1094     if (UseProfiledLoopPredicate) {
1095       add_parse_predicate(Deoptimization::Reason_profile_predicate, inner_head, outer_ilt, cloned_sfpt);
1096     }
1097     add_parse_predicate(Deoptimization::Reason_loop_limit_check, inner_head, outer_ilt, cloned_sfpt);
1098   }
1099 
1100 #ifndef PRODUCT
1101   if (bt == T_LONG) {
1102     Atomic::inc(&_long_loop_nests);
1103   }
1104 #endif
1105 
1106   inner_head->mark_loop_nest_inner_loop();
1107   outer_head->mark_loop_nest_outer_loop();
1108 
1109   return true;
1110 }
1111 
1112 int PhaseIdealLoop::extract_long_range_checks(const IdealLoopTree* loop, jint stride_con, int iters_limit, PhiNode* phi,
1113                                               Node_List& range_checks) {
1114   const jlong min_iters = 2;
1115   jlong reduced_iters_limit = iters_limit;
1116   jlong original_iters_limit = iters_limit;
1117   for (uint i = 0; i < loop->_body.size(); i++) {
1118     Node* c = loop->_body.at(i);
1119     if (c->is_IfProj() && c->in(0)->is_RangeCheck()) {
1120       IfProjNode* if_proj = c->as_IfProj();
1121       CallStaticJavaNode* call = if_proj->is_uncommon_trap_if_pattern();
1122       if (call != nullptr) {
1123         Node* range = nullptr;
1124         Node* offset = nullptr;
1125         jlong scale = 0;
1126         if (loop->is_range_check_if(if_proj, this, T_LONG, phi, range, offset, scale) &&
1127             loop->is_invariant(range) && loop->is_invariant(offset) &&
1128             scale != min_jlong &&
1129             original_iters_limit / ABS(scale) >= min_iters * ABS(stride_con)) {
1130           assert(scale == (jint)scale, "scale should be an int");
1131           reduced_iters_limit = MIN2(reduced_iters_limit, original_iters_limit/ABS(scale));
1132           range_checks.push(c);
1133         }
1134       }
1135     }
1136   }
1137 
1138   return checked_cast<int>(reduced_iters_limit);
1139 }
1140 
1141 // One execution of the inner loop covers a sub-range of the entire iteration range of the loop: [A,Z), aka [A=init,
1142 // Z=limit). If the loop has at least one trip (which is the case here), the iteration variable i always takes A as its
1143 // first value, followed by A+S (S is the stride), next A+2S, etc. The limit is exclusive, so that the final value B of
1144 // i is never Z.  It will be B=Z-1 if S=1, or B=Z+1 if S=-1.
1145 
1146 // If |S|>1 the formula for the last value B would require a floor operation, specifically B=floor((Z-sgn(S)-A)/S)*S+A,
1147 // which is B=Z-sgn(S)U for some U in [1,|S|].  So when S>0, i ranges as i:[A,Z) or i:[A,B=Z-U], or else (in reverse)
1148 // as i:(Z,A] or i:[B=Z+U,A].  It will become important to reason about this inclusive range [A,B] or [B,A].
1149 
1150 // Within the loop there may be many range checks.  Each such range check (R.C.) is of the form 0 <= i*K+L < R, where K
1151 // is a scale factor applied to the loop iteration variable i, and L is some offset; K, L, and R are loop-invariant.
1152 // Because R is never negative (see below), this check can always be simplified to an unsigned check i*K+L <u R.
1153 
1154 // When a long loop over a 64-bit variable i (outer_iv) is decomposed into a series of shorter sub-loops over a 32-bit
1155 // variable j (inner_iv), j ranges over a shorter interval j:[0,B_2] or [0,Z_2) (assuming S > 0), where the limit is
1156 // chosen to prevent various cases of 32-bit overflow (including multiplications j*K below).  In the sub-loop the
1157 // logical value i is offset from j by a 64-bit constant C, so i ranges in i:C+[0,Z_2).
1158 
1159 // For S<0, j ranges (in reverse!) through j:[-|B_2|,0] or (-|Z_2|,0].  For either sign of S, we can say i=j+C and j
1160 // ranges through 32-bit ranges [A_2,B_2] or [B_2,A_2] (A_2=0 of course).
1161 
1162 // The disjoint union of all the C+[A_2,B_2] ranges from the sub-loops must be identical to the whole range [A,B].
1163 // Assuming S>0, the first C must be A itself, and the next C value is the previous C+B_2, plus S.  If |S|=1, the next
1164 // C value is also the previous C+Z_2.  In each sub-loop, j counts from j=A_2=0 and i counts from C+0 and exits at
1165 // j=B_2 (i=C+B_2), just before it gets to i=C+Z_2.  Both i and j count up (from C and 0) if S>0; otherwise they count
1166 // down (from C and 0 again).
1167 
1168 // Returning to range checks, we see that each i*K+L <u R expands to (C+j)*K+L <u R, or j*K+Q <u R, where Q=(C*K+L).
1169 // (Recall that K and L and R are loop-invariant scale, offset and range values for a particular R.C.)  This is still a
1170 // 64-bit comparison, so the range check elimination logic will not apply to it.  (The R.C.E. transforms operate only on
1171 // 32-bit indexes and comparisons, because they use 64-bit temporary values to avoid overflow; see
1172 // PhaseIdealLoop::add_constraint.)
1173 
1174 // We must transform this comparison so that it gets the same answer, but by means of a 32-bit R.C. (using j not i) of
1175 // the form j*K+L_2 <u32 R_2.  Note that L_2 and R_2 must be loop-invariant, but only with respect to the sub-loop.  Thus, the
1176 // problem reduces to computing values for L_2 and R_2 (for each R.C. in the loop) in the loop header for the sub-loop.
1177 // Then the standard R.C.E. transforms can take those as inputs and further compute the necessary minimum and maximum
1178 // values for the 32-bit counter j within which the range checks can be eliminated.
1179 
1180 // So, given j*K+Q <u R, we need to find some j*K+L_2 <u32 R_2, where L_2 and R_2 fit in 32 bits, and the 32-bit operations do
1181 // not overflow. We also need to cover the cases where i*K+L (= j*K+Q) overflows to a 64-bit negative, since that is
1182 // allowed as an input to the R.C., as long as the R.C. as a whole fails.
1183 
1184 // If 32-bit multiplication j*K might overflow, we adjust the sub-loop limit Z_2 closer to zero to reduce j's range.
1185 
1186 // For each R.C. j*K+Q <u32 R, the range of mathematical values of j*K+Q in the sub-loop is [Q_min, Q_max], where
1187 // Q_min=Q and Q_max=B_2*K+Q (if S>0 and K>0), Q_min=A_2*K+Q and Q_max=Q (if S<0 and K>0),
1188 // Q_min=B_2*K+Q and Q_max=Q if (S>0 and K<0), Q_min=Q and Q_max=A_2*K+Q (if S<0 and K<0)
1189 
1190 // Note that the first R.C. value is always Q=(S*K>0 ? Q_min : Q_max).  Also Q_{min,max} = Q + {min,max}(A_2*K,B_2*K).
1191 // If S*K>0 then, as the loop iterations progress, each R.C. value i*K+L = j*K+Q goes up from Q=Q_min towards Q_max.
1192 // If S*K<0 then j*K+Q starts at Q=Q_max and goes down towards Q_min.
1193 
1194 // Case A: Some Negatives (but no overflow).
1195 // Number line:
1196 // |s64_min   .    .    .    0    .    .    .   s64_max|
1197 // |    .  Q_min..Q_max .    0    .    .    .     .    |  s64 negative
1198 // |    .     .    .    .    R=0  R<   R<   R<    R<   |  (against R values)
1199 // |    .     .    .  Q_min..0..Q_max  .    .     .    |  small mixed
1200 // |    .     .    .    .    R    R    R<   R<    R<   |  (against R values)
1201 //
1202 // R values which are out of range (>Q_max+1) are reduced to max(0,Q_max+1).  They are marked on the number line as R<.
1203 //
1204 // So, if Q_min <s64 0, then use this test:
1205 // j*K + s32_trunc(Q_min) <u32 clamp(R, 0, Q_max+1) if S*K>0 (R.C.E. steps upward)
1206 // j*K + s32_trunc(Q_max) <u32 clamp(R, 0, Q_max+1) if S*K<0 (R.C.E. steps downward)
1207 // Both formulas reduce to adding j*K to the 32-bit truncated value of the first R.C. expression value, Q:
1208 // j*K + s32_trunc(Q) <u32 clamp(R, 0, Q_max+1) for all S,K
1209 
1210 // If the 32-bit truncation loses information, no harm is done, since certainly the clamp also will return R_2=zero.
1211 
1212 // Case B: No Negatives.
1213 // Number line:
1214 // |s64_min   .    .    .    0    .    .    .   s64_max|
1215 // |    .     .    .    .    0 Q_min..Q_max .     .    |  small positive
1216 // |    .     .    .    .    R>   R    R    R<    R<   |  (against R values)
1217 // |    .     .    .    .    0    . Q_min..Q_max  .    |  s64 positive
1218 // |    .     .    .    .    R>   R>   R    R     R<   |  (against R values)
1219 //
1220 // R values which are out of range (<Q_min or >Q_max+1) are reduced as marked: R> up to Q_min, R< down to Q_max+1.
1221 // Then the whole comparison is shifted left by Q_min, so it can take place at zero, which is a nice 32-bit value.
1222 //
1223 // So, if both Q_min, Q_max+1 >=s64 0, then use this test:
1224 // j*K + 0         <u32 clamp(R, Q_min, Q_max+1) - Q_min if S*K>0
1225 // More generally:
1226 // j*K + Q - Q_min <u32 clamp(R, Q_min, Q_max+1) - Q_min for all S,K
1227 
1228 // Case C: Overflow in the 64-bit domain
1229 // Number line:
1230 // |..Q_max-2^64   .    .    0    .    .    .   Q_min..|  s64 overflow
1231 // |    .     .    .    .    R>   R>   R>   R>    R    |  (against R values)
1232 //
1233 // In this case, Q_min >s64 Q_max+1, even though the mathematical values of Q_min and Q_max+1 are correctly ordered.
1234 // The formulas from the previous case can be used, except that the bad upper bound Q_max is replaced by max_jlong.
1235 // (In fact, we could use any replacement bound from R to max_jlong inclusive, as the input to the clamp function.)
1236 //
1237 // So if Q_min >=s64 0 but Q_max+1 <s64 0, use this test:
1238 // j*K + 0         <u32 clamp(R, Q_min, max_jlong) - Q_min if S*K>0
1239 // More generally:
1240 // j*K + Q - Q_min <u32 clamp(R, Q_min, max_jlong) - Q_min for all S,K
1241 //
1242 // Dropping the bad bound means only Q_min is used to reduce the range of R:
1243 // j*K + Q - Q_min <u32 max(Q_min, R) - Q_min for all S,K
1244 //
1245 // Here the clamp function is a 64-bit min/max that reduces the dynamic range of its R operand to the required [L,H]:
1246 //     clamp(X, L, H) := max(L, min(X, H))
1247 // When degenerately L > H, it returns L not H.
1248 //
1249 // All of the formulas above can be merged into a single one:
1250 //     L_clamp = Q_min < 0 ? 0 : Q_min        --whether and how far to left-shift
1251 //     H_clamp = Q_max+1 < Q_min ? max_jlong : Q_max+1
1252 //             = Q_max+1 < 0 && Q_min >= 0 ? max_jlong : Q_max+1
1253 //     Q_first = Q = (S*K>0 ? Q_min : Q_max) = (C*K+L)
1254 //     R_clamp = clamp(R, L_clamp, H_clamp)   --reduced dynamic range
1255 //     replacement R.C.:
1256 //       j*K + Q_first - L_clamp <u32 R_clamp - L_clamp
1257 //     or equivalently:
1258 //       j*K + L_2 <u32 R_2
1259 //     where
1260 //       L_2 = Q_first - L_clamp
1261 //       R_2 = R_clamp - L_clamp
1262 //
1263 // Note on why R is never negative:
1264 //
1265 // Various details of this transformation would break badly if R could be negative, so this transformation only
1266 // operates after obtaining hard evidence that R<0 is impossible.  For example, if R comes from a LoadRange node, we
1267 // know R cannot be negative.  For explicit checks (of both int and long) a proof is constructed in
1268 // inline_preconditions_checkIndex, which triggers an uncommon trap if R<0, then wraps R in a ConstraintCastNode with a
1269 // non-negative type.  Later on, when IdealLoopTree::is_range_check_if looks for an optimizable R.C., it checks that
1270 // the type of that R node is non-negative.  Any "wild" R node that could be negative is not treated as an optimizable
1271 // R.C., but R values from a.length and inside checkIndex are good to go.
1272 //
1273 void PhaseIdealLoop::transform_long_range_checks(int stride_con, const Node_List &range_checks, Node* outer_phi,
1274                                                  Node* inner_iters_actual_int, Node* inner_phi,
1275                                                  Node* iv_add, LoopNode* inner_head) {
1276   Node* long_zero = _igvn.longcon(0);
1277   set_ctrl(long_zero, C->root());
1278   Node* int_zero = _igvn.intcon(0);
1279   set_ctrl(int_zero, this->C->root());
1280   Node* long_one = _igvn.longcon(1);
1281   set_ctrl(long_one, this->C->root());
1282   Node* int_stride = _igvn.intcon(checked_cast<int>(stride_con));
1283   set_ctrl(int_stride, this->C->root());
1284 
1285   for (uint i = 0; i < range_checks.size(); i++) {
1286     ProjNode* proj = range_checks.at(i)->as_Proj();
1287     ProjNode* unc_proj = proj->other_if_proj();
1288     RangeCheckNode* rc = proj->in(0)->as_RangeCheck();
1289     jlong scale = 0;
1290     Node* offset = nullptr;
1291     Node* rc_bol = rc->in(1);
1292     Node* rc_cmp = rc_bol->in(1);
1293     if (rc_cmp->Opcode() == Op_CmpU) {
1294       // could be shared and have already been taken care of
1295       continue;
1296     }
1297     bool short_scale = false;
1298     bool ok = is_scaled_iv_plus_offset(rc_cmp->in(1), iv_add, T_LONG, &scale, &offset, &short_scale);
1299     assert(ok, "inconsistent: was tested before");
1300     Node* range = rc_cmp->in(2);
1301     Node* c = rc->in(0);
1302     Node* entry_control = inner_head->in(LoopNode::EntryControl);
1303 
1304     Node* R = range;
1305     Node* K = _igvn.longcon(scale);
1306     set_ctrl(K, this->C->root());
1307 
1308     Node* L = offset;
1309 
1310     if (short_scale) {
1311       // This converts:
1312       // (int)i*K + L <u64 R
1313       // with K an int into:
1314       // i*(long)K + L <u64 unsigned_min((long)max_jint + L + 1, R)
1315       // to protect against an overflow of (int)i*K
1316       //
1317       // Because if (int)i*K overflows, there are K,L where:
1318       // (int)i*K + L <u64 R is false because (int)i*K+L overflows to a negative which becomes a huge u64 value.
1319       // But if i*(long)K + L is >u64 (long)max_jint and still is <u64 R, then
1320       // i*(long)K + L <u64 R is true.
1321       //
1322       // As a consequence simply converting i*K + L <u64 R to i*(long)K + L <u64 R could cause incorrect execution.
1323       //
1324       // It's always true that:
1325       // (int)i*K <u64 (long)max_jint + 1
1326       // which implies (int)i*K + L <u64 (long)max_jint + 1 + L
1327       // As a consequence:
1328       // i*(long)K + L <u64 unsigned_min((long)max_jint + L + 1, R)
1329       // is always false in case of overflow of i*K
1330       //
1331       // Note, there are also K,L where i*K overflows and
1332       // i*K + L <u64 R is true, but
1333       // i*(long)K + L <u64 unsigned_min((long)max_jint + L + 1, R) is false
1334       // So this transformation could cause spurious deoptimizations and failed range check elimination
1335       // (but not incorrect execution) for unlikely corner cases with overflow.
1336       // If this causes problems in practice, we could maybe direct execution to a post-loop, instead of deoptimizing.
1337       Node* max_jint_plus_one_long = _igvn.longcon((jlong)max_jint + 1);
1338       set_ctrl(max_jint_plus_one_long, C->root());
1339       Node* max_range = new AddLNode(max_jint_plus_one_long, L);
1340       register_new_node(max_range, entry_control);
1341       R = MaxNode::unsigned_min(R, max_range, TypeLong::POS, _igvn);
1342       set_subtree_ctrl(R, true);
1343     }
1344 
1345     Node* C = outer_phi;
1346 
1347     // Start with 64-bit values:
1348     //   i*K + L <u64 R
1349     //   (C+j)*K + L <u64 R
1350     //   j*K + Q <u64 R    where Q = Q_first = C*K+L
1351     Node* Q_first = new MulLNode(C, K);
1352     register_new_node(Q_first, entry_control);
1353     Q_first = new AddLNode(Q_first, L);
1354     register_new_node(Q_first, entry_control);
1355 
1356     // Compute endpoints of the range of values j*K + Q.
1357     //  Q_min = (j=0)*K + Q;  Q_max = (j=B_2)*K + Q
1358     Node* Q_min = Q_first;
1359 
1360     // Compute the exact ending value B_2 (which is really A_2 if S < 0)
1361     Node* B_2 = new LoopLimitNode(this->C, int_zero, inner_iters_actual_int, int_stride);
1362     register_new_node(B_2, entry_control);
1363     B_2 = new SubINode(B_2, int_stride);
1364     register_new_node(B_2, entry_control);
1365     B_2 = new ConvI2LNode(B_2);
1366     register_new_node(B_2, entry_control);
1367 
1368     Node* Q_max = new MulLNode(B_2, K);
1369     register_new_node(Q_max, entry_control);
1370     Q_max = new AddLNode(Q_max, Q_first);
1371     register_new_node(Q_max, entry_control);
1372 
1373     if (scale * stride_con < 0) {
1374       swap(Q_min, Q_max);
1375     }
1376     // Now, mathematically, Q_max > Q_min, and they are close enough so that (Q_max-Q_min) fits in 32 bits.
1377 
1378     // L_clamp = Q_min < 0 ? 0 : Q_min
1379     Node* Q_min_cmp = new CmpLNode(Q_min, long_zero);
1380     register_new_node(Q_min_cmp, entry_control);
1381     Node* Q_min_bool = new BoolNode(Q_min_cmp, BoolTest::lt);
1382     register_new_node(Q_min_bool, entry_control);
1383     Node* L_clamp = new CMoveLNode(Q_min_bool, Q_min, long_zero, TypeLong::LONG);
1384     register_new_node(L_clamp, entry_control);
1385     // (This could also be coded bitwise as L_clamp = Q_min & ~(Q_min>>63).)
1386 
1387     Node* Q_max_plus_one = new AddLNode(Q_max, long_one);
1388     register_new_node(Q_max_plus_one, entry_control);
1389 
1390     // H_clamp = Q_max+1 < Q_min ? max_jlong : Q_max+1
1391     // (Because Q_min and Q_max are close, the overflow check could also be encoded as Q_max+1 < 0 & Q_min >= 0.)
1392     Node* max_jlong_long = _igvn.longcon(max_jlong);
1393     set_ctrl(max_jlong_long, this->C->root());
1394     Node* Q_max_cmp = new CmpLNode(Q_max_plus_one, Q_min);
1395     register_new_node(Q_max_cmp, entry_control);
1396     Node* Q_max_bool = new BoolNode(Q_max_cmp, BoolTest::lt);
1397     register_new_node(Q_max_bool, entry_control);
1398     Node* H_clamp = new CMoveLNode(Q_max_bool, Q_max_plus_one, max_jlong_long, TypeLong::LONG);
1399     register_new_node(H_clamp, entry_control);
1400     // (This could also be coded bitwise as H_clamp = ((Q_max+1)<<1 | M)>>>1 where M = (Q_max+1)>>63 & ~Q_min>>63.)
1401 
1402     // R_2 = clamp(R, L_clamp, H_clamp) - L_clamp
1403     // that is:  R_2 = clamp(R, L_clamp=0, H_clamp=Q_max)      if Q_min < 0
1404     // or else:  R_2 = clamp(R, L_clamp,   H_clamp) - Q_min    if Q_min >= 0
1405     // and also: R_2 = clamp(R, L_clamp,   Q_max+1) - L_clamp  if Q_min < Q_max+1 (no overflow)
1406     // or else:  R_2 = clamp(R, L_clamp, *no limit*)- L_clamp  if Q_max+1 < Q_min (overflow)
1407     Node* R_2 = clamp(R, L_clamp, H_clamp);
1408     R_2 = new SubLNode(R_2, L_clamp);
1409     register_new_node(R_2, entry_control);
1410     R_2 = new ConvL2INode(R_2, TypeInt::POS);
1411     register_new_node(R_2, entry_control);
1412 
1413     // L_2 = Q_first - L_clamp
1414     // We are subtracting L_clamp from both sides of the <u32 comparison.
1415     // If S*K>0, then Q_first == 0 and the R.C. expression at -L_clamp and steps upward to Q_max-L_clamp.
1416     // If S*K<0, then Q_first != 0 and the R.C. expression starts high and steps downward to Q_min-L_clamp.
1417     Node* L_2 = new SubLNode(Q_first, L_clamp);
1418     register_new_node(L_2, entry_control);
1419     L_2 = new ConvL2INode(L_2, TypeInt::INT);
1420     register_new_node(L_2, entry_control);
1421 
1422     // Transform the range check using the computed values L_2/R_2
1423     // from:   i*K + L   <u64 R
1424     // to:     j*K + L_2 <u32 R_2
1425     // that is:
1426     //   (j*K + Q_first) - L_clamp <u32 clamp(R, L_clamp, H_clamp) - L_clamp
1427     K = _igvn.intcon(checked_cast<int>(scale));
1428     set_ctrl(K, this->C->root());
1429     Node* scaled_iv = new MulINode(inner_phi, K);
1430     register_new_node(scaled_iv, c);
1431     Node* scaled_iv_plus_offset = new AddINode(scaled_iv, L_2);
1432     register_new_node(scaled_iv_plus_offset, c);
1433 
1434     Node* new_rc_cmp = new CmpUNode(scaled_iv_plus_offset, R_2);
1435     register_new_node(new_rc_cmp, c);
1436 
1437     _igvn.replace_input_of(rc_bol, 1, new_rc_cmp);
1438   }
1439 }
1440 
1441 Node* PhaseIdealLoop::clamp(Node* R, Node* L, Node* H) {
1442   Node* min = MaxNode::signed_min(R, H, TypeLong::LONG, _igvn);
1443   set_subtree_ctrl(min, true);
1444   Node* max = MaxNode::signed_max(L, min, TypeLong::LONG, _igvn);
1445   set_subtree_ctrl(max, true);
1446   return max;
1447 }
1448 
1449 LoopNode* PhaseIdealLoop::create_inner_head(IdealLoopTree* loop, BaseCountedLoopNode* head,
1450                                             IfNode* exit_test) {
1451   LoopNode* new_inner_head = new LoopNode(head->in(1), head->in(2));
1452   IfNode* new_inner_exit = new IfNode(exit_test->in(0), exit_test->in(1), exit_test->_prob, exit_test->_fcnt);
1453   _igvn.register_new_node_with_optimizer(new_inner_head);
1454   _igvn.register_new_node_with_optimizer(new_inner_exit);
1455   loop->_body.push(new_inner_head);
1456   loop->_body.push(new_inner_exit);
1457   loop->_body.yank(head);
1458   loop->_body.yank(exit_test);
1459   set_loop(new_inner_head, loop);
1460   set_loop(new_inner_exit, loop);
1461   set_idom(new_inner_head, idom(head), dom_depth(head));
1462   set_idom(new_inner_exit, idom(exit_test), dom_depth(exit_test));
1463   lazy_replace(head, new_inner_head);
1464   lazy_replace(exit_test, new_inner_exit);
1465   loop->_head = new_inner_head;
1466   return new_inner_head;
1467 }
1468 
1469 #ifdef ASSERT
1470 void PhaseIdealLoop::check_counted_loop_shape(IdealLoopTree* loop, Node* x, BasicType bt) {
1471   Node* back_control = loop_exit_control(x, loop);
1472   assert(back_control != nullptr, "no back control");
1473 
1474   BoolTest::mask mask = BoolTest::illegal;
1475   float cl_prob = 0;
1476   Node* incr = nullptr;
1477   Node* limit = nullptr;
1478 
1479   Node* cmp = loop_exit_test(back_control, loop, incr, limit, mask, cl_prob);
1480   assert(cmp != nullptr && cmp->Opcode() == Op_Cmp(bt), "no exit test");
1481 
1482   Node* phi_incr = nullptr;
1483   incr = loop_iv_incr(incr, x, loop, phi_incr);
1484   assert(incr != nullptr && incr->Opcode() == Op_Add(bt), "no incr");
1485 
1486   Node* xphi = nullptr;
1487   Node* stride = loop_iv_stride(incr, loop, xphi);
1488 
1489   assert(stride != nullptr, "no stride");
1490 
1491   PhiNode* phi = loop_iv_phi(xphi, phi_incr, x, loop);
1492 
1493   assert(phi != nullptr && phi->in(LoopNode::LoopBackControl) == incr, "No phi");
1494 
1495   jlong stride_con = stride->get_integer_as_long(bt);
1496 
1497   assert(condition_stride_ok(mask, stride_con), "illegal condition");
1498 
1499   assert(mask != BoolTest::ne, "unexpected condition");
1500   assert(phi_incr == nullptr, "bad loop shape");
1501   assert(cmp->in(1) == incr, "bad exit test shape");
1502 
1503   // Safepoint on backedge not supported
1504   assert(x->in(LoopNode::LoopBackControl)->Opcode() != Op_SafePoint, "no safepoint on backedge");
1505 }
1506 #endif
1507 
1508 #ifdef ASSERT
1509 // convert an int counted loop to a long counted to stress handling of
1510 // long counted loops
1511 bool PhaseIdealLoop::convert_to_long_loop(Node* cmp, Node* phi, IdealLoopTree* loop) {
1512   Unique_Node_List iv_nodes;
1513   Node_List old_new;
1514   iv_nodes.push(cmp);
1515   bool failed = false;
1516 
1517   for (uint i = 0; i < iv_nodes.size() && !failed; i++) {
1518     Node* n = iv_nodes.at(i);
1519     switch(n->Opcode()) {
1520       case Op_Phi: {
1521         Node* clone = new PhiNode(n->in(0), TypeLong::LONG);
1522         old_new.map(n->_idx, clone);
1523         break;
1524       }
1525       case Op_CmpI: {
1526         Node* clone = new CmpLNode(nullptr, nullptr);
1527         old_new.map(n->_idx, clone);
1528         break;
1529       }
1530       case Op_AddI: {
1531         Node* clone = new AddLNode(nullptr, nullptr);
1532         old_new.map(n->_idx, clone);
1533         break;
1534       }
1535       case Op_CastII: {
1536         failed = true;
1537         break;
1538       }
1539       default:
1540         DEBUG_ONLY(n->dump());
1541         fatal("unexpected");
1542     }
1543 
1544     for (uint i = 1; i < n->req(); i++) {
1545       Node* in = n->in(i);
1546       if (in == nullptr) {
1547         continue;
1548       }
1549       if (loop->is_member(get_loop(get_ctrl(in)))) {
1550         iv_nodes.push(in);
1551       }
1552     }
1553   }
1554 
1555   if (failed) {
1556     for (uint i = 0; i < iv_nodes.size(); i++) {
1557       Node* n = iv_nodes.at(i);
1558       Node* clone = old_new[n->_idx];
1559       if (clone != nullptr) {
1560         _igvn.remove_dead_node(clone);
1561       }
1562     }
1563     return false;
1564   }
1565 
1566   for (uint i = 0; i < iv_nodes.size(); i++) {
1567     Node* n = iv_nodes.at(i);
1568     Node* clone = old_new[n->_idx];
1569     for (uint i = 1; i < n->req(); i++) {
1570       Node* in = n->in(i);
1571       if (in == nullptr) {
1572         continue;
1573       }
1574       Node* in_clone = old_new[in->_idx];
1575       if (in_clone == nullptr) {
1576         assert(_igvn.type(in)->isa_int(), "");
1577         in_clone = new ConvI2LNode(in);
1578         _igvn.register_new_node_with_optimizer(in_clone);
1579         set_subtree_ctrl(in_clone, false);
1580       }
1581       if (in_clone->in(0) == nullptr) {
1582         in_clone->set_req(0, C->top());
1583         clone->set_req(i, in_clone);
1584         in_clone->set_req(0, nullptr);
1585       } else {
1586         clone->set_req(i, in_clone);
1587       }
1588     }
1589     _igvn.register_new_node_with_optimizer(clone);
1590   }
1591   set_ctrl(old_new[phi->_idx], phi->in(0));
1592 
1593   for (uint i = 0; i < iv_nodes.size(); i++) {
1594     Node* n = iv_nodes.at(i);
1595     Node* clone = old_new[n->_idx];
1596     set_subtree_ctrl(clone, false);
1597     Node* m = n->Opcode() == Op_CmpI ? clone : nullptr;
1598     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1599       Node* u = n->fast_out(i);
1600       if (iv_nodes.member(u)) {
1601         continue;
1602       }
1603       if (m == nullptr) {
1604         m = new ConvL2INode(clone);
1605         _igvn.register_new_node_with_optimizer(m);
1606         set_subtree_ctrl(m, false);
1607       }
1608       _igvn.rehash_node_delayed(u);
1609       int nb = u->replace_edge(n, m, &_igvn);
1610       --i, imax -= nb;
1611     }
1612   }
1613   return true;
1614 }
1615 #endif
1616 
1617 //------------------------------is_counted_loop--------------------------------
1618 bool PhaseIdealLoop::is_counted_loop(Node* x, IdealLoopTree*&loop, BasicType iv_bt) {
1619   PhaseGVN *gvn = &_igvn;
1620 
1621   Node* back_control = loop_exit_control(x, loop);
1622   if (back_control == nullptr) {
1623     return false;
1624   }
1625 
1626   BoolTest::mask bt = BoolTest::illegal;
1627   float cl_prob = 0;
1628   Node* incr = nullptr;
1629   Node* limit = nullptr;
1630   Node* cmp = loop_exit_test(back_control, loop, incr, limit, bt, cl_prob);
1631   if (cmp == nullptr || cmp->Opcode() != Op_Cmp(iv_bt)) {
1632     return false; // Avoid pointer & float & 64-bit compares
1633   }
1634 
1635   // Trip-counter increment must be commutative & associative.
1636   if (incr->Opcode() == Op_Cast(iv_bt)) {
1637     incr = incr->in(1);
1638   }
1639 
1640   Node* phi_incr = nullptr;
1641   incr = loop_iv_incr(incr, x, loop, phi_incr);
1642   if (incr == nullptr) {
1643     return false;
1644   }
1645 
1646   Node* trunc1 = nullptr;
1647   Node* trunc2 = nullptr;
1648   const TypeInteger* iv_trunc_t = nullptr;
1649   Node* orig_incr = incr;
1650   if (!(incr = CountedLoopNode::match_incr_with_optional_truncation(incr, &trunc1, &trunc2, &iv_trunc_t, iv_bt))) {
1651     return false; // Funny increment opcode
1652   }
1653   assert(incr->Opcode() == Op_Add(iv_bt), "wrong increment code");
1654 
1655   Node* xphi = nullptr;
1656   Node* stride = loop_iv_stride(incr, loop, xphi);
1657 
1658   if (stride == nullptr) {
1659     return false;
1660   }
1661 
1662   if (xphi->Opcode() == Op_Cast(iv_bt)) {
1663     xphi = xphi->in(1);
1664   }
1665 
1666   // Stride must be constant
1667   jlong stride_con = stride->get_integer_as_long(iv_bt);
1668   assert(stride_con != 0, "missed some peephole opt");
1669 
1670   PhiNode* phi = loop_iv_phi(xphi, phi_incr, x, loop);
1671 
1672   if (phi == nullptr ||
1673       (trunc1 == nullptr && phi->in(LoopNode::LoopBackControl) != incr) ||
1674       (trunc1 != nullptr && phi->in(LoopNode::LoopBackControl) != trunc1)) {
1675     return false;
1676   }
1677 
1678   Node* iftrue = back_control;
1679   uint iftrue_op = iftrue->Opcode();
1680   Node* iff = iftrue->in(0);
1681   BoolNode* test = iff->in(1)->as_Bool();
1682 
1683   const TypeInteger* limit_t = gvn->type(limit)->is_integer(iv_bt);
1684   if (trunc1 != nullptr) {
1685     // When there is a truncation, we must be sure that after the truncation
1686     // the trip counter will end up higher than the limit, otherwise we are looking
1687     // at an endless loop. Can happen with range checks.
1688 
1689     // Example:
1690     // int i = 0;
1691     // while (true)
1692     //    sum + = array[i];
1693     //    i++;
1694     //    i = i && 0x7fff;
1695     //  }
1696     //
1697     // If the array is shorter than 0x8000 this exits through a AIOOB
1698     //  - Counted loop transformation is ok
1699     // If the array is longer then this is an endless loop
1700     //  - No transformation can be done.
1701 
1702     const TypeInteger* incr_t = gvn->type(orig_incr)->is_integer(iv_bt);
1703     if (limit_t->hi_as_long() > incr_t->hi_as_long()) {
1704       // if the limit can have a higher value than the increment (before the phi)
1705       return false;
1706     }
1707   }
1708 
1709   Node *init_trip = phi->in(LoopNode::EntryControl);
1710 
1711   // If iv trunc type is smaller than int, check for possible wrap.
1712   if (!TypeInteger::bottom(iv_bt)->higher_equal(iv_trunc_t)) {
1713     assert(trunc1 != nullptr, "must have found some truncation");
1714 
1715     // Get a better type for the phi (filtered thru if's)
1716     const TypeInteger* phi_ft = filtered_type(phi);
1717 
1718     // Can iv take on a value that will wrap?
1719     //
1720     // Ensure iv's limit is not within "stride" of the wrap value.
1721     //
1722     // Example for "short" type
1723     //    Truncation ensures value is in the range -32768..32767 (iv_trunc_t)
1724     //    If the stride is +10, then the last value of the induction
1725     //    variable before the increment (phi_ft->_hi) must be
1726     //    <= 32767 - 10 and (phi_ft->_lo) must be >= -32768 to
1727     //    ensure no truncation occurs after the increment.
1728 
1729     if (stride_con > 0) {
1730       if (iv_trunc_t->hi_as_long() - phi_ft->hi_as_long() < stride_con ||
1731           iv_trunc_t->lo_as_long() > phi_ft->lo_as_long()) {
1732         return false;  // truncation may occur
1733       }
1734     } else if (stride_con < 0) {
1735       if (iv_trunc_t->lo_as_long() - phi_ft->lo_as_long() > stride_con ||
1736           iv_trunc_t->hi_as_long() < phi_ft->hi_as_long()) {
1737         return false;  // truncation may occur
1738       }
1739     }
1740     // No possibility of wrap so truncation can be discarded
1741     // Promote iv type to Int
1742   } else {
1743     assert(trunc1 == nullptr && trunc2 == nullptr, "no truncation for int");
1744   }
1745 
1746   if (!condition_stride_ok(bt, stride_con)) {
1747     return false;
1748   }
1749 
1750   const TypeInteger* init_t = gvn->type(init_trip)->is_integer(iv_bt);
1751 
1752   if (stride_con > 0) {
1753     if (init_t->lo_as_long() > max_signed_integer(iv_bt) - stride_con) {
1754       return false; // cyclic loop
1755     }
1756   } else {
1757     if (init_t->hi_as_long() < min_signed_integer(iv_bt) - stride_con) {
1758       return false; // cyclic loop
1759     }
1760   }
1761 
1762   if (phi_incr != nullptr && bt != BoolTest::ne) {
1763     // check if there is a possibility of IV overflowing after the first increment
1764     if (stride_con > 0) {
1765       if (init_t->hi_as_long() > max_signed_integer(iv_bt) - stride_con) {
1766         return false;
1767       }
1768     } else {
1769       if (init_t->lo_as_long() < min_signed_integer(iv_bt) - stride_con) {
1770         return false;
1771       }
1772     }
1773   }
1774 
1775   // =================================================
1776   // ---- SUCCESS!   Found A Trip-Counted Loop!  -----
1777   //
1778 
1779   if (x->Opcode() == Op_Region) {
1780     // x has not yet been transformed to Loop or LongCountedLoop.
1781     // This should only happen if we are inside an infinite loop.
1782     // It happens like this:
1783     //   build_loop_tree -> do not attach infinite loop and nested loops
1784     //   beautify_loops  -> does not transform the infinite and nested loops to LoopNode, because not attached yet
1785     //   build_loop_tree -> find and attach infinite and nested loops
1786     //   counted_loop    -> nested Regions are not yet transformed to LoopNodes, we land here
1787     assert(x->as_Region()->is_in_infinite_subgraph(),
1788            "x can only be a Region and not Loop if inside infinite loop");
1789     // Come back later when Region is transformed to LoopNode
1790     return false;
1791   }
1792 
1793   assert(x->Opcode() == Op_Loop || x->Opcode() == Op_LongCountedLoop, "regular loops only");
1794   C->print_method(PHASE_BEFORE_CLOOPS, 3, x);
1795 
1796   // ===================================================
1797   // We can only convert this loop to a counted loop if we can guarantee that the iv phi will never overflow at runtime.
1798   // This is an implicit assumption taken by some loop optimizations. We therefore must ensure this property at all cost.
1799   // At this point, we've already excluded some trivial cases where an overflow could have been proven statically.
1800   // But even though we cannot prove that an overflow will *not* happen, we still want to speculatively convert this loop
1801   // to a counted loop. This can be achieved by adding additional iv phi overflow checks before the loop. If they fail,
1802   // we trap and resume execution before the loop without having executed any iteration of the loop, yet.
1803   //
1804   // These additional iv phi overflow checks can be inserted as Loop Limit Check Predicates above the Loop Limit Check
1805   // Parse Predicate which captures a JVM state just before the entry of the loop. If there is no such Parse Predicate,
1806   // we cannot generate a Loop Limit Check Predicate and thus cannot speculatively convert the loop to a counted loop.
1807   //
1808   // In the following, we only focus on int loops with stride > 0 to keep things simple. The argumentation and proof
1809   // for stride < 0 is analogously. For long loops, we would replace max_int with max_long.
1810   //
1811   //
1812   // The loop to be converted does not always need to have the often used shape:
1813   //
1814   //                                                 i = init
1815   //     i = init                                loop:
1816   //     do {                                        ...
1817   //         // ...               equivalent         i+=stride
1818   //         i+=stride               <==>            if (i < limit)
1819   //     } while (i < limit);                          goto loop
1820   //                                             exit:
1821   //                                                 ...
1822   //
1823   // where the loop exit check uses the post-incremented iv phi and a '<'-operator.
1824   //
1825   // We could also have '<='-operator (or '>='-operator for negative strides) or use the pre-incremented iv phi value
1826   // in the loop exit check:
1827   //
1828   //         i = init
1829   //     loop:
1830   //         ...
1831   //         if (i <= limit)
1832   //             i+=stride
1833   //             goto loop
1834   //     exit:
1835   //         ...
1836   //
1837   // Let's define the following terms:
1838   // - iv_pre_i: The pre-incremented iv phi before the i-th iteration.
1839   // - iv_post_i: The post-incremented iv phi after the i-th iteration.
1840   //
1841   // The iv_pre_i and iv_post_i have the following relation:
1842   //      iv_pre_i + stride = iv_post_i
1843   //
1844   // When converting a loop to a counted loop, we want to have a canonicalized loop exit check of the form:
1845   //     iv_post_i < adjusted_limit
1846   //
1847   // If that is not the case, we need to canonicalize the loop exit check by using different values for adjusted_limit:
1848   // (LE1) iv_post_i < limit: Already canonicalized. We can directly use limit as adjusted_limit.
1849   //           -> adjusted_limit = limit.
1850   // (LE2) iv_post_i <= limit:
1851   //           iv_post_i < limit + 1
1852   //           -> adjusted limit = limit + 1
1853   // (LE3) iv_pre_i < limit:
1854   //           iv_pre_i + stride < limit + stride
1855   //           iv_post_i < limit + stride
1856   //           -> adjusted_limit = limit + stride
1857   // (LE4) iv_pre_i <= limit:
1858   //           iv_pre_i < limit + 1
1859   //           iv_pre_i + stride < limit + stride + 1
1860   //           iv_post_i < limit + stride + 1
1861   //           -> adjusted_limit = limit + stride + 1
1862   //
1863   // Note that:
1864   //     (AL) limit <= adjusted_limit.
1865   //
1866   // The following loop invariant has to hold for counted loops with n iterations (i.e. loop exit check true after n-th
1867   // loop iteration) and a canonicalized loop exit check to guarantee that no iv_post_i over- or underflows:
1868   // (INV) For i = 1..n, min_int <= iv_post_i <= max_int
1869   //
1870   // To prove (INV), we require the following two conditions/assumptions:
1871   // (i): adjusted_limit - 1 + stride <= max_int
1872   // (ii): init < limit
1873   //
1874   // If we can prove (INV), we know that there can be no over- or underflow of any iv phi value. We prove (INV) by
1875   // induction by assuming (i) and (ii).
1876   //
1877   // Proof by Induction
1878   // ------------------
1879   // > Base case (i = 1): We show that (INV) holds after the first iteration:
1880   //     min_int <= iv_post_1 = init + stride <= max_int
1881   // Proof:
1882   //     First, we note that (ii) implies
1883   //         (iii) init <= limit - 1
1884   //     max_int >= adjusted_limit - 1 + stride   [using (i)]
1885   //             >= limit - 1 + stride            [using (AL)]
1886   //             >= init + stride                 [using (iii)]
1887   //             >= min_int                       [using stride > 0, no underflow]
1888   // Thus, no overflow happens after the first iteration and (INV) holds for i = 1.
1889   //
1890   // Note that to prove the base case we need (i) and (ii).
1891   //
1892   // > Induction Hypothesis (i = j, j > 1): Assume that (INV) holds after the j-th iteration:
1893   //     min_int <= iv_post_j <= max_int
1894   // > Step case (i = j + 1): We show that (INV) also holds after the j+1-th iteration:
1895   //     min_int <= iv_post_{j+1} = iv_post_j + stride <= max_int
1896   // Proof:
1897   // If iv_post_j >= adjusted_limit:
1898   //     We exit the loop after the j-th iteration, and we don't execute the j+1-th iteration anymore. Thus, there is
1899   //     also no iv_{j+1}. Since (INV) holds for iv_j, there is nothing left to prove.
1900   // If iv_post_j < adjusted_limit:
1901   //     First, we note that:
1902   //         (iv) iv_post_j <= adjusted_limit - 1
1903   //     max_int >= adjusted_limit - 1 + stride    [using (i)]
1904   //             >= iv_post_j + stride             [using (iv)]
1905   //             >= min_int                        [using stride > 0, no underflow]
1906   //
1907   // Note that to prove the step case we only need (i).
1908   //
1909   // Thus, by assuming (i) and (ii), we proved (INV).
1910   //
1911   //
1912   // It is therefore enough to add the following two Loop Limit Check Predicates to check assumptions (i) and (ii):
1913   //
1914   // (1) Loop Limit Check Predicate for (i):
1915   //     Using (i): adjusted_limit - 1 + stride <= max_int
1916   //
1917   //     This condition is now restated to use limit instead of adjusted_limit:
1918   //
1919   //     To prevent an overflow of adjusted_limit -1 + stride itself, we rewrite this check to
1920   //         max_int - stride + 1 >= adjusted_limit
1921   //     We can merge the two constants into
1922   //         canonicalized_correction = stride - 1
1923   //     which gives us
1924   //        max_int - canonicalized_correction >= adjusted_limit
1925   //
1926   //     To directly use limit instead of adjusted_limit in the predicate condition, we split adjusted_limit into:
1927   //         adjusted_limit = limit + limit_correction
1928   //     Since stride > 0 and limit_correction <= stride + 1, we can restate this with no over- or underflow into:
1929   //         max_int - canonicalized_correction - limit_correction >= limit
1930   //     Since canonicalized_correction and limit_correction are both constants, we can replace them with a new constant:
1931   //         (v) final_correction = canonicalized_correction + limit_correction
1932   //
1933   //     which gives us:
1934   //
1935   //     Final predicate condition:
1936   //         max_int - final_correction >= limit
1937   //
1938   //     However, we need to be careful that (v) does not over- or underflow.
1939   //     We know that:
1940   //         canonicalized_correction = stride - 1
1941   //     and
1942   //         limit_correction <= stride + 1
1943   //     and thus
1944   //         canonicalized_correction + limit_correction <= 2 * stride
1945   //     To prevent an over- or underflow of (v), we must ensure that
1946   //         2 * stride <= max_int
1947   //     which can safely be checked without over- or underflow with
1948   //         (vi) stride != min_int AND abs(stride) <= max_int / 2
1949   //
1950   //     We could try to further optimize the cases where (vi) does not hold but given that such large strides are
1951   //     very uncommon and the loop would only run for a very few iterations anyway, we simply bail out if (vi) fails.
1952   //
1953   // (2) Loop Limit Check Predicate for (ii):
1954   //     Using (ii): init < limit
1955   //
1956   //     This Loop Limit Check Predicate is not required if we can prove at compile time that either:
1957   //        (2.1) type(init) < type(limit)
1958   //             In this case, we know:
1959   //                 all possible values of init < all possible values of limit
1960   //             and we can skip the predicate.
1961   //
1962   //        (2.2) init < limit is already checked before (i.e. found as a dominating check)
1963   //            In this case, we do not need to re-check the condition and can skip the predicate.
1964   //            This is often found for while- and for-loops which have the following shape:
1965   //
1966   //                if (init < limit) { // Dominating test. Do not need the Loop Limit Check Predicate below.
1967   //                    i = init;
1968   //                    if (init >= limit) { trap(); } // Here we would insert the Loop Limit Check Predicate
1969   //                    do {
1970   //                        i += stride;
1971   //                    } while (i < limit);
1972   //                }
1973   //
1974   //        (2.3) init + stride <= max_int
1975   //            In this case, there is no overflow of the iv phi after the first loop iteration.
1976   //            In the proof of the base case above we showed that init + stride <= max_int by using assumption (ii):
1977   //                init < limit
1978   //            In the proof of the step case above, we did not need (ii) anymore. Therefore, if we already know at
1979   //            compile time that init + stride <= max_int then we have trivially proven the base case and that
1980   //            there is no overflow of the iv phi after the first iteration. In this case, we don't need to check (ii)
1981   //            again and can skip the predicate.
1982 
1983   // Check (vi) and bail out if the stride is too big.
1984   if (stride_con == min_signed_integer(iv_bt) || (ABS(stride_con) > max_signed_integer(iv_bt) / 2)) {
1985     return false;
1986   }
1987 
1988   // Accounting for (LE3) and (LE4) where we use pre-incremented phis in the loop exit check.
1989   const jlong limit_correction_for_pre_iv_exit_check = (phi_incr != nullptr) ? stride_con : 0;
1990 
1991   // Accounting for (LE2) and (LE4) where we use <= or >= in the loop exit check.
1992   const bool includes_limit = (bt == BoolTest::le || bt == BoolTest::ge);
1993   const jlong limit_correction_for_le_ge_exit_check = (includes_limit ? (stride_con > 0 ? 1 : -1) : 0);
1994 
1995   const jlong limit_correction = limit_correction_for_pre_iv_exit_check + limit_correction_for_le_ge_exit_check;
1996   const jlong canonicalized_correction = stride_con + (stride_con > 0 ? -1 : 1);
1997   const jlong final_correction = canonicalized_correction + limit_correction;
1998 
1999   int sov = check_stride_overflow(final_correction, limit_t, iv_bt);
2000   Node* init_control = x->in(LoopNode::EntryControl);
2001 
2002   // If sov==0, limit's type always satisfies the condition, for
2003   // example, when it is an array length.
2004   if (sov != 0) {
2005     if (sov < 0) {
2006       return false;  // Bailout: integer overflow is certain.
2007     }
2008     // (1) Loop Limit Check Predicate is required because we could not statically prove that
2009     //     limit + final_correction = adjusted_limit - 1 + stride <= max_int
2010     assert(!x->as_Loop()->is_loop_nest_inner_loop(), "loop was transformed");
2011     const Predicates predicates(init_control);
2012     const PredicateBlock* loop_limit_check_predicate_block = predicates.loop_limit_check_predicate_block();
2013     if (!loop_limit_check_predicate_block->has_parse_predicate()) {
2014       // The Loop Limit Check Parse Predicate is not generated if this method trapped here before.
2015 #ifdef ASSERT
2016       if (TraceLoopLimitCheck) {
2017         tty->print("Missing Loop Limit Check Parse Predicate:");
2018         loop->dump_head();
2019         x->dump(1);
2020       }
2021 #endif
2022       return false;
2023     }
2024 
2025     ParsePredicateNode* loop_limit_check_parse_predicate = loop_limit_check_predicate_block->parse_predicate();
2026     if (!is_dominator(get_ctrl(limit), loop_limit_check_parse_predicate->in(0))) {
2027       return false;
2028     }
2029 
2030     Node* cmp_limit;
2031     Node* bol;
2032 
2033     if (stride_con > 0) {
2034       cmp_limit = CmpNode::make(limit, _igvn.integercon(max_signed_integer(iv_bt) - final_correction, iv_bt), iv_bt);
2035       bol = new BoolNode(cmp_limit, BoolTest::le);
2036     } else {
2037       cmp_limit = CmpNode::make(limit, _igvn.integercon(min_signed_integer(iv_bt) - final_correction, iv_bt), iv_bt);
2038       bol = new BoolNode(cmp_limit, BoolTest::ge);
2039     }
2040 
2041     insert_loop_limit_check_predicate(init_control->as_IfTrue(), cmp_limit, bol);
2042   }
2043 
2044   // (2.3)
2045   const bool init_plus_stride_could_overflow =
2046           (stride_con > 0 && init_t->hi_as_long() > max_signed_integer(iv_bt) - stride_con) ||
2047           (stride_con < 0 && init_t->lo_as_long() < min_signed_integer(iv_bt) - stride_con);
2048   // (2.1)
2049   const bool init_gte_limit = (stride_con > 0 && init_t->hi_as_long() >= limit_t->lo_as_long()) ||
2050                               (stride_con < 0 && init_t->lo_as_long() <= limit_t->hi_as_long());
2051 
2052   if (init_gte_limit && // (2.1)
2053      ((bt == BoolTest::ne || init_plus_stride_could_overflow) && // (2.3)
2054       !has_dominating_loop_limit_check(init_trip, limit, stride_con, iv_bt, init_control))) { // (2.2)
2055     // (2) Iteration Loop Limit Check Predicate is required because neither (2.1), (2.2), nor (2.3) holds.
2056     // We use the following condition:
2057     // - stride > 0: init < limit
2058     // - stride < 0: init > limit
2059     //
2060     // This predicate is always required if we have a non-equal-operator in the loop exit check (where stride = 1 is
2061     // a requirement). We transform the loop exit check by using a less-than-operator. By doing so, we must always
2062     // check that init < limit. Otherwise, we could have a different number of iterations at runtime.
2063 
2064     const Predicates predicates(init_control);
2065     const PredicateBlock* loop_limit_check_predicate_block = predicates.loop_limit_check_predicate_block();
2066     if (!loop_limit_check_predicate_block->has_parse_predicate()) {
2067       // The Loop Limit Check Parse Predicate is not generated if this method trapped here before.
2068 #ifdef ASSERT
2069       if (TraceLoopLimitCheck) {
2070         tty->print("Missing Loop Limit Check Parse Predicate:");
2071         loop->dump_head();
2072         x->dump(1);
2073       }
2074 #endif
2075       return false;
2076     }
2077 
2078     ParsePredicateNode* loop_limit_check_parse_predicate = loop_limit_check_predicate_block->parse_predicate();
2079     Node* parse_predicate_entry = loop_limit_check_parse_predicate->in(0);
2080     if (!is_dominator(get_ctrl(limit), parse_predicate_entry) ||
2081         !is_dominator(get_ctrl(init_trip), parse_predicate_entry)) {
2082       return false;
2083     }
2084 
2085     Node* cmp_limit;
2086     Node* bol;
2087 
2088     if (stride_con > 0) {
2089       cmp_limit = CmpNode::make(init_trip, limit, iv_bt);
2090       bol = new BoolNode(cmp_limit, BoolTest::lt);
2091     } else {
2092       cmp_limit = CmpNode::make(init_trip, limit, iv_bt);
2093       bol = new BoolNode(cmp_limit, BoolTest::gt);
2094     }
2095 
2096     insert_loop_limit_check_predicate(init_control->as_IfTrue(), cmp_limit, bol);
2097   }
2098 
2099   if (bt == BoolTest::ne) {
2100     // Now we need to canonicalize the loop condition if it is 'ne'.
2101     assert(stride_con == 1 || stride_con == -1, "simple increment only - checked before");
2102     if (stride_con > 0) {
2103       // 'ne' can be replaced with 'lt' only when init < limit. This is ensured by the inserted predicate above.
2104       bt = BoolTest::lt;
2105     } else {
2106       assert(stride_con < 0, "must be");
2107       // 'ne' can be replaced with 'gt' only when init > limit. This is ensured by the inserted predicate above.
2108       bt = BoolTest::gt;
2109     }
2110   }
2111 
2112   Node* sfpt = nullptr;
2113   if (loop->_child == nullptr) {
2114     sfpt = find_safepoint(back_control, x, loop);
2115   } else {
2116     sfpt = iff->in(0);
2117     if (sfpt->Opcode() != Op_SafePoint) {
2118       sfpt = nullptr;
2119     }
2120   }
2121 
2122   if (x->in(LoopNode::LoopBackControl)->Opcode() == Op_SafePoint) {
2123     Node* backedge_sfpt = x->in(LoopNode::LoopBackControl);
2124     if (((iv_bt == T_INT && LoopStripMiningIter != 0) ||
2125          iv_bt == T_LONG) &&
2126         sfpt == nullptr) {
2127       // Leaving the safepoint on the backedge and creating a
2128       // CountedLoop will confuse optimizations. We can't move the
2129       // safepoint around because its jvm state wouldn't match a new
2130       // location. Give up on that loop.
2131       return false;
2132     }
2133     if (is_deleteable_safept(backedge_sfpt)) {
2134       lazy_replace(backedge_sfpt, iftrue);
2135       if (loop->_safepts != nullptr) {
2136         loop->_safepts->yank(backedge_sfpt);
2137       }
2138       loop->_tail = iftrue;
2139     }
2140   }
2141 
2142 
2143 #ifdef ASSERT
2144   if (iv_bt == T_INT &&
2145       !x->as_Loop()->is_loop_nest_inner_loop() &&
2146       StressLongCountedLoop > 0 &&
2147       trunc1 == nullptr &&
2148       convert_to_long_loop(cmp, phi, loop)) {
2149     return false;
2150   }
2151 #endif
2152 
2153   Node* adjusted_limit = limit;
2154   if (phi_incr != nullptr) {
2155     // If compare points directly to the phi we need to adjust
2156     // the compare so that it points to the incr. Limit have
2157     // to be adjusted to keep trip count the same and we
2158     // should avoid int overflow.
2159     //
2160     //   i = init; do {} while(i++ < limit);
2161     // is converted to
2162     //   i = init; do {} while(++i < limit+1);
2163     //
2164     adjusted_limit = gvn->transform(AddNode::make(limit, stride, iv_bt));
2165   }
2166 
2167   if (includes_limit) {
2168     // The limit check guaranties that 'limit <= (max_jint - stride)' so
2169     // we can convert 'i <= limit' to 'i < limit+1' since stride != 0.
2170     //
2171     Node* one = (stride_con > 0) ? gvn->integercon( 1, iv_bt) : gvn->integercon(-1, iv_bt);
2172     adjusted_limit = gvn->transform(AddNode::make(adjusted_limit, one, iv_bt));
2173     if (bt == BoolTest::le)
2174       bt = BoolTest::lt;
2175     else if (bt == BoolTest::ge)
2176       bt = BoolTest::gt;
2177     else
2178       ShouldNotReachHere();
2179   }
2180   set_subtree_ctrl(adjusted_limit, false);
2181 
2182   // Build a canonical trip test.
2183   // Clone code, as old values may be in use.
2184   incr = incr->clone();
2185   incr->set_req(1,phi);
2186   incr->set_req(2,stride);
2187   incr = _igvn.register_new_node_with_optimizer(incr);
2188   set_early_ctrl(incr, false);
2189   _igvn.rehash_node_delayed(phi);
2190   phi->set_req_X( LoopNode::LoopBackControl, incr, &_igvn );
2191 
2192   // If phi type is more restrictive than Int, raise to
2193   // Int to prevent (almost) infinite recursion in igvn
2194   // which can only handle integer types for constants or minint..maxint.
2195   if (!TypeInteger::bottom(iv_bt)->higher_equal(phi->bottom_type())) {
2196     Node* nphi = PhiNode::make(phi->in(0), phi->in(LoopNode::EntryControl), TypeInteger::bottom(iv_bt));
2197     nphi->set_req(LoopNode::LoopBackControl, phi->in(LoopNode::LoopBackControl));
2198     nphi = _igvn.register_new_node_with_optimizer(nphi);
2199     set_ctrl(nphi, get_ctrl(phi));
2200     _igvn.replace_node(phi, nphi);
2201     phi = nphi->as_Phi();
2202   }
2203   cmp = cmp->clone();
2204   cmp->set_req(1,incr);
2205   cmp->set_req(2, adjusted_limit);
2206   cmp = _igvn.register_new_node_with_optimizer(cmp);
2207   set_ctrl(cmp, iff->in(0));
2208 
2209   test = test->clone()->as_Bool();
2210   (*(BoolTest*)&test->_test)._test = bt;
2211   test->set_req(1,cmp);
2212   _igvn.register_new_node_with_optimizer(test);
2213   set_ctrl(test, iff->in(0));
2214 
2215   // Replace the old IfNode with a new LoopEndNode
2216   Node *lex = _igvn.register_new_node_with_optimizer(BaseCountedLoopEndNode::make(iff->in(0), test, cl_prob, iff->as_If()->_fcnt, iv_bt));
2217   IfNode *le = lex->as_If();
2218   uint dd = dom_depth(iff);
2219   set_idom(le, le->in(0), dd); // Update dominance for loop exit
2220   set_loop(le, loop);
2221 
2222   // Get the loop-exit control
2223   Node *iffalse = iff->as_If()->proj_out(!(iftrue_op == Op_IfTrue));
2224 
2225   // Need to swap loop-exit and loop-back control?
2226   if (iftrue_op == Op_IfFalse) {
2227     Node *ift2=_igvn.register_new_node_with_optimizer(new IfTrueNode (le));
2228     Node *iff2=_igvn.register_new_node_with_optimizer(new IfFalseNode(le));
2229 
2230     loop->_tail = back_control = ift2;
2231     set_loop(ift2, loop);
2232     set_loop(iff2, get_loop(iffalse));
2233 
2234     // Lazy update of 'get_ctrl' mechanism.
2235     lazy_replace(iffalse, iff2);
2236     lazy_replace(iftrue,  ift2);
2237 
2238     // Swap names
2239     iffalse = iff2;
2240     iftrue  = ift2;
2241   } else {
2242     _igvn.rehash_node_delayed(iffalse);
2243     _igvn.rehash_node_delayed(iftrue);
2244     iffalse->set_req_X( 0, le, &_igvn );
2245     iftrue ->set_req_X( 0, le, &_igvn );
2246   }
2247 
2248   set_idom(iftrue,  le, dd+1);
2249   set_idom(iffalse, le, dd+1);
2250   assert(iff->outcnt() == 0, "should be dead now");
2251   lazy_replace( iff, le ); // fix 'get_ctrl'
2252 
2253   Node* entry_control = init_control;
2254   bool strip_mine_loop = iv_bt == T_INT &&
2255                          loop->_child == nullptr &&
2256                          sfpt != nullptr &&
2257                          !loop->_has_call &&
2258                          is_deleteable_safept(sfpt);
2259   IdealLoopTree* outer_ilt = nullptr;
2260   if (strip_mine_loop) {
2261     outer_ilt = create_outer_strip_mined_loop(test, cmp, init_control, loop,
2262                                               cl_prob, le->_fcnt, entry_control,
2263                                               iffalse);
2264   }
2265 
2266   // Now setup a new CountedLoopNode to replace the existing LoopNode
2267   BaseCountedLoopNode *l = BaseCountedLoopNode::make(entry_control, back_control, iv_bt);
2268   l->set_unswitch_count(x->as_Loop()->unswitch_count()); // Preserve
2269   // The following assert is approximately true, and defines the intention
2270   // of can_be_counted_loop.  It fails, however, because phase->type
2271   // is not yet initialized for this loop and its parts.
2272   //assert(l->can_be_counted_loop(this), "sanity");
2273   _igvn.register_new_node_with_optimizer(l);
2274   set_loop(l, loop);
2275   loop->_head = l;
2276   // Fix all data nodes placed at the old loop head.
2277   // Uses the lazy-update mechanism of 'get_ctrl'.
2278   lazy_replace( x, l );
2279   set_idom(l, entry_control, dom_depth(entry_control) + 1);
2280 
2281   if (iv_bt == T_INT && (LoopStripMiningIter == 0 || strip_mine_loop)) {
2282     // Check for immediately preceding SafePoint and remove
2283     if (sfpt != nullptr && (strip_mine_loop || is_deleteable_safept(sfpt))) {
2284       if (strip_mine_loop) {
2285         Node* outer_le = outer_ilt->_tail->in(0);
2286         Node* sfpt_clone = sfpt->clone();
2287         sfpt_clone->set_req(0, iffalse);
2288         outer_le->set_req(0, sfpt_clone);
2289 
2290         Node* polladdr = sfpt_clone->in(TypeFunc::Parms);
2291         if (polladdr != nullptr && polladdr->is_Load()) {
2292           // Polling load should be pinned outside inner loop.
2293           Node* new_polladdr = polladdr->clone();
2294           new_polladdr->set_req(0, iffalse);
2295           _igvn.register_new_node_with_optimizer(new_polladdr, polladdr);
2296           set_ctrl(new_polladdr, iffalse);
2297           sfpt_clone->set_req(TypeFunc::Parms, new_polladdr);
2298         }
2299         // When this code runs, loop bodies have not yet been populated.
2300         const bool body_populated = false;
2301         register_control(sfpt_clone, outer_ilt, iffalse, body_populated);
2302         set_idom(outer_le, sfpt_clone, dom_depth(sfpt_clone));
2303       }
2304       lazy_replace(sfpt, sfpt->in(TypeFunc::Control));
2305       if (loop->_safepts != nullptr) {
2306         loop->_safepts->yank(sfpt);
2307       }
2308     }
2309   }
2310 
2311 #ifdef ASSERT
2312   assert(l->is_valid_counted_loop(iv_bt), "counted loop shape is messed up");
2313   assert(l == loop->_head && l->phi() == phi && l->loopexit_or_null() == lex, "" );
2314 #endif
2315 #ifndef PRODUCT
2316   if (TraceLoopOpts) {
2317     tty->print("Counted      ");
2318     loop->dump_head();
2319   }
2320 #endif
2321 
2322   C->print_method(PHASE_AFTER_CLOOPS, 3, l);
2323 
2324   // Capture bounds of the loop in the induction variable Phi before
2325   // subsequent transformation (iteration splitting) obscures the
2326   // bounds
2327   l->phi()->as_Phi()->set_type(l->phi()->Value(&_igvn));
2328 
2329   if (strip_mine_loop) {
2330     l->mark_strip_mined();
2331     l->verify_strip_mined(1);
2332     outer_ilt->_head->as_Loop()->verify_strip_mined(1);
2333     loop = outer_ilt;
2334   }
2335 
2336 #ifndef PRODUCT
2337   if (x->as_Loop()->is_loop_nest_inner_loop() && iv_bt == T_LONG) {
2338     Atomic::inc(&_long_loop_counted_loops);
2339   }
2340 #endif
2341   if (iv_bt == T_LONG && x->as_Loop()->is_loop_nest_outer_loop()) {
2342     l->mark_loop_nest_outer_loop();
2343   }
2344 
2345   return true;
2346 }
2347 
2348 // Check if there is a dominating loop limit check of the form 'init < limit' starting at the loop entry.
2349 // If there is one, then we do not need to create an additional Loop Limit Check Predicate.
2350 bool PhaseIdealLoop::has_dominating_loop_limit_check(Node* init_trip, Node* limit, const jlong stride_con,
2351                                                      const BasicType iv_bt, Node* loop_entry) {
2352   // Eagerly call transform() on the Cmp and Bool node to common them up if possible. This is required in order to
2353   // successfully find a dominated test with the If node below.
2354   Node* cmp_limit;
2355   Node* bol;
2356   if (stride_con > 0) {
2357     cmp_limit = _igvn.transform(CmpNode::make(init_trip, limit, iv_bt));
2358     bol = _igvn.transform(new BoolNode(cmp_limit, BoolTest::lt));
2359   } else {
2360     cmp_limit = _igvn.transform(CmpNode::make(init_trip, limit, iv_bt));
2361     bol = _igvn.transform(new BoolNode(cmp_limit, BoolTest::gt));
2362   }
2363 
2364   // Check if there is already a dominating init < limit check. If so, we do not need a Loop Limit Check Predicate.
2365   IfNode* iff = new IfNode(loop_entry, bol, PROB_MIN, COUNT_UNKNOWN);
2366   // Also add fake IfProj nodes in order to call transform() on the newly created IfNode.
2367   IfFalseNode* if_false = new IfFalseNode(iff);
2368   IfTrueNode* if_true = new IfTrueNode(iff);
2369   Node* dominated_iff = _igvn.transform(iff);
2370   // ConI node? Found dominating test (IfNode::dominated_by() returns a ConI node).
2371   const bool found_dominating_test = dominated_iff != nullptr && dominated_iff->is_ConI();
2372 
2373   // Kill the If with its projections again in the next IGVN round by cutting it off from the graph.
2374   _igvn.replace_input_of(iff, 0, C->top());
2375   _igvn.replace_input_of(iff, 1, C->top());
2376   return found_dominating_test;
2377 }
2378 
2379 //----------------------exact_limit-------------------------------------------
2380 Node* PhaseIdealLoop::exact_limit( IdealLoopTree *loop ) {
2381   assert(loop->_head->is_CountedLoop(), "");
2382   CountedLoopNode *cl = loop->_head->as_CountedLoop();
2383   assert(cl->is_valid_counted_loop(T_INT), "");
2384 
2385   if (cl->stride_con() == 1 ||
2386       cl->stride_con() == -1 ||
2387       cl->limit()->Opcode() == Op_LoopLimit) {
2388     // Old code has exact limit (it could be incorrect in case of int overflow).
2389     // Loop limit is exact with stride == 1. And loop may already have exact limit.
2390     return cl->limit();
2391   }
2392   Node *limit = nullptr;
2393 #ifdef ASSERT
2394   BoolTest::mask bt = cl->loopexit()->test_trip();
2395   assert(bt == BoolTest::lt || bt == BoolTest::gt, "canonical test is expected");
2396 #endif
2397   if (cl->has_exact_trip_count()) {
2398     // Simple case: loop has constant boundaries.
2399     // Use jlongs to avoid integer overflow.
2400     int stride_con = cl->stride_con();
2401     jlong  init_con = cl->init_trip()->get_int();
2402     jlong limit_con = cl->limit()->get_int();
2403     julong trip_cnt = cl->trip_count();
2404     jlong final_con = init_con + trip_cnt*stride_con;
2405     int final_int = (int)final_con;
2406     // The final value should be in integer range since the loop
2407     // is counted and the limit was checked for overflow.
2408     assert(final_con == (jlong)final_int, "final value should be integer");
2409     limit = _igvn.intcon(final_int);
2410   } else {
2411     // Create new LoopLimit node to get exact limit (final iv value).
2412     limit = new LoopLimitNode(C, cl->init_trip(), cl->limit(), cl->stride());
2413     register_new_node(limit, cl->in(LoopNode::EntryControl));
2414   }
2415   assert(limit != nullptr, "sanity");
2416   return limit;
2417 }
2418 
2419 //------------------------------Ideal------------------------------------------
2420 // Return a node which is more "ideal" than the current node.
2421 // Attempt to convert into a counted-loop.
2422 Node *LoopNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2423   if (!can_be_counted_loop(phase) && !is_OuterStripMinedLoop()) {
2424     phase->C->set_major_progress();
2425   }
2426   return RegionNode::Ideal(phase, can_reshape);
2427 }
2428 
2429 #ifdef ASSERT
2430 void LoopNode::verify_strip_mined(int expect_skeleton) const {
2431   const OuterStripMinedLoopNode* outer = nullptr;
2432   const CountedLoopNode* inner = nullptr;
2433   if (is_strip_mined()) {
2434     if (!is_valid_counted_loop(T_INT)) {
2435       return; // Skip malformed counted loop
2436     }
2437     assert(is_CountedLoop(), "no Loop should be marked strip mined");
2438     inner = as_CountedLoop();
2439     outer = inner->in(LoopNode::EntryControl)->as_OuterStripMinedLoop();
2440   } else if (is_OuterStripMinedLoop()) {
2441     outer = this->as_OuterStripMinedLoop();
2442     inner = outer->unique_ctrl_out()->as_CountedLoop();
2443     assert(inner->is_valid_counted_loop(T_INT) && inner->is_strip_mined(), "OuterStripMinedLoop should have been removed");
2444     assert(!is_strip_mined(), "outer loop shouldn't be marked strip mined");
2445   }
2446   if (inner != nullptr || outer != nullptr) {
2447     assert(inner != nullptr && outer != nullptr, "missing loop in strip mined nest");
2448     Node* outer_tail = outer->in(LoopNode::LoopBackControl);
2449     Node* outer_le = outer_tail->in(0);
2450     assert(outer_le->Opcode() == Op_OuterStripMinedLoopEnd, "tail of outer loop should be an If");
2451     Node* sfpt = outer_le->in(0);
2452     assert(sfpt->Opcode() == Op_SafePoint, "where's the safepoint?");
2453     Node* inner_out = sfpt->in(0);
2454     CountedLoopEndNode* cle = inner_out->in(0)->as_CountedLoopEnd();
2455     assert(cle == inner->loopexit_or_null(), "mismatch");
2456     bool has_skeleton = outer_le->in(1)->bottom_type()->singleton() && outer_le->in(1)->bottom_type()->is_int()->get_con() == 0;
2457     if (has_skeleton) {
2458       assert(expect_skeleton == 1 || expect_skeleton == -1, "unexpected skeleton node");
2459       assert(outer->outcnt() == 2, "only control nodes");
2460     } else {
2461       assert(expect_skeleton == 0 || expect_skeleton == -1, "no skeleton node?");
2462       uint phis = 0;
2463       uint be_loads = 0;
2464       Node* be = inner->in(LoopNode::LoopBackControl);
2465       for (DUIterator_Fast imax, i = inner->fast_outs(imax); i < imax; i++) {
2466         Node* u = inner->fast_out(i);
2467         if (u->is_Phi()) {
2468           phis++;
2469           for (DUIterator_Fast jmax, j = be->fast_outs(jmax); j < jmax; j++) {
2470             Node* n = be->fast_out(j);
2471             if (n->is_Load()) {
2472               assert(n->in(0) == be || n->find_prec_edge(be) > 0, "should be on the backedge");
2473               do {
2474                 n = n->raw_out(0);
2475               } while (!n->is_Phi());
2476               if (n == u) {
2477                 be_loads++;
2478                 break;
2479               }
2480             }
2481           }
2482         }
2483       }
2484       assert(be_loads <= phis, "wrong number phis that depends on a pinned load");
2485       for (DUIterator_Fast imax, i = outer->fast_outs(imax); i < imax; i++) {
2486         Node* u = outer->fast_out(i);
2487         assert(u == outer || u == inner || u->is_Phi(), "nothing between inner and outer loop");
2488       }
2489       uint stores = 0;
2490       for (DUIterator_Fast imax, i = inner_out->fast_outs(imax); i < imax; i++) {
2491         Node* u = inner_out->fast_out(i);
2492         if (u->is_Store()) {
2493           stores++;
2494         }
2495       }
2496       // Late optimization of loads on backedge can cause Phi of outer loop to be eliminated but Phi of inner loop is
2497       // not guaranteed to be optimized out.
2498       assert(outer->outcnt() >= phis + 2 - be_loads && outer->outcnt() <= phis + 2 + stores + 1, "only phis");
2499     }
2500     assert(sfpt->outcnt() == 1, "no data node");
2501     assert(outer_tail->outcnt() == 1 || !has_skeleton, "no data node");
2502   }
2503 }
2504 #endif
2505 
2506 //=============================================================================
2507 //------------------------------Ideal------------------------------------------
2508 // Return a node which is more "ideal" than the current node.
2509 // Attempt to convert into a counted-loop.
2510 Node *CountedLoopNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2511   return RegionNode::Ideal(phase, can_reshape);
2512 }
2513 
2514 //------------------------------dump_spec--------------------------------------
2515 // Dump special per-node info
2516 #ifndef PRODUCT
2517 void CountedLoopNode::dump_spec(outputStream *st) const {
2518   LoopNode::dump_spec(st);
2519   if (stride_is_con()) {
2520     st->print("stride: %d ",stride_con());
2521   }
2522   if (is_pre_loop ()) st->print("pre of N%d" , _main_idx);
2523   if (is_main_loop()) st->print("main of N%d", _idx);
2524   if (is_post_loop()) st->print("post of N%d", _main_idx);
2525   if (is_strip_mined()) st->print(" strip mined");
2526 }
2527 #endif
2528 
2529 //=============================================================================
2530 jlong BaseCountedLoopEndNode::stride_con() const {
2531   return stride()->bottom_type()->is_integer(bt())->get_con_as_long(bt());
2532 }
2533 
2534 
2535 BaseCountedLoopEndNode* BaseCountedLoopEndNode::make(Node* control, Node* test, float prob, float cnt, BasicType bt) {
2536   if (bt == T_INT) {
2537     return new CountedLoopEndNode(control, test, prob, cnt);
2538   }
2539   assert(bt == T_LONG, "unsupported");
2540   return new LongCountedLoopEndNode(control, test, prob, cnt);
2541 }
2542 
2543 //=============================================================================
2544 //------------------------------Value-----------------------------------------
2545 const Type* LoopLimitNode::Value(PhaseGVN* phase) const {
2546   const Type* init_t   = phase->type(in(Init));
2547   const Type* limit_t  = phase->type(in(Limit));
2548   const Type* stride_t = phase->type(in(Stride));
2549   // Either input is TOP ==> the result is TOP
2550   if (init_t   == Type::TOP) return Type::TOP;
2551   if (limit_t  == Type::TOP) return Type::TOP;
2552   if (stride_t == Type::TOP) return Type::TOP;
2553 
2554   int stride_con = stride_t->is_int()->get_con();
2555   if (stride_con == 1)
2556     return bottom_type();  // Identity
2557 
2558   if (init_t->is_int()->is_con() && limit_t->is_int()->is_con()) {
2559     // Use jlongs to avoid integer overflow.
2560     jlong init_con   =  init_t->is_int()->get_con();
2561     jlong limit_con  = limit_t->is_int()->get_con();
2562     int  stride_m   = stride_con - (stride_con > 0 ? 1 : -1);
2563     jlong trip_count = (limit_con - init_con + stride_m)/stride_con;
2564     jlong final_con  = init_con + stride_con*trip_count;
2565     int final_int = (int)final_con;
2566     // The final value should be in integer range since the loop
2567     // is counted and the limit was checked for overflow.
2568     // Assert checks for overflow only if all input nodes are ConINodes, as during CCP
2569     // there might be a temporary overflow from PhiNodes see JDK-8309266
2570     assert((in(Init)->is_ConI() && in(Limit)->is_ConI() && in(Stride)->is_ConI()) ? final_con == (jlong)final_int : true, "final value should be integer");
2571     if (final_con == (jlong)final_int) {
2572       return TypeInt::make(final_int);
2573     } else {
2574       return bottom_type();
2575     }
2576   }
2577 
2578   return bottom_type(); // TypeInt::INT
2579 }
2580 
2581 //------------------------------Ideal------------------------------------------
2582 // Return a node which is more "ideal" than the current node.
2583 Node *LoopLimitNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2584   if (phase->type(in(Init))   == Type::TOP ||
2585       phase->type(in(Limit))  == Type::TOP ||
2586       phase->type(in(Stride)) == Type::TOP)
2587     return nullptr;  // Dead
2588 
2589   int stride_con = phase->type(in(Stride))->is_int()->get_con();
2590   if (stride_con == 1)
2591     return nullptr;  // Identity
2592 
2593   if (in(Init)->is_Con() && in(Limit)->is_Con())
2594     return nullptr;  // Value
2595 
2596   // Delay following optimizations until all loop optimizations
2597   // done to keep Ideal graph simple.
2598   if (!can_reshape || !phase->C->post_loop_opts_phase()) {
2599     return nullptr;
2600   }
2601 
2602   const TypeInt* init_t  = phase->type(in(Init) )->is_int();
2603   const TypeInt* limit_t = phase->type(in(Limit))->is_int();
2604   jlong stride_p;
2605   jlong lim, ini;
2606   julong max;
2607   if (stride_con > 0) {
2608     stride_p = stride_con;
2609     lim = limit_t->_hi;
2610     ini = init_t->_lo;
2611     max = (julong)max_jint;
2612   } else {
2613     stride_p = -(jlong)stride_con;
2614     lim = init_t->_hi;
2615     ini = limit_t->_lo;
2616     max = (julong)(juint)min_jint; // double cast to get 0x0000000080000000, not 0xffffffff80000000
2617   }
2618   julong range = lim - ini + stride_p;
2619   if (range <= max) {
2620     // Convert to integer expression if it is not overflow.
2621     Node* stride_m = phase->intcon(stride_con - (stride_con > 0 ? 1 : -1));
2622     Node *range = phase->transform(new SubINode(in(Limit), in(Init)));
2623     Node *bias  = phase->transform(new AddINode(range, stride_m));
2624     Node *trip  = phase->transform(new DivINode(nullptr, bias, in(Stride)));
2625     Node *span  = phase->transform(new MulINode(trip, in(Stride)));
2626     return new AddINode(span, in(Init)); // exact limit
2627   }
2628 
2629   if (is_power_of_2(stride_p) ||                // divisor is 2^n
2630       !Matcher::has_match_rule(Op_LoopLimit)) { // or no specialized Mach node?
2631     // Convert to long expression to avoid integer overflow
2632     // and let igvn optimizer convert this division.
2633     //
2634     Node*   init   = phase->transform( new ConvI2LNode(in(Init)));
2635     Node*  limit   = phase->transform( new ConvI2LNode(in(Limit)));
2636     Node* stride   = phase->longcon(stride_con);
2637     Node* stride_m = phase->longcon(stride_con - (stride_con > 0 ? 1 : -1));
2638 
2639     Node *range = phase->transform(new SubLNode(limit, init));
2640     Node *bias  = phase->transform(new AddLNode(range, stride_m));
2641     Node *span;
2642     if (stride_con > 0 && is_power_of_2(stride_p)) {
2643       // bias >= 0 if stride >0, so if stride is 2^n we can use &(-stride)
2644       // and avoid generating rounding for division. Zero trip guard should
2645       // guarantee that init < limit but sometimes the guard is missing and
2646       // we can get situation when init > limit. Note, for the empty loop
2647       // optimization zero trip guard is generated explicitly which leaves
2648       // only RCE predicate where exact limit is used and the predicate
2649       // will simply fail forcing recompilation.
2650       Node* neg_stride   = phase->longcon(-stride_con);
2651       span = phase->transform(new AndLNode(bias, neg_stride));
2652     } else {
2653       Node *trip  = phase->transform(new DivLNode(nullptr, bias, stride));
2654       span = phase->transform(new MulLNode(trip, stride));
2655     }
2656     // Convert back to int
2657     Node *span_int = phase->transform(new ConvL2INode(span));
2658     return new AddINode(span_int, in(Init)); // exact limit
2659   }
2660 
2661   return nullptr;    // No progress
2662 }
2663 
2664 //------------------------------Identity---------------------------------------
2665 // If stride == 1 return limit node.
2666 Node* LoopLimitNode::Identity(PhaseGVN* phase) {
2667   int stride_con = phase->type(in(Stride))->is_int()->get_con();
2668   if (stride_con == 1 || stride_con == -1)
2669     return in(Limit);
2670   return this;
2671 }
2672 
2673 //=============================================================================
2674 //----------------------match_incr_with_optional_truncation--------------------
2675 // Match increment with optional truncation:
2676 // CHAR: (i+1)&0x7fff, BYTE: ((i+1)<<8)>>8, or SHORT: ((i+1)<<16)>>16
2677 // Return null for failure. Success returns the increment node.
2678 Node* CountedLoopNode::match_incr_with_optional_truncation(Node* expr, Node** trunc1, Node** trunc2,
2679                                                            const TypeInteger** trunc_type,
2680                                                            BasicType bt) {
2681   // Quick cutouts:
2682   if (expr == nullptr || expr->req() != 3)  return nullptr;
2683 
2684   Node *t1 = nullptr;
2685   Node *t2 = nullptr;
2686   Node* n1 = expr;
2687   int   n1op = n1->Opcode();
2688   const TypeInteger* trunc_t = TypeInteger::bottom(bt);
2689 
2690   if (bt == T_INT) {
2691     // Try to strip (n1 & M) or (n1 << N >> N) from n1.
2692     if (n1op == Op_AndI &&
2693         n1->in(2)->is_Con() &&
2694         n1->in(2)->bottom_type()->is_int()->get_con() == 0x7fff) {
2695       // %%% This check should match any mask of 2**K-1.
2696       t1 = n1;
2697       n1 = t1->in(1);
2698       n1op = n1->Opcode();
2699       trunc_t = TypeInt::CHAR;
2700     } else if (n1op == Op_RShiftI &&
2701                n1->in(1) != nullptr &&
2702                n1->in(1)->Opcode() == Op_LShiftI &&
2703                n1->in(2) == n1->in(1)->in(2) &&
2704                n1->in(2)->is_Con()) {
2705       jint shift = n1->in(2)->bottom_type()->is_int()->get_con();
2706       // %%% This check should match any shift in [1..31].
2707       if (shift == 16 || shift == 8) {
2708         t1 = n1;
2709         t2 = t1->in(1);
2710         n1 = t2->in(1);
2711         n1op = n1->Opcode();
2712         if (shift == 16) {
2713           trunc_t = TypeInt::SHORT;
2714         } else if (shift == 8) {
2715           trunc_t = TypeInt::BYTE;
2716         }
2717       }
2718     }
2719   }
2720 
2721   // If (maybe after stripping) it is an AddI, we won:
2722   if (n1op == Op_Add(bt)) {
2723     *trunc1 = t1;
2724     *trunc2 = t2;
2725     *trunc_type = trunc_t;
2726     return n1;
2727   }
2728 
2729   // failed
2730   return nullptr;
2731 }
2732 
2733 LoopNode* CountedLoopNode::skip_strip_mined(int expect_skeleton) {
2734   if (is_strip_mined() && in(EntryControl) != nullptr && in(EntryControl)->is_OuterStripMinedLoop()) {
2735     verify_strip_mined(expect_skeleton);
2736     return in(EntryControl)->as_Loop();
2737   }
2738   return this;
2739 }
2740 
2741 OuterStripMinedLoopNode* CountedLoopNode::outer_loop() const {
2742   assert(is_strip_mined(), "not a strip mined loop");
2743   Node* c = in(EntryControl);
2744   if (c == nullptr || c->is_top() || !c->is_OuterStripMinedLoop()) {
2745     return nullptr;
2746   }
2747   return c->as_OuterStripMinedLoop();
2748 }
2749 
2750 IfTrueNode* OuterStripMinedLoopNode::outer_loop_tail() const {
2751   Node* c = in(LoopBackControl);
2752   if (c == nullptr || c->is_top()) {
2753     return nullptr;
2754   }
2755   return c->as_IfTrue();
2756 }
2757 
2758 IfTrueNode* CountedLoopNode::outer_loop_tail() const {
2759   LoopNode* l = outer_loop();
2760   if (l == nullptr) {
2761     return nullptr;
2762   }
2763   return l->outer_loop_tail();
2764 }
2765 
2766 OuterStripMinedLoopEndNode* OuterStripMinedLoopNode::outer_loop_end() const {
2767   IfTrueNode* proj = outer_loop_tail();
2768   if (proj == nullptr) {
2769     return nullptr;
2770   }
2771   Node* c = proj->in(0);
2772   if (c == nullptr || c->is_top() || c->outcnt() != 2) {
2773     return nullptr;
2774   }
2775   return c->as_OuterStripMinedLoopEnd();
2776 }
2777 
2778 OuterStripMinedLoopEndNode* CountedLoopNode::outer_loop_end() const {
2779   LoopNode* l = outer_loop();
2780   if (l == nullptr) {
2781     return nullptr;
2782   }
2783   return l->outer_loop_end();
2784 }
2785 
2786 IfFalseNode* OuterStripMinedLoopNode::outer_loop_exit() const {
2787   IfNode* le = outer_loop_end();
2788   if (le == nullptr) {
2789     return nullptr;
2790   }
2791   Node* c = le->proj_out_or_null(false);
2792   if (c == nullptr) {
2793     return nullptr;
2794   }
2795   return c->as_IfFalse();
2796 }
2797 
2798 IfFalseNode* CountedLoopNode::outer_loop_exit() const {
2799   LoopNode* l = outer_loop();
2800   if (l == nullptr) {
2801     return nullptr;
2802   }
2803   return l->outer_loop_exit();
2804 }
2805 
2806 SafePointNode* OuterStripMinedLoopNode::outer_safepoint() const {
2807   IfNode* le = outer_loop_end();
2808   if (le == nullptr) {
2809     return nullptr;
2810   }
2811   Node* c = le->in(0);
2812   if (c == nullptr || c->is_top()) {
2813     return nullptr;
2814   }
2815   assert(c->Opcode() == Op_SafePoint, "broken outer loop");
2816   return c->as_SafePoint();
2817 }
2818 
2819 SafePointNode* CountedLoopNode::outer_safepoint() const {
2820   LoopNode* l = outer_loop();
2821   if (l == nullptr) {
2822     return nullptr;
2823   }
2824   return l->outer_safepoint();
2825 }
2826 
2827 Node* CountedLoopNode::skip_assertion_predicates_with_halt() {
2828   Node* ctrl = in(LoopNode::EntryControl);
2829   if (ctrl == nullptr) {
2830     // Dying loop.
2831     return nullptr;
2832   }
2833   if (is_main_loop()) {
2834     ctrl = skip_strip_mined()->in(LoopNode::EntryControl);
2835   }
2836   if (is_main_loop() || is_post_loop()) {
2837     AssertionPredicates assertion_predicates(ctrl);
2838     return assertion_predicates.entry();
2839   }
2840   return ctrl;
2841 }
2842 
2843 
2844 int CountedLoopNode::stride_con() const {
2845   CountedLoopEndNode* cle = loopexit_or_null();
2846   return cle != nullptr ? cle->stride_con() : 0;
2847 }
2848 
2849 BaseCountedLoopNode* BaseCountedLoopNode::make(Node* entry, Node* backedge, BasicType bt) {
2850   if (bt == T_INT) {
2851     return new CountedLoopNode(entry, backedge);
2852   }
2853   assert(bt == T_LONG, "unsupported");
2854   return new LongCountedLoopNode(entry, backedge);
2855 }
2856 
2857 void OuterStripMinedLoopNode::fix_sunk_stores(CountedLoopEndNode* inner_cle, LoopNode* inner_cl, PhaseIterGVN* igvn,
2858                                               PhaseIdealLoop* iloop) {
2859   Node* cle_out = inner_cle->proj_out(false);
2860   Node* cle_tail = inner_cle->proj_out(true);
2861   if (cle_out->outcnt() > 1) {
2862     // Look for chains of stores that were sunk
2863     // out of the inner loop and are in the outer loop
2864     for (DUIterator_Fast imax, i = cle_out->fast_outs(imax); i < imax; i++) {
2865       Node* u = cle_out->fast_out(i);
2866       if (u->is_Store()) {
2867         int alias_idx = igvn->C->get_alias_index(u->adr_type());
2868         Node* first = u;
2869         for (;;) {
2870           Node* next = first->in(MemNode::Memory);
2871           if (!next->is_Store() || next->in(0) != cle_out) {
2872             break;
2873           }
2874           assert(igvn->C->get_alias_index(next->adr_type()) == alias_idx, "");
2875           first = next;
2876         }
2877         Node* last = u;
2878         for (;;) {
2879           Node* next = nullptr;
2880           for (DUIterator_Fast jmax, j = last->fast_outs(jmax); j < jmax; j++) {
2881             Node* uu = last->fast_out(j);
2882             if (uu->is_Store() && uu->in(0) == cle_out) {
2883               assert(next == nullptr, "only one in the outer loop");
2884               next = uu;
2885               assert(igvn->C->get_alias_index(next->adr_type()) == alias_idx, "");
2886             }
2887           }
2888           if (next == nullptr) {
2889             break;
2890           }
2891           last = next;
2892         }
2893         Node* phi = nullptr;
2894         for (DUIterator_Fast jmax, j = inner_cl->fast_outs(jmax); j < jmax; j++) {
2895           Node* uu = inner_cl->fast_out(j);
2896           if (uu->is_Phi()) {
2897             Node* be = uu->in(LoopNode::LoopBackControl);
2898             if (be->is_Store() && be->in(0) == inner_cl->in(LoopNode::LoopBackControl)) {
2899               assert(igvn->C->get_alias_index(uu->adr_type()) != alias_idx && igvn->C->get_alias_index(uu->adr_type()) != Compile::AliasIdxBot, "unexpected store");
2900             }
2901             if (be == last || be == first->in(MemNode::Memory)) {
2902               assert(igvn->C->get_alias_index(uu->adr_type()) == alias_idx || igvn->C->get_alias_index(uu->adr_type()) == Compile::AliasIdxBot, "unexpected alias");
2903               assert(phi == nullptr, "only one phi");
2904               phi = uu;
2905             }
2906           }
2907         }
2908 #ifdef ASSERT
2909         for (DUIterator_Fast jmax, j = inner_cl->fast_outs(jmax); j < jmax; j++) {
2910           Node* uu = inner_cl->fast_out(j);
2911           if (uu->is_memory_phi()) {
2912             if (uu->adr_type() == igvn->C->get_adr_type(igvn->C->get_alias_index(u->adr_type()))) {
2913               assert(phi == uu, "what's that phi?");
2914             } else if (uu->adr_type() == TypePtr::BOTTOM) {
2915               Node* n = uu->in(LoopNode::LoopBackControl);
2916               uint limit = igvn->C->live_nodes();
2917               uint i = 0;
2918               while (n != uu) {
2919                 i++;
2920                 assert(i < limit, "infinite loop");
2921                 if (n->is_Proj()) {
2922                   n = n->in(0);
2923                 } else if (n->is_SafePoint() || n->is_MemBar()) {
2924                   n = n->in(TypeFunc::Memory);
2925                 } else if (n->is_Phi()) {
2926                   n = n->in(1);
2927                 } else if (n->is_MergeMem()) {
2928                   n = n->as_MergeMem()->memory_at(igvn->C->get_alias_index(u->adr_type()));
2929                 } else if (n->is_Store() || n->is_LoadStore() || n->is_ClearArray()) {
2930                   n = n->in(MemNode::Memory);
2931                 } else {
2932                   n->dump();
2933                   ShouldNotReachHere();
2934                 }
2935               }
2936             }
2937           }
2938         }
2939 #endif
2940         if (phi == nullptr) {
2941           // If an entire chains was sunk, the
2942           // inner loop has no phi for that memory
2943           // slice, create one for the outer loop
2944           phi = PhiNode::make(inner_cl, first->in(MemNode::Memory), Type::MEMORY,
2945                               igvn->C->get_adr_type(igvn->C->get_alias_index(u->adr_type())));
2946           phi->set_req(LoopNode::LoopBackControl, last);
2947           phi = register_new_node(phi, inner_cl, igvn, iloop);
2948           igvn->replace_input_of(first, MemNode::Memory, phi);
2949         } else {
2950           // Or fix the outer loop fix to include
2951           // that chain of stores.
2952           Node* be = phi->in(LoopNode::LoopBackControl);
2953           assert(!(be->is_Store() && be->in(0) == inner_cl->in(LoopNode::LoopBackControl)), "store on the backedge + sunk stores: unsupported");
2954           if (be == first->in(MemNode::Memory)) {
2955             if (be == phi->in(LoopNode::LoopBackControl)) {
2956               igvn->replace_input_of(phi, LoopNode::LoopBackControl, last);
2957             } else {
2958               igvn->replace_input_of(be, MemNode::Memory, last);
2959             }
2960           } else {
2961 #ifdef ASSERT
2962             if (be == phi->in(LoopNode::LoopBackControl)) {
2963               assert(phi->in(LoopNode::LoopBackControl) == last, "");
2964             } else {
2965               assert(be->in(MemNode::Memory) == last, "");
2966             }
2967 #endif
2968           }
2969         }
2970       }
2971     }
2972   }
2973 }
2974 
2975 void OuterStripMinedLoopNode::adjust_strip_mined_loop(PhaseIterGVN* igvn) {
2976   // Look for the outer & inner strip mined loop, reduce number of
2977   // iterations of the inner loop, set exit condition of outer loop,
2978   // construct required phi nodes for outer loop.
2979   CountedLoopNode* inner_cl = unique_ctrl_out()->as_CountedLoop();
2980   assert(inner_cl->is_strip_mined(), "inner loop should be strip mined");
2981   if (LoopStripMiningIter == 0) {
2982     remove_outer_loop_and_safepoint(igvn);
2983     return;
2984   }
2985   if (LoopStripMiningIter == 1) {
2986     transform_to_counted_loop(igvn, nullptr);
2987     return;
2988   }
2989   Node* inner_iv_phi = inner_cl->phi();
2990   if (inner_iv_phi == nullptr) {
2991     IfNode* outer_le = outer_loop_end();
2992     Node* iff = igvn->transform(new IfNode(outer_le->in(0), outer_le->in(1), outer_le->_prob, outer_le->_fcnt));
2993     igvn->replace_node(outer_le, iff);
2994     inner_cl->clear_strip_mined();
2995     return;
2996   }
2997   CountedLoopEndNode* inner_cle = inner_cl->loopexit();
2998 
2999   int stride = inner_cl->stride_con();
3000   // For a min int stride, LoopStripMiningIter * stride overflows the int range for all values of LoopStripMiningIter
3001   // except 0 or 1. Those values are handled early on in this method and causes the method to return. So for a min int
3002   // stride, the method is guaranteed to return at the next check below.
3003   jlong scaled_iters_long = ((jlong)LoopStripMiningIter) * ABS((jlong)stride);
3004   int scaled_iters = (int)scaled_iters_long;
3005   if ((jlong)scaled_iters != scaled_iters_long) {
3006     // Remove outer loop and safepoint (too few iterations)
3007     remove_outer_loop_and_safepoint(igvn);
3008     return;
3009   }
3010   jlong short_scaled_iters = LoopStripMiningIterShortLoop * ABS(stride);
3011   const TypeInt* inner_iv_t = igvn->type(inner_iv_phi)->is_int();
3012   jlong iter_estimate = (jlong)inner_iv_t->_hi - (jlong)inner_iv_t->_lo;
3013   assert(iter_estimate > 0, "broken");
3014   if (iter_estimate <= short_scaled_iters) {
3015     // Remove outer loop and safepoint: loop executes less than LoopStripMiningIterShortLoop
3016     remove_outer_loop_and_safepoint(igvn);
3017     return;
3018   }
3019   if (iter_estimate <= scaled_iters_long) {
3020     // We would only go through one iteration of
3021     // the outer loop: drop the outer loop but
3022     // keep the safepoint so we don't run for
3023     // too long without a safepoint
3024     IfNode* outer_le = outer_loop_end();
3025     Node* iff = igvn->transform(new IfNode(outer_le->in(0), outer_le->in(1), outer_le->_prob, outer_le->_fcnt));
3026     igvn->replace_node(outer_le, iff);
3027     inner_cl->clear_strip_mined();
3028     return;
3029   }
3030 
3031   Node* cle_tail = inner_cle->proj_out(true);
3032   ResourceMark rm;
3033   Node_List old_new;
3034   if (cle_tail->outcnt() > 1) {
3035     // Look for nodes on backedge of inner loop and clone them
3036     Unique_Node_List backedge_nodes;
3037     for (DUIterator_Fast imax, i = cle_tail->fast_outs(imax); i < imax; i++) {
3038       Node* u = cle_tail->fast_out(i);
3039       if (u != inner_cl) {
3040         assert(!u->is_CFG(), "control flow on the backedge?");
3041         backedge_nodes.push(u);
3042       }
3043     }
3044     uint last = igvn->C->unique();
3045     for (uint next = 0; next < backedge_nodes.size(); next++) {
3046       Node* n = backedge_nodes.at(next);
3047       old_new.map(n->_idx, n->clone());
3048       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3049         Node* u = n->fast_out(i);
3050         assert(!u->is_CFG(), "broken");
3051         if (u->_idx >= last) {
3052           continue;
3053         }
3054         if (!u->is_Phi()) {
3055           backedge_nodes.push(u);
3056         } else {
3057           assert(u->in(0) == inner_cl, "strange phi on the backedge");
3058         }
3059       }
3060     }
3061     // Put the clones on the outer loop backedge
3062     Node* le_tail = outer_loop_tail();
3063     for (uint next = 0; next < backedge_nodes.size(); next++) {
3064       Node *n = old_new[backedge_nodes.at(next)->_idx];
3065       for (uint i = 1; i < n->req(); i++) {
3066         if (n->in(i) != nullptr && old_new[n->in(i)->_idx] != nullptr) {
3067           n->set_req(i, old_new[n->in(i)->_idx]);
3068         }
3069       }
3070       if (n->in(0) != nullptr && n->in(0) == cle_tail) {
3071         n->set_req(0, le_tail);
3072       }
3073       igvn->register_new_node_with_optimizer(n);
3074     }
3075   }
3076 
3077   Node* iv_phi = nullptr;
3078   // Make a clone of each phi in the inner loop
3079   // for the outer loop
3080   for (uint i = 0; i < inner_cl->outcnt(); i++) {
3081     Node* u = inner_cl->raw_out(i);
3082     if (u->is_Phi()) {
3083       assert(u->in(0) == inner_cl, "inconsistent");
3084       Node* phi = u->clone();
3085       phi->set_req(0, this);
3086       Node* be = old_new[phi->in(LoopNode::LoopBackControl)->_idx];
3087       if (be != nullptr) {
3088         phi->set_req(LoopNode::LoopBackControl, be);
3089       }
3090       phi = igvn->transform(phi);
3091       igvn->replace_input_of(u, LoopNode::EntryControl, phi);
3092       if (u == inner_iv_phi) {
3093         iv_phi = phi;
3094       }
3095     }
3096   }
3097 
3098   if (iv_phi != nullptr) {
3099     // Now adjust the inner loop's exit condition
3100     Node* limit = inner_cl->limit();
3101     // If limit < init for stride > 0 (or limit > init for stride < 0),
3102     // the loop body is run only once. Given limit - init (init - limit resp.)
3103     // would be negative, the unsigned comparison below would cause
3104     // the loop body to be run for LoopStripMiningIter.
3105     Node* max = nullptr;
3106     if (stride > 0) {
3107       max = MaxNode::max_diff_with_zero(limit, iv_phi, TypeInt::INT, *igvn);
3108     } else {
3109       max = MaxNode::max_diff_with_zero(iv_phi, limit, TypeInt::INT, *igvn);
3110     }
3111     // sub is positive and can be larger than the max signed int
3112     // value. Use an unsigned min.
3113     Node* const_iters = igvn->intcon(scaled_iters);
3114     Node* min = MaxNode::unsigned_min(max, const_iters, TypeInt::make(0, scaled_iters, Type::WidenMin), *igvn);
3115     // min is the number of iterations for the next inner loop execution:
3116     // unsigned_min(max(limit - iv_phi, 0), scaled_iters) if stride > 0
3117     // unsigned_min(max(iv_phi - limit, 0), scaled_iters) if stride < 0
3118 
3119     Node* new_limit = nullptr;
3120     if (stride > 0) {
3121       new_limit = igvn->transform(new AddINode(min, iv_phi));
3122     } else {
3123       new_limit = igvn->transform(new SubINode(iv_phi, min));
3124     }
3125     Node* inner_cmp = inner_cle->cmp_node();
3126     Node* inner_bol = inner_cle->in(CountedLoopEndNode::TestValue);
3127     Node* outer_bol = inner_bol;
3128     // cmp node for inner loop may be shared
3129     inner_cmp = inner_cmp->clone();
3130     inner_cmp->set_req(2, new_limit);
3131     inner_bol = inner_bol->clone();
3132     inner_bol->set_req(1, igvn->transform(inner_cmp));
3133     igvn->replace_input_of(inner_cle, CountedLoopEndNode::TestValue, igvn->transform(inner_bol));
3134     // Set the outer loop's exit condition too
3135     igvn->replace_input_of(outer_loop_end(), 1, outer_bol);
3136   } else {
3137     assert(false, "should be able to adjust outer loop");
3138     IfNode* outer_le = outer_loop_end();
3139     Node* iff = igvn->transform(new IfNode(outer_le->in(0), outer_le->in(1), outer_le->_prob, outer_le->_fcnt));
3140     igvn->replace_node(outer_le, iff);
3141     inner_cl->clear_strip_mined();
3142   }
3143 }
3144 
3145 void OuterStripMinedLoopNode::transform_to_counted_loop(PhaseIterGVN* igvn, PhaseIdealLoop* iloop) {
3146   CountedLoopNode* inner_cl = unique_ctrl_out()->as_CountedLoop();
3147   CountedLoopEndNode* cle = inner_cl->loopexit();
3148   Node* inner_test = cle->in(1);
3149   IfNode* outer_le = outer_loop_end();
3150   CountedLoopEndNode* inner_cle = inner_cl->loopexit();
3151   Node* safepoint = outer_safepoint();
3152 
3153   fix_sunk_stores(inner_cle, inner_cl, igvn, iloop);
3154 
3155   // make counted loop exit test always fail
3156   ConINode* zero = igvn->intcon(0);
3157   if (iloop != nullptr) {
3158     iloop->set_ctrl(zero, igvn->C->root());
3159   }
3160   igvn->replace_input_of(cle, 1, zero);
3161   // replace outer loop end with CountedLoopEndNode with formers' CLE's exit test
3162   Node* new_end = new CountedLoopEndNode(outer_le->in(0), inner_test, cle->_prob, cle->_fcnt);
3163   register_control(new_end, inner_cl, outer_le->in(0), igvn, iloop);
3164   if (iloop == nullptr) {
3165     igvn->replace_node(outer_le, new_end);
3166   } else {
3167     iloop->lazy_replace(outer_le, new_end);
3168   }
3169   // the backedge of the inner loop must be rewired to the new loop end
3170   Node* backedge = cle->proj_out(true);
3171   igvn->replace_input_of(backedge, 0, new_end);
3172   if (iloop != nullptr) {
3173     iloop->set_idom(backedge, new_end, iloop->dom_depth(new_end) + 1);
3174   }
3175   // make the outer loop go away
3176   igvn->replace_input_of(in(LoopBackControl), 0, igvn->C->top());
3177   igvn->replace_input_of(this, LoopBackControl, igvn->C->top());
3178   inner_cl->clear_strip_mined();
3179   if (iloop != nullptr) {
3180     Unique_Node_List wq;
3181     wq.push(safepoint);
3182 
3183     IdealLoopTree* outer_loop_ilt = iloop->get_loop(this);
3184     IdealLoopTree* loop = iloop->get_loop(inner_cl);
3185 
3186     for (uint i = 0; i < wq.size(); i++) {
3187       Node* n = wq.at(i);
3188       for (uint j = 0; j < n->req(); ++j) {
3189         Node* in = n->in(j);
3190         if (in == nullptr || in->is_CFG()) {
3191           continue;
3192         }
3193         if (iloop->get_loop(iloop->get_ctrl(in)) != outer_loop_ilt) {
3194           continue;
3195         }
3196         assert(!loop->_body.contains(in), "");
3197         loop->_body.push(in);
3198         wq.push(in);
3199       }
3200     }
3201     iloop->set_loop(safepoint, loop);
3202     loop->_body.push(safepoint);
3203     iloop->set_loop(safepoint->in(0), loop);
3204     loop->_body.push(safepoint->in(0));
3205     outer_loop_ilt->_tail = igvn->C->top();
3206   }
3207 }
3208 
3209 void OuterStripMinedLoopNode::remove_outer_loop_and_safepoint(PhaseIterGVN* igvn) const {
3210   CountedLoopNode* inner_cl = unique_ctrl_out()->as_CountedLoop();
3211   Node* outer_sfpt = outer_safepoint();
3212   Node* outer_out = outer_loop_exit();
3213   igvn->replace_node(outer_out, outer_sfpt->in(0));
3214   igvn->replace_input_of(outer_sfpt, 0, igvn->C->top());
3215   inner_cl->clear_strip_mined();
3216 }
3217 
3218 Node* OuterStripMinedLoopNode::register_new_node(Node* node, LoopNode* ctrl, PhaseIterGVN* igvn, PhaseIdealLoop* iloop) {
3219   if (iloop == nullptr) {
3220     return igvn->transform(node);
3221   }
3222   iloop->register_new_node(node, ctrl);
3223   return node;
3224 }
3225 
3226 Node* OuterStripMinedLoopNode::register_control(Node* node, Node* loop, Node* idom, PhaseIterGVN* igvn,
3227                                                 PhaseIdealLoop* iloop) {
3228   if (iloop == nullptr) {
3229     return igvn->transform(node);
3230   }
3231   iloop->register_control(node, iloop->get_loop(loop), idom);
3232   return node;
3233 }
3234 
3235 const Type* OuterStripMinedLoopEndNode::Value(PhaseGVN* phase) const {
3236   if (!in(0)) return Type::TOP;
3237   if (phase->type(in(0)) == Type::TOP)
3238     return Type::TOP;
3239 
3240   // Until expansion, the loop end condition is not set so this should not constant fold.
3241   if (is_expanded(phase)) {
3242     return IfNode::Value(phase);
3243   }
3244 
3245   return TypeTuple::IFBOTH;
3246 }
3247 
3248 bool OuterStripMinedLoopEndNode::is_expanded(PhaseGVN *phase) const {
3249   // The outer strip mined loop head only has Phi uses after expansion
3250   if (phase->is_IterGVN()) {
3251     Node* backedge = proj_out_or_null(true);
3252     if (backedge != nullptr) {
3253       Node* head = backedge->unique_ctrl_out_or_null();
3254       if (head != nullptr && head->is_OuterStripMinedLoop()) {
3255         if (head->find_out_with(Op_Phi) != nullptr) {
3256           return true;
3257         }
3258       }
3259     }
3260   }
3261   return false;
3262 }
3263 
3264 Node *OuterStripMinedLoopEndNode::Ideal(PhaseGVN *phase, bool can_reshape) {
3265   if (remove_dead_region(phase, can_reshape))  return this;
3266 
3267   return nullptr;
3268 }
3269 
3270 //------------------------------filtered_type--------------------------------
3271 // Return a type based on condition control flow
3272 // A successful return will be a type that is restricted due
3273 // to a series of dominating if-tests, such as:
3274 //    if (i < 10) {
3275 //       if (i > 0) {
3276 //          here: "i" type is [1..10)
3277 //       }
3278 //    }
3279 // or a control flow merge
3280 //    if (i < 10) {
3281 //       do {
3282 //          phi( , ) -- at top of loop type is [min_int..10)
3283 //         i = ?
3284 //       } while ( i < 10)
3285 //
3286 const TypeInt* PhaseIdealLoop::filtered_type( Node *n, Node* n_ctrl) {
3287   assert(n && n->bottom_type()->is_int(), "must be int");
3288   const TypeInt* filtered_t = nullptr;
3289   if (!n->is_Phi()) {
3290     assert(n_ctrl != nullptr || n_ctrl == C->top(), "valid control");
3291     filtered_t = filtered_type_from_dominators(n, n_ctrl);
3292 
3293   } else {
3294     Node* phi    = n->as_Phi();
3295     Node* region = phi->in(0);
3296     assert(n_ctrl == nullptr || n_ctrl == region, "ctrl parameter must be region");
3297     if (region && region != C->top()) {
3298       for (uint i = 1; i < phi->req(); i++) {
3299         Node* val   = phi->in(i);
3300         Node* use_c = region->in(i);
3301         const TypeInt* val_t = filtered_type_from_dominators(val, use_c);
3302         if (val_t != nullptr) {
3303           if (filtered_t == nullptr) {
3304             filtered_t = val_t;
3305           } else {
3306             filtered_t = filtered_t->meet(val_t)->is_int();
3307           }
3308         }
3309       }
3310     }
3311   }
3312   const TypeInt* n_t = _igvn.type(n)->is_int();
3313   if (filtered_t != nullptr) {
3314     n_t = n_t->join(filtered_t)->is_int();
3315   }
3316   return n_t;
3317 }
3318 
3319 
3320 //------------------------------filtered_type_from_dominators--------------------------------
3321 // Return a possibly more restrictive type for val based on condition control flow of dominators
3322 const TypeInt* PhaseIdealLoop::filtered_type_from_dominators( Node* val, Node *use_ctrl) {
3323   if (val->is_Con()) {
3324      return val->bottom_type()->is_int();
3325   }
3326   uint if_limit = 10; // Max number of dominating if's visited
3327   const TypeInt* rtn_t = nullptr;
3328 
3329   if (use_ctrl && use_ctrl != C->top()) {
3330     Node* val_ctrl = get_ctrl(val);
3331     uint val_dom_depth = dom_depth(val_ctrl);
3332     Node* pred = use_ctrl;
3333     uint if_cnt = 0;
3334     while (if_cnt < if_limit) {
3335       if ((pred->Opcode() == Op_IfTrue || pred->Opcode() == Op_IfFalse)) {
3336         if_cnt++;
3337         const TypeInt* if_t = IfNode::filtered_int_type(&_igvn, val, pred);
3338         if (if_t != nullptr) {
3339           if (rtn_t == nullptr) {
3340             rtn_t = if_t;
3341           } else {
3342             rtn_t = rtn_t->join(if_t)->is_int();
3343           }
3344         }
3345       }
3346       pred = idom(pred);
3347       if (pred == nullptr || pred == C->top()) {
3348         break;
3349       }
3350       // Stop if going beyond definition block of val
3351       if (dom_depth(pred) < val_dom_depth) {
3352         break;
3353       }
3354     }
3355   }
3356   return rtn_t;
3357 }
3358 
3359 
3360 //------------------------------dump_spec--------------------------------------
3361 // Dump special per-node info
3362 #ifndef PRODUCT
3363 void CountedLoopEndNode::dump_spec(outputStream *st) const {
3364   if( in(TestValue) != nullptr && in(TestValue)->is_Bool() ) {
3365     BoolTest bt( test_trip()); // Added this for g++.
3366 
3367     st->print("[");
3368     bt.dump_on(st);
3369     st->print("]");
3370   }
3371   st->print(" ");
3372   IfNode::dump_spec(st);
3373 }
3374 #endif
3375 
3376 //=============================================================================
3377 //------------------------------is_member--------------------------------------
3378 // Is 'l' a member of 'this'?
3379 bool IdealLoopTree::is_member(const IdealLoopTree *l) const {
3380   while( l->_nest > _nest ) l = l->_parent;
3381   return l == this;
3382 }
3383 
3384 //------------------------------set_nest---------------------------------------
3385 // Set loop tree nesting depth.  Accumulate _has_call bits.
3386 int IdealLoopTree::set_nest( uint depth ) {
3387   assert(depth <= SHRT_MAX, "sanity");
3388   _nest = depth;
3389   int bits = _has_call;
3390   if( _child ) bits |= _child->set_nest(depth+1);
3391   if( bits ) _has_call = 1;
3392   if( _next  ) bits |= _next ->set_nest(depth  );
3393   return bits;
3394 }
3395 
3396 //------------------------------split_fall_in----------------------------------
3397 // Split out multiple fall-in edges from the loop header.  Move them to a
3398 // private RegionNode before the loop.  This becomes the loop landing pad.
3399 void IdealLoopTree::split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt ) {
3400   PhaseIterGVN &igvn = phase->_igvn;
3401   uint i;
3402 
3403   // Make a new RegionNode to be the landing pad.
3404   RegionNode* landing_pad = new RegionNode(fall_in_cnt + 1);
3405   phase->set_loop(landing_pad,_parent);
3406   // If _head was irreducible loop entry, landing_pad may now be too
3407   landing_pad->set_loop_status(_head->as_Region()->loop_status());
3408   // Gather all the fall-in control paths into the landing pad
3409   uint icnt = fall_in_cnt;
3410   uint oreq = _head->req();
3411   for( i = oreq-1; i>0; i-- )
3412     if( !phase->is_member( this, _head->in(i) ) )
3413       landing_pad->set_req(icnt--,_head->in(i));
3414 
3415   // Peel off PhiNode edges as well
3416   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
3417     Node *oj = _head->fast_out(j);
3418     if( oj->is_Phi() ) {
3419       PhiNode* old_phi = oj->as_Phi();
3420       assert( old_phi->region() == _head, "" );
3421       igvn.hash_delete(old_phi);   // Yank from hash before hacking edges
3422       Node *p = PhiNode::make_blank(landing_pad, old_phi);
3423       uint icnt = fall_in_cnt;
3424       for( i = oreq-1; i>0; i-- ) {
3425         if( !phase->is_member( this, _head->in(i) ) ) {
3426           p->init_req(icnt--, old_phi->in(i));
3427           // Go ahead and clean out old edges from old phi
3428           old_phi->del_req(i);
3429         }
3430       }
3431       // Search for CSE's here, because ZKM.jar does a lot of
3432       // loop hackery and we need to be a little incremental
3433       // with the CSE to avoid O(N^2) node blow-up.
3434       Node *p2 = igvn.hash_find_insert(p); // Look for a CSE
3435       if( p2 ) {                // Found CSE
3436         p->destruct(&igvn);     // Recover useless new node
3437         p = p2;                 // Use old node
3438       } else {
3439         igvn.register_new_node_with_optimizer(p, old_phi);
3440       }
3441       // Make old Phi refer to new Phi.
3442       old_phi->add_req(p);
3443       // Check for the special case of making the old phi useless and
3444       // disappear it.  In JavaGrande I have a case where this useless
3445       // Phi is the loop limit and prevents recognizing a CountedLoop
3446       // which in turn prevents removing an empty loop.
3447       Node *id_old_phi = old_phi->Identity(&igvn);
3448       if( id_old_phi != old_phi ) { // Found a simple identity?
3449         // Note that I cannot call 'replace_node' here, because
3450         // that will yank the edge from old_phi to the Region and
3451         // I'm mid-iteration over the Region's uses.
3452         for (DUIterator_Last imin, i = old_phi->last_outs(imin); i >= imin; ) {
3453           Node* use = old_phi->last_out(i);
3454           igvn.rehash_node_delayed(use);
3455           uint uses_found = 0;
3456           for (uint j = 0; j < use->len(); j++) {
3457             if (use->in(j) == old_phi) {
3458               if (j < use->req()) use->set_req (j, id_old_phi);
3459               else                use->set_prec(j, id_old_phi);
3460               uses_found++;
3461             }
3462           }
3463           i -= uses_found;    // we deleted 1 or more copies of this edge
3464         }
3465       }
3466       igvn._worklist.push(old_phi);
3467     }
3468   }
3469   // Finally clean out the fall-in edges from the RegionNode
3470   for( i = oreq-1; i>0; i-- ) {
3471     if( !phase->is_member( this, _head->in(i) ) ) {
3472       _head->del_req(i);
3473     }
3474   }
3475   igvn.rehash_node_delayed(_head);
3476   // Transform landing pad
3477   igvn.register_new_node_with_optimizer(landing_pad, _head);
3478   // Insert landing pad into the header
3479   _head->add_req(landing_pad);
3480 }
3481 
3482 //------------------------------split_outer_loop-------------------------------
3483 // Split out the outermost loop from this shared header.
3484 void IdealLoopTree::split_outer_loop( PhaseIdealLoop *phase ) {
3485   PhaseIterGVN &igvn = phase->_igvn;
3486 
3487   // Find index of outermost loop; it should also be my tail.
3488   uint outer_idx = 1;
3489   while( _head->in(outer_idx) != _tail ) outer_idx++;
3490 
3491   // Make a LoopNode for the outermost loop.
3492   Node *ctl = _head->in(LoopNode::EntryControl);
3493   Node *outer = new LoopNode( ctl, _head->in(outer_idx) );
3494   outer = igvn.register_new_node_with_optimizer(outer, _head);
3495   phase->set_created_loop_node();
3496 
3497   // Outermost loop falls into '_head' loop
3498   _head->set_req(LoopNode::EntryControl, outer);
3499   _head->del_req(outer_idx);
3500   // Split all the Phis up between '_head' loop and 'outer' loop.
3501   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
3502     Node *out = _head->fast_out(j);
3503     if( out->is_Phi() ) {
3504       PhiNode *old_phi = out->as_Phi();
3505       assert( old_phi->region() == _head, "" );
3506       Node *phi = PhiNode::make_blank(outer, old_phi);
3507       phi->init_req(LoopNode::EntryControl,    old_phi->in(LoopNode::EntryControl));
3508       phi->init_req(LoopNode::LoopBackControl, old_phi->in(outer_idx));
3509       phi = igvn.register_new_node_with_optimizer(phi, old_phi);
3510       // Make old Phi point to new Phi on the fall-in path
3511       igvn.replace_input_of(old_phi, LoopNode::EntryControl, phi);
3512       old_phi->del_req(outer_idx);
3513     }
3514   }
3515 
3516   // Use the new loop head instead of the old shared one
3517   _head = outer;
3518   phase->set_loop(_head, this);
3519 }
3520 
3521 //------------------------------fix_parent-------------------------------------
3522 static void fix_parent( IdealLoopTree *loop, IdealLoopTree *parent ) {
3523   loop->_parent = parent;
3524   if( loop->_child ) fix_parent( loop->_child, loop   );
3525   if( loop->_next  ) fix_parent( loop->_next , parent );
3526 }
3527 
3528 //------------------------------estimate_path_freq-----------------------------
3529 static float estimate_path_freq( Node *n ) {
3530   // Try to extract some path frequency info
3531   IfNode *iff;
3532   for( int i = 0; i < 50; i++ ) { // Skip through a bunch of uncommon tests
3533     uint nop = n->Opcode();
3534     if( nop == Op_SafePoint ) {   // Skip any safepoint
3535       n = n->in(0);
3536       continue;
3537     }
3538     if( nop == Op_CatchProj ) {   // Get count from a prior call
3539       // Assume call does not always throw exceptions: means the call-site
3540       // count is also the frequency of the fall-through path.
3541       assert( n->is_CatchProj(), "" );
3542       if( ((CatchProjNode*)n)->_con != CatchProjNode::fall_through_index )
3543         return 0.0f;            // Assume call exception path is rare
3544       Node *call = n->in(0)->in(0)->in(0);
3545       assert( call->is_Call(), "expect a call here" );
3546       const JVMState *jvms = ((CallNode*)call)->jvms();
3547       ciMethodData* methodData = jvms->method()->method_data();
3548       if (!methodData->is_mature())  return 0.0f; // No call-site data
3549       ciProfileData* data = methodData->bci_to_data(jvms->bci());
3550       if ((data == nullptr) || !data->is_CounterData()) {
3551         // no call profile available, try call's control input
3552         n = n->in(0);
3553         continue;
3554       }
3555       return data->as_CounterData()->count()/FreqCountInvocations;
3556     }
3557     // See if there's a gating IF test
3558     Node *n_c = n->in(0);
3559     if( !n_c->is_If() ) break;       // No estimate available
3560     iff = n_c->as_If();
3561     if( iff->_fcnt != COUNT_UNKNOWN )   // Have a valid count?
3562       // Compute how much count comes on this path
3563       return ((nop == Op_IfTrue) ? iff->_prob : 1.0f - iff->_prob) * iff->_fcnt;
3564     // Have no count info.  Skip dull uncommon-trap like branches.
3565     if( (nop == Op_IfTrue  && iff->_prob < PROB_LIKELY_MAG(5)) ||
3566         (nop == Op_IfFalse && iff->_prob > PROB_UNLIKELY_MAG(5)) )
3567       break;
3568     // Skip through never-taken branch; look for a real loop exit.
3569     n = iff->in(0);
3570   }
3571   return 0.0f;                  // No estimate available
3572 }
3573 
3574 //------------------------------merge_many_backedges---------------------------
3575 // Merge all the backedges from the shared header into a private Region.
3576 // Feed that region as the one backedge to this loop.
3577 void IdealLoopTree::merge_many_backedges( PhaseIdealLoop *phase ) {
3578   uint i;
3579 
3580   // Scan for the top 2 hottest backedges
3581   float hotcnt = 0.0f;
3582   float warmcnt = 0.0f;
3583   uint hot_idx = 0;
3584   // Loop starts at 2 because slot 1 is the fall-in path
3585   for( i = 2; i < _head->req(); i++ ) {
3586     float cnt = estimate_path_freq(_head->in(i));
3587     if( cnt > hotcnt ) {       // Grab hottest path
3588       warmcnt = hotcnt;
3589       hotcnt = cnt;
3590       hot_idx = i;
3591     } else if( cnt > warmcnt ) { // And 2nd hottest path
3592       warmcnt = cnt;
3593     }
3594   }
3595 
3596   // See if the hottest backedge is worthy of being an inner loop
3597   // by being much hotter than the next hottest backedge.
3598   if( hotcnt <= 0.0001 ||
3599       hotcnt < 2.0*warmcnt ) hot_idx = 0;// No hot backedge
3600 
3601   // Peel out the backedges into a private merge point; peel
3602   // them all except optionally hot_idx.
3603   PhaseIterGVN &igvn = phase->_igvn;
3604 
3605   Node *hot_tail = nullptr;
3606   // Make a Region for the merge point
3607   Node *r = new RegionNode(1);
3608   for( i = 2; i < _head->req(); i++ ) {
3609     if( i != hot_idx )
3610       r->add_req( _head->in(i) );
3611     else hot_tail = _head->in(i);
3612   }
3613   igvn.register_new_node_with_optimizer(r, _head);
3614   // Plug region into end of loop _head, followed by hot_tail
3615   while( _head->req() > 3 ) _head->del_req( _head->req()-1 );
3616   igvn.replace_input_of(_head, 2, r);
3617   if( hot_idx ) _head->add_req(hot_tail);
3618 
3619   // Split all the Phis up between '_head' loop and the Region 'r'
3620   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
3621     Node *out = _head->fast_out(j);
3622     if( out->is_Phi() ) {
3623       PhiNode* n = out->as_Phi();
3624       igvn.hash_delete(n);      // Delete from hash before hacking edges
3625       Node *hot_phi = nullptr;
3626       Node *phi = new PhiNode(r, n->type(), n->adr_type());
3627       // Check all inputs for the ones to peel out
3628       uint j = 1;
3629       for( uint i = 2; i < n->req(); i++ ) {
3630         if( i != hot_idx )
3631           phi->set_req( j++, n->in(i) );
3632         else hot_phi = n->in(i);
3633       }
3634       // Register the phi but do not transform until whole place transforms
3635       igvn.register_new_node_with_optimizer(phi, n);
3636       // Add the merge phi to the old Phi
3637       while( n->req() > 3 ) n->del_req( n->req()-1 );
3638       igvn.replace_input_of(n, 2, phi);
3639       if( hot_idx ) n->add_req(hot_phi);
3640     }
3641   }
3642 
3643 
3644   // Insert a new IdealLoopTree inserted below me.  Turn it into a clone
3645   // of self loop tree.  Turn self into a loop headed by _head and with
3646   // tail being the new merge point.
3647   IdealLoopTree *ilt = new IdealLoopTree( phase, _head, _tail );
3648   phase->set_loop(_tail,ilt);   // Adjust tail
3649   _tail = r;                    // Self's tail is new merge point
3650   phase->set_loop(r,this);
3651   ilt->_child = _child;         // New guy has my children
3652   _child = ilt;                 // Self has new guy as only child
3653   ilt->_parent = this;          // new guy has self for parent
3654   ilt->_nest = _nest;           // Same nesting depth (for now)
3655 
3656   // Starting with 'ilt', look for child loop trees using the same shared
3657   // header.  Flatten these out; they will no longer be loops in the end.
3658   IdealLoopTree **pilt = &_child;
3659   while( ilt ) {
3660     if( ilt->_head == _head ) {
3661       uint i;
3662       for( i = 2; i < _head->req(); i++ )
3663         if( _head->in(i) == ilt->_tail )
3664           break;                // Still a loop
3665       if( i == _head->req() ) { // No longer a loop
3666         // Flatten ilt.  Hang ilt's "_next" list from the end of
3667         // ilt's '_child' list.  Move the ilt's _child up to replace ilt.
3668         IdealLoopTree **cp = &ilt->_child;
3669         while( *cp ) cp = &(*cp)->_next;   // Find end of child list
3670         *cp = ilt->_next;       // Hang next list at end of child list
3671         *pilt = ilt->_child;    // Move child up to replace ilt
3672         ilt->_head = nullptr;   // Flag as a loop UNIONED into parent
3673         ilt = ilt->_child;      // Repeat using new ilt
3674         continue;               // do not advance over ilt->_child
3675       }
3676       assert( ilt->_tail == hot_tail, "expected to only find the hot inner loop here" );
3677       phase->set_loop(_head,ilt);
3678     }
3679     pilt = &ilt->_child;        // Advance to next
3680     ilt = *pilt;
3681   }
3682 
3683   if( _child ) fix_parent( _child, this );
3684 }
3685 
3686 //------------------------------beautify_loops---------------------------------
3687 // Split shared headers and insert loop landing pads.
3688 // Insert a LoopNode to replace the RegionNode.
3689 // Return TRUE if loop tree is structurally changed.
3690 bool IdealLoopTree::beautify_loops( PhaseIdealLoop *phase ) {
3691   bool result = false;
3692   // Cache parts in locals for easy
3693   PhaseIterGVN &igvn = phase->_igvn;
3694 
3695   igvn.hash_delete(_head);      // Yank from hash before hacking edges
3696 
3697   // Check for multiple fall-in paths.  Peel off a landing pad if need be.
3698   int fall_in_cnt = 0;
3699   for( uint i = 1; i < _head->req(); i++ )
3700     if( !phase->is_member( this, _head->in(i) ) )
3701       fall_in_cnt++;
3702   assert( fall_in_cnt, "at least 1 fall-in path" );
3703   if( fall_in_cnt > 1 )         // Need a loop landing pad to merge fall-ins
3704     split_fall_in( phase, fall_in_cnt );
3705 
3706   // Swap inputs to the _head and all Phis to move the fall-in edge to
3707   // the left.
3708   fall_in_cnt = 1;
3709   while( phase->is_member( this, _head->in(fall_in_cnt) ) )
3710     fall_in_cnt++;
3711   if( fall_in_cnt > 1 ) {
3712     // Since I am just swapping inputs I do not need to update def-use info
3713     Node *tmp = _head->in(1);
3714     igvn.rehash_node_delayed(_head);
3715     _head->set_req( 1, _head->in(fall_in_cnt) );
3716     _head->set_req( fall_in_cnt, tmp );
3717     // Swap also all Phis
3718     for (DUIterator_Fast imax, i = _head->fast_outs(imax); i < imax; i++) {
3719       Node* phi = _head->fast_out(i);
3720       if( phi->is_Phi() ) {
3721         igvn.rehash_node_delayed(phi); // Yank from hash before hacking edges
3722         tmp = phi->in(1);
3723         phi->set_req( 1, phi->in(fall_in_cnt) );
3724         phi->set_req( fall_in_cnt, tmp );
3725       }
3726     }
3727   }
3728   assert( !phase->is_member( this, _head->in(1) ), "left edge is fall-in" );
3729   assert(  phase->is_member( this, _head->in(2) ), "right edge is loop" );
3730 
3731   // If I am a shared header (multiple backedges), peel off the many
3732   // backedges into a private merge point and use the merge point as
3733   // the one true backedge.
3734   if (_head->req() > 3) {
3735     // Merge the many backedges into a single backedge but leave
3736     // the hottest backedge as separate edge for the following peel.
3737     if (!_irreducible) {
3738       merge_many_backedges( phase );
3739     }
3740 
3741     // When recursively beautify my children, split_fall_in can change
3742     // loop tree structure when I am an irreducible loop. Then the head
3743     // of my children has a req() not bigger than 3. Here we need to set
3744     // result to true to catch that case in order to tell the caller to
3745     // rebuild loop tree. See issue JDK-8244407 for details.
3746     result = true;
3747   }
3748 
3749   // If I have one hot backedge, peel off myself loop.
3750   // I better be the outermost loop.
3751   if (_head->req() > 3 && !_irreducible) {
3752     split_outer_loop( phase );
3753     result = true;
3754 
3755   } else if (!_head->is_Loop() && !_irreducible) {
3756     // Make a new LoopNode to replace the old loop head
3757     Node *l = new LoopNode( _head->in(1), _head->in(2) );
3758     l = igvn.register_new_node_with_optimizer(l, _head);
3759     phase->set_created_loop_node();
3760     // Go ahead and replace _head
3761     phase->_igvn.replace_node( _head, l );
3762     _head = l;
3763     phase->set_loop(_head, this);
3764   }
3765 
3766   // Now recursively beautify nested loops
3767   if( _child ) result |= _child->beautify_loops( phase );
3768   if( _next  ) result |= _next ->beautify_loops( phase );
3769   return result;
3770 }
3771 
3772 //------------------------------allpaths_check_safepts----------------------------
3773 // Allpaths backwards scan. Starting at the head, traversing all backedges, and the body. Terminating each path at first
3774 // safepoint encountered.  Helper for check_safepts.
3775 void IdealLoopTree::allpaths_check_safepts(VectorSet &visited, Node_List &stack) {
3776   assert(stack.size() == 0, "empty stack");
3777   stack.push(_head);
3778   visited.clear();
3779   visited.set(_head->_idx);
3780   while (stack.size() > 0) {
3781     Node* n = stack.pop();
3782     if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) {
3783       // Terminate this path
3784     } else if (n->Opcode() == Op_SafePoint) {
3785       if (_phase->get_loop(n) != this) {
3786         if (_required_safept == nullptr) _required_safept = new Node_List();
3787         // save the first we run into on that path: closest to the tail if the head has a single backedge
3788         _required_safept->push(n);
3789       }
3790       // Terminate this path
3791     } else {
3792       uint start = n->is_Region() ? 1 : 0;
3793       uint end   = n->is_Region() && (!n->is_Loop() || n == _head) ? n->req() : start + 1;
3794       for (uint i = start; i < end; i++) {
3795         Node* in = n->in(i);
3796         assert(in->is_CFG(), "must be");
3797         if (!visited.test_set(in->_idx) && is_member(_phase->get_loop(in))) {
3798           stack.push(in);
3799         }
3800       }
3801     }
3802   }
3803 }
3804 
3805 //------------------------------check_safepts----------------------------
3806 // Given dominators, try to find loops with calls that must always be
3807 // executed (call dominates loop tail).  These loops do not need non-call
3808 // safepoints (ncsfpt).
3809 //
3810 // A complication is that a safepoint in a inner loop may be needed
3811 // by an outer loop. In the following, the inner loop sees it has a
3812 // call (block 3) on every path from the head (block 2) to the
3813 // backedge (arc 3->2).  So it deletes the ncsfpt (non-call safepoint)
3814 // in block 2, _but_ this leaves the outer loop without a safepoint.
3815 //
3816 //          entry  0
3817 //                 |
3818 //                 v
3819 // outer 1,2    +->1
3820 //              |  |
3821 //              |  v
3822 //              |  2<---+  ncsfpt in 2
3823 //              |_/|\   |
3824 //                 | v  |
3825 // inner 2,3      /  3  |  call in 3
3826 //               /   |  |
3827 //              v    +--+
3828 //        exit  4
3829 //
3830 //
3831 // This method creates a list (_required_safept) of ncsfpt nodes that must
3832 // be protected is created for each loop. When a ncsfpt maybe deleted, it
3833 // is first looked for in the lists for the outer loops of the current loop.
3834 //
3835 // The insights into the problem:
3836 //  A) counted loops are okay
3837 //  B) innermost loops are okay (only an inner loop can delete
3838 //     a ncsfpt needed by an outer loop)
3839 //  C) a loop is immune from an inner loop deleting a safepoint
3840 //     if the loop has a call on the idom-path
3841 //  D) a loop is also immune if it has a ncsfpt (non-call safepoint) on the
3842 //     idom-path that is not in a nested loop
3843 //  E) otherwise, an ncsfpt on the idom-path that is nested in an inner
3844 //     loop needs to be prevented from deletion by an inner loop
3845 //
3846 // There are two analyses:
3847 //  1) The first, and cheaper one, scans the loop body from
3848 //     tail to head following the idom (immediate dominator)
3849 //     chain, looking for the cases (C,D,E) above.
3850 //     Since inner loops are scanned before outer loops, there is summary
3851 //     information about inner loops.  Inner loops can be skipped over
3852 //     when the tail of an inner loop is encountered.
3853 //
3854 //  2) The second, invoked if the first fails to find a call or ncsfpt on
3855 //     the idom path (which is rare), scans all predecessor control paths
3856 //     from the tail to the head, terminating a path when a call or sfpt
3857 //     is encountered, to find the ncsfpt's that are closest to the tail.
3858 //
3859 void IdealLoopTree::check_safepts(VectorSet &visited, Node_List &stack) {
3860   // Bottom up traversal
3861   IdealLoopTree* ch = _child;
3862   if (_child) _child->check_safepts(visited, stack);
3863   if (_next)  _next ->check_safepts(visited, stack);
3864 
3865   if (!_head->is_CountedLoop() && !_has_sfpt && _parent != nullptr) {
3866     bool  has_call         = false;    // call on dom-path
3867     bool  has_local_ncsfpt = false;    // ncsfpt on dom-path at this loop depth
3868     Node* nonlocal_ncsfpt  = nullptr;  // ncsfpt on dom-path at a deeper depth
3869     if (!_irreducible) {
3870       // Scan the dom-path nodes from tail to head
3871       for (Node* n = tail(); n != _head; n = _phase->idom(n)) {
3872         if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) {
3873           has_call = true;
3874           _has_sfpt = 1;          // Then no need for a safept!
3875           break;
3876         } else if (n->Opcode() == Op_SafePoint) {
3877           if (_phase->get_loop(n) == this) {
3878             has_local_ncsfpt = true;
3879             break;
3880           }
3881           if (nonlocal_ncsfpt == nullptr) {
3882             nonlocal_ncsfpt = n; // save the one closest to the tail
3883           }
3884         } else {
3885           IdealLoopTree* nlpt = _phase->get_loop(n);
3886           if (this != nlpt) {
3887             // If at an inner loop tail, see if the inner loop has already
3888             // recorded seeing a call on the dom-path (and stop.)  If not,
3889             // jump to the head of the inner loop.
3890             assert(is_member(nlpt), "nested loop");
3891             Node* tail = nlpt->_tail;
3892             if (tail->in(0)->is_If()) tail = tail->in(0);
3893             if (n == tail) {
3894               // If inner loop has call on dom-path, so does outer loop
3895               if (nlpt->_has_sfpt) {
3896                 has_call = true;
3897                 _has_sfpt = 1;
3898                 break;
3899               }
3900               // Skip to head of inner loop
3901               assert(_phase->is_dominator(_head, nlpt->_head), "inner head dominated by outer head");
3902               n = nlpt->_head;
3903               if (_head == n) {
3904                 // this and nlpt (inner loop) have the same loop head. This should not happen because
3905                 // during beautify_loops we call merge_many_backedges. However, infinite loops may not
3906                 // have been attached to the loop-tree during build_loop_tree before beautify_loops,
3907                 // but then attached in the build_loop_tree afterwards, and so still have unmerged
3908                 // backedges. Check if we are indeed in an infinite subgraph, and terminate the scan,
3909                 // since we have reached the loop head of this.
3910                 assert(_head->as_Region()->is_in_infinite_subgraph(),
3911                        "only expect unmerged backedges in infinite loops");
3912                 break;
3913               }
3914             }
3915           }
3916         }
3917       }
3918     }
3919     // Record safept's that this loop needs preserved when an
3920     // inner loop attempts to delete it's safepoints.
3921     if (_child != nullptr && !has_call && !has_local_ncsfpt) {
3922       if (nonlocal_ncsfpt != nullptr) {
3923         if (_required_safept == nullptr) _required_safept = new Node_List();
3924         _required_safept->push(nonlocal_ncsfpt);
3925       } else {
3926         // Failed to find a suitable safept on the dom-path.  Now use
3927         // an all paths walk from tail to head, looking for safepoints to preserve.
3928         allpaths_check_safepts(visited, stack);
3929       }
3930     }
3931   }
3932 }
3933 
3934 //---------------------------is_deleteable_safept----------------------------
3935 // Is safept not required by an outer loop?
3936 bool PhaseIdealLoop::is_deleteable_safept(Node* sfpt) {
3937   assert(sfpt->Opcode() == Op_SafePoint, "");
3938   IdealLoopTree* lp = get_loop(sfpt)->_parent;
3939   while (lp != nullptr) {
3940     Node_List* sfpts = lp->_required_safept;
3941     if (sfpts != nullptr) {
3942       for (uint i = 0; i < sfpts->size(); i++) {
3943         if (sfpt == sfpts->at(i))
3944           return false;
3945       }
3946     }
3947     lp = lp->_parent;
3948   }
3949   return true;
3950 }
3951 
3952 //---------------------------replace_parallel_iv-------------------------------
3953 // Replace parallel induction variable (parallel to trip counter)
3954 // This optimization looks for patterns similar to:
3955 //
3956 //    int a = init2;
3957 //    for (int iv = init; iv < limit; iv += stride_con) {
3958 //      a += stride_con2;
3959 //    }
3960 //
3961 // and transforms it to:
3962 //
3963 //    int iv2 = init2
3964 //    int iv = init
3965 //    loop:
3966 //      if (iv >= limit) goto exit
3967 //      iv += stride_con
3968 //      iv2 = init2 + (iv - init) * (stride_con2 / stride_con)
3969 //      goto loop
3970 //    exit:
3971 //    ...
3972 //
3973 // Such transformation introduces more optimization opportunities. In this
3974 // particular example, the loop can be eliminated entirely given that
3975 // `stride_con2 / stride_con` is exact  (i.e., no remainder). Checks are in
3976 // place to only perform this optimization if such a division is exact. This
3977 // example will be transformed into its semantic equivalence:
3978 //
3979 //     int iv2 = (iv * stride_con2 / stride_con) + (init2 - (init * stride_con2 / stride_con))
3980 //
3981 // which corresponds to the structure of transformed subgraph.
3982 //
3983 // However, if there is a mismatch between types of the loop and the parallel
3984 // induction variable (e.g., a long-typed IV in an int-typed loop), type
3985 // conversions are required:
3986 //
3987 //     long iv2 = ((long) iv * stride_con2 / stride_con) + (init2 - ((long) init * stride_con2 / stride_con))
3988 //
3989 void PhaseIdealLoop::replace_parallel_iv(IdealLoopTree *loop) {
3990   assert(loop->_head->is_CountedLoop(), "");
3991   CountedLoopNode *cl = loop->_head->as_CountedLoop();
3992   if (!cl->is_valid_counted_loop(T_INT)) {
3993     return;         // skip malformed counted loop
3994   }
3995   Node *incr = cl->incr();
3996   if (incr == nullptr) {
3997     return;         // Dead loop?
3998   }
3999   Node *init = cl->init_trip();
4000   Node *phi  = cl->phi();
4001   jlong stride_con = cl->stride_con();
4002 
4003   // Visit all children, looking for Phis
4004   for (DUIterator i = cl->outs(); cl->has_out(i); i++) {
4005     Node *out = cl->out(i);
4006     // Look for other phis (secondary IVs). Skip dead ones
4007     if (!out->is_Phi() || out == phi || !has_node(out)) {
4008       continue;
4009     }
4010 
4011     PhiNode* phi2 = out->as_Phi();
4012     Node* incr2 = phi2->in(LoopNode::LoopBackControl);
4013     // Look for induction variables of the form:  X += constant
4014     if (phi2->region() != loop->_head ||
4015         incr2->req() != 3 ||
4016         incr2->in(1)->uncast() != phi2 ||
4017         incr2 == incr ||
4018         (incr2->Opcode() != Op_AddI && incr2->Opcode() != Op_AddL) ||
4019         !incr2->in(2)->is_Con()) {
4020       continue;
4021     }
4022 
4023     if (incr2->in(1)->is_ConstraintCast() &&
4024         !(incr2->in(1)->in(0)->is_IfProj() && incr2->in(1)->in(0)->in(0)->is_RangeCheck())) {
4025       // Skip AddI->CastII->Phi case if CastII is not controlled by local RangeCheck
4026       continue;
4027     }
4028     // Check for parallel induction variable (parallel to trip counter)
4029     // via an affine function.  In particular, count-down loops with
4030     // count-up array indices are common. We only RCE references off
4031     // the trip-counter, so we need to convert all these to trip-counter
4032     // expressions.
4033     Node* init2 = phi2->in(LoopNode::EntryControl);
4034 
4035     // Determine the basic type of the stride constant (and the iv being incremented).
4036     BasicType stride_con2_bt = incr2->Opcode() == Op_AddI ? T_INT : T_LONG;
4037     jlong stride_con2 = incr2->in(2)->get_integer_as_long(stride_con2_bt);
4038 
4039     // The ratio of the two strides cannot be represented as an int
4040     // if stride_con2 is min_jint (or min_jlong, respectively) and
4041     // stride_con is -1.
4042     if (stride_con2 == min_signed_integer(stride_con2_bt) && stride_con == -1) {
4043       continue;
4044     }
4045 
4046     // The general case here gets a little tricky.  We want to find the
4047     // GCD of all possible parallel IV's and make a new IV using this
4048     // GCD for the loop.  Then all possible IVs are simple multiples of
4049     // the GCD.  In practice, this will cover very few extra loops.
4050     // Instead we require 'stride_con2' to be a multiple of 'stride_con',
4051     // where +/-1 is the common case, but other integer multiples are
4052     // also easy to handle.
4053     jlong ratio_con = stride_con2 / stride_con;
4054 
4055     if ((ratio_con * stride_con) != stride_con2) { // Check for exact (no remainder)
4056         continue;
4057     }
4058 
4059 #ifndef PRODUCT
4060     if (TraceLoopOpts) {
4061       tty->print("Parallel IV: %d ", phi2->_idx);
4062       loop->dump_head();
4063     }
4064 #endif
4065 
4066     // Convert to using the trip counter.  The parallel induction
4067     // variable differs from the trip counter by a loop-invariant
4068     // amount, the difference between their respective initial values.
4069     // It is scaled by the 'ratio_con'.
4070     Node* ratio = _igvn.integercon(ratio_con, stride_con2_bt);
4071     set_ctrl(ratio, C->root());
4072 
4073     Node* init_converted = insert_convert_node_if_needed(stride_con2_bt, init);
4074     Node* phi_converted = insert_convert_node_if_needed(stride_con2_bt, phi);
4075 
4076     Node* ratio_init = MulNode::make(init_converted, ratio, stride_con2_bt);
4077     _igvn.register_new_node_with_optimizer(ratio_init, init_converted);
4078     set_early_ctrl(ratio_init, false);
4079 
4080     Node* diff = SubNode::make(init2, ratio_init, stride_con2_bt);
4081     _igvn.register_new_node_with_optimizer(diff, init2);
4082     set_early_ctrl(diff, false);
4083 
4084     Node* ratio_idx = MulNode::make(phi_converted, ratio, stride_con2_bt);
4085     _igvn.register_new_node_with_optimizer(ratio_idx, phi_converted);
4086     set_ctrl(ratio_idx, cl);
4087 
4088     Node* add = AddNode::make(ratio_idx, diff, stride_con2_bt);
4089     _igvn.register_new_node_with_optimizer(add);
4090     set_ctrl(add, cl);
4091 
4092     _igvn.replace_node( phi2, add );
4093     // Sometimes an induction variable is unused
4094     if (add->outcnt() == 0) {
4095       _igvn.remove_dead_node(add);
4096     }
4097     --i; // deleted this phi; rescan starting with next position
4098   }
4099 }
4100 
4101 Node* PhaseIdealLoop::insert_convert_node_if_needed(BasicType target, Node* input) {
4102   BasicType source = _igvn.type(input)->basic_type();
4103   if (source == target) {
4104     return input;
4105   }
4106 
4107   Node* converted = ConvertNode::create_convert(source, target, input);
4108   _igvn.register_new_node_with_optimizer(converted, input);
4109   set_early_ctrl(converted, false);
4110 
4111   return converted;
4112 }
4113 
4114 void IdealLoopTree::remove_safepoints(PhaseIdealLoop* phase, bool keep_one) {
4115   Node* keep = nullptr;
4116   if (keep_one) {
4117     // Look for a safepoint on the idom-path.
4118     for (Node* i = tail(); i != _head; i = phase->idom(i)) {
4119       if (i->Opcode() == Op_SafePoint && phase->get_loop(i) == this) {
4120         keep = i;
4121         break; // Found one
4122       }
4123     }
4124   }
4125 
4126   // Don't remove any safepoints if it is requested to keep a single safepoint and
4127   // no safepoint was found on idom-path. It is not safe to remove any safepoint
4128   // in this case since there's no safepoint dominating all paths in the loop body.
4129   bool prune = !keep_one || keep != nullptr;
4130 
4131   // Delete other safepoints in this loop.
4132   Node_List* sfpts = _safepts;
4133   if (prune && sfpts != nullptr) {
4134     assert(keep == nullptr || keep->Opcode() == Op_SafePoint, "not safepoint");
4135     for (uint i = 0; i < sfpts->size(); i++) {
4136       Node* n = sfpts->at(i);
4137       assert(phase->get_loop(n) == this, "");
4138       if (n != keep && phase->is_deleteable_safept(n)) {
4139         phase->lazy_replace(n, n->in(TypeFunc::Control));
4140       }
4141     }
4142   }
4143 }
4144 
4145 //------------------------------counted_loop-----------------------------------
4146 // Convert to counted loops where possible
4147 void IdealLoopTree::counted_loop( PhaseIdealLoop *phase ) {
4148 
4149   // For grins, set the inner-loop flag here
4150   if (!_child) {
4151     if (_head->is_Loop()) _head->as_Loop()->set_inner_loop();
4152   }
4153 
4154   IdealLoopTree* loop = this;
4155   if (_head->is_CountedLoop() ||
4156       phase->is_counted_loop(_head, loop, T_INT)) {
4157 
4158     if (LoopStripMiningIter == 0 || _head->as_CountedLoop()->is_strip_mined()) {
4159       // Indicate we do not need a safepoint here
4160       _has_sfpt = 1;
4161     }
4162 
4163     // Remove safepoints
4164     bool keep_one_sfpt = !(_has_call || _has_sfpt);
4165     remove_safepoints(phase, keep_one_sfpt);
4166 
4167     // Look for induction variables
4168     phase->replace_parallel_iv(this);
4169   } else if (_head->is_LongCountedLoop() ||
4170              phase->is_counted_loop(_head, loop, T_LONG)) {
4171     remove_safepoints(phase, true);
4172   } else {
4173     assert(!_head->is_Loop() || !_head->as_Loop()->is_loop_nest_inner_loop(), "transformation to counted loop should not fail");
4174     if (_parent != nullptr && !_irreducible) {
4175       // Not a counted loop. Keep one safepoint.
4176       bool keep_one_sfpt = true;
4177       remove_safepoints(phase, keep_one_sfpt);
4178     }
4179   }
4180 
4181   // Recursively
4182   assert(loop->_child != this || (loop->_head->as_Loop()->is_OuterStripMinedLoop() && _head->as_CountedLoop()->is_strip_mined()), "what kind of loop was added?");
4183   assert(loop->_child != this || (loop->_child->_child == nullptr && loop->_child->_next == nullptr), "would miss some loops");
4184   if (loop->_child && loop->_child != this) loop->_child->counted_loop(phase);
4185   if (loop->_next)  loop->_next ->counted_loop(phase);
4186 }
4187 
4188 
4189 // The Estimated Loop Clone Size:
4190 //   CloneFactor * (~112% * BodySize + BC) + CC + FanOutTerm,
4191 // where  BC and  CC are  totally ad-hoc/magic  "body" and "clone" constants,
4192 // respectively, used to ensure that the node usage estimates made are on the
4193 // safe side, for the most part. The FanOutTerm is an attempt to estimate the
4194 // possible additional/excessive nodes generated due to data and control flow
4195 // merging, for edges reaching outside the loop.
4196 uint IdealLoopTree::est_loop_clone_sz(uint factor) const {
4197 
4198   precond(0 < factor && factor < 16);
4199 
4200   uint const bc = 13;
4201   uint const cc = 17;
4202   uint const sz = _body.size() + (_body.size() + 7) / 2;
4203   uint estimate = factor * (sz + bc) + cc;
4204 
4205   assert((estimate - cc) / factor == sz + bc, "overflow");
4206 
4207   return estimate + est_loop_flow_merge_sz();
4208 }
4209 
4210 // The Estimated Loop (full-) Unroll Size:
4211 //   UnrollFactor * (~106% * BodySize) + CC + FanOutTerm,
4212 // where CC is a (totally) ad-hoc/magic "clone" constant, used to ensure that
4213 // node usage estimates made are on the safe side, for the most part. This is
4214 // a "light" version of the loop clone size calculation (above), based on the
4215 // assumption that most of the loop-construct overhead will be unraveled when
4216 // (fully) unrolled. Defined for unroll factors larger or equal to one (>=1),
4217 // including an overflow check and returning UINT_MAX in case of an overflow.
4218 uint IdealLoopTree::est_loop_unroll_sz(uint factor) const {
4219 
4220   precond(factor > 0);
4221 
4222   // Take into account that after unroll conjoined heads and tails will fold.
4223   uint const b0 = _body.size() - EMPTY_LOOP_SIZE;
4224   uint const cc = 7;
4225   uint const sz = b0 + (b0 + 15) / 16;
4226   uint estimate = factor * sz + cc;
4227 
4228   if ((estimate - cc) / factor != sz) {
4229     return UINT_MAX;
4230   }
4231 
4232   return estimate + est_loop_flow_merge_sz();
4233 }
4234 
4235 // Estimate the growth effect (in nodes) of merging control and data flow when
4236 // cloning a loop body, based on the amount of  control and data flow reaching
4237 // outside of the (current) loop body.
4238 uint IdealLoopTree::est_loop_flow_merge_sz() const {
4239 
4240   uint ctrl_edge_out_cnt = 0;
4241   uint data_edge_out_cnt = 0;
4242 
4243   for (uint i = 0; i < _body.size(); i++) {
4244     Node* node = _body.at(i);
4245     uint outcnt = node->outcnt();
4246 
4247     for (uint k = 0; k < outcnt; k++) {
4248       Node* out = node->raw_out(k);
4249       if (out == nullptr) continue;
4250       if (out->is_CFG()) {
4251         if (!is_member(_phase->get_loop(out))) {
4252           ctrl_edge_out_cnt++;
4253         }
4254       } else if (_phase->has_ctrl(out)) {
4255         Node* ctrl = _phase->get_ctrl(out);
4256         assert(ctrl != nullptr, "must be");
4257         assert(ctrl->is_CFG(), "must be");
4258         if (!is_member(_phase->get_loop(ctrl))) {
4259           data_edge_out_cnt++;
4260         }
4261       }
4262     }
4263   }
4264   // Use data and control count (x2.0) in estimate iff both are > 0. This is
4265   // a rather pessimistic estimate for the most part, in particular for some
4266   // complex loops, but still not enough to capture all loops.
4267   if (ctrl_edge_out_cnt > 0 && data_edge_out_cnt > 0) {
4268     return 2 * (ctrl_edge_out_cnt + data_edge_out_cnt);
4269   }
4270   return 0;
4271 }
4272 
4273 #ifndef PRODUCT
4274 //------------------------------dump_head--------------------------------------
4275 // Dump 1 liner for loop header info
4276 void IdealLoopTree::dump_head() {
4277   tty->sp(2 * _nest);
4278   tty->print("Loop: N%d/N%d ", _head->_idx, _tail->_idx);
4279   if (_irreducible) tty->print(" IRREDUCIBLE");
4280   Node* entry = _head->is_Loop() ? _head->as_Loop()->skip_strip_mined(-1)->in(LoopNode::EntryControl)
4281                                  : _head->in(LoopNode::EntryControl);
4282   const Predicates predicates(entry);
4283   if (predicates.loop_limit_check_predicate_block()->is_non_empty()) {
4284     tty->print(" limit_check");
4285   }
4286   if (UseProfiledLoopPredicate && predicates.profiled_loop_predicate_block()->is_non_empty()) {
4287     tty->print(" profile_predicated");
4288   }
4289   if (UseLoopPredicate && predicates.loop_predicate_block()->is_non_empty()) {
4290     tty->print(" predicated");
4291   }
4292   if (_head->is_CountedLoop()) {
4293     CountedLoopNode *cl = _head->as_CountedLoop();
4294     tty->print(" counted");
4295 
4296     Node* init_n = cl->init_trip();
4297     if (init_n  != nullptr &&  init_n->is_Con())
4298       tty->print(" [%d,", cl->init_trip()->get_int());
4299     else
4300       tty->print(" [int,");
4301     Node* limit_n = cl->limit();
4302     if (limit_n  != nullptr &&  limit_n->is_Con())
4303       tty->print("%d),", cl->limit()->get_int());
4304     else
4305       tty->print("int),");
4306     int stride_con  = cl->stride_con();
4307     if (stride_con > 0) tty->print("+");
4308     tty->print("%d", stride_con);
4309 
4310     tty->print(" (%0.f iters) ", cl->profile_trip_cnt());
4311 
4312     if (cl->is_pre_loop ()) tty->print(" pre" );
4313     if (cl->is_main_loop()) tty->print(" main");
4314     if (cl->is_post_loop()) tty->print(" post");
4315     if (cl->is_vectorized_loop()) tty->print(" vector");
4316     if (range_checks_present()) tty->print(" rc ");
4317   }
4318   if (_has_call) tty->print(" has_call");
4319   if (_has_sfpt) tty->print(" has_sfpt");
4320   if (_rce_candidate) tty->print(" rce");
4321   if (_safepts != nullptr && _safepts->size() > 0) {
4322     tty->print(" sfpts={"); _safepts->dump_simple(); tty->print(" }");
4323   }
4324   if (_required_safept != nullptr && _required_safept->size() > 0) {
4325     tty->print(" req={"); _required_safept->dump_simple(); tty->print(" }");
4326   }
4327   if (Verbose) {
4328     tty->print(" body={"); _body.dump_simple(); tty->print(" }");
4329   }
4330   if (_head->is_Loop() && _head->as_Loop()->is_strip_mined()) {
4331     tty->print(" strip_mined");
4332   }
4333   tty->cr();
4334 }
4335 
4336 //------------------------------dump-------------------------------------------
4337 // Dump loops by loop tree
4338 void IdealLoopTree::dump() {
4339   dump_head();
4340   if (_child) _child->dump();
4341   if (_next)  _next ->dump();
4342 }
4343 
4344 #endif
4345 
4346 static void log_loop_tree_helper(IdealLoopTree* root, IdealLoopTree* loop, CompileLog* log) {
4347   if (loop == root) {
4348     if (loop->_child != nullptr) {
4349       log->begin_head("loop_tree");
4350       log->end_head();
4351       log_loop_tree_helper(root, loop->_child, log);
4352       log->tail("loop_tree");
4353       assert(loop->_next == nullptr, "what?");
4354     }
4355   } else if (loop != nullptr) {
4356     Node* head = loop->_head;
4357     log->begin_head("loop");
4358     log->print(" idx='%d' ", head->_idx);
4359     if (loop->_irreducible) log->print("irreducible='1' ");
4360     if (head->is_Loop()) {
4361       if (head->as_Loop()->is_inner_loop())        log->print("inner_loop='1' ");
4362       if (head->as_Loop()->is_partial_peel_loop()) log->print("partial_peel_loop='1' ");
4363     } else if (head->is_CountedLoop()) {
4364       CountedLoopNode* cl = head->as_CountedLoop();
4365       if (cl->is_pre_loop())  log->print("pre_loop='%d' ",  cl->main_idx());
4366       if (cl->is_main_loop()) log->print("main_loop='%d' ", cl->_idx);
4367       if (cl->is_post_loop()) log->print("post_loop='%d' ", cl->main_idx());
4368     }
4369     log->end_head();
4370     log_loop_tree_helper(root, loop->_child, log);
4371     log->tail("loop");
4372     log_loop_tree_helper(root, loop->_next, log);
4373   }
4374 }
4375 
4376 void PhaseIdealLoop::log_loop_tree() {
4377   if (C->log() != nullptr) {
4378     log_loop_tree_helper(_ltree_root, _ltree_root, C->log());
4379   }
4380 }
4381 
4382 // Eliminate all Parse and Template Assertion Predicates that are not associated with a loop anymore. The eliminated
4383 // predicates will be removed during the next round of IGVN.
4384 void PhaseIdealLoop::eliminate_useless_predicates() {
4385   if (C->parse_predicate_count() == 0 && C->template_assertion_predicate_count() == 0) {
4386     return; // No predicates left.
4387   }
4388 
4389   eliminate_useless_parse_predicates();
4390   eliminate_useless_template_assertion_predicates();
4391 }
4392 
4393 // Eliminate all Parse Predicates that do not belong to a loop anymore by marking them useless. These will be removed
4394 // during the next round of IGVN.
4395 void PhaseIdealLoop::eliminate_useless_parse_predicates() {
4396   mark_all_parse_predicates_useless();
4397   if (C->has_loops()) {
4398     mark_loop_associated_parse_predicates_useful();
4399   }
4400   add_useless_parse_predicates_to_igvn_worklist();
4401 }
4402 
4403 void PhaseIdealLoop::mark_all_parse_predicates_useless() const {
4404   for (int i = 0; i < C->parse_predicate_count(); i++) {
4405     C->parse_predicate(i)->mark_useless();
4406   }
4407 }
4408 
4409 void PhaseIdealLoop::mark_loop_associated_parse_predicates_useful() {
4410   for (LoopTreeIterator iterator(_ltree_root); !iterator.done(); iterator.next()) {
4411     IdealLoopTree* loop = iterator.current();
4412     if (loop->can_apply_loop_predication()) {
4413       mark_useful_parse_predicates_for_loop(loop);
4414     }
4415   }
4416 }
4417 
4418 // This visitor marks all visited Parse Predicates useful.
4419 class ParsePredicateUsefulMarker : public PredicateVisitor {
4420  public:
4421   using PredicateVisitor::visit;
4422 
4423   void visit(const ParsePredicate& parse_predicate) override {
4424     parse_predicate.head()->mark_useful();
4425   }
4426 };
4427 
4428 void PhaseIdealLoop::mark_useful_parse_predicates_for_loop(IdealLoopTree* loop) {
4429   Node* entry = loop->_head->as_Loop()->skip_strip_mined()->in(LoopNode::EntryControl);
4430   const PredicateIterator predicate_iterator(entry);
4431   ParsePredicateUsefulMarker useful_marker;
4432   predicate_iterator.for_each(useful_marker);
4433 }
4434 
4435 void PhaseIdealLoop::add_useless_parse_predicates_to_igvn_worklist() {
4436   for (int i = 0; i < C->parse_predicate_count(); i++) {
4437     ParsePredicateNode* parse_predicate_node = C->parse_predicate(i);
4438     if (parse_predicate_node->is_useless()) {
4439       _igvn._worklist.push(parse_predicate_node);
4440     }
4441   }
4442 }
4443 
4444 
4445 // Eliminate all Template Assertion Predicates that do not belong to their originally associated loop anymore by
4446 // replacing the OpaqueTemplateAssertionPredicate node of the If node with true. These nodes will be removed during the
4447 // next round of IGVN.
4448 void PhaseIdealLoop::eliminate_useless_template_assertion_predicates() {
4449   Unique_Node_List useful_predicates;
4450   if (C->has_loops()) {
4451     collect_useful_template_assertion_predicates(useful_predicates);
4452   }
4453   eliminate_useless_template_assertion_predicates(useful_predicates);
4454 }
4455 
4456 void PhaseIdealLoop::collect_useful_template_assertion_predicates(Unique_Node_List& useful_predicates) {
4457   for (LoopTreeIterator iterator(_ltree_root); !iterator.done(); iterator.next()) {
4458     IdealLoopTree* loop = iterator.current();
4459     if (loop->can_apply_loop_predication()) {
4460       collect_useful_template_assertion_predicates_for_loop(loop, useful_predicates);
4461     }
4462   }
4463 }
4464 
4465 void PhaseIdealLoop::collect_useful_template_assertion_predicates_for_loop(IdealLoopTree* loop,
4466                                                                            Unique_Node_List &useful_predicates) {
4467   Node* entry = loop->_head->as_Loop()->skip_strip_mined()->in(LoopNode::EntryControl);
4468   const Predicates predicates(entry);
4469   if (UseProfiledLoopPredicate) {
4470     const PredicateBlock* profiled_loop_predicate_block = predicates.profiled_loop_predicate_block();
4471     if (profiled_loop_predicate_block->has_parse_predicate()) {
4472       ParsePredicateSuccessProj* parse_predicate_proj = profiled_loop_predicate_block->parse_predicate_success_proj();
4473       get_template_assertion_predicates(parse_predicate_proj, useful_predicates, true);
4474     }
4475   }
4476 
4477   if (UseLoopPredicate) {
4478     const PredicateBlock* loop_predicate_block = predicates.loop_predicate_block();
4479     if (loop_predicate_block->has_parse_predicate()) {
4480       ParsePredicateSuccessProj* parse_predicate_proj = loop_predicate_block->parse_predicate_success_proj();
4481       get_template_assertion_predicates(parse_predicate_proj, useful_predicates, true);
4482     }
4483   }
4484 }
4485 
4486 void PhaseIdealLoop::eliminate_useless_template_assertion_predicates(Unique_Node_List& useful_predicates) {
4487   for (int i = C->template_assertion_predicate_count(); i > 0; i--) {
4488     OpaqueTemplateAssertionPredicateNode* opaque_node =
4489         C->template_assertion_predicate_opaq_node(i - 1)->as_OpaqueTemplateAssertionPredicate();
4490     if (!useful_predicates.member(opaque_node)) { // not in the useful list
4491       ConINode* one = _igvn.intcon(1);
4492       set_ctrl(one, C->root());
4493       _igvn.replace_node(opaque_node, one);
4494     }
4495   }
4496 }
4497 
4498 // If a post or main loop is removed due to an assert predicate, the opaque that guards the loop is not needed anymore
4499 void PhaseIdealLoop::eliminate_useless_zero_trip_guard() {
4500   if (_zero_trip_guard_opaque_nodes.size() == 0) {
4501     return;
4502   }
4503   Unique_Node_List useful_zero_trip_guard_opaques_nodes;
4504   for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
4505     IdealLoopTree* lpt = iter.current();
4506     if (lpt->_child == nullptr && lpt->is_counted()) {
4507       CountedLoopNode* head = lpt->_head->as_CountedLoop();
4508       Node* opaque = head->is_canonical_loop_entry();
4509       if (opaque != nullptr) {
4510         useful_zero_trip_guard_opaques_nodes.push(opaque);
4511       }
4512     }
4513   }
4514   for (uint i = 0; i < _zero_trip_guard_opaque_nodes.size(); ++i) {
4515     OpaqueZeroTripGuardNode* opaque = ((OpaqueZeroTripGuardNode*)_zero_trip_guard_opaque_nodes.at(i));
4516     DEBUG_ONLY(CountedLoopNode* guarded_loop = opaque->guarded_loop());
4517     if (!useful_zero_trip_guard_opaques_nodes.member(opaque)) {
4518       IfNode* iff = opaque->if_node();
4519       IdealLoopTree* loop = get_loop(iff);
4520       while (loop != _ltree_root && loop != nullptr) {
4521         loop = loop->_parent;
4522       }
4523       if (loop == nullptr) {
4524         // unreachable from _ltree_root: zero trip guard is in a newly discovered infinite loop.
4525         // We can't tell if the opaque node is useful or not
4526         assert(guarded_loop == nullptr || guarded_loop->is_in_infinite_subgraph(), "");
4527       } else {
4528         assert(guarded_loop == nullptr, "");
4529         this->_igvn.replace_node(opaque, opaque->in(1));
4530       }
4531     } else {
4532       assert(guarded_loop != nullptr, "");
4533     }
4534   }
4535 }
4536 
4537 //------------------------process_expensive_nodes-----------------------------
4538 // Expensive nodes have their control input set to prevent the GVN
4539 // from commoning them and as a result forcing the resulting node to
4540 // be in a more frequent path. Use CFG information here, to change the
4541 // control inputs so that some expensive nodes can be commoned while
4542 // not executed more frequently.
4543 bool PhaseIdealLoop::process_expensive_nodes() {
4544   assert(OptimizeExpensiveOps, "optimization off?");
4545 
4546   // Sort nodes to bring similar nodes together
4547   C->sort_expensive_nodes();
4548 
4549   bool progress = false;
4550 
4551   for (int i = 0; i < C->expensive_count(); ) {
4552     Node* n = C->expensive_node(i);
4553     int start = i;
4554     // Find nodes similar to n
4555     i++;
4556     for (; i < C->expensive_count() && Compile::cmp_expensive_nodes(n, C->expensive_node(i)) == 0; i++);
4557     int end = i;
4558     // And compare them two by two
4559     for (int j = start; j < end; j++) {
4560       Node* n1 = C->expensive_node(j);
4561       if (is_node_unreachable(n1)) {
4562         continue;
4563       }
4564       for (int k = j+1; k < end; k++) {
4565         Node* n2 = C->expensive_node(k);
4566         if (is_node_unreachable(n2)) {
4567           continue;
4568         }
4569 
4570         assert(n1 != n2, "should be pair of nodes");
4571 
4572         Node* c1 = n1->in(0);
4573         Node* c2 = n2->in(0);
4574 
4575         Node* parent_c1 = c1;
4576         Node* parent_c2 = c2;
4577 
4578         // The call to get_early_ctrl_for_expensive() moves the
4579         // expensive nodes up but stops at loops that are in a if
4580         // branch. See whether we can exit the loop and move above the
4581         // If.
4582         if (c1->is_Loop()) {
4583           parent_c1 = c1->in(1);
4584         }
4585         if (c2->is_Loop()) {
4586           parent_c2 = c2->in(1);
4587         }
4588 
4589         if (parent_c1 == parent_c2) {
4590           _igvn._worklist.push(n1);
4591           _igvn._worklist.push(n2);
4592           continue;
4593         }
4594 
4595         // Look for identical expensive node up the dominator chain.
4596         if (is_dominator(c1, c2)) {
4597           c2 = c1;
4598         } else if (is_dominator(c2, c1)) {
4599           c1 = c2;
4600         } else if (parent_c1->is_Proj() && parent_c1->in(0)->is_If() &&
4601                    parent_c2->is_Proj() && parent_c1->in(0) == parent_c2->in(0)) {
4602           // Both branches have the same expensive node so move it up
4603           // before the if.
4604           c1 = c2 = idom(parent_c1->in(0));
4605         }
4606         // Do the actual moves
4607         if (n1->in(0) != c1) {
4608           _igvn.replace_input_of(n1, 0, c1);
4609           progress = true;
4610         }
4611         if (n2->in(0) != c2) {
4612           _igvn.replace_input_of(n2, 0, c2);
4613           progress = true;
4614         }
4615       }
4616     }
4617   }
4618 
4619   return progress;
4620 }
4621 
4622 //=============================================================================
4623 //----------------------------build_and_optimize-------------------------------
4624 // Create a PhaseLoop.  Build the ideal Loop tree.  Map each Ideal Node to
4625 // its corresponding LoopNode.  If 'optimize' is true, do some loop cleanups.
4626 void PhaseIdealLoop::build_and_optimize() {
4627   assert(!C->post_loop_opts_phase(), "no loop opts allowed");
4628 
4629   bool do_split_ifs = (_mode == LoopOptsDefault);
4630   bool skip_loop_opts = (_mode == LoopOptsNone);
4631   bool do_max_unroll = (_mode == LoopOptsMaxUnroll);
4632 
4633 
4634   int old_progress = C->major_progress();
4635   uint orig_worklist_size = _igvn._worklist.size();
4636 
4637   // Reset major-progress flag for the driver's heuristics
4638   C->clear_major_progress();
4639 
4640 #ifndef PRODUCT
4641   // Capture for later assert
4642   uint unique = C->unique();
4643   _loop_invokes++;
4644   _loop_work += unique;
4645 #endif
4646 
4647   // True if the method has at least 1 irreducible loop
4648   _has_irreducible_loops = false;
4649 
4650   _created_loop_node = false;
4651 
4652   VectorSet visited;
4653   // Pre-grow the mapping from Nodes to IdealLoopTrees.
4654   _loop_or_ctrl.map(C->unique(), nullptr);
4655   memset(_loop_or_ctrl.adr(), 0, wordSize * C->unique());
4656 
4657   // Pre-build the top-level outermost loop tree entry
4658   _ltree_root = new IdealLoopTree( this, C->root(), C->root() );
4659   // Do not need a safepoint at the top level
4660   _ltree_root->_has_sfpt = 1;
4661 
4662   // Initialize Dominators.
4663   // Checked in clone_loop_predicate() during beautify_loops().
4664   _idom_size = 0;
4665   _idom      = nullptr;
4666   _dom_depth = nullptr;
4667   _dom_stk   = nullptr;
4668 
4669   // Empty pre-order array
4670   allocate_preorders();
4671 
4672   // Build a loop tree on the fly.  Build a mapping from CFG nodes to
4673   // IdealLoopTree entries.  Data nodes are NOT walked.
4674   build_loop_tree();
4675   // Check for bailout, and return
4676   if (C->failing()) {
4677     return;
4678   }
4679 
4680   // Verify that the has_loops() flag set at parse time is consistent with the just built loop tree. When the back edge
4681   // is an exception edge, parsing doesn't set has_loops().
4682   assert(_ltree_root->_child == nullptr || C->has_loops() || C->has_exception_backedge(), "parsing found no loops but there are some");
4683   // No loops after all
4684   if( !_ltree_root->_child && !_verify_only ) C->set_has_loops(false);
4685 
4686   // There should always be an outer loop containing the Root and Return nodes.
4687   // If not, we have a degenerate empty program.  Bail out in this case.
4688   if (!has_node(C->root())) {
4689     if (!_verify_only) {
4690       C->clear_major_progress();
4691       assert(false, "empty program detected during loop optimization");
4692       C->record_method_not_compilable("empty program detected during loop optimization");
4693     }
4694     return;
4695   }
4696 
4697   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
4698   // Nothing to do, so get out
4699   bool stop_early = !C->has_loops() && !skip_loop_opts && !do_split_ifs && !do_max_unroll && !_verify_me &&
4700           !_verify_only && !bs->is_gc_specific_loop_opts_pass(_mode);
4701   bool do_expensive_nodes = C->should_optimize_expensive_nodes(_igvn);
4702   bool strip_mined_loops_expanded = bs->strip_mined_loops_expanded(_mode);
4703   if (stop_early && !do_expensive_nodes) {
4704     return;
4705   }
4706 
4707   // Set loop nesting depth
4708   _ltree_root->set_nest( 0 );
4709 
4710   // Split shared headers and insert loop landing pads.
4711   // Do not bother doing this on the Root loop of course.
4712   if( !_verify_me && !_verify_only && _ltree_root->_child ) {
4713     C->print_method(PHASE_BEFORE_BEAUTIFY_LOOPS, 3);
4714     if( _ltree_root->_child->beautify_loops( this ) ) {
4715       // Re-build loop tree!
4716       _ltree_root->_child = nullptr;
4717       _loop_or_ctrl.clear();
4718       reallocate_preorders();
4719       build_loop_tree();
4720       // Check for bailout, and return
4721       if (C->failing()) {
4722         return;
4723       }
4724       // Reset loop nesting depth
4725       _ltree_root->set_nest( 0 );
4726 
4727       C->print_method(PHASE_AFTER_BEAUTIFY_LOOPS, 3);
4728     }
4729   }
4730 
4731   // Build Dominators for elision of null checks & loop finding.
4732   // Since nodes do not have a slot for immediate dominator, make
4733   // a persistent side array for that info indexed on node->_idx.
4734   _idom_size = C->unique();
4735   _idom      = NEW_RESOURCE_ARRAY( Node*, _idom_size );
4736   _dom_depth = NEW_RESOURCE_ARRAY( uint,  _idom_size );
4737   _dom_stk   = nullptr; // Allocated on demand in recompute_dom_depth
4738   memset( _dom_depth, 0, _idom_size * sizeof(uint) );
4739 
4740   Dominators();
4741 
4742   if (!_verify_only) {
4743     // As a side effect, Dominators removed any unreachable CFG paths
4744     // into RegionNodes.  It doesn't do this test against Root, so
4745     // we do it here.
4746     for( uint i = 1; i < C->root()->req(); i++ ) {
4747       if (!_loop_or_ctrl[C->root()->in(i)->_idx]) { // Dead path into Root?
4748         _igvn.delete_input_of(C->root(), i);
4749         i--;                      // Rerun same iteration on compressed edges
4750       }
4751     }
4752 
4753     // Given dominators, try to find inner loops with calls that must
4754     // always be executed (call dominates loop tail).  These loops do
4755     // not need a separate safepoint.
4756     Node_List cisstack;
4757     _ltree_root->check_safepts(visited, cisstack);
4758   }
4759 
4760   // Walk the DATA nodes and place into loops.  Find earliest control
4761   // node.  For CFG nodes, the _loop_or_ctrl array starts out and remains
4762   // holding the associated IdealLoopTree pointer.  For DATA nodes, the
4763   // _loop_or_ctrl array holds the earliest legal controlling CFG node.
4764 
4765   // Allocate stack with enough space to avoid frequent realloc
4766   int stack_size = (C->live_nodes() >> 1) + 16; // (live_nodes>>1)+16 from Java2D stats
4767   Node_Stack nstack(stack_size);
4768 
4769   visited.clear();
4770   Node_List worklist;
4771   // Don't need C->root() on worklist since
4772   // it will be processed among C->top() inputs
4773   worklist.push(C->top());
4774   visited.set(C->top()->_idx); // Set C->top() as visited now
4775   build_loop_early( visited, worklist, nstack );
4776 
4777   // Given early legal placement, try finding counted loops.  This placement
4778   // is good enough to discover most loop invariants.
4779   if (!_verify_me && !_verify_only && !strip_mined_loops_expanded) {
4780     _ltree_root->counted_loop( this );
4781   }
4782 
4783   // Find latest loop placement.  Find ideal loop placement.
4784   visited.clear();
4785   init_dom_lca_tags();
4786   // Need C->root() on worklist when processing outs
4787   worklist.push(C->root());
4788   NOT_PRODUCT( C->verify_graph_edges(); )
4789   worklist.push(C->top());
4790   build_loop_late( visited, worklist, nstack );
4791   if (C->failing()) { return; }
4792 
4793   if (_verify_only) {
4794     C->restore_major_progress(old_progress);
4795     assert(C->unique() == unique, "verification _mode made Nodes? ? ?");
4796     assert(_igvn._worklist.size() == orig_worklist_size, "shouldn't push anything");
4797     return;
4798   }
4799 
4800   // clear out the dead code after build_loop_late
4801   while (_deadlist.size()) {
4802     _igvn.remove_globally_dead_node(_deadlist.pop());
4803   }
4804 
4805   eliminate_useless_zero_trip_guard();
4806 
4807   if (stop_early) {
4808     assert(do_expensive_nodes, "why are we here?");
4809     if (process_expensive_nodes()) {
4810       // If we made some progress when processing expensive nodes then
4811       // the IGVN may modify the graph in a way that will allow us to
4812       // make some more progress: we need to try processing expensive
4813       // nodes again.
4814       C->set_major_progress();
4815     }
4816     return;
4817   }
4818 
4819   // Some parser-inserted loop predicates could never be used by loop
4820   // predication or they were moved away from loop during some optimizations.
4821   // For example, peeling. Eliminate them before next loop optimizations.
4822   eliminate_useless_predicates();
4823 
4824 #ifndef PRODUCT
4825   C->verify_graph_edges();
4826   if (_verify_me) {             // Nested verify pass?
4827     // Check to see if the verify _mode is broken
4828     assert(C->unique() == unique, "non-optimize _mode made Nodes? ? ?");
4829     return;
4830   }
4831   DEBUG_ONLY( if (VerifyLoopOptimizations) { verify(); } );
4832   if (TraceLoopOpts && C->has_loops()) {
4833     _ltree_root->dump();
4834   }
4835 #endif
4836 
4837   if (skip_loop_opts) {
4838     C->restore_major_progress(old_progress);
4839     return;
4840   }
4841 
4842   if (do_max_unroll) {
4843     for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
4844       IdealLoopTree* lpt = iter.current();
4845       if (lpt->is_innermost() && lpt->_allow_optimizations && !lpt->_has_call && lpt->is_counted()) {
4846         lpt->compute_trip_count(this);
4847         if (!lpt->do_one_iteration_loop(this) &&
4848             !lpt->do_remove_empty_loop(this)) {
4849           AutoNodeBudget node_budget(this);
4850           if (lpt->_head->as_CountedLoop()->is_normal_loop() &&
4851               lpt->policy_maximally_unroll(this)) {
4852             memset( worklist.adr(), 0, worklist.max()*sizeof(Node*) );
4853             do_maximally_unroll(lpt, worklist);
4854           }
4855         }
4856       }
4857     }
4858 
4859     C->restore_major_progress(old_progress);
4860     return;
4861   }
4862 
4863   if (bs->optimize_loops(this, _mode, visited, nstack, worklist)) {
4864     return;
4865   }
4866 
4867   if (ReassociateInvariants && !C->major_progress()) {
4868     // Reassociate invariants and prep for split_thru_phi
4869     for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
4870       IdealLoopTree* lpt = iter.current();
4871       if (!lpt->is_loop()) {
4872         continue;
4873       }
4874       Node* head = lpt->_head;
4875       if (!head->is_BaseCountedLoop() || !lpt->is_innermost()) continue;
4876 
4877       // check for vectorized loops, any reassociation of invariants was already done
4878       if (head->is_CountedLoop()) {
4879         if (head->as_CountedLoop()->is_unroll_only()) {
4880           continue;
4881         } else {
4882           AutoNodeBudget node_budget(this);
4883           lpt->reassociate_invariants(this);
4884         }
4885       }
4886       // Because RCE opportunities can be masked by split_thru_phi,
4887       // look for RCE candidates and inhibit split_thru_phi
4888       // on just their loop-phi's for this pass of loop opts
4889       if (SplitIfBlocks && do_split_ifs &&
4890           head->as_BaseCountedLoop()->is_valid_counted_loop(head->as_BaseCountedLoop()->bt()) &&
4891           (lpt->policy_range_check(this, true, T_LONG) ||
4892            (head->is_CountedLoop() && lpt->policy_range_check(this, true, T_INT)))) {
4893         lpt->_rce_candidate = 1; // = true
4894       }
4895     }
4896   }
4897 
4898   // Check for aggressive application of split-if and other transforms
4899   // that require basic-block info (like cloning through Phi's)
4900   if (!C->major_progress() && SplitIfBlocks && do_split_ifs) {
4901     visited.clear();
4902     split_if_with_blocks( visited, nstack);
4903     DEBUG_ONLY( if (VerifyLoopOptimizations) { verify(); } );
4904   }
4905 
4906   if (!C->major_progress() && do_expensive_nodes && process_expensive_nodes()) {
4907     C->set_major_progress();
4908   }
4909 
4910   // Perform loop predication before iteration splitting
4911   if (UseLoopPredicate && C->has_loops() && !C->major_progress() && (C->parse_predicate_count() > 0)) {
4912     _ltree_root->_child->loop_predication(this);
4913   }
4914 
4915   if (OptimizeFill && UseLoopPredicate && C->has_loops() && !C->major_progress()) {
4916     if (do_intrinsify_fill()) {
4917       C->set_major_progress();
4918     }
4919   }
4920 
4921   // Perform iteration-splitting on inner loops.  Split iterations to avoid
4922   // range checks or one-shot null checks.
4923 
4924   // If split-if's didn't hack the graph too bad (no CFG changes)
4925   // then do loop opts.
4926   if (C->has_loops() && !C->major_progress()) {
4927     memset( worklist.adr(), 0, worklist.max()*sizeof(Node*) );
4928     _ltree_root->_child->iteration_split( this, worklist );
4929     // No verify after peeling!  GCM has hoisted code out of the loop.
4930     // After peeling, the hoisted code could sink inside the peeled area.
4931     // The peeling code does not try to recompute the best location for
4932     // all the code before the peeled area, so the verify pass will always
4933     // complain about it.
4934   }
4935 
4936   // Check for bailout, and return
4937   if (C->failing()) {
4938     return;
4939   }
4940 
4941   // Do verify graph edges in any case
4942   NOT_PRODUCT( C->verify_graph_edges(); );
4943 
4944   if (!do_split_ifs) {
4945     // We saw major progress in Split-If to get here.  We forced a
4946     // pass with unrolling and not split-if, however more split-if's
4947     // might make progress.  If the unrolling didn't make progress
4948     // then the major-progress flag got cleared and we won't try
4949     // another round of Split-If.  In particular the ever-common
4950     // instance-of/check-cast pattern requires at least 2 rounds of
4951     // Split-If to clear out.
4952     C->set_major_progress();
4953   }
4954 
4955   // Repeat loop optimizations if new loops were seen
4956   if (created_loop_node()) {
4957     C->set_major_progress();
4958   }
4959 
4960   // Keep loop predicates and perform optimizations with them
4961   // until no more loop optimizations could be done.
4962   // After that switch predicates off and do more loop optimizations.
4963   if (!C->major_progress() && (C->parse_predicate_count() > 0)) {
4964     C->mark_parse_predicate_nodes_useless(_igvn);
4965     assert(C->parse_predicate_count() == 0, "should be zero now");
4966      if (TraceLoopOpts) {
4967        tty->print_cr("PredicatesOff");
4968      }
4969      C->set_major_progress();
4970   }
4971 
4972   // Auto-vectorize main-loop
4973   if (C->do_superword() && C->has_loops() && !C->major_progress()) {
4974     Compile::TracePhase tp(_t_autoVectorize);
4975 
4976     // Shared data structures for all AutoVectorizations, to reduce allocations
4977     // of large arrays.
4978     VSharedData vshared;
4979     for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
4980       IdealLoopTree* lpt = iter.current();
4981       AutoVectorizeStatus status = auto_vectorize(lpt, vshared);
4982 
4983       if (status == AutoVectorizeStatus::TriedAndFailed) {
4984         // We tried vectorization, but failed. From now on only unroll the loop.
4985         CountedLoopNode* cl = lpt->_head->as_CountedLoop();
4986         if (cl->has_passed_slp()) {
4987           C->set_major_progress();
4988           cl->set_notpassed_slp();
4989           cl->mark_do_unroll_only();
4990         }
4991       }
4992     }
4993   }
4994 
4995   // Move UnorderedReduction out of counted loop. Can be introduced by AutoVectorization.
4996   if (C->has_loops() && !C->major_progress()) {
4997     for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
4998       IdealLoopTree* lpt = iter.current();
4999       if (lpt->is_counted() && lpt->is_innermost()) {
5000         move_unordered_reduction_out_of_loop(lpt);
5001       }
5002     }
5003   }
5004 }
5005 
5006 #ifndef PRODUCT
5007 //------------------------------print_statistics-------------------------------
5008 int PhaseIdealLoop::_loop_invokes=0;// Count of PhaseIdealLoop invokes
5009 int PhaseIdealLoop::_loop_work=0; // Sum of PhaseIdealLoop x unique
5010 volatile int PhaseIdealLoop::_long_loop_candidates=0; // Number of long loops seen
5011 volatile int PhaseIdealLoop::_long_loop_nests=0; // Number of long loops successfully transformed to a nest
5012 volatile int PhaseIdealLoop::_long_loop_counted_loops=0; // Number of long loops successfully transformed to a counted loop
5013 void PhaseIdealLoop::print_statistics() {
5014   tty->print_cr("PhaseIdealLoop=%d, sum _unique=%d, long loops=%d/%d/%d", _loop_invokes, _loop_work, _long_loop_counted_loops, _long_loop_nests, _long_loop_candidates);
5015 }
5016 #endif
5017 
5018 #ifdef ASSERT
5019 // Build a verify-only PhaseIdealLoop, and see that it agrees with "this".
5020 void PhaseIdealLoop::verify() const {
5021   ResourceMark rm;
5022   int old_progress = C->major_progress();
5023   bool success = true;
5024 
5025   PhaseIdealLoop phase_verify(_igvn, this);
5026   if (C->failing_internal()) {
5027     return;
5028   }
5029 
5030   // Verify ctrl and idom of every node.
5031   success &= verify_idom_and_nodes(C->root(), &phase_verify);
5032 
5033   // Verify loop-tree.
5034   success &= _ltree_root->verify_tree(phase_verify._ltree_root);
5035 
5036   assert(success, "VerifyLoopOptimizations failed");
5037 
5038   // Major progress was cleared by creating a verify version of PhaseIdealLoop.
5039   C->restore_major_progress(old_progress);
5040 }
5041 
5042 // Perform a BFS starting at n, through all inputs.
5043 // Call verify_idom and verify_node on all nodes of BFS traversal.
5044 bool PhaseIdealLoop::verify_idom_and_nodes(Node* root, const PhaseIdealLoop* phase_verify) const {
5045   Unique_Node_List worklist;
5046   worklist.push(root);
5047   bool success = true;
5048   for (uint i = 0; i < worklist.size(); i++) {
5049     Node* n = worklist.at(i);
5050     // process node
5051     success &= verify_idom(n, phase_verify);
5052     success &= verify_loop_ctrl(n, phase_verify);
5053     // visit inputs
5054     for (uint j = 0; j < n->req(); j++) {
5055       if (n->in(j) != nullptr) {
5056         worklist.push(n->in(j));
5057       }
5058     }
5059   }
5060   return success;
5061 }
5062 
5063 // Verify dominator structure (IDOM).
5064 bool PhaseIdealLoop::verify_idom(Node* n, const PhaseIdealLoop* phase_verify) const {
5065   // Verify IDOM for all CFG nodes (except root).
5066   if (!n->is_CFG() || n->is_Root()) {
5067     return true; // pass
5068   }
5069 
5070   if (n->_idx >= _idom_size) {
5071     tty->print("CFG Node with no idom: ");
5072     n->dump();
5073     return false; // fail
5074   }
5075 
5076   Node* id = idom_no_update(n);
5077   Node* id_verify = phase_verify->idom_no_update(n);
5078   if (id != id_verify) {
5079     tty->print("Mismatching idom for node: ");
5080     n->dump();
5081     tty->print("  We have idom: ");
5082     id->dump();
5083     tty->print("  Verify has idom: ");
5084     id_verify->dump();
5085     tty->cr();
5086     return false; // fail
5087   }
5088   return true; // pass
5089 }
5090 
5091 // Verify "_loop_or_ctrl": control and loop membership.
5092 //  (0) _loop_or_ctrl[i] == nullptr -> node not reachable.
5093 //  (1) has_ctrl -> check lowest bit. 1 -> data node. 0 -> ctrl node.
5094 //  (2) has_ctrl true: get_ctrl_no_update returns ctrl of data node.
5095 //  (3) has_ctrl false: get_loop_idx returns IdealLoopTree for ctrl node.
5096 bool PhaseIdealLoop::verify_loop_ctrl(Node* n, const PhaseIdealLoop* phase_verify) const {
5097   const uint i = n->_idx;
5098   // The loop-tree was built from def to use (top-down).
5099   // The verification happens from use to def (bottom-up).
5100   // We may thus find nodes during verification that are not in the loop-tree.
5101   if (_loop_or_ctrl[i] == nullptr || phase_verify->_loop_or_ctrl[i] == nullptr) {
5102     if (_loop_or_ctrl[i] != nullptr || phase_verify->_loop_or_ctrl[i] != nullptr) {
5103       tty->print_cr("Was reachable in only one. this %d, verify %d.",
5104                  _loop_or_ctrl[i] != nullptr, phase_verify->_loop_or_ctrl[i] != nullptr);
5105       n->dump();
5106       return false; // fail
5107     }
5108     // Not reachable for both.
5109     return true; // pass
5110   }
5111 
5112   if (n->is_CFG() == has_ctrl(n)) {
5113     tty->print_cr("Exactly one should be true: %d for is_CFG, %d for has_ctrl.", n->is_CFG(), has_ctrl(n));
5114     n->dump();
5115     return false; // fail
5116   }
5117 
5118   if (has_ctrl(n) != phase_verify->has_ctrl(n)) {
5119     tty->print_cr("Mismatch has_ctrl: %d for this, %d for verify.", has_ctrl(n), phase_verify->has_ctrl(n));
5120     n->dump();
5121     return false; // fail
5122   } else if (has_ctrl(n)) {
5123     assert(phase_verify->has_ctrl(n), "sanity");
5124     // n is a data node.
5125     // Verify that its ctrl is the same.
5126 
5127     // Broken part of VerifyLoopOptimizations (A)
5128     // Reason:
5129     //   BUG, wrong control set for example in
5130     //   PhaseIdealLoop::split_if_with_blocks
5131     //   at "set_ctrl(x, new_ctrl);"
5132     /*
5133     if( _loop_or_ctrl[i] != loop_verify->_loop_or_ctrl[i] &&
5134         get_ctrl_no_update(n) != loop_verify->get_ctrl_no_update(n) ) {
5135       tty->print("Mismatched control setting for: ");
5136       n->dump();
5137       if( fail++ > 10 ) return;
5138       Node *c = get_ctrl_no_update(n);
5139       tty->print("We have it as: ");
5140       if( c->in(0) ) c->dump();
5141         else tty->print_cr("N%d",c->_idx);
5142       tty->print("Verify thinks: ");
5143       if( loop_verify->has_ctrl(n) )
5144         loop_verify->get_ctrl_no_update(n)->dump();
5145       else
5146         loop_verify->get_loop_idx(n)->dump();
5147       tty->cr();
5148     }
5149     */
5150     return true; // pass
5151   } else {
5152     assert(!phase_verify->has_ctrl(n), "sanity");
5153     // n is a ctrl node.
5154     // Verify that not has_ctrl, and that get_loop_idx is the same.
5155 
5156     // Broken part of VerifyLoopOptimizations (B)
5157     // Reason:
5158     //   NeverBranch node for example is added to loop outside its scope.
5159     //   Once we run build_loop_tree again, it is added to the correct loop.
5160     /*
5161     if (!C->major_progress()) {
5162       // Loop selection can be messed up if we did a major progress
5163       // operation, like split-if.  Do not verify in that case.
5164       IdealLoopTree *us = get_loop_idx(n);
5165       IdealLoopTree *them = loop_verify->get_loop_idx(n);
5166       if( us->_head != them->_head ||  us->_tail != them->_tail ) {
5167         tty->print("Unequals loops for: ");
5168         n->dump();
5169         if( fail++ > 10 ) return;
5170         tty->print("We have it as: ");
5171         us->dump();
5172         tty->print("Verify thinks: ");
5173         them->dump();
5174         tty->cr();
5175       }
5176     }
5177     */
5178     return true; // pass
5179   }
5180 }
5181 
5182 static int compare_tree(IdealLoopTree* const& a, IdealLoopTree* const& b) {
5183   assert(a != nullptr && b != nullptr, "must be");
5184   return a->_head->_idx - b->_head->_idx;
5185 }
5186 
5187 GrowableArray<IdealLoopTree*> IdealLoopTree::collect_sorted_children() const {
5188   GrowableArray<IdealLoopTree*> children;
5189   IdealLoopTree* child = _child;
5190   while (child != nullptr) {
5191     assert(child->_parent == this, "all must be children of this");
5192     children.insert_sorted<compare_tree>(child);
5193     child = child->_next;
5194   }
5195   return children;
5196 }
5197 
5198 // Verify that tree structures match. Because the CFG can change, siblings
5199 // within the loop tree can be reordered. We attempt to deal with that by
5200 // reordering the verify's loop tree if possible.
5201 bool IdealLoopTree::verify_tree(IdealLoopTree* loop_verify) const {
5202   assert(_head == loop_verify->_head, "mismatched loop head");
5203   assert(this->_parent != nullptr || this->_next == nullptr, "is_root_loop implies has_no_sibling");
5204 
5205   // Collect the children
5206   GrowableArray<IdealLoopTree*> children = collect_sorted_children();
5207   GrowableArray<IdealLoopTree*> children_verify = loop_verify->collect_sorted_children();
5208 
5209   bool success = true;
5210 
5211   // Compare the two children lists
5212   for (int i = 0, j = 0; i < children.length() || j < children_verify.length(); ) {
5213     IdealLoopTree* child        = nullptr;
5214     IdealLoopTree* child_verify = nullptr;
5215     // Read from both lists, if possible.
5216     if (i < children.length()) {
5217       child = children.at(i);
5218     }
5219     if (j < children_verify.length()) {
5220       child_verify = children_verify.at(j);
5221     }
5222     assert(child != nullptr || child_verify != nullptr, "must find at least one");
5223     if (child != nullptr && child_verify != nullptr && child->_head != child_verify->_head) {
5224       // We found two non-equal children. Select the smaller one.
5225       if (child->_head->_idx < child_verify->_head->_idx) {
5226         child_verify = nullptr;
5227       } else {
5228         child = nullptr;
5229       }
5230     }
5231     // Process the two children, or potentially log the failure if we only found one.
5232     if (child_verify == nullptr) {
5233       if (child->_irreducible && Compile::current()->major_progress()) {
5234         // Irreducible loops can pick a different header (one of its entries).
5235       } else {
5236         tty->print_cr("We have a loop that verify does not have");
5237         child->dump();
5238         success = false;
5239       }
5240       i++; // step for this
5241     } else if (child == nullptr) {
5242       if (child_verify->_irreducible && Compile::current()->major_progress()) {
5243         // Irreducible loops can pick a different header (one of its entries).
5244       } else if (child_verify->_head->as_Region()->is_in_infinite_subgraph()) {
5245         // Infinite loops do not get attached to the loop-tree on their first visit.
5246         // "this" runs before "loop_verify". It is thus possible that we find the
5247         // infinite loop only for "child_verify". Only finding it with "child" would
5248         // mean that we lost it, which is not ok.
5249       } else {
5250         tty->print_cr("Verify has a loop that we do not have");
5251         child_verify->dump();
5252         success = false;
5253       }
5254       j++; // step for verify
5255     } else {
5256       assert(child->_head == child_verify->_head, "We have both and they are equal");
5257       success &= child->verify_tree(child_verify); // Recursion
5258       i++; // step for this
5259       j++; // step for verify
5260     }
5261   }
5262 
5263   // Broken part of VerifyLoopOptimizations (D)
5264   // Reason:
5265   //   split_if has to update the _tail, if it is modified. But that is done by
5266   //   checking to what loop the iff belongs to. That info can be wrong, and then
5267   //   we do not update the _tail correctly.
5268   /*
5269   Node *tail = _tail;           // Inline a non-updating version of
5270   while( !tail->in(0) )         // the 'tail()' call.
5271     tail = tail->in(1);
5272   assert( tail == loop->_tail, "mismatched loop tail" );
5273   */
5274 
5275   if (_head->is_CountedLoop()) {
5276     CountedLoopNode *cl = _head->as_CountedLoop();
5277 
5278     Node* ctrl     = cl->init_control();
5279     Node* back     = cl->back_control();
5280     assert(ctrl != nullptr && ctrl->is_CFG(), "sane loop in-ctrl");
5281     assert(back != nullptr && back->is_CFG(), "sane loop backedge");
5282     cl->loopexit(); // assert implied
5283   }
5284 
5285   // Broken part of VerifyLoopOptimizations (E)
5286   // Reason:
5287   //   PhaseIdealLoop::split_thru_region creates new nodes for loop that are not added
5288   //   to the loop body. Or maybe they are not added to the correct loop.
5289   //   at "Node* x = n->clone();"
5290   /*
5291   // Innermost loops need to verify loop bodies,
5292   // but only if no 'major_progress'
5293   int fail = 0;
5294   if (!Compile::current()->major_progress() && _child == nullptr) {
5295     for( uint i = 0; i < _body.size(); i++ ) {
5296       Node *n = _body.at(i);
5297       if (n->outcnt() == 0)  continue; // Ignore dead
5298       uint j;
5299       for( j = 0; j < loop->_body.size(); j++ )
5300         if( loop->_body.at(j) == n )
5301           break;
5302       if( j == loop->_body.size() ) { // Not found in loop body
5303         // Last ditch effort to avoid assertion: Its possible that we
5304         // have some users (so outcnt not zero) but are still dead.
5305         // Try to find from root.
5306         if (Compile::current()->root()->find(n->_idx)) {
5307           fail++;
5308           tty->print("We have that verify does not: ");
5309           n->dump();
5310         }
5311       }
5312     }
5313     for( uint i2 = 0; i2 < loop->_body.size(); i2++ ) {
5314       Node *n = loop->_body.at(i2);
5315       if (n->outcnt() == 0)  continue; // Ignore dead
5316       uint j;
5317       for( j = 0; j < _body.size(); j++ )
5318         if( _body.at(j) == n )
5319           break;
5320       if( j == _body.size() ) { // Not found in loop body
5321         // Last ditch effort to avoid assertion: Its possible that we
5322         // have some users (so outcnt not zero) but are still dead.
5323         // Try to find from root.
5324         if (Compile::current()->root()->find(n->_idx)) {
5325           fail++;
5326           tty->print("Verify has that we do not: ");
5327           n->dump();
5328         }
5329       }
5330     }
5331     assert( !fail, "loop body mismatch" );
5332   }
5333   */
5334   return success;
5335 }
5336 #endif
5337 
5338 //------------------------------set_idom---------------------------------------
5339 void PhaseIdealLoop::set_idom(Node* d, Node* n, uint dom_depth) {
5340   _nesting.check(); // Check if a potential reallocation in the resource arena is safe
5341   uint idx = d->_idx;
5342   if (idx >= _idom_size) {
5343     uint newsize = next_power_of_2(idx);
5344     _idom      = REALLOC_RESOURCE_ARRAY( Node*,     _idom,_idom_size,newsize);
5345     _dom_depth = REALLOC_RESOURCE_ARRAY( uint, _dom_depth,_idom_size,newsize);
5346     memset( _dom_depth + _idom_size, 0, (newsize - _idom_size) * sizeof(uint) );
5347     _idom_size = newsize;
5348   }
5349   _idom[idx] = n;
5350   _dom_depth[idx] = dom_depth;
5351 }
5352 
5353 //------------------------------recompute_dom_depth---------------------------------------
5354 // The dominator tree is constructed with only parent pointers.
5355 // This recomputes the depth in the tree by first tagging all
5356 // nodes as "no depth yet" marker.  The next pass then runs up
5357 // the dom tree from each node marked "no depth yet", and computes
5358 // the depth on the way back down.
5359 void PhaseIdealLoop::recompute_dom_depth() {
5360   uint no_depth_marker = C->unique();
5361   uint i;
5362   // Initialize depth to "no depth yet" and realize all lazy updates
5363   for (i = 0; i < _idom_size; i++) {
5364     // Only indices with a _dom_depth has a Node* or null (otherwise uninitialized).
5365     if (_dom_depth[i] > 0 && _idom[i] != nullptr) {
5366       _dom_depth[i] = no_depth_marker;
5367 
5368       // heal _idom if it has a fwd mapping in _loop_or_ctrl
5369       if (_idom[i]->in(0) == nullptr) {
5370         idom(i);
5371       }
5372     }
5373   }
5374   if (_dom_stk == nullptr) {
5375     uint init_size = C->live_nodes() / 100; // Guess that 1/100 is a reasonable initial size.
5376     if (init_size < 10) init_size = 10;
5377     _dom_stk = new GrowableArray<uint>(init_size);
5378   }
5379   // Compute new depth for each node.
5380   for (i = 0; i < _idom_size; i++) {
5381     uint j = i;
5382     // Run up the dom tree to find a node with a depth
5383     while (_dom_depth[j] == no_depth_marker) {
5384       _dom_stk->push(j);
5385       j = _idom[j]->_idx;
5386     }
5387     // Compute the depth on the way back down this tree branch
5388     uint dd = _dom_depth[j] + 1;
5389     while (_dom_stk->length() > 0) {
5390       uint j = _dom_stk->pop();
5391       _dom_depth[j] = dd;
5392       dd++;
5393     }
5394   }
5395 }
5396 
5397 //------------------------------sort-------------------------------------------
5398 // Insert 'loop' into the existing loop tree.  'innermost' is a leaf of the
5399 // loop tree, not the root.
5400 IdealLoopTree *PhaseIdealLoop::sort( IdealLoopTree *loop, IdealLoopTree *innermost ) {
5401   if( !innermost ) return loop; // New innermost loop
5402 
5403   int loop_preorder = get_preorder(loop->_head); // Cache pre-order number
5404   assert( loop_preorder, "not yet post-walked loop" );
5405   IdealLoopTree **pp = &innermost;      // Pointer to previous next-pointer
5406   IdealLoopTree *l = *pp;               // Do I go before or after 'l'?
5407 
5408   // Insert at start of list
5409   while( l ) {                  // Insertion sort based on pre-order
5410     if( l == loop ) return innermost; // Already on list!
5411     int l_preorder = get_preorder(l->_head); // Cache pre-order number
5412     assert( l_preorder, "not yet post-walked l" );
5413     // Check header pre-order number to figure proper nesting
5414     if( loop_preorder > l_preorder )
5415       break;                    // End of insertion
5416     // If headers tie (e.g., shared headers) check tail pre-order numbers.
5417     // Since I split shared headers, you'd think this could not happen.
5418     // BUT: I must first do the preorder numbering before I can discover I
5419     // have shared headers, so the split headers all get the same preorder
5420     // number as the RegionNode they split from.
5421     if( loop_preorder == l_preorder &&
5422         get_preorder(loop->_tail) < get_preorder(l->_tail) )
5423       break;                    // Also check for shared headers (same pre#)
5424     pp = &l->_parent;           // Chain up list
5425     l = *pp;
5426   }
5427   // Link into list
5428   // Point predecessor to me
5429   *pp = loop;
5430   // Point me to successor
5431   IdealLoopTree *p = loop->_parent;
5432   loop->_parent = l;            // Point me to successor
5433   if( p ) sort( p, innermost ); // Insert my parents into list as well
5434   return innermost;
5435 }
5436 
5437 //------------------------------build_loop_tree--------------------------------
5438 // I use a modified Vick/Tarjan algorithm.  I need pre- and a post- visit
5439 // bits.  The _loop_or_ctrl[] array is mapped by Node index and holds a null for
5440 // not-yet-pre-walked, pre-order # for pre-but-not-post-walked and holds the
5441 // tightest enclosing IdealLoopTree for post-walked.
5442 //
5443 // During my forward walk I do a short 1-layer lookahead to see if I can find
5444 // a loop backedge with that doesn't have any work on the backedge.  This
5445 // helps me construct nested loops with shared headers better.
5446 //
5447 // Once I've done the forward recursion, I do the post-work.  For each child
5448 // I check to see if there is a backedge.  Backedges define a loop!  I
5449 // insert an IdealLoopTree at the target of the backedge.
5450 //
5451 // During the post-work I also check to see if I have several children
5452 // belonging to different loops.  If so, then this Node is a decision point
5453 // where control flow can choose to change loop nests.  It is at this
5454 // decision point where I can figure out how loops are nested.  At this
5455 // time I can properly order the different loop nests from my children.
5456 // Note that there may not be any backedges at the decision point!
5457 //
5458 // Since the decision point can be far removed from the backedges, I can't
5459 // order my loops at the time I discover them.  Thus at the decision point
5460 // I need to inspect loop header pre-order numbers to properly nest my
5461 // loops.  This means I need to sort my childrens' loops by pre-order.
5462 // The sort is of size number-of-control-children, which generally limits
5463 // it to size 2 (i.e., I just choose between my 2 target loops).
5464 void PhaseIdealLoop::build_loop_tree() {
5465   // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc
5466   GrowableArray <Node *> bltstack(C->live_nodes() >> 1);
5467   Node *n = C->root();
5468   bltstack.push(n);
5469   int pre_order = 1;
5470   int stack_size;
5471 
5472   while ( ( stack_size = bltstack.length() ) != 0 ) {
5473     n = bltstack.top(); // Leave node on stack
5474     if ( !is_visited(n) ) {
5475       // ---- Pre-pass Work ----
5476       // Pre-walked but not post-walked nodes need a pre_order number.
5477 
5478       set_preorder_visited( n, pre_order ); // set as visited
5479 
5480       // ---- Scan over children ----
5481       // Scan first over control projections that lead to loop headers.
5482       // This helps us find inner-to-outer loops with shared headers better.
5483 
5484       // Scan children's children for loop headers.
5485       for ( int i = n->outcnt() - 1; i >= 0; --i ) {
5486         Node* m = n->raw_out(i);       // Child
5487         if( m->is_CFG() && !is_visited(m) ) { // Only for CFG children
5488           // Scan over children's children to find loop
5489           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
5490             Node* l = m->fast_out(j);
5491             if( is_visited(l) &&       // Been visited?
5492                 !is_postvisited(l) &&  // But not post-visited
5493                 get_preorder(l) < pre_order ) { // And smaller pre-order
5494               // Found!  Scan the DFS down this path before doing other paths
5495               bltstack.push(m);
5496               break;
5497             }
5498           }
5499         }
5500       }
5501       pre_order++;
5502     }
5503     else if ( !is_postvisited(n) ) {
5504       // Note: build_loop_tree_impl() adds out edges on rare occasions,
5505       // such as com.sun.rsasign.am::a.
5506       // For non-recursive version, first, process current children.
5507       // On next iteration, check if additional children were added.
5508       for ( int k = n->outcnt() - 1; k >= 0; --k ) {
5509         Node* u = n->raw_out(k);
5510         if ( u->is_CFG() && !is_visited(u) ) {
5511           bltstack.push(u);
5512         }
5513       }
5514       if ( bltstack.length() == stack_size ) {
5515         // There were no additional children, post visit node now
5516         (void)bltstack.pop(); // Remove node from stack
5517         pre_order = build_loop_tree_impl(n, pre_order);
5518         // Check for bailout
5519         if (C->failing()) {
5520           return;
5521         }
5522         // Check to grow _preorders[] array for the case when
5523         // build_loop_tree_impl() adds new nodes.
5524         check_grow_preorders();
5525       }
5526     }
5527     else {
5528       (void)bltstack.pop(); // Remove post-visited node from stack
5529     }
5530   }
5531   DEBUG_ONLY(verify_regions_in_irreducible_loops();)
5532 }
5533 
5534 //------------------------------build_loop_tree_impl---------------------------
5535 int PhaseIdealLoop::build_loop_tree_impl(Node* n, int pre_order) {
5536   // ---- Post-pass Work ----
5537   // Pre-walked but not post-walked nodes need a pre_order number.
5538 
5539   // Tightest enclosing loop for this Node
5540   IdealLoopTree *innermost = nullptr;
5541 
5542   // For all children, see if any edge is a backedge.  If so, make a loop
5543   // for it.  Then find the tightest enclosing loop for the self Node.
5544   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
5545     Node* m = n->fast_out(i);   // Child
5546     if (n == m) continue;      // Ignore control self-cycles
5547     if (!m->is_CFG()) continue;// Ignore non-CFG edges
5548 
5549     IdealLoopTree *l;           // Child's loop
5550     if (!is_postvisited(m)) {  // Child visited but not post-visited?
5551       // Found a backedge
5552       assert(get_preorder(m) < pre_order, "should be backedge");
5553       // Check for the RootNode, which is already a LoopNode and is allowed
5554       // to have multiple "backedges".
5555       if (m == C->root()) {     // Found the root?
5556         l = _ltree_root;        // Root is the outermost LoopNode
5557       } else {                  // Else found a nested loop
5558         // Insert a LoopNode to mark this loop.
5559         l = new IdealLoopTree(this, m, n);
5560       } // End of Else found a nested loop
5561       if (!has_loop(m)) {        // If 'm' does not already have a loop set
5562         set_loop(m, l);         // Set loop header to loop now
5563       }
5564     } else {                    // Else not a nested loop
5565       if (!_loop_or_ctrl[m->_idx]) continue; // Dead code has no loop
5566       IdealLoopTree* m_loop = get_loop(m);
5567       l = m_loop;          // Get previously determined loop
5568       // If successor is header of a loop (nest), move up-loop till it
5569       // is a member of some outer enclosing loop.  Since there are no
5570       // shared headers (I've split them already) I only need to go up
5571       // at most 1 level.
5572       while (l && l->_head == m) { // Successor heads loop?
5573         l = l->_parent;         // Move up 1 for me
5574       }
5575       // If this loop is not properly parented, then this loop
5576       // has no exit path out, i.e. its an infinite loop.
5577       if (!l) {
5578         // Make loop "reachable" from root so the CFG is reachable.  Basically
5579         // insert a bogus loop exit that is never taken.  'm', the loop head,
5580         // points to 'n', one (of possibly many) fall-in paths.  There may be
5581         // many backedges as well.
5582 
5583         if (!_verify_only) {
5584           // Insert the NeverBranch between 'm' and it's control user.
5585           NeverBranchNode *iff = new NeverBranchNode( m );
5586           _igvn.register_new_node_with_optimizer(iff);
5587           set_loop(iff, m_loop);
5588           Node *if_t = new CProjNode( iff, 0 );
5589           _igvn.register_new_node_with_optimizer(if_t);
5590           set_loop(if_t, m_loop);
5591 
5592           Node* cfg = nullptr;       // Find the One True Control User of m
5593           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
5594             Node* x = m->fast_out(j);
5595             if (x->is_CFG() && x != m && x != iff)
5596               { cfg = x; break; }
5597           }
5598           assert(cfg != nullptr, "must find the control user of m");
5599           uint k = 0;             // Probably cfg->in(0)
5600           while( cfg->in(k) != m ) k++; // But check in case cfg is a Region
5601           _igvn.replace_input_of(cfg, k, if_t); // Now point to NeverBranch
5602 
5603           // Now create the never-taken loop exit
5604           Node *if_f = new CProjNode( iff, 1 );
5605           _igvn.register_new_node_with_optimizer(if_f);
5606           set_loop(if_f, _ltree_root);
5607           // Find frame ptr for Halt.  Relies on the optimizer
5608           // V-N'ing.  Easier and quicker than searching through
5609           // the program structure.
5610           Node *frame = new ParmNode( C->start(), TypeFunc::FramePtr );
5611           _igvn.register_new_node_with_optimizer(frame);
5612           // Halt & Catch Fire
5613           Node* halt = new HaltNode(if_f, frame, "never-taken loop exit reached");
5614           _igvn.register_new_node_with_optimizer(halt);
5615           set_loop(halt, _ltree_root);
5616           _igvn.add_input_to(C->root(), halt);
5617         }
5618         set_loop(C->root(), _ltree_root);
5619         // move to outer most loop with same header
5620         l = m_loop;
5621         while (true) {
5622           IdealLoopTree* next = l->_parent;
5623           if (next == nullptr || next->_head != m) {
5624             break;
5625           }
5626           l = next;
5627         }
5628         // properly insert infinite loop in loop tree
5629         sort(_ltree_root, l);
5630         // fix child link from parent
5631         IdealLoopTree* p = l->_parent;
5632         l->_next = p->_child;
5633         p->_child = l;
5634         // code below needs enclosing loop
5635         l = l->_parent;
5636       }
5637     }
5638     if (is_postvisited(l->_head)) {
5639       // We are currently visiting l, but its head has already been post-visited.
5640       // l is irreducible: we just found a second entry m.
5641       _has_irreducible_loops = true;
5642       RegionNode* secondary_entry = m->as_Region();
5643       DEBUG_ONLY(secondary_entry->verify_can_be_irreducible_entry();)
5644 
5645       // Walk up the loop-tree, mark all loops that are already post-visited as irreducible
5646       // Since m is a secondary entry to them all.
5647       while( is_postvisited(l->_head) ) {
5648         l->_irreducible = 1; // = true
5649         RegionNode* head = l->_head->as_Region();
5650         DEBUG_ONLY(head->verify_can_be_irreducible_entry();)
5651         l = l->_parent;
5652         // Check for bad CFG here to prevent crash, and bailout of compile
5653         if (l == nullptr) {
5654 #ifndef PRODUCT
5655           if (TraceLoopOpts) {
5656             tty->print_cr("bailout: unhandled CFG: infinite irreducible loop");
5657             m->dump();
5658           }
5659 #endif
5660           // This is a rare case that we do not want to handle in C2.
5661           C->record_method_not_compilable("unhandled CFG detected during loop optimization");
5662           return pre_order;
5663         }
5664       }
5665     }
5666     if (!_verify_only) {
5667       C->set_has_irreducible_loop(_has_irreducible_loops);
5668     }
5669 
5670     // This Node might be a decision point for loops.  It is only if
5671     // it's children belong to several different loops.  The sort call
5672     // does a trivial amount of work if there is only 1 child or all
5673     // children belong to the same loop.  If however, the children
5674     // belong to different loops, the sort call will properly set the
5675     // _parent pointers to show how the loops nest.
5676     //
5677     // In any case, it returns the tightest enclosing loop.
5678     innermost = sort( l, innermost );
5679   }
5680 
5681   // Def-use info will have some dead stuff; dead stuff will have no
5682   // loop decided on.
5683 
5684   // Am I a loop header?  If so fix up my parent's child and next ptrs.
5685   if( innermost && innermost->_head == n ) {
5686     assert( get_loop(n) == innermost, "" );
5687     IdealLoopTree *p = innermost->_parent;
5688     IdealLoopTree *l = innermost;
5689     while (p && l->_head == n) {
5690       l->_next = p->_child;     // Put self on parents 'next child'
5691       p->_child = l;            // Make self as first child of parent
5692       l = p;                    // Now walk up the parent chain
5693       p = l->_parent;
5694     }
5695   } else {
5696     // Note that it is possible for a LoopNode to reach here, if the
5697     // backedge has been made unreachable (hence the LoopNode no longer
5698     // denotes a Loop, and will eventually be removed).
5699 
5700     // Record tightest enclosing loop for self.  Mark as post-visited.
5701     set_loop(n, innermost);
5702     // Also record has_call flag early on
5703     if (innermost) {
5704       if( n->is_Call() && !n->is_CallLeaf() && !n->is_macro() ) {
5705         // Do not count uncommon calls
5706         if( !n->is_CallStaticJava() || !n->as_CallStaticJava()->_name ) {
5707           Node *iff = n->in(0)->in(0);
5708           // No any calls for vectorized loops.
5709           if (C->do_superword() ||
5710               !iff->is_If() ||
5711               (n->in(0)->Opcode() == Op_IfFalse && (1.0 - iff->as_If()->_prob) >= 0.01) ||
5712               iff->as_If()->_prob >= 0.01) {
5713             innermost->_has_call = 1;
5714           }
5715         }
5716       } else if( n->is_Allocate() && n->as_Allocate()->_is_scalar_replaceable ) {
5717         // Disable loop optimizations if the loop has a scalar replaceable
5718         // allocation. This disabling may cause a potential performance lost
5719         // if the allocation is not eliminated for some reason.
5720         innermost->_allow_optimizations = false;
5721         innermost->_has_call = 1; // = true
5722       } else if (n->Opcode() == Op_SafePoint) {
5723         // Record all safepoints in this loop.
5724         if (innermost->_safepts == nullptr) innermost->_safepts = new Node_List();
5725         innermost->_safepts->push(n);
5726       }
5727     }
5728   }
5729 
5730   // Flag as post-visited now
5731   set_postvisited(n);
5732   return pre_order;
5733 }
5734 
5735 #ifdef ASSERT
5736 //--------------------------verify_regions_in_irreducible_loops----------------
5737 // Iterate down from Root through CFG, verify for every region:
5738 // if it is in an irreducible loop it must be marked as such
5739 void PhaseIdealLoop::verify_regions_in_irreducible_loops() {
5740   ResourceMark rm;
5741   if (!_has_irreducible_loops) {
5742     // last build_loop_tree has not found any irreducible loops
5743     // hence no region has to be marked is_in_irreduible_loop
5744     return;
5745   }
5746 
5747   RootNode* root = C->root();
5748   Unique_Node_List worklist; // visit all nodes once
5749   worklist.push(root);
5750   bool failure = false;
5751   for (uint i = 0; i < worklist.size(); i++) {
5752     Node* n = worklist.at(i);
5753     if (n->is_Region()) {
5754       RegionNode* region = n->as_Region();
5755       if (is_in_irreducible_loop(region) &&
5756           region->loop_status() == RegionNode::LoopStatus::Reducible) {
5757         failure = true;
5758         tty->print("irreducible! ");
5759         region->dump();
5760       }
5761     }
5762     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
5763       Node* use = n->fast_out(j);
5764       if (use->is_CFG()) {
5765         worklist.push(use); // push if was not pushed before
5766       }
5767     }
5768   }
5769   assert(!failure, "region in irreducible loop was marked as reducible");
5770 }
5771 
5772 //---------------------------is_in_irreducible_loop-------------------------
5773 // Analogous to ciTypeFlow::Block::is_in_irreducible_loop
5774 bool PhaseIdealLoop::is_in_irreducible_loop(RegionNode* region) {
5775   if (!_has_irreducible_loops) {
5776     return false; // no irreducible loop in graph
5777   }
5778   IdealLoopTree* l = get_loop(region); // l: innermost loop that contains region
5779   do {
5780     if (l->_irreducible) {
5781       return true; // found it
5782     }
5783     if (l == _ltree_root) {
5784       return false; // reached root, terimnate
5785     }
5786     l = l->_parent;
5787   } while (l != nullptr);
5788   assert(region->is_in_infinite_subgraph(), "must be in infinite subgraph");
5789   // We have "l->_parent == nullptr", which happens only for infinite loops,
5790   // where no parent is attached to the loop. We did not find any irreducible
5791   // loop from this block out to lp. Thus lp only has one entry, and no exit
5792   // (it is infinite and reducible). We can always rewrite an infinite loop
5793   // that is nested inside other loops:
5794   // while(condition) { infinite_loop; }
5795   // with an equivalent program where the infinite loop is an outermost loop
5796   // that is not nested in any loop:
5797   // while(condition) { break; } infinite_loop;
5798   // Thus, we can understand lp as an outermost loop, and can terminate and
5799   // conclude: this block is in no irreducible loop.
5800   return false;
5801 }
5802 #endif
5803 
5804 //------------------------------build_loop_early-------------------------------
5805 // Put Data nodes into some loop nest, by setting the _loop_or_ctrl[]->loop mapping.
5806 // First pass computes the earliest controlling node possible.  This is the
5807 // controlling input with the deepest dominating depth.
5808 void PhaseIdealLoop::build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ) {
5809   while (worklist.size() != 0) {
5810     // Use local variables nstack_top_n & nstack_top_i to cache values
5811     // on nstack's top.
5812     Node *nstack_top_n = worklist.pop();
5813     uint  nstack_top_i = 0;
5814 //while_nstack_nonempty:
5815     while (true) {
5816       // Get parent node and next input's index from stack's top.
5817       Node  *n = nstack_top_n;
5818       uint   i = nstack_top_i;
5819       uint cnt = n->req(); // Count of inputs
5820       if (i == 0) {        // Pre-process the node.
5821         if( has_node(n) &&            // Have either loop or control already?
5822             !has_ctrl(n) ) {          // Have loop picked out already?
5823           // During "merge_many_backedges" we fold up several nested loops
5824           // into a single loop.  This makes the members of the original
5825           // loop bodies pointing to dead loops; they need to move up
5826           // to the new UNION'd larger loop.  I set the _head field of these
5827           // dead loops to null and the _parent field points to the owning
5828           // loop.  Shades of UNION-FIND algorithm.
5829           IdealLoopTree *ilt;
5830           while( !(ilt = get_loop(n))->_head ) {
5831             // Normally I would use a set_loop here.  But in this one special
5832             // case, it is legal (and expected) to change what loop a Node
5833             // belongs to.
5834             _loop_or_ctrl.map(n->_idx, (Node*)(ilt->_parent));
5835           }
5836           // Remove safepoints ONLY if I've already seen I don't need one.
5837           // (the old code here would yank a 2nd safepoint after seeing a
5838           // first one, even though the 1st did not dominate in the loop body
5839           // and thus could be avoided indefinitely)
5840           if( !_verify_only && !_verify_me && ilt->_has_sfpt && n->Opcode() == Op_SafePoint &&
5841               is_deleteable_safept(n)) {
5842             Node *in = n->in(TypeFunc::Control);
5843             lazy_replace(n,in);       // Pull safepoint now
5844             if (ilt->_safepts != nullptr) {
5845               ilt->_safepts->yank(n);
5846             }
5847             // Carry on with the recursion "as if" we are walking
5848             // only the control input
5849             if( !visited.test_set( in->_idx ) ) {
5850               worklist.push(in);      // Visit this guy later, using worklist
5851             }
5852             // Get next node from nstack:
5853             // - skip n's inputs processing by setting i > cnt;
5854             // - we also will not call set_early_ctrl(n) since
5855             //   has_node(n) == true (see the condition above).
5856             i = cnt + 1;
5857           }
5858         }
5859       } // if (i == 0)
5860 
5861       // Visit all inputs
5862       bool done = true;       // Assume all n's inputs will be processed
5863       while (i < cnt) {
5864         Node *in = n->in(i);
5865         ++i;
5866         if (in == nullptr) continue;
5867         if (in->pinned() && !in->is_CFG())
5868           set_ctrl(in, in->in(0));
5869         int is_visited = visited.test_set( in->_idx );
5870         if (!has_node(in)) {  // No controlling input yet?
5871           assert( !in->is_CFG(), "CFG Node with no controlling input?" );
5872           assert( !is_visited, "visit only once" );
5873           nstack.push(n, i);  // Save parent node and next input's index.
5874           nstack_top_n = in;  // Process current input now.
5875           nstack_top_i = 0;
5876           done = false;       // Not all n's inputs processed.
5877           break; // continue while_nstack_nonempty;
5878         } else if (!is_visited) {
5879           // This guy has a location picked out for him, but has not yet
5880           // been visited.  Happens to all CFG nodes, for instance.
5881           // Visit him using the worklist instead of recursion, to break
5882           // cycles.  Since he has a location already we do not need to
5883           // find his location before proceeding with the current Node.
5884           worklist.push(in);  // Visit this guy later, using worklist
5885         }
5886       }
5887       if (done) {
5888         // All of n's inputs have been processed, complete post-processing.
5889 
5890         // Compute earliest point this Node can go.
5891         // CFG, Phi, pinned nodes already know their controlling input.
5892         if (!has_node(n)) {
5893           // Record earliest legal location
5894           set_early_ctrl(n, false);
5895         }
5896         if (nstack.is_empty()) {
5897           // Finished all nodes on stack.
5898           // Process next node on the worklist.
5899           break;
5900         }
5901         // Get saved parent node and next input's index.
5902         nstack_top_n = nstack.node();
5903         nstack_top_i = nstack.index();
5904         nstack.pop();
5905       }
5906     } // while (true)
5907   }
5908 }
5909 
5910 //------------------------------dom_lca_internal--------------------------------
5911 // Pair-wise LCA
5912 Node *PhaseIdealLoop::dom_lca_internal( Node *n1, Node *n2 ) const {
5913   if( !n1 ) return n2;          // Handle null original LCA
5914   assert( n1->is_CFG(), "" );
5915   assert( n2->is_CFG(), "" );
5916   // find LCA of all uses
5917   uint d1 = dom_depth(n1);
5918   uint d2 = dom_depth(n2);
5919   while (n1 != n2) {
5920     if (d1 > d2) {
5921       n1 =      idom(n1);
5922       d1 = dom_depth(n1);
5923     } else if (d1 < d2) {
5924       n2 =      idom(n2);
5925       d2 = dom_depth(n2);
5926     } else {
5927       // Here d1 == d2.  Due to edits of the dominator-tree, sections
5928       // of the tree might have the same depth.  These sections have
5929       // to be searched more carefully.
5930 
5931       // Scan up all the n1's with equal depth, looking for n2.
5932       Node *t1 = idom(n1);
5933       while (dom_depth(t1) == d1) {
5934         if (t1 == n2)  return n2;
5935         t1 = idom(t1);
5936       }
5937       // Scan up all the n2's with equal depth, looking for n1.
5938       Node *t2 = idom(n2);
5939       while (dom_depth(t2) == d2) {
5940         if (t2 == n1)  return n1;
5941         t2 = idom(t2);
5942       }
5943       // Move up to a new dominator-depth value as well as up the dom-tree.
5944       n1 = t1;
5945       n2 = t2;
5946       d1 = dom_depth(n1);
5947       d2 = dom_depth(n2);
5948     }
5949   }
5950   return n1;
5951 }
5952 
5953 //------------------------------compute_idom-----------------------------------
5954 // Locally compute IDOM using dom_lca call.  Correct only if the incoming
5955 // IDOMs are correct.
5956 Node *PhaseIdealLoop::compute_idom( Node *region ) const {
5957   assert( region->is_Region(), "" );
5958   Node *LCA = nullptr;
5959   for( uint i = 1; i < region->req(); i++ ) {
5960     if( region->in(i) != C->top() )
5961       LCA = dom_lca( LCA, region->in(i) );
5962   }
5963   return LCA;
5964 }
5965 
5966 bool PhaseIdealLoop::verify_dominance(Node* n, Node* use, Node* LCA, Node* early) {
5967   bool had_error = false;
5968 #ifdef ASSERT
5969   if (early != C->root()) {
5970     // Make sure that there's a dominance path from LCA to early
5971     Node* d = LCA;
5972     while (d != early) {
5973       if (d == C->root()) {
5974         dump_bad_graph("Bad graph detected in compute_lca_of_uses", n, early, LCA);
5975         tty->print_cr("*** Use %d isn't dominated by def %d ***", use->_idx, n->_idx);
5976         had_error = true;
5977         break;
5978       }
5979       d = idom(d);
5980     }
5981   }
5982 #endif
5983   return had_error;
5984 }
5985 
5986 
5987 Node* PhaseIdealLoop::compute_lca_of_uses(Node* n, Node* early, bool verify) {
5988   // Compute LCA over list of uses
5989   bool had_error = false;
5990   Node *LCA = nullptr;
5991   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax && LCA != early; i++) {
5992     Node* c = n->fast_out(i);
5993     if (_loop_or_ctrl[c->_idx] == nullptr)
5994       continue;                 // Skip the occasional dead node
5995     if( c->is_Phi() ) {         // For Phis, we must land above on the path
5996       for( uint j=1; j<c->req(); j++ ) {// For all inputs
5997         if( c->in(j) == n ) {   // Found matching input?
5998           Node *use = c->in(0)->in(j);
5999           if (_verify_only && use->is_top()) continue;
6000           LCA = dom_lca_for_get_late_ctrl( LCA, use, n );
6001           if (verify) had_error = verify_dominance(n, use, LCA, early) || had_error;
6002         }
6003       }
6004     } else {
6005       // For CFG data-users, use is in the block just prior
6006       Node *use = has_ctrl(c) ? get_ctrl(c) : c->in(0);
6007       LCA = dom_lca_for_get_late_ctrl( LCA, use, n );
6008       if (verify) had_error = verify_dominance(n, use, LCA, early) || had_error;
6009     }
6010   }
6011   assert(!had_error, "bad dominance");
6012   return LCA;
6013 }
6014 
6015 // Check the shape of the graph at the loop entry. In some cases,
6016 // the shape of the graph does not match the shape outlined below.
6017 // That is caused by the Opaque1 node "protecting" the shape of
6018 // the graph being removed by, for example, the IGVN performed
6019 // in PhaseIdealLoop::build_and_optimize().
6020 //
6021 // After the Opaque1 node has been removed, optimizations (e.g., split-if,
6022 // loop unswitching, and IGVN, or a combination of them) can freely change
6023 // the graph's shape. As a result, the graph shape outlined below cannot
6024 // be guaranteed anymore.
6025 Node* CountedLoopNode::is_canonical_loop_entry() {
6026   if (!is_main_loop() && !is_post_loop()) {
6027     return nullptr;
6028   }
6029   Node* ctrl = skip_assertion_predicates_with_halt();
6030 
6031   if (ctrl == nullptr || (!ctrl->is_IfTrue() && !ctrl->is_IfFalse())) {
6032     return nullptr;
6033   }
6034   Node* iffm = ctrl->in(0);
6035   if (iffm == nullptr || iffm->Opcode() != Op_If) {
6036     return nullptr;
6037   }
6038   Node* bolzm = iffm->in(1);
6039   if (bolzm == nullptr || !bolzm->is_Bool()) {
6040     return nullptr;
6041   }
6042   Node* cmpzm = bolzm->in(1);
6043   if (cmpzm == nullptr || !cmpzm->is_Cmp()) {
6044     return nullptr;
6045   }
6046 
6047   uint input = is_main_loop() ? 2 : 1;
6048   if (input >= cmpzm->req() || cmpzm->in(input) == nullptr) {
6049     return nullptr;
6050   }
6051   bool res = cmpzm->in(input)->Opcode() == Op_OpaqueZeroTripGuard;
6052 #ifdef ASSERT
6053   bool found_opaque = false;
6054   for (uint i = 1; i < cmpzm->req(); i++) {
6055     Node* opnd = cmpzm->in(i);
6056     if (opnd && opnd->is_Opaque1()) {
6057       found_opaque = true;
6058       break;
6059     }
6060   }
6061   assert(found_opaque == res, "wrong pattern");
6062 #endif
6063   return res ? cmpzm->in(input) : nullptr;
6064 }
6065 
6066 // Find pre loop end from main loop. Returns nullptr if none.
6067 CountedLoopEndNode* CountedLoopNode::find_pre_loop_end() {
6068   assert(is_main_loop(), "Can only find pre-loop from main-loop");
6069   // The loop cannot be optimized if the graph shape at the loop entry is
6070   // inappropriate.
6071   if (is_canonical_loop_entry() == nullptr) {
6072     return nullptr;
6073   }
6074 
6075   Node* p_f = skip_assertion_predicates_with_halt()->in(0)->in(0);
6076   if (!p_f->is_IfFalse() || !p_f->in(0)->is_CountedLoopEnd()) {
6077     return nullptr;
6078   }
6079   CountedLoopEndNode* pre_end = p_f->in(0)->as_CountedLoopEnd();
6080   CountedLoopNode* loop_node = pre_end->loopnode();
6081   if (loop_node == nullptr || !loop_node->is_pre_loop()) {
6082     return nullptr;
6083   }
6084   return pre_end;
6085 }
6086 
6087 //------------------------------get_late_ctrl----------------------------------
6088 // Compute latest legal control.
6089 Node *PhaseIdealLoop::get_late_ctrl( Node *n, Node *early ) {
6090   assert(early != nullptr, "early control should not be null");
6091 
6092   Node* LCA = compute_lca_of_uses(n, early);
6093 #ifdef ASSERT
6094   if (LCA == C->root() && LCA != early) {
6095     // def doesn't dominate uses so print some useful debugging output
6096     compute_lca_of_uses(n, early, true);
6097   }
6098 #endif
6099 
6100   if (n->is_Load() && LCA != early) {
6101     LCA = get_late_ctrl_with_anti_dep(n->as_Load(), early, LCA);
6102   }
6103 
6104   assert(LCA == find_non_split_ctrl(LCA), "unexpected late control");
6105   return LCA;
6106 }
6107 
6108 // if this is a load, check for anti-dependent stores
6109 // We use a conservative algorithm to identify potential interfering
6110 // instructions and for rescheduling the load.  The users of the memory
6111 // input of this load are examined.  Any use which is not a load and is
6112 // dominated by early is considered a potentially interfering store.
6113 // This can produce false positives.
6114 Node* PhaseIdealLoop::get_late_ctrl_with_anti_dep(LoadNode* n, Node* early, Node* LCA) {
6115   int load_alias_idx = C->get_alias_index(n->adr_type());
6116   if (C->alias_type(load_alias_idx)->is_rewritable()) {
6117     Unique_Node_List worklist;
6118 
6119     Node* mem = n->in(MemNode::Memory);
6120     for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
6121       Node* s = mem->fast_out(i);
6122       worklist.push(s);
6123     }
6124     for (uint i = 0; i < worklist.size() && LCA != early; i++) {
6125       Node* s = worklist.at(i);
6126       if (s->is_Load() || s->Opcode() == Op_SafePoint ||
6127           (s->is_CallStaticJava() && s->as_CallStaticJava()->uncommon_trap_request() != 0) ||
6128           s->is_Phi()) {
6129         continue;
6130       } else if (s->is_MergeMem()) {
6131         for (DUIterator_Fast imax, i = s->fast_outs(imax); i < imax; i++) {
6132           Node* s1 = s->fast_out(i);
6133           worklist.push(s1);
6134         }
6135       } else {
6136         Node* sctrl = has_ctrl(s) ? get_ctrl(s) : s->in(0);
6137         assert(sctrl != nullptr || !s->is_reachable_from_root(), "must have control");
6138         if (sctrl != nullptr && !sctrl->is_top() && is_dominator(early, sctrl)) {
6139           const TypePtr* adr_type = s->adr_type();
6140           if (s->is_ArrayCopy()) {
6141             // Copy to known instance needs destination type to test for aliasing
6142             const TypePtr* dest_type = s->as_ArrayCopy()->_dest_type;
6143             if (dest_type != TypeOopPtr::BOTTOM) {
6144               adr_type = dest_type;
6145             }
6146           }
6147           if (C->can_alias(adr_type, load_alias_idx)) {
6148             LCA = dom_lca_for_get_late_ctrl(LCA, sctrl, n);
6149           } else if (s->is_CFG() && s->is_Multi()) {
6150             // Look for the memory use of s (that is the use of its memory projection)
6151             for (DUIterator_Fast imax, i = s->fast_outs(imax); i < imax; i++) {
6152               Node* s1 = s->fast_out(i);
6153               assert(s1->is_Proj(), "projection expected");
6154               if (_igvn.type(s1) == Type::MEMORY) {
6155                 for (DUIterator_Fast jmax, j = s1->fast_outs(jmax); j < jmax; j++) {
6156                   Node* s2 = s1->fast_out(j);
6157                   worklist.push(s2);
6158                 }
6159               }
6160             }
6161           }
6162         }
6163       }
6164     }
6165     // For Phis only consider Region's inputs that were reached by following the memory edges
6166     if (LCA != early) {
6167       for (uint i = 0; i < worklist.size(); i++) {
6168         Node* s = worklist.at(i);
6169         if (s->is_Phi() && C->can_alias(s->adr_type(), load_alias_idx)) {
6170           Node* r = s->in(0);
6171           for (uint j = 1; j < s->req(); j++) {
6172             Node* in = s->in(j);
6173             Node* r_in = r->in(j);
6174             // We can't reach any node from a Phi because we don't enqueue Phi's uses above
6175             if (((worklist.member(in) && !in->is_Phi()) || in == mem) && is_dominator(early, r_in)) {
6176               LCA = dom_lca_for_get_late_ctrl(LCA, r_in, n);
6177             }
6178           }
6179         }
6180       }
6181     }
6182   }
6183   return LCA;
6184 }
6185 
6186 // Is CFG node 'dominator' dominating node 'n'?
6187 bool PhaseIdealLoop::is_dominator(Node* dominator, Node* n) {
6188   if (dominator == n) {
6189     return true;
6190   }
6191   assert(dominator->is_CFG() && n->is_CFG(), "must have CFG nodes");
6192   uint dd = dom_depth(dominator);
6193   while (dom_depth(n) >= dd) {
6194     if (n == dominator) {
6195       return true;
6196     }
6197     n = idom(n);
6198   }
6199   return false;
6200 }
6201 
6202 // Is CFG node 'dominator' strictly dominating node 'n'?
6203 bool PhaseIdealLoop::is_strict_dominator(Node* dominator, Node* n) {
6204   return dominator != n && is_dominator(dominator, n);
6205 }
6206 
6207 //------------------------------dom_lca_for_get_late_ctrl_internal-------------
6208 // Pair-wise LCA with tags.
6209 // Tag each index with the node 'tag' currently being processed
6210 // before advancing up the dominator chain using idom().
6211 // Later calls that find a match to 'tag' know that this path has already
6212 // been considered in the current LCA (which is input 'n1' by convention).
6213 // Since get_late_ctrl() is only called once for each node, the tag array
6214 // does not need to be cleared between calls to get_late_ctrl().
6215 // Algorithm trades a larger constant factor for better asymptotic behavior
6216 //
6217 Node *PhaseIdealLoop::dom_lca_for_get_late_ctrl_internal(Node *n1, Node *n2, Node *tag_node) {
6218   uint d1 = dom_depth(n1);
6219   uint d2 = dom_depth(n2);
6220   jlong tag = tag_node->_idx | (((jlong)_dom_lca_tags_round) << 32);
6221 
6222   do {
6223     if (d1 > d2) {
6224       // current lca is deeper than n2
6225       _dom_lca_tags.at_put_grow(n1->_idx, tag);
6226       n1 =      idom(n1);
6227       d1 = dom_depth(n1);
6228     } else if (d1 < d2) {
6229       // n2 is deeper than current lca
6230       jlong memo = _dom_lca_tags.at_grow(n2->_idx, 0);
6231       if (memo == tag) {
6232         return n1;    // Return the current LCA
6233       }
6234       _dom_lca_tags.at_put_grow(n2->_idx, tag);
6235       n2 =      idom(n2);
6236       d2 = dom_depth(n2);
6237     } else {
6238       // Here d1 == d2.  Due to edits of the dominator-tree, sections
6239       // of the tree might have the same depth.  These sections have
6240       // to be searched more carefully.
6241 
6242       // Scan up all the n1's with equal depth, looking for n2.
6243       _dom_lca_tags.at_put_grow(n1->_idx, tag);
6244       Node *t1 = idom(n1);
6245       while (dom_depth(t1) == d1) {
6246         if (t1 == n2)  return n2;
6247         _dom_lca_tags.at_put_grow(t1->_idx, tag);
6248         t1 = idom(t1);
6249       }
6250       // Scan up all the n2's with equal depth, looking for n1.
6251       _dom_lca_tags.at_put_grow(n2->_idx, tag);
6252       Node *t2 = idom(n2);
6253       while (dom_depth(t2) == d2) {
6254         if (t2 == n1)  return n1;
6255         _dom_lca_tags.at_put_grow(t2->_idx, tag);
6256         t2 = idom(t2);
6257       }
6258       // Move up to a new dominator-depth value as well as up the dom-tree.
6259       n1 = t1;
6260       n2 = t2;
6261       d1 = dom_depth(n1);
6262       d2 = dom_depth(n2);
6263     }
6264   } while (n1 != n2);
6265   return n1;
6266 }
6267 
6268 //------------------------------init_dom_lca_tags------------------------------
6269 // Tag could be a node's integer index, 32bits instead of 64bits in some cases
6270 // Intended use does not involve any growth for the array, so it could
6271 // be of fixed size.
6272 void PhaseIdealLoop::init_dom_lca_tags() {
6273   uint limit = C->unique() + 1;
6274   _dom_lca_tags.at_grow(limit, 0);
6275   _dom_lca_tags_round = 0;
6276 #ifdef ASSERT
6277   for (uint i = 0; i < limit; ++i) {
6278     assert(_dom_lca_tags.at(i) == 0, "Must be distinct from each node pointer");
6279   }
6280 #endif // ASSERT
6281 }
6282 
6283 //------------------------------build_loop_late--------------------------------
6284 // Put Data nodes into some loop nest, by setting the _loop_or_ctrl[]->loop mapping.
6285 // Second pass finds latest legal placement, and ideal loop placement.
6286 void PhaseIdealLoop::build_loop_late( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ) {
6287   while (worklist.size() != 0) {
6288     Node *n = worklist.pop();
6289     // Only visit once
6290     if (visited.test_set(n->_idx)) continue;
6291     uint cnt = n->outcnt();
6292     uint   i = 0;
6293     while (true) {
6294       assert(_loop_or_ctrl[n->_idx], "no dead nodes");
6295       // Visit all children
6296       if (i < cnt) {
6297         Node* use = n->raw_out(i);
6298         ++i;
6299         // Check for dead uses.  Aggressively prune such junk.  It might be
6300         // dead in the global sense, but still have local uses so I cannot
6301         // easily call 'remove_dead_node'.
6302         if (_loop_or_ctrl[use->_idx] != nullptr || use->is_top()) { // Not dead?
6303           // Due to cycles, we might not hit the same fixed point in the verify
6304           // pass as we do in the regular pass.  Instead, visit such phis as
6305           // simple uses of the loop head.
6306           if( use->in(0) && (use->is_CFG() || use->is_Phi()) ) {
6307             if( !visited.test(use->_idx) )
6308               worklist.push(use);
6309           } else if( !visited.test_set(use->_idx) ) {
6310             nstack.push(n, i); // Save parent and next use's index.
6311             n   = use;         // Process all children of current use.
6312             cnt = use->outcnt();
6313             i   = 0;
6314           }
6315         } else {
6316           // Do not visit around the backedge of loops via data edges.
6317           // push dead code onto a worklist
6318           _deadlist.push(use);
6319         }
6320       } else {
6321         // All of n's children have been processed, complete post-processing.
6322         build_loop_late_post(n);
6323         if (C->failing()) { return; }
6324         if (nstack.is_empty()) {
6325           // Finished all nodes on stack.
6326           // Process next node on the worklist.
6327           break;
6328         }
6329         // Get saved parent node and next use's index. Visit the rest of uses.
6330         n   = nstack.node();
6331         cnt = n->outcnt();
6332         i   = nstack.index();
6333         nstack.pop();
6334       }
6335     }
6336   }
6337 }
6338 
6339 // Verify that no data node is scheduled in the outer loop of a strip
6340 // mined loop.
6341 void PhaseIdealLoop::verify_strip_mined_scheduling(Node *n, Node* least) {
6342 #ifdef ASSERT
6343   if (get_loop(least)->_nest == 0) {
6344     return;
6345   }
6346   IdealLoopTree* loop = get_loop(least);
6347   Node* head = loop->_head;
6348   if (head->is_OuterStripMinedLoop() &&
6349       // Verification can't be applied to fully built strip mined loops
6350       head->as_Loop()->outer_loop_end()->in(1)->find_int_con(-1) == 0) {
6351     Node* sfpt = head->as_Loop()->outer_safepoint();
6352     ResourceMark rm;
6353     Unique_Node_List wq;
6354     wq.push(sfpt);
6355     for (uint i = 0; i < wq.size(); i++) {
6356       Node *m = wq.at(i);
6357       for (uint i = 1; i < m->req(); i++) {
6358         Node* nn = m->in(i);
6359         if (nn == n) {
6360           return;
6361         }
6362         if (nn != nullptr && has_ctrl(nn) && get_loop(get_ctrl(nn)) == loop) {
6363           wq.push(nn);
6364         }
6365       }
6366     }
6367     ShouldNotReachHere();
6368   }
6369 #endif
6370 }
6371 
6372 
6373 //------------------------------build_loop_late_post---------------------------
6374 // Put Data nodes into some loop nest, by setting the _loop_or_ctrl[]->loop mapping.
6375 // Second pass finds latest legal placement, and ideal loop placement.
6376 void PhaseIdealLoop::build_loop_late_post(Node *n) {
6377   build_loop_late_post_work(n, true);
6378 }
6379 
6380 // Class to visit all predicates in a predicate chain to find out which are dominated by a given node. Keeps track of
6381 // the entry to the earliest predicate that is still dominated by the given dominator. This class is used when trying to
6382 // legally skip all predicates when figuring out the latest placement such that a node does not interfere with Loop
6383 // Predication or creating a Loop Limit Check Predicate later.
6384 class DominatedPredicates : public UnifiedPredicateVisitor {
6385   Node* const _dominator;
6386   Node* _earliest_dominated_predicate_entry;
6387   bool _should_continue;
6388   PhaseIdealLoop* const _phase;
6389 
6390  public:
6391   DominatedPredicates(Node* dominator, Node* start_node, PhaseIdealLoop* phase)
6392       : _dominator(dominator),
6393         _earliest_dominated_predicate_entry(start_node),
6394         _should_continue(true),
6395         _phase(phase) {}
6396   NONCOPYABLE(DominatedPredicates);
6397 
6398   bool should_continue() const override {
6399     return _should_continue;
6400   }
6401 
6402   // Returns the entry to the earliest predicate that is still dominated by the given dominator (all could be dominated).
6403   Node* earliest_dominated_predicate_entry() const {
6404     return _earliest_dominated_predicate_entry;
6405   }
6406 
6407   void visit_predicate(const Predicate& predicate) override {
6408     Node* entry = predicate.entry();
6409     if (_phase->is_strict_dominator(entry, _dominator)) {
6410       _should_continue = false;
6411     } else {
6412       _earliest_dominated_predicate_entry = entry;
6413     }
6414   }
6415 };
6416 
6417 void PhaseIdealLoop::build_loop_late_post_work(Node *n, bool pinned) {
6418 
6419   if (n->req() == 2 && (n->Opcode() == Op_ConvI2L || n->Opcode() == Op_CastII) && !C->major_progress() && !_verify_only) {
6420     _igvn._worklist.push(n);  // Maybe we'll normalize it, if no more loops.
6421   }
6422 
6423 #ifdef ASSERT
6424   if (_verify_only && !n->is_CFG()) {
6425     // Check def-use domination.
6426     compute_lca_of_uses(n, get_ctrl(n), true /* verify */);
6427   }
6428 #endif
6429 
6430   // CFG and pinned nodes already handled
6431   if( n->in(0) ) {
6432     if( n->in(0)->is_top() ) return; // Dead?
6433 
6434     // We'd like +VerifyLoopOptimizations to not believe that Mod's/Loads
6435     // _must_ be pinned (they have to observe their control edge of course).
6436     // Unlike Stores (which modify an unallocable resource, the memory
6437     // state), Mods/Loads can float around.  So free them up.
6438     switch( n->Opcode() ) {
6439     case Op_DivI:
6440     case Op_DivF:
6441     case Op_DivD:
6442     case Op_ModI:
6443     case Op_ModF:
6444     case Op_ModD:
6445     case Op_LoadB:              // Same with Loads; they can sink
6446     case Op_LoadUB:             // during loop optimizations.
6447     case Op_LoadUS:
6448     case Op_LoadD:
6449     case Op_LoadF:
6450     case Op_LoadI:
6451     case Op_LoadKlass:
6452     case Op_LoadNKlass:
6453     case Op_LoadL:
6454     case Op_LoadS:
6455     case Op_LoadP:
6456     case Op_LoadN:
6457     case Op_LoadRange:
6458     case Op_LoadD_unaligned:
6459     case Op_LoadL_unaligned:
6460     case Op_StrComp:            // Does a bunch of load-like effects
6461     case Op_StrEquals:
6462     case Op_StrIndexOf:
6463     case Op_StrIndexOfChar:
6464     case Op_AryEq:
6465     case Op_VectorizedHashCode:
6466     case Op_CountPositives:
6467       pinned = false;
6468     }
6469     if (n->is_CMove() || n->is_ConstraintCast()) {
6470       pinned = false;
6471     }
6472     if( pinned ) {
6473       IdealLoopTree *chosen_loop = get_loop(n->is_CFG() ? n : get_ctrl(n));
6474       if( !chosen_loop->_child )       // Inner loop?
6475         chosen_loop->_body.push(n); // Collect inner loops
6476       return;
6477     }
6478   } else {                      // No slot zero
6479     if( n->is_CFG() ) {         // CFG with no slot 0 is dead
6480       _loop_or_ctrl.map(n->_idx,nullptr); // No block setting, it's globally dead
6481       return;
6482     }
6483     assert(!n->is_CFG() || n->outcnt() == 0, "");
6484   }
6485 
6486   // Do I have a "safe range" I can select over?
6487   Node *early = get_ctrl(n);// Early location already computed
6488 
6489   // Compute latest point this Node can go
6490   Node *LCA = get_late_ctrl( n, early );
6491   // LCA is null due to uses being dead
6492   if( LCA == nullptr ) {
6493 #ifdef ASSERT
6494     for (DUIterator i1 = n->outs(); n->has_out(i1); i1++) {
6495       assert(_loop_or_ctrl[n->out(i1)->_idx] == nullptr, "all uses must also be dead");
6496     }
6497 #endif
6498     _loop_or_ctrl.map(n->_idx, nullptr); // This node is useless
6499     _deadlist.push(n);
6500     return;
6501   }
6502   assert(LCA != nullptr && !LCA->is_top(), "no dead nodes");
6503 
6504   Node *legal = LCA;            // Walk 'legal' up the IDOM chain
6505   Node *least = legal;          // Best legal position so far
6506   while( early != legal ) {     // While not at earliest legal
6507     if (legal->is_Start() && !early->is_Root()) {
6508 #ifdef ASSERT
6509       // Bad graph. Print idom path and fail.
6510       dump_bad_graph("Bad graph detected in build_loop_late", n, early, LCA);
6511       assert(false, "Bad graph detected in build_loop_late");
6512 #endif
6513       C->record_method_not_compilable("Bad graph detected in build_loop_late");
6514       return;
6515     }
6516     // Find least loop nesting depth
6517     legal = idom(legal);        // Bump up the IDOM tree
6518     // Check for lower nesting depth
6519     if( get_loop(legal)->_nest < get_loop(least)->_nest )
6520       least = legal;
6521   }
6522   assert(early == legal || legal != C->root(), "bad dominance of inputs");
6523 
6524   if (least != early) {
6525     // Move the node above predicates as far up as possible so a
6526     // following pass of Loop Predication doesn't hoist a predicate
6527     // that depends on it above that node.
6528     const PredicateIterator predicate_iterator(least);
6529     DominatedPredicates dominated_predicates(early, least, this);
6530     predicate_iterator.for_each(dominated_predicates);
6531     least = dominated_predicates.earliest_dominated_predicate_entry();
6532   }
6533   // Try not to place code on a loop entry projection
6534   // which can inhibit range check elimination.
6535   if (least != early && !BarrierSet::barrier_set()->barrier_set_c2()->is_gc_specific_loop_opts_pass(_mode)) {
6536     Node* ctrl_out = least->unique_ctrl_out_or_null();
6537     if (ctrl_out != nullptr && ctrl_out->is_Loop() &&
6538         least == ctrl_out->in(LoopNode::EntryControl) &&
6539         (ctrl_out->is_CountedLoop() || ctrl_out->is_OuterStripMinedLoop())) {
6540       Node* least_dom = idom(least);
6541       if (get_loop(least_dom)->is_member(get_loop(least))) {
6542         least = least_dom;
6543       }
6544     }
6545   }
6546   // Don't extend live ranges of raw oops
6547   if (least != early && n->is_ConstraintCast() && n->in(1)->bottom_type()->isa_rawptr() &&
6548       !n->bottom_type()->isa_rawptr()) {
6549     least = early;
6550   }
6551 
6552 #ifdef ASSERT
6553   // Broken part of VerifyLoopOptimizations (F)
6554   // Reason:
6555   //   _verify_me->get_ctrl_no_update(n) seems to return wrong result
6556   /*
6557   // If verifying, verify that 'verify_me' has a legal location
6558   // and choose it as our location.
6559   if( _verify_me ) {
6560     Node *v_ctrl = _verify_me->get_ctrl_no_update(n);
6561     Node *legal = LCA;
6562     while( early != legal ) {   // While not at earliest legal
6563       if( legal == v_ctrl ) break;  // Check for prior good location
6564       legal = idom(legal)      ;// Bump up the IDOM tree
6565     }
6566     // Check for prior good location
6567     if( legal == v_ctrl ) least = legal; // Keep prior if found
6568   }
6569   */
6570 #endif
6571 
6572   // Assign discovered "here or above" point
6573   least = find_non_split_ctrl(least);
6574   verify_strip_mined_scheduling(n, least);
6575   set_ctrl(n, least);
6576 
6577   // Collect inner loop bodies
6578   IdealLoopTree *chosen_loop = get_loop(least);
6579   if( !chosen_loop->_child )   // Inner loop?
6580     chosen_loop->_body.push(n);// Collect inner loops
6581 
6582   if (!_verify_only && n->Opcode() == Op_OpaqueZeroTripGuard) {
6583     _zero_trip_guard_opaque_nodes.push(n);
6584   }
6585 
6586 }
6587 
6588 #ifdef ASSERT
6589 void PhaseIdealLoop::dump_bad_graph(const char* msg, Node* n, Node* early, Node* LCA) {
6590   tty->print_cr("%s", msg);
6591   tty->print("n: "); n->dump();
6592   tty->print("early(n): "); early->dump();
6593   if (n->in(0) != nullptr  && !n->in(0)->is_top() &&
6594       n->in(0) != early && !n->in(0)->is_Root()) {
6595     tty->print("n->in(0): "); n->in(0)->dump();
6596   }
6597   for (uint i = 1; i < n->req(); i++) {
6598     Node* in1 = n->in(i);
6599     if (in1 != nullptr && in1 != n && !in1->is_top()) {
6600       tty->print("n->in(%d): ", i); in1->dump();
6601       Node* in1_early = get_ctrl(in1);
6602       tty->print("early(n->in(%d)): ", i); in1_early->dump();
6603       if (in1->in(0) != nullptr     && !in1->in(0)->is_top() &&
6604           in1->in(0) != in1_early && !in1->in(0)->is_Root()) {
6605         tty->print("n->in(%d)->in(0): ", i); in1->in(0)->dump();
6606       }
6607       for (uint j = 1; j < in1->req(); j++) {
6608         Node* in2 = in1->in(j);
6609         if (in2 != nullptr && in2 != n && in2 != in1 && !in2->is_top()) {
6610           tty->print("n->in(%d)->in(%d): ", i, j); in2->dump();
6611           Node* in2_early = get_ctrl(in2);
6612           tty->print("early(n->in(%d)->in(%d)): ", i, j); in2_early->dump();
6613           if (in2->in(0) != nullptr     && !in2->in(0)->is_top() &&
6614               in2->in(0) != in2_early && !in2->in(0)->is_Root()) {
6615             tty->print("n->in(%d)->in(%d)->in(0): ", i, j); in2->in(0)->dump();
6616           }
6617         }
6618       }
6619     }
6620   }
6621   tty->cr();
6622   tty->print("LCA(n): "); LCA->dump();
6623   for (uint i = 0; i < n->outcnt(); i++) {
6624     Node* u1 = n->raw_out(i);
6625     if (u1 == n)
6626       continue;
6627     tty->print("n->out(%d): ", i); u1->dump();
6628     if (u1->is_CFG()) {
6629       for (uint j = 0; j < u1->outcnt(); j++) {
6630         Node* u2 = u1->raw_out(j);
6631         if (u2 != u1 && u2 != n && u2->is_CFG()) {
6632           tty->print("n->out(%d)->out(%d): ", i, j); u2->dump();
6633         }
6634       }
6635     } else {
6636       Node* u1_later = get_ctrl(u1);
6637       tty->print("later(n->out(%d)): ", i); u1_later->dump();
6638       if (u1->in(0) != nullptr     && !u1->in(0)->is_top() &&
6639           u1->in(0) != u1_later && !u1->in(0)->is_Root()) {
6640         tty->print("n->out(%d)->in(0): ", i); u1->in(0)->dump();
6641       }
6642       for (uint j = 0; j < u1->outcnt(); j++) {
6643         Node* u2 = u1->raw_out(j);
6644         if (u2 == n || u2 == u1)
6645           continue;
6646         tty->print("n->out(%d)->out(%d): ", i, j); u2->dump();
6647         if (!u2->is_CFG()) {
6648           Node* u2_later = get_ctrl(u2);
6649           tty->print("later(n->out(%d)->out(%d)): ", i, j); u2_later->dump();
6650           if (u2->in(0) != nullptr     && !u2->in(0)->is_top() &&
6651               u2->in(0) != u2_later && !u2->in(0)->is_Root()) {
6652             tty->print("n->out(%d)->in(0): ", i); u2->in(0)->dump();
6653           }
6654         }
6655       }
6656     }
6657   }
6658   dump_idoms(early, LCA);
6659   tty->cr();
6660 }
6661 
6662 // Class to compute the real LCA given an early node and a wrong LCA in a bad graph.
6663 class RealLCA {
6664   const PhaseIdealLoop* _phase;
6665   Node* _early;
6666   Node* _wrong_lca;
6667   uint _early_index;
6668   int _wrong_lca_index;
6669 
6670   // Given idom chains of early and wrong LCA: Walk through idoms starting at StartNode and find the first node which
6671   // is different: Return the previously visited node which must be the real LCA.
6672   // The node lists also contain _early and _wrong_lca, respectively.
6673   Node* find_real_lca(Unique_Node_List& early_with_idoms, Unique_Node_List& wrong_lca_with_idoms) {
6674     int early_index = early_with_idoms.size() - 1;
6675     int wrong_lca_index = wrong_lca_with_idoms.size() - 1;
6676     bool found_difference = false;
6677     do {
6678       if (early_with_idoms[early_index] != wrong_lca_with_idoms[wrong_lca_index]) {
6679         // First time early and wrong LCA idoms differ. Real LCA must be at the previous index.
6680         found_difference = true;
6681         break;
6682       }
6683       early_index--;
6684       wrong_lca_index--;
6685     } while (wrong_lca_index >= 0);
6686 
6687     assert(early_index >= 0, "must always find an LCA - cannot be early");
6688     _early_index = early_index;
6689     _wrong_lca_index = wrong_lca_index;
6690     Node* real_lca = early_with_idoms[_early_index + 1]; // Plus one to skip _early.
6691     assert(found_difference || real_lca == _wrong_lca, "wrong LCA dominates early and is therefore the real LCA");
6692     return real_lca;
6693   }
6694 
6695   void dump(Node* real_lca) {
6696     tty->cr();
6697     tty->print_cr("idoms of early \"%d %s\":", _early->_idx, _early->Name());
6698     _phase->dump_idom(_early, _early_index + 1);
6699 
6700     tty->cr();
6701     tty->print_cr("idoms of (wrong) LCA \"%d %s\":", _wrong_lca->_idx, _wrong_lca->Name());
6702     _phase->dump_idom(_wrong_lca, _wrong_lca_index + 1);
6703 
6704     tty->cr();
6705     tty->print("Real LCA of early \"%d %s\" (idom[%d]) and wrong LCA \"%d %s\"",
6706                _early->_idx, _early->Name(), _early_index, _wrong_lca->_idx, _wrong_lca->Name());
6707     if (_wrong_lca_index >= 0) {
6708       tty->print(" (idom[%d])", _wrong_lca_index);
6709     }
6710     tty->print_cr(":");
6711     real_lca->dump();
6712   }
6713 
6714  public:
6715   RealLCA(const PhaseIdealLoop* phase, Node* early, Node* wrong_lca)
6716       : _phase(phase), _early(early), _wrong_lca(wrong_lca), _early_index(0), _wrong_lca_index(0) {
6717     assert(!wrong_lca->is_Start(), "StartNode is always a common dominator");
6718   }
6719 
6720   void compute_and_dump() {
6721     ResourceMark rm;
6722     Unique_Node_List early_with_idoms;
6723     Unique_Node_List wrong_lca_with_idoms;
6724     early_with_idoms.push(_early);
6725     wrong_lca_with_idoms.push(_wrong_lca);
6726     _phase->get_idoms(_early, 10000, early_with_idoms);
6727     _phase->get_idoms(_wrong_lca, 10000, wrong_lca_with_idoms);
6728     Node* real_lca = find_real_lca(early_with_idoms, wrong_lca_with_idoms);
6729     dump(real_lca);
6730   }
6731 };
6732 
6733 // Dump the idom chain of early, of the wrong LCA and dump the real LCA of early and wrong LCA.
6734 void PhaseIdealLoop::dump_idoms(Node* early, Node* wrong_lca) {
6735   assert(!is_dominator(early, wrong_lca), "sanity check that early does not dominate wrong lca");
6736   assert(!has_ctrl(early) && !has_ctrl(wrong_lca), "sanity check, no data nodes");
6737 
6738   RealLCA real_lca(this, early, wrong_lca);
6739   real_lca.compute_and_dump();
6740 }
6741 #endif // ASSERT
6742 
6743 #ifndef PRODUCT
6744 //------------------------------dump-------------------------------------------
6745 void PhaseIdealLoop::dump() const {
6746   ResourceMark rm;
6747   Node_Stack stack(C->live_nodes() >> 2);
6748   Node_List rpo_list;
6749   VectorSet visited;
6750   visited.set(C->top()->_idx);
6751   rpo(C->root(), stack, visited, rpo_list);
6752   // Dump root loop indexed by last element in PO order
6753   dump(_ltree_root, rpo_list.size(), rpo_list);
6754 }
6755 
6756 void PhaseIdealLoop::dump(IdealLoopTree* loop, uint idx, Node_List &rpo_list) const {
6757   loop->dump_head();
6758 
6759   // Now scan for CFG nodes in the same loop
6760   for (uint j = idx; j > 0; j--) {
6761     Node* n = rpo_list[j-1];
6762     if (!_loop_or_ctrl[n->_idx])      // Skip dead nodes
6763       continue;
6764 
6765     if (get_loop(n) != loop) { // Wrong loop nest
6766       if (get_loop(n)->_head == n &&    // Found nested loop?
6767           get_loop(n)->_parent == loop)
6768         dump(get_loop(n), rpo_list.size(), rpo_list);     // Print it nested-ly
6769       continue;
6770     }
6771 
6772     // Dump controlling node
6773     tty->sp(2 * loop->_nest);
6774     tty->print("C");
6775     if (n == C->root()) {
6776       n->dump();
6777     } else {
6778       Node* cached_idom   = idom_no_update(n);
6779       Node* computed_idom = n->in(0);
6780       if (n->is_Region()) {
6781         computed_idom = compute_idom(n);
6782         // computed_idom() will return n->in(0) when idom(n) is an IfNode (or
6783         // any MultiBranch ctrl node), so apply a similar transform to
6784         // the cached idom returned from idom_no_update.
6785         cached_idom = find_non_split_ctrl(cached_idom);
6786       }
6787       tty->print(" ID:%d", computed_idom->_idx);
6788       n->dump();
6789       if (cached_idom != computed_idom) {
6790         tty->print_cr("*** BROKEN IDOM!  Computed as: %d, cached as: %d",
6791                       computed_idom->_idx, cached_idom->_idx);
6792       }
6793     }
6794     // Dump nodes it controls
6795     for (uint k = 0; k < _loop_or_ctrl.max(); k++) {
6796       // (k < C->unique() && get_ctrl(find(k)) == n)
6797       if (k < C->unique() && _loop_or_ctrl[k] == (Node*)((intptr_t)n + 1)) {
6798         Node* m = C->root()->find(k);
6799         if (m && m->outcnt() > 0) {
6800           if (!(has_ctrl(m) && get_ctrl_no_update(m) == n)) {
6801             tty->print_cr("*** BROKEN CTRL ACCESSOR!  _loop_or_ctrl[k] is %p, ctrl is %p",
6802                           _loop_or_ctrl[k], has_ctrl(m) ? get_ctrl_no_update(m) : nullptr);
6803           }
6804           tty->sp(2 * loop->_nest + 1);
6805           m->dump();
6806         }
6807       }
6808     }
6809   }
6810 }
6811 
6812 void PhaseIdealLoop::dump_idom(Node* n, const uint count) const {
6813   if (has_ctrl(n)) {
6814     tty->print_cr("No idom for data nodes");
6815   } else {
6816     ResourceMark rm;
6817     Unique_Node_List idoms;
6818     get_idoms(n, count, idoms);
6819     dump_idoms_in_reverse(n, idoms);
6820   }
6821 }
6822 
6823 void PhaseIdealLoop::get_idoms(Node* n, const uint count, Unique_Node_List& idoms) const {
6824   Node* next = n;
6825   for (uint i = 0; !next->is_Start() && i < count; i++) {
6826     next = idom(next);
6827     assert(!idoms.member(next), "duplicated idom is not possible");
6828     idoms.push(next);
6829   }
6830 }
6831 
6832 void PhaseIdealLoop::dump_idoms_in_reverse(const Node* n, const Node_List& idom_list) const {
6833   Node* next;
6834   uint padding = 3;
6835   uint node_index_padding_width = static_cast<int>(log10(static_cast<double>(C->unique()))) + 1;
6836   for (int i = idom_list.size() - 1; i >= 0; i--) {
6837     if (i == 9 || i == 99) {
6838       padding++;
6839     }
6840     next = idom_list[i];
6841     tty->print_cr("idom[%d]:%*c%*d  %s", i, padding, ' ', node_index_padding_width, next->_idx, next->Name());
6842   }
6843   tty->print_cr("n:      %*c%*d  %s", padding, ' ', node_index_padding_width, n->_idx, n->Name());
6844 }
6845 #endif // NOT PRODUCT
6846 
6847 // Collect a R-P-O for the whole CFG.
6848 // Result list is in post-order (scan backwards for RPO)
6849 void PhaseIdealLoop::rpo(Node* start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list) const {
6850   stk.push(start, 0);
6851   visited.set(start->_idx);
6852 
6853   while (stk.is_nonempty()) {
6854     Node* m   = stk.node();
6855     uint  idx = stk.index();
6856     if (idx < m->outcnt()) {
6857       stk.set_index(idx + 1);
6858       Node* n = m->raw_out(idx);
6859       if (n->is_CFG() && !visited.test_set(n->_idx)) {
6860         stk.push(n, 0);
6861       }
6862     } else {
6863       rpo_list.push(m);
6864       stk.pop();
6865     }
6866   }
6867 }
6868 
6869 
6870 //=============================================================================
6871 //------------------------------LoopTreeIterator-------------------------------
6872 
6873 // Advance to next loop tree using a preorder, left-to-right traversal.
6874 void LoopTreeIterator::next() {
6875   assert(!done(), "must not be done.");
6876   if (_curnt->_child != nullptr) {
6877     _curnt = _curnt->_child;
6878   } else if (_curnt->_next != nullptr) {
6879     _curnt = _curnt->_next;
6880   } else {
6881     while (_curnt != _root && _curnt->_next == nullptr) {
6882       _curnt = _curnt->_parent;
6883     }
6884     if (_curnt == _root) {
6885       _curnt = nullptr;
6886       assert(done(), "must be done.");
6887     } else {
6888       assert(_curnt->_next != nullptr, "must be more to do");
6889       _curnt = _curnt->_next;
6890     }
6891   }
6892 }