1 /*
   2  * Copyright (c) 1998, 2026, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "ci/ciMethodData.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "gc/shared/barrierSet.hpp"
  28 #include "gc/shared/c2/barrierSetC2.hpp"
  29 #include "libadt/vectset.hpp"
  30 #include "memory/allocation.inline.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "opto/addnode.hpp"
  33 #include "opto/arraycopynode.hpp"
  34 #include "opto/c2_globals.hpp"
  35 #include "opto/callnode.hpp"
  36 #include "opto/castnode.hpp"
  37 #include "opto/connode.hpp"
  38 #include "opto/convertnode.hpp"
  39 #include "opto/divnode.hpp"
  40 #include "opto/idealGraphPrinter.hpp"
  41 #include "opto/loopnode.hpp"
  42 #include "opto/movenode.hpp"
  43 #include "opto/mulnode.hpp"
  44 #include "opto/opaquenode.hpp"
  45 #include "opto/opcodes.hpp"
  46 #include "opto/predicates.hpp"
  47 #include "opto/rootnode.hpp"
  48 #include "opto/runtime.hpp"
  49 #include "opto/vectorization.hpp"
  50 #include "runtime/sharedRuntime.hpp"
  51 #include "utilities/checkedCast.hpp"
  52 #include "utilities/powerOfTwo.hpp"
  53 
  54 //=============================================================================
  55 //--------------------------is_cloop_ind_var-----------------------------------
  56 // Determine if a node is a counted loop induction variable.
  57 // NOTE: The method is declared in "node.hpp".
  58 bool Node::is_cloop_ind_var() const {
  59   return (is_Phi() &&
  60           as_Phi()->region()->is_CountedLoop() &&
  61           as_Phi()->region()->as_CountedLoop()->phi() == this);
  62 }
  63 
  64 //=============================================================================
  65 //------------------------------dump_spec--------------------------------------
  66 // Dump special per-node info
  67 #ifndef PRODUCT
  68 void LoopNode::dump_spec(outputStream *st) const {
  69   RegionNode::dump_spec(st);
  70   if (is_inner_loop()) st->print( "inner " );
  71   if (is_partial_peel_loop()) st->print( "partial_peel " );
  72   if (partial_peel_has_failed()) st->print( "partial_peel_failed " );
  73 }
  74 #endif
  75 
  76 //------------------------------is_valid_counted_loop-------------------------
  77 bool LoopNode::is_valid_counted_loop(BasicType bt) const {
  78   if (is_BaseCountedLoop() && as_BaseCountedLoop()->bt() == bt) {
  79     BaseCountedLoopNode*    l  = as_BaseCountedLoop();
  80     BaseCountedLoopEndNode* le = l->loopexit_or_null();
  81     if (le != nullptr &&
  82         le->true_proj_or_null() == l->in(LoopNode::LoopBackControl)) {
  83       Node* phi  = l->phi();
  84       IfFalseNode* exit = le->false_proj_or_null();
  85       if (exit != nullptr && phi != nullptr && phi->is_Phi() &&
  86           phi->in(LoopNode::LoopBackControl) == l->incr() &&
  87           le->loopnode() == l && le->stride_is_con()) {
  88         return true;
  89       }
  90     }
  91   }
  92   return false;
  93 }
  94 
  95 //------------------------------get_early_ctrl---------------------------------
  96 // Compute earliest legal control
  97 Node *PhaseIdealLoop::get_early_ctrl( Node *n ) {
  98   assert( !n->is_Phi() && !n->is_CFG(), "this code only handles data nodes" );
  99   uint i;
 100   Node *early;
 101   if (n->in(0) && !n->is_expensive()) {
 102     early = n->in(0);
 103     if (!early->is_CFG()) // Might be a non-CFG multi-def
 104       early = get_ctrl(early);        // So treat input as a straight data input
 105     i = 1;
 106   } else {
 107     early = get_ctrl(n->in(1));
 108     i = 2;
 109   }
 110   uint e_d = dom_depth(early);
 111   assert( early, "" );
 112   for (; i < n->req(); i++) {
 113     Node *cin = get_ctrl(n->in(i));
 114     assert( cin, "" );
 115     // Keep deepest dominator depth
 116     uint c_d = dom_depth(cin);
 117     if (c_d > e_d) {           // Deeper guy?
 118       early = cin;              // Keep deepest found so far
 119       e_d = c_d;
 120     } else if (c_d == e_d &&    // Same depth?
 121                early != cin) { // If not equal, must use slower algorithm
 122       // If same depth but not equal, one _must_ dominate the other
 123       // and we want the deeper (i.e., dominated) guy.
 124       Node *n1 = early;
 125       Node *n2 = cin;
 126       while (1) {
 127         n1 = idom(n1);          // Walk up until break cycle
 128         n2 = idom(n2);
 129         if (n1 == cin ||        // Walked early up to cin
 130             dom_depth(n2) < c_d)
 131           break;                // early is deeper; keep him
 132         if (n2 == early ||      // Walked cin up to early
 133             dom_depth(n1) < c_d) {
 134           early = cin;          // cin is deeper; keep him
 135           break;
 136         }
 137       }
 138       e_d = dom_depth(early);   // Reset depth register cache
 139     }
 140   }
 141 
 142   // Return earliest legal location
 143   assert(early == find_non_split_ctrl(early), "unexpected early control");
 144 
 145   if (n->is_expensive() && !_verify_only && !_verify_me) {
 146     assert(n->in(0), "should have control input");
 147     early = get_early_ctrl_for_expensive(n, early);
 148   }
 149 
 150   return early;
 151 }
 152 
 153 //------------------------------get_early_ctrl_for_expensive---------------------------------
 154 // Move node up the dominator tree as high as legal while still beneficial
 155 Node *PhaseIdealLoop::get_early_ctrl_for_expensive(Node *n, Node* earliest) {
 156   assert(n->in(0) && n->is_expensive(), "expensive node with control input here");
 157   assert(OptimizeExpensiveOps, "optimization off?");
 158 
 159   Node* ctl = n->in(0);
 160   assert(ctl->is_CFG(), "expensive input 0 must be cfg");
 161   uint min_dom_depth = dom_depth(earliest);
 162 #ifdef ASSERT
 163   if (!is_dominator(ctl, earliest) && !is_dominator(earliest, ctl)) {
 164     dump_bad_graph("Bad graph detected in get_early_ctrl_for_expensive", n, earliest, ctl);
 165     assert(false, "Bad graph detected in get_early_ctrl_for_expensive");
 166   }
 167 #endif
 168   if (dom_depth(ctl) < min_dom_depth) {
 169     return earliest;
 170   }
 171 
 172   while (true) {
 173     Node* next = ctl;
 174     // Moving the node out of a loop on the projection of an If
 175     // confuses Loop Predication. So, once we hit a loop in an If branch
 176     // that doesn't branch to an UNC, we stop. The code that process
 177     // expensive nodes will notice the loop and skip over it to try to
 178     // move the node further up.
 179     if (ctl->is_CountedLoop() && ctl->in(1) != nullptr && ctl->in(1)->in(0) != nullptr && ctl->in(1)->in(0)->is_If()) {
 180       if (!ctl->in(1)->as_Proj()->is_uncommon_trap_if_pattern()) {
 181         break;
 182       }
 183       next = idom(ctl->in(1)->in(0));
 184     } else if (ctl->is_Proj()) {
 185       // We only move it up along a projection if the projection is
 186       // the single control projection for its parent: same code path,
 187       // if it's a If with UNC or fallthrough of a call.
 188       Node* parent_ctl = ctl->in(0);
 189       if (parent_ctl == nullptr) {
 190         break;
 191       } else if (parent_ctl->is_CountedLoopEnd() && parent_ctl->as_CountedLoopEnd()->loopnode() != nullptr) {
 192         next = parent_ctl->as_CountedLoopEnd()->loopnode()->init_control();
 193       } else if (parent_ctl->is_If()) {
 194         if (!ctl->as_Proj()->is_uncommon_trap_if_pattern()) {
 195           break;
 196         }
 197         assert(idom(ctl) == parent_ctl, "strange");
 198         next = idom(parent_ctl);
 199       } else if (ctl->is_CatchProj()) {
 200         if (ctl->as_Proj()->_con != CatchProjNode::fall_through_index) {
 201           break;
 202         }
 203         assert(parent_ctl->in(0)->in(0)->is_Call(), "strange graph");
 204         next = parent_ctl->in(0)->in(0)->in(0);
 205       } else {
 206         // Check if parent control has a single projection (this
 207         // control is the only possible successor of the parent
 208         // control). If so, we can try to move the node above the
 209         // parent control.
 210         int nb_ctl_proj = 0;
 211         for (DUIterator_Fast imax, i = parent_ctl->fast_outs(imax); i < imax; i++) {
 212           Node *p = parent_ctl->fast_out(i);
 213           if (p->is_Proj() && p->is_CFG()) {
 214             nb_ctl_proj++;
 215             if (nb_ctl_proj > 1) {
 216               break;
 217             }
 218           }
 219         }
 220 
 221         if (nb_ctl_proj > 1) {
 222           break;
 223         }
 224         assert(parent_ctl->is_Start() || parent_ctl->is_MemBar() || parent_ctl->is_Call() ||
 225                BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(parent_ctl), "unexpected node");
 226         assert(idom(ctl) == parent_ctl, "strange");
 227         next = idom(parent_ctl);
 228       }
 229     } else {
 230       next = idom(ctl);
 231     }
 232     if (next->is_Root() || next->is_Start() || dom_depth(next) < min_dom_depth) {
 233       break;
 234     }
 235     ctl = next;
 236   }
 237 
 238   if (ctl != n->in(0)) {
 239     _igvn.replace_input_of(n, 0, ctl);
 240     _igvn.hash_insert(n);
 241   }
 242 
 243   return ctl;
 244 }
 245 
 246 
 247 //------------------------------set_early_ctrl---------------------------------
 248 // Set earliest legal control
 249 void PhaseIdealLoop::set_early_ctrl(Node* n, bool update_body) {
 250   Node *early = get_early_ctrl(n);
 251 
 252   // Record earliest legal location
 253   set_ctrl(n, early);
 254   IdealLoopTree *loop = get_loop(early);
 255   if (update_body && loop->_child == nullptr) {
 256     loop->_body.push(n);
 257   }
 258 }
 259 
 260 //------------------------------set_subtree_ctrl-------------------------------
 261 // set missing _ctrl entries on new nodes
 262 void PhaseIdealLoop::set_subtree_ctrl(Node* n, bool update_body) {
 263   // Already set?  Get out.
 264   if (_loop_or_ctrl[n->_idx]) return;
 265   // Recursively set _loop_or_ctrl array to indicate where the Node goes
 266   uint i;
 267   for (i = 0; i < n->req(); ++i) {
 268     Node *m = n->in(i);
 269     if (m && m != C->root()) {
 270       set_subtree_ctrl(m, update_body);
 271     }
 272   }
 273 
 274   // Fixup self
 275   set_early_ctrl(n, update_body);
 276 }
 277 
 278 IdealLoopTree* PhaseIdealLoop::insert_outer_loop(IdealLoopTree* loop, LoopNode* outer_l, Node* outer_ift) {
 279   IdealLoopTree* outer_ilt = new IdealLoopTree(this, outer_l, outer_ift);
 280   IdealLoopTree* parent = loop->_parent;
 281   IdealLoopTree* sibling = parent->_child;
 282   if (sibling == loop) {
 283     parent->_child = outer_ilt;
 284   } else {
 285     while (sibling->_next != loop) {
 286       sibling = sibling->_next;
 287     }
 288     sibling->_next = outer_ilt;
 289   }
 290   outer_ilt->_next = loop->_next;
 291   outer_ilt->_parent = parent;
 292   outer_ilt->_child = loop;
 293   outer_ilt->_nest = loop->_nest;
 294   loop->_parent = outer_ilt;
 295   loop->_next = nullptr;
 296   loop->_nest++;
 297   assert(loop->_nest <= SHRT_MAX, "sanity");
 298   return outer_ilt;
 299 }
 300 
 301 // Create a skeleton strip mined outer loop: an OuterStripMinedLoop head before the inner strip mined CountedLoop, a
 302 // SafePoint on exit of the inner CountedLoopEnd and an OuterStripMinedLoopEnd test that can't constant fold until loop
 303 // optimizations are over. The inner strip mined loop is left as it is. Only once loop optimizations are over, do we
 304 // adjust the inner loop exit condition to limit its number of iterations, set the outer loop exit condition and add
 305 // Phis to the outer loop head. Some loop optimizations that operate on the inner strip mined loop need to be aware of
 306 // the outer strip mined loop: loop unswitching needs to clone the outer loop as well as the inner, unrolling needs to
 307 // only clone the inner loop etc. No optimizations need to change the outer strip mined loop as it is only a skeleton.
 308 //
 309 // Schematically:
 310 //
 311 // OuterStripMinedLoop -------|
 312 //       |                    |
 313 // CountedLoop ----------- |  |
 314 //     \- Phi (iv) -|      |  |
 315 //       /  \       |      |  |
 316 //     CmpI  AddI --|      |  |
 317 //       \                 |  |
 318 //        Bool             |  |
 319 //         \               |  |
 320 // CountedLoopEnd          |  |
 321 //       /  \              |  |
 322 // IfFalse   IfTrue--------|  |
 323 //      |                     |
 324 // SafePoint                  |
 325 //      |                     |
 326 // OuterStripMinedLoopEnd     |
 327 //       /   \                |
 328 // IfFalse   IfTrue-----------|
 329 //      |
 330 //
 331 //
 332 // As loop optimizations transform the inner loop, the outer strip mined loop stays mostly unchanged. The only exception
 333 // is nodes referenced from the SafePoint and sunk from the inner loop: they end up in the outer strip mined loop.
 334 //
 335 // Not adding Phis to the outer loop head from the beginning, and only adding them after loop optimizations does not
 336 // conform to C2's IR rules: any variable or memory slice that is mutated in a loop should have a Phi. The main
 337 // motivation for such a design that doesn't conform to C2's IR rules is to allow existing loop optimizations to be
 338 // mostly unaffected by the outer strip mined loop: the only extra step needed in most cases is to step over the
 339 // OuterStripMinedLoop. The main drawback is that once loop optimizations are over, an extra step is needed to finish
 340 // constructing the outer loop. This is handled by OuterStripMinedLoopNode::adjust_strip_mined_loop().
 341 //
 342 // Adding Phis to the outer loop is largely straightforward: there needs to be one Phi in the outer loop for every Phi
 343 // in the inner loop. Things may be more complicated for sunk Store nodes: there may not be any inner loop Phi left
 344 // after sinking for a particular memory slice but the outer loop needs a Phi. See
 345 // OuterStripMinedLoopNode::handle_sunk_stores_when_finishing_construction()
 346 IdealLoopTree* PhaseIdealLoop::create_outer_strip_mined_loop(Node* init_control,
 347                                                              IdealLoopTree* loop, float cl_prob, float le_fcnt,
 348                                                              Node*& entry_control, Node*& iffalse) {
 349   Node* outer_test = intcon(0);
 350   Node *orig = iffalse;
 351   iffalse = iffalse->clone();
 352   _igvn.register_new_node_with_optimizer(iffalse);
 353   set_idom(iffalse, idom(orig), dom_depth(orig));
 354 
 355   IfNode *outer_le = new OuterStripMinedLoopEndNode(iffalse, outer_test, cl_prob, le_fcnt);
 356   Node *outer_ift = new IfTrueNode (outer_le);
 357   Node* outer_iff = orig;
 358   _igvn.replace_input_of(outer_iff, 0, outer_le);
 359 
 360   LoopNode *outer_l = new OuterStripMinedLoopNode(C, init_control, outer_ift);
 361   entry_control = outer_l;
 362 
 363   IdealLoopTree* outer_ilt = insert_outer_loop(loop, outer_l, outer_ift);
 364 
 365   set_loop(iffalse, outer_ilt);
 366   // When this code runs, loop bodies have not yet been populated.
 367   const bool body_populated = false;
 368   register_control(outer_le, outer_ilt, iffalse, body_populated);
 369   register_control(outer_ift, outer_ilt, outer_le, body_populated);
 370   set_idom(outer_iff, outer_le, dom_depth(outer_le));
 371   _igvn.register_new_node_with_optimizer(outer_l);
 372   set_loop(outer_l, outer_ilt);
 373   set_idom(outer_l, init_control, dom_depth(init_control)+1);
 374 
 375   return outer_ilt;
 376 }
 377 
 378 void PhaseIdealLoop::insert_loop_limit_check_predicate(ParsePredicateSuccessProj* loop_limit_check_parse_proj,
 379                                                        Node* cmp_limit, Node* bol) {
 380   assert(loop_limit_check_parse_proj->in(0)->is_ParsePredicate(), "must be parse predicate");
 381   Node* new_predicate_proj = create_new_if_for_predicate(loop_limit_check_parse_proj, nullptr,
 382                                                          Deoptimization::Reason_loop_limit_check,
 383                                                          Op_If);
 384   Node* iff = new_predicate_proj->in(0);
 385   cmp_limit = _igvn.register_new_node_with_optimizer(cmp_limit);
 386   bol = _igvn.register_new_node_with_optimizer(bol);
 387   set_subtree_ctrl(bol, false);
 388   _igvn.replace_input_of(iff, 1, bol);
 389 
 390 #ifndef PRODUCT
 391   // report that the loop predication has been actually performed
 392   // for this loop
 393   if (TraceLoopLimitCheck) {
 394     tty->print_cr("Counted Loop Limit Check generated:");
 395     DEBUG_ONLY( bol->dump(2); )
 396   }
 397 #endif
 398 }
 399 
 400 Node* PhaseIdealLoop::loop_exit_control(Node* x, IdealLoopTree* loop) {
 401   // Counted loop head must be a good RegionNode with only 3 not null
 402   // control input edges: Self, Entry, LoopBack.
 403   if (x->in(LoopNode::Self) == nullptr || x->req() != 3 || loop->_irreducible) {
 404     return nullptr;
 405   }
 406   Node *init_control = x->in(LoopNode::EntryControl);
 407   Node *back_control = x->in(LoopNode::LoopBackControl);
 408   if (init_control == nullptr || back_control == nullptr) {   // Partially dead
 409     return nullptr;
 410   }
 411   // Must also check for TOP when looking for a dead loop
 412   if (init_control->is_top() || back_control->is_top()) {
 413     return nullptr;
 414   }
 415 
 416   // Allow funny placement of Safepoint
 417   if (back_control->Opcode() == Op_SafePoint) {
 418     back_control = back_control->in(TypeFunc::Control);
 419   }
 420 
 421   // Controlling test for loop
 422   Node *iftrue = back_control;
 423   uint iftrue_op = iftrue->Opcode();
 424   if (iftrue_op != Op_IfTrue &&
 425       iftrue_op != Op_IfFalse) {
 426     // I have a weird back-control.  Probably the loop-exit test is in
 427     // the middle of the loop and I am looking at some trailing control-flow
 428     // merge point.  To fix this I would have to partially peel the loop.
 429     return nullptr; // Obscure back-control
 430   }
 431 
 432   // Get boolean guarding loop-back test
 433   Node *iff = iftrue->in(0);
 434   if (get_loop(iff) != loop || !iff->in(1)->is_Bool()) {
 435     return nullptr;
 436   }
 437   return iftrue;
 438 }
 439 
 440 Node* PhaseIdealLoop::loop_exit_test(Node* back_control, IdealLoopTree* loop, Node*& incr, Node*& limit, BoolTest::mask& bt, float& cl_prob) {
 441   Node* iftrue = back_control;
 442   uint iftrue_op = iftrue->Opcode();
 443   Node* iff = iftrue->in(0);
 444   BoolNode* test = iff->in(1)->as_Bool();
 445   bt = test->_test._test;
 446   cl_prob = iff->as_If()->_prob;
 447   if (iftrue_op == Op_IfFalse) {
 448     bt = BoolTest(bt).negate();
 449     cl_prob = 1.0 - cl_prob;
 450   }
 451   // Get backedge compare
 452   Node* cmp = test->in(1);
 453   if (!cmp->is_Cmp()) {
 454     return nullptr;
 455   }
 456 
 457   // Find the trip-counter increment & limit.  Limit must be loop invariant.
 458   incr  = cmp->in(1);
 459   limit = cmp->in(2);
 460 
 461   // ---------
 462   // need 'loop()' test to tell if limit is loop invariant
 463   // ---------
 464 
 465   if (!ctrl_is_member(loop, incr)) { // Swapped trip counter and limit?
 466     Node* tmp = incr;            // Then reverse order into the CmpI
 467     incr = limit;
 468     limit = tmp;
 469     bt = BoolTest(bt).commute(); // And commute the exit test
 470   }
 471   if (ctrl_is_member(loop, limit)) { // Limit must be loop-invariant
 472     return nullptr;
 473   }
 474   if (!ctrl_is_member(loop, incr)) { // Trip counter must be loop-variant
 475     return nullptr;
 476   }
 477   return cmp;
 478 }
 479 
 480 Node* PhaseIdealLoop::loop_iv_incr(Node* incr, Node* x, IdealLoopTree* loop, Node*& phi_incr) {
 481   if (incr->is_Phi()) {
 482     if (incr->as_Phi()->region() != x || incr->req() != 3) {
 483       return nullptr; // Not simple trip counter expression
 484     }
 485     phi_incr = incr;
 486     incr = phi_incr->in(LoopNode::LoopBackControl); // Assume incr is on backedge of Phi
 487     if (!ctrl_is_member(loop, incr)) { // Trip counter must be loop-variant
 488       return nullptr;
 489     }
 490   }
 491   return incr;
 492 }
 493 
 494 Node* PhaseIdealLoop::loop_iv_stride(Node* incr, Node*& xphi) {
 495   assert(incr->Opcode() == Op_AddI || incr->Opcode() == Op_AddL, "caller resp.");
 496   // Get merge point
 497   xphi = incr->in(1);
 498   Node *stride = incr->in(2);
 499   if (!stride->is_Con()) {     // Oops, swap these
 500     if (!xphi->is_Con()) {     // Is the other guy a constant?
 501       return nullptr;          // Nope, unknown stride, bail out
 502     }
 503     Node *tmp = xphi;          // 'incr' is commutative, so ok to swap
 504     xphi = stride;
 505     stride = tmp;
 506   }
 507   return stride;
 508 }
 509 
 510 PhiNode* PhaseIdealLoop::loop_iv_phi(Node* xphi, Node* phi_incr, Node* x) {
 511   if (!xphi->is_Phi()) {
 512     return nullptr; // Too much math on the trip counter
 513   }
 514   if (phi_incr != nullptr && phi_incr != xphi) {
 515     return nullptr;
 516   }
 517   PhiNode *phi = xphi->as_Phi();
 518 
 519   // Phi must be of loop header; backedge must wrap to increment
 520   if (phi->region() != x) {
 521     return nullptr;
 522   }
 523   return phi;
 524 }
 525 
 526 static int check_stride_overflow(jlong final_correction, const TypeInteger* limit_t, BasicType bt) {
 527   if (final_correction > 0) {
 528     if (limit_t->lo_as_long() > (max_signed_integer(bt) - final_correction)) {
 529       return -1;
 530     }
 531     if (limit_t->hi_as_long() > (max_signed_integer(bt) - final_correction)) {
 532       return 1;
 533     }
 534   } else {
 535     if (limit_t->hi_as_long() < (min_signed_integer(bt) - final_correction)) {
 536       return -1;
 537     }
 538     if (limit_t->lo_as_long() < (min_signed_integer(bt) - final_correction)) {
 539       return 1;
 540     }
 541   }
 542   return 0;
 543 }
 544 
 545 static bool condition_stride_ok(BoolTest::mask bt, jlong stride_con) {
 546   // If the condition is inverted and we will be rolling
 547   // through MININT to MAXINT, then bail out.
 548   if (bt == BoolTest::eq || // Bail out, but this loop trips at most twice!
 549       // Odd stride
 550       (bt == BoolTest::ne && stride_con != 1 && stride_con != -1) ||
 551       // Count down loop rolls through MAXINT
 552       ((bt == BoolTest::le || bt == BoolTest::lt) && stride_con < 0) ||
 553       // Count up loop rolls through MININT
 554       ((bt == BoolTest::ge || bt == BoolTest::gt) && stride_con > 0)) {
 555     return false; // Bail out
 556   }
 557   return true;
 558 }
 559 
 560 Node* PhaseIdealLoop::loop_nest_replace_iv(Node* iv_to_replace, Node* inner_iv, Node* outer_phi, Node* inner_head,
 561                                            BasicType bt) {
 562   Node* iv_as_long;
 563   if (bt == T_LONG) {
 564     iv_as_long = new ConvI2LNode(inner_iv, TypeLong::INT);
 565     register_new_node(iv_as_long, inner_head);
 566   } else {
 567     iv_as_long = inner_iv;
 568   }
 569   Node* iv_replacement = AddNode::make(outer_phi, iv_as_long, bt);
 570   register_new_node(iv_replacement, inner_head);
 571   for (DUIterator_Last imin, i = iv_to_replace->last_outs(imin); i >= imin;) {
 572     Node* u = iv_to_replace->last_out(i);
 573 #ifdef ASSERT
 574     if (!is_dominator(inner_head, ctrl_or_self(u))) {
 575       assert(u->is_Phi(), "should be a Phi");
 576       for (uint j = 1; j < u->req(); j++) {
 577         if (u->in(j) == iv_to_replace) {
 578           assert(is_dominator(inner_head, u->in(0)->in(j)), "iv use above loop?");
 579         }
 580       }
 581     }
 582 #endif
 583     _igvn.rehash_node_delayed(u);
 584     int nb = u->replace_edge(iv_to_replace, iv_replacement, &_igvn);
 585     i -= nb;
 586   }
 587   return iv_replacement;
 588 }
 589 
 590 // Add a Parse Predicate with an uncommon trap on the failing/false path. Normal control will continue on the true path.
 591 void PhaseIdealLoop::add_parse_predicate(Deoptimization::DeoptReason reason, Node* inner_head, IdealLoopTree* loop,
 592                                          SafePointNode* sfpt) {
 593   if (!C->too_many_traps(sfpt->jvms()->method(), sfpt->jvms()->bci(), reason)) {
 594     ParsePredicateNode* parse_predicate = new ParsePredicateNode(inner_head->in(LoopNode::EntryControl), reason, &_igvn);
 595     register_control(parse_predicate, loop, inner_head->in(LoopNode::EntryControl));
 596     Node* if_false = new IfFalseNode(parse_predicate);
 597     register_control(if_false, _ltree_root, parse_predicate);
 598     Node* if_true = new IfTrueNode(parse_predicate);
 599     register_control(if_true, loop, parse_predicate);
 600 
 601     int trap_request = Deoptimization::make_trap_request(reason, Deoptimization::Action_maybe_recompile);
 602     address call_addr = OptoRuntime::uncommon_trap_blob()->entry_point();
 603     const TypePtr* no_memory_effects = nullptr;
 604     CallNode* unc = new CallStaticJavaNode(OptoRuntime::uncommon_trap_Type(), call_addr, "uncommon_trap",
 605                                            no_memory_effects);
 606 
 607     Node* mem = nullptr;
 608     Node* i_o = nullptr;
 609     if (sfpt->is_Call()) {
 610       mem = sfpt->proj_out(TypeFunc::Memory);
 611       i_o = sfpt->proj_out(TypeFunc::I_O);
 612     } else {
 613       mem = sfpt->memory();
 614       i_o = sfpt->i_o();
 615     }
 616 
 617     Node *frame = new ParmNode(C->start(), TypeFunc::FramePtr);
 618     register_new_node(frame, C->start());
 619     Node *ret = new ParmNode(C->start(), TypeFunc::ReturnAdr);
 620     register_new_node(ret, C->start());
 621 
 622     unc->init_req(TypeFunc::Control, if_false);
 623     unc->init_req(TypeFunc::I_O, i_o);
 624     unc->init_req(TypeFunc::Memory, mem); // may gc ptrs
 625     unc->init_req(TypeFunc::FramePtr, frame);
 626     unc->init_req(TypeFunc::ReturnAdr, ret);
 627     unc->init_req(TypeFunc::Parms+0, _igvn.intcon(trap_request));
 628     unc->set_cnt(PROB_UNLIKELY_MAG(4));
 629     unc->copy_call_debug_info(&_igvn, sfpt);
 630 
 631     for (uint i = TypeFunc::Parms; i < unc->req(); i++) {
 632       set_subtree_ctrl(unc->in(i), false);
 633     }
 634     register_control(unc, _ltree_root, if_false);
 635 
 636     Node* ctrl = new ProjNode(unc, TypeFunc::Control);
 637     register_control(ctrl, _ltree_root, unc);
 638     Node* halt = new HaltNode(ctrl, frame, "uncommon trap returned which should never happen" PRODUCT_ONLY(COMMA /*reachable*/false));
 639     register_control(halt, _ltree_root, ctrl);
 640     _igvn.add_input_to(C->root(), halt);
 641 
 642     _igvn.replace_input_of(inner_head, LoopNode::EntryControl, if_true);
 643     set_idom(inner_head, if_true, dom_depth(inner_head));
 644   }
 645 }
 646 
 647 // Find a safepoint node that dominates the back edge. We need a
 648 // SafePointNode so we can use its jvm state to create empty
 649 // predicates.
 650 static bool no_side_effect_since_safepoint(Compile* C, Node* x, Node* mem, MergeMemNode* mm, PhaseIdealLoop* phase) {
 651   SafePointNode* safepoint = nullptr;
 652   for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) {
 653     Node* u = x->fast_out(i);
 654     if (u->is_memory_phi()) {
 655       Node* m = u->in(LoopNode::LoopBackControl);
 656       if (u->adr_type() == TypePtr::BOTTOM) {
 657         if (m->is_MergeMem() && mem->is_MergeMem()) {
 658           if (m != mem DEBUG_ONLY(|| true)) {
 659             // MergeMemStream can modify m, for example to adjust the length to mem.
 660             // This is unfortunate, and probably unnecessary. But as it is, we need
 661             // to add m to the igvn worklist, else we may have a modified node that
 662             // is not on the igvn worklist.
 663             phase->igvn()._worklist.push(m);
 664             for (MergeMemStream mms(m->as_MergeMem(), mem->as_MergeMem()); mms.next_non_empty2(); ) {
 665               if (!mms.is_empty()) {
 666                 if (mms.memory() != mms.memory2()) {
 667                   return false;
 668                 }
 669 #ifdef ASSERT
 670                 if (mms.alias_idx() != Compile::AliasIdxBot) {
 671                   mm->set_memory_at(mms.alias_idx(), mem->as_MergeMem()->base_memory());
 672                 }
 673 #endif
 674               }
 675             }
 676           }
 677         } else if (mem->is_MergeMem()) {
 678           if (m != mem->as_MergeMem()->base_memory()) {
 679             return false;
 680           }
 681         } else {
 682           return false;
 683         }
 684       } else {
 685         if (mem->is_MergeMem()) {
 686           if (m != mem->as_MergeMem()->memory_at(C->get_alias_index(u->adr_type()))) {
 687             return false;
 688           }
 689 #ifdef ASSERT
 690           mm->set_memory_at(C->get_alias_index(u->adr_type()), mem->as_MergeMem()->base_memory());
 691 #endif
 692         } else {
 693           if (m != mem) {
 694             return false;
 695           }
 696         }
 697       }
 698     }
 699   }
 700   return true;
 701 }
 702 
 703 SafePointNode* PhaseIdealLoop::find_safepoint(Node* back_control, Node* x, IdealLoopTree* loop) {
 704   IfNode* exit_test = back_control->in(0)->as_If();
 705   SafePointNode* safepoint = nullptr;
 706   if (exit_test->in(0)->is_SafePoint() && exit_test->in(0)->outcnt() == 1) {
 707     safepoint = exit_test->in(0)->as_SafePoint();
 708   } else {
 709     Node* c = back_control;
 710     while (c != x && c->Opcode() != Op_SafePoint) {
 711       c = idom(c);
 712     }
 713 
 714     if (c->Opcode() == Op_SafePoint) {
 715       safepoint = c->as_SafePoint();
 716     }
 717 
 718     if (safepoint == nullptr) {
 719       return nullptr;
 720     }
 721 
 722     Node* mem = safepoint->in(TypeFunc::Memory);
 723 
 724     // We can only use that safepoint if there's no side effect between the backedge and the safepoint.
 725 
 726     // mm is the memory state at the safepoint (when it's a MergeMem)
 727     // no_side_effect_since_safepoint() goes over the memory state at the backedge. It resets the mm input for each
 728     // component of the memory state it encounters so it points to the base memory. Once no_side_effect_since_safepoint()
 729     // is done, if no side effect after the safepoint was found, mm should transform to the base memory: the states at
 730     // the backedge and safepoint are the same so all components of the memory state at the safepoint should have been
 731     // reset.
 732     MergeMemNode* mm = nullptr;
 733 #ifdef ASSERT
 734     if (mem->is_MergeMem()) {
 735       mm = mem->clone()->as_MergeMem();
 736       _igvn._worklist.push(mm);
 737       for (MergeMemStream mms(mem->as_MergeMem()); mms.next_non_empty(); ) {
 738         // Loop invariant memory state won't be reset by no_side_effect_since_safepoint(). Do it here.
 739         // Escape Analysis can add state to mm that it doesn't add to the backedge memory Phis, breaking verification
 740         // code that relies on mm. Clear that extra state here.
 741         if (mms.alias_idx() != Compile::AliasIdxBot &&
 742             (loop != get_loop(ctrl_or_self(mms.memory())) ||
 743              (mms.adr_type()->isa_oop_ptr() && mms.adr_type()->is_known_instance()))) {
 744           mm->set_memory_at(mms.alias_idx(), mem->as_MergeMem()->base_memory());
 745         }
 746       }
 747     }
 748 #endif
 749     if (!no_side_effect_since_safepoint(C, x, mem, mm, this)) {
 750       safepoint = nullptr;
 751     } else {
 752       assert(mm == nullptr|| _igvn.transform(mm) == mem->as_MergeMem()->base_memory(), "all memory state should have been processed");
 753     }
 754 #ifdef ASSERT
 755     if (mm != nullptr) {
 756       _igvn.remove_dead_node(mm);
 757     }
 758 #endif
 759   }
 760   return safepoint;
 761 }
 762 
 763 void PhaseIdealLoop::add_parse_predicates(IdealLoopTree* outer_ilt, LoopNode* inner_head, SafePointNode* cloned_sfpt) {
 764   if (ShortRunningLongLoop) {
 765     add_parse_predicate(Deoptimization::Reason_short_running_long_loop, inner_head, outer_ilt, cloned_sfpt);
 766   }
 767   if (UseLoopPredicate) {
 768     add_parse_predicate(Deoptimization::Reason_predicate, inner_head, outer_ilt, cloned_sfpt);
 769     if (UseProfiledLoopPredicate) {
 770       add_parse_predicate(Deoptimization::Reason_profile_predicate, inner_head, outer_ilt, cloned_sfpt);
 771     }
 772   }
 773 
 774   if (UseAutoVectorizationPredicate) {
 775     add_parse_predicate(Deoptimization::Reason_auto_vectorization_check, inner_head, outer_ilt, cloned_sfpt);
 776   }
 777 
 778   add_parse_predicate(Deoptimization::Reason_loop_limit_check, inner_head, outer_ilt, cloned_sfpt);
 779 }
 780 
 781 // If the loop has the shape of a counted loop but with a long
 782 // induction variable, transform the loop in a loop nest: an inner
 783 // loop that iterates for at most max int iterations with an integer
 784 // induction variable and an outer loop that iterates over the full
 785 // range of long values from the initial loop in (at most) max int
 786 // steps. That is:
 787 //
 788 // x: for (long phi = init; phi < limit; phi += stride) {
 789 //   // phi := Phi(L, init, incr)
 790 //   // incr := AddL(phi, longcon(stride))
 791 //   long incr = phi + stride;
 792 //   ... use phi and incr ...
 793 // }
 794 //
 795 // OR:
 796 //
 797 // x: for (long phi = init; (phi += stride) < limit; ) {
 798 //   // phi := Phi(L, AddL(init, stride), incr)
 799 //   // incr := AddL(phi, longcon(stride))
 800 //   long incr = phi + stride;
 801 //   ... use phi and (phi + stride) ...
 802 // }
 803 //
 804 // ==transform=>
 805 //
 806 // const ulong inner_iters_limit = INT_MAX - stride - 1;  //near 0x7FFFFFF0
 807 // assert(stride <= inner_iters_limit);  // else abort transform
 808 // assert((extralong)limit + stride <= LONG_MAX);  // else deopt
 809 // outer_head: for (long outer_phi = init;;) {
 810 //   // outer_phi := Phi(outer_head, init, AddL(outer_phi, I2L(inner_phi)))
 811 //   ulong inner_iters_max = (ulong) MAX(0, ((extralong)limit + stride - outer_phi));
 812 //   long inner_iters_actual = MIN(inner_iters_limit, inner_iters_max);
 813 //   assert(inner_iters_actual == (int)inner_iters_actual);
 814 //   int inner_phi, inner_incr;
 815 //   x: for (inner_phi = 0;; inner_phi = inner_incr) {
 816 //     // inner_phi := Phi(x, intcon(0), inner_incr)
 817 //     // inner_incr := AddI(inner_phi, intcon(stride))
 818 //     inner_incr = inner_phi + stride;
 819 //     if (inner_incr < inner_iters_actual) {
 820 //       ... use phi=>(outer_phi+inner_phi) ...
 821 //       continue;
 822 //     }
 823 //     else break;
 824 //   }
 825 //   if ((outer_phi+inner_phi) < limit)  //OR (outer_phi+inner_incr) < limit
 826 //     continue;
 827 //   else break;
 828 // }
 829 //
 830 // The same logic is used to transform an int counted loop that contains long range checks into a loop nest of 2 int
 831 // loops with long range checks transformed to int range checks in the inner loop.
 832 bool PhaseIdealLoop::create_loop_nest(IdealLoopTree* loop, Node_List &old_new) {
 833   Node* x = loop->_head;
 834   // Only for inner loops
 835   if (loop->_child != nullptr || !x->is_BaseCountedLoop() || x->as_Loop()->is_loop_nest_outer_loop()) {
 836     return false;
 837   }
 838 
 839   if (x->is_CountedLoop() && !x->as_CountedLoop()->is_main_loop() && !x->as_CountedLoop()->is_normal_loop()) {
 840     return false;
 841   }
 842 
 843   BaseCountedLoopNode* head = x->as_BaseCountedLoop();
 844   BasicType bt = x->as_BaseCountedLoop()->bt();
 845 
 846   check_counted_loop_shape(loop, x, bt);
 847 
 848 #ifndef PRODUCT
 849   if (bt == T_LONG) {
 850     AtomicAccess::inc(&_long_loop_candidates);
 851   }
 852 #endif
 853 
 854   jlong stride_con_long = head->stride_con();
 855   assert(stride_con_long != 0, "missed some peephole opt");
 856   // We can't iterate for more than max int at a time.
 857   if (stride_con_long != (jint)stride_con_long || stride_con_long == min_jint) {
 858     assert(bt == T_LONG, "only for long loops");
 859     return false;
 860   }
 861   jint stride_con = checked_cast<jint>(stride_con_long);
 862   // The number of iterations for the integer count loop: guarantee no
 863   // overflow: max_jint - stride_con max. -1 so there's no need for a
 864   // loop limit check if the exit test is <= or >=.
 865   int iters_limit = max_jint - ABS(stride_con) - 1;
 866 #ifdef ASSERT
 867   if (bt == T_LONG && StressLongCountedLoop > 0) {
 868     iters_limit = iters_limit / StressLongCountedLoop;
 869   }
 870 #endif
 871   // At least 2 iterations so counted loop construction doesn't fail
 872   if (iters_limit/ABS(stride_con) < 2) {
 873     return false;
 874   }
 875 
 876   assert(iters_limit > 0, "can't be negative");
 877 
 878   PhiNode* phi = head->phi()->as_Phi();
 879 
 880   Node* back_control = head->in(LoopNode::LoopBackControl);
 881 
 882   // data nodes on back branch not supported
 883   if (back_control->outcnt() > 1) {
 884     return false;
 885   }
 886 
 887   Node* limit = head->limit();
 888   // We'll need to use the loop limit before the inner loop is entered
 889   if (!is_dominator(get_ctrl(limit), x)) {
 890     return false;
 891   }
 892 
 893   IfNode* exit_test = head->loopexit();
 894 
 895   assert(back_control->Opcode() == Op_IfTrue, "wrong projection for back edge");
 896 
 897   Node_List range_checks;
 898   iters_limit = extract_long_range_checks(loop, stride_con, iters_limit, phi, range_checks);
 899 
 900   if (bt == T_INT) {
 901     // The only purpose of creating a loop nest is to handle long range checks. If there are none, do not proceed further.
 902     if (range_checks.size() == 0) {
 903       return false;
 904     }
 905   }
 906 
 907   // Take what we know about the number of iterations of the long counted loop into account when computing the limit of
 908   // the inner loop.
 909   Node* init = head->init_trip();
 910   const TypeInteger* lo = _igvn.type(init)->is_integer(bt);
 911   const TypeInteger* hi = _igvn.type(limit)->is_integer(bt);
 912   if (stride_con < 0) {
 913     swap(lo, hi);
 914   }
 915   if (hi->hi_as_long() <= lo->lo_as_long()) {
 916     // not a loop after all
 917     return false;
 918   }
 919 
 920   if (range_checks.size() > 0) {
 921     // This transformation requires peeling one iteration. Also, if it has range checks and they are eliminated by Loop
 922     // Predication, then 2 Hoisted Check Predicates are added for one range check. Finally, transforming a long range
 923     // check requires extra logic to be executed before the loop is entered and for the outer loop. As a result, the
 924     // transformations can't pay off for a small number of iterations: roughly, if the loop runs for 3 iterations, it's
 925     // going to execute as many range checks once transformed with range checks eliminated (1 peeled iteration with
 926     // range checks + 2 predicates per range checks) as it would have not transformed. It also has to pay for the extra
 927     // logic on loop entry and for the outer loop.
 928     loop->compute_trip_count(this, bt);
 929     if (head->is_CountedLoop() && head->as_CountedLoop()->has_exact_trip_count()) {
 930       if (head->as_CountedLoop()->trip_count() <= 3) {
 931         return false;
 932       }
 933     } else {
 934       loop->compute_profile_trip_cnt(this);
 935       if (!head->is_profile_trip_failed() && head->profile_trip_cnt() <= 3) {
 936         return false;
 937       }
 938     }
 939   }
 940 
 941   if (try_make_short_running_loop(loop, stride_con, range_checks, iters_limit)) {
 942     C->set_major_progress();
 943     return true;
 944   }
 945 
 946   julong orig_iters = (julong)hi->hi_as_long() - lo->lo_as_long();
 947   iters_limit = checked_cast<int>(MIN2((julong)iters_limit, orig_iters));
 948 
 949   // We need a safepoint to insert Parse Predicates for the inner loop.
 950   SafePointNode* safepoint;
 951   if (bt == T_INT && head->as_CountedLoop()->is_strip_mined()) {
 952     // Loop is strip mined: use the safepoint of the outer strip mined loop
 953     OuterStripMinedLoopNode* outer_loop = head->as_CountedLoop()->outer_loop();
 954     assert(outer_loop != nullptr, "no outer loop");
 955     safepoint = outer_loop->outer_safepoint();
 956     outer_loop->transform_to_counted_loop(&_igvn, this);
 957     exit_test = head->loopexit();
 958   } else {
 959     safepoint = find_safepoint(back_control, x, loop);
 960   }
 961 
 962   IfFalseNode* exit_branch = exit_test->false_proj();
 963   Node* entry_control = head->in(LoopNode::EntryControl);
 964 
 965   // Clone the control flow of the loop to build an outer loop
 966   Node* outer_back_branch = back_control->clone();
 967   Node* outer_exit_test = new IfNode(exit_test->in(0), exit_test->in(1), exit_test->_prob, exit_test->_fcnt);
 968   Node* inner_exit_branch = exit_branch->clone();
 969 
 970   LoopNode* outer_head = new LoopNode(entry_control, outer_back_branch);
 971   IdealLoopTree* outer_ilt = insert_outer_loop(loop, outer_head, outer_back_branch);
 972 
 973   const bool body_populated = true;
 974   register_control(outer_head, outer_ilt, entry_control, body_populated);
 975 
 976   _igvn.register_new_node_with_optimizer(inner_exit_branch);
 977   set_loop(inner_exit_branch, outer_ilt);
 978   set_idom(inner_exit_branch, exit_test, dom_depth(exit_branch));
 979 
 980   outer_exit_test->set_req(0, inner_exit_branch);
 981   register_control(outer_exit_test, outer_ilt, inner_exit_branch, body_populated);
 982 
 983   _igvn.replace_input_of(exit_branch, 0, outer_exit_test);
 984   set_idom(exit_branch, outer_exit_test, dom_depth(exit_branch));
 985 
 986   outer_back_branch->set_req(0, outer_exit_test);
 987   register_control(outer_back_branch, outer_ilt, outer_exit_test, body_populated);
 988 
 989   _igvn.replace_input_of(x, LoopNode::EntryControl, outer_head);
 990   set_idom(x, outer_head, dom_depth(x));
 991 
 992   // add an iv phi to the outer loop and use it to compute the inner
 993   // loop iteration limit
 994   Node* outer_phi = phi->clone();
 995   outer_phi->set_req(0, outer_head);
 996   register_new_node(outer_phi, outer_head);
 997 
 998   Node* inner_iters_max = nullptr;
 999   if (stride_con > 0) {
1000     inner_iters_max = MinMaxNode::max_diff_with_zero(limit, outer_phi, TypeInteger::bottom(bt), _igvn);
1001   } else {
1002     inner_iters_max = MinMaxNode::max_diff_with_zero(outer_phi, limit, TypeInteger::bottom(bt), _igvn);
1003   }
1004 
1005   Node* inner_iters_limit = _igvn.integercon(iters_limit, bt);
1006   // inner_iters_max may not fit in a signed integer (iterating from
1007   // Long.MIN_VALUE to Long.MAX_VALUE for instance). Use an unsigned
1008   // min.
1009   const TypeInteger* inner_iters_actual_range = TypeInteger::make(0, iters_limit, Type::WidenMin, bt);
1010   Node* inner_iters_actual = MinMaxNode::unsigned_min(inner_iters_max, inner_iters_limit, inner_iters_actual_range, _igvn);
1011 
1012   Node* inner_iters_actual_int;
1013   if (bt == T_LONG) {
1014     inner_iters_actual_int = new ConvL2INode(inner_iters_actual);
1015     _igvn.register_new_node_with_optimizer(inner_iters_actual_int);
1016     // When the inner loop is transformed to a counted loop, a loop limit check is not expected to be needed because
1017     // the loop limit is less or equal to max_jint - stride - 1 (if stride is positive but a similar argument exists for
1018     // a negative stride). We add a CastII here to guarantee that, when the counted loop is created in a subsequent loop
1019     // opts pass, an accurate range of values for the limits is found.
1020     const TypeInt* inner_iters_actual_int_range = TypeInt::make(0, iters_limit, Type::WidenMin);
1021     inner_iters_actual_int = new CastIINode(outer_head, inner_iters_actual_int, inner_iters_actual_int_range, ConstraintCastNode::DependencyType::NonFloatingNonNarrowing);
1022     _igvn.register_new_node_with_optimizer(inner_iters_actual_int);
1023   } else {
1024     inner_iters_actual_int = inner_iters_actual;
1025   }
1026 
1027   Node* int_zero = intcon(0);
1028   if (stride_con < 0) {
1029     inner_iters_actual_int = new SubINode(int_zero, inner_iters_actual_int);
1030     _igvn.register_new_node_with_optimizer(inner_iters_actual_int);
1031   }
1032 
1033   // Clone the iv data nodes as an integer iv
1034   Node* int_stride = intcon(stride_con);
1035   Node* inner_phi = new PhiNode(x->in(0), TypeInt::INT);
1036   Node* inner_incr = new AddINode(inner_phi, int_stride);
1037   Node* inner_cmp = nullptr;
1038   inner_cmp = new CmpINode(inner_incr, inner_iters_actual_int);
1039   Node* inner_bol = new BoolNode(inner_cmp, exit_test->in(1)->as_Bool()->_test._test);
1040   inner_phi->set_req(LoopNode::EntryControl, int_zero);
1041   inner_phi->set_req(LoopNode::LoopBackControl, inner_incr);
1042   register_new_node(inner_phi, x);
1043   register_new_node(inner_incr, x);
1044   register_new_node(inner_cmp, x);
1045   register_new_node(inner_bol, x);
1046 
1047   _igvn.replace_input_of(exit_test, 1, inner_bol);
1048 
1049   // Clone inner loop phis to outer loop
1050   for (uint i = 0; i < head->outcnt(); i++) {
1051     Node* u = head->raw_out(i);
1052     if (u->is_Phi() && u != inner_phi && u != phi) {
1053       assert(u->in(0) == head, "inconsistent");
1054       Node* clone = u->clone();
1055       clone->set_req(0, outer_head);
1056       register_new_node(clone, outer_head);
1057       _igvn.replace_input_of(u, LoopNode::EntryControl, clone);
1058     }
1059   }
1060 
1061   // Replace inner loop long iv phi as inner loop int iv phi + outer
1062   // loop iv phi
1063   Node* iv_add = loop_nest_replace_iv(phi, inner_phi, outer_phi, head, bt);
1064 
1065   set_subtree_ctrl(inner_iters_actual_int, body_populated);
1066 
1067   LoopNode* inner_head = create_inner_head(loop, head, exit_test);
1068 
1069   // Summary of steps from initial loop to loop nest:
1070   //
1071   // == old IR nodes =>
1072   //
1073   // entry_control: {...}
1074   // x:
1075   // for (long phi = init;;) {
1076   //   // phi := Phi(x, init, incr)
1077   //   // incr := AddL(phi, longcon(stride))
1078   //   exit_test:
1079   //   if (phi < limit)
1080   //     back_control: fallthrough;
1081   //   else
1082   //     exit_branch: break;
1083   //   long incr = phi + stride;
1084   //   ... use phi and incr ...
1085   //   phi = incr;
1086   // }
1087   //
1088   // == new IR nodes (just before final peel) =>
1089   //
1090   // entry_control: {...}
1091   // long adjusted_limit = limit + stride;  //because phi_incr != nullptr
1092   // assert(!limit_check_required || (extralong)limit + stride == adjusted_limit);  // else deopt
1093   // ulong inner_iters_limit = max_jint - ABS(stride) - 1;  //near 0x7FFFFFF0
1094   // outer_head:
1095   // for (long outer_phi = init;;) {
1096   //   // outer_phi := phi->clone(), in(0):=outer_head, => Phi(outer_head, init, incr)
1097   //   // REPLACE phi  => AddL(outer_phi, I2L(inner_phi))
1098   //   // REPLACE incr => AddL(outer_phi, I2L(inner_incr))
1099   //   // SO THAT outer_phi := Phi(outer_head, init, AddL(outer_phi, I2L(inner_incr)))
1100   //   ulong inner_iters_max = (ulong) MAX(0, ((extralong)adjusted_limit - outer_phi) * SGN(stride));
1101   //   int inner_iters_actual_int = (int) MIN(inner_iters_limit, inner_iters_max) * SGN(stride);
1102   //   inner_head: x: //in(1) := outer_head
1103   //   int inner_phi;
1104   //   for (inner_phi = 0;;) {
1105   //     // inner_phi := Phi(x, intcon(0), inner_phi + stride)
1106   //     int inner_incr = inner_phi + stride;
1107   //     bool inner_bol = (inner_incr < inner_iters_actual_int);
1108   //     exit_test: //exit_test->in(1) := inner_bol;
1109   //     if (inner_bol) // WAS (phi < limit)
1110   //       back_control: fallthrough;
1111   //     else
1112   //       inner_exit_branch: break;  //exit_branch->clone()
1113   //     ... use phi=>(outer_phi+inner_phi) ...
1114   //     inner_phi = inner_phi + stride;  // inner_incr
1115   //   }
1116   //   outer_exit_test:  //exit_test->clone(), in(0):=inner_exit_branch
1117   //   if ((outer_phi+inner_phi) < limit)  // WAS (phi < limit)
1118   //     outer_back_branch: fallthrough;  //back_control->clone(), in(0):=outer_exit_test
1119   //   else
1120   //     exit_branch: break;  //in(0) := outer_exit_test
1121   // }
1122 
1123   if (bt == T_INT) {
1124     outer_phi = new ConvI2LNode(outer_phi);
1125     register_new_node(outer_phi, outer_head);
1126   }
1127 
1128   transform_long_range_checks(stride_con, range_checks, outer_phi, inner_iters_actual_int,
1129                               inner_phi, iv_add, inner_head);
1130   // Peel one iteration of the loop and use the safepoint at the end
1131   // of the peeled iteration to insert Parse Predicates. If no well
1132   // positioned safepoint peel to guarantee a safepoint in the outer
1133   // loop.
1134   if (safepoint != nullptr || !loop->_has_call) {
1135     old_new.clear();
1136     do_peeling(loop, old_new);
1137   } else {
1138     C->set_major_progress();
1139   }
1140 
1141   if (safepoint != nullptr) {
1142     SafePointNode* cloned_sfpt = old_new[safepoint->_idx]->as_SafePoint();
1143 
1144     add_parse_predicates(outer_ilt, inner_head, cloned_sfpt);
1145   }
1146 
1147 #ifndef PRODUCT
1148   if (bt == T_LONG) {
1149     AtomicAccess::inc(&_long_loop_nests);
1150   }
1151 #endif
1152 
1153   inner_head->mark_loop_nest_inner_loop();
1154   outer_head->mark_loop_nest_outer_loop();
1155 
1156   return true;
1157 }
1158 
1159 // Make a copy of Parse/Template Assertion predicates below existing predicates at the loop passed as argument
1160 class CloneShortLoopPredicateVisitor : public PredicateVisitor {
1161   ClonePredicateToTargetLoop _clone_predicate_to_loop;
1162   PhaseIdealLoop* const _phase;
1163   Node* const _new_init;
1164 
1165 public:
1166   CloneShortLoopPredicateVisitor(LoopNode* target_loop_head,
1167                                  Node* new_init,
1168                                  const NodeInSingleLoopBody &node_in_loop_body,
1169                                  PhaseIdealLoop* phase)
1170     : _clone_predicate_to_loop(target_loop_head, node_in_loop_body, phase),
1171       _phase(phase),
1172       _new_init(new_init) {
1173   }
1174   NONCOPYABLE(CloneShortLoopPredicateVisitor);
1175 
1176   using PredicateVisitor::visit;
1177 
1178   void visit(const ParsePredicate& parse_predicate) override {
1179     _clone_predicate_to_loop.clone_parse_predicate(parse_predicate, true);
1180     parse_predicate.kill(_phase->igvn());
1181   }
1182 
1183   void visit(const TemplateAssertionPredicate& template_assertion_predicate) override {
1184     _clone_predicate_to_loop.clone_template_assertion_predicate_and_replace_init(template_assertion_predicate, _new_init);
1185     template_assertion_predicate.kill(_phase->igvn());
1186   }
1187 };
1188 
1189 // For an int counted loop, try_make_short_running_loop() transforms the loop from:
1190 //     for (int = start; i < stop; i+= stride) { ... }
1191 // to
1192 //     for (int = 0; i < stop - start; i+= stride) { ... }
1193 // Template Assertion Predicates added so far were with an init value of start. They need to be updated with the new
1194 // init value of 0 (otherwise when a template assertion predicate is turned into an initialized assertion predicate, it
1195 // performs an incorrect check):
1196 //                                zero
1197 //        init                     |
1198 //         |           ===>   OpaqueLoopInit   init
1199 //  OpaqueLoopInit                         \   /
1200 //                                          AddI
1201 //
1202 Node* PhaseIdealLoop::new_assertion_predicate_opaque_init(Node* entry_control, Node* init, Node* int_zero) {
1203   OpaqueLoopInitNode* new_opaque_init = new OpaqueLoopInitNode(C, int_zero);
1204   register_new_node(new_opaque_init, entry_control);
1205   Node* new_init = new AddINode(new_opaque_init, init);
1206   register_new_node(new_init, entry_control);
1207   return new_init;
1208 }
1209 
1210 // If the loop is either statically known to run for a small enough number of iterations or if profile data indicates
1211 // that, we don't want an outer loop because the overhead of having an outer loop whose backedge is never taken, has a
1212 // measurable cost. Furthermore, creating the loop nest usually causes one iteration of the loop to be peeled so
1213 // predicates can be set up. If the loop is short running, then it's an extra iteration that's run with range checks
1214 // (compared to an int counted loop with int range checks).
1215 //
1216 // In the short running case, turn the loop into a regular loop again and transform the long range checks:
1217 // - LongCountedLoop: Create LoopNode but keep the loop limit type with a CastLL node to avoid that we later try to
1218 //                    create a Loop Limit Check when turning the LoopNode into a CountedLoopNode.
1219 // - CountedLoop: Can be reused.
1220 bool PhaseIdealLoop::try_make_short_running_loop(IdealLoopTree* loop, jint stride_con, const Node_List &range_checks,
1221                                                  const uint iters_limit) {
1222   if (!ShortRunningLongLoop) {
1223     return false;
1224   }
1225   BaseCountedLoopNode* head = loop->_head->as_BaseCountedLoop();
1226   BasicType bt = head->bt();
1227   Node* entry_control = head->skip_strip_mined()->in(LoopNode::EntryControl);
1228 
1229   loop->compute_trip_count(this, bt);
1230   // Loop must run for no more than iter_limits as it guarantees no overflow of scale * iv in long range checks (see
1231   // comment above PhaseIdealLoop::transform_long_range_checks()).
1232   // iters_limit / ABS(stride_con) is the largest trip count for which we know it's correct to not create a loop nest:
1233   // it's always beneficial to have a single loop rather than a loop nest, so we try to apply this transformation as
1234   // often as possible.
1235   bool known_short_running_loop = head->trip_count() <= iters_limit / ABS(stride_con);
1236   bool profile_short_running_loop = false;
1237   if (!known_short_running_loop) {
1238     loop->compute_profile_trip_cnt(this);
1239     if (StressShortRunningLongLoop) {
1240       profile_short_running_loop = true;
1241     } else {
1242       profile_short_running_loop = !head->is_profile_trip_failed() && head->profile_trip_cnt() <= iters_limit / ABS(stride_con);
1243     }
1244   }
1245 
1246   if (!known_short_running_loop && !profile_short_running_loop) {
1247     return false;
1248   }
1249 
1250   Node* limit = head->limit();
1251   Node* init = head->init_trip();
1252 
1253   Node* new_limit;
1254   if (stride_con > 0) {
1255     new_limit = SubNode::make(limit, init, bt);
1256   } else {
1257     new_limit = SubNode::make(init, limit, bt);
1258   }
1259   register_new_node(new_limit, entry_control);
1260 
1261   Node* int_zero = intcon(0);
1262   PhiNode* phi = head->phi()->as_Phi();
1263   if (profile_short_running_loop) {
1264     // Add a Short Running Long Loop Predicate. It's the first predicate in the predicate chain before entering a loop
1265     // because a cast that's control dependent on the Short Running Long Loop Predicate is added to narrow the limit and
1266     // future predicates may be dependent on the new limit (so have to be between the loop and Short Running Long Loop
1267     // Predicate). The current limit could, itself, be dependent on an existing predicate. Clone parse and template
1268     // assertion predicates below existing predicates to get proper ordering of predicates when walking from the loop
1269     // up: future predicates, Short Running Long Loop Predicate, existing predicates.
1270     //
1271     //        Existing Hoisted
1272     //        Check Predicates
1273     //               |
1274     //     New Short Running Long
1275     //         Loop Predicate
1276     //               |
1277     //   Cloned Parse Predicates and
1278     //  Template Assertion Predicates
1279     //  (future predicates added here)
1280     //               |
1281     //             Loop
1282     const Predicates predicates_before_cloning(entry_control);
1283     const PredicateBlock* short_running_long_loop_predicate_block = predicates_before_cloning.short_running_long_loop_predicate_block();
1284     if (!short_running_long_loop_predicate_block->has_parse_predicate()) { // already trapped
1285       return false;
1286     }
1287     Node* new_init = new_assertion_predicate_opaque_init(entry_control, init, int_zero);
1288 
1289     PredicateIterator predicate_iterator(entry_control);
1290     NodeInSingleLoopBody node_in_short_loop_body(this, loop);
1291     CloneShortLoopPredicateVisitor clone_short_loop_predicates_visitor(head, new_init, node_in_short_loop_body, this);
1292     predicate_iterator.for_each(clone_short_loop_predicates_visitor);
1293 
1294     entry_control = head->skip_strip_mined()->in(LoopNode::EntryControl);
1295 
1296     const Predicates predicates_after_cloning(entry_control);
1297 
1298     ParsePredicateSuccessProj* short_running_loop_predicate_proj = predicates_after_cloning.
1299         short_running_long_loop_predicate_block()->
1300         parse_predicate_success_proj();
1301     assert(short_running_loop_predicate_proj->in(0)->is_ParsePredicate(), "must be parse predicate");
1302 
1303     const jlong iters_limit_long = iters_limit;
1304     Node* cmp_limit = CmpNode::make(new_limit, _igvn.integercon(iters_limit_long, bt), bt);
1305     Node* bol = new BoolNode(cmp_limit, BoolTest::le);
1306     Node* new_predicate_proj = create_new_if_for_predicate(short_running_loop_predicate_proj,
1307                                                            nullptr,
1308                                                            Deoptimization::Reason_short_running_long_loop,
1309                                                            Op_If);
1310     Node* iff = new_predicate_proj->in(0);
1311     _igvn.replace_input_of(iff, 1, bol);
1312     register_new_node(cmp_limit, iff->in(0));
1313     register_new_node(bol, iff->in(0));
1314     new_limit = ConstraintCastNode::make_cast_for_basic_type(new_predicate_proj, new_limit,
1315                                                              TypeInteger::make(1, iters_limit_long, Type::WidenMin, bt),
1316                                                              ConstraintCastNode::DependencyType::NonFloatingNonNarrowing, bt);
1317     register_new_node(new_limit, new_predicate_proj);
1318 
1319 #ifndef PRODUCT
1320     if (TraceLoopLimitCheck) {
1321       tty->print_cr("Short Long Loop Check Predicate generated:");
1322       DEBUG_ONLY(bol->dump(2);)
1323     }
1324 #endif
1325     entry_control = head->skip_strip_mined()->in(LoopNode::EntryControl);
1326   } else if (bt == T_LONG) {
1327     // We're turning a long counted loop into a regular loop that will be converted into an int counted loop. That loop
1328     // won't need loop limit check predicates (iters_limit guarantees that). Add a cast to make sure that, whatever
1329     // transformation happens by the time the counted loop is created (in a subsequent pass of loop opts), C2 knows
1330     // enough about the loop's limit that it doesn't try to add loop limit check predicates.
1331     const Predicates predicates(entry_control);
1332     const TypeLong* new_limit_t = new_limit->Value(&_igvn)->is_long();
1333     new_limit = ConstraintCastNode::make_cast_for_basic_type(predicates.entry(), new_limit,
1334                                                              TypeLong::make(0, new_limit_t->_hi, new_limit_t->_widen),
1335                                                              ConstraintCastNode::DependencyType::NonFloatingNonNarrowing, bt);
1336     register_new_node(new_limit, predicates.entry());
1337   } else {
1338     assert(bt == T_INT && known_short_running_loop, "only CountedLoop statically known to be short running");
1339     PredicateIterator predicate_iterator(entry_control);
1340     Node* new_init = new_assertion_predicate_opaque_init(entry_control, init, int_zero);
1341     UpdateInitForTemplateAssertionPredicates update_init_for_template_assertion_predicates(new_init, this);
1342     predicate_iterator.for_each(update_init_for_template_assertion_predicates);
1343   }
1344   IfNode* exit_test = head->loopexit();
1345 
1346   if (bt == T_LONG) {
1347     // The loop is short running so new_limit fits into an int: either we determined that statically or added a guard
1348     new_limit = new ConvL2INode(new_limit);
1349     register_new_node(new_limit, entry_control);
1350   }
1351 
1352   if (stride_con < 0) {
1353     new_limit = new SubINode(int_zero, new_limit);
1354     register_new_node(new_limit, entry_control);
1355   }
1356 
1357   // Clone the iv data nodes as an integer iv
1358   Node* int_stride = intcon(stride_con);
1359   Node* inner_phi = new PhiNode(head, TypeInt::INT);
1360   Node* inner_incr = new AddINode(inner_phi, int_stride);
1361   Node* inner_cmp = new CmpINode(inner_incr, new_limit);
1362   Node* inner_bol = new BoolNode(inner_cmp, exit_test->in(1)->as_Bool()->_test._test);
1363   inner_phi->set_req(LoopNode::EntryControl, int_zero);
1364   inner_phi->set_req(LoopNode::LoopBackControl, inner_incr);
1365   register_new_node(inner_phi, head);
1366   register_new_node(inner_incr, head);
1367   register_new_node(inner_cmp, head);
1368   register_new_node(inner_bol, head);
1369 
1370   _igvn.replace_input_of(exit_test, 1, inner_bol);
1371 
1372   // Replace inner loop long iv phi as inner loop int iv phi + outer
1373   // loop iv phi
1374   Node* iv_add = loop_nest_replace_iv(phi, inner_phi, init, head, bt);
1375 
1376   LoopNode* inner_head = head;
1377   if (bt == T_LONG) {
1378     // Turn the loop back to a counted loop
1379     inner_head = create_inner_head(loop, head, exit_test);
1380   } else {
1381     // Use existing counted loop
1382     revert_to_normal_loop(head);
1383   }
1384 
1385   if (bt == T_INT) {
1386     init = new ConvI2LNode(init);
1387     register_new_node(init, entry_control);
1388   }
1389 
1390   transform_long_range_checks(stride_con, range_checks, init, new_limit,
1391                               inner_phi, iv_add, inner_head);
1392 
1393   inner_head->mark_loop_nest_inner_loop();
1394 
1395   return true;
1396 }
1397 
1398 int PhaseIdealLoop::extract_long_range_checks(const IdealLoopTree* loop, jint stride_con, int iters_limit, PhiNode* phi,
1399                                               Node_List& range_checks) {
1400   const jlong min_iters = 2;
1401   jlong reduced_iters_limit = iters_limit;
1402   jlong original_iters_limit = iters_limit;
1403   for (uint i = 0; i < loop->_body.size(); i++) {
1404     Node* c = loop->_body.at(i);
1405     if (c->is_IfProj() && c->in(0)->is_RangeCheck()) {
1406       IfProjNode* if_proj = c->as_IfProj();
1407       CallStaticJavaNode* call = if_proj->is_uncommon_trap_if_pattern();
1408       if (call != nullptr) {
1409         Node* range = nullptr;
1410         Node* offset = nullptr;
1411         jlong scale = 0;
1412         if (loop->is_range_check_if(if_proj, this, T_LONG, phi, range, offset, scale) &&
1413             loop->is_invariant(range) && loop->is_invariant(offset) &&
1414             scale != min_jlong &&
1415             original_iters_limit / ABS(scale) >= min_iters * ABS(stride_con)) {
1416           assert(scale == (jint)scale, "scale should be an int");
1417           reduced_iters_limit = MIN2(reduced_iters_limit, original_iters_limit/ABS(scale));
1418           range_checks.push(c);
1419         }
1420       }
1421     }
1422   }
1423 
1424   return checked_cast<int>(reduced_iters_limit);
1425 }
1426 
1427 // One execution of the inner loop covers a sub-range of the entire iteration range of the loop: [A,Z), aka [A=init,
1428 // Z=limit). If the loop has at least one trip (which is the case here), the iteration variable i always takes A as its
1429 // first value, followed by A+S (S is the stride), next A+2S, etc. The limit is exclusive, so that the final value B of
1430 // i is never Z.  It will be B=Z-1 if S=1, or B=Z+1 if S=-1.
1431 
1432 // If |S|>1 the formula for the last value B would require a floor operation, specifically B=floor((Z-sgn(S)-A)/S)*S+A,
1433 // which is B=Z-sgn(S)U for some U in [1,|S|].  So when S>0, i ranges as i:[A,Z) or i:[A,B=Z-U], or else (in reverse)
1434 // as i:(Z,A] or i:[B=Z+U,A].  It will become important to reason about this inclusive range [A,B] or [B,A].
1435 
1436 // Within the loop there may be many range checks.  Each such range check (R.C.) is of the form 0 <= i*K+L < R, where K
1437 // is a scale factor applied to the loop iteration variable i, and L is some offset; K, L, and R are loop-invariant.
1438 // Because R is never negative (see below), this check can always be simplified to an unsigned check i*K+L <u R.
1439 
1440 // When a long loop over a 64-bit variable i (outer_iv) is decomposed into a series of shorter sub-loops over a 32-bit
1441 // variable j (inner_iv), j ranges over a shorter interval j:[0,B_2] or [0,Z_2) (assuming S > 0), where the limit is
1442 // chosen to prevent various cases of 32-bit overflow (including multiplications j*K below).  In the sub-loop the
1443 // logical value i is offset from j by a 64-bit constant C, so i ranges in i:C+[0,Z_2).
1444 
1445 // For S<0, j ranges (in reverse!) through j:[-|B_2|,0] or (-|Z_2|,0].  For either sign of S, we can say i=j+C and j
1446 // ranges through 32-bit ranges [A_2,B_2] or [B_2,A_2] (A_2=0 of course).
1447 
1448 // The disjoint union of all the C+[A_2,B_2] ranges from the sub-loops must be identical to the whole range [A,B].
1449 // Assuming S>0, the first C must be A itself, and the next C value is the previous C+B_2, plus S.  If |S|=1, the next
1450 // C value is also the previous C+Z_2.  In each sub-loop, j counts from j=A_2=0 and i counts from C+0 and exits at
1451 // j=B_2 (i=C+B_2), just before it gets to i=C+Z_2.  Both i and j count up (from C and 0) if S>0; otherwise they count
1452 // down (from C and 0 again).
1453 
1454 // Returning to range checks, we see that each i*K+L <u R expands to (C+j)*K+L <u R, or j*K+Q <u R, where Q=(C*K+L).
1455 // (Recall that K and L and R are loop-invariant scale, offset and range values for a particular R.C.)  This is still a
1456 // 64-bit comparison, so the range check elimination logic will not apply to it.  (The R.C.E. transforms operate only on
1457 // 32-bit indexes and comparisons, because they use 64-bit temporary values to avoid overflow; see
1458 // PhaseIdealLoop::add_constraint.)
1459 
1460 // We must transform this comparison so that it gets the same answer, but by means of a 32-bit R.C. (using j not i) of
1461 // the form j*K+L_2 <u32 R_2.  Note that L_2 and R_2 must be loop-invariant, but only with respect to the sub-loop.  Thus, the
1462 // problem reduces to computing values for L_2 and R_2 (for each R.C. in the loop) in the loop header for the sub-loop.
1463 // Then the standard R.C.E. transforms can take those as inputs and further compute the necessary minimum and maximum
1464 // values for the 32-bit counter j within which the range checks can be eliminated.
1465 
1466 // So, given j*K+Q <u R, we need to find some j*K+L_2 <u32 R_2, where L_2 and R_2 fit in 32 bits, and the 32-bit operations do
1467 // not overflow. We also need to cover the cases where i*K+L (= j*K+Q) overflows to a 64-bit negative, since that is
1468 // allowed as an input to the R.C., as long as the R.C. as a whole fails.
1469 
1470 // If 32-bit multiplication j*K might overflow, we adjust the sub-loop limit Z_2 closer to zero to reduce j's range.
1471 
1472 // For each R.C. j*K+Q <u32 R, the range of mathematical values of j*K+Q in the sub-loop is [Q_min, Q_max], where
1473 // Q_min=Q and Q_max=B_2*K+Q (if S>0 and K>0), Q_min=A_2*K+Q and Q_max=Q (if S<0 and K>0),
1474 // Q_min=B_2*K+Q and Q_max=Q if (S>0 and K<0), Q_min=Q and Q_max=A_2*K+Q (if S<0 and K<0)
1475 
1476 // Note that the first R.C. value is always Q=(S*K>0 ? Q_min : Q_max).  Also Q_{min,max} = Q + {min,max}(A_2*K,B_2*K).
1477 // If S*K>0 then, as the loop iterations progress, each R.C. value i*K+L = j*K+Q goes up from Q=Q_min towards Q_max.
1478 // If S*K<0 then j*K+Q starts at Q=Q_max and goes down towards Q_min.
1479 
1480 // Case A: Some Negatives (but no overflow).
1481 // Number line:
1482 // |s64_min   .    .    .    0    .    .    .   s64_max|
1483 // |    .  Q_min..Q_max .    0    .    .    .     .    |  s64 negative
1484 // |    .     .    .    .    R=0  R<   R<   R<    R<   |  (against R values)
1485 // |    .     .    .  Q_min..0..Q_max  .    .     .    |  small mixed
1486 // |    .     .    .    .    R    R    R<   R<    R<   |  (against R values)
1487 //
1488 // R values which are out of range (>Q_max+1) are reduced to max(0,Q_max+1).  They are marked on the number line as R<.
1489 //
1490 // So, if Q_min <s64 0, then use this test:
1491 // j*K + s32_trunc(Q_min) <u32 clamp(R, 0, Q_max+1) if S*K>0 (R.C.E. steps upward)
1492 // j*K + s32_trunc(Q_max) <u32 clamp(R, 0, Q_max+1) if S*K<0 (R.C.E. steps downward)
1493 // Both formulas reduce to adding j*K to the 32-bit truncated value of the first R.C. expression value, Q:
1494 // j*K + s32_trunc(Q) <u32 clamp(R, 0, Q_max+1) for all S,K
1495 
1496 // If the 32-bit truncation loses information, no harm is done, since certainly the clamp also will return R_2=zero.
1497 
1498 // Case B: No Negatives.
1499 // Number line:
1500 // |s64_min   .    .    .    0    .    .    .   s64_max|
1501 // |    .     .    .    .    0 Q_min..Q_max .     .    |  small positive
1502 // |    .     .    .    .    R>   R    R    R<    R<   |  (against R values)
1503 // |    .     .    .    .    0    . Q_min..Q_max  .    |  s64 positive
1504 // |    .     .    .    .    R>   R>   R    R     R<   |  (against R values)
1505 //
1506 // R values which are out of range (<Q_min or >Q_max+1) are reduced as marked: R> up to Q_min, R< down to Q_max+1.
1507 // Then the whole comparison is shifted left by Q_min, so it can take place at zero, which is a nice 32-bit value.
1508 //
1509 // So, if both Q_min, Q_max+1 >=s64 0, then use this test:
1510 // j*K + 0         <u32 clamp(R, Q_min, Q_max+1) - Q_min if S*K>0
1511 // More generally:
1512 // j*K + Q - Q_min <u32 clamp(R, Q_min, Q_max+1) - Q_min for all S,K
1513 
1514 // Case C: Overflow in the 64-bit domain
1515 // Number line:
1516 // |..Q_max-2^64   .    .    0    .    .    .   Q_min..|  s64 overflow
1517 // |    .     .    .    .    R>   R>   R>   R>    R    |  (against R values)
1518 //
1519 // In this case, Q_min >s64 Q_max+1, even though the mathematical values of Q_min and Q_max+1 are correctly ordered.
1520 // The formulas from the previous case can be used, except that the bad upper bound Q_max is replaced by max_jlong.
1521 // (In fact, we could use any replacement bound from R to max_jlong inclusive, as the input to the clamp function.)
1522 //
1523 // So if Q_min >=s64 0 but Q_max+1 <s64 0, use this test:
1524 // j*K + 0         <u32 clamp(R, Q_min, max_jlong) - Q_min if S*K>0
1525 // More generally:
1526 // j*K + Q - Q_min <u32 clamp(R, Q_min, max_jlong) - Q_min for all S,K
1527 //
1528 // Dropping the bad bound means only Q_min is used to reduce the range of R:
1529 // j*K + Q - Q_min <u32 max(Q_min, R) - Q_min for all S,K
1530 //
1531 // Here the clamp function is a 64-bit min/max that reduces the dynamic range of its R operand to the required [L,H]:
1532 //     clamp(X, L, H) := max(L, min(X, H))
1533 // When degenerately L > H, it returns L not H.
1534 //
1535 // All of the formulas above can be merged into a single one:
1536 //     L_clamp = Q_min < 0 ? 0 : Q_min        --whether and how far to left-shift
1537 //     H_clamp = Q_max+1 < Q_min ? max_jlong : Q_max+1
1538 //             = Q_max+1 < 0 && Q_min >= 0 ? max_jlong : Q_max+1
1539 //     Q_first = Q = (S*K>0 ? Q_min : Q_max) = (C*K+L)
1540 //     R_clamp = clamp(R, L_clamp, H_clamp)   --reduced dynamic range
1541 //     replacement R.C.:
1542 //       j*K + Q_first - L_clamp <u32 R_clamp - L_clamp
1543 //     or equivalently:
1544 //       j*K + L_2 <u32 R_2
1545 //     where
1546 //       L_2 = Q_first - L_clamp
1547 //       R_2 = R_clamp - L_clamp
1548 //
1549 // Note on why R is never negative:
1550 //
1551 // Various details of this transformation would break badly if R could be negative, so this transformation only
1552 // operates after obtaining hard evidence that R<0 is impossible.  For example, if R comes from a LoadRange node, we
1553 // know R cannot be negative.  For explicit checks (of both int and long) a proof is constructed in
1554 // inline_preconditions_checkIndex, which triggers an uncommon trap if R<0, then wraps R in a ConstraintCastNode with a
1555 // non-negative type.  Later on, when IdealLoopTree::is_range_check_if looks for an optimizable R.C., it checks that
1556 // the type of that R node is non-negative.  Any "wild" R node that could be negative is not treated as an optimizable
1557 // R.C., but R values from a.length and inside checkIndex are good to go.
1558 //
1559 void PhaseIdealLoop::transform_long_range_checks(int stride_con, const Node_List &range_checks, Node* outer_phi,
1560                                                  Node* inner_iters_actual_int, Node* inner_phi,
1561                                                  Node* iv_add, LoopNode* inner_head) {
1562   Node* long_zero = longcon(0);
1563   Node* int_zero = intcon(0);
1564   Node* long_one = longcon(1);
1565   Node* int_stride = intcon(checked_cast<int>(stride_con));
1566 
1567   for (uint i = 0; i < range_checks.size(); i++) {
1568     ProjNode* proj = range_checks.at(i)->as_Proj();
1569     RangeCheckNode* rc = proj->in(0)->as_RangeCheck();
1570     jlong scale = 0;
1571     Node* offset = nullptr;
1572     Node* rc_bol = rc->in(1);
1573     Node* rc_cmp = rc_bol->in(1);
1574     if (rc_cmp->Opcode() == Op_CmpU) {
1575       // could be shared and have already been taken care of
1576       continue;
1577     }
1578     bool short_scale = false;
1579     bool ok = is_scaled_iv_plus_offset(rc_cmp->in(1), iv_add, T_LONG, &scale, &offset, &short_scale);
1580     assert(ok, "inconsistent: was tested before");
1581     Node* range = rc_cmp->in(2);
1582     Node* c = rc->in(0);
1583     Node* entry_control = inner_head->in(LoopNode::EntryControl);
1584 
1585     Node* R = range;
1586     Node* K = longcon(scale);
1587 
1588     Node* L = offset;
1589 
1590     if (short_scale) {
1591       // This converts:
1592       // (int)i*K + L <u64 R
1593       // with K an int into:
1594       // i*(long)K + L <u64 unsigned_min((long)max_jint + L + 1, R)
1595       // to protect against an overflow of (int)i*K
1596       //
1597       // Because if (int)i*K overflows, there are K,L where:
1598       // (int)i*K + L <u64 R is false because (int)i*K+L overflows to a negative which becomes a huge u64 value.
1599       // But if i*(long)K + L is >u64 (long)max_jint and still is <u64 R, then
1600       // i*(long)K + L <u64 R is true.
1601       //
1602       // As a consequence simply converting i*K + L <u64 R to i*(long)K + L <u64 R could cause incorrect execution.
1603       //
1604       // It's always true that:
1605       // (int)i*K <u64 (long)max_jint + 1
1606       // which implies (int)i*K + L <u64 (long)max_jint + 1 + L
1607       // As a consequence:
1608       // i*(long)K + L <u64 unsigned_min((long)max_jint + L + 1, R)
1609       // is always false in case of overflow of i*K
1610       //
1611       // Note, there are also K,L where i*K overflows and
1612       // i*K + L <u64 R is true, but
1613       // i*(long)K + L <u64 unsigned_min((long)max_jint + L + 1, R) is false
1614       // So this transformation could cause spurious deoptimizations and failed range check elimination
1615       // (but not incorrect execution) for unlikely corner cases with overflow.
1616       // If this causes problems in practice, we could maybe direct execution to a post-loop, instead of deoptimizing.
1617       Node* max_jint_plus_one_long = longcon((jlong)max_jint + 1);
1618       Node* max_range = new AddLNode(max_jint_plus_one_long, L);
1619       register_new_node(max_range, entry_control);
1620       R = MinMaxNode::unsigned_min(R, max_range, TypeLong::POS, _igvn);
1621       set_subtree_ctrl(R, true);
1622     }
1623 
1624     Node* C = outer_phi;
1625 
1626     // Start with 64-bit values:
1627     //   i*K + L <u64 R
1628     //   (C+j)*K + L <u64 R
1629     //   j*K + Q <u64 R    where Q = Q_first = C*K+L
1630     Node* Q_first = new MulLNode(C, K);
1631     register_new_node(Q_first, entry_control);
1632     Q_first = new AddLNode(Q_first, L);
1633     register_new_node(Q_first, entry_control);
1634 
1635     // Compute endpoints of the range of values j*K + Q.
1636     //  Q_min = (j=0)*K + Q;  Q_max = (j=B_2)*K + Q
1637     Node* Q_min = Q_first;
1638 
1639     // Compute the exact ending value B_2 (which is really A_2 if S < 0)
1640     Node* B_2 = new LoopLimitNode(this->C, int_zero, inner_iters_actual_int, int_stride);
1641     register_new_node(B_2, entry_control);
1642     B_2 = new SubINode(B_2, int_stride);
1643     register_new_node(B_2, entry_control);
1644     B_2 = new ConvI2LNode(B_2);
1645     register_new_node(B_2, entry_control);
1646 
1647     Node* Q_max = new MulLNode(B_2, K);
1648     register_new_node(Q_max, entry_control);
1649     Q_max = new AddLNode(Q_max, Q_first);
1650     register_new_node(Q_max, entry_control);
1651 
1652     if (scale * stride_con < 0) {
1653       swap(Q_min, Q_max);
1654     }
1655     // Now, mathematically, Q_max > Q_min, and they are close enough so that (Q_max-Q_min) fits in 32 bits.
1656 
1657     // L_clamp = Q_min < 0 ? 0 : Q_min
1658     Node* Q_min_cmp = new CmpLNode(Q_min, long_zero);
1659     register_new_node(Q_min_cmp, entry_control);
1660     Node* Q_min_bool = new BoolNode(Q_min_cmp, BoolTest::lt);
1661     register_new_node(Q_min_bool, entry_control);
1662     Node* L_clamp = new CMoveLNode(Q_min_bool, Q_min, long_zero, TypeLong::LONG);
1663     register_new_node(L_clamp, entry_control);
1664     // (This could also be coded bitwise as L_clamp = Q_min & ~(Q_min>>63).)
1665 
1666     Node* Q_max_plus_one = new AddLNode(Q_max, long_one);
1667     register_new_node(Q_max_plus_one, entry_control);
1668 
1669     // H_clamp = Q_max+1 < Q_min ? max_jlong : Q_max+1
1670     // (Because Q_min and Q_max are close, the overflow check could also be encoded as Q_max+1 < 0 & Q_min >= 0.)
1671     Node* max_jlong_long = longcon(max_jlong);
1672     Node* Q_max_cmp = new CmpLNode(Q_max_plus_one, Q_min);
1673     register_new_node(Q_max_cmp, entry_control);
1674     Node* Q_max_bool = new BoolNode(Q_max_cmp, BoolTest::lt);
1675     register_new_node(Q_max_bool, entry_control);
1676     Node* H_clamp = new CMoveLNode(Q_max_bool, Q_max_plus_one, max_jlong_long, TypeLong::LONG);
1677     register_new_node(H_clamp, entry_control);
1678     // (This could also be coded bitwise as H_clamp = ((Q_max+1)<<1 | M)>>>1 where M = (Q_max+1)>>63 & ~Q_min>>63.)
1679 
1680     // R_2 = clamp(R, L_clamp, H_clamp) - L_clamp
1681     // that is:  R_2 = clamp(R, L_clamp=0, H_clamp=Q_max)      if Q_min < 0
1682     // or else:  R_2 = clamp(R, L_clamp,   H_clamp) - Q_min    if Q_min >= 0
1683     // and also: R_2 = clamp(R, L_clamp,   Q_max+1) - L_clamp  if Q_min < Q_max+1 (no overflow)
1684     // or else:  R_2 = clamp(R, L_clamp, *no limit*)- L_clamp  if Q_max+1 < Q_min (overflow)
1685     Node* R_2 = clamp(R, L_clamp, H_clamp);
1686     R_2 = new SubLNode(R_2, L_clamp);
1687     register_new_node(R_2, entry_control);
1688     R_2 = new ConvL2INode(R_2, TypeInt::POS);
1689     register_new_node(R_2, entry_control);
1690 
1691     // L_2 = Q_first - L_clamp
1692     // We are subtracting L_clamp from both sides of the <u32 comparison.
1693     // If S*K>0, then Q_first == 0 and the R.C. expression at -L_clamp and steps upward to Q_max-L_clamp.
1694     // If S*K<0, then Q_first != 0 and the R.C. expression starts high and steps downward to Q_min-L_clamp.
1695     Node* L_2 = new SubLNode(Q_first, L_clamp);
1696     register_new_node(L_2, entry_control);
1697     L_2 = new ConvL2INode(L_2, TypeInt::INT);
1698     register_new_node(L_2, entry_control);
1699 
1700     // Transform the range check using the computed values L_2/R_2
1701     // from:   i*K + L   <u64 R
1702     // to:     j*K + L_2 <u32 R_2
1703     // that is:
1704     //   (j*K + Q_first) - L_clamp <u32 clamp(R, L_clamp, H_clamp) - L_clamp
1705     K = intcon(checked_cast<int>(scale));
1706     Node* scaled_iv = new MulINode(inner_phi, K);
1707     register_new_node(scaled_iv, c);
1708     Node* scaled_iv_plus_offset = new AddINode(scaled_iv, L_2);
1709     register_new_node(scaled_iv_plus_offset, c);
1710 
1711     Node* new_rc_cmp = new CmpUNode(scaled_iv_plus_offset, R_2);
1712     register_new_node(new_rc_cmp, c);
1713 
1714     _igvn.replace_input_of(rc_bol, 1, new_rc_cmp);
1715   }
1716 }
1717 
1718 Node* PhaseIdealLoop::clamp(Node* R, Node* L, Node* H) {
1719   Node* min = MinMaxNode::signed_min(R, H, TypeLong::LONG, _igvn);
1720   set_subtree_ctrl(min, true);
1721   Node* max = MinMaxNode::signed_max(L, min, TypeLong::LONG, _igvn);
1722   set_subtree_ctrl(max, true);
1723   return max;
1724 }
1725 
1726 LoopNode* PhaseIdealLoop::create_inner_head(IdealLoopTree* loop, BaseCountedLoopNode* head,
1727                                             IfNode* exit_test) {
1728   LoopNode* new_inner_head = new LoopNode(head->in(1), head->in(2));
1729   IfNode* new_inner_exit = new IfNode(exit_test->in(0), exit_test->in(1), exit_test->_prob, exit_test->_fcnt);
1730   _igvn.register_new_node_with_optimizer(new_inner_head);
1731   _igvn.register_new_node_with_optimizer(new_inner_exit);
1732   loop->_body.push(new_inner_head);
1733   loop->_body.push(new_inner_exit);
1734   loop->_body.yank(head);
1735   loop->_body.yank(exit_test);
1736   set_loop(new_inner_head, loop);
1737   set_loop(new_inner_exit, loop);
1738   set_idom(new_inner_head, idom(head), dom_depth(head));
1739   set_idom(new_inner_exit, idom(exit_test), dom_depth(exit_test));
1740   replace_node_and_forward_ctrl(head, new_inner_head);
1741   replace_node_and_forward_ctrl(exit_test, new_inner_exit);
1742   loop->_head = new_inner_head;
1743   return new_inner_head;
1744 }
1745 
1746 #ifdef ASSERT
1747 void PhaseIdealLoop::check_counted_loop_shape(IdealLoopTree* loop, Node* x, BasicType bt) {
1748   Node* back_control = loop_exit_control(x, loop);
1749   assert(back_control != nullptr, "no back control");
1750 
1751   BoolTest::mask mask = BoolTest::illegal;
1752   float cl_prob = 0;
1753   Node* incr = nullptr;
1754   Node* limit = nullptr;
1755 
1756   Node* cmp = loop_exit_test(back_control, loop, incr, limit, mask, cl_prob);
1757   assert(cmp != nullptr && cmp->Opcode() == Op_Cmp(bt), "no exit test");
1758 
1759   Node* phi_incr = nullptr;
1760   incr = loop_iv_incr(incr, x, loop, phi_incr);
1761   assert(incr != nullptr && incr->Opcode() == Op_Add(bt), "no incr");
1762 
1763   Node* xphi = nullptr;
1764   Node* stride = loop_iv_stride(incr, xphi);
1765 
1766   assert(stride != nullptr, "no stride");
1767 
1768   PhiNode* phi = loop_iv_phi(xphi, phi_incr, x);
1769 
1770   assert(phi != nullptr && phi->in(LoopNode::LoopBackControl) == incr, "No phi");
1771 
1772   jlong stride_con = stride->get_integer_as_long(bt);
1773 
1774   assert(condition_stride_ok(mask, stride_con), "illegal condition");
1775 
1776   assert(mask != BoolTest::ne, "unexpected condition");
1777   assert(phi_incr == nullptr, "bad loop shape");
1778   assert(cmp->in(1) == incr, "bad exit test shape");
1779 
1780   // Safepoint on backedge not supported
1781   assert(x->in(LoopNode::LoopBackControl)->Opcode() != Op_SafePoint, "no safepoint on backedge");
1782 }
1783 #endif
1784 
1785 #ifdef ASSERT
1786 // convert an int counted loop to a long counted to stress handling of
1787 // long counted loops
1788 bool PhaseIdealLoop::convert_to_long_loop(Node* cmp, Node* phi, IdealLoopTree* loop) {
1789   Unique_Node_List iv_nodes;
1790   Node_List old_new;
1791   iv_nodes.push(cmp);
1792   bool failed = false;
1793 
1794   for (uint i = 0; i < iv_nodes.size() && !failed; i++) {
1795     Node* n = iv_nodes.at(i);
1796     switch(n->Opcode()) {
1797       case Op_Phi: {
1798         Node* clone = new PhiNode(n->in(0), TypeLong::LONG);
1799         old_new.map(n->_idx, clone);
1800         break;
1801       }
1802       case Op_CmpI: {
1803         Node* clone = new CmpLNode(nullptr, nullptr);
1804         old_new.map(n->_idx, clone);
1805         break;
1806       }
1807       case Op_AddI: {
1808         Node* clone = new AddLNode(nullptr, nullptr);
1809         old_new.map(n->_idx, clone);
1810         break;
1811       }
1812       case Op_CastII: {
1813         failed = true;
1814         break;
1815       }
1816       default:
1817         DEBUG_ONLY(n->dump());
1818         fatal("unexpected");
1819     }
1820 
1821     for (uint i = 1; i < n->req(); i++) {
1822       Node* in = n->in(i);
1823       if (in == nullptr) {
1824         continue;
1825       }
1826       if (ctrl_is_member(loop, in)) {
1827         iv_nodes.push(in);
1828       }
1829     }
1830   }
1831 
1832   if (failed) {
1833     for (uint i = 0; i < iv_nodes.size(); i++) {
1834       Node* n = iv_nodes.at(i);
1835       Node* clone = old_new[n->_idx];
1836       if (clone != nullptr) {
1837         _igvn.remove_dead_node(clone);
1838       }
1839     }
1840     return false;
1841   }
1842 
1843   for (uint i = 0; i < iv_nodes.size(); i++) {
1844     Node* n = iv_nodes.at(i);
1845     Node* clone = old_new[n->_idx];
1846     for (uint i = 1; i < n->req(); i++) {
1847       Node* in = n->in(i);
1848       if (in == nullptr) {
1849         continue;
1850       }
1851       Node* in_clone = old_new[in->_idx];
1852       if (in_clone == nullptr) {
1853         assert(_igvn.type(in)->isa_int(), "");
1854         in_clone = new ConvI2LNode(in);
1855         _igvn.register_new_node_with_optimizer(in_clone);
1856         set_subtree_ctrl(in_clone, false);
1857       }
1858       if (in_clone->in(0) == nullptr) {
1859         in_clone->set_req(0, C->top());
1860         clone->set_req(i, in_clone);
1861         in_clone->set_req(0, nullptr);
1862       } else {
1863         clone->set_req(i, in_clone);
1864       }
1865     }
1866     _igvn.register_new_node_with_optimizer(clone);
1867   }
1868   set_ctrl(old_new[phi->_idx], phi->in(0));
1869 
1870   for (uint i = 0; i < iv_nodes.size(); i++) {
1871     Node* n = iv_nodes.at(i);
1872     Node* clone = old_new[n->_idx];
1873     set_subtree_ctrl(clone, false);
1874     Node* m = n->Opcode() == Op_CmpI ? clone : nullptr;
1875     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1876       Node* u = n->fast_out(i);
1877       if (iv_nodes.member(u)) {
1878         continue;
1879       }
1880       if (m == nullptr) {
1881         m = new ConvL2INode(clone);
1882         _igvn.register_new_node_with_optimizer(m);
1883         set_subtree_ctrl(m, false);
1884       }
1885       _igvn.rehash_node_delayed(u);
1886       int nb = u->replace_edge(n, m, &_igvn);
1887       --i, imax -= nb;
1888     }
1889   }
1890   return true;
1891 }
1892 #endif
1893 
1894 //------------------------------is_counted_loop--------------------------------
1895 bool PhaseIdealLoop::is_counted_loop(Node* x, IdealLoopTree*& loop, BasicType iv_bt) {
1896   PhaseGVN *gvn = &_igvn;
1897 
1898   Node* back_control = loop_exit_control(x, loop);
1899   if (back_control == nullptr) {
1900     return false;
1901   }
1902 
1903   BoolTest::mask bt = BoolTest::illegal;
1904   float cl_prob = 0;
1905   Node* incr = nullptr;
1906   Node* limit = nullptr;
1907   Node* cmp = loop_exit_test(back_control, loop, incr, limit, bt, cl_prob);
1908   if (cmp == nullptr || cmp->Opcode() != Op_Cmp(iv_bt)) {
1909     return false; // Avoid pointer & float & 64-bit compares
1910   }
1911 
1912   // Trip-counter increment must be commutative & associative.
1913   if (incr->Opcode() == Op_Cast(iv_bt)) {
1914     incr = incr->in(1);
1915   }
1916 
1917   Node* phi_incr = nullptr;
1918   incr = loop_iv_incr(incr, x, loop, phi_incr);
1919   if (incr == nullptr) {
1920     return false;
1921   }
1922 
1923   Node* trunc1 = nullptr;
1924   Node* trunc2 = nullptr;
1925   const TypeInteger* iv_trunc_t = nullptr;
1926   Node* orig_incr = incr;
1927   if (!(incr = CountedLoopNode::match_incr_with_optional_truncation(incr, &trunc1, &trunc2, &iv_trunc_t, iv_bt))) {
1928     return false; // Funny increment opcode
1929   }
1930   assert(incr->Opcode() == Op_Add(iv_bt), "wrong increment code");
1931 
1932   Node* xphi = nullptr;
1933   Node* stride = loop_iv_stride(incr, xphi);
1934 
1935   if (stride == nullptr) {
1936     return false;
1937   }
1938 
1939   // Iteratively uncast the loop induction variable
1940   // until no more CastII/CastLL nodes are found.
1941   while (xphi->Opcode() == Op_Cast(iv_bt)) {
1942     xphi = xphi->in(1);
1943   }
1944 
1945   // Stride must be constant
1946   jlong stride_con = stride->get_integer_as_long(iv_bt);
1947   assert(stride_con != 0, "missed some peephole opt");
1948 
1949   PhiNode* phi = loop_iv_phi(xphi, phi_incr, x);
1950 
1951   if (phi == nullptr ||
1952       (trunc1 == nullptr && phi->in(LoopNode::LoopBackControl) != incr) ||
1953       (trunc1 != nullptr && phi->in(LoopNode::LoopBackControl) != trunc1)) {
1954     return false;
1955   }
1956 
1957   Node* iftrue = back_control;
1958   uint iftrue_op = iftrue->Opcode();
1959   Node* iff = iftrue->in(0);
1960   BoolNode* test = iff->in(1)->as_Bool();
1961 
1962   const TypeInteger* limit_t = gvn->type(limit)->is_integer(iv_bt);
1963   if (trunc1 != nullptr) {
1964     // When there is a truncation, we must be sure that after the truncation
1965     // the trip counter will end up higher than the limit, otherwise we are looking
1966     // at an endless loop. Can happen with range checks.
1967 
1968     // Example:
1969     // int i = 0;
1970     // while (true)
1971     //    sum + = array[i];
1972     //    i++;
1973     //    i = i && 0x7fff;
1974     //  }
1975     //
1976     // If the array is shorter than 0x8000 this exits through a AIOOB
1977     //  - Counted loop transformation is ok
1978     // If the array is longer then this is an endless loop
1979     //  - No transformation can be done.
1980 
1981     const TypeInteger* incr_t = gvn->type(orig_incr)->is_integer(iv_bt);
1982     if (limit_t->hi_as_long() > incr_t->hi_as_long()) {
1983       // if the limit can have a higher value than the increment (before the phi)
1984       return false;
1985     }
1986   }
1987 
1988   Node *init_trip = phi->in(LoopNode::EntryControl);
1989 
1990   // If iv trunc type is smaller than int, check for possible wrap.
1991   if (!TypeInteger::bottom(iv_bt)->higher_equal(iv_trunc_t)) {
1992     assert(trunc1 != nullptr, "must have found some truncation");
1993 
1994     // Get a better type for the phi (filtered thru if's)
1995     const TypeInteger* phi_ft = filtered_type(phi);
1996 
1997     // Can iv take on a value that will wrap?
1998     //
1999     // Ensure iv's limit is not within "stride" of the wrap value.
2000     //
2001     // Example for "short" type
2002     //    Truncation ensures value is in the range -32768..32767 (iv_trunc_t)
2003     //    If the stride is +10, then the last value of the induction
2004     //    variable before the increment (phi_ft->_hi) must be
2005     //    <= 32767 - 10 and (phi_ft->_lo) must be >= -32768 to
2006     //    ensure no truncation occurs after the increment.
2007 
2008     if (stride_con > 0) {
2009       if (iv_trunc_t->hi_as_long() - phi_ft->hi_as_long() < stride_con ||
2010           iv_trunc_t->lo_as_long() > phi_ft->lo_as_long()) {
2011         return false;  // truncation may occur
2012       }
2013     } else if (stride_con < 0) {
2014       if (iv_trunc_t->lo_as_long() - phi_ft->lo_as_long() > stride_con ||
2015           iv_trunc_t->hi_as_long() < phi_ft->hi_as_long()) {
2016         return false;  // truncation may occur
2017       }
2018     }
2019     // No possibility of wrap so truncation can be discarded
2020     // Promote iv type to Int
2021   } else {
2022     assert(trunc1 == nullptr && trunc2 == nullptr, "no truncation for int");
2023   }
2024 
2025   if (!condition_stride_ok(bt, stride_con)) {
2026     return false;
2027   }
2028 
2029   const TypeInteger* init_t = gvn->type(init_trip)->is_integer(iv_bt);
2030 
2031   if (stride_con > 0) {
2032     if (init_t->lo_as_long() > max_signed_integer(iv_bt) - stride_con) {
2033       return false; // cyclic loop
2034     }
2035   } else {
2036     if (init_t->hi_as_long() < min_signed_integer(iv_bt) - stride_con) {
2037       return false; // cyclic loop
2038     }
2039   }
2040 
2041   if (phi_incr != nullptr && bt != BoolTest::ne) {
2042     // check if there is a possibility of IV overflowing after the first increment
2043     if (stride_con > 0) {
2044       if (init_t->hi_as_long() > max_signed_integer(iv_bt) - stride_con) {
2045         return false;
2046       }
2047     } else {
2048       if (init_t->lo_as_long() < min_signed_integer(iv_bt) - stride_con) {
2049         return false;
2050       }
2051     }
2052   }
2053 
2054   // =================================================
2055   // ---- SUCCESS!   Found A Trip-Counted Loop!  -----
2056   //
2057 
2058   if (x->Opcode() == Op_Region) {
2059     // x has not yet been transformed to Loop or LongCountedLoop.
2060     // This should only happen if we are inside an infinite loop.
2061     // It happens like this:
2062     //   build_loop_tree -> do not attach infinite loop and nested loops
2063     //   beautify_loops  -> does not transform the infinite and nested loops to LoopNode, because not attached yet
2064     //   build_loop_tree -> find and attach infinite and nested loops
2065     //   counted_loop    -> nested Regions are not yet transformed to LoopNodes, we land here
2066     assert(x->as_Region()->is_in_infinite_subgraph(),
2067            "x can only be a Region and not Loop if inside infinite loop");
2068     // Come back later when Region is transformed to LoopNode
2069     return false;
2070   }
2071 
2072   assert(x->Opcode() == Op_Loop || x->Opcode() == Op_LongCountedLoop, "regular loops only");
2073   C->print_method(PHASE_BEFORE_CLOOPS, 3, x);
2074 
2075   // ===================================================
2076   // We can only convert this loop to a counted loop if we can guarantee that the iv phi will never overflow at runtime.
2077   // This is an implicit assumption taken by some loop optimizations. We therefore must ensure this property at all cost.
2078   // At this point, we've already excluded some trivial cases where an overflow could have been proven statically.
2079   // But even though we cannot prove that an overflow will *not* happen, we still want to speculatively convert this loop
2080   // to a counted loop. This can be achieved by adding additional iv phi overflow checks before the loop. If they fail,
2081   // we trap and resume execution before the loop without having executed any iteration of the loop, yet.
2082   //
2083   // These additional iv phi overflow checks can be inserted as Loop Limit Check Predicates above the Loop Limit Check
2084   // Parse Predicate which captures a JVM state just before the entry of the loop. If there is no such Parse Predicate,
2085   // we cannot generate a Loop Limit Check Predicate and thus cannot speculatively convert the loop to a counted loop.
2086   //
2087   // In the following, we only focus on int loops with stride > 0 to keep things simple. The argumentation and proof
2088   // for stride < 0 is analogously. For long loops, we would replace max_int with max_long.
2089   //
2090   //
2091   // The loop to be converted does not always need to have the often used shape:
2092   //
2093   //                                                 i = init
2094   //     i = init                                loop:
2095   //     do {                                        ...
2096   //         // ...               equivalent         i+=stride
2097   //         i+=stride               <==>            if (i < limit)
2098   //     } while (i < limit);                          goto loop
2099   //                                             exit:
2100   //                                                 ...
2101   //
2102   // where the loop exit check uses the post-incremented iv phi and a '<'-operator.
2103   //
2104   // We could also have '<='-operator (or '>='-operator for negative strides) or use the pre-incremented iv phi value
2105   // in the loop exit check:
2106   //
2107   //         i = init
2108   //     loop:
2109   //         ...
2110   //         if (i <= limit)
2111   //             i+=stride
2112   //             goto loop
2113   //     exit:
2114   //         ...
2115   //
2116   // Let's define the following terms:
2117   // - iv_pre_i: The pre-incremented iv phi before the i-th iteration.
2118   // - iv_post_i: The post-incremented iv phi after the i-th iteration.
2119   //
2120   // The iv_pre_i and iv_post_i have the following relation:
2121   //      iv_pre_i + stride = iv_post_i
2122   //
2123   // When converting a loop to a counted loop, we want to have a canonicalized loop exit check of the form:
2124   //     iv_post_i < adjusted_limit
2125   //
2126   // If that is not the case, we need to canonicalize the loop exit check by using different values for adjusted_limit:
2127   // (LE1) iv_post_i < limit: Already canonicalized. We can directly use limit as adjusted_limit.
2128   //           -> adjusted_limit = limit.
2129   // (LE2) iv_post_i <= limit:
2130   //           iv_post_i < limit + 1
2131   //           -> adjusted limit = limit + 1
2132   // (LE3) iv_pre_i < limit:
2133   //           iv_pre_i + stride < limit + stride
2134   //           iv_post_i < limit + stride
2135   //           -> adjusted_limit = limit + stride
2136   // (LE4) iv_pre_i <= limit:
2137   //           iv_pre_i < limit + 1
2138   //           iv_pre_i + stride < limit + stride + 1
2139   //           iv_post_i < limit + stride + 1
2140   //           -> adjusted_limit = limit + stride + 1
2141   //
2142   // Note that:
2143   //     (AL) limit <= adjusted_limit.
2144   //
2145   // The following loop invariant has to hold for counted loops with n iterations (i.e. loop exit check true after n-th
2146   // loop iteration) and a canonicalized loop exit check to guarantee that no iv_post_i over- or underflows:
2147   // (INV) For i = 1..n, min_int <= iv_post_i <= max_int
2148   //
2149   // To prove (INV), we require the following two conditions/assumptions:
2150   // (i): adjusted_limit - 1 + stride <= max_int
2151   // (ii): init < limit
2152   //
2153   // If we can prove (INV), we know that there can be no over- or underflow of any iv phi value. We prove (INV) by
2154   // induction by assuming (i) and (ii).
2155   //
2156   // Proof by Induction
2157   // ------------------
2158   // > Base case (i = 1): We show that (INV) holds after the first iteration:
2159   //     min_int <= iv_post_1 = init + stride <= max_int
2160   // Proof:
2161   //     First, we note that (ii) implies
2162   //         (iii) init <= limit - 1
2163   //     max_int >= adjusted_limit - 1 + stride   [using (i)]
2164   //             >= limit - 1 + stride            [using (AL)]
2165   //             >= init + stride                 [using (iii)]
2166   //             >= min_int                       [using stride > 0, no underflow]
2167   // Thus, no overflow happens after the first iteration and (INV) holds for i = 1.
2168   //
2169   // Note that to prove the base case we need (i) and (ii).
2170   //
2171   // > Induction Hypothesis (i = j, j > 1): Assume that (INV) holds after the j-th iteration:
2172   //     min_int <= iv_post_j <= max_int
2173   // > Step case (i = j + 1): We show that (INV) also holds after the j+1-th iteration:
2174   //     min_int <= iv_post_{j+1} = iv_post_j + stride <= max_int
2175   // Proof:
2176   // If iv_post_j >= adjusted_limit:
2177   //     We exit the loop after the j-th iteration, and we don't execute the j+1-th iteration anymore. Thus, there is
2178   //     also no iv_{j+1}. Since (INV) holds for iv_j, there is nothing left to prove.
2179   // If iv_post_j < adjusted_limit:
2180   //     First, we note that:
2181   //         (iv) iv_post_j <= adjusted_limit - 1
2182   //     max_int >= adjusted_limit - 1 + stride    [using (i)]
2183   //             >= iv_post_j + stride             [using (iv)]
2184   //             >= min_int                        [using stride > 0, no underflow]
2185   //
2186   // Note that to prove the step case we only need (i).
2187   //
2188   // Thus, by assuming (i) and (ii), we proved (INV).
2189   //
2190   //
2191   // It is therefore enough to add the following two Loop Limit Check Predicates to check assumptions (i) and (ii):
2192   //
2193   // (1) Loop Limit Check Predicate for (i):
2194   //     Using (i): adjusted_limit - 1 + stride <= max_int
2195   //
2196   //     This condition is now restated to use limit instead of adjusted_limit:
2197   //
2198   //     To prevent an overflow of adjusted_limit -1 + stride itself, we rewrite this check to
2199   //         max_int - stride + 1 >= adjusted_limit
2200   //     We can merge the two constants into
2201   //         canonicalized_correction = stride - 1
2202   //     which gives us
2203   //        max_int - canonicalized_correction >= adjusted_limit
2204   //
2205   //     To directly use limit instead of adjusted_limit in the predicate condition, we split adjusted_limit into:
2206   //         adjusted_limit = limit + limit_correction
2207   //     Since stride > 0 and limit_correction <= stride + 1, we can restate this with no over- or underflow into:
2208   //         max_int - canonicalized_correction - limit_correction >= limit
2209   //     Since canonicalized_correction and limit_correction are both constants, we can replace them with a new constant:
2210   //         (v) final_correction = canonicalized_correction + limit_correction
2211   //
2212   //     which gives us:
2213   //
2214   //     Final predicate condition:
2215   //         max_int - final_correction >= limit
2216   //
2217   //     However, we need to be careful that (v) does not over- or underflow.
2218   //     We know that:
2219   //         canonicalized_correction = stride - 1
2220   //     and
2221   //         limit_correction <= stride + 1
2222   //     and thus
2223   //         canonicalized_correction + limit_correction <= 2 * stride
2224   //     To prevent an over- or underflow of (v), we must ensure that
2225   //         2 * stride <= max_int
2226   //     which can safely be checked without over- or underflow with
2227   //         (vi) stride != min_int AND abs(stride) <= max_int / 2
2228   //
2229   //     We could try to further optimize the cases where (vi) does not hold but given that such large strides are
2230   //     very uncommon and the loop would only run for a very few iterations anyway, we simply bail out if (vi) fails.
2231   //
2232   // (2) Loop Limit Check Predicate for (ii):
2233   //     Using (ii): init < limit
2234   //
2235   //     This Loop Limit Check Predicate is not required if we can prove at compile time that either:
2236   //        (2.1) type(init) < type(limit)
2237   //             In this case, we know:
2238   //                 all possible values of init < all possible values of limit
2239   //             and we can skip the predicate.
2240   //
2241   //        (2.2) init < limit is already checked before (i.e. found as a dominating check)
2242   //            In this case, we do not need to re-check the condition and can skip the predicate.
2243   //            This is often found for while- and for-loops which have the following shape:
2244   //
2245   //                if (init < limit) { // Dominating test. Do not need the Loop Limit Check Predicate below.
2246   //                    i = init;
2247   //                    if (init >= limit) { trap(); } // Here we would insert the Loop Limit Check Predicate
2248   //                    do {
2249   //                        i += stride;
2250   //                    } while (i < limit);
2251   //                }
2252   //
2253   //        (2.3) init + stride <= max_int
2254   //            In this case, there is no overflow of the iv phi after the first loop iteration.
2255   //            In the proof of the base case above we showed that init + stride <= max_int by using assumption (ii):
2256   //                init < limit
2257   //            In the proof of the step case above, we did not need (ii) anymore. Therefore, if we already know at
2258   //            compile time that init + stride <= max_int then we have trivially proven the base case and that
2259   //            there is no overflow of the iv phi after the first iteration. In this case, we don't need to check (ii)
2260   //            again and can skip the predicate.
2261 
2262   // Check (vi) and bail out if the stride is too big.
2263   if (stride_con == min_signed_integer(iv_bt) || (ABS(stride_con) > max_signed_integer(iv_bt) / 2)) {
2264     return false;
2265   }
2266 
2267   // Accounting for (LE3) and (LE4) where we use pre-incremented phis in the loop exit check.
2268   const jlong limit_correction_for_pre_iv_exit_check = (phi_incr != nullptr) ? stride_con : 0;
2269 
2270   // Accounting for (LE2) and (LE4) where we use <= or >= in the loop exit check.
2271   const bool includes_limit = (bt == BoolTest::le || bt == BoolTest::ge);
2272   const jlong limit_correction_for_le_ge_exit_check = (includes_limit ? (stride_con > 0 ? 1 : -1) : 0);
2273 
2274   const jlong limit_correction = limit_correction_for_pre_iv_exit_check + limit_correction_for_le_ge_exit_check;
2275   const jlong canonicalized_correction = stride_con + (stride_con > 0 ? -1 : 1);
2276   const jlong final_correction = canonicalized_correction + limit_correction;
2277 
2278   int sov = check_stride_overflow(final_correction, limit_t, iv_bt);
2279   Node* init_control = x->in(LoopNode::EntryControl);
2280 
2281   // If sov==0, limit's type always satisfies the condition, for
2282   // example, when it is an array length.
2283   if (sov != 0) {
2284     if (sov < 0) {
2285       return false;  // Bailout: integer overflow is certain.
2286     }
2287     // (1) Loop Limit Check Predicate is required because we could not statically prove that
2288     //     limit + final_correction = adjusted_limit - 1 + stride <= max_int
2289     assert(!x->as_Loop()->is_loop_nest_inner_loop(), "loop was transformed");
2290     const Predicates predicates(init_control);
2291     const PredicateBlock* loop_limit_check_predicate_block = predicates.loop_limit_check_predicate_block();
2292     if (!loop_limit_check_predicate_block->has_parse_predicate()) {
2293       // The Loop Limit Check Parse Predicate is not generated if this method trapped here before.
2294 #ifdef ASSERT
2295       if (TraceLoopLimitCheck) {
2296         tty->print("Missing Loop Limit Check Parse Predicate:");
2297         loop->dump_head();
2298         x->dump(1);
2299       }
2300 #endif
2301       return false;
2302     }
2303 
2304     ParsePredicateNode* loop_limit_check_parse_predicate = loop_limit_check_predicate_block->parse_predicate();
2305     if (!is_dominator(get_ctrl(limit), loop_limit_check_parse_predicate->in(0))) {
2306       return false;
2307     }
2308 
2309     Node* cmp_limit;
2310     Node* bol;
2311 
2312     if (stride_con > 0) {
2313       cmp_limit = CmpNode::make(limit, _igvn.integercon(max_signed_integer(iv_bt) - final_correction, iv_bt), iv_bt);
2314       bol = new BoolNode(cmp_limit, BoolTest::le);
2315     } else {
2316       cmp_limit = CmpNode::make(limit, _igvn.integercon(min_signed_integer(iv_bt) - final_correction, iv_bt), iv_bt);
2317       bol = new BoolNode(cmp_limit, BoolTest::ge);
2318     }
2319 
2320     insert_loop_limit_check_predicate(init_control->as_IfTrue(), cmp_limit, bol);
2321   }
2322 
2323   // (2.3)
2324   const bool init_plus_stride_could_overflow =
2325           (stride_con > 0 && init_t->hi_as_long() > max_signed_integer(iv_bt) - stride_con) ||
2326           (stride_con < 0 && init_t->lo_as_long() < min_signed_integer(iv_bt) - stride_con);
2327   // (2.1)
2328   const bool init_gte_limit = (stride_con > 0 && init_t->hi_as_long() >= limit_t->lo_as_long()) ||
2329                               (stride_con < 0 && init_t->lo_as_long() <= limit_t->hi_as_long());
2330 
2331   if (init_gte_limit && // (2.1)
2332      ((bt == BoolTest::ne || init_plus_stride_could_overflow) && // (2.3)
2333       !has_dominating_loop_limit_check(init_trip, limit, stride_con, iv_bt, init_control))) { // (2.2)
2334     // (2) Iteration Loop Limit Check Predicate is required because neither (2.1), (2.2), nor (2.3) holds.
2335     // We use the following condition:
2336     // - stride > 0: init < limit
2337     // - stride < 0: init > limit
2338     //
2339     // This predicate is always required if we have a non-equal-operator in the loop exit check (where stride = 1 is
2340     // a requirement). We transform the loop exit check by using a less-than-operator. By doing so, we must always
2341     // check that init < limit. Otherwise, we could have a different number of iterations at runtime.
2342 
2343     const Predicates predicates(init_control);
2344     const PredicateBlock* loop_limit_check_predicate_block = predicates.loop_limit_check_predicate_block();
2345     if (!loop_limit_check_predicate_block->has_parse_predicate()) {
2346       // The Loop Limit Check Parse Predicate is not generated if this method trapped here before.
2347 #ifdef ASSERT
2348       if (TraceLoopLimitCheck) {
2349         tty->print("Missing Loop Limit Check Parse Predicate:");
2350         loop->dump_head();
2351         x->dump(1);
2352       }
2353 #endif
2354       return false;
2355     }
2356 
2357     ParsePredicateNode* loop_limit_check_parse_predicate = loop_limit_check_predicate_block->parse_predicate();
2358     Node* parse_predicate_entry = loop_limit_check_parse_predicate->in(0);
2359     if (!is_dominator(get_ctrl(limit), parse_predicate_entry) ||
2360         !is_dominator(get_ctrl(init_trip), parse_predicate_entry)) {
2361       return false;
2362     }
2363 
2364     Node* cmp_limit;
2365     Node* bol;
2366 
2367     if (stride_con > 0) {
2368       cmp_limit = CmpNode::make(init_trip, limit, iv_bt);
2369       bol = new BoolNode(cmp_limit, BoolTest::lt);
2370     } else {
2371       cmp_limit = CmpNode::make(init_trip, limit, iv_bt);
2372       bol = new BoolNode(cmp_limit, BoolTest::gt);
2373     }
2374 
2375     insert_loop_limit_check_predicate(init_control->as_IfTrue(), cmp_limit, bol);
2376   }
2377 
2378   if (bt == BoolTest::ne) {
2379     // Now we need to canonicalize the loop condition if it is 'ne'.
2380     assert(stride_con == 1 || stride_con == -1, "simple increment only - checked before");
2381     if (stride_con > 0) {
2382       // 'ne' can be replaced with 'lt' only when init < limit. This is ensured by the inserted predicate above.
2383       bt = BoolTest::lt;
2384     } else {
2385       assert(stride_con < 0, "must be");
2386       // 'ne' can be replaced with 'gt' only when init > limit. This is ensured by the inserted predicate above.
2387       bt = BoolTest::gt;
2388     }
2389   }
2390 
2391   Node* sfpt = nullptr;
2392   if (loop->_child == nullptr) {
2393     sfpt = find_safepoint(back_control, x, loop);
2394   } else {
2395     sfpt = iff->in(0);
2396     if (sfpt->Opcode() != Op_SafePoint) {
2397       sfpt = nullptr;
2398     }
2399   }
2400 
2401   if (x->in(LoopNode::LoopBackControl)->Opcode() == Op_SafePoint) {
2402     Node* backedge_sfpt = x->in(LoopNode::LoopBackControl);
2403     if (((iv_bt == T_INT && LoopStripMiningIter != 0) ||
2404          iv_bt == T_LONG) &&
2405         sfpt == nullptr) {
2406       // Leaving the safepoint on the backedge and creating a
2407       // CountedLoop will confuse optimizations. We can't move the
2408       // safepoint around because its jvm state wouldn't match a new
2409       // location. Give up on that loop.
2410       return false;
2411     }
2412     if (is_deleteable_safept(backedge_sfpt)) {
2413       replace_node_and_forward_ctrl(backedge_sfpt, iftrue);
2414       if (loop->_safepts != nullptr) {
2415         loop->_safepts->yank(backedge_sfpt);
2416       }
2417       loop->_tail = iftrue;
2418     }
2419   }
2420 
2421 
2422 #ifdef ASSERT
2423   if (iv_bt == T_INT &&
2424       !x->as_Loop()->is_loop_nest_inner_loop() &&
2425       StressLongCountedLoop > 0 &&
2426       trunc1 == nullptr &&
2427       convert_to_long_loop(cmp, phi, loop)) {
2428     return false;
2429   }
2430 #endif
2431 
2432   Node* adjusted_limit = limit;
2433   if (phi_incr != nullptr) {
2434     // If compare points directly to the phi we need to adjust
2435     // the compare so that it points to the incr. Limit have
2436     // to be adjusted to keep trip count the same and we
2437     // should avoid int overflow.
2438     //
2439     //   i = init; do {} while(i++ < limit);
2440     // is converted to
2441     //   i = init; do {} while(++i < limit+1);
2442     //
2443     adjusted_limit = gvn->transform(AddNode::make(limit, stride, iv_bt));
2444   }
2445 
2446   if (includes_limit) {
2447     // The limit check guaranties that 'limit <= (max_jint - stride)' so
2448     // we can convert 'i <= limit' to 'i < limit+1' since stride != 0.
2449     //
2450     Node* one = (stride_con > 0) ? gvn->integercon( 1, iv_bt) : gvn->integercon(-1, iv_bt);
2451     adjusted_limit = gvn->transform(AddNode::make(adjusted_limit, one, iv_bt));
2452     if (bt == BoolTest::le)
2453       bt = BoolTest::lt;
2454     else if (bt == BoolTest::ge)
2455       bt = BoolTest::gt;
2456     else
2457       ShouldNotReachHere();
2458   }
2459   set_subtree_ctrl(adjusted_limit, false);
2460 
2461   // Build a canonical trip test.
2462   // Clone code, as old values may be in use.
2463   incr = incr->clone();
2464   incr->set_req(1,phi);
2465   incr->set_req(2,stride);
2466   incr = _igvn.register_new_node_with_optimizer(incr);
2467   set_early_ctrl(incr, false);
2468   _igvn.rehash_node_delayed(phi);
2469   phi->set_req_X( LoopNode::LoopBackControl, incr, &_igvn );
2470 
2471   // If phi type is more restrictive than Int, raise to
2472   // Int to prevent (almost) infinite recursion in igvn
2473   // which can only handle integer types for constants or minint..maxint.
2474   if (!TypeInteger::bottom(iv_bt)->higher_equal(phi->bottom_type())) {
2475     Node* nphi = PhiNode::make(phi->in(0), phi->in(LoopNode::EntryControl), TypeInteger::bottom(iv_bt));
2476     nphi->set_req(LoopNode::LoopBackControl, phi->in(LoopNode::LoopBackControl));
2477     nphi = _igvn.register_new_node_with_optimizer(nphi);
2478     set_ctrl(nphi, get_ctrl(phi));
2479     _igvn.replace_node(phi, nphi);
2480     phi = nphi->as_Phi();
2481   }
2482   cmp = cmp->clone();
2483   cmp->set_req(1,incr);
2484   cmp->set_req(2, adjusted_limit);
2485   cmp = _igvn.register_new_node_with_optimizer(cmp);
2486   set_ctrl(cmp, iff->in(0));
2487 
2488   test = test->clone()->as_Bool();
2489   (*(BoolTest*)&test->_test)._test = bt;
2490   test->set_req(1,cmp);
2491   _igvn.register_new_node_with_optimizer(test);
2492   set_ctrl(test, iff->in(0));
2493 
2494   // Replace the old IfNode with a new LoopEndNode
2495   Node *lex = _igvn.register_new_node_with_optimizer(BaseCountedLoopEndNode::make(iff->in(0), test, cl_prob, iff->as_If()->_fcnt, iv_bt));
2496   IfNode *le = lex->as_If();
2497   uint dd = dom_depth(iff);
2498   set_idom(le, le->in(0), dd); // Update dominance for loop exit
2499   set_loop(le, loop);
2500 
2501   // Get the loop-exit control
2502   Node *iffalse = iff->as_If()->proj_out(!(iftrue_op == Op_IfTrue));
2503 
2504   // Need to swap loop-exit and loop-back control?
2505   if (iftrue_op == Op_IfFalse) {
2506     Node *ift2=_igvn.register_new_node_with_optimizer(new IfTrueNode (le));
2507     Node *iff2=_igvn.register_new_node_with_optimizer(new IfFalseNode(le));
2508 
2509     loop->_tail = back_control = ift2;
2510     set_loop(ift2, loop);
2511     set_loop(iff2, get_loop(iffalse));
2512 
2513     // Lazy update of 'get_ctrl' mechanism.
2514     replace_node_and_forward_ctrl(iffalse, iff2);
2515     replace_node_and_forward_ctrl(iftrue,  ift2);
2516 
2517     // Swap names
2518     iffalse = iff2;
2519     iftrue  = ift2;
2520   } else {
2521     _igvn.rehash_node_delayed(iffalse);
2522     _igvn.rehash_node_delayed(iftrue);
2523     iffalse->set_req_X( 0, le, &_igvn );
2524     iftrue ->set_req_X( 0, le, &_igvn );
2525   }
2526 
2527   set_idom(iftrue,  le, dd+1);
2528   set_idom(iffalse, le, dd+1);
2529   assert(iff->outcnt() == 0, "should be dead now");
2530   replace_node_and_forward_ctrl(iff, le); // fix 'get_ctrl'
2531 
2532   Node* entry_control = init_control;
2533   bool strip_mine_loop = iv_bt == T_INT &&
2534                          loop->_child == nullptr &&
2535                          sfpt != nullptr &&
2536                          !loop->_has_call &&
2537                          is_deleteable_safept(sfpt);
2538   IdealLoopTree* outer_ilt = nullptr;
2539   if (strip_mine_loop) {
2540     outer_ilt = create_outer_strip_mined_loop(init_control, loop, cl_prob, le->_fcnt,
2541                                               entry_control, iffalse);
2542   }
2543 
2544   // Now setup a new CountedLoopNode to replace the existing LoopNode
2545   BaseCountedLoopNode *l = BaseCountedLoopNode::make(entry_control, back_control, iv_bt);
2546   l->set_unswitch_count(x->as_Loop()->unswitch_count()); // Preserve
2547   // The following assert is approximately true, and defines the intention
2548   // of can_be_counted_loop.  It fails, however, because phase->type
2549   // is not yet initialized for this loop and its parts.
2550   //assert(l->can_be_counted_loop(this), "sanity");
2551   _igvn.register_new_node_with_optimizer(l);
2552   set_loop(l, loop);
2553   loop->_head = l;
2554   // Fix all data nodes placed at the old loop head.
2555   // Uses the lazy-update mechanism of 'get_ctrl'.
2556   replace_node_and_forward_ctrl(x, l);
2557   set_idom(l, entry_control, dom_depth(entry_control) + 1);
2558 
2559   if (iv_bt == T_INT && (LoopStripMiningIter == 0 || strip_mine_loop)) {
2560     // Check for immediately preceding SafePoint and remove
2561     if (sfpt != nullptr && (strip_mine_loop || is_deleteable_safept(sfpt))) {
2562       if (strip_mine_loop) {
2563         Node* outer_le = outer_ilt->_tail->in(0);
2564         Node* sfpt_clone = sfpt->clone();
2565         sfpt_clone->set_req(0, iffalse);
2566         outer_le->set_req(0, sfpt_clone);
2567 
2568         Node* polladdr = sfpt_clone->in(TypeFunc::Parms);
2569         if (polladdr != nullptr && polladdr->is_Load()) {
2570           // Polling load should be pinned outside inner loop.
2571           Node* new_polladdr = polladdr->clone();
2572           new_polladdr->set_req(0, iffalse);
2573           _igvn.register_new_node_with_optimizer(new_polladdr, polladdr);
2574           set_ctrl(new_polladdr, iffalse);
2575           sfpt_clone->set_req(TypeFunc::Parms, new_polladdr);
2576         }
2577         // When this code runs, loop bodies have not yet been populated.
2578         const bool body_populated = false;
2579         register_control(sfpt_clone, outer_ilt, iffalse, body_populated);
2580         set_idom(outer_le, sfpt_clone, dom_depth(sfpt_clone));
2581       }
2582       replace_node_and_forward_ctrl(sfpt, sfpt->in(TypeFunc::Control));
2583       if (loop->_safepts != nullptr) {
2584         loop->_safepts->yank(sfpt);
2585       }
2586     }
2587   }
2588 
2589 #ifdef ASSERT
2590   assert(l->is_valid_counted_loop(iv_bt), "counted loop shape is messed up");
2591   assert(l == loop->_head && l->phi() == phi && l->loopexit_or_null() == lex, "" );
2592 #endif
2593 #ifndef PRODUCT
2594   if (TraceLoopOpts) {
2595     tty->print("Counted      ");
2596     loop->dump_head();
2597   }
2598 #endif
2599 
2600   C->print_method(PHASE_AFTER_CLOOPS, 3, l);
2601 
2602   // Capture bounds of the loop in the induction variable Phi before
2603   // subsequent transformation (iteration splitting) obscures the
2604   // bounds
2605   l->phi()->as_Phi()->set_type(l->phi()->Value(&_igvn));
2606 
2607   if (strip_mine_loop) {
2608     l->mark_strip_mined();
2609     l->verify_strip_mined(1);
2610     outer_ilt->_head->as_Loop()->verify_strip_mined(1);
2611     loop = outer_ilt;
2612   }
2613 
2614 #ifndef PRODUCT
2615   if (x->as_Loop()->is_loop_nest_inner_loop() && iv_bt == T_LONG) {
2616     AtomicAccess::inc(&_long_loop_counted_loops);
2617   }
2618 #endif
2619   if (iv_bt == T_LONG && x->as_Loop()->is_loop_nest_outer_loop()) {
2620     l->mark_loop_nest_outer_loop();
2621   }
2622 
2623   return true;
2624 }
2625 
2626 // Check if there is a dominating loop limit check of the form 'init < limit' starting at the loop entry.
2627 // If there is one, then we do not need to create an additional Loop Limit Check Predicate.
2628 bool PhaseIdealLoop::has_dominating_loop_limit_check(Node* init_trip, Node* limit, const jlong stride_con,
2629                                                      const BasicType iv_bt, Node* loop_entry) {
2630   // Eagerly call transform() on the Cmp and Bool node to common them up if possible. This is required in order to
2631   // successfully find a dominated test with the If node below.
2632   Node* cmp_limit;
2633   Node* bol;
2634   if (stride_con > 0) {
2635     cmp_limit = _igvn.transform(CmpNode::make(init_trip, limit, iv_bt));
2636     bol = _igvn.transform(new BoolNode(cmp_limit, BoolTest::lt));
2637   } else {
2638     cmp_limit = _igvn.transform(CmpNode::make(init_trip, limit, iv_bt));
2639     bol = _igvn.transform(new BoolNode(cmp_limit, BoolTest::gt));
2640   }
2641 
2642   // Check if there is already a dominating init < limit check. If so, we do not need a Loop Limit Check Predicate.
2643   IfNode* iff = new IfNode(loop_entry, bol, PROB_MIN, COUNT_UNKNOWN);
2644   // Also add fake IfProj nodes in order to call transform() on the newly created IfNode.
2645   IfFalseNode* if_false = new IfFalseNode(iff);
2646   IfTrueNode* if_true = new IfTrueNode(iff);
2647   Node* dominated_iff = _igvn.transform(iff);
2648   // ConI node? Found dominating test (IfNode::dominated_by() returns a ConI node).
2649   const bool found_dominating_test = dominated_iff != nullptr && dominated_iff->is_ConI();
2650 
2651   // Kill the If with its projections again in the next IGVN round by cutting it off from the graph.
2652   _igvn.replace_input_of(iff, 0, C->top());
2653   _igvn.replace_input_of(iff, 1, C->top());
2654   return found_dominating_test;
2655 }
2656 
2657 //----------------------exact_limit-------------------------------------------
2658 Node* PhaseIdealLoop::exact_limit( IdealLoopTree *loop ) {
2659   assert(loop->_head->is_CountedLoop(), "");
2660   CountedLoopNode *cl = loop->_head->as_CountedLoop();
2661   assert(cl->is_valid_counted_loop(T_INT), "");
2662 
2663   if (cl->stride_con() == 1 ||
2664       cl->stride_con() == -1 ||
2665       cl->limit()->Opcode() == Op_LoopLimit) {
2666     // Old code has exact limit (it could be incorrect in case of int overflow).
2667     // Loop limit is exact with stride == 1. And loop may already have exact limit.
2668     return cl->limit();
2669   }
2670   Node *limit = nullptr;
2671 #ifdef ASSERT
2672   BoolTest::mask bt = cl->loopexit()->test_trip();
2673   assert(bt == BoolTest::lt || bt == BoolTest::gt, "canonical test is expected");
2674 #endif
2675   if (cl->has_exact_trip_count()) {
2676     // Simple case: loop has constant boundaries.
2677     // Use jlongs to avoid integer overflow.
2678     int stride_con = cl->stride_con();
2679     jlong  init_con = cl->init_trip()->get_int();
2680     jlong limit_con = cl->limit()->get_int();
2681     julong trip_cnt = cl->trip_count();
2682     jlong final_con = init_con + trip_cnt*stride_con;
2683     int final_int = (int)final_con;
2684     // The final value should be in integer range since the loop
2685     // is counted and the limit was checked for overflow.
2686     assert(final_con == (jlong)final_int, "final value should be integer");
2687     limit = _igvn.intcon(final_int);
2688   } else {
2689     // Create new LoopLimit node to get exact limit (final iv value).
2690     limit = new LoopLimitNode(C, cl->init_trip(), cl->limit(), cl->stride());
2691     register_new_node(limit, cl->in(LoopNode::EntryControl));
2692   }
2693   assert(limit != nullptr, "sanity");
2694   return limit;
2695 }
2696 
2697 //------------------------------Ideal------------------------------------------
2698 // Return a node which is more "ideal" than the current node.
2699 // Attempt to convert into a counted-loop.
2700 Node *LoopNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2701   if (!can_be_counted_loop(phase) && !is_OuterStripMinedLoop()) {
2702     phase->C->set_major_progress();
2703   }
2704   return RegionNode::Ideal(phase, can_reshape);
2705 }
2706 
2707 #ifdef ASSERT
2708 void LoopNode::verify_strip_mined(int expect_skeleton) const {
2709   const OuterStripMinedLoopNode* outer = nullptr;
2710   const CountedLoopNode* inner = nullptr;
2711   if (is_strip_mined()) {
2712     if (!is_valid_counted_loop(T_INT)) {
2713       return; // Skip malformed counted loop
2714     }
2715     assert(is_CountedLoop(), "no Loop should be marked strip mined");
2716     inner = as_CountedLoop();
2717     outer = inner->in(LoopNode::EntryControl)->as_OuterStripMinedLoop();
2718   } else if (is_OuterStripMinedLoop()) {
2719     outer = this->as_OuterStripMinedLoop();
2720     inner = outer->unique_ctrl_out()->as_CountedLoop();
2721     assert(inner->is_valid_counted_loop(T_INT) && inner->is_strip_mined(), "OuterStripMinedLoop should have been removed");
2722     assert(!is_strip_mined(), "outer loop shouldn't be marked strip mined");
2723   }
2724   if (inner != nullptr || outer != nullptr) {
2725     assert(inner != nullptr && outer != nullptr, "missing loop in strip mined nest");
2726     Node* outer_tail = outer->in(LoopNode::LoopBackControl);
2727     Node* outer_le = outer_tail->in(0);
2728     assert(outer_le->Opcode() == Op_OuterStripMinedLoopEnd, "tail of outer loop should be an If");
2729     Node* sfpt = outer_le->in(0);
2730     assert(sfpt->Opcode() == Op_SafePoint, "where's the safepoint?");
2731     Node* inner_out = sfpt->in(0);
2732     CountedLoopEndNode* cle = inner_out->in(0)->as_CountedLoopEnd();
2733     assert(cle == inner->loopexit_or_null(), "mismatch");
2734     bool has_skeleton = outer_le->in(1)->bottom_type()->singleton() && outer_le->in(1)->bottom_type()->is_int()->get_con() == 0;
2735     if (has_skeleton) {
2736       assert(expect_skeleton == 1 || expect_skeleton == -1, "unexpected skeleton node");
2737       assert(outer->outcnt() == 2, "only control nodes");
2738     } else {
2739       assert(expect_skeleton == 0 || expect_skeleton == -1, "no skeleton node?");
2740       uint phis = 0;
2741       uint be_loads = 0;
2742       Node* be = inner->in(LoopNode::LoopBackControl);
2743       for (DUIterator_Fast imax, i = inner->fast_outs(imax); i < imax; i++) {
2744         Node* u = inner->fast_out(i);
2745         if (u->is_Phi()) {
2746           phis++;
2747           for (DUIterator_Fast jmax, j = be->fast_outs(jmax); j < jmax; j++) {
2748             Node* n = be->fast_out(j);
2749             if (n->is_Load()) {
2750               assert(n->in(0) == be || n->find_prec_edge(be) > 0, "should be on the backedge");
2751               do {
2752                 n = n->raw_out(0);
2753               } while (!n->is_Phi());
2754               if (n == u) {
2755                 be_loads++;
2756                 break;
2757               }
2758             }
2759           }
2760         }
2761       }
2762       assert(be_loads <= phis, "wrong number phis that depends on a pinned load");
2763       for (DUIterator_Fast imax, i = outer->fast_outs(imax); i < imax; i++) {
2764         Node* u = outer->fast_out(i);
2765         assert(u == outer || u == inner || u->is_Phi(), "nothing between inner and outer loop");
2766       }
2767       uint stores = 0;
2768       for (DUIterator_Fast imax, i = inner_out->fast_outs(imax); i < imax; i++) {
2769         Node* u = inner_out->fast_out(i);
2770         if (u->is_Store()) {
2771           stores++;
2772         }
2773       }
2774       // Late optimization of loads on backedge can cause Phi of outer loop to be eliminated but Phi of inner loop is
2775       // not guaranteed to be optimized out.
2776       assert(outer->outcnt() >= phis + 2 - be_loads && outer->outcnt() <= phis + 2 + stores + 1, "only phis");
2777     }
2778     assert(sfpt->outcnt() == 1, "no data node");
2779     assert(outer_tail->outcnt() == 1 || !has_skeleton, "no data node");
2780   }
2781 }
2782 #endif
2783 
2784 //=============================================================================
2785 //------------------------------Ideal------------------------------------------
2786 // Return a node which is more "ideal" than the current node.
2787 // Attempt to convert into a counted-loop.
2788 Node *CountedLoopNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2789   return RegionNode::Ideal(phase, can_reshape);
2790 }
2791 
2792 //------------------------------dump_spec--------------------------------------
2793 // Dump special per-node info
2794 #ifndef PRODUCT
2795 void CountedLoopNode::dump_spec(outputStream *st) const {
2796   LoopNode::dump_spec(st);
2797   if (stride_is_con()) {
2798     st->print("stride: %d ",stride_con());
2799   }
2800   if (is_pre_loop ()) st->print("pre of N%d" , _main_idx);
2801   if (is_main_loop()) st->print("main of N%d", _idx);
2802   if (is_post_loop()) st->print("post of N%d", _main_idx);
2803   if (is_strip_mined()) st->print(" strip mined");
2804   if (is_multiversion_fast_loop())         { st->print(" multiversion_fast"); }
2805   if (is_multiversion_slow_loop())         { st->print(" multiversion_slow"); }
2806   if (is_multiversion_delayed_slow_loop()) { st->print(" multiversion_delayed_slow"); }
2807 }
2808 #endif
2809 
2810 //=============================================================================
2811 jlong BaseCountedLoopEndNode::stride_con() const {
2812   return stride()->bottom_type()->is_integer(bt())->get_con_as_long(bt());
2813 }
2814 
2815 
2816 BaseCountedLoopEndNode* BaseCountedLoopEndNode::make(Node* control, Node* test, float prob, float cnt, BasicType bt) {
2817   if (bt == T_INT) {
2818     return new CountedLoopEndNode(control, test, prob, cnt);
2819   }
2820   assert(bt == T_LONG, "unsupported");
2821   return new LongCountedLoopEndNode(control, test, prob, cnt);
2822 }
2823 
2824 //=============================================================================
2825 //------------------------------Value-----------------------------------------
2826 const Type* LoopLimitNode::Value(PhaseGVN* phase) const {
2827   const Type* init_t   = phase->type(in(Init));
2828   const Type* limit_t  = phase->type(in(Limit));
2829   const Type* stride_t = phase->type(in(Stride));
2830   // Either input is TOP ==> the result is TOP
2831   if (init_t   == Type::TOP) return Type::TOP;
2832   if (limit_t  == Type::TOP) return Type::TOP;
2833   if (stride_t == Type::TOP) return Type::TOP;
2834 
2835   int stride_con = stride_t->is_int()->get_con();
2836   if (stride_con == 1)
2837     return bottom_type();  // Identity
2838 
2839   if (init_t->is_int()->is_con() && limit_t->is_int()->is_con()) {
2840     // Use jlongs to avoid integer overflow.
2841     jlong init_con   =  init_t->is_int()->get_con();
2842     jlong limit_con  = limit_t->is_int()->get_con();
2843     int  stride_m   = stride_con - (stride_con > 0 ? 1 : -1);
2844     jlong trip_count = (limit_con - init_con + stride_m)/stride_con;
2845     jlong final_con  = init_con + stride_con*trip_count;
2846     int final_int = (int)final_con;
2847     // The final value should be in integer range in almost all cases,
2848     // since the loop is counted and the limit was checked for overflow.
2849     // There some exceptions, for example:
2850     // - During CCP, there might be a temporary overflow from PhiNodes, see JDK-8309266.
2851     // - During PhaseIdealLoop::split_thru_phi, the LoopLimitNode floats possibly far above
2852     //   the loop and its predicates, and we might get constants on one side of the phi that
2853     //   would lead to overflows. Such a code path would never lead us to enter the loop
2854     //   because of the loop limit overflow check that happens after the LoopLimitNode
2855     //   computation with overflow, but before we enter the loop, see JDK-8335747.
2856     if (final_con == (jlong)final_int) {
2857       return TypeInt::make(final_int);
2858     } else {
2859       return bottom_type();
2860     }
2861   }
2862 
2863   return bottom_type(); // TypeInt::INT
2864 }
2865 
2866 //------------------------------Ideal------------------------------------------
2867 // Return a node which is more "ideal" than the current node.
2868 Node *LoopLimitNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2869   if (phase->type(in(Init))   == Type::TOP ||
2870       phase->type(in(Limit))  == Type::TOP ||
2871       phase->type(in(Stride)) == Type::TOP)
2872     return nullptr;  // Dead
2873 
2874   int stride_con = phase->type(in(Stride))->is_int()->get_con();
2875   if (stride_con == 1)
2876     return nullptr;  // Identity
2877 
2878   // Delay following optimizations until all loop optimizations
2879   // done to keep Ideal graph simple.
2880   if (!can_reshape || !phase->C->post_loop_opts_phase()) {
2881     phase->C->record_for_post_loop_opts_igvn(this);
2882     return nullptr;
2883   }
2884 
2885   const TypeInt* init_t  = phase->type(in(Init) )->is_int();
2886   const TypeInt* limit_t = phase->type(in(Limit))->is_int();
2887   jlong stride_p;
2888   jlong lim, ini;
2889   julong max;
2890   if (stride_con > 0) {
2891     stride_p = stride_con;
2892     lim = limit_t->_hi;
2893     ini = init_t->_lo;
2894     max = (julong)max_jint;
2895   } else {
2896     stride_p = -(jlong)stride_con;
2897     lim = init_t->_hi;
2898     ini = limit_t->_lo;
2899     max = (julong)(juint)min_jint; // double cast to get 0x0000000080000000, not 0xffffffff80000000
2900   }
2901   julong range = lim - ini + stride_p;
2902   if (range <= max) {
2903     // Convert to integer expression if it is not overflow.
2904     Node* stride_m = phase->intcon(stride_con - (stride_con > 0 ? 1 : -1));
2905     Node *range = phase->transform(new SubINode(in(Limit), in(Init)));
2906     Node *bias  = phase->transform(new AddINode(range, stride_m));
2907     Node *trip  = phase->transform(new DivINode(nullptr, bias, in(Stride)));
2908     Node *span  = phase->transform(new MulINode(trip, in(Stride)));
2909     return new AddINode(span, in(Init)); // exact limit
2910   }
2911 
2912   if (is_power_of_2(stride_p) ||                // divisor is 2^n
2913       !Matcher::has_match_rule(Op_LoopLimit)) { // or no specialized Mach node?
2914     // Convert to long expression to avoid integer overflow
2915     // and let igvn optimizer convert this division.
2916     //
2917     Node*   init   = phase->transform( new ConvI2LNode(in(Init)));
2918     Node*  limit   = phase->transform( new ConvI2LNode(in(Limit)));
2919     Node* stride   = phase->longcon(stride_con);
2920     Node* stride_m = phase->longcon(stride_con - (stride_con > 0 ? 1 : -1));
2921 
2922     Node *range = phase->transform(new SubLNode(limit, init));
2923     Node *bias  = phase->transform(new AddLNode(range, stride_m));
2924     Node *span;
2925     if (stride_con > 0 && is_power_of_2(stride_p)) {
2926       // bias >= 0 if stride >0, so if stride is 2^n we can use &(-stride)
2927       // and avoid generating rounding for division. Zero trip guard should
2928       // guarantee that init < limit but sometimes the guard is missing and
2929       // we can get situation when init > limit. Note, for the empty loop
2930       // optimization zero trip guard is generated explicitly which leaves
2931       // only RCE predicate where exact limit is used and the predicate
2932       // will simply fail forcing recompilation.
2933       Node* neg_stride   = phase->longcon(-stride_con);
2934       span = phase->transform(new AndLNode(bias, neg_stride));
2935     } else {
2936       Node *trip  = phase->transform(new DivLNode(nullptr, bias, stride));
2937       span = phase->transform(new MulLNode(trip, stride));
2938     }
2939     // Convert back to int
2940     Node *span_int = phase->transform(new ConvL2INode(span));
2941     return new AddINode(span_int, in(Init)); // exact limit
2942   }
2943 
2944   return nullptr;    // No progress
2945 }
2946 
2947 //------------------------------Identity---------------------------------------
2948 // If stride == 1 return limit node.
2949 Node* LoopLimitNode::Identity(PhaseGVN* phase) {
2950   int stride_con = phase->type(in(Stride))->is_int()->get_con();
2951   if (stride_con == 1 || stride_con == -1)
2952     return in(Limit);
2953   return this;
2954 }
2955 
2956 //=============================================================================
2957 //----------------------match_incr_with_optional_truncation--------------------
2958 // Match increment with optional truncation:
2959 // CHAR: (i+1)&0x7fff, BYTE: ((i+1)<<8)>>8, or SHORT: ((i+1)<<16)>>16
2960 // Return null for failure. Success returns the increment node.
2961 Node* CountedLoopNode::match_incr_with_optional_truncation(Node* expr, Node** trunc1, Node** trunc2,
2962                                                            const TypeInteger** trunc_type,
2963                                                            BasicType bt) {
2964   // Quick cutouts:
2965   if (expr == nullptr || expr->req() != 3)  return nullptr;
2966 
2967   Node *t1 = nullptr;
2968   Node *t2 = nullptr;
2969   Node* n1 = expr;
2970   int   n1op = n1->Opcode();
2971   const TypeInteger* trunc_t = TypeInteger::bottom(bt);
2972 
2973   if (bt == T_INT) {
2974     // Try to strip (n1 & M) or (n1 << N >> N) from n1.
2975     if (n1op == Op_AndI &&
2976         n1->in(2)->is_Con() &&
2977         n1->in(2)->bottom_type()->is_int()->get_con() == 0x7fff) {
2978       // %%% This check should match any mask of 2**K-1.
2979       t1 = n1;
2980       n1 = t1->in(1);
2981       n1op = n1->Opcode();
2982       trunc_t = TypeInt::CHAR;
2983     } else if (n1op == Op_RShiftI &&
2984                n1->in(1) != nullptr &&
2985                n1->in(1)->Opcode() == Op_LShiftI &&
2986                n1->in(2) == n1->in(1)->in(2) &&
2987                n1->in(2)->is_Con()) {
2988       jint shift = n1->in(2)->bottom_type()->is_int()->get_con();
2989       // %%% This check should match any shift in [1..31].
2990       if (shift == 16 || shift == 8) {
2991         t1 = n1;
2992         t2 = t1->in(1);
2993         n1 = t2->in(1);
2994         n1op = n1->Opcode();
2995         if (shift == 16) {
2996           trunc_t = TypeInt::SHORT;
2997         } else if (shift == 8) {
2998           trunc_t = TypeInt::BYTE;
2999         }
3000       }
3001     }
3002   }
3003 
3004   // If (maybe after stripping) it is an AddI, we won:
3005   if (n1op == Op_Add(bt)) {
3006     *trunc1 = t1;
3007     *trunc2 = t2;
3008     *trunc_type = trunc_t;
3009     return n1;
3010   }
3011 
3012   // failed
3013   return nullptr;
3014 }
3015 
3016 IfNode* CountedLoopNode::find_multiversion_if_from_multiversion_fast_main_loop() {
3017   assert(is_main_loop() && is_multiversion_fast_loop(), "must be multiversion fast main loop");
3018   CountedLoopEndNode* pre_end = find_pre_loop_end();
3019   if (pre_end == nullptr) { return nullptr; }
3020   Node* pre_entry = pre_end->loopnode()->in(LoopNode::EntryControl);
3021   const Predicates predicates(pre_entry);
3022   IfTrueNode* before_predicates = predicates.entry()->isa_IfTrue();
3023   if (before_predicates != nullptr &&
3024       before_predicates->in(0)->in(1)->is_OpaqueMultiversioning()) {
3025     return before_predicates->in(0)->as_If();
3026   }
3027   return nullptr;
3028 }
3029 
3030 LoopNode* CountedLoopNode::skip_strip_mined(int expect_skeleton) {
3031   if (is_strip_mined() && in(EntryControl) != nullptr && in(EntryControl)->is_OuterStripMinedLoop()) {
3032     verify_strip_mined(expect_skeleton);
3033     return in(EntryControl)->as_Loop();
3034   }
3035   return this;
3036 }
3037 
3038 OuterStripMinedLoopNode* CountedLoopNode::outer_loop() const {
3039   assert(is_strip_mined(), "not a strip mined loop");
3040   Node* c = in(EntryControl);
3041   if (c == nullptr || c->is_top() || !c->is_OuterStripMinedLoop()) {
3042     return nullptr;
3043   }
3044   return c->as_OuterStripMinedLoop();
3045 }
3046 
3047 IfTrueNode* OuterStripMinedLoopNode::outer_loop_tail() const {
3048   Node* c = in(LoopBackControl);
3049   if (c == nullptr || c->is_top()) {
3050     return nullptr;
3051   }
3052   return c->as_IfTrue();
3053 }
3054 
3055 IfTrueNode* CountedLoopNode::outer_loop_tail() const {
3056   LoopNode* l = outer_loop();
3057   if (l == nullptr) {
3058     return nullptr;
3059   }
3060   return l->outer_loop_tail();
3061 }
3062 
3063 OuterStripMinedLoopEndNode* OuterStripMinedLoopNode::outer_loop_end() const {
3064   IfTrueNode* proj = outer_loop_tail();
3065   if (proj == nullptr) {
3066     return nullptr;
3067   }
3068   Node* c = proj->in(0);
3069   if (c == nullptr || c->is_top() || c->outcnt() != 2) {
3070     return nullptr;
3071   }
3072   return c->as_OuterStripMinedLoopEnd();
3073 }
3074 
3075 OuterStripMinedLoopEndNode* CountedLoopNode::outer_loop_end() const {
3076   LoopNode* l = outer_loop();
3077   if (l == nullptr) {
3078     return nullptr;
3079   }
3080   return l->outer_loop_end();
3081 }
3082 
3083 IfFalseNode* OuterStripMinedLoopNode::outer_loop_exit() const {
3084   IfNode* le = outer_loop_end();
3085   if (le == nullptr) {
3086     return nullptr;
3087   }
3088   IfFalseNode* c = le->false_proj_or_null();
3089   if (c == nullptr) {
3090     return nullptr;
3091   }
3092   return c->as_IfFalse();
3093 }
3094 
3095 IfFalseNode* CountedLoopNode::outer_loop_exit() const {
3096   LoopNode* l = outer_loop();
3097   if (l == nullptr) {
3098     return nullptr;
3099   }
3100   return l->outer_loop_exit();
3101 }
3102 
3103 SafePointNode* OuterStripMinedLoopNode::outer_safepoint() const {
3104   IfNode* le = outer_loop_end();
3105   if (le == nullptr) {
3106     return nullptr;
3107   }
3108   Node* c = le->in(0);
3109   if (c == nullptr || c->is_top()) {
3110     return nullptr;
3111   }
3112   assert(c->Opcode() == Op_SafePoint, "broken outer loop");
3113   return c->as_SafePoint();
3114 }
3115 
3116 SafePointNode* CountedLoopNode::outer_safepoint() const {
3117   LoopNode* l = outer_loop();
3118   if (l == nullptr) {
3119     return nullptr;
3120   }
3121   return l->outer_safepoint();
3122 }
3123 
3124 Node* CountedLoopNode::skip_assertion_predicates_with_halt() {
3125   Node* ctrl = in(LoopNode::EntryControl);
3126   if (ctrl == nullptr) {
3127     // Dying loop.
3128     return nullptr;
3129   }
3130   if (is_main_loop()) {
3131     ctrl = skip_strip_mined()->in(LoopNode::EntryControl);
3132   }
3133   if (is_main_loop() || is_post_loop()) {
3134     AssertionPredicates assertion_predicates(ctrl);
3135     return assertion_predicates.entry();
3136   }
3137   return ctrl;
3138 }
3139 
3140 
3141 int CountedLoopNode::stride_con() const {
3142   CountedLoopEndNode* cle = loopexit_or_null();
3143   return cle != nullptr ? cle->stride_con() : 0;
3144 }
3145 
3146 BaseCountedLoopNode* BaseCountedLoopNode::make(Node* entry, Node* backedge, BasicType bt) {
3147   if (bt == T_INT) {
3148     return new CountedLoopNode(entry, backedge);
3149   }
3150   assert(bt == T_LONG, "unsupported");
3151   return new LongCountedLoopNode(entry, backedge);
3152 }
3153 
3154 void OuterStripMinedLoopNode::fix_sunk_stores_when_back_to_counted_loop(PhaseIterGVN* igvn,
3155                                                                         PhaseIdealLoop* iloop) const {
3156   CountedLoopNode* inner_cl = inner_counted_loop();
3157   IfFalseNode* cle_out = inner_loop_exit();
3158 
3159   if (cle_out->outcnt() > 1) {
3160     // Look for chains of stores that were sunk
3161     // out of the inner loop and are in the outer loop
3162     for (DUIterator_Fast imax, i = cle_out->fast_outs(imax); i < imax; i++) {
3163       Node* u = cle_out->fast_out(i);
3164       if (u->is_Store()) {
3165         int alias_idx = igvn->C->get_alias_index(u->adr_type());
3166         Node* first = u;
3167         for (;;) {
3168           Node* next = first->in(MemNode::Memory);
3169           if (!next->is_Store() || next->in(0) != cle_out) {
3170             break;
3171           }
3172           assert(igvn->C->get_alias_index(next->adr_type()) == alias_idx, "");
3173           first = next;
3174         }
3175         Node* last = u;
3176         for (;;) {
3177           Node* next = nullptr;
3178           for (DUIterator_Fast jmax, j = last->fast_outs(jmax); j < jmax; j++) {
3179             Node* uu = last->fast_out(j);
3180             if (uu->is_Store() && uu->in(0) == cle_out) {
3181               assert(next == nullptr, "only one in the outer loop");
3182               next = uu;
3183               assert(igvn->C->get_alias_index(next->adr_type()) == alias_idx, "");
3184             }
3185           }
3186           if (next == nullptr) {
3187             break;
3188           }
3189           last = next;
3190         }
3191         Node* phi = nullptr;
3192         for (DUIterator_Fast jmax, j = inner_cl->fast_outs(jmax); j < jmax; j++) {
3193           Node* uu = inner_cl->fast_out(j);
3194           if (uu->is_Phi()) {
3195             Node* be = uu->in(LoopNode::LoopBackControl);
3196             if (be->is_Store() && be->in(0) == inner_cl->in(LoopNode::LoopBackControl)) {
3197               assert(igvn->C->get_alias_index(uu->adr_type()) != alias_idx && igvn->C->get_alias_index(uu->adr_type()) != Compile::AliasIdxBot, "unexpected store");
3198             }
3199             if (be == last || be == first->in(MemNode::Memory)) {
3200               assert(igvn->C->get_alias_index(uu->adr_type()) == alias_idx || igvn->C->get_alias_index(uu->adr_type()) == Compile::AliasIdxBot, "unexpected alias");
3201               assert(phi == nullptr, "only one phi");
3202               phi = uu;
3203             }
3204           }
3205         }
3206 #ifdef ASSERT
3207         for (DUIterator_Fast jmax, j = inner_cl->fast_outs(jmax); j < jmax; j++) {
3208           Node* uu = inner_cl->fast_out(j);
3209           if (uu->is_memory_phi()) {
3210             if (uu->adr_type() == igvn->C->get_adr_type(igvn->C->get_alias_index(u->adr_type()))) {
3211               assert(phi == uu, "what's that phi?");
3212             } else if (uu->adr_type() == TypePtr::BOTTOM) {
3213               Node* n = uu->in(LoopNode::LoopBackControl);
3214               uint limit = igvn->C->live_nodes();
3215               uint i = 0;
3216               while (n != uu) {
3217                 i++;
3218                 assert(i < limit, "infinite loop");
3219                 if (n->is_Proj()) {
3220                   n = n->in(0);
3221                 } else if (n->is_SafePoint() || n->is_MemBar()) {
3222                   n = n->in(TypeFunc::Memory);
3223                 } else if (n->is_Phi()) {
3224                   n = n->in(1);
3225                 } else if (n->is_MergeMem()) {
3226                   n = n->as_MergeMem()->memory_at(igvn->C->get_alias_index(u->adr_type()));
3227                 } else if (n->is_Store() || n->is_LoadStore() || n->is_ClearArray()) {
3228                   n = n->in(MemNode::Memory);
3229                 } else {
3230                   n->dump();
3231                   ShouldNotReachHere();
3232                 }
3233               }
3234             }
3235           }
3236         }
3237 #endif
3238         if (phi == nullptr) {
3239           // If an entire chains was sunk, the
3240           // inner loop has no phi for that memory
3241           // slice, create one for the outer loop
3242           phi = PhiNode::make(inner_cl, first->in(MemNode::Memory), Type::MEMORY,
3243                               igvn->C->get_adr_type(igvn->C->get_alias_index(u->adr_type())));
3244           phi->set_req(LoopNode::LoopBackControl, last);
3245           phi = register_new_node(phi, inner_cl, igvn, iloop);
3246           igvn->replace_input_of(first, MemNode::Memory, phi);
3247         } else {
3248           // Or fix the outer loop fix to include
3249           // that chain of stores.
3250           Node* be = phi->in(LoopNode::LoopBackControl);
3251           assert(!(be->is_Store() && be->in(0) == inner_cl->in(LoopNode::LoopBackControl)), "store on the backedge + sunk stores: unsupported");
3252           if (be == first->in(MemNode::Memory)) {
3253             if (be == phi->in(LoopNode::LoopBackControl)) {
3254               igvn->replace_input_of(phi, LoopNode::LoopBackControl, last);
3255             } else {
3256               igvn->replace_input_of(be, MemNode::Memory, last);
3257             }
3258           } else {
3259 #ifdef ASSERT
3260             if (be == phi->in(LoopNode::LoopBackControl)) {
3261               assert(phi->in(LoopNode::LoopBackControl) == last, "");
3262             } else {
3263               assert(be->in(MemNode::Memory) == last, "");
3264             }
3265 #endif
3266           }
3267         }
3268       }
3269     }
3270   }
3271 }
3272 
3273 // The outer strip mined loop is initially only partially constructed. In particular Phis are omitted.
3274 // See comment above: PhaseIdealLoop::create_outer_strip_mined_loop()
3275 // We're now in the process of finishing the construction of the outer loop. For each Phi in the inner loop, a Phi in
3276 // the outer loop was just now created. However, Sunk Stores cause an extra challenge:
3277 // 1) If all Stores in the inner loop were sunk for a particular memory slice, there's no Phi left for that memory slice
3278 //    in the inner loop anymore, and hence we did not yet add a Phi for the outer loop. So an extra Phi must now be
3279 //    added for each chain of sunk Stores for a particular memory slice.
3280 // 2) If some Stores were sunk and some left in the inner loop, a Phi was already created in the outer loop but
3281 //    its backedge input wasn't wired correctly to the last Store of the chain: the backedge input was set to the
3282 //    backedge of the inner loop Phi instead, but it needs to be the last Store of the chain in the outer loop. We now
3283 //    have to fix that too.
3284 void OuterStripMinedLoopNode::handle_sunk_stores_when_finishing_construction(PhaseIterGVN* igvn) {
3285   IfFalseNode* cle_exit_proj = inner_loop_exit();
3286 
3287   // Find Sunk stores: Sunk stores are pinned on the loop exit projection of the inner loop. Indeed, because Sunk Stores
3288   // modify the memory state captured by the SafePoint in the outer strip mined loop, they must be above it. The
3289   // SafePoint's control input is the loop exit projection. It's also the only control out of the inner loop above the
3290   // SafePoint.
3291 #ifdef ASSERT
3292   int stores_in_outer_loop_cnt = 0;
3293   for (DUIterator_Fast imax, i = cle_exit_proj->fast_outs(imax); i < imax; i++) {
3294     Node* u = cle_exit_proj->fast_out(i);
3295     if (u->is_Store()) {
3296       stores_in_outer_loop_cnt++;
3297     }
3298   }
3299 #endif
3300 
3301   // Sunk stores are reachable from the memory state of the outer loop safepoint
3302   SafePointNode* safepoint = outer_safepoint();
3303   MergeMemNode* mm = safepoint->in(TypeFunc::Memory)->isa_MergeMem();
3304   if (mm == nullptr) {
3305     // There is no MergeMem, which should only happen if there was no memory node
3306     // sunk out of the loop.
3307     assert(stores_in_outer_loop_cnt == 0, "inconsistent");
3308     return;
3309   }
3310   DEBUG_ONLY(int stores_in_outer_loop_cnt2 = 0);
3311   for (MergeMemStream mms(mm); mms.next_non_empty();) {
3312     Node* mem = mms.memory();
3313     // Traverse up the chain of stores to find the first store pinned
3314     // at the loop exit projection.
3315     Node* last = mem;
3316     Node* first = nullptr;
3317     while (mem->is_Store() && mem->in(0) == cle_exit_proj) {
3318       DEBUG_ONLY(stores_in_outer_loop_cnt2++);
3319       first = mem;
3320       mem = mem->in(MemNode::Memory);
3321     }
3322     if (first != nullptr) {
3323       // Found a chain of Stores that were sunk
3324       // Do we already have a memory Phi for that slice on the outer loop? If that is the case, that Phi was created
3325       // by cloning an inner loop Phi. The inner loop Phi should have mem, the memory state of the first Store out of
3326       // the inner loop, as input on the backedge. So does the outer loop Phi given it's a clone.
3327       Node* phi = nullptr;
3328       for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
3329         Node* u = mem->fast_out(i);
3330         if (u->is_Phi() && u->in(0) == this && u->in(LoopBackControl) == mem) {
3331           assert(phi == nullptr, "there should be only one");
3332           phi = u;
3333           PRODUCT_ONLY(break);
3334         }
3335       }
3336       if (phi == nullptr) {
3337         // No outer loop Phi? create one
3338         phi = PhiNode::make(this, last);
3339         phi->set_req(EntryControl, mem);
3340         phi = igvn->transform(phi);
3341         igvn->replace_input_of(first, MemNode::Memory, phi);
3342       } else {
3343         // Fix memory state along the backedge: it should be the last sunk Store of the chain
3344         igvn->replace_input_of(phi, LoopBackControl, last);
3345       }
3346     }
3347   }
3348   assert(stores_in_outer_loop_cnt == stores_in_outer_loop_cnt2, "inconsistent");
3349 }
3350 
3351 void OuterStripMinedLoopNode::adjust_strip_mined_loop(PhaseIterGVN* igvn) {
3352   verify_strip_mined(1);
3353   // Look for the outer & inner strip mined loop, reduce number of
3354   // iterations of the inner loop, set exit condition of outer loop,
3355   // construct required phi nodes for outer loop.
3356   CountedLoopNode* inner_cl = inner_counted_loop();
3357   assert(inner_cl->is_strip_mined(), "inner loop should be strip mined");
3358   if (LoopStripMiningIter == 0) {
3359     remove_outer_loop_and_safepoint(igvn);
3360     return;
3361   }
3362   if (LoopStripMiningIter == 1) {
3363     transform_to_counted_loop(igvn, nullptr);
3364     return;
3365   }
3366   Node* inner_iv_phi = inner_cl->phi();
3367   if (inner_iv_phi == nullptr) {
3368     IfNode* outer_le = outer_loop_end();
3369     Node* iff = igvn->transform(new IfNode(outer_le->in(0), outer_le->in(1), outer_le->_prob, outer_le->_fcnt));
3370     igvn->replace_node(outer_le, iff);
3371     inner_cl->clear_strip_mined();
3372     return;
3373   }
3374   CountedLoopEndNode* inner_cle = inner_counted_loop_end();
3375 
3376   int stride = inner_cl->stride_con();
3377   // For a min int stride, LoopStripMiningIter * stride overflows the int range for all values of LoopStripMiningIter
3378   // except 0 or 1. Those values are handled early on in this method and causes the method to return. So for a min int
3379   // stride, the method is guaranteed to return at the next check below.
3380   jlong scaled_iters_long = ((jlong)LoopStripMiningIter) * ABS((jlong)stride);
3381   int scaled_iters = (int)scaled_iters_long;
3382   if ((jlong)scaled_iters != scaled_iters_long) {
3383     // Remove outer loop and safepoint (too few iterations)
3384     remove_outer_loop_and_safepoint(igvn);
3385     return;
3386   }
3387   jlong short_scaled_iters = LoopStripMiningIterShortLoop * ABS(stride);
3388   const TypeInt* inner_iv_t = igvn->type(inner_iv_phi)->is_int();
3389   jlong iter_estimate = (jlong)inner_iv_t->_hi - (jlong)inner_iv_t->_lo;
3390   assert(iter_estimate > 0, "broken");
3391   if (iter_estimate <= short_scaled_iters) {
3392     // Remove outer loop and safepoint: loop executes less than LoopStripMiningIterShortLoop
3393     remove_outer_loop_and_safepoint(igvn);
3394     return;
3395   }
3396   if (iter_estimate <= scaled_iters_long) {
3397     // We would only go through one iteration of
3398     // the outer loop: drop the outer loop but
3399     // keep the safepoint so we don't run for
3400     // too long without a safepoint
3401     IfNode* outer_le = outer_loop_end();
3402     Node* iff = igvn->transform(new IfNode(outer_le->in(0), outer_le->in(1), outer_le->_prob, outer_le->_fcnt));
3403     igvn->replace_node(outer_le, iff);
3404     inner_cl->clear_strip_mined();
3405     return;
3406   }
3407 
3408   IfTrueNode* cle_tail = inner_cle->true_proj();
3409   ResourceMark rm;
3410   Node_List old_new;
3411   if (cle_tail->outcnt() > 1) {
3412     // Look for nodes on backedge of inner loop and clone them
3413     Unique_Node_List backedge_nodes;
3414     for (DUIterator_Fast imax, i = cle_tail->fast_outs(imax); i < imax; i++) {
3415       Node* u = cle_tail->fast_out(i);
3416       if (u != inner_cl) {
3417         assert(!u->is_CFG(), "control flow on the backedge?");
3418         backedge_nodes.push(u);
3419       }
3420     }
3421     uint last = igvn->C->unique();
3422     for (uint next = 0; next < backedge_nodes.size(); next++) {
3423       Node* n = backedge_nodes.at(next);
3424       old_new.map(n->_idx, n->clone());
3425       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3426         Node* u = n->fast_out(i);
3427         assert(!u->is_CFG(), "broken");
3428         if (u->_idx >= last) {
3429           continue;
3430         }
3431         if (!u->is_Phi()) {
3432           backedge_nodes.push(u);
3433         } else {
3434           assert(u->in(0) == inner_cl, "strange phi on the backedge");
3435         }
3436       }
3437     }
3438     // Put the clones on the outer loop backedge
3439     Node* le_tail = outer_loop_tail();
3440     for (uint next = 0; next < backedge_nodes.size(); next++) {
3441       Node *n = old_new[backedge_nodes.at(next)->_idx];
3442       for (uint i = 1; i < n->req(); i++) {
3443         if (n->in(i) != nullptr && old_new[n->in(i)->_idx] != nullptr) {
3444           n->set_req(i, old_new[n->in(i)->_idx]);
3445         }
3446       }
3447       if (n->in(0) != nullptr && n->in(0) == cle_tail) {
3448         n->set_req(0, le_tail);
3449       }
3450       igvn->register_new_node_with_optimizer(n);
3451     }
3452   }
3453 
3454   Node* iv_phi = nullptr;
3455   // Make a clone of each phi in the inner loop for the outer loop
3456   // When Stores were Sunk, after this step, a Phi may still be missing or its backedge incorrectly wired. See
3457   // handle_sunk_stores_when_finishing_construction()
3458   for (uint i = 0; i < inner_cl->outcnt(); i++) {
3459     Node* u = inner_cl->raw_out(i);
3460     if (u->is_Phi()) {
3461       assert(u->in(0) == inner_cl, "inconsistent");
3462       Node* phi = u->clone();
3463       phi->set_req(0, this);
3464       Node* be = old_new[phi->in(LoopNode::LoopBackControl)->_idx];
3465       if (be != nullptr) {
3466         phi->set_req(LoopNode::LoopBackControl, be);
3467       }
3468       phi = igvn->transform(phi);
3469       igvn->replace_input_of(u, LoopNode::EntryControl, phi);
3470       if (u == inner_iv_phi) {
3471         iv_phi = phi;
3472       }
3473     }
3474   }
3475 
3476   handle_sunk_stores_when_finishing_construction(igvn);
3477 
3478   if (iv_phi != nullptr) {
3479     // Now adjust the inner loop's exit condition
3480     Node* limit = inner_cl->limit();
3481     // If limit < init for stride > 0 (or limit > init for stride < 0),
3482     // the loop body is run only once. Given limit - init (init - limit resp.)
3483     // would be negative, the unsigned comparison below would cause
3484     // the loop body to be run for LoopStripMiningIter.
3485     Node* max = nullptr;
3486     if (stride > 0) {
3487       max = MinMaxNode::max_diff_with_zero(limit, iv_phi, TypeInt::INT, *igvn);
3488     } else {
3489       max = MinMaxNode::max_diff_with_zero(iv_phi, limit, TypeInt::INT, *igvn);
3490     }
3491     // sub is positive and can be larger than the max signed int
3492     // value. Use an unsigned min.
3493     Node* const_iters = igvn->intcon(scaled_iters);
3494     Node* min = MinMaxNode::unsigned_min(max, const_iters, TypeInt::make(0, scaled_iters, Type::WidenMin), *igvn);
3495     // min is the number of iterations for the next inner loop execution:
3496     // unsigned_min(max(limit - iv_phi, 0), scaled_iters) if stride > 0
3497     // unsigned_min(max(iv_phi - limit, 0), scaled_iters) if stride < 0
3498 
3499     Node* new_limit = nullptr;
3500     if (stride > 0) {
3501       new_limit = igvn->transform(new AddINode(min, iv_phi));
3502     } else {
3503       new_limit = igvn->transform(new SubINode(iv_phi, min));
3504     }
3505     Node* inner_cmp = inner_cle->cmp_node();
3506     Node* inner_bol = inner_cle->in(CountedLoopEndNode::TestValue);
3507     Node* outer_bol = inner_bol;
3508     // cmp node for inner loop may be shared
3509     inner_cmp = inner_cmp->clone();
3510     inner_cmp->set_req(2, new_limit);
3511     inner_bol = inner_bol->clone();
3512     inner_bol->set_req(1, igvn->transform(inner_cmp));
3513     igvn->replace_input_of(inner_cle, CountedLoopEndNode::TestValue, igvn->transform(inner_bol));
3514     // Set the outer loop's exit condition too
3515     igvn->replace_input_of(outer_loop_end(), 1, outer_bol);
3516   } else {
3517     assert(false, "should be able to adjust outer loop");
3518     IfNode* outer_le = outer_loop_end();
3519     Node* iff = igvn->transform(new IfNode(outer_le->in(0), outer_le->in(1), outer_le->_prob, outer_le->_fcnt));
3520     igvn->replace_node(outer_le, iff);
3521     inner_cl->clear_strip_mined();
3522   }
3523 }
3524 
3525 void OuterStripMinedLoopNode::transform_to_counted_loop(PhaseIterGVN* igvn, PhaseIdealLoop* iloop) {
3526   CountedLoopNode* inner_cl = unique_ctrl_out()->as_CountedLoop();
3527   CountedLoopEndNode* cle = inner_cl->loopexit();
3528   Node* inner_test = cle->in(1);
3529   IfNode* outer_le = outer_loop_end();
3530   Node* safepoint = outer_safepoint();
3531 
3532   fix_sunk_stores_when_back_to_counted_loop(igvn, iloop);
3533 
3534   // make counted loop exit test always fail
3535   ConINode* zero = igvn->intcon(0);
3536   if (iloop != nullptr) {
3537     iloop->set_root_as_ctrl(zero);
3538   }
3539   igvn->replace_input_of(cle, 1, zero);
3540   // replace outer loop end with CountedLoopEndNode with formers' CLE's exit test
3541   Node* new_end = new CountedLoopEndNode(outer_le->in(0), inner_test, cle->_prob, cle->_fcnt);
3542   register_control(new_end, inner_cl, outer_le->in(0), igvn, iloop);
3543   if (iloop == nullptr) {
3544     igvn->replace_node(outer_le, new_end);
3545   } else {
3546     iloop->replace_node_and_forward_ctrl(outer_le, new_end);
3547   }
3548   // the backedge of the inner loop must be rewired to the new loop end
3549   IfTrueNode* backedge = cle->true_proj();
3550   igvn->replace_input_of(backedge, 0, new_end);
3551   if (iloop != nullptr) {
3552     iloop->set_idom(backedge, new_end, iloop->dom_depth(new_end) + 1);
3553   }
3554   // make the outer loop go away
3555   igvn->replace_input_of(in(LoopBackControl), 0, igvn->C->top());
3556   igvn->replace_input_of(this, LoopBackControl, igvn->C->top());
3557   inner_cl->clear_strip_mined();
3558   if (iloop != nullptr) {
3559     Unique_Node_List wq;
3560     wq.push(safepoint);
3561 
3562     IdealLoopTree* outer_loop_ilt = iloop->get_loop(this);
3563     IdealLoopTree* loop = iloop->get_loop(inner_cl);
3564 
3565     for (uint i = 0; i < wq.size(); i++) {
3566       Node* n = wq.at(i);
3567       for (uint j = 0; j < n->req(); ++j) {
3568         Node* in = n->in(j);
3569         if (in == nullptr || in->is_CFG()) {
3570           continue;
3571         }
3572         if (iloop->get_loop(iloop->get_ctrl(in)) != outer_loop_ilt) {
3573           continue;
3574         }
3575         wq.push(in);
3576       }
3577       assert(!loop->_body.contains(n), "Shouldn't append node to body twice");
3578       loop->_body.push(n);
3579     }
3580     iloop->set_loop(safepoint, loop);
3581     loop->_body.push(safepoint);
3582     iloop->set_loop(safepoint->in(0), loop);
3583     loop->_body.push(safepoint->in(0));
3584     outer_loop_ilt->_tail = igvn->C->top();
3585   }
3586 }
3587 
3588 void OuterStripMinedLoopNode::remove_outer_loop_and_safepoint(PhaseIterGVN* igvn) const {
3589   CountedLoopNode* inner_cl = unique_ctrl_out()->as_CountedLoop();
3590   Node* outer_sfpt = outer_safepoint();
3591   Node* outer_out = outer_loop_exit();
3592   igvn->replace_node(outer_out, outer_sfpt->in(0));
3593   igvn->replace_input_of(outer_sfpt, 0, igvn->C->top());
3594   inner_cl->clear_strip_mined();
3595 }
3596 
3597 Node* OuterStripMinedLoopNode::register_new_node(Node* node, LoopNode* ctrl, PhaseIterGVN* igvn, PhaseIdealLoop* iloop) {
3598   if (iloop == nullptr) {
3599     return igvn->transform(node);
3600   }
3601   iloop->register_new_node(node, ctrl);
3602   return node;
3603 }
3604 
3605 Node* OuterStripMinedLoopNode::register_control(Node* node, Node* loop, Node* idom, PhaseIterGVN* igvn,
3606                                                 PhaseIdealLoop* iloop) {
3607   if (iloop == nullptr) {
3608     return igvn->transform(node);
3609   }
3610   iloop->register_control(node, iloop->get_loop(loop), idom);
3611   return node;
3612 }
3613 
3614 const Type* OuterStripMinedLoopEndNode::Value(PhaseGVN* phase) const {
3615   if (!in(0)) return Type::TOP;
3616   if (phase->type(in(0)) == Type::TOP)
3617     return Type::TOP;
3618 
3619   // Until expansion, the loop end condition is not set so this should not constant fold.
3620   if (is_expanded(phase)) {
3621     return IfNode::Value(phase);
3622   }
3623 
3624   return TypeTuple::IFBOTH;
3625 }
3626 
3627 bool OuterStripMinedLoopEndNode::is_expanded(PhaseGVN *phase) const {
3628   // The outer strip mined loop head only has Phi uses after expansion
3629   if (phase->is_IterGVN()) {
3630     IfTrueNode* backedge = true_proj_or_null();
3631     if (backedge != nullptr) {
3632       Node* head = backedge->unique_ctrl_out_or_null();
3633       if (head != nullptr && head->is_OuterStripMinedLoop()) {
3634         if (head->find_out_with(Op_Phi) != nullptr) {
3635           return true;
3636         }
3637       }
3638     }
3639   }
3640   return false;
3641 }
3642 
3643 Node *OuterStripMinedLoopEndNode::Ideal(PhaseGVN *phase, bool can_reshape) {
3644   if (remove_dead_region(phase, can_reshape))  return this;
3645 
3646   return nullptr;
3647 }
3648 
3649 //------------------------------filtered_type--------------------------------
3650 // Return a type based on condition control flow
3651 // A successful return will be a type that is restricted due
3652 // to a series of dominating if-tests, such as:
3653 //    if (i < 10) {
3654 //       if (i > 0) {
3655 //          here: "i" type is [1..10)
3656 //       }
3657 //    }
3658 // or a control flow merge
3659 //    if (i < 10) {
3660 //       do {
3661 //          phi( , ) -- at top of loop type is [min_int..10)
3662 //         i = ?
3663 //       } while ( i < 10)
3664 //
3665 const TypeInt* PhaseIdealLoop::filtered_type( Node *n, Node* n_ctrl) {
3666   assert(n && n->bottom_type()->is_int(), "must be int");
3667   const TypeInt* filtered_t = nullptr;
3668   if (!n->is_Phi()) {
3669     assert(n_ctrl != nullptr || n_ctrl == C->top(), "valid control");
3670     filtered_t = filtered_type_from_dominators(n, n_ctrl);
3671 
3672   } else {
3673     Node* phi    = n->as_Phi();
3674     Node* region = phi->in(0);
3675     assert(n_ctrl == nullptr || n_ctrl == region, "ctrl parameter must be region");
3676     if (region && region != C->top()) {
3677       for (uint i = 1; i < phi->req(); i++) {
3678         Node* val   = phi->in(i);
3679         Node* use_c = region->in(i);
3680         const TypeInt* val_t = filtered_type_from_dominators(val, use_c);
3681         if (val_t != nullptr) {
3682           if (filtered_t == nullptr) {
3683             filtered_t = val_t;
3684           } else {
3685             filtered_t = filtered_t->meet(val_t)->is_int();
3686           }
3687         }
3688       }
3689     }
3690   }
3691   const TypeInt* n_t = _igvn.type(n)->is_int();
3692   if (filtered_t != nullptr) {
3693     n_t = n_t->join(filtered_t)->is_int();
3694   }
3695   return n_t;
3696 }
3697 
3698 
3699 //------------------------------filtered_type_from_dominators--------------------------------
3700 // Return a possibly more restrictive type for val based on condition control flow of dominators
3701 const TypeInt* PhaseIdealLoop::filtered_type_from_dominators( Node* val, Node *use_ctrl) {
3702   if (val->is_Con()) {
3703      return val->bottom_type()->is_int();
3704   }
3705   uint if_limit = 10; // Max number of dominating if's visited
3706   const TypeInt* rtn_t = nullptr;
3707 
3708   if (use_ctrl && use_ctrl != C->top()) {
3709     Node* val_ctrl = get_ctrl(val);
3710     uint val_dom_depth = dom_depth(val_ctrl);
3711     Node* pred = use_ctrl;
3712     uint if_cnt = 0;
3713     while (if_cnt < if_limit) {
3714       if ((pred->Opcode() == Op_IfTrue || pred->Opcode() == Op_IfFalse)) {
3715         if_cnt++;
3716         const TypeInt* if_t = IfNode::filtered_int_type(&_igvn, val, pred);
3717         if (if_t != nullptr) {
3718           if (rtn_t == nullptr) {
3719             rtn_t = if_t;
3720           } else {
3721             rtn_t = rtn_t->join(if_t)->is_int();
3722           }
3723         }
3724       }
3725       pred = idom(pred);
3726       if (pred == nullptr || pred == C->top()) {
3727         break;
3728       }
3729       // Stop if going beyond definition block of val
3730       if (dom_depth(pred) < val_dom_depth) {
3731         break;
3732       }
3733     }
3734   }
3735   return rtn_t;
3736 }
3737 
3738 
3739 //------------------------------dump_spec--------------------------------------
3740 // Dump special per-node info
3741 #ifndef PRODUCT
3742 void CountedLoopEndNode::dump_spec(outputStream *st) const {
3743   if( in(TestValue) != nullptr && in(TestValue)->is_Bool() ) {
3744     BoolTest bt( test_trip()); // Added this for g++.
3745 
3746     st->print("[");
3747     bt.dump_on(st);
3748     st->print("]");
3749   }
3750   st->print(" ");
3751   IfNode::dump_spec(st);
3752 }
3753 #endif
3754 
3755 IdealLoopTree::IdealLoopTree(PhaseIdealLoop* phase, Node* head, Node* tail): _parent(nullptr), _next(nullptr), _child(nullptr),
3756                                                                              _head(head), _tail(tail),
3757                                                                              _phase(phase),
3758                                                                              _local_loop_unroll_limit(0), _local_loop_unroll_factor(0),
3759                                                                              _body(phase->arena()),
3760                                                                              _nest(0), _irreducible(0), _has_call(0), _has_sfpt(0), _rce_candidate(0),
3761                                                                              _has_range_checks(0), _has_range_checks_computed(0),
3762                                                                              _safepts(nullptr),
3763                                                                              _required_safept(nullptr),
3764                                                                              _allow_optimizations(true) {
3765   precond(_head != nullptr);
3766   precond(_tail != nullptr);
3767 }
3768 
3769 //=============================================================================
3770 //------------------------------is_member--------------------------------------
3771 // Is 'l' a member of 'this'?
3772 bool IdealLoopTree::is_member(const IdealLoopTree *l) const {
3773   while( l->_nest > _nest ) l = l->_parent;
3774   return l == this;
3775 }
3776 
3777 //------------------------------set_nest---------------------------------------
3778 // Set loop tree nesting depth.  Accumulate _has_call bits.
3779 int IdealLoopTree::set_nest( uint depth ) {
3780   assert(depth <= SHRT_MAX, "sanity");
3781   _nest = depth;
3782   int bits = _has_call;
3783   if( _child ) bits |= _child->set_nest(depth+1);
3784   if( bits ) _has_call = 1;
3785   if( _next  ) bits |= _next ->set_nest(depth  );
3786   return bits;
3787 }
3788 
3789 //------------------------------split_fall_in----------------------------------
3790 // Split out multiple fall-in edges from the loop header.  Move them to a
3791 // private RegionNode before the loop.  This becomes the loop landing pad.
3792 void IdealLoopTree::split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt ) {
3793   PhaseIterGVN &igvn = phase->_igvn;
3794   uint i;
3795 
3796   // Make a new RegionNode to be the landing pad.
3797   RegionNode* landing_pad = new RegionNode(fall_in_cnt + 1);
3798   phase->set_loop(landing_pad,_parent);
3799   // If _head was irreducible loop entry, landing_pad may now be too
3800   landing_pad->set_loop_status(_head->as_Region()->loop_status());
3801   // Gather all the fall-in control paths into the landing pad
3802   uint icnt = fall_in_cnt;
3803   uint oreq = _head->req();
3804   for( i = oreq-1; i>0; i-- )
3805     if( !phase->is_member( this, _head->in(i) ) )
3806       landing_pad->set_req(icnt--,_head->in(i));
3807 
3808   // Peel off PhiNode edges as well
3809   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
3810     Node *oj = _head->fast_out(j);
3811     if( oj->is_Phi() ) {
3812       PhiNode* old_phi = oj->as_Phi();
3813       assert( old_phi->region() == _head, "" );
3814       igvn.hash_delete(old_phi);   // Yank from hash before hacking edges
3815       Node *p = PhiNode::make_blank(landing_pad, old_phi);
3816       uint icnt = fall_in_cnt;
3817       for( i = oreq-1; i>0; i-- ) {
3818         if( !phase->is_member( this, _head->in(i) ) ) {
3819           p->init_req(icnt--, old_phi->in(i));
3820           // Go ahead and clean out old edges from old phi
3821           old_phi->del_req(i);
3822         }
3823       }
3824       // Search for CSE's here, because ZKM.jar does a lot of
3825       // loop hackery and we need to be a little incremental
3826       // with the CSE to avoid O(N^2) node blow-up.
3827       Node *p2 = igvn.hash_find_insert(p); // Look for a CSE
3828       if( p2 ) {                // Found CSE
3829         p->destruct(&igvn);     // Recover useless new node
3830         p = p2;                 // Use old node
3831       } else {
3832         igvn.register_new_node_with_optimizer(p, old_phi);
3833       }
3834       // Make old Phi refer to new Phi.
3835       old_phi->add_req(p);
3836       // Check for the special case of making the old phi useless and
3837       // disappear it.  In JavaGrande I have a case where this useless
3838       // Phi is the loop limit and prevents recognizing a CountedLoop
3839       // which in turn prevents removing an empty loop.
3840       Node *id_old_phi = old_phi->Identity(&igvn);
3841       if( id_old_phi != old_phi ) { // Found a simple identity?
3842         // Note that I cannot call 'replace_node' here, because
3843         // that will yank the edge from old_phi to the Region and
3844         // I'm mid-iteration over the Region's uses.
3845         for (DUIterator_Last imin, i = old_phi->last_outs(imin); i >= imin; ) {
3846           Node* use = old_phi->last_out(i);
3847           igvn.rehash_node_delayed(use);
3848           uint uses_found = 0;
3849           for (uint j = 0; j < use->len(); j++) {
3850             if (use->in(j) == old_phi) {
3851               if (j < use->req()) use->set_req (j, id_old_phi);
3852               else                use->set_prec(j, id_old_phi);
3853               uses_found++;
3854             }
3855           }
3856           i -= uses_found;    // we deleted 1 or more copies of this edge
3857         }
3858       }
3859       igvn._worklist.push(old_phi);
3860     }
3861   }
3862   // Finally clean out the fall-in edges from the RegionNode
3863   for( i = oreq-1; i>0; i-- ) {
3864     if( !phase->is_member( this, _head->in(i) ) ) {
3865       _head->del_req(i);
3866     }
3867   }
3868   igvn.rehash_node_delayed(_head);
3869   // Transform landing pad
3870   igvn.register_new_node_with_optimizer(landing_pad, _head);
3871   // Insert landing pad into the header
3872   _head->add_req(landing_pad);
3873 }
3874 
3875 //------------------------------split_outer_loop-------------------------------
3876 // Split out the outermost loop from this shared header.
3877 void IdealLoopTree::split_outer_loop( PhaseIdealLoop *phase ) {
3878   PhaseIterGVN &igvn = phase->_igvn;
3879 
3880   // Find index of outermost loop; it should also be my tail.
3881   uint outer_idx = 1;
3882   while( _head->in(outer_idx) != _tail ) outer_idx++;
3883 
3884   // Make a LoopNode for the outermost loop.
3885   Node *ctl = _head->in(LoopNode::EntryControl);
3886   Node *outer = new LoopNode( ctl, _head->in(outer_idx) );
3887   outer = igvn.register_new_node_with_optimizer(outer, _head);
3888   phase->set_created_loop_node();
3889 
3890   // Outermost loop falls into '_head' loop
3891   _head->set_req(LoopNode::EntryControl, outer);
3892   _head->del_req(outer_idx);
3893   // Split all the Phis up between '_head' loop and 'outer' loop.
3894   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
3895     Node *out = _head->fast_out(j);
3896     if( out->is_Phi() ) {
3897       PhiNode *old_phi = out->as_Phi();
3898       assert( old_phi->region() == _head, "" );
3899       Node *phi = PhiNode::make_blank(outer, old_phi);
3900       phi->init_req(LoopNode::EntryControl,    old_phi->in(LoopNode::EntryControl));
3901       phi->init_req(LoopNode::LoopBackControl, old_phi->in(outer_idx));
3902       phi = igvn.register_new_node_with_optimizer(phi, old_phi);
3903       // Make old Phi point to new Phi on the fall-in path
3904       igvn.replace_input_of(old_phi, LoopNode::EntryControl, phi);
3905       old_phi->del_req(outer_idx);
3906     }
3907   }
3908 
3909   // Use the new loop head instead of the old shared one
3910   _head = outer;
3911   phase->set_loop(_head, this);
3912 }
3913 
3914 //------------------------------fix_parent-------------------------------------
3915 static void fix_parent( IdealLoopTree *loop, IdealLoopTree *parent ) {
3916   loop->_parent = parent;
3917   if( loop->_child ) fix_parent( loop->_child, loop   );
3918   if( loop->_next  ) fix_parent( loop->_next , parent );
3919 }
3920 
3921 //------------------------------estimate_path_freq-----------------------------
3922 static float estimate_path_freq( Node *n ) {
3923   // Try to extract some path frequency info
3924   IfNode *iff;
3925   for( int i = 0; i < 50; i++ ) { // Skip through a bunch of uncommon tests
3926     uint nop = n->Opcode();
3927     if( nop == Op_SafePoint ) {   // Skip any safepoint
3928       n = n->in(0);
3929       continue;
3930     }
3931     if( nop == Op_CatchProj ) {   // Get count from a prior call
3932       // Assume call does not always throw exceptions: means the call-site
3933       // count is also the frequency of the fall-through path.
3934       assert( n->is_CatchProj(), "" );
3935       if( ((CatchProjNode*)n)->_con != CatchProjNode::fall_through_index )
3936         return 0.0f;            // Assume call exception path is rare
3937       Node *call = n->in(0)->in(0)->in(0);
3938       assert( call->is_Call(), "expect a call here" );
3939       const JVMState *jvms = ((CallNode*)call)->jvms();
3940       ciMethodData* methodData = jvms->method()->method_data();
3941       if (!methodData->is_mature())  return 0.0f; // No call-site data
3942       ciProfileData* data = methodData->bci_to_data(jvms->bci());
3943       if ((data == nullptr) || !data->is_CounterData()) {
3944         // no call profile available, try call's control input
3945         n = n->in(0);
3946         continue;
3947       }
3948       return data->as_CounterData()->count()/FreqCountInvocations;
3949     }
3950     // See if there's a gating IF test
3951     Node *n_c = n->in(0);
3952     if( !n_c->is_If() ) break;       // No estimate available
3953     iff = n_c->as_If();
3954     if( iff->_fcnt != COUNT_UNKNOWN )   // Have a valid count?
3955       // Compute how much count comes on this path
3956       return ((nop == Op_IfTrue) ? iff->_prob : 1.0f - iff->_prob) * iff->_fcnt;
3957     // Have no count info.  Skip dull uncommon-trap like branches.
3958     if( (nop == Op_IfTrue  && iff->_prob < PROB_LIKELY_MAG(5)) ||
3959         (nop == Op_IfFalse && iff->_prob > PROB_UNLIKELY_MAG(5)) )
3960       break;
3961     // Skip through never-taken branch; look for a real loop exit.
3962     n = iff->in(0);
3963   }
3964   return 0.0f;                  // No estimate available
3965 }
3966 
3967 //------------------------------merge_many_backedges---------------------------
3968 // Merge all the backedges from the shared header into a private Region.
3969 // Feed that region as the one backedge to this loop.
3970 void IdealLoopTree::merge_many_backedges( PhaseIdealLoop *phase ) {
3971   uint i;
3972 
3973   // Scan for the top 2 hottest backedges
3974   float hotcnt = 0.0f;
3975   float warmcnt = 0.0f;
3976   uint hot_idx = 0;
3977   // Loop starts at 2 because slot 1 is the fall-in path
3978   for( i = 2; i < _head->req(); i++ ) {
3979     float cnt = estimate_path_freq(_head->in(i));
3980     if( cnt > hotcnt ) {       // Grab hottest path
3981       warmcnt = hotcnt;
3982       hotcnt = cnt;
3983       hot_idx = i;
3984     } else if( cnt > warmcnt ) { // And 2nd hottest path
3985       warmcnt = cnt;
3986     }
3987   }
3988 
3989   // See if the hottest backedge is worthy of being an inner loop
3990   // by being much hotter than the next hottest backedge.
3991   if( hotcnt <= 0.0001 ||
3992       hotcnt < 2.0*warmcnt ) hot_idx = 0;// No hot backedge
3993 
3994   // Peel out the backedges into a private merge point; peel
3995   // them all except optionally hot_idx.
3996   PhaseIterGVN &igvn = phase->_igvn;
3997 
3998   Node *hot_tail = nullptr;
3999   // Make a Region for the merge point
4000   Node *r = new RegionNode(1);
4001   for( i = 2; i < _head->req(); i++ ) {
4002     if( i != hot_idx )
4003       r->add_req( _head->in(i) );
4004     else hot_tail = _head->in(i);
4005   }
4006   igvn.register_new_node_with_optimizer(r, _head);
4007   // Plug region into end of loop _head, followed by hot_tail
4008   while( _head->req() > 3 ) _head->del_req( _head->req()-1 );
4009   igvn.replace_input_of(_head, 2, r);
4010   if( hot_idx ) _head->add_req(hot_tail);
4011 
4012   // Split all the Phis up between '_head' loop and the Region 'r'
4013   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
4014     Node *out = _head->fast_out(j);
4015     if( out->is_Phi() ) {
4016       PhiNode* n = out->as_Phi();
4017       igvn.hash_delete(n);      // Delete from hash before hacking edges
4018       Node *hot_phi = nullptr;
4019       Node *phi = new PhiNode(r, n->type(), n->adr_type());
4020       // Check all inputs for the ones to peel out
4021       uint j = 1;
4022       for( uint i = 2; i < n->req(); i++ ) {
4023         if( i != hot_idx )
4024           phi->set_req( j++, n->in(i) );
4025         else hot_phi = n->in(i);
4026       }
4027       // Register the phi but do not transform until whole place transforms
4028       igvn.register_new_node_with_optimizer(phi, n);
4029       // Add the merge phi to the old Phi
4030       while( n->req() > 3 ) n->del_req( n->req()-1 );
4031       igvn.replace_input_of(n, 2, phi);
4032       if( hot_idx ) n->add_req(hot_phi);
4033     }
4034   }
4035 
4036 
4037   // Insert a new IdealLoopTree inserted below me.  Turn it into a clone
4038   // of self loop tree.  Turn self into a loop headed by _head and with
4039   // tail being the new merge point.
4040   IdealLoopTree *ilt = new IdealLoopTree( phase, _head, _tail );
4041   phase->set_loop(_tail,ilt);   // Adjust tail
4042   _tail = r;                    // Self's tail is new merge point
4043   phase->set_loop(r,this);
4044   ilt->_child = _child;         // New guy has my children
4045   _child = ilt;                 // Self has new guy as only child
4046   ilt->_parent = this;          // new guy has self for parent
4047   ilt->_nest = _nest;           // Same nesting depth (for now)
4048 
4049   // Starting with 'ilt', look for child loop trees using the same shared
4050   // header.  Flatten these out; they will no longer be loops in the end.
4051   IdealLoopTree **pilt = &_child;
4052   while( ilt ) {
4053     if( ilt->_head == _head ) {
4054       uint i;
4055       for( i = 2; i < _head->req(); i++ )
4056         if( _head->in(i) == ilt->_tail )
4057           break;                // Still a loop
4058       if( i == _head->req() ) { // No longer a loop
4059         // Flatten ilt.  Hang ilt's "_next" list from the end of
4060         // ilt's '_child' list.  Move the ilt's _child up to replace ilt.
4061         IdealLoopTree **cp = &ilt->_child;
4062         while( *cp ) cp = &(*cp)->_next;   // Find end of child list
4063         *cp = ilt->_next;       // Hang next list at end of child list
4064         *pilt = ilt->_child;    // Move child up to replace ilt
4065         ilt->_head = nullptr;   // Flag as a loop UNIONED into parent
4066         ilt = ilt->_child;      // Repeat using new ilt
4067         continue;               // do not advance over ilt->_child
4068       }
4069       assert( ilt->_tail == hot_tail, "expected to only find the hot inner loop here" );
4070       phase->set_loop(_head,ilt);
4071     }
4072     pilt = &ilt->_child;        // Advance to next
4073     ilt = *pilt;
4074   }
4075 
4076   if( _child ) fix_parent( _child, this );
4077 }
4078 
4079 //------------------------------beautify_loops---------------------------------
4080 // Split shared headers and insert loop landing pads.
4081 // Insert a LoopNode to replace the RegionNode.
4082 // Return TRUE if loop tree is structurally changed.
4083 bool IdealLoopTree::beautify_loops( PhaseIdealLoop *phase ) {
4084   bool result = false;
4085   // Cache parts in locals for easy
4086   PhaseIterGVN &igvn = phase->_igvn;
4087 
4088   igvn.hash_delete(_head);      // Yank from hash before hacking edges
4089 
4090   // Check for multiple fall-in paths.  Peel off a landing pad if need be.
4091   int fall_in_cnt = 0;
4092   for( uint i = 1; i < _head->req(); i++ )
4093     if( !phase->is_member( this, _head->in(i) ) )
4094       fall_in_cnt++;
4095   assert( fall_in_cnt, "at least 1 fall-in path" );
4096   if( fall_in_cnt > 1 )         // Need a loop landing pad to merge fall-ins
4097     split_fall_in( phase, fall_in_cnt );
4098 
4099   // Swap inputs to the _head and all Phis to move the fall-in edge to
4100   // the left.
4101   fall_in_cnt = 1;
4102   while( phase->is_member( this, _head->in(fall_in_cnt) ) )
4103     fall_in_cnt++;
4104   if( fall_in_cnt > 1 ) {
4105     // Since I am just swapping inputs I do not need to update def-use info
4106     Node *tmp = _head->in(1);
4107     igvn.rehash_node_delayed(_head);
4108     _head->set_req( 1, _head->in(fall_in_cnt) );
4109     _head->set_req( fall_in_cnt, tmp );
4110     // Swap also all Phis
4111     for (DUIterator_Fast imax, i = _head->fast_outs(imax); i < imax; i++) {
4112       Node* phi = _head->fast_out(i);
4113       if( phi->is_Phi() ) {
4114         igvn.rehash_node_delayed(phi); // Yank from hash before hacking edges
4115         tmp = phi->in(1);
4116         phi->set_req( 1, phi->in(fall_in_cnt) );
4117         phi->set_req( fall_in_cnt, tmp );
4118       }
4119     }
4120   }
4121   assert( !phase->is_member( this, _head->in(1) ), "left edge is fall-in" );
4122   assert(  phase->is_member( this, _head->in(2) ), "right edge is loop" );
4123 
4124   // If I am a shared header (multiple backedges), peel off the many
4125   // backedges into a private merge point and use the merge point as
4126   // the one true backedge.
4127   if (_head->req() > 3) {
4128     // Merge the many backedges into a single backedge but leave
4129     // the hottest backedge as separate edge for the following peel.
4130     if (!_irreducible) {
4131       merge_many_backedges( phase );
4132     }
4133 
4134     // When recursively beautify my children, split_fall_in can change
4135     // loop tree structure when I am an irreducible loop. Then the head
4136     // of my children has a req() not bigger than 3. Here we need to set
4137     // result to true to catch that case in order to tell the caller to
4138     // rebuild loop tree. See issue JDK-8244407 for details.
4139     result = true;
4140   }
4141 
4142   // If I have one hot backedge, peel off myself loop.
4143   // I better be the outermost loop.
4144   if (_head->req() > 3 && !_irreducible) {
4145     split_outer_loop( phase );
4146     result = true;
4147 
4148   } else if (!_head->is_Loop() && !_irreducible) {
4149     // Make a new LoopNode to replace the old loop head
4150     Node *l = new LoopNode( _head->in(1), _head->in(2) );
4151     l = igvn.register_new_node_with_optimizer(l, _head);
4152     phase->set_created_loop_node();
4153     // Go ahead and replace _head
4154     phase->_igvn.replace_node( _head, l );
4155     _head = l;
4156     phase->set_loop(_head, this);
4157   }
4158 
4159   // Now recursively beautify nested loops
4160   if( _child ) result |= _child->beautify_loops( phase );
4161   if( _next  ) result |= _next ->beautify_loops( phase );
4162   return result;
4163 }
4164 
4165 //------------------------------allpaths_check_safepts----------------------------
4166 // Allpaths backwards scan. Starting at the head, traversing all backedges, and the body. Terminating each path at first
4167 // safepoint encountered.  Helper for check_safepts.
4168 void IdealLoopTree::allpaths_check_safepts(VectorSet &visited, Node_List &stack) {
4169   assert(stack.size() == 0, "empty stack");
4170   stack.push(_head);
4171   visited.clear();
4172   visited.set(_head->_idx);
4173   while (stack.size() > 0) {
4174     Node* n = stack.pop();
4175     if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) {
4176       // Terminate this path
4177     } else if (n->Opcode() == Op_SafePoint) {
4178       if (_phase->get_loop(n) != this) {
4179         if (_required_safept == nullptr) _required_safept = new Node_List();
4180         // save the first we run into on that path: closest to the tail if the head has a single backedge
4181         _required_safept->push(n);
4182       }
4183       // Terminate this path
4184     } else {
4185       uint start = n->is_Region() ? 1 : 0;
4186       uint end   = n->is_Region() && (!n->is_Loop() || n == _head) ? n->req() : start + 1;
4187       for (uint i = start; i < end; i++) {
4188         Node* in = n->in(i);
4189         assert(in->is_CFG(), "must be");
4190         if (!visited.test_set(in->_idx) && is_member(_phase->get_loop(in))) {
4191           stack.push(in);
4192         }
4193       }
4194     }
4195   }
4196 }
4197 
4198 //------------------------------check_safepts----------------------------
4199 // Given dominators, try to find loops with calls that must always be
4200 // executed (call dominates loop tail).  These loops do not need non-call
4201 // safepoints (ncsfpt).
4202 //
4203 // A complication is that a safepoint in a inner loop may be needed
4204 // by an outer loop. In the following, the inner loop sees it has a
4205 // call (block 3) on every path from the head (block 2) to the
4206 // backedge (arc 3->2).  So it deletes the ncsfpt (non-call safepoint)
4207 // in block 2, _but_ this leaves the outer loop without a safepoint.
4208 //
4209 //             entry  0
4210 //                    |
4211 //                    v
4212 //   outer 1,2,4  +-> 1
4213 //                |    \
4214 //                |     v
4215 //    inner 2,3   |     2 <---+  ncsfpt in 2
4216 //                |    / \    |
4217 //                |   v   v   |
4218 //                |  4     3  |  call in 3
4219 //                |_/ \     \_|
4220 //                     |
4221 //                     v
4222 //               exit  5
4223 //
4224 // This method maintains a list (_required_safept) of ncsfpts that must
4225 // be protected for each loop. It only marks ncsfpts for prevervation,
4226 // and does not actually delete any of them.
4227 //
4228 // If some other method needs to delete a ncsfpt later, it will make sure
4229 // the ncsfpt is not in the list of all outer loops of the current loop.
4230 // See `PhaseIdealLoop::is_deleteable_safept`.
4231 //
4232 // The insights into the problem:
4233 //  A) Counted loops are okay (i.e. do not need to preserve ncsfpts),
4234 //     they will be handled in `IdealLoopTree::counted_loop`
4235 //  B) Innermost loops are okay because there's no inner loops that can
4236 //     delete their ncsfpts. Only outer loops need to mark safepoints for
4237 //     protection, because only loops further in can accidentally delete
4238 //     their ncsfpts
4239 //  C) If an outer loop has a call that's guaranteed to execute (on the
4240 //     idom-path), then that loop is okay. Because the call will always
4241 //     perform a safepoint poll, regardless of what safepoints are deleted
4242 //     from its inner loops
4243 //  D) Similarly, if an outer loop has a ncsfpt on the idom-path that isn't
4244 //     inside any nested loop, then that loop is okay
4245 //  E) Otherwise, if an outer loop's ncsfpt on the idom-path is nested in
4246 //     an inner loop, we need to prevent the inner loop from deleting it
4247 //
4248 // There are two analyses:
4249 //  1) The first, and cheaper one, scans the loop body from
4250 //     tail to head following the idom (immediate dominator)
4251 //     chain, looking for the cases (C,D,E) above.
4252 //     Since inner loops are scanned before outer loops, there is summary
4253 //     information about inner loops.  Inner loops can be skipped over
4254 //     when the tail of an inner loop is encountered.
4255 //
4256 //  2) The second, invoked if the first fails to find a call or ncsfpt on
4257 //     the idom path (which is rare), scans all predecessor control paths
4258 //     from the tail to the head, terminating a path when a call or sfpt
4259 //     is encountered, to find the ncsfpt's that are closest to the tail.
4260 //
4261 void IdealLoopTree::check_safepts(VectorSet &visited, Node_List &stack) {
4262   // Bottom up traversal
4263   IdealLoopTree* ch = _child;
4264   if (_child) _child->check_safepts(visited, stack);
4265   if (_next)  _next ->check_safepts(visited, stack);
4266 
4267   if (!_head->is_CountedLoop() && !_has_sfpt && _parent != nullptr) {
4268     bool  has_call         = false;    // call on dom-path
4269     bool  has_local_ncsfpt = false;    // ncsfpt on dom-path at this loop depth
4270     Node* nonlocal_ncsfpt  = nullptr;  // ncsfpt on dom-path at a deeper depth
4271     if (!_irreducible) {
4272       // Scan the dom-path nodes from tail to head
4273       for (Node* n = tail(); n != _head; n = _phase->idom(n)) {
4274         if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) {
4275           has_call = true;
4276           _has_sfpt = 1;          // Then no need for a safept!
4277           break;
4278         } else if (n->Opcode() == Op_SafePoint) {
4279           if (_phase->get_loop(n) == this) {
4280             // We found a local ncsfpt.
4281             // Continue searching for a call that is guaranteed to be a safepoint.
4282             has_local_ncsfpt = true;
4283           } else if (nonlocal_ncsfpt == nullptr) {
4284             nonlocal_ncsfpt = n; // save the one closest to the tail
4285           }
4286         } else {
4287           IdealLoopTree* nlpt = _phase->get_loop(n);
4288           if (this != nlpt) {
4289             // If at an inner loop tail, see if the inner loop has already
4290             // recorded seeing a call on the dom-path (and stop.)  If not,
4291             // jump to the head of the inner loop.
4292             assert(is_member(nlpt), "nested loop");
4293             Node* tail = nlpt->_tail;
4294             if (tail->in(0)->is_If()) tail = tail->in(0);
4295             if (n == tail) {
4296               // If inner loop has call on dom-path, so does outer loop
4297               if (nlpt->_has_sfpt) {
4298                 has_call = true;
4299                 _has_sfpt = 1;
4300                 break;
4301               }
4302               // Skip to head of inner loop
4303               assert(_phase->is_dominator(_head, nlpt->_head), "inner head dominated by outer head");
4304               n = nlpt->_head;
4305               if (_head == n) {
4306                 // this and nlpt (inner loop) have the same loop head. This should not happen because
4307                 // during beautify_loops we call merge_many_backedges. However, infinite loops may not
4308                 // have been attached to the loop-tree during build_loop_tree before beautify_loops,
4309                 // but then attached in the build_loop_tree afterwards, and so still have unmerged
4310                 // backedges. Check if we are indeed in an infinite subgraph, and terminate the scan,
4311                 // since we have reached the loop head of this.
4312                 assert(_head->as_Region()->is_in_infinite_subgraph(),
4313                        "only expect unmerged backedges in infinite loops");
4314                 break;
4315               }
4316             }
4317           }
4318         }
4319       }
4320     }
4321     // Record safept's that this loop needs preserved when an
4322     // inner loop attempts to delete it's safepoints.
4323     if (_child != nullptr && !has_call && !has_local_ncsfpt) {
4324       if (nonlocal_ncsfpt != nullptr) {
4325         if (_required_safept == nullptr) _required_safept = new Node_List();
4326         _required_safept->push(nonlocal_ncsfpt);
4327       } else {
4328         // Failed to find a suitable safept on the dom-path.  Now use
4329         // an all paths walk from tail to head, looking for safepoints to preserve.
4330         allpaths_check_safepts(visited, stack);
4331       }
4332     }
4333   }
4334 }
4335 
4336 //---------------------------is_deleteable_safept----------------------------
4337 // Is safept not required by an outer loop?
4338 bool PhaseIdealLoop::is_deleteable_safept(Node* sfpt) {
4339   assert(sfpt->Opcode() == Op_SafePoint, "");
4340   IdealLoopTree* lp = get_loop(sfpt)->_parent;
4341   while (lp != nullptr) {
4342     Node_List* sfpts = lp->_required_safept;
4343     if (sfpts != nullptr) {
4344       for (uint i = 0; i < sfpts->size(); i++) {
4345         if (sfpt == sfpts->at(i))
4346           return false;
4347       }
4348     }
4349     lp = lp->_parent;
4350   }
4351   return true;
4352 }
4353 
4354 //---------------------------replace_parallel_iv-------------------------------
4355 // Replace parallel induction variable (parallel to trip counter)
4356 // This optimization looks for patterns similar to:
4357 //
4358 //    int a = init2;
4359 //    for (int iv = init; iv < limit; iv += stride_con) {
4360 //      a += stride_con2;
4361 //    }
4362 //
4363 // and transforms it to:
4364 //
4365 //    int iv2 = init2
4366 //    int iv = init
4367 //    loop:
4368 //      if (iv >= limit) goto exit
4369 //      iv += stride_con
4370 //      iv2 = init2 + (iv - init) * (stride_con2 / stride_con)
4371 //      goto loop
4372 //    exit:
4373 //    ...
4374 //
4375 // Such transformation introduces more optimization opportunities. In this
4376 // particular example, the loop can be eliminated entirely given that
4377 // `stride_con2 / stride_con` is exact  (i.e., no remainder). Checks are in
4378 // place to only perform this optimization if such a division is exact. This
4379 // example will be transformed into its semantic equivalence:
4380 //
4381 //     int iv2 = (iv * stride_con2 / stride_con) + (init2 - (init * stride_con2 / stride_con))
4382 //
4383 // which corresponds to the structure of transformed subgraph.
4384 //
4385 // However, if there is a mismatch between types of the loop and the parallel
4386 // induction variable (e.g., a long-typed IV in an int-typed loop), type
4387 // conversions are required:
4388 //
4389 //     long iv2 = ((long) iv * stride_con2 / stride_con) + (init2 - ((long) init * stride_con2 / stride_con))
4390 //
4391 void PhaseIdealLoop::replace_parallel_iv(IdealLoopTree *loop) {
4392   assert(loop->_head->is_CountedLoop(), "");
4393   CountedLoopNode *cl = loop->_head->as_CountedLoop();
4394   if (!cl->is_valid_counted_loop(T_INT)) {
4395     return;         // skip malformed counted loop
4396   }
4397   Node *incr = cl->incr();
4398   if (incr == nullptr) {
4399     return;         // Dead loop?
4400   }
4401   Node *init = cl->init_trip();
4402   Node *phi  = cl->phi();
4403   jlong stride_con = cl->stride_con();
4404 
4405   // Visit all children, looking for Phis
4406   for (DUIterator i = cl->outs(); cl->has_out(i); i++) {
4407     Node *out = cl->out(i);
4408     // Look for other phis (secondary IVs). Skip dead ones
4409     if (!out->is_Phi() || out == phi || !has_node(out)) {
4410       continue;
4411     }
4412 
4413     PhiNode* phi2 = out->as_Phi();
4414     Node* incr2 = phi2->in(LoopNode::LoopBackControl);
4415     // Look for induction variables of the form:  X += constant
4416     if (phi2->region() != loop->_head ||
4417         incr2->req() != 3 ||
4418         incr2->in(1)->uncast() != phi2 ||
4419         incr2 == incr ||
4420         (incr2->Opcode() != Op_AddI && incr2->Opcode() != Op_AddL) ||
4421         !incr2->in(2)->is_Con()) {
4422       continue;
4423     }
4424 
4425     if (incr2->in(1)->is_ConstraintCast() &&
4426         !(incr2->in(1)->in(0)->is_IfProj() && incr2->in(1)->in(0)->in(0)->is_RangeCheck())) {
4427       // Skip AddI->CastII->Phi case if CastII is not controlled by local RangeCheck
4428       continue;
4429     }
4430     // Check for parallel induction variable (parallel to trip counter)
4431     // via an affine function.  In particular, count-down loops with
4432     // count-up array indices are common. We only RCE references off
4433     // the trip-counter, so we need to convert all these to trip-counter
4434     // expressions.
4435     Node* init2 = phi2->in(LoopNode::EntryControl);
4436 
4437     // Determine the basic type of the stride constant (and the iv being incremented).
4438     BasicType stride_con2_bt = incr2->Opcode() == Op_AddI ? T_INT : T_LONG;
4439     jlong stride_con2 = incr2->in(2)->get_integer_as_long(stride_con2_bt);
4440 
4441     // The ratio of the two strides cannot be represented as an int
4442     // if stride_con2 is min_jint (or min_jlong, respectively) and
4443     // stride_con is -1.
4444     if (stride_con2 == min_signed_integer(stride_con2_bt) && stride_con == -1) {
4445       continue;
4446     }
4447 
4448     // The general case here gets a little tricky.  We want to find the
4449     // GCD of all possible parallel IV's and make a new IV using this
4450     // GCD for the loop.  Then all possible IVs are simple multiples of
4451     // the GCD.  In practice, this will cover very few extra loops.
4452     // Instead we require 'stride_con2' to be a multiple of 'stride_con',
4453     // where +/-1 is the common case, but other integer multiples are
4454     // also easy to handle.
4455     jlong ratio_con = stride_con2 / stride_con;
4456 
4457     if ((ratio_con * stride_con) != stride_con2) { // Check for exact (no remainder)
4458         continue;
4459     }
4460 
4461 #ifndef PRODUCT
4462     if (TraceLoopOpts) {
4463       tty->print("Parallel IV: %d ", phi2->_idx);
4464       loop->dump_head();
4465     }
4466 #endif
4467 
4468     // Convert to using the trip counter.  The parallel induction
4469     // variable differs from the trip counter by a loop-invariant
4470     // amount, the difference between their respective initial values.
4471     // It is scaled by the 'ratio_con'.
4472     Node* ratio = integercon(ratio_con, stride_con2_bt);
4473 
4474     Node* init_converted = insert_convert_node_if_needed(stride_con2_bt, init);
4475     Node* phi_converted = insert_convert_node_if_needed(stride_con2_bt, phi);
4476 
4477     Node* ratio_init = MulNode::make(init_converted, ratio, stride_con2_bt);
4478     _igvn.register_new_node_with_optimizer(ratio_init, init_converted);
4479     set_early_ctrl(ratio_init, false);
4480 
4481     Node* diff = SubNode::make(init2, ratio_init, stride_con2_bt);
4482     _igvn.register_new_node_with_optimizer(diff, init2);
4483     set_early_ctrl(diff, false);
4484 
4485     Node* ratio_idx = MulNode::make(phi_converted, ratio, stride_con2_bt);
4486     _igvn.register_new_node_with_optimizer(ratio_idx, phi_converted);
4487     set_ctrl(ratio_idx, cl);
4488 
4489     Node* add = AddNode::make(ratio_idx, diff, stride_con2_bt);
4490     _igvn.register_new_node_with_optimizer(add);
4491     set_ctrl(add, cl);
4492 
4493     _igvn.replace_node( phi2, add );
4494     // Sometimes an induction variable is unused
4495     if (add->outcnt() == 0) {
4496       _igvn.remove_dead_node(add);
4497     }
4498     --i; // deleted this phi; rescan starting with next position
4499   }
4500 }
4501 
4502 Node* PhaseIdealLoop::insert_convert_node_if_needed(BasicType target, Node* input) {
4503   BasicType source = _igvn.type(input)->basic_type();
4504   if (source == target) {
4505     return input;
4506   }
4507 
4508   Node* converted = ConvertNode::create_convert(source, target, input);
4509   _igvn.register_new_node_with_optimizer(converted, input);
4510   set_early_ctrl(converted, false);
4511 
4512   return converted;
4513 }
4514 
4515 void IdealLoopTree::remove_safepoints(PhaseIdealLoop* phase, bool keep_one) {
4516   Node* keep = nullptr;
4517   if (keep_one) {
4518     // Look for a safepoint on the idom-path.
4519     for (Node* i = tail(); i != _head; i = phase->idom(i)) {
4520       if (i->Opcode() == Op_SafePoint && phase->get_loop(i) == this) {
4521         keep = i;
4522         break; // Found one
4523       }
4524     }
4525   }
4526 
4527   // Don't remove any safepoints if it is requested to keep a single safepoint and
4528   // no safepoint was found on idom-path. It is not safe to remove any safepoint
4529   // in this case since there's no safepoint dominating all paths in the loop body.
4530   bool prune = !keep_one || keep != nullptr;
4531 
4532   // Delete other safepoints in this loop.
4533   Node_List* sfpts = _safepts;
4534   if (prune && sfpts != nullptr) {
4535     assert(keep == nullptr || keep->Opcode() == Op_SafePoint, "not safepoint");
4536     for (uint i = 0; i < sfpts->size(); i++) {
4537       Node* n = sfpts->at(i);
4538       assert(phase->get_loop(n) == this, "");
4539       if (n != keep && phase->is_deleteable_safept(n)) {
4540         phase->replace_node_and_forward_ctrl(n, n->in(TypeFunc::Control));
4541       }
4542     }
4543   }
4544 }
4545 
4546 //------------------------------counted_loop-----------------------------------
4547 // Convert to counted loops where possible
4548 void IdealLoopTree::counted_loop( PhaseIdealLoop *phase ) {
4549 
4550   // For grins, set the inner-loop flag here
4551   if (!_child) {
4552     if (_head->is_Loop()) _head->as_Loop()->set_inner_loop();
4553   }
4554 
4555   IdealLoopTree* loop = this;
4556   if (_head->is_CountedLoop() ||
4557       phase->is_counted_loop(_head, loop, T_INT)) {
4558 
4559     if (LoopStripMiningIter == 0 || _head->as_CountedLoop()->is_strip_mined()) {
4560       // Indicate we do not need a safepoint here
4561       _has_sfpt = 1;
4562     }
4563 
4564     // Remove safepoints
4565     bool keep_one_sfpt = !(_has_call || _has_sfpt);
4566     remove_safepoints(phase, keep_one_sfpt);
4567 
4568     // Look for induction variables
4569     phase->replace_parallel_iv(this);
4570   } else if (_head->is_LongCountedLoop() ||
4571              phase->is_counted_loop(_head, loop, T_LONG)) {
4572     remove_safepoints(phase, true);
4573   } else {
4574     assert(!_head->is_Loop() || !_head->as_Loop()->is_loop_nest_inner_loop(), "transformation to counted loop should not fail");
4575     if (_parent != nullptr && !_irreducible) {
4576       // Not a counted loop. Keep one safepoint.
4577       bool keep_one_sfpt = true;
4578       remove_safepoints(phase, keep_one_sfpt);
4579     }
4580   }
4581 
4582   // Recursively
4583   assert(loop->_child != this || (loop->_head->as_Loop()->is_OuterStripMinedLoop() && _head->as_CountedLoop()->is_strip_mined()), "what kind of loop was added?");
4584   assert(loop->_child != this || (loop->_child->_child == nullptr && loop->_child->_next == nullptr), "would miss some loops");
4585   if (loop->_child && loop->_child != this) loop->_child->counted_loop(phase);
4586   if (loop->_next)  loop->_next ->counted_loop(phase);
4587 }
4588 
4589 
4590 // The Estimated Loop Clone Size:
4591 //   CloneFactor * (~112% * BodySize + BC) + CC + FanOutTerm,
4592 // where  BC and  CC are  totally ad-hoc/magic  "body" and "clone" constants,
4593 // respectively, used to ensure that the node usage estimates made are on the
4594 // safe side, for the most part. The FanOutTerm is an attempt to estimate the
4595 // possible additional/excessive nodes generated due to data and control flow
4596 // merging, for edges reaching outside the loop.
4597 uint IdealLoopTree::est_loop_clone_sz(uint factor) const {
4598 
4599   precond(0 < factor && factor < 16);
4600 
4601   uint const bc = 13;
4602   uint const cc = 17;
4603   uint const sz = _body.size() + (_body.size() + 7) / 2;
4604   uint estimate = factor * (sz + bc) + cc;
4605 
4606   assert((estimate - cc) / factor == sz + bc, "overflow");
4607 
4608   return estimate + est_loop_flow_merge_sz();
4609 }
4610 
4611 // The Estimated Loop (full-) Unroll Size:
4612 //   UnrollFactor * (~106% * BodySize) + CC + FanOutTerm,
4613 // where CC is a (totally) ad-hoc/magic "clone" constant, used to ensure that
4614 // node usage estimates made are on the safe side, for the most part. This is
4615 // a "light" version of the loop clone size calculation (above), based on the
4616 // assumption that most of the loop-construct overhead will be unraveled when
4617 // (fully) unrolled. Defined for unroll factors larger or equal to one (>=1),
4618 // including an overflow check and returning UINT_MAX in case of an overflow.
4619 uint IdealLoopTree::est_loop_unroll_sz(uint factor) const {
4620 
4621   precond(factor > 0);
4622 
4623   // Take into account that after unroll conjoined heads and tails will fold.
4624   uint const b0 = _body.size() - EMPTY_LOOP_SIZE;
4625   uint const cc = 7;
4626   uint const sz = b0 + (b0 + 15) / 16;
4627   uint estimate = factor * sz + cc;
4628 
4629   if ((estimate - cc) / factor != sz) {
4630     return UINT_MAX;
4631   }
4632 
4633   return estimate + est_loop_flow_merge_sz();
4634 }
4635 
4636 // Estimate the growth effect (in nodes) of merging control and data flow when
4637 // cloning a loop body, based on the amount of  control and data flow reaching
4638 // outside of the (current) loop body.
4639 uint IdealLoopTree::est_loop_flow_merge_sz() const {
4640 
4641   uint ctrl_edge_out_cnt = 0;
4642   uint data_edge_out_cnt = 0;
4643 
4644   for (uint i = 0; i < _body.size(); i++) {
4645     Node* node = _body.at(i);
4646     uint outcnt = node->outcnt();
4647 
4648     for (uint k = 0; k < outcnt; k++) {
4649       Node* out = node->raw_out(k);
4650       if (out == nullptr) continue;
4651       if (out->is_CFG()) {
4652         if (!is_member(_phase->get_loop(out))) {
4653           ctrl_edge_out_cnt++;
4654         }
4655       } else if (_phase->has_ctrl(out)) {
4656         Node* ctrl = _phase->get_ctrl(out);
4657         assert(ctrl != nullptr, "must be");
4658         assert(ctrl->is_CFG(), "must be");
4659         if (!is_member(_phase->get_loop(ctrl))) {
4660           data_edge_out_cnt++;
4661         }
4662       }
4663     }
4664   }
4665   // Use data and control count (x2.0) in estimate iff both are > 0. This is
4666   // a rather pessimistic estimate for the most part, in particular for some
4667   // complex loops, but still not enough to capture all loops.
4668   if (ctrl_edge_out_cnt > 0 && data_edge_out_cnt > 0) {
4669     return 2 * (ctrl_edge_out_cnt + data_edge_out_cnt);
4670   }
4671   return 0;
4672 }
4673 
4674 #ifndef PRODUCT
4675 //------------------------------dump_head--------------------------------------
4676 // Dump 1 liner for loop header info
4677 void IdealLoopTree::dump_head() {
4678   tty->sp(2 * _nest);
4679   tty->print("Loop: N%d/N%d ", _head->_idx, _tail->_idx);
4680   if (_irreducible) tty->print(" IRREDUCIBLE");
4681   Node* entry = _head->is_Loop() ? _head->as_Loop()->skip_strip_mined(-1)->in(LoopNode::EntryControl)
4682                                  : _head->in(LoopNode::EntryControl);
4683   const Predicates predicates(entry);
4684   if (predicates.loop_limit_check_predicate_block()->is_non_empty()) {
4685     tty->print(" limit_check");
4686   }
4687   if (predicates.short_running_long_loop_predicate_block()->is_non_empty()) {
4688     tty->print(" short_running");
4689   }
4690   if (UseLoopPredicate) {
4691     if (UseProfiledLoopPredicate && predicates.profiled_loop_predicate_block()->is_non_empty()) {
4692       tty->print(" profile_predicated");
4693     }
4694     if (predicates.loop_predicate_block()->is_non_empty()) {
4695       tty->print(" predicated");
4696     }
4697   }
4698   if (UseAutoVectorizationPredicate && predicates.auto_vectorization_check_block()->is_non_empty()) {
4699     tty->print(" auto_vectorization_check_predicate");
4700   }
4701   if (_head->is_CountedLoop()) {
4702     CountedLoopNode *cl = _head->as_CountedLoop();
4703     tty->print(" counted");
4704 
4705     Node* init_n = cl->init_trip();
4706     if (init_n  != nullptr &&  init_n->is_Con())
4707       tty->print(" [%d,", cl->init_trip()->get_int());
4708     else
4709       tty->print(" [int,");
4710     Node* limit_n = cl->limit();
4711     if (limit_n  != nullptr &&  limit_n->is_Con())
4712       tty->print("%d),", cl->limit()->get_int());
4713     else
4714       tty->print("int),");
4715     int stride_con  = cl->stride_con();
4716     if (stride_con > 0) tty->print("+");
4717     tty->print("%d", stride_con);
4718 
4719     tty->print(" (%0.f iters) ", cl->profile_trip_cnt());
4720 
4721     if (cl->is_pre_loop ()) tty->print(" pre" );
4722     if (cl->is_main_loop()) tty->print(" main");
4723     if (cl->is_post_loop()) tty->print(" post");
4724     if (cl->is_vectorized_loop()) tty->print(" vector");
4725     if (range_checks_present()) tty->print(" rc ");
4726     if (cl->is_multiversion_fast_loop())         { tty->print(" multiversion_fast"); }
4727     if (cl->is_multiversion_slow_loop())         { tty->print(" multiversion_slow"); }
4728     if (cl->is_multiversion_delayed_slow_loop()) { tty->print(" multiversion_delayed_slow"); }
4729   }
4730   if (_has_call) tty->print(" has_call");
4731   if (_has_sfpt) tty->print(" has_sfpt");
4732   if (_rce_candidate) tty->print(" rce");
4733   if (_safepts != nullptr && _safepts->size() > 0) {
4734     tty->print(" sfpts={"); _safepts->dump_simple(); tty->print(" }");
4735   }
4736   if (_required_safept != nullptr && _required_safept->size() > 0) {
4737     tty->print(" req={"); _required_safept->dump_simple(); tty->print(" }");
4738   }
4739   if (Verbose) {
4740     tty->print(" body={"); _body.dump_simple(); tty->print(" }");
4741   }
4742   if (_head->is_Loop() && _head->as_Loop()->is_strip_mined()) {
4743     tty->print(" strip_mined");
4744   }
4745   tty->cr();
4746 }
4747 
4748 //------------------------------dump-------------------------------------------
4749 // Dump loops by loop tree
4750 void IdealLoopTree::dump() {
4751   dump_head();
4752   if (_child) _child->dump();
4753   if (_next)  _next ->dump();
4754 }
4755 
4756 #endif
4757 
4758 static void log_loop_tree_helper(IdealLoopTree* root, IdealLoopTree* loop, CompileLog* log) {
4759   if (loop == root) {
4760     if (loop->_child != nullptr) {
4761       log->begin_head("loop_tree");
4762       log->end_head();
4763       log_loop_tree_helper(root, loop->_child, log);
4764       log->tail("loop_tree");
4765       assert(loop->_next == nullptr, "what?");
4766     }
4767   } else if (loop != nullptr) {
4768     Node* head = loop->_head;
4769     log->begin_head("loop");
4770     log->print(" idx='%d' ", head->_idx);
4771     if (loop->_irreducible) log->print("irreducible='1' ");
4772     if (head->is_Loop()) {
4773       if (head->as_Loop()->is_inner_loop())        log->print("inner_loop='1' ");
4774       if (head->as_Loop()->is_partial_peel_loop()) log->print("partial_peel_loop='1' ");
4775     } else if (head->is_CountedLoop()) {
4776       CountedLoopNode* cl = head->as_CountedLoop();
4777       if (cl->is_pre_loop())  log->print("pre_loop='%d' ",  cl->main_idx());
4778       if (cl->is_main_loop()) log->print("main_loop='%d' ", cl->_idx);
4779       if (cl->is_post_loop()) log->print("post_loop='%d' ", cl->main_idx());
4780     }
4781     log->end_head();
4782     log_loop_tree_helper(root, loop->_child, log);
4783     log->tail("loop");
4784     log_loop_tree_helper(root, loop->_next, log);
4785   }
4786 }
4787 
4788 void PhaseIdealLoop::log_loop_tree() {
4789   if (C->log() != nullptr) {
4790     log_loop_tree_helper(_ltree_root, _ltree_root, C->log());
4791   }
4792 }
4793 
4794 // Eliminate all Parse and Template Assertion Predicates that are not associated with a loop anymore. The eliminated
4795 // predicates will be removed during the next round of IGVN.
4796 void PhaseIdealLoop::eliminate_useless_predicates() const {
4797   if (C->parse_predicate_count() == 0 && C->template_assertion_predicate_count() == 0) {
4798     return; // No predicates left.
4799   }
4800 
4801   EliminateUselessPredicates eliminate_useless_predicates(_igvn, _ltree_root);
4802   eliminate_useless_predicates.eliminate();
4803 }
4804 
4805 // If a post or main loop is removed due to an assert predicate, the opaque that guards the loop is not needed anymore
4806 void PhaseIdealLoop::eliminate_useless_zero_trip_guard() {
4807   if (_zero_trip_guard_opaque_nodes.size() == 0) {
4808     return;
4809   }
4810   Unique_Node_List useful_zero_trip_guard_opaques_nodes;
4811   for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
4812     IdealLoopTree* lpt = iter.current();
4813     if (lpt->_child == nullptr && lpt->is_counted()) {
4814       CountedLoopNode* head = lpt->_head->as_CountedLoop();
4815       Node* opaque = head->is_canonical_loop_entry();
4816       if (opaque != nullptr) {
4817         useful_zero_trip_guard_opaques_nodes.push(opaque);
4818 #ifdef ASSERT
4819         // See PhaseIdealLoop::do_unroll
4820         // This property is required in do_unroll, but it may not hold after cloning a loop.
4821         // In such a case, we bail out from unrolling, and rely on IGVN to clean up the graph.
4822         // We are here before loop cloning (before iteration_split), so if this property
4823         // does not hold, it must come from the previous round of loop optimizations, meaning
4824         // that IGVN failed to clean it: we will catch that here.
4825         // On the other hand, if this assert passes, a bailout in do_unroll means that
4826         // this property was broken in the current round of loop optimization (between here
4827         // and do_unroll), so we give a chance to IGVN to make the property true again.
4828         if (head->is_main_loop()) {
4829           assert(opaque->outcnt() == 1, "opaque node should not be shared");
4830           assert(opaque->in(1) == head->limit(), "After IGVN cleanup, input of opaque node must be the limit.");
4831         }
4832         if (head->is_post_loop()) {
4833           assert(opaque->outcnt() == 1, "opaque node should not be shared");
4834         }
4835 #endif
4836       }
4837     }
4838   }
4839   for (uint i = 0; i < _zero_trip_guard_opaque_nodes.size(); ++i) {
4840     OpaqueZeroTripGuardNode* opaque = ((OpaqueZeroTripGuardNode*)_zero_trip_guard_opaque_nodes.at(i));
4841     DEBUG_ONLY(CountedLoopNode* guarded_loop = opaque->guarded_loop());
4842     if (!useful_zero_trip_guard_opaques_nodes.member(opaque)) {
4843       IfNode* iff = opaque->if_node();
4844       IdealLoopTree* loop = get_loop(iff);
4845       while (loop != _ltree_root && loop != nullptr) {
4846         loop = loop->_parent;
4847       }
4848       if (loop == nullptr) {
4849         // unreachable from _ltree_root: zero trip guard is in a newly discovered infinite loop.
4850         // We can't tell if the opaque node is useful or not
4851         assert(guarded_loop == nullptr || guarded_loop->is_in_infinite_subgraph(), "");
4852       } else {
4853         assert(guarded_loop == nullptr, "");
4854         this->_igvn.replace_node(opaque, opaque->in(1));
4855       }
4856     } else {
4857       assert(guarded_loop != nullptr, "");
4858     }
4859   }
4860 }
4861 
4862 void PhaseIdealLoop::eliminate_useless_multiversion_if() {
4863   if (_multiversion_opaque_nodes.size() == 0) {
4864     return;
4865   }
4866 
4867   ResourceMark rm;
4868   Unique_Node_List useful_multiversioning_opaque_nodes;
4869 
4870   // The OpaqueMultiversioning is only used from the fast main loop in AutoVectorization, to add
4871   // speculative runtime-checks to the multiversion_if. Thus, a OpaqueMultiversioning is only
4872   // useful if it can be found from a fast main loop. If it can not be found from a fast main loop,
4873   // then we cannot ever use that multiversion_if to add more speculative runtime-checks, and hence
4874   // it is useless. If it is still in delayed mode, i.e. has not yet had any runtime-checks added,
4875   // then we can let it constant fold towards the fast loop.
4876   for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
4877     IdealLoopTree* lpt = iter.current();
4878     if (lpt->_child == nullptr && lpt->is_counted()) {
4879       CountedLoopNode* head = lpt->_head->as_CountedLoop();
4880       if (head->is_main_loop() && head->is_multiversion_fast_loop()) {
4881         // There are fast_loop pre/main/post loops, but the finding traversal starts at the main
4882         // loop, and traverses via the fast pre loop to the multiversion_if.
4883         IfNode* multiversion_if = head->find_multiversion_if_from_multiversion_fast_main_loop();
4884         if (multiversion_if != nullptr) {
4885             useful_multiversioning_opaque_nodes.push(multiversion_if->in(1)->as_OpaqueMultiversioning());
4886         } else {
4887           // We could not find the multiversion_if, and would never find it again. Remove the
4888           // multiversion marking for consistency.
4889           head->set_no_multiversion();
4890         }
4891       }
4892     }
4893   }
4894 
4895   for (uint i = 0; i < _multiversion_opaque_nodes.size(); i++) {
4896     OpaqueMultiversioningNode* opaque = _multiversion_opaque_nodes.at(i)->as_OpaqueMultiversioning();
4897     if (!useful_multiversioning_opaque_nodes.member(opaque)) {
4898       if (opaque->is_delayed_slow_loop()) {
4899         // We cannot hack the node directly, otherwise the slow_loop will complain that it cannot
4900         // find the multiversioning opaque node. Instead, we mark the opaque node as useless, and
4901         // it can be constant folded during IGVN.
4902         opaque->mark_useless(_igvn);
4903       }
4904     }
4905   }
4906 }
4907 
4908 //------------------------process_expensive_nodes-----------------------------
4909 // Expensive nodes have their control input set to prevent the GVN
4910 // from commoning them and as a result forcing the resulting node to
4911 // be in a more frequent path. Use CFG information here, to change the
4912 // control inputs so that some expensive nodes can be commoned while
4913 // not executed more frequently.
4914 bool PhaseIdealLoop::process_expensive_nodes() {
4915   assert(OptimizeExpensiveOps, "optimization off?");
4916 
4917   // Sort nodes to bring similar nodes together
4918   C->sort_expensive_nodes();
4919 
4920   bool progress = false;
4921 
4922   for (int i = 0; i < C->expensive_count(); ) {
4923     Node* n = C->expensive_node(i);
4924     int start = i;
4925     // Find nodes similar to n
4926     i++;
4927     for (; i < C->expensive_count() && Compile::cmp_expensive_nodes(n, C->expensive_node(i)) == 0; i++);
4928     int end = i;
4929     // And compare them two by two
4930     for (int j = start; j < end; j++) {
4931       Node* n1 = C->expensive_node(j);
4932       if (is_node_unreachable(n1)) {
4933         continue;
4934       }
4935       for (int k = j+1; k < end; k++) {
4936         Node* n2 = C->expensive_node(k);
4937         if (is_node_unreachable(n2)) {
4938           continue;
4939         }
4940 
4941         assert(n1 != n2, "should be pair of nodes");
4942 
4943         Node* c1 = n1->in(0);
4944         Node* c2 = n2->in(0);
4945 
4946         Node* parent_c1 = c1;
4947         Node* parent_c2 = c2;
4948 
4949         // The call to get_early_ctrl_for_expensive() moves the
4950         // expensive nodes up but stops at loops that are in a if
4951         // branch. See whether we can exit the loop and move above the
4952         // If.
4953         if (c1->is_Loop()) {
4954           parent_c1 = c1->in(1);
4955         }
4956         if (c2->is_Loop()) {
4957           parent_c2 = c2->in(1);
4958         }
4959 
4960         if (parent_c1 == parent_c2) {
4961           _igvn._worklist.push(n1);
4962           _igvn._worklist.push(n2);
4963           continue;
4964         }
4965 
4966         // Look for identical expensive node up the dominator chain.
4967         if (is_dominator(c1, c2)) {
4968           c2 = c1;
4969         } else if (is_dominator(c2, c1)) {
4970           c1 = c2;
4971         } else if (parent_c1->is_Proj() && parent_c1->in(0)->is_If() &&
4972                    parent_c2->is_Proj() && parent_c1->in(0) == parent_c2->in(0)) {
4973           // Both branches have the same expensive node so move it up
4974           // before the if.
4975           c1 = c2 = idom(parent_c1->in(0));
4976         }
4977         // Do the actual moves
4978         if (n1->in(0) != c1) {
4979           _igvn.replace_input_of(n1, 0, c1);
4980           progress = true;
4981         }
4982         if (n2->in(0) != c2) {
4983           _igvn.replace_input_of(n2, 0, c2);
4984           progress = true;
4985         }
4986       }
4987     }
4988   }
4989 
4990   return progress;
4991 }
4992 
4993 //=============================================================================
4994 //----------------------------build_and_optimize-------------------------------
4995 // Create a PhaseLoop.  Build the ideal Loop tree.  Map each Ideal Node to
4996 // its corresponding LoopNode.  If 'optimize' is true, do some loop cleanups.
4997 void PhaseIdealLoop::build_and_optimize() {
4998   assert(!C->post_loop_opts_phase(), "no loop opts allowed");
4999 
5000   bool do_split_ifs = (_mode == LoopOptsDefault);
5001   bool skip_loop_opts = (_mode == LoopOptsNone);
5002   bool do_max_unroll = (_mode == LoopOptsMaxUnroll);
5003 
5004 
5005   bool old_progress = C->major_progress();
5006   uint orig_worklist_size = _igvn._worklist.size();
5007 
5008   // Reset major-progress flag for the driver's heuristics
5009   C->clear_major_progress();
5010 
5011 #ifndef PRODUCT
5012   // Capture for later assert
5013   uint unique = C->unique();
5014   _loop_invokes++;
5015   _loop_work += unique;
5016 #endif
5017 
5018   // True if the method has at least 1 irreducible loop
5019   _has_irreducible_loops = false;
5020 
5021   _created_loop_node = false;
5022 
5023   VectorSet visited;
5024   // Pre-grow the mapping from Nodes to IdealLoopTrees.
5025   _loop_or_ctrl.map(C->unique(), nullptr);
5026   memset(_loop_or_ctrl.adr(), 0, wordSize * C->unique());
5027 
5028   // Pre-build the top-level outermost loop tree entry
5029   _ltree_root = new IdealLoopTree( this, C->root(), C->root() );
5030   // Do not need a safepoint at the top level
5031   _ltree_root->_has_sfpt = 1;
5032 
5033   // Initialize Dominators.
5034   // Checked in clone_loop_predicate() during beautify_loops().
5035   _idom_size = 0;
5036   _idom      = nullptr;
5037   _dom_depth = nullptr;
5038   _dom_stk   = nullptr;
5039 
5040   // Empty pre-order array
5041   allocate_preorders();
5042 
5043   // Build a loop tree on the fly.  Build a mapping from CFG nodes to
5044   // IdealLoopTree entries.  Data nodes are NOT walked.
5045   build_loop_tree();
5046   // Check for bailout, and return
5047   if (C->failing()) {
5048     return;
5049   }
5050 
5051   // Verify that the has_loops() flag set at parse time is consistent with the just built loop tree. When the back edge
5052   // is an exception edge, parsing doesn't set has_loops().
5053   assert(_ltree_root->_child == nullptr || C->has_loops() || C->has_exception_backedge(), "parsing found no loops but there are some");
5054   // No loops after all
5055   if( !_ltree_root->_child && !_verify_only ) C->set_has_loops(false);
5056 
5057   // There should always be an outer loop containing the Root and Return nodes.
5058   // If not, we have a degenerate empty program.  Bail out in this case.
5059   if (!has_node(C->root())) {
5060     if (!_verify_only) {
5061       C->clear_major_progress();
5062       assert(false, "empty program detected during loop optimization");
5063       C->record_method_not_compilable("empty program detected during loop optimization");
5064     }
5065     return;
5066   }
5067 
5068   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
5069   // Nothing to do, so get out
5070   bool stop_early = !C->has_loops() && !skip_loop_opts && !do_split_ifs && !do_max_unroll && !_verify_me &&
5071           !_verify_only && !bs->is_gc_specific_loop_opts_pass(_mode);
5072   bool do_expensive_nodes = C->should_optimize_expensive_nodes(_igvn);
5073   bool strip_mined_loops_expanded = bs->strip_mined_loops_expanded(_mode);
5074   if (stop_early && !do_expensive_nodes) {
5075     return;
5076   }
5077 
5078   // Set loop nesting depth
5079   _ltree_root->set_nest( 0 );
5080 
5081   // Split shared headers and insert loop landing pads.
5082   // Do not bother doing this on the Root loop of course.
5083   if( !_verify_me && !_verify_only && _ltree_root->_child ) {
5084     C->print_method(PHASE_BEFORE_BEAUTIFY_LOOPS, 3);
5085     if( _ltree_root->_child->beautify_loops( this ) ) {
5086       // Re-build loop tree!
5087       _ltree_root->_child = nullptr;
5088       _loop_or_ctrl.clear();
5089       reallocate_preorders();
5090       build_loop_tree();
5091       // Check for bailout, and return
5092       if (C->failing()) {
5093         return;
5094       }
5095       // Reset loop nesting depth
5096       _ltree_root->set_nest( 0 );
5097 
5098       C->print_method(PHASE_AFTER_BEAUTIFY_LOOPS, 3);
5099     }
5100   }
5101 
5102   // Build Dominators for elision of null checks & loop finding.
5103   // Since nodes do not have a slot for immediate dominator, make
5104   // a persistent side array for that info indexed on node->_idx.
5105   _idom_size = C->unique();
5106   _idom      = NEW_ARENA_ARRAY(&_arena, Node*, _idom_size);
5107   _dom_depth = NEW_ARENA_ARRAY(&_arena, uint,  _idom_size);
5108   _dom_stk   = nullptr; // Allocated on demand in recompute_dom_depth
5109   memset( _dom_depth, 0, _idom_size * sizeof(uint) );
5110 
5111   Dominators();
5112 
5113   if (!_verify_only) {
5114     // As a side effect, Dominators removed any unreachable CFG paths
5115     // into RegionNodes.  It doesn't do this test against Root, so
5116     // we do it here.
5117     for( uint i = 1; i < C->root()->req(); i++ ) {
5118       if (!_loop_or_ctrl[C->root()->in(i)->_idx]) { // Dead path into Root?
5119         _igvn.delete_input_of(C->root(), i);
5120         i--;                      // Rerun same iteration on compressed edges
5121       }
5122     }
5123 
5124     // Given dominators, try to find inner loops with calls that must
5125     // always be executed (call dominates loop tail).  These loops do
5126     // not need a separate safepoint.
5127     Node_List cisstack;
5128     _ltree_root->check_safepts(visited, cisstack);
5129   }
5130 
5131   // Walk the DATA nodes and place into loops.  Find earliest control
5132   // node.  For CFG nodes, the _loop_or_ctrl array starts out and remains
5133   // holding the associated IdealLoopTree pointer.  For DATA nodes, the
5134   // _loop_or_ctrl array holds the earliest legal controlling CFG node.
5135 
5136   // Allocate stack with enough space to avoid frequent realloc
5137   int stack_size = (C->live_nodes() >> 1) + 16; // (live_nodes>>1)+16 from Java2D stats
5138   Node_Stack nstack(stack_size);
5139 
5140   visited.clear();
5141   Node_List worklist;
5142   // Don't need C->root() on worklist since
5143   // it will be processed among C->top() inputs
5144   worklist.push(C->top());
5145   visited.set(C->top()->_idx); // Set C->top() as visited now
5146   build_loop_early( visited, worklist, nstack );
5147 
5148   // Given early legal placement, try finding counted loops.  This placement
5149   // is good enough to discover most loop invariants.
5150   if (!_verify_me && !_verify_only && !strip_mined_loops_expanded) {
5151     _ltree_root->counted_loop( this );
5152   }
5153 
5154   // Find latest loop placement.  Find ideal loop placement.
5155   visited.clear();
5156   init_dom_lca_tags();
5157   // Need C->root() on worklist when processing outs
5158   worklist.push(C->root());
5159   NOT_PRODUCT( C->verify_graph_edges(); )
5160   worklist.push(C->top());
5161   build_loop_late( visited, worklist, nstack );
5162   if (C->failing()) { return; }
5163 
5164   if (_verify_only) {
5165     C->restore_major_progress(old_progress);
5166     assert(C->unique() == unique, "verification _mode made Nodes? ? ?");
5167     assert(_igvn._worklist.size() == orig_worklist_size, "shouldn't push anything");
5168     return;
5169   }
5170 
5171   // clear out the dead code after build_loop_late
5172   while (_deadlist.size()) {
5173     _igvn.remove_globally_dead_node(_deadlist.pop());
5174   }
5175 
5176   eliminate_useless_zero_trip_guard();
5177   eliminate_useless_multiversion_if();
5178 
5179   if (stop_early) {
5180     assert(do_expensive_nodes, "why are we here?");
5181     if (process_expensive_nodes()) {
5182       // If we made some progress when processing expensive nodes then
5183       // the IGVN may modify the graph in a way that will allow us to
5184       // make some more progress: we need to try processing expensive
5185       // nodes again.
5186       C->set_major_progress();
5187     }
5188     return;
5189   }
5190 
5191   // Some parser-inserted loop predicates could never be used by loop
5192   // predication or they were moved away from loop during some optimizations.
5193   // For example, peeling. Eliminate them before next loop optimizations.
5194   eliminate_useless_predicates();
5195 
5196 #ifndef PRODUCT
5197   C->verify_graph_edges();
5198   if (_verify_me) {             // Nested verify pass?
5199     // Check to see if the verify _mode is broken
5200     assert(C->unique() == unique, "non-optimize _mode made Nodes? ? ?");
5201     return;
5202   }
5203   DEBUG_ONLY( if (VerifyLoopOptimizations) { verify(); } );
5204   if (TraceLoopOpts && C->has_loops()) {
5205     _ltree_root->dump();
5206   }
5207 #endif
5208 
5209   if (skip_loop_opts) {
5210     C->restore_major_progress(old_progress);
5211     return;
5212   }
5213 
5214   if (do_max_unroll) {
5215     for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
5216       IdealLoopTree* lpt = iter.current();
5217       if (lpt->is_innermost() && lpt->_allow_optimizations && !lpt->_has_call && lpt->is_counted()) {
5218         lpt->compute_trip_count(this, T_INT);
5219         if (!lpt->do_one_iteration_loop(this) &&
5220             !lpt->do_remove_empty_loop(this)) {
5221           AutoNodeBudget node_budget(this);
5222           if (lpt->_head->as_CountedLoop()->is_normal_loop() &&
5223               lpt->policy_maximally_unroll(this)) {
5224             memset( worklist.adr(), 0, worklist.max()*sizeof(Node*) );
5225             do_maximally_unroll(lpt, worklist);
5226           }
5227         }
5228       }
5229     }
5230 
5231     C->restore_major_progress(old_progress);
5232     return;
5233   }
5234 
5235   if (bs->optimize_loops(this, _mode, visited, nstack, worklist)) {
5236     return;
5237   }
5238 
5239   if (ReassociateInvariants && !C->major_progress()) {
5240     // Reassociate invariants and prep for split_thru_phi
5241     for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
5242       IdealLoopTree* lpt = iter.current();
5243       if (!lpt->is_loop()) {
5244         continue;
5245       }
5246       Node* head = lpt->_head;
5247       if (!lpt->is_innermost()) continue;
5248 
5249       // check for vectorized loops, any reassociation of invariants was already done
5250       if (head->is_CountedLoop() && head->as_CountedLoop()->is_unroll_only()) {
5251         continue;
5252       } else {
5253         AutoNodeBudget node_budget(this);
5254         lpt->reassociate_invariants(this);
5255       }
5256       // Because RCE opportunities can be masked by split_thru_phi,
5257       // look for RCE candidates and inhibit split_thru_phi
5258       // on just their loop-phi's for this pass of loop opts
5259       if (SplitIfBlocks && do_split_ifs &&
5260           head->is_BaseCountedLoop() &&
5261           head->as_BaseCountedLoop()->is_valid_counted_loop(head->as_BaseCountedLoop()->bt()) &&
5262           (lpt->policy_range_check(this, true, T_LONG) ||
5263            (head->is_CountedLoop() && lpt->policy_range_check(this, true, T_INT)))) {
5264         lpt->_rce_candidate = 1; // = true
5265       }
5266     }
5267   }
5268 
5269   // Check for aggressive application of split-if and other transforms
5270   // that require basic-block info (like cloning through Phi's)
5271   if (!C->major_progress() && SplitIfBlocks && do_split_ifs) {
5272     visited.clear();
5273     split_if_with_blocks(visited, nstack);
5274     if (C->failing()) {
5275       return;
5276     }
5277     DEBUG_ONLY( if (VerifyLoopOptimizations) { verify(); } );
5278   }
5279 
5280   if (!C->major_progress() && do_expensive_nodes && process_expensive_nodes()) {
5281     C->set_major_progress();
5282   }
5283 
5284   // Perform loop predication before iteration splitting
5285   if (UseLoopPredicate && C->has_loops() && !C->major_progress() && (C->parse_predicate_count() > 0)) {
5286     _ltree_root->_child->loop_predication(this);
5287   }
5288 
5289   if (OptimizeFill && UseLoopPredicate && C->has_loops() && !C->major_progress()) {
5290     if (do_intrinsify_fill()) {
5291       C->set_major_progress();
5292     }
5293   }
5294 
5295   // Perform iteration-splitting on inner loops.  Split iterations to avoid
5296   // range checks or one-shot null checks.
5297 
5298   // If split-if's didn't hack the graph too bad (no CFG changes)
5299   // then do loop opts.
5300   if (C->has_loops() && !C->major_progress()) {
5301     memset( worklist.adr(), 0, worklist.max()*sizeof(Node*) );
5302     _ltree_root->_child->iteration_split( this, worklist );
5303     // No verify after peeling!  GCM has hoisted code out of the loop.
5304     // After peeling, the hoisted code could sink inside the peeled area.
5305     // The peeling code does not try to recompute the best location for
5306     // all the code before the peeled area, so the verify pass will always
5307     // complain about it.
5308   }
5309 
5310   // Check for bailout, and return
5311   if (C->failing()) {
5312     return;
5313   }
5314 
5315   // Do verify graph edges in any case
5316   NOT_PRODUCT( C->verify_graph_edges(); );
5317 
5318   if (!do_split_ifs) {
5319     // We saw major progress in Split-If to get here.  We forced a
5320     // pass with unrolling and not split-if, however more split-if's
5321     // might make progress.  If the unrolling didn't make progress
5322     // then the major-progress flag got cleared and we won't try
5323     // another round of Split-If.  In particular the ever-common
5324     // instance-of/check-cast pattern requires at least 2 rounds of
5325     // Split-If to clear out.
5326     C->set_major_progress();
5327   }
5328 
5329   // Repeat loop optimizations if new loops were seen
5330   if (created_loop_node()) {
5331     C->set_major_progress();
5332   }
5333 
5334   // Auto-vectorize main-loop
5335   if (C->do_superword() && C->has_loops() && !C->major_progress()) {
5336     Compile::TracePhase tp(_t_autoVectorize);
5337 
5338     // Shared data structures for all AutoVectorizations, to reduce allocations
5339     // of large arrays.
5340     VSharedData vshared;
5341     for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
5342       IdealLoopTree* lpt = iter.current();
5343       AutoVectorizeStatus status = auto_vectorize(lpt, vshared);
5344 
5345       if (status == AutoVectorizeStatus::TriedAndFailed) {
5346         // We tried vectorization, but failed. From now on only unroll the loop.
5347         CountedLoopNode* cl = lpt->_head->as_CountedLoop();
5348         if (cl->has_passed_slp()) {
5349           C->set_major_progress();
5350           cl->set_notpassed_slp();
5351           cl->mark_do_unroll_only();
5352         }
5353       }
5354     }
5355   }
5356 
5357   // Keep loop predicates and perform optimizations with them
5358   // until no more loop optimizations could be done.
5359   // After that switch predicates off and do more loop optimizations.
5360   if (!C->major_progress() && (C->parse_predicate_count() > 0)) {
5361     C->mark_parse_predicate_nodes_useless(_igvn);
5362     assert(C->parse_predicate_count() == 0, "should be zero now");
5363     if (TraceLoopOpts) {
5364       tty->print_cr("PredicatesOff");
5365     }
5366     C->set_major_progress();
5367   }
5368 }
5369 
5370 #ifndef PRODUCT
5371 //------------------------------print_statistics-------------------------------
5372 int PhaseIdealLoop::_loop_invokes=0;// Count of PhaseIdealLoop invokes
5373 int PhaseIdealLoop::_loop_work=0; // Sum of PhaseIdealLoop x unique
5374 volatile int PhaseIdealLoop::_long_loop_candidates=0; // Number of long loops seen
5375 volatile int PhaseIdealLoop::_long_loop_nests=0; // Number of long loops successfully transformed to a nest
5376 volatile int PhaseIdealLoop::_long_loop_counted_loops=0; // Number of long loops successfully transformed to a counted loop
5377 void PhaseIdealLoop::print_statistics() {
5378   tty->print_cr("PhaseIdealLoop=%d, sum _unique=%d, long loops=%d/%d/%d", _loop_invokes, _loop_work, _long_loop_counted_loops, _long_loop_nests, _long_loop_candidates);
5379 }
5380 #endif
5381 
5382 #ifdef ASSERT
5383 // Build a verify-only PhaseIdealLoop, and see that it agrees with "this".
5384 void PhaseIdealLoop::verify() const {
5385   ResourceMark rm;
5386   bool old_progress = C->major_progress();
5387   bool success = true;
5388 
5389   PhaseIdealLoop phase_verify(_igvn, this);
5390   if (C->failing_internal()) {
5391     return;
5392   }
5393 
5394   // Verify ctrl and idom of every node.
5395   success &= verify_idom_and_nodes(C->root(), &phase_verify);
5396 
5397   // Verify loop-tree.
5398   success &= _ltree_root->verify_tree(phase_verify._ltree_root);
5399 
5400   assert(success, "VerifyLoopOptimizations failed");
5401 
5402   // Major progress was cleared by creating a verify version of PhaseIdealLoop.
5403   C->restore_major_progress(old_progress);
5404 }
5405 
5406 // Perform a BFS starting at n, through all inputs.
5407 // Call verify_idom and verify_node on all nodes of BFS traversal.
5408 bool PhaseIdealLoop::verify_idom_and_nodes(Node* root, const PhaseIdealLoop* phase_verify) const {
5409   Unique_Node_List worklist;
5410   worklist.push(root);
5411   bool success = true;
5412   for (uint i = 0; i < worklist.size(); i++) {
5413     Node* n = worklist.at(i);
5414     // process node
5415     success &= verify_idom(n, phase_verify);
5416     success &= verify_loop_ctrl(n, phase_verify);
5417     // visit inputs
5418     for (uint j = 0; j < n->req(); j++) {
5419       if (n->in(j) != nullptr) {
5420         worklist.push(n->in(j));
5421       }
5422     }
5423   }
5424   return success;
5425 }
5426 
5427 // Verify dominator structure (IDOM).
5428 bool PhaseIdealLoop::verify_idom(Node* n, const PhaseIdealLoop* phase_verify) const {
5429   // Verify IDOM for all CFG nodes (except root).
5430   if (!n->is_CFG() || n->is_Root()) {
5431     return true; // pass
5432   }
5433 
5434   if (n->_idx >= _idom_size) {
5435     tty->print("CFG Node with no idom: ");
5436     n->dump();
5437     return false; // fail
5438   }
5439 
5440   Node* id = idom_no_update(n);
5441   Node* id_verify = phase_verify->idom_no_update(n);
5442   if (id != id_verify) {
5443     tty->print("Mismatching idom for node: ");
5444     n->dump();
5445     tty->print("  We have idom: ");
5446     id->dump();
5447     tty->print("  Verify has idom: ");
5448     id_verify->dump();
5449     tty->cr();
5450     return false; // fail
5451   }
5452   return true; // pass
5453 }
5454 
5455 // Verify "_loop_or_ctrl": control and loop membership.
5456 //  (0) _loop_or_ctrl[i] == nullptr -> node not reachable.
5457 //  (1) has_ctrl -> check lowest bit. 1 -> data node. 0 -> ctrl node.
5458 //  (2) has_ctrl true: get_ctrl_no_update returns ctrl of data node.
5459 //  (3) has_ctrl false: get_loop_idx returns IdealLoopTree for ctrl node.
5460 bool PhaseIdealLoop::verify_loop_ctrl(Node* n, const PhaseIdealLoop* phase_verify) const {
5461   const uint i = n->_idx;
5462   // The loop-tree was built from def to use (top-down).
5463   // The verification happens from use to def (bottom-up).
5464   // We may thus find nodes during verification that are not in the loop-tree.
5465   if (_loop_or_ctrl[i] == nullptr || phase_verify->_loop_or_ctrl[i] == nullptr) {
5466     if (_loop_or_ctrl[i] != nullptr || phase_verify->_loop_or_ctrl[i] != nullptr) {
5467       tty->print_cr("Was reachable in only one. this %d, verify %d.",
5468                  _loop_or_ctrl[i] != nullptr, phase_verify->_loop_or_ctrl[i] != nullptr);
5469       n->dump();
5470       return false; // fail
5471     }
5472     // Not reachable for both.
5473     return true; // pass
5474   }
5475 
5476   if (n->is_CFG() == has_ctrl(n)) {
5477     tty->print_cr("Exactly one should be true: %d for is_CFG, %d for has_ctrl.", n->is_CFG(), has_ctrl(n));
5478     n->dump();
5479     return false; // fail
5480   }
5481 
5482   if (has_ctrl(n) != phase_verify->has_ctrl(n)) {
5483     tty->print_cr("Mismatch has_ctrl: %d for this, %d for verify.", has_ctrl(n), phase_verify->has_ctrl(n));
5484     n->dump();
5485     return false; // fail
5486   } else if (has_ctrl(n)) {
5487     assert(phase_verify->has_ctrl(n), "sanity");
5488     // n is a data node.
5489     // Verify that its ctrl is the same.
5490 
5491     // Broken part of VerifyLoopOptimizations (A)
5492     // Reason:
5493     //   BUG, wrong control set for example in
5494     //   PhaseIdealLoop::split_if_with_blocks
5495     //   at "set_ctrl(x, new_ctrl);"
5496     /*
5497     if( _loop_or_ctrl[i] != loop_verify->_loop_or_ctrl[i] &&
5498         get_ctrl_no_update(n) != loop_verify->get_ctrl_no_update(n) ) {
5499       tty->print("Mismatched control setting for: ");
5500       n->dump();
5501       if( fail++ > 10 ) return;
5502       Node *c = get_ctrl_no_update(n);
5503       tty->print("We have it as: ");
5504       if( c->in(0) ) c->dump();
5505         else tty->print_cr("N%d",c->_idx);
5506       tty->print("Verify thinks: ");
5507       if( loop_verify->has_ctrl(n) )
5508         loop_verify->get_ctrl_no_update(n)->dump();
5509       else
5510         loop_verify->get_loop_idx(n)->dump();
5511       tty->cr();
5512     }
5513     */
5514     return true; // pass
5515   } else {
5516     assert(!phase_verify->has_ctrl(n), "sanity");
5517     // n is a ctrl node.
5518     // Verify that not has_ctrl, and that get_loop_idx is the same.
5519 
5520     // Broken part of VerifyLoopOptimizations (B)
5521     // Reason:
5522     //   NeverBranch node for example is added to loop outside its scope.
5523     //   Once we run build_loop_tree again, it is added to the correct loop.
5524     /*
5525     if (!C->major_progress()) {
5526       // Loop selection can be messed up if we did a major progress
5527       // operation, like split-if.  Do not verify in that case.
5528       IdealLoopTree *us = get_loop_idx(n);
5529       IdealLoopTree *them = loop_verify->get_loop_idx(n);
5530       if( us->_head != them->_head ||  us->_tail != them->_tail ) {
5531         tty->print("Unequals loops for: ");
5532         n->dump();
5533         if( fail++ > 10 ) return;
5534         tty->print("We have it as: ");
5535         us->dump();
5536         tty->print("Verify thinks: ");
5537         them->dump();
5538         tty->cr();
5539       }
5540     }
5541     */
5542     return true; // pass
5543   }
5544 }
5545 
5546 static int compare_tree(IdealLoopTree* const& a, IdealLoopTree* const& b) {
5547   assert(a != nullptr && b != nullptr, "must be");
5548   return a->_head->_idx - b->_head->_idx;
5549 }
5550 
5551 GrowableArray<IdealLoopTree*> IdealLoopTree::collect_sorted_children() const {
5552   GrowableArray<IdealLoopTree*> children;
5553   IdealLoopTree* child = _child;
5554   while (child != nullptr) {
5555     assert(child->_parent == this, "all must be children of this");
5556     children.insert_sorted<compare_tree>(child);
5557     child = child->_next;
5558   }
5559   return children;
5560 }
5561 
5562 // Verify that tree structures match. Because the CFG can change, siblings
5563 // within the loop tree can be reordered. We attempt to deal with that by
5564 // reordering the verify's loop tree if possible.
5565 bool IdealLoopTree::verify_tree(IdealLoopTree* loop_verify) const {
5566   assert(_head == loop_verify->_head, "mismatched loop head");
5567   assert(this->_parent != nullptr || this->_next == nullptr, "is_root_loop implies has_no_sibling");
5568 
5569   // Collect the children
5570   GrowableArray<IdealLoopTree*> children = collect_sorted_children();
5571   GrowableArray<IdealLoopTree*> children_verify = loop_verify->collect_sorted_children();
5572 
5573   bool success = true;
5574 
5575   // Compare the two children lists
5576   for (int i = 0, j = 0; i < children.length() || j < children_verify.length(); ) {
5577     IdealLoopTree* child        = nullptr;
5578     IdealLoopTree* child_verify = nullptr;
5579     // Read from both lists, if possible.
5580     if (i < children.length()) {
5581       child = children.at(i);
5582     }
5583     if (j < children_verify.length()) {
5584       child_verify = children_verify.at(j);
5585     }
5586     assert(child != nullptr || child_verify != nullptr, "must find at least one");
5587     if (child != nullptr && child_verify != nullptr && child->_head != child_verify->_head) {
5588       // We found two non-equal children. Select the smaller one.
5589       if (child->_head->_idx < child_verify->_head->_idx) {
5590         child_verify = nullptr;
5591       } else {
5592         child = nullptr;
5593       }
5594     }
5595     // Process the two children, or potentially log the failure if we only found one.
5596     if (child_verify == nullptr) {
5597       if (child->_irreducible && Compile::current()->major_progress()) {
5598         // Irreducible loops can pick a different header (one of its entries).
5599       } else {
5600         tty->print_cr("We have a loop that verify does not have");
5601         child->dump();
5602         success = false;
5603       }
5604       i++; // step for this
5605     } else if (child == nullptr) {
5606       if (child_verify->_irreducible && Compile::current()->major_progress()) {
5607         // Irreducible loops can pick a different header (one of its entries).
5608       } else if (child_verify->_head->as_Region()->is_in_infinite_subgraph()) {
5609         // Infinite loops do not get attached to the loop-tree on their first visit.
5610         // "this" runs before "loop_verify". It is thus possible that we find the
5611         // infinite loop only for "child_verify". Only finding it with "child" would
5612         // mean that we lost it, which is not ok.
5613       } else {
5614         tty->print_cr("Verify has a loop that we do not have");
5615         child_verify->dump();
5616         success = false;
5617       }
5618       j++; // step for verify
5619     } else {
5620       assert(child->_head == child_verify->_head, "We have both and they are equal");
5621       success &= child->verify_tree(child_verify); // Recursion
5622       i++; // step for this
5623       j++; // step for verify
5624     }
5625   }
5626 
5627   // Broken part of VerifyLoopOptimizations (D)
5628   // Reason:
5629   //   split_if has to update the _tail, if it is modified. But that is done by
5630   //   checking to what loop the iff belongs to. That info can be wrong, and then
5631   //   we do not update the _tail correctly.
5632   /*
5633   Node *tail = _tail;           // Inline a non-updating version of
5634   while( !tail->in(0) )         // the 'tail()' call.
5635     tail = tail->in(1);
5636   assert( tail == loop->_tail, "mismatched loop tail" );
5637   */
5638 
5639   if (_head->is_CountedLoop()) {
5640     CountedLoopNode *cl = _head->as_CountedLoop();
5641 
5642     Node* ctrl     = cl->init_control();
5643     Node* back     = cl->back_control();
5644     assert(ctrl != nullptr && ctrl->is_CFG(), "sane loop in-ctrl");
5645     assert(back != nullptr && back->is_CFG(), "sane loop backedge");
5646     cl->loopexit(); // assert implied
5647   }
5648 
5649   // Broken part of VerifyLoopOptimizations (E)
5650   // Reason:
5651   //   PhaseIdealLoop::split_thru_region creates new nodes for loop that are not added
5652   //   to the loop body. Or maybe they are not added to the correct loop.
5653   //   at "Node* x = n->clone();"
5654   /*
5655   // Innermost loops need to verify loop bodies,
5656   // but only if no 'major_progress'
5657   int fail = 0;
5658   if (!Compile::current()->major_progress() && _child == nullptr) {
5659     for( uint i = 0; i < _body.size(); i++ ) {
5660       Node *n = _body.at(i);
5661       if (n->outcnt() == 0)  continue; // Ignore dead
5662       uint j;
5663       for( j = 0; j < loop->_body.size(); j++ )
5664         if( loop->_body.at(j) == n )
5665           break;
5666       if( j == loop->_body.size() ) { // Not found in loop body
5667         // Last ditch effort to avoid assertion: Its possible that we
5668         // have some users (so outcnt not zero) but are still dead.
5669         // Try to find from root.
5670         if (Compile::current()->root()->find(n->_idx)) {
5671           fail++;
5672           tty->print("We have that verify does not: ");
5673           n->dump();
5674         }
5675       }
5676     }
5677     for( uint i2 = 0; i2 < loop->_body.size(); i2++ ) {
5678       Node *n = loop->_body.at(i2);
5679       if (n->outcnt() == 0)  continue; // Ignore dead
5680       uint j;
5681       for( j = 0; j < _body.size(); j++ )
5682         if( _body.at(j) == n )
5683           break;
5684       if( j == _body.size() ) { // Not found in loop body
5685         // Last ditch effort to avoid assertion: Its possible that we
5686         // have some users (so outcnt not zero) but are still dead.
5687         // Try to find from root.
5688         if (Compile::current()->root()->find(n->_idx)) {
5689           fail++;
5690           tty->print("Verify has that we do not: ");
5691           n->dump();
5692         }
5693       }
5694     }
5695     assert( !fail, "loop body mismatch" );
5696   }
5697   */
5698   return success;
5699 }
5700 #endif
5701 
5702 //------------------------------set_idom---------------------------------------
5703 void PhaseIdealLoop::set_idom(Node* d, Node* n, uint dom_depth) {
5704   _nesting.check(); // Check if a potential reallocation in the resource arena is safe
5705   uint idx = d->_idx;
5706   if (idx >= _idom_size) {
5707     uint newsize = next_power_of_2(idx);
5708     _idom      = REALLOC_ARENA_ARRAY(&_arena, Node*,     _idom,_idom_size,newsize);
5709     _dom_depth = REALLOC_ARENA_ARRAY(&_arena,  uint, _dom_depth,_idom_size,newsize);
5710     memset( _dom_depth + _idom_size, 0, (newsize - _idom_size) * sizeof(uint) );
5711     _idom_size = newsize;
5712   }
5713   _idom[idx] = n;
5714   _dom_depth[idx] = dom_depth;
5715 }
5716 
5717 //------------------------------recompute_dom_depth---------------------------------------
5718 // The dominator tree is constructed with only parent pointers.
5719 // This recomputes the depth in the tree by first tagging all
5720 // nodes as "no depth yet" marker.  The next pass then runs up
5721 // the dom tree from each node marked "no depth yet", and computes
5722 // the depth on the way back down.
5723 void PhaseIdealLoop::recompute_dom_depth() {
5724   uint no_depth_marker = C->unique();
5725   uint i;
5726   // Initialize depth to "no depth yet" and realize all lazy updates
5727   for (i = 0; i < _idom_size; i++) {
5728     // Only indices with a _dom_depth has a Node* or null (otherwise uninitialized).
5729     if (_dom_depth[i] > 0 && _idom[i] != nullptr) {
5730       _dom_depth[i] = no_depth_marker;
5731 
5732       // heal _idom if it has a fwd mapping in _loop_or_ctrl
5733       if (_idom[i]->in(0) == nullptr) {
5734         idom(i);
5735       }
5736     }
5737   }
5738   if (_dom_stk == nullptr) {
5739     uint init_size = C->live_nodes() / 100; // Guess that 1/100 is a reasonable initial size.
5740     if (init_size < 10) init_size = 10;
5741     _dom_stk = new GrowableArray<uint>(init_size);
5742   }
5743   // Compute new depth for each node.
5744   for (i = 0; i < _idom_size; i++) {
5745     uint j = i;
5746     // Run up the dom tree to find a node with a depth
5747     while (_dom_depth[j] == no_depth_marker) {
5748       _dom_stk->push(j);
5749       j = _idom[j]->_idx;
5750     }
5751     // Compute the depth on the way back down this tree branch
5752     uint dd = _dom_depth[j] + 1;
5753     while (_dom_stk->length() > 0) {
5754       uint j = _dom_stk->pop();
5755       _dom_depth[j] = dd;
5756       dd++;
5757     }
5758   }
5759 }
5760 
5761 //------------------------------sort-------------------------------------------
5762 // Insert 'loop' into the existing loop tree.  'innermost' is a leaf of the
5763 // loop tree, not the root.
5764 IdealLoopTree *PhaseIdealLoop::sort( IdealLoopTree *loop, IdealLoopTree *innermost ) {
5765   if( !innermost ) return loop; // New innermost loop
5766 
5767   int loop_preorder = get_preorder(loop->_head); // Cache pre-order number
5768   assert( loop_preorder, "not yet post-walked loop" );
5769   IdealLoopTree **pp = &innermost;      // Pointer to previous next-pointer
5770   IdealLoopTree *l = *pp;               // Do I go before or after 'l'?
5771 
5772   // Insert at start of list
5773   while( l ) {                  // Insertion sort based on pre-order
5774     if( l == loop ) return innermost; // Already on list!
5775     int l_preorder = get_preorder(l->_head); // Cache pre-order number
5776     assert( l_preorder, "not yet post-walked l" );
5777     // Check header pre-order number to figure proper nesting
5778     if( loop_preorder > l_preorder )
5779       break;                    // End of insertion
5780     // If headers tie (e.g., shared headers) check tail pre-order numbers.
5781     // Since I split shared headers, you'd think this could not happen.
5782     // BUT: I must first do the preorder numbering before I can discover I
5783     // have shared headers, so the split headers all get the same preorder
5784     // number as the RegionNode they split from.
5785     if( loop_preorder == l_preorder &&
5786         get_preorder(loop->_tail) < get_preorder(l->_tail) )
5787       break;                    // Also check for shared headers (same pre#)
5788     pp = &l->_parent;           // Chain up list
5789     l = *pp;
5790   }
5791   // Link into list
5792   // Point predecessor to me
5793   *pp = loop;
5794   // Point me to successor
5795   IdealLoopTree *p = loop->_parent;
5796   loop->_parent = l;            // Point me to successor
5797   if( p ) sort( p, innermost ); // Insert my parents into list as well
5798   return innermost;
5799 }
5800 
5801 //------------------------------build_loop_tree--------------------------------
5802 // I use a modified Vick/Tarjan algorithm.  I need pre- and a post- visit
5803 // bits.  The _loop_or_ctrl[] array is mapped by Node index and holds a null for
5804 // not-yet-pre-walked, pre-order # for pre-but-not-post-walked and holds the
5805 // tightest enclosing IdealLoopTree for post-walked.
5806 //
5807 // During my forward walk I do a short 1-layer lookahead to see if I can find
5808 // a loop backedge with that doesn't have any work on the backedge.  This
5809 // helps me construct nested loops with shared headers better.
5810 //
5811 // Once I've done the forward recursion, I do the post-work.  For each child
5812 // I check to see if there is a backedge.  Backedges define a loop!  I
5813 // insert an IdealLoopTree at the target of the backedge.
5814 //
5815 // During the post-work I also check to see if I have several children
5816 // belonging to different loops.  If so, then this Node is a decision point
5817 // where control flow can choose to change loop nests.  It is at this
5818 // decision point where I can figure out how loops are nested.  At this
5819 // time I can properly order the different loop nests from my children.
5820 // Note that there may not be any backedges at the decision point!
5821 //
5822 // Since the decision point can be far removed from the backedges, I can't
5823 // order my loops at the time I discover them.  Thus at the decision point
5824 // I need to inspect loop header pre-order numbers to properly nest my
5825 // loops.  This means I need to sort my childrens' loops by pre-order.
5826 // The sort is of size number-of-control-children, which generally limits
5827 // it to size 2 (i.e., I just choose between my 2 target loops).
5828 void PhaseIdealLoop::build_loop_tree() {
5829   // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc
5830   GrowableArray <Node *> bltstack(C->live_nodes() >> 1);
5831   Node *n = C->root();
5832   bltstack.push(n);
5833   int pre_order = 1;
5834   int stack_size;
5835 
5836   while ( ( stack_size = bltstack.length() ) != 0 ) {
5837     n = bltstack.top(); // Leave node on stack
5838     if ( !is_visited(n) ) {
5839       // ---- Pre-pass Work ----
5840       // Pre-walked but not post-walked nodes need a pre_order number.
5841 
5842       set_preorder_visited( n, pre_order ); // set as visited
5843 
5844       // ---- Scan over children ----
5845       // Scan first over control projections that lead to loop headers.
5846       // This helps us find inner-to-outer loops with shared headers better.
5847 
5848       // Scan children's children for loop headers.
5849       for ( int i = n->outcnt() - 1; i >= 0; --i ) {
5850         Node* m = n->raw_out(i);       // Child
5851         if( m->is_CFG() && !is_visited(m) ) { // Only for CFG children
5852           // Scan over children's children to find loop
5853           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
5854             Node* l = m->fast_out(j);
5855             if( is_visited(l) &&       // Been visited?
5856                 !is_postvisited(l) &&  // But not post-visited
5857                 get_preorder(l) < pre_order ) { // And smaller pre-order
5858               // Found!  Scan the DFS down this path before doing other paths
5859               bltstack.push(m);
5860               break;
5861             }
5862           }
5863         }
5864       }
5865       pre_order++;
5866     }
5867     else if ( !is_postvisited(n) ) {
5868       // Note: build_loop_tree_impl() adds out edges on rare occasions,
5869       // such as com.sun.rsasign.am::a.
5870       // For non-recursive version, first, process current children.
5871       // On next iteration, check if additional children were added.
5872       for ( int k = n->outcnt() - 1; k >= 0; --k ) {
5873         Node* u = n->raw_out(k);
5874         if ( u->is_CFG() && !is_visited(u) ) {
5875           bltstack.push(u);
5876         }
5877       }
5878       if ( bltstack.length() == stack_size ) {
5879         // There were no additional children, post visit node now
5880         (void)bltstack.pop(); // Remove node from stack
5881         pre_order = build_loop_tree_impl(n, pre_order);
5882         // Check for bailout
5883         if (C->failing()) {
5884           return;
5885         }
5886         // Check to grow _preorders[] array for the case when
5887         // build_loop_tree_impl() adds new nodes.
5888         check_grow_preorders();
5889       }
5890     }
5891     else {
5892       (void)bltstack.pop(); // Remove post-visited node from stack
5893     }
5894   }
5895   DEBUG_ONLY(verify_regions_in_irreducible_loops();)
5896 }
5897 
5898 //------------------------------build_loop_tree_impl---------------------------
5899 int PhaseIdealLoop::build_loop_tree_impl(Node* n, int pre_order) {
5900   // ---- Post-pass Work ----
5901   // Pre-walked but not post-walked nodes need a pre_order number.
5902 
5903   // Tightest enclosing loop for this Node
5904   IdealLoopTree *innermost = nullptr;
5905 
5906   // For all children, see if any edge is a backedge.  If so, make a loop
5907   // for it.  Then find the tightest enclosing loop for the self Node.
5908   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
5909     Node* m = n->fast_out(i);   // Child
5910     if (n == m) continue;      // Ignore control self-cycles
5911     if (!m->is_CFG()) continue;// Ignore non-CFG edges
5912 
5913     IdealLoopTree *l;           // Child's loop
5914     if (!is_postvisited(m)) {  // Child visited but not post-visited?
5915       // Found a backedge
5916       assert(get_preorder(m) < pre_order, "should be backedge");
5917       // Check for the RootNode, which is already a LoopNode and is allowed
5918       // to have multiple "backedges".
5919       if (m == C->root()) {     // Found the root?
5920         l = _ltree_root;        // Root is the outermost LoopNode
5921       } else {                  // Else found a nested loop
5922         // Insert a LoopNode to mark this loop.
5923         l = new IdealLoopTree(this, m, n);
5924       } // End of Else found a nested loop
5925       if (!has_loop(m)) {        // If 'm' does not already have a loop set
5926         set_loop(m, l);         // Set loop header to loop now
5927       }
5928     } else {                    // Else not a nested loop
5929       if (!_loop_or_ctrl[m->_idx]) continue; // Dead code has no loop
5930       IdealLoopTree* m_loop = get_loop(m);
5931       l = m_loop;          // Get previously determined loop
5932       // If successor is header of a loop (nest), move up-loop till it
5933       // is a member of some outer enclosing loop.  Since there are no
5934       // shared headers (I've split them already) I only need to go up
5935       // at most 1 level.
5936       while (l && l->_head == m) { // Successor heads loop?
5937         l = l->_parent;         // Move up 1 for me
5938       }
5939       // If this loop is not properly parented, then this loop
5940       // has no exit path out, i.e. its an infinite loop.
5941       if (!l) {
5942         // Make loop "reachable" from root so the CFG is reachable.  Basically
5943         // insert a bogus loop exit that is never taken.  'm', the loop head,
5944         // points to 'n', one (of possibly many) fall-in paths.  There may be
5945         // many backedges as well.
5946 
5947         if (!_verify_only) {
5948           // Insert the NeverBranch between 'm' and it's control user.
5949           NeverBranchNode *iff = new NeverBranchNode( m );
5950           _igvn.register_new_node_with_optimizer(iff);
5951           set_loop(iff, m_loop);
5952           Node *if_t = new CProjNode( iff, 0 );
5953           _igvn.register_new_node_with_optimizer(if_t);
5954           set_loop(if_t, m_loop);
5955 
5956           Node* cfg = nullptr;       // Find the One True Control User of m
5957           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
5958             Node* x = m->fast_out(j);
5959             if (x->is_CFG() && x != m && x != iff)
5960               { cfg = x; break; }
5961           }
5962           assert(cfg != nullptr, "must find the control user of m");
5963           uint k = 0;             // Probably cfg->in(0)
5964           while( cfg->in(k) != m ) k++; // But check in case cfg is a Region
5965           _igvn.replace_input_of(cfg, k, if_t); // Now point to NeverBranch
5966 
5967           // Now create the never-taken loop exit
5968           Node *if_f = new CProjNode( iff, 1 );
5969           _igvn.register_new_node_with_optimizer(if_f);
5970           set_loop(if_f, _ltree_root);
5971           // Find frame ptr for Halt.  Relies on the optimizer
5972           // V-N'ing.  Easier and quicker than searching through
5973           // the program structure.
5974           Node *frame = new ParmNode( C->start(), TypeFunc::FramePtr );
5975           _igvn.register_new_node_with_optimizer(frame);
5976           // Halt & Catch Fire
5977           Node* halt = new HaltNode(if_f, frame, "never-taken loop exit reached");
5978           _igvn.register_new_node_with_optimizer(halt);
5979           set_loop(halt, _ltree_root);
5980           _igvn.add_input_to(C->root(), halt);
5981         }
5982         set_loop(C->root(), _ltree_root);
5983         // move to outer most loop with same header
5984         l = m_loop;
5985         while (true) {
5986           IdealLoopTree* next = l->_parent;
5987           if (next == nullptr || next->_head != m) {
5988             break;
5989           }
5990           l = next;
5991         }
5992         // properly insert infinite loop in loop tree
5993         sort(_ltree_root, l);
5994         // fix child link from parent
5995         IdealLoopTree* p = l->_parent;
5996         l->_next = p->_child;
5997         p->_child = l;
5998         // code below needs enclosing loop
5999         l = l->_parent;
6000       }
6001     }
6002     if (is_postvisited(l->_head)) {
6003       // We are currently visiting l, but its head has already been post-visited.
6004       // l is irreducible: we just found a second entry m.
6005       _has_irreducible_loops = true;
6006       RegionNode* secondary_entry = m->as_Region();
6007 
6008       if (!secondary_entry->can_be_irreducible_entry()) {
6009         assert(!VerifyNoNewIrreducibleLoops, "A new irreducible loop was created after parsing.");
6010         C->record_method_not_compilable("A new irreducible loop was created after parsing.");
6011         return pre_order;
6012       }
6013 
6014       // Walk up the loop-tree, mark all loops that are already post-visited as irreducible
6015       // Since m is a secondary entry to them all.
6016       while( is_postvisited(l->_head) ) {
6017         l->_irreducible = 1; // = true
6018         RegionNode* head = l->_head->as_Region();
6019         if (!head->can_be_irreducible_entry()) {
6020           assert(!VerifyNoNewIrreducibleLoops, "A new irreducible loop was created after parsing.");
6021           C->record_method_not_compilable("A new irreducible loop was created after parsing.");
6022           return pre_order;
6023         }
6024         l = l->_parent;
6025         // Check for bad CFG here to prevent crash, and bailout of compile
6026         if (l == nullptr) {
6027 #ifndef PRODUCT
6028           if (TraceLoopOpts) {
6029             tty->print_cr("bailout: unhandled CFG: infinite irreducible loop");
6030             m->dump();
6031           }
6032 #endif
6033           // This is a rare case that we do not want to handle in C2.
6034           C->record_method_not_compilable("unhandled CFG detected during loop optimization");
6035           return pre_order;
6036         }
6037       }
6038     }
6039     if (!_verify_only) {
6040       C->set_has_irreducible_loop(_has_irreducible_loops);
6041     }
6042 
6043     // This Node might be a decision point for loops.  It is only if
6044     // it's children belong to several different loops.  The sort call
6045     // does a trivial amount of work if there is only 1 child or all
6046     // children belong to the same loop.  If however, the children
6047     // belong to different loops, the sort call will properly set the
6048     // _parent pointers to show how the loops nest.
6049     //
6050     // In any case, it returns the tightest enclosing loop.
6051     innermost = sort( l, innermost );
6052   }
6053 
6054   // Def-use info will have some dead stuff; dead stuff will have no
6055   // loop decided on.
6056 
6057   // Am I a loop header?  If so fix up my parent's child and next ptrs.
6058   if( innermost && innermost->_head == n ) {
6059     assert( get_loop(n) == innermost, "" );
6060     IdealLoopTree *p = innermost->_parent;
6061     IdealLoopTree *l = innermost;
6062     while (p && l->_head == n) {
6063       l->_next = p->_child;     // Put self on parents 'next child'
6064       p->_child = l;            // Make self as first child of parent
6065       l = p;                    // Now walk up the parent chain
6066       p = l->_parent;
6067     }
6068   } else {
6069     // Note that it is possible for a LoopNode to reach here, if the
6070     // backedge has been made unreachable (hence the LoopNode no longer
6071     // denotes a Loop, and will eventually be removed).
6072 
6073     // Record tightest enclosing loop for self.  Mark as post-visited.
6074     set_loop(n, innermost);
6075     // Also record has_call flag early on
6076     if (innermost) {
6077       if( n->is_Call() && !n->is_CallLeaf() && !n->is_macro() ) {
6078         // Do not count uncommon calls
6079         if( !n->is_CallStaticJava() || !n->as_CallStaticJava()->_name ) {
6080           Node *iff = n->in(0)->in(0);
6081           // No any calls for vectorized loops.
6082           if (C->do_superword() ||
6083               !iff->is_If() ||
6084               (n->in(0)->Opcode() == Op_IfFalse && (1.0 - iff->as_If()->_prob) >= 0.01) ||
6085               iff->as_If()->_prob >= 0.01) {
6086             innermost->_has_call = 1;
6087           }
6088         }
6089       } else if( n->is_Allocate() && n->as_Allocate()->_is_scalar_replaceable ) {
6090         // Disable loop optimizations if the loop has a scalar replaceable
6091         // allocation. This disabling may cause a potential performance lost
6092         // if the allocation is not eliminated for some reason.
6093         innermost->_allow_optimizations = false;
6094         innermost->_has_call = 1; // = true
6095       } else if (n->Opcode() == Op_SafePoint) {
6096         // Record all safepoints in this loop.
6097         if (innermost->_safepts == nullptr) innermost->_safepts = new Node_List();
6098         innermost->_safepts->push(n);
6099       }
6100     }
6101   }
6102 
6103   // Flag as post-visited now
6104   set_postvisited(n);
6105   return pre_order;
6106 }
6107 
6108 #ifdef ASSERT
6109 //--------------------------verify_regions_in_irreducible_loops----------------
6110 // Iterate down from Root through CFG, verify for every region:
6111 // if it is in an irreducible loop it must be marked as such
6112 void PhaseIdealLoop::verify_regions_in_irreducible_loops() {
6113   ResourceMark rm;
6114   if (!_has_irreducible_loops) {
6115     // last build_loop_tree has not found any irreducible loops
6116     // hence no region has to be marked is_in_irreduible_loop
6117     return;
6118   }
6119 
6120   RootNode* root = C->root();
6121   Unique_Node_List worklist; // visit all nodes once
6122   worklist.push(root);
6123   bool failure = false;
6124   for (uint i = 0; i < worklist.size(); i++) {
6125     Node* n = worklist.at(i);
6126     if (n->is_Region()) {
6127       RegionNode* region = n->as_Region();
6128       if (is_in_irreducible_loop(region) &&
6129           region->loop_status() == RegionNode::LoopStatus::Reducible) {
6130         failure = true;
6131         tty->print("irreducible! ");
6132         region->dump();
6133       }
6134     }
6135     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
6136       Node* use = n->fast_out(j);
6137       if (use->is_CFG()) {
6138         worklist.push(use); // push if was not pushed before
6139       }
6140     }
6141   }
6142   assert(!failure, "region in irreducible loop was marked as reducible");
6143 }
6144 
6145 //---------------------------is_in_irreducible_loop-------------------------
6146 // Analogous to ciTypeFlow::Block::is_in_irreducible_loop
6147 bool PhaseIdealLoop::is_in_irreducible_loop(RegionNode* region) {
6148   if (!_has_irreducible_loops) {
6149     return false; // no irreducible loop in graph
6150   }
6151   IdealLoopTree* l = get_loop(region); // l: innermost loop that contains region
6152   do {
6153     if (l->_irreducible) {
6154       return true; // found it
6155     }
6156     if (l == _ltree_root) {
6157       return false; // reached root, terimnate
6158     }
6159     l = l->_parent;
6160   } while (l != nullptr);
6161   assert(region->is_in_infinite_subgraph(), "must be in infinite subgraph");
6162   // We have "l->_parent == nullptr", which happens only for infinite loops,
6163   // where no parent is attached to the loop. We did not find any irreducible
6164   // loop from this block out to lp. Thus lp only has one entry, and no exit
6165   // (it is infinite and reducible). We can always rewrite an infinite loop
6166   // that is nested inside other loops:
6167   // while(condition) { infinite_loop; }
6168   // with an equivalent program where the infinite loop is an outermost loop
6169   // that is not nested in any loop:
6170   // while(condition) { break; } infinite_loop;
6171   // Thus, we can understand lp as an outermost loop, and can terminate and
6172   // conclude: this block is in no irreducible loop.
6173   return false;
6174 }
6175 #endif
6176 
6177 //------------------------------build_loop_early-------------------------------
6178 // Put Data nodes into some loop nest, by setting the _loop_or_ctrl[]->loop mapping.
6179 // First pass computes the earliest controlling node possible.  This is the
6180 // controlling input with the deepest dominating depth.
6181 void PhaseIdealLoop::build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ) {
6182   while (worklist.size() != 0) {
6183     // Use local variables nstack_top_n & nstack_top_i to cache values
6184     // on nstack's top.
6185     Node *nstack_top_n = worklist.pop();
6186     uint  nstack_top_i = 0;
6187 //while_nstack_nonempty:
6188     while (true) {
6189       // Get parent node and next input's index from stack's top.
6190       Node  *n = nstack_top_n;
6191       uint   i = nstack_top_i;
6192       uint cnt = n->req(); // Count of inputs
6193       if (i == 0) {        // Pre-process the node.
6194         if( has_node(n) &&            // Have either loop or control already?
6195             !has_ctrl(n) ) {          // Have loop picked out already?
6196           // During "merge_many_backedges" we fold up several nested loops
6197           // into a single loop.  This makes the members of the original
6198           // loop bodies pointing to dead loops; they need to move up
6199           // to the new UNION'd larger loop.  I set the _head field of these
6200           // dead loops to null and the _parent field points to the owning
6201           // loop.  Shades of UNION-FIND algorithm.
6202           IdealLoopTree *ilt;
6203           while( !(ilt = get_loop(n))->_head ) {
6204             // Normally I would use a set_loop here.  But in this one special
6205             // case, it is legal (and expected) to change what loop a Node
6206             // belongs to.
6207             _loop_or_ctrl.map(n->_idx, (Node*)(ilt->_parent));
6208           }
6209           // Remove safepoints ONLY if I've already seen I don't need one.
6210           // (the old code here would yank a 2nd safepoint after seeing a
6211           // first one, even though the 1st did not dominate in the loop body
6212           // and thus could be avoided indefinitely)
6213           if( !_verify_only && !_verify_me && ilt->_has_sfpt && n->Opcode() == Op_SafePoint &&
6214               is_deleteable_safept(n)) {
6215             Node *in = n->in(TypeFunc::Control);
6216             replace_node_and_forward_ctrl(n, in); // Pull safepoint now
6217             if (ilt->_safepts != nullptr) {
6218               ilt->_safepts->yank(n);
6219             }
6220             // Carry on with the recursion "as if" we are walking
6221             // only the control input
6222             if( !visited.test_set( in->_idx ) ) {
6223               worklist.push(in);      // Visit this guy later, using worklist
6224             }
6225             // Get next node from nstack:
6226             // - skip n's inputs processing by setting i > cnt;
6227             // - we also will not call set_early_ctrl(n) since
6228             //   has_node(n) == true (see the condition above).
6229             i = cnt + 1;
6230           }
6231         }
6232       } // if (i == 0)
6233 
6234       // Visit all inputs
6235       bool done = true;       // Assume all n's inputs will be processed
6236       while (i < cnt) {
6237         Node *in = n->in(i);
6238         ++i;
6239         if (in == nullptr) continue;
6240         if (in->pinned() && !in->is_CFG())
6241           set_ctrl(in, in->in(0));
6242         int is_visited = visited.test_set( in->_idx );
6243         if (!has_node(in)) {  // No controlling input yet?
6244           assert( !in->is_CFG(), "CFG Node with no controlling input?" );
6245           assert( !is_visited, "visit only once" );
6246           nstack.push(n, i);  // Save parent node and next input's index.
6247           nstack_top_n = in;  // Process current input now.
6248           nstack_top_i = 0;
6249           done = false;       // Not all n's inputs processed.
6250           break; // continue while_nstack_nonempty;
6251         } else if (!is_visited) {
6252           // This guy has a location picked out for him, but has not yet
6253           // been visited.  Happens to all CFG nodes, for instance.
6254           // Visit him using the worklist instead of recursion, to break
6255           // cycles.  Since he has a location already we do not need to
6256           // find his location before proceeding with the current Node.
6257           worklist.push(in);  // Visit this guy later, using worklist
6258         }
6259       }
6260       if (done) {
6261         // All of n's inputs have been processed, complete post-processing.
6262 
6263         // Compute earliest point this Node can go.
6264         // CFG, Phi, pinned nodes already know their controlling input.
6265         if (!has_node(n)) {
6266           // Record earliest legal location
6267           set_early_ctrl(n, false);
6268         }
6269         if (nstack.is_empty()) {
6270           // Finished all nodes on stack.
6271           // Process next node on the worklist.
6272           break;
6273         }
6274         // Get saved parent node and next input's index.
6275         nstack_top_n = nstack.node();
6276         nstack_top_i = nstack.index();
6277         nstack.pop();
6278       }
6279     } // while (true)
6280   }
6281 }
6282 
6283 //------------------------------dom_lca_internal--------------------------------
6284 // Pair-wise LCA
6285 Node *PhaseIdealLoop::dom_lca_internal( Node *n1, Node *n2 ) const {
6286   if( !n1 ) return n2;          // Handle null original LCA
6287   assert( n1->is_CFG(), "" );
6288   assert( n2->is_CFG(), "" );
6289   // find LCA of all uses
6290   uint d1 = dom_depth(n1);
6291   uint d2 = dom_depth(n2);
6292   while (n1 != n2) {
6293     if (d1 > d2) {
6294       n1 =      idom(n1);
6295       d1 = dom_depth(n1);
6296     } else if (d1 < d2) {
6297       n2 =      idom(n2);
6298       d2 = dom_depth(n2);
6299     } else {
6300       // Here d1 == d2.  Due to edits of the dominator-tree, sections
6301       // of the tree might have the same depth.  These sections have
6302       // to be searched more carefully.
6303 
6304       // Scan up all the n1's with equal depth, looking for n2.
6305       Node *t1 = idom(n1);
6306       while (dom_depth(t1) == d1) {
6307         if (t1 == n2)  return n2;
6308         t1 = idom(t1);
6309       }
6310       // Scan up all the n2's with equal depth, looking for n1.
6311       Node *t2 = idom(n2);
6312       while (dom_depth(t2) == d2) {
6313         if (t2 == n1)  return n1;
6314         t2 = idom(t2);
6315       }
6316       // Move up to a new dominator-depth value as well as up the dom-tree.
6317       n1 = t1;
6318       n2 = t2;
6319       d1 = dom_depth(n1);
6320       d2 = dom_depth(n2);
6321     }
6322   }
6323   return n1;
6324 }
6325 
6326 //------------------------------compute_idom-----------------------------------
6327 // Locally compute IDOM using dom_lca call.  Correct only if the incoming
6328 // IDOMs are correct.
6329 Node *PhaseIdealLoop::compute_idom( Node *region ) const {
6330   assert( region->is_Region(), "" );
6331   Node *LCA = nullptr;
6332   for( uint i = 1; i < region->req(); i++ ) {
6333     if( region->in(i) != C->top() )
6334       LCA = dom_lca( LCA, region->in(i) );
6335   }
6336   return LCA;
6337 }
6338 
6339 bool PhaseIdealLoop::verify_dominance(Node* n, Node* use, Node* LCA, Node* early) {
6340   bool had_error = false;
6341 #ifdef ASSERT
6342   if (early != C->root()) {
6343     // Make sure that there's a dominance path from LCA to early
6344     Node* d = LCA;
6345     while (d != early) {
6346       if (d == C->root()) {
6347         dump_bad_graph("Bad graph detected in compute_lca_of_uses", n, early, LCA);
6348         tty->print_cr("*** Use %d isn't dominated by def %d ***", use->_idx, n->_idx);
6349         had_error = true;
6350         break;
6351       }
6352       d = idom(d);
6353     }
6354   }
6355 #endif
6356   return had_error;
6357 }
6358 
6359 
6360 Node* PhaseIdealLoop::compute_lca_of_uses(Node* n, Node* early, bool verify) {
6361   // Compute LCA over list of uses
6362   bool had_error = false;
6363   Node *LCA = nullptr;
6364   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax && LCA != early; i++) {
6365     Node* c = n->fast_out(i);
6366     if (_loop_or_ctrl[c->_idx] == nullptr)
6367       continue;                 // Skip the occasional dead node
6368     if( c->is_Phi() ) {         // For Phis, we must land above on the path
6369       for( uint j=1; j<c->req(); j++ ) {// For all inputs
6370         if( c->in(j) == n ) {   // Found matching input?
6371           Node *use = c->in(0)->in(j);
6372           if (_verify_only && use->is_top()) continue;
6373           LCA = dom_lca_for_get_late_ctrl( LCA, use, n );
6374           if (verify) had_error = verify_dominance(n, use, LCA, early) || had_error;
6375         }
6376       }
6377     } else {
6378       // For CFG data-users, use is in the block just prior
6379       Node *use = has_ctrl(c) ? get_ctrl(c) : c->in(0);
6380       LCA = dom_lca_for_get_late_ctrl( LCA, use, n );
6381       if (verify) had_error = verify_dominance(n, use, LCA, early) || had_error;
6382     }
6383   }
6384   assert(!had_error, "bad dominance");
6385   return LCA;
6386 }
6387 
6388 // Check the shape of the graph at the loop entry. In some cases,
6389 // the shape of the graph does not match the shape outlined below.
6390 // That is caused by the Opaque1 node "protecting" the shape of
6391 // the graph being removed by, for example, the IGVN performed
6392 // in PhaseIdealLoop::build_and_optimize().
6393 //
6394 // After the Opaque1 node has been removed, optimizations (e.g., split-if,
6395 // loop unswitching, and IGVN, or a combination of them) can freely change
6396 // the graph's shape. As a result, the graph shape outlined below cannot
6397 // be guaranteed anymore.
6398 Node* CountedLoopNode::is_canonical_loop_entry() {
6399   if (!is_main_loop() && !is_post_loop()) {
6400     return nullptr;
6401   }
6402   Node* ctrl = skip_assertion_predicates_with_halt();
6403 
6404   if (ctrl == nullptr || (!ctrl->is_IfTrue() && !ctrl->is_IfFalse())) {
6405     return nullptr;
6406   }
6407   Node* iffm = ctrl->in(0);
6408   if (iffm == nullptr || iffm->Opcode() != Op_If) {
6409     return nullptr;
6410   }
6411   Node* bolzm = iffm->in(1);
6412   if (bolzm == nullptr || !bolzm->is_Bool()) {
6413     return nullptr;
6414   }
6415   Node* cmpzm = bolzm->in(1);
6416   if (cmpzm == nullptr || !cmpzm->is_Cmp()) {
6417     return nullptr;
6418   }
6419 
6420   uint input = is_main_loop() ? 2 : 1;
6421   if (input >= cmpzm->req() || cmpzm->in(input) == nullptr) {
6422     return nullptr;
6423   }
6424   bool res = cmpzm->in(input)->Opcode() == Op_OpaqueZeroTripGuard;
6425 #ifdef ASSERT
6426   bool found_opaque = false;
6427   for (uint i = 1; i < cmpzm->req(); i++) {
6428     Node* opnd = cmpzm->in(i);
6429     if (opnd && opnd->is_Opaque1()) {
6430       found_opaque = true;
6431       break;
6432     }
6433   }
6434   assert(found_opaque == res, "wrong pattern");
6435 #endif
6436   return res ? cmpzm->in(input) : nullptr;
6437 }
6438 
6439 // Find pre loop end from main loop. Returns nullptr if none.
6440 CountedLoopEndNode* CountedLoopNode::find_pre_loop_end() {
6441   assert(is_main_loop(), "Can only find pre-loop from main-loop");
6442   // The loop cannot be optimized if the graph shape at the loop entry is
6443   // inappropriate.
6444   if (is_canonical_loop_entry() == nullptr) {
6445     return nullptr;
6446   }
6447 
6448   Node* p_f = skip_assertion_predicates_with_halt()->in(0)->in(0);
6449   if (!p_f->is_IfFalse() || !p_f->in(0)->is_CountedLoopEnd()) {
6450     return nullptr;
6451   }
6452   CountedLoopEndNode* pre_end = p_f->in(0)->as_CountedLoopEnd();
6453   CountedLoopNode* loop_node = pre_end->loopnode();
6454   if (loop_node == nullptr || !loop_node->is_pre_loop()) {
6455     return nullptr;
6456   }
6457   return pre_end;
6458 }
6459 
6460 Node* CountedLoopNode::uncasted_init_trip(bool uncast) {
6461   Node* init = init_trip();
6462   if (uncast && init->is_CastII()) {
6463     // skip over the cast added by PhaseIdealLoop::cast_incr_before_loop() when pre/post/main loops are created because
6464     // it can get in the way of type propagation. For instance, the index tested by an Assertion Predicate, if the cast
6465     // is not skipped over, could be (1):
6466     // (AddI (CastII (AddI pre_loop_iv -2) int) 1)
6467     // while without the cast, it is (2):
6468     // (AddI (AddI pre_loop_iv -2) 1)
6469     // which is be transformed to (3):
6470     // (AddI pre_loop_iv -1)
6471     // The compiler may be able to constant fold the Assertion Predicate condition for (3) but not (1)
6472     assert(init->as_CastII()->carry_dependency() && skip_assertion_predicates_with_halt() == init->in(0), "casted iv phi from pre loop expected");
6473     init = init->in(1);
6474   }
6475   return init;
6476 }
6477 
6478 //------------------------------get_late_ctrl----------------------------------
6479 // Compute latest legal control.
6480 Node *PhaseIdealLoop::get_late_ctrl( Node *n, Node *early ) {
6481   assert(early != nullptr, "early control should not be null");
6482 
6483   Node* LCA = compute_lca_of_uses(n, early);
6484 #ifdef ASSERT
6485   if (LCA == C->root() && LCA != early) {
6486     // def doesn't dominate uses so print some useful debugging output
6487     compute_lca_of_uses(n, early, true);
6488   }
6489 #endif
6490 
6491   if (n->is_Load() && LCA != early) {
6492     LCA = get_late_ctrl_with_anti_dep(n->as_Load(), early, LCA);
6493   }
6494 
6495   assert(LCA == find_non_split_ctrl(LCA), "unexpected late control");
6496   return LCA;
6497 }
6498 
6499 // if this is a load, check for anti-dependent stores
6500 // We use a conservative algorithm to identify potential interfering
6501 // instructions and for rescheduling the load.  The users of the memory
6502 // input of this load are examined.  Any use which is not a load and is
6503 // dominated by early is considered a potentially interfering store.
6504 // This can produce false positives.
6505 Node* PhaseIdealLoop::get_late_ctrl_with_anti_dep(LoadNode* n, Node* early, Node* LCA) {
6506   int load_alias_idx = C->get_alias_index(n->adr_type());
6507   if (C->alias_type(load_alias_idx)->is_rewritable()) {
6508     Unique_Node_List worklist;
6509 
6510     Node* mem = n->in(MemNode::Memory);
6511     for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
6512       Node* s = mem->fast_out(i);
6513       worklist.push(s);
6514     }
6515     for (uint i = 0; i < worklist.size() && LCA != early; i++) {
6516       Node* s = worklist.at(i);
6517       if (s->is_Load() || s->Opcode() == Op_SafePoint ||
6518           (s->is_CallStaticJava() && s->as_CallStaticJava()->uncommon_trap_request() != 0) ||
6519           s->is_Phi()) {
6520         continue;
6521       } else if (s->is_MergeMem()) {
6522         for (DUIterator_Fast imax, i = s->fast_outs(imax); i < imax; i++) {
6523           Node* s1 = s->fast_out(i);
6524           worklist.push(s1);
6525         }
6526       } else {
6527         Node* sctrl = has_ctrl(s) ? get_ctrl(s) : s->in(0);
6528         assert(sctrl != nullptr || !s->is_reachable_from_root(), "must have control");
6529         if (sctrl != nullptr && !sctrl->is_top() && is_dominator(early, sctrl)) {
6530           const TypePtr* adr_type = s->adr_type();
6531           if (s->is_ArrayCopy()) {
6532             // Copy to known instance needs destination type to test for aliasing
6533             const TypePtr* dest_type = s->as_ArrayCopy()->_dest_type;
6534             if (dest_type != TypeOopPtr::BOTTOM) {
6535               adr_type = dest_type;
6536             }
6537           }
6538           if (C->can_alias(adr_type, load_alias_idx)) {
6539             LCA = dom_lca_for_get_late_ctrl(LCA, sctrl, n);
6540           } else if (s->is_CFG() && s->is_Multi()) {
6541             // Look for the memory use of s (that is the use of its memory projection)
6542             for (DUIterator_Fast imax, i = s->fast_outs(imax); i < imax; i++) {
6543               Node* s1 = s->fast_out(i);
6544               assert(s1->is_Proj(), "projection expected");
6545               if (_igvn.type(s1) == Type::MEMORY) {
6546                 for (DUIterator_Fast jmax, j = s1->fast_outs(jmax); j < jmax; j++) {
6547                   Node* s2 = s1->fast_out(j);
6548                   worklist.push(s2);
6549                 }
6550               }
6551             }
6552           }
6553         }
6554       }
6555     }
6556     // For Phis only consider Region's inputs that were reached by following the memory edges
6557     if (LCA != early) {
6558       for (uint i = 0; i < worklist.size(); i++) {
6559         Node* s = worklist.at(i);
6560         if (s->is_Phi() && C->can_alias(s->adr_type(), load_alias_idx)) {
6561           Node* r = s->in(0);
6562           for (uint j = 1; j < s->req(); j++) {
6563             Node* in = s->in(j);
6564             Node* r_in = r->in(j);
6565             // We can't reach any node from a Phi because we don't enqueue Phi's uses above
6566             if (((worklist.member(in) && !in->is_Phi()) || in == mem) && is_dominator(early, r_in)) {
6567               LCA = dom_lca_for_get_late_ctrl(LCA, r_in, n);
6568             }
6569           }
6570         }
6571       }
6572     }
6573   }
6574   return LCA;
6575 }
6576 
6577 // Is CFG node 'dominator' dominating node 'n'?
6578 bool PhaseIdealLoop::is_dominator(Node* dominator, Node* n) {
6579   if (dominator == n) {
6580     return true;
6581   }
6582   assert(dominator->is_CFG() && n->is_CFG(), "must have CFG nodes");
6583   uint dd = dom_depth(dominator);
6584   while (dom_depth(n) >= dd) {
6585     if (n == dominator) {
6586       return true;
6587     }
6588     n = idom(n);
6589   }
6590   return false;
6591 }
6592 
6593 // Is CFG node 'dominator' strictly dominating node 'n'?
6594 bool PhaseIdealLoop::is_strict_dominator(Node* dominator, Node* n) {
6595   return dominator != n && is_dominator(dominator, n);
6596 }
6597 
6598 //------------------------------dom_lca_for_get_late_ctrl_internal-------------
6599 // Pair-wise LCA with tags.
6600 // Tag each index with the node 'tag' currently being processed
6601 // before advancing up the dominator chain using idom().
6602 // Later calls that find a match to 'tag' know that this path has already
6603 // been considered in the current LCA (which is input 'n1' by convention).
6604 // Since get_late_ctrl() is only called once for each node, the tag array
6605 // does not need to be cleared between calls to get_late_ctrl().
6606 // Algorithm trades a larger constant factor for better asymptotic behavior
6607 //
6608 Node *PhaseIdealLoop::dom_lca_for_get_late_ctrl_internal(Node *n1, Node *n2, Node *tag_node) {
6609   uint d1 = dom_depth(n1);
6610   uint d2 = dom_depth(n2);
6611   jlong tag = tag_node->_idx | (((jlong)_dom_lca_tags_round) << 32);
6612 
6613   do {
6614     if (d1 > d2) {
6615       // current lca is deeper than n2
6616       _dom_lca_tags.at_put_grow(n1->_idx, tag);
6617       n1 =      idom(n1);
6618       d1 = dom_depth(n1);
6619     } else if (d1 < d2) {
6620       // n2 is deeper than current lca
6621       jlong memo = _dom_lca_tags.at_grow(n2->_idx, 0);
6622       if (memo == tag) {
6623         return n1;    // Return the current LCA
6624       }
6625       _dom_lca_tags.at_put_grow(n2->_idx, tag);
6626       n2 =      idom(n2);
6627       d2 = dom_depth(n2);
6628     } else {
6629       // Here d1 == d2.  Due to edits of the dominator-tree, sections
6630       // of the tree might have the same depth.  These sections have
6631       // to be searched more carefully.
6632 
6633       // Scan up all the n1's with equal depth, looking for n2.
6634       _dom_lca_tags.at_put_grow(n1->_idx, tag);
6635       Node *t1 = idom(n1);
6636       while (dom_depth(t1) == d1) {
6637         if (t1 == n2)  return n2;
6638         _dom_lca_tags.at_put_grow(t1->_idx, tag);
6639         t1 = idom(t1);
6640       }
6641       // Scan up all the n2's with equal depth, looking for n1.
6642       _dom_lca_tags.at_put_grow(n2->_idx, tag);
6643       Node *t2 = idom(n2);
6644       while (dom_depth(t2) == d2) {
6645         if (t2 == n1)  return n1;
6646         _dom_lca_tags.at_put_grow(t2->_idx, tag);
6647         t2 = idom(t2);
6648       }
6649       // Move up to a new dominator-depth value as well as up the dom-tree.
6650       n1 = t1;
6651       n2 = t2;
6652       d1 = dom_depth(n1);
6653       d2 = dom_depth(n2);
6654     }
6655   } while (n1 != n2);
6656   return n1;
6657 }
6658 
6659 //------------------------------init_dom_lca_tags------------------------------
6660 // Tag could be a node's integer index, 32bits instead of 64bits in some cases
6661 // Intended use does not involve any growth for the array, so it could
6662 // be of fixed size.
6663 void PhaseIdealLoop::init_dom_lca_tags() {
6664   uint limit = C->unique() + 1;
6665   _dom_lca_tags.at_grow(limit, 0);
6666   _dom_lca_tags_round = 0;
6667 #ifdef ASSERT
6668   for (uint i = 0; i < limit; ++i) {
6669     assert(_dom_lca_tags.at(i) == 0, "Must be distinct from each node pointer");
6670   }
6671 #endif // ASSERT
6672 }
6673 
6674 //------------------------------build_loop_late--------------------------------
6675 // Put Data nodes into some loop nest, by setting the _loop_or_ctrl[]->loop mapping.
6676 // Second pass finds latest legal placement, and ideal loop placement.
6677 void PhaseIdealLoop::build_loop_late( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ) {
6678   while (worklist.size() != 0) {
6679     Node *n = worklist.pop();
6680     // Only visit once
6681     if (visited.test_set(n->_idx)) continue;
6682     uint cnt = n->outcnt();
6683     uint   i = 0;
6684     while (true) {
6685       assert(_loop_or_ctrl[n->_idx], "no dead nodes");
6686       // Visit all children
6687       if (i < cnt) {
6688         Node* use = n->raw_out(i);
6689         ++i;
6690         // Check for dead uses.  Aggressively prune such junk.  It might be
6691         // dead in the global sense, but still have local uses so I cannot
6692         // easily call 'remove_dead_node'.
6693         if (_loop_or_ctrl[use->_idx] != nullptr || use->is_top()) { // Not dead?
6694           // Due to cycles, we might not hit the same fixed point in the verify
6695           // pass as we do in the regular pass.  Instead, visit such phis as
6696           // simple uses of the loop head.
6697           if( use->in(0) && (use->is_CFG() || use->is_Phi()) ) {
6698             if( !visited.test(use->_idx) )
6699               worklist.push(use);
6700           } else if( !visited.test_set(use->_idx) ) {
6701             nstack.push(n, i); // Save parent and next use's index.
6702             n   = use;         // Process all children of current use.
6703             cnt = use->outcnt();
6704             i   = 0;
6705           }
6706         } else {
6707           // Do not visit around the backedge of loops via data edges.
6708           // push dead code onto a worklist
6709           _deadlist.push(use);
6710         }
6711       } else {
6712         // All of n's children have been processed, complete post-processing.
6713         build_loop_late_post(n);
6714         if (C->failing()) { return; }
6715         if (nstack.is_empty()) {
6716           // Finished all nodes on stack.
6717           // Process next node on the worklist.
6718           break;
6719         }
6720         // Get saved parent node and next use's index. Visit the rest of uses.
6721         n   = nstack.node();
6722         cnt = n->outcnt();
6723         i   = nstack.index();
6724         nstack.pop();
6725       }
6726     }
6727   }
6728 }
6729 
6730 // Verify that no data node is scheduled in the outer loop of a strip
6731 // mined loop.
6732 void PhaseIdealLoop::verify_strip_mined_scheduling(Node *n, Node* least) {
6733 #ifdef ASSERT
6734   if (get_loop(least)->_nest == 0) {
6735     return;
6736   }
6737   IdealLoopTree* loop = get_loop(least);
6738   Node* head = loop->_head;
6739   if (head->is_OuterStripMinedLoop() &&
6740       // Verification can't be applied to fully built strip mined loops
6741       head->as_Loop()->outer_loop_end()->in(1)->find_int_con(-1) == 0) {
6742     Node* sfpt = head->as_Loop()->outer_safepoint();
6743     ResourceMark rm;
6744     Unique_Node_List wq;
6745     wq.push(sfpt);
6746     for (uint i = 0; i < wq.size(); i++) {
6747       Node *m = wq.at(i);
6748       for (uint i = 1; i < m->req(); i++) {
6749         Node* nn = m->in(i);
6750         if (nn == n) {
6751           return;
6752         }
6753         if (nn != nullptr && has_ctrl(nn) && get_loop(get_ctrl(nn)) == loop) {
6754           wq.push(nn);
6755         }
6756       }
6757     }
6758     ShouldNotReachHere();
6759   }
6760 #endif
6761 }
6762 
6763 
6764 //------------------------------build_loop_late_post---------------------------
6765 // Put Data nodes into some loop nest, by setting the _loop_or_ctrl[]->loop mapping.
6766 // Second pass finds latest legal placement, and ideal loop placement.
6767 void PhaseIdealLoop::build_loop_late_post(Node *n) {
6768   build_loop_late_post_work(n, true);
6769 }
6770 
6771 // Class to visit all predicates in a predicate chain to find out which are dominated by a given node. Keeps track of
6772 // the entry to the earliest predicate that is still dominated by the given dominator. This class is used when trying to
6773 // legally skip all predicates when figuring out the latest placement such that a node does not interfere with Loop
6774 // Predication or creating a Loop Limit Check Predicate later.
6775 class DominatedPredicates : public UnifiedPredicateVisitor {
6776   Node* const _dominator;
6777   Node* _earliest_dominated_predicate_entry;
6778   bool _should_continue;
6779   PhaseIdealLoop* const _phase;
6780 
6781  public:
6782   DominatedPredicates(Node* dominator, Node* start_node, PhaseIdealLoop* phase)
6783       : _dominator(dominator),
6784         _earliest_dominated_predicate_entry(start_node),
6785         _should_continue(true),
6786         _phase(phase) {}
6787   NONCOPYABLE(DominatedPredicates);
6788 
6789   bool should_continue() const override {
6790     return _should_continue;
6791   }
6792 
6793   // Returns the entry to the earliest predicate that is still dominated by the given dominator (all could be dominated).
6794   Node* earliest_dominated_predicate_entry() const {
6795     return _earliest_dominated_predicate_entry;
6796   }
6797 
6798   void visit_predicate(const Predicate& predicate) override {
6799     Node* entry = predicate.entry();
6800     if (_phase->is_strict_dominator(entry, _dominator)) {
6801       _should_continue = false;
6802     } else {
6803       _earliest_dominated_predicate_entry = entry;
6804     }
6805   }
6806 };
6807 
6808 void PhaseIdealLoop::build_loop_late_post_work(Node *n, bool pinned) {
6809 
6810   if (n->req() == 2 && (n->Opcode() == Op_ConvI2L || n->Opcode() == Op_CastII) && !C->major_progress() && !_verify_only) {
6811     _igvn._worklist.push(n);  // Maybe we'll normalize it, if no more loops.
6812   }
6813 
6814 #ifdef ASSERT
6815   if (_verify_only && !n->is_CFG()) {
6816     // Check def-use domination.
6817     // We would like to expose this check in product but it appears to be expensive.
6818     compute_lca_of_uses(n, get_ctrl(n), true /* verify */);
6819   }
6820 #endif
6821 
6822   // CFG and pinned nodes already handled
6823   if( n->in(0) ) {
6824     if( n->in(0)->is_top() ) return; // Dead?
6825 
6826     // We'd like +VerifyLoopOptimizations to not believe that Mod's/Loads
6827     // _must_ be pinned (they have to observe their control edge of course).
6828     // Unlike Stores (which modify an unallocable resource, the memory
6829     // state), Mods/Loads can float around.  So free them up.
6830     switch( n->Opcode() ) {
6831     case Op_DivI:
6832     case Op_DivF:
6833     case Op_DivD:
6834     case Op_ModI:
6835     case Op_LoadB:              // Same with Loads; they can sink
6836     case Op_LoadUB:             // during loop optimizations.
6837     case Op_LoadUS:
6838     case Op_LoadD:
6839     case Op_LoadF:
6840     case Op_LoadI:
6841     case Op_LoadKlass:
6842     case Op_LoadNKlass:
6843     case Op_LoadL:
6844     case Op_LoadS:
6845     case Op_LoadP:
6846     case Op_LoadN:
6847     case Op_LoadRange:
6848     case Op_LoadD_unaligned:
6849     case Op_LoadL_unaligned:
6850     case Op_StrComp:            // Does a bunch of load-like effects
6851     case Op_StrEquals:
6852     case Op_StrIndexOf:
6853     case Op_StrIndexOfChar:
6854     case Op_AryEq:
6855     case Op_VectorizedHashCode:
6856     case Op_CountPositives:
6857       pinned = false;
6858     }
6859     if (n->is_CMove() || n->is_ConstraintCast()) {
6860       pinned = false;
6861     }
6862     if( pinned ) {
6863       IdealLoopTree *chosen_loop = get_loop(n->is_CFG() ? n : get_ctrl(n));
6864       if( !chosen_loop->_child )       // Inner loop?
6865         chosen_loop->_body.push(n); // Collect inner loops
6866       return;
6867     }
6868   } else {                      // No slot zero
6869     if( n->is_CFG() ) {         // CFG with no slot 0 is dead
6870       _loop_or_ctrl.map(n->_idx,nullptr); // No block setting, it's globally dead
6871       return;
6872     }
6873     assert(!n->is_CFG() || n->outcnt() == 0, "");
6874   }
6875 
6876   // Do I have a "safe range" I can select over?
6877   Node *early = get_ctrl(n);// Early location already computed
6878 
6879   // Compute latest point this Node can go
6880   Node *LCA = get_late_ctrl( n, early );
6881   // LCA is null due to uses being dead
6882   if( LCA == nullptr ) {
6883 #ifdef ASSERT
6884     for (DUIterator i1 = n->outs(); n->has_out(i1); i1++) {
6885       assert(_loop_or_ctrl[n->out(i1)->_idx] == nullptr, "all uses must also be dead");
6886     }
6887 #endif
6888     _loop_or_ctrl.map(n->_idx, nullptr); // This node is useless
6889     _deadlist.push(n);
6890     return;
6891   }
6892   assert(LCA != nullptr && !LCA->is_top(), "no dead nodes");
6893 
6894   Node *legal = LCA;            // Walk 'legal' up the IDOM chain
6895   Node *least = legal;          // Best legal position so far
6896   while( early != legal ) {     // While not at earliest legal
6897     if (legal->is_Start() && !early->is_Root()) {
6898 #ifdef ASSERT
6899       // Bad graph. Print idom path and fail.
6900       dump_bad_graph("Bad graph detected in build_loop_late", n, early, LCA);
6901       assert(false, "Bad graph detected in build_loop_late");
6902 #endif
6903       C->record_method_not_compilable("Bad graph detected in build_loop_late");
6904       return;
6905     }
6906     // Find least loop nesting depth
6907     legal = idom(legal);        // Bump up the IDOM tree
6908     // Check for lower nesting depth
6909     if( get_loop(legal)->_nest < get_loop(least)->_nest )
6910       least = legal;
6911   }
6912   assert(early == legal || legal != C->root(), "bad dominance of inputs");
6913 
6914   if (least != early) {
6915     // Move the node above predicates as far up as possible so a
6916     // following pass of Loop Predication doesn't hoist a predicate
6917     // that depends on it above that node.
6918     const PredicateIterator predicate_iterator(least);
6919     DominatedPredicates dominated_predicates(early, least, this);
6920     predicate_iterator.for_each(dominated_predicates);
6921     least = dominated_predicates.earliest_dominated_predicate_entry();
6922   }
6923   // Try not to place code on a loop entry projection
6924   // which can inhibit range check elimination.
6925   if (least != early && !BarrierSet::barrier_set()->barrier_set_c2()->is_gc_specific_loop_opts_pass(_mode)) {
6926     Node* ctrl_out = least->unique_ctrl_out_or_null();
6927     if (ctrl_out != nullptr && ctrl_out->is_Loop() &&
6928         least == ctrl_out->in(LoopNode::EntryControl) &&
6929         (ctrl_out->is_CountedLoop() || ctrl_out->is_OuterStripMinedLoop())) {
6930       Node* least_dom = idom(least);
6931       if (get_loop(least_dom)->is_member(get_loop(least))) {
6932         least = least_dom;
6933       }
6934     }
6935   }
6936   // Don't extend live ranges of raw oops
6937   if (least != early && n->is_ConstraintCast() && n->in(1)->bottom_type()->isa_rawptr() &&
6938       !n->bottom_type()->isa_rawptr()) {
6939     least = early;
6940   }
6941 
6942 #ifdef ASSERT
6943   // Broken part of VerifyLoopOptimizations (F)
6944   // Reason:
6945   //   _verify_me->get_ctrl_no_update(n) seems to return wrong result
6946   /*
6947   // If verifying, verify that 'verify_me' has a legal location
6948   // and choose it as our location.
6949   if( _verify_me ) {
6950     Node *v_ctrl = _verify_me->get_ctrl_no_update(n);
6951     Node *legal = LCA;
6952     while( early != legal ) {   // While not at earliest legal
6953       if( legal == v_ctrl ) break;  // Check for prior good location
6954       legal = idom(legal)      ;// Bump up the IDOM tree
6955     }
6956     // Check for prior good location
6957     if( legal == v_ctrl ) least = legal; // Keep prior if found
6958   }
6959   */
6960 #endif
6961 
6962   // Assign discovered "here or above" point
6963   least = find_non_split_ctrl(least);
6964   verify_strip_mined_scheduling(n, least);
6965   set_ctrl(n, least);
6966 
6967   // Collect inner loop bodies
6968   IdealLoopTree *chosen_loop = get_loop(least);
6969   if( !chosen_loop->_child )   // Inner loop?
6970     chosen_loop->_body.push(n);// Collect inner loops
6971 
6972   if (!_verify_only && n->Opcode() == Op_OpaqueZeroTripGuard) {
6973     _zero_trip_guard_opaque_nodes.push(n);
6974   }
6975 
6976   if (!_verify_only && n->Opcode() == Op_OpaqueMultiversioning) {
6977     _multiversion_opaque_nodes.push(n);
6978   }
6979 }
6980 
6981 #ifdef ASSERT
6982 void PhaseIdealLoop::dump_bad_graph(const char* msg, Node* n, Node* early, Node* LCA) {
6983   tty->print_cr("%s", msg);
6984   tty->print("n: "); n->dump();
6985   tty->print("early(n): "); early->dump();
6986   if (n->in(0) != nullptr  && !n->in(0)->is_top() &&
6987       n->in(0) != early && !n->in(0)->is_Root()) {
6988     tty->print("n->in(0): "); n->in(0)->dump();
6989   }
6990   for (uint i = 1; i < n->req(); i++) {
6991     Node* in1 = n->in(i);
6992     if (in1 != nullptr && in1 != n && !in1->is_top()) {
6993       tty->print("n->in(%d): ", i); in1->dump();
6994       Node* in1_early = get_ctrl(in1);
6995       tty->print("early(n->in(%d)): ", i); in1_early->dump();
6996       if (in1->in(0) != nullptr     && !in1->in(0)->is_top() &&
6997           in1->in(0) != in1_early && !in1->in(0)->is_Root()) {
6998         tty->print("n->in(%d)->in(0): ", i); in1->in(0)->dump();
6999       }
7000       for (uint j = 1; j < in1->req(); j++) {
7001         Node* in2 = in1->in(j);
7002         if (in2 != nullptr && in2 != n && in2 != in1 && !in2->is_top()) {
7003           tty->print("n->in(%d)->in(%d): ", i, j); in2->dump();
7004           Node* in2_early = get_ctrl(in2);
7005           tty->print("early(n->in(%d)->in(%d)): ", i, j); in2_early->dump();
7006           if (in2->in(0) != nullptr     && !in2->in(0)->is_top() &&
7007               in2->in(0) != in2_early && !in2->in(0)->is_Root()) {
7008             tty->print("n->in(%d)->in(%d)->in(0): ", i, j); in2->in(0)->dump();
7009           }
7010         }
7011       }
7012     }
7013   }
7014   tty->cr();
7015   tty->print("LCA(n): "); LCA->dump();
7016   for (uint i = 0; i < n->outcnt(); i++) {
7017     Node* u1 = n->raw_out(i);
7018     if (u1 == n)
7019       continue;
7020     tty->print("n->out(%d): ", i); u1->dump();
7021     if (u1->is_CFG()) {
7022       for (uint j = 0; j < u1->outcnt(); j++) {
7023         Node* u2 = u1->raw_out(j);
7024         if (u2 != u1 && u2 != n && u2->is_CFG()) {
7025           tty->print("n->out(%d)->out(%d): ", i, j); u2->dump();
7026         }
7027       }
7028     } else {
7029       Node* u1_later = get_ctrl(u1);
7030       tty->print("later(n->out(%d)): ", i); u1_later->dump();
7031       if (u1->in(0) != nullptr     && !u1->in(0)->is_top() &&
7032           u1->in(0) != u1_later && !u1->in(0)->is_Root()) {
7033         tty->print("n->out(%d)->in(0): ", i); u1->in(0)->dump();
7034       }
7035       for (uint j = 0; j < u1->outcnt(); j++) {
7036         Node* u2 = u1->raw_out(j);
7037         if (u2 == n || u2 == u1)
7038           continue;
7039         tty->print("n->out(%d)->out(%d): ", i, j); u2->dump();
7040         if (!u2->is_CFG()) {
7041           Node* u2_later = get_ctrl(u2);
7042           tty->print("later(n->out(%d)->out(%d)): ", i, j); u2_later->dump();
7043           if (u2->in(0) != nullptr     && !u2->in(0)->is_top() &&
7044               u2->in(0) != u2_later && !u2->in(0)->is_Root()) {
7045             tty->print("n->out(%d)->in(0): ", i); u2->in(0)->dump();
7046           }
7047         }
7048       }
7049     }
7050   }
7051   dump_idoms(early, LCA);
7052   tty->cr();
7053 }
7054 
7055 // Class to compute the real LCA given an early node and a wrong LCA in a bad graph.
7056 class RealLCA {
7057   const PhaseIdealLoop* _phase;
7058   Node* _early;
7059   Node* _wrong_lca;
7060   uint _early_index;
7061   int _wrong_lca_index;
7062 
7063   // Given idom chains of early and wrong LCA: Walk through idoms starting at StartNode and find the first node which
7064   // is different: Return the previously visited node which must be the real LCA.
7065   // The node lists also contain _early and _wrong_lca, respectively.
7066   Node* find_real_lca(Unique_Node_List& early_with_idoms, Unique_Node_List& wrong_lca_with_idoms) {
7067     int early_index = early_with_idoms.size() - 1;
7068     int wrong_lca_index = wrong_lca_with_idoms.size() - 1;
7069     bool found_difference = false;
7070     do {
7071       if (early_with_idoms[early_index] != wrong_lca_with_idoms[wrong_lca_index]) {
7072         // First time early and wrong LCA idoms differ. Real LCA must be at the previous index.
7073         found_difference = true;
7074         break;
7075       }
7076       early_index--;
7077       wrong_lca_index--;
7078     } while (wrong_lca_index >= 0);
7079 
7080     assert(early_index >= 0, "must always find an LCA - cannot be early");
7081     _early_index = early_index;
7082     _wrong_lca_index = wrong_lca_index;
7083     Node* real_lca = early_with_idoms[_early_index + 1]; // Plus one to skip _early.
7084     assert(found_difference || real_lca == _wrong_lca, "wrong LCA dominates early and is therefore the real LCA");
7085     return real_lca;
7086   }
7087 
7088   void dump(Node* real_lca) {
7089     tty->cr();
7090     tty->print_cr("idoms of early \"%d %s\":", _early->_idx, _early->Name());
7091     _phase->dump_idom(_early, _early_index + 1);
7092 
7093     tty->cr();
7094     tty->print_cr("idoms of (wrong) LCA \"%d %s\":", _wrong_lca->_idx, _wrong_lca->Name());
7095     _phase->dump_idom(_wrong_lca, _wrong_lca_index + 1);
7096 
7097     tty->cr();
7098     tty->print("Real LCA of early \"%d %s\" (idom[%d]) and wrong LCA \"%d %s\"",
7099                _early->_idx, _early->Name(), _early_index, _wrong_lca->_idx, _wrong_lca->Name());
7100     if (_wrong_lca_index >= 0) {
7101       tty->print(" (idom[%d])", _wrong_lca_index);
7102     }
7103     tty->print_cr(":");
7104     real_lca->dump();
7105   }
7106 
7107  public:
7108   RealLCA(const PhaseIdealLoop* phase, Node* early, Node* wrong_lca)
7109       : _phase(phase), _early(early), _wrong_lca(wrong_lca), _early_index(0), _wrong_lca_index(0) {
7110     assert(!wrong_lca->is_Start(), "StartNode is always a common dominator");
7111   }
7112 
7113   void compute_and_dump() {
7114     ResourceMark rm;
7115     Unique_Node_List early_with_idoms;
7116     Unique_Node_List wrong_lca_with_idoms;
7117     early_with_idoms.push(_early);
7118     wrong_lca_with_idoms.push(_wrong_lca);
7119     _phase->get_idoms(_early, 10000, early_with_idoms);
7120     _phase->get_idoms(_wrong_lca, 10000, wrong_lca_with_idoms);
7121     Node* real_lca = find_real_lca(early_with_idoms, wrong_lca_with_idoms);
7122     dump(real_lca);
7123   }
7124 };
7125 
7126 // Dump the idom chain of early, of the wrong LCA and dump the real LCA of early and wrong LCA.
7127 void PhaseIdealLoop::dump_idoms(Node* early, Node* wrong_lca) {
7128   assert(!is_dominator(early, wrong_lca), "sanity check that early does not dominate wrong lca");
7129   assert(!has_ctrl(early) && !has_ctrl(wrong_lca), "sanity check, no data nodes");
7130 
7131   RealLCA real_lca(this, early, wrong_lca);
7132   real_lca.compute_and_dump();
7133 }
7134 #endif // ASSERT
7135 
7136 #ifndef PRODUCT
7137 //------------------------------dump-------------------------------------------
7138 void PhaseIdealLoop::dump() const {
7139   ResourceMark rm;
7140   Node_Stack stack(C->live_nodes() >> 2);
7141   Node_List rpo_list;
7142   VectorSet visited;
7143   visited.set(C->top()->_idx);
7144   rpo(C->root(), stack, visited, rpo_list);
7145   // Dump root loop indexed by last element in PO order
7146   dump(_ltree_root, rpo_list.size(), rpo_list);
7147 }
7148 
7149 void PhaseIdealLoop::dump(IdealLoopTree* loop, uint idx, Node_List &rpo_list) const {
7150   loop->dump_head();
7151 
7152   // Now scan for CFG nodes in the same loop
7153   for (uint j = idx; j > 0; j--) {
7154     Node* n = rpo_list[j-1];
7155     if (!_loop_or_ctrl[n->_idx])      // Skip dead nodes
7156       continue;
7157 
7158     if (get_loop(n) != loop) { // Wrong loop nest
7159       if (get_loop(n)->_head == n &&    // Found nested loop?
7160           get_loop(n)->_parent == loop)
7161         dump(get_loop(n), rpo_list.size(), rpo_list);     // Print it nested-ly
7162       continue;
7163     }
7164 
7165     // Dump controlling node
7166     tty->sp(2 * loop->_nest);
7167     tty->print("C");
7168     if (n == C->root()) {
7169       n->dump();
7170     } else {
7171       Node* cached_idom   = idom_no_update(n);
7172       Node* computed_idom = n->in(0);
7173       if (n->is_Region()) {
7174         computed_idom = compute_idom(n);
7175         // computed_idom() will return n->in(0) when idom(n) is an IfNode (or
7176         // any MultiBranch ctrl node), so apply a similar transform to
7177         // the cached idom returned from idom_no_update.
7178         cached_idom = find_non_split_ctrl(cached_idom);
7179       }
7180       tty->print(" ID:%d", computed_idom->_idx);
7181       n->dump();
7182       if (cached_idom != computed_idom) {
7183         tty->print_cr("*** BROKEN IDOM!  Computed as: %d, cached as: %d",
7184                       computed_idom->_idx, cached_idom->_idx);
7185       }
7186     }
7187     // Dump nodes it controls
7188     for (uint k = 0; k < _loop_or_ctrl.max(); k++) {
7189       // (k < C->unique() && get_ctrl(find(k)) == n)
7190       if (k < C->unique() && _loop_or_ctrl[k] == (Node*)((intptr_t)n + 1)) {
7191         Node* m = C->root()->find(k);
7192         if (m && m->outcnt() > 0) {
7193           if (!(has_ctrl(m) && get_ctrl_no_update(m) == n)) {
7194             tty->print_cr("*** BROKEN CTRL ACCESSOR!  _loop_or_ctrl[k] is %p, ctrl is %p",
7195                           _loop_or_ctrl[k], has_ctrl(m) ? get_ctrl_no_update(m) : nullptr);
7196           }
7197           tty->sp(2 * loop->_nest + 1);
7198           m->dump();
7199         }
7200       }
7201     }
7202   }
7203 }
7204 
7205 void PhaseIdealLoop::dump_idom(Node* n, const uint count) const {
7206   if (has_ctrl(n)) {
7207     tty->print_cr("No idom for data nodes");
7208   } else {
7209     ResourceMark rm;
7210     Unique_Node_List idoms;
7211     get_idoms(n, count, idoms);
7212     dump_idoms_in_reverse(n, idoms);
7213   }
7214 }
7215 
7216 void PhaseIdealLoop::get_idoms(Node* n, const uint count, Unique_Node_List& idoms) const {
7217   Node* next = n;
7218   for (uint i = 0; !next->is_Start() && i < count; i++) {
7219     next = idom(next);
7220     assert(!idoms.member(next), "duplicated idom is not possible");
7221     idoms.push(next);
7222   }
7223 }
7224 
7225 void PhaseIdealLoop::dump_idoms_in_reverse(const Node* n, const Node_List& idom_list) const {
7226   Node* next;
7227   uint padding = 3;
7228   uint node_index_padding_width = (C->unique() == 0 ? 0 : static_cast<int>(log10(static_cast<double>(C->unique())))) + 1;
7229   for (int i = idom_list.size() - 1; i >= 0; i--) {
7230     if (i == 9 || i == 99) {
7231       padding++;
7232     }
7233     next = idom_list[i];
7234     tty->print_cr("idom[%d]:%*c%*d  %s", i, padding, ' ', node_index_padding_width, next->_idx, next->Name());
7235   }
7236   tty->print_cr("n:      %*c%*d  %s", padding, ' ', node_index_padding_width, n->_idx, n->Name());
7237 }
7238 #endif // NOT PRODUCT
7239 
7240 // Collect a R-P-O for the whole CFG.
7241 // Result list is in post-order (scan backwards for RPO)
7242 void PhaseIdealLoop::rpo(Node* start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list) const {
7243   stk.push(start, 0);
7244   visited.set(start->_idx);
7245 
7246   while (stk.is_nonempty()) {
7247     Node* m   = stk.node();
7248     uint  idx = stk.index();
7249     if (idx < m->outcnt()) {
7250       stk.set_index(idx + 1);
7251       Node* n = m->raw_out(idx);
7252       if (n->is_CFG() && !visited.test_set(n->_idx)) {
7253         stk.push(n, 0);
7254       }
7255     } else {
7256       rpo_list.push(m);
7257       stk.pop();
7258     }
7259   }
7260 }
7261 
7262 ConINode* PhaseIdealLoop::intcon(jint i) {
7263   ConINode* node = _igvn.intcon(i);
7264   set_root_as_ctrl(node);
7265   return node;
7266 }
7267 
7268 ConLNode* PhaseIdealLoop::longcon(jlong i) {
7269   ConLNode* node = _igvn.longcon(i);
7270   set_root_as_ctrl(node);
7271   return node;
7272 }
7273 
7274 ConNode* PhaseIdealLoop::makecon(const Type* t) {
7275   ConNode* node = _igvn.makecon(t);
7276   set_root_as_ctrl(node);
7277   return node;
7278 }
7279 
7280 ConNode* PhaseIdealLoop::integercon(jlong l, BasicType bt) {
7281   ConNode* node = _igvn.integercon(l, bt);
7282   set_root_as_ctrl(node);
7283   return node;
7284 }
7285 
7286 ConNode* PhaseIdealLoop::zerocon(BasicType bt) {
7287   ConNode* node = _igvn.zerocon(bt);
7288   set_root_as_ctrl(node);
7289   return node;
7290 }
7291 
7292 
7293 //=============================================================================
7294 //------------------------------LoopTreeIterator-------------------------------
7295 
7296 // Advance to next loop tree using a preorder, left-to-right traversal.
7297 void LoopTreeIterator::next() {
7298   assert(!done(), "must not be done.");
7299   if (_curnt->_child != nullptr) {
7300     _curnt = _curnt->_child;
7301   } else if (_curnt->_next != nullptr) {
7302     _curnt = _curnt->_next;
7303   } else {
7304     while (_curnt != _root && _curnt->_next == nullptr) {
7305       _curnt = _curnt->_parent;
7306     }
7307     if (_curnt == _root) {
7308       _curnt = nullptr;
7309       assert(done(), "must be done.");
7310     } else {
7311       assert(_curnt->_next != nullptr, "must be more to do");
7312       _curnt = _curnt->_next;
7313     }
7314   }
7315 }