1 /* 2 * Copyright (c) 1998, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "ci/ciMethodData.hpp" 27 #include "compiler/compileLog.hpp" 28 #include "gc/shared/barrierSet.hpp" 29 #include "gc/shared/c2/barrierSetC2.hpp" 30 #include "libadt/vectset.hpp" 31 #include "memory/allocation.inline.hpp" 32 #include "memory/resourceArea.hpp" 33 #include "opto/addnode.hpp" 34 #include "opto/arraycopynode.hpp" 35 #include "opto/callnode.hpp" 36 #include "opto/castnode.hpp" 37 #include "opto/connode.hpp" 38 #include "opto/convertnode.hpp" 39 #include "opto/divnode.hpp" 40 #include "opto/idealGraphPrinter.hpp" 41 #include "opto/loopnode.hpp" 42 #include "opto/movenode.hpp" 43 #include "opto/mulnode.hpp" 44 #include "opto/opaquenode.hpp" 45 #include "opto/predicates.hpp" 46 #include "opto/rootnode.hpp" 47 #include "opto/runtime.hpp" 48 #include "opto/vectorization.hpp" 49 #include "runtime/sharedRuntime.hpp" 50 #include "utilities/checkedCast.hpp" 51 #include "utilities/powerOfTwo.hpp" 52 53 //============================================================================= 54 //--------------------------is_cloop_ind_var----------------------------------- 55 // Determine if a node is a counted loop induction variable. 56 // NOTE: The method is declared in "node.hpp". 57 bool Node::is_cloop_ind_var() const { 58 return (is_Phi() && 59 as_Phi()->region()->is_CountedLoop() && 60 as_Phi()->region()->as_CountedLoop()->phi() == this); 61 } 62 63 //============================================================================= 64 //------------------------------dump_spec-------------------------------------- 65 // Dump special per-node info 66 #ifndef PRODUCT 67 void LoopNode::dump_spec(outputStream *st) const { 68 RegionNode::dump_spec(st); 69 if (is_inner_loop()) st->print( "inner " ); 70 if (is_partial_peel_loop()) st->print( "partial_peel " ); 71 if (partial_peel_has_failed()) st->print( "partial_peel_failed " ); 72 } 73 #endif 74 75 //------------------------------is_valid_counted_loop------------------------- 76 bool LoopNode::is_valid_counted_loop(BasicType bt) const { 77 if (is_BaseCountedLoop() && as_BaseCountedLoop()->bt() == bt) { 78 BaseCountedLoopNode* l = as_BaseCountedLoop(); 79 BaseCountedLoopEndNode* le = l->loopexit_or_null(); 80 if (le != nullptr && 81 le->proj_out_or_null(1 /* true */) == l->in(LoopNode::LoopBackControl)) { 82 Node* phi = l->phi(); 83 Node* exit = le->proj_out_or_null(0 /* false */); 84 if (exit != nullptr && exit->Opcode() == Op_IfFalse && 85 phi != nullptr && phi->is_Phi() && 86 phi->in(LoopNode::LoopBackControl) == l->incr() && 87 le->loopnode() == l && le->stride_is_con()) { 88 return true; 89 } 90 } 91 } 92 return false; 93 } 94 95 //------------------------------get_early_ctrl--------------------------------- 96 // Compute earliest legal control 97 Node *PhaseIdealLoop::get_early_ctrl( Node *n ) { 98 assert( !n->is_Phi() && !n->is_CFG(), "this code only handles data nodes" ); 99 uint i; 100 Node *early; 101 if (n->in(0) && !n->is_expensive()) { 102 early = n->in(0); 103 if (!early->is_CFG()) // Might be a non-CFG multi-def 104 early = get_ctrl(early); // So treat input as a straight data input 105 i = 1; 106 } else { 107 early = get_ctrl(n->in(1)); 108 i = 2; 109 } 110 uint e_d = dom_depth(early); 111 assert( early, "" ); 112 for (; i < n->req(); i++) { 113 Node *cin = get_ctrl(n->in(i)); 114 assert( cin, "" ); 115 // Keep deepest dominator depth 116 uint c_d = dom_depth(cin); 117 if (c_d > e_d) { // Deeper guy? 118 early = cin; // Keep deepest found so far 119 e_d = c_d; 120 } else if (c_d == e_d && // Same depth? 121 early != cin) { // If not equal, must use slower algorithm 122 // If same depth but not equal, one _must_ dominate the other 123 // and we want the deeper (i.e., dominated) guy. 124 Node *n1 = early; 125 Node *n2 = cin; 126 while (1) { 127 n1 = idom(n1); // Walk up until break cycle 128 n2 = idom(n2); 129 if (n1 == cin || // Walked early up to cin 130 dom_depth(n2) < c_d) 131 break; // early is deeper; keep him 132 if (n2 == early || // Walked cin up to early 133 dom_depth(n1) < c_d) { 134 early = cin; // cin is deeper; keep him 135 break; 136 } 137 } 138 e_d = dom_depth(early); // Reset depth register cache 139 } 140 } 141 142 // Return earliest legal location 143 assert(early == find_non_split_ctrl(early), "unexpected early control"); 144 145 if (n->is_expensive() && !_verify_only && !_verify_me) { 146 assert(n->in(0), "should have control input"); 147 early = get_early_ctrl_for_expensive(n, early); 148 } 149 150 return early; 151 } 152 153 //------------------------------get_early_ctrl_for_expensive--------------------------------- 154 // Move node up the dominator tree as high as legal while still beneficial 155 Node *PhaseIdealLoop::get_early_ctrl_for_expensive(Node *n, Node* earliest) { 156 assert(n->in(0) && n->is_expensive(), "expensive node with control input here"); 157 assert(OptimizeExpensiveOps, "optimization off?"); 158 159 Node* ctl = n->in(0); 160 assert(ctl->is_CFG(), "expensive input 0 must be cfg"); 161 uint min_dom_depth = dom_depth(earliest); 162 #ifdef ASSERT 163 if (!is_dominator(ctl, earliest) && !is_dominator(earliest, ctl)) { 164 dump_bad_graph("Bad graph detected in get_early_ctrl_for_expensive", n, earliest, ctl); 165 assert(false, "Bad graph detected in get_early_ctrl_for_expensive"); 166 } 167 #endif 168 if (dom_depth(ctl) < min_dom_depth) { 169 return earliest; 170 } 171 172 while (true) { 173 Node* next = ctl; 174 // Moving the node out of a loop on the projection of an If 175 // confuses Loop Predication. So, once we hit a loop in an If branch 176 // that doesn't branch to an UNC, we stop. The code that process 177 // expensive nodes will notice the loop and skip over it to try to 178 // move the node further up. 179 if (ctl->is_CountedLoop() && ctl->in(1) != nullptr && ctl->in(1)->in(0) != nullptr && ctl->in(1)->in(0)->is_If()) { 180 if (!ctl->in(1)->as_Proj()->is_uncommon_trap_if_pattern()) { 181 break; 182 } 183 next = idom(ctl->in(1)->in(0)); 184 } else if (ctl->is_Proj()) { 185 // We only move it up along a projection if the projection is 186 // the single control projection for its parent: same code path, 187 // if it's a If with UNC or fallthrough of a call. 188 Node* parent_ctl = ctl->in(0); 189 if (parent_ctl == nullptr) { 190 break; 191 } else if (parent_ctl->is_CountedLoopEnd() && parent_ctl->as_CountedLoopEnd()->loopnode() != nullptr) { 192 next = parent_ctl->as_CountedLoopEnd()->loopnode()->init_control(); 193 } else if (parent_ctl->is_If()) { 194 if (!ctl->as_Proj()->is_uncommon_trap_if_pattern()) { 195 break; 196 } 197 assert(idom(ctl) == parent_ctl, "strange"); 198 next = idom(parent_ctl); 199 } else if (ctl->is_CatchProj()) { 200 if (ctl->as_Proj()->_con != CatchProjNode::fall_through_index) { 201 break; 202 } 203 assert(parent_ctl->in(0)->in(0)->is_Call(), "strange graph"); 204 next = parent_ctl->in(0)->in(0)->in(0); 205 } else { 206 // Check if parent control has a single projection (this 207 // control is the only possible successor of the parent 208 // control). If so, we can try to move the node above the 209 // parent control. 210 int nb_ctl_proj = 0; 211 for (DUIterator_Fast imax, i = parent_ctl->fast_outs(imax); i < imax; i++) { 212 Node *p = parent_ctl->fast_out(i); 213 if (p->is_Proj() && p->is_CFG()) { 214 nb_ctl_proj++; 215 if (nb_ctl_proj > 1) { 216 break; 217 } 218 } 219 } 220 221 if (nb_ctl_proj > 1) { 222 break; 223 } 224 assert(parent_ctl->is_Start() || parent_ctl->is_MemBar() || parent_ctl->is_Call() || 225 BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(parent_ctl), "unexpected node"); 226 assert(idom(ctl) == parent_ctl, "strange"); 227 next = idom(parent_ctl); 228 } 229 } else { 230 next = idom(ctl); 231 } 232 if (next->is_Root() || next->is_Start() || dom_depth(next) < min_dom_depth) { 233 break; 234 } 235 ctl = next; 236 } 237 238 if (ctl != n->in(0)) { 239 _igvn.replace_input_of(n, 0, ctl); 240 _igvn.hash_insert(n); 241 } 242 243 return ctl; 244 } 245 246 247 //------------------------------set_early_ctrl--------------------------------- 248 // Set earliest legal control 249 void PhaseIdealLoop::set_early_ctrl(Node* n, bool update_body) { 250 Node *early = get_early_ctrl(n); 251 252 // Record earliest legal location 253 set_ctrl(n, early); 254 IdealLoopTree *loop = get_loop(early); 255 if (update_body && loop->_child == nullptr) { 256 loop->_body.push(n); 257 } 258 } 259 260 //------------------------------set_subtree_ctrl------------------------------- 261 // set missing _ctrl entries on new nodes 262 void PhaseIdealLoop::set_subtree_ctrl(Node* n, bool update_body) { 263 // Already set? Get out. 264 if (_loop_or_ctrl[n->_idx]) return; 265 // Recursively set _loop_or_ctrl array to indicate where the Node goes 266 uint i; 267 for (i = 0; i < n->req(); ++i) { 268 Node *m = n->in(i); 269 if (m && m != C->root()) { 270 set_subtree_ctrl(m, update_body); 271 } 272 } 273 274 // Fixup self 275 set_early_ctrl(n, update_body); 276 } 277 278 IdealLoopTree* PhaseIdealLoop::insert_outer_loop(IdealLoopTree* loop, LoopNode* outer_l, Node* outer_ift) { 279 IdealLoopTree* outer_ilt = new IdealLoopTree(this, outer_l, outer_ift); 280 IdealLoopTree* parent = loop->_parent; 281 IdealLoopTree* sibling = parent->_child; 282 if (sibling == loop) { 283 parent->_child = outer_ilt; 284 } else { 285 while (sibling->_next != loop) { 286 sibling = sibling->_next; 287 } 288 sibling->_next = outer_ilt; 289 } 290 outer_ilt->_next = loop->_next; 291 outer_ilt->_parent = parent; 292 outer_ilt->_child = loop; 293 outer_ilt->_nest = loop->_nest; 294 loop->_parent = outer_ilt; 295 loop->_next = nullptr; 296 loop->_nest++; 297 assert(loop->_nest <= SHRT_MAX, "sanity"); 298 return outer_ilt; 299 } 300 301 // Create a skeleton strip mined outer loop: a Loop head before the 302 // inner strip mined loop, a safepoint and an exit condition guarded 303 // by an opaque node after the inner strip mined loop with a backedge 304 // to the loop head. The inner strip mined loop is left as it is. Only 305 // once loop optimizations are over, do we adjust the inner loop exit 306 // condition to limit its number of iterations, set the outer loop 307 // exit condition and add Phis to the outer loop head. Some loop 308 // optimizations that operate on the inner strip mined loop need to be 309 // aware of the outer strip mined loop: loop unswitching needs to 310 // clone the outer loop as well as the inner, unrolling needs to only 311 // clone the inner loop etc. No optimizations need to change the outer 312 // strip mined loop as it is only a skeleton. 313 IdealLoopTree* PhaseIdealLoop::create_outer_strip_mined_loop(BoolNode *test, Node *cmp, Node *init_control, 314 IdealLoopTree* loop, float cl_prob, float le_fcnt, 315 Node*& entry_control, Node*& iffalse) { 316 Node* outer_test = intcon(0); 317 Node *orig = iffalse; 318 iffalse = iffalse->clone(); 319 _igvn.register_new_node_with_optimizer(iffalse); 320 set_idom(iffalse, idom(orig), dom_depth(orig)); 321 322 IfNode *outer_le = new OuterStripMinedLoopEndNode(iffalse, outer_test, cl_prob, le_fcnt); 323 Node *outer_ift = new IfTrueNode (outer_le); 324 Node* outer_iff = orig; 325 _igvn.replace_input_of(outer_iff, 0, outer_le); 326 327 LoopNode *outer_l = new OuterStripMinedLoopNode(C, init_control, outer_ift); 328 entry_control = outer_l; 329 330 IdealLoopTree* outer_ilt = insert_outer_loop(loop, outer_l, outer_ift); 331 332 set_loop(iffalse, outer_ilt); 333 // When this code runs, loop bodies have not yet been populated. 334 const bool body_populated = false; 335 register_control(outer_le, outer_ilt, iffalse, body_populated); 336 register_control(outer_ift, outer_ilt, outer_le, body_populated); 337 set_idom(outer_iff, outer_le, dom_depth(outer_le)); 338 _igvn.register_new_node_with_optimizer(outer_l); 339 set_loop(outer_l, outer_ilt); 340 set_idom(outer_l, init_control, dom_depth(init_control)+1); 341 342 return outer_ilt; 343 } 344 345 void PhaseIdealLoop::insert_loop_limit_check_predicate(ParsePredicateSuccessProj* loop_limit_check_parse_proj, 346 Node* cmp_limit, Node* bol) { 347 assert(loop_limit_check_parse_proj->in(0)->is_ParsePredicate(), "must be parse predicate"); 348 Node* new_predicate_proj = create_new_if_for_predicate(loop_limit_check_parse_proj, nullptr, 349 Deoptimization::Reason_loop_limit_check, 350 Op_If); 351 Node* iff = new_predicate_proj->in(0); 352 cmp_limit = _igvn.register_new_node_with_optimizer(cmp_limit); 353 bol = _igvn.register_new_node_with_optimizer(bol); 354 set_subtree_ctrl(bol, false); 355 _igvn.replace_input_of(iff, 1, bol); 356 357 #ifndef PRODUCT 358 // report that the loop predication has been actually performed 359 // for this loop 360 if (TraceLoopLimitCheck) { 361 tty->print_cr("Counted Loop Limit Check generated:"); 362 debug_only( bol->dump(2); ) 363 } 364 #endif 365 } 366 367 Node* PhaseIdealLoop::loop_exit_control(Node* x, IdealLoopTree* loop) { 368 // Counted loop head must be a good RegionNode with only 3 not null 369 // control input edges: Self, Entry, LoopBack. 370 if (x->in(LoopNode::Self) == nullptr || x->req() != 3 || loop->_irreducible) { 371 return nullptr; 372 } 373 Node *init_control = x->in(LoopNode::EntryControl); 374 Node *back_control = x->in(LoopNode::LoopBackControl); 375 if (init_control == nullptr || back_control == nullptr) { // Partially dead 376 return nullptr; 377 } 378 // Must also check for TOP when looking for a dead loop 379 if (init_control->is_top() || back_control->is_top()) { 380 return nullptr; 381 } 382 383 // Allow funny placement of Safepoint 384 if (back_control->Opcode() == Op_SafePoint) { 385 back_control = back_control->in(TypeFunc::Control); 386 } 387 388 // Controlling test for loop 389 Node *iftrue = back_control; 390 uint iftrue_op = iftrue->Opcode(); 391 if (iftrue_op != Op_IfTrue && 392 iftrue_op != Op_IfFalse) { 393 // I have a weird back-control. Probably the loop-exit test is in 394 // the middle of the loop and I am looking at some trailing control-flow 395 // merge point. To fix this I would have to partially peel the loop. 396 return nullptr; // Obscure back-control 397 } 398 399 // Get boolean guarding loop-back test 400 Node *iff = iftrue->in(0); 401 if (get_loop(iff) != loop || !iff->in(1)->is_Bool()) { 402 return nullptr; 403 } 404 return iftrue; 405 } 406 407 Node* PhaseIdealLoop::loop_exit_test(Node* back_control, IdealLoopTree* loop, Node*& incr, Node*& limit, BoolTest::mask& bt, float& cl_prob) { 408 Node* iftrue = back_control; 409 uint iftrue_op = iftrue->Opcode(); 410 Node* iff = iftrue->in(0); 411 BoolNode* test = iff->in(1)->as_Bool(); 412 bt = test->_test._test; 413 cl_prob = iff->as_If()->_prob; 414 if (iftrue_op == Op_IfFalse) { 415 bt = BoolTest(bt).negate(); 416 cl_prob = 1.0 - cl_prob; 417 } 418 // Get backedge compare 419 Node* cmp = test->in(1); 420 if (!cmp->is_Cmp()) { 421 return nullptr; 422 } 423 424 // Find the trip-counter increment & limit. Limit must be loop invariant. 425 incr = cmp->in(1); 426 limit = cmp->in(2); 427 428 // --------- 429 // need 'loop()' test to tell if limit is loop invariant 430 // --------- 431 432 if (!is_member(loop, get_ctrl(incr))) { // Swapped trip counter and limit? 433 Node* tmp = incr; // Then reverse order into the CmpI 434 incr = limit; 435 limit = tmp; 436 bt = BoolTest(bt).commute(); // And commute the exit test 437 } 438 if (is_member(loop, get_ctrl(limit))) { // Limit must be loop-invariant 439 return nullptr; 440 } 441 if (!is_member(loop, get_ctrl(incr))) { // Trip counter must be loop-variant 442 return nullptr; 443 } 444 return cmp; 445 } 446 447 Node* PhaseIdealLoop::loop_iv_incr(Node* incr, Node* x, IdealLoopTree* loop, Node*& phi_incr) { 448 if (incr->is_Phi()) { 449 if (incr->as_Phi()->region() != x || incr->req() != 3) { 450 return nullptr; // Not simple trip counter expression 451 } 452 phi_incr = incr; 453 incr = phi_incr->in(LoopNode::LoopBackControl); // Assume incr is on backedge of Phi 454 if (!is_member(loop, get_ctrl(incr))) { // Trip counter must be loop-variant 455 return nullptr; 456 } 457 } 458 return incr; 459 } 460 461 Node* PhaseIdealLoop::loop_iv_stride(Node* incr, IdealLoopTree* loop, Node*& xphi) { 462 assert(incr->Opcode() == Op_AddI || incr->Opcode() == Op_AddL, "caller resp."); 463 // Get merge point 464 xphi = incr->in(1); 465 Node *stride = incr->in(2); 466 if (!stride->is_Con()) { // Oops, swap these 467 if (!xphi->is_Con()) { // Is the other guy a constant? 468 return nullptr; // Nope, unknown stride, bail out 469 } 470 Node *tmp = xphi; // 'incr' is commutative, so ok to swap 471 xphi = stride; 472 stride = tmp; 473 } 474 return stride; 475 } 476 477 PhiNode* PhaseIdealLoop::loop_iv_phi(Node* xphi, Node* phi_incr, Node* x, IdealLoopTree* loop) { 478 if (!xphi->is_Phi()) { 479 return nullptr; // Too much math on the trip counter 480 } 481 if (phi_incr != nullptr && phi_incr != xphi) { 482 return nullptr; 483 } 484 PhiNode *phi = xphi->as_Phi(); 485 486 // Phi must be of loop header; backedge must wrap to increment 487 if (phi->region() != x) { 488 return nullptr; 489 } 490 return phi; 491 } 492 493 static int check_stride_overflow(jlong final_correction, const TypeInteger* limit_t, BasicType bt) { 494 if (final_correction > 0) { 495 if (limit_t->lo_as_long() > (max_signed_integer(bt) - final_correction)) { 496 return -1; 497 } 498 if (limit_t->hi_as_long() > (max_signed_integer(bt) - final_correction)) { 499 return 1; 500 } 501 } else { 502 if (limit_t->hi_as_long() < (min_signed_integer(bt) - final_correction)) { 503 return -1; 504 } 505 if (limit_t->lo_as_long() < (min_signed_integer(bt) - final_correction)) { 506 return 1; 507 } 508 } 509 return 0; 510 } 511 512 static bool condition_stride_ok(BoolTest::mask bt, jlong stride_con) { 513 // If the condition is inverted and we will be rolling 514 // through MININT to MAXINT, then bail out. 515 if (bt == BoolTest::eq || // Bail out, but this loop trips at most twice! 516 // Odd stride 517 (bt == BoolTest::ne && stride_con != 1 && stride_con != -1) || 518 // Count down loop rolls through MAXINT 519 ((bt == BoolTest::le || bt == BoolTest::lt) && stride_con < 0) || 520 // Count up loop rolls through MININT 521 ((bt == BoolTest::ge || bt == BoolTest::gt) && stride_con > 0)) { 522 return false; // Bail out 523 } 524 return true; 525 } 526 527 Node* PhaseIdealLoop::loop_nest_replace_iv(Node* iv_to_replace, Node* inner_iv, Node* outer_phi, Node* inner_head, 528 BasicType bt) { 529 Node* iv_as_long; 530 if (bt == T_LONG) { 531 iv_as_long = new ConvI2LNode(inner_iv, TypeLong::INT); 532 register_new_node(iv_as_long, inner_head); 533 } else { 534 iv_as_long = inner_iv; 535 } 536 Node* iv_replacement = AddNode::make(outer_phi, iv_as_long, bt); 537 register_new_node(iv_replacement, inner_head); 538 for (DUIterator_Last imin, i = iv_to_replace->last_outs(imin); i >= imin;) { 539 Node* u = iv_to_replace->last_out(i); 540 #ifdef ASSERT 541 if (!is_dominator(inner_head, ctrl_or_self(u))) { 542 assert(u->is_Phi(), "should be a Phi"); 543 for (uint j = 1; j < u->req(); j++) { 544 if (u->in(j) == iv_to_replace) { 545 assert(is_dominator(inner_head, u->in(0)->in(j)), "iv use above loop?"); 546 } 547 } 548 } 549 #endif 550 _igvn.rehash_node_delayed(u); 551 int nb = u->replace_edge(iv_to_replace, iv_replacement, &_igvn); 552 i -= nb; 553 } 554 return iv_replacement; 555 } 556 557 // Add a Parse Predicate with an uncommon trap on the failing/false path. Normal control will continue on the true path. 558 void PhaseIdealLoop::add_parse_predicate(Deoptimization::DeoptReason reason, Node* inner_head, IdealLoopTree* loop, 559 SafePointNode* sfpt) { 560 if (!C->too_many_traps(reason)) { 561 ParsePredicateNode* parse_predicate = new ParsePredicateNode(inner_head->in(LoopNode::EntryControl), reason, &_igvn); 562 register_control(parse_predicate, loop, inner_head->in(LoopNode::EntryControl)); 563 Node* if_false = new IfFalseNode(parse_predicate); 564 register_control(if_false, _ltree_root, parse_predicate); 565 Node* if_true = new IfTrueNode(parse_predicate); 566 register_control(if_true, loop, parse_predicate); 567 568 int trap_request = Deoptimization::make_trap_request(reason, Deoptimization::Action_maybe_recompile); 569 address call_addr = OptoRuntime::uncommon_trap_blob()->entry_point(); 570 const TypePtr* no_memory_effects = nullptr; 571 JVMState* jvms = sfpt->jvms(); 572 CallNode* unc = new CallStaticJavaNode(OptoRuntime::uncommon_trap_Type(), call_addr, "uncommon_trap", 573 no_memory_effects); 574 575 Node* mem = nullptr; 576 Node* i_o = nullptr; 577 if (sfpt->is_Call()) { 578 mem = sfpt->proj_out(TypeFunc::Memory); 579 i_o = sfpt->proj_out(TypeFunc::I_O); 580 } else { 581 mem = sfpt->memory(); 582 i_o = sfpt->i_o(); 583 } 584 585 Node *frame = new ParmNode(C->start(), TypeFunc::FramePtr); 586 register_new_node(frame, C->start()); 587 Node *ret = new ParmNode(C->start(), TypeFunc::ReturnAdr); 588 register_new_node(ret, C->start()); 589 590 unc->init_req(TypeFunc::Control, if_false); 591 unc->init_req(TypeFunc::I_O, i_o); 592 unc->init_req(TypeFunc::Memory, mem); // may gc ptrs 593 unc->init_req(TypeFunc::FramePtr, frame); 594 unc->init_req(TypeFunc::ReturnAdr, ret); 595 unc->init_req(TypeFunc::Parms+0, _igvn.intcon(trap_request)); 596 unc->set_cnt(PROB_UNLIKELY_MAG(4)); 597 unc->copy_call_debug_info(&_igvn, sfpt); 598 599 for (uint i = TypeFunc::Parms; i < unc->req(); i++) { 600 set_subtree_ctrl(unc->in(i), false); 601 } 602 register_control(unc, _ltree_root, if_false); 603 604 Node* ctrl = new ProjNode(unc, TypeFunc::Control); 605 register_control(ctrl, _ltree_root, unc); 606 Node* halt = new HaltNode(ctrl, frame, "uncommon trap returned which should never happen" PRODUCT_ONLY(COMMA /*reachable*/false)); 607 register_control(halt, _ltree_root, ctrl); 608 _igvn.add_input_to(C->root(), halt); 609 610 _igvn.replace_input_of(inner_head, LoopNode::EntryControl, if_true); 611 set_idom(inner_head, if_true, dom_depth(inner_head)); 612 } 613 } 614 615 // Find a safepoint node that dominates the back edge. We need a 616 // SafePointNode so we can use its jvm state to create empty 617 // predicates. 618 static bool no_side_effect_since_safepoint(Compile* C, Node* x, Node* mem, MergeMemNode* mm, PhaseIdealLoop* phase) { 619 SafePointNode* safepoint = nullptr; 620 for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) { 621 Node* u = x->fast_out(i); 622 if (u->is_memory_phi()) { 623 Node* m = u->in(LoopNode::LoopBackControl); 624 if (u->adr_type() == TypePtr::BOTTOM) { 625 if (m->is_MergeMem() && mem->is_MergeMem()) { 626 if (m != mem DEBUG_ONLY(|| true)) { 627 // MergeMemStream can modify m, for example to adjust the length to mem. 628 // This is unfortunate, and probably unnecessary. But as it is, we need 629 // to add m to the igvn worklist, else we may have a modified node that 630 // is not on the igvn worklist. 631 phase->igvn()._worklist.push(m); 632 for (MergeMemStream mms(m->as_MergeMem(), mem->as_MergeMem()); mms.next_non_empty2(); ) { 633 if (!mms.is_empty()) { 634 if (mms.memory() != mms.memory2()) { 635 return false; 636 } 637 #ifdef ASSERT 638 if (mms.alias_idx() != Compile::AliasIdxBot) { 639 mm->set_memory_at(mms.alias_idx(), mem->as_MergeMem()->base_memory()); 640 } 641 #endif 642 } 643 } 644 } 645 } else if (mem->is_MergeMem()) { 646 if (m != mem->as_MergeMem()->base_memory()) { 647 return false; 648 } 649 } else { 650 return false; 651 } 652 } else { 653 if (mem->is_MergeMem()) { 654 if (m != mem->as_MergeMem()->memory_at(C->get_alias_index(u->adr_type()))) { 655 return false; 656 } 657 #ifdef ASSERT 658 mm->set_memory_at(C->get_alias_index(u->adr_type()), mem->as_MergeMem()->base_memory()); 659 #endif 660 } else { 661 if (m != mem) { 662 return false; 663 } 664 } 665 } 666 } 667 } 668 return true; 669 } 670 671 SafePointNode* PhaseIdealLoop::find_safepoint(Node* back_control, Node* x, IdealLoopTree* loop) { 672 IfNode* exit_test = back_control->in(0)->as_If(); 673 SafePointNode* safepoint = nullptr; 674 if (exit_test->in(0)->is_SafePoint() && exit_test->in(0)->outcnt() == 1) { 675 safepoint = exit_test->in(0)->as_SafePoint(); 676 } else { 677 Node* c = back_control; 678 while (c != x && c->Opcode() != Op_SafePoint) { 679 c = idom(c); 680 } 681 682 if (c->Opcode() == Op_SafePoint) { 683 safepoint = c->as_SafePoint(); 684 } 685 686 if (safepoint == nullptr) { 687 return nullptr; 688 } 689 690 Node* mem = safepoint->in(TypeFunc::Memory); 691 692 // We can only use that safepoint if there's no side effect between the backedge and the safepoint. 693 694 // mm is the memory state at the safepoint (when it's a MergeMem) 695 // no_side_effect_since_safepoint() goes over the memory state at the backedge. It resets the mm input for each 696 // component of the memory state it encounters so it points to the base memory. Once no_side_effect_since_safepoint() 697 // is done, if no side effect after the safepoint was found, mm should transform to the base memory: the states at 698 // the backedge and safepoint are the same so all components of the memory state at the safepoint should have been 699 // reset. 700 MergeMemNode* mm = nullptr; 701 #ifdef ASSERT 702 if (mem->is_MergeMem()) { 703 mm = mem->clone()->as_MergeMem(); 704 _igvn._worklist.push(mm); 705 for (MergeMemStream mms(mem->as_MergeMem()); mms.next_non_empty(); ) { 706 // Loop invariant memory state won't be reset by no_side_effect_since_safepoint(). Do it here. 707 // Escape Analysis can add state to mm that it doesn't add to the backedge memory Phis, breaking verification 708 // code that relies on mm. Clear that extra state here. 709 if (mms.alias_idx() != Compile::AliasIdxBot && 710 (loop != get_loop(ctrl_or_self(mms.memory())) || 711 (mms.adr_type()->isa_oop_ptr() && mms.adr_type()->is_known_instance()))) { 712 mm->set_memory_at(mms.alias_idx(), mem->as_MergeMem()->base_memory()); 713 } 714 } 715 } 716 #endif 717 if (!no_side_effect_since_safepoint(C, x, mem, mm, this)) { 718 safepoint = nullptr; 719 } else { 720 assert(mm == nullptr|| _igvn.transform(mm) == mem->as_MergeMem()->base_memory(), "all memory state should have been processed"); 721 } 722 #ifdef ASSERT 723 if (mm != nullptr) { 724 _igvn.remove_dead_node(mm); 725 } 726 #endif 727 } 728 return safepoint; 729 } 730 731 // If the loop has the shape of a counted loop but with a long 732 // induction variable, transform the loop in a loop nest: an inner 733 // loop that iterates for at most max int iterations with an integer 734 // induction variable and an outer loop that iterates over the full 735 // range of long values from the initial loop in (at most) max int 736 // steps. That is: 737 // 738 // x: for (long phi = init; phi < limit; phi += stride) { 739 // // phi := Phi(L, init, incr) 740 // // incr := AddL(phi, longcon(stride)) 741 // long incr = phi + stride; 742 // ... use phi and incr ... 743 // } 744 // 745 // OR: 746 // 747 // x: for (long phi = init; (phi += stride) < limit; ) { 748 // // phi := Phi(L, AddL(init, stride), incr) 749 // // incr := AddL(phi, longcon(stride)) 750 // long incr = phi + stride; 751 // ... use phi and (phi + stride) ... 752 // } 753 // 754 // ==transform=> 755 // 756 // const ulong inner_iters_limit = INT_MAX - stride - 1; //near 0x7FFFFFF0 757 // assert(stride <= inner_iters_limit); // else abort transform 758 // assert((extralong)limit + stride <= LONG_MAX); // else deopt 759 // outer_head: for (long outer_phi = init;;) { 760 // // outer_phi := Phi(outer_head, init, AddL(outer_phi, I2L(inner_phi))) 761 // ulong inner_iters_max = (ulong) MAX(0, ((extralong)limit + stride - outer_phi)); 762 // long inner_iters_actual = MIN(inner_iters_limit, inner_iters_max); 763 // assert(inner_iters_actual == (int)inner_iters_actual); 764 // int inner_phi, inner_incr; 765 // x: for (inner_phi = 0;; inner_phi = inner_incr) { 766 // // inner_phi := Phi(x, intcon(0), inner_incr) 767 // // inner_incr := AddI(inner_phi, intcon(stride)) 768 // inner_incr = inner_phi + stride; 769 // if (inner_incr < inner_iters_actual) { 770 // ... use phi=>(outer_phi+inner_phi) ... 771 // continue; 772 // } 773 // else break; 774 // } 775 // if ((outer_phi+inner_phi) < limit) //OR (outer_phi+inner_incr) < limit 776 // continue; 777 // else break; 778 // } 779 // 780 // The same logic is used to transform an int counted loop that contains long range checks into a loop nest of 2 int 781 // loops with long range checks transformed to int range checks in the inner loop. 782 bool PhaseIdealLoop::create_loop_nest(IdealLoopTree* loop, Node_List &old_new) { 783 Node* x = loop->_head; 784 // Only for inner loops 785 if (loop->_child != nullptr || !x->is_BaseCountedLoop() || x->as_Loop()->is_loop_nest_outer_loop()) { 786 return false; 787 } 788 789 if (x->is_CountedLoop() && !x->as_CountedLoop()->is_main_loop() && !x->as_CountedLoop()->is_normal_loop()) { 790 return false; 791 } 792 793 BaseCountedLoopNode* head = x->as_BaseCountedLoop(); 794 BasicType bt = x->as_BaseCountedLoop()->bt(); 795 796 check_counted_loop_shape(loop, x, bt); 797 798 #ifndef PRODUCT 799 if (bt == T_LONG) { 800 Atomic::inc(&_long_loop_candidates); 801 } 802 #endif 803 804 jlong stride_con_long = head->stride_con(); 805 assert(stride_con_long != 0, "missed some peephole opt"); 806 // We can't iterate for more than max int at a time. 807 if (stride_con_long != (jint)stride_con_long || stride_con_long == min_jint) { 808 assert(bt == T_LONG, "only for long loops"); 809 return false; 810 } 811 jint stride_con = checked_cast<jint>(stride_con_long); 812 // The number of iterations for the integer count loop: guarantee no 813 // overflow: max_jint - stride_con max. -1 so there's no need for a 814 // loop limit check if the exit test is <= or >=. 815 int iters_limit = max_jint - ABS(stride_con) - 1; 816 #ifdef ASSERT 817 if (bt == T_LONG && StressLongCountedLoop > 0) { 818 iters_limit = iters_limit / StressLongCountedLoop; 819 } 820 #endif 821 // At least 2 iterations so counted loop construction doesn't fail 822 if (iters_limit/ABS(stride_con) < 2) { 823 return false; 824 } 825 826 PhiNode* phi = head->phi()->as_Phi(); 827 Node* incr = head->incr(); 828 829 Node* back_control = head->in(LoopNode::LoopBackControl); 830 831 // data nodes on back branch not supported 832 if (back_control->outcnt() > 1) { 833 return false; 834 } 835 836 Node* limit = head->limit(); 837 // We'll need to use the loop limit before the inner loop is entered 838 if (!is_dominator(get_ctrl(limit), x)) { 839 return false; 840 } 841 842 IfNode* exit_test = head->loopexit(); 843 844 assert(back_control->Opcode() == Op_IfTrue, "wrong projection for back edge"); 845 846 Node_List range_checks; 847 iters_limit = extract_long_range_checks(loop, stride_con, iters_limit, phi, range_checks); 848 849 if (bt == T_INT) { 850 // The only purpose of creating a loop nest is to handle long range checks. If there are none, do not proceed further. 851 if (range_checks.size() == 0) { 852 return false; 853 } 854 } 855 856 // Take what we know about the number of iterations of the long counted loop into account when computing the limit of 857 // the inner loop. 858 const Node* init = head->init_trip(); 859 const TypeInteger* lo = _igvn.type(init)->is_integer(bt); 860 const TypeInteger* hi = _igvn.type(limit)->is_integer(bt); 861 if (stride_con < 0) { 862 swap(lo, hi); 863 } 864 if (hi->hi_as_long() <= lo->lo_as_long()) { 865 // not a loop after all 866 return false; 867 } 868 869 if (range_checks.size() > 0) { 870 // This transformation requires peeling one iteration. Also, if it has range checks and they are eliminated by Loop 871 // Predication, then 2 Hoisted Check Predicates are added for one range check. Finally, transforming a long range 872 // check requires extra logic to be executed before the loop is entered and for the outer loop. As a result, the 873 // transformations can't pay off for a small number of iterations: roughly, if the loop runs for 3 iterations, it's 874 // going to execute as many range checks once transformed with range checks eliminated (1 peeled iteration with 875 // range checks + 2 predicates per range checks) as it would have not transformed. It also has to pay for the extra 876 // logic on loop entry and for the outer loop. 877 loop->compute_trip_count(this); 878 if (head->is_CountedLoop() && head->as_CountedLoop()->has_exact_trip_count()) { 879 if (head->as_CountedLoop()->trip_count() <= 3) { 880 return false; 881 } 882 } else { 883 loop->compute_profile_trip_cnt(this); 884 if (!head->is_profile_trip_failed() && head->profile_trip_cnt() <= 3) { 885 return false; 886 } 887 } 888 } 889 890 julong orig_iters = (julong)hi->hi_as_long() - lo->lo_as_long(); 891 iters_limit = checked_cast<int>(MIN2((julong)iters_limit, orig_iters)); 892 893 // We need a safepoint to insert Parse Predicates for the inner loop. 894 SafePointNode* safepoint; 895 if (bt == T_INT && head->as_CountedLoop()->is_strip_mined()) { 896 // Loop is strip mined: use the safepoint of the outer strip mined loop 897 OuterStripMinedLoopNode* outer_loop = head->as_CountedLoop()->outer_loop(); 898 assert(outer_loop != nullptr, "no outer loop"); 899 safepoint = outer_loop->outer_safepoint(); 900 outer_loop->transform_to_counted_loop(&_igvn, this); 901 exit_test = head->loopexit(); 902 } else { 903 safepoint = find_safepoint(back_control, x, loop); 904 } 905 906 Node* exit_branch = exit_test->proj_out(false); 907 Node* entry_control = head->in(LoopNode::EntryControl); 908 909 // Clone the control flow of the loop to build an outer loop 910 Node* outer_back_branch = back_control->clone(); 911 Node* outer_exit_test = new IfNode(exit_test->in(0), exit_test->in(1), exit_test->_prob, exit_test->_fcnt); 912 Node* inner_exit_branch = exit_branch->clone(); 913 914 LoopNode* outer_head = new LoopNode(entry_control, outer_back_branch); 915 IdealLoopTree* outer_ilt = insert_outer_loop(loop, outer_head, outer_back_branch); 916 917 const bool body_populated = true; 918 register_control(outer_head, outer_ilt, entry_control, body_populated); 919 920 _igvn.register_new_node_with_optimizer(inner_exit_branch); 921 set_loop(inner_exit_branch, outer_ilt); 922 set_idom(inner_exit_branch, exit_test, dom_depth(exit_branch)); 923 924 outer_exit_test->set_req(0, inner_exit_branch); 925 register_control(outer_exit_test, outer_ilt, inner_exit_branch, body_populated); 926 927 _igvn.replace_input_of(exit_branch, 0, outer_exit_test); 928 set_idom(exit_branch, outer_exit_test, dom_depth(exit_branch)); 929 930 outer_back_branch->set_req(0, outer_exit_test); 931 register_control(outer_back_branch, outer_ilt, outer_exit_test, body_populated); 932 933 _igvn.replace_input_of(x, LoopNode::EntryControl, outer_head); 934 set_idom(x, outer_head, dom_depth(x)); 935 936 // add an iv phi to the outer loop and use it to compute the inner 937 // loop iteration limit 938 Node* outer_phi = phi->clone(); 939 outer_phi->set_req(0, outer_head); 940 register_new_node(outer_phi, outer_head); 941 942 Node* inner_iters_max = nullptr; 943 if (stride_con > 0) { 944 inner_iters_max = MaxNode::max_diff_with_zero(limit, outer_phi, TypeInteger::bottom(bt), _igvn); 945 } else { 946 inner_iters_max = MaxNode::max_diff_with_zero(outer_phi, limit, TypeInteger::bottom(bt), _igvn); 947 } 948 949 Node* inner_iters_limit = _igvn.integercon(iters_limit, bt); 950 // inner_iters_max may not fit in a signed integer (iterating from 951 // Long.MIN_VALUE to Long.MAX_VALUE for instance). Use an unsigned 952 // min. 953 const TypeInteger* inner_iters_actual_range = TypeInteger::make(0, iters_limit, Type::WidenMin, bt); 954 Node* inner_iters_actual = MaxNode::unsigned_min(inner_iters_max, inner_iters_limit, inner_iters_actual_range, _igvn); 955 956 Node* inner_iters_actual_int; 957 if (bt == T_LONG) { 958 inner_iters_actual_int = new ConvL2INode(inner_iters_actual); 959 _igvn.register_new_node_with_optimizer(inner_iters_actual_int); 960 // When the inner loop is transformed to a counted loop, a loop limit check is not expected to be needed because 961 // the loop limit is less or equal to max_jint - stride - 1 (if stride is positive but a similar argument exists for 962 // a negative stride). We add a CastII here to guarantee that, when the counted loop is created in a subsequent loop 963 // opts pass, an accurate range of values for the limits is found. 964 const TypeInt* inner_iters_actual_int_range = TypeInt::make(0, iters_limit, Type::WidenMin); 965 inner_iters_actual_int = new CastIINode(outer_head, inner_iters_actual_int, inner_iters_actual_int_range, ConstraintCastNode::UnconditionalDependency); 966 _igvn.register_new_node_with_optimizer(inner_iters_actual_int); 967 } else { 968 inner_iters_actual_int = inner_iters_actual; 969 } 970 971 Node* int_zero = intcon(0); 972 if (stride_con < 0) { 973 inner_iters_actual_int = new SubINode(int_zero, inner_iters_actual_int); 974 _igvn.register_new_node_with_optimizer(inner_iters_actual_int); 975 } 976 977 // Clone the iv data nodes as an integer iv 978 Node* int_stride = intcon(stride_con); 979 Node* inner_phi = new PhiNode(x->in(0), TypeInt::INT); 980 Node* inner_incr = new AddINode(inner_phi, int_stride); 981 Node* inner_cmp = nullptr; 982 inner_cmp = new CmpINode(inner_incr, inner_iters_actual_int); 983 Node* inner_bol = new BoolNode(inner_cmp, exit_test->in(1)->as_Bool()->_test._test); 984 inner_phi->set_req(LoopNode::EntryControl, int_zero); 985 inner_phi->set_req(LoopNode::LoopBackControl, inner_incr); 986 register_new_node(inner_phi, x); 987 register_new_node(inner_incr, x); 988 register_new_node(inner_cmp, x); 989 register_new_node(inner_bol, x); 990 991 _igvn.replace_input_of(exit_test, 1, inner_bol); 992 993 // Clone inner loop phis to outer loop 994 for (uint i = 0; i < head->outcnt(); i++) { 995 Node* u = head->raw_out(i); 996 if (u->is_Phi() && u != inner_phi && u != phi) { 997 assert(u->in(0) == head, "inconsistent"); 998 Node* clone = u->clone(); 999 clone->set_req(0, outer_head); 1000 register_new_node(clone, outer_head); 1001 _igvn.replace_input_of(u, LoopNode::EntryControl, clone); 1002 } 1003 } 1004 1005 // Replace inner loop long iv phi as inner loop int iv phi + outer 1006 // loop iv phi 1007 Node* iv_add = loop_nest_replace_iv(phi, inner_phi, outer_phi, head, bt); 1008 1009 set_subtree_ctrl(inner_iters_actual_int, body_populated); 1010 1011 LoopNode* inner_head = create_inner_head(loop, head, exit_test); 1012 1013 // Summary of steps from initial loop to loop nest: 1014 // 1015 // == old IR nodes => 1016 // 1017 // entry_control: {...} 1018 // x: 1019 // for (long phi = init;;) { 1020 // // phi := Phi(x, init, incr) 1021 // // incr := AddL(phi, longcon(stride)) 1022 // exit_test: 1023 // if (phi < limit) 1024 // back_control: fallthrough; 1025 // else 1026 // exit_branch: break; 1027 // long incr = phi + stride; 1028 // ... use phi and incr ... 1029 // phi = incr; 1030 // } 1031 // 1032 // == new IR nodes (just before final peel) => 1033 // 1034 // entry_control: {...} 1035 // long adjusted_limit = limit + stride; //because phi_incr != nullptr 1036 // assert(!limit_check_required || (extralong)limit + stride == adjusted_limit); // else deopt 1037 // ulong inner_iters_limit = max_jint - ABS(stride) - 1; //near 0x7FFFFFF0 1038 // outer_head: 1039 // for (long outer_phi = init;;) { 1040 // // outer_phi := phi->clone(), in(0):=outer_head, => Phi(outer_head, init, incr) 1041 // // REPLACE phi => AddL(outer_phi, I2L(inner_phi)) 1042 // // REPLACE incr => AddL(outer_phi, I2L(inner_incr)) 1043 // // SO THAT outer_phi := Phi(outer_head, init, AddL(outer_phi, I2L(inner_incr))) 1044 // ulong inner_iters_max = (ulong) MAX(0, ((extralong)adjusted_limit - outer_phi) * SGN(stride)); 1045 // int inner_iters_actual_int = (int) MIN(inner_iters_limit, inner_iters_max) * SGN(stride); 1046 // inner_head: x: //in(1) := outer_head 1047 // int inner_phi; 1048 // for (inner_phi = 0;;) { 1049 // // inner_phi := Phi(x, intcon(0), inner_phi + stride) 1050 // int inner_incr = inner_phi + stride; 1051 // bool inner_bol = (inner_incr < inner_iters_actual_int); 1052 // exit_test: //exit_test->in(1) := inner_bol; 1053 // if (inner_bol) // WAS (phi < limit) 1054 // back_control: fallthrough; 1055 // else 1056 // inner_exit_branch: break; //exit_branch->clone() 1057 // ... use phi=>(outer_phi+inner_phi) ... 1058 // inner_phi = inner_phi + stride; // inner_incr 1059 // } 1060 // outer_exit_test: //exit_test->clone(), in(0):=inner_exit_branch 1061 // if ((outer_phi+inner_phi) < limit) // WAS (phi < limit) 1062 // outer_back_branch: fallthrough; //back_control->clone(), in(0):=outer_exit_test 1063 // else 1064 // exit_branch: break; //in(0) := outer_exit_test 1065 // } 1066 1067 if (bt == T_INT) { 1068 outer_phi = new ConvI2LNode(outer_phi); 1069 register_new_node(outer_phi, outer_head); 1070 } 1071 1072 transform_long_range_checks(stride_con, range_checks, outer_phi, inner_iters_actual_int, 1073 inner_phi, iv_add, inner_head); 1074 // Peel one iteration of the loop and use the safepoint at the end 1075 // of the peeled iteration to insert Parse Predicates. If no well 1076 // positioned safepoint peel to guarantee a safepoint in the outer 1077 // loop. 1078 if (safepoint != nullptr || !loop->_has_call) { 1079 old_new.clear(); 1080 do_peeling(loop, old_new); 1081 } else { 1082 C->set_major_progress(); 1083 } 1084 1085 if (safepoint != nullptr) { 1086 SafePointNode* cloned_sfpt = old_new[safepoint->_idx]->as_SafePoint(); 1087 1088 if (UseLoopPredicate) { 1089 add_parse_predicate(Deoptimization::Reason_predicate, inner_head, outer_ilt, cloned_sfpt); 1090 } 1091 if (UseProfiledLoopPredicate) { 1092 add_parse_predicate(Deoptimization::Reason_profile_predicate, inner_head, outer_ilt, cloned_sfpt); 1093 } 1094 add_parse_predicate(Deoptimization::Reason_loop_limit_check, inner_head, outer_ilt, cloned_sfpt); 1095 } 1096 1097 #ifndef PRODUCT 1098 if (bt == T_LONG) { 1099 Atomic::inc(&_long_loop_nests); 1100 } 1101 #endif 1102 1103 inner_head->mark_loop_nest_inner_loop(); 1104 outer_head->mark_loop_nest_outer_loop(); 1105 1106 return true; 1107 } 1108 1109 int PhaseIdealLoop::extract_long_range_checks(const IdealLoopTree* loop, jint stride_con, int iters_limit, PhiNode* phi, 1110 Node_List& range_checks) { 1111 const jlong min_iters = 2; 1112 jlong reduced_iters_limit = iters_limit; 1113 jlong original_iters_limit = iters_limit; 1114 for (uint i = 0; i < loop->_body.size(); i++) { 1115 Node* c = loop->_body.at(i); 1116 if (c->is_IfProj() && c->in(0)->is_RangeCheck()) { 1117 IfProjNode* if_proj = c->as_IfProj(); 1118 CallStaticJavaNode* call = if_proj->is_uncommon_trap_if_pattern(); 1119 if (call != nullptr) { 1120 Node* range = nullptr; 1121 Node* offset = nullptr; 1122 jlong scale = 0; 1123 if (loop->is_range_check_if(if_proj, this, T_LONG, phi, range, offset, scale) && 1124 loop->is_invariant(range) && loop->is_invariant(offset) && 1125 scale != min_jlong && 1126 original_iters_limit / ABS(scale) >= min_iters * ABS(stride_con)) { 1127 assert(scale == (jint)scale, "scale should be an int"); 1128 reduced_iters_limit = MIN2(reduced_iters_limit, original_iters_limit/ABS(scale)); 1129 range_checks.push(c); 1130 } 1131 } 1132 } 1133 } 1134 1135 return checked_cast<int>(reduced_iters_limit); 1136 } 1137 1138 // One execution of the inner loop covers a sub-range of the entire iteration range of the loop: [A,Z), aka [A=init, 1139 // Z=limit). If the loop has at least one trip (which is the case here), the iteration variable i always takes A as its 1140 // first value, followed by A+S (S is the stride), next A+2S, etc. The limit is exclusive, so that the final value B of 1141 // i is never Z. It will be B=Z-1 if S=1, or B=Z+1 if S=-1. 1142 1143 // If |S|>1 the formula for the last value B would require a floor operation, specifically B=floor((Z-sgn(S)-A)/S)*S+A, 1144 // which is B=Z-sgn(S)U for some U in [1,|S|]. So when S>0, i ranges as i:[A,Z) or i:[A,B=Z-U], or else (in reverse) 1145 // as i:(Z,A] or i:[B=Z+U,A]. It will become important to reason about this inclusive range [A,B] or [B,A]. 1146 1147 // Within the loop there may be many range checks. Each such range check (R.C.) is of the form 0 <= i*K+L < R, where K 1148 // is a scale factor applied to the loop iteration variable i, and L is some offset; K, L, and R are loop-invariant. 1149 // Because R is never negative (see below), this check can always be simplified to an unsigned check i*K+L <u R. 1150 1151 // When a long loop over a 64-bit variable i (outer_iv) is decomposed into a series of shorter sub-loops over a 32-bit 1152 // variable j (inner_iv), j ranges over a shorter interval j:[0,B_2] or [0,Z_2) (assuming S > 0), where the limit is 1153 // chosen to prevent various cases of 32-bit overflow (including multiplications j*K below). In the sub-loop the 1154 // logical value i is offset from j by a 64-bit constant C, so i ranges in i:C+[0,Z_2). 1155 1156 // For S<0, j ranges (in reverse!) through j:[-|B_2|,0] or (-|Z_2|,0]. For either sign of S, we can say i=j+C and j 1157 // ranges through 32-bit ranges [A_2,B_2] or [B_2,A_2] (A_2=0 of course). 1158 1159 // The disjoint union of all the C+[A_2,B_2] ranges from the sub-loops must be identical to the whole range [A,B]. 1160 // Assuming S>0, the first C must be A itself, and the next C value is the previous C+B_2, plus S. If |S|=1, the next 1161 // C value is also the previous C+Z_2. In each sub-loop, j counts from j=A_2=0 and i counts from C+0 and exits at 1162 // j=B_2 (i=C+B_2), just before it gets to i=C+Z_2. Both i and j count up (from C and 0) if S>0; otherwise they count 1163 // down (from C and 0 again). 1164 1165 // Returning to range checks, we see that each i*K+L <u R expands to (C+j)*K+L <u R, or j*K+Q <u R, where Q=(C*K+L). 1166 // (Recall that K and L and R are loop-invariant scale, offset and range values for a particular R.C.) This is still a 1167 // 64-bit comparison, so the range check elimination logic will not apply to it. (The R.C.E. transforms operate only on 1168 // 32-bit indexes and comparisons, because they use 64-bit temporary values to avoid overflow; see 1169 // PhaseIdealLoop::add_constraint.) 1170 1171 // We must transform this comparison so that it gets the same answer, but by means of a 32-bit R.C. (using j not i) of 1172 // the form j*K+L_2 <u32 R_2. Note that L_2 and R_2 must be loop-invariant, but only with respect to the sub-loop. Thus, the 1173 // problem reduces to computing values for L_2 and R_2 (for each R.C. in the loop) in the loop header for the sub-loop. 1174 // Then the standard R.C.E. transforms can take those as inputs and further compute the necessary minimum and maximum 1175 // values for the 32-bit counter j within which the range checks can be eliminated. 1176 1177 // So, given j*K+Q <u R, we need to find some j*K+L_2 <u32 R_2, where L_2 and R_2 fit in 32 bits, and the 32-bit operations do 1178 // not overflow. We also need to cover the cases where i*K+L (= j*K+Q) overflows to a 64-bit negative, since that is 1179 // allowed as an input to the R.C., as long as the R.C. as a whole fails. 1180 1181 // If 32-bit multiplication j*K might overflow, we adjust the sub-loop limit Z_2 closer to zero to reduce j's range. 1182 1183 // For each R.C. j*K+Q <u32 R, the range of mathematical values of j*K+Q in the sub-loop is [Q_min, Q_max], where 1184 // Q_min=Q and Q_max=B_2*K+Q (if S>0 and K>0), Q_min=A_2*K+Q and Q_max=Q (if S<0 and K>0), 1185 // Q_min=B_2*K+Q and Q_max=Q if (S>0 and K<0), Q_min=Q and Q_max=A_2*K+Q (if S<0 and K<0) 1186 1187 // Note that the first R.C. value is always Q=(S*K>0 ? Q_min : Q_max). Also Q_{min,max} = Q + {min,max}(A_2*K,B_2*K). 1188 // If S*K>0 then, as the loop iterations progress, each R.C. value i*K+L = j*K+Q goes up from Q=Q_min towards Q_max. 1189 // If S*K<0 then j*K+Q starts at Q=Q_max and goes down towards Q_min. 1190 1191 // Case A: Some Negatives (but no overflow). 1192 // Number line: 1193 // |s64_min . . . 0 . . . s64_max| 1194 // | . Q_min..Q_max . 0 . . . . | s64 negative 1195 // | . . . . R=0 R< R< R< R< | (against R values) 1196 // | . . . Q_min..0..Q_max . . . | small mixed 1197 // | . . . . R R R< R< R< | (against R values) 1198 // 1199 // R values which are out of range (>Q_max+1) are reduced to max(0,Q_max+1). They are marked on the number line as R<. 1200 // 1201 // So, if Q_min <s64 0, then use this test: 1202 // j*K + s32_trunc(Q_min) <u32 clamp(R, 0, Q_max+1) if S*K>0 (R.C.E. steps upward) 1203 // j*K + s32_trunc(Q_max) <u32 clamp(R, 0, Q_max+1) if S*K<0 (R.C.E. steps downward) 1204 // Both formulas reduce to adding j*K to the 32-bit truncated value of the first R.C. expression value, Q: 1205 // j*K + s32_trunc(Q) <u32 clamp(R, 0, Q_max+1) for all S,K 1206 1207 // If the 32-bit truncation loses information, no harm is done, since certainly the clamp also will return R_2=zero. 1208 1209 // Case B: No Negatives. 1210 // Number line: 1211 // |s64_min . . . 0 . . . s64_max| 1212 // | . . . . 0 Q_min..Q_max . . | small positive 1213 // | . . . . R> R R R< R< | (against R values) 1214 // | . . . . 0 . Q_min..Q_max . | s64 positive 1215 // | . . . . R> R> R R R< | (against R values) 1216 // 1217 // R values which are out of range (<Q_min or >Q_max+1) are reduced as marked: R> up to Q_min, R< down to Q_max+1. 1218 // Then the whole comparison is shifted left by Q_min, so it can take place at zero, which is a nice 32-bit value. 1219 // 1220 // So, if both Q_min, Q_max+1 >=s64 0, then use this test: 1221 // j*K + 0 <u32 clamp(R, Q_min, Q_max+1) - Q_min if S*K>0 1222 // More generally: 1223 // j*K + Q - Q_min <u32 clamp(R, Q_min, Q_max+1) - Q_min for all S,K 1224 1225 // Case C: Overflow in the 64-bit domain 1226 // Number line: 1227 // |..Q_max-2^64 . . 0 . . . Q_min..| s64 overflow 1228 // | . . . . R> R> R> R> R | (against R values) 1229 // 1230 // In this case, Q_min >s64 Q_max+1, even though the mathematical values of Q_min and Q_max+1 are correctly ordered. 1231 // The formulas from the previous case can be used, except that the bad upper bound Q_max is replaced by max_jlong. 1232 // (In fact, we could use any replacement bound from R to max_jlong inclusive, as the input to the clamp function.) 1233 // 1234 // So if Q_min >=s64 0 but Q_max+1 <s64 0, use this test: 1235 // j*K + 0 <u32 clamp(R, Q_min, max_jlong) - Q_min if S*K>0 1236 // More generally: 1237 // j*K + Q - Q_min <u32 clamp(R, Q_min, max_jlong) - Q_min for all S,K 1238 // 1239 // Dropping the bad bound means only Q_min is used to reduce the range of R: 1240 // j*K + Q - Q_min <u32 max(Q_min, R) - Q_min for all S,K 1241 // 1242 // Here the clamp function is a 64-bit min/max that reduces the dynamic range of its R operand to the required [L,H]: 1243 // clamp(X, L, H) := max(L, min(X, H)) 1244 // When degenerately L > H, it returns L not H. 1245 // 1246 // All of the formulas above can be merged into a single one: 1247 // L_clamp = Q_min < 0 ? 0 : Q_min --whether and how far to left-shift 1248 // H_clamp = Q_max+1 < Q_min ? max_jlong : Q_max+1 1249 // = Q_max+1 < 0 && Q_min >= 0 ? max_jlong : Q_max+1 1250 // Q_first = Q = (S*K>0 ? Q_min : Q_max) = (C*K+L) 1251 // R_clamp = clamp(R, L_clamp, H_clamp) --reduced dynamic range 1252 // replacement R.C.: 1253 // j*K + Q_first - L_clamp <u32 R_clamp - L_clamp 1254 // or equivalently: 1255 // j*K + L_2 <u32 R_2 1256 // where 1257 // L_2 = Q_first - L_clamp 1258 // R_2 = R_clamp - L_clamp 1259 // 1260 // Note on why R is never negative: 1261 // 1262 // Various details of this transformation would break badly if R could be negative, so this transformation only 1263 // operates after obtaining hard evidence that R<0 is impossible. For example, if R comes from a LoadRange node, we 1264 // know R cannot be negative. For explicit checks (of both int and long) a proof is constructed in 1265 // inline_preconditions_checkIndex, which triggers an uncommon trap if R<0, then wraps R in a ConstraintCastNode with a 1266 // non-negative type. Later on, when IdealLoopTree::is_range_check_if looks for an optimizable R.C., it checks that 1267 // the type of that R node is non-negative. Any "wild" R node that could be negative is not treated as an optimizable 1268 // R.C., but R values from a.length and inside checkIndex are good to go. 1269 // 1270 void PhaseIdealLoop::transform_long_range_checks(int stride_con, const Node_List &range_checks, Node* outer_phi, 1271 Node* inner_iters_actual_int, Node* inner_phi, 1272 Node* iv_add, LoopNode* inner_head) { 1273 Node* long_zero = longcon(0); 1274 Node* int_zero = intcon(0); 1275 Node* long_one = longcon(1); 1276 Node* int_stride = intcon(checked_cast<int>(stride_con)); 1277 1278 for (uint i = 0; i < range_checks.size(); i++) { 1279 ProjNode* proj = range_checks.at(i)->as_Proj(); 1280 ProjNode* unc_proj = proj->other_if_proj(); 1281 RangeCheckNode* rc = proj->in(0)->as_RangeCheck(); 1282 jlong scale = 0; 1283 Node* offset = nullptr; 1284 Node* rc_bol = rc->in(1); 1285 Node* rc_cmp = rc_bol->in(1); 1286 if (rc_cmp->Opcode() == Op_CmpU) { 1287 // could be shared and have already been taken care of 1288 continue; 1289 } 1290 bool short_scale = false; 1291 bool ok = is_scaled_iv_plus_offset(rc_cmp->in(1), iv_add, T_LONG, &scale, &offset, &short_scale); 1292 assert(ok, "inconsistent: was tested before"); 1293 Node* range = rc_cmp->in(2); 1294 Node* c = rc->in(0); 1295 Node* entry_control = inner_head->in(LoopNode::EntryControl); 1296 1297 Node* R = range; 1298 Node* K = longcon(scale); 1299 1300 Node* L = offset; 1301 1302 if (short_scale) { 1303 // This converts: 1304 // (int)i*K + L <u64 R 1305 // with K an int into: 1306 // i*(long)K + L <u64 unsigned_min((long)max_jint + L + 1, R) 1307 // to protect against an overflow of (int)i*K 1308 // 1309 // Because if (int)i*K overflows, there are K,L where: 1310 // (int)i*K + L <u64 R is false because (int)i*K+L overflows to a negative which becomes a huge u64 value. 1311 // But if i*(long)K + L is >u64 (long)max_jint and still is <u64 R, then 1312 // i*(long)K + L <u64 R is true. 1313 // 1314 // As a consequence simply converting i*K + L <u64 R to i*(long)K + L <u64 R could cause incorrect execution. 1315 // 1316 // It's always true that: 1317 // (int)i*K <u64 (long)max_jint + 1 1318 // which implies (int)i*K + L <u64 (long)max_jint + 1 + L 1319 // As a consequence: 1320 // i*(long)K + L <u64 unsigned_min((long)max_jint + L + 1, R) 1321 // is always false in case of overflow of i*K 1322 // 1323 // Note, there are also K,L where i*K overflows and 1324 // i*K + L <u64 R is true, but 1325 // i*(long)K + L <u64 unsigned_min((long)max_jint + L + 1, R) is false 1326 // So this transformation could cause spurious deoptimizations and failed range check elimination 1327 // (but not incorrect execution) for unlikely corner cases with overflow. 1328 // If this causes problems in practice, we could maybe direct execution to a post-loop, instead of deoptimizing. 1329 Node* max_jint_plus_one_long = longcon((jlong)max_jint + 1); 1330 Node* max_range = new AddLNode(max_jint_plus_one_long, L); 1331 register_new_node(max_range, entry_control); 1332 R = MaxNode::unsigned_min(R, max_range, TypeLong::POS, _igvn); 1333 set_subtree_ctrl(R, true); 1334 } 1335 1336 Node* C = outer_phi; 1337 1338 // Start with 64-bit values: 1339 // i*K + L <u64 R 1340 // (C+j)*K + L <u64 R 1341 // j*K + Q <u64 R where Q = Q_first = C*K+L 1342 Node* Q_first = new MulLNode(C, K); 1343 register_new_node(Q_first, entry_control); 1344 Q_first = new AddLNode(Q_first, L); 1345 register_new_node(Q_first, entry_control); 1346 1347 // Compute endpoints of the range of values j*K + Q. 1348 // Q_min = (j=0)*K + Q; Q_max = (j=B_2)*K + Q 1349 Node* Q_min = Q_first; 1350 1351 // Compute the exact ending value B_2 (which is really A_2 if S < 0) 1352 Node* B_2 = new LoopLimitNode(this->C, int_zero, inner_iters_actual_int, int_stride); 1353 register_new_node(B_2, entry_control); 1354 B_2 = new SubINode(B_2, int_stride); 1355 register_new_node(B_2, entry_control); 1356 B_2 = new ConvI2LNode(B_2); 1357 register_new_node(B_2, entry_control); 1358 1359 Node* Q_max = new MulLNode(B_2, K); 1360 register_new_node(Q_max, entry_control); 1361 Q_max = new AddLNode(Q_max, Q_first); 1362 register_new_node(Q_max, entry_control); 1363 1364 if (scale * stride_con < 0) { 1365 swap(Q_min, Q_max); 1366 } 1367 // Now, mathematically, Q_max > Q_min, and they are close enough so that (Q_max-Q_min) fits in 32 bits. 1368 1369 // L_clamp = Q_min < 0 ? 0 : Q_min 1370 Node* Q_min_cmp = new CmpLNode(Q_min, long_zero); 1371 register_new_node(Q_min_cmp, entry_control); 1372 Node* Q_min_bool = new BoolNode(Q_min_cmp, BoolTest::lt); 1373 register_new_node(Q_min_bool, entry_control); 1374 Node* L_clamp = new CMoveLNode(Q_min_bool, Q_min, long_zero, TypeLong::LONG); 1375 register_new_node(L_clamp, entry_control); 1376 // (This could also be coded bitwise as L_clamp = Q_min & ~(Q_min>>63).) 1377 1378 Node* Q_max_plus_one = new AddLNode(Q_max, long_one); 1379 register_new_node(Q_max_plus_one, entry_control); 1380 1381 // H_clamp = Q_max+1 < Q_min ? max_jlong : Q_max+1 1382 // (Because Q_min and Q_max are close, the overflow check could also be encoded as Q_max+1 < 0 & Q_min >= 0.) 1383 Node* max_jlong_long = longcon(max_jlong); 1384 Node* Q_max_cmp = new CmpLNode(Q_max_plus_one, Q_min); 1385 register_new_node(Q_max_cmp, entry_control); 1386 Node* Q_max_bool = new BoolNode(Q_max_cmp, BoolTest::lt); 1387 register_new_node(Q_max_bool, entry_control); 1388 Node* H_clamp = new CMoveLNode(Q_max_bool, Q_max_plus_one, max_jlong_long, TypeLong::LONG); 1389 register_new_node(H_clamp, entry_control); 1390 // (This could also be coded bitwise as H_clamp = ((Q_max+1)<<1 | M)>>>1 where M = (Q_max+1)>>63 & ~Q_min>>63.) 1391 1392 // R_2 = clamp(R, L_clamp, H_clamp) - L_clamp 1393 // that is: R_2 = clamp(R, L_clamp=0, H_clamp=Q_max) if Q_min < 0 1394 // or else: R_2 = clamp(R, L_clamp, H_clamp) - Q_min if Q_min >= 0 1395 // and also: R_2 = clamp(R, L_clamp, Q_max+1) - L_clamp if Q_min < Q_max+1 (no overflow) 1396 // or else: R_2 = clamp(R, L_clamp, *no limit*)- L_clamp if Q_max+1 < Q_min (overflow) 1397 Node* R_2 = clamp(R, L_clamp, H_clamp); 1398 R_2 = new SubLNode(R_2, L_clamp); 1399 register_new_node(R_2, entry_control); 1400 R_2 = new ConvL2INode(R_2, TypeInt::POS); 1401 register_new_node(R_2, entry_control); 1402 1403 // L_2 = Q_first - L_clamp 1404 // We are subtracting L_clamp from both sides of the <u32 comparison. 1405 // If S*K>0, then Q_first == 0 and the R.C. expression at -L_clamp and steps upward to Q_max-L_clamp. 1406 // If S*K<0, then Q_first != 0 and the R.C. expression starts high and steps downward to Q_min-L_clamp. 1407 Node* L_2 = new SubLNode(Q_first, L_clamp); 1408 register_new_node(L_2, entry_control); 1409 L_2 = new ConvL2INode(L_2, TypeInt::INT); 1410 register_new_node(L_2, entry_control); 1411 1412 // Transform the range check using the computed values L_2/R_2 1413 // from: i*K + L <u64 R 1414 // to: j*K + L_2 <u32 R_2 1415 // that is: 1416 // (j*K + Q_first) - L_clamp <u32 clamp(R, L_clamp, H_clamp) - L_clamp 1417 K = intcon(checked_cast<int>(scale)); 1418 Node* scaled_iv = new MulINode(inner_phi, K); 1419 register_new_node(scaled_iv, c); 1420 Node* scaled_iv_plus_offset = new AddINode(scaled_iv, L_2); 1421 register_new_node(scaled_iv_plus_offset, c); 1422 1423 Node* new_rc_cmp = new CmpUNode(scaled_iv_plus_offset, R_2); 1424 register_new_node(new_rc_cmp, c); 1425 1426 _igvn.replace_input_of(rc_bol, 1, new_rc_cmp); 1427 } 1428 } 1429 1430 Node* PhaseIdealLoop::clamp(Node* R, Node* L, Node* H) { 1431 Node* min = MaxNode::signed_min(R, H, TypeLong::LONG, _igvn); 1432 set_subtree_ctrl(min, true); 1433 Node* max = MaxNode::signed_max(L, min, TypeLong::LONG, _igvn); 1434 set_subtree_ctrl(max, true); 1435 return max; 1436 } 1437 1438 LoopNode* PhaseIdealLoop::create_inner_head(IdealLoopTree* loop, BaseCountedLoopNode* head, 1439 IfNode* exit_test) { 1440 LoopNode* new_inner_head = new LoopNode(head->in(1), head->in(2)); 1441 IfNode* new_inner_exit = new IfNode(exit_test->in(0), exit_test->in(1), exit_test->_prob, exit_test->_fcnt); 1442 _igvn.register_new_node_with_optimizer(new_inner_head); 1443 _igvn.register_new_node_with_optimizer(new_inner_exit); 1444 loop->_body.push(new_inner_head); 1445 loop->_body.push(new_inner_exit); 1446 loop->_body.yank(head); 1447 loop->_body.yank(exit_test); 1448 set_loop(new_inner_head, loop); 1449 set_loop(new_inner_exit, loop); 1450 set_idom(new_inner_head, idom(head), dom_depth(head)); 1451 set_idom(new_inner_exit, idom(exit_test), dom_depth(exit_test)); 1452 lazy_replace(head, new_inner_head); 1453 lazy_replace(exit_test, new_inner_exit); 1454 loop->_head = new_inner_head; 1455 return new_inner_head; 1456 } 1457 1458 #ifdef ASSERT 1459 void PhaseIdealLoop::check_counted_loop_shape(IdealLoopTree* loop, Node* x, BasicType bt) { 1460 Node* back_control = loop_exit_control(x, loop); 1461 assert(back_control != nullptr, "no back control"); 1462 1463 BoolTest::mask mask = BoolTest::illegal; 1464 float cl_prob = 0; 1465 Node* incr = nullptr; 1466 Node* limit = nullptr; 1467 1468 Node* cmp = loop_exit_test(back_control, loop, incr, limit, mask, cl_prob); 1469 assert(cmp != nullptr && cmp->Opcode() == Op_Cmp(bt), "no exit test"); 1470 1471 Node* phi_incr = nullptr; 1472 incr = loop_iv_incr(incr, x, loop, phi_incr); 1473 assert(incr != nullptr && incr->Opcode() == Op_Add(bt), "no incr"); 1474 1475 Node* xphi = nullptr; 1476 Node* stride = loop_iv_stride(incr, loop, xphi); 1477 1478 assert(stride != nullptr, "no stride"); 1479 1480 PhiNode* phi = loop_iv_phi(xphi, phi_incr, x, loop); 1481 1482 assert(phi != nullptr && phi->in(LoopNode::LoopBackControl) == incr, "No phi"); 1483 1484 jlong stride_con = stride->get_integer_as_long(bt); 1485 1486 assert(condition_stride_ok(mask, stride_con), "illegal condition"); 1487 1488 assert(mask != BoolTest::ne, "unexpected condition"); 1489 assert(phi_incr == nullptr, "bad loop shape"); 1490 assert(cmp->in(1) == incr, "bad exit test shape"); 1491 1492 // Safepoint on backedge not supported 1493 assert(x->in(LoopNode::LoopBackControl)->Opcode() != Op_SafePoint, "no safepoint on backedge"); 1494 } 1495 #endif 1496 1497 #ifdef ASSERT 1498 // convert an int counted loop to a long counted to stress handling of 1499 // long counted loops 1500 bool PhaseIdealLoop::convert_to_long_loop(Node* cmp, Node* phi, IdealLoopTree* loop) { 1501 Unique_Node_List iv_nodes; 1502 Node_List old_new; 1503 iv_nodes.push(cmp); 1504 bool failed = false; 1505 1506 for (uint i = 0; i < iv_nodes.size() && !failed; i++) { 1507 Node* n = iv_nodes.at(i); 1508 switch(n->Opcode()) { 1509 case Op_Phi: { 1510 Node* clone = new PhiNode(n->in(0), TypeLong::LONG); 1511 old_new.map(n->_idx, clone); 1512 break; 1513 } 1514 case Op_CmpI: { 1515 Node* clone = new CmpLNode(nullptr, nullptr); 1516 old_new.map(n->_idx, clone); 1517 break; 1518 } 1519 case Op_AddI: { 1520 Node* clone = new AddLNode(nullptr, nullptr); 1521 old_new.map(n->_idx, clone); 1522 break; 1523 } 1524 case Op_CastII: { 1525 failed = true; 1526 break; 1527 } 1528 default: 1529 DEBUG_ONLY(n->dump()); 1530 fatal("unexpected"); 1531 } 1532 1533 for (uint i = 1; i < n->req(); i++) { 1534 Node* in = n->in(i); 1535 if (in == nullptr) { 1536 continue; 1537 } 1538 if (loop->is_member(get_loop(get_ctrl(in)))) { 1539 iv_nodes.push(in); 1540 } 1541 } 1542 } 1543 1544 if (failed) { 1545 for (uint i = 0; i < iv_nodes.size(); i++) { 1546 Node* n = iv_nodes.at(i); 1547 Node* clone = old_new[n->_idx]; 1548 if (clone != nullptr) { 1549 _igvn.remove_dead_node(clone); 1550 } 1551 } 1552 return false; 1553 } 1554 1555 for (uint i = 0; i < iv_nodes.size(); i++) { 1556 Node* n = iv_nodes.at(i); 1557 Node* clone = old_new[n->_idx]; 1558 for (uint i = 1; i < n->req(); i++) { 1559 Node* in = n->in(i); 1560 if (in == nullptr) { 1561 continue; 1562 } 1563 Node* in_clone = old_new[in->_idx]; 1564 if (in_clone == nullptr) { 1565 assert(_igvn.type(in)->isa_int(), ""); 1566 in_clone = new ConvI2LNode(in); 1567 _igvn.register_new_node_with_optimizer(in_clone); 1568 set_subtree_ctrl(in_clone, false); 1569 } 1570 if (in_clone->in(0) == nullptr) { 1571 in_clone->set_req(0, C->top()); 1572 clone->set_req(i, in_clone); 1573 in_clone->set_req(0, nullptr); 1574 } else { 1575 clone->set_req(i, in_clone); 1576 } 1577 } 1578 _igvn.register_new_node_with_optimizer(clone); 1579 } 1580 set_ctrl(old_new[phi->_idx], phi->in(0)); 1581 1582 for (uint i = 0; i < iv_nodes.size(); i++) { 1583 Node* n = iv_nodes.at(i); 1584 Node* clone = old_new[n->_idx]; 1585 set_subtree_ctrl(clone, false); 1586 Node* m = n->Opcode() == Op_CmpI ? clone : nullptr; 1587 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 1588 Node* u = n->fast_out(i); 1589 if (iv_nodes.member(u)) { 1590 continue; 1591 } 1592 if (m == nullptr) { 1593 m = new ConvL2INode(clone); 1594 _igvn.register_new_node_with_optimizer(m); 1595 set_subtree_ctrl(m, false); 1596 } 1597 _igvn.rehash_node_delayed(u); 1598 int nb = u->replace_edge(n, m, &_igvn); 1599 --i, imax -= nb; 1600 } 1601 } 1602 return true; 1603 } 1604 #endif 1605 1606 //------------------------------is_counted_loop-------------------------------- 1607 bool PhaseIdealLoop::is_counted_loop(Node* x, IdealLoopTree*&loop, BasicType iv_bt) { 1608 PhaseGVN *gvn = &_igvn; 1609 1610 Node* back_control = loop_exit_control(x, loop); 1611 if (back_control == nullptr) { 1612 return false; 1613 } 1614 1615 BoolTest::mask bt = BoolTest::illegal; 1616 float cl_prob = 0; 1617 Node* incr = nullptr; 1618 Node* limit = nullptr; 1619 Node* cmp = loop_exit_test(back_control, loop, incr, limit, bt, cl_prob); 1620 if (cmp == nullptr || cmp->Opcode() != Op_Cmp(iv_bt)) { 1621 return false; // Avoid pointer & float & 64-bit compares 1622 } 1623 1624 // Trip-counter increment must be commutative & associative. 1625 if (incr->Opcode() == Op_Cast(iv_bt)) { 1626 incr = incr->in(1); 1627 } 1628 1629 Node* phi_incr = nullptr; 1630 incr = loop_iv_incr(incr, x, loop, phi_incr); 1631 if (incr == nullptr) { 1632 return false; 1633 } 1634 1635 Node* trunc1 = nullptr; 1636 Node* trunc2 = nullptr; 1637 const TypeInteger* iv_trunc_t = nullptr; 1638 Node* orig_incr = incr; 1639 if (!(incr = CountedLoopNode::match_incr_with_optional_truncation(incr, &trunc1, &trunc2, &iv_trunc_t, iv_bt))) { 1640 return false; // Funny increment opcode 1641 } 1642 assert(incr->Opcode() == Op_Add(iv_bt), "wrong increment code"); 1643 1644 Node* xphi = nullptr; 1645 Node* stride = loop_iv_stride(incr, loop, xphi); 1646 1647 if (stride == nullptr) { 1648 return false; 1649 } 1650 1651 if (xphi->Opcode() == Op_Cast(iv_bt)) { 1652 xphi = xphi->in(1); 1653 } 1654 1655 // Stride must be constant 1656 jlong stride_con = stride->get_integer_as_long(iv_bt); 1657 assert(stride_con != 0, "missed some peephole opt"); 1658 1659 PhiNode* phi = loop_iv_phi(xphi, phi_incr, x, loop); 1660 1661 if (phi == nullptr || 1662 (trunc1 == nullptr && phi->in(LoopNode::LoopBackControl) != incr) || 1663 (trunc1 != nullptr && phi->in(LoopNode::LoopBackControl) != trunc1)) { 1664 return false; 1665 } 1666 1667 Node* iftrue = back_control; 1668 uint iftrue_op = iftrue->Opcode(); 1669 Node* iff = iftrue->in(0); 1670 BoolNode* test = iff->in(1)->as_Bool(); 1671 1672 const TypeInteger* limit_t = gvn->type(limit)->is_integer(iv_bt); 1673 if (trunc1 != nullptr) { 1674 // When there is a truncation, we must be sure that after the truncation 1675 // the trip counter will end up higher than the limit, otherwise we are looking 1676 // at an endless loop. Can happen with range checks. 1677 1678 // Example: 1679 // int i = 0; 1680 // while (true) 1681 // sum + = array[i]; 1682 // i++; 1683 // i = i && 0x7fff; 1684 // } 1685 // 1686 // If the array is shorter than 0x8000 this exits through a AIOOB 1687 // - Counted loop transformation is ok 1688 // If the array is longer then this is an endless loop 1689 // - No transformation can be done. 1690 1691 const TypeInteger* incr_t = gvn->type(orig_incr)->is_integer(iv_bt); 1692 if (limit_t->hi_as_long() > incr_t->hi_as_long()) { 1693 // if the limit can have a higher value than the increment (before the phi) 1694 return false; 1695 } 1696 } 1697 1698 Node *init_trip = phi->in(LoopNode::EntryControl); 1699 1700 // If iv trunc type is smaller than int, check for possible wrap. 1701 if (!TypeInteger::bottom(iv_bt)->higher_equal(iv_trunc_t)) { 1702 assert(trunc1 != nullptr, "must have found some truncation"); 1703 1704 // Get a better type for the phi (filtered thru if's) 1705 const TypeInteger* phi_ft = filtered_type(phi); 1706 1707 // Can iv take on a value that will wrap? 1708 // 1709 // Ensure iv's limit is not within "stride" of the wrap value. 1710 // 1711 // Example for "short" type 1712 // Truncation ensures value is in the range -32768..32767 (iv_trunc_t) 1713 // If the stride is +10, then the last value of the induction 1714 // variable before the increment (phi_ft->_hi) must be 1715 // <= 32767 - 10 and (phi_ft->_lo) must be >= -32768 to 1716 // ensure no truncation occurs after the increment. 1717 1718 if (stride_con > 0) { 1719 if (iv_trunc_t->hi_as_long() - phi_ft->hi_as_long() < stride_con || 1720 iv_trunc_t->lo_as_long() > phi_ft->lo_as_long()) { 1721 return false; // truncation may occur 1722 } 1723 } else if (stride_con < 0) { 1724 if (iv_trunc_t->lo_as_long() - phi_ft->lo_as_long() > stride_con || 1725 iv_trunc_t->hi_as_long() < phi_ft->hi_as_long()) { 1726 return false; // truncation may occur 1727 } 1728 } 1729 // No possibility of wrap so truncation can be discarded 1730 // Promote iv type to Int 1731 } else { 1732 assert(trunc1 == nullptr && trunc2 == nullptr, "no truncation for int"); 1733 } 1734 1735 if (!condition_stride_ok(bt, stride_con)) { 1736 return false; 1737 } 1738 1739 const TypeInteger* init_t = gvn->type(init_trip)->is_integer(iv_bt); 1740 1741 if (stride_con > 0) { 1742 if (init_t->lo_as_long() > max_signed_integer(iv_bt) - stride_con) { 1743 return false; // cyclic loop 1744 } 1745 } else { 1746 if (init_t->hi_as_long() < min_signed_integer(iv_bt) - stride_con) { 1747 return false; // cyclic loop 1748 } 1749 } 1750 1751 if (phi_incr != nullptr && bt != BoolTest::ne) { 1752 // check if there is a possibility of IV overflowing after the first increment 1753 if (stride_con > 0) { 1754 if (init_t->hi_as_long() > max_signed_integer(iv_bt) - stride_con) { 1755 return false; 1756 } 1757 } else { 1758 if (init_t->lo_as_long() < min_signed_integer(iv_bt) - stride_con) { 1759 return false; 1760 } 1761 } 1762 } 1763 1764 // ================================================= 1765 // ---- SUCCESS! Found A Trip-Counted Loop! ----- 1766 // 1767 1768 if (x->Opcode() == Op_Region) { 1769 // x has not yet been transformed to Loop or LongCountedLoop. 1770 // This should only happen if we are inside an infinite loop. 1771 // It happens like this: 1772 // build_loop_tree -> do not attach infinite loop and nested loops 1773 // beautify_loops -> does not transform the infinite and nested loops to LoopNode, because not attached yet 1774 // build_loop_tree -> find and attach infinite and nested loops 1775 // counted_loop -> nested Regions are not yet transformed to LoopNodes, we land here 1776 assert(x->as_Region()->is_in_infinite_subgraph(), 1777 "x can only be a Region and not Loop if inside infinite loop"); 1778 // Come back later when Region is transformed to LoopNode 1779 return false; 1780 } 1781 1782 assert(x->Opcode() == Op_Loop || x->Opcode() == Op_LongCountedLoop, "regular loops only"); 1783 C->print_method(PHASE_BEFORE_CLOOPS, 3, x); 1784 1785 // =================================================== 1786 // We can only convert this loop to a counted loop if we can guarantee that the iv phi will never overflow at runtime. 1787 // This is an implicit assumption taken by some loop optimizations. We therefore must ensure this property at all cost. 1788 // At this point, we've already excluded some trivial cases where an overflow could have been proven statically. 1789 // But even though we cannot prove that an overflow will *not* happen, we still want to speculatively convert this loop 1790 // to a counted loop. This can be achieved by adding additional iv phi overflow checks before the loop. If they fail, 1791 // we trap and resume execution before the loop without having executed any iteration of the loop, yet. 1792 // 1793 // These additional iv phi overflow checks can be inserted as Loop Limit Check Predicates above the Loop Limit Check 1794 // Parse Predicate which captures a JVM state just before the entry of the loop. If there is no such Parse Predicate, 1795 // we cannot generate a Loop Limit Check Predicate and thus cannot speculatively convert the loop to a counted loop. 1796 // 1797 // In the following, we only focus on int loops with stride > 0 to keep things simple. The argumentation and proof 1798 // for stride < 0 is analogously. For long loops, we would replace max_int with max_long. 1799 // 1800 // 1801 // The loop to be converted does not always need to have the often used shape: 1802 // 1803 // i = init 1804 // i = init loop: 1805 // do { ... 1806 // // ... equivalent i+=stride 1807 // i+=stride <==> if (i < limit) 1808 // } while (i < limit); goto loop 1809 // exit: 1810 // ... 1811 // 1812 // where the loop exit check uses the post-incremented iv phi and a '<'-operator. 1813 // 1814 // We could also have '<='-operator (or '>='-operator for negative strides) or use the pre-incremented iv phi value 1815 // in the loop exit check: 1816 // 1817 // i = init 1818 // loop: 1819 // ... 1820 // if (i <= limit) 1821 // i+=stride 1822 // goto loop 1823 // exit: 1824 // ... 1825 // 1826 // Let's define the following terms: 1827 // - iv_pre_i: The pre-incremented iv phi before the i-th iteration. 1828 // - iv_post_i: The post-incremented iv phi after the i-th iteration. 1829 // 1830 // The iv_pre_i and iv_post_i have the following relation: 1831 // iv_pre_i + stride = iv_post_i 1832 // 1833 // When converting a loop to a counted loop, we want to have a canonicalized loop exit check of the form: 1834 // iv_post_i < adjusted_limit 1835 // 1836 // If that is not the case, we need to canonicalize the loop exit check by using different values for adjusted_limit: 1837 // (LE1) iv_post_i < limit: Already canonicalized. We can directly use limit as adjusted_limit. 1838 // -> adjusted_limit = limit. 1839 // (LE2) iv_post_i <= limit: 1840 // iv_post_i < limit + 1 1841 // -> adjusted limit = limit + 1 1842 // (LE3) iv_pre_i < limit: 1843 // iv_pre_i + stride < limit + stride 1844 // iv_post_i < limit + stride 1845 // -> adjusted_limit = limit + stride 1846 // (LE4) iv_pre_i <= limit: 1847 // iv_pre_i < limit + 1 1848 // iv_pre_i + stride < limit + stride + 1 1849 // iv_post_i < limit + stride + 1 1850 // -> adjusted_limit = limit + stride + 1 1851 // 1852 // Note that: 1853 // (AL) limit <= adjusted_limit. 1854 // 1855 // The following loop invariant has to hold for counted loops with n iterations (i.e. loop exit check true after n-th 1856 // loop iteration) and a canonicalized loop exit check to guarantee that no iv_post_i over- or underflows: 1857 // (INV) For i = 1..n, min_int <= iv_post_i <= max_int 1858 // 1859 // To prove (INV), we require the following two conditions/assumptions: 1860 // (i): adjusted_limit - 1 + stride <= max_int 1861 // (ii): init < limit 1862 // 1863 // If we can prove (INV), we know that there can be no over- or underflow of any iv phi value. We prove (INV) by 1864 // induction by assuming (i) and (ii). 1865 // 1866 // Proof by Induction 1867 // ------------------ 1868 // > Base case (i = 1): We show that (INV) holds after the first iteration: 1869 // min_int <= iv_post_1 = init + stride <= max_int 1870 // Proof: 1871 // First, we note that (ii) implies 1872 // (iii) init <= limit - 1 1873 // max_int >= adjusted_limit - 1 + stride [using (i)] 1874 // >= limit - 1 + stride [using (AL)] 1875 // >= init + stride [using (iii)] 1876 // >= min_int [using stride > 0, no underflow] 1877 // Thus, no overflow happens after the first iteration and (INV) holds for i = 1. 1878 // 1879 // Note that to prove the base case we need (i) and (ii). 1880 // 1881 // > Induction Hypothesis (i = j, j > 1): Assume that (INV) holds after the j-th iteration: 1882 // min_int <= iv_post_j <= max_int 1883 // > Step case (i = j + 1): We show that (INV) also holds after the j+1-th iteration: 1884 // min_int <= iv_post_{j+1} = iv_post_j + stride <= max_int 1885 // Proof: 1886 // If iv_post_j >= adjusted_limit: 1887 // We exit the loop after the j-th iteration, and we don't execute the j+1-th iteration anymore. Thus, there is 1888 // also no iv_{j+1}. Since (INV) holds for iv_j, there is nothing left to prove. 1889 // If iv_post_j < adjusted_limit: 1890 // First, we note that: 1891 // (iv) iv_post_j <= adjusted_limit - 1 1892 // max_int >= adjusted_limit - 1 + stride [using (i)] 1893 // >= iv_post_j + stride [using (iv)] 1894 // >= min_int [using stride > 0, no underflow] 1895 // 1896 // Note that to prove the step case we only need (i). 1897 // 1898 // Thus, by assuming (i) and (ii), we proved (INV). 1899 // 1900 // 1901 // It is therefore enough to add the following two Loop Limit Check Predicates to check assumptions (i) and (ii): 1902 // 1903 // (1) Loop Limit Check Predicate for (i): 1904 // Using (i): adjusted_limit - 1 + stride <= max_int 1905 // 1906 // This condition is now restated to use limit instead of adjusted_limit: 1907 // 1908 // To prevent an overflow of adjusted_limit -1 + stride itself, we rewrite this check to 1909 // max_int - stride + 1 >= adjusted_limit 1910 // We can merge the two constants into 1911 // canonicalized_correction = stride - 1 1912 // which gives us 1913 // max_int - canonicalized_correction >= adjusted_limit 1914 // 1915 // To directly use limit instead of adjusted_limit in the predicate condition, we split adjusted_limit into: 1916 // adjusted_limit = limit + limit_correction 1917 // Since stride > 0 and limit_correction <= stride + 1, we can restate this with no over- or underflow into: 1918 // max_int - canonicalized_correction - limit_correction >= limit 1919 // Since canonicalized_correction and limit_correction are both constants, we can replace them with a new constant: 1920 // (v) final_correction = canonicalized_correction + limit_correction 1921 // 1922 // which gives us: 1923 // 1924 // Final predicate condition: 1925 // max_int - final_correction >= limit 1926 // 1927 // However, we need to be careful that (v) does not over- or underflow. 1928 // We know that: 1929 // canonicalized_correction = stride - 1 1930 // and 1931 // limit_correction <= stride + 1 1932 // and thus 1933 // canonicalized_correction + limit_correction <= 2 * stride 1934 // To prevent an over- or underflow of (v), we must ensure that 1935 // 2 * stride <= max_int 1936 // which can safely be checked without over- or underflow with 1937 // (vi) stride != min_int AND abs(stride) <= max_int / 2 1938 // 1939 // We could try to further optimize the cases where (vi) does not hold but given that such large strides are 1940 // very uncommon and the loop would only run for a very few iterations anyway, we simply bail out if (vi) fails. 1941 // 1942 // (2) Loop Limit Check Predicate for (ii): 1943 // Using (ii): init < limit 1944 // 1945 // This Loop Limit Check Predicate is not required if we can prove at compile time that either: 1946 // (2.1) type(init) < type(limit) 1947 // In this case, we know: 1948 // all possible values of init < all possible values of limit 1949 // and we can skip the predicate. 1950 // 1951 // (2.2) init < limit is already checked before (i.e. found as a dominating check) 1952 // In this case, we do not need to re-check the condition and can skip the predicate. 1953 // This is often found for while- and for-loops which have the following shape: 1954 // 1955 // if (init < limit) { // Dominating test. Do not need the Loop Limit Check Predicate below. 1956 // i = init; 1957 // if (init >= limit) { trap(); } // Here we would insert the Loop Limit Check Predicate 1958 // do { 1959 // i += stride; 1960 // } while (i < limit); 1961 // } 1962 // 1963 // (2.3) init + stride <= max_int 1964 // In this case, there is no overflow of the iv phi after the first loop iteration. 1965 // In the proof of the base case above we showed that init + stride <= max_int by using assumption (ii): 1966 // init < limit 1967 // In the proof of the step case above, we did not need (ii) anymore. Therefore, if we already know at 1968 // compile time that init + stride <= max_int then we have trivially proven the base case and that 1969 // there is no overflow of the iv phi after the first iteration. In this case, we don't need to check (ii) 1970 // again and can skip the predicate. 1971 1972 // Check (vi) and bail out if the stride is too big. 1973 if (stride_con == min_signed_integer(iv_bt) || (ABS(stride_con) > max_signed_integer(iv_bt) / 2)) { 1974 return false; 1975 } 1976 1977 // Accounting for (LE3) and (LE4) where we use pre-incremented phis in the loop exit check. 1978 const jlong limit_correction_for_pre_iv_exit_check = (phi_incr != nullptr) ? stride_con : 0; 1979 1980 // Accounting for (LE2) and (LE4) where we use <= or >= in the loop exit check. 1981 const bool includes_limit = (bt == BoolTest::le || bt == BoolTest::ge); 1982 const jlong limit_correction_for_le_ge_exit_check = (includes_limit ? (stride_con > 0 ? 1 : -1) : 0); 1983 1984 const jlong limit_correction = limit_correction_for_pre_iv_exit_check + limit_correction_for_le_ge_exit_check; 1985 const jlong canonicalized_correction = stride_con + (stride_con > 0 ? -1 : 1); 1986 const jlong final_correction = canonicalized_correction + limit_correction; 1987 1988 int sov = check_stride_overflow(final_correction, limit_t, iv_bt); 1989 Node* init_control = x->in(LoopNode::EntryControl); 1990 1991 // If sov==0, limit's type always satisfies the condition, for 1992 // example, when it is an array length. 1993 if (sov != 0) { 1994 if (sov < 0) { 1995 return false; // Bailout: integer overflow is certain. 1996 } 1997 // (1) Loop Limit Check Predicate is required because we could not statically prove that 1998 // limit + final_correction = adjusted_limit - 1 + stride <= max_int 1999 assert(!x->as_Loop()->is_loop_nest_inner_loop(), "loop was transformed"); 2000 const Predicates predicates(init_control); 2001 const PredicateBlock* loop_limit_check_predicate_block = predicates.loop_limit_check_predicate_block(); 2002 if (!loop_limit_check_predicate_block->has_parse_predicate()) { 2003 // The Loop Limit Check Parse Predicate is not generated if this method trapped here before. 2004 #ifdef ASSERT 2005 if (TraceLoopLimitCheck) { 2006 tty->print("Missing Loop Limit Check Parse Predicate:"); 2007 loop->dump_head(); 2008 x->dump(1); 2009 } 2010 #endif 2011 return false; 2012 } 2013 2014 ParsePredicateNode* loop_limit_check_parse_predicate = loop_limit_check_predicate_block->parse_predicate(); 2015 if (!is_dominator(get_ctrl(limit), loop_limit_check_parse_predicate->in(0))) { 2016 return false; 2017 } 2018 2019 Node* cmp_limit; 2020 Node* bol; 2021 2022 if (stride_con > 0) { 2023 cmp_limit = CmpNode::make(limit, _igvn.integercon(max_signed_integer(iv_bt) - final_correction, iv_bt), iv_bt); 2024 bol = new BoolNode(cmp_limit, BoolTest::le); 2025 } else { 2026 cmp_limit = CmpNode::make(limit, _igvn.integercon(min_signed_integer(iv_bt) - final_correction, iv_bt), iv_bt); 2027 bol = new BoolNode(cmp_limit, BoolTest::ge); 2028 } 2029 2030 insert_loop_limit_check_predicate(init_control->as_IfTrue(), cmp_limit, bol); 2031 } 2032 2033 // (2.3) 2034 const bool init_plus_stride_could_overflow = 2035 (stride_con > 0 && init_t->hi_as_long() > max_signed_integer(iv_bt) - stride_con) || 2036 (stride_con < 0 && init_t->lo_as_long() < min_signed_integer(iv_bt) - stride_con); 2037 // (2.1) 2038 const bool init_gte_limit = (stride_con > 0 && init_t->hi_as_long() >= limit_t->lo_as_long()) || 2039 (stride_con < 0 && init_t->lo_as_long() <= limit_t->hi_as_long()); 2040 2041 if (init_gte_limit && // (2.1) 2042 ((bt == BoolTest::ne || init_plus_stride_could_overflow) && // (2.3) 2043 !has_dominating_loop_limit_check(init_trip, limit, stride_con, iv_bt, init_control))) { // (2.2) 2044 // (2) Iteration Loop Limit Check Predicate is required because neither (2.1), (2.2), nor (2.3) holds. 2045 // We use the following condition: 2046 // - stride > 0: init < limit 2047 // - stride < 0: init > limit 2048 // 2049 // This predicate is always required if we have a non-equal-operator in the loop exit check (where stride = 1 is 2050 // a requirement). We transform the loop exit check by using a less-than-operator. By doing so, we must always 2051 // check that init < limit. Otherwise, we could have a different number of iterations at runtime. 2052 2053 const Predicates predicates(init_control); 2054 const PredicateBlock* loop_limit_check_predicate_block = predicates.loop_limit_check_predicate_block(); 2055 if (!loop_limit_check_predicate_block->has_parse_predicate()) { 2056 // The Loop Limit Check Parse Predicate is not generated if this method trapped here before. 2057 #ifdef ASSERT 2058 if (TraceLoopLimitCheck) { 2059 tty->print("Missing Loop Limit Check Parse Predicate:"); 2060 loop->dump_head(); 2061 x->dump(1); 2062 } 2063 #endif 2064 return false; 2065 } 2066 2067 ParsePredicateNode* loop_limit_check_parse_predicate = loop_limit_check_predicate_block->parse_predicate(); 2068 Node* parse_predicate_entry = loop_limit_check_parse_predicate->in(0); 2069 if (!is_dominator(get_ctrl(limit), parse_predicate_entry) || 2070 !is_dominator(get_ctrl(init_trip), parse_predicate_entry)) { 2071 return false; 2072 } 2073 2074 Node* cmp_limit; 2075 Node* bol; 2076 2077 if (stride_con > 0) { 2078 cmp_limit = CmpNode::make(init_trip, limit, iv_bt); 2079 bol = new BoolNode(cmp_limit, BoolTest::lt); 2080 } else { 2081 cmp_limit = CmpNode::make(init_trip, limit, iv_bt); 2082 bol = new BoolNode(cmp_limit, BoolTest::gt); 2083 } 2084 2085 insert_loop_limit_check_predicate(init_control->as_IfTrue(), cmp_limit, bol); 2086 } 2087 2088 if (bt == BoolTest::ne) { 2089 // Now we need to canonicalize the loop condition if it is 'ne'. 2090 assert(stride_con == 1 || stride_con == -1, "simple increment only - checked before"); 2091 if (stride_con > 0) { 2092 // 'ne' can be replaced with 'lt' only when init < limit. This is ensured by the inserted predicate above. 2093 bt = BoolTest::lt; 2094 } else { 2095 assert(stride_con < 0, "must be"); 2096 // 'ne' can be replaced with 'gt' only when init > limit. This is ensured by the inserted predicate above. 2097 bt = BoolTest::gt; 2098 } 2099 } 2100 2101 Node* sfpt = nullptr; 2102 if (loop->_child == nullptr) { 2103 sfpt = find_safepoint(back_control, x, loop); 2104 } else { 2105 sfpt = iff->in(0); 2106 if (sfpt->Opcode() != Op_SafePoint) { 2107 sfpt = nullptr; 2108 } 2109 } 2110 2111 if (x->in(LoopNode::LoopBackControl)->Opcode() == Op_SafePoint) { 2112 Node* backedge_sfpt = x->in(LoopNode::LoopBackControl); 2113 if (((iv_bt == T_INT && LoopStripMiningIter != 0) || 2114 iv_bt == T_LONG) && 2115 sfpt == nullptr) { 2116 // Leaving the safepoint on the backedge and creating a 2117 // CountedLoop will confuse optimizations. We can't move the 2118 // safepoint around because its jvm state wouldn't match a new 2119 // location. Give up on that loop. 2120 return false; 2121 } 2122 if (is_deleteable_safept(backedge_sfpt)) { 2123 lazy_replace(backedge_sfpt, iftrue); 2124 if (loop->_safepts != nullptr) { 2125 loop->_safepts->yank(backedge_sfpt); 2126 } 2127 loop->_tail = iftrue; 2128 } 2129 } 2130 2131 2132 #ifdef ASSERT 2133 if (iv_bt == T_INT && 2134 !x->as_Loop()->is_loop_nest_inner_loop() && 2135 StressLongCountedLoop > 0 && 2136 trunc1 == nullptr && 2137 convert_to_long_loop(cmp, phi, loop)) { 2138 return false; 2139 } 2140 #endif 2141 2142 Node* adjusted_limit = limit; 2143 if (phi_incr != nullptr) { 2144 // If compare points directly to the phi we need to adjust 2145 // the compare so that it points to the incr. Limit have 2146 // to be adjusted to keep trip count the same and we 2147 // should avoid int overflow. 2148 // 2149 // i = init; do {} while(i++ < limit); 2150 // is converted to 2151 // i = init; do {} while(++i < limit+1); 2152 // 2153 adjusted_limit = gvn->transform(AddNode::make(limit, stride, iv_bt)); 2154 } 2155 2156 if (includes_limit) { 2157 // The limit check guaranties that 'limit <= (max_jint - stride)' so 2158 // we can convert 'i <= limit' to 'i < limit+1' since stride != 0. 2159 // 2160 Node* one = (stride_con > 0) ? gvn->integercon( 1, iv_bt) : gvn->integercon(-1, iv_bt); 2161 adjusted_limit = gvn->transform(AddNode::make(adjusted_limit, one, iv_bt)); 2162 if (bt == BoolTest::le) 2163 bt = BoolTest::lt; 2164 else if (bt == BoolTest::ge) 2165 bt = BoolTest::gt; 2166 else 2167 ShouldNotReachHere(); 2168 } 2169 set_subtree_ctrl(adjusted_limit, false); 2170 2171 // Build a canonical trip test. 2172 // Clone code, as old values may be in use. 2173 incr = incr->clone(); 2174 incr->set_req(1,phi); 2175 incr->set_req(2,stride); 2176 incr = _igvn.register_new_node_with_optimizer(incr); 2177 set_early_ctrl(incr, false); 2178 _igvn.rehash_node_delayed(phi); 2179 phi->set_req_X( LoopNode::LoopBackControl, incr, &_igvn ); 2180 2181 // If phi type is more restrictive than Int, raise to 2182 // Int to prevent (almost) infinite recursion in igvn 2183 // which can only handle integer types for constants or minint..maxint. 2184 if (!TypeInteger::bottom(iv_bt)->higher_equal(phi->bottom_type())) { 2185 Node* nphi = PhiNode::make(phi->in(0), phi->in(LoopNode::EntryControl), TypeInteger::bottom(iv_bt)); 2186 nphi->set_req(LoopNode::LoopBackControl, phi->in(LoopNode::LoopBackControl)); 2187 nphi = _igvn.register_new_node_with_optimizer(nphi); 2188 set_ctrl(nphi, get_ctrl(phi)); 2189 _igvn.replace_node(phi, nphi); 2190 phi = nphi->as_Phi(); 2191 } 2192 cmp = cmp->clone(); 2193 cmp->set_req(1,incr); 2194 cmp->set_req(2, adjusted_limit); 2195 cmp = _igvn.register_new_node_with_optimizer(cmp); 2196 set_ctrl(cmp, iff->in(0)); 2197 2198 test = test->clone()->as_Bool(); 2199 (*(BoolTest*)&test->_test)._test = bt; 2200 test->set_req(1,cmp); 2201 _igvn.register_new_node_with_optimizer(test); 2202 set_ctrl(test, iff->in(0)); 2203 2204 // Replace the old IfNode with a new LoopEndNode 2205 Node *lex = _igvn.register_new_node_with_optimizer(BaseCountedLoopEndNode::make(iff->in(0), test, cl_prob, iff->as_If()->_fcnt, iv_bt)); 2206 IfNode *le = lex->as_If(); 2207 uint dd = dom_depth(iff); 2208 set_idom(le, le->in(0), dd); // Update dominance for loop exit 2209 set_loop(le, loop); 2210 2211 // Get the loop-exit control 2212 Node *iffalse = iff->as_If()->proj_out(!(iftrue_op == Op_IfTrue)); 2213 2214 // Need to swap loop-exit and loop-back control? 2215 if (iftrue_op == Op_IfFalse) { 2216 Node *ift2=_igvn.register_new_node_with_optimizer(new IfTrueNode (le)); 2217 Node *iff2=_igvn.register_new_node_with_optimizer(new IfFalseNode(le)); 2218 2219 loop->_tail = back_control = ift2; 2220 set_loop(ift2, loop); 2221 set_loop(iff2, get_loop(iffalse)); 2222 2223 // Lazy update of 'get_ctrl' mechanism. 2224 lazy_replace(iffalse, iff2); 2225 lazy_replace(iftrue, ift2); 2226 2227 // Swap names 2228 iffalse = iff2; 2229 iftrue = ift2; 2230 } else { 2231 _igvn.rehash_node_delayed(iffalse); 2232 _igvn.rehash_node_delayed(iftrue); 2233 iffalse->set_req_X( 0, le, &_igvn ); 2234 iftrue ->set_req_X( 0, le, &_igvn ); 2235 } 2236 2237 set_idom(iftrue, le, dd+1); 2238 set_idom(iffalse, le, dd+1); 2239 assert(iff->outcnt() == 0, "should be dead now"); 2240 lazy_replace( iff, le ); // fix 'get_ctrl' 2241 2242 Node* entry_control = init_control; 2243 bool strip_mine_loop = iv_bt == T_INT && 2244 loop->_child == nullptr && 2245 sfpt != nullptr && 2246 !loop->_has_call && 2247 is_deleteable_safept(sfpt); 2248 IdealLoopTree* outer_ilt = nullptr; 2249 if (strip_mine_loop) { 2250 outer_ilt = create_outer_strip_mined_loop(test, cmp, init_control, loop, 2251 cl_prob, le->_fcnt, entry_control, 2252 iffalse); 2253 } 2254 2255 // Now setup a new CountedLoopNode to replace the existing LoopNode 2256 BaseCountedLoopNode *l = BaseCountedLoopNode::make(entry_control, back_control, iv_bt); 2257 l->set_unswitch_count(x->as_Loop()->unswitch_count()); // Preserve 2258 // The following assert is approximately true, and defines the intention 2259 // of can_be_counted_loop. It fails, however, because phase->type 2260 // is not yet initialized for this loop and its parts. 2261 //assert(l->can_be_counted_loop(this), "sanity"); 2262 _igvn.register_new_node_with_optimizer(l); 2263 set_loop(l, loop); 2264 loop->_head = l; 2265 // Fix all data nodes placed at the old loop head. 2266 // Uses the lazy-update mechanism of 'get_ctrl'. 2267 lazy_replace( x, l ); 2268 set_idom(l, entry_control, dom_depth(entry_control) + 1); 2269 2270 if (iv_bt == T_INT && (LoopStripMiningIter == 0 || strip_mine_loop)) { 2271 // Check for immediately preceding SafePoint and remove 2272 if (sfpt != nullptr && (strip_mine_loop || is_deleteable_safept(sfpt))) { 2273 if (strip_mine_loop) { 2274 Node* outer_le = outer_ilt->_tail->in(0); 2275 Node* sfpt_clone = sfpt->clone(); 2276 sfpt_clone->set_req(0, iffalse); 2277 outer_le->set_req(0, sfpt_clone); 2278 2279 Node* polladdr = sfpt_clone->in(TypeFunc::Parms); 2280 if (polladdr != nullptr && polladdr->is_Load()) { 2281 // Polling load should be pinned outside inner loop. 2282 Node* new_polladdr = polladdr->clone(); 2283 new_polladdr->set_req(0, iffalse); 2284 _igvn.register_new_node_with_optimizer(new_polladdr, polladdr); 2285 set_ctrl(new_polladdr, iffalse); 2286 sfpt_clone->set_req(TypeFunc::Parms, new_polladdr); 2287 } 2288 // When this code runs, loop bodies have not yet been populated. 2289 const bool body_populated = false; 2290 register_control(sfpt_clone, outer_ilt, iffalse, body_populated); 2291 set_idom(outer_le, sfpt_clone, dom_depth(sfpt_clone)); 2292 } 2293 lazy_replace(sfpt, sfpt->in(TypeFunc::Control)); 2294 if (loop->_safepts != nullptr) { 2295 loop->_safepts->yank(sfpt); 2296 } 2297 } 2298 } 2299 2300 #ifdef ASSERT 2301 assert(l->is_valid_counted_loop(iv_bt), "counted loop shape is messed up"); 2302 assert(l == loop->_head && l->phi() == phi && l->loopexit_or_null() == lex, "" ); 2303 #endif 2304 #ifndef PRODUCT 2305 if (TraceLoopOpts) { 2306 tty->print("Counted "); 2307 loop->dump_head(); 2308 } 2309 #endif 2310 2311 C->print_method(PHASE_AFTER_CLOOPS, 3, l); 2312 2313 // Capture bounds of the loop in the induction variable Phi before 2314 // subsequent transformation (iteration splitting) obscures the 2315 // bounds 2316 l->phi()->as_Phi()->set_type(l->phi()->Value(&_igvn)); 2317 2318 if (strip_mine_loop) { 2319 l->mark_strip_mined(); 2320 l->verify_strip_mined(1); 2321 outer_ilt->_head->as_Loop()->verify_strip_mined(1); 2322 loop = outer_ilt; 2323 } 2324 2325 #ifndef PRODUCT 2326 if (x->as_Loop()->is_loop_nest_inner_loop() && iv_bt == T_LONG) { 2327 Atomic::inc(&_long_loop_counted_loops); 2328 } 2329 #endif 2330 if (iv_bt == T_LONG && x->as_Loop()->is_loop_nest_outer_loop()) { 2331 l->mark_loop_nest_outer_loop(); 2332 } 2333 2334 return true; 2335 } 2336 2337 // Check if there is a dominating loop limit check of the form 'init < limit' starting at the loop entry. 2338 // If there is one, then we do not need to create an additional Loop Limit Check Predicate. 2339 bool PhaseIdealLoop::has_dominating_loop_limit_check(Node* init_trip, Node* limit, const jlong stride_con, 2340 const BasicType iv_bt, Node* loop_entry) { 2341 // Eagerly call transform() on the Cmp and Bool node to common them up if possible. This is required in order to 2342 // successfully find a dominated test with the If node below. 2343 Node* cmp_limit; 2344 Node* bol; 2345 if (stride_con > 0) { 2346 cmp_limit = _igvn.transform(CmpNode::make(init_trip, limit, iv_bt)); 2347 bol = _igvn.transform(new BoolNode(cmp_limit, BoolTest::lt)); 2348 } else { 2349 cmp_limit = _igvn.transform(CmpNode::make(init_trip, limit, iv_bt)); 2350 bol = _igvn.transform(new BoolNode(cmp_limit, BoolTest::gt)); 2351 } 2352 2353 // Check if there is already a dominating init < limit check. If so, we do not need a Loop Limit Check Predicate. 2354 IfNode* iff = new IfNode(loop_entry, bol, PROB_MIN, COUNT_UNKNOWN); 2355 // Also add fake IfProj nodes in order to call transform() on the newly created IfNode. 2356 IfFalseNode* if_false = new IfFalseNode(iff); 2357 IfTrueNode* if_true = new IfTrueNode(iff); 2358 Node* dominated_iff = _igvn.transform(iff); 2359 // ConI node? Found dominating test (IfNode::dominated_by() returns a ConI node). 2360 const bool found_dominating_test = dominated_iff != nullptr && dominated_iff->is_ConI(); 2361 2362 // Kill the If with its projections again in the next IGVN round by cutting it off from the graph. 2363 _igvn.replace_input_of(iff, 0, C->top()); 2364 _igvn.replace_input_of(iff, 1, C->top()); 2365 return found_dominating_test; 2366 } 2367 2368 //----------------------exact_limit------------------------------------------- 2369 Node* PhaseIdealLoop::exact_limit( IdealLoopTree *loop ) { 2370 assert(loop->_head->is_CountedLoop(), ""); 2371 CountedLoopNode *cl = loop->_head->as_CountedLoop(); 2372 assert(cl->is_valid_counted_loop(T_INT), ""); 2373 2374 if (cl->stride_con() == 1 || 2375 cl->stride_con() == -1 || 2376 cl->limit()->Opcode() == Op_LoopLimit) { 2377 // Old code has exact limit (it could be incorrect in case of int overflow). 2378 // Loop limit is exact with stride == 1. And loop may already have exact limit. 2379 return cl->limit(); 2380 } 2381 Node *limit = nullptr; 2382 #ifdef ASSERT 2383 BoolTest::mask bt = cl->loopexit()->test_trip(); 2384 assert(bt == BoolTest::lt || bt == BoolTest::gt, "canonical test is expected"); 2385 #endif 2386 if (cl->has_exact_trip_count()) { 2387 // Simple case: loop has constant boundaries. 2388 // Use jlongs to avoid integer overflow. 2389 int stride_con = cl->stride_con(); 2390 jlong init_con = cl->init_trip()->get_int(); 2391 jlong limit_con = cl->limit()->get_int(); 2392 julong trip_cnt = cl->trip_count(); 2393 jlong final_con = init_con + trip_cnt*stride_con; 2394 int final_int = (int)final_con; 2395 // The final value should be in integer range since the loop 2396 // is counted and the limit was checked for overflow. 2397 assert(final_con == (jlong)final_int, "final value should be integer"); 2398 limit = _igvn.intcon(final_int); 2399 } else { 2400 // Create new LoopLimit node to get exact limit (final iv value). 2401 limit = new LoopLimitNode(C, cl->init_trip(), cl->limit(), cl->stride()); 2402 register_new_node(limit, cl->in(LoopNode::EntryControl)); 2403 } 2404 assert(limit != nullptr, "sanity"); 2405 return limit; 2406 } 2407 2408 //------------------------------Ideal------------------------------------------ 2409 // Return a node which is more "ideal" than the current node. 2410 // Attempt to convert into a counted-loop. 2411 Node *LoopNode::Ideal(PhaseGVN *phase, bool can_reshape) { 2412 if (!can_be_counted_loop(phase) && !is_OuterStripMinedLoop()) { 2413 phase->C->set_major_progress(); 2414 } 2415 return RegionNode::Ideal(phase, can_reshape); 2416 } 2417 2418 #ifdef ASSERT 2419 void LoopNode::verify_strip_mined(int expect_skeleton) const { 2420 const OuterStripMinedLoopNode* outer = nullptr; 2421 const CountedLoopNode* inner = nullptr; 2422 if (is_strip_mined()) { 2423 if (!is_valid_counted_loop(T_INT)) { 2424 return; // Skip malformed counted loop 2425 } 2426 assert(is_CountedLoop(), "no Loop should be marked strip mined"); 2427 inner = as_CountedLoop(); 2428 outer = inner->in(LoopNode::EntryControl)->as_OuterStripMinedLoop(); 2429 } else if (is_OuterStripMinedLoop()) { 2430 outer = this->as_OuterStripMinedLoop(); 2431 inner = outer->unique_ctrl_out()->as_CountedLoop(); 2432 assert(inner->is_valid_counted_loop(T_INT) && inner->is_strip_mined(), "OuterStripMinedLoop should have been removed"); 2433 assert(!is_strip_mined(), "outer loop shouldn't be marked strip mined"); 2434 } 2435 if (inner != nullptr || outer != nullptr) { 2436 assert(inner != nullptr && outer != nullptr, "missing loop in strip mined nest"); 2437 Node* outer_tail = outer->in(LoopNode::LoopBackControl); 2438 Node* outer_le = outer_tail->in(0); 2439 assert(outer_le->Opcode() == Op_OuterStripMinedLoopEnd, "tail of outer loop should be an If"); 2440 Node* sfpt = outer_le->in(0); 2441 assert(sfpt->Opcode() == Op_SafePoint, "where's the safepoint?"); 2442 Node* inner_out = sfpt->in(0); 2443 CountedLoopEndNode* cle = inner_out->in(0)->as_CountedLoopEnd(); 2444 assert(cle == inner->loopexit_or_null(), "mismatch"); 2445 bool has_skeleton = outer_le->in(1)->bottom_type()->singleton() && outer_le->in(1)->bottom_type()->is_int()->get_con() == 0; 2446 if (has_skeleton) { 2447 assert(expect_skeleton == 1 || expect_skeleton == -1, "unexpected skeleton node"); 2448 assert(outer->outcnt() == 2, "only control nodes"); 2449 } else { 2450 assert(expect_skeleton == 0 || expect_skeleton == -1, "no skeleton node?"); 2451 uint phis = 0; 2452 uint be_loads = 0; 2453 Node* be = inner->in(LoopNode::LoopBackControl); 2454 for (DUIterator_Fast imax, i = inner->fast_outs(imax); i < imax; i++) { 2455 Node* u = inner->fast_out(i); 2456 if (u->is_Phi()) { 2457 phis++; 2458 for (DUIterator_Fast jmax, j = be->fast_outs(jmax); j < jmax; j++) { 2459 Node* n = be->fast_out(j); 2460 if (n->is_Load()) { 2461 assert(n->in(0) == be || n->find_prec_edge(be) > 0, "should be on the backedge"); 2462 do { 2463 n = n->raw_out(0); 2464 } while (!n->is_Phi()); 2465 if (n == u) { 2466 be_loads++; 2467 break; 2468 } 2469 } 2470 } 2471 } 2472 } 2473 assert(be_loads <= phis, "wrong number phis that depends on a pinned load"); 2474 for (DUIterator_Fast imax, i = outer->fast_outs(imax); i < imax; i++) { 2475 Node* u = outer->fast_out(i); 2476 assert(u == outer || u == inner || u->is_Phi(), "nothing between inner and outer loop"); 2477 } 2478 uint stores = 0; 2479 for (DUIterator_Fast imax, i = inner_out->fast_outs(imax); i < imax; i++) { 2480 Node* u = inner_out->fast_out(i); 2481 if (u->is_Store()) { 2482 stores++; 2483 } 2484 } 2485 // Late optimization of loads on backedge can cause Phi of outer loop to be eliminated but Phi of inner loop is 2486 // not guaranteed to be optimized out. 2487 assert(outer->outcnt() >= phis + 2 - be_loads && outer->outcnt() <= phis + 2 + stores + 1, "only phis"); 2488 } 2489 assert(sfpt->outcnt() == 1, "no data node"); 2490 assert(outer_tail->outcnt() == 1 || !has_skeleton, "no data node"); 2491 } 2492 } 2493 #endif 2494 2495 //============================================================================= 2496 //------------------------------Ideal------------------------------------------ 2497 // Return a node which is more "ideal" than the current node. 2498 // Attempt to convert into a counted-loop. 2499 Node *CountedLoopNode::Ideal(PhaseGVN *phase, bool can_reshape) { 2500 return RegionNode::Ideal(phase, can_reshape); 2501 } 2502 2503 //------------------------------dump_spec-------------------------------------- 2504 // Dump special per-node info 2505 #ifndef PRODUCT 2506 void CountedLoopNode::dump_spec(outputStream *st) const { 2507 LoopNode::dump_spec(st); 2508 if (stride_is_con()) { 2509 st->print("stride: %d ",stride_con()); 2510 } 2511 if (is_pre_loop ()) st->print("pre of N%d" , _main_idx); 2512 if (is_main_loop()) st->print("main of N%d", _idx); 2513 if (is_post_loop()) st->print("post of N%d", _main_idx); 2514 if (is_strip_mined()) st->print(" strip mined"); 2515 } 2516 #endif 2517 2518 //============================================================================= 2519 jlong BaseCountedLoopEndNode::stride_con() const { 2520 return stride()->bottom_type()->is_integer(bt())->get_con_as_long(bt()); 2521 } 2522 2523 2524 BaseCountedLoopEndNode* BaseCountedLoopEndNode::make(Node* control, Node* test, float prob, float cnt, BasicType bt) { 2525 if (bt == T_INT) { 2526 return new CountedLoopEndNode(control, test, prob, cnt); 2527 } 2528 assert(bt == T_LONG, "unsupported"); 2529 return new LongCountedLoopEndNode(control, test, prob, cnt); 2530 } 2531 2532 //============================================================================= 2533 //------------------------------Value----------------------------------------- 2534 const Type* LoopLimitNode::Value(PhaseGVN* phase) const { 2535 const Type* init_t = phase->type(in(Init)); 2536 const Type* limit_t = phase->type(in(Limit)); 2537 const Type* stride_t = phase->type(in(Stride)); 2538 // Either input is TOP ==> the result is TOP 2539 if (init_t == Type::TOP) return Type::TOP; 2540 if (limit_t == Type::TOP) return Type::TOP; 2541 if (stride_t == Type::TOP) return Type::TOP; 2542 2543 int stride_con = stride_t->is_int()->get_con(); 2544 if (stride_con == 1) 2545 return bottom_type(); // Identity 2546 2547 if (init_t->is_int()->is_con() && limit_t->is_int()->is_con()) { 2548 // Use jlongs to avoid integer overflow. 2549 jlong init_con = init_t->is_int()->get_con(); 2550 jlong limit_con = limit_t->is_int()->get_con(); 2551 int stride_m = stride_con - (stride_con > 0 ? 1 : -1); 2552 jlong trip_count = (limit_con - init_con + stride_m)/stride_con; 2553 jlong final_con = init_con + stride_con*trip_count; 2554 int final_int = (int)final_con; 2555 // The final value should be in integer range in almost all cases, 2556 // since the loop is counted and the limit was checked for overflow. 2557 // There some exceptions, for example: 2558 // - During CCP, there might be a temporary overflow from PhiNodes, see JDK-8309266. 2559 // - During PhaseIdealLoop::split_thru_phi, the LoopLimitNode floats possibly far above 2560 // the loop and its predicates, and we might get constants on one side of the phi that 2561 // would lead to overflows. Such a code path would never lead us to enter the loop 2562 // because of the loop limit overflow check that happens after the LoopLimitNode 2563 // computation with overflow, but before we enter the loop, see JDK-8335747. 2564 if (final_con == (jlong)final_int) { 2565 return TypeInt::make(final_int); 2566 } else { 2567 return bottom_type(); 2568 } 2569 } 2570 2571 return bottom_type(); // TypeInt::INT 2572 } 2573 2574 //------------------------------Ideal------------------------------------------ 2575 // Return a node which is more "ideal" than the current node. 2576 Node *LoopLimitNode::Ideal(PhaseGVN *phase, bool can_reshape) { 2577 if (phase->type(in(Init)) == Type::TOP || 2578 phase->type(in(Limit)) == Type::TOP || 2579 phase->type(in(Stride)) == Type::TOP) 2580 return nullptr; // Dead 2581 2582 int stride_con = phase->type(in(Stride))->is_int()->get_con(); 2583 if (stride_con == 1) 2584 return nullptr; // Identity 2585 2586 // Delay following optimizations until all loop optimizations 2587 // done to keep Ideal graph simple. 2588 if (!can_reshape || !phase->C->post_loop_opts_phase()) { 2589 phase->C->record_for_post_loop_opts_igvn(this); 2590 return nullptr; 2591 } 2592 2593 const TypeInt* init_t = phase->type(in(Init) )->is_int(); 2594 const TypeInt* limit_t = phase->type(in(Limit))->is_int(); 2595 jlong stride_p; 2596 jlong lim, ini; 2597 julong max; 2598 if (stride_con > 0) { 2599 stride_p = stride_con; 2600 lim = limit_t->_hi; 2601 ini = init_t->_lo; 2602 max = (julong)max_jint; 2603 } else { 2604 stride_p = -(jlong)stride_con; 2605 lim = init_t->_hi; 2606 ini = limit_t->_lo; 2607 max = (julong)(juint)min_jint; // double cast to get 0x0000000080000000, not 0xffffffff80000000 2608 } 2609 julong range = lim - ini + stride_p; 2610 if (range <= max) { 2611 // Convert to integer expression if it is not overflow. 2612 Node* stride_m = phase->intcon(stride_con - (stride_con > 0 ? 1 : -1)); 2613 Node *range = phase->transform(new SubINode(in(Limit), in(Init))); 2614 Node *bias = phase->transform(new AddINode(range, stride_m)); 2615 Node *trip = phase->transform(new DivINode(nullptr, bias, in(Stride))); 2616 Node *span = phase->transform(new MulINode(trip, in(Stride))); 2617 return new AddINode(span, in(Init)); // exact limit 2618 } 2619 2620 if (is_power_of_2(stride_p) || // divisor is 2^n 2621 !Matcher::has_match_rule(Op_LoopLimit)) { // or no specialized Mach node? 2622 // Convert to long expression to avoid integer overflow 2623 // and let igvn optimizer convert this division. 2624 // 2625 Node* init = phase->transform( new ConvI2LNode(in(Init))); 2626 Node* limit = phase->transform( new ConvI2LNode(in(Limit))); 2627 Node* stride = phase->longcon(stride_con); 2628 Node* stride_m = phase->longcon(stride_con - (stride_con > 0 ? 1 : -1)); 2629 2630 Node *range = phase->transform(new SubLNode(limit, init)); 2631 Node *bias = phase->transform(new AddLNode(range, stride_m)); 2632 Node *span; 2633 if (stride_con > 0 && is_power_of_2(stride_p)) { 2634 // bias >= 0 if stride >0, so if stride is 2^n we can use &(-stride) 2635 // and avoid generating rounding for division. Zero trip guard should 2636 // guarantee that init < limit but sometimes the guard is missing and 2637 // we can get situation when init > limit. Note, for the empty loop 2638 // optimization zero trip guard is generated explicitly which leaves 2639 // only RCE predicate where exact limit is used and the predicate 2640 // will simply fail forcing recompilation. 2641 Node* neg_stride = phase->longcon(-stride_con); 2642 span = phase->transform(new AndLNode(bias, neg_stride)); 2643 } else { 2644 Node *trip = phase->transform(new DivLNode(nullptr, bias, stride)); 2645 span = phase->transform(new MulLNode(trip, stride)); 2646 } 2647 // Convert back to int 2648 Node *span_int = phase->transform(new ConvL2INode(span)); 2649 return new AddINode(span_int, in(Init)); // exact limit 2650 } 2651 2652 return nullptr; // No progress 2653 } 2654 2655 //------------------------------Identity--------------------------------------- 2656 // If stride == 1 return limit node. 2657 Node* LoopLimitNode::Identity(PhaseGVN* phase) { 2658 int stride_con = phase->type(in(Stride))->is_int()->get_con(); 2659 if (stride_con == 1 || stride_con == -1) 2660 return in(Limit); 2661 return this; 2662 } 2663 2664 //============================================================================= 2665 //----------------------match_incr_with_optional_truncation-------------------- 2666 // Match increment with optional truncation: 2667 // CHAR: (i+1)&0x7fff, BYTE: ((i+1)<<8)>>8, or SHORT: ((i+1)<<16)>>16 2668 // Return null for failure. Success returns the increment node. 2669 Node* CountedLoopNode::match_incr_with_optional_truncation(Node* expr, Node** trunc1, Node** trunc2, 2670 const TypeInteger** trunc_type, 2671 BasicType bt) { 2672 // Quick cutouts: 2673 if (expr == nullptr || expr->req() != 3) return nullptr; 2674 2675 Node *t1 = nullptr; 2676 Node *t2 = nullptr; 2677 Node* n1 = expr; 2678 int n1op = n1->Opcode(); 2679 const TypeInteger* trunc_t = TypeInteger::bottom(bt); 2680 2681 if (bt == T_INT) { 2682 // Try to strip (n1 & M) or (n1 << N >> N) from n1. 2683 if (n1op == Op_AndI && 2684 n1->in(2)->is_Con() && 2685 n1->in(2)->bottom_type()->is_int()->get_con() == 0x7fff) { 2686 // %%% This check should match any mask of 2**K-1. 2687 t1 = n1; 2688 n1 = t1->in(1); 2689 n1op = n1->Opcode(); 2690 trunc_t = TypeInt::CHAR; 2691 } else if (n1op == Op_RShiftI && 2692 n1->in(1) != nullptr && 2693 n1->in(1)->Opcode() == Op_LShiftI && 2694 n1->in(2) == n1->in(1)->in(2) && 2695 n1->in(2)->is_Con()) { 2696 jint shift = n1->in(2)->bottom_type()->is_int()->get_con(); 2697 // %%% This check should match any shift in [1..31]. 2698 if (shift == 16 || shift == 8) { 2699 t1 = n1; 2700 t2 = t1->in(1); 2701 n1 = t2->in(1); 2702 n1op = n1->Opcode(); 2703 if (shift == 16) { 2704 trunc_t = TypeInt::SHORT; 2705 } else if (shift == 8) { 2706 trunc_t = TypeInt::BYTE; 2707 } 2708 } 2709 } 2710 } 2711 2712 // If (maybe after stripping) it is an AddI, we won: 2713 if (n1op == Op_Add(bt)) { 2714 *trunc1 = t1; 2715 *trunc2 = t2; 2716 *trunc_type = trunc_t; 2717 return n1; 2718 } 2719 2720 // failed 2721 return nullptr; 2722 } 2723 2724 LoopNode* CountedLoopNode::skip_strip_mined(int expect_skeleton) { 2725 if (is_strip_mined() && in(EntryControl) != nullptr && in(EntryControl)->is_OuterStripMinedLoop()) { 2726 verify_strip_mined(expect_skeleton); 2727 return in(EntryControl)->as_Loop(); 2728 } 2729 return this; 2730 } 2731 2732 OuterStripMinedLoopNode* CountedLoopNode::outer_loop() const { 2733 assert(is_strip_mined(), "not a strip mined loop"); 2734 Node* c = in(EntryControl); 2735 if (c == nullptr || c->is_top() || !c->is_OuterStripMinedLoop()) { 2736 return nullptr; 2737 } 2738 return c->as_OuterStripMinedLoop(); 2739 } 2740 2741 IfTrueNode* OuterStripMinedLoopNode::outer_loop_tail() const { 2742 Node* c = in(LoopBackControl); 2743 if (c == nullptr || c->is_top()) { 2744 return nullptr; 2745 } 2746 return c->as_IfTrue(); 2747 } 2748 2749 IfTrueNode* CountedLoopNode::outer_loop_tail() const { 2750 LoopNode* l = outer_loop(); 2751 if (l == nullptr) { 2752 return nullptr; 2753 } 2754 return l->outer_loop_tail(); 2755 } 2756 2757 OuterStripMinedLoopEndNode* OuterStripMinedLoopNode::outer_loop_end() const { 2758 IfTrueNode* proj = outer_loop_tail(); 2759 if (proj == nullptr) { 2760 return nullptr; 2761 } 2762 Node* c = proj->in(0); 2763 if (c == nullptr || c->is_top() || c->outcnt() != 2) { 2764 return nullptr; 2765 } 2766 return c->as_OuterStripMinedLoopEnd(); 2767 } 2768 2769 OuterStripMinedLoopEndNode* CountedLoopNode::outer_loop_end() const { 2770 LoopNode* l = outer_loop(); 2771 if (l == nullptr) { 2772 return nullptr; 2773 } 2774 return l->outer_loop_end(); 2775 } 2776 2777 IfFalseNode* OuterStripMinedLoopNode::outer_loop_exit() const { 2778 IfNode* le = outer_loop_end(); 2779 if (le == nullptr) { 2780 return nullptr; 2781 } 2782 Node* c = le->proj_out_or_null(false); 2783 if (c == nullptr) { 2784 return nullptr; 2785 } 2786 return c->as_IfFalse(); 2787 } 2788 2789 IfFalseNode* CountedLoopNode::outer_loop_exit() const { 2790 LoopNode* l = outer_loop(); 2791 if (l == nullptr) { 2792 return nullptr; 2793 } 2794 return l->outer_loop_exit(); 2795 } 2796 2797 SafePointNode* OuterStripMinedLoopNode::outer_safepoint() const { 2798 IfNode* le = outer_loop_end(); 2799 if (le == nullptr) { 2800 return nullptr; 2801 } 2802 Node* c = le->in(0); 2803 if (c == nullptr || c->is_top()) { 2804 return nullptr; 2805 } 2806 assert(c->Opcode() == Op_SafePoint, "broken outer loop"); 2807 return c->as_SafePoint(); 2808 } 2809 2810 SafePointNode* CountedLoopNode::outer_safepoint() const { 2811 LoopNode* l = outer_loop(); 2812 if (l == nullptr) { 2813 return nullptr; 2814 } 2815 return l->outer_safepoint(); 2816 } 2817 2818 Node* CountedLoopNode::skip_assertion_predicates_with_halt() { 2819 Node* ctrl = in(LoopNode::EntryControl); 2820 if (ctrl == nullptr) { 2821 // Dying loop. 2822 return nullptr; 2823 } 2824 if (is_main_loop()) { 2825 ctrl = skip_strip_mined()->in(LoopNode::EntryControl); 2826 } 2827 if (is_main_loop() || is_post_loop()) { 2828 AssertionPredicates assertion_predicates(ctrl); 2829 return assertion_predicates.entry(); 2830 } 2831 return ctrl; 2832 } 2833 2834 2835 int CountedLoopNode::stride_con() const { 2836 CountedLoopEndNode* cle = loopexit_or_null(); 2837 return cle != nullptr ? cle->stride_con() : 0; 2838 } 2839 2840 BaseCountedLoopNode* BaseCountedLoopNode::make(Node* entry, Node* backedge, BasicType bt) { 2841 if (bt == T_INT) { 2842 return new CountedLoopNode(entry, backedge); 2843 } 2844 assert(bt == T_LONG, "unsupported"); 2845 return new LongCountedLoopNode(entry, backedge); 2846 } 2847 2848 void OuterStripMinedLoopNode::fix_sunk_stores(CountedLoopEndNode* inner_cle, LoopNode* inner_cl, PhaseIterGVN* igvn, 2849 PhaseIdealLoop* iloop) { 2850 Node* cle_out = inner_cle->proj_out(false); 2851 Node* cle_tail = inner_cle->proj_out(true); 2852 if (cle_out->outcnt() > 1) { 2853 // Look for chains of stores that were sunk 2854 // out of the inner loop and are in the outer loop 2855 for (DUIterator_Fast imax, i = cle_out->fast_outs(imax); i < imax; i++) { 2856 Node* u = cle_out->fast_out(i); 2857 if (u->is_Store()) { 2858 int alias_idx = igvn->C->get_alias_index(u->adr_type()); 2859 Node* first = u; 2860 for (;;) { 2861 Node* next = first->in(MemNode::Memory); 2862 if (!next->is_Store() || next->in(0) != cle_out) { 2863 break; 2864 } 2865 assert(igvn->C->get_alias_index(next->adr_type()) == alias_idx, ""); 2866 first = next; 2867 } 2868 Node* last = u; 2869 for (;;) { 2870 Node* next = nullptr; 2871 for (DUIterator_Fast jmax, j = last->fast_outs(jmax); j < jmax; j++) { 2872 Node* uu = last->fast_out(j); 2873 if (uu->is_Store() && uu->in(0) == cle_out) { 2874 assert(next == nullptr, "only one in the outer loop"); 2875 next = uu; 2876 assert(igvn->C->get_alias_index(next->adr_type()) == alias_idx, ""); 2877 } 2878 } 2879 if (next == nullptr) { 2880 break; 2881 } 2882 last = next; 2883 } 2884 Node* phi = nullptr; 2885 for (DUIterator_Fast jmax, j = inner_cl->fast_outs(jmax); j < jmax; j++) { 2886 Node* uu = inner_cl->fast_out(j); 2887 if (uu->is_Phi()) { 2888 Node* be = uu->in(LoopNode::LoopBackControl); 2889 if (be->is_Store() && be->in(0) == inner_cl->in(LoopNode::LoopBackControl)) { 2890 assert(igvn->C->get_alias_index(uu->adr_type()) != alias_idx && igvn->C->get_alias_index(uu->adr_type()) != Compile::AliasIdxBot, "unexpected store"); 2891 } 2892 if (be == last || be == first->in(MemNode::Memory)) { 2893 assert(igvn->C->get_alias_index(uu->adr_type()) == alias_idx || igvn->C->get_alias_index(uu->adr_type()) == Compile::AliasIdxBot, "unexpected alias"); 2894 assert(phi == nullptr, "only one phi"); 2895 phi = uu; 2896 } 2897 } 2898 } 2899 #ifdef ASSERT 2900 for (DUIterator_Fast jmax, j = inner_cl->fast_outs(jmax); j < jmax; j++) { 2901 Node* uu = inner_cl->fast_out(j); 2902 if (uu->is_memory_phi()) { 2903 if (uu->adr_type() == igvn->C->get_adr_type(igvn->C->get_alias_index(u->adr_type()))) { 2904 assert(phi == uu, "what's that phi?"); 2905 } else if (uu->adr_type() == TypePtr::BOTTOM) { 2906 Node* n = uu->in(LoopNode::LoopBackControl); 2907 uint limit = igvn->C->live_nodes(); 2908 uint i = 0; 2909 while (n != uu) { 2910 i++; 2911 assert(i < limit, "infinite loop"); 2912 if (n->is_Proj()) { 2913 n = n->in(0); 2914 } else if (n->is_SafePoint() || n->is_MemBar()) { 2915 n = n->in(TypeFunc::Memory); 2916 } else if (n->is_Phi()) { 2917 n = n->in(1); 2918 } else if (n->is_MergeMem()) { 2919 n = n->as_MergeMem()->memory_at(igvn->C->get_alias_index(u->adr_type())); 2920 } else if (n->is_Store() || n->is_LoadStore() || n->is_ClearArray()) { 2921 n = n->in(MemNode::Memory); 2922 } else { 2923 n->dump(); 2924 ShouldNotReachHere(); 2925 } 2926 } 2927 } 2928 } 2929 } 2930 #endif 2931 if (phi == nullptr) { 2932 // If an entire chains was sunk, the 2933 // inner loop has no phi for that memory 2934 // slice, create one for the outer loop 2935 phi = PhiNode::make(inner_cl, first->in(MemNode::Memory), Type::MEMORY, 2936 igvn->C->get_adr_type(igvn->C->get_alias_index(u->adr_type()))); 2937 phi->set_req(LoopNode::LoopBackControl, last); 2938 phi = register_new_node(phi, inner_cl, igvn, iloop); 2939 igvn->replace_input_of(first, MemNode::Memory, phi); 2940 } else { 2941 // Or fix the outer loop fix to include 2942 // that chain of stores. 2943 Node* be = phi->in(LoopNode::LoopBackControl); 2944 assert(!(be->is_Store() && be->in(0) == inner_cl->in(LoopNode::LoopBackControl)), "store on the backedge + sunk stores: unsupported"); 2945 if (be == first->in(MemNode::Memory)) { 2946 if (be == phi->in(LoopNode::LoopBackControl)) { 2947 igvn->replace_input_of(phi, LoopNode::LoopBackControl, last); 2948 } else { 2949 igvn->replace_input_of(be, MemNode::Memory, last); 2950 } 2951 } else { 2952 #ifdef ASSERT 2953 if (be == phi->in(LoopNode::LoopBackControl)) { 2954 assert(phi->in(LoopNode::LoopBackControl) == last, ""); 2955 } else { 2956 assert(be->in(MemNode::Memory) == last, ""); 2957 } 2958 #endif 2959 } 2960 } 2961 } 2962 } 2963 } 2964 } 2965 2966 void OuterStripMinedLoopNode::adjust_strip_mined_loop(PhaseIterGVN* igvn) { 2967 // Look for the outer & inner strip mined loop, reduce number of 2968 // iterations of the inner loop, set exit condition of outer loop, 2969 // construct required phi nodes for outer loop. 2970 CountedLoopNode* inner_cl = unique_ctrl_out()->as_CountedLoop(); 2971 assert(inner_cl->is_strip_mined(), "inner loop should be strip mined"); 2972 if (LoopStripMiningIter == 0) { 2973 remove_outer_loop_and_safepoint(igvn); 2974 return; 2975 } 2976 if (LoopStripMiningIter == 1) { 2977 transform_to_counted_loop(igvn, nullptr); 2978 return; 2979 } 2980 Node* inner_iv_phi = inner_cl->phi(); 2981 if (inner_iv_phi == nullptr) { 2982 IfNode* outer_le = outer_loop_end(); 2983 Node* iff = igvn->transform(new IfNode(outer_le->in(0), outer_le->in(1), outer_le->_prob, outer_le->_fcnt)); 2984 igvn->replace_node(outer_le, iff); 2985 inner_cl->clear_strip_mined(); 2986 return; 2987 } 2988 CountedLoopEndNode* inner_cle = inner_cl->loopexit(); 2989 2990 int stride = inner_cl->stride_con(); 2991 // For a min int stride, LoopStripMiningIter * stride overflows the int range for all values of LoopStripMiningIter 2992 // except 0 or 1. Those values are handled early on in this method and causes the method to return. So for a min int 2993 // stride, the method is guaranteed to return at the next check below. 2994 jlong scaled_iters_long = ((jlong)LoopStripMiningIter) * ABS((jlong)stride); 2995 int scaled_iters = (int)scaled_iters_long; 2996 if ((jlong)scaled_iters != scaled_iters_long) { 2997 // Remove outer loop and safepoint (too few iterations) 2998 remove_outer_loop_and_safepoint(igvn); 2999 return; 3000 } 3001 jlong short_scaled_iters = LoopStripMiningIterShortLoop * ABS(stride); 3002 const TypeInt* inner_iv_t = igvn->type(inner_iv_phi)->is_int(); 3003 jlong iter_estimate = (jlong)inner_iv_t->_hi - (jlong)inner_iv_t->_lo; 3004 assert(iter_estimate > 0, "broken"); 3005 if (iter_estimate <= short_scaled_iters) { 3006 // Remove outer loop and safepoint: loop executes less than LoopStripMiningIterShortLoop 3007 remove_outer_loop_and_safepoint(igvn); 3008 return; 3009 } 3010 if (iter_estimate <= scaled_iters_long) { 3011 // We would only go through one iteration of 3012 // the outer loop: drop the outer loop but 3013 // keep the safepoint so we don't run for 3014 // too long without a safepoint 3015 IfNode* outer_le = outer_loop_end(); 3016 Node* iff = igvn->transform(new IfNode(outer_le->in(0), outer_le->in(1), outer_le->_prob, outer_le->_fcnt)); 3017 igvn->replace_node(outer_le, iff); 3018 inner_cl->clear_strip_mined(); 3019 return; 3020 } 3021 3022 Node* cle_tail = inner_cle->proj_out(true); 3023 ResourceMark rm; 3024 Node_List old_new; 3025 if (cle_tail->outcnt() > 1) { 3026 // Look for nodes on backedge of inner loop and clone them 3027 Unique_Node_List backedge_nodes; 3028 for (DUIterator_Fast imax, i = cle_tail->fast_outs(imax); i < imax; i++) { 3029 Node* u = cle_tail->fast_out(i); 3030 if (u != inner_cl) { 3031 assert(!u->is_CFG(), "control flow on the backedge?"); 3032 backedge_nodes.push(u); 3033 } 3034 } 3035 uint last = igvn->C->unique(); 3036 for (uint next = 0; next < backedge_nodes.size(); next++) { 3037 Node* n = backedge_nodes.at(next); 3038 old_new.map(n->_idx, n->clone()); 3039 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 3040 Node* u = n->fast_out(i); 3041 assert(!u->is_CFG(), "broken"); 3042 if (u->_idx >= last) { 3043 continue; 3044 } 3045 if (!u->is_Phi()) { 3046 backedge_nodes.push(u); 3047 } else { 3048 assert(u->in(0) == inner_cl, "strange phi on the backedge"); 3049 } 3050 } 3051 } 3052 // Put the clones on the outer loop backedge 3053 Node* le_tail = outer_loop_tail(); 3054 for (uint next = 0; next < backedge_nodes.size(); next++) { 3055 Node *n = old_new[backedge_nodes.at(next)->_idx]; 3056 for (uint i = 1; i < n->req(); i++) { 3057 if (n->in(i) != nullptr && old_new[n->in(i)->_idx] != nullptr) { 3058 n->set_req(i, old_new[n->in(i)->_idx]); 3059 } 3060 } 3061 if (n->in(0) != nullptr && n->in(0) == cle_tail) { 3062 n->set_req(0, le_tail); 3063 } 3064 igvn->register_new_node_with_optimizer(n); 3065 } 3066 } 3067 3068 Node* iv_phi = nullptr; 3069 // Make a clone of each phi in the inner loop 3070 // for the outer loop 3071 for (uint i = 0; i < inner_cl->outcnt(); i++) { 3072 Node* u = inner_cl->raw_out(i); 3073 if (u->is_Phi()) { 3074 assert(u->in(0) == inner_cl, "inconsistent"); 3075 Node* phi = u->clone(); 3076 phi->set_req(0, this); 3077 Node* be = old_new[phi->in(LoopNode::LoopBackControl)->_idx]; 3078 if (be != nullptr) { 3079 phi->set_req(LoopNode::LoopBackControl, be); 3080 } 3081 phi = igvn->transform(phi); 3082 igvn->replace_input_of(u, LoopNode::EntryControl, phi); 3083 if (u == inner_iv_phi) { 3084 iv_phi = phi; 3085 } 3086 } 3087 } 3088 3089 if (iv_phi != nullptr) { 3090 // Now adjust the inner loop's exit condition 3091 Node* limit = inner_cl->limit(); 3092 // If limit < init for stride > 0 (or limit > init for stride < 0), 3093 // the loop body is run only once. Given limit - init (init - limit resp.) 3094 // would be negative, the unsigned comparison below would cause 3095 // the loop body to be run for LoopStripMiningIter. 3096 Node* max = nullptr; 3097 if (stride > 0) { 3098 max = MaxNode::max_diff_with_zero(limit, iv_phi, TypeInt::INT, *igvn); 3099 } else { 3100 max = MaxNode::max_diff_with_zero(iv_phi, limit, TypeInt::INT, *igvn); 3101 } 3102 // sub is positive and can be larger than the max signed int 3103 // value. Use an unsigned min. 3104 Node* const_iters = igvn->intcon(scaled_iters); 3105 Node* min = MaxNode::unsigned_min(max, const_iters, TypeInt::make(0, scaled_iters, Type::WidenMin), *igvn); 3106 // min is the number of iterations for the next inner loop execution: 3107 // unsigned_min(max(limit - iv_phi, 0), scaled_iters) if stride > 0 3108 // unsigned_min(max(iv_phi - limit, 0), scaled_iters) if stride < 0 3109 3110 Node* new_limit = nullptr; 3111 if (stride > 0) { 3112 new_limit = igvn->transform(new AddINode(min, iv_phi)); 3113 } else { 3114 new_limit = igvn->transform(new SubINode(iv_phi, min)); 3115 } 3116 Node* inner_cmp = inner_cle->cmp_node(); 3117 Node* inner_bol = inner_cle->in(CountedLoopEndNode::TestValue); 3118 Node* outer_bol = inner_bol; 3119 // cmp node for inner loop may be shared 3120 inner_cmp = inner_cmp->clone(); 3121 inner_cmp->set_req(2, new_limit); 3122 inner_bol = inner_bol->clone(); 3123 inner_bol->set_req(1, igvn->transform(inner_cmp)); 3124 igvn->replace_input_of(inner_cle, CountedLoopEndNode::TestValue, igvn->transform(inner_bol)); 3125 // Set the outer loop's exit condition too 3126 igvn->replace_input_of(outer_loop_end(), 1, outer_bol); 3127 } else { 3128 assert(false, "should be able to adjust outer loop"); 3129 IfNode* outer_le = outer_loop_end(); 3130 Node* iff = igvn->transform(new IfNode(outer_le->in(0), outer_le->in(1), outer_le->_prob, outer_le->_fcnt)); 3131 igvn->replace_node(outer_le, iff); 3132 inner_cl->clear_strip_mined(); 3133 } 3134 } 3135 3136 void OuterStripMinedLoopNode::transform_to_counted_loop(PhaseIterGVN* igvn, PhaseIdealLoop* iloop) { 3137 CountedLoopNode* inner_cl = unique_ctrl_out()->as_CountedLoop(); 3138 CountedLoopEndNode* cle = inner_cl->loopexit(); 3139 Node* inner_test = cle->in(1); 3140 IfNode* outer_le = outer_loop_end(); 3141 CountedLoopEndNode* inner_cle = inner_cl->loopexit(); 3142 Node* safepoint = outer_safepoint(); 3143 3144 fix_sunk_stores(inner_cle, inner_cl, igvn, iloop); 3145 3146 // make counted loop exit test always fail 3147 ConINode* zero = igvn->intcon(0); 3148 if (iloop != nullptr) { 3149 iloop->set_root_as_ctrl(zero); 3150 } 3151 igvn->replace_input_of(cle, 1, zero); 3152 // replace outer loop end with CountedLoopEndNode with formers' CLE's exit test 3153 Node* new_end = new CountedLoopEndNode(outer_le->in(0), inner_test, cle->_prob, cle->_fcnt); 3154 register_control(new_end, inner_cl, outer_le->in(0), igvn, iloop); 3155 if (iloop == nullptr) { 3156 igvn->replace_node(outer_le, new_end); 3157 } else { 3158 iloop->lazy_replace(outer_le, new_end); 3159 } 3160 // the backedge of the inner loop must be rewired to the new loop end 3161 Node* backedge = cle->proj_out(true); 3162 igvn->replace_input_of(backedge, 0, new_end); 3163 if (iloop != nullptr) { 3164 iloop->set_idom(backedge, new_end, iloop->dom_depth(new_end) + 1); 3165 } 3166 // make the outer loop go away 3167 igvn->replace_input_of(in(LoopBackControl), 0, igvn->C->top()); 3168 igvn->replace_input_of(this, LoopBackControl, igvn->C->top()); 3169 inner_cl->clear_strip_mined(); 3170 if (iloop != nullptr) { 3171 Unique_Node_List wq; 3172 wq.push(safepoint); 3173 3174 IdealLoopTree* outer_loop_ilt = iloop->get_loop(this); 3175 IdealLoopTree* loop = iloop->get_loop(inner_cl); 3176 3177 for (uint i = 0; i < wq.size(); i++) { 3178 Node* n = wq.at(i); 3179 for (uint j = 0; j < n->req(); ++j) { 3180 Node* in = n->in(j); 3181 if (in == nullptr || in->is_CFG()) { 3182 continue; 3183 } 3184 if (iloop->get_loop(iloop->get_ctrl(in)) != outer_loop_ilt) { 3185 continue; 3186 } 3187 assert(!loop->_body.contains(in), ""); 3188 loop->_body.push(in); 3189 wq.push(in); 3190 } 3191 } 3192 iloop->set_loop(safepoint, loop); 3193 loop->_body.push(safepoint); 3194 iloop->set_loop(safepoint->in(0), loop); 3195 loop->_body.push(safepoint->in(0)); 3196 outer_loop_ilt->_tail = igvn->C->top(); 3197 } 3198 } 3199 3200 void OuterStripMinedLoopNode::remove_outer_loop_and_safepoint(PhaseIterGVN* igvn) const { 3201 CountedLoopNode* inner_cl = unique_ctrl_out()->as_CountedLoop(); 3202 Node* outer_sfpt = outer_safepoint(); 3203 Node* outer_out = outer_loop_exit(); 3204 igvn->replace_node(outer_out, outer_sfpt->in(0)); 3205 igvn->replace_input_of(outer_sfpt, 0, igvn->C->top()); 3206 inner_cl->clear_strip_mined(); 3207 } 3208 3209 Node* OuterStripMinedLoopNode::register_new_node(Node* node, LoopNode* ctrl, PhaseIterGVN* igvn, PhaseIdealLoop* iloop) { 3210 if (iloop == nullptr) { 3211 return igvn->transform(node); 3212 } 3213 iloop->register_new_node(node, ctrl); 3214 return node; 3215 } 3216 3217 Node* OuterStripMinedLoopNode::register_control(Node* node, Node* loop, Node* idom, PhaseIterGVN* igvn, 3218 PhaseIdealLoop* iloop) { 3219 if (iloop == nullptr) { 3220 return igvn->transform(node); 3221 } 3222 iloop->register_control(node, iloop->get_loop(loop), idom); 3223 return node; 3224 } 3225 3226 const Type* OuterStripMinedLoopEndNode::Value(PhaseGVN* phase) const { 3227 if (!in(0)) return Type::TOP; 3228 if (phase->type(in(0)) == Type::TOP) 3229 return Type::TOP; 3230 3231 // Until expansion, the loop end condition is not set so this should not constant fold. 3232 if (is_expanded(phase)) { 3233 return IfNode::Value(phase); 3234 } 3235 3236 return TypeTuple::IFBOTH; 3237 } 3238 3239 bool OuterStripMinedLoopEndNode::is_expanded(PhaseGVN *phase) const { 3240 // The outer strip mined loop head only has Phi uses after expansion 3241 if (phase->is_IterGVN()) { 3242 Node* backedge = proj_out_or_null(true); 3243 if (backedge != nullptr) { 3244 Node* head = backedge->unique_ctrl_out_or_null(); 3245 if (head != nullptr && head->is_OuterStripMinedLoop()) { 3246 if (head->find_out_with(Op_Phi) != nullptr) { 3247 return true; 3248 } 3249 } 3250 } 3251 } 3252 return false; 3253 } 3254 3255 Node *OuterStripMinedLoopEndNode::Ideal(PhaseGVN *phase, bool can_reshape) { 3256 if (remove_dead_region(phase, can_reshape)) return this; 3257 3258 return nullptr; 3259 } 3260 3261 //------------------------------filtered_type-------------------------------- 3262 // Return a type based on condition control flow 3263 // A successful return will be a type that is restricted due 3264 // to a series of dominating if-tests, such as: 3265 // if (i < 10) { 3266 // if (i > 0) { 3267 // here: "i" type is [1..10) 3268 // } 3269 // } 3270 // or a control flow merge 3271 // if (i < 10) { 3272 // do { 3273 // phi( , ) -- at top of loop type is [min_int..10) 3274 // i = ? 3275 // } while ( i < 10) 3276 // 3277 const TypeInt* PhaseIdealLoop::filtered_type( Node *n, Node* n_ctrl) { 3278 assert(n && n->bottom_type()->is_int(), "must be int"); 3279 const TypeInt* filtered_t = nullptr; 3280 if (!n->is_Phi()) { 3281 assert(n_ctrl != nullptr || n_ctrl == C->top(), "valid control"); 3282 filtered_t = filtered_type_from_dominators(n, n_ctrl); 3283 3284 } else { 3285 Node* phi = n->as_Phi(); 3286 Node* region = phi->in(0); 3287 assert(n_ctrl == nullptr || n_ctrl == region, "ctrl parameter must be region"); 3288 if (region && region != C->top()) { 3289 for (uint i = 1; i < phi->req(); i++) { 3290 Node* val = phi->in(i); 3291 Node* use_c = region->in(i); 3292 const TypeInt* val_t = filtered_type_from_dominators(val, use_c); 3293 if (val_t != nullptr) { 3294 if (filtered_t == nullptr) { 3295 filtered_t = val_t; 3296 } else { 3297 filtered_t = filtered_t->meet(val_t)->is_int(); 3298 } 3299 } 3300 } 3301 } 3302 } 3303 const TypeInt* n_t = _igvn.type(n)->is_int(); 3304 if (filtered_t != nullptr) { 3305 n_t = n_t->join(filtered_t)->is_int(); 3306 } 3307 return n_t; 3308 } 3309 3310 3311 //------------------------------filtered_type_from_dominators-------------------------------- 3312 // Return a possibly more restrictive type for val based on condition control flow of dominators 3313 const TypeInt* PhaseIdealLoop::filtered_type_from_dominators( Node* val, Node *use_ctrl) { 3314 if (val->is_Con()) { 3315 return val->bottom_type()->is_int(); 3316 } 3317 uint if_limit = 10; // Max number of dominating if's visited 3318 const TypeInt* rtn_t = nullptr; 3319 3320 if (use_ctrl && use_ctrl != C->top()) { 3321 Node* val_ctrl = get_ctrl(val); 3322 uint val_dom_depth = dom_depth(val_ctrl); 3323 Node* pred = use_ctrl; 3324 uint if_cnt = 0; 3325 while (if_cnt < if_limit) { 3326 if ((pred->Opcode() == Op_IfTrue || pred->Opcode() == Op_IfFalse)) { 3327 if_cnt++; 3328 const TypeInt* if_t = IfNode::filtered_int_type(&_igvn, val, pred); 3329 if (if_t != nullptr) { 3330 if (rtn_t == nullptr) { 3331 rtn_t = if_t; 3332 } else { 3333 rtn_t = rtn_t->join(if_t)->is_int(); 3334 } 3335 } 3336 } 3337 pred = idom(pred); 3338 if (pred == nullptr || pred == C->top()) { 3339 break; 3340 } 3341 // Stop if going beyond definition block of val 3342 if (dom_depth(pred) < val_dom_depth) { 3343 break; 3344 } 3345 } 3346 } 3347 return rtn_t; 3348 } 3349 3350 3351 //------------------------------dump_spec-------------------------------------- 3352 // Dump special per-node info 3353 #ifndef PRODUCT 3354 void CountedLoopEndNode::dump_spec(outputStream *st) const { 3355 if( in(TestValue) != nullptr && in(TestValue)->is_Bool() ) { 3356 BoolTest bt( test_trip()); // Added this for g++. 3357 3358 st->print("["); 3359 bt.dump_on(st); 3360 st->print("]"); 3361 } 3362 st->print(" "); 3363 IfNode::dump_spec(st); 3364 } 3365 #endif 3366 3367 //============================================================================= 3368 //------------------------------is_member-------------------------------------- 3369 // Is 'l' a member of 'this'? 3370 bool IdealLoopTree::is_member(const IdealLoopTree *l) const { 3371 while( l->_nest > _nest ) l = l->_parent; 3372 return l == this; 3373 } 3374 3375 //------------------------------set_nest--------------------------------------- 3376 // Set loop tree nesting depth. Accumulate _has_call bits. 3377 int IdealLoopTree::set_nest( uint depth ) { 3378 assert(depth <= SHRT_MAX, "sanity"); 3379 _nest = depth; 3380 int bits = _has_call; 3381 if( _child ) bits |= _child->set_nest(depth+1); 3382 if( bits ) _has_call = 1; 3383 if( _next ) bits |= _next ->set_nest(depth ); 3384 return bits; 3385 } 3386 3387 //------------------------------split_fall_in---------------------------------- 3388 // Split out multiple fall-in edges from the loop header. Move them to a 3389 // private RegionNode before the loop. This becomes the loop landing pad. 3390 void IdealLoopTree::split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt ) { 3391 PhaseIterGVN &igvn = phase->_igvn; 3392 uint i; 3393 3394 // Make a new RegionNode to be the landing pad. 3395 RegionNode* landing_pad = new RegionNode(fall_in_cnt + 1); 3396 phase->set_loop(landing_pad,_parent); 3397 // If _head was irreducible loop entry, landing_pad may now be too 3398 landing_pad->set_loop_status(_head->as_Region()->loop_status()); 3399 // Gather all the fall-in control paths into the landing pad 3400 uint icnt = fall_in_cnt; 3401 uint oreq = _head->req(); 3402 for( i = oreq-1; i>0; i-- ) 3403 if( !phase->is_member( this, _head->in(i) ) ) 3404 landing_pad->set_req(icnt--,_head->in(i)); 3405 3406 // Peel off PhiNode edges as well 3407 for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) { 3408 Node *oj = _head->fast_out(j); 3409 if( oj->is_Phi() ) { 3410 PhiNode* old_phi = oj->as_Phi(); 3411 assert( old_phi->region() == _head, "" ); 3412 igvn.hash_delete(old_phi); // Yank from hash before hacking edges 3413 Node *p = PhiNode::make_blank(landing_pad, old_phi); 3414 uint icnt = fall_in_cnt; 3415 for( i = oreq-1; i>0; i-- ) { 3416 if( !phase->is_member( this, _head->in(i) ) ) { 3417 p->init_req(icnt--, old_phi->in(i)); 3418 // Go ahead and clean out old edges from old phi 3419 old_phi->del_req(i); 3420 } 3421 } 3422 // Search for CSE's here, because ZKM.jar does a lot of 3423 // loop hackery and we need to be a little incremental 3424 // with the CSE to avoid O(N^2) node blow-up. 3425 Node *p2 = igvn.hash_find_insert(p); // Look for a CSE 3426 if( p2 ) { // Found CSE 3427 p->destruct(&igvn); // Recover useless new node 3428 p = p2; // Use old node 3429 } else { 3430 igvn.register_new_node_with_optimizer(p, old_phi); 3431 } 3432 // Make old Phi refer to new Phi. 3433 old_phi->add_req(p); 3434 // Check for the special case of making the old phi useless and 3435 // disappear it. In JavaGrande I have a case where this useless 3436 // Phi is the loop limit and prevents recognizing a CountedLoop 3437 // which in turn prevents removing an empty loop. 3438 Node *id_old_phi = old_phi->Identity(&igvn); 3439 if( id_old_phi != old_phi ) { // Found a simple identity? 3440 // Note that I cannot call 'replace_node' here, because 3441 // that will yank the edge from old_phi to the Region and 3442 // I'm mid-iteration over the Region's uses. 3443 for (DUIterator_Last imin, i = old_phi->last_outs(imin); i >= imin; ) { 3444 Node* use = old_phi->last_out(i); 3445 igvn.rehash_node_delayed(use); 3446 uint uses_found = 0; 3447 for (uint j = 0; j < use->len(); j++) { 3448 if (use->in(j) == old_phi) { 3449 if (j < use->req()) use->set_req (j, id_old_phi); 3450 else use->set_prec(j, id_old_phi); 3451 uses_found++; 3452 } 3453 } 3454 i -= uses_found; // we deleted 1 or more copies of this edge 3455 } 3456 } 3457 igvn._worklist.push(old_phi); 3458 } 3459 } 3460 // Finally clean out the fall-in edges from the RegionNode 3461 for( i = oreq-1; i>0; i-- ) { 3462 if( !phase->is_member( this, _head->in(i) ) ) { 3463 _head->del_req(i); 3464 } 3465 } 3466 igvn.rehash_node_delayed(_head); 3467 // Transform landing pad 3468 igvn.register_new_node_with_optimizer(landing_pad, _head); 3469 // Insert landing pad into the header 3470 _head->add_req(landing_pad); 3471 } 3472 3473 //------------------------------split_outer_loop------------------------------- 3474 // Split out the outermost loop from this shared header. 3475 void IdealLoopTree::split_outer_loop( PhaseIdealLoop *phase ) { 3476 PhaseIterGVN &igvn = phase->_igvn; 3477 3478 // Find index of outermost loop; it should also be my tail. 3479 uint outer_idx = 1; 3480 while( _head->in(outer_idx) != _tail ) outer_idx++; 3481 3482 // Make a LoopNode for the outermost loop. 3483 Node *ctl = _head->in(LoopNode::EntryControl); 3484 Node *outer = new LoopNode( ctl, _head->in(outer_idx) ); 3485 outer = igvn.register_new_node_with_optimizer(outer, _head); 3486 phase->set_created_loop_node(); 3487 3488 // Outermost loop falls into '_head' loop 3489 _head->set_req(LoopNode::EntryControl, outer); 3490 _head->del_req(outer_idx); 3491 // Split all the Phis up between '_head' loop and 'outer' loop. 3492 for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) { 3493 Node *out = _head->fast_out(j); 3494 if( out->is_Phi() ) { 3495 PhiNode *old_phi = out->as_Phi(); 3496 assert( old_phi->region() == _head, "" ); 3497 Node *phi = PhiNode::make_blank(outer, old_phi); 3498 phi->init_req(LoopNode::EntryControl, old_phi->in(LoopNode::EntryControl)); 3499 phi->init_req(LoopNode::LoopBackControl, old_phi->in(outer_idx)); 3500 phi = igvn.register_new_node_with_optimizer(phi, old_phi); 3501 // Make old Phi point to new Phi on the fall-in path 3502 igvn.replace_input_of(old_phi, LoopNode::EntryControl, phi); 3503 old_phi->del_req(outer_idx); 3504 } 3505 } 3506 3507 // Use the new loop head instead of the old shared one 3508 _head = outer; 3509 phase->set_loop(_head, this); 3510 } 3511 3512 //------------------------------fix_parent------------------------------------- 3513 static void fix_parent( IdealLoopTree *loop, IdealLoopTree *parent ) { 3514 loop->_parent = parent; 3515 if( loop->_child ) fix_parent( loop->_child, loop ); 3516 if( loop->_next ) fix_parent( loop->_next , parent ); 3517 } 3518 3519 //------------------------------estimate_path_freq----------------------------- 3520 static float estimate_path_freq( Node *n ) { 3521 // Try to extract some path frequency info 3522 IfNode *iff; 3523 for( int i = 0; i < 50; i++ ) { // Skip through a bunch of uncommon tests 3524 uint nop = n->Opcode(); 3525 if( nop == Op_SafePoint ) { // Skip any safepoint 3526 n = n->in(0); 3527 continue; 3528 } 3529 if( nop == Op_CatchProj ) { // Get count from a prior call 3530 // Assume call does not always throw exceptions: means the call-site 3531 // count is also the frequency of the fall-through path. 3532 assert( n->is_CatchProj(), "" ); 3533 if( ((CatchProjNode*)n)->_con != CatchProjNode::fall_through_index ) 3534 return 0.0f; // Assume call exception path is rare 3535 Node *call = n->in(0)->in(0)->in(0); 3536 assert( call->is_Call(), "expect a call here" ); 3537 const JVMState *jvms = ((CallNode*)call)->jvms(); 3538 ciMethodData* methodData = jvms->method()->method_data(); 3539 if (!methodData->is_mature()) return 0.0f; // No call-site data 3540 ciProfileData* data = methodData->bci_to_data(jvms->bci()); 3541 if ((data == nullptr) || !data->is_CounterData()) { 3542 // no call profile available, try call's control input 3543 n = n->in(0); 3544 continue; 3545 } 3546 return data->as_CounterData()->count()/FreqCountInvocations; 3547 } 3548 // See if there's a gating IF test 3549 Node *n_c = n->in(0); 3550 if( !n_c->is_If() ) break; // No estimate available 3551 iff = n_c->as_If(); 3552 if( iff->_fcnt != COUNT_UNKNOWN ) // Have a valid count? 3553 // Compute how much count comes on this path 3554 return ((nop == Op_IfTrue) ? iff->_prob : 1.0f - iff->_prob) * iff->_fcnt; 3555 // Have no count info. Skip dull uncommon-trap like branches. 3556 if( (nop == Op_IfTrue && iff->_prob < PROB_LIKELY_MAG(5)) || 3557 (nop == Op_IfFalse && iff->_prob > PROB_UNLIKELY_MAG(5)) ) 3558 break; 3559 // Skip through never-taken branch; look for a real loop exit. 3560 n = iff->in(0); 3561 } 3562 return 0.0f; // No estimate available 3563 } 3564 3565 //------------------------------merge_many_backedges--------------------------- 3566 // Merge all the backedges from the shared header into a private Region. 3567 // Feed that region as the one backedge to this loop. 3568 void IdealLoopTree::merge_many_backedges( PhaseIdealLoop *phase ) { 3569 uint i; 3570 3571 // Scan for the top 2 hottest backedges 3572 float hotcnt = 0.0f; 3573 float warmcnt = 0.0f; 3574 uint hot_idx = 0; 3575 // Loop starts at 2 because slot 1 is the fall-in path 3576 for( i = 2; i < _head->req(); i++ ) { 3577 float cnt = estimate_path_freq(_head->in(i)); 3578 if( cnt > hotcnt ) { // Grab hottest path 3579 warmcnt = hotcnt; 3580 hotcnt = cnt; 3581 hot_idx = i; 3582 } else if( cnt > warmcnt ) { // And 2nd hottest path 3583 warmcnt = cnt; 3584 } 3585 } 3586 3587 // See if the hottest backedge is worthy of being an inner loop 3588 // by being much hotter than the next hottest backedge. 3589 if( hotcnt <= 0.0001 || 3590 hotcnt < 2.0*warmcnt ) hot_idx = 0;// No hot backedge 3591 3592 // Peel out the backedges into a private merge point; peel 3593 // them all except optionally hot_idx. 3594 PhaseIterGVN &igvn = phase->_igvn; 3595 3596 Node *hot_tail = nullptr; 3597 // Make a Region for the merge point 3598 Node *r = new RegionNode(1); 3599 for( i = 2; i < _head->req(); i++ ) { 3600 if( i != hot_idx ) 3601 r->add_req( _head->in(i) ); 3602 else hot_tail = _head->in(i); 3603 } 3604 igvn.register_new_node_with_optimizer(r, _head); 3605 // Plug region into end of loop _head, followed by hot_tail 3606 while( _head->req() > 3 ) _head->del_req( _head->req()-1 ); 3607 igvn.replace_input_of(_head, 2, r); 3608 if( hot_idx ) _head->add_req(hot_tail); 3609 3610 // Split all the Phis up between '_head' loop and the Region 'r' 3611 for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) { 3612 Node *out = _head->fast_out(j); 3613 if( out->is_Phi() ) { 3614 PhiNode* n = out->as_Phi(); 3615 igvn.hash_delete(n); // Delete from hash before hacking edges 3616 Node *hot_phi = nullptr; 3617 Node *phi = new PhiNode(r, n->type(), n->adr_type()); 3618 // Check all inputs for the ones to peel out 3619 uint j = 1; 3620 for( uint i = 2; i < n->req(); i++ ) { 3621 if( i != hot_idx ) 3622 phi->set_req( j++, n->in(i) ); 3623 else hot_phi = n->in(i); 3624 } 3625 // Register the phi but do not transform until whole place transforms 3626 igvn.register_new_node_with_optimizer(phi, n); 3627 // Add the merge phi to the old Phi 3628 while( n->req() > 3 ) n->del_req( n->req()-1 ); 3629 igvn.replace_input_of(n, 2, phi); 3630 if( hot_idx ) n->add_req(hot_phi); 3631 } 3632 } 3633 3634 3635 // Insert a new IdealLoopTree inserted below me. Turn it into a clone 3636 // of self loop tree. Turn self into a loop headed by _head and with 3637 // tail being the new merge point. 3638 IdealLoopTree *ilt = new IdealLoopTree( phase, _head, _tail ); 3639 phase->set_loop(_tail,ilt); // Adjust tail 3640 _tail = r; // Self's tail is new merge point 3641 phase->set_loop(r,this); 3642 ilt->_child = _child; // New guy has my children 3643 _child = ilt; // Self has new guy as only child 3644 ilt->_parent = this; // new guy has self for parent 3645 ilt->_nest = _nest; // Same nesting depth (for now) 3646 3647 // Starting with 'ilt', look for child loop trees using the same shared 3648 // header. Flatten these out; they will no longer be loops in the end. 3649 IdealLoopTree **pilt = &_child; 3650 while( ilt ) { 3651 if( ilt->_head == _head ) { 3652 uint i; 3653 for( i = 2; i < _head->req(); i++ ) 3654 if( _head->in(i) == ilt->_tail ) 3655 break; // Still a loop 3656 if( i == _head->req() ) { // No longer a loop 3657 // Flatten ilt. Hang ilt's "_next" list from the end of 3658 // ilt's '_child' list. Move the ilt's _child up to replace ilt. 3659 IdealLoopTree **cp = &ilt->_child; 3660 while( *cp ) cp = &(*cp)->_next; // Find end of child list 3661 *cp = ilt->_next; // Hang next list at end of child list 3662 *pilt = ilt->_child; // Move child up to replace ilt 3663 ilt->_head = nullptr; // Flag as a loop UNIONED into parent 3664 ilt = ilt->_child; // Repeat using new ilt 3665 continue; // do not advance over ilt->_child 3666 } 3667 assert( ilt->_tail == hot_tail, "expected to only find the hot inner loop here" ); 3668 phase->set_loop(_head,ilt); 3669 } 3670 pilt = &ilt->_child; // Advance to next 3671 ilt = *pilt; 3672 } 3673 3674 if( _child ) fix_parent( _child, this ); 3675 } 3676 3677 //------------------------------beautify_loops--------------------------------- 3678 // Split shared headers and insert loop landing pads. 3679 // Insert a LoopNode to replace the RegionNode. 3680 // Return TRUE if loop tree is structurally changed. 3681 bool IdealLoopTree::beautify_loops( PhaseIdealLoop *phase ) { 3682 bool result = false; 3683 // Cache parts in locals for easy 3684 PhaseIterGVN &igvn = phase->_igvn; 3685 3686 igvn.hash_delete(_head); // Yank from hash before hacking edges 3687 3688 // Check for multiple fall-in paths. Peel off a landing pad if need be. 3689 int fall_in_cnt = 0; 3690 for( uint i = 1; i < _head->req(); i++ ) 3691 if( !phase->is_member( this, _head->in(i) ) ) 3692 fall_in_cnt++; 3693 assert( fall_in_cnt, "at least 1 fall-in path" ); 3694 if( fall_in_cnt > 1 ) // Need a loop landing pad to merge fall-ins 3695 split_fall_in( phase, fall_in_cnt ); 3696 3697 // Swap inputs to the _head and all Phis to move the fall-in edge to 3698 // the left. 3699 fall_in_cnt = 1; 3700 while( phase->is_member( this, _head->in(fall_in_cnt) ) ) 3701 fall_in_cnt++; 3702 if( fall_in_cnt > 1 ) { 3703 // Since I am just swapping inputs I do not need to update def-use info 3704 Node *tmp = _head->in(1); 3705 igvn.rehash_node_delayed(_head); 3706 _head->set_req( 1, _head->in(fall_in_cnt) ); 3707 _head->set_req( fall_in_cnt, tmp ); 3708 // Swap also all Phis 3709 for (DUIterator_Fast imax, i = _head->fast_outs(imax); i < imax; i++) { 3710 Node* phi = _head->fast_out(i); 3711 if( phi->is_Phi() ) { 3712 igvn.rehash_node_delayed(phi); // Yank from hash before hacking edges 3713 tmp = phi->in(1); 3714 phi->set_req( 1, phi->in(fall_in_cnt) ); 3715 phi->set_req( fall_in_cnt, tmp ); 3716 } 3717 } 3718 } 3719 assert( !phase->is_member( this, _head->in(1) ), "left edge is fall-in" ); 3720 assert( phase->is_member( this, _head->in(2) ), "right edge is loop" ); 3721 3722 // If I am a shared header (multiple backedges), peel off the many 3723 // backedges into a private merge point and use the merge point as 3724 // the one true backedge. 3725 if (_head->req() > 3) { 3726 // Merge the many backedges into a single backedge but leave 3727 // the hottest backedge as separate edge for the following peel. 3728 if (!_irreducible) { 3729 merge_many_backedges( phase ); 3730 } 3731 3732 // When recursively beautify my children, split_fall_in can change 3733 // loop tree structure when I am an irreducible loop. Then the head 3734 // of my children has a req() not bigger than 3. Here we need to set 3735 // result to true to catch that case in order to tell the caller to 3736 // rebuild loop tree. See issue JDK-8244407 for details. 3737 result = true; 3738 } 3739 3740 // If I have one hot backedge, peel off myself loop. 3741 // I better be the outermost loop. 3742 if (_head->req() > 3 && !_irreducible) { 3743 split_outer_loop( phase ); 3744 result = true; 3745 3746 } else if (!_head->is_Loop() && !_irreducible) { 3747 // Make a new LoopNode to replace the old loop head 3748 Node *l = new LoopNode( _head->in(1), _head->in(2) ); 3749 l = igvn.register_new_node_with_optimizer(l, _head); 3750 phase->set_created_loop_node(); 3751 // Go ahead and replace _head 3752 phase->_igvn.replace_node( _head, l ); 3753 _head = l; 3754 phase->set_loop(_head, this); 3755 } 3756 3757 // Now recursively beautify nested loops 3758 if( _child ) result |= _child->beautify_loops( phase ); 3759 if( _next ) result |= _next ->beautify_loops( phase ); 3760 return result; 3761 } 3762 3763 //------------------------------allpaths_check_safepts---------------------------- 3764 // Allpaths backwards scan. Starting at the head, traversing all backedges, and the body. Terminating each path at first 3765 // safepoint encountered. Helper for check_safepts. 3766 void IdealLoopTree::allpaths_check_safepts(VectorSet &visited, Node_List &stack) { 3767 assert(stack.size() == 0, "empty stack"); 3768 stack.push(_head); 3769 visited.clear(); 3770 visited.set(_head->_idx); 3771 while (stack.size() > 0) { 3772 Node* n = stack.pop(); 3773 if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) { 3774 // Terminate this path 3775 } else if (n->Opcode() == Op_SafePoint) { 3776 if (_phase->get_loop(n) != this) { 3777 if (_required_safept == nullptr) _required_safept = new Node_List(); 3778 // save the first we run into on that path: closest to the tail if the head has a single backedge 3779 _required_safept->push(n); 3780 } 3781 // Terminate this path 3782 } else { 3783 uint start = n->is_Region() ? 1 : 0; 3784 uint end = n->is_Region() && (!n->is_Loop() || n == _head) ? n->req() : start + 1; 3785 for (uint i = start; i < end; i++) { 3786 Node* in = n->in(i); 3787 assert(in->is_CFG(), "must be"); 3788 if (!visited.test_set(in->_idx) && is_member(_phase->get_loop(in))) { 3789 stack.push(in); 3790 } 3791 } 3792 } 3793 } 3794 } 3795 3796 //------------------------------check_safepts---------------------------- 3797 // Given dominators, try to find loops with calls that must always be 3798 // executed (call dominates loop tail). These loops do not need non-call 3799 // safepoints (ncsfpt). 3800 // 3801 // A complication is that a safepoint in a inner loop may be needed 3802 // by an outer loop. In the following, the inner loop sees it has a 3803 // call (block 3) on every path from the head (block 2) to the 3804 // backedge (arc 3->2). So it deletes the ncsfpt (non-call safepoint) 3805 // in block 2, _but_ this leaves the outer loop without a safepoint. 3806 // 3807 // entry 0 3808 // | 3809 // v 3810 // outer 1,2 +->1 3811 // | | 3812 // | v 3813 // | 2<---+ ncsfpt in 2 3814 // |_/|\ | 3815 // | v | 3816 // inner 2,3 / 3 | call in 3 3817 // / | | 3818 // v +--+ 3819 // exit 4 3820 // 3821 // 3822 // This method creates a list (_required_safept) of ncsfpt nodes that must 3823 // be protected is created for each loop. When a ncsfpt maybe deleted, it 3824 // is first looked for in the lists for the outer loops of the current loop. 3825 // 3826 // The insights into the problem: 3827 // A) counted loops are okay 3828 // B) innermost loops are okay (only an inner loop can delete 3829 // a ncsfpt needed by an outer loop) 3830 // C) a loop is immune from an inner loop deleting a safepoint 3831 // if the loop has a call on the idom-path 3832 // D) a loop is also immune if it has a ncsfpt (non-call safepoint) on the 3833 // idom-path that is not in a nested loop 3834 // E) otherwise, an ncsfpt on the idom-path that is nested in an inner 3835 // loop needs to be prevented from deletion by an inner loop 3836 // 3837 // There are two analyses: 3838 // 1) The first, and cheaper one, scans the loop body from 3839 // tail to head following the idom (immediate dominator) 3840 // chain, looking for the cases (C,D,E) above. 3841 // Since inner loops are scanned before outer loops, there is summary 3842 // information about inner loops. Inner loops can be skipped over 3843 // when the tail of an inner loop is encountered. 3844 // 3845 // 2) The second, invoked if the first fails to find a call or ncsfpt on 3846 // the idom path (which is rare), scans all predecessor control paths 3847 // from the tail to the head, terminating a path when a call or sfpt 3848 // is encountered, to find the ncsfpt's that are closest to the tail. 3849 // 3850 void IdealLoopTree::check_safepts(VectorSet &visited, Node_List &stack) { 3851 // Bottom up traversal 3852 IdealLoopTree* ch = _child; 3853 if (_child) _child->check_safepts(visited, stack); 3854 if (_next) _next ->check_safepts(visited, stack); 3855 3856 if (!_head->is_CountedLoop() && !_has_sfpt && _parent != nullptr) { 3857 bool has_call = false; // call on dom-path 3858 bool has_local_ncsfpt = false; // ncsfpt on dom-path at this loop depth 3859 Node* nonlocal_ncsfpt = nullptr; // ncsfpt on dom-path at a deeper depth 3860 if (!_irreducible) { 3861 // Scan the dom-path nodes from tail to head 3862 for (Node* n = tail(); n != _head; n = _phase->idom(n)) { 3863 if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) { 3864 has_call = true; 3865 _has_sfpt = 1; // Then no need for a safept! 3866 break; 3867 } else if (n->Opcode() == Op_SafePoint) { 3868 if (_phase->get_loop(n) == this) { 3869 has_local_ncsfpt = true; 3870 break; 3871 } 3872 if (nonlocal_ncsfpt == nullptr) { 3873 nonlocal_ncsfpt = n; // save the one closest to the tail 3874 } 3875 } else { 3876 IdealLoopTree* nlpt = _phase->get_loop(n); 3877 if (this != nlpt) { 3878 // If at an inner loop tail, see if the inner loop has already 3879 // recorded seeing a call on the dom-path (and stop.) If not, 3880 // jump to the head of the inner loop. 3881 assert(is_member(nlpt), "nested loop"); 3882 Node* tail = nlpt->_tail; 3883 if (tail->in(0)->is_If()) tail = tail->in(0); 3884 if (n == tail) { 3885 // If inner loop has call on dom-path, so does outer loop 3886 if (nlpt->_has_sfpt) { 3887 has_call = true; 3888 _has_sfpt = 1; 3889 break; 3890 } 3891 // Skip to head of inner loop 3892 assert(_phase->is_dominator(_head, nlpt->_head), "inner head dominated by outer head"); 3893 n = nlpt->_head; 3894 if (_head == n) { 3895 // this and nlpt (inner loop) have the same loop head. This should not happen because 3896 // during beautify_loops we call merge_many_backedges. However, infinite loops may not 3897 // have been attached to the loop-tree during build_loop_tree before beautify_loops, 3898 // but then attached in the build_loop_tree afterwards, and so still have unmerged 3899 // backedges. Check if we are indeed in an infinite subgraph, and terminate the scan, 3900 // since we have reached the loop head of this. 3901 assert(_head->as_Region()->is_in_infinite_subgraph(), 3902 "only expect unmerged backedges in infinite loops"); 3903 break; 3904 } 3905 } 3906 } 3907 } 3908 } 3909 } 3910 // Record safept's that this loop needs preserved when an 3911 // inner loop attempts to delete it's safepoints. 3912 if (_child != nullptr && !has_call && !has_local_ncsfpt) { 3913 if (nonlocal_ncsfpt != nullptr) { 3914 if (_required_safept == nullptr) _required_safept = new Node_List(); 3915 _required_safept->push(nonlocal_ncsfpt); 3916 } else { 3917 // Failed to find a suitable safept on the dom-path. Now use 3918 // an all paths walk from tail to head, looking for safepoints to preserve. 3919 allpaths_check_safepts(visited, stack); 3920 } 3921 } 3922 } 3923 } 3924 3925 //---------------------------is_deleteable_safept---------------------------- 3926 // Is safept not required by an outer loop? 3927 bool PhaseIdealLoop::is_deleteable_safept(Node* sfpt) { 3928 assert(sfpt->Opcode() == Op_SafePoint, ""); 3929 IdealLoopTree* lp = get_loop(sfpt)->_parent; 3930 while (lp != nullptr) { 3931 Node_List* sfpts = lp->_required_safept; 3932 if (sfpts != nullptr) { 3933 for (uint i = 0; i < sfpts->size(); i++) { 3934 if (sfpt == sfpts->at(i)) 3935 return false; 3936 } 3937 } 3938 lp = lp->_parent; 3939 } 3940 return true; 3941 } 3942 3943 //---------------------------replace_parallel_iv------------------------------- 3944 // Replace parallel induction variable (parallel to trip counter) 3945 // This optimization looks for patterns similar to: 3946 // 3947 // int a = init2; 3948 // for (int iv = init; iv < limit; iv += stride_con) { 3949 // a += stride_con2; 3950 // } 3951 // 3952 // and transforms it to: 3953 // 3954 // int iv2 = init2 3955 // int iv = init 3956 // loop: 3957 // if (iv >= limit) goto exit 3958 // iv += stride_con 3959 // iv2 = init2 + (iv - init) * (stride_con2 / stride_con) 3960 // goto loop 3961 // exit: 3962 // ... 3963 // 3964 // Such transformation introduces more optimization opportunities. In this 3965 // particular example, the loop can be eliminated entirely given that 3966 // `stride_con2 / stride_con` is exact (i.e., no remainder). Checks are in 3967 // place to only perform this optimization if such a division is exact. This 3968 // example will be transformed into its semantic equivalence: 3969 // 3970 // int iv2 = (iv * stride_con2 / stride_con) + (init2 - (init * stride_con2 / stride_con)) 3971 // 3972 // which corresponds to the structure of transformed subgraph. 3973 // 3974 // However, if there is a mismatch between types of the loop and the parallel 3975 // induction variable (e.g., a long-typed IV in an int-typed loop), type 3976 // conversions are required: 3977 // 3978 // long iv2 = ((long) iv * stride_con2 / stride_con) + (init2 - ((long) init * stride_con2 / stride_con)) 3979 // 3980 void PhaseIdealLoop::replace_parallel_iv(IdealLoopTree *loop) { 3981 assert(loop->_head->is_CountedLoop(), ""); 3982 CountedLoopNode *cl = loop->_head->as_CountedLoop(); 3983 if (!cl->is_valid_counted_loop(T_INT)) { 3984 return; // skip malformed counted loop 3985 } 3986 Node *incr = cl->incr(); 3987 if (incr == nullptr) { 3988 return; // Dead loop? 3989 } 3990 Node *init = cl->init_trip(); 3991 Node *phi = cl->phi(); 3992 jlong stride_con = cl->stride_con(); 3993 3994 // Visit all children, looking for Phis 3995 for (DUIterator i = cl->outs(); cl->has_out(i); i++) { 3996 Node *out = cl->out(i); 3997 // Look for other phis (secondary IVs). Skip dead ones 3998 if (!out->is_Phi() || out == phi || !has_node(out)) { 3999 continue; 4000 } 4001 4002 PhiNode* phi2 = out->as_Phi(); 4003 Node* incr2 = phi2->in(LoopNode::LoopBackControl); 4004 // Look for induction variables of the form: X += constant 4005 if (phi2->region() != loop->_head || 4006 incr2->req() != 3 || 4007 incr2->in(1)->uncast() != phi2 || 4008 incr2 == incr || 4009 (incr2->Opcode() != Op_AddI && incr2->Opcode() != Op_AddL) || 4010 !incr2->in(2)->is_Con()) { 4011 continue; 4012 } 4013 4014 if (incr2->in(1)->is_ConstraintCast() && 4015 !(incr2->in(1)->in(0)->is_IfProj() && incr2->in(1)->in(0)->in(0)->is_RangeCheck())) { 4016 // Skip AddI->CastII->Phi case if CastII is not controlled by local RangeCheck 4017 continue; 4018 } 4019 // Check for parallel induction variable (parallel to trip counter) 4020 // via an affine function. In particular, count-down loops with 4021 // count-up array indices are common. We only RCE references off 4022 // the trip-counter, so we need to convert all these to trip-counter 4023 // expressions. 4024 Node* init2 = phi2->in(LoopNode::EntryControl); 4025 4026 // Determine the basic type of the stride constant (and the iv being incremented). 4027 BasicType stride_con2_bt = incr2->Opcode() == Op_AddI ? T_INT : T_LONG; 4028 jlong stride_con2 = incr2->in(2)->get_integer_as_long(stride_con2_bt); 4029 4030 // The ratio of the two strides cannot be represented as an int 4031 // if stride_con2 is min_jint (or min_jlong, respectively) and 4032 // stride_con is -1. 4033 if (stride_con2 == min_signed_integer(stride_con2_bt) && stride_con == -1) { 4034 continue; 4035 } 4036 4037 // The general case here gets a little tricky. We want to find the 4038 // GCD of all possible parallel IV's and make a new IV using this 4039 // GCD for the loop. Then all possible IVs are simple multiples of 4040 // the GCD. In practice, this will cover very few extra loops. 4041 // Instead we require 'stride_con2' to be a multiple of 'stride_con', 4042 // where +/-1 is the common case, but other integer multiples are 4043 // also easy to handle. 4044 jlong ratio_con = stride_con2 / stride_con; 4045 4046 if ((ratio_con * stride_con) != stride_con2) { // Check for exact (no remainder) 4047 continue; 4048 } 4049 4050 #ifndef PRODUCT 4051 if (TraceLoopOpts) { 4052 tty->print("Parallel IV: %d ", phi2->_idx); 4053 loop->dump_head(); 4054 } 4055 #endif 4056 4057 // Convert to using the trip counter. The parallel induction 4058 // variable differs from the trip counter by a loop-invariant 4059 // amount, the difference between their respective initial values. 4060 // It is scaled by the 'ratio_con'. 4061 Node* ratio = integercon(ratio_con, stride_con2_bt); 4062 4063 Node* init_converted = insert_convert_node_if_needed(stride_con2_bt, init); 4064 Node* phi_converted = insert_convert_node_if_needed(stride_con2_bt, phi); 4065 4066 Node* ratio_init = MulNode::make(init_converted, ratio, stride_con2_bt); 4067 _igvn.register_new_node_with_optimizer(ratio_init, init_converted); 4068 set_early_ctrl(ratio_init, false); 4069 4070 Node* diff = SubNode::make(init2, ratio_init, stride_con2_bt); 4071 _igvn.register_new_node_with_optimizer(diff, init2); 4072 set_early_ctrl(diff, false); 4073 4074 Node* ratio_idx = MulNode::make(phi_converted, ratio, stride_con2_bt); 4075 _igvn.register_new_node_with_optimizer(ratio_idx, phi_converted); 4076 set_ctrl(ratio_idx, cl); 4077 4078 Node* add = AddNode::make(ratio_idx, diff, stride_con2_bt); 4079 _igvn.register_new_node_with_optimizer(add); 4080 set_ctrl(add, cl); 4081 4082 _igvn.replace_node( phi2, add ); 4083 // Sometimes an induction variable is unused 4084 if (add->outcnt() == 0) { 4085 _igvn.remove_dead_node(add); 4086 } 4087 --i; // deleted this phi; rescan starting with next position 4088 } 4089 } 4090 4091 Node* PhaseIdealLoop::insert_convert_node_if_needed(BasicType target, Node* input) { 4092 BasicType source = _igvn.type(input)->basic_type(); 4093 if (source == target) { 4094 return input; 4095 } 4096 4097 Node* converted = ConvertNode::create_convert(source, target, input); 4098 _igvn.register_new_node_with_optimizer(converted, input); 4099 set_early_ctrl(converted, false); 4100 4101 return converted; 4102 } 4103 4104 void IdealLoopTree::remove_safepoints(PhaseIdealLoop* phase, bool keep_one) { 4105 Node* keep = nullptr; 4106 if (keep_one) { 4107 // Look for a safepoint on the idom-path. 4108 for (Node* i = tail(); i != _head; i = phase->idom(i)) { 4109 if (i->Opcode() == Op_SafePoint && phase->get_loop(i) == this) { 4110 keep = i; 4111 break; // Found one 4112 } 4113 } 4114 } 4115 4116 // Don't remove any safepoints if it is requested to keep a single safepoint and 4117 // no safepoint was found on idom-path. It is not safe to remove any safepoint 4118 // in this case since there's no safepoint dominating all paths in the loop body. 4119 bool prune = !keep_one || keep != nullptr; 4120 4121 // Delete other safepoints in this loop. 4122 Node_List* sfpts = _safepts; 4123 if (prune && sfpts != nullptr) { 4124 assert(keep == nullptr || keep->Opcode() == Op_SafePoint, "not safepoint"); 4125 for (uint i = 0; i < sfpts->size(); i++) { 4126 Node* n = sfpts->at(i); 4127 assert(phase->get_loop(n) == this, ""); 4128 if (n != keep && phase->is_deleteable_safept(n)) { 4129 phase->lazy_replace(n, n->in(TypeFunc::Control)); 4130 } 4131 } 4132 } 4133 } 4134 4135 //------------------------------counted_loop----------------------------------- 4136 // Convert to counted loops where possible 4137 void IdealLoopTree::counted_loop( PhaseIdealLoop *phase ) { 4138 4139 // For grins, set the inner-loop flag here 4140 if (!_child) { 4141 if (_head->is_Loop()) _head->as_Loop()->set_inner_loop(); 4142 } 4143 4144 IdealLoopTree* loop = this; 4145 if (_head->is_CountedLoop() || 4146 phase->is_counted_loop(_head, loop, T_INT)) { 4147 4148 if (LoopStripMiningIter == 0 || _head->as_CountedLoop()->is_strip_mined()) { 4149 // Indicate we do not need a safepoint here 4150 _has_sfpt = 1; 4151 } 4152 4153 // Remove safepoints 4154 bool keep_one_sfpt = !(_has_call || _has_sfpt); 4155 remove_safepoints(phase, keep_one_sfpt); 4156 4157 // Look for induction variables 4158 phase->replace_parallel_iv(this); 4159 } else if (_head->is_LongCountedLoop() || 4160 phase->is_counted_loop(_head, loop, T_LONG)) { 4161 remove_safepoints(phase, true); 4162 } else { 4163 assert(!_head->is_Loop() || !_head->as_Loop()->is_loop_nest_inner_loop(), "transformation to counted loop should not fail"); 4164 if (_parent != nullptr && !_irreducible) { 4165 // Not a counted loop. Keep one safepoint. 4166 bool keep_one_sfpt = true; 4167 remove_safepoints(phase, keep_one_sfpt); 4168 } 4169 } 4170 4171 // Recursively 4172 assert(loop->_child != this || (loop->_head->as_Loop()->is_OuterStripMinedLoop() && _head->as_CountedLoop()->is_strip_mined()), "what kind of loop was added?"); 4173 assert(loop->_child != this || (loop->_child->_child == nullptr && loop->_child->_next == nullptr), "would miss some loops"); 4174 if (loop->_child && loop->_child != this) loop->_child->counted_loop(phase); 4175 if (loop->_next) loop->_next ->counted_loop(phase); 4176 } 4177 4178 4179 // The Estimated Loop Clone Size: 4180 // CloneFactor * (~112% * BodySize + BC) + CC + FanOutTerm, 4181 // where BC and CC are totally ad-hoc/magic "body" and "clone" constants, 4182 // respectively, used to ensure that the node usage estimates made are on the 4183 // safe side, for the most part. The FanOutTerm is an attempt to estimate the 4184 // possible additional/excessive nodes generated due to data and control flow 4185 // merging, for edges reaching outside the loop. 4186 uint IdealLoopTree::est_loop_clone_sz(uint factor) const { 4187 4188 precond(0 < factor && factor < 16); 4189 4190 uint const bc = 13; 4191 uint const cc = 17; 4192 uint const sz = _body.size() + (_body.size() + 7) / 2; 4193 uint estimate = factor * (sz + bc) + cc; 4194 4195 assert((estimate - cc) / factor == sz + bc, "overflow"); 4196 4197 return estimate + est_loop_flow_merge_sz(); 4198 } 4199 4200 // The Estimated Loop (full-) Unroll Size: 4201 // UnrollFactor * (~106% * BodySize) + CC + FanOutTerm, 4202 // where CC is a (totally) ad-hoc/magic "clone" constant, used to ensure that 4203 // node usage estimates made are on the safe side, for the most part. This is 4204 // a "light" version of the loop clone size calculation (above), based on the 4205 // assumption that most of the loop-construct overhead will be unraveled when 4206 // (fully) unrolled. Defined for unroll factors larger or equal to one (>=1), 4207 // including an overflow check and returning UINT_MAX in case of an overflow. 4208 uint IdealLoopTree::est_loop_unroll_sz(uint factor) const { 4209 4210 precond(factor > 0); 4211 4212 // Take into account that after unroll conjoined heads and tails will fold. 4213 uint const b0 = _body.size() - EMPTY_LOOP_SIZE; 4214 uint const cc = 7; 4215 uint const sz = b0 + (b0 + 15) / 16; 4216 uint estimate = factor * sz + cc; 4217 4218 if ((estimate - cc) / factor != sz) { 4219 return UINT_MAX; 4220 } 4221 4222 return estimate + est_loop_flow_merge_sz(); 4223 } 4224 4225 // Estimate the growth effect (in nodes) of merging control and data flow when 4226 // cloning a loop body, based on the amount of control and data flow reaching 4227 // outside of the (current) loop body. 4228 uint IdealLoopTree::est_loop_flow_merge_sz() const { 4229 4230 uint ctrl_edge_out_cnt = 0; 4231 uint data_edge_out_cnt = 0; 4232 4233 for (uint i = 0; i < _body.size(); i++) { 4234 Node* node = _body.at(i); 4235 uint outcnt = node->outcnt(); 4236 4237 for (uint k = 0; k < outcnt; k++) { 4238 Node* out = node->raw_out(k); 4239 if (out == nullptr) continue; 4240 if (out->is_CFG()) { 4241 if (!is_member(_phase->get_loop(out))) { 4242 ctrl_edge_out_cnt++; 4243 } 4244 } else if (_phase->has_ctrl(out)) { 4245 Node* ctrl = _phase->get_ctrl(out); 4246 assert(ctrl != nullptr, "must be"); 4247 assert(ctrl->is_CFG(), "must be"); 4248 if (!is_member(_phase->get_loop(ctrl))) { 4249 data_edge_out_cnt++; 4250 } 4251 } 4252 } 4253 } 4254 // Use data and control count (x2.0) in estimate iff both are > 0. This is 4255 // a rather pessimistic estimate for the most part, in particular for some 4256 // complex loops, but still not enough to capture all loops. 4257 if (ctrl_edge_out_cnt > 0 && data_edge_out_cnt > 0) { 4258 return 2 * (ctrl_edge_out_cnt + data_edge_out_cnt); 4259 } 4260 return 0; 4261 } 4262 4263 #ifndef PRODUCT 4264 //------------------------------dump_head-------------------------------------- 4265 // Dump 1 liner for loop header info 4266 void IdealLoopTree::dump_head() { 4267 tty->sp(2 * _nest); 4268 tty->print("Loop: N%d/N%d ", _head->_idx, _tail->_idx); 4269 if (_irreducible) tty->print(" IRREDUCIBLE"); 4270 Node* entry = _head->is_Loop() ? _head->as_Loop()->skip_strip_mined(-1)->in(LoopNode::EntryControl) 4271 : _head->in(LoopNode::EntryControl); 4272 const Predicates predicates(entry); 4273 if (predicates.loop_limit_check_predicate_block()->is_non_empty()) { 4274 tty->print(" limit_check"); 4275 } 4276 if (UseProfiledLoopPredicate && predicates.profiled_loop_predicate_block()->is_non_empty()) { 4277 tty->print(" profile_predicated"); 4278 } 4279 if (UseLoopPredicate && predicates.loop_predicate_block()->is_non_empty()) { 4280 tty->print(" predicated"); 4281 } 4282 if (_head->is_CountedLoop()) { 4283 CountedLoopNode *cl = _head->as_CountedLoop(); 4284 tty->print(" counted"); 4285 4286 Node* init_n = cl->init_trip(); 4287 if (init_n != nullptr && init_n->is_Con()) 4288 tty->print(" [%d,", cl->init_trip()->get_int()); 4289 else 4290 tty->print(" [int,"); 4291 Node* limit_n = cl->limit(); 4292 if (limit_n != nullptr && limit_n->is_Con()) 4293 tty->print("%d),", cl->limit()->get_int()); 4294 else 4295 tty->print("int),"); 4296 int stride_con = cl->stride_con(); 4297 if (stride_con > 0) tty->print("+"); 4298 tty->print("%d", stride_con); 4299 4300 tty->print(" (%0.f iters) ", cl->profile_trip_cnt()); 4301 4302 if (cl->is_pre_loop ()) tty->print(" pre" ); 4303 if (cl->is_main_loop()) tty->print(" main"); 4304 if (cl->is_post_loop()) tty->print(" post"); 4305 if (cl->is_vectorized_loop()) tty->print(" vector"); 4306 if (range_checks_present()) tty->print(" rc "); 4307 } 4308 if (_has_call) tty->print(" has_call"); 4309 if (_has_sfpt) tty->print(" has_sfpt"); 4310 if (_rce_candidate) tty->print(" rce"); 4311 if (_safepts != nullptr && _safepts->size() > 0) { 4312 tty->print(" sfpts={"); _safepts->dump_simple(); tty->print(" }"); 4313 } 4314 if (_required_safept != nullptr && _required_safept->size() > 0) { 4315 tty->print(" req={"); _required_safept->dump_simple(); tty->print(" }"); 4316 } 4317 if (Verbose) { 4318 tty->print(" body={"); _body.dump_simple(); tty->print(" }"); 4319 } 4320 if (_head->is_Loop() && _head->as_Loop()->is_strip_mined()) { 4321 tty->print(" strip_mined"); 4322 } 4323 tty->cr(); 4324 } 4325 4326 //------------------------------dump------------------------------------------- 4327 // Dump loops by loop tree 4328 void IdealLoopTree::dump() { 4329 dump_head(); 4330 if (_child) _child->dump(); 4331 if (_next) _next ->dump(); 4332 } 4333 4334 #endif 4335 4336 static void log_loop_tree_helper(IdealLoopTree* root, IdealLoopTree* loop, CompileLog* log) { 4337 if (loop == root) { 4338 if (loop->_child != nullptr) { 4339 log->begin_head("loop_tree"); 4340 log->end_head(); 4341 log_loop_tree_helper(root, loop->_child, log); 4342 log->tail("loop_tree"); 4343 assert(loop->_next == nullptr, "what?"); 4344 } 4345 } else if (loop != nullptr) { 4346 Node* head = loop->_head; 4347 log->begin_head("loop"); 4348 log->print(" idx='%d' ", head->_idx); 4349 if (loop->_irreducible) log->print("irreducible='1' "); 4350 if (head->is_Loop()) { 4351 if (head->as_Loop()->is_inner_loop()) log->print("inner_loop='1' "); 4352 if (head->as_Loop()->is_partial_peel_loop()) log->print("partial_peel_loop='1' "); 4353 } else if (head->is_CountedLoop()) { 4354 CountedLoopNode* cl = head->as_CountedLoop(); 4355 if (cl->is_pre_loop()) log->print("pre_loop='%d' ", cl->main_idx()); 4356 if (cl->is_main_loop()) log->print("main_loop='%d' ", cl->_idx); 4357 if (cl->is_post_loop()) log->print("post_loop='%d' ", cl->main_idx()); 4358 } 4359 log->end_head(); 4360 log_loop_tree_helper(root, loop->_child, log); 4361 log->tail("loop"); 4362 log_loop_tree_helper(root, loop->_next, log); 4363 } 4364 } 4365 4366 void PhaseIdealLoop::log_loop_tree() { 4367 if (C->log() != nullptr) { 4368 log_loop_tree_helper(_ltree_root, _ltree_root, C->log()); 4369 } 4370 } 4371 4372 // Eliminate all Parse and Template Assertion Predicates that are not associated with a loop anymore. The eliminated 4373 // predicates will be removed during the next round of IGVN. 4374 void PhaseIdealLoop::eliminate_useless_predicates() { 4375 if (C->parse_predicate_count() == 0 && C->template_assertion_predicate_count() == 0) { 4376 return; // No predicates left. 4377 } 4378 4379 eliminate_useless_parse_predicates(); 4380 eliminate_useless_template_assertion_predicates(); 4381 } 4382 4383 // Eliminate all Parse Predicates that do not belong to a loop anymore by marking them useless. These will be removed 4384 // during the next round of IGVN. 4385 void PhaseIdealLoop::eliminate_useless_parse_predicates() { 4386 mark_all_parse_predicates_useless(); 4387 if (C->has_loops()) { 4388 mark_loop_associated_parse_predicates_useful(); 4389 } 4390 add_useless_parse_predicates_to_igvn_worklist(); 4391 } 4392 4393 void PhaseIdealLoop::mark_all_parse_predicates_useless() const { 4394 for (int i = 0; i < C->parse_predicate_count(); i++) { 4395 C->parse_predicate(i)->mark_useless(); 4396 } 4397 } 4398 4399 void PhaseIdealLoop::mark_loop_associated_parse_predicates_useful() { 4400 for (LoopTreeIterator iterator(_ltree_root); !iterator.done(); iterator.next()) { 4401 IdealLoopTree* loop = iterator.current(); 4402 if (loop->can_apply_loop_predication()) { 4403 mark_useful_parse_predicates_for_loop(loop); 4404 } 4405 } 4406 } 4407 4408 // This visitor marks all visited Parse Predicates useful. 4409 class ParsePredicateUsefulMarker : public PredicateVisitor { 4410 public: 4411 using PredicateVisitor::visit; 4412 4413 void visit(const ParsePredicate& parse_predicate) override { 4414 parse_predicate.head()->mark_useful(); 4415 } 4416 }; 4417 4418 void PhaseIdealLoop::mark_useful_parse_predicates_for_loop(IdealLoopTree* loop) { 4419 Node* entry = loop->_head->as_Loop()->skip_strip_mined()->in(LoopNode::EntryControl); 4420 const PredicateIterator predicate_iterator(entry); 4421 ParsePredicateUsefulMarker useful_marker; 4422 predicate_iterator.for_each(useful_marker); 4423 } 4424 4425 void PhaseIdealLoop::add_useless_parse_predicates_to_igvn_worklist() { 4426 for (int i = 0; i < C->parse_predicate_count(); i++) { 4427 ParsePredicateNode* parse_predicate_node = C->parse_predicate(i); 4428 if (parse_predicate_node->is_useless()) { 4429 _igvn._worklist.push(parse_predicate_node); 4430 } 4431 } 4432 } 4433 4434 4435 // Eliminate all Template Assertion Predicates that do not belong to their originally associated loop anymore by 4436 // replacing the OpaqueTemplateAssertionPredicate node of the If node with true. These nodes will be removed during the 4437 // next round of IGVN. 4438 void PhaseIdealLoop::eliminate_useless_template_assertion_predicates() { 4439 Unique_Node_List useful_predicates; 4440 if (C->has_loops()) { 4441 collect_useful_template_assertion_predicates(useful_predicates); 4442 } 4443 eliminate_useless_template_assertion_predicates(useful_predicates); 4444 } 4445 4446 void PhaseIdealLoop::collect_useful_template_assertion_predicates(Unique_Node_List& useful_predicates) { 4447 for (LoopTreeIterator iterator(_ltree_root); !iterator.done(); iterator.next()) { 4448 IdealLoopTree* loop = iterator.current(); 4449 if (loop->can_apply_loop_predication()) { 4450 collect_useful_template_assertion_predicates_for_loop(loop, useful_predicates); 4451 } 4452 } 4453 } 4454 4455 void PhaseIdealLoop::collect_useful_template_assertion_predicates_for_loop(IdealLoopTree* loop, 4456 Unique_Node_List &useful_predicates) { 4457 Node* entry = loop->_head->as_Loop()->skip_strip_mined()->in(LoopNode::EntryControl); 4458 const Predicates predicates(entry); 4459 if (UseProfiledLoopPredicate) { 4460 const PredicateBlock* profiled_loop_predicate_block = predicates.profiled_loop_predicate_block(); 4461 if (profiled_loop_predicate_block->has_parse_predicate()) { 4462 ParsePredicateSuccessProj* parse_predicate_proj = profiled_loop_predicate_block->parse_predicate_success_proj(); 4463 get_opaque_template_assertion_predicate_nodes(parse_predicate_proj, useful_predicates); 4464 } 4465 } 4466 4467 if (UseLoopPredicate) { 4468 const PredicateBlock* loop_predicate_block = predicates.loop_predicate_block(); 4469 if (loop_predicate_block->has_parse_predicate()) { 4470 ParsePredicateSuccessProj* parse_predicate_proj = loop_predicate_block->parse_predicate_success_proj(); 4471 get_opaque_template_assertion_predicate_nodes(parse_predicate_proj, useful_predicates); 4472 } 4473 } 4474 } 4475 4476 void PhaseIdealLoop::eliminate_useless_template_assertion_predicates(Unique_Node_List& useful_predicates) { 4477 for (int i = C->template_assertion_predicate_count(); i > 0; i--) { 4478 OpaqueTemplateAssertionPredicateNode* opaque_node = 4479 C->template_assertion_predicate_opaq_node(i - 1)->as_OpaqueTemplateAssertionPredicate(); 4480 if (!useful_predicates.member(opaque_node)) { // not in the useful list 4481 ConINode* one = intcon(1); 4482 _igvn.replace_node(opaque_node, one); 4483 } 4484 } 4485 } 4486 4487 // If a post or main loop is removed due to an assert predicate, the opaque that guards the loop is not needed anymore 4488 void PhaseIdealLoop::eliminate_useless_zero_trip_guard() { 4489 if (_zero_trip_guard_opaque_nodes.size() == 0) { 4490 return; 4491 } 4492 Unique_Node_List useful_zero_trip_guard_opaques_nodes; 4493 for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) { 4494 IdealLoopTree* lpt = iter.current(); 4495 if (lpt->_child == nullptr && lpt->is_counted()) { 4496 CountedLoopNode* head = lpt->_head->as_CountedLoop(); 4497 Node* opaque = head->is_canonical_loop_entry(); 4498 if (opaque != nullptr) { 4499 useful_zero_trip_guard_opaques_nodes.push(opaque); 4500 } 4501 } 4502 } 4503 for (uint i = 0; i < _zero_trip_guard_opaque_nodes.size(); ++i) { 4504 OpaqueZeroTripGuardNode* opaque = ((OpaqueZeroTripGuardNode*)_zero_trip_guard_opaque_nodes.at(i)); 4505 DEBUG_ONLY(CountedLoopNode* guarded_loop = opaque->guarded_loop()); 4506 if (!useful_zero_trip_guard_opaques_nodes.member(opaque)) { 4507 IfNode* iff = opaque->if_node(); 4508 IdealLoopTree* loop = get_loop(iff); 4509 while (loop != _ltree_root && loop != nullptr) { 4510 loop = loop->_parent; 4511 } 4512 if (loop == nullptr) { 4513 // unreachable from _ltree_root: zero trip guard is in a newly discovered infinite loop. 4514 // We can't tell if the opaque node is useful or not 4515 assert(guarded_loop == nullptr || guarded_loop->is_in_infinite_subgraph(), ""); 4516 } else { 4517 assert(guarded_loop == nullptr, ""); 4518 this->_igvn.replace_node(opaque, opaque->in(1)); 4519 } 4520 } else { 4521 assert(guarded_loop != nullptr, ""); 4522 } 4523 } 4524 } 4525 4526 //------------------------process_expensive_nodes----------------------------- 4527 // Expensive nodes have their control input set to prevent the GVN 4528 // from commoning them and as a result forcing the resulting node to 4529 // be in a more frequent path. Use CFG information here, to change the 4530 // control inputs so that some expensive nodes can be commoned while 4531 // not executed more frequently. 4532 bool PhaseIdealLoop::process_expensive_nodes() { 4533 assert(OptimizeExpensiveOps, "optimization off?"); 4534 4535 // Sort nodes to bring similar nodes together 4536 C->sort_expensive_nodes(); 4537 4538 bool progress = false; 4539 4540 for (int i = 0; i < C->expensive_count(); ) { 4541 Node* n = C->expensive_node(i); 4542 int start = i; 4543 // Find nodes similar to n 4544 i++; 4545 for (; i < C->expensive_count() && Compile::cmp_expensive_nodes(n, C->expensive_node(i)) == 0; i++); 4546 int end = i; 4547 // And compare them two by two 4548 for (int j = start; j < end; j++) { 4549 Node* n1 = C->expensive_node(j); 4550 if (is_node_unreachable(n1)) { 4551 continue; 4552 } 4553 for (int k = j+1; k < end; k++) { 4554 Node* n2 = C->expensive_node(k); 4555 if (is_node_unreachable(n2)) { 4556 continue; 4557 } 4558 4559 assert(n1 != n2, "should be pair of nodes"); 4560 4561 Node* c1 = n1->in(0); 4562 Node* c2 = n2->in(0); 4563 4564 Node* parent_c1 = c1; 4565 Node* parent_c2 = c2; 4566 4567 // The call to get_early_ctrl_for_expensive() moves the 4568 // expensive nodes up but stops at loops that are in a if 4569 // branch. See whether we can exit the loop and move above the 4570 // If. 4571 if (c1->is_Loop()) { 4572 parent_c1 = c1->in(1); 4573 } 4574 if (c2->is_Loop()) { 4575 parent_c2 = c2->in(1); 4576 } 4577 4578 if (parent_c1 == parent_c2) { 4579 _igvn._worklist.push(n1); 4580 _igvn._worklist.push(n2); 4581 continue; 4582 } 4583 4584 // Look for identical expensive node up the dominator chain. 4585 if (is_dominator(c1, c2)) { 4586 c2 = c1; 4587 } else if (is_dominator(c2, c1)) { 4588 c1 = c2; 4589 } else if (parent_c1->is_Proj() && parent_c1->in(0)->is_If() && 4590 parent_c2->is_Proj() && parent_c1->in(0) == parent_c2->in(0)) { 4591 // Both branches have the same expensive node so move it up 4592 // before the if. 4593 c1 = c2 = idom(parent_c1->in(0)); 4594 } 4595 // Do the actual moves 4596 if (n1->in(0) != c1) { 4597 _igvn.replace_input_of(n1, 0, c1); 4598 progress = true; 4599 } 4600 if (n2->in(0) != c2) { 4601 _igvn.replace_input_of(n2, 0, c2); 4602 progress = true; 4603 } 4604 } 4605 } 4606 } 4607 4608 return progress; 4609 } 4610 4611 //============================================================================= 4612 //----------------------------build_and_optimize------------------------------- 4613 // Create a PhaseLoop. Build the ideal Loop tree. Map each Ideal Node to 4614 // its corresponding LoopNode. If 'optimize' is true, do some loop cleanups. 4615 void PhaseIdealLoop::build_and_optimize() { 4616 assert(!C->post_loop_opts_phase(), "no loop opts allowed"); 4617 4618 bool do_split_ifs = (_mode == LoopOptsDefault); 4619 bool skip_loop_opts = (_mode == LoopOptsNone); 4620 bool do_max_unroll = (_mode == LoopOptsMaxUnroll); 4621 4622 4623 int old_progress = C->major_progress(); 4624 uint orig_worklist_size = _igvn._worklist.size(); 4625 4626 // Reset major-progress flag for the driver's heuristics 4627 C->clear_major_progress(); 4628 4629 #ifndef PRODUCT 4630 // Capture for later assert 4631 uint unique = C->unique(); 4632 _loop_invokes++; 4633 _loop_work += unique; 4634 #endif 4635 4636 // True if the method has at least 1 irreducible loop 4637 _has_irreducible_loops = false; 4638 4639 _created_loop_node = false; 4640 4641 VectorSet visited; 4642 // Pre-grow the mapping from Nodes to IdealLoopTrees. 4643 _loop_or_ctrl.map(C->unique(), nullptr); 4644 memset(_loop_or_ctrl.adr(), 0, wordSize * C->unique()); 4645 4646 // Pre-build the top-level outermost loop tree entry 4647 _ltree_root = new IdealLoopTree( this, C->root(), C->root() ); 4648 // Do not need a safepoint at the top level 4649 _ltree_root->_has_sfpt = 1; 4650 4651 // Initialize Dominators. 4652 // Checked in clone_loop_predicate() during beautify_loops(). 4653 _idom_size = 0; 4654 _idom = nullptr; 4655 _dom_depth = nullptr; 4656 _dom_stk = nullptr; 4657 4658 // Empty pre-order array 4659 allocate_preorders(); 4660 4661 // Build a loop tree on the fly. Build a mapping from CFG nodes to 4662 // IdealLoopTree entries. Data nodes are NOT walked. 4663 build_loop_tree(); 4664 // Check for bailout, and return 4665 if (C->failing()) { 4666 return; 4667 } 4668 4669 // Verify that the has_loops() flag set at parse time is consistent with the just built loop tree. When the back edge 4670 // is an exception edge, parsing doesn't set has_loops(). 4671 assert(_ltree_root->_child == nullptr || C->has_loops() || C->has_exception_backedge(), "parsing found no loops but there are some"); 4672 // No loops after all 4673 if( !_ltree_root->_child && !_verify_only ) C->set_has_loops(false); 4674 4675 // There should always be an outer loop containing the Root and Return nodes. 4676 // If not, we have a degenerate empty program. Bail out in this case. 4677 if (!has_node(C->root())) { 4678 if (!_verify_only) { 4679 C->clear_major_progress(); 4680 assert(false, "empty program detected during loop optimization"); 4681 C->record_method_not_compilable("empty program detected during loop optimization"); 4682 } 4683 return; 4684 } 4685 4686 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 4687 // Nothing to do, so get out 4688 bool stop_early = !C->has_loops() && !skip_loop_opts && !do_split_ifs && !do_max_unroll && !_verify_me && 4689 !_verify_only && !bs->is_gc_specific_loop_opts_pass(_mode); 4690 bool do_expensive_nodes = C->should_optimize_expensive_nodes(_igvn); 4691 bool strip_mined_loops_expanded = bs->strip_mined_loops_expanded(_mode); 4692 if (stop_early && !do_expensive_nodes) { 4693 return; 4694 } 4695 4696 // Set loop nesting depth 4697 _ltree_root->set_nest( 0 ); 4698 4699 // Split shared headers and insert loop landing pads. 4700 // Do not bother doing this on the Root loop of course. 4701 if( !_verify_me && !_verify_only && _ltree_root->_child ) { 4702 C->print_method(PHASE_BEFORE_BEAUTIFY_LOOPS, 3); 4703 if( _ltree_root->_child->beautify_loops( this ) ) { 4704 // Re-build loop tree! 4705 _ltree_root->_child = nullptr; 4706 _loop_or_ctrl.clear(); 4707 reallocate_preorders(); 4708 build_loop_tree(); 4709 // Check for bailout, and return 4710 if (C->failing()) { 4711 return; 4712 } 4713 // Reset loop nesting depth 4714 _ltree_root->set_nest( 0 ); 4715 4716 C->print_method(PHASE_AFTER_BEAUTIFY_LOOPS, 3); 4717 } 4718 } 4719 4720 // Build Dominators for elision of null checks & loop finding. 4721 // Since nodes do not have a slot for immediate dominator, make 4722 // a persistent side array for that info indexed on node->_idx. 4723 _idom_size = C->unique(); 4724 _idom = NEW_RESOURCE_ARRAY( Node*, _idom_size ); 4725 _dom_depth = NEW_RESOURCE_ARRAY( uint, _idom_size ); 4726 _dom_stk = nullptr; // Allocated on demand in recompute_dom_depth 4727 memset( _dom_depth, 0, _idom_size * sizeof(uint) ); 4728 4729 Dominators(); 4730 4731 if (!_verify_only) { 4732 // As a side effect, Dominators removed any unreachable CFG paths 4733 // into RegionNodes. It doesn't do this test against Root, so 4734 // we do it here. 4735 for( uint i = 1; i < C->root()->req(); i++ ) { 4736 if (!_loop_or_ctrl[C->root()->in(i)->_idx]) { // Dead path into Root? 4737 _igvn.delete_input_of(C->root(), i); 4738 i--; // Rerun same iteration on compressed edges 4739 } 4740 } 4741 4742 // Given dominators, try to find inner loops with calls that must 4743 // always be executed (call dominates loop tail). These loops do 4744 // not need a separate safepoint. 4745 Node_List cisstack; 4746 _ltree_root->check_safepts(visited, cisstack); 4747 } 4748 4749 // Walk the DATA nodes and place into loops. Find earliest control 4750 // node. For CFG nodes, the _loop_or_ctrl array starts out and remains 4751 // holding the associated IdealLoopTree pointer. For DATA nodes, the 4752 // _loop_or_ctrl array holds the earliest legal controlling CFG node. 4753 4754 // Allocate stack with enough space to avoid frequent realloc 4755 int stack_size = (C->live_nodes() >> 1) + 16; // (live_nodes>>1)+16 from Java2D stats 4756 Node_Stack nstack(stack_size); 4757 4758 visited.clear(); 4759 Node_List worklist; 4760 // Don't need C->root() on worklist since 4761 // it will be processed among C->top() inputs 4762 worklist.push(C->top()); 4763 visited.set(C->top()->_idx); // Set C->top() as visited now 4764 build_loop_early( visited, worklist, nstack ); 4765 4766 // Given early legal placement, try finding counted loops. This placement 4767 // is good enough to discover most loop invariants. 4768 if (!_verify_me && !_verify_only && !strip_mined_loops_expanded) { 4769 _ltree_root->counted_loop( this ); 4770 } 4771 4772 // Find latest loop placement. Find ideal loop placement. 4773 visited.clear(); 4774 init_dom_lca_tags(); 4775 // Need C->root() on worklist when processing outs 4776 worklist.push(C->root()); 4777 NOT_PRODUCT( C->verify_graph_edges(); ) 4778 worklist.push(C->top()); 4779 build_loop_late( visited, worklist, nstack ); 4780 if (C->failing()) { return; } 4781 4782 if (_verify_only) { 4783 C->restore_major_progress(old_progress); 4784 assert(C->unique() == unique, "verification _mode made Nodes? ? ?"); 4785 assert(_igvn._worklist.size() == orig_worklist_size, "shouldn't push anything"); 4786 return; 4787 } 4788 4789 // clear out the dead code after build_loop_late 4790 while (_deadlist.size()) { 4791 _igvn.remove_globally_dead_node(_deadlist.pop()); 4792 } 4793 4794 eliminate_useless_zero_trip_guard(); 4795 4796 if (stop_early) { 4797 assert(do_expensive_nodes, "why are we here?"); 4798 if (process_expensive_nodes()) { 4799 // If we made some progress when processing expensive nodes then 4800 // the IGVN may modify the graph in a way that will allow us to 4801 // make some more progress: we need to try processing expensive 4802 // nodes again. 4803 C->set_major_progress(); 4804 } 4805 return; 4806 } 4807 4808 // Some parser-inserted loop predicates could never be used by loop 4809 // predication or they were moved away from loop during some optimizations. 4810 // For example, peeling. Eliminate them before next loop optimizations. 4811 eliminate_useless_predicates(); 4812 4813 #ifndef PRODUCT 4814 C->verify_graph_edges(); 4815 if (_verify_me) { // Nested verify pass? 4816 // Check to see if the verify _mode is broken 4817 assert(C->unique() == unique, "non-optimize _mode made Nodes? ? ?"); 4818 return; 4819 } 4820 DEBUG_ONLY( if (VerifyLoopOptimizations) { verify(); } ); 4821 if (TraceLoopOpts && C->has_loops()) { 4822 _ltree_root->dump(); 4823 } 4824 #endif 4825 4826 if (skip_loop_opts) { 4827 C->restore_major_progress(old_progress); 4828 return; 4829 } 4830 4831 if (do_max_unroll) { 4832 for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) { 4833 IdealLoopTree* lpt = iter.current(); 4834 if (lpt->is_innermost() && lpt->_allow_optimizations && !lpt->_has_call && lpt->is_counted()) { 4835 lpt->compute_trip_count(this); 4836 if (!lpt->do_one_iteration_loop(this) && 4837 !lpt->do_remove_empty_loop(this)) { 4838 AutoNodeBudget node_budget(this); 4839 if (lpt->_head->as_CountedLoop()->is_normal_loop() && 4840 lpt->policy_maximally_unroll(this)) { 4841 memset( worklist.adr(), 0, worklist.max()*sizeof(Node*) ); 4842 do_maximally_unroll(lpt, worklist); 4843 } 4844 } 4845 } 4846 } 4847 4848 C->restore_major_progress(old_progress); 4849 return; 4850 } 4851 4852 if (bs->optimize_loops(this, _mode, visited, nstack, worklist)) { 4853 return; 4854 } 4855 4856 if (ReassociateInvariants && !C->major_progress()) { 4857 // Reassociate invariants and prep for split_thru_phi 4858 for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) { 4859 IdealLoopTree* lpt = iter.current(); 4860 if (!lpt->is_loop()) { 4861 continue; 4862 } 4863 Node* head = lpt->_head; 4864 if (!head->is_BaseCountedLoop() || !lpt->is_innermost()) continue; 4865 4866 // check for vectorized loops, any reassociation of invariants was already done 4867 if (head->is_CountedLoop()) { 4868 if (head->as_CountedLoop()->is_unroll_only()) { 4869 continue; 4870 } else { 4871 AutoNodeBudget node_budget(this); 4872 lpt->reassociate_invariants(this); 4873 } 4874 } 4875 // Because RCE opportunities can be masked by split_thru_phi, 4876 // look for RCE candidates and inhibit split_thru_phi 4877 // on just their loop-phi's for this pass of loop opts 4878 if (SplitIfBlocks && do_split_ifs && 4879 head->as_BaseCountedLoop()->is_valid_counted_loop(head->as_BaseCountedLoop()->bt()) && 4880 (lpt->policy_range_check(this, true, T_LONG) || 4881 (head->is_CountedLoop() && lpt->policy_range_check(this, true, T_INT)))) { 4882 lpt->_rce_candidate = 1; // = true 4883 } 4884 } 4885 } 4886 4887 // Check for aggressive application of split-if and other transforms 4888 // that require basic-block info (like cloning through Phi's) 4889 if (!C->major_progress() && SplitIfBlocks && do_split_ifs) { 4890 visited.clear(); 4891 split_if_with_blocks(visited, nstack); 4892 if (C->failing()) { 4893 return; 4894 } 4895 DEBUG_ONLY( if (VerifyLoopOptimizations) { verify(); } ); 4896 } 4897 4898 if (!C->major_progress() && do_expensive_nodes && process_expensive_nodes()) { 4899 C->set_major_progress(); 4900 } 4901 4902 // Perform loop predication before iteration splitting 4903 if (UseLoopPredicate && C->has_loops() && !C->major_progress() && (C->parse_predicate_count() > 0)) { 4904 _ltree_root->_child->loop_predication(this); 4905 } 4906 4907 if (OptimizeFill && UseLoopPredicate && C->has_loops() && !C->major_progress()) { 4908 if (do_intrinsify_fill()) { 4909 C->set_major_progress(); 4910 } 4911 } 4912 4913 // Perform iteration-splitting on inner loops. Split iterations to avoid 4914 // range checks or one-shot null checks. 4915 4916 // If split-if's didn't hack the graph too bad (no CFG changes) 4917 // then do loop opts. 4918 if (C->has_loops() && !C->major_progress()) { 4919 memset( worklist.adr(), 0, worklist.max()*sizeof(Node*) ); 4920 _ltree_root->_child->iteration_split( this, worklist ); 4921 // No verify after peeling! GCM has hoisted code out of the loop. 4922 // After peeling, the hoisted code could sink inside the peeled area. 4923 // The peeling code does not try to recompute the best location for 4924 // all the code before the peeled area, so the verify pass will always 4925 // complain about it. 4926 } 4927 4928 // Check for bailout, and return 4929 if (C->failing()) { 4930 return; 4931 } 4932 4933 // Do verify graph edges in any case 4934 NOT_PRODUCT( C->verify_graph_edges(); ); 4935 4936 if (!do_split_ifs) { 4937 // We saw major progress in Split-If to get here. We forced a 4938 // pass with unrolling and not split-if, however more split-if's 4939 // might make progress. If the unrolling didn't make progress 4940 // then the major-progress flag got cleared and we won't try 4941 // another round of Split-If. In particular the ever-common 4942 // instance-of/check-cast pattern requires at least 2 rounds of 4943 // Split-If to clear out. 4944 C->set_major_progress(); 4945 } 4946 4947 // Repeat loop optimizations if new loops were seen 4948 if (created_loop_node()) { 4949 C->set_major_progress(); 4950 } 4951 4952 // Keep loop predicates and perform optimizations with them 4953 // until no more loop optimizations could be done. 4954 // After that switch predicates off and do more loop optimizations. 4955 if (!C->major_progress() && (C->parse_predicate_count() > 0)) { 4956 C->mark_parse_predicate_nodes_useless(_igvn); 4957 assert(C->parse_predicate_count() == 0, "should be zero now"); 4958 if (TraceLoopOpts) { 4959 tty->print_cr("PredicatesOff"); 4960 } 4961 C->set_major_progress(); 4962 } 4963 4964 // Auto-vectorize main-loop 4965 if (C->do_superword() && C->has_loops() && !C->major_progress()) { 4966 Compile::TracePhase tp(_t_autoVectorize); 4967 4968 // Shared data structures for all AutoVectorizations, to reduce allocations 4969 // of large arrays. 4970 VSharedData vshared; 4971 for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) { 4972 IdealLoopTree* lpt = iter.current(); 4973 AutoVectorizeStatus status = auto_vectorize(lpt, vshared); 4974 4975 if (status == AutoVectorizeStatus::TriedAndFailed) { 4976 // We tried vectorization, but failed. From now on only unroll the loop. 4977 CountedLoopNode* cl = lpt->_head->as_CountedLoop(); 4978 if (cl->has_passed_slp()) { 4979 C->set_major_progress(); 4980 cl->set_notpassed_slp(); 4981 cl->mark_do_unroll_only(); 4982 } 4983 } 4984 } 4985 } 4986 4987 // Move UnorderedReduction out of counted loop. Can be introduced by AutoVectorization. 4988 if (C->has_loops() && !C->major_progress()) { 4989 for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) { 4990 IdealLoopTree* lpt = iter.current(); 4991 if (lpt->is_counted() && lpt->is_innermost()) { 4992 move_unordered_reduction_out_of_loop(lpt); 4993 } 4994 } 4995 } 4996 } 4997 4998 #ifndef PRODUCT 4999 //------------------------------print_statistics------------------------------- 5000 int PhaseIdealLoop::_loop_invokes=0;// Count of PhaseIdealLoop invokes 5001 int PhaseIdealLoop::_loop_work=0; // Sum of PhaseIdealLoop x unique 5002 volatile int PhaseIdealLoop::_long_loop_candidates=0; // Number of long loops seen 5003 volatile int PhaseIdealLoop::_long_loop_nests=0; // Number of long loops successfully transformed to a nest 5004 volatile int PhaseIdealLoop::_long_loop_counted_loops=0; // Number of long loops successfully transformed to a counted loop 5005 void PhaseIdealLoop::print_statistics() { 5006 tty->print_cr("PhaseIdealLoop=%d, sum _unique=%d, long loops=%d/%d/%d", _loop_invokes, _loop_work, _long_loop_counted_loops, _long_loop_nests, _long_loop_candidates); 5007 } 5008 #endif 5009 5010 #ifdef ASSERT 5011 // Build a verify-only PhaseIdealLoop, and see that it agrees with "this". 5012 void PhaseIdealLoop::verify() const { 5013 ResourceMark rm; 5014 int old_progress = C->major_progress(); 5015 bool success = true; 5016 5017 PhaseIdealLoop phase_verify(_igvn, this); 5018 if (C->failing_internal()) { 5019 return; 5020 } 5021 5022 // Verify ctrl and idom of every node. 5023 success &= verify_idom_and_nodes(C->root(), &phase_verify); 5024 5025 // Verify loop-tree. 5026 success &= _ltree_root->verify_tree(phase_verify._ltree_root); 5027 5028 assert(success, "VerifyLoopOptimizations failed"); 5029 5030 // Major progress was cleared by creating a verify version of PhaseIdealLoop. 5031 C->restore_major_progress(old_progress); 5032 } 5033 5034 // Perform a BFS starting at n, through all inputs. 5035 // Call verify_idom and verify_node on all nodes of BFS traversal. 5036 bool PhaseIdealLoop::verify_idom_and_nodes(Node* root, const PhaseIdealLoop* phase_verify) const { 5037 Unique_Node_List worklist; 5038 worklist.push(root); 5039 bool success = true; 5040 for (uint i = 0; i < worklist.size(); i++) { 5041 Node* n = worklist.at(i); 5042 // process node 5043 success &= verify_idom(n, phase_verify); 5044 success &= verify_loop_ctrl(n, phase_verify); 5045 // visit inputs 5046 for (uint j = 0; j < n->req(); j++) { 5047 if (n->in(j) != nullptr) { 5048 worklist.push(n->in(j)); 5049 } 5050 } 5051 } 5052 return success; 5053 } 5054 5055 // Verify dominator structure (IDOM). 5056 bool PhaseIdealLoop::verify_idom(Node* n, const PhaseIdealLoop* phase_verify) const { 5057 // Verify IDOM for all CFG nodes (except root). 5058 if (!n->is_CFG() || n->is_Root()) { 5059 return true; // pass 5060 } 5061 5062 if (n->_idx >= _idom_size) { 5063 tty->print("CFG Node with no idom: "); 5064 n->dump(); 5065 return false; // fail 5066 } 5067 5068 Node* id = idom_no_update(n); 5069 Node* id_verify = phase_verify->idom_no_update(n); 5070 if (id != id_verify) { 5071 tty->print("Mismatching idom for node: "); 5072 n->dump(); 5073 tty->print(" We have idom: "); 5074 id->dump(); 5075 tty->print(" Verify has idom: "); 5076 id_verify->dump(); 5077 tty->cr(); 5078 return false; // fail 5079 } 5080 return true; // pass 5081 } 5082 5083 // Verify "_loop_or_ctrl": control and loop membership. 5084 // (0) _loop_or_ctrl[i] == nullptr -> node not reachable. 5085 // (1) has_ctrl -> check lowest bit. 1 -> data node. 0 -> ctrl node. 5086 // (2) has_ctrl true: get_ctrl_no_update returns ctrl of data node. 5087 // (3) has_ctrl false: get_loop_idx returns IdealLoopTree for ctrl node. 5088 bool PhaseIdealLoop::verify_loop_ctrl(Node* n, const PhaseIdealLoop* phase_verify) const { 5089 const uint i = n->_idx; 5090 // The loop-tree was built from def to use (top-down). 5091 // The verification happens from use to def (bottom-up). 5092 // We may thus find nodes during verification that are not in the loop-tree. 5093 if (_loop_or_ctrl[i] == nullptr || phase_verify->_loop_or_ctrl[i] == nullptr) { 5094 if (_loop_or_ctrl[i] != nullptr || phase_verify->_loop_or_ctrl[i] != nullptr) { 5095 tty->print_cr("Was reachable in only one. this %d, verify %d.", 5096 _loop_or_ctrl[i] != nullptr, phase_verify->_loop_or_ctrl[i] != nullptr); 5097 n->dump(); 5098 return false; // fail 5099 } 5100 // Not reachable for both. 5101 return true; // pass 5102 } 5103 5104 if (n->is_CFG() == has_ctrl(n)) { 5105 tty->print_cr("Exactly one should be true: %d for is_CFG, %d for has_ctrl.", n->is_CFG(), has_ctrl(n)); 5106 n->dump(); 5107 return false; // fail 5108 } 5109 5110 if (has_ctrl(n) != phase_verify->has_ctrl(n)) { 5111 tty->print_cr("Mismatch has_ctrl: %d for this, %d for verify.", has_ctrl(n), phase_verify->has_ctrl(n)); 5112 n->dump(); 5113 return false; // fail 5114 } else if (has_ctrl(n)) { 5115 assert(phase_verify->has_ctrl(n), "sanity"); 5116 // n is a data node. 5117 // Verify that its ctrl is the same. 5118 5119 // Broken part of VerifyLoopOptimizations (A) 5120 // Reason: 5121 // BUG, wrong control set for example in 5122 // PhaseIdealLoop::split_if_with_blocks 5123 // at "set_ctrl(x, new_ctrl);" 5124 /* 5125 if( _loop_or_ctrl[i] != loop_verify->_loop_or_ctrl[i] && 5126 get_ctrl_no_update(n) != loop_verify->get_ctrl_no_update(n) ) { 5127 tty->print("Mismatched control setting for: "); 5128 n->dump(); 5129 if( fail++ > 10 ) return; 5130 Node *c = get_ctrl_no_update(n); 5131 tty->print("We have it as: "); 5132 if( c->in(0) ) c->dump(); 5133 else tty->print_cr("N%d",c->_idx); 5134 tty->print("Verify thinks: "); 5135 if( loop_verify->has_ctrl(n) ) 5136 loop_verify->get_ctrl_no_update(n)->dump(); 5137 else 5138 loop_verify->get_loop_idx(n)->dump(); 5139 tty->cr(); 5140 } 5141 */ 5142 return true; // pass 5143 } else { 5144 assert(!phase_verify->has_ctrl(n), "sanity"); 5145 // n is a ctrl node. 5146 // Verify that not has_ctrl, and that get_loop_idx is the same. 5147 5148 // Broken part of VerifyLoopOptimizations (B) 5149 // Reason: 5150 // NeverBranch node for example is added to loop outside its scope. 5151 // Once we run build_loop_tree again, it is added to the correct loop. 5152 /* 5153 if (!C->major_progress()) { 5154 // Loop selection can be messed up if we did a major progress 5155 // operation, like split-if. Do not verify in that case. 5156 IdealLoopTree *us = get_loop_idx(n); 5157 IdealLoopTree *them = loop_verify->get_loop_idx(n); 5158 if( us->_head != them->_head || us->_tail != them->_tail ) { 5159 tty->print("Unequals loops for: "); 5160 n->dump(); 5161 if( fail++ > 10 ) return; 5162 tty->print("We have it as: "); 5163 us->dump(); 5164 tty->print("Verify thinks: "); 5165 them->dump(); 5166 tty->cr(); 5167 } 5168 } 5169 */ 5170 return true; // pass 5171 } 5172 } 5173 5174 static int compare_tree(IdealLoopTree* const& a, IdealLoopTree* const& b) { 5175 assert(a != nullptr && b != nullptr, "must be"); 5176 return a->_head->_idx - b->_head->_idx; 5177 } 5178 5179 GrowableArray<IdealLoopTree*> IdealLoopTree::collect_sorted_children() const { 5180 GrowableArray<IdealLoopTree*> children; 5181 IdealLoopTree* child = _child; 5182 while (child != nullptr) { 5183 assert(child->_parent == this, "all must be children of this"); 5184 children.insert_sorted<compare_tree>(child); 5185 child = child->_next; 5186 } 5187 return children; 5188 } 5189 5190 // Verify that tree structures match. Because the CFG can change, siblings 5191 // within the loop tree can be reordered. We attempt to deal with that by 5192 // reordering the verify's loop tree if possible. 5193 bool IdealLoopTree::verify_tree(IdealLoopTree* loop_verify) const { 5194 assert(_head == loop_verify->_head, "mismatched loop head"); 5195 assert(this->_parent != nullptr || this->_next == nullptr, "is_root_loop implies has_no_sibling"); 5196 5197 // Collect the children 5198 GrowableArray<IdealLoopTree*> children = collect_sorted_children(); 5199 GrowableArray<IdealLoopTree*> children_verify = loop_verify->collect_sorted_children(); 5200 5201 bool success = true; 5202 5203 // Compare the two children lists 5204 for (int i = 0, j = 0; i < children.length() || j < children_verify.length(); ) { 5205 IdealLoopTree* child = nullptr; 5206 IdealLoopTree* child_verify = nullptr; 5207 // Read from both lists, if possible. 5208 if (i < children.length()) { 5209 child = children.at(i); 5210 } 5211 if (j < children_verify.length()) { 5212 child_verify = children_verify.at(j); 5213 } 5214 assert(child != nullptr || child_verify != nullptr, "must find at least one"); 5215 if (child != nullptr && child_verify != nullptr && child->_head != child_verify->_head) { 5216 // We found two non-equal children. Select the smaller one. 5217 if (child->_head->_idx < child_verify->_head->_idx) { 5218 child_verify = nullptr; 5219 } else { 5220 child = nullptr; 5221 } 5222 } 5223 // Process the two children, or potentially log the failure if we only found one. 5224 if (child_verify == nullptr) { 5225 if (child->_irreducible && Compile::current()->major_progress()) { 5226 // Irreducible loops can pick a different header (one of its entries). 5227 } else { 5228 tty->print_cr("We have a loop that verify does not have"); 5229 child->dump(); 5230 success = false; 5231 } 5232 i++; // step for this 5233 } else if (child == nullptr) { 5234 if (child_verify->_irreducible && Compile::current()->major_progress()) { 5235 // Irreducible loops can pick a different header (one of its entries). 5236 } else if (child_verify->_head->as_Region()->is_in_infinite_subgraph()) { 5237 // Infinite loops do not get attached to the loop-tree on their first visit. 5238 // "this" runs before "loop_verify". It is thus possible that we find the 5239 // infinite loop only for "child_verify". Only finding it with "child" would 5240 // mean that we lost it, which is not ok. 5241 } else { 5242 tty->print_cr("Verify has a loop that we do not have"); 5243 child_verify->dump(); 5244 success = false; 5245 } 5246 j++; // step for verify 5247 } else { 5248 assert(child->_head == child_verify->_head, "We have both and they are equal"); 5249 success &= child->verify_tree(child_verify); // Recursion 5250 i++; // step for this 5251 j++; // step for verify 5252 } 5253 } 5254 5255 // Broken part of VerifyLoopOptimizations (D) 5256 // Reason: 5257 // split_if has to update the _tail, if it is modified. But that is done by 5258 // checking to what loop the iff belongs to. That info can be wrong, and then 5259 // we do not update the _tail correctly. 5260 /* 5261 Node *tail = _tail; // Inline a non-updating version of 5262 while( !tail->in(0) ) // the 'tail()' call. 5263 tail = tail->in(1); 5264 assert( tail == loop->_tail, "mismatched loop tail" ); 5265 */ 5266 5267 if (_head->is_CountedLoop()) { 5268 CountedLoopNode *cl = _head->as_CountedLoop(); 5269 5270 Node* ctrl = cl->init_control(); 5271 Node* back = cl->back_control(); 5272 assert(ctrl != nullptr && ctrl->is_CFG(), "sane loop in-ctrl"); 5273 assert(back != nullptr && back->is_CFG(), "sane loop backedge"); 5274 cl->loopexit(); // assert implied 5275 } 5276 5277 // Broken part of VerifyLoopOptimizations (E) 5278 // Reason: 5279 // PhaseIdealLoop::split_thru_region creates new nodes for loop that are not added 5280 // to the loop body. Or maybe they are not added to the correct loop. 5281 // at "Node* x = n->clone();" 5282 /* 5283 // Innermost loops need to verify loop bodies, 5284 // but only if no 'major_progress' 5285 int fail = 0; 5286 if (!Compile::current()->major_progress() && _child == nullptr) { 5287 for( uint i = 0; i < _body.size(); i++ ) { 5288 Node *n = _body.at(i); 5289 if (n->outcnt() == 0) continue; // Ignore dead 5290 uint j; 5291 for( j = 0; j < loop->_body.size(); j++ ) 5292 if( loop->_body.at(j) == n ) 5293 break; 5294 if( j == loop->_body.size() ) { // Not found in loop body 5295 // Last ditch effort to avoid assertion: Its possible that we 5296 // have some users (so outcnt not zero) but are still dead. 5297 // Try to find from root. 5298 if (Compile::current()->root()->find(n->_idx)) { 5299 fail++; 5300 tty->print("We have that verify does not: "); 5301 n->dump(); 5302 } 5303 } 5304 } 5305 for( uint i2 = 0; i2 < loop->_body.size(); i2++ ) { 5306 Node *n = loop->_body.at(i2); 5307 if (n->outcnt() == 0) continue; // Ignore dead 5308 uint j; 5309 for( j = 0; j < _body.size(); j++ ) 5310 if( _body.at(j) == n ) 5311 break; 5312 if( j == _body.size() ) { // Not found in loop body 5313 // Last ditch effort to avoid assertion: Its possible that we 5314 // have some users (so outcnt not zero) but are still dead. 5315 // Try to find from root. 5316 if (Compile::current()->root()->find(n->_idx)) { 5317 fail++; 5318 tty->print("Verify has that we do not: "); 5319 n->dump(); 5320 } 5321 } 5322 } 5323 assert( !fail, "loop body mismatch" ); 5324 } 5325 */ 5326 return success; 5327 } 5328 #endif 5329 5330 //------------------------------set_idom--------------------------------------- 5331 void PhaseIdealLoop::set_idom(Node* d, Node* n, uint dom_depth) { 5332 _nesting.check(); // Check if a potential reallocation in the resource arena is safe 5333 uint idx = d->_idx; 5334 if (idx >= _idom_size) { 5335 uint newsize = next_power_of_2(idx); 5336 _idom = REALLOC_RESOURCE_ARRAY( Node*, _idom,_idom_size,newsize); 5337 _dom_depth = REALLOC_RESOURCE_ARRAY( uint, _dom_depth,_idom_size,newsize); 5338 memset( _dom_depth + _idom_size, 0, (newsize - _idom_size) * sizeof(uint) ); 5339 _idom_size = newsize; 5340 } 5341 _idom[idx] = n; 5342 _dom_depth[idx] = dom_depth; 5343 } 5344 5345 //------------------------------recompute_dom_depth--------------------------------------- 5346 // The dominator tree is constructed with only parent pointers. 5347 // This recomputes the depth in the tree by first tagging all 5348 // nodes as "no depth yet" marker. The next pass then runs up 5349 // the dom tree from each node marked "no depth yet", and computes 5350 // the depth on the way back down. 5351 void PhaseIdealLoop::recompute_dom_depth() { 5352 uint no_depth_marker = C->unique(); 5353 uint i; 5354 // Initialize depth to "no depth yet" and realize all lazy updates 5355 for (i = 0; i < _idom_size; i++) { 5356 // Only indices with a _dom_depth has a Node* or null (otherwise uninitialized). 5357 if (_dom_depth[i] > 0 && _idom[i] != nullptr) { 5358 _dom_depth[i] = no_depth_marker; 5359 5360 // heal _idom if it has a fwd mapping in _loop_or_ctrl 5361 if (_idom[i]->in(0) == nullptr) { 5362 idom(i); 5363 } 5364 } 5365 } 5366 if (_dom_stk == nullptr) { 5367 uint init_size = C->live_nodes() / 100; // Guess that 1/100 is a reasonable initial size. 5368 if (init_size < 10) init_size = 10; 5369 _dom_stk = new GrowableArray<uint>(init_size); 5370 } 5371 // Compute new depth for each node. 5372 for (i = 0; i < _idom_size; i++) { 5373 uint j = i; 5374 // Run up the dom tree to find a node with a depth 5375 while (_dom_depth[j] == no_depth_marker) { 5376 _dom_stk->push(j); 5377 j = _idom[j]->_idx; 5378 } 5379 // Compute the depth on the way back down this tree branch 5380 uint dd = _dom_depth[j] + 1; 5381 while (_dom_stk->length() > 0) { 5382 uint j = _dom_stk->pop(); 5383 _dom_depth[j] = dd; 5384 dd++; 5385 } 5386 } 5387 } 5388 5389 //------------------------------sort------------------------------------------- 5390 // Insert 'loop' into the existing loop tree. 'innermost' is a leaf of the 5391 // loop tree, not the root. 5392 IdealLoopTree *PhaseIdealLoop::sort( IdealLoopTree *loop, IdealLoopTree *innermost ) { 5393 if( !innermost ) return loop; // New innermost loop 5394 5395 int loop_preorder = get_preorder(loop->_head); // Cache pre-order number 5396 assert( loop_preorder, "not yet post-walked loop" ); 5397 IdealLoopTree **pp = &innermost; // Pointer to previous next-pointer 5398 IdealLoopTree *l = *pp; // Do I go before or after 'l'? 5399 5400 // Insert at start of list 5401 while( l ) { // Insertion sort based on pre-order 5402 if( l == loop ) return innermost; // Already on list! 5403 int l_preorder = get_preorder(l->_head); // Cache pre-order number 5404 assert( l_preorder, "not yet post-walked l" ); 5405 // Check header pre-order number to figure proper nesting 5406 if( loop_preorder > l_preorder ) 5407 break; // End of insertion 5408 // If headers tie (e.g., shared headers) check tail pre-order numbers. 5409 // Since I split shared headers, you'd think this could not happen. 5410 // BUT: I must first do the preorder numbering before I can discover I 5411 // have shared headers, so the split headers all get the same preorder 5412 // number as the RegionNode they split from. 5413 if( loop_preorder == l_preorder && 5414 get_preorder(loop->_tail) < get_preorder(l->_tail) ) 5415 break; // Also check for shared headers (same pre#) 5416 pp = &l->_parent; // Chain up list 5417 l = *pp; 5418 } 5419 // Link into list 5420 // Point predecessor to me 5421 *pp = loop; 5422 // Point me to successor 5423 IdealLoopTree *p = loop->_parent; 5424 loop->_parent = l; // Point me to successor 5425 if( p ) sort( p, innermost ); // Insert my parents into list as well 5426 return innermost; 5427 } 5428 5429 //------------------------------build_loop_tree-------------------------------- 5430 // I use a modified Vick/Tarjan algorithm. I need pre- and a post- visit 5431 // bits. The _loop_or_ctrl[] array is mapped by Node index and holds a null for 5432 // not-yet-pre-walked, pre-order # for pre-but-not-post-walked and holds the 5433 // tightest enclosing IdealLoopTree for post-walked. 5434 // 5435 // During my forward walk I do a short 1-layer lookahead to see if I can find 5436 // a loop backedge with that doesn't have any work on the backedge. This 5437 // helps me construct nested loops with shared headers better. 5438 // 5439 // Once I've done the forward recursion, I do the post-work. For each child 5440 // I check to see if there is a backedge. Backedges define a loop! I 5441 // insert an IdealLoopTree at the target of the backedge. 5442 // 5443 // During the post-work I also check to see if I have several children 5444 // belonging to different loops. If so, then this Node is a decision point 5445 // where control flow can choose to change loop nests. It is at this 5446 // decision point where I can figure out how loops are nested. At this 5447 // time I can properly order the different loop nests from my children. 5448 // Note that there may not be any backedges at the decision point! 5449 // 5450 // Since the decision point can be far removed from the backedges, I can't 5451 // order my loops at the time I discover them. Thus at the decision point 5452 // I need to inspect loop header pre-order numbers to properly nest my 5453 // loops. This means I need to sort my childrens' loops by pre-order. 5454 // The sort is of size number-of-control-children, which generally limits 5455 // it to size 2 (i.e., I just choose between my 2 target loops). 5456 void PhaseIdealLoop::build_loop_tree() { 5457 // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc 5458 GrowableArray <Node *> bltstack(C->live_nodes() >> 1); 5459 Node *n = C->root(); 5460 bltstack.push(n); 5461 int pre_order = 1; 5462 int stack_size; 5463 5464 while ( ( stack_size = bltstack.length() ) != 0 ) { 5465 n = bltstack.top(); // Leave node on stack 5466 if ( !is_visited(n) ) { 5467 // ---- Pre-pass Work ---- 5468 // Pre-walked but not post-walked nodes need a pre_order number. 5469 5470 set_preorder_visited( n, pre_order ); // set as visited 5471 5472 // ---- Scan over children ---- 5473 // Scan first over control projections that lead to loop headers. 5474 // This helps us find inner-to-outer loops with shared headers better. 5475 5476 // Scan children's children for loop headers. 5477 for ( int i = n->outcnt() - 1; i >= 0; --i ) { 5478 Node* m = n->raw_out(i); // Child 5479 if( m->is_CFG() && !is_visited(m) ) { // Only for CFG children 5480 // Scan over children's children to find loop 5481 for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) { 5482 Node* l = m->fast_out(j); 5483 if( is_visited(l) && // Been visited? 5484 !is_postvisited(l) && // But not post-visited 5485 get_preorder(l) < pre_order ) { // And smaller pre-order 5486 // Found! Scan the DFS down this path before doing other paths 5487 bltstack.push(m); 5488 break; 5489 } 5490 } 5491 } 5492 } 5493 pre_order++; 5494 } 5495 else if ( !is_postvisited(n) ) { 5496 // Note: build_loop_tree_impl() adds out edges on rare occasions, 5497 // such as com.sun.rsasign.am::a. 5498 // For non-recursive version, first, process current children. 5499 // On next iteration, check if additional children were added. 5500 for ( int k = n->outcnt() - 1; k >= 0; --k ) { 5501 Node* u = n->raw_out(k); 5502 if ( u->is_CFG() && !is_visited(u) ) { 5503 bltstack.push(u); 5504 } 5505 } 5506 if ( bltstack.length() == stack_size ) { 5507 // There were no additional children, post visit node now 5508 (void)bltstack.pop(); // Remove node from stack 5509 pre_order = build_loop_tree_impl(n, pre_order); 5510 // Check for bailout 5511 if (C->failing()) { 5512 return; 5513 } 5514 // Check to grow _preorders[] array for the case when 5515 // build_loop_tree_impl() adds new nodes. 5516 check_grow_preorders(); 5517 } 5518 } 5519 else { 5520 (void)bltstack.pop(); // Remove post-visited node from stack 5521 } 5522 } 5523 DEBUG_ONLY(verify_regions_in_irreducible_loops();) 5524 } 5525 5526 //------------------------------build_loop_tree_impl--------------------------- 5527 int PhaseIdealLoop::build_loop_tree_impl(Node* n, int pre_order) { 5528 // ---- Post-pass Work ---- 5529 // Pre-walked but not post-walked nodes need a pre_order number. 5530 5531 // Tightest enclosing loop for this Node 5532 IdealLoopTree *innermost = nullptr; 5533 5534 // For all children, see if any edge is a backedge. If so, make a loop 5535 // for it. Then find the tightest enclosing loop for the self Node. 5536 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 5537 Node* m = n->fast_out(i); // Child 5538 if (n == m) continue; // Ignore control self-cycles 5539 if (!m->is_CFG()) continue;// Ignore non-CFG edges 5540 5541 IdealLoopTree *l; // Child's loop 5542 if (!is_postvisited(m)) { // Child visited but not post-visited? 5543 // Found a backedge 5544 assert(get_preorder(m) < pre_order, "should be backedge"); 5545 // Check for the RootNode, which is already a LoopNode and is allowed 5546 // to have multiple "backedges". 5547 if (m == C->root()) { // Found the root? 5548 l = _ltree_root; // Root is the outermost LoopNode 5549 } else { // Else found a nested loop 5550 // Insert a LoopNode to mark this loop. 5551 l = new IdealLoopTree(this, m, n); 5552 } // End of Else found a nested loop 5553 if (!has_loop(m)) { // If 'm' does not already have a loop set 5554 set_loop(m, l); // Set loop header to loop now 5555 } 5556 } else { // Else not a nested loop 5557 if (!_loop_or_ctrl[m->_idx]) continue; // Dead code has no loop 5558 IdealLoopTree* m_loop = get_loop(m); 5559 l = m_loop; // Get previously determined loop 5560 // If successor is header of a loop (nest), move up-loop till it 5561 // is a member of some outer enclosing loop. Since there are no 5562 // shared headers (I've split them already) I only need to go up 5563 // at most 1 level. 5564 while (l && l->_head == m) { // Successor heads loop? 5565 l = l->_parent; // Move up 1 for me 5566 } 5567 // If this loop is not properly parented, then this loop 5568 // has no exit path out, i.e. its an infinite loop. 5569 if (!l) { 5570 // Make loop "reachable" from root so the CFG is reachable. Basically 5571 // insert a bogus loop exit that is never taken. 'm', the loop head, 5572 // points to 'n', one (of possibly many) fall-in paths. There may be 5573 // many backedges as well. 5574 5575 if (!_verify_only) { 5576 // Insert the NeverBranch between 'm' and it's control user. 5577 NeverBranchNode *iff = new NeverBranchNode( m ); 5578 _igvn.register_new_node_with_optimizer(iff); 5579 set_loop(iff, m_loop); 5580 Node *if_t = new CProjNode( iff, 0 ); 5581 _igvn.register_new_node_with_optimizer(if_t); 5582 set_loop(if_t, m_loop); 5583 5584 Node* cfg = nullptr; // Find the One True Control User of m 5585 for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) { 5586 Node* x = m->fast_out(j); 5587 if (x->is_CFG() && x != m && x != iff) 5588 { cfg = x; break; } 5589 } 5590 assert(cfg != nullptr, "must find the control user of m"); 5591 uint k = 0; // Probably cfg->in(0) 5592 while( cfg->in(k) != m ) k++; // But check in case cfg is a Region 5593 _igvn.replace_input_of(cfg, k, if_t); // Now point to NeverBranch 5594 5595 // Now create the never-taken loop exit 5596 Node *if_f = new CProjNode( iff, 1 ); 5597 _igvn.register_new_node_with_optimizer(if_f); 5598 set_loop(if_f, _ltree_root); 5599 // Find frame ptr for Halt. Relies on the optimizer 5600 // V-N'ing. Easier and quicker than searching through 5601 // the program structure. 5602 Node *frame = new ParmNode( C->start(), TypeFunc::FramePtr ); 5603 _igvn.register_new_node_with_optimizer(frame); 5604 // Halt & Catch Fire 5605 Node* halt = new HaltNode(if_f, frame, "never-taken loop exit reached"); 5606 _igvn.register_new_node_with_optimizer(halt); 5607 set_loop(halt, _ltree_root); 5608 _igvn.add_input_to(C->root(), halt); 5609 } 5610 set_loop(C->root(), _ltree_root); 5611 // move to outer most loop with same header 5612 l = m_loop; 5613 while (true) { 5614 IdealLoopTree* next = l->_parent; 5615 if (next == nullptr || next->_head != m) { 5616 break; 5617 } 5618 l = next; 5619 } 5620 // properly insert infinite loop in loop tree 5621 sort(_ltree_root, l); 5622 // fix child link from parent 5623 IdealLoopTree* p = l->_parent; 5624 l->_next = p->_child; 5625 p->_child = l; 5626 // code below needs enclosing loop 5627 l = l->_parent; 5628 } 5629 } 5630 if (is_postvisited(l->_head)) { 5631 // We are currently visiting l, but its head has already been post-visited. 5632 // l is irreducible: we just found a second entry m. 5633 _has_irreducible_loops = true; 5634 RegionNode* secondary_entry = m->as_Region(); 5635 DEBUG_ONLY(secondary_entry->verify_can_be_irreducible_entry();) 5636 5637 // Walk up the loop-tree, mark all loops that are already post-visited as irreducible 5638 // Since m is a secondary entry to them all. 5639 while( is_postvisited(l->_head) ) { 5640 l->_irreducible = 1; // = true 5641 RegionNode* head = l->_head->as_Region(); 5642 DEBUG_ONLY(head->verify_can_be_irreducible_entry();) 5643 l = l->_parent; 5644 // Check for bad CFG here to prevent crash, and bailout of compile 5645 if (l == nullptr) { 5646 #ifndef PRODUCT 5647 if (TraceLoopOpts) { 5648 tty->print_cr("bailout: unhandled CFG: infinite irreducible loop"); 5649 m->dump(); 5650 } 5651 #endif 5652 // This is a rare case that we do not want to handle in C2. 5653 C->record_method_not_compilable("unhandled CFG detected during loop optimization"); 5654 return pre_order; 5655 } 5656 } 5657 } 5658 if (!_verify_only) { 5659 C->set_has_irreducible_loop(_has_irreducible_loops); 5660 } 5661 5662 // This Node might be a decision point for loops. It is only if 5663 // it's children belong to several different loops. The sort call 5664 // does a trivial amount of work if there is only 1 child or all 5665 // children belong to the same loop. If however, the children 5666 // belong to different loops, the sort call will properly set the 5667 // _parent pointers to show how the loops nest. 5668 // 5669 // In any case, it returns the tightest enclosing loop. 5670 innermost = sort( l, innermost ); 5671 } 5672 5673 // Def-use info will have some dead stuff; dead stuff will have no 5674 // loop decided on. 5675 5676 // Am I a loop header? If so fix up my parent's child and next ptrs. 5677 if( innermost && innermost->_head == n ) { 5678 assert( get_loop(n) == innermost, "" ); 5679 IdealLoopTree *p = innermost->_parent; 5680 IdealLoopTree *l = innermost; 5681 while (p && l->_head == n) { 5682 l->_next = p->_child; // Put self on parents 'next child' 5683 p->_child = l; // Make self as first child of parent 5684 l = p; // Now walk up the parent chain 5685 p = l->_parent; 5686 } 5687 } else { 5688 // Note that it is possible for a LoopNode to reach here, if the 5689 // backedge has been made unreachable (hence the LoopNode no longer 5690 // denotes a Loop, and will eventually be removed). 5691 5692 // Record tightest enclosing loop for self. Mark as post-visited. 5693 set_loop(n, innermost); 5694 // Also record has_call flag early on 5695 if (innermost) { 5696 if( n->is_Call() && !n->is_CallLeaf() && !n->is_macro() ) { 5697 // Do not count uncommon calls 5698 if( !n->is_CallStaticJava() || !n->as_CallStaticJava()->_name ) { 5699 Node *iff = n->in(0)->in(0); 5700 // No any calls for vectorized loops. 5701 if (C->do_superword() || 5702 !iff->is_If() || 5703 (n->in(0)->Opcode() == Op_IfFalse && (1.0 - iff->as_If()->_prob) >= 0.01) || 5704 iff->as_If()->_prob >= 0.01) { 5705 innermost->_has_call = 1; 5706 } 5707 } 5708 } else if( n->is_Allocate() && n->as_Allocate()->_is_scalar_replaceable ) { 5709 // Disable loop optimizations if the loop has a scalar replaceable 5710 // allocation. This disabling may cause a potential performance lost 5711 // if the allocation is not eliminated for some reason. 5712 innermost->_allow_optimizations = false; 5713 innermost->_has_call = 1; // = true 5714 } else if (n->Opcode() == Op_SafePoint) { 5715 // Record all safepoints in this loop. 5716 if (innermost->_safepts == nullptr) innermost->_safepts = new Node_List(); 5717 innermost->_safepts->push(n); 5718 } 5719 } 5720 } 5721 5722 // Flag as post-visited now 5723 set_postvisited(n); 5724 return pre_order; 5725 } 5726 5727 #ifdef ASSERT 5728 //--------------------------verify_regions_in_irreducible_loops---------------- 5729 // Iterate down from Root through CFG, verify for every region: 5730 // if it is in an irreducible loop it must be marked as such 5731 void PhaseIdealLoop::verify_regions_in_irreducible_loops() { 5732 ResourceMark rm; 5733 if (!_has_irreducible_loops) { 5734 // last build_loop_tree has not found any irreducible loops 5735 // hence no region has to be marked is_in_irreduible_loop 5736 return; 5737 } 5738 5739 RootNode* root = C->root(); 5740 Unique_Node_List worklist; // visit all nodes once 5741 worklist.push(root); 5742 bool failure = false; 5743 for (uint i = 0; i < worklist.size(); i++) { 5744 Node* n = worklist.at(i); 5745 if (n->is_Region()) { 5746 RegionNode* region = n->as_Region(); 5747 if (is_in_irreducible_loop(region) && 5748 region->loop_status() == RegionNode::LoopStatus::Reducible) { 5749 failure = true; 5750 tty->print("irreducible! "); 5751 region->dump(); 5752 } 5753 } 5754 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) { 5755 Node* use = n->fast_out(j); 5756 if (use->is_CFG()) { 5757 worklist.push(use); // push if was not pushed before 5758 } 5759 } 5760 } 5761 assert(!failure, "region in irreducible loop was marked as reducible"); 5762 } 5763 5764 //---------------------------is_in_irreducible_loop------------------------- 5765 // Analogous to ciTypeFlow::Block::is_in_irreducible_loop 5766 bool PhaseIdealLoop::is_in_irreducible_loop(RegionNode* region) { 5767 if (!_has_irreducible_loops) { 5768 return false; // no irreducible loop in graph 5769 } 5770 IdealLoopTree* l = get_loop(region); // l: innermost loop that contains region 5771 do { 5772 if (l->_irreducible) { 5773 return true; // found it 5774 } 5775 if (l == _ltree_root) { 5776 return false; // reached root, terimnate 5777 } 5778 l = l->_parent; 5779 } while (l != nullptr); 5780 assert(region->is_in_infinite_subgraph(), "must be in infinite subgraph"); 5781 // We have "l->_parent == nullptr", which happens only for infinite loops, 5782 // where no parent is attached to the loop. We did not find any irreducible 5783 // loop from this block out to lp. Thus lp only has one entry, and no exit 5784 // (it is infinite and reducible). We can always rewrite an infinite loop 5785 // that is nested inside other loops: 5786 // while(condition) { infinite_loop; } 5787 // with an equivalent program where the infinite loop is an outermost loop 5788 // that is not nested in any loop: 5789 // while(condition) { break; } infinite_loop; 5790 // Thus, we can understand lp as an outermost loop, and can terminate and 5791 // conclude: this block is in no irreducible loop. 5792 return false; 5793 } 5794 #endif 5795 5796 //------------------------------build_loop_early------------------------------- 5797 // Put Data nodes into some loop nest, by setting the _loop_or_ctrl[]->loop mapping. 5798 // First pass computes the earliest controlling node possible. This is the 5799 // controlling input with the deepest dominating depth. 5800 void PhaseIdealLoop::build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ) { 5801 while (worklist.size() != 0) { 5802 // Use local variables nstack_top_n & nstack_top_i to cache values 5803 // on nstack's top. 5804 Node *nstack_top_n = worklist.pop(); 5805 uint nstack_top_i = 0; 5806 //while_nstack_nonempty: 5807 while (true) { 5808 // Get parent node and next input's index from stack's top. 5809 Node *n = nstack_top_n; 5810 uint i = nstack_top_i; 5811 uint cnt = n->req(); // Count of inputs 5812 if (i == 0) { // Pre-process the node. 5813 if( has_node(n) && // Have either loop or control already? 5814 !has_ctrl(n) ) { // Have loop picked out already? 5815 // During "merge_many_backedges" we fold up several nested loops 5816 // into a single loop. This makes the members of the original 5817 // loop bodies pointing to dead loops; they need to move up 5818 // to the new UNION'd larger loop. I set the _head field of these 5819 // dead loops to null and the _parent field points to the owning 5820 // loop. Shades of UNION-FIND algorithm. 5821 IdealLoopTree *ilt; 5822 while( !(ilt = get_loop(n))->_head ) { 5823 // Normally I would use a set_loop here. But in this one special 5824 // case, it is legal (and expected) to change what loop a Node 5825 // belongs to. 5826 _loop_or_ctrl.map(n->_idx, (Node*)(ilt->_parent)); 5827 } 5828 // Remove safepoints ONLY if I've already seen I don't need one. 5829 // (the old code here would yank a 2nd safepoint after seeing a 5830 // first one, even though the 1st did not dominate in the loop body 5831 // and thus could be avoided indefinitely) 5832 if( !_verify_only && !_verify_me && ilt->_has_sfpt && n->Opcode() == Op_SafePoint && 5833 is_deleteable_safept(n)) { 5834 Node *in = n->in(TypeFunc::Control); 5835 lazy_replace(n,in); // Pull safepoint now 5836 if (ilt->_safepts != nullptr) { 5837 ilt->_safepts->yank(n); 5838 } 5839 // Carry on with the recursion "as if" we are walking 5840 // only the control input 5841 if( !visited.test_set( in->_idx ) ) { 5842 worklist.push(in); // Visit this guy later, using worklist 5843 } 5844 // Get next node from nstack: 5845 // - skip n's inputs processing by setting i > cnt; 5846 // - we also will not call set_early_ctrl(n) since 5847 // has_node(n) == true (see the condition above). 5848 i = cnt + 1; 5849 } 5850 } 5851 } // if (i == 0) 5852 5853 // Visit all inputs 5854 bool done = true; // Assume all n's inputs will be processed 5855 while (i < cnt) { 5856 Node *in = n->in(i); 5857 ++i; 5858 if (in == nullptr) continue; 5859 if (in->pinned() && !in->is_CFG()) 5860 set_ctrl(in, in->in(0)); 5861 int is_visited = visited.test_set( in->_idx ); 5862 if (!has_node(in)) { // No controlling input yet? 5863 assert( !in->is_CFG(), "CFG Node with no controlling input?" ); 5864 assert( !is_visited, "visit only once" ); 5865 nstack.push(n, i); // Save parent node and next input's index. 5866 nstack_top_n = in; // Process current input now. 5867 nstack_top_i = 0; 5868 done = false; // Not all n's inputs processed. 5869 break; // continue while_nstack_nonempty; 5870 } else if (!is_visited) { 5871 // This guy has a location picked out for him, but has not yet 5872 // been visited. Happens to all CFG nodes, for instance. 5873 // Visit him using the worklist instead of recursion, to break 5874 // cycles. Since he has a location already we do not need to 5875 // find his location before proceeding with the current Node. 5876 worklist.push(in); // Visit this guy later, using worklist 5877 } 5878 } 5879 if (done) { 5880 // All of n's inputs have been processed, complete post-processing. 5881 5882 // Compute earliest point this Node can go. 5883 // CFG, Phi, pinned nodes already know their controlling input. 5884 if (!has_node(n)) { 5885 // Record earliest legal location 5886 set_early_ctrl(n, false); 5887 } 5888 if (nstack.is_empty()) { 5889 // Finished all nodes on stack. 5890 // Process next node on the worklist. 5891 break; 5892 } 5893 // Get saved parent node and next input's index. 5894 nstack_top_n = nstack.node(); 5895 nstack_top_i = nstack.index(); 5896 nstack.pop(); 5897 } 5898 } // while (true) 5899 } 5900 } 5901 5902 //------------------------------dom_lca_internal-------------------------------- 5903 // Pair-wise LCA 5904 Node *PhaseIdealLoop::dom_lca_internal( Node *n1, Node *n2 ) const { 5905 if( !n1 ) return n2; // Handle null original LCA 5906 assert( n1->is_CFG(), "" ); 5907 assert( n2->is_CFG(), "" ); 5908 // find LCA of all uses 5909 uint d1 = dom_depth(n1); 5910 uint d2 = dom_depth(n2); 5911 while (n1 != n2) { 5912 if (d1 > d2) { 5913 n1 = idom(n1); 5914 d1 = dom_depth(n1); 5915 } else if (d1 < d2) { 5916 n2 = idom(n2); 5917 d2 = dom_depth(n2); 5918 } else { 5919 // Here d1 == d2. Due to edits of the dominator-tree, sections 5920 // of the tree might have the same depth. These sections have 5921 // to be searched more carefully. 5922 5923 // Scan up all the n1's with equal depth, looking for n2. 5924 Node *t1 = idom(n1); 5925 while (dom_depth(t1) == d1) { 5926 if (t1 == n2) return n2; 5927 t1 = idom(t1); 5928 } 5929 // Scan up all the n2's with equal depth, looking for n1. 5930 Node *t2 = idom(n2); 5931 while (dom_depth(t2) == d2) { 5932 if (t2 == n1) return n1; 5933 t2 = idom(t2); 5934 } 5935 // Move up to a new dominator-depth value as well as up the dom-tree. 5936 n1 = t1; 5937 n2 = t2; 5938 d1 = dom_depth(n1); 5939 d2 = dom_depth(n2); 5940 } 5941 } 5942 return n1; 5943 } 5944 5945 //------------------------------compute_idom----------------------------------- 5946 // Locally compute IDOM using dom_lca call. Correct only if the incoming 5947 // IDOMs are correct. 5948 Node *PhaseIdealLoop::compute_idom( Node *region ) const { 5949 assert( region->is_Region(), "" ); 5950 Node *LCA = nullptr; 5951 for( uint i = 1; i < region->req(); i++ ) { 5952 if( region->in(i) != C->top() ) 5953 LCA = dom_lca( LCA, region->in(i) ); 5954 } 5955 return LCA; 5956 } 5957 5958 bool PhaseIdealLoop::verify_dominance(Node* n, Node* use, Node* LCA, Node* early) { 5959 bool had_error = false; 5960 #ifdef ASSERT 5961 if (early != C->root()) { 5962 // Make sure that there's a dominance path from LCA to early 5963 Node* d = LCA; 5964 while (d != early) { 5965 if (d == C->root()) { 5966 dump_bad_graph("Bad graph detected in compute_lca_of_uses", n, early, LCA); 5967 tty->print_cr("*** Use %d isn't dominated by def %d ***", use->_idx, n->_idx); 5968 had_error = true; 5969 break; 5970 } 5971 d = idom(d); 5972 } 5973 } 5974 #endif 5975 return had_error; 5976 } 5977 5978 5979 Node* PhaseIdealLoop::compute_lca_of_uses(Node* n, Node* early, bool verify) { 5980 // Compute LCA over list of uses 5981 bool had_error = false; 5982 Node *LCA = nullptr; 5983 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax && LCA != early; i++) { 5984 Node* c = n->fast_out(i); 5985 if (_loop_or_ctrl[c->_idx] == nullptr) 5986 continue; // Skip the occasional dead node 5987 if( c->is_Phi() ) { // For Phis, we must land above on the path 5988 for( uint j=1; j<c->req(); j++ ) {// For all inputs 5989 if( c->in(j) == n ) { // Found matching input? 5990 Node *use = c->in(0)->in(j); 5991 if (_verify_only && use->is_top()) continue; 5992 LCA = dom_lca_for_get_late_ctrl( LCA, use, n ); 5993 if (verify) had_error = verify_dominance(n, use, LCA, early) || had_error; 5994 } 5995 } 5996 } else { 5997 // For CFG data-users, use is in the block just prior 5998 Node *use = has_ctrl(c) ? get_ctrl(c) : c->in(0); 5999 LCA = dom_lca_for_get_late_ctrl( LCA, use, n ); 6000 if (verify) had_error = verify_dominance(n, use, LCA, early) || had_error; 6001 } 6002 } 6003 assert(!had_error, "bad dominance"); 6004 return LCA; 6005 } 6006 6007 // Check the shape of the graph at the loop entry. In some cases, 6008 // the shape of the graph does not match the shape outlined below. 6009 // That is caused by the Opaque1 node "protecting" the shape of 6010 // the graph being removed by, for example, the IGVN performed 6011 // in PhaseIdealLoop::build_and_optimize(). 6012 // 6013 // After the Opaque1 node has been removed, optimizations (e.g., split-if, 6014 // loop unswitching, and IGVN, or a combination of them) can freely change 6015 // the graph's shape. As a result, the graph shape outlined below cannot 6016 // be guaranteed anymore. 6017 Node* CountedLoopNode::is_canonical_loop_entry() { 6018 if (!is_main_loop() && !is_post_loop()) { 6019 return nullptr; 6020 } 6021 Node* ctrl = skip_assertion_predicates_with_halt(); 6022 6023 if (ctrl == nullptr || (!ctrl->is_IfTrue() && !ctrl->is_IfFalse())) { 6024 return nullptr; 6025 } 6026 Node* iffm = ctrl->in(0); 6027 if (iffm == nullptr || iffm->Opcode() != Op_If) { 6028 return nullptr; 6029 } 6030 Node* bolzm = iffm->in(1); 6031 if (bolzm == nullptr || !bolzm->is_Bool()) { 6032 return nullptr; 6033 } 6034 Node* cmpzm = bolzm->in(1); 6035 if (cmpzm == nullptr || !cmpzm->is_Cmp()) { 6036 return nullptr; 6037 } 6038 6039 uint input = is_main_loop() ? 2 : 1; 6040 if (input >= cmpzm->req() || cmpzm->in(input) == nullptr) { 6041 return nullptr; 6042 } 6043 bool res = cmpzm->in(input)->Opcode() == Op_OpaqueZeroTripGuard; 6044 #ifdef ASSERT 6045 bool found_opaque = false; 6046 for (uint i = 1; i < cmpzm->req(); i++) { 6047 Node* opnd = cmpzm->in(i); 6048 if (opnd && opnd->is_Opaque1()) { 6049 found_opaque = true; 6050 break; 6051 } 6052 } 6053 assert(found_opaque == res, "wrong pattern"); 6054 #endif 6055 return res ? cmpzm->in(input) : nullptr; 6056 } 6057 6058 // Find pre loop end from main loop. Returns nullptr if none. 6059 CountedLoopEndNode* CountedLoopNode::find_pre_loop_end() { 6060 assert(is_main_loop(), "Can only find pre-loop from main-loop"); 6061 // The loop cannot be optimized if the graph shape at the loop entry is 6062 // inappropriate. 6063 if (is_canonical_loop_entry() == nullptr) { 6064 return nullptr; 6065 } 6066 6067 Node* p_f = skip_assertion_predicates_with_halt()->in(0)->in(0); 6068 if (!p_f->is_IfFalse() || !p_f->in(0)->is_CountedLoopEnd()) { 6069 return nullptr; 6070 } 6071 CountedLoopEndNode* pre_end = p_f->in(0)->as_CountedLoopEnd(); 6072 CountedLoopNode* loop_node = pre_end->loopnode(); 6073 if (loop_node == nullptr || !loop_node->is_pre_loop()) { 6074 return nullptr; 6075 } 6076 return pre_end; 6077 } 6078 6079 //------------------------------get_late_ctrl---------------------------------- 6080 // Compute latest legal control. 6081 Node *PhaseIdealLoop::get_late_ctrl( Node *n, Node *early ) { 6082 assert(early != nullptr, "early control should not be null"); 6083 6084 Node* LCA = compute_lca_of_uses(n, early); 6085 #ifdef ASSERT 6086 if (LCA == C->root() && LCA != early) { 6087 // def doesn't dominate uses so print some useful debugging output 6088 compute_lca_of_uses(n, early, true); 6089 } 6090 #endif 6091 6092 if (n->is_Load() && LCA != early) { 6093 LCA = get_late_ctrl_with_anti_dep(n->as_Load(), early, LCA); 6094 } 6095 6096 assert(LCA == find_non_split_ctrl(LCA), "unexpected late control"); 6097 return LCA; 6098 } 6099 6100 // if this is a load, check for anti-dependent stores 6101 // We use a conservative algorithm to identify potential interfering 6102 // instructions and for rescheduling the load. The users of the memory 6103 // input of this load are examined. Any use which is not a load and is 6104 // dominated by early is considered a potentially interfering store. 6105 // This can produce false positives. 6106 Node* PhaseIdealLoop::get_late_ctrl_with_anti_dep(LoadNode* n, Node* early, Node* LCA) { 6107 int load_alias_idx = C->get_alias_index(n->adr_type()); 6108 if (C->alias_type(load_alias_idx)->is_rewritable()) { 6109 Unique_Node_List worklist; 6110 6111 Node* mem = n->in(MemNode::Memory); 6112 for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) { 6113 Node* s = mem->fast_out(i); 6114 worklist.push(s); 6115 } 6116 for (uint i = 0; i < worklist.size() && LCA != early; i++) { 6117 Node* s = worklist.at(i); 6118 if (s->is_Load() || s->Opcode() == Op_SafePoint || 6119 (s->is_CallStaticJava() && s->as_CallStaticJava()->uncommon_trap_request() != 0) || 6120 s->is_Phi()) { 6121 continue; 6122 } else if (s->is_MergeMem()) { 6123 for (DUIterator_Fast imax, i = s->fast_outs(imax); i < imax; i++) { 6124 Node* s1 = s->fast_out(i); 6125 worklist.push(s1); 6126 } 6127 } else { 6128 Node* sctrl = has_ctrl(s) ? get_ctrl(s) : s->in(0); 6129 assert(sctrl != nullptr || !s->is_reachable_from_root(), "must have control"); 6130 if (sctrl != nullptr && !sctrl->is_top() && is_dominator(early, sctrl)) { 6131 const TypePtr* adr_type = s->adr_type(); 6132 if (s->is_ArrayCopy()) { 6133 // Copy to known instance needs destination type to test for aliasing 6134 const TypePtr* dest_type = s->as_ArrayCopy()->_dest_type; 6135 if (dest_type != TypeOopPtr::BOTTOM) { 6136 adr_type = dest_type; 6137 } 6138 } 6139 if (C->can_alias(adr_type, load_alias_idx)) { 6140 LCA = dom_lca_for_get_late_ctrl(LCA, sctrl, n); 6141 } else if (s->is_CFG() && s->is_Multi()) { 6142 // Look for the memory use of s (that is the use of its memory projection) 6143 for (DUIterator_Fast imax, i = s->fast_outs(imax); i < imax; i++) { 6144 Node* s1 = s->fast_out(i); 6145 assert(s1->is_Proj(), "projection expected"); 6146 if (_igvn.type(s1) == Type::MEMORY) { 6147 for (DUIterator_Fast jmax, j = s1->fast_outs(jmax); j < jmax; j++) { 6148 Node* s2 = s1->fast_out(j); 6149 worklist.push(s2); 6150 } 6151 } 6152 } 6153 } 6154 } 6155 } 6156 } 6157 // For Phis only consider Region's inputs that were reached by following the memory edges 6158 if (LCA != early) { 6159 for (uint i = 0; i < worklist.size(); i++) { 6160 Node* s = worklist.at(i); 6161 if (s->is_Phi() && C->can_alias(s->adr_type(), load_alias_idx)) { 6162 Node* r = s->in(0); 6163 for (uint j = 1; j < s->req(); j++) { 6164 Node* in = s->in(j); 6165 Node* r_in = r->in(j); 6166 // We can't reach any node from a Phi because we don't enqueue Phi's uses above 6167 if (((worklist.member(in) && !in->is_Phi()) || in == mem) && is_dominator(early, r_in)) { 6168 LCA = dom_lca_for_get_late_ctrl(LCA, r_in, n); 6169 } 6170 } 6171 } 6172 } 6173 } 6174 } 6175 return LCA; 6176 } 6177 6178 // Is CFG node 'dominator' dominating node 'n'? 6179 bool PhaseIdealLoop::is_dominator(Node* dominator, Node* n) { 6180 if (dominator == n) { 6181 return true; 6182 } 6183 assert(dominator->is_CFG() && n->is_CFG(), "must have CFG nodes"); 6184 uint dd = dom_depth(dominator); 6185 while (dom_depth(n) >= dd) { 6186 if (n == dominator) { 6187 return true; 6188 } 6189 n = idom(n); 6190 } 6191 return false; 6192 } 6193 6194 // Is CFG node 'dominator' strictly dominating node 'n'? 6195 bool PhaseIdealLoop::is_strict_dominator(Node* dominator, Node* n) { 6196 return dominator != n && is_dominator(dominator, n); 6197 } 6198 6199 //------------------------------dom_lca_for_get_late_ctrl_internal------------- 6200 // Pair-wise LCA with tags. 6201 // Tag each index with the node 'tag' currently being processed 6202 // before advancing up the dominator chain using idom(). 6203 // Later calls that find a match to 'tag' know that this path has already 6204 // been considered in the current LCA (which is input 'n1' by convention). 6205 // Since get_late_ctrl() is only called once for each node, the tag array 6206 // does not need to be cleared between calls to get_late_ctrl(). 6207 // Algorithm trades a larger constant factor for better asymptotic behavior 6208 // 6209 Node *PhaseIdealLoop::dom_lca_for_get_late_ctrl_internal(Node *n1, Node *n2, Node *tag_node) { 6210 uint d1 = dom_depth(n1); 6211 uint d2 = dom_depth(n2); 6212 jlong tag = tag_node->_idx | (((jlong)_dom_lca_tags_round) << 32); 6213 6214 do { 6215 if (d1 > d2) { 6216 // current lca is deeper than n2 6217 _dom_lca_tags.at_put_grow(n1->_idx, tag); 6218 n1 = idom(n1); 6219 d1 = dom_depth(n1); 6220 } else if (d1 < d2) { 6221 // n2 is deeper than current lca 6222 jlong memo = _dom_lca_tags.at_grow(n2->_idx, 0); 6223 if (memo == tag) { 6224 return n1; // Return the current LCA 6225 } 6226 _dom_lca_tags.at_put_grow(n2->_idx, tag); 6227 n2 = idom(n2); 6228 d2 = dom_depth(n2); 6229 } else { 6230 // Here d1 == d2. Due to edits of the dominator-tree, sections 6231 // of the tree might have the same depth. These sections have 6232 // to be searched more carefully. 6233 6234 // Scan up all the n1's with equal depth, looking for n2. 6235 _dom_lca_tags.at_put_grow(n1->_idx, tag); 6236 Node *t1 = idom(n1); 6237 while (dom_depth(t1) == d1) { 6238 if (t1 == n2) return n2; 6239 _dom_lca_tags.at_put_grow(t1->_idx, tag); 6240 t1 = idom(t1); 6241 } 6242 // Scan up all the n2's with equal depth, looking for n1. 6243 _dom_lca_tags.at_put_grow(n2->_idx, tag); 6244 Node *t2 = idom(n2); 6245 while (dom_depth(t2) == d2) { 6246 if (t2 == n1) return n1; 6247 _dom_lca_tags.at_put_grow(t2->_idx, tag); 6248 t2 = idom(t2); 6249 } 6250 // Move up to a new dominator-depth value as well as up the dom-tree. 6251 n1 = t1; 6252 n2 = t2; 6253 d1 = dom_depth(n1); 6254 d2 = dom_depth(n2); 6255 } 6256 } while (n1 != n2); 6257 return n1; 6258 } 6259 6260 //------------------------------init_dom_lca_tags------------------------------ 6261 // Tag could be a node's integer index, 32bits instead of 64bits in some cases 6262 // Intended use does not involve any growth for the array, so it could 6263 // be of fixed size. 6264 void PhaseIdealLoop::init_dom_lca_tags() { 6265 uint limit = C->unique() + 1; 6266 _dom_lca_tags.at_grow(limit, 0); 6267 _dom_lca_tags_round = 0; 6268 #ifdef ASSERT 6269 for (uint i = 0; i < limit; ++i) { 6270 assert(_dom_lca_tags.at(i) == 0, "Must be distinct from each node pointer"); 6271 } 6272 #endif // ASSERT 6273 } 6274 6275 //------------------------------build_loop_late-------------------------------- 6276 // Put Data nodes into some loop nest, by setting the _loop_or_ctrl[]->loop mapping. 6277 // Second pass finds latest legal placement, and ideal loop placement. 6278 void PhaseIdealLoop::build_loop_late( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ) { 6279 while (worklist.size() != 0) { 6280 Node *n = worklist.pop(); 6281 // Only visit once 6282 if (visited.test_set(n->_idx)) continue; 6283 uint cnt = n->outcnt(); 6284 uint i = 0; 6285 while (true) { 6286 assert(_loop_or_ctrl[n->_idx], "no dead nodes"); 6287 // Visit all children 6288 if (i < cnt) { 6289 Node* use = n->raw_out(i); 6290 ++i; 6291 // Check for dead uses. Aggressively prune such junk. It might be 6292 // dead in the global sense, but still have local uses so I cannot 6293 // easily call 'remove_dead_node'. 6294 if (_loop_or_ctrl[use->_idx] != nullptr || use->is_top()) { // Not dead? 6295 // Due to cycles, we might not hit the same fixed point in the verify 6296 // pass as we do in the regular pass. Instead, visit such phis as 6297 // simple uses of the loop head. 6298 if( use->in(0) && (use->is_CFG() || use->is_Phi()) ) { 6299 if( !visited.test(use->_idx) ) 6300 worklist.push(use); 6301 } else if( !visited.test_set(use->_idx) ) { 6302 nstack.push(n, i); // Save parent and next use's index. 6303 n = use; // Process all children of current use. 6304 cnt = use->outcnt(); 6305 i = 0; 6306 } 6307 } else { 6308 // Do not visit around the backedge of loops via data edges. 6309 // push dead code onto a worklist 6310 _deadlist.push(use); 6311 } 6312 } else { 6313 // All of n's children have been processed, complete post-processing. 6314 build_loop_late_post(n); 6315 if (C->failing()) { return; } 6316 if (nstack.is_empty()) { 6317 // Finished all nodes on stack. 6318 // Process next node on the worklist. 6319 break; 6320 } 6321 // Get saved parent node and next use's index. Visit the rest of uses. 6322 n = nstack.node(); 6323 cnt = n->outcnt(); 6324 i = nstack.index(); 6325 nstack.pop(); 6326 } 6327 } 6328 } 6329 } 6330 6331 // Verify that no data node is scheduled in the outer loop of a strip 6332 // mined loop. 6333 void PhaseIdealLoop::verify_strip_mined_scheduling(Node *n, Node* least) { 6334 #ifdef ASSERT 6335 if (get_loop(least)->_nest == 0) { 6336 return; 6337 } 6338 IdealLoopTree* loop = get_loop(least); 6339 Node* head = loop->_head; 6340 if (head->is_OuterStripMinedLoop() && 6341 // Verification can't be applied to fully built strip mined loops 6342 head->as_Loop()->outer_loop_end()->in(1)->find_int_con(-1) == 0) { 6343 Node* sfpt = head->as_Loop()->outer_safepoint(); 6344 ResourceMark rm; 6345 Unique_Node_List wq; 6346 wq.push(sfpt); 6347 for (uint i = 0; i < wq.size(); i++) { 6348 Node *m = wq.at(i); 6349 for (uint i = 1; i < m->req(); i++) { 6350 Node* nn = m->in(i); 6351 if (nn == n) { 6352 return; 6353 } 6354 if (nn != nullptr && has_ctrl(nn) && get_loop(get_ctrl(nn)) == loop) { 6355 wq.push(nn); 6356 } 6357 } 6358 } 6359 ShouldNotReachHere(); 6360 } 6361 #endif 6362 } 6363 6364 6365 //------------------------------build_loop_late_post--------------------------- 6366 // Put Data nodes into some loop nest, by setting the _loop_or_ctrl[]->loop mapping. 6367 // Second pass finds latest legal placement, and ideal loop placement. 6368 void PhaseIdealLoop::build_loop_late_post(Node *n) { 6369 build_loop_late_post_work(n, true); 6370 } 6371 6372 // Class to visit all predicates in a predicate chain to find out which are dominated by a given node. Keeps track of 6373 // the entry to the earliest predicate that is still dominated by the given dominator. This class is used when trying to 6374 // legally skip all predicates when figuring out the latest placement such that a node does not interfere with Loop 6375 // Predication or creating a Loop Limit Check Predicate later. 6376 class DominatedPredicates : public UnifiedPredicateVisitor { 6377 Node* const _dominator; 6378 Node* _earliest_dominated_predicate_entry; 6379 bool _should_continue; 6380 PhaseIdealLoop* const _phase; 6381 6382 public: 6383 DominatedPredicates(Node* dominator, Node* start_node, PhaseIdealLoop* phase) 6384 : _dominator(dominator), 6385 _earliest_dominated_predicate_entry(start_node), 6386 _should_continue(true), 6387 _phase(phase) {} 6388 NONCOPYABLE(DominatedPredicates); 6389 6390 bool should_continue() const override { 6391 return _should_continue; 6392 } 6393 6394 // Returns the entry to the earliest predicate that is still dominated by the given dominator (all could be dominated). 6395 Node* earliest_dominated_predicate_entry() const { 6396 return _earliest_dominated_predicate_entry; 6397 } 6398 6399 void visit_predicate(const Predicate& predicate) override { 6400 Node* entry = predicate.entry(); 6401 if (_phase->is_strict_dominator(entry, _dominator)) { 6402 _should_continue = false; 6403 } else { 6404 _earliest_dominated_predicate_entry = entry; 6405 } 6406 } 6407 }; 6408 6409 void PhaseIdealLoop::build_loop_late_post_work(Node *n, bool pinned) { 6410 6411 if (n->req() == 2 && (n->Opcode() == Op_ConvI2L || n->Opcode() == Op_CastII) && !C->major_progress() && !_verify_only) { 6412 _igvn._worklist.push(n); // Maybe we'll normalize it, if no more loops. 6413 } 6414 6415 #ifdef ASSERT 6416 if (_verify_only && !n->is_CFG()) { 6417 // Check def-use domination. 6418 // We would like to expose this check in product but it appears to be expensive. 6419 compute_lca_of_uses(n, get_ctrl(n), true /* verify */); 6420 } 6421 #endif 6422 6423 // CFG and pinned nodes already handled 6424 if( n->in(0) ) { 6425 if( n->in(0)->is_top() ) return; // Dead? 6426 6427 // We'd like +VerifyLoopOptimizations to not believe that Mod's/Loads 6428 // _must_ be pinned (they have to observe their control edge of course). 6429 // Unlike Stores (which modify an unallocable resource, the memory 6430 // state), Mods/Loads can float around. So free them up. 6431 switch( n->Opcode() ) { 6432 case Op_DivI: 6433 case Op_DivF: 6434 case Op_DivD: 6435 case Op_ModI: 6436 case Op_ModF: 6437 case Op_ModD: 6438 case Op_LoadB: // Same with Loads; they can sink 6439 case Op_LoadUB: // during loop optimizations. 6440 case Op_LoadUS: 6441 case Op_LoadD: 6442 case Op_LoadF: 6443 case Op_LoadI: 6444 case Op_LoadKlass: 6445 case Op_LoadNKlass: 6446 case Op_LoadL: 6447 case Op_LoadS: 6448 case Op_LoadP: 6449 case Op_LoadN: 6450 case Op_LoadRange: 6451 case Op_LoadD_unaligned: 6452 case Op_LoadL_unaligned: 6453 case Op_StrComp: // Does a bunch of load-like effects 6454 case Op_StrEquals: 6455 case Op_StrIndexOf: 6456 case Op_StrIndexOfChar: 6457 case Op_AryEq: 6458 case Op_VectorizedHashCode: 6459 case Op_CountPositives: 6460 pinned = false; 6461 } 6462 if (n->is_CMove() || n->is_ConstraintCast()) { 6463 pinned = false; 6464 } 6465 if( pinned ) { 6466 IdealLoopTree *chosen_loop = get_loop(n->is_CFG() ? n : get_ctrl(n)); 6467 if( !chosen_loop->_child ) // Inner loop? 6468 chosen_loop->_body.push(n); // Collect inner loops 6469 return; 6470 } 6471 } else { // No slot zero 6472 if( n->is_CFG() ) { // CFG with no slot 0 is dead 6473 _loop_or_ctrl.map(n->_idx,nullptr); // No block setting, it's globally dead 6474 return; 6475 } 6476 assert(!n->is_CFG() || n->outcnt() == 0, ""); 6477 } 6478 6479 // Do I have a "safe range" I can select over? 6480 Node *early = get_ctrl(n);// Early location already computed 6481 6482 // Compute latest point this Node can go 6483 Node *LCA = get_late_ctrl( n, early ); 6484 // LCA is null due to uses being dead 6485 if( LCA == nullptr ) { 6486 #ifdef ASSERT 6487 for (DUIterator i1 = n->outs(); n->has_out(i1); i1++) { 6488 assert(_loop_or_ctrl[n->out(i1)->_idx] == nullptr, "all uses must also be dead"); 6489 } 6490 #endif 6491 _loop_or_ctrl.map(n->_idx, nullptr); // This node is useless 6492 _deadlist.push(n); 6493 return; 6494 } 6495 assert(LCA != nullptr && !LCA->is_top(), "no dead nodes"); 6496 6497 Node *legal = LCA; // Walk 'legal' up the IDOM chain 6498 Node *least = legal; // Best legal position so far 6499 while( early != legal ) { // While not at earliest legal 6500 if (legal->is_Start() && !early->is_Root()) { 6501 #ifdef ASSERT 6502 // Bad graph. Print idom path and fail. 6503 dump_bad_graph("Bad graph detected in build_loop_late", n, early, LCA); 6504 assert(false, "Bad graph detected in build_loop_late"); 6505 #endif 6506 C->record_method_not_compilable("Bad graph detected in build_loop_late"); 6507 return; 6508 } 6509 // Find least loop nesting depth 6510 legal = idom(legal); // Bump up the IDOM tree 6511 // Check for lower nesting depth 6512 if( get_loop(legal)->_nest < get_loop(least)->_nest ) 6513 least = legal; 6514 } 6515 assert(early == legal || legal != C->root(), "bad dominance of inputs"); 6516 6517 if (least != early) { 6518 // Move the node above predicates as far up as possible so a 6519 // following pass of Loop Predication doesn't hoist a predicate 6520 // that depends on it above that node. 6521 const PredicateIterator predicate_iterator(least); 6522 DominatedPredicates dominated_predicates(early, least, this); 6523 predicate_iterator.for_each(dominated_predicates); 6524 least = dominated_predicates.earliest_dominated_predicate_entry(); 6525 } 6526 // Try not to place code on a loop entry projection 6527 // which can inhibit range check elimination. 6528 if (least != early && !BarrierSet::barrier_set()->barrier_set_c2()->is_gc_specific_loop_opts_pass(_mode)) { 6529 Node* ctrl_out = least->unique_ctrl_out_or_null(); 6530 if (ctrl_out != nullptr && ctrl_out->is_Loop() && 6531 least == ctrl_out->in(LoopNode::EntryControl) && 6532 (ctrl_out->is_CountedLoop() || ctrl_out->is_OuterStripMinedLoop())) { 6533 Node* least_dom = idom(least); 6534 if (get_loop(least_dom)->is_member(get_loop(least))) { 6535 least = least_dom; 6536 } 6537 } 6538 } 6539 // Don't extend live ranges of raw oops 6540 if (least != early && n->is_ConstraintCast() && n->in(1)->bottom_type()->isa_rawptr() && 6541 !n->bottom_type()->isa_rawptr()) { 6542 least = early; 6543 } 6544 6545 #ifdef ASSERT 6546 // Broken part of VerifyLoopOptimizations (F) 6547 // Reason: 6548 // _verify_me->get_ctrl_no_update(n) seems to return wrong result 6549 /* 6550 // If verifying, verify that 'verify_me' has a legal location 6551 // and choose it as our location. 6552 if( _verify_me ) { 6553 Node *v_ctrl = _verify_me->get_ctrl_no_update(n); 6554 Node *legal = LCA; 6555 while( early != legal ) { // While not at earliest legal 6556 if( legal == v_ctrl ) break; // Check for prior good location 6557 legal = idom(legal) ;// Bump up the IDOM tree 6558 } 6559 // Check for prior good location 6560 if( legal == v_ctrl ) least = legal; // Keep prior if found 6561 } 6562 */ 6563 #endif 6564 6565 // Assign discovered "here or above" point 6566 least = find_non_split_ctrl(least); 6567 verify_strip_mined_scheduling(n, least); 6568 set_ctrl(n, least); 6569 6570 // Collect inner loop bodies 6571 IdealLoopTree *chosen_loop = get_loop(least); 6572 if( !chosen_loop->_child ) // Inner loop? 6573 chosen_loop->_body.push(n);// Collect inner loops 6574 6575 if (!_verify_only && n->Opcode() == Op_OpaqueZeroTripGuard) { 6576 _zero_trip_guard_opaque_nodes.push(n); 6577 } 6578 6579 } 6580 6581 #ifdef ASSERT 6582 void PhaseIdealLoop::dump_bad_graph(const char* msg, Node* n, Node* early, Node* LCA) { 6583 tty->print_cr("%s", msg); 6584 tty->print("n: "); n->dump(); 6585 tty->print("early(n): "); early->dump(); 6586 if (n->in(0) != nullptr && !n->in(0)->is_top() && 6587 n->in(0) != early && !n->in(0)->is_Root()) { 6588 tty->print("n->in(0): "); n->in(0)->dump(); 6589 } 6590 for (uint i = 1; i < n->req(); i++) { 6591 Node* in1 = n->in(i); 6592 if (in1 != nullptr && in1 != n && !in1->is_top()) { 6593 tty->print("n->in(%d): ", i); in1->dump(); 6594 Node* in1_early = get_ctrl(in1); 6595 tty->print("early(n->in(%d)): ", i); in1_early->dump(); 6596 if (in1->in(0) != nullptr && !in1->in(0)->is_top() && 6597 in1->in(0) != in1_early && !in1->in(0)->is_Root()) { 6598 tty->print("n->in(%d)->in(0): ", i); in1->in(0)->dump(); 6599 } 6600 for (uint j = 1; j < in1->req(); j++) { 6601 Node* in2 = in1->in(j); 6602 if (in2 != nullptr && in2 != n && in2 != in1 && !in2->is_top()) { 6603 tty->print("n->in(%d)->in(%d): ", i, j); in2->dump(); 6604 Node* in2_early = get_ctrl(in2); 6605 tty->print("early(n->in(%d)->in(%d)): ", i, j); in2_early->dump(); 6606 if (in2->in(0) != nullptr && !in2->in(0)->is_top() && 6607 in2->in(0) != in2_early && !in2->in(0)->is_Root()) { 6608 tty->print("n->in(%d)->in(%d)->in(0): ", i, j); in2->in(0)->dump(); 6609 } 6610 } 6611 } 6612 } 6613 } 6614 tty->cr(); 6615 tty->print("LCA(n): "); LCA->dump(); 6616 for (uint i = 0; i < n->outcnt(); i++) { 6617 Node* u1 = n->raw_out(i); 6618 if (u1 == n) 6619 continue; 6620 tty->print("n->out(%d): ", i); u1->dump(); 6621 if (u1->is_CFG()) { 6622 for (uint j = 0; j < u1->outcnt(); j++) { 6623 Node* u2 = u1->raw_out(j); 6624 if (u2 != u1 && u2 != n && u2->is_CFG()) { 6625 tty->print("n->out(%d)->out(%d): ", i, j); u2->dump(); 6626 } 6627 } 6628 } else { 6629 Node* u1_later = get_ctrl(u1); 6630 tty->print("later(n->out(%d)): ", i); u1_later->dump(); 6631 if (u1->in(0) != nullptr && !u1->in(0)->is_top() && 6632 u1->in(0) != u1_later && !u1->in(0)->is_Root()) { 6633 tty->print("n->out(%d)->in(0): ", i); u1->in(0)->dump(); 6634 } 6635 for (uint j = 0; j < u1->outcnt(); j++) { 6636 Node* u2 = u1->raw_out(j); 6637 if (u2 == n || u2 == u1) 6638 continue; 6639 tty->print("n->out(%d)->out(%d): ", i, j); u2->dump(); 6640 if (!u2->is_CFG()) { 6641 Node* u2_later = get_ctrl(u2); 6642 tty->print("later(n->out(%d)->out(%d)): ", i, j); u2_later->dump(); 6643 if (u2->in(0) != nullptr && !u2->in(0)->is_top() && 6644 u2->in(0) != u2_later && !u2->in(0)->is_Root()) { 6645 tty->print("n->out(%d)->in(0): ", i); u2->in(0)->dump(); 6646 } 6647 } 6648 } 6649 } 6650 } 6651 dump_idoms(early, LCA); 6652 tty->cr(); 6653 } 6654 6655 // Class to compute the real LCA given an early node and a wrong LCA in a bad graph. 6656 class RealLCA { 6657 const PhaseIdealLoop* _phase; 6658 Node* _early; 6659 Node* _wrong_lca; 6660 uint _early_index; 6661 int _wrong_lca_index; 6662 6663 // Given idom chains of early and wrong LCA: Walk through idoms starting at StartNode and find the first node which 6664 // is different: Return the previously visited node which must be the real LCA. 6665 // The node lists also contain _early and _wrong_lca, respectively. 6666 Node* find_real_lca(Unique_Node_List& early_with_idoms, Unique_Node_List& wrong_lca_with_idoms) { 6667 int early_index = early_with_idoms.size() - 1; 6668 int wrong_lca_index = wrong_lca_with_idoms.size() - 1; 6669 bool found_difference = false; 6670 do { 6671 if (early_with_idoms[early_index] != wrong_lca_with_idoms[wrong_lca_index]) { 6672 // First time early and wrong LCA idoms differ. Real LCA must be at the previous index. 6673 found_difference = true; 6674 break; 6675 } 6676 early_index--; 6677 wrong_lca_index--; 6678 } while (wrong_lca_index >= 0); 6679 6680 assert(early_index >= 0, "must always find an LCA - cannot be early"); 6681 _early_index = early_index; 6682 _wrong_lca_index = wrong_lca_index; 6683 Node* real_lca = early_with_idoms[_early_index + 1]; // Plus one to skip _early. 6684 assert(found_difference || real_lca == _wrong_lca, "wrong LCA dominates early and is therefore the real LCA"); 6685 return real_lca; 6686 } 6687 6688 void dump(Node* real_lca) { 6689 tty->cr(); 6690 tty->print_cr("idoms of early \"%d %s\":", _early->_idx, _early->Name()); 6691 _phase->dump_idom(_early, _early_index + 1); 6692 6693 tty->cr(); 6694 tty->print_cr("idoms of (wrong) LCA \"%d %s\":", _wrong_lca->_idx, _wrong_lca->Name()); 6695 _phase->dump_idom(_wrong_lca, _wrong_lca_index + 1); 6696 6697 tty->cr(); 6698 tty->print("Real LCA of early \"%d %s\" (idom[%d]) and wrong LCA \"%d %s\"", 6699 _early->_idx, _early->Name(), _early_index, _wrong_lca->_idx, _wrong_lca->Name()); 6700 if (_wrong_lca_index >= 0) { 6701 tty->print(" (idom[%d])", _wrong_lca_index); 6702 } 6703 tty->print_cr(":"); 6704 real_lca->dump(); 6705 } 6706 6707 public: 6708 RealLCA(const PhaseIdealLoop* phase, Node* early, Node* wrong_lca) 6709 : _phase(phase), _early(early), _wrong_lca(wrong_lca), _early_index(0), _wrong_lca_index(0) { 6710 assert(!wrong_lca->is_Start(), "StartNode is always a common dominator"); 6711 } 6712 6713 void compute_and_dump() { 6714 ResourceMark rm; 6715 Unique_Node_List early_with_idoms; 6716 Unique_Node_List wrong_lca_with_idoms; 6717 early_with_idoms.push(_early); 6718 wrong_lca_with_idoms.push(_wrong_lca); 6719 _phase->get_idoms(_early, 10000, early_with_idoms); 6720 _phase->get_idoms(_wrong_lca, 10000, wrong_lca_with_idoms); 6721 Node* real_lca = find_real_lca(early_with_idoms, wrong_lca_with_idoms); 6722 dump(real_lca); 6723 } 6724 }; 6725 6726 // Dump the idom chain of early, of the wrong LCA and dump the real LCA of early and wrong LCA. 6727 void PhaseIdealLoop::dump_idoms(Node* early, Node* wrong_lca) { 6728 assert(!is_dominator(early, wrong_lca), "sanity check that early does not dominate wrong lca"); 6729 assert(!has_ctrl(early) && !has_ctrl(wrong_lca), "sanity check, no data nodes"); 6730 6731 RealLCA real_lca(this, early, wrong_lca); 6732 real_lca.compute_and_dump(); 6733 } 6734 #endif // ASSERT 6735 6736 #ifndef PRODUCT 6737 //------------------------------dump------------------------------------------- 6738 void PhaseIdealLoop::dump() const { 6739 ResourceMark rm; 6740 Node_Stack stack(C->live_nodes() >> 2); 6741 Node_List rpo_list; 6742 VectorSet visited; 6743 visited.set(C->top()->_idx); 6744 rpo(C->root(), stack, visited, rpo_list); 6745 // Dump root loop indexed by last element in PO order 6746 dump(_ltree_root, rpo_list.size(), rpo_list); 6747 } 6748 6749 void PhaseIdealLoop::dump(IdealLoopTree* loop, uint idx, Node_List &rpo_list) const { 6750 loop->dump_head(); 6751 6752 // Now scan for CFG nodes in the same loop 6753 for (uint j = idx; j > 0; j--) { 6754 Node* n = rpo_list[j-1]; 6755 if (!_loop_or_ctrl[n->_idx]) // Skip dead nodes 6756 continue; 6757 6758 if (get_loop(n) != loop) { // Wrong loop nest 6759 if (get_loop(n)->_head == n && // Found nested loop? 6760 get_loop(n)->_parent == loop) 6761 dump(get_loop(n), rpo_list.size(), rpo_list); // Print it nested-ly 6762 continue; 6763 } 6764 6765 // Dump controlling node 6766 tty->sp(2 * loop->_nest); 6767 tty->print("C"); 6768 if (n == C->root()) { 6769 n->dump(); 6770 } else { 6771 Node* cached_idom = idom_no_update(n); 6772 Node* computed_idom = n->in(0); 6773 if (n->is_Region()) { 6774 computed_idom = compute_idom(n); 6775 // computed_idom() will return n->in(0) when idom(n) is an IfNode (or 6776 // any MultiBranch ctrl node), so apply a similar transform to 6777 // the cached idom returned from idom_no_update. 6778 cached_idom = find_non_split_ctrl(cached_idom); 6779 } 6780 tty->print(" ID:%d", computed_idom->_idx); 6781 n->dump(); 6782 if (cached_idom != computed_idom) { 6783 tty->print_cr("*** BROKEN IDOM! Computed as: %d, cached as: %d", 6784 computed_idom->_idx, cached_idom->_idx); 6785 } 6786 } 6787 // Dump nodes it controls 6788 for (uint k = 0; k < _loop_or_ctrl.max(); k++) { 6789 // (k < C->unique() && get_ctrl(find(k)) == n) 6790 if (k < C->unique() && _loop_or_ctrl[k] == (Node*)((intptr_t)n + 1)) { 6791 Node* m = C->root()->find(k); 6792 if (m && m->outcnt() > 0) { 6793 if (!(has_ctrl(m) && get_ctrl_no_update(m) == n)) { 6794 tty->print_cr("*** BROKEN CTRL ACCESSOR! _loop_or_ctrl[k] is %p, ctrl is %p", 6795 _loop_or_ctrl[k], has_ctrl(m) ? get_ctrl_no_update(m) : nullptr); 6796 } 6797 tty->sp(2 * loop->_nest + 1); 6798 m->dump(); 6799 } 6800 } 6801 } 6802 } 6803 } 6804 6805 void PhaseIdealLoop::dump_idom(Node* n, const uint count) const { 6806 if (has_ctrl(n)) { 6807 tty->print_cr("No idom for data nodes"); 6808 } else { 6809 ResourceMark rm; 6810 Unique_Node_List idoms; 6811 get_idoms(n, count, idoms); 6812 dump_idoms_in_reverse(n, idoms); 6813 } 6814 } 6815 6816 void PhaseIdealLoop::get_idoms(Node* n, const uint count, Unique_Node_List& idoms) const { 6817 Node* next = n; 6818 for (uint i = 0; !next->is_Start() && i < count; i++) { 6819 next = idom(next); 6820 assert(!idoms.member(next), "duplicated idom is not possible"); 6821 idoms.push(next); 6822 } 6823 } 6824 6825 void PhaseIdealLoop::dump_idoms_in_reverse(const Node* n, const Node_List& idom_list) const { 6826 Node* next; 6827 uint padding = 3; 6828 uint node_index_padding_width = static_cast<int>(log10(static_cast<double>(C->unique()))) + 1; 6829 for (int i = idom_list.size() - 1; i >= 0; i--) { 6830 if (i == 9 || i == 99) { 6831 padding++; 6832 } 6833 next = idom_list[i]; 6834 tty->print_cr("idom[%d]:%*c%*d %s", i, padding, ' ', node_index_padding_width, next->_idx, next->Name()); 6835 } 6836 tty->print_cr("n: %*c%*d %s", padding, ' ', node_index_padding_width, n->_idx, n->Name()); 6837 } 6838 #endif // NOT PRODUCT 6839 6840 // Collect a R-P-O for the whole CFG. 6841 // Result list is in post-order (scan backwards for RPO) 6842 void PhaseIdealLoop::rpo(Node* start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list) const { 6843 stk.push(start, 0); 6844 visited.set(start->_idx); 6845 6846 while (stk.is_nonempty()) { 6847 Node* m = stk.node(); 6848 uint idx = stk.index(); 6849 if (idx < m->outcnt()) { 6850 stk.set_index(idx + 1); 6851 Node* n = m->raw_out(idx); 6852 if (n->is_CFG() && !visited.test_set(n->_idx)) { 6853 stk.push(n, 0); 6854 } 6855 } else { 6856 rpo_list.push(m); 6857 stk.pop(); 6858 } 6859 } 6860 } 6861 6862 ConINode* PhaseIdealLoop::intcon(jint i) { 6863 ConINode* node = _igvn.intcon(i); 6864 set_root_as_ctrl(node); 6865 return node; 6866 } 6867 6868 ConLNode* PhaseIdealLoop::longcon(jlong i) { 6869 ConLNode* node = _igvn.longcon(i); 6870 set_root_as_ctrl(node); 6871 return node; 6872 } 6873 6874 ConNode* PhaseIdealLoop::makecon(const Type* t) { 6875 ConNode* node = _igvn.makecon(t); 6876 set_root_as_ctrl(node); 6877 return node; 6878 } 6879 6880 ConNode* PhaseIdealLoop::integercon(jlong l, BasicType bt) { 6881 ConNode* node = _igvn.integercon(l, bt); 6882 set_root_as_ctrl(node); 6883 return node; 6884 } 6885 6886 ConNode* PhaseIdealLoop::zerocon(BasicType bt) { 6887 ConNode* node = _igvn.zerocon(bt); 6888 set_root_as_ctrl(node); 6889 return node; 6890 } 6891 6892 6893 //============================================================================= 6894 //------------------------------LoopTreeIterator------------------------------- 6895 6896 // Advance to next loop tree using a preorder, left-to-right traversal. 6897 void LoopTreeIterator::next() { 6898 assert(!done(), "must not be done."); 6899 if (_curnt->_child != nullptr) { 6900 _curnt = _curnt->_child; 6901 } else if (_curnt->_next != nullptr) { 6902 _curnt = _curnt->_next; 6903 } else { 6904 while (_curnt != _root && _curnt->_next == nullptr) { 6905 _curnt = _curnt->_parent; 6906 } 6907 if (_curnt == _root) { 6908 _curnt = nullptr; 6909 assert(done(), "must be done."); 6910 } else { 6911 assert(_curnt->_next != nullptr, "must be more to do"); 6912 _curnt = _curnt->_next; 6913 } 6914 } 6915 }