1 /* 2 * Copyright (c) 1998, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "ci/ciMethodData.hpp" 26 #include "compiler/compileLog.hpp" 27 #include "gc/shared/barrierSet.hpp" 28 #include "gc/shared/c2/barrierSetC2.hpp" 29 #include "libadt/vectset.hpp" 30 #include "memory/allocation.inline.hpp" 31 #include "memory/resourceArea.hpp" 32 #include "opto/addnode.hpp" 33 #include "opto/arraycopynode.hpp" 34 #include "opto/callnode.hpp" 35 #include "opto/castnode.hpp" 36 #include "opto/connode.hpp" 37 #include "opto/convertnode.hpp" 38 #include "opto/divnode.hpp" 39 #include "opto/idealGraphPrinter.hpp" 40 #include "opto/loopnode.hpp" 41 #include "opto/movenode.hpp" 42 #include "opto/mulnode.hpp" 43 #include "opto/opaquenode.hpp" 44 #include "opto/opcodes.hpp" 45 #include "opto/predicates.hpp" 46 #include "opto/rootnode.hpp" 47 #include "opto/runtime.hpp" 48 #include "opto/vectorization.hpp" 49 #include "runtime/sharedRuntime.hpp" 50 #include "utilities/checkedCast.hpp" 51 #include "utilities/powerOfTwo.hpp" 52 53 //============================================================================= 54 //--------------------------is_cloop_ind_var----------------------------------- 55 // Determine if a node is a counted loop induction variable. 56 // NOTE: The method is declared in "node.hpp". 57 bool Node::is_cloop_ind_var() const { 58 return (is_Phi() && 59 as_Phi()->region()->is_CountedLoop() && 60 as_Phi()->region()->as_CountedLoop()->phi() == this); 61 } 62 63 //============================================================================= 64 //------------------------------dump_spec-------------------------------------- 65 // Dump special per-node info 66 #ifndef PRODUCT 67 void LoopNode::dump_spec(outputStream *st) const { 68 RegionNode::dump_spec(st); 69 if (is_inner_loop()) st->print( "inner " ); 70 if (is_partial_peel_loop()) st->print( "partial_peel " ); 71 if (partial_peel_has_failed()) st->print( "partial_peel_failed " ); 72 } 73 #endif 74 75 //------------------------------is_valid_counted_loop------------------------- 76 bool LoopNode::is_valid_counted_loop(BasicType bt) const { 77 if (is_BaseCountedLoop() && as_BaseCountedLoop()->bt() == bt) { 78 BaseCountedLoopNode* l = as_BaseCountedLoop(); 79 BaseCountedLoopEndNode* le = l->loopexit_or_null(); 80 if (le != nullptr && 81 le->proj_out_or_null(1 /* true */) == l->in(LoopNode::LoopBackControl)) { 82 Node* phi = l->phi(); 83 Node* exit = le->proj_out_or_null(0 /* false */); 84 if (exit != nullptr && exit->Opcode() == Op_IfFalse && 85 phi != nullptr && phi->is_Phi() && 86 phi->in(LoopNode::LoopBackControl) == l->incr() && 87 le->loopnode() == l && le->stride_is_con()) { 88 return true; 89 } 90 } 91 } 92 return false; 93 } 94 95 //------------------------------get_early_ctrl--------------------------------- 96 // Compute earliest legal control 97 Node *PhaseIdealLoop::get_early_ctrl( Node *n ) { 98 assert( !n->is_Phi() && !n->is_CFG(), "this code only handles data nodes" ); 99 uint i; 100 Node *early; 101 if (n->in(0) && !n->is_expensive()) { 102 early = n->in(0); 103 if (!early->is_CFG()) // Might be a non-CFG multi-def 104 early = get_ctrl(early); // So treat input as a straight data input 105 i = 1; 106 } else { 107 early = get_ctrl(n->in(1)); 108 i = 2; 109 } 110 uint e_d = dom_depth(early); 111 assert( early, "" ); 112 for (; i < n->req(); i++) { 113 Node *cin = get_ctrl(n->in(i)); 114 assert( cin, "" ); 115 // Keep deepest dominator depth 116 uint c_d = dom_depth(cin); 117 if (c_d > e_d) { // Deeper guy? 118 early = cin; // Keep deepest found so far 119 e_d = c_d; 120 } else if (c_d == e_d && // Same depth? 121 early != cin) { // If not equal, must use slower algorithm 122 // If same depth but not equal, one _must_ dominate the other 123 // and we want the deeper (i.e., dominated) guy. 124 Node *n1 = early; 125 Node *n2 = cin; 126 while (1) { 127 n1 = idom(n1); // Walk up until break cycle 128 n2 = idom(n2); 129 if (n1 == cin || // Walked early up to cin 130 dom_depth(n2) < c_d) 131 break; // early is deeper; keep him 132 if (n2 == early || // Walked cin up to early 133 dom_depth(n1) < c_d) { 134 early = cin; // cin is deeper; keep him 135 break; 136 } 137 } 138 e_d = dom_depth(early); // Reset depth register cache 139 } 140 } 141 142 // Return earliest legal location 143 assert(early == find_non_split_ctrl(early), "unexpected early control"); 144 145 if (n->is_expensive() && !_verify_only && !_verify_me) { 146 assert(n->in(0), "should have control input"); 147 early = get_early_ctrl_for_expensive(n, early); 148 } 149 150 return early; 151 } 152 153 //------------------------------get_early_ctrl_for_expensive--------------------------------- 154 // Move node up the dominator tree as high as legal while still beneficial 155 Node *PhaseIdealLoop::get_early_ctrl_for_expensive(Node *n, Node* earliest) { 156 assert(n->in(0) && n->is_expensive(), "expensive node with control input here"); 157 assert(OptimizeExpensiveOps, "optimization off?"); 158 159 Node* ctl = n->in(0); 160 assert(ctl->is_CFG(), "expensive input 0 must be cfg"); 161 uint min_dom_depth = dom_depth(earliest); 162 #ifdef ASSERT 163 if (!is_dominator(ctl, earliest) && !is_dominator(earliest, ctl)) { 164 dump_bad_graph("Bad graph detected in get_early_ctrl_for_expensive", n, earliest, ctl); 165 assert(false, "Bad graph detected in get_early_ctrl_for_expensive"); 166 } 167 #endif 168 if (dom_depth(ctl) < min_dom_depth) { 169 return earliest; 170 } 171 172 while (true) { 173 Node* next = ctl; 174 // Moving the node out of a loop on the projection of an If 175 // confuses Loop Predication. So, once we hit a loop in an If branch 176 // that doesn't branch to an UNC, we stop. The code that process 177 // expensive nodes will notice the loop and skip over it to try to 178 // move the node further up. 179 if (ctl->is_CountedLoop() && ctl->in(1) != nullptr && ctl->in(1)->in(0) != nullptr && ctl->in(1)->in(0)->is_If()) { 180 if (!ctl->in(1)->as_Proj()->is_uncommon_trap_if_pattern()) { 181 break; 182 } 183 next = idom(ctl->in(1)->in(0)); 184 } else if (ctl->is_Proj()) { 185 // We only move it up along a projection if the projection is 186 // the single control projection for its parent: same code path, 187 // if it's a If with UNC or fallthrough of a call. 188 Node* parent_ctl = ctl->in(0); 189 if (parent_ctl == nullptr) { 190 break; 191 } else if (parent_ctl->is_CountedLoopEnd() && parent_ctl->as_CountedLoopEnd()->loopnode() != nullptr) { 192 next = parent_ctl->as_CountedLoopEnd()->loopnode()->init_control(); 193 } else if (parent_ctl->is_If()) { 194 if (!ctl->as_Proj()->is_uncommon_trap_if_pattern()) { 195 break; 196 } 197 assert(idom(ctl) == parent_ctl, "strange"); 198 next = idom(parent_ctl); 199 } else if (ctl->is_CatchProj()) { 200 if (ctl->as_Proj()->_con != CatchProjNode::fall_through_index) { 201 break; 202 } 203 assert(parent_ctl->in(0)->in(0)->is_Call(), "strange graph"); 204 next = parent_ctl->in(0)->in(0)->in(0); 205 } else { 206 // Check if parent control has a single projection (this 207 // control is the only possible successor of the parent 208 // control). If so, we can try to move the node above the 209 // parent control. 210 int nb_ctl_proj = 0; 211 for (DUIterator_Fast imax, i = parent_ctl->fast_outs(imax); i < imax; i++) { 212 Node *p = parent_ctl->fast_out(i); 213 if (p->is_Proj() && p->is_CFG()) { 214 nb_ctl_proj++; 215 if (nb_ctl_proj > 1) { 216 break; 217 } 218 } 219 } 220 221 if (nb_ctl_proj > 1) { 222 break; 223 } 224 assert(parent_ctl->is_Start() || parent_ctl->is_MemBar() || parent_ctl->is_Call() || 225 BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(parent_ctl), "unexpected node"); 226 assert(idom(ctl) == parent_ctl, "strange"); 227 next = idom(parent_ctl); 228 } 229 } else { 230 next = idom(ctl); 231 } 232 if (next->is_Root() || next->is_Start() || dom_depth(next) < min_dom_depth) { 233 break; 234 } 235 ctl = next; 236 } 237 238 if (ctl != n->in(0)) { 239 _igvn.replace_input_of(n, 0, ctl); 240 _igvn.hash_insert(n); 241 } 242 243 return ctl; 244 } 245 246 247 //------------------------------set_early_ctrl--------------------------------- 248 // Set earliest legal control 249 void PhaseIdealLoop::set_early_ctrl(Node* n, bool update_body) { 250 Node *early = get_early_ctrl(n); 251 252 // Record earliest legal location 253 set_ctrl(n, early); 254 IdealLoopTree *loop = get_loop(early); 255 if (update_body && loop->_child == nullptr) { 256 loop->_body.push(n); 257 } 258 } 259 260 //------------------------------set_subtree_ctrl------------------------------- 261 // set missing _ctrl entries on new nodes 262 void PhaseIdealLoop::set_subtree_ctrl(Node* n, bool update_body) { 263 // Already set? Get out. 264 if (_loop_or_ctrl[n->_idx]) return; 265 // Recursively set _loop_or_ctrl array to indicate where the Node goes 266 uint i; 267 for (i = 0; i < n->req(); ++i) { 268 Node *m = n->in(i); 269 if (m && m != C->root()) { 270 set_subtree_ctrl(m, update_body); 271 } 272 } 273 274 // Fixup self 275 set_early_ctrl(n, update_body); 276 } 277 278 IdealLoopTree* PhaseIdealLoop::insert_outer_loop(IdealLoopTree* loop, LoopNode* outer_l, Node* outer_ift) { 279 IdealLoopTree* outer_ilt = new IdealLoopTree(this, outer_l, outer_ift); 280 IdealLoopTree* parent = loop->_parent; 281 IdealLoopTree* sibling = parent->_child; 282 if (sibling == loop) { 283 parent->_child = outer_ilt; 284 } else { 285 while (sibling->_next != loop) { 286 sibling = sibling->_next; 287 } 288 sibling->_next = outer_ilt; 289 } 290 outer_ilt->_next = loop->_next; 291 outer_ilt->_parent = parent; 292 outer_ilt->_child = loop; 293 outer_ilt->_nest = loop->_nest; 294 loop->_parent = outer_ilt; 295 loop->_next = nullptr; 296 loop->_nest++; 297 assert(loop->_nest <= SHRT_MAX, "sanity"); 298 return outer_ilt; 299 } 300 301 // Create a skeleton strip mined outer loop: a Loop head before the 302 // inner strip mined loop, a safepoint and an exit condition guarded 303 // by an opaque node after the inner strip mined loop with a backedge 304 // to the loop head. The inner strip mined loop is left as it is. Only 305 // once loop optimizations are over, do we adjust the inner loop exit 306 // condition to limit its number of iterations, set the outer loop 307 // exit condition and add Phis to the outer loop head. Some loop 308 // optimizations that operate on the inner strip mined loop need to be 309 // aware of the outer strip mined loop: loop unswitching needs to 310 // clone the outer loop as well as the inner, unrolling needs to only 311 // clone the inner loop etc. No optimizations need to change the outer 312 // strip mined loop as it is only a skeleton. 313 IdealLoopTree* PhaseIdealLoop::create_outer_strip_mined_loop(BoolNode *test, Node *cmp, Node *init_control, 314 IdealLoopTree* loop, float cl_prob, float le_fcnt, 315 Node*& entry_control, Node*& iffalse) { 316 Node* outer_test = intcon(0); 317 Node *orig = iffalse; 318 iffalse = iffalse->clone(); 319 _igvn.register_new_node_with_optimizer(iffalse); 320 set_idom(iffalse, idom(orig), dom_depth(orig)); 321 322 IfNode *outer_le = new OuterStripMinedLoopEndNode(iffalse, outer_test, cl_prob, le_fcnt); 323 Node *outer_ift = new IfTrueNode (outer_le); 324 Node* outer_iff = orig; 325 _igvn.replace_input_of(outer_iff, 0, outer_le); 326 327 LoopNode *outer_l = new OuterStripMinedLoopNode(C, init_control, outer_ift); 328 entry_control = outer_l; 329 330 IdealLoopTree* outer_ilt = insert_outer_loop(loop, outer_l, outer_ift); 331 332 set_loop(iffalse, outer_ilt); 333 // When this code runs, loop bodies have not yet been populated. 334 const bool body_populated = false; 335 register_control(outer_le, outer_ilt, iffalse, body_populated); 336 register_control(outer_ift, outer_ilt, outer_le, body_populated); 337 set_idom(outer_iff, outer_le, dom_depth(outer_le)); 338 _igvn.register_new_node_with_optimizer(outer_l); 339 set_loop(outer_l, outer_ilt); 340 set_idom(outer_l, init_control, dom_depth(init_control)+1); 341 342 return outer_ilt; 343 } 344 345 void PhaseIdealLoop::insert_loop_limit_check_predicate(ParsePredicateSuccessProj* loop_limit_check_parse_proj, 346 Node* cmp_limit, Node* bol) { 347 assert(loop_limit_check_parse_proj->in(0)->is_ParsePredicate(), "must be parse predicate"); 348 Node* new_predicate_proj = create_new_if_for_predicate(loop_limit_check_parse_proj, nullptr, 349 Deoptimization::Reason_loop_limit_check, 350 Op_If); 351 Node* iff = new_predicate_proj->in(0); 352 cmp_limit = _igvn.register_new_node_with_optimizer(cmp_limit); 353 bol = _igvn.register_new_node_with_optimizer(bol); 354 set_subtree_ctrl(bol, false); 355 _igvn.replace_input_of(iff, 1, bol); 356 357 #ifndef PRODUCT 358 // report that the loop predication has been actually performed 359 // for this loop 360 if (TraceLoopLimitCheck) { 361 tty->print_cr("Counted Loop Limit Check generated:"); 362 debug_only( bol->dump(2); ) 363 } 364 #endif 365 } 366 367 Node* PhaseIdealLoop::loop_exit_control(Node* x, IdealLoopTree* loop) { 368 // Counted loop head must be a good RegionNode with only 3 not null 369 // control input edges: Self, Entry, LoopBack. 370 if (x->in(LoopNode::Self) == nullptr || x->req() != 3 || loop->_irreducible) { 371 return nullptr; 372 } 373 Node *init_control = x->in(LoopNode::EntryControl); 374 Node *back_control = x->in(LoopNode::LoopBackControl); 375 if (init_control == nullptr || back_control == nullptr) { // Partially dead 376 return nullptr; 377 } 378 // Must also check for TOP when looking for a dead loop 379 if (init_control->is_top() || back_control->is_top()) { 380 return nullptr; 381 } 382 383 // Allow funny placement of Safepoint 384 if (back_control->Opcode() == Op_SafePoint) { 385 back_control = back_control->in(TypeFunc::Control); 386 } 387 388 // Controlling test for loop 389 Node *iftrue = back_control; 390 uint iftrue_op = iftrue->Opcode(); 391 if (iftrue_op != Op_IfTrue && 392 iftrue_op != Op_IfFalse) { 393 // I have a weird back-control. Probably the loop-exit test is in 394 // the middle of the loop and I am looking at some trailing control-flow 395 // merge point. To fix this I would have to partially peel the loop. 396 return nullptr; // Obscure back-control 397 } 398 399 // Get boolean guarding loop-back test 400 Node *iff = iftrue->in(0); 401 if (get_loop(iff) != loop || !iff->in(1)->is_Bool()) { 402 return nullptr; 403 } 404 return iftrue; 405 } 406 407 Node* PhaseIdealLoop::loop_exit_test(Node* back_control, IdealLoopTree* loop, Node*& incr, Node*& limit, BoolTest::mask& bt, float& cl_prob) { 408 Node* iftrue = back_control; 409 uint iftrue_op = iftrue->Opcode(); 410 Node* iff = iftrue->in(0); 411 BoolNode* test = iff->in(1)->as_Bool(); 412 bt = test->_test._test; 413 cl_prob = iff->as_If()->_prob; 414 if (iftrue_op == Op_IfFalse) { 415 bt = BoolTest(bt).negate(); 416 cl_prob = 1.0 - cl_prob; 417 } 418 // Get backedge compare 419 Node* cmp = test->in(1); 420 if (!cmp->is_Cmp()) { 421 return nullptr; 422 } 423 424 // Find the trip-counter increment & limit. Limit must be loop invariant. 425 incr = cmp->in(1); 426 limit = cmp->in(2); 427 428 // --------- 429 // need 'loop()' test to tell if limit is loop invariant 430 // --------- 431 432 if (!is_member(loop, get_ctrl(incr))) { // Swapped trip counter and limit? 433 Node* tmp = incr; // Then reverse order into the CmpI 434 incr = limit; 435 limit = tmp; 436 bt = BoolTest(bt).commute(); // And commute the exit test 437 } 438 if (is_member(loop, get_ctrl(limit))) { // Limit must be loop-invariant 439 return nullptr; 440 } 441 if (!is_member(loop, get_ctrl(incr))) { // Trip counter must be loop-variant 442 return nullptr; 443 } 444 return cmp; 445 } 446 447 Node* PhaseIdealLoop::loop_iv_incr(Node* incr, Node* x, IdealLoopTree* loop, Node*& phi_incr) { 448 if (incr->is_Phi()) { 449 if (incr->as_Phi()->region() != x || incr->req() != 3) { 450 return nullptr; // Not simple trip counter expression 451 } 452 phi_incr = incr; 453 incr = phi_incr->in(LoopNode::LoopBackControl); // Assume incr is on backedge of Phi 454 if (!is_member(loop, get_ctrl(incr))) { // Trip counter must be loop-variant 455 return nullptr; 456 } 457 } 458 return incr; 459 } 460 461 Node* PhaseIdealLoop::loop_iv_stride(Node* incr, IdealLoopTree* loop, Node*& xphi) { 462 assert(incr->Opcode() == Op_AddI || incr->Opcode() == Op_AddL, "caller resp."); 463 // Get merge point 464 xphi = incr->in(1); 465 Node *stride = incr->in(2); 466 if (!stride->is_Con()) { // Oops, swap these 467 if (!xphi->is_Con()) { // Is the other guy a constant? 468 return nullptr; // Nope, unknown stride, bail out 469 } 470 Node *tmp = xphi; // 'incr' is commutative, so ok to swap 471 xphi = stride; 472 stride = tmp; 473 } 474 return stride; 475 } 476 477 PhiNode* PhaseIdealLoop::loop_iv_phi(Node* xphi, Node* phi_incr, Node* x, IdealLoopTree* loop) { 478 if (!xphi->is_Phi()) { 479 return nullptr; // Too much math on the trip counter 480 } 481 if (phi_incr != nullptr && phi_incr != xphi) { 482 return nullptr; 483 } 484 PhiNode *phi = xphi->as_Phi(); 485 486 // Phi must be of loop header; backedge must wrap to increment 487 if (phi->region() != x) { 488 return nullptr; 489 } 490 return phi; 491 } 492 493 static int check_stride_overflow(jlong final_correction, const TypeInteger* limit_t, BasicType bt) { 494 if (final_correction > 0) { 495 if (limit_t->lo_as_long() > (max_signed_integer(bt) - final_correction)) { 496 return -1; 497 } 498 if (limit_t->hi_as_long() > (max_signed_integer(bt) - final_correction)) { 499 return 1; 500 } 501 } else { 502 if (limit_t->hi_as_long() < (min_signed_integer(bt) - final_correction)) { 503 return -1; 504 } 505 if (limit_t->lo_as_long() < (min_signed_integer(bt) - final_correction)) { 506 return 1; 507 } 508 } 509 return 0; 510 } 511 512 static bool condition_stride_ok(BoolTest::mask bt, jlong stride_con) { 513 // If the condition is inverted and we will be rolling 514 // through MININT to MAXINT, then bail out. 515 if (bt == BoolTest::eq || // Bail out, but this loop trips at most twice! 516 // Odd stride 517 (bt == BoolTest::ne && stride_con != 1 && stride_con != -1) || 518 // Count down loop rolls through MAXINT 519 ((bt == BoolTest::le || bt == BoolTest::lt) && stride_con < 0) || 520 // Count up loop rolls through MININT 521 ((bt == BoolTest::ge || bt == BoolTest::gt) && stride_con > 0)) { 522 return false; // Bail out 523 } 524 return true; 525 } 526 527 Node* PhaseIdealLoop::loop_nest_replace_iv(Node* iv_to_replace, Node* inner_iv, Node* outer_phi, Node* inner_head, 528 BasicType bt) { 529 Node* iv_as_long; 530 if (bt == T_LONG) { 531 iv_as_long = new ConvI2LNode(inner_iv, TypeLong::INT); 532 register_new_node(iv_as_long, inner_head); 533 } else { 534 iv_as_long = inner_iv; 535 } 536 Node* iv_replacement = AddNode::make(outer_phi, iv_as_long, bt); 537 register_new_node(iv_replacement, inner_head); 538 for (DUIterator_Last imin, i = iv_to_replace->last_outs(imin); i >= imin;) { 539 Node* u = iv_to_replace->last_out(i); 540 #ifdef ASSERT 541 if (!is_dominator(inner_head, ctrl_or_self(u))) { 542 assert(u->is_Phi(), "should be a Phi"); 543 for (uint j = 1; j < u->req(); j++) { 544 if (u->in(j) == iv_to_replace) { 545 assert(is_dominator(inner_head, u->in(0)->in(j)), "iv use above loop?"); 546 } 547 } 548 } 549 #endif 550 _igvn.rehash_node_delayed(u); 551 int nb = u->replace_edge(iv_to_replace, iv_replacement, &_igvn); 552 i -= nb; 553 } 554 return iv_replacement; 555 } 556 557 // Add a Parse Predicate with an uncommon trap on the failing/false path. Normal control will continue on the true path. 558 void PhaseIdealLoop::add_parse_predicate(Deoptimization::DeoptReason reason, Node* inner_head, IdealLoopTree* loop, 559 SafePointNode* sfpt) { 560 if (!C->too_many_traps(reason)) { 561 ParsePredicateNode* parse_predicate = new ParsePredicateNode(inner_head->in(LoopNode::EntryControl), reason, &_igvn); 562 register_control(parse_predicate, loop, inner_head->in(LoopNode::EntryControl)); 563 Node* if_false = new IfFalseNode(parse_predicate); 564 register_control(if_false, _ltree_root, parse_predicate); 565 Node* if_true = new IfTrueNode(parse_predicate); 566 register_control(if_true, loop, parse_predicate); 567 568 int trap_request = Deoptimization::make_trap_request(reason, Deoptimization::Action_maybe_recompile); 569 address call_addr = OptoRuntime::uncommon_trap_blob()->entry_point(); 570 const TypePtr* no_memory_effects = nullptr; 571 JVMState* jvms = sfpt->jvms(); 572 CallNode* unc = new CallStaticJavaNode(OptoRuntime::uncommon_trap_Type(), call_addr, "uncommon_trap", 573 no_memory_effects); 574 575 Node* mem = nullptr; 576 Node* i_o = nullptr; 577 if (sfpt->is_Call()) { 578 mem = sfpt->proj_out(TypeFunc::Memory); 579 i_o = sfpt->proj_out(TypeFunc::I_O); 580 } else { 581 mem = sfpt->memory(); 582 i_o = sfpt->i_o(); 583 } 584 585 Node *frame = new ParmNode(C->start(), TypeFunc::FramePtr); 586 register_new_node(frame, C->start()); 587 Node *ret = new ParmNode(C->start(), TypeFunc::ReturnAdr); 588 register_new_node(ret, C->start()); 589 590 unc->init_req(TypeFunc::Control, if_false); 591 unc->init_req(TypeFunc::I_O, i_o); 592 unc->init_req(TypeFunc::Memory, mem); // may gc ptrs 593 unc->init_req(TypeFunc::FramePtr, frame); 594 unc->init_req(TypeFunc::ReturnAdr, ret); 595 unc->init_req(TypeFunc::Parms+0, _igvn.intcon(trap_request)); 596 unc->set_cnt(PROB_UNLIKELY_MAG(4)); 597 unc->copy_call_debug_info(&_igvn, sfpt); 598 599 for (uint i = TypeFunc::Parms; i < unc->req(); i++) { 600 set_subtree_ctrl(unc->in(i), false); 601 } 602 register_control(unc, _ltree_root, if_false); 603 604 Node* ctrl = new ProjNode(unc, TypeFunc::Control); 605 register_control(ctrl, _ltree_root, unc); 606 Node* halt = new HaltNode(ctrl, frame, "uncommon trap returned which should never happen" PRODUCT_ONLY(COMMA /*reachable*/false)); 607 register_control(halt, _ltree_root, ctrl); 608 _igvn.add_input_to(C->root(), halt); 609 610 _igvn.replace_input_of(inner_head, LoopNode::EntryControl, if_true); 611 set_idom(inner_head, if_true, dom_depth(inner_head)); 612 } 613 } 614 615 // Find a safepoint node that dominates the back edge. We need a 616 // SafePointNode so we can use its jvm state to create empty 617 // predicates. 618 static bool no_side_effect_since_safepoint(Compile* C, Node* x, Node* mem, MergeMemNode* mm, PhaseIdealLoop* phase) { 619 SafePointNode* safepoint = nullptr; 620 for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) { 621 Node* u = x->fast_out(i); 622 if (u->is_memory_phi()) { 623 Node* m = u->in(LoopNode::LoopBackControl); 624 if (u->adr_type() == TypePtr::BOTTOM) { 625 if (m->is_MergeMem() && mem->is_MergeMem()) { 626 if (m != mem DEBUG_ONLY(|| true)) { 627 // MergeMemStream can modify m, for example to adjust the length to mem. 628 // This is unfortunate, and probably unnecessary. But as it is, we need 629 // to add m to the igvn worklist, else we may have a modified node that 630 // is not on the igvn worklist. 631 phase->igvn()._worklist.push(m); 632 for (MergeMemStream mms(m->as_MergeMem(), mem->as_MergeMem()); mms.next_non_empty2(); ) { 633 if (!mms.is_empty()) { 634 if (mms.memory() != mms.memory2()) { 635 return false; 636 } 637 #ifdef ASSERT 638 if (mms.alias_idx() != Compile::AliasIdxBot) { 639 mm->set_memory_at(mms.alias_idx(), mem->as_MergeMem()->base_memory()); 640 } 641 #endif 642 } 643 } 644 } 645 } else if (mem->is_MergeMem()) { 646 if (m != mem->as_MergeMem()->base_memory()) { 647 return false; 648 } 649 } else { 650 return false; 651 } 652 } else { 653 if (mem->is_MergeMem()) { 654 if (m != mem->as_MergeMem()->memory_at(C->get_alias_index(u->adr_type()))) { 655 return false; 656 } 657 #ifdef ASSERT 658 mm->set_memory_at(C->get_alias_index(u->adr_type()), mem->as_MergeMem()->base_memory()); 659 #endif 660 } else { 661 if (m != mem) { 662 return false; 663 } 664 } 665 } 666 } 667 } 668 return true; 669 } 670 671 SafePointNode* PhaseIdealLoop::find_safepoint(Node* back_control, Node* x, IdealLoopTree* loop) { 672 IfNode* exit_test = back_control->in(0)->as_If(); 673 SafePointNode* safepoint = nullptr; 674 if (exit_test->in(0)->is_SafePoint() && exit_test->in(0)->outcnt() == 1) { 675 safepoint = exit_test->in(0)->as_SafePoint(); 676 } else { 677 Node* c = back_control; 678 while (c != x && c->Opcode() != Op_SafePoint) { 679 c = idom(c); 680 } 681 682 if (c->Opcode() == Op_SafePoint) { 683 safepoint = c->as_SafePoint(); 684 } 685 686 if (safepoint == nullptr) { 687 return nullptr; 688 } 689 690 Node* mem = safepoint->in(TypeFunc::Memory); 691 692 // We can only use that safepoint if there's no side effect between the backedge and the safepoint. 693 694 // mm is the memory state at the safepoint (when it's a MergeMem) 695 // no_side_effect_since_safepoint() goes over the memory state at the backedge. It resets the mm input for each 696 // component of the memory state it encounters so it points to the base memory. Once no_side_effect_since_safepoint() 697 // is done, if no side effect after the safepoint was found, mm should transform to the base memory: the states at 698 // the backedge and safepoint are the same so all components of the memory state at the safepoint should have been 699 // reset. 700 MergeMemNode* mm = nullptr; 701 #ifdef ASSERT 702 if (mem->is_MergeMem()) { 703 mm = mem->clone()->as_MergeMem(); 704 _igvn._worklist.push(mm); 705 for (MergeMemStream mms(mem->as_MergeMem()); mms.next_non_empty(); ) { 706 // Loop invariant memory state won't be reset by no_side_effect_since_safepoint(). Do it here. 707 // Escape Analysis can add state to mm that it doesn't add to the backedge memory Phis, breaking verification 708 // code that relies on mm. Clear that extra state here. 709 if (mms.alias_idx() != Compile::AliasIdxBot && 710 (loop != get_loop(ctrl_or_self(mms.memory())) || 711 (mms.adr_type()->isa_oop_ptr() && mms.adr_type()->is_known_instance()))) { 712 mm->set_memory_at(mms.alias_idx(), mem->as_MergeMem()->base_memory()); 713 } 714 } 715 } 716 #endif 717 if (!no_side_effect_since_safepoint(C, x, mem, mm, this)) { 718 safepoint = nullptr; 719 } else { 720 assert(mm == nullptr|| _igvn.transform(mm) == mem->as_MergeMem()->base_memory(), "all memory state should have been processed"); 721 } 722 #ifdef ASSERT 723 if (mm != nullptr) { 724 _igvn.remove_dead_node(mm); 725 } 726 #endif 727 } 728 return safepoint; 729 } 730 731 // If the loop has the shape of a counted loop but with a long 732 // induction variable, transform the loop in a loop nest: an inner 733 // loop that iterates for at most max int iterations with an integer 734 // induction variable and an outer loop that iterates over the full 735 // range of long values from the initial loop in (at most) max int 736 // steps. That is: 737 // 738 // x: for (long phi = init; phi < limit; phi += stride) { 739 // // phi := Phi(L, init, incr) 740 // // incr := AddL(phi, longcon(stride)) 741 // long incr = phi + stride; 742 // ... use phi and incr ... 743 // } 744 // 745 // OR: 746 // 747 // x: for (long phi = init; (phi += stride) < limit; ) { 748 // // phi := Phi(L, AddL(init, stride), incr) 749 // // incr := AddL(phi, longcon(stride)) 750 // long incr = phi + stride; 751 // ... use phi and (phi + stride) ... 752 // } 753 // 754 // ==transform=> 755 // 756 // const ulong inner_iters_limit = INT_MAX - stride - 1; //near 0x7FFFFFF0 757 // assert(stride <= inner_iters_limit); // else abort transform 758 // assert((extralong)limit + stride <= LONG_MAX); // else deopt 759 // outer_head: for (long outer_phi = init;;) { 760 // // outer_phi := Phi(outer_head, init, AddL(outer_phi, I2L(inner_phi))) 761 // ulong inner_iters_max = (ulong) MAX(0, ((extralong)limit + stride - outer_phi)); 762 // long inner_iters_actual = MIN(inner_iters_limit, inner_iters_max); 763 // assert(inner_iters_actual == (int)inner_iters_actual); 764 // int inner_phi, inner_incr; 765 // x: for (inner_phi = 0;; inner_phi = inner_incr) { 766 // // inner_phi := Phi(x, intcon(0), inner_incr) 767 // // inner_incr := AddI(inner_phi, intcon(stride)) 768 // inner_incr = inner_phi + stride; 769 // if (inner_incr < inner_iters_actual) { 770 // ... use phi=>(outer_phi+inner_phi) ... 771 // continue; 772 // } 773 // else break; 774 // } 775 // if ((outer_phi+inner_phi) < limit) //OR (outer_phi+inner_incr) < limit 776 // continue; 777 // else break; 778 // } 779 // 780 // The same logic is used to transform an int counted loop that contains long range checks into a loop nest of 2 int 781 // loops with long range checks transformed to int range checks in the inner loop. 782 bool PhaseIdealLoop::create_loop_nest(IdealLoopTree* loop, Node_List &old_new) { 783 Node* x = loop->_head; 784 // Only for inner loops 785 if (loop->_child != nullptr || !x->is_BaseCountedLoop() || x->as_Loop()->is_loop_nest_outer_loop()) { 786 return false; 787 } 788 789 if (x->is_CountedLoop() && !x->as_CountedLoop()->is_main_loop() && !x->as_CountedLoop()->is_normal_loop()) { 790 return false; 791 } 792 793 BaseCountedLoopNode* head = x->as_BaseCountedLoop(); 794 BasicType bt = x->as_BaseCountedLoop()->bt(); 795 796 check_counted_loop_shape(loop, x, bt); 797 798 #ifndef PRODUCT 799 if (bt == T_LONG) { 800 Atomic::inc(&_long_loop_candidates); 801 } 802 #endif 803 804 jlong stride_con_long = head->stride_con(); 805 assert(stride_con_long != 0, "missed some peephole opt"); 806 // We can't iterate for more than max int at a time. 807 if (stride_con_long != (jint)stride_con_long || stride_con_long == min_jint) { 808 assert(bt == T_LONG, "only for long loops"); 809 return false; 810 } 811 jint stride_con = checked_cast<jint>(stride_con_long); 812 // The number of iterations for the integer count loop: guarantee no 813 // overflow: max_jint - stride_con max. -1 so there's no need for a 814 // loop limit check if the exit test is <= or >=. 815 int iters_limit = max_jint - ABS(stride_con) - 1; 816 #ifdef ASSERT 817 if (bt == T_LONG && StressLongCountedLoop > 0) { 818 iters_limit = iters_limit / StressLongCountedLoop; 819 } 820 #endif 821 // At least 2 iterations so counted loop construction doesn't fail 822 if (iters_limit/ABS(stride_con) < 2) { 823 return false; 824 } 825 826 PhiNode* phi = head->phi()->as_Phi(); 827 Node* incr = head->incr(); 828 829 Node* back_control = head->in(LoopNode::LoopBackControl); 830 831 // data nodes on back branch not supported 832 if (back_control->outcnt() > 1) { 833 return false; 834 } 835 836 Node* limit = head->limit(); 837 // We'll need to use the loop limit before the inner loop is entered 838 if (!is_dominator(get_ctrl(limit), x)) { 839 return false; 840 } 841 842 IfNode* exit_test = head->loopexit(); 843 844 assert(back_control->Opcode() == Op_IfTrue, "wrong projection for back edge"); 845 846 Node_List range_checks; 847 iters_limit = extract_long_range_checks(loop, stride_con, iters_limit, phi, range_checks); 848 849 if (bt == T_INT) { 850 // The only purpose of creating a loop nest is to handle long range checks. If there are none, do not proceed further. 851 if (range_checks.size() == 0) { 852 return false; 853 } 854 } 855 856 // Take what we know about the number of iterations of the long counted loop into account when computing the limit of 857 // the inner loop. 858 const Node* init = head->init_trip(); 859 const TypeInteger* lo = _igvn.type(init)->is_integer(bt); 860 const TypeInteger* hi = _igvn.type(limit)->is_integer(bt); 861 if (stride_con < 0) { 862 swap(lo, hi); 863 } 864 if (hi->hi_as_long() <= lo->lo_as_long()) { 865 // not a loop after all 866 return false; 867 } 868 869 if (range_checks.size() > 0) { 870 // This transformation requires peeling one iteration. Also, if it has range checks and they are eliminated by Loop 871 // Predication, then 2 Hoisted Check Predicates are added for one range check. Finally, transforming a long range 872 // check requires extra logic to be executed before the loop is entered and for the outer loop. As a result, the 873 // transformations can't pay off for a small number of iterations: roughly, if the loop runs for 3 iterations, it's 874 // going to execute as many range checks once transformed with range checks eliminated (1 peeled iteration with 875 // range checks + 2 predicates per range checks) as it would have not transformed. It also has to pay for the extra 876 // logic on loop entry and for the outer loop. 877 loop->compute_trip_count(this); 878 if (head->is_CountedLoop() && head->as_CountedLoop()->has_exact_trip_count()) { 879 if (head->as_CountedLoop()->trip_count() <= 3) { 880 return false; 881 } 882 } else { 883 loop->compute_profile_trip_cnt(this); 884 if (!head->is_profile_trip_failed() && head->profile_trip_cnt() <= 3) { 885 return false; 886 } 887 } 888 } 889 890 julong orig_iters = (julong)hi->hi_as_long() - lo->lo_as_long(); 891 iters_limit = checked_cast<int>(MIN2((julong)iters_limit, orig_iters)); 892 893 // We need a safepoint to insert Parse Predicates for the inner loop. 894 SafePointNode* safepoint; 895 if (bt == T_INT && head->as_CountedLoop()->is_strip_mined()) { 896 // Loop is strip mined: use the safepoint of the outer strip mined loop 897 OuterStripMinedLoopNode* outer_loop = head->as_CountedLoop()->outer_loop(); 898 assert(outer_loop != nullptr, "no outer loop"); 899 safepoint = outer_loop->outer_safepoint(); 900 outer_loop->transform_to_counted_loop(&_igvn, this); 901 exit_test = head->loopexit(); 902 } else { 903 safepoint = find_safepoint(back_control, x, loop); 904 } 905 906 Node* exit_branch = exit_test->proj_out(false); 907 Node* entry_control = head->in(LoopNode::EntryControl); 908 909 // Clone the control flow of the loop to build an outer loop 910 Node* outer_back_branch = back_control->clone(); 911 Node* outer_exit_test = new IfNode(exit_test->in(0), exit_test->in(1), exit_test->_prob, exit_test->_fcnt); 912 Node* inner_exit_branch = exit_branch->clone(); 913 914 LoopNode* outer_head = new LoopNode(entry_control, outer_back_branch); 915 IdealLoopTree* outer_ilt = insert_outer_loop(loop, outer_head, outer_back_branch); 916 917 const bool body_populated = true; 918 register_control(outer_head, outer_ilt, entry_control, body_populated); 919 920 _igvn.register_new_node_with_optimizer(inner_exit_branch); 921 set_loop(inner_exit_branch, outer_ilt); 922 set_idom(inner_exit_branch, exit_test, dom_depth(exit_branch)); 923 924 outer_exit_test->set_req(0, inner_exit_branch); 925 register_control(outer_exit_test, outer_ilt, inner_exit_branch, body_populated); 926 927 _igvn.replace_input_of(exit_branch, 0, outer_exit_test); 928 set_idom(exit_branch, outer_exit_test, dom_depth(exit_branch)); 929 930 outer_back_branch->set_req(0, outer_exit_test); 931 register_control(outer_back_branch, outer_ilt, outer_exit_test, body_populated); 932 933 _igvn.replace_input_of(x, LoopNode::EntryControl, outer_head); 934 set_idom(x, outer_head, dom_depth(x)); 935 936 // add an iv phi to the outer loop and use it to compute the inner 937 // loop iteration limit 938 Node* outer_phi = phi->clone(); 939 outer_phi->set_req(0, outer_head); 940 register_new_node(outer_phi, outer_head); 941 942 Node* inner_iters_max = nullptr; 943 if (stride_con > 0) { 944 inner_iters_max = MaxNode::max_diff_with_zero(limit, outer_phi, TypeInteger::bottom(bt), _igvn); 945 } else { 946 inner_iters_max = MaxNode::max_diff_with_zero(outer_phi, limit, TypeInteger::bottom(bt), _igvn); 947 } 948 949 Node* inner_iters_limit = _igvn.integercon(iters_limit, bt); 950 // inner_iters_max may not fit in a signed integer (iterating from 951 // Long.MIN_VALUE to Long.MAX_VALUE for instance). Use an unsigned 952 // min. 953 const TypeInteger* inner_iters_actual_range = TypeInteger::make(0, iters_limit, Type::WidenMin, bt); 954 Node* inner_iters_actual = MaxNode::unsigned_min(inner_iters_max, inner_iters_limit, inner_iters_actual_range, _igvn); 955 956 Node* inner_iters_actual_int; 957 if (bt == T_LONG) { 958 inner_iters_actual_int = new ConvL2INode(inner_iters_actual); 959 _igvn.register_new_node_with_optimizer(inner_iters_actual_int); 960 // When the inner loop is transformed to a counted loop, a loop limit check is not expected to be needed because 961 // the loop limit is less or equal to max_jint - stride - 1 (if stride is positive but a similar argument exists for 962 // a negative stride). We add a CastII here to guarantee that, when the counted loop is created in a subsequent loop 963 // opts pass, an accurate range of values for the limits is found. 964 const TypeInt* inner_iters_actual_int_range = TypeInt::make(0, iters_limit, Type::WidenMin); 965 inner_iters_actual_int = new CastIINode(outer_head, inner_iters_actual_int, inner_iters_actual_int_range, ConstraintCastNode::UnconditionalDependency); 966 _igvn.register_new_node_with_optimizer(inner_iters_actual_int); 967 } else { 968 inner_iters_actual_int = inner_iters_actual; 969 } 970 971 Node* int_zero = intcon(0); 972 if (stride_con < 0) { 973 inner_iters_actual_int = new SubINode(int_zero, inner_iters_actual_int); 974 _igvn.register_new_node_with_optimizer(inner_iters_actual_int); 975 } 976 977 // Clone the iv data nodes as an integer iv 978 Node* int_stride = intcon(stride_con); 979 Node* inner_phi = new PhiNode(x->in(0), TypeInt::INT); 980 Node* inner_incr = new AddINode(inner_phi, int_stride); 981 Node* inner_cmp = nullptr; 982 inner_cmp = new CmpINode(inner_incr, inner_iters_actual_int); 983 Node* inner_bol = new BoolNode(inner_cmp, exit_test->in(1)->as_Bool()->_test._test); 984 inner_phi->set_req(LoopNode::EntryControl, int_zero); 985 inner_phi->set_req(LoopNode::LoopBackControl, inner_incr); 986 register_new_node(inner_phi, x); 987 register_new_node(inner_incr, x); 988 register_new_node(inner_cmp, x); 989 register_new_node(inner_bol, x); 990 991 _igvn.replace_input_of(exit_test, 1, inner_bol); 992 993 // Clone inner loop phis to outer loop 994 for (uint i = 0; i < head->outcnt(); i++) { 995 Node* u = head->raw_out(i); 996 if (u->is_Phi() && u != inner_phi && u != phi) { 997 assert(u->in(0) == head, "inconsistent"); 998 Node* clone = u->clone(); 999 clone->set_req(0, outer_head); 1000 register_new_node(clone, outer_head); 1001 _igvn.replace_input_of(u, LoopNode::EntryControl, clone); 1002 } 1003 } 1004 1005 // Replace inner loop long iv phi as inner loop int iv phi + outer 1006 // loop iv phi 1007 Node* iv_add = loop_nest_replace_iv(phi, inner_phi, outer_phi, head, bt); 1008 1009 set_subtree_ctrl(inner_iters_actual_int, body_populated); 1010 1011 LoopNode* inner_head = create_inner_head(loop, head, exit_test); 1012 1013 // Summary of steps from initial loop to loop nest: 1014 // 1015 // == old IR nodes => 1016 // 1017 // entry_control: {...} 1018 // x: 1019 // for (long phi = init;;) { 1020 // // phi := Phi(x, init, incr) 1021 // // incr := AddL(phi, longcon(stride)) 1022 // exit_test: 1023 // if (phi < limit) 1024 // back_control: fallthrough; 1025 // else 1026 // exit_branch: break; 1027 // long incr = phi + stride; 1028 // ... use phi and incr ... 1029 // phi = incr; 1030 // } 1031 // 1032 // == new IR nodes (just before final peel) => 1033 // 1034 // entry_control: {...} 1035 // long adjusted_limit = limit + stride; //because phi_incr != nullptr 1036 // assert(!limit_check_required || (extralong)limit + stride == adjusted_limit); // else deopt 1037 // ulong inner_iters_limit = max_jint - ABS(stride) - 1; //near 0x7FFFFFF0 1038 // outer_head: 1039 // for (long outer_phi = init;;) { 1040 // // outer_phi := phi->clone(), in(0):=outer_head, => Phi(outer_head, init, incr) 1041 // // REPLACE phi => AddL(outer_phi, I2L(inner_phi)) 1042 // // REPLACE incr => AddL(outer_phi, I2L(inner_incr)) 1043 // // SO THAT outer_phi := Phi(outer_head, init, AddL(outer_phi, I2L(inner_incr))) 1044 // ulong inner_iters_max = (ulong) MAX(0, ((extralong)adjusted_limit - outer_phi) * SGN(stride)); 1045 // int inner_iters_actual_int = (int) MIN(inner_iters_limit, inner_iters_max) * SGN(stride); 1046 // inner_head: x: //in(1) := outer_head 1047 // int inner_phi; 1048 // for (inner_phi = 0;;) { 1049 // // inner_phi := Phi(x, intcon(0), inner_phi + stride) 1050 // int inner_incr = inner_phi + stride; 1051 // bool inner_bol = (inner_incr < inner_iters_actual_int); 1052 // exit_test: //exit_test->in(1) := inner_bol; 1053 // if (inner_bol) // WAS (phi < limit) 1054 // back_control: fallthrough; 1055 // else 1056 // inner_exit_branch: break; //exit_branch->clone() 1057 // ... use phi=>(outer_phi+inner_phi) ... 1058 // inner_phi = inner_phi + stride; // inner_incr 1059 // } 1060 // outer_exit_test: //exit_test->clone(), in(0):=inner_exit_branch 1061 // if ((outer_phi+inner_phi) < limit) // WAS (phi < limit) 1062 // outer_back_branch: fallthrough; //back_control->clone(), in(0):=outer_exit_test 1063 // else 1064 // exit_branch: break; //in(0) := outer_exit_test 1065 // } 1066 1067 if (bt == T_INT) { 1068 outer_phi = new ConvI2LNode(outer_phi); 1069 register_new_node(outer_phi, outer_head); 1070 } 1071 1072 transform_long_range_checks(stride_con, range_checks, outer_phi, inner_iters_actual_int, 1073 inner_phi, iv_add, inner_head); 1074 // Peel one iteration of the loop and use the safepoint at the end 1075 // of the peeled iteration to insert Parse Predicates. If no well 1076 // positioned safepoint peel to guarantee a safepoint in the outer 1077 // loop. 1078 if (safepoint != nullptr || !loop->_has_call) { 1079 old_new.clear(); 1080 do_peeling(loop, old_new); 1081 } else { 1082 C->set_major_progress(); 1083 } 1084 1085 if (safepoint != nullptr) { 1086 SafePointNode* cloned_sfpt = old_new[safepoint->_idx]->as_SafePoint(); 1087 1088 if (UseLoopPredicate) { 1089 add_parse_predicate(Deoptimization::Reason_predicate, inner_head, outer_ilt, cloned_sfpt); 1090 if (UseProfiledLoopPredicate) { 1091 add_parse_predicate(Deoptimization::Reason_profile_predicate, inner_head, outer_ilt, cloned_sfpt); 1092 } 1093 } 1094 1095 // We only want to use the auto-vectorization check as a trap once per bci. And 1096 // PhaseIdealLoop::add_parse_predicate only checks trap limits per method, so 1097 // we do a custom check here. 1098 if (!C->too_many_traps(cloned_sfpt->jvms()->method(), cloned_sfpt->jvms()->bci(), Deoptimization::Reason_auto_vectorization_check)) { 1099 add_parse_predicate(Deoptimization::Reason_auto_vectorization_check, inner_head, outer_ilt, cloned_sfpt); 1100 } 1101 1102 add_parse_predicate(Deoptimization::Reason_loop_limit_check, inner_head, outer_ilt, cloned_sfpt); 1103 } 1104 1105 #ifndef PRODUCT 1106 if (bt == T_LONG) { 1107 Atomic::inc(&_long_loop_nests); 1108 } 1109 #endif 1110 1111 inner_head->mark_loop_nest_inner_loop(); 1112 outer_head->mark_loop_nest_outer_loop(); 1113 1114 return true; 1115 } 1116 1117 int PhaseIdealLoop::extract_long_range_checks(const IdealLoopTree* loop, jint stride_con, int iters_limit, PhiNode* phi, 1118 Node_List& range_checks) { 1119 const jlong min_iters = 2; 1120 jlong reduced_iters_limit = iters_limit; 1121 jlong original_iters_limit = iters_limit; 1122 for (uint i = 0; i < loop->_body.size(); i++) { 1123 Node* c = loop->_body.at(i); 1124 if (c->is_IfProj() && c->in(0)->is_RangeCheck()) { 1125 IfProjNode* if_proj = c->as_IfProj(); 1126 CallStaticJavaNode* call = if_proj->is_uncommon_trap_if_pattern(); 1127 if (call != nullptr) { 1128 Node* range = nullptr; 1129 Node* offset = nullptr; 1130 jlong scale = 0; 1131 if (loop->is_range_check_if(if_proj, this, T_LONG, phi, range, offset, scale) && 1132 loop->is_invariant(range) && loop->is_invariant(offset) && 1133 scale != min_jlong && 1134 original_iters_limit / ABS(scale) >= min_iters * ABS(stride_con)) { 1135 assert(scale == (jint)scale, "scale should be an int"); 1136 reduced_iters_limit = MIN2(reduced_iters_limit, original_iters_limit/ABS(scale)); 1137 range_checks.push(c); 1138 } 1139 } 1140 } 1141 } 1142 1143 return checked_cast<int>(reduced_iters_limit); 1144 } 1145 1146 // One execution of the inner loop covers a sub-range of the entire iteration range of the loop: [A,Z), aka [A=init, 1147 // Z=limit). If the loop has at least one trip (which is the case here), the iteration variable i always takes A as its 1148 // first value, followed by A+S (S is the stride), next A+2S, etc. The limit is exclusive, so that the final value B of 1149 // i is never Z. It will be B=Z-1 if S=1, or B=Z+1 if S=-1. 1150 1151 // If |S|>1 the formula for the last value B would require a floor operation, specifically B=floor((Z-sgn(S)-A)/S)*S+A, 1152 // which is B=Z-sgn(S)U for some U in [1,|S|]. So when S>0, i ranges as i:[A,Z) or i:[A,B=Z-U], or else (in reverse) 1153 // as i:(Z,A] or i:[B=Z+U,A]. It will become important to reason about this inclusive range [A,B] or [B,A]. 1154 1155 // Within the loop there may be many range checks. Each such range check (R.C.) is of the form 0 <= i*K+L < R, where K 1156 // is a scale factor applied to the loop iteration variable i, and L is some offset; K, L, and R are loop-invariant. 1157 // Because R is never negative (see below), this check can always be simplified to an unsigned check i*K+L <u R. 1158 1159 // When a long loop over a 64-bit variable i (outer_iv) is decomposed into a series of shorter sub-loops over a 32-bit 1160 // variable j (inner_iv), j ranges over a shorter interval j:[0,B_2] or [0,Z_2) (assuming S > 0), where the limit is 1161 // chosen to prevent various cases of 32-bit overflow (including multiplications j*K below). In the sub-loop the 1162 // logical value i is offset from j by a 64-bit constant C, so i ranges in i:C+[0,Z_2). 1163 1164 // For S<0, j ranges (in reverse!) through j:[-|B_2|,0] or (-|Z_2|,0]. For either sign of S, we can say i=j+C and j 1165 // ranges through 32-bit ranges [A_2,B_2] or [B_2,A_2] (A_2=0 of course). 1166 1167 // The disjoint union of all the C+[A_2,B_2] ranges from the sub-loops must be identical to the whole range [A,B]. 1168 // Assuming S>0, the first C must be A itself, and the next C value is the previous C+B_2, plus S. If |S|=1, the next 1169 // C value is also the previous C+Z_2. In each sub-loop, j counts from j=A_2=0 and i counts from C+0 and exits at 1170 // j=B_2 (i=C+B_2), just before it gets to i=C+Z_2. Both i and j count up (from C and 0) if S>0; otherwise they count 1171 // down (from C and 0 again). 1172 1173 // Returning to range checks, we see that each i*K+L <u R expands to (C+j)*K+L <u R, or j*K+Q <u R, where Q=(C*K+L). 1174 // (Recall that K and L and R are loop-invariant scale, offset and range values for a particular R.C.) This is still a 1175 // 64-bit comparison, so the range check elimination logic will not apply to it. (The R.C.E. transforms operate only on 1176 // 32-bit indexes and comparisons, because they use 64-bit temporary values to avoid overflow; see 1177 // PhaseIdealLoop::add_constraint.) 1178 1179 // We must transform this comparison so that it gets the same answer, but by means of a 32-bit R.C. (using j not i) of 1180 // the form j*K+L_2 <u32 R_2. Note that L_2 and R_2 must be loop-invariant, but only with respect to the sub-loop. Thus, the 1181 // problem reduces to computing values for L_2 and R_2 (for each R.C. in the loop) in the loop header for the sub-loop. 1182 // Then the standard R.C.E. transforms can take those as inputs and further compute the necessary minimum and maximum 1183 // values for the 32-bit counter j within which the range checks can be eliminated. 1184 1185 // So, given j*K+Q <u R, we need to find some j*K+L_2 <u32 R_2, where L_2 and R_2 fit in 32 bits, and the 32-bit operations do 1186 // not overflow. We also need to cover the cases where i*K+L (= j*K+Q) overflows to a 64-bit negative, since that is 1187 // allowed as an input to the R.C., as long as the R.C. as a whole fails. 1188 1189 // If 32-bit multiplication j*K might overflow, we adjust the sub-loop limit Z_2 closer to zero to reduce j's range. 1190 1191 // For each R.C. j*K+Q <u32 R, the range of mathematical values of j*K+Q in the sub-loop is [Q_min, Q_max], where 1192 // Q_min=Q and Q_max=B_2*K+Q (if S>0 and K>0), Q_min=A_2*K+Q and Q_max=Q (if S<0 and K>0), 1193 // Q_min=B_2*K+Q and Q_max=Q if (S>0 and K<0), Q_min=Q and Q_max=A_2*K+Q (if S<0 and K<0) 1194 1195 // Note that the first R.C. value is always Q=(S*K>0 ? Q_min : Q_max). Also Q_{min,max} = Q + {min,max}(A_2*K,B_2*K). 1196 // If S*K>0 then, as the loop iterations progress, each R.C. value i*K+L = j*K+Q goes up from Q=Q_min towards Q_max. 1197 // If S*K<0 then j*K+Q starts at Q=Q_max and goes down towards Q_min. 1198 1199 // Case A: Some Negatives (but no overflow). 1200 // Number line: 1201 // |s64_min . . . 0 . . . s64_max| 1202 // | . Q_min..Q_max . 0 . . . . | s64 negative 1203 // | . . . . R=0 R< R< R< R< | (against R values) 1204 // | . . . Q_min..0..Q_max . . . | small mixed 1205 // | . . . . R R R< R< R< | (against R values) 1206 // 1207 // R values which are out of range (>Q_max+1) are reduced to max(0,Q_max+1). They are marked on the number line as R<. 1208 // 1209 // So, if Q_min <s64 0, then use this test: 1210 // j*K + s32_trunc(Q_min) <u32 clamp(R, 0, Q_max+1) if S*K>0 (R.C.E. steps upward) 1211 // j*K + s32_trunc(Q_max) <u32 clamp(R, 0, Q_max+1) if S*K<0 (R.C.E. steps downward) 1212 // Both formulas reduce to adding j*K to the 32-bit truncated value of the first R.C. expression value, Q: 1213 // j*K + s32_trunc(Q) <u32 clamp(R, 0, Q_max+1) for all S,K 1214 1215 // If the 32-bit truncation loses information, no harm is done, since certainly the clamp also will return R_2=zero. 1216 1217 // Case B: No Negatives. 1218 // Number line: 1219 // |s64_min . . . 0 . . . s64_max| 1220 // | . . . . 0 Q_min..Q_max . . | small positive 1221 // | . . . . R> R R R< R< | (against R values) 1222 // | . . . . 0 . Q_min..Q_max . | s64 positive 1223 // | . . . . R> R> R R R< | (against R values) 1224 // 1225 // R values which are out of range (<Q_min or >Q_max+1) are reduced as marked: R> up to Q_min, R< down to Q_max+1. 1226 // Then the whole comparison is shifted left by Q_min, so it can take place at zero, which is a nice 32-bit value. 1227 // 1228 // So, if both Q_min, Q_max+1 >=s64 0, then use this test: 1229 // j*K + 0 <u32 clamp(R, Q_min, Q_max+1) - Q_min if S*K>0 1230 // More generally: 1231 // j*K + Q - Q_min <u32 clamp(R, Q_min, Q_max+1) - Q_min for all S,K 1232 1233 // Case C: Overflow in the 64-bit domain 1234 // Number line: 1235 // |..Q_max-2^64 . . 0 . . . Q_min..| s64 overflow 1236 // | . . . . R> R> R> R> R | (against R values) 1237 // 1238 // In this case, Q_min >s64 Q_max+1, even though the mathematical values of Q_min and Q_max+1 are correctly ordered. 1239 // The formulas from the previous case can be used, except that the bad upper bound Q_max is replaced by max_jlong. 1240 // (In fact, we could use any replacement bound from R to max_jlong inclusive, as the input to the clamp function.) 1241 // 1242 // So if Q_min >=s64 0 but Q_max+1 <s64 0, use this test: 1243 // j*K + 0 <u32 clamp(R, Q_min, max_jlong) - Q_min if S*K>0 1244 // More generally: 1245 // j*K + Q - Q_min <u32 clamp(R, Q_min, max_jlong) - Q_min for all S,K 1246 // 1247 // Dropping the bad bound means only Q_min is used to reduce the range of R: 1248 // j*K + Q - Q_min <u32 max(Q_min, R) - Q_min for all S,K 1249 // 1250 // Here the clamp function is a 64-bit min/max that reduces the dynamic range of its R operand to the required [L,H]: 1251 // clamp(X, L, H) := max(L, min(X, H)) 1252 // When degenerately L > H, it returns L not H. 1253 // 1254 // All of the formulas above can be merged into a single one: 1255 // L_clamp = Q_min < 0 ? 0 : Q_min --whether and how far to left-shift 1256 // H_clamp = Q_max+1 < Q_min ? max_jlong : Q_max+1 1257 // = Q_max+1 < 0 && Q_min >= 0 ? max_jlong : Q_max+1 1258 // Q_first = Q = (S*K>0 ? Q_min : Q_max) = (C*K+L) 1259 // R_clamp = clamp(R, L_clamp, H_clamp) --reduced dynamic range 1260 // replacement R.C.: 1261 // j*K + Q_first - L_clamp <u32 R_clamp - L_clamp 1262 // or equivalently: 1263 // j*K + L_2 <u32 R_2 1264 // where 1265 // L_2 = Q_first - L_clamp 1266 // R_2 = R_clamp - L_clamp 1267 // 1268 // Note on why R is never negative: 1269 // 1270 // Various details of this transformation would break badly if R could be negative, so this transformation only 1271 // operates after obtaining hard evidence that R<0 is impossible. For example, if R comes from a LoadRange node, we 1272 // know R cannot be negative. For explicit checks (of both int and long) a proof is constructed in 1273 // inline_preconditions_checkIndex, which triggers an uncommon trap if R<0, then wraps R in a ConstraintCastNode with a 1274 // non-negative type. Later on, when IdealLoopTree::is_range_check_if looks for an optimizable R.C., it checks that 1275 // the type of that R node is non-negative. Any "wild" R node that could be negative is not treated as an optimizable 1276 // R.C., but R values from a.length and inside checkIndex are good to go. 1277 // 1278 void PhaseIdealLoop::transform_long_range_checks(int stride_con, const Node_List &range_checks, Node* outer_phi, 1279 Node* inner_iters_actual_int, Node* inner_phi, 1280 Node* iv_add, LoopNode* inner_head) { 1281 Node* long_zero = longcon(0); 1282 Node* int_zero = intcon(0); 1283 Node* long_one = longcon(1); 1284 Node* int_stride = intcon(checked_cast<int>(stride_con)); 1285 1286 for (uint i = 0; i < range_checks.size(); i++) { 1287 ProjNode* proj = range_checks.at(i)->as_Proj(); 1288 ProjNode* unc_proj = proj->other_if_proj(); 1289 RangeCheckNode* rc = proj->in(0)->as_RangeCheck(); 1290 jlong scale = 0; 1291 Node* offset = nullptr; 1292 Node* rc_bol = rc->in(1); 1293 Node* rc_cmp = rc_bol->in(1); 1294 if (rc_cmp->Opcode() == Op_CmpU) { 1295 // could be shared and have already been taken care of 1296 continue; 1297 } 1298 bool short_scale = false; 1299 bool ok = is_scaled_iv_plus_offset(rc_cmp->in(1), iv_add, T_LONG, &scale, &offset, &short_scale); 1300 assert(ok, "inconsistent: was tested before"); 1301 Node* range = rc_cmp->in(2); 1302 Node* c = rc->in(0); 1303 Node* entry_control = inner_head->in(LoopNode::EntryControl); 1304 1305 Node* R = range; 1306 Node* K = longcon(scale); 1307 1308 Node* L = offset; 1309 1310 if (short_scale) { 1311 // This converts: 1312 // (int)i*K + L <u64 R 1313 // with K an int into: 1314 // i*(long)K + L <u64 unsigned_min((long)max_jint + L + 1, R) 1315 // to protect against an overflow of (int)i*K 1316 // 1317 // Because if (int)i*K overflows, there are K,L where: 1318 // (int)i*K + L <u64 R is false because (int)i*K+L overflows to a negative which becomes a huge u64 value. 1319 // But if i*(long)K + L is >u64 (long)max_jint and still is <u64 R, then 1320 // i*(long)K + L <u64 R is true. 1321 // 1322 // As a consequence simply converting i*K + L <u64 R to i*(long)K + L <u64 R could cause incorrect execution. 1323 // 1324 // It's always true that: 1325 // (int)i*K <u64 (long)max_jint + 1 1326 // which implies (int)i*K + L <u64 (long)max_jint + 1 + L 1327 // As a consequence: 1328 // i*(long)K + L <u64 unsigned_min((long)max_jint + L + 1, R) 1329 // is always false in case of overflow of i*K 1330 // 1331 // Note, there are also K,L where i*K overflows and 1332 // i*K + L <u64 R is true, but 1333 // i*(long)K + L <u64 unsigned_min((long)max_jint + L + 1, R) is false 1334 // So this transformation could cause spurious deoptimizations and failed range check elimination 1335 // (but not incorrect execution) for unlikely corner cases with overflow. 1336 // If this causes problems in practice, we could maybe direct execution to a post-loop, instead of deoptimizing. 1337 Node* max_jint_plus_one_long = longcon((jlong)max_jint + 1); 1338 Node* max_range = new AddLNode(max_jint_plus_one_long, L); 1339 register_new_node(max_range, entry_control); 1340 R = MaxNode::unsigned_min(R, max_range, TypeLong::POS, _igvn); 1341 set_subtree_ctrl(R, true); 1342 } 1343 1344 Node* C = outer_phi; 1345 1346 // Start with 64-bit values: 1347 // i*K + L <u64 R 1348 // (C+j)*K + L <u64 R 1349 // j*K + Q <u64 R where Q = Q_first = C*K+L 1350 Node* Q_first = new MulLNode(C, K); 1351 register_new_node(Q_first, entry_control); 1352 Q_first = new AddLNode(Q_first, L); 1353 register_new_node(Q_first, entry_control); 1354 1355 // Compute endpoints of the range of values j*K + Q. 1356 // Q_min = (j=0)*K + Q; Q_max = (j=B_2)*K + Q 1357 Node* Q_min = Q_first; 1358 1359 // Compute the exact ending value B_2 (which is really A_2 if S < 0) 1360 Node* B_2 = new LoopLimitNode(this->C, int_zero, inner_iters_actual_int, int_stride); 1361 register_new_node(B_2, entry_control); 1362 B_2 = new SubINode(B_2, int_stride); 1363 register_new_node(B_2, entry_control); 1364 B_2 = new ConvI2LNode(B_2); 1365 register_new_node(B_2, entry_control); 1366 1367 Node* Q_max = new MulLNode(B_2, K); 1368 register_new_node(Q_max, entry_control); 1369 Q_max = new AddLNode(Q_max, Q_first); 1370 register_new_node(Q_max, entry_control); 1371 1372 if (scale * stride_con < 0) { 1373 swap(Q_min, Q_max); 1374 } 1375 // Now, mathematically, Q_max > Q_min, and they are close enough so that (Q_max-Q_min) fits in 32 bits. 1376 1377 // L_clamp = Q_min < 0 ? 0 : Q_min 1378 Node* Q_min_cmp = new CmpLNode(Q_min, long_zero); 1379 register_new_node(Q_min_cmp, entry_control); 1380 Node* Q_min_bool = new BoolNode(Q_min_cmp, BoolTest::lt); 1381 register_new_node(Q_min_bool, entry_control); 1382 Node* L_clamp = new CMoveLNode(Q_min_bool, Q_min, long_zero, TypeLong::LONG); 1383 register_new_node(L_clamp, entry_control); 1384 // (This could also be coded bitwise as L_clamp = Q_min & ~(Q_min>>63).) 1385 1386 Node* Q_max_plus_one = new AddLNode(Q_max, long_one); 1387 register_new_node(Q_max_plus_one, entry_control); 1388 1389 // H_clamp = Q_max+1 < Q_min ? max_jlong : Q_max+1 1390 // (Because Q_min and Q_max are close, the overflow check could also be encoded as Q_max+1 < 0 & Q_min >= 0.) 1391 Node* max_jlong_long = longcon(max_jlong); 1392 Node* Q_max_cmp = new CmpLNode(Q_max_plus_one, Q_min); 1393 register_new_node(Q_max_cmp, entry_control); 1394 Node* Q_max_bool = new BoolNode(Q_max_cmp, BoolTest::lt); 1395 register_new_node(Q_max_bool, entry_control); 1396 Node* H_clamp = new CMoveLNode(Q_max_bool, Q_max_plus_one, max_jlong_long, TypeLong::LONG); 1397 register_new_node(H_clamp, entry_control); 1398 // (This could also be coded bitwise as H_clamp = ((Q_max+1)<<1 | M)>>>1 where M = (Q_max+1)>>63 & ~Q_min>>63.) 1399 1400 // R_2 = clamp(R, L_clamp, H_clamp) - L_clamp 1401 // that is: R_2 = clamp(R, L_clamp=0, H_clamp=Q_max) if Q_min < 0 1402 // or else: R_2 = clamp(R, L_clamp, H_clamp) - Q_min if Q_min >= 0 1403 // and also: R_2 = clamp(R, L_clamp, Q_max+1) - L_clamp if Q_min < Q_max+1 (no overflow) 1404 // or else: R_2 = clamp(R, L_clamp, *no limit*)- L_clamp if Q_max+1 < Q_min (overflow) 1405 Node* R_2 = clamp(R, L_clamp, H_clamp); 1406 R_2 = new SubLNode(R_2, L_clamp); 1407 register_new_node(R_2, entry_control); 1408 R_2 = new ConvL2INode(R_2, TypeInt::POS); 1409 register_new_node(R_2, entry_control); 1410 1411 // L_2 = Q_first - L_clamp 1412 // We are subtracting L_clamp from both sides of the <u32 comparison. 1413 // If S*K>0, then Q_first == 0 and the R.C. expression at -L_clamp and steps upward to Q_max-L_clamp. 1414 // If S*K<0, then Q_first != 0 and the R.C. expression starts high and steps downward to Q_min-L_clamp. 1415 Node* L_2 = new SubLNode(Q_first, L_clamp); 1416 register_new_node(L_2, entry_control); 1417 L_2 = new ConvL2INode(L_2, TypeInt::INT); 1418 register_new_node(L_2, entry_control); 1419 1420 // Transform the range check using the computed values L_2/R_2 1421 // from: i*K + L <u64 R 1422 // to: j*K + L_2 <u32 R_2 1423 // that is: 1424 // (j*K + Q_first) - L_clamp <u32 clamp(R, L_clamp, H_clamp) - L_clamp 1425 K = intcon(checked_cast<int>(scale)); 1426 Node* scaled_iv = new MulINode(inner_phi, K); 1427 register_new_node(scaled_iv, c); 1428 Node* scaled_iv_plus_offset = new AddINode(scaled_iv, L_2); 1429 register_new_node(scaled_iv_plus_offset, c); 1430 1431 Node* new_rc_cmp = new CmpUNode(scaled_iv_plus_offset, R_2); 1432 register_new_node(new_rc_cmp, c); 1433 1434 _igvn.replace_input_of(rc_bol, 1, new_rc_cmp); 1435 } 1436 } 1437 1438 Node* PhaseIdealLoop::clamp(Node* R, Node* L, Node* H) { 1439 Node* min = MaxNode::signed_min(R, H, TypeLong::LONG, _igvn); 1440 set_subtree_ctrl(min, true); 1441 Node* max = MaxNode::signed_max(L, min, TypeLong::LONG, _igvn); 1442 set_subtree_ctrl(max, true); 1443 return max; 1444 } 1445 1446 LoopNode* PhaseIdealLoop::create_inner_head(IdealLoopTree* loop, BaseCountedLoopNode* head, 1447 IfNode* exit_test) { 1448 LoopNode* new_inner_head = new LoopNode(head->in(1), head->in(2)); 1449 IfNode* new_inner_exit = new IfNode(exit_test->in(0), exit_test->in(1), exit_test->_prob, exit_test->_fcnt); 1450 _igvn.register_new_node_with_optimizer(new_inner_head); 1451 _igvn.register_new_node_with_optimizer(new_inner_exit); 1452 loop->_body.push(new_inner_head); 1453 loop->_body.push(new_inner_exit); 1454 loop->_body.yank(head); 1455 loop->_body.yank(exit_test); 1456 set_loop(new_inner_head, loop); 1457 set_loop(new_inner_exit, loop); 1458 set_idom(new_inner_head, idom(head), dom_depth(head)); 1459 set_idom(new_inner_exit, idom(exit_test), dom_depth(exit_test)); 1460 lazy_replace(head, new_inner_head); 1461 lazy_replace(exit_test, new_inner_exit); 1462 loop->_head = new_inner_head; 1463 return new_inner_head; 1464 } 1465 1466 #ifdef ASSERT 1467 void PhaseIdealLoop::check_counted_loop_shape(IdealLoopTree* loop, Node* x, BasicType bt) { 1468 Node* back_control = loop_exit_control(x, loop); 1469 assert(back_control != nullptr, "no back control"); 1470 1471 BoolTest::mask mask = BoolTest::illegal; 1472 float cl_prob = 0; 1473 Node* incr = nullptr; 1474 Node* limit = nullptr; 1475 1476 Node* cmp = loop_exit_test(back_control, loop, incr, limit, mask, cl_prob); 1477 assert(cmp != nullptr && cmp->Opcode() == Op_Cmp(bt), "no exit test"); 1478 1479 Node* phi_incr = nullptr; 1480 incr = loop_iv_incr(incr, x, loop, phi_incr); 1481 assert(incr != nullptr && incr->Opcode() == Op_Add(bt), "no incr"); 1482 1483 Node* xphi = nullptr; 1484 Node* stride = loop_iv_stride(incr, loop, xphi); 1485 1486 assert(stride != nullptr, "no stride"); 1487 1488 PhiNode* phi = loop_iv_phi(xphi, phi_incr, x, loop); 1489 1490 assert(phi != nullptr && phi->in(LoopNode::LoopBackControl) == incr, "No phi"); 1491 1492 jlong stride_con = stride->get_integer_as_long(bt); 1493 1494 assert(condition_stride_ok(mask, stride_con), "illegal condition"); 1495 1496 assert(mask != BoolTest::ne, "unexpected condition"); 1497 assert(phi_incr == nullptr, "bad loop shape"); 1498 assert(cmp->in(1) == incr, "bad exit test shape"); 1499 1500 // Safepoint on backedge not supported 1501 assert(x->in(LoopNode::LoopBackControl)->Opcode() != Op_SafePoint, "no safepoint on backedge"); 1502 } 1503 #endif 1504 1505 #ifdef ASSERT 1506 // convert an int counted loop to a long counted to stress handling of 1507 // long counted loops 1508 bool PhaseIdealLoop::convert_to_long_loop(Node* cmp, Node* phi, IdealLoopTree* loop) { 1509 Unique_Node_List iv_nodes; 1510 Node_List old_new; 1511 iv_nodes.push(cmp); 1512 bool failed = false; 1513 1514 for (uint i = 0; i < iv_nodes.size() && !failed; i++) { 1515 Node* n = iv_nodes.at(i); 1516 switch(n->Opcode()) { 1517 case Op_Phi: { 1518 Node* clone = new PhiNode(n->in(0), TypeLong::LONG); 1519 old_new.map(n->_idx, clone); 1520 break; 1521 } 1522 case Op_CmpI: { 1523 Node* clone = new CmpLNode(nullptr, nullptr); 1524 old_new.map(n->_idx, clone); 1525 break; 1526 } 1527 case Op_AddI: { 1528 Node* clone = new AddLNode(nullptr, nullptr); 1529 old_new.map(n->_idx, clone); 1530 break; 1531 } 1532 case Op_CastII: { 1533 failed = true; 1534 break; 1535 } 1536 default: 1537 DEBUG_ONLY(n->dump()); 1538 fatal("unexpected"); 1539 } 1540 1541 for (uint i = 1; i < n->req(); i++) { 1542 Node* in = n->in(i); 1543 if (in == nullptr) { 1544 continue; 1545 } 1546 if (loop->is_member(get_loop(get_ctrl(in)))) { 1547 iv_nodes.push(in); 1548 } 1549 } 1550 } 1551 1552 if (failed) { 1553 for (uint i = 0; i < iv_nodes.size(); i++) { 1554 Node* n = iv_nodes.at(i); 1555 Node* clone = old_new[n->_idx]; 1556 if (clone != nullptr) { 1557 _igvn.remove_dead_node(clone); 1558 } 1559 } 1560 return false; 1561 } 1562 1563 for (uint i = 0; i < iv_nodes.size(); i++) { 1564 Node* n = iv_nodes.at(i); 1565 Node* clone = old_new[n->_idx]; 1566 for (uint i = 1; i < n->req(); i++) { 1567 Node* in = n->in(i); 1568 if (in == nullptr) { 1569 continue; 1570 } 1571 Node* in_clone = old_new[in->_idx]; 1572 if (in_clone == nullptr) { 1573 assert(_igvn.type(in)->isa_int(), ""); 1574 in_clone = new ConvI2LNode(in); 1575 _igvn.register_new_node_with_optimizer(in_clone); 1576 set_subtree_ctrl(in_clone, false); 1577 } 1578 if (in_clone->in(0) == nullptr) { 1579 in_clone->set_req(0, C->top()); 1580 clone->set_req(i, in_clone); 1581 in_clone->set_req(0, nullptr); 1582 } else { 1583 clone->set_req(i, in_clone); 1584 } 1585 } 1586 _igvn.register_new_node_with_optimizer(clone); 1587 } 1588 set_ctrl(old_new[phi->_idx], phi->in(0)); 1589 1590 for (uint i = 0; i < iv_nodes.size(); i++) { 1591 Node* n = iv_nodes.at(i); 1592 Node* clone = old_new[n->_idx]; 1593 set_subtree_ctrl(clone, false); 1594 Node* m = n->Opcode() == Op_CmpI ? clone : nullptr; 1595 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 1596 Node* u = n->fast_out(i); 1597 if (iv_nodes.member(u)) { 1598 continue; 1599 } 1600 if (m == nullptr) { 1601 m = new ConvL2INode(clone); 1602 _igvn.register_new_node_with_optimizer(m); 1603 set_subtree_ctrl(m, false); 1604 } 1605 _igvn.rehash_node_delayed(u); 1606 int nb = u->replace_edge(n, m, &_igvn); 1607 --i, imax -= nb; 1608 } 1609 } 1610 return true; 1611 } 1612 #endif 1613 1614 //------------------------------is_counted_loop-------------------------------- 1615 bool PhaseIdealLoop::is_counted_loop(Node* x, IdealLoopTree*&loop, BasicType iv_bt) { 1616 PhaseGVN *gvn = &_igvn; 1617 1618 Node* back_control = loop_exit_control(x, loop); 1619 if (back_control == nullptr) { 1620 return false; 1621 } 1622 1623 BoolTest::mask bt = BoolTest::illegal; 1624 float cl_prob = 0; 1625 Node* incr = nullptr; 1626 Node* limit = nullptr; 1627 Node* cmp = loop_exit_test(back_control, loop, incr, limit, bt, cl_prob); 1628 if (cmp == nullptr || cmp->Opcode() != Op_Cmp(iv_bt)) { 1629 return false; // Avoid pointer & float & 64-bit compares 1630 } 1631 1632 // Trip-counter increment must be commutative & associative. 1633 if (incr->Opcode() == Op_Cast(iv_bt)) { 1634 incr = incr->in(1); 1635 } 1636 1637 Node* phi_incr = nullptr; 1638 incr = loop_iv_incr(incr, x, loop, phi_incr); 1639 if (incr == nullptr) { 1640 return false; 1641 } 1642 1643 Node* trunc1 = nullptr; 1644 Node* trunc2 = nullptr; 1645 const TypeInteger* iv_trunc_t = nullptr; 1646 Node* orig_incr = incr; 1647 if (!(incr = CountedLoopNode::match_incr_with_optional_truncation(incr, &trunc1, &trunc2, &iv_trunc_t, iv_bt))) { 1648 return false; // Funny increment opcode 1649 } 1650 assert(incr->Opcode() == Op_Add(iv_bt), "wrong increment code"); 1651 1652 Node* xphi = nullptr; 1653 Node* stride = loop_iv_stride(incr, loop, xphi); 1654 1655 if (stride == nullptr) { 1656 return false; 1657 } 1658 1659 if (xphi->Opcode() == Op_Cast(iv_bt)) { 1660 xphi = xphi->in(1); 1661 } 1662 1663 // Stride must be constant 1664 jlong stride_con = stride->get_integer_as_long(iv_bt); 1665 assert(stride_con != 0, "missed some peephole opt"); 1666 1667 PhiNode* phi = loop_iv_phi(xphi, phi_incr, x, loop); 1668 1669 if (phi == nullptr || 1670 (trunc1 == nullptr && phi->in(LoopNode::LoopBackControl) != incr) || 1671 (trunc1 != nullptr && phi->in(LoopNode::LoopBackControl) != trunc1)) { 1672 return false; 1673 } 1674 1675 Node* iftrue = back_control; 1676 uint iftrue_op = iftrue->Opcode(); 1677 Node* iff = iftrue->in(0); 1678 BoolNode* test = iff->in(1)->as_Bool(); 1679 1680 const TypeInteger* limit_t = gvn->type(limit)->is_integer(iv_bt); 1681 if (trunc1 != nullptr) { 1682 // When there is a truncation, we must be sure that after the truncation 1683 // the trip counter will end up higher than the limit, otherwise we are looking 1684 // at an endless loop. Can happen with range checks. 1685 1686 // Example: 1687 // int i = 0; 1688 // while (true) 1689 // sum + = array[i]; 1690 // i++; 1691 // i = i && 0x7fff; 1692 // } 1693 // 1694 // If the array is shorter than 0x8000 this exits through a AIOOB 1695 // - Counted loop transformation is ok 1696 // If the array is longer then this is an endless loop 1697 // - No transformation can be done. 1698 1699 const TypeInteger* incr_t = gvn->type(orig_incr)->is_integer(iv_bt); 1700 if (limit_t->hi_as_long() > incr_t->hi_as_long()) { 1701 // if the limit can have a higher value than the increment (before the phi) 1702 return false; 1703 } 1704 } 1705 1706 Node *init_trip = phi->in(LoopNode::EntryControl); 1707 1708 // If iv trunc type is smaller than int, check for possible wrap. 1709 if (!TypeInteger::bottom(iv_bt)->higher_equal(iv_trunc_t)) { 1710 assert(trunc1 != nullptr, "must have found some truncation"); 1711 1712 // Get a better type for the phi (filtered thru if's) 1713 const TypeInteger* phi_ft = filtered_type(phi); 1714 1715 // Can iv take on a value that will wrap? 1716 // 1717 // Ensure iv's limit is not within "stride" of the wrap value. 1718 // 1719 // Example for "short" type 1720 // Truncation ensures value is in the range -32768..32767 (iv_trunc_t) 1721 // If the stride is +10, then the last value of the induction 1722 // variable before the increment (phi_ft->_hi) must be 1723 // <= 32767 - 10 and (phi_ft->_lo) must be >= -32768 to 1724 // ensure no truncation occurs after the increment. 1725 1726 if (stride_con > 0) { 1727 if (iv_trunc_t->hi_as_long() - phi_ft->hi_as_long() < stride_con || 1728 iv_trunc_t->lo_as_long() > phi_ft->lo_as_long()) { 1729 return false; // truncation may occur 1730 } 1731 } else if (stride_con < 0) { 1732 if (iv_trunc_t->lo_as_long() - phi_ft->lo_as_long() > stride_con || 1733 iv_trunc_t->hi_as_long() < phi_ft->hi_as_long()) { 1734 return false; // truncation may occur 1735 } 1736 } 1737 // No possibility of wrap so truncation can be discarded 1738 // Promote iv type to Int 1739 } else { 1740 assert(trunc1 == nullptr && trunc2 == nullptr, "no truncation for int"); 1741 } 1742 1743 if (!condition_stride_ok(bt, stride_con)) { 1744 return false; 1745 } 1746 1747 const TypeInteger* init_t = gvn->type(init_trip)->is_integer(iv_bt); 1748 1749 if (stride_con > 0) { 1750 if (init_t->lo_as_long() > max_signed_integer(iv_bt) - stride_con) { 1751 return false; // cyclic loop 1752 } 1753 } else { 1754 if (init_t->hi_as_long() < min_signed_integer(iv_bt) - stride_con) { 1755 return false; // cyclic loop 1756 } 1757 } 1758 1759 if (phi_incr != nullptr && bt != BoolTest::ne) { 1760 // check if there is a possibility of IV overflowing after the first increment 1761 if (stride_con > 0) { 1762 if (init_t->hi_as_long() > max_signed_integer(iv_bt) - stride_con) { 1763 return false; 1764 } 1765 } else { 1766 if (init_t->lo_as_long() < min_signed_integer(iv_bt) - stride_con) { 1767 return false; 1768 } 1769 } 1770 } 1771 1772 // ================================================= 1773 // ---- SUCCESS! Found A Trip-Counted Loop! ----- 1774 // 1775 1776 if (x->Opcode() == Op_Region) { 1777 // x has not yet been transformed to Loop or LongCountedLoop. 1778 // This should only happen if we are inside an infinite loop. 1779 // It happens like this: 1780 // build_loop_tree -> do not attach infinite loop and nested loops 1781 // beautify_loops -> does not transform the infinite and nested loops to LoopNode, because not attached yet 1782 // build_loop_tree -> find and attach infinite and nested loops 1783 // counted_loop -> nested Regions are not yet transformed to LoopNodes, we land here 1784 assert(x->as_Region()->is_in_infinite_subgraph(), 1785 "x can only be a Region and not Loop if inside infinite loop"); 1786 // Come back later when Region is transformed to LoopNode 1787 return false; 1788 } 1789 1790 assert(x->Opcode() == Op_Loop || x->Opcode() == Op_LongCountedLoop, "regular loops only"); 1791 C->print_method(PHASE_BEFORE_CLOOPS, 3, x); 1792 1793 // =================================================== 1794 // We can only convert this loop to a counted loop if we can guarantee that the iv phi will never overflow at runtime. 1795 // This is an implicit assumption taken by some loop optimizations. We therefore must ensure this property at all cost. 1796 // At this point, we've already excluded some trivial cases where an overflow could have been proven statically. 1797 // But even though we cannot prove that an overflow will *not* happen, we still want to speculatively convert this loop 1798 // to a counted loop. This can be achieved by adding additional iv phi overflow checks before the loop. If they fail, 1799 // we trap and resume execution before the loop without having executed any iteration of the loop, yet. 1800 // 1801 // These additional iv phi overflow checks can be inserted as Loop Limit Check Predicates above the Loop Limit Check 1802 // Parse Predicate which captures a JVM state just before the entry of the loop. If there is no such Parse Predicate, 1803 // we cannot generate a Loop Limit Check Predicate and thus cannot speculatively convert the loop to a counted loop. 1804 // 1805 // In the following, we only focus on int loops with stride > 0 to keep things simple. The argumentation and proof 1806 // for stride < 0 is analogously. For long loops, we would replace max_int with max_long. 1807 // 1808 // 1809 // The loop to be converted does not always need to have the often used shape: 1810 // 1811 // i = init 1812 // i = init loop: 1813 // do { ... 1814 // // ... equivalent i+=stride 1815 // i+=stride <==> if (i < limit) 1816 // } while (i < limit); goto loop 1817 // exit: 1818 // ... 1819 // 1820 // where the loop exit check uses the post-incremented iv phi and a '<'-operator. 1821 // 1822 // We could also have '<='-operator (or '>='-operator for negative strides) or use the pre-incremented iv phi value 1823 // in the loop exit check: 1824 // 1825 // i = init 1826 // loop: 1827 // ... 1828 // if (i <= limit) 1829 // i+=stride 1830 // goto loop 1831 // exit: 1832 // ... 1833 // 1834 // Let's define the following terms: 1835 // - iv_pre_i: The pre-incremented iv phi before the i-th iteration. 1836 // - iv_post_i: The post-incremented iv phi after the i-th iteration. 1837 // 1838 // The iv_pre_i and iv_post_i have the following relation: 1839 // iv_pre_i + stride = iv_post_i 1840 // 1841 // When converting a loop to a counted loop, we want to have a canonicalized loop exit check of the form: 1842 // iv_post_i < adjusted_limit 1843 // 1844 // If that is not the case, we need to canonicalize the loop exit check by using different values for adjusted_limit: 1845 // (LE1) iv_post_i < limit: Already canonicalized. We can directly use limit as adjusted_limit. 1846 // -> adjusted_limit = limit. 1847 // (LE2) iv_post_i <= limit: 1848 // iv_post_i < limit + 1 1849 // -> adjusted limit = limit + 1 1850 // (LE3) iv_pre_i < limit: 1851 // iv_pre_i + stride < limit + stride 1852 // iv_post_i < limit + stride 1853 // -> adjusted_limit = limit + stride 1854 // (LE4) iv_pre_i <= limit: 1855 // iv_pre_i < limit + 1 1856 // iv_pre_i + stride < limit + stride + 1 1857 // iv_post_i < limit + stride + 1 1858 // -> adjusted_limit = limit + stride + 1 1859 // 1860 // Note that: 1861 // (AL) limit <= adjusted_limit. 1862 // 1863 // The following loop invariant has to hold for counted loops with n iterations (i.e. loop exit check true after n-th 1864 // loop iteration) and a canonicalized loop exit check to guarantee that no iv_post_i over- or underflows: 1865 // (INV) For i = 1..n, min_int <= iv_post_i <= max_int 1866 // 1867 // To prove (INV), we require the following two conditions/assumptions: 1868 // (i): adjusted_limit - 1 + stride <= max_int 1869 // (ii): init < limit 1870 // 1871 // If we can prove (INV), we know that there can be no over- or underflow of any iv phi value. We prove (INV) by 1872 // induction by assuming (i) and (ii). 1873 // 1874 // Proof by Induction 1875 // ------------------ 1876 // > Base case (i = 1): We show that (INV) holds after the first iteration: 1877 // min_int <= iv_post_1 = init + stride <= max_int 1878 // Proof: 1879 // First, we note that (ii) implies 1880 // (iii) init <= limit - 1 1881 // max_int >= adjusted_limit - 1 + stride [using (i)] 1882 // >= limit - 1 + stride [using (AL)] 1883 // >= init + stride [using (iii)] 1884 // >= min_int [using stride > 0, no underflow] 1885 // Thus, no overflow happens after the first iteration and (INV) holds for i = 1. 1886 // 1887 // Note that to prove the base case we need (i) and (ii). 1888 // 1889 // > Induction Hypothesis (i = j, j > 1): Assume that (INV) holds after the j-th iteration: 1890 // min_int <= iv_post_j <= max_int 1891 // > Step case (i = j + 1): We show that (INV) also holds after the j+1-th iteration: 1892 // min_int <= iv_post_{j+1} = iv_post_j + stride <= max_int 1893 // Proof: 1894 // If iv_post_j >= adjusted_limit: 1895 // We exit the loop after the j-th iteration, and we don't execute the j+1-th iteration anymore. Thus, there is 1896 // also no iv_{j+1}. Since (INV) holds for iv_j, there is nothing left to prove. 1897 // If iv_post_j < adjusted_limit: 1898 // First, we note that: 1899 // (iv) iv_post_j <= adjusted_limit - 1 1900 // max_int >= adjusted_limit - 1 + stride [using (i)] 1901 // >= iv_post_j + stride [using (iv)] 1902 // >= min_int [using stride > 0, no underflow] 1903 // 1904 // Note that to prove the step case we only need (i). 1905 // 1906 // Thus, by assuming (i) and (ii), we proved (INV). 1907 // 1908 // 1909 // It is therefore enough to add the following two Loop Limit Check Predicates to check assumptions (i) and (ii): 1910 // 1911 // (1) Loop Limit Check Predicate for (i): 1912 // Using (i): adjusted_limit - 1 + stride <= max_int 1913 // 1914 // This condition is now restated to use limit instead of adjusted_limit: 1915 // 1916 // To prevent an overflow of adjusted_limit -1 + stride itself, we rewrite this check to 1917 // max_int - stride + 1 >= adjusted_limit 1918 // We can merge the two constants into 1919 // canonicalized_correction = stride - 1 1920 // which gives us 1921 // max_int - canonicalized_correction >= adjusted_limit 1922 // 1923 // To directly use limit instead of adjusted_limit in the predicate condition, we split adjusted_limit into: 1924 // adjusted_limit = limit + limit_correction 1925 // Since stride > 0 and limit_correction <= stride + 1, we can restate this with no over- or underflow into: 1926 // max_int - canonicalized_correction - limit_correction >= limit 1927 // Since canonicalized_correction and limit_correction are both constants, we can replace them with a new constant: 1928 // (v) final_correction = canonicalized_correction + limit_correction 1929 // 1930 // which gives us: 1931 // 1932 // Final predicate condition: 1933 // max_int - final_correction >= limit 1934 // 1935 // However, we need to be careful that (v) does not over- or underflow. 1936 // We know that: 1937 // canonicalized_correction = stride - 1 1938 // and 1939 // limit_correction <= stride + 1 1940 // and thus 1941 // canonicalized_correction + limit_correction <= 2 * stride 1942 // To prevent an over- or underflow of (v), we must ensure that 1943 // 2 * stride <= max_int 1944 // which can safely be checked without over- or underflow with 1945 // (vi) stride != min_int AND abs(stride) <= max_int / 2 1946 // 1947 // We could try to further optimize the cases where (vi) does not hold but given that such large strides are 1948 // very uncommon and the loop would only run for a very few iterations anyway, we simply bail out if (vi) fails. 1949 // 1950 // (2) Loop Limit Check Predicate for (ii): 1951 // Using (ii): init < limit 1952 // 1953 // This Loop Limit Check Predicate is not required if we can prove at compile time that either: 1954 // (2.1) type(init) < type(limit) 1955 // In this case, we know: 1956 // all possible values of init < all possible values of limit 1957 // and we can skip the predicate. 1958 // 1959 // (2.2) init < limit is already checked before (i.e. found as a dominating check) 1960 // In this case, we do not need to re-check the condition and can skip the predicate. 1961 // This is often found for while- and for-loops which have the following shape: 1962 // 1963 // if (init < limit) { // Dominating test. Do not need the Loop Limit Check Predicate below. 1964 // i = init; 1965 // if (init >= limit) { trap(); } // Here we would insert the Loop Limit Check Predicate 1966 // do { 1967 // i += stride; 1968 // } while (i < limit); 1969 // } 1970 // 1971 // (2.3) init + stride <= max_int 1972 // In this case, there is no overflow of the iv phi after the first loop iteration. 1973 // In the proof of the base case above we showed that init + stride <= max_int by using assumption (ii): 1974 // init < limit 1975 // In the proof of the step case above, we did not need (ii) anymore. Therefore, if we already know at 1976 // compile time that init + stride <= max_int then we have trivially proven the base case and that 1977 // there is no overflow of the iv phi after the first iteration. In this case, we don't need to check (ii) 1978 // again and can skip the predicate. 1979 1980 // Check (vi) and bail out if the stride is too big. 1981 if (stride_con == min_signed_integer(iv_bt) || (ABS(stride_con) > max_signed_integer(iv_bt) / 2)) { 1982 return false; 1983 } 1984 1985 // Accounting for (LE3) and (LE4) where we use pre-incremented phis in the loop exit check. 1986 const jlong limit_correction_for_pre_iv_exit_check = (phi_incr != nullptr) ? stride_con : 0; 1987 1988 // Accounting for (LE2) and (LE4) where we use <= or >= in the loop exit check. 1989 const bool includes_limit = (bt == BoolTest::le || bt == BoolTest::ge); 1990 const jlong limit_correction_for_le_ge_exit_check = (includes_limit ? (stride_con > 0 ? 1 : -1) : 0); 1991 1992 const jlong limit_correction = limit_correction_for_pre_iv_exit_check + limit_correction_for_le_ge_exit_check; 1993 const jlong canonicalized_correction = stride_con + (stride_con > 0 ? -1 : 1); 1994 const jlong final_correction = canonicalized_correction + limit_correction; 1995 1996 int sov = check_stride_overflow(final_correction, limit_t, iv_bt); 1997 Node* init_control = x->in(LoopNode::EntryControl); 1998 1999 // If sov==0, limit's type always satisfies the condition, for 2000 // example, when it is an array length. 2001 if (sov != 0) { 2002 if (sov < 0) { 2003 return false; // Bailout: integer overflow is certain. 2004 } 2005 // (1) Loop Limit Check Predicate is required because we could not statically prove that 2006 // limit + final_correction = adjusted_limit - 1 + stride <= max_int 2007 assert(!x->as_Loop()->is_loop_nest_inner_loop(), "loop was transformed"); 2008 const Predicates predicates(init_control); 2009 const PredicateBlock* loop_limit_check_predicate_block = predicates.loop_limit_check_predicate_block(); 2010 if (!loop_limit_check_predicate_block->has_parse_predicate()) { 2011 // The Loop Limit Check Parse Predicate is not generated if this method trapped here before. 2012 #ifdef ASSERT 2013 if (TraceLoopLimitCheck) { 2014 tty->print("Missing Loop Limit Check Parse Predicate:"); 2015 loop->dump_head(); 2016 x->dump(1); 2017 } 2018 #endif 2019 return false; 2020 } 2021 2022 ParsePredicateNode* loop_limit_check_parse_predicate = loop_limit_check_predicate_block->parse_predicate(); 2023 if (!is_dominator(get_ctrl(limit), loop_limit_check_parse_predicate->in(0))) { 2024 return false; 2025 } 2026 2027 Node* cmp_limit; 2028 Node* bol; 2029 2030 if (stride_con > 0) { 2031 cmp_limit = CmpNode::make(limit, _igvn.integercon(max_signed_integer(iv_bt) - final_correction, iv_bt), iv_bt); 2032 bol = new BoolNode(cmp_limit, BoolTest::le); 2033 } else { 2034 cmp_limit = CmpNode::make(limit, _igvn.integercon(min_signed_integer(iv_bt) - final_correction, iv_bt), iv_bt); 2035 bol = new BoolNode(cmp_limit, BoolTest::ge); 2036 } 2037 2038 insert_loop_limit_check_predicate(init_control->as_IfTrue(), cmp_limit, bol); 2039 } 2040 2041 // (2.3) 2042 const bool init_plus_stride_could_overflow = 2043 (stride_con > 0 && init_t->hi_as_long() > max_signed_integer(iv_bt) - stride_con) || 2044 (stride_con < 0 && init_t->lo_as_long() < min_signed_integer(iv_bt) - stride_con); 2045 // (2.1) 2046 const bool init_gte_limit = (stride_con > 0 && init_t->hi_as_long() >= limit_t->lo_as_long()) || 2047 (stride_con < 0 && init_t->lo_as_long() <= limit_t->hi_as_long()); 2048 2049 if (init_gte_limit && // (2.1) 2050 ((bt == BoolTest::ne || init_plus_stride_could_overflow) && // (2.3) 2051 !has_dominating_loop_limit_check(init_trip, limit, stride_con, iv_bt, init_control))) { // (2.2) 2052 // (2) Iteration Loop Limit Check Predicate is required because neither (2.1), (2.2), nor (2.3) holds. 2053 // We use the following condition: 2054 // - stride > 0: init < limit 2055 // - stride < 0: init > limit 2056 // 2057 // This predicate is always required if we have a non-equal-operator in the loop exit check (where stride = 1 is 2058 // a requirement). We transform the loop exit check by using a less-than-operator. By doing so, we must always 2059 // check that init < limit. Otherwise, we could have a different number of iterations at runtime. 2060 2061 const Predicates predicates(init_control); 2062 const PredicateBlock* loop_limit_check_predicate_block = predicates.loop_limit_check_predicate_block(); 2063 if (!loop_limit_check_predicate_block->has_parse_predicate()) { 2064 // The Loop Limit Check Parse Predicate is not generated if this method trapped here before. 2065 #ifdef ASSERT 2066 if (TraceLoopLimitCheck) { 2067 tty->print("Missing Loop Limit Check Parse Predicate:"); 2068 loop->dump_head(); 2069 x->dump(1); 2070 } 2071 #endif 2072 return false; 2073 } 2074 2075 ParsePredicateNode* loop_limit_check_parse_predicate = loop_limit_check_predicate_block->parse_predicate(); 2076 Node* parse_predicate_entry = loop_limit_check_parse_predicate->in(0); 2077 if (!is_dominator(get_ctrl(limit), parse_predicate_entry) || 2078 !is_dominator(get_ctrl(init_trip), parse_predicate_entry)) { 2079 return false; 2080 } 2081 2082 Node* cmp_limit; 2083 Node* bol; 2084 2085 if (stride_con > 0) { 2086 cmp_limit = CmpNode::make(init_trip, limit, iv_bt); 2087 bol = new BoolNode(cmp_limit, BoolTest::lt); 2088 } else { 2089 cmp_limit = CmpNode::make(init_trip, limit, iv_bt); 2090 bol = new BoolNode(cmp_limit, BoolTest::gt); 2091 } 2092 2093 insert_loop_limit_check_predicate(init_control->as_IfTrue(), cmp_limit, bol); 2094 } 2095 2096 if (bt == BoolTest::ne) { 2097 // Now we need to canonicalize the loop condition if it is 'ne'. 2098 assert(stride_con == 1 || stride_con == -1, "simple increment only - checked before"); 2099 if (stride_con > 0) { 2100 // 'ne' can be replaced with 'lt' only when init < limit. This is ensured by the inserted predicate above. 2101 bt = BoolTest::lt; 2102 } else { 2103 assert(stride_con < 0, "must be"); 2104 // 'ne' can be replaced with 'gt' only when init > limit. This is ensured by the inserted predicate above. 2105 bt = BoolTest::gt; 2106 } 2107 } 2108 2109 Node* sfpt = nullptr; 2110 if (loop->_child == nullptr) { 2111 sfpt = find_safepoint(back_control, x, loop); 2112 } else { 2113 sfpt = iff->in(0); 2114 if (sfpt->Opcode() != Op_SafePoint) { 2115 sfpt = nullptr; 2116 } 2117 } 2118 2119 if (x->in(LoopNode::LoopBackControl)->Opcode() == Op_SafePoint) { 2120 Node* backedge_sfpt = x->in(LoopNode::LoopBackControl); 2121 if (((iv_bt == T_INT && LoopStripMiningIter != 0) || 2122 iv_bt == T_LONG) && 2123 sfpt == nullptr) { 2124 // Leaving the safepoint on the backedge and creating a 2125 // CountedLoop will confuse optimizations. We can't move the 2126 // safepoint around because its jvm state wouldn't match a new 2127 // location. Give up on that loop. 2128 return false; 2129 } 2130 if (is_deleteable_safept(backedge_sfpt)) { 2131 lazy_replace(backedge_sfpt, iftrue); 2132 if (loop->_safepts != nullptr) { 2133 loop->_safepts->yank(backedge_sfpt); 2134 } 2135 loop->_tail = iftrue; 2136 } 2137 } 2138 2139 2140 #ifdef ASSERT 2141 if (iv_bt == T_INT && 2142 !x->as_Loop()->is_loop_nest_inner_loop() && 2143 StressLongCountedLoop > 0 && 2144 trunc1 == nullptr && 2145 convert_to_long_loop(cmp, phi, loop)) { 2146 return false; 2147 } 2148 #endif 2149 2150 Node* adjusted_limit = limit; 2151 if (phi_incr != nullptr) { 2152 // If compare points directly to the phi we need to adjust 2153 // the compare so that it points to the incr. Limit have 2154 // to be adjusted to keep trip count the same and we 2155 // should avoid int overflow. 2156 // 2157 // i = init; do {} while(i++ < limit); 2158 // is converted to 2159 // i = init; do {} while(++i < limit+1); 2160 // 2161 adjusted_limit = gvn->transform(AddNode::make(limit, stride, iv_bt)); 2162 } 2163 2164 if (includes_limit) { 2165 // The limit check guaranties that 'limit <= (max_jint - stride)' so 2166 // we can convert 'i <= limit' to 'i < limit+1' since stride != 0. 2167 // 2168 Node* one = (stride_con > 0) ? gvn->integercon( 1, iv_bt) : gvn->integercon(-1, iv_bt); 2169 adjusted_limit = gvn->transform(AddNode::make(adjusted_limit, one, iv_bt)); 2170 if (bt == BoolTest::le) 2171 bt = BoolTest::lt; 2172 else if (bt == BoolTest::ge) 2173 bt = BoolTest::gt; 2174 else 2175 ShouldNotReachHere(); 2176 } 2177 set_subtree_ctrl(adjusted_limit, false); 2178 2179 // Build a canonical trip test. 2180 // Clone code, as old values may be in use. 2181 incr = incr->clone(); 2182 incr->set_req(1,phi); 2183 incr->set_req(2,stride); 2184 incr = _igvn.register_new_node_with_optimizer(incr); 2185 set_early_ctrl(incr, false); 2186 _igvn.rehash_node_delayed(phi); 2187 phi->set_req_X( LoopNode::LoopBackControl, incr, &_igvn ); 2188 2189 // If phi type is more restrictive than Int, raise to 2190 // Int to prevent (almost) infinite recursion in igvn 2191 // which can only handle integer types for constants or minint..maxint. 2192 if (!TypeInteger::bottom(iv_bt)->higher_equal(phi->bottom_type())) { 2193 Node* nphi = PhiNode::make(phi->in(0), phi->in(LoopNode::EntryControl), TypeInteger::bottom(iv_bt)); 2194 nphi->set_req(LoopNode::LoopBackControl, phi->in(LoopNode::LoopBackControl)); 2195 nphi = _igvn.register_new_node_with_optimizer(nphi); 2196 set_ctrl(nphi, get_ctrl(phi)); 2197 _igvn.replace_node(phi, nphi); 2198 phi = nphi->as_Phi(); 2199 } 2200 cmp = cmp->clone(); 2201 cmp->set_req(1,incr); 2202 cmp->set_req(2, adjusted_limit); 2203 cmp = _igvn.register_new_node_with_optimizer(cmp); 2204 set_ctrl(cmp, iff->in(0)); 2205 2206 test = test->clone()->as_Bool(); 2207 (*(BoolTest*)&test->_test)._test = bt; 2208 test->set_req(1,cmp); 2209 _igvn.register_new_node_with_optimizer(test); 2210 set_ctrl(test, iff->in(0)); 2211 2212 // Replace the old IfNode with a new LoopEndNode 2213 Node *lex = _igvn.register_new_node_with_optimizer(BaseCountedLoopEndNode::make(iff->in(0), test, cl_prob, iff->as_If()->_fcnt, iv_bt)); 2214 IfNode *le = lex->as_If(); 2215 uint dd = dom_depth(iff); 2216 set_idom(le, le->in(0), dd); // Update dominance for loop exit 2217 set_loop(le, loop); 2218 2219 // Get the loop-exit control 2220 Node *iffalse = iff->as_If()->proj_out(!(iftrue_op == Op_IfTrue)); 2221 2222 // Need to swap loop-exit and loop-back control? 2223 if (iftrue_op == Op_IfFalse) { 2224 Node *ift2=_igvn.register_new_node_with_optimizer(new IfTrueNode (le)); 2225 Node *iff2=_igvn.register_new_node_with_optimizer(new IfFalseNode(le)); 2226 2227 loop->_tail = back_control = ift2; 2228 set_loop(ift2, loop); 2229 set_loop(iff2, get_loop(iffalse)); 2230 2231 // Lazy update of 'get_ctrl' mechanism. 2232 lazy_replace(iffalse, iff2); 2233 lazy_replace(iftrue, ift2); 2234 2235 // Swap names 2236 iffalse = iff2; 2237 iftrue = ift2; 2238 } else { 2239 _igvn.rehash_node_delayed(iffalse); 2240 _igvn.rehash_node_delayed(iftrue); 2241 iffalse->set_req_X( 0, le, &_igvn ); 2242 iftrue ->set_req_X( 0, le, &_igvn ); 2243 } 2244 2245 set_idom(iftrue, le, dd+1); 2246 set_idom(iffalse, le, dd+1); 2247 assert(iff->outcnt() == 0, "should be dead now"); 2248 lazy_replace( iff, le ); // fix 'get_ctrl' 2249 2250 Node* entry_control = init_control; 2251 bool strip_mine_loop = iv_bt == T_INT && 2252 loop->_child == nullptr && 2253 sfpt != nullptr && 2254 !loop->_has_call && 2255 is_deleteable_safept(sfpt); 2256 IdealLoopTree* outer_ilt = nullptr; 2257 if (strip_mine_loop) { 2258 outer_ilt = create_outer_strip_mined_loop(test, cmp, init_control, loop, 2259 cl_prob, le->_fcnt, entry_control, 2260 iffalse); 2261 } 2262 2263 // Now setup a new CountedLoopNode to replace the existing LoopNode 2264 BaseCountedLoopNode *l = BaseCountedLoopNode::make(entry_control, back_control, iv_bt); 2265 l->set_unswitch_count(x->as_Loop()->unswitch_count()); // Preserve 2266 // The following assert is approximately true, and defines the intention 2267 // of can_be_counted_loop. It fails, however, because phase->type 2268 // is not yet initialized for this loop and its parts. 2269 //assert(l->can_be_counted_loop(this), "sanity"); 2270 _igvn.register_new_node_with_optimizer(l); 2271 set_loop(l, loop); 2272 loop->_head = l; 2273 // Fix all data nodes placed at the old loop head. 2274 // Uses the lazy-update mechanism of 'get_ctrl'. 2275 lazy_replace( x, l ); 2276 set_idom(l, entry_control, dom_depth(entry_control) + 1); 2277 2278 if (iv_bt == T_INT && (LoopStripMiningIter == 0 || strip_mine_loop)) { 2279 // Check for immediately preceding SafePoint and remove 2280 if (sfpt != nullptr && (strip_mine_loop || is_deleteable_safept(sfpt))) { 2281 if (strip_mine_loop) { 2282 Node* outer_le = outer_ilt->_tail->in(0); 2283 Node* sfpt_clone = sfpt->clone(); 2284 sfpt_clone->set_req(0, iffalse); 2285 outer_le->set_req(0, sfpt_clone); 2286 2287 Node* polladdr = sfpt_clone->in(TypeFunc::Parms); 2288 if (polladdr != nullptr && polladdr->is_Load()) { 2289 // Polling load should be pinned outside inner loop. 2290 Node* new_polladdr = polladdr->clone(); 2291 new_polladdr->set_req(0, iffalse); 2292 _igvn.register_new_node_with_optimizer(new_polladdr, polladdr); 2293 set_ctrl(new_polladdr, iffalse); 2294 sfpt_clone->set_req(TypeFunc::Parms, new_polladdr); 2295 } 2296 // When this code runs, loop bodies have not yet been populated. 2297 const bool body_populated = false; 2298 register_control(sfpt_clone, outer_ilt, iffalse, body_populated); 2299 set_idom(outer_le, sfpt_clone, dom_depth(sfpt_clone)); 2300 } 2301 lazy_replace(sfpt, sfpt->in(TypeFunc::Control)); 2302 if (loop->_safepts != nullptr) { 2303 loop->_safepts->yank(sfpt); 2304 } 2305 } 2306 } 2307 2308 #ifdef ASSERT 2309 assert(l->is_valid_counted_loop(iv_bt), "counted loop shape is messed up"); 2310 assert(l == loop->_head && l->phi() == phi && l->loopexit_or_null() == lex, "" ); 2311 #endif 2312 #ifndef PRODUCT 2313 if (TraceLoopOpts) { 2314 tty->print("Counted "); 2315 loop->dump_head(); 2316 } 2317 #endif 2318 2319 C->print_method(PHASE_AFTER_CLOOPS, 3, l); 2320 2321 // Capture bounds of the loop in the induction variable Phi before 2322 // subsequent transformation (iteration splitting) obscures the 2323 // bounds 2324 l->phi()->as_Phi()->set_type(l->phi()->Value(&_igvn)); 2325 2326 if (strip_mine_loop) { 2327 l->mark_strip_mined(); 2328 l->verify_strip_mined(1); 2329 outer_ilt->_head->as_Loop()->verify_strip_mined(1); 2330 loop = outer_ilt; 2331 } 2332 2333 #ifndef PRODUCT 2334 if (x->as_Loop()->is_loop_nest_inner_loop() && iv_bt == T_LONG) { 2335 Atomic::inc(&_long_loop_counted_loops); 2336 } 2337 #endif 2338 if (iv_bt == T_LONG && x->as_Loop()->is_loop_nest_outer_loop()) { 2339 l->mark_loop_nest_outer_loop(); 2340 } 2341 2342 return true; 2343 } 2344 2345 // Check if there is a dominating loop limit check of the form 'init < limit' starting at the loop entry. 2346 // If there is one, then we do not need to create an additional Loop Limit Check Predicate. 2347 bool PhaseIdealLoop::has_dominating_loop_limit_check(Node* init_trip, Node* limit, const jlong stride_con, 2348 const BasicType iv_bt, Node* loop_entry) { 2349 // Eagerly call transform() on the Cmp and Bool node to common them up if possible. This is required in order to 2350 // successfully find a dominated test with the If node below. 2351 Node* cmp_limit; 2352 Node* bol; 2353 if (stride_con > 0) { 2354 cmp_limit = _igvn.transform(CmpNode::make(init_trip, limit, iv_bt)); 2355 bol = _igvn.transform(new BoolNode(cmp_limit, BoolTest::lt)); 2356 } else { 2357 cmp_limit = _igvn.transform(CmpNode::make(init_trip, limit, iv_bt)); 2358 bol = _igvn.transform(new BoolNode(cmp_limit, BoolTest::gt)); 2359 } 2360 2361 // Check if there is already a dominating init < limit check. If so, we do not need a Loop Limit Check Predicate. 2362 IfNode* iff = new IfNode(loop_entry, bol, PROB_MIN, COUNT_UNKNOWN); 2363 // Also add fake IfProj nodes in order to call transform() on the newly created IfNode. 2364 IfFalseNode* if_false = new IfFalseNode(iff); 2365 IfTrueNode* if_true = new IfTrueNode(iff); 2366 Node* dominated_iff = _igvn.transform(iff); 2367 // ConI node? Found dominating test (IfNode::dominated_by() returns a ConI node). 2368 const bool found_dominating_test = dominated_iff != nullptr && dominated_iff->is_ConI(); 2369 2370 // Kill the If with its projections again in the next IGVN round by cutting it off from the graph. 2371 _igvn.replace_input_of(iff, 0, C->top()); 2372 _igvn.replace_input_of(iff, 1, C->top()); 2373 return found_dominating_test; 2374 } 2375 2376 //----------------------exact_limit------------------------------------------- 2377 Node* PhaseIdealLoop::exact_limit( IdealLoopTree *loop ) { 2378 assert(loop->_head->is_CountedLoop(), ""); 2379 CountedLoopNode *cl = loop->_head->as_CountedLoop(); 2380 assert(cl->is_valid_counted_loop(T_INT), ""); 2381 2382 if (cl->stride_con() == 1 || 2383 cl->stride_con() == -1 || 2384 cl->limit()->Opcode() == Op_LoopLimit) { 2385 // Old code has exact limit (it could be incorrect in case of int overflow). 2386 // Loop limit is exact with stride == 1. And loop may already have exact limit. 2387 return cl->limit(); 2388 } 2389 Node *limit = nullptr; 2390 #ifdef ASSERT 2391 BoolTest::mask bt = cl->loopexit()->test_trip(); 2392 assert(bt == BoolTest::lt || bt == BoolTest::gt, "canonical test is expected"); 2393 #endif 2394 if (cl->has_exact_trip_count()) { 2395 // Simple case: loop has constant boundaries. 2396 // Use jlongs to avoid integer overflow. 2397 int stride_con = cl->stride_con(); 2398 jlong init_con = cl->init_trip()->get_int(); 2399 jlong limit_con = cl->limit()->get_int(); 2400 julong trip_cnt = cl->trip_count(); 2401 jlong final_con = init_con + trip_cnt*stride_con; 2402 int final_int = (int)final_con; 2403 // The final value should be in integer range since the loop 2404 // is counted and the limit was checked for overflow. 2405 assert(final_con == (jlong)final_int, "final value should be integer"); 2406 limit = _igvn.intcon(final_int); 2407 } else { 2408 // Create new LoopLimit node to get exact limit (final iv value). 2409 limit = new LoopLimitNode(C, cl->init_trip(), cl->limit(), cl->stride()); 2410 register_new_node(limit, cl->in(LoopNode::EntryControl)); 2411 } 2412 assert(limit != nullptr, "sanity"); 2413 return limit; 2414 } 2415 2416 //------------------------------Ideal------------------------------------------ 2417 // Return a node which is more "ideal" than the current node. 2418 // Attempt to convert into a counted-loop. 2419 Node *LoopNode::Ideal(PhaseGVN *phase, bool can_reshape) { 2420 if (!can_be_counted_loop(phase) && !is_OuterStripMinedLoop()) { 2421 phase->C->set_major_progress(); 2422 } 2423 return RegionNode::Ideal(phase, can_reshape); 2424 } 2425 2426 #ifdef ASSERT 2427 void LoopNode::verify_strip_mined(int expect_skeleton) const { 2428 const OuterStripMinedLoopNode* outer = nullptr; 2429 const CountedLoopNode* inner = nullptr; 2430 if (is_strip_mined()) { 2431 if (!is_valid_counted_loop(T_INT)) { 2432 return; // Skip malformed counted loop 2433 } 2434 assert(is_CountedLoop(), "no Loop should be marked strip mined"); 2435 inner = as_CountedLoop(); 2436 outer = inner->in(LoopNode::EntryControl)->as_OuterStripMinedLoop(); 2437 } else if (is_OuterStripMinedLoop()) { 2438 outer = this->as_OuterStripMinedLoop(); 2439 inner = outer->unique_ctrl_out()->as_CountedLoop(); 2440 assert(inner->is_valid_counted_loop(T_INT) && inner->is_strip_mined(), "OuterStripMinedLoop should have been removed"); 2441 assert(!is_strip_mined(), "outer loop shouldn't be marked strip mined"); 2442 } 2443 if (inner != nullptr || outer != nullptr) { 2444 assert(inner != nullptr && outer != nullptr, "missing loop in strip mined nest"); 2445 Node* outer_tail = outer->in(LoopNode::LoopBackControl); 2446 Node* outer_le = outer_tail->in(0); 2447 assert(outer_le->Opcode() == Op_OuterStripMinedLoopEnd, "tail of outer loop should be an If"); 2448 Node* sfpt = outer_le->in(0); 2449 assert(sfpt->Opcode() == Op_SafePoint, "where's the safepoint?"); 2450 Node* inner_out = sfpt->in(0); 2451 CountedLoopEndNode* cle = inner_out->in(0)->as_CountedLoopEnd(); 2452 assert(cle == inner->loopexit_or_null(), "mismatch"); 2453 bool has_skeleton = outer_le->in(1)->bottom_type()->singleton() && outer_le->in(1)->bottom_type()->is_int()->get_con() == 0; 2454 if (has_skeleton) { 2455 assert(expect_skeleton == 1 || expect_skeleton == -1, "unexpected skeleton node"); 2456 assert(outer->outcnt() == 2, "only control nodes"); 2457 } else { 2458 assert(expect_skeleton == 0 || expect_skeleton == -1, "no skeleton node?"); 2459 uint phis = 0; 2460 uint be_loads = 0; 2461 Node* be = inner->in(LoopNode::LoopBackControl); 2462 for (DUIterator_Fast imax, i = inner->fast_outs(imax); i < imax; i++) { 2463 Node* u = inner->fast_out(i); 2464 if (u->is_Phi()) { 2465 phis++; 2466 for (DUIterator_Fast jmax, j = be->fast_outs(jmax); j < jmax; j++) { 2467 Node* n = be->fast_out(j); 2468 if (n->is_Load()) { 2469 assert(n->in(0) == be || n->find_prec_edge(be) > 0, "should be on the backedge"); 2470 do { 2471 n = n->raw_out(0); 2472 } while (!n->is_Phi()); 2473 if (n == u) { 2474 be_loads++; 2475 break; 2476 } 2477 } 2478 } 2479 } 2480 } 2481 assert(be_loads <= phis, "wrong number phis that depends on a pinned load"); 2482 for (DUIterator_Fast imax, i = outer->fast_outs(imax); i < imax; i++) { 2483 Node* u = outer->fast_out(i); 2484 assert(u == outer || u == inner || u->is_Phi(), "nothing between inner and outer loop"); 2485 } 2486 uint stores = 0; 2487 for (DUIterator_Fast imax, i = inner_out->fast_outs(imax); i < imax; i++) { 2488 Node* u = inner_out->fast_out(i); 2489 if (u->is_Store()) { 2490 stores++; 2491 } 2492 } 2493 // Late optimization of loads on backedge can cause Phi of outer loop to be eliminated but Phi of inner loop is 2494 // not guaranteed to be optimized out. 2495 assert(outer->outcnt() >= phis + 2 - be_loads && outer->outcnt() <= phis + 2 + stores + 1, "only phis"); 2496 } 2497 assert(sfpt->outcnt() == 1, "no data node"); 2498 assert(outer_tail->outcnt() == 1 || !has_skeleton, "no data node"); 2499 } 2500 } 2501 #endif 2502 2503 //============================================================================= 2504 //------------------------------Ideal------------------------------------------ 2505 // Return a node which is more "ideal" than the current node. 2506 // Attempt to convert into a counted-loop. 2507 Node *CountedLoopNode::Ideal(PhaseGVN *phase, bool can_reshape) { 2508 return RegionNode::Ideal(phase, can_reshape); 2509 } 2510 2511 //------------------------------dump_spec-------------------------------------- 2512 // Dump special per-node info 2513 #ifndef PRODUCT 2514 void CountedLoopNode::dump_spec(outputStream *st) const { 2515 LoopNode::dump_spec(st); 2516 if (stride_is_con()) { 2517 st->print("stride: %d ",stride_con()); 2518 } 2519 if (is_pre_loop ()) st->print("pre of N%d" , _main_idx); 2520 if (is_main_loop()) st->print("main of N%d", _idx); 2521 if (is_post_loop()) st->print("post of N%d", _main_idx); 2522 if (is_strip_mined()) st->print(" strip mined"); 2523 if (is_multiversion_fast_loop()) { st->print(" multiversion_fast"); } 2524 if (is_multiversion_slow_loop()) { st->print(" multiversion_slow"); } 2525 if (is_multiversion_delayed_slow_loop()) { st->print(" multiversion_delayed_slow"); } 2526 } 2527 #endif 2528 2529 //============================================================================= 2530 jlong BaseCountedLoopEndNode::stride_con() const { 2531 return stride()->bottom_type()->is_integer(bt())->get_con_as_long(bt()); 2532 } 2533 2534 2535 BaseCountedLoopEndNode* BaseCountedLoopEndNode::make(Node* control, Node* test, float prob, float cnt, BasicType bt) { 2536 if (bt == T_INT) { 2537 return new CountedLoopEndNode(control, test, prob, cnt); 2538 } 2539 assert(bt == T_LONG, "unsupported"); 2540 return new LongCountedLoopEndNode(control, test, prob, cnt); 2541 } 2542 2543 //============================================================================= 2544 //------------------------------Value----------------------------------------- 2545 const Type* LoopLimitNode::Value(PhaseGVN* phase) const { 2546 const Type* init_t = phase->type(in(Init)); 2547 const Type* limit_t = phase->type(in(Limit)); 2548 const Type* stride_t = phase->type(in(Stride)); 2549 // Either input is TOP ==> the result is TOP 2550 if (init_t == Type::TOP) return Type::TOP; 2551 if (limit_t == Type::TOP) return Type::TOP; 2552 if (stride_t == Type::TOP) return Type::TOP; 2553 2554 int stride_con = stride_t->is_int()->get_con(); 2555 if (stride_con == 1) 2556 return bottom_type(); // Identity 2557 2558 if (init_t->is_int()->is_con() && limit_t->is_int()->is_con()) { 2559 // Use jlongs to avoid integer overflow. 2560 jlong init_con = init_t->is_int()->get_con(); 2561 jlong limit_con = limit_t->is_int()->get_con(); 2562 int stride_m = stride_con - (stride_con > 0 ? 1 : -1); 2563 jlong trip_count = (limit_con - init_con + stride_m)/stride_con; 2564 jlong final_con = init_con + stride_con*trip_count; 2565 int final_int = (int)final_con; 2566 // The final value should be in integer range in almost all cases, 2567 // since the loop is counted and the limit was checked for overflow. 2568 // There some exceptions, for example: 2569 // - During CCP, there might be a temporary overflow from PhiNodes, see JDK-8309266. 2570 // - During PhaseIdealLoop::split_thru_phi, the LoopLimitNode floats possibly far above 2571 // the loop and its predicates, and we might get constants on one side of the phi that 2572 // would lead to overflows. Such a code path would never lead us to enter the loop 2573 // because of the loop limit overflow check that happens after the LoopLimitNode 2574 // computation with overflow, but before we enter the loop, see JDK-8335747. 2575 if (final_con == (jlong)final_int) { 2576 return TypeInt::make(final_int); 2577 } else { 2578 return bottom_type(); 2579 } 2580 } 2581 2582 return bottom_type(); // TypeInt::INT 2583 } 2584 2585 //------------------------------Ideal------------------------------------------ 2586 // Return a node which is more "ideal" than the current node. 2587 Node *LoopLimitNode::Ideal(PhaseGVN *phase, bool can_reshape) { 2588 if (phase->type(in(Init)) == Type::TOP || 2589 phase->type(in(Limit)) == Type::TOP || 2590 phase->type(in(Stride)) == Type::TOP) 2591 return nullptr; // Dead 2592 2593 int stride_con = phase->type(in(Stride))->is_int()->get_con(); 2594 if (stride_con == 1) 2595 return nullptr; // Identity 2596 2597 // Delay following optimizations until all loop optimizations 2598 // done to keep Ideal graph simple. 2599 if (!can_reshape || !phase->C->post_loop_opts_phase()) { 2600 phase->C->record_for_post_loop_opts_igvn(this); 2601 return nullptr; 2602 } 2603 2604 const TypeInt* init_t = phase->type(in(Init) )->is_int(); 2605 const TypeInt* limit_t = phase->type(in(Limit))->is_int(); 2606 jlong stride_p; 2607 jlong lim, ini; 2608 julong max; 2609 if (stride_con > 0) { 2610 stride_p = stride_con; 2611 lim = limit_t->_hi; 2612 ini = init_t->_lo; 2613 max = (julong)max_jint; 2614 } else { 2615 stride_p = -(jlong)stride_con; 2616 lim = init_t->_hi; 2617 ini = limit_t->_lo; 2618 max = (julong)(juint)min_jint; // double cast to get 0x0000000080000000, not 0xffffffff80000000 2619 } 2620 julong range = lim - ini + stride_p; 2621 if (range <= max) { 2622 // Convert to integer expression if it is not overflow. 2623 Node* stride_m = phase->intcon(stride_con - (stride_con > 0 ? 1 : -1)); 2624 Node *range = phase->transform(new SubINode(in(Limit), in(Init))); 2625 Node *bias = phase->transform(new AddINode(range, stride_m)); 2626 Node *trip = phase->transform(new DivINode(nullptr, bias, in(Stride))); 2627 Node *span = phase->transform(new MulINode(trip, in(Stride))); 2628 return new AddINode(span, in(Init)); // exact limit 2629 } 2630 2631 if (is_power_of_2(stride_p) || // divisor is 2^n 2632 !Matcher::has_match_rule(Op_LoopLimit)) { // or no specialized Mach node? 2633 // Convert to long expression to avoid integer overflow 2634 // and let igvn optimizer convert this division. 2635 // 2636 Node* init = phase->transform( new ConvI2LNode(in(Init))); 2637 Node* limit = phase->transform( new ConvI2LNode(in(Limit))); 2638 Node* stride = phase->longcon(stride_con); 2639 Node* stride_m = phase->longcon(stride_con - (stride_con > 0 ? 1 : -1)); 2640 2641 Node *range = phase->transform(new SubLNode(limit, init)); 2642 Node *bias = phase->transform(new AddLNode(range, stride_m)); 2643 Node *span; 2644 if (stride_con > 0 && is_power_of_2(stride_p)) { 2645 // bias >= 0 if stride >0, so if stride is 2^n we can use &(-stride) 2646 // and avoid generating rounding for division. Zero trip guard should 2647 // guarantee that init < limit but sometimes the guard is missing and 2648 // we can get situation when init > limit. Note, for the empty loop 2649 // optimization zero trip guard is generated explicitly which leaves 2650 // only RCE predicate where exact limit is used and the predicate 2651 // will simply fail forcing recompilation. 2652 Node* neg_stride = phase->longcon(-stride_con); 2653 span = phase->transform(new AndLNode(bias, neg_stride)); 2654 } else { 2655 Node *trip = phase->transform(new DivLNode(nullptr, bias, stride)); 2656 span = phase->transform(new MulLNode(trip, stride)); 2657 } 2658 // Convert back to int 2659 Node *span_int = phase->transform(new ConvL2INode(span)); 2660 return new AddINode(span_int, in(Init)); // exact limit 2661 } 2662 2663 return nullptr; // No progress 2664 } 2665 2666 //------------------------------Identity--------------------------------------- 2667 // If stride == 1 return limit node. 2668 Node* LoopLimitNode::Identity(PhaseGVN* phase) { 2669 int stride_con = phase->type(in(Stride))->is_int()->get_con(); 2670 if (stride_con == 1 || stride_con == -1) 2671 return in(Limit); 2672 return this; 2673 } 2674 2675 //============================================================================= 2676 //----------------------match_incr_with_optional_truncation-------------------- 2677 // Match increment with optional truncation: 2678 // CHAR: (i+1)&0x7fff, BYTE: ((i+1)<<8)>>8, or SHORT: ((i+1)<<16)>>16 2679 // Return null for failure. Success returns the increment node. 2680 Node* CountedLoopNode::match_incr_with_optional_truncation(Node* expr, Node** trunc1, Node** trunc2, 2681 const TypeInteger** trunc_type, 2682 BasicType bt) { 2683 // Quick cutouts: 2684 if (expr == nullptr || expr->req() != 3) return nullptr; 2685 2686 Node *t1 = nullptr; 2687 Node *t2 = nullptr; 2688 Node* n1 = expr; 2689 int n1op = n1->Opcode(); 2690 const TypeInteger* trunc_t = TypeInteger::bottom(bt); 2691 2692 if (bt == T_INT) { 2693 // Try to strip (n1 & M) or (n1 << N >> N) from n1. 2694 if (n1op == Op_AndI && 2695 n1->in(2)->is_Con() && 2696 n1->in(2)->bottom_type()->is_int()->get_con() == 0x7fff) { 2697 // %%% This check should match any mask of 2**K-1. 2698 t1 = n1; 2699 n1 = t1->in(1); 2700 n1op = n1->Opcode(); 2701 trunc_t = TypeInt::CHAR; 2702 } else if (n1op == Op_RShiftI && 2703 n1->in(1) != nullptr && 2704 n1->in(1)->Opcode() == Op_LShiftI && 2705 n1->in(2) == n1->in(1)->in(2) && 2706 n1->in(2)->is_Con()) { 2707 jint shift = n1->in(2)->bottom_type()->is_int()->get_con(); 2708 // %%% This check should match any shift in [1..31]. 2709 if (shift == 16 || shift == 8) { 2710 t1 = n1; 2711 t2 = t1->in(1); 2712 n1 = t2->in(1); 2713 n1op = n1->Opcode(); 2714 if (shift == 16) { 2715 trunc_t = TypeInt::SHORT; 2716 } else if (shift == 8) { 2717 trunc_t = TypeInt::BYTE; 2718 } 2719 } 2720 } 2721 } 2722 2723 // If (maybe after stripping) it is an AddI, we won: 2724 if (n1op == Op_Add(bt)) { 2725 *trunc1 = t1; 2726 *trunc2 = t2; 2727 *trunc_type = trunc_t; 2728 return n1; 2729 } 2730 2731 // failed 2732 return nullptr; 2733 } 2734 2735 IfNode* CountedLoopNode::find_multiversion_if_from_multiversion_fast_main_loop() { 2736 assert(is_main_loop() && is_multiversion_fast_loop(), "must be multiversion fast main loop"); 2737 CountedLoopEndNode* pre_end = find_pre_loop_end(); 2738 if (pre_end == nullptr) { return nullptr; } 2739 Node* pre_entry = pre_end->loopnode()->in(LoopNode::EntryControl); 2740 const Predicates predicates(pre_entry); 2741 IfTrueNode* before_predicates = predicates.entry()->isa_IfTrue(); 2742 if (before_predicates != nullptr && 2743 before_predicates->in(0)->in(1)->is_OpaqueMultiversioning()) { 2744 return before_predicates->in(0)->as_If(); 2745 } 2746 return nullptr; 2747 } 2748 2749 LoopNode* CountedLoopNode::skip_strip_mined(int expect_skeleton) { 2750 if (is_strip_mined() && in(EntryControl) != nullptr && in(EntryControl)->is_OuterStripMinedLoop()) { 2751 verify_strip_mined(expect_skeleton); 2752 return in(EntryControl)->as_Loop(); 2753 } 2754 return this; 2755 } 2756 2757 OuterStripMinedLoopNode* CountedLoopNode::outer_loop() const { 2758 assert(is_strip_mined(), "not a strip mined loop"); 2759 Node* c = in(EntryControl); 2760 if (c == nullptr || c->is_top() || !c->is_OuterStripMinedLoop()) { 2761 return nullptr; 2762 } 2763 return c->as_OuterStripMinedLoop(); 2764 } 2765 2766 IfTrueNode* OuterStripMinedLoopNode::outer_loop_tail() const { 2767 Node* c = in(LoopBackControl); 2768 if (c == nullptr || c->is_top()) { 2769 return nullptr; 2770 } 2771 return c->as_IfTrue(); 2772 } 2773 2774 IfTrueNode* CountedLoopNode::outer_loop_tail() const { 2775 LoopNode* l = outer_loop(); 2776 if (l == nullptr) { 2777 return nullptr; 2778 } 2779 return l->outer_loop_tail(); 2780 } 2781 2782 OuterStripMinedLoopEndNode* OuterStripMinedLoopNode::outer_loop_end() const { 2783 IfTrueNode* proj = outer_loop_tail(); 2784 if (proj == nullptr) { 2785 return nullptr; 2786 } 2787 Node* c = proj->in(0); 2788 if (c == nullptr || c->is_top() || c->outcnt() != 2) { 2789 return nullptr; 2790 } 2791 return c->as_OuterStripMinedLoopEnd(); 2792 } 2793 2794 OuterStripMinedLoopEndNode* CountedLoopNode::outer_loop_end() const { 2795 LoopNode* l = outer_loop(); 2796 if (l == nullptr) { 2797 return nullptr; 2798 } 2799 return l->outer_loop_end(); 2800 } 2801 2802 IfFalseNode* OuterStripMinedLoopNode::outer_loop_exit() const { 2803 IfNode* le = outer_loop_end(); 2804 if (le == nullptr) { 2805 return nullptr; 2806 } 2807 Node* c = le->proj_out_or_null(false); 2808 if (c == nullptr) { 2809 return nullptr; 2810 } 2811 return c->as_IfFalse(); 2812 } 2813 2814 IfFalseNode* CountedLoopNode::outer_loop_exit() const { 2815 LoopNode* l = outer_loop(); 2816 if (l == nullptr) { 2817 return nullptr; 2818 } 2819 return l->outer_loop_exit(); 2820 } 2821 2822 SafePointNode* OuterStripMinedLoopNode::outer_safepoint() const { 2823 IfNode* le = outer_loop_end(); 2824 if (le == nullptr) { 2825 return nullptr; 2826 } 2827 Node* c = le->in(0); 2828 if (c == nullptr || c->is_top()) { 2829 return nullptr; 2830 } 2831 assert(c->Opcode() == Op_SafePoint, "broken outer loop"); 2832 return c->as_SafePoint(); 2833 } 2834 2835 SafePointNode* CountedLoopNode::outer_safepoint() const { 2836 LoopNode* l = outer_loop(); 2837 if (l == nullptr) { 2838 return nullptr; 2839 } 2840 return l->outer_safepoint(); 2841 } 2842 2843 Node* CountedLoopNode::skip_assertion_predicates_with_halt() { 2844 Node* ctrl = in(LoopNode::EntryControl); 2845 if (ctrl == nullptr) { 2846 // Dying loop. 2847 return nullptr; 2848 } 2849 if (is_main_loop()) { 2850 ctrl = skip_strip_mined()->in(LoopNode::EntryControl); 2851 } 2852 if (is_main_loop() || is_post_loop()) { 2853 AssertionPredicates assertion_predicates(ctrl); 2854 return assertion_predicates.entry(); 2855 } 2856 return ctrl; 2857 } 2858 2859 2860 int CountedLoopNode::stride_con() const { 2861 CountedLoopEndNode* cle = loopexit_or_null(); 2862 return cle != nullptr ? cle->stride_con() : 0; 2863 } 2864 2865 BaseCountedLoopNode* BaseCountedLoopNode::make(Node* entry, Node* backedge, BasicType bt) { 2866 if (bt == T_INT) { 2867 return new CountedLoopNode(entry, backedge); 2868 } 2869 assert(bt == T_LONG, "unsupported"); 2870 return new LongCountedLoopNode(entry, backedge); 2871 } 2872 2873 void OuterStripMinedLoopNode::fix_sunk_stores(CountedLoopEndNode* inner_cle, LoopNode* inner_cl, PhaseIterGVN* igvn, 2874 PhaseIdealLoop* iloop) { 2875 Node* cle_out = inner_cle->proj_out(false); 2876 Node* cle_tail = inner_cle->proj_out(true); 2877 if (cle_out->outcnt() > 1) { 2878 // Look for chains of stores that were sunk 2879 // out of the inner loop and are in the outer loop 2880 for (DUIterator_Fast imax, i = cle_out->fast_outs(imax); i < imax; i++) { 2881 Node* u = cle_out->fast_out(i); 2882 if (u->is_Store()) { 2883 int alias_idx = igvn->C->get_alias_index(u->adr_type()); 2884 Node* first = u; 2885 for (;;) { 2886 Node* next = first->in(MemNode::Memory); 2887 if (!next->is_Store() || next->in(0) != cle_out) { 2888 break; 2889 } 2890 assert(igvn->C->get_alias_index(next->adr_type()) == alias_idx, ""); 2891 first = next; 2892 } 2893 Node* last = u; 2894 for (;;) { 2895 Node* next = nullptr; 2896 for (DUIterator_Fast jmax, j = last->fast_outs(jmax); j < jmax; j++) { 2897 Node* uu = last->fast_out(j); 2898 if (uu->is_Store() && uu->in(0) == cle_out) { 2899 assert(next == nullptr, "only one in the outer loop"); 2900 next = uu; 2901 assert(igvn->C->get_alias_index(next->adr_type()) == alias_idx, ""); 2902 } 2903 } 2904 if (next == nullptr) { 2905 break; 2906 } 2907 last = next; 2908 } 2909 Node* phi = nullptr; 2910 for (DUIterator_Fast jmax, j = inner_cl->fast_outs(jmax); j < jmax; j++) { 2911 Node* uu = inner_cl->fast_out(j); 2912 if (uu->is_Phi()) { 2913 Node* be = uu->in(LoopNode::LoopBackControl); 2914 if (be->is_Store() && be->in(0) == inner_cl->in(LoopNode::LoopBackControl)) { 2915 assert(igvn->C->get_alias_index(uu->adr_type()) != alias_idx && igvn->C->get_alias_index(uu->adr_type()) != Compile::AliasIdxBot, "unexpected store"); 2916 } 2917 if (be == last || be == first->in(MemNode::Memory)) { 2918 assert(igvn->C->get_alias_index(uu->adr_type()) == alias_idx || igvn->C->get_alias_index(uu->adr_type()) == Compile::AliasIdxBot, "unexpected alias"); 2919 assert(phi == nullptr, "only one phi"); 2920 phi = uu; 2921 } 2922 } 2923 } 2924 #ifdef ASSERT 2925 for (DUIterator_Fast jmax, j = inner_cl->fast_outs(jmax); j < jmax; j++) { 2926 Node* uu = inner_cl->fast_out(j); 2927 if (uu->is_memory_phi()) { 2928 if (uu->adr_type() == igvn->C->get_adr_type(igvn->C->get_alias_index(u->adr_type()))) { 2929 assert(phi == uu, "what's that phi?"); 2930 } else if (uu->adr_type() == TypePtr::BOTTOM) { 2931 Node* n = uu->in(LoopNode::LoopBackControl); 2932 uint limit = igvn->C->live_nodes(); 2933 uint i = 0; 2934 while (n != uu) { 2935 i++; 2936 assert(i < limit, "infinite loop"); 2937 if (n->is_Proj()) { 2938 n = n->in(0); 2939 } else if (n->is_SafePoint() || n->is_MemBar()) { 2940 n = n->in(TypeFunc::Memory); 2941 } else if (n->is_Phi()) { 2942 n = n->in(1); 2943 } else if (n->is_MergeMem()) { 2944 n = n->as_MergeMem()->memory_at(igvn->C->get_alias_index(u->adr_type())); 2945 } else if (n->is_Store() || n->is_LoadStore() || n->is_ClearArray()) { 2946 n = n->in(MemNode::Memory); 2947 } else { 2948 n->dump(); 2949 ShouldNotReachHere(); 2950 } 2951 } 2952 } 2953 } 2954 } 2955 #endif 2956 if (phi == nullptr) { 2957 // If an entire chains was sunk, the 2958 // inner loop has no phi for that memory 2959 // slice, create one for the outer loop 2960 phi = PhiNode::make(inner_cl, first->in(MemNode::Memory), Type::MEMORY, 2961 igvn->C->get_adr_type(igvn->C->get_alias_index(u->adr_type()))); 2962 phi->set_req(LoopNode::LoopBackControl, last); 2963 phi = register_new_node(phi, inner_cl, igvn, iloop); 2964 igvn->replace_input_of(first, MemNode::Memory, phi); 2965 } else { 2966 // Or fix the outer loop fix to include 2967 // that chain of stores. 2968 Node* be = phi->in(LoopNode::LoopBackControl); 2969 assert(!(be->is_Store() && be->in(0) == inner_cl->in(LoopNode::LoopBackControl)), "store on the backedge + sunk stores: unsupported"); 2970 if (be == first->in(MemNode::Memory)) { 2971 if (be == phi->in(LoopNode::LoopBackControl)) { 2972 igvn->replace_input_of(phi, LoopNode::LoopBackControl, last); 2973 } else { 2974 igvn->replace_input_of(be, MemNode::Memory, last); 2975 } 2976 } else { 2977 #ifdef ASSERT 2978 if (be == phi->in(LoopNode::LoopBackControl)) { 2979 assert(phi->in(LoopNode::LoopBackControl) == last, ""); 2980 } else { 2981 assert(be->in(MemNode::Memory) == last, ""); 2982 } 2983 #endif 2984 } 2985 } 2986 } 2987 } 2988 } 2989 } 2990 2991 void OuterStripMinedLoopNode::adjust_strip_mined_loop(PhaseIterGVN* igvn) { 2992 // Look for the outer & inner strip mined loop, reduce number of 2993 // iterations of the inner loop, set exit condition of outer loop, 2994 // construct required phi nodes for outer loop. 2995 CountedLoopNode* inner_cl = unique_ctrl_out()->as_CountedLoop(); 2996 assert(inner_cl->is_strip_mined(), "inner loop should be strip mined"); 2997 if (LoopStripMiningIter == 0) { 2998 remove_outer_loop_and_safepoint(igvn); 2999 return; 3000 } 3001 if (LoopStripMiningIter == 1) { 3002 transform_to_counted_loop(igvn, nullptr); 3003 return; 3004 } 3005 Node* inner_iv_phi = inner_cl->phi(); 3006 if (inner_iv_phi == nullptr) { 3007 IfNode* outer_le = outer_loop_end(); 3008 Node* iff = igvn->transform(new IfNode(outer_le->in(0), outer_le->in(1), outer_le->_prob, outer_le->_fcnt)); 3009 igvn->replace_node(outer_le, iff); 3010 inner_cl->clear_strip_mined(); 3011 return; 3012 } 3013 CountedLoopEndNode* inner_cle = inner_cl->loopexit(); 3014 3015 int stride = inner_cl->stride_con(); 3016 // For a min int stride, LoopStripMiningIter * stride overflows the int range for all values of LoopStripMiningIter 3017 // except 0 or 1. Those values are handled early on in this method and causes the method to return. So for a min int 3018 // stride, the method is guaranteed to return at the next check below. 3019 jlong scaled_iters_long = ((jlong)LoopStripMiningIter) * ABS((jlong)stride); 3020 int scaled_iters = (int)scaled_iters_long; 3021 if ((jlong)scaled_iters != scaled_iters_long) { 3022 // Remove outer loop and safepoint (too few iterations) 3023 remove_outer_loop_and_safepoint(igvn); 3024 return; 3025 } 3026 jlong short_scaled_iters = LoopStripMiningIterShortLoop * ABS(stride); 3027 const TypeInt* inner_iv_t = igvn->type(inner_iv_phi)->is_int(); 3028 jlong iter_estimate = (jlong)inner_iv_t->_hi - (jlong)inner_iv_t->_lo; 3029 assert(iter_estimate > 0, "broken"); 3030 if (iter_estimate <= short_scaled_iters) { 3031 // Remove outer loop and safepoint: loop executes less than LoopStripMiningIterShortLoop 3032 remove_outer_loop_and_safepoint(igvn); 3033 return; 3034 } 3035 if (iter_estimate <= scaled_iters_long) { 3036 // We would only go through one iteration of 3037 // the outer loop: drop the outer loop but 3038 // keep the safepoint so we don't run for 3039 // too long without a safepoint 3040 IfNode* outer_le = outer_loop_end(); 3041 Node* iff = igvn->transform(new IfNode(outer_le->in(0), outer_le->in(1), outer_le->_prob, outer_le->_fcnt)); 3042 igvn->replace_node(outer_le, iff); 3043 inner_cl->clear_strip_mined(); 3044 return; 3045 } 3046 3047 Node* cle_tail = inner_cle->proj_out(true); 3048 ResourceMark rm; 3049 Node_List old_new; 3050 if (cle_tail->outcnt() > 1) { 3051 // Look for nodes on backedge of inner loop and clone them 3052 Unique_Node_List backedge_nodes; 3053 for (DUIterator_Fast imax, i = cle_tail->fast_outs(imax); i < imax; i++) { 3054 Node* u = cle_tail->fast_out(i); 3055 if (u != inner_cl) { 3056 assert(!u->is_CFG(), "control flow on the backedge?"); 3057 backedge_nodes.push(u); 3058 } 3059 } 3060 uint last = igvn->C->unique(); 3061 for (uint next = 0; next < backedge_nodes.size(); next++) { 3062 Node* n = backedge_nodes.at(next); 3063 old_new.map(n->_idx, n->clone()); 3064 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 3065 Node* u = n->fast_out(i); 3066 assert(!u->is_CFG(), "broken"); 3067 if (u->_idx >= last) { 3068 continue; 3069 } 3070 if (!u->is_Phi()) { 3071 backedge_nodes.push(u); 3072 } else { 3073 assert(u->in(0) == inner_cl, "strange phi on the backedge"); 3074 } 3075 } 3076 } 3077 // Put the clones on the outer loop backedge 3078 Node* le_tail = outer_loop_tail(); 3079 for (uint next = 0; next < backedge_nodes.size(); next++) { 3080 Node *n = old_new[backedge_nodes.at(next)->_idx]; 3081 for (uint i = 1; i < n->req(); i++) { 3082 if (n->in(i) != nullptr && old_new[n->in(i)->_idx] != nullptr) { 3083 n->set_req(i, old_new[n->in(i)->_idx]); 3084 } 3085 } 3086 if (n->in(0) != nullptr && n->in(0) == cle_tail) { 3087 n->set_req(0, le_tail); 3088 } 3089 igvn->register_new_node_with_optimizer(n); 3090 } 3091 } 3092 3093 Node* iv_phi = nullptr; 3094 // Make a clone of each phi in the inner loop 3095 // for the outer loop 3096 for (uint i = 0; i < inner_cl->outcnt(); i++) { 3097 Node* u = inner_cl->raw_out(i); 3098 if (u->is_Phi()) { 3099 assert(u->in(0) == inner_cl, "inconsistent"); 3100 Node* phi = u->clone(); 3101 phi->set_req(0, this); 3102 Node* be = old_new[phi->in(LoopNode::LoopBackControl)->_idx]; 3103 if (be != nullptr) { 3104 phi->set_req(LoopNode::LoopBackControl, be); 3105 } 3106 phi = igvn->transform(phi); 3107 igvn->replace_input_of(u, LoopNode::EntryControl, phi); 3108 if (u == inner_iv_phi) { 3109 iv_phi = phi; 3110 } 3111 } 3112 } 3113 3114 if (iv_phi != nullptr) { 3115 // Now adjust the inner loop's exit condition 3116 Node* limit = inner_cl->limit(); 3117 // If limit < init for stride > 0 (or limit > init for stride < 0), 3118 // the loop body is run only once. Given limit - init (init - limit resp.) 3119 // would be negative, the unsigned comparison below would cause 3120 // the loop body to be run for LoopStripMiningIter. 3121 Node* max = nullptr; 3122 if (stride > 0) { 3123 max = MaxNode::max_diff_with_zero(limit, iv_phi, TypeInt::INT, *igvn); 3124 } else { 3125 max = MaxNode::max_diff_with_zero(iv_phi, limit, TypeInt::INT, *igvn); 3126 } 3127 // sub is positive and can be larger than the max signed int 3128 // value. Use an unsigned min. 3129 Node* const_iters = igvn->intcon(scaled_iters); 3130 Node* min = MaxNode::unsigned_min(max, const_iters, TypeInt::make(0, scaled_iters, Type::WidenMin), *igvn); 3131 // min is the number of iterations for the next inner loop execution: 3132 // unsigned_min(max(limit - iv_phi, 0), scaled_iters) if stride > 0 3133 // unsigned_min(max(iv_phi - limit, 0), scaled_iters) if stride < 0 3134 3135 Node* new_limit = nullptr; 3136 if (stride > 0) { 3137 new_limit = igvn->transform(new AddINode(min, iv_phi)); 3138 } else { 3139 new_limit = igvn->transform(new SubINode(iv_phi, min)); 3140 } 3141 Node* inner_cmp = inner_cle->cmp_node(); 3142 Node* inner_bol = inner_cle->in(CountedLoopEndNode::TestValue); 3143 Node* outer_bol = inner_bol; 3144 // cmp node for inner loop may be shared 3145 inner_cmp = inner_cmp->clone(); 3146 inner_cmp->set_req(2, new_limit); 3147 inner_bol = inner_bol->clone(); 3148 inner_bol->set_req(1, igvn->transform(inner_cmp)); 3149 igvn->replace_input_of(inner_cle, CountedLoopEndNode::TestValue, igvn->transform(inner_bol)); 3150 // Set the outer loop's exit condition too 3151 igvn->replace_input_of(outer_loop_end(), 1, outer_bol); 3152 } else { 3153 assert(false, "should be able to adjust outer loop"); 3154 IfNode* outer_le = outer_loop_end(); 3155 Node* iff = igvn->transform(new IfNode(outer_le->in(0), outer_le->in(1), outer_le->_prob, outer_le->_fcnt)); 3156 igvn->replace_node(outer_le, iff); 3157 inner_cl->clear_strip_mined(); 3158 } 3159 } 3160 3161 void OuterStripMinedLoopNode::transform_to_counted_loop(PhaseIterGVN* igvn, PhaseIdealLoop* iloop) { 3162 CountedLoopNode* inner_cl = unique_ctrl_out()->as_CountedLoop(); 3163 CountedLoopEndNode* cle = inner_cl->loopexit(); 3164 Node* inner_test = cle->in(1); 3165 IfNode* outer_le = outer_loop_end(); 3166 CountedLoopEndNode* inner_cle = inner_cl->loopexit(); 3167 Node* safepoint = outer_safepoint(); 3168 3169 fix_sunk_stores(inner_cle, inner_cl, igvn, iloop); 3170 3171 // make counted loop exit test always fail 3172 ConINode* zero = igvn->intcon(0); 3173 if (iloop != nullptr) { 3174 iloop->set_root_as_ctrl(zero); 3175 } 3176 igvn->replace_input_of(cle, 1, zero); 3177 // replace outer loop end with CountedLoopEndNode with formers' CLE's exit test 3178 Node* new_end = new CountedLoopEndNode(outer_le->in(0), inner_test, cle->_prob, cle->_fcnt); 3179 register_control(new_end, inner_cl, outer_le->in(0), igvn, iloop); 3180 if (iloop == nullptr) { 3181 igvn->replace_node(outer_le, new_end); 3182 } else { 3183 iloop->lazy_replace(outer_le, new_end); 3184 } 3185 // the backedge of the inner loop must be rewired to the new loop end 3186 Node* backedge = cle->proj_out(true); 3187 igvn->replace_input_of(backedge, 0, new_end); 3188 if (iloop != nullptr) { 3189 iloop->set_idom(backedge, new_end, iloop->dom_depth(new_end) + 1); 3190 } 3191 // make the outer loop go away 3192 igvn->replace_input_of(in(LoopBackControl), 0, igvn->C->top()); 3193 igvn->replace_input_of(this, LoopBackControl, igvn->C->top()); 3194 inner_cl->clear_strip_mined(); 3195 if (iloop != nullptr) { 3196 Unique_Node_List wq; 3197 wq.push(safepoint); 3198 3199 IdealLoopTree* outer_loop_ilt = iloop->get_loop(this); 3200 IdealLoopTree* loop = iloop->get_loop(inner_cl); 3201 3202 for (uint i = 0; i < wq.size(); i++) { 3203 Node* n = wq.at(i); 3204 for (uint j = 0; j < n->req(); ++j) { 3205 Node* in = n->in(j); 3206 if (in == nullptr || in->is_CFG()) { 3207 continue; 3208 } 3209 if (iloop->get_loop(iloop->get_ctrl(in)) != outer_loop_ilt) { 3210 continue; 3211 } 3212 wq.push(in); 3213 } 3214 assert(!loop->_body.contains(n), "Shouldn't append node to body twice"); 3215 loop->_body.push(n); 3216 } 3217 iloop->set_loop(safepoint, loop); 3218 loop->_body.push(safepoint); 3219 iloop->set_loop(safepoint->in(0), loop); 3220 loop->_body.push(safepoint->in(0)); 3221 outer_loop_ilt->_tail = igvn->C->top(); 3222 } 3223 } 3224 3225 void OuterStripMinedLoopNode::remove_outer_loop_and_safepoint(PhaseIterGVN* igvn) const { 3226 CountedLoopNode* inner_cl = unique_ctrl_out()->as_CountedLoop(); 3227 Node* outer_sfpt = outer_safepoint(); 3228 Node* outer_out = outer_loop_exit(); 3229 igvn->replace_node(outer_out, outer_sfpt->in(0)); 3230 igvn->replace_input_of(outer_sfpt, 0, igvn->C->top()); 3231 inner_cl->clear_strip_mined(); 3232 } 3233 3234 Node* OuterStripMinedLoopNode::register_new_node(Node* node, LoopNode* ctrl, PhaseIterGVN* igvn, PhaseIdealLoop* iloop) { 3235 if (iloop == nullptr) { 3236 return igvn->transform(node); 3237 } 3238 iloop->register_new_node(node, ctrl); 3239 return node; 3240 } 3241 3242 Node* OuterStripMinedLoopNode::register_control(Node* node, Node* loop, Node* idom, PhaseIterGVN* igvn, 3243 PhaseIdealLoop* iloop) { 3244 if (iloop == nullptr) { 3245 return igvn->transform(node); 3246 } 3247 iloop->register_control(node, iloop->get_loop(loop), idom); 3248 return node; 3249 } 3250 3251 const Type* OuterStripMinedLoopEndNode::Value(PhaseGVN* phase) const { 3252 if (!in(0)) return Type::TOP; 3253 if (phase->type(in(0)) == Type::TOP) 3254 return Type::TOP; 3255 3256 // Until expansion, the loop end condition is not set so this should not constant fold. 3257 if (is_expanded(phase)) { 3258 return IfNode::Value(phase); 3259 } 3260 3261 return TypeTuple::IFBOTH; 3262 } 3263 3264 bool OuterStripMinedLoopEndNode::is_expanded(PhaseGVN *phase) const { 3265 // The outer strip mined loop head only has Phi uses after expansion 3266 if (phase->is_IterGVN()) { 3267 Node* backedge = proj_out_or_null(true); 3268 if (backedge != nullptr) { 3269 Node* head = backedge->unique_ctrl_out_or_null(); 3270 if (head != nullptr && head->is_OuterStripMinedLoop()) { 3271 if (head->find_out_with(Op_Phi) != nullptr) { 3272 return true; 3273 } 3274 } 3275 } 3276 } 3277 return false; 3278 } 3279 3280 Node *OuterStripMinedLoopEndNode::Ideal(PhaseGVN *phase, bool can_reshape) { 3281 if (remove_dead_region(phase, can_reshape)) return this; 3282 3283 return nullptr; 3284 } 3285 3286 //------------------------------filtered_type-------------------------------- 3287 // Return a type based on condition control flow 3288 // A successful return will be a type that is restricted due 3289 // to a series of dominating if-tests, such as: 3290 // if (i < 10) { 3291 // if (i > 0) { 3292 // here: "i" type is [1..10) 3293 // } 3294 // } 3295 // or a control flow merge 3296 // if (i < 10) { 3297 // do { 3298 // phi( , ) -- at top of loop type is [min_int..10) 3299 // i = ? 3300 // } while ( i < 10) 3301 // 3302 const TypeInt* PhaseIdealLoop::filtered_type( Node *n, Node* n_ctrl) { 3303 assert(n && n->bottom_type()->is_int(), "must be int"); 3304 const TypeInt* filtered_t = nullptr; 3305 if (!n->is_Phi()) { 3306 assert(n_ctrl != nullptr || n_ctrl == C->top(), "valid control"); 3307 filtered_t = filtered_type_from_dominators(n, n_ctrl); 3308 3309 } else { 3310 Node* phi = n->as_Phi(); 3311 Node* region = phi->in(0); 3312 assert(n_ctrl == nullptr || n_ctrl == region, "ctrl parameter must be region"); 3313 if (region && region != C->top()) { 3314 for (uint i = 1; i < phi->req(); i++) { 3315 Node* val = phi->in(i); 3316 Node* use_c = region->in(i); 3317 const TypeInt* val_t = filtered_type_from_dominators(val, use_c); 3318 if (val_t != nullptr) { 3319 if (filtered_t == nullptr) { 3320 filtered_t = val_t; 3321 } else { 3322 filtered_t = filtered_t->meet(val_t)->is_int(); 3323 } 3324 } 3325 } 3326 } 3327 } 3328 const TypeInt* n_t = _igvn.type(n)->is_int(); 3329 if (filtered_t != nullptr) { 3330 n_t = n_t->join(filtered_t)->is_int(); 3331 } 3332 return n_t; 3333 } 3334 3335 3336 //------------------------------filtered_type_from_dominators-------------------------------- 3337 // Return a possibly more restrictive type for val based on condition control flow of dominators 3338 const TypeInt* PhaseIdealLoop::filtered_type_from_dominators( Node* val, Node *use_ctrl) { 3339 if (val->is_Con()) { 3340 return val->bottom_type()->is_int(); 3341 } 3342 uint if_limit = 10; // Max number of dominating if's visited 3343 const TypeInt* rtn_t = nullptr; 3344 3345 if (use_ctrl && use_ctrl != C->top()) { 3346 Node* val_ctrl = get_ctrl(val); 3347 uint val_dom_depth = dom_depth(val_ctrl); 3348 Node* pred = use_ctrl; 3349 uint if_cnt = 0; 3350 while (if_cnt < if_limit) { 3351 if ((pred->Opcode() == Op_IfTrue || pred->Opcode() == Op_IfFalse)) { 3352 if_cnt++; 3353 const TypeInt* if_t = IfNode::filtered_int_type(&_igvn, val, pred); 3354 if (if_t != nullptr) { 3355 if (rtn_t == nullptr) { 3356 rtn_t = if_t; 3357 } else { 3358 rtn_t = rtn_t->join(if_t)->is_int(); 3359 } 3360 } 3361 } 3362 pred = idom(pred); 3363 if (pred == nullptr || pred == C->top()) { 3364 break; 3365 } 3366 // Stop if going beyond definition block of val 3367 if (dom_depth(pred) < val_dom_depth) { 3368 break; 3369 } 3370 } 3371 } 3372 return rtn_t; 3373 } 3374 3375 3376 //------------------------------dump_spec-------------------------------------- 3377 // Dump special per-node info 3378 #ifndef PRODUCT 3379 void CountedLoopEndNode::dump_spec(outputStream *st) const { 3380 if( in(TestValue) != nullptr && in(TestValue)->is_Bool() ) { 3381 BoolTest bt( test_trip()); // Added this for g++. 3382 3383 st->print("["); 3384 bt.dump_on(st); 3385 st->print("]"); 3386 } 3387 st->print(" "); 3388 IfNode::dump_spec(st); 3389 } 3390 #endif 3391 3392 //============================================================================= 3393 //------------------------------is_member-------------------------------------- 3394 // Is 'l' a member of 'this'? 3395 bool IdealLoopTree::is_member(const IdealLoopTree *l) const { 3396 while( l->_nest > _nest ) l = l->_parent; 3397 return l == this; 3398 } 3399 3400 //------------------------------set_nest--------------------------------------- 3401 // Set loop tree nesting depth. Accumulate _has_call bits. 3402 int IdealLoopTree::set_nest( uint depth ) { 3403 assert(depth <= SHRT_MAX, "sanity"); 3404 _nest = depth; 3405 int bits = _has_call; 3406 if( _child ) bits |= _child->set_nest(depth+1); 3407 if( bits ) _has_call = 1; 3408 if( _next ) bits |= _next ->set_nest(depth ); 3409 return bits; 3410 } 3411 3412 //------------------------------split_fall_in---------------------------------- 3413 // Split out multiple fall-in edges from the loop header. Move them to a 3414 // private RegionNode before the loop. This becomes the loop landing pad. 3415 void IdealLoopTree::split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt ) { 3416 PhaseIterGVN &igvn = phase->_igvn; 3417 uint i; 3418 3419 // Make a new RegionNode to be the landing pad. 3420 RegionNode* landing_pad = new RegionNode(fall_in_cnt + 1); 3421 phase->set_loop(landing_pad,_parent); 3422 // If _head was irreducible loop entry, landing_pad may now be too 3423 landing_pad->set_loop_status(_head->as_Region()->loop_status()); 3424 // Gather all the fall-in control paths into the landing pad 3425 uint icnt = fall_in_cnt; 3426 uint oreq = _head->req(); 3427 for( i = oreq-1; i>0; i-- ) 3428 if( !phase->is_member( this, _head->in(i) ) ) 3429 landing_pad->set_req(icnt--,_head->in(i)); 3430 3431 // Peel off PhiNode edges as well 3432 for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) { 3433 Node *oj = _head->fast_out(j); 3434 if( oj->is_Phi() ) { 3435 PhiNode* old_phi = oj->as_Phi(); 3436 assert( old_phi->region() == _head, "" ); 3437 igvn.hash_delete(old_phi); // Yank from hash before hacking edges 3438 Node *p = PhiNode::make_blank(landing_pad, old_phi); 3439 uint icnt = fall_in_cnt; 3440 for( i = oreq-1; i>0; i-- ) { 3441 if( !phase->is_member( this, _head->in(i) ) ) { 3442 p->init_req(icnt--, old_phi->in(i)); 3443 // Go ahead and clean out old edges from old phi 3444 old_phi->del_req(i); 3445 } 3446 } 3447 // Search for CSE's here, because ZKM.jar does a lot of 3448 // loop hackery and we need to be a little incremental 3449 // with the CSE to avoid O(N^2) node blow-up. 3450 Node *p2 = igvn.hash_find_insert(p); // Look for a CSE 3451 if( p2 ) { // Found CSE 3452 p->destruct(&igvn); // Recover useless new node 3453 p = p2; // Use old node 3454 } else { 3455 igvn.register_new_node_with_optimizer(p, old_phi); 3456 } 3457 // Make old Phi refer to new Phi. 3458 old_phi->add_req(p); 3459 // Check for the special case of making the old phi useless and 3460 // disappear it. In JavaGrande I have a case where this useless 3461 // Phi is the loop limit and prevents recognizing a CountedLoop 3462 // which in turn prevents removing an empty loop. 3463 Node *id_old_phi = old_phi->Identity(&igvn); 3464 if( id_old_phi != old_phi ) { // Found a simple identity? 3465 // Note that I cannot call 'replace_node' here, because 3466 // that will yank the edge from old_phi to the Region and 3467 // I'm mid-iteration over the Region's uses. 3468 for (DUIterator_Last imin, i = old_phi->last_outs(imin); i >= imin; ) { 3469 Node* use = old_phi->last_out(i); 3470 igvn.rehash_node_delayed(use); 3471 uint uses_found = 0; 3472 for (uint j = 0; j < use->len(); j++) { 3473 if (use->in(j) == old_phi) { 3474 if (j < use->req()) use->set_req (j, id_old_phi); 3475 else use->set_prec(j, id_old_phi); 3476 uses_found++; 3477 } 3478 } 3479 i -= uses_found; // we deleted 1 or more copies of this edge 3480 } 3481 } 3482 igvn._worklist.push(old_phi); 3483 } 3484 } 3485 // Finally clean out the fall-in edges from the RegionNode 3486 for( i = oreq-1; i>0; i-- ) { 3487 if( !phase->is_member( this, _head->in(i) ) ) { 3488 _head->del_req(i); 3489 } 3490 } 3491 igvn.rehash_node_delayed(_head); 3492 // Transform landing pad 3493 igvn.register_new_node_with_optimizer(landing_pad, _head); 3494 // Insert landing pad into the header 3495 _head->add_req(landing_pad); 3496 } 3497 3498 //------------------------------split_outer_loop------------------------------- 3499 // Split out the outermost loop from this shared header. 3500 void IdealLoopTree::split_outer_loop( PhaseIdealLoop *phase ) { 3501 PhaseIterGVN &igvn = phase->_igvn; 3502 3503 // Find index of outermost loop; it should also be my tail. 3504 uint outer_idx = 1; 3505 while( _head->in(outer_idx) != _tail ) outer_idx++; 3506 3507 // Make a LoopNode for the outermost loop. 3508 Node *ctl = _head->in(LoopNode::EntryControl); 3509 Node *outer = new LoopNode( ctl, _head->in(outer_idx) ); 3510 outer = igvn.register_new_node_with_optimizer(outer, _head); 3511 phase->set_created_loop_node(); 3512 3513 // Outermost loop falls into '_head' loop 3514 _head->set_req(LoopNode::EntryControl, outer); 3515 _head->del_req(outer_idx); 3516 // Split all the Phis up between '_head' loop and 'outer' loop. 3517 for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) { 3518 Node *out = _head->fast_out(j); 3519 if( out->is_Phi() ) { 3520 PhiNode *old_phi = out->as_Phi(); 3521 assert( old_phi->region() == _head, "" ); 3522 Node *phi = PhiNode::make_blank(outer, old_phi); 3523 phi->init_req(LoopNode::EntryControl, old_phi->in(LoopNode::EntryControl)); 3524 phi->init_req(LoopNode::LoopBackControl, old_phi->in(outer_idx)); 3525 phi = igvn.register_new_node_with_optimizer(phi, old_phi); 3526 // Make old Phi point to new Phi on the fall-in path 3527 igvn.replace_input_of(old_phi, LoopNode::EntryControl, phi); 3528 old_phi->del_req(outer_idx); 3529 } 3530 } 3531 3532 // Use the new loop head instead of the old shared one 3533 _head = outer; 3534 phase->set_loop(_head, this); 3535 } 3536 3537 //------------------------------fix_parent------------------------------------- 3538 static void fix_parent( IdealLoopTree *loop, IdealLoopTree *parent ) { 3539 loop->_parent = parent; 3540 if( loop->_child ) fix_parent( loop->_child, loop ); 3541 if( loop->_next ) fix_parent( loop->_next , parent ); 3542 } 3543 3544 //------------------------------estimate_path_freq----------------------------- 3545 static float estimate_path_freq( Node *n ) { 3546 // Try to extract some path frequency info 3547 IfNode *iff; 3548 for( int i = 0; i < 50; i++ ) { // Skip through a bunch of uncommon tests 3549 uint nop = n->Opcode(); 3550 if( nop == Op_SafePoint ) { // Skip any safepoint 3551 n = n->in(0); 3552 continue; 3553 } 3554 if( nop == Op_CatchProj ) { // Get count from a prior call 3555 // Assume call does not always throw exceptions: means the call-site 3556 // count is also the frequency of the fall-through path. 3557 assert( n->is_CatchProj(), "" ); 3558 if( ((CatchProjNode*)n)->_con != CatchProjNode::fall_through_index ) 3559 return 0.0f; // Assume call exception path is rare 3560 Node *call = n->in(0)->in(0)->in(0); 3561 assert( call->is_Call(), "expect a call here" ); 3562 const JVMState *jvms = ((CallNode*)call)->jvms(); 3563 ciMethodData* methodData = jvms->method()->method_data(); 3564 if (!methodData->is_mature()) return 0.0f; // No call-site data 3565 ciProfileData* data = methodData->bci_to_data(jvms->bci()); 3566 if ((data == nullptr) || !data->is_CounterData()) { 3567 // no call profile available, try call's control input 3568 n = n->in(0); 3569 continue; 3570 } 3571 return data->as_CounterData()->count()/FreqCountInvocations; 3572 } 3573 // See if there's a gating IF test 3574 Node *n_c = n->in(0); 3575 if( !n_c->is_If() ) break; // No estimate available 3576 iff = n_c->as_If(); 3577 if( iff->_fcnt != COUNT_UNKNOWN ) // Have a valid count? 3578 // Compute how much count comes on this path 3579 return ((nop == Op_IfTrue) ? iff->_prob : 1.0f - iff->_prob) * iff->_fcnt; 3580 // Have no count info. Skip dull uncommon-trap like branches. 3581 if( (nop == Op_IfTrue && iff->_prob < PROB_LIKELY_MAG(5)) || 3582 (nop == Op_IfFalse && iff->_prob > PROB_UNLIKELY_MAG(5)) ) 3583 break; 3584 // Skip through never-taken branch; look for a real loop exit. 3585 n = iff->in(0); 3586 } 3587 return 0.0f; // No estimate available 3588 } 3589 3590 //------------------------------merge_many_backedges--------------------------- 3591 // Merge all the backedges from the shared header into a private Region. 3592 // Feed that region as the one backedge to this loop. 3593 void IdealLoopTree::merge_many_backedges( PhaseIdealLoop *phase ) { 3594 uint i; 3595 3596 // Scan for the top 2 hottest backedges 3597 float hotcnt = 0.0f; 3598 float warmcnt = 0.0f; 3599 uint hot_idx = 0; 3600 // Loop starts at 2 because slot 1 is the fall-in path 3601 for( i = 2; i < _head->req(); i++ ) { 3602 float cnt = estimate_path_freq(_head->in(i)); 3603 if( cnt > hotcnt ) { // Grab hottest path 3604 warmcnt = hotcnt; 3605 hotcnt = cnt; 3606 hot_idx = i; 3607 } else if( cnt > warmcnt ) { // And 2nd hottest path 3608 warmcnt = cnt; 3609 } 3610 } 3611 3612 // See if the hottest backedge is worthy of being an inner loop 3613 // by being much hotter than the next hottest backedge. 3614 if( hotcnt <= 0.0001 || 3615 hotcnt < 2.0*warmcnt ) hot_idx = 0;// No hot backedge 3616 3617 // Peel out the backedges into a private merge point; peel 3618 // them all except optionally hot_idx. 3619 PhaseIterGVN &igvn = phase->_igvn; 3620 3621 Node *hot_tail = nullptr; 3622 // Make a Region for the merge point 3623 Node *r = new RegionNode(1); 3624 for( i = 2; i < _head->req(); i++ ) { 3625 if( i != hot_idx ) 3626 r->add_req( _head->in(i) ); 3627 else hot_tail = _head->in(i); 3628 } 3629 igvn.register_new_node_with_optimizer(r, _head); 3630 // Plug region into end of loop _head, followed by hot_tail 3631 while( _head->req() > 3 ) _head->del_req( _head->req()-1 ); 3632 igvn.replace_input_of(_head, 2, r); 3633 if( hot_idx ) _head->add_req(hot_tail); 3634 3635 // Split all the Phis up between '_head' loop and the Region 'r' 3636 for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) { 3637 Node *out = _head->fast_out(j); 3638 if( out->is_Phi() ) { 3639 PhiNode* n = out->as_Phi(); 3640 igvn.hash_delete(n); // Delete from hash before hacking edges 3641 Node *hot_phi = nullptr; 3642 Node *phi = new PhiNode(r, n->type(), n->adr_type()); 3643 // Check all inputs for the ones to peel out 3644 uint j = 1; 3645 for( uint i = 2; i < n->req(); i++ ) { 3646 if( i != hot_idx ) 3647 phi->set_req( j++, n->in(i) ); 3648 else hot_phi = n->in(i); 3649 } 3650 // Register the phi but do not transform until whole place transforms 3651 igvn.register_new_node_with_optimizer(phi, n); 3652 // Add the merge phi to the old Phi 3653 while( n->req() > 3 ) n->del_req( n->req()-1 ); 3654 igvn.replace_input_of(n, 2, phi); 3655 if( hot_idx ) n->add_req(hot_phi); 3656 } 3657 } 3658 3659 3660 // Insert a new IdealLoopTree inserted below me. Turn it into a clone 3661 // of self loop tree. Turn self into a loop headed by _head and with 3662 // tail being the new merge point. 3663 IdealLoopTree *ilt = new IdealLoopTree( phase, _head, _tail ); 3664 phase->set_loop(_tail,ilt); // Adjust tail 3665 _tail = r; // Self's tail is new merge point 3666 phase->set_loop(r,this); 3667 ilt->_child = _child; // New guy has my children 3668 _child = ilt; // Self has new guy as only child 3669 ilt->_parent = this; // new guy has self for parent 3670 ilt->_nest = _nest; // Same nesting depth (for now) 3671 3672 // Starting with 'ilt', look for child loop trees using the same shared 3673 // header. Flatten these out; they will no longer be loops in the end. 3674 IdealLoopTree **pilt = &_child; 3675 while( ilt ) { 3676 if( ilt->_head == _head ) { 3677 uint i; 3678 for( i = 2; i < _head->req(); i++ ) 3679 if( _head->in(i) == ilt->_tail ) 3680 break; // Still a loop 3681 if( i == _head->req() ) { // No longer a loop 3682 // Flatten ilt. Hang ilt's "_next" list from the end of 3683 // ilt's '_child' list. Move the ilt's _child up to replace ilt. 3684 IdealLoopTree **cp = &ilt->_child; 3685 while( *cp ) cp = &(*cp)->_next; // Find end of child list 3686 *cp = ilt->_next; // Hang next list at end of child list 3687 *pilt = ilt->_child; // Move child up to replace ilt 3688 ilt->_head = nullptr; // Flag as a loop UNIONED into parent 3689 ilt = ilt->_child; // Repeat using new ilt 3690 continue; // do not advance over ilt->_child 3691 } 3692 assert( ilt->_tail == hot_tail, "expected to only find the hot inner loop here" ); 3693 phase->set_loop(_head,ilt); 3694 } 3695 pilt = &ilt->_child; // Advance to next 3696 ilt = *pilt; 3697 } 3698 3699 if( _child ) fix_parent( _child, this ); 3700 } 3701 3702 //------------------------------beautify_loops--------------------------------- 3703 // Split shared headers and insert loop landing pads. 3704 // Insert a LoopNode to replace the RegionNode. 3705 // Return TRUE if loop tree is structurally changed. 3706 bool IdealLoopTree::beautify_loops( PhaseIdealLoop *phase ) { 3707 bool result = false; 3708 // Cache parts in locals for easy 3709 PhaseIterGVN &igvn = phase->_igvn; 3710 3711 igvn.hash_delete(_head); // Yank from hash before hacking edges 3712 3713 // Check for multiple fall-in paths. Peel off a landing pad if need be. 3714 int fall_in_cnt = 0; 3715 for( uint i = 1; i < _head->req(); i++ ) 3716 if( !phase->is_member( this, _head->in(i) ) ) 3717 fall_in_cnt++; 3718 assert( fall_in_cnt, "at least 1 fall-in path" ); 3719 if( fall_in_cnt > 1 ) // Need a loop landing pad to merge fall-ins 3720 split_fall_in( phase, fall_in_cnt ); 3721 3722 // Swap inputs to the _head and all Phis to move the fall-in edge to 3723 // the left. 3724 fall_in_cnt = 1; 3725 while( phase->is_member( this, _head->in(fall_in_cnt) ) ) 3726 fall_in_cnt++; 3727 if( fall_in_cnt > 1 ) { 3728 // Since I am just swapping inputs I do not need to update def-use info 3729 Node *tmp = _head->in(1); 3730 igvn.rehash_node_delayed(_head); 3731 _head->set_req( 1, _head->in(fall_in_cnt) ); 3732 _head->set_req( fall_in_cnt, tmp ); 3733 // Swap also all Phis 3734 for (DUIterator_Fast imax, i = _head->fast_outs(imax); i < imax; i++) { 3735 Node* phi = _head->fast_out(i); 3736 if( phi->is_Phi() ) { 3737 igvn.rehash_node_delayed(phi); // Yank from hash before hacking edges 3738 tmp = phi->in(1); 3739 phi->set_req( 1, phi->in(fall_in_cnt) ); 3740 phi->set_req( fall_in_cnt, tmp ); 3741 } 3742 } 3743 } 3744 assert( !phase->is_member( this, _head->in(1) ), "left edge is fall-in" ); 3745 assert( phase->is_member( this, _head->in(2) ), "right edge is loop" ); 3746 3747 // If I am a shared header (multiple backedges), peel off the many 3748 // backedges into a private merge point and use the merge point as 3749 // the one true backedge. 3750 if (_head->req() > 3) { 3751 // Merge the many backedges into a single backedge but leave 3752 // the hottest backedge as separate edge for the following peel. 3753 if (!_irreducible) { 3754 merge_many_backedges( phase ); 3755 } 3756 3757 // When recursively beautify my children, split_fall_in can change 3758 // loop tree structure when I am an irreducible loop. Then the head 3759 // of my children has a req() not bigger than 3. Here we need to set 3760 // result to true to catch that case in order to tell the caller to 3761 // rebuild loop tree. See issue JDK-8244407 for details. 3762 result = true; 3763 } 3764 3765 // If I have one hot backedge, peel off myself loop. 3766 // I better be the outermost loop. 3767 if (_head->req() > 3 && !_irreducible) { 3768 split_outer_loop( phase ); 3769 result = true; 3770 3771 } else if (!_head->is_Loop() && !_irreducible) { 3772 // Make a new LoopNode to replace the old loop head 3773 Node *l = new LoopNode( _head->in(1), _head->in(2) ); 3774 l = igvn.register_new_node_with_optimizer(l, _head); 3775 phase->set_created_loop_node(); 3776 // Go ahead and replace _head 3777 phase->_igvn.replace_node( _head, l ); 3778 _head = l; 3779 phase->set_loop(_head, this); 3780 } 3781 3782 // Now recursively beautify nested loops 3783 if( _child ) result |= _child->beautify_loops( phase ); 3784 if( _next ) result |= _next ->beautify_loops( phase ); 3785 return result; 3786 } 3787 3788 //------------------------------allpaths_check_safepts---------------------------- 3789 // Allpaths backwards scan. Starting at the head, traversing all backedges, and the body. Terminating each path at first 3790 // safepoint encountered. Helper for check_safepts. 3791 void IdealLoopTree::allpaths_check_safepts(VectorSet &visited, Node_List &stack) { 3792 assert(stack.size() == 0, "empty stack"); 3793 stack.push(_head); 3794 visited.clear(); 3795 visited.set(_head->_idx); 3796 while (stack.size() > 0) { 3797 Node* n = stack.pop(); 3798 if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) { 3799 // Terminate this path 3800 } else if (n->Opcode() == Op_SafePoint) { 3801 if (_phase->get_loop(n) != this) { 3802 if (_required_safept == nullptr) _required_safept = new Node_List(); 3803 // save the first we run into on that path: closest to the tail if the head has a single backedge 3804 _required_safept->push(n); 3805 } 3806 // Terminate this path 3807 } else { 3808 uint start = n->is_Region() ? 1 : 0; 3809 uint end = n->is_Region() && (!n->is_Loop() || n == _head) ? n->req() : start + 1; 3810 for (uint i = start; i < end; i++) { 3811 Node* in = n->in(i); 3812 assert(in->is_CFG(), "must be"); 3813 if (!visited.test_set(in->_idx) && is_member(_phase->get_loop(in))) { 3814 stack.push(in); 3815 } 3816 } 3817 } 3818 } 3819 } 3820 3821 //------------------------------check_safepts---------------------------- 3822 // Given dominators, try to find loops with calls that must always be 3823 // executed (call dominates loop tail). These loops do not need non-call 3824 // safepoints (ncsfpt). 3825 // 3826 // A complication is that a safepoint in a inner loop may be needed 3827 // by an outer loop. In the following, the inner loop sees it has a 3828 // call (block 3) on every path from the head (block 2) to the 3829 // backedge (arc 3->2). So it deletes the ncsfpt (non-call safepoint) 3830 // in block 2, _but_ this leaves the outer loop without a safepoint. 3831 // 3832 // entry 0 3833 // | 3834 // v 3835 // outer 1,2 +->1 3836 // | | 3837 // | v 3838 // | 2<---+ ncsfpt in 2 3839 // |_/|\ | 3840 // | v | 3841 // inner 2,3 / 3 | call in 3 3842 // / | | 3843 // v +--+ 3844 // exit 4 3845 // 3846 // 3847 // This method creates a list (_required_safept) of ncsfpt nodes that must 3848 // be protected is created for each loop. When a ncsfpt maybe deleted, it 3849 // is first looked for in the lists for the outer loops of the current loop. 3850 // 3851 // The insights into the problem: 3852 // A) counted loops are okay 3853 // B) innermost loops are okay (only an inner loop can delete 3854 // a ncsfpt needed by an outer loop) 3855 // C) a loop is immune from an inner loop deleting a safepoint 3856 // if the loop has a call on the idom-path 3857 // D) a loop is also immune if it has a ncsfpt (non-call safepoint) on the 3858 // idom-path that is not in a nested loop 3859 // E) otherwise, an ncsfpt on the idom-path that is nested in an inner 3860 // loop needs to be prevented from deletion by an inner loop 3861 // 3862 // There are two analyses: 3863 // 1) The first, and cheaper one, scans the loop body from 3864 // tail to head following the idom (immediate dominator) 3865 // chain, looking for the cases (C,D,E) above. 3866 // Since inner loops are scanned before outer loops, there is summary 3867 // information about inner loops. Inner loops can be skipped over 3868 // when the tail of an inner loop is encountered. 3869 // 3870 // 2) The second, invoked if the first fails to find a call or ncsfpt on 3871 // the idom path (which is rare), scans all predecessor control paths 3872 // from the tail to the head, terminating a path when a call or sfpt 3873 // is encountered, to find the ncsfpt's that are closest to the tail. 3874 // 3875 void IdealLoopTree::check_safepts(VectorSet &visited, Node_List &stack) { 3876 // Bottom up traversal 3877 IdealLoopTree* ch = _child; 3878 if (_child) _child->check_safepts(visited, stack); 3879 if (_next) _next ->check_safepts(visited, stack); 3880 3881 if (!_head->is_CountedLoop() && !_has_sfpt && _parent != nullptr) { 3882 bool has_call = false; // call on dom-path 3883 bool has_local_ncsfpt = false; // ncsfpt on dom-path at this loop depth 3884 Node* nonlocal_ncsfpt = nullptr; // ncsfpt on dom-path at a deeper depth 3885 if (!_irreducible) { 3886 // Scan the dom-path nodes from tail to head 3887 for (Node* n = tail(); n != _head; n = _phase->idom(n)) { 3888 if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) { 3889 has_call = true; 3890 _has_sfpt = 1; // Then no need for a safept! 3891 break; 3892 } else if (n->Opcode() == Op_SafePoint) { 3893 if (_phase->get_loop(n) == this) { 3894 has_local_ncsfpt = true; 3895 break; 3896 } 3897 if (nonlocal_ncsfpt == nullptr) { 3898 nonlocal_ncsfpt = n; // save the one closest to the tail 3899 } 3900 } else { 3901 IdealLoopTree* nlpt = _phase->get_loop(n); 3902 if (this != nlpt) { 3903 // If at an inner loop tail, see if the inner loop has already 3904 // recorded seeing a call on the dom-path (and stop.) If not, 3905 // jump to the head of the inner loop. 3906 assert(is_member(nlpt), "nested loop"); 3907 Node* tail = nlpt->_tail; 3908 if (tail->in(0)->is_If()) tail = tail->in(0); 3909 if (n == tail) { 3910 // If inner loop has call on dom-path, so does outer loop 3911 if (nlpt->_has_sfpt) { 3912 has_call = true; 3913 _has_sfpt = 1; 3914 break; 3915 } 3916 // Skip to head of inner loop 3917 assert(_phase->is_dominator(_head, nlpt->_head), "inner head dominated by outer head"); 3918 n = nlpt->_head; 3919 if (_head == n) { 3920 // this and nlpt (inner loop) have the same loop head. This should not happen because 3921 // during beautify_loops we call merge_many_backedges. However, infinite loops may not 3922 // have been attached to the loop-tree during build_loop_tree before beautify_loops, 3923 // but then attached in the build_loop_tree afterwards, and so still have unmerged 3924 // backedges. Check if we are indeed in an infinite subgraph, and terminate the scan, 3925 // since we have reached the loop head of this. 3926 assert(_head->as_Region()->is_in_infinite_subgraph(), 3927 "only expect unmerged backedges in infinite loops"); 3928 break; 3929 } 3930 } 3931 } 3932 } 3933 } 3934 } 3935 // Record safept's that this loop needs preserved when an 3936 // inner loop attempts to delete it's safepoints. 3937 if (_child != nullptr && !has_call && !has_local_ncsfpt) { 3938 if (nonlocal_ncsfpt != nullptr) { 3939 if (_required_safept == nullptr) _required_safept = new Node_List(); 3940 _required_safept->push(nonlocal_ncsfpt); 3941 } else { 3942 // Failed to find a suitable safept on the dom-path. Now use 3943 // an all paths walk from tail to head, looking for safepoints to preserve. 3944 allpaths_check_safepts(visited, stack); 3945 } 3946 } 3947 } 3948 } 3949 3950 //---------------------------is_deleteable_safept---------------------------- 3951 // Is safept not required by an outer loop? 3952 bool PhaseIdealLoop::is_deleteable_safept(Node* sfpt) { 3953 assert(sfpt->Opcode() == Op_SafePoint, ""); 3954 IdealLoopTree* lp = get_loop(sfpt)->_parent; 3955 while (lp != nullptr) { 3956 Node_List* sfpts = lp->_required_safept; 3957 if (sfpts != nullptr) { 3958 for (uint i = 0; i < sfpts->size(); i++) { 3959 if (sfpt == sfpts->at(i)) 3960 return false; 3961 } 3962 } 3963 lp = lp->_parent; 3964 } 3965 return true; 3966 } 3967 3968 //---------------------------replace_parallel_iv------------------------------- 3969 // Replace parallel induction variable (parallel to trip counter) 3970 // This optimization looks for patterns similar to: 3971 // 3972 // int a = init2; 3973 // for (int iv = init; iv < limit; iv += stride_con) { 3974 // a += stride_con2; 3975 // } 3976 // 3977 // and transforms it to: 3978 // 3979 // int iv2 = init2 3980 // int iv = init 3981 // loop: 3982 // if (iv >= limit) goto exit 3983 // iv += stride_con 3984 // iv2 = init2 + (iv - init) * (stride_con2 / stride_con) 3985 // goto loop 3986 // exit: 3987 // ... 3988 // 3989 // Such transformation introduces more optimization opportunities. In this 3990 // particular example, the loop can be eliminated entirely given that 3991 // `stride_con2 / stride_con` is exact (i.e., no remainder). Checks are in 3992 // place to only perform this optimization if such a division is exact. This 3993 // example will be transformed into its semantic equivalence: 3994 // 3995 // int iv2 = (iv * stride_con2 / stride_con) + (init2 - (init * stride_con2 / stride_con)) 3996 // 3997 // which corresponds to the structure of transformed subgraph. 3998 // 3999 // However, if there is a mismatch between types of the loop and the parallel 4000 // induction variable (e.g., a long-typed IV in an int-typed loop), type 4001 // conversions are required: 4002 // 4003 // long iv2 = ((long) iv * stride_con2 / stride_con) + (init2 - ((long) init * stride_con2 / stride_con)) 4004 // 4005 void PhaseIdealLoop::replace_parallel_iv(IdealLoopTree *loop) { 4006 assert(loop->_head->is_CountedLoop(), ""); 4007 CountedLoopNode *cl = loop->_head->as_CountedLoop(); 4008 if (!cl->is_valid_counted_loop(T_INT)) { 4009 return; // skip malformed counted loop 4010 } 4011 Node *incr = cl->incr(); 4012 if (incr == nullptr) { 4013 return; // Dead loop? 4014 } 4015 Node *init = cl->init_trip(); 4016 Node *phi = cl->phi(); 4017 jlong stride_con = cl->stride_con(); 4018 4019 // Visit all children, looking for Phis 4020 for (DUIterator i = cl->outs(); cl->has_out(i); i++) { 4021 Node *out = cl->out(i); 4022 // Look for other phis (secondary IVs). Skip dead ones 4023 if (!out->is_Phi() || out == phi || !has_node(out)) { 4024 continue; 4025 } 4026 4027 PhiNode* phi2 = out->as_Phi(); 4028 Node* incr2 = phi2->in(LoopNode::LoopBackControl); 4029 // Look for induction variables of the form: X += constant 4030 if (phi2->region() != loop->_head || 4031 incr2->req() != 3 || 4032 incr2->in(1)->uncast() != phi2 || 4033 incr2 == incr || 4034 (incr2->Opcode() != Op_AddI && incr2->Opcode() != Op_AddL) || 4035 !incr2->in(2)->is_Con()) { 4036 continue; 4037 } 4038 4039 if (incr2->in(1)->is_ConstraintCast() && 4040 !(incr2->in(1)->in(0)->is_IfProj() && incr2->in(1)->in(0)->in(0)->is_RangeCheck())) { 4041 // Skip AddI->CastII->Phi case if CastII is not controlled by local RangeCheck 4042 continue; 4043 } 4044 // Check for parallel induction variable (parallel to trip counter) 4045 // via an affine function. In particular, count-down loops with 4046 // count-up array indices are common. We only RCE references off 4047 // the trip-counter, so we need to convert all these to trip-counter 4048 // expressions. 4049 Node* init2 = phi2->in(LoopNode::EntryControl); 4050 4051 // Determine the basic type of the stride constant (and the iv being incremented). 4052 BasicType stride_con2_bt = incr2->Opcode() == Op_AddI ? T_INT : T_LONG; 4053 jlong stride_con2 = incr2->in(2)->get_integer_as_long(stride_con2_bt); 4054 4055 // The ratio of the two strides cannot be represented as an int 4056 // if stride_con2 is min_jint (or min_jlong, respectively) and 4057 // stride_con is -1. 4058 if (stride_con2 == min_signed_integer(stride_con2_bt) && stride_con == -1) { 4059 continue; 4060 } 4061 4062 // The general case here gets a little tricky. We want to find the 4063 // GCD of all possible parallel IV's and make a new IV using this 4064 // GCD for the loop. Then all possible IVs are simple multiples of 4065 // the GCD. In practice, this will cover very few extra loops. 4066 // Instead we require 'stride_con2' to be a multiple of 'stride_con', 4067 // where +/-1 is the common case, but other integer multiples are 4068 // also easy to handle. 4069 jlong ratio_con = stride_con2 / stride_con; 4070 4071 if ((ratio_con * stride_con) != stride_con2) { // Check for exact (no remainder) 4072 continue; 4073 } 4074 4075 #ifndef PRODUCT 4076 if (TraceLoopOpts) { 4077 tty->print("Parallel IV: %d ", phi2->_idx); 4078 loop->dump_head(); 4079 } 4080 #endif 4081 4082 // Convert to using the trip counter. The parallel induction 4083 // variable differs from the trip counter by a loop-invariant 4084 // amount, the difference between their respective initial values. 4085 // It is scaled by the 'ratio_con'. 4086 Node* ratio = integercon(ratio_con, stride_con2_bt); 4087 4088 Node* init_converted = insert_convert_node_if_needed(stride_con2_bt, init); 4089 Node* phi_converted = insert_convert_node_if_needed(stride_con2_bt, phi); 4090 4091 Node* ratio_init = MulNode::make(init_converted, ratio, stride_con2_bt); 4092 _igvn.register_new_node_with_optimizer(ratio_init, init_converted); 4093 set_early_ctrl(ratio_init, false); 4094 4095 Node* diff = SubNode::make(init2, ratio_init, stride_con2_bt); 4096 _igvn.register_new_node_with_optimizer(diff, init2); 4097 set_early_ctrl(diff, false); 4098 4099 Node* ratio_idx = MulNode::make(phi_converted, ratio, stride_con2_bt); 4100 _igvn.register_new_node_with_optimizer(ratio_idx, phi_converted); 4101 set_ctrl(ratio_idx, cl); 4102 4103 Node* add = AddNode::make(ratio_idx, diff, stride_con2_bt); 4104 _igvn.register_new_node_with_optimizer(add); 4105 set_ctrl(add, cl); 4106 4107 _igvn.replace_node( phi2, add ); 4108 // Sometimes an induction variable is unused 4109 if (add->outcnt() == 0) { 4110 _igvn.remove_dead_node(add); 4111 } 4112 --i; // deleted this phi; rescan starting with next position 4113 } 4114 } 4115 4116 Node* PhaseIdealLoop::insert_convert_node_if_needed(BasicType target, Node* input) { 4117 BasicType source = _igvn.type(input)->basic_type(); 4118 if (source == target) { 4119 return input; 4120 } 4121 4122 Node* converted = ConvertNode::create_convert(source, target, input); 4123 _igvn.register_new_node_with_optimizer(converted, input); 4124 set_early_ctrl(converted, false); 4125 4126 return converted; 4127 } 4128 4129 void IdealLoopTree::remove_safepoints(PhaseIdealLoop* phase, bool keep_one) { 4130 Node* keep = nullptr; 4131 if (keep_one) { 4132 // Look for a safepoint on the idom-path. 4133 for (Node* i = tail(); i != _head; i = phase->idom(i)) { 4134 if (i->Opcode() == Op_SafePoint && phase->get_loop(i) == this) { 4135 keep = i; 4136 break; // Found one 4137 } 4138 } 4139 } 4140 4141 // Don't remove any safepoints if it is requested to keep a single safepoint and 4142 // no safepoint was found on idom-path. It is not safe to remove any safepoint 4143 // in this case since there's no safepoint dominating all paths in the loop body. 4144 bool prune = !keep_one || keep != nullptr; 4145 4146 // Delete other safepoints in this loop. 4147 Node_List* sfpts = _safepts; 4148 if (prune && sfpts != nullptr) { 4149 assert(keep == nullptr || keep->Opcode() == Op_SafePoint, "not safepoint"); 4150 for (uint i = 0; i < sfpts->size(); i++) { 4151 Node* n = sfpts->at(i); 4152 assert(phase->get_loop(n) == this, ""); 4153 if (n != keep && phase->is_deleteable_safept(n)) { 4154 phase->lazy_replace(n, n->in(TypeFunc::Control)); 4155 } 4156 } 4157 } 4158 } 4159 4160 //------------------------------counted_loop----------------------------------- 4161 // Convert to counted loops where possible 4162 void IdealLoopTree::counted_loop( PhaseIdealLoop *phase ) { 4163 4164 // For grins, set the inner-loop flag here 4165 if (!_child) { 4166 if (_head->is_Loop()) _head->as_Loop()->set_inner_loop(); 4167 } 4168 4169 IdealLoopTree* loop = this; 4170 if (_head->is_CountedLoop() || 4171 phase->is_counted_loop(_head, loop, T_INT)) { 4172 4173 if (LoopStripMiningIter == 0 || _head->as_CountedLoop()->is_strip_mined()) { 4174 // Indicate we do not need a safepoint here 4175 _has_sfpt = 1; 4176 } 4177 4178 // Remove safepoints 4179 bool keep_one_sfpt = !(_has_call || _has_sfpt); 4180 remove_safepoints(phase, keep_one_sfpt); 4181 4182 // Look for induction variables 4183 phase->replace_parallel_iv(this); 4184 } else if (_head->is_LongCountedLoop() || 4185 phase->is_counted_loop(_head, loop, T_LONG)) { 4186 remove_safepoints(phase, true); 4187 } else { 4188 assert(!_head->is_Loop() || !_head->as_Loop()->is_loop_nest_inner_loop(), "transformation to counted loop should not fail"); 4189 if (_parent != nullptr && !_irreducible) { 4190 // Not a counted loop. Keep one safepoint. 4191 bool keep_one_sfpt = true; 4192 remove_safepoints(phase, keep_one_sfpt); 4193 } 4194 } 4195 4196 // Recursively 4197 assert(loop->_child != this || (loop->_head->as_Loop()->is_OuterStripMinedLoop() && _head->as_CountedLoop()->is_strip_mined()), "what kind of loop was added?"); 4198 assert(loop->_child != this || (loop->_child->_child == nullptr && loop->_child->_next == nullptr), "would miss some loops"); 4199 if (loop->_child && loop->_child != this) loop->_child->counted_loop(phase); 4200 if (loop->_next) loop->_next ->counted_loop(phase); 4201 } 4202 4203 4204 // The Estimated Loop Clone Size: 4205 // CloneFactor * (~112% * BodySize + BC) + CC + FanOutTerm, 4206 // where BC and CC are totally ad-hoc/magic "body" and "clone" constants, 4207 // respectively, used to ensure that the node usage estimates made are on the 4208 // safe side, for the most part. The FanOutTerm is an attempt to estimate the 4209 // possible additional/excessive nodes generated due to data and control flow 4210 // merging, for edges reaching outside the loop. 4211 uint IdealLoopTree::est_loop_clone_sz(uint factor) const { 4212 4213 precond(0 < factor && factor < 16); 4214 4215 uint const bc = 13; 4216 uint const cc = 17; 4217 uint const sz = _body.size() + (_body.size() + 7) / 2; 4218 uint estimate = factor * (sz + bc) + cc; 4219 4220 assert((estimate - cc) / factor == sz + bc, "overflow"); 4221 4222 return estimate + est_loop_flow_merge_sz(); 4223 } 4224 4225 // The Estimated Loop (full-) Unroll Size: 4226 // UnrollFactor * (~106% * BodySize) + CC + FanOutTerm, 4227 // where CC is a (totally) ad-hoc/magic "clone" constant, used to ensure that 4228 // node usage estimates made are on the safe side, for the most part. This is 4229 // a "light" version of the loop clone size calculation (above), based on the 4230 // assumption that most of the loop-construct overhead will be unraveled when 4231 // (fully) unrolled. Defined for unroll factors larger or equal to one (>=1), 4232 // including an overflow check and returning UINT_MAX in case of an overflow. 4233 uint IdealLoopTree::est_loop_unroll_sz(uint factor) const { 4234 4235 precond(factor > 0); 4236 4237 // Take into account that after unroll conjoined heads and tails will fold. 4238 uint const b0 = _body.size() - EMPTY_LOOP_SIZE; 4239 uint const cc = 7; 4240 uint const sz = b0 + (b0 + 15) / 16; 4241 uint estimate = factor * sz + cc; 4242 4243 if ((estimate - cc) / factor != sz) { 4244 return UINT_MAX; 4245 } 4246 4247 return estimate + est_loop_flow_merge_sz(); 4248 } 4249 4250 // Estimate the growth effect (in nodes) of merging control and data flow when 4251 // cloning a loop body, based on the amount of control and data flow reaching 4252 // outside of the (current) loop body. 4253 uint IdealLoopTree::est_loop_flow_merge_sz() const { 4254 4255 uint ctrl_edge_out_cnt = 0; 4256 uint data_edge_out_cnt = 0; 4257 4258 for (uint i = 0; i < _body.size(); i++) { 4259 Node* node = _body.at(i); 4260 uint outcnt = node->outcnt(); 4261 4262 for (uint k = 0; k < outcnt; k++) { 4263 Node* out = node->raw_out(k); 4264 if (out == nullptr) continue; 4265 if (out->is_CFG()) { 4266 if (!is_member(_phase->get_loop(out))) { 4267 ctrl_edge_out_cnt++; 4268 } 4269 } else if (_phase->has_ctrl(out)) { 4270 Node* ctrl = _phase->get_ctrl(out); 4271 assert(ctrl != nullptr, "must be"); 4272 assert(ctrl->is_CFG(), "must be"); 4273 if (!is_member(_phase->get_loop(ctrl))) { 4274 data_edge_out_cnt++; 4275 } 4276 } 4277 } 4278 } 4279 // Use data and control count (x2.0) in estimate iff both are > 0. This is 4280 // a rather pessimistic estimate for the most part, in particular for some 4281 // complex loops, but still not enough to capture all loops. 4282 if (ctrl_edge_out_cnt > 0 && data_edge_out_cnt > 0) { 4283 return 2 * (ctrl_edge_out_cnt + data_edge_out_cnt); 4284 } 4285 return 0; 4286 } 4287 4288 #ifndef PRODUCT 4289 //------------------------------dump_head-------------------------------------- 4290 // Dump 1 liner for loop header info 4291 void IdealLoopTree::dump_head() { 4292 tty->sp(2 * _nest); 4293 tty->print("Loop: N%d/N%d ", _head->_idx, _tail->_idx); 4294 if (_irreducible) tty->print(" IRREDUCIBLE"); 4295 Node* entry = _head->is_Loop() ? _head->as_Loop()->skip_strip_mined(-1)->in(LoopNode::EntryControl) 4296 : _head->in(LoopNode::EntryControl); 4297 const Predicates predicates(entry); 4298 if (predicates.loop_limit_check_predicate_block()->is_non_empty()) { 4299 tty->print(" limit_check"); 4300 } 4301 if (UseLoopPredicate) { 4302 if (UseProfiledLoopPredicate && predicates.profiled_loop_predicate_block()->is_non_empty()) { 4303 tty->print(" profile_predicated"); 4304 } 4305 if (predicates.loop_predicate_block()->is_non_empty()) { 4306 tty->print(" predicated"); 4307 } 4308 } 4309 if (_head->is_CountedLoop()) { 4310 CountedLoopNode *cl = _head->as_CountedLoop(); 4311 tty->print(" counted"); 4312 4313 Node* init_n = cl->init_trip(); 4314 if (init_n != nullptr && init_n->is_Con()) 4315 tty->print(" [%d,", cl->init_trip()->get_int()); 4316 else 4317 tty->print(" [int,"); 4318 Node* limit_n = cl->limit(); 4319 if (limit_n != nullptr && limit_n->is_Con()) 4320 tty->print("%d),", cl->limit()->get_int()); 4321 else 4322 tty->print("int),"); 4323 int stride_con = cl->stride_con(); 4324 if (stride_con > 0) tty->print("+"); 4325 tty->print("%d", stride_con); 4326 4327 tty->print(" (%0.f iters) ", cl->profile_trip_cnt()); 4328 4329 if (cl->is_pre_loop ()) tty->print(" pre" ); 4330 if (cl->is_main_loop()) tty->print(" main"); 4331 if (cl->is_post_loop()) tty->print(" post"); 4332 if (cl->is_vectorized_loop()) tty->print(" vector"); 4333 if (range_checks_present()) tty->print(" rc "); 4334 if (cl->is_multiversion_fast_loop()) { tty->print(" multiversion_fast"); } 4335 if (cl->is_multiversion_slow_loop()) { tty->print(" multiversion_slow"); } 4336 if (cl->is_multiversion_delayed_slow_loop()) { tty->print(" multiversion_delayed_slow"); } 4337 } 4338 if (_has_call) tty->print(" has_call"); 4339 if (_has_sfpt) tty->print(" has_sfpt"); 4340 if (_rce_candidate) tty->print(" rce"); 4341 if (_safepts != nullptr && _safepts->size() > 0) { 4342 tty->print(" sfpts={"); _safepts->dump_simple(); tty->print(" }"); 4343 } 4344 if (_required_safept != nullptr && _required_safept->size() > 0) { 4345 tty->print(" req={"); _required_safept->dump_simple(); tty->print(" }"); 4346 } 4347 if (Verbose) { 4348 tty->print(" body={"); _body.dump_simple(); tty->print(" }"); 4349 } 4350 if (_head->is_Loop() && _head->as_Loop()->is_strip_mined()) { 4351 tty->print(" strip_mined"); 4352 } 4353 tty->cr(); 4354 } 4355 4356 //------------------------------dump------------------------------------------- 4357 // Dump loops by loop tree 4358 void IdealLoopTree::dump() { 4359 dump_head(); 4360 if (_child) _child->dump(); 4361 if (_next) _next ->dump(); 4362 } 4363 4364 #endif 4365 4366 static void log_loop_tree_helper(IdealLoopTree* root, IdealLoopTree* loop, CompileLog* log) { 4367 if (loop == root) { 4368 if (loop->_child != nullptr) { 4369 log->begin_head("loop_tree"); 4370 log->end_head(); 4371 log_loop_tree_helper(root, loop->_child, log); 4372 log->tail("loop_tree"); 4373 assert(loop->_next == nullptr, "what?"); 4374 } 4375 } else if (loop != nullptr) { 4376 Node* head = loop->_head; 4377 log->begin_head("loop"); 4378 log->print(" idx='%d' ", head->_idx); 4379 if (loop->_irreducible) log->print("irreducible='1' "); 4380 if (head->is_Loop()) { 4381 if (head->as_Loop()->is_inner_loop()) log->print("inner_loop='1' "); 4382 if (head->as_Loop()->is_partial_peel_loop()) log->print("partial_peel_loop='1' "); 4383 } else if (head->is_CountedLoop()) { 4384 CountedLoopNode* cl = head->as_CountedLoop(); 4385 if (cl->is_pre_loop()) log->print("pre_loop='%d' ", cl->main_idx()); 4386 if (cl->is_main_loop()) log->print("main_loop='%d' ", cl->_idx); 4387 if (cl->is_post_loop()) log->print("post_loop='%d' ", cl->main_idx()); 4388 } 4389 log->end_head(); 4390 log_loop_tree_helper(root, loop->_child, log); 4391 log->tail("loop"); 4392 log_loop_tree_helper(root, loop->_next, log); 4393 } 4394 } 4395 4396 void PhaseIdealLoop::log_loop_tree() { 4397 if (C->log() != nullptr) { 4398 log_loop_tree_helper(_ltree_root, _ltree_root, C->log()); 4399 } 4400 } 4401 4402 // Eliminate all Parse and Template Assertion Predicates that are not associated with a loop anymore. The eliminated 4403 // predicates will be removed during the next round of IGVN. 4404 void PhaseIdealLoop::eliminate_useless_predicates() const { 4405 if (C->parse_predicate_count() == 0 && C->template_assertion_predicate_count() == 0) { 4406 return; // No predicates left. 4407 } 4408 4409 EliminateUselessPredicates eliminate_useless_predicates(_igvn, _ltree_root); 4410 eliminate_useless_predicates.eliminate(); 4411 } 4412 4413 // If a post or main loop is removed due to an assert predicate, the opaque that guards the loop is not needed anymore 4414 void PhaseIdealLoop::eliminate_useless_zero_trip_guard() { 4415 if (_zero_trip_guard_opaque_nodes.size() == 0) { 4416 return; 4417 } 4418 Unique_Node_List useful_zero_trip_guard_opaques_nodes; 4419 for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) { 4420 IdealLoopTree* lpt = iter.current(); 4421 if (lpt->_child == nullptr && lpt->is_counted()) { 4422 CountedLoopNode* head = lpt->_head->as_CountedLoop(); 4423 Node* opaque = head->is_canonical_loop_entry(); 4424 if (opaque != nullptr) { 4425 useful_zero_trip_guard_opaques_nodes.push(opaque); 4426 } 4427 } 4428 } 4429 for (uint i = 0; i < _zero_trip_guard_opaque_nodes.size(); ++i) { 4430 OpaqueZeroTripGuardNode* opaque = ((OpaqueZeroTripGuardNode*)_zero_trip_guard_opaque_nodes.at(i)); 4431 DEBUG_ONLY(CountedLoopNode* guarded_loop = opaque->guarded_loop()); 4432 if (!useful_zero_trip_guard_opaques_nodes.member(opaque)) { 4433 IfNode* iff = opaque->if_node(); 4434 IdealLoopTree* loop = get_loop(iff); 4435 while (loop != _ltree_root && loop != nullptr) { 4436 loop = loop->_parent; 4437 } 4438 if (loop == nullptr) { 4439 // unreachable from _ltree_root: zero trip guard is in a newly discovered infinite loop. 4440 // We can't tell if the opaque node is useful or not 4441 assert(guarded_loop == nullptr || guarded_loop->is_in_infinite_subgraph(), ""); 4442 } else { 4443 assert(guarded_loop == nullptr, ""); 4444 this->_igvn.replace_node(opaque, opaque->in(1)); 4445 } 4446 } else { 4447 assert(guarded_loop != nullptr, ""); 4448 } 4449 } 4450 } 4451 4452 void PhaseIdealLoop::eliminate_useless_multiversion_if() { 4453 if (_multiversion_opaque_nodes.size() == 0) { 4454 return; 4455 } 4456 4457 ResourceMark rm; 4458 Unique_Node_List useful_multiversioning_opaque_nodes; 4459 4460 // The OpaqueMultiversioning is only used from the fast main loop in AutoVectorization, to add 4461 // speculative runtime-checks to the multiversion_if. Thus, a OpaqueMultiversioning is only 4462 // useful if it can be found from a fast main loop. If it can not be found from a fast main loop, 4463 // then we cannot ever use that multiversion_if to add more speculative runtime-checks, and hence 4464 // it is useless. If it is still in delayed mode, i.e. has not yet had any runtime-checks added, 4465 // then we can let it constant fold towards the fast loop. 4466 for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) { 4467 IdealLoopTree* lpt = iter.current(); 4468 if (lpt->_child == nullptr && lpt->is_counted()) { 4469 CountedLoopNode* head = lpt->_head->as_CountedLoop(); 4470 if (head->is_main_loop() && head->is_multiversion_fast_loop()) { 4471 // There are fast_loop pre/main/post loops, but the finding traversal starts at the main 4472 // loop, and traverses via the fast pre loop to the multiversion_if. 4473 IfNode* multiversion_if = head->find_multiversion_if_from_multiversion_fast_main_loop(); 4474 if (multiversion_if != nullptr) { 4475 useful_multiversioning_opaque_nodes.push(multiversion_if->in(1)->as_OpaqueMultiversioning()); 4476 } else { 4477 // We could not find the multiversion_if, and would never find it again. Remove the 4478 // multiversion marking for consistency. 4479 head->set_no_multiversion(); 4480 } 4481 } 4482 } 4483 } 4484 4485 for (uint i = 0; i < _multiversion_opaque_nodes.size(); i++) { 4486 OpaqueMultiversioningNode* opaque = _multiversion_opaque_nodes.at(i)->as_OpaqueMultiversioning(); 4487 if (!useful_multiversioning_opaque_nodes.member(opaque)) { 4488 if (opaque->is_delayed_slow_loop()) { 4489 // We cannot hack the node directly, otherwise the slow_loop will complain that it cannot 4490 // find the multiversioning opaque node. Instead, we mark the opaque node as useless, and 4491 // it can be constant folded during IGVN. 4492 opaque->mark_useless(_igvn); 4493 } 4494 } 4495 } 4496 } 4497 4498 //------------------------process_expensive_nodes----------------------------- 4499 // Expensive nodes have their control input set to prevent the GVN 4500 // from commoning them and as a result forcing the resulting node to 4501 // be in a more frequent path. Use CFG information here, to change the 4502 // control inputs so that some expensive nodes can be commoned while 4503 // not executed more frequently. 4504 bool PhaseIdealLoop::process_expensive_nodes() { 4505 assert(OptimizeExpensiveOps, "optimization off?"); 4506 4507 // Sort nodes to bring similar nodes together 4508 C->sort_expensive_nodes(); 4509 4510 bool progress = false; 4511 4512 for (int i = 0; i < C->expensive_count(); ) { 4513 Node* n = C->expensive_node(i); 4514 int start = i; 4515 // Find nodes similar to n 4516 i++; 4517 for (; i < C->expensive_count() && Compile::cmp_expensive_nodes(n, C->expensive_node(i)) == 0; i++); 4518 int end = i; 4519 // And compare them two by two 4520 for (int j = start; j < end; j++) { 4521 Node* n1 = C->expensive_node(j); 4522 if (is_node_unreachable(n1)) { 4523 continue; 4524 } 4525 for (int k = j+1; k < end; k++) { 4526 Node* n2 = C->expensive_node(k); 4527 if (is_node_unreachable(n2)) { 4528 continue; 4529 } 4530 4531 assert(n1 != n2, "should be pair of nodes"); 4532 4533 Node* c1 = n1->in(0); 4534 Node* c2 = n2->in(0); 4535 4536 Node* parent_c1 = c1; 4537 Node* parent_c2 = c2; 4538 4539 // The call to get_early_ctrl_for_expensive() moves the 4540 // expensive nodes up but stops at loops that are in a if 4541 // branch. See whether we can exit the loop and move above the 4542 // If. 4543 if (c1->is_Loop()) { 4544 parent_c1 = c1->in(1); 4545 } 4546 if (c2->is_Loop()) { 4547 parent_c2 = c2->in(1); 4548 } 4549 4550 if (parent_c1 == parent_c2) { 4551 _igvn._worklist.push(n1); 4552 _igvn._worklist.push(n2); 4553 continue; 4554 } 4555 4556 // Look for identical expensive node up the dominator chain. 4557 if (is_dominator(c1, c2)) { 4558 c2 = c1; 4559 } else if (is_dominator(c2, c1)) { 4560 c1 = c2; 4561 } else if (parent_c1->is_Proj() && parent_c1->in(0)->is_If() && 4562 parent_c2->is_Proj() && parent_c1->in(0) == parent_c2->in(0)) { 4563 // Both branches have the same expensive node so move it up 4564 // before the if. 4565 c1 = c2 = idom(parent_c1->in(0)); 4566 } 4567 // Do the actual moves 4568 if (n1->in(0) != c1) { 4569 _igvn.replace_input_of(n1, 0, c1); 4570 progress = true; 4571 } 4572 if (n2->in(0) != c2) { 4573 _igvn.replace_input_of(n2, 0, c2); 4574 progress = true; 4575 } 4576 } 4577 } 4578 } 4579 4580 return progress; 4581 } 4582 4583 //============================================================================= 4584 //----------------------------build_and_optimize------------------------------- 4585 // Create a PhaseLoop. Build the ideal Loop tree. Map each Ideal Node to 4586 // its corresponding LoopNode. If 'optimize' is true, do some loop cleanups. 4587 void PhaseIdealLoop::build_and_optimize() { 4588 assert(!C->post_loop_opts_phase(), "no loop opts allowed"); 4589 4590 bool do_split_ifs = (_mode == LoopOptsDefault); 4591 bool skip_loop_opts = (_mode == LoopOptsNone); 4592 bool do_max_unroll = (_mode == LoopOptsMaxUnroll); 4593 4594 4595 int old_progress = C->major_progress(); 4596 uint orig_worklist_size = _igvn._worklist.size(); 4597 4598 // Reset major-progress flag for the driver's heuristics 4599 C->clear_major_progress(); 4600 4601 #ifndef PRODUCT 4602 // Capture for later assert 4603 uint unique = C->unique(); 4604 _loop_invokes++; 4605 _loop_work += unique; 4606 #endif 4607 4608 // True if the method has at least 1 irreducible loop 4609 _has_irreducible_loops = false; 4610 4611 _created_loop_node = false; 4612 4613 VectorSet visited; 4614 // Pre-grow the mapping from Nodes to IdealLoopTrees. 4615 _loop_or_ctrl.map(C->unique(), nullptr); 4616 memset(_loop_or_ctrl.adr(), 0, wordSize * C->unique()); 4617 4618 // Pre-build the top-level outermost loop tree entry 4619 _ltree_root = new IdealLoopTree( this, C->root(), C->root() ); 4620 // Do not need a safepoint at the top level 4621 _ltree_root->_has_sfpt = 1; 4622 4623 // Initialize Dominators. 4624 // Checked in clone_loop_predicate() during beautify_loops(). 4625 _idom_size = 0; 4626 _idom = nullptr; 4627 _dom_depth = nullptr; 4628 _dom_stk = nullptr; 4629 4630 // Empty pre-order array 4631 allocate_preorders(); 4632 4633 // Build a loop tree on the fly. Build a mapping from CFG nodes to 4634 // IdealLoopTree entries. Data nodes are NOT walked. 4635 build_loop_tree(); 4636 // Check for bailout, and return 4637 if (C->failing()) { 4638 return; 4639 } 4640 4641 // Verify that the has_loops() flag set at parse time is consistent with the just built loop tree. When the back edge 4642 // is an exception edge, parsing doesn't set has_loops(). 4643 assert(_ltree_root->_child == nullptr || C->has_loops() || C->has_exception_backedge(), "parsing found no loops but there are some"); 4644 // No loops after all 4645 if( !_ltree_root->_child && !_verify_only ) C->set_has_loops(false); 4646 4647 // There should always be an outer loop containing the Root and Return nodes. 4648 // If not, we have a degenerate empty program. Bail out in this case. 4649 if (!has_node(C->root())) { 4650 if (!_verify_only) { 4651 C->clear_major_progress(); 4652 assert(false, "empty program detected during loop optimization"); 4653 C->record_method_not_compilable("empty program detected during loop optimization"); 4654 } 4655 return; 4656 } 4657 4658 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 4659 // Nothing to do, so get out 4660 bool stop_early = !C->has_loops() && !skip_loop_opts && !do_split_ifs && !do_max_unroll && !_verify_me && 4661 !_verify_only && !bs->is_gc_specific_loop_opts_pass(_mode); 4662 bool do_expensive_nodes = C->should_optimize_expensive_nodes(_igvn); 4663 bool strip_mined_loops_expanded = bs->strip_mined_loops_expanded(_mode); 4664 if (stop_early && !do_expensive_nodes) { 4665 return; 4666 } 4667 4668 // Set loop nesting depth 4669 _ltree_root->set_nest( 0 ); 4670 4671 // Split shared headers and insert loop landing pads. 4672 // Do not bother doing this on the Root loop of course. 4673 if( !_verify_me && !_verify_only && _ltree_root->_child ) { 4674 C->print_method(PHASE_BEFORE_BEAUTIFY_LOOPS, 3); 4675 if( _ltree_root->_child->beautify_loops( this ) ) { 4676 // Re-build loop tree! 4677 _ltree_root->_child = nullptr; 4678 _loop_or_ctrl.clear(); 4679 reallocate_preorders(); 4680 build_loop_tree(); 4681 // Check for bailout, and return 4682 if (C->failing()) { 4683 return; 4684 } 4685 // Reset loop nesting depth 4686 _ltree_root->set_nest( 0 ); 4687 4688 C->print_method(PHASE_AFTER_BEAUTIFY_LOOPS, 3); 4689 } 4690 } 4691 4692 // Build Dominators for elision of null checks & loop finding. 4693 // Since nodes do not have a slot for immediate dominator, make 4694 // a persistent side array for that info indexed on node->_idx. 4695 _idom_size = C->unique(); 4696 _idom = NEW_RESOURCE_ARRAY( Node*, _idom_size ); 4697 _dom_depth = NEW_RESOURCE_ARRAY( uint, _idom_size ); 4698 _dom_stk = nullptr; // Allocated on demand in recompute_dom_depth 4699 memset( _dom_depth, 0, _idom_size * sizeof(uint) ); 4700 4701 Dominators(); 4702 4703 if (!_verify_only) { 4704 // As a side effect, Dominators removed any unreachable CFG paths 4705 // into RegionNodes. It doesn't do this test against Root, so 4706 // we do it here. 4707 for( uint i = 1; i < C->root()->req(); i++ ) { 4708 if (!_loop_or_ctrl[C->root()->in(i)->_idx]) { // Dead path into Root? 4709 _igvn.delete_input_of(C->root(), i); 4710 i--; // Rerun same iteration on compressed edges 4711 } 4712 } 4713 4714 // Given dominators, try to find inner loops with calls that must 4715 // always be executed (call dominates loop tail). These loops do 4716 // not need a separate safepoint. 4717 Node_List cisstack; 4718 _ltree_root->check_safepts(visited, cisstack); 4719 } 4720 4721 // Walk the DATA nodes and place into loops. Find earliest control 4722 // node. For CFG nodes, the _loop_or_ctrl array starts out and remains 4723 // holding the associated IdealLoopTree pointer. For DATA nodes, the 4724 // _loop_or_ctrl array holds the earliest legal controlling CFG node. 4725 4726 // Allocate stack with enough space to avoid frequent realloc 4727 int stack_size = (C->live_nodes() >> 1) + 16; // (live_nodes>>1)+16 from Java2D stats 4728 Node_Stack nstack(stack_size); 4729 4730 visited.clear(); 4731 Node_List worklist; 4732 // Don't need C->root() on worklist since 4733 // it will be processed among C->top() inputs 4734 worklist.push(C->top()); 4735 visited.set(C->top()->_idx); // Set C->top() as visited now 4736 build_loop_early( visited, worklist, nstack ); 4737 4738 // Given early legal placement, try finding counted loops. This placement 4739 // is good enough to discover most loop invariants. 4740 if (!_verify_me && !_verify_only && !strip_mined_loops_expanded) { 4741 _ltree_root->counted_loop( this ); 4742 } 4743 4744 // Find latest loop placement. Find ideal loop placement. 4745 visited.clear(); 4746 init_dom_lca_tags(); 4747 // Need C->root() on worklist when processing outs 4748 worklist.push(C->root()); 4749 NOT_PRODUCT( C->verify_graph_edges(); ) 4750 worklist.push(C->top()); 4751 build_loop_late( visited, worklist, nstack ); 4752 if (C->failing()) { return; } 4753 4754 if (_verify_only) { 4755 C->restore_major_progress(old_progress); 4756 assert(C->unique() == unique, "verification _mode made Nodes? ? ?"); 4757 assert(_igvn._worklist.size() == orig_worklist_size, "shouldn't push anything"); 4758 return; 4759 } 4760 4761 // clear out the dead code after build_loop_late 4762 while (_deadlist.size()) { 4763 _igvn.remove_globally_dead_node(_deadlist.pop()); 4764 } 4765 4766 eliminate_useless_zero_trip_guard(); 4767 eliminate_useless_multiversion_if(); 4768 4769 if (stop_early) { 4770 assert(do_expensive_nodes, "why are we here?"); 4771 if (process_expensive_nodes()) { 4772 // If we made some progress when processing expensive nodes then 4773 // the IGVN may modify the graph in a way that will allow us to 4774 // make some more progress: we need to try processing expensive 4775 // nodes again. 4776 C->set_major_progress(); 4777 } 4778 return; 4779 } 4780 4781 // Some parser-inserted loop predicates could never be used by loop 4782 // predication or they were moved away from loop during some optimizations. 4783 // For example, peeling. Eliminate them before next loop optimizations. 4784 eliminate_useless_predicates(); 4785 4786 #ifndef PRODUCT 4787 C->verify_graph_edges(); 4788 if (_verify_me) { // Nested verify pass? 4789 // Check to see if the verify _mode is broken 4790 assert(C->unique() == unique, "non-optimize _mode made Nodes? ? ?"); 4791 return; 4792 } 4793 DEBUG_ONLY( if (VerifyLoopOptimizations) { verify(); } ); 4794 if (TraceLoopOpts && C->has_loops()) { 4795 _ltree_root->dump(); 4796 } 4797 #endif 4798 4799 if (skip_loop_opts) { 4800 C->restore_major_progress(old_progress); 4801 return; 4802 } 4803 4804 if (do_max_unroll) { 4805 for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) { 4806 IdealLoopTree* lpt = iter.current(); 4807 if (lpt->is_innermost() && lpt->_allow_optimizations && !lpt->_has_call && lpt->is_counted()) { 4808 lpt->compute_trip_count(this); 4809 if (!lpt->do_one_iteration_loop(this) && 4810 !lpt->do_remove_empty_loop(this)) { 4811 AutoNodeBudget node_budget(this); 4812 if (lpt->_head->as_CountedLoop()->is_normal_loop() && 4813 lpt->policy_maximally_unroll(this)) { 4814 memset( worklist.adr(), 0, worklist.max()*sizeof(Node*) ); 4815 do_maximally_unroll(lpt, worklist); 4816 } 4817 } 4818 } 4819 } 4820 4821 C->restore_major_progress(old_progress); 4822 return; 4823 } 4824 4825 if (bs->optimize_loops(this, _mode, visited, nstack, worklist)) { 4826 return; 4827 } 4828 4829 if (ReassociateInvariants && !C->major_progress()) { 4830 // Reassociate invariants and prep for split_thru_phi 4831 for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) { 4832 IdealLoopTree* lpt = iter.current(); 4833 if (!lpt->is_loop()) { 4834 continue; 4835 } 4836 Node* head = lpt->_head; 4837 if (!head->is_BaseCountedLoop() || !lpt->is_innermost()) continue; 4838 4839 // check for vectorized loops, any reassociation of invariants was already done 4840 if (head->is_CountedLoop()) { 4841 if (head->as_CountedLoop()->is_unroll_only()) { 4842 continue; 4843 } else { 4844 AutoNodeBudget node_budget(this); 4845 lpt->reassociate_invariants(this); 4846 } 4847 } 4848 // Because RCE opportunities can be masked by split_thru_phi, 4849 // look for RCE candidates and inhibit split_thru_phi 4850 // on just their loop-phi's for this pass of loop opts 4851 if (SplitIfBlocks && do_split_ifs && 4852 head->as_BaseCountedLoop()->is_valid_counted_loop(head->as_BaseCountedLoop()->bt()) && 4853 (lpt->policy_range_check(this, true, T_LONG) || 4854 (head->is_CountedLoop() && lpt->policy_range_check(this, true, T_INT)))) { 4855 lpt->_rce_candidate = 1; // = true 4856 } 4857 } 4858 } 4859 4860 // Check for aggressive application of split-if and other transforms 4861 // that require basic-block info (like cloning through Phi's) 4862 if (!C->major_progress() && SplitIfBlocks && do_split_ifs) { 4863 visited.clear(); 4864 split_if_with_blocks(visited, nstack); 4865 if (C->failing()) { 4866 return; 4867 } 4868 DEBUG_ONLY( if (VerifyLoopOptimizations) { verify(); } ); 4869 } 4870 4871 if (!C->major_progress() && do_expensive_nodes && process_expensive_nodes()) { 4872 C->set_major_progress(); 4873 } 4874 4875 // Perform loop predication before iteration splitting 4876 if (UseLoopPredicate && C->has_loops() && !C->major_progress() && (C->parse_predicate_count() > 0)) { 4877 _ltree_root->_child->loop_predication(this); 4878 } 4879 4880 if (OptimizeFill && UseLoopPredicate && C->has_loops() && !C->major_progress()) { 4881 if (do_intrinsify_fill()) { 4882 C->set_major_progress(); 4883 } 4884 } 4885 4886 // Perform iteration-splitting on inner loops. Split iterations to avoid 4887 // range checks or one-shot null checks. 4888 4889 // If split-if's didn't hack the graph too bad (no CFG changes) 4890 // then do loop opts. 4891 if (C->has_loops() && !C->major_progress()) { 4892 memset( worklist.adr(), 0, worklist.max()*sizeof(Node*) ); 4893 _ltree_root->_child->iteration_split( this, worklist ); 4894 // No verify after peeling! GCM has hoisted code out of the loop. 4895 // After peeling, the hoisted code could sink inside the peeled area. 4896 // The peeling code does not try to recompute the best location for 4897 // all the code before the peeled area, so the verify pass will always 4898 // complain about it. 4899 } 4900 4901 // Check for bailout, and return 4902 if (C->failing()) { 4903 return; 4904 } 4905 4906 // Do verify graph edges in any case 4907 NOT_PRODUCT( C->verify_graph_edges(); ); 4908 4909 if (!do_split_ifs) { 4910 // We saw major progress in Split-If to get here. We forced a 4911 // pass with unrolling and not split-if, however more split-if's 4912 // might make progress. If the unrolling didn't make progress 4913 // then the major-progress flag got cleared and we won't try 4914 // another round of Split-If. In particular the ever-common 4915 // instance-of/check-cast pattern requires at least 2 rounds of 4916 // Split-If to clear out. 4917 C->set_major_progress(); 4918 } 4919 4920 // Repeat loop optimizations if new loops were seen 4921 if (created_loop_node()) { 4922 C->set_major_progress(); 4923 } 4924 4925 // Auto-vectorize main-loop 4926 if (C->do_superword() && C->has_loops() && !C->major_progress()) { 4927 Compile::TracePhase tp(_t_autoVectorize); 4928 4929 // Shared data structures for all AutoVectorizations, to reduce allocations 4930 // of large arrays. 4931 VSharedData vshared; 4932 for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) { 4933 IdealLoopTree* lpt = iter.current(); 4934 AutoVectorizeStatus status = auto_vectorize(lpt, vshared); 4935 4936 if (status == AutoVectorizeStatus::TriedAndFailed) { 4937 // We tried vectorization, but failed. From now on only unroll the loop. 4938 CountedLoopNode* cl = lpt->_head->as_CountedLoop(); 4939 if (cl->has_passed_slp()) { 4940 C->set_major_progress(); 4941 cl->set_notpassed_slp(); 4942 cl->mark_do_unroll_only(); 4943 } 4944 } 4945 } 4946 } 4947 4948 // Move UnorderedReduction out of counted loop. Can be introduced by AutoVectorization. 4949 if (C->has_loops() && !C->major_progress()) { 4950 for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) { 4951 IdealLoopTree* lpt = iter.current(); 4952 if (lpt->is_counted() && lpt->is_innermost()) { 4953 move_unordered_reduction_out_of_loop(lpt); 4954 } 4955 } 4956 } 4957 4958 // Keep loop predicates and perform optimizations with them 4959 // until no more loop optimizations could be done. 4960 // After that switch predicates off and do more loop optimizations. 4961 if (!C->major_progress() && (C->parse_predicate_count() > 0)) { 4962 C->mark_parse_predicate_nodes_useless(_igvn); 4963 assert(C->parse_predicate_count() == 0, "should be zero now"); 4964 if (TraceLoopOpts) { 4965 tty->print_cr("PredicatesOff"); 4966 } 4967 C->set_major_progress(); 4968 } 4969 } 4970 4971 #ifndef PRODUCT 4972 //------------------------------print_statistics------------------------------- 4973 int PhaseIdealLoop::_loop_invokes=0;// Count of PhaseIdealLoop invokes 4974 int PhaseIdealLoop::_loop_work=0; // Sum of PhaseIdealLoop x unique 4975 volatile int PhaseIdealLoop::_long_loop_candidates=0; // Number of long loops seen 4976 volatile int PhaseIdealLoop::_long_loop_nests=0; // Number of long loops successfully transformed to a nest 4977 volatile int PhaseIdealLoop::_long_loop_counted_loops=0; // Number of long loops successfully transformed to a counted loop 4978 void PhaseIdealLoop::print_statistics() { 4979 tty->print_cr("PhaseIdealLoop=%d, sum _unique=%d, long loops=%d/%d/%d", _loop_invokes, _loop_work, _long_loop_counted_loops, _long_loop_nests, _long_loop_candidates); 4980 } 4981 #endif 4982 4983 #ifdef ASSERT 4984 // Build a verify-only PhaseIdealLoop, and see that it agrees with "this". 4985 void PhaseIdealLoop::verify() const { 4986 ResourceMark rm; 4987 int old_progress = C->major_progress(); 4988 bool success = true; 4989 4990 PhaseIdealLoop phase_verify(_igvn, this); 4991 if (C->failing_internal()) { 4992 return; 4993 } 4994 4995 // Verify ctrl and idom of every node. 4996 success &= verify_idom_and_nodes(C->root(), &phase_verify); 4997 4998 // Verify loop-tree. 4999 success &= _ltree_root->verify_tree(phase_verify._ltree_root); 5000 5001 assert(success, "VerifyLoopOptimizations failed"); 5002 5003 // Major progress was cleared by creating a verify version of PhaseIdealLoop. 5004 C->restore_major_progress(old_progress); 5005 } 5006 5007 // Perform a BFS starting at n, through all inputs. 5008 // Call verify_idom and verify_node on all nodes of BFS traversal. 5009 bool PhaseIdealLoop::verify_idom_and_nodes(Node* root, const PhaseIdealLoop* phase_verify) const { 5010 Unique_Node_List worklist; 5011 worklist.push(root); 5012 bool success = true; 5013 for (uint i = 0; i < worklist.size(); i++) { 5014 Node* n = worklist.at(i); 5015 // process node 5016 success &= verify_idom(n, phase_verify); 5017 success &= verify_loop_ctrl(n, phase_verify); 5018 // visit inputs 5019 for (uint j = 0; j < n->req(); j++) { 5020 if (n->in(j) != nullptr) { 5021 worklist.push(n->in(j)); 5022 } 5023 } 5024 } 5025 return success; 5026 } 5027 5028 // Verify dominator structure (IDOM). 5029 bool PhaseIdealLoop::verify_idom(Node* n, const PhaseIdealLoop* phase_verify) const { 5030 // Verify IDOM for all CFG nodes (except root). 5031 if (!n->is_CFG() || n->is_Root()) { 5032 return true; // pass 5033 } 5034 5035 if (n->_idx >= _idom_size) { 5036 tty->print("CFG Node with no idom: "); 5037 n->dump(); 5038 return false; // fail 5039 } 5040 5041 Node* id = idom_no_update(n); 5042 Node* id_verify = phase_verify->idom_no_update(n); 5043 if (id != id_verify) { 5044 tty->print("Mismatching idom for node: "); 5045 n->dump(); 5046 tty->print(" We have idom: "); 5047 id->dump(); 5048 tty->print(" Verify has idom: "); 5049 id_verify->dump(); 5050 tty->cr(); 5051 return false; // fail 5052 } 5053 return true; // pass 5054 } 5055 5056 // Verify "_loop_or_ctrl": control and loop membership. 5057 // (0) _loop_or_ctrl[i] == nullptr -> node not reachable. 5058 // (1) has_ctrl -> check lowest bit. 1 -> data node. 0 -> ctrl node. 5059 // (2) has_ctrl true: get_ctrl_no_update returns ctrl of data node. 5060 // (3) has_ctrl false: get_loop_idx returns IdealLoopTree for ctrl node. 5061 bool PhaseIdealLoop::verify_loop_ctrl(Node* n, const PhaseIdealLoop* phase_verify) const { 5062 const uint i = n->_idx; 5063 // The loop-tree was built from def to use (top-down). 5064 // The verification happens from use to def (bottom-up). 5065 // We may thus find nodes during verification that are not in the loop-tree. 5066 if (_loop_or_ctrl[i] == nullptr || phase_verify->_loop_or_ctrl[i] == nullptr) { 5067 if (_loop_or_ctrl[i] != nullptr || phase_verify->_loop_or_ctrl[i] != nullptr) { 5068 tty->print_cr("Was reachable in only one. this %d, verify %d.", 5069 _loop_or_ctrl[i] != nullptr, phase_verify->_loop_or_ctrl[i] != nullptr); 5070 n->dump(); 5071 return false; // fail 5072 } 5073 // Not reachable for both. 5074 return true; // pass 5075 } 5076 5077 if (n->is_CFG() == has_ctrl(n)) { 5078 tty->print_cr("Exactly one should be true: %d for is_CFG, %d for has_ctrl.", n->is_CFG(), has_ctrl(n)); 5079 n->dump(); 5080 return false; // fail 5081 } 5082 5083 if (has_ctrl(n) != phase_verify->has_ctrl(n)) { 5084 tty->print_cr("Mismatch has_ctrl: %d for this, %d for verify.", has_ctrl(n), phase_verify->has_ctrl(n)); 5085 n->dump(); 5086 return false; // fail 5087 } else if (has_ctrl(n)) { 5088 assert(phase_verify->has_ctrl(n), "sanity"); 5089 // n is a data node. 5090 // Verify that its ctrl is the same. 5091 5092 // Broken part of VerifyLoopOptimizations (A) 5093 // Reason: 5094 // BUG, wrong control set for example in 5095 // PhaseIdealLoop::split_if_with_blocks 5096 // at "set_ctrl(x, new_ctrl);" 5097 /* 5098 if( _loop_or_ctrl[i] != loop_verify->_loop_or_ctrl[i] && 5099 get_ctrl_no_update(n) != loop_verify->get_ctrl_no_update(n) ) { 5100 tty->print("Mismatched control setting for: "); 5101 n->dump(); 5102 if( fail++ > 10 ) return; 5103 Node *c = get_ctrl_no_update(n); 5104 tty->print("We have it as: "); 5105 if( c->in(0) ) c->dump(); 5106 else tty->print_cr("N%d",c->_idx); 5107 tty->print("Verify thinks: "); 5108 if( loop_verify->has_ctrl(n) ) 5109 loop_verify->get_ctrl_no_update(n)->dump(); 5110 else 5111 loop_verify->get_loop_idx(n)->dump(); 5112 tty->cr(); 5113 } 5114 */ 5115 return true; // pass 5116 } else { 5117 assert(!phase_verify->has_ctrl(n), "sanity"); 5118 // n is a ctrl node. 5119 // Verify that not has_ctrl, and that get_loop_idx is the same. 5120 5121 // Broken part of VerifyLoopOptimizations (B) 5122 // Reason: 5123 // NeverBranch node for example is added to loop outside its scope. 5124 // Once we run build_loop_tree again, it is added to the correct loop. 5125 /* 5126 if (!C->major_progress()) { 5127 // Loop selection can be messed up if we did a major progress 5128 // operation, like split-if. Do not verify in that case. 5129 IdealLoopTree *us = get_loop_idx(n); 5130 IdealLoopTree *them = loop_verify->get_loop_idx(n); 5131 if( us->_head != them->_head || us->_tail != them->_tail ) { 5132 tty->print("Unequals loops for: "); 5133 n->dump(); 5134 if( fail++ > 10 ) return; 5135 tty->print("We have it as: "); 5136 us->dump(); 5137 tty->print("Verify thinks: "); 5138 them->dump(); 5139 tty->cr(); 5140 } 5141 } 5142 */ 5143 return true; // pass 5144 } 5145 } 5146 5147 static int compare_tree(IdealLoopTree* const& a, IdealLoopTree* const& b) { 5148 assert(a != nullptr && b != nullptr, "must be"); 5149 return a->_head->_idx - b->_head->_idx; 5150 } 5151 5152 GrowableArray<IdealLoopTree*> IdealLoopTree::collect_sorted_children() const { 5153 GrowableArray<IdealLoopTree*> children; 5154 IdealLoopTree* child = _child; 5155 while (child != nullptr) { 5156 assert(child->_parent == this, "all must be children of this"); 5157 children.insert_sorted<compare_tree>(child); 5158 child = child->_next; 5159 } 5160 return children; 5161 } 5162 5163 // Verify that tree structures match. Because the CFG can change, siblings 5164 // within the loop tree can be reordered. We attempt to deal with that by 5165 // reordering the verify's loop tree if possible. 5166 bool IdealLoopTree::verify_tree(IdealLoopTree* loop_verify) const { 5167 assert(_head == loop_verify->_head, "mismatched loop head"); 5168 assert(this->_parent != nullptr || this->_next == nullptr, "is_root_loop implies has_no_sibling"); 5169 5170 // Collect the children 5171 GrowableArray<IdealLoopTree*> children = collect_sorted_children(); 5172 GrowableArray<IdealLoopTree*> children_verify = loop_verify->collect_sorted_children(); 5173 5174 bool success = true; 5175 5176 // Compare the two children lists 5177 for (int i = 0, j = 0; i < children.length() || j < children_verify.length(); ) { 5178 IdealLoopTree* child = nullptr; 5179 IdealLoopTree* child_verify = nullptr; 5180 // Read from both lists, if possible. 5181 if (i < children.length()) { 5182 child = children.at(i); 5183 } 5184 if (j < children_verify.length()) { 5185 child_verify = children_verify.at(j); 5186 } 5187 assert(child != nullptr || child_verify != nullptr, "must find at least one"); 5188 if (child != nullptr && child_verify != nullptr && child->_head != child_verify->_head) { 5189 // We found two non-equal children. Select the smaller one. 5190 if (child->_head->_idx < child_verify->_head->_idx) { 5191 child_verify = nullptr; 5192 } else { 5193 child = nullptr; 5194 } 5195 } 5196 // Process the two children, or potentially log the failure if we only found one. 5197 if (child_verify == nullptr) { 5198 if (child->_irreducible && Compile::current()->major_progress()) { 5199 // Irreducible loops can pick a different header (one of its entries). 5200 } else { 5201 tty->print_cr("We have a loop that verify does not have"); 5202 child->dump(); 5203 success = false; 5204 } 5205 i++; // step for this 5206 } else if (child == nullptr) { 5207 if (child_verify->_irreducible && Compile::current()->major_progress()) { 5208 // Irreducible loops can pick a different header (one of its entries). 5209 } else if (child_verify->_head->as_Region()->is_in_infinite_subgraph()) { 5210 // Infinite loops do not get attached to the loop-tree on their first visit. 5211 // "this" runs before "loop_verify". It is thus possible that we find the 5212 // infinite loop only for "child_verify". Only finding it with "child" would 5213 // mean that we lost it, which is not ok. 5214 } else { 5215 tty->print_cr("Verify has a loop that we do not have"); 5216 child_verify->dump(); 5217 success = false; 5218 } 5219 j++; // step for verify 5220 } else { 5221 assert(child->_head == child_verify->_head, "We have both and they are equal"); 5222 success &= child->verify_tree(child_verify); // Recursion 5223 i++; // step for this 5224 j++; // step for verify 5225 } 5226 } 5227 5228 // Broken part of VerifyLoopOptimizations (D) 5229 // Reason: 5230 // split_if has to update the _tail, if it is modified. But that is done by 5231 // checking to what loop the iff belongs to. That info can be wrong, and then 5232 // we do not update the _tail correctly. 5233 /* 5234 Node *tail = _tail; // Inline a non-updating version of 5235 while( !tail->in(0) ) // the 'tail()' call. 5236 tail = tail->in(1); 5237 assert( tail == loop->_tail, "mismatched loop tail" ); 5238 */ 5239 5240 if (_head->is_CountedLoop()) { 5241 CountedLoopNode *cl = _head->as_CountedLoop(); 5242 5243 Node* ctrl = cl->init_control(); 5244 Node* back = cl->back_control(); 5245 assert(ctrl != nullptr && ctrl->is_CFG(), "sane loop in-ctrl"); 5246 assert(back != nullptr && back->is_CFG(), "sane loop backedge"); 5247 cl->loopexit(); // assert implied 5248 } 5249 5250 // Broken part of VerifyLoopOptimizations (E) 5251 // Reason: 5252 // PhaseIdealLoop::split_thru_region creates new nodes for loop that are not added 5253 // to the loop body. Or maybe they are not added to the correct loop. 5254 // at "Node* x = n->clone();" 5255 /* 5256 // Innermost loops need to verify loop bodies, 5257 // but only if no 'major_progress' 5258 int fail = 0; 5259 if (!Compile::current()->major_progress() && _child == nullptr) { 5260 for( uint i = 0; i < _body.size(); i++ ) { 5261 Node *n = _body.at(i); 5262 if (n->outcnt() == 0) continue; // Ignore dead 5263 uint j; 5264 for( j = 0; j < loop->_body.size(); j++ ) 5265 if( loop->_body.at(j) == n ) 5266 break; 5267 if( j == loop->_body.size() ) { // Not found in loop body 5268 // Last ditch effort to avoid assertion: Its possible that we 5269 // have some users (so outcnt not zero) but are still dead. 5270 // Try to find from root. 5271 if (Compile::current()->root()->find(n->_idx)) { 5272 fail++; 5273 tty->print("We have that verify does not: "); 5274 n->dump(); 5275 } 5276 } 5277 } 5278 for( uint i2 = 0; i2 < loop->_body.size(); i2++ ) { 5279 Node *n = loop->_body.at(i2); 5280 if (n->outcnt() == 0) continue; // Ignore dead 5281 uint j; 5282 for( j = 0; j < _body.size(); j++ ) 5283 if( _body.at(j) == n ) 5284 break; 5285 if( j == _body.size() ) { // Not found in loop body 5286 // Last ditch effort to avoid assertion: Its possible that we 5287 // have some users (so outcnt not zero) but are still dead. 5288 // Try to find from root. 5289 if (Compile::current()->root()->find(n->_idx)) { 5290 fail++; 5291 tty->print("Verify has that we do not: "); 5292 n->dump(); 5293 } 5294 } 5295 } 5296 assert( !fail, "loop body mismatch" ); 5297 } 5298 */ 5299 return success; 5300 } 5301 #endif 5302 5303 //------------------------------set_idom--------------------------------------- 5304 void PhaseIdealLoop::set_idom(Node* d, Node* n, uint dom_depth) { 5305 _nesting.check(); // Check if a potential reallocation in the resource arena is safe 5306 uint idx = d->_idx; 5307 if (idx >= _idom_size) { 5308 uint newsize = next_power_of_2(idx); 5309 _idom = REALLOC_RESOURCE_ARRAY( Node*, _idom,_idom_size,newsize); 5310 _dom_depth = REALLOC_RESOURCE_ARRAY( uint, _dom_depth,_idom_size,newsize); 5311 memset( _dom_depth + _idom_size, 0, (newsize - _idom_size) * sizeof(uint) ); 5312 _idom_size = newsize; 5313 } 5314 _idom[idx] = n; 5315 _dom_depth[idx] = dom_depth; 5316 } 5317 5318 //------------------------------recompute_dom_depth--------------------------------------- 5319 // The dominator tree is constructed with only parent pointers. 5320 // This recomputes the depth in the tree by first tagging all 5321 // nodes as "no depth yet" marker. The next pass then runs up 5322 // the dom tree from each node marked "no depth yet", and computes 5323 // the depth on the way back down. 5324 void PhaseIdealLoop::recompute_dom_depth() { 5325 uint no_depth_marker = C->unique(); 5326 uint i; 5327 // Initialize depth to "no depth yet" and realize all lazy updates 5328 for (i = 0; i < _idom_size; i++) { 5329 // Only indices with a _dom_depth has a Node* or null (otherwise uninitialized). 5330 if (_dom_depth[i] > 0 && _idom[i] != nullptr) { 5331 _dom_depth[i] = no_depth_marker; 5332 5333 // heal _idom if it has a fwd mapping in _loop_or_ctrl 5334 if (_idom[i]->in(0) == nullptr) { 5335 idom(i); 5336 } 5337 } 5338 } 5339 if (_dom_stk == nullptr) { 5340 uint init_size = C->live_nodes() / 100; // Guess that 1/100 is a reasonable initial size. 5341 if (init_size < 10) init_size = 10; 5342 _dom_stk = new GrowableArray<uint>(init_size); 5343 } 5344 // Compute new depth for each node. 5345 for (i = 0; i < _idom_size; i++) { 5346 uint j = i; 5347 // Run up the dom tree to find a node with a depth 5348 while (_dom_depth[j] == no_depth_marker) { 5349 _dom_stk->push(j); 5350 j = _idom[j]->_idx; 5351 } 5352 // Compute the depth on the way back down this tree branch 5353 uint dd = _dom_depth[j] + 1; 5354 while (_dom_stk->length() > 0) { 5355 uint j = _dom_stk->pop(); 5356 _dom_depth[j] = dd; 5357 dd++; 5358 } 5359 } 5360 } 5361 5362 //------------------------------sort------------------------------------------- 5363 // Insert 'loop' into the existing loop tree. 'innermost' is a leaf of the 5364 // loop tree, not the root. 5365 IdealLoopTree *PhaseIdealLoop::sort( IdealLoopTree *loop, IdealLoopTree *innermost ) { 5366 if( !innermost ) return loop; // New innermost loop 5367 5368 int loop_preorder = get_preorder(loop->_head); // Cache pre-order number 5369 assert( loop_preorder, "not yet post-walked loop" ); 5370 IdealLoopTree **pp = &innermost; // Pointer to previous next-pointer 5371 IdealLoopTree *l = *pp; // Do I go before or after 'l'? 5372 5373 // Insert at start of list 5374 while( l ) { // Insertion sort based on pre-order 5375 if( l == loop ) return innermost; // Already on list! 5376 int l_preorder = get_preorder(l->_head); // Cache pre-order number 5377 assert( l_preorder, "not yet post-walked l" ); 5378 // Check header pre-order number to figure proper nesting 5379 if( loop_preorder > l_preorder ) 5380 break; // End of insertion 5381 // If headers tie (e.g., shared headers) check tail pre-order numbers. 5382 // Since I split shared headers, you'd think this could not happen. 5383 // BUT: I must first do the preorder numbering before I can discover I 5384 // have shared headers, so the split headers all get the same preorder 5385 // number as the RegionNode they split from. 5386 if( loop_preorder == l_preorder && 5387 get_preorder(loop->_tail) < get_preorder(l->_tail) ) 5388 break; // Also check for shared headers (same pre#) 5389 pp = &l->_parent; // Chain up list 5390 l = *pp; 5391 } 5392 // Link into list 5393 // Point predecessor to me 5394 *pp = loop; 5395 // Point me to successor 5396 IdealLoopTree *p = loop->_parent; 5397 loop->_parent = l; // Point me to successor 5398 if( p ) sort( p, innermost ); // Insert my parents into list as well 5399 return innermost; 5400 } 5401 5402 //------------------------------build_loop_tree-------------------------------- 5403 // I use a modified Vick/Tarjan algorithm. I need pre- and a post- visit 5404 // bits. The _loop_or_ctrl[] array is mapped by Node index and holds a null for 5405 // not-yet-pre-walked, pre-order # for pre-but-not-post-walked and holds the 5406 // tightest enclosing IdealLoopTree for post-walked. 5407 // 5408 // During my forward walk I do a short 1-layer lookahead to see if I can find 5409 // a loop backedge with that doesn't have any work on the backedge. This 5410 // helps me construct nested loops with shared headers better. 5411 // 5412 // Once I've done the forward recursion, I do the post-work. For each child 5413 // I check to see if there is a backedge. Backedges define a loop! I 5414 // insert an IdealLoopTree at the target of the backedge. 5415 // 5416 // During the post-work I also check to see if I have several children 5417 // belonging to different loops. If so, then this Node is a decision point 5418 // where control flow can choose to change loop nests. It is at this 5419 // decision point where I can figure out how loops are nested. At this 5420 // time I can properly order the different loop nests from my children. 5421 // Note that there may not be any backedges at the decision point! 5422 // 5423 // Since the decision point can be far removed from the backedges, I can't 5424 // order my loops at the time I discover them. Thus at the decision point 5425 // I need to inspect loop header pre-order numbers to properly nest my 5426 // loops. This means I need to sort my childrens' loops by pre-order. 5427 // The sort is of size number-of-control-children, which generally limits 5428 // it to size 2 (i.e., I just choose between my 2 target loops). 5429 void PhaseIdealLoop::build_loop_tree() { 5430 // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc 5431 GrowableArray <Node *> bltstack(C->live_nodes() >> 1); 5432 Node *n = C->root(); 5433 bltstack.push(n); 5434 int pre_order = 1; 5435 int stack_size; 5436 5437 while ( ( stack_size = bltstack.length() ) != 0 ) { 5438 n = bltstack.top(); // Leave node on stack 5439 if ( !is_visited(n) ) { 5440 // ---- Pre-pass Work ---- 5441 // Pre-walked but not post-walked nodes need a pre_order number. 5442 5443 set_preorder_visited( n, pre_order ); // set as visited 5444 5445 // ---- Scan over children ---- 5446 // Scan first over control projections that lead to loop headers. 5447 // This helps us find inner-to-outer loops with shared headers better. 5448 5449 // Scan children's children for loop headers. 5450 for ( int i = n->outcnt() - 1; i >= 0; --i ) { 5451 Node* m = n->raw_out(i); // Child 5452 if( m->is_CFG() && !is_visited(m) ) { // Only for CFG children 5453 // Scan over children's children to find loop 5454 for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) { 5455 Node* l = m->fast_out(j); 5456 if( is_visited(l) && // Been visited? 5457 !is_postvisited(l) && // But not post-visited 5458 get_preorder(l) < pre_order ) { // And smaller pre-order 5459 // Found! Scan the DFS down this path before doing other paths 5460 bltstack.push(m); 5461 break; 5462 } 5463 } 5464 } 5465 } 5466 pre_order++; 5467 } 5468 else if ( !is_postvisited(n) ) { 5469 // Note: build_loop_tree_impl() adds out edges on rare occasions, 5470 // such as com.sun.rsasign.am::a. 5471 // For non-recursive version, first, process current children. 5472 // On next iteration, check if additional children were added. 5473 for ( int k = n->outcnt() - 1; k >= 0; --k ) { 5474 Node* u = n->raw_out(k); 5475 if ( u->is_CFG() && !is_visited(u) ) { 5476 bltstack.push(u); 5477 } 5478 } 5479 if ( bltstack.length() == stack_size ) { 5480 // There were no additional children, post visit node now 5481 (void)bltstack.pop(); // Remove node from stack 5482 pre_order = build_loop_tree_impl(n, pre_order); 5483 // Check for bailout 5484 if (C->failing()) { 5485 return; 5486 } 5487 // Check to grow _preorders[] array for the case when 5488 // build_loop_tree_impl() adds new nodes. 5489 check_grow_preorders(); 5490 } 5491 } 5492 else { 5493 (void)bltstack.pop(); // Remove post-visited node from stack 5494 } 5495 } 5496 DEBUG_ONLY(verify_regions_in_irreducible_loops();) 5497 } 5498 5499 //------------------------------build_loop_tree_impl--------------------------- 5500 int PhaseIdealLoop::build_loop_tree_impl(Node* n, int pre_order) { 5501 // ---- Post-pass Work ---- 5502 // Pre-walked but not post-walked nodes need a pre_order number. 5503 5504 // Tightest enclosing loop for this Node 5505 IdealLoopTree *innermost = nullptr; 5506 5507 // For all children, see if any edge is a backedge. If so, make a loop 5508 // for it. Then find the tightest enclosing loop for the self Node. 5509 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 5510 Node* m = n->fast_out(i); // Child 5511 if (n == m) continue; // Ignore control self-cycles 5512 if (!m->is_CFG()) continue;// Ignore non-CFG edges 5513 5514 IdealLoopTree *l; // Child's loop 5515 if (!is_postvisited(m)) { // Child visited but not post-visited? 5516 // Found a backedge 5517 assert(get_preorder(m) < pre_order, "should be backedge"); 5518 // Check for the RootNode, which is already a LoopNode and is allowed 5519 // to have multiple "backedges". 5520 if (m == C->root()) { // Found the root? 5521 l = _ltree_root; // Root is the outermost LoopNode 5522 } else { // Else found a nested loop 5523 // Insert a LoopNode to mark this loop. 5524 l = new IdealLoopTree(this, m, n); 5525 } // End of Else found a nested loop 5526 if (!has_loop(m)) { // If 'm' does not already have a loop set 5527 set_loop(m, l); // Set loop header to loop now 5528 } 5529 } else { // Else not a nested loop 5530 if (!_loop_or_ctrl[m->_idx]) continue; // Dead code has no loop 5531 IdealLoopTree* m_loop = get_loop(m); 5532 l = m_loop; // Get previously determined loop 5533 // If successor is header of a loop (nest), move up-loop till it 5534 // is a member of some outer enclosing loop. Since there are no 5535 // shared headers (I've split them already) I only need to go up 5536 // at most 1 level. 5537 while (l && l->_head == m) { // Successor heads loop? 5538 l = l->_parent; // Move up 1 for me 5539 } 5540 // If this loop is not properly parented, then this loop 5541 // has no exit path out, i.e. its an infinite loop. 5542 if (!l) { 5543 // Make loop "reachable" from root so the CFG is reachable. Basically 5544 // insert a bogus loop exit that is never taken. 'm', the loop head, 5545 // points to 'n', one (of possibly many) fall-in paths. There may be 5546 // many backedges as well. 5547 5548 if (!_verify_only) { 5549 // Insert the NeverBranch between 'm' and it's control user. 5550 NeverBranchNode *iff = new NeverBranchNode( m ); 5551 _igvn.register_new_node_with_optimizer(iff); 5552 set_loop(iff, m_loop); 5553 Node *if_t = new CProjNode( iff, 0 ); 5554 _igvn.register_new_node_with_optimizer(if_t); 5555 set_loop(if_t, m_loop); 5556 5557 Node* cfg = nullptr; // Find the One True Control User of m 5558 for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) { 5559 Node* x = m->fast_out(j); 5560 if (x->is_CFG() && x != m && x != iff) 5561 { cfg = x; break; } 5562 } 5563 assert(cfg != nullptr, "must find the control user of m"); 5564 uint k = 0; // Probably cfg->in(0) 5565 while( cfg->in(k) != m ) k++; // But check in case cfg is a Region 5566 _igvn.replace_input_of(cfg, k, if_t); // Now point to NeverBranch 5567 5568 // Now create the never-taken loop exit 5569 Node *if_f = new CProjNode( iff, 1 ); 5570 _igvn.register_new_node_with_optimizer(if_f); 5571 set_loop(if_f, _ltree_root); 5572 // Find frame ptr for Halt. Relies on the optimizer 5573 // V-N'ing. Easier and quicker than searching through 5574 // the program structure. 5575 Node *frame = new ParmNode( C->start(), TypeFunc::FramePtr ); 5576 _igvn.register_new_node_with_optimizer(frame); 5577 // Halt & Catch Fire 5578 Node* halt = new HaltNode(if_f, frame, "never-taken loop exit reached"); 5579 _igvn.register_new_node_with_optimizer(halt); 5580 set_loop(halt, _ltree_root); 5581 _igvn.add_input_to(C->root(), halt); 5582 } 5583 set_loop(C->root(), _ltree_root); 5584 // move to outer most loop with same header 5585 l = m_loop; 5586 while (true) { 5587 IdealLoopTree* next = l->_parent; 5588 if (next == nullptr || next->_head != m) { 5589 break; 5590 } 5591 l = next; 5592 } 5593 // properly insert infinite loop in loop tree 5594 sort(_ltree_root, l); 5595 // fix child link from parent 5596 IdealLoopTree* p = l->_parent; 5597 l->_next = p->_child; 5598 p->_child = l; 5599 // code below needs enclosing loop 5600 l = l->_parent; 5601 } 5602 } 5603 if (is_postvisited(l->_head)) { 5604 // We are currently visiting l, but its head has already been post-visited. 5605 // l is irreducible: we just found a second entry m. 5606 _has_irreducible_loops = true; 5607 RegionNode* secondary_entry = m->as_Region(); 5608 5609 if (!secondary_entry->can_be_irreducible_entry()) { 5610 assert(!VerifyNoNewIrreducibleLoops, "A new irreducible loop was created after parsing."); 5611 C->record_method_not_compilable("A new irreducible loop was created after parsing."); 5612 return pre_order; 5613 } 5614 5615 // Walk up the loop-tree, mark all loops that are already post-visited as irreducible 5616 // Since m is a secondary entry to them all. 5617 while( is_postvisited(l->_head) ) { 5618 l->_irreducible = 1; // = true 5619 RegionNode* head = l->_head->as_Region(); 5620 if (!head->can_be_irreducible_entry()) { 5621 assert(!VerifyNoNewIrreducibleLoops, "A new irreducible loop was created after parsing."); 5622 C->record_method_not_compilable("A new irreducible loop was created after parsing."); 5623 return pre_order; 5624 } 5625 l = l->_parent; 5626 // Check for bad CFG here to prevent crash, and bailout of compile 5627 if (l == nullptr) { 5628 #ifndef PRODUCT 5629 if (TraceLoopOpts) { 5630 tty->print_cr("bailout: unhandled CFG: infinite irreducible loop"); 5631 m->dump(); 5632 } 5633 #endif 5634 // This is a rare case that we do not want to handle in C2. 5635 C->record_method_not_compilable("unhandled CFG detected during loop optimization"); 5636 return pre_order; 5637 } 5638 } 5639 } 5640 if (!_verify_only) { 5641 C->set_has_irreducible_loop(_has_irreducible_loops); 5642 } 5643 5644 // This Node might be a decision point for loops. It is only if 5645 // it's children belong to several different loops. The sort call 5646 // does a trivial amount of work if there is only 1 child or all 5647 // children belong to the same loop. If however, the children 5648 // belong to different loops, the sort call will properly set the 5649 // _parent pointers to show how the loops nest. 5650 // 5651 // In any case, it returns the tightest enclosing loop. 5652 innermost = sort( l, innermost ); 5653 } 5654 5655 // Def-use info will have some dead stuff; dead stuff will have no 5656 // loop decided on. 5657 5658 // Am I a loop header? If so fix up my parent's child and next ptrs. 5659 if( innermost && innermost->_head == n ) { 5660 assert( get_loop(n) == innermost, "" ); 5661 IdealLoopTree *p = innermost->_parent; 5662 IdealLoopTree *l = innermost; 5663 while (p && l->_head == n) { 5664 l->_next = p->_child; // Put self on parents 'next child' 5665 p->_child = l; // Make self as first child of parent 5666 l = p; // Now walk up the parent chain 5667 p = l->_parent; 5668 } 5669 } else { 5670 // Note that it is possible for a LoopNode to reach here, if the 5671 // backedge has been made unreachable (hence the LoopNode no longer 5672 // denotes a Loop, and will eventually be removed). 5673 5674 // Record tightest enclosing loop for self. Mark as post-visited. 5675 set_loop(n, innermost); 5676 // Also record has_call flag early on 5677 if (innermost) { 5678 if( n->is_Call() && !n->is_CallLeaf() && !n->is_macro() ) { 5679 // Do not count uncommon calls 5680 if( !n->is_CallStaticJava() || !n->as_CallStaticJava()->_name ) { 5681 Node *iff = n->in(0)->in(0); 5682 // No any calls for vectorized loops. 5683 if (C->do_superword() || 5684 !iff->is_If() || 5685 (n->in(0)->Opcode() == Op_IfFalse && (1.0 - iff->as_If()->_prob) >= 0.01) || 5686 iff->as_If()->_prob >= 0.01) { 5687 innermost->_has_call = 1; 5688 } 5689 } 5690 } else if( n->is_Allocate() && n->as_Allocate()->_is_scalar_replaceable ) { 5691 // Disable loop optimizations if the loop has a scalar replaceable 5692 // allocation. This disabling may cause a potential performance lost 5693 // if the allocation is not eliminated for some reason. 5694 innermost->_allow_optimizations = false; 5695 innermost->_has_call = 1; // = true 5696 } else if (n->Opcode() == Op_SafePoint) { 5697 // Record all safepoints in this loop. 5698 if (innermost->_safepts == nullptr) innermost->_safepts = new Node_List(); 5699 innermost->_safepts->push(n); 5700 } 5701 } 5702 } 5703 5704 // Flag as post-visited now 5705 set_postvisited(n); 5706 return pre_order; 5707 } 5708 5709 #ifdef ASSERT 5710 //--------------------------verify_regions_in_irreducible_loops---------------- 5711 // Iterate down from Root through CFG, verify for every region: 5712 // if it is in an irreducible loop it must be marked as such 5713 void PhaseIdealLoop::verify_regions_in_irreducible_loops() { 5714 ResourceMark rm; 5715 if (!_has_irreducible_loops) { 5716 // last build_loop_tree has not found any irreducible loops 5717 // hence no region has to be marked is_in_irreduible_loop 5718 return; 5719 } 5720 5721 RootNode* root = C->root(); 5722 Unique_Node_List worklist; // visit all nodes once 5723 worklist.push(root); 5724 bool failure = false; 5725 for (uint i = 0; i < worklist.size(); i++) { 5726 Node* n = worklist.at(i); 5727 if (n->is_Region()) { 5728 RegionNode* region = n->as_Region(); 5729 if (is_in_irreducible_loop(region) && 5730 region->loop_status() == RegionNode::LoopStatus::Reducible) { 5731 failure = true; 5732 tty->print("irreducible! "); 5733 region->dump(); 5734 } 5735 } 5736 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) { 5737 Node* use = n->fast_out(j); 5738 if (use->is_CFG()) { 5739 worklist.push(use); // push if was not pushed before 5740 } 5741 } 5742 } 5743 assert(!failure, "region in irreducible loop was marked as reducible"); 5744 } 5745 5746 //---------------------------is_in_irreducible_loop------------------------- 5747 // Analogous to ciTypeFlow::Block::is_in_irreducible_loop 5748 bool PhaseIdealLoop::is_in_irreducible_loop(RegionNode* region) { 5749 if (!_has_irreducible_loops) { 5750 return false; // no irreducible loop in graph 5751 } 5752 IdealLoopTree* l = get_loop(region); // l: innermost loop that contains region 5753 do { 5754 if (l->_irreducible) { 5755 return true; // found it 5756 } 5757 if (l == _ltree_root) { 5758 return false; // reached root, terimnate 5759 } 5760 l = l->_parent; 5761 } while (l != nullptr); 5762 assert(region->is_in_infinite_subgraph(), "must be in infinite subgraph"); 5763 // We have "l->_parent == nullptr", which happens only for infinite loops, 5764 // where no parent is attached to the loop. We did not find any irreducible 5765 // loop from this block out to lp. Thus lp only has one entry, and no exit 5766 // (it is infinite and reducible). We can always rewrite an infinite loop 5767 // that is nested inside other loops: 5768 // while(condition) { infinite_loop; } 5769 // with an equivalent program where the infinite loop is an outermost loop 5770 // that is not nested in any loop: 5771 // while(condition) { break; } infinite_loop; 5772 // Thus, we can understand lp as an outermost loop, and can terminate and 5773 // conclude: this block is in no irreducible loop. 5774 return false; 5775 } 5776 #endif 5777 5778 //------------------------------build_loop_early------------------------------- 5779 // Put Data nodes into some loop nest, by setting the _loop_or_ctrl[]->loop mapping. 5780 // First pass computes the earliest controlling node possible. This is the 5781 // controlling input with the deepest dominating depth. 5782 void PhaseIdealLoop::build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ) { 5783 while (worklist.size() != 0) { 5784 // Use local variables nstack_top_n & nstack_top_i to cache values 5785 // on nstack's top. 5786 Node *nstack_top_n = worklist.pop(); 5787 uint nstack_top_i = 0; 5788 //while_nstack_nonempty: 5789 while (true) { 5790 // Get parent node and next input's index from stack's top. 5791 Node *n = nstack_top_n; 5792 uint i = nstack_top_i; 5793 uint cnt = n->req(); // Count of inputs 5794 if (i == 0) { // Pre-process the node. 5795 if( has_node(n) && // Have either loop or control already? 5796 !has_ctrl(n) ) { // Have loop picked out already? 5797 // During "merge_many_backedges" we fold up several nested loops 5798 // into a single loop. This makes the members of the original 5799 // loop bodies pointing to dead loops; they need to move up 5800 // to the new UNION'd larger loop. I set the _head field of these 5801 // dead loops to null and the _parent field points to the owning 5802 // loop. Shades of UNION-FIND algorithm. 5803 IdealLoopTree *ilt; 5804 while( !(ilt = get_loop(n))->_head ) { 5805 // Normally I would use a set_loop here. But in this one special 5806 // case, it is legal (and expected) to change what loop a Node 5807 // belongs to. 5808 _loop_or_ctrl.map(n->_idx, (Node*)(ilt->_parent)); 5809 } 5810 // Remove safepoints ONLY if I've already seen I don't need one. 5811 // (the old code here would yank a 2nd safepoint after seeing a 5812 // first one, even though the 1st did not dominate in the loop body 5813 // and thus could be avoided indefinitely) 5814 if( !_verify_only && !_verify_me && ilt->_has_sfpt && n->Opcode() == Op_SafePoint && 5815 is_deleteable_safept(n)) { 5816 Node *in = n->in(TypeFunc::Control); 5817 lazy_replace(n,in); // Pull safepoint now 5818 if (ilt->_safepts != nullptr) { 5819 ilt->_safepts->yank(n); 5820 } 5821 // Carry on with the recursion "as if" we are walking 5822 // only the control input 5823 if( !visited.test_set( in->_idx ) ) { 5824 worklist.push(in); // Visit this guy later, using worklist 5825 } 5826 // Get next node from nstack: 5827 // - skip n's inputs processing by setting i > cnt; 5828 // - we also will not call set_early_ctrl(n) since 5829 // has_node(n) == true (see the condition above). 5830 i = cnt + 1; 5831 } 5832 } 5833 } // if (i == 0) 5834 5835 // Visit all inputs 5836 bool done = true; // Assume all n's inputs will be processed 5837 while (i < cnt) { 5838 Node *in = n->in(i); 5839 ++i; 5840 if (in == nullptr) continue; 5841 if (in->pinned() && !in->is_CFG()) 5842 set_ctrl(in, in->in(0)); 5843 int is_visited = visited.test_set( in->_idx ); 5844 if (!has_node(in)) { // No controlling input yet? 5845 assert( !in->is_CFG(), "CFG Node with no controlling input?" ); 5846 assert( !is_visited, "visit only once" ); 5847 nstack.push(n, i); // Save parent node and next input's index. 5848 nstack_top_n = in; // Process current input now. 5849 nstack_top_i = 0; 5850 done = false; // Not all n's inputs processed. 5851 break; // continue while_nstack_nonempty; 5852 } else if (!is_visited) { 5853 // This guy has a location picked out for him, but has not yet 5854 // been visited. Happens to all CFG nodes, for instance. 5855 // Visit him using the worklist instead of recursion, to break 5856 // cycles. Since he has a location already we do not need to 5857 // find his location before proceeding with the current Node. 5858 worklist.push(in); // Visit this guy later, using worklist 5859 } 5860 } 5861 if (done) { 5862 // All of n's inputs have been processed, complete post-processing. 5863 5864 // Compute earliest point this Node can go. 5865 // CFG, Phi, pinned nodes already know their controlling input. 5866 if (!has_node(n)) { 5867 // Record earliest legal location 5868 set_early_ctrl(n, false); 5869 } 5870 if (nstack.is_empty()) { 5871 // Finished all nodes on stack. 5872 // Process next node on the worklist. 5873 break; 5874 } 5875 // Get saved parent node and next input's index. 5876 nstack_top_n = nstack.node(); 5877 nstack_top_i = nstack.index(); 5878 nstack.pop(); 5879 } 5880 } // while (true) 5881 } 5882 } 5883 5884 //------------------------------dom_lca_internal-------------------------------- 5885 // Pair-wise LCA 5886 Node *PhaseIdealLoop::dom_lca_internal( Node *n1, Node *n2 ) const { 5887 if( !n1 ) return n2; // Handle null original LCA 5888 assert( n1->is_CFG(), "" ); 5889 assert( n2->is_CFG(), "" ); 5890 // find LCA of all uses 5891 uint d1 = dom_depth(n1); 5892 uint d2 = dom_depth(n2); 5893 while (n1 != n2) { 5894 if (d1 > d2) { 5895 n1 = idom(n1); 5896 d1 = dom_depth(n1); 5897 } else if (d1 < d2) { 5898 n2 = idom(n2); 5899 d2 = dom_depth(n2); 5900 } else { 5901 // Here d1 == d2. Due to edits of the dominator-tree, sections 5902 // of the tree might have the same depth. These sections have 5903 // to be searched more carefully. 5904 5905 // Scan up all the n1's with equal depth, looking for n2. 5906 Node *t1 = idom(n1); 5907 while (dom_depth(t1) == d1) { 5908 if (t1 == n2) return n2; 5909 t1 = idom(t1); 5910 } 5911 // Scan up all the n2's with equal depth, looking for n1. 5912 Node *t2 = idom(n2); 5913 while (dom_depth(t2) == d2) { 5914 if (t2 == n1) return n1; 5915 t2 = idom(t2); 5916 } 5917 // Move up to a new dominator-depth value as well as up the dom-tree. 5918 n1 = t1; 5919 n2 = t2; 5920 d1 = dom_depth(n1); 5921 d2 = dom_depth(n2); 5922 } 5923 } 5924 return n1; 5925 } 5926 5927 //------------------------------compute_idom----------------------------------- 5928 // Locally compute IDOM using dom_lca call. Correct only if the incoming 5929 // IDOMs are correct. 5930 Node *PhaseIdealLoop::compute_idom( Node *region ) const { 5931 assert( region->is_Region(), "" ); 5932 Node *LCA = nullptr; 5933 for( uint i = 1; i < region->req(); i++ ) { 5934 if( region->in(i) != C->top() ) 5935 LCA = dom_lca( LCA, region->in(i) ); 5936 } 5937 return LCA; 5938 } 5939 5940 bool PhaseIdealLoop::verify_dominance(Node* n, Node* use, Node* LCA, Node* early) { 5941 bool had_error = false; 5942 #ifdef ASSERT 5943 if (early != C->root()) { 5944 // Make sure that there's a dominance path from LCA to early 5945 Node* d = LCA; 5946 while (d != early) { 5947 if (d == C->root()) { 5948 dump_bad_graph("Bad graph detected in compute_lca_of_uses", n, early, LCA); 5949 tty->print_cr("*** Use %d isn't dominated by def %d ***", use->_idx, n->_idx); 5950 had_error = true; 5951 break; 5952 } 5953 d = idom(d); 5954 } 5955 } 5956 #endif 5957 return had_error; 5958 } 5959 5960 5961 Node* PhaseIdealLoop::compute_lca_of_uses(Node* n, Node* early, bool verify) { 5962 // Compute LCA over list of uses 5963 bool had_error = false; 5964 Node *LCA = nullptr; 5965 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax && LCA != early; i++) { 5966 Node* c = n->fast_out(i); 5967 if (_loop_or_ctrl[c->_idx] == nullptr) 5968 continue; // Skip the occasional dead node 5969 if( c->is_Phi() ) { // For Phis, we must land above on the path 5970 for( uint j=1; j<c->req(); j++ ) {// For all inputs 5971 if( c->in(j) == n ) { // Found matching input? 5972 Node *use = c->in(0)->in(j); 5973 if (_verify_only && use->is_top()) continue; 5974 LCA = dom_lca_for_get_late_ctrl( LCA, use, n ); 5975 if (verify) had_error = verify_dominance(n, use, LCA, early) || had_error; 5976 } 5977 } 5978 } else { 5979 // For CFG data-users, use is in the block just prior 5980 Node *use = has_ctrl(c) ? get_ctrl(c) : c->in(0); 5981 LCA = dom_lca_for_get_late_ctrl( LCA, use, n ); 5982 if (verify) had_error = verify_dominance(n, use, LCA, early) || had_error; 5983 } 5984 } 5985 assert(!had_error, "bad dominance"); 5986 return LCA; 5987 } 5988 5989 // Check the shape of the graph at the loop entry. In some cases, 5990 // the shape of the graph does not match the shape outlined below. 5991 // That is caused by the Opaque1 node "protecting" the shape of 5992 // the graph being removed by, for example, the IGVN performed 5993 // in PhaseIdealLoop::build_and_optimize(). 5994 // 5995 // After the Opaque1 node has been removed, optimizations (e.g., split-if, 5996 // loop unswitching, and IGVN, or a combination of them) can freely change 5997 // the graph's shape. As a result, the graph shape outlined below cannot 5998 // be guaranteed anymore. 5999 Node* CountedLoopNode::is_canonical_loop_entry() { 6000 if (!is_main_loop() && !is_post_loop()) { 6001 return nullptr; 6002 } 6003 Node* ctrl = skip_assertion_predicates_with_halt(); 6004 6005 if (ctrl == nullptr || (!ctrl->is_IfTrue() && !ctrl->is_IfFalse())) { 6006 return nullptr; 6007 } 6008 Node* iffm = ctrl->in(0); 6009 if (iffm == nullptr || iffm->Opcode() != Op_If) { 6010 return nullptr; 6011 } 6012 Node* bolzm = iffm->in(1); 6013 if (bolzm == nullptr || !bolzm->is_Bool()) { 6014 return nullptr; 6015 } 6016 Node* cmpzm = bolzm->in(1); 6017 if (cmpzm == nullptr || !cmpzm->is_Cmp()) { 6018 return nullptr; 6019 } 6020 6021 uint input = is_main_loop() ? 2 : 1; 6022 if (input >= cmpzm->req() || cmpzm->in(input) == nullptr) { 6023 return nullptr; 6024 } 6025 bool res = cmpzm->in(input)->Opcode() == Op_OpaqueZeroTripGuard; 6026 #ifdef ASSERT 6027 bool found_opaque = false; 6028 for (uint i = 1; i < cmpzm->req(); i++) { 6029 Node* opnd = cmpzm->in(i); 6030 if (opnd && opnd->is_Opaque1()) { 6031 found_opaque = true; 6032 break; 6033 } 6034 } 6035 assert(found_opaque == res, "wrong pattern"); 6036 #endif 6037 return res ? cmpzm->in(input) : nullptr; 6038 } 6039 6040 // Find pre loop end from main loop. Returns nullptr if none. 6041 CountedLoopEndNode* CountedLoopNode::find_pre_loop_end() { 6042 assert(is_main_loop(), "Can only find pre-loop from main-loop"); 6043 // The loop cannot be optimized if the graph shape at the loop entry is 6044 // inappropriate. 6045 if (is_canonical_loop_entry() == nullptr) { 6046 return nullptr; 6047 } 6048 6049 Node* p_f = skip_assertion_predicates_with_halt()->in(0)->in(0); 6050 if (!p_f->is_IfFalse() || !p_f->in(0)->is_CountedLoopEnd()) { 6051 return nullptr; 6052 } 6053 CountedLoopEndNode* pre_end = p_f->in(0)->as_CountedLoopEnd(); 6054 CountedLoopNode* loop_node = pre_end->loopnode(); 6055 if (loop_node == nullptr || !loop_node->is_pre_loop()) { 6056 return nullptr; 6057 } 6058 return pre_end; 6059 } 6060 6061 //------------------------------get_late_ctrl---------------------------------- 6062 // Compute latest legal control. 6063 Node *PhaseIdealLoop::get_late_ctrl( Node *n, Node *early ) { 6064 assert(early != nullptr, "early control should not be null"); 6065 6066 Node* LCA = compute_lca_of_uses(n, early); 6067 #ifdef ASSERT 6068 if (LCA == C->root() && LCA != early) { 6069 // def doesn't dominate uses so print some useful debugging output 6070 compute_lca_of_uses(n, early, true); 6071 } 6072 #endif 6073 6074 if (n->is_Load() && LCA != early) { 6075 LCA = get_late_ctrl_with_anti_dep(n->as_Load(), early, LCA); 6076 } 6077 6078 assert(LCA == find_non_split_ctrl(LCA), "unexpected late control"); 6079 return LCA; 6080 } 6081 6082 // if this is a load, check for anti-dependent stores 6083 // We use a conservative algorithm to identify potential interfering 6084 // instructions and for rescheduling the load. The users of the memory 6085 // input of this load are examined. Any use which is not a load and is 6086 // dominated by early is considered a potentially interfering store. 6087 // This can produce false positives. 6088 Node* PhaseIdealLoop::get_late_ctrl_with_anti_dep(LoadNode* n, Node* early, Node* LCA) { 6089 int load_alias_idx = C->get_alias_index(n->adr_type()); 6090 if (C->alias_type(load_alias_idx)->is_rewritable()) { 6091 Unique_Node_List worklist; 6092 6093 Node* mem = n->in(MemNode::Memory); 6094 for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) { 6095 Node* s = mem->fast_out(i); 6096 worklist.push(s); 6097 } 6098 for (uint i = 0; i < worklist.size() && LCA != early; i++) { 6099 Node* s = worklist.at(i); 6100 if (s->is_Load() || s->Opcode() == Op_SafePoint || 6101 (s->is_CallStaticJava() && s->as_CallStaticJava()->uncommon_trap_request() != 0) || 6102 s->is_Phi()) { 6103 continue; 6104 } else if (s->is_MergeMem()) { 6105 for (DUIterator_Fast imax, i = s->fast_outs(imax); i < imax; i++) { 6106 Node* s1 = s->fast_out(i); 6107 worklist.push(s1); 6108 } 6109 } else { 6110 Node* sctrl = has_ctrl(s) ? get_ctrl(s) : s->in(0); 6111 assert(sctrl != nullptr || !s->is_reachable_from_root(), "must have control"); 6112 if (sctrl != nullptr && !sctrl->is_top() && is_dominator(early, sctrl)) { 6113 const TypePtr* adr_type = s->adr_type(); 6114 if (s->is_ArrayCopy()) { 6115 // Copy to known instance needs destination type to test for aliasing 6116 const TypePtr* dest_type = s->as_ArrayCopy()->_dest_type; 6117 if (dest_type != TypeOopPtr::BOTTOM) { 6118 adr_type = dest_type; 6119 } 6120 } 6121 if (C->can_alias(adr_type, load_alias_idx)) { 6122 LCA = dom_lca_for_get_late_ctrl(LCA, sctrl, n); 6123 } else if (s->is_CFG() && s->is_Multi()) { 6124 // Look for the memory use of s (that is the use of its memory projection) 6125 for (DUIterator_Fast imax, i = s->fast_outs(imax); i < imax; i++) { 6126 Node* s1 = s->fast_out(i); 6127 assert(s1->is_Proj(), "projection expected"); 6128 if (_igvn.type(s1) == Type::MEMORY) { 6129 for (DUIterator_Fast jmax, j = s1->fast_outs(jmax); j < jmax; j++) { 6130 Node* s2 = s1->fast_out(j); 6131 worklist.push(s2); 6132 } 6133 } 6134 } 6135 } 6136 } 6137 } 6138 } 6139 // For Phis only consider Region's inputs that were reached by following the memory edges 6140 if (LCA != early) { 6141 for (uint i = 0; i < worklist.size(); i++) { 6142 Node* s = worklist.at(i); 6143 if (s->is_Phi() && C->can_alias(s->adr_type(), load_alias_idx)) { 6144 Node* r = s->in(0); 6145 for (uint j = 1; j < s->req(); j++) { 6146 Node* in = s->in(j); 6147 Node* r_in = r->in(j); 6148 // We can't reach any node from a Phi because we don't enqueue Phi's uses above 6149 if (((worklist.member(in) && !in->is_Phi()) || in == mem) && is_dominator(early, r_in)) { 6150 LCA = dom_lca_for_get_late_ctrl(LCA, r_in, n); 6151 } 6152 } 6153 } 6154 } 6155 } 6156 } 6157 return LCA; 6158 } 6159 6160 // Is CFG node 'dominator' dominating node 'n'? 6161 bool PhaseIdealLoop::is_dominator(Node* dominator, Node* n) { 6162 if (dominator == n) { 6163 return true; 6164 } 6165 assert(dominator->is_CFG() && n->is_CFG(), "must have CFG nodes"); 6166 uint dd = dom_depth(dominator); 6167 while (dom_depth(n) >= dd) { 6168 if (n == dominator) { 6169 return true; 6170 } 6171 n = idom(n); 6172 } 6173 return false; 6174 } 6175 6176 // Is CFG node 'dominator' strictly dominating node 'n'? 6177 bool PhaseIdealLoop::is_strict_dominator(Node* dominator, Node* n) { 6178 return dominator != n && is_dominator(dominator, n); 6179 } 6180 6181 //------------------------------dom_lca_for_get_late_ctrl_internal------------- 6182 // Pair-wise LCA with tags. 6183 // Tag each index with the node 'tag' currently being processed 6184 // before advancing up the dominator chain using idom(). 6185 // Later calls that find a match to 'tag' know that this path has already 6186 // been considered in the current LCA (which is input 'n1' by convention). 6187 // Since get_late_ctrl() is only called once for each node, the tag array 6188 // does not need to be cleared between calls to get_late_ctrl(). 6189 // Algorithm trades a larger constant factor for better asymptotic behavior 6190 // 6191 Node *PhaseIdealLoop::dom_lca_for_get_late_ctrl_internal(Node *n1, Node *n2, Node *tag_node) { 6192 uint d1 = dom_depth(n1); 6193 uint d2 = dom_depth(n2); 6194 jlong tag = tag_node->_idx | (((jlong)_dom_lca_tags_round) << 32); 6195 6196 do { 6197 if (d1 > d2) { 6198 // current lca is deeper than n2 6199 _dom_lca_tags.at_put_grow(n1->_idx, tag); 6200 n1 = idom(n1); 6201 d1 = dom_depth(n1); 6202 } else if (d1 < d2) { 6203 // n2 is deeper than current lca 6204 jlong memo = _dom_lca_tags.at_grow(n2->_idx, 0); 6205 if (memo == tag) { 6206 return n1; // Return the current LCA 6207 } 6208 _dom_lca_tags.at_put_grow(n2->_idx, tag); 6209 n2 = idom(n2); 6210 d2 = dom_depth(n2); 6211 } else { 6212 // Here d1 == d2. Due to edits of the dominator-tree, sections 6213 // of the tree might have the same depth. These sections have 6214 // to be searched more carefully. 6215 6216 // Scan up all the n1's with equal depth, looking for n2. 6217 _dom_lca_tags.at_put_grow(n1->_idx, tag); 6218 Node *t1 = idom(n1); 6219 while (dom_depth(t1) == d1) { 6220 if (t1 == n2) return n2; 6221 _dom_lca_tags.at_put_grow(t1->_idx, tag); 6222 t1 = idom(t1); 6223 } 6224 // Scan up all the n2's with equal depth, looking for n1. 6225 _dom_lca_tags.at_put_grow(n2->_idx, tag); 6226 Node *t2 = idom(n2); 6227 while (dom_depth(t2) == d2) { 6228 if (t2 == n1) return n1; 6229 _dom_lca_tags.at_put_grow(t2->_idx, tag); 6230 t2 = idom(t2); 6231 } 6232 // Move up to a new dominator-depth value as well as up the dom-tree. 6233 n1 = t1; 6234 n2 = t2; 6235 d1 = dom_depth(n1); 6236 d2 = dom_depth(n2); 6237 } 6238 } while (n1 != n2); 6239 return n1; 6240 } 6241 6242 //------------------------------init_dom_lca_tags------------------------------ 6243 // Tag could be a node's integer index, 32bits instead of 64bits in some cases 6244 // Intended use does not involve any growth for the array, so it could 6245 // be of fixed size. 6246 void PhaseIdealLoop::init_dom_lca_tags() { 6247 uint limit = C->unique() + 1; 6248 _dom_lca_tags.at_grow(limit, 0); 6249 _dom_lca_tags_round = 0; 6250 #ifdef ASSERT 6251 for (uint i = 0; i < limit; ++i) { 6252 assert(_dom_lca_tags.at(i) == 0, "Must be distinct from each node pointer"); 6253 } 6254 #endif // ASSERT 6255 } 6256 6257 //------------------------------build_loop_late-------------------------------- 6258 // Put Data nodes into some loop nest, by setting the _loop_or_ctrl[]->loop mapping. 6259 // Second pass finds latest legal placement, and ideal loop placement. 6260 void PhaseIdealLoop::build_loop_late( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ) { 6261 while (worklist.size() != 0) { 6262 Node *n = worklist.pop(); 6263 // Only visit once 6264 if (visited.test_set(n->_idx)) continue; 6265 uint cnt = n->outcnt(); 6266 uint i = 0; 6267 while (true) { 6268 assert(_loop_or_ctrl[n->_idx], "no dead nodes"); 6269 // Visit all children 6270 if (i < cnt) { 6271 Node* use = n->raw_out(i); 6272 ++i; 6273 // Check for dead uses. Aggressively prune such junk. It might be 6274 // dead in the global sense, but still have local uses so I cannot 6275 // easily call 'remove_dead_node'. 6276 if (_loop_or_ctrl[use->_idx] != nullptr || use->is_top()) { // Not dead? 6277 // Due to cycles, we might not hit the same fixed point in the verify 6278 // pass as we do in the regular pass. Instead, visit such phis as 6279 // simple uses of the loop head. 6280 if( use->in(0) && (use->is_CFG() || use->is_Phi()) ) { 6281 if( !visited.test(use->_idx) ) 6282 worklist.push(use); 6283 } else if( !visited.test_set(use->_idx) ) { 6284 nstack.push(n, i); // Save parent and next use's index. 6285 n = use; // Process all children of current use. 6286 cnt = use->outcnt(); 6287 i = 0; 6288 } 6289 } else { 6290 // Do not visit around the backedge of loops via data edges. 6291 // push dead code onto a worklist 6292 _deadlist.push(use); 6293 } 6294 } else { 6295 // All of n's children have been processed, complete post-processing. 6296 build_loop_late_post(n); 6297 if (C->failing()) { return; } 6298 if (nstack.is_empty()) { 6299 // Finished all nodes on stack. 6300 // Process next node on the worklist. 6301 break; 6302 } 6303 // Get saved parent node and next use's index. Visit the rest of uses. 6304 n = nstack.node(); 6305 cnt = n->outcnt(); 6306 i = nstack.index(); 6307 nstack.pop(); 6308 } 6309 } 6310 } 6311 } 6312 6313 // Verify that no data node is scheduled in the outer loop of a strip 6314 // mined loop. 6315 void PhaseIdealLoop::verify_strip_mined_scheduling(Node *n, Node* least) { 6316 #ifdef ASSERT 6317 if (get_loop(least)->_nest == 0) { 6318 return; 6319 } 6320 IdealLoopTree* loop = get_loop(least); 6321 Node* head = loop->_head; 6322 if (head->is_OuterStripMinedLoop() && 6323 // Verification can't be applied to fully built strip mined loops 6324 head->as_Loop()->outer_loop_end()->in(1)->find_int_con(-1) == 0) { 6325 Node* sfpt = head->as_Loop()->outer_safepoint(); 6326 ResourceMark rm; 6327 Unique_Node_List wq; 6328 wq.push(sfpt); 6329 for (uint i = 0; i < wq.size(); i++) { 6330 Node *m = wq.at(i); 6331 for (uint i = 1; i < m->req(); i++) { 6332 Node* nn = m->in(i); 6333 if (nn == n) { 6334 return; 6335 } 6336 if (nn != nullptr && has_ctrl(nn) && get_loop(get_ctrl(nn)) == loop) { 6337 wq.push(nn); 6338 } 6339 } 6340 } 6341 ShouldNotReachHere(); 6342 } 6343 #endif 6344 } 6345 6346 6347 //------------------------------build_loop_late_post--------------------------- 6348 // Put Data nodes into some loop nest, by setting the _loop_or_ctrl[]->loop mapping. 6349 // Second pass finds latest legal placement, and ideal loop placement. 6350 void PhaseIdealLoop::build_loop_late_post(Node *n) { 6351 build_loop_late_post_work(n, true); 6352 } 6353 6354 // Class to visit all predicates in a predicate chain to find out which are dominated by a given node. Keeps track of 6355 // the entry to the earliest predicate that is still dominated by the given dominator. This class is used when trying to 6356 // legally skip all predicates when figuring out the latest placement such that a node does not interfere with Loop 6357 // Predication or creating a Loop Limit Check Predicate later. 6358 class DominatedPredicates : public UnifiedPredicateVisitor { 6359 Node* const _dominator; 6360 Node* _earliest_dominated_predicate_entry; 6361 bool _should_continue; 6362 PhaseIdealLoop* const _phase; 6363 6364 public: 6365 DominatedPredicates(Node* dominator, Node* start_node, PhaseIdealLoop* phase) 6366 : _dominator(dominator), 6367 _earliest_dominated_predicate_entry(start_node), 6368 _should_continue(true), 6369 _phase(phase) {} 6370 NONCOPYABLE(DominatedPredicates); 6371 6372 bool should_continue() const override { 6373 return _should_continue; 6374 } 6375 6376 // Returns the entry to the earliest predicate that is still dominated by the given dominator (all could be dominated). 6377 Node* earliest_dominated_predicate_entry() const { 6378 return _earliest_dominated_predicate_entry; 6379 } 6380 6381 void visit_predicate(const Predicate& predicate) override { 6382 Node* entry = predicate.entry(); 6383 if (_phase->is_strict_dominator(entry, _dominator)) { 6384 _should_continue = false; 6385 } else { 6386 _earliest_dominated_predicate_entry = entry; 6387 } 6388 } 6389 }; 6390 6391 void PhaseIdealLoop::build_loop_late_post_work(Node *n, bool pinned) { 6392 6393 if (n->req() == 2 && (n->Opcode() == Op_ConvI2L || n->Opcode() == Op_CastII) && !C->major_progress() && !_verify_only) { 6394 _igvn._worklist.push(n); // Maybe we'll normalize it, if no more loops. 6395 } 6396 6397 #ifdef ASSERT 6398 if (_verify_only && !n->is_CFG()) { 6399 // Check def-use domination. 6400 // We would like to expose this check in product but it appears to be expensive. 6401 compute_lca_of_uses(n, get_ctrl(n), true /* verify */); 6402 } 6403 #endif 6404 6405 // CFG and pinned nodes already handled 6406 if( n->in(0) ) { 6407 if( n->in(0)->is_top() ) return; // Dead? 6408 6409 // We'd like +VerifyLoopOptimizations to not believe that Mod's/Loads 6410 // _must_ be pinned (they have to observe their control edge of course). 6411 // Unlike Stores (which modify an unallocable resource, the memory 6412 // state), Mods/Loads can float around. So free them up. 6413 switch( n->Opcode() ) { 6414 case Op_DivI: 6415 case Op_DivF: 6416 case Op_DivD: 6417 case Op_ModI: 6418 case Op_LoadB: // Same with Loads; they can sink 6419 case Op_LoadUB: // during loop optimizations. 6420 case Op_LoadUS: 6421 case Op_LoadD: 6422 case Op_LoadF: 6423 case Op_LoadI: 6424 case Op_LoadKlass: 6425 case Op_LoadNKlass: 6426 case Op_LoadL: 6427 case Op_LoadS: 6428 case Op_LoadP: 6429 case Op_LoadN: 6430 case Op_LoadRange: 6431 case Op_LoadD_unaligned: 6432 case Op_LoadL_unaligned: 6433 case Op_StrComp: // Does a bunch of load-like effects 6434 case Op_StrEquals: 6435 case Op_StrIndexOf: 6436 case Op_StrIndexOfChar: 6437 case Op_AryEq: 6438 case Op_VectorizedHashCode: 6439 case Op_CountPositives: 6440 pinned = false; 6441 } 6442 if (n->is_CMove() || n->is_ConstraintCast()) { 6443 pinned = false; 6444 } 6445 if( pinned ) { 6446 IdealLoopTree *chosen_loop = get_loop(n->is_CFG() ? n : get_ctrl(n)); 6447 if( !chosen_loop->_child ) // Inner loop? 6448 chosen_loop->_body.push(n); // Collect inner loops 6449 return; 6450 } 6451 } else { // No slot zero 6452 if( n->is_CFG() ) { // CFG with no slot 0 is dead 6453 _loop_or_ctrl.map(n->_idx,nullptr); // No block setting, it's globally dead 6454 return; 6455 } 6456 assert(!n->is_CFG() || n->outcnt() == 0, ""); 6457 } 6458 6459 // Do I have a "safe range" I can select over? 6460 Node *early = get_ctrl(n);// Early location already computed 6461 6462 // Compute latest point this Node can go 6463 Node *LCA = get_late_ctrl( n, early ); 6464 // LCA is null due to uses being dead 6465 if( LCA == nullptr ) { 6466 #ifdef ASSERT 6467 for (DUIterator i1 = n->outs(); n->has_out(i1); i1++) { 6468 assert(_loop_or_ctrl[n->out(i1)->_idx] == nullptr, "all uses must also be dead"); 6469 } 6470 #endif 6471 _loop_or_ctrl.map(n->_idx, nullptr); // This node is useless 6472 _deadlist.push(n); 6473 return; 6474 } 6475 assert(LCA != nullptr && !LCA->is_top(), "no dead nodes"); 6476 6477 Node *legal = LCA; // Walk 'legal' up the IDOM chain 6478 Node *least = legal; // Best legal position so far 6479 while( early != legal ) { // While not at earliest legal 6480 if (legal->is_Start() && !early->is_Root()) { 6481 #ifdef ASSERT 6482 // Bad graph. Print idom path and fail. 6483 dump_bad_graph("Bad graph detected in build_loop_late", n, early, LCA); 6484 assert(false, "Bad graph detected in build_loop_late"); 6485 #endif 6486 C->record_method_not_compilable("Bad graph detected in build_loop_late"); 6487 return; 6488 } 6489 // Find least loop nesting depth 6490 legal = idom(legal); // Bump up the IDOM tree 6491 // Check for lower nesting depth 6492 if( get_loop(legal)->_nest < get_loop(least)->_nest ) 6493 least = legal; 6494 } 6495 assert(early == legal || legal != C->root(), "bad dominance of inputs"); 6496 6497 if (least != early) { 6498 // Move the node above predicates as far up as possible so a 6499 // following pass of Loop Predication doesn't hoist a predicate 6500 // that depends on it above that node. 6501 const PredicateIterator predicate_iterator(least); 6502 DominatedPredicates dominated_predicates(early, least, this); 6503 predicate_iterator.for_each(dominated_predicates); 6504 least = dominated_predicates.earliest_dominated_predicate_entry(); 6505 } 6506 // Try not to place code on a loop entry projection 6507 // which can inhibit range check elimination. 6508 if (least != early && !BarrierSet::barrier_set()->barrier_set_c2()->is_gc_specific_loop_opts_pass(_mode)) { 6509 Node* ctrl_out = least->unique_ctrl_out_or_null(); 6510 if (ctrl_out != nullptr && ctrl_out->is_Loop() && 6511 least == ctrl_out->in(LoopNode::EntryControl) && 6512 (ctrl_out->is_CountedLoop() || ctrl_out->is_OuterStripMinedLoop())) { 6513 Node* least_dom = idom(least); 6514 if (get_loop(least_dom)->is_member(get_loop(least))) { 6515 least = least_dom; 6516 } 6517 } 6518 } 6519 // Don't extend live ranges of raw oops 6520 if (least != early && n->is_ConstraintCast() && n->in(1)->bottom_type()->isa_rawptr() && 6521 !n->bottom_type()->isa_rawptr()) { 6522 least = early; 6523 } 6524 6525 #ifdef ASSERT 6526 // Broken part of VerifyLoopOptimizations (F) 6527 // Reason: 6528 // _verify_me->get_ctrl_no_update(n) seems to return wrong result 6529 /* 6530 // If verifying, verify that 'verify_me' has a legal location 6531 // and choose it as our location. 6532 if( _verify_me ) { 6533 Node *v_ctrl = _verify_me->get_ctrl_no_update(n); 6534 Node *legal = LCA; 6535 while( early != legal ) { // While not at earliest legal 6536 if( legal == v_ctrl ) break; // Check for prior good location 6537 legal = idom(legal) ;// Bump up the IDOM tree 6538 } 6539 // Check for prior good location 6540 if( legal == v_ctrl ) least = legal; // Keep prior if found 6541 } 6542 */ 6543 #endif 6544 6545 // Assign discovered "here or above" point 6546 least = find_non_split_ctrl(least); 6547 verify_strip_mined_scheduling(n, least); 6548 set_ctrl(n, least); 6549 6550 // Collect inner loop bodies 6551 IdealLoopTree *chosen_loop = get_loop(least); 6552 if( !chosen_loop->_child ) // Inner loop? 6553 chosen_loop->_body.push(n);// Collect inner loops 6554 6555 if (!_verify_only && n->Opcode() == Op_OpaqueZeroTripGuard) { 6556 _zero_trip_guard_opaque_nodes.push(n); 6557 } 6558 6559 if (!_verify_only && n->Opcode() == Op_OpaqueMultiversioning) { 6560 _multiversion_opaque_nodes.push(n); 6561 } 6562 } 6563 6564 #ifdef ASSERT 6565 void PhaseIdealLoop::dump_bad_graph(const char* msg, Node* n, Node* early, Node* LCA) { 6566 tty->print_cr("%s", msg); 6567 tty->print("n: "); n->dump(); 6568 tty->print("early(n): "); early->dump(); 6569 if (n->in(0) != nullptr && !n->in(0)->is_top() && 6570 n->in(0) != early && !n->in(0)->is_Root()) { 6571 tty->print("n->in(0): "); n->in(0)->dump(); 6572 } 6573 for (uint i = 1; i < n->req(); i++) { 6574 Node* in1 = n->in(i); 6575 if (in1 != nullptr && in1 != n && !in1->is_top()) { 6576 tty->print("n->in(%d): ", i); in1->dump(); 6577 Node* in1_early = get_ctrl(in1); 6578 tty->print("early(n->in(%d)): ", i); in1_early->dump(); 6579 if (in1->in(0) != nullptr && !in1->in(0)->is_top() && 6580 in1->in(0) != in1_early && !in1->in(0)->is_Root()) { 6581 tty->print("n->in(%d)->in(0): ", i); in1->in(0)->dump(); 6582 } 6583 for (uint j = 1; j < in1->req(); j++) { 6584 Node* in2 = in1->in(j); 6585 if (in2 != nullptr && in2 != n && in2 != in1 && !in2->is_top()) { 6586 tty->print("n->in(%d)->in(%d): ", i, j); in2->dump(); 6587 Node* in2_early = get_ctrl(in2); 6588 tty->print("early(n->in(%d)->in(%d)): ", i, j); in2_early->dump(); 6589 if (in2->in(0) != nullptr && !in2->in(0)->is_top() && 6590 in2->in(0) != in2_early && !in2->in(0)->is_Root()) { 6591 tty->print("n->in(%d)->in(%d)->in(0): ", i, j); in2->in(0)->dump(); 6592 } 6593 } 6594 } 6595 } 6596 } 6597 tty->cr(); 6598 tty->print("LCA(n): "); LCA->dump(); 6599 for (uint i = 0; i < n->outcnt(); i++) { 6600 Node* u1 = n->raw_out(i); 6601 if (u1 == n) 6602 continue; 6603 tty->print("n->out(%d): ", i); u1->dump(); 6604 if (u1->is_CFG()) { 6605 for (uint j = 0; j < u1->outcnt(); j++) { 6606 Node* u2 = u1->raw_out(j); 6607 if (u2 != u1 && u2 != n && u2->is_CFG()) { 6608 tty->print("n->out(%d)->out(%d): ", i, j); u2->dump(); 6609 } 6610 } 6611 } else { 6612 Node* u1_later = get_ctrl(u1); 6613 tty->print("later(n->out(%d)): ", i); u1_later->dump(); 6614 if (u1->in(0) != nullptr && !u1->in(0)->is_top() && 6615 u1->in(0) != u1_later && !u1->in(0)->is_Root()) { 6616 tty->print("n->out(%d)->in(0): ", i); u1->in(0)->dump(); 6617 } 6618 for (uint j = 0; j < u1->outcnt(); j++) { 6619 Node* u2 = u1->raw_out(j); 6620 if (u2 == n || u2 == u1) 6621 continue; 6622 tty->print("n->out(%d)->out(%d): ", i, j); u2->dump(); 6623 if (!u2->is_CFG()) { 6624 Node* u2_later = get_ctrl(u2); 6625 tty->print("later(n->out(%d)->out(%d)): ", i, j); u2_later->dump(); 6626 if (u2->in(0) != nullptr && !u2->in(0)->is_top() && 6627 u2->in(0) != u2_later && !u2->in(0)->is_Root()) { 6628 tty->print("n->out(%d)->in(0): ", i); u2->in(0)->dump(); 6629 } 6630 } 6631 } 6632 } 6633 } 6634 dump_idoms(early, LCA); 6635 tty->cr(); 6636 } 6637 6638 // Class to compute the real LCA given an early node and a wrong LCA in a bad graph. 6639 class RealLCA { 6640 const PhaseIdealLoop* _phase; 6641 Node* _early; 6642 Node* _wrong_lca; 6643 uint _early_index; 6644 int _wrong_lca_index; 6645 6646 // Given idom chains of early and wrong LCA: Walk through idoms starting at StartNode and find the first node which 6647 // is different: Return the previously visited node which must be the real LCA. 6648 // The node lists also contain _early and _wrong_lca, respectively. 6649 Node* find_real_lca(Unique_Node_List& early_with_idoms, Unique_Node_List& wrong_lca_with_idoms) { 6650 int early_index = early_with_idoms.size() - 1; 6651 int wrong_lca_index = wrong_lca_with_idoms.size() - 1; 6652 bool found_difference = false; 6653 do { 6654 if (early_with_idoms[early_index] != wrong_lca_with_idoms[wrong_lca_index]) { 6655 // First time early and wrong LCA idoms differ. Real LCA must be at the previous index. 6656 found_difference = true; 6657 break; 6658 } 6659 early_index--; 6660 wrong_lca_index--; 6661 } while (wrong_lca_index >= 0); 6662 6663 assert(early_index >= 0, "must always find an LCA - cannot be early"); 6664 _early_index = early_index; 6665 _wrong_lca_index = wrong_lca_index; 6666 Node* real_lca = early_with_idoms[_early_index + 1]; // Plus one to skip _early. 6667 assert(found_difference || real_lca == _wrong_lca, "wrong LCA dominates early and is therefore the real LCA"); 6668 return real_lca; 6669 } 6670 6671 void dump(Node* real_lca) { 6672 tty->cr(); 6673 tty->print_cr("idoms of early \"%d %s\":", _early->_idx, _early->Name()); 6674 _phase->dump_idom(_early, _early_index + 1); 6675 6676 tty->cr(); 6677 tty->print_cr("idoms of (wrong) LCA \"%d %s\":", _wrong_lca->_idx, _wrong_lca->Name()); 6678 _phase->dump_idom(_wrong_lca, _wrong_lca_index + 1); 6679 6680 tty->cr(); 6681 tty->print("Real LCA of early \"%d %s\" (idom[%d]) and wrong LCA \"%d %s\"", 6682 _early->_idx, _early->Name(), _early_index, _wrong_lca->_idx, _wrong_lca->Name()); 6683 if (_wrong_lca_index >= 0) { 6684 tty->print(" (idom[%d])", _wrong_lca_index); 6685 } 6686 tty->print_cr(":"); 6687 real_lca->dump(); 6688 } 6689 6690 public: 6691 RealLCA(const PhaseIdealLoop* phase, Node* early, Node* wrong_lca) 6692 : _phase(phase), _early(early), _wrong_lca(wrong_lca), _early_index(0), _wrong_lca_index(0) { 6693 assert(!wrong_lca->is_Start(), "StartNode is always a common dominator"); 6694 } 6695 6696 void compute_and_dump() { 6697 ResourceMark rm; 6698 Unique_Node_List early_with_idoms; 6699 Unique_Node_List wrong_lca_with_idoms; 6700 early_with_idoms.push(_early); 6701 wrong_lca_with_idoms.push(_wrong_lca); 6702 _phase->get_idoms(_early, 10000, early_with_idoms); 6703 _phase->get_idoms(_wrong_lca, 10000, wrong_lca_with_idoms); 6704 Node* real_lca = find_real_lca(early_with_idoms, wrong_lca_with_idoms); 6705 dump(real_lca); 6706 } 6707 }; 6708 6709 // Dump the idom chain of early, of the wrong LCA and dump the real LCA of early and wrong LCA. 6710 void PhaseIdealLoop::dump_idoms(Node* early, Node* wrong_lca) { 6711 assert(!is_dominator(early, wrong_lca), "sanity check that early does not dominate wrong lca"); 6712 assert(!has_ctrl(early) && !has_ctrl(wrong_lca), "sanity check, no data nodes"); 6713 6714 RealLCA real_lca(this, early, wrong_lca); 6715 real_lca.compute_and_dump(); 6716 } 6717 #endif // ASSERT 6718 6719 #ifndef PRODUCT 6720 //------------------------------dump------------------------------------------- 6721 void PhaseIdealLoop::dump() const { 6722 ResourceMark rm; 6723 Node_Stack stack(C->live_nodes() >> 2); 6724 Node_List rpo_list; 6725 VectorSet visited; 6726 visited.set(C->top()->_idx); 6727 rpo(C->root(), stack, visited, rpo_list); 6728 // Dump root loop indexed by last element in PO order 6729 dump(_ltree_root, rpo_list.size(), rpo_list); 6730 } 6731 6732 void PhaseIdealLoop::dump(IdealLoopTree* loop, uint idx, Node_List &rpo_list) const { 6733 loop->dump_head(); 6734 6735 // Now scan for CFG nodes in the same loop 6736 for (uint j = idx; j > 0; j--) { 6737 Node* n = rpo_list[j-1]; 6738 if (!_loop_or_ctrl[n->_idx]) // Skip dead nodes 6739 continue; 6740 6741 if (get_loop(n) != loop) { // Wrong loop nest 6742 if (get_loop(n)->_head == n && // Found nested loop? 6743 get_loop(n)->_parent == loop) 6744 dump(get_loop(n), rpo_list.size(), rpo_list); // Print it nested-ly 6745 continue; 6746 } 6747 6748 // Dump controlling node 6749 tty->sp(2 * loop->_nest); 6750 tty->print("C"); 6751 if (n == C->root()) { 6752 n->dump(); 6753 } else { 6754 Node* cached_idom = idom_no_update(n); 6755 Node* computed_idom = n->in(0); 6756 if (n->is_Region()) { 6757 computed_idom = compute_idom(n); 6758 // computed_idom() will return n->in(0) when idom(n) is an IfNode (or 6759 // any MultiBranch ctrl node), so apply a similar transform to 6760 // the cached idom returned from idom_no_update. 6761 cached_idom = find_non_split_ctrl(cached_idom); 6762 } 6763 tty->print(" ID:%d", computed_idom->_idx); 6764 n->dump(); 6765 if (cached_idom != computed_idom) { 6766 tty->print_cr("*** BROKEN IDOM! Computed as: %d, cached as: %d", 6767 computed_idom->_idx, cached_idom->_idx); 6768 } 6769 } 6770 // Dump nodes it controls 6771 for (uint k = 0; k < _loop_or_ctrl.max(); k++) { 6772 // (k < C->unique() && get_ctrl(find(k)) == n) 6773 if (k < C->unique() && _loop_or_ctrl[k] == (Node*)((intptr_t)n + 1)) { 6774 Node* m = C->root()->find(k); 6775 if (m && m->outcnt() > 0) { 6776 if (!(has_ctrl(m) && get_ctrl_no_update(m) == n)) { 6777 tty->print_cr("*** BROKEN CTRL ACCESSOR! _loop_or_ctrl[k] is %p, ctrl is %p", 6778 _loop_or_ctrl[k], has_ctrl(m) ? get_ctrl_no_update(m) : nullptr); 6779 } 6780 tty->sp(2 * loop->_nest + 1); 6781 m->dump(); 6782 } 6783 } 6784 } 6785 } 6786 } 6787 6788 void PhaseIdealLoop::dump_idom(Node* n, const uint count) const { 6789 if (has_ctrl(n)) { 6790 tty->print_cr("No idom for data nodes"); 6791 } else { 6792 ResourceMark rm; 6793 Unique_Node_List idoms; 6794 get_idoms(n, count, idoms); 6795 dump_idoms_in_reverse(n, idoms); 6796 } 6797 } 6798 6799 void PhaseIdealLoop::get_idoms(Node* n, const uint count, Unique_Node_List& idoms) const { 6800 Node* next = n; 6801 for (uint i = 0; !next->is_Start() && i < count; i++) { 6802 next = idom(next); 6803 assert(!idoms.member(next), "duplicated idom is not possible"); 6804 idoms.push(next); 6805 } 6806 } 6807 6808 void PhaseIdealLoop::dump_idoms_in_reverse(const Node* n, const Node_List& idom_list) const { 6809 Node* next; 6810 uint padding = 3; 6811 uint node_index_padding_width = (C->unique() == 0 ? 0 : static_cast<int>(log10(static_cast<double>(C->unique())))) + 1; 6812 for (int i = idom_list.size() - 1; i >= 0; i--) { 6813 if (i == 9 || i == 99) { 6814 padding++; 6815 } 6816 next = idom_list[i]; 6817 tty->print_cr("idom[%d]:%*c%*d %s", i, padding, ' ', node_index_padding_width, next->_idx, next->Name()); 6818 } 6819 tty->print_cr("n: %*c%*d %s", padding, ' ', node_index_padding_width, n->_idx, n->Name()); 6820 } 6821 #endif // NOT PRODUCT 6822 6823 // Collect a R-P-O for the whole CFG. 6824 // Result list is in post-order (scan backwards for RPO) 6825 void PhaseIdealLoop::rpo(Node* start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list) const { 6826 stk.push(start, 0); 6827 visited.set(start->_idx); 6828 6829 while (stk.is_nonempty()) { 6830 Node* m = stk.node(); 6831 uint idx = stk.index(); 6832 if (idx < m->outcnt()) { 6833 stk.set_index(idx + 1); 6834 Node* n = m->raw_out(idx); 6835 if (n->is_CFG() && !visited.test_set(n->_idx)) { 6836 stk.push(n, 0); 6837 } 6838 } else { 6839 rpo_list.push(m); 6840 stk.pop(); 6841 } 6842 } 6843 } 6844 6845 ConINode* PhaseIdealLoop::intcon(jint i) { 6846 ConINode* node = _igvn.intcon(i); 6847 set_root_as_ctrl(node); 6848 return node; 6849 } 6850 6851 ConLNode* PhaseIdealLoop::longcon(jlong i) { 6852 ConLNode* node = _igvn.longcon(i); 6853 set_root_as_ctrl(node); 6854 return node; 6855 } 6856 6857 ConNode* PhaseIdealLoop::makecon(const Type* t) { 6858 ConNode* node = _igvn.makecon(t); 6859 set_root_as_ctrl(node); 6860 return node; 6861 } 6862 6863 ConNode* PhaseIdealLoop::integercon(jlong l, BasicType bt) { 6864 ConNode* node = _igvn.integercon(l, bt); 6865 set_root_as_ctrl(node); 6866 return node; 6867 } 6868 6869 ConNode* PhaseIdealLoop::zerocon(BasicType bt) { 6870 ConNode* node = _igvn.zerocon(bt); 6871 set_root_as_ctrl(node); 6872 return node; 6873 } 6874 6875 6876 //============================================================================= 6877 //------------------------------LoopTreeIterator------------------------------- 6878 6879 // Advance to next loop tree using a preorder, left-to-right traversal. 6880 void LoopTreeIterator::next() { 6881 assert(!done(), "must not be done."); 6882 if (_curnt->_child != nullptr) { 6883 _curnt = _curnt->_child; 6884 } else if (_curnt->_next != nullptr) { 6885 _curnt = _curnt->_next; 6886 } else { 6887 while (_curnt != _root && _curnt->_next == nullptr) { 6888 _curnt = _curnt->_parent; 6889 } 6890 if (_curnt == _root) { 6891 _curnt = nullptr; 6892 assert(done(), "must be done."); 6893 } else { 6894 assert(_curnt->_next != nullptr, "must be more to do"); 6895 _curnt = _curnt->_next; 6896 } 6897 } 6898 }